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Preface to the Second Edition

The first edition of this book was based on a two-semester course at the physics
department of TU München. Approximately, one-third of this edition is new. We
tried to give a larger overview over the physical concepts which are applicable to
biological systems including established models as well as more recent develop-
ments. The major changes are as follows:

The chapter on continuum solvent models contains a discussion of the time
dependence of the reaction field after rapid excitation which is useful to understand
ultrafast time-resolved experiments on Stokes shift and relaxation processes. The
discussion of ion transport includes also models for cooperativity in ion channel
kinetics. Here we concentrate on the famous MWC and KNF models for
ligand-gated ion channels. In connection with electron transfer theory we present a
simple model for the mutual interaction with the medium polarization and discuss
the interplay between charge delocalization and self-trapping. Harmonic normal
mode approximation and nonadiabatic interactions are discussed in more detail.
A new chapter is devoted to intramolecular electronic transitions. The coupling to
the radiation field is treated as well with the semiclassical as the quantum
mechanical method and the Einstein coefficients for absorption and emission are
derived. The chapter ends with an overview of radiationless processes. The chapter
on crossing between states has been rewritten and extended. We begin with
wavepacket motion for a free particle and a harmonic oscillator, and discuss the
classical approximation of nuclear motion. We discuss the adiabatic to diabatic
transformation and the definition of quasidiabatic states. The semiclassical
approximation to one-dimensional curve crossing leads systematically to the
famous Landau–Zener model. The chapter ends with an introduction to conical
intersections and the linear vibronic coupling model as a simple example. Two new
chapters were added about specific biological systems. First, we discuss charge
transfer processes in DNA and describe the contributions of diffusive hopping and
superexchange over bridge states. Second, we present rather new models on the
photosynthetic reaction center and discuss the possible importance of heteroge-
neous superexchange and coupled proton motion. We would like to thank
Dr. Wolfgang Dietz for his contributions to this chapter, which replaces a rather
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short one of the first edition. The molecular motor models include more recent ideas
concerning ratchet models and localized reactions. Finally, we added two new
chapters to the appendix on the classical approximation of quantum motion and on
the complex cotangent function.

Garching, Germany Philipp O.J. Scherer
April 2017 Sighart F. Fischer
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Preface to the First Edition

Biophysics deals with biological systems, such as proteins, which fulfill a variety of
functions in establishing living systems. While the biologist uses mostly a phe-
nomenological description, the physicist tries to find the general concepts to classify
the materials and dynamics which underly specific processes. The phenomena span
a wide range, from elementary processes, which can be induced by light excitation
of a molecule, to the communication of living systems. Thus, different methods are
appropriate to describe these phenomena. From the point of view of the physicist,
this may be continuum mechanics to deal with membranes, hydrodynamics to deal
with transport through vessels, bioinformatics to describe evolution, electrostatics
to deal with aspects of binding, statistical mechanics to account for temperature and
to learn about the role of the entropy, and last but not least quantum mechanics to
understand the electronic structure of the molecular systems involved. As can be
seen from the title, Molecular Biophysics, this book will focus on systems for which
sufficient information on the molecular level is available. Compared to crystallized
standard materials studied in solid-state physics, the biological systems are char-
acterized by very big unit cells containing proteins with thousands of atoms. In
addition, there is always a certain amount of disorder, so that the systems can be
classified as complex. Surprisingly, the functions like a photocycle or the folding of
a protein are highly reproducable indicating a paradox situation in relation to the
concept of maximum entropy production. It may seem that a proper selection in
view of the large diversity of phenomena is difficult, but exactly this is also the
challenge taken up within this book. We try to provide basic concepts, applicable to
biological systems or soft matter in general. These include entropic forces, phase
separation, cooperativity, and transport in complex systems, like molecular motors.
We also provide a detailed description for the understanding of elementary pro-
cesses like electron, proton, and energy transfer, and show how nature is making
use of them for instance in photosynthesis. Prerequisites for the reader are a basic
understanding in the fields of mechanics, electrostatics, quantum mechanics, and
statistics. This means the book is for graduate students, who want to specialize in
the field of biophysics. As we try to derive all equations in detail, the book may also
be useful to physicists or chemists who are interested in applications of statistical
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mechanics or quantum mhemistry to biological systems. The book is the outcome
of a course presented by the authors as a basic element of the newly established
graduation branch 'Biophysics' in the Physics Department of the Technische
Universitaet Muenchen.

The authors would like to thank Dr. Florian Dufey and Dr. Robert
Raupp–Kossmann for their contributions during the early stages of the evolving
manuscript.

Garching, Germany Philipp O.J. Scherer
August 2009 Sighart F. Fischer
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Chapter 1
RandomWalk Models for the Conformation

In this chapter we study simple statistical models for the entropic forces which are
due to the large number of conformations characteristic for biopolymers like DNA or
proteins (Fig. 1.1). First we discuss the freely jointed chain model. We evaluate the
statistical distribution of end to end distances and discuss the force-extension relation.
Then we study a two component model of a polymer chain which is composed of
two types of units, which may interconvert. Interactions between the segments are
included and explain the appearance of a very flat force-extension relationship, where
a small force may lead to much larger changes in length than without interaction.
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α

Fig. 1.1 Conformation of a protein. The relative orientation of two successive protein residues can
be described by three angles (Ψ,Φ,ω). For a real protein the ranges of these angles are restricted
by steric interactions, which are neglected in simple models

1.1 The Freely Jointed Chain

We consider a three-dimensional chain (Fig. 1.2) consisting of M units. The config-
uration can be described by a point in a 3(M+1)-dimensional space

(r0, r2 . . . rM). (1.1)
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4 1 Random Walk Models for the Conformation

Fig. 1.2 Freely jointed chain
with constant bond length b

b

The M bond vectors

bi = ri − ri−1 (1.2)

have a fixed length |bi | = b and are randomly oriented . This can be described by a
distribution function

P(bi ) = 1

4πb2
δ(|bi | − b). (1.3)

Since the different units are independent, the joint probability distribution factorizes

P(b1 . . . bM) =
M∏

i=1

P(bi). (1.4)

There is no excluded volume interaction between any two monomers. Obviously the
end-to-end distance

R =
N∑

i=1

bi (1.5)

has an average value of R = 0 since

R =
∑

bi = M
∫

biP(bi ) = 0. (1.6)

The second moment is

R2 =
⎛

⎝
∑

i

bi
∑

j

b j

⎞

⎠ =
∑

i, j

bib j (1.7)

=
∑

i

b2
i +

∑

i �= j

bib j = Mb2.
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1.1.1 Entropic Elasticity

The distribution of the end-to-end vector is

P(R) =
∫

P(b1 . . . bM)δ
(
R −

∑
bi

)
d3b1 . . . d3bM . (1.8)

This integral can be evaluated by replacing the delta function by the Fourier integral

δ(R) = 1

(2π)3

∫
e−ikRd3k (1.9)

which gives

P(R) =
∫

d3ke−ikR
M∏

i=1

(∫
1

4πb2
δ(|bi | − b)eikbi d3bi

)
. (1.10)

The inner integral can be evaluated in polar coordinates

∫
1

4πb2
δ(|bi | − b)eikbi d3bi (1.11)

=
∫ 2π

0
dφ

∫ ∞

0
b2
i dbi

1

4πb2
δ(|bi | − b)

∫ π

0
sin θdθeikbi cos θ.

The integral over θ gives

∫ π

0
sin θdθeikbi cos θ = 2 sin kbi

kbi
(1.12)

and hence
∫

1

4πb2
δ(|bi | − b)eikbi d3bi = 2π

∫ ∞

0
dbi

1

4πb2
δ(bi − b)b2

i

2 sin kbi
kbi

= sin kb

kb
(1.13)

and finally we have

P(R) = 1

(2π)3

∫
d3ke−ikR

(
sin kb

kb

)M

. (1.14)

The function
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(
sin kb

kb

)M

(1.15)

has a very sharp maximum at kb = 0. For large M, it can be approximated quite
accurately by a Gaussian

(
sin kb

kb

)M

≈ e−M 1
6 k

2b2
(1.16)

which gives

P(R) ≈ 1

(2π)3

∫
d3ke−ikRe− M

6 k2b2 =
(

3

2πb2M

)3/2

e−3R2/(2b2M). (1.17)

We consider R as a macroscopic variable. The free energy is (no internal degrees of
freedom, E = 0)

F = −T S = −kBT ln P(R) = 3R2

2b2M
kBT + const. (1.18)

The quadratic dependence on L is very similar to a Hookean spring. For a potential
energy

V = ks
2
x2 (1.19)

the probability distribution of the coordinate is

P(x) =
√

ks
2πkbT

e−ks x2/2kBT (1.20)

which gives a free energy of

F = −kBT ln P = const + ksx2

2
. (1.21)

By comparison, the apparent spring constant is

ks = 3kBT

Mb2
. (1.22)

1.1.2 Force–Extension Relation

We consider now a chain with one fixed end and an external force acting in x-direction
at the other end (Fig. 1.3) [1].



1.1 The Freely Jointed Chain 7

Fig. 1.3 Freely jointed
chain with external force

x

κ
b

Fig. 1.4 Projection of the
bond vector

x

θ

b φ

The projection of the i-th segment onto the x-axis has a length of (Fig. 1.4)

bi = −b cos θ ∈ [−b, b]. (1.23)

We discretize the continuous range of b j by dividing the interval [−b, b] into n
bins of width Δb = 2b

n corresponding to the discrete values li , i = 1 . . . n. The
chain members are divided into n groups according to their bond projections b j . The
number of units in each group is denoted by Mi so that

n∑

i=1

Mi = M (1.24)

and the end-to-end length is

n∑

i=1

li Mi = L . (1.25)

The probability distribution is

P(θ,φ)dθdφ = sin(θ)dθdφ

4π
. (1.26)

Since we are only interested in the probability of the li , we integrate over φ

P(θ)dθ = sin(θ)dθ

2
(1.27)
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and transform variables to have

P(l)dl = P(−b cos θ)d(−b cos θ) = 1

2b
d(−b cos θ) = 1

2b
dl. (1.28)

The canonical partition function is

Z(L , M, T ) =
∑

{Mi } ∑
Mi li=L

M !∏
j M j !

∏

i

zMi
i =

∑

{Mi }
M !

∏

i

zMi
i

Mi ! . (1.29)

The zi = z are the independent partition functions of the single units which we
assume as independent of i. The degeneracy factor M !∏

Mi !counts the number of
microstates for a certain configuration {Mi }. The summation is only over configura-
tions with a fixed end-to-end length. This makes the evaluation rather complicated.
Instead, we introduce a new partition function by considering an ensemble with fixed
force and fluctuating length

Δ(κ, M, T ) =
∑

L

Z(L , M, T )eκL/kBT . (1.30)

Approximating the logarithm of the sum by the logarithm of the maximum term we
see that

−kBT ln Δ = −kBT ln Z − κL (1.31)

(−κL corresponds to +pV ) gives the Gibbs free enthalpy

G(κ, M, T ) = F − κL . (1.32)

In this new ensemble the summation over L simplifies the partition function

Δ =
∑

{Mi }
eκ

∑
Mi li/kBT M !

∏ zMi

Mi !

=
∑

{Mi }
M !

∏ (zeκli /kBT )Mi

Mi !

=
(∑

zeκli /kBT
)M = ξ(κ, T )M . (1.33)

Now returning to a continuous distribution of li = −b cos θ we have to evaluate

ξ =
∫ b

−b
P(l)dl zeκl/kBT = z

sinh t

t
(1.34)
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Fig. 1.5 Force - extension
relation

-20 -10 0 10 20
-1

-0.5

0

0.5

1

L
/M

b

b/k
B
Tκ

with

t = κb

kBT
. (1.35)

From

dG = −SdT − Ldκ (1.36)

we find (Fig. 1.5)

L = −∂G

∂κ
|T

= ∂

∂κ

(
MkBT ln

(
z
κb
kBT

sinh
κb

kBT

))

= MkBT

(
− 1

κ
+ b

kBT
coth

(
κb

kBT

))
= MbL

(
κb

kBT

)

with the Langevin function

L(x) = coth(x) − 1

x
. (1.37)

1.2 Two Component Model

A one-dimensional random walk model can be applied to a polymer chain which is
composed of two types of units (named α and β) , which may interconvert (Fig. 1.6).
This model is for instance applicable to the dsDNA → SDNA transition or the
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Fig. 1.6 Two component
model

L

l lα β

α-Helix → random coil transition of proteins which show up as a plateau in the
force-extension curve [1, 2].

We follow the treatment given in [1] which is based on an explicit evaluation of
the partition function. Alternatively, the two component model can be mapped onto
a one-dimensional Ising model, which can be solved by the transfer matrix method
[3, 4]. We assume that of the overall M units Mα are in the α-configuration and
M − Mα are in the β-configuration. The lengths of the two conformers are lα and lβ ,
respectively.

1.2.1 Force-Extension Relation

The total length is given by

L = Mαlα + (M − Mα)lβ = Mα(lα − lβ) + Mlβ . (1.38)

The number of configurations with length L is given by

Ω(L) = Ω

(
Mα = L − Mlβ

lα − lβ

)
= M !(

L−Mlβ
lα−lβ

)
!
(

Mlα−L
lα−lβ

)
!
. (1.39)

From the partition function

Z = zMα
α zM−Mα

β Ω = z
L−Mlβ
lα−lβ

α z
Mlα−L
lα−lβ

β Ω (1.40)

application of Stirling’s approximation gives for the free energy

F = −kBT ln Z

= −kBT
L − Mlβ
lα − lβ

ln zα − kBT
Mlα − L

lα − lβ
ln zβ − kBT (M ln M − M)

= −kBT

{
−

(
L − Mlβ
lα − lβ

)
ln

(
L − Mlβ
lα − lβ

)
+

(
L − Mlβ
lα − lβ

)

−
(
Mlα − L

lα − lβ

)
ln

(
Mlα − L

lα − lβ

)
+

(
Mlα − L

lα − lβ

)}
. (1.41)
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Fig. 1.7 Force - extension
relation for the 2-component
model
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The derivative of the free energy gives the force-extension relation (Fig. 1.7)

κ = ∂F

∂L
= kBT

lα − lβ
ln

(
Mlβ − L

L − Mlα

)
+ kBT

lα − lβ
ln

zβ

zα
. (1.42)

This can be written as a function of the fraction of segments in the α-configuration

δ = Mα

M
= L − Mlβ

M(lα − lβ)
(1.43)

in the somewhat simpler form

κ
lα − lβ
kBT

= ln
δ

1 − δ
+ ln

zβ

zα
. (1.44)

The mean extension for zero force is obtained by solving κ(L) = 0

L0 = M

(
zαlα + zβlβ
zα + zβ

)
(1.45)

δ0 = L̄0 − Mlβ
M(lα − lβ)

= zα

zα + zβ
. (1.46)

Taylor series expansion around L0 gives the linearized force–extension relation
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κ = ∂F

∂L

= kBT

M(lα − lβ)2

(zα + zβ)2

zαzβ
(L − L̄0) + · · ·

≈ kBT

lα − lβ

(zα + zβ)2

zαzβ
(δ − δ0)

= kBT

lα − lβ

1

δ0(1 − δ0)
(δ − δ0). (1.47)

1.2.2 Two Component Model with Interactions

We now consider additional interaction between neighboring units. We introduce the
interaction energies wαα, wαβ, wββ for the different pairs of neighbors and the num-
bers Nαα, Nα,β, Nββ of such interaction terms. The total interaction energy is then

W = Nααwαα + Nαβwαβ + Nββwββ . (1.48)

The numbers of pair interactions are not independent from the numbers of units
Mα, Mβ . Consider insertion of an additionalα-segment into a chain. Figure 1.8 counts
the possible changes in interaction terms. In any case, by insertion of an α-segments
the expression 2Nαα + Nαβ increases by 2.

Similarly, insertion of an extra β-segment increases 2Nββ + Nαβ by 2 (Fig. 1.9).

Fig. 1.8 Insertion of an
α-segment

N
αβ

N
ββ

Nαα N
αβ

∗∗∗αα∗∗∗

∗∗∗αβ∗∗∗

∗∗∗βα∗∗∗

∗∗∗ββ∗∗∗

α
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+1

+1

+1

+1

+1

2+ 1−

+2

+2

+2

+2

+2

Mα βM

+1

ααN

Fig. 1.9 Insertion of a
β-segment
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N
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N
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∗∗∗αβ∗∗∗

∗∗∗βα∗∗∗

∗∗∗ββ∗∗∗

+2
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+2

+2

β

+1

+1

+1

+1

1− 2+

+1

+1

+1

NββM Mα β
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Fig. 1.10 Determination of
the constants
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This shows that there are linear relationships of the form

2Nαα + Nαβ = 2Mα + c1

2Nββ + Nαβ = 2Mβ + c2. (1.49)

The two constants depend on the boundary conditions as can be seen from an inspec-
tion of the shortest possible chains with 2 segments (Fig. 1.10). They are zero for
periodic boundaries and will, therefore, be neglected in the following, since the
numbers Mα, Mβ are much larger.

We substitute

Nαα = Mα − 1

2
Nαβ (1.50)

Nββ = Mβ − 1

2
Nαβ (1.51)

w = wαα + wββ − 2wαβ (1.52)

to have the interaction energy

W = wαα

(
Mα − 1

2
Nαβ

)
+ wββ

(
Mβ − 1

2
Nαβ

)
+ wαβNαβ

= wααMα + wββ(M − Mα) − w

2
Nαβ . (1.53)

The canonical partition function is
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Fig. 1.11 Degeneracy factor g.
The possible 8 configurations
are shown for M = 4, Mα = 3,

Mβ = 3, Nαβ = 3
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Fig. 1.12 Distribution of
three segments over three
blocks. This is equivalent to
the arrangement of three
segments and two border
lines
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α α α 
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α α α 

αα α

αα α

ααα

α

α αα

α α

α αα

ααα

αα α

α αα

ααα

Z(Mα, T ) = zMα
α z

Mβ

β

∑

Nαβ

g(Mα, Nαβ)e−W (Nαβ)/kBT

= (
zαe−wαα/kBT

)Mα
(
zβe−wββ/kBT

)(M−Mα)
∑

Nαβ

g(Mα, Nαβ)eNαβw/2kBT .

(1.54)

The degeneracy factor g will be evaluated in the following. Figure 1.11 shows an
example.

The chain can be divided into blocks containing only α-segments (α-blocks)
or only β-segments (β-blocks). The number of boundaries between α-blocks and
β-blocks obviously is given by Nαβ . Let Nαβ be an odd number. Then there are
(Nαβ + 1)/2 blocks of each type (We assume that Nαβ, Mα, Mβ are large numbers
and neglect small differences of order 1 for even Nαβ). In each α-block there is
at least one α-segment. The remaining Mα − (Nαβ + 1)/2 α-segments have to be
distributed over the (Nαβ + 1)/2 α-blocks (Fig. 1.12 ).

Therefore we need the number of possible ways to arrange Mα − (Nαβ + 1)/2
segments and (Nαβ − 1)/2 walls which is given by the number of ways to distribute
the (Nαβ − 1)/2 walls over the total of Mα − 1 objects which is given by
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(Mα − 1)!
( Nαβ−1

2

)!(Mα − Nαβ+1
2

)! ≈ Mα!
( Nαβ

2

)!(Mα − Nαβ

2

)! . (1.55)

The same consideration for the β-segments gives another factor of

(M − Mα)!
( Nαβ

2

)!(M − Mα − Nαβ

2

)! . (1.56)

Finally, there is an additional factor of 2 because the first block can be of either type.
Hence for large numbers we find

g(Mα, Nαβ) = 2
(Mα)!

( Nαβ

2

)!(Mα − Nαβ

2

)!
(M − Mα)!

( Nαβ

2

)!(M − Mα − Nαβ

2

)! . (1.57)

We look for the maximum summand of Z as a function of Nαβ . The corresponding
number will be denoted as N ∗

αβ and is determined from the condition

0 = ∂

∂Nαβ
ln

(
g(Mα, Nαβ)e

wNαβ
2kB T

)
= w

2kBT
+ ∂

∂Nαβ
ln g(Mα, Nαβ). (1.58)

Stirling’s approximation gives

0 = w

2kBT
+ 1

2
ln

(
Mα − N ∗

αβ

2

)
+ 1

2
ln

(
M − Mα − N ∗

αβ

2

)
− ln

(
N ∗

αβ

2

)
(1.59)

or

0 = w

kBT
+ ln

(
(Mα − N ∗

αβ

2 )(M − Mα − N ∗
αβ

2 )

(
N ∗

αβ

2 )2

)
. (1.60)

Taking the exponential gives

(
Mα − N ∗

αβ

2

)(
M − Mα − N ∗

αβ

2

)
= e−w/kBT

(
Nαβ

2

)2

. (1.61)

Introducing the relative quantities

δ = Mα

M
γ = N ∗

αβ

2M
(1.62)

we have to solve the quadratic equation

(δ − γ)(1 − δ − γ) = γ2e− w
kB T . (1.63)
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The solutions are

γ = −1 ± √
(1 − 2δ)2 + 4e−w/kBT δ(1 − δ)

2(e−w/kBT − 1)
. (1.64)

Series expansion in w/kBT gives

γ = kBT

2w
+ 1

4
+ w

24kBT
+ · · ·

· · · ±
(

−kBT

2w
+ δ(1 − δ) − 1

4
+ (

(δ − δ2)2 − 1

24

) w

kBT

)
+ · · · (1.65)

The - alternative diverges for w → 0 whereas the + alternative

γ = δ(1 − δ) + (δ − δ2)2 w

kBT
− δ2

(
1

2
(1 − δ)2 + 2δ(δ − 1)3

)
w

kBT
· · · (1.66)

approaches the value

γ0 = δ − δ2 (1.67)

which is the only solution of the interactionless case

(δ − γ0)(1 − δ − γ0) = γ2
0 → δ(1 − δ) − γ = 0. (1.68)

For N ∗
αβ we obtain approximately

N ∗
αβ = 2M

(
δ(1 − δ) + (δ − δ2)2 w

kBT
+ · · ·

)
. (1.69)

Let us now apply the maximum term method, which approximates the logarithm of
a sum by the logarithm of the maximum summand

F = −kBT ln Z(Mα, T )

≈ −kBT Mα ln zα − kBT (M − Mα) ln zβ + Mαwαα + (M − Mα)wββ

−kBT ln g(Mα, N ∗
αβ) − wN ∗

αβ

2
. (1.70)

The force-length relation (Fig. 1.13) is now obtained from

κ = ∂F

∂L
= ∂F

∂Mα

∂

(
L−Mlβ
lα−lβ

)

∂L
= 1

lα − lβ

∂F

∂Mα

= 1

lα − lβ

(
−kBT ln zα + kBT ln zβ + wαα − wββ − kBT

∂

∂Mα
ln g

)

+ 1

lα − lβ

∂N ∗
αβ

∂Mα

∂

∂N ∗
αβ

(
−kBT ln g − wN ∗

αβ

2

)
. (1.71)
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Fig. 1.13 Force - length
relation for the interacting
two-component model.
Dashed curves: exact results
for w/kBT = 0,±2,±5 .
Solid curves: series
expansion (1.73) which gives
a good approximation for
|w/kBT | < 2
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The last part vanishes due to the definition of N ∗
αβ . Now using Stirling’s for-

mula we find

∂

∂Mα
ln g = ln

Mα

M − Mα
+ln

M − Mα − N ∗
αβ

2

Mα − N ∗
αβ

2

= ln
δ

1 − δ
+ln

1 − δ − γ

δ − γ
(1.72)

and substituting γ we have finally

κ
(lα − lβ)

kBT
= ln

zβe−wββ/kBT

zαe−wαα/kBT
− ln

(1 − δ)

δ

+
(

2δ − 1

)
w

kBT
+ δ

(
3δ − 2δ2 − 1

)(
w

kBT

)2

. (1.73)

Linearization now gives

δ0 = zαe−wαα/kBT

zαe−wαα/kBT + zβe−wββ/kBT

κ = kBT

lα − lβ

1

δ0(1 − δ0)
(δ − δ0)

+ w

kBT

(
2δ0 − 1

)
+

(
w

kBT

)2

(3δ2
0 − δ0 − 2δ3

0)

+
(

2
w

kBT
+

(
w

kBT

)2(
6δ0 − 6δ2

0 − 1
))

(δ − δ0). (1.74)

For negative w, a small force may lead to much larger changes in length than with
no interaction. This explains, for example, how in proteins huge channels may open
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although the acting forces are quite small. In the case of Myoglobine, this is how the
penetration of oxygen in the protein becomes possible.

Problems

1.1 Gaussian Polymer Model
The simplest description of a polymer is the Gaussian polymer model which considers
a polymer to be a series of particles joined by Hookean springs

n−1

n

(a) The vector connecting monomers n-1 and n obeys a Gaussian distribution with
average zero and variance

〈
(rn − rn−1)

2
〉 = b2.

Determine the distribution function P(rn − rn−1) explicitly.
(b) Assume that the distance vectors rn − rn−1 are independent and calculate the
distribution of end-to-end vectors P(rN − r0).
(c) Consider now a polymer under the action of a constant force κ in x-direction.
The potential energy of a conformation is given by

V =
N∑

n=1

f

2
(rn − rn−1)

2 − κ(xN − x0)

and the probability of this conformation is

P ∼ e−V/kBT .

Determine the effective spring constant f .
(d) Find the most probable configuration by searching for the minimum of the energy

∂V

∂xn
= ∂V

∂yn
= ∂V

∂zn
= 0.

Calculate the length of the polymer for the most probable configuration (according
to the maximum term method the average value coincides with the most probable
value in the thermodynamic limit).
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1.2 Three-Dimensional Polymer Model
Consider a model of a polymer in three-dimensional space consisting of N links of
length b. The connection of the links i and i + 1 is characterized by the two angles
φi and θi . The vector ri can be obtained from the vector r1 through application of a
series of rotation matrices1

ri = R1R2 . . . Ri−1r1

n−1

n

with

r1 =
⎛

⎝
0
0
b

⎞

⎠ Ri = Rz(φi )Ry(θi ) =
⎛

⎝
cos φi sin φi 0

− sin φi cos φi 0
0 0 1

⎞

⎠

⎛

⎝
cos θi 0 − sin θi

0 1 0
sin θi 0 cos θi

⎞

⎠ .

Calculate the mean square of the end-to-end distance

〈(∑N
i=1 ri

)2
〉

for the following cases:

(a) The averaging 〈· · · 〉 includes averaging over all angles φi and θi .
(b) The averaging 〈· · · 〉includes averaging over all angles φi while the angles θi are

held fixed at a common value θ.
(c) The averaging 〈· · · 〉includes averaging over all angles φi while the angles θi are

held fixed at either θ2i+1 = θa or θ2i = θb depending on whether the number of
the link is odd or even.

(d) How large must N be, so that it is a good approximation to keep only terms
which are proportional to N?

(e) What happens in the second case if θ is chosen as very small (wormlike chain)?

Hint: Show first that after averaging over the φi the only terms of the matrix which
have to be taken into account are the elements (Ri )33. The appearing summations
can be expressed as geometric series.

1The rotation matrices act in the laboratory fixed system (xyz). Transformation into the coor-
dinate system of the segment (x’y’z’) changes the order of the matrices. For instance r2 =
R(y, θ1)R(z,φ1)r1 = R(z,φ1)R(y′, θ1)R−1(z,φ1)R(z,φ1)r1 = R(z,φ1)R(y′, θ1)r1 (This is
sometimes discussed in terms of active and passive rotations).
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1.3 Two-Component Model
We consider the two-component model of a polymer chain which consists of M
segments of two different types α,β (internal degrees of freedom are neglected).
The number of configurations with length L is given by the Binomial distribution

Ω(L , M, T ) = M !
Mα!(M − Mα)! L = Mαlα + (M − Mα)lβ .

(a) Make use of the asymptotic expansion2 of the logarithm of the Gamma function

ln(�(z + 1)) = (ln z − 1)z + ln(
√

2π) + 1

2
ln z + 1

12z
+ O(z−3)

N ! = �(N + 1)

to calculate the leading terms of the force-extension relation which is obtained from

κ = ∂

∂L

(
− kBT ln Ω(L , M, T )

)
.

Discuss the error of Stirling’s approximation for M = 1000 and lβ/ lα = 2.

(b) Now switch to an ensemble with constant force κ . The corresponding partition
function is

Z(κ, M, T ) =
∑

L

eκL/kBTΩ(L , M, T ).

Calculate the first two moments of the length

L = − ∂

∂κ
(−kBT ln Z) = Z−1kBT

∂

∂κ
Z

L2 = Z−1(kBT )2 ∂2

∂κ2
Z

and discuss the relative uncertainty σ =
√

L2−L
2

L
. Determine the maximum of σ.

2Several asymptotic expansions can be found in [5] .



Chapter 2
Flory–Huggins Theory for Biopolymer
Solutions

In the early 1940s, Paul Flory [6] and Maurice Huggins [7], both working indepen-
dently, developed a theory based upon a simple lattice model that could be used to
understand the nonideal nature of polymer solutions. They consider a lattice model
where the lattice sites are chosen to be the size of a solvent molecule and where all
lattice sites are occupied by one molecule [1]. The mixing entropy and free energy
of a polymer solution are evaluated. The appearance of unstable regions and the
transition between a homogeneous and a two-phase system are discussed.

2.1 Monomeric Solution

As the simplest example, consider the mixing of a low-molecular-weight solvent
(component α) with a low-molecular-weight solute (component β). The solute mole-
cule is assumed to be the same size as a solvent molecule and therefore every lattice
site is occupied by one solvent molecule or by one solute molecule at a given time
(Fig. 2.1).

The increase in entropy ΔSm due to mixing of solvent and solute is given by

ΔSm = kB ln Ω = kB ln

(
N !

Nα!Nβ !
)

(2.1)

where N = Nα + Nβ is the total number of lattice sites. Using Stirling’s approxima-
tion leads to

© Springer-Verlag GmbH Germany 2017
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Fig. 2.1 Two-dimensional
Flory–Huggins lattice

solvent

solute

ΔSm = kB(N ln N − N − Nα ln Nα + Nα − Nβ ln Nβ + Nβ)

= kB(N ln N − Nα ln Nα − Nβ ln Nβ)

= −kBNα ln
Nα

N
− kBNβ ln

Nβ

N
. (2.2)

Inserting the volume fractions

φα = Nα

Nα + Nβ

φβ = Nβ

Nα + Nβ

(2.3)

the mixing entropy can be written in the well-known form

ΔSm = −NkB(φα ln φα + φβ ln φβ). (2.4)

Neglecting boundary effects (or using periodic b.c.) the number of nearest neighbor
pairs is (c is the coordination number)

Nnn = N
c

2
. (2.5)

These are divided into

Nαα =Nαc

2
φ α = Nφ2

αc

2
Nββ = Nβc

2
φβ = Nφ2

βc

2
Nαβ = Nφαφβ c. (2.6)

The average interaction energy is

w = 1

2
Ncφ2

αwαα + 1

2
Ncφ2

βwββ + Ncφαφβwαβ (2.7)

which after the substitution

wαβ = 1

2
(wαα + wββ − w) (2.8)
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becomes

w = −1

2
Ncφαφβw

= +1

2
Ncφα(φαwαα + φβwαα) + 1

2
Ncφβ(φβwββ + φαwββ) (2.9)

and since φα + φβ = 1

w = −1

2
Ncφαφβw + 1

2
Nc(φαwαα + φβwββ). (2.10)

Now the partition function is

Z = zNα

α z
Nβ

β e−Nαcwαα/2kBT e−Nβcwββ/2kBT eNαNβcw/2NkBT
N !

Nα!Nβ !
= (zαe−cwαα/2kBT )Nα (zβe−cwββ/2kBT )Nβ eNαNβcw/2NkBT

N !
Nα!Nβ ! .

(2.11)

The free energy is

F = −kBT ln Z = −NαkBT ln zα − NβkBT ln zβ

= +Nα

c

2
wαα + Nβ

c

2
wββ − NαNβcw

2N
+ NkBT (φα ln φα + φβ ln φβ).

(2.12)

For the pure solvent the free energy is

F(Nα = N , N β = 0) = −NαkBT ln zα + Nα

c

2
wαα (2.13)

and for the pure solute

F(Nα = 0, N β = N ) = −NβkBT ln zβ + Nβ

c

2
wββ (2.14)

hence, the change in free energy is

ΔFm = −NαNβcw

2N
+ NkBT (φα ln φα + φβ ln φβ) (2.15)

with the energy change (van Laar heat of mixing)

ΔEm = −NαNβcw

2N
= −N

cw

2
φαφβ = NkBTχφαφβ. (2.16)
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Fig. 2.2 Free energy change
ΔF/NkBT of a binary
mixture with interaction
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The last equation defines the Flory interaction parameter (Fig. 2.2)

χ = − cw

2kBT
. (2.17)

For χ > 2 the free energy has two minima and two stable phases exist. This is seen
from solving

0 = ∂ΔF

∂φα

= NkBT
∂

∂φα

(χφα(1 − φα) + φα ln φα + (1 − φα) ln(1 − φα))

= NkBT

(
χ(1 − 2φα) + ln

φα

1 − φα

)
. (2.18)

This equation has as one solution φα = 1/2. This solution becomes unstable for
χ > 2 as can be seen from the sign change of the second derivative

∂2ΔF

∂φ2
α

= NkBT

(
1 − 2χφα + 2χφ2

α

φ2
α − φα

)
= NkBT (4 − 2χ). (2.19)

2.2 Polymeric Solution

Now consider Nβ polymer molecules which consist of M units and hence occupy a
total of MNβ lattice sites. The volume fractions are (Fig. 2.3)

φα = Nα

Nα + MNβ

φβ = MNβ

Nα + MNβ

(2.20)
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Fig. 2.3 Lattice model for a
polymer

solvent

solute

and the number of lattice sites is

N = Nα + MNβ. (2.21)

The entropy is given by

ΔS = ΔSm + ΔSd = kB ln Ω(Nα, Nβ). (2.22)

It consists of the mixing entropy and a contribution due to the different conformations
of the polymers (disordering entropy). The latter can be eliminated by subtracting
the entropy for Nα = 0

ΔSm = ΔS − ΔSd = kB
ln Ω(Nα, Nβ)

ln Ω(0, Nβ)
. (2.23)

In the following we will calculate Ω(Nα, Nβ) in an approximate way. We use a
mean-field method where one polymer after the other is distributed over the lattice,
taking into account only the available volume but not the configuration of all the
other polymers. Under that conditions Ω factorizes

Ω = 1

Nβ !
Nβ∏
i=1

νi (2.24)

where νi counts the number of possibilities to put the i-th polymer onto the lattice.
It will be calculated by adding one segment after the other and counting the number
of possible ways

νi+1 =
M∏
s=1

ni+1
s . (2.25)

The first segment of the (i+1)-th polymer molecule can be placed onto

ni+1
1 = N − iM (2.26)

lattice sites (Fig. 2.4).
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Fig. 2.4 Available positions. The second segment can be placed onto four, the third segment onto
three positions. For the following segments it is assumed that they can also be placed onto three
positions (a). Configurations like (b) are neglected

The second segment has to be placed on a neighboring position. Depending on the
coordination number of the lattice there are c possible neighboring sites. But only a
fraction of

f = 1 − iM

N
(2.27)

is unoccupied. Hence, for the second segment we have

ni+1
2 = c

(
1 − iM

N

)
. (2.28)

For the third segment only c − 1 neighboring positions are available

ni+1
3 = (c − 1)

(
1 − iM

N

)
. (2.29)

For the following segments r = 4 . . . M , we assume that the number of possible
sites is the same as for the third segment. This introduces some error since for
some configurations the number is reduced due to the excluded volume. This error,
however, is small compared to the crudeness of the whole model. Multiplying all the
factors we have
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νi+1 = (N − iM)c(c − 1)M−2

(
1 − iM

N

)M−1

≈ (N − iM)M
(
c − 1

N

)M−1

(2.30)

and the entropy is

ΔS = kB ln

⎡
⎣ 1

Nβ !
Nβ∏
i=1

(N − iM)M
(
c − 1

N

)M−1
⎤
⎦ (2.31)

= −kNBβ ln Nβ + kBNβ + kBNβ(M − 1) ln

(
c − 1

N

)
+ kBM

Nβ∑
i=1

ln(N − iM).

(2.32)

The sum will be approximated by an integral

Nβ∑
i=1

ln(N − iM) ≈
∫ Nβ

0
ln(N − Mx)dx =

(
x − N

M

)
(ln(N − Mx) − 1)

∣∣∣∣ Nβ

0

= −Nα

M
(ln Nα − 1) + N

M
(ln N − 1). (2.33)

Finally we get

ΔS = −kBNβ ln Nβ + kBNβ + kBNβ(M − 1) ln

(
c − 1

N

)

+kB(N ln N − N + Nα − Nα ln Nα). (2.34)

The disorder entropy is obtained by substituting Nα = 0 and N = MNβ

ΔSd = ΔS(Nα = 0)

= −kBNβ ln Nβ + kBNβ + kBNβ(M − 1) ln

(
c − 1

MNβ

)

+kB(MNβ ln MNβ − MNβ). (2.35)

The mixing entropy is given by the difference (Fig. 2.5)

ΔSm = ΔS − ΔSd

= kB(N ln N − N + Nα − Nα ln Nα − MNβ ln MNβ + MNβ)

+kBNβ(M − 1)(ln MNβ − ln N )

= kB
(
N ln N − Nα ln Nα − MN β ln MNβ + MNβ ln MNβ

−MNβ ln N − Nβ ln MNβ + Nβ ln N
)
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Fig. 2.5 Mixing entropy.
ΔSm/NkB is shown as a
function of φβ for
M = 1, 2, 10, 100
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m
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(
Nα ln

Nα

N
+ Nβ ln

MNβ

N

)
= −kBNα ln φα − kBNβ ln φβ

= −NkB

(
φα ln φα + φβ

M
ln φβ

)
. (2.36)

In comparison with the expression for a solution of molecules without internal flex-
ibility we obtain an extra contribution to the entropy of

−N βkB ln
MNβ

N
+ NβkB ln

Nβ

N
= −NβkB ln M. (2.37)

Next, we calculate the change of energy due to mixing, ΔEm . wααis the interaction
energy between nearest-neighbor solvent molecules, wββ between nearest-neighbor
polymer units (not chemically bonded) and wαβ between one solvent molecule and
one polymer unit. The probability that any site is occupied by a solvent molecule is
φα and by a polymer unit is φβ . We introduce an effective coordination number c
which takes into account that a solvent molecule has c neighbors whereas a polymer
segment interacts only with c-2 other molecules. Then

Nαα = cφα

Nα

2
Nββ = Mcφβ

Nβ

2
(2.38)

Nαβ = cφαNβ. (2.39)

In the pure polymer, φβ = 1 and Nββ = McNβ/2, whereas in the pure solvent Nαα =
cNα/2. The energy change is
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ΔEm = cwααφα

Nα

2
+ wββMcφβ

Nβ

2
+ wαβMcφαNβ

−wααc
Nα

2
− wββMc

Nβ

2

= −cwαα

Nα

2
φβ − cMwββ

Nβ

2
φα + wαβMcφαNβ

=
(

wαβ − wαα + wββ

2

)
cNφαφβ

= −w

2
cNφαφβ

= NkBTχφαφβ (2.40)

with the Flory interaction parameter

χ = − wc

2kBT
. (2.41)

For the change in free energy we find (Figs. 2.6, 2.7 and 2.8)

ΔFm

NkBT
= ΔEm

NkBT
− ΔSm

NkB
= φα ln φα + φβ

M
ln φβ + χφαφβ. (2.42)

Fig. 2.6 Free energy as a
function of solute
concentration. ΔFm/NkBT
is shown for M = 1000 and
χ = 0.1, 0.5, 1.0, 2.0
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Fig. 2.7 Free energy as a
function of solute
concentration. ΔFm/NkBT
is shown for χ = 1.0 and
M = 1, 2, 10, 1000
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Fig. 2.8 Free energy as a
function of solute
concentration. ΔFm/NkBT
is shown for χ = 2.0 and
M = 1, 2, 10, 1000
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2.3 Phase Transitions

2.3.1 Stability Criterion

In equilibrium the free energy (if volume is constant) has a minimum value. Hence
a homogeneous system becomes unstable and separates into two phases if the free
energy of the two-phase system is lower, i.e., the following equation can be fulfilled

ΔFm(φβ, N ) > ΔFm(φ
′
β, N ′) + ΔFm(φ

′′
β, N − N ′). (2.43)

But since ΔFm = NΔ fm(φβ) is proportional to N , this condition becomes

NΔ fm(φβ) > N ′Δ fm(φ′
β) + (N − N ′)Δ fm(φ′′

β). (2.44)

Since the total numbers Nα ,Nβ are conserved we have

Nφβ = N ′φ′
β + (N − N ′)φ′′

β (2.45)
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or

N ′ = N
φβ − φ′′

β

φ′
β − φ′′

β

(N − N ′) = N
φ′

β − φβ

φ′
β − φ′′

β

. (2.46)

But since N as well as (N − N ′) should be positive numbers there are two possible
cases as follows:

φ′
β − φ′′

β > 0 φβ − φ′′
β > 0 φ′

β − φβ > 0 (2.47)

φ′
β − φ′′

β < 0 φβ − φ′′
β < 0 φ′

β − φβ < 0 (2.48)

which means that either φ′
β < φb < φ′′

β or φ′
β > φb > φ′′

β . By renaming we always
can choose the order

φ′
β < φβ < φ′′

β. (2.49)

The stability criterion becomes (Fig. 2.9)

Δ fm(φβ) >
φ′′

β − φβ

φ′′
β − φ′

β

Δ fm(φ′
β) + φβ − φ′

β

φ′′
β − φ′

β

Δ fm(φ′′
β) (2.50)

which can be written with the abbreviation

h′ = φβ − φ′
β h′′ = φ′′

β − φβ (2.51)

as

Δ f (φβ − h′) − Δ f (φβ)

h′ + Δ f (φβ + h′′) − Δ f (φβ)

h′′ < 0 (2.52)

Fig. 2.9 Stability criterion
for the free energy
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but that means the curvature has to be negative or locally

∂2Δ f (φβ)

∂φ2
β

< 0. (2.53)

2.3.2 Critical Coupling

Instabilities appear above a certain value of χ = χc(M). To find this critical value
we have to look for the metastable case with

0 = ∂2

∂2φb
Δ f (φb) = 1

1 − φb
+ 1

Mφb
− 2χ. (2.54)

In principle, the critical χ value can be found from solving this quadratic equation
for φb and looking for real roots in the range 0 ≤ φβ ≤ 1. Here, however a simpler
strategy can be applied. At the boundaries of the interval [0, 1] of possible φb-values
the second derivative is positive

∂2

∂2φb
Δ f (φb) → 1

Mφb
> 0 for φb → 0 (2.55)

∂2

∂2φb
Δ f (φb) → 1

1 − φb
> 0 for φb → 1. (2.56)

Hence, we look for a minimum of the second derivative, i.e., we solve

0 = ∂3

∂3φb
Δ f (φb) = 1

(1 − φb)2
− 1

Mφ2
b

. (2.57)

This gives immediately

φbc = 1

1 + √
M

. (2.58)

Above the critical point the minimum of the second derivative is negative. Hence we
are looking for a solution of

∂2

∂2φb
Δ f (φb) = ∂3

∂3φb
Δ f (φb) = 0. (2.59)
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Inserting φbc into the second derivative gives

0 = 1 + 1

M
+ 2√

M
− 2χ (2.60)

which determines the critical value of χ

χc = (1 + √
M)2

2M
= 1

2
+ 1√

M
+ 1

2M
. (2.61)

From dF = −SdT + μαdNα + μβdNβ we obtain the change of the chemical poten-
tial as

μα − μ0
α = Δμα = ∂ΔF

∂Nα

|Nβ ,T =
(

∂N

∂Nα

∂

∂N
+ ∂φβ

∂Nα

∂

∂φβ

)
NΔ f (φβ) (2.62)

= Δ f (φβ) − φβΔ f ′(φβ) = kBT

(
ln(1 − φβ) +

(
1 − 1

M

)
φβ + χφ2

β

)
. (2.63)

Now the derivatives of Δμα are

∂

∂φβ

Δμα = −φβΔ f ′′(φβ) (2.64)

∂2

∂φ2
β

Δμα = −Δ f ′′(φβ) − φβΔ f ′′′(φβ). (2.65)

Hence the critical point can also be found by solving

∂2

∂φ2
β

Δμα = ∂

∂φβ

Δμα = 0. (2.66)

Employing the ideal gas approximation

μ = kBT ln(p) + const (2.67)

this gives for the vapor pressure (Figs. 2.10 and 2.11)

pα

p0
α

= e(μα−μ0
α)/kBT = (1 − φβ)eχφ2

β+(1−1/M)φβ (2.68)

and since the exponential is a monotonous function another condition for the critical
point is

∂

∂φβ

pα

p0
α

= ∂2

∂2φβ

pα

p0
α

= 0. (2.69)
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Fig. 2.10 Vapor pressure of
a binary mixture with
interaction (M = 1)
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Fig. 2.11 Vapor pressure of
a polymer solution with
interaction for M = 1000,
χ = 0.5, 0.532, 0.55
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2.3.3 Phase Diagram

In the simple Flory–Huggins theory the interaction parameter is proportional to 1
T .

Hence we can write it as

χ = T0χ0

T
(2.70)

and discuss the free energy change as a function of φβ and T:

ΔF = NkBT

(
(1 − φβ) ln(1 − φβ) + φβ

M
ln φβ

)
+ NkBT0χ0φβ(1 − φβ)

(2.71)
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Fig. 2.12 Spinodal curve
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The turning points follow from

0 = ∂2

∂φ2
β

ΔF = NkB

(
T

1 − φβ

+ T

Mφβ

− 2T0χ0

)
(2.72)

as

φβ,T P = 1

2
+ T (1 − M) ± √

T 2(M − 1)2 + 4T0χ0M(T0χ0M − T − 4MT )

4T0χ0M
.

(2.73)

This defines the spinodal curve which separates the unstable from the metastable
region (Fig. 2.12).

Which is the minimum free energy of a two-phase system? The free energy takes
the form

ΔF = ΔF1 + ΔF2 = N 1kBTΔ f (φ1
β) + N 2kBTΔ f (φ2

β) (2.74)

with

N j = N j
α + MN j

β φ
j
β = MN j

β

N j
. (2.75)

The minimum free energy can be found from the condition that exchange of solvent
or solute molecules between the two phases does not change the free energy, i.e., the
chemical potentials in the two phases are the same

0 = dΔF =
(

∂ΔF1

∂N 1
α

− ∂ΔF2

∂N 2
α

)
dNα +

(
∂ΔF1

∂N 1
β

− ∂ΔF2

∂N 2
β

)
dNβ (2.76)
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0 = μ1
α − μ2

α = μ1
β − μ2

β (2.77)

or

0 =
(

Δ f 1 − φ1
β

∂

∂φ1
β

Δ f 1

)
−

(
Δ f 2 − φ2

β

∂

∂φ2
β

Δ f 2

)
(2.78)

0 =
(

Δ f 1 + (1 − φ1
β)

∂

∂φ1
β

)
Δ f 1 −

(
Δ f 2 + (1 − φ2

β)
∂

∂φ2
β

Δ f 2

)
. (2.79)

From the difference of these two equations, we find

∂Δ f 1

∂φ1
β

= ∂Δ f 2

∂φ2
β

(2.80)

and hence the slope of the free energy has to be the same for both phases. Inserting
into the first equation then gives

Δ f 1 − Δ f 2 = (φ1
β − φ2

β)Δ f ′ (2.81)

which shows that the concentrations of the two phases can be found by the well-
known “common tangent” construction (Fig. 2.13).

These so called binodal points give the border to the stable one-phase region.
Between spinodal and binodal the system is metastable. It is stable in relation to
small fluctuations since the curvature of the free energy is positive. It is, however,
unstable against larger scale fluctuations (Fig. 2.14).

Fig. 2.13 Common tangent
construction
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Fig. 2.14 Phase diagram
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Problems

2.1 Osmotic pressure of a Polymer solution

Pure SolventPolymer solution

μ           = μ(P,T) (P’,T)0

1 1

Calculate the osmotic pressure 
 = P − P ′ for the Flory–Huggins model of a poly-

mer solution The difference of the chemical potential of the solvent

μα(P, T ) − μ0
α(P, T ) = ∂ΔFm

∂Nα

∣∣
Nβ ,T

can be obtained from the free energy change

ΔFm = NkBT

(
φα ln φα + φβ

M
ln φβ + χφαφβ

)

and the osmotic pressure is given by

μ0
α(P ′, T ) − μ0

α(P, T ) = −

∂μ0

α

∂P
.
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Taylor series expansion gives the virial expansion of the osmotic pressure as a series
of powers of φβ . Truncate after the quadratic term and discuss qualitatively the
dependence on the interaction parameter χ (and hence also on temperature).

2.2 Polymer mixture

Consider a mixture of two types of polymers with chain lengths M1 and M2 and
calculate the mixing free energy change ΔFm . Determine the critical values φc and
χc. Discuss the phase diagram for the symmetrical case M1 = M2.



Part II
Protein Electrostatics and Solvation



Chapter 3
Implicit Continuum Solvent Models

Since an explicit treatment of all solvent atoms and ions is not possible in many
cases, the effect of the solvent on the protein has to be approximated by implicit
models which replace the large number of dynamic solvent modes by a continuous
medium [8–10] and treat the solvent as a dielectric continuum. We discuss the Born
model of a point charge in the center of a cavity and its extension for a general
charge distribution. The solvation energy of a dipole is evaluated, together with its
time dependence for the case of a simple Debye solvent.

3.1 Potential of Mean Force

In solution a protein occupies a conformation γ with the probability given by the
Boltzmann factor

P(X,Y ) = e−U (X,Y )

∫
dXdY e−U (X,Y )

(3.1)

where X stands for the coordinates of the protein (including the protonation state)
and Y for the coordinates of the solvent. The potential energy can be formally split
into three terms

U (X,Y ) = Uprot (X) +Usolv(Y ) +Uprot,solv(X,Y ). (3.2)

The mean value of a physical quantity which depends only on the protein coordinates
Q(X) is

Q =
∫

dXdY Q(X)P(X,Y ) =
∫

dX Q(X)P̃(X) (3.3)

© Springer-Verlag GmbH Germany 2017
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,
Biological and Medical Physics, Biomedical Engineering,
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where we define a reduced probability distribution for the protein

P̃(X) =
∫

dY P(X,Y ) (3.4)

which is represented by introducing the potential of mean force

P̃(X) = e−W (X)/kBT

∫
dX e−W (X)/kBT

(3.5)

e−W (X)/kBT = e−Uprot (X)/kBT
∫

dY e−(Usolv(Y )+Uprot,solv(X,Y ))/kBT

= e−(Uprot (X)+ΔW (X))/kBT (3.6)

where ΔW accounts implicitly but exactly for the solvents effect on the protein.

3.2 Dielectric Continuum Model

In the following we discuss implicit solvent models, which treat the solvent as a
dielectric continuum. In response to the partial charges of the protein qi polarization
of the medium produces an electrostatic reaction potential φR (Fig. 3.1).

If the medium behaves linearly (no dielectric saturation) the reaction potential is
proportional to the charges

φR
i =

∑

j

fi j q j . (3.7)

Let us now switch on the charges adiabatically by introducing a factor

qi → qiλ 0 < λ < 1. (3.8)

The change of the free energy is

dF =
∑

i

φi qi dλ =
∑

i �= j

qiq jλ

4πεri j
dλ +

∑

i j

fi j q jqiλdλ (3.9)
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Fig. 3.1 Charged, polar, and polarizable groups in proteins. Biological macromolecules contain
chemical compounds with certain electrostatic properties. These are often modeled using localized
electric multipoles (partial charges, dipoles ...) and polarizabilities
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and thermodynamic integration gives the change of free energy due to Coulombic
interactions

ΔFelec =
∫ 1

0
λdλ

⎛

⎝
∑

i �= j

qiq j

4πεri j
+

∑

i j

fi j q jqi

⎞

⎠

= 1

2

∑

i �= j

qiq j

4πεri j
+ 1

2

∑

i j

fi j q jqi . (3.10)

The first part is a property of the protein and hence included in Uprot . The second
part is the mean force potential

ΔWelec = 1

2

∑

i j

fi j qiq j . (3.11)

3.3 Born Model

The Born model [11] is a simple continuum model to calculate the solvation free
energy of an ion. Consider a point charge q in the center of a cavity with radius a
(the so called Born radius of the ion). The dielectric constant is ε1 inside the sphere
and ε2 outside (Fig. 3.2).

The electrostatic potential is given outside the sphere by

Φ = q

4πε2r
(3.12)

and inside by

Φ = Φ0 + q

4πε1r
. (3.13)

Fig. 3.2 Born model for Ion
solvation
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From the continuity of the potential at the cavity surface we find the reaction potential

Φ0 = q

4πa

(
1

ε2
− 1

ε1

)

. (3.14)

Since there is only one charge we have

f1,1 = 1

4πa

(
1

ε2
− 1

ε1

)

(3.15)

and the solvation energy is given by the famous Born formula

ΔWelec = q2

8πa

(
1

ε2
− 1

ε1

)

. (3.16)

3.4 Charges in a Protein

The continuum model can be applied to a more general charge distribution in a
protein. An important example is an ion pair within a protein (εr = 2) surrounded
by water (εr = 80). We study an idealized model where the protein is represented
by a sphere (Fig. 3.3).

We will first treat a single charge within the sphere. A system of charges can then
be treated by superposition of the individual contributions.

Using polar coordinates (r, θ,ϕ) the potential of a system with axial symmetry
(no dependence on ϕ) can be written with the help of Legendre polynomials as

φ =
∞∑

n=0

(Anr
n + Bnr

−(n+1))Pn(cos θ). (3.17)

The general solution can be written as the sum of a special solution and a harmonic
function. The special solution is given by the multipole expansion

Fig. 3.3 Ion pair in a protein
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q

4πε1|r − s+| = q

4πε1

1

r

∞∑

n=0

( s

r

)n
Pn(cos θ). (3.18)

Since the potential has to be finite at large distances, outside it has the form

φ2 =
∞∑

n=0

Bnr
−(n+1)Pn(cos θ) (3.19)

and inside the potential is given by

φ1 =
∞∑

n=0

(

Anr
n + qsn

4πε1
r−(n+1)

)

Pn(cos θ). (3.20)

At the boundary we have two conditions

φ1(R) = φ2(R) → BnR
−(n+1) = AnR

n + qsn

4πε1
R−(n+1) (3.21)

ε1
∂

∂r
φ1(R) = ε2

∂

∂r
φ2(R) = 0 (3.22)

→ −ε2

ε1
(n + 1)BnR

−(n+2) = nAn R
n−1 − (n + 1)

qsn

4πε1
R−(n+2) (3.23)

from which the coefficients can be easily determined

An = qsn

4πε1
R−1−2n (ε1 − ε2)(n + 1)

nε1 + (n + 1)ε2

Bn = qsn

4πε1

(2n + 1)ε1

nε1 + (n + 1)ε2
. (3.24)

The potential inside the sphere is

φ1 = q

4πε1|r − s+| + φR (3.25)

with the reaction potential

φR =
∞∑

n=0

qsn

4πε1
R−1−2n (ε1 − ε2)(n + 1)

nε1 + (n + 1)ε2
rn Pn(cos θ) (3.26)
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and the electrostatic energy is given (without the infinite self energy) by

1

2
qφ(s, cos θ = 1) = q

2

∞∑

n=1

qsn

4πε1
R−1−2n (ε1 − ε2)(n + 1)

nε1 + (n + 1)ε2
sn (3.27)

which for ε2 >> ε1 is approximately

q2

2

1

4πR

(
1

ε2
− 1

ε1

) ∑ ( s

R

)2n = −q2

2

1

4πR

(
1

ε1
− 1

ε2

)
1

1 − s2/R2
. (3.28)

Consider now two charges ±q at symmetric positions ±s. The reaction potentials of
the two charges add up to

φR = φR
+ + φR

− (3.29)

and the electrostatic free energy is given by

−q2

4πε1(2s)
+ 1

2
qφR

+(s) + 1

2
qφR

−(s) + 1

2
(−q)φR

+(−s) + 1

2
(−q)φR

−(−s). (3.30)

By comparison we find

q2

2
f++ = 1

2
qφR

+(s) = −q2

2

1

4πR

(
1

ε1
− 1

ε2

)
1

1 − s2/R2
(3.31)

(−q)2

2
f−− = 1

2
(−q)φR

−(−s) = −q2

2

1

4πR

(
1

ε1
− 1

ε2

)
1

1 − s2/R2
(3.32)

(−q)q

2
f−+ = 1

2
(−q)φR

+(−s) = (−q)

2

∞∑

n=1

qsn

4πε1
R−1−2n (ε1 − ε2)(n + 1)

nε1 + (n + 1)ε2
(−s)n

(3.33)

≈ −q2

2

1

4πR

(
1

ε2
− 1

ε1

) ∞∑

n=0

(−)n
( s

R

)2n = − (−q2)

2

1

4πR

(
1

ε1
− 1

ε2

)
1

s2/R2 + 1

(3.34)

q(−q)

2
f+− = 1

2
qφR

−(s) = (−q)q

2
f−+ (3.35)
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and finally the solvation energy is

Welec =
∞∑

n=1

q2sn

4πε1
R−1−2n (ε1 − ε2)(n + 1)

nε1 + (n + 1)ε2
(sn − (−s)n) (3.36)

Welec ≈ −q2 1

4πR

(
1

ε1
− 1

ε2

)
1

1 − s2/R2 − (−q2)
1

4πR

(
1

ε1
− 1

ε2

)
1

s2/R2 + 1

= − (2qs)2

8πR

(
1

ε1
− 1

ε2

)
1

1 − s4/R4 . (3.37)

If the extension of the system of charges in the protein is small compared to the
radius s << R the multipole expansion of the reaction potential converges rapidly.
Since the total charge of the ion pair is zero the monopole contribution (n = 0)

W (1)
elec = Q2

8πR

(
1

ε2
− 1

ε1

)

(3.38)

(which is nothing but the Born energy (3.16)) vanishes and the leading term is the
dipole contribution1 (n = 1, p = 2qs)

W (2)
elec = p2

4πε1R3

(ε1 − ε2)

ε1 + 2ε2
. (3.39)

3.5 Time Dependent Reaction Field

We consider now a solute which changes its dipole moment very fast at time t = 0
due to an optical excitation [12]. For t < 0 the charge distribution is in equilibrium
with the reaction field given by (3.26), (3.29). After the change, the reaction field
relaxes toward its new equilibrium value. We consider a continuum with frequency
dependent dielectric constant, which is in the simplest case described by Debye’s
model with one relaxation time

ε2 = ε(ω) = ε∞ + ε0 − ε∞
1 + iωτD

. (3.40)

More complicated solvents can be described by a sum of such terms with several
relaxation times.

We concentrate on the dipolar interactions, assuming that the multipole expansion
converges fast. Then, the time dependent solvation energy is

1This has been associated with several names (Bell, Onsager, Kirkwood).
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Welec(t) = −p(t)ΦR
dip(t) (3.41)

with the dipole reaction field

ΦR
dip(t) = 1

4πε1R3
f (t) (3.42)

which is assumed to be a linear functional of the perturbation

f (t) = F[p(t)]. (3.43)

The response to a monochromatic perturbation is

F
[
eiωt

] = g(ω)eiωt = (ε1 − ε(ω))

ε1 + 2ε(ω)
(3.44)

hence the impulse response is given by the Fourier transform

F [δ(t)] = 1

2π
F

[∫
dωeiωt

]

= 1

2π

∫
dω g(ω)eiωt = g̃(t) (3.45)

which for the Debye model becomes

g̃(t) = 3ε1(ε0 − ε∞)

τD(2ε∞ + ε1)2
Θ(t)e−t/τL + ε∞ − ε1

2ε∞ + ε1
δ(t) (3.46)

with the longitudinal relaxation time

τL = τD
2ε∞ + ε1

2ε0 + ε1
. (3.47)

The response to a time dependent dipole moment then is

F[p(t)] = F[
∫ ∞

−∞
p(t ′)δ(t − t ′)dt ′] =

∫ ∞

−∞
p(t ′)g̃(t − t ′)dt ′ (3.48)

where, in fact the upper limit of the integral is t , due to causality (g̃(t − t ′) =
0 for t ′ > t).

The response to a sudden change is

f (t) = F [p0 + ΔpΘ(t)] = p0

∫ ∞

−∞
g̃(t ′)dt ′ + ΔpΘ(t)

∫ t

0
g̃(t ′)dt ′

= p0
ε0 − ε1

2ε0 + ε1
for t < 0
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= p0
ε0 − ε1

2ε0 + ε1
+ Δp

[
ε∞ − ε1

2ε∞ + ε1
+ 3ε1(ε0 − ε∞)

(2ε∞ + ε1)(2ε0 + ε1)

(
1 − e−t/τL

)]

for t ≥ 0.

Immediately after the excitation

f (t = 0+) = p0
ε0 − ε1

2ε0 + ε1
+ Δp

ε∞ − ε1

2ε∞ + ε1
(3.49)

whereas at long times the slow degrees of freedom become effective and

f (t � τL) = (p0 + Δp)
ε0 − ε1

2ε0 + ε1
. (3.50)

3.6 Generalized Born Models

The Generalized Born model approximates the protein as a sphere with a dielectric
constant different from that of the solvent [13, 14].

Still and coworkers [14] proposed an approximate expression for the solvation
free energy of an arbitrary distribution of N charges:

Welec = 1

8π

(
1

ε2
− 1

ε1

) N∑

i, j=1

qiq j

fGB(ri j , ai j )
(3.51)

with the smooth function

fGB =
√√
√
√r2

i j + aia j exp

{

− r2
i j

2aia j

}

(3.52)

where the effective Born radius ai accounts for the effect of neighboring solute
atoms. Several methods have been developed to calculate appropriate values of the
ai [14–17].

Expression (3.51) interpolates between the Born energy of a total charge Nq at
short distances

Welec → 1

8π

(
1

ε2
− 1

ε1

)
N 2q2

a
for ri j → 0 (3.53)
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and the sum of the individual Born energies plus the change in Coulombic energy

Welec → 1

8π

(
1

ε2
− 1

ε1

)
⎛

⎝
∑

i

q2
i

ai
+

∑

i �= j

qiq j

ri j

⎞

⎠ for ri j � √
aia j (3.54)

for a set of well separated charges. It gives a reasonable description in many cases
without the computational needs of a full electrostatics calculation.



Chapter 4
Debye–Hückel Theory

Mobile charges like Na+ or Cl− ions are very important for the functioning of bio-
molecules. In a stationary state their concentration depends on the local electrostatic
field which is produced by the charge distribution of the biomolecule which in turn
depends for instance on the protonation state and on the conformation. In this chapter
we present continuum models to describe the interaction between a biomolecule and
surrounding mobile charges [18–21]. We derive the Poisson–Boltzmann equation
and study its solutions for simple geometries like a charged sphere and cylinder and
the Gouy–Chapman double layer including Stern’s modification for finite ion radius.

4.1 Electrostatic Shielding by Mobile Charges

We consider a fully dissociated (strong) electrolyte containing Ni mobile ions of the
sort i = 1 · · · with charges Zie per unit volume. The charge density of the mobile
charges is given by the average numbers of ions per volume

�mob(r) =
∑

i

Zi eN i (r). (4.1)

The electrostatic potential is given by the Poisson equation

ε�φ(r) = −�(r) = −�mob(r) − � f i x (r). (4.2)

Debye and Hückel [22] used Boltzmann’s theorem to determine the mobile charge
density. Without the presence of fixed charges the system is neutral

© Springer-Verlag GmbH Germany 2017
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,
Biological and Medical Physics, Biomedical Engineering,
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0 = �0
mob =

∑

i

Zi eN
0
i (4.3)

and the constant value of the potential can be chosen as zero.

φ0 = 0. (4.4)

The fixed charges produce a change of the potential. The electrostatic energy of an
ions of sort is

Wi = Zieφ(r) (4.5)

and the density of such ions is given by a Boltzmann distribution

Ni (r)

N 0
i

= e−Zi eφ(r)/kBT

e−Zi eφ0/kBT
(4.6)

or

Ni (r) = N 0
i e−Zi eφ(r)/kBT . (4.7)

The total mobile charge density is

�mob(r) =
∑

i

Zi eN
0
i e−Zi eφ(r)/kBT (4.8)

and we obtain the Poisson–Boltzmann equation

ε�φ(r) = −
∑

i

Zi eN
0
i e−Zi eφ(r)/kBT − � f i x (r). (4.9)

If the solution is very dilute we can expect that the ion–ion interaction is much smaller
than thermal energy

Zieφ � kBT (4.10)

and linearize the Poisson–Boltzmann equation

ε�φ(r) = −� f i x (r) −
∑

i

Zi eN
0
i

(
1 − Zie

kBT
φ(r) + · · ·

)
. (4.11)
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The first summand vanishes due to electroneutrality and we find finally

�φ(r) − κ2φ(r) = −1

ε
� f i x (r) (4.12)

with the inverse Debye length

λ−1
Debye = κ =

√
e2

εkBT

∑

i

N 0
i Z

2
i . (4.13)

4.2 1-1 Electrolytes

If there are only two types of ions with charges Z1,2 = ±1 (also in semiconductor
physics) the Poisson–Boltzmann equation can be written as

e

kBT
�φ(r) + e2

εkBT
N 0(e−eφ(r)/kBT − eeφ(r)/kBT ) = − e

εkBT
� f i x (r) (4.14)

which after substitution

φ̃(r) = e

kBT
φ(r) (4.15)

takes the form

�φ̃(r) − κ2 sinh(φ̃(r)) = − e

εkBT
� f i x (r) (4.16)

and with the scaled radius vector r′ = κr → φ̃(r) = f (r′) = f (κr)

� f (r′) − sinh( f (r′)) = − e

κ2εkBT
� f i x (κ

−1r′). (4.17)

4.3 Charged Sphere

We consider a spherical protein (radius R) with a charged sphere (radius a) in its
center (Fig. 4.1).

For a spherical problem we only have to consider the radial part of the Laplacian
and the linearized Poisson–Boltzmann equation becomes outside the protein
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Fig. 4.1 Simple model of a
charged protein

κ

ε1 ε2

R a

1

r

d2

dr2
(rφ(r)) − κ2φ(r) = 0 (4.18)

which has the solution

φ2(r) = c1e−κr + c2eκr

r
. (4.19)

Since the potential should vanish at large distances we have c2 = 0. Inside the protein
(a < r < R) solution of the Poisson equation gives

φ1(r) = c3 + Q

4πε1r
. (4.20)

At the boundary we have the conditions

φ1(R) = φ2(R) → c3 = c1e−κR

R
− Q

4πε1R
(4.21)

ε1
∂

∂r
φ1(R) = ε2

∂

∂r
φ2(R) → − Q

4πR2
= c1ε2

(
−e−κR

R2
− κ

e−κR

R

)
(4.22)

which gives the constants

c1 = QeκR

4πε2(1 + κR)
(4.23)

and

c3 = − Q

4πε1R
+ Q

4πε2R(1 + κR)
. (4.24)
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Fig. 4.2 Charged sphere in
an electrolyte. The potential
φ(r) is shown for
a = 0.1, R = 1.0
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Together we find the potential inside the sphere

φ1(r) = Q

4πε1

(
1

r
− 1

R

)
+ Q

4πε2R(1 + κR)
(4.25)

and outside (Fig. 4.2)

φ2(r) = Q

4πε2(1 + κR)

e−κ(r−R)

r
. (4.26)

The ion charge density is given by

�mob(r) = ε2�φ2 = ε2κ
2φ2 (4.27)

hence the ion charge at distances between r and r + dr is given by

κ
Q

(1 + κR)
re−κ(r−R)dr. (4.28)

This function has a maximum at rmax = 1/κ and decays exponentially at larger
distances (Fig. 4.3).

Let the charge be concentrated on the surface of the inner sphere. Then we have

φ1(a) = Q

4πε1

(
1

a
− 1

R

)
+ Q

4πε2R(1 + κR)
. (4.29)

Without the medium (ε2 = ε1,κ = 0) the potential would be

φ0
1(a) = Q

4πε1a
(4.30)
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Fig. 4.3 Charge density
around the charged sphere
for a = 0.1, R = 1.0
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hence the solvation energy is

W = 1

2
QφR = 1

2
Q(φ1(a) − φ0

1(a)) = Q2

8πR

(
1

ε2(1 + κR)
− 1

ε1

)
(4.31)

which for κ = 0 is given by the well-known Born formula

W = − Q2

8πR

(
1

ε1
− 1

ε2

)
(4.32)

and for a → R, ε1 = ε2 gives the solvation energy of an ion in solution

�Gsol = W = − Q2

8πε

κ

(1 + κR)
. (4.33)

4.4 Charged Cylinder

Next we discuss a cylinder of radius a and length l � a carrying the net charge Ne
uniformly distributed on its surface (Fig. 4.4).

σ = Ne

2πal
. (4.34)

Outside the cylinder this charge distribution is equivalent to a linear distribution of
charges along the axis of the cylinder with a 1-d density

Ne

l
= 2πaσ = e

b
. (4.35)
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Fig. 4.4 Charged cylinder
model

l

z

a

r

For the general case of a charged cylinder in an ionic solution we have to restrict
the discussion to the linearized PBE which becomes outside the cylinder

1

r

d

dr

(
r

d

dr

)
φ(r) = κ2φ(r). (4.36)

Substitution r → x = κr gives the equation

d2

dx2
φ(x) + 1

x

d

dx
φ(x) − φ(x) = 0. (4.37)

The solution of this equation are the modified Bessel functions of order zero denoted
as I0(x) and K0(x). For large values of x

lim
x→∞ I0(x) = ∞ lim

x→∞ K0(x) = 0 (4.38)

and hence the potential in the outer region has the form

φ(r) = C1K0(κr). (4.39)

Inside the cylinder surface the electric field is given by Gauss’ theorem

2πrlε1E(r) = Ne (4.40)

E(r) = −dφ(r)

dr
= Ne

2πε1rl
(4.41)

and hence the potential inside is

φ(r) = C2 − Ne

2πε1l
ln r. (4.42)

The boundary conditions are

φ(a) = C1K0(κa) = C2 − Ne

2πε1l
ln a (4.43)
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ε1
dφ(a)

dr
= − Ne

2πal
= ε2

dφ(a)

dr
= ε2C1(−κK1(κa)) (4.44)

from which we find

C1 = Ne

2πalε2κK1(κa)
(4.45)

and

C2 = Ne

2πalε2κ

K0(κa)

K1(κa)
+ Ne

2πε1l
ln a. (4.46)

The potential is then outside

φ(r) = Ne

2πalε2κ

K0(κr)

K1(κa)
(4.47)

and inside

φ(r) = Ne

2πalε2κ

K0(κa)

K1(κa)
+ Ne

2πε1l
ln a − Ne

2πε1l
ln r. (4.48)

For small κa → 0 we can use the asymptotic behavior of the Bessel functions

K0(x) → ln
2

x
− γ + · · · γ = 0.577 · · ·

K1(x) → 1

x
+ · · · (4.49)

to have approximately

C1 ≈ Ne

2πalε2κ
κa = Ne

2πlε2

C2 ≈ Ne

2πlε2

(
ln

2

κa
− γ

)
+ Ne

2πε1l
ln a. (4.50)

The potential outside is

φ(r) = − Ne

2πlε2

(
γ + ln

κ

2
+ ln r

)
(4.51)

and inside

φ(r) = Ne

2πlε2

(
ln

2

κa
− γ

)
+ Ne

2πε1l
ln a − Ne

2πε1l
ln r

= Ne

2πl

(
− γ

ε2
− 1

ε2
ln

κ

2
+

(
1

ε1
− 1

ε2

)
ln a − 1

ε1
ln r

)
. (4.52)
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Fig. 4.5 Potential of a charged cylinder with unit radius a = 1 for κ = 0.05. Solid curve:
K0(κr)/(κK1(κ)). Dashed curve: approximation by − ln κ

2 − ln r − γ

Outside the potential consists of the potential of the charged line (ln r ) and an addi-
tional contribution from the screening of the ions (Fig. 4.5).

4.5 Charged Membrane (Goüy–Chapman Double Layer)

We approximate the surface charge of a membrane by a thin layer charged with a
homogeneous charge distribution (Fig. 4.6).

Gouy [23, 24] and Chapman [25] derived the potential similar to Debye–Hückel
theory. For a 1-1 electrolyte (NaCl for example) the one-dimensional Poisson–
Boltzmann equation has the form (with transformed variables as above)

d2

dx2
f (x) − sinh( f (x)) = g(x) (4.53)

where the source term g(x) = − e
κ2εkBT

�(x/κ) has the character of a Delta-function
centered at x = 0. Consider an area A of the membrane and integrate along the
x-axis:

Fig. 4.6 Gouy–Chapman
double layer
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∫
d A

∫ +0

−0
�(x)dx = σ0A (4.54)

∫
d A

∫ +0

−0
dx g(x) = − e

κ2εkBT

∫
d A

∫ +0

−0
κdx ′�(x ′)

= − e

κεkBT
σ0A. (4.55)

Hence we identify

�(x) = σ0δ(x) g(x) = − eσ0

κεkBT
δ(x). (4.56)

The Poisson–Boltzmann equation can be solved analytically in this simple case. But
first we study the linearized homogeneous equation

d2

dx2
f (x) − f (x) = 0 (4.57)

with the solution

f (x) = f0e±x (4.58)

or going back to the potential

φ(x) = kBT

e
f0e±κx = φ0e±κx . (4.59)

The membrane potential is related to the surface charge density. Let us assume that
on the left side (x<0) the medium has a dielectric constant of ε1 and on the right
side ε. Since in one dimension the field in a dielectric medium does not decay we
introduce a shielding constant κ1 on the left side and take the limit κ1 → 0 to remove
contributions not related to the membrane charge. The potential then is given by

φ(x) =
{

φ0e−κx x>0
φ0eκ1x x<0

(4.60)

and φ0 is determined from the b.c.

ε
dφ

dx
(+0) − ε1

dφ

dx
(−0) = −σ0 (4.61)

which gives

−εκφ0 − ε1κ1φ0 = −σ0. (4.62)
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Fig. 4.7 Electrolytic double
layer
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In the limit κ1 → 0 we find

φ0 = σ0

εκ
. (4.63)

For x < 0 the potential is constant and for x > 0 the charge density is
(Figs. 4.7, 4.8)

�(x) = −ε
d2φ(x)

dx2
= −σ0κe−κx (4.64)

which adds up to a total net charge per unit area of

∫ ∞

0
�(x)dx = −σ0 (4.65)

hence the system is neutral and behaves like a capacity of

σ0A

φ0
= εκA = ε

A

LDebye
. (4.66)

The solution of the nonlinear homogeneous equation can be found multiplying
the equation with d f (x)

dx

d f

dx

d2 f

dx2
= sinh( f )

d f

dx
(4.67)

and rewriting this as

1

2

d

dx

(
d f

dx

)2

= d

dx
cosh( f ) (4.68)
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Fig. 4.8 Charge density of
counter- and co-ions. For an
exponentially decaying
potential �(r) (full curve)
the density of counter- and
co-ions (dashed curves) and
the total charge density
(dash-dotted curve) are
shown
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which can be integrated

(
d f

dx

)2

= 2 [cosh( f ) + C] . (4.69)

The constant C is determined by the asymptotic behavior1

lim
x→∞ f (x) = lim

x→∞
d f

dx
= 0 (4.70)

and obviously has the value C = −1. Making use of the relation

cosh( f ) − 1 = 2 sinh

(
f

2

)2

(4.71)

we find

d

dx
f (x) =

(
±2 sinh

(
f (x)

2

))
. (4.72)

Separation of variables then gives

d f

2 sinh( f/2)
= ±dx (4.73)

1We consider only solutions for the region x > 0 in the following.
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with the solution

f (x) = 2 ln

(
± tanh

(
x

2
+ C

2

))
. (4.74)

For x > 0 only the plus sign gives a physically meaningful expression. The constant
C is generally complex valued. It can be related to the potential at the membrane
surface

C = 2 arctanh
(
e f (0)/2) = ln

(
1 + e f (0)/2

1 − e f (0)/2

)
. (4.75)

For f (0) > 0 the argument of the logarithm becomes negative. Hence we replace in
(4.74) C by C + iπ to have (Fig. 4.9)

f (x) = 2 ln

(
tanh

(
x

2
+ C

2
+ iπ

2

))
= −2 ln

(
tanh

(
x

2
+ C

2

))
(4.76)

where C is now given by

C = 2 arctanh
(
e− f (0)/2

) = ln

(
1 + e− f (0)/2

1 − e− f (0)/2

)
. (4.77)

The integration constant C is again connected to the surface charge density by

dφ

dx
(0) = −σo

ε
(4.78)

and from

d

dx
φ(x) = kBT

e

d

dx
f (κx) = kBT

e
κ f ′(κx) (4.79)

we find

σ0

ε
= −kBT

e
κ f ′(0). (4.80)

Now the derivative is in the case f (0) > 0 given by

f ′(x) = tanh

(
x

2
+ C

2

)
− 1

tanh( x2 + C
2 )

(4.81)
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Fig. 4.9 One-dimensional Poisson–Boltzman equation. The solutions of the full (full curves) and
the linearized equation (broken curves) are compared for (a) B = −1 and (b) B = −5

and especially

f ′(0) = tanh

(
C

2

)
− 1

tanh(C2 )
(4.82)

and we have to solve the equation

t − 1

t
= − eσ0

kBTκε
= B (4.83)

which yields2

t = B

2
+

√
B2 + 4

2
(4.84)

C = 2arctanh

(
B

2
+

√
B2 + 4

2

)
. (4.85)

2The second root leads to imaginary values.
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Fig. 4.10 Stern modification
of the double layer
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4.6 Stern Modification of the Double Layer

Real ions have a finite radius R. Therefore, they cannot approach the membrane closer
than R and the ion density has a maximum possible value, which is reached when
the membrane is occupied by an ion layer. To account for this, Stern [26] extended
the Goüy–Chapman model by an additional ion layer between the membrane and
the diffusive ion layer (Fig. 4.10).

Within the Stern layer of thickness d there are no charges and the potential drops
linearly from the membrane potential φM to a value φ0

φ(x) = φM − φM − φ0

d
x 0 < x < d (4.86)

In the diffusive Goüy–Chapman layer the potential decays exponentially

φ(x) = φ0e−κ(x−d). (4.87)

Assuming the same dielectric constant for both layers we have to fulfill the boundary
conditions

dφ

dx
(d) = −φM − φ0

d
= −κφ0 (4.88)

and hence

φ0 = φM

1 + κd
. (4.89)
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The total ion charge in the diffusive layer now is

qdi f =
∫ ∞

d
�(x)dx = −Aεκ2φ0

∫ ∞

d
e−κ(x−a)dx = −Aεκφ0

= −A
εκ

1 + κd
φM (4.90)

and the capacity is

C = −qdi f
φM

= Aε

d + κ−1
(4.91)

which are just the capacities of the two layers in series

1

C
= Ad

ε
+ AλDebye

ε
= 1

CStern
+ 1

Cdi f f
. (4.92)

Problems

4.1 Membrane Potential

Consider a dielectric membrane in an electrolyte with an applied voltage V .

κ
εw

κ
εw

x0 L

εm

I II III

V

Solve the linearized Poisson–Boltzmann equation

d2

dx2
φ(x) = κ2(φ(x) − φ(0))

with boundary conditions

φ(0)(I ) = φ(−∞) = 0

φ(0)(I I I ) = φ(∞) = V

and determine the voltage difference
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ΔV = φ(L) − φ(0).

Calculate the charge density �mob(x) and the integrated charge on both sides of the
membrane. What is the capacity of the membrane?

4.2 Ionic Activity

The chemical potential of an ion with charge Ze is given in terms of the activity a
by μ = μ0 + kBT ln a. Assume that the deviation from the ideal behaviour μid =
μ0 + kBT ln c is due to electrostatic interactions only. Then for an ion with radius R
Debye–Hückel theory gives

μ − μideal = kBT ln a − kBT ln c = �(μα − μ0
α)Gsolv = − Z2e2

8πε

κ

(1 + κR)
.

For a 1–1 electrolyte calculate the mean activity coefficient

γc
± = √

γc+γc− =
√
a+
c+

a−
c−

and discuss the limit of extremely dilute solutions (Debye–Hückel limiting law).



Chapter 5
Protonation Equilibria

Some of the aminoacid residues building a protein can be in different protonation
states and therefore differently charged states (Fig. 5.1).

Fig. 5.1 Functional groups
which can be in different
protonation states

O
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O −

C
NH

NH 2
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+
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C
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O
C

O H
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Arginine
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Histidine

Glutamic Acid

In this chapter, we discuss the dependence of the free energy of a protein on the
electrostatic interactions of its charged residues. We investigate the chemical equilib-
rium between a large number of different protein conformations and the dependence
on the pH value [27]. The partition function is evaluated and the results are applied
to explain abnormal titration curves of coupled residues.

5.1 Protonation Equilibria in Solution

We consider a dilute aqueous solution (Fig. 5.2) containing N titrable molecules (i.e.
which can be in two different protonation states 0 = deprotonated, 1 = protonated).
For one molecule we have for fixed protonation state

G0 = F0 + pV0 = −kBT ln z0 + pV0 (5.1)

© Springer-Verlag GmbH Germany 2017
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Fig. 5.2 Titration in solution
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G1 = F1 + pV1 = −kBT ln z1 + pV1 (5.2)

and the free enthalpy difference between protonated and deprotonated form of the
molecule is

G1 − G0 = −kBT ln
z1

z0
+ pΔV . (5.3)

In the following the volume change will be neglected1. If we now put N such mole-
cules into the solution the number of protonated molecules can fluctuate by exchang-
ing protons with the solvent. Removal of one proton from the solvent costs a free
enthalpy of

ΔG = −μH+ (5.4)

where μH+ is the chemical potential of the proton in solution2. Hence we come to
the grand canonical partition function

� =
∑

M

ZMeμM/kBT (5.5)

1At atmospheric pressure the mechanic work term pΔV is very small. We prefer to discuss the free
enthalpy G in the following since experimentally usually temperature and pressure are constant.
2We omit the index H+ in the following.
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Fig. 5.3 Henderson–Hasselbalch titration curve. The protonation degree (5.9) is shown for
kBT = 1, 2, 5

where the partition function for fixed number M of protonated molecules is given by

ZM = N !
M !(N − M)! z

M
1 zN−M

0 (5.6)

if the N molecules cannot be distinguished. Hence we find

� =
∑

M

N !
M !(N − M)! (z1eμ/kBT )MzN−M

0 = (z0 + z1eμ/kBT )N . (5.7)

The average number of protonated molecules can be found from

M = ∂

∂(μ/kBT )
ln � = N

z1eμ/kBT

z0 + z1eμ/kBT
(5.8)

and the protonation degree, i.e. the fraction of protonated molecules is (Fig. 5.3)

M

N
= 1

1 + z0
z1

e−μ/kBT
= 1

1 + e(G1−G0−μ)/kBT
. (5.9)

In physical chemistry the following quantities are usually introduced:
The activity of a species ai is defined by

μi = μ0
i + kBT ln ai (5.10)

in analogy to μi = μ0
i + kBT ln pi/p0

i for the ideal gas. For very dilute solutions it
can be approximated by
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μi = kBT ln Ni − kBT ln zi = μ0
i + kBT ln

ci
c0

(5.11)

where (0) indicates the standard state (usually p0 = 1atm, c0 = 1mol/l).
The concentration of protons is measured by the pH-value3

pH = − log10 aH+ = − μH+
kBT ln(10)

≈ − log10

(
c(H+)

c0

)
. (5.12)

The standard reaction enthalpy of an acid-base equilibrium

AH � A− + H+ (5.13)

where

0 =
∑

νiμi = ΔG0
r + kBT

∑
νi ln ai Ka = e−ΔG0

r /kBT = a(A−)a(H+)

a(AH)

(5.14)

is measured by the pKa-value

pKa = − log10(Ka) = 1

ln(10)

ΔG0
r

kBT
= − log10

(
a(A−)a(H+)

a(AH)

)

≈ − log10

(
c(A−)

c0

c(H+)

c0

c(AH)

c0

)
(5.15)

which is usually simply written as4

pKa = − log10

(
c(A−)c(H+)

c(AH)

)
(5.16)

which together with (5.12) gives the Henderson–Hasselbalch equation

pH − pKa = log10

(
c(A−)

c(AH)

)
. (5.17)

The standard reaction enthalpy of the acid-base equilibrium is (with the approxima-
tion (5.11))

3The standard enthalphy of formation for a proton is zero per definition.
4But you have to be aware that all concentrations have to be taken in units of the standard concen-
tration c0. The argument of a logarithm should be dimensionless.
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ΔG0
r = μ0

H A + μ0
M− + μ0

H+

= −(kBT ln L − kBT ln z1) + (kBT ln L − kBT ln z0)

= −kBT ln
z0

z1
= −(G1 − G0). (5.18)

In the language of physical chemistry the protonation degree (5.9) is given by

c(AH)

c(AH) + c(A−)
= 1

1 + 10(pH−pKa)
. (5.19)

5.2 Protonation Equilibria in Proteins

In the protein there are additional steric and electrostatic interactions with other
groups of the protein, which contribute to the energies of the titrable site (Fig. 5.4).

5.2.1 Apparent pKa Values

The pKa of a titrable group depends on the interaction with background charges,
with all the other residues and with the solvent which contains dipolar molecules and
free moving ions.

As a consequence ΔG as well as pKa values are different from that of a model
compound containing the titrable group in solution (Fig. 5.5).
The difference of protonation enthalpies

Fig. 5.4 Titration in a
protein. Electrostatic
interactions with fixed
charges (charged residues
and background charges) and
mobile charges (ions) have to
be taken into account
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Fig. 5.5 Thermodynamic
cycle. The protonation
enthalpy of a titrable group
in the protein (PMH) differs
from that of a model
compound in solution
(RMH) [28]
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ΔΔG = ΔGprot − ΔGsolv = ΔG0 − ΔG1 (5.20)

can be divided into three parts

ΔΔG = ΔΔE + pΔΔV − TΔΔS. (5.21)

In the following the volume change will be neglected. The pKa value of a group in
the protein

pK prot
a = 1

kBT ln(10)
ΔGprot = 1

kBT ln(10)
(ΔGsolv + ΔΔG)

= pKmodel
a + ΔΔG

kBT ln(10)
(5.22)

is called the apparent pKa of the group in the protein. It depends on the mutual
interactions of the titrable groups and hence on the pH -value. Therefore titration of
groups in a protein cannot be described by a simple Henderson–Hasselbalch equation.

5.2.2 Protonation Enthalpy

The amino acids forming a protein can be enumerated by their appearance in the
primary structure and are therefore distinguishable. The protonation state of a protein
with a number of N titrable sites will be described by the protonation vector

s = (s1, s2¸ · · · sN ) with si =
{

1 if group i is protonated
0 if group i is deprotonated

(5.23)

The number of protonation states

Npstates = 2N

can be very big for real proteins5. Proteins are very flexible and have a large number
of configurations. These will be denoted by the symbol γ which summarizes all
the orientational angles between neighbouring residues of the protein. The apparent

5We do not take into account that some residues can be in more than two protonation states.
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Fig. 5.6 Protonation of one Residue. The protonation state of the i-th residue changes together
with its charge. Electrostatic interactions are divided into an intrinsic part and the interactions with
all other residues

pKa values will in general depend on this configuration vector, since for instance
distances between the residues depend on the configuration.

The enthalpy change by protonating the i-th residue is denoted as

G(s1, · · · si−11i si+1 · · · sN ,γ) − G(s1 · · · si−10i , si+1 · · · sN ,γ)

= ΔGi,intr +
∑

j �=i

(E
1,s j
i, j − E

0,s j
i, j ) (5.24)

with the Coulombic interaction between two residues i, j in the protonation states
si , s j (Fig. 5.6)

E
si ,s j
i, j (γ). (5.25)

The so called intrinsic protonation energy ΔGi,intr is the protonation energy of
residue i if there are no Coulombic interactions with other residues, i.e. if all other
residues are in their neutral state. It can be estimated from the model energy (5.3,
5.18) taking into account all remaining interactions with background charges6 and
the different solvation energies, which can be calculated using Born models (3.16,
3.51) or by solving the Poisson–Boltzman equation (4.9, 4.12)

ΔGi,intr ≈ ΔGi,solv + ΔEi,bg + ΔEi,Born. (5.26)

Let us now calculate the protonation enthalpy of a protein with S of its N titrable
residues protonated. The contributions from the intrinsic enthalpy changes can be
written as

∑

i

siΔGi,intr . (5.27)

The Coulombic interactions are divided into pairs of protonated residues

∑

i< j

si s j E
1,1
i, j (5.28)

6i.e. the charge distribution of the protein backbone and the non titrable residues

http://dx.doi.org/10.1007/978-3-662-55671-9_3
http://dx.doi.org/10.1007/978-3-662-55671-9_3
http://dx.doi.org/10.1007/978-3-662-55671-9_4
http://dx.doi.org/10.1007/978-3-662-55671-9_4
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pairs of unprotonated residues

∑

i< j

(1 − si )(1 − s j )E
0,0
i, j =

∑

i< j

E0,0
i, j +

∑

i< j

si s j E
0,0
i, j −

∑

i �= j

si E
0,0
i, j (5.29)

and interactions between one protonated and one unprotonated residue
∑

i< j

(
si (1 − s j )E

1,0
i, j + (1 − si )s j E

0,1
i, j

)
= −

∑

i< j

si s j
(
E1,0
i, j + E0,1

i, j

)

+
∑

i �= j

si E
1,0
i, j . (5.30)

Summing up these contributions and subtracting the Coulombic interactions of the
fully deprotonated protein we find the enthalpy change

ΔG(s) =
∑

i

si

⎛

⎝ΔGi,intr +
∑

j �=i

(
E1,0
i, j − E0,0

i, j

)
⎞

⎠ +
∑

i< j

si s jWi, j (5.31)

with the interaction parameter

Wi j = Ei j (1, 1) − Ei j (1, 0) − Ei j (0, 1) + Ei j (0, 0). (5.32)

In fact for each pair i, j only one of the summands is non zero.

5.2.3 Protonation Enthalpy Relative to the Uncharged State

In the literature the enthalpy is often taken relative to a reference state (s0
i ) where all

titrable residues are in their uncharged state. As is illustrated in Fig. 5.7, the formal
dimensionless charge of a residue is given by

qi = si − s0
i . (5.33)

Fig. 5.7 Protonation states.
The correlation of
protonation state si ,
protonation of the neutral
state s0

i , charge qi and charge
of the non neutral state qci
are shown
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The enthalpy change relative to the uncharged reference state is

ΔG(s) − ΔG(s0) =
N∑

i=1

(si − s0
i )ΔGi,intr +

N∑

i=1

(si − s0
i )

N∑

j �=i, j=1

(E1,0
i, j − E0,0

i, j )

+1

2

∑

i

∑

j �=i

Wi, j

(
(si − s0

i )(s j − s0
j ) + s0

i s j + si s
0
j − 2s0

i s
0
j

)
.

(5.34)

Note that Wi j = Wji and therefore the last sum can be simplified

1

2

∑

i

∑

j �=i

Wi, j
(
(si − s0

i )(s j − s0
j ) + s0

i s j + si s
0
j − 2s0

i s
0
j

)

= 1

2

∑

i

∑

j �=i

Wi, j (qiq j + 2(si − s0
i )s

0
j ). (5.35)

Consider now the expression

�W =
N∑

i=1

qi

N∑

j �=i, j=1

(E1,0
i, j − E0,0

i, j + s0
j Wi, j ).

For each residue j �= i there are only the two alternatives7

s0
j = 0 → E1,0

i, j − E0,0
i, j = 0 (5.36)

s0
j = 1 → E1,0

i, j − E0,0
i, j + Wi, j = E1,1

i, j − E0,1
i, j = 0 (5.37)

and hence we have

�W = 0 (5.38)

ΔG(s) − ΔG(s0) =
N∑

si �=s0
i

qiΔGi,int + 1

2

∑

i �= j

Wi, j qiq j . (5.39)

5.2.4 Statistical Mechanics of Protonation

The partition function for a specific total charge

Q =
∑

i

qi =
∑

i

(si − s0
i )

7The Coulomb interaction vanishes if one of the residues is in the neutral state.



80 5 Protonation Equilibria

is given by

Z(Q) =
∑

{s,∑ qi=Q}

∑

γ

e−ΔG/kBT

=
∑

{s,∑ qi=Q}

∑

γ

e−[
∑

(si−s0
i )ΔGi,int+ 1

2

∑′ Wi, j qi q j]/kBT . (5.40)

We come to the grand canonical partition function by introducing the factor

eμQ/kBT = eμ
∑

(si−s0
i )/kBT (5.41)

and summing over all possible charge states of the protein

� =
∑

Q

Z(Q)eμQ/kBT =
∑

γ,s

e−[
∑

(si−s0
i )(ΔGi,int (γ)−μ)+ 1

2

∑′ Wi, j (γ)qi q j]/kBT . (5.42)

With the approximation (5.26) and (5.3) the partition function

Z(Q) ≈
∑

{s,∑ qi=Q}

(
z(i)

1

z(i)
0

)qi

Zcon f

becomes the product of one factor which relates to the internal degrees of freedom
which are usually assumed to be configuration independent8 and a second factor
which depends only on the configurational degress of freedom

Zcon f (s) =
∑

γ

e−[
∑

(si−s0
i )(ΔEi,bg+ΔEi,Born)+ 1

2

∑′ Wi, j qi q j]/kBT .

5.3 Abnormal Titration Curves of Coupled Residues

Let us consider a simple example of a model protein with only two titrable sites of
the same type. The free enthalpies of the four possible states are

ΔG(AH, AH) = ΔG1,intr + ΔG2,intr + E1,1
1,2 − E0,0

1,2

ΔG(A−, AH) − ΔG(AH, AH) = −ΔG1,intr

ΔG(AH, A−) − ΔG(AH, AH) = −ΔG2,intr

ΔG(A−, A−) − ΔG(AH, AH) = −ΔG1,intr − ΔG2,intr + W12

= −ΔG2,intr − ΔG1,intr + E0,0
1,2 . (5.43)

The grand partition function is

� = 1 + e−(−ΔG1,intr+μ)/kBT + e−(−ΔG2,intr+μ)/kBT

+e−(−ΔG2,intr−ΔG1,intr+2μ+W )/kBT . (5.44)

8Protonation–dependent degrees of freedom can be important in certain cases [29].



5.3 Abnormal Titration Curves of Coupled Residues 81

Fig. 5.8 Abnormal titration
curves. Two interacting
residues with neutral
protonated states (AH),
ΔG1,intr = ΔG2,intr = 1.0,
W = −5, 0, 5, 10
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The average protonation values are (Fig. 5.8)

s1 = 1 + e−(−ΔG2,intr+μ)/kBT

�
(5.45)

s2 = 1 + e−(−ΔG1,intr+μ)/kBT

�
. (5.46)

Problems

5.1 Abnormal Titration Curves
Consider a simple example of a model protein with only two titrable sites of the same
type. Determine the relative free enthalpies of the four possible states

B B

(B,B)

B

(B,BH+)

BH+

(BH+,B)

BH+ B

(BH+,BH+)

BH+ BH+

+2H

+H

+H

+

+

+

W
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From the grand canonical partition function (the number of protons is not fixed)
calculate the protonation degree for both sites and discuss them as a function of the
interaction energy W.



Part III
Reaction Kinetics



Chapter 6
Formal Kinetics

In this chapter, we discuss the phenomenological description of elementary chemical
reactions and photophysical processes with the help of rate equations. We explain
the concept of reaction variable and reaction order, derive the Michaelis–Menten
equation for enzymatic catalysis and discuss the importance of diffusion for reactions
in solution.

6.1 Elementary Chemical Reactions

The basic steps of chemical reactions can be divided into several classes of elementary
reactions. They can be photoinduced or thermally activated, may involve the transfer
of an electron or proton and are accompanied by structural changes, like breaking
and forming bonds (Fig. 6.2) or at least a reorganization of bond lengths and angles
(Fig. 6.1).

All elementary reactions are reversible. There is a dynamical equilibrium between
forward and backward reaction, which are independent, for instance

H2 + J2 � 2HJ. (6.1)

6.2 Reaction Variable and Reaction Rate

We consider a general stoichiometric equation for the reaction of several species1

1The stochiometric coefficients νi are positive for products and negative for educts. This is the
conventional definition. Products and educts can be exchanged at least in principle, since the
backreaction is always possible.

© Springer-Verlag GmbH Germany 2017
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,
Biological and Medical Physics, Biomedical Engineering,
DOI 10.1007/978-3-662-55671-9_6
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Fig. 6.1 Elementary reactions without bond reformation
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Fig. 6.2 Elementary reactions with bond reformation

∑

i

νi Ai = 0 (6.2)

and define a reaction variable x based on the concentration of the species Ai by

ci = ci,0 + νi x (6.3)

as

x = ci − ci,0
νi

(6.4)

and the reaction rate as its time derivative

r = dx

dt
= 1

νi

dci
dt

. (6.5)
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6.3 Reaction Order

The progress of a chemical reaction can be frequently described by a simple rate
expression such as

r = kcn1
1 cn2

2 · · · = k
∏

i∈educts
cnii (6.6)

with the rate constant k. For such a system the exponent2 of the i-th term is called the
order of the reaction with respect to this substance and the sum of all the exponents
is called the overall reaction order.

6.3.1 Zero-Order Reactions

Zero-order reactions proceed at the same rate regardless of concentration. The rate
expression for a reaction of this type is

dc

dt
= k0 (6.7)

which can be integrated

c = c0 + k0t. (6.8)

Zero-order reactions appear when the determining factor is an outside source of
energy (light) or when the reaction occurs on the surface of a catalyst.

6.3.2 First-Order Reactions

First-order reactions describe the decay of an excited state, for instance a radioactive
decay

A∗ → A . (6.9)

The rate expression is

dcA∗
dt

= −dcA
dt

= −kcA∗ (6.10)

2For more complicated reactions the exponents need not be integers. For simple reactions they are
given by the stochiometric coefficients ni = |νi | of the educts (the products for the backreaction).
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which gives an exponential decay

cA∗ = cA∗(0)e−kt (6.11)

with a constant half-period

τ1/2 = ln(2)

k
. (6.12)

6.3.3 Second-Order Reactions

A second-order reaction between two different substances obeys the equations

A + B → · · · (6.13)

dcA
dt

= dcB
dt

= −k2cAcB (6.14)

which can be written down using the reaction variable x and the initial concentrations
a,b as

cA = a − x cB = b − x (6.15)

dx

dt
= k2(a − x)(b − x). (6.16)

This can be integrated to give

1

a − b
ln

b(a − x)

a(b − x)
= k2t. (6.17)

If two molecules of the same type react with each other we have instead

−dcA
dt

= −k2c
2
A (6.18)

which gives an algebraic decay

cA(t) = 1

k2t + 1
a

(6.19)

where the half-period now depends on the initial concentration

τ1/2 = 1

k2a
. (6.20)
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An example is exciton-exciton annihilation in the light-harvesting complex of pho-
tosynthesis

A∗ + A∗ → A + A . (6.21)

6.4 Dynamical Equilibrium

We consider a first-order reaction together with the back reaction

A

k1

→
←
k−1

B . (6.22)

The reaction variable of the backward reaction will be denoted by y. The con-
centrations are

cA(t) = a − x + y (6.23)

cB(t) = b + x − y (6.24)

and the reaction rates are
dx

dt
= k1cA = k1(a − x + y) (6.25)

dy

dt
= k−1cB = k−1(b + x − y) (6.26)

Introducing an overall reaction variable

z = x − y (6.27)

and the equilibrium value

s = k1a − k−1b

k1 + k−1
(6.28)

we have

dz

dt
= k1a − k−1b − (k1 − k−1)z = (k1 + k−1)(s − z) (6.29)

which for z(0) = 0 has the solution

z = s(1 − e−(k1+k−1)t ). (6.30)

The reaction approaches the equilibrium with a rate constant k1 +k−1. In equilibrium
z = s and dz

dt = 0. The equilibrium concentrations are
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cA = a − s = (a + b)
k−1

k1 + k−1
(6.31)

cB = b + s = (a + b)
k1

k1 + k−1
(6.32)

and the equilibrium constant is

K = cA
cB

= k−1

k1
. (6.33)

6.5 Competing Reactions

If one species decays via seperate independent channels (fluorescence, electron trans-
fer, radiationless transitions · · · ) the rates are additive

dcA
dt

= −(k1 + k2 + · · · )cA. (6.34)

6.6 Consecutive Reactions

We consider a chain consisting of two first-order reactions3

A
k1

→ B
k2

→ C. (6.35)

The reaction variables are denoted by x and y, the initial concentrations by a,b,c. The
concentrations are

cA = a − x (6.36)

cB = b + x − y (6.37)

cC = c + y (6.38)

and their time derivatives are

dcA
dt

= −dx

dt
= −k1cA = −k1(a − x) (6.39)

dcB
dt

= dx

dt
− dy

dt
= k1cA − k2cB = k1a − k2b + (k2 − k1)x − k2y (6.40)

3with negligible back reactions.
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dcC
dt

= dy

dt
= k2cB = k2(b + x − y). (6.41)

The first equation gives an exponential decay

cA = ae−k1t . (6.42)

Integration of

dcB
dt

+ k2cB = k1ae−k1t (6.43)

gives the concentration of the intermediate state

cB = k1a

k2 − k1
e−k1t +

(
b − k1a

k2 − k1

)
e−k2t . (6.44)

If at time zero only the species A is present the concentration of B has a maximum
at

tmax = 1

k1 − k2
ln

k1

k2
(6.45)

with the value

cB,max = a

(
k1

k1 − k2

)(
exp

(
k2

k1 − k2
ln

k2

k1

)
− exp

(
k1

k1 − k2
ln

k2

k1

) )
.

(6.46)

6.7 Enzymatic Catalysis

Enzymatic catalysis is very important for biochemical reactions. It can be described
schematically by formation of an enzyme-substrate complex followed by decompo-
sition into enzyme and product

E + S
k1

�
k−1

ES � E + P. (6.47)

We consider the limiting case of negligible k−2 � k2 and large concentration of
substrate cS � cE . Then we have to solve the equations

dcS
dt

≈ −k1cEc
0
S + k−1cES

dcE
dt

≈ −k1cEc
0
S + (k−1 + k2)cES
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dcES

dt
≈ k1cEc

0
S − (k−1 + k2)cES

dcP
dt

= k2cES. (6.48)

First we solve the equations for dcE
dt and dcES

dt :

d

dt

(
cES

cE

)
=

(−k−1 − k2 k1c0
S

k−1 + k2 −k1c0
S

) (
cES

cE

)
. (6.49)

The matrix has one Eigenvalue λ = 0 corresponding to a stationary solution

(−k−1 − k2 k1c0
S

k−1 + k2 −k1c0
S

) (
k1c0

S
k−1+k2

1

)
=

(
0
0

)
. (6.50)

The stationary concentration of the ES complex is

cstatES = k1

k−1 + k2
cScE = cScE

KM
(6.51)

with the Michaelis constant

KM = k−1 + k2

k1
. (6.52)

The second eigenvalue relates to the time constant for reaching the stationary state:

(−k−1 − k2 k1c0
S

k−1 + k2 −k1c0
S

) (
1

−1

)
= −(k1c

0
S + k−1 + k2)

(
1

−1

)
(6.53)

For the initial conditions

cES(0) = cP(0) = 0 (6.54)

we find

cES(t) = c0
E

1 + KM

c0
S

(1 − e−(k1+k−1+k2)t )

cE (t) = c0
E

1 + c0
S

KM

(1 + c0
S

KM
e−(k1+k−1+k2)t ). (6.55)

The stationary state is stable, since any deviation will decrease exponentially. The
overall rate of the enzyme catalyzed reaction is given by the rate of product formation

r = dcP
dt

= −dcS
dt

= k2cES (6.56)
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Fig. 6.3 Michaelis–Menten
kinetics
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and with the total concentration of enzyme

cE,tot = cE + cES (6.57)

we have

cES = cEcS
KM

= (cE,tot − cES)cS
KM

(6.58)

and hence

cES = cE,tot cS
cS + KM

. (6.59)

The overall reaction rate is given by the Michaelis–Menten equation (Fig. 6.3)

r = k2cE,tot cS
KM + cS

(6.60)

r

rmax
= cS

cS + KM
rmax = k2cE,tot . (6.61)

6.8 Reactions in Solutions

In solutions the reacting molecules approach each other by diffusive motion forming
a reactive complex within a solvent cage which has a lifetime of typically 100 ps
(Fig. 6.4). Formally, this can be described by an equilibrium between the free reactants
A and B and a reactive complex {AB}
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Fig. 6.4 Formation of a
reactive complex
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Fig. 6.5 Transition from the diffusion controlled to the reaction controlled limit. r = k2c{AB} is
calculated numerically for cA(0) = cB(0) = 1 , k2 = 1. (a) k1 = k−1 = 0.1, (b) k1 = k−1 = 1.0,
(c) k1 = k−1 = 10

A + B
k1

�
k−1

{A B}
k2

→ C. (6.62)

The concentrations obey the equations (Fig. 6.5)

dcA
dt

= dcB
dt

= −k1cAcB + k−1c{AB}

dcC
dt

= k2c{AB}

dc{AB}
dt

= k1cAcB − (k−1 + k2)c{AB}. (6.63)

Let us consider two limiting cases.

6.8.1 Diffusion Controlled Limit

If the reaction rate k2 is large compared to k±1 we find for the stationary solution
approximately

k2c{AB} ≈ k1cAcB (6.64)
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and hence for the overall reaction rate

dcC
dt

= k2c{AB} ≈ k1cAcB . (6.65)

The reaction rate is determined by the formation of the reactive complex.

6.8.2 Reaction Controlled Limit

If on the other hand k2 � k±1 an equilibrium between reactands and reactive complex
will be established

A + B � {A B} c{AB}
cAcB

= K = k1

k−1
. (6.66)

Now the overall reaction rate

dcC
dt

= k2c{AB} = k2KcAcB (6.67)

is determined by the reaction rate k2 and the constant of the diffusion equilibrium.

Problems

6.1 pH-Dependence of Enzyme Activity

Consider an enzymatic reaction where the substrate can be in two protonation states

S− + H+ � HS

and the enzyme reacts only with the deprotonated form

E + S− � ES− → E + P.

Calculate the reaction rate as a function of the proton concentration cH+.

6.2 Polymerization at the End of a Polymer

Consider the multiple equilibrium between the monomer M and the i-mer iM

c2M =Kc2
M

c3M =KcMc2M

...
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ciM =KcMc(i−1)M

where the equilibrium constant K is assumed to be independent of the degree of
polymerization. Calculate the concentration of the i-mer ciM and the mean degree of
polymerization

< i >=
∑

i iciM∑
i ciM

.

6.3 Primary Salt Effect

Consider the reaction of two ionic species A and B with charges ZA,B e which are
in equlibrium with an activated complex X (with charge (ZA + ZB) e) which decays
into the products C and D:

A + B � X
k1

→ C + D

The equlibrium constant is

K = aX
aAaB

where the activities are given by the Debye-Hückel approximation

μi = μ0
i + kBT ln ci − Z2

i e
2κ

8πε
κ2 = e2

εkBT

∑

i

Ni Z
2
i .

Calculate the reaction rate

r = dcC
dt

.



Chapter 7
Kinetic Theory – Fokker-Planck Equation

In this chapter we consider a model system (protein) interacting with a surrounding
mediumwhich is only taken implicitly into account.Weare interested in the dynamics
on a time scale slower than themediumfluctuations. The interactionwith themedium
is described approximately as the sum of an average force and a stochastic force
[30]. We discuss the stochastic differential equation for 1-dimensional Brownian
motion and derive the corresponding Fokker–Planck equation. We consider motion
of a particle under the influence of an external force and derive the Klein–Kramers
equation for diffusion in an external potential and the Smoluchowski equation as its
large-friction limit. Finally we discuss the connection to the general Master equation
for the probability density.

7.1 Stochastic Differential Equation for Brownian Motion

The simplest example describes 1-dimensional Brownian motion of a big particle
in a sea of small particles. The average interaction leads to damping of the motion
which is described in terms of a velocity dependent damping term

dv(t)

dt
= −γv(t). (7.1)

This equation alone leads to exponential relaxation v = v(0)e−γt which is not com-
patible with thermodynamics, since the average kinetic energy should be m

2 v2 = kBT
2

in equilibrium. Therefore, we add a randomly fluctuating force which represents the
collisions with many solvent molecules during a finite time interval τ . The result is
the Langevin equation

© Springer-Verlag GmbH Germany 2017
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,
Biological and Medical Physics, Biomedical Engineering,
DOI 10.1007/978-3-662-55671-9_7

97



98 7 Kinetic Theory – Fokker-Planck Equation

dv(t)

dt
= −γv(t) + F(t) (7.2)

with the formal solution

v(t) = v0e
−γt +

∫ t

0
eγ(t ′−t)F(t ′)dt ′. (7.3)

The average of the stochatic force has to be zero because the equation of motion for
the average velocity should be

d < v(t) >

dt
= −γ < v(t) > . (7.4)

We assume that many collisions occur during τ and therefore forces at different times
are not correlated

< F(t)F(t ′) >= Cδ(t − t ′). (7.5)

The velocity correlation function is

< v(t)v(t ′) >= e−γ(t+t ′)

(
v2
0 +

∫ t

0
dt1

∫ t ′

0
dt2 eγ(t1+t2) < F(t1)F(t2) >

)
.

(7.6)

Without losing generality we assume t ′ > t and substitute t2 = t1 + s to find

< v(t)v(t ′) > = v2
0e

−γ(t+t ′)

+ e−γ(t+t ′)
∫ t

0
dt1

∫ t ′−t1

−t1

ds eγ(2t1+s) < F(t1)F(t1 + s) >

= v2
0e

−γ(t+t ′) + e−γ(t+t ′)
∫ t

0
dt1e

2γt1C

= v2
0e

−γ(t+t ′) + e−γ(t+t ′) e
2γt − 1

2γ
C. (7.7)

The exponential terms vanish very quickly and we find

< v(t)v(t ′) >→ e−γ|t ′−t | C
2γ

. (7.8)

Now C can be determined from the average kinetic energy as

m < v2 >

2
= kBT

2
= m

2

C

2γ
→ C = 2γkBT

m
. (7.9)
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The mean square displacement of a particle starting at x0 with velocity v0 is

< (x(t) − x(0))2 > = <

(∫ t

0
dt1v(t1)

)2

>=
∫ t

0

∫ t

0
< v(t1)v(t2) > dt1dt2

=
∫ t

0

∫ t

0

(
v2
0e

−γ(t1+t2) + kBT

m
e−γ|t1−t2|

)
dt (7.10)

and since

∫ t

0

∫ t

0
e−γ(t1+t2)dt1dt2 =

(
1 − e−γt

γ

)2

(7.11)

and

∫ t

0

∫ t

0
e−γ|t1−t2|dt1dt2 = 2

∫ t

0
dt1

∫ t1

0
e−γ(t1−t2)dt2 = 2

γ
t − 2

γ2
(1 − e−γt )

(7.12)

we obtain

< (x(t) − x(0))2 >=
(

v2
0 − kBT

m

) (
1 − e−γt

)2
γ2

+ 2kBT

mγ
t − 2kBT

mγ2
(1 − e−γt ).

(7.13)

If we had started with an initial velocity distribution for the stationary state

< v2
0 >= kBT/m (7.14)

then the first term in (7.12) would vanish. For very large times the leading term is1

< (x(t) − x(0))2 >= 2Dt (7.15)

with the diffusion coefficient

D = kBT

mγ
. (7.16)

7.2 Probability Distribution

Now, we discuss the probability distribution W (v). The time evolution can be
described as

1This is the well known Einstein result for the diffusion constant D.
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W (v, t + τ ) =
∫

P(v, t + τ |v′, t)W (v′, t)dv′. (7.17)

To derive an expression for the differential ∂W (v, t)/∂t we need the transition prob-
ability P(v, t +τ |v′, t) for small τ . IntroducingΔ = v −v′ we expand the integrand
in a Taylor series

P(v, t + τ |v′, t)W (v′, t) = P(v, t + τ |v − Δ, t)W (v − Δ, t) (7.18)

=
∞∑
n=0

(−1)n

n! Δn

(
∂

∂v

)n

P(v + Δ, t + τ |v, t)W (v, t).

Inserting this into the integral gives

W (v, t + τ ) =
∞∑
n=0

(−1)n

n!
(

∂

∂v

)n (∫
Δn P(v + Δ, t + τ |v, t)dΔ

)
W (v, t)

(7.19)

and assuming that the moments exist which are defined by

Mn(v
′, t, τ ) =< (v(t + τ ) − v(t))n >|v(t)=v′=

∫
(v − v′)n P(v, t + τ |v′, t)dv

(7.20)

we find

W (v, t + τ ) =
∞∑
n=0

(−1)n

n!
(

∂

∂v

)n

Mn(v, t, τ )W (v, t). (7.21)

Expanding the moments into a Taylor series

1

n!Mn(v, t, τ ) = 1

n!Mn(v, t, 0) + D(n)(v, t)τ + · · · (7.22)

we have finally2

W (v, t + τ ) − W (v, t) =
∞∑
1

(
− ∂

∂v

)n

D(n)(v, t)W (v, t)τ + · · · (7.23)

which gives the equation of motion for the probability distribution3

2The zero order moment does not depend on τ .
3This is known as the Kramers–Moyal expansion.
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∂W (v, t)

∂t
=

∞∑
1

(
− ∂

∂v

)n

D(n)(v, t)W (v, t). (7.24)

If this expansion stops after the second term4 the general form of the 1-dimensional
Fokker–Planck equation results:

∂W (v, t)

∂t
=

(
− ∂

∂v
D(1)(v, t) + ∂2

∂x2
D(2)(v, t)

)
W (v, t) (7.25)

7.3 Diffusion

Consider a particle performing a random walk in one dimension due to collisions.
We use the stochastic differential equation5

dx

dt
= v0 + f (t) (7.26)

where the velocity has a drift component v0 and a fluctuating part f (t) with

< f (t) >= 0 < f (t) f (t ′) >= qδ(t − t ′). (7.27)

The formal solution is simply

x(t) − x(0) = v0t +
∫ t

0
f (t ′)dt ′. (7.28)

The first moment

M1(x0, t, τ ) =< x(t + τ ) − x(t) >|x(t)=x0 = v0τ +
∫ τ

0
< f (t ′) > dt ′

gives

D(1) = v0.

The second moment is

M2(x0, t, τ ) = v2
0τ

2 + v0τ

∫ τ

0
< f (t ′) > dt ′ +

∫ τ

0

∫ τ

0
< f (t1) f (t2) > dt1dt2.

(7.29)

4It can be shown that this is the case for all Markov processes.
5This is a so called Wiener process.
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The second term vanishes and the only linear term in τ comes from the double
integral

∫ τ

0

∫ τ

0
< f (t1) f (t2) > dt1dt2 =

∫ τ

0
dt1

∫ τ−t1

−t1

qδ(t ′)dt ′ = qτ . (7.30)

Hence

D(2) = q

2
(7.31)

and the corresponding Fokker–Planck equation is the diffusion equation

∂W (x, t)

∂t
= −v0

∂W (x, t)

∂x
+ D

∂2W (x, t)

∂x2
(7.32)

with the diffusion constant D = D(2).

7.3.1 Sharp Initial Distribution

We can easily find the solution for a sharp initial distribution W (x, 0) = δ(x − x0)
by taking the Fourier transform

W̃ (k, t) =
∫ ∞

−∞
dx W (x, t) e−ikx . (7.33)

We obtain the algebraic equation

∂W̃ (k, t)

∂t
= (−Dk2 + iv0k)W̃ (k, t) (7.34)

which is solved by

W̃ (k, t) = W̃0 exp
{
(−Dk2 + iv0k)t + ikx0

}
. (7.35)

Inverse Fourier transformation then gives6

W (x, t) = 1√
4πDt

exp

{
− (x − x0 − v0t)2

4Dt

}
(7.36)

which is a Gaussian distribution centered at xc = x0 + v0t with a variance of
< (x − xc)2 >= 4Dt (Fig. 7.1).

6With the proper normalization factor.
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Fig. 7.1 Solution (7.36) of
the diffusion equation for
sharp initial conditions
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7.3.2 Absorbing Boundary

Consider a particle from species A which can undergo a chemical reaction with a
particle from species B at position xA = 0

A+B → AB. (7.37)

If the reaction rate is very fast, then the concentration of A vanishes at x = 0 which
gives an additional boundary condition

W (x = 0, t) = 0. (7.38)

Starting again with a localized particle at time zero with

W (x, 0) = δ(x − x0) v0 = 0 (7.39)

the probability distribution

W (x, t) = 1√
4πDt

⎛
⎜⎝e

−
(x − x0)2

4Dt − e
−
(x + x0)2

4Dt

⎞
⎟⎠ (7.40)
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Fig. 7.2 Solution from the mirror principle. (a) The probability density distribution (7.40) at t =
0.25, 0.5, 1, 2, 5 and (b) the decay of the total concentration (7.41) are shown for 4D = 1

is a solution which fullfills the boundary conditions. This solution is similar to the
mirror principle known from electrostatics. The total concentration of species A in
solution is then given by (Fig. 7.2)

CA(t) =
∫ ∞

0
dx W (x, t) = er f

(
x0√
4Dt

)
. (7.41)

7.4 Fokker–Planck Equation for Brownian Motion

For Brownian motion we have from the formal solution

v(τ ) = v0(1 − γτ + · · · ) +
∫ τ

0
(1 + γ(t1 − τ ) + · · · )F(t1)dt1. (7.42)

The first moment7

M1(v0, t, τ ) =< v(τ ) − v(0) >= −γτv0 + · · · (7.43)

gives

D(1)(v, t) = −γv. (7.44)

7Here and in the following we use < F(t) >= 0.
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The second moment follows from

< (v(τ )−v0)
2 >= (v0γτ )2 +

∫ τ

0

∫ τ

0
(1+γ(t1 + t2 −2τ · · · ))F(t1)F(t2)dt1dt2.

(7.45)

The double integral gives

∫ τ

0
dt1

∫ τ−t1

−t1

dt ′(1 + γ(2t1 + t ′ − 2τ + · · · )2γkBT
m

δ(t ′)

=
∫ τ

0
dt1

2γkBT

m
(1 + γ(2t1 − 2τ + · · · )

= 2γkBT

m
τ + · · · (7.46)

and we have

D(2) = γkBT

m
. (7.47)

The higher moments have no contributions linear in τ and the resulting Fokker–
Planck equation is

∂W (v, t)

∂t
= γ

∂

∂v
(vW (v, t)) + γkBT

m

∂2

∂v2
W (v, t). (7.48)

7.5 Stationary Solution to the Fokker–Planck Equation

The Fokker–Planck equation can be written in the form of a continuity equation

∂W (v, t)

∂t
= − ∂

∂v
S(v, t) (7.49)

with the probability current

S(v, t) = −γkBT

m

(
mv

kBT
W (v, t) + ∂

∂v
W (v, t)

)
. (7.50)

The probability current has to vanish for a stationary solution (with open boundaries
−∞ < v < ∞)

∂

∂v
W (v, t) = − mv

kBT
W (v, t) (7.51)
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which has the Maxwell distribution as its solution

Wstat (v, t) =
√

m

2πkBT
e−mv2/2kBT . (7.52)

Thereforewe conclude, that the Fokker–Planck equation describes systems that reach
thermal equilibrium, starting from a non equilibrium distribution. In the following
we want to look at the relaxation process itself. We start with

∂W (v, t)

∂t
= γW (v, t) + γv

∂W (v, t)

∂v
+ D

∂2W (v, t)

∂v2
(7.53)

and introduce the new variables

ρ = veγt y(ρ, t) = W (ρe−γt , t) (7.54)

which transform the differentials according to

∂W

∂v
= ∂y

∂ρ

∂ρ

∂v
= eγt ∂y

∂ρ

∂2W

∂v2
= e2γt

∂2y

∂ρ2

∂W

∂t
= ∂y

∂t
+ ∂y

∂ρ

∂ρ

∂t
= ∂y

∂t
+ γρ

∂y

∂ρ
. (7.55)

This leads to the new differential equation

∂y

∂t
= γy + De2γt

∂2y

∂ρ2
. (7.56)

To solve this equation we introduce new variables again

y = χeγt (7.57)

which results in

∂χ

∂t
= De2γt

∂2χ

∂ρ2
. (7.58)

Now we introduce a new time scale

θ = 1

2γ
(e2γt − 1) (7.59)

dθ = e2γt dt (7.60)
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satisfying the initial condition θ(t = 0) = 0. Finally, we have to solve a diffusion
equation

∂χ

∂θ
= D

∂2χ

∂ρ2
(7.61)

which gives

χ(ρ, θ, ρ0) = 1√
4πDθ

exp

(
− (ρ − ρ0)

2

4πDθ

)
. (7.62)

After back substitution of all variables we find

W (v, t) =
√

m

2πkBT (1 − e−2γt )
exp

{
− m

2kBT

(v − v0e−γt )2

(1 − e−2γt )

}
. (7.63)

This solution shows that the system behaves initially like

W (v, t) ≈ 1√
4πDt

exp

{
− (v − v0)

2

4Dt

}
(7.64)

and relaxes to the Maxwell distribution with a time constant Δt = 1/2γ.

7.6 Diffusion in an External Potential

We consider motion of a particle under the influence of an external (mean) force
K (x) = − d

dx U (x). The stochastic differential equation for position and velocity is

ẋ = v (7.65)

v̇ = −γv + 1

m
K (x) + F(t). (7.66)

We will calculate the moments for the Kramers–Moyal expansion. For small τ we
have

Mx = < x(τ ) − x(0) >=
∫ τ

0
v(t)dt = v0τ + · · ·

Mv = < v(τ ) − v(0) >=
∫ τ

0

(
−γv(t) + 1

m
K (x(t))+ < F(t) >

)
dt

=
(

−γv0 + 1

m
K (x0)

)
τ + · · ·
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Mxx = < (x(τ ) − x(0))2 >=
∫ τ

0

∫ τ

0
v(t1)v(t2)dt1dt2 = v2

0τ
2 + · · ·

Mvv = < (v(τ ) − v(0))2 >

=
(

−γv0 + 1

m
K (x0)

)2

τ 2 +
∫ τ

0

∫ τ

0
F(t1)F(t2)dt1dt2

= 2γkBT

m
τ + · · · (7.67)

The drift and diffusion coefficients are

D(x) = v (7.68)

D(v) = −γv + 1

m
K (x) (7.69)

D(xx) = 0 (7.70)

D(vv) = γkBT

m
(7.71)

which leads to the Klein–Kramers equation

∂W (x, v, t)

∂t
=

[
− ∂

∂x
D(x) − ∂

∂v
D(v) + ∂2

∂v2
D(vv)

]
W (x, v, t)

=
[
− ∂

∂x
v + ∂

∂v
(γv − K (x)

m
) + γkBT

m

∂2

∂v2

]
W (x, v, t). (7.72)

This equation can be divided into a reversible and an irreversible part

∂W

∂t
= (Lrev + Lirrev)W (7.73)

Lrev =
[
−v

∂

∂x
+ 1

m

∂U

∂x

∂

∂v

]
Lirrev =

[
∂

∂v
γv + γkBT

m

∂2

∂v2

]
. (7.74)

The reversible part corresponds to the Liouville operator for a particle moving in the
potential without friction

L =
[
∂H

∂x

∂

∂ p
− ∂H

∂ p

∂

∂x

]
H = p2

2m
+U (x). (7.75)

Obviously

LH = 0 (7.76)
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and

Lirrev exp

{
− H

kBT

}

= exp

{
− H

kBT

} [
γ − γv

mv

kBT
+ γkBT

m
((

mv

kBT
)2 − m

kBT
)

]
= 0. (7.77)

Therefore the Klein–Kramers equation has the stationary solution

Wstat (x, v, t) = Z−1e−(mv2/2+U (x))/kBT (7.78)

Z =
∫ ∫

dvdx e−(mv2/2+U (x))/kBT . (7.79)

The Klein–Kramers equation can be written in the form of a continuity equation

∂

∂t
W = − ∂

∂x
Sx − ∂

∂v
Sv (7.80)

with the probability current

Sx = vW (7.81)

Sv = −
[
γv + 1

m

∂U

∂x

]
W − γkBT

m

∂W

∂v
. (7.82)

7.7 Large Friction Limit – Smoluchowski Equation

For large friction constant γ we may neglect the second derivative with respect to
time and obtain the stochastic differential equation

ẋ = 1

mγ
K (x) + 1

γ
F(t) (7.83)

and the corresponding Fokker–Planck equation is the Smoluchowski equation,

∂W (x, t)

∂t
=

[
− 1

mγ

∂

∂x
K (x) + kBT

mγ

∂2

∂x2

]
W (x, t) (7.84)

which can be written with the mean force potential U (x) as

∂W (x, t)

∂t
= 1

mγ

∂

∂x

[
kBT

∂

∂x
+ ∂U

∂x

]
W (x, t). (7.85)
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7.8 Master Equation

The master equation is a very general linear equation for the probability density. If
the variable x takes on only integer values, it has the form

∂Wn

∂t
=

∑
m

(wm→nWm − wn→mWn) (7.86)

where Wn is the probability to find the integer value n and wm→n is the transition
probability. For continuous x the summation has to be replaced by an integration

∂W (x, t)

∂t
=

∫ (
wx ′→xW (x ′, t) − wx→x ′W (x, t)

)
dx ′. (7.87)

The Fokker–Planck equation is a special form of the master equation with

wx ′→x =
(

− ∂

∂x
D(1)(x) + ∂2

∂x2
D(2)(x)

)
δ(x − x ′). (7.88)

So far we have discussed only Markov processes where the change of probability at
time t only depends on the probability at time t. If memory effects are included the
generalized Master equation results.

Problems

7.1 Smoluchowski Equation

Consider a 1-dimensional random walk. At times tn = nΔt a particle at position
x j = jΔx jumps either to the left side j − 1 with probability w−

j or to the right side
j + 1 with probability w+

j = 1 − w−
j . The probability to find a particle at site j at

the time n + 1 is then given by

Pn+1, j = w+
j−1Pn, j−1 + w−

j+1Pn, j+1.

Show that in the limit of small Δx,Δt the probability distribution P(t, x) obeys a
Smoluchowski equation

x
j−1 j+1j

w w− +
j j
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7.2 Eigenvalue Solution to the Smoluchowski Equation

Consider the 1-dimensional Smoluchowski equation

∂W (x, t)

∂t
= 1

mγ

∂

∂x

[
kBT

∂

∂x
+ ∂U

∂x

]
W (x, t) = − ∂

∂x
S(x)

for a harmonic potential

U (x) = mω2

2
x2.

Show that the probability current can be written as

S(x, t) = −kBT

mγ
e−U (x)/kT

(
∂

∂x
eU (x)/kBT W (x, t)

)

and that the Fokker–Planck operator can be written as

LFP = 1

mγ

∂

∂x

[
kBT

∂

∂x
+ ∂U

∂x

]
= kBT

mγ

∂

∂x
e−U (x)/kBT

∂

∂x
eU (x)/kBT

and can be transformed into a hermitian operator by

L = eU (x)/2kBTLFPe
−U (x)/2kBT .

Solve the eigenvalue problem

Lψn(x) = λnψn(x)

and use the function ψ0(x) to construct a special solution

W (x, t) = eλ0te−U (x)/2kBTψ0(x).



112 7 Kinetic Theory – Fokker-Planck Equation

7.3 Diffusion Through a Membrane

B

A

k

k

B

A

k

k

m

m

Amembrane withM pore-proteins separates two half-spaces A and B. An ion Xmay
diffuse through M pore proteins in the membrane from A to B or vice versa. The rate
constants for the formation of the ion-pore complex are kA and kB respectively, while
km is the constant for the decay of the ion-pore complex independent of the side to
which the ion escapes. Let PN (t) denote the probability that there are N ion-pore
complexes at time t. The master equation for the probability is

dPN (t)

dt
= − [(kA + kB)(M − N ) + 2kmN ] PN (t)+

+ (kA + kB)(M − N + 1)PN−1(t) + 2km(N + 1)PN+1(t).

Calculate mean and variance of the number of complexes

N =
∑
N

N PN

σ2 = N 2 − N
2

and the mean diffusion current

JAB = dNB

dt
− dNA

dt

where NA,B is the number of ions in the upper or lower half-space.



Chapter 8
Kramers Theory

Kramers [31] used the concept of Brownian motion to describe motion of particles
over a barrier as a model for chemical reactions in solution. The probability distribu-
tion of a particle moving in an external potential is described by the Klein–Kramers
(7.68)

∂W (x, v, t)

∂t
=

[
− ∂

∂x
v + ∂

∂v

(
γv − K (x)

m

)
+ γkBT

m

∂2

∂v2

]
W (x, v, t)

= − ∂

∂x
Sx − ∂

∂v
Sv

and the rate of the chemical reaction is related to the probability current Sx across
the barrier. The famous Kramers relation describes the friction dependency of the
reaction rate.

8.1 Kramers’ Model

Particle A in the stable minimum has to reach the transition state by diffusive motion
and then converts to the product C. The minimum well and the peak of the barrier
are both approximated by parabolic functions (Fig. 8.1)

UA = m

2
ω2
a(x − x0)

2 (8.1)

U ∗ = Ea − m

2
ω∗2x2. (8.2)
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UA

U*

U(x)

x
0 0

BA C

reaction coordinate  x

Fig. 8.1 Kramers model

0x0

Wstaty

Fig. 8.2 Ansatz function. The stationary solution of a harmonic well is multiplied with the function
y(x, v) which switches from 1 to 0 at the saddlepoint

Without the chemical reaction the stationary solution is

Wstat = Z−1 exp {−H/kBT } . (8.3)

We assume that the perturbation due to the reaction is small and make the following
ansatz (Fig. 8.2)

W (x, v) = Wstat y(x, v) (8.4)

where the partition function is approximated by the harmonic oscillator

Z = 2πkBT

mωa
. (8.5)

The probability distribution should fullfill two boundary conditions.

(i) In the minimum of the A-well the particles should be in thermal equilibrium, and
therefore

W (x, v) = Z−1 exp

{
− H

kBT

}
→ y = 1 if x ≈ x0. (8.6)
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(ii) On the right side of the barrier (x > 0), all particles A are converted into C and
there will be no particles of the A species here

W (x, v) = 0 → y = 0 if x > 0. (8.7)

8.2 Kramers’ Calculation of the Reaction Rate

Let us now insert the ansatz function into the Klein–Kramers equation For the
reversible part, we have

Lrev exp

{
− H

kBT

}
y(x, v) = exp

{
− H

kBT

}
Lrev y(x, v) (8.8)

and for the irreversible part

[
∂

∂v
γv + γkBT

m

∂2

∂v2

]
exp

{
− H

kBT

}
y(x, v) (8.9)

=
{
exp

{
− H

kBT

}[
−γv

∂

∂v
+ γkBT

m

∂2

∂v2

]
y

}
.

Note the subtle difference. The operator ∂
∂v

v is replaced by −v ∂
∂v
. Together we have

the following equation for y

0 = −v
∂y

∂x
+ 1

m

∂U

∂x

∂y

∂v
− γv

∂y

∂v
+ γkBT

m

∂2y

∂v2
(8.10)

which becomes in the vicinity of the top

0 = −v
∂y

∂x
− ω∗2x

∂y

∂v
− γv

∂y

∂v
+ γkBT

m

∂2y

∂v2
. (8.11)

Now we make a transformation of variables

(x, v) → (η, ξ) = (x, v − λx). (8.12)

With

x = η v = ξ + λη
∂

∂x
= ∂

∂η
− λ

∂

∂ξ

∂

∂v
= ∂

∂ξ
(8.13)
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equation (8.11) is transformed to

0 = (ξ+λη)
∂

∂η
y+((λ−γ)ξ+(λ2−λγ−ω2)η)

∂

∂ξ
y+ γkBT

m

∂2

∂ξ2
y. (8.14)

Now choose

λ = γ

2
+

√
γ2

4
+ ω∗2 (8.15)

to have the simplified equation

0 = (ξ + λη)
∂

∂η
y + ((λ − γ)ξ)

∂

∂ξ
y + γkBT

m

∂2

∂ξ2
y (8.16)

which obviously has solutions which depend only on ξ and obey

ξ
∂

∂ξ
Φ(ξ) = − γkBT

m(λ − γ)

∂2

∂ξ2
Φ(ξ). (8.17)

The general solution of this equation is1

Φ(ξ) = C1 + C2erf

(
ξ

√
m(λ − γ)

2γkBT

)
. (8.18)

Nowwe impose the boundary conditionΦ → 0 for x → ∞whichmeans ξ → −∞.
From this we find

C1 = −C2erf(−∞) = C2. (8.19)

Together, we have for the probability density

W (x, v) = C2
mωa

2πkBT
exp

{
−

m
2 v2 +U (x)

kBT

} {
1 + erf

(√
m(λ − γ)

2γkBT
(v − λx)

)}

(8.20)

and the flux over the barrier is approximately

S =
∫

dv vW (0, v)

1Note that λ − γ is always positive. This would not be true for the second root.
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= C2
mωa

2πkBT
e−U (x∗)/kBT

∫
dv ve−mv2/2kBT

{
1 + erf

(√
m(λ − γ)

2γkBT
v

)}

= C2
mωa

2πkBT
e−U (0)/kBT

2kBT

m

√
1 − γ

λ
. (8.21)

In the A-well, we have approximately

W (x, v) ≈ 2C2
mωa

2πkBT
exp

{
−

mv2

2 + mω2
a (x−xa)2

2

kBT

}
. (8.22)

The total concentration is approximately

[A] =
∫

dx
∫

dvWA(x, v) = 2C2. (8.23)

Hence, we find

S = [A]ωa

2π
e−U (0)/kBT

√
1 − γ

λ
. (8.24)

The square root can be written as

√√√√1 − γ

γ
2 +

√
γ2

4 + ω∗2
=

√√√√√√− γ
2 +

√
γ2

4 + ω∗2

γ
2 +

√
γ2

4 + ω∗2

=

√√√√√√√
(

− γ
2 +

√
γ2

4 + ω∗2
)2

− γ2

4 +
(

γ2

4 + ω∗2
)

=
− γ

2 +
√

γ2

4 + ω∗2

ω∗ (8.25)

and finally, we arrive at Kramers’ famous result

k = S

[A] = ωa

2πω∗ e
−U (0)/kBT

(
−γ

2
+

√
γ2

4
+ ω∗2

)
. (8.26)
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The bracket is Kramers correction to the escape rate. In the limit of high friction
series expansion in γ−1 gives

k = γ−1 ωaω
∗

2π
e−U (0)/kBT . (8.27)

In the limit of low friction, the result is

k = ωa

2π
e−U (0)/kBT . (8.28)



Chapter 9
Dispersive Kinetics

In this chapter we consider the decay of an optically excited state of a donor molecule
in a fluctuating medium. The fluctuations are modelled by time-dependent decay
rates k (electron transfer), k−1 (backreaction), kda (deactivation by fluorescence or
radiationless transitions) and kcr (charge recombination to the groundstate) (Fig. 9.1).

The time evolution is described by the system of rate equations

d

dt
W (D∗) = −k(t)W (D∗) + k−1(t)W (D+A−) − kdaW (D∗)

d

dt
W (D+A−) = k(t)W (D∗) − k−1(t)W (D+A−) − kcrW (D+A−) (9.1)

which has to be combined with suitable equations describing the dynamics of the
environment. First we discuss a simple dichotomous model [32] where the fluctua-
tions of the rates are modeled by a random process switching between two values
representing two different configurations of the environment. We solve the master
equation and discuss the limits of fast and slow solvent fluctuations. In the sec-
ond part, we apply continuous time random walk processes to model the diffusive
motion. For an uncorrelated Markovian process, the coupled equations are solved
with the help of the Laplace transformation. The results are generalized to describe
the powertime law as observed for CO rebinding in myoglobin at low temperatures.

© Springer-Verlag GmbH Germany 2017
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Fig. 9.1 Electron transfer in
a fluctuating medium. The
rates are time dependent

DA

D*

D+A−

k

k−1

k
cr

k
da

9.1 Dichotomous Model

The fluctuations of the rates are modeled by random jumps between two different
configurations (±) of the environment which modulates the values of the rates. The
probabilities of the two states are determined by the master equation

d

dt

(
W (+)

W (−)

)
=

(−α β

α −β

) (
W (+)

W (−)

)
(9.2)

which has the general solution

W (+) = C1 + C2e−(α+β)t

W (−) = C1
α

β
− C2e−(α+β)t . (9.3)

Obviously the equilibrium values are

Weq(+) = β

α + β
Weq(−) = α

α + β
(9.4)

and the correlation function is (with Q± = ±1)

< Q(t)Q(0) > = Weq(+)(P(+, t |+, 0) − P(−, t |+, 0))

+ Weq(−)(P(−, t |−, 0) − P(+, t |−, 0))

= (Weq(+) − Weq(−))2 + 4Weq(+)Weq(−)e−(α+β)t

= < Q >2 + (< Q2 > − < Q >2)e−(α+β)t . (9.5)

Combination of the two systems of equations (9.1, 9.2) gives the equation of motion

d

dt
W = AW (9.6)
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for the four-component state vector

W =

⎛
⎜⎜⎝

W (D∗,+)

W (D∗,−)

W (D+A−,+)

W (D+A−,−)

⎞
⎟⎟⎠ (9.7)

with the rate matrix

A =

⎛
⎜⎜⎝

−α − k+ − kda β k+
−1 0

α −β − k− − kda 0 k−
−1

k+ 0 −α − k+
−1 − kcr β

0 k− α −β − k−
−1 − kcr

⎞
⎟⎟⎠ .

(9.8)

Generally, the solution of this equation can be expressed by using the left- and right
eigenvectors and the eigenvalues λ of the rate matrix which obey

ARν = λνRν (9.9)

Lν A = λνLν . (9.10)

For the initial values W(0) the solution is given by1

W(t) =
4∑

ν=1

(Lν • W(0))

(Lν • Rν)
Rνeλν t . (9.11)

In the following we consider a simplified case of gated transfer with kda = kcr =
k±
−1 = k− = 0 (Fig. 9.2). Then the rate matrix becomes

⎛
⎜⎜⎝

−α − k+ β 0 0
α −β 0 0
k+ 0 −α β

0 0 α −β

⎞
⎟⎟⎠ . (9.12)

1In the case of degenerate eigenvalues, linear combinations of the corresponding vectors can be
found such that Lν • Lν′ = 0 for ν �= ν′.
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Fig. 9.2 Gated electron
transfer D A (−)+ −

D A (+)+ −
*D (−)*D (+)

α

α

β

β
k

As initial values we chose

W0 =

⎛
⎜⎜⎝
Weq(+)

Weq(−)

0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

β

α+β

α
α+β

0
0

⎞
⎟⎟⎟⎠ . (9.13)

There is one eigenvalue λ1 = 0 corresponding to the eigenvectors

R1 =

⎛
⎜⎜⎝

0
0
β

α

⎞
⎟⎟⎠ L1 = (

1 1 1 1
)
. (9.14)

This reflects simply conservation of
∑4

ν=1 Wν in this special case. The contribution
of the zero eigenvector is

L1 • W(0)

L1 • R1
R1 = 1

α + β

⎛
⎜⎜⎝

0
0
β

α

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

Weq(+)

Weq(−)

⎞
⎟⎟⎠ . (9.15)

A second eigenvalue λ2 = −(α + β) corresponds to the equilibrium in the final state
D+A− where no further reactions take place

R2 =

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠ L2 = (

α −β α −β
)
. (9.16)
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The contribution of this eigenvalue is

L2 • P0

L2 • R2
R2 = 0 (9.17)

since we assumed equilibrium in the initial state. The remaining two eigenvalues are

λ3,4 = −α + β + k

2
± 1

2

√
(α + β + k)2 − 4βk (9.18)

and the resulting decay will be in general biexponential. We consider two limits:

9.1.1 Fast Solvent Fluctuations

In the limit of small k we expand the square root to find

λ3,4 = −α + β

2
± α + β

2
− k

2
± α − β

α + β

k

2
+ · · · (9.19)

One of the eigenvalues is

λ3 = −(α + β) − α

α + β
k + · · · (9.20)

In the limit of k → 0 the corresponding eigenvectors are

R3 =

⎛
⎜⎜⎝

1
−1
−1
1

⎞
⎟⎟⎠ L3 = (

α −β 0 0
)

(9.21)

and will not contribute significantly. The second eigenvalue

λ4 = − β

α + β
k + · · · = −Weq(+)k (9.22)

is given by the average rate. The eigenvectors are

R4 =

⎛
⎜⎜⎝

β

α

−β

−α

⎞
⎟⎟⎠ L4 = (

1 1 0 0
)

(9.23)
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and the contribution to the dynamics is

(L4·W0)

(L4 · R4)
R4eλ4t = 1

α + β

⎛
⎜⎜⎝

β

α

−β

−α

⎞
⎟⎟⎠ eλ4t . (9.24)

The total time dependence is approximately given by

W =

⎛
⎜⎜⎝

Weq(+)eλ4t

Weq(−)eλ4t

Weq(+)(1 − eλ4t )

Weq(−)(1 − eλ4t )

⎞
⎟⎟⎠ . (9.25)

9.1.2 Slow Solvent Fluctuations

In the opposite limit we expand the square root for small k−1 to find

λ3,4 = −α + β

2
− k

2
± 1

2

(
k + (α − β) + 2αβk−1 + · · · ) (9.26)

λ3 = −β + αβ

k
+ · · · (9.27)

R3 =

⎛
⎜⎜⎝

0
1
0

−1

⎞
⎟⎟⎠ L3 = (

α k 0 0
)

(9.28)

λ4 = −k − α + · · · (9.29)

R4 =

⎛
⎜⎜⎝

k
−α

−k
α

⎞
⎟⎟⎠ L4 = (

1 0 0 0
)

(9.30)
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and the time evolution is approximately

W (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β

α + β
e−kt

α

α + β
(e−βt − β

k e−kt )

β

α + β
(1 − e−kt )

α

α + β
(1 − e−βt + β

k e−kt )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.31)

This corresponds to an inhomogeneous situation. One part of the ensemble is in a
favorable environment and decays with the fast rate k. The rest has to wait for a
suitable fluctuation which appears with a rate of β.

9.1.3 Numerical Example

Figure 9.3 shows the transition from fast to slow solvent fluctuations.
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Fig. 9.3 Nonexponential decay. Numerical solutions of (9.12) are shown for α = 0.1, β = 0.9,
(a) k = 0.2, (b) k = 2, (c) k = 5, (d) k = 10. Dotted curves show the two components of the initial
state, solid curves show the total occupation of the initial state
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9.2 Continuous Time RandomWalk Processes

Diffusive motion can be modeled by random walk processes along a one dimensional
coordinate.

9.2.1 Formulation of the Model

The fluctuations of the coordinate X(t) are described as random jumps [33, 34].
The time intervals between the jumps (waiting time) and the coordinate changes are
random variables with independent distribution functions

ψ(tn+1 − tn) and f (Xn+1, Xn). (9.32)

The probability that no jump happened in the interval 0 · · · t is given by the survival
function

Ψ0(t) = 1 −
∫ t

0
ψ(t ′)dt ′ =

∫ ∞

t
ψ(t ′)dt ′ (9.33)

and the probability of finding the walker at position X at time t is given by (Fig. 9.4)

P(X, t) = P(X, 0)

∫ ∞

t
ψ(t ′)dt ′ +

∫ t

0
dt ′

∫ ∞

−∞
dX ′ψ(t − t ′) f (X, X ′)P(X ′, t ′).

(9.34)

Two limiting cases are well known from the theory of collisions. The correlated
process with

f (X, X ′) = f (X − X ′) (9.35)

corresponds to weak collisions. It includes normal diffusion processes as a special
case. For instance if we chose

Fig. 9.4 Continuous time
random walk

t
1 t

2
t
3

t
4

t

X

0

X(t)
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ψ(tn+1 − tn) = δ(tn+1 − tn − Δt) (9.36)

and

f (X − X ′) = pδ(X − X ′ − ΔX) + (1 − p)δ(X − X ′ + ΔX) (9.37)

we have

P(X, t + Δt) = pP(X − ΔX, t) + qP(X + ΔX, t), p + q = 1 (9.38)

and in the limit Δt → 0, ΔX → 0 Taylor expansion gives

P(X, t) + ∂P

∂t
Δt + · · · = P(X, t) + ∂P

∂X
(q − p)ΔX + ∂2P

∂X2
ΔX2 + · · ·

(9.39)

The leading terms constitute a diffusion equation

∂P

∂t
P = (q − p)

ΔX

Δt

∂P

∂X
+ ΔX2

Δt

∂2P

∂X2
(9.40)

with drift velocity (q − p)ΔX
Δt and diffusion constant ΔX2

Δt .
The uncorrelated process, on the other hand with

f (X, X ′) = f (X) (9.41)

corresponds to strong collisions. This kind of process can be analyzed analytically
and will be applied in the following.

The (normalized) stationary distribution Φeq of the uncorrelated process obeys

Φeq(X) = Φeq(X)

∫ ∞

t
ψ(t ′)dt ′ + f (X)

∫ t

0
dt ′ψ(t − t ′)

∫ ∞

−∞
dX ′φeq(X

′)

= Φeq(X)

∫ ∞

t
ψ(t ′)dt ′ + f (X)

∫ t

0
dt ′ψ(t ′) (9.42)

which shows that

f (X) = Φeq(X). (9.43)

9.2.2 Exponential Waiting Time Distribution

Consider an exponential distribution of waiting times

ψ(t) = τ−1e−t/τ Ψ0(t) =
∫ ∞

t
τ−1e−t ′/τdt ′ = e−t/τ . (9.44)
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It can be obtained from a Poisson process which corresponds to the master equation

dPn
dt

= −τ−1Pn + τ−1Pn−1 n = 0, 1, 2 . . . (9.45)

with the solution

Pn(0) = δn,0, Pn(t) = (t/τ)n

n! e−t/τ (9.46)

if we identify the survival function with the probability to be in the initial state P0

Ψ (t) = P0(t) = e−t/τ . (9.47)

The general uncorrelated process (9.34) becomes for an exponential distribution

P(X, t) = P(X, 0)e−t/τ +
∫ t

0
dt ′τ−1e−(t−t ′)/τ

∫
dX ′ f (X, X ′)P(X ′, t ′).

(9.48)

Laplace transformation gives

P̃(X, s) = P(X, 0)
1

s + τ−1
+ τ−1

s + τ−1

∫
dX ′ f (X, X ′)P̃(X ′, s) (9.49)

which can be simplified

(
s + τ−1

)
P̃(X, s) = P(X, 0) + τ−1

∫
dX ′ f (X, X ′)P̃(X ′, s). (9.50)

Back transformation gives

(
d

dt
+ τ−1

)
P(X, t) = τ−1

∫
dX ′ f (X, X ′)P(X ′, t) (9.51)

and finally

∂

∂t
P(X, t) = − 1

τ
P(X, t) + 1

τ

∫
dX ′ f (X, X ′)P(X ′, t) (9.52)

which is obviously a Markovian process, since it involves only the time t . For the
special case of an uncorrelated process with exponential waiting time distribution,
the motion can be described by
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∂

∂t
P(X, t) = LP(X, t) (9.53)

LP(X, t) = − 1

τ

(
P(X, t) − φeq(X) < P(t) >

)
. (9.54)

9.2.3 Coupled Equations

Coupling of motion along the coordinate X with the reactions gives the following
system of equations [35, 36]

∂

∂t
P(X, t) = (−k(X) + L1 − τ−1

1

)
P(X, t) + k−1(X)C(X, t)

∂

∂t
C(X, t) = (−k−1(X) + L2 − τ−1

2

)
C(X, t) + k(X)P(X, t) (9.55)

where P(X, t)ΔX and C(X, t)ΔX are the probabilities of finding the system in the
electronic state D∗ or D+A−, respectively, L1,2 are operators describing the motion
in the two states and the rates τ−1

1,2 account for depopulation via additional channels.
For the uncorrelated Markovian process (9.54) the rate equations take the form

∂

∂t

(
P(X, t)
C(X, t)

)
= −

(
k(X) + τ−1

1 + τ−1 −k−1(X)

−k(X) k−1(X) + τ−1
2 + τ−1

) (
P(X, t)
C(X, t)

)

+τ−1

(
φ1(X)

φ2(X)

) (
< P(t) >

< C(t) >

)
(9.56)

which can be written in matrix notation as

∂

∂t
R(X, t) = −A(X)R(X, t) + τ−1B(X) < R(t) > . (9.57)

Substitution

R(X, t) = exp {−A(X)U(X, t)} (9.58)

gives

−A(X)R(X, t) + exp

{
−A(X)

∂

∂t
U(X, t)

}

= −A(X)R(X, t) + τ−1B(X) < R(t) > (9.59)
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∂

∂t
U(X, t) = τ−1 exp {A(X)t} B(X) < R(t) > . (9.60)

Integration gives

U(X, t) = U(X, 0) + τ−1
∫ t

0
exp

{
A(X)t ′

}
B(X) < R(t ′) > dt ′ (9.61)

R(X, t)= exp(−A(X)t)R(X, 0) + τ−1
∫ t

0
exp(A(X)(t ′ − t))B(X) < R(t ′) > dt ′

(9.62)

and the total populations obey the integral equation

< R(t) >=< exp(−At)R(0) > +τ−1
∫ t

0
< exp(A(t ′ − t))B >< R(t ′) > dt ′

(9.63)

which can be solved with the help of a Laplace transformation

R̃(s) =
∫ ∞

0
e−st < R(t) > dt (9.64)

∫ ∞

0
e−st exp(−At)dt = (s + A)−1 (9.65)

∫ ∞

0
e−stdt

∫ t

0
< exp(A(t ′ − t))B >< R(t ′) > dt ′ =< (s + A)−1B > R̃(s).

(9.66)

The Laplace transformed integral equation

R̃(s) =< (s + A)−1R(0) > +τ−1 < (s + A)−1B > R̃(s) (9.67)

is solved by

R̃(s) = [
1 − τ−1 < (s + A)−1B >

]−1
< (s + A)−1R(0) > . (9.68)

We assume that initially the system is in the initial state D* and the motion is
equilibrated

R(X, 0) =
(

φ1(X)

0

)
. (9.69)
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For simplicity, we treat here only the case of τ12 → ∞. Then we have

A =
(
k + τ−1 −k−1

−k k−1 + τ−1

)
(9.70)

(s + A)−1 = 1

(s + τ−1)(s + τ−1 + k + k−1)

(
s + τ−1 + k−1 k−1

k s + τ−1 + k

)

(9.71)

and with the abbreviations

α =
(

1 + 1

s + τ−1
(k + k−1)

)−1

(9.72)

and

< f (X) >1,2 =
∫

φ1,2(X) f (X)dX (9.73)

we find

< (s + A)−1R(0) >

=
〈

φ1α

(s + τ−1)2

(
α−1(s + τ−1) − k

k

)〉
=

⎛
⎜⎜⎝

1

s + τ−1 − 1

(s + τ−1)2 < αk >1

1

(s + τ−1)2 < αk >1

⎞
⎟⎟⎠

(9.74)

as well as

< (s + A)−1B >

=

⎛
⎜⎜⎝

1

s + τ−1
− 1

(s + τ−1)2
< αk >1

1

(s + τ−1)2
< αk−1 >2

1

(s + τ−1)2
< αk >1

1

s + τ−1
− 1

(s + τ−1)2
< αk−1 >2

⎞
⎟⎟⎠
(9.75)

and the final result becomes

R̃(s) = 1

s(s2 + τ−1(s+ < αk >1 + < αk−1 >2))

×
(
s(s + τ−1) − s < αk >1 +τ−1 < αk−1 >2

(s + τ−1) < αk >1

)
. (9.76)
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Let us discuss the special case of thermally activated electron transfer. Here

< αk >1,< αk−1 >2� 1 (9.77)

and the decay of the initial state is approximately given by

P(s) = (s + τ−1) + τ−1s−1 < αk−1 >2

(s2 + τ−1s−1(1+ < αk >1 + < αk−1 >2)
= s + K2

s2 + s(K1 + K2)
(9.78)

with

K2 = τ−1

⎛
⎜⎝1 + s−1

∫
dXφ2(X)

k−1(X)

1 + 1

s + τ−1
(k(X) + k−1(X))

⎞
⎟⎠ (9.79)

≈
∫

dXφ2(X)
k−1(X)

1 + τ(k(X) + k−1(X)
(9.80)

K1 =
∫

dXφ1(X)
k(X)

1 + τ(k(X) + k−1(X))
. (9.81)

This can be visualized as the result of a simplified kinetic scheme
d

dt
< P > = −K1 < P > +K2 < C > (9.82)

d

dt
< C > = K1 < P > −K2 < C > (9.83)

with the Laplace transform

s P̃ − P(0) = −K1 P̃ + K2C̃ (9.84)

sC̃ − C(0) = K1 P̃ + K2C̃ (9.85)

which has the solution

P = sP0 + K2(P0 + C0)

s(s + K1 + K2)
C = sC0 + K1(C0 + P0)

s(s + K1 + K2)
. (9.86)

In the time domain we find

P(t) = K2 + K1e−(K1+K2)t

K1 + K2
C(t) = K1

K1 + K2

(
1 − e−(K1+K2)t

)
. (9.87)

Let us now consider the special case that the back reaction is negligible and
k(X) = k�(X) (Fig. 9.5). Here, we have

P̃(s) = s(s + τ−1) − s < αk >1

s(s2 + τ−1(s+ < αk >1))
(9.88)
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Fig. 9.5 Slow solvent limit

φ
τ

k(X)

(X)

X
k

−1

< αk >1=
∫

dXφ1(X)
k(X)

1 + k(X)

s+τ−1

=
∫ ∞

0
φ1(X)

k

1 + k
s+τ−1

dX

= bk
s + τ−1

k + s + τ−1
b =

∫ ∞

0
φ1(X)dX a = 1 − b =

∫ 0

−∞
φ1(X)dX (9.89)

P̃(s) =

(
s + τ−1 − bk

s + τ−1

k + s + τ−1

)
(
s2 + τ−1(s + bk

s + τ−1

k + s + τ−1
)

) = s + τ−1 + k(1 − b)

s2 + s(τ−1 + k) + bkτ−1
. (9.90)

Inverse Laplace transformation gives a biexponential behaviour

P(t) = (μ+ + k(1 − 2b))e−t (k+μ−)/2 − (μ− + k(1 − 2b))e−t (k+μ+)/2

μ+ − μ−
(9.91)

with

μ± = τ−1 ±
√
k2 + τ−2 + 2kτ−1(1 − 2b). (9.92)

If the fluctuations are slow τ−1 � k then

√
k2 + τ−2 + 2kτ−1(1 − 2b) = k + (1 − 2b)τ−1 + · · · (9.93)

μ+ = k + 2(1 − b)τ−1 + · · · μ− = −k + 2bτ−1 + · · · (9.94)

and the two time constants are approximately

k + μ+
2

= k + · · · k + μ−
2

= bτ−1 + · · · (9.95)
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9.3 Powertime Law Kinetics

The last example can be generalized to describe the powertime law as observed for
CO rebinding in myoglobin at low temperatures. The protein motion is now modeled
by a more general uncorrelated process.2

We assume that the rate k is negligible for X < 0 and very large for X > 0.
Consequently only jumps X < 0 → X > 0 are considered. Then the probability
obeys the equation

P(X, t)|X<0 = P(X, 0)

∫ ∞

t
ψ(t ′)dt ′ +

∫ 0

−∞
dX ′

∫ t

0
dt ′ψ(t − t ′) f (X)P(X ′, t ′)

= φeq(X)Ψ0(t) + φeq(X)

∫ t

0
dt ′ψ(t − t ′)

∫ 0

−∞
dX ′P(X ′, t ′)

(9.96)

Ψ0(t) =
∫ ∞

t
ψ(t ′)dt ′ Ψ̃0(s) = 1 − ψ̃(s)

s
(9.97)

and the total occupation of inactive configurations is

P<(t) =
∫ 0

−∞
dXφeq(X)

(
Ψ0(t) +

∫ t

0
dt ′ψ(t − t ′)P<(t ′)

)

= a

(
Ψ0(t) +

∫ t

0
dt ′ψ(t − t ′)P<(t ′)

)
. (9.98)

Laplace transformation gives

P̃<(s) = a
(
Ψ̃0(s) + ψ̃(s)P̃<(s)

)
(9.99)

with

a =
∫ 0

−∞0
dXφeq(X) (9.100)

and the decay of the initial state is given by

P̃<(s) = aΨ̃0(s)

1 − aψ̃(s)
= 1

s + 1−a
a ˜Ψ0(s)

. (9.101)

2A much more detailed discussion is given in: [36].
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For a simple Poisson process (9.44) with

Ψ̃0 = 1

s + τ−1
(9.102)

this gives

P̃<(s) = a

s + (1 − a)τ−1
(9.103)

which reproduces the exponential decay found earlier in the slow solvent limit (9.95)

P<(t) = ae−t (1−a)/τ . (9.104)

The long time behaviour is given by the asymptotic behavior for s → 0. As
P<(t) → 0 for t → ∞ this is also the case for P̃<(s) in the limit s → 0. Hence
the asymptotic behaviour must be

P̃<(s) ≈ a ˜Ψ0(s)

1 − a
→ 0 s → 0 (9.105)

P<(t) → a

1 − a
Ψ0(t) t → ∞. (9.106)

In order to describe a powertime law at long times

P<(t) → t−β t → ∞ (9.107)

P̃<(s) → sβ−1 s → 0 (9.108)

the waiting time distribution has to be chosen as

Ψ0(t) ∼ 1

(zt)β
t → ∞. (9.109)

which implies

Ψ̃0(s) ∼ z−βsβ−1 (9.110)

where z−1 is the characteristic time for reaching the asymptotics. Finally, we find

P̃<(s) ∼ 1

s + 1−a
a zβs1−β

= 1

s(1 + (z̃/s)β)
. (9.111)
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In the time domain this corresponds to the Mittag–Leffler function3

P<(t) =
∞∑
l=0

(−1)l(z̃t)βl

Γ (βl + 1)
= Eβ(−(z̃t)β) (9.112)

which can be approximated by the simpler function

1

1 + (t/τ)β
. (9.113)

Problems

9.1 Dichotomous Model for Dispersive Kinetics

−

α

β

α

β

P(D*,−)

k

k(X)

k+

P(D*,+)

P(D*,X)

X

P(D+A−,−) P(D+A−,+)

Consider the following system of rate equations

d

dt

⎛
⎜⎝

P(D∗,+)

P(D∗,−)

P(D + A−,+)

P(D + A−,−)

⎞
⎟⎠ =

⎛
⎜⎝

−k+ − α β 0 0
α −k− − β 0 0
k+ 0 −α β

0 k− α −β

⎞
⎟⎠

⎛
⎜⎝

P(D∗,+)

P(D∗,−)

P(D + A−,+)

P(D + A−,−)

⎞
⎟⎠

Determine the eigenvalues of the rate matrix M. Calculate the left- and right eigen-
vectors approximately for the two limiting cases:

(a) fast fluctuations k± � α, β. Show that the initial state decays with an average
rate.
(b) slow fluctuations k± 
 α, β. Show that the decay is nonexponential.

3Which has also been discussed for nonexponential relaxation in inelastic solids and dipole relax-
ation processes corresponding to Cole-Cole spectra.
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Transport Processes



Chapter 10
Non-equilibrium Thermodynamics

Biological systems are far from thermodynamic equilibrium. Concentration gradients
and electrostatic potential differences are the driving forces for diffusive currents and
chemical reactions (Fig. 10.1).

A+B     C

JE

JC
J
B

energy

J
S

entropy

JA

Fig. 10.1 Nonequilibrium processes

In this chapter, we present the basic ingredients of nonequilibrium thermodynam-
ics. We derive continuity equations for mass and energy. Entropy production is a
bilinear function of the thermodynamic forces which vanish at equilibrium. Close to
equilibrium, the fluxes can be approximated as linear functions of the forces and the
entropy production as a positive definite symmetric quadratic form. Finally, we dis-
cuss stationary states which are characterized by a minimum of entropy production,
which is compatible with certain external conditions.
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10.1 Continuity Equation for the Mass Density

We consider a system composed of n different species labeled by k = 1 . . . n which
can undergo a number of r chemical reactions labeled by j = 1 . . . r . We assume
that the system is locally in equilibrium and that all thermodynamic quantities are
locally well defined.

We introduce the partial mass densities

�k = mk

V
Nk = ckmk (10.1)

the total density

� =
∑

k

�k = 1

V

∑

k

mkNk = M

V
(10.2)

and the mass fraction

xk = mk

M
Nk = mkNk∑

k mkNk
= �k

�
. (10.3)

From the conservation of mass we have

d

dt
Mk = mk

d

dt
Nk =

∫

V

∂

∂t
�kdV = −

∫

∂V
�kvkdA+

r∑

j=1

∫

V
mkνk j r j dV (10.4)

which can also be expressed in the form of a continuity equation

∂

∂t
�k = −div(�kvk) +

r∑

j=1

mkνk j r j

= −div(mkJk) +
r∑

j=1

mkνk j r j (10.5)

with the diffusion fluxes Jk . For the total mass density

� =
∑

k

�k (10.6)

we have

∂

∂t
� = −div

(
∑

k

�kvk

)
+

∑

k

r∑

j=1

mkνk j r j . (10.7)
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Due to conservation of mass for each reaction, the last term vanishes

∑

k

mkνk j = 0 (10.8)

and with the center of mass velocity

v = 1

�

∑

k

�kvk (10.9)

we have

∂

∂t
� = −div(�v). (10.10)

10.2 Energy Conservation

We define the specific values of enthalpy, entropy and volume h, s, �−1 by

H = h � V

S = s � V

V = �−1 � V . (10.11)

The differential of the enthalpy is

dH = T dS + V dp +
∑

k

μkdNk (10.12)

where μk is a generalized chemical potential, which also includes the potential energy
of electrostatic or gravitational fields which are assumed to be time-independent. For
the specific quantities we find

V (hd� + �dh) = T V (sd� + �ds) + V dp

+
∑

k

μk
V

mk
(xkd� + �dxk) (10.13)

and if we combine all terms with d�

�dh − T�ds − dp −
∑

k

μk

mk
�dxk =

(
T s +

∑

k

μk
xk
mk

− h

)
d�. (10.14)
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The right-hand side can be written as

1

�V

(
T S +

∑

k

μk Nk − H

)
d� (10.15)

which vanishes in equilibrium. Hence we have for the specific quantities

dh = T ds + �−1dp +
∑

k

μk
1

mk
dxk . (10.16)

In the following, we consider a resting solvent without convection. We neglect the
center of mass motion and its contribution to the total energy. The diffusion currents
are taken relative to the solvent.1 For constant pressure we have

∂(�h)

∂t
= T

∂(�s)

∂t
+

∑

k

μk

mk

∂�k

∂t
(10.17)

and the enthalpy obeys the continuity equation

∂(�h)

∂t
= −div(Jh) (10.18)

with the enthalpy flux Jh .

10.3 Entropy Production

The entropy change

dS = d

(∫

V
�sdV

)
(10.19)

has contributions from the local entropy production dSi and from exchange with the
surroundings dSe

dS = dSi + dSe. (10.20)

The local entropy production can only be positive,

dSi ≥ 0 (10.21)

whereas entropy exchange with the surroundings can be positive or negative
(Fig. 10.2).

1A more general discussion can be found in [37].
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Fig. 10.2 Local entropy
change

dSe

idS

dSe

We denote by σ the entropy production per volume

dSi
dt

=
∫

V
σ dV (10.22)

The entropy exchange is connected with the total entropy flux

dSe
dt

= −
∫

∂V
JsdA. (10.23)

Together we have

∂(�s)

∂t
= −div(Js) + σ (10.24)

with

σ ≥ 0. (10.25)

From (10.17) the time derivative of the entropy per volume is

∂(�s)

∂t
= 1

T

∂(�h)

∂t
− 1

T

∑

k

μk

mk

∂�k

∂t
(10.26)

and inserting ((10.5), (10.26))

∂(�s)

∂t
= − 1

T
div(Jh) − 1

T

∑

k

μk

mk

⎛

⎝−div(mkJk) +
r∑

j=1

mkνk j r j

⎞

⎠ (10.27)

which can be written as

∂(�s)

∂t
= −div

(
1

T
Jh +

∑

k

μk

T
Jk

)

+ Jhgrad

(
1

T

)
−

∑

k

Jkgrad
(μk

T

)
+ 1

T

∑

j

A jr j (10.28)
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with the chemical affinities

A j = −
∑

k

μkνk j . (10.29)

From comparison of (10.28) and (10.24) we find the entropy flux

Js = 1

T

(
Jh −

∑

k

μkJk

)
(10.30)

and the entropy production

σ = Jhgrad

(
1

T

)
−

∑

k

Jkgrad
(μk

T

)
+ 1

T

∑

j

A jr j

=
(
Jh −

∑

k

μkJk

)
grad

(
1

T

)
−

∑

k

1

T
Jkgrad (μk) + 1

T

∑

j

A jr j . (10.31)

We define the heat flux as̃2

Jq = T Js . (10.32)

The entropy production is a bilinear form

σ = KqJq +
∑

k

KkJk +
∑

j

K jr j (10.33)

of the fluxes

Jq , Jk, r j (10.34)

and the thermodynamic forces

Kq = grad

(
1

T

)

Kk = − 1

T
grad (μk)

K j = 1

T
A j (10.35)

2The definition of the heat flux is not unique in the case of simultaneous diffusion and heat transport.
Our definition is in analogy to the relation T dS = dH −V dp−∑

k μkdNk for an isobaric system.
With this convention the diffusion flux does not depend on the temperature gradient explicitly.
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Instead of entropy production, alternatively the rate of energy dissipation can be
considered which follows from multiplication of (10.31) with T

Tσ = − 1

T
Jqgrad (T ) −

∑

k

Jkgrad (μk) +
∑

j

A jr j . (10.36)

10.4 Phenomenological Relations

In equilibrium all fluxes and thermodynamic forces vanish

T = const, μk = const, A j = 0. (10.37)

The entropy production is also zero and entropy has its maximum value. If the devi-
ation from equilibrium is small the fluxes3 can be approximated as linear functions
of the forces

Jα =
∑

β

Lα,βKβ (10.38)

where the so-called Onsager coefficients Lα,β are material constants.4 As Onsager has
shown, the matrix of coefficients is symmetric Lα,β = Lβ,α . The entropy production
has the approximate form

σ =
∑

α

JαKα =
∑

α,β

Lα,βKαKβ. (10.39)

According to the second law of thermodynamics σ ≥ 0, and therefore the matrix of
Onsager coefficients is positive definite.

10.5 Stationary States

Under certain circumstances,5 stationary states are characterized by a minimum of
entropy production, which is compatible with certain external conditions. Consider a
system with n independent fluxes and thermodynamic forces. If the forces K1 . . . Km

3only a set of independent fluxes should be used here.
4Fluxes with different tensorial character are not coupled.
5Especially the Onsager coefficients have to be constants.
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Fig. 10.3 Combined
diffusion and heat transport ΔT

Jq

T+   T

are kept fixed and a stationary state is reached then the fluxes corresponding to the
remaining forces vanish

Jα = 0 α = m + 1 . . . n (10.40)

and the entropy production is minimal since

∂σ

∂Kα |K1...Km

= Jα α = m + 1 . . . n. (10.41)

A simple example is the coupling of diffusion and heat transport between two reser-
voirs with fixed temperatures T and T + ΔT (Fig. 10.3).

In a stationary state the diffusion current must vanish Jd = 0 since any diffusion
would lead to time-dependent concentrations. The entropy production is

σ = JqKq + JdKd . (10.42)

If the force

Kq = grad

(
1

T

)
≈ −ΔT

T 2
(10.43)

is fixed by keeping the temperature distribution fixed, then in the stationary state
there is only transport of heat but not of mass. The entropy production is

σ = Lqq K
2
q + Ldd K

2
d + 2Lqd KqKd

= Lqq Ldd − L2
qd

Ldd
K 2

q + Ldd

(
Kd + Lqd

Ldd
Kq

)2

(10.44)

where due to the positive definiteness of Li j

Ldd > 0, Lqq > 0, Ldd Lqq − L2
qd > 0. (10.45)

As a function of Kd the entropy production is minimal for

0 = Kd + Lqd

Ldd
Kq = 1

Ldd
Jd (10.46)



10.5 Stationary States 147

hence in the stationary state. Obviously, the chemical potential adjusts such that

Kd = − 1

T
Δμ = Lqd

Ldd

ΔT

T 2
(10.47)

which leads to a concentration gradient.6

Δc

c
≈ − Lqd

Ldd

ΔT

kBT 2
. (10.48)

Problems

10.1 Entropy Production by Chemical Reactions

Consider an isolated homogeneous system with T = const and μk = const but
nonzero chemical affinities

A j = −
∑

k

μkνk j

and determine the rate of entropy increase.

6This is connected to the Seebeck effect.



Chapter 11
Simple Transport Processes

In this chapter, we discuss simple transport processes like heat transport and diffu-
sion in an external electric field. We discuss the fluxes of mass, energy, and entropy
and their dependence on the gradients of temperature, concentration, and electro-
static potential. We derive the Nernst–Planck equation for the diffusion flux and a
generalized diffusion equation for the concentration.

11.1 Heat Transport

Consider a systemwithout chemical reactions and diffusion and with constant chem-
ical potentials.1 The thermodynamic force is

Kq = grad

(
1

T

)
≈ − 1

T 2
grad T (11.1)

and the phenomenological relation is known as Fourier’s law

Jq = −κ grad T (11.2)

The entropy flux is

Js = 1

T
Jq = 1

T
JH (11.3)

1We neglect the temperature dependence of the chemical potential here.
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Fig. 11.1 Heat transport J

T

J

T
1

q

2

s

and the energy dissipation is

Tσ = − 1

T
Jq grad T = κ

T
(grad T )2 . (11.4)

From the continuity equation for the enthalpy we find

∂(�h)

∂t
= cp

∂T

∂t
= κ � T (11.5)

and hence the diffusion equation for heat transport

∂T

∂t
= κ

cp
� T . (11.6)

For stationary heat transport in one dimension, the temperature gradient is constant,
hence also the heat flux. The entropy flux, however, is coordinate dependent due to
the local entropy production (Fig. 11.1).

div JS = −Jq
1

T 2
grad (T ) = κ

T 2
(grad T )2 = σ. (11.7)

11.2 Diffusion in an External Electric Field

Consider an ionic solution at constant temperature without chemical reactions. The
thermodynamic force is

Kk = − 1

T
grad (μk). (11.8)
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For a dilute solution we have2

μk = μ0
k + kBT ln(ck) + ZkeΦ (11.9)

and hence the thermodynamic force

Kk = −kB
ck

grad (ck) − 1

T
grad (ZkeΦ) . (11.10)

The entropy production is given by

Tσ =
∑
k

Jk

(
−kBT

ck
grad ck − Zk e grad Φ

)
. (11.11)

The phenomenological relations have the general form

Jk =
∑
k ′

Lk,k ′Kk (11.12)

where the interaction mobilities Lk,k ′ vanish for very small ion concentrations,
whereas the direct mobilities Lk,k are only weakly concentration dependent
[38, 39]. Inserting the forces we find

Jk = −
∑
k ′

Lk,k ′
kB
ck

grad ck ′ − 1

T
grad (Φ)

∑
k ′

Lk,k ′ Zk ′e (11.13)

which for small ion concentrations can be written more simply by introducing the
diffusion constant as

Jk = −Dk grad ck − ck ZkeDk

kBT
grad Φ (11.14)

which is known as the Nernst–Planck equation. This equation can be understood in
terms of motion in a viscous medium (7.1). For the motion of a mass point we have

mv̇ = F − mγv. (11.15)

In a stationary state the velocity is

v = 1

mγ
F (11.16)

2The concentration (particles per volume) is ck = �k/mk = �xk/mk .

http://dx.doi.org/10.1007/978-3-662-55671-9_7
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and the particle current

J = cv = c

mγ
F = cD

kBT
F (11.17)

where we used the Einstein relation

D = kBT

mγ
. (11.18)

From comparison with the Nernst–Planck equation we find

F = −kBT

cD

(
D grad c + cZeD

kBT
grad Φ

)
= −kBT

c
grad c−grad ZeΦ. (11.19)

The charge current is

Jel = ZkeJk = − Zkeck Dk

kBT

(
kBT

ck
grad ck + gradZkeΦ

)

= −ZkeDk grad ck − (Zke)2ck Dk

kBT
grad Φ. (11.20)

The prefactor of the potential gradient is connected to the electrical conductivity

Gk = (Zke)2ck Dk

kBT
. (11.21)

Together with the continuity equation

∂ck
∂t

= − div Jk (11.22)

we arrive at a Smoluchowski type equation

∂ck
∂t

= div

(
Dk grad ck + ck ZkeD

kBT
grad Φ

)
. (11.23)

In equilibrium we have

μk = const (11.24)

and hence

kBT ln ck + ZkeΦ = const (11.25)
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Fig. 11.2 Diffusion in an
electric field

Φ

− grad(c)

− +

−  grad(   )

or

ck = c0ke
−ZkeΦ/kBT . (11.26)

This is sometimes described as an equilibrium of the currents due to concentration
gradient on the one side and to the electrical field on the other side (Fig. 11.2).

TheNernst–Planck equationhas to be solved togetherwith thePoisson–Boltzmann
equation for the potential

div (ε grad Φ) = −
∑
k

Zkeck

In one dimension the Poisson–Nernst–Planck equations are

J = −D
dc

dx
− ZecD

kBT

dΦ

dx
(11.27)

d

dx
ε
d

dx
Φ = −

∑
k

Zkeck . (11.28)

Problems

11.1 Synthesis of ATP from ADP
In mitochondrial membranes, ATP is synthesized according to

ADP + POH + 2H+
out � ATP + H2O + 2H+

in

where (in) and (out) refer to inside and outside of the mitochondrial membrane.
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Express the equilibrium constant K as a function of the potential difference

Φin − Φout

and the proton concentration ratio

c(H+
in )/c(H

+
out ).



Chapter 12
Ion Transport Through a Membrane

In this chapter, we study simple models related to ion transport through a membrane.
We draw a close analogy to electronic circuit theory and describe the ion transport
similar to a simple RC-network. We study the Goldman–Hodgkin–Katz model for
a steady state with more than one ionic species present. The membrane potential is
calculated as a function of the ion concentrations inside and outside the membrane.
We discuss the famous Hodgkin–Huxley model for the quantitative description of
the squid giant axon dynamics, which received the Nobel prize. Finally, we study
models for ion channel cooperativity with a two-state model in analogy to ligand
binding. We derive the master equations for ligand-gated channels within the MWC
and KNF models and calculate the ratio of active channels as a function of ligand
concentration to show the cooperative effect.

12.1 Diffusive Transport

We can draw a close analogy between diffusion and reaction on the one side and
electronic circuit theory on the other side. We regard the membrane as a resistance
for the current of diffusion and the difference in chemical potential as the driving
force (Fig. 12.1):

μ = μ0 + kBT ln c (12.1)

c = exp
μ − μ0

kBT
. (12.2)
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Fig. 12.1 Transport across a
membrane
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Fig. 12.2 Equivalent circuit
for the diffusion through a
membrane
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μ
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R

J
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Assuming linear variation of the chemical potential over the thickness a of the mem-
brane we have

μ(x) = μinside + x

a
Δμ. (12.3)

The diffusion current is

J = −C
∂μ

∂x
= −C

Δμ

a
(12.4)

and the constant is determined from the diffusion equation in the center of the mem-
brane

0 = ∂c

∂t
= − ∂

∂x
(J ) = − ∂

∂x
(−C

kBT

c

∂c

∂x
) = ∂

∂x

(
D(x)

∂

∂x
c

)
→ C = D

kBT
c

(12.5)

with

c = exp
μinside + Δμ

2

kBT
= exp

μoutside + μinside

2kBT
= √

cinsidecoutside. (12.6)

Finally, we have (Fig. 12.2)

J = −DcΔμ

akBT
= −Δμ

R
. (12.7)
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If we include a gradient of the electrostatic potential then the equations become

μ = μ0 + kBT ln c + ZeΦ (12.8)

c = exp
μ − μ0 − ZeΦ

kBT
(12.9)

J = −C
∂μ

∂x
= −C

Δμ

a
= −C

kBTΔ ln c + ZeΔΦ

a
(12.10)

and the electric current is

I = ZeJ = − (Ze)2

R

(
Δ
kBT ln c

Ze
+ Δφ

)

= −g(VNernst − V ) (12.11)

with the Nernst potential

VNernst = kBT

Ze
ln

coutside
cinside

(12.12)

and the membrane potential (Fig. 12.3)

V = Φinside − Φoutside. (12.13)

The transport through biological membranes occurs often via the formation of pore–
ligand complexes. The number of these complexes depends on the chemical potential
of the ligands and needs time to build up. It may therefore be more realistic to associate
also a capacity Cm with the membrane, which we define in analogy to the electronic
capacity via the change of the potential (Fig. 12.4):

Jm = Cm
dμm

dt
. (12.14)

Fig. 12.3 Equivalent circuit
for the electric current

I

g

inside

V 
N

V

outside
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Fig. 12.4 Equivalent circuit
with capacity

μ μ

J

RR

Cm

0 0

J

μ outside μ inside

the change of the potential is

dμm

dt
= kBT

c

dc

dt
(12.15)

and the current is from the continuity equation

−div J = Jm
a

= dc

dt
(12.16)

hence

Cm = ac

kBT
. (12.17)

12.2 Goldman–Hodgkin–Katz Model

In the rest state of a neuron the potassium concentration is higher in the interior,
whereas there are more sodium and chlorine ions outside. The concentration gradients
have to be produced by (energy consuming) ion pumps.

Let us first consider only one type of ions and constant temperature. From (11.25)
we have

Φ + kBT

Zke
ln ck = const . (12.18)

Usually, the potential is defined as zero on the outer side and

Vk = Φinside − Φoutside = kBT

Zke
ln

ck,outside
ck,inside

(12.19)

is the Nernst potential (12.12) of the ion species k.

http://dx.doi.org/10.1007/978-3-662-55671-9_11
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Fig. 12.5 Coupled ionic
fluxes JNa+

JK+

JCl−

m

charge 

outside inside

membrane

density

potential

0 d x

Φ

We now want to calculate the potential for a steady state with more than one ionic
species present. We take the ionic species Na+, K+,Cl− which are most important
in nerve excitation that will define the so-called Goldman–Hodgkin–Katz model [40]
(Fig. 12.5).

We want to calculate the dependence of the fluxes Jk on the concentrations ck,in
and ck,out . To that end we multiply the Nernst–Planck (11.27) equation by eyk where

yk = Zke
Φ

kBT
(12.20)

to get

Jkeyk = −Dkeyk
(
dck
dx

+ ck
dyk
dx

)
= −Dk

d

dx
(ckeyk ). (12.21)

This can be integrated over the thickness d of the membrane

∫ d

0
Jkeyk dx = −D

∫ d

0

d

dx
(ckeyk )dx = −D

(
ck,ineZkeΦm/kBT − ck,out

)
. (12.22)

We assume a linear variation of the potential across the membrane

Φ(x) = x

d
Φm . (12.23)

http://dx.doi.org/10.1007/978-3-662-55671-9_11
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This is an approximation which is consistent with the condition of electroneutrality.
On the boundary between liquid and membrane the first derivative of Φ will be
discontinuous corresponding to a surface charge distribution.1 Assuming a stationary
state with ∂ J/∂x = 0 we can evaluate the left-hand side of (12.22)

Jk
kBT d

ZkeΦm

(
eZkeΦm/kBT − 1

) = −D
(
ck(d)eZkeΦm/kBT − ck(0)

)
(12.24)

which gives the current

Jk = −D

d

ZkeΦm

kBT

ck,ineZkeΦm/kBT − ck,out
eZkeΦm/kBT − 1

. (12.25)

In a stationary state the total charge current has to vanish

I =
∑
k

ZkeJk = 0 (12.26)

and we find

e2Φm

kBT d

∑
Dk Z

2
k

ck,ineZkeΦm/kBT − ck,out
eZkeΦm/kBT − 1

= 0. (12.27)

With ZNa+ = ZK+ = 1, ZCl− = −1 and

ym = eΦm

kBT
bm = eym (12.28)

we have

DNa+
cNa+,inbm − cNa+,out

bm − 1
+ DK+

cK+,inbm − cK+,out

bm − 1

+ DCl−
cCl−,inb−1

m − cCl−,out

b−1
m − 1

= 0. (12.29)

Multiplication with (bm − 1) gives

DNa+(cNa+,inbm − cNa+,out ) + DK+(cK+,inbm − cK+,out )

− bmDCl−(CCl−,inb
−1
m − cCl−,out ) = 0 (12.30)

1We do not consider a possible variation of ε here.
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and we find

bm = DNa+cNa+,out + DK+cK+,out + DCl−cCl−,in

DNa+cNa+,in + DK+cK+,in + DCl−cCl−,out
(12.31)

and finally

Φm = kBT

e
ln

DNa+cNa+,out + DK+cK+,out + DCl−cCl−,in

DNa+cNa+,in + DK+cK+,in + DCl−cCl−,out
. (12.32)

This formula should be compared with the Nernst equation

Vk = Φinside − Φoutside = kBT

Zke
ln

ck,outside
ck,inside

. (12.33)

The ionic contributions appear weighted with their mobilities. The Nernst equation
is obtained if the membrane is permeable for only one ionic species.

12.3 Hodgkin–Huxley Model

In 1952, Hodgkin and Huxley won the Nobel prize for their quantitative description
of the squid giant axon dynamics [41].

They thought of the axon membrane as an electrical circuit. They assumed inde-
pendent currents of sodium and potassium, a capacitive current, and a catch-all leak
current. The total current is the sum of these (Fig. 12.6):

Iext = IC + INa + IK + IL . (12.34)

The capacitive current is

IC = Cm
dV

dt
. (12.35)

Fig. 12.6 Hodgkin–Huxley
model
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inactive state

n−gates

K+

open state

membranemembrane

Fig. 12.7 Potassium gates

For the ionic currents we have (12.11)

Ik = gk(V − Vk), (12.36)

where gk is the channel conductance which depends on the membrane potential and
on time and Vk is the specific Nernst potential (12.19). The macroscopic current
relates to a large number of ion channels which are controlled by gates which can
be in either permissive or nonpermissive state. Hodgkin and Huxley considered a
simple rate process for the transition between the two states with voltage-dependent
rate constants

closed
α(V )

�
β(V )

open. (12.37)

The variable p which denotes the number of open gates obeys a first-order kinetics

dp

dt
= α(1 − p) − β p. (12.38)

Hodgkin and Huxley introduced a gating particle n describing the potassium
conductance (Fig. 12.7) and two gating particles for sodium (m being activating and
h being inactivating). They used the specific equations

gK = gk p
4
n (12.39)

gNa = gNa p
3
m ph (12.40)

which gives finally a highly nonlinear differential equation

Iext (t) = Cm
dV

dt
+gk p

4
n(V −VK )+gNa p

3
m ph(V −VNa)+gL(V −VL). (12.41)
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Fig. 12.8 Hodgkin–Huxley
model. Equation (12.41) is
solved numerically [42]. Top
Excitation by two short
rectangular pulses Iext (t)
(solid curve) and membrane
potential V (t) (dashed).
Bottom fraction of open
gates pm (full), pn(dashed),
ph(dash-dotted)
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Fig. 12.9 Refractoriness of
the Hodgkin–Huxley model.
A second pulse cannot excite
the system during the
refractory period. Details as
in Fig. 12.8
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This equation has to be solved numerically. It describes many electrical properties
of the neuron-like threshold and refractory behavior, repetitive spiking and temper-
ature dependence (Figs. 12.8 and 12.9). Later, we will discuss a simplified model
with similar properties in more detail (Sect. 13.3).

12.4 Cooperativity in Ion Channel Kinetics

Ion channel cooperativity can be described similar to ligand binding with a two-state
model [43–45]. We consider an oligomeric protein consisting of a number nT of
subunits which can be in two configurations, R and T. In the presence of the ligand,
the equilibrium between the two configurations is shifted to R, which has the greater
affinity for the ligand. The kinetics can be described in terms of the number n of
bound subunits in the T and R conformations. In case of the ion channel, R and T
denote the open (or active) and closed (or inactive) state of the subunits (Fig. 12.10).

http://dx.doi.org/10.1007/978-3-662-55671-9_13
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Fig. 12.10 Cooperative ion channels. The possible states of two ion channels are shown, each of
which can bind to one ligand and is either in the open (R, red) or closed (T, grey) state. Numbers
show the degeneracy

12.4.1 MWC Model

The traditional MWC [46] model assumes that all segments are in the same state.
It is equivalent to a model with one channel and nT binding sites. The following
transitions are possible (Fig. 12.11):

• binding, proportional to number of unbound units:

−ΔPR(n) = ΔPR(n + 1) ∝ (nT − n)PR(n)k+
R (12.42)

−ΔPT (n) = ΔPT (n + 1) ∝ (nT − n)PT (n)k+
T (12.43)

• unbinding, proportional to number of bound units:

−ΔPR(n) = ΔPR(n − 1) ∝ nPR(n)k−
R (12.44)

−ΔPT (n) = ΔPT (n − 1) ∝ nPT (n)k−
T (12.45)

• configuration change

−ΔPR(n) = ΔPT (n) ∝ PR(n)vR(n) (12.46)
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Fig. 12.11 MWC model for
ion channels. The protein is
characterized by the state of
the segments (R or T) and
the number of bound ligands
n. Equilibrium between the
two conformations is
established by the transition
rates vR,T (n). Rates of
binding (k+

R,T )and unbinding

(k−
R,T ) depend on the state

vR
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Fig. 12.12 MWC model for
cooperative ion channels.
Each of the nT subunits is in
either one of the two states R
or T. The number of bound
subunits is n, which can
change according to forward
and backward transition
rates k±

R,T . The equilibrium
between the two
configurations in the
unbound state n = 0 depends
on the transition rates vR,T
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+
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−

+
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0
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−ΔPT (n) = ΔPR(n) ∝ PT (n)vT (n). (12.47)

In a simplified MWC model [43, 44] (Fig. 12.12), we assume that the configuration
change only appears in the unbound (n=0) state.

The dynamic evolution is described by the rate equations for n = 0:

∂PR(0, t)

∂t
= k−

R PR(1, t) − k+
R nT PR(0, t) − vR PR(0, t) + vT PT (0, t) (12.48)

∂PT (0, t)

∂t
= k−

T PT (1, t) − k+
T nT PT (0, t) + vR PR(0, t) − vT PT (0, t) (12.49)
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and for n > 0:

∂PR(n, t)

∂t
= k+

R (nT − n + 1)PR(n − 1, t) + k−
R (n + 1)PR(n + 1, t)

− k+
R (nT − n)PR(n, t) − k−

R nPR(n, t) (12.50)

∂PT (n, t)

∂t
= k+

T (nT − n + 1)PT (n − 1, t) + k−
T (n + 1)PT (n + 1, t)

− k+
T (nT − n)PT (n, t) − k−

T nPT (n, t). (12.51)

The following ansatz

PR(n) = 1

z

(
nT
n

)
Kn

R PT (n) = 1

z

(
nT
n

)
Kn

T L (12.52)

allows to find the stationary state by solving the following equations:

0 = k−
R nT KR − k+

R nT − vR + vT L (12.53)

0 = k−
T nT KT − k+

T nT − vT + vRL
−1 (12.54)

0 = k+
R

nT !
(n − 1)!(nT − n)!K

n−1
R + k−

R

nT !
(nT − n − 1)!n!K

n+1
R

− k+
R

nT !
n!(nT − n − 1)!K

n
R − k−

R

nT !
(nT − n)!(n − 1)!K

n
R (12.55)

0 = k+
T

nT !
(n − 1)!(nT − n)!K

n−1
T + k−

T

nT !
(nT − n − 1)!n!K

n+1
T −

0 − k+
T

nT !
n!(nT − n − 1)!K

n
T − k−

T

nT !
(nT − n)!(n − 1)!K

n
T (12.56)

which simplify to

(k+
R − KRk

−
R )(

1

nT − n
− KR

n
) + KR

nT − n
(LvT K

n
T K

−n
R − vR) = 0 (12.57)

(k+
T − KT k

−
T )(

1

nT − n
− KT

n
) + KT

nT − n
(L−1vRK

n
RK

−n
T − vT ) = 0 (12.58)
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with the solution

KR = k+
R

k−
R

KT = k+
T

kT−
and

L = − 1

vT
(k−

R nT KR − k+
R nT − vR) = vR

vT
(12.59)

L−1 = − 1

vR
(k−

T nT KT − k+
T nT − vR) = vT

vR
. (12.60)

Finally, the normalization factor is

z =
nT∑
n=0

(
nT
n

)
(Kn

R + LKn
T ) = (1 + KR)nT + L(1 + KT )nT . (12.61)

The probability of the active state R is

PR = (1 + KR)nT

(1 + KR)nT + L(1 + KT )nT
(12.62)

which in the absence of cooperativity (i.e., KR = KT ) becomes

PR,nc = 1

1 + L
. (12.63)

For increasing number of binding sites nT the dependency on the ligand concen-
tration (to which KR and KT are assumed to be proportional) becomes steeper and
more pronounced (Figs. 12.13, 12.14).

12.4.2 KNF Model

The KNF [47] model assumes a sequential mechanism where all bound segments
are in the open state (Fig. 12.15).

If n ligands are already bound, binding of another one is possible for nT − n
segments. Hence, the rate equations of the KNF model are

∂Pn
∂t

= −nPnk
−
n − (nT − n)Pnk

+
n + (nT − n + 1)Pn−1k

+
n−1 + (n + 1)Pn+1k

−
n+1.

(12.64)
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Fig. 12.13 Cooperativity of ligand-gated channels in the MWC model. The probability of the active
state (12.62) is shown as a function of ligand concentration (calculated for KR/KT = 10, L = 10)
and number of active sites nT from 1 to 6
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Fig. 12.14 Cooperativity of ligand-gated channels in the MWC model. The probability of the active
state (12.62) is shown as a function of ligand concentration (calculated for KR/KT = 2, L = 10)
and number of active sites nT from 1 to 6
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Fig. 12.15 KNF model. The KNF model assumes a sequential mechanism
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To find the steady state, we use again an ansatz with a binomial degeneracy factor

Pn =
(
nT
n

)
Wn (12.65)

and obtain

0 = −k−
n

nT !
(nT − n)!(n − 1)!Wn − k+

n

nT !
n!(nT − n − 1)!Wn

+ k+
n−1

nT !
(n − 1)!(nT − n)!Wn−1 + k−

n+1

nT !
n!(nT − n − 1)!Wn+1

= −k−
n nWn − k+

n (nT − n)Wn + k+
n−1nWn−1 + k−

n+1(nT − n)Wn+1 (12.66)

which gives the recursion

n = 0 : −k+
0 nTW0 + k−

1 nTW1 = 0 (12.67)

0 < n < nT : Wn+1 = 1

k−
n+1(nT − n)

[
(nk−

n + (nT − n)k+
n )Wn − nk+

n−1Wn−1
]

(12.68)

n = nT : −k−
nT nTWnT + k+

nT −1nTWnT −1 = 0 (12.69)

which is solved by

W1 = k+
0

k−
1

W0 (12.70)

W2 = 1

k−
2 (nT − 1)

[
(k−

1 + (nT − 1)k+
1 )

k+
0

k−
1

− k+
0

]
W0

= 1

k−
2 (nT − 1)

[
(k+

0 + (nT − 1)k+
1

k+
0

k−
1

) − k+
0

]
W0

= k+
1

k−
2

k+
0

k−
1

W0 (12.71)

...

WnT −1 = k+
nT −2

k−
nT −1

. . .
k+

0

k−
1

W0 (12.72)
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Fig. 12.16 Cooperativity in
the KNF model. The average
fraction of active sites
(12.78) is shown as a
function of ligand
concentration for f = 2 and
nT from 1 to 6
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Fig. 12.17 KNF model in
the uncooperative limit. For
f = 1 all partial equilibria
have the same equilibrium
constant Kn = K0 and the
average fraction of active
sites does not depend on the
number of segments nT
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WnT = k+
nT −1

k−
nT

Wnr−1. (12.73)

This can be summarized as

Pn = 1

z

(
nT
n

)
KnKn−1 . . . K2K1 (12.74)

with the equilibrium constants

Kn = k+
n−1

k−
n

. (12.75)

Now, assume a geometric series dependence [43] of the form

Kn = K0 f
n, (12.76)
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where the parameter f is a measure of cooperativity and K0 is proportional to the
ligand concentration. Then,

Pn = 1

z

(
nT
n

)
Kn

0 f n(n−1)/2 (12.77)

and the average

< n >=
nT∑
n=0

nPn = nT
z

nT −1∑
n=0

(
nT − 1

n

)
Kn+1

0 f n(n+1)/2. (12.78)

For f = 1, the system is uncooperative with

Pn,nc = 1

z

(
nT
n

)
Kn

0 = 1

(1 + K0)
nT

(
nT
n

)
Kn

0 (12.79)

and the average number of active segments

< n >nc=
nT∑
n=0

nPn,nc =
nT∑
n=1

1

(1 + K0)
nT
nT

(
nT − 1
n − 1

)
Kn

0 = nT K0

1 + K0
. (12.80)

Again, the dependency on ligand concentration becomes sharper for larger nT
(Figs. 12.16 and 12.17).



Chapter 13
Reaction–Diffusion Systems

Reaction–diffusion systems are described by nonlinear equations and show the
formation of structures. Static as well as dynamic patterns found in biology can
be very realistically simulated [48]. We derive the equations for a coupled diffusion–
reaction system and classify possible instabilities. The Fitzhugh–Nagumo model as
a simplification of the Hodgkin Huxley model is analyzed in detail.

13.1 Derivation

We consider now a coupling of diffusive motion and chemical reactions. For constant
temperature and total density we have the continuity equation

∂

∂t
ck = −div Jk +

∑

j

νk j r j (13.1)

together with the phenomenological equation

Jk = −
∑

j

Lk jgrad k ln c j = −
∑

j

Dk jgrad c j (13.2)

which we combine to get

∂

∂t
ck =

∑

j

Dk j � c j +
∑

j

νk j r j , (13.3)

where the reaction rates are nonlinear functions of the concentrations:
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∑

j

νk j r j = Fk({ci }). (13.4)

We assume for the diffusion coefficients the simplest case that the different species
diffuse independently (but possibly with different diffusion constants) and that the
diffusion fluxes are parallel to the corresponding concentration gradients. We write
the diffusion–reaction equation in matrix form

∂

∂t

⎛

⎜⎝
c1
...

cN

⎞

⎟⎠ =
⎛

⎜⎝
D1

. . .

DN

⎞

⎟⎠ �
⎛

⎜⎝
c1
...

cN

⎞

⎟⎠ +
⎛

⎜⎝
F1({c})

...

FN ({c})

⎞

⎟⎠ (13.5)

or briefly

∂

∂t
c = D � c + F(c). (13.6)

13.2 Linearization

Since a solution of the nonlinear equations is generally possible only numerically
we investigate small deviations from an equilibrium solution c01 with

∂

∂t
c0 = 0 (13.7)

�c0 = 0. (13.8)

Obviously, the equilibrium corresponds to a root

F(c0) = 0. (13.9)

We linearize the equations by setting

c = c0 + ξ (13.10)

and expanding around the equilibrium

∂

∂t
ξ = D � ξ + F(c0 + ξ) = D � ξ + ∂F

∂c |c0
ξ. (13.11)

Denoting thematrix of derivatives byM0 we can discuss several types of instabilities:

1We assume tacitly that such a solution exists.
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• spatially constant solutions

For a spatially constant solution we have

∂

∂t
ξ = M0ξ (13.12)

with the formal solution

ξ = ξ0 exp(M0t). (13.13)

Depending on the eigenvalues of M there can be exponentially growing or decaying
solutions, oscillating solutions, and exponentially growing or decaying solutions.

• plane waves

Plane waves are solutions of the linearized problem. Using the Ansatz

ξ = ξ0e
i(ωt−kx) (13.14)

gives

iωξ = −k2Dξ + M0ξ = Mkξ. (13.15)

For a stable plane wave solution λ = iω is an eigenvalue of

Mk = M0 − k2D (13.16)

with

�(λ) ≤ 0. (13.17)

If there are purely imaginary eigenvalues for some k, they correspond to stable solu-
tions which are spatially inhomogeneous and lead to formation of certain patterns.

13.3 Fitzhugh–Nagumo Model

The Hodgkin-Huxley model (12.40) describes characteristic properties like the
threshold behavior and the refractory period where the membrane is not excitable.
Since the system of equations is rather complicated, a simpler model was devel-
oped by Fitzhugh (1961) and Nagumo (1962) which involves only two variables u, v
(membrane potential and recovery variable):

u̇ = u − u3

3
− v + I (t) (13.18)

http://dx.doi.org/10.1007/978-3-662-55671-9_12
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Fig. 13.1 Nagumo circuit
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v̇ = ε(u + a − bv). (13.19)

The standard parameter values are

a = 0.7 b = 0.8 ε = 0.08. (13.20)

Nagumo studied an electronic circuit with a tunnel diode (Fig. 13.1) which is
described by rather similar equations

I = CV̇ + Idiode(V ) + ILR (13.21)

V = RILR + L İLR + E → İL R = V − E − RILR
L

. (13.22)

The Fitzhugh Nagumo model can be used to describe the excitation propagation
along the membrane. After rescaling the original equations and adding diffusive
terms we obtain the reaction–diffusion equations

∂

∂t

(
u
v

)
=

(
u − u3

3 − v + I (t)
ε(u − bv + a)

)
+

(
1

δ

)
�

(
u
v

)
. (13.23)

The evolution of the FN model can be easily represented in a two-dimensional uv-
plot. The u-nullcline and the v-nullcline are defined by

u̇ = 0 → v = u − u3

3
+ I0 (13.24)
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Fig. 13.2 Nullclines of the
Fitzhugh Nagumo equations.
The solutions of ((13.24),
(13.25)) are shown for
different values of the
current I = 0, 1, 2, 3

-3 -2 -1 0 1 2
u

-1

0

1

2

3

4

v

v̇ = 0 → v = a + u

b
. (13.25)

The intersection of the nullclines is an equilibrium since here u̇ = v̇ = 0 (Fig. 13.2).
Consider small deviations from the equilibrium values

u = ueq + μ v = veq + η. (13.26)

The linearized equations are

μ̇ = (1 − u2eq)μ − η (13.27)

η̇ = ε(μ − bη). (13.28)

Obviously instability has to be expected for u2eq < 1.
The matrix of derivatives

M0 =
(
1 − u2eq −1

ε −εb

)
(13.29)

has the eigenvalues

λ = 1

2

(
1 − u2eq − εb ±

√
(1 − u2eq + εb)2 − 4ε

)
. (13.30)

The square root is zero for

ueq = ±
√
1 + εb ± 2

√
ε. (13.31)
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Fig. 13.3 Imaginary part of
the eigenvalues
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This defines a region around ueq = ±1 where the eigenvalues have a nonzero imag-
inary part (Fig. 13.3).

For standard parameters we distinguish the regions

I : |ueq | >
√
1 + εb + 2

√
Mε = 1.277

I I : 0.706 < |ueq | < 1.277

I I I : |ueq | <
√
1 + εb − 2

√
ε = 0.706. (13.32)

Within region II the real part of both eigenvalues is (Fig. 13.4)

�λ = 1

2
(1 − u2eq − εb) (13.33)

and since
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1 + εb − 2
√

ε < u2eq < 1 + εb + 2
√

ε (13.34)

we have

1 − u2eq − εb − 2
√

ε + 2εb < 0 < 1 − u2eq − εb + 2
√

ε + 2εb (13.35)

�λ + εb − √
ε < 0 < �λ + εb + √

ε (13.36)

|�λ + εb| < √
ε. (13.37)

For standard parameters

−0.35 < �λ < 0.22. (13.38)

Oscillating instabilities appear in region II if

√
ε < εb → ε < b (13.39)

which is the case for standard parameters. Outside region II instabilities appear if at
least the larger of the two real eigenvalues is positive or

√
(1 − u2eq + εb)2 − 4ε > u2eq − 1 + εb. (13.40)

This is the case if the right-hand side is negative or

u2eq < 1 − εb (13.41)

hence in the center of region III if εb < 1. For standard parameters 1 − εb = 0.936
and according to (13.32) the whole region III is unstable. If the right-hand side of
(13.40) is positive we can take the square

(1 − u2eq + εb)2 − 4ε > (u2eq − 1 + εb)2 (13.42)

which simplifies to

u2eq < 1 − 1

b
. (13.43)

This is false for b < 1 and hence for standard parameters the whole region I is stable.
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Chapter 14
Equilibrium Reactions

In this chapter we study chemical equilibrium reactions. In thermal equilibrium of
forward and backward reactions, the overall reaction rate vanishes and the ratio of
the rate constants gives the equilibrium constant which usually shows an exponential
dependence on the inverse temperature.1 We derive the van’t Hoff relation for the
equilibrium constant and discuss its statistical interpretation.

14.1 Arrhenius Law

Reaction rate theorygoes back toArrheniuswho in1889 investigated the temperature-
dependent rates of inversion of sugar in the presence of acids. Empirically, a tem-
perature dependence is often observed of the form

k(T ) = Ae−Ea/kBT (14.1)

with the activation energy Ea . Considering a chemical equilibrium (Fig. 14.1)

A
k
�
k ′

B. (14.2)

This gives for the equilibrium constant

K = k

k ′ (14.3)

1An overview over the development of rate theory during the past century is given by [49].
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Fig. 14.1 Arrhenius law
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and

ln K = ln k − ln k ′ = ln A − ln A′ − Ea − E ′
a

kBT
. (14.4)

In equilibrium the thermodynamic forces vanish

T = const (14.5)

A =
∑

k

μkνk = 0. (14.6)

For dilute solutions with

μk = μ0
k + kBT ln ck (14.7)

we have

∑

k

μ0
kνk + kBT

∑

k

νk ln ck = 0 (14.8)

which gives the van’t Hoff relation for the equilibrium constant

ln(Kc) =
∑

k

νk ln ck = −
∑

k μ0
kνk

kBT
− ΔG0

kBT
. (14.9)

The standard reaction free energy can be divided into an entropic and an energetic
part

−ΔG0

kBT
= −ΔH 0

kBT
+ ΔS0

k
. (14.10)

Since volume changes are not important at atmospheric pressure, the free reaction
enthalpy gives the activation energy difference
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Ea − E ′
a = ΔH 0. (14.11)

A catalyst can only change the activation energies but never the difference ΔH 0.

14.2 Statistical Interpretation of the Equilibrium Constant

The chemical potential can be obtained as

μk =
(

∂F

∂Nk

)

T,V,N ′
k

= −kBT

(
∂ ln Z

∂Nk

)

T,V,N ′
k

. (14.12)

Using the approximation of the ideal gas we have

Z =
∏ zNk

k

Nk ! (14.13)

and

ln Z ≈
∑

k

Nk ln zk − Nk ln Nk + Nk (14.14)

which gives the chemical potential

μk = −kBT ln
zk
Nk

. (14.15)

Let us consider a simple isomerization reaction

A � B.

The partition functions for the two species are (Fig. 14.2)

zA =
∑

n=0,1...

e−εn(A)/kBT zB =
∑

n=0,1,...

e−εn(B)/kBT . (14.16)

In equilibrium

μB − μA = 0 (14.17)

− kBT ln
zB
NB

= −kBT ln
zA
NA

(14.18)

zB
zA

= NB

NA
= (NB/V )(NA/V )−1 = Kc (14.19)
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Fig. 14.2 Statistical
interpretation of the
equilibrium constant
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Kc =
∑

n=0,1,... e
−εn(B)/kBT

∑
n=0,1... e

−εn(A)/kBT
=

∑
n=0,1,... e

−(εn(B)−ε0(B))/kBT

∑
n=0,1... e

−(εn(A)−ε0(A))/kBT
e−Δε/kBT . (14.20)

This is the thermal distribution over all energy states of the system.



Chapter 15
Calculation of Reaction Rates

The activated behavior of the reaction rate can be understood from a simple model
of two colliding atoms (Fig. 15.1). In this chapter, we discuss the connection to
transition state theory, which takes into account the internal degrees of freedom of
larger molecules and explains not only the activation energy, but also the prefactor of
the Arrhenius law [50–52]. We formulate transition state theory in a thermodynamic
context and discuss kinetic isotope effects. Finally, we present quite general rate
expressions based on the flux over a saddle point.

15.1 Collision Theory

The Arrhenius expression consists of two factors. The exponential gives the num-
ber of reaction partners with enough energy and the prefactor gives the collision
frequency times the efficiency.

We consider the collision of two spherical particles A andB in a coordinate system
where B is fixed and A is moving with the relative velocity

vr = vA − vB . (15.1)

The two particles collide if the distance between their centers is smaller than the sum
of the radii

d = rA + rB . (15.2)

During a time interval dt the number of possible collision partners is

cBπd2vr dt (15.3)

© Springer-Verlag GmbH Germany 2017
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Fig. 15.1 Collision of two
particles

vr

v  dtr

a b
d=r  +r

and the number of collisions within a volume V is

Ncoll/V = cAcBπ(rA + rB)2vr dt. (15.4)

Assuming independent Maxwell distributions for the velocities

f (vavb)d3vad
3vb =

(
m

2πkBT

)3

exp

{
−mav

2
a

2kBT
− mbv

2
b

2kBT

}
d3vad

3vb, (15.5)

we have a Maxwell distribution also for the relative velocities

f (vr )d3vr =
(

μ

2πkBT

)3/2

exp

{
− μv2

r

2kBT

}
d3vr (15.6)

with the reduced mass

μ = MAMB

MA + MB
. (15.7)

The average relative velocity then is

vr =
√
8kBT

πμ
(15.8)

and the collision frequency is

dNcoll

V dt
= cacbπd

2

√
8kBT

πμ
. (15.9)

If both particles are of the same species we have instead

dNcoll

V dt
= 1

2
c2aπd

2

√
16kBT

πM
(15.10)

since each collision involves twomolecules. Since not each of the collisions will lead
to a chemical reaction we introduce the reaction cross section σ(E) which depends
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Fig. 15.2 Hard sphere
approximation to the
reaction cross section

σ(  )

E E

E

o

on the kinetic energy of the relative velocity. As a simple approximation we use the
reaction cross section of hard spheres

σ(E) =
{

0 if E < E0

π(ra + rb)2 if E > E0
, (15.11)

where E0 is the minimum energy necessary for a reaction to occur (Fig. 15.2).
The distribution of relative kinetic energy can be determined as follows. From the

one-dimensional Maxwell distribution

f (v)dv =
√

m

2πkBT
e−mv2/2kBT dv, (15.12)

we find the distribution of relative kinetic energy for one particle as1

f (Ea)dEa = 2

√
ma

2πkBT
e−Ea/kBT

dEa√
2mEa

= 1√
πkBT Ea

e−Ea/kBT dEa . (15.13)

The joint distribution for the two particles is

f (Ea, Eb)dEadEb =
(

1√
πkBT Ea

e−Ea/kBT dEa

) (
1√

πkBT Eb
e−Eb/kBT dEb

)

(15.14)

and the distribution of the total kinetic energy is given by

f (E) =
∫ E

0
f (Ea, E − Ea)dEa

= 1

πkBT

∫ E

0

1√
Ea(E − Ea)

e−Ea/kBT−(E−Ea)/kBT dEa

1There is a factor of two since v2 = (−v)2.
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= 1

πkBT
e−E/kBT

∫ E

0

dEa√
Ea(E − Ea)

. (15.15)

This integral can be evaluated by substitution

Ea = E sin2 θ dEa = 2E sin θ cos θdθ

∫ E

0

dEa√
Ea(E − Ea)

=
∫ π/2

0

2E sin θ cos θdθ√
E sin2 θE cos2 θ

=
∫ π/2

0
2dθ = π (15.16)

and we find

f (E) = 1

kBT
e−E/kBT . (15.17)

Now
∫ ∞

0
f (E)σ(E)dE =

∫ ∞

E0

f (E)πd2dE = πd2e−E0/kBT (15.18)

and we have finally

r = cacbπd
2

√
8kBT

πμ
e−E0/kBT . (15.19)

For nonspherical molecules the reaction rate depends on the relative orientation.
Therefore, a so-called steric factor p is introduced:

r = cacb pπd
2

√
8kBT

πμ
e−E0/kBT . (15.20)

There is no general way to calculate p and often it has to be estimated. Together p
and d2 give an effective molecular diameter2

d2
e f f = pd2. (15.21)

15.2 Transition State Theory

According to transition state theory [53, 54] the reactants forman equilibriumamount
of an activated complex which decomposes to yield the products (Fig. 15.3). The
reaction path [55] leads over a saddle point called the transition state. As a simple

2The quantity πd2/4 is equivalent to the collision cross section used in connection with nuclear
reactions.
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Fig. 15.3 Transition state
theory. The reactants are in
chemical equilibrium with
the activated complex which
can decompose into the
products

reaction coordinate

productsreactants
activated complex

Fig. 15.4 Potential energy
contour diagram. The
potential energy for the
reaction A+BC →
[A−B−C]‡ → AB+C is
shown schematically as a
function of the distances
RAB and RBC . Arrows
indicate the reaction
coordinate. The activated
complex corresponds to a
saddle point of the potential
energy surface

RBC
RBC
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*

*

A+BC

[A−B−C]
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examplewe consider the interaction of three atomsA,B, andC (Fig. 15.4). In general,
three coordinates are needed to give the relative positions of the nuclei, but if atom
A approaches the molecule BC, the direction of minimum potential energy is along
the line of centers for the reaction.

According to TST, the reaction of two substances A and B is written as

K k1
A+B � [A−B]‡ → C+D

reactants activated complex products.
(15.22)

If all molecules behave like ideal gases, the equilibrium constant Kmay be calculated
as

Kc = c[A−B]‡
cAcB

= z[A−B]‡
zAzB

e−ΔE0/kBT , (15.23)

where ΔE0 is the difference in zero point energies of the reactants and the activated
complex. The activated complex may be considered a normal molecule, except that
one of its vibrational modes is so loose that it allows immediate decomposition into
the products. The corresponding contribution to the partition function is



192 15 Calculation of Reaction Rates

zω→0 = 1

1 − e−�ω/kBT
→ kBT

�ω
. (15.24)

Thus the equilibrium constant becomes

K = kBT

�ω

z‡

zAzB
e−ΔE0/kBT , (15.25)

where z‡ differs from z[A−B]‡ by the contribution of the unique vibrational mode.
Ifω/2π is considered the decomposition frequency, then the rate of decomposition

is

r = dcC
dt

= ω

2π
c[A−B]‡ = kBT

2π�

z‡

zAzB
e−ΔE0/kBT cAcB . (15.26)

If not every activated complex decays into products, the expression for the rate
constant has to be modified by a transmission coefficient κ

k2 = κ
kBT

2π�

z‡

zAzB
e−ΔE0/kBT . (15.27)

In most cases κ is close to 1. Important exceptions are the formation of a diatomic
molecule, since the excess energy can only be eliminated by third-body collisions
or radiation and reactions that involve changes from one type of electronic state to
another—for instance, in certain cis–trans isomerizations.

15.3 Comparison Between Collision Theory and Transition
State Theory

For comparison we apply transition state theory to the reaction of two spherical
particles. For the reactants only translational degrees of freedom are relevant giving
the partition function

zT = (2πmkBT )3/2

h3
. (15.28)

For the activated complex we consider the rotation around the center of mass. The
moment of inertia is

I = (rA + rB)2
mAmB

mA + mB
(15.29)
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and the partition function is

zR = 8π2 I kBT

h2
. (15.30)

The rate expression from TST is

k = kBT

h

(2π(mA + mB)kBT )3/2h3

(2πkBT )3m3/2
A m3/2

B

8π2kBT
(rA + rB)2

h2
mAmB

mA + mB
e−ΔE0/kBT

= √
8πkBT

√
mA + mB

mAmB
(rA + rB)2e−ΔE0/kBT (15.31)

which is the same result obtained from collision theory.
We consider now a bimolecular reaction. Each reactant has three translational,

three rotational, and 3N-6 vibrational3 degrees of freedom. The partition functions
are

zA = z3T z
3
Rz

3NA−6
V

zB = z3T z
3
Rz

3NB−6
V

z‡ = z3T z
3
Rz

3NA+3NB−7
V . (15.32)

The reaction rate from TST is

kT ST = kBT

h

z‡

zAzB
e−E0/kBT ≈ kBT

h

z5V
z3T z

3
R

e−E0/kBT . (15.33)

For the rigid sphere model

zA = zB = z3T z‡ = z3T z
2
R (15.34)

hence the rate constant

krigid = kBT

h

z2R
z3T

e−E0/kBT . (15.35)

From comparison we see that the steric factor

p ≈
(
zV
zR

)5

(15.36)

which is typically in the order of 10−5.

33N-5 for a collinear molecule.
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15.4 Thermodynamical Formulation of TST

Consider again the reaction

A+B � [A−B]‡ → products (15.37)

with the equilibrium constant

Kc = cAB‡

cAcB
. (15.38)

The TST rate expression (15.25) gives4

k2 = kBT

h
Kc (15.39)

and with (14.9) we have for an ideal solution

k2 = kBT

h
e−ΔG0‡/kBT = kBT

h
e−ΔH 0‡/kBT eΔS0‡/kB . (15.40)

The temperature dependence of the rate constant is

d ln k2
dT

= 1

T
− ∂

∂T

ΔG0‡

kBT
. (15.41)

Now for ideal gases or solutions the chemical potential has the form

μ = kBT ln c − kBT ln
z

V
, (15.42)

and hence

ΔG0‡ = −kBT
∑
i

νi ln
zi
V

(15.43)

and

∂

∂T

ΔG0‡

kBT
= −

∑
i

νi
∂

∂T
ln zi =

∑
i

νi
Ui

kBT 2
= ΔU 0‡. (15.44)

Comparison with the Arrhenius law

d

dT

(
ln A − Ea

kBT

)
= Ea

kBT 2
(15.45)

4The activated complex is treated as a normal molecule with the exception of the special mode.

http://dx.doi.org/10.1007/978-3-662-55671-9_14
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shows that the activation energy is

Ea = kBT + ΔU 0‡ ≈ kBT + ΔH 0‡ (ideal solutions). (15.46)

For a bimolecular reaction in solution we find from

rT ST = kBT

h
eΔS0‡/ke−ΔH 0‡/kBT = kBT

h
eΔS0‡/ke−(Ea−kBT )/kBT (15.47)

that the steric factor is determined by the entropy of formation of the activated
complex.

15.5 Kinetic Isotope Effects

There are two origins of the kinetic isotope effect. The first is quantum mechanical
tunneling through the potential barrier.

It is only important at very low temperatures and for reactions involving very light
atoms. For the simplest model case of a square barrier the tunneling probability is
approximately

P = exp

{
−2

√
2m(V0 − E)

�2
a

}
. (15.48)

The tunneling probability depends on the mass m but is independent on temperature
(Fig. 15.5).

activated

E

V0

ln(k)

tunneling

Ba 1/k T

Fig. 15.5 Tunneling through a rectangular barrier. Left the tunneling probability depends on the
height and width of the barrier. Right at low temperatures, tunneling dominates (dashed). At higher
temperatures, activated behavior is observed (dash-dotted)
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Fig. 15.6 Isotope dependence of the activation energy

The second origin of isotope effects is the difference in activation energy for reac-
tions involving different isotopes. Vibrational frequencies and therefore vibrational
zero point energies depend on the reduced mass μ of the vibrating system

�ω = �

2π

√
f

μ
. (15.49)

Since the transition state is usually more loosely bound than the reactants, the vibra-
tional levels are more closely spaced. Therefore, the activation energy is higher for
the heavier isotopomer (a normal isotope effect). The maximum isotope effect is
obtained when the bond involving the isotope is completely broken in the transition
state. Then the difference in activation energies is simply the difference in zero point
energies of the reactants (Fig. 15.6).

15.6 General Rate Expressions

The potential energy surface has a saddle point in the transition state region. The
surface S∗, passing through that saddle point along the direction of steepest ascent,
defines the border separating the reactants from the products in quite a natural way.
We introduce the so-called intrinsic reaction coordinate (IRC) qr as the path of
steepest descent from the cole connecting reactants and products. We set qr = 0
for the points on the surface S∗. The instantaneous rate r(t) is given by the flux of
systems that cross the surface S∗ at time t and are on the product side at t → ∞.
This definition allows for multiple crossings of the surface S∗. In general, however,
it will depend on how exactly the surface S∗ is chosen. Only if the fluxes become
stationary, this dependence vanishes.
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15.6.1 The Flux Operator

Classically, the flux is the product of the number of systems passing through the
surface S∗ and their velocity vr normal to that surface. As we defined the reaction
coordinate qr to be normal to the surface S∗, the velocity is

vr = dqr
dt

(15.50)

and the classical flux is

< F >=
∫

dn−1q
∫

dn p vrW (q, p, t) =
∫

dnq
∫

dn p δ(qr )
pr
mr

W (q, p, t).

(15.51)

Here W (q, p, t) is the phase space distribution and mr is the reduced mass corre-
sponding to the coordinate qr . We may therefore define the classical flux operator

F(q, p) = δ(qr )
pr
mr

. (15.52)

In the quantum mechanical case we have to modify this definition since p and q do
not commute. It can be shown that we have to use the symmetrized product

F = 1

2mr
(prδ(qr ) + δ(qr )pr ) = 1

2mr
{pr , δ(qr )} (15.53)

with

pr = �

i

∂

∂qr
. (15.54)

The projection operator on to the systems on the product side is simply given by

P = θ(qr ). (15.55)

However, we need the projector P(t) on that states that at some time t in the future
are on the product side. If H is the system Hamiltonian then

P(t) = eiHt/� θ(qr ) eiHt/� (15.56)

and that part of the density matrix ρ(t) that will end in the product side in the far
future is

lim
t ′→∞ P(t ′ − t)ρ(t)P(t ′ − t). (15.57)
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The rate is given by

r(t) = lim
t ′→∞ tr

(
P(t ′ − t)ρ(t)P(t ′ − t)F

)
. (15.58)

The time dependence of the density matrix is given by the van Neumann equation

i�
dρ(t)

dt
= [H, ρ(t)]. (15.59)

In thermal equilibrium

ρeq = Q−1 exp (−βH) Q = tr (exp(−βH)) (15.60)

is time independent as [exp (−βH) , H ] = 0. It can be shown that for t ′ → ∞ the
density matrix ρeq and the projector P(t) commute.5

lim
t ′→∞ P(t ′ − t)ρeq P(t ′ − t) = lim

t ′→∞ P(t ′)ρeq . (15.61)

The rate will then be also independent of t

r = Q−1 lim
t ′→∞ tr

(
e−βHeiHt ′/� θ(qr ) e

−iHt ′/� F
)

. (15.62)

This expression can be modified such that the limit operation does not appear explic-
itly any more. To that end, we note that the trace vanishes for t ′ = 06 and

r = Q−1tr
(
e−βHeiHt ′/� θ(qr ) e

−iHt ′/� F
) ∣∣∣∣ t

′ = ∞
t ′ = 0

= Q−1
∫ ∞

0

d

dt ′
(
e−βHeiHt ′/� θ(qr ) e

−iHt ′/� F
)
dt ′. (15.63)

For the derivative we find

d

dt
eiHt ′/� θ(qr ) e

−iHt ′/� = i

�
eiHt ′/� [H, θ(qr )] e−iHt ′/�. (15.64)

5Asymptotically, the states on the product side will leave the reaction zone with positive momentum
pr , so that we may replace θ(qr ) with θ(pr ). Again asymptotically these states are eigenfunctions
of the Hamiltonian, so that P(t = ∞) and exp(−βH) commute.
6This follows from time inversion symmetry: The trace has to be symmetric with respect to that
operation. Time inversion changes pr → −pr . The operators ρ and qr are not affected. So the trace
has to be symmetric and antisymmetric at the same time.



15.6 General Rate Expressions 199

Since only the kinetic energy p2r /2mr does not commute with θ(qr ) the commutator
is

[H, θ(qr )] =
[

p2r
2mr

, θ(qr )

]
= �

i

(
∂

∂qr

pr
2mr

θ(qr ) − θ(qr )
∂

∂qr

pr
2mr

)

= �

i

(
pr
2mr

δ(qr ) + pr
2mr

θ(qr )
∂

∂qr
− θ(qr )

∂

∂qr

pr
2mr

)

= �

i

(
pr
2mr

δ(qr ) + δ(qr )
pr
2mr

)
= �

i
F. (15.65)

Therefore, we can express the reaction rate as an integral over the flux–flux cor-
relation function

r = Q−1
∫ ∞

0
tr

(
e−βH F(t)F(0)

)
dt =

∫ ∞

0
< F(t)F(0) > dt. (15.66)

Ultimately, this expression for the reaction rate has been used a lot in numerical com-
putations. It is quite general and may easily be extended to nonadiabatic reactions.

Problems

15.1 Transition State Theory

[AB]

A+B

δx

v

Instead of using a vibrational partition function to describe themotion of the activated
complex over the reaction barrier, we can also use a translational partition function.
We consider all complexes lying within a distance δx of the barrier to be activated
complexes. Use the translational partition function for a particle of mass m in a box
of length δx to obtain the TST rate constant. Assume that the average velocity of the
particles moving over the barrier is7

v‡ = 1

2

√
2kBT

πm‡
.

7The particle moves to the left or right side with equal probability.
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15.2 Harmonic Transition State Theory

For systems such as solids, which are well described as harmonic oscillators around
stationary points, the harmonic form of TST is often a good approximation, which
can be used to evaluate the TST rate constant, which can then be written as the
product of the probability of finding the system in the transition state and the average
velocity at the transition state.

kT ST =< vδ(x − x‡) > .

For a one-dimensional model assume that the transition state is an exit point from
the parabola at some position x = x‡ with energyΔE = mω2x‡2/2 and evaluate the
TST rate constant.

EΔ

xx



Chapter 16
Marcus Theory of Electron Transfer

In 1992, Rudolph Marcus received the Nobel Prize for chemistry. His theory is cur-
rently the dominant theory of electron transfer in chemistry. Originally
Marcus explained outer sphere electron transfer, introducing reorganization energy
and electronic coupling to relate the thermodynamic transition state to nonequilib-
rium fluctuations of the medium polarization [56–58]. We begin with a phenomeno-
logical description including diffusional motion of the reactands. Then, we apply
a simplified model with one reaction coordinate to calculate the reaction rate as a
function of reorganization energy and reaction free enthalpy. Next, we apply a con-
tinuum model for the dielectric medium and derive the free energy contribution of the
nonequilibrium polarization quite generally. Reorganization energy and activation
energy are calculated and transition state theory is applied to calculate the rate con-
stant. We consider a model system consisting of two spherical reactants to calculate
the reorganization energy explicitly and discuss charge separation and charge shift
processes. We introduce the energy gap as a reaction coordinate and include inner
shell reorganization. Finally, the mutual dependency of the electronic wavefunction
and the polarization are discussed within a simple model for charge delocalization
and self-trapping.

16.1 Phenomenological Description of ET

We want to describe the rate of electron transfer (ET) between two species, D and
A, in solution. If D and A are neutral, this is an charge separation process

D + A → D+ + A−. (16.1)

If the charge is transferred from one molecule to the other this is a charge resonance
process

D− + A → D + A− (16.2)
© Springer-Verlag GmbH Germany 2017
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,
Biological and Medical Physics, Biomedical Engineering,
DOI 10.1007/978-3-662-55671-9_16
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202 16 Marcus Theory of Electron Transfer

or

D + A+ → D+ + A. (16.3)

In the following, we want to treat all these kinds of processes together. Therefore,
from now on the symbols D and A implicitly have the meaning DZDand AZA and
the general reaction scheme

DZD + AZA → DZD+1 + AZA−1 (16.4)

will be simply denoted as

D + A → D+ + A−. (16.5)

Marcus theory is a phenomenological theory, in which the assumption is made, that
ET proceeds in the following three steps:

(i) The two species approach each other by diffusive motion and form the so-called
encounter complex

D + A
kdi f
�

k−di f

[D − A]‡. (16.6)

(ii) In the activated complex ET takes place

[D − A]‡
ket
�
k−et

[D+A−]‡. (16.7)

The actual ET is much faster than the motion of the nuclei. The nuclear conformation
of the activated complex and the solvent polarization do not change. According to
the Franck–Condon principle, the two states [D − A]‡ and [D+A−]‡

have to be
isoenergetic.
(iii) After the transfer, the polarization returns to a new equilibrium and the products
separate

[D+A−]‡
ksep
→ D+ + A−. (16.8)

The overall reaction rate is

r = d

dt
cA− = ksepc[D+A−]‡ . (16.9)
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We want to calculate the observed quenching rate

r = − d

dt
cD = kqcDcA. (16.10)

We consider the stationary state

0 = d

dt
c[D−A]‡ = d

dt
c[D+A−]‡ . (16.11)

We deduce that

0 = kdi f cDcA + k−et c[D+A−]‡ − (k−di f + ket )c[D−A]‡ (16.12)

0 = ket c[D−A]‡ − (k−et + ksep)c[D+A−]‡ . (16.13)

Eliminating the concentration of the encounter complex from these two equations,
we find

c[D+A−]‡ = ket
k−et + ksep

c[D−A]‡ = ket kdi f
k−di f k−et + k−di f ksep + ket ksep

cDcA (16.14)

and the observed quenching rate is

kq = kdi f

1 + k−di f

ket
+ k−di f k−et

ket ksep

. (16.15)

The reciprocal quenching rate can be written as

1

kq
= 1

kdi f
+ k−di f

kdi f ket
+ k−di f k−et

kdi f ket ksep
. (16.16)

There are some interesting limiting cases:

• If ket � k−di f and ksep � k−et , then the observed quenching rate is given by the
diffusion rate kq = kdi f and the ET rate is limited by the formation of the activated
complex.

• If the probability of ET is very small ket � k−di f and k−et � kdi f , then the quench-
ing rate is given by kq = ket kdi f /k−di f = ket Kdi f .

• If diffusion is not important as in solids or proteins and in the absence of further
decay channels, the quenching rate is given by k−1

q ≈ k−1
et .
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Fig. 16.1 Displaced
oscillator model
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16.2 Simple Explanation of Marcus Theory

The TST expression for the ET rate is

ket = ωN

2π
κele

−ΔG‡/kB T
(16.17)

where κet describes the probability of a transition between the two electronic states
DA and D+A− and ωN is the effective frequency of the nuclear motion. We consider
a collective reaction coordinate Q, which summarizes the polarization coordinates
of the system (Fig. 16.1).

Initially, the polarization is in equilibrium with the reactants and for small polar-
ization fluctuations, series expansion of the Gibbs free energy gives

Gr (Q) = G(0)
r + a

2
Q2. (16.18)

If the polarization change induced by the ET is not too large (no dielectric saturation),
the potential curve for the final state will have the same curvature but is shifted to a
new equilibrium value Q1

Gp(Q) = G(0)
p + a

2
(Q − Q1)

2 = G(0)
r + ΔG + a

2
(Q − Q1)

2. (16.19)

In the new equilibrium, the final state is stabilized by the reorganization energy1

ER = −(Gp(Q1) − Gp(0)) = a

2
Q2

1. (16.20)

The transition between the two states is only possible if due to some thermal fluctu-
ations the crossing point is reached which is at

1Sometimes the reorganization energy is defined as the negative quantity GP (Q1) − GP (0).
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Fig. 16.2 Marcus parabola

ln(k)

E ΔR

activationless

activated inverted

−   G

Qs =
a
2 Q

2
1 + ΔG

aQ1
= ER + ΔG√

2aER
. (16.21)

The corresponding activation energy is

ΔG‡ = a

2
Q2

s = (ΔG + ER)2

4ER
(16.22)

hence the rate expression becomes

ket = ωN

2π
κet exp

(
− (ΔG + ER)2

4ERkBT

)
. (16.23)

If we plot the logarithm of the rate as a function of the driving force ΔG, we obtain
the famous Marcus parabola which has a maximum at ΔG = −ER (Fig. 16.2).

16.3 Free Energy Contribution of the Nonequilibrium
Polarization

In Marcus theory, the solvent is treated in a continuum approximation. The medium
is characterized by its static dielectric constant εst and its optical dielectric constant
εop = ε0n2. The displacement D is generated by the charge distribution �

div D = �. (16.24)

In equilibrium it is related to the electric field by

D = ε0E + P = εE. (16.25)
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Here P is the polarization, which is nothing else but the induced dipole density. It
consists of two parts:[59]

(i) The optical or electronical polarization Pop. It is due to the induced dipole
moments due to the response of the molecular electrons to the applied field.
At optical frequencies, the electrons still move fast enough to follow the electric
field adiabatically.

(ii) The inertial polarization Pin which is due to the reorganization of the solvent
molecules (reorientation of the dipoles, changes of molecular geometry). This
part of the polarization corresponds to the static dielectric constant. The nuclear
motion of the solvent molecules cannot follow the rapid oscillations at optical
frequencies.

The total frequency-dependent polarization is

P(ω) = Pop(ω) + Pin(ω) = D(ω) − ε0E(ω) = (ε(ω) − ε0)E(ω). (16.26)

In the static limit this becomes

Pop + Pin = (εst − ε0)E (16.27)

and at optical frequencies

Pop = (εop − ε0)E. (16.28)

Hence the contribution of the inertial polarization is in the static limit

Pin = (εst − εop)E. (16.29)

In general rotD �= 0 and the calculation of the field for given charge distribution is
difficult. Therefore, we use a model of spherical ions behaving as ideal conductors
with the charge distributed over the surface. Then in our case, the displacement is
normal to the surface and rotD = 0 and the displacement is the same as it would be
generated by the charge distribution � in vacuum. The corresponding electric field
in vacuum would be ε−1

0 D and the field in the medium can be expressed as

E = 1

ε0
(D − P) = 1

ε0
D − 1

ε0
(Pop + Pin)

= 1

ε0
(D − Pin) − 1

ε0
(εop − ε0)E

E = 1

εop
(D − Pin) (16.30)

where we assumed that the optical polarization reacts instantaneously to changes of
the charge distribution or to fluctuations of the inertial polarization. In equilibrium
(16.29) gives
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E = 1

εop
(D − (εst − εop)E)

E = 1

εst
D. (16.31)

If the polarization is in equilibrium with the field 1
ε0
D produced by the charge dis-

tribution of either AB or A+B− the free energy G of the two configurations will, in
general, not be the same. We designate these two configurations as I and II respec-
tively. Marcus calculated the free energy of a nonequilibrium polarization for which
the free energies of the reaction complexes [AB]‡ and [A+B−]‡ become equal. The
contribution to the free energy is

Gel =
∫

d3r
∫

EdD = 1

εop

∫
d3r

∫
(D − Pin)dD (16.32)

which can be divided into two contributions:

(i) The energy without inertial polarization:

Gel,0 = 1

εop

∫
d3r

D2

2
(16.33)

(ii) The contribution of the inertial polarization:

− 1

εop

∫
d3rPindD (16.34)

In equilibrium, we have

Pin = (εst − εop)E = (εst − εop)
1

εst
D = εop

(
1

εop
− 1

εst

)
D (16.35)

and we can express the free energy as a function of Pin

Geq
el = Gel,0 − 1

1
εop

− 1
εst

∫
d3r

1

2

(
Pin

εop

)2

. (16.36)

Now, we have to calculate the free energies of the activated complexes. Consider a
thermal fluctuation of the inertial polarization. We will do this in two steps (Fig. 16.3).

In the first step it is assumed that the polarization is always in equilibrium with
the charge distribution. However, this charge density will be chosen such that the
nonequilibrium polarization P‡

in of the activated complex is generated. The electric
displacement is D∗, given by
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Fig. 16.3 Calculation of the
free energy change
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1

εop
− 1
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)
D∗. (16.37)

The corresponding free energy is

ΔG1
el = 1

εop

∫
d3r

∫ D∗

D
DdD − 1

εop

∫
d3r

∫ D∗

D
PindD

= G∗
el,0 − Gel,0 − 1

1
εop

− 1
εst

∫
d3r

P‡2
in − P2

in

2ε2
op

. (16.38)

In the second step, the electric field of the charge distribution will be reduced to the
equilibrium value while keeping the nonequilibrium polarization fixed.2 Then this
fixed polarization acts as an additional displacement

E = 1

ε0
(D − P‡

in) − 1

ε0
Pop (16.39)

where the optical polarization depends on the electric field according to (16.28)

E = 1

ε0
(D − P‡

in) −
(

εop

ε0
− 1

)
E. (16.40)

Hence, if we treat the optical polarization as following the slow fluctuations of the
inertial polarization instantaneously

E = 1

εop
(D − P‡

in) (16.41)

2We tacitly assume that this is possible. In general, the polarization P‡
in will also modify the charge

distribution on the reactants. If however, the distance between the two ions is large in comparison
with the radii, these changes can be neglected. Marcus calls this the point-charge approximation.
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which means, the inertial polarization is shielded by the optical polarization it creates.
We may now calculate the change in free energy as

ΔG2
el = 1

εop

∫
d3r

∫ D

D∗
(D − P‡

in)dD

= Gel,0 − G∗
el,0 −

∫
d3r

1

εop
P‡
in(D − D∗). (16.42)

If we substitute D∗ from (16.37) we get

1

εop
P‡
in(D − D∗) = 1

1
εop

− 1
εst

P‡
in

εop

(
Pin − P‡

in

εop

)
(16.43)

and the total free energy change due to the polarization fluctuation is

G‡
el − Geq

el = ΔG1
el + ΔG2

el

= − 1
1

εop
− 1

εst

∫
d3r

P‡2
in − P2

in

2ε2
op

− 1
1

εop
− 1

εst

∫
d3r

1

ε2
op

P‡
in(Pin,eq − P‡

in)

= 1
1

εop
− 1

εst

∫
d3r

1

2

(
P‡
in − Pin,eq

εop

)2

. (16.44)

16.4 Activation Energy

The free energy G‡
el is a functional of the polarization fluctuation

δP = P‡
in − Pin. (16.45)

If we minimize the free energy

δG‡
el = 0 (16.46)

we find that

δP = 0 G‡
el = Geq

el . (16.47)

Marcus asks now, for which polarizations P‡
in the two states I and II become

isoenergetic,i.e.
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ΔU ‡ = U ‡
I I −U ‡

I = 0. (16.48)

We want to rephrase the last condition in terms of the free energy

G = U − T S + pV ≈ U − T S. (16.49)

We conclude that

ΔG‡ = G‡
I I − G‡

I = −TΔS‡. (16.50)

Here (Fig. 16.4)

G‡
I = 1

1
εop

− 1
εst

1

2

∫
d3r

(
δPI

εop

)2

+ Geq
el,I (R) − Geq

el,I (∞) + G∞
I

G‡
I I = 1

1
εop

− 1
εst

1

2

∫
d3r

(
δPI I

εop

)2

+ Geq
el,I I (R) − Geq

el,I I (∞) + G∞
I I . (16.51)

The quantity

ΔG∞ = G∞
I I − G∞

I = ΔGvac + ΔGsolv,∞ (16.52)

is the difference of free energies for an ideal solution of A and B on the one side
and A+ and B− on the other side at infinite distance R → ∞. Usually it is determined
experimentally. It contains all the information on the internal structure of the ions.
The entropy difference is the difference of internal entropies of the reactants, since
the contribution from the polarization drops out due to P‡

in,I = P‡
in,I I . Usually this

entropy difference is small. The electrostatic energies Geq
el,I/I I a are composed of the

polarization contribution (the solvation free energy) and the mutual interaction of
the reactants which will be considered later. The reaction free energy is

ΔGeq = ΔG∞ + ΔGeq
el (R) − ΔGeq

el (∞). (16.53)

It can be easily seen that the condition ΔG‡ = 0 will be fulfilled for infinitely many
polarizations P‡

in . We will, therefore, look for that one which minimizes simultane-
ously the free energy of the transition state G‡

I,I I . We introduce a Lagrange parameter
m to impose the isoenergeticity condition

δ
[
G‡

I (P
‡
in) + m(G‡

I I (P
‡
in) − G‡

I (P
‡
in))

]
= 0. (16.54)

The variation is with respect to P‡
in or, equivalently with respect to δPI for fixed

change of the inertial polarization

ΔPin = δPI − δPI I = (P‡
in − PI,in) − (P‡

in − PI I,in) = PI I,in − PI,in (16.55)
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Fig. 16.5 Variation of the
nonequilibrium polarization
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We have to solve

δ
[
(1 − m)G‡

I (PI,in + δPI ) + mG‡
I I (PI I,in − ΔPin + δPI,in)

]
. (16.56)

Due to the quadratic dependence of the free energies, we find the condition

[(1 − m)δPI + m(δPI − ΔPin)] = 0 (16.57)

and hence the solution (Fig. 16.5)

δP‡
I = mΔPin. (16.58)

The Lagrange parameter m is determined by inserting this solution into the isoen-
ergicity condition,

− TΔS = ΔG‡(P‡
in)

= G‡
I I (Pin,I I + (m − 1)ΔPin) − G‡

I (Pin,I + mΔPin)

= ΔGeq + ((m − 1)2 − m2)
1

1
εop

− 1
εst

1

2

∫
d3r

(
ΔPin

εop

)2

= ΔGeq + (1 − 2m)λ (16.59)

where

λ = GI I (Pin,I I − ΔPin) − GI I (Pin,I I )

= 1
1

εop
− 1

εst

1

2

∫
d3r

(
ΔPin

εop

)2

=
(

1

εop
− 1

εst

)
1

2

∫
d3r (ΔD)2

(16.60)
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is the reorganization energy. Solving for m we find

m = ΔGeq + TΔS‡ + λ

2λ
. (16.61)

The free energy of activation is given by

ΔGa = G‡
I − Geq

I = m2 1
1

εop
− 1

εst

1

2

∫
d3r

(
ΔPin

εop

)2

= m2λ = (ΔGeq + TΔS‡ + λ)2

4λ
. (16.62)

Finally, we insert this into the TST rate expression to find

k ∼ e−ΔGa/kBT ∼ exp

{
− (ΔGeq + TΔS‡ + λ)2

4λkBT

}
. (16.63)

16.5 Simple Model Systems

We will now calculate reorganization energy and free energy differences explicitly
for a model system consisting of two spherically reactants. We assume that the
charge distribution of the reactants is not influenced by mutual Coulomb interaction
or changes of the medium polarization (we apply the point charge approximation
again) (Fig. 16.6).

We have already calculated the solvation energy at large distances (page 48)

(
− Q2

A

8πaA
− Q2

B

8πaB

) (
1

ε0
− 1

εst

)
(16.64)

from which we find the polarization energy at large distances

Geq
el (R = ∞) = 1

8πεst

(
Q2

A

aA
+ Q2

B

aB

)
. (16.65)

We now consider a finite distance R. If we take the origin of the coordinate system
to coincide with the center of the reactant A, then the dielectric displacement is

Fig. 16.6 Simple
donor–acceptor geometry

aA aB

R
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DI/I I (r) = 1

4π

(
QA,I/I I

r
r3

+ QB,I/I I
r − R

|r − R|3
)

(16.66)

and the polarization free energy

Geq
el,I/I I =

∫
d3r

D2

2εst
(16.67)

contains two types of integrals. The first is

I1 =
∫

d3r

r4
. (16.68)

The range of this integral is outside the spheres A and B. As the integrand falls off
rapidly with distance, we may extend the integral over the volume of the other sphere.
Introducing polar coordinates we find

I1 ≈
∫ ∞

a
4π

dr

r2
= 4π

a
. (16.69)

The second kind of integral is

I2 =
∫

d3r
r(r − R)

r3|r − R|3 . (16.70)

Again, we extend the integration range and use polar coordinates

I2 ≈ 2π

∫ π

0
sin θ dθ

∫ ∞

0
r2dr

r2 − r R cos θ

r3(r2 + R2 − 2r R cos θ)3/2
. (16.71)

The integral over r gives

∫ ∞

0

r − R cos θ

(r2 + R2 − 2r R cos θ)3/2
dr = − 1√

r2 + R2 − 2r R cos θ

∣∣∞
0 = 1

R
(16.72)

and the integral over θ then gives

I2 =
∫ π

0

2π sin θ

R
dθ = 4π

R
. (16.73)

Together, we have the polarization free energy

Geq
el = 1

2εst

∫
d3r D2

� = 1

8πεst

(
Q2

A

aA
+ Q2

B

aB

)
+ 1

8πεst

2QAQB

R
(16.74)

= Geq(∞) + QAQB

4πεst R
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and the difference

Geq
el,I I − Geq

el,I = e2

8πεst

(
1 + 2ZA

aA
+ 1 − 2ZB

aB
+ 2

ZB − ZA − 1

R

)
. (16.75)

Similarly, the reorganization energy is

λ = 1

2

(
1

εop
− 1

εst

)∫
d3r (ΔD)2

= 1

8π

(
1

εop
− 1

εst

) (
ΔQ2

A

aA
+ ΔQ2

B

aB
+ 2ΔQAΔQB

R

)
. (16.76)

Now since ΔQA = −ΔQB = e we can write this as

λ = e2

8π

(
1

εop
− 1

εst

)(
1

aA
+ 1

aB
− 2

R

)
. (16.77)

We consider here the most important special cases:

16.5.1 Charge Separation

If an ion pair is created during the ET reaction (QA,I = QB,I = 0, QA,I I = e,
QB,I I = −e) we have

Q2
A

aA
+ Q2

B

aB
+ 2QAQB

R
=

{
0 (I )

1
aA

+ 1
aB

− 2
R (I I )

. (16.78)

The free energy is

Geq
el,I = 0

Geq
el,I I = e2

8πεst

(
1

aA
+ 1

aB
− 2

R

)
= Geq

el,I I (∞) − e2

4πεst R
(16.79)

and the activation energy becomes

ΔGa = (ΔG∞ + TΔS‡ + λ − e2

4πεst R
)2

4λ
. (16.80)

If the process is photoinduced, the free energy at large distance can be expressed in
terms of the ionization potential of the donor, the electron affinity of the acceptor,
and the energy of the optical transition (Fig. 16.7)
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Fig. 16.7 Photoinduced
charge separation
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*

ΔG∞ = E A(A) − (I P(D) − �ω). (16.81)

16.5.2 Charge Shift

For a charge shift reaction of the type QA,I = QB,I I = −e, QB,I = QA,I I = 0

Geq
I = e2

8πεst aA
Geq

I I = e2

8πεst aB
(16.82)

and for the second type QA,I = QB,I I = 0, QB,I = QA,I I = e

Geq
I = e2

8πεst aB
Geq

I I = e2

8πεst aA
. (16.83)

The activation energy now does not contain a Coulomb term

ΔGa = (ΔG∞ + TΔS‡ + λ)2

4λ
. (16.84)

16.6 The Energy Gap as the Reaction Coordinate

We want to construct one single reaction coordinate, which summarizes the polar-
ization fluctuations. To that end we consider the energy gap
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ΔU ‡ = ΔG‡ + TΔS‡ ≈ G‡
I I (P

‡
in) − G‡

I (P
‡
in)

= G‡
I I (PI I,in − ΔPin + δPI,in) − G‡

I (PI,in + δPI,in)

= ΔGeq + 1
1

εop
− 1

εst

1

2

∫
d3r

(
(δPI,in − ΔPin)

εop

)2

− 1
1

εop
− 1

εst

1

2

∫
d3r

(
δPI,in

εop

)2

= ΔGeq + 1
1

εop
− 1

εst

1

2

∫
d3r

ΔP2
in − 2δPI,inΔPin

ε2
op

= ΔGeq + λ − δU (t) (16.85)

with the thermally fluctuating energy

δU (t) = 1
1

εop
− 1

εst

∫
d3r

δPI,inΔPin

ε2
op

. (16.86)

In the equilibrium of the reactants

δU = 0 ΔU = ΔGeq + λ (I) (16.87)

and in the equilibrium of the products (Fig. 16.8)

δU = 2λ ΔU = ΔGeq − λ (II). (16.88)

The free energies now take the form

GI = Geq
I + 1

4λ
(δU )2 (16.89)

GI I = Geq
I I + 1

4λ
(δU − 2λ)2. (16.90)

The free energy fluctuations in the reactant state are given by

< (GI − Geq
I >= 1

4λ
< δU 2 > . (16.91)

Fig. 16.8 Energy gap as
reaction coordinate

λ

0

ΔGeq

ΔU

Geq

Geq

I

II

λ

2λ δU



218 16 Marcus Theory of Electron Transfer

If we identify this with the thermal average kBT/2 of a one-dimensional harmonic
motion, we have

< δU 2 >= 2kBTλ. (16.92)

The fluctuations of the energy gap can for instance be investigated with molecular
dynamics methods. They can be modeled by diffusive motion in a harmonic potential
U (Q) = Q2/4λ which leads to the equation

∂

∂t
W (Q, t) = −DE

{
∂2

∂Q2
W + 1

kBT

∂

∂Q

(
∂U

∂Q
W

)}
− κδ(Q − λ)W (16.93)

where the diffusion constant is

DE = 2kBTλ

τL
(16.94)

and τL is the longitudinal relaxation time of the medium.

16.7 Inner Shell Reorganization

Intramolecular modes can also contribute to the reorganization. Low-frequency
modes (�ω < kBT ) which can be treated classically, can be taken into account by
adding an inner shell contribution to the reorganization energies

λ = λouter + λinner . (16.95)

Often C-C stretching modes at �ω ≈ 1400 cm−1 change their equilibrium positions
during the ET process. They must be treated quantum mechanically.3 Often the
Franck–Condon progression of one dominant mode �ωv is used to analyze experi-
mental data in the inverted region. Since �ωv � kBT thermal occupation is negli-
gible. In the inverted region, the vibration can accept the excess energy and reduce
the activation energy (Figs. 16.9 and 16.10). Summation over all 0 → n transitions
leads to the rate expression

k = ω

2π
κel

∞∑
n=0

e−g2 g2n

n! exp

(
− (ΔG + ER + n�ωv)

2

4ERkBT

)
(16.96)

where g2
�ωv is the partial reorganization energy of the stretching mode.

3A more general discussion follows later.
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Fig. 16.9 Accepting mode.
In the inverted region,
vibrations can accept the
excess energy
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Fig. 16.10 Inclusion of a
high-frequency mode
progression. Equation
(16.96) is evaluated for
typical values of
�ωV = 0.2eV ,
g = 1,λ = 0.5 eV (broken
curve). The full curves show
the contributions of different
0 → n transitions
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16.8 The Transmission Coefficient for Nonadiabatic
Electron Transfer

The transmission coefficient κ will be considered later in more detail. For adia-
batic electron transfer it approaches unity. For nonadiabatic transfer (small crossing
probability), it depends on the electronic coupling matrix element Vet . The quantum
mechanical rate expression for nonadiabatic transfer becomes in the high temperature
limit (�ω � kBT for all coupling modes)

k = 2πV 2
et

�

e−(ΔG+λ)2/4λkBT

√
4πλkBT

.
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16.9 Charge Delocalization and Self-Trapping

The electronic charge can be delocalized over donor and acceptor, if the electronic
coupling V is sufficiently large. In the following we discuss the mutual dependency
of the electronic wavefunction and the medium polarization within a simple model.

We consider the transition between two states ψ1 and ψ2 representing an electron
localized at the donor (1) or acceptor (2) molecule, respectively, which are identical
molecules (we consider a charge shift reaction). A nuclear coordinate Q is linearly
coupled to this transition which represents the medium polarization (Fig. 16.11). In
the semiclassical approximation, the nuclear motion is described by one wavepacket
for both states

ψ = (c(Q)ψ1 + s(Q)ψ2)Φ(Q) c2 + s2 = 1 (16.97)

and the classical position is identified as the expectation value of Q

Q(t) =
∫

Q|Φ(Q)|2dQ. (16.98)

A−

A−

E=−EA+EpolΔ

A−
eq +A eq

+A eq
−A

eq

     A

     A
polΔ

Δ E=0

E= EA−E

solvation coordinate

Fig. 16.11 Symmetric charge shift reaction
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We apply the displaced harmonic oscillator model. The potential energies of the
two states are parabolas

E1 = k

2
(Q − δQ)2 (16.99)

E2 = k

2
(Q + δQ)2 (16.100)

which are shifted relative to the equilibrium of the neutral state by ±δQ. The model
Hamiltonian is

H = Hel + Hvib + Hel,vib = P̂2

2M
+

(
k
2 (Q̂ − δQ)2 V

V ΔE + k
2 (Q̂ + δQ)2

)
.

(16.101)

The average over the electronic part of the wavefunction gives the potential energy

E(Q, s) =< ψ|
(

k
2 (Q̂ − δQ)2 V

V k
2 (Q̂ + δQ)2

)
|ψ >

= 2csV + c2

[
k

2
(Q − δQ)2

]
+ s2

[
k

2
(Q + δQ)2

]

= 2csV + k

2
Q2 + k

2
δQ2 − (c2 − s2)kQδQ. (16.102)

The equilibrium of the mixed state follows from minimizing the potential energy

0 = ∂

∂Q
E(Q) = ∂

∂Q

[
k

2
Q2 − kQδQ

(
c2 − s2

)] = k
[
Q − δQ(c2 − s2)

]
.

(16.103)

It is given by the average

δQ(m) = (c2 − s2)δQ = c2δQ. (16.104)

With the reorganization energy

Λ = k

2
δQ2 (16.105)

we have

E1(δQ
(m)) = Λ(c2 − s2 − 1)2 = Λ(−2s2)2 = 4Λs4 (16.106)
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E2(δQ
(m)) = 4Λc4. (16.107)

According to the variational principle, the energy functional

E(δQ(m)) = 2csV + c2E1(δQ
(m)) + s2E2(δQ

(m))

= 2csV + 4Λc2s2

= s2V + s2
2Λ (16.108)

has to be minimized. With

d(sin 2χ) = 2(cos 2χ)dχ (16.109)

we have to solve

0 = Vds2 + Λ 2s2ds2 = (V + 2Λs2)2c2dχ. (16.110)

One pair of solutions is given by

cos(2χ) = 0, sin(2χ) = ±1 cos2 χ = sin2 χ = 1

2
(16.111)

(
cos χ
sin χ

)
=

(
1√
2

± 1√
2

)
E = Λ ± V . (16.112)

If V 2 < 4Λ2, there is a second pair with degenerate energies

sin(2χ) = − V

2Λ
, cos(2χ) = ±

√
1 − V 2

4Λ2
sin2 χ =

1 ∓
√

1 − V 2

4Λ2

2
(16.113)

(
cos χ
sin χ

)
=

(
c1,2

s1,2

)
=

⎛
⎜⎜⎝−sign(V )

√
1±

√
1− V 2

4Λ2

2√
1∓

√
1− V 2

4Λ2

2

⎞
⎟⎟⎠ E = − V 2

4Λ
(16.114)

which provides two localized minima, whereas for |V | > 2Λ there is only one delo-
calized minimum (Fig. 16.12)
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Fig. 16.12 Energy functional. One delocalized solution always represents a maximum (black dots).
For small coupling |V | < 2Λ there are two localized minima (red dots) and a second delocalized
maximum (blue dots). For large coupling the localized extrema disappear and a second delocalized
minimum (green dots) is found

Problems

16.1 Marcus Cross Relation

(a) Calculate the activation energy for the self-exchange reaction

A− + A
kAA
→ A + A−

in the harmonic model

GR(Q) = a

2
Q2 GP(Q) = a

2
(Q − Q1)

2.

(b) Show that for the cross reaction

A+D
k
→ A− + D+

the reorganization energy is given by the average of the reorganization energies
for the two self-exchange reactions

λ = λAA + λDD

2
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and the rate k can be expressed as

k = √
kAAkDDKeq f

where kAA and kDD are the rate constants of the self-exchange reactions, Keq is
the equilibrium constant of the cross reaction and f is a factor, which is usually
close to unity.
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Chapter 17
Molecular States

Bio-molecules have a large number of vibrational degrees of freedom, which are
more or less strongly coupled to transitions between different electronic states. In
this chapter, we discuss the vibronic states on the basis of the Born–Oppenheimer sep-
aration and the remaining nonadiabatic coupling of the adiabatic states. The nuclear
motion is approximated by independent harmonic normal modes. Matrix elements
of the nuclear gradient operator are evaluated in the model of parallel displaced har-
monic oscillators. Finally, we discuss mixing of the Born–Oppenheimer states due
to nonadiabatical coupling and the damping approximation for finite lifetimes.

17.1 Born–Oppenheimer Separation

In molecular physics usually the Born–Oppenheimer separation of electronic (ri )
and nuclear motion (Rα) is used.

The molecular Hamiltonian (without considering spin1 or relativistic effects) can
be written as

H = TN (Rα) + Tel(ri ) + VN (Rα) + VeN (Rα, ri ) + Vee(ri ) (17.1)

with the kinetic energy operators

TN =
∑

α

− �
2

2mα
∇2

Rα
Tel =

∑

i

− �
2

2me
∇2

ri (17.2)

1Even if spin does not appear explicitly we will have to take care of the proper symmetry properties.
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and the Coulomb interaction

U (Rα, ri ) = VN (Rα) + VeN (Rα, ri ) + Vee(ri )

=
∑

α<α′

ZαZα′e2

4πε|Rα − Rα′ | −
∑

α,i

Zαe2

4πε|Rα − ri | +
∑

i<k

e2

4πε|ri − rk | . (17.3)

The Born–Oppenheimer wave function is a product

ψ(Rα, ri )χ(Rα) (17.4)

where the electronic part depends parametrically on the nuclear coordinates. The
nuclear masses are much larger than the electronic mass

mα � me. (17.5)

Therefore the kinetic energy of the nuclei is neglected for the electronic motion. The
electronic wave function is obtained approximately from the eigenvalue problem,

HBOψs(Rα, ri ) = Es(Rα)ψs(Rα, ri ) (17.6)

with the simplified Hamiltonian

HBO =
∑

i

− �
2

2me
∇2

ri +U (Rα, ri ). (17.7)

This eigenvalue problem has to be solved separately for each set of nuclear coor-
dinates. Using the Born–Oppenheimer product ansatz for the electronic state s we
have

Hψs(Rα, ri )χs(Rα) = (TN + HBO)ψs(Rα, ri )χs(Rα)

= TNψs(Rα, ri )χs(Rα) + Esψs(Rα, ri )χ(Rα)

= ψs(Rα, ri )(TN + Es(Rα))χs(Rα)

−
∑

α

�
2

2mα

(
χs(Rα)∇2

Rα
ψs(Rα, ri ) + (∇Rα

χs(Rα)
) (∇Rα

ψs(Rα, ri )
))

. (17.8)

The sum constitutes the so called non-adiabatic interaction Vnad . If it is neglected in
lowest order the nuclear wave function is a solution of the eigenvalue problem

(TN + Es(Rα))χs(Rα) = Eχs(Rα). (17.9)
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17.2 Harmonic Approximation to the Nuclear Motion

We consider a molecule which has a stable equilibrium configuration.2 We assume
that in the equilibrium configuration all nuclei are at rest Ṙα = 0, hence there is no
translational or rotational motion.3

Under these assumptions, the harmonic approximation allows a simplified descrip-
tion of small amplitude motion around the equilibrium configuration. In the following
we collect the Cartesian coordinates of the N nuclei into a vector with 3N coordi-
nates4

Q1 = R1,x . . . Q3N = RN ,z . (17.10)

The potential energy Es(Q) is expanded around the equilibrium configuration
Q0s

5

Es(Q) = Emin
s + 1

2

∑

j, j ′
(Q j − Q j0s)(Q j ′ − Q j ′0s)

∂2

∂Q j∂Q j ′
Es + · · · (17.11)

Within the harmonic approximation the matrix of mass weighted second derivatives

Dj j ′ = 1√
m jm j ′

∂2

∂Q j∂Q j ′
(17.12)

is diagonalized by solving

∑

j ′
Dj j ′u

r
j ′ = ω2

r u
r
j (17.13)

and the nuclear motion becomes a superposition of independent normal mode vibra-
tions with amplitudes qr and frequencies ωr

6

Q j − Q j0s = 1√
m j

∑

r

qru
r
j . (17.14)

2We do not consider special cases like internal rotations or large amplitude motions with very low
frequency.
3Strictly speaking, there is still an infinite number of equivalent equilibria unless the orientation of
the molecule is uniquely defined.
4Strictly speaking, there are only 3N − 6 independent coordinates and 6 normal modes with zero
frequency, corresponding to translation and rotation of the molecule, have to be eliminated.
5Which will be different for different electronic states s in general.
6These quantities will be different for different electronic states s of course.
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After transformation to normal mode coordinates the eigenvalue problem (17.9)
decouples according to

Es + TN = Emin
s +

∑

r

(
ω2
r

2
q2
r − �

2

2

∂2

∂q2
r

)
(17.15)

or, introducing the ladder operators

b = 1√
2

(√
ω

�
x +

√
�

ω

∂

∂x

)
(17.16)

b† = 1√
2

(√
ω

�
x −

√
�

ω

∂

∂x

)
(17.17)

to

Es + TN = Emin
s +

∑

r

�ωr

(
b†
r br + 1

2

)
. (17.18)

The nuclear eigenfunctions factorize

χs =
∏

r

χs,r,nr (qr ) (17.19)

and the total energy of a molecular state is the sum

Es({nr }) = Emin
s +

∑

r

�ω(s)
r

(
nr + 1

2

)
. (17.20)

Often the zero point energy of the vibrations is added to the electronic energy and
the vibrational energies are taken relative to the lowest state

Es({nr }) = E0
s +

∑

r

�ω(s)
r nr . (17.21)

The vibrations form a very dense manifold of states for biological molecules. This
is schematically represented in a Jablonsky-diagram (Fig. 17.1).7

Model calculations for Bacteriopheophytine (Fig. 17.2) are shown in Fig. 17.3.

7Which usually also shows electronic states of higher multiplicity.
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Fig. 17.1 Jablonsky
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17.3 Nonadiabatic Interaction

If two or more electronic states (s) are close in energy and Vnad cannot be neglected, a
more general ansatz for the wave function is given by the linear combination (known
as Born expansion [60])8

Ψ (r, Q) =
∑

s

ψs(r, Q)χs(Q) (17.22)

which will also be written in matrix notation

Ψ =
∑

s

ψs(r, Q)χs(Q) = (
ψ1 . . .

)
(

χ1
...

)
= ψ†χ (17.23)

In the absence of nonadiabatic coupling, the Born–Oppenheimer wave functions of
the electronic states s

ψs(r, Q)χs(Q) (17.24)

obey the eigenvalue equations

[TN (Q) + Es(Q)] χs(Q) = �ωsnχs(Q) (17.25)

[Tel(r) +U (r, Q)] ψs(r, Q) = Es(Q)ψs(r, Q) (17.26)

where the electronic functions ψs(r, Q) form a complete basis for each configuration
Q. The time dependent Schrödinger equation reads in matrix notation

ψ†i�
∂

∂t
χ = ψ†diag(Es + TN )χ + V̂nadψ

†χ (17.27)

For a fixed configuration, the ψs are a complete and orthonormalized system.
After taking the scalar product with ψ from left and integration over all electronic
coordinates9 we obtain a system of coupled equations for the nuclear motion

i�
∂

∂t
χ = diag(Es + TN )χ+ < ψV̂nadψ

† > χ (17.28)

8In the following r denotes the set of all electron coordinates whereas Q are the nuclear coordinates
as in (17.10).
9Which in the following will be denoted by brackets <>.
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or component wise

i�χ̇s = [
Es(Q j ) + TN (Q j )

]
χs +

∑

s ′
< ψs V̂nadψs ′ > χs ′ . (17.29)

The nonadiabatic interaction couples the adiabatic electronic states.10 We consider
the matrix elements (NACM)11

Vnad
s,s′ = < χs′ (Q)ψs′(r, Q) V̂nad ψs(r, Q)χs(Q) >

= −
∑

j

�
2

2Mj
< χs′ (Q)χs(Q) >< ψs′ (r, Q)

(
∂2

∂Q2
j

ψs(r, Q)

)
>

−
∑ �

2

2Mj
< χs′ (Q)

(
∂

∂Q j
χs(Q)

)
>< ψs′(r, Q)

(
∂

∂Q j
ψs(r, Q)

)
> .

(17.30)

The matrix element of the nuclear gradient can be evaluated for s �= s ′ from

< ψs ′
∂

∂Qk
[Te(r) +U (r, Q)] ψs >=< ψs ′ | ∂

∂Qk
Es(Q)|ψs > (17.31)

< ψs ′

{
∂U (r, Q)

∂Qk
+ [Te(r) +U (r, Q)]

∂

∂Qk

}
ψs >

=< ψs ′

{
∂Es(Q)

∂Qk
+ Es(Q)

∂

∂Qk

}
ψs > (17.32)

Es ′(Q) < ψs ′
∂

∂Qk
ψs > + < ψs ′

∂U (r, Q)

∂Qk
ψs >

= ∂Es(Q)

∂Qk
δs ′s + Es(Q) < ψs ′

∂

∂Qk
ψs > (17.33)

< ψs ′
∂

∂Qk
ψs >= < ψs ′ ∂U (r,Q)

∂Qk
ψs >

Es(Q) − Es ′(Q)
(17.34)

which becomes large if the energy gap between two electronic states is small. The
second derivative follows from

∂

∂Qk
< ψs ′

∂

∂Qk
ψs >=< ψs ′

∂2

∂Q2
k

ψs > + <

(
∂

∂Qk
ψs ′

)
|
(

∂

∂Qk
ψs

)
>

(17.35)

10Sometimes called channels.
11Without a magnetic field the molecular wave functions can be chosen real valued.
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after inserting a sum over the complete set of electronic states

< ψs ′
∂2

∂Q2
k

ψs >= ∂

∂Qk
< ψs ′

∂

∂Qk
ψs > +

∑

l

< ψs ′
∂

∂Qk
ψl >< ψl

∂

∂Qk
ψs > .

(17.36)

The first term in (17.30) is generally small. If we evaluate the second term at an
equilibrium configuration Q(0) of the state s and neglect the dependence on Q12 we
have

< ψs ′(r, Q)

(
∂

∂Q j
ψs(r, Q)

)
>= V nad,el

s ′,s + . . . (17.37)

V nad
s,s ′ ≈ −V nad,el

s,s ′
∑ �

2

2m j
< χ(Q)

(
∂

∂Q j
χs(Q)

)
> . (17.38)

Within the harmonic approximation the gradient operator can be expressed as

1√
m j

∂

∂Q j
=

∑

r

urj
∂

∂qr
=

∑

r

urj

√
ωr

2�
(b†

r − br ) (17.39)

and the nonadiabatic matrix element becomes

V nad
s ′,n(r ′),s,n(r) = −V nad,el

s,s ′
∑ �

2

2

√
ωr

2�

∫
dq1dq2 · · ·

(
∏

r ′
χs ′r ′n(r ′)

)

×
⎛

⎝
∏

r ′′ �=r

χs,r ′′,n(r ′′)

⎞

⎠
(√

n(r) + 1χs,r,n(r)+1 + √
n(r)χs,r,n(r)−1

)
. (17.40)

This expression simplifies considerably if the mixing of normal modes in the state
s’ can be neglected (the so called parallel mode approximation). Then the overlap
integral factorizes into a product of Franck–Condon factors.

V nad
s ′,n(r ′),s,n′(r) = −V nad,el

s,s ′
∑ �

2

2

√
ωr

2�

×
⎛

⎝
∏

r ′ �=r

FCs ′s
r ′ (n′, n)

⎞

⎠
(√

nr + 1FCs ′s
r (n′

r , nr + 1) + √
nr FC

s ′s
r (n′

r nr − 1)
)

(17.41)

12This is known as the Condon approximation.
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with

FCs ′s
r (n′

r nr ) =
∫

dqr χs ′r,n′(r)(qr )χs,r,n(r)(qr ). (17.42)

17.4 “True” Molecular Eigenstates

Whereas the adiabatic approximation is quite accurate in the electronic groundstate,
it breaks down if the molecule is excited to higher electronic states where highly
excited vibronic levels of a lower electronic state are isoenergetic and form a quasi-
continuum. In a popular model [66] one optically accessible state |s > is in resonance
with a manifold of dark states |l > (Fig. 17.4).

The molecular eigenstates |ν > are mixtures of |s > and |l >

|ν >= aνs |s > +
∑

l

bνl |l > (17.43)

and the transition dipole of the bright state is distributed over the eigenstates according
to the mixing coefficient

μν = aνsμs (17.44)

All excited states have finite lifetimes and decay, for instance due to their coupling
to the electromagnetic radiation field, molecular collisions etc. For a dipole allowed
transition (i.e. the |s > state) the radiative lifetime is given by

Fig. 17.4 Optical excitation.
After optical excitation from
the bottom of the
S0-manifold an
electronically excited
Born–Oppenheimer state
|s >= |ψeχe >is populated
(bright state) which is
coupled by the nonadiabatic
interaction to a manifold
|l >= |ψgχgl > of resonant
S0-states which can not be
optically excited (dark
states) and form a
quasi-continuum

|s>

S1

S0

|g>

|l>

s,lV

absorption
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τ−1
r = Γr = ω3n|μ|2

3πε0�c3
0

. (17.45)

As a result the corresponding transition has a finite width which can be calculated
from the lifetime as

FWHH/cm−1 = 10.6

τ/psec
. (17.46)

For instance, a lifetime of 10 nsec corresponds to a FWHH of 0.001cm−1. The cou-
pling of the dark manifold |l > to the radiation field is much weaker but since the
density of rovibrational states increases very rapidly with the energy gap, in larger
molecules the linewidth can become larger than the spacing of the states. Neglecting
interferences the finite lifetimes can be described by introducing complex energies

Ẽm = Em − i
Γm

2
(17.47)

and a non-Hermitian effective Hamiltonian

H̃ =
∑

m

|m >

(
Em − i

Γm

2

)
< m| (17.48)

where the stationary states are replaced by exponentially decaying states

ψm = e−Γmt/2e−i Em t/�|m > (17.49)

which are solutions of

i�
∂

∂t
ψ =

(
H − i

2
Γ

)
ψ (17.50)

(Interference effects lead to non diagonal elements of the damping matrix Γ ).



Chapter 18
Intramolecular Electronic Transitions

In this chapter, we discuss the coupling to the electromagnetic radiation field
semiclassically and derive the transition rates for absorption and induced emission in
the dipole approximation. We compare with the fully quantized treatment and derive
the rate of spontaneous fluorescence. We introduce the Condon approximation for
optical transitions. The Franck–Condon-weighted density of states is formulated
with the time-correlation function formalism. We discuss the generation of pure
Born–Oppenheimer states with very short excitation pulses. Finally, we consider
radiationless transitions.

T1S1S0

IC

ISC

ISC
absorption

phosphorescence

fluorescenceVR

VR

TA

Fig. 18.1 Intramolecular electronic transitions. Transitions between different electronic states (sin-
glet groundstate S0 and excited state S1, triplet state T1) are shown including radiative transitions
(absorption, fluorescence, phosphorescence), radiationless processes (internal conversion and inter-
system crossing) and energy exchange with the environment (vibrational relaxation and thermal
activation)
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The total energy of an isolated system is conserved. Coupling to the electromag-
netic radiation field, however, is always present and the total energy of amolecule can
be changed by radiative transitions with absorption or emission of a photon.1 Radi-
ationless intramolecular transitions occur between isoenergetic states and conserva-
tion of energy makes it necessary that highly excited vibrational states are involved
and take up the excess energy. Transitions between states of the same multiplicity
(mostly singlet–singlet or triplet–triplet transitions) are known as internal conver-
sion processes. Intersystem crossing processes change multiplicity (mostly between
singlet and triplet) and require, e.g., spin-orbit coupling as do radiative transitions
between triplet and singlet (phosphorescence). If energy can be exchanged with the
environment, vibrational relaxation and thermal activation also have to be considered
(Fig. 18.1).

18.1 Coupling to the Radiation Field

In semiclassical approximation, the electromagnetic field is a function of space and
time. The vector potential of a monochromatic plane wave is

A = A0ek(ei(kr−ωt) + e−i(kr−ωt)) (18.1)

from which the electric field follows (radiation gauge, Φ = 0, divA = 0)

E = −∂A
∂t

= −iE0ek(ei(kr−ωt) − e−i(kr−ωt)) (18.2)

E0 = ωA0. (18.3)

The time-averaged energy density is

u = 〈
ε0E

2
〉 = 2ε0A

2
0ω

2 = 2ε0E
2
0 . (18.4)

The interaction of a charged particle with mass m and charge q with the radiation
field has the standard form (for a molecule the sum over all electrons and nuclei has
to be taken)

Ĥint = − q

m
Ap̂ = V̂inte

−iωt + V̂ †
inte

iωt (18.5)

where

V̂int (r,ω) = − q

m
A0(ω)ek p̂ eikr. (18.6)

1The total energy of molecule plus radiation field is conserved.
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If the wavelength is larger than the extension of the molecule, the electric dipole
approximation is valid which approximates

eikr ≈ 1. (18.7)

The matrix element of the momentum operator can be expressed by the matrix
element of the position operator. From the commutator

[Ĥ , r] = [ p̂
2

2m
+U (r), r] = − i�

m
p̂ (18.8)

we obtain

< f | q
m
ek p̂|i >= i

�
(E f − Ei )ek < f |qr|i >= iω f iekµ f i (18.9)

with the transition dipole moment vectorµ. The golden rule then gives the transition
rates for absorption

Γi→ f = 2π

�2
|Vi f |2δ(ω f i − ω) = 2π

�2
A2
0(ω f i )ω

2
f i |eµ f i |2δ(ω f i − ω) (18.10)

= 2π

�2
|E0(ω f i )µ f i |2δ(ω f i − ω)

and induced fluorescence

Γi→ f = 2π

�2
|E0(ω f i )µ f i |2δ(ω f i + ω). (18.11)

For incoherent radiation, the rates of all waves have to be summed up (ρ(ω) is the
number of modes in the interval ω . . . ω + dω).

Γi→ f = 2π

�2

∫
|Vi f |2δ(ω f i − ω)ρ(ω)dω

= 2π

�2
|Vi f (ω f i )|2ρ(ω f i ). (18.12)

The total energy density is

u(ω) = 2ε0A
2
0(ω)ω2ρ(ω) = 2ε0E

2
0(ω)ρ(ω) (18.13)

and finally the transition rate in dipole approximation is

Γi→ f = π

�2

u(ω f i )

ε0
|ekµ f i |2. (18.14)
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The semiclassical treatment cannot explain spontaneous emission sincewithout an
electromagnetic field there is no perturbation. If the radiation field is treated quantum
mechanically, the fields become operators. The vector potential is a superposition of
its Fourier components (within the volume V)

A =
∑

k,λ

√
�ωk

2ε0V

1

ω k

(
âk,λek,λeikr + â†k,λe

∗
k,λe

−ikr
)

(18.15)

where â†kλ creates a photon with energy �ωk = �ck and polarization vector ekλ and
the Hamiltonian of the radiation field is

Ĥrad =
∑

kλ

�ωk â
†
kλâkλ. (18.16)

Now, consider transitions between eigenstates of the total Hamiltonian

Ĥ0 + Ĥrad (18.17)

due to the interaction

Ĥint = − q

m
Ap̂ = V̂ + V̂ † (18.18)

where in dipole approximation

V̂ (ω) ≈ iω f iekλµ

√
�

2ε0Vωk
âk,λ. (18.19)

For an absorptive transition one photon disappears

|i, nkλ >→ | f, nkλ − 1 > ΔE = E f − Ei − �ωk (18.20)

and since

â|n >= √
n|n − 1 > (18.21)

the transition rate is

Γi,n→ f,n−1 = 2π

�2
δ(ω f i − ωk)

nkλ�ω f i

2ε0V
|ekµ f i |2. (18.22)

An emissive transition creates one photon

|i, nkλ >→ | f, nkλ + 1 > (18.23)
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but now

â†|n >= √
n + 1|n + 1 > (18.24)

and the rate

Γi,n→ f,n+1 = 2π

�2
δ(ω f i − ωk)

[nkλ + 1]�ω f i

2ε0V
|ekµ f i |2 (18.25)

includes both stimulated and spontaneous emission. In the classical limit, the oper-
ators behave like (see Appendix B)

akλ ≈ e−iωk t
√
nkλ (18.26)

Â(ωk,k) =
√
u(ωk,k)

2ε0ω2
k

(
ek,λei(kr−ωk t) + e∗

k,λe
−i(kr−ωk t)

)
. (18.27)

The energy density is

ukλ = nkλ�ωkλ

V
(18.28)

and both rates (18.22) and (18.25) are given by the semiclassical expression (18.10)

Γi,n→ f,n+1 = 2π

�2
δ(ω f i − ωk)

ukλ
2ε0

|ekµ f i |2.

To obtain the total rate of spontaneous emission, we have to sum over all k-vectors
and polarizations (Fig. 18.2).

∑

k

→ V

(2π)3

∫
d3k = V

(2π)3

∫
k2dk d�

Γsp =
∑

λ

∫
2π

�2

1

c
δ(
1

c
ω f i − k)

�ω f i

2ε0
|ekµ f i |2

V

(2π)3
k2dk d�

= 1

�2c

�ω f i

2ε0(2π)2

ω2
f i

c2
∑

λ

∫
|ekµ f i |2d�

= 1

3π
μ2

f i

ω3
f i

ε0�c3
(18.29)

The unit length vectors k
k , ek1, ek2 form an orthogonal basis. Therefore

|ek1µ|2 + |ek2µ|2 + |k
k
μ|2 = μ2
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Fig. 18.2 Summation over
directions and polarization

e2

μ

k

μ

μ
e1

θ

|ek1µ|2 + |ek2µ|2 = μ2 − μ2
‖

We chose the z-axis along µ. Then μ‖ = μ cos θ and

∑

λ

∫
|ekµ f i |2d� = μ2

f i

∫
(1 − cos2 θ)d cos θdφ

= 2πμ2
f i

[
cos θ − cos3 θ

3

]1

−1

= 8π

3
μ2

f i

18.2 Optical Transitions

We consider allowed optical transitions between two electronic states of a molecule,
for instance the ground state (g) and an excited singlet state (e). Within the adiabatic
approximation (17.19) we take into account transitions between the manifolds of
Born–Oppenheimer vibronic states

ψg(r, Q)χg(Q) → ψe(r, Q)χe(Q). (18.30)

http://dx.doi.org/10.1007/978-3-662-55671-9_17
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Fig. 18.3 Optical transition

hωg

hωe

Ee(Q)

Eg(Q)

χg

χe

hωeg

hω00

Emin
g

Emin
e

E 0
g

E0
e

Q

EΔ

The molecular Hamiltonian is

H0 = |ψe > (E0
e + He) < ψe| + |ψg > (E0

g + Hg) < ψg| (18.31)

where we introduced Hamiltonians (18.40) for the nuclear motion in the two states

Hg(e) = TN + Eg(e)(Q) − E0
g(e). (18.32)

We count vibrational energies relative to the lowest vibrational state of the manifold,
which is E0

g in the electronic groundstate and E0
e in the excited state. The quantity

�ω00 = E0
e − E0

g denotes the so-called 0 − 0 transition energy, which differs from
the purely electronic transition energy ΔE = Emin

e − Emin
g by the difference of the

zero-point energies. (Fig. 18.3)
The nuclear wavefunctions obey

Hg(e)χg(e) = �ωg(e)χg(e). (18.33)

The energy difference corresponding to the transition

|ψgχg >→ |ψeχe > (18.34)

is given by

�ωeg = �ω00 + �ωe − �ωg. (18.35)
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Assuming that the occupation of initial states is given by a canonical distribution
P(χg) the golden rule (18.10) gives the transition rate for absorption of photons with
energy �ω

k = 2π

�

∑

χgχe

P(χg)
∣∣< ψg(r, Q)χg(Q) |E0er| ψe(r, Q)χe(Q) >

∣∣2 δ(�ωeg − �ω).

(18.36)

18.3 Dipole Transitions in the Condon Approximation

The matrix element of the dipole operator er can be simplified by performing the
integration over the electronic coordinates

∫
dQχ∗

g(Q)χe(Q)

∫
drψ∗

g (r, Q)erψe(r, Q)

=
∫

dQχ∗
g(Q)χe(Q)Mge(Q). (18.37)

The dipole moment function Meg(Q) is expanded as a series with respect to the
nuclear coordinates around the equilibrium configuration

Meg(Q) = Meg(Qeq) + ∂Meg

∂Q
(Q − Qeq) + · · · (18.38)

If its equilibrium value does not vanish for symmetry reasons, the dipole moment
can be approximated by neglecting all higher order terms (this is known as Condon
approximation)

Meg(Q) ≈ µeg = Meg(Qeq). (18.39)

The transition rate becomes a product of an electronic factor and an overlap integral
of the nuclear wavefunctions which is known as Franck–Condon factor (in fact
the Franck– Condon-weighted density of states) or lineshape function. Since each
transition consumes an energy amount of �ωeg the rate for energy absorption is

kabso = 2π

�
|E0µeg |2

∑

χg ,χe

P(χg)
∣∣< χg(Q)|χe(Q) >

∣∣2 �ωδ(�ω − �ω00 − (�ωe − �ωg))

= 2πω|E0µeg |2 FCD(�ω − �ω00) (18.40)

The transition rate for fluorescence behaves very similar. If we assume thermal dis-
tribution of excited states
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k f luo = |μeg |2
3πε0�c3

∑

χg ,χe

P(χe)
∣∣< χe(Q)|χg(Q) >

∣∣2 ω3δ(�ω − �ω00 + (�ωg − �ωe))

= |μeg|2ω3

3πε0�c3
FCD f luo(�ω − �ω00) (18.41)

18.4 Time-Correlation Function (TCF) Formalism

The transition rate can be written in an alternative way, which is quite suitable for
practical calculations writing the delta function in (18.40) as a Fourier integral

δ(�ω) = 1

2π�

∫ ∞

−∞
e−iωt dt (18.42)

k = |E0µeg|2
�2

∫
dt

∑

χgχe

P(χg)| < χg|χe > |2ei(ωe−ωg+ω00−ω)t (18.43)

which can be written as a thermal average over the vibrations of the ground state

k = |E0µeg|2
�2

∫
dt

∑

χgχe

< χg
e−βHg

Qg
e−iωg t |χe > eiωet < χe|χg > ei(ω00−ω)t

= |E0µeg|2
�2

∫
dt e−i(ω−ω00)t

〈
e−it Hg/�eit He/�

〉
g
. (18.44)

The coupling square can be written as the expectation value

|E0µeg|2 =< ψg|V |ψe >< ψe|V |ψg >=< ψg|V 2|ψg > . (18.45)

Here, it was assumed that the excitation frequency is large and the excited state is
not occupied thermally. The rate can be formulated as a thermal average over nuclear
and electronic states as

k = 1

�2

∑ ∫
dt e−i(ω−ω00)t < ψgχg|e

−βHg

Qg
|ψg > (−µegE0) < ψe|eit He/�

× |ψe > (−µegE0) < ψg|e−it Hg/�χgψg >

= 1

�2

∫
dt e−i(ω−ω00)t

〈〈
V eit H0/�V e−it H0/�

〉〉
g

(18.46)

which involves the time- correlation function of the coupling operator (hence the
dipole moment operator)

〈V (0)V (t)〉 = 〈〈
V eit H0/�V e−it H0/�

〉〉
g

= |E0µeg|2F(t) (18.47)
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with2 the time-correlation function of the nuclear motion

F(t) = 〈
eit He/�e−it Hg/�

〉
g

= 〈
e−it Hg/�eit He/�

〉
g

(18.48)

which is related to the lineshape function (18.40) by a Fourier transformation

FCD(�ω) = 1

2π�

∫ ∞

−∞
dt e−iωt F(t). (18.49)

We will evaluate the correlation function for some simple models in the following
chapter.

18.5 Excitation by a Short Pulse

The rate expression (18.40) holds for continuous excitation. In the following, we
study excitation by a very short light pulse.

In Condon’s approximation, the matrix element of the perturbation operator fac-
torizes

< ψe(r, q)χe(q)

∣∣∣V̂int

∣∣∣ψg(r, q)χg(q) >≈ −E0µeg < χe(q)|χg(q) > (18.50)

and V̂int changes only the electronic part of the wavefunction

V̂int |ψgχg >=
∑

χe

|ψeχe >< ψeχe|V̂int |ψgχg >=

= −E0µeg

∑

χe

|ψeχe >< χe|χg > (18.51)

Let us consider a model (Sect. 17.4) where the state |s >= |ψeχes >carries inten-
sity and is coupled to a manifold of dark states |l >= |ψgχl > which form a quasi-
continuum. The true molecular eigenstates are mixtures

|ν >= aνs |s > +
∑

l

bνl |l >= aνs |ψeχes > +
∑

l

bνl |ψgχgl > (18.52)

and carry transition dipoles

µνg = aνsµs . (18.53)

2The trace is invariant to a cyclic permutation.

http://dx.doi.org/10.1007/978-3-662-55671-9_17
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The coupling to the molecular eigenstates is

< ψgχg|V̂int |ν >= aνs < ψgχg|V̂int |s > (18.54)

hence

V̂int |ψgχg >=
∑

ν

|ν >< ν|V̂int |ψgχg >=
∑

ν

a∗
νs |ν > . (18.55)

But due to the orthonormality of the eigenstates,

∑

ν

a∗
νs |ν >=

∑

ν

a∗
νs

(

aνs |s > +
∑

l

bνl |l >

)

= |s > (18.56)

i.e., a very short pulse excites the pure Born–Oppenheimer state

18.6 Radiationless Transitions

We consider amolecule which is in an eigenstate |ψiχis > of the Born–Oppenheimer
Hamiltonian H0 at time t0. For t > t0 nonadiabatic and spin-orbit coupling are effec-
tive. The perturbation operator

Ĥ ′ = V̂nad + HSO (18.57)

induces transitions to other Born–Oppenheimer states |ψ f χ f l > (Fig. 18.4)

|ψi (r, q)χi,s(q) >→ |ψ f (r, q)χ f,l(q) > . (18.58)

In lowest order, the decay rate is the sum over all final states [67, 68]

ks =
∑

l

ks,l = 2π

�

∑

l

|Vs,l |2δ(E f − Ei ) (18.59)

with the matrix element

Vs,l =< ψ f (r, q)χ f,l(q)|Ĥ ′|ψi (r, q)χi,s(q) > . (18.60)

If the lowest order vanishes, e.g., if it is forbidden by symmetry, higher orders also
have to be considered and thematrix element Vs,l of the interaction has to be replaced
by the corresponding element of the T-matrix [69] to obtain the generalized golden
rule
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Rc

if

R

Fig. 18.4 Radiationless transitions. Transition from a higher electronic state (i) to a lower one
(f ). Energy conservation is possible if vibrational excitations in the final state are created. The
multidimensional nuclear coordinates are represented schematically by the coordinate R

ks =
∑

l

ks,l = 2π

�

∑

l

|Vs,l +
∑

j

Vs, j Vj,l

Es − E j
+ . . . |2δ(E f − Ei ). (18.61)

18.6.1 Internal Conversion

For transitions between states of the same multiplicity only the nonadiabatic inter-
action Sect. 17.3 is relevant. Neglecting the second derivative, its matrix elements
are

Vs,l = −�
2

2

∫ [

ψ∗
f (r, q)χ∗

f,l (q)
∑

r

(
∂

∂qr
χi,s(q)

)(
∂

∂qr
ψi,s(r, q)

)
+ . . .

]

dr dq.

(18.62)

If the dependency of the nonadiabatic coupling on the nuclear coordinates is weak,
theCondon approximationmay be applied to factorize the nonadiabatic coupling into
an electronic and a nuclear part

http://dx.doi.org/10.1007/978-3-662-55671-9_17
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Vs,l ≈ −�
2

2

∑

r

< ψ f (r, 0) ∂U
∂qr

ψi (r, 0) >

E f (0) − Ei (0)

∫
χ∗

f,l(q)
∂

∂qr
χi,s(q)dq. (18.63)

Non-Condon effects can be taken into account by treating the potential energy
differenceU (q) −U (0) as a perturbation and expanding the adiabaticwavefunctions
[70] in a crude diabatic basis

ψ j (r, q) = ψ j (r, 0) +
∑

j ′ �= j

< ψ j (r, 0)(U (q) −U (0))ψ j ′(r, 0) >

E j (0) − E j ′(0)
ψs ′(r, 0) + . . .

(18.64)

In general, however, the Born–Oppenheimer approximation breaks down near
configurations where the potential energy surfaces cross. Then the transformation
to a nonadiabatic basis can remove the divergence of the gradient coupling [71].
Ultimately, the transition has to be discussed in the framework of conical intersec-
tions [72].

18.6.2 Intersystem Crossing

The Coulomb interaction does not depend on spin, therefore the nonadiabatic inter-
action couples only states of the same multiplicity. Transitions between singlet and
triplet states involve the spin-orbit coupling HSO which together with the nonadia-
batic coupling has to be treated as a perturbation [73–75]. If spin-orbit coupling is
large enough, the dominant mechanism involves direct spin-orbit coupling

V (1)
sl =<1 ψ f χ f,l |HSO | 3ψiχi,s >

≈<1 ψ f (r, 0)|HSO | 3ψi (r, 0) >

∫
drχ∗

f lχis (18.65)

where again theCondon approximation has been applied. If direct spin-orbit coupling
is forbidden, higher order terms involving HSO and V̂nad as well non-Condon effects
have to be considered leading to vibronic spin-orbit coupling [76].

Problems

18.1 Absorption Spectrum

Within the Born–Oppenheimer approximation, the rate for optical transitions of a
molecule from its ground state to an electronically excited state is proportional to
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α(�ω) =
∑

i, f

Pi | < i |μ| f > |2δ(�ω f − �ωi − �ω)

Show that this Golden rule expression can be formulated as the Fourier integral of
the dipole moment correlation function

1

2π�

∫
dt eiωt < μ(0)μ(t) >

and that within the Condon approximation this reduces to the correlation function of
the nuclear motion.



Chapter 19
The Displaced Harmonic Oscillator

In this chapter, we discuss a more specific model for the transition between the
vibrational manifolds using parallel displaced harmonic normal modes, for which
the time-correlation function can be evaluated explicitly. We consider the limit of
high frequency modes (or low temperature) where vibrational progressions appear
and the limit of low frequencies (or high temperature) where the lineshape becomes
Gaussian where position and width only depend on the total reorganization energy.

19.1 The Time-Correlation Function in the Displaced
Harmonic Oscillator Approximation

We apply the harmonic approximation (17.11) for the nuclear motion to the zero-
order Hamiltonian (18.31)

H0 = |ψe >

(
E0
e +

∑
r

�ωe
r b

e†
r ber

)
< ψe| + |ψg >

(
E0
g +

∑
r

�ωg
r b

g†
r bgr

)
< ψg|.

(19.1)

In a simplified but popular model, we neglect mixing of the normal modes (parallel
mode approximation, the eigenvectors (urj in 17.13) are the same) and frequency
changes ( ω

g
r = ωe

r = ωr ) in the excited state but allow for a shift of the equilibrium

© Springer-Verlag GmbH Germany 2017
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Fig. 19.1 Displaced oscillator model. The displaced oscillator model assumes that the normal
mode eigenvectors are the same in both electronic states involved. Then the different modes are still
independent. The figure shows the potential energy along one such normal mode Q. The minima
at Q0

g and Q0
e are shifted relative to each other by a distance d = Q0

e − Q0
g . The elongation of the

normal mode is denoted as qg(e) = Q − Q0
g(e). The curvature of the two parabolas is the same.

Thus neglecting frequency changes in the excited state, the vibrationless transition energy �ω00
equals the pure electronic transition energy Emin

e − Emin
g . The reorganization energy ER = 1

2 ω2d2

is the amount of energy which can be released in the excited state after a vertical transition from
the vibronic groundstate

position (qe
r = qg

r + dr ).1 The potential energy for the two states then is approximated
by (Fig. 19.1)

Eg = Emin
g + 1

2

∑
r

ω2
r q

2
r (19.2)

Ee = Emin
e + 1

2

∑
r

ω2
r (q

e
r )

2 = Emin
e + 1

2

∑
r

ω2
r (qr + dr )

2. (19.3)

The vertical excitation energy is2

Ee(qr = 0) − Eg(qr = 0) = Emin
e + 1

2

∑
r

ω2
r dr

2 − Emin
g = �ω00 + ER (19.4)

1We retain only the lowest order of the potential difference.
2Without frequency changes the zero point energies are the same and Emin

e − Emin
g = E0

e − E0
g =

�ω00.
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with the reorganization energy

ER = 1

2

∑
r

ω2
r d

2
r . (19.5)

We introduce the ladder operators by substituting

qr =
√

�

2ωr

(
bgr + bg†

r

)
(19.6)

qe
r =

√
�

2ωr

(
ber + be†

r

)
=

√
�

2ωr

(
bgr + bg†

r

)
+ dr . (19.7)

Since dr is real valued we find

ber = bgr + 1

2

√
2ωr

�
dr = bgr +

√
ωr

2�
dr = bgr + gr

with the vibronic coupling parameter

gr =
√

ωr

2�
dr .

From

�ωr

(
be†
r ber + 1

2

)
= �ωr

(
(bg†

r + gr )(b
g
r + gr ) + 1

2

)

= �ωr

(
bg†
r bgr + 1

2

)
+ �ωrgr

(
bgr + bg†

r

)
+ �ωrg

2
r

we obtain the “displaced harmonic oscillator” model (DHO)

Hg =
∑
r

�ωr b
+
r br (19.8)

He =
∑
r

�ωr b
e†
r ber

= Hg +
∑
r

gr�ωr (b
†
r + br ) +

∑
r

g2
r �ωr (19.9)

where the superscript g is omitted from now and the last term is the reorganization
energy
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ER =
∑
r

g2
r �ωr . (19.10)

The correlation function (18.50)

F(t) =
〈
e− it

�
Hge

it
�
He

〉
g

= Q−1tr
(

e−Hg/kBT e− it
�
Hge

it
�
He

)
(19.11)

with

Q = tr(e−Hg/kBT ) (19.12)

factorizes in the parallel mode approximation

F(t) =
∏
r

Fr (t) (19.13)

Fr (t) = Q−1
r tr

(
e−�ωr b†

r br /kBT e−itωr b†
r br eitωr (b†

r +gr )(br+gr )
)

=
〈
e−itωr b†

r br eitωr (b†
r +gr )(br+gr )

〉
. (19.14)

As shown in the appendix this can be evaluated as

Fr (t) = exp

(
g2
r

[
(eiωr t − 1)(nr + 1) + (e−iωr t − 1)nr

] )
(19.15)

= exp

(
g2
r (2nr + 1)(cos ωr t − 1) + ig2

r sin ωr t

)

with the average phonon numbers

nr = 1

e�ωr /kBT − 1
. (19.16)

Expression (19.14) contains phonon absorption (positive frequencies) and emission
processes (negative frequencies). We discuss two important limiting cases.

19.2 High Frequency Modes

In the limit �ωr � kBT the average phonon number

nr = 1

e�ω/kBT − 1
(19.17)

is small and the correlation function becomes

http://dx.doi.org/10.1007/978-3-662-55671-9_18
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Fig. 19.2 Progression of a low frequency mode. The Fourier transform of (19.15) is shown for
typical values of �ω = 50 cm−1, 1, Er = 50 cm−1 and (a) kT = 10 cm−1 (b) kT = 200 cm −1. A
small damping was introduced to obtain finite linewidths

Fr (t) → exp
(
g2
r (e

iωt − 1)
)
. (19.18)

Expansion of Fr (t) as a power series of g2
r gives

Fr (t) =
∑
j

g
2 j
r

j ! e−g2
r ei( jωr )t (19.19)

which corresponds to a progression of transitions 0 → j ωr with Franck–Condon
factors (Fig. 19.2)

FC(0, j) = g
2 j
r

j ! e−g2
r . (19.20)

19.3 Low Frequency Modes

In the high temperature limit (�ωr � kBT ) the time-correlation function of one
oscillator (19.15) has peaks at t = 0,± 2π

ωr
, . . . which become very sharp for large

nr ≈ kBT/�ωr
3 (Fig. 19.3). The product correlation function of many oscillators is

non vanishing only around t = 0, i.e. the correlation function decays rapidly and
can be approximated by the Taylor series (in this context also known as short time
approximation)

F(t) ≈ exp

{
−t2

∑
r

(nr + 1

2
)g2

r ω
2
r + i t

∑
r

g2
r ωr

}
≈ exp

{
−t2 ERkBT

�2 + i t

�
ER

}
. (19.21)

3Also for very strong vibronic coupling gr .
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The lineshape is approximately given by a Gaussian (Fig. 19.4)

FCD(�ω) = 1

2π�

∫ ∞

−∞
dt e−iω0t exp

{
−t2 ERkBT

�2
+ i t

�
ER

}
(19.22)

= 1

2π�

√
π�2

ERkBT
exp

{
− (�ω − ER)2

4ERkBT

}

=
√

1

4πERkBT
exp

{
− (�ω − ER)2

4ERkBT

}

with the reorganization energy

Er =
∑
r

g2
r �ωr (19.23)

and the variance

Δ2 = 2ERkBT . (19.24)



Chapter 20
Spectral Diffusion

Electronic excitation energies of a chromophore within a protein environment are
not static quantities but fluctuate in time. This can be directly observed with the
methods of single molecule spectroscopy. If instead an ensemble average is mea-
sured, then the relative timescales of measurement and fluctuations determine if an
inhomogeneous distribution is observed or if the fluctuations lead to a homogeneous
broadening. In this chapter we discuss simple models [77–79], which are capable
of describing the transition between these two limiting cases. First we derive the
transition rate semiclassically for fluctuating transition energy which depends on
the Fourier transform of the dephasing function. For Gaussian fluctuations (e.g., for
the model of a Brownian oscillator) the second-order cumulant expansion becomes
exact. We apply Kubo’s model of exponentially decaying frequency correlations and
discuss the limits of long and short correlation time.

20.1 Dephasing

We study a semiclassical model of a two-state system. Due to interaction with the
environment the energies of the two states are fluctuating quantities. The system is
described by a time-dependent Hamiltonian

H0 =
(
E1(t) 0

0 E2(t)

)
(20.1)

where the time evolution can be described by the propagator

ψ(t) = exp

{
1

i�

∫ t

0
H0dt

}
ψ(0) = U0(t)ψ(0) (20.2)
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U0(t) = exp

{
1

i�

∫ t

0
H0dt

}
=

(
e

1
i�

∫ t E1(t)dt

e
1

i�

∫ t E2(t)

)
. (20.3)

Optical transitions are induced by the perturbation operator

H ′ =
(

0 μeiωt

μe−iωt 0

)
. (20.4)

We make the following ansatz

ψ(t) = U0(t)φ(t) (20.5)

and find

(H0 + V )ψ = i�
d

dt
ψ = H0U0(t)φ + i�U0(t)

d

dt
φ (20.6)

hence

i�
d

dt
φ = U0(−t)VU0(t)φ. (20.7)

Now the operator product is

U0(−t)VU0(t) =
(

0 μeiωt− i
�

∫ t
0 (E2−E1)dt

μe−iωt+ i
�

∫ t
0 (E2−E1)dt 0

)
(20.8)

which can be written with a time-dependent dipole moment

i�
d

dt
φ =

(
0 μ(t)eiωt

μ(t)∗e−iωt 0

)
φ (20.9)

d

dt
μ(t) = 1

i�
(E2(t) − E1(t))μ(t) = −iω21(t)μ(t) = −i(< ω21 > +δω(t))μ(t).

(20.10)

Starting from the initial condition

φ(t = 0) =
(

1
0

)
(20.11)
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we find in lowest order

φ(t) =
(

1
1
i�

∫ t
0 dt e−iωtμ∗(t)

)
(20.12)

and the transition probability is given by

P(t) = 1

�2

∫ t

0
dt ′′

∫ t

0
dt ′eiω(t ′′−t ′)μ(t ′′)μ∗(t ′)

= |μ0|2
�2

∫ t

0
dt ′′

∫ t

0
dt ′eiω(t ′′−t ′)e−i<ω21>(t ′′−t ′)e−i

∫ t ′′
t ′ δω(t ′′′)dt ′′′ .

(20.13)

The ensemble average gives for stationary fluctuations

P(t) = |μ0|2
�2

∫ t

0

∫ t

0
dt ′′ dt ′ eiω(t ′′−t ′)e−i<ω21>(t ′′−t ′)F(t ′′ − t ′) (20.14)

with the dephasing function

F(t) =< exp(−i
∫ t

0
δω(t ′)dt ′) > . (20.15)

With the help of the Fourier transformation

F(t) = 1

2π

∫ ∞

−∞
e−iω′t F̂(ω′)dω′

the transition probability becomes

P(t) = |μ0|2
2π�2

∫ ∞

−∞
dω′

∫ t

0

∫ t

0
dt ′′ dt ′ ei(ω−ω′)(t ′′−t ′)e−i<ω21>(t ′′−t ′) F̂(ω′)

= |μ0|2
2π�2

∫ ∞

−∞
dω′ F̂(ω′)

2(1 − cos((ω − ω′− < ω21 >)t)

(ω − ω′− < ω21 >)2
(20.16)

where the quotient approximates a delta function for longer times

2(1 − cos((ω − ω′− < ω21 >)t)

(ω − ω′− < ω21 >)2
→ 2πtδ(ω − ω′− < ω21 >) (20.17)

and hence the golden rule expression is obtained in the form

P(t)

t
→ |μ0|2

�2
F̂(ω − < ω21 >) (20.18)
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20.2 Gaussian Fluctuations

We consider the dephasing function

F(t) =< ei
∫ t

0 δω(τ )dτ >=< eiXt > (20.19)

and assume that (for fixed integration time t) the random variable

Xt =
∫ t

0
δω(τ )dτ (20.20)

has a Gaussian probability distribution

Wt (X) = 1

Δt

√
2π

e−X2
t /2Δ2

t (20.21)

with zero mean

< Xt >= 0 (20.22)

and variance

< X2
t >= Δ2

t . (20.23)

This is for instance applicable if the frequency fluctuations are described by diffusive
motion in a harmonic potential. Then

F(t) =< eiXt >=
∫ ∞

−∞
eiXt Wt (X)dX = e−Δt/2 (20.24)

where the width can be expressed by the second moment

Δ2
t =< X2

t >=<

(∫ t

0
δω(t ′)dt ′

)2

>=<

∫ t

0
dt ′

∫ t

0
dt ′′δω(t ′)δω(t ′′) > .

(20.25)

For more general processes, a cumulant expansion can be applied. Fourier transfor-
mation of the probability distribution (for fixed integration time t) gives the charac-
teristic function

Φt (λ) =< eiλXt >=
∫

dX eiλXt Wt (X) (20.26)

with
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F(t) = Φt (λ = 1). (20.27)

We expand the logarithm of Φ

ln Φ = ln Φ(0)+λ
Φ ′(0)

Φ(0)
+ λ2

2

Φ ′′Φ − Φ ′2

Φ2
+ λ3

6

Φ ′′′Φ2 − 3Φ ′′Φ ′Φ + 2Φ ′3

Φ3
. . .

(20.28)

where the derivatives are

Φ(n) =
∫

dX (iX)n eiλXW (X) (20.29)

with

Φ(n)(0) =< (iX)n > (20.30)

from which we obtain the series expansion

ln Φ = λ < iX > +λ2

2

(
< −X2 > − < i X >2

) + · · · (20.31)

Setting now λ = 1 gives the cumulant expansion

ln(< eix >) = < iX > −1

2
(< X2 > − < X >2)

+ 1

6
(< −iX3 > −3 < −X2 >< iX > +2 < iX >3) · · · (20.32)

which for a distribution with zero mean simplifies to

−1

2
< X2 > − i

6
< X3 > · · · (20.33)

For the special case of a Gaussian distribution all cumulants except the first and
second order vanish.

For the simplest model of exponentially decaying frequency correlations

< δω(t)δω(0) >= Δ2e−t/τc (20.34)

integration gives

F(t) = exp
(−Δ2τ 2

c (e−|t |/τc − 1 + |t |/τc)
)
. (20.35)

Let us look at the limiting cases.
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20.2.1 Long Correlation Time

This corresponds to the inhomogeneous case where < δω(t)δω(0) >= Δ2 is con-
stant. We expand the exponential for t << τc:

e−t/τc − 1 + t/τc = t2

2τ 2
c

+ · · · (20.36)

F(t) = e−Δ2t2/2. (20.37)

The transition probability is

P(t) = |μ0|2
�2

∫ t

0
dt ′

∫ t

0
dt ′′ei(t ′′−t ′)(ω−<ω21>)e−Δ2(t ′′−t ′)2/2. (20.38)

Since F(t) is symmetric

P(t) = |μ0|2
4�2

∫ t

−t
dt ′

∫ t

−t
dt ′′ei(t ′′−t ′)(ω−<ω21>)e−Δ2(t ′′−t ′)2/2

≈ |μ0|2
2�2

t
∫ ∞

−∞
dteit (ω−<ω21>)e−Δ2t2/2 (20.39)

and the lineshape has the form of a Gaussian (Fig. 20.1)

lim
P(t)

t
∼ exp

(
− (ω− < ω21 >)2

2Δ2

)
. (20.40)

20.2.2 Short Correlation Time

For very short correlation time τc 	 t we approximate

F(t) = exp
(−Δ2τc|t |

) = exp (−|t |/T2) (20.41)

with the dephasing time

T2 = (Δ2τc)
−1. (20.42)

The lineshape has now the form of a Lorentzian

∫ ∞

−∞
dt eit (ω−<ω21>)e−|t |/T2 = 2T−1

2

T−2
2 + (ω− < ω21 >)2

. (20.43)
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Fig. 20.1 Time correlation function of the Kubo model. F(t) from (20.35) is shown for Δ = 1
and several values of τc. For large correlation times the Gaussian exp(−Δ2t2/2) is approximated
whereas for short correlation times the correlation function becomes approximately exponential
and the width increases with τ−1. Correspondingly, the Fourier transform becomes sharp in this
case (motional narrowing)

This result shows the motional narrowing effect when the correlation time is short
or the motion very fast.

20.3 Markovian Modulation

Another model which can be analytically investigated describes the frequency fluctu-
ations by a Markovian random walk. We discuss the simplest case of a dichotomous
process (9.2), i.e., the oscillator frequency switches randomly between two values
ω±. This is, for instance relevant for NMR spectra of a species which undergoes a
chemical reaction

A+B � AB (20.44)

where the NMR resonance frequencies depend on the chemical environment. For a
dichotomous Markovian process switching between two states X = ± we have for
the conditional transition probability

P(X, t+τ |X0t0) = P(X, t+τ |+, t)P(+, t |X0t0)+P(X, t+τ |−, t)P(−, t |X0t0).

(20.45)

For small time increment τ linearization gives

http://dx.doi.org/10.1007/978-3-662-55671-9_9
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P(+, t + τ |+, t) = 1 − ατ

P(−, t + τ |−, t) = 1 − βτ

P(−, t + τ |+, t) = ατ

P(+, t + τ |−, t) = βτ (20.46)

and hence

P(+, t + τ | + t0) = P(+, t + τ |+, t)P(+, t | + t0) + P(+, t + τ |−, t)P(−, t | + t0)

= (1 − ατ )P(+, t |+, t0) + βτ P(−, t |+, t0) (20.47)

and we obtain the differential equation

∂

∂t
P(+, t |+, t0) = −αP(+, t |+, t0) + βP(−, t |+, t0)

and similarly

∂

∂t
P(−, t |−, t0) = −βP(−, t |−, t0) + αP(+, t |−, t0)

∂

∂t
P(−, t |+, t0) = −βP(−, t |+, t0) + αP(+, t |+, t0)

∂

∂t
P(+, t |−, t0) = −αP(+, t |−, t0) + βP(−, t |−, t0). (20.48)

In a stationary system the probabilities depend only on t − t0 and the differential
equations can be written as a matrix equation

∂

∂t
P(t) = A P(t) (20.49)

with

P(t) =
(
P(+, t |+, 0) P(+, t |−, 0)

P(−, t |+, 0) P(−, t |−, 0)

)
(20.50)

and the rate matrix

A =
(−α β

α −β

)
. (20.51)

Let us define the quantity

Q(X, t |X ′, 0) =
〈
e−i

∫ t
0 ω(t ′)dt ′

〉
X,X ′

(20.52)

where the average is taken under the conditions that the system is in state X at time
t and in state X ′ at time 0. Then we find
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Q(X, t + τ |X ′, 0) =
〈
e−i

∫ t
0 ω(t ′)dt ′eiω(t)τ

〉
X,X ′

= Q(X, t + τ |+, t)Q(+, t |X ′, 0) + Q(X, t + τ |−, t)Q(−, t |X ′, 0). (20.53)

Expansion for small τ gives

Q(+, t + τ |+, t) = 〈
e−iω+τ

〉
+,+ = 1 − (iω+ + α)τ

Q(−, t + τ |−, t) = 〈
e−iω−τ

〉
−,− = 1 − (iω− + β)τ

Q(−, t + τ |+, t) = 〈
e−iω+τ

〉
−,+ = ατ

Q(+, t + τ |−, t) = 〈
e−iω−τ

〉
+,− = βτ (20.54)

and for the time derivatives
∂

∂t
Q(+, t |+, 0) = lim

τ→0

1

τ

[
(−iω+ − α)τQ(+, t |+, 0) + βτQ(−, t |+, 0)

]
= −(iω+ + α)Q(+, t |+, 0) + βQ(−, t |+, 0)

∂

∂t
Q(−, t |−, 0) = −(iω− − +β)Q(−, t |−, 0) + αQ(+, t |−, 0)

∂

∂t
Q(+, t |−, 0) = lim

τ→0

1

τ

[
(−iω+ − α)τQ(+, t |−, 0) + βτQ(−, t |−, 0)

]
= −(iω+ + α)Q(+, t |−, 0) + βQ(−, t |−, 0)

∂

∂t
Q(−, t |+, 0) = −(iω− + β)Q(−, t |+, 0) + αQ(+, t |+, 0) (20.55)

or in matrix notation

∂

∂t
Q = (−iΩ + A)Q (20.56)

with

Q =
(
Q(+, t |+, 0) Q(+, t |−, 0)

Q(−, t |+, 0) Q(−, t |−, 0)

)
(20.57)

and

Ω =
(

ω+
ω−

)
. (20.58)

Equation (20.56) is formally solved by

Q(t) = exp {(−iΩ + A)t} . (20.59)

For a steady-state system, we have to average over the initial state and to sum over
the final states to obtain the dephasing function. This can be expressed as
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F(t) = (1, 1)Q(t)

(
β

α+β
α

α+β

)
= (1, 1) exp {(−iΩ + A)t}

(
β

α+β
α

α+β

)
. (20.60)

Laplace transformation gives

F̃(s) =
∫ ∞

0
e−st F(t) = (1, 1)(s + iΩ − A)−1

(
β

α+β
α

α+β

)
(20.61)

which can be easily evaluated to give

F̃(s) = 1

(s + iω1)(s + iω2) + (α + β)s + i(αω2 + βω1)

× (1, 1)

(
s + iω2 − β −β

−α s + iω1 − α

) (
β

α+β
α

α+β

)

= s + (α + β) + i βω2+αω1

α+β

(s + iω1)(s + iω2) + (α + β)s + i(αω2 + βω1)
. (20.62)

Since the dephasing function generally obeys the symmetry F(−t) = F(t)∗, the
lineshape is obtained from the real part

2π F̂(ω) =
∫ ∞

−∞
eiωt F(t)dt =

(∫ ∞

0
eiωt F(t)dt +

∫ ∞

0
e−iωt F∗(t)dt

)

= 2
 (
F̃(−iω)

) = 2
αβ

α + β

(ω1 − ω2)
2

(ω − ω1)2(ω − ω2)2 + (α + β)2(ω − αω2+βω1

α+β
)2

.

(20.63)

Let us introduce the average frequency

ω = αω2 + βω1

α + β
(20.64)

and the correlation time of the dichotomous process

τc = ω−1
c = (α + β)−1.

In the limit of slow fluctuations (ωc → 0) two sharp resonances appear at ω = ω1,2

with relative weights given by the equilibrium probabilities P(+) = β/(α + β)

andP(−) = α/(α+β). With increasing ωc the two resonances become broader and
finally merge into one line. For further increasing ωc the resonance, which is now
centered at ω becomes very narrow (this is known as the motional narrowing effect)
(Fig. 20.2).
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Fig. 20.2 Motional narrowing. The lineshape (20.63) is evaluated for ω1 = 1.0,ω2 = 1.5 and
α = β = (a) 0.02 (b) 0.18 (c) 1.0

Problems

20.1 Motional Narrowing
Discuss the poles of the lineshape function and the motional narrowing effect (20.63)
for the symmetrical case α = β = (2τc)

−1 ,ω1,2 = ω ± Δω/2.



Chapter 21
Crossing of Two Electronic States

In this chapter, we discuss crossing between two or more Born–Oppenheimer states.
We begin with wave packet motion which allows to introduce the classical limit for
nuclear motion. The matrix elements of the nonadiabatic coupling can become very
large or even divergent, whenever two electronic states come close. The “adiabatic
to diabatic” transformation eliminates at least the singular parts of the derivative
coupling. We derive the so-called diabatic Schrödinger equation and discuss the
simplest case of a crossing between two states. For a Hamiltonian depending on
only one nuclear coordinate, the transformation to a diabatic basis is possible and
yields a diabatic coupling which is given by half the splitting of the adiabatic states.
The semiclassical approximation makes use of narrow localized wavepackets and
describes nuclear motion as a classical trajectory defined as the time-dependent
average position. The famous Landau Zener model uses a linear approximation of the
trajectory in the vicinity of the crossing point and obtains an explicit solution for the
transition probability. If more coordinates are involved, conical intersections appear
which are very important for ultrafast transitions. We discuss the linear vibronic
coupling model for the dynamics in the vicinity of a conical intersection.

21.1 Wavepacket Motion

A particle (e.g., one of the nuclei of a molecule) moving in the potential V (R) is
described by the time dependent Schrödinger equation

i�
∂

∂t
ψ =

[
− �

2

2M
∇2 + V (R)

]
ψ = Hψ. (21.1)
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The expectation values of position and momentum

< R >=
∫

ψ∗(R, t)Rψ(R, t)d3R < P >=
∫

ψ∗(R, t)
�

i
∇ψ(R, t)d3R

(21.2)

obey equations of motion quite similar to Newton’s equations

d

dt
< R >= 1

M
< P > (21.3)

d

dt
< P >=< −∇V (R) > . (21.4)

In order to assign values of “position” and “momentum” the wavefunction should
be a localized wavepacket in real space and momentum space. Due to the laws of
quantum mechanics both values cannot be simultaneously sharp but are subject to
a probability distribution with eventually growing width due to dispersion. Simple
cases allow description by Gaussian wave packets, especially a free particle and the
harmonic oscillator.

21.1.1 Free Particle Motion

For a free particle (V = 0) in one dimension a special solution of (21.1) is given by

ψ(x, t) =
(

2a

π

)1/4 1√
a + 2 i�

m t
exp

{
−
(
x − i ak0

2

)2 + ak2
0

4

(
a + 2 i�

m t
)

a + 2 i�
m t

}
(21.5)

which is initially a Gaussian wave packet with constant momentum

ψ(x, 0) =
(

2a

π

)1/4 1√
a
e−x2/aeik0x (21.6)

< p(0) >= �

i
<

∂

∂x
>

= �

i

√
2a

π

1

a

∫
dx e−x2/ae−ik0x

(
−2x

a
+ ik

)
e−x2/aeik0x = �k0. (21.7)
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Fig. 21.1 Free particle motion. The Gaussian wave packet (21.5) moves with constant velocity and
shows dispersion according to (21.10). Time in units of m/�

The probability density stays Gaussian

|ψ(x, t)|2 =
√

2a

π

1√
a2 + (

2 �

m t
)2

exp

{
− 2a

a2 + (
2 �

m t
)2

(
x − �k0

m
t

)2
}

. (21.8)

The wavepacket moves with constant velocity (Fig. 21.1)

< x >= �k0

m
t = v0t (21.9)

and its standard deviation increases with time

σx =
√
a

4
+

�2

m2 t2

a
. (21.10)

Fourier transformation gives a Gaussian probability density again which is time
independent

|ψ̃(k, t)|2 =
√

a

2π
exp

{
−a

2
(k − k0)

2
}

(21.11)
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with standard deviation

σk = 1√
a

(21.12)

from which the uncertainty relation is obtained

σxσp = �

√
1

4
+ �2

a2m2
t2 ≥ �

2
. (21.13)

21.1.2 Harmonic Oscillator

Wavepackets for a particle in a harmonic potential are provided by the coherent
oscillator states (also known as Glauber states) which are linear combinations of
stationary oscillator states, and therefore solutions of the time dependent Schrödinger
equation (Appendix B)

ϕα(x, t) = e−|α|2/2
∞∑
n=0

αn

√
n!e

−i(n+1/2)ωtψn(x). (21.14)

Coherent states describe dispersionless wavepackets with probability density
(Fig. 21.2)

|ϕα(x, t)|2 =
∣∣∣ψ0

(
x − √

2�(αeiωt )x0

)∣∣∣2

= 1√
πx0

exp

⎧⎪⎨
⎪⎩−

(
x − x0

√
2|α| cos (ωt − arg(α))

)2

x2
0

⎫⎪⎬
⎪⎭ . (21.15)

Fig. 21.2 Probability
density of a coherent
oscillator state
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The expectation values of coordinate and momentum oscillate like for a classical
oscillator and the standard deviations are

σx = x0√
2

σp = �

x0

√
2
. (21.16)

The uncertainty product has the minimum possible value

σxσp = �

2
. (21.17)

For large amplitudes

xmax = x0

√
2|α| pmax = �

x0

√
2|α| (21.18)

the relative uncertainties become small

σx

xmax
= σp

pmax
= 1

2|α| (21.19)

and the oscillator behaves classically with energy

< E >= mω2 x
2
max

2

σE

< E >
= 1

|α| . (21.20)

21.2 The Adiabatic to Diabatic Transformation

The Schrödinger equation for the nuclear motion (17.28) can be written as [80–84]1

i�
∂

∂t
χ =

[
diag(Es) + TN+ < ψV̂nadψ

† >
]
χ

=
⎡
⎣diag(Es) −

∑
j

�
2

2Mj

(
∂

∂Q j
+ Tj

)2
⎤
⎦χ (21.21)

with

Tj =< ψ
∂ψ†

∂Q j
> . (21.22)

1Without a magnetic field the electronic wavefunctions can be assumed to be real valued.

http://dx.doi.org/10.1007/978-3-662-55671-9_17
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Equation (21.21) looks much like an ordinary Schrödinger equation where the
gradient has been replaced by

∂

∂Q j
→ ∂

∂Q j
+ Tj (21.23)

a substitution which is well known in the field of gauge theories [85].
Equation (21.21) follows from

[
∂

∂Q j
+ < ψ

∂ψ†

∂Q j
>

]2

= ∂2

∂Q2
j

+ < ψ(r)
∂ψ†(r)

∂Q j
>< ψ(r ′)∂ψ†(r ′)

∂Q j
>

+ 2 < ψ
∂ψ†

∂Q j
>

∂

∂Q j
+ <

∂ψ

∂Q j

∂ψ†

∂Q j
> + < ψ

∂2ψ†

∂Q2
j

>

(21.24)

where due to orthonormality

< ψψ† >=
⎛
⎜⎝

1
1

. . .

⎞
⎟⎠ (21.25)

0 = ∂

∂Q j
< ψψ† >=<

∂ψ

∂Q j
ψ† > + < ψ

∂ψ†

∂Q j
> . (21.26)

Therefore

< ψ
∂ψ†

∂Q j
>< ψ

∂ψ†

∂Q j
>= − <

∂ψ

∂Q j
ψ† > < ψ

∂ψ†

∂Q j
> (21.27)

and from completeness of the basis

ψ†(r)ψ(r ′) =
∑
s

ψs(r)ψs(r
′) = δ(r − r ′) (21.28)

< ψ
∂ψ†

∂Q j
>< ψ

∂ψ†

∂Q j
>= − <

∂ψ(r)

∂Q j

∂ψ†(r)

∂Q j
> . (21.29)

The matrix elements of the nonadiabatic coupling can become very large whenever
two electronic states come close (17.34). They even diverge at conical intersections
[86]. Therefore we look for a unitary transformation U (Q) which eliminates the

http://dx.doi.org/10.1007/978-3-662-55671-9_17
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derivative coupling or at least its singular parts. Electronic and nuclear parts of the
wavefunction are transformed according to2

χ̃ = U−1χ ψ̃
† = ψ†U (21.30)

which does not change the total wavefunction

ψ̃
†
χ̃ = (ψ†U )(U−1χ) = ψ†χ. (21.31)

The gradient and the nonadiabatic coupling matrix transform according to

∂

∂Q j
χ̃ = ∂U−1

∂Q j
χ +U−1 ∂

∂Q j
χ (21.32)

T̃ j =< ψ̃
∂

∂Q j
ψ̃† >=< U−1ψ

∂

∂Q j
ψ†U >= U−1TjU +U−1 ∂U

∂Q j

= U−1TjU − ∂U−1

∂Q j
U. (21.33)

Both involve an inhomogeneous term, whereas their combination transforms sim-
ply like χ itself3

∂

∂Q j
χ̃ + T̃ j χ̃ =

(
∂U−1

∂Q j
+U−1 ∂

∂Q j
+U−1TjU +U−1 ∂U

∂Q j

)
U−1χ

=
(

∂U−1

∂Q j
+U−1 ∂

∂Q j
+U−1Tj − ∂U−1

∂Q j

)
χ

= U−1

(
∂

∂Q j
+ Tj

)
χ = U−1

(
∂

∂Q j
+ Tj

)
U χ̃. (21.34)

Finally the time dependent Schrödinger equation transforms into

i�
∂

∂t
χ̃ =

⎡
⎣U−1diag(Es)U −U−1

∑
j

�
2

2Mj

(
∂

∂Q j
+ Tj

)2

U

⎤
⎦ χ̃. (21.35)

2In the following we make use of 0 = ∂
∂QUU−1 = ∂U

∂QU
−1 +U ∂U−1

∂Q and 0 = ∂
∂QU

−1U =
∂U−1

∂Q U +U−1 ∂U
∂Q .

3In the language of gauge theories the substitution (21.23) is known as covariant gradient.
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The transformed energy matrix

Ed = U−1diag(Es)U (21.36)

is generally not diagonal and contains coordinate dependent couplings between the
states. Let us assume, the transformation eliminates the gradient coupling. Then from
(21.33)

0 = T̃ j = U−1TjU +U−1 ∂U

∂Q j
(21.37)

and the transformation has to satisfy

∂U

∂Q j
+ TjU = 0. (21.38)

Then,

U−1

(
∂

∂Q j
+ Tj

)
U = ∂

∂Q j
(21.39)

and (21.35) simplifies to the so-called diabatic [87] Schrödinger equation

i�
∂

∂t
χd =

⎡
⎣Ed −

∑
j

�
2

2Mj

∂2

∂Q2
j

⎤
⎦χd . (21.40)

Since the basis of adiabatic electronic wavefunctions is complete for any configura-
tion Q, the gradient can be expanded as

∂ψd†

∂Q j
= ψd† < ψd ∂

∂Q j
ψd† >= ψdT d

j = 0 (21.41)

hence ψd is independent of the nuclear coordinates. This corresponds to a crude
diabatic basis [88–90]. In order for (21.38) to have a single-valued solution, TjU
must be the gradient of a function of Q j . This leads to the generalized curl condition
which also guarantees that the second derivatives of U do not depend on their order

0 = ∂2U

∂Q j∂Qi
− ∂2U

∂Qi∂Q j
= curl(TjU )i

= ∂(TjU )

∂Qi
− ∂(TiU )

∂Q j
=
(

∂Tj

∂Qi
− ∂Ti

∂Q j

)
U + Tj

∂U

∂Qi
− Ti

∂U

∂Q j

= ∂Tj

∂Qi
U − ∂Ti

∂Q j
U − Tj TiU + TiTjU (21.42)
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or simpler

0 = Fi j = ∂Tj

∂Qi
− ∂Ti

∂Q j
− (Tj Ti − Ti Tj ). (21.43)

This equation is satisfied trivially, if there is only one nuclear coordinate, i.e., for
diatomic molecules if rotation is neglected.

Now, the gradient of the NACM is

∂

∂Q j
Ti = ∂

∂Q j
< ψs

∂

∂Qi
ψs ′ >=<

∂

∂Q j
ψs

∂

∂Qi
ψs ′ > + < ψs

∂2

∂Qi∂Q j
ψs ′ >

(21.44)

from which

∂

∂Q j
Ti − ∂

∂Qi
Tj =<

∂

∂Q j
ψs

∂

∂Qi
ψs ′ > − <

∂

∂Qi
ψs

∂

∂Q j
ψs ′ > . (21.45)

Furthermore, inserting the complete basis

TiTj = −
∑
s ′

<
∂ψs

∂Qi
ψs ′ >< ψs ′

∂

∂Q j
ψs ′′ >= − <

∂ψs

∂Qi

∂

∂Q j
ψs ′′ > (21.46)

Tj Ti − Ti Tj =<
∂ψs

∂Qi

∂

∂Q j
ψs ′′ > − <

∂ψs

∂Q j

∂

∂Qi
ψs ′′ > . (21.47)

Hence the curl condition (21.43) is satisfied if the basis is complete. Such a basis,
however, is not useful for practical calculations, as convergence is very slow and a
large number of basis states would have to be included.

Now we consider a general unitary transformation of the curl (21.43)

F̃i j = ∂T̃ j

∂Qi
− ∂T̃ i

∂Q j
− (T̃ j T̃i − T̃i T̃ j ) (21.48)

T̃ j = U−1TjU +U−1 ∂U

∂Q j
.

From (21.33) we obtain

T̃ j T̃i = U−1Tj TiU +U−1Tj
∂U

∂Qi
− ∂U−1

∂Q j
TiU − ∂U−1

∂Q j

∂U

∂Qi
(21.49)
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and the commutator

T̃ j T̃i − T̃i T̃ j = U−1(Tj Ti − Ti Tj )U + ∂U−1

∂Qi

∂U

∂Q j
− ∂U−1

∂Q j

∂U

∂Qi

+U−1

(
Tj

∂U

∂Qi
− Ti

∂U

∂Q j

)
−
(

∂U−1

∂Qi
Tj − ∂U−1

∂Q j
Ti

)
U. (21.50)

The gradient

∂T̃ j

∂Qi
= ∂U−1

∂Qi

(
TjU + ∂U

∂Q j

)
+U−1

(
∂Tj

∂Qi
U + Tj

∂U

∂Qi
+ ∂2U

∂Qi∂Q j

)

(21.51)

gives the curl of T̃

∂T̃ j

∂Qi
− ∂T̃i

∂Q j
=
(

∂U−1

∂Qi
Tj − ∂U−1

∂Q j
Ti

)
U

+U−1

(
∂Tj

∂Qi
− ∂Ti

∂Q j

)
U +U−1

(
Tj

∂U

∂Qi
− Ti

∂U

∂Q j

)

+ ∂U−1

∂Qi

∂U

∂Q j
− ∂U−1

∂Q j

∂U

∂Qi
+U−1

(
∂2U

∂Qi∂Q j
− ∂2U

∂Q j∂Qi

)
. (21.52)

Assuming that the second derivatives do not depend on the order, we have finally

F̃i j = ∂T̃ j

∂Qi
− ∂T̃ i

∂Q j
− (T̃ j T̃i − T̃i T̃ j )

= U−1

(
∂Tj

∂Qi
− ∂Ti

∂Q j
− (Tj Ti − Ti Tj )

)
U = U−1Fi jU. (21.53)

which shows that the curl condition Fi j = 0 is invariant to unitary transformations.

21.3 Quasidiabatic States

We would like to reduce the sum in (17.22) to a small group of relevant basis states
which interact strongly, whereas interaction with states outside the group is small
[84]. We denote the group of states by g and its complement by o and use a block
matrix notation where the projectors onto the group and its complement are

P =
(

1g 0
0 0

)
Q = 1 − P =

(
0 0
0 1o

)
. (21.54)

http://dx.doi.org/10.1007/978-3-662-55671-9_17
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We define the group Hamiltonian by restricting (21.21)

H g = P

⎡
⎣diag(Es) −

∑
j

�
2

2Mj

(
∂

∂Q j
+ Tj

)2
⎤
⎦ P. (21.55)

The full matrix of NACMs is

Ti =
(

T g
i T go

i
T og
i T o

i

)
(21.56)

and the restriction of its square is not identical with the square of the restriction since

(T 2
j )

g = (T g
j )

2 + T go
j T og

j . (21.57)

The restricted covariant gradient is

(
∂

∂Q j
+ Tj

)g

= ∂

∂Q j
+ T g

j (21.58)

and the restriction of its square is

([
∂

∂Q j
+ Tj

]2
)g

=
(

∂2

∂Q2
j

+ T 2
j + 2Tj

∂

∂Q j
+ ∂Tj

∂Q j

)g

=
(

∂

∂Q j
+ T g

j

)2

+ T go
j T og

j

(21.59)

hence the group Hamiltonian involves coupling to states outside the group4

H g = diag(Es)
g −

∑
j

�
2

2Mj

(
∂

∂Q j
+ T g

j

)2

−
∑
j

�
2

2Mj
T go
j T og

j . (21.60)

Now, with

(TiTj − Tj Ti )
g = (T g

i T
g
j − T g

j T
g
i ) + (T go

i T og
j − T go

j T og
i ) (21.61)

the curl condition gives

0 = Fg
i j = ∂T g

j

∂Qi
− ∂T g

i

∂Q j
− (Tj Ti − Ti Tj )

g

= ∂T g
j

∂Qi
− ∂T g

i

∂Q j
− (T g

i T
g
j − T g

j T
g
i ) − (T go

i T og
j − T go

j T og
i ). (21.62)

4This is in principle also the case for the Born–Oppenheimer approximation with only one term.
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Hence the curl condition cannot be satisfied within the reduced space of group
states unless coupling to states outside the group is neglected. Therefore derivative
couplings within the group generally cannot be eliminated totally by unitary trans-
formations within the group. Several methods have been proposed to remove at least
the divergent terms and to find a basis of quasidiabatic states.

21.4 Crossing Between Two States

In the following, we consider the simplest case of two crossing states. A unitary
transformation among these can be described by a rotation matrix

U g =
(

cos α sin α
− sin α cos α

)
(21.63)

with the derivative

∂U g

∂Qi
=
(− sin α cos α

− cos α − sin α

)
∂α

∂Qi
(21.64)

and

∂U g

∂Qi
U g† = ∂α

∂Qi

(− sin α cos α
− cos α − sin α

)(
cos α − sin α
sin α cos α

)
= ∂α

∂Qi

(
0 1

−1 0

)
.

(21.65)

The antisymmetric matrix of derivative couplings has the form

T g
i =

(
0 τi

−τi 0

)
(21.66)

with5

τi = ∂α

∂Qi
. (21.67)

The transformed kinetic energy has diagonal and off-diagonal contributions

−
∑ �

2

2Mi

(
∂

∂Qi
+ T g

i

)2

= −
∑ �

2

2Mi

[
∂2

∂Q2
i

− τ2
i +

(
2τi

∂

∂Qi
+ ∂τi

∂Qi

)(
0 1

−1 0

)]
.

(21.68)

5The integrability condition (21.73) for the inverse rotation is fulfilled by construction.
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From

∂τi

∂Q j
=< ψ1

∂2ψ2

∂Q j∂Qi
> + <

∂ψ1

∂Q j

∂ψ2

∂Qi
> (21.69)

we obtain

T g
i T

g
j − T g

j T
g
i = (τiτ j − τ jτi )

(−1
−1

)
= 0 (21.70)

and

∂T g
i

∂Q j
− ∂T g

j

∂Qi
=
(

∂τi

∂Q j
− ∂τ j

∂Qi

)(
0 1

−1 0

)
(21.71)

with

∂τi

∂Q j
− ∂τ j

∂Qi
=<

∂ψ1

∂Q j

∂ψ2

∂Qi
> − <

∂ψ1

∂Qi

∂ψ2

∂Q j
>

=
∑
s>2

T (1,s)
j T (s,2)

i − T (1,s)
i T (s,2)

j . (21.72)

The integrability condition demands

∂α

∂Qi
+ τi = 0 (21.73)

which cannot be fulfilled in general unless the coupling to states outside the group
is neglected. Now, τi is a vector in coordinate space and Helmhotz’ theorem is
applicable which states that it can be written as the sum of a curl free (or longitudinal)
and a purely rotational (or transversal) part. Obviously only the longitudinal part
can be removed by a unitary transformation. According to (21.72) the remaining
rotational part does not involve the divergent terms ∝ (E1(Q) − E2(Q))−1. It might,
however, involve other divergences if three or more states happen to cross at the same
point.

21.5 Avoided Crossing Along One Coordinate

The diabatic energy matrix has the form

Ed =
(
Ed

1 (Q) V (Q)

V (Q) Ed
2 (Q)

)
(21.74)
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and the adiabatic energies are the eigenvalues of Ed

Ea
1,2 = Ed

2 + Ed
1

2
± 1

2

√
(Ed

2 − Ed
1 )2 + 4V 2. (21.75)

Let us now discuss a one-dimensional model with one reaction coordinate Q [91].
Here, crossing of the adiabatic curves is very unlikely, since it occurs only if the two
conditions

Ed
1 (Q) − Ed

d (Q) = V (Q) = 0 (21.76)

are fulfilled simultaneously.6 We consider an avoided crossing where the gap between
the two adiabatic curves has a minimum.

Equation (21.73) becomes

∂U

∂Q
= −τ (Q)U (21.77)

which can be formally solved by

U = exp

{∫ ∞

Q
τ (Q)dQ

}
. (21.78)

For antisymmetric T , the exponential function can be easily evaluated7 to give

U =
(

cos ζ(Q) sin ζ(Q)

− sin ζ(Q) cos ζ(Q)

)
ζ(Q) =

∫ ∞

Q
τ (Q)dQ. (21.79)

The diabatic energy matrix now is

Ed = U−1

(
Ea

1
Ea

2

)
U

=
(

cos2 ζEa
1 + sin2 ζEa

2 sin ζ cos ζ(Ea
1 − Ea

2 )

sin ζ cos ζ(Ea
1 − Ea

2 ) cos2 ζEa
2 + sin2 ζEa

1

)
. (21.80)

At the crossing point

(cos2 ζ0 − sin2 ζ0)(E
ad
1 − Ead

2 ) = 0, (21.81)

6If the two states are of different symmetry then V = 0 and crossing is possible in one dimension.
7For instance by a series expansion.
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which implies

cos2 ζ0 = sin2 ζ0 = 1

2
. (21.82)

Expanding the sine and cosine functions around the crossing point, we have

Ed ≈
⎛
⎝

Ea
1 +Ea

2
2 + (Ea

2 − Ea
1 )(ζ − ζ0) + · · · (Ea

1 − Ea
2 )( 1

2 + (ζ − ζ0)2 + · · · )
(Ea

1 − Ea
2 )( 1

2 + (ζ − ζ0)2 + · · · ) Ea
1 +Ea

2
2 − (Ea

2 − Ea
1 )(ζ − ζ0) + · · ·

⎞
⎠ .

(21.83)

Expanding furthermore the matrix elements

Ead
1 = Ē + Δ

2
+ g1(Q − Q0) + · · · (21.84)

Ead
2 = E − Δ

2
+ g2(Q − Q0) + · · · (21.85)

ζ − ζ0 = −(Q − Q0)T12(Q0) (21.86)

where Δ is the splitting of the adiabatic energies at the crossing point, the interaction
matrix becomes

Ed = E + g1 + g2

2
Q +

(
−(Q − Q0)τ (Q0)Δ

Δ
2 + g1−g2

2 (Q − Q0)

Δ
2 + g1−g2

2 (Q − Q0) (Q − Q0)τ (Q0)Δ

)
+ · · · .

(21.87)

We see that in the diabatic basis the interaction is given by half the splitting of the
adiabatic energies at the crossing point (Fig. 21.3).

Fig. 21.3 Curve crossing
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21.6 Semiclassical Approximation

We want to describe the nuclear motion classically. Therefore we approximate both
nuclear wavefunctions

χ1 = χ2 = φ (21.88)

as a narrow wave packet centered at Q(t) moving in an effective potential V ef f (Q)

with velocity v(t) = Q̇(t)

i�φ̇ = − �
2

2M

∂2φ

∂Q2
+ V ef f (Q)φ. (21.89)

The wavefunction has the form

Ψ =
(
a(t)
b(t)

)
φ(Q). (21.90)

From the time-dependent Schrödinger equation

i�Ψ̇ = i�

(
ȧ(t)
ḃ(t)

)
φ(Q) +

(
a(t)
b(t)

)
i�φ̇(Q) =

[
− �

2

2M

∂2

∂Q2 +
(
E0

1 V
V E0

2

)](
a(t)
b(t)

)
φ(Q)

(21.91)

we obtain

i�

(
ȧ(t)
ḃ(t)

)
φ(Q) =

(
a(t)
b(t)

)[
−i�

∂

∂t
− �

2

2M

∂2

∂Q2

]
φ +

(
E0

1 V
V E0

2

)(
a(t)
b(t)

)
φ(Q) (21.92)

i�

(
ȧ(t)
ḃ(t)

)
φ(Q) =

(
E0

1 − Vef f V
V E0

2 − Vef f

)(
a(t)
b(t)

)
φ(Q). (21.93)

We take the average over Q

i�
∫

dQ φ∗(Q)

(
ȧ(t)
ḃ(t)

)
φ(Q) = i�

(
ȧ(t)
ḃ(t)

)

=
∫

φ∗(Q)

(
E0

1 − Vef f V
V E0

2 − Vef f

)(
a(t)
b(t)

)
φ(Q)

=
(
E0

1(Q(t)) − Vef f (Q(t)) V (Q(t))
V (Q(t)) E0

2(Q(t)) − Vef f (Q(t))

)(
a(t)
b(t)

)
. (21.94)

Since we are only interested in occupation probabilities we neglect the phase shift
due to Vef f (Q) and obtain the semiclassical approximation
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i�

(
ȧ(t)

ḃ(t)

)
=
(
E0

1(Q(t)) V (Q(t))

V (Q(t)) E0
2(Q(t))

)(
a(t)
b(t)

)
. (21.95)

The position of the wavepacket obeys the equation of motion

∂

∂t
< Q >=

∫
dQ Q |χ1(Q)|2 +

∫
dQ Q |χ2(Q)|2

= 1

i�

∫
dQ

(
χd∗

1 χd∗
2

) [
Q,− �

2

2M

∂2

∂Q2
+ Hd(Q)

]
−

(
χd

1
χd

2

)
. (21.96)

Since the second derivative and Hd are self-adjoint and the commutator

[
− �

2

2M

∂2

∂Q2
+ Hd(Q), Q

]
−

= −�
2

M

∂

∂Q
(21.97)

we have

∂

∂t
< Q >=<

i�

M

∂

∂Q
> (21.98)

and similarly

∂

∂t
<

i�

M

∂

∂Q
>= 1

M

∫
dQ

(
χd∗

1 χd∗
2

) [ ∂

∂Q
,− �

2

2M

∂2

∂Q2
+ Hd(Q)

]
−

(
χd

1
χd

2

)

= 1

M
<

∂

∂Q
Hd(Q) > . (21.99)

Consistency then requires

Vef f (Q(t)) =< Hd(Q) > +const. (21.100)

but calculation of the average implies knowledge of the exact solution! However,
if the initial velocity of the wavepacket is large enough and the acceleration due to
the average force can be neglected, we may approximate the classical trajectory as a
motion with constant velocity. This leads to the famous Landau–Zener model.

21.7 Landau–Zener Model

Landau and Zener [92, 93] investigated the curve crossing process treating the nuclear
motion classically by introducing a trajectory

Q(t) = Q0 + vt (21.101)
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where they assumed a constant velocity in the vicinity of the crossing point. They
investigated the time-dependent model Hamiltonian with constant diabatic coupling

H(t) =
(
E1(Q(t)) V

V E2(Q(t))

)
=
(− 1

2
∂ΔE
∂t t V

V 1
2

∂ΔE
∂t t

)
(21.102)

and solved the time dependent Schrödinger equation

i�
∂

∂t

(
c1

c2

)
= H(t)

(
c1

c2

)
(21.103)

which reads explicitly

i�
∂c1

∂t
= E1(t)c1 + Vc2

i�
∂c2

∂t
= E2(t) + Vc1. (21.104)

Substituting

c1 = a1e
1

i�

∫
E1(t)dt

c2 = a2e
1

i�

∫
E2(t)dt (21.105)

the equations simplify

i�
∂a1

∂t
= V e

1
i�

∫
(E2(t)−E1(t)dta2

i�
∂a2

∂t
= V e− 1

i�

∫
(E2(t)−E1(t)dta1. (21.106)

Let us consider the limit of small V and calculate the transition probability in lowest
order. From the initial condition a1(−∞) = 1, a2(−∞) = 0 we get

∫ t

0
(E2(t

′) − E1(t
′))dt ′ = ∂ΔE

∂t

t2

2
(21.107)

a2(∞) ≈ 1

i�
V
∫ ∞

−∞
e− 1

i�
∂ΔE
∂t

t2

2 dt = V

i�

√
2π�

−i ∂ΔE
∂t

(21.108)
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Fig. 21.4 Velocity dependence of the transition. At low velocities the electronic wavefunction
follows the nuclear motion adiabatically corresponding to a transition between the diabatic states.
At high velocities the probability for this transition (21.110) becomes slow. Full diabatic states,
dashed adiabatic states

and the transition probability is

P12 = |a2(∞)|2 = 2πV 2

�| ∂ΔE
∂t | . (21.109)

Landau and Zener calculated the transition probability for arbitrary coupling strength
(Fig. 21.4)

PLZ
12 = 1 − exp

(
− 2πV 2

�| ∂ΔE
∂t |

)
. (21.110)

21.8 Application to Diabatic ET

If we describe the diabatic potentials as displaced harmonic oscillators

E1(Q) = mω2

2
Q2 E2(Q) = ΔG + mω2

2
(Q − Q1)

2 (21.111)

the energy gap is with

Q1 =
√

2λ

mω2
(21.112)

E2 − E1 = ΔG + mω2

2
(Q2

1 − 2Q1Q) = ΔG + λ − ω
√

2mλQ. (21.113)
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Fig. 21.5 Multiple crossing
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The time derivative of the energy gap is

∂(E2(Q) − E1(Q))

∂t
= −ω

√
2mλ

∂Q

∂t
(21.114)

and the average velocity is

<
∂Q

∂t
>=

∫∞
−∞ |v|e−mv2/2kT dv∫∞

−∞ e−mv2/2kT dv
=
√

2kT

mπ
. (21.115)

The probability of curve crossing during one period of the oscillation is given by
2P12 (see Fig. 21.5).

Together, this gives a transmission coefficient

κel = 2
2πV 2

�|ω√
2λ
√

2kT
π

|
= 2πV 2

�

2π

ω

1√
4πλkT

(21.116)

and a rate of

k = 2πV 2

�

1√
4πλkT

e−ΔGa/kT . (21.117)

21.9 Conical Intersections

In a diabatic representation, the potential energy of a two-state system has the general
form

V =
(

Ed
1 (Q) V12(Q)

V12(Q)† Ed
2 (Q)

)
. (21.118)

At a point of degeneracy Q0 two conditions have to be fulfilled simultaneously

V12(Q0) = Ed
1 (Q0) − Ed

2 (Q0) = 0 (21.119)
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Fig. 21.6 Conical
intersection
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which is in general only possible if at least two different coordinates are involved. In
two dimensions degeneracy is found at a single point, a so-called conical intersection
(Fig. 21.6). This type of curve crossing is very important for ultrafast transitions. In
more than two dimensions crossings appear at higher dimensional surfaces. The
terminology of conical intersections is also used here.

We expand the potential energy matrix around the point of degeneracy [84]8

V =
(
E(Q0) 0

0 E(Q0)

)
+ ΔQ

( ∇Ed
1 ∇V12

∇V †
12 ∇Ed

2

)
+ · · ·

= E(Q0
i ) + ΔQ

2
∇(E1 + E2) + ΔQ

(
x y
y∗ −x

)
+ · · · (21.120)

The degeneracy is lifted in the two-dimensional space spanned by the vectors

x = 1

2
∇(Ed

1 − Ed
2 ) (21.121)

y = ∇V12 (21.122)

the so-called branching space. Orthogonal to it is the intersection space in which
degeneracy is not lifted. For a number of N internal coordinates it forms a (N-2)
dimensional seam. The topology of the adiabatic energy surfaces

Ea
1,2 = E(Q0) + ΔQ

2
∇(E1 + E2) ±

√
|xΔQ|2 + |yΔQ|2 (21.123)

is a double cone with the two surfaces meeting at the intersection point (Fig. 21.6).
If the two electronic states are of different symmetry, the modulation of the dia-
batic energies H11, H22 is due to totally symmetric modes whereas the interaction

8The energy at the intersection point is E(Q0) = Ea(Q0) = Ed (Q0). Furthermore the sum of the
diagonal elements (the trace) is invariant Ea

1 + Ea
2 = Ed

1 + Ed
2 = E1 + E2.
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H12 is induced by non-totally symmetric modes. (The product of the symmetries of
the two states and the vibration must include the totally symmetric representation.)
This kind of conical intersection is called symmetry induced, whereas intersections
between states of the same or no symmetry are called accidental. A special case is
the interaction of two states which are degenerate by symmetry, e.g., belong to an E
representation. This case relates to the Jan-Teller effect [94].

21.10 Linear Vibronic Coupling Model

The simplest model to study the dynamics in the vicinity of a conical intersection
is the LVC model which is obtained by combining the harmonic oscillator model
(Chap. 19) with the expansion (21.120) for two harmonic modes [94] with elongations
x1,2 relative to the intersection point. The diabatic model Hamiltonian reads [84]

H = TN + ω2
1

2
x2

1 + ω2
2

2
x2

2 + σx1 +
(−δx1 λ x2

λ x2 δx1

)
(21.124)

and the corresponding adiabatic energy surfaces are

Ead
1,2 = ω2

1

2
x2

1 + ω2
2

2
x2

2 + σx1 ±
√

(δx1)2 + (λx2)2. (21.125)

Depending on the parameters, two different types of geometry can be distinguished
[95]. For |σ| < |δ| the slopes of the two diabatic energies have different sign and the
intersection point is at the minimum of the upper energy surface (peaked intersection).
In the opposite case |σ| > |δ| the signs are the same and the intersection is of the
sloped type (Fig. 21.7).

The potential energy matrix (21.124) is diagonalized by a rotation (21.63)

(
Ead

1

Ead
2

)
=
(

cos α − sin α

sin α cos α

)(
E1 V

V E2

)(
cos α sin α

− sin α cos α

)

=
(
E1 + 1−cos(2α)

2 (E2 − E1) − sin(2α)V cos(2α)V − 1
2 sin(2α)(E2 − E1)

cos(2α)V + 1
2 sin(2α)(E2 − E1) E2 − 1−cos(2α)

2 (E2 − E1) + sin(2α)V

)

(21.126)

where the rotation angle satisfies

tan(2α) = 2V

E2 − E1
= λx2

δx1
. (21.127)

Now, let us follow a circle in the x1 − x2 plane around the intersection point. The
polar angle γ in the x1 − x2 plane is related to α by

http://dx.doi.org/10.1007/978-3-662-55671-9_19
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Fig. 21.7 Linear vibronic coupling model. Left If the slopes of the diabatic energies have the same
sign, a sloped intersection results. Right If the slopes of the diabatic energies have different sign,
the intersection peaks at the minimum of the upper adiabatic surface

tan γ = x2

x1
= δ

λ
tan(2α). (21.128)

Following a closed loop around the intersection changes γ by 2π and α by π and
therefore produces a sign change [96] of the two adiabatic electronic wavefunctions

ψad
1 = ψd

1 cos α − ψd
2 sin α (21.129)

ψad
2 = ψd

1 sin α + ψd
2 cos α. (21.130)

This phenomenon is well known as geometric phase [97] or Berry phase [98].
Since the total wavefunction must be single-valued, the sign change must appear
both for its electronic and the nuclear part which has to be taken into account for
simulations of the nuclear dynamics by special boundary conditions at a cut in the
x1 − x2 plane or an extra phase factor which makes the electronic wavefunction
complex valued [99].

The nuclear derivatives transform according to

(
cos α − sin α
sin α cos α

)
∂

∂xi

(
cos α sin α

− sin α cos α

)
= ∂

∂xi
+
(

0 τi
−τi 0

)
(21.131)

where now explicitly

τx1 = ∂α

∂x1
= −λδ

2(δ2x2
1 + λ2x2

2 )
x2 (21.132)
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Fig. 21.8 Nuclear gradient
of the LVC model

–1

–0.5

0

0.5

1

x2

–1 –0.5 0 0.5 1
x1

τx2 = ∂α

∂x2
= λδ

2(δ2x2
1 + λ2x2

2 )
x1. (21.133)

This gradient field looks like that of a curl around the intersection point (Fig. 21.8)
where it diverges as

|τ | =
|λδ|

√
x2

1 + x2
2

2(δ2x2
1 + λ2x2

2 )
∼ 1

r
. (21.134)

The kinetic energy is

−�2

2

∑[
∂

∂xi
+
(

0 1
−1 0

)
τi

]2

i
= −�2

2

∑
i

[
∂2

∂x2
i

− τ2
i +

(
0 1

−1 0

)(
∂τi

∂xi
+ 2τi

∂

∂xi

)]
.

(21.135)

The diagonal element of the vibronic coupling is

V nad
1,1 = V nad

2,2 = �
2

2
(τ 2

x1
+ τ 2

x2
) = �

2

8

λ2δ2(x2
1 + x2

2 )

(δ2x2
1 + λ2x2

2 )2
(21.136)

and the nondiagonal element

V nad
1,2 = −�

2

2

∑
i

(
∂τi

∂xi
+ 2τi

∂

∂xi

)

= −�
2

2

[
λδ(δ2 − λ2)x1x2

(δ2x2
1 + λ2x2

2 )2
+ λδ

(δ2x2
1 + λ2x2

2 )

(
x1

∂

∂x2
− x2

∂

∂x1

)]
(21.137)
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which can be rewritten with

L̂ = −i�

(
x1

∂

∂x2
− x2

∂

∂x1

)

and the commutator

[
L̂,

1

(δ2x2
1 + λ2x2

2 )

]
= −i�

2x1x2(δ
2 − λ2)

(δ2x2
1 + λ2x2

2 )2

as

− �
2λδ

2

{
1

(δ2x2
1 + λ2x2

2 )

i

�
L̂ + i

2�

[
L̂,

1

(δ2x2
1 + λ2x2

2 )

]}

= − i�λδ

4

{
1

(δ2x2
1 + λ2x2

2 )
L̂ + L̂

1

(δ2x2
1 + λ2x2

2 )

}
. (21.138)

Problems

21.1 Crude Adiabatic Model

Consider the crossing of two electronic states along a coordinate Q. As basis functions
we use two coordinate independent electronic wavefunctions which diagonalize the
Born–Oppenheimer Hamiltonian at the crossing point Q0

(Tel + V (Q0))ϕ
1,2 = E1,2ϕ1,2.

Use the following ansatz functions

Ψ1(r, Q) = (cos ζ(Q)ϕ1(r) − sin ζ(Q)ϕ2(r))χ1(Q)

Ψ2(r, Q) = (sin ζ(Q)ϕ1(r) + cos ζ(Q)ϕ2(r))χ2(Q)

which can be written in more compact form

(Ψ1, Ψ2) = (ϕ1,ϕ2)

(
c s

−s c

)(
χ1

χ2

)
.

The Hamiltonian is partitioned as

H = TN + Tel + V (r, Q0) + ΔV (r, Q).
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Calculate the matrix elements of the Hamiltonian
(
H11 H12

H21 H22

)
=

=
(
c −s
s c

)(
ϕ†

1

ϕ†
2

)(
− �

2

2m

∂2

∂Q2
+ Tel + V (Q0) + ΔV

) (
ϕ1,ϕ2

) ( c s
−s c

)

(21.139)

where χ(Q) and ζ(Q) depend on the coordinate Q whereas the basis functions ϕ1,2

do not. Chose ζ(Q) such that Tel + V is diagonalized. Evaluate the nonadiabatic
interaction terms at the crossing point Q0.



Chapter 22
Dynamics of an Excited State

In this chapter, we discuss the decay of an initially excited state into a quasi-
continuum of final states. We introduce the Green’s formalism to calculate the prop-
agator and apply it to the ladder model, which can be solved analytically. In the
statistical limit which is applicable to larger, especially bio-molecules, an exponen-
tial decay results. We use the saddle point method to treat a more realistic model
with a distribution of coupling matrix elements and energies. Applying the displaced
oscillator model, we obtain the Marcus expression in the classical limit. Finally, we
discuss the energy gap law for intramolecular radiationless transitions.

22.1 Coupling to a Quasi-continuum

In the following, we would like to describe the dynamics of an excited state |s>

which is prepared, e.g., by electronic excitation, due to absorption of radiation. This
state is an eigenstate of the diabatic Hamiltonian with energy E0

s . Close in energy to
|s> is a manifold of other states {|l>}, which is not populated during the short time
excitation, since from the ground state only the transition |0 >→ |s> is optically
allowed. The l-states are weakly coupled to a continuum of bath states1 and therefore
have a finite lifetime (Fig. 22.1).

1For instance the field of electromagnetic radiation.
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Fig. 22.1 Dynamics of an
excited state. The excited
state |s> decays into a
manifold of states |l> which
are weakly coupled to a
continuum

The bath states will not be considered explicitly. Instead, we use a non Hermitian
Hamiltonian for the subspace spanned by |s> and {|l>}. We assume that the Hamil-
tonian is already diagonal2 with respect to the manifold {|l>}, which has complex
energies3

E0
l = εl − i

Γl

2
. (22.1)

This describes the exponential decay ∼e−Γl t of the l-states into the continuum states.
Thus, the model Hamiltonian takes the form

H = H 0 + V =

⎛
⎜⎜⎜⎝

E0
s Vs1 · · · VsL

V1s E0
1

...
. . .

VLs EL

⎞
⎟⎟⎟⎠ . (22.2)

22.2 Green’s Formalism

For a Hamiltonian Ĥ with a complete set of eigenstates |n > obeying

Ĥ |n >= En|n > (22.3)

the corresponding Green’s operator or resolvent [69] is defined as

Ĝ(E) = (E − Ĥ)−1 =
∑
n

|n >
1

E − En
< n|. (22.4)

2For non Hermitian operators we have to distinguish left eigenvectors and right eigenvectors.
3This is also known as the damping approximation.
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The Green’s operator is very useful for perturbation theory. For a Hamiltonian which
can be divided into a zero order part with known eigenstates and a perturbation V̂

Ĥ = Ĥ 0 + V̂ . (22.5)

An eigenstate Ψ of Ĥ with energy E obeys

0 = (E − Ĥ)Ψ = (E − Ĥ 0)Ψ − V̂Ψ (22.6)

from which

(E − Ĥ 0)Ψ = V̂Ψ (22.7)

which can be formally solved by

Ψ = G0(E)V̂Ψ. (22.8)

This equation serves as the basis for an iterative improvement of an approximate
eigenstate.

22.2.1 Resolvent and Propagator

For a Hermitian Hamiltonian, the poles of the Green’s operator are on the real axis
and the time evolution operator (the so-called propagator) is defined by (Fig. 22.2)

G̃(t) = G+(t) − G−(t) (22.9)

G±(t) = −1

2πi

∫ ∞±iε

−∞±iε
e− iE

�
tG(E) dE . (22.10)

G̃(t) is given by an integral, which encloses all the poles En . Integration between
two poles does not contribute, since the integration path can be taken to be on the
real axis and the two contributions vanish. Clockwise integration along a small circle
around a pole gives −2πi times the residual value which is (Fig. 22.3)

lim
E→En

e− iE
�
tG(E)(E − En) = |n > e−iEnt/� < n|. (22.11)
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Fig. 22.2 Integration
contour for G±(t)

Fig. 22.3 Integration
contour for
G̃(t) = G+(t) − G−(t)

Hence, we find

G̃(t) =
∑

|n > e− iE
�
t < n| = exp

(
t

i�
H

)
. (22.12)

For times t < 0, the integration path for G+ can be closed in the upper half of the
complex plane where the integrand

e− iE
�
tG(E) = e−|t |�(E)/�e−it�(E)/�G(E) (22.13)

vanishes exponentially for large |E | (Fig. 22.4).
Hence

G+(t) = 0 for t < 0. (22.14)

We shift the integration path for times t > 0 into the lower half of the complex plane,
where again the integrand

e− iE
�
tG(E) = e|t |(−|�(E)|)/�e−it�(E)/�G(E) (22.15)
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Fig. 22.4 Deformation of
the integration contour for
G+(t)

Fig. 22.5 Integration
contour for a non-Hermitian
Hamiltonian

vanishes exponentially and we sum over all residuals to find

G+(t) = G̃(t) for t > 0. (22.16)

Hence G+(t) = �(t)G̃(t) is the time evolution operator for t > 0.4 There are
additional interactions for times t < 0 which prepare the initial state

ψ(t = 0) = |s > . (22.17)

The integration contour for a non-Hermitian Hamiltonian can be chosen as the real
axis for G+(t), which now becomes the Fourier transform of the resolvent

G+(t) = −1

2πi

∫ ∞

−∞
dE e− iE

�
tG(E) (22.18)

(Fig. 22.5).
On the real axis, each pole corresponds to a Lorentzian

1

E − En ± iε
= (E − En)

(E − En)2 + ε2
∓ i

ε

(E − En)2 + ε2

4Similarly we find G−(t) = �(−t)G̃(t) is the time evolution operator for negative times.
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Fig. 22.6 Lorentzian. Real
(top) and imaginary (bottom)
part of 1/(x − iε) are shown
for ε = 0.1, 0.3, 0.01
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which in the limit of small ε becomes a distribution (generalized function) (Fig. 22.6)5

lim
ε→0

1

E − En ± iε
= (P.V .)

1

E − En
∓ πiδ(E − En). (22.19)

22.2.2 Dyson Equation

Dividing the Hamiltonian in the diagonal part H 0 and the interaction V we have

(G0)−1 = E − H 0 (22.20)

G−1 = E − H = (G0)−1 − V . (22.21)

Multiplication from the left with G0 and from the right with G gives the Dyson
equation

G = G0 + G0VG (22.22)

which can be iterated

G = G0 + G0V (G0 + G0VG) = G0 + G0VG0 + G0VG0VG (22.23)

5P.V. denotes the Cauchy principal value for which
∫ ∞
−∞(P.V .) 1

x f (x)dx = limε→0
∫ −ε
−∞

1
x f (x)dx + ∫ ∞

ε
1
x f (x)dx and δ the delta-distribution, for which

∫ ∞
−∞ δ(x) f (x)dx = f (0).
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G = G0 +G0V (G0 +G0V (G0 +G0VG) = G0 +G0VG0 +G0VG0VG0 +· · ·
(22.24)

22.2.3 Transition Operator

The transition operator or T-matrix is defined as

T = V + VGV = V + VG0V + VG0VG0V + · · · (22.25)

From

G0TG0 = G0VG0 + G0VG0VG0 + · · · (22.26)

we find an expansion similar to (22.23)

G = G0 + G0TG0 (22.27)

which is quite useful for higher order perturbation theory. The transition rate between
two eigenstates of H0, which are induced by the interaction V , is given in arbitrary
order by the generalized golden rule expression [69]

Γn→m = 2π

�
| < m|T (En + iε)|n > |2δ(En − Em) (22.28)

with the matrix element

< m|T (En + iε)|n >=< m|V |n > +
∑
k �=m

< m|V |k >< k|V |n >

Em − Ek
+· · · (22.29)

22.2.4 Level Shift

We consider now a state |s>which is initially populated and decays into a weakly
coupled manifold of bath states |l>. At times t > 0 the wavefunction can be written
as a superposition of stationary states

ψ(t) = G+(t)|s >=
∑
n

|n > e−iEnt/� < n|s > (22.30)

and the survival probability is
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Ps(t) = | < s|ψ > |2 = | < s|G+(t)|s > |2 = |G̃ss(t)|2. (22.31)

We project the iterated Dyson equation (22.23) on the initial state

|s >=

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ (22.32)

Gss =< s|G|s >=< s|G0|s > + < s|G0VG0|s > + < s|G0VG0VG|s > .

(22.33)

Now

G0(E) =

⎛
⎜⎜⎜⎝

(E − E0
s )

−1

(E − E0
1)

−1

. . .

(E − E0
L)

−1

⎞
⎟⎟⎟⎠ (22.34)

is diagonal and

V =

⎛
⎜⎜⎜⎝

0 Vs1 · · · VsL

V1s 0
...

. . .

VLs 0

⎞
⎟⎟⎟⎠ (22.35)

has only off diagonal zero elements. Therefore

< s|G0VG0|s >=< s|G0|s >< s|V |s >< s|G0|s >= 0 (22.36)

and

< s|G0VG0VG|s >=< s|G0|s >< s|V |l >< l|G0|l >< l|V |s >< s|G|s >

(22.37)

Gss = G0
ss +

∑
l

G0
ssVslG

0
ll VlsGss (22.38)

(
1 − G0

ss

∑
l

VslG
0
ll Vls

)
Gss = G0

ss (22.39)
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Gss = G0
ss

1 − G0
ss

∑
l VslG0

ll Vls
=

1
E−E0

s

1 − 1
E−E0

s

∑
l

|Vsl |2
E−E0

l

= 1

E − E0
s − Rs(E)

(22.40)

with the level shift operator [100]

Rs(E) =
∑
l

|Vsl |2
E − εl + i Γl

2

. (22.41)

The poles of the Green’s function Gss are given by the implicit equation

Ep = E0
s + Rs(Ep) = E0

s +
∑
l

|Vsl |2
Ep − E0

l

. (22.42)

Generally, the Green’s function is meromorphic and can be represented as

Gss(E) =
∑
p

Ap

E − Ep
(22.43)

where the residuals are defined by

Ap = lim
E→Ep

Gss(E)(E − Ep). (22.44)

The probability of finding the system still in the state |s> at time t > 0 is

Ps(t) = | < s|G̃(t)|s > |2 = |G̃ss(t)|2, (22.45)

where the propagator is the Fourier transform of the Green’s function

G̃+ss(t) = 1

2πi

∫ ∞

−∞
e

E
i� tGss(E)dE = θ(t)

∑
p

Ape
Ep
i� t . (22.46)

22.3 Ladder Model

We now want to study a simplified model which can be solved analytically. The
energy of |s> is set to zero. The manifold {|l >} consists of infinitely equally spaced
states with equal width

E0
l = α + lΔε − i

Γ

2
(22.47)



304 22 Dynamics of an Excited State

and the interaction Vsl = V is taken independent on l. With this simplification the
poles are solutions of

Ep =
l=∞∑
l=−∞

V 2

Ep − α − lΔε + i Γ
2

(22.48)

which can be written using the identity6

cot(z) =
∞∑

l=−∞

1

z − lπ
(22.49)

as

Ep = V 2π

Δε
cot

(
π

Δε

(
Ep − α + i

Γ

2

))
. (22.50)

For the following discussion, it is convenient to measure all energy quantities in units
of π/Δε and define

α̃ = απ/Δε Γ̃ = Γ π/Δε (22.51)

Ẽ p = Epπ/Δε Ṽ = Vπ/Δε (22.52)

to have

Ẽ p = Ẽr
p − iΓ̃p

2
= Ṽ 2 cot

{
Ẽ p − α̃ + i

Γ̃

2

}
(22.53)

which can be split into real and imaginary part

Ẽr
p

Ṽ 2
= sin(2(Ẽr

p − α̃))

cosh(Γ̃p − Γ̃ ) − cos(2(Ẽr
p − α̃))

(22.54)

− Γ̃p

2Ṽ 2
= sinh(Γ̃p − Γ̃ )

cosh(Γ̃p − Γ̃ ) − cos(2(Ẽr
p − α̃))

. (22.55)

We now have to distinguish two limiting cases.

6cot(z) has single poles at z = lπ with residues limz→lπ cot(z)(z − lπ) = 1.
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Fig. 22.7 Small molecule
limit. The figure shows the
graphical solution of
x = cot(x − 1)

The Small Molecule Limit

For small molecules the density of states 1/Δε is small. If we keep the lifetime of
the l-states fixed then Γ̃ is small in this limit and the poles are close to the real axis.7

We consider first the solution which is closest to zero

Ẽ p = Ẽ0
p − i

Γ̃p

2
. (22.56)

The complex cotangent can be expanded for small imaginary part of its argument

cot(x + iy) ≈ cot x − iy(1 + cot2 x) (22.57)

For 0 < α < Δε we approximate

Ẽ0
p − i

Γ̃p

2
≈ Ṽ 2 cot

(
Ẽ0

p − α̃
)

−
[
1 + cot2

(
Ẽ0

p − α̃
)]

iṼ 2 Γ̃ − Γ̃p

2
. (22.58)

The real part is the solution of the real equation (Fig. 22.7)

Ẽ0
p ≈ Ṽ 2 cot

(
Ẽ0

p − α̃
)

(22.59)

and the imaginary part

Γ̃p ≈ Ṽ 2
[
1 + cot2

(
Ẽ0

p − α̃
)]

(Γ̃ − Γ̃p)

≈ (Γ̃ − Γ̃p)

⎛
⎝Ṽ 2 +

(
Ẽ0

p

Ṽ

)2
⎞
⎠ (22.60)

7We assume that α �= 0.
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Γp ≈

(
Ṽ 2 +

(
Ẽ0

p

Ṽ

)2
)

1 +
(
Ṽ 2 +

(
Ẽ0

p

Ṽ

)2
)Γ (22.61)

which in the case Ṽ small but Ṽ > Ẽ0
p gives

Γ̃p ≈ Ṽ 2Γ̃ , Γp ≈ π2 V 2

Δε2
Γ (22.62)

and in the case of large Ṽ

Γ̃p ≈ Γ̃ . (22.63)

All other poles are only weakly disturbed. The residual of the Green’s function
follows from

E = Ep + z (22.64)

1

E − Rs(E)
= 1

Ep + z − Rs(Ep + z)

= 1

Ep + z − Rs(Ep) − z dRs
dEp

= 1

z(1 − dRs
dE (Ep))

(22.65)

Ap = 1

1 − dRs
dE (Ep)

= 1

1 + V 2
[
1 + cot2

(
π
Δε (Ep − α + i Γ

2 )
)] = 1

1 + V 2 π2

Δε2 + E2
p/V 2

(22.66)

= V 2

E2
p + (1 + V 2 π2

Δε2 )V 2
.

As a function of Ep, it has the form of a Lorentzian with a width of V
√

1 + V 2 π2

Δε2 .
Since the poles are between the l-states, the density of poles is also given by 1/Δε.
Hence contributions from poles close to zero are the most important and for small
V one pole is dominant.

The Statistical Limit

Consider now the limit of very dense states with Γ̃ > 1. This condition is usually
fulfilled in larger, especially bio-molecules. To calculate the propagator we need the
Green’s function Gss on the real axis. For real valued E , the level shift becomes
approximately (Fig. 22.8)
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Fig. 22.8 Statistical Limit. Real (left) and imaginary (right) parts of
∑

n
1

E−nΔε+iΓ/2 =
π
Δε cot

(
π
Δε (E + i Γ

2 )
)

are shown for Δε = 1, Γ = 0.2, 0.5, 1.0, 2.0 on the real E-axis. For large
damping Γ the real part approaches 0 and the imaginary part −1

E

G(E)

E

G(E)

Fig. 22.9 On the real energy axis, a large number of poles is replaced by one effective pole

Rs(E) = V 2πρ cot

(
π

Δε

(
E − α + i

Γ

2

))
≈ −iV 2 π

Δε
(22.67)

and the Green’s function Gss becomes a smooth function on the real axis

Gss ≈ 1

E + iV 2 π
Δε

. (22.68)

The large number of poles is replaced by one effective imaginary pole (Fig. 22.9)

Ep = −iV 2 π

Δε
(22.69)

and the initial state decays as

P(t) = |e −iV 2πρ
�

t |2 = e−kt (22.70)

with the rate
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k = 2πV 2

�
ρ (22.71)

where

ρ = 1

Δε
(22.72)

is the density of states.

22.4 Description Within the Saddle Point Method

In the following we use the saddle point method (Appendix E)8 which is an asymptotic
method to calculate integrals of the type

∫ ∞

−∞
eφ(x)dx ≈ eφ(z0)

√
2π

|φ′′(z0)| (22.73)

where the complex valued saddle point z0 is determined by the equation

φ′(z0) = 0. (22.74)

This method is useful also for more general cases in the statistical limit, i.e.,
provided the width of the states is large compared to the energy spacing.

Application to the Ladder Model

We consider a more realistic ladder model where the energy of the states is bounded
from below (Fig. 22.10). The initial state is at Es = ΔE and the ladder states have
energies

El = lΔε, l = 0, 1, 2, . . . (22.75)

Fig. 22.10 Decay into a
quasi-continuum

s

Eo
Δ lE E  

Δε

E

V

8Also known as method of steepest descent or Laplace method.
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We start from the Golden rule expression

k =
∞∑
l=0

2πV 2

�
δ(Es − El) =

∞∑
l=0

2πV 2

�
δ(ΔE − εl) (22.76)

and represent the delta function by a Fourier integral

δ(E) = 1

2π�

∫ ∞

−∞
e−i E

�
t dt. (22.77)

The rate is

k =
∞∑
l=0

V 2

�2

∫ ∞

−∞
e−i ΔE−εl

�
t dt (22.78)

and exchanging integration and summation

k =
∫

dt
∞∑
l=0

V 2

�2
e−it (ΔE−lΔε)/�. (22.79)

With the definition

z(t) =
∞∑
l=0

V 2

�2
eit lΔε/� (22.80)

we have

φ = −it ΔE/� + ln(z) (22.81)

k =
∫

eφdt =
∫

dt e−it ΔE/�eln(z). (22.82)

The saddle point equation is

0 = dφ

dt
= − iΔE

�
+ 1

z

dz

dt
(22.83)

from which
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ΔE = −i�

∑∞
l=0

ilΔε
�

eit lΔε/�

∑∞
l=0 eit lΔε/�

=
∑∞

l=0 lΔεeit lΔε/�

∑∞
l=0 eit lΔε/�

. (22.84)

Since ΔE is real valued, we look for a saddle point on the positive imaginary axis
and substitute

its/� = −β (22.85)

ΔE =
∑∞

l=0 lΔε e−lβΔε

∑∞
l=0 e−lβΔε

= − ∂

∂β
ln

[ ∞∑
l=0

e−lβΔε

]
= − ∂

∂β
ln

[
1

1 − e−βΔε

]

= ∂

∂β
ln

[
1 − e−βΔε

] = Δε

e−βΔε − 1
(22.86)

which determines

β = 1

Δε
ln

[
1 + Δε

ΔE

]
. (22.87)

The saddle point equation now has a quasi-thermodynamic meaning

ΔE = 1

z

∞∑
l=0

V 2

�2
lΔεe−lβΔε =< lΔε > (22.88)

where β plays the role of 1/kBT . The second derivative relates to the width of the
energy distribution

d2 ln z

dt2
= d

dt

(
dz
dt

z

)
=

d2z
dt2

z
−

(
dz
dt

z

)2

= 1

z

∑
l

V 2

�2

−(lΔε)2

�2
e−βlΔε − 1

z2

(∑
l

V 2

�2

ilΔε

�
e−βlΔε

)2

(22.89)

= − <
(lΔε)2

�2
> + <

lΔε

�
>2 .

For small energy spacing Δε � ΔE we find

β ≈ 1

ΔE
(22.90)
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z =
∞∑
l=0

V 2

�2
e−lβΔε ≈ V 2

�2

1

1 − e−βΔε
≈ V 2

�2

ΔE

Δε
(22.91)

φ(ts) = βΔE + ln(z) ≈ 1 + ln

[
V 2

�2

ΔE

Δε

]
(22.92)

eφ(ts ) = ze1 = V 2

�2

ΔE

Δε
e1 (22.93)

∂2

∂t2
φ = ∂2

∂t2
ln z = − 1

�2

∂2

∂β2
ln

[
1 − e−βΔε

]

= − 1

�2

∂

∂β

[−Δε e−βΔε

1 − e−βΔε

]
≈ 1

�2

∂

∂β

[
e−βΔε

β

]

≈ 1

�2

[
−e−βΔεΔε

β
− e−βΔε

β2

]
≈ − (ΔE)2

�2
(22.94)

eφ(ts )

√
2π

|φ′′(ts)| = V 2

�2

ΔE

Δε
e1

√
2π

(ΔE)2
�2 = 2πV 2

�
e1

√
1

2π

1

Δε
(22.95)

where the factor

e1

√
1

2π
≈ 1.08. (22.96)

Now let us consider a more general model with a distribution of matrix elements
Vsl and energies εl [101].

All energies are taken relative to the lowest state of the continuum E0 (Fig. 22.11)

Es = E0 + ΔE El = E0 + εl . (22.97)

The rate (22.79) becomes

k =
∫ ∞

−∞
dt

∞∑
l=0

V 2
sl

�2
e

ΔE−εl
i� t =

∫ ∞

−∞
dt e− i

�
ΔE t+ln(z) (22.98)

with
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Fig. 22.11 General ladder
model

l>

l
ε

Vsl

Δ

s>

E

z =
∞∑
l=0

V 2
sl

�2
e

iεl
�
t . (22.99)

The saddle point equation becomes

− i

�
ΔE + d ln z(ts)

dt
= 0 (22.100)

which after substitution

its
�

= −β (22.101)

involves the quasi-thermodynamic average

ΔE = 1

z

∞∑
l=0

V 2
sl

�2
εle

−βεl =< εl > (22.102)

where the real variable β plays the role of 1/kBT and gl = V 2
sl/�

2 that of a degeneracy
factor. The second derivative again relates to the width of the energy distribution

d2 ln z

dt2
= 1

z

∞∑
l=0

gl
−ε2

l

�2
e−βεl − 1

z2

( ∞∑
l=0

gl
iεl
�

e−βεl

)2

(22.103)

= − <
ε2
l

�2
> + <

εl

�
>2 .

Finally, the saddle point approximation gives
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k =
∫ ∞

−∞
dt e− i

�
ΔE t+ln(z) = z(ts)e

βΔE

√
2π�2

< ε2 > − < ε >2

=
∑
l

V 2
sl

�
e−β(εl−ΔE)

√
2π

< ε2 > − < ε >2
. (22.104)

22.5 The Energy Gap Law

We now want to apply the displaced harmonic oscillator model (Chap. 19) to the tran-
sition between the vibrational manifolds of two electronic states. We assume that the
Condon approximation is applicable and the transition matrix element factorizes into
an electronic factor V and a Franck–Condon factor FC(i, f ) = | < χi |χ f > |2 .
This approximation is valid in many cases, e.g., for allowed optical transitions (18.3)
and intramolecular radiationless transitions but also for intermolecular energy trans-
fer processes. Energy conservation requires that the released electronic excitation
energy is balanced by vibrational excitation (Fig. 22.12), hence

0 = E f − Ei = �ω f − (ΔE + �ωi ) (22.105)

The transition rate for a radiationless process with constant V is (compare (18.40)
for a radiative transition)

Fig. 22.12 Displaced
oscillator model for
radiationless transitions

χi

χf
hωf

hωi

Ef

Ei

EΔ EΔ

Q

http://dx.doi.org/10.1007/978-3-662-55671-9_19
http://dx.doi.org/10.1007/978-3-662-55671-9_18
http://dx.doi.org/10.1007/978-3-662-55671-9_18
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k = 2πV 2

�

∑
i

Pi FC(i, f )δ(ΔE − �ω f + �ωi )

= 2πV 2

�
FCD(ΔE)

= V 2

�2

∫ ∞

−∞
dt e

−i t
�

ΔE < e
it
�
Hf e− it

�
Hi >= V 2

�2

∫ ∞

−∞
dt e

−it
�

ΔE F(t) (22.106)

where Hf (Hi ) is the Hamiltonian of the nuclear vibrations (18.32) in the final
(initial) state and the correlation function F(t) = exp(g(t)) for independent displaced
oscillators is derived in the appendix (C.11). The rate becomes

k = V 2

�2
e−G

∫ ∞

−∞
dt e

−it
�

ΔE exp

{∑
r

g2
r

[
(nr + 1)eiωr t + nre

−iωr t )
]}

(22.107)

with the total coupling strength

G =
∑
r

g2
r (2nr + 1). (22.108)

The short time expansion of the correlation function gives

F(t) = exp

{∑
r

g2
r

[
(nr + 1)

(
iωr t − ω2

r t
2

2
+ · · ·

)

+nr

(
−iωr t − ω2

r t
2

2
+ · · ·

)]}

= exp

{∑
r

g2
r

[
iωr t − ω2

r t
2

2
(2nr + 1) + · · ·

]}

= exp

{
ER

�
it − 1

2�2
Δ2t2 + · · ·

}
(22.109)

with

Δ2 =
∑
r

g2
r (2nr + 1)(�ω)2

r . (22.110)

The coefficient of the quadratic term is roughly

Δ2

�2
≈ Gω̃2 (22.111)

http://dx.doi.org/10.1007/978-3-662-55671-9_18
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where the average frequency ω̃ (major accepting modes) is defined as

ω̃ =
∑

r g2
r (2nr + 1)ωr∑

r g2
r (2nr + 1)

. (22.112)

In the strong coupling limit G > 1 the correlation decays rapidly(∝ exp
(−Gω̃2t2/2

))
before the quadratic approximation becomes invalid (which

is roughly after t ≥ 1/ω̃). Then the rate is given by a Gaussian expression

k = V 2

�2

√
2π�2

Δ2
exp

{
− (ΔE − ER)2

2Δ2

}
. (22.113)

If all modes can be treated classically �ωr � kBT the phonon number is n̄r =
kBT/�ωr and

Δ2 ≈ 2kBT
∑
r

g2
r �ωr = 2kBT ER (22.114)

which gives the Marcus expression in the classical limit (see also (19.22) and (16.23))

k = 2πV 2

�

√
1

4πkBT ER
exp

{
− (ΔE − ER)2

4ErkBT

}
. (22.115)

In the limit of weak vibronic coupling G < 1, we use the saddle point method. The
saddle point equation reads

i

�
ΔE =

∑
r

g2
r

[
iωr (nr + 1)eiωr t − iωr nre

−iωr t
]

= i
∑
r

g2
r ωr

[
(nr + 1)e−iωr t − nre

iωr t
]
. (22.116)

For intramolecular radiationless transitions and large energy gap the important
accepting modes usually are at high frequencies �ωr � kBT . Here the saddle point
equation simplifies to

ΔE =
∑
r

g2
r �ωre

iωr t (22.117)

and the average frequency ω̃ becomes

http://dx.doi.org/10.1007/978-3-662-55671-9_19
http://dx.doi.org/10.1007/978-3-662-55671-9_16
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Fig. 22.13 Energy gap law.
The relative rate (22.123) is
shown as a function of the
energy gap in units of the
average frequency for S =
0.05, 0.1, 0.2, 0.5
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with the Huang–Rhys factor

S =
∑
r

g2
r . (22.119)

The saddle point equation is approximated as

ΔE = S�ω̃eits ω̃ (22.120)

with the solution

its = 1

ω̃
ln

ΔE

S�ω̃
. (22.121)

The second derivative is

−
∑
r

g2
r ω

2
r eiωr ts ≈ −Sω̃2eln(ΔE/S�ω̃) = −1

�
ΔEω̃ (22.122)

and the rate is

k = V 2
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√
2π�

ΔEω̃
exp
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−ΔE
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1

ω̃
ln

ΔE

S�ω̃
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ΔE
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�

√
2π

ΔE�ω̃
exp

{
−S − ΔE
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[
ln

ΔE

S�ω̃
− 1

]}
. (22.123)

The dependence on ΔE , which is close to exponential, is known as the energy
gap law (Fig. 22.13).
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Problems

22.1 Ladder model
Solve the time evolution for the ladder model approximately

H =

⎛
⎜⎜⎜⎝

0 V · · · V
V E1
...

. . .

V En

⎞
⎟⎟⎟⎠ E j = α + ( j − 1)Δε

First derive an integral equation for C0(t) only by substitution. Then replace the
sum by integration over ω = j Δε

�
and extend the integration over the whole real

axis. Replace the integral by a delta function and show that the initial state decays
exponentially with a rate

k = 2πV 2

�Δε
.
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Chapter 23
Photophysics of Chlorophylls
and Carotenoids

Chlorophylls and Carotenoids (Figs. 23.1, 23.2) are very important light receptors.
Both classes of molecules have a large π-electron system which is delocalized over
many conjugated bonds and is responsible for strong absorption bands in the visible
region. In this chapter, we introduce the molecular orbital method for the electronic
wavefunction. We apply the free electron model and the Hückel MO method to linear
and cyclic polyenes as model systems and discuss Gouterman’s four orbital model for
Porphyrins and Kohler’s simplified CI model for polyenes. Finally, we comment on
energy transfer processes involving Chlorophylls and Carotenoids in photosynthesis.

23.1 MO Model for the Electronic States

The electronic wavefunctions of larger molecules are usually described by introduc-
ing one-electron wavefunctions φ(r) and expanding the wavefunction in terms of one
or more Slater determinants. Singlet ground states can be in most cases described
quite sufficiently by one determinant representing a set of doubly occupied orbitals

|S0 > = |φ1↑φ1,↓ · · · φnocc,↑φnocc,↓|

= 1√
(2Nocc)!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1↑(r1) φ1↓(r1) · · · φnocc,↓(r1)

φ1↑(r2) φ1↓(r2) · · · φnocc,↓(r2)
...

...
...

φ1↑(r2Nocc) φ1↓(r2Nocc) φnocc,↓(r2Nocc)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Excited states can be described as a linear combination of excited electronic con-
figurations. The lowest excited state can often be reasonably approximated as the

© Springer-Verlag GmbH Germany 2017
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,
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Fig. 23.1 Structure of Bacteriochlorophyll-b [102]. This is the principal green pigment of the
photosynthetic bacterium Rhodopseudomonas viridis. Dashed curves indicate the delocalized π-
electron system. Chlorophylls have an additional double bond between positions 3 and 4. Variants
have different side-chains at positions 2 and 3

Fig. 23.2 Structure of β-Carotene. The basic structure of the carotenoids is a conjugated chain
made up of isoprene units. Variants have different end groups

transition of one electron from the highest occupied orbital φnocc (HOMO) to the
lowest unoccupied orbital φnocc+1 (LUMO). We have already learnt that a singlet
excitation is given by

|S1 >= 1√
2
(|φ1↑φ1,↓ · · ·φHOMO,↑φLUMO,↓|−|φ1↑φ1,↓ · · · φHOMO,↓φLUMO,↑|).

(23.1)

The molecular orbitals can be determined from a more or less sophisticated method.

23.2 The Free Electron Model for Polyenes

We approximate a polyene with a number of N double bonds by a 1-dimensional
box of length L = (2N + 1)d.1 The orbitals of the free electron model

H = − �
2

2me

∂2

∂x2
+ V (r) (23.2)

1The end of the box is one bond length behind the last C-atom.
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Fig. 23.3 Octatetraene. Top
optimized structure. Middle
potential energy and lowest
two eigenfunctions of the
free electron model. Bottom
linear model with equal bond
lengths d

V(x)
s=2 s=1

C    C    C    C    C    C    C    C
H H H H H H H

HH

H

d

have to fulfill the b.c. φ(0) = φ(L) = 0. Therefore, they are given by

φs(x) =
√

2

L
sin

πsx

L
(23.3)

with energies (Fig. 23.3)

Es = 2

L

∫ L

0

�
2

2me

(πs

L

)2 (

sin
πsx

L

)2
dx = 1

2me

(
π�s

L

)2

. (23.4)

Since there are 2N π-electrons, the energy of the lowest excitation is estimated as

ΔE = En+1 − En = π2
�

2

2med2(2N + 1)2

(

(N + 1)2 − N 2
) = π2

�
2

2med2(2N + 1)
.

(23.5)

The transition dipole matrix element for the singlet–singlet transition is

µ = < |φnocc↑φnocc↓|
∑

(−er)| 1√
2
(|φnocc↑φnocc+1↓| − |φnocc↓φnocc+1↑|) >

= −√
2e

∫

dr φnocc(r)rφnocc+1(r)

= −√
2e

2

L

∫ L

0
sin

(N + 1)πx

L
x sin

Nπx

L
dx

= 2
√

2e

L

4L2N (N + 1)

π2(2N + 1)2
= 8

√
2ed

π2

N (N + 1)

2N + 1
(23.6)
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Fig. 23.4 Length
dependence of the polyene
absorption. The circles show
the relative absorption from
(23.7). The line is a linear fit
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which grows with increasing length of the polyene. The absorption coefficient is
proportional to

α ∼ μ2ΔE ∼ N 2(N + 1)2

(2N + 1)3
(23.7)

which is nearly proportional to the number of double bonds N (Fig. 23.4).

23.3 The LCAO Approximation

The molecular orbitals are usually expanded in a basis of atomic orbitals

φ(r) =
∑

s

Csϕs(r) (23.8)

where the atomic orbitals are centered on the nuclei and the coefficients are deter-
mined from diagonalization of a certain one-electron Hamiltonian (for instance,
Hartree–Fock, Kohn–Sham, semiempirical approximations such as AM1)

Hψ = Eψ. (23.9)

Inserting the LCAO wavefunction gives

∑

s

Cs Hϕs(r) = E
∑

s

Csϕs(r) (23.10)

and projection on one of the atomic orbitals ϕs ′ gives a generalized eigenvalue
problem
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0 =
∫

d3r ϕs ′(r)
∑

s

Cs(H − E)ϕs(r)

=
∑

s

Cs(Hs ′s − ESs ′s). (23.11)

23.4 Hückel Approximation

The Hückel approximation [103] is a very simple LCAO model for the π-electrons.
It makes the following approximations:

• The diagonal matrix elements Hss = α have the same value (Coulomb integral)
for all Carbon atoms.

• The overlap of different pz-orbitals is neglected Sss ′ = δss ′ .
• The interaction between bonded atoms is Hss ′ = β (resonance integral) and has

the same value for all bonds.
• The interaction between nonbonded atoms is zero Hss ′ = 0.

The Hückel matrix for a linear polyene has the form of a tridiagonal matrix
(Fig. 23.5)

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α β
β α β

. . .
. . .

. . .

β α β
β α

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(23.12)

and can be easily diagonalized with the eigenvectors (Fig. 23.6)

φr =
√

2

2N + 1

2N
∑

s=1

sin
rsπ

2N + 1
ϕs r = 1, 2, . . . 2N . (23.13)

The eigenvalues are

Er = α + 2β cos
rπ

2N + 1
. (23.14)

Fig. 23.5 Hückel model for
polyenes

β β β β β β β

C    C    C    C    C    C    C    C
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Fig. 23.6 Hückel orbitals
for octatetraene

au

bg

au

bg

auLUMO

HOMO

Fig. 23.7 Character table of
the symmetry group C2h . All
π-orbitals are antisymmetric
with respect to the reflection
σ and are therefore of au or
bg symmetry

C2E σ i

A

B

B

A
g

g

u

u

1        1        1        1

1        1       −1       −1

1       −1        1       −1

1       −1       −1        1

2h
C

The symmetry of the molecule is C2h (Fig. 23.7). All π-orbitals are antisymmetric
with respect to the vertical reflection σh . With respect to the C2 rotation they have
alternating a or b symmetry. Since σh ×C2 = i , the orbitals are of alternating au and
bg symmetry. The lowest transition energy is in the Hückel model

ΔE = EN+1 − EN = 2β

(

cos
(N + 1)π

2N + 1
− cos

Nπ

2N + 1

)

(23.15)

which can be simplified with the help of (x = π/(2N + 1))

cos(N + 1)x − cos Nx = 1

2

(

ei(N+1)x + e−i(N+1)x − eiNx − e−iNx
)

= 1

2
ei(N+1/2)x

(

eix/2 − e−ix/2
) + 1

2
e−i(N+1/2)x

(

e−ix/2 − eix/2
)

= −2 sin

((

N + 1

2

)

x

)

sin
x

2

(23.16)
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to give2

ΔE = −4β sin
π

4N + 2
∼ 1

N
for large n. (23.17)

This approximation can be improved if the bond length alternation is taken into
account, by using two alternating β-values [104]. The resulting energies are

Ek = α ±
√

β2 + β′2 + 2ββ′ cos k (23.18)

where the k-values are solutions of

β sin(N + 1)k + β′ sin Nk = 0. (23.19)

In the Hückel model, the lowest excited state has the symmetry au × bg = Bu and is
strongly allowed. However, it is known that in reality for longer polyenes the lowest
excited singlet is totally symmetric Ag and forbidden. This can be only understood
if correlation effects are taken into account [105–108].

23.5 Simplified CI model for Polyenes

In a very simple model Kohler [109] treats only transitions from the bg-HOMO into
the au-LUMO and bg-LUMO+1 orbitals. The HOMO-LUMO+1 transition as well
as the double HOMO-LUMO transition are both of Ag symmetry and can therefore
interact. If the interaction is strong enough, then the lowest excited state will be of
Ag-symmetry and will be optically forbidden (Fig. 23.8).

A A Bg g u

S A

S B

AS

AS

3

1 g

g

u

g

2

0Ag

Fig. 23.8 Simplified CI model for linear polyenes

2β is a negative quantity.
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23.6 Cyclic Polyene as a Model for Porphyrins

For a cyclic polyene with N carbon atoms the Hückel matrix has the form

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α β β
β α β

. . .
. . .

. . .

β α β
β β α

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(23.20)

with eigenvectors

φk = 1√
N

N
∑

s=1

eiksϕs k = 0,
2π

N
, 2

2π

N
· · · (N − 1)

2π

N
(23.21)

and eigenvalues

Ek = α + 2β cos k. (23.22)

This can be used as a model for the class of Porphyrin molecules [110, 111]
(Fig. 23.9).

For the metal-porphyrin, there are in principle two possibilities for the assignment
of the essential π-system, an inner ring with 16 atoms or an outer ring with 20 atoms,
both reflecting the D4h-symmetry of the molecule. Since it is not possible to draw a
unique chemical structure, we have to count the π-electrons. The free base porphin
is composed of 14 H atoms (of which the peripheral ones are not shown), 20 C
atoms and 4 N atoms which provide a total of 14 + 4∗20 + 5∗4 = 114 valence
electrons. There are 42 σ-bonds (including those to the peripheral H atoms) and 2
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Fig. 23.9 Free base Porphin and Mg-Porphin. The bond character was assigned on the basis of the
bond lengths from HF-optimized structures
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lonely electron pairs involving a total of 88 electrons. Therefore the number of π-
electrons is 114 − 88 = 26. Usually, it is assumed that the outer double bonds are
not so strongly coupled to the π-system and a model with 18 π-electrons distributed
over the N = 16-ring is used. For the metal Porphin, the number of H atoms is only
12 but there are 4 lonely electron pairs instead of 2. Therefore, the number of non-π
valence electrons is the same as for the free base porphin. The total number of valence
electrons is again 114 since the Mg atom formally donates 2 electrons.

23.7 The Four Orbital Model for Porphyrins

Gouterman [112–114] introduced the four orbital model which considers only the
doubly degenerate HOMO (k = ±4×2π/N ) and LUMO (k = ±5×2π/N ) orbitals.
There are 4 HOMO-LUMO transitions (Fig. 23.10). Their transition dipoles are given
by

µ = 1

N

∑

ss ′
e−ik ′s ′

eiks
∫

ϕ∗
s ′(r)(−er)ϕs(r)d

3r (23.23)

which is approximately3

µ = 1

N

∑

ss ′
e−ik ′s ′

eiksδss ′(−eR)

⎛

⎝

cos(s × 2π
N )

sin(s × π
N )

0

⎞

⎠ (23.24)

where the z-component vanishes and the perpendicular components have circular
polarization4

Fig. 23.10 Porphin orbitals
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3Neglecting differential overlaps and assuming a perfect circular arrangement.
4For an average R=3Å this gives a total intensity of 207 Debye2 which is comparable to the 290
Debye2 from a HF/CI calculation.
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µ

(
1√
2
,± i√

2
, 0

)

= −eR√
2N

∑

s

ei(k−k ′±2π/N )s = −eR√
2

δk−k ′,±2π/N . (23.25)

The selection rule is

k − k ′ = ±2π/N . (23.26)

Hence two of the HOMO-LUMO transitions are allowed and circularly polarized:

4
2π

N
→ 5

2π

N

−4
2π

N
→ −5

2π

N
. (23.27)

If configuration interaction is taken into account, these four transitions split into
two degenerate excited states of E-symmetry. The higher one carries most of the
intensity and corresponds to the Soret band in the UV. The lower one is very weak
and corresponds to the Q band in the visible [115, 116]. As a result of ab initio
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Fig. 23.11 Electronic structure of Porphins and Porphin derivatives. 631G-HF/CI calculations
were performed with GAMESS [117]. Numbers give transition dipoles in Debyes. Dashed lines
indicate very weak or dipole forbidden transitions. (a) Mg-Porphin has two allowed transitions of
E-symmetry, corresponding to the weak Q band at lower and the strong B-band at higher energy.
(b) In Mg-Chlorin (dihydroporphin) the double bond 1–2 is saturated similar to Chlorophylls. The
Q band splits into the lower and stronger Qy band and the weaker Qx band (c) Tetrahydroporphin,
double bonds 1–2 and 5–6 are saturated similar to Bacteriochlorphyll. The Qy band is shifted to
lower energies
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calculations, the four orbitals of the Gouterman model stay approximately separated
from the rest of the MO orbitals [116]. If the symmetry is disturbed as for Chlorin,
the Q band splits into the lower Qy band which gains large intensity and the higher
weak Qx band. Figure 23.11 shows calculated spectra for Mg-Porphin, Mg-Chlorin,
and Mg-Tetrahydroporphin.

23.8 Energy Transfer Processes

Carotenoids and Chlorophylls are very important for photosynthetic systems [118].
Chlorophyll molecules with different absorption maxima are used to harvest light
energy and to direct it to the reaction center where the special pair dimer has the
lowest absorption band of the Chlorophylls (Fig. 23.12). Carotenoids can act as

S
0

B

Q

Chlorophyll Chlorophyll Chlorophyll
dimer

Fig. 23.12 Chl-Chl energy transfer. Energy is transferred via a sequence of chromophores with
decreasing absorption energies

Fig. 23.13 Car-Chl energy
transfer. Carotenoids absorb
light in the blue region of the
spectrum and transfer energy
to chlorophylls which absorb
at longer wavelengths
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Fig. 23.14 Chl-Car triplet
energy transfer. Carotenoid
triplet states are below the
lowest chlorophyll triplet
and therefore important
triplet quenchers

Chlorophyll Carotenoid
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additional light-harvesting pigments in the blue region of the spectrum [119, 120]
(Fig. 23.13) and transfer energy to chlorophylls which absorb at longer wavelengths.
Carotenoids are also important as triplet quenchers to prevent the formation of triplet
oxygen and for dissipation of excess energy (Fig. 23.14).

Problems

23.1 Polyene with bond length alternation

C

C

C

C

C

C

C

C

Consider a cyclic polyene with 2 N carbon atoms with alternating bond lengths.

The Hückel matrix has the form H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α β β′
β α β′

β′ . . .
. . .

. . . α β
β′ β α

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(a) Show that the eigenvectors can be written as

c2n = eikn c2n−1 = ei(kn+χ).

(b) Determine the phase angle χ and the eigenvalues for β 	= β′.
(c) We want now to find the eigenvectors of a linear polyene. Therefore we use the

real valued functions
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c2n = sin kn c2n−1 = sin(kn + χ) n = 1 . . . N

with the phase angle as in (b).

We now add two further Carbon atoms with indices 0 and 2N+1. The first of these
two obviously has no effect since c0 = sin(0 × k) = 0. For the atom 2N+1, we
demand that the wavefunction again vanishes which restricts the possible k-values:

0 = c2N+1 = sin((N + 1)k + χ) = 
 (

eiχ+i(N+1)k
)

.

For these k-values, the cyclic polyene with 2N+2 atoms is equivalent to the linear
polyene with 2 N atoms as the off diagonal interaction becomes irrelevant. Show that
the k-values obey the equation

β sin((N + 1)k) + β′ sin(Nk) = 0.

(d) Find a similar treatment for a linear polyene with odd number of C-atoms.



Chapter 24
Incoherent Energy Transfer

In this chapter, we study the transfer of energy from an excited donor molecule to an
acceptor molecule. We discuss different mechanisms involving electron exchange,
simultaneous radiationless deexcitation and excitation or photon emission followed
by reabsorption. Using a simplified MO model, we calculate the coupling matrix
element of the Coulomb interaction in dipole approximation and evaluate the famous
Förster expression for the transition rate. Within the Condon approximation, the
overlap of donor emission and acceptor absorption spectra becomes an essential
factor. Finally, we comment on energy transfer in the triplet state.

24.1 Excited States

We consider the transfer of energy from an excited donor molecule D∗ to an acceptor
molecule A

D∗ + A → D + A∗. (24.1)

We assume that the optical transitions of both molecules can be described by the
transition between the highest occupied (HOMO) and lowest unoccupied (LUMO)
molecular orbitals. The Hartree–Fock ground state of one molecule can be written
as a Slater determinant of doubly occupied molecular orbitals (Fig. 24.1)

|HF >= |φ1↑φ1↓ · · ·φHO↑φHO↓|. (24.2)

Promotion of an electron from the HOMO to the LUMO creates a singlet or a triplet
state both of which are linear combinations of the four determinants

© Springer-Verlag GmbH Germany 2017
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Fig. 24.1 HOMO-LUMO
transition

LUMO

HOMO

unoccupied
orbitals

occupied
orbitals

energy

| ↑↓> = |φ1↑φ1↓ · · ·φHO↑φLU↓|
| ↓↑> = |φ1↑φ1↓ · · ·φHO↓φLU↑|
| ↑↑> = |φ1↑φ1↓ · · ·φHO↑φLU↑|
| ↓↓> = |φ1↑φ1↓ · · ·φHO↓φLU↓|. (24.3)

Obviously, the last two determinants are the components of the triplet state with
Sz = ±1

|1,+1 > = | ↑↑>

|1,−1 > = | ↓↓> . (24.4)

Linear combination of the first two determinants gives the triplet state with Sz = 0

|1, 0 >= 1√
2
(| ↑↓> +| ↓↑>) (24.5)

and the singlet state

|0, 0 >= 1√
2
(| ↑↓> −| ↓↑>). (24.6)

Let us now consider the states of the molecule pair DA. The singlet ground state is

|φ1↑φ1↓ · · ·φHO,D,↑φHO,D,↓φHO,A,↑φHO,A,↓| (24.7)

which will simply be denoted as

|1DA >= |D↑D↓A↑A↓|. (24.8)

The excited singlet state of the donor is

|1D∗A >= 1√
2
(|D∗

↑D↓A↑A↓| − |D∗
↓D↑A↑A↓|) (24.9)
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and the excited state of the acceptor is

|1DA∗ >= 1√
2
(|D↑D↓A∗

↑A↓| − |D↑D↓A∗
↓A↑|). (24.10)

24.2 Energy Transfer Mechanism

Dexter Mechanism

At very short distances, the electronic wavefunctions of donor and acceptor over-
lap and electron exchange is possible (Fig. 24.2). This mechanism [123] is strongly
distance dependent since the overlap integrals decay exponentially.

Förster Mechanism

This mechanism [121, 122] involves a coupled deexcitation of the donor and exci-
tation of the acceptor (Fig. 24.2). At very short distances (as compared to the exten-
sion of the electronic orbitals), details of the electronic wavefunctions are important
which can be taken into account by a full quantum calculation of the Coulomb inter-
action or an approximation on the basis of interacting transition densities. At not
too large distances, both molecules undergo a simultaneous radiationless transition
which can be described as emission and reabsorption of a virtual photon. If the opti-
cal transitions of donor and acceptor are dipole-allowed, the relevant coupling term
is of the transition dipole—transition dipole type and the distance dependence fol-
lows a R−6 law. At larger distances, the emission of a real photon by the donor and
later reabsorption by the acceptor is the dominant process. The efficiency shows a
much weaker R−2decay reflecting Lambert’s law. In both cases, spectral overlap and
transition intensities are important factors.

excitonic exchange

D* A*

D A

D*

D

A*

A

Fig. 24.2 Intramolecular energy transfer. Left the excitonic or Förster mechanism [121, 122]
depends on transition intensities and spectral overlap. Right the exchange or Dexter mechanism
[123] depends on the overlap of the wavefunctions.
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Radiationless and radiative mechanism turn out to be limiting cases of the proper
quantum electrodynamical treatment, which gives a transition rate of [124] (here,
ρm is the density of molecular states and donor and acceptor have the same transition
dipole moment μ)

ΓD∗A→DA∗ = 2π |μ|4
9�

ρm
2

(4πε0R3)2

(
3 +

(
2πR

λ

)2

+
(
2πR

λ

)4 )
. (24.11)

This expression switches from the R−6 to the R−2 behavior at a critical distance of

R′
0 = 31/4

2π
λ (24.12)

which, for visible light is in the range of 150nm.

24.3 Interaction Matrix Element

The interaction responsible for energy transfer is the electron–electron interaction

VC = e2

4πε|r1 − r2| . (24.13)

With respect to the basis of molecular orbitals its matrix elements are denoted as

V (φ1φ1′φ2φ2′) =
∫

d3r1d
3r2φ

∗
1σ (r1)φ

∗
2,σ ′(r2)

e2

4πε|r1 − r2|φ1′σ (r1)φ2′,σ ′(r2).

(24.14)

The transfer interaction

Vi f =<1 D∗A|VC |1DA∗ >

= 1

2
< |D∗↑D↓A↑A↓|VC |D↑D↓A∗↑A↓| > −1

2
< |D∗↑D↓A↑A↓|VC |D↑D↓A∗↓A↑ >

−1

2
< |D∗↓D↑A↑A↓|VC ||D↑D↓A∗↑A↓| > +1

2
|D∗↓D↑A↑A↓|VC |D↑D↓A∗↓A↑| >

(24.15)
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consists of four summands. The first one gives two contributions

1

2
< |D∗

↑D↓A↑A↓|V |D↑D↓A∗
↑A↓| >= 1

2
V (D∗D A A∗) − 1

2
V (D∗A∗A D),

(24.16)

where the first part is the excitonic interaction and the second part is the exchange
interaction (Fig. 24.2).

The second summand

−1

2
< |D∗

↑D↓A↑A↓|V |D↑D↓A∗
↓A↑| >= 1

2
V (D∗D A A∗) (24.17)

has no exchange contribution due to the spin orientations. The two remaining sum-
mands are just mirror images of the first two. Altogether the interaction for singlet
energy transfer is

<1 D∗A|VC |1DA∗ >= 2V (D∗DAA∗) − V (D∗A∗AD). (24.18)

In the triplet case

Vi f =<3 D∗A|VC |3DA∗ >

= 1

2
< |D∗↑D↓A↑A↓|VC |D↑D↓A∗↑A↓| > +1

2
< |D∗↑D↓A↑A↓|VC |D↑D↓A∗↓A↑ >

+1

2
< |D∗↓D↑A↑A↓|VC ||D↑D↓A∗↑A↓| > +1

2
|D∗↓D↑A↑A↓|VC |D↑D↓A∗↓A↑| >

= −V (D∗A∗AD). (24.19)

Here energy can only be transferred by the exchange coupling (Dexter [123]). Since
this involves the overlap of electronicwavefunctions it is important at small distances.
In the singlet state, the excitonic interaction (Förster [121, 122]) allows for energy
transfer also at larger distances.

24.4 Multipole Expansion of the Excitonic Interaction

We will now apply a multipole expansion to the excitonic matrix element

Vexc = 2V (D∗DAA∗)

= 2
∫

d3r1d
3r2φ

∗
D∗(r1)φ

∗
A′(r2)

e2

4πε|r1 − r2|φD(r1)φA∗(r2). (24.20)
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Fig. 24.3 Multipole
expansion

D
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We take the position of the electrons relative to the centers of themolecules (Fig. 24.3)

r1,2 = R1,2 + 	1,2 (24.21)

and expand the Coulomb interaction

1

|r1 − r2| = 1

|R1 − R2 + 	1 − 	2| (24.22)

using the Taylor series

1

|R + 	| = 1

|R| − 1

|R|2
	R

|R| + 1

2

3|R|(R	)2 − |R|3	2

|R|6 + · · · (24.23)

for

R = R1 − R2 	 = 	1 − 	2. (24.24)

The zero-order term vanishes due to the orthogonality of the orbitals. The first-order
term gives

−2
e2

4πε|R|3 R
∫

d3	1d
3	2φ

∗
D∗(r1)φD(r1)(	1 − 	2)φ

∗
A(r2)φA∗(r2) (24.25)

and also vanishes due to the orthogonality. The second-order term gives the leading
contribution

e2

4πε|R|6
∫

d3	1d
3	2φ

∗
D∗(r1)φD(r1)

×(3|R|(R	1 − R	2)
2 − |R|3(	1 − 	2)

2)φ∗
A(r2)φA∗(r2). (24.26)

Only the integrals over mixed products of 	1 and 	2 are not zero. They can be
expressed with the help of the transition dipoles

μD =<1 D|er|1D∗ >= √
2

∫
d3	1φ

∗
D∗(	1)e	1φD(	1)
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μA =<1 A|er|1A∗ >= √
2

∫
d3	2φ

∗
A(	2)e	2φA∗(	2). (24.27)

Finally, the leading term of the excitonic interaction is the dipole–dipole term

Vexc = e2

4πε|R|5
(|R|2μDμA − 3(RμD)(RμA)

)
. (24.28)

This is often written with an orientation dependent factor K as

Vexc = K

|R|3 |μD||μA| . (24.29)

24.5 Energy Transfer Rate

Weconsider excitonic interaction of twomolecules. TheHamilton operator is divided
into the zero-order Hamiltonian

H0 = |D∗A > HD∗A < D∗A| + |DA∗ > HDA∗ < DA∗| (24.30)

and the interaction operator

H ′ = |D∗A > Vexc < DA∗| + |DA∗ > Vexc < D∗A|. (24.31)

We neglect electron exchange between the two molecules and apply the Condon
approximation. Then taking energies relative to the electronic ground state |DA >

we have

HD∗A = �ωD∗ + HD∗ + HA

HDA∗ = �ωA∗ + HD + HA∗ (24.32)

with electronic excitation energies �ωD∗(A∗) and nuclear Hamiltonians HD, HD∗,
HA, HA∗. Now, consider once more Fermi’s golden rule for the transition between
vibronic states |i >→ | f >

k = 2π

�

∑
i, f

Pi | < i |H ′| f > |2δ(ω f − ωi )

= 1

�2

∫ ∑
i f

Pi < i |H ′| f >< f |H ′|i > ei(ω f −ωi )t dt

= 1

�2

∫ ∑
i f

Pi < i |H ′| f > eiω f t < f |H ′|eiωi t i > dt (24.33)
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= 1

�2

∫ ∑
i

< i |Q−1e−H0/kBT H ′eit H0/�H ′eit H0/�|i > dt

= 1

�2

∫
dt

〈
H ′(0)H ′(t)

〉
. (24.34)

Initially, only the donor is excited. Then the average is restricted to the vibrational
states of D∗A

k = 1

�2

∫
dt

〈
H ′(0)H ′(t)

〉
D∗A . (24.35)

With the transition dipole operators

μ̂D = |D > μD < D∗| + |D∗ > μD < D|
μ̂A = |A > μA < A∗| + |A∗ > μA < A| (24.36)

the rate becomes

k = K 2

�2R6

∫
dt

〈
μ̂D(0)μ̂A(0)μ̂D(t)μ̂A(t)

〉
D∗A .

Here, we assumed that the orientation does not change on the relevant time scale.
Since each of the dipole operators acts only on one of the molecules we have

k = 1

�2

K 2

|R|6
∫

dt
〈
μ̂D(0)μ̂D(t)μ̂A(0)μ̂A(t)

〉
D∗A

= 1

�2

K 2

|R|6
∫

dt
〈
μ̂D(0)μ̂D(t)

〉
D∗A

〈
μ̂A(0)μ̂A(t)

〉
D∗A

= 1

�2

K 2

|R|6
∫

dt
〈
μ̂D(0)μ̂D(t)

〉
D∗

〈
μ̂A(0)μ̂A(t)

〉
A . (24.37)

24.6 Spectral Overlap

The two factors are related to the acceptor absorption and donor fluorescence spec-
tra. Consider optical transitions between the singlet states |1D∗ >→ |1D > and
|1A →1 A∗ >. The number of fluorescence photons per time is given by the Einstein
coefficient for spontaneous emission1

AD∗D = 2ω3
D∗D

3ε0hc3
|μD|2 (24.38)

1a detailed discussion of the relationships between absorption cross section and Einstein coefficients
is found in [125].
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with the donor transition dipole moment (24.27)

μD = √
2

∫
d3r φD∗(er)φD. (24.39)

The frequency resolved total fluorescence is then

Ie(ω) = AD∗Dge(ω) = 2ω3

3ε0hc3
|μD|2ge(ω) (24.40)

with the normalized lineshape function ge(ω).
The absorption cross section can be expressed with the help of the Einstein coef-

ficient for absorption Bω
12 as [125]

σa(ω) = Bω
AA∗ �ωga(ω)/c. (24.41)

The Einstein coefficients for absorption and emission are related by

Bω
AA∗ = π2c3

�ω3
A∗A

AA∗A = 1

3

π

�2ε0
|μA|2

and therefore

σa(ω) = 1

3

π

�cε0
|μA|2ωga(ω).

In the following, we discuss absorption and emission in terms of the modified
spectra (Fig. 24.4)

Fig. 24.4 Absorption and
emission. Within the
displaced oscillator model
the 0 → 0 transition energy
is located between the
maxima of absorption (α)

and emission (η)

E

E

α η

Q

A*

A

0−0
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α(ω) = 3�cε0
π

σa(ω)

ω
= |μ̂A|2ga(ω)

=
∑
i, f

Pi | < i |μ̂A| f > |2δ(ω f − ωi − ω)

= 1

2π

∫
dte−iωt

∑
i

< i |e
−H/kBT

Q
μ̂A| f > eiω f t < f |μ̂Ae

−iωi t |i >

= 1

2π

∫
dt e−iωt

〈
μ̂A(0)μ̂A(t)

〉
A

(24.42)

and2

η(ω) = 3ε0hc3 Ie(ω)

2ω3
= |μD|2ge(ω)

=
∑
i, f

Pf | < f |μ̂D|i > |2δ(ω f − ωi − ω)

= 1

2π

∫
dte−iωt

∑
f

< f |e
−H/kBT

Q
eiω f t μ̂D|i > e−iωi t < i |μ̂D| f >

= 1

2π

∫
dt e−iωt

〈
μ̂D(t)μ̂D(0)

〉
D∗

= 1

2π

∫
dt eiωt

〈
μ̂D(0)μ̂D(t)

〉
D∗ . (24.43)

Within the Condon approximation

〈
μ̂A(0)μ̂A(t)

〉
A = eiωA∗t |μA|2

〈
eit HA∗/�e−it HA/�

〉
A

= eiωA∗t |μA|2FA(t) (24.44)

and therefore the lineshape function is the Fourier transform of the correlation
function

ga(ω) = 1

2π

∫
dt ei(ω−ωA∗)t FA(t). (24.45)

Similarly,

〈
μ̂D(0)μ̂D(t)

〉
D∗ = e−iωD∗t |μD|2 〈

eit HD/�e−it HD∗/�
〉
D∗

= e−iωD∗t |μD|2FD∗(t) (24.46)

2Note the sign change which appears since we now have to average over the excited state vibrations.
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and

ge(ω) = 1

2π

∫
dt ei(ω−ωD∗)t FD∗(t). (24.47)

With the inverse Fourier integrals

〈
μ̂A(0)μ̂A(t)

〉
A =

∫
dωeiωtα(ω)

〈
μ̂D(0)μ̂D(t)

〉
D∗ =

∫
dωe−iωtη(ω) (24.48)

equation (24.37) becomes

k = 1

�2

K 2

|R|6
∫

dt
∫

dωeiωtη(ω)

∫
dω′e−iω′tα(ω′)

= 1

�2

K 2

|R|6
∫

dωdω′η(ω)α(ω′) 2πδ(ω − ω′)

= 2π

�2

K 2

|R|6
∫

dωη(ω)α(ω)

= 2π

�2

K 2

|R|6 |μA|2|μD|2
∫

dωge(ω)ga(ω). (24.49)

This is the famous rate expression for Förster [121] energy transfer which involves
the spectral overlap of donor emission and acceptor absorption [126, 127]. For opti-
mum efficiency of energy transfer, the maximum of the acceptor absorption should
be at longer wavelength than the maximum of the donor emission (Fig. 24.5).

Fig. 24.5 Energy transfer
and spectral overlap
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24.7 Energy Transfer in the Triplet State

Consider now energy transfer in the triplet state. Here the transitions are optically
not allowed. We consider a more general interaction operator which changes the
electronic state of both molecules simultaneously and can be written as3

H ′ = |D∗ > |A > Vexch < A∗| < D| + h.c. (24.50)

We start from the rate expression (24.34)

k = 1

�2

∫
dt

〈
H ′(0)H ′(t)

〉
. (24.51)

The thermal average has to be taken over the initially populated state |D∗A >

k = 1

�2

∫
dt

〈
H ′(0)H ′(t)

〉
D∗A .

In the static case (Vexc = const)

k = 1

�2

∫
dt

〈
H ′eit HDA∗/�H ′e−it HD∗A/�

〉
D∗A

= 1

�2

∫
dtei(ωA∗−ωD∗)t

〈
H ′eit (HD+HA∗)/�H ′e−it (HD∗+HA)/�

〉
D∗A

= V 2
exch

�2

∫
dtei(ωA∗−ωD∗)t

〈
eit HD/�e−it HD∗/�

〉
D∗

〈
eit HA∗/�e−it HA/�

〉
A

= V 2
exch

�2

∫
dt eit (ωA∗−ωD∗)FD∗(t)FA(t) (24.52)

with the correlation functions

FA(t) = 〈
eit HA∗/�e−it HA/�

〉
A (24.53)

FD∗(t) = 〈
eit HD/�e−it HD∗/�

〉
D∗ . (24.54)

Introducing lineshape functions (24.45), (24.47) similar to the excitonic case the rate
becomes

3we assume that the wavefunction of the pair can be factorized approximately.
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k = V 2
exch

�2

∫
dt eit (ωA∗−ωD∗)

∫
dω′e−i(ω′−ωD∗)t ge(ω

′)
∫

dωei(ω−ωA∗)t ga(ω)

= V 2
exch

�2

∫
dωdω′ge(ω′)ga(ω)2πδ(ω − ω′)

= 2πV 2
exch

�

∫
dωga(ω)ge(ω) (24.55)

which is very similar to the Förster expression (24.49). The excitonic interaction
is replaced by the exchange coupling matrix element and the overlap of the optical
spectra is replaced by the overlap of the Franck–Condon weighted densities of states.
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RC
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Fig. 25.1 Energy transfer in bacterial photosynthesis

Photosynthetic units of plants and bacteria consist of antenna complexes and reaction
centers. Rings of closely coupled chlorophyll chromophores form the light harvesting
complexes which transfer the incoming photons very efficiently and rapidly to the
reaction center where the photon energy is used to create an ion pair (Fig. 25.1).
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In this chapter, we concentrate on the properties of strongly coupled chromophore
aggregates. We discuss an exciton model for a strongly coupled dimer including
internal charge transfer states and apply it to the special pair of the photosynthetic
reaction center. Next, we study circular molecular aggregates, as found in the light
harvesting complexes of photosynthesis.We calculate the exciton spectrum including
dimerization and apply it to the light harvesting complex LHII. The influence of
disorder is discussed including symmetry breaking local perturbations and periodic
modulations as well as general diagonal and off-diagonal disorder.

25.1 Coherent Excitations

If the excitonic coupling is large compared to fluctuations of the excitation energies,
a coherent excitation of two or more molecules can be generated.

25.1.1 Strongly Coupled Dimers

Let us consider a dimer consisting of two strongly coupled molecules A and B as in
the reaction center of photosynthesis (Fig. 25.2). The two excited states

|A∗B >, |AB∗ > (25.1)

are mixed due to the excitonic interaction. The eigenstates are given by the eigen-
vectors of the matrix

(
EA∗B V
V EAB∗

)
. (25.2)

For a symmetric dimer, the diagonal energies have the same value and the eigenvec-
tors can be characterized as symmetric or antisymmetric

(
1√
2

− 1√
2

1√
2

1√
2

)(
EA∗B V
V EA∗B

)(
1√
2

1√
2

− 1√
2

1√
2

)
=

(
EA∗B − V

EA∗B + V

)
. (25.3)

The two excitonic states are split by 2V .1 The transition dipoles of the two dimer
bands are given by

μ± = 1√
2
(μA ± μB) (25.4)

and the intensities by

1Also known as Davydov splitting.
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|A*B>
|AB*> 2V

|+>

|−>

E

absorption

Fig. 25.2 The “special pair” dimer. Top The nearly C2-symmetric molecular arrangement for the
reaction center of Rps.viridis (molekel graphics [65]).The transition dipoles of the two molecules
(arrows) are essentially antiparallel. Bottom The lower exciton component carries most of the
oscillator strength

|μ±|2 = 1

2
(μ2

A + μ2
B ± 2μAμB). (25.5)

For a symmetric dimer μ2
A = μ2

B = μ2 and

|μ±|2 = μ2(1 ± cosα), (25.6)

where α denotes the angle between μA and μB . In case of an approximately C2 sym-
metric structure, the components of μA and μB are furthermore related by symmetry
operations.

If we choose the C2 axis along the z-axis we have⎛
⎝μBx

μBy

μBz

⎞
⎠ =

⎛
⎝−μAx

−μAy

μAz

⎞
⎠ (25.7)
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Fig. 25.3 Extended dimer
model

A*B

A+B− A−B+

AB*

UL U H
U

L

V

and therefore

1√
2
(μA + μB) = 1√

2

⎛
⎝ 0

0
2μAz

⎞
⎠

1√
2
(μA − μB) = 1√

2

⎛
⎝ 2μAx

2μAy

0

⎞
⎠ (25.8)

which shows that the transition to the state |+ > is polarized along the symmetry
axis whereas the transition to |− > is polarized perpendicularly. For the special pair,
dimer interaction with internal charge transfer states |A+ B− > and |A− B+ > has
to be considered. In the simplest model, the following interaction matrix elements
are important (Fig. 25.3).

The local excitation A∗B is coupled to the CT state A+B− by transferring an
electron between the two LUMOS

< A∗B|H |A+B− >= 1

2
< (A∗↑A↓ − A∗↓A↑)B↑B↓H(B∗↑A↓ − B∗↓A↑)B↑B↓ >

= HA∗,B∗ = UL (25.9)

and to the CT state A−B+ by transferring an electron between the HOMOs

< A∗B|H |A−B+ >= 1

2
< (A∗↑A↓ − A∗↓A↑)B↑B↓H(A∗↑B↓ − A∗↓B↑)A↑A↓ >

= −HA,B = UH . (25.10)

Similarly the second local excitation couples to the CT states by

< AB∗|H |A+B− >= 1

2
< (B∗↑B↓ − B∗↓B↑)A↑A↓H(B∗↑A↓ − B∗↓A↑)B↑B↓ >

= −HA,B = UH (25.11)
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< AB∗|H |A−B+ >= 1

2
< (B∗↑B↓ − B∗↓B↑)A↑A↓H(A∗↑B↓ − A∗↓B↑)A↑A↓ >

= HA∗,B∗ = UL . (25.12)

The interaction of the four states is summarized by the matrix

H =

⎛
⎜⎜⎝

EA∗B V UL UH

V EB∗A UH UL

UL UH EA+B−

UH UL EA−B+

⎞
⎟⎟⎠ . (25.13)

Again for a symmetric dimer EB∗A = EAB∗ and EA+B− = EA−B+ and the interaction
matrix can be simplified by transforming to symmetrized basis functions with the
transformation matrix

S =

⎛
⎜⎜⎜⎜⎜⎝

1√
2

1√
2

− 1√
2

1√
2

1√
2

1√
2

− 1√
2

1√
2

⎞
⎟⎟⎟⎟⎟⎠

. (25.14)

The transformation gives

S−1H S =

⎛
⎜⎜⎜⎝

E∗ − V UL −UH

E∗ + V UL +UH

UL −UH ECT

UL +UH ECT

⎞
⎟⎟⎟⎠ (25.15)

where the states of different symmetry are decoupled (Fig. 25.4)

H+ =
(

E∗ + V UL +UH

UL +UH ECT

)
H− =

(
E∗ − V UL −UH

UL −UH ECT

)
. (25.16)

In an external electric field, the degeneracy of the internal CT states is readily lifted
due to their large dipole moments. In this case, we symmetrize only the excitonic
states by transforming with

S =

⎛
⎜⎜⎜⎝

1√
2

1√
2

− 1√
2

1√
2

1
1

⎞
⎟⎟⎟⎠ (25.17)
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Fig. 25.4 Dimer states

|A*B> , |AB*>

|A+B−> , |A−B+>

UU +

+
−

+

−

−

which yields

S−1H S =

⎛
⎜⎜⎜⎜⎜⎝

E∗ − V UL−UH√
2

−UL−UH√
2

E∗ + V UL+UH√
2

UL+UH√
2

UL−UH√
2

UL+UH√
2

ECT − ΔCT
2

−UL−UH√
2

UL+UH√
2

ECT + ΔCT
2

⎞
⎟⎟⎟⎟⎟⎠

(25.18)

with the field-induced energy shift

ΔCT

2
= −pA+B−E. (25.19)

Perturbation theory gives the correction to the lowest state

|P∗(−) >= 1√
2
(A∗ − B∗) +

UL−UH√
2

E∗ − V − ECT − ΔCT
2

|A+B− > −
UL−UH√

2

E∗ − V + ECT − ΔCT
2

|A−B+ >

(25.20)

with energy

EP∗(−) = E∗ − V − (UL −UH )2

2

[
1

ECT − ΔCT
2 − (E∗ − V )

+ 1

ECT + ΔCT
2 − (E∗ − V )

]
+ . . .

= E∗ − V − (UL −UH )2

2

[
2

ECT − (E∗ − V )
+ Δ2

CT

2(ECT − (E∗ − V )3

]
+ . . .

= E∗ − V − (UL −UH )2

ECT − (E∗ − V )
− (UL −UH )2Δ2

CT

4(ECT − (E∗ − V )3
+ . . . (25.21)
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and permanent dipole

p(P∗(−)) =
[

(UL −UH )2

2(E∗ − V − ECT − ΔCT
2 )2

− (UL −UH )2

2(E∗ − V − ECT + ΔCT
2 )2

]
pA+B−

= (UL −UH )2

(E∗ − V − ECT )3
ΔCTpA+B− . (25.22)

Equations (25.21) and (25.22) explain that in a symmetry breaking field, the dimer
bandobtains large permanent dipole andpolarizabilitywhich showup experimentally
in the Stark effect (electrochromicity) spectra.

25.1.2 Excitonic Structure of the Reaction Center

The reaction center of bacterial photosynthesis consists of six chromophores. Two
bacteriochlorophyll molecules (PL , PM) form the special pair dimer. Another bac-
teriochlorophyll (BL) and a bacteriopheophytine (HL) act as the acceptors during
the first electron transfer steps. Both have symmetry-related counterparts (BM , HM)

which are not directly involved in the charge separation process. Due to the short
neighbor distances (11–13Å), delocalization of the optical excitation has to be con-
sidered to understand the optical spectra. Whereas the dipole–dipole approximation
is not applicable to the strong coupling of the dimer chromophores, it has been used
to estimate the remaining excitonic interactions in the reaction center. The strongest
couplings are expected for the pairs PL BL , BLHL , PM BM , BMHM due to favorable
distances and orientational factors (Fig. 25.5 and Table25.1).

Starting from a system with full C2 symmetry, the excitations again can be clas-
sified as symmetric or antisymmetric. The lowest dimer band interacts with the anti-
symmetric combinations of B and H excitations. Due to the differences of excitation
energies, this leads only to a small amount of state mixing. For the symmetric states,
the situation is quite different as the upper dimer band is close to the B- excitation
(Fig. 25.6).

If the symmetry is disturbed by structural differences or interactions with the
protein, excitations of different symmetry character interact. Qualitatively, we expect

Fig. 25.5 Transition dipoles
of the Reaction Center
rps.Viridis. Arrows show the
transition dipoles of the
isolated chromophores.
Center–center distances (as
defined by the nitrogen
atoms) are given in Å
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Table 25.1 Excitonic couplings for the reaction center of rps.Viridis. The matrix elements were
calculated within the dipole–dipole approximation for μ2 = 45Debye2 for bacteriochlorophyll and
30Debye2 for bacteriopheophytine [128]. All values in cm−1

HM BM PM PL BL HL

HM 160 33 −9 −11 6

BM 160 −168 −37 29 −11

PM 33 −168 770 −42 −7

PL −9 −37 770 −189 35

BL −11 29 −42 −189 167

HL 6 −11 −7 35 167

Fig. 25.6 Excitations of the
reaction center. The
absorption spectrum of
rps.viridis in the Qy region
is assigned on the basis of
symmetric excitonic
excitations [129]. The charge
transfer states P∗

CT are very
broad and cannot be
observed directly

+

+

+

P*(−)

P*(  )

12
00
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00
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16
00

0
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−
1
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B*(  )

H*(  )

10
00

0

CT

that the lowest excitation is essentially the lower dimer band, the highest band 2

reflects absorption from the pheophytines and in the region of the B absorption we
expect mixtures of the B* excitations and the upper dimer band (Fig. 25.6).

25.1.3 Circular Molecular Aggregates

We consider now a circular aggregate of N chromophores (Fig. 25.7) as it is found
in the light harvesting complexes (Fig. 25.8) of photosynthesis [130–132].

We align theCN symmetry axis along the z-axis. The position of the nth molecule
is

2In the Qy region.
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CN

x

y

Fig. 25.7 Circular aggregate

Fig. 25.8 Light harvesting complex. The light harvesting complex from Rps. acidophila (structure
1kzu [133–137]from the protein data bank [138, 139] consists of a ring of 18 closely coupled
(shown in red and blue) and another ring of 9 less strongly coupled bacteriochlorophyll molecules
(green). Rasmol graphics [140]

Rn = R

⎛
⎝ cos(2π n/N )

sin(2π n/N )

0

⎞
⎠ n = 0, 1 · · · N − 1 (25.23)



358 25 Coherent Excitations in Photosynthetic Systems

which can also be written with the help of a rotation matrix

SN =
⎛
⎝ cos(2π/N ) − sin(2π/N )

sin(2π/N ) cos(2π/N )

1

⎞
⎠ (25.24)

as

Rn = SnNR0 R0 =
⎛
⎝ 1
0
0

⎞
⎠ . (25.25)

Similarly the transition dipoles are given by

µn = SnNµ0. (25.26)

The component parallel to the symmetry axis is the same for all monomers

μn,z = μ‖ (25.27)

whereas for the component in the perpendicular plane

(
μn,x

μn,y

)
=

(
cos(n2π/N ) − sin(n2π/N )

sin(n2π/N ) cos(n2π/N )

)(
μ0,x

μ0,y

)
. (25.28)

We describe the orientation of µ0 in the x-y plane by the angle φ:

(
μ0,x

μ0,y

)
= μ⊥

(
cos(φ)

sin(φ)

)
. (25.29)

Then we have (Fig. 25.9)

⎛
⎝μn,x

μn,y

μn,z

⎞
⎠ =

⎛
⎝μ⊥ cos(φ + n2π/N )

μ⊥ cos(φ + n2π/N )

μ‖

⎞
⎠ . (25.30)

We denote the local excitation of the nth molecule by

|n >= |A0A2 · · · A∗
n · · · AN−1 > . (25.31)

Due to the symmetry of the system, the excitonic interaction is invariant against the
SN rotation and therefore

< m|V |n >=< m − n|V |0 >=< 0|V |n − m > . (25.32)
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Fig. 25.9 Orientation of the
transition dipoles

N
π2

N
π2

φ

φ +

y

x

Table 25.2 Excitonic
couplings. The matrix
elements are calculated
within the dipole–dipole
approximation (25.33) for
R = 26.5Åφ0 = 66◦ and
μ2 = 37Debye2

|m − n| V|m−n|(cm−1)

1 −352.5

2 −43.4

3 −12.6

4 −5.1

5 −2.6

6 −1.5

7 −0.9

8 −0.7

9 −0.6

Without amagnetic field, the couplingmatrix elements can be chosen real and depend
only on |m − n|. Within the dipole–dipole approximation, we have furthermore3

V|m−n| = < m|V |n >

= e2

4πε|Rmn|5
(|Rmn|2µmµn − 3(Rmnµm)(Rmnµn)

)
. (25.33)

The interaction matrix has the form (Table25.2)

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0 V1 V2 · · · V2 V1

V1 E1 V1 · · · V3 V2

V2 V1
. . .

...
...

... V2

V2 V3 V1

V1 V2 · · · V2 V1 EN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25.34)

The excitonic wavefunctions are easily constructed as

|k >= 1√
N

N−1∑
n=0

eikn|n > (25.35)

3A more realistic description based on a semiempirical INDO/S method is given by [141].
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with

k = 2π

N
l l = 0, 1, · · · N − 1 (25.36)

< k ′|H |k > = 1

N

N−1∑
n′=0

N−1∑
n=0

eikne−ik ′n′
< n′|H |n >

= 1

N

N−1∑
n′=0

N−1∑
n=0

eikne−ik ′n′
H|n−n′ |. (25.37)

We substitute

m = n − n′ (25.38)

to get

< k ′|H |k > = 1

N

N−1∑
n=0

n−N+1∑
m=n

ei(k−k ′)n+ik ′mH|m|

= δk,k ′

N−1∑
m=0

eik
′mH|m|

= δk,k ′ (E0 + 2V1 cos k + 2V2 cos 2k + · · · ) . (25.39)

For even N, the lowest and highest states are not degenerate whereas for all of the
other states (Fig. 25.10)

Ek = EN−k = E−k . (25.40)

The transition dipoles of the k-states are given by

µk = 1√
N

N−1∑
n=0

eiknµn = 1√
N

N−1∑
n=0

eikn SnNµ0

= 1√
N

N−1∑
n=0

eikn

⎛
⎝μx cos(2π n/N ) + μy sin(2π n/N )

μy cos(2π n/N ) − μx sin(2π n/N )

μz

⎞
⎠ . (25.41)

For the z-component, we have (Fig. 25.11)

1√
N

μz

N−1∑
n=0

eikn = √
Nμzδk,0. (25.42)
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Fig. 25.10 Exciton dispersion relation. The figure shows the case of negative excitonic interaction
where the k = 0 state is the lowest in energy

Fig. 25.11 Allowed optical
transitions. The figure shows
the case of negative excitonic
interaction, where the lowest
three exciton states carry
intensity
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For the component in the x,y plane, we introduce complex polarization vectors

μk,± =
(

1√
2

±i√
2
0
)
µk

= 1√
N

N−1∑
n=0

eikn
(

1√
2

± i√
2
0
)⎛

⎝ cos( 2πnN ) − sin( 2πnN )

sin( 2πnN ) cos( 2πnN )

1

⎞
⎠

⎛
⎝μx

μy

μz

⎞
⎠
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Rα
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y

2νRβ
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α β1 1

θ θα β
φα
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Fig. 25.12 BChl arrangement for the LH2 complex of Rps.Acidophila [133–137, 142]. Arrows
represent the transition dipole moments of the BChl molecules as calculated on the 631G/HF-CI
level. Distances are with respect to the center of the four nitrogen atoms. Rα = 26.1Å, Rβ = 26.9Å,
2ν = 20.7◦, φα = 70.5◦, φβ = −117.7◦, θα = 83.7◦, θβ = 80.3◦

= 1√
N

N−1∑
n=0

eikn
(

1√
2
e±i2nπ/N ± i√

2
e±i2nπ/N 0

) ⎛
⎝μx

μy

μz

⎞
⎠

= 1√
N

N−1∑
n=0

ei(k±2π/N )
(

1√
2

±i√
2

) (
μx

μy

)

= √
Nδk,∓2π/Nμ± with μ± = 1√

2
(μx ± iμy) = 1√

2
μ⊥e±iφ. (25.43)

25.1.4 Dimerized Systems of LHII

The light harvesting complex LHII of Rps.Acidophila contains a ring of nine weakly
coupled chlorophylls and another ring of nine stronger coupled chlorophyll dimers.
The two units forming a dimer will be denoted as α,β, the number of dimers as N
(Fig. 25.12).

The transition dipole moments are

µn,α = μ

⎛
⎜⎝
sin θα cos(n 2π

N − ν + φα)

sin θα sin(n 2π
N − ν + φα)

cos θα

⎞
⎟⎠ = μSnN Rz(−ν + φα)

⎛
⎝ sin θα

0
cos θα

⎞
⎠
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µn,β = μ

⎛
⎜⎝
sin θβ cos(n 2π

N + ν + φβ)

sin θβ sin(n 2π
N + ν + φβ)

cos θβ

⎞
⎟⎠ = μSnN Rz(+ν + φβ)

⎛
⎝ sin θβ

0
cos θβ

⎞
⎠ .

(25.44)

For a circle with C2N -symmetrical positions (2ν = π
N , θα = θβ) and alternating

transition dipole directions (φβ = π + φα), we find the relation

µn,β = Rz(2ν + φβ − φα)µn,α = Rz

( π

N
+ π

)
µn,α. (25.45)

The experimental value of

2ν + φβ − φα = 208.9o (25.46)

is in fact very close to the value of 180o + 20o (or π + π
N ).

We have to distinguish the following interaction matrix elements between two
monomers in different unit cells (Fig. 25.13, Table25.3):

Vα,α,|m|, Vα,β,m = Vβ,α,−m, Vα,β,−m = Vβ,α,m, Vβ,β,|m| (25.47)

The interaction matrix of one dimer is
(

Eα Vdim

Vdim Eβ

)
. (25.48)

The wavefunction has to be generalized as

Fig. 25.13 Couplings in the
dimerized ring

Vαα1Vββ1
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β α
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Table 25.3 Excitonic couplings for the LH2 complex of Rps.Acidophila. The matrix elements
were calculated within the dipole–dipole approximation for the structure shown in Fig. 25.12 for
μ2 = 37Debye2. All values in cm−1

n Vαβn Vβαn Vααn Vββn

0 356.1 356.1

1 13.3 324.5 −49.8 −35.0

2 2.8 11.8 −6.1 −4.0

3 1.0 2.4 −1.8 −1.0

4 0.7 0.9 −0.9 −0.4

|k, s >= 1√
N

N−1∑
n=0

eikn(Csα|nα > +Csβ |nβ >) (25.49)

< k ′s ′|H |ks >= 1

N

N−1∑
n=0

N−1∑
n′=0

ei(kn−k ′n′) (
Cs ′αCsαHαα|n−n′|

+Cs ′βCsβHββ|n−n′ | + Cs ′αCsβHαβ(n−n′) + Cs ′βCsαHβα(n−n′)
)

= 1

N

(
Cs ′α Cs ′β

) N−1∑
n=0

N−1∑
m=0

ei(k−k ′)n+ik ′m
(
Hαα|m| Hαβm

Hβαm Hββ|m|

) (
Csα

Csβ

)

= δk,k ′
(
Cs ′α Cs ′β

) (∑N−1
m=0 e

ikmHαα|m|
∑N−1

m=0 e
ikmHαβm∑N−1

m=0 e
ikmHβαm

∑N−1
m=0 e

ikmHββm

)(
Csα

Csβ

)
. (25.50)

The coefficients Csαand Csβ are determined by diagonalization of the matrix

Hk =

=
(

Eα + 2Vαα,1 cos k + · · · Vdim + eikVαβ,1 + e−ikVαβ,−1 + · · ·
Vdim + e−ikVαβ,1 + eikVαβ,−1 + · · · Eα + 2Vββ,1 cos k + · · ·

)
.

(25.51)

If we consider only interactions between nearest neighbors this simplifies to

Hk =
(

Eα Vdim + e−ikW
Vdim + eikW Eβ

)
with W = Vαβ,−1. (25.52)

In the following, we discuss the limit Eα = Eβ . The general case is discussed in the
problems section. The eigenvectors of
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Hk =
(

Eα Vdim + e−ikW
Vdim + eikW Eα

)

are given by

1√
2

(
1

±eiχ

)
, (25.53)

where the angle χ is chosen such that

V + eikW = U (k)eiχ (25.54)

with

U (k) = sign(V )|V + eikW |

and the eigenvalues are

Ek,± = Eα ±U (k) = Eα ± sign(V )

√
V 2
dim + W 2 + 2VdimW cos k. (25.55)

The transition dipoles follow from

µk,± = 1√
2N

N−1∑
n=0

eikn(µn,α ± eiχµn,β)

= μ√
2N

N−1∑
n=0

eikn SnN

⎛
⎝

⎛
⎝ sin θα cos(−ν + φα)

sin θα sin(−ν + φα)

cos θα

⎞
⎠ ± eiχ

⎛
⎝ sin θβ cos(ν + φβ)

sin θβ sin(ν + φβ)

cos θβ

⎞
⎠

⎞
⎠

(25.56)

and similar selection rules as for the simple ring system follow for the first factor

(
0 0 1

)
µk,± = μ√

2N

N−1∑
n=0

eikn
(
cos θα ± eiχ cos θβ

)

= δk,0 μ

√
N

2

(
cos θα ± cos θβ

)
(25.57)

(
1√
2

i√
2
0
)
µk,± = 1√

2N

N−1∑
n=0

ei(k±2π/N )n
(
1 i 0

) (
µα,1 ± eiχµβ,1

)

=
√

N

2
δk,∓2π/Nμ

(
sin θαe

i(φα−ν) ± eiχ sin θβe
i(φ,Mβ+ν)

)
(25.58)
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(
1√
2

−i√
2
0
)
µk,± = 1√

2N

N−1∑
n=0

ei(k±2π/N )n
(
1 −i 0

) (
µα,1 ± eiχµβ,1

)

=
√

N

2
δk,∓2π/Nμ

(
sin θαe

i(φα−ν) ∓ eiχ sin θβe
i(φβ+ν)

)
. (25.59)

The second factor determines the distribution of intensity among the + and − states.
In the limit of 2N equivalent molecules V = W , 2ν +φβ −φα = π+ π

N , θα = θβ

and we have

V + eikW = (1 + eik)V = eik/2(e−ik/2 + e+ik/2)V = eik/22V cos k/2 (25.60)

and hence

χ = k/2 U (k) = 2V cos k/2 (25.61)

and (25.58) becomes

(
1√
2

i√
2
0
)
µk,± =

√
N

2
δk,∓2π/Nμ sin θei(φα−ν)

(
1 ∓ ei(k/2+π/N )

)

which is zero for the upper case (+ states) and

√
2Nδk,2π/Nμ sin θei(φα−ν) (25.62)

for the (−) states. Similarly (25.59) becomes

1√
2
(μk,x − iμk,y) = √

2Nδk,+2π/Nμ sin θe−i(φα−ν) (25.63)

for the - states and zero for the + states. (For positive V the + states are higher
in energy than the - states.) For the z-component, the selection rule of k=0 implies
(Fig. 25.14)

μz,+ = √
2Nδk,0μ cos θ, μz,− = 0. (25.64)

In the LHC, the transition dipoles of the two dimer halves are nearly antiparallel.
The oscillator strengths of the Nmolecules are concentrated in the degenerate next to
lowest transitions k = ±2π/N . This means that the lifetime of the optically allowed
states will be reduced compared to the radiative lifetime of a monomer. In the LHC,
the transition dipoles have only a very small z-component. Therefore, in a perfectly
symmetric structure, the lowest (k=0) state is almost forbidden and has a longer
lifetime than the optically allowed k = ±2π/N states. Due to the degeneracy of the
k = ±2π/N states, the absorption of photons coming along the symmetry axis does
not depend on the polarization.
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Fig. 25.14 Dispersion
relation of the dimer ring

E(k)

circ

k0−2π/ 2π/ πN N

circcirc

circ

25.2 Influence of Disorder

So far we considered a perfectly symmetrical arrangement of the chromophores.
In reality, there exist deviations due to the protein environment and low-frequency
nuclear motion which leads to variations of the site energies, the coupling matrix
elements, and the transition dipoles. In the following, we neglect the effects of dimer-
ization and study a ring of N equivalent chromophores.

25.2.1 Symmetry Breaking Local Perturbation

We consider perturbation of the symmetry by a specific local interaction, for instance
due to an additional hydrogen bond at one site. We assume that the excitation energy
at the site n0 = 0 is modified by a small amount δE . The Hamiltonian

H =
N−1∑
n=0

|n > E0 < n| + |0 > δE < 0| +
N−1∑
n=0

N−1∑
n′=0,n′ �=n

|n > Vnn′ < n′| (25.65)

is transformed to the basis of k-states (25.35) to give

< k ′|H |k >= 1

N

∑
n,n′

e−ik ′n′+ikn < n′|H |n >

= 1

N

∑
n

ei(k−k ′)n E0 + δE

N
+ 1

N

∑
n

∑
n′ �=n

e−ik ′n′+iknVnn′

= δk,k ′ Ek + δE

N
. (25.66)
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Obviously the energy of all k-states is shifted by the same amount

< k|H |k >= Ek + δE

N
. (25.67)

The degeneracy of the pairs | ± k > is removed due to the interaction

< k|H | − k >= δE

N
. (25.68)

The zero-order eigenstates are the linear combinations

|k± >= 1√
2
(|k > ±| − k >) (25.69)

with zero-order energies (Fig. 25.15)

CN

x

y

Eδ

..

.
..
.

..

.

..

.

(−) (+)

l=0

−2

−1

2

1

Fig. 25.15 Local perturbation of the symmetry
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E(k) = Ek + δE

N
(nondegenerate states)

E(k−) = Ek E(k+) = Ek + 2
δE

N
(degenerate states). (25.70)

Only the symmetric states are affected by the perturbation. The interaction between
degenerate pairs is given by the matrix elements

< k ′
+|H |k+ >= δk,k ′ Ek + 2

δE

N
< k−|H |k− >= δk,k ′ Ek

< k+|H |k− >= 0 (25.71)

and the coupling to the nondegenerate k = 0 state is

< 0|H |k+ >=
√
2δE

N
< 0|H |k− >= 0. (25.72)

Optical transitions to the |1± > states are linearly polarized with respect to per-
pendicular axes. In first order, intensity is transferred from the |1+ > state to the
|0 > and the other |k+ > states and hence the |1− > state absorbs stronger than the
|1+ > state which is approximately

|1+ > +
√
2δE

N (E0 − E1)
|0 > + 2δE

N (E2 − E1)
|2+ > + · · · (25.73)

Its intensity is reduced by a factor of

1

1 + δE2

N 2

(
2

(E0−E1)2
+ 4

(E2−E1)2
+ · · ·

) . (25.74)

25.2.2 Periodic Modulation

The local perturbation (25.66) has Fourier components

H ′(Δk) =< k|H ′|k + Δk >= 1

N

∑
n

einΔkδEn (25.75)

for all possible values of Δk. In this section, we discuss the most important Fourier
components separately. These are the Δk = ±4π/N components which mix the
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k = ±2π/N states and theΔk = ±2π/N componentswhich couple the k = ±2π/N
to the k = 0,±4π/N states and thus redistribute the intensity of the allowed states.

A general modulation of the diagonal energies with Fourier components Δk =
±2π/N is given by

δEn = δE cos(χ0 + 2nπ/N ) (25.76)

and its matrix elements are

H ′(Δk) = eiχ0δE

2
δΔk,−2π/N + e−iχ0δE

2
δΔk,2π/N . (25.77)

Transformation to linear combinations of the degenerate pairs

|k,+ > = 1√
2

(
eiχ0 | − k > +e−iχ0 |k >

)
k > 0

|k,− > = 1√
2

(−e−iχ0 | − k > +eiχ0 |k >
)

k > 0 (25.78)

leads to two decoupled sets of states with (Fig. 25.16)

< 0|H ′|k,+ > = δE√
2
cos(2χ0)δk,2π/N

< 0|H ′|k,− > = 0

< k,−|H ′|k ′,+ > = 0

< k,−|H ′|k ′,− > = δE

2
cosχ0(δk ′−k,2π/N + δk ′−k,−2π/N )

< k,+|H ′|k ′,+ > = δE

2
cos(3χ0)(δk ′−k,2π/N + δk ′−k,−2π/N ).

The |k = 2π/N ,± > states are linearly polarized

μ2π/N ,+,� = eiχ0

√
2

μ−2π/N ,� + eiχ0

√
2

μ2π/N ,� = √
Nμ⊥ cos(Φ + χ0 − �)

μ2π/N ,−,� = −e−iχ0

√
2

μ−2π/N ,� + eiχ0

√
2

μ2π/N ,� = i
√
Nμ⊥ sin(Φ + χ0 − �).

(25.79)

Let us now consider a C2 symmetric modulation [143]

δEn = δE cos(χ0 + 4πn/N ) (25.80)

with matrix elements

< k|H ′|k ′ > = δE

2

(
eiχ0δk ′−k,−4π/N + e−iχ0δk ′−k,4π/N

)
. (25.81)

The |k = ±2π/N > states are mixed to give the zero-order states
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Fig. 25.16 C1 symmetric perturbation. Modulation of the diagonal energies by the perturbation
δEn = δE cos(χ0+2πn/N ) does notmix the |k,+ > and |k,− > states. In first-order, the allowed
k = ±2π/N states split into two states |k = 2π/N ,± > with mutually perpendicular polarization
and intensity is transferred to the |k = 0 > and |k = 4π/N ,± > states
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Fig. 25.17 C2 symmetric perturbation. Modulation of the diagonal energies by the perturbation
δEn = δE cos(χ0 + 4πn/N ) splits the |k = ±2π/N> states in zero order into a pair with equal
intensity and mutually perpendicular polarization

|2π/N ,+ > = 1√
2

(| − 2π/N > +eiχ0 |2π/N >
)

|2π/N ,− > = 1√
2

(| − 2π/N > −eiχ0 |2π/N >
)

(25.82)

which are again linearly polarized (Fig. 25.17).
A perturbation of this kind could be due to an elliptical deformation of the ring

[143], but also due to interaction with a static electric field, which is given up to
second order by

δEn = −pnE + 1

2
EtαnE (25.83)

where the permanent dipole moments are given by an expression similar4 to (25.26)

4The angle Φ is different for permanent and transition dipoles.
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pn = SnNp0 =
⎛
⎝ p⊥ cos(Φ + n2π/N )

p⊥ sin(Φ + n2π/N )

p‖

⎞
⎠ (25.84)

and the polarizabilities transform as

αn = SnNα0S
−n
N . (25.85)

With the field vector

E =
⎛
⎝ E⊥ cos ξ

E⊥ sin ξ
E‖

⎞
⎠ (25.86)

we find

−pnE = −p⊥E⊥ cos(Φ + n2π/N − ξ) (25.87)

and
1

2
EtαnE = 1

2
(Et SnN )α0(S

−n
N E)

= E2
⊥
2

{
αxx cos

2(n2π/N − ξ) + αyy sin
2(n2π/N − ξ)

+ 2αxy sin(n2π/N − ξ) cos(n2π/N − ξ)
}

+E|E⊥
{
αxz cos(n2π/N − ξ) + αyz sin(n2π/N − ξ)

}

+ E2
‖
2

αzz . (25.88)

The quadratic term has Fourier components Δk = ±4π/N and can therefore act
as an elliptic perturbation.

25.2.3 Diagonal Disorder

Let us consider a static distribution of site energies for a ring of N chromophores
[144–146]. The Hamiltonian

H =
N−1∑
n=0

|n > (E0 + δEn) < n| +
N−1∑
n=0

N−1∑
n′=0,n′ �=n

|n > Vnn′ < n′| (25.89)

contains energy shifts δEn which are assumed to have a Gaussian distribution
function.
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P(δEn) = 1

Δ
√

π
exp(−δE2

n/Δ
2). (25.90)

Transforming to the delocalized states, the Hamiltonian becomes

< k ′|H |k >= 1

N

∑
n,n′

e−ik ′n′+ikn < n′|H |n >

= 1

N

∑
n

ei(k−k ′)n(E0 + δEn) + 1

N

∑
n

∑
n′ �=n

e−ik ′n′+iknVnn′

= δk,k ′ Ek + 1

N

∑
n

ei(k−k ′)nδEn (25.91)

and due to the disorder the k-states are mixed. The energy change of a nondegenerate
state(for instance k = 0) is in lowest order perturbation theory given by the diagonal
matrix element

δEk = 1

N

∑
n

δEn (25.92)

as the average of the local energy fluctuations. Obviously the average is zero

< δEk >=< δEn >= 0 (25.93)

and

< δE2
k >= 1

N 2

∑
n,n′

< δEnδEn′ >. (25.94)

If the fluctuations of different sites are uncorrelated

< δEnδEn′ >= δn,n′ < δE2 > (25.95)

the width of the k-state

< δE2
k >= < δE2 >

N
(25.96)

is smaller by a factor 1/
√
N .5 If the fluctuations are fully correlated, on the other

hand, the k-states have the same width as the site energies.
For the pairs of degenerate states ±k, we have to consider the secular matrix

(Δk = k − k ′ = 2k)

5This is known as exchange or motional narrowing.
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H1 =
(

1
N

∑
n δEn

1
N

∑
n e

inΔkδEn

1
N

∑
n e

−inΔkδEn
1
N

∑
n δEn

)
(25.97)

which has the eigenvalues

δE±k = 1

N

∑
n

δEn ± 1

N

√∑
n

einΔkδEn

∑
n′

e−in′ΔkδEn′ . (25.98)

Obviously the average is not affected

<
δE+k + δE−k

2
>= 0 (25.99)

and the width is given by

<
δE2

+k + δE2
−k

2
>

= 1

N 2

∑
nn′

< δEnδEn′ > + 1

N 2

∑
nn′

ei(n−n′)Δk < δEnδEn′ >

= 2
< δE2 >

N
. (25.100)

25.2.4 Off-Diagonal Disorder

Consider now fluctuations also of the coupling matrix elements, for instance due
to fluctuations of orientation and distances. The Hamiltonian contains an additional
perturbation

H ′
kk ′ = 1

N

∑
n′n

e−ik ′n′+iknδVnn′ . (25.101)

For uncorrelated fluctuations with the properties6

< δVnn′ >= 0 (25.102)

< δVnn′δVmm ′ >= (δnmδn′m ′ + δnm ′δn′m − δnmδn′m ′δnn′) < δV 2
|n−n′| > (25.103)

6We assume here that the fluctuation amplitudes obey the CN − symmetry.
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it follows

< H ′
kk ′ >= 0

< |H ′
kk ′ |2 >= 1

N 2

∑
n′n

∑
m ′m

eik(n−m)+ik ′(m ′−n′) < δVnn′δVmm ′ >

= 1

N 2

∑
n′n

< δV 2
nn′ > + 1

N 2

∑
ei(k+k ′)(n−n′) < δV 2

nn′ >

= < δE2 >

N
+ 1

N

∑
m �=0

< δV 2
|m| >

[
1 + cos

(
m(k + k ′)

)]
. (25.104)

If the dominant contributions come from the fluctuation of site energies and nearest
neighbor couplings, this simplifies to

< |H ′
kk ′ |2 >= 1

N
(< δE2 > +2 < δV 2

±1 > (1 + cos(k + k ′)). (25.105)

For the nondegenerate states, the width is

< δE2
k >= < δE2 > +4 < δV 2±1 >

N
(25.106)

and for the degenerate pairs, the eigenvalues of the secular matrix become

δE±k = Hkk ± ∣∣Hk,−k

∣∣ . (25.107)

Again the average of the two is not affected

<
δE+k + δE−k

2
>= 0 (25.108)

whereas the width now is given by

<
δE2

+k + δE2
−k

2
>=< H 2

kk > + < H 2
k,−k >

= 2

N

(
< δE2 > + < δV 2

±1 > (3 + cos(2k))
)
. (25.109)

Off-diagonal disorder has a similar effect as diagonal disorder, but it influences the
optically allowed k = ±1 states stronger than the states in the center of the exciton
band. More sophisticated investigations, including also partially correlated disorder
and disorder of the transition dipoles, can be found in the literature [144–149].
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Problems

25.1 Photosynthetic Reaction Center

The “special pair” in the photosynthetic reaction center of Rps.viridis is a dimer of
two bacteriochlorophyll molecules whose centers of mass have a distance of 7Å. The
transition dipoles of the two molecules include an angle of 139o.

7A
o

139
o

C2

μ μ
A

B

Calculate energies and intensities of the two dimer bands from a simple exciton
model

H =
(−Δ/2 V

V Δ/2

)

as a function of the energy difference Δ and the interaction V. The Hamiltonian is
represented here in a basis spanned by the two localized excited states |A∗B > and
|B∗A >.

25.2 Light Harvesting Complex

The circular light harvesting complex of the bacterium Rhodopseudomonas aci-
dophila consists of nine bacteriochlorophyll dimers in aC9-symmetric arrangement.
The two subunits of a dimer are denoted as α and β. The exciton Hamiltonian with
nearest neighbor and next to nearest neighbor interactions only is (with the index n
taken as modulo 9)

H =
9∑

n=1

{
Eα|n;α >< n;α| + Eβ |n;β >< n;β|

+Vdim(|n;α >< n;β| + |n;β >< n;α|)

+Vβα,1 (|n;α >< n − 1;β| + |n;β >< n + 1;α|)

+Vαα,1 (|n;α >< n + 1;α| + |n;α >< n − 1;α|)

+ Vββ,1 (|n;β >< n + 1;β| + |n;β >< n − 1;β|)} .
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Transform the Hamiltonian to delocalized states

|k;α >= 1

3

9∑
n=1

eikn|n;α > |k;β >= 1

3

9∑
n=1

eikn|n;β >

k = l 2π/9 l = 0,±1,±2,±3,±4.

(a) Show that states with different k-values do not interact

< k ′,α(β)|H|k,α(β) >= 0 if k �= k ′.

(b) Find the matrix elements

Hαα(k) =< k;α|H|k;α > Hββ(k) =< k;β|H|k;β >

Hαβ(k) =< k;α|H|k;β >.

(c) Solve the eigenvalue problem

(
Hαα(k) Hαβ(k)
H∗

αβ(k) Hββ(k)

)(
Cα

Cβ

)
= E1,2(k)

(
Cα

Cβ

)
.

(d) The transition dipole moments are given by

µn,α = μ

⎛
⎝ sin θ cos(φα − ν + nφ)

sin θ sin(φα − ν + nφ)

cos θ

⎞
⎠ µn,β = μ

⎛
⎝ sin θ cos(φβ + ν + nφ)

sin θ sin(φβ + ν + nφ)

cos θ

⎞
⎠

ν = 10.3o, φα = −112.5o, φβ = 63.2o, θ = 84.9o.
Determine the optically allowed transitions from the ground state and calculate the
relative intensities.

25.3 Exchange Narrowing

Consider excitons in a ring of chromophores with uncorrelated diagonal disorder.
Show that in lowest order, the distribution function of Ek is Gaussian. Hint: write
the distribution function as

P(δEk = X) =
∫

dδE1dδE2 · · · P(δE1)P(δE2) · · · δ(X −
∑

δEn

N
)

and replace the delta function with a Fourier integral.



Chapter 26
Charge Transfer in DNA

Photoinduced charge transfer in DNA [150, 151] occurs via two different hole
transfer mechanisms (Fig. 26.1), diffusive hopping between sites with similar poten-
tial and tunneling over barriers with high potential (Fig. 26.2). We discuss a simple
kinetic scheme for diffusive motion and determine the stationary solution of the cor-
responding master equation. A continuous treatment leads to the diffusion equation.
Hole tunneling appears over one or more bridge states and has to be described by a
higher order superexchange mechanism. In general, both mechanisms are effective,
dependent on the DNA sequence.

po
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l
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l

S*

G GA

Fig. 26.1 Charge Transfer in DNA After hole injection from the excited photosensitizer S∗, charge
transfer proceeds via two mechanisms. Left Between nucleic acids with similar oxidation potential,
charge is transferred by diffusive hopping. Right nucleic acids with higher oxidation potential act as
virtual intermediates during a tunneling process. Over longer distances, both mechanisms contribute
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Fig. 26.2 Oxidation potentials of 2’-deoxynucleosides

26.1 Diffusive Hole Transfer

The hopping process among residues with the same potential is described by the
kinetic scheme [152] (the loss channels are left out for simplicity)

S
→G1

k
�
k
G2

k
�
k
G3 . . .

k
�
k
GN

kT
→GGG (26.1)

where S is the injection rate and trapping at the end of the chain is irreversible. The
system of master equations reads

∂P1

∂t
= S + k(P2 − P1) (26.2)

∂

∂t
Pj = kPj−1 + kPj+1 − 2kPj 1 < j < N . (26.3)

∂

∂t
PN = kPN−1 − (k + kT )PN . (26.4)

Figures 26.3 and 26.4 show numerical results for an instantaneous charge injection
S = δ(t) (i.e., initially only G1 is charged). Experimentally, often the quantum yield
is measured, which corresponds to a stationary state with S = const. The stationary
solution of the master equation can be found recursively

PN−1 = (1 + kT
k

)PN (26.5)

PN−2 = 2PN−1 − PN = (1 + 2kT
k

)PN (26.6)

...

P2 = 2P3 − P4 = (1 + (N − 2)
kT
k

)PN (26.7)

P1 = 2P2 − P3 = (1 + (N − 1)
kT
k

)PN (26.8)

P1 = P2 + S

k
. (26.9)
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Fig. 26.3 Kinetics of the
hopping process The master
(26.3) is solved for
k = 1, kT = 20 and N
from 3 to 10. The curves
show the charge arrived at
the trap. The transfer time is
approximately proportional
to N 2
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From combination of the last three equations, we obtain

PN = S

kT
(26.10)

and finally

Pj =
(

1 + (N − j)
kT
k

)
S

kT
. (26.11)

Hence, the relative yield shows an algebraic length dependence in agreement with
experimental data [152]

PN

P1
= 1

1 + (N − 1) kTk

. (26.12)
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Approximating the probabilities by a continuous function

Pj = P( jΔx) (26.13)

and the second derivative by a difference quotient

∂2P

∂x2
= P(x + Δx) + P(x − Δx) − 2P(x)

Δx2
(26.14)

we obtain a diffusion equation (Sect. 7.3)

∂P

∂t
= D

∂P2

∂x2
(26.15)

with the diffusion constant

D = kΔx2. (26.16)

For large trapping rate kT � k, the trap at the end of the chain can be represented
as a zero boundary condition. From the general behavior of the diffusion equation
(7.36), we expect that the transfer time will be proportional to the square of the
distance. A small trapping rate can be neglected for the kinetics. In this limit, the
transfer time becomes (Figs. 26.3, 26.4) proportional to N [152].

26.2 Tunneling over Bridge States

Transfer through virtual states (Fig. 26.5) with large energy gap (ΔE � kBT ) is
described by higher order perturbation theory. In leading order, the matrix element
of the transition operator becomes

Fig. 26.5 Hole tunneling.
States with energies above
the initial and final states
(ΔE � kBT ) can not be real
intermediates. Hole
tunneling over one or more
bridge states has to be
described by higher order
perturbation theory Vd

Va

Vb Vb Vb

EΔ

T  T  T  T  T 
A  A  A  A  A

G  G  G
C  C  CC

G*

i

...

f
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Vef f =< i |T | f >=< i |VG0(E f )VG0(E f ) . . . VG0(E f )| f >= VdVa
ΔE

(
Vb
ΔE

)n−1

(26.17)

where n is the number of bridges and ΔE = Eb − E f is the height of the potential
barrier. For hole tunneling, this leads to an exponential distance dependence of the
transfer rate

V 2
e f f (N ) = V 2

0 e−fiN (26.18)

k = 2π

�
FCD V 2

0 e−fiN. (26.19)

26.3 Combined Transfer Mechanism

In general, both mechanisms are effective (Fig. 26.6). The charge hops from one type-
G nucleoside to the next one with a rate determined by the superexchange interaction

k j = 2π

�
FCDV 2

j . (26.20)

Fig. 26.6 Hole transfer by
combined hopping and
tunneling
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Chapter 27
Proton Transfer in Biomolecules

Intra-protein proton transfer is perhaps the most fundamental flux in the biosphere
[153]. It is essential for such important processes as photosynthesis, respiration,
and ATP synthesis [154]. Within a protein, protons appear only in covalently bound
states. Here proton transfer is essentially the motion along a hydrogen bond, for
instance, peptide or DNA H-bonds (Fig. 27.1) or the more complicated pathways in
proton-pumping proteins.

N    H   

O    C

N    H   

O    C

N    H   

O    C

   H C    O

N       H C    O

N       H C    O

N    

N

H

H

N

O

HN

H

N

N

N

N

(a) (b)

Fig. 27.1 Proton transfer in peptide H-bonds (a) and in DNA H-bonds (b)

The energy barrier for this reaction depends strongly on the conformation of the
reaction complex, concerning as well its geometry as its protonation state. Due to
the small mass of the proton, the description of the proton transfer process has to be
discussed on the basis of quantum mechanics. This chapter begins with a discussion
of the photocycle of the proton pump bacteriorhodopsin. We introduce the double
Born–Oppenheimer separation for the different time scales of electrons, protons, and
the heavier nuclei and discuss nonadiabatic proton transfer in analogy to Marcus’
electron transfer theory. We present the model by Borgis and Hynes which includes
non-Condon effects. Finally, we comment on adiabatic proton transfer.

© Springer-Verlag GmbH Germany 2017
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,
Biological and Medical Physics, Biomedical Engineering,
DOI 10.1007/978-3-662-55671-9_27
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27.1 The Proton Pump Bacteriorhodopsin

Rhodopsin proteins collect the photon energy in the process of vision. Since the
end of the 1950s, it has been recognized that the photoreceptor molecule retinal
undergoes a structural change, the so-called cis-trans isomerization (Fig. 27.4) upon
photo-excitation (G. Wald, R. Granit, H.K. Hartline, Nobel prize for medicine 1961).
Rhodopsin is not photostable and its spectroscopy remains difficult. Therefore, much
more experimental work has been done on its bacterial analogue bacteriorhodopsin
[155], which performs a closed photocycle (Figs. 27.2 and 27.3).

Fig. 27.2 X-ray structure of
bR. The most important
residues and structural
waters are shown, together
with possible pathways for
proton transfer. Coordinates
are from the structure 1kzu
[133–137] in the protein data
bank [138, 139]. Molekel
graphics [65]
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Fig. 27.3 The photocycle of bacteriorhodopsin [156]. Different states are labeled by the corre-
sponding absorption maximum (nm)

Fig. 27.4 Photoisomerization
of bR
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Bacteriorhodopsin is the simplest known natural photosynthetic system. Retinal
is covalently bound to a lysine residue forming the so-called protonated Schiff base.
This form of the protein absorbs sun light very efficiently over a large spectral range
(480–360 nm).

After photoinduced isomerization a proton is transferred from the Schiff base to
the negatively charged ASP85 (L → M). This induces a large blue shift. In wild
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type bR, under physiological conditions, a proton is released into the extracellular
medium on the same timescale of 10µs. The proton release group is believed to con-
sist of GLU194, GLU204, and some structural waters. During the M state, a large
rearrangement on the cytoplasmatic side appears, which is not seen spectroscopically
and which induces the possibility to reprotonate the Schiff base from ASP96 sub-
sequently (M → N ). ASP96 is then reprotonated from the cytoplasmatic side and
the retinal reisomerizes thermally to the all trans configuration (N → O). Finally,
a proton is transferred from ASP85 via ARG82 to the release group and the ground
state BR is recovered.

27.2 Born–Oppenheimer Separation

Protons move on a faster time scale than the heavy nuclei but are slower than the
electrons. Therefore, we use a double BO approximation for the wavefunction1

ψ(r, RP , Q)χ(Rp, Q)Φ(Q). (27.1)

The protonic wavefunction χ depends parametrically on the coordinates Q of the
heavy atoms and the electronic wavefunction ψ depends parametrically on all nuclear
coordinates. The Hamiltonian consists of the kinetic energy contributions and a
potential energy term

H = Tel + Tp + TN + V . (27.2)

The Born–Oppenheimer approximation leads to the following hierarchy of equations.
First all nuclear coordinates (Rp, Q) are fixed and the electronic wavefunction of the
state s is obtained from

(Tel + V (r, Rp, Q))ψs(r, Rp, Q) = Eel,s(Rp, Q)ψs(r, Rp, Q). (27.3)

In the second step, only the heavy atoms (Q) are fixed but the action of the kinetic
energy of the proton on the electronic wavefunction is neglected. Then the wave-
function of proton state n obeys

(Tp + Eel,s(Rp, Q))χs,n(Rp, Q) = εs,n(Q)χs,n(Rp, Q). (27.4)

The electronic energy Eel(Rp, Q) plays the role of a potential energy surface for the
nuclear motion. It is shown schematically in Fig. 27.5 for one proton coordinate (for
instance the O-H bond length) and one promoting mode of the heavy atoms which
modulates the energy gap between the two minima.

1The Born-Oppenheimer approximation and the nonadiabatic corrections to it are discussed more
systematically in Sect. 17.1.

http://dx.doi.org/10.1007/978-3-662-55671-9_17
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Fig. 27.5 Proton transfer potential. The figure shows schematically the potential which, as a func-
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heavy atoms
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Fig. 27.6 Proton tunneling. The double well of the proton along the H-bond is shown schematically
for different configurations of the reaction complex

For fixed positions Q of the heavy nuclei Eel(Rp, Q) has a double well structure
as shown in Fig. 27.6. The rate of proton tunneling depends on the configuration and
is most efficient if the two localized states are in resonance.

Finally, the wavefunction of the heavy nuclei in state α is the approximate solution
of

(TN + εs,n(Q))Φs,n,α(Q) = Es,n,αΦs,n,α(Q). (27.5)
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27.3 Nonadiabatic Proton Transfer (Small Coupling)

Initial and final states (s, n) and (s ′,m) are stabilized by the reorganization of the
heavy nuclei. The transfer occurs whenever fluctuations bring the two states in res-
onance.

We use the harmonic approximation (Fig. 27.7)

εs,n(Q) = ε(0)
s,n + a

2
(Q − Q(0)

s )2 + · · · = εs,0(Q) + (εs,n − εs,0) (27.6)

similar to nonadiabatic electron transfer theory (Chap. 16). The activation free energy
for the (s, 0) → (s ′, 0) transition is given by

ΔG‡
00 = (ΔG0 + ER)2

4ER
(27.7)

and for the transition (s, n) → (s ′,m) we have approximately

ΔG‡
nm = ΔG‡

0 + (εsm − εs0) − (εs ′n − εs ′0)

= (ΔG0 + ER + εsm − εs ′n − εs0 + εs ′0)
2

4ER
. (27.8)

The partial rate knm is given in analogy to the ET rate (16.23) as

knm = ω

2π
κP
nm exp

{
−ΔG‡

nm

kT

}
. (27.9)

The interaction matrix element will be calculated using the BO approximation and
treating the heavy nuclei classically

Fig. 27.7 Harmonic model
for proton transfer
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Vsns ′m =
∫

dr dRp ψs(r, RP , Q)χsn(Rp, Q) V χs ′m(Rp, Q)ψs ′(r, RP , Q)

=
∫

dRp

(∫
dr ψs(r, RP , Q)Vψs ′(r, RP , Q)

)
χsn(Rp, Q)χs ′m(Rp, Q)

=
∫

dRpV
el
ss ′(Rp, Q)χsn(Rp, Q)χs ′m(Rp, Q).

The electronic matrix element

V el
ss ′ =

∫
ψs(r, Rp, Q)Vψs ′(r, Rp, Q)dr (27.10)

is expanded around the equilibrium position of the proton R∗
p

V el
ss ′(Rp, Q) ≈ V el

ss ′(R∗
P , Q) + · · · (27.11)

and we have approximately

Vsns ′m ≈ V el
ss ′(R∗

P , Q)Snmss ′ (Q) (27.12)

with the overlap integral of the protonic wavefunctions (Franck–Condon factor)

Snmss ′ (Q) =
∫

χsnχs ′mdRp. (27.13)

27.4 Strongly Bound Protons

The frequencies of O-H or N-H bond vibrations are typically in the range of
3000 cm−1 which is much larger, than thermal energy. If on the other hand, the barrier
for proton transfer is on the same order, only the transition between the vibrational
ground states is involved. For small electronic matrix elementV el , the situation is very
similar to electron transfer described by Marcus theory (Chap. 16) and the reaction
rate is given by [157] for symmetrical proton transfer (ER � ΔG0,ΔG‡

00 = ER/4)

k = 2πV 2
0

�

√
1

4πkT ER
exp

(
− ER

4kT

)
. (27.14)

In the derivation of (27.14), the Condon approximation has been used which corre-
sponds to application of (27.11) and approximation of the overlap integral (27.13)
by a constant value. However, for certain modes (which influence the distance of the
two potential minima), the modulation of the coupling matrix element can be much
stronger than in the case of electron transfer processes due to the larger mass of the

http://dx.doi.org/10.1007/978-3-662-55671-9_16
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proton. The dependence on the transfer distance δQ = Q(0)
s ′ − Q(0)

s is approximately
exponential

Vs0s ′0 ∼ e−αδQ (27.15)

where typically α ≈ 25 · · · 35A−1 whereas for electron transfer processes typical
values are around α ≈ 0.5 · · · 1A−1. Borgis and Hynes [157] found the following
result for the rate when the low-frequency substrate mode with frequency Ω and
reduced mass M is thermally excited

k = 2π < V 2 >

�

√
1

4πkT 4ΔGtot
exp

(
−ΔGtot

kT

)
χSC (27.16)

where the average coupling square can be expanded as

< V 2 >= V 2
0 exp

(
�α2

2MΩ

{
4kT

�Ω
+ �Ω

3kT
+ O

((
�Ω

kT

)2
)})

(27.17)

the activation energy is

ΔGtot = ΔG‡ + �
2α2

8M
(27.18)

and the additional factor χSC is given by

χSC = exp

(
γSC

(
1 − γSCkT

4ΔGtot

))
(27.19)

γSC = α < D >

MΩ2
(27.20)

where

D = ∂ΔH

∂Q
(Q0) (27.21)

measures the modulation of the energy difference by the promoting mode Ω .
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27.5 Adiabatic Proton Transfer

If V el is large and the tunnel factor approaches unity (for s=s’), then the application
of the low friction result (8.28) gives

knm = ω

2π
exp

{
−ΔG‡ ad

nm

kT

}

where the activation energy has to be corrected by the tunnel splitting

ΔG‡ ad
nm = ΔG‡

nm − 1

2
Δεp

nm

http://dx.doi.org/10.1007/978-3-662-55671-9_8


Chapter 28
Proton Coupled Coherent Charge Transfer

Photosynthetic reaction centers perform light induced charge separation over a mem-
brane with a high quantum yield of 95%. Since the structure of the membrane com-
plex of the bacterial reaction center of Rps. viridis has been resolved, by Michel,
Deisenhofer and Huber (Nobel prize 1985), it became a great challenge to resolve the
observed dynamics on the basis of the structure information. The ongoing research in
the field is motivated by the hope to learn from nature, how to improve the efficiency
of artificial solar cells. We start with the so called step model, where the transfer to the
primary stable acceptor proceeds via an intermediate in terms of two nonadiabatic
electron transfer rate processes. In the second part we provide information on the
involvement of reversible proton shifts, which modulates the electronic coupling via
adiabatic delocalization of hole states. Finally we simulate coherence effects, which
support the more complex model of coherently modulated superexchange.

28.1 The Nonadiabatic Electronic Incoherent
Step Transfer Model

In Fig. 28.1 the prosthetic molecules are shown together with experimental transfer
times. Most notable is the inverted ordering with the first transfer step between the
excited special pair dimer P , consisting of the two bacteriochlorophylls PL and PM

to the so named accessory bacteriochlorophyll monomer BL , being about four times
slower than the second step to the bacteriopheophytine HL . This inverted-kinetics
model explains many features of the time resolved spectra. In this section we want to
test to what extent our knowledge of the spectral function is capable to simulate the
observed temperature dependence and magnitude of the two postulated rate processes
P∗ → P+B−

L and B−
L → H−

L .

© Springer-Verlag GmbH Germany 2017
P.O.J. Scherer and S.F. Fischer, Theoretical Molecular Biophysics,
Biological and Medical Physics, Biomedical Engineering,
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Fig. 28.1 Electron transfer
processes in the reaction
center of bacterial
photosynthesis. After
photo-excitation of the
special pair dimer P an
electron is transferred to
bacteriopheophytine HL in
few picoseconds via
bacteriochlorophyll BL . The
electron is then transferred
on a longer time scale to
quinone QA and finally to
QB via a non-heme ferrous
ion. The electron hole in the
special pair is filled by an
electron from the hemes of
the cytochrome c (orange).
After a second excitation of
the dimer another electron is
transferred via the same
route to the semiquinone to
form ubiquinone which then
diffuses freely within the
membrane. The figure was
created with rasmol [140]
based on the structure of
rps.viridis [61–64] from the
protein data bank [138, 139]

28.1.1 The Rate Expression

We discuss a model for biological systems where the density of vibrational states is
very high. The vibrational modes which are coupled to the electronic transition1 are
treated within the model of displaced parallel harmonic oscillators (Chap. 19). This
gives the following approximation to the diabatic potential surfaces

Ei = E0
i +

∑

r

ω2
r

2
q2
r (28.1)

1which have different equilibrium positions in the two states |i> and |f>.

http://dx.doi.org/10.1007/978-3-662-55671-9_19
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E f = E0
f +
∑

r

ω2
r

2
(qr − Δqr )

2 (28.2)

and the energy gap

E f − Ei = ΔE +
∑

r

(ωrΔqr )2

2
−
∑

r

ω2
r Δqrqr . (28.3)

The total reorganization energy is the sum of all partial reorganization energies

ER =
∑

r

(ωrΔqr )2

2
=
∑

r

g2
r �ωr (28.4)

with the vibronic coupling strength

gr =
√

ωr

2�
Δqr . (28.5)

The golden rule expression gives the rate for nonadiabatic electron transfer in analogy
to (18.40)

ket = 2πV 2

�

∑

nr nr ′

P({nr })
∏

r

(FCr (nr , nr ′))2δ

(
ΔE +

∑

r

�ωr (nr ′ − nr )

)

= 2πV 2

�
FCD(ΔE) (28.6)

where the Franck Condon weighted density of states FCD(ΔE) can be expressed
with the help of the time correlation formalism (Sect. 18.4) as

FCD(ΔE) = 1

2π�

∫
dt e−itΔE/�F(t)

F(t) =
∏

r

exp
(
g2
r (e

iωr t − 1)(nr + 1) + (e−iωr t − 1)nr
)

(28.7)

with the average occupation numbers

nr = 1

e�ωr /kBT − 1
. (28.8)

Quantum chemical calculations for the reaction center [158–161] put the electronic
coupling in the range of V = 5 · · · 50 cm−1 for the first step P∗ → P+B− and
V = 15 · · · 120 cm−1 for the second step P+B− → P+H−. For a rough estimate
we take a reorganization energy of 2000 cm−1 and a maximum of the Franck Con-
don weighted density of states FCD ≈ 1/2000 cm−1 yielding an electronic coupling

http://dx.doi.org/10.1007/978-3-662-55671-9_18
http://dx.doi.org/10.1007/978-3-662-55671-9_18
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of V = 21 cm−1 for the first (3.5 psec) and V = 42 cm−1 for the second (0.9 psec)
step in quite good agreement with the calculations.

28.1.2 Application of the Saddle Point Method

The main contributions to the reorganization energy for forming the anions B−
L and

H−
L originate from coupling to internal vibrations of the chromophores which show

a peculiar behavior due to the quasi 2-dimensionality of the π−electron systems. We
performed ab initio (631G/HF) calculations [117] to evaluate vibronic coupling para-
meters and partial reorganization energies. The density of normal modes is roughly
constant ρ(�ω) =<

∑
j δ(�ω − �ω j ) >≈ ρ0 between 30 . . . 2000 cm−1(Fig. 17.3),

as well as the distribution of partial reorganization energiesλ(�ω) =<
∑

j λ jδ(�ω −
�ω j ) >≈ λ0ρ0. Correspondingly, the distribution of g2(�ω) = λ(�ω)/�ω ∝ �ω−1

and its integral can be fitted by a logarithmic dependence (Figs. 28.2, 28.3)

<
∑

j

g2
jθ(�ω − �ω j ) >≈

∫
�ω

�ωmin

λ0ρ0

�ω
d(�ω) = λ0ρ0 ln

�ω

�ωmin
. (28.9)

Since we are dealing with a multi mode system with intermediate strong cou-
plings the application of the saddle point method is advisable [162]. However, we
have to exclude those modes as energy acceptors, whose quanta exceed the free
energy change. They must be factored out as 0–0 Franck Condon overlaps. That
means, the reorganization energy involved in the dynamics becomes energy depen-
dent due to the quantum effect of the high frequency modes. So we get for the case
kT < ΔG < �ωmax with

Fig. 28.2 Calculated
distribution of vibronic
couplings for BChl and BPh.
The dashed curve shows a
logarithmic fit of the
cumulative distribution of g2,
the dash dotted curve shows
a linear fit for comparison
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Fig. 28.3 Distribution of
reorganization energies for
BChl and BPh. The dashed
curve shows a linear fit of the
cumulative distribution of
λ = �ωg2
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ΔG = Δ0 +
∑

j

�ω jg
2
j (28.10)

and

g2(ΔG) =
∑

ω j>ΔG

g2
j =

∫
�ωmax

ΔG
d(�ω)

ρ0λ0

�ω
= ρ0λ0 ln

�ωmax

ΔG
(28.11)

corresponding to

e−g2(ΔG) =
(

ΔG

�ωmax

)ρ0λ0

(28.12)

the following rate expression

k = V 2

�2

(
ΔG

�ωmax

)ρ0λ0 ∫ ∞

−∞
dt exp

{
−i

ΔGt

�

+
∫ ΔG

0
dE ρ0

λ0

E

[
(n(E) + 1)(ei E

�
t − 1) + n(E)(e−i E

�
t − 1)

]}

= V 2

�2

(
ΔG

�ωmax

)ρ0λ0 ∫ ∞

−∞
dt exp

{
−it

ΔG

�
+ f (t)

}
. (28.13)

The equation for the saddle point ts reads

0 = − iΔG

�
+ d f (t)

dt
= − iΔG

�
+
∫ ΔG

0
dE ρ0

λ0

E

[
(n(E) + 1)i

E

�
ei E

�
ts − n(E)i

E

�
e−i E

�
ts

]

(28.14)
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which we can linearize in E/�ts for kT < ΔG < �ωm and ρ0λ0 to get

− iΔG

�
+ i

�
ρ0λ0ΔG + its

2�2
ρ0λ0ΔG2 + 2

its
�2

ρ0λ0

∫ ΔG

0
dE n(E) = 0.

(28.15)

With the solution for the saddle point

ts
�

= 2ΔG(1 − ρ0λ0)

ρ0λ0

(
ΔG2 + 4

∫ ΔG
0 dE E n(E)

) (28.16)

the second derivative of f is

d2 f

dt2
= −ρ0λ0

�2

∫ ΔG

0
dE E

[
ei E

�
t (n(E) + 1) + ei E

�
t n(E)

]

≈ −ρ0λ0

�2

∫ ΔG

0
dE E (2n(E) + 1) = ρ0λ0

�2

(
ΔG2

2
+ 2

∫ ΔG

0
dE n(E) E

)
.

(28.17)

The integral over n(E)E can be approximated for ΔG > 2kBT
with an error not exceeding 10% by

∫ ∞

0
dE n(E)E = (kBT )2 π2

6
. (28.18)

So we find

d2 f

dt2
≈ −ρ0λ0

�2

(
ΔG2

2
+ π2

3
(kBT )2

)
(28.19)

and

ts/� = − 2ΔG(1 − ρ0λ0)

ρ0λ0
(
ΔG2 + 2

3π2(kBT )2
) . (28.20)

Performing the Gauss-integration around the saddle point ts gives the result in alge-
braic form

k = V 2

�2

(
ΔG

�ωmax

)ρ0λ0

exp

{
−it

ΔG

�
+ f (ts)

}√
2π

| f ′′(ts)|

= V 2

�2

(
ΔG

�ωmax

)ρ0λ0
√√√√

2π�2

ρ0λ0

(
ΔG2

2 + π2

3 (kBT )2
) exp

⎧
⎨

⎩− ΔG2(1 − ρ0λ0)
2

ρ0λ0

(
ΔG2

2 + 1
3 π2(kBT )2

)

⎫
⎬

⎭ .

(28.21)
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It holds for 2kBT < ΔG < �ωmax and gives for the special case

ρ0λ0 = 1

k = V 2

�

(
ΔG

�ωmax

)√√√√
2π(

ΔG2

2 + π2

3 (kBT )2
) . (28.22)

For ΔE = 0 corresponding to ΔG = ρ0λ0�ωmax and �ωmax � kBT the result
has the simple form

k = 2
√

π

(ρ0 λ0)3/2

V 2

�2ωmax
exp

{
−2(1 − ρ0λ0)

2

ρ0λ0

}
. (28.23)

The expression (28.21) applies to non adiabatic electron transfer between large
molecules with a coupling to a quasi dense set of vibrations reminiscent of a two
dimensional solid. The constant density together with the equally distributed reor-
ganization energies lead to a very specific dependence on the free energy change
and on temperature. For low temperatures (2kBT < ΔG) and ΔG < �ωmax , ln k
shows a long plateau as a function of ΔG between ΔG = kBT and �ωmax instead
of the classical bell shape structure. The rate is almost temperature independent in
this regime, with a tendency of weak temperature inversion. The inversion regime
is most extended for the special coupling case ρ0λ0 = 1. For very large values
ΔG � �ωmax � kBT the rate follows an energy gap law [163]

k = 2
√

π

(ρ0 λ0)3/2

V 2

�2 ωmax
exp

{
− ΔG

�ωmax
ln

(
ΔG

� ωmax ρ0λ0

)
− 2(1 − ρ0 λ0)

2

ρ0 λ0

}
.

(28.24)

We can extend the algebraic expression (28.21) into the range 0 < ΔG < 2kBT
approximately by replacing in (28.7) the lower cut-off energy ΔG by ΔG + 2kBT .
This leads to the following rate equation for 0 < ΔG < �ωmax + 2kBT :

k = V 2

�2

(
ΔG + 2kBT

�ωmax

)ρ0λ0
√√√√

2π�2

ρ0λ0

(
(ΔG+2kBT )2

2 + π2

3 (kBT )2
)×

× exp

⎧
⎨

⎩− (ΔG(1 − ρ0λ0) − 2kBTρ0λ0)
2

ρ0λ0

(
(ΔG+2kBT )2

2 + 1
3π2(kBT )2

)

⎫
⎬

⎭ . (28.25)

The analytic approximation (28.25) can be used to simulate the rates for the
step model on the basis of calculations for the partial reorganization energies and
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calculated couplings. This approach has to be extended if one considers mutants.
For instance, a weak dependence of the charge separation process on ΔG and on T
has been found for mutants [164] which differ substantially in their redox potentials,
but which are insensitive towards changes in their rates, contrary to predictions
based on the energy gap law. This stability against changes in ΔG is certainly an
evolutionary advantage to assure a robust functioning. Also the strong suppression
of recombination and the universal activationless rates need better understanding.

28.2 Heterogeneous Superexchange Coupling

Heterogeneities are well documented by stimulated emission from P∗ [165]. Here we
want to concentrate on their influence on the superexchange coupling. We consider
electronic superexchange coupling Vs between the donor P∗ and the acceptor P+H−

L ,
bridged by the intermediate P+B−

L . We get for the coupling squared

V 2
s = ϕ2 V ′2 = 2V 2

Δ2 + 4 V 2+ | Δ | √
Δ2 + 4 V 2

V ′2 . (28.26)

This expression results from the diagonalization of the 2 × 2 electronic Hamiltonian
of the states P∗ and P+B−

L . With V = V (P+BL , P∗) and V ′ = V (P+BL , P+H−
L )

and P+HL , Δ is the zero order energy difference between P+B−
L and P∗ prior to

diagonalization, and ϕ is the P+B−
L -component of that eigenstate which lies in

energy closer to the initially excited donor. Implying a vibrational quasi-continuum
of acceptor states we obtain the superexchange rate

kΔ = 2π

�
V 2
s FCD , (28.27)

with the Franck-Condon weighted density FCD corresponding to the true energy
release ΔG between P∗ and P+H−

L . Inserting here V 2
s from (28.26) and introducing

the rate

k = 2 π

�
V ′2 FCD (28.28)

we get for Δ-dependent rate

kΔ = 2V 2

Δ2 + +4 V 2+ | Δ | √
Δ2 + 4 V 2

k . (28.29)

This expression contains the common superexchange rate for large values of the
energy spacing between P+B−

L and P∗. If one neglects V in the denominator, kΔ

goes over into (V 2/Δ2)k with Δ replaced by its average Δc.
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So far we did not include vibrational degrees of freedom explicitly in the energy
denominator for the heterogeneous components of our distribution. The slow vibra-
tions with ω j < kΔ contribute actually to our distribution, and the faster may be
averaged by arguments given in [166], as long as the superexchange limit Δ > V is
realized. For the near resonance components we still use the superexchange coupling
expression, since we treat the interaction in a non perturbative way. This treatment
differs in that respect from the resonance Raman model with slow vibrational relax-
ation of Sumi and Kakitani [167].

The width of CT states is around 0.1 eV [168]. It is mainly due to heterogeneous
broadening. We will show how this modifies the transfer dynamics. The effect is
particularly strong for near resonance superexchange processes, since small varia-
tions of near resonance intermediate energy gaps have a large effect on the transfer
rate. Considering a Gaussian distribution G(Δ) with mean value Δc (the subscript
‘c’ stands for ‘center’) and with the rms deviation σ from Δc,

G(Δ) = (2π σ2)−1/2 exp

{
− (Δ − Δc)

2

2σ2

}
(28.30)

we get the following expression for the dispersive decay of the initially excited state

P(t) =
∫ ∞

−∞
G(Δ)e−kΔt dΔ = (2π σ2)−1/2

∫ ∞

−∞
exp

{
− (Δ − Δc)

2

2σ2
− kΔt

}
dΔ .

(28.31)

If we introduce the dimensionless quantities

v = V

σ
, δ = Δ

σ
(28.32)

and consider the typical ordering smallv (� 0.5) and δ � v, P(t) can be approximated
within error less than 10% by

P(t) = exp

{
−e−δ2/2 v kt

1 + √
kt

− δ v2 kt

δ3 + 2 v
√
kt

}
. (28.33)

In the short time limit kt < min(1, δ6v−2/4) we find an exponential decay with the
initial rate ki

ki = knr + ks = e−δ2/2 v k + v2

δ2
k. (28.34)
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The first term, knr, is the rate of a system which has the states P∗ and P+B−
L in near

resonance (v/δ ≤ 1), and the second term, ks , is the superexchange rate for a large
central gap (v/δ � 1). In the long time limit kt > max(1, δ6v−2/4), we get from
(28.33)

P(t) = exp

{
−
(

e−δ2/2 + δ

2

)
v

√
kt

}
. (28.35)

The first term in knr dominates for kt < 1 , knr > ks and v < δ < 1, which can be
expressed in terms of the original quantities V , Δ and σ as

V <| Δc |� σ. (28.36)

The rate knr is proportional to vk = (V/σ)k. To understand this dependence, we
consider the distribution G̃(Δ̃) of the (‘real’) energy gap Δ̃, which originates from
the diagonalization of the electronic Hamiltonian of P+B−

L and P∗,

G̃(Δ̃) = G(Δ) | dΔ

dΔ̃
| (28.37)

with

Δ̃ = sign(Δ)
√

Δ2 + 4 V 2. (28.38)

Distinguishing between cases, with the energy of the intermediate state lying above
or below the energy of the donor state, respectively (subscripts ‘+’ and ‘–’), we
consider the restrictions of G̃(Δ̃) on the positive and negative Δ̃- half axes G̃+(Δ̃)

and G̃−(Δ̃),

G̃(Δ̃) =
{
G̃+(Δ̃) for Δ̃ > 0
G̃−(Δ̃) for Δ̃ < 0

. (28.39)

Using (28.37) and (28.30) together with the inversion of (28.38) for Δ,

Δ = signΔ̃

√
Δ̃2 − 4 V 2 (28.40)

where | Δ̃ | ≥ 2 V, we obtain the distributions of the signed energy gap Δ̃,

G̃±(Δ̃) = 1√
2πσ

| Δ̃ |√
Δ̃2 − 4 V 2

exp

{
− (±

√
Δ̃2 − 4V 2 − Δc)

2

2σ2

}
(28.41)

as well as the respective contributions P±(t) to the donor decay function

P(t) = P+(t) + P−(t) (28.42)
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P±(t) =
∫ ∞

2V
G̃±(Δ̃) exp

{
−kΔ(Δ̃) t

}
dΔ̃. (28.43)

The Δ̃-dependence of kΔ results by substituting Δ from (28.40) into (28.29),

kΔ(Δ̃) = 2 V 2

Δ̃2+ | Δ̃ |
√

Δ̃2 − 4 V 2
k. (28.44)

We can evaluate now the average superexchange rate k̄ expressed in terms of the
energy gap Δ̃,

k̄ =
∫ ∞

2V
[kΔ(Δ̃) G̃+(Δ̃) + kΔ(Δ̃) G̃−(Δ̃)] dΔ̃. (28.45)

Invoking (28.36) one finds that the main contribution of the integrand to the integral
in (28.45) originates from the subrange of the integration variable Δ̃ with a lower
limit of 2 V and an upper limit of ≈3 V and that the Gaussian function G(Δ) varies
only little across this range. Hence, after substituting (28.41) for G̃+(Δ̃) and G̃−(Δ̃)

into (28.45), we can approximate this function by its value at the gap edges Δ̃ = ±V ,
and obtain

k̄ = 2√
2πσ

exp

{
− Δ2

c

2σ2

}∫ ∞

2V

Δ̃√
Δ̃2 − 4 V 2

kΔ(Δ̃) dΔ̃, (28.46)

and in terms of the new integration variable x ≡ Δ̃ +
√

Δ̃2 − 4 V 2

k̄ = 4 k√
2πσ

exp

{
− Δ2

c

2σ2

}∫ ∞

2V

V 2

x2
dx =

√
2

π
exp

{
− Δ2

c

2σ2

}
V

Δc
k. (28.47)

The average rate k̄ thus differs from the near resonant rate knr only by the constant
factor

√
2/π ≈ 0.8 (28.34). The linear dependence in V of the prefactor to k in knr

for fixed σ, compared to the quadratic of ks , can thus be visualized as the linear
decrease with V of the dashed areas below the integrand functions kΔ(Δ̃) G̃±(Δ̃),
which enter the average rate expression via (28.45) (Fig. 28.4a, b). This decrease
has its origin in the diminished participation of near resonance states for decreasing
V and fixed σ. It is due to the state repulsion at near resonance conditions. The
occurrence of the dip in the gap distribution with a width of 2 V (Fig. 28.4a, b)
can also hamper the equilibration in the intermediate state. At the same time the
electron delocalization at the dip edges reduces the coupling to the vibrations. Both
effects diminish the formation of incoherent population of the intermediate P+B−

L
and that may reduce the recombination P+B−

L → PBL . The arguments hold also for
the energetic low dip edge. Only at energetic distances below the dip center by more
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Fig. 28.4 Gap distribution.
The gap distribution G(Δ)

and the integrand of the
average decay rate are shown
for small V. The area below
the integrand in the upper
part of the picture is half as
large as in the lower part.
This reflects the linear V
dependence of the decay rate
in the small V limit due to
level repulsion at gap edges

0

0.2

0.4

(σ-1
)

Δ
c
/σ=1

V/σ=0.1

Δ
c
/σ=1

V/σ=0.2

-1 0 1 2

Δ∼/σ

0

0.2

0.4

(σ-1
)

P*

P*

← __2V
Δ

c

 →

G
~

-

G
~

+

G
~

-

__kΔ

k
G
~

- __kΔ

k
G
~

+
G
~

+

than 2 V the relaxation will destroy the coherent transfer and the two step mechanism
can evolve in competition with the recombination. So we conclude, the loss from the
near resonance coherent transfer will come from P−(t). A square root dependence
for P+(t) dominates the kinetics for δ � 1 and kt > 1 (Fig. 28.5). For δ � 1 the
second term of (28.33) dominates. In this case the exponential drop off can be large.
We see that a non-exponential decay pattern is a natural outcome of the dispersive
character of the superexchange coupling.

To understand the inverted temperature dependence in more detail we like to point
at the close similarity in the temperature dependence of the charge separation rate
and the position and width of the absorption peak of P∗ [169]. In the latter case we
have to consider the strong one-electron interaction of about 0.15 eV [170] between
the state P∗ and the internal CT- states of the dimer, P+

M P−
L and P+

L P
−
M . The energies

of the internal CT states increase for increasing temperature and this causes the blue
shift of P*. This conclusion is consistent with the observation of a strong broadening

Fig. 28.5 Donor decay via
heterogeneous
superexchange. Parameters
as in Fig. 28.4. The
contribution P+ is from
states with energies above
the donor energy
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of the Stark spectrum only for the lower of the two split dimer bands of P [171]. The
strength of the Stark spectrum provides information on the coherent admixture of
the CT states into these exciton bands. To relate the temperature dependence of the
energy shift and width of P∗ to that of the transfer rate from P∗ to HL , we have to
scale the admixed components of the corresponding CT states to P∗. In first order
perturbation these are given by the ratio of the corresponding couplings to the related
mean energy gap Δc. For the P∗ spectrum this is a factor of about 0.2 [170]. A similar
value for the superexchange coupling V/Δc = 0.2 between P∗ and P+B−

L is larger
than predicted by quantum calculations but can be reached by a relaxation preceding
the transfer process (Sect. 28.5). Such a process provides the proper amplitude for
the appearance of the P+B−

L state in the simulated time resolved measurements
(Sect. 28.5). So we can take the spectral data as empirical input for the determination
of the parameters of our model. To quantify the temperature dependence of CT
states, we like to refer to spectra of solvated electrons. Their absorption peak position
decreases with increasing temperature [172]. The same holds for the solvation energy,
which is responsible for the spectral shift [173]. We can approximate the temperature
dependence of the shift by [172]

Δc

Δ0
c

= 1 + a

Tr

T 2

T + T0
≡ α(T ) (28.48)

with Δ0
c = Δc(T = 0) and room temperature Tr = 300 K. The parameter a is given

as a = 0.5 [172], and for the temperature T0 we assume 50 K, a value at which struc-
ture fluctuations freeze out. To specify the temperature dependence of the width we
use the observation of Kirmaier and Holten, that the relative shift and width dependen-
cies are proportional to each other [174, 175]. From the expressions (28.32)–(28.35)
and (28.48) we get the temperature dependence for the parameters v and δ as

v = V

σ
= V

σ0
α−1(T ) (28.49)

δ = Δc

σ
= δ0 (28.50)

with σ0 = σ(T = 0) and δ0 = δc(T = 0). For P(t) we find a temperature dependence
via α(T ) as (see Fig. 28.6 for 30 and 300 K),

P(t) = exp

{
−κ1(T ) k t

1 + √
k t

− 2 κ2(T ) k0
s t

δ2α(T ) + 2
√
k0
s t

}
(28.51)
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Fig. 28.6 Donor decay for
heterogeneous
superexchange. The decay of
P∗ is shown versus time in
units of the superexchange
lifetime for
T = 0K , 30K , 300K
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κ1(T ) = V

σ0
exp

(
−δ2

2

)
α−1(T ) (28.53)

κ2(T ) = (Δ0
c)

2

2 σ2
0

α−1(T ) . (28.54)

In Fig. (28.6a–c) the temperature dependence of the square root and exponential
components

knr = κ1k and ks = k0
s α(T )−2 (28.55)

are shown. Experimentally, the inversion effect on the temperature is found to be
higher for the faster component [169, 176, 177]. This would imply in our model that
the temperature dependence of the width σ might be stronger than that of Δc. Also
destruction of the coherence by the temperature would point in this direction.

We should mention that the simulation of the initial charge separation by a sta-
tionary near resonance process can get in conflict with Stark effect measurements.
They are well interpreted as resulting from the internal CT states of P [178]. A strong
admixture of a near resonance states P+B−

L should show up in the orientational effects
[179]. At the same time we need relatively small Δc-values in order to get an efficient
transfer. The conflict can be resolved if we incorporate an initial relaxation of P∗ on
the sub-picosecond timescale, which lowers the P+B−

L into the energy range of the
excited state B∗

L .
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28.3 Proton Coupled Superexchange

Even though it is possible to simulate the time dependence of many reaction centers
including mutants within the frame of the step models or the superexchange model,
there are fundamental short-comings, which we shall address in this section. The
suppression of recombination is in the step model related to the inverted transfer
kinetics. It implies that the first step, the transition from P∗ to the charge transfer
state (CT-state) P+B−

L is slower than the second from P+B−
L to P+H−

L [180]. The
implicit assumption is that a rapid relaxation in P+B−

L precedes the nonadiabatic
transition to P+B−

L . This assumption of equilibration on a 100 fs time scale is in
conflict with the observation of coherent oscillations, observed with correlated phases
by detecting stimulated emission from P∗ as well as transient absorption of B−

L [181].
Alternatively, we will consider now the adiabatic evolution of the state mixing driven
by low frequency librational modes, which affect the hydrogen bonds over long
distances. This approach incorporates specific structure properties of the dimer such
as the C2-symmetry and its dynamic breakage. We make use of ab initio calculations
of the TDHF type, which incorporate the electronic one-electron interactions. The
analysis of the eigenstates provides evidence for hole transfer via the excitonically
coupled P∗ and B∗

L states. We simulate the dynamics in the P∗ state by the application
of an electric field, which shifts the P+B−

L state in the energetic regime of the B∗
L

state. The field mimics that way the high polarizability of the P∗ state, which shows
up in the Stark spectrum of the dimer [182]. Apart from a proper field modulation
we search for a reaction coordinate by varying hydrogen positions involved in H-
bonding (Fig. 28.7), capable to lower the energy of the P+B−

L state in the presence
of the P∗ state. The participation in the proton dynamics is also documented by
mutation and modifications of the structure.

For instance, rotation of HisL168, which can be induced by the excitation lowers
its H-bond strength to the oxygen of the PL acetyl. It reduces that way the electron
affinity which increases the electron delocalization. Internal structure changes within
the P∗ state are due to a planarization of the acetyl with the pyrrole I ring, lowering
the energy via extending that way the π−system of PL . Such structure effects are
supported by the structure of a mutant HisL168 replaced by tryptophane, the only
mutant, which does not form a H-bond but enhances the charge separation. This
structure can act as guidance to readjust the acetyl configuration for an internal
P∗ state which we denote as P∗∗. In Fig. 28.8 two examples are shown, which
demonstrate how the absorption spectra change when the CT state P+B−

L approaches
B∗
L and P∗ as a function proton shifts and electric field. The configuration with

optimized coupling will act as the activationless “transition state” for the fast charge
separation. It has been shown, that the time resolved transient spectra of P∗ can also
be reinterpreted in such a model. Sub-picosecond dynamics in P∗ is also observed
by transient vibrational spectroscopy, showing changes of the acetyl structure. In
addition it is important to shift H-atoms of the water, bridging to HisM200 and the
keto group of BL stabilizing the P+B−

L state. Most sensitive is the approach of the
protonic hydrogen from TyrM208 towards BL . From the intensities and the splittings
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Fig. 28.7 Hydrogen bonds around the special pair. The acetyl oxygens of the special pair dimer
P are hydrogen bonded to HISL168 and TYRM195. A water molecule bridges between HISM200
and Bacteriochlorophyll BL . The proton of TYRM208 is not involved in a hydrogen bond and can
move towards P or BL

of the interacting states one can extract the one-electron coupling V and the excitonic
interaction W. For increasing field strength and proton shifts the spacing between the
LUMO and the HOMO of BL reduces relative to those for P by about 1000 cm−1. Such
shifts result in a redshift of the B∗

L absorption and an increase of the excitonic coupling
between P∗ and B∗

L . Continuous changes are strongly correlated and adiabatic. We
tried to assure that the dynamic changes effect the spectra in an exothermic manner.
We found out that the one-electron coupling between B∗

L and P+B−
L , which relates

to the hole transfer from the HOMO of P to that of B is surprisingly strong (about
100 cm−1). This fact we take as main source for the coherent hole transfer model.
Experimentally, it is supported by the observation of a very fast, sub-picosecond,
charge separation after excitation of B∗

L . In an earlier publication [183], the possible
involvement of B∗

L as virtual intermediate had been considered on the basis of semi
empirical (PPP/CI) calculations. New is the involvement of hole transfer. It plays a
major role in light induced biological processes, mostly in combination of excited
state proton transfer. Its role in the primary step in photosynthesis is in the forefront
of research.
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Fig. 28.8 TDHF model
spectra. The absorption
spectrum of a model system
consisting of the special pair
P, the Bacteriochlorophyll
BLand the
Bacteriopheophytin HLon
the active branch and some
selected residues (see
Fig. 28.7) is calculated with
the 631G/TDHF method
[117]. The hydroxyl proton
of TYRM208 is oriented to
and shifted by 0.4 A towards
B, HISL168 is rotated by
900, Further two protons are
shifted by 0.4 A from the
HISM200 towards the water
and from the water towards
B. The CT state P+B−

L is
brought into resonance with
P* and B∗

L by a suitable
electric field
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28.4 Coherent Dynamics

Coherent oscillations result from the excitation of vibrational wave packets. They can
be generated in the excited state, but also in the groundstate through stimulated Raman
scattering. In the reaction center an impulsive reorientation of the acetyle of PL is
induced together with an orientation change of HISL169 , which reduces the strength
of the hydrogen-bond between these molecules. This change initiates an oscillating
modulation with the dominant frequency � of the charge distribution between the
dimer halfs PL and PM by means of admixing a variable P+

L P−
M component to the

state P∗. This component is strongly coupled to the P+
L B−

L charge transfer state. It
can be occupied via the hole transfer, that is the electron transfer from the HOMO of
P to the HOMO of BL , if BL is excited. We propose, that the excitonically admixed
component of B∗

L into P∗ is increased in the relaxed configuration P∗∗ that the
protonic wave packet follows the reaction coordinate for the enhancement of the
P+B−

L character of the P∗∗ state.
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To obtain the decay of the P∗ state, we consider first the decay of B∗
L . In damping

approximation (17.49), we have

e−iHt/�|B∗
L >= e−it E(B∗

L )/�−kt/2|B∗
L > . (28.56)

The decay into the CT state P+H−
L involves the electronic one-electron coupling

between the LUMOs of BL and HL closely related to the second step in the incoherent
step model. Finally we incorporate the excitonic coupling between P∗∗ and B∗

L
with their mixed orbitals. We treat the excitation induced relaxation of the CT state
P+B−

L semiclassically. When it gets in near resonance with the B∗
L state the two

states undergo avoided crossing with a splitting of 2Uh . For an heterogeneous energy
distribution of the CT states, the split states denoted by + and − signs for the lower
and upper components respectively, we get

k± = a2
±k (28.57)

with

a2
± = 1

2

(
1 ± Δ√

Δ2 + 4U 2

)
. (28.58)

In lowest order perturbation the decay of the mixed (P+B−
L , B∗

L) state is coupled to the
decay of P∗∗ state via the excitonic coupling V (P∗, B∗

L) to yield the superexchange
rate ks for the electron transfer from P∗ to P+H−

L as

ks = k±
(

V (P∗, B∗
L)

E(B∗
L) − E(P∗)

)2

. (28.59)

The decay of B∗
L is on the 100 fs time scale. In the estimate of the reduction factor due

to coherent admixture between the B∗
L into the P∗ state, it should be noted that the

energy difference incorporates the Franck Condon overlaps with excited vibrational
modes including C-C stretches in the energy regime of 1000 cm−1. As a result the
energy difference has to be weighted by the effect which reduced the effective energy
difference seen in the ground state absorption. With this in mind a lifetime around
1ps becomes reasonable. The model avoids solvation of the not equilibrated relaxing
intermediate P+B−

L . It helps to interpret the oscillatory features observed for the
P∗ decay and the same time the phase coupled oscillations in the detection of the
B−band at 1020 nm. We will interpret these oscillations now in more detail.

28.5 Coherent Oscillations

The anionic band P+B−
L can be observed via transient absorption between 1020 and

1040 nm [184] Here we analyze the time evolution of the time dependent population

http://dx.doi.org/10.1007/978-3-662-55671-9_17
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of the P+B−
L state denoted as P±(t) as well as the oscillating contribution Posc(t)

resulting from the short pulse excitation in the diabatic representation. It reads

P±(t) = 1√
2σ

∫ ∞
−∞

dΔ
U2

Δ2 + 4U2 exp

{
− (Δ − Δc)

2

2σ2 − 1

2

(
1 ± Δ√

Δ2 + 4U2

)
kt

}

(28.60)

Posc(t) = 1√
2σ

�
[

2
∫ ∞
−∞

dΔ
U2

Δ2 + 4U2 exp

{
− (Δ − Δc)

2

2σ2 − k

2
t + it

√
Δ2 + 4U2

}]
.

(28.61)

Here U is the one-electron hole interaction between BL* and P+B−
L , Δ is the

energy difference between the diabatic states BL∗ and P+B−
L , and Δ2 + 4U 2 is

the corresponding adiabatic energy difference. The integral over the Gauss-function
accounts for the average over the heterogeneous distribution with the weighting fac-
tor U 2/(Δ2 + 4U 2) representing the delocalization. The width of the distribution is
given by σ. For P± the integral over Δ can be evaluated by the saddle point approxi-
mation. We get the saddle point Δs from the derivative of the two exponents, which
must be zero. This condition yields for the oscillating term the implicit equation for
the saddle point

Δs,± = Δc ± 2σ2U 2kt

(Δ2
s + 4U 2)3/2

. (28.62)

Coherent vibrational oscillations are usually quickly damped out. However, we
should remember, that the energy difference between two adiabatic states coupled by
U has 2U as a lower limit. The probability to find this limit is shown in Fig. 28.4. It
diverges at the boundaries splitting the distribution in two section G±. Their relative
weight depends on Δc. At this point we must remember that the excitation of P∗
induces a protein dynamic. That means the distribution is not static. The inhomo-
geneity results from the disorder of polar groups or water molecules. The driving
force reacts to the polarization induced dipole of the dimer. The response is gated by
the protonic configuration changes. They drive the whole distribution. In first order
we keep the Gaussian form and shift only Δc(t) towards B∗

L . Its energy will be red
shifted as long as the charge transfer state P+B−

L falls not below B∗
L . That implies

that there will be a high probability to find P+B−
L at the turning point Δc = 0. With

this in mind we expand Δs around this configuration, which characterizes also the
P∗∗ configuration. The solution of (28.62) is in first order in Δs/4U given by

Δ− = Δc + 2σ2U 2kt
(
Δ2

c + 4U 2 + 6U
√

2kt
)3/2 . (28.63)
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So we get in first order for small kt

P±(t) = U 2

Δ2
c + 4U 2

exp

{
−U

√
kt

2σ2

}
exp

{
−1

2

(
1 ± Δc√

Δ2
c + 4U 2

kt

)}
.

(28.64)

This probability has to be multiplied by the excitonic coupling factor to yield the
probability for the real admixed portion of the P+B−

L component in P∗∗

P∗∗
± (P+B−

L ) = P±(t)
V 2

(
E(B∗

L) − E(P∗∗)
)2 . (28.65)

The predictions from this result are of special interest from the point of optimiz-
ing the primary charge separation process in photosynthesis. Heterogeneities cause
non exponential quasi dispersive kinetics, but the efficiency for high yield remains
extremely high due to the superexchange character of the decay. It avoids rapid local-
ization followed by internal conversion of the B+B−

L state. The coherent character
of the process is manifested by the observations in the stimulated emission from P∗∗
phase related to the observed admixed P+B−

L .

Posc(t) = 1√
2

(
V

E(B∗
L) − E(P∗∗)

)2

cos(2�t)e−kt/2. (28.66)

If Δc(t) is modulated by a frequency of 32 cm−1 and if the Gaussian integral
is applied, the oscillations can be well simulated. In addition the theory predicts
two separated kinetics corresponding to the ± components, which can be used to fit
recent well resolved measurements with additional features such of the appearance
of H−

L with the fast time, even though the model avoids equilibration for the virtual
intermediate P+B−

L .
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Chapter 29
Continuous Ratchet Models

The molecular motor enzyme Kinesin can travel along a microtubule and transport
various objects. This protein can move linearly along its designated track, against an
external force, by using chemical energy provided by a high concentration of ATP
(adenosine triphosphate) molecules in the environment. We derive a Smoluchowski-
type Fokker–Planck equation for motion in a periodic potential and determine the
stationary solution including an external force. We consider a simplified ratchet
model with a sawtooth potential and discuss the force–velocity relation. For a ratchet
with smooth potential, we find in the low temperature limit a behavior which can
be interpreted in terms of Kramers–Smoluchowski escape rates from the potential
minimum over the barriers on the right and left side. We combine the Smoluchowski
equation with a simplified four-state model for the chemical reaction cycle of the
kinesin molecule and end up with a system of four coupled equations, where the
reaction rates depend on the concentrations of ATP, ADP (adenosine diphosphate),
and P (inorganic phosphate). We discuss a further simplified 2-state model in larger
detail. In the fast reaction limit, the system moves in an average potential, whereas in
the fast diffusion limit, the model of a Brownian ratched is recovered. Close to thermal
equilibrium, nonlinear thermodynamics yields a linear velocity–force relation. The
analytical treatment of the ratchet model simplifies considerably, if it is assumed that
the chemical transitions take place only at certain well-defined configurations giving
piecewise constant fluxes in the stationary state.

The following discussion is mainly based on the work by Jülicher, Prost and
Lipowski [185–191]. A detailed overview over Brownian ratchet models is given by
Reimann [192].

© Springer-Verlag GmbH Germany 2017
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29.1 Transport Equations

The movement of a single protein within a cell is subject to thermal agitation from
its environment and is therefore a Brownian motion with drift, which is described by
a stochastic differential equation (7.66)

mv̇ = −ηv + K (x) + ξ(t) (29.1)

where the deterministic part of the mechanical force has contributions from an effec-
tive potential and an external extra force

K (x) = −∂U

∂x
+ Fext . (29.2)

and the stochastic force obeys

< ξ(t)ξ(t ′) >= 2ηkBT δ(t − t ′). (29.3)

On the small length scale of the molecular motor, inertial effects can be neglected
[193], which leaves us with the first order equation (7.83)

ηẋ = −∂U

∂x
+ Fext + ξ(t). (29.4)

The ensemble average of the position x(t) gives the probability distribution
function1

W (x, t) =< δ(x − x(t)) >. (29.5)

The Fokker–Planck equation corresponding to (29.4) is a Smoluchowski equation
(Sect. 7.7) for the probability

∂

∂t
W (x, t) = kBT

η

∂2

∂x2
W (x, t) + 1

η

∂

∂x

([
∂U

∂x
− Fext

]
W (x, t)

)

= kBT

η

∂2

∂x2
W (x, t) − 1

η

∂

∂x
(K (x)W (x, t)) . (29.6)

In terms of the probability flux

S(x, t) = −kBT

η

∂

∂x
W (x, t) + 1

η
K (x)W (x, t) (29.7)

1Here x(t) denotes the random variable whereas x is the argument of W .

http://dx.doi.org/10.1007/978-3-662-55671-9_7
http://dx.doi.org/10.1007/978-3-662-55671-9_7
http://dx.doi.org/10.1007/978-3-662-55671-9_7
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we have

∂

∂t
W (x, t) = − ∂

∂x
S(x, t). (29.8)

By comparison with the continuity equation for the density

∂

∂t
ρ = −div(ρv) (29.9)

we find

∂W

∂t
= − ∂

∂x
S = − ∂

∂x
(Wv) (29.10)

hence, the drift velocity at position x is

vd(x) = S(x)

W (x)
. (29.11)

In the following, we assume that the potential is periodic

U (x + L) = U (x) (29.12)

and introduce the reduced probability density [192]

W̃ (x) =
∞∑

n=−∞
W (x + nL) (29.13)

which obviously is periodic

W̃ (x + L) = W̃ (x) (29.14)

and solves the same Fokker–Planck equation (29.6) as W (x, t)

∂

∂t
W̃ =

∞∑
n=−∞

∂

∂t
W (x + nL)

= 1

η

∞∑
n=−∞

{
kBT

∂2

∂x2 W (x + nL , t) + ∂

∂x

([
U ′(x + nL) − Fext

]
W (x + nL , t)

)}

= kBT

η

∂2

∂x2

∞∑
n=−∞

W (x + nL , t) + ∂

∂x

[(
U ′(x) − Fext

) ∞∑
n=−∞

W (x + nL , t)

]

= kBT

η

∂2

∂x2 W̃ (x, t) + ∂

∂x

[(
U ′(x) − Fext

)
W̃ (x, t)

]
. (29.15)
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It is normalized according to

∫ L

0
W̃ (x)dx =

∫ L

0

∞∑
n=−∞

W (x + nL)dx =
∫ ∞

−∞
W (x)dx = 1. (29.16)

The average velocity is

< v >=
∫ ∞

−∞
W (x)vd(x)dx =

∫ ∞

−∞
S(x)dx =

∞∑
n=−∞

∫ (n+1)L

nL
S(x)dx

=
∞∑

n=−∞

∫ L

0
S(x + nL)dx =

∫ L

0
S̃(x)dx . (29.17)

Whereas this result is quite general, for the special case of the Smoluchowski
equation (29.4)

< v >= 1

η

[
< −∂U

∂x
> +Fext

]
= 1

η

[
Fext −

∫ ∞

−∞
W (x)U ′(x)dx

]

= 1

η

[
Fext −

∞∑
n=−∞

∫ (n+1)L

nL
W (x)U ′(x)dx

]

= 1

η

[
Fext −

∞∑
n=−∞

∫ L

0
W (x + nL)U ′(x + nL)dx

]

= 1

η

[
Fext −

∫ L

0
U ′(x)W̃ (x)dx

]
. (29.18)

Equation (29.10) shows, that for a stationary solution ( ∂W
∂t = ∂S

∂t = 0) the flux
has to be constant. The stationary distribution is easily found by integration of

∂

∂x
W̃st (x) = 1

kBT
K (x)W̃st (x) − η

kBT
S̃ (29.19)

and has the form

W̃st (x) = exp

{∫ x

0

K (x ′)
kBT

dx ′
} [

W̃st (0) − η S̃

kBT

∫ x

0
exp

{
−

∫ x ′′

0

K (x ′)
kBT

dx ′
}
dx ′′

]

= e(x Fext+U (0)−U (x))/kBT

[
W̃st (0) − η S̃

kBT

∫ x

0
dx ′e−(x ′Fext+U (0)−U (x ′))/kBT

]

= W̃st (0)e(x Fext+U (0)−U (x))/kBT − η S̃

kBT
e(x Fext−U (x))/kBT

∫ x

0
dx ′e−(x ′Fext−U (x ′))/kBT .

(29.20)
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From the periodic boundary conditions

W̃st (0) = W̃st (L) = W̃st (0)eLF/kBT − η S̃

kBT
e(LFext−U (0))/kBT

∫ L

0
dx ′e−(x ′Fext−U (x ′))/kBT

(29.21)

we obtain

W̃st (0) = e−U (0)/kBT

1 − e−LFext/kBT

η S̃

kBT

∫ L

0
dx ′e−(x ′Fext−U (x ′))/kBT

W̃st (x) = e(xFext−U (x))/kBT

1 − e−LFext/kBT

η S̃

kBT

∫ L

0
dx ′e−(x ′Fext−U (x ′))/kBT

− η S̃

kBT
e(xFext−U (x))/kBT

∫ x

0
dx ′e−(x ′Fext−U (x ′))/kBT

= η S̃

kBT
e(xFext−U (x))/kBT

e−LFext/kBT

(1 − e−LFext/kBT )

∫ x

0
dx ′e−(x ′Fext−U (x ′))/kBT

+ η S̃

kBT
e(xFext−U (x))/kBT

1

(1 − e−LFext/kBT )

∫ L

x
dx ′e−(x ′Fext−U (x ′))/kBT . (29.22)

But, since

∫ x

0
dx ′e−(x ′Fext−U (x ′))/kBT =

∫ x+L

L
dx ′e−(x ′Fext−LFext−U (x ′−L))/kBT

= eLFext/kBT
∫ x+L

L
dx ′e−(x ′Fext−U (x ′))/kBT (29.23)

we obtain the more compact expression [192]

W̃st (x) = η S̃

kBT

e(xFext−U (x))/kBT

(1 − e−LFext/kBT )

∫ x+L

x
dx ′e−(x ′Fext−U (x ′))/kBT (29.24)

where the value of S̃ has to be determined from normalization of Wst as

S̃ = kBT

η
(1 − e−LFext /kBT )

[∫ L

0
dx e(x Fext−U (x))/kBT

∫ x+L

x
dx ′e−(x ′Fext−U (x ′))/kBT

]−1

.

(29.25)

Without an external force, we find from the periodic b.c.

W̃st (L) = Ce−U (0)/kBT− η

kBT
S̃

∫ L

0
e(U (x ′)−U (0)/kBT dx ′ = W̃st (0) = Ce−U (0)/kBT

(29.26)
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Fig. 29.1 Periodic potential
with external force

U(x)

W(x)
S>0

F>0

F=0 S=0

x

which shows that there is zero flux2 (Fig. 29.1)

S̃ = 0 (29.27)

and no average velocity

< v >= 0. (29.28)

From

S̃st = −kBT

η

∂

∂x
W̃st (x) − 1

η
W̃st (x)

∂

∂x
(U (x) − xFext ) (29.29)

we find

η S̃
1

W̃ (x)
= − ∂

∂x
(kBT ln W̃ (x) +U +Uext ) (29.30)

which can be interpreted in terms of a chemical potential [194]

μ(x) = kBT ln W̃ (x) +U (x) +Uext (x) (29.31)

as

∂

∂x
μ(x) = − η S̃

W̃ (x)
= −ηvd(x) (29.32)

where the right side gives the energy which is dissipated by a particle moving in a
viscous medium.

2The integrand is strictly positive, hence, the integral can not vanish.
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29.2 A Simple Sawtooth Ratchet

We consider a simplified model with a sawtooth potential (Fig. 29.2)

U (x) = Um
x

L
. (29.33)

For simplification, we introduce the abbreviations

ξ = Fext L −Um

kBT

φ = Fext L

kBT
ρ = Um

kBT

σ = η S̃

kBT
(29.34)

and measure length in units of the period by setting L = 1.
From (29.20)

W̃ (x) = exξ
(
C − σ

∫ x

0
e−ξx ′

dx ′
)

= Cexξ + σ
1 − exξ

ξ
(29.35)

Fig. 29.2 Sawtooth
potential

Um

Um

U(x) − xFext

x0

 F   Lext

x0 L

L

2L

2L

U(x)
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The constant can be determined by normalizing the probability

1 =
∫ 1

0
W̃ (x)dx = σξ + (eξ − 1)(Cξ − σ)

ξ2
(29.36)

from which

W̃0 = C = ξ2 + σ(eξ − 1 − ξ)

ξ(eξ − 1)
. (29.37)

At x = 1 the potential is discontinuous

W̃ (1 + ε) = eφ

(
C + σ

e−ξ − 1

ξ

)
(29.38)

and from the periodicity condition

C = eφ

(
C + σ

e−ξ − 1

ξ

)
(29.39)

we obtain (Fig. 29.4)

0 = ξ2 + σ(eξ − 1 − ξ)

ξ(eξ − 1)

(
1 − e−φ

) + σ
e−ξ − 1

ξ
(29.40)

σ = (φ − ρ)2(eφ − 1)

ρ − φ − 1 + eφ−ρ + eφ(φ − ρ) + eρ − eφ
. (29.41)

Without external force the probability density is given by the exponential (Fig. 29.3)

W̃ (x) = Ceξx = ρ

(1 − e−ρ)
e−ρx . (29.42)

If the potential barrier is smaller than thermal energy

σ ≈ (φ2 − 2ρφ)(eφ − 1)

eφ(φ − ρ − 1 + 1 − ρ + ρ2/2 + . . . ) − 1 − φ + ρ + 1 + ρ + ρ2/2 + . . .

≈ (φ2 − 2ρφ)(eφ − 1)

(φ − 2ρ)(eφ − 1)
≈ φ (29.43)

or

S̃ ≈ 1

η
Fext . (29.44)



29.2 A Simple Sawtooth Ratchet 425

Fig. 29.3 Probability
density of the sawtooth
ratchet. The probability
density calculated from
(29.35), (29.37), (29.41) is
shown for ρ = 5 and
φ = −2,−1, 0, 1, 2. For
φ = 0 it is given by (29.42)
(broken curve)
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Fig. 29.4 Force–velocity
relation of the sawtooth
ratchet. The velocity
< v >= S from (29.41) is
shown as a function of the
external force φ for different
potential barriers
ρ = 0.5, 1, 2, 3, 4, 5, 6
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Linearization for small forces gives

sσ ≈ (ρ2 − 2φρ)(φ + . . . )

(1 + φ + . . . )(φ − ρ − 1 + e−ρ) − 1 − φ + ρ + eρ

≈ ρ2φ

(φ − ρ − 1 + e−ρ) + φ(−ρ − 1 + e−ρ) − 1 − φ + ρ + eρ

≈ ρ2φ

−2 + e−ρ + eρ
(29.45)

or after resubstitution

S̃ = 1

η

( Um
kBT

)2

eUm/kBT + e−Um/kBT − 2
Fext . (29.46)
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29.3 Ratchets in the Low Temperature Limit

Now, we consider a ratchet with smooth potential and assume that the external force
is not too strong such that the potential has a well-defined minimum inside the period
and a maximum at the boundary (Fig. 29.5).

We expand the potential around the extremal points

U (x) ≈ Um − ω2
m

2
x2 for x ≈ 0 (29.47)

U (x) ≈ U0 + ω2
0

2
(x − x0)

2 for x ≈ x0 (29.48)

U (x) ≈ Um − ω2
m

2
(x − L)2 for x ≈ L . (29.49)

For small external force the extrema of the effective potential are approximately
given by

U (x) − xFext ≈ Um + F2
ext

2ω2
m

− ω2
m

2

(
x + Fext

ω2
m

)2

≈ Ũm − ω2
m

2
x̃2 for x ≈ 0 (29.50)

ω0
U0

ωmωm

Um

x0

U(x)−xFext

x0

Um

U0

U  − LFm

0 x

x

L

U(x)

0 L

ext

Fig. 29.5 Ratchet in the limit of low temperature and low force
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with

x̃ = x − xm = x −
(

− Fext

ω2
m

)
Ũm = Um + F2

ext

2ω2
m

(29.51)

by

U (x) − xFext ≈ U0 − F2
ext

2ω2
0

− x0Fext + ω2
0

2

(
x − x0 − Fext

ω2
0

)2

≈ U0 − F2
ext

2ω2
0

− x0Fext + ω2
0

2

(
x̃ − x0 + Fext

ω2
m

− Fext

ω2
0

)2

≈ Ũ0 + ω2
0

2
(x̃ − x̃0)

2 for x ≈ x0 (29.52)

with

x̃0 = x0 − Fext

ω2
m

+ Fext

ω2
0

Ũ0 = U0 − F2
ext

2ω2
0

− x0Fext

and finally,

U (x) − xFext ≈ Um + F2
ext

2ω2
m

− LFext − ω2
m

2

(
x − L + Fext

ω2
m

)2

≈ Ũm − LFext − ω2
m

2
(x̃ − L)

2 for x ≈ L . (29.53)

In the limit of low temperature (or high barrier) Ũm − Ũ0 � kBT the proba-
bility density is essentially concentrated at the potential minimum x̃0 and can be
approximated as

W̃ = e(x Fext−U (x))/kBT
[
C − ηS

kBT

∫ x

0
dx ′e−(x ′Fext−U (x ′))/kBT

]

≈ exp

{
− Ũ0

kBT
− ω2

0
2kBT

(x̃ − x̃0)2

} [
C − ηS

kBT

∫ ∞
0

dx̃ ′ exp

{
Ũm

kBT
− ω2

m
2kBT

x̃ ′2
}]

≈ exp

{
− Ũ0

kBT
− ω2

0
2kBT

(x̃ − x̃0)2

} [
C − ηS

kBTωm

√
πkBT

2
eŨm/kBT

]
. (29.54)

From normalization

1 =
∫ L

0
dx̃ W̃ (x̃) = 1

ω0

√
2πkBT e−Ũ0/kBT

[
C − η S̃

ωm

√
π

2kBT
eŨm/kBT

]
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we determine the integration constant

C = ω0√
2πkBT

e
˜U0/kBT + η S̃

ωm

√
π

2kBT
eŨm/kBT . (29.55)

From the periodicity

W̃ (0) = e−Ũm/kBTC

= W̃ (L) = e(LFext−Ũm )/kBT

[
C − η S̃

ωm

√
π

2kBT
eŨm/kBT

(
1 + e−LFext/kBT

)]

(29.56)

we find

e−Ũm/kBTC
(
eLFext/kBT − 1

) = η S̃

ωm

√
π

2kBT

(
1 + eLFext/kBT

)
(29.57)

and after substituting C

(
ω0√

2πkBT
e−(Ũm−Ũ0)/kBT + ηS

ωm

√
π

2kBT

) (
eLFext/kBT − 1

)

= η S̃

ωm

√
π

2kBT

(
1 + eLFext/kBT

)
(29.58)

which can be solved for S̃

S̃ = ω0ωm

2ηπ
e−(Ũm−Ũ0)/kBT

(
eLFext/kBT − 1

)
. (29.59)

This can be written as

S̃ = k+ − k− (29.60)

where

k+ = ω0ωm

2ηπ
e−(Ũm−Ũ0−LFext )/kBT (29.61)

k− = ω0ωm

2ηπ
e−(Ũm−Ũ0)/kBT (29.62)

are the Kramers–Smoluchowski escape rates (Chap. 8) from the potential minimum
x̃0 over the barriers on the right and left side (Fig. 29.6).

http://dx.doi.org/10.1007/978-3-662-55671-9_8
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U(x)−xFext k− k+

k−

k+

xx00 L

Fig. 29.6 Escape probabilities

Linearization for small force finally gives

S̃ ≈ LFext

kBT

ω0ωm

2ηπ
e−(Um−U0)/kBT . (29.63)

29.4 Chemical Transitions

The kinesin molecule consists of a very long (about 100 nm) rod-like part in the
middle connecting two ends, one of which is capable to grasp the cargo and one
which is composed of two identical “heads” or “motor domains” [195, 196] which
proceed along the microtubule in a “step-by-step” fashion [197]. Each head can bind
to the microtubule and has its own ATP-binding pocket. The two heads can bind and
hydrolize ATP on their own. We assume that the chemistry can be described by a
number m of discrete states i = 1 · · ·m. A very popular model [198] focuses on a
cycle with four states (Fig. 29.7). Detailed models treat both heads explicitly with a
total of 4 × 4 = 16 states ([192] and references therein) whereas simplified models
involve the motion of only one head and require less parameters.

Transitions between the four states are fast compared to the motion of the motor
and will be described by chemical kinetics

i
ki j
�
k ji

j. (29.64)

The geometrical configuration will be described by one configuration coordinate
x , which is related to the position of the motor along the microtubule. The motion in
each state will be described by a Smoluchowski equation (29.6) in a corresponding
potential Ui (x) which is assumed to be periodic and asymmetric
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P M−ADP−P

M−ATP2

3

4M−ADP

1

ADP M ATP

Fig. 29.7 Four-state model of the Chemical cycle. In state (1) the head is attached to the microtubule.
The transition to state (2) involves binding of one ATP molecule from the environment. In state (3)
ATP has been broken into ADP (adenosine diphosphate) and P (inorganic phosphate). In state (4) P
is released from the ATP-binding pocket and the head detaches. Then, after some random motion,
ADP is released and the head binds again to the microtubule. The head now is back in state (1) and
an energy amount of about Δμ = 20kBT has been released

Ui (x + L) = Ui (x) Ui (x) �= Ui (−x) (29.65)

∂

∂t
Wi (x, t) + ∂

∂x
Si (x, t) =

∑
i �= j

(
k ji (x)Wi (x, t) − ki j (x)Wj (x, t)

)
(29.66)

Si (x, t) = −kBT

η

∂

∂x
Wi (x, t) + 1

η
Wi (x, t)

[
Fext − ∂

∂x
Ui (x)

]
. (29.67)

The energy source is the hydrolysis reaction

ATP → ADP + P (29.68)

with a free energy change of (Sect. 14.1)3

Δμ = μADP + μP − μAT P = Δμ0 − kBT ln
cAT P

cADPcP
. (29.69)

At equilibrium Δμ = 0, hence

Δμ0 = kBT ln
ceqAT P

ceqADPc
eq
P

(29.70)

and

Δμ = −kBT ln
cAT P

ceqAT P

+ kBT ln
cADP

ceqADP

+ kBT ln
cP
ceqP

. (29.71)

3At physiological conditions Δμ ≈ −20kBT .

http://dx.doi.org/10.1007/978-3-662-55671-9_14
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Each cycle of the motor consumes the energy from hydrolysis of one ATP.
Figure 29.7 shows only the state of the motor which is unchanged after complet-
ing a full cycle. To describe the chemistry of the coupled motor-environment system
properly, we have to keep track of the number of cycles to find the free energy of the
system. We use a sequence of states Mi,n characterized by the motor state i together
with the total number n of completed cycles

. . . M1,0

k1,2

�
k2,1

M2,0

k2,3

�
k3,2

M3,0

k3,4

�
k4,3

M4,0

k4,1

�
k1,4

M1,1

k1,2

�
k2,1

M2,1

k2,3

�
k3,2

M3,1 · · · (29.72)

The effective motor potentials are defined as equilibrium free energies (Fig. 29.8)

G1,0 = U1 + kBT ln
cAT P

ceqAT P

(29.73)

G2,0 = U2 (29.74)

G3,0 = U3 (29.75)

G4,0 = U4 + kBT ln
cP
ceqP

(29.76)

G1,1 = G1,0 − μAT P + μADP + μP = G1,0 + Δμ (29.77)

...

Gi,n = Gi,0 + nΔμ. (29.78)

At equilibrium

Geq
i,n = Geq

i,0 = Ui (29.79)

Fig. 29.8 Hierarchy of free
energies for the four-state
model

3,0G

4,0G

2,0G

1,0G

1,1G

Δμ

x
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and the occupation probabilities are independent of n

Weq
i,n = Ne−Ui /kBT . (29.80)

The first step

M1,0

k1,2

�
k2,1

M2,0 (29.81)

involves binding of ATP described by the reaction

M + AT P � M − AT P. (29.82)

From standard reaction kinetics (Sect. 6.3) we expect that the reaction rates have the
form

r→ = k0
1,2cAT PWM = k1,2WM (29.83)

r← = k2,1WM−AT P (29.84)

where k0
1,2, k2,1 do not depend on the ATP concentration. At equilibrium r→ = r←

and we find

k0
1,2

k2,1
= Weq

M−AT P

ceqAT PW
eq
M

= 1

ceqAT P

e−(Geq
2,0−Geq

1,0)/kBT = 1

ceqAT P

e(U1−U2)/kBT . (29.85)

For the motor cycle

k1,2

k2,1
= cAT P

ceqAT P

e(U1−U2)/kBT = e(G1,0−G2,0)/kBT . (29.86)

The second step corresponds to the chemical reaction

M − AT P � M − ADP − P (29.87)

r→ = k2,3WM−AT P (29.88)

r← = k3,2WM−ADP−P (29.89)

k2,3

k3,2
= Weq

M−ADP−P

Weq
M−AT P

= e(G2−G3)/kBT = e(U2−U3)/kBT . (29.90)

http://dx.doi.org/10.1007/978-3-662-55671-9_6
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The third step

M − ADP − P � M − ADP + P (29.91)

releases P

r→ = k3,4WM−ADP−P (29.92)

r← = k0
4,3cPWM−ADP = k4,3WM−ADP (29.93)

k3,4

k0
4,3

= Weq
M−ADPc

eq
P

Weq
M−ADP−P

= ceqP e(U3−U4)/kBT

k3,4

k4,3,

= ceqP
cP

e(U3−U4)/kBT = e(G3−G4). (29.94)

Finally the last step

M − ADP + P � M + ADP + P (29.95)

releases ADP. The motor is in the initial state again but one ATP has been hydrolized
and the relevant free energies are

G4,0 = U4 + kBT ln
cP
ceqP

(29.96)

G1,1 = G1,0 − μAT P + μADP + μP = G1,0 + Δμ (29.97)

r→ = k4,1WM−ADP (29.98)

r← = k0
1,4WMcADP = k1,4WM (29.99)

k4,1

k0
1,4

= ceqADP

Weq
M

Weq
M−ADP

= ceqADPe(U4−U1)/kBT (29.100)

k4,1

k1,4
= ceqADP

cADP
e(U4−U1)/kBT . (29.101)



434 29 Continuous Ratchet Models

But since

U4 −U1 + kBT ln
ceqADP
cADP

= G4,0 − kBT ln
cP
ceqP

−
(
G1,0 − kBT ln

cAT P

ceqAT P

)
+ kBT ln

ceqADP
cADP

= G4,0 − G1,0 + kBT

(
ln

cAT P

cPcADP
− ln

ceqAT P

ceqP ceqADP

)
= G4,0 − G1,0 − Δμ = G4,0 − G1,1

the ratio of the rates is

k4,1

k1,4
= e(G4,0−G1,0−Δμ)/kBT = e(G4,0−G1,1)/kBT . (29.102)

Obviously, the same rates are obtained for any complete cycle

M1,n

k1,2

�
k2,1

M2,n

k2,3

�
k3,2

M3,n

k3,4

�
k4,3

M4,n

k4,1

�
k1,4

M1,n+1 (29.103)

and we do not need to introduce second indices for the rates.4 Summing up all cycles

Wi =
4∑

n=1

Wi,n (29.104)

we end up with the following reaction cycle of the motor

∂W1

∂t
= −(k1,2 + k1,4)W1 + k2,1W2 + k4,1W4

∂W2

∂t
= −(k2,1 + k2,3)W2 + k1,2W1 + k3,2W3

∂W3

∂t
= −(k3,2 + k3,4)W3 + k2,3W2 + k4,3W4

∂W4

∂t
= −(k4,1 + k4,3)W4 + k1,4W1 + k3,4W3. (29.105)

Equations (29.86), (29.90), (29.94), (29.102) show that detailed balance holds, if
the proper free energies are considered. If, on the other hand, one does not keep track
of the number of cycles and tries to assign free energy values, e.g., Gi = Gi,0 to the
four motor states, detailed balance is apparently violated. If we assume furthermore,
that only the concentration of ATP is changed away from its equilibrium value, we
end up with [192]

4E.g. k1,2 = k(1,n)→(2,n) . . . k4,1 = k(4,n)→(1,n+1).
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k1,2

k2,1
= cAT P

ceqAT P

e(U1−U2)/kBT (29.106)

k2,3

k3,2
= e(U2−U3)/kBT (29.107)

k3,4

k4,3,

= ceqP
cP

e(U3−U4)/kBT ≈ e(U3−U4)/kBT (29.108)

k4,1

k1,4
= ceqADP

cADP
e(U4−U1)/kBT ≈ e(U4−U1)/kBT . (29.109)

29.5 The Two-State Model

In a simplified two-state model (Fig. 29.9) the cycle is further divided into two sub-
steps combining ATP-binding and hydrolysis

M + ATP
α1

�
α2

M − ADP − P (29.110)

as well as the release of ADP and P

M + ADP + P
β1

�
β2

M − ADP − P. (29.111)

This two-state model has only a small number of parameters, but is very useful
to understand the general behavior. It involves a system of two coupled differential
equations

∂

∂t
W1 + ∂

∂x
S1 = −k12W1 + k21W2 (29.112)

Fig. 29.9 Simplified
chemical cycle

α12
β α2β

1

P M−ADP−P

M−ADP M−ATP

ADP M ATP
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∂

∂t
W2 + ∂

∂x
S2 = −k21W2 + k12W1. (29.113)

29.5.1 The Chemical Cycle

Since each cycle consumes the energy from hydrolysis of one ATP, we consider a
sequence of states (Fig. 29.10)

· · · M1,0

α1

�
α2

M2,0

β2

�
β1

M1,1

α1

�
α2

M2,1 · · · (29.114)

For the ATP-binding step

M + AT P � M − ADP − P (29.115)

we have

r→ = k(1,n)→(2,n)cAT PW1 = α1W1 (29.116)

r← = k(2,n)→(1,n)W2 = α2W2 (29.117)

k(1,n)→(2,n)

k(2,n)→(1,n)

= Weq
2

Weq
1

1

ceqAT P

= 1

ceqAT P

e(U1−U2)/kBT (29.118)

α1

α2
= cAT P

ceqAT P

e(U1−U2)/kBT = e(G1,n−G2,n)/kBT (29.119)

and for the second step

M − ADP − P � M + ADP + P (29.120)

Fig. 29.10 Hierarchy of free
energies for the two-state
model

1,1G

1,0G

2,2G
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r→ = k(2,n)→(1,n+1)W2 = β2W2 (29.121)

r← = k(1,n+1)→(2,n)cADPcPW1 = β1W1 (29.122)

k(1,n+1)→(2,n)

k(2,n)→(1,n+1)

= 1

ceqP ceqADP

Weq
2

Weq
1

= 1

ceqP ceqADP

e(U1−U2)/kBT (29.123)

β1

β2
= cPcADP

ceqP ceqADP

e(U1−U2)/kBT

= e(G1,n+1−G2,n)/kBT = e(G1,n−G2,n+Δμ)/kBT . (29.124)

The time evolution of the motor is described by a hierarchy of equations

∂

∂t
W1,n + ∂

∂x
S1,n = −(α1 + β1)W1,n + α2W2,n + β2W2,n−1.

Taking the sum over n

Ws =
∑
n

Ws,n Ss =
∑
n

Ss,n (29.125)

we obtain the two-state model

∂

∂t
W1 + ∂

∂x
S1 = −(α1 + β1)W1 + (α2 + β2)W2 (29.126)

∂

∂t
W2 + ∂

∂x
S2 = −(α2 + β2)W2 + (α1 + β1)W1 (29.127)

where the transition rates are superpositions

k21 = α2 + β2 (29.128)

k12 = α1 + β1 = α2e(U1−U2+Δμ)/kBT + β2e(U 1−U2)/kBT (29.129)

k12 = α1 + β1 = α2
cAT P

ceqAT P

e(U1−U2)/kBT + β2
cPcADP

ceqP ceqADP

e(U1−U2)/kBT (29.130)

= α2e(G1,n−G2,n)/kBT + β2e(G1,n−G2,n+Δμ)/kBT . (29.131)
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The sum of probabilities W (x) = W1(x) + W2(x) and fluxes S(x) = S1(x) + S2(x)
obey the equations

∂

∂t
W + ∂

∂x
S = 0 (29.132)

S = −kBT

η

∂

∂x
W (x, t) + 1

η

[
FextW (x, t) − ∂U1

∂x
W1(x, t) − ∂U2

∂x
W2(x, t)

]
.

(29.133)

In a steady state,

∂W

∂t
= ∂S

∂x
= 0 (29.134)

Wi (x) = λi (x)W (x) i = 1, 2 (29.135)

where Wi (x) and λi (x) are periodic.

S = −kBT

η

∂

∂x
W (x) + 1

η

[
Fext − λ1(x)

∂U1

∂x
− λ2(x)

∂U2

∂x

]
W (x)

= −kBT

η

∂

∂x
W (x) + 1

η

[
Fext − ∂Uef f (x)

∂x

]
W (x) (29.136)

with the effective potential

Uef f (x) =
∫ x

0
dx ′

(
λ1(x)

∂U1

∂x
+ λ2(x)

∂U2

∂x

)
(29.137)

which is not necessarily periodic. Due to periodicity of Ui and λi

Uef f (x + L) = Uef f (x) +
∫ x+L

x
dx ′

(
λ1(x)

∂U1

∂x
+ λ2(x)

∂U2

∂x

)

= Uef f (x) + ΔU (29.138)

with

ΔU = Uef f (L) −Uef f (0). (29.139)

Consider

U p
ef f (x) = Uef f (x) − ΔU

L
x (29.140)
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which is periodic

U p
ef f (x + L) = Uef f (x + L) − ΔU (1 + x

L
) = U p

ef f (x). (29.141)

Formally, integration then gives the reduced flux (29.25)

S̃ = kBT

η
(1 − e(ΔU−LFext )/kB T )

[∫ L

0
dx e(x Fext−Uef f (x))/kB T

∫ x+L

x
dx ′e−(x ′Fext−Uef f (x ′))/kB T

]−1

.

(29.142)

Without external force, the flux vanishes if the effective potential is periodic (ΔU =
0). This is especially the case for a symmetric system with U1,2(−x) = U1,2(x),
where the steady state distributions W1,2(x) are also symmetric and the velocity

< v >= −1

η

∫ L

0
dx

(
W1

∂U1

∂x
+ W2

∂U2

∂x

)
(29.143)

vanishes, since the forces are antisymmetric functions (Fig. 29.11). Only for asym-
metric systems can the effective potential become nonperiodic (ΔU �= 0) and the
motor develop an average force.

At equilibrium, Δμ = 0 and the rates obey detailed balance

k12(x)

k21(x)
= e(Geq

1,n−Geq
2,n)/kBT = e−(U2(x)−U1(x))/kBT (29.144)

which indicates that the system is not chemically driven and is only subject to thermal
fluctuations. The steady state is then again given by

Wi = Ne−Ui (x)/kBT (29.145)

λ1 = W1

W1 + W2
= 1

1 + e(U1(x)−U2(x))/kBT
(29.146)

λ2 = W2

W1 + W2
= 1

1 + e−(U1(x)−U2(x))/kBT
(29.147)

Fig. 29.11 Symmetric
system

st
U(x)

x

W
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and the effective potential is

Uef f (x) =
∫ x

0
dx ′

(
1

1 + e(U1(x)−U2(x))/kBT

∂U1

∂x
+ 1

1 + e−(U1(x)−U2(x))/kBT

∂U2

∂x

)

=
∫ x

0
dx ′

(
e−U1/kBT

e−U1/kBT + e−U2(x))/kBT

∂U1

∂x
+ e−U2/kBT

e−U2/kBT + e−U1(x)/kBT

∂U2

∂x

)

= −kBT
∫ x

0
dx

∂

∂x
ln

(
e−U1/kBT + e−U2(x))/kBT

)

= −kBT ln
(

e−U1(x)/kBT + e−U2(x))/kBT
)

+ kBT
(

e−U1(0)/kBT + e−U2(0))/kBT
)

(29.148)

which is obviously periodic, hence there is no flux. For Δμ > 0 the system is
chemically driven and spontaneous motion with v �= 0 can occur.

The ATP consumption rate

r =
∫ L

0
dx(α1W̃1 − α2W̃2) (29.149)

is generally not zero for a symmetric system, since α1,2 are symmetric functions.
Therefore, two conditions have to be fulfilled for spontaneous motion to occur: the
system must be chemically driven (Δμ �= 0) and it must have polar symmetry. If
we assume again, that only the ATP concentration is changed from its equilibrium
value,

β1

β2
= cPcADP

ceqP ceqADP

e(U1−U2)/kBT ≈ e(U1−U2)/kBT (29.150)

(α1 + β1) = β2e(U1−U2)/kBT + α2
cAT P

ceqAT P

e(U1−U2)/kBT

= (α2 + β2)e
(U1−U2)/kBT

(
1 + α2

α2 + β2

(
cAT P

ceqAT P

− 1

))
. (29.151)

Introducing as a measure of the deviation from equilibrium the quantity

Ω = α2

α2 + β2

(
cAT P

ceqAT P

− 1

)
e(U1−U2)/kBT (29.152)

the rhs of (29.126) becomes

− (α1 + β1)W1 + (α2 + β2)W2

= (α2 + β2)
(
W2 − W1e(U1−U2)/kBT − ΩW1

)
. (29.153)
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In the limit of large concentration cAT P/ceqAT P� 1, Ω becomes proportional to
the concentration ratio

Ω(x) ≈ e−ΔU (x)/kBT
α2(x)

α2(x) + β2(x)

cAT P

ceqAT P

(29.154)

whereas close to equilibrium in the limit Δμ �= 0 but |Δμ| 
 kBT

Δμ ≈ −kBT ln
cAT P

ceqAT P

≈ −kBT ln

(
1 + ΔcAT P

ceqAT P

)
≈ −kBT

ΔcAT P

ceqAT P

(29.155)

Ω(x) ≈ e−ΔU (x)/kBT
α2(x)

α2(x) + β2(x)

(−Δμ)

kBT
. (29.156)

29.5.2 The Fast Reaction Limit

If the chemical reactions are faster than the diffusive motion, then there is always a
local equilibrium

W1(x, t)

W2(x, t)
= k21(x)

k12(x)
(29.157)

and the total probability W = W1 + W2 obeys the equation

∂

∂t
W = kBT

η

∂2

∂x2
W + 1

η

∂

∂x

(
∂

∂x
(U1W1 +U2W2)

)

∂

∂t
W = kBT

η

∂2

∂x2
W + 1

η

∂

∂x

(
∂

∂x
(

k21

k12 + k21
U1 + k12

k12 + k21
U2)W

)
(29.158)

which describes motion in the average potential.

29.5.3 The Fast Diffusion Limit

If the diffusive motion is faster than the chemical reactions the motor can work as a
Brownian ratchet (Fig. 29.12). In the time between chemical reactions equilibrium
is established in both states

W 0
st = c1,2e−U1,2(x)/kBT (29.159)
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Fig. 29.12 Brownian ratchet

Fig. 29.13 Fast diffusion
limit far from equilibrium

1−p

1−p

p

p

x

2

1

2

1

If the barrier height is large and the equilibrium distribution is confined around the
minima, the diffusion process can be approximated by a simpler rate process. Every
ATP consumption corresponds to a transition to the second state. Then the system
moves to one of the two neighboring minima with probabilities p2 and 1 − p2,
respectively. From here, it makes a transition back to the first state. Finally, it moves
right or left with probability p1 and 1 − p1, respectively (Fig. 29.13).

During this cycle, the system proceeds in a forward direction with probability

p+ = p1 p2 (29.160)

backwards with probability

p− = (1 − p1)(1 − p2) (29.161)

or it returns to its initial position with probability

p0 = p2(1 − p1) + p1(1 − p2). (29.162)

The average displacement per consumed ATP is

< x >≈ L(p+ − p−) = L(p1 + p2 − 1) (29.163)

and the average velocity is

v = r < x > . (29.164)

In the presence of an external force, the efficiency can thus be estimated as

η = −Fext

Δμ
< x > . (29.165)
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29.5.4 Operation Close to Thermal Equilibrium

For constant T and μi the local heat dissipation is given by

Tσ(x) =
∑
k

(
Fext − ∂Uk

∂x

)
Sk + r(x)Δμ. (29.166)

In a stationary state the total heat dissipation is

Π =
∫

Tσ(x)dx = Fextv + rΔμ (29.167)

since

∫
∂U

∂x
Sdx = −

∫
U (x)

∂S

∂x
dx = 0. (29.168)

Under the action of an external force Fext the velocity and the hydrolysis rate are
functions of the external force and Δμ

v = v(Fext ,Δμ)

r = r(Fext ,Δμ). (29.169)

Close to equilibrium linearization gives

v = λ11Fext + λ12Δμ

r = λ21Fext + λ22Δμ. (29.170)

The rate of energy dissipation is given by mechanical plus chemical work

Π = Fextv + rΔμ = λ11F
2
ext + λ22Δμ2 + (λ12 + λ21)FextΔμ (29.171)

which must be always positive due to the second law of thermodynamics. This is the
case if

λ11 > 0,λ22 > 0 and λ11λ22 − λ12λ21 > 0. (29.172)
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The efficiency of the motor can be defined as

η = −Fextv

rΔμ
= −λ11F2

ext − λ12FextΔμ

λ22Δμ2 + λ21FextΔμ

η = −λ11a2 + λ12a

λ22 + λ21a
a = Fext

Δμ
. (29.173)

It vanishes for zero force but also for v = 0 and has a maximum at (Figs. 29.14,
29.15)

a =
√

1 − λ12λ21
λ11λ22

− 1

λ21
λ22

ηmax = (1 − √
1 − Λ)2

Λ
Λ = λ12λ21

λ11λ22
. (29.174)

Fig. 29.14 Velocity–force
relation
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29.6 Ratchet with Localized Reactions

The analytical treatment of the ratchet model simplifies considerably if it is assumed
that the chemical transitions take place only at a number n of certain well-defined
configurations xα, α = 1 . . . n. The transition rates have the form [190]

ki, j (x) =
∑

α

ωα
i, jδ(x − xα) (29.175)

and in the stationary state ( ∂Wi
∂t = 0) integration of

∂ S̃i (x)

∂x
=

∑
i �= j

(
k ji (x)W̃i (x, t) − ki j (x)W̃ j (x, t)

)

=
∑
i �= j

∑
α

δ(x − xα)
(
ωα

j i W̃i (x) − ωα
i j (x)W̃ j (x)

)
(29.176)

gives piecewise constant fluxes (Fig. 29.16)

S̃i (x) = S̃i (0
−) +

∑
i �= j

∑
α

θ(x − xα)
(
ωα

j i W̃i (xα) − ωα
i j (x)W̃ j (xα)

)
. (29.177)

Equation (29.177) provides a linear relation between m × n probability densities
W̃i (xα) andm×n flux values S̃i (x

+
1 ) . . . S̃i (x+

n ). However, as the flux sum is constant

x1 x2 x1+L

W1(x )2

W1(x )1

W2(x )2
W2(x )1

W1(x)

W2(x)

x1 x2 x1+L

1S )x( S1(x1
+)S1(x2

−)=

S1(x2
+)S1(x1

−)=

x0 L

Fig. 29.16 Ratchet with localized reactions. The figure shows an example for the case of m = 2
states and n = 2 reactive configurations. In a stationary state, there are four unknown values of the
probability densities W̃1,2(x1,2) and four unknown values of the fluxes S̃1,2(x

−
1,2). The number of

flux values reduces due to the condition S̃1(x) + S̃2(x) = S̃ = const
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∑m
i=1 S̃i (x

+
j ) = S̃ we can eliminate (n−1) variables. Equation (29.177) then provides

(m−1)×n homogeneous linear equations for the m×n+ (m−1)×n+1 variables
W̃1...m(x1...n), S̃1...(m−1)(x

+
1...n), S̃. Integration of the stationary gradient

∂

∂x
W̃i (x) = 1

kBT
Ki (x)W̃i (x) − η

kBT
S̃i

= − 1

kBT

∂(Ui − xFext )

∂x
W̃i (x) − η

kBT
S̃i (29.178)

then gives

W̃i (x) = W̃i (xα)e[Ui (x)−Ui (xα)−(x−xα)Fext ]/kBT

− η

kBT

∫ x

xα

S̃i (x
′)e[Ui (x)−Ui (x ′)+(x−x ′)Fext ]/kBT (29.179)

from which further m × n homogeneous equations are obtained (xn+1 = x1 + L)

W̃i (xα+1) = W̃i (xα)e[Ui (xα+1)−Ui (xα)−(xα+1−xα)Fext ]/kBT

− η S̃i (x+
α )

kBT

∫ xα+1

xα

e[Ui (xα+1)−Ui (x ′)+(xα+1−x ′)Fext ]/kBT . (29.180)

Finally, the normalization of the probability

∫ L

0

m∑
i=1

W̃i (x)dx = 1 (29.181)

provides one more but inhomogeneous equation and we end up with an inhomoge-
neous system of (2m− 1)×n+ 1 equations for the same number of variables which
can be solved by linear algebra.

For the two-state model we consider two reactive configurations x = 0, x = a
(Fig. 29.17) with

k1,2(x) = ω0
1,2δ(x) + ωa

12δ(x − a) (29.182)

k2,1(x) = ω0
2,1δ(x) + ωa

2,1δ(x − a). (29.183)

For a stationary state this leads to a system of two equations

∂

∂x
S̃1(x) = δ(x)

[
W̃2(0)ω0

21 − W̃1(0)ω0
12

]
+ δ(x − a)

[
W̃2(a)ωa

21 − W̃1(a)ωa
21

]
(29.184)
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Fig. 29.17 Localized
reactions
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∂

∂x
S̃2(x) = − ∂

∂x
S̃1(x). (29.185)

Integration gives the fluxes as stepwise functions

S̃1(x) = S̃1(0−) + θ(x)
[
W̃2(0)ω0

21 − W̃1(0)ω0
12

]
+ θ(x − a)

[
W̃2(a)ωa

21 − W̃1(a)ωa
21

]

= S̃1(0+) + θ(x − a)ΔS̃ (29.186)

S̃2(x) = S̃2(0−) − θ(x)
[
W̃2(0)ω0

21 − W̃1(0)ω0
12

]
− θ(x − a)

[
W̃2(a)ωa

21 − W̃1(a)ωa
21

]

= S̃2(0+) − θ(x − a)ΔS̃ (29.187)

with

ΔS̃ = W̃2(a)ωa
21 − W̃1(a)ωa

21 = −
[
W̃2(0)ω0

21 − W̃1(0)ω0
12

]
(29.188)

which provides two linear equations.
From (29.179) we find

W̃i (x) = W̃i (0)e[Ui (x)−Ui (0)−xFext ]/kBT

− η
S̃i (0+)

kBT

∫ x

0
dx ′e[Ui (x)−Ui (x ′)+(x−x ′)Fext ]/kBT 0 < x < a (29.189)

W̃i (x) = W̃i (a)e[Ui (x)−Ui (a)−(x−a)Fext ]/kBT

− η
S̃i (0+) ± ΔS̃

kBT

∫ x

a
e[Ui (x)−Ui (x ′)+(x−x ′)Fext ]/kBT a < x < L (29.190)

providing the four equations

W̃i (a) = W̃i (0)e[Ui (a)−Ui (0)−aFext ]/kBT − η
S̃i (0

+)

kBT

∫ a

0
dx ′e[Ui (a)−Ui (x

′)+(a−x ′)Fext ]/kBT

(29.191)
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W̃i (0) = W̃i (a)e[Ui (0)−Ui (a)−(L−a)Fext ]/kB T − η
S̃i (0+) ± ΔS̃

kBT

∫ L

a
e[Ui (0)−Ui (x ′)+(L−x ′)Fext ]/kB T .

(29.192)

Together with the normalization condition, we end up with seven equations for
seven variables

S̃1(0
+), S̃2(0

+),ΔS̃, W̃1(0), W̃2(0), W̃1(a), W̃2(a). (29.193)

Problems

29.1 Deviation from Equilibrium

Make use of the detailed balance conditions
α1

α2
= e(Δμ−ΔU )/kBT

β1

β2
= e−ΔU/kBT

and calculate the quantity

Ω = k12

k21
− e−ΔU/kBT = α1 + β1

α2 + β2
− e−ΔU/kBT .

Use the approximation

Δμ = Δμ0 + kBT ln
C(AT P)

C(ADP)C(P)

and express Ω in terms of the equilibrium constant

Keq = eΔμ0/kBT .

Consider the limiting cases

Δμ �= 0 but |Δμ| 
 kBT

and

|Δμ| � kBT



Chapter 30
Discrete Ratchet Models

Simplified molecular motor models describe the motion of the protein as a hopping
process combinedwith a cyclical transition between internalmotor states.We discuss
a linear model with two internal states and derive the velocity–force relation.

30.1 Linear Discrete Ratchets

The motion of the protein is described as a hopping process between positions xn
combined with transitions between different states of the motor

M1,xn � M2,xn . . . � MN ,n1 � M1,xn+1 . . . (30.1)

For example, the four-state model of the ATP hydrolysis can be easily translated into
such a scheme (Fig. 30.1)

30.2 Linear Model with Two Internal States

Fisher considers a linear periodic process with two internal states [199]

. . .M1,xn

α1

�
α2

M2,xn

β1

�
β2

M1,xn+1 . . . (30.2)
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Fig. 30.1 Discrete motor
model
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The Master equation is

d

dt
P1n = −(α1 + β2)P1n + α2P2n + β1P2,n−1

d

dt
P2n = −(α2 + β1)P2n + α1P1n + β2P1,n+1 (30.3)

and the stationary solution corresponds to the zero eigenvalue of the matrix

(−α1 − β2 α2 + β1

α1 + β2 −α2 − β1

)
. (30.4)

From the left and right eigenvectors

L0 = (
1 1

)
R0 =

(
α2 + β1

α1 + β2

)
(30.5)

we have

P1,st = α2 + β1

α2 + β1 + α1 + β2
P2,st = α1 + β2

α1 + β2 + α2 + β1
(30.6)

and the stationary current is

S = α1P1,st − α2P2,st = α1β1 − α2β2

α1 + β2 + α2 + β1
. (30.7)

With the definition of

ω = α2β2

α1 + α2 + β1 + β2
(30.8)
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G1

G(x)

G2
F=0

F<0

xx2d
x1

Δ
Δ

Fig. 30.2 Influence of the external force. The external force changes the activation barriers which
become approximately ΔG1(F) = ΔG1(0) − x1F,ΔG2(F) = ΔG2(0) + x2F

and

Γ = α1β1

α2β2
= eΔμ/kBT (30.9)

the current can be written as

S = (Γ − 1)ω. (30.10)

Consider nowapplicationof an external force corresponding to an additional potential
energy

Un = −Fextnd. (30.11)

Assuming that the motion corresponds to the transition M2,n � M1,n+1 the corre-
sponding rates will become dependent on the force (Fig. 30.2)

β1 = β0
1e

�Fd/kBT

β2 = β0
2e

−(1−�)Fd/kBT . (30.12)

Here, � is the so-called splitting parameter. The force-dependent current is

S =
(
eΔμ/kBT+Fd/kBT − 1

)
α2β

0
2e

−(1−�)Fd/kBT

α1 + α2 + β0
1e

�Fd/kBT + β0
2e

−(1−�)Fd/kBT
(30.13)

which vanishes for the stalling force
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Fig. 30.3 Velocity–force
relation

vo

−F −Fstal

Fstal = −Δμ

d
. (30.14)

Close to equilibrium, we expand (Fig. 30.3)

Γ − 1 = eΔμ/kBT+Fd/kBT − 1 = e(1−F/Fstal )Δμ/kBT − 1 ≈ (1 − F/Fstal)
Δμ

kBT
(30.15)

ω ≈ ω0

(
1 − Fd

kBT

(β0
1 + (α1 + α2)(1 − �))

(α1 + α2 + β0
1 + β0

2)

)
. (30.16)
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Appendix A
The Grand Canonical Ensemble

Consider an ensemble of M systems which can exchange energy as well as particles
with a reservoir. For large M , the total number of particles Ntot = M N and the total
energy Etot = M E have well-defined values since the relative widths decrease as

√
N 2

tot − Ntot
2

Ntot
∼ 1√

M

√
E2

tot − Etot
2

Etot
∼ 1√

M
(A.1)

Hence, also the average number and energy can be assumed to have well-defined
values (Fig. A.1)

μT,E,N

Fig. A.1 Ensemble of systems exchanging energy and particles with a reservoir
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A.1 Grand Canonical Distribution

We distinguish different microstates j which are characterized by the number of
particles N j and the energy E j . The number of systems in a certain microstate j will
be denoted by n j . The total number of particles and the total energy of the ensemble
in a macrostate with n j systems in the state j are

Ntot =
∑

j

n j N j Etot =
∑

j

n j E j (A.2)

and the number of systems is

M =
∑

j

n j (A.3)

The number of possible representations is given by a multinomial coefficient

W ({n j }) = M !∏
j n j ! . (A.4)

From Stirling’s formula, we have

ln W ≈ ln(M !) −
∑

j

(n j ln n j − n j ). (A.5)

We search for the maximum of (A.5) under the restraints imposed by (A.2), (A.3). To
this end, we use the method of undetermined factors (Lagrange method) and consider
the variation

0 = δ

⎛
⎝ln W − α

⎛
⎝∑

j

n j − M

⎞
⎠− β

⎛
⎝∑

j

n j E j − Etot

⎞
⎠− γ(

∑

j

n j N j − Ntot )

⎞
⎠

=
∑

j

δn j
(− ln n j − α − βE j − γN j

)
. (A.6)

Since the n j now can be varied independently, we find

n j = exp(−α − βE j − γN j ). (A.7)

The unknown factors α,β, γ have to be determined from the restraints. First, we have

∑
j

n j = e−α
∑

j

e−βE j −γN j = M. (A.8)

With the grand canonical partition function
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Ξ =
∑

j

e−βE j −γN j (A.9)

the probability of a certain microstate is given by

P(E j , N j ) = n j∑
j n j

= e−βE j −γN j

Ξ
(A.10)

and further

e−α = M

Ξ
. (A.11)

From

∑
j

n j E j = M

Ξ

∑
j

E j e
−βE j −γN j = Etot (A.12)

we find the average energy per system

E =
∑

n j E j

M
= − ∂

∂β
ln Ξ (A.13)

and similarly from

∑
j

n j N j = M

Ξ

∑
j

N j e
−βE j −γN j = Ntot (A.14)

the average particle number of a system

N =
∑

n j N j

M
= − ∂

∂γ
ln Ξ. (A.15)

Equations (A.13), (A.15) determine the parameters β, γ implicitly and then α follows
from (A.11).

A.2 Connection to Thermodynamics

Entropy is given by

S = −k
∑

P(E j , N j ) ln P(E j , N j ) = −k
∑

P(E j , N j )(−βE j − γN j − ln Ξ)

= kβE + kγN + k ln Ξ. (A.16)
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From thermodynamics, the Duhem–Gibbs relation is known which states for the
free enthalpy

G = U − T S + pV = μN (A.17)

where U = E and S, V, N are the thermodynamic averages. Solving for the entropy,
we have

S = U + pV − μN

T
(A.18)

and comparison with (A.16) shows that

β = 1

kB T
γ = − μ

kB T
(A.19)

kB T ln Ξ = pV . (A.20)

The summation over microstates j with energy E j and N j particles can be replaced
by a double sum over energies Ei (N ) and particle number N to give

Ξ =
∑
E,N

e−β(E(N )−μN ) (A.21)

which can be written as a sum over canonical partition functions with different
particle numbers

Ξ =
∑

N

eβμN
∑

E

e−βE(N ) =
∑

N

eβμN Q(N ). (A.22)



Appendix B
Classical Approximation of Quantum Motion

In quantum mechanics, the motion of a particle (which could be a whole molecule)
in an external potential is described by the time-dependent Schrödinger equation

i�ψ̇(r, t) = Hψ(r, t) =
[
− �

2

2m
∇2 + V (r)

]
ψ(r, t). (B.1)

A special kind of solution is a localized wavepacket, which can be approximated
as a classical particle as long as dispersion of the wavepacket is negligible. The
classical position and momentum are given by the expectation values

< r >=< ψ(r, t)rψ(r, t) >=< ψ(r, t)rψ(r, t) > (B.2)

< r >=< ψ(r, t)pψ(r, t) >=< ψ(r, t)
�

i
∇ψ(r, t) > (B.3)

which obey the equations of motion (Ehrenfest theorem)

< ṙ >= 1

i�
< ψ(r, t)(rH − Hr)ψ(r, t) >

= 1

m
< ψ(r, t)

�

i
∇ψ(r, t) >= < p >

m
(B.4)

< ṗ >= 1

i�
< ψ(r, t)(pH − Hp)ψ(r, t) >= − < ∇V (r) >. (B.5)

If the variation of the potential gradient over the width of the wavepacket is
negligible1 these look like Newton’s equations with a classical force

F = − < ∇V (r) >≈ −∇V (< r >). (B.6)

1Or in some special cases like the harmonic oscillator.
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For the harmonic oscillator with Hamiltonian

Ĥ = �ω

(
â†â + 1

2

)
(B.7)

and eigenfunctions |n >obeying

Ĥ |n >= �ω

(
n + 1

2

)
|n >

â|n >= √
n|n − 1 > â†|n >= √

n + 1|n + 1 > (B.8)

a dispersionless Gaussian wavepacket is provided by the coherent oscillator state
(Glauber state)2

ϕα(x, t) = e−|α|2/2
∞∑

n=0

e−i(n+1/2)ωt αn

√
n! |n > (B.9)

which for any complex α solves the time dependent Schrödinger equation since

i�ϕ̇α(x, t) = Ĥϕα(x, t) = e−|α|2/2
∑

�ω

(
n + 1

2

)
e−i(n+1/2)ωt αn

√
n! |n >.

(B.10)

Furthermore, it is an eigenfunction of â as can be seen from

âϕα(x, t) = e−|α|2/2
∞∑

n=1

e−i(n+1/2)ωt αn

√
n!

√
n|n − 1 >

= e−iωtαϕα(x, t) (B.11)

from which we find the expectation values

< ϕα(x, t)âϕα(x, t) >= e−iωtα (B.12)

< ϕα(x, t)â†ϕα(x, t) >= eiωtα∗ (B.13)

n =< ϕα(x, t)â†âϕα(x, t) >= |α|2 (B.14)

H = �ω

(
|α|2 + 1

2

)
. (B.15)

The coherent state is not an eigenfunction of the Hamiltonian. The number of exci-
tations is not sharp. Its variance is

Var(n) =< ϕα(x, t)(â†â)2ϕα(x, t) > −|α|4 = |α|2 (B.16)

2Coherent states are normalized but not orthogonal.
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hence the relative uncertainty decreases as 1/
√

n. Average position and momentum
oscillate

x = x0√
2

2�(αe−iωt ) = x0

√
2|α| cos (ωt − arg(α)) (B.17)

p = �

x0

√
2	(α(t)) = − �

x0

√
2|α| sin(ωt − arg(α)) (B.18)

where the characteristic length is

x0 =
√

�

mω
. (B.19)

For large n, the values of position and momentum become well defined and the
oscillator behaves classically with an amplitude

x0

√
2|α| = x0

√
2n =

√√√√ H
mω2

2

. (B.20)

The quantized electromagnetic field is a sum of harmonic oscillators. The Fourier
component of the vector potential

A =
∑
k,λ

√
�ωk

2ε0V

1

ω k

(
âk,λek,λeikr + â†

k,λe
∗
k,λe−ikr

)
(B.21)

therefore has to be replaced in the classical limit (B.12)–(B.14) by

A =
∑
k,λ

√
n�ωk

2ε0V

1

ω k

(
ek,λei(kr−ωk t) + e∗

k,λe−(ikr−ωk t)
)

(B.22)

=
∑
k,λ

A0(ωk,k)
(
ek,λei(kr−ωk t) + e∗

k,λe−(ikr−ωk t)
)

and the amplitude is in classical approximation

A0(ωk,k) =
√

u(ωk,k)

2ε0ω
2
k

. (B.23)



Appendix C
Time Correlation Function of the Displaced
Harmonic Oscillator Model

In the following we evaluate the time correlation function of the displaced harmonic
oscillator model (19.14)

fr (t) =
〈
e−itωr b†

r br eitωr (b†
r +gr )(br +gr )

〉
.

C.1 Evaluation of the Time Correlation Function

To proceed we need some theorems which will be derived afterward.

Theorem 1: A displacement of the oscillator potential energy minimum can be formulated
as a canonical transformation

�ωr (b
†
r + gr )(br + gr ) = e−gr (b†

r −br )�ωr b†
r br egr (b†

r −br ). (C.1)

With the help of this relation the single-mode correlation function becomes

Fr (t) =
〈
e−itωr b†

r br e−gr (b†
r −br )eitωr b†

r br egr (b†
r −br )

〉
. (C.2)

The first three factors can be interpreted as another canonical transformation. To this
end we apply

Theorem 2: The time dependent boson operators are given by

e−iωr tb†
r br b†

r eiωr tb†
r br = b†

r e−iωr t (C.3)

e−iωr tb†
r br br eiωr tb†

r br = br eiωr t (C.4)
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to find

Fr (t) = 〈
exp

(−gr (b
†
r e−iωr t − br eiωr t )

)
exp

(
gr (b

†
r − br )

)〉
. (C.5)

The two exponentials can be combined due to

Theorem 3: If the commutator of two operators A and B is a c-number then

eA+B = eAeBe− 1
2 [A,B]. (C.6)

The commutator is

−g2
r [b†

r e−iωr t − br eiωr t , b†
r − br ] = −g2

r (e
−iωr t − eiωr t ) (C.7)

and we have

Fr (t) = exp

(
−1

2
g2

r (e−iωr t − eiωr t )

) 〈
exp

(
−gr b†

r (e−iωr t − 1) + gr br (eiωtr − 1)
)〉

.

(C.8)

The remaining average is easily evaluated due to

Theorem 4: For a linear combination of br and b†
r the second order cumulant expansion is

exact

〈
eμb†+τb

〉
= e

1
2 〈(μb†+τb)2〉 = eμτ〈b†b+1/2〉. (C.9)

The average square is

〈(
b†

r (e
−iωr t − 1) − br (e

iωr t − 1)
)2
〉
g2

r

= −g2
r (2 − eiωr t − e−iωr t )

〈
b†

r br + br b†
r

〉

= −g2
r (2 − eiωr t − e−iωr t )(2nr + 1) (C.10)

with the average phonon number3

nr = 1

eβ�ωr − 1
. (C.11)

Finally we have

Fr (t) = exp

(
−1

2
g2

r (2 − eiωr t − e−iωr t )(2nr + 1) − 1

2
g2

r (e
−iωr t − eiωr t )

)

= exp
(
g2

r

[
(eiωr t − 1)(nr + 1) + (e−iωr t − 1)nr

])
(C.12)

3In the following we use the abbreviation β = 1/kB T .
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or, using trigonometric functions

Fr (t) = exp
(
g2

r [(cos ωr t − 1 + i sin ωr t)(nr + 1) + (cos ωr t − 1 − i sin ωr t)nr ]
)

= exp
(
g2

r (nr + 1)(cos ωr t − 1) + ig2
r sin ωr t

)
. (C.13)

C.2 Boson Algebra

C.2.1 Derivation of Theorem 1

Consider the following unitary transformation

A = e−g(b†−b)b†beg(b†−b) (C.14)

and make a series expansion

A = A(0) + g
dA

dg
+ 1

2
g2 d2 A

dg2
· · · (C.15)

The derivatives are

dA

dg
|g=0 = [b†b, b† − b] = b†[b, b†] + [b†,−b]b

= (b + b+) (C.16)

d2 A

dg2
|g=0 = [[b†b, b† − b], b† − b]

= [b + b†, b† − b, ] = 2 (C.17)

dn A

dgn
|g=0 = 0 for n ≥ 3 (C.18)

and the series is finite

A = b†b + g(b† + b) + g2 = (b† + g)(b + g). (C.19)

Hence for any of the normal modes

�ωr (b
†
r + gr )(br + gr ) = e−gr (b†

r −br )�ωr b†
r br egr (b†

r −br ). (C.20)
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C.2.2 Derivation of Theorem 2

Consider

A = eτb†bbe−τb†b with τ = −iωt. (C.21)

Make again a series expansion

dA

dτ
= [b+b, b] = −b (C.22)

d2 A

dτ 2
= [b+b,−b] = b etc. (C.23)

A = b

(
1 − τ + τ 2

2
− · · ·

)
= b

(
1 + itω + (itω)2

2
+ · · ·

)
= b eiωt . (C.24)

Hermitian conjugation gives

e−iωtb†bb+eiωtb†b = b†e−iωt . (C.25)

C.2.3 Derivation of Theorem 3

Consider the operator

f (τ ) = e−Bτ e−Aτ e(A+B)τ (C.26)

as a function of the c-number τ . Differentiation gives

d f (τ )

dτ
= e−Bτ (−A − B)e−Aτ e(A+B)τ + e−Bτ e−Aτ (A + B)e(A+B)τ

= e−Bτ [e−Aτ , B]e(A+B)τ . (C.27)

Now if the commutator [A, B] is a c-number then

[An, B] = A[An−1, B] + [A, B]An−1 = · · · n[A, B]An−1 (C.28)

and therefore

[e−Aτ , B] =
∞∑

n=0

(−τ )n

n! [An, B] =
∑

n

(−τ )n

(n − 1)! An−1[A, B]

= −τ [A, B]e−Aτ (C.29)
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and (C.27) gives

d f (τ )

dτ
= −τ [A, B]e−Bτ e−Aτ e(A+B)τ = −τ [A, B] f (τ ) (C.30)

which is for the initial condition f (0) = 1 solved by

f (τ ) = exp

(
−τ 2

2
[A, B]

)
. (C.31)

Substituting τ = 1 finally gives

e−Be−Ae(A+B) = e− 1
2 [A,B]. (C.32)

C.2.4 Derivation of Theorem 4

This derivation is based on (200). For one single oscillator consider the linear
combination

μb† + τb = A + B (C.33)

[A, B] = −μτ . (C.34)

Application of (C.32) gives

〈
eμb†+τb

〉
=
〈
eμb†

eτb
〉

eμτ/2 (C.35)

and after exchange of A and B

〈
eμb†+τb

〉
=
〈
eτbeμb†

〉
e−μτ/2. (C.36)

Combination of the last two equations gives

〈
eτbeμb†

〉
=
〈
eμb†

eτb
〉

eμτ . (C.37)

Using the explicit form of the averages we find

Q−1 tr
(

e−β�ωb†beτbeμb†
)

= Q−1 tr
(

e−β�ωb†beμb†
eτb
)

eμτ (C.38)

and due to the cyclic invariance of the trace operation the right side becomes

= Q−1tr(eτbe−β�ωb†beμb†
)eμτ (C.39)
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which can be written as

= Q−1tr(e−β�ωb†be+β�ωb†beτbe−β�ωb†beμb†
)eμτ

=
〈
e+β�ωb†beτbe−β�ωb†beμb†

〉
eμτ . (C.40)

Application of (C.3) finally gives the relation

〈
exp(τb) exp(μb†)

〉 = 〈
exp

(
τe−β�ωb

)
exp

(
μb†

)〉
eμτ (C.41)

which can be iterated to give

〈
exp(τb) exp(μb†)

〉 = 〈
exp

(
τe−2β�ωb

)
exp

(
μb†

)〉
eμτ (1+e−β�ω) = · · ·

= 〈
exp

(
τe−(n+1)β�ωb

)
exp

(
μb†

)〉
eμτ (1+e−β�ω+···+e−nβ�ω) (C.42)

and in the limit n → ∞
〈
exp(τb) exp(μb†)

〉
=
〈
exp(μb†)

〉
exp

(
μτ

1 − e−β�ω

)
= exp

(
μτ

1 − e−β�ω

)
(C.43)

since only the zero-order term of the expansion of the exponential gives a nonzero
contribution to the average. With the average number of vibrations

n = 1

eβ�ω − 1
(C.44)

we have

〈
exp(τb) exp(μb†)

〉 = exp (μτ (n + 1)) (C.45)

and finally

〈
eμb†+τb

〉
= eμτ (n+1/2). (C.46)

The average of the square is

〈
(μb† + τb)2〉 = μτ

〈
b†b + b b†〉 = μτ (2n + 1) (C.47)

which shows the validity of the theorem.



Appendix D
Complex Cotangent Function

The cotangent of an imaginary argument can be written as

cot(iy) = cosh y

i sinh y
= −icoth y (D.1)

which for large |y| approximates

cot(iy) → −i sign(y). (D.2)

For a complex argument we write (Fig. D.1)

cot(x + iy) = 1 + i coth y cot x

i coth y − cot x
(D.3)

which for large y approximates

1 + i 1+e−2y

1−e−2y cot x

i 1+e−2y

1−e−2y − cot x
= −i + 2i(cot x + 1)

i − cot x
e−2y + · · · (D.4)
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Fig. D.1 Complex cotangent function. Real (left) and imaginary (right) part of cot(x + iy) are
shown

and for large negative y

1 − i 1+e2y

1−e2y cot x

−i 1+e2y

1−e2y − cot x
= i + 2i(cot x − i)

i + cot x
e2y + · · · (D.5)



Appendix E
The Saddle Point Method

The saddle point method is an asymptotic method to calculate integrals of the type

∫ ∞

−∞
eφ(x)dx (E.1)

If the function φ(x) has a maximum at x0 then the integrand also has a maximum
there and the integral can be approximated by expanding the exponent around x0

φ(x) = φ(x0) + 1

2

d2φ(x)

dx2 |x0

(x − x0)
2 + · · · (E.2)

as a Gaussian integral

∫ ∞

−∞
eφ(x)dx ≈ eφ(x0)

√
2π

|φ′′(x0)| . (E.3)

The method can be extended to integrals in the complex plane

∫

C
eφ(z)dz =

∫

C
e�(φ(z))ei	(φ(z))dz. (E.4)

If the integration contour is deformed such that the imaginary part is constant (sta-
tionary phase), then (Fig. E.1)

∫

C
eφ(z)dz = ei	(φ(z0))

∫

C ′
e�(φ(z))dz. (E.5)
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Re(z)

Im(z)

grad(u)

grad(v)
v=
co
ns
t

saddlepoint

Fig. E.1 Saddle point method

The contour C ′ and the expansion point are determined from

φ′(z0) = 0 (E.6)

φ(z) = u(z) + iv(z) = u(z) + iv(z0). (E.7)

Now consider the imaginary part as a function of (x, y). The gradient is according
to Cauchy and Riemann

�v(x, y) = (
∂v

∂x
,
∂v

∂y
) = (−∂u

∂y
,
∂u

∂x
) (E.8)

which is perpendicular to the gradient of the real part

�u(x, y) = (
∂u

∂x
,
∂u

∂y
) (E.9)

which gives the direction of steepest descent. The method is known as saddle point
method since a maximum of the real part always is a saddle point. From the expansion

φ(z) = φ(z0) + 1

2
φ′′(z0)(z − z0)

2 + · · · (E.10)

and

dz2 = dx2 − dy2 + 2idx dy (E.11)



Appendix E: The Saddle Point Method 473

we find

�(φ(z)) = �(φ(z0)) − 1

2

(�(φ′′(z0))(dx2 − dy2) − 2	(φ′′(z0))dx dy
)

= �(φ(z0)) − 1

2
(dx, dy)

( �(φ′′) −	(φ′′)
−	(φ′′) −�(φ′′)

)(
dx
dy

)
. (E.12)

The eigenvalues of the matrix are

±
√

�(φ′′)2 + 	(φ′′)2 = ±|φ′′| (E.13)

and the eigenvectors

(
dx
dy

)
∝
(

1
�(φ′′)±|φ′′|

	(φ′′)

)
. (E.14)

Similarly, the imaginary part

	(φ(z)) = 	(φ(z0)) + �(φ′′(z0))dxdy + 1

2
	(φ′′(z0))(dx2 − dy2)

= 	(φ(z0)) + 1

2
(dx, dy)

( 	(φ′′) �(φ′′)
�(φ′′) −	(φ′′)

)(
dx
dy

)
. (E.15)

The direction of stationary phase is given by

dy = �(φ′′) ± |φ′′|
	(φ′′)

dx (E.16)

hence is along the eigenvectors of the real part.



Solutions

Problems of Chap. 1

1.1 Gaussian Polymer Model

Δri = ri − ri−1 i = 1 · · · N

(a)

P(Δri ) = 1

b3

√
27

8π3
exp

{
−3(Δri )

2

2b2

}

is the normalized probability function with

∫ ∞

−∞
P(Δri )d

3Δri = 1
∫ ∞

−∞
Δr2

i P(Δri )d
3Δri = b2

(b)

rN − r0 =
N∑

i=1

Δri

P

(
N∑

i=1

Δri = R

)
=
∫ ∞

−∞
d3Δr1 · · ·

∫ ∞

−∞
d3ΔrN

N∏
i=1

P(Δri )δ

(
R −

N∑
i=1

Δri

)

=
∫

1

(2π)3
d3keikR

∫ ∞

−∞
d3Δr1 · · ·

∫ ∞

−∞
d3ΔrN

(
1

b3

√
27

8π3

)N
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×
∏

exp

{
−3Δr2

i

2b2
− ikΔri

}

=
∫

1

(2π)3
d3keikR

[(
1

b3

√
27

8π3

)∫ ∞

−∞
d3Δr exp

{
−3Δr2

2b2
− ikΔr

}]N

=
∫

1

(2π)3
d3keikR exp(− Nb2

6
k2)

= 1

b3

√
27

8π3 N 3
exp

{
− 3R2

2Nb2

}

(c)

exp

{
− 1

kB T

(
f

2

∑
Δr2

i − κ
∑

Δri

)}
=
∏

i

exp

{
− 1

kB T

(
f

2
Δr2

i − κΔri

)}

f

2kB T
= 3

2b2
→ f = 3kB T

b2

(d)

xN − x0 = Nκ

f
yN − y0 = zN − z0 = 0

L = xN − x0 = Nκb2

3kB T

1.2 Three-dimensional Polymer Model
(a)

Nb2

(b)

b2

(
N

1 + x

1 − x
+ 2x(x2 − 1)

(1 − x)2

)
with x = cos θ

≈ Nb2 1 + cos x

1 − cos x
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(c)

Nb2 (1 + cos θ1)(1 + cos θ2)

1 − cos θ1 cos θ2

(d) N � a/b with the coherence length

a = b
1 + cos x

(1 − cos x) cos x
2

(e)

Nb2

(
4

θ2
− 1

)
− b2

(
4

θ2
− 8

θ4

)

1.3 Two-Component Model
(a)

κ = −kB T
1

lα − lβ
ln

(
Mlα − L

L − Mlβ

)

−kB T

(
1

2Mlα − 2L
+ 1

2Mlβ − L
+ lα − lβ

12(L − Mlβ)2
− lα − lβ

12(Mlα − L)2

)

The exact solution can be written with the digamma function Ψ which is well known
by algebra programs as

κ = −kB T
1

lα − lβ

(
−Ψ (

L − Mlβ
lα − lβ

+ 1) + Ψ (
Mlα − L

lα − lβ
)

)

The error of the asymptotic expansion is largest for L ≈ Mlα or L ≈ Mlβ . The
following table compares the relative errors of the Stirling approximation and the
higher order asymptotic expansion for M = 1000 and lβ/ lα = 2

L/ lα Stirling asympt. expansion
1000.2 0.18 0.13
1000.5 0.11 0.009
1001 0.065 0.00094
1005 0.019 2.5∗10−6

(b)

Z(κ, M, T ) =
(

e
κlα
kB T + e

κlβ
kB T

)M
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L = M
lαe

κlα
kB T + lβe

κlβ
kB T

e
κlα
kB T + e

κlβ
kB T

L2 = L
2 + Meκ(lα+lβ)/kB T

(
lα − lβ

eκlα/kB T + eκlβ/kB T

)2

σ2 = Meκ(lα+lβ)/kB T

(
lα − lβ

eκlα/kB T + eκlβ/kB T

)2

σ

L
∼ 1√

N

∂σ

∂κ
= 0 for (lα + lβ) = 2

lαeκlα/kB T + lβeκlβ/kB T

eκlα/kB T + eκlβ/kB T

hence for

κ = 0

∂2σ2

∂κ2
(κ = 0) = − M

k(kB T )2
(lα − lβ)2 < 0 → maximum

also a maximum of σ since the square root is monotonous.

Problems of Chap. 2

2.1 Osmotic Pressure of a Polymer Solution

μα(P, T ) − μ0
α(P, T ) = kB T

(
ln(1 − φβ) + (1 − 1

M
)φβ + χφ2

β

)

μ0
α(P ′, T ) − μ0

α(P, T ) = μα(P, T ) − μ0
α(P, T ) = −Π

∂μ0
α(P, T )

∂P

Π = −
(

∂μ0
α(P, T )

∂P

)−1

kB T

(
ln(1 − φβ) + (1 − 1

M
)φβ + χφ2

β

)
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For the pure solvent

μ0
α = G

Nα

dG = −SdT + V d P + μ0
α(P, T )d N

∂μ0
α

∂P

∣∣
T,Nα

= V

Nα

Π = − Nα

V
kB T

(
−φβ − 1

2
φ2

β − 1

3
φ3

β + · · · + (1 − 1

M
)φβ + χφ2

β

)

= NαkB T

V

(
1

M
φβ + (

1

2
− χ)φ2

β + · · ·
)

χ = χ0T0

T

high T:

1

2
− χ > 0 Π > 0 good solvent

low T:

Π < 0 bad solvent, possibly phase separation

2.2 Polymer Mixture

ΔF = NkB T

(
φ1

M1
ln φ1 + φ2

M2
ln φ2 + χφ1φ2

)

φ2,c = 1

1 +
√

M2
M1

χc = 1

2
(
√

M1 +√
M2)(

1

M2
√

M1
+ 1

M1
√

M2
)
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symmetric case

φc = 1

2

χc = 2

M
can be small, demixing possible

Problems of Chap. 4

4.1 Membrane Potential

ΦI = Beκx ΦI I = B

(
1 + εW

εM
κx

)
ΦI I I = V − Be−κ(x−L)

B = V

2 + εw

εM
κL

Q/A = εW κB per area A

C/A = Q/A

V
= εW κ

2 + εW
εM

κL
= 1

2
εwκ

+ L
εM

4.2 Ion Activity

kB T ln γc = kB T ln
a

c
= − Z2e2

8πε

κ

1 + κR

ln γc
+ = ln γc

− = − 1

kB T

Z2e2

8πε

κ

1 + κR

ln γc
± = − 1

kB T

Z2e2

16πε

(
κ

1 + κR+
+ κ

1 + κR−

)

κ → 0 for dilute solution

ln γc
± → − 1

kB T

Z2e2κ

8πε

http://dx.doi.org/10.1007/978-3-662-55671-9_4
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Problems of Chap. 5

5.1 Abnormal Titration Curve

ΔG(B, B) = 0

ΔG(B H+, B) = ΔG1,int

ΔG(B, B H+) = ΔG2,int

ΔG(B H+, B H+) = ΔG1,int + ΔG2,int + W1,2

Ξ = 1 + e−β(ΔG1,int −μ) + e−β(ΔG2,int −μ) + e−β(ΔG1,int +ΔG2,int −W+2μ)

s1 = e−β(ΔG1,int −μ) + e−β(ΔG1,int +ΔG2,int −W+2μ)

Ξ

s2 = e−β(ΔG2,int −μ) + e−β(ΔG1,int +ΔG2,int −W+2μ)

Ξ

Problems of Chap. 6

6.1 pH-Dependence of Enzyme Activity

r

rmax
= 1

1 + (1 + cH+
K ) KM

cS

K = cH+cS−
cH S

cs = cS− + cH S

6.2 Polymerization at the End of a Polymer

ci M = K cM c(i−1)M = · · · = (K cM)i

K

< i >=
∑∞

i=1 i(K cM)i

∑∞
i=1(K cM)i

= 1

1 − K cM
for K cM < 1

http://dx.doi.org/10.1007/978-3-662-55671-9_5
http://dx.doi.org/10.1007/978-3-662-55671-9_6
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6.3 Primary Salt Effect

r = k1cX

K = cX

cAcB
exp

{
− Z A Z Be2κ

4πεkB T

}

cX = K cAcB exp

{
Z A Z Be2κ

4πεkB T

}

Problems of Chap. 7

7.1 Smoluchowski Equation

P(t + Δt, x) = eΔt ∂
∂t P(t, x)

w±(x ± Δx)P(t, x ± Δx) = e±Δx ∂
∂x w±(x)P(t, x)

eΔt ∂
∂t P(t, x) = eΔx ∂

∂x w+(x)P(t, x) + e−Δx ∂
∂x w−(x)P(t, x)

P(t, x) + Δt
∂

∂t
P(t, x) + · · · = (w+(x) + w−(x))P(x, t)

+Δx
∂

∂x
(w+(x) − w−(x))P(x, t) + Δx2

2

∂2

∂x2
(w+(x) + w−(x))P(x, t) + · · ·

∂

∂t
P(t, x) = Δx

Δt

∂

∂x
(w+(x) − w−(x))P(x, t) + Δx2

Δt

∂2

∂x2
P(x, t) + · · ·

D = Δx2

Δt
K (x) = −kB T

Δx
(w+(x) − w−(x))

7.2 Eigenvalue Solution to the Smoluchowski Equation

−kB T

mγ
e−U/kB T

(
∂

∂x
eU/kB T W

)

http://dx.doi.org/10.1007/978-3-662-55671-9_7
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= −kB T

mγ
e−U/kB T

(
eU/kB T ∂W

∂x
+ eU/kB T W

1

kB T

∂U

∂x

)

= −kB T

mγ

∂W

∂x
− 1

mγ

∂U

∂x
W = S

LF P W = − ∂

∂x
S = ∂

∂x

kB T

mγ
e−U/kB T

(
∂

∂x
eU/kB T W

)

LF P = kB T

mγ

∂

∂x
e−U/kB T ∂

∂x
eU/kB T

L = eU/2kB TLF P e−U/2kB T = eU/2kB T kB T

mγ

∂

∂x
e−U/kB T ∂

∂x
eU/2kB T

LH = eU/2kB T

(
− ∂

∂x

)
e−U/kB T

(
− ∂

∂x

)
kB T

mγ
eU/2kB T = L

since

kB T

mγ
= const

For an eigenfunction ψ of L we have

λψ = Lψ = eU/2kB TLF P e−U/2kB T ψ

hence

LF P
(
e−U/2kB T ψ

) = λ
(
e−U/2kB T ψ

)

gives an Eigenfunction of the Focker-Planck operator to the same eigenvalue λ. A
solution of the Smoluchowski equation is then given by

W (x, t) = eλt e−U/2kB T ψ(x)

The Hermitian operator is very similar to the harmonic oscillator in second quanti-
zation

L = kB T

mγ

(
eU/2kB T ∂

∂x
e−U/2kB T

)(
e−U/2kB T ∂

∂x
eU/2kB T

)
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= kB T

mγ

(
∂

∂x
− 1

2kB T

∂U

∂x

)(
∂

∂x
+ 1

2kB T

∂U

∂x

)

= kB T

mγ

(
∂

∂x
− mω2

2kB T
x

)(
∂

∂x
+ mω2

2kB T
x

)

= −ω2

γ

⎛
⎝
√

kB T

mω2

∂

∂x
− 1

2

√
mω2

kB T
x

⎞
⎠
⎛
⎝
√

kB T

mω2

∂

∂x
+ 1

2

√
mω2

kB T
x

⎞
⎠

= −ω2

γ

(
∂

∂ξ
− 1

2
ξ

)(
∂

∂ξ
+ 1

2
ξ

)
= −ω2

γ
b+b

with boson operators

b+b − bb+ = 1.

From comparison with the harmonic oscillator we know the eigenvalues

λn = −ω2

γ
n n = 0, 1, 2, · · ·

The ground state obeys

aψ0 =
(

∂

∂x
+ 1

2kB T

∂U

∂x

)
ψ0 = 0

with the solution

ψ0 = e−U (x)/2kB T .

This corresponds to the stationary solution of the Smoluchowski equation

W =
√

mω2

2πkB T
e−U (x)/kB T .

7.3 Diffusion Through a Membrane

kAB = kA + kB

0 = dN

dt
=

M∑
N=

dPN

dt
N = −

M∑
N=1

kAB M N PN +
N∑

N=1

(kAB − 2km)N 2 PN
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+
M∑

N=2

kAB M N PN−1 −
M∑

N=2

kAB(N − 1)N PN−1

+
M−1∑
N=1

2km N (N + 1)PN+1

≈ −kAB M N + (kAB −2km)N 2 +kAB M(1+ N )−kAB(N 2 + N )+2km(N 2 − N )

= kAB M − kAB N − 2km N

N = M
kA + kB

kA + kB + 2km

0 = dN 2

dt
=
∑

N 2 dPN

dt
= −

M∑
N=1

kAB M N 2 PN +
N∑

N=1

(kAB − 2km)N 3 PN

+
M∑

N=2

kAB M N 2 PN−1 −
M∑

N=2

kAB(N − 1)N 2 PN−1

+
M−1∑
N=1

2km N 2(N + 1)PN+1

≈ −kAB M N 2 + (kAB − 2km)N 3 + kAB M(N 2 + 2N + 1)

−kAB(N 3 + 2N 2 + N ) + 2km(N 3 − 2N 2 + N )

= +kAB M(2N + 1) − kAB(2N 2 + N ) + 2km(−2N 2 + N )

= kAB M + N (2kAB M − kAB + 2km) − N 2(2kAB + 4km)

N 2 = kAB M + (2kAB M − kAB + 2km)M kAB
kAB+2km

2kAB + 4km

= 2kABkm

(kAB + 2km)2
M + k2

AB

(kAB + 2km)2
M2
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and the variance is

N 2 − N
2 = 2kmkAB

(kAB + 2km)2
M = 2km

kAB M
N

2
.

The diffusion current from A → B is

J = dNA

dt
− dNB

dt
=
∑

N

(−kA(M − N )PN + km N PN ) −
∑

N

(−kB(M − N )PN + km N PN )

=
∑

N

(kB − kA)(M − N )PN = (kB − kA)(M − N ).

Problems of Chap. 9

9.1 Dichotomous Model

λ1 = 0

L1 = ( 1 1 1 1) R1 =

⎛
⎜⎜⎝

0
0
β
α

⎞
⎟⎟⎠ (L1P0)

(L1R1)
= 1

α+β

λ2 = −(α + β)

L2 = (α −β α −β)R2 =

⎛
⎜⎜⎝

0
0

−1
1

⎞
⎟⎟⎠

(L2P0)

(L2R2)
= 0

λ3,4 = −k− + k+ + α + β

2
± 1

2

√
(α + β)2 + (k+ − k−)2 + 2(β − α)(k− − k+)

fast fluctuations:

λ3 = − α

α + β
k− − β

α + β
k+ + O(k2)

http://dx.doi.org/10.1007/978-3-662-55671-9_9
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L3 ≈ (1, 1, 0, 0) R3 ≈

⎛
⎜⎜⎝

β
α

−β
−α

⎞
⎟⎟⎠

(L3P0)

(L3R3)
≈ 1

α + β

λ4 = −(α + β) − α

α + β
k+ − β

α + β
k− + O(k2)

L4 ≈ (−α,β, 0, 0) R4 ≈

⎛
⎜⎜⎝

1
−1
1

−1

⎞
⎟⎟⎠

(L4P0)

(L4R1)
≈ 0

P(t) ≈

⎛
⎜⎜⎜⎝

0
0
β

α+β
α

α+β

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

β
α+β

α
α+β

− β
α+β

− α
α+β

⎞
⎟⎟⎟⎟⎠

eλ3t → P(D∗) = eλ3t

slow fluctuations:

λ3 ≈ −k+ − α

L3 ≈ (k+ − k−,−β, 0, 0) R3 ≈

⎛
⎜⎜⎝

k+ − k−
−α

−(k+ − k−)

α

⎞
⎟⎟⎠

L3P0

L3R3
≈ β

α + β

1

k+ − k−

λ4 ≈ −k− − β

L4 ≈ (α, k+ − k−, 0, 0)R4 ≈

⎛
⎜⎜⎝

β
k+ − k−

−β
−(k+ − k−)

⎞
⎟⎟⎠

L4P0

L4R4
≈ α

α + β

1

k+ − k−

P(t) ≈

⎛
⎜⎜⎜⎝

0
0
β

α+β
α

α+β

⎞
⎟⎟⎟⎠+ β

α + β

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠ e−(k++α)t + α

α + β

⎛
⎜⎜⎝

0
1
0

−1

⎞
⎟⎟⎠ e−(k−+β)t
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P(D∗) ≈ β

α + β
e−(k++α)t + α

α + β
e−(k−+β)t

Problems of Chap. 10

10.1 Entropy Production

0 = d H = T d S + V dp +
∑

k

μkd Nk

T d S = −
∑

k

μkd Nk = −
∑

j

∑
k

μkνk j dξ j =
∑

j

A j dξ j

dS

dt
=
∑

j

A j

T
r j

Problems of Chap. 11

11.1 ATP Synthesis

At chemical equilibrium

0 = A = −
∑

νkμk

= μ0(AD P)+kB T ln c(AD P)+μ0(P O H)+kB T ln c(P O H)+2kB T ln c(H+
out )+2eΦout

−μ0(AT P) − kB T ln c(AT P) − μ0(H2 O) − kB T ln c(H2 O) − 2kB T ln c(H+
in ) − 2eΦin

kB T ln K = −ΔG0 = μ0(AD P) − μ0(AT P) + μ0(P O H) − μ0(H2 O)

= kB T ln
c(AT P)c(H2 O)c2(H+

in )

c(AD P)c(P O H)c2(H+
out )

+ 2e(Φin − Φout )

= kB T ln
c(AT P)c(H2 O)

c(AD P)c(P O H)
+ 2kB T ln

c(H+
in )

c(H+
out )

+ 2e(Φin − Φout )

http://dx.doi.org/10.1007/978-3-662-55671-9_10
http://dx.doi.org/10.1007/978-3-662-55671-9_11
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Problems of Chap. 15

15.1 Transition State Theory

A+B
K ‡

� [AB]‡
k‡

→ P

k = k‡c[AB]‡ = k‡ K ‡cAcB

K ‡ = c[AB]‡

cAcB
= q[AB]‡

qAqB
e−ΔH ‡/kB T = qx

q‡
[AB]‡

qAqB
e−ΔH ‡/kB T

qx =
√

2πmkB T

h
δx

k‡ = v‡

δx
= 1

δx

√
kB T

2πm

k = 1

δx

√
kB T

2πm

√
2πmkB T

h
δx

q‡
[AB]‡

qAqB
e−ΔH ‡/kB T cAcB

= kB T

h

q‡
[AB]‡

qAqB
e−ΔH ‡/kB T cAcB

15.2 Harmonic Transition State Theory

k = v < δ(x − x‡) >=
√

kB T

2πm

∫∞
−∞ e−mω2x2/2kB T δ(x − x‡)∫∞

−∞ e−mω2x2/2kB T

=
√

kB T

2πm

e−mω2x‡2/2kB T

√
2πkB T

mω2

= ω

2π
e−ΔE/kB T

http://dx.doi.org/10.1007/978-3-662-55671-9_15
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Problems of Chap. 16

16.1 Marcus Cross Relation

A+A− → A−+A λA = 2ΔE(Aeq → A−
eq

D+D+ → D++D λD = 2ΔE(Deq → D+
eq)

A+D → A−+D+ λAD = ΔE(Aeq → A−
eq) + ΔE(Deq → D+

eq) = λA+λD
2

kA = ωA

2π
e−λA/4kB T

kB = ωB

2π
e−λB/4kB T

K AD = e−ΔG/kB T

kAD = ωAD

2π
exp

{
− (λAD + ΔG)2

4λADkB T

}

= ωAD

2π
exp

{
−λA + λD

8kB T
− ΔG

2kB T
− ΔG2

4λADkB T

}

= √
kAkB K AD

√
ω2

AD

ωAωD
exp

{
− ΔG2

4λADkB T

}

Problems of Chap. 18

18.1 Absorption Spectrum

α = 1

2π�

∫
dt
∑
i, f

eiωt < i |
∑ e−βH

Q
e−iωi tμ f > eiω f t < f μi >

= 1

2π�

∫
dteiωt < e−iHt/�μeiHt/�μ >

= 1

2π�

∫
dteiωt < μ(0)μ(t) >

http://dx.doi.org/10.1007/978-3-662-55671-9_16
http://dx.doi.org/10.1007/978-3-662-55671-9_18
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≈ |μeg|2
2π�

∫
dteiωt < e−iHg t/�eiHet/� >g

Problems of Chap. 20

20.1 Motional Narrowing

(s + iω1)(s + iω2) + (α + β)(s + iω)

= −
(

Ω + Δω

2

)(
Ω − Δω

2

)
− iωcΩ

Ω = ω − ω

Ω2 − Δω2

4
+ iωcΩ = 0

(
Ω + iωc

2

)2

= Δω2

4
− ω2

c

4

For ωc � Δω the poles are approximately at

Ωp = − iωc

2
± Δω

2

and two lines are observed centered at the unperturbed frequencies ω ± Δω/2 and
with their width determined by ωc. For ωc = Δω the two poles coincide at

Ωp = − iωc

2

and a single line at the average frequency ω appears. For ωc � Δω one pole
approaches zero according to

Ωp = −i
Δω2

4ωc

which corresponds to a sharp line at the average frequency ω. The other pole
approaches infinity as

Ωp = −iωc.

It contributes a broad line at ω which vanishes in the limit of large ωc (Fig. 1).

http://dx.doi.org/10.1007/978-3-662-55671-9_20
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Fig. 1 Poles of the
lineshape function

Re

Im

−Δω Δω/2 /2

Problems of Chap. 21

21.1 Crude Adiabatic Model

∂C

∂Q
=
(−s c

−c −s

)
∂ζ

∂Q
C† ∂C

∂Q
=
(

0 1
−1 0

)
∂ζ

∂Q

∂2C

∂Q2
=
(−s c

−c −s

)
∂2ζ

∂Q2
− C

(
∂ζ

∂Q

)2

C† ∂2C

∂Q2
=
(

0 1
−1 0

)
∂2ζ

∂Q2
−
(

∂ζ

∂Q

)2

∫
dr C†Φ† ∂2

∂Q2
ΦC = C† ∂2C

∂Q2
+ 2C† ∂C

∂Q

∂

∂Q
+ ∂2

∂Q2

= ∂2

∂Q2
+
(

0 1
−1 0

)
∂2ζ

∂Q2
−
(

∂ζ

∂Q

)2

+ 2

(
0 1

−1 0

)
∂ζ

∂Q

∂

∂Q

∫
dr C†Φ†(Tel + V0 + ΔV )ΦC =

C† EC + C†
∫

drΦ†ΔV Φ C = C†

(
E(Q) − ΔE(Q)

2 V (Q)

V (Q) E(Q) + ΔE(Q)

2

)
C

∫
dr C†Φ† H Φ C =

= − �
2

2m

∂2

∂Q2
+ C†

(
E(Q) − ΔE(Q)

2 V (Q)

V (Q) E(Q) + ΔE(Q)

2

)
C + �

2

2m

(
∂ζ

∂Q

)2

http://dx.doi.org/10.1007/978-3-662-55671-9_21
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− �
2

2m

(
0 1

−1 0

)
(
∂2ζ

∂Q2
+ 2

∂ζ

∂Q

∂

∂Q
)

cos ζ sin ζ = V (Q)√
4V (Q)2 + ΔE(Q)2

cos ζ2 − sin ζ2 = ΔE(Q)√
4V (Q)2 + ΔE(Q)2

∂

∂Q
(cs)2 = 2cs(c2 − s2)

∂ζ

∂Q
= 2V ΔE

4V 2 + ΔE2

∂ζ

∂Q

∂

∂Q
(cs)2 = ∂

∂Q

V 2

4V 2 + ΔE2

= 2V

4V 2 + ΔE2

∂V

∂Q
− V 2

(4V 2 + ΔE2)2

(
2ΔE

∂ΔE

∂Q
+ 8V

∂V

∂Q

)

∂ζ

∂Q
= ΔE

4V 2 + ΔE2

∂V

∂Q
− V

4V 2 + ΔE2

∂ΔE

∂Q
≈ 1

ΔE

∂V

∂Q

∂2ζ

∂Q2
= ΔE ∂2V

∂Q2 − V ∂2ΔE
∂Q2

4V 2 + ΔE2
−
(

ΔE
∂V

∂Q
− V

∂ΔE

∂Q

) 2ΔE ∂ΔE
∂Q + 8V ∂V

∂Q

(4V 2 + Δe2)2

≈ 1

ΔE

∂2V

∂Q2
− 2

ΔE2

∂ΔE

∂Q

∂V

∂Q

H̃ ≈ − �
2

2m

∂2

∂Q2
+
(

E − √
4V 2 + ΔE2

E + √
4V 2 + ΔE2

)

+ �
2

2m

1

ΔE2

(
∂V

∂Q

)2

− �
2

2m

(
0 1

−1 0

)(
1

ΔE

∂2V

∂Q2 − 2

ΔE2

∂ΔE

∂Q

∂V

∂Q
+ 2

ΔE

∂V

∂Q

∂

∂Q

)

Problems of Chap. 22

22.1 Ladder Model

i�Ċ0 = V
n∑

j=1

C j

i�Ċ j = E j C j + V C0

http://dx.doi.org/10.1007/978-3-662-55671-9_22
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C j = u j e
E j
i� t

i�u̇ j e
E j
i� t = V C0

u j = V

i�

∫ t

e− E j
i� t ′

C0(t
′)dt ′

C j = V

i�

∫ t

ei
E j
�

(t−t ′)C0(t
′)dt ′

E j = α + j ∗ �Δω

Ċ0 = V

i�

n∑
j=1

C j = − V 2

�2

∑∫ t

ei( jΔω+α/�)(t−t ′)C0(t
′)dt ′

ω = jΔω + α

�

∞∑
j=−∞

ei( jΔω+α/�)(t−t ′)Δ j →
∫ ∞

−∞
eiω(t−t ′) dω

Δω
= 2π

Δω
δ(t − t ′)

Ċ0 = −2πV 2

Δω
C0 = −2πV 2

�
ρ(E)C0

ρ(E) = 1

�Δω
= 1

ΔE

Problems of Chap. 23

23.1 Hückel Model with Alternating Bonds

(a)

αeikn + βei(kn+χ) + β′ei(kn+k+χ) = eikn
(
α + βeiχ + β′ei(k+χ)

)

αei(kn+χ) + β′ei(kn−k) + βeikn = ei(kn+χ)
(
α + β′e−i(k+χ) + βe−iχ

)

(b)

βeiχ + β′ei(k+χ) = β′e−i(k+χ) + βe−iχ

http://dx.doi.org/10.1007/978-3-662-55671-9_23
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e2iχ = β′e−ik + β

β′eik + β
= e−ik β′e−ik/2 + βeik/2

β′eik/2 + βe−ik/2
= e−ik

(
β′e−ik/2 + βeik/2

)2

β′2 + β2 + 2ββ′ cos k

eiχ = ±e−ik/2 β′e−ik/2 + βeik/2

√
β′2 + β2 + 2ββ′ cos k

λ = α + βeiχ + β′ei(k+χ) = α ± ββ′e−ik + β2 + β′2 + ββ′eik

√
β′2 + β2 + 2ββ′ cos k

= α ±
√

β′2 + β2 + 2ββ′ cos k

(c)

0 = 	 (eiχ+i(N+1)k
) = 	

(
±e−ik/2 β′e−ik/2 + βeik/2

√
β′2 + β2 + 2ββ′ cos k

ei(N+1)k

)

= ±	
(

β′eiNk + βei(N+1)k

√
β′2 + β2 + 2ββ′ cos k

)

0 = β′ sin(Nk) + β sin(N + 1)k)

(d) For a linear polyene with 2N-1 carbon atoms use again eigenfunctions

c2n = sin(kn) = 	(eikn)

c2n−1 = sin(kn + χ) = 	(ei(kn+χ))

and chose the k-values such that

	(eiNk) = sin(Nk) = 0

Problems of Chap. 25

25.1 Special Pair Dimer

(
c −s
s c

)(−Δ/2 V
V Δ/2

)(
c s

−s c

)

http://dx.doi.org/10.1007/978-3-662-55671-9_25
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is diagonalized if

(c2 − s2)V = csΔ

or with c = cos χ, s = sin χ

tan(2χ) = 2V

Δ

c2 − s2 = cos 2χ = 1√
1 + 4V 2

Δ2

≥ 0

2cs = sin(2χ) = 1√
1 + Δ2

4V 2

≥ 0.

The eigenvalues are (Fig. 2)

E± = ±
(

Δ

2
(c2 − s2) + 2csV

)

= ±
⎛
⎝Δ

2

1√
1 + 4V 2

Δ2

+ V
1√

1 + Δ2

4V 2

⎞
⎠ = ±1

2

√
Δ2 + 4V 2.

The transition dipoles are

μ+ = sμa + cμb

Fig. 2 Energy splitting of
the two dimer bands
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Fig. 3 Intensities of the two
dimer bands
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μ− = cμa − sμb

and the intensities (for |μa| = |μb| = μ)

|μ±|2 = μ2(1 ± 2cs cos α) = μ2(1 ± cos α√
1 + Δ2

4V 2

)

with (Fig. 3)

cos α = −0.755.

25.2 LHC II

|n;α >= 1

3

∑
k

e−ikn|k;α >

9∑
n=1

Eα|n;α >< n;α| =
9∑

n=1

Eα
1

9

∑
k,k ′

e−i(k−k ′)n|k;α >< k ′;α|

= δk,k ′ Eα|k;α >< k;α|
9∑

n=1

Eα|n;β >< n;β|
9∑

n=1

Eα
1

9

∑
k,k ′

e−i(k−k ′)n|k;β >< k ′;β|

= δk,k ′ Eα|k;β >< k;β|
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9∑
n=1

Vdim |n;α >< n;β| =
9∑

n=1

Vdim
1

9

∑
k,k ′

e−i(k−k ′)n|k;α >< k ′;β|

= δk,k ′ Vdim |k;α >< k;β|
9∑

n=1

Vβα,1|n;α >< n − 1;β| =
9∑

n=1

Vβα,1e−ik 1

9

∑
k,k ′

e−i(k−k ′)n|k;α >< k ′;β|

= δk,k ′ Vβα,1e−ik |k;α >< k;β|
9∑

n=1

Vβα,1|n;β >< n + 1;α| =
9∑

n=1

Vβα,1eik 1

9

∑
k,k ′

e−i(k−k ′)n|k;β >< k ′;α|

= δk,k ′ Vβα,1eik |k;β >< k;α|

9∑

n=1

Vαα,1(|n; α >< n + 1; α| + h.c.) =
9∑

n=1

Vαα,1eik 1

9

∑

k,k′
e−i(k−k′)n |k; α >< k′; α| + h.c.

= δk,k ′2Vαα,1 cos k|k;α >< k;α|

Hαα(k) = Eα + 2Vαα1 cos k

Hββ(k) = Eβ + 2Vββ1 cos k

Hαβ(k) = Vdim + e−ik Vβα,1

Hβα(k) = Vdim + eik Vβα,1

H(k) =
(

Eα + 2Vαα1 cos k V + e−ik W
V + eik W Eβ + 2Vββ1 cos k

)
= Ek +

( −Δk/2 V + e−ik W
V + eik W Δk/2

)

Perform a canonical transformation with

S =
(

c −se−iχ

seiχ c

)
.

S† H S becomes diagonal if

c2(V + eik W ) − s2e2iχ(V + e−ik W ) + cseiχΔk = 0.
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Fig. 4 Energy levels of
LHII

E  + E

2

α β

k=0

k=0

+

Chose χ such that

V + eik W = signV |V + eik W |eiχ = U (k)eiχ

and solve

(c2 − s2)U + csΔk = 0

by4

c2 − s2 = −sign

(
U

Δ

)
1√

1 + 4U 2

Δ2

cs =
∣∣U
Δ

∣∣
√

1 + 4U 2

Δ2

.

The eigenvalues are (Fig. 4)

E±(k) = Ek ± signV
1

2

√
Δ2 + 4U 2

= Eα + Eβ

2
+ (Vαα1 + Vββ1) cos k

± signV

√(
Eα − Eβ + 2(Vαα1 − Vββ1) cos k

2

)2

+ V 2 + W 2 + 2V W cos k

μk,+ = c
1

3

∑
n

eiknμnα + seiχ 1

3

∑
n

eiknμnβ

4The sign is chosen such that for |Δ| � |U | the solution becomes c = s = 1/
√

2.
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= c
1

3

∑
n

eikn Sn
9 μ0α + seiχ 1

3

∑
n

eikn Sn
9 Rz(2ν + φβ − φα)μ0,α

= 1

3

∑
n

eikn

⎛
⎜⎝

cos 2π
9 n − sin 2π

9 n

sin 2π
9 n cos 2π

9 n
1

⎞
⎟⎠

⎛
⎜⎝c + seiχ

⎛
⎜⎝

cos ε − sin ε

sin ε cos ε
1

⎞
⎟⎠

⎞
⎟⎠μ0

⎛
⎝

sin θ
0

cos θ

⎞
⎠ .

The sum over n again gives the selection rules

k = 0 z-polarisation

k = ±2π

9
circular xy-polarisation.

The second factor gives for z-polarization

μ = 3μ0(c + seiχ) cos θ

|μ|2 = 9μ2
0(1 + 2cs cos χ) cos2 θ

with

cos2 θ ≈ 0.008

and for polarization in the xy plane

μ = 3μ0 sin θ

(
c + seiχ cos ε

seiχ sin ε

)

|μ|2 = 9μ2
0 sin2 θ(1 + 2 cos ε cs cos χ)

with

sin2 θ ≈ 0.99 cos ε ≈ −0.952.

The intensities of the (k,-) states are

|μz|2 = 9μ2
0(1 − 2cs cos χ) cos2 θ

|μ⊥|2 = 9μ2
0 sin2 θ(1 − 2 cos ε cs cos χ).
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vo

−F −Fstal

25.3 Exchange Narrowing

P(δEk = X) =
∫

dδE1dδE2 · · · P(δE1)P(δE2) · · · δ(X −
∑

δEn

N
)

P(δEk = X) = 1

2π

∫
dt
∫

δE1dδE2 · · · 1

Δ
√

π
e−δE2

1/Δ2 · · · eit (X−∑ δEn/N )

= 1

2π

∫
dt eit X

(
1

Δ
√

π

∫
δE1e−δE2

1/Δ2−i tδE1/N

)N

= 1

2π

∫
dt eit X e−Δ2t2/4N

=
√

N√
πΔ

e−X2 N/Δ2
.

Problems of Chap. 29

29.1 Deviation from Equilibrium

Ω = e−ΔU/kB T (1 − eΔμ/kB T )
α2

α2 + β2

Ω(x) = e(Δμ0−ΔU (x))/kB T α2(x)

α2(x) + β2(x)

(
Keq − C(AT P)

C(AD P)C(P)

)
.

For Δμ �= 0 but Δμ � kB T Ω becomes a linear function of Δμ

http://dx.doi.org/10.1007/978-3-662-55671-9_25
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Ω(x) → −e−ΔU (x)/kB T α2(x)

α2(x) + β2(x)

Δμ

kB T

whereas in the opposite limitΔμ � kB T it becomes proportional to the concentration
ratio

Ω(x) → −e−ΔU (x)/kB T α2(x)

α2(x) + β2(x)
eΔμ0/kB T C(AT P)

C(AD P)C(P)
.
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