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Abstract. We extend the ‘topologic’ framework [13] with dynamic
modalities for ‘topological public announcements’ in the style of
Bjorndahl [5]. We give a complete axiomatization for this “Dynamic
Topo-Logic”, which is in a sense simpler than the standard axioms of
topologic. Our completeness proof is also more direct (making use of
a standard canonical model construction). Moreover, we study the rela-
tions between this extension and other known logical formalisms, showing
in particular that it is co-expressive with the simpler (and older) logic of
interior and global modality [1,4,10,14]. This immediately provides an
easy decidability proof (both for topologic and for our extension).

1 Introduction

The ‘topologic’ formalism, introduced by Moss and Parikh [13], and investigated
further by Dabrowski et al. [6], Georgatos [8,9] and others, presented a single-
agent subset space logic (SSL) for the notions of knowledge and effort (where
“effort” refers to any type of evidence-gathering—via, e.g., measurement, com-
putation, approximation, experiment or announcement—that can lead to an
increase in knowledge). They proposed a bimodal language with modalities K
and �, where Kϕ is read as “the agent knows ϕ (is true)”, and the effort modal-
ity �ϕ says that “ϕ stays true no matter what further evidence-gathering efforts
are made”. So � captures a notion of stability under evidence-gathering. The
formulas are interpreted on subset spaces, which include the class of topologi-
cal spaces. In [13] Moss and Parikh gave a sound and complete axiomatization
with respect to the class of all subset spaces. The axiomatization for topological
spaces has later been studied by Georgatos [8,9], and Dabrowski et al. [6], who
independently provided complete axiomatizations and proved decidability. The
completeness proofs involve however rather complicated constructions. More-
over, one of the main axioms (the so-called Union Axiom, capturing closure of
the topology under binary unions) is extremely complex and looks rather unin-
tuitive.

A different logical formalism with a topological semantics was proposed by
Bjorndahl [5], motivated by developments in dynamic epistemic logic. Namely,
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he proposed a topological semantics (in the style of subset space semantics) for
the syntax of Public Announcement Logic (PAL), that assumes as precondition
of learning ϕ the sentence int(ϕ), saying that ϕ is learnable. Topologically, this
corresponds to the interior operator of McKinsey and Tarski [12]. He axiomatized
this logic, using natural analogues of the standard reduction axioms of PAL, and
showed that this formalism is co-expressive with the simpler (and older) logic
of interior int(ϕ) and global modality Kϕ (previously investigated by Bennett,
Goranko and Passy, Aiello, and Shehtman [1,4,10,14], extending the work of
McKinsey and Tarski [12] on interior semantics).

Another recent development is the work of van Ditmarsch et al. [15], who
studied the extension of Bjorndahl’s system with a Topological Arbitrary Public
Announcement modality (‘Topo-APAL’, for short), that quantifies universally
over Bjorndahl-style public announcements (similarly to the way classical APAL
modality in [2] quantifies over public announcements). They proved that this is
co-expressive with Bjorndahl’s logic.

In this paper, we investigate a natural extension of ‘topologic’, obtained by
adding to it Bjorndahl-style dynamic modalities for ‘updates’ (public announce-
ments). The resulting ‘Dynamic Topo-Logic’ can be thought of as a logic of
evidence-based knowledge Kϕ, knowability int(ϕ), learning of new evidence [ϕ]ψ
and stability �ϕ (of some truth ϕ) under any such evidence-acquisition. We
show that this extension is co-expressive with the above-mentioned three logical
formalisms: Topo-APAL [15], Bjorndahl’s logic of topological public announce-
ments [5], and the logic of interior and global modality [1,4,10,14]. This finally
elucidates the relationships between topologic and other modal (and dynamic-
epistemic) logics for topology: in particular, topologic is directly interpretable
in the simplest logic above (of interior and global modality), which immediately
provides a simpler decidability proof (both for topologic and for our extension).

We give a complete axiomatization for Dynamic Topo-Logic, which is in a
sense simpler than the standard axioms of Topologic: though we have more
axioms, each of them is transparent, natural and easily readable, directly reflect-
ing the intuitive meanings of the connectives. Our axiomatization consists of a
slightly different version of Bjorndahl’s axioms, together with only two additional
proof principles governing the behavior of the topologic “effort” modality �ϕ
(which we call “stable truth”): an introduction rule and an elimination axiom.
Everything to be said about the effort modality is captured by these two simple
principles, which together express the fact that � quantifies universally over all
updates with any new evidence. In particular, the complicated Union Axiom
[8,9] is not needed in our system. Our completeness proof is also simpler than
the existing completeness proofs for Topologic, making direct use of a standard
canonical topo-model construction. This shows the advantage of adding dynamic
modalities: when considered as a fragment of a dynamic-epistemic logic, Topo-
logic becomes a more transparent and natural formalism, with intuitive axioms
and canonical behavior.

In its turn, the effort modality helps to simplify and streamline the axioma-
tization of Topo-APAL. Indeed, although the two are equivalent, note that the
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axiomatization of this latter operator in [15] was essentially infinitary : it used
an inference rule that takes as inputs infinitely many premisses! In contrast, our
axiomatization is recursive, being obtained by replacing the infinitary rule with
a finitary one, involving the use of “fresh” propositional variables. This rule’s
soundness is due to the “pure semantical” character of the effort modality �ϕ
(whose meaning does not depend on the valuation of variables not occurring in
ϕ), in contrast to the “syntactical” character of the APAL modality.1

Due to page-limit constraints, this Proceedings version includes only the
shortest proofs. The other relevant proofs can be found in the long version
of this paper, available online at https://sites.google.com/site/ozgunaybuke/
publications.

2 Dynamic Topo-Logic: Syntax, Semantics
and Axiomatization

In this section, we present the language of Dynamic Topo-Logic, which is
obtained by extending Bjorndahl’s logic L!Kint [5] with the effort modality from
Topologic [13]; or equivalently, by extending Topologic with the Tarki-McKinsey
interior operator int [12] and with Bjorndahl’s topological public announce-
ments. As it turns out, interior is in fact definable using topological public
announcements (since int(ϕ) = 〈ϕ〉�). So, although we keep the int opera-
tor as primitive for technical reasons, in a sense our syntax is essentially given
by adding to topologic only the dynamic modalities.

Syntax. Given a countable set of propositional variables Prop, the language L
of Dynamic Topo-Logic is defined recursively by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ | �ϕ,

where p ∈ Prop. The update operator [ϕ]ψ is sometimes denoted by [!ϕ]ψ in
Public Announcement Logic literature; we skip the exclamation sign, but we
will use the notation [!] for this modality when we do not want to specify the
announcement formula ϕ (so that ! functions as a placeholder for the content
of the announcement). We employ the usual abbreviations for propositional
connectives �,⊥,∨,→,↔. The dual modalities are defined as K̂ϕ := ¬K¬ϕ,
♦ϕ := ¬�¬ϕ, 〈ϕ〉ψ := ¬[ϕ]¬ψ, and cl(ϕ) := ¬int¬ϕ.

Several fragments of the language L are of both technical and conceptual
interest. For all the fragments studied in this paper, we use a notational con-
vention listing in subscript all the modalities of the corresponding language. For
example, Lint denotes the fragment of L having only the modality int (besides
propositional connectives); LKint has only modalities K and int ; LK� has only
modalities K and �, etc.
1 Indeed, the original paper [2] on “classical” (non-topological) APAL modality con-

tained a similar attempt of converting an infinitary rule into an finitary rule. That
was later shown to be flawed: the finitary rule was not sound for the APAL modality
(though it is sound for effort)!

https://sites.google.com/site/ozgunaybuke/publications
https://sites.google.com/site/ozgunaybuke/publications
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Topological Semantics: Intuitions and Motivation. The semantics of this
language is over topological spaces2 (X, τ). The points of the space represent
“possible worlds” (or states of the world). The open sets in the topology are
meant to represent potential evidence, i.e. facts about the world that are in prin-
ciple knowable, in the sense of being verifiable: whenever (in any world in which)
they are true, they can be known. In contrast, closed sets represent facts that
are in principle falsifiable (whenever they are false, their falsity can be known).
As it was remarked in [11,16], the closure properties of a topology are intuitively
satisfied in this interpretation. First, contradictions (∅) and tautologies (X) are
in principle verifiable (as well as falsifiable). The conjunction P ∧Q of two verifi-
able facts is also verifiable: if P ∧Q is true, then both P and Q are true, and since
both are assumed to be verifiable, they can both be known, and hence P ∧Q can
be known. Finally, if {Pi : i ∈ I} is a (possibly infinite) family of verifiable facts,
then their disjunction

∨
i∈I Pi is verifiable: indeed, if the disjunction is true, then

there must exist some i ∈ I such that Pi is true, and so Pi can be known (since
it is verifiable), and as a result the disjunction

∨
i∈I Pi can also be known (by

inference from Pi).

Semantics. A subset space is a pair (X,O), where X is a non-empty set and
O ⊆ P(X) is a non-empty collection of subsets of X. A subset model M =
(X,O, V ) is triple where (X,O) is a subset space and V : Prop → P (X) is a
valuation function. A topological model (or, in short, a topo-model) is a subset
model M = (X, τ, V ) where (X, τ) is a topological space. Following the Subset
Space Semantics [13], formulas are interpreted on pairs of the form (x,U) where
x ∈ U ∈ O. Such pairs are called epistemic scenarios. The set of all epistemic
scenarios of a given topo-model M is denoted by ES(M). Given a topo-model
M = (X, τ, V ) and an epistemic scenario (x,U) ∈ ES(M), the semantics for
the language L is given by defining a satisfaction relation (x,U) |=M ϕ, as well
as a truth set (interpretation) [[ϕ]]UM =: {x ∈ U | (x,U) |=M ϕ}, for all formulas
ϕ. We omit the subscript, writing simply (x,U) |= ϕ and [[ϕ]]U , whenever the
model M is fixed. The definition of satisfaction is by recursion on the complexity
of formulas ϕ:

2 For a general introduction to topology we refer to [7]. A topological space (X, τ)
consists of a non-empty set X and a “topology” τ ⊆ P(X), i.e. a family of subsets
of X (called open sets) such that X, ∅ ∈ τ, and τ is closed under finite intersections
and arbitrary unions. The complements X \ U of open sets are called closed. The
collection τ is called a topology on X and elements of τ are called open sets. An open
set containing x ∈ X is called an open neighborhood of x. The interior Int(A) of a
set A ⊆ X is the largest open set contained in A, i.e., Int(A) =

⋃{U ∈ τ | U ⊆ A},
while the closure cl(A) is the smallest closed set containing A. A family B ⊆ τ is
called a basis for a topological space (X, τ) if every non-empty element of τ can be
written as a union of elements of B.
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(x,U) |= p iff x ∈ V (p) (for p ∈ Prop)
(x,U) |= ¬ϕ iff (x,U) 
|= ϕ
(x,U) |= ϕ ∧ ψ iff (x,U) |= ϕ and (x,U) |= ψ
(x,U) |= Kϕ iff (∀y ∈ U)(y, U) |= ϕ
(x,U) |= int(ϕ) iff x ∈ Int([[ϕ]]U )
(x,U) |= [ϕ]ψ iff (x,U) |= int(ϕ) implies (x, Int([[ϕ]]U )) |= ψ
(x,U) |= �ϕ iff (∀O ∈ τ) (x ∈ O ⊆ U implies (x,O) |= ϕ)

We say that a formula ϕ is valid in a model M, and write M |= ϕ, if (x,U) |=
Mϕ for all scenarios (x,U) ∈ ES(M). We say ϕ is valid, and write |= ϕ, if
M |= ϕ for all M.

Intuitive Reading. In an epistemic scenario (x,U), the first component x rep-
resents the actual state of the world, while U is the current evidence possessed
by the agent; x ∈ U expresses the factivity of evidence. The operator K cap-
tures “knowledge” (in the sense of absolute certainty: “infallible knowledge”): in
a scenario (x,U), Kϕ holds iff ϕ is entailed by the agent’s evidence U (hence,
the above semantic clause). int(ϕ) means that ϕ is “knowable” in the actual
state of the world (though not necessarily knowable in general, in other worlds):
there exists some potential evidence (open set containing the actual state) U
that entails ϕ (hence, the actual state is in the interior of ϕ); the dual closure
operator cl(ϕ) means that ϕ is “unfalsifiable” in the actual state (i.e. it is con-
sistent with all potential evidence at that state). The ‘effort’ modality �ϕ is
read as “ϕ is stably true” under evidence-acquisition: i.e. ϕ is true, and will stay
true no matter further evidence is obtained. Finally, we read the dynamic update
modalities [ϕ]ψ as “ψ will be true after learning ϕ”. The difference between these
Bjorndahl-style updates and the standard update operators (sometimes called
public announcements)3 is that not every truth is automatically “learnable”; so
the precondition of updating with ϕ is the proposition int(ϕ) saying that ϕ is
knowable in the actual world (i.e. there exists some true evidence supporting ϕ).

The above topological semantics for the language L was in fact previously
studied for some of its subfragments. While the semantic clauses for K and �
were first introduced in [13], the fragment L!Kint examined in [5]. Bjorndahl
provided sound and complete aximatizations for the associated dynamic logic
L!Kint (see Table 1 for the axiomatizations). Moreover, he proved—via a trans-
lation using so-called Reduction Axioms (see Table 1)—that the languages LKint

and L!Kint are equally expressive under the proposed topological semantics:

Theorem 1 [5, Proposition 5]. LKint and L!Kint are equally expressive with
respect to topo-models.4

3 We prefer to talk about “updates”, rather than public announcements, since our
setting is single-agent: there is no “publicity” involved. The agent simply learns ϕ
(and implicitly also learns that ϕ was learnable).

4 In fact, the modality int can be defined in terms of the public announcement modality
as int(ϕ) := ¬[ϕ]⊥, thus, the language L!Kint and its fragment L!K without the
modality int are also co-expressive.
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A Close Relative: Topo-APAL. Yet another relevant variation of L is the
language LAPAL obtained by replacing the effort modality � with the so-called
arbitrary announcement modality � that was introduced by Balbiani et al. [2].
Roughly speaking, the arbitrary announcement modality �ϕ is read as “ϕ stays
true after any epistemic update”. While Balbiani et al. [2] studied this modality
on Kripke frames, a topological semantics for � was proposed by van Ditmarsch
et al. [15]:

(x,U) |= �ϕ iff (∀ψ ∈ L!Kint)((x,U) |= [ψ]ϕ),

where [!] is the dynamic operator for topological updates (in the sense above).
So � quantifies over all Bjorndahl-style topological public announcements of
epistemic formulas. In [15], van Ditmarsch et al. proved that:

Theorem 2 [15, Theorem19]. LKint and LAPAL are equally expressive expres-
sive with respect to topo-models.

As stated in the above semantic clause, the arbitrary announcement modality
only quantifies over the�-free formulas, whereas the effortmodality quantifies over
all open neighborhoods of the actual state x. Intuitively speaking, the effort modal-
ity seems stronger than the arbitrary announcement modality. However, quite sur-
prisingly, this is not the case: in this paper, we will show that the effort modality is
in fact semantically equivalent to the arbitrary announcement modality.

Axiomatizations. Given a formula ϕ ∈ L, we denote by Pϕ the set of all propo-
sitional variables occurring in ϕ (we will use the same notation for the necessity
and possibility forms defined below). The axiomatization of our Dynamic Topo-
Logic L consists of all axioms and rules in Table 1 below.

The intuitive nature of these axioms should be obvious. The first six need
no explanation. The Replacement of Equivalents rule (RE) says that updates
are extensional : learning equivalent sentences gives rise to equivalent updates,
while the reduction axiom (R[�]) says that updating with tautologies is redundant
(nothing changes). The other reduction axioms are the natural analogues of the
standard reduction laws in Public Announcement Logic, when one takes into
account the fact that the precondition of a Bjorndahl-style update with ϕ is
that ϕ is (not only true, but also) knowable: i.e. int(ϕ). The only essentially new
components of our system are the last two: the elimination axiom ([!]�-elim)
and the introduction rule ([!]�-intro) for the effort modality. Taken together,
they say that θ is a stable truth after learning ϕ iff θ is true after learning any
stronger evidence ϕ∧ρ. The left-to-right implication in this statement is directly
captured by ([!]�-elim), while the converse is captured by the rule ([!]�-intro).
The “freshness” of the variable p ∈ P in this rule ensures that it represents any
‘generic’ further evidence: this is similar to the introduction rule for the universal
quantifier. In essence, the effort axiom and rule express the fact that the effort
modality is in fact a universal quantifier (over potential evidence).

Simplicity of Our Axioms. One can compare the transparency and simple
nature of our axioms with the complexity of the standard axiomatization of
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Table 1. The axiomatization L of Dynamic Topo-Logic.

topologic, containing among others the intricate and opaque Union Axiom, which
in our notation reads as:

♦ϕ ∧ K̂♦ψ → ♦(♦ϕ ∧ K̂♦ψ ∧ K♦K̂(ϕ ∨ ψ))

The fragment LKint , having only modalities K and int , was first studied in
[10] (with a Kripke semantics) and [4] (with the above topological semantics).
A complete axiomatization for the topological interpretation was provided by
Aiello [1], though a full completeness proof was given later by Shehtman [14]:

Proposition 1 ([14]). The system LKint , consisting of the axioms and rules in
group (I) of Table 1, is sound and complete for the language LKint .

The fragment L!Kint , obtained by extending LKint with topological
update operators (‘public announcement’), was introduced and axiomatized by
Bjorndahl [5]:

Proposition 2 ([5]). The system L!Kint , consisting of all the axioms and rules
in groups (I) and (II) of Table 1, is sound and complete for the language L!Kint .

Proof. It is easy to see that all the axioms and rules of L!Kint are sound. A proof
of completeness is in [5], for a slightly different, but equivalent, axiomatization.
Bjorndahl’s system consists of the axioms of LKint (i.e. group (I) in our Table),
together with our reduction axioms (Rp), (R¬), (RK) and (R!), as well as the
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additional reduction laws, (R∧) and (Rint) in the Proposition below.5 Since the
latter ones are provable in our system L!Kint , it follows that L!Kint is complete
as well.

Proposition 3. The first six reduction laws below are provable both in L!Kint

and L (for languages L!Kint and L, respectively). The seventh schema and the
inference rule below can be derived in our full proof system L:

1. (〈!〉) 〈ϕ〉ψ ↔ (int(ϕ) ∧ [ϕ]ψ)

2. (R⊥) [ϕ]⊥ ↔ ¬int(ϕ)

3. (R∧) [ϕ](ψ ∧ θ) ↔ ([ϕ]ψ ∧ [ϕ]θ)

4. (Rint) [ϕ]int(ψ) ↔ (int(ϕ) → [ϕ]ψ)

5. (R[int ]) [int(ϕ)]ψ ↔ [ϕ]ψ

6. (R[p]) [ϕ][p]ψ ↔ [ϕ ∧ p]ψ

7. (�-elim) �θ → [ρ]θ (ρ ∈ L arbitrary formula)

8. (�-intro) From � χ → [p]θ, infer � χ → �θ (p �∈ Pχ ∪ Pθ atom).

3 Soundness and Expressivity

In this section, we introduce a more general class of models for our language,
called pseudo-models: these are a special case of the (even more general) Sub-
set Space Semantics introduced in [13]. Pseudo-models include all topo-models,
as well as other subset-space models, but they have the nice property that the
interior operator int can still be interpreted in the standard way. These struc-
tures, though interesting enough in themselves, are for us only an auxiliary
notion, playing an important technical role in our completeness proof. But for
now, we will first prove the soundness of our full system L from Table 1 with
respect to pseudo-models (and thus also over topo-models), and we provide sev-
eral expressivity results concerning the above defined languages with respect to
(both topo-models and) pseudo-models.

Definition 1 (Lattice spaces and Pre-models). A subset space (X,O) is
called a lattice space if ∅,X ∈ O, and O is closed under finite intersections and
finite unions. A pre-model (X,O, V ) is a triple where (X,O) is a lattice space
and V : Prop → P(X) is a valuation map.

Although a lattice space (X,O) is not necessarily a topological space, the
family O constitutes a topological basis over X. Therefore, every pre-model
M = (X,O, V ) has an associated topo-model M = (X, τO, V ), where τO is the
topology generated by O (i.e., the smallest topology on X such that O ⊆ τO).
5 Although Bjorndahl’s formulations of (R!) and (Rint) are unnecessarily compli-

cated: the first is stated as [ϕ][ψ]χ ↔ [int(ϕ) ∧ [ϕ]int(ψ)]χ, while the second as
[ϕ]int(ψ) ↔ (int(ϕ) → int([ϕ]ψ)). It is easy to see that these are equivalent to our
simpler formulations, given the other axioms.
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Satisfaction relation in pre-models. Given a pre-model M = (X,O, V ), the
semantics for L on pre-models can be defined for all pairs of the form (x, Y ),
where Y ⊆ X is an arbitrary subset such that x ∈ Y . It is important to notice
that, for a given evaluation pair (x, Y ) on pre-models, the set Y is not neces-
sarily an element of O. The semantic clauses for the modalities in L are defined
similarly as in Sect. 2, except that � quantifies over the elements of O, and int is
interpreted as the interior operator of the associated topology τO. More precisely,
given a pre-model M = (X,O, V ) and (x, Y ) with x ∈ Y ⊆ X, we set

(x, Y ) |= int(ϕ) iff x ∈ Int([[ϕ]]Y )
(x, Y ) |= [ϕ]ψ iff (x, Y ) |= int(ϕ) implies (x, Int([[ϕ]]Y )) |= ψ
(x, Y ) |= �ϕ iff (∀O ∈ O)(x ∈ O ⊆ Y implies (x,O) |= ϕ)

where Int is the interior operator of τO.

Validity in pre-models. Although we did not require the neighbourhood Y
to be an element of O in the definition of the satisfaction relation above, the
validity on pre-models is defined by restricting to epistemic scenarios (x,U) such
that x ∈ U ∈ O, as in the case for the topo-models. More precisely, we say that
a formula ϕ is valid in a pre-model M, and write M |= ϕ, iff (x,U) |=M ϕ for
all epistemic scenarios (x,U) ∈ ES(M). A formula ϕ is valid, denoted by |= ϕ,
iff M |= ϕ for all M.

Definition 2 (Pseudo-models for L). A pseudo-model M = (X,O, V ) is a
pre-model such that [[int(ϕ)]]U ∈ O, for all ϕ ∈ L and U ∈ O.

It is obvious that the class of pseudo-models includes all topo-models, and
that all formulas that are valid on pseudo-models are also valid on topo-models.6

Theorem 3. The system L is sound with respect to the class of all pseudo-
models (and hence also with respect to the class of all topo-models).

We first prove that L!Kint and LKint are equally expressive on pseudo-models:

Lemma 1. L!Kint and LKint are co-expressive with respect to pseudo-models.
In other words, for every formula ϕ ∈ L!Kint there exists a formula ψ ∈ LKint

such that ϕ ↔ ψ is valid in all pseudo-models.

The proof (in Appendix B.2 of the on-line long version) goes over standard
lines, using the reduction laws to push dynamic modalities inside the formula
and then eliminate them. The proof uses induction on a non-standard notion of
complexity of formulas <, given by:

Lemma 2. There exists a well-founded strict partial order < on formulas of L
such that

6 Indeed, this is because the satisfaction relation for epistemic scenarios in any pseudo-
model that happens to be a topo-model agrees with the topo-model satisfaction
relation.
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1. ϕ ∈ Sub(ψ) implies ϕ < ψ,
2. (int(ϕ) → p) < ([ϕ]p),
3. (int(ϕ) → ¬[ϕ]ψ) < ([ϕ]¬ψ),
4. ([ϕ]ψ ∧ [ϕ]χ) < ([ϕ](ψ ∧ χ)),
5. (int(ϕ) → int([ϕ]ψ)) < ([ϕ]ψ),
6. (int(ϕ) → K[ϕ]ψ) < ([ϕ]Kψ),
7. [〈ϕ〉ψ]χ < ([ϕ][ψ]χ).
8. ϕ ∈ L implies int(p) < �ϕ,
9. [p]ϕ < �ϕ,

Next, we prove that L and LKint are equally expressive with respect to the
pseudo-models. This result will also be useful in the completeness proof of L
for topo-models. Toward proving the co-expressivity of L and LKint , we follow
a similar strategy as in [2,15] and use normal forms in LKint as defined in [15,
Definition 8].

Definition 3 (Normal form for the language LKint). We say a formula
ψ ∈ LKint is in normal form if it is a disjunction of conjunctions of the form

δ := α ∧ Kβ ∧ K̂γ1 ∧ · · · ∧ K̂γn

where α, β, γi ∈ Lint for all 1 ≤ i ≤ n.

Proposition 4. For any ϕ,ϕi ∈ Lint , the following is valid in all pseudo-
models:

♦(ϕ ∧ Kϕ0 ∧
∧

1≤i≤n

K̂ϕi) ↔ (ϕ ∧ int(ϕ0) ∧
∧

1≤i≤n

K̂(int(ϕ0) ∧ ϕi)) (NFn)

We now have sufficient machinery to show that L and LKint are equally
expressive with respect to pseudo-models.

Theorem 4. L and LKint are co-expressive with respect to pseudo-models.

The proof (in Appendix B.4 of the on-line version) uses the above proposition,
as well as the co-expressivity of L!Kint and LKint , in a similar way to the analogue
proofs concerning the arbitrary public announcement logic in [2,15].

Theorem 4 will be used in the completeness proof of L for topo-models. Con-
cerning expressivity of L, we also obtain the following result with respect to
topo-models.

Theorem 5. L and LKint are co-expressive with respect to topo-models.

Theorem 6. LK� and LKint are also co-expressive with respect to topo-models.

Corollary 1. L, L!Kint and LKint , as well as the language of topologic LK�
are all co-expressive with respect to topo-models.

Proof. The proof follows easily from Theorems 5 and 6, since LKint ⊆ L!Kint ⊆ L
and LK� ⊆ L.
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Corollary 2. Dynamic Topo-Logic L is decidable and has the Finite Model
Property (and thus all its fragments, including in particular topologic, have these
properties).

Proof. This follows from Corollary 1, together with the fact that LKint is eas-
ily shown to have these properties, by a standard filtration argument. (This is
already known, see e.g., [10,14]).

Moreover, not only that LAPAL and L are co-expressive for topo-models,
but also the effort modality � and the topological APAL modality � are in fact
equivalent, in the following sense.

Theorem 7. Let t : LAPAL → L be the map that replaces each instance of
� with �. Then for every ϕ ∈ LAPAL, we have that ϕ ↔ t(ϕ) is valid in all
topo-models.

4 Completeness

In this section we prove the completeness of the proof systems L with respect
to (both pseudo- and) topo-models. The plan of our proof is as follows. We first
prove completeness of L with respect to a canonical pseudo-model, consisting of
maximally consistent witnessed theories. Roughly speaking, a theory is witnessed
if every ♦ϕ (occurring in every “existential context”) in the theory is “witnessed”
by some atomic formula p, i.e. 〈p〉ϕ occurs (in the same existential context) in
the theory. Next, we use the co-expressivity of L and LKint , as well as the fact
that LKint cannot distinguish between a pseudo-model and its associated topo-
model, to show that L is complete with respect to the canonical topo-model
(associated to the canonical pseudo-model).

The appropriate notion of “existential contexts” is represented by possibility
forms, in the following sense:

Definition 4 (“Pseudo-modalities”: necessity and possibility forms).
For any finite string s ∈ ({ϕ → | ϕ ∈ L} ∪ {K} ∪ {ψ | ψ ∈ L})∗ = NF ,
we define pseudo-modalities [s] and 〈s〉, that generalize our dynamic modalities
[ψ] and 〈ψ〉. These pseudo-modalities are functions mapping any formula ϕ ∈ L
to another formula [s]ϕ ∈ L (necessity form), respectively 〈s〉ϕ ∈ L (possibility
form). The definition is by recursion, putting for necessity forms: [λ]ϕ := ϕ,
[ϕ →, s]ϕ := ϕ → [s]ϕ, [K, s]ϕ := K[s]ϕ, [ψ, s]ϕ := [ψ][s]ϕ, where λ is the
empty string. For possibility forms, we put 〈s〉ϕ := ¬[s]¬ϕ.

Lemma 3. For every necessity form s ∈ NF , there exist formulas θ, ψ ∈ L such
that for all ϕ ∈ L, we have

� [s]ϕ iff � ψ → [θ]ϕ.

Proof. The proof follows similarly as in [2, Lemma 4.8] and [3, Lemma 2.7].
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Lemma 4. The following rule is admissible in L:

if � [s][p]ϕ then � [s]�ϕ, where p 
∈ Ps ∪ Pϕ.

Proof. Suppose � [s][p]ϕ. Then, by Lemma 3, there exist θ, ψ ∈ L such that
� ψ → [θ][p]ϕ. By the auxiliary reduction law (R[p]) in Proposition 3, we get
� ψ → [θ ∧ p]ϕ. By the construction of the formulas ψ and θ, we know that
Pψ ∪ Pθ ⊆ Ps, and so p 
∈ Pψ ∪ Pθ ∪ Pϕ. Therefore, by ([!]�-intro)), we have
� ψ → [θ]�ϕ. Applying again Lemma3, we obtain � [s]�ϕ.

Definition 5. For every countable set of propositional variables P , let LP be
the language of L based only on the propositional variables in P . Similarly, let
LP

Kint ,LP
!Kint and NFP denote the corresponding languages restricted by P . A P -

theory is a consistent set of formulas in LP . Here, “consistent” means consistent
with respect to the axiomatization L formulated for LP . A maximal P -theory is
a P -theory Γ that is maximal with respect to ⊆ among all P -theories; in other
words, Γ cannot be extended to another P -theory. A P -witnessed theory is a
P -theory Γ such that, for every s ∈ NFP and ϕ ∈ LP , if 〈s〉♦ϕ is consistent
with Γ then there is p ∈ P such that 〈s〉〈p〉ϕ is consistent with Γ . A maximal
P - witnessed theory Γ is a P -witnessed theory that is not a proper subset of any
P -witnessed theory.

Lemma 5 (Lindenbaum’s Lemma). Every P -witnessed theory Γ can be
extended to a maximal P -witnessed theory TΓ .

Lemma 6 (Extension Lemma). Let P be a set of propositional variables and
P ′ be a countable set of fresh propositional variables, i.e., P ∩ P ′ = ∅. Let
∼
P = P ∪ P ′. Then, every P -theory Γ can be extended to a

∼
P -witnessed theory

∼
Γ ⊇ Γ , and hence to a maximal

∼
P -witnessed theory TΓ ⊇ Γ .

We are now ready to build the canonical pseudo-model. For a fixed countable
set P , we define an equivalence relation on maximal P -witnessed theories T
and S:

T ∼ S iff (∀ϕ ∈ LP )(Kϕ ∈ T ⇒ ϕ ∈ S).

Definition 6 (Canonical Pseudo-Model for T0). Let T0 be a maximal
P -witnessed theory. The canonical pseudo-model for T0 is a tuple Mc =
(Xc,Oc, V c) such that

– Xc = {T ⊆ LP | T is a maximal P -witnessed theory such that T ∼ T0},
– Oc = { ̂int(ϕ) | ϕ ∈ LP }, where θ̂ = {T ∈ Xc | θ ∈ T} for any θ ∈ LP ,
– V c(p) = {T ∈ Xc | p ∈ T}.
We let τ c denote the topology generated by Oc. The associated topo-model Mc

τ =
(Xc, τ c, V c) is called the canonical topo-model for T0.

Clearly Mc = (Xc,Oc, V c) is a pre-model, but in fact we prove more,
namely:
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Lemma 7. Mc = (Xc,Oc, V c) is a pseudo-model.

Proof. We need to show that (a) Oc is closed under finite intersections and
finite unions, and (b) for all ϕ,α ∈ LP we have [[int(ϕ)]] ̂int(α) ∈ Oc. The last
item (b) follows from the Truth Lemma (see Appendix C.3 of the on-line version
for the proof). We here sketch the proof for the first item: (a.1) closure under
finite intersection follows from the normality of int , namely from the fact that
� int(ϕ) ∧ int(ψ) ↔ int(ϕ ∧ ψ). (a.2) closure under finite union follows from
the fact that � (int(ϕ) ∨ int(ψ)) ↔ int(int(ϕ) ∨ int(ψ)), and that int(int(ϕ) ∨
int(ψ)) ∈ LP .

Lemma 8. Let T ∈ Xc, ϕ,α ∈ LP such that int(α) ∈ T and K[α]ϕ 
∈ T . Then,
there is S ∈ Xc with int(α) ∈ S and [α]ϕ 
∈ S.

Lemma 9 (Truth Lemma). Let Mc = (Xc,Oc, V c) be the canonical pseudo-
model for a maximal P -witnessed theory T0 and ϕ ∈ LP . Then, for all α ∈ LP

we have

[[ϕ]]
̂int(α) = ̂〈α〉ϕ.

Proof. The proof is by induction on the well-founded partial order < on formulas
introduced in Lemma 2. We assume the following Induction Hypothesis (IH): For
ψ < ϕ, we have [[ψ]] ̂int(α) = ̂〈α〉ψ for all α ∈ LP .

Base case ϕ = p:

[[p]]
̂int(α) = ̂int(α) ∩ [[p]]X

c

(since p is bi-persistent)

= ̂int(α) ∩ V c(p) (by the semantics)

= ̂int(α) ∩ p̂ (by the definition ofV c)

= int(α) ∧ p
∧

= int(α) ∧ (int(α) → p)
∧

(by propositional tautologies)

= int(α) ∧ [α]p
∧

(by(Rp))

= 〈α〉p
∧

(Proposition 3-(〈!〉))
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Case ϕ := ¬ψ:

[[¬ψ]]
̂int(α) = ̂int(α) \ [[ψ]]

̂int(α) (by the semantics of ¬)

= ̂int(α) \ ̂〈α〉ψ (by IH)

= ̂int(α) ∩ (Xc \ ̂〈α〉ψ)

= ̂int(α) ∩ ¬〈α〉ψ
∧

(since Xc \ ̂〈α〉ψ = ¬〈α〉ψ)
∧

= int(α) ∧ ¬〈α〉ψ
∧

= int(α) ∧ [α]¬ψ
∧

= 〈α〉¬ψ
∧

(Proposition 3-(〈!〉))
Case ϕ = ψ ∧ χ:

[[ψ ∧ χ]]
̂int(α) = [[ψ]]

̂int(α) ∩ [[χ]]
̂int(α) (by the semantics of ∧)

= 〈α〉ψ ∧ 〈α〉χ
∧

(by IH)

= 〈α〉(ψ ∧ χ)
∧

(since �L (〈α〉ψ ∧ 〈α〉χ) ↔ 〈α〉(ψ ∧ χ))

Case ϕ = Kψ:

(⇒) Suppose T ∈ [[Kψ]] ̂int(α). This implies, by the semantic clause of K, that
T ∈ ̂int(α) and [[ψ]] ̂int(α) = ̂int(α). We want to show that T ∈ 〈α〉Kψ

∧

. By
Proposition 3-(〈!〉) and the reduction axiom (RK), we obtain � 〈α〉Kψ ↔
int(α) ∧ K[α]ψ. We therefore only need to show that T ∈ ̂int(α) and
T ∈ K[α]ψ
∧

. We have the former by the assumption. Suppose toward con-
tradiction that T 
∈ K[α]ψ

∧

, i.e., K[α]ψ 
∈ T . Then, by Lemma 8, there
exists S ∈ Xc such that int(α) ∈ S and [α]ψ 
∈ S. Since � 〈α〉ψ → [α]ψ,
we obtain 〈α〉ψ 
∈ S. Therefore, by IH, we have S 
∈ [[ψ]] ̂int(α). Thus, since
S ∈ ̂int(α), we then conclude [[ψ]] ̂int(α) 
= ̂int(α). By the semantics of K,
this means that [[Kψ]] ̂int(α) = ∅, contradiction our first assumption. Hence,
T ∈ int(α) ∧ K[α]ψ
∧

= 〈α〉Kψ
∧

.
(⇐) Suppose T ∈ 〈α〉Kψ

∧

. Then, by the equality 〈α〉Kψ ↔ int(α) ∧ K[α]ψ, we
have T ∈ ̂int(α) and T ∈ K[α]ψ

∧

. Let S ∈ ̂int(α). Since S ∼ T and T ∈
K[α]ψ
∧

, we also have [α]ψ ∈ S. Therefore, by Proposition 3-(〈!〉), we obtain
〈α〉ψ ∈ S. This implies, by IH, that S ∈ [[ψ]] ̂int(α). Since this holds for all
S ∈ ̂int(α), we have [[ψ]] ̂int(α) = ̂int(α). Hence, [[Kψ]] ̂int(α) = ̂int(α) � T .

Case ϕ = int(ψ):

(⇒) Suppose T ∈ [[int(ψ)]] ̂int(α). Then, by the semantics of int , there exists
U ∈ Oc such that T ∈ U ⊆ ̂int(α) and U ⊆ [[ψ]] ̂int(α) (since Oc constitutes
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a basis for τ c). Then, by IH, we have U ⊆ ̂〈α〉ψ. By the construction of
Oc, we know that U = ̂int(γ) for some γ ∈ LP . We therefore obtain that
T ∈ ̂int(γ) ⊆ ̂〈α〉ψ. This means that, for all S ∈ ̂int(γ), we have S ∈ ̂〈α〉ψ.
Therefore, {θ ∈ LP | Kθ ∈ T} ∪ {¬(int(γ) → 〈α〉ψ)} is inconsistent. Then
there exists a χ ∈ {θ ∈ LP | Kθ ∈ T} such that � χ → (int(γ) → 〈α〉ψ).
Thus, by the normality of K, we have � Kχ → K(int(γ) → 〈α〉ψ). As
Kχ ∈ T , we obtain K(int(γ) → 〈α〉ψ) ∈ T . Then by axiom (K-int),
we have int(int(γ) → 〈α〉ψ) ∈ T . Since int is an S4 modality, we have
int(γ) → int(〈α〉ψ) ∈ T . Since T ∈ ̂int(γ), we obtain int(〈α〉ψ) ∈ T .
Moreover, we have

�int(〈α〉ψ) ↔ int(int(α) ∧ [α]ψ) (Proposition 3-(〈!〉))
�int(int(α) ∧ [α]ψ) ↔ (int(α) ∧ int([α]ψ))

�(int(α) ∧ int([α]ψ)) ↔ (int(α) ∧ (int(α) → [α]int(ψ))) (Proposition 3-(Rint))

�(int(α) ∧ (int(α) → [α]int(ψ))) ↔ (int(α) ∧ [α]int(ψ)))

�(int(α) ∧ [α]int(ψ))) ↔ 〈α〉int(ψ) (Proposition 3-(〈!〉))

Therefore, as T is maximal, we obtain 〈α〉int(ψ) ∈ T , i.e., T ∈ 〈α〉int(ψ)
∧

.
(⇐) Suppose T ∈ 〈α〉int(ψ)

∧

. This implies, by the above derivation, that T ∈
int(〈α〉ψ)
∧

. By the constraction of Oc, we have int(〈α〉ψ)
∧

∈ Oc. Moreover,
by the T-axiom for int , we have that int(〈α〉ψ)

∧

⊆ 〈α〉ψ
∧

. By IH, we also
have that 〈α〉ψ

∧

= [[ψ]] ̂int(α). Therefore T ∈ int(〈α〉ψ)
∧

⊆ 〈α〉ψ
∧

= [[ψ]] ̂int(α),
i.e., T ∈ [[int(ψ)]] ̂int(α).

Case ϕ = 〈χ〉ψ:

[[〈χ〉ψ]]
̂int(α) = {T ∈ ̂int(α) | (T, Int([[χ]]

̂int(α))) |= ψ}

= {T ∈ ̂int(α) | (T, [[int(χ)]]
̂int(α)) |= ψ} (by the semantics of int)

= {T ∈ ̂int(α) | (T, 〈α〉int(χ)
∧

|= ψ} (by IH, since int(χ) < 〈χ〉ψ)

= [[ψ]]〈α〉int(χ)
∧

(since〈α〉int(χ)
∧

⊆ ̂int(α))

= 〈(〈α〉int(χ))〉ψ
∧

(by IH, sinceψ < 〈χ〉ψ)

= 〈α〉〈χ〉ψ
∧

(� 〈α〉〈χ〉ψ ↔ 〈〈α〉int(χ)〉ψ)

Case ϕ = �ψ:

(⇒) Suppose T ∈ [[�ψ]] ̂int(α), i.e., (T, ̂int(α)) |= �ψ. This means that for all
U ∈ O with T ∈ U ⊆ ̂int(α), we have (T,U) |= ψ. This in particular implies
that (T, ̂int(α)) |= [p]ψ for all p ∈ P . To show, let p ∈ P and suppose
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(T, ̂int(α)) |= int(p), i.e., T ∈ Int([[p]] ̂int(α)) = [[int(p)]] ̂int(α). Since int(p) <

�ψ (see Lemma 2.8), we know by IH that [[int(p)]] ̂int(α) = 〈α〉int(p)
∧

. But,
as shown in the case for the modality int above, � 〈α〉int(p) ↔ int(〈α〉p),
hence, [[int(p)]] ̂int(α) = int(〈α〉p)

∧

, thus, [[int(p)]] ̂int(α) ∈ Oc. Hence, by the
first assumption, we obtain (T, Int([[p]] ̂int(α))) |= ψ, thus, (T, ̂int(α)) |=
[p]ψ. Therefore, T ∈ [[[p]ψ]] ̂int(α) for all p ∈ P . Then, by IH (since [p]ψ <

�ψ, by Lemma 2.9), we have [[[p]ψ]] ̂int(α) = 〈α〉[p]ψ
∧

, thus, 〈α〉[p]ψ ∈ T .
Hence, by Proposition 3-(〈!〉), int(α) ∧ [α][p]ψ ∈ T for all p ∈ P . Since T
is P -witnessed and maximal, we then obtain int(α) ∧ [α]�ψ ∈ T . Then, by
Proposition 3-(〈!〉), we conclude 〈α〉�ψ ∈ T .

(⇐) Suppose T ∈ 〈α〉�ψ
∧

. This means (by Proposition 3-(〈!〉)) that T ∈
int(α) ∧ [α]�ψ
∧

, i.e., that int(α) ∈ T and [α]�ψ ∈ T . Then, by axiom ([!]�-
elim), we have that [α ∧ χ]ψ ∈ T for all χ ∈ LP . We want to show that
T ∈ [[�ψ]] ̂int(α). Let U ∈ Oc such that T ∈ U ⊆ ̂int(α) and show T ∈ [[ψ]]U .
By the construction of Oc, we know that U = ̂int(γ) for some γ ∈ LP . We
therefore have that T ∈ U = ̂int(γ) = ̂int(γ) ∩ ̂int(α) = int(γ) ∧ int(α)

∧

=
int(γ ∧ α)
∧

. Hence, int(α ∧ γ) ∧ [α ∧ γ]ψ ∈ T . Therefore, by Proposition
3-(〈!〉) and the fact that T is maximal, we obtain 〈α ∧ γ〉ψ ∈ T . Thus, by

IH (since ψ < �ψ, by Lemma 2.1), T ∈ [[ψ]]int(α ∧ γ)
∧

, i.e., T ∈ [[ψ]]U .

Lemma 10. Let M = (X,O, V ) be a pseudo-model and Mτ = (X, τO, V ) be
the associated topo-model. Then, for all ϕ ∈ LKint and (x,U) ∈ ES(M), we
have

(x,U) |=M ϕ iff (x,U) |=Mτ
ϕ.

Corollary 3. L is complete for canonical pseudo-models and canonical topo-
models (and so also complete wrt pseudo-models, as well as wrt topo-models).

Proof. Let ϕ be an L-consistent formula, i.e., it is a Pϕ-theory. Then, by
Lemma 6, it can be extended to a maximal Prop-witnessed theory T . Then,
by axiom (R[�]), we have 〈�〉ϕ ∈ T , i.e., T ∈ ̂〈�〉ϕ. Then, by Truth Lemma
(Lemma 9), we obtain that (T,Xc) |=Mc ϕ, where Mc = (Xc,Oc, V c) is
the canonical pseudo-model for T . This proves the first completeness claim.
As for the second: by the co-expressivity of LKint and L on pseudo-models
(Theorem 4), there exists a ψ ∈ LKint such that ϕ ↔ ψ is valid in all
pseudo-models. We therefore have (T,Xc) |=Mc ψ. By Lemma 10, we obtain
(T,Xc) |=Mτ

ψ where Mτ is the canonical topo-model. Using again the seman-
tic equivalence of ϕ and ψ (applied to the model Mτ ), we conclude that
(T,Xc) |=Mτ

ϕ.

5 Conclusions

This paper throws new light on Topologic and Topo-APAL, elucidating their
relations with each other and other modal logics for topology. The addition of
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dynamic modalities is shown to greatly simplify the axiomatization and com-
pleteness proof of Topologic. In on-going work we look at doxastic versions of
this logic, able to capture learning-theoretic notions; while in future work we
plan to investigate multi-agent versions.
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