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Abstract. This paper positively solves an open problem if it is possible
to provide a Hilbert system to Epistemic Logic of Friendship (EFL) by
Seligman, Girard and Liu. To find a Hilbert system, we first introduce a
sound, complete and cut-free tree (or nested) sequent calculus for EFL,
which is an integrated combination of Seligman’s sequent calculus for
basic hybrid logic and a tree sequent calculus for modal logic. Then we
translate a tree sequent into an ordinary formula to specify a Hilbert
system of EFL and finally show that our Hilbert system is sound and
complete for an intended two-dimensional semantics.
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1 Introduction

Epistemic Logic of Friendship (EFL) is a version of two-dimensional modal logic
proposed by [22–24]. Compared to the ordinary epistemic logic [14], one of the
key features of their logic is to encode the information of agents into the object
language by a technique of hybrid logic [1,3]. Then, a propositional variable p
can be read as an indexical proposition such as “I am p” and we may formalize
the sentences like “I know that all my friends is p” or “Each of my friends
knows that he/she is p”. Moreover, the authors of [23,24] provided a dynamic
mechanism for capturing public announcements [19], announcements to all the
friends, and private announcements [2] and established a relative completeness
result (cf. [12,23,24]). This paper focuses on the problem of axiomatizing EFL
in terms of Hilbert system, i.e., the static part of their framework.

A difficulty of the problem comes from a combination of modal logic for
agents’ knowledge and hybrid logic for a friendship relation among agents. If we
combine two hybrid logics over two-dimensional semantics of [22–24], it is noted
that there is an axiomatization of all valid formulas in the semantics by [20,
p. 471]. Our approach to tackle the problem is via a sequent calculus, whose
idea is originally from Gentzen. In particular, our notion of sequent for EFL
can be regarded as a combination of a tree or nested sequent [8,15] for modal
logic and @-prefixed sequent [7,21] for hybrid logic. One of the merits of our
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notion of sequent is that we can translate our sequent into an ordinary formula.
This allows us to specify our desired Hilbert system for EFL. We note that [9]
independently provided a prefixed tableau system for a dynamic extension of
EFL. There are at least three points we should emphasize on our work. First,
our tree sequent system is quite simpler than the tableau system given in [9],
i.e., the number of rules of our sequent system is almost half of the number
of rules of their system. Second, it is not clear if a prefixed formula in [9] for
the tableau calculus can be translated into an ordinary formula. Their result is
not concerned with Hilbert system. Third, their syntax contains a special kind
of propositional variable (called feature proposition) and they include a tableau
rule called propositional cut to handle such propositions. On the other hand, we
can show that our tree sequent calculus enjoys the cut elimination theorem, the
most fundamental theorem in proof-theory.

We proceed as follows. Section 2 introduces the syntax and semantics of EFL.
Section 3 provides a tree sequent calculus for EFL and establishes the sound-
ness of the sequent calculus (Theorem 1). Section 4 establishes a completeness
result of a cut-free fragment of our sequent calculus (Theorem2). As a corollary,
we also provide a semantic proof of the cut elimination theorem of our sequent
calculus (Corollary 1). Section 5 specifies a Hilbert system of EFL, and provides
a syntactic proof of the equipollence between our proposed Hilbert system and
our tree sequent calculus, which implies the soundness and completeness results
for our Hilbert system (Corollary 2). Section 6 extends our technical results to
cover extensions of EFL where a modal operator for states (or a knowledge
operator) obeys S4 or S5 axioms and a friendship relation satisfies some univer-
sal properties (Theorem 5). The result of this section subsumes the logic given
in [9], provided we drop the dynamic operator from the syntax of [9]. Section 7
concludes this paper.

2 Syntax and Two-Dimensional Kripke Semantics

Our syntax L consists of the following vocabulary: a countably infinite set
Prop = {p, q, r, . . .} of propositional variables, a countably infinite set Nom =
{n,m, l, . . .} of agent nominal variables, the Boolean connectives of → (the impli-
cation) and ⊥ (the falsum), the satisfaction operators @ and the friendship oper-
ator F as well as the modal operator �. We note that an agent nominal n ∈ Nom
is a syntactic name of an agent or an individual, which amounts to a constant
symbol of the first-order logic, while n is read indexically as “I am n.” Similarly,
we read a propositional variable p ∈ Prop also indexically by “I am p,” e.g., “I
am in danger.” The set Form of formulas in L is defined inductively as follows:

Form � ϕ:: = n | p | ⊥ |ϕ → ϕ |@nϕ |Fϕ |�ϕ,

where n ∈ Nom and p ∈ Prop. Boolean connectives other than → or ⊥ are
introduced as ordinary abbreviations. We define the dual of � as ♦ := ¬�¬ and
the dual of F as 〈F〉 := ¬F¬. Moreover, a formula of the form @nϕ is said to be
@-prefixed. Let us read � as “I know that.” Here are some examples of how to
read formulas:
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– �p, read as “I know that I am p.”
– @n�p, read as “n knows that she is p.”
– �@np, read as “I know that agent n is p.”
– Fp, read as “all my friends are p.”
– F�p, read as “all my friends know that they are p.”
– �Fp, read as “I know that all my friends are p.”
– @n〈F〉m, read as “agent m is a friend of agent n.”

We say that a mapping σ : Prop ∪ Nom → Form is a uniform substitution if σ
uniformly substitutes propositional variables by formulas and agent nominals by
agent nominals and we use ϕσ to mean the result of applying a uniform substi-
tution σ to ϕ. In particular, we use ϕ[n/k] to mean the result of substituting
each occurrence of agent nominal k in ϕ uniformly with agent nominal n.

An model M for our syntax L is a tuple (W,A, (Ra)a∈A, (	w)w∈W , V ), where
W is a non-empty set of possible states, A is a non-empty set of agents, Ra is a
binary relation on W (a ∈ A), 	w is a binary relation on A (called a friendship
relation, w ∈ W ), V is a valuation function Prop∪Nom → P(W × A) such that
V (n) is a subset of W × A of the form W × {a}, where we denote such unique
element a by n. We do not require any property for Ra and 	w but we will come
back to this point in Sect. 6. We say that a tuple F = (W,A, (Ra)a∈A, (	w)w∈W )
without a valuation is a frame.

Let M = (W,A, (Ra)a∈A, (	w)w∈W , V ) be a model. Given a pair (w, a) ∈
W × A and a formula ϕ, the satisfaction relation M, (w, a) |= ϕ (read “agent a
satisfies ϕ at w in M ”) inductively as follows:

M, (w, a) |= p iff (w, a) ∈ V (p),
M, (w, a) |= n iff n = a,
M, (w, a) 
|= ⊥
M, (w, a) |= ϕ → ψ iff M, (w, a) |= ϕ implies M, (w, a) |= ψ
M, (w, a) |= @nϕ iff M, (w, n) |= ϕ,
M, (w, a) |= Fϕ iff (a 	w b implies M, (w, b) |= ϕ) for all agents b ∈ A,
M, (w, a) |= �ϕ iff (wRav implies M, (v, a) |= ϕ) for all states v ∈ W.

Given a class M of models, we say that a formula ϕ is valid in M when M, (w, a) |=
ϕ for all pairs (w, a) in M and all models M ∈ M. This paper tackles the question
if the set of all valid formulas in the class of all models is axiomatizable.

3 Tree Sequent Calculus of Epistemic Logic of Friendship

Fig. 1. A tree sequent

A label is inductively defined as follows: Any nat-
ural number is a label; if α is a label, n is an agent
nominal in Nom and i is a natural number, then
α ·n i is also a label. When β is α ·n i, then we say
that β is an n-child of α or that α is an n-parent
of β. A tree T is a set of labels such that the set
contains the unique natural number j as the root
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label and the set is closed under taking the parent of a label, i.e., α ·n i ∈ T
implies α ∈ T for all labels α, agent nominals n and natural numbers i. For
example, all of 0, 0 ·n 1 and 0 ·k 2 are labels and they form a finite tree.

Given a label α and an @-prefixed formula ϕ, the expression α : ϕ is said
to be a labelled formula, where recall that an @-prefixed formula is of the form
@nϕ. A tree sequent is an expression of the form

Γ
T⇒ Δ

where Γ and Δ are finite sets of labelled formulas, T is a finite tree of labels,
and all the labels in Γ and Δ are in T . A tree sequent “Γ

T⇒ Δ” is read as
“if we assume all labelled formulas in Γ , then we may conclude some labelled
formulas in Δ.” A tree sequent 0 : @nϕ, 0 ·k 2 : @mρ

T⇒ 0 : @mψ, 0 ·n 1 : @kθ is
represented as in Fig. 1, where T = {0, 0 ·n 1, 0 ·k 2}. That is, 0, 0 ·n 1 and 0 ·k 2
are “addresses” of the root, the left leaf, and the right leaf, respectively.

Table 1. Tree Sequent Calculus TEFL

(⊥) α : @n⊥, Γ
T⇒ Δ (id) α : @nϕ, Γ

T⇒ Δ, α : @nϕ

α : @nm, α : ϕ[n/k], Γ
T⇒ Δ

α : @nm, α : ϕ[m/k], Γ
T⇒ Δ

(rep=1)
α : @nm, α : ϕ[m/k], Γ

T⇒ Δ

α : @nm, α : ϕ[n/k], Γ
T⇒ Δ

(rep=2)

α : @nn, Γ
T⇒ Δ

Γ
T⇒ Δ

(ref=)
β : @nm, Γ

T⇒ Δ

α : @nm, Γ
T⇒ Δ

(rigid=)

α : @nϕ, Γ
T⇒ Δ, α : @nψ

Γ
T⇒ Δ, α : @n(ϕ → ψ)

(→ R)
Γ

T⇒ Δ, α : @nϕ α : @nψ, Γ
T⇒ Δ

α : @n(ϕ → ψ), Γ
T⇒ Δ

(→ L)

Γ
T⇒ Δ, α : @mϕ

Γ
T⇒ Δ, α : @n@mϕ

(@R)
α : @mϕ, Γ

T⇒ Δ

α : @n@mϕ, Γ
T⇒ Δ

(@L)

α : @n〈F〉m, Γ
T⇒ Δ, α : @mϕ

Γ
T⇒ Δ, α : @nFϕ

(FR)∗ Γ
T⇒ Δ, α : @n〈F〉m α : @mϕ, Γ

T⇒ Δ

α : @nFϕ, Γ
T⇒ Δ

(FL)

Γ
T ∪{ α·ni }⇒ Δ, α ·n i : @nϕ

Γ
T⇒ Δ, α : @n�ϕ

(�R)† β : @nϕ, Γ
T⇒ Δ

α : @n�ϕ, Γ
T⇒ Δ

(�L)‡

Γ
T⇒ Δ

Γ
T ∪{α}⇒ Δ

(wlab)� Γ
T⇒ Δ, α : @nϕ α : @nϕ, Π

T⇒ Σ

Γ, Π
T⇒ Δ, Σ

(Cut)

∗: m is a fresh agent nominal in the lower sequent; †: i ∈ N is fresh in the lower sequent;
‡: β is an n-child of α; 
: T ∪ {α} is a tree of labels

Table 1 provides all the initial sequents and all the inference rules of tree
sequent calculus TEFL, where recall that ϕ[m/k] is the result of substituting
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each occurrence of agent nominal k in ϕ with agent nominal m. The system
without the cut rule is denoted by TEFL−. A derivation in TEFL (or TEFL−)
is a finite tree generated from initial sequents by inference rules of TEFL (or
TEFL−, respectively). The height of a derivation is defined as the maximum
length of branches in the derivation from the end (or root) sequent to an initial
sequent. A tree sequent Γ

T⇒ Δ is said to be provable in TEFL (or TEFL−) if
there is a derivation in TEFL (or TEFL−, respectively) such that the root of
the tree is Γ

T⇒ Δ.
Let M = (W,A, (Ra)a∈A, (	w)w∈W , V ) be a model and T a tree of labels.

A function f : T → W is a T -assignment in M if, whenever β is an n-child
of α in T , f(α)Rnf(β) holds. When it is clear from the context, we drop “T -”
from “T -assignment”. Given any labelled formula α : @nϕ with α ∈ T and any
T -assignment in M, we define the satisfaction for a labelled formula as follows:

M, f |= α : @nϕ iff M, (f(α), n) |= ϕ.

where “M, f |= α : @nϕ” is read as “α : @nϕ is true at (M, f)”. Given a tree
sequent Γ

T⇒ Δ and a T -assignment in M, we say that Γ
T⇒ Δ is true in (M, f)

(notation: M, f |= Γ
T⇒ Δ) if, whenever all labelled formulas of Γ is true in

(M, f), some labelled formulas of Δ is true in (M, f). The following theorem is
easy to establish.

Theorem 1 (Soundness of TEFL). If a tree sequent Γ
T⇒ Δ is provable in

TEFL then M, f |= Γ
T⇒ Δ for all models M and all assignments f .

Let us say that an inference rule is height-preserving admissible in TEFL− (or
TEFL) if, whenever all uppersequents (premises) of the inference rule is provable
by derivations with height no more than n, then the lowersequent (conclusion)
of the rule is provable by a derivation whose height is at most n. By induction
on height n of a derivation, we can prove the following.

Proposition 1. The following weakening rules (wR) and (wL) are height-
preserving admissible in TEFL− and TEFL. Moreover, the following substi-
tution rule (sub) is height-preserving admissible in TEFL− and TEFL:

Γ
T⇒ Δ

Γ
T⇒ Δ,α : @nϕ

(wR) Γ
T⇒ Δ

α : @nϕ, Γ
T⇒ Δ

(wL) Γ
T⇒ Δ

Γσ
T σ⇒ Δσ

(sub)
,

where σ is a uniform substitution, T σ is the resulting tree by substituting agent
nominals in T by σ, Θσ := {ασ : ϕσ ∈ |α : ϕ ∈ Θ} and ασ ∈ T σ is the corre-
sponding label to α ∈ T by σ.

4 Semantic Completeness of Tree Sequent Calculus
of Epistemic Logic of Friendship

In what follows in this section, sets Γ , Δ, etc. of labelled formulas and a tree
T of labels can be possibly (countably) infinite. Following this change, we say
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that a possibly infinite tree-sequent Γ
T⇒ Δ is provable in TEFL− if there exist

finite sets Γ ′ ⊆ Γ and Δ′ ⊆ Δ and finite subtree T ′ of T such that Γ ′ T ′
⇒ Δ′ is

provable in TEFL−.

Definition 1 (Saturated tree sequent). A possibly infinite tree sequent
Γ

T⇒ Δ is saturated if it satisfies the following conditions:

(rep1) If α : @nm ∈ Γ and α : ϕ[n/k] ∈ Γ then α : ϕ[m/k] ∈ Γ .
(rep2) If α : @mn ∈ Γ and α : ϕ[n/k] ∈ Γ then α : ϕ[m/k] ∈ Γ .
(ref=) α : @nn ∈ Γ for all labels α ∈ T .

(rigid=) If α : @nm ∈ Γ then β : @nm ∈ Γ for all labels β ∈ T .
(→r) If α : @n(ϕ → ψ) ∈ Δ then α : @nϕ ∈ Γ and α : @nψ ∈ Δ.
(→l) If α : @n(ϕ → ψ) ∈ Γ then α : @nϕ ∈ Δ or α : @nψ ∈ Γ .
(@r) If α : @n@mϕ ∈ Δ then α : @mϕ ∈ Δ.
(@l) If α : @n@mϕ ∈ Γ then α : @mϕ ∈ Γ .
(Fr) If α : @nFϕ ∈ Δ then α : @n〈F〉m ∈ Γ and α : @mϕ ∈ Δ for some

nominal m.
(Fl) If α : @nFϕ ∈ Γ then α : @n〈F〉m ∈ Δ or α : @mϕ ∈ Γ for all

nominals m.
(�r) If α : @n�ϕ ∈ Δ then β : @nϕ ∈ Δ for some n-child β of α.
(�l) If α : @n�ϕ ∈ Γ then β : @nϕ ∈ Γ for all n-children β of α.

By the standard argument, we can show the following saturation lemma.

Lemma 1. Let Γ
T⇒ Δ be an unprovable tree sequent in TEFL−. Then, there

exists a saturated (possibly infinite) sequent Γ+ T +

⇒ Δ+ such that it is still
unprovable in TEFL− and it extends the original tree sequent, i.e., Γ ⊆ Γ+,
Δ ⊆ Δ+ and T ⊆ T +.

Lemma 2. Let Γ
T⇒ Δ be a saturated and unprovable tree sequent in TEFL−.

Define the derived model M = (T , A, (Ra)a∈A, (	α)α∈T , V ) from Γ
T⇒ Δ by:

– A := {|n| |n is an agent nominal}, where |n| is an equivalence class of an
equivalence relation ∼ which is defined as: n ∼ m iff α : @nm ∈ Γ for some
α ∈ T .

– αR|n|β iff β is an m-child of α for some m ∈ |n|.
– |n| 	α |m| iff α : @n〈F〉m ∈ Γ .
– (α, |n|) ∈ V (m) iff α : @nm ∈ Γ (m ∈ Nom).
– (α, |n|) ∈ V (p) iff α : @np ∈ Γ (p ∈ Prop).

Then, M is a model. Moreover, for every labelled formula α : @nϕ, we have

(i) If α : @nϕ ∈ Γ then M, (α, |n|) |= ϕ;
(ii) If α : @nϕ ∈ Δ then M, (α, |n|) 
|= ϕ.
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Proof. First, let us check that M is a model. First of all, note that we can easily
verify that ∼ is an equivalence relation by the conditions (ref=), (repi) and
(rigid=) of Definition 1. We can also check that if n ∼ m then R|n| = R|m| and
that if n ∼ n′ and m ∼ m′ then α : @n〈F〉m ∈ Γ iff α : @n′〈F〉m′ ∈ Γ . So both
of R|n| and 	α are well-defined. As for the valuation of propositional variables,
when n ∼ m holds, the equivalence between α : @np ∈ Γ and α : @mp ∈ Γ holds
by the saturation conditions (rep1) and (rep2). For the valuation for agent
nominals m, we need to check that {(α, |n|) |α : @nm ∈ Γ} is T × {|m|}. But
this is clear from the saturation condition (rigid=) and the fact that ∼ is an
equivalence relation.

Now we move to check items (i) and (ii) by induction on ϕ. We only check
the cases where ϕ is of the form: Fϕ or �ϕ, since the other cases are easy to
establish by the corresponding saturation conditions of Definition 1.

– Let ϕ be of the form Fϕ. For (i), assume that α : @nFϕ ∈ Γ . We need to
show M, (α, |n|) |= Fϕ, so let us fix any agent nominal m such that |n|Rα|m|.
Our goal is to show M, (α, |m|) |= ϕ. From |n|Rα|m|, we get α : @n〈F〉m ∈ Γ

hence α : @n〈F〉m /∈ Δ by the unprovability of Γ
T⇒ Δ. By the condition (Fl),

we obtain α : @mϕ ∈ Γ , which implies our goal by induction hypothesis.
For (ii), assume that α : @nFϕ ∈ Δ. By the condition (Rr), α : @n〈F〉m ∈ Γ
and α : @nm ∈ Δ for some agent nominal m. With the help of induction
hypothesis, we have |n|Rα|m| and M, (α, |m|) 
|= ϕ for some agent nominal
m. Hence M, (α, |n|) 
|= Fϕ, as desired.

– Let ϕ be of the form �ϕ. To show (i), assume that α : @n�ϕ ∈ Γ . We need
to show M, (α, |n|) |= �ϕ, so let us fix any label β such that αR|n|β. Our goal
is to show M, (β, |n|) |= ϕ. By αR|n|β, we can find an agent nominal m ∈ |n|
such that β is an m-child of α. It follows from m ∈ |n| that γ : @nm ∈ Γ for
some label γ. By α : @n�ϕ ∈ Γ and γ : @nm ∈ Γ , the saturation condition
(rep1) implies that α : @m�ϕ ∈ Γ . By the saturation condition (�l) and
the fact that β is an m-child of α, we obtain β : @mϕ ∈ Γ . By induction
hypothesis, M, (β, |m|) |= ϕ hence we obtain our goal by |m| = |n|. This
finishes to show (i).
For (ii), assume that α : @n�ϕ ∈ Δ. By the saturation condition (�r),
β : @nϕ ∈ Δ for some n-child β of α, i.e., αR|n|β. By induction hypothesis,
M, (β, |n|) 
|= ϕ. So we conclude that M, (α, |n|) 
|= �ϕ. ��

Theorem 2 (Completeness of cut-free TEFL−). If M, f |= Γ
T⇒ Δ for all

models M and all assignments f , then Γ
T⇒ Δ is provable in TEFL−.

Proof. Suppose for contradiction that Γ
T⇒ Δ is unprovable in TEFL−. By

Lemma 1, we can extend this tree sequent into a saturated (possibly infinite) tree

sequent Γ+ T +

⇒ Δ+ which is still unprovable in TEFL−. Let M be the derived

model from Γ+ T +

⇒ Δ+. Let us define f : T → T as the identity mapping. Then
it follows from Lemma 2 that M, f 
|= Γ ⇒ Δ, as required. ��
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By Theorems 1 and 2, the cut elimination theorem of TEFL follows.

Corollary 1. The following are all equivalent:

1. M, f |= Γ
T⇒ Δ for all models M and all assignments f .

2. Γ
T⇒ Δ is provable in TEFL−.

3. Γ
T⇒ Δ is provable in TEFL.

Therefore, TEFL enjoys the cut-elimination theorem.

5 Hilbert System of Epistemic Logic of Friendship

This section provides a Hilbert system of the epistemic logic of friendship by
“translating” a tree sequent into a formula in L. First of all, let us introduce
the notion of necessity form, originally proposed in [13] by Goldblatt and used
also in [6,11]. Necessity forms are employed to formulate an inference rule of our
Hilbert system.

Definition 2 (Necessity form). Fix an arbitrary symbol # not occurring in
the syntax L. A necessity form is defined inductively as follows: (i) # is a neces-
sity form; (ii) If L is a necessity form and ϕ is a formula, then ϕ → L is also
a necessity form; (iii) If L is a necessity form and n is an agent nominal, then
@n�L is also a necessity form. Given a necessity form L(#) and a formula ϕ of
L, we use L(ϕ) to denote the formula obtained by replacing the unique occurrence
of # in L by the formula ϕ.

When L(#) is a necessity form of ψ0 → @n�(ψ1 → @m�(ψ2 → #)), then
L(ϕ) is ψ0 → @n�(ψ1 → @m�(ψ2 → ϕ)). Intuitively, this notion allows us to
capture the unique path from a label in a tree of a tree sequent to the root label
of the tree.

Table 2 presents our Hilbert system HEFL. The underlying idea of the sys-
tem is: on the top of the propositional part (Taut and MP), we combine the

Table 2. Hilbert System HEFL
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axiomatization of modal logic K for the modal operator � and the axiomati-
zation of a basic hybrid logic KH(@) (see [4,5]) for the modal operator F, with
some modification (we need to modify BG, the rule of bounded generalization,
with the help of necessity forms), and then we add three interaction axioms:
(Rigid=), (Rigid�=), and (DCom@�). We note that the axiom (DCom@�) is also
used for axiomatizing the dependent product of two hybrid logics in [20]. Let
us define the notion of provability in HEFL in as usual. We write �HEFL ϕ to
means that ϕ is provable in HEFL.1,2

Proposition 2. All the following are provable in HEFL.

1. @m@nϕ ↔ @nϕ.
2. n → (@nϕ ↔ ϕ).
3. @nm → (@nϕ ↔ @mϕ).
4. @nm ↔ @mn.
5. @n(ϕ → ψ) ↔ (@nϕ → @nψ).
6. @nm → (ϕ[n/k] ↔ ϕ[m/k]).

Proof. For the provability of item 1, it suffices to show the right-to-left direc-
tion, which is shown by (Agree) and (Selfdual). For the provability of item
2, it suffices to show n → (ϕ → @nϕ), whose provability is shown by the
contraposition of (Elim) and (Selfdual). Then items 3 to 5 are proved simi-
larly as given in [5, p. 293, Lemma 2]. Finally, item 6 is proved by induction
on ϕ. Here we show the case where ϕ ≡ �ψ alone, while we note that we
need to use item 5 for the case where ϕ ≡ @lψ. By induction hypothesis,
we obtain �HEFL @nm → (ψ[n/k] ↔ ψ[m/k]). By (K�) and (Nec�), we get
�HEFL �@nm → (�(ψ[n/k]) ↔ �(ψ[m/k])). It follows from the axiom (rigid=)
that �HEFL @nm → ((�ψ)[n/k] ↔ (�ψ)[m/k])), as desired. ��

The following translation is a key to specify our Hilbert system HEFL.

Definition 3 (Formulaic translation). Given a set Θ of labelled formulas
and a label α, we define Θα := {ϕ |α : ϕ ∈ Θ}. Let Γ

T⇒ Δ be a tree sequent.
Then the formulaic translation of the sequent at α is defined as:
[[
Γ

T⇒ Δ
]]

α
:=

∧
Γα →

∨(
Δα,@n1�

[[
Γ

T⇒ Δ
]]

β1

, . . . ,@nk
�

[[
Γ

T⇒ Δ
]]

βk

)
,

where βi is an ni-child of α, βis enumerate all children of α,
∧

∅ := �, and∨
∅ := ⊥.

The formulaic translation of a tree sequent of Fig. 1 of Sect. 3 at the root 0 is

@nϕ → (@mψ ∨ @n�(� → @kθ) ∨ @k�(@mρ → ⊥)).
1 By (K)-rules and (Nec)-rules for �, F and @n, the replacement of equivalence holds

in HEFL.
2 Given a set Γ ∪{ϕ} of formulas, we say that ϕ is deducible in HEFL from Γ if there

exist finite formulas ψ1, . . ., ψn ∈ Γ such that (ψ1 ∧ . . . ∧ ψn) → ϕ is provable in
HEFL. Then it is easy to see that the deduction theorem holds in HEFL.
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Theorem 3. If a tree sequent Γ
T⇒ Δ is provable in TEFL then the formulaic

translation [[Γ T⇒ Δ]]i is provable in HEFL, where a natural number i is the root
of T .

Proof. By induction on height n of a derivation of Γ
T⇒ Δ in TEFL, where

i is the root of the tree T . We skip the base case where n = 0. Let n > 0.
It is remarked that, when the sequent is obtained by (repl), (ref=), (@L), or
(@R), respectively, the translation of the sequent at the root is provable by
Proposition 2 (6), the axiom (Ref), (Agree), or Proposition 2 (1), respectively.
Here we focus on the cases where Γ

T⇒ Δ is obtained by (�L), (FR) or (rigid=),
since these are the cases where we need to be careful and the other cases are
easy to establish.

(�L) Suppose that α : @n�ϕ, Γ ′ T⇒ Δ is obtained by (�L) from β :
@nϕ, Γ ′ T⇒ Δ, where β ∈ T is an n-child of α. By induction hypoth-
esis, we obtain �HEFL

[[
β : @nϕ, Γ ′ T⇒ Δ

]]
i
. We show that �HEFL[[

α : @n�ϕ, Γ ′ T⇒ Δ
]]

i
. Let (α0, α1, . . . , αl) be the unique path from α

(≡ αl) to the root i (≡ α0) of tree T . By induction on 0 � h � l, we show
that �HEFL

[[
β : @nϕ, Γ ′ T⇒ Δ

]]
αl−h

→
[[
α : @n�ϕ, Γ ′ T⇒ Δ

]]
αl−h

.

Let h = 0 and so αl−h = α. It suffices to show that a formula of the
form

(γ1→(δ ∨ @n�((γ2 ∧ @nϕ)→ψ2))→((@n�ϕ ∧ γ1)→(δ ∨ @n�(γ2→ψ2))) .

is provable in HEFL. This reduces to the provability of

@n�ϕ ∧ @n�((γ2 ∧ @nϕ) → ψ2)) → @n�(γ2 → ψ2))

in HEFL. This holds by the axiom (Dcom�@) @n�@nϕ ↔ @n�ϕ.
Let h > 0. But this case is shown with the help of (Nec�) and
(Nec@). This completes our induction on h. So we conclude �HEFL[[
α : @n�ϕ, Γ ′ T⇒ Δ

]]
i
.

(FR) Suppose that Γ
T⇒ Δ′, α : @nFϕ is obtained by (FR) from α :

@n〈F〉m,Γ
T⇒ Δ′, α : @mϕ where m is fresh in the conclusion. By induc-

tion hypothesis, we have �HEFL

[[
α : @n〈F〉m,Γ

T⇒ Δ′, α : @mϕ
]]

i
,

which is equivalent to �HEFL L(@n〈F〉m → @mϕ) for some necessi-
tation form L. Fix such necessitation form L. By the inference rule
L(BG) of HEFL, we can obtain �HEFL L(@nFϕ), which is equivalent to
�HEFL

[[
Γ

T⇒ Δ′, α : @nFϕ
]]

i
.

(rigid=) Instead of dealing with a general case, we handle a simple example of
T to extract an essence of this case, where we need to use the axioms
(Rigid=) and (Rigid �=). Let T consists of three labels, i.e., the root i, a
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k-child α of i and a k′-child β of i. Let us suppose that β : @nm,Γ ′ T⇒ Δ

is obtained by (rigid=) from α : @nm,Γ ′ T⇒ Δ. In what follows, for every
η ∈ T , let us write

∧
Γ ′

η and
∨

Δη by γη and δη, respectively. Here we
note that the following hold:
(α to i) �HEFL (@k�((@nm ∧ γα) → δα) ∧ @nm) → @k�(γα → δα)).
(i to β) �HEFL ¬@nm → @k′�((@nm ∧ γβ) → δβ)
For (α to i), it suffices to show �HEFL @nm → @k�@nm, which
holds by (Rigid=), the distribution of @ over the implication and
Proposition 2 (1). For (i to β), it suffices to show �HEFL ¬@nm →
@k′�¬@nm, which holds by (Rigid �=), (Selfdual) and Proposition 2 (1).

By induction hypothesis, we obtain �HEFL

[[
α : @nm,Γ ′ T⇒ Δ

]]
i
, i.e.,

�HEFL γi → (δi ∨ @k�((@nm ∧ γα) → δα) ∨ @k′�(γβ → δβ)) .

It follows from item (α to i) that

�HEFL (@nm ∧ γi) → (δi ∨ @k�(γα → δα) ∨ @k′�(γβ → δβ)) .

By this and item (i to β), we can establish:

�HEFL γi → (δi ∨ @k�(γα → δα) ∨ @k′�((@nm ∧ γβ) → δβ)) ,

which is equivalent to: �HEFL

[[
β : @nm,Γ ′ T⇒ Δ

]]
i
, as desired. ��

In what follows in this section, we prove the soundness of HEFL for the tree
sequent calculus TEFL with cut rule. The cut rule is necessary to prove the
following.

Lemma 3. The rules (→ R), (�R), (@R), and (@L) are invertible, i.e., if the
lower sequent is provable in TEFL then the upper sequent is also provable in
TEFL.

Proof. We only prove the invertibility of (→ R) and (�R). First we deal with
(→ R). Suppose that Γ

T⇒ Δ,α : @n(ϕ → ψ) is provable in TEFL. This is
shown as follows:

Γ
T⇒ Δ,α : @n(ϕ → ψ) α : @n(ϕ → ψ), α : @nϕ

T⇒ α : @nψ

α : @nϕ, Γ
T⇒ Δ,α : @nψ

(Cut)
,

where the rightmost tree sequent is provable in TEFL by (→ L). Second we
move to (�R). Suppose that Γ

T⇒ Δ,α : @n�ϕ is provable in TEFL. Then the
provability of the upper sequent of (�R) is established as follows:

Γ
T⇒ Δ,α : @n�ϕ

Γ
T ∪{α·ni}⇒ Δ,α : @n�ϕ

(wlab)
α ·n i : @nϕ, Γ

T ∪{α·ni}⇒ Δ,α ·n i : @nϕ

α : @n�ϕ, Γ
T ∪{α·ni}⇒ Δ,α ·n i : @nϕ

(L�)

Γ
T ∪{α·ni}⇒ Δ,α ·n i : @nϕ

(Cut)
.

��
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Theorem 4. If ϕ is provable in HEFL, then T⇒ α : @nϕ is provable in TEFL
for all trees T , α ∈ T and nominals n fresh in ϕ.

Proof. Suppose that there is a proof (ϕ0, . . . , ϕh) of ϕ in HEFL. By induction
on 0 � j � h, we show that T⇒ α : @nϕj is provable in TEFL for all nominals n
fresh in ϕj and α ∈ T . Since the space is limited, we demonstrate some cases.
Let us start with (Rigid=), which is shown by the left derivation below. Now we
move to (DCom@�). We show the right-to-left direction alone, since the converse
direction is shown similarly. Let us see the right derivation below, from which
we can obtain the provability of T⇒ α : @m(@n�@np → @n�p) in TEFL. Now
we deal with some inference rules below.

α ·k i : @nm
T ∪{α·ki}⇒ α ·k i : @nm

α : @nm
T ∪{α·ki}⇒ α ·k i : @nm

(rigid=)

α : @nm
T ∪{α·ki}⇒ α ·k i : @k@nm

(@R)

α : @nm
T⇒ α : @k�@nm

(�R)

α : @k@nm
T⇒ α : @k�@nm

(@L)

T⇒ α : @k(@nm → �@nm)
(→ R)

α ·n i : @np
T ∪{α·ni}⇒ α ·n i : @np

α ·n i : @n@np
T ∪{α·ni}⇒ α ·n i : @np

(@L)

α : @n�@np
T ∪{α·ni}⇒ α : ·ni : @np

(�L)

α : @n�@np
T⇒ α : @n�p

(�R)

(L(BG)) Let ϕj ≡ �ψ be obtained by (L(BG)). Fix any tree T , α ∈ T and fresh

nominal k. By induction hypothesis, T⇒ α : @kL(@n〈F〉m → @mϕ) is
provable in TEFL, where m satisfies the freshness condition. By apply-
ing Lemma 3 (i.e., the invertibility of the right rules) repeatedly to the
consequent of a resulting tree sequent, we obtain the provability of a

tree sequent of the form Γ, β : @n〈F〉m T ′
⇒ Δ,β : @mϕ. Then we apply

the right rules in a converse direction of our repeated application of
Lemma 3 to conclude that T⇒ α : @kL(@nFϕ) is provable in TEFL. To
illustrate this argument, let L ≡ @n�(ψ → #). By induction hypothe-
sis, T⇒ α : @k@n�(ψ → (@n〈F〉m → @mϕ)) is provable in TEFL, where
m satisfies the freshness condition. By applying Lemma 3 repeatedly, we

obtain the provability of α·ni : @nψ, α·ni : @n〈F〉m T ∪{α·ni}⇒ α·ni : @mϕ
in TEFL for some fresh i. Then we proceed as follows:

α ·n i : @nψ, α ·n i : @n〈F〉m T ∪{α·ni}⇒ α ·n i : @mϕ

α ·n i : @nψ
T ∪{α·ni}⇒ α ·n i : @nFϕ

(FR)

α ·n i : @nψ
T ∪{α·ni}⇒ α ·n i : @n@nFϕ

(@R)

T ∪{α·ni}⇒ α ·n i : @n(ψ → @nFϕ)
(→ R)

T⇒ α : @n�(ψ → @nFϕ)
(�R)

T⇒ α : @k@n�(ψ → @nFϕ)
(@R)

,
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as required.
(Nec�) Let ϕj ≡ �ψ be obtained by (Nec�). Fix any tree T , α ∈ T and fresh

nominal n. By induction hypothesis,
T ∪{α·ni}⇒ α ·n i : @nψ is provable in

TEFL, where i is fresh in T . By the rule (�R) of TEFL, the provability
of T⇒ α : @n�ψ follows, as desired.

(NecF) Let ϕj ≡ Fψ be obtained by (NecF). Fix any tree T , α ∈ T and fresh
nominal n. Let m be a fresh nominal in ψ. By induction hypothesis,
T⇒ α : @mψ is provable in TEFL. By the admissibility of weakening
rule from Proposition 1, we obtain the provability of α : @n〈F〉m T⇒
α : @mψ. Since m is fresh in ψ, the rule (FR) enables us to derive the
provability of T⇒ α : @nFψ in TEFL, as desired. ��

Corollary 2 (Soudness and Completenss of HEFL). The following are all
equivalent: for every formula ϕ,

1. ϕ is valid in the class of all models,3

2. T⇒ α : @nϕ is provable in TEFL− for all T , α ∈ T and nominals n fresh in
ϕ,

3. T⇒ α : @nϕ is provable in TEFL for all T , α ∈ T and nominals n fresh in ϕ,
4. ϕ is provable in HEFL.

Proof. Item 1 is equivalent to the following: T⇒ α : @nϕ is true for all pairs (M, f)
of models and assignments, trees T , α ∈ T and nominals n fresh in ϕ. Then the
equivalence between items 1, 2 and 3 holds by Corollary 1. The direction from
item 4 to item 3 holds by Theorem 4. Finally, the direction from item 3 to item
4 is established as follows. Suppose item 3. Let n be a fresh nominal. By the

supposition,
{0}⇒ 0 : @nϕ is provable in TEFL. It follows from Theorem 3 that

�HEFL [[
{0}⇒ 0 : @nϕ]]0, which implies �HEFL @nϕ. By the axiom (Elim), we

obtain �HEFL n → ϕ hence �HEFL ϕ by (Name), as required. ��

6 Extensions of Epistemic Logic of Friendship

This section outlines how we extend our tree sequent calculus TEFL and Hilbert
system HEFL. In particular, we discuss extensions where � follows S4 or S5
axioms and/or the friendship relation 	w satisfies some universal properties such
as irreflexivity, symmetry, etc. (w ∈ W ). We note that [23,24] assume that the
friendship relation 	w satisfies irreflexivity and symmetry and that � obeys S5
axioms.

Let us denote a set {�p → p,�p → ��p} by S4 and a set S4∪{p → �¬�¬p}
by S5. Let us consider formulas of the form @nm or @n〈F〉m, which are denoted
by ρi, ρ′

i, etc. below. Let us consider a formula ϕ of the following form:

(ρ1 ∧ · · · ∧ ρh) → (ρ′
1 ∨ · · · ∨ ρ′

l) ,

3 We do not need to assume that each of our models is named in the sense that each
agent is named by an agent nominal.
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where we note that h and l are possibly zero. We say that a formula of such
form is a regular implication [17, Sect. 6] (we may even consider a more general
class of formulas called geometric formulas (cf. [8]), but we restrict our attention
to regular implications in this paper for simplicity). The corresponding frame
property of a regular implication is obtained by regarding @nm or @n〈F〉m
by “an = am” and “an 	w am” and putting the universal quantifiers for all
agents and w. For example, irreflexivity and symmetry of 	w are defined by
@n〈F〉n → ⊥ and @n〈F〉m → @m〈F〉n, respectively. When Λ is one of S4 and
S5 and Θ is a finite set of regular implications, a Hilbert system HEFL(Λ ∪ Θ)
is defined as the axiomatic extension of HEFL by new axioms Λ ∪ Θ.

Now let us move to tree sequent systems. First, we introduce an inference
rule for a regular implication. For a regular implication ϕ displayed above, we
can define the corresponding inference rule (ri(ϕ)) for tree sequent calculus as
follows (cf. [8,17, Sect. 6]):

Γ
T⇒ Δ,α : ρ1 ... Γ

T⇒ Δ,α : ρh α : ρ′
1, . . . , α : ρ′

l, Γ
T⇒ Δ

Γ
T⇒ Δ

(ri(ϕ))

When 	w is irreflexive or symmetric for all w ∈ W , we can obtain the following
rule (irr�) or (sym�), respectively:

Γ
T⇒ Δ,α : @n〈F〉n

Γ
T⇒ Δ

(irr�)
Γ

T⇒ Δ,α : @n〈F〉m α : @m〈F〉nΓ
T⇒ Δ

Γ
T⇒ Δ

(sym�)
.

Let Λ be one of S4 and S5 and Θ be a possibly empty finite set of regular
implications. In what follows, we define the tree sequent system TEFL(Λ;Θ).
Recall that the side condition ‡ of the rule (�L) of Table 1. First, depending on
the choice of Λ, we change the side condition ‡ of TEFL into the following one:

– ‡S4: α �n β, where �n is the reflexive transitive closure of the n-children
relation.

– ‡S5: α ∼n β, where ∼n is the reflexive, symmetric, transitive closure of the
n-children relation.

Second, we extend the resulting system with a set {(ri(ϕ)) |ϕ ∈ Θ} of inference
rules to finish to define the system TEFL(Λ;Θ). We define TEFL(Λ;Θ)− as the
system TEFL(Λ;Θ) without the cut rule.

Given a set Ψ of formulas and a frame F = (W,A, (Ra)a∈A, (	w)w∈W ) (a
model without a valuation), we say that Ψ is valid in F (notation: F |= Ψ) if
(F, V ), (w, a) |= ψ for all ψ ∈ Ψ , valuations V and pairs (w, a) ∈ W × A. We
define a class MΨ of models as {(F, V ) |F |= Ψ}. While we omit the detail of the
proof, we can obtain the following two theorems by similar arguments to TEFL
and HEFL.

Theorem 5. Let Λ be one of S4 and S5 and Θ be a possibly empty finite set of
regular implications. The following are all equivalent:
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1. M, f |= Γ
T⇒ Δ for all models M ∈ MΛ∪Θ and all assignments f .

2. Γ
T⇒ Δ is provable in TEFL(Λ;Θ)−.

3. Γ
T⇒ Δ is provable in TEFL(Λ;Θ).

Therefore, TEFL(Λ;Θ) enjoys the cut-elimination theorem. Moreover, for every
formula ϕ, ϕ is valid in MΛ∪Θ iff ϕ is provable in HEFL(Λ ∪ Θ).

7 Further Directions

This paper positively answered the question if the set of all valid formulas of
EFL in the class of all models is axiomatizable. We list some directions for
further research.

1. Is HEFL or TEFL decidable?
2. Is it possible to provide a syntactic proof of the cut elimination theorem of

TEFL?
3. Can we reformulate our sequent calculus into a G3-style calculus, i.e., a

contraction-free calculus, all of whose rules are height-preserving invertible?
4. Provide a G3-style labelled sequent calculus for EFL based on the idea of

doubly labelled formula (x, y) : ϕ. This is an extension of G3-style labelled
sequent calculus for modal logic in [16,18].

5. Prove the semantic completeness of HEFL and its extensions by specifying
the notion of canonical model.

6. Can we apply our technique of this paper to obtain a Hilbert-system of Term
Modal Logics which is proposed in [10]?
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