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Abstract. In this paper we present an agent-based model (ABM) of
scientific inquiry aimed at investigating how different social networks
impact the efficiency of scientists in acquiring knowledge. The model is
an improved variant of the ABM introduced in [3], which is based on
abstract argumentation frameworks. The current model employs a more
refined notion of social networks and a more realistic representation of
knowledge acquisition than the previous variant. Moreover, it includes
two criteria of success: a monist and a pluralist one, reflecting different
desiderata of scientific inquiry. Our findings suggest that, given a rea-
sonable ratio between research time and time spent on communication,
increasing the degree of connectedness of the social network tends to
improve the efficiency of scientists.

1 Introduction

Agent-based models (ABMs) have in recent years been increasingly utilized as a
method for tackling socio-epistemic aspects of scientific inquiry [6,18,21,23,24].
The primary value of this approach is that it allows us to tackle questions that
are difficult to answer with qualitative methods, such as historical case studies.
One such question concerns the impact of different degrees and structures of
information flow among scientists on their efficiency in acquiring knowledge.
Zollman’s pioneering work in this domain [23,24] suggested that a high degree
of connectedness of a social network may be epistemically harmful, and that there
is a trade-off between the success of agents and the time they need to reach a
consensus. Even though it has been shown in [15] that this result, dubbed as
“Zollman effect”, does not hold for a large portion of the relevant parameter
space, structurally different ABMs have come to similar conclusions [9,10].
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The highly idealized nature of these ABMs makes it difficult to assess how
relevant their findings are for actual scientific inquiry [15]. On the one hand, ide-
alization and abstraction are necessary for simulations that aim at representing
complex real world phenomena [14]. On the other hand, unless we include the
most important ‘difference making’ factors figuring in the target phenomenon,
the model might not represent any realistic scenario. Instead, it may represent
only a logical possibility, uninformative about the real world.1 Since due to their
high degree of idealization such models operate at a significant representational
distance from their intended target, we are faced with the methodological diffi-
culty to judge their adequacy and epistemic merit. What we can do is to compare
models with the same intended target that differ in various important respects,
such as in the way they structure the phenomenon, in the way some of its ele-
ments are represented, in their degree of abstraction and idealization, etc. The
possible gain may be that in virtue of this we are able to identify results that are
robust under different modeling choices, and, based on that, to identify causes
and explanatory relevant properties underlying these commonalities. Similarly,
if specific types of models give rise to different outcomes, we may sharpen our
understanding of their possible target phenomena and how they apply to them.
For example, we may be able to identify distinct sub-classes of phenomena to
which the different types of models apply.

The ABM presented in this paper has the same intended target phenomenon as
the ones presented in [23,24]. Nevertheless, the representation of social networks,
the content of the exchanged information, and the behavior of agents is different,
which raises the question whether the “Zollman effect” also occurs in our model. As
will be demonstrated, it does not. Given the differences between our models, this
result may not be surprising. Nevertheless, it suggests that further investigation is
needed to determine to which target phenomena the results of each model apply.

Our model is based on a recently developed argumentative ABM of scientific
inquiry (AABMSI) [3]. It represents scientific interaction as argumentative in
nature. This means that instead of a simple information flow that lacks critical
assessment, in AABMSI agents may refute previously accepted or new informa-
tion in view of counterarguments. Second, information about a given scientific
theory is represented as consisting of a set of arguments (rather than being fully
aggregated in a single value, representing one’s credence in the given theory
[23,24] or the epistemic success of the theory [9,10]). As a result, information
sharing is represented as concerning particular parts of the given scientific the-
ory, rather than an aggregated attitude about the whole theory. Third, receiving
criticism triggers a search for defense of the given attacked argument. Fourth,
the model takes into account that sharing information costs time and hence, that
there is a trade-off between time spent on research and time spent on interaction.

1 Accordingly, we can distinguish between models that provide how actually and how
possibly explanations. While some have suggested that modeling a possibility is
epistemically valuable [11], others have argued that if a model merely captures a
possibility, it is epistemically and pragmatically idle [19]; instead, the presented
possibility has to be understood within a specified context, which makes it relevant
for real world phenomena.
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In this paper we present an improved and more encompassing variant of
AABMSI, aimed at examining the effects of different social networks on the effi-
ciency of scientific inquiry. The model represents a situation in which scientists
pursue different scientific theories, with the aim of determining which one is
the best, and where they exchange arguments regarding their pursued theories.
Compared to the model presented in [3], the current model introduces a number
of improvements: (1) it employs the notion of social networks that is typically
used in other ABMs of science, such as the complete graph, the wheel and the
cycle [9,10,23,24] – this allows for the representation of an increase in informa-
tion sharing proportional to the population size, which is absent from AABMSI;
(2) the heuristic behavior of agents is represented in a more adequate way;
(3) an additional criterion of success has been introduced in order to exam-
ine the robustness of the results under different standards relevant in scientific
practice; (4) the time cost of learning is now proportional to the amount of
new information received by the agent; (5) the model has been computation-
ally improved, allowing for statistical analysis of the data and for more reliable
results.

Our findings suggest that a higher degree of connectedness leads to a more
efficient inquiry, given a reasonable ratio between research time and time spent
on communication. While our ABM is still too idealized to draw normative
conclusions concerning scientific inquiry that would be useful, for instance, to
policy makers,2 it represents a step further in this direction.

The paper is structured as follows. In Sect. 2 we explicate the main features of
our ABM. In Sect. 3 we present the main results of the simulations. In Sect. 4 we
compare our model with an argumentation-based ABM introduced in [8], as well
as with other ABMs of scientific interaction. We conclude the paper in Sect. 5
by suggesting further enhancements of our model and future research avenues.

2 The Model

Agents in our model represent scientists who inquire into a number of rivaling
theories in a given scientific domain. Theories are represented by sets of argu-
ments which scientists can discover and investigate. This is modeled in terms
of an argumentative landscape where scientists can investigate arguments by
spending time on them, which allows them to discover other arguments or argu-
mentative attacks between arguments of different theories. In certain intervals
scientists evaluate theories on the basis of their knowledge about the argumenta-
tive landscape and decide which theory to pursue further. Additionally, scientists
are situated in communication networks. By communicating with other scien-
tists they enhance their knowledge about the argumentative landscape which
may help them to make more informed evaluations.

2 To this end, one of the tasks for future research is the empirical calibration of the
parameters used in the model, as pointed out in [13].
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In the remainder of this section we describe the main components of our
model in more detail: the underlying argumentative landscape, the behavior of
agents and the notion of social networks.3

2.1 The Argumentative Landscape

An abstract argumentation framework, as introduced by Dung [7], is a directed
graph AF = 〈A,�〉 where A is a set of abstract entities called arguments and
� is an attack relation between arguments. Where a, b ∈ A, a attacks b if a � b.
A set of arguments S is conflict-free if there are no a, b ∈ S such that a � b.

For our purposes it is useful to add another relation between arguments, the
discovery relation ↪→. It represents possible paths scientists can take to discover
arguments:4 if a ↪→ b, then b can be discovered by the scientists if a has been
previously discovered.

A theory is represented by a conflict-free set of arguments connected in a
tree-like graph by discovery relations. Argumentative attacks exist only between
arguments of different theories. Formally, an argumentative landscape is a triple
L = 〈A,�, ↪→〉 where the set of arguments A is partitioned into m theories
〈A1, . . . ,Am〉 such that for each i ∈ {1, . . . , m} the theory Ti = 〈Ai, ai, ↪→〉 is a
tree with root ai ∈ Ai and

� ⊆
⋃

1≤i,j≤m
i�=j

(Ai × Aj) and ↪→ ⊆
⋃

1≤i≤m

(Ai × Ai).

This definition of the attack relation � ensures that each theory is conflict-free
and that attacks only occur between members of different theories.

At the beginning of the simulation only the roots of each theory (representing
a basic underlying hypothesis) are visible to the agents. During the simulation
the agents gradually discover arguments and attacks between them (see also
Sect. 2.2). Each argument a has a degree of exploration: expl(a) ∈ {0, . . . , 6}
where 0 means that the argument has not been discovered and 6 means that
the argument has been fully researched and it cannot be explored further. By
spending time on an argument a, a scientist increases its degree of exploration.
The higher the degree of exploration of a, the higher is the likelihood that the
connected arguments will become visible. This concerns both arguments con-
nected to a via the discovery relation in the same theory and arguments that
attack a or that are being attacked by a. If expl(a) = 0 [resp. expl(a) = 6] no
[resp. all] relation[s] from a to other arguments have been discovered.

Agents only have subjective knowledge of the landscape, which consists of
arguments, their respective degrees of exploration, and attacks. During the sim-
ulation agents gain knowledge, on the one hand, by exploring the landscape,

3 Our ABM is created in NetLogo [22]. The source code is available at: https://github.
com/g4v4g4i/ArgABM/tree/LORI-VI-2017.

4 Other ways of discovering arguments and attacks (via social networks) are discussed
below.

https://github.com/g4v4g4i/ArgABM/tree/LORI-VI-2017
https://github.com/g4v4g4i/ArgABM/tree/LORI-VI-2017
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and on the other hand, by communicating with other agents. This way two
agents may have different knowledge about the degree of exploration of an argu-
ment or about discovered relations. See also Sect. 2.3.

2.2 Basic Behavior of Agents

Our model is round based. Each round every agent performs actions that are
among the following:

1. the agent investigates the argument a she is currently situated at (i.e. she
increases expl(a)) and while doing so she gradually reveals outgoing discovery
relations as well as attacks from and to a;

2. the agent explores her current branch of the theory further by moving along
a discovery relation to a neighboring argument (that she can see);

3. the agent leaves her current theory and moves to an argument of a rivaling
theory (that she can see).

Every round each agent decides (based on a certain probability) whether to stay
on her current argument (option 1) or to move to a new argument in her direct
neighborhood (relative to the discovery relation, option 2). If she has reached a
leaf of her branch, which is fully explored (i.e., expl(a) = 6), she backtracks on
this branch to find an argument that is not fully explored. In case this fails, she
moves to another not fully explored argument in the same theory.

Additionally, every 5 rounds agents consider whether they are still working
on the theory they consider the best (with respect to their current subjective
knowledge of the landscape). Depending on this decision, they continue with 1
and 2, or move to an alternative theory and start to explore that one (3). Their
decision is based on an evaluation of the degree of defensibility of a theory.

The degree of defensibility of a theory is the number of defended arguments
in this theory, where –informally speaking– an argument a is defended in the
theory if it is not attacked or if each attacker b from another theory is itself
attacked by some defended argument c in the current theory.

Let us give a more precise formal definition. First, we call a subset of argu-
ments A of a given theory T admissible iff for each attacker b of some a in A
there is an a′ in A that attacks b (we say that a′ defends a from the attack
by b). Since every theory is conflict-free, it can easily be shown that for each
theory T there is a unique maximally admissible subset of T (with respect to set
inclusion). An argument a in T is said to be defended in T iff it is a member of
this maximally admissible subset of T .5 The degree of defensibility of T is equal
to the number of defended arguments in T .

5 Given that theories in our model are conflict-free, our notion of admissibility is
actually the same as the one introduced in [7]. In Dung’s terminology, our sets
of defended arguments correspond to preferred extension (which are exactly the
maximally admissible sets), except that we determine these sets relative to given
theories.
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theory defended degree of def.

T1 = {e, f} (white) {f} 1
T2 = {a, b, g} (gray) {} 0

T3 = {c, d} (dark gray) {} 0

Fig. 1. Argumentation Framework 1

g

e a c

f b d

theory defended degree of def.

T1 = {e, f} (white) {} 0
T2 = {a, b, g} (gray) {a, b, g} 3

T3 = {c, d} (dark gray) {} 0

Fig. 2. Argumentation Framework 2

Example 1. Figure 1 depicts a situation with three theories as it might occur
from the perspective of a given agent: T1 consisting of arguments e and f (white
nodes), T2 consisting of arguments a, b and g (gray nodes), and T3 consisting
of arguments c and d (dark gray nodes). The arrows represent attacks, we omit
discovery relations. We are now interested in the degrees of defensibility our
agent would ascribe to the given theories. The table shows which arguments are
defended in each theory and their corresponding degree of defensibility. The only
defended argument in this situation is f in theory 1. Note for instance that in
T3 the argument d is not defended since no argument in T3 is able to defend it
from the attack by b. Although the argument f in T1 attacks b, it doesn’t count
as a defender of d for theory T3 when determining the defended arguments in T3

since in our account a theory is supposed to defend itself.
Figure 2 depicts the situation after an attack from a to f has been discovered.

Consider theory T2. In this situation a defends b from the attack by f , b defends
a from the attack by d, a defends g from the attack by e and g defends a
from the attack by c. Hence, all arguments are defended resulting in a degree of
defensibility of 3.

A scientist decides to work on another theory T ′ instead of her current theory
T if the degree of defensibility of T ′ surpasses the one of T by a certain margin.
We represent the objectively best theory as a fully defended one.

Moreover, agents are equipped with heuristic abilities. An agent that encoun-
ters an attack from an argument b on the argument a, she is currently working
on, will try to find a defense for this argument. For this she will consider all
the arguments in her subjective knowledge that belong to the same theory as a.
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If there is an argument a′ among these that can potentially defend a from the
attack, she will begin to investigate it. That a′ potentially defends a from b
means that there is an attack from a′ to b but this attack has not yet been
added to the subjective representation of the landscape of our agent (e.g., since
expl(a′) is too low or since it has not been communicated to her). This means
that agents are equipped with ‘professional hunches’ which help them to tackle
problems in their theories.6

2.3 Social Networks

Besides discovering the argumentative landscape by exploring it on her own (see
Sect. 2.2), an agent can share information about the landscape with other agents.

At the start of a simulation agents are divided into local collaborative net-
works, each consisting of exactly five individuals working on the same theory.
During the simulation each agent gathers information (i.e., the degree of explo-
ration of arguments, discovery and attack relations) on her own. Agents of the
same collaborative network have the same subjective knowledge of the landscape
since whenever an agent learns something new, this is communicated with the
other agents in the same collaborative group.

Additionally, the collaborative groups form a community network. These have
one of the following three structures: a cycle, in which each collaborative group
is connected to exactly two other groups, a wheel which is similar to the cycle,
except that a unique group is connected to every other group, and a complete
graph where each group is connected to all other groups (Fig. 3). Every five
rounds, randomly chosen representative agents of the collaborative groups com-
municate along the communication channels of the community network. The
different network structures allow us to represent varying degrees of information
flow in the scientific community, with the cycle representing the lowest and the
complete graph the highest degree of information sharing.7

Fig. 3. A cycle, a wheel and a complete graph. Each node is a collaborative group,
while the edges represent communication channels

Representative agents do not share their whole knowledge of the landscape
with agents from other collaborative networks. Instead, they share the knowl-
edge they have obtained recently by their own exploration of the landscape,
6 Such hunches are not considered when agents evaluate theories.
7 In contrast to the current model, in AABMSI [3] network structures are generated

probabilistically in specific time intervals.



398 A. Borg et al.

which consists of the argument they are currently at, its neighboring arguments
connected via the discovery relation, their respective degrees of exploration, and
attacks to and from their current argument. One way of interpreting this limited
knowledge sharing is by considering this to be a situation where the agent writes
a paper or gives a presentation on her current research results.

An alternative interpretation of collaborative groups is that they represent
one individual working on 5 different arguments (papers, hypotheses, etc.) in
a given theory. Whenever this individual communicates with other individuals
from the community network it exchanges the information from the neighbor-
hood of one of the 5 arguments she is currently engaged with.

Our model takes into account that information sharing and especially receiv-
ing information is time costly: agents who receive information (the representative
agents of each collaborative network) are blocked from further exploration for a
certain number of rounds. The costs of information sharing are proportional to
the amount of new information obtained.8

Finally, we distinguish two types of information sharing, characterizing two
types of scientists. A reliable agent shares all her recent discoveries, whereas a
deceptive agent withholds the information about attacks on her current theory.
This way, agents receiving information from a deceptive agent from theory T
might come to a more favorable interpretation of T than if they would have
communicated with a reliable agent [4].

3 The Main Findings

We will now specify the parameters used in the simulations and then present
our most significant results.

3.1 Parameters Used in Simulations

We have run simulations with a landscape consisting of 3 theories. The landscape
is created in three steps: First, each theory is represented by a tree (as explained
in Sect. 2.1) of depth 3 such that each node has 4 children (except for the leaves)
resulting in 85 arguments per theory. Second, with a chance of 0.3, each argument
gets randomly attacked by an argument from another theory. Third, for every
argument in theories T2 and T3 that attacks an argument in theory T1 and that
is not attacked by an argument from T1 we add an attack from some random
argument in T1. Thus, it is made sure that T1 is the objectively best theory and
as such is fully defended from all attacks. In this way we wish to represent a
scenario in which theories that are rivals to the best one are worse, though not
completely problematic (as it would be the case with pseudo-scientific theories).

8 A representative agent is excluded from research for 1–4 rounds: she always pays the
basic cost of information sharing which is 1 round, and in addition, for every 2 fully
explored arguments she will pay an additional round. The cost of learning an attack
is equivalent to learning one degree of exploration of an argument.
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Simulations were run 10.000 times for each of the scenarios with 10, 20, 30,
40, 70 and 100 agents. The scenarios are created by varying:

1. the community network: in the form of a cycle, a wheel and a complete graph;
2. two types of information sharing: reliable and deceptive.9

A simulation stops when one of the theories is completely explored. At this
point all the agents have one more chance to make their final evaluation and
choose their preferred theory. We then evaluate whether the agents have been
successful according to the following criteria (where T1 is the objectively best
theory):

1. monist criterion, according to which a run is considered successful if, at the
end of the run, all agents have converged onto T1;

2. pluralist criterion, according to which a run is considered successful if, at the
end of the run, the number of agents working on T1 is not smaller than the
number of agents working on any of the other theories.

The monist criterion is the standard notion of success, often employed in
other ABMs of science, e.g. [23,24]. The pluralist criterion, on the other hand,
is motivated by the philosophical conception of scientific pluralism, according
to which a parallel existence of multiple theories in a given scientific domain
is considered epistemically and heuristically beneficial e.g. [5]. This means that
the convergence of all scientists onto the objectively best theory isn’t a primary
epistemic concern for pluralists. Rather, what matters is that the best theory is
one of the most actively researched theories.10

3.2 Results

In this section we describe the most important findings of the simulations.

9 Further parameters, with short explanations, are as follows. The move probability
(set to 0.5) together with the degree of exploration of the argument an agent is
situated at, determines the chance that she will move to another argument every
5 rounds (the move incentive is further decreased by 1

5
for time steps in between).

The visibility probability (set to 0.5) is the probability with which a new attack is
discovered when an agent further explores her argument. The research speed (set to
5) determines the number of time steps an agent has to work on an argument a before
a reaches its next level of exploration. The strategy threshold (set to 0.9) concerns
the fact that each theory with a degree of defensibility that is at least 90% of the
degree of defensibility of the best theory is considered good enough to be researched
by agents. The jump threshold (set to 10) concerns the number of evaluations an
agent can remain on a theory that is not one of the subjectively best ones.

10 While our criterion is moderately pluralist, a more radical version would make plu-
rality a necessary condition of success (i.e. populations would be punished for con-
verging on one theory). We leave this consideration for future research.
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Fig. 4. Pluralist criterion of success, reliable and deceptive agents

Fig. 5. Monist criterion of success, reliable and deceptive agents

Reliable vs. deceptive agents. With respect to both criteria of success, reli-
able agents are clearly more successful than the deceptive ones (Figs. 4 and 5),
while being only slightly slower (Fig. 6).11

11 The plots concern the landscape consisting of three theories. The results were similar
in case of two theories in all the discussed respects, except that the agents were
comparatively more efficient.
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Fig. 6. Time needed

The degree of connectedness. In case of reliable agents, the complete graph
tends to outperform the wheel and cycle, with respect to both criteria of success
(Figs. 4 and 5), as well as with respect to the speed of exploration (Fig. 6). In
other words, a higher degree of connectedness tends to lead to a more efficient
inquiry.

In case of deceptive agents, the situation is a bit trickier. On the one hand,
higher degrees of connectedness are also beneficial for the success according to
the monist criterion (Fig. 5). However, the effect of connectedness is inverse for
the pluralist criterion given populations with up to 70 agents (Fig. 4). A possible
explanation for this asymmetry between the two success criteria is that deceptive
agents in more connected networks share more false positives. As a result, if one
theory is explored by a larger number of agents than either of the other theories,
for the agents on this theory it will be easier to attract the whole population to
it, leading to a fast, possibly wrong, convergence. In contrast, deceptive agents
in the less connected networks will spread less information among each other,
resulting in fewer cases of wrong convergence. For populations larger than 70
agents these premature convergences of the complete graph are prevented by
the fact that each theory has on average enough researchers praising it and
pointing out problems with the other theories so that the false positives are
debunked as such more often.

Size of the community. Larger populations tend to be more efficient if agents
are connected in the complete graph. In contrast, larger populations of agents
in less connected networks perform similarly to smaller ones with respect to the
pluralist criterion, and drastically worse with respect to the monist criterion.
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The latter results from the lack of sufficient information flow, which is why
larger populations fail to converge on any (including the best) theory.

4 Discussion

In this section we will first comment on some of our results and then we will
compare our model with other ABMs designed to tackle similar questions.

We focus on two particularly interesting results: the impact of deceptive infor-
mation sharing in contrast to the reliable one, and the impact of the degree of
connectedness on reliable agents. Concerning the former, deceptiveness has not
been studied in ABMs of science to a large extent.12 This is, however, an impor-
tant issue for the efficiency of scientific inquiry. For instance, withholding results
that would undermine one’s theory, typical for scientific fraud, is an example
of deceptive information sharing. Even though deception is clearly problematic
from the perspective of ethics of scientific conduct, its effects on the efficiency
of the given scientific community aren’t immediately clear. For instance, one
could assume that presenting one’s theory in positive light, in spite of the early
problems can attract new researchers and help in developing it further. Our
findings suggest that this is in general not the case, i.e. that deception tends to
be epistemically harmful. More precisely, assuming that the whole community
consists of deceptive scientists, and that scientists prefer theories that have the
highest number of defensible results, deception leads to significantly less success-
ful (though slightly faster) inquiry. Whether these results hold also under other
assumptions remains to be examined in future research.

Our findings suggest that increasing the degree of connectedness of the com-
munication network tends to be epistemically beneficial. This contrasts with
findings obtained in other ABMs [9,10,23,24], according to which agents con-
nected in a cycle perform better than agents connected in a complete graph. In
order to see whether and in which sense our results challenge the latter results we
first need to highlight some differences between our approach and these ABMs.

First, while in the latter agents are directly connected in the given networks,
we employ a more structured approach by distinguishing between collaborative
(local research) groups and communal networks between these groups. Note
that in the real world it is impossible for each member of a larger scientific
community to invest time in communicating with all the other members for the
simple fact that communication (such as, e.g. reading papers) costs time, which
could otherwise be spent on doing research. Thus, we have started from the
assumption that scientists only have limited time for interacting with members
of other collaborative groups, while they fully share information within their
own collaborative projects. Altogether this means, however, that the highest

12 One example of an ABM that studies deception in science is [12], which examines
the effects of a deceptive agent in a community of epistemically pure agents. The
authors show that in general a higher degree of connectivity helps against decep-
tive information. While our model doesn’t examine the case of mixed (reliable and
deceiving) agents, our results are, generally speaking, in line with their results.
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degree of connectedness examined in our model gives rise to less information
flow than in models in which agents are directly linked into a complete graph.
Second, the content of the information shared among our agents is more localized
and patchy since only representative agents exchange information about local
aspects of their theory, namely their current argument and its neighborhood. As
a result, agents from different collaborative groups end up having more diverse
subjective representations of the landscape than e.g. agents in [23,24]. Third, our
representation of interaction includes a critical component. This is important for
a model designed to examine the efficiency of scientific knowledge acquisition
due to the fact that criticism has been shown to be truth conducive since it
allows for false beliefs to be exposed as such [2]. Finally, similarly to ABMs
that employ epistemic landscapes [9,10,21], our argumentative landscape allows
for the representation of the process of discovery and its timeline. However,
unlike the models employing epistemic landscapes, the information that agents
encounter via an argumentative landscape is defeasible. This feature allows not
only for the representation of critical interaction, but also for specific heuristic
behaviors,13 such as the search for a defense of an argument in case it has been
attacked.14 In this sense, our respective results might concern a different kind of
scenario and thus refer to different target phenomena.

Having explicated the differences between our and other ABMs, it is impor-
tant to notice though that there is no reason to assume that our model introduces
more problematic idealizing assumptions than the previous ABMs of scientific
interaction when it comes to the representation of a typical scientific inquiry.
To the contrary, it includes a number of assumptions directly relevant for its
adequate representation. Thus, our findings suggest that the results obtained by
others models might not hold for usual cases of scientific inquiry. Instead, they
may hold only for some very specific contexts. Which subclass of the phenom-
enon of scientific inquiry each of these models reliably represents, remains to be
tackled in future research.

Finally, let us compare our model with Gabbriellini and Torroni’s (G&T)
ABM [8]. Their aim is to study polarization effects, e.g., in online debates. Simi-
larly to our approach, their model is based on an abstract argumentation frame-
work. Agents start with an individual partial knowledge of the given framework
and enhance their knowledge by means of communication. Since G&T do not
model inquiry, their agents cannot discover new parts of the graph by means
of ‘investigating’ arguments. Rather, they exchange information by engaging in

13 Interestingly, comparing the results of our model that employs the heuristic behavior
(HB) and the results produced when HB is removed, shows that HB has hardly any
impact on the success of agents, and in some cases it even slightly lowers their
success. This seems to suggest that HB, by making agents stay on an undefended
argument, waiting to find how to defend it, shields not only the best theory but also
the worse ones, leading to an overall less successful inquiry. Examining this issue in
more detail remains a task for future research.

14 Another important difference between our ABM and those in [23,24] is that the latter
examine a fringe case of epistemically similar theories, which makes distinguishing
the best one difficult.
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a dialogue. This way, agents may learn about new arguments and attacks but
also remove attacks. Whether new information is incorporated in the knowledge
of an agent depends on the trust relation between the discussants. The beliefs
of agents are represented by applying Dung-style admissibility-based semantics
to the known part of the argumentation framework of an agent. This is quite
different from our model where the underlying graph topology is given by several
discovery trees of arguments representing scientific theories and attacks between
them. This additional structure of the argumentation graph is essential since
we do not model the agents’ beliefs in individual arguments but rather evalu-
ative stances of agents that inform their practical decision of which theory to
work on. While an admissibility-based semantics would lead to extensions that
feature unproblematic sets of arguments from different theories (ones that form
conflict-free and fully defensible sets), in our approach agents pick theories to
work on. For this, they compare the merits of the given theories, pick the one
that is most defended, and employ heuristic behavior to tackle open problems of
theories. It will be the topic of future research to include dialogue protocols that
are relevant for scientific communication, such as information-seeking, inquiry
and deliberation dialogues [20].

5 Conclusion

In this paper we have presented an argumentative ABM aimed at modeling the
argumentative nature of scientific inquiry. The model is designed to examine how
different kinds of social networks affect the efficiency of scientists in acquiring
knowledge. Under the assumption that, in order to conduct their inquiry, scien-
tists only have limited time to spend on communicating with others, our results
suggest that a high information flow tends to be epistemically beneficial.

A variety of enhancements can be added to our model in order to make it apt
for tackling similar or related questions. First, our current notion of the degree
of defensibility represents scientists who prefer theories that exhibit a greater
number of defensible results than their rivals. An alternative notion of defensi-
bility would punish theories for having more anomalies (indefensible arguments)
than their rivals, thus representing scientists who stick to their theories as long
as they are not too anomalous (irrespective of how many positive results they
have). Second, adding an explanatory relation and a set of explananda [16] would
allow for a more refined representation of the desiderata of scientific theories and
evaluative procedures which agents perform when selecting their preferred the-
ory (e.g. in addition to the degree of defensibility, agents can take into account
how much their current theory explains, or how well it is supported by evi-
dence). Furthermore, a number of enhancements available from the literature on
argumentation frameworks, such as probabilistic semantics [17], values [1], etc.
can be introduced in future variants of our ABM. In addition to examining the
impact of social networks, the model can be used to examine different heuristic
behaviors and evaluations that guide scientific inquiry.
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