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Preface to the Second Edition

The first edition of this book was based on a two-semester course at the physics
department of TU Miinchen. Approximately, one-third of this edition is new. We
tried to give a larger overview over the physical concepts which are applicable to
biological systems including established models as well as more recent develop-
ments. The major changes are as follows:

The chapter on continuum solvent models contains a discussion of the time
dependence of the reaction field after rapid excitation which is useful to understand
ultrafast time-resolved experiments on Stokes shift and relaxation processes. The
discussion of ion transport includes also models for cooperativity in ion channel
kinetics. Here we concentrate on the famous MWC and KNF models for
ligand-gated ion channels. In connection with electron transfer theory we present a
simple model for the mutual interaction with the medium polarization and discuss
the interplay between charge delocalization and self-trapping. Harmonic normal
mode approximation and nonadiabatic interactions are discussed in more detail.
A new chapter is devoted to intramolecular electronic transitions. The coupling to
the radiation field is treated as well with the semiclassical as the quantum
mechanical method and the Einstein coefficients for absorption and emission are
derived. The chapter ends with an overview of radiationless processes. The chapter
on crossing between states has been rewritten and extended. We begin with
wavepacket motion for a free particle and a harmonic oscillator, and discuss the
classical approximation of nuclear motion. We discuss the adiabatic to diabatic
transformation and the definition of quasidiabatic states. The semiclassical
approximation to one-dimensional curve crossing leads systematically to the
famous Landau—Zener model. The chapter ends with an introduction to conical
intersections and the linear vibronic coupling model as a simple example. Two new
chapters were added about specific biological systems. First, we discuss charge
transfer processes in DNA and describe the contributions of diffusive hopping and
superexchange over bridge states. Second, we present rather new models on the
photosynthetic reaction center and discuss the possible importance of heteroge-
neous superexchange and coupled proton motion. We would like to thank
Dr. Wolfgang Dietz for his contributions to this chapter, which replaces a rather
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short one of the first edition. The molecular motor models include more recent ideas
concerning ratchet models and localized reactions. Finally, we added two new
chapters to the appendix on the classical approximation of quantum motion and on
the complex cotangent function.

Garching, Germany Philipp O.J. Scherer
April 2017 Sighart F. Fischer



Preface to the First Edition

Biophysics deals with biological systems, such as proteins, which fulfill a variety of
functions in establishing living systems. While the biologist uses mostly a phe-
nomenological description, the physicist tries to find the general concepts to classify
the materials and dynamics which underly specific processes. The phenomena span
a wide range, from elementary processes, which can be induced by light excitation
of a molecule, to the communication of living systems. Thus, different methods are
appropriate to describe these phenomena. From the point of view of the physicist,
this may be continuum mechanics to deal with membranes, hydrodynamics to deal
with transport through vessels, bioinformatics to describe evolution, electrostatics
to deal with aspects of binding, statistical mechanics to account for temperature and
to learn about the role of the entropy, and last but not least quantum mechanics to
understand the electronic structure of the molecular systems involved. As can be
seen from the title, Molecular Biophysics, this book will focus on systems for which
sufficient information on the molecular level is available. Compared to crystallized
standard materials studied in solid-state physics, the biological systems are char-
acterized by very big unit cells containing proteins with thousands of atoms. In
addition, there is always a certain amount of disorder, so that the systems can be
classified as complex. Surprisingly, the functions like a photocycle or the folding of
a protein are highly reproducable indicating a paradox situation in relation to the
concept of maximum entropy production. It may seem that a proper selection in
view of the large diversity of phenomena is difficult, but exactly this is also the
challenge taken up within this book. We try to provide basic concepts, applicable to
biological systems or soft matter in general. These include entropic forces, phase
separation, cooperativity, and transport in complex systems, like molecular motors.
We also provide a detailed description for the understanding of elementary pro-
cesses like electron, proton, and energy transfer, and show how nature is making
use of them for instance in photosynthesis. Prerequisites for the reader are a basic
understanding in the fields of mechanics, electrostatics, quantum mechanics, and
statistics. This means the book is for graduate students, who want to specialize in
the field of biophysics. As we try to derive all equations in detail, the book may also
be useful to physicists or chemists who are interested in applications of statistical

vii
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mechanics or quantum mhemistry to biological systems. The book is the outcome
of a course presented by the authors as a basic element of the newly established
graduation branch 'Biophysics' in the Physics Department of the Technische
Universitaet Muenchen.

The authors would like to thank Dr. Florian Dufey and Dr. Robert
Raupp—Kossmann for their contributions during the early stages of the evolving
manuscript.

Garching, Germany Philipp O.J. Scherer
August 2009 Sighart F. Fischer
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Statistical Mechanics of Biopolymers



Chapter 1
Random Walk Models for the Conformation

In this chapter we study simple statistical models for the entropic forces which are
due to the large number of conformations characteristic for biopolymers like DNA or
proteins (Fig. 1.1). First we discuss the freely jointed chain model. We evaluate the
statistical distribution of end to end distances and discuss the force-extension relation.
Then we study a two component model of a polymer chain which is composed of
two types of units, which may interconvert. Interactions between the segments are
included and explain the appearance of a very flat force-extension relationship, where
a small force may lead to much larger changes in length than without interaction.

R
| p i
H-< h g C @ %\r\ H/C\
H/I\LXI\_;L&(I}A@ Cl/(x
0 R

Fig. 1.1 Conformation of a protein. The relative orientation of two successive protein residues can
be described by three angles (¥, @, w). For a real protein the ranges of these angles are restricted
by steric interactions, which are neglected in simple models

1.1 The Freely Jointed Chain

We consider a three-dimensional chain (Fig. 1.2) consisting of M units. The config-
uration can be described by a point in a 3(M+1)-dimensional space

(I'(),I'z...rM). (11)
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4 1 Random Walk Models for the Conformation

Fig. 1.2 Freely jointed chain

with constant bond length b /
b

The M bond vectors
b, =r;, —r,_ (1.2)

have a fixed length |b;| = b and are randomly oriented . This can be described by a
distribution function

1
P(b;) = Wé(lbil —Db). (1.3)

Since the different units are independent, the joint probability distribution factorizes

M
P(b;...by) =[] P (1.4)
i=1

There is no excluded volume interaction between any two monomers. Obviously the
end-to-end distance

N
R = Zb,» (1.5)
i=1

has an average value of R = 0 since

i:ZE:M/biP(b,-)zo. (1.6)

The second moment is
R2={>"b; > b;| =D bb; (1.7)
i J i,J
= Zb_? + ZTb/ = Mb>.

i#]



1.1 The Freely Jointed Chain

1.1.1 Entropic Elasticity

The distribution of the end-to-end vector is

PR) = / Pby...by)6 (R — Zbi) &by ... d’by,.

(1.8)

This integral can be evaluated by replacing the delta function by the Fourier integral

S(R) =

1 .
(2 )3 /e—]de3k
i

which gives

P(R) =/d ke‘kRH</4 % 5(|b;| —b)eikb’d3bi).

The inner integral can be evaluated in polar coordinates

/4 b26(|b | — b)e* dp;

2w 00
_ 2 ikb; (9
_/0 d¢>/0 bdbig—s b26(|b| b)/ sin 0d ek cos

The integral over 6 gives

2sinkb;

" in0do ikb; cos 6 —
/0 S € kbl

and hence

o0

A 1

/4 b26(|b| b)e*P g3p, =27r/ db; bzé(b — b)b?
0

B sin kb
kb

and finally we have

1 oo (sinkb\M
P R — d3k —ikR T
® <2w>3/ © ( kb )

The function

2sinkb;

kb;

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)
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sin kb \ ™ (015)
kb ’
has a very sharp maximum at kb = 0. For large M, it can be approximated quite
accurately by a Gaussian

. M
(Slgb) ~ e Mk (1.16)
which gives
3/2
PR) =~ /d3kefikRe*%k2b2 = 3 e IR/ @M), (1.17)
)3 2nh2M

We consider R as a macroscopic variable. The free energy is (no internal degrees of
freedom, £ = 0)

2

3R
F=-TS=—kgTInP(R) = WkBT + const. (1.18)

The quadratic dependence on L is very similar to a Hookean spring. For a potential
energy

V="x (1.19)

the probability distribution of the coordinate is

ks 42
Plx) — (x2/2kpT 1.20
)= T (1.20)

which gives a free energy of
2

ks
F = —ksT1In P = const + Tx (1.21)

By comparison, the apparent spring constant is

 3ksT

ks = Yk (1.22)

1.1.2 Force-Extension Relation

We consider now a chain with one fixed end and an external force acting in x-direction
at the other end (Fig. 1.3) [1].
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Fig. 1.3 Freely jointed
chain with external force M

K

Fig. 1.4 Projection of the
bond vector

The projection of the i-th segment onto the x-axis has a length of (Fig. 1.4)
b = —bcosf € [—b, b]. (1.23)

We discretize the continuous range of b; by dividing the interval [—b, b] into n
bins of width Ab = 2’1_17 corresponding to the discrete values /;, i = 1...n. The
chain members are divided into n groups according to their bond projections b;. The
number of units in each group is denoted by M; so that

Z M, =M (1.24)
i=1

and the end-to-end length is
> LM =L. (1.25)
i=1

The probability distribution is

in(6)dod
PO, $)dodp = SO (1.26)
47
Since we are only interested in the probability of the /; , we integrate over ¢
in(6)do
P@)dg = SnO90 (1.27)

2
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and transform variables to have
1 1
P(dl = P(—bcost)d(—bcosb) = %d(—b cosf) = %dl. (1.28)

The canonical partition function is

Z(L,M,T) = Z

M} Mil; L

M;
ZMVH% (1.29)
(M} i

The z; = z are the independent partition functions of the single units which we
assume as independent of i. The degeneracy factor %counts the number of
microstates for a certain configuration {M;}. The summation is only over configura-
tions with a fixed end-to-end length. This makes the evaluation rather complicated.
Instead, we introduce a new partition function by considering an ensemble with fixed
force and fluctuating length

Ak, M, T) = ZZ(L, M, T)e" L/ kT (1.30)
L

Approximating the logarithm of the sum by the logarithm of the maximum term we
see that
—kgTInA =—kpTInZ — KL (1.31)
(—kL corresponds to +pV ) gives the Gibbs free enthalpy
G(rk,M,T)=F — kL. (1.32)

In this new ensemble the summation over L simplifies the partition function

A= ZGNZM,-I,-/I(BTM! H ]ZV[_
_ ZM| H (Zehl /kBT)M

_ (Z ze”l"/k"T) — £, THM. (1.33)

Now returning to a continuous distribution of /; = —b cos § we have to evaluate

b ) inh 7
g:/ POydl ze/oT = S (1.34)
b

t



1.1 The Freely Jointed Chain

Fig. 1.5 Force - extension
relation

with

dG = —SdT — Ldk
we find (Fig. 1.5)

L=-"2|

ok

1

L/Mb

b
= MkpT (—— + —— coth

K kBT

with the Langevin function

£(x) = coth(x) — % .

(Iib

kgT

1.2 Two Component Model

) -

(1.35)

(1.36)

(1.37)

A one-dimensional random walk model can be applied to a polymer chain which is
composed of two types of units (named « and 3) , which may interconvert (Fig. 1.6).
This model is for instance applicable to the dsDNA — SDNA transition or the
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Fig. 1.6 Two component L
model
o oce|
1, 1|3

a-Helix — random coil transition of proteins which show up as a plateau in the
force-extension curve [1, 2].

We follow the treatment given in [1] which is based on an explicit evaluation of
the partition function. Alternatively, the two component model can be mapped onto
a one-dimensional Ising model, which can be solved by the transfer matrix method
[3, 4]. We assume that of the overall M units M, are in the «-configuration and
M — M,, are in the 3-configuration. The lengths of the two conformers are /,, and /3,
respectively.

1.2.1 Force-Extension Relation

The total length is given by
L=Mlo+ M—M)lg =M —1lg) +Mls. (1.38)

The number of configurations with length L is given by

QUJ—QAJ—L_Mw-— M: (1.39)
N ‘o la - l/? B (_L_Ml’j)l (_MIG_L)! ’ .
la=lg )"\ la=ls }°

From the partition function

L-Mlg  mi—L

Z=7M M2 =T T (1.40)

application of Stirling’s approximation gives for the free energy

F=—kgTIhZ
L— Ml Ml,
-——im@—@-———mm—@anM M)
lo — 13 lo— 13

L— Ml L — Ml L — Ml
= —kpT {— — ) In — )+ |—
la - lﬂ l(y - l‘@ lu - 13
Ml, — L ! Ml, — L n Ml, — L (141)
-\ n . .
Io — 1 In— 15 Io — 1

= —ksT




1.2 Two Component Model 11

Fig. 1.7 Force - extension
relation for the 2-component
model

k(1 -1,)/k, T

The derivative of the free energy gives the force-extension relation (Fig. 1.7)

(1.42)

oF kgT Mlz— L kgT Z3
K= — = n : In —.

OL I, -1z L—Mi, Io—1g  zq
This can be written as a function of the fraction of segments in the a-configuration

M, L-— Ml

J= = 1.43
M M(la - lﬁ) ( )
in the somewhat simpler form
l(y - lﬁ 5 Zﬁ
P =1 In —. 1.44
T 18 "L (149
The mean extension for zero force is obtained by solving x(L) = 0
¥ »ala li
To=M (M) (1.45)
Za + 28
I: - MlA «
=M _ ¢ (1.46)

- M, —13)  za+zs

Taylor series expansion around L gives the linearized force—extension relation
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OF
K==
oL
kT (2o + 25)* .
= P (L —Lg)+---
MUy =1 2z, LT L0
kgT @ { 2
~ Sl G ¥ gy
lo — l{j Zalp
kT 1
5 (6 — ). (1.47)

Lo — 15 80(1 = 0)

1.2.2 Two Component Model with Interactions

We now consider additional interaction between neighboring units. We introduce the
interaction energies Wqq, Wag, Wgg for the different pairs of neighbors and the num-
bers Nya, Na,g, Ngg of such interaction terms. The total interaction energy is then

W = NoaWaa + NogWag + Ngsgwpg. (1.48)

The numbers of pair interactions are not independent from the numbers of units
M,,, M. Considerinsertion of an additional -segment into a chain. Figure 1.8 counts
the possible changes in interaction terms. In any case, by insertion of an c-segments
the expression 2N, + N,z increases by 2.

Similarly, insertion of an extra 3-segment increases 2Ng3 + Ny by 2 (Fig. 1.9).

Fig. 1.8 Insertion of an M, M N(m N, N 2N "'NOL[3

a-segment o i of " BB o
swskoopkskk +1 +1 +2
g +1 +1 +2
wxBoprs +1 +1 +2
sxkBBxkx  +1 +2 -1 42

progment i Mo Mg Moo Nap Nog 2o
sk QUOL S % +1 -1 +2 +2
s Qs +1 +1 +2
***[30(*** +1 +1 +2

otk B Bk +1 +1 2
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Fig. 1.10 Determination of N, NB NWN&BNBB 21\](1&,_1\1043_21\1(X 2NB[3+N(XL3_2N[3
the constants
agoa 2 01 00 -2 0
BB 0 2 0 0 1 0 -2
o B 1 1 010 -1 -1
o o 0
D, 20 2 00 0
—
Bp 02002 0 0
b
o
) 1 1.0 2 0 0 0

This shows that there are linear relationships of the form

2Noo + Nog = 2M,, + ¢y

2Ngs + Nop = 2Mp + c3. (1.49)
The two constants depend on the boundary conditions as can be seen from an inspec-
tion of the shortest possible chains with 2 segments (Fig. 1.10). They are zero for
periodic boundaries and will, therefore, be neglected in the following, since the

numbers M, Mz are much larger.
‘We substitute

1

Noo = M, — zNad (150)
1

Ngg = Mg — EN@,@ (L.51)

W = Wyq + wpp — zwaﬁ (152)

to have the interaction energy

1 1
W= waa(Ma - ENO’[J‘) + w@@(M[J‘ - EN(IS) + waﬂNaﬂ

w
= WaaMo +wgg(M — M,) — ENag. (1.53)

The canonical partition function is
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Fig.1.11 Degeneracy factor g. (BB] [ ][B ]
The possible 8 configurations [B ][ ][BB]
are shown for M =4, M, = 3, Lo ][ BBlfoa][B ]
Mg =3,Nop =3 (o ][B Joo][BB]
[BBI[eo][ B[ o]
(BB][e J[B ]
[ B J[oa][BB o |
(B J[o J[BB]

Fig. 1.12 Distribution of
three segments over three
blocks. This is equivalent to
the arrangement of three
segments and two border ‘OL o ‘0(
lines

2
=B
Q

Q
Q
2

M; _
Z(M,. T) =z)2)" > g(Mqy, Nogye™ Vel kT
Nag

= (Zaefwm/kuT)Mu (Zﬂefw,«u/kBT)(M—M(.) Z e(M,,, ng)eN‘”"w/Zk”T.
Nog

example.

The chain can be divided into blocks containing only a-segments (a-blocks)
or only (§-segments (/3-blocks). The number of boundaries between «-blocks and
(B-blocks obviously is given by N,3. Let N,3 be an odd number. Then there are
(Nap + 1)/2 blocks of each type (We assume that N,g, M,,, Mg are large numbers
and neglect small differences of order 1 for even N,3). In each a-block there is
at least one a-segment. The remaining M, — (N3 + 1)/2 a-segments have to be
distributed over the (N,3 + 1)/2 a-blocks (Fig.1.12).

Therefore we need the number of possible ways to arrange M, — (No5 + 1)/2
segments and (N, 3 — 1)/2 walls which is given by the number of ways to distribute
the (N3 — 1)/2 walls over the total of M, — 1 objects which is given by
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(M, — 1)! N M, 159
Nog—1 Neg+1N, [N, Nag\y ’
(e, — ) (o, — )
The same consideration for the 3-segments gives another factor of
M — M,)!
( ) (1.56)

= m, — )1

Finally, there is an additional factor of 2 because the first block can be of either type.
Hence for large numbers we find

(M.,)! (M —M,)!
() e — ) (v — M, — )

We look for the maximum summand of Z as a function of N,g. The corresponding
number will be denoted as N ; and is determined from the condition

8§(Mq, Nop) =2 . (1.57)

0 1n(g<Ma,N@g)eiké‘?)— b Ing(M., Nop).  (1.58)

~ ON.j T 2ksT | ONag

Stirling’s approximation gives

1 N} 1 N*, N*,
v +—1n(Ma— 5)+§ln(M—Ma— zd)—ln( zd) (1.59)

T 2T 2 2
or
N*, N*.
M(y_ﬂ M_Ma_ﬂ
o= " 4" 2 ) (M ). (1.60)
kgT (%)2

Taking the exponential gives

N*. N Nos\
M — 8\ (v = g, — et = ekt (Nas)” (1.61)
2 2 2

Introducing the relative quantities

Ma N(t’

we have to solve the quadratic equation

(6 =1 —6—7) =~ 7. (1.63)
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The solutions are

—1 £ /(1 —28)2 + de~/kT§5(1 — 6)
7= .

2T 1) (1.64)
Series expansion in w/kgT gives
_ kBT T 1 n w
T 2w 4 24kgT
kgT 1 1, w
401 =6 — - §—6) - —)— 1.65
( S o0 =9) 4+(( ) 24)kBT)+ (1.65)
The - alternative diverges for w — 0 whereas the + alternative
1 w
=601 — 0+ (=) — (=1 =62 +20(0 = 1)} ) —— -+ (1.66
v =o( )+ ( )kBT 2( )"+ 24( ) ks (1.66)
approaches the value
v =0 —6° (1.67)
which is the only solution of the interactionless case
0 —90)(1—8—7) =7 — 61 —8 —y=0. (1.68)
For N ; we obtain approximately
NFy=2M (61— 8)+ (0 — 02—+ ). (1.69)
! kgT

Let us now apply the maximum term method, which approximates the logarithm of
a sum by the logarithm of the maximum summand
F=—kgTInZ(M,,T)
~ —kgTMyInz, —kgT (M — M,)Inzg + M, wao + (M — M,)wgs
w :ﬂ
—kgT Ing(M, Nj3) — > —. (1.70)

The force-length relation (Fig. 1.13) is now obtained from

9 L—Mlg
OF _ OF L=l )1 9F
oL oM, OL  l,—130M,

0
= T (—kBTlIlZa +kpT Inzg + woq — wgs — kBTaMa lng)

1 aN*ﬁ 8 th?
- —kpTlng — —22). 1.71
=1, oM, N7, ( phing == ) (L71)
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Fig. 1.13 Force - length
relation for the interacting
two-component model.
Dashed curves: exact results
forw/kpT =0, £2, £5.
Solid curves: series
expansion (1.73) which gives
a good approximation for
lw/kpT| <2

0 0.2 0.4 0.6 0.8 1

The last part vanishes due to the definition of N, . Now using Stirling’s for-
mula we find ‘

v
M, M—-M,— 5= ) 1—0—7

Ing =1 a 1 2 ] 1 1.72

ng nM_MaJrn Ma_% n1_6+n P (1.72)

oM.,

and substituting v we have finally

(, — l“g) N Zﬂe—wm/kBT . (1 —9)
kgT ~—  zne Wea/ksT 1)

2
w w
20 —1)—— +6(36 28— 1) —) . 1.73
+( )kBT+ ( )(kBT) (1.73)

Linearization now gives

Zae_waa/kBT
(SO = Zaefw(m/kBT + Zﬂeiw‘/”“/j/kBT
kgT 1
K= (6= d0)

lo — 15 60(1 — do)

2
w w
— (20— 1 — ) (362 — 6y — 26;
+kBT( 0 )+(kBT)( 0 0 0)

2
w w 2
O (s ) [ e

For negative w, a small force may lead to much larger changes in length than with
no interaction. This explains, for example, how in proteins huge channels may open
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although the acting forces are quite small. In the case of Myoglobine, this is how the
penetration of oxygen in the protein becomes possible.

Problems

1.1 Gaussian Polymer Model
The simplest description of a polymer is the Gaussian polymer model which considers
a polymer to be a series of particles joined by Hookean springs

O n
T
-0

(a) The vector connecting monomers n-1 and n obeys a Gaussian distribution with
average zero and variance

((rn - rnfl)z) = bz'

Determine the distribution function P(r, — r,_) explicitly.

(b) Assume that the distance vectors r,, — r,_; are independent and calculate the
distribution of end-to-end vectors P(ry — rgp).

(c) Consider now a polymer under the action of a constant force  in x-direction.
The potential energy of a conformation is given by

N ¥
V = L, —r,)? — —

;:1 > (ry —rp—1)” — k(xy — x0)

and the probability of this conformation is

P ~e VT,

Determine the effective spring constant f.

(d) Find the most probable configuration by searching for the minimum of the energy
ov._ov._ov 0
ox, Oy, Oz,

Calculate the length of the polymer for the most probable configuration (according
to the maximum term method the average value coincides with the most probable
value in the thermodynamic limit).
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1.2 Three-Dimensional Polymer Model

Consider a model of a polymer in three-dimensional space consisting of N links of
length b. The connection of the links i and i + 1 is characterized by the two angles
¢; and 0;. The vector r; can be obtained from the vector r; through application of a
series of rotation matrices'

r, = R1R2 . R,»_lrl

o n
iég 77Cr>1—1 "0

with

0 cos¢; sing; 0 cos; 0 —sin6;
ri=10 Ri = R (¢i)Ry(0;) = | —sing; cosp; 0 0 1 0
b 0 0 1 sinf; 0 cos®;

2
Calculate the mean square of the end-to-end distance <(Z,N_ ) ri) >
for the following cases:

(a) The averaging (- - - ) includes averaging over all angles ¢; and 6;.

(b) The averaging (- - - )includes averaging over all angles ¢; while the angles 6; are
held fixed at a common value 6.

(c) The averaging (- - - )includes averaging over all angles ¢; while the angles 6; are
held fixed at either 65,1 = 6, or 6,; = 0, depending on whether the number of
the link is odd or even.

(d) How large must N be, so that it is a good approximation to keep only terms
which are proportional to N?

(e) What happens in the second case if # is chosen as very small (wormlike chain)?

Hint: Show first that after averaging over the ¢; the only terms of the matrix which
have to be taken into account are the elements (R;)33. The appearing summations
can be expressed as geometric series.

IThe rotation matrices act in the laboratory fixed system (xyz). Transformation into the coor-
dinate system of the segment (x’y’z’) changes the order of the matrices. For instance ro =
R(y,00)R(z, ¢1)r1 = R(z, ¢)R(Y,0DR™(z, 61)R(z, p1)r1 = R(z, p1)R(Y', O1)ry (This is
sometimes discussed in terms of active and passive rotations).
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1.3 Two-Component Model

We consider the two-component model of a polymer chain which consists of M
segments of two different types «, § (internal degrees of freedom are neglected).
The number of configurations with length L is given by the Binomial distribution

M!
QLM T)= ——— L =M, +(M— M)l
( ) M,(M — M,)! + M

(a) Make use of the asymptotic expansion? of the logarithm of the Gamma function

M+ 1) =(Inz — Dz +1In(+27) + %lnz + é + 0@z

N!'=T(N+1)
to calculate the leading terms of the force-extension relation which is obtained from

0
=—\ —kgTIn2(L, M, T)]).
K 8L( kpTIn (L, M, ))

Discuss the error of Stirling’s approximation for M = 1000 and l5/[, = 2.

(b) Now switch to an ensemble with constant force « . The corresponding partition
function is

Z(s, M. T) =Y "ML, M. T).
L

Calculate the first two moments of the length

— 0 0
L=—on(ksTnZ) = Z ks T -7

72 1 , P
L2 =Z7Z"(kgT) —Z
(kgT) 92
/5> 2
and discuss the relative uncertainty o = % . Determine the maximum of o.

2Several asymptotic expansions can be found in [5] .



Chapter 2
Flory—Huggins Theory for Biopolymer
Solutions

In the early 1940s, Paul Flory [6] and Maurice Huggins [7], both working indepen-
dently, developed a theory based upon a simple lattice model that could be used to
understand the nonideal nature of polymer solutions. They consider a lattice model
where the lattice sites are chosen to be the size of a solvent molecule and where all
lattice sites are occupied by one molecule [1]. The mixing entropy and free energy
of a polymer solution are evaluated. The appearance of unstable regions and the
transition between a homogeneous and a two-phase system are discussed.

2.1 Monomeric Solution

As the simplest example, consider the mixing of a low-molecular-weight solvent
(component «) with a low-molecular-weight solute (component ). The solute mole-
cule is assumed to be the same size as a solvent molecule and therefore every lattice
site is occupied by one solvent molecule or by one solute molecule at a given time
(Fig.2.1).

The increase in entropy AS,, due to mixing of solvent and solute is given by

N!
AS, =kpln 2 =kgln{ ———— 2.1
BN Bn(Na!Nﬂ!) (2.1)

where N = N,, + Np is the total number of lattice sites. Using Stirling’s approxima-
tion leads to

© Springer-Verlag GmbH Germany 2017 21
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Fig. 2.1 Two-dimensional .}[ ][. "Q:L,[.
Flory—Huggins lattice .' )
O solvent
@ solute
AS, =kp(NInN — N — NyInN, + N, — Ngln Ng + Npg)
=kp(NInN — Ny In N, — Ngln Np)
Ny Ng
= —kBN In — —kBNﬂh’l— (22)
N
Inserting the volume fractions
Ny N,
bo= " pp=—l— (2.3)
Ny + Nﬁ Ny + Nﬁ
the mixing entropy can be written in the well-known form
AS,, = —Nkp(¢py In g + ¢pgIngp). (2.4)

Neglecting boundary effects (or using periodic b.c.) the number of nearest neighbor
pairs is (c is the coordination number)

c
Ny =N—. 2.5
5 2.5

These are divided into

N, e cd)a _ Nﬁgc Nge  Noje

Naﬂ = Nd’ad)ﬁ C. (26)

The average interaction energy is

1 1
= ENcqb Woe + = Nc¢5w5ﬂ + NcpoaPpwegp 2.7

which after the substitution

1
Wop = z(ww + wgg — w) (2.8)
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becomes

1
w = —ENCQSad)ﬂw
1 1
= +§Nc¢a(¢awaot + ¢ﬂwaa) + ENC¢ﬁ(¢ﬁwﬁﬁ + ¢awﬁﬁ)

and since ¢, + ¢p =1

1 1
w = —ENC%%U) + 5N0(¢aww + ppwgp).
Now the partition function is

N!
Ny !Np!
N!

NoNgcw/2NkgT

(S

7 = Zévazgﬁe—Nacwaa/ZkBT —Ngcwps /25T o

7cww/2k,3T)N,y 7cwﬂﬁ/2k1;T)NﬂeNaNﬁcw/ZNkBT

= (z4€ (zge

The free energy is

F = —kBTan = _NakBTanoz - NﬁkBTlIlZﬂ
N c N c Ny Ngcw
= a7 Waa —~w I

2 Po e 2N

For the pure solvent the free energy is

F(Ne =N, Nﬁ =0) = —NygkpT Inz, + Na%waa

and for the pure solute
F(Na = 01 Nﬂ = N) = —NﬂkBTIHZﬂ —+ Nﬂgwﬁﬂ

hence, the change in free energy is

Ny Ngcw

AF,, =
2N

+ NkpT (¢ In ¢ + ¢ In )

with the energy change (van Laar heat of mixing)

AE. — NoyNgcw NcquqS — NksT yxud
m = N - ) P — BL XPaPp.-

No!Nj!"

+ NkBT(d)a ln¢a +¢ﬂ 11145/3).

23

(2.9)

(2.10)

@2.11)

2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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Fig. 2.2 Free energy change
AF/NkgT of a binary 0
mixture with interaction ‘

AF /Nk,T
m B

o

()

o
~

-0.6

The last equation defines the Flory interaction parameter (Fig.2.2)

cw

C 2kgT’

2.17)

X:

For x > 2 the free energy has two minima and two stable phases exist. This is seen
from solving

0=28F _ iyl 1 — o) + o In gy + (1 — ) In(1 —
= a0, Vks %(X%( ¢o) + o In Py + (1 — ¢o) In(1 — ¢y))
= NkgT (X(l —2¢y) +1n ; i’)“d) ) (2.18)

This equation has as one solution ¢, = 1/2. This solution becomes unstable for
X > 2 as can be seen from the sign change of the second derivative
AF
993

1 —2x¢a + 2102
¢§ - ¢a

=NkBT( ):NkBT(4—2x). (2.19)

2.2 Polymeric Solution

Now consider Ng polymer molecules which consist of M units and hence occupy a
total of M Ng lattice sites. The volume fractions are (Fig.2.3)

N MN;

__Na - 2.20
N, + MNj %8 No + MNg (220)

P
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Fig. 2.3 Lattice model for a
polymer
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and the number of lattice sites is

N = N, + MNg. (2.21)
The entropy is given by
AS = AS,, + ASq = kpIn 2(Ny, Np). (2.22)

It consists of the mixing entropy and a contribution due to the different conformations
of the polymers (disordering entropy). The latter can be eliminated by subtracting
the entropy for N, = 0

In 2(Ny, Ng)

AS, = AS — AS; =k .
T In2(0, Ny)

(2.23)

In the following we will calculate £2(Ny, Ng) in an approximate way. We use a
mean-field method where one polymer after the other is distributed over the lattice,
taking into account only the available volume but not the configuration of all the
other polymers. Under that conditions £2 factorizes

G
=N H Vi (2.24)

where v; counts the number of possibilities to put the i-th polymer onto the lattice.
It will be calculated by adding one segment after the other and counting the number
of possible ways

M
Vigl = H nitl, (2.25)

The first segment of the (i41)-th polymer molecule can be placed onto
it =N — (2.26)

lattice sites (Fig.2.4).
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Fig. 2.4 Available positions. The second segment can be placed onto four, the third segment onto
three positions. For the following segments it is assumed that they can also be placed onto three
positions (a). Configurations like (b) are neglected

The second segment has to be placed on a neighboring position. Depending on the
coordination number of the lattice there are ¢ possible neighboring sites. But only a
fraction of

f=1-2 (2.27)

is unoccupied. Hence, for the second segment we have

it = ¢ (1 _ ZW) . (2.28)

For the third segment only ¢ — 1 neighboring positions are available

it =(c—1) (1 - %) : (2.29)

For the following segments r = 4 ... M, we assume that the number of possible
sites is the same as for the third segment. This introduces some error since for
some configurations the number is reduced due to the excluded volume. This error,
however, is small compared to the crudeness of the whole model. Multiplying all the
factors we have
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. M—1
vigr = (N —iM)c(c — HM2 (1 — ﬂ)

N
c—1 M—1
~ (N —iM)™ (T) (2.30)
and the entropy is
G c— 1\
AS = kgln N—IS!H(N—iM)M (T) (2.31)

Npg
-1
= —kNpgIn Ng +kgNp +kpNg(M — 1) In (CN ) +kgM D In(N —iM).

i=1

(2.32)

The sum will be approximated by an integral

Np Ns N N
Zln(N —iM) ~ / In(N — Mx)dx = (x — M) (In(N — Mx) — 1) ‘ oﬁ
i=1 0

=—%(lnNa—l)+%(lnN—l). (2.33)

Finally we get

AS = —kgNyIn Ny + ksNp + kgNy(M — 1) In (C ~ 1)
+kp(NInN — N + Ny — Ny In N,). (2.34)
The disorder entropy is obtained by substituting N, = 0 and N = M Ng
AS; = AS(N, = 0)

c—1
= —kgNgIn N, kgN kgNg(M — 1)1
BNgIn Ng +kpNg + kpNg( )n(MNﬁ)
kg (MNgIn MNg — MNg). (2.35)

The mixing entropy is given by the difference (Fig.2.5)

AS, = AS — AS,
=kg(NInN — N+ N, — NyInN, — MNgIn MNg + M Ng)
+kpNg(M — 1)(In MNg — In N)
=k (NInN — NyInN, — MN gIn MNg + MNgln MNg
—MNgIn N — Ngln MNg + Ng 1nN)
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Fig. 2.5 Mixing entropy.
AS,/Nkp is shown as a
function of ¢4 for
M =1,2,10, 100

N, MNg

Z—kB Naln——i—Nﬁln =—k3Na1n¢a—k3Nﬁln¢lg
N N

_ bs

= — Nk (gaInga + < -0 g5 ) (2.36)

In comparison with the expression for a solution of molecules without internal flex-
ibility we obtain an extra contribution to the entropy of

MN N
—N gk In Nﬁ + NgkgIn Wﬁ = —NgkpIn M. (2.37)

Next, we calculate the change of energy due to mixing, AE,,. wy,is the interaction
energy between nearest-neighbor solvent molecules, wgg between nearest-neighbor
polymer units (not chemically bonded) and w,g between one solvent molecule and
one polymer unit. The probability that any site is occupied by a solvent molecule is
¢ and by a polymer unit is ¢g. We introduce an effective coordination number ¢
which takes into account that a solvent molecule has ¢ neighbors whereas a polymer
segment interacts only with c-2 other molecules. Then

N, _. N
Nuw =04~ Npy = Mcqsﬁ?ﬂ (2.38)

Nup = o Np. (2.39)

In the pure polymer, ¢ = 1and Ngg = McNg/2, whereas in the pure solvent Ny, =
CNy /2. The energy change is
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— Na — Nﬂ —
AE, = cwaaqﬁa? + wﬁﬂMch,g? + wegMcp,Ng

— Na — Nf} —
—cwaa7¢ﬁ —cMwgg 7% + wegMcpy Ng

Wy + W _
— (waﬁ - ‘“Tﬁﬁ) TN oty

ZeNGud
-
2 ﬁ

= NksT xbutp (2.40)

with the Flory interaction parameter

wc

T kT 241
X kT (2.41)
For the change in free energy we find (Figs. 2.6, 2.7 and 2.8)
AF,  AE, AS, o
N B = gul v aPp- 2.42
NkgT — NkgT ~ Nk~ PGt pInds + x¢uds (2.42)

Fig. 2.6 Free energy as a
function of solute
concentration. AF,,,/NkgT
is shown for M = 1000 and
x =0.1,0.5,1.0,2.0

)

AF /Nk
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Fig. 2.7 Free energy as a 0
function of solute
concentration. AF,,/NkgT 0.1k /|
is shown for x = 1.0 and
M =1, 2, 10, 1000 )
£ 02 |
EE 03} |
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Fig. 2.8 Free energy as a 0.2
function of solute
concentration. AF,,/NkgT
is shown for x = 2.0 and 0.1
M = 1,2, 10, 1000 B,
2
S
=3
<
-0.1
-0.2
0

2.3 Phase Transitions

2.3.1 Stability Criterion

In equilibrium the free energy (if volume is constant) has a minimum value. Hence
a homogeneous system becomes unstable and separates into two phases if the free
energy of the two-phase system is lower, i.e., the following equation can be fulfilled
AF,u(¢p. N) > AF,(¢y. N') + AF,(¢5. N — N'). (2.43)
But since AF,, = N Af,,(¢g) is proportional to N, this condition becomes
NAfu(pp) > N'Afu(gp) + (N — N)Af(dp). (2.44)

Since the total numbers N,,Ng are conserved we have

N¢s = N'¢jy + (N — N\ (2.45)
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or

N, — ¢ P

N = (2.46)

But since N as well as (N — N’) should be positive numbers there are two possible
cases as follows:

Oy~ >0 dp—¢)>0 ¢—¢s>0 (2.47)
Oy~ <0 ds—¢) <0 ¢y —¢s <0 (2.48)

which means that either gb/g <¢p < ¢>/’3’ or qb/; > ¢p > ¢>/’3’. By renaming we always
can choose the order

by < Pp < P (2.49)
The stability criterion becomes (Fig.2.9)

—y ¢ —
g A+ Gt ’

¢,3 //
A " 2.50
o S g M) (2.50)

Afin(dp) >

which can be written with the abbreviation

=dp—p h' =5 (2.51)
as

Af(¢pp —h') — Af (dp) n Af(¢p+h") — Af (¢p)

- x <0 (2.52)

Fig. 2.9 Stability criterion
for the free energy

... Stable

, B
() instable
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but that means the curvature has to be negative or locally

*Af (¢p)

< 0. 2.53
997 (2.53)

2.3.2 Critical Coupling

Instabilities appear above a certain value of x = x.(M). To find this critical value
we have to look for the metastable case with

0= o _ ! — + ! -2 2.54
_32¢ Af(pp) = ¢ M_¢b X- (2.54)

In principle, the critical x value can be found from solving this quadratic equation
for ¢, and looking for real roots in the range 0 < ¢g < 1. Here, however a simpler
strategy can be applied. At the boundaries of the interval [0, 1] of possible ¢;-values
the second derivative is positive

2

1
20 Af () — Mo, >0 for ¢, — 0 (2.55)

2

32_¢;,Af(¢b) —

1
>0 for ¢p — 1. (2.56)
— Qb

Hence, we look for a minimum of the second derivative, i.e., we solve

0= 2 Af@y = — 1 2.57)
T T (=g M@ '
This gives immediately
o = —— (2.58)
be — 1+ m .

Above the critical point the minimum of the second derivative is negative. Hence we
are looking for a solution of

2 3

az_(phAf((bb) P = Af (@) =0. (2.59)
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Inserting ¢y, into the second derivative gives

O—l—i—l—i-2 2

VM

which determines the critical value of x

CA+VM)? 1 1 1

33

(2.60)

2.61)

(2.62)

=" 2t um tan
FromdF = —SdT + juod N, + pgd Ng we obtain the change of the chemical poten-
tial as
0AF ON 0 dpps 0
0 B
— 0= Ay, = —— + _
Ho ™ Ho = Ao = 755 7 INs T (aN ON | 9N, 3¢

1
= Af(¢p) — s AL () = ksT (1n<1 —¢p) + (1 - M) 5+ x¢§) .

Now the derivatives of Au, are

d
 Apy = —ppA 1
995 W PpAf (dp)

82
—5Aug = —Af"(¢p) — dp AL (Bp)-
s

Hence the critical point can also be found by solving

02 ad 9 4 0
Apg = Mo = V.
8¢ﬂ ol

Employing the ideal gas approximation
w =kgT In(p) + const
this gives for the vapor pressure (Figs.2.10 and 2.11)

Do _ gmamm)/keT — (1 — ) x93 t(1=1/M0;
Pa

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

and since the exponential is a monotonous function another condition for the critical

point is

0 pa 0 pa
dpp PO 3¢p po

(2.69)



34

Fig. 2.10 Vapor pressure of
a binary mixture with
interaction M = 1)

Fig. 2.11 Vapor pressure of
a polymer solution with
interaction for M = 1000,

x =0.5,0.532,0.55

2.3.3 Phase Diagram

2 Flory—Huggins Theory for Biopolymer Solutions
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In the simple Flory-Huggins theory the interaction parameter is proportional to =.

Hence we can write it as

_ Toxo
T

(2.70)

and discuss the free energy change as a function of ¢4 and T:

AF = NkBT ((1 — (]55) 11’1(1 - ¢,3) + %ln(]ﬁﬂ) + NkBTOX0¢ﬂ(1 — (bﬁ)

2.71)
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Fig. 2.12 Spinodal curve 1
0.8 *
0.6 - *
&
04 B
0.2 + M=1 M=10 M=100 1
0 Il 1 L
0 0.5 1 1.5 2
T/ (Toxy)
The turning points follow from
0 ” AF = Nk ( d + d 2T, ) (2.72)
= = INkp ——— —<zloXo .
dp; L—¢p My
as
borr = 1 N T(1— M)+ JT>(M — 1)2 + 4Ty xoM (ToxoM — T — 4MT)
AP = 2 4‘TOX0M ’

(2.73)

This defines the spinodal curve which separates the unstable from the metastable
region (Fig.2.12).

Which is the minimum free energy of a two-phase system? The free energy takes
the form

AF = AF' + AF? = N'kgT Af (¢) + N°ksT Af (¢7) (2.74)
with

J
MNg

i N j g
N/ =N+ MNj  ¢p=—-F.

(2.75)

The minimum free energy can be found from the condition that exchange of solvent
or solute molecules between the two phases does not change the free energy, i.e., the
chemical potentials in the two phases are the same

OAF'  dAF? OAF'  dAF?
0=dAF =~ — dN, + —— —— )dN; (2.76)
INL  ON2 IN)  ONZ
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0=y — iy =1y — ij (2.77)
or
o=(ar —¢y-Lar )~ (ar —p2-L ar (2.78)
ﬁaqsé 5a¢§ :

_ i ETNE DV VN e N e
0—<Af + (1 ¢ﬂ)3¢;})Af (Af +(1 ¢,3)8¢§Af)‘ (2.79)

From the difference of these two equations, we find

dAf'  aAf?
opy 99

(2.80)

and hence the slope of the free energy has to be the same for both phases. Inserting
into the first equation then gives

Aft = Af? = (¢p — PP AS (2.81)

which shows that the concentrations of the two phases can be found by the well-
known “common tangent” construction (Fig.2.13).

These so called binodal points give the border to the stable one-phase region.
Between spinodal and binodal the system is metastable. It is stable in relation to
small fluctuations since the curvature of the free energy is positive. It is, however,
unstable against larger scale fluctuations (Fig.2.14).

Fig. 2.13 Common tangent
construction
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Fig. 2.14 Phase diagram T
stable one—phase
meta
stable stable
two—phase
spinodal binodal
q)li

Problems

2.1 Osmotic pressure of a Polymer solution

Polymer solution  Pure Solvent
A A5
an 5
A
A 5
xy 6

u(P.T) =((PT)
Calculate the osmotic pressure [T = P — P’ for the Flory—Huggins model of a poly-
mer solution The difference of the chemical potential of the solvent

AAF,

«(P,T) —po(P, T) =
ta(P,T) = 1 (P, T) N,

Ng.T
can be obtained from the free energy change
_ Pp
AFm = NkBT ¢a 1n¢a + M 1n¢ﬁ + X¢a¢ﬂ

and the osmotic pressure is given by

A

0 ’ 0
P.T)— P, T)=-II .
Mo ( ) — g (P, T) 3P
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Taylor series expansion gives the virial expansion of the osmotic pressure as a series
of powers of ¢g. Truncate after the quadratic term and discuss qualitatively the
dependence on the interaction parameter x (and hence also on temperature).

2.2 Polymer mixture

Consider a mixture of two types of polymers with chain lengths M and M, and
calculate the mixing free energy change AF,,. Determine the critical values ¢, and
Xc- Discuss the phase diagram for the symmetrical case M} = M,.



Part 11
Protein Electrostatics and Solvation



Chapter 3
Implicit Continuum Solvent Models

Since an explicit treatment of all solvent atoms and ions is not possible in many
cases, the effect of the solvent on the protein has to be approximated by implicit
models which replace the large number of dynamic solvent modes by a continuous
medium [8—10] and treat the solvent as a dielectric continuum. We discuss the Born
model of a point charge in the center of a cavity and its extension for a general
charge distribution. The solvation energy of a dipole is evaluated, together with its
time dependence for the case of a simple Debye solvent.

3.1 Potential of Mean Force

In solution a protein occupies a conformation < with the probability given by the
Boltzmann factor

e—U(X,Y)

PX,Y)=——
X1 = Taxaye v

3.1)

where X stands for the coordinates of the protein (including the protonation state)
and Y for the coordinates of the solvent. The potential energy can be formally split
into three terms

U(X, Y) = Uprot (X) + Usolv(Y) + Uprot,solv(X’ Y) (32)

The mean value of a physical quantity which depends only on the protein coordinates

Q(X) is

§=/dXdY O(X)P(X, Y):/dX 0(X)P(X) (3.3)

© Springer-Verlag GmbH Germany 2017 41
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,

Biological and Medical Physics, Biomedical Engineering,

DOI 10.1007/978-3-662-55671-9_3



42 3 Implicit Continuum Solvent Models

where we define a reduced probability distribution for the protein
ﬁ(X):/dY P(X,Y) (3.4

which is represented by introducing the potential of mean force

B e WX)/ksT
e_W(X)/kBT — e_Um‘n/(X)/kHT / dY e_(Umlv(Y)J"Uprm,mlv(x’Y))/kBT
— o~ Wora(X)+AW(X)/ksT (3.6)

where AW accounts implicitly but exactly for the solvents effect on the protein.

3.2 Dielectric Continuum Model

In the following we discuss implicit solvent models, which treat the solvent as a
dielectric continuum. In response to the partial charges of the protein g; polarization
of the medium produces an electrostatic reaction potential ¢ (Fig.3.1).

If the medium behaves linearly (no dielectric saturation) the reaction potential is
proportional to the charges

of =" fia;- 3.7)
J

Let us now switch on the charges adiabatically by introducing a factor
qi =~ qgiA O0< X<l (3.8)

The change of the free energy is

qiq ;A
dF =3 digid\ =3 = ~dA+ > fiajairdX (3.9)
i i#j ! ij
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ions
+ o+ _+ 24 2+ - -
H Na K Ca Mg OH Cl
positively charged residues negatively charged residues
Histidine Lysine Arginine Aspartate Glutamate

e I
Badxd

dipolar residues

. Asparagine Glutamine
Threonine Serine o (0]
PH OH
N N é\) N
o N : \bq
O
Methionine 0 o
Cysteine O

SH SC
N 3? N@%
0 0

polarizable residues
Tyrosine
H
Phenylalanine g Tryptophan
N I\ N
Y 0] o)

Fig. 3.1 Charged, polar, and polarizable groups in proteins. Biological macromolecules contain
chemical compounds with certain electrostatic properties. These are often modeled using localized
electric multipoles (partial charges, dipoles ...) and polarizabilities



44 3 Implicit Continuum Solvent Models

and thermodynamic integration gives the change of free energy due to Coulombic
interactions

1
qiq;
AFelec =/ Ad ) 4’/T€}'J' + E ﬁ.iQJQi
0 — ij -
i#]j ij
1 qiq; 1
— — g, 3.10
> - pr— + 3 Eij fijq;q ( )

The first part is a property of the protein and hence included in Up,,,. The second
part is the mean force potential

1
AWeree = 5 > fij4id- 3.11)
ij

3.3 Born Model

The Born model [11] is a simple contintum model to calculate the solvation free
energy of an ion. Consider a point charge q in the center of a cavity with radius a
(the so called Born radius of the ion). The dielectric constant is €| inside the sphere
and ¢, outside (Fig.3.2).

The electrostatic potential is given outside the sphere by

»=_1 (3.12)
dresrr
and inside by
® =g+ 1 (3.13)
dmer

Fig. 3.2 Born model for Ion
solvation

-— A
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From the continuity of the potential at the cavity surface we find the reaction potential

. (l - l) . (3.14)

4ra & €1

Since there is only one charge we have

1 1 1
Si =—(———) (3.15)

4ra 1S9} &1

and the solvation energy is given by the famous Born formula

q*> (1 1
AWojoe = —(———1) . (3.16)
8ma [5) €1

3.4 Charges in a Protein

The continuum model can be applied to a more general charge distribution in a
protein. An important example is an ion pair within a protein (¢, = 2) surrounded
by water (¢, = 80). We study an idealized model where the protein is represented
by a sphere (Fig.3.3).

We will first treat a single charge within the sphere. A system of charges can then
be treated by superposition of the individual contributions.

Using polar coordinates (r, 8, ) the potential of a system with axial symmetry
(no dependence on ¢) can be written with the help of Legendre polynomials as

¢ = Z(A,,r" + B,r~ "Dy P, (cos b). (3.17)
n=0

The general solution can be written as the sum of a special solution and a harmonic
function. The special solution is given by the multipole expansion

Fig. 3.3 Ion pair in a protein
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o0
q g 1 (S)
= - —) P,(cosb).
4mey|r — sy | 4mey r Z{; r ( )

Since the potential has to be finite at large distances, outside it has the form

(o]
¢y = Z B,r~ "tV P, (cos )
n=0

and inside the potential is given by

[e ]

Srl
b = Z (Anr” + f—r("“)) P, (cos ).

7i
n=0 €1

At the boundary we have two conditions

n
#1(R) = ¢ (R) — B,R~"D = A, R + L2 g-w+D)
4’/T€1

0 0
615@(1{’) = 525%(13) =0

= —Z+ DB,RD = n AR — (n+ 1) gm0+
€]

qsl'[
47'('6]

from which the coefficients can be easily determined

. qs" R-1-2n (e1—e)(n+1)
4me, ney + (n+ ey

_ qs" 2n + 1)gy

" dmerner+ (4 Dey’

An

The potential inside the sphere is

_ q
4rerlr — sy |

o1 + ¢

with the reaction potential

0 n
qs R—1-2n (e1—e)(n+1 o

k= Py 0
¢ dre, ney+ (m+ ey (cos 6)

n=0

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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and the electrostatic energy is given (without the infinite self energy) by

s" R—1-2n (e1—e)n+1 ,

1 q o
z cosf=1) =1
26](;5(5‘ €08 ) ZnZ:l: TEL l’l€]+(l’l+1)8zs

which for e, >> ¢ is approximately

47

(3.27)

2 2
qg- 1 1 1 s\2n _q 1 1 1 1
———— —) = — ) —. 3.28
2 47R (52 EI)Z(R) 2 47R 1 —s%/R? (328)

Consider now two charges ¢ at symmetric positions £s. The reaction potentials of

the two charges add up to

and the electrostatic free energy is given by

—q
4me(2s)

By comparison we find

+ 61¢+(S)+ q¢ () + 5 ( DOL(=s) + 5 ( o8 (=s).  (3.30)

¢, ok e L (L_1y__ L
2 =49 == R (gl 52) 1 —s2/R? (3-31)
(=9, _1 k. . @1 (1 1 1
) f___5(_q)¢_(_s)__7477_R(5_5_2)—1—s2/R2 (3.32)
(- q)q 1 D)< 45" G e+
o+ = ( DIL=S) =5 Z;Mel ner t (it e Y
(3.33)
= 1 (1 1\ s\ (=¢H 1 (1 1 1
Nzw(q_gl)n;)(_) (&) = m(a‘g)iszmzﬂ
(3.34)
- 1
1D f = Laoter ="y (3.35)
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and finally the solvation energy is

S 48" g E1 = 2) @+ D)

Weiee =
— 4re, ney + (n+ ey

(s" = (=9)") (3.36)

I A B 1 (L 1 !
elec q 47R \ 5 e l_s2/R2 4q 4R \ £ [59) SZ/R2—|—1

_ Qg1 1y 1
— (El 52)1_s4/1e4' (3.37)

If the extension of the system of charges in the protein is small compared to the
radius s << R the multipole expansion of the reaction potential converges rapidly.
Since the total charge of the ion pair is zero the monopole contribution (n = 0)

2
wh = 2 (i —~ i) (3.38)

8TR \e2 &

(which is nothing but the Born energy (3.16)) vanishes and the leading term is the
dipole contribution! (n = 1, p = 2gs)

@ P (e1—e)

= . 3.39
elec 47‘({:‘1R3 g1+ 252 ( )

3.5 Time Dependent Reaction Field

We consider now a solute which changes its dipole moment very fast at time t = 0
due to an optical excitation [12]. For ¢ < 0 the charge distribution is in equilibrium
with the reaction field given by (3.26), (3.29). After the change, the reaction field
relaxes toward its new equilibrium value. We consider a continuum with frequency
dependent dielectric constant, which is in the simplest case described by Debye’s
model with one relaxation time

€0 — €0

€ =¢e(W) = € + (3.40)

1 +iwrp’
More complicated solvents can be described by a sum of such terms with several
relaxation times.
We concentrate on the dipolar interactions, assuming that the multipole expansion
converges fast. Then, the time dependent solvation energy is

IThis has been associated with several names (Bell, Onsager, Kirkwood).
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Weree (1) = =p() @, (1) (3.41)

dip

with the dipole reaction field

R —
Pain® = 3o R

1@ (3.42)
which is assumed to be a linear functional of the perturbation

f@)=Flp®)] (3.43)
The response to a monochromatic perturbation is

iwt] iwt (61 - 8(0-)))
F[e“] = g(w)e™' = . (3.44)

hence the impulse response is given by the Fourier transform

1 . 1 )
F[5()] = ﬁF |:/ dwel“”:| = E/dw gw)e™ = g(1) (3.45)

which for the Debye model becomes

3e1(e0 — €x0) _ €00 — €1
/= T ome I + =25 3.46
T (2es0 +€1)? ®) 2600 + €1 @) ( )

g(t) =

with the longitudinal relaxation time

2e0 + €1
=Tp—. 3.47
TL ™D 20+ 21 ( )
The response to a time dependent dipole moment then is
oo oo
Flp(H)] =F[ / p(tH)o(t —1dt'l = / pt)g@ —t)hat (3.48)
—00 —00

where, in fact the upper limit of the integral is ¢, due to causality (g(t — t') =
0 fort’ > t).
The response to a sudden change is

f@)=Flpo+ApO@)] = Po/ g(Hat' + Ap@(t)/ g(har
—00 0
o — €1

= pp— fort <0
p02€o+51
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— _ 3 —
— 0TEL L, [ foo —El €1(€0 — €00) (1 B e—z/rL)] fort > 0.
2e0 + €1 2e00 + €1 (2eco +€1)(2eg +€1)

Immediately after the excitation

g0 — €1 €00 — €1
t=0")=p——+Ap——— 3.49
f( ) POy te T s (3.49)
whereas at long times the slow degrees of freedom become effective and
o —€
Fe > 71) = (po+ Ap) s———. (3.50)
2e0 + €1

3.6 Generalized Born Models

The Generalized Born model approximates the protein as a sphere with a dielectric
constant different from that of the solvent [13, 14].

Still and coworkers [14] proposed an approximate expression for the solvation
free energy of an arbitrary distribution of N charges:

1/1 1\ < 4iq;
Wetee = s— | — — — — 3.51
! 8m (62 61) z ( )

o fog(rij, aij)

with the smooth function

rz
fos = |} +aa; exp[—2 . (3.52)
a;a;

where the effective Born radius a; accounts for the effect of neighboring solute
atoms. Several methods have been developed to calculate appropriate values of the
a; [14-17].

Expression (3.51) interpolates between the Born energy of a total charge Ng at
short distances

L /1 1)\ N2g2
Wope — — (— _ —) T forr; — 0 (3.53)
8 150 €1 a
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and the sum of the individual Born energies plus the change in Coulombic energy

L (! 1 a} qiq;
We ec > 5\ —— — = for ij idj 3.54
Z (52 51) —~ a; +; rij rij > \/aia; ( )

for a set of well separated charges. It gives a reasonable description in many cases
without the computational needs of a full electrostatics calculation.



Chapter 4
Debye-Hiickel Theory

Mobile charges like Na™ or CI™ ions are very important for the functioning of bio-
molecules. In a stationary state their concentration depends on the local electrostatic
field which is produced by the charge distribution of the biomolecule which in turn
depends for instance on the protonation state and on the conformation. In this chapter
we present continuum models to describe the interaction between a biomolecule and
surrounding mobile charges [18-21]. We derive the Poisson—Boltzmann equation
and study its solutions for simple geometries like a charged sphere and cylinder and
the Gouy—Chapman double layer including Stern’s modification for finite ion radius.

4.1 Electrostatic Shielding by Mobile Charges

We consider a fully dissociated (strong) electrolyte containing N; mobile ions of the
sort i = 1--. with charges Z;e per unit volume. The charge density of the mobile
charges is given by the average numbers of ions per volume

Omob(r) = D Z;ieN;(r). (4.1)

The electrostatic potential is given by the Poisson equation
EA¢(I‘) = —Q(I‘) = —Omob(r) — Ofix (r). 4.2)

Debye and Hiickel [22] used Boltzmann’s theorem to determine the mobile charge
density. Without the presence of fixed charges the system is neutral

© Springer-Verlag GmbH Germany 2017 53
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= O = ZZ eN} 43)

and the constant value of the potential can be chosen as zero.

& =0. (4.4)

The fixed charges produce a change of the potential. The electrostatic energy of an
ions of sort is

Wi = Zieg(r) (4.5)
and the density of such ions is given by a Boltzmann distribution

N;(r) e—Ziep()/kpT

NO = e ZiedkT (46)
1

or

N;(r) = N Zeom/ksT (4.7)
The total mobile charge density is

Omop () = Z ZieNiOe—Zie(b(r)/kET (4.8)

i

and we obtain the Poisson—Boltzmann equation

EAG(r) = — > ZieN{e #00MT — g (r). 4.9)

i

If the solution is very dilute we can expect that the ion—ion interaction is much smaller
than thermal energy

Ziedp < kT (4.10)

and linearize the Poisson—Boltzmann equation

Z;
eAP(r) = —0yix(r) — lzzieNiO (1 - kB—;cb(l‘) + - ) : (4.11)
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The first summand vanishes due to electroneutrality and we find finally

1
AP(r) — K2 p(r) = —=0;ix(r) (4.12)

with the inverse Debye length

2
-1 ¢ 072
Noume == 2 2 NOZ2. (4.13)

4.2 1-1 Electrolytes

If there are only two types of ions with charges Z;, = %1 (also in semiconductor
physics) the Poisson—Boltzmann equation can be written as

2

NO(e—eqb(r)/kBT _ ee(/)(r)/kBT) —_

A
o) + ckgT sk T

kB_T Ofix (I‘) (414)

which after substitution

o(r) = kB—st(r) (4.15)

takes the form

AG(r) — 17 sinh(¢(r)) = —ng( ) (4.16)

and with the scaled radius vector r’ = kr — a(r) = f(') = f(kr)

Af (') —sinh(f(r") = — 0sin (57T (4.17)

e
Ii2€kBT

4.3 Charged Sphere

We consider a spherical protein (radius R) with a charged sphere (radius a) in its
center (Fig.4.1).

For a spherical problem we only have to consider the radial part of the Laplacian
and the linearized Poisson—Boltzmann equation becomes outside the protein



56 4 Debye-Hiickel Theory

Fig. 4.1 Simple model of a
charged protein

1 d? s
;ﬁ(“f)(”))—/@ o(r) =0 (4.18)

which has the solution

cre " 4 crel”
dr(r) = (4.19)

Since the potential should vanish at large distances we have ¢, = 0. Inside the protein
(a < r < R) solution of the Poisson equation gives

¢1(r)=C3+4Q . (4.20)
TEer

At the boundary we have the conditions

—KkR
c1€ Q
R) = d2(R = - 4.21
$1(R) = ¢2(R) — ¢3 B " (4.21)
0 o) 0 e~FR  o—HR
01 (R) =er—0(R) » ———5 = —— — R 4.22
618r¢1( ) €2ar¢2( ) = s 6152( TR ) (4.22)
which gives the constants
KR
1= - (4.23)
4mer(1 + KR)
and
3= ¢ ¢ (4.24)

“areR 47, R(1 + KR)
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Fig. 4.2 Charged sphere in 10¢
an electrolyte. The potential F
¢(r) is shown for
a=0.1,R=1.0
e If
g
5
=
0.1k
0.01

Together we find the potential inside the sphere

_ e (r 1y, o
o1(r) = 1(r R)+47r52R(1+/-;R) (4.25)

and outside (Fig.4.2)

—K(r—R)

92(r) = 47r82(1Q+ KR) : r (4.26)

The ion charge density is given by

Omob(r) = £2A¢) = €267 ¢y (4.27)
hence the ion charge at distances between r and r + dr is given by

”(1+—Qme) e Fr=Rgr. (4.28)
This function has a maximum at r,,,, = 1/k and decays exponentially at larger

distances (Fig.4.3).
Let the charge be concentrated on the surface of the inner sphere. Then we have

_ e (r 1y, 9o
¢1(a) = 1(a R)+47T€2R(1+HR). (4.29)

Without the medium (e, = €1, £ = 0) the potential would be

Q

dreia

(a) = (4.30)
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Fig. 4.3 Charge density
around the charged sphere
fora =0.1,R=1.0

charge density

hence the solvation energy is

W = 1 R __ 1 0 = Q2 : : 431
= §Q¢ = EQ((bl(a) - ¢i(a) = TR (52(1+/1R) B a) @30

which for k = 0 is given by the well-known Born formula

0% (1 1
W=—-———-— (4.32)
8TR €1 (55
and fora — R, ¢; = &, gives the solvation energy of an ion in solution
2
AG=Ww=-2 5 (4.33)
8me (1 + kKR)

4.4 Charged Cylinder

Next we discuss a cylinder of radius a and length / < a carrying the net charge Ne
uniformly distributed on its surface (Fig.4.4).

Ne
= . 4.34
7 2mal ( )

Outside the cylinder this charge distribution is equivalent to a linear distribution of
charges along the axis of the cylinder with a 1-d density

N
2 rao =2, (4.35)
I b
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Fig. 4.4 Charged cylinder dr
model

For the general case of a charged cylinder in an ionic solution we have to restrict
the discussion to the linearized PBE which becomes outside the cylinder

1d

d 2
P (rd_r) o(r) = K“p(r). (4.36)

Substitution r — x = kr gives the equation

d2

1d
T2 P@ + [ ;2@ — () =0. (4.37)

The solution of this equation are the modified Bessel functions of order zero denoted
as Ip(x) and Ko (x). For large values of x

xli)rgo Ip(x) =00 Xli)ngo Ko(x) =0 (4.38)
and hence the potential in the outer region has the form

o(r) = C1 Ko (kr). (4.39)
Inside the cylinder surface the electric field is given by Gauss’ theorem

2nrle 1 E(r) = Ne (4.40)

do(r)  Ne
dr  2merl

E(r) =

(4.41)

and hence the potential inside is

6(r) = Cz -

N
° Inr. (4.42)
27‘(611

The boundary conditions are

é(a) = C1Ko(ka) = Cy — Ngl Ina (4.43)

271'61
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d N d
£ ﬁ(ra) = _271'21 . (i(ra) = 0,Cy (—kK, (Ka)) (4.44)

from which we find

C = Ne (4.45)
' 2raleywK, (ka) ’
and
N K N
,— Ve Ko(ka) ® Ina. (4.46)
2malerk Ki(ka)  2mweql
The potential is then outside
Ne  Ky(kr)
— 4.47
o) 2maleyk Ky (ka) ( )
and inside
N K N N
o(r) = ‘ o(ra) ‘ ® Inr (4.48)

n —
2maleyk Ki(ka) — 2meql “ 2meql
For small ka — 0 we can use the asymptotic behavior of the Bessel functions

2
Kox) > In— —~v+--- v=0577---
X

Ki(x) —» )lc+ (4.49)

to have approximately

Ne Ne
Ci =~ Ka =
2maleyk 27ley
N 2 N
G~ — (nZ-5)+ 2 ha (4.50)
2mle, Ka 2meql

The potential outside is

o) =~ (1 + 1% +1nr) @51)
r) = — — r .
2rle, TS
and inside
Ne 2 Ne Ne
- In— — Ing — 1
o0 = 3s (n rd 7) Tl M T 2

N 1 11 1
i (2 - 2 ) ma— — ). (4.52)
27l & [o0) 2 £1 50} €1
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2 4 6 8 10

Fig. 4.5 Potential of a charged cylinder with unit radius a = 1 for k = 0.05. Solid curve:
Ko(kr)/ (kK1 (k)). Dashed curve: approximation by —In 5 —Inr —

Outside the potential consists of the potential of the charged line (Inr) and an addi-
tional contribution from the screening of the ions (Fig.4.5).

4.5 Charged Membrane (Goiiy—Chapman Double Layer)

We approximate the surface charge of a membrane by a thin layer charged with a
homogeneous charge distribution (Fig. 4.6).

Gouy [23, 24] and Chapman [25] derived the potential similar to Debye—Hiickel
theory. For a 1-1 electrolyte (NaCl for example) the one-dimensional Poisson—
Boltzmann equation has the form (with transformed variables as above)

d? .
@f(X) — sinh(f(x)) = g(x) (4.53)
where the source term g(x) = —ﬁg(x /) has the character of a Delta-function

centered at x = 0. Consider an area A of the membrane and integrate along the
X-axis:

Fig. 4.6 Gouy—Chapman MM G o

double layer e ©)
- G
Sl o °
J° °s o
2 €]
| © @ @
'_@ C) G C)
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+0
/dA/ o(x)dx = oA (4.54)
-0
+0 e +0
dA d =——— [ dA dx'o(x’
/ /_0 x g(x) n%kBT/ /_O kdx o(x")
e
= — A. 4.55
HskBTUO ( )
Hence we identify
e
0(x) = 0pd(x)  gx) = ———=5(x). (4.56)
HEkBT

The Poisson—Boltzmann equation can be solved analytically in this simple case. But
first we study the linearized homogeneous equation

d2
Taf® =0 =0 (4.57)

with the solution

f(x) = foe™ (4.58)

or going back to the potential
kgT
o(x) = BTfoeinx — (boeirfx' (4.59)

The membrane potential is related to the surface charge density. Let us assume that
on the left side (x<0) the medium has a dielectric constant of €; and on the right
side €. Since in one dimension the field in a dielectric medium does not decay we
introduce a shielding constant x; on the left side and take the limit x; — 0 to remove
contributions not related to the membrane charge. The potential then is given by

[ doe™™ x>0
<z>(x>—[ et 20 (4.60)

and ¢ is determined from the b.c.

210y 220y = oy (61
dx dx

which gives

—€H¢0 — €1H1¢0 = —0). (462)
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Fig. 4.7 Electrolytic double
layer (@) ¢(X)
o
X
®

In the limit k; — 0 we find

do =22 (4.63)
ER

For x < O the potential is constant and for x > 0 the charge density is
(Figs.4.7,4.8)

2
4 j(x) = —ogre ™ (4.64)
x

o(x) =

which adds up to a total net charge per unit area of

/OO o(x)dx = —aoy (4.65)
0

hence the system is neutral and behaves like a capacity of

(4.66)

The solution of the nonlinear homogeneous equation can be found multiplying

: i 4 )
the equation with <=
df &>f f
L2 sinh(p) =L 4.67
ix da2 = sin (f) (4.67)

and rewriting this as

1d (df)’ d
e (a) = L eomnp) (4.68)
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Fig. 4.8 Charge density of
counter- and co-ions. For an
exponentially decaying
potential & (r) (full curve)
the density of counter- and
co-ions (dashed curves) and
the total charge density
(dash-dotted curve) are
shown

which can be integrated

dx

ar\’
(—) = 2 [cosh(f) + C].

4 Debye—Hiickel Theory

The constant C is determined by the asymptotic behavior!

df

lim f(x) = lim — =
X—>00

x—o0o dx

(4.69)

(4.70)

and obviously has the value C = —1. Making use of the relation

2
cosh(f) — 1 = 2sinh (g)

we find

if(x) = (:I:Z sinh (
dx

Separation of variables then gives

df

——— = +dx
2 sinh(f/2)

fx)

"'We consider only solutions for the region x > 0 in the following.

471

4.72)

(4.73)
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with the solution

C

X
f(x)=2In (:I: tanh (5 + 5)) . (4.74)

For x > 0 only the plus sign gives a physically meaningful expression. The constant

C is generally complex valued. It can be related to the potential at the membrane
surface

(4.75)

14 elO2
C = 2 arctanh (ef(o)/z) =In ( te )

1 —ef0)/2

For f(0) > 0 the argument of the logarithm becomes negative. Hence we replace in
(4.74) C by C + i7 to have (Fig.4.9)

f(x)=2In (tanh (% n % + %r)) — 2 (tanh (% n %)) (4.76)

where C is now given by

4.77)

1+e f0)/2
_ ~f )2 —_—
C = 2arctanh (e )=In (1 —e- f(0>/2)

The integration constant C is again connected to the surface charge density by

%(O) _% (4.78)
g
and from
—¢(X) ——f(nx) —Hf (kx) 4.79)
we find
() kB
P xf(0). (4.80)

Now the derivative is in the case f(0) > 0 given by

x C 1
") =tanh (X + =) — __ 4.81
f(x) = tan (2 + 2) tanh(3 + %) (“4-81)
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2 i
S ]
5 6
S
i
|
4 s

Fig. 4.9 One-dimensional Poisson—-Boltzman equation. The solutions of the full (full curves) and
the linearized equation (broken curves) are compared for (a) B = —1 and (b) B = —5

and especially

’(0) = tanh ¢ —1 4.82
£/(0) = tan (5)—tanh(%) (4.82)

and we have to solve the equation

1
L e (4.83)
t kpT ke
which yields?
B B4+ 4
=+ TJF (4.84)

(4.85)

B B4+ 4
C = 2arctanh(3 + T+)

2The second root leads to imaginary values.
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Fig. 4.10 Stern modification d(x)
of the double layer ) M
e
d X
g
: 8 00 ® O
90 0 ®
g O
g0 00 0 ®
\

\
Stern layer Gouy—Chapman layer

charged plate (membrane)

4.6 Stern Modification of the Double Layer

Real ions have a finite radius R. Therefore, they cannot approach the membrane closer
than R and the ion density has a maximum possible value, which is reached when
the membrane is occupied by an ion layer. To account for this, Stern [26] extended
the Goiiy—Chapman model by an additional ion layer between the membrane and
the diffusive ion layer (Fig.4.10).

Within the Stern layer of thickness d there are no charges and the potential drops
linearly from the membrane potential ¢y, to a value ¢g

dm — Po
—_—X

y 0<x<d (4.86)

¢(x) = dm —
In the diffusive Goiiy—Chapman layer the potential decays exponentially
$(x) = doe Y. (4.87)

Assuming the same dielectric constant for both layers we have to fulfill the boundary
conditions

dp = du—¢o _

a(d) =g = Ko (4.88)
and hence

go= M (4.89)

T 14rd
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The total ion charge in the diffusive layer now is

o0 00
qaif = / o(x)dx = —A€li2¢0/ e "V dx = —Aekey
d

d
ER
T 1+ kd o
and the capacity is
—qui A
c= 44 _ _~2¢
ou d+ k7!

which are just the capacities of the two layers in series

LA Mo 11
C € € Csiern — Caigy
Problems

4.1 Membrane Potential

Consider a dielectric membrane in an electrolyte with an applied voltage V.

v
=|
| III
K K
SW EW

Solve the linearized Poisson—Boltzmann equation

d2
100 = K2 (p(x) — )

with boundary conditions

V(1) = ¢p(—00) =0
P OUID) = p(o0) =V

and determine the voltage difference

4 Debye—Hiickel Theory

(4.90)

(4.91)

(4.92)
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AV = ¢(L) — ¢(0).

Calculate the charge density g,,,»(x) and the integrated charge on both sides of the
membrane. What is the capacity of the membrane?

4.2 Tonic Activity

The chemical potential of an ion with charge Ze is given in terms of the activity a
by it = p® + kT Ina. Assume that the deviation from the ideal behaviour ;/¢ =
1® 4+ kg T In ¢ is due to electrostatic interactions only. Then for an ion with radius R
Debye—Hiickel theory gives

Z?¢* kK

ideal 0
- =kpgTIna —kgTInc = A(pg — pi,)Gsoly = ——— ——.
pn ? 5 (o = #10) Gl 87 (1+ KR)

For a 1-1 electrolyte calculate the mean activity coefficient

. ay a—
=Vt = ——

Cy C—

and discuss the limit of extremely dilute solutions (Debye—Hiickel limiting law).



Chapter 5
Protonation Equilibria

Some of the aminoacid residues building a protein can be in different protonation
states and therefore differently charged states (Fig. 5.1).

Fig. 5.1 Functional groups

o (0] . .
=
which can be in different —c” - *C// Aspartic Acid
protonation states N 0" AN OH Glutamic Acid
+
~NH, o ~NH,
- Arginine
N\ g
\NH \NH
—NH, == — NH;r Lysine
SN == ONH'  Histidine

In this chapter, we discuss the dependence of the free energy of a protein on the
electrostatic interactions of its charged residues. We investigate the chemical equilib-
rium between a large number of different protein conformations and the dependence
on the p H value [27]. The partition function is evaluated and the results are applied
to explain abnormal titration curves of coupled residues.

5.1 Protonation Equilibria in Solution

We consider a dilute aqueous solution (Fig. 5.2) containing N titrable molecules (i.e.
which can be in two different protonation states 0 = deprotonated, 1 = protonated).
For one molecule we have for fixed protonation state

Go=Foy+ pVo = —kgT Inzy + pVy (5.1

© Springer-Verlag GmbH Germany 2017 71
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Fig. 5.2 Titration in solution

G =F +pVi=—kgTnz; + pV; 5.2)

and the free enthalpy difference between protonated and deprotonated form of the
molecule is

Z

G — Gy=—kpTIn = + pAV. (5.3)
20

In the following the volume change will be neglected!. If we now put N such mole-
cules into the solution the number of protonated molecules can fluctuate by exchang-
ing protons with the solvent. Removal of one proton from the solvent costs a free
enthalpy of

AG = —pups (5.4)

where jup7 is the chemical potential of the proton in solution?. Hence we come to
the grand canonical partition function

E= z ZyelM/ksT (5.5)
M

! At atmospheric pressure the mechanic work term p AV is very small. We prefer to discuss the free
enthalpy G in the following since experimentally usually temperature and pressure are constant.

2We omit the index H+ in the following.
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1

e o I
IS =) =3
T T T
| | |

protonation degree

e
o
T
|

Fig. 5.3 Henderson—Hasselbalch titration curve. The protonation degree (5.9) is shown for
kgT =1,2,5

where the partition function for fixed number M of protonated molecules is given by

N!

Iy = ——"
M= MIN = M)

MM (5.6)

if the N molecules cannot be distinguished. Hence we find

1]

N! ) 1
= Z IV =D (re ke TYMN=M (o 4 o e/ kaT)N 5.7)
Mo :

The average number of protonated molecules can be found from

) 1/kgT
= —ln = N—Zle (58)
O(u/kgT) 2o + zjen/ksT

S

a1

and the protonation degree, i.e. the fraction of protonated molecules is (Fig. 5.3)

M 1 1
— = = . (5.9
N 14+ i—oe—ﬂ/kBT 1 + e(G1=Go—)/ksT
1
In physical chemistry the following quantities are usually introduced:
The activity of a species a; is defined by
wi = +kpT Ing; (5.10)

in analogy to y; = p? + kT In p;/p? for the ideal gas. For very dilute solutions it
can be approximated by
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i = kgTIn N — kpT Inzi :u?+kBT1n§ (5.11)
0

where (0) indicates the standard state (usually py = latm, ¢y = 1mol/l).
The concentration of protons is measured by the pH-value®

e c(H")
H=—1 N N R | . 5.12
p 080 AH+ ks T In(10) 0810 ( Co ) ( )

The standard reaction enthalpy of an acid-base equilibrium

AH=A +H"' (5.13)
where
a(A7)a(H")

a(AH)
(5.14)

O:Zl/iy,- :AG9+kBTZZ/ilnai Ka:e’AGQ/kBT:

is measured by the pK,-value

K, = —log.(K.) — 1 AG?__I a(A")a(H")
PR = —log(Ka) = {15 T = 80\ T am

(A7) e(H)

co

which is usually simply written as*

c(A7)c(HP
K,=—-1 _ 5.16
p 0810 ( c(AH) ( )
which together with (5.12) gives the Henderson—Hasselbalch equation
c(A7)
H—pK,=1 —. 5.17
pH—p OgIO(C(AH)) .17

The standard reaction enthalpy of the acid-base equilibrium is (with the approxima-
tion (5.11))

3The standard enthalphy of formation for a proton is zero per definition.

4But you have to be aware that all concentrations have to be taken in units of the standard concen-
tration cg. The argument of a logarithm should be dimensionless.
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AG) = piiy o + piyy- + Ky
= —(kgTInL —kpTInzy) + (kT InL — kpT In zp)

= kT 22 = (G, — Gy). (5.18)
21

In the language of physical chemistry the protonation degree (5.9) is given by

c(AH) B 1
c(AH) +c(A~) ~ 14 10PH-PKD"

(5.19)

5.2 Protonation Equilibria in Proteins

In the protein there are additional steric and electrostatic interactions with other
groups of the protein, which contribute to the energies of the titrable site (Fig. 5.4).

5.2.1 Apparent pK, Values

The pK, of a titrable group depends on the interaction with background charges,
with all the other residues and with the solvent which contains dipolar molecules and
free moving ions.

As a consequence AG as well as pK, values are different from that of a model
compound containing the titrable group in solution (Fig. 5.5).
The difference of protonation enthalpies

Fig. 5.4 Titration in a
protein. Electrostatic
interactions with fixed
charges (charged residues
and background charges) and
mobile charges (ions) have to
be taken into account
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Fig. 5.5 Thermodynamic AGg) E—
cycle. The protonation RMH RM +H
enthalpy of a titrable group
in the protein (PMH) differs AG, AG
from that of a model
compound in solution PMH [
(RMH) [28] PM +H
prot

AAG = AG prot — AGgopy = AGy — AGy (5.20)
can be divided into three parts

AAG = AAE + pAAV —TAAS. (5.21)

In the following the volume change will be neglected. The pK, value of a group in
the protein

1
Kprot = —AG rot — T o Ava AAG
PRa kgT In(10) 7" kBTln(IO)( o )
AAG
— Kmodel 522
PRt TIn(10) 622

is called the apparent pK, of the group in the protein. It depends on the mutual
interactions of the titrable groups and hence on the p H-value. Therefore titration of
groups in a protein cannot be described by a simple Henderson—Hasselbalch equation.

5.2.2 Protonation Enthalpy

The amino acids forming a protein can be enumerated by their appearance in the
primary structure and are therefore distinguishable. The protonation state of a protein
with a number of N titrable sites will be described by the protonation vector

1 if group i is protonated

if group i is deprotonated (5.23)

S =(s1,82,---Sy) Wwith s; = [0

The number of protonation states
N pstates — 2N
can be very big for real proteins’. Proteins are very flexible and have a large number

of configurations. These will be denoted by the symbol + which summarizes all
the orientational angles between neighbouring residues of the protein. The apparent

SWe do not take into account that some residues can be in more than two protonation states.



5.2 Protonation Equilibria in Proteins 77

_»
I
-
[
I}
o
_U>
¥
-

@
DG
>

Fig. 5.6 Protonation of one Residue. The protonation state of the i-th residue changes together
with its charge. Electrostatic interactions are divided into an intrinsic part and the interactions with
all other residues

pK, values will in general depend on this configuration vector, since for instance
distances between the residues depend on the configuration.
The enthalpy change by protonating the i-th residue is denoted as

G(st, oo sicilisivr sy, ) — Gsy -+ - 52105, Sig1 -5y, Y)
Ls; 0,5
= AGi i+ D (E 7 — E}) (5.24)
J#L
with the Coulombic interaction between two residues i, j in the protonation states
Si, §; (Flg 56)

E (). (5.25)

The so called intrinsic protonation energy AG; i, is the protonation energy of
residue i if there are no Coulombic interactions with other residues, i.e. if all other
residues are in their neutral state. It can be estimated from the model energy (5.3,
5.18) taking into account all remaining interactions with background charges® and
the different solvation energies, which can be calculated using Born models (3.16,
3.51) or by solving the Poisson—Boltzman equation (4.9, 4.12)

AGi,intr ~ AGi,mlv + AEi,hg + AEi,Bnrn- (526)
Let us now calculate the protonation enthalpy of a protein with S of its N titrable

residues protonated. The contributions from the intrinsic enthalpy changes can be
written as

> 5iAGiuir (5.27)

The Coulombic interactions are divided into pairs of protonated residues

> sisiE} (5.28)

i<j

5i.e. the charge distribution of the protein backbone and the non titrable residues


http://dx.doi.org/10.1007/978-3-662-55671-9_3
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pairs of unprotonated residues
0,0 0,0 0,0 0,0
S A =s)A=spEX =D E}X+ D sisiE)Y = > s EY (5.29)
i<j i<j i<j i#]
and interactions between one protonated and one unprotonated residue

3 (o= s L+ 00y 2) = = s (819 + B2))

i<j i<j

1,0
+ZsiEi,j . (530)
i#]
Summing up these contributions and subtracting the Coulombic interactions of the
fully deprotonated protein we find the enthalpy change

AG) =X si | AGuimr + 3 (EL) = EY) | + D sisi Wi (5.31)

i I i<j
with the interaction parameter
Wi =E;(1,1) — E;;(1,0) — E;;(0, 1) + E;;(0,0). (5.32)

In fact for each pair i, j only one of the summands is non zero.

5.2.3 Protonation Enthalpy Relative to the Uncharged State

In the literature the enthalpy is often taken relative to a reference state (s?) where all
titrable residues are in their uncharged state. As is illustrated in Fig.5.7, the formal
dimensionless charge of a residue is given by

qi =i —s). (5.33)
Fig. 5.7 Protonation states. AH==A+H* BH'==B+H"
The correlation of
protonation state s;, s 1 0 1 0
protonation of the neutral Q9 1 1 0 0
state s?, charge ¢; and charge
of the non neutral state g; q=s—3 0 -1 +1 0
are shown
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The enthalpy change relative to the uncharged reference state is

N N N
AG(S) = AGS") = D (5 = s AG imr + D (s —s0) > (EN) = ED)

)
i=1 i=1 J#i,j=1
1
+§ Zz Wi,j ((s,- — S?)(Sj — s?) + s?sj + sis;) — ZSIQS?) .
i j#i
(5.34)

Note that W;; = W; and therefore the last sum can be simplified

1

3 Z Z Wi ((si — s?)(sj — s.(l-)) + s?s_,- + sis_? — 2s?s?)

i ji
1
=5 D Wiigig; + 20 — s)sh). (5.35)
i j#
Consider now the expression
N N
1,0 0.0 , .0
AW =g > (E)—EX)+sW ).
i=1 i j=1

For each residue j # i there are only the two alternatives’

0_ 1,0 0,0 _

s$9=0—>E—E;=0 (5.36)

s)=1—E/—E+W,; =E/ —E) =0 (5.37)
and hence we have

AW =0 (5.38)

Y 1
AG() = AGE") = 3 i AGiim + 5 D Wi j4id). (5.39)
s s i#]

5.2.4 Statistical Mechanics of Protonation

The partition function for a specific total charge

Q=Z%’ =Z(Si —s9)

L

7The Coulomb interaction vanishes if one of the residues is in the neutral state.
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is given by
2= 3 Fen
{s.2q;=0} 7
= > D [ZemhaGuea ZWaq kT (5.40)
(s.2q;=0}

We come to the grand canonical partition function by introducing the factor
eHQ/ksT _ on X (si—s])/ksT (5.41)
and summing over all possible charge states of the protein
o Z Z(Q)euQ/kBT — z e—[Z(Si—S?)(AGi,mz(‘/)—uH-% > WLj(A/)qiqj]/kBT' (5.42)
0 7.8

With the approximation (5.26) and (5.3) the partition function

@O\

~ g
(5.2 g:=0) \%0

becomes the product of one factor which relates to the internal degrees of freedom

which are usually assumed to be configuration independent® and a second factor
which depends only on the configurational degress of freedom

0 ; . ISYw g.q;
Zeons (s) = Ze—[Z(s,—x,-)(AELWAE,,B(MHZ X' Wijqia; 1/ keT

~

5.3 Abnormal Titration Curves of Coupled Residues

Let us consider a simple example of a model protein with only two titrable sites of
the same type. The free enthalpies of the four possible states are

AG(AH, AH) = AG iy + AGainy + E{y — EV)
AG(A—, AH) — AG(AH, AH) = —AG | jpr
AG(AH, A=) — AG(AH, AH) = —AGy.ii»
AG(A—, A=) — AG(AH, AH) = —AG jpir — AGainr + Wia
= —AGoinr — AG iy + EVS. (5.43)
The grand partition function is
8 = 1 4 e CAGLmtm/ksT | o=(=AGaimrti)/ksT

_j’_e_(_AGZimr_AGl.inrr+2H+W)/kBT‘ (5.44)

8Protonation—dependent degrees of freedom can be important in certain cases [29].
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Fig. 5.8 Abnormal titration 1
curves. Two interacting
residues with neutral
protonated states (AH), ° 0.8 N
AGl,intr = AGZ,intr = 1~0, g()
W =-5/0,5,10 3 06l |
=
2
g 04 s
2
a.
02 b
0 |
-10 10
The average protonation values are (Fig. 5.8)
1+ e~ (=AGoinr+1)/ kT
S| = — (5.45)
- 1 + e~ AGuimr+m)/ksT
Sy = — (5.46)
Problems

5.1 Abnormal Titration Curves

Consider a simple example of a model protein with only two titrable sites of the same

type. Determine the relative free enthalpies of the four possible states

(B,B)

(BBH)

(BH+.B) /Ev
(BH+BH+)

P

X

@ @&
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From the grand canonical partition function (the number of protons is not fixed)
calculate the protonation degree for both sites and discuss them as a function of the
interaction energy W.
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Chapter 6
Formal Kinetics

In this chapter, we discuss the phenomenological description of elementary chemical
reactions and photophysical processes with the help of rate equations. We explain
the concept of reaction variable and reaction order, derive the Michaelis—Menten
equation for enzymatic catalysis and discuss the importance of diffusion for reactions
in solution.

6.1 Elementary Chemical Reactions

The basic steps of chemical reactions can be divided into several classes of elementary
reactions. They can be photoinduced or thermally activated, may involve the transfer
of an electron or proton and are accompanied by structural changes, like breaking
and forming bonds (Fig.6.2) or at least a reorganization of bond lengths and angles
(Fig.6.1).

All elementary reactions are reversible. There is a dynamical equilibrium between
forward and backward reaction, which are independent, for instance

H, +J, = 2HI. (6.1

6.2 Reaction Variable and Reaction Rate

We consider a general stoichiometric equation for the reaction of several species'

IThe stochiometric coefficients v; are positive for products and negative for educts. This is the
conventional definition. Products and educts can be exchanged at least in principle, since the
backreaction is always possible.

© Springer-Verlag GmbH Germany 2017 85
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A+ hv ——= A* A*+B —= A +B*
absorption energy transfer bonds are
conserved
reorganization
- 4o + of bond lengths
D*A D" A D'AB DAB and angles
charge separation charge transfer

Fig. 6.1 Elementary reactions without bond reformation

A-H + B A+ B-H'
proton transfer
bimolecular
H-Cl H---- Cl H-Br
+ — P—  +
Br-Br Br---- Br Br-Cl bonds are
activated broken or
complex formed
CH,
— = CH:-CH=CH unimolecular
CH,—CH, 3 2
isomerization
Fig. 6.2 Elementary reactions with bond reformation
> uiAi=0 (6.2)
i

and define a reaction variable x based on the concentration of the species A; by
ci =cio+Vix (6.3)

as

L= GTcio (6.4)

Vi
and the reaction rate as its time derivative

dx 1 d¢;
r=—=——:. (6.5)
dt v; dt
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6.3 Reaction Order

The progress of a chemical reaction can be frequently described by a simple rate
expression such as

r=kc'cy---=k H cli (6.6)

iceducts

with the rate constant k. For such a system the exponent? of the i-th term is called the
order of the reaction with respect to this substance and the sum of all the exponents
is called the overall reaction order.

6.3.1 Zero-Order Reactions

Zero-order reactions proceed at the same rate regardless of concentration. The rate
expression for a reaction of this type is

dc
— =k 6.7
” 0 (6.7)

which can be integrated
c = co + kot. (6.8)

Zero-order reactions appear when the determining factor is an outside source of
energy (light) or when the reaction occurs on the surface of a catalyst.

6.3.2 First-Order Reactions

First-order reactions describe the decay of an excited state, for instance a radioactive
decay

A* — A. (6.9)
The rate expression is

dCA* dCA
= ——2 = —kegs 6.10
dr dr A ( )

2For more complicated reactions the exponents need not be integers. For simple reactions they are
given by the stochiometric coefficients n; = |v;| of the educts (the products for the backreaction).
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which gives an exponential decay

Cax = Cax(0)e™ 6.11)
with a constant half-period

In(2)
k

T2 = (612)

6.3.3 Second-Order Reactions

A second-order reaction between two different substances obeys the equations

A+B—> .- (6.13)
dCA dCB

A _2F 6.14
m m 2CACB (6.14)

which can be written down using the reaction variable x and the initial concentrations
a,b as

ca=a—x cg=b—x (6.15)
d
d—: = ky(a — x)(b — x). (6.16)

This can be integrated to give

1 b(a — x)
In =
a—b alb—x)

kat. (6.17)
If two molecules of the same type react with each other we have instead
—— = —kacy (6.18)

which gives an algebraic decay

1
ca(t) = 6.19
a(r) i+ 1 (6.19)
where the half-period now depends on the initial concentration
! (6.20)
T = —. .
1/2 loa
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An example is exciton-exciton annihilation in the light-harvesting complex of pho-
tosynthesis

A"+ A" > A+A. 6.21)

6.4 Dynamical Equilibrium

We consider a first-order reaction together with the back reaction

B. (6.22)

The reaction variable of the backward reaction will be denoted by y. The con-
centrations are

cat)=a—x+y (6.23)

cg(t)=b+x—y (6.24)
and the reaction rates are

d

d—f — kica = ki(a —x +y) (6.25)

d

d—f —k_jcg =k 1(b+x —y) (6.26)

Introducing an overall reaction variable
z=x—Yy (6.27)

and the equilibrium value

kla — k_lb
§ = — 6.28
ki +k_ (625)

we have

dz

Pl kia —k b — (ki —k 1)z= (ki +k_1)(s —2) (6.29)
which for z(0) = 0 has the solution

z=s(1 —e kitknry (6.30)

The reaction approaches the equilibrium with a rate constant k| +k_;. In equilibrium
z=sand % = 0. The equilibrium concentrations are
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k_
—a—s= b)—— 6.31
ca=a—s=(a+ )k1+k_1 (6.31)
bis=(+b) (6.32)
cp = s = (a _— .
? ky + k_y
and the equilibrium constant is
k_
K= _ (6.33)
Cp kl

6.5 Competing Reactions

If one species decays via seperate independent channels (fluorescence, electron trans-
fer, radiationless transitions - - - ) the rates are additive

dCA
$=—(k1+k2+"')CA~ (6.34)

6.6 Consecutive Reactions

We consider a chain consisting of two first-order reactions®
k1 k2
A—B—C. (6.35)

The reaction variables are denoted by x and y, the initial concentrations by a,b,c. The
concentrations are

ca=a—x (6.36)
cg=b+x—y (6.37)
cc=c+y (6.38)

and their time derivatives are

dcy dx

& ” 1ca 1(a—x) (6.39)
dop _dx ek ke = Kya — kob + (s — kp)x — k (6.40)
dr = dr dr =Kica 20 = K14 2 2 1)X 2y .

3with negligible back reactions.
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dcc  dy
- _ 7 _ — — ). 41
” " kocg =ka(b+x —y) (6.41)

The first equation gives an exponential decay
ca = ae™¥, (6.42)
Integration of

d
g +kycp = kyae ™t (6.43)

gives the concentration of the intermediate state

kia ., kia —kot
- e b L) e, 6.44
s ky — ki ¢t ky — ki ¢ (644)

If at time zero only the species A is present the concentration of B has a maximum
at

1 ki
tyar = —— In — (6.45)
ki —ky kr
with the value
ki ka ka ki k2
CBmax = a exp In =) —exp In = .
’ ki — ko ki —ky Kk ki —ky ki
(6.46)

6.7 Enzymatic Catalysis

Enzymatic catalysis is very important for biochemical reactions. It can be described
schematically by formation of an enzyme-substrate complex followed by decompo-
sition into enzyme and product

ki
E+S — ES — E+P. (6.47)
k4

We consider the limiting case of negligible k_, <« k, and large concentration of
substrate cg > cg. Then we have to solve the equations

dCS
dt

dCE
dr

~ 0
~ _klcEcs + k_icgs

~ —kicpch + (k_y + k))cgs
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dc
dfs ~ kicpc — (ko + ka)egs
de
dep _ . 6.48
ar 2CES ( )
First we solve the equations for dde and dfj—fs:
d (cgs —k_1— k> klc(s) CES
d _ ) 4
dr (CE ) ( kot +ky —kicg )\ ce .

The matrix has one Eigenvalue A\ = 0 corresponding to a stationary solution

—koi—ky ke V[ 2S) (0
(k1+k2 —klcg 711+2 =\o): (6.50)

The stationary concentration of the ES complex is

ki CsCE
stat _ 6.51
Cps = k,l szSCE = ( )

with the Michaelis constant

kit ke

K
M x,

(6.52)

The second eigenvalue relates to the time constant for reaching the stationary state:

—k71 —k2 klc(s) 1 . 0 1
(k_1+k2 ke )\ 1) = ke etk (6.53)

For the initial conditions

ces(0) =cp(0) =0 (6.54)
we find
cp (ki +k_y+h2)
_ A - t
CES(I)—1+K_£/[(1 e TR
Cs

0(1)5 C(s) Ky kg +k

cp(t) = —F (14 e O, (6.55)
L4 2 M

The stationary state is stable, since any deviation will decrease exponentially. The
overall rate of the enzyme catalyzed reaction is given by the rate of product formation

dcp dcg
_ —k 6.56
dt dt 26ES ( )
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Fig. 6.3 Michaelis—Menten
kinetics T
— //
)
E cskzcE,tot/KM//
R -7
50.5r PPl *
& -
o =
|
% 05 1
Cs
and with the total concentration of enzyme
CE,tot = CE + CES (6.57)
we have
cegcs  (CEtor — CES)Cs
Cps = == (6.58)
Ky Ky
and hence
CE.totCs
cps = —22 (6.59)
cs+ Ky

The overall reaction rate is given by the Michaelis—Menten equation (Fig.6.3)

kacg 1o

_ 2CE totCS (6.60)
Ky +cs

r C,
= S Ymax = kZCE,toz- (6.61)

Tmax CS+KM

6.8 Reactions in Solutions

In solutions the reacting molecules approach each other by diffusive motion forming
a reactive complex within a solvent cage which has a lifetime of typically 100 ps
(Fig. 6.4). Formally, this can be described by an equilibrium between the free reactants
A and B and a reactive complex {AB}
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Fig. 6.4 Formation of a
reactive complex ®

0.1F

reaction rate

0.01 L—— — —
0 5 0 5 0 5

time

Fig. 6.5 Transition from the diffusion controlled to the reaction controlled limit. r = kac(apy is
calculated numerically for c4(0) = cp(0) =1, kr = 1. (@) k; = k_; =0.1,(b) ky = k_1 = 1.0,
©) ki =k_1 =10

ki ky
A+B = (AB}—>C. (6.62)
k_

The concentrations obey the equations (Fig. 6.5)

dc dc
d_tA = d_tB = —kicacp +k_1cap)
d
% = kyciap)
d
C(;/;B} = kicacg — (k—1 + ka)ciany- (6.63)

Let us consider two limiting cases.

6.8.1 Diffusion Controlled Limit

If the reaction rate k; is large compared to k1; we find for the stationary solution
approximately

kaciapy = kicacp (6.64)
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and hence for the overall reaction rate

de
d_tc = sz{AB} ~ kicacp. (6.65)

The reaction rate is determined by the formation of the reactive complex.

6.8.2 Reaction Controlled Limit

If on the other hand k, < k4 an equilibrium between reactands and reactive complex
will be established

k
s _ g S (6.66)

A+B = {AB}
CaACB k_l

Now the overall reaction rate

dc
d_tc = kZC{AB} = szCACB (667)

is determined by the reaction rate k, and the constant of the diffusion equilibrium.

Problems

6.1 pH-Dependence of Enzyme Activity

Consider an enzymatic reaction where the substrate can be in two protonation states
S™+H" =HS

and the enzyme reacts only with the deprotonated form
E+S™ =EST - E+P.

Calculate the reaction rate as a function of the proton concentration cp .

6.2 Polymerization at the End of a Polymer

Consider the multiple equilibrium between the monomer M and the i-mer i M

Com =KC12W

cay =Kcyeom
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cim =Kcmci—nm

where the equilibrium constant K is assumed to be independent of the degree of
polymerization. Calculate the concentration of the i-mer c¢;; and the mean degree of
polymerization

2iicim
>icim

6.3 Primary Salt Effect

<i>=

Consider the reaction of two ionic species A and B with charges Z4 p e which are
in equlibrium with an activated complex X (with charge (Z4 + Zp) ¢) which decays
into the products C and D:

ki
A4+B=X—-C+D

The equlibrium constant is

a
K=_"X

aadap

where the activities are given by the Debye-Hiickel approximation

Z%e%k &2
0 i 2 2
=u +kgTInc; — K" = E N;Z:.
Hi = Hi b ' 8me ekgT - ti

Calculate the reaction rate

_dCc
Codr



Chapter 7
Kinetic Theory — Fokker-Planck Equation

In this chapter we consider a model system (protein) interacting with a surrounding
medium which is only taken implicitly into account. We are interested in the dynamics
on a time scale slower than the medium fluctuations. The interaction with the medium
is described approximately as the sum of an average force and a stochastic force
[30]. We discuss the stochastic differential equation for 1-dimensional Brownian
motion and derive the corresponding Fokker—Planck equation. We consider motion
of a particle under the influence of an external force and derive the Klein—Kramers
equation for diffusion in an external potential and the Smoluchowski equation as its
large-friction limit. Finally we discuss the connection to the general Master equation
for the probability density.

7.1 Stochastic Differential Equation for Brownian Motion

The simplest example describes 1-dimensional Brownian motion of a big particle
in a sea of small particles. The average interaction leads to damping of the motion
which is described in terms of a velocity dependent damping term

dv(r)
dr

—yv(t). (7.1)

This equation alone leads to exponential relaxation v = v(0)e™"" which is not com-
patible with thermodynamics, since the average kinetic energy should be 3 v? = %
in equilibrium. Therefore, we add a randomly fluctuating force which represents the
collisions with many solvent molecules during a finite time interval 7. The result is

the Langevin equation

© Springer-Verlag GmbH Germany 2017 97
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dv(r)
dt

= —yv(t) + F(t) (7.2)

with the formal solution
t ’
v(t) = voe " + / " E()dt . (7.3)
0

The average of the stochatic force has to be zero because the equation of motion for
the average velocity should be

d<v() >

” =—y<v(t)>. (7.4)

We assume that many collisions occur during 7 and therefore forces at different times
are not correlated

< F(OF({) >=Cd(t —1). (7.5)

The velocity correlation function is

t t
<v()() >=e 1 (v§+ / dt / dt, " < F(t))F(t) >).
0 0
(7.6)

Without losing generality we assume ¢’ > ¢ and substitute t, = #; + s to find

< v > = vie 1+

t t'—t
0 —h

t
= e+ 4 e_w“’)/ dhe?"C
0
2 —(t+t) —(t+t) e? — 1
= Ve +e ' TC (77)

The exponential terms vanish very quickly and we find

i €

<v()v() >— e (7.8)
2y
Now C can be determined from the average kinetic energy as
2 kgT C 2vkpT
m=v =z _fL_ MY o ZtB (7.9)

2 2 2 2y m
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The mean square displacement of a particle starting at xo with velocity vy is

t 2 topt
< (/ dtlv(tl)) >:/ / < v(t)v(t) > dtdt,
0 0o Jo

t 1 k T
// (vge—”/’(t|+fz)+ B e—/ltl—lzl) dt (7.10)
0 Jo m
and since

t pt 1—et 2
/ / e 1Tt dr, = (—) (7.11)
0 Jo Y
d
t 12 t n 2 2
/ / e Ihhldndn =2 / dty / e = Zr— (1 —e )
0 Jo 0 0 Y 0

< (x(t) —x(0)* >

an

(7.12)
we obtain
, . ksT\ (1—e)  2kpT  2kpT
< (x(t) —x(0)” >= (UO — —) 5 + t— (1 —e).
m v mry mry
(7.13)
If we had started with an initial velocity distribution for the stationary state
<l >=kgT/m (7.14)

then the first term in (7.12) would vanish. For very large times the leading term is!
< (x(t) — x(0))? >= 2Dt (7.15)

with the diffusion coefficient

T
p= ksl (7.16)
mry

7.2 Probability Distribution

Now, we discuss the probability distribution W (v). The time evolution can be
described as

IThis is the well known Einstein result for the diffusion constant D.
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W, t+171) =/P(v,t+T|v/,t)W(v’,t)dv’. (7.17)

To derive an expression for the differential OW (v, 1) /0t we need the transition prob-
ability P (v, t +7|v’, t) for small 7. Introducing A = v — v’ we expand the integrand
in a Taylor series

Pu,t + 70, OWQ, 1) = P(v,t +7lv— A, HW @ — A, 1) (7.18)

n! ov

> (2) P+ At +7lo, W (@, 1).
n=0

Inserting this into the integral gives

o0

W, t+71)= Z Sl (3) (/ A"P(v+ A,t+T|v,t)dA) W (v, 1)

|
— n! ov

(7.19)

and assuming that the moments exist which are defined by

M, (V' 1, 7) =< (vt +7) = v()" >ppiy=v= /(v —V)"P(v,t + 7]V, )dv

(7.20)
we find
SIS EAY
W t+71)=> (—) M,(v,t, )W (v, 1). (7.21)
~ n! v
Expanding the moments into a Taylor series
1 1 @
—'M,,(v, t,T) = ;M,,(v, t,0)+ D" (v, )T+ --- (7.22)
n. .
we have finally?
00 8 n .
W, t+71)— W(,1) =Z —— ) D", )W, t)m+ - (7.23)
v

1

which gives the equation of motion for the probability distribution’

2The zero order moment does not depend on 7.
3This is known as the Kramers—Moyal expansion.
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W, 1) o\"
——=>(-=) D w.nWw). 7.24
B 1 e (v, W (v, 1) (7.24)

If this expansion stops after the second term* the general form of the 1-dimensional
Fokker—Planck equation results:

OW(v,1)

o o?
R 5100} I 5Y¢))
7 ( 5o DV, 0+ oD (v,t)) W (v, 1) (7.25)

7.3 Diffusion

Consider a particle performing a random walk in one dimension due to collisions.
We use the stochastic differential equation’

B ot £ (7.26)
dr

where the velocity has a drift component vy and a fluctuating part f(¢) with
< f(@)>=0 < fOfE) >=qé@ —1). (7.27)
The formal solution is simply
t
x(t) —x(0) = vot —i—/ f@Hdr'. (7.28)
0
The first moment
My (x0,t,7) =< x(t +7) — x(t) >|x(t)=x, = VOT +/ < f(t) > dt’
0
gives
DY = v

The second moment is

M>(xo,t,7) = vg7'2 —i—vor/ < f(t) > dt’+/ / < f(t) f(t2) > dtidt,.
0 0o Jo
(7.29)

“It can be shown that this is the case for all Markov processes.
SThis is a so called Wiener process.
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The second term vanishes and the only linear term in 7 comes from the double
integral

T T T T—h
/ / < f(t) f(tr) > dtdt, =/ dtl/ qdé(tdt' = qr. (7.30)
0 0 0 —t
Hence
p®» =1 731
5 (7.31)

and the corresponding Fokker—Planck equation is the diffusion equation

OW(x,1) OW(x,1) PW(x, 1)
ot =% Ox +D Ox?

(7.32)

with the diffusion constant D = D@,

7.3.1 Sharp Initial Distribution

We can easily find the solution for a sharp initial distribution W (x, 0) = §(x — xq)
by taking the Fourier transform

Wik, t) = /oo dx W(x,t)e . (7.33)

o0

We obtain the algebraic equation

OW (k, 1)

o = (DK +ivgk) Wik, 1) (7.34)

which is solved by
W (k, t) = Woexp {(—Dk* + ivok)t + ikxo} . (7.35)

Inverse Fourier transformation then gives®

W(x, 1) ! [ (x = xo — vot)? ] (7.36)

X, 1) = exp——m——— .
V4m Dt P 4Dt

which is a Gaussian distribution centered at x, = xo + vot with a variance of

< (x — x,)? >= 4Dt (Fig.7.1).

SWith the proper normalization factor.
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Fig. 7.1 Solution (7.36) of
the diffusion equation for
sharp initial conditions

7.3.2 Absorbing Boundary

Consider a particle from species A which can undergo a chemical reaction with a
particle from species B at position x4 = 0

A+B — AB. (7.37)

If the reaction rate is very fast, then the concentration of A vanishes at x = 0 which
gives an additional boundary condition

Wkx =0,1)=0. (7.38)
Starting again with a localized particle at time zero with

W(x,0) =d(x —x9) v9o=0 (7.39)
the probability distribution

(x — x)* (x + x0)?
4Dt  _. 4Dt (7.40)

1
W0 =—7=,
vy
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@ | ®)

0.9

W(x,t)

Fig. 7.2 Solution from the mirror principle. (a) The probability density distribution (7.40) at t =
0.25, 0.5, 1, 2, 5 and (b) the decay of the total concentration (7.41) are shown for 4D =1

is a solution which fullfills the boundary conditions. This solution is similar to the
mirror principle known from electrostatics. The total concentration of species A in
solution is then given by (Fig.7.2)

Cu(t =/ dx W(x,t) =er (— . 7.41
A1) ; (x, 1) f Jab: (7.41)
7.4 Fokker-Planck Equation for Brownian Motion
For Brownian motion we have from the formal solution

v(7) =v0(l—’yT+-~~)+/ (1 +~(t; — 7) + - - )F(1y)d1y. (7.42)
0

The first moment’

Mi(vg, t, 7) =< v(1) —v(0) >= —yTV9 + - - - (7.43)
gives
DY, 1) = —v. (7.44)

THere and in the following we use < F(t) >=0.
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The second moment follows from

< (1) =) >= (UO’YT)2+/ / I+~ +1 =27 ) F(t) F(t)dtdt,.
o Jo

(7.45)
The double integral gives
T T—I , ,.ka
/ dtl/ dt'(1+~vQ2t; +t' =274+ --) 5(t)
0 —I
2vkpT
=/ dt Rl I+~ =274+ --+)
0
2vkgT
= V—Br TSI (7.46)
m
and we have
kT
p@ — k81 (7.47)
m

The higher moments have no contributions linear in 7 and the resulting Fokker—
Planck equation is

oW, t) 0 kT O*
= g, W)+ —— o

— W, 1). (7.48)

7.5 Stationary Solution to the Fokker—Planck Equation

The Fokker—Planck equation can be written in the form of a continuity equation

oW(,1) 0
T = —%S(U, 1) (7.49)

with the probability current

S, 1) = —WIZT (k—TW(v 0+ 2W(u z)) (7.50)

The probability current has to vanish for a stationary solution (with open boundaries
—0 <V < O0)

O Wty =" wa.n (7.51)
v v B kBT v ’
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which has the Maxwell distribution as its solution

Wear (v, 1) = 1/%e"’“’z/zm. (7.52)
B

Therefore we conclude, that the Fokker—Planck equation describes systems that reach
thermal equilibrium, starting from a non equilibrium distribution. In the following
we want to look at the relaxation process itself. We start with

oW (v, 1)

2
. AWt + fyv8W(v, 1) n D@ W (v, t)

ov ov?

(7.53)

and introduce the new variables
p=ve"  y(p, 1) =W(pe ", 1) (7.54)
which transform the differentials according to

oW dydp 0y

v opdv C p

PwW 27[32)1

0 © ap?

OW 9y O0ydp Oy ady
o "o Copar o Pap

(7.55)

This leads to the new differential equation

oy 2 0y
e — De™"' —. 7.56
o = 1Y+ De 20 (7.56)

To solve this equation we introduce new variables again
y = xe" (7.57)
which results in

2
3_)( — De2t 8_X

- . 7.
ot o (7.58)

Now we introduce a new time scale

0 = i(ez”ﬂ ) (7.59)
2y

do = e¥'dt (7.60)
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satisfying the initial condition #(+ = 0) = 0. Finally, we have to solve a diffusion
equation

9 o
a—z - Da—p’j (7.61)

which gives

(7.62)

X(p. 8. po) = ——— exp (— (p_pO)z)
o NZYSY) 4rDO )’

After back substitution of all variables we find

m m (v —uvge )32
W, t) = — . 7.63
@, 1) \/ ks T (1 — e 200) eXp[ 2UsT (1—e 20 (7.63)

This solution shows that the system behaves initially like

1 (v — v)?
W, t)~ Wexp [_W] (7.64)

and relaxes to the Maxwell distribution with a time constant Az = 1/2~.

7.6 Diffusion in an External Potential

We consider motion of a particle under the influence of an external (mean) force

Kx)=—- % U (x). The stochastic differential equation for position and velocity is
X=v (7.65)

) 1
V=—yv+ —K(x)+ F(1). (7.66)

m

We will calculate the moments for the Kramers—Moyal expansion. For small 7 we
have

M, =< x(1) —x(0) >= /Tv(t)dt=v07+-~~
0

M,

<v(1) —v(0) >= /T (—fyv(t) + %K(x(t))%— < F(1) >) dt
0

1
- (—Wo + —K(xo)) T
m
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My = < (x(1) —x(0))* >= /T /T v(t)v(t)dhdt, = vy + - -
0 0
My, = < (v(1) — v(0))* >

1 2 T T
(—wo+—1<(x0)) ™+ / / F(t) F(ty)dt,dt,
m 0 Jo
Z’YkBT

m

S (7.67)

The drift and diffusion coefficients are

DW =y (7.68)
) _ _ l
D yv + —K(x) (7.69)
m
D) =0 (7.70)
kgT
pov = 1B (7.71)
m

which leads to the Klein—Kramers equation

oW (x,v,1) 9 o 9 0? (w0)
or _[ ol Tl TRl Ween
0 0 K(x) ~vkgT 0?
. —_ — —_— . 72
[ 8xv+ av(’yv )+ 92 W(x,v,t). (7.72)

This equation can be divided into a reversible and an irreversible part

ow
—— = (Lrev + Lirre) W (7.73)
ot
o 10U 09 0 kT O*
e R = B [l = B

The reversible part corresponds to the Liouville operator for a particle moving in the
potential without friction

990 09 0 r’
| =2 2 = . 7.75
[8)6 oy op 8xi| ) m +U(x) (1.75)
Obviously

£9H=0 (7.76)
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and
Ks)
8irrev exp [ _kB_T ]
H mv  vkgT mv , m
— _ — A — —)y ——)|=o0. 7.77
e || [ o+ el (e a.17)

Therefore the Klein—Kramers equation has the stationary solution

Wirar (x, v, 1) = 2™l 0?2400/ KaT (7.78)

7 — / / dvdx e~V /2HUE)/ ks T (7.79)

The Klein—Kramers equation can be written in the form of a continuity equation

0 0 0
W =5 - s, (7.80)

with the probability current

S, = oW (7.81)

1 0U
SU=—|: :IW_’YkBTaW
ox

7.7 Large Friction Limit — Smoluchowski Equation

For large friction constant v we may neglect the second derivative with respect to
time and obtain the stochastic differential equation

%= iK(x) + lF(t) (7.83)
my ol

and the corresponding Fokker—Planck equation is the Smoluchowski equation,

2
8W(x,t):|: 1 6[( kgT O

o my ox X) + m_wﬁ] Wi(x,t) (7.84)

which can be written with the mean force potential U (x) as

oW(x,t) 1 0 0
B B ox " ox

ou
_— T— +— . 7.85
B o + ] Wi(x,1t) (7.85)



110 7 Kinetic Theory — Fokker-Planck Equation

7.8 Master Equation

The master equation is a very general linear equation for the probability density. If
the variable x takes on only integer values, it has the form

ow,

3t = Z (wm—m Wm - wn—>van) (786)

where W, is the probability to find the integer value n and w,,_,, is the transition
probability. For continuous x the summation has to be replaced by an integration

oW (x,1t) .

5 / (Wysx W', 1) — wessw W(x, t)) dx’. (7.87)

The Fokker—Planck equation is a special form of the master equation with

wee = (=2 00w + L 1w s - x) (7.88)
x'—=x Ix axz : :

So far we have discussed only Markov processes where the change of probability at
time t only depends on the probability at time t. If memory effects are included the
generalized Master equation results.

Problems

7.1 Smoluchowski Equation

Consider a 1-dimensional random walk. At times t, = nAt a particle at position
xj = jAx jumps either to the left side j — 1 with probability w;" or to the right side

J + 1 with probability w;r = 1 — w; . The probability to find a particle at site j at
the time n + 1 is then given by

+ -
Poprj=w;_ Poj1 +wi Pojr

Show that in the limit of small Ax, At the probability distribution P (¢, x) obeys a
Smoluchowski equation




Problems

7.2 Eigenvalue Solution to the Smoluchowski Equation

Consider the 1-dimensional Smoluchowski equation

oW (x,t) 1 0 0 oU 0
EAULLS A A N __9
ot m~y Ox |:kB ox T ox ] W (“)xS(x)

for a harmonic potential

2
mw
Ux) = —x2.
(x) >~

Show that the probability current can be written as

S 1) = _kBTe—U(x)/kT ﬁeU(x)/kgTW(x’ 0
my Ox

and that the Fokker—Planck operator can be written as

19 [k Tﬂ aU] — ]ﬂﬁe—U(x)/kgTﬁeum/kBT

I:szm_’ya_x i 8x+3_x  my Ox Ox

and can be transformed into a hermitian operator by
£ = VWK @ oUW/ 25T

Solve the eigenvalue problem
‘an (X) = )\nwn (x)
and use the function 1) (x) to construct a special solution

W(.x, t) — e)\ote_U<x)/2kET’(/JQ(x).

111
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7.3 Diffusion Through a Membrane

Ao 0O
O O
s
oK
TkB Ik,
O
B O

A membrane with M pore-proteins separates two half-spaces A and B. An ion X may
diffuse through M pore proteins in the membrane from A to B or vice versa. The rate
constants for the formation of the ion-pore complex are k4 and k respectively, while
k,, 1s the constant for the decay of the ion-pore complex independent of the side to
which the ion escapes. Let Py (¢) denote the probability that there are N ion-pore
complexes at time t. The master equation for the probability is

% = —[(ka +kp)(M — N) +2k,,N] Py (t) +
+(ka +kp)(M — N + 1) Py_1(t) + 2k, (N + 1) Py 41 (2).

Calculate mean and variance of the number of complexes
ﬁ == Z N P, N
N

oc2=N2—-N

and the mean diffusion current

dN dN
Jap = —£_=A

dt dt

where N4 p is the number of ions in the upper or lower half-space.



Chapter 8
Kramers Theory

Kramers [31] used the concept of Brownian motion to describe motion of particles
over a barrier as a model for chemical reactions in solution. The probability distribu-
tion of a particle moving in an external potential is described by the Klein—Kramers
(7.68)

oW (x,v, 1) 0 0 K(x) ~kgT 07
T—[—av-i-%(’w— )+ 902 W(x, v, 1)
——85 — 85

ox © ov '

and the rate of the chemical reaction is related to the probability current S, across
the barrier. The famous Kramers relation describes the friction dependency of the
reaction rate.

8.1 Kramers’ Model

Particle A in the stable minimum has to reach the transition state by diffusive motion
and then converts to the product C. The minimum well and the peak of the barrier
are both approximated by parabolic functions (Fig.8.1)

Up=2u? 2 8.1
A—fwa(x—x()) 8.1
m
U* = E, — —wx? (8.2)
2
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Xy 0 reaction coordinate x

Fig. 8.1 Kramers model

Fig. 8.2 Ansatz function. The stationary solution of a harmonic well is multiplied with the function
y(x, v) which switches from 1 to 0 at the saddlepoint

Without the chemical reaction the stationary solution is
Wyrar = Z7 " exp{—9/kpT}. (8.3)

We assume that the perturbation due to the reaction is small and make the following
ansatz (Fig.8.2)

W(x, v) = War y(x, v) (8.4)

where the partition function is approximated by the harmonic oscillator

2wk T
z = Bl (8.5)

mwy,

The probability distribution should fullfill two boundary conditions.

(1) In the minimum of the A-well the particles should be in thermal equilibrium, and
therefore

W(x,v):Zlepo—kiT} —>y=1 ifx = xp. (8.6)
B
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(ii) On the right side of the barrier (x > 0), all particles A are converted into C and
there will be no particles of the A species here

Wkx,v)=0— y=0 ifx > 0. (8.7)

8.2 Kramers’ Calculation of the Reaction Rate

Let us now insert the ansatz function into the Klein—Kramers equation For the
reversible part, we have

1:reu CXP [_ fj

kB_T] y(x,v) = exp ’—i] Lrevy(x,v) (8.8)

kT

and for the irreversible part

1o} ’YkBT 82 57)
[a”“* p W]GXP{_kB_T}y(X’v) 59

— ex _i — U3+'kaTa_2
I kgT ou m o |V

Note the subtle difference. The operator (%v is replaced by —v %. Together we have
the following equation for y

0 19U 0 %, kgT 0*
_y_l____y_ﬁw_y_{_’y_g_y (8.10)

Oz_v(“)x m Ox Ov Ov m  Ov?

which becomes in the vicinity of the top

O=—vg—z—w*2xg—i—"yv% VIC’ZT%. (8.11)
Now we make a transformation of variables

(x,v) > 1,8 = (x,v— Ax). (8.12)
With

x=n v=&+ A\ %:3 0 9 0 (8.13)

= == =
an~ "o¢ v o
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equation (8.11) is transformed to

0 kT O?
0= €M)y +(A=DEF N =Ay—w )n)— AT
on 5 m 0¢
Now choose
P (8.15)
2 4
to have the simplified equation
’YkBT 82
0= AN — A— — 8.16
€+ y+<( 162 et T o (8.16)
which obviously has solutions which depend only on £ and obey
0 ’}/kBT 82
— Q) =—————D(). 8.17
$5e? O =55 ?© (8.17)

The general solution of this equation is'

D) =C+ Czerf(ﬁ,/%). (8.18)

Now we impose the boundary condition @ — 0 for x — oo which means { — —oo.
From this we find

C) = —Cerf(—o0) = (. (8.19)

Together, we have for the probability density

m,2
_ mwg S+ U(x) m —1)
W(x’v)_CZZﬂ'kBTeXp[_kBT' 1+ erf W(U—)\ )

(8.20)

and the flux over the barrier is approximately

S = /dv vW(0, v)

Note that A\ —  is always positive. This would not be true for the second root.
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- CZ&C—Uu*)/kBT/dU o2kt |1 o [MAZD
27TkBT 2’YkBT

_c, Moy 2kl [ 821)
2wk T m A

In the A-well, we have approximately

mv? mwl (x—xq)*
mw 2y 4 e a4l
1% X, ~2C 4 eXp -2 2 . 8.22

( U) 227lk3T | kBT ] ( )

The total concentration is approximately

[A] = /dx/dvWA(x, v) = 2C;. (8.23)

Hence, we find

Wa _
S = (Al e VObT 1 - % (8.24)
The square root can be written as
1 5 3y F e
1+ /%_,_w*z 1+ |2 4 %2
( ol 2 *2)2
—5+y T tw
\ _% + (’YTZ + w*z)
ol 27 2
5+ tw
- v+ (8.25)

and finally, we arrive at Kramers’ famous result

S Wy 2
k= o = e VO (—% + ‘NZ + w*z). (8.26)
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The bracket is Kramers correction to the escape rate. In the limit of high friction
series expansion in y~! gives

k= 771“’;: e UO)/ksT (8.27)

In the limit of low friction, the result is

k= 20e-UO/ kT (8.28)
2T



Chapter 9
Dispersive Kinetics

In this chapter we consider the decay of an optically excited state of a donor molecule

in a fluctuating medium. The fluctuations are modelled by time-dependent decay

rates k (electron transfer), k_; (backreaction), k;, (deactivation by fluorescence or

radiationless transitions) and k., (charge recombination to the groundstate) (Fig.9.1).
The time evolution is described by the system of rate equations

%W(D*) = —k(OW(D*) + k_1(t)W (DT A7) — kgu W(D*)

d - _ _
WA = kOW (D) — k()W (DT AT) — ke W(DTAT) 9.1)

which has to be combined with suitable equations describing the dynamics of the
environment. First we discuss a simple dichotomous model [32] where the fluctua-
tions of the rates are modeled by a random process switching between two values
representing two different configurations of the environment. We solve the master
equation and discuss the limits of fast and slow solvent fluctuations. In the sec-
ond part, we apply continuous time random walk processes to model the diffusive
motion. For an uncorrelated Markovian process, the coupled equations are solved
with the help of the Laplace transformation. The results are generalized to describe
the powertime law as observed for CO rebinding in myoglobin at low temperatures.

© Springer-Verlag GmbH Germany 2017 119
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Fig. 9.1 Electron transfer in
a fluctuating medium. The
rates are time dependent

D*

DA

9.1 Dichotomous Model

9 Dispersive Kinetics

D+A-

The fluctuations of the rates are modeled by random jumps between two different
configurations (%) of the environment which modulates the values of the rates. The
probabilities of the two states are determined by the master equation

d(wHY_(-a B W(+)
dt\WH=)) \a -B)J\WH)
which has the general solution
W(+) = Ci + Coe™ @HPr
W(=) = Ci= — Cpe~ @b,
B
Obviously the equilibrium values are

18 Weq(_)zaiﬂ

Weq(+) = m

and the correlation function is (with Q4 = +1)

9.2)

(9.3)

9.4)

< 0(1)0(0) > = Weo (1) (P (4, t]+,0) — P(—, 1|+,0))
+ Weg (=)(P(—. 1], 0) — P(+, |-, 0))
= (Weg(+) = Weg(—))? + 4Wey () Wy (—)e™ @ P!
=< 0>24+(< Q%> —<Q>He b 9.5)

Combination of the two systems of equations (9.1, 9.2) gives the equation of motion

dW—AW
dr

(9.6)
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for the four-component state vector

W(D*, +)
W(D*, —)
W(D*tA~, +)
W(D+tA~, -)

W = 9.7

with the rate matrix

o=kt — kg, B k*, 0
o —B—k —kua 0 k-,
k* 0 —o — kT — ke B
0 k_ o _ﬂ_k:l _kcr

(9.8)

Generally, the solution of this equation can be expressed by using the left- and right
eigenvectors and the eigenvalues X of the rate matrix which obey

AR, = L, R, 9.9)

L,A=x,L,. (9.10)

For the initial values W (0) the solution is given by'

4

L, e WO .
W() = Z ﬁ&,e“ ) 9.11)

v=1

In the following we consider a simplified case of gated transfer with k;, = k., =
kfl = k= = 0 (Fig.9.2). Then the rate matrix becomes

—a—k* B 0 0

a -8 0 0
it 0 -a 8 (9.12)
0 0 a -B

'In the case of degenerate eigenvalues, linear combinations of the corresponding vectors can be
found such that L, e L,y = 0 for v # V',
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Fig. 9.2 Gated electron
transfer

As initial values we chose

Weg (+) 5

Wo=| Wea O | = | 555 | 9.13)
0 0
0 0

There is one eigenvalue A; = 0 corresponding to the eigenvectors

R, = Li=(1111). (9.14)

[QR™ O O

This reflects simply conservation of Zi:l W, in this special case. The contribution
of the zero eigenvector is

0 0
L, e W(0) 1 0 0
R, = = ) 9.15
L] ° R] ! o+ ,3 /3 Weq(+) ( )
o Weq (=)
A second eigenvalue A, = —(« + ) corresponds to the equilibrium in the final state
D™ A~ where no further reactions take place
0
0
R2= 1 L2= (O[ —ﬂa—ﬂ) (916)
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The contribution of this eigenvalue is

L2 L] P()

R, =0 9.17
Lok 2 .17

since we assumed equilibrium in the initial state. The remaining two eigenvalues are

a+pB+k

PR Vv B k7 —apk ©.18)

Aza=—

and the resulting decay will be in general biexponential. We consider two limits:

9.1.1 Fast Solvent Fluctuations

In the limit of small k we expand the square root to find

a—l—ﬁia—l-ﬁ_kia—ﬁk

Mg = — e 24 9.19

4 2 2 2 arpat ©-19)
One of the eigenvalues is
o

M=—(@+p)———k+--- (9.20)

o+ p

In the limit of £ — 0 the corresponding eigenvectors are

R; = L;=(a—-$00) 9.21)

and will not contribute significantly. The second eigenvalue

___ B o
pyp- a+ﬂk+ = —W,, (+)k (9.22)

is given by the average rate. The eigenvectors are

B

R, = _"‘ﬁ Ly=(1100) (9.23)

—
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and the contribution to the dynamics is

B
(L4'W0)R4ek4t: 1 3
(Ls - Ry) a+B| -8

—o

The total time dependence is approximately given by

Weq ()™
Weq (_)eMI
Weq (+)(1 - eMZ)
Weq(_)(l - eMt)

W =

9.1.2 Slow Solvent Fluctuations

9 Dispersive Kinetics

(9.24)

(9.25)

In the opposite limit we expand the square root for small k! to find

+ ko1
g = — o ’3——j:—(k+(a—ﬁ)+2a,3k’l+~-~)

2 272

k

0

1
R3: 0 ng(akOO)

—1
)\,4:—k—a+.

k

—u |
Ri=| _, | La=(1000)

(9.26)

9.27)

(9.28)

(9.29)

(9.30)
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and the time evolution is approximately

W(t) =

B
a+p
(e—ﬁt _ %e—kt)

o

o+ f
B
o+ p

(1 —eP + Bek)

(I—e™)

o
a+p

125

9.31)

This corresponds to an inhomogeneous situation. One part of the ensemble is in a
favorable environment and decays with the fast rate k. The rest has to wait for a
suitable fluctuation which appears with a rate of .

9.1.3 Numerical Example

Figure 9.3 shows the transition from fast to slow solvent fluctuations.

occupation of the initial state

10 0 5 10
time

Fig. 9.3 Nonexponential decay. Numerical solutions of (9.12) are shown for « = 0.1, 8 = 0.9,
(@)k=02,b)k=2,(c)k =5, (d) k = 10. Dotted curves show the two components of the initial
state, solid curves show the total occupation of the initial state
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9.2 Continuous Time Random Walk Processes

Diffusive motion can be modeled by random walk processes along a one dimensional
coordinate.

9.2.1 Formulation of the Model

The fluctuations of the coordinate X(t) are described as random jumps [33, 34].
The time intervals between the jumps (waiting time) and the coordinate changes are
random variables with independent distribution functions

I/f(l‘nJrl - tn) and f(Xn+1, Xn) (932)

The probability that no jump happened in the interval O - - - ¢ is given by the survival
function

Y(t) =1 —/ Y()dr' = /00 W (¢')dr’ (9.33)
0 1

and the probability of finding the walker at position X at time ¢ is given by (Fig.9.4)

P(X,t) = P(X, O)/ 1/x(ﬂ)dt’+/ dt// dX'y(@ —t)f(X, X YP(X',1).
t 0 —00
(9.34)

Two limiting cases are well known from the theory of collisions. The correlated
process with

FXX) = f(X - X)) (9.35)

corresponds to weak collisions. It includes normal diffusion processes as a special
case. For instance if we chose

Fig. 9.4 Continuous time X
random walk X(t)




9.2 Continuous Time Random Walk Processes
V(ths1 — 1n) = 8(tyy1 — 1y — Al)
and
X =X)Y=ps(X —X —AX)+ (1 —p)§(X — X'+ AX)
we have
P(X,t4+ At) = pP(X — AX,t) +qP(X + AX,t), p+qg=1
and in the limit At — 0, AX — 0 Taylor expansion gives

2

P aP ’?P
POX1) + At = PG + 520 = PIAX + 55 AX -

9X?

The leading terms constitute a diffusion equation

8PP_( )AX8P+AX282P
ar L M TP A Ox T A axe

with drift velocity (¢ — p) 42 and diffusion constant AA—’iZ.
The uncorrelated process, on the other hand with

fX. X = f(X)

127

(9.36)

(9.37)

(9.38)

(9.39)

(9.40)

9.41)

corresponds to strong collisions. This kind of process can be analyzed analytically

and will be applied in the following.

The (normalized) stationary distribution @, of the uncorrelated process obeys

Do (X) = ¢eq(X)/ Iﬁ(t/)dt/+f(X)/0 dt/l/f(t—l/)/ dX'¢eq(X")

= CDeq(X)/ W(t/)dt/+f(X)/0 dt'y (1)

which shows that

f(X) = (peq(X)-

9.2.2 Exponential Waiting Time Distribution
Consider an exponential distribution of waiting times

oo
Yty =1"le " lllo(t)z/ e Tdr = e,
t

(9.42)

(9.43)

(9.44)
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It can be obtained from a Poisson process which corresponds to the master equation

dp,

T —'Po+77'Py n=0,1,2... (9.45)

with the solution

Pn(0)=8n.0a Pn(t)=

WY 946

if we identify the survival function with the probability to be in the initial state Py
(1) = Py(r) = e /7. (9.47)

The general uncorrelated process (9.34) becomes for an exponential distribution

t
P(X,t) = P(X,0)0e"/" + / di't™le =1/ / dX'f(X,XYP(X',1).
0

(9.48)

Laplace transformation gives

~ 1 -1 ~

P(X,s)=P(X,0) + ‘ /dX/f(X, X)YP(X',s) (9.49)

s+l s+ 7!

which can be simplified

s+t HYP(X,s)=P(X, 00+ 1" /dX’f(X, XNP(X', ). (9.50)
Back transformation gives

d

(5 + r—‘) PX,1)=1"" /dX/f(X, XYP(X', 1) 9.51)
and finally

0 1 1 , , ,

5P(X,t)=——P(X,t)+—/dX fX, XHP(X', 1) (9.52)

T T

which is obviously a Markovian process, since it involves only the time ¢. For the
special case of an uncorrelated process with exponential waiting time distribution,
the motion can be described by
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%P(X, 1) =LP(X,1) (9.53)

LP(X, 1) = —% (P(X, 1) — geg(X) < P(1) >). (9.54)

9.2.3 Coupled Equations

Coupling of motion along the coordinate X with the reactions gives the following
system of equations [35, 36]

0

EP(x, D= (k) +Li— 17" ) PX, 1) + k-1 (X)C(X, 1)

%C(X, D= (—k1(X)+ Lo — 1, ) C(X. ) + k(X)P(X, 1) (9.55)

where P(X,t)AX and C(X, t)AX are the probabilities of finding the system in the
electronic state D* or D™ A, respectively, £ , are operators describing the motion
in the two states and the rates 7, 21 account for depopulation via additional channels.
For the uncorrelated Markovian process (9.54) the rate equations take the form

D (PX.DY_ (kX 41+ —k_1(X) P(X,1)
a \CX,0n) ) —k(X) kX)) 4+ '+ )\ CX,n

1 91(X) < P(1) >
u ( ¢2(X)> (< C(t) >) (9.56)

which can be written in matrix notation as

%R(X, 1 =—-AX)RX, 1)+ 7 'B(X) <R() > . (9.57)
Substitution

R(X, 1) = exp {(—A(X)U(X, 1)} (9.58)
gives

—AX)R(X, 1) 4+ exp —A(X)%U(X, 1)

= —AXRX, 1)+t 'B(X) <R(t) > (9.59)
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9 —1
EU(X’ 1) =1 exp{AX)t} B(X) <R(?) > . (9.60)
Integration gives

U(X, 1) = UX,0) + r’I/ exp {A(X)1'} B(X) < R(1') > di’ 9.61)
0

R(X, 1) = exp(—A(X)D)R(X, 0) + 7 / exp(A(X)(t' — 1)B(X) < R(t) > di’
0
(9.62)

and the total populations obey the integral equation

< R(?) >=< exp(—AHR(0) > +T_1/ <exp(A(t' —1))B >< R(t') > dt’
0

(9.63)
which can be solved with the help of a Laplace transformation
~ oo
R(s) =/ e <R(t) > dt (9.64)
0
oo
/ e exp(—An)dt = (s + A)~! (9.65)
0

[ee] t
/ e_“’dt/ <exp(A(f' —1))B >< R(t") > di’ =< (s + A)"'B > R(s).
0 0

(9.66)
The Laplace transformed integral equation
R(s) =< (s + A)'R0) > +7 ' < (s + A)"'B > R(s) (9.67)
is solved by
R)=[1-1'<@+4)"'B>]" <@s+A4)RO) >. (9.68)

We assume that initially the system is in the initial state D* and the motion is
equilibrated

R(X,0) = (¢’18X)). (9.69)
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For simplicity, we treat here only the case of t; — oco. Then we have

k+77! —k_
A:( L k_1+r11) (9.70)
_ 1 s+t Mk k_
A~ =
G+ A) (S+‘L'_])(S+T_1+k+k_1)< k s+t +k
9.71)
and with the abbreviations
1 -1
o = (1 + P (k +k_1)) (9.72)
and
< f(X) >1,z=/¢1,2(X)f(X)dX (9.73)
we find
< (s+ A7'RO) >
1 1
- k
_< Pra a s+ H—k)\ _|s+7! (s+r_1)2<a -1
BRACEESDE k B !
(9.74)
as well as
<(6+A7'B>
1 1 r 1 ‘
— < > —_— < —_1 >
] sH+th (s4+H? = s+t 1hH? w1 =2
- 1 k 1 1 X
—_— < > — < ak_| >
stz s+l (sronz T
(9.75)
and the final result becomes
1

R(s) =

s2+ Tt (s+ < ak > + < ak_; >3))

« (s(s+r1) —s <ok >+t < ak_y >2)

s+t H <ak > ©.76)
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Let us discuss the special case of thermally activated electron transfer. Here
<ok >, <ak_; >k 1 (9.77)

and the decay of the initial state is approximately given by

—1 —1 -1 k. K
P(s) = i S+t )4+t <k > _ s+ K, 9.78)
(24t s 104+ <ak > + <ak_y >2)  s2+s5(K1+K>)
with
-1 -1 k—l(X)
K=+t 1+s dX¢r(X) i (9.79)
1+ — (k(X) + k-1 (X))
s+ T
~ / dX¢(X) SSICY 9.80)
1+ t(k(X) + k-1 (X)
K —/dX¢> (X) kX) (9.81)
b P k(X)) + ko (X)) '
This can be visualized as the result of a simplified kinetic scheme
d
E<P>=—K1<P>+K2<C> (9.82)
d
Z<C>=K1<P>—K2<C> (9.83)
with the Laplace transform
sP—P0) =—K,P+ K,C (9.84)
sC—C(0) =K, P+ K,C (9.85)
which has the solution
_SsPh+Ky(Po+Co) . 5Co+ Ki(Co+ Po) 9.86)
s(s + K + K») s(s + K1 + K») ’
In the time domain we find
K Kie—(Kit+K1 K
Py = 22t Rie Ct) = ——— (1 —e Ktk (9.87)
Kl =+ K2 Kl + KZ

Let us now consider the special case that the back reaction is negligible and
k(X) = k®(X) (Fig.9.5). Here, we have

IS(S)— s+t H -5 <ak >

T sG2 TN+ < ak >)) 9.88)
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Fig. 9.5 Slow solvent limit

v
k(X *° k
< ak >1=/dX¢1(X)(—k()X) =/ 1(X) ————dX
I+5= Jo I+ 5
s+17! % 0

=bk— b= X)dX a=1—->b= X)dx 9.89

[Ap— /0 &1 (X) a /_oodn( ) (9.89)

PR

Bis) 5 kts+t1) s+t l4k(l—b) ©.90

- —1 -2 -1 4k bkr—1" :

§2 4 1-1(s + bk s+t ) s>+ s(t= ! 4+ k) + bkt
k+s+1!
Inverse Laplace transformation gives a biexponential behaviour
4+ k(1 —2b))e 1 *tr)/2 (4 k(1 — 2b))e I ktr)/2
P(t) = (4 + k( ))e (u— + k( ))e 9.91)
I S
with
pe=1"" + k2 4+ T2+ 2kt (1 — 2b). (9.92)
If the fluctuations are slow 7~! <« k then
VR + 124 2%kt (1 =2b)=k+(1—=2b)t " +--- (9.93)
py =k+200=b)yr '+ pu_=—k+2br7 4. (9.94)
and the two time constants are approximately

k k _
ﬂ:k.{_... TH =br ... (9.95)

2 2
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9.3 Powertime Law Kinetics

The last example can be generalized to describe the powertime law as observed for
CO rebinding in myoglobin at low temperatures. The protein motion is now modeled
by a more general uncorrelated process.?

We assume that the rate k is negligible for X < 0 and very large for X > 0.
Consequently only jumps X < 0 — X > 0 are considered. Then the probability
obeys the equation

00 0 t
P(X, Dxeo = P(X,0) / V)t + / dx’ / At — 1) f(X)P(X'. 1)
t —00 0

t 0
=¢eq(X)‘1’o(t)+¢eq(X)/0 dt’iﬂ(t—t/)/ dX'P(X', 1))

(9.96)
o -
~ 1—
wio) = [ we by = = ©97)
1 s
and the total occupation of inactive configurations is
0 t
Py = [ axe,0 (wo(z) + [arva-nro)
—00 0
t
=a (l]/o(t) +/ dt'yr(t —t")P. (t/)) ) (9.98)
0
Laplace transformation gives
Py =a (%) + ¥ () P-(s)) (9.99)
with
0
a =/ dXpeq(X) (9.100)
—oo0
and the decay of the initial state is given by
- 17 1
By = ) _ — (9.101)
l—ay(s) s+ )

2 A much more detailed discussion is given in: [36].
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For a simple Poisson process (9.44) with

- 1
Yy = 9.102
T s+ ( )
this gives
Po(s) = ? (9.103)
<Y T s+ —a)! '

which reproduces the exponential decay found earlier in the slow solvent limit (9.95)

P_(t) = ae™"179/7, (9.104)

The long time behaviour is given by the asymptotic behavior for s — 0. As
P_(t) — 0 for t — oo this is also the case for P_(s) in the limit s — 0. Hence
the asymptotic behaviour must be

p ~ aW(f(S)
<(S)’\/m—>0 s —> 0 (9105)

P_(t) — 1“ Wo(t) 1 — o0 (9.106)

—a
In order to describe a powertime law at long times

P_(t) — P (9.107)

P_(s)—> s s >0 (9.108)

the waiting time distribution has to be chosen as

1

which implies

Yy(s) ~ 7 Psh1 (9.110)

1

where z 7' is the characteristic time for reaching the asymptotics. Finally, we find

1 1
s+ 1;—“z5s1—5 T s(1+ (3/s)8)

P_(s) ~ (9.111)
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In the time domain this corresponds to the Mittag—Leffler function?

o (=D'@” .
P.(t)=» —— " = Eg(—(GP) (9.112)
; rpl+1)

which can be approximated by the simpler function

1

- 9.113
1+ (t/1)? ( )
Problems
9.1 Dichotomous Model for Dispersive Kinetics
Consider the following system of rate equations
P(Dx, +) —ky —« B 0 0 P(Dx,+)
i P(Dx, —) _ o —k_-—p 0 O P(Dx, —)
dt | P(D+A—,+) | — ky 0 —a B P(D+ A—,+)
P(D+A—, —) 0 ke o —B) \P(D+A—,—)

Determine the eigenvalues of the rate matrix M. Calculate the left- and right eigen-
vectors approximately for the two limiting cases:

(a) fast fluctuations k4 < o, B. Show that the initial state decays with an average
rate.
(b) slow fluctuations k4 >> «, 8. Show that the decay is nonexponential.

3Which has also been discussed for nonexponential relaxation in inelastic solids and dipole relax-
ation processes corresponding to Cole-Cole spectra.
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Transport Processes



Chapter 10
Non-equilibrium Thermodynamics

Biological systems are far from thermodynamic equilibrium. Concentration gradients
and electrostatic potential differences are the driving forces for diffusive currents and
chemical reactions (Fig. 10.1).

energy
JE
U\
J c
B
Ts
entropy

Fig. 10.1 Nonequilibrium processes

In this chapter, we present the basic ingredients of nonequilibrium thermodynam-
ics. We derive continuity equations for mass and energy. Entropy production is a
bilinear function of the thermodynamic forces which vanish at equilibrium. Close to
equilibrium, the fluxes can be approximated as linear functions of the forces and the
entropy production as a positive definite symmetric quadratic form. Finally, we dis-
cuss stationary states which are characterized by a minimum of entropy production,
which is compatible with certain external conditions.
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10.1 Continuity Equation for the Mass Density

We consider a system composed of n different species labeled by k = 1...n which
can undergo a number of » chemical reactions labeled by j = 1...r. We assume
that the system is locally in equilibrium and that all thermodynamic quantities are
locally well defined.

We introduce the partial mass densities

nmy
Ok = VNk = Cpmy (10.1)

the total density

1 M
0= 0= > mNe= (10.2)
k k

and the mass fraction

N,
xp= oy, = R Gk (10.3)
M kaka o

From the conservation of mass we have

d d B] d
— M, =myp—N; = —ordV = — dA r:dV (104
2 Mie=mi—- Ny /VatQk /av OV +;/mGvkﬂ/ (10.4)

which can also be expressed in the form of a continuity equation

d , d
5,0 = —div(ove) + jzlmk‘]kjrj
= —divimJio) + D mevigr (10.5)

j=1

with the diffusion fluxes J. For the total mass density

0= o (10.6)
k

we have

B] _ :
0= —dIV(Zk:kak)+Zk:§mkvkjrj. (10.7)
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Due to conservation of mass for each reaction, the last term vanishes
E myVi; = 0
k

and with the center of mass velocity
1
vV=- z Ok Vi
e
we have

0
—o = —di .
o 0 iv(ov)

10.2 Energy Conservation

We define the specific values of enthalpy, entropy and volume #, s, 0~! by

H=hoV
S=s0V
V=oploV.

The differential of the enthalpy is

dH = TdS+ Vdp+ > mdNy
k
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(10.8)

(10.9)

(10.10)

(10.11)

(10.12)

where 1 is a generalized chemical potential, which also includes the potential energy
of electrostatic or gravitational fields which are assumed to be time-independent. For

the specific quantities we find

V(hdo + odh) = TV (sdo + ods) + Vdp

\%
+ E [ — (xrdo + odxy)
k
k

and if we combine all terms with do

X
odh — Tods —dp — Z %dek = (Ts + Z,ukm—]; — h)dQ.
k k

(10.13)

(10.14)
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The right-hand side can be written as

1
—V(TS+Z,uka - H)dg (10.15)
0 k

which vanishes in equilibrium. Hence we have for the specific quantities
1
dh = Tds + o 'dp+ D mr—dx;. (10.16)
PR

In the following, we consider a resting solvent without convection. We neglect the
center of mass motion and its contribution to the total energy. The diffusion currents
are taken relative to the solvent.! For constant pressure we have

d0h) _ p0Mos) | 5~ i dok

(10.17)
at ot ! my ot
and the enthalpy obeys the continuity equation
d(oh
deh) = —div(Jy) (10.18)
ot
with the enthalpy flux J;, .

10.3 Entropy Production

The entropy change

ds=d (/ Qst) (10.19)
|4

has contributions from the local entropy production d S; and from exchange with the
surroundings d S,

dS=dS;+4dS.. (10.20)
The local entropy production can only be positive,
ds;i >0 (10.21)

whereas entropy exchange with the surroundings can be positive or negative
(Fig.10.2).

1A more general discussion can be found in [37].
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Fig. 10.2 Local entropy dSe
change
I’
A
N7
P
v
/
1,

We denote by o the entropy production per volume

ds;
—=/odV (10.22)
dt v

The entropy exchange is connected with the total entropy flux

ds.
=— sdA. 10.23
” . J ( )

Together we have

% = —div(Jy) + o (10.24)

with
o >0. (10.25)

From (10.17) the time derivative of the entropy per volume is

d(es) 1d(h) 1 Mk 00k
_ 1 B N 10.26
ot T ot T Z my Ot ( )
and inserting ((10.5), (10.26))
d(0s) L. 1 M ‘ g
= —divAn — Zk: o —divimuJy) + ]Z:l:mkvkjr, (10.27)

which can be written as
a(QS) . 1 1253
= —div[ = o
or IV(TJh‘i‘; TJ"

1 1
+Jpgrad (?) — Zk:Jkgrad (%) + = Z;: Ajrj (10.28)
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with the chemical affinities

- Z/Lkvkj. (10.29)
k

From comparison of (10.28) and (10.24) we find the entropy flux

1
T (Jh - Zk: Mka) (10.30)
and the entropy production

o = Jygrad ( ) ZJkgrad ( ) ZA rj
= (Jh —;Mka)grad (%) Z —Jrgrad (ug) + = ZA rj. (10.31)

We define the heat flux as?
J, =T1J;. (10.32)

The entropy production is a bilinear form

o =KeJg+ D K+ D Kjr (10.33)
k J

of the fluxes
Jo Jiorj (10.34)
and the thermodynamic forces

1
K, = grad (=
q gra (T)

Ky

1
— —grad
7 &ra ()

1
K= 24 (10.35)

2The definition of the heat flux is not unique in the case of simultaneous diffusion and heat transport.
Our definition is in analogy to the relation 7dS = dH — Vdp — >, uxd Ny for an isobaric system.
With this convention the diffusion flux does not depend on the temperature gradient explicitly.
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Instead of entropy production, alternatively the rate of energy dissipation can be
considered which follows from multiplication of (10.31) with T

1
To = ——Jygrad (T) — > Jigrad () + D Ajry. (10.36)
k J

10.4 Phenomenological Relations

In equilibrium all fluxes and thermodynamic forces vanish
T =const, pu; =const, A; =0. (10.37)
The entropy production is also zero and entropy has its maximum value. If the devi-

ation from equilibrium is small the fluxes® can be approximated as linear functions
of the forces

Jo = LapKy (10.38)
B

where the so-called Onsager coefficients L, g are material constants.* As Onsager has
shown, the matrix of coefficients is symmetric L, g = Lg . The entropy production
has the approximate form

0= JuKy =) LupKaKp. (10.39)
o o, B

According to the second law of thermodynamics o > 0, and therefore the matrix of
Onsager coefficients is positive definite.

10.5 Stationary States

Under certain circumstances,’ stationary states are characterized by a minimum of
entropy production, which is compatible with certain external conditions. Consider a
system with n independent fluxes and thermodynamic forces. If the forces K . . . K,

3only a set of independent fluxes should be used here.
“Fluxes with different tensorial character are not coupled.
SEspecially the Onsager coefficients have to be constants.
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Fig. 10.3 Combined

diffusion and heat transport T T+AT

Jq

are kept fixed and a stationary state is reached then the fluxes corresponding to the
remaining forces vanish

Jo=0 a=m+1...n (10.40)

and the entropy production is minimal since

do
0Ko k,..k

m

=J, a=m+1...n. (10.41)

A simple example is the coupling of diffusion and heat transport between two reser-
voirs with fixed temperatures 7 and T + AT (Fig. 10.3).

In a stationary state the diffusion current must vanish J; = 0 since any diffusion
would lead to time-dependent concentrations. The entropy production is

o =J,K; + J.K,. (10.42)
If the force
1y AT

is fixed by keeping the temperature distribution fixed, then in the stationary state
there is only transport of heat but not of mass. The entropy production is

0 = LggK, + LaaK] +2LeaK,Ky

LggLaa — L? L 2
= M g2y Laa | Ka+ 22K, (10.44)
Laa a L

dd
where due to the positive definiteness of L;;

Lga>0,Lgq >0, LagLgg — L7, > 0. (10.45)
As a function of K, the entropy production is minimal for

0= K, + Lad g y (10.46)
= Ky _— = —Ja .
L ' L
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hence in the stationary state. Obviously, the chemical potential adjusts such that

L, _ Lu AT

K;j=—— = 10.47
d T A L, T2 ( )
which leads to a concentration gradient.®
A L,g AT
e L (10.48)

¢ LaaksT?

Problems

10.1 Entropy Production by Chemical Reactions

Consider an isolated homogeneous system with 7 = const and @, = const but
nonzero chemical affinities

Aj == v
k

and determine the rate of entropy increase.

This is connected to the Seebeck effect.



Chapter 11
Simple Transport Processes

In this chapter, we discuss simple transport processes like heat transport and diffu-
sion in an external electric field. We discuss the fluxes of mass, energy, and entropy
and their dependence on the gradients of temperature, concentration, and electro-
static potential. We derive the Nernst—Planck equation for the diffusion flux and a

generalized diffusion equation for the concentration.

11.1 Heat Transport

Consider a system without chemical reactions and diffusion and with constant chem-

ical potentials.! The thermodynamic force is

1 1
K, = grad (;) ~ 72 grad T
and the phenomenological relation is known as Fourier’s law
J;=—rgrad T

The entropy flux is

1 1
Js = TJq = ?JH

I'We neglect the temperature dependence of the chemical potential here.
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Fig. 11.1 Heat transport J

and the energy dissipation is

1
sz—F%gMnggmﬂy. (11.4)

From the continuity equation for the enthalpy we find

d(oh) 0T
oy =c T =kAT (11.5)

and hence the diffusion equation for heat transport

T
o _ % sr. (11.6)
ot Cp

For stationary heat transport in one dimension, the temperature gradient is constant,
hence also the heat flux. The entropy flux, however, is coordinate dependent due to
the local entropy production (Fig. 11.1).

1
div Jg = _J‘IF grad (T) = %(grad T)2 =o0. (11.7)

11.2 Diffusion in an External Electric Field

Consider an ionic solution at constant temperature without chemical reactions. The
thermodynamic force is

1
K, = —7 grad (u). (11.8)
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For a dilute solution we have?
e = Y 4+ kT In(cy) + Zyed (11.9)

and hence the thermodynamic force
kg 1
Ky = —— grad (¢;) — T grad (Zie®). (11.10)
Ck

The entropy production is given by

ksT
To=> J (—ﬁ— grad ¢, — Zy e grad cp). (11.11)
k
k

The phenomenological relations have the general form

Jo=> LiwKy (11.12)
k/

where the interaction mobilities Lj  vanish for very small ion concentrations,
whereas the direct mobilities Ly, are only weakly concentration dependent
[38, 39]. Inserting the forces we find

k 1
Jo=— ZL"*"'C_IZ grad ¢pr — T grad (®) ZLk,k’Zk’e (11.13)
14 K

which for small ion concentrations can be written more simply by introducing the
diffusion constant as

ckaeDk
Jy = —Dy grad ¢y — ————— grad @ (11.14)
kgT

which is known as the Nernst—Planck equation. This equation can be understood in
terms of motion in a viscous medium (7.1). For the motion of a mass point we have

mv =F — m~yv. (11.15)

In a stationary state the velocity is

1
v=—F (11.16)
mry

2The concentration (particles per volume) is ¢y = ox/my = ox/my.
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and the particle current

D
Je=ev= SF= LT (11.17)
mry kgT

where we used the Einstein relation

kgT
D="_8"

. (11.18)
mry
From comparison with the Nernst—Planck equation we find
kBT cZeD kB T
F=———\|Dgradc+ ——— grad ® | = ——— gradc—grad Ze®. (11.19)
cD kgT c
The charge current is
Zyecy Dy (kT
Jo = Zredi = _ ke (BT grad ¢ + gradZye®
kBT Ck
(Zre)*ci Dy
= —ZeDy grad ¢, — T grad @. (11.20)
B

The prefactor of the potential gradient is connected to the electrical conductivity

_ (Zre) e Dy

Gy = 11.21
k s T ( )
Together with the continuity equation

dex

Ei —div Ji (11.22)

we arrive at a Smoluchowski type equation

8ck . Ck ZkeD
— = div | Dy grad ¢ + grad @ ). (11.23)
ot B
In equilibrium we have
L = const (11.24)

and hence

kgT Incy + Zre® = const (11.25)
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Fig. 11.2 Diffusion in an ‘
electric field -

+

© o © - grad(c) o
°o
o 5 © .
o

o

o © — grad(®) o

or
cp = cheZre®/ksT (11.26)

This is sometimes described as an equilibrium of the currents due to concentration
gradient on the one side and to the electrical field on the other side (Fig. 11.2).

The Nernst—Planck equation has to be solved together with the Poisson—Boltzmann
equation for the potential

div (¢ grad @) = — z Ziecy
k

In one dimension the Poisson—Nernst—Planck equations are

de ZecD do
J=—-D— — — (11.27)
dx kgT dx
d d
—e—@ = — Z . 11.28
o dr Zk: Keck ( )
Problems

11.1 Synthesis of ATP from ADP
In mitochondrial membranes, ATP is synthesized according to

ADP + POH + 2H},, = ATP + H,0 + 2H;,

out

where (in) and (out) refer to inside and outside of the mitochondrial membrane.
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Express the equilibrium constant K as a function of the potential difference
Diy — Pour

and the proton concentration ratio

c(H ) /c(H ).



Chapter 12
Ion Transport Through a Membrane

In this chapter, we study simple models related to ion transport through a membrane.
We draw a close analogy to electronic circuit theory and describe the ion transport
similar to a simple RC-network. We study the Goldman—-Hodgkin—Katz model for
a steady state with more than one ionic species present. The membrane potential is
calculated as a function of the ion concentrations inside and outside the membrane.
We discuss the famous Hodgkin—Huxley model for the quantitative description of
the squid giant axon dynamics, which received the Nobel prize. Finally, we study
models for ion channel cooperativity with a two-state model in analogy to ligand
binding. We derive the master equations for ligand-gated channels within the MWC
and KNF models and calculate the ratio of active channels as a function of ligand
concentration to show the cooperative effect.

12.1 Diffusive Transport

We can draw a close analogy between diffusion and reaction on the one side and
electronic circuit theory on the other side. We regard the membrane as a resistance
for the current of diffusion and the difference in chemical potential as the driving
force (Fig. 12.1):

p=p’+kgTInc (12.1)
0
|
=ex . 12.2
¢ PLT (12.2)
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Fig. 12.1 Transport across a
membrane

Fig. 12.2 Equivalent circuit
for the diffusion through a
membrane

12 Ion Transport Through a Membrane

Cinside ™ Coutside
O
(@)
O
O
O O ©

J

R

O

0

Winside

Houtside
o——o |

Assuming linear variation of the chemical potential over the thickness a of the mem-

brane we have
X
/L()C) = Winside + ;A:U/

The diffusion current is

0
—_c_ _cZH

Ox a

(12.3)

(12.4)

and the constant is determined from the diffusion equation in the center of the mem-

brane
0 kgT O 3 0
0= = __( ) = ——( CB——C) = (D(x)—c) —C
ot c
with
= ex Minside + N — ex Moutside + Minside o W
- p p 2k3T - insideCoutside-

kT
Finally, we have (Fig. 12.2)

DA Ap

T akgT R’

(12.6)

(12.7)
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If we include a gradient of the electrostatic potential then the equations become

p=p +kgTlnc+ Zed (12.8)
po = Zed (12.9)
c=exXxp—m@mM}mmmmmmM .
P T
) A kgT Al ZeAD
J=—c _ _clk_ _tslAlnc Ze (12.10)
Ox a a
and the electric current is
(Ze)? kgT Inc
[ =Zel =— A A
¢ R Ze TA?
= —9(VNernst = V) (12.11)

with the Nernst potential

kgT outside
Viernst = o In 240 (12.12)
Ze Cinside

and the membrane potential (Fig. 12.3)
V = ®@jnsize — Poutside- (12.13)

The transport through biological membranes occurs often via the formation of pore—
ligand complexes. The number of these complexes depends on the chemical potential
of the ligands and needs time to build up. It may therefore be more realistic to associate
also a capacity C,, with the membrane, which we define in analogy to the electronic
capacity via the change of the potential (Fig. 12.4):

Sy = €, i (12.14)
m — m dt . .

Fig. 12.3 Equivalent circuit |

for the electric current o
I:] | inside

g V

N

\Y

O
outside
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Fig. 12.4 Equivalent circuit J
with capacity
g B o —
outside R l R Hinside
I c
O —I O
uo K 0
the change of the potential is
di, kgT dc
-5 7" 12.15
dt c dt ¢ )
and the current is from the continuity equation
Jn  d
_divy=Im_ % (12.16)
a dt
hence
c, = & (12.17)
" kT’ '

12.2 Goldman-Hodgkin-Katz Model

In the rest state of a neuron the potassium concentration is higher in the interior,
whereas there are more sodium and chlorine ions outside. The concentration gradients
have to be produced by (energy consuming) ion pumps.
Let us first consider only one type of ions and constant temperature. From (11.25)
we have
kT

® + —— Incy = const . (12.18)
Zke

Usually, the potential is defined as zero on the outer side and

kpT Ckousia
Vi = Pinside — Poursidze = —— In o (12.19)

Zke Ck,inside

is the Nernst potential (12.12) of the ion species k.
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Fig. 12.5 Coupled ionic membrane

fluxes outside J

Na+ inside
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We now want to calculate the potential for a steady state with more than one ionic
species present. We take the ionic species Na™, K™, CI~ which are most important
in nerve excitation that will define the so-called Goldman—Hodgkin—Katz model [40]
(Fig.12.5).

We want to calculate the dependence of the fluxes J; on the concentrations ¢y ;,
and ¢y oy - To that end we multiply the Nernst—Planck (11.27) equation by e”* where

(0]
_ 5 12.20
Yk kekBT ( )
to get
- (d d d )
Je = —Dge* (£ 4 o, 2% ) = _p, L (e, (12.21)
dx dx dx

This can be integrated over the thickness d of the membrane
d d d
/ Jee¥dx = —D / E(ckeyk)dx = —D (crine™ P/ — ¢ pur) . (12.22)
0 0

We assume a linear variation of the potential across the membrane

D(x) = gcbm. (12.23)
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This is an approximation which is consistent with the condition of electroneutrality.
On the boundary between liquid and membrane the first derivative of @ will be
discontinuous corresponding to a surface charge distribution.! Assuming a stationary
state with 9J/0x = 0 we can evaluate the left-hand side of (12.22)

kgTd
Jo -2 =

k (eZePn/bsT 1) = —D (e (d)e? /"7 — ¢1(0)) (12.24)
Zk6‘¢m

which gives the current

Zie®,, | kyT
D Zie®,, ciine we®n/ksT _ Ck,out

Jp=— 7 kT et T 1 (12.25)
In a stationary state the total charge current has to vanish
I = ZZkeJk =0 (12.26)
k
and we find
e2qsm Qck.inezke(pm/kBT — Ck,out
oTd D Dz =0, (12.27)
With ZNa+ = Z](+ = 1, ZCl— = —1 and
ed,, !
m = 37 bm =e" 12.28
Y=g ( )
we have
CNa+,inbm — CNa+,our Ck+,inbm — Ck+ 0u
Dy, : : D : :
Nax by — 1 + Pxt by — 1
cci—inby,' — ccizout
+ D¢i— - =0. (12.29)
by —1
Multiplication with (b,, — 1) gives
DNa+(CNa+.inbm - CNa+,0ut) + DK+(CK+,inbm - cK+,0ut)
— by Dcr—(Cei—inby,' = ccieou) =0 (12.30)

"'We do not consider a possible variation of ¢ here.
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and we find

by, = DNa+CNa+,0ut + DK+CK+,out + DCI—CCI—,in (12.31)

DNa+CNa+,in + DK+CK+,in + Dlecle,out

and finally

@, — kgT In DyatrCnat,our + Dg1Ckour + DCI—CCZ—,in' (12.32)

e DNu+CNa+,in + DK+CK+,M + Dlecclf,out
This formula should be compared with the Nernst equation
kBT Ck, sid
Vk = ¢inside - ¢uutside =——In M (1233)

Zke Ck,inside

The ionic contributions appear weighted with their mobilities. The Nernst equation
is obtained if the membrane is permeable for only one ionic species.

12.3 Hodgkin—-Huxley Model

In 1952, Hodgkin and Huxley won the Nobel prize for their quantitative description
of the squid giant axon dynamics [41].

They thought of the axon membrane as an electrical circuit. They assumed inde-
pendent currents of sodium and potassium, a capacitive current, and a catch-all leak
current. The total current is the sum of these (Fig. 12.6):

Loey = Ic + Ing + Ik + 1. (12.34)

The capacitive current is

dv
Ic =C,—. (12.35)
dr
Fig. 12.6 Hodgkin—Huxley V. . d
model inside
| | | Lo
m N K Leak
| gyt
Cm —_ l l <>
0 D W W
V

outside
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K+
membrane membrane
n-gates
inactive state open state
Fig. 12.7 Potassium gates
For the ionic currents we have (12.11)
Iy = g (V = Vi), (12.36)

where g is the channel conductance which depends on the membrane potential and
on time and V; is the specific Nernst potential (12.19). The macroscopic current
relates to a large number of ion channels which are controlled by gates which can
be in either permissive or nonpermissive state. Hodgkin and Huxley considered a
simple rate process for the transition between the two states with voltage-dependent
rate constants

a(V)
closed = open. (12.37)
BV)

The variable p which denotes the number of open gates obeys a first-order kinetics

d
d—f — a(l — p) — Bp. (12.38)

Hodgkin and Huxley introduced a gating particle n describing the potassium
conductance (Fig. 12.7) and two gating particles for sodium (m being activating and
h being inactivating). They used the specific equations

9k = GiP) (12.39)

INa = na D P (12.40)

which gives finally a highly nonlinear differential equation

v _ _ _
Lexi (1) = Cn=1= + 50 (V = Vi) +naPapn(V = Vi) + 3, (V = Vi), (12.41)
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Fig. 12.8 Hodgkin—Huxley
model. Equation (12.41) is
solved numerically [42]. Top
Excitation by two short
rectangular pulses I,y (1)
(solid curve) and membrane
potential V (t) (dashed).
Bottom fraction of open
gates py, (full), p,(dashed),
phr(dash-dotted)

potential (mV)

probability

time (ms)
Fig. 12.9 Refractoriness of —~ 7]
the Hodgkin—Huxley model. E
A second pulse cannot excite =
the system during the -g
refractory period. Details as 2 7]
in Fig. 12.8 I e T ]
2
;_cg ................................... :
e ________________________________
%
200 300 400 500
time (ms)

This equation has to be solved numerically. It describes many electrical properties
of the neuron-like threshold and refractory behavior, repetitive spiking and temper-
ature dependence (Figs.12.8 and 12.9). Later, we will discuss a simplified model
with similar properties in more detail (Sect. 13.3).

12.4 Cooperativity in Ion Channel Kinetics

Ion channel cooperativity can be described similar to ligand binding with a two-state
model [43-45]. We consider an oligomeric protein consisting of a number ny of
subunits which can be in two configurations, R and T. In the presence of the ligand,
the equilibrium between the two configurations is shifted to R, which has the greater
affinity for the ligand. The kinetics can be described in terms of the number n of
bound subunits in the T and R conformations. In case of the ion channel, R and T
denote the open (or active) and closed (or inactive) state of the subunits (Fig. 12.10).
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Fig. 12.10 Cooperative ion channels. The possible states of two ion channels are shown, each of

which can bind to one ligand and is either in the open (R, red) or closed (T, grey) state. Numbers
show the degeneracy

12.4.1 MWC Model

The traditional MWC [46] model assumes that all segments are in the same state.

It is equivalent to a model with one channel and ny binding sites. The following
transitions are possible (Fig. 12.11):

e binding, proportional to number of unbound units:

—APg(n) = APg(n + 1) o (n — n) Pr(n)ki; (12.42)

—APr(n) = APr(n+1) « (ny — n) Pr(n)k; (12.43)
e unbinding, proportional to number of bound units:

—APr(n) = APr(n — 1) o nPr(n)ky (12.44)

—APr(n) = APr(n — 1) o nPr(n)ky (12.45)

e configuration change

—APg(n) = APp(n)  Pr(n)vg(n) (12.46)
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Fig. 12.11 MWC model for
ion channels. The protein is
characterized by the state of
the segments (R or T) and
the number of bound ligands
n. Equilibrium between the
two conformations is
established by the transition
rates vg, 7 (n). Rates of
binding (k;T)and unbinding

n=0

(kE,T) depend on the state
n=2

Fig. 12.12 MWC model for
cooperative ion channels.

Each of the ny subunits is in
either one of the two states R

or T. The number of bound VT

subunits is 7, which can
change according to forward
and backward transition
rates klzi’:,T' The equilibrium
between the two
configurations in the
unbound state n = 0 depends
on the transition rates vg 7
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(12.47)

Inasimplified MWC model [43, 44] (Fig. 12.12), we assume that the configuration
change only appears in the unbound (n=0) state.
The dynamic evolution is described by the rate equations for n = 0:

OPg(0, 1
% = kEPR(l, 1) — k;nTPR(O, t) —vpPr(0, 1) + UTPT(O, t) (12.48)
OPr(0, 1
L = k;PT(l, t) — k;nTPT(O, t) + vg Pr(0, 1) — vy Pr(0, 1) (12.49)

ot
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and forn > 0:

OPgr(n, 1)
ot
—kp(ny —n)Pg(n, 1) — kxnPr(n, 1)

= k;(nT —n+DPrin—1,t)+kz(n+1)Pr(n+1,1)

5‘PT(n,t)
ot
—kf(ny —n)Pr(n,t) — kynPr(n,t).

=ki(nr —n+D)Pr(n—1,t)+k;(n+ D)Pr(n+1,1)

The following ansatz

Py(n) = - (”T) Ky Pr(n) = - (”T) KjL
z \ 1 Z

n
allows to find the stationary state by solving the following equations:

0= k;nTKR — k;l’lT — Vg + UTL

0= k;nTKT — k;'nT —vr + URL71

l’lT! 1 _ I’lT! 1
O=kf— " = K©» ks — 1 KMt
B — Dy —n)! "k + Rnpg —n—1Dn! "k
| |
+ nr. n _ nr. n
—kf— K — K
Rlnp —n—=DU" B "Ry —m)tn—1)1 K
l/lT! 1 _ l’lT! 1
O=kf——M  _K” ko— 7 gl
Tm=Dlny —n) T + "mp—n—D!" T
}’lT! _ I’lT!
0O—kf—M Kl —kj—— K"
Tnp —n—DU T Tr—n)n—11 7T
which simplify to
K K
(ki — Krkp)( — 2By 2R (L KK —vg) =0
nr—n n nr —n

Kr

nr —n

+ — 1 Kr -1 np—n
(kT _KTkT)(—__)+ (L URKRKT —vr) =0
nr —n n

(12.50)

(12.51)

(12.52)

(12.53)

(12.54)

(12.55)

(12.56)

(12.57)

(12.58)
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with the solution

ki ki
Kp=—-"% Kr=—-"-
kg kr—
and
| n VR
L=——(kzgntKg —kgnr —vg) = — (12.59)
vr vT
—1 1 — + vr
L™ = ——(kynr Ky —kyny —vg) = —. (12.60)
UR VR
Finally, the normalization factor is
nr n
ZZZ( nT)(K}éJrLK?) =1+ Kp)""+ LA+ Kp)". (12.61)

n=0

The probability of the active state R is

14+ Kg)'r
Py = U+ Ke) (12.62)
(1+ Kp)y'r + L(1+ Kp)
which in the absence of cooperativity (i.e., Kg = K7) becomes
PRopc = ! (12.63)
R.,nc — 1 + I . .

For increasing number of binding sites n7 the dependency on the ligand concen-
tration (to which K and K7 are assumed to be proportional) becomes steeper and
more pronounced (Figs. 12.13, 12.14).

12.4.2 KNF Model

The KNF [47] model assumes a sequential mechanism where all bound segments
are in the open state (Fig. 12.15).

If n ligands are already bound, binding of another one is possible for ny — n
segments. Hence, the rate equations of the KNF model are

OP,
ot

=—nPk, — (nr — n)P,lk,T +mr —n+ l)P,,,lk,T_1 + W+ D Pk, .
(12.64)
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Fig.12.13 Cooperativity of ligand-gated channels in the MWC model. The probability of the active
state (12.62) is shown as a function of ligand concentration (calculated for K /K7 = 10, L = 10)
and number of active sites n7 from 1 to 6
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Fig.12.14 Cooperativity of ligand-gated channels in the MWC model. The probability of the active
state (12.62) is shown as a function of ligand concentration (calculated for Kr/K7 = 2, L = 10)
and number of active sites n7 from 1 to 6

papa =pan =plnd

Fig. 12.15 KNF model. The KNF model assumes a sequential mechanism
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To find the steady state, we use again an ansatz with a binomial degeneracy factor

Pnz(nT)VVn
n

and obtain
— nT! nT!
0=—k W, —kf————w,
"y —n)!mn— 1! "nlny —n—1)!
nr! _ nr!
+ k" ! W1 +kn+1—TWn+1

"~ = Dy —n)!

=~k nW, =k (np =)W, + k \nW,_| + ko (npr — n)Wypy

nl(nyp —n—1)!

which gives the recursion

n=0: —kJnTWo +kinrW; =0

1

O<n<np: Wypy=—"H7—/494—"7 [(nk; + (ny — n)k;)Wn — nk;lt

K (7 — 1)

. - +
n=nr: —km,nTWn,,. + knT_lnTWn,.,l =0

which is solved by

kg
Wi=—=W,
kl
ke
Wy = — | (ky —DEH =L — k| W,
2 kz_(nr—l)[(l+(nT )1)k1_ o:| 0
= v [(k+ + (ny — 1)k+§) — kT | Wy
ky (np — 1) [ ° Yy 0
_ kg
Tk ko
ko ki
Wnrfl—nf—zu-—o,wo
knrfl kl

(12.65)

(12.66)

(12.67)

1‘/Vn—l]

(12.68)

(12.69)

(12.70)

(12.71)

(12.72)
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Fig. 12.16 Cooperativity in
the KNF model. The average
fraction of active sites
(12.78) is shown as a
function of ligand
concentration for f =2 and
ny from1to6

Fig. 12.17 KNF model in
the uncooperative limit. For
f = 1all partial equilibria
have the same equilibrium
constant K,, = K¢ and the
average fraction of active
sites does not depend on the
number of segments nr

This can be summarized as

12 Ion Transport Through a Membrane

—_

- n,=6
0.8

0.6

fraction of active segments <n>/n,

=2

0.01 0.1

1 10 100

ligand concentration

0.8

0.6

041

0.2

fraction of active segments <n>/n,

1 10 100

ligand concentration

1
P, = ("T) K,K,_1 ... K2K,

z n

with the equilibrium constants

k+

K, —.
kn

(12.73)

(12.74)

(12.75)

Now, assume a geometric series dependence [43] of the form

Kn = K()fna

(12.76)
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where the parameter f is a measure of cooperativity and K is proportional to the
ligand concentration. Then,

1
P, = - (”T) Ky fro=hr2 (12.77)
z n

and the average

nr nr—1
<n>= E nP, = nr (nTn_ ])K(’;Hf”("“)/z. (12.78)
<
n=0 n=0

For f = 1, the system is uncooperative with

_1 nr n o__ 1 nr n
= () % = e () (127

and the average number of active segments

nr

1 ny — 1 nr Ko
ne— E Pn nc — D EEE— Kn = . 1280
S Z(1+K0>"T"T(n—1) VTR Y

n=1

Again, the dependency on ligand concentration becomes sharper for larger ny
(Figs.12.16 and 12.17).



Chapter 13
Reaction-Diffusion Systems

Reaction—diffusion systems are described by nonlinear equations and show the
formation of structures. Static as well as dynamic patterns found in biology can
be very realistically simulated [48]. We derive the equations for a coupled diffusion—
reaction system and classify possible instabilities. The Fitzhugh—Nagumo model as

a simplification of the Hodgkin Huxley model is analyzed in detail.

13.1 Derivation

We consider now a coupling of diffusive motion and chemical reactions. For constant

temperature and total density we have the continuity equation

0
Eck = —div Jx + ; VkjT'j

together with the phenomenological equation

Ji = —Zijgradklncj = —Zijgrad cj
J J

which we combine to get

0
Eck = ;ij ACJ' +;1/kjr_,-,

where the reaction rates are nonlinear functions of the concentrations:

© Springer-Verlag GmbH Germany 2017
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> wgry = Feei). (13.4)
J

We assume for the diffusion coefficients the simplest case that the different species
diffuse independently (but possibly with different diffusion constants) and that the
diffusion fluxes are parallel to the corresponding concentration gradients. We write
the diffusion—reaction equation in matrix form

5 ci D, ci Fi({c})
— N = .. A . . 13.
o . e : (13.5)
cN Dy cN Fy({c})
or briefly
ac—DAc—l—F(c) (13.6)
or ’ ’

13.2 Linearization

Since a solution of the nonlinear equations is generally possible only numerically
we investigate small deviations from an equilibrium solution ¢! with

0

—¢cp=0 13.7
5 < (13.7)
Acy = 0. (13.8)

Obviously, the equilibrium corresponds to a root

F(cp) = 0. (13.9)
We linearize the equations by setting

c=co+é (13.10)

and expanding around the equilibrium

F
2E=DA«‘S—l-l‘“(Co—l-S)=DA€+8— 3 (13.11)
ot aC\co

Denoting the matrix of derivatives by M, we can discuss several types of instabilities:

1We assume tacitly that such a solution exists.
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e spatially constant solutions
For a spatially constant solution we have
0 &= My (13.12)
o 0 :
with the formal solution
§ = & exp(Mo?). (13.13)

Depending on the eigenvalues of M there can be exponentially growing or decaying
solutions, oscillating solutions, and exponentially growing or decaying solutions.

e plane waves

Plane waves are solutions of the linearized problem. Using the Ansatz

£=¢gpe (13.14)
gives
iw€ = —k*DE + Mo& = Mi£. (13.15)

For a stable plane wave solution A = jw is an eigenvalue of

My = My —k*D (13.16)
with
R\ < 0. (13.17)

If there are purely imaginary eigenvalues for some k, they correspond to stable solu-
tions which are spatially inhomogeneous and lead to formation of certain patterns.

13.3 Fitzhugh-Nagumo Model

The Hodgkin-Huxley model (12.40) describes characteristic properties like the
threshold behavior and the refractory period where the membrane is not excitable.
Since the system of equations is rather complicated, a simpler model was devel-
oped by Fitzhugh (1961) and Nagumo (1962) which involves only two variables u, v
(membrane potential and recovery variable):

u’
d:u—?—v—i—l(t) (13.18)
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Fig. 13.1 Nagumo circuit |

°
R
C
- Y
tunnel L \
diode
| E
o
v = €e(u +a— bv). (13.19)
The standard parameter values are
a=0.7 b=08 e€=0.08. (13.20)

Nagumo studied an electronic circuit with a tunnel diode (Fig.13.1) which is
described by rather similar equations

I =CV + Ljjoae(V) + Ig (13.21)

V—-—E—-RIg

V=RIg+LIijg+E— I1g= I

(13.22)

The Fitzhugh Nagumo model can be used to describe the excitation propagation
along the membrane. After rescaling the original equations and adding diffusive
terms we obtain the reaction—diffusion equations

9 (u u—"% —v41() 1 u

_- = 3 A . 13.23

ot (v) ( e(u —bv +a) s v ( )
The evolution of the FN model can be easily represented in a two-dimensional uv-

plot. The u-nullcline and the v-nullcline are defined by

3
u=0—>v=u—%+10 (13.24)
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Fig. 13.2 Nullclines of the 4
Fitzhugh Nagumo equations.
The solutions of ((13.24),
(13.25)) are shown for 3r
different values of the
current / =0,1,2,3 ok
>
1k
ok
_1_3

(13.25)

The intersection of the nullclines is an equilibrium since here iz = v = 0 (Fig. 13.2).
Consider small deviations from the equilibrium values

U=lUeg+ [l V=10, +1n. (13.26)

The linearized equations are

fr=(1—uz)p—n (13.27)

n =¢e(u — bn). (13.28)
Obviously instability has to be expected for ugq < 1.

The matrix of derivatives

—_y: —
Mo = (1 ey ~1 ) (13.29)
e —eb

has the eigenvalues

)\—l(l—uz —eb:l:\/(l—u2 +eb)2—4e) (13.30)

- 2 eq eq . :

The square root is zero for

log = 4/ 1 4 €b + 2 /c. (13.31)
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Fig. 13.3 Imaginary part of
the eigenvalues

Fig. 13.4 Real part of the
eigenvalues
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This defines a region around u,., = =1 where the eigenvalues have a nonzero imag-

inary part (Fig. 13.3).

For standard parameters we distinguish the regions

I:uey| >V 1+eb+2vMe=1277

11 : 0.706 < |ueq| < 1.277
II1: |ueyl <+/1+eb—2/e=0.706. (13.32)

Within region II the real part of both eigenvalues is (Fig. 13.4)

at 1 2
RN = 5(1 — Uy, — eb)

and since

(13.33)
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l4eb—2Je<u, <1+eb+2c (13.34)
we have

1 —u;, —eb—2e+2eb <0< 1—uy —eb+2e+2eb (13.35)

RN+ eb—Je <0< RA+eb+ /e (13.36)

IM\ + eb| < e (13.37)

For standard parameters

—0.35 < %A < 0.22. (13.38)
Oscillating instabilities appear in region II if

Je<eb—>e<b (13.39)

which is the case for standard parameters. Outside region II instabilities appear if at
least the larger of the two real eigenvalues is positive or

\/(1 —u, +eb)? —de > u, — 1+ eb. (13.40)

.~
This is the case if the right-hand side is negative or

uy, <1—eb (13.41)

e

hence in the center of region Il if eb < 1. For standard parameters 1 — eb = 0.936
and according to (13.32) the whole region III is unstable. If the right-hand side of
(13.40) is positive we can take the square

(1 —up, +eb)* —4e > (u;, — 1 + €b)’ (13.42)
which simplifies to

) 1
e <1 . (13.43)

This is false for b < 1 and hence for standard parameters the whole region I is stable.
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Chapter 14
Equilibrium Reactions

In this chapter we study chemical equilibrium reactions. In thermal equilibrium of
forward and backward reactions, the overall reaction rate vanishes and the ratio of
the rate constants gives the equilibrium constant which usually shows an exponential
dependence on the inverse temperature.! We derive the van’t Hoff relation for the
equilibrium constant and discuss its statistical interpretation.

14.1 Arrhenius Law

Reactionrate theory goes back to Arrhenius who in 1889 investigated the temperature-
dependent rates of inversion of sugar in the presence of acids. Empirically, a tem-
perature dependence is often observed of the form

k(T) = Ae Ea/ksT (14.1)

with the activation energy E,. Considering a chemical equilibrium (Fig. 14.1)

A=B. (14.2)
k/

This gives for the equilibrium constant

k

-f (14.3)

! An overview over the development of rate theory during the past century is given by [49].
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Fig. 14.1 Arrhenius law reactants products

reaction coordinate

and

E,—E,

InK =Ink—Ink'=InA—InA — a (14.4)
ksT

In equilibrium the thermodynamic forces vanish

T = const (14.5)
A= =0. (14.6)
k

For dilute solutions with

i = g +kgTIncy (14.7)
we have
> udve+ksT D vlne, =0 (14.8)
k k

which gives the van’t Hoff relation for the equilibrium constant

2 AG°

== (14.9)
kT kpT

In(K;) = > v lne, =
k

The standard reaction free energy can be divided into an entropic and an energetic
part

AGY _ ZAHT | A8 (14.10)
kgT ~— kgT k- '

Since volume changes are not important at atmospheric pressure, the free reaction
enthalpy gives the activation energy difference
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E,—E, = AH. (14.11)

A catalyst can only change the activation energies but never the difference AH°.

14.2 Statistical Interpretation of the Equilibrium Constant

The chemical potential can be obtained as

(3F) k T(alnz) (14.12)
e = —kp : :
I Ny T.V.N; 9Nk T,V,N|

Using the approximation of the ideal gas we have

7
7 = H A’;k! (14.13)
and
an%ZNklnzk—NklnNk—FNk (14.14)
k
which gives the chemical potential
i = —kzT In ]ZV—’; (14.15)
Let us consider a simple isomerization reaction
A = B.
The partition functions for the two species are (Fig. 14.2)
=y e Wkl = N ekl (14.16)
n=0,1... n=0,1,...
In equilibrium
wg —pa=0 (14.17)
—kBTanZV—l;z—kBTanZV—Z (14.18)
L A iy (14.19)

ZA Ny
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Fig. 14.2 Statistical
interpretation of the (a) (b)
equilibrium constant

& (A ——— T
- A80

Z o1 e—n(B)/kgT z o1 e~ (@ (B)—€o(B)/ kT
n=0,1,... n=

K. = = v c
T X ek TS e ()/kaT

This is the thermal distribution over all energy states of the system.

—Ae/ksT

(14.20)



Chapter 15
Calculation of Reaction Rates

The activated behavior of the reaction rate can be understood from a simple model
of two colliding atoms (Fig. 15.1). In this chapter, we discuss the connection to
transition state theory, which takes into account the internal degrees of freedom of
larger molecules and explains not only the activation energy, but also the prefactor of
the Arrhenius law [50-52]. We formulate transition state theory in a thermodynamic
context and discuss kinetic isotope effects. Finally, we present quite general rate
expressions based on the flux over a saddle point.

15.1 Collision Theory

The Arrhenius expression consists of two factors. The exponential gives the num-
ber of reaction partners with enough energy and the prefactor gives the collision
frequency times the efficiency.

‘We consider the collision of two spherical particles A and B in a coordinate system
where B is fixed and A is moving with the relative velocity

V, = V4 — Vp. (15.1)

The two particles collide if the distance between their centers is smaller than the sum
of the radii

d=rps+rp. (15.2)
During a time interval d¢ the number of possible collision partners is

cpmd®v,dt (15.3)
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Fig. 15.1 Collision of two ST TR T fPramants <.
particles 2 N ‘
! ( > Wy i
Q i d=r, +1,
v, dt
and the number of collisions within a volume V is
Neoit/V = cacpm(ra + rg)?v,dt. (15.4)

Assuming independent Maxwell distributions for the velocities

3 2 2
mava mhvb 3 3
_Da¥ _ Bogdivy, (155
) eXp[ 2T 2kBT] vad v, (13.5)

a d3 ad3 =
S Vavp)d v,d v (27rkBT

we have a Maxwell distribution also for the relative velocities

3/2 2
1% :U’vr 3
Ddv, = ——L 1 dv, 15.6
f(V ) v (ZWkBT) exp[ ZkBT] v ( )
with the reduced mass
MsM
p=—a2"5 (15.7)
My + Mg
The average relative velocity then is
8kpT
o= |2 (15.8)
T
and the collision frequency is
dN, 8kpT
—l — pepmd® |22 (15.9)
Vdr T

If both particles are of the same species we have instead

AN,y 1 16k T
! = _2nd? | —2 (15.10)
Vdt 2 M

since each collision involves two molecules. Since not each of the collisions will lead
to a chemical reaction we introduce the reaction cross section o (E) which depends
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Fig. 15.2 Hard sphere
approximation to the
reaction cross section

o(E)

E, E

on the kinetic energy of the relative velocity. As a simple approximation we use the
reaction cross section of hard spheres

0if E < E,

o(E) = [ﬂ'(ra + ) E > Ep’ (15.11)

where Ej is the minimum energy necessary for a reaction to occur (Fig. 15.2).
The distribution of relative kinetic energy can be determined as follows. From the
one-dimensional Maxwell distribution

m
27TkBT

f)dv = e/ 2ks T gy (15.12)

we find the distribution of relative kinetic energy for one particle as'

p dE, o
FENAE, =2 | e EulkoT - e E/RTGE, (15.13)
2k T V2mE,  /mksTE,

The joint distribution for the two particles is

f(E4, Ep)dEdE, = ( e_E”/kBTdEb)

(15.14)

«/WkBTEa «/TI'kBTEb

and the distribution of the total kinetic energy is given by

E
f(E) =/ f(Eq. E—E,)dE,
0

_Ea/kBT_(E_E”)/kBTdEa

1 /E 1
WkBT 0 \/EQ(E—E(I)

IThere is a factor of two since v = (—v)Z.
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1 E dE,
= —e_E/kBT/ _— (15.15)
7TkBT 0 /\/Eu(E — Ea)
This integral can be evaluated by substitution
E, = Esin’0 dE, = 2E sinfcos 0df
E dE, ™2 2FE sinf cos 0df /2
/ 4B =/ sSnvcosvdv _ [ g0 = & (15.16)
0o VEJ(E—-E,) Jo ~VEsin?0Ecos? Jo
and we find
1
E) = ——e F/kT, 15.17
f(E) T ( )
Now
oo [o¢]
/ f(E)o(E)dE =/ f(E)rd*dE = nd*e Eo/ksT (15.18)
0 Ey

and we have finally

|8kgT
r = cycpmd? DB e—Eo/ksT (15.19)
T

For nonspherical molecules the reaction rate depends on the relative orientation.
Therefore, a so-called steric factor p is introduced:

8kpT
r = cocpprd®, | —2— e~ Eo/ksT (15.20)
V

There is no general way to calculate p and often it has to be estimated. Together p
and d? give an effective molecular diameter?

dyrp = pd°. (15.21)

15.2 Transition State Theory

According to transition state theory [53, 54] the reactants form an equilibrium amount
of an activated complex which decomposes to yield the products (Fig. 15.3). The
reaction path [55] leads over a saddle point called the transition state. As a simple

2The quantity wd?/4 is equivalent to the collision cross section used in connection with nuclear
reactions.
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Fig. 15.3 Transition state activated complex

theory. The reactants are in
chemical equilibrium with reactants products
the activated complex which
can decompose into the

products

reaction coordinate

Fig. 15.4 Potential energy A+BC
contour diagram. The Rpp
potential energy for the

reaction A+BC —

[A—B—CJ* — AB+Cis

shown schematically as a

function of the distances . [ A—B—CT
Rap and Rpc. Arrows Rag | 2

indicate the reaction
coordinate. The activated
complex corresponds to a : AB+C
saddle point of the potential
energy surface

example we consider the interaction of three atoms A, B, and C (Fig. 15.4). In general,
three coordinates are needed to give the relative positions of the nuclei, but if atom
A approaches the molecule BC, the direction of minimum potential energy is along
the line of centers for the reaction.

According to TST, the reaction of two substances A and B is written as

K ki
A+B = [A—BJ* — C+4D (15.22)
reactants  activated complex  products.

If all molecules behave like ideal gases, the equilibrium constant K may be calculated
as

C[A-B}}  Z[A—B}
K. = [A-BT _ Z[A-B] e~ AE/ksT (15.23)
CACB ZAZB

where AE) is the difference in zero point energies of the reactants and the activated
complex. The activated complex may be considered a normal molecule, except that
one of its vibrational modes is so loose that it allows immediate decomposition into
the products. The corresponding contribution to the partition function is
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1 kgT
200 = T TRkt - e (15.24)
Thus the equilibrium constant becomes
kgT z*
K =B & -AR/kT (15.25)

hw zazp

where z* differs from zj4_p: by the contribution of the unique vibrational mode.
If w/27 is considered the decomposition frequency, then the rate of decomposition
is
_dec w kpT z* —AEy/ksT

e = 2 . 15.26
dr 27 (1A-B] 27h ZAZBe cace ( )

If not every activated complex decays into products, the expression for the rate
constant has to be modified by a transmission coefficient x

k3
keT 20 —skikar (15.27)

In most cases « is close to 1. Important exceptions are the formation of a diatomic
molecule, since the excess energy can only be eliminated by third-body collisions
or radiation and reactions that involve changes from one type of electronic state to
another—for instance, in certain cis—trans isomerizations.

15.3 Comparison Between Collision Theory and Transition
State Theory

For comparison we apply transition state theory to the reaction of two spherical
particles. For the reactants only translational degrees of freedom are relevant giving
the partition function

_ QrmkgT)3/?

- (15.28)

ir

For the activated complex we consider the rotation around the center of mass. The
moment of inertia is

[=(rs+rp)P—alE (15.29)
np +m3
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and the partition function is

87T21kBT

= (15.30)

IR =

The rate expression from TST is
_ kBT (27r(mA + mB)kBT)3/2h3
h 2mkp T)3mi/2m%/2

_ 8akpT. | TATME (L2 AB/keT (15.31)
mamp

which is the same result obtained from collision theory.

We consider now a bimolecular reaction. Each reactant has three translational,
three rotational, and 3N-6 vibrational® degrees of freedom. The partition functions
are

2
(ra +rp)” mamp o—AEo/ksT

8m’kpT
B h2 my+mp

3N,—6
24 = 23237y
3Np—6
B =3 2pZy
. 3NA+3Ng—T
2t = gy e (15.32)

The reaction rate from TST is

i 5
krst = kT 27 e Bo/ksT ~ 227 kT ZV e’EO/k"T. (15.33)
h zazsp h z3z%

For the rigid sphere model
a=p =2y T =232 (15.34)
hence the rate constant

kall 2 —roior (15.35)

Kpivid =
gid = 7y~
ZT

From comparison we see that the steric factor

5
P~ (Z_V) (15.36)
ZR

which is typically in the order of 1075.

33N-5 for a collinear molecule.
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15.4 Thermodynamical Formulation of TST

Consider again the reaction
A+B = [A—B]j" — products
with the equilibrium constant

CAB*

K. = .
CACB

The TST rate expression (15.25) gives*

kpT
ky = 27k,
h

and with (14.9) we have for an ideal solution

ky — kpT —AG% /kpT _ kpT —AH%/kgT ,AS" kg
2 = Te = Te e .

The temperature dependence of the rate constant is

dlnk, 1 0 AGY%

dT ~ T 9T kgT ~
Now for ideal gases or solutions the chemical potential has the form
Z
w=kgTInc—kgT In—,
Vv
and hence

Zi
AGY = —kpT Zu,- In v

and
0 AGY% 0 U;
2 - Ny => y— = AU%.
OT ksT Z‘V or Y Z‘V kpT?

Comparison with the Arrhenius law

d Ea Eu
— (InA— = —
dT kgT kpT?

(15.37)

(15.38)

(15.39)

(15.40)

(15.41)

(15.42)

(15.43)

(15.44)

(15.45)

4The activated complex is treated as a normal molecule with the exception of the special mode.
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shows that the activation energy is

E, = kpT + AU ~ kzT + AH* (ideal solutions). (15.46)

For a bimolecular reaction in solution we find from

kl;,T eASO*/kefAHOi/kBT — kl;,T eAS”*/kef(EakaT)/kBT (15.47)

rrsr =

that the steric factor is determined by the entropy of formation of the activated
complex.

15.5 Kinetic Isotope Effects

There are two origins of the kinetic isotope effect. The first is quantum mechanical
tunneling through the potential barrier.

Itis only important at very low temperatures and for reactions involving very light
atoms. For the simplest model case of a square barrier the tunneling probability is
approximately

P = epr—Z,/Wa]. (15.48)

The tunneling probability depends on the mass m but is independent on temperature
(Fig. 15.5).

tunneling

*.. activated

a kT

Fig. 15.5 Tunneling through a rectangular barrier. Left the tunneling probability depends on the
height and width of the barrier. Right at low temperatures, tunneling dominates (dashed). At higher
temperatures, activated behavior is observed (dash-dotted)
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activated complex

e

E. (D
E (H) o(D)

a

In(k)

reactants

E,H\— /.
E,D) 7

17kl

Fig. 15.6 Isotope dependence of the activation energy

The second origin of isotope effects is the difference in activation energy for reac-
tions involving different isotopes. Vibrational frequencies and therefore vibrational
zero point energies depend on the reduced mass p of the vibrating system

h|f

hw=—_[=. (15.49)
2\ w

Since the transition state is usually more loosely bound than the reactants, the vibra-
tional levels are more closely spaced. Therefore, the activation energy is higher for
the heavier isotopomer (a normal isotope effect). The maximum isotope effect is
obtained when the bond involving the isotope is completely broken in the transition
state. Then the difference in activation energies is simply the difference in zero point
energies of the reactants (Fig. 15.6).

15.6 General Rate Expressions

The potential energy surface has a saddle point in the transition state region. The
surface S*, passing through that saddle point along the direction of steepest ascent,
defines the border separating the reactants from the products in quite a natural way.
We introduce the so-called intrinsic reaction coordinate (IRC) ¢, as the path of
steepest descent from the cole connecting reactants and products. We set ¢, = 0
for the points on the surface S*. The instantaneous rate r(¢) is given by the flux of
systems that cross the surface S* at time t and are on the product side at ¢t — oo.
This definition allows for multiple crossings of the surface S*. In general, however,
it will depend on how exactly the surface S* is chosen. Only if the fluxes become
stationary, this dependence vanishes.
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15.6.1 The Flux Operator

Classically, the flux is the product of the number of systems passing through the
surface S* and their velocity v, normal to that surface. As we defined the reaction
coordinate g, to be normal to the surface S*, the velocity is

dg,
v, = 2 (15.50)
dt

and the classical flux is

<F >=/d”_lq/d”pv,.W(q,p,t) =/d"q/d"p5(Qr)%W(q,p,t).
(15.51)

Here W(q, p, t) is the phase space distribution and m, is the reduced mass corre-
sponding to the coordinate g,. We may therefore define the classical flux operator

F(q,p) = 5(%)2’%- (15.52)

r

In the quantum mechanical case we have to modify this definition since p and g do
not commute. It can be shown that we have to use the symmetrized product

1 1
F = 5 (pro(gy) +6(g)pr) = {pr,d(gr)} (15.53)
m; Zm,
with
pr =§ 0 (15.54)
i 0g,

The projection operator on to the systems on the product side is simply given by
P =0(q). (15.55)

However, we need the projector P (¢) on that states that at some time t in the future
are on the product side. If H is the system Hamiltonian then

P(t) = e g(g,) eHi/h (15.56)

and that part of the density matrix p(¢) that will end in the product side in the far
future is

lim P(t' —t)p(t)P(t' —1). (15.57)
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The rate is given by

r(t) = lim tr (P(t' = 0p() PG = DF). (15.58)

The time dependence of the density matrix is given by the van Neumann equation

d
i % — [H, p(t)]. (15.59)

In thermal equilibrium

peg = Q' exp(=fH) Q= 1tr (exp(~fH)) (15.60)
is time independent as [exp (—3H), H] = 0. It can be shown that for ¢’ — oo the
density matrix p., and the projector P (t) commute.’

lim P(t' — 1)peg P(t' — 1) = lim P(t')p,,. (15.61)
t'—00 t'—00

The rate will then be also independent of t
r=0" lim tr (e—ﬂHeiH”/he(q,) eiHT /R F) . (15.62)
t'—o00

This expression can be modified such that the limit operation does not appear explic-
itly any more. To that end, we note that the trace vanishes for ' = 0° and

r=0 (efﬂHeth’/h 0(q,) o—iH /h F) tt/:—%o
e d H ! H ’
=Q! / - (e*ﬂHelﬂf " 0(g,) e HI/R F) dr'. (15.63)
0 t
For the derivative we find
EelHl‘ /h e(qr) e—lHl /h — %e]Ht /h [H, e(qr)] e—lHl /ﬁ. (1564)

5 Asymptotically, the states on the product side will leave the reaction zone with positive momentum
Pr» so that we may replace 0(q,) with 8(p,). Again asymptotically these states are eigenfunctions
of the Hamiltonian, so that P(f = oco) and exp(—(3H) commute.

SThis follows from time inversion symmetry: The trace has to be symmetric with respect to that
operation. Time inversion changes p, — — p,. The operators p and ¢, are not affected. So the trace
has to be symmetric and antisymmetric at the same time.
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Since only the kinetic energy p?/2m, does not commute with 6(g,) the commutator
is

2
pr h a pr a pr
H = =-\a - om,
[H, 0(g,)] [2m,’9(qr)] : (8% 2mre(qr) H(qr)aqr 2mr)
h( pr Pr 0 9 pr
= — 5 r _9 r) o 0 r
. (2m, (gr) + 2 (q )8% (q )8% 2m,)
h( pr " h
== ( P 5(0) + (a1 ) =TF. (1565)
i \2m, 2m, 1

Therefore, we can express the reaction rate as an integral over the flux—flux cor-
relation function

r=0Q! / tr (e P F(t)F(0)) dt = / < F()F(0) > dt. (15.66)
0 0
Ultimately, this expression for the reaction rate has been used a lot in numerical com-
putations. It is quite general and may easily be extended to nonadiabatic reactions.
Problems

15.1 Transition State Theory

Instead of using a vibrational partition function to describe the motion of the activated
complex over the reaction barrier, we can also use a translational partition function.
We consider all complexes lying within a distance dx of the barrier to be activated
complexes. Use the translational partition function for a particle of mass m in a box
of length dx to obtain the TST rate constant. Assume that the average velocity of the
particles moving over the barrier is’

.1 [2kgT
vh = — .
2V mmt

"The particle moves to the left or right side with equal probability.
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15.2 Harmonic Transition State Theory

For systems such as solids, which are well described as harmonic oscillators around
stationary points, the harmonic form of TST is often a good approximation, which
can be used to evaluate the TST rate constant, which can then be written as the
product of the probability of finding the system in the transition state and the average
velocity at the transition state.

krst = < vé(x —x¥) > .
For a one-dimensional model assume that the transition state is an exit point from

the parabola at some position x = x* with energy AE = mw’x*?/2 and evaluate the
TST rate constant.




Chapter 16
Marcus Theory of Electron Transfer

In 1992, Rudolph Marcus received the Nobel Prize for chemistry. His theory is cur-
rently the dominant theory of electron transfer in chemistry. Originally
Marcus explained outer sphere electron transfer, introducing reorganization energy
and electronic coupling to relate the thermodynamic transition state to nonequilib-
rium fluctuations of the medium polarization [S6-58]. We begin with a phenomeno-
logical description including diffusional motion of the reactands. Then, we apply
a simplified model with one reaction coordinate to calculate the reaction rate as a
function of reorganization energy and reaction free enthalpy. Next, we apply a con-
tinuum model for the dielectric medium and derive the free energy contribution of the
nonequilibrium polarization quite generally. Reorganization energy and activation
energy are calculated and transition state theory is applied to calculate the rate con-
stant. We consider a model system consisting of two spherical reactants to calculate
the reorganization energy explicitly and discuss charge separation and charge shift
processes. We introduce the energy gap as a reaction coordinate and include inner
shell reorganization. Finally, the mutual dependency of the electronic wavefunction
and the polarization are discussed within a simple model for charge delocalization
and self-trapping.

16.1 Phenomenological Description of ET

We want to describe the rate of electron transfer (ET) between two species, D and
A, in solution. If D and A are neutral, this is an charge separation process

D+A—>DM+A". (16.1)

If the charge is transferred from one molecule to the other this is a charge resonance
process

D +A—-D+ A" (16.2)
© Springer-Verlag GmbH Germany 2017 201
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or
D+ A" — D' +A. (16.3)

In the following, we want to treat all these kinds of processes together. Therefore,
from now on the symbols D and A implicitly have the meaning D#?and A%+ and
the general reaction scheme

D?%> 4+ A%r — D?rt! 4 AZa] (16.4)
will be simply denoted as
D+A—DM+A". (16.5)

Marcus theory is a phenomenological theory, in which the assumption is made, that
ET proceeds in the following three steps:

(1) The two species approach each other by diffusive motion and form the so-called
encounter complex

kaif
D+A = [D—AJ. (16.6)
k_gir

(ii) In the activated complex ET takes place

kes
[D— A = [DTA]. (16.7)
ket

The actual ET is much faster than the motion of the nuclei. The nuclear conformation
of the activated complex and the solvent polarization do not change. According to
the Franck—Condon principle, the two states [D — A]* and [DT A" have to be
isoenergetic.

(iii) After the transfer, the polarization returns to a new equilibrium and the products
separate

ksep
[DYA™) —> DT+ A" (16.8)

The overall reaction rate is

d
r = ECA— = ksepC[D+A*]T-- (169)
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We want to calculate the observed quenching rate

d
r = _ECD = kqCDCA. (1610)

We consider the stationary state

d d

0= EC[D,A]i' = EC[D+A—]'¢. (1611)
We deduce that

0 = kaigcpea +k_escipra—1p — (k_aiy + ke)Cp—ay: (16.12)

0= ke;C[D_A]i - (k—el + ksep)C[DJrA—]L (1613)

Eliminating the concentration of the encounter complex from these two equations,
we find

ke ke k i
—tC[D_A]i = rodif CpCa (1614)
k—ez + ksep k—difk—et + k—difksep + kezksep

CID+A-F =

and the observed quenching rate is

kaif
k, = - S (16.15)
Lol

The reciprocal quenching rate can be written as

1 1 k_qi k_girk—_e
= 4 B Pediffmer (16.16)
kg  kair  kaifke  Kaifkeiksep

There are some interesting limiting cases:

o If k,; > k_4iy and k., > k_.;, then the observed quenching rate is given by the
diffusion rate k, = ky;r and the ET rate is limited by the formation of the activated
complex.

o If the probability of ET is very small k,; < k_g4;r andk_,, < ky;s,then the quench-
ing rate is given by k, = keikair/k—aif = ket Kaiy-

e If diffusion is not important as in solids or proteins and in the absence of further
decay channels, the quenching rate is given by k' ~ k.
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Fig. 16.1 Displaced
oscillator model

16.2 Simple Explanation of Marcus Theory

The TST expression for the ET rate is

ko = g e AGTT (16.17)
27

where k,; describes the probability of a transition between the two electronic states
DA and DT A~ and wy is the effective frequency of the nuclear motion. We consider
a collective reaction coordinate Q, which summarizes the polarization coordinates
of the system (Fig. 16.1).

Initially, the polarization is in equilibrium with the reactants and for small polar-
ization fluctuations, series expansion of the Gibbs free energy gives

G,(0) = G§0>+%Q2. (16.18)

If the polarization change induced by the ET is not too large (no dielectric saturation),
the potential curve for the final state will have the same curvature but is shifted to a
new equilibrium value Q

a a
Gp(Q) =G+ (0= 00 =G + 4G + (0 — 0. (16.19)
In the new equilibrium, the final state is stabilized by the reorganization energy'
a
Er =—(Gp(Q1) —G,(0) = EQ%' (16.20)

The transition between the two states is only possible if due to some thermal fluctu-
ations the crossing point is reached which is at

ISometimes the reorganization energy is defined as the negative quantity G p(Q1) — G p(0).
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Fig. 16.2 Marcus parabola E -AG

activationles:

In(k) activated 3 inverted

A\,

01+ AG  Ex+AG

s = = . 16.21
0 aQ, V2aER ( )
The corresponding activation energy is
& a (AG + ER)2
AGH = -0} = — 16.22
2 2 4ER ( )
hence the rate expression becomes
AG + Eg)?
ko = N exp (—AG T ER) (16.23)
27'(' 4ERkBT

If we plot the logarithm of the rate as a function of the driving force AG, we obtain
the famous Marcus parabola which has a maximum at AG = —Ey (Fig. 16.2).

16.3 Free Energy Contribution of the Nonequilibrium
Polarization

In Marcus theory, the solvent is treated in a continuum approximation. The medium
is characterized by its static dielectric constant &, and its optical dielectric constant
Eop = eon?. The displacement D is generated by the charge distribution o

divD = p. (16.24)

In equilibrium it is related to the electric field by

D=¢E+P=cE. (16.25)
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Here P is the polarization, which is nothing else but the induced dipole density. It
consists of two parts:[59]

(i) The optical or electronical polarization P,,. It is due to the induced dipole
moments due to the response of the molecular electrons to the applied field.
At optical frequencies, the electrons still move fast enough to follow the electric
field adiabatically.

(i) The inertial polarization P;, which is due to the reorganization of the solvent
molecules (reorientation of the dipoles, changes of molecular geometry). This
part of the polarization corresponds to the static dielectric constant. The nuclear
motion of the solvent molecules cannot follow the rapid oscillations at optical
frequencies.

The total frequency-dependent polarization is

P(w) =Py, (w) + Piy(w) = D(w) — goE(w) = (e(w) — g0)E(w). (16.26)
In the static limit this becomes

P,y + Py = (g4 —€0)E (16.27)

and at optical frequencies

Pop = (501) —eo)E. (1628)
Hence the contribution of the inertial polarization is in the static limit
P, = (e — Eop)E- (16.29)

In general rotD # 0 and the calculation of the field for given charge distribution is
difficult. Therefore, we use a model of spherical ions behaving as ideal conductors
with the charge distributed over the surface. Then in our case, the displacement is
normal to the surface and rotD = 0 and the displacement is the same as it would be
generated by the charge distribution o in vacuum. The corresponding electric field
in vacuum would be ¢ 'D and the field in the medium can be expressed as

1 1 1
E = —(D — P) =—D- _(Pop +Pin)
€0 €0 €0
1 1
=—D-P;y) - _(5017 —e0)E
€0 €0

E = L(D —Pin) (16.30)
Eop
where we assumed that the optical polarization reacts instantaneously to changes of
the charge distribution or to fluctuations of the inertial polarization. In equilibrium
(16.29) gives
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1
E = _(D - (53‘{ - 8op)E)
Eop

1
E=—D. (16.31)

Est

If the polarization is in equilibrium with the field éD produced by the charge dis-
tribution of either AB or AT B~ the free energy G of the two configurations will, in
general, not be the same. We designate these two configurations as I and II respec-
tively. Marcus calculated the free energy of a nonequilibrium polarization for which
the free energies of the reaction complexes [AB]* and [AT B~]* become equal. The
contribution to the free energy is

e;-/d3 /Edn_6 4*r /(D P;,)dD (16.32)
op

which can be divided into two contributions:

(i) The energy without inertial polarization:

1 , D?
Gao=— [ dr— (16.33)
Eop 2

(ii) The contribution of the inertial polarization:

1
—— | &rP;,dD (16.34)

Eop
In equilibrium, we have

1 1 1
P, = (e — €op)E = (g5 — 6,,p)€—D = Eop (— — —) D (16.35)
st

Eop Est

and we can express the free energy as a function of P;,

2
G = Guo— — [ L (B (16.36)
el el,O L — L 2 Enp . .

Eop Est

Now, we have to calculate the free energies of the activated complexes. Consider a
thermal fluctuation of the inertial polarization. We will do this in two steps (Fig. 16.3).

In the first step it is assumed that the polarization is always in equilibrium with
the charge distribution. However, this charge density will be chosen such that the
nonequilibrium polarization P;?kn of the activated complex is generated. The electric
displacement is D*, given by
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Fig. 16.3 Calculation of the P
free energy change
PPl (2
Peq 777777777777
(1
Dy Dy D
1 1 1
— P = (- — —) D*. (16.37)
Eop Eop Est

The corresponding free energy is

1 b 1 b
AG, —/d3r/ DdD — —/d3r/ P, dD
Eop D Eop D

2 2

1 dSr Pin — Pin
11 2e2
Eop Est op

=Gyo—Geo— (16.38)

In the second step, the electric field of the charge distribution will be reduced to the

equilibrium value while keeping the nonequilibrium polarization fixed.> Then this

fixed polarization acts as an additional displacement

+ 1

4 ) - _Pop (1639)
€0

m

1
E=—D-P
€o

where the optical polarization depends on the electric field according to (16.28)
1 + Eop
E=—D-P,)-|——-1)E. (16.40)
€0 €0

Hence, if we treat the optical polarization as following the slow fluctuations of the
inertial polarization instantaneously

1
E=—D-P) (16.41)
Eop

2We tacitly assume that this is possible. In general, the polarization Pii will also modify the charge
distribution on the reactants. If however, the distance between the two ions is large in comparison
with the radii, these changes can be neglected. Marcus calls this the point-charge approximation.
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which means, the inertial polarization is shielded by the optical polarization it creates.
We may now calculate the change in free energy as

1 D
AGY = — [ & [ (D—P;)dD
E()p D*
1
=Guo— G} / d*r—P! (D — D¥). (16.42)
Eop

If we substitute Dx from (16.37) we get

I . 1 P (P, P
—P,,D-D) = — " in (16.43)
Eop Eop

Eop Est

and the total free energy change due to the polarization fluctuation is

G — G = AG!, + AG?,

_ /d3 Piz 12n
oL _ 1 252

Enp 5v1

1

1. .
3 i b
_—L 1 d 7—62 Pin(Pin,eq - Pin)

Eop Est op

- 2
1 1{P —P,.
—/d3r— —n___ ). (16.44)
1 _ T 2 Eop

Eop Est

16.4 Activation Energy
The free energy G’ » 1s a functional of the polarization fluctuation
5P =P —P,,. (16.45)

If we minimize the free energy

5GH =0 (16.46)
we find that
SP=0 G =G (16.47)

Marcus asks now, for which polarizations Pl”n the two states I and II become
isoenergetic,i.e.
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AU* = U}, —Uj =0. (16.48)
We want to rephrase the last condition in terms of the free energy
G=U-TS+pV~=U-TS. (16.49)
We conclude that
AGH =G5, — Gl = —TAS* (16.50)

Here (Fig.16.4)

1 1 oP
Gflpzﬁz/d%(g 1) Gl [ (R) — Gy 1 (00) + G
;}p - ; op
s 1 1 N E) 97
Guzﬁz d’r E,”(R) d”(oo)+G”. (16.51)
o e “op
The quantity
AGy =G — G = AGyye + AGp1v.0 (16.52)

is the difference of free energies for an ideal solution of A and B on the one side
and A1 and B~ on the other side at infinite distance R — o0o. Usually itis determined
experimentally. It contains all the information on the internal structure of the ions.
The entropy difference is the difference of internal entropies of the reactants, since
the contribution from the polarization drops out due to any ;= P;‘.tn’ ;1- Usually this
entropy difference is small. The electrostatic energies G,/ | /11 @are composed of the
polarization contribution (the solvation free energy) and the mutual interaction of
the reactants which will be considered later. The reaction free energy is

AGey = AG o + AGY (R) — AGS! (). (16.53)

It can be easily seen that the condition AG¥ = 0 will be fulfilled for infinitely many
polarizations Pi*n. We will, therefore, look for that one which minimizes simultane-

ously the free energy of the transition state G; ;7- Weintroduce a Lagrange parameter
m to impose the isoenergeticity condition

6 [Gi®L) +m(G}, @) - 6@l )] =0 (16.54)

m

The variation is with respect to P;’.tn or, equivalently with respect to §P; for fixed
change of the inertial polarization

AP;, = 0P; — 6Py = (P?L',, —Prin) — (P?L',, —Prrin) =Prrin —Prin  (16.55)
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Fig. 16.5 Variation of the G
nonequilibrium polarization

We have to solve

6 [(1= MG @ in + 1) + MG (Rr1in — APy + 0P | (16.56)
Due to the quadratic dependence of the free energies, we find the condition

[(1 —m)éP; +m(0P; — AP;,)] =0 (16.57)
and hence the solution (Fig. 16.5)

5P = mAP,,. (16.58)

The Lagrange parameter m is determined by inserting this solution into the isoen-
ergicity condition,

— TAS = AG*(P})
= G}, (Pi 1 + (m — DAP,) — G (P +mAP;,)
, o, 11 s (AP’
= AGy + ((m—1) —m)1 d’r

L2
— S
Eop Est op

= AGyy + (1 —2m)A (16.59)

A=GiPinir — APiy) — G (Piy 1)

11 AP;,\? 1 1\ 1
= l-/d%( ) :(———)-/d3r(AD)2
- - =2 Eop Eop Est)] 2

Eop Est

(16.60)
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is the reorganization energy. Solving for m we find

AGy + TAS* + A
m = .

16.61
™ ( )
The free energy of activation is given by
. 11 AP\
AGa = G% - G;q = mzﬁ—/d% (—l)
- — =2 Eop
Eop Est
AG, TAS* 4+ )\)?
=m’\ = (4G + +A) ) (16.62)
4\
Finally, we insert this into the TST rate expression to find
AG ., + TAS* + ))?
k ~ e—AGu/kBT ~ exp _( q + +A) ) (16.63)
A \kgT

16.5 Simple Model Systems

We will now calculate reorganization energy and free energy differences explicitly
for a model system consisting of two spherically reactants. We assume that the
charge distribution of the reactants is not influenced by mutual Coulomb interaction
or changes of the medium polarization (we apply the point charge approximation
again) (Fig. 16.6).

We have already calculated the solvation energy at large distances (page 48)

2 2
(_ s 9% )(l _ i) (16.64)
87'('61,4 87ra3 €0 Est

from which we find the polarization energy at large distances

G (R = o0) =

2 2
(& + &) . (16.65)

8775” ax ap

We now consider a finite distance R. If we take the origin of the coordinate system
to coincide with the center of the reactant A, then the dielectric displacement is

Fig. 16.6 Simple a, ag

donor-acceptor geometry Q :
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1 r r—R
D =— — _ 16.66
1/11(r) yy (QA,I/II 3 + OB.1/11 v R|3) ( )
and the polarization free energy
e D’
Goliyi = / & (16.67)

contains two types of integrals. The first is

n=[% (16.68)

The range of this integral is outside the spheres A and B. As the integrand falls off
rapidly with distance, we may extend the integral over the volume of the other sphere.
Introducing polar coordinates we find

© dr 4
I ae/ 4 = (16.69)
a r a

The second kind of integral is

r(r — R)
L= | dr————m=. 16.70
2 / "Pr—RP (1670

Again, we extend the integration range and use polar coordinates

. 00 r2 —rRcosf
L ~2 in6df *d : 16.71
5 W/o sin /0 T (2 ¥ R? — 2rRcos 0)32 ( :

The integral over r gives

00 — Rcosf 1 1
/ r — Reos dr = — =~ (16.72)
o (r24+ R?—2rRcos#)3/? 2+ R2 —2rRcos@ R

and the integral over € then gives

T 2msin 6 4
I =/ TR g = (16.73)

o R R

Together, we have the polarization free energy
1 1 0% . 03 1 20408

Gil=— [drDi=—(=2+=£)+ 16.74
el 255,/ T 8mey \ daa + ag 8meyy R ( )

= G% (o0) + %

4meg R
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and the difference

2 14+27 1-27 Zp—7Z,—1
GZ?’,”—GZ’,1= e (-I— AL B B A

+2 ) . (16.75)

8meys au ag R

Similarly, the reorganization energy is

11 1
A== (— - —)/d3r (AD)?
2 \eop Egt

1 1 1 AQ%  AQL 2A04A
_ 1 (_ _ _) ( Qs [ AQp | 2404 QB). (16.76)
8T \&op  Ewt as ag R
Now since AQ4 = —AQp = e we can write this as
e (1 1 1 1 2
A=———-——)\—F+—-=)- (16.77)
8m \€op €x) \aa ap R

We consider here the most important special cases:

16.5.1 Charge Separation

If an ion pair is created during the ET reaction (Qa; = Qp1=0,04.11 =e,
QBJ] = —e) we have

0%, 0% [ 20408 0 (D

——+—+ = . 16.78

a T TR E+E-2an (167
The free energy is

GZI,I =0

o= € (Lt 26 (oo S (16.79)

eblil =™ gre, \as  ap R} U 4mey R ’
and the activation energy becomes
(AGoo + TAS* X — 522
AG, = = (16.80)

4

If the process is photoinduced, the free energy at large distance can be expressed in
terms of the ionization potential of the donor, the electron affinity of the acceptor,
and the energy of the optical transition (Fig. 16.7)
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Fig. 16.7 Photoinduced AG
charge separation
D+
1IP(D*)
D IP(D)
fw A
l EA(A)
D A~
AGy = EA(A) — (IP(D) — hw). (16.81)

16.5.2 Charge Shift

For a charge shift reaction of the type Q4 = Op. ;1 = —e, 01 = Qa1 =0

e? e?
8megran 8megap

and for the second type Qa; = Qp. 11 =0, 01 = Qa1 =c¢

e? e?
G = . 16.83
I Qrean ( )

eq
1

8mesap

The activation energy now does not contain a Coulomb term

_ (AGo + TAS* +))?

AG,
4

(16.84)

16.6 The Energy Gap as the Reaction Coordinate

We want to construct one single reaction coordinate, which summarizes the polar-
ization fluctuations. To that end we consider the energy gap
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AU = AG* + TAS* ~ GE,(PE) — GE(PF)

mn

=G (Pr1in — APy + 0P in) — G (Priy + 6P 1iy)

2
G [y (AP
- 212 Eop

Eop Est

11 5 (P
—Ezfd’(g

Eop Est
I 1 [ 5 AP2 —26P,,, AP,
=AGy+ 515|947 =
Eop Est op
=AG, +A=0U@) (16.85)

with the thermally fluctuating energy

1 0P in AP,

SU(1) = = [ dr 5 (16.86)
o “op
In the equilibrium of the reactants
U=0 AU =A4G,+X1 (D (16.87)
and in the equilibrium of the products (Fig. 16.8)
oU =2\ AU = AG, — X D). (16.88)
The free energies now take the form
¢ 1
G =G+ ﬁ(5(])2 (16.89)
1
G =Gy + ﬁ(5U — 202 (16.90)
The free energy fluctuations in the reactant state are given by
eq 1 2
<(G; -G >=ﬁ<6U > . (16.91)

Fig. 16.8 Energy gap as
reaction coordinate

U
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If we identify this with the thermal average kg7 /2 of a one-dimensional harmonic
motion, we have

< 6U? > =2kgT\. (16.92)

The fluctuations of the energy gap can for instance be investigated with molecular
dynamics methods. They can be modeled by diffusive motion in a harmonic potential
U(Q) = Q? /4 which leads to the equation

D wi.=—b Py L0 (a—UW
or TR 20

00" " T o0 )]"““Q‘”W (1699

where the diffusion constant is

 2kgT A

Dy = (16.94)

TL

and 7, is the longitudinal relaxation time of the medium.

16.7 Inner Shell Reorganization

Intramolecular modes can also contribute to the reorganization. Low-frequency
modes (hw < kgT) which can be treated classically, can be taken into account by
adding an inner shell contribution to the reorganization energies

A= A()uter + Ainne}“ (16.95)

Often C-C stretching modes at fiw ~ 1400cm™~! change their equilibrium positions
during the ET process. They must be treated quantum mechanically.> Often the
Franck—Condon progression of one dominant mode Aw,, is used to analyze experi-
mental data in the inverted region. Since hw, 3> kpT thermal occupation is negli-
gible. In the inverted region, the vibration can accept the excess energy and reduce
the activation energy (Figs. 16.9 and 16.10). Summation over all 0 — n transitions
leads to the rate expression

L w iefﬂzgzn p(_(AG+ER —i—nhwv)z)

16.96
AERkpT ( )

where ¢*hw, is the partial reorganization energy of the stretching mode.

3 A more general discussion follows later.
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Fig. 16.9 Accepting mode. activated region inverted region
In the inverted region,

vibrations can accept the n=0
excess energy -

n=0

Fig. 16.10 Inclusion of a ‘ [ ‘
high-frequency mode 1F P > E
progression. Equation i ]
(16.96) is evaluated for
typical values of

hwy = 0.2¢V,

g = 1LA=0.5eV (broken
curve). The full curves show
the contributions of different
0 — n transitions

0.1¢ . E

electron transfer rate k

AG

16.8 The Transmission Coefficient for Nonadiabatic
Electron Transfer

The transmission coefficient x will be considered later in more detail. For adia-
batic electron transfer it approaches unity. For nonadiabatic transfer (small crossing
probability), it depends on the electronic coupling matrix element V,,. The quantum
mechanical rate expression for nonadiabatic transfer becomes in the high temperature
limit (hw < kgT for all coupling modes)

1 Vezt ef(AG+)\)2/4)\kBT

k=
h AT kg T




220 16 Marcus Theory of Electron Transfer

16.9 Charge Delocalization and Self-Trapping

The electronic charge can be delocalized over donor and acceptor, if the electronic
coupling V is sufficiently large. In the following we discuss the mutual dependency
of the electronic wavefunction and the medium polarization within a simple model.

We consider the transition between two states ); and v, representing an electron
localized at the donor (1) or acceptor (2) molecule, respectively, which are identical
molecules (we consider a charge shift reaction). A nuclear coordinate Q is linearly
coupled to this transition which represents the medium polarization (Fig. 16.11). In
the semiclassical approximation, the nuclear motion is described by one wavepacket
for both states

¥ = Q)1 +5(QY)P(Q) ¢ +5> =1 (16.97)

and the classical position is identified as the expectation value of Q

Q(t)z/QICD(Q)IZdQ- (16.98)
~ / A- A
/.\ —_— . A E=—EA+E,,
A

4

9 A AT A E=EA-E
4 RS
\
A_eq +A eq A eq+A ;q

solvation coordinate
AE=0

Fig. 16.11 Symmetric charge shift reaction
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We apply the displaced harmonic oscillator model. The potential energies of the
two states are parabolas

E = g(Q —-50)* (16.99)

E, = g(Q+6Q)2 (16.100)

which are shifted relative to the equilibrium of the neutral state by +§ Q. The model
Hamiltonian is
P (40607 v
H=He+Hui+Heui=_+ 2 A .
B ( 4 AE+§(Q+6Q)2)

2M
(16.101)

The average over the electronic part of the wavefunction gives the potential energy

L0 -60) 14 )
2 A~
v kg+sor)

=2csV 4+ 2 [g(g - 5Q)2] + 52 [S(Q + 5Q)2]

E(Q,S)=<1/1|(

k k
=2csV + EQ2 + 55Q2 —(® = sHk0s0. (16.102)

The equilibrium of the mixed state follows from minimizing the potential energy

0= iE(Q) _ 9 [’%Q2 —kQ3Q (* — sz)] =k[Q-60(*—5Y)].

00 00
(16.103)
It is given by the average
§0™ = (c? — 500 = 200. (16.104)
With the reorganization energy
koo
A= §5Q (16.105)

we have

E{(60"™) = A(c? —5? — 1)? = A(=25>)% = 4As* (16.106)
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E>(5Q"™) = 4 Ac*. (16.107)
According to the variational principle, the energy functional

E@BQ™) =2¢csV + 2E(6Q™) 4+ s2E»(5Q™)
=2csV + 4Ac252
=5V +5IA (16.108)

has to be minimized. With

d(sin2x) = 2(cos2x)dx (16.109)
we have to solve

0=Vds; + A 2s0ds) = (V +2As7)2cdx. (16.110)

One pair of solutions is given by

1
cos(2y) = 0, sin(2y) = +1 cos2><=sinZX:5 (16.111)
CoS X -
| —
(sinx)_(j:%z) E=A+V. (16.112)

If V2 < 4A2?, there is a second pair with degenerate energies

: 14 V2 ) 1¥ V - 4‘//'\22
sin(2y) = 5 cos(2y) = 44/ 1 — YwH sin” y = — (16.113)

) [1£/1- Y5
(cosx) _ (c],z) _ —sign(V)y/ - \/27 E— _V_2 (16.114)

sin K 7 B
X 1,2 1+ /1_4‘/7 4A

2

which provides two localized minima, whereas for |V | > 2 A there is only one delo-
calized minimum (Fig. 16.12)
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4 .

V=1.5
2 @—
V=2.0

O

I V=30 o \

0 0.2 04 S 0.6 0.8 1

Fig.16.12 Energy functional. One delocalized solution always represents a maximum (black dots).
For small coupling | V| < 2A there are two localized minima (red dots) and a second delocalized
maximum (blue dots). For large coupling the localized extrema disappear and a second delocalized
minimum (green dots) is found

Problems

16.1 Marcus Cross Relation

(a) Calculate the activation energy for the self-exchange reaction

kaa
AT+A — A+A

in the harmonic model
a n a 2
GR(Q)=§Q GP(Q)=§(Q—Q1) .
(b) Show that for the cross reaction

k
A+D — A +DT

the reorganization energy is given by the average of the reorganization energies
for the two self-exchange reactions

_Aaa+App
B 2

A
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and the rate k can be expressed as

k = kaakppKeq f

where k44 and kpp are the rate constants of the self-exchange reactions, K., is
the equilibrium constant of the cross reaction and f is a factor, which is usually
close to unity.
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Chapter 17
Molecular States

Bio-molecules have a large number of vibrational degrees of freedom, which are
more or less strongly coupled to transitions between different electronic states. In
this chapter, we discuss the vibronic states on the basis of the Born—Oppenheimer sep-
aration and the remaining nonadiabatic coupling of the adiabatic states. The nuclear
motion is approximated by independent harmonic normal modes. Matrix elements
of the nuclear gradient operator are evaluated in the model of parallel displaced har-
monic oscillators. Finally, we discuss mixing of the Born—Oppenheimer states due
to nonadiabatical coupling and the damping approximation for finite lifetimes.

17.1 Born-Oppenheimer Separation

In molecular physics usually the Born—Oppenheimer separation of electronic (r;)
and nuclear motion (R,,) is used.

The molecular Hamiltonian (without considering spin' or relativistic effects) can
be written as

H = TN(R().) + Te[(ri) + VN(R().) + VeN(Rou ri) + Vee(ri) (171)

with the kinetic energy operators

2 2
Ty=> - R S ) (17.2)
N 2m, R o 2m, " ’

Even if spin does not appear explicitly we will have to take care of the proper symmetry properties.
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and the Coulomb interaction
U(Rm ri) = VN(Ra) + VeN(Rm ri) + Vee(ri)

ZoZoe? Z,e2 &>
= — _ 17.3
Z 4me|R, — Ry Z 4me|R, — 1] + Z drelr; — 1y ( )

a<a' a,i i<k

The Born—Oppenheimer wave function is a product

w(Ra’ ri)X(Ra) (174)

where the electronic part depends parametrically on the nuclear coordinates. The
nuclear masses are much larger than the electronic mass

My > M. (17.5)

Therefore the kinetic energy of the nuclei is neglected for the electronic motion. The
electronic wave function is obtained approximately from the eigenvalue problem,

HBOws(Ravri) = Es(Roz)’(/}s(Rawri) (176)

with the simplified Hamiltonian

hZ
Hpo = Z_E P+ URG,T)). (17.7)

i

This eigenvalue problem has to be solved separately for each set of nuclear coor-
dinates. Using the Born—Oppenheimer product ansatz for the electronic state s we
have

st(R(ya ri)Xs(Rn,) = (TN + HBO)Q/}.Y(RQ’ ri)Xs(Ra)
= Tns Ry, 1) X5 (Ro) + Eg)s(Ry, 1) X (R,)
= ws(Ru’ ri)(TN + ES(RUL))XS(RQ)

R

The sum constitutes the so called non-adiabatic interaction V,,,4. If it is neglected in
lowest order the nuclear wave function is a solution of the eigenvalue problem

52
m (Xs (Ra)vlzlu % (Rg, 1) + (VRQXS (Ra)) (VR,,ws (Rq, ri))) . (17.8)

(Tv + E;(R))xs(Ry) = Exs(Ry). (17.9)
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17.2 Harmonic Approximation to the Nuclear Motion

We consider a molecule which has a stable equilibrium configuration.”> We assume
that in the equilibrium configuration all nuclei are at rest R, = 0, hence there is no
translational or rotational motion.?

Under these assumptions, the harmonic approximation allows a simplified descrip-
tion of small amplitude motion around the equilibrium configuration. In the following
we collect the Cartesian coordinates of the N nuclei into a vector with 3N coordi-
nates*

Q1 =Ri,...03nv = Ry (17.10)

The potential energy E(Q) is expanded around the equilibrium configuration

QOS5
32

min l L .
E(Q) = E™ + 5 %;(QJ Qj0:)(Q; — Qj m)anaQJ S+ (17.11)

Within the harmonic approximation the matrix of mass weighted second derivatives

1 0?
Dy = (17.12)

iy 0000

is diagonalized by solving

> Dy, = Wit (17.13)

and the nuclear motion becomes a superposition of independent normal mode vibra-
tions with amplitudes g, and frequencies w,®

1
Q;—Qjos:ﬁquu} (17.14)
i3

2We do not consider special cases like internal rotations or large amplitude motions with very low
frequency.

3Strictly speaking, there is still an infinite number of equivalent equilibria unless the orientation of
the molecule is uniquely defined.

4Strictly speaking, there are only 3N — 6 independent coordinates and 6 normal modes with zero
frequency, corresponding to translation and rotation of the molecule, have to be eliminated.

SWhich will be different for different electronic states s in general.
5These quantities will be different for different electronic states s of course.
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After transformation to normal mode coordinates the eigenvalue problem (17.9)
decouples according to

: w? n? o2
E;+ Ty = EM™ J’_Z(qurz_ 7é)_qz) (17.15)

or, introducing the ladder operators

1 Jw [h O
LY oy IR L
b' = \/E( hx o 17.17)

to
min T 1
E,+Ty=E"" + Er hw, (b,b, + 5) . (17.18)

The nuclear eigenfunctions factorize

Xs = [ e @) (17.19)
and the total energy of a molecular state is the sum
; 1
E; ry) = EM hUJ(S) r =1 17.20
({n,) = E; +Z ,(n+2) (17.20)

Often the zero point energy of the vibrations is added to the electronic energy and
the vibrational energies are taken relative to the lowest state

E({n/}) = EX+ D" hwn,. (17.21)

The vibrations form a very dense manifold of states for biological molecules. This
is schematically represented in a Jablonsky-diagram (Fig. 17.1).”
Model calculations for Bacteriopheophytine (Fig. 17.2) are shown in Fig. 17.3.

7Which usually also shows electronic states of higher multiplicity.
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Fig. 17.1 Jablonsky Ea
diagram
82
T2
S1
T1
SO

Fig. 17.2 Model for
Bacteriopheophytine.
Coordinates from the
reaction center of rps.viridis
[61-64] are shown with
Molekel graphics [65]. The

Phytyl tail was cut off
Fig. 17.3 Density of 1 020
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17.3 Nonadiabatic Interaction

If two or more electronic states (s) are close in energy and V,,,4 cannot be neglected, a
more general ansatz for the wave function is given by the linear combination (known
as Born expansion [60])8

W(r, Q) = D h(r, Q)x:(Q) (17.22)

which will also be written in matrix notation

X .
W =" (r. Qx(Q) = (¢ )( l)zzb‘x (17.23)

In the absence of nonadiabatic coupling, the Born—Oppenheimer wave functions of
the electronic states s

s (r, Q)xs(Q) (17.24)

obey the eigenvalue equations

[Tn(Q) + E(QD)] xs(Q) = hwsnxs(Q) (17.25)

[Ter(r) + U(r, Q)]s (r, Q) = Eg(Q)s(r, Q) (17.26)

where the electronic functions ¢, (r, Q) form a complete basis for each configuration
Q. The time dependent Schrodinger equation reads in matrix notation

0 . N
z/z*ihax = 3 diag(E, + Tn)X + Viaath' x (17.27)

For a fixed configuration, the 1), are a complete and orthonormalized system.
After taking the scalar product with 1) from left and integration over all electronic
coordinates’ we obtain a system of coupled equations for the nuclear motion

0 .
ih-x = diag(Ey + Ty)X+ < YVaah" > x (17.28)

8In the following r denotes the set of all electron coordinates whereas Q are the nuclear coordinates
asin (17.10).

9Which in the following will be denoted by brackets <>.
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or component wise

iy = [Es(Q)) + Tn(Q)] X + D < s Viaathy > Xo- (17.29)

The nonadiabatic interaction couples the adiabatic electronic states.'” We consider
the matrix elements (NACM)!!

VI = < Xy (Qy (7, Q) Viad s (r, Q)X5(Q) >

62
= —Z— < X' (@) X5(Q) >< Yy (1, Q)( 220 Q))
J

0
—Zf < xy(Q) (8Q] xs(Q)) >< 1y (r. Q) (8Q1ws<r Q))
(17.30)

The matrix element of the nuclear gradient can be evaluated for s # s’ from

0
< Yy = Q [Te(r) + U(r, Q)]s >=< y| 90, A Es(Q)s > (17.31)

ou(r,
<wy[ WD i)+ U, 0 ]ws

20
—< iy [mgQ(kQ) +E(Q)5 5 ]ws > (17.32)
E/(0) <ty Q gy >+ < wsaL;kQ)ws
agQ(Q)(S”+E (0) < vy ‘Z)kwx > (1733)

5 < ey
s 5 >= ! 17.34
=50, 7T R0 - E0) (173

which becomes large if the energy gap between two electronic states is small. The
second derivative follows from

0 H? 0 0
8Qk <ty Q s >=< ql)s 2ws (8_kas’) | (8_Qk¢s) >
(17.35)

10Sometimes called channels.
"'Without a magnetic field the molecular wave functions can be chosen real valued.
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after inserting a sum over the complete set of electronic states

2

0 0
<0 = 50, < ¥ ag wy>+2<¢v wl><¢1 Qw

(17.36)

The first term in (17.30) is generally small. If we evaluate the second term at an
equilibrium configuration Q(© of the state s and neglect the dependence on Q'? we
have

< y(r, Q) ( s (r, Q)) vieke 4 (17.37)

00;

nad -~ nad,el h2
Vig =V y 5— <x(@)

) Xs(Q)) (17.38)
m

00;

Within the harmonic approximation the gradient operator can be expressed as

1 0 , 0 r W
S 00, - Z“'a_qr = Z“j E(br —by) (17.39)

r

and the nonadiabatic matrix element becomes

d !
VS"“nd(r)S n(r) = Vo™ Z 2V 2 /dé]ldC]z (H XS’r’n(r’))

X H Xs.r".n(r") (v n(r) + 1Xs,r,n(r)+1 + \Y% n(r)Xs,r,n(r)fl) . (1740)

r''#r

This expression simplifies considerably if the mixing of normal modes in the state
s’ can be neglected (the so called parallel mode approximation). Then the overlap
integral factorizes into a product of Franck—Condon factors.

nad _ nad el 2 /
Vv’,n(r’),s,n’(r) -

< ([T Fe o' ny (\/n, FIFC () ny + 1)+ Jn, FC (nln, — 1))
r'#r
(17.41)

12This is known as the Condon approximation.
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with

FCf/S(n;n,.) = /dqr Xs’r,n’(r)(qr) Xs.r,n(r)(Qr)- (1742)

17.4 “True” Molecular Eigenstates

Whereas the adiabatic approximation is quite accurate in the electronic groundstate,
it breaks down if the molecule is excited to higher electronic states where highly
excited vibronic levels of a lower electronic state are isoenergetic and form a quasi-
continuum. In a popular model [66] one optically accessible state |s > is in resonance
with a manifold of dark states |/ > (Fig.17.4).

The molecular eigenstates | > are mixtures of |s > and |/ >

v >=ayls >+ D byl > (17.43)
1

and the transition dipole of the bright state is distributed over the eigenstates according
to the mixing coefficient

W, = ays g (17.44)

All excited states have finite lifetimes and decay, for instance due to their coupling
to the electromagnetic radiation field, molecular collisions etc. For a dipole allowed
transition (i.e. the |s > state) the radiative lifetime is given by

Fig. 17.4 Optical excitation.
After optical excitation from
the bottom of the
So-manifold an
electronically excited
Born—-Oppenheimer state

|s >= |1, X, >is populated
(bright state) which is ls>
coupled by the nonadiabatic
interaction to a manifold

|l >= |1hgx g > of resonant
So-states which can not be
optically excited (dark
states) and form a
quasi-continuum

[I>

— |g>
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wnpl?

=1 =

= . 17.45
r 3meohcy ( )

As a result the corresponding transition has a finite width which can be calculated
from the lifetime as

10.6

FWHH/cm™! = .
T/psec

(17.46)

For instance, a lifetime of 10 nsec corresponds to a FWHH of 0.001cm™". The cou-
pling of the dark manifold |/ > to the radiation field is much weaker but since the
density of rovibrational states increases very rapidly with the energy gap, in larger
molecules the linewidth can become larger than the spacing of the states. Neglecting
interferences the finite lifetimes can be described by introducing complex energies

Ep=E,—i— (17.47)
and a non-Hermitian effective Hamiltonian
H Z| (g, —ilm) - | (17.48)
= m m— 11— m .
~ 2
where the stationary states are replaced by exponentially decaying states

U = e Tt Ent /Ty (17.49)

which are solutions of

Lo i
it = (H - EF) " (17.50)

(Interference effects lead to non diagonal elements of the damping matrix I7).



Chapter 18
Intramolecular Electronic Transitions

In this chapter, we discuss the coupling to the electromagnetic radiation field
semiclassically and derive the transition rates for absorption and induced emission in
the dipole approximation. We compare with the fully quantized treatment and derive
the rate of spontaneous fluorescence. We introduce the Condon approximation for
optical transitions. The Franck—Condon-weighted density of states is formulated
with the time-correlation function formalism. We discuss the generation of pure
Born—Oppenheimer states with very short excitation pulses. Finally, we consider
radiationless transitions.

absorption

Fig. 18.1 Intramolecular electronic transitions. Transitions between different electronic states (sin-
glet groundstate Sy and excited state Sy, triplet state 77) are shown including radiative transitions
(absorption, fluorescence, phosphorescence), radiationless processes (internal conversion and inter-
system crossing) and energy exchange with the environment (vibrational relaxation and thermal
activation)
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The total energy of an isolated system is conserved. Coupling to the electromag-
netic radiation field, however, is always present and the total energy of a molecule can
be changed by radiative transitions with absorption or emission of a photon.! Radi-
ationless intramolecular transitions occur between isoenergetic states and conserva-
tion of energy makes it necessary that highly excited vibrational states are involved
and take up the excess energy. Transitions between states of the same multiplicity
(mostly singlet—singlet or triplet—triplet transitions) are known as internal conver-
sion processes. Intersystem crossing processes change multiplicity (mostly between
singlet and triplet) and require, e.g., spin-orbit coupling as do radiative transitions
between triplet and singlet (phosphorescence). If energy can be exchanged with the
environment, vibrational relaxation and thermal activation also have to be considered
(Fig.18.1).

18.1 Coupling to the Radiation Field

In semiclassical approximation, the electromagnetic field is a function of space and
time. The vector potential of a monochromatic plane wave is

A= AOek(ei(kr—w) + e—i(kr—wz)) (181)

from which the electric field follows (radiation gauge, @ = 0, divA = 0)

0A ; (ke —0
E = _E — _iEOek(el(krfwt) _ efl(krfwt)) (182)
E() = on. (183)

The time-averaged energy density is
u=(e0E*) = 250 Afw® = 20 Eg. (18.4)
The interaction of a charged particle with mass m and charge g with the radiation

field has the standard form (for a molecule the sum over all electrons and nuclei has
to be taken)

I:Iint — _iAf) — f/ime—iwf + "}iLleiwt (18.5)
m
where
3 q A ikr
Vine (v, w) = ——Ap(w)erpe™ . (18.6)
m

I'The total energy of molecule plus radiation field is conserved.
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If the wavelength is larger than the extension of the molecule, the electric dipole
approximation is valid which approximates

ek a2 1. (18.7)

The matrix element of the momentum operator can be expressed by the matrix
element of the position operator. From the commutator

; P in,
[H.r]=[2- 1 U@).r=-"p (18.8)
2m m
we obtain
i o
< flteli = 5 (Ef = Enec < flgrli >= iwpiecpy; (18.9)

with the transition dipole moment vector p. The golden rule then gives the transition
rates for absorption

2w

AJ(wwilep ;iP5 (w i — w) (18.10)
h2 f

27
sy = 5 Vi Py —w) =
27
= S5 [Eo@p i *owsi —w)
and induced fluorescence

2w
Ty = 5 B0 p il *0(wyi +w). (18.11)

For incoherent radiation, the rates of all waves have to be summed up (p(w) is the
number of modes in the interval w . . . w + dw).

2w
Fier =25 [ 1ViPots - wipide
2w )
= ﬁlvif(wfiﬂ p(wri). (18.12)
The total energy density is
u(w) = 260A5(W)w*p(w) = 2e0EL(W)p(w) (18.13)
and finally the transition rate in dipole approximation is

T u(wyi)
n?

Ly = lexhe il (18.14)
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The semiclassical treatment cannot explain spontaneous emission since without an
electromagnetic field there is no perturbation. If the radiation field is treated quantum
mechanically, the fields become operators. The vector potential is a superposition of
its Fourier components (within the volume V)

hoe 10, ikr | AT % _—ikr
Azg ZEOV;k(ak'/\ek’Ae Tt ) (18.15)

where Ezlt , creates a photon with energy uw, = hck and polarization vector e, and

the Hamiltonian of the radiation field is

Hyod = Z huwdy i (18.16)
)

Now, consider transitions between eigenstates of the total Hamiltonian
HO + Hrad (1817)
due to the interaction

(18.18)

where in dipole approximation

~ . h .
Vw) ~ Wi, | 260—Vwk Qg \- (18.19)

For an absorptive transition one photon disappears

|i, Ny >—> |f, Ny — 1> AE = Ef — E,‘ — hwk (1820)
and since
aln >= Jnln—1> (18.21)

the transition rate is

2w nhw i
Tips pn—1 = ﬁé(wﬁ — wi) il

2
R a— i|”- 18.22
250‘/ |ekl'l'fl| ( )

An emissive transition creates one photon

li,ngy >— | finpy +1 > (18.23)
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but now
>=+/n+1n+1> (18.24)

and the rate

[ + 1wy

2
, 18.25
N lexpe sl ( )

27
Finss 1 = ﬁé(wfi — wi)

includes both stimulated and spontaneous emission. In the classical limit, the oper-
ators behave like (see Appendix B)

apy ~ e gy (18.26)

~ Kk . .

Alw k) = u(wy 2) (ek’/\el(krfwkt) + elt,/\efl(kl‘fwkt)) . (18.27)
2eqwj

The energy density is

i Awg
1%

Uy = (18.28)
and both rates (18.22) and (18.25) are given by the semiclassical expression (18.10)
2.

2 U\
Lo pne1 = ﬁé(wfi - wk)z_eo|ek“fi

To obtain the total rate of spontaneous emission, we have to sum over all k-vectors
and polarizations (Fig. 18.2).

14 37 14 2
Z_> (ZW)3/dk_ (Zﬂ)B/k dk d$2

k
271 1 5
RP=ZAQ/§;6<;W, k>—|eku,»,| o )qk dk dS2
1 hwsi
= dQ
T Wc2e02n) 2 Z/|ek”f’|
I, wf"i
S St L 18.29
37r'uf'50hc3 ( )

The unit length vectors %, €x1, € form an orthogonal basis. Therefore

k
e pl” + lexapsl® + |Eu|2 =’
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Fig. 18.2 Summation over
directions and polarization

e pl® + lepl’ = 1* — 1

We chose the z-axis along p. Then 11y = pcos 6 and

Z/ |ekufi|2d§2 = M?‘i/(l — cos® 0)d cos Od ¢
A

1
cos39} _ 871,
-1

=2mp’, 6 — = —u,
T i |:COS 3 3 Hri

18.2 Optical Transitions

We consider allowed optical transitions between two electronic states of a molecule,
for instance the ground state (g) and an excited singlet state (¢). Within the adiabatic
approximation (17.19) we take into account transitions between the manifolds of
Born—-Oppenheimer vibronic states

Yy(r, Q)xg(Q) = he(r, Q)X (Q). (18.30)
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Fig. 18.3 Optical transition Ee(Q)

The molecular Hamiltonian is
Hy = [¢e > (EJ + H,) < | + [ty > (E) + Hy) < 1), (18.31)
where we introduced Hamiltonians (18.40) for the nuclear motion in the two states
Hye) = Ty + Eg)(Q) — Eg)- (18.32)

We count vibrational energies relative to the lowest vibrational state of the manifold,
which is E;) in the electronic groundstate and E? in the excited state. The quantity
huwgy = Eg — E;) denotes the so-called 0 — O transition energy, which differs from
the purely electronic transition energy AE = E™" — E Z“i” by the difference of the
zero-point energies. (Fig. 18.3)

The nuclear wavefunctions obey

Hye)Xg(e) = hwgie)Xge)- (18.33)
The energy difference corresponding to the transition

[Ygxg >—> [exe > (18.34)
is given by

hweg = h“‘JOO + hwe - hUJg- (18.35)
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Assuming that the occupation of initial states is given by a canonical distribution
P () the golden rule (18.10) gives the transition rate for absorption of photons with
energy hw

2
k=" P(xy) | < y(r Q)xo(Q) [Eger] e(r. Q) xe(Q) > 6oy — huv).

h
XgXe
(18.36)

18.3 Dipole Transitions in the Condon Approximation

The matrix element of the dipole operator er can be simplified by performing the
integration over the electronic coordinates

/dQXZ(Q)xe(Q) /drw;‘(r, Q)ery,(r, Q)
=/deZ(Q)xe(Q)Mge(Q)- (18.37)

The dipole moment function M,,(Q) is expanded as a series with respect to the
nuclear coordinates around the equilibrium configuration

OM,,
90
If its equilibrium value does not vanish for symmetry reasons, the dipole moment

can be approximated by neglecting all higher order terms (this is known as Condon
approximation)

Meg(Q) :Meg(Qeq)"f' (o Qeq)+"' (18.38)

Meg(Q) ~ Heg = Meg(Qeq)- (18.39)

The transition rate becomes a product of an electronic factor and an overlap integral
of the nuclear wavefunctions which is known as Franck—Condon factor (in fact
the Franck— Condon-weighted density of states) or lineshape function. Since each
transition consumes an energy amount of Aw,, the rate for energy absorption is

27
kabso = “=Botteg” 2 P(xg) | < xg(Qlxe(Q) > [? hwd(hw — oo — (Fwe — Fwg))

XgsXe
= 2nw[Eop, > FCD(hw — hwoo) (18.40)

The transition rate for fluorescence behaves very similar. If we assume thermal dis-
tribution of excited states
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kfiuo = leal” D P(xe) |< xe(Q)Ixg(Q) > 2 w8 (hw — hwgo + (hwy — hw,))

3reghc
Xg»>Xe

_ el o e h 18.41
= 3reohc? fluo (hw — huwop) (18.41)

18.4 Time-Correlation Function (TCF) Formalism

The transition rate can be written in an alternative way, which is quite suitable for
practical calculations writing the delta function in (18.40) as a Fourier integral

1 R
5 hw —1wtdt 1842
(o) = 27h ( :
E 2
k= —' = / di 7 P(xg)l < Xglxe > [Pellermrton=er (1843)
XgXe

which can be written as a thermal average over the vibrations of the ground state

E e PHy
k = | Oljfegl /dlz <Xy 1wqt|X - elwgt < X8|X > el(wog w)t
9y
Xy Xe
2
_ [Eoftegl /dt i)t (e—itHy/heirHe/h) ' (18.44)
g
The coupling square can be written as the expectation value

Eottey|* =< gl VIthe >< vl VIthy >=< 1| VIthy > . (18.45)

Here, it was assumed that the excitation frequency is large and the excited state is
not occupied thermally. The rate can be formulated as a thermal average over nuclear
and electronic states as

=5 Z/dre Hw—wolt ¢/Xq 0, W(, > (—pegE0) < ¥ |eiHe/R
X [the > (—pogE0) < Yyle” TR gy >

1 /d[ e—l(u; woo)t ((VeltHg/hVe—llHo/h» (1846)

2
which involves the time- correlation function of the coupling operator (hence the
dipole moment operator)

9

(VOV @) = ([vert/hye thih) = [Eop,, [ F (1) (18.47)
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with? the time-correlation function of the nuclear motion

F(t) — (eitHe/hefitHg/h) — <efitHg/heitHe/h) (1848)

9 9

which is related to the lineshape function (18.40) by a Fourier transformation
[o¢]

1 .
FCD(hw) = — dte ™' F(1). (18.49)
21h J_o

We will evaluate the correlation function for some simple models in the following
chapter.

18.5 Excitation by a Short Pulse

The rate expression (18.40) holds for continuous excitation. In the following, we
study excitation by a very short light pulse.

In Condon’s approximation, the matrix element of the perturbation operator fac-
torizes

< P (r, q)Xe(q) “,}int

Vy(r, @)xg(q) >~ —Eop,y < Xe(@)Ixg(q) > (18.50)

and Vi, changes only the electronic part of the wavefunction

‘A/int“/]ng >= Z [hexe >< '(/JeXe”A/inthng >=

Xe

= —Eopto, D [eXe >< XelXg > (18.51)

Xe

Let us consider a model (Sect. 17.4) where the state |s >= |1, X,s >carries inten-
sity and is coupled to a manifold of dark states |/ >= |1),X; > which form a quasi-
continuum. The true molecular eigenstates are mixtures

v >=ayls > + D bull >= ausleXes > + D bultigxg > (18.52)
1 l

and carry transition dipoles

Hyg = Qys . (18.53)

2The trace is invariant to a cyclic permutation.
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The coupling to the molecular eigenstates is

< PuXgl Vint v >= ays < PVyXglVinils > (18.54)
hence
Vinlthgxg >= D v >< vlVimlhyxg >= D" aflv > . (18.55)

But due to the orthonormality of the eigenstates,

Za:sw >= Za:s (aus|s > +Zbul|l >) =|s > (18.56)
v v l

i.e., a very short pulse excites the pure Born—Oppenheimer state

18.6 Radiationless Transitions

We consider a molecule which is in an eigenstate |¢; x;; > of the Born—Oppenheimer
Hamiltonian Hj at time #y. For ¢ > £y nonadiabatic and spin-orbit coupling are effec-
tive. The perturbation operator

H' =V, + Hso (18.57)
induces transitions to other Born—-Oppenheimer states [ ¢x s; > (Fig. 18.4)
i (r, @ xis (@) >— 15 (r, @)X r1(q) > (18.58)

In lowest order, the decay rate is the sum over all final states [67, 68]

27
k=D ker =7 > IValPo(Ey — Ei) (18.59)
I 1

with the matrix element

Vi =< ¥y(r, ‘])Xf,l(‘])|ﬁ/|wi(rv DXis(q) > . (18.60)

If the lowest order vanishes, e.g., if it is forbidden by symmetry, higher orders also
have to be considered and the matrix element V; ; of the interaction has to be replaced
by the corresponding element of the T-matrix [69] to obtain the generalized golden
rule
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f I
—
\ /.
\\ /
R R

Fig. 18.4 Radiationless transitions. Transition from a higher electronic state (i) to a lower one
(f). Energy conservation is possible if vibrational excitations in the final state are created. The
multidimensional nuclear coordinates are represented schematically by the coordinate R

2 Ve, Vi
kS:st,,:—ZWS’,—}-Zﬁ—i—...F(S(Ef—E,~). (18.61)
] K J

18.6.1 Internal Conversion

For transitions between states of the same multiplicity only the nonadiabatic inter-
action Sect. 17.3 is relevant. Neglecting the second derivative, its matrix elements
are

B

2 0 9
=T / [’t/)}‘?(n D7) Zr: ((,Tqrxl',s (q)> (%wi,s (r, q)) +... } drdg.
(18.62)
If the dependency of the nonadiabatic coupling on the nuclear coordinates is weak,

the Condon approximation may be applied to factorize the nonadiabatic coupling into
an electronic and a nuclear part
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B < V(0,00 520 (r, 0) >
2 4 E;(0) — Ei(0)

RN,
/Xf,l(Q)a_qui,s(Q)dq~ (18.63)

Non-Condon effects can be taken into account by treating the potential energy
difference U (¢) — U (0) as a perturbation and expanding the adiabatic wavefunctions
[70] in a crude diabatic basis

<9i(r,0)U(g) —UO)y;0) >
E;(0) - E;(0)

bi(rq) =1, 0) + D
J'#J

Vo (r,0) + ...
(18.64)

In general, however, the Born—Oppenheimer approximation breaks down near
configurations where the potential energy surfaces cross. Then the transformation
to a nonadiabatic basis can remove the divergence of the gradient coupling [71].
Ultimately, the transition has to be discussed in the framework of conical intersec-
tions [72].

18.6.2 Intersystem Crossing

The Coulomb interaction does not depend on spin, therefore the nonadiabatic inter-
action couples only states of the same multiplicity. Transitions between singlet and
triplet states involve the spin-orbit coupling Hgp which together with the nonadia-
batic coupling has to be treated as a perturbation [73-75]. If spin-orbit coupling is
large enough, the dominant mechanism involves direct spin-orbit coupling

Ve =<"YyxpilHsol *¥ixis >
~éwmmmeMmm>/Wﬁms (18.65)

where again the Condon approximation has been applied. If direct spin-orbit coupling
is forbidden, higher order terms involving Hgo and V.4 as well non-Condon effects
have to be considered leading to vibronic spin-orbit coupling [76].

Problems

18.1 Absorption Spectrum

Within the Born—-Oppenheimer approximation, the rate for optical transitions of a
molecule from its ground state to an electronically excited state is proportional to
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a(hw) = D" Pl <ilulf > P6(hws — hwi — hw)
if
Show that this Golden rule expression can be formulated as the Fourier integral of

the dipole moment correlation function

1 .
s dte™ < pO)u(t) >

and that within the Condon approximation this reduces to the correlation function of
the nuclear motion.



Chapter 19
The Displaced Harmonic Oscillator

In this chapter, we discuss a more specific model for the transition between the
vibrational manifolds using parallel displaced harmonic normal modes, for which
the time-correlation function can be evaluated explicitly. We consider the limit of
high frequency modes (or low temperature) where vibrational progressions appear
and the limit of low frequencies (or high temperature) where the lineshape becomes
Gaussian where position and width only depend on the total reorganization energy.

19.1 The Time-Correlation Function in the Displaced
Harmonic Oscillator Approximation

We apply the harmonic approximation (17.11) for the nuclear motion to the zero-
order Hamiltonian (18.31)

Hy = Y, > (ES + Zhwf.bj*bf) < Vel + ¥y > (Eg + Zhwfbf*b;f) < Y,l.
(19.1)

In a simplified but popular model, we neglect mixing of the normal modes (parallel
mode approximation, the eigenvectors (u’; in 17.13) are the same) and frequency
changes ( w{ = w¢ = w,) in the excited state but allow for a shift of the equilibrium
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min

-

QL Qpf Q

Fig. 19.1 Displaced oscillator model. The displaced oscillator model assumes that the normal
mode eigenvectors are the same in both electronic states involved. Then the different modes are still
independent. The figure shows the potential energy along one such normal mode Q. The minima
at Qg and QS are shifted relative to each other by a distance d = QS — Qg. The elongation of the
normal mode is denoted as gy) = Q — Q0 - The curvature of the two parabolas is the same.
Thus neglecting frequency changes in the excited state, the vibrationless transition energy hwoo
equals the pure electronic transition energy E"" — E 2’”". The reorganization energy Eg = %wzd 2
is the amount of energy which can be released in the excited state after a vertical transition from
the vibronic groundstate

position (¢¢ = ¢/ + d,).' The potential energy for the two states then is approximated
by (Fig. 19.1)

min 1 2 2.2

Eg = Eg + 5 - qur (192)
min 1 20 e\2 min 1 2 2

E,=E"" + > E, w: (g =EM" + 3 Er w;(qr +d.)". (19.3)

The vertical excitation energy is’

. 1 .
Ee(gr =0) = Ey(g, =0) = E"" + 2 Zr‘,wfdf — EM" = fgo + Eg (19.4)

"'We retain only the lowest order of the potential difference.

2Without frequency changes the zero point energies are the same and E?"" — E ;’” R Eg =
huwog.
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with the reorganization energy
Eg = 1 > wld? (19.5)
2 . rr " *

We introduce the ladder operators by substituting

h
0 = (bg N bgr) (19.6)
2w,

h , | h .
4=\ (b;’+bff) =72 (bf+b§”)+d,. (19.7)

Since d, is real valued we find

1 2w ,
b¢ = by - rdr:bg _rdr:bg r
P=P oV, Py =t

with the vibronic coupling parameter

w;

2,
2h

gr =
From

1 . 1
haw, (bfbe + 5) = ho;, ((bf’ +9)b) +g9) + E)
' 1 "
= hw, (bﬁ”bf + 5) + how, gy (bf —l—brg') + hw, g?

we obtain the “displaced harmonic oscillator” model (DHO)

H, = ho,bfb, (19.8)
H, =" ho.b bt
= H,+ > ghw,(bf + b))+ > glhe, (19.9)

where the superscript g is omitted from now and the last term is the reorganization
energy
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Er =Y gho,. (19.10)
-

The correlation function (18.50)

F(t) = <67%H-‘/e%H”> =0 'r (e*Hv/kBTe*%’Hve%'He) (19.11)
g
with
Q = tr(e Ho/ksT) (19.12)

factorizes in the parallel mode approximation
Fioy=]]F® (19.13)

F() =0 't (efhw,.bjb,./kgTefitw,bjb,eitw,(berg,)(b,Jrg,))
_ <efitwrb1'b,- eirwr(b,‘f+g,><br+gr>> ) (19.14)

As shown in the appendix this can be evaluated as

Fi(t) = exp (g% [ = D@+ 1)+ 7 — 1)%]) (19.15)
= exp (grz(Zﬁ, + (cosw,t — 1) + igr2 sina),t)

with the average phonon numbers

1

= eho/ksT _ | (19.16)

n,

Expression (19.14) contains phonon absorption (positive frequencies) and emission
processes (negative frequencies). We discuss two important limiting cases.

19.2 High Frequency Modes

In the limit fiw, > kpT the average phonon number

1

= et 1 (19.17)

i

is small and the correlation function becomes
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Fig. 19.2 Progression of a low frequency mode. The Fourier transform of (19.15) is shown for
typical values of iw = 50cm ™!, 1, E, = 50cm ™! and (a) kT = 10cm ™! (b) kT =200cm . A
small damping was introduced to obtain finite linewidths

F,(t) — exp (g7 (€ = 1)). (19.18)

Expansion of F, () as a power series of g gives
g
— I a9 al(jop)t
F(t) = Z T e (19.19)
J

which corresponds to a progression of transitions 0 — j w, with Franck—Condon
factors (Fig. 19.2)

2j
FCO, j)= e v, (19.20)
J:

19.3 Low Frequency Modes

In the high temperature limit (hw, < kpT') the time-correlation function of one
oscillator (19.15) has peaks at t = 0, :bi)—’:, ... which become very sharp for large
i, ~ kT /hw,> (Fig.19.3). The product correlation function of many oscillators is
non vanishing only around ¢ = 0, i.e. the correlation function decays rapidly and
can be approximated by the Taylor series (in this context also known as short time
approximation)

_ 1 . EgrkpgT it
F(t)%exp{—tz’Z(n,-+z)grzwf—l-ttngwr}%exp[—tz haB +EER . (19.21)

3 Also for very strong vibronic coupling g, .
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Fig. 19.3 Time-correlation function. |F,(f)| = exp {gf(Zﬁr + 1)(cos(t) — 1)} is shown for

g2(271, + 1) = 1(broken curve) and g2(271, + 1) = 10(full curve)

Fig.19.4 Gaussian envelope

f(hAw)

The lineshape is approximately given by a Gaussian (Fig. 19.4)

L ExkpT

1 0 :
FCD(hw) = E/ dt e 10! exp [—l 2
—00

1| a2 [_ (hew — ER)2]

= — exp
2 h ERkBT 4ERkBT

1 (hw — Eg)?*
= —eXp1———————
4JTERkBT 4ERkBT
with the reorganization energy
E, = Z gfhwr
and the variance

A? =2EgkpT.

E, HhAw
it
+ —ER] (19.22)
h
(19.23)

(19.24)



Chapter 20
Spectral Diffusion

Electronic excitation energies of a chromophore within a protein environment are
not static quantities but fluctuate in time. This can be directly observed with the
methods of single molecule spectroscopy. If instead an ensemble average is mea-
sured, then the relative timescales of measurement and fluctuations determine if an
inhomogeneous distribution is observed or if the fluctuations lead to a homogeneous
broadening. In this chapter we discuss simple models [77-79], which are capable
of describing the transition between these two limiting cases. First we derive the
transition rate semiclassically for fluctuating transition energy which depends on
the Fourier transform of the dephasing function. For Gaussian fluctuations (e.g., for
the model of a Brownian oscillator) the second-order cumulant expansion becomes
exact. We apply Kubo’s model of exponentially decaying frequency correlations and
discuss the limits of long and short correlation time.

20.1 Dephasing

We study a semiclassical model of a two-state system. Due to interaction with the
environment the energies of the two states are fluctuating quantities. The system is
described by a time-dependent Hamiltonian

_ E{(t) O
HO_( A Ez(t)) (20.1)

where the time evolution can be described by the propagator

1 t
Y(t) = exp [Fi/o Hodt] ¥(0) = Up(n)(0) (20.2)
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1 t e# J"Ei(ndt
Uo(t) = exp [E/o Hodt] = e S0 ) (20.3)
Optical transitions are induced by the perturbation operator
;L 0 ueiwr
H' = (,ue_i’“” 0 ) . (20.4)

We make the following ansatz

»(t) = Up(t)p(1) (20.5)
and find
. d ) d
(Hy+ V) = 1ha¢ = HoUy(1)d + 1hU0(t)Eqb (20.6)
hence
ih:—tqﬁ = Up(—=t)VUy(t). (20.7)

Now the operator product is

0 Meiwt—%fé(Ez—El)dz
Uo=0VU® = iy i . 208)
which can be written with a time-dependent dipole moment
., d 0 u(t)e!
lhd_l(b - (u(t)*ei‘*” 0 ¢ (209)

d 1
3 M0 = o (Ea(t) = Ex0)p(t) = =ty (p(t) = —i(< war > F0w(1)) p(1).
(20.10)

Starting from the initial condition

ot =0) = ((1)) (20.11)
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we find in lowest order

1
o) = (%fot df e—ivt *(t)) (20.12)

and the transition probability is given by
P(l‘) — / dl‘/// dl‘/ iw(t”—t ),u(t”),u*(t’)

2
|/’L0| / dt/// dt/ew(’ —t) —i<wy>(t"—t') —lfr 6w(z”)dl”

(20.13)
The ensemble average gives for stationary fluctuations
|M0|2 1o gt Aiw(t”—t") 71<w21>(t —t') " /
P(t) = dt dt'e F@" —1t) (20.14)
with the dephasing function
t
F(t)y=< exp(—i/ dw(dt) > . (20.15)
0
With the help of the Fourier transformation
I [ _.. 4
F(t) = —/ e WIF(Whdw
21 J_ oo
the transition probability becomes
|[LL0|2 ° ! ! H / " ! H " ’ A
P(t) — / dw'/ / dt// d[, el(wfw (" —t )efl<w21>(t —t )F(w/)
2mh? J o 0 Jo
2 o0 R 2(1 — o t
_ ol / A P (W) (1 = cos((w — w'— < wy >)1) (20.16)
2t W—w'— <wy >)
where the quotient approximates a delta function for longer times
2(1 — —w'— t
(I = cos(W —w'= < wa >)1) — 27t (w — W' — < wy; >) (20.17)
(w—w— < wy >)?
and hence the golden rule expression is obtained in the form
Pt
PO Il e =) (20.18)

t h?
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20.2 Gaussian Fluctuations

We consider the dephasing function
F(1) = < eh0wmdr 5 — o oiXi 5 (20.19)

and assume that (for fixed integration time t) the random variable
t
X, = / ow(T)dT (20.20)
0
has a Gaussian probability distribution

1 2 2
W, (X) = ——e Xi/24 (20.21)
' A2

with zero mean

<X;>=0 (20.22)
and variance

<X} >=A%L (20.23)

This is for instance applicable if the frequency fluctuations are described by diffusive
motion in a harmonic potential. Then
F(t)=<e¥ >= / X W, (X)dX = e 4/? (20.24)

—00

where the width can be expressed by the second moment

t 2 t t
A=< X?>=< (/ 5w(t’)dt’) >=< / dt’/ dt"sw(t)ow (") > .
0 0 0
(20.25)

For more general processes, a cumulant expansion can be applied. Fourier transfor-
mation of the probability distribution (for fixed integration time t) gives the charac-
teristic function

&,(\) =< M > = / dX e W, (X) (20.26)

with
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F@)=o,(\A=1). (20.27)
We expand the logarithm of @

(p/(o) )\2 d'P — @/2 )\3 (p///(pz —3"P'P 4 2(15/3

In®=In®0)+ A
ne=heO+A g T e T @3
(20.28)
where the derivatives are
oM = / dX (iX)" MW (X) (20.29)
with
P00 =< (iX)" > (20.30)
from which we obtain the series expansion
)\2
lnCD:)\<iX>+7(<—X2>—<iX>2)+~- (20.31)

Setting now A = 1 gives the cumulant expansion
In(<e” >) = <iX > —%(< X?>-—<X>?)
+ é(< —iX?> 3 <-X’><iX>42<iX >+ (20.32)
which for a distribution with zero mean simplifies to

1 2 i 3
—§<X >_6<X > ... (20.33)

For the special case of a Gaussian distribution all cumulants except the first and
second order vanish.

For the simplest model of exponentially decaying frequency correlations

< dw()dw(0) > = A?2e /™ (20.34)
integration gives

F(t) = exp (—A*7 (e "™ — 1+ |t]/7)) . (20.35)

Let us look at the limiting cases.
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20.2.1 Long Correlation Time

20 Spectral Diffusion

This corresponds to the inhomogeneous case where < dw(t)éw(0) > = A? is con-

stant. We expand the exponential for t << 7.:

2

e )=
272

c

F(t) =e 272,

The transition probability is

|NO|2 ! / ! 1 it =t ) (w—<wy >) o= A2 (" —1)? )2
P(t)==5- | di" | dt " >) o= AT EY2
0 0

Since F(t) is symmetric

lwol*> [, [, (=1 ) (wm<wn >) am AL =122
P@) = 3 dt dt’e e
4n* ), —t
2 o)
~ | ol t/ dteit(w—<u2.>)e_A2[2/2
2h2 oo

and the lineshape has the form of a Gaussian (Fig.20.1)

. P@) (w— < wy >)?
lim —~ ~exp(—————— ).
t 2A2

20.2.2 Short Correlation Time

For very short correlation time 7, < t we approximate
F(t) = exp (—A’7|t]) = exp (—|t]/ T)

with the dephasing time
T = (A%

The lineshape has now the form of a Lorentzian

oo —1
/ dt eit(w7<w21>)ef\t\/T2 _ — 2T2 )
— T, " + (w— < wy >)?

(20.36)

(20.37)

(20.38)

(20.39)

(20.40)

(20.41)

(20.42)

(20.43)
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-3 Il Il Il
1010 5 0 5 10
time t

Fig. 20.1 Time correlation function of the Kubo model. F(t) from (20.35) is shown for A = 1
and several values of 7.. For large correlation times the Gaussian exp(—AZ2¢2/2) is approximated
whereas for short correlation times the correlation function becomes approximately exponential
and the width increases with 7—!. Correspondingly, the Fourier transform becomes sharp in this
case (motional narrowing)

This result shows the motional narrowing effect when the correlation time is short
or the motion very fast.

20.3 Markovian Modulation

Another model which can be analytically investigated describes the frequency fluctu-
ations by a Markovian random walk. We discuss the simplest case of a dichotomous
process (9.2), i.e., the oscillator frequency switches randomly between two values
wx. This is, for instance relevant for NMR spectra of a species which undergoes a
chemical reaction

A+B = AB (20.44)
where the NMR resonance frequencies depend on the chemical environment. For a

dichotomous Markovian process switching between two states X = 4 we have for
the conditional transition probability

P(Xv t+T|XOt0) = P(X’ t+7—|+a I)P(—l—, t|X0t0)+P(Xa Z‘_'_7-|_5 t)P(_’ t|X0t0)
(20.45)

For small time increment 7 linearization gives
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P+, t+71|l+,t)=1-ar

P(—t+71|—t)=1-01

P(—,t+7|+,1) =ar

P(+,t+7|— 1) = p7 (20.46)

and hence

P(+,t+7|+1t0) = P(+,t + 7|+, ) P(+,t| +t9) + P(+,t + 7|—, t) P(—, t| + to)
= (1 —an)P(+, 1|+, 10) + BTP(—, t|+, to) (20.47)

and we obtain the differential equation

0
EP(dl_a t|+a t()) = _OLP(+, t|+7 t()) + BP(_’ t|+a tO)

and similarly
0

EP(_’ tl— to) = =BP(—,t|—, to) + aP(+,t|—, 1o)

d

EP(_’ t+, 1) = =BP(—, t|+, 1) + aP(+, t|+, to)

9

EPH’ tl—, ) = —aP(+,t]—, 1) + BP(—, t|—, 1p). (20.48)

In a stationary system the probabilities depend only on ¢ — 7y and the differential
equations can be written as a matrix equation

)
EP(t) =AP() (20.49)
with
_( P(+,t]4+,0) P(+,1]—,0)
Po= (P(—,tl+, 0) P(—,tl—,O)) (20.50)

and the rate matrix

A= (_ao‘ _%) (20.51)
Let us define the quantity
QX 11X, 0) = (e~ =) (20.52)
XX’

where the average is taken under the conditions that the system is in state X at time
t and in state X’ at time 0. Then we find
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Q(Xy t+ 7-|X/, O) = <e_if[; w(l,)dt’eiw(t)7>
X, X

=0X,t+ 7|+, )0, t]1X, 00+ O(X, t +7|—, ) O(—, |1 X', 0).  (20.53)

Expansion for small 7 gives
O+, 1471+, 0) =(e77),  =1—(ws +a)T
Q(—.t+7l—0)={7)  =1-(w_+pP)7
O(— t+ 7|+, 1) = (e77)_
O+ 1 47— 1) =)

and for the time derivatlves

L =ar

=0T (20.54)

—Q(+ tl+, 0) = lim — [( iw; — )TO(, 1|+, 0) + BTO(—, t|+, 0)]
= —(1w+ + a)Q(+, t|+,0) + BO(—, t|+, 0)

0

57 Q11,00 = —(iw. =+ 0(= 11—, 0) + 2 Q(+, 1|, 0)

0
EQ(+,[| ,0) = lim — [( iwy —a)TQ(+,1|—,0) + BrO(—, t|—, 0)]
—_(ICU++OZ)Q(+,Z| s0)+6Q(_7t|_’0)

gQ(—, t1+,0) = —(iw- + B)Q(—, t|+,0) + a Q(+, [+, 0) (20.55)
or in matrix notation
2Q = (-2 + A)Q (20.56)
ot
with
_ Q(+st|+9 0) Q(+,t|_,0)
Q= (Q(—, 4, 0) O(—, 1], 0)) (2057
and
s
2= ( w) . (20.58)
Equation (20.56) is formally solved by
Q(t) = exp{(—if2 + A)t}. (20.59)

For a steady-state system, we have to average over the initial state and to sum over
the final states to obtain the dephasing function. This can be expressed as
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B s
F@)=(,1)0(@) ( a+f ) =1, exp{(—if2 + A)t}(“"gg ) (20.60)
oz+3 a+3
Laplace transformation gives
~ 0o B
F(s) =/ e F()= (1, D)(s +12 — A)~ 1( ﬁgﬁ) (20.61)
0 a+p

which can be easily evaluated to give
1
(s +iw)(s +iw2) + (¢ + B)s + i(aw, + Swr)

1.1 s +iw, — 0 -0 %
—o s +iw — « ai@

Suwr+ow
s+ (a+P) +i755

= . 20.62
(s +iwy) (s +iwr) + (a4 B)s + i(aw; + Bwr) (20.62)

Since the dephasing function generally obeys the symmetry F(—t) = F(¢)*, the
lineshape is obtained from the real part

21 F(w) = / eiw’F(t)dt:( / e F(t)dt + / e—WF*(z)dt)
—00 0 0

f(s) =

X

)2
— 201 (F—iw)) =222 (Wi =) -
atf(w=w)w—w)?+ (a+ A (w — 25 )2
(20.63)
Let us introduce the average frequency
oo a2t fa (20.64)
a+p

and the correlation time of the dichotomous process
R —1
Te=w, =(a+p)"".

In the limit of slow fluctuations (w, — 0) two sharp resonances appear at w = wj
with relative weights given by the equilibrium probabilities P(+) = §/(a + ()
andP(—) = «o/(a + (). With increasing w, the two resonances become broader and
finally merge into one line. For further increasing w, the resonance, which is now
centered at w becomes very narrow (this is known as the motional narrowing effect)
(Fig.20.2).
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frequency ®

Fig. 20.2 Motional narrowing. The lineshape (20.63) is evaluated for w; = 1.0,w, = 1.5 and
a=F=1(a)0.02(b)0.18 (¢c) 1.0

Problems

20.1 Motional Narrowing
Discuss the poles of the lineshape function and the motional narrowing effect (20.63)
for the symmetrical case o« = 3 = Q27! Wi =wx Aw/2.




Chapter 21
Crossing of Two Electronic States

In this chapter, we discuss crossing between two or more Born—Oppenheimer states.
We begin with wave packet motion which allows to introduce the classical limit for
nuclear motion. The matrix elements of the nonadiabatic coupling can become very
large or even divergent, whenever two electronic states come close. The “adiabatic
to diabatic” transformation eliminates at least the singular parts of the derivative
coupling. We derive the so-called diabatic Schrodinger equation and discuss the
simplest case of a crossing between two states. For a Hamiltonian depending on
only one nuclear coordinate, the transformation to a diabatic basis is possible and
yields a diabatic coupling which is given by half the splitting of the adiabatic states.
The semiclassical approximation makes use of narrow localized wavepackets and
describes nuclear motion as a classical trajectory defined as the time-dependent
average position. The famous Landau Zener model uses a linear approximation of the
trajectory in the vicinity of the crossing point and obtains an explicit solution for the
transition probability. If more coordinates are involved, conical intersections appear
which are very important for ultrafast transitions. We discuss the linear vibronic
coupling model for the dynamics in the vicinity of a conical intersection.

21.1 Wavepacket Motion

A particle (e.g., one of the nuclei of a molecule) moving in the potential V (R) is
described by the time dependent Schrodinger equation

0 h?
ih— =|—=—=V*+ VR) [¢ = HY. 21.1
latlﬁ[ZMwL()]w (0 2L1)
© Springer-Verlag GmbH Germany 2017 269
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The expectation values of position and momentum

<R >=/¢*(R, HRYR,Nd*R <P >=/¢*(R, t)?Vw(R, Nd>R

(21.2)
obey equations of motion quite similar to Newton’s equations
d 1
— <R>=— <P> (21.3)
dr M
d
T <P>=<-VVQR) >. (21.4)

In order to assign values of “position” and “momentum” the wavefunction should
be a localized wavepacket in real space and momentum space. Due to the laws of
quantum mechanics both values cannot be simultaneously sharp but are subject to
a probability distribution with eventually growing width due to dispersion. Simple
cases allow description by Gaussian wave packets, especially a free particle and the
harmonic oscillator.

21.1.1 Free Particle Motion

For a free particle (V = 0) in one dimension a special solution of (21.1) is given by

2
aky

1/4 _ jako)? 9ih
Y(x, t) = (2_a) I exp _(x %) + ‘%h (a+2,1)
T /a—|—2mt a+2§7t

which is initially a Gaussian wave packet with constant momentum

] (21.5)

2a\'* 1 2,

P(x,0) = (?) ﬁe—x /a gikox (21.6)
h 0

<p0)>=+-<— >
i Ox

h [2a1 ; 2 i
== / dx e~ 14 ko (‘—x + ik) e = ko, (21.7)
1 T a a
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Fig. 21.1 Free particle motion. The Gaussian wave packet (21.5) moves with constant velocity and
shows dispersion according to (21.10). Time in units of m/h

The probability density stays Gaussian
2 1 2 hko \
1W(x, 2 = ,/—a—zexp [—% (x _ —Ot) ] . (21.8)
T Ja + (254) a? + (244) m
The wavepacket moves with constant velocity (Fig.21.1)
hko
< X >= —1 = vyt (21.9)
m

and its standard deviation increases with time

h_2t2
)
ST (21.10)

a
sz —
4 a

Fourier transformation gives a Gaussian probability density again which is time
independent

AT P B R
1k, P = 2Wexp{ Sk k)’} Q1.11)
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with standard deviation

1
o=z (21.12)

from which the uncertainty relation is obtained

1 h?
ox0p =P 4 + a’m?

,_h
t 25. (21.13)

21.1.2 Harmonic Oscillator

Wavepackets for a particle in a harmonic potential are provided by the coherent
oscillator states (also known as Glauber states) which are linear combinations of
stationary oscillator states, and therefore solutions of the time dependent Schrodinger
equation (Appendix B)

0 n
—|af? a —i(n w
Yalx, 1) =¢” ‘/22 \/—_'e (t1/2ety), (x). (21.14)
=0 n!

Coherent states describe dispersionless wavepackets with probability density
(Fig.21.2)

|alx, D = ‘% (x — ﬁﬂt(aeiwf)xo) ‘2

1 (x — xoﬁlod cos (wt — arg(a)))2
= T expq— xé . (21.15)

Fig. 21.2 Probability
density of a coherent
oscillator state

V(x)

Xmax=Xo @' ol

<V
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The expectation values of coordinate and momentum oscillate like for a classical
oscillator and the standard deviations are

Oy = —= 0p=—F¢. (21.16)
The uncertainty product has the minimum possible value
f 21.17)
Oy0, = —. .
P2
For large amplitudes
h
Xmax = )C()\/§|CY| Pmax = _\/§|a| (21.18)
Xo

the relative uncertainties become small

) 1
T % (21.19)
xmax pmax 2|a|
and the oscillator behaves classically with energy
2 xrznax OE 1
< E>=mw 7% ——=—. (21.20)
2 < E > ||

21.2 The Adiabatic to Diabatic Transformation

The Schrodinger equation for the nuclear motion (17.28) can be written as [80-84]"

0 - .
inx = [diag(E) + Tt < $haatp’ ] x

ot
2 ) 2
= | diag(E;) — (— + T-) X (21.21)
; 2M; \oQ;
with
T ¢8¢T > (21.22)
=< PY— . .

"'Without a magnetic field the electronic wavefunctions can be assumed to be real valued.


http://dx.doi.org/10.1007/978-3-662-55671-9_17

274 21 Crossing of Two Electronic States

Equation (21.21) looks much like an ordinary Schrodinger equation where the
gradient has been replaced by

0 0

N T (21.23)
00; 00; /

a substitution which is well known in the field of gauge theories [85].
Equation (21.21) follows from

2 .
0 oyt T _ & oy’ () NG
oyt B oy ot 02t
+2<w37Qj>87Qj+<@j@j>+<¢aQ% >
(21.24)
where due to orthonormality
1
<yt s=| 1 (21.25)
. oY . o’
— IR A
0= 90, <P’ >=< 3ij >+ < '(/Jan > (21.26)
Therefore
oy’ ot M . '
<¢8Qj ><'¢6Qj >=— < an'L/J > <1/13—Qj> (21.27)
and from completeness of the basis
YY) =D ()b () = 6(r — 1) (21.28)
oy’ oyt ) op'm)
< wa—Qj > < wa—Qj >=— < 20, 00, > (21.29)

The matrix elements of the nonadiabatic coupling can become very large whenever
two electronic states come close (17.34). They even diverge at conical intersections
[86]. Therefore we look for a unitary transformation U (Q) which eliminates the


http://dx.doi.org/10.1007/978-3-662-55671-9_17

21.2 The Adiabatic to Diabatic Transformation 275

derivative coupling or at least its singular parts. Electronic and nuclear parts of the
wavefunction are transformed according to”

x=U"x % =v'U (21.30)
which does not change the total wavefunction

~T . _

v x=@UU Y =X (21.31)

The gradient and the nonadiabatic coupling matrix transform according to

d oU~! d
Y 5 Yl (21.32)
20,X~ 90, X 20, %
B -9 - a . ou
Ti=<tp—' >=< U Yp—'U>=U"'T/U+ U '—
oU~!
=U"'T,U - —U. (21.33)

Both involve an inhomogeneous term, whereas their combination transforms sim-
ply like  itself®

i>~<+f<~ = (aul u +U1T»U+U18—U) U

20; X=\90, 20; J 90, X

_(aU_1+U—1 J +U“T~—‘8U_l)

~\ao, 20, T A

:Ul( 0 +T<)x:U1( 0 +T»)U5< (21.34)
00; ! 00; ! ' '

Finally the time dependent Schrodinger equation transforms into

in? % = | U-\diag(E)U — U™ > o (i - T<)2 Ulx. (2135
ot s : 2Mj an J . .

’In the following we make use of 0 = %UU*1 = y-! +U% and 0 = %U*IU =

00
u~! —19U
50 U+U 90

3In the language of gauge theories the substitution (21.23) is known as covariant gradient.
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The transformed energy matrix
EY = U~ 'diag(E\)U (21.36)

is generally not diagonal and contains coordinate dependent couplings between the
states. Let us assume, the transformation eliminates the gradient coupling. Then from
(21.33)

ou
O—T—U TU—i—U_ (21.37)
90,

and the transformation has to satisfy

U
— 4+ T;U =0. 21.38
Then,
d d
U-! (—+T)U=— (21.39)
20, 00;

and (21.35) simplifies to the so-called diabatic [87] Schrodinger equation

0 o o?
ih—x=|E' =) — — | x‘. (21.40)
a1 X ;21\4,» 003

Since the basis of adiabatic electronic wavefunctions is complete for any configura-
tion Q, the gradient can be expanded as

o o 4
812, =l < ”bda_Qj”bd’ >='T{ =0 (21.41)

hence v is independent of the nuclear coordinates. This corresponds to a crude
diabatic basis [88-90]. In order for (21.38) to have a single-valued solution, T;U
must be the gradient of a function of Q ;. This leads to the generalized curl condition
which also guarantees that the second derivatives of U do not depend on their order

0 U &Fu curl(T;U)
= e = CU ; i
00;00; 00;00; !
_ oT;U) _ Ty _ (ﬂ _ ot; ) +T48_U _ T@_U
00; 00; 00; 00; 100; '00;
or; o,
=—Jy-—y- T, T;U+TT;U (21.42)

00, 00;
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or simpler
oT; oT;
0=F,=—L - —L _(T;T, = T.T)). (21.43)
7780, 90 ! !

This equation is satisfied trivially, if there is only one nuclear coordinate, i.e., for
diatomic molecules if rotation is neglected.
Now, the gradient of the NACM is

0 0 0 0 1o} H?
_Tz - S~ s A~ Yy - A~ Ws >+ < Yy
90, =90, =00, "= 50,90, Ya000," "
(21.44)
from which
1o} 1o} 0 0 1o} 1o}
B_QjTi - 3_Q,-Tj =< G_ijSB_Q,-%/ >—-< a—Qi%a—Qj%/ > . (21.45)

Furthermore, inserting the complete basis

Oty 3% o)
T.T: = — ; ¥ o —— )y 21.46
f ES/ <8Ql@/} ><1/1 7,!1 >= 8Qi anlll > ( )
oYy 0 oY 0
T.T, — TT: =< — ——1py > — —— )y > . 21.47
! 1= 00, 3ij T 0Q; 8in - ( :

Hence the curl condition (21.43) is satisfied if the basis is complete. Such a basis,
however, is not useful for practical calculations, as convergence is very slow and a
large number of basis states would have to be included.

Now we consider a general unitary transformation of the curl (21.43)

. oT;  OT,; s
Fj=— — — _(I,T, - T,T; 21.48
=50, 90, (T; ) ( )
fi_U—lT‘U_’_U—la_U
J J aQ]

From (21.33) we obtain

ou  ou~! ou~t ou

T, =U"'"T,T,U + U™ - —TU - —
U 50, B, 90, 90,

(21.49)



278 21 Crossing of Two Electronic States

and the commutator

oU~! aU B oU~! U
00; 0Q; 0Q; 00,

T;
ou~! ou~!
(Ian za j)_(aQi Tj_an T,‘)U. (21.50)

The gradient

o1, _ ou! U oT; oU PU
LU+ 50 +U N U+ T o+
i J

3 Th —

'ﬂl

T, =UNT;T, — T;T))U +

an aQ an jaQi 8Q18Q]
(21.51)
gives the curl of T

o1;  oT, (aU—'T' B 6U‘1T') U
00; 0Q; 00; 7 00; "

+U1(%—£)U+U ( 8U_T.8_U)

00; 00, 790, 100,

ou~! ou ou~! ou —1( o*U o*U )
+ _ Iy 5 — (21.52)

00; 0Q; 0Q; 00; 00;00; 00Q;00;

Assuming that the second derivatives do not depend on the order, we have finally

= g—;—%—@ﬁ—ﬁf;)
i J
B oT; 0T, —(T:T, —=T,TH U = U""F,;U (21.53)
- 8Qz (9Qj jli ilj = i '

which shows that the curl condition F;; = 0 is invariant to unitary transformations.

21.3 Quasidiabatic States

We would like to reduce the sum in (17.22) to a small group of relevant basis states
which interact strongly, whereas interaction with states outside the group is small
[84]. We denote the group of states by g and its complement by o and use a block
matrix notation where the projectors onto the group and its complement are

190 00
P:(OO) Q=1—P=(010). (21.54)
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We define the group Hamiltonian by restricting (21.21)

o8 :
HY = P | diag(E,) — Z (aQ +T) P. (21.55)
j J

The full matrix of NACMs is

9 go
T, — (7{50 TT ) (21.56)

and the restriction of its square is not identical with the square of the restriction since

(T} = (T’ + T{°T}". (21.57)

The restricted covariant gradient is

0 g 0
— 4+ T) = — Tg 21.58
(an + ,) -+ ( )

and the restriction of its square is

0 Az (2 o, o1y 0 2
— + 7T — +T; +27; —+T9) + 71919
(|:an " ]:| ) (BQZ jan 20 (OQ/ Y

(21.59)
hence the group Hamiltonian involves coupling to states outside the group*
(0 ? h?
HI =diag(E))! — » — | =—+T7) = > —T7T". 21.60
nelty Zj:2M.z‘ (3Qj " ’) Zjle.i r 2160
Now, with
(LiT; = T;T)* = (T7T) = T)T)) + (1T} — T/°T) (21.61)
the curl condition gives
oT? oT?
0=F)=—L - —L —(I;T, - T, T}’
00 00
oT? ot
= L (7ITI —TITYY — (TI°T%9 — TI°T°9). 21.62
50, ~ag, ~ T/ /T - @Y - TTY) (21.62)

4This is in principle also the case for the Born-Oppenheimer approximation with only one term.
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Hence the curl condition cannot be satisfied within the reduced space of group
states unless coupling to states outside the group is neglected. Therefore derivative
couplings within the group generally cannot be eliminated totally by unitary trans-
formations within the group. Several methods have been proposed to remove at least
the divergent terms and to find a basis of quasidiabatic states.

21.4 Crossing Between Two States

In the following, we consider the simplest case of two crossing states. A unitary
transformation among these can be described by a rotation matrix

U9 — ( cos a 51na) (21.63)
—sina cos o

with the derivative

p e
ou _( sina cos « ) O (21.64)

90;  \—cosa —sina ) 90,
and
@Uﬂ_ Ja (—sina cosa cosa —sinay _ da (0 1
20, 90; \—cosa —sina ) \ sina cosa ]~ 90, \-10)"
(21.65)
The antisymmetric matrix of derivative couplings has the form
0 7
9 __ i
U (—T,- 0) (21.66)
with?
foJe!
=90 21.67
KTy (21.67)

The transformed kinetic energy has diagonal and off-diagonal contributions

R (0 7\’ 2 IR d I\ ({01
~ 25, (aQi+T") =25 TQ%_”+(ZTi8Qi+6Qi)(—10) '

(21.68)

5The integrability condition (21.73) for the inverse rotation is fulfilled by construction.
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From
or; %1, 0V O,
— >4 T (21.69)
8Qj wlanaQi an 0Q;
we obtain
TIT! — TITY = (imj — 7;77) (_1 _1) =0 (21.70)
and
9 9T! , <
oT; __j:<af, _ﬁ>(0 1) 21.71)
00; 00, 0Q; 00 —-10
with
00; 00; 9Q; 00, 00; 00;
_ (1,8) (s5,2) (1,8) (s,2)
= > 1P — T, (21.72)
§s>2
The integrability condition demands
Oa
el =0 21.73
90, + 7 ( )

which cannot be fulfilled in general unless the coupling to states outside the group
is neglected. Now, 7; is a vector in coordinate space and Helmhotz’ theorem is
applicable which states that it can be written as the sum of a curl free (or longitudinal)
and a purely rotational (or transversal) part. Obviously only the longitudinal part
can be removed by a unitary transformation. According to (21.72) the remaining
rotational part does not involve the divergent terms o< (E;(Q) — E2(Q))~". It might,
however, involve other divergences if three or more states happen to cross at the same
point.

21.5 Avoided Crossing Along One Coordinate

The diabatic energy matrix has the form

. (ENQ) V(Q)
B = ( v(0) Ef(Q)) @L74
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and the adiabatic energies are the eigenvalues of E¢

ES + E{

Ef, =
1,2 5

|
+ z\/(Eg _E? 4 4v2, (21.75)

Let us now discuss a one-dimensional model with one reaction coordinate Q [91].
Here, crossing of the adiabatic curves is very unlikely, since it occurs only if the two
conditions

E{(Q) - E4Q)=V(0) =0 (21.76)

are fulfilled simultaneously.® We consider an avoided crossing where the gap between
the two adiabatic curves has a minimum.
Equation (21.73) becomes

ou
@ =—7(Q)U 21.77)

which can be formally solved by
U =exp [/ T(Q)dQ] . (21.78)
Q

For antisymmetric T, the exponential function can be easily evaluated’ to give

Uz(m%@>ma@

—§inC(Q) cosg(Q)) Q) =/Q 7(Q)dQ. (21.79)

The diabatic energy matrix now is

Etl
EdzUl( 1 a)U
E2

_(cos? CE§ + sin® CES sin( cos ((E¢ — EY) (21.80)
~ \sin¢cosC(E{ — ES) cos? CES +sin® CE] ) )

At the crossing point

(cos? ¢y — sin? () (E¢ — E$%) =0, (21.81)

OTf the two states are of different symmetry then V = 0 and crossing is possible in one dimension.
7For instance by a series expansion.
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which implies
2 ) 1
cos” (p = sin“ (p = 7 (21.82)

Expanding the sine and cosine functions around the crossing point, we have

g~ (E‘aiEg B = EDC= G (B = EDG 4 (=GP 4-) )

(B — EHL + =P+ HFHE (B~ B =)+
(21.83)
Expanding furthermore the matrix elements

ad I A

Ef =E+E+91(Q—Qo)+~-~ (21.84)
ad Fal A

Eff =E— 2 +02(0 = Qo)+ (21.85)

¢—C =—(0— 0Q0)T12(Qo) (21.86)

where A is the splitting of the adiabatic energies at the crossing point, the interaction
matrix becomes

E‘'=E+

91+ 9 —(0 — Q0T(Q0)A § + 252(Q — Qo)
O+ 4 | w-u 4o
2 S+ 4520 — Qo) (Q— 00)7(Qp)A

(21.87)

We see that in the diabatic basis the interaction is given by half the splitting of the
adiabatic energies at the crossing point (Fig.21.3).

Fig. 21.3 Curve crossing E




284 21 Crossing of Two Electronic States

21.6 Semiclassical Approximation

We want to describe the nuclear motion classically. Therefore we approximate both
nuclear wavefunctions

XI1=Xx2=¢ (21.88)

as a narrow wave packet centered at Q(r) moving in an effective potential V*//(Q)
with velocity v(t) = Q(t)

ihd = — i + VI (Q)g. (21.89)
wmaor '

The wavefunction has the form
_ [a@®
Y = (b(t)) d(Q). (21.90)

From the time-dependent Schrodinger equation

e fa@) at)\., ., [ m & EV v a(t)
ing —th(l;(t))¢(Q)+(b(t))lhqzﬁ(Q)— [—WTQZ-F(V‘ Eg)] (b(t))qzs(Q)

(21.91)
we obtain
a(r) a(r) N EY VY (a®
(5 ) o@=(50) |75~ swagr) o+ (V1) (56 )o@ @192
a(t) E)—Vyr V a(t)
(b(;)) 9(Q) = ( v g veff) (b(t)) 9(0). (21.93)
We take the average over Q
i [ a0 (5)) o0 =in (i)
- eff Vv a(t)
/¢ ) ( eﬁ) (bm) $(0)
_ (E?(Q(t)) - veff(Qa)) V(Q() ) (am) 21.94)
V(Q®)) EQ(1) = Vers(Q(1)) ) \b(0) ) ‘

Since we are only interested in occupation probabilities we neglect the phase shift
due to V,rr(Q) and obtain the semiclassical approximation
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: 0

i Cf(f) _ ([ Ei(Q®) VO(Q(l)) (a(t)). (21.95)
b(1) V(Q(0) EJQ) J\b(®)

The position of the wavepacket obeys the equation of motion

0
5 <2>= /dQQIX1(Q)| +/dQQI><z(Q)|2

B w02 X
= [ae bt ) e g + o] (1), (2150

Since the second derivative and H; are self-adjoint and the commutator

R0 )
[—ma—QZ+Hd(Q),Qi|_ =50 (21.97)
we have
0 ih 0
and similarly
o ihd w9 X4
o~ Moo~ M/dQ [8Q WMo d(Q)] (X‘z’)
1 0
=— < @Hd(Q) > . (21.99)
Consistency then requires
Vo (Q(t)) =< Hy(Q) > +const. (21.100)

but calculation of the average implies knowledge of the exact solution! However,
if the initial velocity of the wavepacket is large enough and the acceleration due to
the average force can be neglected, we may approximate the classical trajectory as a
motion with constant velocity. This leads to the famous Landau—Zener model.

21.7 Landau-Zener Model

Landau and Zener [92, 93] investigated the curve crossing process treating the nuclear
motion classically by introducing a trajectory

0(t) = Qp + vt (21.101)
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where they assumed a constant velocity in the vicinity of the crossing point. They
investigated the time-dependent model Hamiltonian with constant diabatic coupling

_(E(QU) VvV _(—loar, oy
H(”_( 14 Ez(Q(t)))_< Y 0g_f,) (21.102)

L
2

and solved the time dependent Schrodinger equation

. 0 C1 _ C1
1h5 (62) = H(1) (62) (21.103)

which reads explicitly

0
ih% — E\()e1 + Ve
0
ih% = E2(1) + Vey. (21.104)
Substituting
¢l = ale%fEl(t)dt
¢y = areim | B2 (21.105)

the equations simplify

ih% — Ve [Ex-E()dr )

ot
ih—2 = Ve m /(B0-Ewdig (21.106)

Let us consider the limit of small V and calculate the transition probability in lowest
order. From the initial condition a;(—o0) = 1, a,(—00) = 0 we get

! , .., OAEt?
/O(Ez(t)—El(t )dt’ = ) (21.107)

(00) 1v/c>o gy, V[ 2Tk (21.108)
a(00) ~ — e i o =— 5 )
: in ) o ih\ —i%E
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Fig. 21.4 Velocity dependence of the transition. At low velocities the electronic wavefunction
follows the nuclear motion adiabatically corresponding to a transition between the diabatic states.
At high velocities the probability for this transition (21.110) becomes slow. Full diabatic states,
dashed adiabatic states

and the transition probability is

27 V2

P2 = a0 = 3 g (21.109)
ot

Landau and Zener calculated the transition probability for arbitrary coupling strength
(Fig.21.4)

27Vv?
PE =1—exp| -5 ). (21.110)
h| %51

21.8 Application to Diabatic ET

If we describe the diabatic potentials as displaced harmonic oscillators
mw? mw? )
E(Q) = TQ Ez(Q)=AG+T(Q—Q1) (2L.111)

the energy gap is with

22
01=,/— (21.112)
mw

2
E, — E, :AG+mTw(Q§—2Q1Q):AG+A—w¢2mAQ. (21.113)
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Fig. 21.5 Multiple crossing

The time derivative of the energy gap is

O(E2(Q) — Er(Q) _ Aa_Q

—wv2 21.114
ot N ( )
and the average velocity is
o o] ve—mvz/Zdev 2%T
< —Q >= f_";l | . =./—. (21.115)
ot S etk dy mm

The probability of curve crossing during one period of the oscillation is given by
2Py, (see Fig.21.5).
Together, this gives a transmission coefficient

) 27 V2 27V2 2w 1 21.116)
Rel = - - .
hwﬁ 2k_T| h w4 kT
and a rate of
27 V2 1 AG
—_ - a/kT
= —¢ . (21.117)
h  J4n) kT

21.9 Conical Intersections

In a diabatic representation, the potential energy of a two-state system has the general
form

_( ElQ Vi(Q

B (Vlz(Q)T Ezd(Q))' (21.118)

At a point of degeneracy Q” two conditions have to be fulfilled simultaneously

Vi2(Q%) = E{(Q%) — E4(Q" =0 (21.119)
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Fig. 21.6 Conical ad
intersection

y AQ

xAQ

which is in general only possible if at least two different coordinates are involved. In
two dimensions degeneracy is found at a single point, a so-called conical intersection
(Fig.21.6). This type of curve crossing is very important for ultrafast transitions. In
more than two dimensions crossings appear at higher dimensional surfaces. The
terminology of conical intersections is also used here.

We expand the potential energy matrix around the point of degeneracy [84]°

_(EQ) 0 VEL VViY
V_( 0 E(QO))+AQ(VW2 VE! "

=E(Q?)+%V(E1+Ez)+AQ (; y )+ (21.120)

—X

The degeneracy is lifted in the two-dimensional space spanned by the vectors

1 d d
x= S V(E] ~ Ef) (21.121)

y=VVph (21.122)

the so-called branching space. Orthogonal to it is the intersection space in which
degeneracy is not lifted. For a number of N internal coordinates it forms a (N-2)
dimensional seam. The topology of the adiabatic energy surfaces

E¢) = E@Q) + %vwl + E) £ VIXAQP + [yAQ[? (21.123)

is a double cone with the two surfaces meeting at the intersection point (Fig.21.6).
If the two electronic states are of different symmetry, the modulation of the dia-
batic energies H};, H» is due to totally symmetric modes whereas the interaction

8The energy at the intersection point is E Q% = E*(Q% = E“(QY). Furthermore the sum of the
diagonal elements (the trace) is invariant E{ + E5 = E' f + E‘Zi =E| + E>.
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H,; is induced by non-totally symmetric modes. (The product of the symmetries of
the two states and the vibration must include the totally symmetric representation.)
This kind of conical intersection is called symmetry induced, whereas intersections
between states of the same or no symmetry are called accidental. A special case is
the interaction of two states which are degenerate by symmetry, e.g., belong to an E
representation. This case relates to the Jan-Teller effect [94].

21.10 Linear Vibronic Coupling Model

The simplest model to study the dynamics in the vicinity of a conical intersection
is the LVC model which is obtained by combining the harmonic oscillator model
(Chap. 19) with the expansion (21.120) for two harmonic modes [94] with elongations
x1,2 relative to the intersection point. The diabatic model Hamiltonian reads [84]

2 2
_ ﬂ 2 & 2 —5)C1 /\)Cz
H=Ty+ 2x1 + 2x2+ox1+()\x2 5xl) (21.124)
and the corresponding adiabatic energy surfaces are
W2 W2
E{d = Lo} + 253 + oxy £ V(002 + Q)™ (21.125)

2 2

Depending on the parameters, two different types of geometry can be distinguished
[95]. For |o] < |d] the slopes of the two diabatic energies have different sign and the
intersection point is at the minimum of the upper energy surface (peaked intersection).
In the opposite case |o| > |J| the signs are the same and the intersection is of the
sloped type (Fig.21.7).

The potential energy matrix (21.124) is diagonalized by a rotation (21.63)

E’fd cosa —sina EV cosa sina
Egd " \sina cosa V E» —sin « cos «

Ey + =90 (g, — Ep) —sinRa)V  cosQa)V — LsinQa)(E> — Ey)
B cosa)V + L sinQRa)(Er — E1)  Er — =%CY (B, — Ey) +sina)V

(21.126)
where the rotation angle satisfies
tan(2a) 2V AX2 (21.127)
an(2a) = — = —. .
E2 — E1 (le

Now, let us follow a circle in the x; — x, plane around the intersection point. The
polar angle v in the x; — x, plane is related to o by


http://dx.doi.org/10.1007/978-3-662-55671-9_19
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ARY

Fig. 21.7 Linear vibronic coupling model. Left If the slopes of the diabatic energies have the same
sign, a sloped intersection results. Right If the slopes of the diabatic energies have different sign,
the intersection peaks at the minimum of the upper adiabatic surface

5
tany = 22 = 2 tana). (21.128)
X1 A

Following a closed loop around the intersection changes y by 27 and « by 7 and
therefore produces a sign change [96] of the two adiabatic electronic wavefunctions

Y84 = o cos o — o sin (21.129)

94 = o sin o + Y4 cos . (21.130)

This phenomenon is well known as geometric phase [97] or Berry phase [98].
Since the total wavefunction must be single-valued, the sign change must appear
both for its electronic and the nuclear part which has to be taken into account for
simulations of the nuclear dynamics by special boundary conditions at a cut in the
X1 — X plane or an extra phase factor which makes the electronic wavefunction
complex valued [99].

The nuclear derivatives transform according to

cosa —sina 0 cosa sina 0 0 =
(sina cos o )a_xi(—sinacosa)_a_xi_'_(—ﬂ- 0) (21.131)
where now explicitly

Oa —Ao
Ty =

—_— 21.132
LOx 2627 4 A2x2) 2 ( )
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Fig. 21.8 Nuclear gradient 1o - - - - < <
of the LVC model
05 i 7 7 7 re _ - ~ N N \
1 ! 7 7 =~ A \ \ \
1 1 1 ] \ \ \ v
X2 0 / \

\ 1 \ \ \ / / / | |
\ A \ AN ~  — Ve / / Il
-05 \ \ N ~ — — - Vi ’ ’

1. N - - - - - .
-1 -0.5 0 0.5 1

x1
Oa A0
Tx, = (21.133)

Oxy 2050+ A

This gradient field looks like that of a curl around the intersection point (Fig.21.8)
where it diverges as

INS|/x3 + x2 |
4 2827 + N2x3) v ( )

The kinetic energy is

h2 o o1\ 17 P, (0 1) (0 o
32 (Go)r] =525 (Go) (B rean) |

(21.135)
The diagonal element of the vibronic coupling is
h2 h2 )\2(52()62 + x2)
nad __ yynad __ 'Y 2 2y v 1 2
VIt = Vist = 5, + 1) = G 400y (21.136)
and the nondiagonal element
h? oT; 0
Vl’md — _’ 2 —
1.2 2 ; (8)(,‘ tam 6x,~)
B2 TA8(6% — A2)xix2 ) 0 0
- _ + — — Xy — 21.137
2 [ 022+ Ax2)2 (022 + A2xD) (xlaxz xzaxl)} (21.137)
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which can be rewritten with

and the commutator

I:I: 1 ] ,h2x1xz(52 — )\2)
y T = -l N ————
(62x2 4+ M2x2) (627 4+ \2x3)?

as
2N { 1 i it i [i 1 } ]
2 (7 + M5 R 2h [ (027 + A2x3)
ih\d 1 A 1
= — L+ L . 21.138
4 [ (62x7 4+ 22x3) + (62x7 4+ A2x3) ] ( )
Problems

21.1 Crude Adiabatic Model

Consider the crossing of two electronic states along a coordinate Q. As basis functions
we use two coordinate independent electronic wavefunctions which diagonalize the
Born—Oppenheimer Hamiltonian at the crossing point Qg

(T + V(Qo)¢"? = EMp"2

Use the following ansatz functions
Wi (r, Q) = (cos ((Q)p' (r) = sin C(Q)¢” ()X (Q)
W (r, Q) = (sin (@) () + cos C(Q)* (r)x*(Q)

which can be written in more compact form

(¥, ¥) = (', ) (_CS i) (i;)

The Hamiltonian is partitioned as

H=Ty+Tq+V(r, Qo) +AV(r, Q).
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Calculate the matrix elements of the Hamiltonian
Hy Hy _
Hy, Hy
i 2 92
_fc—=s\[ ¥ h= 0 N
= (s . )(gp*)(_Zm@QZ +Te;+V(Q0)+AV) (¢'. ¢?) C
2
(21.139)

where y(Q) and ((Q) depend on the coordinate Q whereas the basis functions ('
do not. Chose ((Q) such that T,; + V is diagonalized. Evaluate the nonadiabatic
interaction terms at the crossing point Q.



Chapter 22
Dynamics of an Excited State

In this chapter, we discuss the decay of an initially excited state into a quasi-
continuum of final states. We introduce the Green’s formalism to calculate the prop-
agator and apply it to the ladder model, which can be solved analytically. In the
statistical limit which is applicable to larger, especially bio-molecules, an exponen-
tial decay results. We use the saddle point method to treat a more realistic model
with a distribution of coupling matrix elements and energies. Applying the displaced
oscillator model, we obtain the Marcus expression in the classical limit. Finally, we
discuss the energy gap law for intramolecular radiationless transitions.

22.1 Coupling to a Quasi-continuum

In the following, we would like to describe the dynamics of an excited state |s >
which is prepared, e.g., by electronic excitation, due to absorption of radiation. This
state is an eigenstate of the diabatic Hamiltonian with energy E°. Close in energy to
|s> is a manifold of other states {|/ >}, which is not populated during the short time
excitation, since from the ground state only the transition |0 >— |s> is optically
allowed. The l-states are weakly coupled to a continuum of bath states' and therefore
have a finite lifetime (Fig.22.1).

1For instance the field of electromagnetic radiation.
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Fig. 22.1 Dynamics of an
excited state. The excited
state |s> decays into a

22 Dynamics of an Excited State

manifold of states |/> which
are weakly coupled to a
continuum

|O>———

The bath states will not be considered explicitly. Instead, we use a non Hermitian
Hamiltonian for the subspace spanned by |s> and {|/ >}. We assume that the Hamil-
tonian is already diagonal® with respect to the manifold {|/ >}, which has complex
energies’

0 ol
E)=q iz (22.1)

This describes the exponential decay ~e /! of the I-states into the continuum states.

Thus, the model Hamiltonian takes the form

E) Vi - VL
Vls E?
H=H+v=| . (22.2)
Vis EL
22.2 Green’s Formalism
For a Hamiltonian H with a complete set of eigenstates |n > obeying
Hin >= E,|n > (22.3)
the corresponding Green’s operator or resolvent [69] is defined as
A N 1
GE)y=(E-H) "= —— <nl. 224
(E) =( ) ;"”E—Eﬁ”' (22.4)

2For non Hermitian operators we have to distinguish left eigenvectors and right eigenvectors.
3This is also known as the damping approximation.
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The Green’s operator is very useful for perturbation theory. For a Hamiltonian which
can be divided into a zero order part with known eigenstates and a perturbation V

H=H"+V. (22.5)

An eigenstate ¥ of H with energy E obeys

0=(E-HWY¥ =(E-HYW —-Vy (22.6)
from which
(E— HOYW =Vw (22.7)

which can be formally solved by
v =GUE)VW. (22.8)

This equation serves as the basis for an iterative improvement of an approximate
eigenstate.
22.2.1 Resolvent and Propagator

For a Hermitian Hamiltonian, the poles of the Green’s operator are on the real axis
and the time evolution operator (the so-called propagator) is defined by (Fig.22.2)

G(t) =G,+(t) — G_(1) (22.9)
-1 ootie .

Gi(t) = —/ e~ "'G(E)dE. (22.10)
27 J _oortie

G(1) is given by an integral, which encloses all the poles E,. Integration between
two poles does not contribute, since the integration path can be taken to be on the
real axis and the two contributions vanish. Clockwise integration along a small circle
around a pole gives —27i times the residual value which is (Fig.22.3)

lim e W G(E)E — Ey) = |n > e B/t < ). (22.11)

E—E,
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Fig. 22.2 Integration
contour for G4 (t)

G +
L e ——-toe—
G
Fig. 22.3 Integration +
contour for S P e
=~ —o—o———0o—0o 000
G() = G+([) —G_(1) ‘W‘uiuiu*uuuiE
_G_
. e ——
Hence, we find
~ iE t
G(t) = n>e wl <nl=exp|=H). 22.12
0=>| | = exp (m ) (22.12)

For times ¢t < 0, the integration path for G can be closed in the upper half of the
complex plane where the integrand

e *'G(E) = e IRt E/RG () (22.13)

vanishes exponentially for large |E| (Fig.22.4).
Hence

G.(t)=0 for t <O. (22.14)

We shift the integration path for times ¢ > 0 into the lower half of the complex plane,
where again the integrand

e 7' G(E) = ellCRED/Me =B/ G () (22.15)
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Fig. 22.4 Deformation of <0
the integration contour for
G4(1)
G +
¥ ~ )
—o0—0o——0o0—0—000—=

Fig. 22.5 Integration G
. +
contour for a non-Hermitian
Hamiltonian o ° e * E
[ ] Y e o ® o

vanishes exponentially and we sum over all residuals to find

G,+(t)=G(@) fort > 0. (22.16)

Hence G (t) = @(t)é(t) is the time evolution operator for t > 0.* There are
additional interactions for times ¢ < O which prepare the initial state

Wt =0)=]|s>. (22.17)

The integration contour for a non-Hermitian Hamiltonian can be chosen as the real
axis for G, (¢), which now becomes the Fourier transform of the resolvent

_1 R iE
G.(t) = 2_7n/ dEe "' G(E) (22.18)

—0Q0

(Fig.22.5).
On the real axis, each pole corresponds to a Lorentzian

1 (E_En) . €
= 1
E—E,tic (E—E)+e  E—E)y+e

4Sirni1arly we find G_(t) = G)(—t)é(t) is the time evolution operator for negative times.
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Fig. 22.6 Lorentzian. Real 60 ‘ ‘
(top) and imaginary (bottom) 401 -
part of 1/(x — ie) are shown 20l i
fore=0.1, 0.3, 0.01 ok

201 8
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-60 : :

1001 ‘ ‘ ‘ ‘ .
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which in the limit of small e becomes a distribution (generalized function) (Fig. 22.6)°

1
Iim — = (P.V.)
e—0 FE — E, tie E—E,

+ s (E — E,). (22.19)

22.2.2 Dyson Equation

Dividing the Hamiltonian in the diagonal part H° and the interaction V we have

(GH'=E—-H° (22.20)

G'=E-H=G"»"'-vV. (22.21)

Multiplication from the left with G° and from the right with G gives the Dyson
equation

G=G"+GvG (22.22)
which can be iterated

G=G"+GVG*"+GVG) =G+ G°vG® + G'vGvG (22.23)

SP.V. denotes the Cauchy principal value for which ffooo(P.V.)% f@dx = limeo [T
% f(x)dx + j:’o % f(x)dx and ¢ the delta-distribution, for which jfooo 0(x) f(x)dx = £(0).
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G=G"+GV(G°"+GV(G*+G°VG) = G°+ G VG +G'VGOVG + - ..

(22.24)

22.2.3 Transition Operator
The transition operator or T-matrix is defined as

T=V+VGV=V+VGV+VGVGV +... (22.25)
From

G'TG* =GVvG' + G'VGOVGO + - - (22.26)
we find an expansion similar to (22.23)

G=G"+G'TG° (22.27)

which is quite useful for higher order perturbation theory. The transition rate between
two eigenstates of Hy, which are induced by the interaction V/, is given in arbitrary
order by the generalized golden rule expression [69]

2 . 2
Fm = E' <m|T(E, +ig)ln > |"0(E, — E,) (22.28)

with the matrix element

. <m|V|k >< k|V|n >
<m|T(E,+ie)|n > =< m|V|n>+Z — +--- (22.29)
m — Lk
k#m

22.2.4 Level Shift

We consider now a state |s>which is initially populated and decays into a weakly
coupled manifold of bath states |/>. At times ¢t > 0 the wavefunction can be written
as a superposition of stationary states

() =GL(@)|s >= Z n>e B < pls > (22.30)

and the survival probability is
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Pty =] <sly > =] <sIGL(0ls > P =G (22.31)
We project the iterated Dyson equation (22.23) on the initial state

1

0
s>=1 . (22.32)

Gy =< 5|Gls > =< 5|G%s > + < 5s|G°VG s > + < s|G'VGVG]s > .

(22.33)
Now
(E—E)™!
(E— E)H!
GY(E) = . (22.34)
(E— ENH~!
is diagonal and
0 Vi VL
Vis 0
V= ) . (22.35)
Vis 0
has only off diagonal zero elements. Therefore
<5|G°VG s > =< 5|G s >< s|V|s >< 5|Gs >=0 (22.36)

and

<s51G°VGVG|s > =< 5|G s >< s|V|l >< [|G°|l ><[|V|s >< s|G|s >
(22.37)

Gy = G+ D GAVyG)ViG, (22.38)
l

(1 — G D VaGy V,S) Gy = G, (22.39)
1
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=GO Y, VGV 1 — E—IE_? 3 % E — E° — R,(E)
(22.40)
with the level shift operator [100]
| Vxl |2
R (E) = —_— (22.41)
Zl: E—¢+ 1%
The poles of the Green’s function Gy are given by the implicit equation
Ep,=El+Ry(E) = E0+ > Val® 22.42
P s S(P_s E_E()' ()
1 P 1
Generally, the Green’s function is meromorphic and can be represented as
Gu(E)=)" Ay (22.43)
5§ E _ Ep .
P
where the residuals are defined by
A, = Elirré G (EYE - E,). (22.44)
The probability of finding the system still in the state |s> at time ¢ > 0 is
P(t) = <sIGOls > P =G, (22.45)
where the propagator is the Fourier transform of the Green’s function
G L™ ok dE =0 e 6
Gy = 52 [ ™ Gu(B)IE =6(1) > Apert (22.46)

22.3 Ladder Model

P

We now want to study a simplified model which can be solved analytically. The
energy of |s> is set to zero. The manifold {|/ >} consists of infinitely equally spaced

states with equal width

r
Eloza—}—lAe—iE

(22.47)
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and the interaction Vy; = V is taken independent on /. With this simplification the
poles are solutions of

=00 V2
E, = 22.48
’ IZZ‘DOEp—a—lA6+i§ (22.48)
which can be written using the identity®
o 1
t(z) = 22.49
cot(z) Z P ( )
|=—00
as
£, =V ot (2 (£, —atil (22.50)
= —cot| — —a+i=—)]). .
P Ae Ae b 2

For the following discussion, it is convenient to measure all energy quantities in units
of m/Ae and define

d=ar/Ae T =TI1/Ae (22.51)

E,=E,t/Ac V =Vr/Ae (22.52)
to have

= = i o [x T

EP:EI’_TZV cot Ep—Oé+13 (2253)

which can be split into real and imaginary part

5 — _ Sm(}(gf’ —) _ (22.54)
VZ  cosh(l, —TI') — cos(2(ET, — @))

i _ sinh(f,, — 1:) (22.55)
2V2  cosh(I, — I') — cos(2(El, — &) '

We now have to distinguish two limiting cases.

6cot(z) has single poles at z = /7 with residues lim,_, ; cot(z)(z — Im) = 1.
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Fig. 22.7 Small molecule
limit. The figure shows the
graphical solution of

x =cot(x — 1)

cot (x-1)
=2

Mo

The Small Molecule Limit

For small molecules the density of states 1/Ae is small. If we keep the lifetime of
the 1-states fixed then I is small in this limit and the poles are close to the real axis.’
We consider first the solution which is closest to zero

E,= Eg —i (22.56)

N'|;11

The complex cotangent can be expanded for small imaginary part of its argument
cot(x +1iy) ~ cotx —iy(1 + cot® x) (22.57)

For 0 < o« < Ae we approximate

r—

r, - . - -

By —iZt~ Voot (E) —a) — [1+cot (B) —a) [i2 L. @259)
The real part is the solution of the real equation (Fig.22.7)

ES ~ V2ot (E) - &) (22.59)
and the imaginary part

fl, ~ V2 [1 + cot? (Eg — &)] (I — fp)

N E0\
~(F— Ty |72+ (7) (22.60)

7We assume that o # 0.
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()

<l|\n{’:'

r,~ N\ r (22.61)
- 2
(7 (%))
which in the case V small but V > Eg gives
~ 52 , V2
I ~VF, Iy~r*—T 22.62
p p T A2 ( )
and in the case of large V
r,~Tr. (22.63)

All other poles are only weakly disturbed. The residual of the Green’s function
follows from

E=E,+z (22.64)
1 B 1
E—R(E) E,+z—R(E,+72)
_ ! _ ! (22.65)
Ep+2—RJ(E)) — 258 z2(1—4(E)) ‘
a 1 3 1 _ 1
P— R,y w2 [1+c0? (£Ep—a+ip))] 14+v2I5 + E}/v2
(22.66)

V2
2 212 2
E;, +(1+V ﬁ)v

Ae*”
Since the poles are between the [-states, the density of poles is also given by 1/Ae.
Hence contributions from poles close to zero are the most important and for small
V one pole is dominant.

As a function of E, it has the form of a Lorentzian with a width of V\/1 + V2

The Statistical Limit

Consider now the limit of very dense states with I* > 1. This condition is usually
fulfilled in larger, especially bio-molecules. To calculate the propagator we need the
Green’s function G on the real axis. For real valued E, the level shift becomes
approximately (Fig.22.8)
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1
n E—nAetil j2

£ cot (L (E + ig)) are shown for Ae = 1, I' = 0.2,0.5, 1.0, 2.0 on the real E-axis. For large
damping I” the real part approaches 0O and the imaginary part —1

Fig. 22.8 Statistical Limit. Real (leff) and imaginary (right) parts of >

G(E) G(E)

!

E E

Fig. 22.9 On the real energy axis, a large number of poles is replaced by one effective pole

5 T I 2 T
Ry(E) =V mpcot e E—« +1E ~ —-iVi— (22.67)
€

and the Green’s function G becomes a smooth function on the real axis

1

Gy mo —— . 22.68
E+iVZL ( )

The large number of poles is replaced by one effective imaginary pole (Fig. 22.9)

. s
E,= _IVZZ (22.69)

and the initial state decays as

=iv2mp, o —kt
Pit)y=le » '|"=e (22.70)

with the rate
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2w V2
k="", 22.71)
B
where
_ ! (22.72)
P= Ae '

is the density of states.

22.4 Description Within the Saddle Point Method

In the following we use the saddle point method (Appendix E)® which is an asymptotic
method to calculate integrals of the type

oo
| 2
/ Wy v o) | 2T (22.73)
—%0 19" (z0)

where the complex valued saddle point z is determined by the equation
¢'(z0) = 0. (22.74)
This method is useful also for more general cases in the statistical limit, i.e.,
provided the width of the states is large compared to the energy spacing.

Application to the Ladder Model

We consider a more realistic ladder model where the energy of the states is bounded
from below (Fig.22.10). The initial state is at E; = AE and the ladder states have
energies

E =1lAde, 1=0,1,2,... (22.75)
Fig. 22.10 Decay into a
quasi-continuum i
TAe
ES
tE,
EO

8 Also known as method of steepest descent or Laplace method.
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We start from the Golden rule expression

> 27V?2 >, 21 V2
k=2 ——0E - E)=2 — )

1=0 =0

and represent the delta function by a Fourier integral

1 ik
5(E) = ﬁi[w e_'ﬁ’dt.

The rate is

o0
V JAE=c
>
1=0
and exchanging integration and summation

0 2

k:/dtz%e_it(AE_lAG)/h.

=0

With the definition

Z(t) — z ﬁeltlAf/h

=0

we have

¢ = —it AE/h + 1In(z)

k= / eldt = / dt e 1AE/MIn@)

The saddle point equation is

_do iAE+1dz
T dr T A z dt

from which

309

(22.76)

(22.77)

(22.78)

(22.79)

(22.80)

(22.81)

(22.82)

(22.83)
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o0 ilAe it Ae/h 00 itlAe/h
ZI:O Te / B ZIZOIAECI e/h

AE = —ih =20 -
itlAe/h X LitlAe/h
Do et!ad Doettad

(22.84)

Since AE is real valued, we look for a saddle point on the positive imaginary axis
and substitute

ity/h=—p (22.85)
AE=Z:102‘¥A—W=_ i —1pae | _ 8ln|:;]
2zoe A — 9B |1 —eha
Ae
= — 11‘1 [1 —SAe] = m (2286)

which determines

1 Ae
= [ n E} (22.87)

The saddle point equation now has a quasi-thermodynamic meaning

1 = V2
AE = . Z ﬁlAee’lﬁA6 =<[Ae > (22.88)
=0

where 3 plays the role of 1/kpT. The second derivative relates to the width of the
energy distribution

2
iz d §§ _ ;‘215 (£
iz~ dr z z

2
V? —(lAE) _giae L VZilAe g,
S Z - = Zl: R (22.89)

Z

1 Ae€)? 1A
—<(h2€) >+<—6>2.

For small energy spacing Ae << AE we find

1
N — 22.90
B~ (22.90)
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i V2 o108 v o1 _VZAE 2291)
B2 21 —efa " B2 Ae ‘
o(t;) = BAE +1In(z) ~ 1 +1 VEAE (22.92)
s) = n n .
< " Ae
o(ts) 1 V2 AE 1
e =ze = ﬁze (2293)
0? ? 1
_ _ —BAe
o= "= g "l
1 9 [—Aee™P27 1 9 [e 4
Rogl1—eba | " R2op| B
L[ eAe e 747 (AE)?
el T | (22.94)
2 2
o | 2TV AE ] AT g, 2V jL L (22.95)
l¢"(t)]  h* Ae | (AE)? h 21 Ae

where the factor

[1
el ./— =~ 1.08. (22.96)
2T

Now let us consider a more general model with a distribution of matrix elements
Vi and energies ¢ [101].
All energies are taken relative to the lowest state of the continuum E (Fig.22.11)

E;=Ey+ AE E;, = Ey+¢q. (22.97)

The rate (22.79) becomes

o0 0 VZ AE—q o0 .
k= / dry Zle™n ' = / dte”nAE NG (22.98)
B oo

with
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Fig. 22.11 General ladder \Vi
model sl |
I>
|s>
AE €,
=3 e, (22.99)
h?
1=0
The saddle point equation becomes
i dln z(t,)
——AE4+ ——=0 22.100
FAE+—g ( )
which after substitution
it
— = 22.101
- B ( )
involves the quasi-thermodynamic average
1 < V2
AE=-) lge™ =< ¢ > 22.102
z ; 72 €l ! ( )

where the real variable 3 plays therole of 1/ kT and g, = V3 /h? that of a degeneracy
factor. The second derivative again relates to the width of the energy distribution

2
d2 1 1 oo . .
nZ zgl 6[ —ﬁf/ _ Z_z (Z g[%e—dﬂ) (22103)
=0

2
€] 2
——<Ltsyp<c—->

h? h

Finally, the saddle point approximation gives
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o i 271'77,2
k =/ dt engEt+ln(Z) — Z(tx)eﬁAE\/

2 2
00 <€ >—<e>

Vi 2
_ Z—SIC_H(EI_AE)\/%~ (22.104)
p h <€ >—<€>

22.5 The Energy Gap Law

We now want to apply the displaced harmonic oscillator model (Chap. 19) to the tran-
sition between the vibrational manifolds of two electronic states. We assume that the
Condon approximation is applicable and the transition matrix element factorizes into
an electronic factor V and a Franck—Condon factor FC(i, f) = | < xilxf > 1.
This approximation is valid in many cases, e.g., for allowed optical transitions (18.3)
and intramolecular radiationless transitions but also for intermolecular energy trans-
fer processes. Energy conservation requires that the released electronic excitation
energy is balanced by vibrational excitation (Fig.22.12), hence

0=E;—E = hwy — (AE + hw;) (22.105)

The transition rate for a radiationless process with constant V is (compare (18.40)
for a radiative transition)

Fig. 22.12 Displaced
oscillator model for
radiationless transitions

y
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_ 27 V?

> P FCG. /YS(AE — hwy + hw;)

27 V2
=— FCD(AE)

V2 —n it it ry. V2
= dte AE —enflie=ntli 5 =

= h2/ dten 2EF (1) (22.106)

where H; (H;) is the Hamiltonian of the nuclear vibrations (18.32) in the final
(initial) state and the correlation function F (1) = exp(g(#)) forindependent displaced
oscillators is derived in the appendix (C.11). The rate becomes

[e.¢]
= /_ dten “F exp {Zgr (1, + e’ + ﬁ,ewf’)]} (22.107)
with the total coupling strength

G=> gQn +1). (22.108)

The short time expansion of the correlation function gives

242
F(r) :exp[Zgrz [(ﬁ, +1) (iw,; — wrzt +)

w?t?
+n, (—iwrt - ’2 +)“

5 w?t?
=exp1 >0 [iwrr — @+ 1) +}

Eg. [
= exp | =it = 2 AT (22.109)
with
AP =" g2, + 1) (hw)?. (22.110)

The coefficient of the quadratic term is roughly

— ~G&* (22.111)
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where the average frequency @ (major accepting modes) is defined as

> 720, + Dw,

S (22.112)

W=

In the strong coupling limit G > 1 the correlation decays rapidly
(< exp (—G@?1?/2)) before the quadratic approximation becomes invalid (which
is roughly after # > 1/&). Then the rate is given by a Gaussian expression

V2 [27h? (AE — ER)?

If all modes can be treated classically Aw, <« kgT the phonon number is 1, =
kpT /hw, and

A%~ 2kpT D gihw, = 2kpT Eg (22.114)

which gives the Marcus expression in the classical limit (see also (19.22) and (16.23))

' 2rV? 1 (AE — Eg)? 22.115)
= X —_—— . .
h \ dnksTEx P 4E kyT

In the limit of weak vibronic coupling G < 1, we use the saddle point method. The
saddle point equation reads

i ,
FAE = > g} [iw @, + e’ — iw, e 7]
p

=i glw, [, + De ! — e (22.116)

For intramolecular radiationless transitions and large energy gap the important
accepting modes usually are at high frequencies hw, 3> kpT. Here the saddle point
equation simplifies to

AE = Z g hw, e (22.117)

and the average frequency w becomes
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Fig. 22.13 Energy gap law.
The relative rate (22.123) is
shown as a function of the
energy gap in units of the
average frequency for S =
0.05,0.1,0.2,0.5

-~
0 ‘ 5 ‘ 10 ‘ 15
energy gap A
2
»  E
@:Ziigf:h_g (22.118)
with the Huang—Rhys factor
S=>g. (22.119)

The saddle point equation is approximated as
AE = Shive” (22.120)

with the solution

. 1 AE
w  Shw

The second derivative is

1

_zgz 2eiwrts oy GERIMAE/SKE) _ _ ~ AED (22.122)
h
and the rate is
_V2 21h AEl1 AE+S AE _g
NV AED h @ Shw Shiw
V2 2 AE AE
= — —S——|In——=—-1|;. (22.123)
nV AERS € hio Shiw

The dependence on AE , which is close to exponential, is known as the energy
gap law (Fig.22.13).
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Problems

22.1 Ladder model
Solve the time evolution for the ladder model approximately

ov...v
V E

H=] . ) Ei=a+(j—1)Ae
1% E,

First derive an integral equation for C¢(¢) only by substitution. Then replace the
sum by integration over w = j % and extend the integration over the whole real
axis. Replace the integral by a delta function and show that the initial state decays
exponentially with a rate

‘ 27TV2.
hAe
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Chapter 23
Photophysics of Chlorophylls
and Carotenoids

Chlorophylls and Carotenoids (Figs.23.1, 23.2) are very important light receptors.
Both classes of molecules have a large 7m-electron system which is delocalized over
many conjugated bonds and is responsible for strong absorption bands in the visible
region. In this chapter, we introduce the molecular orbital method for the electronic
wavefunction. We apply the free electron model and the Hiickel MO method to linear
and cyclic polyenes as model systems and discuss Gouterman’s four orbital model for
Porphyrins and Kohler’s simplified CI model for polyenes. Finally, we comment on
energy transfer processes involving Chlorophylls and Carotenoids in photosynthesis.

23.1 MO Model for the Electronic States

The electronic wavefunctions of larger molecules are usually described by introduc-
ing one-electron wavefunctions ¢(r) and expanding the wavefunction in terms of one
or more Slater determinants. Singlet ground states can be in most cases described
quite sufficiently by one determinant representing a set of doubly occupied orbitals

|SO > = |¢1T¢1,¢ te qbnocc,ﬂ*qbnocc,”

o1r(r1) A1 () o Droce,y (1)
| P11(r2) 1 () o Broce,y (12)
~ Janor| : :

o114 (ran,e) P14 (r2m,..) Onoce, | (2N,

Excited states can be described as a linear combination of excited electronic con-
figurations. The lowest excited state can often be reasonably approximated as the

© Springer-Verlag GmbH Germany 2017 321
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PN
phytyl O) o) CH3

Fig. 23.1 Structure of Bacteriochlorophyll-b [102]. This is the principal green pigment of the
photosynthetic bacterium Rhodopseudomonas viridis. Dashed curves indicate the delocalized -
electron system. Chlorophylls have an additional double bond between positions 3 and 4. Variants
have different side-chains at positions 2 and 3

O e e

Fig. 23.2 Structure of 3-Carotene. The basic structure of the carotenoids is a conjugated chain
made up of isoprene units. Variants have different end groups

transition of one electron from the highest occupied orbital ¢,,.,. (HOMO) to the
lowest unoccupied orbital @1 (LUMO). We have already learnt that a singlet
excitation is given by

1
IS >= ﬁ(|¢1¢¢1,¢ e OHOMOAOLUMO LI —1P11 @1y - PHOMO, L PLumO.t])-

(23.1)
The molecular orbitals can be determined from a more or less sophisticated method.

23.2 The Free Electron Model for Polyenes

We approximate a polyene with a number of N double bonds by a 1-dimensional
box of length L = (2N + 1)d.! The orbitals of the free electron model

2 2

0
HZ_Z_WW-’_V(") (232)

I'The end of the box is one bond length behind the last C-atom.
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Fig. 23.3 Octatetraene. Top
optimized structure. Middle
potential energy and lowest
two eigenfunctions of the
free electron model. Bottom
linear model with equal bond
lengths d

s=2 s=1

have to fulfill the b.c. ¢(0) = ¢(L) = 0. Therefore, they are given by

6,(0) 2 . wsx (23.3)
=,/—sin — .
=N
with energies (Fig.23.3)
2 [t R 2 2 1 hs\?
E == / (ls) (sin ﬂ) dx = ™) . (23.4)
L Jy 2m, \L L 2m, \ L

Since there are 2N 7-electrons, the energy of the lowest excitation is estimated as

wh?

2h2
- (N1 =N =—r
N 70 (VD )

© 2md*(2N + 1)’
(23.5)

AE = E, 1 — E,

The transition dipole matrix element for the singlet—singlet transition is

1
=< |¢noccT¢nocci| Z(_er)lE(|¢noccT¢nucc+l¢| - |¢nocc¢¢nocc+lT|) >

= —«/ie/dr Pnoce T)XDpoce41(1)
2 [E N +1 N

= _ﬁe—/ sin W + D X sin =~ dx
L Jo L L

2v2¢ AL’N(N +1) _ 8v/2ed N(N + 1)
L mQReN+1D2 72 2N+1

(23.6)
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Fig. 23.4 Length 3
dependence of the polyene
absorption. The circles show
the relative absorption from
(23.7). The line is a linear fit

[\S)
T

relative absorption intensity

0% ‘ ! ‘ ! ‘ ! ‘
0 5 10 15 20

number of double bonds

which grows with increasing length of the polyene. The absorption coefficient is
proportional to

N2(N + 1)?

N Ty (23.7)

o~ ,uzAE

which is nearly proportional to the number of double bonds N (Fig.23.4).

23.3 The LCAO Approximation
The molecular orbitals are usually expanded in a basis of atomic orbitals

¢(r) = D Coips(r) (23.8)

where the atomic orbitals are centered on the nuclei and the coefficients are deter-
mined from diagonalization of a certain one-electron Hamiltonian (for instance,
Hartree—Fock, Kohn—Sham, semiempirical approximations such as AM1)

He = Ev. (23.9)

Inserting the LCAO wavefunction gives

D CiHops(r) = E Y Cops(r) (23.10)

and projection on one of the atomic orbitals py gives a generalized eigenvalue
problem
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0= [dre "Xl = Bront)

- ZC (Hys — ESyy). (23.11)

23.4 Hiickel Approximation

The Hiickel approximation [103] is a very simple LCAO model for the 7-electrons.
It makes the following approximations:

e The diagonal matrix elements H;; = « have the same value (Coulomb integral)
for all Carbon atoms.

e The overlap of different p,-orbitals is neglected Sy = dyy.

e The interaction between bonded atoms is H;y = [ (resonance integral) and has
the same value for all bonds.

e The interaction between nonbonded atoms is zero Hyy = 0.

The Hiickel matrix for a linear polyene has the form of a tridiagonal matrix
(Fig.23.5)

H=| - - - (23.12)
B
«

=@

!
5
and can be easily diagonalized with the eigenvectors (Fig.23.6)

— | —1.2,...2N. 23.13
2N+1 2N+1 d (23.13)

The eigenvalues are

E, = a+28cos 2]\:1 - (23.14)
Il:“(l)%y;?ef Hiickel model for B B B [3[5 p [3
: \BPA 3 i
0900004

00000000
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Fig. 23.6 Hiickel orbitals oS
for octatetraene LUMO /G\M \@/@/6\ ay

e -5
HOMO < = \8*6/

AN o T a,
U\SM

%@%W g

&y

Fig. 23.7 Character table of C
the symmetry group Caj,. All 2h| E C2 6 1
7r-.orbitals are antisymmet'ric Ag 1 1 1 1
with respect to the reflection
o and are therefore of a, or Ayl 1 1 -1 -1
by symmetry Bg | -1 - 1

Byl 1 -1 1 -1

The symmetry of the molecule is Cy;, (Fig.23.7). All m-orbitals are antisymmetric
with respect to the vertical reflection o;,. With respect to the C, rotation they have
alternating a or b symmetry. Since o;, x C, = i, the orbitals are of alternating a, and
b, symmetry. The lowest transition energy is in the Hiickel model

(23.15)

N +1 N
AE:EN+1—EN=2B(COS( + D il )

— cos
2N +1 2N +1

which can be simplified with the help of (x = 7/(2N + 1))

1, . . . .
cos(N + 1)x —cosNx = E (el(NJrl)x + e iN+Dx _ GiNx eﬂNx)
_ %ei(N-H/Dx (eix/Z _ e—ix/Z) + %e—i(N-H/Z)x (e—ix/Z _ eix/Z)

2sin (v + in >
= —2S1n — sin —
2 ) 2

(23.16)
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to give?

1
~ — for large n. (23.17)

) T
AE = —4(3sin
4AN+2 N

This approximation can be improved if the bond length alternation is taken into
account, by using two alternating 3-values [104]. The resulting energies are

Ex = a+ /32 + 52+ 263 cosk (23.18)
where the k-values are solutions of
Bsin(N + Dk + 3 sin Nk = 0. (23.19)

In the Hiickel model, the lowest excited state has the symmetry a,, x by = B, and is
strongly allowed. However, it is known that in reality for longer polyenes the lowest
excited singlet is totally symmetric A, and forbidden. This can be only understood
if correlation effects are taken into account [105-108].

23.5 Simplified CI model for Polyenes

In a very simple model Kohler [109] treats only transitions from the b,-HOMO into
the a,-LUMO and b,-LUMO+1 orbitals. The HOMO-LUMO+1 transition as well
as the double HOMO-LUMO transition are both of A, symmetry and can therefore
interact. If the interaction is strong enough, then the lowest excited state will be of
A -symmetry and will be optically forbidden (Fig.23.8).

3 g
S B
- * 2 u
— 4 4
<---> Sl Ag
U
v A
Ag Ag Ag B, So Ag

Fig. 23.8 Simplified CI model for linear polyenes

23 is a negative quantity.
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23.6 Cyclic Polyene as a Model for Porphyrins

For a cyclic polyene with N carbon atoms the Hiickel matrix has the form

o f B
o B
H = (23.20)
g oap
5 p o
with eigenvectors
1 < o 2m o
iks
- s k=0,—2=—...(N—1D=— 23.21
¢>kﬁ;esa o2y N =D (23.21)
and eigenvalues
E; = a+20Fcosk. (23.22)

This can be used as a model for the class of Porphyrin molecules [110, 111]
(Fig.23.9).

For the metal-porphyrin, there are in principle two possibilities for the assignment
of the essential 7w-system, an inner ring with 16 atoms or an outer ring with 20 atoms,
both reflecting the Dg4j,-symmetry of the molecule. Since it is not possible to draw a
unique chemical structure, we have to count the m-electrons. The free base porphin
is composed of 14H atoms (of which the peripheral ones are not shown), 20 C
atoms and 4N atoms which provide a total of 14 + 4x20 + 5%x4 = 114 valence
electrons. There are 42 o-bonds (including those to the peripheral H atoms) and 2

Fig. 23.9 Free base Porphin and Mg-Porphin. The bond character was assigned on the basis of the
bond lengths from HF-optimized structures
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lonely electron pairs involving a total of 88 electrons. Therefore the number of 7-
electrons is 114 — 88 = 26. Usually, it is assumed that the outer double bonds are
not so strongly coupled to the 7-system and a model with 18 7-electrons distributed
over the N = 16-ring is used. For the metal Porphin, the number of H atoms is only
12 but there are 4 lonely electron pairs instead of 2. Therefore, the number of non-7
valence electrons is the same as for the free base porphin. The total number of valence
electrons is again 114 since the Mg atom formally donates 2 electrons.

23.7 The Four Orbital Model for Porphyrins

Gouterman [112-114] introduced the four orbital model which considers only the
doubly degenerate HOMO (k = £4 x 27w/ N) and LUMO (k = 45 x 27/ N) orbitals.
There are 4 HOMO-LUMO transitions (Fig. 23.10). Their transition dipoles are given
by

1 I
p= g:eﬂ]” elks / O (r) (—er) i, (Nd°r (23.23)

which is approximately?

1 o cos(s X %T)
p= Ze*l’” e* gy (—eR) [ sin(s x ) (23.24)
ss’ 0

where the z-component vanishes and the perpendicular components have circular
polarization*

Fig. 23.10 Porphin orbitals _8 — 9 8
-7 7
-6 6
-5 5

3Neglecting differential overlaps and assuming a perfect circular arrangement.

“For an average R=3A this gives a total intensity of 207 Debye? which is comparable to the 290
Debye? from a HF/CI calculation.
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1 i —eR I —eR
—,+—,0) = gl k=KE2m/N)s — ki’ 427 /N - (23.25)
“(ﬁ N ) 7 & N

s

The selection rule is
k —k' = £27/N. (23.26)
Hence two of the HOMO-LUMO transitions are allowed and circularly polarized:

2T 2
4— — 5—
N N

—4— - —5—. (23.27)

If configuration interaction is taken into account, these four transitions split into
two degenerate excited states of E-symmetry. The higher one carries most of the
intensity and corresponds to the Soret band in the UV. The lower one is very weak
and corresponds to the Q band in the visible [115, 116]. As a result of ab initio

(a) Q (b)
(

eV
_________ 2.0D (E) ¥
GRS 10D (E) 3
4_
yo 58 X 1.4D
31 ——o09D(E|) ™ — -
2_

Fig. 23.11 Electronic structure of Porphins and Porphin derivatives. 631G-HF/CI calculations
were performed with GAMESS [117]. Numbers give transition dipoles in Debyes. Dashed lines
indicate very weak or dipole forbidden transitions. (a) Mg-Porphin has two allowed transitions of
E-symmetry, corresponding to the weak Q band at lower and the strong B-band at higher energy.
(b) In Mg-Chlorin (dihydroporphin) the double bond 1-2 is saturated similar to Chlorophylls. The
Q band splits into the lower and stronger Q, band and the weaker Q band (¢) Tetrahydroporphin,
double bonds 1-2 and 5-6 are saturated similar to Bacteriochlorphyll. The Qy band is shifted to
lower energies
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calculations, the four orbitals of the Gouterman model stay approximately separated
from the rest of the MO orbitals [116]. If the symmetry is disturbed as for Chlorin,
the Q band splits into the lower Q, band which gains large intensity and the higher
weak Q, band. Figure23.11 shows calculated spectra for Mg-Porphin, Mg-Chlorin,
and Mg-Tetrahydroporphin.

23.8 Energy Transfer Processes

Carotenoids and Chlorophylls are very important for photosynthetic systems [118].
Chlorophyll molecules with different absorption maxima are used to harvest light
energy and to direct it to the reaction center where the special pair dimer has the
lowest absorption band of the Chlorophylls (Fig. 23.12). Carotenoids can act as

Chlorophyll Chlorophyll Chlorophyli
dimer
B
Q ——
4 = S -
S0

Fig. 23.12 Chl-Chl energy transfer. Energy is transferred via a sequence of chromophores with
decreasing absorption energies

Fig. 23.13 Car-Chl energy Chlorophyll Carotenoid
transfer. Carotenoids absorb

light in the blue region of the

spectrum and transfer energy B
to chlorophylls which absorb
at longer wavelengths ' i BU
- ' A
Q L 9
T
T
So So
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Fig. 23.14 Chl-Car triplet
energy transfer. Carotenoid
triplet states are below the
lowest chlorophyll triplet
and therefore important
triplet quenchers

23 Photophysics of Chlorophylls and Carotenoids

Chlorophyll Carotenoid
B
By
Q Ag
T A
~ T
So So

additional light-harvesting pigments in the blue region of the spectrum [119, 120]
(Fig. 23.13) and transfer energy to chlorophylls which absorb at longer wavelengths.
Carotenoids are also important as triplet quenchers to prevent the formation of triplet
oxygen and for dissipation of excess energy (Fig. 23.14).

Problems

23.1 Polyene with bond length alternation

c=O

/

C

Consider a cyclic polyene with 2N carbon atoms with alternating bond lengths.

The Hiickel matrix has the form H =

o f Its
B ap
ﬂ/' S
o 5
53 fa

(a) Show that the eigenvectors can be written as

ikn i(kn+
Cyp =€ Con—1 :e( X)-

(b) Determine the phase angle y and the eigenvalues for 3 # (.
(c) We want now to find the eigenvectors of a linear polyene. Therefore we use the

real valued functions
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Co, = sinkn Cop—1 =sintkn+yx) n=1...N

with the phase angle as in (b).

We now add two further Carbon atoms with indices 0 and 2N+ 1. The first of these
two obviously has no effect since ¢y = sin(0 x k) = 0. For the atom 2N+1, we
demand that the wavefunction again vanishes which restricts the possible k-values:

0 = con41 = sin((N + Dk + x) = J (N VDK
For these k-values, the cyclic polyene with 2N+2 atoms is equivalent to the linear
polyene with 2N atoms as the off diagonal interaction becomes irrelevant. Show that
the k-values obey the equation

Bsin((N + 1)k) + 3 sin(Nk) = 0.

(d) Find a similar treatment for a linear polyene with odd number of C-atoms.



Chapter 24
Incoherent Energy Transfer

In this chapter, we study the transfer of energy from an excited donor molecule to an
acceptor molecule. We discuss different mechanisms involving electron exchange,
simultaneous radiationless deexcitation and excitation or photon emission followed
by reabsorption. Using a simplified MO model, we calculate the coupling matrix
element of the Coulomb interaction in dipole approximation and evaluate the famous
Forster expression for the transition rate. Within the Condon approximation, the
overlap of donor emission and acceptor absorption spectra becomes an essential
factor. Finally, we comment on energy transfer in the triplet state.

24.1 Excited States

We consider the transfer of energy from an excited donor molecule D* to an acceptor
molecule A

D'+ A — D+ A*. 24.1)

We assume that the optical transitions of both molecules can be described by the
transition between the highest occupied (HOMO) and lowest unoccupied (LUMO)
molecular orbitals. The Hartree—Fock ground state of one molecule can be written
as a Slater determinant of doubly occupied molecular orbitals (Fig.24.1)

|HF >= |p1y¢1y - Pror®HOL|. (24.2)

Promotion of an electron from the HOMO to the LUMO creates a singlet or a triplet
state both of which are linear combinations of the four determinants
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Fig. 24.1 HOMO-LUMO energy
transition
unoccupied
orbitals
LUMO
—e—e— HOMO .
—eo—o— occupied
——eo— }orbitals
e e
| N> = lp1rd1y - drordruy
[ 1> = |p11¢1) - Pro PLUt]
| M> = [¢p11d1) -+ - PrOorPLU
[ > = o111, - duo,drul- (24.3)

Obviously, the last two determinants are the components of the triplet state with
S, ==+1

L+l > =] 11>
1, —-1>=]}]l>. (24.4)

Linear combination of the first two determinants gives the triplet state with S, = 0

1,0 >= %u P> 4 L) (24.5)

and the singlet state

10,0 >= %(I N> = 1>). (24.6)

Let us now consider the states of the molecule pair DA. The singlet ground state is

[p1101) - - PO, DA DPHO, D, PHO, A4 PHO, AL (24.7)

which will simply be denoted as
I'"DA >=|D;D AA,]. (24.8)

The excited singlet state of the donor is

* 1 * *
'D*A >= —(ID;DyAA}| — DDy Ay Ay ) (24.9)

V2
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and the excited state of the acceptor is

* 1 * *
I'DA* >= —2(|D¢D¢ATA¢| — |DyDy AL A4)). (24.10)

v

24.2 Energy Transfer Mechanism

Dexter Mechanism

At very short distances, the electronic wavefunctions of donor and acceptor over-
lap and electron exchange is possible (Fig.24.2). This mechanism [123] is strongly
distance dependent since the overlap integrals decay exponentially.

Forster Mechanism

This mechanism [121, 122] involves a coupled deexcitation of the donor and exci-
tation of the acceptor (Fig. 24.2). At very short distances (as compared to the exten-
sion of the electronic orbitals), details of the electronic wavefunctions are important
which can be taken into account by a full quantum calculation of the Coulomb inter-
action or an approximation on the basis of interacting transition densities. At not
too large distances, both molecules undergo a simultaneous radiationless transition
which can be described as emission and reabsorption of a virtual photon. If the opti-
cal transitions of donor and acceptor are dipole-allowed, the relevant coupling term
is of the transition dipole—transition dipole type and the distance dependence fol-
lows a R~ law. At larger distances, the emission of a real photon by the donor and
later reabsorption by the acceptor is the dominant process. The efficiency shows a
much weaker R~2decay reflecting Lambert’s law. In both cases, spectral overlap and
transition intensities are important factors.

excitonic exchange
D* A* D* A*
4 ' A o— - =
‘ e
D A D A

Fig. 24.2 Intramolecular energy transfer. Left the excitonic or Forster mechanism [121, 122]
depends on transition intensities and spectral overlap. Right the exchange or Dexter mechanism
[123] depends on the overlap of the wavefunctions.
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Radiationless and radiative mechanism turn out to be limiting cases of the proper
quantum electrodynamical treatment, which gives a transition rate of [124] (here,
pmis the density of molecular states and donor and acceptor have the same transition
dipole moment )

r _2xluf 2 - 27 R 2+ 27 R\* 24l
DA DA = g P G e R)? y Y ' '

This expression switches from the R to the R~ behavior at a critical distance of

31/4
Ry= 3 (24.12)

which, for visible light is in the range of 150 nm.

24.3 Interaction Matrix Element

The interaction responsible for energy transfer is the electron—electron interaction

62

Ve (24.13)

n 47T8|7'1 — r2|'
With respect to the basis of molecular orbitals its matrix elements are denoted as

2

V(pi1prdagy) = / d3r1d3r2¢>;‘g(r.)¢;ic,(r2)4—
T E

e
|ri —raf

Q16 (1) o/ (r2).
(24.14)

The transfer interaction
Vip =<! D*A|Vc|'DA* >
1 1
=5 < |D?D¢ATA¢|Vc|DTD¢A?A¢| > 5 < |D*D¢ATA¢|Vc|D¢D¢ATA¢ >

1 1
) < |DIDTATA¢|Vc||DTD¢A);A¢| > +§|DTDTATA¢|VC|DTD¢ATAT| >
(24.15)
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consists of four summands. The first one gives two contributions

1 1 1
5 < IDIDIALAVIDDATA | >= ZV(D"D AA") — S V(D"A"A D),
(24.16)

where the first part is the excitonic interaction and the second part is the exchange
interaction (Fig.24.2).
The second summand

1 1
—5 < DD ALA|VIDi D AT A >= SV (DD A A") (24.17)

has no exchange contribution due to the spin orientations. The two remaining sum-
mands are just mirror images of the first two. Altogether the interaction for singlet
energy transfer is

<! D*A|Ve|'DA* >=2V(D*DAA*) — V(D*A*AD). (24.18)
In the triplet case
Vi =< D*A|VcPDA* >
= % < |DIDyAyAy|VcIDy Dy ATA | > +% < |DIDyALA|VeIDy Dy AT AL >
+% < |DiDyAyA | Vel|DyDyATA | > +%|DID¢ATA¢|VC|DTD¢A3A¢| >

— _V(D*A*AD). (24.19)

Here energy can only be transferred by the exchange coupling (Dexter [123]). Since
this involves the overlap of electronic wavefunctions it is important at small distances.
In the singlet state, the excitonic interaction (Forster [121, 122]) allows for energy
transfer also at larger distances.

24.4 Multipole Expansion of the Excitonic Interaction

We will now apply a multipole expansion to the excitonic matrix element

Vowe = 2V(D*DAA)
2
=2 / d3r1d372¢2*(71)¢}(r2)ﬁ¢0(71)¢/§*(72)- (24.20)

[ri — 72|
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Fig. 24.3 Multipole
expansion

We take the position of the electrons relative to the centers of the molecules (Fig. 24.3)

rao=Rip+ 012 (24.21)

and expand the Coulomb interaction

1 1
= (24.22)
lri—ra|  [Ri — Ry+ 01— 02
using the Taylor series
1 1 1 oR 13|R|(Ro)* — |RP0?
_ L1 oR 13IRIRe! Z IR (2423)
|IR+ol |Rl [RI|R] 2 IR
for
R=Ri —R, 0=01—02 (24.24)

The zero-order term vanishes due to the orthogonality of the orbitals. The first-order
term gives

2

2 ame RPN / d>01d%0:¢5, (r)dp (r1) (01 — 02)¢% (r2)Pas (12) (24.25)
and also vanishes due to the orthogonality. The second-order term gives the leading
contribution

e2

s / & 01d>0r8h, (M) ()

x(3|R|(Ro1 — R02)* — IR (01 — 02))¢} () ax(r2). (24.26)

Only the integrals over mixed products of ¢; and g, are not zero. They can be
expressed with the help of the transition dipoles

jip =<' Dler|! D* == ﬁ/d3gl¢z*(al>egl¢l)(g.>
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jin =<' Aler|'A* >= V2 / 020 (02)€0294.(02). (2427)

Finally, the leading term of the excitonic interaction is the dipole—dipole term

2

= mew (IRPupia — 3(Rip)(Rpea)) - (24.28)

VE.XC

This is often written with an orientation dependent factor K as

Vexe lupllmal . (24.29)

~IRF

24.5 Energy Transfer Rate

We consider excitonic interaction of two molecules. The Hamilton operator is divided
into the zero-order Hamiltonian

Hy = |D*A > Hp,s < D*A| + |DA* > Hpa, < DA¥| (24.30)
and the interaction operator
H' =|D*A > V,.. < DA*|+|DA* > V,,. < D*A|. (24.31)

We neglect electron exchange between the two molecules and apply the Condon
approximation. Then taking energies relative to the electronic ground state |[DA >
we have

Hp.a = hop, + Hp, + Hy
Hpax = hwax + Hp + Ha, (24.32)
with electronic excitation energies iwps 4« and nuclear Hamiltonians Hp, Hp..,

Hy, Hy,. Now, consider once more Fermi’s golden rule for the transition between
vibronic states |i >— |f >

2
k= %izf:m <ilH'|f > P5(0) — w1)
1

= ﬁ/ZP[ < llH/|f > < f|H,|l > ei(wffw,-)[dt
if

1 ) .
— ﬁ/zpt < lIH/|f > elw/[ < f|H/|ela)[ti > dt (2433)
if
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1 . )
ﬁ/ Z < llQ_ e—Ho/kBTH/eltHo/hH/ellHo/ﬁli > dt
i

1
[ (H'(0)H'(1)). (24.34)

Initially, only the donor is excited. Then the average is restricted to the vibrational
states of D*A

k dt (H'(O)H'(1)) ., - (24.35)

1
T
With the transition dipole operators

fip =|D > up < D*|+|D* > pp < D|

fia =1A > pa < AT +]A" > py < Al (24.36)
the rate becomes

2

k= jigs

/ dt (p©)ia ) fin () fia®) . , -

Here, we assumed that the orientation does not change on the relevant time scale.
Since each of the dipole operators acts only on one of the molecules we have

1 K?
h2|R|6
1 K2

- G / dt [ Oip®),_ (s Oia0),

k= 3 | 41 (o@D OO,

1 K2

= ﬁw/df (DO ip®),, (1a0)a(D)), - (24.37)

24.6 Spectral Overlap

The two factors are related to the acceptor absorption and donor fluorescence spec-
tra. Consider optical transitions between the singlet states |' D* >— |'D > and
|'A —! A* >, The number of fluorescence photons per time is given by the Einstein
coefficient for spontaneous emission'

2w
Apep = T2 ppl® (24.38)

1a detailed discussion of the relationships between absorption cross section and Einstein coefficients
is found in [125].
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with the donor transition dipole moment (24.27)

i =~2 / d3r dpu(er)¢p. (24.39)

The frequency resolved total fluorescence is then

203

Sohe? lnl*ge(@) (24.40)

I.(w) = Apspge(w) =

with the normalized lineshape function g.(w).
The absorption cross section can be expressed with the help of the Einstein coef-
ficient for absorption Bf as [125]

oq(w) = BY ,, hwg.(w)/c. (24.41)

The Einstein coefficients for absorption and emission are related by

723 1

Apsp = = ——
AxA 3 h280

w —

2
Ade = 3 [1eal
Wp s A

and therefore

1 7 2
oq(w) = 5?80”“' wgq(w).

In the following, we discuss absorption and emission in terms of the modified
spectra (Fig.24.4)

Fig. 24.4 Absorption and
emission. Within the
displaced oscillator model
the 0 — O transition energy
is located between the
maxima of absorption ()
and emission (1)
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3hcey o,(w)

a(w) = = |4l 8a(@)
= > Pl <ilialf > "8(wf — 0 — w)
if
o—H/ksT ‘ '
dre i Z < 1| dalf > " < fliaae i >
di e ™ (L4 0)ia 1)), (24.42)
2
and?
3eohcd L (w)
N) = ————— = |up[’g.()
2w3
= > Pl < flinli > ’8(0y — 0 — o)
if
o—H/ksT
= dte""”2<f| e fipli > e < i|aplf >
= ! dte (A p(0)),,
27r
=5 / dte (p0)ap(),, . (24.43)
Within the Condon approximation
(la@fa(®), = e |pal? (/T n)
= " |ual*Fat) (24.44)

and therefore the lineshape function is the Fourier transform of the correlation
function

1
ga(@) = / dr @R (1), (24.45)
27

Similarly,

(Ko ap®),, = e ot |1y p|? (eitHD/he_ilHD*/hb*
e P | p |2 Fp. () (24.46)

2Note the sign change which appears since we now have to average over the excited state vibrations.
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and
1 I(w—wpy)t
gew) = o [ dre (1), (24.47)

With the inverse Fourier integrals
(R4 O)Ra0), = / dwe (o)

(0 @in(®),, = [ doe ™" n(w) (24.48)

equation (24.37) becomes

1 K2 iwt 1 —iw't ’
kzﬁW dt | dwe' n(w) [ do'e a(w’)

= iK—Z‘/da)dw’n(a))oz(a)’) 28 (w — ')
A2 |R|6

_m K

= |R|6/ n(w)a(w)

2 K? ) 2
= 2R lwal”|enl /dwge(w)ga (w). (24.49)
This is the famous rate expression for Forster [121] energy transfer which involves
the spectral overlap of donor emission and acceptor absorption [126, 127]. For opti-
mum efficiency of energy transfer, the maximum of the acceptor absorption should
be at longer wavelength than the maximum of the donor emission (Fig. 24.5).

Fig. 24.5 Energy transfer 38 3
and spectral overlap

a(D)
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24.7 Energy Transfer in the Triplet State

Consider now energy transfer in the triplet state. Here the transitions are optically
not allowed. We consider a more general interaction operator which changes the
electronic state of both molecules simultaneously and can be written as’

H =|D* > |A > Vo < A*| < D| + h.c. (24.50)
We start from the rate expression (24.34)

1
k= ﬁ/ dt (H'(0)H'(1)). (24.51)

The thermal average has to be taken over the initially populated state |D*A >

1
k= ﬁ/dt (H'(O)H'(1)) . , -

In the static case (V.. = const)

_ % / d1eOro0 (git/hg=itHou/) | (gitHis/gitHa/h)
- % / dt €T (1) F (1) (24.52)

with the correlation functions

Fp(t) = (e"a/hemitta/m) (24.53)

Fp.(t) = (eVHr/heitHo-/h) (24.54)

Dx*

Introducing lineshape functions (24.45), (24.47) similar to the excitonic case the rate
becomes

3we assume that the wavefunction of the pair can be factorized approximately.
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2

\% . o )
k = gczch /dl e"(“’A*_‘”D*)/dw’e_‘(“’ _wb*)rge(a)/)/da)e‘(“’_w/**)’ga(a))

2

Vexch / / /
= dodw' g. (") ga(w)2m (0w — ')

_ 27 V2

h”“h / dwga(@)ge(w) (24.55)

which is very similar to the Forster expression (24.49). The excitonic interaction
is replaced by the exchange coupling matrix element and the overlap of the optical
spectra is replaced by the overlap of the Franck—Condon weighted densities of states.



Chapter 25
Coherent Excitations in Photosynthetic
Systems

Fig. 25.1 Energy transfer in bacterial photosynthesis

Photosynthetic units of plants and bacteria consist of antenna complexes and reaction
centers. Rings of closely coupled chlorophyll chromophores form the light harvesting
complexes which transfer the incoming photons very efficiently and rapidly to the
reaction center where the photon energy is used to create an ion pair (Fig.25.1).
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In this chapter, we concentrate on the properties of strongly coupled chromophore
aggregates. We discuss an exciton model for a strongly coupled dimer including
internal charge transfer states and apply it to the special pair of the photosynthetic
reaction center. Next, we study circular molecular aggregates, as found in the light
harvesting complexes of photosynthesis. We calculate the exciton spectrum including
dimerization and apply it to the light harvesting complex LHII. The influence of
disorder is discussed including symmetry breaking local perturbations and periodic
modulations as well as general diagonal and off-diagonal disorder.

25.1 Coherent Excitations

If the excitonic coupling is large compared to fluctuations of the excitation energies,
a coherent excitation of two or more molecules can be generated.

25.1.1 Strongly Coupled Dimers

Let us consider a dimer consisting of two strongly coupled molecules A and B as in
the reaction center of photosynthesis (Fig.25.2). The two excited states

|A*B >, |AB* > (25.1)

are mixed due to the excitonic interaction. The eigenstates are given by the eigen-
vectors of the matrix

Exsg V
( y EAB*)' (25.2)

For a symmetric dimer, the diagonal energies have the same value and the eigenvec-
tors can be characterized as symmetric or antisymmetric

1 1 1
2 _f_ﬁ (EA*B Vv ) 751 Tg _ (EA*B -V ) . (25.3)
s A\ Es)\-75 5 EawtV

The two excitonic states are split by 2V.! The transition dipoles of the two dimer
bands are given by

1
pt = E(NA + () (25.4)

and the intensities by

! Also known as Davydov splitting.
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[+> — /7

IA*B>
IAB*> 2V

—_—
absorption

Fig. 25.2 The “special pair” dimer. Top The nearly C»-symmetric molecular arrangement for the
reaction center of Rps.viridis (molekel graphics [65]).The transition dipoles of the two molecules
(arrows) are essentially antiparallel. Bottom The lower exciton component carries most of the
oscillator strength

| 2Ll 242 25.5
et | —2(NA+MB HAlB)- (25.5)

For a symmetric dimer ui = 'u]zg = 1> and

lps)? = (1 £ cos @), (25.6)

where « denotes the angle between 14 and p 5. In case of an approximately C, sym-
metric structure, the components of 14 and pp are furthermore related by symmetry
operations.

If we choose the C, axis along the z-axis we have

HBx —HMAx
sy | = [ —pay (25.7)
1Bz Az
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Fig. 25.3 Extended dimer _ —e— —— —
model
A+B- A-B+
\ °
A*B AB*

and therefore

1 0
—Wat+pp)=—74| 0
ﬁ ﬁ ZMAZ

2/’6Ax

1
=— 12 25.8
ﬁ(ﬂA MB) \/i %Ay ( )

which shows that the transition to the state |4+ > is polarized along the symmetry
axis whereas the transition to |— > is polarized perpendicularly. For the special pair,
dimer interaction with internal charge transfer states |A + B— > and |A — B+ > has
to be considered. In the simplest model, the following interaction matrix elements
are important (Fig. 25.3).

The local excitation A*B is coupled to the CT state At B~ by transferring an
electron between the two LUMOS

1
< A*B|H|ATB™ >= 3 < (AJAy — AJAy)ByB H(BfA, — B{A+)B;B| >
= Hp« p» = UL (25.9)

and to the CT state A~ B™ by transferring an electron between the HOMOs

1
< 14*3\[‘1|1473+ >= 3 < (A?Ai — ATAT)B¢BLH(A?B¢ — ATB¢)ATA¢ >
— Hip=Un. (25.10)

Similarly the second local excitation couples to the CT states by

1
< AB*|H|AB™ >= - < (B{B, — B{B))A{A H(BjA, — B{A1)B; B, >

=—Hyp=Uy (25.11)
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1
< AB*|H|A" Bt >= 5 < (BiB, — BIBy)ALA H(ATB, — ATB)AA| >
e —— (25.12)

The interaction of the four states is summarized by the matrix

Erp Vo U, Uy
V Epgs Uy U
U, Un Ep+p-

Uy UL Ea-p+

H = (25.13)

Again for a symmetric dimer Eg«y = Ep+ and E+p- = E4-p+ and the interaction
matrix can be simplified by transforming to symmetrized basis functions with the
transformation matrix

S = - (25.14)
Vi V2
11
V2 V2
The transformation gives
E.,—V U, - Uy
E.+V U, +U
ST'HS = * L (25.15)
UL — U[-] ECT
UL+ Uy Ecr

where the states of different symmetry are decoupled (Fig.25.4)

E.+V U, +Uy E.,—V U,—-Uy
H, = H_ = . 25.16
- (UL +Un  Ecr ) (UL —Un Ecr ) ( )

In an external electric field, the degeneracy of the internal CT states is readily lifted
due to their large dipole moments. In this case, we symmetrize only the excitonic
states by transforming with

%)
Il
S-S
- -

(25.17)
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Fig. 25.4 Dimer states
|A+B—> , |A-B+>
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e +
U Uy
T +
IAB>, IAB*> .y
which yields
E* . 4 U14\;§UH _ UL\7§UH
E.+V Ur+Un Ur+Uy
-1 _ V2 V2
STHS=| o, _u. uv+u, Eo Ao (25.18)
V2 V2 cr 2
Up=Uy Up+U Ac
— Lﬁ H # ECT + E,T
with the field-induced energy shift
A
S = s B (25.19)
Perturbation theory gives the correction to the lowest state
1 Ur=Uy Ur=Uy
* * * V2 + p— V2 — n+
P¥*(=) >= —(A* — B AYBT > — A™B
o= A vy —r g —— g
(25.20)
with energy
(U — Up)? 1 1
Epuy = E«—V — + +
Px(—) 2 |:EC7“—A2CT—(E*_V) ECT+A2”_(E*—V):|
_ UL — Un)? 2 AL,
ShoVTT [ECT—UE*—V)+2(Ecr—<E*—V>3 T
— 2 _ 2 A2
—E _V_ UL —Un) UL —Un) Ay (25.21)

Ecr —(Ex—V) 4(Ecr — (Ex— V)
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and permanent dipole

U, — Ugy)? U, — Ugy)?
p(P*(—))=|: (UL H) Ut H) :|pA .

2E.—V = Ecr — %20 2E,—V — Ecr + %+

(UL —Up)?
(Ex—V — Ecr)?

AcrPa+B-- (25.22)

Equations (25.21) and (25.22) explain that in a symmetry breaking field, the dimer
band obtains large permanent dipole and polarizability which show up experimentally
in the Stark effect (electrochromicity) spectra.

25.1.2 Excitonic Structure of the Reaction Center

The reaction center of bacterial photosynthesis consists of six chromophores. Two
bacteriochlorophyll molecules (P, Py) form the special pair dimer. Another bac-
teriochlorophyll (B;) and a bacteriopheophytine (Hy) act as the acceptors during
the first electron transfer steps. Both have symmetry-related counterparts (B, Hyy)
which are not directly involved in the charge separation process. Due to the short
neighbor distances (11-13A), delocalization of the optical excitation has to be con-
sidered to understand the optical spectra. Whereas the dipole—dipole approximation
is not applicable to the strong coupling of the dimer chromophores, it has been used
to estimate the remaining excitonic interactions in the reaction center. The strongest
couplings are expected for the pairs P; By, By Hy, Py By, By Hy due to favorable
distances and orientational factors (Fig.25.5 and Table 25.1).

Starting from a system with full C, symmetry, the excitations again can be clas-
sified as symmetric or antisymmetric. The lowest dimer band interacts with the anti-
symmetric combinations of B and H excitations. Due to the differences of excitation
energies, this leads only to a small amount of state mixing. For the symmetric states,
the situation is quite different as the upper dimer band is close to the B- excitation
(Fig.25.6).

If the symmetry is disturbed by structural differences or interactions with the
protein, excitations of different symmetry character interact. Qualitatively, we expect

Fig. 25.5 Transition dipoles P P
of the Reaction Center M74 "L

rps.Viridis. Arrows show the 10 8 s@ 1() 5
transition dipoles of the Ve

isolated chromophores. 12 9 12 5 x
Center—center distances (as 10,6‘ i
defined by the nitrogen i |

L

10.7

atoms) are given in A
H<P o,
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Table 25.1 Excitonic couplings for the reaction center of rps.Viridis. The matrix elements were
calculated within the dipole—dipole approximation for ;2 = 45Debye? for bacteriochlorophyll and

30Debye? for bacteriopheophytine [128]. All values in cm ™~

1

Hy By Py Py, B Hp
Hy 160 33 -9 —11 6
By 160 —168 —37 29 —11
Py 33 —168 770 —42 -7
Py -9 —37 770 —189 35
Br, —11 29 —42 —189 167
Hp 6 —11 -7 35 167

Fig. 25.6 Excitations of the
reaction center. The
absorption spectrum of
rps.viridis in the Qy region
is assigned on the basis of
symmetric excitonic

excitations [129]. The charge

transfer states P, are very
broad and cannot be

observed directly

{

14000

12000
cm-!

16000

10000

that the lowest excitation is essentially the lower dimer band, the highest band 2
reflects absorption from the pheophytines and in the region of the B absorption we
expect mixtures of the B* excitations and the upper dimer band (Fig. 25.6).

25.1.3 Circular Molecular Aggregates

We consider now a circular aggregate of N chromophores (Fig.25.7) as it is found
in the light harvesting complexes (Fig. 25.8) of photosynthesis [130-132].
We align the Cy symmetry axis along the z-axis. The position of the nth molecule

is

%In the Q y region.
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Fig. 25.7 Circular aggregate

Fig. 25.8 Light harvesting complex. The light harvesting complex from Rps. acidophila (structure
1kzu [133-137]from the protein data bank [138, 139] consists of a ring of 18 closely coupled
(shown in red and blue) and another ring of 9 less strongly coupled bacteriochlorophyll molecules
(green). Rasmol graphics [140]

cos2rn/N)
R, =R | sin(2mrn/N) n=01---N-1 (25.23)
0



358 25 Coherent Excitations in Photosynthetic Systems
which can also be written with the help of a rotation matrix
cos(2m/N) —sin(2w/N)

Sy = | sin(2n/N) cos(2w/N) (25.24)
1

as
1
R,=S\Ry Ro=[0]. (25.25)
0

Similarly the transition dipoles are given by

o = Sk, (25.26)
The component parallel to the symmetry axis is the same for all monomers

Honz = H (25.27)

whereas for the component in the perpendicular plane

Hnx ) _ [ cos(m2m/N) —sin(n2m/N) 140.x
(un,y) - (sin(nZw/N) cos(n2mw/N) ) (uoqy) ’ (25.28)

We describe the orientation of p, in the x-y plane by the angle ¢:

Hox ) _ cos(¢)
(uo,y) AL (sin(¢) ) : (25.29)

Then we have (Fig.25.9)

P x i cos(¢ + n2w/N)
iy | = [ pocos(e+n27/N) | . (25.30)
Hn,z K

We denote the local excitation of the nth molecule by
In >=|AgAy--- Ay - Ay_1 > . (25.31)

Due to the symmetry of the system, the excitonic interaction is invariant against the
Sy rotation and therefore

<m|Vin >=<m —n|V|0 >=<0|Vin —m > . (25.32)
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Fig. 25.9 Orientation of the
transition dipoles

Table 25.2 Excitonic Im — n| Vim_ |(cm*1)
couplings. The matrix i
elements are calculated 1 —3525
within the dipole—dipole 2 —43.4
approximation (25.33) for 3 —12.6
R =26.5A ¢ = 66° and 4 51
u? = 37Debye? :
5 —2.6
6 —-1.5
7 -0.9
8 -0.7
9 —0.6

Without a magnetic field, the coupling matrix elements can be chosen real and depend
only on |m — n|. Within the dipole—dipole approximation, we have furthermore*

Vimen = <m|V|n >
e? )
= IR (IRmn | o 1y = 3R ) Rinn 1)) - (25.33)
The interaction matrix has the form (Table 25.2)

EoyVi Voo Vo V)
ViEqVi---V3 Vo

g=| V2" (25.34)
S Vs
Va V3 Vi
ViVa-- Vo Vi Eyy
The excitonic wavefunctions are easily constructed as
=
k>=—> en > (25.35)
\/N n=0

3 A more realistic description based on a semiempirical INDO/S method is given by [141].
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with
2
k=="1 1=01,---N—1 (25.36)
N
| NN
<K|Hlk > = v e e K" < p/|H|n >
n'=0 n=0
| NNl
== efne K g, (25.37)
n'=0 n=0
We substitute
m=n—n (25.38)
to get
N—1n—N+1

<k’|H|k>=—z z 1(k k)n+1ka il

n=0 m=n

N—1
= ki Z e Hy,,

m=0
= 0kx (Eo+2Vicosk +2Vycos2k+---). (25.39)

For even N, the lowest and highest states are not degenerate whereas for all of the
other states (Fig.25.10)

Ey=Ey_i = E_4. (25.40)

The transition dipoles of the k-states are given by

N-1
Z 1kn W, = «/Lﬁ Zeiknslrbuo

n=0
1 Nl /LXCOS(ZWH/N)+LL} sin(2m n/N)
f z e [y, cos@mn/N) — p, sin@mn/N) | . (25.41)
J 25

For the z-component, we have (Fig.25.11)

N-1

1 .
Tt > e = V/Np.do. (25.42)

n=0
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E(k)
10=-8 9 8
11=-7 7
12=—6 6
13=-5 5
14=—4 4
13=-3 3
= ;
- =0
A+ttt
- 0 T K

Fig. 25.10 Exciton dispersion relation. The figure shows the case of negative excitonic interaction
where the k = 0 state is the lowest in energy

Fig. 25.11 Allowed optical —9

transitions. The figure shows 1(1)3:9 g
the case of negative excitonic 1 2:_ 6 6
interaction, where the lowest -
three exciton states carry 13=-5 5
intensity
14=-4 4
13=-3 3
= ;
- — 0
circ. pol. circ. pol.
=) / pol +)

ground state

For the component in the X,y plane, we introduce complex polarization vectors

e+ = (% %O)Nk

N ' cos(&2) — sin(22) Hx
_ e]kn (\/LE :]:\/LE 0) 511‘1(2%) COS(Z%) Hy
VN

n=0 1 Mz
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Fig. 25.12 BChl arrangement for the LH2 complex of Rps.Acidophila [133-137, 142]. Arrows
represent the transition dipole moments of the BChl molecules as calculated on the 631G/HF-CI
level. Distances are with respect to the center of the four nitrogen atoms. R, = 26.1 A, Rg = 26.9A,
2v =20.7°, ¢o = 70.5°, pg = —117.7°, 6, = 83.7°, 63 = 80.3°

N—1 1
1 ikn 1 . +i2nw/N i .+i2n7/N *
= \/_ﬁ Z € (726 :l:«/_fe 0) Hy
n=0 Hz
N—-1
_ 1 eitk=2m/N) (L g) (Mx)
VN o V2 V2 )\ py

. 1 , 1 1
= VN somvpie  with pe = ﬁ(“" +ipy) = ﬁmei 9. (25.43)

25.1.4 Dimerized Systems of LHII

The light harvesting complex LHII of Rps.Acidophila contains a ring of nine weakly
coupled chlorophylls and another ring of nine stronger coupled chlorophyll dimers.
The two units forming a dimer will be denoted as «, 3, the number of dimers as N
(Fig.25.12).
The transition dipole moments are
sin 8, cos(n%7T — v+ do) sin 6,
Hpo = H sin 0, Sin(nzﬁﬂ— —-v+ (ba) = [LSX,RZ(—I/ + ¢0/) 0

cosd, cos fq
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sin 63 c:os(nzﬁ7T + v+ ¢Pp) sinf;

5= | sinfg sin(n%7T +v+op) | =pSyR.(+v + ¢p) 0

cos 0 cos f5

(25.44)

For a circle with Cyy-symmetrical positions (2v = §, 0, = 03) and alternating
transition dipole directions (¢ = 7 + ¢,), we find the relation

™
Mo = ReQv+ 65— G = Re (55 +7) b (25.45)

The experimental value of

2v+ ¢ — po = 208.9° (25.46)
is in fact very close to the value of 180 4 20° (or 7 + ).

We have to distinguish the following interaction matrix elements between two
monomers in different unit cells (Fig.25.13, Table 25.3):

Va,a,lmlv Va,ﬂ,m = K’i,a,—mv Va,ﬂ,—m = ng’,a,ma Vﬂ,ﬁ,lml (2547)

The interaction matrix of one dimer is

Ea Vdim
(Vdim Eg ) (25.48)

The wavefunction has to be generalized as

Fig. 25.13 Couplings in the Vv
dimerized ring




364

25 Coherent Excitations in Photosynthetic Systems

Table 25.3 Excitonic couplings for the LH2 complex of Rps.Acidophila. The matrix elements
were calculated within the dipole—dipole approximation for the structure shown in Fig.25.12 for

u? = 37Debye?. All values in cm™

1

n Va Bn VS an Veaan V[f 5n
0 356.1 356.1
1 13.3 324.5 —49.8 —35.0
2 2.8 11.8 —6.1 —4.0
3 1.0 2.4 —1.8 -1.0
4 0.7 0.9 -0.9 -04
1 N—1
ks >=—= > e*"(Cyalna > +Cyslnp >) (25.49)
n=0
N—-1N-1
< k/S/|H|kS >= N Z Z el(kn_k ) (Cs/acsaHau'ln—n’l
n=0 n'=0
+Cs/ﬂcsﬁHﬁﬂln—n’| + Cs’aCsJﬁHaﬂ(n—n’) + Cs’,ﬁcsaH,@a(n—n’))
N—-1N-1
1 . N, H H,3 C
——(C.. C. elk=K)n+ik'm aalm| Hafm sa
y (Cra Cos) Z;MZ::‘) Hgom Hgpm ) \ Csp
ik
b (C c 3) Zm OelmHO,n,\m\ Zm OC afm (Csa) (25.50)
= Ok’ s'a Cs/l - B . .
>y e Hey Sy ™ Hyp,, J \ Cos

The coefficients Cs,and Cyp are determined by diagonalization of the matrix

H, =
E,+2Vaai1c08k + - - Viaim + €% Vap1 +€~ ik Vag, -1+ -+
B Vdim +e_ikVaG,l +eikVaﬂ,—1 4 Ea +2V33,1 cosk +--- '

(25.51)
If we consider only interactions between nearest neighbors this simplifies to
_ EOt Vdim + e_ikW . _
Hy = (Vdim + eikW Eﬂ ) with W = Vnt{f,—l- (2552)

In the following, we discuss the limit £, = Eg. The general case is discussed in the
problems section. The eigenvectors of



25.1 Coherent Excitations 365

H, = E, ) Viim + e fw
k= Vdim + elkW Ea

are given by

% (iiw) , (25.53)
where the angle  is chosen such that

V +e*W = U(k)e' (25.54)
with

U (k) = sign(V)|V + e*W|

and the eigenvalues are

Exr=E,xUk)=E, £ 51gn(V)\/ Viim + W2 4+ 2Vyim W cosk. (25.55)

The transition dipoles follow from

N-1
1
My = VoY Z M (1, £ € g, )
u sin B, cos(—v + ¢q) sin 03 cos(v + ¢)
ikn gn : : i : :
= Z e Sy sin @, sin(—v + ¢,) | £eX | sinbfssin(v + ¢p)
V2N 5 cos 0, cos 03
(25.56)

and similar selection rules as for the simple ring system follow for the first factor

N-1
I ikn ix

My = —F— E e (cosf, £ eXcosbp
2N n=0 ( : )

N
= 0r.0 1/ 3 (cos b, =+ cos b3) (25.57)

(001)

) 1
(55 0) e = s 2 (150) )

=,/ 35;(,;2”/1\/# (sin 0,e! @) 4 elX gin Gx«;ei(‘ﬁ’M"*l’)) (25.58)
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N—
(\/% ;; O) i+ = _,— Z (kﬁﬂ/mn —i 0) (Ha,l ieixﬂﬂ,1)

[N 4 . .
= 35,(,;2” v (sin 0,€' @) F X sin 036" . (25.59)

The second factor determines the distribution of intensity among the + and — states.
In the limit of 2N equivalent molecules V = W, 20+ ¢g — o = 1+ 5, 00 = 03
and we have

V4w =1 +ehV =e*2 e 2 ety =22V cosk/2  (25.60)
and hence
x=k/2 U(k) =2V cosk/2 (25.61)

and (25.58) becomes

i N . i(Py—1 i T
(\/LE 75 O) Myt = v/ Eék’12ﬂ-/1vp, sm@e“‘* ) (1 F e(k/2+ /N))

which is zero for the upper case (+ states) and
V2N 8 2/ pu sin i@ (25.62)

for the (—) states. Similarly (25.59) becomes

1 )
75 = ifty) = V2N 2ryv pusin e 10 (25.63)

for the - states and zero for the + states. (For positive V the + states are higher
in energy than the - states.) For the z-component, the selection rule of k=0 implies
(Fig.25.14)

[zt = V2N opcost, p._ =0. (25.64)

In the LHC, the transition dipoles of the two dimer halves are nearly antiparallel.
The oscillator strengths of the N molecules are concentrated in the degenerate next to
lowest transitions k = 27/ N. This means that the lifetime of the optically allowed
states will be reduced compared to the radiative lifetime of a monomer. In the LHC,
the transition dipoles have only a very small z-component. Therefore, in a perfectly
symmetric structure, the lowest (k=0) state is almost forbidden and has a longer
lifetime than the optically allowed k = £27/N states. Due to the degeneracy of the
k = 27/ N states, the absorption of photons coming along the symmetry axis does
not depend on the polarization.
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Fig. 25.14 Dispersion E(k)
relation of the dimer ring

circ! | !circ

2N O in/N n k

25.2 Influence of Disorder

So far we considered a perfectly symmetrical arrangement of the chromophores.
In reality, there exist deviations due to the protein environment and low-frequency
nuclear motion which leads to variations of the site energies, the coupling matrix
elements, and the transition dipoles. In the following, we neglect the effects of dimer-
ization and study a ring of N equivalent chromophores.

25.2.1 Symmetry Breaking Local Perturbation

We consider perturbation of the symmetry by a specific local interaction, for instance
due to an additional hydrogen bond at one site. We assume that the excitation energy
at the site no = 0 is modified by a small amount § E. The Hamiltonian

N—-1 N—-1 N-1
H=) |n>E <n|+]0>06E <0+ > > |n>Vu <n| (2565)
n=0 n=0 n'=0,n"#n

is transformed to the basis of k-states (25.35) to give

1 —_
<K|Hk >= Nzeﬂ""“’f" <n'|Hn >

n,n’
1 o ,
:Nzel(k_k)nE +_+ Zze—lkn+1knv ,
n non'#n

SE
= O Ex + v (25.66)
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Obviously the energy of all k-states is shifted by the same amount
0FE
< k|Hlk >= Ey + N (25.67)
The degeneracy of the pairs | & k > is removed due to the interaction
0E
<klH| —k >= —. (25.68)
N
The zero-order eigenstates are the linear combinations
|k ! (Jk > £ —k >) (25.69)
>= —(k>=x| -k > .
+ NG

with zero-order energies (Fig.25.15)

C

N
y
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X
(=) (+)
-2 2
. 1 E

o
|
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-

|

1

YAV AYZ

Fig. 25.15 Local perturbation of the symmetry
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0FE
E(k) = E; + N (nondegenerate states)
0FE
Ek_)=E, Eky)=Er+ 27 (degenerate states). (25.70)

Only the symmetric states are affected by the perturbation. The interaction between
degenerate pairs is given by the matrix elements

0E
< kirlH|k+ >= 5k,k’Ek + ZW
< k_|H|k_ >= 5k,k/Ek
<ki|Hlk- >=0 (25.71)

and the coupling to the nondegenerate k = 0 state is

20E
< 0|Hlky >= fT

<O0|Hk_ >=0. (25.72)

Optical transitions to the |11 > states are linearly polarized with respect to per-
pendicular axes. In first order, intensity is transferred from the |1, > state to the
|0 > and the other |k, > states and hence the |1_ > state absorbs stronger than the
|1, > state which is approximately

HyoYPE oo PE (25.73)
T UN(Ey - Ey) N(E,—E) "
Its intensity is reduced by a factor of
1
(25.74)

SE2 2 4 '
I+ 5 ((EO—EIV T & Er T )

25.2.2 Periodic Modulation

The local perturbation (25.66) has Fourier components

/ ’ 1 inAk
H'(Ak) =< k|H'|k + Ak >= N;e SE, (25.75)

for all possible values of Ak. In this section, we discuss the most important Fourier
components separately. These are the Ak = £47/N components which mix the
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k = £2m /N states and the Ak = +27/N components which couplethek = £27/N
to the k = 0, 47 /N states and thus redistribute the intensity of the allowed states.

A general modulation of the diagonal energies with Fourier components Ak =
+27/N is given by

SE, = §E cos(xo + 2nm/N) (25.76)

and its matrix elements are

eXSE e §E
O Ak, —2m/N F 3

H'(Ak) = 8 Ak.27/N - (25.77)

Transformation to linear combinations of the degenerate pairs

1 . .
k,+>=— (| —k>+e™k>) k>0
V2

1 . )
lk, — > = E (—e"X°| —k > +eX|k >) k>0 (25.78)

leads to two decoupled sets of states with (Fig.25.16)
, 0E
<O0lH'|k, + > = ECOS(ZXO)(sk,Zw/N

<O0lH|k,—>=0
<k —|HWK.+>=0

, SE
<k, —|H'K,—>= — cos X0 (Ox—k, 27 /N + Ok'—k,—27/N)

, SE
<k, +HK +>= -5 c08(3X0) (Ox—k.2x/N + Ok'—k,—27/N)-

The |k =27 /N, £ > states are linearly polarized

eixo eixo
H2m/N+.0 = E/LG/zv,@ + ﬁ,uzn/zv,@ = /Nyii cos(® + xo — ©)

e~ ixo eiXo

H2mn/N,—0 = — 7 H—2r/N.0 + ENZW/N,@ = iv/ Ny sin(® 4 xo — 0).
(25.79)
Let us now consider a C; symmetric modulation [143]
0E, = 0E cos(xo +4mn/N) (25.80)
with matrix elements
N/ OE i —i
< k|lH'|k' > = 7 (C X“ék/_k,_M/N +e XO(Skf_kA,r/N) . (25.81)

The |k = £27/N > states are mixed to give the zero-order states
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Fig. 25.16 C; symmetric perturbation. Modulation of the diagonal energies by the perturbation
0E, = 0E cos(xo+2mn/N) does not mix the |k, + > and |k, — > states. In first-order, the allowed
k = 27/ N states split into two states |k = 27/N, £ > with mutually perpendicular polarization
and intensity is transferred to the |k = 0 > and |k = 47/N, £ > states

-2 2

-1 y

D =0 C N P

Fig. 25.17 C, symmetric perturbation. Modulation of the diagonal energies by the perturbation
0E, = 6FE cos(xo + 4mn/N) splits the [k = £27/N> states in zero order into a pair with equal
intensity and mutually perpendicular polarization

1 .
27/N,+ > = — (| = 27n/N > +eX°|27/N >
|27/ ﬁ(| / 27/N >)

1 A
27/N,— > = — (| —21/N > —e™*|21/N >) (25.82)

V2

which are again linearly polarized (Fig.25.17).

A perturbation of this kind could be due to an elliptical deformation of the ring
[143], but also due to interaction with a static electric field, which is given up to
second order by

1
O, = —puE+ JE'0,E (25.83)

where the permanent dipole moments are given by an expression similar* to (25.26)

4The angle @ is different for permanent and transition dipoles.
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picos(® +n2m/N)
p. = Sypo = | pusin(® 4+ n2w/N) (25.84)
Pi

and the polarizabilities transform as

a, = SyaoSy". (25.85)

With the field vector
E| cos&
E=| Epsin¢ (25.86)
Ey

we find

—puE = —pLE| cos(® +n27/N — &) (25.87)
and

~E'a,E = %(E’S,’f,)ao(S;,"E)

2

% {ax cos’ (27 /N — &) + ayy sin®(n27/N — )

+ 20,y sin(n2m /N — ) cos(n2r/N — &)}

+EE; {ozxZ cos(n2m/N — &) + o sin(n2w /N — f)}

+ E)
2

The quadratic term has Fourier components Ak = 447 /N and can therefore act
as an elliptic perturbation.

0. (25.88)

25.2.3 Diagonal Disorder

Let us consider a static distribution of site energies for a ring of N chromophores
[144-146]. The Hamiltonian

N—1 N-1 N-1
H=>|n>(Eo+0E) <n|+>. D |n>Vy<n (25.89)
n=0 n=0 n'=0,n'#n

contains energy shifts JE, which are assumed to have a Gaussian distribution
function.
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P(OE,) = exp(—0E2/A%). (25.90)

1
AT
Transforming to the delocalized states, the Hamiltonian becomes

1 o
<K|Hlk >= 5 > e < |Hin >

n,n’

_ % Zn: kM (0 4 0E,) + % S

n n'#n

1 o
= O B+ Z ek, (25.91)

and due to the disorder the k-states are mixed. The energy change of a nondegenerate
state(for instance k = 0) is in lowest order perturbation theory given by the diagonal
matrix element

1
SEy = 5 Z SE, (25.92)

as the average of the local energy fluctuations. Obviously the average is zero

< 0Ey >=< 0E, >=0 (25.93)
and
1
< 0E} >= e > <OEEy >. (25.94)

If the fluctuations of different sites are uncorrelated
< 0E,0E, >= 0y < 0E* > (25.95)

the width of the k-state

) < 0E* >
< 0E; >= N (25.96)

is smaller by a factor 1/4/N.5 If the fluctuations are fully correlated, on the other
hand, the k-states have the same width as the site energies.

For the pairs of degenerate states £k, we have to consider the secular matrix
(Ak =k — k' =2k)

SThis is known as exchange or motional narrowing.
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1 1 inAk
T z_”if f; N ,Z Ok, (25.97)
N Zn € (SE,, N z

which has the eigenvalues

SEs = —ZéE +— \/Ze‘"AkéE Ze—I”’A"éE/ (25.98)

Obviously the average is not affected

5E+k + 6E_k
<

3 >=0 (25.99)

and the width is given by
SE%, +0E%,
-tk T Tk
2
1 1 I
=¥ Z < 0E,0E, > +m Zel("”’ Ak - SF SE, >

nn’'

>

< 0E% >
= ZT. (25.100)

25.2.4 Off-Diagonal Disorder

Consider now fluctuations also of the coupling matrix elements, for instance due
to fluctuations of orientation and distances. The Hamiltonian contains an additional
perturbation

/ ! —ik'n’+ikn
H, = NZe V. (25.101)
For uncorrelated fluctuations with the properties®

<OV >=0 (25.102)

< 5Vnn’5vmm’ >= (5nm5n’m’ + 5nm’5n’m - 6nm6n’m’5nn’) < 5‘/@7”/\ > (25103)

6We assume here that the fluctuation amplitudes obey the Cy — symmetry.
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it follows

/ J—
< Hy >=0

1 . N
< |HI£k’|2 - m Z zelk(nfm)Jrlk (m'—n’) < 5Vnn’§me’ -

n'n m'm
1 1 . /
_ 2 k+k")(n— 2
_m2<5Vnn,>+WZe‘( (=) < 5V2, >
n'n

2
L L % > <oV, > [1+4cos (mk + k)] (25.104)

N m#0

If the dominant contributions come from the fluctuation of site energies and nearest
neighbor couplings, this simplifies to

1
< |H|* >= N(< SE* > 42 < 6VE > (1 4 cos(k + k). (25.105)

For the nondegenerate states, the width is

< 0E? > +4<(5Vil >

< 5E,f >= N

(25.106)

and for the degenerate pairs, the eigenvalues of the secular matrix become
SEsx = Hye & |Hy | . (25.107)
Again the average of the two is not affected

0E ; +J0E_4
Ptk L ttd

> >=0 (25.108)

whereas the width now is given by

5E2 2
< +k + 5E7k
2
2
= 5 (<OE> > + < 6V2 > (34 cos(24))). (25.109)

— 2 2
>=<Hy >+ < H _; >

Off-diagonal disorder has a similar effect as diagonal disorder, but it influences the
optically allowed k = +£1 states stronger than the states in the center of the exciton
band. More sophisticated investigations, including also partially correlated disorder
and disorder of the transition dipoles, can be found in the literature [144—149].
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Problems

25.1 Photosynthetic Reaction Center

The “special pair” in the photosynthetic reaction center of Rps.viridis is a dimer of
two bacteriochlorophyll molecules whose centers of mass have a distance of 7A. The
transition dipoles of the two molecules include an angle of 1397.

oy 7A Hp

Calculate energies and intensities of the two dimer bands from a simple exciton
model

—A/2 V
H= ( vV A/ 2)
as a function of the energy difference A and the interaction V. The Hamiltonian is

represented here in a basis spanned by the two localized excited states |[A*B > and
|B*A >.

25.2 Light Harvesting Complex

The circular light harvesting complex of the bacterium Rhodopseudomonas aci-
dophila consists of nine bacteriochlorophyll dimers in a Co-symmetric arrangement.
The two subunits of a dimer are denoted as « and 3. The exciton Hamiltonian with
nearest neighbor and next to nearest neighbor interactions only is (with the index n
taken as modulo 9)

9
H= Z{Eam; a><n;al+ Egln; 8 ><n; 3]
n=1
+Vaim(In; a >< n; Bl + |n; B >< n; af)
Va1 (Insa><n—1,8l+1In; 8><n+1;al)

FVoa1 (Insa><n+ Lol +n5a><n—1;al)

+ Vaga(n; B><n+ LBl +1In; B><n—1;6D}.
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Transform the Hamiltonian to delocalized states
lk; @ >= 1Zg‘,e”‘”ln; a> |k fB>= li:ei""ln; B>
3o 35
k=12n/9 [=0,=£1,+2,+£3, +4.
(a) Show that states with different k-values do not interact
<k,a@Hlk, aB) >=0 ifk £k
(b) Find the matrix elements
Hyo(k) =< k; alH|k; o > Hpg(k) =< k; BIH|k; 3 >
Hu3(k) =< k; a|H|k; 8 >.
(c) Solve the eigenvalue problem
(i ) (6:) =200 ().

(d) The transition dipole moments are given by

sin @ cos(¢q — v + ne) sinf cos(¢s + v + ne)
Hopo = | sind sin(¢, — v +ne) W, 5= | sind sin(¢g + v+ ne)
cosf cosf

v =10.3% ¢, = —112.5%, ¢3 = 63.2°, 6 = 84.9°.
Determine the optically allowed transitions from the ground state and calculate the
relative intensities.

25.3 Exchange Narrowing

Consider excitons in a ring of chromophores with uncorrelated diagonal disorder.
Show that in lowest order, the distribution function of Ej is Gaussian. Hint: write
the distribution function as

> SE

POE, = X) :/d5E1d6E2~~P(5E1)P((5E2)~~~5(X— N %)

and replace the delta function with a Fourier integral.



Chapter 26
Charge Transfer in DNA

Photoinduced charge transfer in DNA [150, 151] occurs via two different hole
transfer mechanisms (Fig. 26.1), diffusive hopping between sites with similar poten-
tial and tunneling over barriers with high potential (Fig.26.2). We discuss a simple
kinetic scheme for diffusive motion and determine the stationary solution of the cor-
responding master equation. A continuous treatment leads to the diffusion equation.
Hole tunneling appears over one or more bridge states and has to be described by a

higher order superexchange mechanism. In general, both mechanisms are effective,
dependent on the DNA sequence.

potential
potential

N Y
G G G G A G

Fig.26.1 Charge Transfer in DNA After hole injection from the excited photosensitizer S*, charge
transfer proceeds via two mechanisms. Left Between nucleic acids with similar oxidation potential,
charge is transferred by diffusive hopping. Right nucleic acids with higher oxidation potential act as
virtual intermediates during a tunneling process. Over longer distances, both mechanisms contribute
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R=2"-deoxyribose ’L ‘
G 1.29v A 1.4V C 1.6V T1.7V

Fig. 26.2 Oxidation potentials of 2’-deoxynucleosides

26.1 Diffusive Hole Transfer

The hopping process among residues with the same potential is described by the
kinetic scheme [152] (the loss channels are left out for simplicity)

S k k k kr
—-G126,2G3... 2Gy— GGG (26.1)
k k k

where S is the injection rate and trapping at the end of the chain is irreversible. The
system of master equations reads

0P

S = STk — Py (26.2)
0

EPj:kPj_l—I-kPj_H—ZkPj 1<j<N. (263)
0

o7 PV = kPt = (k+ k) Py. (26.4)

Figures 26.3 and 26.4 show numerical results for an instantaneous charge injection
S = 4(¢) (i.e., initially only G is charged). Experimentally, often the quantum yield
is measured, which corresponds to a stationary state with S = const. The stationary
solution of the master equation can be found recursively

k
Py =(1+ %)PN (26.5)
ks

Py =2Py_1— Py = (1+T)PN (26.6)
kr

Pr=2P;— Py = (1+ (N =2)=)Py (26.7)
k

P, =2P,— P;=(1+ (N — 1)%)PN (26.8)

S

Pr=Pyt (26.9)



26.1 Diffusive Hole Transfer

Fig. 26.3 Kinetics of the
hopping process The master
(26.3) is solved for

k=1, kpr=20and N
from 3 to 10. The curves
show the charge arrived at
the trap. The transfer time is
approximately proportional
to N2

Fig. 26.4 Power law of the
hopping process For fast
trapping rate kr 2> k the
transfer rate is approximately
proportional to N ~2. For
small trapping rate a

N ~!-behavior is approached

N=10

= o o
= [o)} el
T T

trapped charge

<
to

time

100

e
—
T

0.01 |

transfer rate 1/t0A 63

T

0.001

distance

From combination of the last three equations, we obtain

and finally

Lkt
P = (1+(N—])7)

(26.10)

S

= (26.11)

kr

Hence, the relative yield shows an algebraic length dependence in agreement with

experimental data [152]

Py 1

Pi 14+ (N-DE

(26.12)
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Approximating the probabilities by a continuous function
P; = P(jAx) (26.13)
and the second derivative by a difference quotient

P  P(x+ Ax)+ P(x — Ax) —2P(x)

= 26.14

Ox? Ax? ( )
we obtain a diffusion equation (Sect.7.3)

oP OP?

— =D— 26.15

ot Ox? ( )
with the diffusion constant

D = kAx?. (26.16)

For large trapping rate k7 > k, the trap at the end of the chain can be represented
as a zero boundary condition. From the general behavior of the diffusion equation
(7.36), we expect that the transfer time will be proportional to the square of the
distance. A small trapping rate can be neglected for the kinetics. In this limit, the
transfer time becomes (Figs.26.3, 26.4) proportional to N [152].

26.2 Tunneling over Bridge States

Transfer through virtual states (Fig.26.5) with large energy gap (AE > kpT) is
described by higher order perturbation theory. In leading order, the matrix element
of the transition operator becomes

Fig. 26.5 Hole tunneling. C
States with energies above G*
the initial and final states

(AE > kgT) can not be real

intermediates. Hole

tunneling over one or more Vb Vb Vb

bridge states has to be SN N N

described by higher order _ . — e
perturbation theory Vd \% a AE
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AE \ AE
(26.17)

, , ViVa ( Vp !
Vorf =<ilTIf >=<ilVGo(E)VGo(Ef)...VGo(Ep)|f >= b

where 7 is the number of bridges and AE = E;, — E is the height of the potential
barrier. For hole tunneling, this leads to an exponential distance dependence of the
transfer rate

Vi (N) = Vge ™ (26.18)
2 -
k= % FCD Ve, (26.19)

26.3 Combined Transfer Mechanism

In general, both mechanisms are effective (Fig. 26.6). The charge hops from one type-
G nucleoside to the next one with a rate determined by the superexchange interaction

2
k; = % FCDV?, (26.20)

Fig. 26.6 Hole transfer by CAACACAAACCCGC
combined hopping and GTTGTGTTT GG G

tunneling

=
=
|
Y




Chapter 27
Proton Transfer in Biomolecules

Intra-protein proton transfer is perhaps the most fundamental flux in the biosphere
[153]. It is essential for such important processes as photosynthesis, respiration,
and ATP synthesis [154]. Within a protein, protons appear only in covalently bound
states. Here proton transfer is essentially the motion along a hydrogen bond, for
instance, peptide or DNA H-bonds (Fig.27.1) or the more complicated pathways in
proton-pumping proteins.

(a) (b)
%
0=c
IT*H" 0=cC s }\’
1\‘171{ o:c\Nﬂ_I N e )
|
o 1
H—O=C / N----- H— -
N-----H—0=C /
| SNeH—0= — >\
1‘\1 H—O0 F\N 77777 N \

Fig. 27.1 Proton transfer in peptide H-bonds (a) and in DNA H-bonds (b)

The energy barrier for this reaction depends strongly on the conformation of the
reaction complex, concerning as well its geometry as its protonation state. Due to
the small mass of the proton, the description of the proton transfer process has to be
discussed on the basis of quantum mechanics. This chapter begins with a discussion
of the photocycle of the proton pump bacteriorhodopsin. We introduce the double
Born—-Oppenheimer separation for the different time scales of electrons, protons, and
the heavier nuclei and discuss nonadiabatic proton transfer in analogy to Marcus’
electron transfer theory. We present the model by Borgis and Hynes which includes
non-Condon effects. Finally, we comment on adiabatic proton transfer.
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27.1 The Proton Pump Bacteriorhodopsin

Rhodopsin proteins collect the photon energy in the process of vision. Since the
end of the 1950s, it has been recognized that the photoreceptor molecule retinal
undergoes a structural change, the so-called cis-trans isomerization (Fig.27.4) upon
photo-excitation (G. Wald, R. Granit, H.K. Hartline, Nobel prize for medicine 1961).
Rhodopsin is not photostable and its spectroscopy remains difficult. Therefore, much
more experimental work has been done on its bacterial analogue bacteriorhodopsin
[155], which performs a closed photocycle (Figs.27.2 and 27.3).

Fig. 27.2 X-ray structure of
bR. The most important
residues and structural
waters are shown, together
with possible pathways for
proton transfer. Coordinates
are from the structure 1kzu
[133-137] in the protein data
bank [138, 139]. Molekel
graphics [65]

RET ASP85

I o @p96
GLU204

GLU194



27.1 The Proton Pump Bacteriorhodopsin 387
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Fig. 27.3 The photocycle of bacteriorhodopsin [156]. Different states are labeled by the corre-
sponding absorption maximum (nm)

Fig.27.4 Photoisomerization /w\m/\ g_) Lys216
H

of bR

I_Ly5216

Bacteriorhodopsin is the simplest known natural photosynthetic system. Retinal
is covalently bound to a lysine residue forming the so-called protonated Schiff base.
This form of the protein absorbs sun light very efficiently over a large spectral range
(480-360nm).

After photoinduced isomerization a proton is transferred from the Schiff base to
the negatively charged ASP85 (L — M). This induces a large blue shift. In wild
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type bR, under physiological conditions, a proton is released into the extracellular
medium on the same timescale of 10 ps. The proton release group is believed to con-
sist of GLU194, GLU204, and some structural waters. During the M state, a large
rearrangement on the cytoplasmatic side appears, which is not seen spectroscopically
and which induces the possibility to reprotonate the Schiff base from ASP96 sub-
sequently (M — N). ASP96 is then reprotonated from the cytoplasmatic side and
the retinal reisomerizes thermally to the all trans configuration (N — O). Finally,
a proton is transferred from ASP85 via ARGS?2 to the release group and the ground
state BR is recovered.

27.2 Born-Oppenheimer Separation

Protons move on a faster time scale than the heavy nuclei but are slower than the
electrons. Therefore, we use a double BO approximation for the wavefunction'

U(r, Rp, Q)X(Ry, Q)P(Q). 27.1)

The protonic wavefunction x depends parametrically on the coordinates Q of the
heavy atoms and the electronic wavefunction ¥ depends parametrically on all nuclear
coordinates. The Hamiltonian consists of the kinetic energy contributions and a
potential energy term

H=T,+T,+Ty+V. (27.2)

The Born—Oppenheimer approximation leads to the following hierarchy of equations.
First all nuclear coordinates (R, Q) are fixed and the electronic wavefunction of the
state s is obtained from

(Tet + V(r, Ry, Ds(r, Rp, Q) = Eers(Rp, QU5 (r, Ry, Q). (27.3)

In the second step, only the heavy atoms (Q) are fixed but the action of the kinetic
energy of the proton on the electronic wavefunction is neglected. Then the wave-
function of proton state n obeys

(Tp + Eer,s(Rp, QN Xs.n(Rp, Q) = 5,n (D) Xsn(Rp, Q). (274)

The electronic energy E.;(R,, Q) plays the role of a potential energy surface for the
nuclear motion. It is shown schematically in Fig. 27.5 for one proton coordinate (for
instance the O-H bond length) and one promoting mode of the heavy atoms which
modulates the energy gap between the two minima.

'The Born-Oppenheimer approximation and the nonadiabatic corrections to it are discussed more
systematically in Sect. 17.1.
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Fig. 27.5 Proton transfer potential. The figure shows schematically the potential which, as a func-
tion of the proton coordinate x, has two local minima corresponding to the structures--- N —
H---O---and---N---H — O--- and which is modulated by a coordinate y representing the
heavy atoms

S S

R
Ry Ry p

Fig. 27.6 Proton tunneling. The double well of the proton along the H-bond is shown schematically
for different configurations of the reaction complex

For fixed positions Q of the heavy nuclei E.;(R,, Q) has a double well structure
as shown in Fig. 27.6. The rate of proton tunneling depends on the configuration and
is most efficient if the two localized states are in resonance.

Finally, the wavefunction of the heavy nuclei in state « is the approximate solution
of

(Ty + Es,n(Q))(ps,n,a(Q) = Es,n,a¢s,n,a(Q)' (27.5)
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27.3 Nonadiabatic Proton Transfer (Small Coupling)

Initial and final states (s, n) and (s’, m) are stabilized by the reorganization of the
heavy nuclei. The transfer occurs whenever fluctuations bring the two states in res-
onance.

We use the harmonic approximation (Fig.27.7)

exn(Q) =) + %’(Q — 0 4+ = £0(Q) + (Esn — £50) (27.6)

similar to nonadiabatic electron transfer theory (Chap. 16). The activation free energy
for the (s, 0) — (s’, 0) transition is given by

. (AGo+ Ep)?
AGH, = ZTRR (27.7)

and for the transition (s, n) — (s’, m) we have approximately

AGfLm = AG(:) + (Esm — €50) — (Eyn — E50)
_ (AGo+ ER +€sm — €y — €50 + 53’0)2

27.8
4E g 278
The partial rate k,,, is given in analogy to the ET rate (16.23) as
ko = 27 exp [ - 20 (27.9)
m = — K, €Xp{———"1. .
2 P T T

The interaction matrix element will be calculated using the BO approximation and
treating the heavy nuclei classically

Fig. 27.7 Harmonic model
for proton transfer
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Vnen = [ dr dRy 6.0 Re. @Ry @) V. X Ry Q. R Q)

= /dRp (/dr Us(r, Rp, )V (r, Rp, Q)) Xsn(Rp, Q)Xsm(Rp, Q)

= [ AR VIR 0 X (R O Ry O
The electronic matrix element

v = / s (r Ry, Vo (r, Ry, Q)dr (27.10)
is expanded around the equilibrium position of the proton R},

VAR, Q) ~ V(R Q)+ -+ 27.11)
and we have approximately

Vansm ~ VL (R, Q)SI(Q) (27.12)

with the overlap integral of the protonic wavefunctions (Franck—Condon factor)

Sén:fl(Q) =/X311X3’dep (27.13)

27.4 Strongly Bound Protons

The frequencies of O-H or N-H bond vibrations are typically in the range of
3000 cm~! which is much larger, than thermal energy. If on the other hand, the barrier
for proton transfer is on the same order, only the transition between the vibrational
ground states is involved. For small electronic matrix element V¢, the situation is very
similar to electron transfer described by Marcus theory (Chap. 16) and the reaction
rate is given by [157] for symmetrical proton transfer (Ex > AGy, AGEO = Er/4)

21V 1 Eg
k = (U ——= ). 27.14
o\ 47kT Ex e"p( 4kT) (27.19)

In the derivation of (27.14), the Condon approximation has been used which corre-
sponds to application of (27.11) and approximation of the overlap integral (27.13)
by a constant value. However, for certain modes (which influence the distance of the
two potential minima), the modulation of the coupling matrix element can be much
stronger than in the case of electron transfer processes due to the larger mass of the
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. _ 0) 0) : .
proton. The dependence on the transfer distance §Q = Q,’ — Q'? is approximately
exponential

Viosio ~ e~ 02 (27.15)
where typically o & 25---35A~! whereas for electron transfer processes typical
values are around o ~ 0.5--- 1A', Borgis and Hynes [157] found the following

result for the rate when the low-frequency substrate mode with frequency §2 and
reduced mass M is thermally excited

2r < V> 1 AGio
k= — 27.16
I\ 4rkT4AG,, " ( kT ) Xse (27.16)

where the average coupling square can be expanded as

V2 s= 12 ot T 2o (02 27.17)
< >= €X _— E— —_— .
0P\ oy | he T BkT kT

the activation energy is

s h*a?
AGy = AG 27.18
tor iy ( )
and the additional factor y g¢ is given by
YsckT
_ 1= e 27.19
Xsc = exp ('YSC ( 4AG,0,)) ( )
a<D>
Ysc = Mo (27.20)
where
D= 6AH(Q ) (27.21)
=30 0 .

measures the modulation of the energy difference by the promoting mode 2.
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27.5 Adiabatic Proton Transfer

If V¢ is large and the tunnel factor approaches unity (for s=s’), then the application
of the low friction result (8.28) gives

w AGEad
pl—

knm =&
27 kT

where the activation energy has to be corrected by the tunnel splitting

1
AGﬁrLrid = AG:;m - EAgilq)m
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Chapter 28
Proton Coupled Coherent Charge Transfer

Photosynthetic reaction centers perform light induced charge separation over a mem-
brane with a high quantum yield of 95%. Since the structure of the membrane com-
plex of the bacterial reaction center of Rps. viridis has been resolved, by Michel,
Deisenhofer and Huber (Nobel prize 1985), it became a great challenge to resolve the
observed dynamics on the basis of the structure information. The ongoing research in
the field is motivated by the hope to learn from nature, how to improve the efficiency
of artificial solar cells. We start with the so called step model, where the transfer to the
primary stable acceptor proceeds via an intermediate in terms of two nonadiabatic
electron transfer rate processes. In the second part we provide information on the
involvement of reversible proton shifts, which modulates the electronic coupling via
adiabatic delocalization of hole states. Finally we simulate coherence effects, which
support the more complex model of coherently modulated superexchange.

28.1 The Nonadiabatic Electronic Incoherent
Step Transfer Model

In Fig.28.1 the prosthetic molecules are shown together with experimental transfer
times. Most notable is the inverted ordering with the first transfer step between the
excited special pair dimer P, consisting of the two bacteriochlorophylls P, and Py,
to the so named accessory bacteriochlorophyll monomer B , being about four times
slower than the second step to the bacteriopheophytine Hy . This inverted-kinetics
model explains many features of the time resolved spectra. In this section we want to
test to what extent our knowledge of the spectral function is capable to simulate the
observed temperature dependence and magnitude of the two postulated rate processes
P* — P*™B; and B, — H; .
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Fig. 28.1 Electron transfer
processes in the reaction
center of bacterial
photosynthesis. After
photo-excitation of the
special pair dimer P an
electron is transferred to
bacteriopheophytine H; in
few picoseconds via
bacteriochlorophyll By . The
electron is then transferred
on a longer time scale to
quinone Q4 and finally to
QO p via a non-heme ferrous
ion. The electron hole in the
special pair is filled by an
electron from the hemes of
the cytochrome c (orange).
After a second excitation of
the dimer another electron is
transferred via the same
route to the semiquinone to
form ubiquinone which then
diffuses freely within the
membrane. The figure was
created with rasmol [140]
based on the structure of
rps.viridis [61-64] from the
protein data bank [138, 139]

28.1.1 The Rate Expression

28 Proton Coupled Coherent Charge Transfer

We discuss a model for biological systems where the density of vibrational states is
very high. The vibrational modes which are coupled to the electronic transition' are
treated within the model of displaced parallel harmonic oscillators (Chap. 19). This
gives the following approximation to the diabatic potential surfaces

0 W 5
r
EiZEi+§ 54
r

(28.1)

Iwhich have different equilibrium positions in the two states li> and If>.
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Ef=EY+ Z — Ag,)? (28.2)
and the energy gap
(wy AC]r >
E;—E _AE—i—Z Zw AGrq,. (28.3)

The total reorganization energy is the sum of all partial reorganization energies

Ep=Y 29 (erq’ Z 2w, (28.4)

r

with the vibronic coupling strength

. Ag,. (28.5)

The golden rule expression gives the rate for nonadiabatic electron transfer in analogy
to (18.40)

1)) 5(AE - Zhw (n, — nr>)

FCD(AE) (28.6)

nyn,

_ 27V?2

where the Franck Condon weighted density of states FCD(AFE) can be expressed
with the help of the time correlation formalism (Sect. 18.4) as

1 .
FCD(AE) = ﬂ/dt e AEINE (1)
T

F(t) = H exp (g7 (€ — D(m, + 1) + (7" — D) (28.7)

with the average occupation numbers

_ 1

Quantum chemical calculations for the reaction center [158—161] put the electronic
coupling in the range of V =5---50cm™! for the first step P* — P*B~ and
V =15-.-120cm™"' for the second step P* B~ — PTH~. For a rough estimate
we take a reorganization energy of 2000 cm~! and a maximum of the Franck Con-
don weighted density of states FC D ~ 1/2000 cm ™! yielding an electronic coupling
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of V. =21cm™! for the first (3.5 psec) and V = 42cm™! for the second (0.9 psec)
step in quite good agreement with the calculations.

28.1.2 Application of the Saddle Point Method

The main contributions to the reorganization energy for forming the anions B; and
H| originate from coupling to internal vibrations of the chromophores which show
a peculiar behavior due to the quasi 2-dimensionality of the w—electron systems. We
performed ab initio (631G/HF) calculations [117] to evaluate vibronic coupling para-
meters and partial reorganization energies. The density of normal modes is roughly
constant p(hw) =< Zj d(hw — hw;) >~ py between 30 . ..2000 cm~!(Fig. 17.3),
as well as the distribution of partial reorganization energies A(fiw) =< > i o(hw —
hwj) >~ Agpo. Correspondingly, the distribution of % (hw) = Mhw) /hw o hw™!
and its integral can be fitted by a logarithmic dependence (Figs.28.2, 28.3)

2 — By e [ 2000 oy = AopoIn — 28.9
<D g0 — hwj) >~ | ) = dopoln o (28.9)
j Wmin

min

Since we are dealing with a multi mode system with intermediate strong cou-
plings the application of the saddle point method is advisable [162]. However, we
have to exclude those modes as energy acceptors, whose quanta exceed the free
energy change. They must be factored out as 0-0 Franck Condon overlaps. That
means, the reorganization energy involved in the dynamics becomes energy depen-
dent due to the quantum effect of the high frequency modes. So we get for the case
kT < AG < hwpge With

Fig. 28.2 Calculated
distribution of vibronic
couplings for BChl and BPh.
The dashed curve shows a
logarithmic fit of the
cumulative distribution of gz,
the dash dotted curve shows
a linear fit for comparison

Egz
[ 38} (9%} BN

—_
T

2
g
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Fig. 28.3 Distribution of =" 4000
reorganization energies for g 3000 I
BChl and BPh. The dashed ; L
curve shows a linear fit of the %‘3 2000
cumulatl\;e distribution of 5 1000
)\ = Fng g L
g 0
N 5000
g -
S 4000 |
g 30001
5 2000
£ 1000 | 1
= 0 I I I .
0 1000 2000 3000 4000
normal mode frequency (cm_l)
2
AG = Ag+ ) hw;g; (28.10)
j
and
hw,
> 2 e PoAo hewpax
FAG) = > g :/ d(hw) =2 = poroIn (28.11)
AG hw AG
w;i>AG
corresponding to
5 AG \7 Ao
e 9 (A0 = (—) (28.12)
hwmax

the following rate expression

V2 [ AG N [0 _AGt
k= 7\ dt exp | —i =
max —0Q

AG Ao E E
n / dE pop () + DEF = 1) + By - 1)]]
0 E

2 PON0  poo
_Y (i) / dtexp[—it%—f-f(t)]. (28.13)

2 hwmax —00

The equation for the saddle point 7, reads

LIAG 4f@) _ 4G

0:
h+dt h

+/AGdE 20 u() + el —n(eyi e
— 1—e h™ — 1—e h¥

0 PE " I ENT
(28.14)
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which we can linearize in E/ht; for kT < AG < hw,, and poAg to get

4G 1 \AG + NAG? 42 /\/AGdE (E) =0
h hﬂo 0 2h2'00 0 h2P0 0 ; n =Uu.
(28.15)
With the solution for the saddle point
t 2AG(1 — poA
2= ( 0 ) (28.16)
200 (AG2 +4 29 dE En(E))
the second derivative of f is
a2 A
d—t{ = ”%20 dEE [elﬁf(n(E) +1) +el%fn(E)]
_ Podo podo [ AG? /AG
dEE 2n(E)+1) = — 2 dEn(E)E).
ol @n(E) + 1) h2(2+0 n(E)
(28.17)
The integral over n(E)E can be approximated for AG > 2kgT
with an error not exceeding 10% by
0o 7-(2
/ dEn(E)E = (kBT)ZZ. (28.18)
0
So we find
de /)0/\0 AGZ 7T2 2
— - —(kgT 28.19
3 h2(2+3<3)) (28.19)
and
2AG(1 — po
1/l = — (= podo) (28.20)

poro (AG? + 372 (kpT)?)

Performing the Gauss-integration around the saddle point 7, gives the result in alge-
braic form

V2 [ AG "N ., AG ) 2
= — exp § —it— s —_
12 \ 'omas P h IV T

- ‘ﬁ (AG)pOAO 2mh? exp § — AG(1 = poo)?
T OR2
W2 \ hmax podo (48 + 5 (ks T)?) podo (287 + §m2ksT)2)

(28.21)
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It holds for 2kgT < AG < hwy,ax and gives for the special case
poro =1

V2 ([ AG 2
k= ( . ) — T . (28.22)
Wmax ( > + %(kBT)Z)

For AE = 0 corresponding to AG = poAohwiax and hwy,e > kT the result
has the simple form

2 _ 2
_ VTV xp[—z(l pOAO)]. (28.23)

(0 M) W2Winax PoAo

The expression (28.21) applies to non adiabatic electron transfer between large
molecules with a coupling to a quasi dense set of vibrations reminiscent of a two
dimensional solid. The constant density together with the equally distributed reor-
ganization energies lead to a very specific dependence on the free energy change
and on temperature. For low temperatures (2kg7T < AG) and AG < hwyqy, Ink
shows a long plateau as a function of AG between AG = kgT and fuwp, instead
of the classical bell shape structure. The rate is almost temperature independent in
this regime, with a tendency of weak temperature inversion. The inversion regime
is most extended for the special coupling case pgAg = 1. For very large values
AG > hwmax > kpT the rate follows an energy gap law [163]

L 2T V2 AG | AG 2(1 = po \o)*
= X — n — .

(o X0)*/? B2 Wimax P Pwmax I winax PoAo £0 Ao
(28.24)

We can extend the algebraic expression (28.21) into the range 0 < AG < 2kgT
approximately by replacing in (28.7) the lower cut-off energy AG by AG + 2kgT.
This leads to the following rate equation for 0 < AG < hwmax + 2kpT:

L V2 (AG+2/<BT)W° 27h2
— S X
2 2
h Momax PoAo (_(AG+§](RT) + %z(ks T)z)
AG (1 = poXo) — 2kgT poro)?
wexp ] — (AG(1 — poAo) BT poo) (28.25)

podo (LFZTE 4 Lr2k, T)2)

The analytic approximation (28.25) can be used to simulate the rates for the
step model on the basis of calculations for the partial reorganization energies and
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calculated couplings. This approach has to be extended if one considers mutants.
For instance, a weak dependence of the charge separation process on AG and on T
has been found for mutants [164] which differ substantially in their redox potentials,
but which are insensitive towards changes in their rates, contrary to predictions
based on the energy gap law. This stability against changes in AG is certainly an
evolutionary advantage to assure a robust functioning. Also the strong suppression
of recombination and the universal activationless rates need better understanding.

28.2 Heterogeneous Superexchange Coupling

Heterogeneities are well documented by stimulated emission from P* [165]. Here we
want to concentrate on their influence on the superexchange coupling. We consider
electronic superexchange coupling Vi between the donor P* and the acceptor PY H,
bridged by the intermediate P™ B, . We get for the coupling squared

2V?2
V2= V2 = V2. (28.26)
PV A2 +4VIH | A VA2 +4V?

This expression results from the diagonalization of the 2 x 2 electronic Hamiltonian
of the states P* and P*B, . With V = V(P*B,, P*) and V' = V(P*B., PTH)
and PTHy, A is the zero order energy difference between P*B; and P* prior to
diagonalization, and ¢ is the P*B; -component of that eigenstate which lies in
energy closer to the initially excited donor. Implying a vibrational quasi-continuum
of acceptor states we obtain the superexchange rate

2
ky = % V2FCD, (28.27)

with the Franck-Condon weighted density F'C D corresponding to the true energy
release AG between P* and P* H; . Inserting here V? from (28.26) and introducing
the rate

2w 12
k== V?FCD (28.28)

we get for A-dependent rate

B 2v? '
YT A avi A VAT AVE
This expression contains the common superexchange rate for large values of the

energy spacing between PTB; and P*. If one neglects V in the denominator, k4
goes over into (V2/A%)k with A replaced by its average A..

(28.29)
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So far we did not include vibrational degrees of freedom explicitly in the energy
denominator for the heterogeneous components of our distribution. The slow vibra-
tions with w; < ks contribute actually to our distribution, and the faster may be
averaged by arguments given in [166], as long as the superexchange limit A > V is
realized. For the near resonance components we still use the superexchange coupling
expression, since we treat the interaction in a non perturbative way. This treatment
differs in that respect from the resonance Raman model with slow vibrational relax-
ation of Sumi and Kakitani [167].

The width of CT states is around 0.1 eV [168]. It is mainly due to heterogeneous
broadening. We will show how this modifies the transfer dynamics. The effect is
particularly strong for near resonance superexchange processes, since small varia-
tions of near resonance intermediate energy gaps have a large effect on the transfer
rate. Considering a Gaussian distribution G(A) with mean value A, (the subscript
‘¢’ stands for ‘center’) and with the rms deviation o from A,

(28.30)

_ 2
G(A) = 2rn o)™V exp [—M]

202

we get the following expression for the dispersive decay of the initially excited state

00 o0 A—A)?
P(t) =/ G(Ae ™ " dA = 2mo?)~1/? / exp[—(2—2) —kAt] dA.
—00 o o
(28.31)
If we introduce the dimensionless quantities
A
LA (28.32)
g g

and consider the typical ordering small v (< 0.5)and § 2 v, P(r) can be approximated
within error less than 10% by

(28.33)

P(1) = exp [_6_52/2 vkt Ov ki ] :

1+ vkt 0 +2vVkt

In the short time limit k# < min(1, §°v~2/4) we find an exponential decay with the
initial rate k;

2
ki = ko + ks =2 vk + g—z k. (28.34)
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The first term, ky,, is the rate of a system which has the states P* and P* B, in near
resonance (v/d < 1), and the second term, k;, is the superexchange rate for a large
central gap (v/d < 1). In the long time limit kz > max(1, 5°v~2/4), we get from
(28.33)

P(t) = exp [— (6_52/2 + g) v JE] . (28.35)

The first term in k,, dominates for kt < 1, k,,, > k; and v < § < 1, which can be
expressed in terms of the original quantities V, A and ¢ as

V <] A< o (28.36)

The rate ky is proportional to vk = (V /o)k. To understand this dependence, we
consider the distribution G(A) of the (‘real’) energy gap A, which originates from
the diagonalization of the electronic Hamiltonian of P* B, and P*,

G(A)=G(A) | d—AN | (28.37)
dA

with
A =sign(A) VA2 +4V2, (28.38)

Distinguishing between cases, with the energy of the intermediate state lying above
or below the energy of the donor state, respectively (subscripts ‘+” and *-), we
consider the restrictions of G(A) on the positive and negative A- half axes G (A)
and G_(A),

G (A) for A >0

G_(A)yforA<0" (28.39)

G(A) = [
Using (28.37) and (28.30) together with the inversion of (28.38) for A,

A =signAy/ A2 —4 V2 (28.40)

where | A | > 2V, we obtain the distributions of the signed energy gap A,

1 | A | (£V A2 —4V2 — A)?
€X —
V2o J A2 — 4 V2 P 202

as well as the respective contributions P (¢) to the donor decay function

Gi(A) = (28.41)

P(t)=P.(t) + P_(1) (28.42)
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Pi(t) = /OO Go(A)exp {—kA(A)t} dA. (28.43)
2V

The A-dependence of k, results by substituting A from (28.40) into (28.29),

2v?

— k.
A4 | A| VA —4V?

We can evaluate now the average superexchange rate k expressed in terms of the
energy gap A,

ka(A) =

(28.44)

k :/ [ka(A) G (A) + ka(A) G_(A)]dA. (28.45)
2V

Invoking (28.36) one finds that the main contribution of the integrand to the integral
in (28.45) originates from the subrange of the integration variable A with a lower
limit of 2V and an upper limit of 3V and that the Gaussian function G(A) varies
only little across this range. Hence, after substituting (28.41) for (~?+(A~) and G_(A)
into (28.45), we can approximate this function by its value at the gap edges A = £V,
and obtain

k 2 [ A ] ” 4 ka(A) dA (28.46)
= —¢eXp)1—= —_— , .
V2mo P 202 2V VA2 —4V2 4

and in terms of the new integration variable x = A + v A2 — 4 V2

k 4k e A /Oc Vzd ,/ze A; Vk (28.47)
= ——¢exXp|— —dx =,/ — expqi— — K. .
2o P 20’2 2V .XZ ™ P 20'2 Ac

The average rate k thus differs from the near resonant rate k, only by the constant
factor o/2/m ~ 0.8 (28.34). The linear dependence in V of the prefactor to k in ky;
for fixed o, compared to the quadratic of kg, can thus be visualized as the linear
decrease with V of the dashed areas below the integrand functions ka(A) Go(A),
which enter the average rate expression via (28.45) (Fig.28.4a, b). This decrease
has its origin in the diminished participation of near resonance states for decreasing
V and fixed o. It is due to the state repulsion at near resonance conditions. The
occurrence of the dip in the gap distribution with a width of 2V (Fig.28.4a, b)
can also hamper the equilibration in the intermediate state. At the same time the
electron delocalization at the dip edges reduces the coupling to the vibrations. Both
effects diminish the formation of incoherent population of the intermediate P B,
and that may reduce the recombination P* B, — P B;. The arguments hold also for
the energetic low dip edge. Only at energetic distances below the dip center by more
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Fig. 28.4 Gap distribution.
The gap distribution G(A)
and the integrand of the
average decay rate are shown
for small V. The area below
the integrand in the upper
part of the picture is half as
large as in the lower part.
This reflects the linear V
dependence of the decay rate
in the small V limit due to
level repulsion at gap edges
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than 2V the relaxation will destroy the coherent transfer and the two step mechanism
can evolve in competition with the recombination. So we conclude, the loss from the
near resonance coherent transfer will come from P_(¢). A square root dependence
for P, (¢) dominates the kinetics for ¢ < 1 and k¢t > 1 (Fig.28.5). For ¢ 2 1 the
second term of (28.33) dominates. In this case the exponential drop off can be large.
We see that a non-exponential decay pattern is a natural outcome of the dispersive
character of the superexchange coupling.

To understand the inverted temperature dependence in more detail we like to point
at the close similarity in the temperature dependence of the charge separation rate
and the position and width of the absorption peak of P* [169]. In the latter case we
have to consider the strong one-electron interaction of about 0.15 eV [170] between
the state P* and the internal CT- states of the dimer, P]CI P, and PZ P,,. The energies
of the internal CT states increase for increasing temperature and this causes the blue
shift of P*. This conclusion is consistent with the observation of a strong broadening

Fig. 28.5 Donor decay via
heterogeneous
superexchange. Parameters
as in Fig.28.4. The
contribution Py is from
states with energies above
the donor energy

1.0
N A =0

0.7 PN\~ ¢ .
PN T V/6=0.1

051 N R — 4

T V/6=02
02y S :
-- P® R

01 | | |

0 25 50 75 100

time kt



28.2 Heterogeneous Superexchange Coupling 407

of the Stark spectrum only for the lower of the two split dimer bands of P [171]. The
strength of the Stark spectrum provides information on the coherent admixture of
the CT states into these exciton bands. To relate the temperature dependence of the
energy shift and width of P* to that of the transfer rate from P* to H;, we have to
scale the admixed components of the corresponding CT states to P*. In first order
perturbation these are given by the ratio of the corresponding couplings to the related
mean energy gap A.. For the P* spectrum this is a factor of about 0.2 [170]. A similar
value for the superexchange coupling V /A, = 0.2 between P* and P* B, is larger
than predicted by quantum calculations but can be reached by a relaxation preceding
the transfer process (Sect.28.5). Such a process provides the proper amplitude for
the appearance of the P™B; state in the simulated time resolved measurements
(Sect.28.5). So we can take the spectral data as empirical input for the determination
of the parameters of our model. To quantify the temperature dependence of CT
states, we like to refer to spectra of solvated electrons. Their absorption peak position
decreases with increasing temperature [172]. The same holds for the solvation energy,
which is responsible for the spectral shift [173]. We can approximate the temperature
dependence of the shift by [172]

c a T?
=1+ — =T 28.48
A? * T, T+T, o) ( )

with A? = A.(T = 0) and room temperature 7, = 300 K. The parameter a is given
asa = 0.5 [172], and for the temperature T we assume 50 K, a value at which struc-
ture fluctuations freeze out. To specify the temperature dependence of the width we
use the observation of Kirmaier and Holten, that the relative shift and width dependen-
cies are proportional to each other [174, 175]. From the expressions (28.32)—(28.35)
and (28.48) we get the temperature dependence for the parameters v and ¢ as

v v o,

v=—=—a (T) (28.49)
g ago
Ac

§=225 =4, (28.50)
(o

withog = (T = 0) and 9 = 6.(T = 0). For P(t) we find a temperature dependence
via a(T) as (see Fig.28.6 for 30 and 300 K),

(28.51)

0
P =exp[_m(T)kt 2k (T) Kt ]

1+vVkr  02a(T)+2/k01
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Fig. 28.6 Donor decay for 1.0 , , , : 1
heterogeneous i A0)/6(0)=15 ]
superexchange. The decay of | B
P* is shown versus time in 0.5 Vi/o)=0.15 ]
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(A)?
14 6
k1(T) = — exp (—— a (1) (28.53)
ago 2
a2
ko(T) = — a”N(T). (28.54)
20p

In Fig.(28.6a—c) the temperature dependence of the square root and exponential
components

ko = kik and  k, = kY (T) 2 (28.55)

are shown. Experimentally, the inversion effect on the temperature is found to be
higher for the faster component [169, 176, 177]. This would imply in our model that
the temperature dependence of the width ¢ might be stronger than that of A.. Also
destruction of the coherence by the temperature would point in this direction.

We should mention that the simulation of the initial charge separation by a sta-
tionary near resonance process can get in conflict with Stark effect measurements.
They are well interpreted as resulting from the internal CT states of P [178]. A strong
admixture of a near resonance states P* B, should show up in the orientational effects
[179]. At the same time we need relatively small A -values in order to get an efficient
transfer. The conflict can be resolved if we incorporate an initial relaxation of P* on
the sub-picosecond timescale, which lowers the P™ B, into the energy range of the
excited state B} .
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28.3 Proton Coupled Superexchange

Even though it is possible to simulate the time dependence of many reaction centers
including mutants within the frame of the step models or the superexchange model,
there are fundamental short-comings, which we shall address in this section. The
suppression of recombination is in the step model related to the inverted transfer
kinetics. It implies that the first step, the transition from P* to the charge transfer
state (CT-state) P™ B, is slower than the second from P*B; to P*H; [180]. The
implicit assumption is that a rapid relaxation in P* B, precedes the nonadiabatic
transition to P B, . This assumption of equilibration on a 100 fs time scale is in
conflict with the observation of coherent oscillations, observed with correlated phases
by detecting stimulated emission from P* as well as transient absorption of B, [181].
Alternatively, we will consider now the adiabatic evolution of the state mixing driven
by low frequency librational modes, which affect the hydrogen bonds over long
distances. This approach incorporates specific structure properties of the dimer such
as the C2-symmetry and its dynamic breakage. We make use of ab initio calculations
of the TDHF type, which incorporate the electronic one-electron interactions. The
analysis of the eigenstates provides evidence for hole transfer via the excitonically
coupled P* and Bj states. We simulate the dynamics in the P* state by the application
of an electric field, which shifts the P*B; state in the energetic regime of the B
state. The field mimics that way the high polarizability of the P* state, which shows
up in the Stark spectrum of the dimer [182]. Apart from a proper field modulation
we search for a reaction coordinate by varying hydrogen positions involved in H-
bonding (Fig.28.7), capable to lower the energy of the P* B, state in the presence
of the P* state. The participation in the proton dynamics is also documented by
mutation and modifications of the structure.

For instance, rotation of HisL.168, which can be induced by the excitation lowers
its H-bond strength to the oxygen of the P, acetyl. It reduces that way the electron
affinity which increases the electron delocalization. Internal structure changes within
the P* state are due to a planarization of the acetyl with the pyrrole I ring, lowering
the energy via extending that way the m—system of P;. Such structure effects are
supported by the structure of a mutant HisL.168 replaced by tryptophane, the only
mutant, which does not form a H-bond but enhances the charge separation. This
structure can act as guidance to readjust the acetyl configuration for an internal
P* state which we denote as P**. In Fig.28.8 two examples are shown, which
demonstrate how the absorption spectra change when the CT state P B, approaches
B} and P* as a function proton shifts and electric field. The configuration with
optimized coupling will act as the activationless “transition state” for the fast charge
separation. It has been shown, that the time resolved transient spectra of P* can also
be reinterpreted in such a model. Sub-picosecond dynamics in P* is also observed
by transient vibrational spectroscopy, showing changes of the acetyl structure. In
addition it is important to shift H-atoms of the water, bridging to HisM200 and the
keto group of By, stabilizing the P B, state. Most sensitive is the approach of the
protonic hydrogen from TyrM208 towards B . From the intensities and the splittings
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Fig. 28.7 Hydrogen bonds around the special pair. The acetyl oxygens of the special pair dimer
P are hydrogen bonded to HISL168 and TYRM195. A water molecule bridges between HISM200
and Bacteriochlorophyll By . The proton of TYRM208 is not involved in a hydrogen bond and can
move towards P or By,

of the interacting states one can extract the one-electron coupling V and the excitonic
interaction W. For increasing field strength and proton shifts the spacing between the
LUMO and the HOMO of B; reduces relative to those for P by about 1000cm™". Such
shifts resultin aredshift of the B} absorption and an increase of the excitonic coupling
between P* and B;. Continuous changes are strongly correlated and adiabatic. We
tried to assure that the dynamic changes effect the spectra in an exothermic manner.
We found out that the one-electron coupling between B} and P B; , which relates
to the hole transfer from the HOMO of P to that of B is surprisingly strong (about
100cm™"). This fact we take as main source for the coherent hole transfer model.
Experimentally, it is supported by the observation of a very fast, sub-picosecond,
charge separation after excitation of B} . In an earlier publication [183], the possible
involvement of B} as virtual intermediate had been considered on the basis of semi
empirical (PPP/CI) calculations. New is the involvement of hole transfer. It plays a
major role in light induced biological processes, mostly in combination of excited
state proton transfer. Its role in the primary step in photosynthesis is in the forefront
of research.
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28.4 Coherent Dynamics

Coherent oscillations result from the excitation of vibrational wave packets. They can
be generated in the excited state, but also in the groundstate through stimulated Raman
scattering. In the reaction center an impulsive reorientation of the acetyle of P, is
induced together with an orientation change of HISL169 , which reduces the strength
of the hydrogen-bond between these molecules. This change initiates an oscillating
modulation with the dominant frequency €2 of the charge distribution between the
dimer halfs P, and P, by means of admixing a variable PL+ P,, component to the
state P*. This component is strongly coupled to the P;" B; charge transfer state. It
can be occupied via the hole transfer, that is the electron transfer from the HOMO of
P to the HOMO of By, if B, is excited. We propose, that the excitonically admixed
component of B} into P* is increased in the relaxed configuration P** that the
protonic wave packet follows the reaction coordinate for the enhancement of the
P* B, character of the P** state.
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To obtain the decay of the P* state, we consider first the decay of B . In damping
approximation (17.49), we have

e HIM BE > = g HEBD/hk/2 px (28.56)

The decay into the CT state P™H, involves the electronic one-electron coupling
between the LUMOs of By and Hy, closely related to the second step in the incoherent
step model. Finally we incorporate the excitonic coupling between P** and B}
with their mixed orbitals. We treat the excitation induced relaxation of the CT state
P* B; semiclassically. When it gets in near resonance with the B} state the two
states undergo avoided crossing with a splitting of 2U},. For an heterogeneous energy
distribution of the CT states, the split states denoted by + and — signs for the lower
and upper components respectively, we get

ki =alk (28.57)
with
2 _ | (1 + A ) (28.58)
a, = < —————— .
72 VAT L 402

Inlowest order perturbation the decay of the mixed (P* B, , B}) state is coupled to the
decay of P** state via the excitonic coupling V (P*, B}) to yield the superexchange
rate k, for the electron transfer from P* to PTH; as

* * 2
ky = ks (M) . (28.59)
E(B}) — E(P*)

The decay of B is on the 100 fs time scale. In the estimate of the reduction factor due
to coherent admixture between the B} into the P* state, it should be noted that the
energy difference incorporates the Franck Condon overlaps with excited vibrational
modes including C-C stretches in the energy regime of 1000cm™'. As a result the
energy difference has to be weighted by the effect which reduced the effective energy
difference seen in the ground state absorption. With this in mind a lifetime around
1ps becomes reasonable. The model avoids solvation of the not equilibrated relaxing
intermediate P+ B, . It helps to interpret the oscillatory features observed for the
P* decay and the same time the phase coupled oscillations in the detection of the
B~band at 1020 nm. We will interpret these oscillations now in more detail.

28.5 Coherent Oscillations

The anionic band P* B, can be observed via transient absorption between 1020 and
1040nm [184] Here we analyze the time evolution of the time dependent population
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of the P+BZ state denoted as Py (¢) as well as the oscillating contribution P, (t)
resulting from the short pulse excitation in the diabatic representation. It reads

Pi(t) = L /oo dA v exp | - A4 407 1 14—2 N
* V20 J-c0 A2 44072 P 202 2 /A2 1472
(28.60)

1 o 2 A—AD)? k
Pm(z>=%[2/ an 2 p{—(‘)—ztﬂdm”

V2o T ATz 202
(28.61)

Here U is the one-electron hole interaction between BL* and P*B,, A is the
energy difference between the diabatic states By and P™B;, and A? +4U? is
the corresponding adiabatic energy difference. The integral over the Gauss-function
accounts for the average over the heterogeneous distribution with the weighting fac-
tor U?/(A? 4 4U?) representing the delocalization. The width of the distribution is
given by o. For P the integral over A can be evaluated by the saddle point approxi-
mation. We get the saddle point A, from the derivative of the two exponents, which
must be zero. This condition yields for the oscillating term the implicit equation for
the saddle point

202Ukt

AT AR G A

(28.62)

Coherent vibrational oscillations are usually quickly damped out. However, we
should remember, that the energy difference between two adiabatic states coupled by
U has 2U as a lower limit. The probability to find this limit is shown in Fig.28.4. It
diverges at the boundaries splitting the distribution in two section G ... Their relative
weight depends on A,. At this point we must remember that the excitation of P*
induces a protein dynamic. That means the distribution is not static. The inhomo-
geneity results from the disorder of polar groups or water molecules. The driving
force reacts to the polarization induced dipole of the dimer. The response is gated by
the protonic configuration changes. They drive the whole distribution. In first order
we keep the Gaussian form and shift only A.(¢) towards Bj. Its energy will be red
shifted as long as the charge transfer state P* B, falls not below B;. That implies
that there will be a high probability to find P* B; at the turning point A, = 0. With
this in mind we expand A, around this configuration, which characterizes also the
P** configuration. The solution of (28.62) is in first order in A;/4U given by

202Ukt

A=A+ -
(Ag +4U2 + 6U«/2kt)

(28.63)
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So we get in first order for small k¢

U? kt 1 A,
Pi(t)zmexp -U ﬁ exp —5 lﬂ:mkf .

(28.64)

This probability has to be multiplied by the excitonic coupling factor to yield the
probability for the real admixed portion of the P B, component in P**

V2

P*(PYBy) = P.(t )
L ( ) "+ ( )(E(BZ) - E(P**))2

(28.65)

The predictions from this result are of special interest from the point of optimiz-
ing the primary charge separation process in photosynthesis. Heterogeneities cause
non exponential quasi dispersive kinetics, but the efficiency for high yield remains
extremely high due to the superexchange character of the decay. It avoids rapid local-
ization followed by internal conversion of the B* B state. The coherent character
of the process is manifested by the observations in the stimulated emission from P**
phase related to the observed admixed P* B; .

Poge(1) = € ;)2 QQt)e /2 (28.66)
osc = ﬁ (E(Bz) — E(P**) COS e . .

If A.(t) is modulated by a frequency of 32cm™! and if the Gaussian integral
is applied, the oscillations can be well simulated. In addition the theory predicts
two separated kinetics corresponding to the & components, which can be used to fit
recent well resolved measurements with additional features such of the appearance
of H, with the fast time, even though the model avoids equilibration for the virtual
intermediate P*B; .
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Chapter 29
Continuous Ratchet Models

The molecular motor enzyme Kinesin can travel along a microtubule and transport
various objects. This protein can move linearly along its designated track, against an
external force, by using chemical energy provided by a high concentration of ATP
(adenosine triphosphate) molecules in the environment. We derive a Smoluchowski-
type Fokker—Planck equation for motion in a periodic potential and determine the
stationary solution including an external force. We consider a simplified ratchet
model with a sawtooth potential and discuss the force—velocity relation. For a ratchet
with smooth potential, we find in the low temperature limit a behavior which can
be interpreted in terms of Kramers—Smoluchowski escape rates from the potential
minimum over the barriers on the right and left side. We combine the Smoluchowski
equation with a simplified four-state model for the chemical reaction cycle of the
kinesin molecule and end up with a system of four coupled equations, where the
reaction rates depend on the concentrations of ATP, ADP (adenosine diphosphate),
and P (inorganic phosphate). We discuss a further simplified 2-state model in larger
detail. In the fast reaction limit, the system moves in an average potential, whereas in
the fast diffusion limit, the model of a Brownian ratched is recovered. Close to thermal
equilibrium, nonlinear thermodynamics yields a linear velocity—force relation. The
analytical treatment of the ratchet model simplifies considerably, if it is assumed that
the chemical transitions take place only at certain well-defined configurations giving
piecewise constant fluxes in the stationary state.

The following discussion is mainly based on the work by liilicher, Prost and
Lipowski [185-191]. A detailed overview over Brownian ratchet models is given by
Reimann [192].
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29.1 Transport Equations

The movement of a single protein within a cell is subject to thermal agitation from
its environment and is therefore a Brownian motion with drift, which is described by
a stochastic differential equation (7.66)

mv =—nv+ K(x) +£(¢) (29.1)

where the deterministic part of the mechanical force has contributions from an effec-
tive potential and an external extra force

ou
K(x)=——+ F,;. (29.2)
Ox
and the stochastic force obeys

< E(M)E) >=2nkpT 6(t — ). (29.3)

On the small length scale of the molecular motor, inertial effects can be neglected
[193], which leaves us with the first order equation (7.83)

. ou
M=ot Feu F £(1). (29.4)

The ensemble average of the position x(z) gives the probability distribution
function!

W(x,t) =< d(x — x(1)) >. (29.5)

The Fokker—Planck equation corresponding to (29.4) is a Smoluchowski equation
(Sect.7.7) for the probability

QW( t)_lﬂa_zw( t)_,_lg 8_U_F W(x, 1)
or D= n Ox? * nOx \| Ox et *

kgT 02

10
= TWW(X,I) ~ ok (K(xX)W(x,1)). (29.6)

In terms of the probability flux

Sx,t) = —kBTT%W(x,t)—f—%K(x)W(x,t) (29.7)

"Here x(r) denotes the random variable whereas x is the argument of W.
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29.1 Transport Equations

we have

0 0
EW()C, t) = —aS(X, t).

By comparison with the continuity equation for the density

0 .
P —div(pv)
we find
ow 0 0
T e Y

hence, the drift velocity at position X is

In the following, we assume that the potential is periodic
Ux+L)=U(x)

and introduce the reduced probability density [192]

W(x) = Z W(x +nL)

which obviously is periodic

W(x+L)=W(x)

and solves the same Fokker—Planck equation (29.6) as W (x, t)

o - S
—W = Z 5W(x+nL)

Ox2

o0

=5 W(x +nL, 1)+ % |:(U/(x) — Fext) D, W(x+nL,1)

_ kBT (92 ~ 6 / T
- Tﬁwu, D+ 50 [(U (x) = Fext) W(x, t)] :

e¢]

n=-—0oo

419

(29.8)

(29.9)

(29.10)

(29.11)

(29.12)

(29.13)

(29.14)

i o o .,
=- > kpT S5 W +nL, 1)+ o= ([U'(c +nL) = Fext ] W(x +nL, 1)

|

(29.15)
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It is normalized according to
/ W (x)dx —/ Z W (x + nL)dx _/ W(x)dx = 1. (29.16)
n=—0oo
The average velocity is

(n+1)L
<v>= / W(x)vd(x)dx—/ Sx)dx = Z / S(x)dx

n=—00

Z / S(x +nL)dx = / S(x)dx. (29.17)

n=—00 0

Whereas this result is quite general, for the special case of the Smoluchowski
equation (29.4)

1 ou 1 * ,
<UV>= — [< _8_ > +Fexzi| = ; |:ng; —/ W)U (x)dxi|

n X
1 B 00 (n+1)L

=—|For — D, / W (x)U'(x)dx
n n=—oonL
T

=—| Fo — / W(x +nL)U'(x +nL)dx:|
n n=—00
17 L -

= — | Fox —/ U/(x)W(x)dx:| . (29.18)
nL 0

Equation (29.10) shows, that for a stationary solution (%—Vtv = % = 0) the flux
has to be constant. The stationary distribution is easily found by integration of

0 — Wy (x) = —K(X)Wst(X) - —S (29.19)
dx kgT

and has the form

. T K@ n§ (¥ R
Wi (x) = exp [ /0 k;xT)d ] [WJ,(O) - ﬁ exp[— /0 k;xT) dx/] dx”]

— O Fexi tUO)~U)/kpT [%(O)— nS / ! dx/e<x’Fex,+U<0>U(x’))/kBT]
kpT Jo

— Wy (0)eEFext U O UGN /KT _ 1S (xFexs=U ) /kp T / Y iy e & Fe—UG) [kpT

kpT Jo
(29.20)
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From the periodic boundary conditions

5 L
Wit (0) = Wy (L) = Wy (0)elF/kBT — kLSe@Fm—won/kBT / dx'e~ W Fexi=UGD) [kpT

BT Jo
(29.21)
we obtain
—U(0)/ksT S L
y & mS 1= (' Fu=U () [k T
W (0) = | o Lhullal kyT /0 dx'e
(X Fors=U(x))/ kT <
W, (x) = e S a’ o= Feu=UG) /Ky T
st 1 — e*LFexr/kBT kBT 0
5 X
ﬂe(XF”’*U("))/kBT/ dx'e— & Fer=UG)/ksT
kgT 0
S ~LFoui/kgT
_ 1S P U@ kT __© S dx'e— O Fer=UGN) kT
o kBT (1 — e~LFeulksT) |
+— uS L S S dx’e_(x Fou=UCN/ksT (29 22)
kgT (1—e" LFm/kBT) .
But, since
X x+L
/ dx'e™ W Fou=UCD ks T — / d' o= Fea—LFoi=UG'—=L)/ks T
0 L
x+L , ,
— eLFM,/kBT/ dx'e~ & Feur—Ux )/ kgT (29.23)
L
we obtain the more compact expression [192]
~ nS e(XFut U(x))/kgT x+L ) ,
Wi (x) = dx'e~ & Fexr=UQ))/ kT (29.24)

kBT (1 —_ e_LFe»l/kBT)
where the value of S has to be determined from normalization of W;; as
< ksT —LFu/kgT L (x Foxi—U(x))/kgT ke —(x' Foxi—U (")) kgT B
S = (l —e ext/ KB ) dxe ext B dx'e ext B )
n 0 x
(29.25)

Without an external force, we find from the periodic b.c.

L
W (L) = eV Ok — L3 / eUOI-UO/KaT 430 V7, (0) = CeVO/kaT
B 0

(29.26)
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Fig. 29.1 Periodic potential
with external force

which shows that there is zero flux? (Fig.29.1)

§S=0

and no average velocity

<v>=0.
From
- kgT O - 1. 0
St = ——— =Wy (1) — =Wy () 2= (U(x) = x Fexy)
n Ox n ox
we find
51 a(le W)+ U+ Ueyy)
_— nW(x ox
n W) x B t

which can be interpreted in terms of a chemical potential [194]
(1(x) = kgT In W(x) + U(x) + Ups (x)

as

0 _ ns
8—XM(X) = _W(x) = —nva(x)

(29.27)

(29.28)

(29.29)

(29.30)

(29.31)

(29.32)

where the right side gives the energy which is dissipated by a particle moving in a

viscous medium.

2The integrand is strictly positive, hence, the integral can not vanish.
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423
29.2 A Simple Sawtooth Ratchet

We consider a simplified model with a sawtooth potential (Fig.29.2)
X
Ux) = U’"Z' (29.33)

For simplification, we introduce the abbreviations

é._ Fesz_Um
 kgT

FouL Un
d) = p =
kT kT

S
_ (29.34)
kT

and measure length in units of the period by setting L = 1.
From (29.20)

- AR 1 —e*¢
W(x) =e* (C — 0'/ e & dx’) =Ce" 4o :
0

(29.35)

Fig. 29.2 Sawtooth A
potential

oL X
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The constant can be determined by normalizing the probability

1 § —
| = / Wodx = 25T € gi)(cg ) (29.36)
0

from which

) 24 e — 1 —
Wo=cC=° +§(§ - 11) 9 (29.37)

At x = 1 the potential is discontinuous

- ) £ _
W +6) = e (c+ae ; 1) (29.38)

and from the periodicity condition

s ( et — 1)
C=¢e’{C+0o € (29.39)

we obtain (Fig.29.4)

2y et 1 6

0="¢ +§((; - 11) 9 (1—e) +0° ; ! (29.40)
— 2(e?

- (@—p) (-1 (29.41)

T p—— 14l e (b —p) e —ed

Without external force the probability density is given by the exponential (Fig.29.3)

W) =Cet = — P o,

=0 (29.42)

If the potential barrier is smaller than thermal energy

o~ (¢* —2pp)(e” — 1)
ep—p—14+1—p+p22+..)—1—¢+p+14+p+p2/2+...

L (=209 = 1)
(¢ —2p)(e® — 1)

¢ (29.43)

or

i
X

Foys. (29.44)

S
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Fig. 29.3 Probability 7
density of the sawtooth
ratchet. The probability
density calculated from
(29.35), (29.37), (29.41) is
shown for p = 5 and
¢=-2,-1,0,1,2. For

¢ = 0 itis given by (29.42)
(broken curve)

probability density W(x)

L | — ==
0 0.2 0.4 0.6 0. 1
position x
Fig. 29.4 Force—velocity 10
relation of the sawtooth
ratchet. The velocity
< v >= S from (29.41) is 51
shown as a function of the
external force ¢ for different >
potential barriers 3 ol |
p=05,1,2,3,4,5,6 §
5 -
10 . ! . ! . ! .
-10 -5 0 5 10
external force ¢

Linearization for small forces gives

. (P> =20p) (P +...)

I+o+..)Qp—p—1+e?)—1—0+p+er
- PP
(p—p—lt+eN+d(=p—1+e)—1—-¢+p+er
2
~__ PP (29.45)
—2+e P +er
or after resubstitution
Un \2
| (£5)
S=- ks Fou. (29.46)

1 eUnlksT 1 e=Un/ksT — 3
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29.3 Ratchets in the Low Temperature Limit

Now, we consider a ratchet with smooth potential and assume that the external force
is not too strong such that the potential has a well-defined minimum inside the period
and a maximum at the boundary (Fig.29.5).

We expand the potential around the extremal points

2

U(x) ~ U, — %”XZ for x & 0 (29.47)
w2

Ux)~ U+ 70(x —x0)? forx ~ xp (29.48)
w2

Ux) ~ U, — Tm(x —L)> forx~ L. (29.49)

For small external force the extrema of the effective potential are approximately
given by

N F2, W Fuor\’
U(x)_xFexlNUrn+2wr2n ——2 X+ 2
7 wrzn ~2
~U, — e forx ~ 0 (29.50)

U(X)—ngt A

TN U

!
Y

0 X L

Fig. 29.5 Ratchet in the limit of low temperature and low force
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with
F., ~ F?
F=x— Xy =x — (_ wzt) 0, =U, + 2;*2’ (29.51)
by
F2 2 Fex 2
U(x) = xFoxy 2 Uy — =25 — x0Fexs + 20 (= xo— =
2w; 2 wp
Fezxz‘ w% ~ Fext Fext :
~Up— =25 —XoFeu + 5 (¥ —X0+—F — —5
2w 2 w2 W
> Wé S o~ 2
~ Uy + > (x —xp)~ forx = xg (29.52)
with
~ FEX[ FL’X[ 7 F€2Xf
Yo=x0— — +—5 Uo=Uo— =5 —xoFex
wh w; 2w;
and finally,
~ Fezxt wrzn Fex :
Ux)—xF,, ~U,+ 22 — LF, — - x—L+ 2
~ wz
~ Uy — LFuyy — 7 ¥—L)® forx~L. (29.53)

In the limit of low temperature (or high barrier) U,, — Uy > kT the proba-
bility density is essentially concentrated at the potential minimum X, and can be
approximated as

W = e@Fet—UC) /KT | o _ 1S / " dxle— O Fe—U ) ks T
kgT Jo

~ 2 ; 2
U w s [ 0
~expl——L - 0 (5 5p)? c- di’exp | —= — “m_z12
kgT — 2kgT kgT Jo kgT  2kgT
~ 2
Uop Yoo s -2 nS kBT (), /kpT
~expl - 20 - c- JTEBL On/ksT | (29,54
eXp[ kpT 2k & 0 ” kgTamV 2 ¢ (29.54)

From normalization

Lo 1 ; S ;
1=/ di W (%) = —/2mkpTe 0kt | ¢ = 12 [T oUnskt
0 wo wmV 2kpT
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we determine the integration constant

“o Uo/ksT 775 T Ow/ksT
C=—-——-¢"" — [ ———e"m/ B 29.55
N R T (29.55)

From the periodicity

W(0) = e Un/ksTC

- ; S 7
— W(L) = eLFer=Un)/kaT | o _ 112 Un/ksT (| 4 g~ LFeu/ksT
( ) Wiy ZkBT ( )

(29.56)

we find

. S [«
~On/ksT ¢ (LFeut/ksT _ 1y = 11 1 + elFeu/ksT 29.57
© & )= oz e ) (2937

and after substituting C

( “o e—<0m—0o>/kgr+ﬁ |_T )(eLFm/kBT_l)
«/27TkBT W 2kBT

. nS’ ™
T wn V 2kgT

(1 + etfen/ksT) (29.58)

which can be solved for S

§ — Wm0, ~00)/ ks T (L Fest/ kT 1) (29.59)
2nm

This can be written as

S=k, —k_ (29.60)
where
k+ — wWoWm e—(l}m—l}o—LFau)/kﬂT (2961)
2nm
k= L0%m —(0,~T0)/ksT (29.62)
2nm

are the Kramers—Smoluchowski escape rates (Chap. 8) from the potential minimum
Xo over the barriers on the right and left side (Fig. 29.6).
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U0)-xE,

A

0 Xo L o

Fig. 29.6 Escape probabilities

Linearization for small force finally gives

LFext @0 ) /ksT

S~
kgT 2nm

(29.63)

29.4 Chemical Transitions

The kinesin molecule consists of a very long (about 100nm) rod-like part in the
middle connecting two ends, one of which is capable to grasp the cargo and one
which is composed of two identical “heads” or “motor domains” [195, 196] which
proceed along the microtubule in a “step-by-step” fashion [197]. Each head can bind
to the microtubule and has its own ATP-binding pocket. The two heads can bind and
hydrolize ATP on their own. We assume that the chemistry can be described by a
number m of discrete states i = 1---m. A very popular model [198] focuses on a
cycle with four states (Fig.29.7). Detailed models treat both heads explicitly with a
total of 4 x 4 = 16 states ([192] and references therein) whereas simplified models
involve the motion of only one head and require less parameters.

Transitions between the four states are fast compared to the motion of the motor
and will be described by chemical kinetics

i=]. (29.64)

The geometrical configuration will be described by one configuration coordinate
x, which is related to the position of the motor along the microtubule. The motion in
each state will be described by a Smoluchowski equation (29.6) in a corresponding
potential U;(x) which is assumed to be periodic and asymmetric
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P M-ADP-P
\/
M-ADF M-ATP
ADP M ATP

Fig.29.7 Four-state model of the Chemical cycle. In state (/) the head is attached to the microtubule.
The transition to state (2) involves binding of one ATP molecule from the environment. In state (3)
ATP has been broken into ADP (adenosine diphosphate) and P (inorganic phosphate). In state (4) P
is released from the ATP-binding pocket and the head detaches. Then, after some random motion,
ADP is released and the head binds again to the microtubule. The head now is back in state (/) and
an energy amount of about Ay, = 20kpT has been released

Uix + L) = Ui(x) Ui(x) # Ui(—x) (29.65)

0 o Wi+ o 0 Si(x.0) = > (ki) Wix, 1) — kij ()W (x., 1) (29.66)

i#]
kgT 0O 1 0
st ==L D e+ Twiie ) | For - LU | (29.67)
n Ox n 0x
The energy source is the hydrolysis reaction
ATP — ADP + P (29.68)
with a free energy change of (Sect. 14.1)°
c
Ap = papp + pp — parp = Ap® — kgT In —— (29.69)
CADPCP
At equilibrium Ay = 0, hence
o<l
Ap’ = kpT In A—“’eq (29.70)
AppCp
and
j=—kgT In A2 4 ku7 In 222 +kBT1n—. (29.71)
Yrp ipp ¢

3 At physiological conditions Ay ~ —20kpT.
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Each cycle of the motor consumes the energy from hydrolysis of one ATP.
Figure29.7 shows only the state of the motor which is unchanged after complet-
ing a full cycle. To describe the chemistry of the coupled motor-environment system
properly, we have to keep track of the number of cycles to find the free energy of the
system. We use a sequence of states M; , characterized by the motor state i together
with the total number n of completed cycles

ki ko3 k34 ka1 k12 ka3
.. 'Ml,O - qu() - M3'0 - M4,0 — Ml,l - M2,1 - M3’1 s (29.72)
ka1 k32 ka3 ki4 k2.1 k3o

The effective motor potentials are defined as equilibrium free energies (Fig. 29.8)

Gro= Uy +kpT In 2L (29.73)
CaTp

Gro=U (29.74)

Gio=U; (29.75)
cp

Gso=Us+kpgT In 7 (29.76)
Cp

Gi11=G10— parp + papp +pup = Gro + Ap (29.77)

Gin=Gio+nAp. (29.78)

At equilibrium
G =G\ =U; (29.79)

Fig. 29.8 Hierarchy of free /\/\/\/\
energies for the four-state G1,0;
model c /W\/\
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and the occupation probabilities are independent of n
eq _ nra—Ui/ksT
W,, = Ne /ksT
The first step
ki
Mo = Mo
ka1

involves binding of ATP described by the reaction

M+ ATP = M — ATP.

Continuous Ratchet Models

(29.80)

(29.81)

(29.82)

From standard reaction kinetics (Sect. 6.3) we expect that the reaction rates have the

form

0
ro =ki,carpWy =k12Wy

re =ky 1 Wy_arp

(29.83)

(29.84)

where k?’z, k>, do not depend on the ATP concentration. At equilibrium r_, = r_

and we find
0 eq
k1,2 _ Wyi—arep _ 1 — (G =GV ks T _ 1 U1=Ua)/kpT (29.85)
o= Wl = o e =—g—¢ . .
2,1 Carp Wy CaTP CaTp

For the motor cycle

ki CATP eW1=02)/kgT _ o(G10=G20)/kpT
eq *
kai  Curp

The second step corresponds to the chemical reaction

M —ATP =M —ADP — P
r =kosWy_arp
re =k3oWy_app—p

k wl
23 _ TM_ADP-P _ (G2=G3)/ksT _ o(U2—U3)/ksT
- eq - - .
k3,2 WMfATP

(29.86)

(29.87)

(29.88)

(29.89)

(29.90)
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The third step
M—ADP—P = M — ADP + P (29.91)
releases P
r =k3aWy_app—p (29.92)
re = k2,3CP Wy—app = ks 3sWyu—_app (29.93)

eq eq
k3.4 Wyi_appCp _ eq (Us—Uy)/ksT
—— = e ——— =cpe

0o eq
k4,3 WMfADPfP

eq
ks _ P wivoskT _ (6o (29.94)
k4,3, cp

Finally the last step
M —ADP+P =M+ ADP+ P (29.95)

releases ADP. The motor is in the initial state again but one ATP has been hydrolized
and the relevant free energies are

Gio=Us+ksT In CC—Z (29.96)
P

Gi11=G10— parp + papp + up = Gro+ Ap (29.97)

r— =ks 1Wy—anp (29.98)

re =k} yWycapp = k1 aWy (29.99)

Z‘)—: =cp —Wzﬁf —= oy pe i Un/ksT (29.100)

ko _ Ci‘qﬂe@*’m/kﬂ. (29.101)

kia  capp
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But since

eq

eq
c ol C C
Uy — Uj + kpT In -ADP =G4,O—kBT1n‘§1—(GLO—kBT1n ’:qTP)—i-kBT]nADP
CADP ¢ g

P carp cADP
[& 4l
AT P
=G40—Gro+kpT|In- —In quZqP =G40—-G10—Ap=G40—-G11
CPCADP CpCapp
the ratio of the rates is
]ﬂ — o(Ga0=Gro=Aw/ksT _ o(Gao=G1.0/kpT (29.102)

ki
Obviously, the same rates are obtained for any complete cycle

ki ka3 k3 4 ka1
Ml,n = M2,n = M3,n = M4,n = Ml,n+1 (29103)
ka1 k32 ka3 k14

and we do not need to introduce second indices for the rates.* Summing up all cycles
Wi =" W, (29.104)

we end up with the following reaction cycle of the motor

% = — (ki + ki) Wi + ko Wa + ks W
% = —(ko1 + ko 3)Wo + ki oWy + k3 2 W3
% = —(ks2 + ks ) W3 + ko s Wr + ka3 W,
% = — (kg1 +ka3)Wa + k1 aWi + k3 4 Ws3. (29.105)

Equations (29.86), (29.90), (29.94), (29.102) show that detailed balance holds, if
the proper free energies are considered. If, on the other hand, one does not keep track
of the number of cycles and tries to assign free energy values, e.g., G; = G, o to the
four motor states, detailed balance is apparently violated. If we assume furthermore,

that only the concentration of ATP is changed away from its equilibrium value, we
end up with [192]

YE.g k12 = k(m—s @) -+ ka1 = Ky (1t



29.4 Chemical Transitions 435

k c

ﬁ _ quP o(U1=Un)/ksT (29.106)
2,1 Carp

/Zz_,s _ oWaUs)/ksT (29.107)
3,2

ks _cp (Us—Us)/kpT (Us—Us)/kpT

27— E oWUsmU)/R D g o (Us=Ua)/ ks (29.108)
k4,3, cp

ka1 CZqDP (Us—Uy)/kpT (Us—U)/kpT

—— = S e\ HEB L g TR D (29.109)

kia  capp

29.5 The Two-State Model

In a simplified two-state model (Fig.29.9) the cycle is further divided into two sub-
steps combining ATP-binding and hydrolysis

(&3]
M+ ATP=M — ADP — P (29.110)
(65

as well as the release of ADP and P

B
M + ADP + P=M — ADP — P. (29.111)

65

This two-state model has only a small number of parameters, but is very useful
to understand the general behavior. It involves a system of two coupled differential
equations

0 0
— Wi+ —S8 = kW, + kW, (29.112)
ot 0x

Fig. 29.9 Simplified P M—=ADP-P

chemical cycle
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0
—W2+—sz = —ky Wy + ko W. (29.113)

29.5.1 The Chemical Cycle

Since each cycle consumes the energy from hydrolysis of one ATP, we consider a
sequence of states (Fig.29.10)

ai B2 aq
-"ML’O\:‘MQ,()#M],]\:‘MZ’]-" (29114)
o33 B e%3

For the ATP-binding step

M+ ATP =M — ADP — P (29.115)
we have

ro =kam-emcarrWi =W, (29.116)

re =kon-anWa =W (29.117)

kim—em _ W' 1 1

Am=2Cm 22—~ —eWiU/keT (29.118)

kam—an — Wi carp  Carp

N _ CATP (i=Un/ksT _ o(Gra=Gan)/kaT (29.119)

ay

and for the second step

M—-ADP —-P =M+ ADP + P (29.120)

Fig. 29.10 Hierarchy of free G /\/\/\/\
energies for the two-state 1’0;

model
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7o =konosanrnyWo = W,
re =k n+y—@mcappcp Wi = i W,

eq
k(l,n+1)—>(2,n) _ 1 W2 1 e(U1=U2)/ksT

= "eq eq eq — Teq eq
kom—antty  €pCypp Wi CpCappP

= Teq eq
Br Cpcyupp
— G =Go)/kpT _ o(Gia=Gou+Aw)/ksT

& ¢pCapp e(Ul*UZ)/kBT

The time evolution of the motor is described by a hierarchy of equations

0 0
—Win+ =—Sip=—(a1 +B)Win+ W, + BW,,_i.
ot Ox

Taking the sum over n
Ws = Z Ws,n Ss = ZSs,n
n n

we obtain the two-state model

) )

— W+ —S81 = —(a1 + BOW, + (2 + o)W,
ot Ox

)

0
W2 + —S2 = —(0[2 + 52)W2 + (al + ﬁl)Wl
ot Ox

where the transition rates are superpositions

kyy =an + B
kpp=a; + 61 — aze(UlfUerA/l)/kBT + 626(U1*U2)/k3T

CATP (U,~Uy)/ksT CPCADP _(U,—Uy)/kpT
kin=ai+ 8 = - eWUi=U2)/kg + 5, — eWi=02)/kg
Carp CpCapp

— aze(Gl,nfczAn)/kBT + ﬂze(Gl,n*Gz,nJrA#)/kaT'
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(29.121)

(29.122)

(29.123)

(29.124)

(29.125)

(29.126)

(29.127)

(29.128)

(29.129)

(29.130)

(29.131)
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The sum of probabilities W (x) = W;(x) + W, (x) and fluxes S(x) = S;(x) + S2(x)

obey the equations

P P
Iwils—o
2" T ox

S = —Ta—xW(x

In a steady state,

ow 0§
ot Ox

Wix) =X@)Wkx) i=1,2
where W;(x) and \; (x) are periodic.

kgT O 1 oU
£ W@H"[Em—ha%i
n ox

S=--22=

Ox
kgT 1 .
:—B—EW(x)+— Fm—M W (x)
n Ox n 0x

with the effective potential

o v, A
Ueff(x)—/o dx (AI(X)E_F/\Z()C)E)

which is not necessarily periodic. Due to periodicity of U; and \;

x+L 3U
Uerp(x + L) = Upps(x) +/ dx’ ( !

= Uy r(x) + AU
with

AU = Ugpr (L) — Ueps(0).
Consider

Ul (x) = Ugsr(x) — ﬂx
eff eff L

kgT O 1 oU, oU,
D+ = | Fou W, 1) = —Wix, 1) — —Wa(x, 1) |.
Ox Ox

oU
—Axmgf}wa)

/\I(X)W + /\Z(X)E

(29.132)

(29.133)

(29.134)

(29.135)

(29.136)

(29.137)

(29.138)

(29.139)

(29.140)
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which is periodic
X
Uel}f(x +L)=Uyr(x+L)— AU + z) = Uel}f(x). (29.141)

Formally, integration then gives the reduced flux (29.25)

N kBT B L B v x+L e o
S= a- (AU LFexr)/kBT) dx e¥Fext=Uerr () /kpT dx'e= & Fext=Uepr ")/ kpT
n Jo Jx

(29.142)

Without external force, the flux vanishes if the effective potential is periodic (AU =
0). This is especially the case for a symmetric system with U; 2(—x) = Uj2(x),
where the steady state distributions W »(x) are also symmetric and the velocity

L
<v>= —1/ ax (w, 29 4w, 202 (29.143)
7 Jo ox ox

vanishes, since the forces are antisymmetric functions (Fig.29.11). Only for asym-
metric systems can the effective potential become nonperiodic (AU # 0) and the
motor develop an average force.

At equilibrium, Ay = 0 and the rates obey detailed balance

k12(-x) _ e(G:zl_Gg?rz)/kBT — e—(Uz(X)—Ul(X))/kBT (29144)
ka1 (x)

which indicates that the system is not chemically driven and is only subject to thermal
fluctuations. The steady state is then again given by

W, = Ne Uit)/ksT (29.145)
W, 1

A= Wi+ Wy 1+ eUi-U:an/ksT (29.146)
1% 1

= 2 (29.147)

Wi+ W, 1+ e Wi)-U2()/ksT

Fig. 29.11 Symmetric
system
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and the effective potential is

oo [ ! o ! ov,
et = |4\ T -k T ax T 14 e Oi@-TatV kT dx
_/xd , e—Ut/kpT aﬂ N e—Ua2/kpT U,
) * e~ Ut/kpT 4 ¢—Uz(x))/kpT Qx e—Ua/kpT 4 ¢—Ui(x)/kpT Qx
= —kpT /x i 2 (e_UI/kBT +e—U2(X))/kBT)

Jo Ox

= —kgTln (e—Ul (/kpT e—Uz(x))/kBT) +kpT (e_Ul (O)/kpT e—UZ(O))/kBT)

(29.148)

which is obviously periodic, hence there is no flux. For Ay > 0 the system is
chemically driven and spontaneous motion with v # 0 can occur.
The ATP consumption rate

L
r :/ dx(ay Wy — ap W) (29.149)
0

is generally not zero for a symmetric system, since « » are symmetric functions.
Therefore, two conditions have to be fulfilled for spontaneous motion to occur: the
system must be chemically driven (Ap # 0) and it must have polar symmetry. If
we assume again, that only the ATP concentration is changed from its equilibrium
value,

1 CpCADP — -
g_ — We(Ul U/kpT oy oUi=U2)/ksT (29.150)
2 CpCapp

U\—Uy)/kyT CATP (U,—U,)/ksT
(o + B) = ﬁZe( 1—U2)/ kg +a2Te( 1—U2)/ kg

CaTP
= (a + ﬂz)e(Ul_UZ)/kBT (1 + L (Cﬁqi — 1)) . (29.151)
az + P2 \cu7p

Introducing as a measure of the deviation from equilibrium the quantity

(0%) CATP —
Q=—"" — 1) eUi=t/ksT (29.152)
a5 (CZqTP )

the rhs of (29.126) becomes

— (a1 + B Wi+ (a2 + B)W;
= (042 + 62) (W2 — Wle(UliUZ)/k"T — QW]) . (29153)
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In the limit of large concentration c7p/cSh»>> 1, £2 becomes proportional to
the concentration ratio

ap(x) CATP
OQ(X) + ﬂZ(x) CeAqu

Q(.X) ~ e—AU(X)/kBT (29154)

whereas close to equilibrium in the limit Ay # O but |[Ap| < kgT

Ap~ —kgT In SATP

A
~ —ksT In (1+ C*‘”’) ~ —kgT =22 (29.155)

CATP CATP CATP

awx)  (=Awp

-Q(x) ~ e—AU(X)/kBT
a(x) + Ba(x) kT

(29.156)

29.5.2 The Fast Reaction Limit

If the chemical reactions are faster than the diffusive motion, then there is always a
local equilibrium

Wilx, 1)  koi(x)

= 29.157
Wo(x,t)  kip(x) ) :

and the total probability W = W; + W, obeys the equation

Oy kT 0 1O (0 i)

ot n ox? 1 Ox \ Ox . 2

0 kBT o? 10 0 ko k1>

— W= — W+ -——— U U)W 29.158
ot n Ox2 + n Ox (8x(kl2+k21 o k12 + ka2 ) ) (2159)

which describes motion in the average potential.

29.5.3 The Fast Diffusion Limit

If the diffusive motion is faster than the chemical reactions the motor can work as a
Brownian ratchet (Fig.29.12). In the time between chemical reactions equilibrium
is established in both states

Wsot — 61,2€7U]'2(x)/kBT (29.159)
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Fig. 29.12 Brownian ratchet

Fig. 29.13 Fast diffusion
limit far from equilibrium

X
If the barrier height is large and the equilibrium distribution is confined around the
minima, the diffusion process can be approximated by a simpler rate process. Every
ATP consumption corresponds to a transition to the second state. Then the system
moves to one of the two neighboring minima with probabilities p, and 1 — p»,
respectively. From here, it makes a transition back to the first state. Finally, it moves

right or left with probability p; and 1 — p;, respectively (Fig.29.13).
During this cycle, the system proceeds in a forward direction with probability

P+ = DP1P2 (29.160)
backwards with probability

p-=U=p)d—pa) (29.161)
or it returns to its initial position with probability

po = p2(l = p1) + pi(l = p2). (29.162)
The average displacement per consumed ATP is

<x>xL(py —p)=L(p1+p2—1) (29.163)
and the average velocity is

vV=r <Xx>. (29.164)

In the presence of an external force, the efficiency can thus be estimated as

<x>. (29.165)
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29.5.4 Operation Close to Thermal Equilibrium

For constant T and y; the local heat dissipation is given by

To(x) = Z (Fm - %) Sk 4+ r(x)Ap. (29.166)
k

In a stationary state the total heat dissipation is

IT = / To(x)dx = Foqv+rAp (29.167)
since
ou oS
/—de = —/U(x)—dx =0. (29.168)
Ox Oox

Under the action of an external force F,,, the velocity and the hydrolysis rate are
functions of the external force and Ap

V= v(Fext’ AN)

r=r(Fex, Ap). (29.169)
Close to equilibrium linearization gives

V=M1 For + A2Ap

r = )\21 Fext + )\22A,U/~ (29170)
The rate of energy dissipation is given by mechanical plus chemical work

IT = Fov+rAp= M1 F2 + A2 Ap + Mz + Aay) Fext A (29.171)

which must be always positive due to the second law of thermodynamics. This is the
case if

)\11 > 0, )\22 >0 and )\11)\22 — /\12)\21 > 0. (29172)
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The efficiency of the motor can be defined as

—Feqv A F2, = A\oFo Ap
rAp A Ap? + A1 Fot A

’]7:

Ana? + Ana Feoxy
I = g==
An + Aa Ap

(29.173)

It vanishes for zero force but also for v = 0 and has a maximum at (Figs.29.14,
29.15)

Y- -1 1-JT—A)? AiA
i ( ) A = (29.174)

a= Tlmax = = .
A " A A1 A2
A2

Fig. 29.14 Velocity—force
relation 08 F

I
o
T

velocity v/AW
(=]
N
T

02
0 | L | L | L
-1 -0.8 -0.6 -0.4 -0.2 0
external force F/ApL
Fig. 29.15 Efficiency of the 0.4

motor

efficiency n
o
[\S)
T
|

L | L
-1 -0.5 0
external force F/Ap
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29.6 Ratchet with Localized Reactions

The analytical treatment of the ratchet model simplifies considerably if it is assumed
that the chemical transitions take place only at a number n of certain well-defined
configurations x,, « = 1...n. The transition rates have the form [190]

kij(x) = D wf0(x — x4) (29.175)

and in the stationary state (% = 0) integration of

B _ ; (i Wi, 1) = iy ()W (. )
i#]
=33 50— xa) (w}”l-W,-(x) — WL OW; (x)) (29.176)
i#j «

gives piecewise constant fluxes (Fig.29.16)
i) =80+ DD 0(x — xa) (w;g Wi (xa) — i ()W (xa)) . (29.177)
i#j «a

_ Equation (29.177) provides a linear relation between m X n probability densities
W; (x,) and m x n flux values S; (xf) LS (x,j ). However, as the flux sum is constant

X

Fig. 29.16 Ratchet with localized reactions. The figure shows an example for the case of m = 2
states and n = 2 reactive configurations. In a stationary state, there are four unknown values of the
probability densities W1 2(x1,2) and four unknown values of the fluxes S 1,2(x[2)~ The number of

flux values reduces due to the condition S (x) + S5 (x) = S = const
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Z:" 1 S‘ (x+) = S we can eliminate (n—1) variables. Equation (29.177) then provides
(m —Dxn homogeneous linear equatlons forthe m x n+ (m — 1) x n+ 1 variables
Wl___m (xX1.0), S 1...(m—1) (x] ) S. Integration of the stationary gradient

o 1
1 a(U —xFey)
=— - — 29.17
kgT Ox Wi) S (29.178)
then gives

Wi(x) — W(x )e[Ui(X)fUi(xa)f(xfx(.)Fm]/kBT

_n S (x )C[U i () =U;i (x")+(x—x) Fox/ 1/ kpT (29.179)
kBT

from which further m x n homogeneous equations are obtained (x,,+; = x; + L)

Wi (Kas1) = Wi (g )elUi ) Ui G ~Cias1 =) Fe )/ T
775i (x;r) Xatl

elUi o) =Ui () +(Xap1=x) Fext ]/ kg T (29.180)
kBT Xo

Finally, the normalization of the probability

L m
/ Z W:(x)dx = 1 (29.181)
0 i

provides one more but inhomogeneous equation and we end up with an inhomoge-
neous system of (2m — 1) x n + 1 equations for the same number of variables which
can be solved by linear algebra.

For the two-state model we consider two reactive configurations x = 0,x = a
(Fig.29.17) with

ki2(x) = w),8(x) + wi,d(x — a) (29.182)

ko (x) = w3 1 6(x) + w1 6(x — a). (29.183)

For a stationary state this leads to a system of two equations

0 - - - - -
55100 = 0(x) [WZ(O)@;S1 W (O)Ld(l)z] Fo(x —a) [Wz(a)wgl W (a)wgl]
(29.184)
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Fig. 29.17 Localized A
reactions o’
1,2 a
©, U
:V\ 1(X)
o3, WV U
®1
0 a L ai X
0 - 0 -
—S =——51(x). 29.185
o 2(x) o 1(x) ( )
Integration gives the fluxes as stepwise functions
$100) = 5107) +0) [ 128 = Wl | + 06 — ) [Wa (@t = Wi (@, |
=807 +0(x —a)AS (29.186)
$00 = 52007) = 0) [ 1208 = W1, | = 06 — ) [ Wa@ews; = Wi (@, |
=501 —0(x —a)AS (29.187)
with
AS = Wa(a)wt, — Wi (@), = — [Wz(ow‘;l W (0)w?2] (29.188)
which provides two linear equations.
From (29.179) we find
Wi (x) = v’f/i(O)G[Uf(X)*Ui(o)*XFm]/kBT
<. (0+ x
— _S’ 07 dx'elUi)=UiH+a=xFeul/keT (- 1 ~ ¢ (29.189)
ksT Jo
Wi(x) = Wi (a)elVi0-Ui@—6—aFe/ka T
<0t -
_n_S‘(Ok)?AS/ e[Ui(X)*Ui(X')Jr(x*x/)Fm]/kuT a<x <L (29.190)
B a

providing the four equations

5.0ty s
Wi(a) = W; (0)elUi @=Ui@=aFext)/kpT _  S{OT) [ )1 0@ —Uy )+ a=' Fexe /g T

kT Jo

(29.191)
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5.0+ S L
Wi (0) = W, (@)elVi O-Ui@—L-aFel/ksr _, SiO7) £ AS / Ui O~V )+ (L~ Fort ) ks T
Ja

kgT

(29.192)

Together with the normalization condition, we end up with seven equations for

seven variables

§1(07), $2(07), AS, Wy (0), W2(0), Wi (a), Wa(a).

Problems

29.1 Deviation from Equilibrium

Make use of the detailed balance conditions

X _ o(Au—AU)/kyT
(%]

& — o~ AU/ksT

5}

and calculate the quantity

R = ]2 e AU/kT _ 1 + 61 _ o AU/ksT
ka1 ar + 3

Use the approximation

C(ATP)

Ap= Al + kpTln ——2m 2
p=An ks lin o P

and express £2 in terms of the equilibrium constant
K. = eAu’/ksT |

Consider the limiting cases
Ap #0but [Ap| < kgT

and

|Ap) > kgT

(29.193)



Chapter 30
Discrete Ratchet Models

Simplified molecular motor models describe the motion of the protein as a hopping
process combined with a cyclical transition between internal motor states. We discuss
a linear model with two internal states and derive the velocity—force relation.

30.1 Linear Discrete Ratchets

The motion of the protein is described as a hopping process between positions x,,
combined with transitions between different states of the motor

M, =My, ...=Mpy,, =M, ... (30.1)

For example, the four-state model of the ATP hydrolysis can be easily translated into
such a scheme (Fig.30.1)

30.2 Linear Model with Two Internal States

Fisher considers a linear periodic process with two internal states [199]

a B
...M],x”\ﬁMz,xn\ﬁM],an (30.2)
ap B2
© Springer-Verlag GmbH Germany 2017 449
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Fig. 30.1 Discrete motor
model

The Master equation is

d

30 Discrete Ratchet Models

/§\/\/
ATP
Y%
NPT M)
ADP-P
/\.{\/ My}
YANVAN ADP-P
/\/\/ M4
/\/\/ M1
NAYT x
n n+1

apm = —(a1 + B2) Pin + 2 Py + B1 P
d
Epzn = —(a + B1) Pan + 1 P1y + B2 Pr s (30.3)
and the stationary solution corresponds to the zero eigenvalue of the matrix
o) — B aa+ By
. 30.4
(061+/32 —012—51) (30.4)
From the left and right eigenvectors
ar + [
Lo=(11) Ry= 30.5
o=(11) Ry (061 4 52) (30.5)
we have
+
Pa=—th o R (30.6)
ay+ i+ a1+ B ar+ fr +aa+ B
and the stationary current is
a1 — ax
S=aPg— Py = . 30.7
11,5t 2142 st a1+ﬁ2+a2+ﬁ1 ( )
With the definition of
= o252 (30.8)

o)+ o+ B+ B
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A G(x)

F=0

F<0

Fig. 30.2 Influence of the external force. The external force changes the activation barriers which
become approximately AG|(F) = AG1(0) — x1 F, AG(F) = AG2(0) + x2 F

and
= —— =AWkl (30.9)

the current can be written as
S=T - 1w. (30.10)

Consider now application of an external force corresponding to an additional potential
energy

U, = —F,nd. (30.11)

Assuming that the motion corresponds to the transition M, , = M, , 4+ the corre-
sponding rates will become dependent on the force (Fig.30.2)

51 — ﬁ?e@)”/kﬂ
By = Ble (- OFIkT, (30.12)

Here, © is the so-called splitting parameter. The force-dependent current is

0,—(1—-O)Fd/kpyT
azﬂze( VFd/kp

o) + oy + B?GG)Fd/kBT + ﬂgef(lfG))Fd/kBT

S = (eA,u,/kBTvLFd/kBT _ 1) (3013)

which vanishes for the stalling force
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Fig. 30.3 Velocity—force A
relation
‘o
Fsta F
A
Foat = — 1. (30.14)
d
Close to equilibrium, we expand (Fig.30.3)
Ap/k - A
[ — 1 = eAWkeT+Fd/ksT _y — o(=F/Fu)Au/ksT _ | ny (] — F/F”“l)k_
T
(30.15)
Fd (8 1-0
wwo( __(ﬁl+(oq+a23)( 0 ))). (30.16)
kgT  (oq +ax+ 3] + 53,)
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Appendix A
The Grand Canonical Ensemble

Consider an ensemble of M systems which can exchange energy as well as particles
with a reservoir. F_or large M, the total number of particles N;,, = M N and the total
energy E;,, = M E have well-defined values since the relative widths decrease as

~5 =2 [~ =2
m -~ 1 Etzoz - Elul ~ 1 (A 1)
Nior VM m v M

Hence, also the average number and energy can be assumed to have well-defined
values (Fig. A.1)

Fig. A.1 Ensemble of systems exchanging energy and particles with a reservoir
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456 Appendix A: The Grand Canonical Ensemble

A.1 Grand Canonical Distribution

We distinguish different microstates j which are characterized by the number of
particles N; and the energy E ;. The number of systems in a certain microstate j will
be denoted by 7 ;. The total number of particles and the total energy of the ensemble
in a macrostate with n; systems in the state j are

Niw =D niN; En= Y njE; (A.2)
J J
and the number of systems is

M=n (A3)
J

The number of possible representations is given by a multinomial coefficient

M!
W{n;}) = W (A4)
I

From Stirling’s formula, we have

InW ~ In(M!) — Z(n‘,- Inn; —n;). (A.5)
J

We search for the maximum of (A.5) under the restraints imposed by (A.2), (A.3). To
this end, we use the method of undetermined factors (Lagrange method) and consider
the variation

0=94 (an—a (an —M) -3 <anEj - E,m) —'Y(anNj —Nlot)>
j J Jj

J
=Z<5nj(—1nnj—a—ﬁEj—'yNj). (A.6)
J

Since the n; now can be varied independently, we find
nj =exp(—a — BE; —yN;). (A7)

The unknown factors «, 3, v have to be determined from the restraints. First, we have

an =e Ze‘“""”' =M. (A.8)
J J

With the grand canonical partition function
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E — Ze_ﬁEj_/Nl
J

the probability of a certain microstate is given by

n] e—ﬁE/— YN,
= ~

P(Ej,N;j) = S 5
M =

and further

_BE,—~N:
E;e PE;= = Ein

M
\3
G
I
@ | R
- M

we find the average energy per system

M 28

and similarly from

M _BE.—N
ZnINI = = ZN]e PEj=N = N{ot
j S

the average particle number of a system

N 0
Zn] ] =~ &

N==1~1
M o

457

(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

Equations (A.13), (A.15) determine the parameters 3, v implicitly and then « follows

from (A.11).

A.2 Connection to Thermodynamics

Entropy is given by

S=—k> P(Ej,N)InP(Ej,N;) =~k > P(E;, N;)(—=BE; —yN; —In &)
(A.16)

=kBE +kyN +kln &.
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458
From thermodynamics, the Duhem—Gibbs relation is known which states for the

free enthalpy
(A.17)

G=U-TS+pV =uN
where U = E and S, V, N are the thermodynamic averages. Solving for the entropy,

we have
U V —uN
g 2PV —plN (A.18)
T
and comparison with (A.16) shows that
P (A.19)
- T kT '

(A.20)

The summation over microstates j with energy E; and N; particles can be replaced
by a double sum over energies E; (N) and particle number N to give

5 = Ze—ﬁ(E(N)—/tN)
E,N

which can be written as a sum over canonical partition functions with different

(A21)

particle numbers
(A.22)

5= ZeﬁuN ze—;@E(N) _ ZB‘Q“NQ(N).
N E N



Appendix B
Classical Approximation of Quantum Motion

In quantum mechanics, the motion of a particle (which could be a whole molecule)
in an external potential is described by the time-dependent Schrodinger equation

2
inb(r, 1) = Hib(r, 1) = [—;—mvz + V(r)j| W(r, 1). (B.1)

A special kind of solution is a localized wavepacket, which can be approximated
as a classical particle as long as dispersion of the wavepacket is negligible. The
classical position and momentum are given by the expectation values

<r>=< Y, HrYr,t) >=< P, Hr(r, t) > (B.2)

<r>=<Y(r, )pyY(,t) >=< Y(r, t)?Vw(r, 1) > (B.3)

which obey the equations of motion (Ehrenfest theorem)

<TI >= % <((r,t)(rH — Hr)y(r,t) >

<p>

_1 < (r, z)évw(r, 1) >= (B.4)
m 1
<p>= % <@, )(pH — Hp)Y(r, 1) >= — < VV(r) >. (B.5)

If the variation of the potential gradient over the width of the wavepacket is
negligible' these look like Newton’s equations with a classical force

F=—<VV({) >~ -VV(<r>). (B.6)

10r in some special cases like the harmonic oscillator.
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460 Appendix B: Classical Approximation of Quantum Motion

For the harmonic oscillator with Hamiltonian

A it A 1

H=hv|a'a+ 3 (B.7)
and eigenfunctions |n >obeying

N 1

Hln >= hw n—l—i n >

aln >=/njn — 1 > &T|n >=+/n+1n+1> (B.8)

a dispersionless Gaussian wavepacket is provided by the coherent oscillator state
(Glauber state)?

0 n

_ —laP2 —in+1/2)wr Y

Valx, 1) =e Eoe —mln > (B.9)
n=

which for any complex a solves the time dependent Schrédinger equation since

A 1 . n
ihsba()f, t) — HSDQ(X, t) — e*|a|2/2 Zhw (n + E) efl(n+1/2)wrj__|n -

n!
(B.10)
Furthermore, it is an eigenfunction of a as can be seen from
0 o’

& a(x’ t) — e—|a|2/2 e—i(ﬂ+1/2)wt_\/ﬁ|n —1>

’ 2 il

=e_i"”oz<pa(x,t) (Bll)

from which we find the expectation values

< Qalx, Dapa(x, 1) >= e “a (B.12)
< @(M(X,t)&TW(x(xvt) >= ei"”a* (B.13)
=< pa(x,0d'ap.(x, 1) >= |af? (B.14)
— 1
H = hw (|a|2 + E) ) (B.15)

The coherent state is not an eigenfunction of the Hamiltonian. The number of exci-
tations is not sharp. Its variance is

Var(n) =< @, (x,1)(@'a) o (x, 1) > —lal* = |af? (B.16)

2Coherent states are normalized but not orthogonal.
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hence the relative uncertainty decreases as 1/+/71. Average position and momentum
oscillate

¥ = %mme—"w’) — xov/2|a cos (wr — arg(a)) (B.17)

_ h h .

P = —~23(at)) = ——\/§|OL| sin(wt — arg(a)) (B.18)
X0 X0

where the characteristic length is

h
xoz,/%. (B.19)

For large n, the values of position and momentum become well defined and the
oscillator behaves classically with an amplitude

xov2]a = xov/21 = (B.20)

The quantized electromagnetic field is a sum of harmonic oscillators. The Fourier
component of the vector potential

a ike 4 A% —ik
A= Z 2€QV ;k (ak,)\ek,)\e r ~|—a,§ykef;xe r) (B.21)

therefore has to be replaced in the classical limit (B.12)—(B.14) by

nhwk v ik
A= Z 5 VWk e l(kl‘ wit) +el>$;,>\e (ikr u.)kt)) (B22)
0
— Z AO(wky k) (ek!/\el(kr_wkl) + e;/\e—(ikl‘—wkf))
kA

and the amplitude is in classical approximation

/ .k
Ao(wi, k) = % (B.23)
k



Appendix C
Time Correlation Function of the Displaced
Harmonic Oscillator Model

In the following we evaluate the time correlation function of the displaced harmonic
oscillator model (19.14)

@) = <e—ifUer:breilWy- (b:+g/,,)(b’,+.qy)> .

C.1 Evaluation of the Time Correlation Function

To proceed we need some theorems which will be derived afterward.

Theorem 1: A displacement of the oscillator potential energy minimum can be formulated
as a canonical transformation

hew, (b] + ) (by + g) = €O 70 g, b b, e9r b0 (C.1)
With the help of this relation the single-mode correlation function becomes
F.(t) = <e—ifw,bjb,e—g,(bj—b,.)eitw,bfb,eg,.(bj—b,)>. (C2)

The first three factors can be interpreted as another canonical transformation. To this
end we apply

Theorem 2: The time dependent boson operators are given by

e—iu.),th:br bj‘eiw,lb:b, — bl'e—iw,l (C3)
e—iw,-tbjb, br eiw,.tbjb, — breiw,t (C4)
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464 Appendix C: Time Correlation Function of the Displaced ...

to find
F,(t) = (exp (g, (be ™" — b.e™")) exp (g, (5] — by)). (C.5)

The two exponentials can be combined due to

Theorem 3: If the commutator of two operators A and B is a c-number then
1

e B = edeBe 2[4 8] (C.6)

The commutator is

_ng[bIefiwrt _ breiw,t’ b:‘ _ br] — _gf(efiwrt _ eiw,—t) (C7)

and we have

Fr(t) = exp (—fg, (e irt — ei“r’>) (exp (=grbf @ = 1) + grbr @ = 1)),

(C.8)

The remaining average is easily evaluated due to

Theorem 4: For a linear combination of b, and bj the second order cumulant expansion is
exact

<e/Lh++Tb> — %((}Lb +7b) ) — ep.'r(b*h+l/2). (C9)
The average square is

<(bJr(e—iw,l _ 1) _ br(eiw,-t _ 1))2>gf
— _gr(z elwrt _ g—iwrt )(bTb +b bT)

= —g 2 —e“ —e N (2m, 4+ 1) (C.10)

with the average phonon number?

1

Finally we have
F() =exp (—-gr (2= — e 2, + 1) — %gf(e*w —ei“’t))
= exp (97 [ = D@ + D + ' = 7)) (C.12)

3In the following we use the abbreviation 3 = 1/kpT.

(C.11)
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or, using trigonometric functions

465

F.-(t) = exp (93 [(coswrt — 1 +isinwpt)(my + 1) + (coswpt — 1 —isinw,t)ﬁr]>

= exp (gf(ﬁr 4+ D(coswpt — 1) + igf sin w,t) .
C.2 Boson Algebra

C.2.1 Derivation of Theorem 1

Consider the following unitary transformation

A= e—g(b*—b)bTbeg(V—h)

and make a series expansion

A=A+ 4 L LA
- Tag 727 4p

The derivatives are

dA

@L;:o =[6"b,b" — b] = b'[b, b1 + b7, —b1b
=bB+bh

d2A

d_gz|g:0 =[[b'b, b" — b], b" — b]

=[b+b,b"—b1=2

d"A
@b:o =0 forn > 3

and the series is finite
A=b"b+gb" +b)+g* =" +g)(b+9).

Hence for any of the normal modes

_ T + T
hw, (b) + g:)(by + g;) = 7O~ hu, bl b, e =0,

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)
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C.2.2 Derivation of Theorem 2

Consider
[P . .
A=e"he™™"t with 1 = —iwt.

Make again a series expansion

dA
— =[b*h,b] = —b
dr
d’A

— [pT —
m—[b b,—b]—b etc.

72 . (itw)?

A=b 1—T+7—~-~ =b|1+itw+ >

Hermitian conjugation gives

ot Lo b i
e iwth hb+elwthh =b]e i t'

C.2.3 Derivation of Theorem 3

Consider the operator
f(T) — efBTefATe(AJrB)T
as a function of the c-number 7. Differentiation gives

af ) _
dr
— efBT [efA‘r , B]e(AJrB)T )

Now if the commutator [A, B] is a c-number then

[A", Bl = A[A""!, Bl +[A, BJA" ! = ...n[A, B]JA"!

and therefore

o]

+"')=beth.

e BT (—A — B)e AT D 4 emBTe AT (A 4 Byt

[efAT’ B] — Z (_T)n [An, B] — z ((_—T)nAnfl[A’ B]

n! n—1)!

n=0

= —7[A, Ble™ 4"

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)
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and (C.27) gives
dJ;(T) = —7[A, Ble BTe 4TeAtHT — _7[A Bl f (1) (C.30)
-

which is for the initial condition f(0) = 1 solved by

2
f(T) =exp (—%[A, B]) . (C.31)
Substituting 7 = 1 finally gives

1
e BoAe(A+B) _ o—3[A.B] (C.32)

C.2.4 Derivation of Theorem 4

This derivation is based on (200). For one single oscillator consider the linear
combination

ub" +7b=A+B (C.33)

[A, B] = —ur. (C.34)
Application of (C.32) gives

<e,ub++7—b> _ <eub*erb>em/2 (C.35)
and after exchange of A and B

<epb++rb> _ <e‘rbepb+>ef,ur/2. (C.36)
Combination of the last two equations gives

<eTbe“b+> = <e“b1'e7b>e‘”. (C.37)
Using the explicit form of the averages we find

0 't (e—ﬂhwh*berbeﬂb*) —0'u (e—ﬁhwb*beub*erb) T (C.38)
and due to the cyclic invariance of the trace operation the right side becomes

= O tr(ePe b benb )T (C.39)
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which can be written as

_ —{ i % + .y i ¥
— Q ltr(e Bhwb beerhwb berbe Bhwb be,ub )eu‘r

_ <e+ﬂhwb*herhe—ﬁmmheum> o (C.40)

Application of (C.3) finally gives the relation

(exp(Tb) exp(ub?)) = (exp (re™""b) exp (ub")) e (C.41)
which can be iterated to give

(exp(rh) exp(ub")) = (exp (re 27"b) exp (b)) e+ ™) = ...
= (exp (re""*V"p) exp (ub")) ehr(e e (C.42)

and in the limit n — oo
w\ + Ut _ uT
<exp(Tb) exp(ub )> = <exp(ub )>exp (71 — e—ﬁm) = exp (71 — e—ﬂhw) (C43)

since only the zero-order term of the expansion of the exponential gives a nonzero
contribution to the average. With the average number of vibrations

1

= o (C.44)
we have

(exp(rh) exp(ub")) = exp (ur (@ + 1)) (C.45)
and finally

<eyb++rb> — eHTH1/2) (C.46)

The average of the square is
((ub" + 70)?) = pr (b'b + bb') = pr2n + 1) (C.47)

which shows the validity of the theorem.
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Complex Cotangent Function

The cotangent of an imaginary argument can be written as

cosh
cot(iy) = isinh); = —icothy

which for large |y| approximates
cot(iy) - —i sign(y).
For a complex argument we write (Fig.D.1)

. 1 +icothycotx
cot(x +iy) = ——————
icothy —cotx

which for large y approximates

L+itcotx  di(cotx+1) _,
=it e
I te=y — cotx I —cotx
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Fig. D.1 Complex cotangent function. Real (left) and imaginary (right) part of cot(x + iy) are
shown

and for large negative y

. 1+ . .
1 — i 5cotx .+21(cotx—z) o
=1 e
ey :
—i e — cotx i +cotx

(D.5)



Appendix E
The Saddle Point Method

The saddle point method is an asymptotic method to calculate integrals of the type

/ " dx (E.1)

o0

If the function ¢(x) has a maximum at x, then the integrand also has a maximum
there and the integral can be approximated by expanding the exponent around xg

B 1 d’p(x)
00 = 00) + 572

(x — x) 4+ - (E.2)

as a Gaussian integral

/ % 0 gy a0 | ET (E.3)
oo 1§ (xo)]

The method can be extended to integrals in the complex plane

/eé(z)dZZ/em(cﬁ(z))eiﬁ(@(z))dz. (E.4)
C C

If the integration contour is deformed such that the imaginary part is constant (sta-
tionary phase), then (Fig. E.1)

/ed)(z)dz :eik‘S(tD(Zo))/ @) g (E.5)
c /
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472 Appendix E: The Saddle Point Method

grad(v

)
\/grad(u)

Y

Re(z)
Fig. E.1 Saddle point method
The contour C’ and the expansion point are determined from
¢'(z0) =0 (E.6)
d(z) = u(2) +iv(z) = u(z) + iv(zp). (E.7)

Now consider the imaginary part as a function of (x, y). The gradient is according
to Cauchy and Riemann

ov Ov Oou Ou

o 5) = (_5'_y’ 8_x) (E.8)

vux, y) = (

which is perpendicular to the gradient of the real part

Oou Ou

I 6_y) (E.9)

vu(x, y) = (

which gives the direction of steepest descent. The method is known as saddle point
method since a maximum of the real part always is a saddle point. From the expansion

1
?(2) = d(z0) + Eaﬁ”(z())(z — 202+ (E.10)

and

dz? = dx* —dy* + 2idx dy (E.11)
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we find

1
M) = R((0) — 5 (R (z0))(dx* — dy*) — 23(¢" (z0))dx dy)

_ ! M@ =3 ((d
= 9(3(0) — 5 (dx. dy) (_S( o (b//)) ( dy) : (E.12)

The eigenvalues of the matrix are

VNP +3(¢")? = £|¢| (E.13)

and the eigenvectors

dx) 1
XN %weH=Ee ) (E.14)
(dy ( S )

Similarly, the imaginary part

1
3(9(2)) = I(B(z20)) + R(P" (z0))dxdy + 5%<¢”<zo>><dx2 —dy?)

—x 1 (@) N(P") dx

The direction of stationary phase is given by

_ @) £

TP

dx (E.16)

hence is along the eigenvectors of the real part.



Solutions

Problems of Chap. 1

1.1 Gaussian Polymer Model
Ar; =1; —TIi_| i=1---N

(a)

2
P(Ar;) :% 27 |_3(AI‘,) ]

g3 20?
is the normalized probability function with
oo o0
/ P(Ar)d* Ar; = 1 / Ar?P(Ar)d? Ar; = b?

(b)

N
ry —rop= z Ar;
i=1

N 00 o) N N
P(ZAr,- =R)=/ d® Ar, / d3ArNHP(Ari)5(R—ZAri)
i=1 -0 - i=1

o0 i=1

N
1 . o o0 1 27
=/ d3ke'kR/ d3Ar1---/ Ay = —
2m)3 o o b3V 873
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476 Solutions

xHexp[ T —1kAr,-]

N
1 . 1 /27 3Ar?
= / P d3ke*R [(ﬁ 2 )/ d*Arexp{ 2—[; - ikAr]:|
us - )]

Nb?
kR exp(—Tkz)

(2m)?

1 27 3R?
bV 8N P | T anp?
(c)

exp [_kBlT (g Zm% - nZAr,-)] Hexp[ % (chAr? - mr,-)]

T
N7

YW —Yo=2ny—20=0

L Nrb?
= X — X0 =
N0 T kT

1.2 Three-dimensional Polymer Model

(a)
Nb?
(b)

1 2x(x2 =1
bz(N X *(x )) with x = cos 6

1—x (1—x)?

1+ cosx

~ Nb*
1 —cosx
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(©

sz(1 + cos6;)(1 + cosby)
1 — cos 8 cos b,

(d) N > a/b with the coherence length

1+ cosx

(1 —cosx)cos 5

(e

4 4 8
2 2
w (1) (5 5)

1.3 Two-Component Model

(a)
1 Ml, — L
R = —kBT In
] L —Mlg
1 1 lny - lﬂ l(y - lﬁ
—ksT + + - ‘
2Ml, —2L " 2Mly— L ' 12(L — Mly)?  12(Ml, — L)?

The exact solution can be written with the digamma function ¥ which is well known
by algebra programs as

kg T— oM gy g M Ey
R = — —_ —_— —_—
L lo — 13 lo — 13

The error of the asymptotic expansion is largest for L ~ MI, or L =~ MIz. The
following table compares the relative errors of the Stirling approximation and the
higher order asymptotic expansion for M = 1000 and l3//, = 2

L/l, Stirling asympt. expansion
1000.2 0.18 0.13

1000.5 0.11 0.009

1001 0.065  0.00094

1005 0.019 2.5%10°°

(b)

Kl Klg M
Z(k,M,T) = (e"ﬂ + ekBT)
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Klo wlg

loefsT + lgeksT

M—
Klo Kl

eksT 4 eksT

ull

2
T2 _ 72 lo — 13

2 — k(la+3)/ kgT «a /
L>=L + Me B (e,dn/kﬂ + e/-clj/kgT)

2 w(loHp)/kpT la —1s ’
o° = Me efila/kBT +e;;l,3/kg’l'

=l

=~ Q

oo R
99 _ 0for (I, +15) =22 g
Ok etila/ kT  ekls/ksT

hence for

k=0

9o
OK?

(k=0) = (I, — l@)2 < 0 - maximum

 k(kgT)?

also a maximum of ¢ since the square root is monotonous.

Problems of Chap. 2

2.1 Osmotic Pressure of a Polymer Solution

1
(P, T) — pd(P, T) = kpT (m(l — )+ (- b+ xq%)
PP, T) = pd(P, T) = po(P, T) — pd(P, T) = =11 5P

ol (P, T)\ !
- (%) kyT (111(1 — 09+ (1= =)+ xq%)

oud(P,T)

Solutions


http://dx.doi.org/10.1007/978-3-662-55671-9_2

Solutions

For the pure solvent

dG = —SdT + VdP + p(P, T)dN

Vv
Na

s,
oP

|T,Nn =

1=t b 1¢2 1¢3+ + 1)¢+¢2
I U A N M

 NakpT (1 1 )
AT ()

high T:

1
5 x >0 IT > 0 good solvent

low T:

IT < 0 bad solvent, possibly phase separation

2.2 Polymer Mixture

AF = NkgT (%lnfbl + %1H¢2+X¢ ¢2)
1
¢2,c=—
L+ /57
1
=-(\/ |+ Mo)( )

Mzd_l MM,

479
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symmetric case

1
d)c—i

2
Xe = m can be small, demixing possible

Problems of Chap. 4

4.1 Membrane Potential

D, = Be"™ ®;;, =8B (1 + G_WHX) &=V — Befh'(fo)
€M
\%4
B—= —
2+ gL
en

Q/A = ewkB perarea A

A 1
C/A = o/A _ wE_
V T 2v@n T 2L

4.2 Ton Activity

a Z%? &
kpTIn~v =kpTln— = —
B K B c 8me 1+ KR

1 z%* &
kgT 8me 1+ KR

I 1 Z%? k&
nys = —
TE T T kaT 16me \1 + kR | 1+ rR_

x — 0 for dilute solution

Inae 1 Z%ek
nvy, - ———
g kgT 8me

Solutions


http://dx.doi.org/10.1007/978-3-662-55671-9_4

Solutions

Problems of Chap. 5

5.1 Abnormal Titration Curve

AG(B,B) =0
AG(BH", B) = AG in
AG(B,BH") = AG».in;

AG(BHY,BH") = AG1ins + AG2 it + W12

=14+ e—ﬁ(AGLmz—u) + e_ﬁ(AGZ,im_,“') 4 e—ﬂ(AGl,/m-‘rAGz.fm—W+2M)

e BAG =) | o=BAG i+ AGm—W+20)

2|

=
[’

e (4G im—p) + e BAGLin+AGin—W+2p)

N

=
e/

Problems of Chap. 6

6.1 pH-Dependence of Enzyme Activity

r 1

R

CH4+Cs—
K =

Cs = Cs— +chs
CHS

6.2 Polymerization at the End of a Polymer

_ (Key)'
K

civm = Keyci—nym=---

22 i(Key) _
2Z(Kew)' 1= Key

<i>= for Kcy < 1

481


http://dx.doi.org/10.1007/978-3-662-55671-9_5
http://dx.doi.org/10.1007/978-3-662-55671-9_6

482 Solutions

6.3 Primary Salt Effect

r=kicy

Cx ZA ZBCZIQ
K = Xp 1 —
CACB 47T€kBT
K ZAZBBZH
= expy ——
x CACH XP dmekgT
Problems of Chap. 7

7.1 Smoluchowski Equation

P(t + At, x) = 215 P(1, x)

wH(x £ AxX)P(t, x + Ax) = eiAx%wi(x)P(t, x)

eAF P(1,x) = e wt (1) P, x) + e w () P(1, x)

P(t,x)+ AI%P(I, D+-=wx)+w xX)P(x,1)

2 92
+Ax£(w+(x) —w (x)P(x, 1)+ A_x@_(w+(x) +w (xX)Px, 1) +---
Ox 2 Ox?
2 92

o _ Ax” 0
3_x(w x)—w (x)P(x,1) + —P(x,t)+---

Ax
At Ox?

aP(t ) =
o YT A

kT
D=" K()= —Z;x(uﬁ(x) —w (x))

7.2 Eigenvalue Solution to the Smoluchowski Equation

_kgT o~U/ksT ﬁeU/kgT W
mry Ox


http://dx.doi.org/10.1007/978-3-662-55671-9_7

Solutions 483

_ kBTefu/kBT (eU/kgTa_W+eU/kBTW 1 8U)
ox

__mfy kBTE

0 0 kgT 0
2 W:——S:—— —=U/kgT | = U/kBTW
e 0x ox mve axe

kT ﬂe—v/m ﬁev/w

e my O0x Ox
© = eUiT g o=U/kaT _ U/ 2kaT kpT Eer/kBT ﬁey/zkﬂ
my O0x 0x
QH _ QU/2kT _ﬁ e~ U/ksT _3 kBTeU/szT .
0x ox ) mry
since
kgT
—— = const
mry

For an eigenfunction v of £ we have
A = Sap = eU/2KaT @ e=U/%aT
hence
'QFP (er/ZkBTd)) =\ (er/ZkBT,l)[})

gives an Eigenfunction of the Focker-Planck operator to the same eigenvalue A. A
solution of the Smoluchowski equation is then given by

W(.x, t) — e)\ter/ZkBT,l/)(x)

The Hermitian operator is very similar to the harmonic oscillator in second quanti-
zation

o kgT (eU/ZkBTﬁe—U/ZkBT) (e—U/ZkBTﬁeUﬂkBT)
mry Ox Ox
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__ kgT (0 1 oU 0 n 1 oU
" my \Ox  2kgT Ox Ox  2kpgT Ox
kgT ( O mw? 0 mw?
=—\=— - X — + X
~v \Ox  2kgT Ox  2kgT
w? kgT O 1 [mw? kgT © 1 |mw?
=—— V0 — ==X —=— + = [—x
5 mw?ox 2\ kgT mw? 0x 2\ kgT

2
w0 1 0 1 w?
== (5 29) (Ge +2¢) =0

with boson operators

bth —bbt = 1.

From comparison with the harmonic oscillator we know the eigenvalues
2
w
Mm=——n n=0,1,2,---
gl

The ground state obeys

0 1 oU
= _— —_— — O
4o (8x + 2kpT Ox ) Yo

with the solution

wo — e—U(x)/ZkgT.

This corresponds to the stationary solution of the Smoluchowski equation

W = mw? e U@/ksT
27TkBT

7.3 Diffusion Through a Membrane

kap =ka +kp

AN < dP < s
O0=—=> —“N=—> kasgMNPy+ > (kap — 2kn)N*Py
N= N=1

N=1
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M M
+ ZkABMNPN—l - ZkAB(N —1)NPyn_;
N=2 N=2
M—1
+ > 2k N(N + 1) Py
N=I

~ —kagMN + (kag — 2km)N2 +kagM(1+N) —kag(N2 4+ N) + 2k, (N2 — N)

= kagM — kspN — 2ky N

- ka+kp
kA +kB +2km

sz => N dPN — —ZkABMNzPN +Z(kAB — 2ky)N3 Py

N=I

M M
+ D kapMN?Py_y — > kap(N — )N*Py_,
N=2 N=2

M-1
+ D 2k N> (N + 1) Py
N=1

~ —kapMN? + (kap — 2km)N3 + kagM(N2 +2N + 1)

—kag(N3 4+ 2N2 + N) + 2k,,(N3 —2N2 + N)

= +kapMQ2N + 1) — kag(2N? + N) + 2k, (—=2N2 + N)
= kapM + NQkagM — kap + 2ku) — N2(2kap + 4ky)

kapM + QkagM — kap + 2ky) M 25—

VI Kap 2%
2kap + 4k,

_ 2kagkm k3 g 2
 (kap + 2kp)? (kap + 2ky)?
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and the variance is

2

— 2k k 2k —
N = AB - N
(kap + 2ky)? kapM

The diffusion current from A — B is

dN4s  dNg
J=—t = ;(ka(M — N)Py + kuNPy) — ;(ka(M — N)Py + knNPy)

= (kg —ka)(M — N)Py = (kg — ka)(M — N).
N

Problems of Chap. 9

9.1 Dichotomous Model

A =0
0
0
Li=(111D) R=] g CRS = a3
(0%
X =—(a+pB)
0
0 (L2 Po)
Ly=(a-fa-HRy =] | (LjRZ):O
1

ko +ki+a+p

1
Aag = — > £ V@ + D+ (ks —k )2 +2(8 - o) k- —ky)
fast fluctuations:
A= —— g 5 ko +o0ud

a+f8 a+p


http://dx.doi.org/10.1007/978-3-662-55671-9_9

Solutions 487

Ly~ (1,1,0,0) Ry~

p
o (L3Po) 1
—B

—Q

A= —(a+f) - — ;

_ 2
+ﬂk+ a+ﬂk_+0(k)

1| @aPo)

L4 ~ (_O(, 67 07 0) R4 ~ 1 (L4R ) ~
1

-1
8
0 a+8
0 o,
POy~ | s |+ ) | — P(DH)=e™
a«;ﬁ _a¥ﬁ
a+3 _GLW
slow fluctuations:
M~ -k —«
ki —k_
— L;Py g 1
Ly~ (ky —k_,—0(3,0,0) Ry~ ~
37 (ke A OO R~ iy | Lorg at Bky —k_
«
A —k_—p
B
k+_k, L4P() « 1
Ls~ (o, ky —k_,0,0)0Ry = ~
47 (o ke R4 -B L.R; o+ Bk —k_
— (ks — k)
8 1 0
p 0| -« a 1 k4
P(t) = 8 + g keto o = e kP
® atp a+p| -1 a+3] 0
a 0 -1
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B a g
P(D*) ~ e (kp+a)t + e (k—+p)t
(D7) a+ 3 a+ 0

Problems of Chap. 10

10.1 Entropy Production

0=dH =TdS+ Vdp+ Y mudN,
k

TdS = - udNe=—> > pwydé; =D A;dé;
k j k J

s A
w7

Problems of Chap. 11

11.1 ATP Synthesis

At chemical equilibrium
0=A=- Z Vg ik

= 1°(ADP)+kgT Inc(ADP)+1.°(POH)+kgT Inc(POH)+2kpT Inc(H ) +2e®P ot

out

~1°(ATP) — kg T Inc(ATP) — i’ (H,0) — kT Inc(H>0) — 2k T Inc(H;") — 2e®;,

ksTInK = —AG® = u’(ADP) — °(AT P) + °(POH) — 1i°(H,0)

(AT P)c(Hr O)2(H)
=kpT In ”_:_ +2e(Din — Pour)
¢(ADP)c(POH)C*(H},
AT P)e(H, O HY
— kT SATPIURO) o g ) e

+
out

c(ADP)c(POH)


http://dx.doi.org/10.1007/978-3-662-55671-9_10
http://dx.doi.org/10.1007/978-3-662-55671-9_11
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Problems of Chap. 15

15.1 Transition State Theory

K* k
A+B = [AB]* > P

k= kiC[AB]i = kiKiCACB

Kt — ClAB}E Q[AB] —AH*/kBTZq q[AB] o AH/ksT
CACB qdAaqdB qdaqB
2mtmkgT

g = YT

h
ki N Ui N 1 kBT
T ox Ox

i
M DAY —ant kgt

k=
5x h CIACIB

CACB

k T CI t
— “BL T[AB) —AH /kBTCACB
h qaqs

15.2 Harmonic Transition State Theory

T fi’ooo e—mwzxz/ZkgTCS(x _ x:k)

2mm fjooo e—mwx?/2kyT

k=v<dkx—xH>=

kBT e—mwzxiz/ZkBT
V 2rm 2mkg T

2

mw

w o—AE/ksT
27


http://dx.doi.org/10.1007/978-3-662-55671-9_15
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Problems of Chap. 16

16.1 Marcus Cross Relation

A+A” — A+A A =2AE(Ay — A,
D+D* — DT+D Ap = 2AE(Dey — D)
A+D — A +D* Mip = AE(Ay — A;) + AE(Dey — D}) = AA;AD

waA _
ky= 2o Aa/4kpT

27
ky = YB —Ap/dksT
2w
Kap = e—AG/ksT
PO e (Aap + AG)?
AD = 2w 4)\ADkBT
WAD ex _)\A+)\D . AG . AGZ
Cor 8kpT  2kpT  4XapkpT
= VkakgK
ARBTAD 4/\ADkBT]
Problems of Chap. 18
18.1 Absorption Spectrum
27Th dt Zelwt —iw;t /-Lf - elv.}ff < flﬂ >

== dreit < e tHI/R eiHI/R, o
s

=5z dre“’ < pO)u(t) >


http://dx.doi.org/10.1007/978-3-662-55671-9_16
http://dx.doi.org/10.1007/978-3-662-55671-9_18

Solutions 491

~ |Heg|2 drel! —iH,t/h_iH,t/h
iy te' < e Ml/le >,
Problems of Chap. 20

20.1 Motional Narrowing

(s +iwr) (s +iwn) + (o + B)(s + i)

Q+Aw o Aw O
= — _— _— — 1W,
2 2 e

L=w—-w
2 Wi
22— —+iw.2=0
1w, 2 AL WP
+—) =———
2 4 4
For w. < Aw the poles are approximately at
we. Aw
2, =——+—
2 2

and two lines are observed centered at the unperturbed frequencies w + Aw/2 and
with their width determined by w,. For w, = Aw the two poles coincide at
iw,
2,=——
P 2
and a single line at the average frequency w appears. For w. > Aw one pole
approaches zero according to

2, =-i
r 14wc

which corresponds to a sharp line at the average frequency w. The other pole
approaches infinity as

2, = —iw,.

It contributes a broad line at w which vanishes in the limit of large w,. (Fig. 1).


http://dx.doi.org/10.1007/978-3-662-55671-9_20
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Fig. 1 Poles of the Im
lineshape function

-Aw/2 Aw/2

Problems of Chap. 21

21.1 Crude Adiabatic Model

8_02(—s c)% C-;-a_C:(O 1)%
00 —c—=s)oQ ~ 9Q —-10/ 90
32_0_(—”)%_(;(%)2
00* \—c—s) 00?2 00

CTaz (0 1)&_(%)2

002 -10/ 00 \0Q

/d ctor L oc— 2 1oct26 9 i
r g &g L2
0Q? 9Q? 0000 = 00°

& 01\ ¢ (Y 01\ 0
_5_Q2+(—10)8_Q2_(@) “(—lo)@@
/dr C'o (T, + Vo + AV)PC =

EWQ) -452 V() )C

C'EC+CT | drotave ¢ =ct —
* /r ( V) E(Q)+ L@

/dr C'o'HDOC =

_ PP (EQ-2E2 v (Y
= 2m8Q2+C( V) F(Q>+%)C+ﬁ(@)


http://dx.doi.org/10.1007/978-3-662-55671-9_21
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(0 1), 0% o¢ 8

‘%(—lo)%—gz”@@)
) V(Q) s . o AE(Q)

cossSIn¢ = COS — Sin =

ol VAV(0)? + AE(Q)? ¢ osine VAV(0)? + AE(Q)?
I » 200 2VAE ¢
90 =2 =50 = It AR a0
i( )2_iv—2
90 " T 904V + AR?
_ 2V ov _ V2 A OAE +8V8V)
T 4VZ 1 AEZ00 m( 90 90
oC AFE ov \% OAE L@V

~
~

00 ~ AVIY AE2HQ 4V2+ AE? 00  AEJQ

9¢ AEgz—QVZ—V—f’;gf LIV DAE\ 2AESE +8V L
00%  4V2 4 AE?

- a0 " 0 (4V2 + Ae?)?

1 &V 2 JAESV
T AEDQ?  AE? 90 00

~ R2 2 T _ Jay2 2
i~ +(E 4V2 + AE

2m 0Q? f+«/4V2+AE2)

W1 (8V)2 h2(0 1)(182‘/_ 2 9AEQV. 2 9V a)
AEDQ? AE? 0Q 0Q AE9dQ0Q

2m AE2\9Q) 2m \-10 AE? 90 90

Problems of Chap. 22

22.1 Ladder Model
ihCo=V D C;
j=1

ihC; = E;C; + V(o


http://dx.doi.org/10.1007/978-3-662-55671-9_22

Solutions

. B
i je™" = VCy

t .
P / e~ Co()dt!
T

tog
e17//(t7t )Co(l,)dl‘/

[

in
Ej =« +J * hAw
. Vv n V2 t ,
Co=— >.Ci= o Z/ el At (1)dr'
j=1
. «
w=jAw+ —

h

0 00
S giliasramen g / eiot-0 40 _ 2T 5
o Aw Aw

j=—00

Co = 27TV2C_ 27V?2 B
o=-——C=—— p(E)Cy
b L1
PE) = = AE
Problems of Chap. 23

23.1 Hiickel Model with Alternating Bonds

ikn i(kn+x) /oikntk+x) _ oikn ix 7 Sik+X)
ae™ + (e +Oe e™ (a+ fe'X + e

aei(ktth) + ﬂ/ei(knfk) + ﬂeikn — ei(kner) (OL + ﬂ/efi(ker) + 5e*iX)

ﬁeix + B/ei(k-s-x) — ﬁ/e_i(k+") + ﬁe_ix


http://dx.doi.org/10.1007/978-3-662-55671-9_23
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' i i i i"2\2
2Zix — M - e_”‘w g (B'e=ik/2 4 Beik/2)
Bek + 3 Bleik/2 4 Be—ik/2 B2 1+ 32 + 230 cosk

6/efik/2 + ﬂeikﬂ
VB2 + 32+ 283 cosk

elX — :l:eflk/2

N ﬁﬁ/efik+52+ﬁ/2+ﬂ6/eik

A=« —|—ﬂeiX +ﬂ/ei(k+x) = a
VB2 + B>+ 280 cosk

=a+/B2+ 3 +283 cosk

(©

_ik/2 ik/2
0 = 3 (NHNIR) — 3 (ie—ik/z \/536 /2 4 pelk/ ei(N+1)k)

2 4 3% 4+ 200 cosk
5/eiNk + 5ei(N+l)k
= 43
VBZ + B + 203 cosk

0 = #' sin(Nk) + Bsin(N + 1)k)

R

(d) For a linear polyene with 2N-1 carbon atoms use again eigenfunctions

Con = sin(kn) = (")

Con—1 = sin(kn + x) = I(eikn )y

and chose the k-values such that

(M) = sin(Nk) = 0

Problems of Chap. 25

25.1 Special Pair Dimer

(VL) (50)


http://dx.doi.org/10.1007/978-3-662-55671-9_25

496
is diagonalized if
(62 — SZ)V =csA

or with ¢ = cosy, s = siny

an(2y) 2V
an = —
V=4
2 2 1
cc—s"=cos2y=——=2>0
2
1+
_ 1
2¢s = sin(2y) = —— > 0.
2
1+ 4>

The eigenvalues are (Fig.?2)

A 5 5
EL=+ E(C —5°) +2csV

e

The transition dipoles are

Pt = Spta + Cpip

Fig. 2 Energy splitting of

Solutions

1
= :I:E\/ A2 +4V2,

the two dimer bands

relative energies E/2V

2 4 6 8 10
disorder A /2V
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Fig. 3 Intensities of the two 2.0
dimer bands

relative intensities

0.0 L 1 L 1 L 1 L 1 L
0 2 4 6 8 10

disorder A/2V

f— = Cfig — S{ip
and the intensities (for |u,| = |us| = 1)

COos «

J1+ A

|pe* = p?(1 £ 2es cos o) = p?(1 £ )

with (Fig.3)

cosa = —0.755.
25.2 LHCII
n; o >= lZ:efik"|k' o>
; 3 4 ;

9 9
1 o
ZEa|n; a><n;al = ZEQ§ Ze”(k’k)"lk; a><k;al
n=1 n=1 kK

=G Ealk; a >< k; af
9 9 1
Eoln; §><n; 1 D Eag > ek g >< K 5|
= 255 2

= i Eolk; B >< k; B
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9 9 1
D Vaimlns a =< ni Bl = 3" Vaimg > e ks =< K5 )
n=1 n=1 k,k'
= Ok Vaimlk; o >< k; f3]

9 9
s 1 . ’
. 1. _ —ik _ —i(k—k")ng,. ’.
E Voa1ln; o ><n Lﬁl—nz_l Via,1€ 5 E e lk; o >< k'; B

n=1 k,k'

= Sk Vare ¥k a > < k; B

9 9
21 o
2 Vsarlns B=<ntlial =3 Viarehs > ek §>< K af
n=1 n=1 k, k'
= O Vaan€*lk; B >< k; af
9 9 1 o
z Vaaa1(n;a><n+1;al + hc) = Z Vaa,lelkg Ze_’(k_k Mk >< ks al+ h.c.
n=1 n=1 k,k'
= Ok 2Vaa,1 COSklk; a0 >< k; o
Hozu(k) = Eu + zv(yal cosk
Hﬂﬂ(k) = Eﬂ + 2‘/}3‘31 cosk
Haﬁ(k) = Vdim + e_ik Vﬁa,l
H?a(k) = Vdim + eik Vﬁal
Eo +2Vggicosk Ve kw — —AgJ2 V ey
H(k) = ik = =+ b
V+e* W Eg+2Vgg cosk V+e*W  Ap/2

Perform a canonical transformation with

g — ¢ —se X
T \seX ¢ )

ST H S becomes diagonal if

AV +e*W) — s2ePX(V + e *W) + eself A, = 0.
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Fig. 4 Energy levels of E— =0
LHII

_— k=0

Chose  such that

V +e*W =signV|V + e*Wlelt = U (k)el
and solve

(A =sHU +¢csA, =0

by*

U 1 ¢
c2—s2=—sign(Z) cs = |A| .
J1+22 1+ 4

The eigenvalues are (Fig.4)

— 1
E (k) =E; + signVE\/Az +4U?

E,+E
= aTﬂ + (Vaa1 + Vgs1) cosk

Eo — E5+2(Vaar — Vj, K\
:l:signV\/( ot 2 21 o) €08 ) +V24+ W2 +2VWcosk

1 . 1 4
Mk, + = C§ z elknﬂna + SeIX§ Zelkn,um’)’
n n

4The sign is chosen such that for |A| <« |U| the solution becomes ¢ = s = 1/ V2.
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1 ikn on ix 1 ikn on
= C§ ZC S9/’('Oa + se g Ze S9 Rz(2V + ¢ﬂ - (bu)uo,a
n n
2 2 . .
cos 9n—sm gn . cos€e —sine sin 6
Zelkn sin 9 Tn cos 2—’Tn c+se™ | sine cose 10 0 .
1 1 cos

The sum over n again gives the selection rules
k =0 z-polarisation
k= j:%r circular xy-polarisation.

The second factor gives for z-polarization
= 3po(c + se™) cos 0
> = 9u(2)(1 + 2c¢s cos ) cos® 0

with
cos” 6 ~ 0.008

and for polarization in the xy plane

M:S,uosine(c +S€”‘C°S€)

se'Xsin e
|l = 9#(2) sin? O(1 4 2 cos € ¢s cos )
with
sin® @ ~ 0.99 cose &~ —0.952.
The intensities of the (k,-) states are
|pz|2 = 9@%(1 — 2¢s cos ) cos>

11 |* = 9pd sin® O(1 — 2 cos e cs cos X).
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-F

stal -F

25.3 Exchange Narrowing

1 1 2 2 H
POE =X)=— [ dt | 0E\dOE, - ——=e OF1/4" .. it X=20E./N)
(0E ) 27r/ / 1 2 Aﬁe €

_ i dt e’ ! /5E1675512/A2,,-,(5E1/N N
27 AT

= — [ ar eitXe—A2t2/4N
27

VN e
JTA

Problems of Chap. 29

29.1 Deviation from Equilibrium

2 = e_AU/kBT(] _ eAu/kBT) (2%
ay + B
Qx) = e(A/;,U_AU(x))/kRTOQ—(x) (Keq 3 M)
a(x) + B2 (x) C(ADP)C(P)

For Ap #0but Ap < kgT $2 becomes a linear function of Ay
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502 Solutions

o (x) Ap
@ (x) + Ba(x) kgT

.Q(.X) - _e—AU(x)/kBT

whereas in the opposite limit Ay >> kg T itbecomes proportional to the concentration
ratio

as(x) AW ks T C(ATP)

2(x) » —e AU/ —
a(x) + f2(x) C(ADP)C(P)
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