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Preface

This volume collects the papers presented at LORI-6, the 6th International Workshop
on Logic, Rationality, and Interaction, held in Sapporo, Japan, during September 11–14
and hosted by the Philosophy Department of Hokkaido University.

The workshop received 73 submissions and the final program consisted of 44 full
papers and 13 short papers, although four of these were withdrawn from the pro-
ceedings. Each paper was selected on the basis of two or more reviews. The number of
submissions to the LORI series is growing, with 42 at LORI-4 and 66 at LORI-5.
Moreover, many are of high quality. We took the decision this year to have a number of
parallel sessions at the workshop, thus allowing us to accept more papers.

The topics of papers contributed to the workshop covered the spectrum of topics
within the scope of the LORI series. There were also invited talks by J. Michael Dunn
(Indiana University, USA), Nina Gierasimczuk (Technical University of Denmark,
Denmark), Alan Hájek (Australian National University, Australia), Natasha Alechina
(University of Nottingham, UK), Marta Bílková (Charles University in Prague, Czech
Republic), and Hiroakira Ono (JAIST, Japan).

The LORI series was started in China, with the first event (LORI-1) in August 2007,
hosted by Beijing Normal University. This was judged to be a great success in both
providing a focus for relevant research in East Asia and as a means of attracting
scholars from outside the region to interact and exchange ideas. From then on LORI
workshops have been held every two years. The next three were all in mainland China:
LORI-2 at Southwest University, Chongqing; LORI-3 at Sun Yet-sen University,
Guangzhou; and LORI-4 at Zhejiang University, Hangzhou. The most recent event was
LORI-5, hosted jointly by the National Taiwan University and Yang-Ming University
in Taipei, Taiwan. LORI-6 is the first of the series to be held in Japan.

More details about the LORI conference series can be found at www.golori.org.
As Organizing and Program Committee (PC) chairs we would like to thank the PC

members and all the additional reviewers for working so hard and efficiently within
extremely tight time constraints. The program is greatly indebted to their contribution.
We owe further thanks to the LORI Standing Committee, Fenrong Liu and Johan van
Benthem, together with a number of former LORI PC chairs, who offered timely and
insightful advice and support. We are grateful for the generous support of The Graduate
School of Letters and the Department of Philosophy at Hokkaido University, the
continued support of the Tsinghua University - University of Amsterdam Joint
Research Center for Logic, and the Association of Symbolic Logic. We would also like
to acknowledge the use of EasyChair, for both organizing the reviewing process and
creating these proceedings. The final thanks should go to all those colleagues and

http://www.golori.org


students on the ground at Hokkaido University, for their effort in making the workshop
happen.

July 2017 Alexandru Baltag
Jeremy Seligman

Tomoyuki Yamada
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A Logical Framework for Graded Predicates

Petr Cintula1(B), Carles Noguera2, and Nicholas J. J. Smith3

1 Institute of Computer Science, Czech Academy of Sciences,
Pod Vodárenskou věž́ı 271/2, 182 07 Prague, Czech Republic

cintula@cs.cas.cz
2 Institute of Information Theory and Automation, Czech Academy of Sciences,

Pod Vodárenskou věž́ı 4, 182 08 Prague, Czech Republic
noguera@utia.cas.cz

3 Department of Philosophy, University of Sydney,
Main Quadrangle A14, Sydney, NSW 2006, Australia

njjsmith@sydney.edu.au

Abstract. In this position paper we present a logical framework for
modelling reasoning with graded predicates. We distinguish several types
of graded predicates and discuss their ubiquity in rational interaction
and the logical challenges they pose. We present mathematical fuzzy
logic as a set of logical tools that can be used to model reasoning with
graded predicates, and discuss a philosophical account of vagueness that
makes use of these tools. This approach is then generalized to other kinds
of graded predicates. Finally, we propose a general research program
towards a logic-based account of reasoning with graded predicates.

Keywords: Graded predicates · Vagueness · Mathematical fuzzy logic

1 Introduction

A contemporary view of reasoning goes beyond the analysis of argumentation
in discourse and takes rationality as a broad phenomenon that encompasses
competence not only at organizing discourse, but also at making decisions, and
taking actions towards goals, in light of our beliefs and knowledge. A logic-
based account of reasoning should recognize that all these aspects of rationality
involve heavy use of graded properties. Indeed, predicates that are a matter
of more-or-less (such as red, old, tall, or rich) are ubiquitous in most domains
of discourse and everyday reasoning scenarios. They include vague predicates
(such as the examples just mentioned), but also predicates with sharply-defined
boundaries. Take, for example, the predicate acute angle whose extension is
exactly the set of angles strictly smaller than a right angle, and yet its instances
admit mutual comparison: if α and β are angles of, respectively, 30◦ and 89◦,
it is true that both are acute angles, and it also makes sense to assert that α
is strictly more acute than β. Non-graded all-or-nothing properties are actually
rare in everyday communication and usually belong to quite restricted domains
of discourse (typically, mathematics and other sciences as well as legal discourse).
c© Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 3–16, 2017.
DOI: 10.1007/978-3-662-55665-8 1



4 P. Cintula et al.

Arguably, graded properties are epistemologically necessary, as they gather
together many similar notions that would otherwise collapse the conceptual sys-
tem (and the language) with too many properties (and predicates). It is neces-
sary for reasons of economy to reason with one predicate red, instead of having
infinitely many predicates, for each possible level in the colour spectrum (or as
many as the human eye can distinguish). Reasoning with such graded proper-
ties is successfully and correctly carried out in many contexts (notwithstanding
the fact that natural language has enough devices to provide higher levels of
precision whenever necessary).

We view Logic as the science of correct reasoning and, as such, we expect it
to provide us with the formal means to deal with all forms of valid consequence
that can potentially be carried out by rational beings. During most of its history
as a formal science, Logic has tried to explain correct reasoning by means of
the classical paradigm based on the bivalence principle. Despite its many merits
and achievements, this approach does violence to many properties, forcing sharp
all-or-nothing definitions (splitting graded properties into many binary ones) in
contexts that normally do not require them. Indeed, natural language allows
satisfactory communication and correct reasoning using graded predicates. The
classical logical analysis seems, therefore, too artificial—too detached from actual
reasoning.

On the one hand, there have been several attempts in philosophical logic
and analytic philosophy at understanding vague predicates and their poten-
tial for generating logical paradoxes—although most of these attempts do not
treat vague predicates as graded. On the other hand, Mathematical Fuzzy Logic
(MFL) was proposed [17] as a study of many-valued logical systems able to
handle graded properties (and related notions of partial truth, vagueness, fuzzi-
ness, imprecision, etc.). It has attracted a considerable number of researchers
who have mostly disregarded its original motivations and focused on developing
a deep and extensive corpus of mathematical results (see e.g. [6]), covering all
technical aspects of such logical systems. Philosophers of vagueness have often
attacked MFL as an inadequate framework for dealing with vagueness, based on
allegations that usually disregard most of the mathematical development of MFL
and focus on a few characteristics of the logical systems that were proposed at
the beginning of the field. However, there has been a recent philosophical account
of vague predicates [33] that treats them as graded, employs the modern logical
machinery of MFL, and offers good answers to the traditional arguments against
degree-based approaches.

In this paper we will defend a logical approach to reasoning with graded
predicates that goes beyond that offered in [33] by considering other graded
predicates besides vague ones. The structure of the paper is as follows. After
this Introduction, Sect. 2 discusses the different kinds of graded predicates that
we want to model. Section 3 presents a brief up-to-date account of mathemat-
ical fuzzy logic and Sect. 4 shows how it can be used to provide a satisfactory
explanation of vague predicates and a solution to the paradoxes they generate.
Section 5 discusses possible ways of modelling other kinds of graded predicates
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by means of the tools of MFL and Sect. 6 proposes a general program, extending
the first steps outlined in this paper, to develop a full logic-based account of
reasoning with graded predicates.

2 Graded Predicates

The essential feature of graded predicates is that they may apply with different
intensities to different objects. If F is a graded unary predicate and a and b
are objects in the domain of discourse relevant for F , it may happen that a is
strictly more F than b, i.e. the degree of F -ness of a is greater than that of b;
it could also be the other way around; or a and b could be equal; or they could
be incomparable. All these possible comparisons do not entail the existence of
any numerical scale, but only a purely ordinal notion of degree. Also, there are
graded predicates of any higher arity, characterized in the same way, that apply
to tuples instead of single individuals.

We may distinguish the following different kinds of graded predicates:1

1. Classical predicates: As an extreme case of our classification we must
include the classical predicates. They obey the bivalence and excluded middle
principles and hence yield a perfect division of the domain into the elements
that satisfy the predicate and those that do not. They are a limit case of
graded predicates that admit only two degrees. Classical predicates corre-
spond to sharply-defined all-or-nothing properties and are ideal for analysing
reasoning in domains that typically employ such notions, for example math-
ematics or legal discourse. However, they have often been abused to model
other kinds of graded properties in an unnatural way.

2. Vague predicates: Vague predicates exhibit three surface characteristics:
(a) their extension has blurry boundaries, (b) they have borderline cases
(objects such that we can neither confidently assert nor confidently deny that
they fall under the predicate), and (c) they generate sorites paradoxes, as
follows. A sorites series for a predicate F is a series of objects x0, x1, . . . , xn

such that:

– F definitely applies to x0

– F definitely does not apply to xn

– for each i < n, the objects xi and xi+1 are extremely similar
in all respects relevant to the application of F .

Such a series generates the following argument: (1) x0 is F ; (2) for each i < n,
if xi is F , then so is xi+1; therefore xn is F . When F is vague, this argument
becomes a logical paradox, because it has the form of a valid argument whose
first premise is clearly true and whose second premise also seems true, and yet
its conclusion is clearly false.

Typical examples of vague predicates are those mentioned in the Introduc-
tion: red, old, tall and rich. Vague predicates can be subdivided into linear
1 This classification is a modification of that presented by Paoli in [26,27].
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(or unidimensional) and nonlinear vague predicates. The application of a
linear vague predicate to an object depends only on the extent to which the
object possesses some underlying attribute, which varies along a single dimen-
sion. For example, (once we fix a context) whether someone is ‘tall’ depends only
on her height (and heights vary along a single dimension) and whether some-
one is ‘old’ depends only on his age (and ages vary along a single dimension).
By contrast, the application of a nonlinear vague predicate to an object does
not depend only on the position of that object along a single dimension. Some
(perhaps all) nonlinear vague predicates are multidimensional: for example,
whether an object is ‘red’ depends on its position in a three-dimensional colour
space—that is, it depends on its position along three different dimensions (e.g.
hue, saturation and brightness). Arguably, there is also a second kind of nonlin-
ear vague predicate: one whose application conditions cannot be factored into a
series of linear dimensions. For example, some might argue that ‘beautiful’ is such
a predicate. We do not take a position either way on whether the nonlinear vague
predicates are completely exhausted by the multidimensional vague predicates
(i.e. on whether the class of nonlinear nonmultidimensional vague predicates is
empty). Note that nonlinear vague predicates may have incomparable instances:
for example, it may be possible to come up with two individuals such that there
is no way to determine who is more clever, because they are clever in different
ways.

Vagueness has been clearly distinguished from other phenomena (such
as uncertainty, context sensitivity, ambiguity, and generality) and has been
addressed by several competing theories (see e.g. [14,21,22,28,29,33,34,36]). In
Sect. 4 we will summarize a degree-based treatment of vague predicates.

3. Graded precise predicates: These are predicates that have sharply defined
limits but that, unlike classical predicates, admit more than two degrees of
application. An example, already mentioned in the Introduction, is the unary
predicate acute angle: it is sharply defined (as applying to angles strictly
smaller than a right angle) but it applies with different intensities to different
acute angles (an angle of 30◦ is more acute than an angle of 89◦, although
both are acute) and also to different non-acute angles (an angle of 170◦ is
less acute than an angle of 91◦, although both are non-acute). Other sciences
also employ graded precise predicates: for example acid and base in chem-
istry, defined as having a pH smaller (resp. greater) than 7. Finally, to give
an example from legal language, consider the predicate guilty. The judicial
system does not want borderline cases, and will do everything it takes to pre-
vent them and always declare an accused person either guilty or not. However,
there are different degrees of guilt, which translate into more or less severe
sentences.

Their well-defined limits save graded precise predicates from the difficulties
of vagueness (in particular, the generation of sorites paradoxes), but they are still
quite different from classical predicates and require a different logical treatment.
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3 Mathematical Fuzzy Logic

Petr Hájek founded MFL [17] as an attempt to provide solid logical foundations
for fuzzy set theory and its engineering applications. Among other motivations,
fuzzy set theory had been explicitly proposed as a mathematical apparatus for
dealing with vagueness and imprecision, but it lacked a focus on syntactical
formalization of discourse and a notion of logical consequence, thus keeping
it far from being a logical study of reasoning under vagueness. Hájek and his
collaborators developed MFL as a genuine subdiscipline of Mathematical Logic,
specializing in the study of certain many-valued logics.

The first examples of fuzzy logics were two many-valued propositional sys-
tems that had been studied already for quite some time before the inception
of fuzzy sets: �Lukasiewicz [24] and Gödel–Dummett logics [11]. Both were con-
sidered fuzzy logics because—similar to the definition of membership functions
in fuzzy sets—they were semantically defined as infinitely-valued logics taking
truth-values in the real unit interval [0, 1]. But they had more characteristics in
common: a language with conjunction ∧ and disjunction ∨ respectively inter-
preted as the operations minimum and maximum, constants for (total) falsity
and truth 0 and 1 respectively interpreted as the values 0 and 1, an implication
→, and, in the case of �Lukasiewicz, another conjunction connective (fusion) &
satisfying the following residuation law with respect to the implication, for each
a, b, c ∈ [0, 1] (in the case of Gödel–Dummett logic it is satisfied by ∧):

a & b ≤ c if, and only if, a ≤ b → c.

Both these operations, used to interpret conjunctions, are particular instances
of binary functions called triangular norms (or t-norms for short): binary com-
mutative, associative, monotone functions on [0, 1]; and moreover they are both
continuous, which guarantees the existence of a binary function satisfying the
residuation law. Therefore, Hájek and other MFL researchers started proposing
alternative [0, 1]-valued logics by keeping the interpretation of ∧, ∨, 0 and 1 as
in the previous systems, but taking other continuous t-norms for & and their
corresponding residuum for → [5,17]. It was later observed that the necessary
and sufficient condition for a t-norm to have a residuum was not continuity,
but just left-continuity. This motivated the introduction, by Esteva and Godo,
of MTL [12], a weaker logic that was later proved to be complete w.r.t. the
semantics given by all left-continuous t-norms and their residua [19]. Therefore,
MTL was proposed as a basic fuzzy logic upon which other fuzzy logics could
be obtained as axiomatic extensions.

Besides their intended t-norm-based semantics over [0, 1] (also called standard
semantics), all these fuzzy logics were also given an algebraic semantics based on
classes of MTL-algebras, that is, structures of the form A = 〈A,∧,∨,&,→, 0, 1〉
such that

– 〈A,∧,∨, 0, 1〉 is a bounded lattice
– 〈A,&, 1〉 is a commutative monoid
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– for each a, b, c ∈ A we have

a & b ≤ c iff b ≤ a → c (residuation)

(a → b) ∨ (b → a) = 1 (prelinearity)

We say that an MTL-algebra is:

– Linearly ordered (or an MTL-chain) if its lattice order is total.
– Standard if its lattice reduct is the real unit interval [0, 1] with its usual order.

Note that in a standard MTL-algebra & is interpreted by a left-continuous
t-norm and → by its residuum—and vice versa: each left-continuous t-norm fully
determines its corresponding standard MTL-algebra.

MTL is an algebraizable logic in the sense of [3] and the variety of MTL-
algebras is its equivalent algebraic semantics. Thus each finitary extension of
MTL (like all the other logics mentioned so far) also has an equivalent algebraic
semantics which is a corresponding subquasivariety of MTL-algebras. Conversely,
given any subquasivariety K of MTL-algebras, the corresponding finitary exten-
sion L of MTL is obtained by setting that for each set of formulas Γ and each
formula ϕ, Γ 	L ϕ iff for each algebra A = 〈A,∧,∨,&,→, 0, 1〉 ∈ K and each
A-evaluation e we have: if e(ψ) = 1 for each ψ ∈ Γ , then e(ϕ) = 1.

It soon became clear that fuzzy logics were closely related to substructural
logics; indeed it was proven that MTL is the axiomatic extension of the logic
FLew (the full Lambek logic with exchange and weakening, see e.g. [15]) obtained
by adding the prelinearity axiom (ϕ → ψ) ∨ (ψ → ϕ) [13]. Several papers have
considered weaker fuzzy logics as extensions of other substructural logics:

(a) By dropping commutativity of conjunction Petr Hájek obtained a system,
psMTLr [18], which is an axiomatic extension of FLw and was proven to
be complete with respect to the semantics on non-commutative residuated
t-norms [20].

(b) By removing integrality (i.e. not requiring the neutral element of conjunction
to be maximum of the order) Metcalfe and Montagna proposed the logic
UL which is an axiomatic extension of FLe with bounds and was, in turn,
proven to be complete with respect to left-continuous uninorms (that is, a
generalization of t-norms that allows the neutral element to be any element
u ∈ [0, 1]) [25].

(c) By removing associativity (i.e. not requiring conjunction to be interpreted
by an associative operation) as well as commutativity and integrality, one
obtains a very weak fuzzy logic SL� which extends the non-associative Lam-
bek logic [16,23] and is still complete with respect to models over [0, 1]. The
axiomatization and completeness theorems for this logic and for systems
obtained with other combinations of the properties (associativity, integral-
ity, and commutativity) are presented in [7,8].

All these fuzzy logics, weaker than MTL, are still algebraizable in the sense
of [3] and their algebraic counterparts are classes of lattice-ordered residuated
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unital groupoids (not necessarily associative, commutative, or integral) in which
the semantical consequence relation has to be defined in a more general way than
before. More precisely, if K is a class of such algebras, Γ is a set of formulas and
ϕ is a formula, Γ 	L ϕ iff for each algebra A ∈ K and each A-evaluation e we
have: if e(ψ) ≥ 1 for each ψ ∈ Γ , then e(ϕ) ≥ 1. Therefore, in these fuzzy logics
the interpretation of the constant 1 is not the only relevant truth-value when it
comes to defining consequence, but all the elements greater than 1; that is, the
truth-preserving definition of consequence (usual in algebraic logic) uses in any
algebra A the following set of designated truth-degrees: D = {a ∈ A | a ≥ 1}.

A general property shared by all the mentioned algebraic semantics for fuzzy
logics, from �Lukasiewicz and Gödel–Dummett logics to these weaker systems, is
that each algebra can be represented as a subdirect product of chains, i.e. can
be embedded into a product of linearly ordered algebras in such a way that each
projection is surjective. Therefore, all these logics are complete with respect to
the semantics given just by linearly ordered algebras (and, for many prominent
logics this gets even better, as we have mentioned, because they are complete
w.r.t. standard chains). Based on this fact it has been argued that the only
essential feature of fuzzy logics is that they are the logics of chains [2,8].

The field of research determined by this wide family of logics has attracted
many researchers who have extensively carried out for MFL a typical agenda
of mathematical logic: proof theory, model theory, modalities, first and higher
order formalisms, axiomatic fuzzy set and fuzzy class theories, recursion and
complexity, functional representation, different kinds of semantics, connections
with other areas of Mathematics, applications to Philosophy, etc.; see e.g. the
handbook series [6] and references therein.

4 A Degree-Based Account of Vagueness

The fundamental questions that a theory of vagueness should answer are:
(1) What is the meaning (semantic value) of a vague predicate? and (2) How
should we reason in the presence of vagueness? As part of answering these ques-
tions, a theory of vagueness should solve the sorites paradox—and this in turn
involves two tasks: (i) Locate the error in the sorites argument: the premise that
isn’t true or the step of reasoning that is incorrect. This part of the solution
should fall out of the answers to (1) and (2) above. (ii) Explain why the sorites
argument for a vague predicate is a paradox rather than a simple fallacy: that is,
provide an explanation of why competent speakers find the argument compelling
but not convincing—why they initially go along with the reasoning but are still
not inclined to accept the conclusion.

The simplest fuzzy answer to (1) is that the meaning of a vague predicate is a
fuzzy set. However, this simple answer is inadequate. For it is generally accepted
that language is a human artefact: the sounds we make mean what they do
because of the kinds of situations in which we (and earlier speakers) have made
(and would make) those sounds. This generates a constraint on any theory of
vagueness: if the theory says that vague predicates have meanings of such-and-
such a kind (e.g. fuzzy sets), then we must be able to satisfy ourselves that our
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past and present usage (and usage dispositions) could indeed determine such
meanings for actual vague predicates. However it seems that usage and usage
dispositions do not suffice to pick out a single fuzzy set—a particular function
from objects to [0, 1]—as the extension of ‘is tall’ (and similarly for other vague
predicates). For this reason, Smith [33] proposed fuzzy plurivaluationism. Instead
of each vague discourse being associated with a unique intended fuzzy model,
the plurivaluationist idea is that each vague discourse is associated with multiple
acceptable fuzzy models. The acceptable models are all those that our usage
and usage dispositions do not rule out as being incorrect interpretations of our
language (e.g. an interpretation that does not map persons generally agreed to
be paradigmatic instances of ‘tall’ to 1 is incorrect). On this view, a fuzzy set is
the right kind of thing to be the meaning of a vague predicate—but there is not,
in general, just one fuzzy set that is the uniquely correct meaning of a vague
predicate in ordinary discourse. Rather, there are many fuzzy sets—one in each
acceptable model—each of which is an equally correct meaning.

The answer that we propose to question (2) is that we should reason in the
presence of vagueness in accordance with some system of MFL—although not
necessarily the same system in every context: different reasoning scenarios may
require different logics (see Sect. 6 below for more details).

Suppose we have a sorites series x0, . . . , xn for the predicate F and the asso-
ciated sorites argument:

Fx0, Fx0 → Fx1, Fx1 → Fx2, . . . , Fxn−1 → Fxn ∴ Fxn.

If we employ �Lukasiewicz logic with a definition of consequence as preservation of
degree 1, then we get the following solution to the sorites. (i) The problem with
the argument is that, although it is valid, it is unsound: it is not the case that
every premise is true to degree 1. (ii) The argument is nevertheless compelling
because all the premises are either true to degree 1 or very nearly true to degree
1, and in ordinary reasoning contexts we tend to apply a useful approximation
heuristic that involves rounding very small differences up or down—hence we go
along with the premisses, even though they are not all, strictly speaking, fully
true.

Two key arguments in favour of this theory of vagueness are as follows. First,
no other theory can solve the sorites in an equally satisfactory way: all other
extant theories are forced to attribute ad hoc, implausible mistakes to ordinary
reasoners to explain why they go along with the sorites reasoning [30]. Second, no
other theory fits with our best understanding of what vagueness fundamentally
consists in. In Sect. 2 we introduced vague predicates via three characteristics:
blurry boundaries, borderline cases and sorites susceptibility. This can be com-
pared to explaining what water is by saying it’s a clear potable liquid that falls
as rain and boils at 100 ◦C: this helps someone who doesn’t know what water is
to identify samples of it, but it still leaves open the question of the underlying
nature or essence of water—of what water fundamentally is, that explains why
it has these characteristics. The same goes for vagueness: it would be desirable
to understand its fundamental nature and explain why it has the three surface
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characteristics. Smith [32,33] has argued that a predicate F is vague iff it satisfies
the following Closeness principle:

If x and y are very similar in respects relevant to the application of F ,
then Fx and Fy are very similar in respect of truth.

This yields explanations of why vague predicates have their surface characteris-
tics: i.e. assuming only that a predicate P satisfies Closeness, we can derive that
P must have blurry boundaries and borderline cases and generate sorites para-
doxes. Furthermore, only theories of vagueness that admit degrees of truth can
allow that there exist predicates that satisfy Closeness. This, then, is a strong
reason for accepting fuzzy theories of vagueness, which do admit degrees of truth.

Two key arguments against fuzzy theories of vagueness are as follows. First,
there is the artificial precision objection, that it is implausible to associate each
vague predicate in natural language with a particular function that assigns a
unique real number to each object. Fuzzy plurivaluationism avoids this objection,
however, as it associates each vague predicate with many such functions (one per
admissible model). Second, there is the truth-functionality objection, that fuzzy
theories are incompatible with ordinary usage of compound propositions in the
presence of borderline cases. However, this objection is based on an outdated
understanding of fuzzy logics as having only very limited resources—for example,
minimum and maximum as the only possible interpretations of conjunction and
disjunction [31].

5 Modelling Graded Predicates in MFL

In the previous section we have seen that the algebraic semantics of many promi-
nent fuzzy logics (such as �Lukasiewicz, Gödel–Dummett, and other t-norm-based
logics), though it has only one designated element on each algebra, is already
powerful enough to provide a model of vagueness. This unique designated ele-
ment (the maximum value of the lattice order, the number 1 on [0, 1]-valued
models) represents full truth and plays two important roles: it is the value used
for the truth-preserving definition of logical consequence, and it is the neutral
element of the operation that interprets the conjunction &.

We now sketch a proposal for modelling reasoning with graded predicates that
exploits a greater part of the power of MFL. Indeed, we consider models for the
weaker fuzzy logics mentioned in Sect. 3 where the neutral element of conjunction
is an element u ≤ 1, and the set of designated values that define the truth-
preserving notion of consequence is D = {a | a ≥ u}, not necessarily a singleton.

Vague Predicates: The usage of non-integral algebras of truth-values gives
an interesting complement to the theory of vagueness explained in Sect. 4, that
allows one to distinguish between different clear instances of a vague predicate.
Take, for example, the predicate tall (and assume that we have already fixed
a particular context of application). From a fuzzy plurivaluationist perspective,
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such a predicate admits many models which should all agree on clear instances
and clear non-instances, and may assign degrees to borderline cases in different
ways. Take individuals a, b, c, d, and e with respective heights of 2.1, 1.87, 1.78,
1.63, and 1.58 m. All models will agree that a and b are tall and that d and
e are not tall, while c is a borderline case that will receive different degrees of
tallness in different models. Algebraic models of MTL (and its extensions) have
only one designated value for truth (1) and one for falsity (0), so the mentioned
clear cases will only take these values. If T is a unary predicate symbol for
tall, then the formulas Ta and Tb will be evaluated to 1, while Td and Te
will be evaluated to 0, in symbols: ‖Ta‖ = ‖Tb‖ = 1 and ‖Td‖ = ‖Te‖ = 0.
However, if we take instead an algebraic model of UL, defined for example by
a left-continuous uninorm, then the set of designated elements is the interval
[u, 1], where u is the neutral element (the interpretation of 1). This provides a
finer model for the vague predicate that allows one to make distinctions among
clear cases, and clear non-cases, that is, both a and b are definitely tall, hence
‖Ta‖, ‖Tb‖ ∈ [u, 1], but a is much taller than b, which can be captured in the
model by requiring ‖Ta‖ > ‖Tb‖; hence the identification of all clear cases in one
truth-value enforced by MTL and its extensions is no longer necessary. Similarly
with the cases that are definitely not tall. Where f is the interpretation of 0, the
set of degrees [0, f ] gives a whole range to interpret clear non-cases, in particular:
‖Td‖, ‖Te‖ ∈ [0, f ] with ‖Te‖ < ‖Td‖. This suggests, as already pointed out by
Paoli [26], the following revision of the Closeness principle:

x and y are very similar in F -relevant respects if, and only if, Fx and Fy
are very similar in respect of truth.

Paoli uses this revised principle to argue that vague predicates can be better
interpreted in models that have more than one truth-degree for clear cases,
and more than one for clear non-cases. However, his proposal is restricted to the
algebraic models of Casari’s comparative logic [4]. We believe that such a restric-
tion is not flexible enough, because for example it excludes non-commutative or
non-associative interpretations of residuated conjunction, which are necessary in
some reasoning scenarios.

On the other hand, algebraic models of fuzzy logics can always be decomposed
into linearly ordered components (technically, by means of subdirect represen-
tation). This property allows us to account for the fact that many (maybe all)
vague predicates depend on underlying parameters that vary on linear scales.
Furthermore, if there are any vague predicates that cannot be explained from
a set of parameters that vary on a linear scale of degrees—that is, if there are
nonlinear nonmultidimensional vague predicates—they can still be modelled in a
degree-based approach if we enhance somewhat the logical framework and allow
for systems that do not enjoy completeness (and subdirect decomposition) w.r.t.
chains. Algebraic logic offers methods to build algebraic models for any non-
classical logic. In particular, if the logic has a reasonable implication connective,
it induces an order relation in its algebraic models [9,10] and, hence, such alge-
bras can be seen as (not necessarily linearly ordered) scales of degrees adequate
for modelling such predicates.
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Graded Precise Predicates: These predicates also admit models on algebras
of fuzzy logics, but with an important restriction of the evaluation functions to
account for the fact that there are no borderline cases. Take, for instance, the
predicate acute angle, represented by the unary predicate symbol A. Consider
again a model defined by a left-continuous uninorm with neutral element u < 1,
and let f be the interpretation of 0. Then, an admissible evaluation would be
given by:

‖Ax‖ =

{
(u − 1)x/90 + 1, if 0 ≤ x < 90

−fx/270 + 4f/3, if 90 ≤ x < 360

that is, a piecewise linear map that maps all acute angles to the interval of
designated elements [u, 1] (in particular it maps 0 to 1, because 0◦ is the most
acute angle), and maps all non-acute angles to the interval [0, f ] (in particular, it
maps 90◦ to f , because it is the least non-acute angle). Observe that no angle is
mapped to the interval (f, u) of intermediate truth-values. This will be a common
characteristic of all models for graded precise predicates, because, unlike vague
predicates, they have no borderline cases. Again, MFL offers a wealth of logical
systems to model a multitude of graded precise predicates depending on the
needs of each context.

This semantical treatment of graded precise predicates is inspired by Paoli’s
proposal [26,27] where the interpretations were given on algebraic models of
Casari’s comparative logic.

6 A General Program

We propose a research program of correct reasoning with graded properties,
done from the point of view of Logic and based on the following three layers of
analysis:

1. Natural language and natural reasoning scenarios: Interdisciplinary research
relating Logic to Cognitive Science, Psychology and Linguistics in order to
understand how correct reasoning is actually carried out in natural language
with graded properties.

2. Formal interpreted languages and artificial reasoning scenarios: The appli-
cation of tools of mathematical logic (level 3, below) to natural reasoning
scenarios (level 1, above) requires the introduction of a middle level, in which
the logical formalisms come with specific interpretations of graded proper-
ties in specific contexts. This has the potential for applications to Computer
Science that require handling graded predicates.

3. Formal abstract languages and mathematical logic: The systematic mathe-
matical study of non-classical logical systems with a graded semantics upon
which the study of the previous levels can be based.

The ideas sketched in the previous section illustrate how the mathematical
machinery developed in the study of non-classical logics can be used in modelling
graded predicates and reasoning with them. The study of such logical systems in
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layer three is done in a completely abstract way, as free mathematical research
unconstrained by the possible interpretations of the formal language.

However, by requiring specific behaviour of (part of) the formal language,
motivated by particular reasoning scenarios, we move to the second layer: for
example, studying logics with additional modalities aimed at modelling agents’
partial knowledge or belief, or their degrees of preference—or other specific frag-
ments of first-order or higher-order logics with good representational power and
complexity properties. The potential for applications is suggested by the fact
that some areas of Computer Science use several kinds of weighted notions,
i.e. graded properties, for example in valued constraint satisfaction problems,
weighted graphs, weighted automata, and so on. The application of MFL and
other algebraic logical tools to these areas is still very much under-explored.

Finally, the first layer can be seen as a proposal in the spirit of Stenning and
van Lambalgen’s endeavour to bring Logic back to the study of reasoning [35],
after years of evolving in separate directions. They have convincingly argued
that Logic is very much domain-dependent: valid forms of inference depend on
the domain of discourse. Accordingly, they claim that each instance of reasoning
requires two stages:

1. reasoning to an interpretation: in which one has to decide what are the appro-
priate formal tools for the particular reasoning scenario (language, models,
notion of consequence)

2. reasoning from an interpretation: in which, having established the previous
parameters, one can reason according to the chosen form of inference.

This approach is compatible with the kind of plurivaluationism defended in [33]
and with the idea, advocated in [1] and mentioned in Sect. 4 above, that we need
not pick one particular logic from the MFL family and then use it in every rea-
soning context that involves graded notions: there are differences among graded
notions (e.g. vague vs graded precise—and within the vague predicates, linear
vs nonlinear; etc.) and different contexts may well require different logics. In
general, our broader aim is to apply the full suite of MFL tools, the plurival-
uationism of [33], and the methodology proposed in [35] to reasoning scenarios
involving graded properties.
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Abstract. We introduce a family of logics for reasoning about relational
evidence: evidence that involves an ordering of states in terms of their
relative plausibility. We provide sound and complete axiomatizations for
the logics. We also present several evidential actions and prove soundness
and completeness for the associated dynamic logics.
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Dynamic evidence logics [2,14–17] are logics for reasoning about the evidence
and evidence-based beliefs of agents in a dynamic environment. Evidence logics
are concerned with scenarios in which an agent collects several pieces of evidence
about a situation of interest, from a number of sources, and uses this evidence
to form and revise her beliefs about this situation. The agent is typically uncer-
tain about the actual state of affairs, and as a result takes several alternative
descriptions of this state as possible (these descriptions are typically called pos-
sible worlds or possible states). The existing evidence logics, i.e., neighborhood
evidence logics (NEL) [2,14–17], have the following features:

1. All evidence is ‘binary’. Each piece of evidence is modeled as a set of possible
states. This set indicates which states are good candidates for the actual state,
and which ones are not, according to the source. Hence the name binary; every
state is either a good candidate (‘in’), or a bad candidate (‘out’).

2. All evidence is equally reliable. The agent treats all evidence pieces on a par.
There is no explicit modeling of the relative reliability of pieces of evidence.

3. One procedure to combine evidence. The logics developed so far study the
evidence and beliefs held by an agent relying on one specific procedure for
combining evidence.

This work presents a family of dynamic evidence logics which we call rela-
tional evidence logics (REL). Relational evidence logics aim to contribute to the
existing work on evidence logic as follows.

1. Relax the assumption that all evidence is binary. This is accomplished by
modeling pieces of evidence by evidence relations. Evidence relations are pre-
orders over the set of possible states. The ordering is meant to represent the
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relative plausibility of states based on the evidence. While a special type of
evidence relation – dichotomous order – can be used to model binary evi-
dence, less ‘black-and-white’ forms of evidence can also be encoded in REL
models.

2. Model levels of evidence reliability. In general, not all evidence is equally reli-
able. Expert advice and gossip provide very different grounds for belief, and
a rational agent should weight the evidence that it is exposed to accordingly.
To model evidence reliability, we equipped our models with priority orders,
i.e., orderings of the family of evidence relations according to their relative
reliability. Priority orders were introduced in [1], and have already been used
in other DEL logics (see, e.g. [9,12]). Here, we use them to model the relative
reliability of pieces of evidence.

3. Explore alternative evidence aggregation rules. Our evidence models come
equipped with an aggregator, which merges the available evidence relations
into a single relation representing the combined plausibility of the possible
states. The beliefs of the agent are then defined on the basis of this combined
plausibility order. By focusing on different classes of evidence models, given by
their underlying aggregator, we can then compare the logics of belief arising
from different approaches to combining evidence.

1 Relational Evidence Models

Relational evidence. We call relational evidence any type of evidence that
induces an ordering of states in terms of their relative plausibility. A suitable
representation for relational evidence, which we adopt, is given by the class of
preorders. We call preorders representing relational evidence, evidence relations,
or evidence orders. As is well-known, preorders can represent several meaningful
types of orderings, including those that feature incomparable or tied alternatives.

Definition 1 (Preorder). A preorder is a binary relation that is reflexive and
transitive. We denote the set of all preorders on a set X by Pre(X). For a
preorder R on X and an element x ∈ X, we define the following associated
notions: R[x] := {y ∈ X | Rxy}; R< := {(x, y) ∈ X2 | Rxy and Ryx};
R∼ := {(x, y) ∈ X2 | Rxy and ¬Ryx}.
Evidence reliability. In general, not all sources are equally trustworthy, so an
agent combining evidence may be justified in giving priority to some evidence
items over others. As suggested in [17], a next reasonable step in evidence logics
is modeling levels of reliability of evidence. One general format for this is given by
the priority graphs of [1], which have already been used extensively in dynamic
epistemic logic (see, e.g., [9,12]). In this work, we will use the related, yet simpler
format of a ‘priority order’, as used in [5,6], to represent hierarchy among pieces
of evidence. Our definition of a priority order is as follows:

Definition 2 (Priority order). Let R be a family of evidence orders over W .
A priority order for R is a preorder � on R. For R,R′ ∈ R, R � R′ reads as:
“the evidence order R′ has at least the same priority as evidence order R”.
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Intuitively, priority orders tell us which pieces of evidence are more reliable
according to the agent. They give the agent a natural way to break stalemates
when faced with inconsistent evidence.

Evidence aggregators. We are interested in modeling a situation in which an
agent integrates evidence obtained from multiple sources to obtain and update a
combined plausibility ordering, and forms beliefs based on this ordering. When
we consider relational evidence with varying levels of priority, a natural way
model the process of evidence combination is to define a function that takes as
input a family of evidence orders R together with a priority order � defined on
them, and combines them into a plausibility order. The agent’s beliefs can then
be defined in terms of this output.

Definition 3 (Evidence aggregator). Let W be a set of alternatives. Let W
be the set of preorders on W . An evidence aggregator for W is a function Ag
mapping any preordered family P = 〈R,�〉 to a preorder Ag(P ) on W , where
∅ �∈ R ⊆ W and � is a preorder on R. R is seen here as a family of evidence
orders over W , � as a priority order for R, and Ag(P ) as an evidence-based
plausibility order on W .

At first glance, our definition of an aggregator may seem to impose mild
constraints that are met by most natural aggregation functions. However, as it
is well-known, the output of some common rules, like the majority rule, may not
be transitive (thus not a preorder), and hence they don’t count as aggregators. A
specific aggregator that does satisfy the constraints is the lexicographic rule. This
aggregator was extensively studied in [1], where it was shown to satisfy several
nice aggregative properties. The definition of the aggregator is the following:

Definition 4. The (anti-)lexicographic rule is the aggregator lex given by

(w, v) ∈ lex(〈R,�〉) iff ∀R′ ∈ R (R′wv ∨ ∃R ∈ R(R′ ≺ R ∧ R<wv))

Intuitively, the lexicographic rule works as follows. Given a particular hier-
archy � over a family of evidence R, aggregation is done by giving priority to
the evidence orders further up the hierarchy in a compensating way: the agent
follows what all evidence orders agree on, if it can, or follows more influential
pieces of evidence, in case of disagreement. Other well-known aggregators that
satisfy the constraints, but don’t make use of the priority structure, are the
intersection rule (defined below), or the Borda rule.

Definition 5. The intersection rule is the aggregator Ag∩ given by (w, v) ∈
Ag∩(〈R,�〉) iff (w, v) ∈ ⋂

R.

The models. Having defined relational evidence and evidence aggregators, we
are now ready to introduce relational evidence models.

Definition 6 (Relational evidence model). Let P be a set of proposi-
tional variables. A relational evidence model (REL model, for short) is a tuple
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M = 〈W, 〈R,�〉, V, Ag〉 where W is a non-empty set of states; 〈R,�〉 is an
ordered family of evidence, where: R is a set of evidence orders on W with
W 2 ∈ R and � is a priority order for R; V : P → 2W is a valuation function;
Ag is an evidence aggregator for W .

W 2 ∈ R is called the trivial evidence order. It represents the evidence stating
that “the actual state is in W”, which is taken to be always available to the agent
as a starting point. M = 〈W, 〈R,�〉, V, Ag〉 is called an f-model iff Ag = f .

Syntax and semantics. We now introduce a static language for reasoning
about relational evidence, which we call L . In [2], this language is interpreted
over NEL models (there, the language is called L∀��0).

Definition 7 (L ). Let P be a countably infinite set of propositional variables.
The language L is defined by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �0ϕ | �ϕ | ∀ϕ (p ∈ P)

The intended interpretation of the modalities is as follows. �0ϕ reads as: ‘the
agent has basic, factive evidence for ϕ’; �ϕ reads as: ‘the agent has combined,
factive evidence for ϕ’. The language L is interpreted over REL models as follows.

Definition 8 (Satisfaction). Let M = 〈W, 〈R,�〉, V, Ag〉 be an REL model
and w ∈ W . The satisfaction relation |= between pairs (M,w) and formulas
ϕ ∈ L is defined as follows (the propositional clauses are as usual):

M,w |= �0ϕ iff there is R ∈ R such that, for all v ∈ W,Rwv implies M,v |= ϕ
M,w |= �ϕ iff for all v ∈ W,Ag(〈R,�〉)wv implies M,v |= ϕ
M,w |= ∀ϕ iff for all v ∈ W,M, v |= ϕ

Definition 9 (Truth map). Let M = 〈W, 〈R,�〉, V, Ag〉 be a REL model. We
define a truth map [[·]]M : L → 2W given by: [[ϕ]]M = {w ∈ W | M,w |= ϕ}.

Next, we introduce some definable notions of evidence and belief over REL
models, illustrated below with an example. Fix a model M = 〈W, 〈R,�〉, V, Ag〉.

Basic (factive) Evidence. We say that a piece of evidence R ∈ R supports
ϕ at w ∈ W iff R[w] ⊆ [[ϕ]]M . That is, every world that is at least as plausible
as w under R satisfies ϕ. Using this notion of support, we say that the agent
has basic, factive evidence for ϕ at w ∈ W if there is a piece of evidence R ∈ R
that supports ϕ at w. That is: ‘the agent has basic evidence for ϕ at w ∈ W ’ iff
∃R ∈ R(R[w] ⊆ [[ϕ]]M ) iff M,w |= �0ϕ. We also have a non-factive version of
this notion, which says that the agent has basic evidence for ϕ if there is a piece
of evidence R that supports ϕ at some state, i.e.: ‘the agent has basic evidence
for ϕ (at any state)’ iff ∃w(∃R ∈ R(R[w] ⊆ [[ϕ]]M )) iff M,w |= ∃�0ϕ. We can
also have a conditional version of basic evidence: ‘the agent has basic, factive
evidence for ψ at w, conditional on ϕ being true’. Putting �ϕ

0 ψ := �0(ϕ → ψ),
we have: ‘the agent has basic, factive evidence for ψ at w, conditional on ϕ being
true’ iff ∃R ∈ R(∀v(Rwv ⇒ (v ∈ [[ϕ]]M ⇒ v ∈ [[ψ]]M ))) iff M,w |= �ϕ

0 ψ. The
notion of conditional evidence reduces to that of plain evidence when ϕ = �.
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Aggregated (factive) Evidence. We propose a notion of aggregated evidence
based on the output of the aggregator: the agent has aggregated, factive evidence
for ϕ at w ∈ W iff Ag(〈R,�〉)[w] ⊆ [[ϕ]]M iff M,w |= �ϕ. The non-factive version
of the previous notion is as follows: the agent has aggregated evidence for ϕ (at
any state) iff ∃w(Ag(〈R,�〉)[w] ⊆ [[ϕ]]M ) iff M,w |= ∃�ϕ. As we did with basic
evidence, we can define a conditional notion of aggregated evidence in ϕ by
putting �ϕψ := �(ϕ → ψ). The unconditional version is given by ϕ = �.

Evidence-Based Belief. The notion of belief we will work with is based on the
agent’s plausibility order, which in REL models corresponds to the output of the
aggregator. As we don’t require the plausibility order to be converse-well founded,
it may have no maximal elements, which means that Grove’s definition of belief
may yield inconsistent beliefs. For this reason, we adopt a usual generalization of
Grove’s definition, which defines beliefs in terms of truth in all ‘plausible enough’
worlds (see, e.g., [3,16]). Putting Bϕ := ∀♦�ϕ, we have: the agent believes ϕ (at
any state) iff ∀w(∃v((w, v) ∈ Ag(〈R,�〉) and Ag(〈R,�〉)[v] ⊆ [[ϕ]]M )) iff M,w |=
∀♦�ϕ. That is, the agent believes ϕ iff for every state w ∈ W , we can always find
a more plausible state v ∈ [[ϕ]]M , all whose successors are also in [[ϕ]]M . When the
plausibility relation is indeed converse well-founded, this notion of belief coincides
with Grove’s one, while ensuring consistency of belief otherwise. We can also define
a notion of conditional belief. Putting Bϕψ := ∀(ϕ → ♦(ϕ → (�ϕ → ψ))), we
have: ‘the agent believes ψ conditional on ϕ iff ∀w(w ∈ [[ϕ]]M ⇒ ∃v(Ag(〈R,�〉)
wv and v ∈ [[ϕ]]M and Ag(〈R,�〉)[v]∩[[ϕ]]M ⊆ [[ψ]]M )) iffM,w |= Bϕψ. As before,
this conditional notion reduces to that of absolute belief when ϕ = �.

Example 1 (The diagnosis). Consider an agent seeking medical advice on an
ongoing health issue. To keep thing simple, assume that there are four possible
diseases: asthma (a), allergy (al), cold (c), and flu (f). This can be described by
a set W consisting of four possible worlds, {wa, wal, wc, wf} and a set of atomic
formulas {a, al, c, f} (each true at the corresponding world). The agent consults
three sources, a medical intern (IN), a family doctor (FD) and an allergist
(AL). The doctors inspect the patient, observing fairly non-specific symptoms:
cough, no fever, and some inconclusive swelling at an allergen test spot. Given
the non-specificity of the symptoms, the doctors can’t single out a condition that
best explains all they observed. Instead, comparing the diseases in terms of how
well they explain the observed symptoms, and drawing on their experience, each
doctor arrives at a ranking of the possible diseases. Let us denote by RIN , RFD

and RAL the evidence orders representing the judgment of the intern, family
doctor and allergist, respectively, which we assume to be as depicted below. If
the agent has no information about how reliable each doctor is, she may just
trust them all equally. We can model this by a priority order � over the evidence
orders RIN ∼ RFD ∼ RAL that puts all evidence as equally likely. On the other
hand, if the agent knows that the intern is the least experienced of the doctors,
she may consider his evidence as strictly less reliable than the one provided by
the other doctors. Similarly, if the allergist has a strong reputation, the agent
may wish to give the allergist’s judgment strict priority over the rest. We can
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model this by a different priority order �′ given by RIN ≺′ RFD ≺′ RAL (note
that this is meant to be reflexive and transitive). If, e.g., the agent uses the
lexicographic rule, we arrive at the following scenarios, with different aggregated
evidence depending on the priority order used:

a

al

c

f

al

a c

f

a

al

cf

RIN RFD RAL

a

al

c

f

RIN RFD RAL

Lexicographic aggregation based on �

∼ ∼

a

al

c

f

Lexicographic aggregation based on �′

RIN RFD RAL≺′ ≺′

The best candidates for the actual disease, in each case, are depicted in white.
Note that, e.g., the agent has basic evidence for a ∨ al ∨ c, but she doesn’t have
evidence for f . Moreover, in the scenario based on �′, the agent believes that
the allergy is the actual disease, but she doesn’t in the scenario based on �.

A PDL language for relational evidence. Later in this work, we will discuss
evidential actions by which the agent, upon receiving a new piece of relational
evidence, revises its existing body of evidence. To encode syntactically the evi-
dence pieces featured in evidential actions, we will enrich our basic language
L with formulas that stand for specific evidence relations. A natural way to
introduce relation-defining expressions, in a modal setting such as ours, is to
employ suitable program expressions from Propositional Dynamic Logic (PDL).
We will follow this approach, augmenting L with PDL-style evidence programs
that define pieces of relational evidence. As evidence orders are preorders, we
will employ a set of program expressions whose terms are guaranteed to always
define preorders. An natural fragment of PDL meeting this condition is the one
provided by programs of the form π∗, which always define the reflexive transitive
closure of some relation.

Definition 10 (Evidence programs). The set Π has all program symbols π
defined as follows:

π ::= A |?ϕ | π ∪ π | π;π | π∗
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where ϕ ∈ L . Here A denotes the universal program, while the rest of the pro-
grams have their usual PDL meanings (see, e.g., [10]). We call Π∗ := {π∗ | π ∈
Π} the set of evidence programs.

To interpret evidence programs in REL models, we extend the truth map:

Definition 11 (Truth map). Let M = 〈W, 〈R,≺〉, V, Ag〉 be an REL model.
We define an extended truth map [[·]]M : L ∪ Π → 2W ∪ 2W 2

given by: [[ϕ]]M =
{w ∈ W | M,w |= ϕ}; [[A]]M = W 2; [[?ϕ]]M = {(w,w) ∈ W 2 | w ∈ [[ϕ]]M};
[[π ∪ π′]]M = [[π]]M ∪ [[π′]]M ; [[π;π′]]M = [[π]]M ◦ [[π′]]M ; [[π∗]]M = [[π]]∗M .

Some Examples of Definable Evidence Programs. Here are some natural
types of relational evidence that can be constructed with programs from Π∗.

Dichotomous evidence. For a formula ϕ, let πϕ := (A; ?ϕ) ∪ (?¬ϕ;A; ?¬ϕ). πϕ

puts the ϕ worlds strictly above the ¬ϕ worlds, and makes every world equally
plausible within each of these two regions. It is easy to see that πϕ always defines
a preorder, and therefore (πϕ)∗ is an evidence program equivalent to πϕ (Fig. 1).

¬ϕ ϕ

Fig. 1. The dichotomous order defined by πϕ

Totally ordered evidence. Several programs can be used to define total preorders.
For example, for formulas ϕ1, . . . , ϕn, we can define the program

πϕ1,...,ϕn
:= (A; ?ϕ1) ∪ (?¬ϕ1;A; ?¬ϕ1; ?ϕ2)

∪ (?¬ϕ1;¬ϕ2;A; ?¬ϕ1; ?¬ϕ2; ?ϕ3)
∪ . . .

∪ (?¬ϕ1; . . . ; ?¬ϕn;A; ?¬ϕ1; . . . ; ?¬ϕn−1; ?ϕn) ∪ (?�)

This type of program, described in [18], puts the ϕ1 worlds above everything else,
the ¬ϕ1∧ϕ2 worlds above the ¬ϕ1∧¬ϕ2 worlds, and so on, and the ¬ϕ1∧¬ϕ2∧
· · · ∧¬ϕn−1 ∧ϕn above the ¬ϕ1 ∧¬ϕ2 ∧ · · · ∧¬ϕn worlds. πt(ϕ1, . . . , ϕn) always
defines a preorder, so the evidence program (πt(ϕ1, . . . , ϕn))∗ is equivalent to it
(Fig. 2).

¬ϕ1 ∧ · · · ∧ ¬ϕn ¬ϕ1 ∧ · · · ∧ ¬ϕn−1 ∧ ϕn ¬ϕ1 ∧ ϕ2 ϕ1. . .

Fig. 2. The total preorder defined by πϕ1,...,ϕn
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Incompletely ordered evidence. Several programs can be used to define evidence
orders featuring incomparabilities. To illustrate this, let us consider the program
πϕ∧ψ := (A; ?ϕ ∧ ψ) ∪ (?¬ϕ ∧ ¬ψ;A; ?ϕ ∨ ψ) ∪ (?¬ϕ ∧ ψ;A; ?¬ϕ ∧ ψ) ∪ (?ϕ ∧
¬ψ;A; ?ϕ∧¬ψ)∪ (?�). As depicted in Fig. 3, this program puts the ϕ∧ψ worlds
above everything else, the ¬ϕ ∧ ψ and ϕ ∧ ¬ψ as incomparable ‘second-best’
worlds, and the ¬ϕ ∧ ¬ψ below everything else. As with the other programs
πϕ∧ψ always defines a preorder, so (πϕ∧ψ)∗ is an equivalent evidence program.

¬ϕ ∧ ¬ψ

¬ϕ ∧ ψ

ϕ ∧ ¬ψ

ϕ ∧ ψ

Fig. 3. The incomplete preorder defined by πϕ∧ψ

2 The Logics of Ag∩-Models and lex-Models

We initiate here our logical study of the statics of belief and evidence in the REL
setting. We first zoom into two specific classes of REL models, the classes of Ag∩-
models and lex-models, and study the static logics for belief and evidence based
on these models. In particular, we introduce systems L∩ and Llex that axiomatize
the class of Ag∩-models and the class of lex-models, respectively. (To simplify
notation, we write ∩-models instead of Ag∩-models hereafter). In later sections,
we will ‘zoom out’ and study the class of all REL models. Our choice to study ∩
and lex models in some detail is motivated as follows. The class of ∩-models is
interesting because it links our relational evidence setting back to the NEL setting
that inspired it. Indeed, as we show right below, given any NEL model with
finitely many pieces of evidence, we can always find a ∩-model that is modally
equivalent to it (with respect to language L ). This ∩-model represents binary
evidence in a relational way, thereby encoding the same information presented in
the NEL model. lex-models, on the other hand, provide a good study case for the
REL setting, as they exemplify its main novel features: non-binary evidence and
reliability-sensitive aggregation. We recall here the definition of a NEL model to
compare them to ∩-models. The definition given for these models follows the
one in [2]. For a more general notion, see [15], where the models we consider are
called uniform models.

Definition 12 (Neighborhood evidence model). A neighborhood evidence
model is a tuple M = 〈W,E0, V 〉 where: W is a non-empty set of states; E0 ⊆
P(W ) is a family of basic evidence sets, such that ∅ �∈ E0 and W ∈ E0; V :
P → P(W ) is a valuation function. A model is called feasible if E0 is finite. A
body of evidence is a family F ⊆ E0 such that every non-empty finite subfamily
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F ′ ⊆ F is consistent, i.e.,
⋂

F ′ �= ∅. A piece of combined evidence is any
non-empty intersection of finitely many pieces of basic evidence. We denote by
E := {⋂ F | F ⊆ E0, |F | ∈ N} the family of all combined evidence.

Definition 13 (Satisfaction). Let M = 〈W,E0, V 〉 be an NEL model and w ∈
W . The satisfaction relation |= between pairs (M,w) and formulas ϕ ∈ L is:

M,w |= �0ϕ iff there is e ∈ E0 such that w ∈ e ⊆ [[ϕ]]M
M,w |= �ϕ iff there is e ∈ E such that w ∈ e ⊆ [[ϕ]]M
M,w |= ∀ϕ iff W = [[ϕ]]M

We now present a way to ‘transform’ a NEL model into a matching REL
model. To do that, we first encode binary evidence, the type of evidence consid-
ered in NEL models, as relational evidence.

Definition 14. Let W be a set. For each e ⊆ W , we denote by Re the relation
given by: (w, v) ∈ Re iff w ∈ e ⇒ v ∈ e.

That is, Re is a preorder with at most two indifference classes (i.e., a dichoto-
mous weak order) of ‘good’ and ‘bad’ candidates for the actual state, which puts
all the ‘bad’ candidates strictly below the ‘good’ ones (Fig. 4).

w1 w2

w3 w4

e w1 w2

w3 w4

Re

Fig. 4. A piece of binary evidence, represented as an evidence set e (left) and as a
dichotomous evidence order Re (right).

Having fixed this connection between evidence sets and evidence orders, we
can now consider a natural way to transform every NEL into a ∩-model in which
each evidence order is dichotomous. To fix this link, we define a mapping between
NEL and REL models.

Definition 15. Let Rel be a map from NEL to REL models given by:

〈W,E0, V 〉 �→ 〈Rel(W ), 〈Rel(E0),�〉, Rel(V ), Ag∩〉
where Rel(W ) := W , Rel(V ) := V Rel(E0) := {Re | e ∈ E0} and �=
Rel(E0)2.

We can then observe that feasible NEL models and their images under Rel are
modally equivalent, in the sense of having point-wise equivalent modal theories.

Proposition 1. Let M = 〈W,E0, V 〉 be a feasible NEL model. For any ϕ ∈ L
and any w ∈ W , we have: M,w |= ϕ iff Rel(M), w |= ϕ.
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That is, feasible NEL models can be seen as ‘special cases’ of REL models in
which all evidence is dichotomous and equally reliable. As the following propo-
sition shows, the modal equivalence result does not extend to non-feasible NEL
models. This is because, in models with infinitely many pieces of evidence, the
notion of combined evidence presented in [2] differs from the one proposed here
for REL models. To clarify this, consider a NEL model M = 〈W,E0, V 〉. Recall
that the agent has combined evidence for a proposition ϕ at w if there is a finite
body of evidence whose combination contains w and supports ϕ, i.e., if there is
some finite F ⊆ E0 such that w ∈ ⋂

F ⊆ [[ϕ]]M . Suppose M is a non-feasible
model in which we have w ∈ ⋂

E0 ⊆ [[ϕ]]M , while no finite family F ⊆ E0 is such
that w ∈ ⋂

F ⊆ [[ϕ]]M . That is, the combination of all the evidence supports ϕ
at w, but no combination of a finite subfamily of E0 does. In a NEL model like
this, the agent does not have combined evidence for ϕ at w. That is, M,w �|= �ϕ.
However, our proposed notion of aggregated evidence for REL models is based
on combining all the available evidence, and as a result in Rel(M) the agent does
have aggregated evidence for ϕ (i.e., Rel(M), w |= �ϕ). A concrete example of
such a model is M = 〈W,E0, V 〉 with W = N, E0 = {N \ {2n + 1} | n ∈ N} and
V (p) = {2n | n ∈ N}. It is easy to verify that M, 0 �|= p, while Rel(M), 0 |= p.
The proofs for all the results presented in this paper can be found in an extended
version of it that will constitute the basis for a journal version. This extended
version can be found in [4].

Proposition 2. Non-feasible NEL models need not be modally equivalent to
their images under Rel. In particular, the left-to-right direction of Proposition 1
holds for non-feasible evidence models, but the right-to-left direction doesn’t: there
are non-feasible neighborhood models M s.t. Rel(M), w |= �ψ but M,w �|= �ψ.

Having motivated our interest in ∩-models via their connection to neighbor-
hood evidence logics, we now focus again on the static logics of ∩- and lex-models.
Table 1 lists the axioms and rules in L∩ and Llex.

As stated in Theorem 1, these two systems completely axiomatize the logics
of ∩ and lex models, respectively.

Theorem 1. L∩ and Llex are sound and strongly complete with respect to ∩-
models and lex-models, respectively.

Evidence dynamics for ∩-models. Having established the soundness and
completeness of the static logics, we now turn to evidence dynamics, starting
with ∩-models. In line with the work on NEL, we consider update, evidence
addition and evidence upgrade actions for ∩-models. As the intersection rule is
insensitive to the priority order, when we consider ∩-models, it is convenient to
treat the models as if they came with a family of evidence orders R only, instead
of an ordered family 〈R,�〉. Accordingly, hereafter we will write ∩-models as
follows: M = 〈W,R, V, Ag∩〉. Let us fix a ∩-model M = 〈W,R, V, Ag∩〉, some
proposition P ⊆ W and some evidence order R ∈ Pre(W ).
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Table 1. The systems L∩ and Llex

Axioms and inference rules System(s)

All tautologies of propositional logic both

S5 axioms for ∀, S4 axioms for �, axiom 4 for �0 both

∀ϕ → �0ϕ both

(�0ϕ ∧ ∀ψ) → �0(ϕ ∧ ∀ψ) L∩
(�0ϕ ∧ ∀ψ) ↔ �0(ϕ ∧ ∀ψ) Llex

�0ϕ → �ϕ L∩
Axioms T and N for �0 Llex

∀ϕ → �ϕ Llex

Modus ponens both

Necessitation Rule for • ∈ {∀, �}: from ϕ infer •ϕ both

Monotonicity Rule for �0: from ϕ → ψ infer �0ϕ → �0ψ both

Update. We first consider updates that involve learning a new fact P with
absolute certainty. Upon learning P , the agent rules out all possible states that
are incompatible with it. For REL models, this means keeping only the worlds
in [[P ]]M and restricting each evidence order accordingly.

Definition 16 (Update). The model M !P = 〈W !P ,R!P , V !P , Ag!P∩ 〉 has
W !P := P , R!P := {R ∩ P 2 | R ∈ R}, Ag!P∩ := Ag∩ restricted to P , and
for all p ∈ P, V !P (p) := V (p) ∩ P .

Evidence addition. Unlike update, which is standardly defined in terms of
an incoming proposition P ⊆ W , our proposed notion of evidence addition for
∩-models involves accepting a new piece of relational evidence R from a trusted
source. That is, relational evidence addition consists of adding a new piece of
relational evidence R ⊆ Pre(W ) to the family R.

Definition 17 (Evidence addition). The model M+R = 〈W+R,R+R,
V +R, Ag+R

∩ 〉 has W+R := W , R+R := R ∪ {R}, V +R := V and Ag+R
∩ :=

Ag∩.

Evidence upgrade. Finally, we consider an action of upgrade with a piece
of relational evidence R. This upgrade action is based on the notion of binary
lexicographic merge from Andréka et al. [1].

Definition 18 (Evidence upgrade). The model M⇑R = 〈W⇑R,R⇑R, V ⇑R,
Ag⇑R

∩ 〉 has W⇑R := W , R⇑R := {R< ∪ (R ∩ R′) | R′ ∈ R}, V ⇑R := V and
Ag⇑R

∩ := Ag∩.

Intuitively, this operation modifies each existing piece of evidence R′ with R
following the rule: “keep whatever R and R′ agree on, and where they conflict,
give priority to R”. To encode syntactically the evidential actions described
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above, we present extensions of L , obtained by adding to L dynamic modalities
for update, evidence addition and evidence upgrade. The modalities for update
will be standard, i.e., modalities of the form [!ϕ]ψ. The new formulas of the form
[!ϕ]ψ are used to express the statement: “ψ is true after ϕ is publicly announced”.

Definition 19 (L !). The language L ! is defined recursively by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �0ϕ | �ϕ | ∀ϕ | [!ϕ]ϕ (p ∈ P)

Satisfaction for formulas [!ϕ]ψ ∈ L ! is given by: M,w |= [!ϕ]ψ iff M,w |= ϕ
implies M ![[ϕ]]M , w |= ψ. For the remaining actions, we extend L with dynamic
modalities of the form [+π]ψ for addition and [⇑ π]ψ for upgrade, where the
symbol π occurring inside the modality is an evidence program.

Definition 20 (L •). Let • ∈ {+,⇑}. The language L • is defined by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �0ϕ | �ϕ | ∀ϕ | [•π∗]ϕ (p ∈ P)
π ::= A |?ϕ | π ∪ π | π;π | π∗

The new formulas of the form [+π]ϕ are used to express the statement: “ϕ
is true after the evidence order defined by π is added as a piece of evidence”,
while the [⇑ π]ϕ are used to express: “ϕ is true after the existing evidence is
upgraded with the relation defined by π”. We extend the satisfaction relation
|= to cover formulas of the form [•π]ϕ as follows: for a formula [•π]ϕ ∈ L •, we
have M,w |= [•π]ϕ iff M•[[π]]M , w |= ϕ.

The next natural step is to introduce proof systems for the languages L !,
L + and L ⇑ with respect to ∩-models. A standard approach to obtain sound-
ness and completeness proofs is via a reductive analysis, appealing to reduction
axioms. We refer to [11] for an extensive explanation of this technique. Tak-
ing this route, we obtained complete proof systems for the dynamic logics. The
reduction axioms and the completeness proofs can be found in the Extended
version of this paper (see Definitions 12, 13 and 21, Lemma 1 and Theorem 2
therein).

Theorem 2. There exist proof systems for L !, L + and L ⇑ that are sound and
complete with respect to ∩-models.

Evidence dynamics for lex-models. We now have a first look at the dynamics
of evidence over lex models. In the REL setting, evidential actions can be seen as
complex actions involving two possible transformations on the initial model: (i)
modifying the stock of evidence, R, perhaps by adding a new evidence relation
R to it, or modifying the existing evidence with R; and (ii) updating the priority
order, �, e.g. to ‘place’ a new evidence item where it fits, according to its reli-
ability. We may also have actions involving evidence, not about the world, but
about evidence itself or its sources (sometimes called ‘higher-order evidence’ [7]),
which trigger a reevaluation of the priority order without changing the stock of
evidence (for instance, upon learning that a specific source is less reliable than
we initially thought, we may want to lower the priority of the evidence provided



Evidence Logics with Relational Evidence 29

by this source). To illustrate the type of actions that can be explored in this
setting, here we study an action of prioritized addition over lex models. For the
sake of generality, we describe this action over REL models.

Prioritized addition. Let M = 〈W, 〈R,�〉, V, Ag〉 be a REL model and R ∈
Pre(W ) a piece of relational evidence. The prioritized addition of R adds R to
the set of available evidence R, giving the highest priority to the new evidence.

Definition 21 (Prioritized addition). The model M⊕R = 〈W⊕R, 〈R⊕R,
�⊕R〉, V ⊕R, Ag⊕R〉 has W⊕R := W , R⊕R := R ∪ {R}, V ⊕R := V , Ag⊕R :=
Ag and �⊕R :=� ∪{(R′, R) | R′ ∈ R}.

To encode this action, we add formulas [⊕π]ϕ, used to express the statement
that ϕ is true after the prioritized addition of the evidence order defined by π.

Definition 22 (L ⊕). The language L ⊕ is given by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �0ϕ | �ϕ | ∀ϕ | [⊕π∗]ϕ (p ∈ P)
π ::= A |?ϕ | π ∪ π | π;π | π∗

Satisfaction for formulas [⊕π]ϕ ∈ L ⊕ is given by: M,w |=
[⊕π]ϕ iff M⊕[[π]]M , w |= ϕ. As we did with the dynamic extensions presented
for actions in ∩-models, we wish to obtain a matching proof system for our
dynamic language L ⊕. We do this via reduction axioms; the axioms and the
completeness proof can be found in the Extended version of this paper (see
Definition 29 and Theorem3 there).

Theorem 3. There exists a proof system for L ⊕ that is sound and complete
with respect to lex models.

3 The Logic of REL Models

In this section, we briefly study the logic of evidence and belief based on some
abstract aggregator. That is, instead of fixing an aggregator, we are now inter-
ested in reasoning about the beliefs that an agent would form, based on her
evidence, irrespective of the aggregator used. With respect to dynamics, we will
focus on the action of prioritized addition introduced for lex-models, consider-
ing an iterated version of prioritized addition, defined with a (possibly empty)
sequence of evidence orders R = 〈R1, . . . , Rn〉 as input.

Definition 23 (Iterated prioritized addition). Let M = 〈W, 〈R,�〉, V, Ag〉
be a REL model and R = 〈R1, . . . , Rn〉 be a sequence of evidence orders. The
model M⊕R = 〈W⊕R, 〈R⊕R,�⊕R〉, V ⊕R, Ag⊕R〉 has W⊕R := W , R⊕R :=
R ∪ {Ri | i ∈ {1, . . . n}}, V ⊕R := V , Ag⊕R := Ag and

�⊕R :=� ∪ {(R, R1) | R ∈ R} ∪ {(R, R2) | R ∈ R ∪ {R1}}
∪ . . .

∪ {(R, Rn) | R ∈ R ∪ {Rj | j ∈ {1, . . . , n − 1}}}
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That is, first R1 is added as the highest priority evidence, then R2 is added as
the highest priority evidence, on top of every other evidence (including R1), and
so on, up to Rn. When R has one element, we get the basic notion of addition.

Syntax and semantics. To pre-encode part of the dynamics of iterated priori-
tized addition, we will modify our basic language L with conditional modalities
of the form �π, where π is a finite, possibly empty sequence of evidence pro-
grams π1, . . . , πn. The intended interpretation of �πϕ is “the agent would have
aggregated evidence for ϕ, after the iterated prioritized addition of π”.

Definition 24 (Lc). The language Lc is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �0ϕ | �πϕ | ∀ϕ (p ∈ P)
π ::= A |?ϕ | π ∪ π | π;π | π∗

where π is a (possibly empty) finite sequence of evidence programs (i.e. ∗-
programs).

Notation 1. We abuse the notation for the truth map [[·]]M and write [[π]]M to
denote 〈[[π1]]M , . . . , [[πn]]M 〉, where π = 〈π1, . . . , πn〉.

As we allow π to be empty, �π reduces to the �ϕ from L when π is the
empty sequence, giving us a fully static sub-language. Satisfaction for formulas
�πϕ ∈ Lc is given by: M,w |= �πϕ iff Ag(〈R⊕[[π]]M ,�⊕[[π]]M 〉)[w] ⊆ [[ϕ]]M .
Next, we introduce a complete proof system for the language with conditional
modalities (proof of completeness in the Extended Version).

Definition 25 (Lc). The system Lc includes the same axioms and inference
rules as Llex, with axioms and inference rules for � in Llex applying to �π in Lc.

Theorem 4. Lc is sound and strongly complete with respect to REL models.

Evidence dynamics for REL models. Having established the soundness and
completeness of the static logic, we now turn to evidence dynamics, focusing on
prioritized evidence addition. To encode prioritized addition, we add formulas of
the form [⊕π]ϕ, used to express the statement that ϕ is true after the prioritized
addition of the sequence of evidence orders defined by π.

Definition 26 (L ⊕
c ). The language L ⊕

c is given by:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �0ϕ | �πϕ | ∀ϕ | [⊕π]ϕ (p ∈ P)
π ::= A |?ϕ | π ∪ π | π;π | π∗

where π is a (possibly empty) finite sequence of evidence programs (i.e. ∗-
programs).

The satisfaction for these formulas is given by M,w |= [⊕π]ϕ
iff M⊕[[π]]M , w |= ϕ. A complete system for L ⊕

c can be found in the extended
version of this paper (see Definition 36).

Theorem 5. There is a proof system for L ⊕
c that is complete w.r.t REL models.
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4 Conclusions and Future Work

We have presented evidence logics that use a novel, non-binary representation
for evidence and consider reliability-sensitive forms of evidence aggregation. Here
are a few avenues for future research. Additional aggregators: we studied two of
them. An interesting extension to this work involves developing logics based on
other well-known rules. Additional actions: in a setting with ordered evidence,
evidence actions are complex transformations, both of the stock of evidence
and the priority order. For the lexicographic case, we studied a form of pri-
oritized addition. More general actions, e.g., transforming the priority order
(re-evaluation of reliability) without affecting the stock of evidence, can be
explored. Probabilistic evidence: we moved from the binary evidence case to
the relational evidence case. Probabilistic opinion pooling [8] and pure inductive
logic [13] study the aggregation of probability functions, but a dynamic-logic
analysis is missing.
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2. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: Justified belief and the topol-
ogy of evidence. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC
2016. LNCS, vol. 9803, pp. 83–103. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-52921-8 6

3. Baltag, A., Fiutek, V., Smets, S.: DDL as an “Internalization” of dynamic belief
revision. In: Trypuz, R. (ed.) Krister Segerberg on Logic of Actions, vol. 1, pp.
253–283. Springer, Dordrecht (2014). doi:10.1007/978-94-007-7046-1 12

4. Baltag, A., Occhipinti Liberman, A.: Evidence logics with relational evidence.
Preprint arxiv:1706.05905 (2017)

5. Baltag, A., Smets, S.: Protocols for belief merge: reaching agreement via commu-
nication. Logic J. IGPL 21(3), 468–487 (2013)

6. Baltag, A., Smets, S., et al.: Talking your way into agreement: belief merge by
persuasive communication. In: MALLOW (2009)

7. Christensen, D.: Higher-order evidence. Philos. Phenomenolog. Res. 81(1), 185–
215 (2010)

8. Dietrich, F., List, C.: Probabilistic opinion pooling generalized. Part one: general
agendas. Soc. Choice Welfare 48(4), 747–786 (2017)

9. Girard, P.: Modal logic for lexicographic preference aggregation. In: van Benthem,
J., Gupta, A., Pacuit, E. (eds.) Games, Norms and Reasons. Synthese Library
(Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol.
353, pp. 97–117. Springer, Dordrecht (2011). doi:10.1007/978-94-007-0714-6 6

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic (Foundations of Computing). The
MIT Press, Cambridge (2000)

http://dx.doi.org/10.1007/978-3-662-52921-8_6
http://dx.doi.org/10.1007/978-3-662-52921-8_6
http://dx.doi.org/10.1007/978-94-007-7046-1_12
http://arxiv.org/abs/1706.05905
http://dx.doi.org/10.1007/978-94-007-0714-6_6


32 A. Baltag and A. Occhipinti

11. Kooi, B., van Benthem, J.: Reduction axioms for epistemic actions. AiML-2004:
Advances in Modal Logic, UMCS-04-9-1 in Technical Report Series, pp. 197–211
(2004)

12. Liu, F.: Reasoning about Preference Dynamics. Springer Nature, New York (2011)
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Abstract. We study pure coordination games where in every outcome,
all players have identical payoffs, ‘win’ or ‘lose’. We identify and discuss
a range of ‘purely rational principles’ guiding the reasoning of rational
players in such games and analyse which classes of coordination games
can be solved by such players with no preplay communication or con-
ventions. We observe that it is highly nontrivial to delineate a boundary
between purely rational principles and other decision methods, such as
conventions, for solving such coordination games.

1 Introduction

Pure coordination games ([11]), aka games of common payoffs ([12]), are strategic
form games in which all players receive the same payoffs and thus all players
have fully aligned preferences to coordinate in order to reach the best possible
outcome for everyone. Here we study one-step pure win-lose coordination games
(WLC games) in which all payoffs are either 1 (i.e., win) or 0 (i.e., lose).

Clearly, if players can communicate when playing a pure coordination game
with at least one winning outcome, then they can simply agree on a winning
strategy profile, so the game is trivialised. What makes such games non-trivial is
the limited, or no possibility of communication before the game is presented to
the players. In this paper we assume no preplay communication1 at all, meaning
that the players must make their choices by reasoning individually, without any
contact with the other players before (or during) playing the game.

There are many natural real-life situations where such coordination scenarios
occur. For example, (A) two cars driving towards each other on a narrow street
such that they can avoid a collision by swerving either to the right or to the
left. Or, (B) a group of n people who get separated in a city and they must each
decide on a place where to get together (‘regroup’), supposing they do not have
any way of contacting each other.

1 Note that, unlike the common use of ‘preplay communication’ in game theory to
mean communication before the given game is played, here we mean communication
before the players are even presented with the game.
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Even if no preplay communication is possible, players may still share some
conventions ([8,11,18]) which they believe everyone to follow. In (A), a collision
could be avoided by using the convention (or rule) that cars should always swerve
to the right (or, to the left). In (B), everyone could go to a famous meeting spot
in the city, e.g., the main railway station. Conventions need not be explicit
agreements, but they can also naturally emerge as so-called focal points, for
example. The theory of focal points, originating from Schelling [17], has been
further developed in the context of coordination games, e.g. in [13,20].

In this paper we assume that the players share no conventions, either. Thus,
in our setting players play independently of each other. They can be assumed to
come from completely different cultures, or even from different galaxies, for that
matter. However, we assume that it is common belief among the players that:

(1) every player knows the structure of the game;
(2) all players have the same goal, viz. selecting together a winning profile;

Initially in this paper we will only assume individual rationality, i.e. that
every player acts with the aim to win the game. Later we will assume in addition
common belief in rationality, i.e. that every player is individually rational and
that it is commonly believed amongst all players that every player is rational.

Our main objective is to analyse what kinds of reasoning can be accepted
as ‘purely rational’ and what kinds of WLC games can be solved by such rea-
soning. Thus, we try to identify ‘purely rational principles’ that every rational
player ought to follow in every WLC game. We also study the hierarchy of such
principles based on classes of WLC games that can be won by following different
reasoning principles. It is easy to see that coordination by pure rationality is not
possible in the example situations (A) and (B) above. However, we will see that
there are many natural pure coordination scenarios in which it seems clear that
rational players can coordinate successfully.

One of the principal findings of our study is that it is highly nontrivial to
demarcate the “purely rational” principles from the rest2. Indeed, this seems
to be an open-ended question and its answer depends on different background
assumptions. Still, we identify a hierarchy of principles that can be regarded
as rational and we also provide justifications for them. However, these justifica-
tions have varying levels of common acceptability and a more in-depth discussion
would be needed to settle some of the issues arising there. Due to space con-
straints, a more detailed discussion on these issues is deferred to a follow-up
work.

Coordination and rationality are natural and interesting topics that have
been studied in various contexts in, e.g., [3,6–8,19]. We note the close conceptual
relationship of the present study with the notion of rationalisability of strate-
gies [2,5,15], which is particularly important in epistemic game theory. We also
mention two recent relevant works related to logic to which the observations
and results in the present paper could be directly applied: in [10], two-player

2 Schelling shares this view on pure coordination games (see [17], p. 283, footnote 16).
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coordination games were related to a variant of Coalition Logic3, and in [1],
coordination was analysed with respect to the game-theoretic semantics of Inde-
pendence Friendly Logic.

An extended version of this paper, containing more examples and technical
details, is available as a companion technical report [9]. In addition to the the-
oretical work presented here, we have also run some empirical experiments on
people’s behaviour in certain WLC games. One of our tests can be accessed from
the link given in the technical report [9].

2 Pure Win-Lose Coordination Games

2.1 The Setting

A pure win-lose coordination game G is a strategic form game with n players
(1, . . . , n) whose available choices (moves, actions) are given by sets {Ci}i≤n.
The set of winning choice profiles is presented by an n-ary winning relation WG.
For technical convenience and simplification of some definitions, we present these
games as relational structures (see, e.g., [4]). A formal definition follows.

Definition 1. An n-player win-lose coordination game (WLC game) is
a relational structure G = (A,C1, . . . , Cn,WG) where A is a finite domain of
choices, each Ci �= ∅ is a unary predicate, representing the choices of player i,
s.t. C1 ∪ · · · ∪ Cn = A, and WG is an n-ary relation s.t. WG ⊆ C1 × · · · × Cn.
Here we also assume that the players have pairwise disjoint choice sets, i.e.,
Ci ∩ Cj = ∅ for every i, j ≤ n s.t. i �= j. A tuple σ ∈ C1 × · · · × Cn is called a
choice profile for G and the choice profiles in WG are called winning.

We use the following terminology for any WLC game G = (A,C1, . . . , Cn,WG).

– Let Ai ⊆ Ci for every i ≤ n. The restriction of G to (A1, . . . , An) is the
game G � (A1, . . . , An) := (A1 ∪ · · · ∪ An, A1, . . . , An, WG � A1 × · · · × An).

– For every choice c ∈ Ci of a player i, the winning extension of c in G is
the set W i

G(c) of all tuples τ ∈ C1 × · · · × Ci−1 × Ci+1 × · · · × Cn such that
the choice profile obtained from τ by adding c to the i-th position is winning.

– A choice c ∈ Ci of a player i is (surely) winning, respectively (surely)
losing, if it is guaranteed to produce a winning (respectively losing) choice
profile regardless of what choices the other player(s) make. Note that c is a
winning choice if W i

G(c) = C1 × · · · × Ci−1 × Ci+1 × · · · × Cn. Similarly, c is
a losing choice if W i

G(c) = ∅.
– A choice c ∈ Ci is at least as good as (respectively, better than) a choice

c′ ∈ Ci if W i
G(c′) ⊆ W i

G(c) (respectively, W i
G(c′) � W i

G(c)). A choice c ∈ Ci

is optimal for a player i if it is at least as good as any other choice of i.

3 In fact, the initial motivation for the present work came from concerns with the
semantics of Alternating time temporal logic ATL, extending Coalition Logic.
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Note that a choice c ∈ Ci is better than a choice c′ ∈ Ci precisely when c weakly
dominates c′ in the usual game-theoretic sense (see e.g. [12,16]), and a choice
c ∈ Ci is an optimal choice of player i when it is a weakly dominant choice. Note
also that c strictly dominates c′ (ibid.) if and only if c is surely winning and c′

is surely losing. Thus, strict domination is a too strong concept in WLC games.
Also the concept of Nash equilibrium is not very useful here.

Example 1. We present here a 3-player coordination story which will be used as
a running example hereafter. The three robbers Casper, Jesper and Jonathan4

are planning to quickly steal a cake from the bakery of Cardamom Town while
the baker is out. They have two possible plans to enter the bakery: either (a) to
break in through the front door or (b) to sneak in through a dark open basement.
For (a) they need a crowbar and for (b) a lantern. The baker keeps the cake on
top of a high cupboard, and the robbers can only reach it by using a ladder.

When approaching the bakery, Casper is carrying a crowbar, Jesper is car-
rying a ladder and Jonathan is carrying a lantern. However, the robbers cannot
agree whether they should follow plan (a) or plan (b). While the robbers are
quarreling, suddenly Constable Bastian appears and the robbers all flee to dif-
ferent directions. After this the robbers have to individually decide whether to
go to the front door (by plan (a)) or to the basement entrance (by plan (b)).
They must do the right decision fast before the baker returns.

The scenario we described here can naturally be modeled as a WLC game.
We relate Casper, Jesper and Jonathan with players 1, 2 and 3, respectively.
Each player i has two choices ai and bi which correspond to either going to the
front door or to the basement entrance, respectively. The robbers succeed in
obtaining the cake if both Casper and Jesper go to the front door (whence
it does not matter what Jonathan does). Or, alternatively, they succeed if
both Jonathan and Jesper go to the basement (whence the choice of Casper
is irrelevant). Hence this coordination scenario corresponds to the following
WLC game G∗ = ({a1, b1, a2, b2, a3, b3}, C1, C2, C3,WG∗), where for each player i,
Ci = {ai, bi} and WG∗ = {(a1, a2, a3), (a1, a2, b3), (a1, b2, b3), (b1, b2, b3)}. (For a
graphical presentation of this game, see Example 2 below.)

2.2 Presenting WLC Games as Hypergraphs

The n-ary winning relation WG of an n-player WLC game G defines a hypergraph
on the set of all choices. We give visual presentations of hypergraphs correspond-
ing to WLC games as follows: The choices of each player are displayed as columns
of nodes starting from the choices of player 1 on the left and ending with the
column with choices of player n. The winning relation consists of lines that go
through some choice of each player5. This kind of graphical presentation of a
WLC game G will be called a game graph (drawing) of G.

4 This example is based on the children’s book When the Robbers Came to Cardamom
Town by Thorbjørn Egner, featuring the characters Casper, Jesper and Jonathan.

5 In pictures these lines can be drawn in different styles or colours, to tell them apart.
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Example 2. The WLC game G∗ in Example 1 has the following game graph:

G∗ : a1 a2 a3

b1 b2 b3

We now introduce a uniform notation for certain simple classes of WLC
games. Let k1, . . . , kn ∈ N.

– G(k1 × · · · × kn) is the n-player WLC game where the player i has ki choices
and the winning relation is the universal relation C1 × · · · × Cn.

– G(k1 × · · · × kn) is the n-player WLC game where the player i has ki choices
and the winning relation is the empty relation. Some examples:

G(2 × 3) G(1 × 3 × 1) G(1 × 1 × 2)

– Let k ∈ N. We write G(Zk) for the 2-player WLC game in which both players
have k choices and the winning relation forms a single path that goes through
all the choices (see below for an example). Similarly, G(Ok), where k ≥ 2,
denotes the 2-player WLC game where the winning relation forms a 2k-cycle
that goes through all the choices. These are exemplified by the following:

G(Z2) G(Z3) G(O2) = G(2 × 2) G(O3)

– Suppose that G(A) and G(B) have been defined, both having the same num-
ber of players. Then G(A + B) is the disjoint union of G(A) and G(B), i.e.,
the game obtained by assigning to each player a disjoint union of her choices
in G(A) and G(B), and where the winning relation for G(A+B) is the union
of the winning relations in G(A) and G(B). Some examples:

G(1 × 2 + 1 × 0) G(2 × 1 + 1 × 2) G(1 × 1 + 2 × 2) G(Z2 + 1 × 1)

– Let m ∈ N. Then G(mA) := G(A + · · · + A) (m times). Examples:
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G(3(1 × 1 × 1))
G(2(2 × 2)) G(2Z2)

– Recall our “regrouping scenario” (B) from the introduction. If there are n
people in the group and there are m possible meeting spots in the city, then
the game is of the form G(m(1n)), where 1n := 1 × · · · × 1 (n times).

2.3 Symmetries of WLC Games and Structural Protocols

A protocol is a mapping Σ that assigns to every pair (G, i), where G is a WLC
game and i a player in G, a nonempty set Σ(G, i) ⊆ Ci of choices. Thus a protocol
gives global nondeterministic strategy for playing any WLC game in the role of
any player. Intuitively, a protocol represents a global mode of acting in any
situation that involves playing WLC games. Hence, protocols can be informally
regarded as global “reasoning styles” or “behaviour modes”. Thus, a protocol
can also be identified with an agent who acts according to that protocol in all
situations that involve playing different WLC games in different player roles.

Assuming a setting based on pure rationality with no special conventions
or preplay communication, a protocol will only take into account the structural
properties of the game and its winning relation. Thus the names of the choices
and the names (or ordering) of the players should be of no relevance. In this
section we make this issue precise. (For more details and examples, see [9].)

Definition 2. An isomorphism6 between games G and G′ is called a choice-
renaming. An automorphism of G is called a choice-renaming of G.

Let G = (A,C1, . . . , Cn,WG) be a WLC game. For a player i, we say that
the choices c, c′ ∈ Ci are i-equivalent, denoted by c 
i c′, if there is a choice-
renaming of G that maps c to c′. For each i ≤ n, the relation 
i is an equivalence
relation on the set Ci. We denote the equivalence class of c ∈ Ci by �c�i.

Definition 3. Consider n-player WLC games G = (A,C1, . . . , Cn,WG) and
G′ = (A,C ′

1, . . . , C
′
n,W ′

G). A permutation β : {1, ..., n} → {1, ..., n} is called
a player-renaming between G and G′ if the following conditions hold:

(1) Cβ(i) = C ′
i for each i ≤ n.

(2) W ′
G = { (cβ(1), . . . , cβ(n)) | (c1, . . . , cn) ∈ WG }.

If there is a player-renaming between two WLC games, the games are essen-
tially the same, the only difference being the ordering of the players.

Definition 4. Consider WLC games G and G′. A pair (β, π) is a full renam-
ing between G and G′ if there is a WLC game G′′ such that β is a player-
renaming between G and G′′ and π is a choice-renaming between G′′ and G′.
6 Isomorphism is defined as usual for relational structures (see, e.g., [4]).
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If G = G′, we say that (β, π) is a full renaming of G. We say that choices
c ∈ Ci and c′ ∈ Cj in the same game are structurally equivalent, denoted by
c ∼ c′, if there is a full renaming (β, π) of G such that β(i) = j and π(c) = c′. It
is quite easy to see that ∼ is an equivalence relation on the set A of all choices.
We denote the equivalence class of a choice c by [c].

Example 3. Consider a WLC game of the form G(1 × 2 + 2 × 1).

G(1 × 2 + 2 × 1): a1

b1
c1

a2

b2
c2

It is easy to see that 
1 has the equivalence classes {a1} and {b1, c1}, and
similarly, 
2 has the equivalence classes {c2} and {a2, b2}. Furthermore, ∼ has
the equivalence classes {a1, c2} and {b1, c1, a2, b2}. Likewise, in the game G∗ from
Example 1 the relation ∼ has the equivalence classes {a1, b3}, {b1, a3}, {a2, b2}.

We say that a protocol Σ is structural if it is “indifferent” with respect to
full renamings, which means that, given any WLC games G, G′ for which there
exists a full renaming (β, π) between G and G′, for any i and any choice c ∈ Ci,
it must hold that c ∈ Σ(G, i) iff π(c) ∈ Σ(G′, β(i)). Intuitively, this reflects the
idea that when following a structural protocol, one acts independently of the
names of choices and names (or ordering) of player roles.

It is worth noting that if we considered a framework where WLC games were
presented so that the names of the choices and players could be used to define
an ordering (of the players and their choices), things would trivialize because it
would be easy to win all games by the prenegotiated agreement to always choose
the lexicographically least tuple from the winning relation.

3 Purely Rational Principles in WLC Games

By a principle we mean any nonempty class of protocols. Intuitively, these
are the protocols “complying” with that principle. If protocols are regarded as
“reasoning styles” (or “behaviour modes”), then principles are properties of such
reasoning styles (or behaviour modes). Principles that contain only structural
protocols are called structural principles.

A player i follows a principle P in a WLC game G if she plays according
to some protocol in P. We are mainly interested in structural principles which
describe “purely rational” reasoning that involves neither preplay communica-
tion nor conventions and which are rational to follow in every WLC game. Such
principles will be called purely rational principles. Intuitively, purely rational
principles should always be followed by all rational players. Consider:

P1 := {Σ | Σ(G, i) does not contain any surely losing choices when WG �= ∅},
P2 := {Σ | Σ(G, i) contains all choices c ∈ Ci such that |W i

G(c)|
is a prime number. If there are no such choices, Σ(G, i) = Ci.}.
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If player i follows P1, then she always uses some protocol which does not select
surely losing choices, if possible. This seems a principle that any rational agent
would follow. If player i follows P2, then she always plays choices whose degree
(in the game graph) is a prime number, if possible. Note that both principles
are structural, but P1 can be seen as a purely rational principle, while P2 seems
arbitrary; it could possibly be some seemingly odd convention, for example.

We say that a principle P solves a WLC game G (or G is P-solvable), if G
is won whenever every player follows some protocol that belongs to P. Formally,
this means that Σ1(G, 1)×· · ·×Σn(G,n) ⊆ WG for all protocols Σ1, . . . ,Σn ∈ P.
The class of all P-solvable games is denoted by s(P).

In this paper we try to identify (a hierarchy of) principles that can be con-
sidered to be purely rational and analyse the classes of games that they solve.

3.1 Basic Individual Rationality

Hereafter we describe principles by the properties of protocols that they deter-
mine. We begin by considering the case where players are individually rational,
but there is no common knowledge about this being the case. It is safe to assume
that any individually rational player would follow at least the following principle.

Fundamental individual rationality (FIR):
Never play a strictly dominated choice.7

As noted before, strict domination is a very weak concept with WLC games.
Following FIR simply means that a player should never prefer a losing choice to
a winning one. Therefore FIR is a very weak principle that can solve only some
quite trivial types of games such as G(1 × 2 + 1 × 0). In general, FIR-solvable
games have a simple description: at least one of the players has (at least one)
winning choice, and all non-winning choices of that player are losing. FIR has
two natural strengthenings which can be considered purely rational:

1. Non-losing principle (NL): Never play a losing choice, if possible.
2. Sure winning principle (SW): Always play a winning choice, if possible.

Since losing choices cannot be winning choices, these principles can naturally be
put together (by taking the intersection of these principles):

Basic individual rationality (BIR): NL ∩ SW.

When following BIR, a player plays a winning choice if she has one, and else
she plays a non-losing choice. We make the following observations. (For a more
detailed justification of these claims, see the technical report [9].)

1. NL and SW do not imply each other and neither of them follows from FIR.
This can be seen by the following examples.

– The game G(1 × 1 + 1 × 1) is NL-solvable but not SW-solvable.
7 Recall, that a choice a is strictly dominated by a choice b if the choice b guarantees

a strictly higher payoff than the choice a in every play of the game (see e.g. [12,16]).
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– The game G(Z2) is SW-solvable but not NL-solvable.
2. FIR-solvable games are solvable by both SW and NL.
3. Every BIR-solvable game is either NL or SW-solvable.

Therefore we can see that the sets of games solvable by FIR, NL, SW, BIR form
the following lattice:

s(FIR) = s(NL) ∩ s(SW)

s(SW)s(NL)

s(BIR) = s(NL) ∪ s(SW)

��

� �

SW-solvable and NL-solvable games have simple descriptions: In SW-solvable
games, at least one player has a surely winning choice. In NL-solvable games,
the winning relation forms a nonempty Cartesian product between all non-losing
choices. BIR-solvable games have (at least) one of these two properties.

3.2 Common Beliefs in Rationality and Iterated Reasoning

In contrast to individual rationality, collective rationality allows players to make
assumptions on each other’s rationality. Let P be a (purely rational) principle.
When all players believe that everyone follows P, they can reason as follows:

(�) Suppose that by following P each player i must play a choice from Ai ⊆ Ci

(that is, Ai is the smallest set such that Σ(G, i) ⊆ Ai for every Σ ∈ P).
By this assumption, the players may collectively assume that the game that
is played is actually G′ := G � (A1, . . . , An), and therefore all P-compliant
protocols should only prescribe choices in G′.

If players have common belief in P being followed, then the reasoning (�) above
can be repeated for the game G′ and this iteration can be continued until a
fixed point is reached. By cir(P) we denote the principle of collective iterated
reasoning of P which prescribes that P is followed in the reduced game obtained
by the iterated reasoning of (�). Since every iteration of (�) only reduces the
players’ sets of acceptable choices (yet, keeps them nonempty), it is easy to see
that s(P) ⊆ s(cir(P)) for any principle P (see [9] for more details.)

When considering principles of collective rationality, we will apply collective
iterated reasoning. It may be debated whether such reasoning counts as purely
rational, so a question arises: if P is a purely rational principle, is cir(P) always
purely rational as well? For the lack of space we will not discuss this issue
here. We note, however, the extensive literature relating common beliefs and
knowledge with individual and collective rationality, see e.g. [5,11,14,21].
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3.3 Basic Collective Rationality

Here we extend individually rational principles of Sect. 3.1 by adding common
belief in the principles (as described in Sect. 3.2) to the picture. We first analyse
what happens with principles NL and SW. It is easy to see that the collective
iterated reasoning of NL reaches a fixed point in a single step by simply removing
the losing choices of every player. Hence s(NL) = s(cir(NL)). Collective iterated
reasoning of SW also reaches a fixed point in a single step by eliminating all
non-winning choices of every player who has a winning choice. But if even one
player has a winning choice, then the game is already SW-solvable. Therefore
s(SW) = s(cir(SW)).

However, assuming common belief in BIR, some games which are not BIR-
solvable may become solvable. See the following example.

Example 4. The game G(Z2 +1 × 1) cannot be solved with NL or SW. However,
if the players can assume that neither of them selects a losing choice (by NL)
and eliminate those choices from the game, then they (both) have a winning
choice in the reduced game and can win in it by SW.

Thus, we define the following principle:

Basic collective rationality (BCR): cir(BIR).

The above example shows that s(BIR) � s(BCR), i.e. BCR is stronger than BIR.
The games solvable by BCR have the following characterisation: after removing
all surely losing choices of every player, at least one of the players has a surely
winning choice. It is worth noting that common belief in SW is not needed for
solving games with BCR because a single iteration of cir(NL) suffices. Thus,
players could solve BCR-solvable games simply by following BIR and believing
that everyone follows NL. We also point out that the principle BCR is equivalent
to the principle applied in [10] for Strategic Coordination Logic.

3.4 Principles Using Optimal Choices

If a rational player has optimal choices (that are at least as good as all other
choices), it is natural to assume that she selects such a choice.

Individual optimal choices (IOC): Play an optimal choice, if possible.

Example 5. Recall the WLC game G∗ from Example 1. For Casper (who is carry-
ing the crowbar) it is a better choice to go to the front door than to the basement.
Likewise, for Jonathan (who is carrying the lantern) it is a better choice to go
to the basement than to the front door. Therefore the choice a1 is (the only)
optimal choice for player 1 and b3 is (the only) optimal choice for the player 3.
The player 2 (Jesper) does not have any optimal choices, but if both 1 and 3
play their optimal choices, then the game is won regardless of the choice of 2.
Therefore, the game G∗ is solvable with IOC. But since no player has winning
or losing choices in this game, it is easy to see that it is not BCR-solvable.
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By the description of BIR-solvable games, it is easy to see that they are
IOC-solvable. We will show that IOC is incomparable with BCR (in terms of
their sets of solvable games). As explained above, the game G∗ is IOC-solvable
but not BCR-solvable. Furthermore, the following BCR-solvable game GΣ is not
IOC-solvable since player 1 does not have any optimal choices and so might end
up playing a losing choice.

GΣ:

c1

b1

a1

c2

b2

a2

In order to avoid pathological cases like this we can add NL to IOC.

Improved basic individual rationality (BIR+): IOC ∩ NL

This principle is stronger than BCR (see [9]) even though it is based only on
individual reasoning. We now consider the collective version of IOC:

Collective optimal choices (COC): cir(IOC)

We can show that COC is stronger than BIR+ and therefore also stronger than
BCR (see [9]). Finally, observe that in a 2-player WLC game G where WG �= ∅
the only optimal choices are those that are winning against all non-losing choices
of the other player. Therefore, in the special case of 2-player WLC games, it is
easy to see that the hierarchy collapses as s(BCR) = s(BIR+) = s(COC).

3.5 Elimination of Weakly Dominated Choices

Usually in game-theory, rationality is associated with the elimination of strictly
or weakly dominated strategies. As noted in Sect. 3.1, strict domination is a too
strong concept for WLC games. Weak domination, on the other hand, gives the
following principle when applied individually.

Individually rational choices (IRC): Do not play a choice a when there is
a better choice b available, i.e., if W i

G(a) � W i
G(b), then i does not play a.

Note that by this definition, when a player follows IRC, she also follows NL and
IOC, and therefore s(BIR+) ⊆ s(IRC). The inclusion is, in fact, proper since the
following WLC game G# is solvable with IRC but not with BIR+.

G#:

c1

b1

a1

d1

c2

b2

a2

d2

We show in [9] that IRC is incomparable with COC. However, based on the
observations above, in the 2-player case s(COC) = s(BIR+) � s(IRC).

We next assume common belief in IRC. As commonly known (see e.g. [14]),
iterated elimination of weakly dominated strategies eventually stabilises in some
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reduced game but different elimination orders may produce different results.
However, when applying cir(IRC), the process will stabilise to a unique reduced
game since all weakly dominated choices are always removed simultaneously. By
following the next principle, players will play a choice within this reduced game.

Collective rational choices (CRC): cir(IRC)

For example, G(Z3) is not solvable with IRC, but can be solved with CRC by
doing two collective iterations of IRC. Thus s(IRC) � s(CRC). This observation
can be generalized as follows: to solve a game of the form G(Zn), the players
need n − 1 iterations of IRC. Therefore different numbers of iterations of IRC
form a proper hierarchy of CRC-solvable 2-player WLC games within s(CRC).

3.6 Symmetry-Based Principles

By only following the concept of rationality from game-theory, one could argue
that CRC reaches the border of purely rational principles. However, we now
define more principles which are incomparable with CRC but can still be
regarded as purely rational. These principles are based on symmetries in WLC
games and the assumption that players follow only structural protocols is central
here.

We begin with auxiliary definitions. We say that a choice profile (c1, . . . , cn)
exhibits a bad choice symmetry if �c1�1 × · · · × �cn�n �⊆ WG (recall Defini-
tion 2), and that a choice c generates a bad choice symmetry if σc exhibits
bad choice symmetry for every choice profile σc that contains c.

Elimination of bad choice symmetries (ECS):
Never play choices that generate a bad choice symmetry, if possible.

Why should this principle be considered rational? Suppose that a player i plays
a choice ci which generates a bad choice symmetry. It is now possible to win only
if some tuple (c1, . . . , ci−1, ci, ci+1, . . . , cn) ∈ WG is eventually chosen. However,
the players have exactly the same reason (based on structural principles) to play
so that any other tuple in �c1�1 × · · · × �cn�n is selected, and such other tuple
may possibly be a losing one since �c1�1 × · · · × �cn�n �⊆ WG.

Example 6. Here is a typical example of using ECS. Suppose that the game
graph of G has two (or more) connected components that are isomorphic to
each other. Since no player can see a difference between those components, all
players should avoid playing choices from them. With this reasoning, games like
G(1×1+2(1×2)) can be solved. Note that this game is not CRC-solvable since
no player has any weakly dominated choices.

While ECS only considers symmetries between similar choices, the next prin-
ciple takes symmetries between players into account. Consider a choice pro-
file c = (c1, . . . , cn) and let Sp

i (c) := {ci} ∪ (Ci ∩ ⋃
j �=i[cj ]) for each i (recall

Definition 4). We say that (c1, ..., cn) exhibits a bad player symmetry if
Sp

1 (c) × · · · × Sp
n(c) �⊆ WG and a choice c generates a bad player symmetry

if σc exhibits a bad player symmetry for every choice profile σc that contains c.
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Elimination of bad player symmetries (EPS):
Never play choices that generate bad player symmetries, if possible.

Here the players assume that all players reason similarly, or alternatively, each
player wants to play so that she would at least coordinate with herself in the case
she was to use her protocol to make a choice in each player role of a WLC game.
Suppose that the players have some reasons to select a choice profile (c1, . . . , cn).
Now, if there are players i �= j and a choice c′

j ∈ Cj such that c′
j ∼ ci, then the

player j should have the same reason to play c′
j as i has for playing ci. Hence,

if the players have their reasons to play (c1, . . . , cn), they should have the same
reasons to play any choice profile in Sp

1 (c)×· · ·×Sp
n(c). Winning is not guaranteed

if Sp
1 (c) × · · · × Sp

n(c) �⊆ WG.

Example 7. Consider EPS in the case of a two-player game WLC game G. If for
a given choice c ∈ C1, there is a structurally equivalent choice c′ ∈ C2 such that
(c, c′) /∈ WG, then by following EPS, player 1 does not play the choice c (and
likewise player 2 does not play the choice c′). With this kind of reasoning, some
CRC-unsolvable games like G(1 × 1 + 1 × 2 + 2 × 1) become solvable.

Note also that the game G∗ (recall Example 1) is EPS-solvable since both
choices b1 and a3 generate a bad player symmetry.

Finally, we introduce a principle that takes both types of symmetries into
account. For a choice profile c = (c1, ..., cn) let Si(c) := Ci ∩ ⋃

j [cj ] for each i.
We say that (c1, ..., cn) exhibits a bad symmetry if S1(c)×· · ·×Sn(c) �⊆ WG,
and a choice c generates a bad symmetry if σc exhibits a bad symmetry for
every choice profile σc that contains c.

Elimination of bad symmetries (ES):
Never play choices that generate bad symmetries, if possible.

It is easy to show that ECS and EPS are not comparable and that they are both
weaker than ES. Furthermore, all symmetry based principles can clearly solve
NL-solvable games, but they are incomparable with SW and all the stronger
principles. For proofs of these claims and further examples, see [9].

In a follow-up work we will address questions about compatibility of the
symmetry principles ECS and EPS with each other and with the other principles
considered so far, in particular with CRC which is the strongest of them.

3.7 Hierarchy of the Principles Presented so Far

The partially ordered diagram below presents the hierarchy of solvable games
with the principles we have presented in this paper. The principles that only
use individual reasoning have normal frames and the ones that use collective
reasoning have double frames.
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�

s(FIR)

s(SW)s(NL)

s(BIR)

s(BCR)

s(IOC)

s(BIR+)

s(COC)

s(IRC)

s(CRC)

s(ECS) s(EPS)

s(ES)

– Normal lines represent proper inclusions in both the general and 2-player case.
– Double lines represent proper inclusions in the general case. In the 2-player

case there is an identity.
– Dashed lines represent proper inclusions in the 2-player case. In the general

case the two sets are not comparable.

3.8 Beyond the Limits of Pure Rationality

How far can we go up the hierarchy of rational principles? This seems a genuinely
difficult question to answer. We now mention—without providing precise formal
definitions—two structural principles for which it would seem somewhat contro-
versial to claim them rational in our sense, but they are definitely meaningful
and natural nevertheless.

The first one is the principle of probabilistically optimal reasoning
(PR). Informally put, this principle prescribes to always play a choice that have
as large winning extension as possible. These choices have the highest probability
of winning, supposing that all the other players play randomly (but not if the
others follow PR, too: consider e.g. G(1 × 2 + 2 × 1)).

With PR one can solve games like G(1×1+2×2) that are unsolvable with all
other principles presented here. However, in G(1×1+2×2) one could also reason
(perhaps less convincingly) that both players should pick their choices from the
subgame G(1×1) since that is the ‘simplest ’ (and, also the only ‘unique’) winning
choice profile. We call this kind of reasoning the Occam razor principle (OR).
In fact, it generalises the idea of focal point [13,17,20].

Note that G(1 × 1 + 2 × 2) can be won if both players follow PR or if both
follow OR, but not if one follows PR while the other follows OR. Moreover, in
this game it is impossible for a player to follow both PR and OR. Hence, at least
one of these principles is not purely rational. Actually, it can be argued that none
of them is purely rational. It is also interesting to note that following PR can
violate the symmetry principles, as demonstrated by the game G(2(2×2)+1×1).
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3.9 Characterising Structurally Unsolvable Games

So far we have characterised several principles with different levels of justification
for being purely rational. It seems difficult to pinpoint a single strongest principle
of pure rationality, but even if such a principle existed, certain games would
nevertheless be unsolvable (assuming that purely rational principles must be
structural). The simplest nontrivial example of such a game is G(2(1 × 1)).

We now characterise the class of WLC games that are structurally unsolv-
able, i.e., unsolvable by any structural principle. We say that G is structurally
indeterminate if all choice profiles in WG exhibit a bad symmetry (recall the
definition of the principle ES). For an example the game G(1 × 2 + 2 × 1) is
structurally indeterminate, whereas the game G(1 × 1 + 2 × 2) is not.

Claim I. No structural principle can solve a structurally indeterminate game.
For a proof for this claim, see [9]. This characterisation is optimal in the

sense that all games that are not structurally indeterminate, can be solved by
some structural principle. This follows from the following even stronger claim.

Claim II. There exists a protocol Σ such that the principle {Σ} can solve all
WLC games that are not structurally indeterminate.

For a proof, see [9]. There are many games that are not structurally unsolv-
able, but in order to solve them, the players need to follow structural principles
that seem arbitrary and certainly cannot be considered purely rational. We call
such principles structural conventions. However, it is difficult to separate some
rational principles from structural conventions. This and other related concep-
tual issues will be discussed in an extended version of this paper.

4 Concluding Remarks

In this paper we have focused on scenarios where players look for choices that
guarantee winning if a suitable rational principle is followed. But it is very nat-
ural to ask how players should act in a game which seems not solvable by
any purely rational principle. If players cannot guarantee a win, it is natural
to assume that they should at least try to maximize somehow their collective
chances of winning, say, by considering protocols involving some probability dis-
tribution between their choices. Another natural extension of our framework is to
consider non-structural principles based on limited preplay communication and
use of various types of conventions. Also, studying pure dis-coordination games
and combinations of coordination/dis-coordination are major lines for further
work.
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Abstract. In this paper we study the logical principles of a common
type of network communication events that haven’t been studied from
a logical perspective before, namely network announcements, or tweet-
ing, i.e., simultaneously sending a message to all your friends in a social
network. In particular, we develop and study a minimal modal logic
for reasoning about propositional network announcements. The logical
formalisation helps elucidate core logical principles of network announce-
ments, as well as a number of assumptions that must be made in such
reasoning. The main results are sound and complete axiomatisations.

1 Introduction

Formalising reasoning about different types of interaction between multiple
agents is an active research topic in logic, artificial intelligence, knowledge rep-
resentation and reasoning, multi-agent systems, formal specification and veri-
fication, and other fields. Most modern approaches are based on modal logic.
Despite their ubiquitousness, relatively little attention has been given to for-
malising reasoning about interaction in social networks – with some notable
exceptions [2–5,8–14].

In this paper we deal with an issue that has not yet been studied in the sparse
but growing literature on logics for social networks. Existing works broadly
speaking fall in two main categories; those using formal logic to characterise
“global” network phenomena such as cascades (e.g., [2]), and those using formal
logic to capture the often subtle details of “local” social network events such as
message passing (e.g., [11]). Works in the latter category, in which the current
paper falls, have mostly been motivated by capturing events typical in Facebook -
like applications, such as privately sending a message to a friend (one-to-one
messaging). In this paper we formalise reasoning about (what we call) network
announcements in social networks, the primary communication event on, e.g.,
Twitter : the sending by one agent of a message which received simultaneously
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by a number of other agents (the sender’s followers), determined by the network
structure. We will also refer to the act of making network announcements as
tweeting.

We introduce a minimal modal logic for reasoning about network announce-
ments, having expressions of the form 〈a : θ〉ϕ with the intuitive meaning that if
agent a tweets θ, ϕ will become true. This tweeting operator is not completely
original; a very similar operator [F !ϕ] with the meaning “after I announce ϕ to
my friends” was defined semantically in [10] (and also mentioned in [11]), but
not systematically studied. In particular, the logic of network announcements,
their logical principles, axiomatic basis, and so on, has not been studied. Certain
aspects of what we call network announcements have been studied in computer
science under the term (one-to-many) multi-cast messaging [6,7], but not using
formal logic.

In this paper we restrict the beliefs of the agents, and thus also the messages
they can tweet, to be about basic propositional facts only, as opposed to higher-
order beliefs, beliefs about who follows whom, beliefs about who said what, etc.
We also make a number of additional idealising assumptions:

Sincerity Agents only tweet what they believe.
Credulity Agents believe the messages they receive.
Conservatism Agents never stop believing what they believed before.
Network stability Who follows whom after a tweet is the same as before.
Rationality Agents only believe what follows logically from their previ-

ous beliefs and the messages they receive.
Doxastic
Omniscience

Agents believe all the logical consequences of what they
believe.

These assumptions limit the applicability of the logic, but also allow us to
focus on the core concepts of network announcement epistemology. These need
to be understood before other more complex issues are addressed. We will see
that already several interesting phenomena emerge. In Sect. 6 we discuss the
prospect for extensions.

One remaining, natural assumption is the consistency of each agent’s beliefs.
Instead of building this into our models from the beginning, we develop the logic
without any assumption of consistency and then characterise classes of models
in which various consistency assumptions hold. In this paper, we will consider
two:

Weak Coherence Each agent has consistent beliefs.
Global Coherence Agents have mutually consistent beliefs.

The paper is structured as follows. In the next section we introduce the syntax
and semantics of the logic, and illustrate what it can express and discuss some of
its properties. In Sect. 3 we study logical properties in the form of valid formulas,
and the relationship between them, enabling us to form a Hilbert-style axiomatic
system that is shown to be complete in Sect. 4. A red thread, and indeed the
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crux of the completeness proof, is how formulas expressing some agents’ beliefs
or ignorance after some tweet implicitly contains information about the network
structure. In Sect. 5 we look at completeness results for some variants of the
logic, and we conclude in Sect. 6.

2 Propositional Network Announcements

Let Agnt and Prop be non-empty sets of agent names and atomic propositional
letters, respectively.

Definition 1 (Language). The language of propositional network announce-
ment logic is defined by the following grammar, where p ∈ Prop and a ∈ Agnt:

θ ::= p | ¬θ | θ ∧ θ ϕ ::= Baθ | ¬ϕ | ϕ ∧ ϕ | 〈a : θ〉ϕ.

Expressions of type θ are called message formulas or just messages; those of type
ϕ are called formulas. The usual derived propositional connectives are used, as
well as [a : θ] for ¬〈a : θ〉¬. The intended meaning of Baθ is that agent a believes
θ, while 〈a : θ〉ϕ means that a can tweet θ, after which ϕ is the case. Formulas
of the form Baθ are called belief formulas.

A model for our language has two parts: an assignment of belief states to
each agent and a “following” relation between agents. Recall that a propositional
logic valuation is a function from Prop to truth values. We denote the set of all
valuations Val. We model an agent’s belief state by a subset of Val, with no
further restrictions. Each message θ determines the set [[θ]] of those valuations
that make it true, according to the usual semantics of propositional logic.

Definition 2 (Models). A propositional network announcement model over
Agnt and Prop is a pair (F, ω), where the following relation F is a binary relation
on Agnt and the belief state function ω : Agnt → pow(Val) assigns each agent a
(possibly empty) set of valuations. We write Fa for the set {b | bFa} of followers
of a.

Note that the subset ordering of belief states is inverse to the strength of the
state, so we define ω1 ≤ ω2 iff ω2(a) ⊆ ω1(a) for every a. Any belief of a’s in
state ω1 is also a belief in state ω2.

Definition 3 (Updates). When (only) agent a’s belief state is updated with
θ, the result is the belief state function [a ↑ θ]ω. More generally, the result of
simultaneously updating all the agents in a set C of agents with θ is [C ↑ θ]ω,
where

[C ↑θ]ω(b) =
{

ω(b) ∩ [[θ]] if b ∈ C
ω(b) otherwise

Note that updating is monotonic: ω ≤ [C ↑ θ]ω. The language is interpreted in
these models as follows.
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Definition 4 (Satisfaction). A formula ϕ of the language of propositional
network announcement logic is satisfied by a model (F, ω), written F, ω |= ϕ, as
follows:

F, ω |= Baθ iff ω(a) ⊆ [[θ]]
F, ω |= ¬ϕ iff F, ω �|= ϕ
F, ω |= ϕ ∧ ψ iff F, ω |= ϕ and F, ω |= ψ
F, ω |= 〈a : θ〉ϕ iff F, ω |= Baθ and F, [Fa↑θ]ω |= ϕ

As usual we say that a formula is valid iff it is satisfied by every model. We
will also be interested in the class of models in which agents’ beliefs are mutually
consistent.

Definition 5. A model (F, ω) is weakly coherent iff ω(a) �= ∅ for every a ∈ Agnt.
It is globally coherent iff

⋂
a∈Agnt ω(a) �= ∅.

Clearly global coherence implies weak coherence but not vice versa.

2.1 A Simple Example

Figure 1 shows a model of three agents with the following beliefs (this is all they
believe, modulo logical consequence): Claire believes that the party will be at
Anna’s place (q); Bill believes that Anna’s mother is in town (p); and Anna
believes that if her mother is in town the party will not be at her (Anna’s)
place (p → ¬q). Note that the beliefs are mutually inconsistent (the model is not
globally coherent).

b

[[p]]

c

[[q]]

a

[[(p → ¬q)]]

Fig. 1. A simple model. An arrow from a to b means that a follows b.

At this point, each of the three friends have a consistent belief state (the
model is weakly coherent). Claire can tweet q, after which Anna and Bill will
also believe the party is at Anna’s place. That’s described by the formula 〈c :
q〉(Baq ∧ Bbq). Moreover, Bill can tweet p, but the formula 〈b : p〉¬Bap tells us
that still Anna would not believe p. That’s because only Claire is following Bill,
and so only she will get the message, and before she does she cannot tweet it to
Anna: ¬〈c : p〉Bap.

After Claire receives Bill’s tweet she can retweet it, and since Anna is fol-
lowing her, she will then believe her mother is in town: 〈b : p〉〈c : p〉Bap. Anna
also believes (p → ¬q), so when she receives this message she will also believe
¬q, that the party is not going to be at her place. Problems arise for Anna when
she receives both of Claire’s tweets: one indicating that the party will be at her
place, and the other that it will not. Since she is completely credulous, this will
leave her in an inconsistent state: 〈c : q〉〈b : p〉〈c : p〉Ba⊥. Neither Bill nor Claire
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suffer the same fate. In fact, both will still believe that the party is at Anna’s
place: 〈c : q〉〈b : p〉〈c : p〉(Bbq ∧ Bcq).

The possibility of inconsistent belief states can be regarded as a limitation of
our model due to the sometimes unrealistic assumption of credulity: our agents
have no way of revising their beliefs. But it can also be regarded as a feature.
Even if the agents’ beliefs are globally inconsistent, the network structure will
allow that inconsistency to emerge in some places but not in others, and this
can be described by formulas of our language.

2.2 Conditional Tweeting and Relational Semantics

The dual tweeting operator [a : θ], can be seen to be a conditional:

Proposition 1. F, ω |= [a : θ]ϕ iff if F, ω |= Baθ then F, [Fa↑θ]ω |= ϕ.

Our notation for 〈a : θ〉 and [a : θ] is no accident. Just like the diamond and
box of ordinary modal logic, they can be given a relational (“Kripke”) semantics.
(We omit the straightforward proof of the following.)

Proposition 2 (Relational Semantics). Define the relation F a
θ between

belief state functions by: F a
θ (ω1, ω2) iff ω1(a) ⊆ [[θ]] and ω2 = [Fa↑θ]ω1. Then:

F, ω |= 〈a : θ〉ϕ iff F, ν |= ϕ for some ν such that F a
θ (ω, ν)

F, ω |= [a : θ]ϕ iff F, ν |= ϕ for every ν such that F a
θ (ω, ν)

Define a function V from belief formulas to sets of belief state functions, by
V (Baθ) = {ω | ω(a) ⊆ [[θ]]}. Let W be the set of belief state functions and
let M(F ) be the (multi-)modal model (W,F, V ) and take our language to be
a language of propositional modal logic, with each belief formula considered as
a propositional variable and each announcement operator as a modal operator.
Then F, ω |= ϕ iff M(F ), ω |= ϕ.

2.3 Potential Belief, and Tracking Ghosts

An agent’s potential beliefs are those she may acquire as a result of commu-
nications from other agents. To describe these clearly we need some notation.
Given agents c0, . . . , cn and messages θ0, . . . , θn, let 〈c0 : θ0, . . . , cn : θn〉 be an
abbreviation for the sequence of tweets 〈c0 : θ0〉 . . . 〈cn : θn〉. Let �c be a vari-
able over expressions of the form c0 : θ0, . . . , cn : θn, so we can also write the
(possibly empty) sequence of tweets as 〈�c 〉. As for the basic language, we define
[�c ] as ¬〈�c 〉¬. The reversal of �c, denoted �c, is the reverse sequence of tweets
cn : θn, . . . , c0 : θ0.

Definition 6. A formula of the form 〈�c 〉Baθ is a potential belief formula. Agent
a has a potential belief that θ iff F, ω |= 〈�c 〉Baθ for some �c. (F, ω) is potentially
equivalent to (F ′, ω′) iff every agent has the same potential beliefs in (F, ω) as
in (F ′, ω′).
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In the example, Bill’s and Claire’s beliefs are always consistent, whereas
Anna’s are not. She potentially believes a contradiction. The formula 〈c : q〉〈b :
p〉〈c : p〉Ba⊥ that expresses a way in which Anna’s beliefs can become incon-
sistent is an example of a potential belief formula. The concept of potential
inconsistency gives a finer-grained picture of the initial distribution of beliefs
than merely saying they are mutually inconsistent.

Lemma 1. If (F, ω) is potentially equivalent to (F ′, ω′) and ω(a) ⊆ [[θ]], then
(F, [Fa ↑θ]ω) is potentially equivalent to (F ′, [F ′a↑θ]ω′).

Proof. Assume that (F, ω) is potentially equivalent to (F ′, ω′) and ω(a) ⊆ [[θ]].
By Definition 6, ω′(a) ⊆ [[θ]]. Then for any �c, χ, and agent b, the following are
equivalent:

F, [Fa↑θ]ω |= 〈�c 〉Bbχ
F, ω |= 〈a : θ〉〈�c 〉Bbχ by Definition 4 and ω(a) ⊆ [[θ]]
F ′, ω′ |= 〈a : θ〉〈�c 〉Bbχ by Definition 6 and assumption
F ′, [F ′a↑θ]ω′ |= 〈�c 〉Bbχ by Definition 4 and ω′(a) ⊆ [[θ]].

Theorem 1. Propositional network announcement models satisfying the same
potential belief formulas are indistinguishable: they satisfy all the same formulas.

Proof. We prove that for any pair of potentially equivalent models (F, ω) and
(F ′, ω′), F, ω |= ϕ iff F ′, ω′ |= ϕ for any ϕ by induction on ϕ. (i). The atomic case,
F, ω |= Baθ iff F ′, ω′ |= Baθ, follows directly from Definition 6. (ii). The boolean
cases are straightforward. (iii). For ϕ = 〈a : θ〉ψ, the induction hypothesis is
that for any pair of potentially equivalent models (F, ω) and (F ′, ω′), F, ω |= χ
iff F ′, ω′ |= χ for any subformula χ of ϕ – in particular for χ = ψ. The following
are equivalent:

F, ω |= 〈a : θ〉ψ
ω(a) ⊆ [[θ]] and F, [Fa↑θ]ω |= ψ by Definition 4
ω′(a) ⊆ [[θ]] and F ′, [F ′a↑θ]ω′ |= ψ by (i), i.h. and Lemma 1
F ′, ω′ |= 〈a : θ〉ψ by Definition 4.

A closely related idea is that of “tracking”.

Definition 7. Agent b tracks agent a in a model (F, ω) iff F, ω |= 〈�c 〉Baθ →
〈�c 〉Bbθ for every �c and θ.

If b tracks a then any potential belief of a is also a potential belief of b, but more
than that, their potential beliefs are synchronised, in the sense that whenever a
acquires a belief, b either acquires it at the same time or already has it.

The interesting point about tracking is that it obscures the following relation.
It is possible for an agent to track without following, perhaps by coincidence or
just because she already believes every one of some other agent’s potential beliefs.
If agent b tracks agent a, it is impossible to detect, using the logical language,
whether b follows a. We say that b is a ghost follower of a if b tracks a without
following a. Ghost followers are indistinguishable from real followers.
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3 The Logic

We consider various valid principles and properties of propositional network
announcement logic, working towards an axiomatisation (shown to be complete
in the next section): the system pNAL, shown in Fig. 3. We use � to represent
derivability in pNAL. We now introduce the axioms step by step, and along the
way present some additional properties that are derivable by the axioms we have
introduced “so far”.

3.1 The Modal Base

We have observed that the announcement operators have a relational semantics
(Proposition 2). It follows that their logic must be an extension of the modal
logic K. The belief operator B also has most of the properties of a normal
modal operator, except that substitution of propositional variables is restricted
to message formulas. By the modal base of our logic, we mean the system in
Fig. 2. The following is straightforward.

Taut � ϕ ϕ subst. inst. of prop. tautology MP if � ϕ → ψ and � ϕ then � ψ

KB � Ba(θ → χ) → (Baθ → Baχ) NecB if �0 θ then � Baθ

K: � [a : θ](ϕ → ψ) → ([a : θ]ϕ → [a : θ]ψ) Nec: if � ϕ then � [a : θ]ϕ

Fig. 2. The modal base of pNAL. �0 represents derivability in classical propositional
logic.

Proposition 3. The modal base is sound: every derivable formula is valid.

Because of this modal base, we can do standard normal modal logic reasoning
in our logic (with the syntactic restriction that θ must be propositional in Baθ),
which we will make frequent use of in the following. The base is also enough to
show that equivalent formulas can be swapped. The proof (omitted here) is a
standard induction on formulas.

Proposition 4 (Replacement of Logical Equivalents).

RLE if �0 θ ↔ χ then � Θ(θ) ↔ Θ(χ) if � ϕ ↔ ψ then � Φ(ϕ) ↔ Φ(ψ)
where Θ(χ) is the formula obtained from Θ(θ) by replacing some instances of θ
by χ or vice versa, and similarly for formulas Φ(ϕ) and Φ(ψ).

3.2 Duality and Sincerity

The following dualities are derivable using propositional logic (and replacement
of equivalents) alone:
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Proposition 5. Dual � [a : θ]¬ϕ ↔ ¬〈a : θ〉ϕ � ¬[a : θ]ϕ ↔ 〈a : θ〉¬ϕ

But the operators are also linked by our assumption of sincerity, which says that
Baθ is presupposed by 〈a : θ〉 and serves as the antecedent of [a : θ]:

Sinc [a : θ]ϕ ↔ (Baθ → 〈a : θ〉ϕ) 〈a : θ〉ϕ ↔ (Baθ ∧ [a : θ]ϕ)
These are inter-derivable using the modal base; the first is included as an axiom
in pNAL. Validity can be easily checked directly from the semantical definitions.

Proposition 6. Sinc is valid.

Sinc implies that when the precondition is satisfied, the two operators are
equivalent:

Proposition 7. Swap � Baθ → ([a : θ]ϕ ↔ 〈a : θ〉ϕ)

Using only the precondition principle Sinc and the modal base, we can show
the existence of normal forms.

Theorem 2 (Normal form). Every formula is provably equivalent to one in
conjunctive normal form or disjunctive normal form, with atoms generated by

ϕ ::= Baθ | [a : θ]ϕ | 〈a : θ〉ϕ
which is to say: sequences of diamonds and boxes ending in a belief formula.
Moreover, the modal depth of the normal form is no greater than the depth of
the original formula.

Proof. Given an arbitrary formula, first rewrite (by expanding or introducing
abbreviations) so that the only operators are ¬, ∧, Ba and [a : θ]. Then, given
RLE, we only need note that:

Red¬ � [a : θ]¬ϕ ↔ ¬(Baθ ∧ [a : θ]ϕ)
Red∧ � [a : θ](ϕ ∧ ψ) ↔ ([a : θ]ϕ ∧ [a : θ]ψ)

(Red¬ is tautologically equivalent to an instance of Sinc and Red∧ is just the
modally derivable distribution of box over conjunction.)

To see that there is no increase of modal depth (nesting of tweets), it is
enough to note that the formulas on either side of the equivalences Red¬ and
Red∧ are of the same depth.

3.3 Rational Conservative Updating

The direct effect of a tweet is captured by two axioms:
Cnsv Bbχ → [a : θ]Bbχ Rat 〈a : θ〉Bbχ → Bb(θ → χ)

Conservatism (Cnsv) is our assumption that old beliefs are retained when receiv-
ing new information. Rationality (Rat) is our assumption that agents only believe
what follows logically from their old beliefs and the content of the tweets they
receive. Note that the soundness of these axioms rely on the fact that there are
no higher-order beliefs.
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Proposition 8. Both Cnsv and Rat are valid.

Proof. For Cnsv recall the previously mentioned monotonicity of updating: ω ≤
[C ↑θ]ω. Since tweeting is a special case of updating, it is also monotonic. For Rat
consider two cases. If b is a follower of a, then b’s updated state [Fa ↑ θ]ω(b) =
ω(b) ∩ θ. But ω(b) ∩ θ ⊆ [[χ]] iff ω(b) ⊆ [[θ → χ]]. If b is not a follower of a then
[Fa ↑θ]ω(b) = ω(b) and ω(b) ⊆ [[χ]] implies ω(b) ⊆ [[θ → χ]].

The implication in Rat can be turned into an equivalence under the assump-
tion that b believes what a tweets. The following can be proved using Rat and
Cnsv.

Proposition 9. Up � 〈a : θ〉Bbθ → (〈a : θ〉Bbχ ↔ Bb(θ → χ))

Proof. One half of the equivalence is a weakening of Rat. For the other, note
that [a : θ]Bb(θ → χ) → (〈a : θ〉Bbθ → 〈a : θ〉Bbχ) is derivable by purely modal
reasoning. And Bb(θ → χ) → [a : θ]Bb(θ → χ) is an instance of Cnsv.

3.4 Following

Given the problem of ghosts described in Sect. 2.3, there can be no formula
that exactly defines the relation of following. Nonetheless, some sufficient and
necessary conditions are expressible.

Proposition 10. Given a and b, for any �c and any θ,

(Sufficient) If F, ω |= 〈�c 〉(¬Bbχ ∧ 〈a : θ〉Bbχ) then bFa.
(Necessary) If bFa then F, ω |= [�c ][a : θ]Bbθ

Proof. For the sufficient condition, suppose F, ω |= 〈�c 〉(¬Bbχ ∧ 〈a : θ〉Bbχ). Let
ω′ be the result of updating ω according to 〈�c 〉. Then F, ω′ �|= Bbχ but F, [Fa↑
θ]ω′ |= Bbχ. So ω′(b) �= [Fa↑θ]ω′(b) and so b ∈ Fa.

For the necessary condition, suppose bFa. Then either one of the precondi-
tions in evaluating [�c ] fails, and in which case the formula is satisfied, or they all
succeed. In that case, let ω′ be as before. Since b ∈ Fa, [Fa↑θ]ω′(b) = ω′(b)∩ [[θ]]
and so F, [Fa↑θ]ω′ |= Bbθ. Thus F, ω |= [�c ][a : θ]Bbθ.

Our approach to the logic, then, is to include an axiom saying that the
sufficient condition implies the necessary condition:

Foll 〈�c 〉(¬Bbχ ∧ 〈a : χ′〉Bbχ) → [�e ][a : θ]Bbθ

3.5 Network Stability

The following axiom captures the assumption that the only thing that changes
anything is tweeting events, and that an “empty” tweet (of a tautology) changes
nothing.

Null if �0 θ then � ϕ ↔ 〈a : θ〉ϕ
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Null is in fact the last axiom we need in order to get a complete axiomatic
system, as we shall see in the next section. We end this section with mentioning
two additional properties related to network stability. They are both already
derivable (follows from the completeness result in the next section).

First, tweeting does not affect the network structure; in fact, the following
relation is kept fixed. That’s our assumption of network stability. Consider the
following property:

Stab 〈b : χ〉Bcδ → [a : θ]〈b : χ〉Bcδ
Stab is a necessary but insufficient condition of network stability; and that’s the
best we can do. There is no sufficient condition available. Fortunately, we don’t
need one to get a complete axiomatisation, as we shall see in the next section.

Network stability is needed for many principles involving the iteration of
tweets; in particular, for moving a conditional tweet to the beginning of a
sequence of tweets:

Perm 〈�a 〉[b : χ]ϕ → [b : χ]〈�a 〉ϕ
Proposition 11. Null, Stab and Perm are valid.

Proof. The case for Null is trivial. We show the case for Stab, Perm is (also)
straightforward. Suppose F, ω |= 〈b : χ〉Bcδ then (1) F, ω |= Bbχ and (2) F, [Fb↑
χ]ω |= Bcδ. Now suppose F, ω |= Baθ. Then (3) F, [Fa ↑ θ]ω |= Bbχ since (1)
and [Fa ↑ θ]ω(b) ⊆ ω(b). We also have (4) F, [Fb ↑ χ]([Fa ↑ θ]ω) |= Bcδ since
[Fb↑χ]([Fa↑θ]ω) = [Fa↑θ]([Fb↑χ]ω) ⊆ [Fb↑χ]ω and (2). Thus by (3) and (4),
F, ω |= [a : θ]〈b : χ〉Bcδ.

Taut if �0 ϕ then � ϕ MP if � ϕ → ψ and � ϕ then � ψ

KB � Ba(θ → χ) → (Baθ → Baχ) K: � [a : θ](ϕ → ψ) → ([a : θ]ϕ → [a : θ]ψ)

NecB if �0 θ then � Baθ Nec: if � ϕ then � [a : θ]ϕ

Sinc � [a : θ]ϕ ↔ (Baθ → 〈a : θ〉ϕ) Cnsv � Bbχ → [a : θ]Bbχ

Rat � 〈a : θ〉Bbχ → Bb(θ → χ) Foll � 〈�c 〉(¬Bbχ ∧ 〈a : χ′〉Bbχ) → [�e ][a : θ]Bbθ

Null if �0 θ then � ϕ ↔ 〈a : θ〉ϕ

Fig. 3. Axioms and rules of pNAL.

4 Completeness

We show that the system pNAL, displayed in Fig. 3 is (strongly) complete. We
assume the usual concepts of consistency, maximal consistency, and logical clo-
sure. The Lindenbaum result that any consistent set of formulas can be extended
to a maximal consistent set holds for standard reasons. We have shown the deriv-
ability of various additional principles (Dual, Swap, and Up) that will be used
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below (Propositions 5, 7 and 9). All that remains is to use a maximal consistent
set of formulas Γ to construct a following relation FΓ and a belief state function
ωΓ for which we can prove a Truth Lemma (that FΓ , ωΓ satisfies every formula
in Γ ). So we define:

bFΓ a iff [�c ][a : θ]Bbθ ∈ Γ for all �c and θ ωΓ (a) =
⋂

{[[θ]] | Baθ ∈ Γ}.

Note that the definition of FΓ uses the set of all formulas providing necessary
conditions for following, as identified in Proposition 10. In a given model, any
ghost follower of a will also satisfy all these conditions. Our approach is to build
a model in which all trackers of a are taken to be followers.

Regarding belief formulas, the definition of ωΓ does it’s job.

Lemma 2. ωΓ (a) ⊆ [[θ]] iff Baθ ∈ Γ for any a and θ,

Proof. Right-to-left is immediate since ωΓ (a) =
⋂{[[χ]] | Baχ ∈ Γ}. For the

other direction, by completeness of propositional logic, �0 (χ1 ∧ . . . ∧ χn) → θ
for some Baχ1, . . . Baχn ∈ Γ . Then � Ba((χ1 ∧ . . . ∧ χn) → θ) by NecB and so
� (Baχ1 ∧ . . . ∧ Baχn) → Baθ by more modal reasoning using KB and NecB.
Thus Baθ ∈ Γ .

Lemma 2 is the obvious base case of an attempt to prove the Truth Lemma
by induction on the structure of formulas. But such a direct approach doesn’t
work because the clause for 〈a : θ〉 requires us to update the model. There are
several options here. A first thought is to try to construct the set of formulas
satisfied by the updated model, i.e., to find a maximal consistent set Γ ′ such that
FΓ ′ = FΓ and ωΓ ′ = [FΓ a ↑ θ]ωΓ . But the search for something satisfying the
first of these conditions is plagued by ghosts: each time the model is updated,
new ghost followers may appear. Instead, we’ll construct a Γ ′ to meet only the
second condition, using a syntactic update operation:

〈a : θ〉Γ = {ϕ | 〈a : θ〉ϕ ∈ Γ}.

Our proof of the Truth Lemma (Lemma5) will involve a strengthening of it that
quantifies over sets obtained by repeated applications of syntactic update. This
requires new notation and a some technical lemmas.

Definition 8. Define the relation � between sets of formulas as follows: Γ � Γ ′

iff Baθ ∈ Γ and Γ ′ = 〈a : θ〉Γ for some a and θ. Let ≤ be the transitive closure
of �.

Lemma 3. If Γ is a maximal consistent set and Γ ≤ Γ ′ then

1. Γ ′ is also a maximal consistent set and
2. there is a �c such that: (a) Γ ′ = 〈�c 〉Γ , and (b) [ �c]ϕ ∈ Γ iff ϕ ∈ Γ ′ for all ϕ,

where �c is the reversal of �c.
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Proof. By induction on the length of the shortest chain Γ � . . . � Γ ′. In the
base case, Γ ′ = Γ and we can take �c to be the empty sequence. So now suppose
the length of the shortest chain is strictly positive. Then there is a Γ ′′ such that
Γ � Γ ′′ ≤ Γ ′. Note that the chain Γ ′′ � . . . � Γ ′ is shorter. By definition of �,
there are a and θ such that Baθ ∈ Γ and Γ ′′ = 〈a : θ〉Γ .

1. We first show that Γ ′′ is a maximal consistent set: ¬ϕ ∈ Γ ′′ iff ¬ϕ ∈ 〈a : θ〉Γ
(by Γ ′′ = 〈a : θ〉Γ ) iff 〈a : θ〉¬ϕ ∈ Γ (by def. of 〈a : θ〉Γ ) iff ¬[a : θ]ϕ ∈ Γ (by
Dual) iff ¬〈a : θ〉ϕ ∈ Γ (by Swap and Baθ ∈ Γ ) iff 〈a : θ〉ϕ �∈ Γ iff ϕ �∈ 〈a : θ〉Γ
(by def. of 〈a : θ〉Γ ) iff ϕ �∈ Γ ′′ (Γ ′′ = 〈a : θ〉Γ ). Now, since there is a shorter
chain from Γ ′′ to Γ ′ and Γ ′′ is a maximal consistent set we can apply the
induction hypothesis, to get that Γ ′ is a maximal consistent set.

2. Also from the induction hypothesis: there is �c such that (1) Γ ′ = 〈�c〉Γ ′′

and (2) [ �c]ϕ ∈ Γ ′′ iff ϕ ∈ Γ ′ for all ϕ. So let �e = �c, a : θ. Then from
(1): Γ ′ = 〈�c 〉Γ ′′ = 〈�c 〉〈a : θ〉Γ = 〈�c, a : θ〉Γ = 〈�e 〉Γ . We get the following
equivalences: [ �e]ϕ ∈ Γ iff [a : θ, �c]ϕ ∈ Γ (def. of �e) iff [a : θ][ �c]ϕ ∈ Γ (definition
of [a : θ, �c]) iff 〈a : θ〉[ �c]ϕ ∈ Γ (Swap, Baθ ∈ Γ ) iff [ �c]ϕ ∈ 〈a : θ〉Γ (def. of
〈a : θ〉Γ ) iff [ �c]ϕ ∈ Γ ′′ (Γ ′′ = 〈a : θ〉Γ ) iff ϕ ∈ Γ ′ (2).

Lemma 3 enables us to show that belief state functions behave properly under
updates.

Lemma 4. For any m.c.s. Γ , if Γ ≤ Γ ′ and Baθ ∈ Γ ′ then [FΓ a ↑ θ]ωΓ ′ =
ω〈a:θ〉Γ ′ .

Proof. Suppose Γ ≤ Γ ′ and Baθ ∈ Γ ′. We first need a fact about propositional
logic:

Claim:
⋂{[[χ]] | θ → χ ∈ Δ}=

⋂{[[χ]] | χ ∈ Δ} ∩ [[θ]]
for any formula θ and any logically closed set Δ of formulas (of proposi-
tional logic). It can be proved easily from the deduction theorem.
By Lemma 3, Γ ′ = 〈�c 〉Γ for some �c and this is a maximal consistent set. Let

b be in Agnt. We will show that ω〈a:θ〉Γ ′(b) = [FΓ a↑θ]ωΓ ′(b). We have two cases
depending on whether or not b is tracking a:

b ∈ FΓ a Then [ �c][a : θ]Bbθ is in Γ . By Lemma 3.2, [a : θ]Bbθ is in 〈�c 〉Γ .
But Baθ is in Γ ′ and so by Swap so is 〈a : θ〉Bbθ. From this, Up tells us that
〈a : θ〉Bbχ ↔ Bb(θ → χ) is in Γ ′ for any χ, but also by definition of 〈a : θ〉Γ ′,
we know that 〈a : θ〉Bbχ ∈ Γ ′ iff Bbχ ∈ 〈a : θ〉Γ ′. Putting these together:
Bbχ ∈ 〈a : θ〉Γ ′ iff Bb(θ → χ) ∈ Γ ′.
So

⋂{[[χ]] | Bbχ ∈ 〈a : θ〉Γ ′} =
⋂{[[χ]] | Bb(θ → χ) ∈ Γ ′}

=
⋂{[[χ]] | Bbχ ∈ Γ ′} ∩ [[θ]] by Claim, with

Δ = {χ | Bbχ ∈ Γ ′}
Thus ω〈a:θ〉Γ ′(b) = [FΓ a↑θ]ωΓ ′(b)
b �∈ FΓ a Then there is some �e and some θ′ for which [�e ][a : θ′]Bbθ is not in Γ .
Foll then tells us that 〈 �c〉(¬Bbχ ∧ 〈a : θ〉Bbχ) is not in Γ for any χ. But Γ is a
maximal consistent set so it does contain [ �c](〈a : θ〉Bbχ → Bbχ). So by Lemma 2,
〈a : θ〉Bbχ → Bbχ is in 〈�c 〉Γ = Γ ′. We also have that Bbχ → 〈a : θ〉Bbχ is in
Γ ′. (This is by Cnsv and Swap since Baθ ∈ Γ ′.) Thus:
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Bbχ ∈ Γ ′ iff 〈a : θ〉Bbχ ∈ Γ ′

iff Bbχ ∈ 〈a : θ〉Γ ′ Defn. 〈a : θ〉Γ ′

Hence
⋂{[[χ]] | Bbχ ∈ 〈a : θ〉Γ ′} =

⋂{[[χ]] | Bbχ ∈ Γ ′}
Thus ω〈a:θ〉Γ ′(b) = [FΓ a↑θ]ωΓ ′(b)

Lemma 5 (Truth Lemma). FΓ , ωΓ |= ϕ iff ϕ ∈ Γ , for any formula ϕ and
m.c.s. Γ .

Proof. Let Γ be a maximal consistent set. We prove that for any Γ ′, if Γ ≤ Γ ′

then FΓ , ωΓ ′ |= ψ iff ψ ∈ Γ ′, by induction on ψ. The base case ψ = Baθ follows
from Lemma 2, and the cases for negation and conjunction are straightforward.

Consider the case that ψ = 〈a : θ〉ϕ. Note that Γ ′ is a maximal consistent
set by Lemma 3.1. The following are equivalent:

FΓ , ωΓ ′ |= 〈a : θ〉ϕ
FΓ , ωΓ ′ |= Baθ and FΓ , [FΓ a↑θ]ωΓ ′ |= ϕ by semantics (Definition 4)
Baθ ∈ Γ ′ and FΓ , [FΓ a↑θ]ωΓ ′ |= ϕ by the Baθ case, above
Baθ ∈ Γ ′ and FΓ , ω〈a:θ〉Γ ′ |= ϕ by Lemma 4, since Γ ≤ Γ ′

Baθ ∈ Γ ′ and ϕ ∈ 〈a : θ〉Γ ′ by I.H., since Γ ≤ 〈a : θ〉Γ ′

Baθ ∈ Γ ′ and 〈a : θ〉ϕ ∈ Γ ′ by definition of 〈a : θ〉Γ ′

〈a : θ〉ϕ ∈ Γ ′ by Sinc and closure of Γ ′

This completes the induction. Finally, let � be any tautology. Then Ba� by
NecB and Γ = 〈a : �〉Γ by Null. Thus Γ � Γ and so Γ ≤ Γ , and the result
follows.

When Γ is a set of formulas and ϕ a formula, we write Γ |= ϕ to mean
that any model satisfying Γ also satisfies ϕ, and Γ � ϕ to mean that there is
a theorem (ϕ1 ∧ . . . ∧ ϕn) → ϕ of pNAL for some finite sequence of formulas
ϕ1, . . . , ϕn in Γ .

Theorem 3 (Soundness and Completeness). For any Γ and ϕ, Γ |= ϕ iff
Γ � ϕ.

Proof. Soundness follows from validity of the axioms and rules (Propositions 3,
6, 8, 10 and 11). (Strong) completeness follows from the Truth Lemma.

5 Variants

We have a brief look at some natural variants of the logic.

5.1 Irreflexivity

Do agents follow themselves? We have not assumed that they don’t ; we allow
models were agents do follow themselves. Indeed, the canonical model in the
previous section is reflexive – all agents always follow themselves. However, it is
easy to see that self-following cannot be expressed in our logical language. I.e.,
we have the following property.
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Proposition 12. For any formula ϕ and any model (F, ω), F, ω |=
ϕ iff F−, ω |= ϕ, where F− is the largest irreflexive submodel of F (i.e.,
F− = F \ {(a, a) : a ∈ Agnt}).

We thus immediately get the following corollary of the results in the previous
section (by taking F to be the (reflexive) canonical following relation).

Corollary 1. pNAL is sound and strongly complete with respect to the class of
models with an irreflexive following relation.

5.2 Coherence

Our logic can easily be extended to axiomatise the class of weakly or globally
coherent models. Consider the following schemata (n ranges over positive natural
numbers):

WCoh if �0 ¬θ then � ¬Baθ
GCoh if �0 ¬(θ1 ∧ . . . ∧ θn) then � ¬(Ba1θ1 ∧ · · · ∧ Ban

θn)
Let the wCpNAL be the axiom system pNAL extended with WCoh and let gCpNAL
be the axiom system pNAL extended with GCoh. The following can be easily
checked.

Lemma 6. A model is weakly (globally) coherent iff it satisfies all inst. of WCoh
(GCoh).

From this, and the fact that the rules of the logic preserve validity on the
classes of weakly and globally coherent models, respectively, we immediately get
the following.

Theorem 4. wCpNAL and gCpNAL are sound and strongly complete with
respect to the classes of weakly and globally coherent models, respectively.

6 Discussion

In this paper we laid the groundwork for formal reasoning about network
announcements in social networks (“tweeting”). We defined a minimal modal
logic based on (not necessarily consistent) propositional beliefs and a “tweeting”
modality 〈a : θ〉, and studied the logic in detail. We believe that this detailed
study lays a solid foundation for richer frameworks to be studied in the future.
For example, the technique we used for encoding network structure using logi-
cal formulas in the completeness proof is general. We made several assumptions
clear in the beginning of the paper, some of which showed up again as axioms
of the logic. It could be interesting to investigate a weakening of some of these
assumptions starting from a syntactic angle, by weakening the axioms. Regard-
ing coherence, there is a third, natural, form that we haven’t considered in this
paper: no agent can enter an inconsistent belief state as a result of network
announcements (“local coherence”).
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There are two main and orthogonal directions for future work. The first is
extending the semantics to model agents with higher-order beliefs and possibly
even beliefs about the network structure. Higher-order beliefs would introduce a
number of subtleties and complications and would require a number of assump-
tions. For example, with higher order beliefs assumptions would have to be made
about different agents’ beliefs about the possibility of tweeting events taking
place, belief states are would no longer be monotonic under tweeting, the belief
state of the tweeter would not be static under tweeting, and so on. With incom-
plete information about the network structure, new beliefs about that structure
could actually be formed as a result of receiving tweets in certain situations. The
second direction is extending the syntax. One natural and interesting possibility
for enriching the language is to add modalities of the form 〈a〉 (where a is an
agent) quantifying over tweets, known from group announcement logic [1], where
a formula of the form 〈a〉ϕ would intuitively mean that a can make ϕ true by
tweeting some message. Such operators can potentially be used to capture many
interesting phenomena related to the information flow in social networks.

Acknowledgments. The first author is supported by Projects of the National Social
Science Foundation of China under research no. 15AZX020.

References
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Abstract. In order to reply to the contemporary skeptic’s argument
for the conclusion that we don’t have any empirical knowledge about the
external world, several authors have suggested different fallibilist theo-
ries of knowledge that reject the epistemic closure principle. Holliday [8],
however, shows that almost all of them suffer from either the problem
of containment or the problem of vacuous knowledge. Furthermore, Hol-
liday [9] suggests that the fallibilist should allow a proposition to have
multiple sets of relevant alternatives, each of which is sufficient while
none is necessary, if all its members are eliminated, for knowing that
proposition. Not completely satisfied with Holliday’s multi-path reply
to the skeptic, the author suggests a new single-path relevant alterna-
tive theory of knowledge and argues that it can avoid both the problem
of containment and the problem of vacuous knowledge while rejecting
skepticism.

1 The Skeptic’s Argument

The contemporary skeptic has no intention to deny that we have reflective or
conceptual knowledge. After all, s/he has tried to convince us by logical reason-
ings that we do not have knowledge of a certain kind. What the contemporary
skeptic does want to deny is that we have any empirical knowledge about the
external world. If you claim that you do know, say, that you have two hands,
here then is a simple argument from the contemporary skeptic trying to convince
you that you are absolutely wrong about this:1

(P1) You don’t know that you are not a brain in a vat.
(P2) You know that that you have two hands implies that you are not a brain in

a vat.
(P3) If you know that that you have two hands implies that you are not a brain

in a vat and you know that you have two hands, then you know that you are
not a brain in a vat.

(C) Therefore, you don’t know that you have two hands.

In symbols (take ψ to be ‘you are not a brain in a vat’ and ‘φ’ to be ‘you have
two hands’), the argument (P1)–(C) has the following valid form:

1 This is, in essence but not in form, Unger’s argument in Chap. 1 of [12].
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(P1) ¬Kψ
(P2) K(φ → ψ)
(P3) (K(φ → ψ) ∧ Kφ) → Kψ
(C) ¬Kφ

For the contemporary skeptic, a similar argument of the same form is always
available for any specific claim φ about the external world about which you
want to claim that you have knowledge. This argument pattern is, then, a general
weapon that the contemporary skeptic often uses to frustrate his/her optimistic
enemies. Note that the premise (P3) is an instance of a version of the so-called
‘epistemic closure principle’ (ECP). Since the argument is valid, it is sound if all
its premises are true. The important question is, of course, whether (P1)–(P3)
are true; and, if not, which premise is to be blamed.

2 Single-path Fallibilism and Its Problems

There are different replies to this question; actually, there are too many to be
discussed in a short paper. Holliday, however, has done an admirably extensive
research on quite a substantial part of these replies and points out several serious
problems about them. To see what the main problems of these replies are, let us
pick just one of them out as an example: Dreske’s ‘relevant alternative theory’,
as it is now called, in his [2–5]. For Dretske, what is wrong in the argument
is (P3) and ECP that backs it up. Dretske argues that epistemic operators
in general, and the knowledge operator ‘S knows that’ in particular, are not
fully penetrating operators; rather, they are semi-penetrating operators. Here,
an operator ‘O’ is fully penetrating iff, for whatever types of sentences φ and ψ,
Oφ implies Oψ if one knows that φ implies ψ. On the other hand, an operator
‘O’ is semi-penetrating iff, for some but not all types of sentences φ and ψ, Oφ
implies Oψ if one knows that φ implies ψ. Dretske [2] gives several examples
endeavoring to convince us that epistemic operators are not fully penetrating
but only semi-penetrating and hence ECP is not universally valid.

Why is the knowledge operator only semi-penetrating according to Dretske?
The answer has something to do with a consequence of his theory of knowledge
in [3]. Call a ¬φ-possibility w, i.e., a possibility in which φ is false, ‘an alternative
to φ’. Then, one consequence of Dretske’s theory of knowledge in [3] is that, in
order to know that φ, a subject S’s total evidence does not have to be so strong as
to exclude2 every alternative to φ; all s/he needs in order to know that φ is only
to have his/her evidence strong enough to exclude every ‘relevant’ alternative
to φ. This consequence of Dretske’s theory of knowledge is actually shared with
several other theories of knowledge, such as those of Heller [6,7], Lewis [10], Sosa
[11], and DeRose [1]. Indeed, if we define ‘fallibilism’ to be the thesis that one can
know an empirical proposition φ even if s/he has not ruled out every way that
φ could be false, it is easy to see that every theory mentioned here is a sort of

2 Or rule out, or eliminate. In what follows, ‘eliminate’, ‘rule out’, and ‘exclude’ will
be used as synonyms.
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fallibilism. Given this fallibilist conception of knowledge, it is then possible that
a (¬φ ∧ ¬ψ)-possibility w is a ‘relevant’ but unexcluded alternative to ψ though
not a ‘relevant’ alternative to φ even if one knows that φ implies ψ. Hence it is
also possible that the total evidence that a subject S has, though being strong
enough to exclude every relevant alternative to φ (so that S knows that φ), is
not good enough to exclude every relevant alternative to ψ (so that S does not
know that ψ) even if S knows that φ implies ψ. This is why the knowledge
operator is not fully penetrating according to Dretske. However, the operator is
still semi-penetrating, for, to Dretske, it is trivial, at least for an astute logician,
to say that whenever a subject S knows that φ, s/he therefore knows that (φ∨ψ)
as well (giving that s/he also understand ψ) and that whenever S knows that
(φ ∧ ψ), s/he therefore knows that φ (and knows that ψ too).

Borrowing from Heller [6] the idea that we treat the relevance relation men-
tioned here in a way similar to that logicians treat the similarity relation in
conditional logic, Holliday [8] suggests that we formalize Dretske’s theory of
knowledge by what he calls ‘RA models’ and ‘D-semantics’. An RA model (short
for ‘a relevant alternatives model’) M is a tuple <WM, ⇒M, ≤M, VM > that
satisfies conditions 1–4 (where At is the set of all atomic sentences in a formal
propositional language with a modal operator ‘K’):

1. WM is a non-empty set;
2. ⇒M is a reflexive binary relation on WM;
3. ≤M assigns to each w ∈ W a binary relation ≤w

M on some field Ww
M ⊆ WM

such that:
3.1 ≤w

M is reflexive and transitive in Ww
M (preorder), and

3.2 w ∈ Ww
M, and for all v ∈ Ww

M, w ≤w
Mv (weak centering);

4. VM: At → P(WM).

Here, ‘w ⇒M v’ is intended to mean that v is not eliminated by the subject
S’s total evidence at w, while the preorder relation ≤w

M orders worlds in Ww
M

according to how relevant they are to w. Given a model M and a world w of it,
the truth condition for sentences of the form ‘Kφ’ is defined as follows (This is
what Holliday [8] calls ‘D-semantics’):

M, w |= K φ iff ∀v ∈ Min≤w
M

[¬φ]M: not w ⇒M v;

where [¬φ]M = {v ∈ WM | M,v |= ¬φ} and Min≤w
M

[¬φ]M = {v ∈ [¬φ]M∩Ww
M |

¬∃u(u ∈ [¬φ]M ∧ u ≤w
M v ∧ ¬v ≤w

M u)}. Thus, the clause for ‘Kφ’ in effect says
shat ‘Kφ’ is true at a world w in a model M iff all of the most relevant ¬φ-worlds
in Ww

M are eliminated by S’s total evidence at w. Validity (‘D-validity’) is then
defined as truth-preserving in all worlds of all models.

With the help of these definitions, Holliday [8] proves several interesting
and surprising results about D-semantics. In particular, he proves that ‘(Kφ
∧ K(φ → ψ)) → Kφ’ is not D-valid. This is supposed to be a good news for
Dretske, for RA models and D-semantics are supposed to reflect the essential
features of Dretske’s relevant alternative theory of knowledge. This result shows
that Dretskes knowledge operator ‘S knows that’ is indeed not fully penetrating.
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There is, however, another related result: it can also be shown that many simple
epistemic closure principles, including ‘K(φ ∧ ψ) → Kφ’ and ‘Kφ → K(φ ∨ ψ)’,
are not D-valid either. Holliday calls this ‘the problem of containment’ of D-
semantics, i.e., the problem that invalidity tends to spread out all over the realm
of epistemic closure principles3 even to cover some intuitively very plausible
closure principles, and he thinks that this should be a bad news for Dretske: it
shows that Dretske’s knowledge operator is, contrary to what Dretske thinks,
not semi-penetrating either. These results therefore point to a dilemma for a
relevant theory like Dretske’s: either skepticism or the problem of containment.

Dretske’s relevant alternative theory of knowledge is by no means the only
victim of this problem. Holliday [8] goes on to show that each of the fallibilist
theories – Lewis’s, Dretske’s, Heller’s, Sosa’s, and DeRose’s – that he investigates
in [8] faces a similar trilemma: either skepticism, or the problem of containment,
or the problem of vacuous knowledge, where a theory of knowledge has the
problem of vacuous knowledge if it allows a subject S to have knowledge about
a proposition φ without requiring S’s total evidence to be able to eliminate any
alternative to φ. It is then a natural guess that these negative results may apply
quite generally to fallibilist theories of a certain sort. Indeed, all these negative
results about the cited theories and the possible generalization are nicely put
together by a theorem that Holliday proves in [9]. Call a fallibilist theory of
knowledge ‘a standard single-path theory’ (or ‘a standard theory’ or ‘a single-
path theory’ for short) if it associates a unique set of ‘relevant alternatives’ with
each proposition-world pair <φ,w> such that the necessary and sufficient con-
dition for S to know φ at w is for S to evidentially eliminate the associated set of
relevant alternatives. In terms of the notion of a function, an essential element of
a single-path fallibilist theory of knowledge is a two-place function r that assigns
a unique set of possibilities, rM(<φ,w>) ⊆ WM, to each proposition-world pair
in a model M.4 Holliday [9, Sect. 2] then proves the following proposition:

3 Following Holliday, we call a sentence of the form ‘an epistemic closure principle’:

φ0 ∧ Kφ1 ∧ . . . ∧ Kφn → Kψ1 ∨ . . . ∨ Kψm,

where ‘φ0’ is a propositional conjunction, i.e., a conjunction none of whose conjuncts
contains an occurrence of ‘K’. When n is equal to 1, we call such an epistemic closure
principle ‘a single-premise epistemic closure principle’. When n is greater than 1,
we call such an epistemic closure principle ‘a multiple-premise epistemic closure
principle’.

4 For example, in Holliday’s formalization of Dretske’s relevant alternative theory, the
function r is such that, for every model M, world w, and proposition φ, rM(w, φ) =
Min≤w

M
[¬φ]M = {v ∈ [¬φ]M∩Ww

M | ¬∃u(u ∈ [¬φ]M ∧ u ≤w
M v ∧ ¬v ≤w

M u)}.
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Proposition 1. For any model M, world w, and area Σ,5 the following princi-
ples are jointly inconsistent in the ‘standard’ fallibilist picture:6

contrast/enoughΣ – ∀φ ∈ Σ: rM(φ, w) ⊆ (WM – [φ]M);
e-fallibilismΣ – ∃φ ∈ Σ ∃ψ ∈ Σ: rM(φ, w) ⊆ [ψ]M and it is not the case

that (Ww
M – [φ]M) ⊆ [ψ]M;

noVKΣ – ∀φ ∈ Σ: (Ww
M∩[φ]M) �= Ww

M implies rM(φ, w)�= ∅;
TF-coverΣ – ∀φ ∈ Σ ∀ψ ∈ Σ: if ψ is a TF-consequence of φ, then rM(ψ,

w) ⊆ rM(φ, w).

Here, contrast/enoughΣ says that, for every sentence φ (in Σ), every alter-
native to φ at w is a ¬φ-world of the model M, while e-fallibilismΣ in effect
says that, for at least some sentence φ, not every ¬φ-world in Ww

M is a rele-
vant alternative to φ at w. NoVKΣ demands that, for every sentence φ and
world w, the set of relevant alternatives for <φ,w> must not be empty if φ
is not true in every world in Ww

M, while TF-coverΣ ensures us that all single-
premise epistemic closure principles of the form ‘(φ0 ∧ Kφ) → Kψ’ will be valid
if ψ is a truth-functional consequence of φ. Proposition 1 then asserts that no
standard fallibilist theory can satisfy all of these four principles. In short, what
Proposition 1 says is that a single-path e-fallibilist theory of knowledge (i.e., a
standard fallibilist theory of knowledge that satisfies e-fallibilismΣ) that iden-
tifies every relevant alternative to φ with some ¬φ-possibility cannot avoid both
the problem of vacuous knowledge and the problem of containment. This seems
to be a terribly bad news for the fallibilist. What can the fallibilist do with it?

3 Holliday’s Multi-path Approach

For Holliday, what the fallibilist should learn from the bad news is that s/he
should abandon both contrast/enoughΣ and the ‘single-path assumption’ if
s/he is to maintain both noVKΣ and TF-coverΣ and therefore avoid the prob-
lem of vacuous knowledge and that of containment. That is, s/he should abandon
both the idea that a relevant alternative to a proposition φ (at w) is always some
¬φ-possibility and the assumption that for every proposition-world pair <φ,w>
there is a unique associated set S of relevant alternatives such that the necessary
and sufficient condition for a person to know φ at w is for him/her to evidentially
eliminate relevant alternatives in S.

Holliday [9] further thinks that there are independent reasons for abandoning
contrast/enoughΣ and the single-path assumption, but what are these? He

5 An area Σ is a set of sentences such that if φ ∈ Σ and ψ is truth-functional conse-
quence of φ, then ψ ∈ Σ. Note that where I talk about a model M and a world w,
Holliday [9] talks about a context C and a scenario w; the terminological difference
here is unimportant.

6 Where I use the phrase ‘standard fallibilist picture’ Holliday [9] uses the phrase
‘standard relevant picture’. Again, I think the terminological difference here is unim-
portant.
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asks us to consider a disjunction ‘p ∨ q’ as an example. There seem, Holliday
says, to be at least three ‘paths’ to know it: one could start by eliminating the set
of all relevant ¬p-alternatives and thereby knowing ‘p ∨ q’ via knowing ‘p’, or
by eliminating the set of all relevant ¬q-alternatives and thereby knowing it via
knowing ‘q’, or by eliminating the set of all relevant ¬(p ∨ q)-alternatives and
thereby knowing it directly. More importantly, these three sets (the set of relevant
¬p-alternatives, that of relevant ¬q-alternatives, and that of relevant ¬(p ∨
q)-alternatives) may all be different, and this is the reason why the fallibilist
should give up the single-path assumption. Furthermore, all or some of the ¬p-
alternatives (or ¬q-alternatives) may also be q-scenarios (or p-alternatives) and
therefore be (p ∨ q)-alternatives as well. If this is the case, then one can know ‘p
∨ q’ by eliminating some or all (p ∨ q)-alternatives, and this is the reason why
the fallibilist should give up contrast/enoughΣ.

Assuming that Holliday is right about this (I will come back to this in Sects. 4
and 5), the fallibilist has no choice but to accept what Holliday calls ‘the multi-
path picture of knowledge’ according to which neither single-path assumption
nor contrast/enoughΣ principle should be retained, if s/he is to maintain both
noVKΣ and TF-coverΣ. Indeed, Holliday [9] goes on to propose one such the-
ory. A few preliminaries is, however, needed in order to understand his proposal.
Let L be an ordinary propositional language with a non-truth-functional connec-
tive ‘K’. Call a sentence of L ‘a TF-atomic’ if it is either a propositional symbol
or a sentence whose main connective is ‘K’. Call any TF-atomic or its negation
‘a TF-basic’ and call a disjunction of any number of TF-basics ‘a clause’. A sen-
tence φ is in canonical conjunctive normal form (CCNF) iff φ is a conjunction
of any number of nontrivial clauses (a nontrivial clause is a clause that does
not include both ‘p’ and ‘¬p’ as its disjuncts) such that, for each TF-atomic
p∈at(φ) (at(φ) is the set of TF-atomics that occur in φ), each clause of φ con-
tains either ‘p’ or ‘¬p’. Given these definitions, each sentence φ that is not a
tautology is truth-functionally equivalent to a sentence φ′ in CCNF with at(φ)
= at(φ′) (call the latter ‘CCNF(φ)’) that is unique up to reordering of the con-
juncts and disjuncts. Now, if φ is a sentence in CCNF, we let c(φ) to be the
set of all subclauses C of conjuncts in φ such that every nontrivial superclause
C′ of C, with at(C′) = at(φ), is a conjunct of φ.7 It is provable that c(φ) is
the set of all nontrivial clauses C with at(C) ⊆ at(φ) that are TF-consequences
(truth-functional-consequences) of φ.

We can now explain how multiple sets of relevant alternatives to a pair
<φ,w> are to be determined according to Holliday.8 Given an RA model M and
the alternatives function rM defined in it,9 we define inductively a multi-path
relevant alternative function rrM for sentences in CCNF:

7 If a clause C′ can be obtained by adding zero or more disjuncts to C, then C′ is a
superclause of C, and C is a subclause of C′: e.g., ‘(p ∨ ¬q ∨ r)’ is a superclause of
‘(p ∨ ¬q)’ and a subclause of ‘(p ∨ ¬q ∨¬s ∨ r)’.

8 What follows is not the only way that multiple sets of relevant alternatives can be
assigned to a proposition at a world, but it seems to be a quite natural way to do so.

9 See footnote 5 for how it is to be defined.
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(1) For any clause C standing alone, rrM(C, w) = {rM(C′, w)| C′ is a subclause
of C};

(2) For any CCNF which is a conjunction ‘C1 ∧ . . .∧ Cn’ of clauses with c(C1 ∧
Cn) = {ψ1, . . . , ψm}; we define rrM(C1 ∧ . . .∧ Cn, w) = {A ⊆ WM | ∃A1 ∈
rrM(ψ1, w) . . .∃Am ∈ rrM(ψm, w): A = ∪1≤i≤m Ai};

We then define rrM for sentences in general as follows:

• rrM(φ, w) = rrM(CCNF(φ), w), for every sentence φ of L that is not a truth-
functional tautology.10

The idea behind the definition of rrM is simple: (1) says that any path to know a
subclause of a clause is a path to know the clause, which is a generalization of the
idea that any path to know a disjunct of a disjunction is a path to know the dis-
junction; and (2) says that knowing a conjunction of clauses requires doing enough
epistemic work to know each of the clauses that are TF-consequences of the con-
junction. With the multi-path relevant alternative function rrM in hand, Holliday
[9] proposes the following truth-condition for sentences of the form ‘Kφ’:

• M,w |= Kφ iff ∃A∈ rrM(φ,w): A∩{v | w ⇒M v} = ∅.

Call any member of rrM(φ,w) ‘a relevant alternative set for φ at w’, the above
condition then says that ‘S knows that φ’ is true at w in M iff S eliminates all
alternatives in at least one of the relevant alternative sets for φ at w.

Holliday [9] then proves beautifully that the following conditions are jointly
consistent11 for the multi-path relevant alternative function rrM:

e-fallibilismmulti – ∃φ∃ψ∃A(A∈ rrM(φ, w) ∧ A⊆ [ψ]M) and it is not the
case that (Ww

M – [φ]M) ⊆ [ψ]M;
noVKmulti – ∀φ: (Ww

M∩[φ]M) �= Ww
M implies that ∅ /∈ rrM(φ, w);

TF-covermulti – ∀φ∀ψ: if ψ is a TF-consequence of φ, then ∀A(A∈ rrM(φ,
w)→∃B(B∈ rrM(ψ, w) ∧ B ⊆ A)).

Here, the principles e-fallibilismmulti, noVKmulti, and TF-covermulti are mul-
tipath versions generalized from e-fallibilismΣ, NoVKΣ, and TF-coverΣ that
we saw earlier in Proposition 1 of Sect. 2. In effect, e-fallibilismmulti says that,
at least for some sentence φ and some relevant alternative set A for φ at w, not
every ¬φ-world in Ww

M is included in A, and this amounts to saying that elimi-
nating all alternatives in Ww

M to the proposition φ is not a necessarily condition
for knowing that φ at w. NoVKmulti demands that, for every sentence φ, no
relevant alternative set for φ at w should be empty if φ is not true at every world
in Ww

M, while TF-covermulti ensures us that all single-premise epistemic closure
principles of the form ‘(φ0 ∧ Kφ) → Kψ’ will be valid if ψ is a truth-functional
consequence of φ. Moreover, the above semantics allows the fallibilist to prove
10 If φ is a truth-functional tautology, we define rrM(φ, w) = rrM((p ∨ ¬p), w).
11 More correctly, the following conditions and several others are jointly consistent.

But these extra ones are not important for my purpose in this paper.
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that the epistemic closure principle ECP that lies behind the skeptic’s argument
is actually invalid and therefore is able to avoid the skeptic’s conclusion. In short,
the above result assures the fallibilist that s/he can reject skepticism and at the
same time avoid both the problem of containment and the problem of vacuous
knowledge – what a release for the fallibilist! What else can the fallibilist expect?

4 Single-path Approach Revisited

Holliday’s proposal is indeed a very nice one, yet, for several reasons that can-
not be explained here due to the limit of space, I have some qualms about it.
One reason for my uneasiness about his proposal is the worry that Holliday may
actually require the reliabilist to abandon too much to escape the impossibility
result, i.e., Proposition 1 of Sect. 2. Recall that the impossibility result says that
it is impossible for the reliabilist to consistently embrace the following four prin-
ciples at once: contrast/enoughΣ, e-fallibilismΣ, noVKΣ, and TF-coverΣ.
I believe that Holliday’s proof of the result is not questionable. However, the
reliabilist may wonder why, in the face of the result, s/he could not simply drop
one of the four principles out of the picture and retain the central idea that, for
each sentence of the language, there is a unique set of relevant alternatives for
that sentence. Since Holliday has not proved that this position is impossible, it
is at least worthwhile to try to work it out. And this is exactly what I am going
to do in this section.

I will begin with a few interesting ideas proposed by Heller. Heller [7, p. 201]
proposes the following necessary condition (the so-called ‘ERA’ condition, short
for ‘expanded relevant alternatives’) for S to know that φ:

(ERA) S knows that φ only if S doesn’t believe φ in any of the closest
¬φ-world or any more distant ¬φ-worlds that are still close enough.

Note that Heller actually uses the phrase ‘S doesn’t believe φ in a relevant
¬φ-world w’ to paraphrase Dretske’s phrase ‘S can rule out the ¬φ-world w’, so,
for the sake of brevity and easy comparison, we can also write ERA as:

(ERA*): S knows that φ only if S can rule out both the closest ¬φ-worlds
and all ¬φ-worlds that are close enough.

To make Heller’s idea more precise, we may take an epistemic model for
Heller, or an H-model, M to be a tuple <WM, $M, ⇒M, VM> that satisfies:12

1. WM is a non-empty set.
2. $M is a function from WM to P(P(WM)) that is weakly centered, nested,

closed under unions and nonempty intersection, and satisfies Limit Assump-
tion.

12 Holliday [8] formalizes Heller’s ideas in [6,7] differently. Due to limit of space, how-
ever, I will not explain how he formalizes it, nor compare mine formalization with his.
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3. ⇒M is a reflexive binary relation on WM and contains every such pair <w, v>
that v ∈ (WM – ∪$wM). (We will write ‘∪$M(w)’ as ‘∪$wM’.)

4. VM: At → P(WM).

Here, for each world w, the ‘sphere function’ $ orders a part of worlds, ∪$wM, by
putting them into ‘spheres’ that are nested, closed under unions and nonempty
intersection relations with a smallest sphere inside. The smaller a sphere is,
the more relevant worlds in it are to w. Again, ‘w ⇒M v means that v is not
eliminated or not ruled out by the subject S’s total evidence at w. The stipulation
that ⇒M contains every pair < w, v > such that v ∈ (Ww

M – ∪$wM) embodies
the idea that those worlds in WM – ∪$wM are all too remote to be eliminable
by the total evidence of the subject at w. (I will have more to say about the
justification of this stipulation at the end of this paper.)

Given an H-model M = <WM, $M, ⇒M, VM>, a world w ∈ WM, a formula
φ in the epistemic language L, we define the truth-condition for M,w |= Kφ as
follows (call this ‘H*-semantics’13):14

M, w |= Kφ iff rM(φ,w) ∩ {v | w ⇒M v} = ∅.

The condition says that the subject knows that φ iff s/he rules out all relevant
alternatives to φ. H*-validity is then defined in the usual way. What is crucial
here is how should we define the single-path relevant function rM. In view of
(ERA*), it is tempting to define rM(φ, w) as the union of the set of the closest
¬φ-worlds to w and the set of those ¬φ-worlds that are close enough to w for
whatever sentence φ and world w. However, if we defined rM in this uniformed
way, the resultant semantics will not be able to avoid the problem of containment.
So, how are we going to define rM?

This is how: we define rM(φ, w) in such a way that different types of sentences
get different definitions. To be a bit more precise: we preserve Heller’s suggestion
(ERA*) for TF-basics only (recall that a sentence of L is TF-atomic if it is either
a propositional symbol or a sentence whose main connective is ‘K’ and that any
TF-atomic or its negation is a TF-basic), accommodate a part of Holliday’s
insights into our treatment of disjunctions, adjust a bit Holliday’s treatment of
conjunctions, and then follow Holliday’s suggestion to identify rM(φ, w) with
rM(CCNF(φ), w) for every sentence φ. The following definitions then shows the
details of these ideas. First, we define Min≤w

M
[φ]M to be the empty set ∅ if [φ]M

= ∅. However, if [φ]M �= ∅, we define Min≤w
M

[φ]M to be the intersection of [φ]M
and the smallest sphere S of $M(w), if there is one, such that [φ]M∩S �= ∅, and
we define it to be [φ]M if otherwise. In words, Min≤w

M
[φ]M (the set of the closest

φ-worlds) is empty if φ is impossible, and it is the set of closest φ-worlds to w in

13 I call the semantics ‘H*-semantics’ in order not to confuse it with Holliday’s
H-semantics in [8]. Readers should be able to see the similarity between H*-semantics
as proposed here and D-semantics that we discussed in Sect. 2.

14 Holiday [8] gives a different semantics (what he calls ‘H-semantics’) for Heller [6,7].
Again, due to the limit of space, however, I will not explain how he formalizes it,
nor compare my formalization with his.
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∪$wM if there is some φ-world in ∪$wM; otherwise it is just the set of all φ-worlds.
Given an H-model M and a world w, we then define ‘the’ relevant set for any
sentence in CCNF inductively as follows:

(r1) rM(p, w) = Min≤w
M

[¬p]M∪(∪$wM∩[¬p]M) if p is a TF-basic;
(r2) if [p1 ∨ . . .∨ pn]M = WM, then rM(p1 ∨ . . .∨ pn, w) = ∅;15

(r3) if [p1 ∨ . . .∨ pn]M �=WM, then:16

(a) rM(p1 ∨ . . .∨ pn, w) = ∪$wM∩([¬pi1 ]M∩ . . . ∩[¬pim ]M), where 1 ≤ ij ≤ n
for each j between 1 and m, if ‘pi1 ’ . . . ‘pim ’ are those and only those
disjuncts in (p1 ∨ . . .∨ pn) such that (∪$M(w)∩[¬pij ]M) �= ∅ for each ij ;
and

(b) rM(p1 ∨ . . .∨ pn, w) = ∩{rM(pi, w) | 1 ≤ i ≤ n}, if there is no such
disjunct;

(r4) rM(C1 ∧ . . .∧ Cn, w) = ∪{rM(A, w) | A ∈ c(C1 ∧ . . .∧ Cn)}.

(r1) asserts that (ERA*) is a correct principle for all TF-basics: the subject S
knows a TF-basic φ at w iff17 S has ruled out both the closest ¬p-worlds (i.e.,
worlds in Min≤w

M
[¬p]M) and all ¬p-worlds that are close enough to w (i.e., worlds

in ∪$wM∩[¬p]M). (r2) says that, if a disjunction is a necessary truth in M (call
such a clause ‘an r2-clause in M’), then no ¬φ-world in M is relevant for knowing
it at w (since there is no ¬φ-world in M at all). (r3a) says that, if a clause ‘(p1

∨ . . .∨ pn)’ is not a necessary truth in M and if ‘pi1 ’ . . . ‘pim ’ are all those and
only those disjuncts in it that are not true all over ∪$M(w) (call such a clause
‘an r3a-clause in M’), then the set of relevant alternatives to ‘(p1 ∨ . . .∨ pn)’ at
w is the set of worlds in ∪$M(w) that falsify all of these ‘pi1 ’ . . . ‘pim ’. However,
if every disjunct in ‘(p1 ∨ . . .∨ pn)’ is true all over ∪$M(w) (call such a clause
‘an r3b-clause in M’), then (r3b) says that the set of relevant alternatives to ‘(p1

∨ . . .∨ pn)’ is the intersection of all relevant alternative sets of its disjuncts, i.e.,
the set of worlds in WM that falsify all of its disjuncts. (r4) says that knowing a
conjunction of clauses requires doing enough epistemic work to know each of the
clauses that are TF-consequences of the conjunction. Finally, for any H-model
M and any world w, we define rM(φ, w) to be rM(p ∨ ¬p, w) if φ is a tautology
and define rM(φ, w) to be rM(CCNF(φ), w) if φ is not a tautology (recall that
CCNF(φ) is a sentence φ′ of CCNF that is truth-functionally equivalent to φ
with at(φ) = at(φ′)).

What will the fallibilist get from the above definition for rM(φ, w)? We can
prove that the epistemic closure principle (ECP) is invalid in H*-semantics while
the following two conditions holds for every φ and ψ at every world w in every
H*-model M:

15 When n = 1, this case reduces to case (r1).
16 When n = 1, this case also reduces to case (r1).
17 Heller takes (ERA*) to be merely a necessary condition, yet, for the sake of simplicity,

I take it to be both a necessary and a sufficient condition. As far as I can tell, nothing
important hinges on this difference for the purpose of this paper.
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noVKH* – ∀φ: (∪$wM∩[φ]M) �= ∪$wM implies rM(φ, w) �= ∅;
TF-coverH* – ∀φ∀ψ: if ψ is a TF-consequence of φ and rM(φ, w)⊂∪$wM,

then rM(ψ, w) ⊆ rM(φ, w).

noVKH* demands that, for every sentence φ of L, the set of relevant alternatives
for < φ,w > must not be empty if φ is not true at every world that is close
enough to w, while TF-coverH* ensures us, whose proof I omit, that all single-
premise epistemic closure principles of the form ‘(φ0 ∧ Kφ) → φ’, where ψ is a
TF-consequence of φ, will be valid. Since rM(φ, w), as defined in this section,
can satisfy both noVKH* and TF-coverH* while invalidates ECP, the above
results therefore show that H*-semantics with its single-path relevant function
rM(φ, w) enables the fallibilist to reject skepticism and to avoid the problem
of containment and the problem of vacuous knowledge at the same time. Due
to the limit of space, however, I will leave the proof of these claims to a fuller
version.

5 Comparison and Discussion

We are now in a position to briefly compare my proposal with Holliday’s of
Sect. 3. There are some similarities as well as dissimilarities between the two
proposals. Some similarities between them are easily seen: both proposals rely
upon identifying rM(φ, w) with rM(CCNF(φ), w), both avoid the skeptic’s con-
clusion by invalidating the multi-premise epistemic closure principle ECP, both
avoid the problem of vacuous knowledge18, and both avoid the problem of con-
tainment. Besides, there is one more thing common in both proposals: both agree
that, in some cases, one can know a sentence φ by just ruling out relevant alter-
natives at which φ is true, and both thereby reject contrast/enoughΣ. This is
possible for H*-semantics mainly because of (r3a), as illustrated by the following
example: if ‘p’ is not but ‘q’ is a ‘heavy-weight proposition’, i.e., a proposition
that is true all over ∪$wM, then the set of relevant alternatives of ‘p ∨ q’, accord-
ing to (r3a), will be those ¬p-worlds within ∪$wM, and these might well all be
q-worlds and therefore all be (p ∨ q)-worlds as well. In case that they are, one
thereby knows ‘p ∨ q’ by just ruling out (p ∨ q)-worlds within ∪$wM.

To be sure, the more significant thing to do is to compare the dissimilarities
between the two proposals. Again, some dissimilarities between them are easily
seen. For example, my proposal is, while Holliday’s is not, a single-path rele-
vant alternative theory in the sense that it proposes that, for each sentence of
the language, there is a unique set of relevant alternatives associated with that
sentence in such a way that one needs to eliminate all of them in order to know
that sentence is true. I take this to be a major advantage of my proposal over
Holliday’s, in view of the potentially chaotic proliferation of relevant alternative
sets in his proposal. For another example, while both proposals suggest that the

18 Compare Holliday’s noVKmulti with my noVKH*. If we identify Ww
M in noVKmulti

with ∪$w
M in noVKH*, it can be seen vividly that the two results are essentially the

same.
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content of rM(φ, w) depends on the content of rM(CCNF(φ), w), my proposal
does not, while Holliday’s does, demand that the number of members in rM(φ,
w) also depends on rM(CCNF(φ), w). I take this feature of Holliday’s proposal
to be an ad hoc one, and my proposal certainly avoids it.

There is, however, a difference between the two proposals that some people
might think that it indicates an important advantage of Hollidays proposal over
mine (though I will argue shortly that this is not the case). Consider the princi-
ple e-fallibilismmulti that Holliday shows it to be compatible with noVKmulti

and TF-covermulti:

e-fallibilismmulti – ∃φ∃ψ∃A(A∈ rrM(φ, w) ∧ A⊆ [ψ]M) and it is not the
case that (Ww

M – [φ]M) ⊆ [ψ]M

Since my proposal does not allow a variant of e-fallibilismmulti to be compatible
with the other two principles that my proposal validates, viz., noVKH∗ and TF-
coverH∗, some people may take this difference as indicating an important merit
of Holliday’s proposal and a serious defect of mine. This conclusion, however,
is an over-statement. While my proposal, indeed, does not allow noVKH∗ and
TF-coverH∗ to be compatible with a variant of e-fallibilismmulti, it nonethe-
less allows them to be compatible with the following principle:

fallibilismH* – ∃φ∃ψ∃w: rM(φ, w) ⊆ [ψ]M and it is not the case that
(WM – [φ]M) ⊆ [ψ]M.

fallibilismH* allows the possibility that an epistemic subject S knows some
proposition φ without ruling out every ¬φ-possibility in a model. Actually, any
model that invalidates ECP can be turned into a model that makes fallibilismH*

true. Even though fallibilismH* is weaker than e-fallibilismmulti, I don’t see
any reason why we should not count the former as a kind of fallibilism as well.
I therefore see that the difference between my proposal and Holliday’s over the
principle e-fallibilismmulti indicates no special favor for Holliday’s proposal. At
most, it shows only that Holliday’s proposal allows a stronger form of reliabilism
that my proposal does not.

Finally, it may be said that the difference between Holliday’s suggested
semantics in Sect. 3 and my H*-semantic in Sect. 4 favors his proposal in that
mine is ad hoc in a way that his semantics is not. ‘Ad hoc in what way?’, I ask?
And I suggest that the correct answer to this question is ‘In no way’.

(r1), as I explained in Sect. 4, is just Heller’s [7] ERA (or ERA*) restricted to
TF-basics. I don’t think that ERA can be plausibly generalized to apply to all
sentences. Consider, for example, a disjunction ‘p ∨ q’, where ‘p’ is not, while ‘q’
is, a heavy-weight proposition. (Recall that a heavy-weight proposition is such
a proposition that any possibility that falsifies it is too remote to be reachable
by the total evidence of the subject S at w. In other words, a heavy-weight
proposition is a proposition that is true all over ∪$wM.) If we apply Heller’s ERA
to such a disjunction, the set of relevant alternatives for it will be the set of
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the closet (¬p ∧ ¬q)-worlds that fall outside the range of ∪$wM. As a result, we
should conclude that ‘p ∨ q’ is actually not known or even not knowable to the
subject S. Yet, of course the sentence ‘p ∨ q’ is knowable or even known to S: if S
knows that p, then S knows that p ∨ q as well. This example shows that, even if
ERA is the correct principle for TF-basics, still some other principle should rule
disjunctions; this is why disjunctions and TF-basics are treated differently in my
proposed semantics. The important question, then, is how we should define the
relevant set of a disjunction, and this is described in (r2) and (r3). (r2) is a quite
natural semantics for any necessary truth, no matter it is a disjunction or not.
If φ is necessarily true (in a model M), then no ‘alternative’ to φ needs to be
eliminated in order to know φ for the simple reason that there is no alternative
to φ at all (in the model M). As to (r3a), the rationale behind it has already been
hinted by the example we illustrate twice in this section. If ‘p’ is not, while ‘q’ is,
a heavy-weight proposition, then intuitively the disjunction ‘p ∨ q’ can still be
known if and only if one can know that p. Generalizing this example, you then
reach (r3a): a disjunction of multiple TF-basics can be known if and only if one
knows its non-heavy-weight part, i.e., its non-heavy-weight subclause. However,
if every disjunct of a disjunction is a heavy-weight proposition, then there seems
to be no way to know the disjunction as a whole. (r3b) therefore requests that
the subject should rule out the intersection of the relevant alternative sets of all
these heavy-weight propositions. Since this intersection, if not empty, will surely
fall out of ∪$wM, this request is in effect a request of an impossible mission for
the subject to accomplish. Needless to say, my (r4) is simply Holliday’s rule for
CCNF but restricted to the case that each conjunct has only a unique set of
relevant alternatives. If Holliday’s rule for CCNF is not ad hoc, neither is mine.
This shows that H*-semantics is not an ad hoc semantics.

After this brief comparison between my and Holliday’s proposals and a dense
defense of my semantics, I now leave the evaluation about which one of us should
win the debate to readers.
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Abstract. In this paper, we investigate an extended first-order Belnap-
Dunn logic with classical negation. We introduce a Gentzen-type sequent
calculus FBD+ for this logic and prove theorems for syntactically and
semantically embedding FBD+ into a Gentzen-type sequent calculus for
first-order classical logic. Moreover, we show the cut-elimination theorem
for FBD+ and prove the completeness theorems with respect to both
valuation and many-valued semantics for FBD+.

1 Introduction

The main aim of this paper is to devise a well-behaving Gentzen-type sequent
calculus for an extended first-order Belnap-Dunn logic (cf. [2,3,6]) with classical
negation. The target logic is a first-order extension of De and Omori’s axiomatic
propositional expansion BD+ [5] of Belnap-Dunn logic. The authors in [5] showed
that BD+ is essentially equivalent to Béziau’s four-valued modal logic PM4N [4]
and Zaitsev’s paraconsistent logic FDEP [22].1 As yet, no first-order extension
of BD+ or Gentzen-type sequent calculi for such a first-order extension or BD+
has been considered in the literature, although a somewhat similar first-order
extension of Belnap-Dunn logic with an additional unary connective �, known
as the Baaz’ delta operator in the literature of fuzzy logic, has been studied on
the basis of a Gentzen-type natural deduction system [16].2

The logic BD+, introduced as a Hilbert-style axiomatic system in [5], is
obtained from a Hilbert-style axiomatic system for propositional classical logic
with the standard language {∧,∨,→,¬} by adding the following axiom schemes
with a paraconsistent negation connective ∼: ∼∼α ↔ α, ∼¬α ↔ ¬∼α, ∼(α ∧
β) ↔ ∼α∨∼β, ∼(α∨β) ↔ ∼α∧∼β, and ∼(α→β) ↔ ¬∼α∧∼β. Note here that
the characteristic axiom schemes of BD+ are the following ones: ∼(α→β) ↔
¬∼α ∧ ∼β and ∼¬α ↔ ¬∼α. These axiom schemes are discussed to be very
natural and plausible from the point of view of many-valued semantics in [5].

1 Another system which is equivalent to BD+ is P�L4 of Méndez and Robles (cf. [11]).
2 Belnap-Dunn logic with � is equivalent to the expansion of Belnap-Dunn logic by

what is sometimes called exclusion negation (cf. [5, p. 829]).

c© Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 79–93, 2017.
DOI: 10.1007/978-3-662-55665-8 6



80 N. Kamide and H. Omori

In this paper, we show that the above axiom schemes have some advantages
in order to develop a simple cut-free Gentzen-type sequent calculus, as well as
some nice properties such as completeness and strong equivalence substitution.3

The substitution property is a particularly novel property, since some typical
paraconsistent logics such as Nelson’s logic N4 [1,12,19] lacks this property.4

We can summarize the contributions of this paper as follows: We introduce
a natural first-order extension of BD+ with the strong equivalence substitution
property, develop a simple Gentzen-type sequent calculus FBD+ for this exten-
sion, and prove several theorems for syntactically and semantically embedding
FBD+ into a Gentzen-type sequent calculus FLK for first-order classical logic.
These embedding results show that the existing standard algorithms for the
automated theorem proving based on first-order classical logic are also applica-
ble to FBD+. We also prove the cut-elimination theorem for FBD+ as well as the
completeness theorems with respect to both valuation and many-valued seman-
tics for FBD+. These fundamental results give us a proof-theoretic justification
for both the proposed extended first-order Belnap-Dunn logic and the original
propositional logic BD+.

The rest of this paper is structured as follows. In Sect. 2, we introduce FBD+
and show the substitution property with respect to the strong equivalence for it.
This will be followed by Sect. 3 in which we first establish a syntactical embed-
ding from FBD+ into FLK and second prove the cut-elimination theorem for
FBD+ based on the syntactical embedding. Then, in Sect. 4, we first establish a
semantical embedding from FBD+ into FLK and second prove the completeness
theorem with respect to a valuation semantics using both the syntactical and
semantical embedding theorems. In Sect. 5, we prove the completeness theorem
with respect to a many-valued semantics for FBD+, and Sect. 6 concludes the
paper with a summary and future directions.

2 Sequent Calculus and Strong Equivalence

To begin with, we introduce the first-order language (without individual con-
stants and function symbols) LFBD+ of an extended first-order Belnap-Dunn
logic with classical negation. This is denoted simply as L when no confusion
can arise. Thus, formulas of L are constructed from countably many predicate
symbols, countably many individual variables, and the logical connectives ∧
(conjunction), ∨ (disjunction), → (implication), ∼ (paraconsistent negation), ¬
(classical negation), ∀ (universal quantifier) and ∃ (existential quantifier). We use
small letters p, q, ... to denote predicate symbols, small letters x, y, ... to denote

3 By using the strong equivalence substitution property, we can show the Herbrand
theorem for FBD+, although we omit the details due to space limitations.

4 Another interesting property of BD+ is the maximality with respect to the set
of theorems (but not with respect to the rules of inference) which is proved in [5,
Sect. 3.3]. Maximality does not hold for Nelson logics (even for “classical” extensions)
since there are extensions, obtained by adding some axioms, that are not classical
logic.
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individual variables, Greek small letters α, β, ... to denote formulas, and Greek
capital letters Γ ,Δ, ... to represent finite (possibly empty) sets of formulas. An
expression α[y/x] means the formula which is obtained from the formula α by
replacing all free occurrences of the individual variable x in α with the individ-
ual variable y, but avoiding a clash of variables by a suitable renaming of bound
variables. A 0-ary predicate is regarded as a propositional variable. If Φ is the
set of all atomic formulas of L, we then say that L is based on Φ. The symbol
≡ is used to denote the equality of symbols. A sequent is an expression of the
form Γ ⇒ Δ. An expression α ⇔ β is used to represent the abbreviation of the
sequents α ⇒ β and β ⇒ α. An expression L  S means that a sequent S is
provable in a sequent calculus L. If L of L  S is clear from the context, we omit
L in it. A rule R of inference is said to be admissible in a sequent calculus L if

the following condition is satisfied: For any instance
S1 · · · Sn

S
of R, if L  Si for

all i, then L  S.
We now introduce a Gentzen-type sequent calculus FBD+ for the first-order

extension of De and Omori’s extended Belnap-Dunn logic BD+ with classical
negation as follows.5

Definition 1 (FBD+). The initial sequents of FBD+ are of the following
form, for any atomic formula p,

p ⇒ p ∼p ⇒ ∼p.

The structural inference rules of FBD+ are of the form:

Γ ⇒ Δ,α α,Σ ⇒ Π

Γ,Σ ⇒ Δ,Π
(cut) Γ ⇒ Δ

α,Γ ⇒ Δ
(we-left) Γ ⇒ Δ

Γ ⇒ Δ,α
(we-right).

The pure logical inference rules of FBD+ are of the form:

α, β, Γ ⇒ Δ

α ∧ β, Γ ⇒ Δ
(∧left)

Γ ⇒ Δ,α Γ ⇒ Δ,β

Γ ⇒ Δ,α ∧ β
(∧right)

α, Γ ⇒ Δ β, Γ ⇒ Δ

α ∨ β, Γ ⇒ Δ
(∨left)

Γ ⇒ Δ,α, β

Γ ⇒ Δ,α ∨ β
(∨right)

Γ ⇒ Δ,α β,Σ ⇒ Π

α→β, Γ ,Σ ⇒ Δ,Π
(→left)

α, Γ ⇒ Δ,β

Γ ⇒ Δ,α→β
(→right)

Γ ⇒ Δ,α

¬α, Γ ⇒ Δ
(¬left)

α, Γ ⇒ Δ

Γ ⇒ Δ,¬α
(¬right)

α[y/x], Γ ⇒ Δ

∀xα, Γ ⇒ Δ
(∀left)

Γ ⇒ Δ,α[z/x]
Γ ⇒ Δ,∀xα

(∀right)

5 In FBD+, we can replace the multiplicative (context splitting) type inference rules
(cut) and (→left) with their additive (non context splitting) type modifications. But,
we adopt the multiplicative type inference rules since these are compatible in the
system LK (for the classical logic) presented in [17].
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α[z/x], Γ ⇒ Δ

∃xα, Γ ⇒ Δ
(∃left)

Γ ⇒ Δ,α[y/x]
Γ ⇒ Δ,∃xα

(∃right)

where y is an arbitrary individual variable, and z is an individual variable which
has the eigenvariable condition, i.e., z does not occur as a free individual variable
in the lower sequent of the rule.

The ∼-combined logical inference rules of FBD+ are of the form:

α, Γ ⇒ Δ

∼∼α, Γ ⇒ Δ
(∼∼left)

Γ ⇒ Δ,α

Γ ⇒ Δ,∼∼α
(∼∼right)

∼α, Γ ⇒ Δ ∼β, Γ ⇒ Δ

∼(α ∧ β), Γ ⇒ Δ
(∼∧left)

Γ ⇒ Δ,∼α,∼β

Γ ⇒ Δ,∼(α ∧ β)
(∼∧right)

∼α,∼β, Γ ⇒ Δ

∼(α ∨ β), Γ ⇒ Δ
(∼∨left)

Γ ⇒ Δ,∼α Γ ⇒ Δ,∼β

Γ ⇒ Δ,∼(α ∨ β)
(∼∨right)

∼β, Γ ⇒ Δ,∼α

∼(α→β), Γ ⇒ Δ
(∼→left)

∼α, Γ ⇒ Δ Γ ⇒ Δ,∼β

Γ ⇒ Δ,∼(α→β)
(∼→right)

Γ ⇒ Δ,∼α

∼¬α, Γ ⇒ Δ
(∼¬left)

∼α, Γ ⇒ Δ

Γ ⇒ Δ,∼¬α
(∼¬right)

∼α[z/x], Γ ⇒ Δ

∼∀xα, Γ ⇒ Δ
(∼∀left)

Γ ⇒ Δ,∼α[y/x]
Γ ⇒ Δ,∼∀xα

(∼∀right)

∼α[y/x], Γ ⇒ Δ

∼∃xα, Γ ⇒ Δ
(∼∃left)

Γ ⇒ Δ,∼α[z/x]
Γ ⇒ Δ,∼∃xα

(∼∃right)

where y is an arbitrary individual variable, and z is an individual variable which
has the eigenvariable condition, i.e., z does not occur as a free individual variable
in the lower sequent of the rule.

In order to show some syntactical embedding theorems, we introduce a
Gentzen-type sequent calculus FLK for first-order classical logic. The first-order
language LFLK is obtained from LFBD+ by deleting ∼. This language will also
be denoted simply by L when no confusion can arise.

Definition 2 (FLK). FLK is the ∼-free part of FBD+, i.e., it is obtained from
FBD+ by deleting the initial sequents of the form ∼p ⇒ ∼p and the ∼-combined
logical inference rules.

Remark 3. Here are some remarks which are simple but useful.

1. Let L be FBD+ or FLK. Sequents of the form α ⇒ α for any formula α are
provable in cut-free L. This fact can be shown by induction on α.

2. The following sequents are provable in cut-free FBD+: ∼∼α ⇔ α, ∼(α∧β) ⇔
∼α ∨ ∼β, ∼(α ∨ β) ⇔ ∼α ∧ ∼β, ∼(α→β) ⇔ ¬∼α ∧ ∼β, ∼¬α ⇔ ¬∼α,
∼∀xα ⇔ ∃x∼α and ∼∃xα ⇔ ∀x∼α.
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3. The inference rules (∼→left) and (∼→right) just correspond to the Hilbert-
style axiom scheme ∼(α→β) ↔ ¬∼α ∧ ∼β. The inference rules (∼¬left)
and (∼¬right) just correspond to the Hilbert-style axiom scheme ∼¬α ↔
∼¬α. These axiom schemes were introduced by De and Omori [5] in order to
axiomatize the extended Belnap-Dunn logic BD+ with classical negation.

4. As well-known, the cut-elimination theorem holds for FLK (see e.g., [7,17]).

In order to prove Theorem 8 (weak syntactical embedding from FBD+ into
FLK), we need the following proposition.

Proposition 4. The following rules are admissible in cut-free FBD+:

∼¬α, Γ ⇒ Δ

Γ ⇒ Δ,∼α
(∼¬left−1)

Γ ⇒ Δ,∼¬α

∼α, Γ ⇒ Δ
(∼¬right−1).

An expression α ↔s β for any formulas α and β, called a strong equivalence
between α and β, is defined by FBD+  α ⇔ β and FBD+  ∼α ⇔ ∼β.

Proposition 5 (Strong equivalence). We have: ∼(α∧β) ↔s ∼α∨∼β, ∼(α∨
β) ↔s ∼α∧∼β, ∼(α→β) ↔s ¬∼α∧∼β, ∼∼α ↔s α, ∼¬α ↔s ¬∼α, ∼(∀xα) ↔s

∃x∼α and ∼(∃xα) ↔s ∀x∼α.

It is known that ∼(α→β) ↔s α∧∼β does not hold for the standard Gentzen-
type sequent calculus for Nelson’s paraconsistent logic N4. Indeed, ∼(α→β) ↔
α ∧ ∼β is a characteristic axiom scheme for N4, but ∼∼(α→β) ↔ ∼(α ∧ ∼β)
is not a theorem for N4. For more discussions on strong equivalence in some
variants of N4, see e.g., [19,20].

Proposition 6 (Substitution for strong equivalence). Let α be a subfor-
mula of a formula γ, and γ� be the formula obtained from γ by replacing a
occurrence of α with that of β. Then, we have: If α ↔s β, then γ ↔s γ�.

3 Syntactical Embedding and Cut-Elimination

We introduce an FLK-translation function for formulas of FBD+, and by using
this translation, we show several theorems for embedding FBD+ into FLK. A
similar translation has been used by Gurevich [8], Rautenberg [15] and Vorob’ev
[18] to embed Nelson’s constructive logic [1,12] into intuitionistic logic. More
recently, some similar translations have been applied, for example, in [9,10] to
embed some paraconsistent logics into classical logic.

Definition 7. We fix a set Φ of atomic formulas, and define the set Φ′ :=
{p′ | p ∈ Φ} of atomic formulas. Let languages LFBD+ and LFLK, defined as
above, be based on sets Φ and Φ ∪ Φ′, respectively. A mapping f from LFBD+ to
LFLK is defined inductively by:
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1. f(p) := p, f(∼p) := p′ ∈ Φ′ for p ∈ Φ,
2. f(α ∧ β) := f(α) ∧ f(β),
3. f(α ∨ β) := f(α) ∨ f(β),
4. f(α→β) := f(α)→f(β),
5. f(¬α) := ¬f(α),
6. f(∀xα) := ∀xf(α),
7. f(∃xα) := ∃xf(α),

8. f(∼(α ∧ β)) := f(∼α) ∨ f(∼β),
9. f(∼(α ∨ β)) := f(∼α) ∧ f(∼β),

10. f(∼(α→β)) := ¬f(∼α)∧f(∼β),
11. f(∼∼α) := f(α),
12. f(∼¬α) := ¬f(∼α),
13. f(∼∀xα) := ∃xf(∼α),
14. f(∼∃xα) := ∀xf(∼α).

An expression f(Γ ) denotes the result of replacing every occurrence of a
formula α in Γ by an occurrence of f(α).

Theorem 8 (Weak syntactical embedding from FBD+ into FLK). Let
Γ , Δ be sets of formulas in LFBD+, and f be the mapping defined in Definition 7.

1. If FBD+  Γ ⇒ Δ, then FLK  f(Γ ) ⇒ f(Δ).
2. If FLK − (cut)  f(Γ ) ⇒ f(Δ), then FBD+ − (cut)  Γ ⇒ Δ.

Proof. • (1): By induction on the proofs P of Γ ⇒ Δ in FBD+. We distinguish
the cases according to the last inference of P , and show some cases.

1. Case ∼p ⇒ ∼p: The last inference of P is of the form: ∼p ⇒ ∼p for any p ∈ Φ.
In this case, we obtain FLK  f(∼p) ⇒ f(∼p), i.e., FLK  p′ ⇒ p′ (p′ ∈ Φ′),
by the definition of f .

2. Case (∼¬left): The last inference of P is of the form:

Γ ⇒ Δ,∼α

∼¬α, Γ ⇒ Δ
(∼¬left).

By induction hypothesis, we have FLK  f(Γ ) ⇒ f(Δ), f(∼α). Then, we
obtain the required fact:

....
f(Γ ) ⇒ f(Δ), f(∼α)

¬f(∼α), f(Γ ) ⇒ f(Δ)
(¬left)

where ¬f(∼α) coincides with f(∼¬α) by the definition of f .
3. Case (∼→right): The last inference of P is of the form:

∼α, Γ ⇒ Δ Γ ⇒ Δ,∼β

Γ ⇒ Δ,∼(α→β)
(∼→right).

By induction hypothesis, we have FLK  f(∼α), f(Γ ) ⇒ f(Δ) and FLK 
f(Γ ) ⇒ f(Δ), f(∼β). Then, we obtain the required fact:

....
f(∼α), f(Γ ) ⇒ f(Δ)

f(Γ ) ⇒ f(Δ),¬f(∼α)
(¬right)

....
f(Γ ) ⇒ f(Δ), f(∼β)

f(Γ ) ⇒ f(Δ),¬f(∼α) ∧ f(∼β)
(∧right)

where ¬f(∼α) ∧ f(∼β) coincides with f(∼(α→β)) by the definition of f .
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4. Case (∼∀left): The last inference of P is of the form:

∼α[z/x], Γ ⇒ Δ

∼∀xα, Γ ⇒ Δ
(∼∀left).

By induction hypothesis, we have FLK  f(∼α[z/x]), f(Γ ) ⇒ f(Δ). Then,
we obtain the required fact:

....
f(∼α[z/x]), f(Γ ) ⇒ f(Δ)
∃xf(∼α), f(Γ ) ⇒ f(Δ)

(∃left)

where ∃xf(∼α) coincides with f(∼∀xα) by the definition of f .

• (2): By induction on the proofs Q of f(Γ ) ⇒ f(Δ) in FLK − (cut). We
distinguish the cases according to the last inference of Q, and show only the
following case.

Case (∧right): The last inference of Q is (∧right).

1. Subcase (1): The last inference of Q is of the form:

f(Γ ) ⇒ f(Δ), f(α) f(Γ ) ⇒ f(Δ), f(β)
f(Γ ) ⇒ f(Δ), f(α ∧ β)

(∧right)

where f(α ∧ β) coincides with f(α) ∧ f(β) by the definition of f . This case
can straightforwardly be shown.

2. Subcase (2): The last inference of Q is of the form:

f(Γ ) ⇒ f(Δ), f(∼α) f(Γ ) ⇒ f(Δ), f(∼β)
f(Γ ) ⇒ f(Δ), f(∼(α ∨ β))

(∧right)

where f(∼(α ∨ β)) coincides with f(∼α) ∧ f(∼β) by the definition of f . This
case can straightforwardly be shown.

3. Subcase (3): The last inference of Q is of the form:

f(Γ ) ⇒ f(Δ), f(∼¬α) f(Γ ) ⇒ f(Δ), f(∼β)
f(Γ ) ⇒ f(Δ), f(∼(α→β))

(∧right)

where f(∼(α→β)) and f(∼¬α) respectively coincide with ¬f(∼α) ∧ f(∼β)
and ¬f(∼α) by the definition of f . By induction hypothesis, we have FBD+
− (cut)  Γ ⇒ Δ,∼¬α and FBD+ − (cut)  Γ ⇒ Δ,∼β. We thus obtain
the required fact:

....
Γ ⇒ Δ,∼¬α

∼α, Γ ⇒ Δ
(∼¬right−1)

....
Γ ⇒ Δ,∼β

Γ ⇒ Δ,∼(α→β)
(∼→right)

where (∼¬right−1) is admissible in cut-free FBD+ by Proposition 4.
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Theorem 9 (Cut-elimination for FBD+). The rule (cut) is admissible in
cut-free FBD+.

Proof. Suppose FBD+  Γ ⇒ Δ. Then, we have FLK  f(Γ ) ⇒ f(Δ) by
Theorem 8(1), and hence FLK − (cut)  f(Γ ) ⇒ f(Δ) by the cut-elimination
theorem for FLK. By Theorem 8(2), we obtain FBD+ − (cut)  Γ ⇒ Δ.

Theorem 10 (Syntactical embedding from FBD+ into FLK). Let Γ , Δ
be sets of formulas in LFBD+, and f be the mapping defined in Definition 7.

1. FBD+  Γ ⇒ Δ iff FLK  f(Γ ) ⇒ f(Δ).
2. FBD+ − (cut)  Γ ⇒ Δ iff FLK − (cut)  f(Γ ) ⇒ f(Δ).

Proof. • (1): (=⇒): By Theorem 8(1). (⇐=): Suppose FLK  f(Γ ) ⇒ f(Δ).
Then we have FLK − (cut)  f(Γ ) ⇒ f(Δ) by the cut-elimination theorem for
FLK. We thus obtain FBD+ − (cut)  Γ ⇒ Δ by Theorem 8(2). Therefore we
have FBD+  Γ ⇒ Δ.

• (2): (=⇒): Suppose FBD+ − (cut)  Γ ⇒ Δ. Then we have FBD+ 
Γ ⇒ Δ. We then obtain FLK  f(Γ ) ⇒ f(Δ) by Theorem 8(1). Therefore we
obtain FLK − (cut)  f(Γ ) ⇒ f(Δ) by the cut-elimination theorem for FLK.
(⇐=): By Theorem 8(2).

4 Semantical Embedding and Completeness for Valuation
Semantics

Definition 11. A structure A := 〈U, I∗〉 is called a paraconsistent model if the
following conditions hold:

1. U is a non-empty set,
2. pI∗

and (∼p)I∗
are mappings such that pI∗

, (∼p)I∗ ⊆ Un (i.e., pI∗
and (∼p)I∗

are n-ary relations on U) for an n-ary predicate symbol p.

We introduce the notation u
¯

as the name of u ∈ U , and we denote as L[A]
the language obtained from L by adding the names of all the elements of U .
A formula α is called a closed formula if α has no free individual variable. A
formula of the form ∀x1 · · · ∀xmα is called the universal closure of α if the free
variables of α are x1, ..., xm. We write cl(α) for the universal closure of α.

Definition 12 (Valuation semantics for FBD+). Let A := 〈U, I∗〉 be a
paraconsistent model. The paraconsistent satisfaction relation A |=∗ α for any
closed formula α of L[A] are defined inductively by:

1. [A |=∗ p(x
¯ 1, ..., x¯n) iff (x1, ..., xn) ∈ pI∗

] for any n-ary atomic formula
p(x
¯ 1, ..., x¯n),

2. [A |=∗ ∼p(x
¯ 1, ..., x¯n) iff (x1, ..., xn) ∈ (∼p)I∗

] for any n-ary negated atomic
formula ∼p(x

¯ 1, ..., x¯n),
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3. A |=∗ α∧β iff A |=∗ α and A |=∗ β,
4. A |=∗ α ∨ β iff A |=∗ α or A |=∗ β,
5. A |=∗ α→β iff A 
|=∗ α or A |=∗ β,

6. A |=∗ ¬α iff A 
|=∗ α,
7. A |=∗ ∀xα iff A |=∗ α[u

¯
/x] for all

u ∈ U ,
8. A |=∗ ∃xα iff A |=∗ α[u

¯
/x] for some

u ∈ U ,

9. A |=∗ ∼(α ∧ β) iff A |=∗ ∼α or A |=∗ ∼β,
10. A |=∗ ∼(α ∨ β) iff A |=∗ ∼α and A |=∗ ∼β,
11. A |=∗ ∼(α→β) iff A 
|=∗ ∼α and A |=∗ ∼β,

12. A |=∗ ∼∼α iff A |=∗ α,
13. A |=∗ ∼¬α iff A 
|=∗ ∼α,

14. A |=∗ ∼∀xα iff A |=∗ ∼α[u
¯

/x] for some u ∈ U ,
15. A |=∗ ∼∃xα iff A |=∗ ∼α[u

¯
/x] for all u ∈ U .

The paraconsistent satisfaction relation A |=∗ α for any formula α of L is defined
by (A |=∗ α iff A |=∗ cl(α)). A formula α of L is called FBD+-valid iff A |=∗ α
holds for any paraconsistent model A.

Definition 13 (Valuation semantics for FLK). A structure A := 〈U, I〉,
called a model, is defined in a similar way as in Definition 11. Then, the satis-
faction relation A |= α for any closed formula α of L[A] is defined inductively by:

1. [A |= p(x
¯ 1, ..., x¯n) iff (x1, ..., xn) ∈ pI ] for any n-ary atomic formula

p(x
¯ 1, ..., x¯n),

2. A |= α∧β iff A |= α and A |= β,
3. A |= α ∨ β iff A |= α or A |= β,
4. A |= α→β iff A 
|= α or A |= β,

5. A |= ¬α iff A 
|= α,
6. A |= ∀xα iff A |= α[u

¯
/x] for all u ∈ U ,

7. A |= ∃xα iff A |= α[u
¯

/x] for some u ∈ U .

The satisfaction relation A |= α for any formula α of L is defined in a similar
way as in Definition 12. The notion of FLK-validity for a formula is also defined
in a similar way as in Definition 12.

The following completeness theorem for FLK is well-known: For any formula
α, FLK  ⇒ α iff α is FLK-valid.

Lemma 14. Let f be the mapping defined in Definition 7 and A := 〈U, I∗〉 be a
paraconsistent model. For any paraconsistent satisfaction relation |=∗ on A, we
can construct a satisfaction relation |= on a model A′ = 〈U, I〉 such that for any
formula α, A |=∗ α iff A′ |= f(α).

Proof. Let Φ be a set of atomic formulas, Φ′ be the set {p′ | p ∈ Φ} of atomic
formulas, and that |=∗ is a paraconsistent satisfaction relation on A. Suppose
that |= is a satisfaction relation on A′ such that, for any atomic formula p ∈ Φ,

1. A |=∗ p iff A′ |= p,
2. A |=∗ ∼p iff A′ |= p′.

Then, the lemma is proved by induction on α. For the base case:

1. Case α ≡ p where p is a propositional variable: A |=∗ p iff A′ |= p (by the
assumption) iff A′ |= f(p) (by the definition of f).

2. Case α ≡ ∼p where p is a propositional variable: A |=∗ ∼p iff A′ |= p′ (by
the assumption) iff A′ |= f(∼p) (by the definition of f).
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For induction step, we show some of the cases.

1. Case α ≡ ∀xβ: A |=∗ ∀xβ iff A |=∗ β[u
¯
/x] for all u ∈ U iff A′ |= f(β[u

¯
/x])

for all u ∈ U iff (by induction hypothesis) iff A′ |= ∀xf(β) iff A′ |= f(∀xβ).
2. Case α ≡ ∼∼β: A |=∗ ∼∼β iff A |=∗ β iff A′ |= f(β) (by induction hypothesis)

iff A′ |= f(∼∼β).
3. Case α ≡ ∼¬β: A |=∗ ∼¬β iff A �|=∗ ∼β iff A′ �|= f(∼β) (by induction

hypothesis) iff A′ |= ¬f(∼β) iff A′ |= f(∼¬β).
4. Case α ≡ ∼(β→γ): A |=∗ ∼(β→γ) iff A �|=∗ ∼β and A |=∗ ∼γ iff A′ �|= f(∼β)

and A′ |= f(∼γ) (by induction hypothesis) iff A′ |= ¬f(∼β) and A′ |= f(∼γ)
iff A′ |= ¬f(∼β) ∧ f(∼γ) iff A′ |= f(∼(β→γ)).

5. Case α ≡ ∼∀xβ: A |=∗ ∼∀xβ iff A |=∗ ∼β[u
¯
/x] for some u ∈ U iff A′ |=

f(∼β[u
¯
/x]) for some u ∈ U (by induction hypothesis) iff A′ |= ∃xf(∼β) iff

A′ |= f(∼∀xβ).

Note here that the last steps are by the definition of f .

Lemma 15. Let f be the mapping defined in Definition 7 and let A := 〈U, I〉 be
a model. For any satisfaction relation |= on A, we can construct a paraconsistent
satisfaction relation |=∗ on a paraconsistent model A′ = 〈U, I∗〉 such that for any
formula α, A |= f(α) iff A′ |=∗ α.

Proof. Similar to the proof of Lemma 14.

Theorem 16 (Semantical embedding from FBD+ into FLK). Let f be
the mapping defined in Definition 7. For all formula α, α is FBD+-valid iff f(α)
is FLK-valid.

Proof. By Lemmas 14 and 15.

Theorem 17 (Completeness for FBD+). For all formula α, FBD+  ⇒ α
iff α is FBD+-valid.

Proof. We have: FBD+  ⇒ α iff FLK  ⇒ f(α) (by Theorem 10) iff f(α)
is FLK-valid (by the completeness theorem for FLK) iff α is FBD+-valid (by
Theorem 16).

5 Completeness for Many-Valued Semantics

We assume the Hilbert-style axiomatic system for FBD+, and also use the same
name for the system as FBD+. The Hilbert-style system FBD+ is obtained from
BD+ [5] by adding the standard quantifier axiom schemes and inference rules
for first-order classical logic and the axiom schemes of the form: ∼∀xα ↔ ∃x∼α
and ∼∃xα ↔ ∀x∼α.
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Definition 18. An interpretation I is a pair 〈U, v〉 where U is a non-empty
set and we assign v(c) ∈ U for every constant c, assign both the extension
v+(p) ⊆ Un and the anti-extension v−(p) ⊆ Un for every n-ary predicate symbol
p. Given any interpretation 〈U, v〉, we can define FBD+-valuation v for all the
sentences of L expanded by {u

¯
: u ∈ U} inductively as follows: as for the atomic

sentences,
1 ∈ v(p(t1, ..., tn)) iff 〈v(t1), . . . , v(tn)〉 ∈ v+(p),
0 ∈ v(p(t1, ..., tn)) iff 〈v(t1), . . . , v(tn)〉 ∈ v−(p).

The rest of the clauses are as follows:

1 ∈ v(∼α) iff 0 ∈ v(α), 0 ∈ v(∼α) iff 1 ∈ v(α),
1 ∈ v(¬α) iff 1 �∈ v(α), 0 ∈ v(¬α) iff 0 �∈ v(α),
1 ∈ v(α ∧ β) iff 1 ∈ v(α) and 1 ∈ v(β), 0 ∈ v(α ∧ β) iff 0 ∈ v(α) or 0 ∈ v(β),
1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β), 0 ∈ v(α ∨ β) iff 0 ∈ v(α) and 0 ∈ v(β),
1 ∈ v(α→β) iff 1 �∈ v(α) or 1 ∈ v(β), 0 ∈ v(α→β) iff 0 �∈ v(α) and 0 ∈ v(β),
1 ∈ v(∀xα) iff 1 ∈ v(α[u

¯
/x]), for all u ∈ U, 0 ∈ v(∀xα) iff 0 ∈ v(α[u

¯
/x]), for some u ∈ U,

1 ∈ v(∃xα) iff 1 ∈ v(α[u
¯

/x]), for some u ∈ U, 0 ∈ v(∃xα) iff 0 ∈ v(α[u
¯

/x]), for all u ∈ U.

Finally, let Γ ∪ {α} be any set of sentences. Then, α is a FBD+-semantic con-
sequence from Γ (Γ |=FBD+ α) iff for every interpretation I = 〈U, v〉 and for
every FBD+-valuation v (recall that v is determined by the given interpretation
〈U, v〉), 1 ∈ v(α) if 1 ∈ v(γ) for all γ ∈ Γ .

Remark 19. The truth tables for the propositional connectives are as follows:

α ∼α ¬α

t f f
b b n
n n b
f t t

α ∧ β t b n f

t t b n f
b b b f f
n n f n f
f f f f f

α ∨ β t b n f

t t t t t
b t b t b
n t t n n
f t b n f

α→β t b n f

t t b n f
b t t n n
n t b t b
f t t t t

For a discussion on the relation between many-valued semantics and Dunn
semantics for expansions of Belnap-Dunn logic, see [14].

Proposition 20 (Soundness for FBD+). If Γ FBD+ α then Γ |=FBD+ α.

Proof. By induction on the derivation Γ FBD+ α, as usual.

For the completeness, we need the following standard notions.

Definition 21. Let Σ be a set of formulas. Then,

1. Σ is a theory iff Σ FBD+ α implies that α ∈ Σ for all α;
2. Σ is prime iff α ∨ β ∈ Σ implies that α ∈ Σ or β ∈ Σ for all α and β;
3. Σ is non-trivial iff for some α, α �∈ Σ;
4. Σ is saturated iff the following holds:

(a) ∀xα ∈ Γ iff α[c/x] ∈ Γ for all constant c, and
(b) ∃xα ∈ Γ iff α[c/x] ∈ Γ for some constant c.

The rest of the proof is quite standard.



90 N. Kamide and H. Omori

Lemma 22. If Γ is a prime theory, then α→β ∈ Γ iff (α �∈ Γ or β ∈ Γ ).

Lemma 23. If Γ is a non-trivial prime theory, then ¬α ∈ Γ iff α �∈ Γ .

Lemma 24. Let Γ ∪{α} be any set of sentences. If Γ �FBD+ α, then by adding
countably new constant symbols, we can extend 〈Γ, {α}〉 to 〈Γ+,Π+〉 such that
Γ ⊆ Γ+, α ∈ Π+, Γ+ �FBD+ Π+, either β ∈ Γ+ or β ∈ Π+ holds for all β, and
Γ+ is a prime and saturated theory.6

Proof. Let us expand our language with a countable set E := {en : n ∈ ω} of
fresh constant symbols. Moreover, let (αn)n≥1 be an enumeration of all formulas
in the expanded syntax. We inductively define the sequence (〈Γn,Πn〉)n∈ω such
that Γn �FBD+ Πn as follows:

1. Γ0 := Γ and Π0 := {α}.
2. Suppose that we have constructed 〈Γn−1,Πn−1〉 such that Γn−1 �FBD+ Πn−1.

We have the following two cases:
(a) if Γn−1 ∪ {αn} �FBD+ Πn−1, then we split the case depending on the

form of αn:
i. If αn = ∃xβ, we define Γn := Γn−1 ∪ {αn, β[e/x]} and Πn := Πn−1,

where e is the first constant in the enumeration of E such that it is
fresh in Γn−1, Πn−1 and αn.

ii. Otherwise, Γn := Γn−1 ∪ {αn} and Πn := Πn−1.
(b) If Γn−1 ∪ {αn} FBD+ Πn−1, then we again split the case depending on

the form of αn:
i. If αn = ∀xβ, we define Γn := Γn−1 and Πn := Πn−1 ∪ {αn, β[e/x]},

where e is the first constant in the enumeration of E such that it is
fresh in Γn−1, Πn−1 and αn.

ii. Otherwise, we put Γn := Γn−1 and Πn := Πn−1 ∪ {αn}.

In both cases, it is easy to see that Γn �FBD+ Πn.
We define the limit of the sequence (〈Γn,Πn〉)n∈ω as Γ+ :=

⋃
n∈ω Γn and

Π+ :=
⋃

n∈ω Πn. It is clear that Γ+ �FBD+ Π+. By construction, α ∈ Γ+ or
α ∈ Π+ for every α. Moreover, Γ+ is a prime and saturated theory. Here we
only show the saturation requirement for ∀ of Γ+: ∀xα ∈ Γ+ iff α[c/x] ∈ Γ+

for any constant c. The left-to-right direction is easy once we establish that Γ+

is a theory. For the other direction, we show the contrapositive. Assume that
∀xα /∈ Γ+. Since ∀xα ∈ Γ+ or ∀xα ∈ Π+, we have ∀xα ∈ Π+, which implies
α[e/x] ∈ Π+ for some e by construction. Then, we obtain α[e/x] /∈ Γ+. Indeed,
suppose for reductio that α[e/x] ∈ Γ+. Then, it follows from α[e/x] ∈ Π+ that
Γ+ FBD+ Π+, which is a contradiction.

Theorem 25 (Completeness for FBD+). Γ |=FBD+ α iff Γ FBD+ α.

Proof. Since we have already observed the soundness, we prove the complete-
ness part. To this end, we prove the contrapositive. Assume that Γ �FBD+ α.

6 Note that Γ 
�FBD+ Π is defined as Γ 
�FBD+ α1 ∨ · · · ∨ αn for some α1, . . . , αn ∈ Π.
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Then by Lemma 24, there is a prime and saturated theory Γ+ such that Γ ⊆ Γ+

and Γ+ �FBD+ α. Now, define an interpretation IΓ+ = 〈U, v〉 as follows:
U={c : c is a constant symbol} and, for every n-ary predicate symbol p:

v+(p) := {〈t1, . . . , tn〉 : p(t1, . . . , tn) ∈ Γ+},
v−(p) := {〈t1, . . . , tn〉 : ∼p(t1, . . . , tn) ∈ Γ+},

and, for every constant symbol c, v(c) = c. Then, the following holds for every
sentence α.

1 ∈ v(α) iff α ∈ Γ+,
0 ∈ v(α) iff ∼α ∈ Γ+.

This can be proved by induction on α. We will here only check two cases in
which α is of the form β → γ and ∀xβ. For the positive case for the conditional,

1 ∈ v(β→γ) iff 1 �∈ v(β) or 1 ∈ v(γ)
iff β �∈ Γ+ or γ ∈ Γ+ (by induction hypothesis)
iff β→γ ∈ Γ+. (by Lemma 22)

For the negative case for the conditional,

0 ∈ v(β→γ) iff 0 �∈ v(β) and 0 ∈ v(γ)
iff ∼β �∈ Γ+ and ∼γ ∈ Γ+ (by induction hypothesis)
iff ¬∼β ∈ Γ+ and ∼γ ∈ Γ+ (by Lemma 23)
iff ∼(β→γ) ∈ Γ+. (by ∼(β→γ) ↔ ¬∼β ∧ ∼γ)

For the positive case for the universal quantifier,

1 ∈ v(∀xβ) iff 1 ∈ v(β[u
¯
/x]), for all u ∈ U

iff β[u
¯
/x] ∈ Γ+, for all u ∈ U (by induction hypothesis)

iff ∀xβ ∈ Γ+. (by Γ+ being saturated)

For the negative case for the universal quantifier,

0 ∈ v(∀xβ) iff 0 ∈ v(β[u
¯
/x]), for some u ∈ U

iff ∼β[u
¯
/x] ∈ Γ+, for some u ∈ U (by induction hypothesis)

iff ∃x∼β ∈ Γ+ (by Γ+ being saturated)
iff ∼∀xβ ∈ Γ+. (by ∼∀xβ ↔ ∃x∼β)

Therefore we obtain the desired result since we have that 1 ∈ v(γ) for all γ ∈ Γ+

and that 1 �∈ v(α) (since Γ+ �FBD+ α, i.e. α �∈ Γ+), that is, Γ �|=FBD+ α.
By making use of the above completeness results, we establish the equivalence

of Gentzen and Hilbert systems.

Proposition 26. For any finite set Γ∪{α} of formulas in LFBD+, if Γ FBD+ α
then FBD+  Γ ⇒ α.

Proof. By induction on the length of derivations in the Hilbert style system.



92 N. Kamide and H. Omori

Proposition 27. For any finite set Γ ∪ {α} of formulas in LFBD+, if FBD+ 
Γ ⇒ α then Γ FBD+ α.

Proof. Let τ(Γ ⇒ Δ) =
∧

Γ → ∨
Δ, where

∧
∅ = (p → p) and

∨
∅ =

(p ∧ ¬p) for some fixed atomic formula p. We first note that FBD+  Γ ⇒ α iff
FBD+  ∅ ⇒ τ(Γ ⇒ α). In view of the completeness of the Hilbert style system
with respect to the semantics from Definition 18, it is enough to show that for
every sequent rule S1...Sn

S of FBD+, we have {τ(S1), . . . , τ(Sn)} |=FBD+ τ(S).
For axiomatic sequents, this is obvious, and since (cut) is eliminable, (cut) need
not be considered. The remaining cases are relatively straightforward, and leave
the details to the reader. This completes the proof.

6 Conclusion

Here is a brief summary of our results presented in this paper. We developed a
Gentzen-type sequent calculus FBD+ for the proposed first-order extension of
BD+ and proved several theorems for embedding FBD+ into FLK (a Gentzen-
type sequent calculus for first-order classical logic) both syntactically and seman-
tically. These embedding results show that the existing standard algorithms
for the automated theorem proving based on first-order classical logic are also
applicable to FBD+. We also proved the cut-elimination theorem for FBD+ as
well as the completeness theorems with respect to both valuation and many-
valued semantics for FBD+. These fundamental results give us a proof-theoretic
justification for both the proposed extended first-order Belnap-Dunn logic and
the original propositional logic BD+.

For future directions, we only mention three of them among others. First,
we may apply the same technique to the connexive variant of BD+, called dBD
in [13].7 In particular, this variant has the following falsity condition for the
conditional:

0 ∈ v(α→β) iff (1 �∈ v(α) or 0 ∈ v(β))

The details are kept for another occasion. Second, we may also consider a con-
structive variant of BD+, and apply the same technique to establish some inter-
esting results. Finally, we may consider a modal expansion of BD+ as well.
We keep these topics, together with others that are not mentioned here, for a
subsequent paper.
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A Characterization Theorem for Trackable
Updates
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Abstract. The information available to some agents can be repre-
sented with several mathematical models, depending on one’s purpose.
These models differ not only in their level of precision, but also in how
they evolve when the agents receive new data. The notion of tracking
was introduced to describe the matching of information dynamics, or
‘updates’, on different structures.

We expand on the topic of tracking, focusing on the example of plau-
sibility and evidence models, two central structures in the literature on
formal epistemology. Our main result is a characterization of the track-
able updates of a certain class, that is, we give the exact condition for
an update on evidence models to be trackable by a an update on plausi-
bility models. For the positive cases we offer a procedure to compute the
other update, while for the negative cases we give a recipe to construct
a counterexample to tracking. To our knowledge, this is the first result
of this kind in the literature.

1 Introduction

Given a model representing the epistemic or doxastic state of some agents, the
signature theme of dynamic epistemic logic (DEL henceforth) is the study of
how such model is transformed by new incoming information (see among others
[1,3,4,6]). The possible transformations of a model are generally called ‘updates’,
to highlight the idea that the agents are revising their beliefs or knowledge in light
of new data. The work on updates originally revolved around Kripke structures,
but in recent years several scholars exported the idea to other kinds of models,
most importantly evidence models [7] and probabilistic models [12].

Beside re-proposing the host of DEL problems and techniques for new struc-
tures, this move opened up the possibility for a new direction of enquiry. These
different kinds of models do not live in separated compartments: on the contrary,
they are connected by various constructions, some of which have been studied
extensively in other fields such as Duality Theory. Piecing together the existence
of updates on different structures with the possibility to transform one kind of
structure into the other, scholars were presented with diagrams of the following
shape.

c© Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 94–107, 2017.
DOI: 10.1007/978-3-662-55665-8 7



A Characterization Theorem for Trackable Updates 95

structure1 structure1

structure2 structure2

update1

construction construction

update2

The commutation of such diagrams, namely the validity of the equation
update2 ◦ construction = construction ◦ update1, captures the intuition that
update1 matches, or tracks, update2. This correspondence between updates is
especially significant if the structures at the top level of the diagram, structure1
in this case, are poorer than the ones at the bottom level: this means that we can
reduce update2, which in general may be rather complicated, to an update on a
poorer structure. On the other hand the lack of tracking is also informative, as
it highlights the structural differences between different levels. Tracking there-
fore plays a central role in the comparability of diverse approaches to modeling
agency.

The topic of tracking was first addressed by [12] in the context of probabilistic
models, while [5] set up and discussed the problem in the setting of evidence and
plausibility models. The former paper fixed the two updates (top and bottom
of the diagram) and studied the constructions that enabled the commutation,
while the latter article fixed the construction (left and right of the diagram) and
searched for the pairs of updates which gave a successful commutation. This
paper addresses some open problems raised by [5]; therefore we frame the issue
of tracking in the second fashion.

From this second point of view, we argue that the optimal answer would be
a characterization giving:

– the shape of all and only the trackable updates;
– for any update U of that shape, an algorithm that manipulates the definition

of U and produces the definition of its tracking companion;
– for the updates that are not of that shape, a procedure to construct a counter-

example to tracking.

This may be a highly non-trivial result, for example if the updates at the richer
level are cast in a second order language and the ones at the poorer level are
given in a first order signature.

This paper explore this issue in the setting of evidence and plausibility mod-
els. Our main result is a characterization result of this kind for a restricted class
of updates on evidence models: we give the exact condition for an update on
evidence models belonging to the class to be trackable by an update on plausi-
bility models. For the positive cases we offer a procedure to compute the other
update, while for the negative cases we give a recipe to construct a counterex-
ample to tracking. To our knowledge, this is the first result of this kind in the
literature. As for the implications of this result, our focus on the definability
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aspects of tracking underscores the possibility to study this problem with logical
techniques and suggests the possibility to apply the same methodology to other
examples.

2 Plausibility and Evidence Models

We begin by introducing the two main actors featuring in our play, evidence and
plausibility models. Plausibility models are widely used in formal epistemology
[2,4]; their introduction can be traced back at least to [11]. They consist of
a carrier, to be understood as a collection of possible worlds, and a preorder
representing how an agent ranks the possible scenarios in terms of plausibility.1

Definition 1 (Plausibility model). A plausibility model is a tuple M =
〈W,≤, V 〉 with W a non-empty set of worlds, a reflexive and transitive rela-
tion ≤⊆ W ×W and V : W → ℘(At) a valuation function. We denote with PM
the class of plausibility models.

Introduced in [7], evidence models are structures capturing the evidence avail-
able to an agent. Such evidence is represented via a family of sets of possible
worlds: intuitively each set in the family constitutes a piece of evidence that the
agent can use to draw conclusions.2

Definition 2 (Evidence model). An evidence model is a tuple M =
〈W,E, V 〉 with W a non-empty set of worlds, a function E : W → ℘(℘(W ))
and V : W → ℘(At) a valuation function. We furthermore assume W ∈ E(w)
and ∅ 
∈ E(w) for all w ∈ W . A uniform evidence model is an evidence model
where E is a constant function, we denote with E this fixed collection of evidence
sets.

The requirements on evidence ensure that the agent has trivial evidence,
namely the whole set W , and does not have inconsistent evidence, i.e. the empty
set. Notice that the structure on evidence models is world-dependent, therefore to
match with plausibility models from now on we only consider uniform evidence
models.3 We denote with EM the class of uniform evidence models. We now
describe how to construct a plausibility model starting from an evidence model.

1 In the literature plausibility models are sometimes assumed to have a complete
and/or well-founded relation, we drop these assumptions here, adopting the defini-
tion of [4].

2 Evidence models contain more information than plausibility models; such informa-
tion is captured by operators such as the evidence modality. See [4,5] for a discussion
on the relationship between these models. The sphere systems of [9] also constitute
an example of neighborhood models with a close tie to relational structures.

3 Alternatively one could consider plausibility models with a different relation for each
world, this generalization does not add much depth to our results, so we employ the
simpler models.
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Definition 3 (Construction ORD, [7]). Given a uniform evidence model
M = 〈W, E , V 〉 construct the plausibility model ORD(M) = 〈W,≤E , V 〉 where
≤E is defined as follows.

w ≤E v iff ∀X ∈ E , v ∈ X implies w ∈ X

A reader with some knowledge in Topology or Duality Theory will recognize this
construction as (the converse of) the specialization preorder obtainable from a
neighborhood structure. Conversely, we can reconstruct an evidence model from
a plausibility model, as follows.

Definition 4 (Construction EV , [7]). Call a set X ⊆ W downward closed
with respect to ≤ if w ∈ X and v ≤ w entail v ∈ X. A set with such property is
called a down-set.

Given a plausibility model M = 〈W,≤, V 〉 construct the evidence model
EV (M) = 〈W, E≤, V 〉 where E≤ is the set of non-empty downward closed subsets
of W .

Lemma 1. Performing EV and ORD in this order on a plausibility model M
one obtains the same model M , that is, ORD ◦ EV = IdPM.

The converse is not the case, in general EV ◦ ORD 
= IdEM. Starting from
an evidence model M and performing EV ◦ ORD one obtains a copy of M
where all the intersections of the evidence sets have been added. This observation
together with the Lemma, which is just folklore, captures the idea that the level
of plausibility models is ‘poorer’, or in other words contains less information
compared to the level of evidence models.

3 Tracking

As we mentioned, the issue of tracking in the case of evidence and plausibility
models was addressed in [5], where the author investigated when an update
on evidence models is mirrored by another update at the level of plausibility
models. As we mentioned in the introduction, an update is a model-changing
operation that is meant to represent the change of an agent’s internal state
after new information is taken into account. The new available data is typically
encoded in a formula of a static language, thus an update is parametric on a
formula. For plausibility models some well-studied examples are the updates
‘public announcement of φ’, where all the worlds satisfying ¬φ are removed, and
‘radical upgrade with φ’, where all the worlds satisfying ¬φ are ranked as less
plausible than worlds satisfying φ, all the rest being equal. In [5] an update is
regarded as a purely semantical operation, meaning that a set is used as the
parameter for the update instead of the extension of a formula.

Definition 5 (Tracking, [5]). We indicate with U(X) the update that uses
as a parameter the set X. A function U(X) : PM → PM tracks a function
U ′(X) : EM → EM if U(X)(ORD(M)) = ORD(U ′(X)(M) for all X, or
equivalently if the following square of functions commutes:
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PM PM

EM EM

U(X)

ORD ORD

U ′(X)

We sometimes omit the parameter X when it is clear from the context.

The concept of tracking can be explored in a richer categorical setting, where we
equip PM and EM with suitable notions of morphism; indeed the constructions
ORD and EV can be extended to adjoint functors that preserve some categorical
constructions. We leave aside these concerns for now, since our result can be
cast without the categorical machinery, but direct the reader to [8] where these
issues are studied systematically. The definition of tracking highlights the fact
that we are interested in tracking updates on the richer structures (evidence
models) with updates on the poorer structures (plausibility models). The other
direction, from poor to rich structures, is less interesting since every update on
plausibility models has a canonical counterpart on evidence models, as the next
proposition shows.

Proposition 1 (See [5]). For every update U(X) : PM → PM there is an
update U ′(X) : EM → EM that is tracked by U(X).

The next proposition provides an equivalent condition for tracking.

Proposition 2. The existence of an update U tracking an update U ′ is equiva-
lent to the following: for every pair of evidence models M1,M2, if ORD(M1) =
ORD(M2) then ORD(U ′(M1)) = ORD(U ′(M2)).

The left-to-right direction of this proposition suggests how to prove that an
update on evidence models cannot be tracked: it is sufficient to find two models
for which the condition of Proposition 2 fails. This strategy is adopted in [5] to
prove that some updates cannot be tracked.

The other direction of the proposition may at first glance seem to trivialize
the problem of tracking: given an update U ′ on evidence models, we can just
verify that the condition of Proposition 2 is fulfilled and then we immediately
have an update U := ORD ◦ U ′ ◦ EV that tracks U ′. Such definition, however,
is only partially satisfactory: even though it fits the bill from a semantic per-
spective, the interest of tracking lies in the possibility to rewrite an update on
a complex structure in the language of a poorer structure. We expand on this
matter in Sect. 3.2. The definition U := ORD ◦ U ′ ◦ EV circumvents this prob-
lem altogether and is therefore not very informative. For this reason it is still
noteworthy to obtain positive tracking results.
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3.1 Examples of Tracking

The aforementioned paper [5] contains a few examples of tracking results; we
refer the reader to said article for details on definitions and proofs.

Proposition 3 (See [5]). The following statements hold:

– Public announcement at the plausibility level tracks public announcement on
evidence models.

– Suggestion tracks evidence addition.
– Radical upgrade tracks the upgrade called “up”.

We want however to show a concrete instance of a tracking proof, for the reader to
understand what these arguments look like. This result is actually a direct conse-
quence of the more general Theorem 2, proved later, but it serves for explanatory
purposes. Our example is the tracking of the update ‘evidence weakening’.

Definition 6. Given a set X, evidence weakening is a construction of type
∪(X) : EM → EM. For an evidence model M = 〈W,E, V 〉 the update returns
a model ∪(X)(M) is defined as:

– W∪X = W ,
– V ∪X = V ,
– E∪X = {Y ∪ X|Y ∈ E},
We define the update on plausibility models that tracks evidence weakening, we
call it ‘collapse of φ’.

Definition 7. Given a formula φ in the language, collapse of φ is a construction
of type coll(φ) : PM → PM. For a plausibility model M = 〈W,≤, V 〉 the action
on objects coll(φ)(M) is defined as:

– coll(W ) = W
– coll(V )(p) = V (p)
– coll(≤) is defined via a case distinction:

1. If w, v ∈ �φ� then (w, v) ∈ coll(≤);
all φ-worlds are equi-plausible.

2. If w, v ∈ �¬φ� then (w, v) ∈ coll(≤) iff w ≤ v;
the relation is unaltered on ¬φ-worlds.

3. If w ∈ �¬φ� and v ∈ �φ� then (w, v) ∈ coll(≤) iff ∀k ∈ W w ≤ k;
a ¬φ-world is at least as plausible as a φ-world iff the former was the
bottom element of ≤.

4. if v ∈ �¬φ� and w ∈ �φ� then (w, v) ∈ coll(≤);
all φ-worlds are at least as plausible as ¬φ-worlds.

Theorem 1 (Tracking of evidence weakening). The evidence weakening
update on evidence models is tracked by the collapse update, making the following
diagram commute on objects:
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PM PM

EM EM

coll(X)

ORD ORD

∪X

Proof. Consider an evidence model M = 〈W, E , V 〉. The functor ORD and the
two updates leave the set of worlds W and the valuation V unaltered, thus there
is nothing to check there. Applying first ORD and then coll(X) we obtain the
relation coll(≤E), while applying the update ∪X and then ORD we get the
relation ≤∪X(E): we need to show that the two coincide, that is

(w, v) ∈ coll(≤E) iff w ≤∪X(E) v

We do so by a case distinction, using X to denote the complement of X.:

– Suppose w, v ∈ X. Then by definition (w, v) ∈ coll(≤E) is always the case.
But also w ≤∪X(E) v must always be the case: since w, v ∈ X the condition
∀Y ∈ E if v ∈ Y ∪ X then w ∈ Y ∪ X is always fulfilled.

– Assume w, v ∈ X. Then (w, v) ∈ coll(≤E) iff, by definition, w ≤E v, which
means that for all Y ∈ E if v ∈ Y then w ∈ Y . Since we assumed w, v ∈ X,
the last condition is equivalent to the following: for all Y ∈ E if v ∈ Y ∪ X
then w ∈ Y ∪ X. But this is just the definition of w ≤∪X(E) v.

– Suppose now that w ∈ X and v ∈ X. By the definition of collapse, (w, v) ∈
coll(≤E) is the case iff w is below every element in W with respect to relation
≤E . This latter condition is the case iff w is contained in all the evidence sets
in E : if it does then clearly it is below every other element by the definition
of ≤E ; for the other direction consider that every evidence set Y is not empty
(by definition of evidence model ∅ 
∈ E) so there is k ∈ Y but because w ≤E k
we get w ∈ Y .
If for all Y ∈ E we have w ∈ Y then for all Y ∈ E we have that if v ∈ Y ∪ X
then w ∈ Y ∪ X, because the consequent always holds. Hence w ≤∪X(E) v.
Conversely, under the assumption v ∈ X and w ∈ X, the condition ∀Y ∈ E if
v ∈ Y ∪ X then w ∈ Y ∪ X entails that w ∈ Y for all Y ∈ E .

– For the last case assume that v ∈ X and w ∈ X. Then (w, v) ∈ coll(≤E) is
always the case by definition. Note that the same holds for w ≤∪X(E) v: since
w ∈ X, we have w ∈ Y ∪ X for every Y ∈ E .

Of course one of the main difficulties, when dealing with problems such as track-
ing, is to find the right candidate for a tracking companion. In general one would
like to have a constructive procedure to compute the second update from the
first, instead of having to rely on guesswork. Our result, presented later, also
addresses this concern.

There are also plenty of examples of updates on evidence models that are
not trackable. One case mentioned in [5] is evidence deleting, an update that
removes all the evidence sets implying the negation of the new data.
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3.2 Tracking as a Definability Problem

As we mentioned previously, the interesting part of tracking is the reduction of
updates cast in a complex language to updates cast in a poor language, typically
a fragment. In other words, tracking is ultimately a definability issue. We begin
by making explicit what we mean by saying that an update is defined in a
certain language. We focus exclusively on updates that preserve the carrier of
the structure.

Definition 8 (Definability). An n-ary relation R in a model M is definable
in a language L iff there is a formula φ(x) ∈ L with n open variables such that:

R = {(a1, . . . , an)|M � φ(x)[(a1, . . . , an)]}

The signature of plausibility models is FOL with a binary relational symbol ≤
which is meant to be interpreted on the plausibility relation. For evidence models
we need a stronger language in order to quantify over evidence sets.

Definition 9 (Evidence language). Consider the grammar

φ ::= E(n) |x ∈ n | ¬φ |φ ∧ φ | ∀xφ | ∀nφ

where variables n, n′, . . . are for subsets and variables x, y, . . . are for elements.
To the signature we add a unary predicate E on subsets, denoting whether a
subset is a piece of evidence, and a binary relation ∈ denoting elementhood.
We adopt the standard conventions for free and bound variables, as well as the
classical abbreviations for defined propositional connectives.

We will use ‘plausibility language’ or ‘evidence language’ to refer to such lan-
guages. The semantics of these languages are just the standard first and second-
order semantics; the former language is meant to be interpreted over the class
of plausibility models, while the second over the class of evidence models.

In order to define an update we define its intended output via a formula
containing the suitable parameters. On plausibility models for example, given
an update U , a plausibility model M and a set P , we define U by defining the
plausibility relation on the updated model U(P )(M) with a formula β(x, y, P,≤)
such that:

– it depends on P , a unary predicate interpreted on the set P ;4

– it depends on ≤, a binary relational symbol interpreted on the relation ≤ in
the model;

– it has two open variables in order to define a binary relation;
– it is in the signature of plausibility models.

In the case of evidence models we define an update U ′(P ) with a formula
α(n, P, E), where n is an open variable of sort ‘subset’, P is again a unary

4 We ambiguously use the same symbol for the corresponding semantic and the syn-
tactic objects; the context will disambiguate.
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predicate for worlds and E is the aforementioned unary predicate for subsets;
a formula α(n, P, E) will denote the evidence sets of the updated model. We
can now state precisely what the problem of tracking amounts to in the case of
evidence and plausibility models.

Question 1 (Tracking). Given an update U ′ on evidence models defined by a
formula α(n, P, E) in the evidence language, can we find an update U on plau-
sibility models that tracks U ′ and is defined by a formula β(x, y, P,≤) in the
plausibility language?

The optimal answer to this problem is a characterization result giving:

– the syntactic shape of all and only the trackable updates;
– for the updates of that shape, an algorithm that manipulates syntactically

the corresponding formulas α and produces the definitions β of their tracking
companion;

– for the updates that are not of that shape, a procedure to construct a counter-
example to tracking.

Our main theorem is a result of this kind, for a specific class of updates.
Notice that the evidence language is strong enough to express the action of

the function ORD: given an evidence collection E the relation x ≤E y is defined
by the following formula with two open variables.

x ≤E y := ∀n(E(n) → (y ∈ n → x ∈ n))

Call FOL(P,≤E) the language of FOL enriched with two additional symbols
for P and ≤E . Note that this is a fragment of the evidence language (enriched
with the unary predicate P ), namely a fragment where the quantification over
subsets occurs only within ≤E . The next proposition points to the fact that any
update in the language of evidence models that is definable with a formula of
FOL(P,≤E) is in fact trackable.

Proposition 4 (FOL(P,≤E)-definability entails tracking). Given an
update U ′ on evidence models and a set P , assume U ′(P ) preserves the domain
of the models. Suppose that for any given model M the relation ORD(U ′(P )(E)),
namely the plausibility relation in the model ORD(U ′(P )(M)), is definable by a
formula β(x, y, P,≤E) ∈ FOL(P,≤E). Then U ′(P ) is tracked by an update U(P )
defined by β(x, y, P,≤).

If an update U ′(P ) on evidence models is defined by α(n, P, E) in the evidence
language (that is, such formula denotes the subsets that are pieces of evidence
after the update) then the relation ORD(U ′(P )(E)) is also defined by

∀n(α(n, P, E) → (y ∈ n → x ∈ n)) (1)

Therefore Proposition 4 guarantees that if we can reduce 1 to the fragment
FOL(P,≤E) then we know that U ′ is trackable.
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4 Characterizing Trackable Updates

Now for the main course: we isolate a class of updates for which we can prove a
characterization result. We begin with a preliminary definition and some nota-
tion.

Definition 10 (Simple formulas). Given a predicate P on elements, a for-
mula ψ(n, x, P ) in the evidence language is simple if it is built from the atomic
formulas x ∈ n and Px using only negations, conjunctions and disjunctions.

Simple formulas are essentially just boolean combinations of the two atomic
formulas x ∈ n and Px.

Notation. We use the following abbreviations in the evidence language:

– n ⊆ n′ := ∀y [y ∈ n → y ∈ n′]
– n = n′ := n ⊆ n′ ∧ n′ ⊆ n
– n ⊂ n′ := n ⊆ n′ ∧ ¬(n′ ⊆ n)
– n ⊆ P := ∀y [y ∈ n → Py]
– n = P := n ⊆ P ∧ P ⊆ n
– n ⊂ P := n ⊆ P ∧ ¬(P ⊆ n)
– n ⊆ φ(n′, P ) := ∀y [y ∈ n → φ(n′, y, P )]
– n = φ(n′, P ) := (n ⊆ φ(n′, P )) ∧ (φ(n′, P ) ⊆ n)
– n ⊂ φ(n′, P ) := (n ⊆ φ(n′, P )) ∧ ¬(φ(n′, P ) ⊆ n)

Note how we remove the variable y from φ(n′, P ) to stress that this variable
has been quantified over. We use the same notation with other formulas such as
θ(n′, x, P ) in the same fashion.

A first observation is that all updates that are defined with a formula of the
following shape

α(n, P ) := ∃n′(E(n′) ∧ n = φ(n′, P ))

turn out to be trackable. In these cases all evidence sets are modified uniformly by
φ. An example of such updates is evidence weakening, in which case φ(n′, y, P ) :=
x ∈ n′ ∨Px. We thus seek to enlarge this class of updates to a more diverse one,
including some non-trackable updates. As witnessed by some examples treated
in [5], counterexamples to tracking seem to occur when we break this uniformity,
that is, we modify some evidence sets while we leave some other unchanged. This
suggests the introduction of a ‘precondition’ θ, which may be triggered or not
by an evidence set; to keep things under control we require θ to also be a simple
formulas. This leads us to the definition of simple updates.

Definition 11 (Simple updates). An update on evidence models is simple if
it is definable with a formula of the following shape:

α(n, P ) := ∃n′(E(n′) ∧ ∃x θ(n′, x, P ) ∧ n = φ(n′, P ))
∨ (E(n′) ∧ ¬∃x θ(n′, x, P ) ∧ n = n′)

where both θ(n, x, P ) and φ(n′, y, P ) are simple formulas.
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Simple updates can be intuitively understood as follows: the new collection
of evidences keeps all the old evidence sets n′ for which the condition θ ‘fails’,
namely when ¬∃x θ(n′, x, P ) is the case, while it replaces with φ(n′, P ) all the
old evidence sets n′ for which the precondition ∃x θ(n′, x, P ) holds. If θ(n, x, P )
is equivalent to � then a simple update performs a uniform operation on all
evidence sets, thus we recover all updates of the form α(n, P ) := ∃n′(E(n′)∧n =
φ(n′, P )). If θ has more structure then it can be exploited to select the evidence
sets that we intend to manipulate.

The class of simple updates contains both examples and counterexamples to
tracking, therefore it is amenable for a characterization result as described in
the previous section. Despite being defined in terms of simple formulas, simple
updates already exhibit a complex behaviour due to the interaction between the
‘precondition’ θ and the ‘effect’ of the update φ. Now for some further terminol-
ogy. The elements that belong to a subset n but do not belong to its updated
version, namely φ(n, x, P ), are called separated. The elements that do not belong
to a subset n but belong to φ(n, x, P ) are instead called adopted. We encode these
notions in the following formulas:

– Sep(n, x, P ) := x ∈ n ∧ ¬φ(n, x, P )
– Ado(n, x, P ) := x 
∈ n ∧ φ(n, x, P )

With this terminology in place we can state our characterization result for track-
ing of simple updates.

Theorem 2. A simple update U ′ is trackable if and only if one of the following
conditions hold.

1. All separated points and all adopted points are witnesses:
∀n [Sep(n, P ) ⊆ θ(n, P ) ∧ Ado(n, P ) ⊆ θ(n, P )] is a tautology.

2. The formula ∀n E(n) → ∀x(γ(n, x, P ) → θ(n, x, P )) is a tautology on evidence
models, where γ(n, x, P ) is one of the following formulas:
– x ∈ n
– x 
∈ n
– Px
– ¬Px

3. ∃x θ(n, x, P ) is equivalent to ⊥.

If one of the aforementioned conditions holds then we have a procedure to con-
struct the tracking companion of U ′; if they all fail we have a procedure to con-
struct a counterexample to tracking.

We provide an example in the AppendixA to show an application of our result;
we refer the reader to [8] for the full proof.



A Characterization Theorem for Trackable Updates 105

5 Conclusions

In this article we dived into the upcoming topic of tracking, namely the matching
of information dynamics on different structures. We focused on the case study of
plausibility and evidence models. After setting up the stage and discussing some
examples, we described the sense in which tracking is primarily a definability
issue. We then presented our main result, an if and only if characterization of
the trackable updates in the class of simple updates. For the trackable updates
the proof of the theorem provides a procedure to construct the corresponding
update on plausibility models, while for the non-trackable updates we offer a
strategy to build a counterexample to tracking.

We have seen the sense in which tracking, at least in the case study we ana-
lyzed, connects to the reduction of second-order formulas to first-order ones.
Updates whose definition can be reduced in such a way are, loosely speak-
ing, treating a second order structure as if it were first-order. Indeed trackable
updates give the “same” treatment to evidence models that generate the same
preorder, where “same” means from the point of view of a first-order signature
(see Proposition 2). This perspective becomes particularly interesting if we con-
sider that evidence models are examples of neighborhood models. Even though
our results are tailored to work on the class of evidence models specifically, the
techniques employed in this chapter could be tested in the general case, namely
the tracking of operations on neighborhood models by operations on preorders.

The groundwork put forward in this article provides a basis to further study
the issues connected to dynamic updates and tracking, as well as a methodology
that can be adapted to other classes of models different from the ones cov-
ered here. A prominent example would be probabilistic models: one may want
to apply our techniques to study their interaction with the poorer plausibility
models. The interplay between probabilities and plausibility relations is a classic
theme in epistemology and it has seen some renewed interest in recent years,
witness for example [10]. On the other hand, neighborhood models have their
own history of connections with probabilistic models, (see e.g. [13]), and may
serve as a bridge between the coarse-grained plausibility representation and the
probabilistic realm.

A Appendix: Application of Theorem2

In this appendix we show how our main result can be applied, deriving the
update ‘collapse of X’ (Definition 7) from the update ‘evidence weakening of
X’ (Definition 6). This will showcase how our characterization result solves the
problem of finding the tracking companion for a given update.

We start by encoding evidence weakening in a formula α of the evidence
language, using P as the unary predicate that is meant to be interpreted on X:

α(n, P, E) := ∃n′(E(n′) ∧ ∀xx ∈ n ↔ (x ∈ n′ ∨ Px))
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Intuitively this formula is saying ‘a set n is a piece of evidence in the updated
model iff there exists an evidence set n′ in the original model such that n =
n′ ∪ X’. Note that this is a simple update, where φ(x, n′, P ) = (x ∈ n′ ∨ Px)
and θ(x, n′, P ) = �.

Evidence weakening satisfies the premises of our Theorem; this ensures that
we can apply the procedure to find its tracking companion. As we know from
Proposition 4, it is sufficient to show that, for α(n, P, E) as above, the formula

∀n(α(n, P, E) → (y ∈ n → x ∈ n))

is equivalent to a formula β(x, y, P,≤E) ∈ FOL(P,≤E). Thus we proceed manip-
ulate the formula syntactically exploiting various first-order and propositional
laws. Starting from

∀n(α(n, P, E) → (y ∈ n → x ∈ n))

we plug in α and obtain

∀n(∃n′(E(n′) ∧ ∀z z ∈ n ↔ (z ∈ n′ ∨ Pz)) → (y ∈ n → x ∈ n))

From this formula we extract the existential quantifier:

∀n,∀n′(E(n′) ∧ ∀z z ∈ n ↔ (z ∈ n′ ∨ Pz)) → (y ∈ n → x ∈ n)

Now we eliminate the quantifier over n exploiting the bi-conditional, substituting
the instances of x ∈ n and y ∈ n:

∀n′(E(n′) → ((y ∈ n′ ∨ Py) → (x ∈ n′ ∨ Px)))

We proceed to split the first disjunction into two implications.

∀n′(E(n′) → ([(y ∈ n′) → (x ∈ n′ ∨ Px)] ∧ [(Py) → (x ∈ n′ ∨ Px)]))

We can then distribute the outermost implication and the quantifier over the
conjunction, obtaining

∀n′(E(n′) → [(y ∈ n′) → (x ∈ n′ ∨ Px)])∧
∀n′(E(n′) → [(Py) → (x ∈ n′ ∨ Px)])

The next step is to rewrite the innermost disjunctions as implications.

∀n′(E(n′) → [(y ∈ n′) → (¬Px → x ∈ n′)])∧
∀n′(E(n′) → [(Py) → (¬Px → x ∈ n′)])

Since n′ does not feature in the literals Px or Py or their negations, we can pull
out these formulas from the quantifications.

[¬Px → ∀n′(E(n′) → ((y ∈ n′) → (x ∈ n′)))]∧
[(Py ∧ ¬Px) → ∀n′(E(n′) → x ∈ n′)]



A Characterization Theorem for Trackable Updates 107

Finally, using the definition of ≤E , we can rewrite the last formula as

β(x, y, P,≤E) := [¬Px → x ≤E y] ∧ [(Py ∧ ¬Px) → ∀z x ≤E z]

The equivalence of ∀z x ≤E z and ∀n′(E(n′) → x ∈ n′) over evidence models is
an easy check.

Proposition 4 argued that the tracking companion of evidence weakening is
defined by β(x, y, P,≤) (which is just β(x, y, P,≤E) where we have substituted
the relation ≤E with ≤). In this case this means that two elements a and b
are in the new, updated relation if and only if they satisfy β(x, y, P,≤). Is is
easy to see that β(x, y, P,≤) defines exactly the collapse update of Definition 7:
(a, b) ∈ coll(≤) if and only if β(x, y, P,≤) is true when instantiated to (a, b) if
and only if one of the following is the case

– a ∈ X (recall that P is interpreted on the set X);
– a 
∈ X, b 
∈ X and a ≤ b;
– a 
∈ X, b ∈ X and ∀z a ≤ z.

The reader is invited to contrast this with Definition 7. The manipulations
showed in this section are part of a general strategy to reduce the updates of the
right shape into formulas of the fragment FOL(P,≤E), giving us a procedure to
compute the tracking companion.
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Abstract. The paper analyzes dynamic epistemic logic from a topolog-
ical perspective. The main contribution consists of a framework in which
dynamic epistemic logic satisfies the requirements for being a topological
dynamical system thus interfacing discrete dynamic logics with contin-
uous mappings of dynamical systems. The setting is based on a notion
of logical convergence, demonstratively equivalent with convergence in
Stone topology. Presented is a flexible, parametrized family of metrics
inducing the latter, used as an analytical aid. We show maps induced
by action model transformations continuous with respect to the Stone
topology and present results on the recurrent behavior of said maps.
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1 Introduction

Dynamic epistemic logic is a framework for modeling information dynamics. In it,
systematic change of Kripke models are punctiliously investigated through model
transformers mapping Kripke models to Kripke models. The iterated application
of such a map may constitute a model of information dynamics, or be may be
analyzed purely for its mathematical properties [6,8,10,11,13,16,18,40–43].

Dynamical systems theory is a mathematical field studying the long-term
behavior of spaces under the action of a continuous function. In case of discrete
time, this amounts to investigating the space under the iterations of a continuous
map. The field is rich in concepts, methodologies and results developed with the
aim of understanding general dynamics.

The two fields find common ground in the iterated application of maps. With
dynamic epistemic logic analyzing very specific map types, the hope is that
general results from dynamical systems theory may shed light on properties
c© Springer-Verlag GmbH Germany 2017
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of the former. There is, however, a chasm between the two: Dynamical systems
theory revolves around spaces imbued with metrical or topological structure with
respect to which maps are continuous. No such structure is found in dynamic
epistemic logic. This chasm has not gone unappreciated: In his 2011 Logical
Dynamics of Information and Interaction [10], van Benthem writes

From discrete dynamic logics to continuous dynamical systems

“We conclude with what we see as a major challenge. Van Benthem [7,8]
pointed out how update evolution suggests a long-term perspective that
is like the evolutionary dynamics found in dynamical systems. [...] Inter-
facing current dynamic and temporal logics with the continuous realm is
a major issue, also for logic in general.” [10, Sect. 4.8. Emph. is org.
heading]

This paper takes on the challenge and attempts to bridge this chasm.
We proceed as follows. Section 2 presents what we consider natural spaces

when working with modal logic, namely sets of pointed Kripke models modulo
logical equivalence. These are referred to as modal spaces. A natural notion of
“logical convergence” on modal spaces is provided. Section 3 seeks a topology
on modal spaces for which topological convergence coincides with logical con-
vergence. We consider a metric topology based on n-bisimulation and prove it
insufficient, but show an adapted Stone topology satisfactory. Saddened by the
loss of a useful aid, the metric inducing the n-bisimulation topology, a family
of metrics is introduced that all induce the Stone topology, yet allow a variety
of subtle modelling choices. Sets of pointed Kripke models are thus equipped
with a structure of compact metric spaces. Section 4 considers maps on modal
spaces based on multi-pointed action models using product update. Restrictions
are imposed to ensure totality, and the resulting clean maps are shown con-
tinuous with respect to the Stone topology. With that, we present our main
contribution: A modal space under the action of a clean map satisfies the stan-
dard requirements for being a topological dynamical system. Section 5 applies
the now-suited terminology from dynamical systems theory, and present some
initial results pertaining to the recurrent behavior of clean maps on modal spaces.
Section 6 concludes the paper by pointing out a variety of future research venues.
Throughout, we situate our work in the literature.

Remark 1. To make explicit what may be apparent, note that the primary con-
cern is the semantics of dynamic epistemic logic, i.e., its models and model
transformation. Syntactical considerations are briefly touched upon in Sect. 6.

Remark 2. The paper is not self-contained. For notions from modal logic that
remain undefined here, refer to e.g. [14,27]. For topological notions, refer to
e.g. [37]. For more on dynamic and epistemic logic than the bare minimum
of standard notions and notations rehearsed, see e.g. [2–5,10,20,22,30,38,39].
Finally, a background document containing generalizations and omitted proofs
is our [31].
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2 Modal Spaces and Logical Convergence

Let there be given a countable set Φ of atoms and a finite set I of agents.
Where p ∈ Φ and i ∈ I, define the language L by

ϕ := � | p | ¬ϕ | ϕ ∧ ϕ | �iϕ.

Modal logics may be formulated in L. By a logic Λ we refer only to exten-
sions of the minimal normal modal logic K over the language L. With
Λ given by context, let ϕ be the set of formulas Λ-provably equivalent to ϕ.
Denote the resulting partition {ϕ : ϕ ∈ L} of L by LΛ.1 Call LΛ’s elements
Λ-propositions.

We use relational semantics to evaluate formulas. A Kripke model for L is
a tuple M = (�M�, R, �·�) where �M� is a countable, non-empty set of states,
R : I −→ P(�M� × �M�) assigns to each i ∈ I an accessibility relation Ri,
and �·� : Φ −→ P(�M�) is a valuation, assigning to each atom a set of states.
With s ∈ �M�, call Ms = (�M�, R, �·�, s) a pointed Kripke model. The used
semantics are standard, including the modal clause:

Ms � �iϕ iff for all t : sRit implies Mt � ϕ.

Throughout, we work with pointed Kripke models. Working with modal logics,
we find it natural to identify pointed Kripke models that are considered equiv-
alent by the logic used. The domains of interest are thus the following type of
quotient spaces:

Definition 1. The LΛ modal space of a set of pointed Kripke models X is the
set X = {x : x ∈ X} for x = {y ∈ X : y � ϕ iff x � ϕ for all ϕ ∈ LΛ}.
Working with an LΛ modal space portrays that we only are interested in differ-
ences between pointed Kripke models insofar as these are modally expressible
and are considered differences by Λ.

In a modal space, how may we conceptualize that a sequence x1,x2, ... con-
verges to some point x? Focusing on the concept from which we derive the notion
of identity in modal spaces, namely Λ-propositions, we find it natural to think
of x1,x2, ... as converging to x just in case xn moves towards satisfying all
the same Λ-propositions as x as n goes to infinity. We thus offer the following
definition:

Definition 2. A sequence of points x1,x2, ... in an LΛ modal space X is said
to logically converge to the point x in X iff for every ϕ ∈ LΛ for which x � ϕ,
there is an N ∈ N such that xn � ϕ for all n ≥ N .

To avoid re-proving useful results concerning this notion of convergence, we
next turn to seeking a topology for which logical convergence coincides with
topological convergence. Recall that for a topology T on a set X, a sequence of
points x1, x2, ... is said to converge to x in the topological space (X, T ) iff
for every open set U ∈ T containing x, there is an N ∈ N such that xn ∈ U for
all n ≥ N .
1 LΛ is isomorphic to the domain of the Lindenbaum algebra of Λ.
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3 Topologies on Modal Spaces

One way of obtaining a topology on a space is to define a metric for said
space. Several metrics have been suggested for sets of pointed Kripke models
[1,17]. These metrics are only defined for finite pointed Kripke models, but
incorporating ideas from the metrics of [36] on shift spaces and [26] on sets of
first-order logical theories allows us to simultaneously generalize and simplify
the n-Bisimulation-based Distance of [17] to the degree of applicability:

Let X be a modal space for which modal equivalence and bisimilarity
coincide2 and let �n relate x, y ∈ X iff x and y are n-bisimilar. Then proving

dB(x,y) =

{
0 if x �n y for all n
1
2n if n is the least intenger such that x ��n y

a metric on X is trivial. We refer to dB as the n-bisimulation metric, and to
the induced metric topology as the n-bisimulation topology, denoted TB . A
basis of the topology TB is given by the set of elements Bxn = {y ∈ X : y �n x}.

Considering the intimate link between modal logic and bisimulation, we con-
sider both n-bisimulation metric and topology highly natural.3 Alas, logical con-
vergence does not:

Proposition 1. Logical convergence in arbitrary modal space X does not imply
convergence in the topological space (X, TB).

Proof. Let X be an LΛ modal space with L based on the atoms Φ = {pk : k ∈ N}.
Let x ∈ X satisfy �⊥ and pk for all k ∈ N. Let x1,x2, ... be a sequence in X
such that for all k ∈ N, xk satisfies �⊥, pm for all m ≤ k, and ¬pl for all l > k.
Then for all ϕ ∈ LΛ for which x � ϕ, there is an N such that xn � ϕ for all
n ≥ N , hence the sequence x1,x2, ... converges to x. There does not, however,
exist any N ′ such that xn′ ∈ Bx0 for all n′ ≥ N ′. Hence x1,x2, ... does not
converge to x in TB . 
�

Proposition 1 implies that the n-bisimulation topology may not straight-
forwardly be used to establish negative results concerning logical convergence.
That it may be used for positive cases is a corollary to Propositions 2 and 6
below. On the upside, logical convergence coincides with convergence in the n-
bisimulation topology – i.e. Proposition 1 fails – when L has finite atoms. This
is a corollary to Proposition 5.

An alternative to a metric-based approach to topologies is to construct the
set of all open sets directly. Comparing the definition of logical convergence with
that of convergence in topological spaces is highly suggestive: Replacing every
occurrence of the formula ϕ with an open set U while replacing satisfaction
� with inclusion ∈ transforms the former definition into the latter. Hence the

2 That all models in X are image-finite is a sufficient condition, cf. the Hennessy-
Milner Theorem. See e.g. [14] or [27].

3 Space does not allow for a discussion of the remaining metrics of [1,17], but see [31].
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collection of sets Uϕ = {x ∈ X : x � ϕ}, ϕ ∈ LΛ, seems a reasonable candidate
for a topology. Alas, this collection is not closed under arbitrary unions, as all
formulas are finite. Hence it is not a topology. It does however constitute the
basis for a topology, in fact the somewhat influential Stone topology, TS .

The Stone topology is traditionally defined on the collection of complete the-
ories for some propositional, first-order or modal logic, but is straightforwardly
applicable to modal spaces. Moreover, it satisfies our desideratum:

Proposition 2. For any LΛ modal space X, a sequence x1,x2, ... logically con-
verges to the point x if, and only if, it converges to x in (X, TS).

Proof. Assume x1,x2, ... logically converges to x in X and that U containing
x is open in TS . Then there is a basis element Uϕ ⊆ U with x ∈ Uϕ. So x � ϕ.
By assumption, there exists an N such that xn � ϕ for all n ≥ N . Hence
xn ∈ Uϕ ⊆ U for all n ≥ N .

Assume x1,x2, ... converges to x in (X, TS) and let x � ϕ. Then x ∈ Uϕ,
which is open. As the sequence converges, there exists an N such that xn ∈ Uϕ

for all n ≥ N . Hence xn � ϕ for all n ≥ N . 
�
Apart from its attractive characteristic concerning convergence, working on

the basis of a logic, the Stone topology imposes a natural structure. As is evident
from its basis, every subset of X characterizable by a single Λ-proposition ϕ ∈
LΛ is clopen. If the logic Λ is compact and X saturated (see footnote 7), also
the converse is true: every clopen set is of the form Uϕ for some ϕ. We refer
to [31] for proofs and a precise characterization result. In this case, a subset is
open, but not closed, iff it is characterizable only by an infinitary disjunction
of Λ-propositions, and a subset if closed, but not open, iff it is characterizable
only by an infinitary conjunction of Λ-propositions. The Stone topology thus
transparently reflects the properties of logic, language and topology. Moreover,
it enjoys practical topological properties:

Proposition 3. For any LΛ modal space X, (X, TS) is Hausdorff and
totally disconnected. If Λ is (logically) compact4 and X is saturated5, then
(X, TS) is also (topologically) compact.

Proof. These properties are well-known for the Stone topology applied to com-
plete theories. For the topology applied to modal spaces, we defer to [31]. 
�

One may interject that, as having a metric may facilitate obtaining results,
it may cause a loss of tools to move away from the n-bisimulation topology.
The Stone topology, however, is metrizable. A family of metrics inducing it,
generalizing the Hamming distance to infinite strings by using weighted sums,
was introduced in [31]. We here present a sub-family, suited for modal spaces:
4 A logic Λ is logically compact if any arbitrary set A of formulas is Λ-consistent iff

every finite subset of A is Λ-consistent.
5 An LΛ modal space X is saturated iff for each Λ-consistent set of formulas A,

there is an x ∈ X such that x � A. Saturation relates to the notion of strong
completeness, cf. e.g. [14, Proposition 4.12]. See [31] for its use in a more general
context.
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Definition 3. Let D ⊆ LΛ contain for every ψ ∈ LΛ some {ϕi}i∈I that Λ-
entails either ψ or ¬ψ, and let ϕ1,ϕ2, ... be an enumeration of D.

Let X be an LΛ modal space. For all x,y ∈ X, for all k ∈ N, let

dk(x,y) =

{
0 if x � ϕ iff y � ϕ for ϕ ∈ ϕk

1 else

Let w : D −→ R>0 assign strictly positive weight to each ϕk in D such that
(w(ϕn)) forms a convergent series. Define the function dw : X2 −→ R by

dw(x,y) =
∞∑

k=0

w(ϕk)dk(x,y)

for all x,y ∈ X. The set of these functions is denoted DX . Let DD,X =
∪D⊆LΛ

DX .

We refer to [31] for the proof establishing the following proposition:

Proposition 4. Let X be an LΛ modal space and dw belong to DX . Then dw

is a metric on X and the metric topology Tw induced by dw on X is the Stone
topology of Λ.

For a metric space (X, d), we will also write Xd.
With variable parameters D and w, DX allows one to vary the choice of

metric with the problem under consideration. E.g., if the n-bisimulation metric
seems apt, one could choose that, with one restriction:

Proposition 5. If X is an LΛ modal space with L based on a finite atom set,
then DX contains a topological equivalent to the n-bisimulation metric.

Proof (sketch). As L is based on a finite set of atoms, for each x ∈ X, n ∈ N0,
there exists a characteristic formula ϕx,n such that y � ϕx,n iff y �n x, cf. [27].
Let Dn = {ϕx,n : x ∈ X} and D = ∪n∈N0Dn. Then each Dn is finite and D
satisfies Definition 3. Finally, let w(ϕ) = 1

|Dn| · 1
2n+1 for ϕ ∈ Dn. Then dw ∈ DX

and is equivalent to the n-bisimulation metric db. 
�

As a corollary to Proposition 5, it follows that, for finite atom languages, the
n-bisimulation topology is the Stone topology. This is not true in general, as
witnessed by Proposition 1 and the following:

Proposition 6. If X is an LΛ modal space with L based on a countably infinite
atom set, then the n-bisimulation metric topology on X is strictly finer than the
Stone topology on X.

Proof (sketch). We refer to [31] for details, but for TB �⊆ TS , note that the set
Bx0 used in the proof of Proposition 1, is open in TB , but not in TS . 
�

With this comparison, we end our exposition of topologies on modal spaces.
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4 Clean Maps on Modal Spaces

We focus on a class of maps induced by action models applied using product
update. Action models are a popular and widely applicable class of model trans-
formers, generalizing important constructions such as public announcements. An
especially general version of action models is multi-pointed action models with
postconditions. Postconditions allow action states in an action model to change
the valuation of atoms [12,19], thereby also allowing the representation of infor-
mation dynamics concerning situations that are not factually static. Permitting
multiple points allows the actual action states executed to depend on the pointed
Kripke model to be transformed, thus generalizing single-pointed action models.6

A multi-pointed action model is a tuple ΣΓ = (�Σ�,R, pre, post, Γ )
where �Σ� is a countable, non-empty set of actions. The map R : I →
P(�Σ� × �Σ�) assigns an accessibility relation Ri on �Σ� to each agent i ∈ I.
The map pre : �Σ� → L assigns to each action a precondition, and the map
post : �Σ� → L assigns to each action a postcondition,7 which must be � or a
conjunctive clause8 over Φ. Finally, ∅ �= Γ ⊆ �Σ� is the set of designated actions.

To obtain well-behaved total maps on a modal spaces, we must invoke a set of
mild, but non-standard, requirements: Let X be a set of pointed Kripke models.
Call ΣΓ precondition finite if the set {pre(σ) ∈ LΛ : σ ∈ �Σ�} is finite. This
is needed for our proof of continuity. Call ΣΓ exhaustive over X if for all
x ∈ X, there is a σ ∈ Γ such that x � pre(σ). This conditions ensures that the
action model ΣΓ is universally applicable on X. Finally, call ΣΓ deterministic
over X if X � pre(σ) ∧ pre(σ′) → ⊥ for each σ �= σ′ ∈ Γ . Together with
exhaustivity, this condition ensures that the product of ΣΓ and any Ms ∈ X is
a (single-)pointed Kripke model, i.e., that the actual state after the updates is
well-defined and unique.

Let ΣΓ be exhaustive and deterministic over X and let Ms ∈ X. Then the
product update of Ms with ΣΓ , denoted Ms ⊗ ΣΓ , is the pointed Kripke
model (�MΣ�, R′, �·�′, s′) with

�MΣ� = {(s, σ) ∈ �M� × �Σ� : (M, s) � pre(σ)}
R′ = {((s, σ), (t, τ)) : (s, t) ∈ Ri and (σ, τ) ∈ Ri} , for all i ∈ N

�p�′ = {(s, σ) :s ∈ �p�, post(σ) � ¬p} ∪ {(s, σ) :post(σ) � p} , for all p ∈ Φ

s′ = (s, σ) : σ ∈ Γ and Ms � pre(σ)

Call ΣΓ closing over X if for all x ∈ X, x⊗ΣΓ ∈ X. With ΣΓ exhaustive and
deterministic, ΣΓ and ⊗ induce a well-defined total map on X.

The class of maps of interest in the present is then the following:

6 Multi-pointed action models are also referred to as epistemic programs in [2], and
allow encodings akin to knowledge-based programs [22] of interpreted systems, cf. [42].

7 The precondition of σ specify the conditions under which σ is executable, while its
postcondition may dictate the posterior values of a finite, possibly empty, set of
atoms.

8 I.e. a conjuction of literals, where a literal is an atom or a negated atom.
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Definition 4. Let X be an LΛ modal space. A map f : X → X is called clean
if there exists a precondition finite, multi-pointed action model ΣΓ closing, deter-
ministic and exhaustive over X such that f(x) = y iff x ⊗Σ Γ ∈ y for all x ∈ X.

Clean maps are total by the assumptions of being closing and exhaustive. They
are well-defined as f(x) is independent of the choice of representative for x:
If x′ ∈ x, then x′ ⊗ ΣΓ and x ⊗ ΣΓ are modally equivalent and hence define
the same point in X. The latter follows as multi-pointed action models applied
using product update preserve bisimulation [2], which implies modal equivalence.
Clean maps moreover play nicely with the Stone topology:

Proposition 7. Let f be a clean map on an LΛ modal space X. Then f is
continuous with respect to the Stone topology of Λ.

Proof (sketch). We defer to [31] for details, but offer a sketch: The map f is
shown uniformly continuous using the ε-δ formulation of continuity. The proof
relies on a lemma stating that for every dw ∈ DX and every ε > 0, there are
formulas χ1, . . . , χl ∈ L such that every x ∈ X satisfies some χi and whenever
y � χi and z � χi for some i ≤ l, then dw(y, z) < ε. The main part of the
proof establishes the claim that there is a function δ : L → (0,∞) such that
for any ϕ ∈ L, if f(x) � ϕ and da(x, y) < δ(ϕ), then f(y) � ϕ. Setting δ =
min{δ(χi) : i ≤ l} then yields a δ with the desired property. 
�

With Proposition 7, we are positioned to state our main theorem:

Theorem 1. Let f be a clean map on a saturated LΛ modal space X with Λ
compact and let d ∈ DX . Then (Xd,f) is a topological dynamical system.

Proof. Propositions 2, 3, 4 and 7 jointly imply that Xd is a compact metric space
on which f is continuous, thus satisfying the requirements of e.g. [21,29,44]. 
�

With Theorem 1, we have, in what we consider a natural manner, situated
dynamic epistemic logic in the mathematical discipline of dynamical systems. A
core topic in this discipline is to understand the long-term, qualitative behavior
of maps on spaces. Central to this endeavor is the concept of recurrence, i.e.,
understanding when a system returns to previous states as time goes to infinity.

5 Recurrence in the Limit Behavior of Clean Maps

We represent results concerning the limit behavior of clean maps on modal
spaces. In establishing the required terminology, we follow [29]: Let f be a con-
tinuous map on a metric space Xd and x ∈ Xd. A point y ∈ X is a limit point9

for x under f if there is a strictly increasing sequence n1, n2, ... such that the
subsequence fn1(x), fn2(x), ... of (fn(x))n∈N0 converges to y. The limit set of
x under f is the set of all limit points for x, denoted ωf (x). Notably, ωf (x) is
closed under f : For y ∈ ωf (x) also f(y) ∈ ωf (x). We immediately obtain that
any modal system satisfying Theorem 1 has a nonempty limit set:
9 Or ω-limit point. The ω is everywhere omitted as time here only moves forward.
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Proposition 8. Let (Xd,f) be as in Theorem1. For any point x ∈ X, the limit
set of x under f is non-empty.

Proof. Since X is is compact, every sequence in X has a convergent subsequence,
cf. e.g. [37, Theorem 28.2].

Proposition 8 does not inform us of the structure of said limit set. In the
study of dynamical systems, such structure is often sought through classifying
the possible repetitive behavior of a system, i.e., through the system’s recur-
rence properties. For such studies, a point x is called (positively) recurrent if
x ∈ ωf (x), i.e., if it is a limit point of itself.

The simplest structural form of recurrence is periodicity : For a point x ∈ X,
call the set Of (x) = {fn(x) : n ∈ N0} its orbit. The orbit Of (x) is periodic if
fn+k(x) = fn(x) for some n ≥ 0, k > 0; the least such k is the period of Of (x).
Periodicity is thus equivalent to Of (x) being finite. Related is the notion of a
limit cycle: a periodic orbit Of (x) is a limit cycle if it is the limit set of some
y not in the period, i.e., if Of (x) = ωf (y) for some y �∈ Of (x).

It was conjectured by van Benthem that certain clean maps—those based
on finite action models and without postconditions—would, whenever applied
to a finite x, have a periodic orbit Of (x). I.e., after finite iterations, the map
would oscillate between a finite number of states. This was the content of van
Benthem’s “Finite Evolution Conjecture” [8]. The conjecture was refuted using
a counterexample by Sadzik in his 2006 paper, [43].10 The example provided by
Sadzik (his Example 33) uses an action model with only Boolean preconditions.
Interestingly, the orbit of the corresponding clean map terminates in a limit
cycle. This is a corollary to Proposition 9 below.

Before we can state the proposition, we need to introduce some terminology.
Call a multi-pointed action model ΣΓ finite if �Σ� is finite, Boolean if pre(σ) is
a Boolean formula for all σ ∈ �Σ�, and static if post(σ) = � for all σ ∈ �Σ�. We
apply the same terms to a clean map f based on ΣΓ . In this terminology, Sadzik
showed that for any finite, Boolean, and static clean map f : X → X, if the orbit
Of (x) is periodic, then it has period 1.11 This insightful result immediates the
following:

Proposition 9. Let (Xd,f) be as in Theorem1 with f finite, Boolean, and
static. For all x ∈ X, the orbit Of (x) is periodic with period 1.

Proof. By Proposition 8, the limit set ωf (x) of x under f is non-empty. Sadzik’s
result shows that it contains a single point. Hence (fn(x))n∈N0 converges to this
point. As the limit set ωf (x) is closed under f , its unique point is a fix-point. 
�

Proposition 9 may be seen as a partial vindication of van Benthem’s conjec-
ture: Forgoing the requirement of reaching the limit set in finite time and the
possibility of modal preconditions, the conjecture holds, even if the initial state
has an infinite set of worlds �x�. This simple recurrent behavior is, however, not
10 We paraphrase van Benthem and Sadzik using the terminology introduced.
11 See [16] for an elegant and generalizing exposition.
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the general case. More complex clean maps may exhibit nontrivial recurrence,
i.e., produce non-periodic orbits with recurrent points:

Proposition 10. There exist finite, static, but non-Boolean, clean maps that
exhibit nontrivial recurrence.

Proposition 11. There exist finite, Boolean, but non-static, clean maps that
exhibit nontrivial recurrence.

We show these propositions below, building a clean map which, from a selected
initial state, has uncountably many limit points, despite the orbit being only
countable. Moreover, said orbit also contains infinitely many recurrent points.
In fact, every element of the orbit is recurrent. We rely on Lemma1 in the proof.
A proof of Lemma 1.1 may be found in [32], a proof of Lemma1.2 in [15].

Lemma 1. Any Turing machine can be emulated using a set X of S5 pointed
Kripke models for finite atoms and a finite multi-pointed action model ΣΓ deter-
ministic over X. Moreover, ΣΓ may be chosen 1. static, but non-Boolean, or 2.
Boolean, but non-static.

Proof (of Propositions 10 and 11). For both propositions, we use a Turing
machine ad infinitum iterating the successor function on the natural numbers.
Numbers are represented in mirrored base-2, i.e., with the leftmost digit the
lowest. Such a machine may be build with alphabet {�, 0, 1,�}, where the sym-
bol � is used to mark the starting cell and � is the blank symbol. We omit the
exact description of the machine here. Of importance is the content of the tape:
Omitting blank (�) cells, natural numbers are represented as illustrated in Fig. 1.

0 : � 0 2 : � 0 1 4 : � 0 0 1 6 : � 0 1 1 8 : � 0 0 0 1
1 : � 1 3 : � 1 1 5 : � 1 0 1 7 : � 1 1 1 9 : � 1 0 0 1

Fig. 1. Mirrored base-2 Turing tape representation of 0, .., 9 ∈ N0, blank cells omitted.
Notice that the mirrored notation causes perpetual change close to the start cell, �.

Initiated with its read-write head on the cell with the start symbol � of a tape
with content n, the machine will go through a number of configurations before
returning the read-write head to the start cell with the tape now having content
n + 1. Auto-iterating, the machine will thus, over time, produce a tape that will
have contained every natural number in order.

This Turing machine may be emulated by a finite ΣΓ on a set X cf. Lemma 1.
Omitting the details12, the idea is that the Turing tape, or a finite fragment,

12 The details differ depending on whether ΣΓ must be static, but non-Boolean for
Proposition 10, or Boolean, but non-static for Proposition 11. See resp. [15,32].
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e, ϕ�

c0

u, ϕ0

c1

e, ϕ1

c2

u, ϕ0

c3

e, ϕ1

c4

a b a b

Fig. 2. A pointed Kripke model emulating the configuration of the Turing machine
with cell content representing the number 10. The designated state is the underlined
c0. Each state is labeled with a formula ϕ�, ϕ0 or ϕ1 expressing its content. Relations
a and b allow expressing distance of cells: That c0 satisfies ♦a(u ∧ ♦b(e ∧ ϕ1)) exactly
expresses that cell c2 contains a 1. Omitted are reflexive loops for relations, and the
additional structure marking cell content and read-write head position.

thereof may be encoded as a pointed Kripke model: Each cell of the tape cor-
responds to a state, with the cell’s content encoded by additional structure,13

which is modally expressible. By structuring the cell states with two equivalence
relations and atoms u and e true at cells with odd (even) index respectively, (cf.
Fig. 2), also the position of a cell is expressible. The designated state corresponds
to the start cell, marked �.

Let (cn)n∈N0 be the sequence of configurations of the machine when initiated
on a tape with content 0. Each cn may be represented by a pointed Kripke
model, obtaining a sequence (xn)n∈N0 . By Lemma 1, there thus exists a ΣΓ such
that for all n, xn ⊗ΣΓ = xn+1. Hence, moving to the full modal space X for the
language used, a clean map f : X → X based on ΣΓ will satisfy f(xn) = xn+1

for all n. The Turing machine’s run is thus emulated by (fk(x0))k∈N0 .
Let (c′

n)n∈N0 be the subsequence of (cn)n∈N0 where the machine has finished
the successor operation and returned its read write head to its starting position
�, ready to embark on the next successor step. The tape of the first 9 of these
c′
n are depicted in Fig. 1. Let (x′

n)n∈N0 be the corresponding subsequence of
(fk(x0))k∈N0 . We show that (x′

n)n∈N0 has uncountably many limit points:
For each subset Z of N, let cZ be a tape with content 1 on cell i iff i ∈ Z

and 0 else. On the Kripke model side, let the corresponding xZ ∈ X be a model
structurally identical to those of (x′

n)n∈N0 , but satisfying ϕ1 on all “cell states”
distance i ∈ Z from the designated “�” state, and ϕ0 on all other.14 The set
{xZ : Z ⊆ N} is uncountable, and each xZ is a limit point of x: For each Z ⊆ N

and n ∈ N, there are infinitely many k for which xk � ϕ iff xZ � ϕ for all ϕ
of modal depth at most n. Hence, for every n, the set {xk : db(xk,xZ) < 2−n}
is infinite, with db the equivalent of the n-bisimulation metric, cf. Proposition 5.
Hence, for each of the uncountably many Z ⊆ N, xZ is a limit point of the
sequence x.

Finally, every x′
k ∈ (x′

n)n∈N0 is recurrent: That x′
k ∈ ωf (x′

k) follows from x′
k

being a limit point of (x′
n)n∈N0 , which it is as x′

k = xZ for some Z ⊆ N.15 As
the set of recurrent points is thus infinite, it cannot be periodic. 
�
13 For Proposition 11, tape cell content may be encoded using atomic propositions,

changeable through postconditions, cf. [15]; for Proposition 10, cell content is written
by adding and removing additional states, cf. [32].

14 The exact form is straightforward from the constructions used in [15,32].
15 A similar argument shows that all xZ with Z ⊆ N co-infinite are recurrent points.

Hence ωf (x′
k) for any x′

k ∈ (x′
n)n∈N0 contains uncountably many recurrent points.
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As a final result on the orbits of clean maps, we answer an open question:
After having exemplified a period 2 system, Sadzik [43] notes that it is unknown
whether finite, static, but non-Boolean, clean maps exhibiting longer periods
exist. They do:

Proposition 12. For any n ∈ N, there exists finite, static, but non-Boolean
clean maps with periodic orbits of period n. This is also true for finite Boolean,
but non-static, clean maps.

Proof. For the given n, find a Turing machine that, from some configuration,
loops with period n. From here, Lemma 1 does the job. 
�

Finally, we note that brute force determination of a clean map’s orbit prop-
erties is not in general a feasible option:

Proposition 13. The problems of determining whether a Boolean and non-
static, or a static and non-Boolean, clean map, a) has a periodic orbit or not,
and b) contains a limit cycle or not, are both undecidable.

Proof. The constructions from the proofs of Lemma1 allows encoding the halting
problem into either question. 
�

6 Discussion and Future Venues

We consider Theorem 1 our main contribution. With it, an interface between the
discrete semantics of dynamic epistemic logic with dynamical systems have been
provided; thus the former has been situated in the mathematical field of the
latter. This paves the way for the application of results from dynamical systems
theory and related fields to the information dynamics of dynamic epistemic logic.

The term nontrivial recurrence is adopted from Hasselblatt and Katok, [29].
They remark that “[nontrivial recurrence] is the first indication of complicated
asymptotic behavior.” Propositions 10 and 11 indicate that the dynamics of
action models and product update may not be an easy landscape to map. Has-
selblatt and Katok continue: “In certain low-dimensional situations [...] it is pos-
sible to give a comprehensive description of the nontrivial recurrence that can
appear.” [29, p. 24]. That the Stone topology is zero-dimensional fuels the hope
that general topology and dynamical systems theory yet has perspectives to offer
on dynamic epistemic logic. One possible direction is seeking a finer parametriza-
tion of clean maps combined with results specific to zero-dimensional spaces, as
found, e.g., in the field of symbolic dynamics [36]. But also other venues are
possible: The introduction of [29] is an inspiration.

The approach presented furthermore applies to model transformations
beyond multi-pointed action models and product update. Given the equivalence
shown in [33] between single-pointed action model product update and general
arrow updates, we see no reason to suspect that “clean maps” based on the
latter should not be continuous on modal spaces. A further conjecture is that
the action-priority update of [5] on plausibility models16 yields “clean maps”
16 Hence also the multi-agent belief revision policies lexicographic upgrade and elite

change, also known as radical and conservative upgrade, introduced in [9], cf. [5].
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continuous w.r.t. the suited Stone topology, and that this may be shown using
a variant of our proof of the continuity of clean maps. A more difficult case
is the PDL-transformations of General Dynamic Dynamic Logic [25] given the
signature change the operation involves.

There is a possible clinch between the suggested approach and epistemic logic
with common knowledge. The state space of a dynamical system is compact.
The Stone topology for languages including a common knowledge operator is
non-compact. Hence, it cannot constitute the space of a dynamical system—
but its one-point compactification may. We are currently working on this clinch,
the consequences of compactification, and relations to the problem of attaining
common knowledge, cf. [28].

Questions also arise concerning the dynamic logic of dynamic epistemic logic.
Propositions 10 and 11 indicate that there is more to the semantic dynamics of
dynamic epistemic logic than is representable by finite compositional dynamic
modalities—even when including a Kleene star. An open question still stands on
how to reason about limit behavior. One interesting venue stems from van Ben-
them [10]. He notes17 that the reduction axioms of dynamic epistemic logic could
possibly be viewed on par with differential equations of quantitative dynamical
systems. As modal spaces are zero-dimensional, they are imbeddable in R cf.
[37, Theorem 50.5], turning clean maps into functions from R to R, possibly
representable as discrete-time difference equations.

An alternative approach is possible given by consulting Theorem1. With
Theorem 1, a connection arises between dynamic epistemic logic and dynamic
topological logic (see e.g. [23,24,34,35]): Each system (Xd,f) may be consid-
ered a dynamic topological model with atom set LΛ and the ‘next’ operator’s
semantics given by an application of f , equivalent to a 〈f〉 dynamic modality of
DEL. The topological ‘interior’ operator has yet no DEL parallel. A ‘henceforth’
operator allows for a limited characterization of recurrence [35]. We are wonder-
ing about and wandering around the connections between a limit set operator
with semantics x � [ωf ]ϕ iff y � ϕ for all y ∈ ωf (x), dynamic topological logic
and the study of oscillations suggested by van Benthem [11].

With the focal point on pointed Kripke models and action model transfor-
mations, we have only considered a special case of logical dynamics. It is our
firm belief that much of the methodology here suggested is generalizable: With
structures described logically using a countable language, the notion of logical
convergence will coincide with topological convergence in the Stone topology
on the quotient space modulo logical equivalence, and the metrics introduced
will, mutatis mutandis, be applicable to said space [31]. The continuity of maps
and compactness of course depends on what the specifics of the chosen model
transformations and the compactness of the logic amount to.
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Abstract. We present a dynamic logic for modelling legal competences,
and in particular for the Hohfeldian categories of power and immunity.
We argue that this logic improves on existing models by explicitly cap-
turing the norm-changing character of legal competences, while at the
same time providing a sophisticated reduction of the latter to static nor-
mative positions. The logic is shown to be completely axiomatizable; an
analysis of its resulting dynamic normative positions is provided; and it
is finally applied to a concrete case in German contract law to illustrate
how the logic can distinguish legal ability and legal permissibility.

The Hohfeldian [7] typology of rights distinguishes what one might call static
and dynamic rights. Static basic rights encompass claims and privileges, as well
as their respective correlatives of duties and no-claim. On the dynamic side
one finds power and immunity together with the correlatives of liability and
no-power. See Table 1 for the classical presentation.

What we call here static and dynamic rights have been labelled in various
ways in the formal literature. Kanger called static rights the “type of the states
of affairs” and dynamic ones the “type of influence” [9]. Makinson instead uses
the “deontic family” and the “legally capacitative family” for static and dynamic
rights, respectively [12]. Bentham, von Wright and Hart on the other hand use
“legal validity” and “norm-creating action” [11], while Lindahl [11] followed this
action viewpoint, and call it “the range of action.”

Although logical approaches to legal competences are scarcer than for static
normative positions, existing theories can be divided into two broad families. The
first formalizes power and immunity as (legal) permissibility, or absence thereof,
to see to it that a certain normative position obtains [10,11]. Lindahl [11], for
instance, captures j’s power to make it the case that i ought to see to it that ϕ
using a combination of action and embedded deontic modalities:

P DojO(Doiϕ)

We call such an approach reductive because it takes power and immunity as
definable in the language of obligations, permissions, and action, where claims
and privileges are also defined. Non-reductive approaches, on the other hand,
view power and immunity as position-changing actions that are not reducible
to static normative positions [8,12]. A typical example of this is Jones and
Sergot [8], who capture legal power through “counts as” conditionals.
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Table 1. Legal Rights [14]

Claim Duty

No-Claim Privilege

correlatives

opposites

Power Liability

No-Power Immunity

correlatives

opposites

Each of these families have assets and drawbacks. Reductive approaches
come with a rich logical theory of the relationship between static normative
conditions and legal competences, with the latter inheriting its logic from the
former. Defining power as above, however, obfuscates the dynamic character of
legal competence by reducing it to permissibility, a simple static legal relation.
This dynamic aspect was arguably crucial for Hohfeld who defined power as
the ability to “change legal relations” [7, p. 44–45]. The formalization above
furthermore conflates legal ability (rechtliches Können) with legal permissibil-
ity (rechtliches Dürfen), although these two concepts are distinct [8,12]. Non-
reductive approaches, on the other hand, do better justice to the dynamic char-
acter of legal competences by taking norm-changing actions as first class citizens
in the logic. This allows, by the same token, to distinguish legal ability and legal
permissibility. The cost of this is a relatively weak logic of legal competences,
which is at least at the outset completely independent from the logic of the static
normative position.

The dynamic logic that we present in this paper provides a plausible middle
ground between these two types of approaches. It is reductive, and as such
comes with a rich set of principles of interaction between static and dynamic
rights. It does so, however, while retaining both the dynamic character of legal
competences and the distinction between legal ability and legal permissibility.

The reader familiar with dynamic epistemic logic [15] will recognize both
the modelling methodology and many of the canonical results (axiomatization,
bisimulation invariance) that we present here. What we propose is a deontic re-
interpretation of this framework. We show that this yields interesting insights
for the theory of legal competences, and can be applied to the concrete question
of the distinction between legal ability and legal permissibility.

The rest of the paper is structured as follows. Our main contribution being
the dynamic part of the model, for the static part we follow a fairly standard
approach for conditional obligations [19]. We present it briefly in Sect. 1, and
then move to dynamic modalities and legal competence in Sect. 2. We show how
the two put together capture the four Hohfeldian basic types of right, present
a complete axiomatization, and study its model theory. We then turn to the
combinatorics of dynamic normative positions in Sect. 3. Finally, we apply it to
a concrete case in the German civil code in order to show that legal ability and
legal permissibility can be naturally distinguished in this logic.
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1 Static Rights

Our starting point is a conditional version of the Kangerian model of claims and
privileges [9,11,12]. The latter is the standard in current theories of normative
positions [14], and hence comes with well-studied models of claims and privi-
lege. The conditional version we propose follows the one developed in [19], but
goes back at least to [6]. Little, however, rests on this modelling choice in the
sense that the dynamic methodology that we present later is fairly modular. In
other contexts it has been successfully used to extend very different static logical
systems [16,17]. The same could be done here.

On the surface the language we use differs from classical Kangerian
approaches in that it contains a single Kripke modality on an underlying pref-
erence relation, along with the usual “seeing to it that” modality. We use this
language instead of the classical deontic one for technical reasons. It facilitates
the axiomatization of the dynamic modalities. It is well known, however, this
language can define the conditional obligations and permissions [3,20]. We come
back to this at the end of the section.

Definition 1. Let Prop be a countable set of propositions and I a set of agents.
The language L is defined as follows:

ϕ := p ∈ Prop | ¬ϕ | ϕ ∧ ϕ | [≤]ϕ | Aϕ | Doiϕ

where i ∈ I.

We write 〈≤〉ϕ for ¬[≤]¬ϕ, and Eϕ for ¬A¬ϕ. A formula Aϕ is read as “it is
necessary that ϕ.” Doiϕ indicates a non-deontic or ontic [21] action of agent i,
and should be read in the usual sense of “i sees to it that ϕ”.

The semantics of this language is provided in standard preferential models
augmented with a Kripke relation for the Doi operators. We do not assume that
the preference ordering is connected. This will give rise to slight differences from,
e.g. [18,19].

Definition 2. Let Prop and I be as above. A preference-action model M
is a tuple 〈W,≤, {∼i}i∈I , V 〉 where:

– W is a non-empty set of states.
– ≤ is a converse well-founded, reflexive and transitive relation on W .
– for each i ∈ I, ∼i is an equivalence relation.
– V : Prop → P(W ) is a valuation function.

Preference-action frames are models minus the valuation. The assumption
that the relations ∼i are equivalence relations is present only to simplify the
treatment of static rights and thus put the emphasis on our dynamic extension.
As above, this assumption could be lifted. We then can interpret the sentences
in language L according to a preference-action model as follows.
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Definition 3. The truth conditions for sentence ϕ ∈ L are defined in the
following:

– M, w |= p iff w ∈ V (p).
– M, w |= ¬ϕ iff M, w 	|= ϕ.
– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ.
– M, w |= [≤]ϕ iff M, w′ |= ϕ for all w′ ≥ w.1

– M, w |= Aϕ iff M, w′ |= ϕ for all w′ ∈ W .
– M, w |= Doiϕ iff M, w′ |= ϕ for all w′ ∼i w.

Validity on models and frames, and classes thereof, is defined as usual. We define
||ϕ||, the truth set of ϕ, as {w : M, w |= ϕ}.

As mentioned, conditional obligation, understood in terms of “truth in all the
most preferred worlds,” is definable in this language. The argument is standard.
Let O(ψ/ϕ) be defined as follows:

– M, w |= O(ψ/ϕ) iff M, w′ |= ψ for all w′ ∈ max≥(||ϕ||).
with max≥(X) = {w ∈ X : ¬∃w′ ∈ X s.t. w′ > w}. Then conditional obligation
is definable as:

O(ψ/ϕ) ↔ A(ϕ → 〈≤〉(ϕ ∧ [≤](ϕ → ψ))),

Unconditional obligations Oϕ are defined as O(ϕ/), and permission as “weak
permissions”, i.e. P (ϕ/ψ) iff ¬O(¬ϕ/ψ). With this in hand we have the machin-
ery required to define claims and privileges, which we do again using the standard
Kangerian approach:

– Given ψ, agent i has a claim against j regarding ϕ: O(Dojϕ/ψ)
– Given ψ, agent i has a privilege against j regarding ϕ: ¬O(Doi¬ϕ/ψ) iff

P (¬Doi¬ϕ/ψ)

We close this section with a short example, to which we will return later.

Example 1. Ivy has parked her car but she forgot to put the mandatory parking
permit in her windshield. Parking (p), with or without a parking permit, is a
non-deontic action. It can of course have deontic consequences, but only if a
city clerk with the power to issue parking tickets passes by. Absent this deontic
action of issuing a ticket, the city has no claim against Ivy regarding the payment
of a fine (¬O(DoIvyf/p)). Possessing a permit being mandatory for parking, Ivy
is forbidden to park. In other words, the city has a claim against her not to park
her car where she did (O(DoIvy¬p)). This is illustrated in Fig. 1.

1 ≥ is the inverse relation of ≤. More precisely, w′ ≥ w iff w ≤ w′. There is a similar
case for the preference order of actions later.
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w1f, p

w2¬f, p w3 ¬f,¬p

w4 f,¬p

Fig. 1. A static model of Ivy’s example. The arrows → represent the preference order
≤ between states. Reflexive loops are omitted.

2 Dynamic Rights

2.1 Core Model

Our modeling of legal competence follows the so-called “event models” method-
ology developed in [1] for epistemic modalities. See [15] for details. Transposed
into our deontic context, the proposal is to model explicitly the structure of deon-
tic action or legal competences using what we call deontic action models. These
are agent-indexed to capture the fact that different agents will have different
legal competences.

Definition 4. A deontic action model for agent i Ai is a tuple 〈A,≥Ai , P re〉
where:

– A is a non-empty, finite set of acts.
– ≥Ai is a converse well-founded reflexive and transitive relation on A.
– Pre : A → L is a precondition function.

We write a ∼=Ai a′ whenever a ≥Ai a′ and a′ ≥Ai a.

Each act a ∈ A should be seen as a deontic action or a legal ability. It encodes
an action that agent i can take in order to bring about changes in obligations
and permissions or, in more Hohfeldian terminology, changes in underlying legal
relations. These acts also come in different levels of ideality, which is encoded by
the preference order ≥Ai . Finally, the preconditions function Pre specifies for
each act a the conditions in the underlying static models that need to obtain for
a to be executable in the first place.

Example 2. John is city clerk. He can confirm a violation of the parking regu-
lations (v), or not (n). He confirms a violation if a fine applies (f), otherwise
(¬f) not. Given that Ivy’s car has no permit in the windshield, the preferred
situation is one where the fine indeed applies. This is illustrated in Fig. 2.

The effect of executing a deontic action in a particular situation is computed
by the so-called lexicographic update.
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n¬f v f

Fig. 2. The deontic action model AJohn for John the city clerk. The arrow �→ represents
the preference order ≤Aj , with reflexive loops omitted. The precondition of n and v
are written down to the left and the right, respectively.

Definition 5. Let M be a preference-action model and Ai be a deontic action
model. The preference-action model M ⊗ Ai = 〈W ′,≥′, {∼′

i}i∈I , V ′〉 is defined
as follows:

– W ′ = {(w, a) | M, w |= Pre(a), where a ∈ A}.
– (w, a) ≥′ (w′, a′) iff either a >Ai a′ or a ∼=Ai a′ and w ≥ w′.
– (w, a) ∼′ (w′, a′) iff w ∼i w′.
– (w, a) ∈ V ′(p) ⇔ w ∈ V (p).

The lexicographic update takes pairs of preference-action models and event mod-
els and returns an updated model M⊗Ai. The adjective “lexicographic” comes
from the update rule for the pre-orders ≥, which gives priority to the deontic
action. The domain of that new model is the set of pairs (w, a) such that M, w
satisfies the pre-condition of a, written M, w |= Pre(a).

Lexicographic updates capture what we call pure deontic actions. These are
actions that only change legal relations. This is encoded in the condition defining
the valuation V ′ in the updated model: (w, a) ∈ V ′(p) ⇔ w ∈ V (p). One can take
pure deontic action to be acts that are explicitly defined by the legislator, for
instance entering into a contract or getting married. Of course non-deontic action
might change the legal relation too. By breaking your neighbour’s window you
create a claim for her against you to cover the repair costs. Such mixed deontic
and non-deontic action are the object of [8]. A full comparison between their
and our models of deontic actions and legal competences is left for future work.

Example 3. John notices that Ivy’s car doesn’t have a permit. He issues a parking
ticket, which results in the city having a claim against Ivy regarding the payment
of a fine. This is represented by updating the model in Fig. 1 with the one in

(w1, v)f, p

(w2, n)¬f, p (w3, n) ¬f,¬p

(w4, v) f,¬p

Fig. 3. The model M ⊗ AJohn resulting from John’s execution of a deontic action to
issue a parking ticket.
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Fig. 2. The result is in Fig. 3. After the ticket has been issued, Ivy still ought not
to park there, but she now ought to pay a fine.

Of course, executing different deontic actions will have different effects on the
same initial legal relations. This notion of “different deontic action” can be made
precise using the standard notions of bisimulation [2] and action emulation [22],
but we leave this out for reasons of space, and refer the reader to [5] for details.

To express the effect of deontic action the language L is extended with a
dynamic, unary operator [Ai, a], with the following semantics:

– M, w |= [Ai, a]ϕ iff if M, w |= Pre(a) then M ⊗ Ai, (w, a) |= ϕ.

A formula [Ai, a]ϕ thus reads “if i’s deontic action a is executable, then doing so
results in ϕ”. Dynamic modalities allow us to introduce our key notions, pow-
ers and immunity. Let T (i, j, ψ/ϕ) denote an arbitrary (conditional) normative
position definable in the static language L. Then:

– i has a power against j regarding T (i, j, ψ/ϕ):
∨

a∈Ai

[Ai, a]T (i, j, ψ/ϕ)

– i has an immunity against j regarding T (i, j, ψ/ϕ):

¬
∨

a∈Aj

[Aj , a]T (i, j, ψ/ϕ)

In words, i has a power against j regarding the normative position T (i, j, ψ/ϕ)
whenever there is a deontic action that i can be executed which results in
T (i, j, ψ/ϕ). Similarly, i has an immunity against j regarding T (i, j, ψ/ϕ) if j
doesn’t have a power against i regarding that position. A quick check of the
example above reveals that, as expected, John has a power against Ivy regard-
ing her paying a fine.

This formalization of dynamic rights has two assets in comparison with clas-
sical, reductive approaches. First, it explicitly captures, both semantically and
syntactically, the dynamic character of power and immunity. Second, as we will
see below, this clear static-dynamic distinction allows for a natural distinction
between legal ability and legal permissibility. This analysis of power and immu-
nity does so, however, while staying reductive. This is what we show now.

2.2 Axiomatization and Reduction to Static Positions

Axiomatizing the set of validities for the frames, models and updates just defined
proceeds in two modules: one for the static modalities of L and one for the
dynamic extension. For the static part the axiomatization proceeds in a standard
manner. We use K for [≤], together with the Löb axiom for well-foundedness
and transitivity. A and Doi are S5 modalities. Interaction between [≤], Doi and
A can be captured by standard inclusion axioms.
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Table 2. Reduction axioms for lexicographic update

[Ai, a]p ↔ (Pre(a) → p)

[Ai, a]¬ϕ ↔ (Pre(a) → ¬[Ai, a]ϕ)

[Ai, a](ϕ ∧ ψ) ↔ [Ai, a]ϕ ∧ [Ai, a]ψ

[Ai, a]Aϕ ↔ (Pre(a) → A[Ai, a]ϕ)

[Ai, a][≤]ϕ ↔ (Pre(a) → ∧c>Aia A[Ai, c]ϕ ∧∧c∼=Aia[≤][Ai, c]ϕ)

[Ai, a]Dojϕ ↔ (Pre(a) → Doj [Ai, a]ϕ)

Axiomatizing the dynamic part uses the well-known “reduction axioms”
methodology [1,19]. Formulas containing dynamic modalities are shown to be
semantically equivalent to formulas of L, that is without dynamic modalities.
The formulas in Table 2 indeed show how to “push” dynamic modalities inside
the various connectives and modal operators of the static language, until they
range over atomic propositions where they can be eliminated. These formulas
are sound with respect to the lexicographic update over preference-action mod-
els. Taking them as axioms thus makes formulas containing dynamic modalities
provably equivalent to formulas of L. Completeness for the extended language
then follows from completeness of the static part with respect to the class of
preference-action models.

Through the soundness of the reduction axioms, together with the fact that
conditional obligations are definable in L, we obtain that power and immunity
are also reducible to static normative positions. So the approach presented here
is reductive. This reduction, however, is more complex than the simple reduction
proposed for instance in [11]. Here is the valid reduction validity for conditional
obligation:

[Ai, a]O(ψ/ϕ) ↔ [Pre(a) →
A

∧

d∈A

((〈Ai, d〉ϕ ∧ A
∧

c>Aid

[Ai, c]¬ϕ) → O([Ai, d]ψ/
∨

c∼=Aid

〈Ai, c〉ϕ))]

with 〈Ai, d〉ϕ being the dual of [Ai, a]. The complexity of this formula results
from it essentially encoding syntactically the lexicographic update rule in com-
bination with the specific semantic definition of obligations as truth in all the
most ideal worlds. For unconditional obligations, however, it simplifies to the
following:

[Ai, a]O(ψ) ↔ [Pre(a) →
A

∧

d∈A

((pre(d) ∧ A
∧

c>Aid

¬pre(c)) → O([Ai, d]ψ/
∨

c∼=Aid

pre(c)))]

The effect of changes in legal relations are thus reducible to statements describing
legal relations holding before the deontic action takes place. In particular, the
latter formula states that executing an action a would result in an obligation
to ψ exactly when, if a is executable in the first place, for any maximally ideal
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and executable action d, it ought to be the case before executing d that ψ would
hold after d.

The reduction allows to distinguish the legal permissibility of a deontic action
a and its legal ability. The latter boils down to a being executable in a partic-
ular situation, which in turn reduces to the preconditions of a obtaining. This,
however, is not equivalent to the execution of a being permitted. Defining per-
missibility of deontic action requires some additional machinery. We return to
this question in Sect. 4.

3 Dynamic Normative Positions

We now turn to the study of the dynamic normative positions that are gener-
ated by our theory of legal competences. By analogy with the study of static
normative positions [14], we answer now the question of how many distinct,
atomic legal competences there are. It is well known that for static normative
positions this number increases substantially with the number of agents. This
is also the case here, but there is an additional complication. As hinted at by
the valid reduction law for conditional obligation, the number of dynamic nor-
mative positions will also grow with the size of the deontic action model. The
theory of normative positions for conditional static rights is less well studied
than for unconditional ones [14]. In brief, there are 256 static normative posi-
tions T (i, j, ψ/ϕ)) in [[±O(±

(
Doi
Doj

)
± ψ/ϕ)]] using Makinson’s [12] notation, in

which all the elements are consistent and logically independent, and their dis-
junction is a tautology in the given logic. We omit the argument for reasons of
space, but refer to [5] for details.

Let us define the set of atomic legal competences for two agents i, j and a
given static normative position T (i, j, ψ/ϕ)):

[[±
∨

i∈I

∨

a∈Ai

[Ai, a] ± T (i, j, ψ/ϕ)]]

The question we ask now is thus how large is that set for a given action model
of size at most n? In this paper we restrict ourselves to the two-agents cases.
Our base result establishes the number of combinations of claims and no-claims
rights that can result from a given deontic action. There are 16 total maximally
consistent elements in [Ai, a][[±O(±

(
Doi
Doj

)
± ψ/ϕ)]]. We refer again to [5] for

details.
With this in hand we can get our calculation going. There are 256 maximally

consistent elements in
∨

a∈Ai
[Ai, a][[±O(±

(
Doi
Doj

)
± ψ/ ± ϕ)]] when |Ai| = 1.

When |Ai| = 2, the total number of the maximally consistent elements of that
set is 2256. This number happens to grow linearly. With |Ai| = n, we get n256

possibilities. On the other hand, when |Ai| = 2, the total number of the maxi-
mally consistent elements in ¬∨

a∈Ai
[Ai, a][[±O(±

(
Doi
Doj

)
±ψ/±ϕ)]] is 2256 This

number is also n256 for |Ai| = n. Furthermore, when |Ai| = 1, for each element
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in the first set above there are 255 elements in the second. The total number of
elements in

[[±
∨

a∈Ai

[Ai, a][[±O(±
(Doi

Doj

)
± ψ/ ± ϕ)]]]]

is thus 256× 255 = 65280, when |Ai| = 1, and the total number is n256 × (n255),
when |Ai| = n.

4 Legal Ability and Legal Permissibility

Although legal ability and legal permissibility often go together, they are concep-
tually distinct notions [8,12]. The German Civil Code (Bürgerliches Gesetzbuch)
offers a concrete case where they can come apart.

Article 179 of this code regulates the contractual delegation of the right to
auction one’s land to a third party. The article allows for the following case.
Suppose that A contracts B to auction her land. B sells to C, but C is not the
highest bidder. The sale being a deontic action, it is still considered valid. It
transfers property rights from A to C. B selling to C is, however, not legally
permissible, because C is not the highest bidder. B can consequently be asked
to compensate A for the difference between the selling price and the highest bid.

In this example B has the legal ability to sell the land to C. She is legally capa-
ble of executing a deontic action which transfers the set of static and dynamic
property rights with regard to the land from A to C. This action, however, is
impermissible. It cannot be executed without B incurring a sanction. We now
show that our logical model of legal competences can capture this case in a
simple manner.

4.1 Legal Ability

Let c be the fact that C is in possession of the land’s property titles, and S be
that B compensate A for the price difference. Before the selling, A owns her land,
and A contracts B to auction her land. B, so entrusted by A, has a privilege to
transfer the land’s property titles, which we represent here simply as transferring
them to c or to someone else ¬c. Hence, even on the condition S, the states with
DoB¬c are the most ideal, the states with DoBc are the least ideal, and the
others are as ideal as each other. This situation is illustrated in Fig. 4. There,
as before, the arrows → representing the preference ordering ≤ between distinct
states, and the dashed arc labelled B represents the relations ∼B . The reflexive
loops for both relations are everywhere omitted. In this model the following
atomic type holds for B: O(¬DoBc), ¬O(DoB¬c), and ¬O(¬DoB¬c). It also
contains ¬O(c). Here doB is the dual of DoB , i.e. doBϕ := ¬DoB¬ϕ.

B’s legal ability can be modelled in the deontic action model of Fig. 5. As
before, the arrow �→ represents the preference order ≤SB with the reflexive loops
omitted. In this particular model, the precondition of action s is DoBc, and that
of action n is ¬DoBc.
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w1¬c,DoB¬c, ¬S

w2¬c, doBc, doB¬c,¬S

w4 c,DoBc, S

w3 c, doBc, doB¬c, S
B

Fig. 4. The preference-action model C for the normative positions before the sale

n¬DoBc s DoBc

Fig. 5. The deontic action model SB for B’s sale to C

The result of the lexicographic update C ⊗ SB is presented in Fig. 6. In this
model the normative position of B has changed. Now we have O(DoBc), and
O(c) as well. The action B selling the land to C of course changes A’s normative
position as well, but we omit those here.

w1¬c,DoB¬c, ¬S

w2¬c, doBc, doB¬c,¬S

w4 c,DoBc, S

w3 c, doBc, doB¬c, S
B

Fig. 6. The preference-action model C for the normative positions after the sale

This simple example shows how to model B’s legal ability to sell A’s land to C.
Since C is not the highest bidder, however, B’s action is not legally permissible.
This can also be easily expressed here.

4.2 Legal Permissibility

As mentioned, the language L, even extended with the dynamic modalities, can-
not directly express the notion of legal permissibility. This language is designed
to describe the effects of deontic action or, by having deontic modalities scoping
over dynamic expressions, the normative status of those effects. But this is still
different from saying that a certain deontic action is obligatory, permitted or
forbidden. In our example it is arguably the case that it ought to be that C
owns the land after B has sold it to her, even though this sale is not legally
permitted.

To express legal permissibility we instead use a type of Anderson-Kanger
reduction that is also present in dynamic deontic logic [13]. Let S, as above,
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represent the constant that a sanction will occur, viz. in our particular case that
B must compensate A. Then we define “action a is legally permitted” as follows.

P (a) := [Ai, a]¬S

This is the standard definition of strong permission in dynamic deontic logic
introduced by Dignum et al. [4]. In our case DoBc → S. B incurs a sanction
upon selling the land to C. Since C, w4 |= 〈SB , s〉S, we get that C, w4 |= ¬P (s)
and, together with our analysis of legal ability C, w4 |= 〈SB , s〉∧¬P (s). Selling
to C is legally possible but not permissible.

5 Conclusion

This paper can be seen as a test drive for a new way of representing the structure
of legal competences, and of deontic action more generally: (deontic) action
models and the related update mechanism. This methodology is well-established
in epistemic and doxastic logic, and many of the results presented here are direct
imports from that literature. Our main contribution is to bring it to bear on the
theory of dynamic rights.

Indeed, we have argued that the model of Hohfeldian power and immu-
nity developed here improves on both the classical reductive and non-reductive
approaches. In comparison with for instance Lindahl’s [11] approach, our model
explicitly captures the norm-changing or dynamic character of legal compe-
tences. It does so both at the semantic level, through the explicit update mech-
anism, and at the semantic level, by using an explicit dynamic modality to
express the effects of deontic actions. The approach we propose here is however
still reductive in the sense that formulas with dynamic modalities are semanti-
cally and provably reducible to formulas without. As a result it comes with a rich
set of interaction principles between static and dynamic rights. From that point
of view it improves on Jones and Sergot’s non-reductive approach to dynamic
rights through “count as” conditionals [8]. Finally, we have shown that this sys-
tem can capture the distinction between legal ability and legal permissibility in
a more auspicious way then in reductive approaches, without paying the price
of full-blown non-reductionism.

We take this to be a promising starting point for the methodology we propose,
but of course it also raises a number of questions that could not be addressed in
this paper. Probably the most important next step will be to enrich the model
to cover not only pure but also the combination of deontic and non-deontic
actions, for instance breaking someone’s window or crossing someone’s property.
This would allow for a closer comparison between ours and the Jones and Sergot
approach just mentioned. Equally important in our view is to study the theory
of legal competences that would result from extending a static base that is dif-
ferent from Standard Deontic Logic. In the epistemic context a wide variety of
static logics of knowledge and belief have been “dynamified” using the action
model methodology. The proposal here already slightly deviates from the clas-
sical Kangerian approach in that it includes conditional obligations. Studying
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the normative positions stemming from that addition would have taken us too
far from the core proposal of this paper, and we again refer the reader to the
forthcoming PhD thesis [5] for details. But more radical departures from SDL
have been proposed to capture actual legal reasoning, and the question remains
whether they would yield a plausible theory of power and immunity once aug-
mented with a dynamic module as we have done here.
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Abstract. We propose a new perspective on logics of computation by
combining instantial neighborhood logic INL with bisimulation safe oper-
ations adapted from PDL and dynamic game logic. INL is a recently pro-
posed modal logic, based on a richer extension of neighborhood semantics
which permits both universal and existential quantification over individ-
ual neighborhoods. We show that a number of game constructors from
game logic can be adapted to this setting to ensure invariance for instan-
tial neighborhood bisimulations, which give the appropriate bisimulation
concept for INL. We also prove that our extended logic IPDL is a con-
servative extension of dual-free game logic, and its semantics generalizes
the monotone neighborhood semantics of game logic. Finally, we provide
a sound and complete system of axioms for IPDL, and establish its finite
model property and decidability.

1 Introduction

In this paper, we introduce a new modal logic of computation, in the style of
propositional dynamic logic, based on instantial neighborhood logic INL [3]. The
logic INL is based on a recent variant of monotone neighborhood semantics for
modal logics, called instantial neighborhood semantics. In the standard neigh-
borhood semantics, the box operator has the interpretation: �p is true at a point
if there exists a neighborhood in which all the elements satisfy the proposition
p. So the box operator has a built-in fixed existential-universal quantifier pat-
tern. In instantial neighborhood logic, we allow both universal and existential
quantification over individual neighborhoods, so the basic modality has the form
�(p1, ..., pn; q). This formula is true at a point if there exists a neighborhood N
in which all the elements satisfy the proposition q, and furthermore each of the
propositions p1, ..., pn are satisfied by some elements of N . INL is more expressive
than monotone neighborhood logic, and comes with a natural associated notion
of bisimulation together with a Hennessy-Milner theorem for finite models. It
has a complete system of axioms, has the finite model property, is decidable and
PSpace-complete.

Formally, our proposal is to consider an extension of the base language INL
by bisimulation safe “program constructors”, as in the standard propositional
c© Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 137–150, 2017.
DOI: 10.1007/978-3-662-55665-8 10
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dynamic logic of sequential programs (PDL). The usual repertoire here con-
sists of choice, test, sequential composition and a Kleene star for program iter-
ation. Similar additions have already been studied extensively for the standard
(monotone) neighborhood semantics, where the constructors are interpreted as
methods of constructing complex games (this idea dates back to [13]). In the
neighborhood setting, some additional operations are available, including the
dual construction. This is a very powerful construction, and it is well known
that dynamic game logic is not contained in any fixed level of the μ-calculus
alternation hierarchy [4].

We think of our extended logic, which we call instantial PDL (IPDL for
short), as a dynamic logic for a richer notion of computation than sequential pro-
grams. We consider a computational process as an agent acting in an uncertain
environment that affects the outcome of each action. This is similar to the think-
ing behind the alternating-time temporal logic ATL of Alur et al. [1]. Dynamic
game logic can be interpreted in a similar way, thinking of processes as “games
against the environment”. Instantial neighborhood semantics introduces a more
fine-grained perspective to this setting, with a more expressive language and a
finer bisimulation concept than standard neighborhood bisimilarity, namely the
instantial neighborhood bisimulations of [3].

We generalize operations from game logic in the setting of instantial neigh-
borhood logic, with the implicit desiderata that the extended language should
be bisimulation invariant, and that the operations should be reasonably simple.
Note that bisimulation invariance now has a new meaning, since we are work-
ing with instantial neighborhood bisimulations. This means that setting up the
program constructors correctly is a non-trivial task, and the constructors known
from game logic need to be revised in order to ensure bisimulation invariance.
The case for sequential composition of programs is particularly subtle, and a
naive generalization of the composition operation from game logic could eas-
ily break bisimulation safety. In particular, the standard definition from game
logic is not bisimulation safe in our sense. One of our key contributions in this
paper is to provide a bisimulation safe sequential composition operation. We
also find natural analogues of test, choice and Kleene star. As opposed to the
case of dynamic game logic, we cannot see any obvious candidate for a dual
constructor. However, a dual to the choice operator can be defined, generalizing
“demonic choice” in game logic and bearing a similarity to the parallel game
composition operation considered in [15]. We show that our logic is in fact a
conservative extension of dual-free game logic, and the instantial neighborhood
semantics can be seen as a generalization of the semantics for dual-free game logic
over monotone neighborhood structures, in a sense that will be made precise in
Sect. 4.2.

We provide sound and complete axioms for our instantial propositional
dynamic logic IPDL, prove decidability via finite model property, and establish
bisimulation invariance. The latter amounts to bisimulation safety for our program
constructors. The completeness proof for the language IPDL, including all the pro-
gram constructors that we consider, is based on the standard completeness proof
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for PDL (see [5] for an exposition), but involves some non-trivial new features. In
particular, the axiom system requires two distinct induction rules, corresponding
to a nested least fixpoint induction, and the model construction makes heavy use
of a normal form for INL-formulas established in [3].

2 Instantial Neighborhood Logic

2.1 Syntax and Semantics

We start by reviewing the basic language for instantial neighborhood semantics.
The only difference with our first paper on instantial neighborhood logic is that
we are interpreting the language over labelled neighborhood structures, where
the labels play the same role as “atomic programs” in PDL or “atomic games”
in game logic.

The syntax of INL is given by the following grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | [a](Ψ ;ϕ)

where a ranges over a fixed set A of atomic labels, and Ψ ranges over finite sets
of formulas of INL. We have deviated a bit from the syntax of [3] here in allowing
Ψ to be a finite set rather than a tuple of formulas. We shall sometimes write
[a](ψ1, ..., ψn;ϕ) rather than [a]({ψ1, ..., ψn};ϕ), in particular we write [a](ψ;ϕ)
rather than [a]({ψ};ϕ), and [a]ϕ rather than [a](∅;ϕ).

Formulas in INL will be interpreted over neighborhood structures.

Definition 1. A neighborhood frame is a structure (W,R) where W is a set and
R associates with each a ∈ A a binary relation Ra ⊆ W ×PW . A neighborhood
model (W,R, V ) is a neighborhood frame together with a valuation V : Prop →
PW .

We define the interpretations of all formulas in a neighborhood model M =
(W,R, V ) as follows:

– [[p]] = V (p).
– [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].
– [[¬ϕ]] = W \ [[ϕ]].
– u ∈ [[[a](ψ1, ..., ψk;ϕ)]] iff there is some Z ⊆ W such that:

(u,Z) ∈ Ra and Z ⊆ [[ϕ]], Z ∩ [[ψi]] �= ∅ for i ∈ {1, ..., k}
We write M, v � ϕ for v ∈ [[ϕ]], and we write � ϕ and say that ϕ is valid if,

for every game model M and v ∈ W , we have M, v � ϕ. We allow the notation
[[−]]M to make explicit reference to the model in the background.

Neighborhood models come with a natural notion of bisimulation, introduced
in a more general setting in [3]. For this definition, the so called Egli-Milner lifting
of a binary relation will play an important role:

Definition 1. The Egli-Milner lifting of a binary relation R ⊆ X × Y , denoted
R, is a relation from PX to PY defined by: ZRZ ′ iff:
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1. For all z ∈ Z there is some z′ ∈ Z ′ such that zRz′.
2. For all z′ ∈ Z ′ there is some z ∈ Z such that zRz′.

We write R;S for the composition of relations R and S. It is well known that
the Egli-Milner lifting preserves relation composition:

R;S = R;S

Definition 2. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be any neighborhood
models. The relation B ⊆ W × W ′ is said to be an instantial neighborhood
bisimulation if for all uBu′ and all atomic labels a we have:

Atomic For all p, u ∈ V (p) iff u′ ∈ V ′(p).
Forth For all Z such that uRaZ, there is some Z ′ such that u′R′

aZ ′ and ZBZ ′.
Back For all Z ′ such that u′R′

aZ ′ there is some Z such that uRaZ and ZBZ ′.

We say that pointed models M, w and N, v are bisimilar, written M, w ←→ N, v,
if there is an instantial neighborhood bisimulation B between M and N such that
wBv.

It is easy to check that all formulas of INL are invariant for instantial neighbor-
hood bisimilarity:

Proposition 1. If M, w ←→ N, v then M, w � ϕ iff N, v � ϕ, for each formula
ϕ of INL.

2.2 Axiomatization

We now turn to the task of axiomatizing the valid formulas of INL. Our system of
axioms is a gentle modification of the axiom system for instantial neighborhood
logic presented in [3].

INL Axioms

Mon: [a](ψ1, ..., ψn;ϕ) → [a](ψ1 ∨ α1, ..., ψn ∨ αn;ϕ ∨ β)
Weak: [a](Ψ ;ϕ) → [a](Ψ ′;ϕ) for Ψ ′ ⊆ Ψ
Un: [a](ψ1, ..., ψn;ϕ) → [a](ψ1 ∧ ϕ, ..., ψn ∧ ϕ;ϕ)
Lem: [a](Ψ ;ϕ) → [a](Ψ ∪ {γ};ϕ) ∨ [a](Ψ ;ϕ ∧ ¬γ)
Bot: ¬[a](⊥;ϕ)

Rules

MP:
ϕ → ψ ϕ

ψ
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RE:
ϕ ↔ ψ θ

θ[ϕ/ψ]

where θ[ϕ/ψ] is the result of substituting some occurrences of the formula ψ
by ϕ in θ.

We denote this system of axioms by Ax1 and write Ax1 � ϕ to say that
the formula ϕ is provable in this axiom system. We also write ϕ �Ax1 ψ for
Ax1 � ϕ → ψ, and say that ϕ provably entails ψ.

Theorem 1. The system Ax1 is sound and complete for validity on neighbor-
hood models.

The proof of this result is essentially the same as in [3], and will not be repeated
here.

Since the proof in [3] constructs a finite model for each consistent formula,
we also get:

Theorem 2. The logic INL is decidable and has the finite model property.

3 Test, Choice, Parallel Composition and Sequential
Composition

We now extend the language INL with four basic PDL-style operations: test,
choice, parallel composition and sequential composition. The resulting language
will be called dynamic instantial neighborhood logic, or (DINL). The syntax of
DINL is defined by the following dual grammar.

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | [π](Ψ ;ϕ)

π := a ∈ A | ϕ? | π ∪ π | π ∩ π | π ◦ π

We define the interpretation [[o]] of each operation o ∈ {∪,∩, ◦} in a neigh-
borhood model M as a binary map from pairs of neighborhood relations to
neighborhood relations, as follows:

– R1[[∪]]R2 = R1 ∪ R2

– R1[[∩]]R2 = {(w,Z1 ∪ Z2) | (w,Z1) ∈ R1 & (w,Z2) ∈ R2}
– (w,Z) ∈ R1[[◦]]R2 iff there is some set Y and some family of sets F such that

(w, Y ) ∈ R1, (Y, F ) ∈ R2 and Z =
⋃

F .

The interpretation [[?]] of the test operator will be a map [[?]] assigning a
neighborhood relation to each subset Z of W , defined by:

[[?]]Z := {(u, {u}) | u ∈ Z}

Note that [[?]] is monotone in the sense that Z ⊆ Z ′ implies [[?]]Z ⊆ [[?]]Z ′. Each
operator o ∈ {∪,∩, ◦} is also monotone, in the sense that R1[[o]]R2 ⊆ R′

1[[o]]R
′
2
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whenever R1 ⊆ R′
1 and R2 ⊆ R′

2. For the sequential composition operator, this
uses the well known fact that the Egli-Milner lifting is monotone, i.e. R ⊆ R′
whenever R ⊆ R′.

We can now define the semantic interpretations of all formulas, and the neigh-
borhood relations corresponding to all complex labels π, by the following mutual
recursion:

– [[p]] = V (p).
– [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].
– [[¬ϕ]] = W \ [[ϕ]].
– u ∈ [[[π](ψ1, ..., ψk;ϕ)]] iff there is some Z ⊆ W such that:

(u,Z) ∈ Rπ and Z ⊆ [[ϕ]], Z ∩ [[ψi]] �= ∅ for i ∈ {1, ..., k}.

– Rπ1oπ2 = Rπ1 [[o]]Rπ2 for o ∈ {∪,∩, ◦}.
– Rϕ? = [[?]][[ϕ]]

The definitions of the dynamic operations are tailored towards obtaining the
following result:

Proposition 2. All formulas of DINL are invariant for instantial neighborhood
bisimulations.

3.1 Axiomatization

Our axiom system for DINL will take the sound and complete axioms for INL
as its foundation, and extend it with reduction axioms for the test, choice, par-
allel composition and sequential composition operators. The axioms and rules
are listed below; note that the INL axioms and the axioms for frame constraints
are now stated for arbitrary complex labels π rather than just atoms a.

INL Axioms: (Mon), (Weak), (Un), (Lem) and (Bot)

Reduction Axioms:

Test: [γ?](Ψ ;ϕ) ↔ γ ∧ ∧
Ψ ∧ ϕ

Ch: [π1 ∪ π2](Ψ ;ϕ) ↔ [π1](Ψ ;ϕ) ∨ [π2](Ψ ;ϕ)
Pa: [π1 ∩ π2](Ψ ;ϕ) ↔ ∨{[π1](Θ1;ϕ) ∧ [π2](Θ2;ϕ) | Ψ = Θ1 ∪ Θ2}
Cmp: [π1 ◦ π2](ψ1, ..., ψn;ϕ) ↔ [π1]([π2](ψ1;ϕ), ..., [π2](ψn;ϕ); [π2]ϕ)

Rules: (MP) and (RE)
We denote this system of axioms by Ax2 and write Ax2 � ϕ to say that

the formula ϕ is provable in this axiom system. We also write ϕ �Ax2 ψ for
Ax2 � ϕ → ψ. We shall sometimes drop the reference to Ax2 to keep notation
cleaner.
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Proposition 3 (Soundness). If Ax2 � ϕ, then ϕ is valid on all neighborhood
models.

By applying soundness of the reduction axioms, we can use a standard
argument to obtain for every consistent formula ϕ of DINL a provably (and
hence semantically) equivalent formula ϕt in INL, which is then satisfiable
by Theorem 1. For example, the formula [γ?](ψ1, ..., ψn;ϕ)t is defined to be
γt ∧ ψt

1 ∧ ... ∧t
n ∧ϕ.

We get:

Theorem 3 (Completeness). A formula ϕ of DINL is valid on all neighbor-
hood models iff Ax2 � ϕ.

Furthermore, the finite model property and decidability clearly carry over from
INL:

Theorem 4. The logic DINL is decidable and has the finite model property.

4 Iteration

4.1 The Language IPDL

We now introduce the final operation that we consider here, a Kleene star for
finite iteration. This operation will be set up to generalize the game iteration
operation from game logic. The corresponding language will be denoted by IPDL,
read “instantial PDL”, and is given by the following dual grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | [π](Ψ ;ϕ)

π := a ∈ A | ϕ? | π ∪ π | π ∩ π | π ◦ π | π∗

For the semantic interpretation of the Kleene star, it will be useful to first
define the relation skip by:

skip := {(w, {w}) | w ∈ W}
We now define a relation R[ξ] for each ordinal ξ by induction as follows.

– R[0] = ∅
– R[ξ+1] = skip[[∪]](R[[◦]]R[ξ])
– Rκ =

⋃
ξ<κ R[ξ] if κ is a limit ordinal.

We define [[∗]]R to be equal to R[ξ], where ξ is the smallest ordinal satisfying
R[ξ] = R[ξ+1]. It is easy to see that this is a standard least fixpoint construction,
in particular we have:

Proposition 4. Let W be a finite set and R ⊆ W × P(W ). Then:

[[∗]]R =
⋃

n∈ω

R[n]
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Semantics of IPDL-formulas in a neighborhood model M = (W,R, V ) are
now defined as follows:

– [[p]] = V (p).
– [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].
– [[¬ϕ]] = W \ [[ϕ]].
– u ∈ [[[π](ψ1, ..., ψk;ϕ)]] iff there is some Z ⊆ W such that:

(u,Z) ∈ Rπ and Z ⊆ [[ϕ]], Z ∩ [[ψi]] �= ∅ for i ∈ {1, ..., k}.

– Rπ1oπ2 = Rπ1 [[o]]Rπ2 for o ∈ {∪,∩, ◦}.
– Rϕ? = [[?]][[ϕ]].
– Rπ∗ = [[∗]]Rπ.

Proposition 5. All formulas of IPDL are invariant for instantial neighborhood
bisimulations.

The proof of this is a bisimulation safety argument, and the step for the
Kleene star involves using the bisimulation safety of union and sequential com-
position to prove the appropriate back-and-forth conditions for each approximant
R

[ξ]
π of the least fixpoint Rπ∗ = [[∗]]Rπ. We omit the details.

4.2 Comparison with Dual-Free Game Logic

We now show that IPDL can, in a precise sense, be viewed as a language exten-
sion of dual-free game logic. We shall denote this language simply by GL, for
“game logic”, although the full dynamic game logic also includes a dual con-
structor. Formally, formulas of GL and game terms are defined by the following
dual grammar:

ϕ := p ∈ Prop | ϕ ∧ ϕ | ¬ϕ | [π]ϕ

π := a ∈ A | ϕ? | π ◦ π | π ∪ π | π ∩ π | π∗

where Prop is a fixed set of propositional variables and A is a set of atomic
games, both assumed to be countably infinite. Note that GL is a syntactic frag-
ment of IPDL. Here, ∪ is interpreted as “angelic choice” (choice for Player I),
∩ is interpreted as “demonic choice” (choice for Player II), ◦ is sequential game
composition and ∗ is finite game iteration (controlled by Player I).

Semantics of game logic formulas are again given by neighborhood frames,
with the extra constraint that neighborhoods associated with a world are
upwards closed under subsethood:

Definition 3. A neighborhood frame (W,R) is said to be a monotonic power
frame if the following condition holds for each a ∈ A:
(Monotonicity) For all u ∈ W , if (u,Z) ∈ Ra and Z ⊆ Z ′ then (u,Z ′) ∈ Ra.
A monotonic power model is a neighborhood model whose underlying frame is a
monotonic power frame.



A Propositional Dynamic Logic for Instantial Neighborhood Models 145

In order to provide the semantic interpretations of formulas in a model, we
need to provide semantic interpretations of the game constructors. We shall
use double vertical lines ‖−‖ to refer to semantic interpretations of formulas
in GL and game constructors in monotonic neighborhood models, in order to
distinguish it from the semantics given for IPDL, where we use square brackets
[[−]]. We follow the definitions in [2]. Formally, we define operations on the lattice
NW = P(W × P(W )) of neighborhood relations over W as follows:

– R‖∪‖R′ = R ∪ R′

– R‖∩‖R′ = R ∩ R′

– (u,Z ′) ∈ R‖◦‖R′ iff there is some Z ⊆ W with (u,Z) ∈ R and (v, Z ′) ∈ R′

for all v ∈ Z.
– ‖?‖(Z) = {(w,Z ′) ∈ W × P(W ) | w ∈ Z ∩ Z ′}

Finally, we define ‖∗‖R to be the least fixpoint in the lattice NW of the
monotone map F defined by:

FS = skip↑‖∪‖(R‖◦‖S)

where skip↑ = {(w,Z) ∈ W ×P(W ) | w ∈ Z}. We can now set up the semantics
of GL. Fixing a monotonic power model M, we define the interpretation of
every formula ϕ and the neighborhood relations Rπ corresponding to each game
term π in the obvious way, so that in particular we have Rπ1∪π2 = Rπ1‖∪‖Rπ2 ,
Rπ1∩π2 = Rπ1‖∩‖Rπ2 etc., and u ∈ ‖[π]ϕ‖ iff (u, ‖ϕ‖) ∈ Ra. For a monotonic
power model M = (W,R, V ) and u ∈ W we shall also write M, u � ϕ for
u ∈ ‖ϕ‖. Since semantic interpretations are always defined relative to a model,
if necessary we shall use the notation ‖−‖M rather than ‖−‖ to make it clear
which model M is being referred to. We write � ϕ if M, u � ϕ for every pointed
monotone power model (M, u). We get the following result, showing in what
sense IPDL indeed generalizes the semantics of GL:

Proposition 6. For any GL-formula ϕ, and any monotonic power model M,
we have ‖ϕ‖M = [[ϕ]]M.

From this proposition, we get the following result:

Theorem 5. IPDL is a conservative extension of GL. That is, for every GL-
formula ϕ, we have

� ϕ iff � ϕ

In other words: the formulas of IPDL that are valid on arbitrary neighborhood
frames form a conservative extension of the GL-formulas that are valid over
monotonic power frames.

4.3 Axiomatization

Our axiomatization for IPDL is given below.

INL Axioms: (Mon), (Weak), (Un), (Lem) and (Bot).
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Reduction Axioms from DINL: (Test), (Ch), (Pa) and (Cmp).

Basic Rules: (MP) and (RE).

Kleene Star: Finally we add axioms and rules for iteration. The Kleene star
is a least fixpoint construction, and a standard approach to axiomatizing least
fixpoints is to use one fixpoint axiom and one induction rule (see [10]). The
fixpoint axiom Fix is stated as follows:

[π∗](Ψ ;ϕ) ↔ (
∧

Ψ ∧ ϕ) ∨ [π ◦ π∗](Ψ ;ϕ)

We will actually need two induction rules:

Ind1:
ϕ → γ [π]γ → γ

[π∗]ϕ → γ

Ind2:
(ψ ∧ ϕ) → γ [π](γ; [π∗]ϕ) → γ

[π∗](ψ;ϕ) → γ

Remark 1. The reason that we require two distinct induction rules can be seen
as follows: the reduction axioms for IPDL should be interpreted as encoding a
recursive translation of the language IPDL into the modal μ-calculus (interpeted
on instantial neighborhood models). When we pass by formulas involving the
Kleene-star in this translation, the translation will not surprisingly involve least
fixpoint operators, and the induction rules then correspond to the Kozen-Park
induction rules for least fixpoint operators. This step of the translation is trickier
than the step for the Kleene star in a translation of PDL into the μ-calculus (see
[6]), and requires use of nested least fixpoint variables.

Note also that the second induction axiom only involves a single instan-
tial formula ψ. This is because we can “pre-process” an arbitrary formula
[π∗](ψ1, ..., ψn;ϕ) by applying the axiom Fix, and then applying the compo-
sition axiom (Cmp) to the formula [π ◦ π∗](ψ1, ..., ψn;ϕ) to obtain the formula:

[π]([π∗](ψ1;ϕ), ...., [π∗](ψn;ϕ); [π∗]ϕ)

Here, each occurrence of the operator [π∗] is followed by at most one instantial
formula.

We denote this axiom system as Ax3 and write ϕ �Ax3 ψ to say that Ax3 �
ϕ → ψ. We will also sometimes drop the explicit reference to the system Ax3,
simply writing � ϕ or ϕ � ψ.

Theorem 6. The axiom system Ax3 is sound and complete for validity over
neighborhood models.
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The soundness part of this theorem is a fairly straightforward check. For the
completeness proof, we shall rely heavily on the following lemma, which was
proved (in a slightly different formulation) in [3]: fix a finite and subformula
closed set of formulas Σ. An atom over Σ is a maximal consistent subset of Σ,
and we denote the set of atoms over Σ by At(Σ). Given any atom w ∈ At(Σ),
let ŵ be its conjunction, and let Ẑ = {ŵ | w ∈ Z} for a set of atoms Z.

Lemma 1. Let [π](Ψ ;ϕ) be any formula such that each formula in Ψ ∪ {ϕ} is a
boolean combination of formulas in Σ. Then [π](Ψ ;ϕ) is provably equivalent to
a disjunction of formulas of the form [π](Ẑ;

∨
Ẑ) for Z ⊆ At(Σ) being some set

of atoms with w � ϕ for each w ∈ Z and for all ψ ∈ Ψ there is some v ∈ Z with
v � ψ.

We shall also need an adapted concept of Fischer-Ladner closure:

Definition 4. A set Σ of formulas is said to be Fischer-Ladner closed if the
following clauses hold:

– If ϕ ∈ Σ, and the main connective of ϕ is not ¬, then the formula ¬ϕ is in Σ.
– Any subformula of a formula in Σ is in Σ.
– If [γ?](Ψ ;ϕ) is in Σ then so is γ ∧ ∧

Ψ ∧ ϕ.
– If [π1 ◦π2](ψ1, ..., ψn;ϕ) ∈ Σ, then [π1]([π2](ψ1;ϕ), ..., [π1](ψn;ϕ); [π2]ϕ) is in

Σ too.
– If [π1 ∪ π2](Ψ ;ϕ) ∈ Σ then [π1](Ψ ;ϕ) ∨ [π2](Ψ ;ϕ) ∈ Σ too.
– If [π1 ∩ π2](Ψ ;ϕ) ∈ Σ then the formula:

∨
{[π1](Θ1;ϕ) ∧ [π2](Θ2;ϕ) | Ψ = Θ1 ∪ Θ2}

is in Σ too.
– If [π∗](Ψ ;ϕ) ∈ Σ then (

∧
Ψ ∧ ϕ) ∨ [π ◦ π∗](Ψ ;ϕ) is in Σ too.

Lemma 2. Every formula ϕ is a member of some finite Fischer-Ladner closed
set of formulas.

Proof. Standard, see for example [5].

Fix a finite and Fischer-Ladner closed set of formulas Σ. An atom over Σ is a
maximal consistent subset of Σ, and we denote the set of atoms over Σ by At(Σ).
Given any atom w ∈ At(Σ), let ŵ be its conjunction, and let Ẑ = {ŵ | w ∈ Z}
for a set of atoms Z.

Lemma 3. Let [π](Ψ ;ϕ) be any formula such that each formula in Ψ ∪ {ϕ} is a
boolean combination of formulas in Σ. Then [π](Ψ ;ϕ) is provably equivalent to
a disjunction of formulas of the form [π](Ẑ;

∨
Ẑ) for Z ⊆ At(Σ) being some set

of atoms with w � ϕ for each w ∈ Z and for all ψ ∈ Ψ there is some v ∈ Z with
v � ψ.
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Definition 5. Given any label π, we define the relation SΣ
π ⊆ At(Σ)×P(At(Σ))

by setting (w,Z) ∈ SΣ
π iff ŵ∧ [π](Ẑ;

∨
Ẑ) is consistent with respect to the system

Ax3.
The canonical neighborhood model over Σ denoted CΣ is defined as the triple

(WΣ , RΣ , V Σ) where WΣ is the set of atoms over Σ, RΣ
a = SΣ

a for each atomic
label a, and V Σ(p) = {w ∈ WΣ | p ∈ w}.

The key lemma in the completeness proof, which is proved using the induction
rules for the Kleene star, is the following:

Lemma 4. For each label π, we have SΣ
π∗ ⊆ [[∗]](SΣ

π ).

Lemma 4 is needed to prove Lemma 5 below, by induction on the complexity
of program terms. Say that a label π is safe if, for every formula γ such that the
term γ? appears in π, we have γ ∈ Σ and furthermore, γ ∈ w iff CΣ , w � γ for
each w ∈ At(Σ).

Lemma 5. For every safe label π, we have SΣ
π ⊆ RΣ

π .

Using Lemma 5 we can prove a truth lemma for the canonical model:

Lemma 6. For every atom w and any ψ ∈ Σ, we have (CΣ , w) � ψ if and only
if ψ ∈ w.

Finally, we can now prove Theorem6: suppose the formula ϕ is not provable,
so that ¬ϕ is consistent. By Lemma 2, ¬ϕ belongs to some finite Fischer-Ladner
closed set Σ and since ¬ϕ is consistent it belongs to some atom w. Hence ϕ /∈ w
and by Lemma 6 we have CΣ , w � ϕ. So ϕ is not valid.

As a corollary to the completeness proof, which produces a finite model for
a consistent formula, we get:

Theorem 7. IPDL has the finite model property and is decidable.

5 Concluding Remarks

We have explored a propositional dynamic logic defined over instantial neigh-
borhood logic. A language extension that is clearly related to the framework of
this paper is the addition to the base language of least and greatest fixpoint
operators, which for standard modal logic results in the modal μ-calculus. It
is well known that PDL can be viewed as a fragment of the modal μ-calculus.
In fact, our logic IPDL can also be translated into the analogous extension of
INL with fixpoints. The translation is not straightforward though, and in fact
the best translation we have found so far even causes an exponential blowup
in formula size. We have omitted this material here due to lack of space. The
fixpoint extension of INL is a very well behaved language: as shown in [3], INL
is a coalgebraic modal logic corresponding to a weak pullback preserving functor
- the double covariant powerset functor - that additionally preserves finite sets.
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(This should be contrasted with the monotone neighborhood functor, which is
the appropriate functor for monotone modal logic and is known not to preserve
weak pullbacks - see [12]. The monotone neighborhood functor is not suitable for
INL since INL-formulas are not invariant for the behavioural equivalence asso-
ciated with this functor.) This means that the μ-calculus extension of INL will
inherit a number properties that hold in much wider generality: the language
has the finite model property and is decidable [16], a sound and complete system
of axioms is available [8] and the uniform interpolation property holds [11]. Note
however that it does not mean that we obtain our completeness result (and hence
decidability and finite model property) for free, since completeness for fragments
of modal μ-calculi does not generally follow easily from completeness of the full
languages. Witnessing examples are Reynold’s highly non-trivial completeness
proof for CTL∗ [14] (which is a fragment of the μ-calculus [7]), or Parikh’s game
logic, which still lacks a complete system of axioms.

There is a growing body of work on PDL-like coalgebraic logics, with generic
results on axiomatizability, see for example [9]. This setting is clearly related to
the present work, however our system IPDL is not covered by this framework as
it stands: while the covariant powerset functor is a monad, the double covariant
powerset functor is not, which would be a requirement for existing work on
coalgebraic PDL-logics to readily apply1. Perhaps the framework can be modified
to capture IPDL as an instance – we offer this as a challenge and an interesting
direction for future research.
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Abstract. As agents faced with fallible information, we frequently find
ourselves in situations where we are forced to base our beliefs on evidence
which is in some way or another contradictory. We nevertheless want
these beliefs to be rational. This paper presents a simple probabilistic
model of what it means for a belief based on a contradictory body of
evidence to be rational. In this approach, we model contradictions in the
evidence available to us as resulting from random noise, and we model our
task as rational agents as reconstructing the most likely states of affairs
given the evidence available to us. Our main result consists in providing
several equivalent descriptions of the non-reflexive and non-monotonic
consequence relation which formalizes the notion that it is reasonable to
accept that a proposition is true given good evidence supporting some
set of propositions.

Keywords: Paraconsistent logic · Belnap–Dunn logic · Non-monotonic
logic · Non-reflexive logic · Belief revision

1 Introduction

It is an indisputable fact that we as rational agents are frequently faced with
information which, although generally trustworthy, is fallible. Our trust in such
information is limited at least by logic: when faced with two logically conflicting
pieces of information, we conclude that at least one of them must be wrong,
rather than concluding that a contradiction is true. That much is clear. It is
less clear what exactly it means for a belief to be rationally supported by such
trustworthy but fallible (briefly: good) evidence. The present paper is intended
as a contribution towards answering this question in a certain idealized case.
In particular, we shall provide a formal answer to this question in the form a
consequence relation Γ � ϕ which is to be interpreted as: it is reasonable to
accept the belief that ϕ is true given good evidence supporting Γ .

Such a consequence relation needs to tolerate inconsistency in the sense that
logical contradictions ought not imply everything (as they have the unfortunate
habit of doing in classical logic). It is, after all, not reasonable to conclude in
the face of contradictory information that every proposition is true. Since such
c© Springer-Verlag GmbH Germany 2017
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DOI: 10.1007/978-3-662-55665-8 11



152 A. Přenosil

logics have long been studied, it would at first glance seem reasonable to look
for the consequence relation among the well-known examples of these so-called
paraconsistent logics. However, this impression is mistaken, since we want the
consequence relation Γ � ϕ to be non-reflexive and non-monotonic.

For example, given good (but contradictory) evidence supporting p ∧ ¬p, it
is not reasonable to conclude that p ∧ ¬p is true, since it is never reasonable
to conclude that a contradiction is true.1 Likewise, although it is reasonable to
conclude that p is true given good evidence supporting p, it is not reasonable
to conclude that p is true given both good evidence supporting p and good
evidence supporting ¬p. In other words, we want to reject both reflexivity (since
p ∧ ¬p � p ∧ ¬p) and monotonicity (since p � p but p,¬p � p).

To illustrate what kind of consequence relation we seek and what its potential
use is, let us compare it to one of the simplest and best motivated paraconsistent
logics, namely the four-valued Belnap–Dunn logic. This logic, first introduced by
Dunn [8], was proposed by Belnap [6,7] as a logic of how a computer should deal
with inconsistent information. Its idea is very simple: in addition to the two truth
values of classical logic, we allow for two additional truth values: being both true
and false and being neither true nor false. These are interpreted epistemically
rather than ontologically: a proposition is true if we have information supporting
its truth, and it is false if we have information supporting its falsity. (Belnap
aptly calls these values “told true” and “told false”.) This, of course, allows
for the possibility that we have information supporting both the truth and the
falsity of a proposition, as well as for the possibility that we have neither.

A computer then simply collects the information it is presented with.
Although such a computer can record contradictions in a non-trivial manner
and infer e.g. that information supporting p and q ∨ r also supports (p ∧ q) ∨ r,
it leaves the handling of the contradictions to the user. The user is presented
with information that e.g. the computer has both information supporting p and
information supporting ¬p, but is given no guidance on how to respond to such
information. Our ambition, on the other hand, is to potentially automatize a
reasonable response to contradictory information. That is, rather than being
content with having a computer record contradictory information, we want it to
go further and to sidestep the contradictions in this information and present the
user with consistent data, or even to circumvent the user altogether and take
decisions on its own based on the contradictory data it is given.

Moreover, we wish to achieve this goal in a purely logical way, without using
any non-logical information about the relative plausibility of different states of
affairs, or the relative strength of different pieces of evidence, or indeed without
considering such objects as distinct pieces of evidence. While a theory which
involves such notions is no doubt worth exploring, we claim that part of the
interest of the results presented here is that they do not rely on any kind of

1 At least if we disregard issues relating to logical non-omniscience and dialetheism.
Our logic is intended to model reasoning with ordinary empirical propositions where
such issues are not prominent.
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extralogical structure, i.e. that a purely logical theory specifying which beliefs it
is reasonable to adopt in the face of contradictory evidence is possible.

We will not offer here any substantial explanation of what constitutes good
evidence, apart from whatever explanation will be implicit in our probabilistic
model layed out below. By good evidence we will simply mean evidence which
is convincing in the absence of contrary evidence but may become unconvincing
in the presence of contrary evidence. That is, while it is reasonable to conclude
that ϕ is true on the basis of some good evidence, we may be forced to abandon
this belief if we come into possession of contrary evidence. This not mean that
our evidence was not good (in our sense), only that good evidence is still fallible.

The structure of the paper is as follows. In Sect. 2 we lay out a simplified
model of how contradictions arise in the evidence available to us. Based on
this model, we then define a consequence relation which determines whether it
is reasonable to accept a given belief based on some body of evidence, taking
inspiration from the probabilistic semantics of classical logic due to Adams [1].
We then describe this consequence relation syntactically. Finally, in Sect. 3 we
discuss the potential use of this consequence relation in belief revision theory.
In particular, we propose that what we ought to revise when faced with new
evidence are what we call evidence sets rather than belief sets.

The consequence relation studied in the present paper is a close relative of
the so-called minimally inconsistent Logic of Paradox introduced by Priest [10],
the distance-based paraconsistent logics of Arieli [3], and it is also related to the
adaptive logics of Batens [5] and his school. These connections will be spelled
out in more detail in the course of the paper.

2 The Noise and the Signal

We propose to analyze the notion of a rational belief based on an inconsistent
body of information in probabilistic terms, using an analogy from information
theory. A fundamental task of information theory is to reconstruct the original
form of a message which was in some way distorted by passing through a noisy
channel. In our analogy, the original message is the actual state of affairs (or
some relevant aspect of it), the noise is some mechanism which introduces false
evidence into the body of evidence available to us, and the distorted message is
precisely this body of evidence. Our goal is then to reconstruct the most probable
states of affairs from this distorted evidence.

More precisely, we shall imagine that even though p (¬p) is false, there is
some small probability εp (ε¬p) that we will actually come into possession of good
evidence that p (¬p) is true. This probability, of course, is difficult to quantify
precisely, but that need not concern us: we will be concerned with the limit case
where this probability approaches zero. On the other hand, the probability that
we will come into possession of good evidence that p (¬p) is true given that p
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(¬p) is true, denoted τp (τ¬p), will be a quantity whose precise value is again
irrelevant but which remains far enough from zero.2

The above will be our rudimentary working model of how inconsistencies
arise in our data. It may be no doubt elaborated further in various ways, but
the fundamental point of the approach should be clear enough: we are given
some probabilistic mechanism which corrupts our evidence by introducing some
amount of falsehood into it, and our task is to reconstruct the most probable
states of affairs which give rise to this corrupted body of evidence.

Let us now formalize these notions more precisely. Consider a finite set of
atomic propositions At = {p, q, r, . . . }. The set Fm of all formulas generated
by At in the signature {∧,∨,¬} is defined in the obvious way. By a state of
affairs we shall mean a classical valuation of formulas into the two truth values
of classical logic. By a state of evidence we shall mean a valuation of formulas
into the four truth values of the Belnap–Dunn logic. Such valuations follows
precisely the classical truth and falsity conditions:

¬ϕ is true ⇔ ϕ is false ¬ϕ is false ⇔ ϕ is true
ϕ ∧ ψ is true ⇔ ϕ is true & ψ is true ϕ ∨ ψ is true ⇔ ϕ is true or ψ is true
ϕ ∧ ψ is false ⇔ ϕ is false or ψ is false ϕ ∨ ψ is false ⇔ ϕ is false & ψ is false

except we allow for the possibility of being both true and false or being neither
true nor false. The consequence relation Γ �B ϕ of the Belnap–Dunn logic is
defined as follows: ϕ is true in each state of evidence in which each γ ∈ Γ is
true. Being “true” or “false” in a state of evidence corresponds to having good
evidence for or against a given proposition.

Note that we could restrict to complete states evidence here, i.e. to the three-
valued Logic of Paradox rather than the four-valued Belnap–Dunn logic. In such
states of evidence we have evidence for or against each proposition, possibly
both. This would not substantially change the model layed out below. However,
we prefer to stick to the four-valued setting, since it is a better approximation
of the epistemic situations that we are normally faced with.

States of affairs and states of evidence combine to form full states, which are
pairs (w, e) consisting of a state of affairs w and a state of evidence e. In the
following, “ϕ true” shall denote the set of full states (w, e) such that ϕ is true
in w, “ϕ told” shall denote the set of full states (w, e) such that ϕ is true in e,
and “Γ told” shall denote the intersection of the sets “γ told” for γ ∈ Γ .

Let P be a probability measure on the finite set of all states of affairs. We
only impose one condition on P , namely that it is non-excluding in the sense
that P (w) ∈ (0, 1) for each state of affairs w. Given a choice of constants εp,

2 We have no particular story to tell about how one comes into possession of good
evidence, or what precisely constitutes good evidence. It is entirely up to the user of
the logic to supply such a story. We simply imagine that the user of the logic collects
some information about the world and at the end of this process he ends up with a
certain probability with information supporting or contradicting p (given that p is
true, or given that p is false).
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ε¬p, τp, τ¬p ∈ (0, 1) for each p ∈ At, briefly denoted ε and τ , we extend P to
a probability measure Pετ on the finite set of all full states as follows (here l
ranges over literals):

Pετ (w, e)
P (w)

=
∏

l true in w
l told in e

τl ·
∏

l true in w
l not told in e

(1 − τl) ·
∏

¬l true in w
l told in e

εl ·
∏

¬l true in w
l not told in e

(1 − εl)

That is, we are assuming that in each state of affairs w the events of being
told l and being told l′ are independent for distinct literals l and l′ and moreover
they are determined by the parameters τ and ε as outlined in the equation above.
This equation is intended to model the connection between the actual state of
affairs and the evidence available to us. In particular, we are assuming here that
evidence may be only distorted at the atomic level.

The above model is schematically represented by Fig. 1, where on the left we
have the four possible states of affairs over two propositional variables and on
the right have have some of the sixteen possible states of evidence. The numbers
next to the arrows represent the probabilities of the transitions between the
states of affairs and the states of evidence, e.g. the probability that we will end
up in the state of evidence ppq given that pq is the case is 0.1. If the state of
evidence does not conflict with the state of affairs, the transition will (at least
in the limit case) have a relatively high probability, even if not all aspects of
the state of affairs are captured by the state of evidence. This is the case with
the transitions pq → pq and pq → p. On the other hand, the more conflict there
is between the two, the less likely the transition is. For example, the transition
pq → ppq is relatively unlikely due to the conflict between p and p, and the
transition pq is even less likely due to the additional conflict betwen q and q.

pq

pq

pq

pq

pq

p

pqq

ppq

0.6

0.3

0.1

0.01

0.1

Fig. 1. Transitions between states of affairs and states of evidence

Recall that the conditional probability Pετ (ϕ true |Γ told) is given by the
formula Pετ (ϕ true & Γ told)/Pετ (Γ told). Once we have fixed the values of
the parameters ε and τ , we can compute this conditional probability for each
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ϕ and Γ . The consequence relation that we seek now admits a simple definition
in terms of this conditional probability. At first glance, the definition relies on
the parameters τ and the probability measure P , but we shall see later that in
fact it does not depend on these. The main result of the present paper consists
in providing a syntactic description of this consequence relation, i.e. in proving
a completeness theorem for it.

Definition 1. We shall say that ϕ is a fallible consequence of Γ , symbolically
Γ � ϕ, if limε→0 Pετ (ϕ true |Γ told) = 1.

It is worth recalling here the probabilistic characterization of classical logic
due to Adams [1] for the sake of comparison. Adams proved that Γ � ϕ holds
in classical logic if and only if for each ε > 0 there is some δ > 0 such that
P (ϕ) ≥ 1 − ε for each probability measure P such that P (γ) ≥ 1 − δ for all
γ ∈ Γ . In other words, Adams proved that classical logic is applicable not only
in the idealized case where the premises are known with certainty, but also in
the more realistic case where the premises are only known to a high degree of
confidence. This is fine as long as it is possible to have a high degree of confidence
in our premises. However, if this is not possible due to their inconsistency, we
have to take into account the fact that some of our premises are false and reason
instead in a way which strives to minimize the distance between the evidence
available to us and the actual state of affairs.

Some basic properties of fallible consequence may immediately be inferred.
Namely, the premises are governed by the Belnap–Dunn logic B, whereas the
conclusion is governed by classical logic CL, in the following sense. Recall that
Γ 	�B Δ denotes that Γ and Δ are equivalent in B, i.e. true in the same states
of evidence. Γ �CL ϕ denotes that ϕ is a classical consequence of Γ .

Proposition 1. If Γ 	�B Δ and ϕ �CL ψ, then Γ � ϕ implies Δ � ψ.

Proof. If Γ 	�B Δ, then “Γ told” and “Δ told” are the same event, hence Γ � ϕ
implies Δ � ϕ. If ϕ �CL ψ, then the event “ϕ true” is a subset of the event
“ψ true”, hence limε→0 Pετ (ψ true |Δ told) ≥ limε→0 Pετ (ϕ true |Δ told) = 1.

Note that since we are considering languages with only finitely many atomic
propositions and there are up to equivalence in B only finitely many formulas
over finitely many atoms, we may without loss of generality restrict to Γ finite.

Recall that a literal is either an atom or a negated atom, a conjunctive clause
is a finite conjunction of literals, and a formula in disjunctive normal form is a
finite disjunction of conjunctive clauses. We shall use e.g. ppqr as an abbreviation
for the conjunctive clause p∧¬p∧q∧¬r. Each formula has an (essentially unique)
equivalent formula in disjunctive normal form in B.

Let us now introduce some useful notions relating to conjunctive clauses.
By the consistent part of a conjunctive clause ϕ, denoted cp ϕ, we mean the
conjunction of all atoms p ∈ ϕ such that ¬p /∈ ϕ and all negated atoms ¬p ∈ ϕ
such that p /∈ ϕ. By the inconsistent part of a conjunctive clause ϕ, denoted
ip ϕ, we mean the conjunction of all atoms p ∈ ϕ such that ¬p ∈ ϕ and all
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negated atoms ¬p ∈ ϕ such that p ∈ ϕ. Clearly ϕ = cp ϕ ∧ ip ϕ and moreover
cp ϕ and ip ϕ are disjoint as sets of literals.

Conjuctive clauses may be ordered according to how consistent they are.
We shall say that a conjunctive clause ϕ is less consistent than a conjunctive
clause ψ if ip ϕ �B ip ψ. Given a set of conjunctive clauses C, by the minimally
inconsistent elements of C we shall mean those ϕ ∈ C such that no ψ ∈ C is
strictly more consistent than ϕ. For example, among the clauses ppqr, pqqrrs,
pprss, the first two are minimally inconsistent while the last one is not, being
strictly less consistent than the first clause.

Conjunctive clauses will be identified with sets of literals in the obvious way.
In particular, given two conjunctive clauses ϕ and ψ, we shall use ϕ\ψ to denote
the conjunction of all literals which occur in ϕ but not in ψ. Since each state
of affairs α corresponds to a unique conjunctive clause, ϕ \ α will denote the
conjunction of all literals in ϕ which do not hold at α. The conjunctive clause
ϕ \ α is thus a measure of how far α is from what ϕ claims to be the case.
Likewise, ϕ ∩ ψ (in particular, ϕ ∩ α) will denote the conjunction of all literals
which occur in both ϕ and ψ (in particular, all literals in ϕ which hold at α).

With this notation in hand, our definition of Pετ (ϕ told |α true), where ϕ is
a conjunctive clause and α is a state of affairs, may be written as

Pετ (ϕ told |α true) =
∏

l∈ϕ\α

εl ·
∏

l∈ϕ∩α

τl ·
∏

l∈α\ϕ

(1 − τl) ·
∏

l/∈α& l/∈ϕ

(1 − εl). (*)

Lemma 1. limε→0 Pετ (ϕ told |α true) = 0 if and only if α ∧ ϕ is inconsistent.

Proof. If ϕ is a conjunctive clause, then the claim holds because the conditional
probability Pετ (ϕ told |α true) contains a factor of the form εl if and only if
some atom occurs negated (unnegated) in ϕ but unnegated (negated) in α, i.e.
if and only if α ∧ ϕ is inconsistent.

Now let
∨

i∈I ϕi be the disjunctive normal form of ϕ. If α∧ϕ is inconsistent,
then α∧ϕi is inconsistent for each i ∈ I, therefore limε→0 Pετ (ϕ told |α true) =
limε→0 Pετ (

∨
i∈I ϕi told |α true) ≤ limε→0

∑
i∈I Pετ (ϕi told |α true) ≤∑

i∈I limε→0 Pετ (ϕi told |α true) ≤ 0.
Conversely, if α∧ϕ is consistent, then α∧ϕi is consistent for some i ∈ I. But

limε→0 Pετ (ϕ told |α true) = 0 only if limε→0 Pετ (ϕi told |α true) = 0, which
is not the case, since the lemma holds for ϕi.

Lemma 2. Let ϕ and ψ be conjunctive clauses and let α be a state of affairs.
Then limε→0

Pετ (ϕ told | α true)
Pετ (ψ told | α true) = 0 if and only if ϕ \ α � ψ \ α.

Proof. This claim follows immediately from (∗), since τl ∈ (0, 1).

Theorem 1 (Completeness theorem). Let {γi | i ∈ I} be a set of conjunc-
tive clauses and {γj | j ∈ J} be the subset of all minimally inconsistent clauses
among these. Then

∨
i∈I γi � ϕ if and only if

∨
j∈J cp γj �CL ϕ.
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Proof. Let γ =
∨

i∈I γi. Then by Bayes’ theorem

Pετ (ϕ true | γ told) =
Pετ (γ told |ϕ true)Pετ (ϕ true)

Pετ (γ told)

=

∑
α�ϕ Pετ (γ told |α true)Pετ (α true)

∑
α Pετ (γ told |α true)Pετ (α true)

where α ranges over all states of affairs in the denominator, and over all states
of affairs where ϕ holds in the numerator. Recall that Pετ (γ told |α true) is
determined by the constants ε and τ via (∗). Clearly Pετ (α true) ∈ (0, 1). In
fact, Pετ (α true) = P (α), even though we will not need this observation.

Suppose first that γ is classically consistent. By Lemma 1 summation in
both the numerator and the denominator may be restricted to summation over
α such that α ∧ γ is consistent, i.e. α such that γ holds at α. Moreover, each
such summand contributes a strictly positive number in the limit. Therefore
limε→0 Pετ (ϕ true | γ told) = 1 if and only if no such summands occur in the
denominator but not the numerator, or equivalently if and only if γ does not
hold at α whenever ϕ does not hold at α, or equivalently if and only if γ �CL ϕ.
But if γ is consistent, then γ and

∨
j∈J cp γj are classically equivalent.

Suppose on the other hand that γ is not classically consistent. We shall first
group together those γi which have the same inconsistent part. That is, there is a
finite set K ⊆ J and formulas δk such that each such formula δk is a disjunction
of all formulas γi which have the same inconsistent part, and moreover each γj

occurs as a disjunct in some δk. There is also a subset L ⊆ K of those δk which
are disjunctions of formulas γj for j ∈ J .

Let us define cp δk as the disjunction of the consistent parts of those γi which
occur as disjuncts in δk, and ip δk as the inconsistent part of each γi which occurs
as a disjunct in δk. Moreover, we may define ip (δk ∧ δk′) as ip δk ∧ ip δk′ . Then
the conjunctions δk ∧ δk′ for distinct k, k′ ∈ K are strictly more inconsistent
than each δk′′ for k′′ ∈ K, in the sense that ip (δk ∧ δk′) �B ip δk′′ for each δk′′ ,
but ip δk′′ �B ip (δk ∧ δk′) for each δk′′ . Observe that

∨
i∈I γi is equivalent in B

to
∨

k∈K δk, and
∨

j∈J γj is equivalent in B to
∨

l∈L δl.
Clearly Pετ (

∨
i∈I γi told |α true) = Pετ (

∨
k∈K γk told |α true). Lemma 2

now implies that Pετ (
∨

k∈K δk told |α true) ≈ Pετ (
∨

l∈L δl told |α true), dis-
regarding some summands which tend to zero faster than the right-hand side.
Moreover, Pετ (

∨
l∈L δl told |α true) ≈ ∑

l∈L Pετ (δl told |α true) in the same
sense, using the observations from the previous paragraph.

Appealing to Lemma 2 again yields that
∑

α

∑
l∈L Pετ (δl told |α true) ≈∑

l∈L

∑
α�cp δl

Pετ (δl told |α true) and also
∑

α�ϕ

∑
l∈L Pετ (δl told |α true) ≈∑

l∈L

∑
α�ϕ∧cp δl

Pετ (δl told |α true). We therefore obtain that

Pετ (ϕ true | γ told) ≈
∑

l∈L

∑
α�ϕ∧cp δl

Pετ (δl told |α true)Pετ (α true)
∑

l∈L

∑
α�cp δl

Pετ (δl told |α true)Pετ (α true)
(†)

in the same sense as above. The right-to-left direction of the theorem is now
immediate: setting ϕ =

∨
l∈L cp δl in (†), which is equivalent to

∨
j∈J γj in B,
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yields a fraction where the numerator and the denominator are equal (since
ϕ ∧ cp δl is equivalent to cp δl if ϕ =

∨
l∈L cp δl).

To prove the left-to-right implication, suppose that
∨

j∈J cp γj �CL ϕ, i.e.∨
l∈L cp δl �CL ϕ. Then there is some state of affairs β where cp δl holds for

some l ∈ L but ϕ does not. Then this state of affairs β is summed over in the
denominator of (†) but not in the numerator. Thus γ � ϕ can hold only if the
term Pετ (δl told |β true)Pετ (β true) tends to zero faster than the remaining
terms in the denominator of (†). But this is not the case by the left-to-right
direction of Lemma 2, since δl is minimally inconsistent among the disjuncts δk

for k ∈ K and cp δl holds at β.

Corollary 1. If Γ is classically consistent, then Γ � ϕ if and only if Γ �CL ϕ.

Recall that each formula is equivalent in B to a formula in disjunctive nor-
mal form. Theorem 1 therefore suffices to fully describe the fallible consequence
relation. Observe also that Theorem 1 justifies calling the formula

∨
j∈J cp γj

the classical approximation to the formula γ =
∨

i∈I γi. Theorem 1 may then be
rephrased as saying that it is reasonable (in a precise technical sense) to accept
the belief that ϕ is true on the basis of good evidence supporting γ if and only
if ϕ is classically entailed by this classical approximation to γ.

To illustrate how fallible consequence works, let us consider a simple example
due to Dunn [9]. A fire has broken out in the building that you are in and you
are trying to escape to safety. You find yourself at a crossroads with three ways
out: to your left, to your right, and straight ahead. Two fireman are there to
provide you with assistance. Unfortunately, their guidance is contradictory. The
first one says that the only safe way out is left. The second one says that the
only safe way out is right. How should you respond to such a situation?

Formalizing the first fireman’s advice as l ∧¬r ∧¬s and the second fireman’s
advice as r ∧ ¬l ∧ ¬s, the best classical approximation to this body of evidence
by Theorem 1 is ¬s, i.e. the theory stating that the way straight ahead is not
safe. This agrees with Dunn’s answer and presumably with our intuition.

Theorem 1 may in fact be rephrased in a more semantic way. Let V al4 be
the set of all states of evidence, let V al3 ⊆ V al4 be the set of all complete states
of evidence, i.e. of all states of evidence where each atom, or equivalently each
formula, is either true or false (possibly both), and let V al2 ⊆ V al4 be the set of
all classical states of evidence, i.e. of all states of evidence where each atom, or
equivalently each formula, is either true and not false or it is false and not true.

The states of evidence may be ordered according to their information content
and according to how inconsistent they are. The information order is a partial
order on V al4 such that u � v if and only if each atom which is true in u is true
in v and each atom which is false in u is false in v (equivalently, each formula
which is true in u is true in v). The inconsistency order is a preorder on V al4
such that u is less inconsistent than v if and only if each atom which is both
true and false in u is both true and false in v. This inconsistency order was
introduced and used for a similar purpose already by Arieli and Avron [4].

In the following, we shall use the notation ||ϕ|| = {w ∈ V al4 |ϕ is true at w}
and ||Γ || =

⋂
γ∈Γ ||γ||. If S ⊆ V al4 is a set of complete states of evidence, then
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Mininc S will denote the set of all minimal states of evidence in S with respect
to the ordering by inconsistency.

Theorem 2 (Completeness theorem). Γ � ϕ if and only if w ∈ ||ϕ|| for
each classical state of evidence w such that w � v for some v ∈ Mininc(||Γ || ∩
V al3).

Proof. Let γ =
∨

i∈I γi be a formula in disjunctive normal form equivalent to Γ ,
and let {γj | j ∈ J} be the set of all minimally inconsistent disjuncts of γ. In
particular, w ∈ ||Γ || if and only if there is some i ∈ I such that w ∈ ||γi|| and
each atom which occurs negated (unnegated) in cp γi is false but not true (true
but not false) in w. If w ∈ Mininc(||Γ || ∩ V al3), then in fact we may take i ∈ J .
Otherwise there is some j ∈ J such that γj is strictly more consistent than γi,
in which case each complete state of evidence which only assigns the value both
true and false to the atoms which occur both negated and unnegated in γj is
strictly below w in the inconsistency order.

If w is a classical state of evidence and v is a complete state of evidence, then
w � v if and only if each atom (or equivalently, each formula) which is true but
not false in v is true in w and each atom (or equivalently, each formula) which is
false but not true in v is false in w. That is, there is some v ∈ Mininc(||Γ ||∩V al3)
such that w � v if and only if there is some j ∈ J such that cp γj is true in w.

Of course, Theorem 2 is simply a reformulation of Theorem 1 using a slightly
different language. Nevertheless, we believe that it may help to have Fig. 2 in
mind when thinking about fallible consequence.

Figure 2 schematically represents how the classical approximation to Γ is
computed based on Theorem 2. First, the set ||Γ || of all models which satisfy Γ is
computed and intersected with V al3. Then, the minimaly inconsistent elements
of this set are determined. In Fig. 2, this is represented by the black area. Finally,
the downset of this set is determined and intersected with the set of all classical
valuation V al2, which yields the hatched area of Fig. 2. This set is then the
classical approximation to the original set of states ||Γ ||.

The close relation between the fallible consequence relation introduced above,
the “minimally inconsistent Logic of Paradox” MiLP introduced by Priest [10],
and the “consequence relation for preserving consistency” �4

I1
introduced by

Arieli and Avron [4] deserves noticing. Indeed, Priest’s definition of MiLP and
Arieli and Avron’s definition of �4

I1
(Definition 2) is very similar to Theorem 2,

except that no projection onto the classical states is performed. In the case of
MiLP this is, of course, due to the fact that Priest believes that some contra-
dictions are true, therefore he has no reason to perform such a projection. We
recall the definitions of these logics below, rephrased in our terminology.

Definition 2. Γ �MiLP ϕ if and only if Mininc(||Γ || ∩ V al3) ⊆ ||ϕ||. Γ �4
I1

ϕ if
and only if Mininc ||Γ || ⊆ ||ϕ||.

In fact, there is a very simple explicit relationship between our logic and a
variant of the logic MiLP. Let δ denote the so-called conflation operation on
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V al2

V al4

Γ

Fig. 2. Computing classical approximations

the four truth values, defined by δt = t, δf = f, δn = b, and δb = n. That is,
δϕ is true (false) if and only if ϕ is not false (not true). The logic MiLP does
not include δ in its signature, and moreover its standard three-valued semantics
with the truth values {f, b, t} cannot be expanded by δ, as δb = n /∈ {f, b, t}.
However, if we use the four-valued semantics for MiLP from Definition 2, we
can easily expand the logic MiLP by the operator δ, obtaning the logic MiLPδ.
The relationship between fallible consequence and MiLPδ can now be expressed
as follows.3

Proposition 2. Γ � ϕ if and only if Γ �MiLPδ δϕ.

Proof. Suppose that Γ �MiLPδ δϕ. Then ¬ϕ does not hold in any world in
Mininc(||Γ || ∩ V al3). Therefore it does not hold in any classical w such that
w � v for some v ∈ Mininc(||Γ || ∩ V al3). But then ϕ does hold in w whenever
w � v ∈ Mininc(||Γ || ∩ V al3) for w classical, hence Γ � ϕ. Conversely, suppose
that Γ �MiLPδ δϕ. Since each ϕ is equivalent to a conjunction of disjunctive
clauses, we may assume without loss of generality that ϕ =

∨
k∈K lk, where lk

are literals. Then there is some w ∈ Mininc(||Γ || ∩ V al3) such that ¬ϕ holds in
w. Let γ =

∨
i∈I γi be a formal in disjunctive normal form equivalent in B to Γ .

Then there is some disjunct γj , minimally inconsistent among the conjunctive
clauses γi, such that γj �B ¬ϕ. Thus γj �B ¬lk for each k ∈ K. It now follows
that there is some classical w � v where γj �B ¬lk for each k ∈ K. But then ¬ϕ
is true in w, hence ϕ is not and Γ � ϕ.

Finally, let us note that a variant of the fallible consequence relation may be
obtained by tinkering with the definition of the probability measure Pετ . Instead
of having a tuple of parameters ε, we may suppose that a single parameter ε

3 The following proposition was suggested to the author by one of the referees.
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suffices, i.e. that εl = εl′ for all literals l and l′. This yields a stronger logic,
since we have more control over the way in which ε approaches zero. (Notice
that the definition of fallible consequence essentially quantifies universally over
all possible ways in which the parameters ε may approach zero.)

To obtain an analogue of Theorem 1 for this consequence relation, it suffices
to modify the notion of minimal inconsistency by saying that a conjunctive
clause ϕ is less consistent than a conjunctive clause ψ if | ip ϕ| ≥ | ip ψ| rather
than ip ϕ ⊇ ip ψ. Accordingly, the inclusion ϕ \ α � ψ \ α in Lemma 2 would
be replaced by the inequality |ϕ \ α| > |ψ \ α|. With these modifications, the
statement and proof of Theorem 1 carries over to this modified relation.

To obtain an analogue of Theorem 2 for this consequence relation, it suffices
to modify the inconsistency order by saying that u is less inconsistent than v if
less atoms (in the sense of cardinality) are both true and false in u then in v. The
statement and proof of Theorem 2 then carries over to the modified relation.

The distance-based paraconsistent logic of Arieli [3] based on the Hamming
distance is similar in spirit to this variant of the fallible consequence relation.
However, there are some differences between the framework used here, where
consequence is a relation between a set of formulas and a formula, and the
framework of Arieli, whose consequence relation is a relation between a multiset
of formulas and a formula. This corresponds to distinguishing between how well
supported different formulas are, which we disregard in our framework. More-
over, while Arieli allows for inconsistent multisets of premises, he assumes that
each individual formula in such a multiset is classically consistent, or equivalently
in his framework, that inconsistent states are infinitely far away from consistent
ones. Due to these differences, Arieli’s framework is reflexive, while ours is not.

The idea of handling inconsistent sets of premises by restricting to minimally
inconsistent models is also known from the adaptive logic program of Batens [5]
and others. In particular, given a Tarskian consequence relation and a set of
“abnormal” formulas, one can uniformly obtain an adaptive logic which also
tries to minimize the amount of inconsistency or abnormality forced on us by
the premises. One advantage of the adaptive logic approach is that a dynamic
proof theory is available for such logics, a topic which is left untouched in the
present paper.

3 Beliefs Bases vs. Evidence Sets

In this final section, we shall briefly discuss the possible applications of the fallible
consequence relation in the field of belief revision. In particular, this consequence
relation allows us to replace revisions of belief bases by revisions of evidence sets,
by which we mean theories of the Belnap–Dunn logic.

In the standard AGM model of belief revision [2], a belief set B is revised in
the face of new information supporting ϕ to form a new belief set B ∗ ϕ such
that ϕ ∈ B ∗ ϕ. There are several problematic aspects to this, one of which
is that such an approach forces us to accept the primacy of new information,
i.e. new information is a priori taken to be more reliable than old information.



Contradictory Information as a Basis for Rational Belief 163

Such problems are often circumvented by revising belief bases rather than belief
sets, where a belief base is simply a set of formulas (not necessarily closed under
classical consequence) which we have independent reasons to believe.

In that approach, belief bases perform much the same task as evidence sets.
That is, they allow us to distinguish between different inconsistent bodies of
information. Both belief bases and evidence sets form a potential basis for our
beliefs in the sense that we can compute a consistent belief set from either of
them. In the case of belief bases, this process of extracting consistent information
from an inconsistent belief base is called consolidation. In the case of evidence
sets, a consistent belief set B may be obtained from an inconsistent evidence
set E with the help of the fallible consequence relation as B = {ϕ |E � ϕ}. Of
course, studying the fallible consequence relation � is equivalent to studying the
assignment B �→ E, just like describing a Tarskian consequence relation is the
same as studying the behaviour of the associated consequence operator.

Even though belief bases and evidence sets perform the same task within
the theory of belief revision, there is, however, a major difference between the
two notions. Belief bases are a very fine-grained, syntactic tool for representing
inconsistent bodies of information, whereas evidence sets are more coarse-grained
and more neutral between syntax and semantics. Accordingly, each notion has
its own advantages and shortcomings which make it appropriate in certain con-
texts but not in others. From one point of view, evidence sets are insufficient to
capture the distinctions made by belief bases. From another, belief bases make
distinctions for which there may be no basis in our evidence.

Generating an evidence set E from a belief base B is easy: simply take the
deductive closure of B in the Belnap–Dunn logic. Every evidence set may be
generated in this way. However, observe that some information is lost in this
transition to evidence sets. For example, the distinct belief bases {p, q} and
{p ∧ q}, which behave differently under belief revision by ¬p, both generate the
same evidence set. Evidence sets therefore do not fully represent the information
present in belief bases. Whether this is a desirable feature of evidence sets or
not depends entirely on whether we view the fine-grained, syntactic character of
belief bases as something we wish to avoid or embrace.

The approach based on belief bases is more appropriate whenever we can
break down our evidence into minimal independent chunks. But it is often not
clear whether this is in fact achievable. If our belief in p∧q derives from being told
p ∧ q by a trusted colleague, then we do indeed have a single piece of evidence
supporting p ∧ q, namely our colleague’s claim. But if we have no knowledge
of how our colleague arrived at this belief (perhaps he simply combined two
independent pieces of evidence for p and q), it is far from clear whether the
appropriate reaction to learning that p is false is to rescind our belief in q as
well, as we would if we formalized our belief base as {p∧q}, or whether we ought
to retain our belief in q, as we would if we formalized our belief base as {p, q}.
In order to be applicable to in actual reasoning, the approach based on belief
bases needs to provide some guidance for distinguishing these two cases.
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The approach based on evidence sets, by contrast, breaks down the available
evidence as thoroughly as possible. For example, in the above situation we have
¬p, p ∧ q � q. That is, even though it is given no information on how exactly we
obtained the evidence that p ∧ q is true, the consequence relation � behaves as
if our evidence for p ∧ q came from two independent pieces of evidence for p and
for q and then discards the evidence for p while keeping the evidence for q.

4 Conclusion

We have obtained a consequence relation with a probabilistic flavour which deter-
mines whether it is reasonable to accept a certain belief based on a potentially
inconsistent body of information. Moreover, this consequence relation is purely
logical in the sense that no extralogical choice of selection functions or distance
functions or plausibility measures was needed to define it. How such extralogical
information, if available, can be used to refine this consequence relation is yet to
be seen. However, we find it worth noting that a reasonable consequence relation
is available even in the absence of such extralogical information.

On the other hand, a major limitation of the results presented above is the
assumption that each proposition arises from applying certain connectives to
some independent atomic propositions and that the random noise in our evidence
acts only on these atomic propositions. A more general approach would start
from a De Morgan algebra of propositions which does not single out any of them
as atomic. It is not difficult to devise a relational semantics for a consequence
relation similar to � which does not suffer from this limitation: in Theorem 2 we
may simply restrict to states of evidence which satisfy some given extralogical
constraints. Instead, the difficulty lies in providing a reasonable probabilistic
justification/interpretation for such a relation along the lines of Theorem 1.

In conclusion, recall that the justification of the fallible consequence relation
consisted in a certain simpified model of how contradictions arise in our evidence:
given that contradictions in our evidence arise as a result of random noise with
certain characteristics, ϕ is almost sure to be true given evidence supporting Γ .
Of course, one may consider different models of how contradictions arise in our
evidence, leading to different consequence relations. Therefore, we do not claim
that this is the unique correct consequence relation for this purpose. We would,
however, like to suggest that in the absence of some such model, it appears
difficult to specify what it means for a given belief or a given decision to be
rational in the face of some contradictory body of evidence.
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Abstract. The paper studies the stabilization of the process of diffusion
of binary opinions on networks. It first shows how such dynamics can
be modeled and studied via techniques from binary aggregation, which
directly relate to neighborhood frames. It then characterizes stabilization
in terms of such neighborhood structures, and shows how the monotone
μ-calculus can express relevant properties of them. Finally, it illustrates
the scope of these results by applying them to specific diffusion models.

1 Introduction

The paper establishes necessary and sufficient conditions for stabilizing behavior
in the dynamics of binary opinions on networks, and shows how they can be
expressed in a known modal fixpoint logic.

Context. This paper brings together tools and methods from three different fields:
network theory, judgment aggregation, and logic. The most well-known models
for opinion diffusion, such as the stochastic linear averaging models [11] and the
threshold models [19] were developed some decades ago and their stabilization
conditions have been extensively studied (e.g., [16], cf. [22] for an overview). In
the meantime, judgment aggregation theory [13,20] has developed the formal
tools to analyse collective opinion formation. In particular, binary judgment
aggregation [17] focuses on opinions consisting of the acceptance or rejection of a
given set of issues. The recent ‘propositional opinion diffusion’ setting from [18]—
but see also the very related framework developed in [8]—, as well as the analysis
of liquid democracy from [10], blended the two above traditions studying forms
of iterated aggregation on networks. Our paper is a contribution to this very
recent line of research. Furthermore, in the past few years, logicians have also
designed different systems to reason about diffusion in networks [9], ranging from
the most specific ‘Facebook logic’ setting [23], to logics for threshold diffusion
[1–3], to the more abstract discussion of the general laws of oscillations [4].

Contribution. We look at opinion diffusion as a synchronous process of iterated
binary aggregation on networks: all agents take up the opinion resulting from
aggregating the individual opinions of their network neighbors (their influencers).
The two key parameters for binary opinion diffusion are the underlying network
and the ‘rule’ each agent uses to aggregate its neighbors’ opinions. It is known
that in binary aggregation, rules (under mild assumptions) can be represented
c© Springer-Verlag GmbH Germany 2017
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through sets of winning and veto coalitions. The same applies also when such
rules are ‘restricted’ to sets of neighbors on a network. So the above diffusion
process can alternatively be represented as follows: each agent accepts an issue p
whenever one of its winning coalitions accepts p, and rejects it whenever one of
its veto coalitions rejectsp. Sets of winning and veto coalitions offer therefore a
useful level of abstraction to study diffusion processes of binary opinions, leaving
aside the specifics of each underlying network and aggregation rule. As such sets
of winning and veto coalitions are nothing but neighborhoods, in the modal logic
sense [7], we show how neighborhood logics enhanced with fixpoint operators [14]
can be used to logically characterize key properties of those processes, such as
their stability and their stabilization.

Outline. Section 2 introduces some preliminaries on binary aggregation and
presents the basic model of opinion diffusion as iterated aggregation on net-
works. Section 3 contains the paper’s main results: it establishes the correspon-
dence between diffusion as binary aggregation on networks and neighborhood
structures, exploits this correspondence to obtain general stabilization results,
and gives a logical characterization of stability and stabilization in the μ-calculus
on monotone neighborhood structures. Section 4 illustrates these general results
via examples of two specific diffusion models. Section 5 concludes.

2 Preliminaries

In this section we first recall standard notions from binary aggregation (mainly
from [13,17,20]) and the theory of winning coalitions (mainly from [12]), and
then introduce the model of binary opinion diffusion used in the paper.

2.1 Binary Aggregation

A binary aggregation structure (BA structure) is a tuple A = 〈N,P〉 where:
N = {1, . . . , n} is a non-empty finite set individuals with |N | = n ∈ N; and
P = {p1, . . . , pm} is a non-empty finite set of issues with |P| = m ∈ N, each
represented by a propositional atom. An opinion function O is an assignment of
acceptance/rejection values (or, truth values) to the issues in P. Thus, O(p) = 0
(respectively, O(p) = 1) indicates that opinion O rejects (respectively, accepts)
the issue p. Syntactically, the two opinions correspond to the truth of the literals
p or ¬p. For p ∈ P we write ±p to denote one element from {p,¬p}, and ±P
to denote

⋃
p∈P {p,¬p}, which we will refer to as the agenda of A. The set of

opinions is denoted O. An opinion profile O = (O1, . . . , On) is a tuple recording
the opinion of each individual in N .

We need to introduce some further terminology and notation. We sometimes
treat opinion profiles as n×m binary matrices recording the opinion of n agents
(rows) over m issues (columns). So given a profile O and i ∈ N the ith projection
of O is denoted Oi (i.e., the opinion of agent i on each issue), and the pth

projection of O is denoted Op (i.e., the vector consisting of the opinion of each
agent on issue p). The sub-profile consisting of the agents in C ⊂ N is denoted
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OC . So OC = 〈Oi〉i∈C . We also denote by O(p) = {i ∈ N | Oi(p) = 1} the set
of agents accepting issue p in profile O, and by O(¬p) = {i ∈ N | Oi(p) = 0}
the set of agents rejecting issue p in profile O. The latter notation is naturally
extended to sub-profiles.

Given a BA structure A, a (resolute) aggregator (for A) is a function
F : ON → O, mapping every profile of individual opinions to one collective
opinion. F (O)(p) denotes the outcome of the aggregation of profile O on issue
p. In this paper we will work only with independent aggregators, that is, aggre-
gators such that the collective opinion on each issue is a function only of the
individual opinions on that issue.1 An independent aggregator F : ON → O can
be represented as a tuple 〈F p〉p∈P of functions F p : {0,1}n → {0,1} mapping
binary vectors (the opinions on a given issue p) to acceptance or rejection (of
that issue). If for all p, q ∈ P F p = F q then the resulting independent aggre-
gator F is said to be neutral, in the sense that all issues are aggregated in the
same way.

Example 1 (Aggregators). The benchmark aggregator is the so-called issue-wise
strict majority rule, which we will refer to simply as majority (maj). The rule
accepts an issue p if and only if a majority of voters accept it, formally:

maj(O)(p) = 1 ⇐⇒ |O(p)| ≥ |N | + 1
2

. (1)

So-called quota rules are aggregators that generalize majority. They accept an
issue if the number of voters accepting it exceeds a given quota, possibly different
for each issue. Formally, a quota rule is defined via a function q : P → (2N → N),
associating a natural number (between 1 and |N |) to each issue and subset of
agents such that q(p)(C) ≤ |C|. Intuitively, a quota tells you how many agents,
in a given set C, should accept p in order for p to be collectively accepted. The
quota aggregator (Fq) is defined as follows: Fq(OC)(p) = 1 ⇐⇒ |OC(p)| ≥
q(p). A quota rule Fq is called uniform in case q is a constant function. Issue-
wise majority is a uniform quota rule, with quota q =

⌈
N+1
2

⌉
.2 Finally, the

dictatorship of i (di) is the aggregator so defined: di(O)(p) = Oi(p), for any
opinion profile O.

2.2 Winning and Veto Coalitions

Given an aggregator F , a set of voters C ⊆ N is a winning coalition for issue
p ∈ P if for every profile O we have that if Oi(p) = 1 for all i ∈ C and Oi(p) = 0
for all i �∈ C, then F (O)(p) = 1. Furthermore, we call a set of voters C ⊆ N a
veto coalition for issue p ∈ P if for every profile O we have that if Oi(p) = 0 for

1 Formally, an aggregator F is independent iff, for all p ∈ P: for any profiles O,O′

such that for all i ∈ N, Oi(p) = O′
i(p), F (O)(p) = F (O′)(p). Independence is a

natural assumption in settings like ours, where issues are assumed not to be logically
interrelated.

2 Recall that the ceiling function �x� denotes the smallest integer larger than x.
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all i ∈ C and Oi(p) = 1 for all i �∈ C, then F (O)(p) = 0. Let Wp denote the set of
winning coalitions and Vp the set of veto ones, for issue p. As aggregators are of
type ON → O, and by the independence assumption, one can show that winning
and veto coalitions (for any issue p) are dual notions, i.e., for any C ⊆ N :

C ∈ Wp ⇐⇒ N\C �∈ Vp. (2)

It is well known that further properties imposed on an independent aggre-
gator F induce extra structure on its set of winning (and veto) coalitions (cf.
[13, Lemma 17.1]). In particular, an independent aggregator F is monotonic iff
for each p ∈ P and for any C ∈ Wp (respectively, C ∈ Vp), if C ⊆ C ′ then
C ′ ∈ Wp (respectively, C ′ ∈ Vp), i.e., winning and veto coalitions are closed
under supersets. Moreover, an independent aggregator is responsive iff for each
p ∈ P ∅ �∈ Wp and ∅ �∈ Vp, that is, the aggregator is not a constant function.
In this paper we focus on aggregators that are independent, monotonic and
responsive. All aggregators in Example 1 have these properties.

Given a set of winning coalitions Wp for a given issue, a dummy agent is an
agent i ∈ N such that: if C ∈ Wp, then C ∪ {i} ∈ Wp (trivial if Wp is closed
under supersets), and if i ∈ C ∈ Wp then C\ {i} ∈ Wp. Intuitively, dummy
agents are agents whose opinions are irrelevant for Wp (and, dually, Vp).

Example 2. The winning and veto coalitions for the majority aggregator are
(for issue p): Wp =

{
C ⊆ N | |C| ≥ |N |+1

2

}
and Vp =

{
C ⊆ N | |C| ≥ |N |

2

}
.

The majority aggregator induces a set of winning coalitions with no dummy
agents. A dictatorship, instead, induces a set of winning coalitions where all
agents except the dictator are dummy.

2.3 Opinion Diffusion as Binary Aggregation on Networks

Let G =
〈
N, {Rp}p∈P

〉
be a multi-relational structure where each 〈N,Rp〉 is

a directed graph over N , with Rp serial. We call these graphs (multi-issues)
networks. Intuitively, 〈N,Rp〉 represents the network of influence among agents
in N about issue p. So we write iRpj to denote that i’s opinion on p is influenced
by j’s opinion on p. The set of influencers (for issue p) of agent i is denoted
Rp(i) = {j ∈ N | iRpj}. Note that i may belong to such set.

Recall that an independent aggregator F : ON → O can be represented as a
tuple 〈F p〉p∈P of functions F p : {0,1}|N | → {0,1}, one for each issue. So fixing
a network G, we can associate to each agent i and issue p a function F p mapping
the opinions of the influencers of i on p to an opinion on p. We call this an allo-
cation, and denote it with F.3 We denote with F(i) the independent aggregator
〈F(i, p)〉p∈P obtained by collating the functions F(i, p) : {0,1}|Rp(i)| → {0,1}

3 More precisely, F : N →
(
P → ⋃X⊆N {0,1}{0,1}|X|)

.
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modeling how i aggregates its neighbors’ opinions over p. Each F(i) is further-
more assumed to be monotonic and responsive in Rp(i) (cf. Sect. 2.2 above).4

The key idea is that the opinion of each agent i is the result of the aggregation,
via an independent, monotonic and responsive aggregator, of the opinions of its
influencers.

Definition 1. Let a BA structure A = 〈N,P〉, a network G =
〈
N, {Rp}p∈P

〉

and an allocation F be given. Now let O be an opinion profile (for A). The binary
opinion diffusion process induced by G and F on O is the stream of opinion
profiles O0,O1, . . . ,On, . . . defined inductively as follows: base O0 = O; step
On+1

i (p) = F(i)(On)(p), ∀i ∈ N , ∀p ∈ P.

Section 4 will illustrate the above definition extensively, so we refrain from giving
an example at this point. Finally, we say that the stream of opinion profiles
O0,O1, . . . ,On, . . . stabilizes (or converges) if there exists n ∈ N such that On =
On+1. We will also say that a stream of opinion profiles stabilizes for issue p
if there exists n ∈ N such that On(p) = On+1(p). We say that agent i ∈ N
stabilizes for issue p if there exists n ∈ N such that On

i (p) = Om
i (p), for any

m > n. If such an n is reached, we say that agent i is stable for issue p.

3 Networks, Aggregators and Neighborhoods

In this section we first show how the opinion diffusion model of Definition 1 can
be recast in terms of neighborhood structures from modal logic [7], we then use
such structures to establish novel general stabilization theorems, and finally show
how a known variant of the μ-calculus [14] can be used to express properties of
such structures, which are relevant for their stabilizing behavior.

3.1 Neighborhood Structures for Aggregation on Networks

Lemma 1. Let A = 〈N,P〉 be given, and fix an issue p ∈ P:

1. For each serial directed graph 〈N,Rp〉 and each allocation F, there exists
{Wi}i∈N such that F(i)(O)(p) = 1 iff O(p) ∈ Wi;

2. For each collection {Wi}i∈N of winning coalitions, there exists a graph
〈N,Rp〉 and an allocation F such that F(i)(O)(p) = 1 iff O(p) ∈ Wi.

Proof. The proof is by construction. 1 By the definition of F, F(i) is an inde-
pendent aggregator for the aggregation structure 〈R(i),P〉. It follows that F(i)
can be represented by a set of winning coalitions W ′

i,V ′
i ⊆ ℘(Rp(i)). We therefore

have that, with respect to the agents in R(i), F(i) can be represented through
4 It is worth noticing that F(i) is not an aggregator in the strict sense, as the set of

individuals whose opinions are aggregated varies from issue to issue. However, it can
be represented by an aggregator on N where N\Rp(i) are dummy agents, as shown
later in Lemma 1. We will therefore slightly abuse terminology and still refer to such
functions as aggregators.
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those sets, that is, for any profile O, F(i)(ORp(i))(p) = 1 iff ORp(i)(p) ∈ W ′
i.

These sets need then to be lifted from the set of influencers R(i) to the full set
of agents N , as follows: Wi = {X ⊆ N | ∃Y ∈ W ′

i s.t . Y ⊆ X}. To establish the
claim then it suffices to observe that the construction guarantees the following
property X ∩ Rp(i) ∈ W ′

i iff X ∈ Wi. 2 Trivial, as it suffices to take Rp = N2

and each F(i) to be the aggregator induced by Wi. ��

What Lemma 1 tells us is that we can think of a network G =
〈
N, {Rp}p∈P

〉

where each node i’s opinion on the issues is determined by i’s neighbors (the
set Rp(i) for each issue) through an independent aggregator F(i) essentially as a

neighborhood frame of winning (and, dually, veto) coalitions C =
〈
N, {Wp}p∈P

〉

where Wp : N → 22
N

assigns, for each issue, the winning coalitions Wp(i) of
each agent on that issue.5 The bottom line is that binary opinion dynamics on
networks can equivalently be studied through neighborhood (multi-)frames.

One final piece of notation: for C ⊆ N and issue p, let Cp(C) be the set
defined as follows: base C0 = C; step Cn+1

W = {i ∈ N | Cn ∈ Wp(i)} and
Cn+1

V = {i ∈ N | Cn ∈ Vp(i)}; Cp(C) =
⋃

Cn
W ∪⋃

Cn
V . Intuitively, Cp(C) denotes

the set of individuals whose opinion on p can be influenced, directly or indirectly,
by C once the individuals in C all accept or reject issue p.

Example 3. Consider a given A = 〈N,P〉, and assume that the opinion of
all agents in a given network structure G =

〈
N, {Rp}p∈P

〉
is determined by

aggregating the opinions of their network neighbors via the same aggregator
F . If F is strict majority maj, then the corresponding neighborhood struc-
ture C =

〈
N, {Wp}p∈P

〉
is defined as follows (for each p ∈ P, each i ∈ N):

Wi =
{

C ⊆ N | ∃C ′ ⊆ C s.t . C ′ ⊆ Rp(i) and |C ′| ≥ |Rp(i)|+1
2

}
. In general, for

any quota rule Fq, the corresponding neighborhood structure is given by:
Wi = {C ⊆ N | ∃C ′ ⊆ C s.t . C ′ ⊆ Rp(i) and |C ′| ≥ q(p)(Rp(i))} . And if F is
a dictatorship of a neighbor j ∈ Rp(i), then all and only the sets containing the
dictator matter: Wi = {C ⊆ N | j ∈ C} .

3.2 Stabilization in Neighborhood Structures

In this section we assume that network G =
〈
N, {Rp}p∈P

〉
and allocation F

are given, and we exploit their representation as a system of neighborhoods
C =

〈
N, {Wp}p∈P

〉
.

5 Note that the construction in the proof of Lemma 1 is such that each agent j �∈ Rp(i)
participates to i’s set of winning and veto coalitions only as a ‘dummy’ agent who
can be added or removed to a winning (or veto) coalition without changing the status
of that coalition.
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Dependence, Consensus and Gurus. A coalition C ⊆ N is said to have a
win dependence (w.r.t. a given issue p) on a coalition D ⊆ N whenever there
exists a sequence D = C0, . . . , Cm = C such that Ci ∈ Wp(i) for all i ∈ Ck+1 for
all 0 ≤ k < m. Similarly, it is said to have a veto dependence (w.r.t. a given issue
p) on a coalition D ⊆ N whenever there exists a sequence D = C0, . . . , Cm = C
such that Ci ∈ Vp(k) for all j ∈ Ck+1 for all 0 ≤ k < m. Intuitively, a win (resp.,
veto) dependence of C on D means that whenever the agents in D all agree
on accepting (resp. rejecting) p, this acceptance (resp. rejection) will ‘reach’ the
agents in C in m steps. We refer to m as the dependency length of C on D.

In the above definition, when C = D we say that C is a win (resp. veto)
self-dependent coalition, that is, C ∈ Wp(i) for all i ∈ C (resp. C ∈ Vp(i) for
all i ∈ C). In the first case we refer to C as a winning consensus (C can force
the acceptance of p among its own members), and in the second case we refer to
it as a veto consensus (C can force the rejection of p among its own members).
One same coalition can be both a winning and a veto consensus, in which case
we will refer to it simply as a consensus. A singleton consensus, that is a set {i}
such that {i} ∈ Wp(i)∩Vp(i), is called a guru (for issue p). That is, an individual
that has itself as smallest winning and veto coalition.

We will also need the following terminology. We say that a given profile win-
locks a coalition C whenever for some D on which C has a win dependence
D ⊆ O(p). It veto-locks a coalition C whenever for some D on which C has a
veto dependence D ⊆ O(¬p). If D = C, we say that the profile directly win-locks
(resp. directly veto-locks) C. Intuitively, a profile locks a coalition whenever it
triggers the acceptance or rejection, at some future moment, of the issue by all
agents in the coalition.

Interlocking. A coalition C ⊆ N is said to be interlocked (on issue p) if there
exists a sequence C0, C1, . . . , Cm (m ≥ 1) of subcoalitions of C, where Cm = C0

and C� �= C�+1 for 0 ≤ � < m, and such that: for all �, 0 ≤ � < m: C� ∈ Wp(i)
for all i ∈ C�+1 and C\C� ∈ Vp(i) for all i ∈ C\C�+1. That is, a coalition
is interlocked whenever it can be partitioned in two cells one of which is win
dependent on itself and the other of which is veto dependent on itself with
a same dependency length. Intuitively, a coalition is interlocked whenever it
can be split in two sub-coalitions whose winning and veto coalitions exhibit
cyclical dependencies. The sequence C0, C1, . . . , Cm is called an interlocking of
C. Integer m is referred to as the interlocking length of C. Each subcoalition C�

in an interlocking is called a lock of C. Observe that if C is a winning (resp.
veto) consensus, then C is trivially interlocked with an interlocking of length 1
consisting of C0 = C = C1 for a winning consensus (resp. C0 = ∅ = C1, for a
veto consensus).

Example 4 (Interlockings of length at most 1). Let {a, b} = N and p ∈ P. Let
Wp(a) = {{a}, {b}, {a, b}} and Vp(a) = {{a, b}}. Let Wp(b) = {{a, b}} and
Vp(b) = {{a}, {b}.{a, b}}. Coalition {a, b} has the following interlockings, all of
length 1:



Stability in Binary Opinion Diffusion 173

– C0 = {a, b} = C1, since {a, b} is a winning coalition both for a and for b and
∅ is a veto coalition for itself (trivially).

– C0 = ∅ = C1, since ∅ is a winning coalition (trivially) for itself and {a, b} is
a veto coalition both for a and for b;6

– C0 = {a} = C1, since {a} is a winning coalition for a and {b} is a veto
coalition for b.

Notice that this example can be instantiated by a complete network where b has
a rejection bias (uses the standard unanimity aggregator: accepts an issue only
when all influencers accept it) while a has an acceptance bias (rejects an issue
only when all its influencers reject it).

Example 5 (Interlockings of length at most 2). Let {a, b} ⊆ N and p ∈ P. Let
Wp(a) = Vp(a) = {{b}, {a, b}}. Let Wp(b) = Vp(b) = {{a}, {a, b}}. Coalition
{a, b} has the following interlockings

– of length 1: C0 = {a, b} = C1, since {a, b} is a winning coalition both for a
and b and ∅ is a veto coalition for itself. C0 = ∅ = C1, since ∅ is a winning
coalition for itself and {a, b} is a veto coalition for a and for b;

– of length 2: C0 = C2 = {a}, C1 = {b}, since {a} is a winning coalition for b,
and {b} is a veto coalition for a, and since {b} is a winning coalition for a and
{a} is a veto coalition for b. C0 = C2 = {b}, C1 = {a}, for the same reasons.

This example can be instantiated either by a symmetric and irreflexive network
between two agents both using any responsive monotonic and independent rule;
or by a complete graph where the agents are each other’s dictator. Note that
any opinion profile where a and b disagree triggers an oscillating behavior.

Stabilization Results. Coalition interlocking is a useful abstraction to study
stabilizing and oscillating behavior in neighborhood structures and thereby, indi-
rectly, on networks.

Lemma 2. Let A = 〈N,P〉, G =
〈
N, {Rp}p∈P

〉
and F be given. C is a con-

sensus coalition on issue p if and only if all agents in C are stable on the same
value of p in any opinion profile O that directly win- or veto-locks C w.r.t. p.

Proof. Left-to-right Recall that a consensus is defined as both a winning and
a veto consensus. W.l.o.g. we assume O directly win-locks C, that is, C ⊆ O(p).
So, ∀i, j ∈ C Oi(p) = Oj(p) = 1. Since C is assumed to be a winning consensus,
by the definition of winning coalition and Definition 1, it follows that ∀i, j ∈
C,F(i)(O)(p) = F(j)(O)(p) = 1, and therefore all agents in C are stable on p.

Right-to-left We proceed by contraposition, assuming that C is not a
winning consensus (the case for veto consensus is symmetric). There exists
j ∈ C s.t. C �∈ Wp(j). By (2), it follows that N\C ∈ Vp(j). Let now O be
such that O(p) = C (hence O(¬p) = N\C). Clearly O directly locks C, but
F(j)(O)(p) = 0. Not all agents in C are therefore stable on the same value of p
in O. ��
6 Note that {a, b} and ∅ are consensuses.
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Intuitively, the lemma states that the members of a coalition that depends on
itself for the collective acceptance or rejection of an issue hold stable opinions
(on this issue) in every profile where they all agree (with respect to this issue).

Corollary 1. Let A = 〈N,P〉, G =
〈
N, {Rp}p∈P

〉
and F be given. If C is a

consensus coalition on issue p, then all agents in Cp(C) stabilize to the same
value of p from any opinion profile O that win- or veto-locks C w.r.t. p.

Proof. By Lemma 2 we know that if C is a consensus coalition, and profile
O locks C w.r.t. p, then all agents in C are stable and agree on p. We can
then prove by induction on n that each individual in Cp(C) =

⋃
Cn even-

tually stabilizes. Base All individuals in C0 = C are stable on the same
value of p by the above argument. Step Assume (IH) that all individuals
in Cn are stable on the same value of p. We show that all individuals in
Cn+1 = {i ∈ N | Cn ∈ Wp(i) and Cn ∈ Vp(i)} are. Consider such an individ-
ual. By construction Cn ∈ Wp(i) and Cn ∈ Vp(i). By IH and Definition 1, i’s
opinion on p will therefore stabilize in (at most) n steps. ��

Lemma 3. Let A = 〈N,P〉, G =
〈
N, {Rp}p∈P

〉
, F and issue p be given. All

agents in N stabilize on p from a given profile O if and only if there exists
no C ⊆ N such that C is interlocked on p with an interlocking C0, C1, . . . , Cm

(m > 1) and for some C� (0 ≤ � ≤ m) O win-locks C� and veto-locks C\C�.

Proof. Left-to-right We prove the claim by contraposition. Assume that there
exists an interlocking C0, C1, . . . , Cm of C of length m ≥ 2. By the assumption
that O win-locks C� and veto-locks C\C� (with 0 ≤ � < m), we have that the
dynamics reaches a profile O� such that C� ⊆ O�(p) and C\C� ⊆ O�(¬p). Now
we consider the dynamics of opinions starting from O�, showing that it cycles.
We focus on the opinions of agents in C. Now, at each step Ok

�, with 0 < k ≤ m,
we have by the definition of interlocking and of winning (and veto) coalitions that
C(�+k) mod m ⊆ Ok

�(p) and C\C(�+k) mod m ⊆ Ok
�(¬p). Since, by the definition of

interlocking, each C�+1 �= C� (for 0 ≤ � ≤ m − 1), it follows that at each step
at least one individual in C changes its opinion. Therefore, not all agents in C
(and therefore in N) stabilize.

Right-to-left Again, we proceed by contraposition and assume that not all
agents in N stabilize from O. There exists therefore a cycle of profiles O� �=
O1

� �= . . . �= Om
� = O�. We show that N is interlocked. Observe that, for any

0 ≤ k < m, Ok
�(p) ∈ Wi(p) for all i ∈ Ok+1

� (p). This holds because each agent
establishes its opinion on p at k+1 by aggregating the opinions of its neighbors on
p at k via independent aggregators (Definition 1). Similarly, for any 0 ≤ k < m,
Ok

�(¬p) ∈ Vi(p) for all i ∈ Ok+1
� (¬p). It follows that O�(p) �= O1

�(p) �= . . . �=
Om

� (p) constitutes an interlocking. As the dynamics has been assumed to end
up in cycle O� �= O1

� �= . . . �= Om
� = O� there exists 0 ≤ k < m s.t. O win-locks

Ok
�(p) and veto-locks Ok

�(¬p). ��
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Lemma 3 is a central result. Its underpinning intuition is that stabilization occurs
whenever it is not possible to drive the opinion diffusion dynamics into a state
where, because of the way winning and veto coalitions are intertwined—that is
our formal notion of interlocking—a cyclical behavior is bound to occur.

3.3 A Fixpoint Logic for Stability

Monotone μ-calculus. We use the syntax and semantics for the monotone
(multi) modal mu-calculus from [14].7 The language L is given by:

ϕ :: = p | ⊥ | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈p〉 ϕ | [p] ϕ | Uϕ | Eϕ | μp.ϕ | νp.ϕ

where p ∈ P and in formulas μp.ϕ and νp.ϕ, p does not appear in the scope
of a negation. This language can be directly interpreted on models M = 〈C,O〉
consisting of a winning coalitions structure C =

〈
N, {Wp}p∈P

〉
plus an opinion

profile O. Recall that sets of winning coalitions are here assumed to be closed
under supersets and do not contain the empty set (cf. Sect. 2).8 Let i ∈ N , p ∈ P
and ϕ ∈ L. The satisfaction of ϕ in a model M = 〈C,O〉 is inductively defined
as follows (Boolean clauses omitted):9

‖[p] ϕ‖M = {i | ‖ϕ‖M ∈ Wp(i)} ‖〈p〉 ϕ‖M = {i | (N\‖ϕ‖M) /∈ Wp(i)}
‖Uϕ‖M = {i | ‖ϕ‖M = N} ‖Eϕ‖M = {i | ‖ϕ‖M �= ∅}

‖μp.ϕ‖M =
⋂{

Z | ‖ϕ‖M[p�→Z] ⊆ Z
} ‖νp.ϕ‖M =

⋃{
Z | Z ⊆ ‖ϕ‖M[p�→Z]

}

where M[p�→Z] denotes model M = 〈C,O〉 where O(p) is set to be Z.

Some Validities. To fix intuitions about the above logic it is worth mention-
ing some simple validities of the class of neighborhood models corresponding
to winning coalitions structures. As winning coalitions are closed under super-
sets (because of the monotonicity of the underlying aggregators), we have that
M, i |= U(ϕ → ψ) → ([p] ϕ → [p]ψ) and M, i |= U(ϕ → ψ) → (〈p〉 ϕ → 〈p〉 ψ),
for any model M = 〈C,O〉, issue p, and agent i. As ∅ is neither a winning nor a
veto coalition (because of the responsiveness of the underlying aggregators), we
have that M |= [p] � ∧ 〈p〉 � for any model M, issue p and agent i.

Expressing Stabilization Conditions. We give a glimpse of how the above
logic can be used to express properties of neighborhood structures induced by
binary aggregation on networks, which are relevant to the stabilizing behavior

7 The monotone μ-calculus was already used in [3] to model threshold-based diffusion.
8 These properties force the resulting class of structures to validate specific formulae

expressed in the above language. We refer the reader to [21] for an overview of the
logics induced by monotonic neighborhood structures and subclasses thereof.

9 We alternatively write M, i |= ϕ whenever i ∈ ‖ϕ‖.
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of the resulting opinion diffusion processes. As an example, we provide a formal-
ization of the properties involved in Corollary 1. First of all, observe that the
property “coalition C is a consensus coalition (w.r.t. p)” can be expressed as
follows, using a dedicated atom C:

Con(C) := U(C → [p]C) ∧ U(C → 〈p〉 C)

The notion of “win-locking” and “veto-locking” of a coalition C (w.r.t. p) by a
given profile can be expressed as:

wLock(C) := U(C → μq.p ∨ [p] q) vLock(C) := U(C → μq.¬p ∨ 〈p〉 q)

Given the above, the condition for stabilization identified in Corollary 1 can be
expressed as follows:

∨

C⊆N

Con(C) ∧ (((μq.C ∨ [p] q) ∧ wLock(C)) ∨ ((μq.C ∨ 〈p〉 q) ∧ vLock(C))) (3)

In words, there exists a consensus coalition C—Con(C)—and, either C is win-
locked by the current profile—wLock(C)—and is reachable from the agent (at
the evaluation point) through a chain of winning coalitions—μq.C ∨ [p] q—, or
it is veto-locked by the current profile and is reachable from the agent through
a chain of veto coalitions—μq.¬p ∨ 〈p〉 q. By Corollary 1, on the class of neigh-
borhood models M = 〈C,O〉 induced by a network G and an allocation F of
independent, responsive and monotonic aggregators, Formula (3) expresses a
sufficient condition for the stabilization of an individual’s opinion.

4 Instantiations

We illustrate the above general framework, and the reach of the stabilization
results we established, via two examples of binary opinion dynamics on networks.

4.1 Boolean DeGroot Processes

In [11], DeGroot models step by step opinion change under social influence, using
stochastic matrices both for representing opinions and influences. The opinion
of each agent at the next time step is obtained through linear averaging (see [22]
for a comprehensive exposition of the model). In this section, we focus on the
“Boolean extreme” of these matrices, when both opinions and influence are taken
to be binary. In such case, each agent has exactly one influencer, or “guru”, whose
opinions it repeatedly copies. We call these processes, which we first introduced
in [10] as a model of liquid democracy, Boolean DeGroot processes (BDPs).

Binary Influence. Opinions are defined over a given BA structure with issues P
and are therefore binary. Similarly, we take influence to be of an “all-or-nothing”
type too, each agent is therefore taken to be influenced by exactly one agent,
possibly itself. A binary influence matrix (for issue p) induces the influence graph
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〈N,Rp〉 where iRpj still denotes that “i is influenced by j on issue p” but here
amounts to “j is i’s guru on issue p”. Each Rp is serial (∀i ∈ N, ∃j ∈ N : iRj)
and functional (∀i, j, k ∈ N if iRj and iRk then j = k). So each agent i has
exactly one successor (influencer or ‘guru’), possibly itself, which we denote R(i)
slightly abusing notation. Combining the influence graphs of the issues in P one
therefore obtains then a multi-issue influence network G =

〈
N, {Rp}p∈P

〉
.

BDP Dynamics. Given the above properties, applying any responsive and
monotonic aggregator to the opinion of one unique neighbor results in making
that neighbor effectively a dictator of the opinions of the agents it influences. So
fixing any multi-issue influence network G =

〈
N, {Rp}p∈P

〉
, and any allocation

F which assigns n independent responsive and monotonic aggregator to each
agent, Definition 1 induces the following type of opinion dynamics for BDPs:10

base O0 := O; step On+1
i (p) := On

Rp(i)
(p) for all i ∈ N , p ∈ P. That is, at

each step, each agent simply copies the opinion of its guru.11

Stabilization in BDPs. We can derive the following result using Lemma 3:

Theorem 1. Let G =
〈
N, {Rp}p∈P

〉
be an influence network and F allocate

to each agent an independent, monotonic and responsive aggregator. Then the
following statements are equivalent: (1) Each agent stabilizes on issue p from O.
(2) There is no coalition C ⊆ N such that: C is a cycle in Gp and there are two
agents i, j ∈ C such that Oi(p) �= Oj(p).

Proof. We first show that under the BDP assumptions over G and F, (2) holds
if and only if there exists no C ⊆ N such that C is interlocked with interlocking
of length greater than 1 and O win-locks a coalition involved in the interlocking,
and veto-locks its complement. The result then follows directly from Lemma 3.
Left-to-right Assume there is no coalition C ⊆ N such that: C is a cycle

in Rp and there are two agents i, j ∈ C such that Oi(p) �= Oj(p). So there
are no cycles of length ≥ 2 containing two agents that disagree on p in O.
Observe that each cycle i0, . . . , im in an influence graph 〈N,Rp〉 (under the
assumptions over F) trivially defines an interlocked coalition {i0, . . . , im} with
interlocking {i0} , . . . , {im}. As no disagreement occurs in O among members

10 Note that this dynamics is the extreme case of linear averaging applied on binary
opinions and binary influence.

11 BDPs are also limit cases of propositional opinion diffusion processes recently pro-
posed by [18], i.e., cases where (1) the aggregation rule is the unanimity rule (an
agent changes its opinion if and only if all her influencers disagree with it), and (2)
each agent has exactly one influencer. Note that, in general, the ‘unanimity rule’
from the setting of propositional opinion diffusion differs from what we call the una-
nimity rule, which prescribes not only to ‘change’ your opinion if all your influencers
have the opposite opinion, but to adopt their opinion no matter what opinion you
currently hold. In the limit case of BDPs, those two notions trivially coincide.
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of an interlocked coalitions, it follows that all interlocked coalitions are locked
by O. Right-to-left The argument is analogous. ��
Observe that, if Rp contains only cycles of length 1 then, trivially, no two agents
in a cycle can disagree (second statement in Theorem 1).

4.2 Unanimity Processes

Up Dynamics. We consider now diffusion processes based on the unanim-
ity rule. Let us call this type of diffusion “Unanimity Processes” (UPs) and
define their dynamics in the obvious way: Fix an opinion profile O and a
serial (non-necessarily functional) influence profile G. Consider the stream
O0,O1, . . . ,On, . . . of opinion profiles recursively defined as follows: base
O0 := O; and step for all i ∈ N and all p ∈ P, On+1

i (p) = p iff for all
i ∈ Rp(i), Oi(p) = 1. That is, an agent accepts p next if p is accepted by all its
neighbors, and otherwise rejects it. Formally, we are assuming an allocation F of
aggregators assigning to each agent i a quota rule based on a quota qp for issue
p which is equal to |Rp(i)|.

Stabilization of UPs. Again, we can leverage Lemma 3 to establish stabiliza-
tion results:

Theorem 2. Let G =
〈
N, {Rp}p∈P

〉
be symmetric and serial;12 let F allocate

to each agent the unanimity aggregator (as in the above definition of UPs) and let
O be an opinion profile. The following are equivalent: (1) Each agent stabilizes
on issue p from O; (2) For all connected component C of Gp, one of the two
conditions hold: (i) there exist i, j ∈ C, such that: Oi(p) = Oj(p) = 0 and there
is an Rp-path of odd length from i to j; (ii) for all i ∈ C, Oi(p) = 1.

Proof. 1) ⇒ 2) By contraposition: assume that for some p ∈ P and some con-
nected component C of Gp, neither i nor ii hold: Then for any i, j ∈ C, such
that Oi(p) = Oj(p) = 0, the distance n from i to j is ≥ 2. W.l.o.g, let i be
any i ∈ C such that Oi(p) = 0. By definition of UP and by symmetry, there
exists an interlocking of length 2 where C1 = {j ∈ C | jRni and n is odd} and
C2 = {j ∈ C | jRni and n is even}, and C2 ⊆ O(p). Hence, O win-locks C2 and
veto-locks C1. By Lemma 3, O does not converge. 2) ⇒ 1) Assume that i holds
for some p ∈ P, and some connected component C of Gp: there exist i, j ∈ C,
such that Oi(p) = Oj(p) = 0 with a path of odd length n from i to j in Rp. By
definition of UPs and by symmetry, this implies that there are two agents k, l at
distance d = n−1

2 such that Od
k(p) = Od

l (p) = 0. Therefore, Od
k(p) = Od

l (p) = 0
and Od

k and Od
l are stable. It follows by the definition of UP that any agents

within any distance m from k or l will be stable (after at most d + m steps).
Assume that ii holds for some p ∈ P, and some connected component C of Gp:
for all i ∈ C, Oi(p) = 1. Then, for all i ∈ C, Oi(p) is stable. ��
12 These correspond to the typical case of ‘friendship’ networks (cf. [23]).
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We illustrated our setup with Boolean DeGroot processes and unanimity
processes but there are diverse additional instantiations to consider, such as
diffusion under a unique numerical threshold (the typical ‘threshold models’),
and under majority, for instance. It should be clear that these cases can all be
captured by our setting. We leave the additional results out for space reasons.

5 Conclusions

We have characterized stabilization conditions for opinion diffusion modeled as
iterated binary aggregation on networks, and showed how existing modal fixpoint
logics are well-suited to express properties of this setting. These investigations
open up several lines of research. First, although our opinion diffusion model is
directly related to the propositional opinion diffusion model of [18], the two are
not identical, and a precise comparison is worth closer inspection and may lead
to a yet more general theory of binary opinion diffusion. Second, we have han-
dled opinion dynamics on independent issues, sidestepping the hard problems
involved in the aggregation of logically interdependent issues. Opinion dynam-
ics on interdependent issues is only since very recently receiving attention (e.g.,
[6,15]) and is a promising, challenging line for future research within our frame-
work. Third, the paper has given only a glimpse of the sort of logical languages
which, in light of our results, appear to be relevant for the study of opinion
dynamics on networks. Expanding the logical side of our paper is a natural
direction for future work. In particular, the study of fragments and variants of
the monotone μ-calculus from [14] is a promising line of research (see the recent
[5]). Moreover, we have focused here on stabilization, which is nothing but the
limit case of oscillating behavior, where oscillations have size one. We believe
that a richer logic to capture long-term behavior—beyond stabilization alone—
in binary opinion diffusion on networks should blend some monotone μ-calculus
with the oscillatory fixpoint operators introduced in [4]. The study of such logical
systems would without doubt be an interesting line for further research.
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Abstract. We propose a Logic of Abstraction, meant to formalize the
act of “abstracting away” the irrelevant features of a model. We give
complete axiomatizations for a number of variants of this formalism,
and explore their expressivity. As a special case, we consider the “logics
of filtration”.

1 Introduction

In this work, we aim to formalize the process of abstraction, in the specific sense
of “abstracting away”, i.e. disregarding all ‘irrelevant’ distinctions. Since reality
is potentially infinitely complex, abstraction is essential for scientific modeling.
In principle, a model should represent all the facts, but in practice the model is
always tailored to the relevant issues under discussion. In particular, this phe-
nomenon is all-pervasive in the formal epistemology literature: when modeling
epistemic scenarios, the modeler focuses on a set of relevant issues, and identifies
situations that agree on all these issues, thus reducing the size and complexity
of the model to manageable proportions. A well-known example is the Muddy
Children puzzle [10]. A standard relational model for the n-children puzzle has
2n states, but with this we disregard all irrelevant facts (e.g. the color of each
kid’s clothes, etc.), focusing only on whether each of the n children is dirty or not.
However, the same situation may be analyzed at various levels of abstraction,
depending on the particular application. Rather than modeling again every new
application from scratch, a good modeler develops the art of simplifying older
models in order to reuse them in new situations, by again “abstracting away”
some of the issues.

We develop technical tools to formalize this concept of abstraction as a
dynamic process. We do this in a modal framework based on the standard
Kripke models, by introducing dynamic abstraction modalities, similar to the
update operators of Dynamic Epistemic Logic [1,9]. The “relevant issues” may
be given syntactically, as a set of formulas, inducing an equivalence relation on
worlds that satisfy the same relevant formulas; or we may give them semanti-
cally, by starting directly with an equivalence relation on possible worlds (the
so-called issue relation of [3,15], telling us which worlds agree on all the relevant
issues). For most of this paper, we focus on the first (syntactic) option, but we
also consider the second option in Sect. 5. Roughly speaking, we represent the
c© Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 181–194, 2017.
DOI: 10.1007/978-3-662-55665-8 13
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process of abstraction as a model transformation, that maps any given model
to a quotient model. While the states of the quotient model can be defined in a
natural and canonical way (as equivalence classes with respect to the relevant
equivalence relation, there are many different ways to define the valuation func-
tion, and more interestingly the accessibility relation(s), of the quotient model.
This problem is already known from Modal Logic, where it occurs when an
appropriate notion of filtration is needed for a given logic. Defining the quo-
tient relations corresponds to lifting the relation(s) of the initial model (maybe
after first performing a relational transformation) to some relation(s) between
the induced equivalence classes. Depending on the context, different such liftings
can be used. In this work, we focus on what is called the (∃,∃)-lifting, which
corresponds to the so-called minimal filtration in Modal Logic.1

In Sect. 2, we start with the (single-agent) basic modal language, then gen-
eralize it to all PDL-definable relations [7,11,14]. Here, PDL-programs play a
meta-syntactic role: they are used to specify a relational transformer. We define
a logic for each such transformer, by applying it to the original relation of the
model, then applying the (∃,∃)-lifting to obtain the quotient relation. We inves-
tigate the expressivity of these logics, and prove completeness using reduction
axioms in the style of Public Announcement Logic (PAL) [2,12,16,17]. In Sect. 3,
we apply this to the special case of modal filtrations. As an added benefit, we
show that these logics internalize the so-called Filtration Theorem [7]: while
usually stated as meta-logical result, it becomes a plain logical theorem in our
proof systems. In Sect. 4, we move to a “multi-agent” (multi-relational) frame-
work, but also increase the expressivity (by including all PDL programs into
the syntax), thus obtaining “the Logic of Abstraction”: a general logical formal-
ism that can treat and compare various types of quotient-taking operations in a
unified formalism. We give a complete axiomatization via reduction axioms. In
contrast to PAL (where adding common knowledge operators increases expres-
sivity), the addition of Kleene star (iteration) on programs is innocuous: this
logic is co-expressive with a version of PDL (with a “universal program” 1).
Finally, in Sect. 5 we discuss two further generalizations and variations of our
setting: by considering other relation liftings than the (∃,∃)-lifting; and by tak-
ing the above-mentioned “semantic option”, of starting with an issue relation on
worlds, and investigating the corresponding logic of quotients.

Due to page restrictions, we omitted the long proofs in Sect. 4 from this
submission. The proofs can be found in the extended version of this paper at
https://sites.google.com/site/ozgunaybuke/publications.

2 Quotient-Taking as a Model Transformer

In this section, we explain the main ideas behind the formalism developed in this
paper and fix some notations. In particular, we provide a detailed description
of our quotient models (defined for a specific modal language through a finite
1 However, we’ll show that, in combination with applying relational transformers

described by regular PDL programs, this lifting can capture other filtrations.

https://www.sites.google.com/site/ozgunaybuke/publications
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set of formulas), and introduce the so-called abstraction modalities. Our quotient
models are similar to filtrations from modal logic (see [7, Sect. 2.3] for an overview
of filtrations), but our notion is more general2. We then introduce our formal
dynamic language including the abstraction modalities, and provide sound and
complete axiomatizations of a specific family of dynamic abstraction logics.

We start the section by introducing the static language we work with through-
out the section. By LE we denote the language of basic modal logic enriched with
the universal modality defined by the grammar

ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | Eϕ | ♦ϕ,

where p is a propositional variable, and E stands for the (dual) of the universal
modality. We employ the usual definitions for ∨, →, ↔, �, ⊥, and �. The
fragment of LE without the modality E is denoted by L. Formulas of LE are
interpreted on Kripke models M = (W,R, V ) in a standard way (see, e.g., [7,
Chap. 1]). In particular, M, w |= Eϕ iff there is v ∈ W with M, v |= ϕ.

In the following let a Kripke model M = (W,R, V ) be fixed. Our aim is to
define a quotient model MΣ = (WΣ , RΣ , VΣ) of M wrt a finite3 set of formulas
Σ ⊆ LE .

The set Σ ⊆ LE induces an equivalence relation ∼Σ on W : for w, v ∈ W

w ∼Σ v iff for all ϕ ∈ Σ (M, w |= ϕ iff M, v |= ϕ). (1)

In other words, two worlds are Σ-equivalent iff they satisfy the same formulas
from Σ. We denote by |w|Σ the equivalence class of w with respect to ∼Σ , i.e.,
|w|Σ := {v ∈ W | w ∼Σ v}. The domain of our quotient model will be the set
of equivalence classes with respect to ∼Σ , i.e. WΣ = {|w|Σ | w ∈ W}.

Concerning the valuation VΣ , for any propositional letter p, we set

VΣ(p) := {|w|Σ | there is w′ ∈ |w|Σ with w′ ∈ V (p)}.

While this generalizes the definition of the valuation used in filtrations, (see, e.g.,
[7, Chap. 2.3], it also constitutes the minimal valuation that preserves the truth
value of true propositional letters in each world, in the sense that if w |= p then
|w|Σ |= p4.

Finally, we get to the most important defintion, namely, the definition the
relation RΣ . The relation RΣ is determined by two factors: the first factor is a
prescription on how to transfer a relation on W to a relation on WΣ . We refer
to such a prescription as a lifting of the relation R from W to WΣ (similar to

2 In Sect. 3, we will show precisely how filtrations fit into our framework.
3 The finiteness of Σ is in fact irrelevant for the definition of quotient models, however,

this will be required in order to be able to provide reduction axioms for our new
dynamic modalities introduced later in this section. This is why we keep the setting
simple and work only with finite Σs.

4 Note that two Σ-equivalent worlds may disagree on the propositional variables that
are not in the set Σ.
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relation liftings studied theoretical computer science). As an example consider
the definition

|w|ΣRΣ |v|Σ iff there exists w′ ∈ |w|Σ , and there exists v′ ∈ |v|Σ such that w′Rv′. (2)

We call this the (∃,∃)-lifting of R for obvious reasons5. In a similar manner, we
can also define (∃,∀)-, (∀,∃)- and (∀,∀)-liftings of R. However, in this paper, we
work with the (∃,∃)-lifting, and briefly mention the other options in Sect. 5.

The second factor to characterize RΣ consists in deciding which relation to
lift from W to WΣ . For example, in (2), the relation R is lifted (as maybe the
most obvious choice). In our framework though, we will allow more flexibility
by considering liftings of the so-called PDL−∗-definable relations (à la van Ben-
them and Liu [4]). More formally, the programs in the language of star-free
Propositional Dynamic Logic (PDL−∗) are defined by the grammar

π:: = r | ?ϕ | 1 | π;π | π ∪ π,

where r is the (only) basic program6 and ϕ is a formula in the language LE . The
program 1 stands for the universal program. As usual, a program π determines
a relation Rπ on the model M recursively defined as: Rr := R, R1 := W × W ,
and R?ϕ := {(x, x) | M, x |= ϕ}, for some ϕ ∈ LE , and for any two programs
π and π′, we have Rπ;π′ := Rπ;Rπ′ , and Rπ∪π′ := Rπ ∪ Rπ′ , where Rπ;Rπ′

and Rπ ∪ Rπ′ are the composition and the union of the relations Rπ and Rπ′ ,
respectively. A binary relation Q on W is called PDL−∗-definable iff Q = Rπ

for some program π of PDL−∗.
In this section, any PDL−∗-definable relation can be used to determine the

relations on our quotient models. In detail, in our framework each program π
leads to a model transformation function that takes a Kripke model M and a
finite Σ ⊆ LE , and returns the quotient model MΣ whose relation RΣ is deter-
mined by the (∃,∃)-lifting of the relation Rπ. As a consequence, each program π
will lead to a π-dependent dynamic logic.

Definition 1 (Quotient model wrt π). Let M = (W,R, V ) be a Kripke
model. For every finite Σ ⊆ LE, the quotient model of M with respect to Σ
is MΣ = (WΣ , RΣ , VΣ), where WΣ := {|w|Σ | w ∈ W}, VΣ(p) := {|w|Σ |
there is w′ ∈ |w|Σ with w′ ∈ V (p)}, and

|w|ΣRΣ |v|Σ iff there is w′ ∈ |w|Σ and there is v′ ∈ |v|Σ such that w′Rπv′.

Therefore, each π describes a particular type of model transformation whose
arguments vary over finite subsets Σ of the language LE . As usual in dynamic

5 This definition is known to modal logicians under the name of smallest filtration
(see, e.g., [7, Chap. 2.3]).

6 In this section—since the formalism is based on Kripke models with a single
relation—we have only one basic program r in our syntax. In Sect. 4, we work with
multi-relational Kripke models allowing for more than one basic programs, as stan-
dard in PDL.
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epistemic logics [9], we introduce dynamic modalities, denoted by [Σ], captur-
ing this type of model change and call them the abstraction modalities. Before
we formally define the dynamic language and the semantics of the abstraction
modalities, we point out some observations concerning their expressive power.
Unlike e.g. the public announcement operator (see, e.g., [16,17]), the abstraction
modality adds expressivity to the basic modal language L:

Fact 1. The abstraction modality adds expressivity to the basic modal lan-
guage L.

Indeed, let π = r be the basic program, i.e. the relation RΣ on the
quotient model MΣ is defined as in (2). Using the abstraction modality we
can e.g. express the existential statements Ψ := “∃x, y ∈ W with xRy”, or
Ψ ′ := “∃x ∈ W with M, x |= p.”, namely by [{�}]♦�, and [{�}]p, respec-
tively. It is well-known that neither Ψ nor Ψ ′ are expressible in the basic modal
language L. Note, however, that the statements are expressible in LE , that is,
when the universal modality is added to L. On the other hand, the universal
modality can express statements that are not expressible via the abstraction
modality.

Fact 2. The universal modality and the abstraction modality are not equally
expressive.

For example, the statement χ := “∃x ∈ W with M, x |= ¬p” for some propo-
sitional letter p is not expressible with the abstraction modality. To illustrate,
consider the two models M and M′.

x′
p

x
p

M M′

Then M, x satisfies χ but M′, x′ does not satisfy χ. Since x and x′ are bisimilar
for L, they satisfy the same formulas in the language L. Now for every finite
Σ ⊆ L, either (MΣ = M and M′

Σ = M′) or MΣ = M′
Σ = M′. Therefore, x and

x′ agree on all formulas in the language L extended by the abstraction modality.
Thus, χ is not expressible via [Σ]. We point out that these examples of course
depend on the program π we choose for the quotient model.

The above expressivity results imply that the basic modal language with the
abstraction modality is not reducible to basic modal language. This motivates
why we work with the language LE (but not with the simpler basic modal
language L) as our static language. In fact, we will show that LE together with
the abstraction modality is co-expressive with LE .

Formally, our dynamic language LE,[Σ] is defined by the grammar

ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | Eϕ | ♦ϕ | [Σ]ϕ

where Σ is a finite subset of LE . For a fixed program π, we evaluate formulas of
LE,[Σ] as follows:
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Definition 2 (Semantics for [Σ]ϕ wrt π). Given a Kripke model M =
(X,V,R) and a state w ∈ W , the truth of LE,[Σ]-formulas is defined for Boolean
cases, and the modalities ♦ and E as usual. The semantics for the abstraction
modality [Σ]ϕ is given by

M, w |= [Σ]ϕ iff MΣ , |w|Σ |= ϕ,

where MΣ is the quotient model built wrt the program π.

In the rest of this section we will define a family of logics KE,Σ(π)—one for
each program π of PDL−∗— and show their soundness and completeness wrt to
our semantics. While the soundness proof is standard, the completeness is estab-
lished via reducing the dynamic logic to its underlying static base through a set
of so-called reduction axioms. The reduction axioms (given in Table 1) describe
a recursive rewriting algorithm that converts the formulas in LE,[Σ] to seman-
tically and provably equivalent formulas in LE . The key property that allows
us to obtain reduction axioms in this particular setting is that—by finiteness
of Σ and the presence of the universal modality—the equivalence relation ∼Σ

becomes definable in our language in the sense of Lemma1.
We fix the following notation: for every finite Σ ⊆ LE , and for every formula

χ ∈ LE,[Σ] let

〈∼Σ〉χ :=
∨

Ψ⊆Σ

(
Ψ̂ ∧ E

(
Ψ̂ ∧ χ

))
, (3)

where Ψ̂ =
∧

Ψ ∧ ∧ ¬(Σ \ Ψ). The modality 〈∼Σ〉 is the diamond modality of
the equivalence relation induced by Σ, thus ∼Σ is definable in LE,[Σ]:

Lemma 1. Let M = (W,R, V ) be a model and let Σ be a finite set of formulas
of LE,[Σ]. Then M, x |= 〈∼Σ〉χ iff there is x′ ∼Σ x with M, x′ |= χ.

Proof. Let M = (W,R, V ) be a Kripke model, Σ a finite subset of LE and
χ ∈ LE,[Σ].

(⇒) Suppose M, x |= ∨
Ψ⊆Σ

(
Ψ̂ ∧ E

(
Ψ̂ ∧ χ

))
. This means that M, x |= Ψ̂ ∧

E
(
Ψ̂ ∧ χ

)
for some Ψ ⊆ Σ. I.e., we have M, x |= Ψ̂ and M, x |= E

(
Ψ̂ ∧ χ

)
.

The latter implies that there is x′ ∈ W such that M, x′ |= Ψ̂ ∧ χ. Since
M, x′ |= Ψ̂ , we obtain x ∼Σ x′, therefore the result follows.

(⇐) Suppose there is x′ ∈ W such that x ∼Σ x′ and M, x′ |= χ. As x ∼Σ x′,
the states x and x′ make exactly the same formulas in Σ true. Therefore, we
obtain that M, x |= Ψ̂ and M, x′ |= Ψ̂ for some Ψ ⊆ Σ. The latter together
with the assumption M, x′ |= χ implies that M, x |= E(Ψ̂ ∧χ). We therefore
obtain M, x |= Ψ̂ ∧ E(Ψ̂ ∧ χ). Thus, M, x |= ∨

Ψ⊆Σ

(
Ψ̂ ∧ E

(
Ψ̂ ∧ χ

))
.

Table 1 contains reduction axioms and rules of the logic KE,Σ(π). Note that
the axiom (Ax-♦π) contains the symbol 〈π〉 which is not part of the language



Quotient Dynamics: The Logic of Abstraction 187

LE,[Σ]. Recall that the programs used to build π do not contain the star-operator.
Since the language of star-free-PDL (with the universal program) is as expressive
as the language LE , we can legitimately use the axiom (Ax-♦π) as an abbrevia-
tion for a formula in the language LE,[Σ] (cf. [4]). To be precise, we employ the
following abbreviations: 〈r〉ψ := ♦ψ, 〈1〉ψ := Eψ, 〈?ϕ〉ψ := ψ ∧ ϕ, 〈π;π′〉ψ :=
〈π〉〈π′〉ψ, and 〈π ∪ π′〉ψ := 〈π〉ψ ∨ 〈π′〉ψ for formulas ψ ∈ LE,[Σ], ϕ ∈ LE and
programs π, π′ of PDL−∗.

Table 1. The logic KE,Σ(π)

(K) Axioms and rules of the basic modal logic K

(E) S5-axioms and rules for E, ♦ϕ → Eϕ

(Ax-p) [Σ] p ↔ 〈∼Σ〉p
(Ax-¬) [Σ]¬ϕ ↔ ¬[Σ]ϕ

(Ax-∧) [Σ](ϕ ∧ ψ) ↔ [Σ]ϕ ∧ [Σ]ψ

(Ax-E) [Σ]Eϕ ↔ E[Σ]ϕ

(Ax-♦π) [Σ]♦ϕ ↔ ∨Ψ⊆Σ

(
Ψ̂ ∧ E

(
Ψ̂ ∧ 〈π〉[Σ]ϕ

))

(Nec[Σ]) From ϕ infer [Σ]ϕ

Completeness of KE,Σ(π) is shown by defining a translation tπ : LE,[Σ] → LE

that transforms each formula in the language LE,[Σ] to a KE,Σ(π)-provably
equivalent formula in the language LE . We will skip the details of this translation
since we will later discuss a similar translation in Sect. 4. We then obtain:

Theorem 1 (Expressivity). Let π be a PDL−∗-program. For every ϕ ∈
LE,[Σ], �KE,Σ(π) ϕ ↔ tπ(ϕ).

We can now derive completeness results by standard arguments from the
completeness of the basic modal logic with the universal modality KE (see [13]
for the completeness of KE) and the soundness of KE,Σ(π).

Theorem 2 (Completeness). Let π be a PDL−∗-program. The logic KE,Σ(π)
is sound and complete wrt to the class of all Kripke models, where the quotient
models are taken wrt the program π.

3 Special Case: Logics of Filtrations

Thinking of quotient models, filtrations may be the first thing coming to the
mind of a modal logician. Filtrations are used in order to prove the finite model
property of some modal logics (see e.g. [7, Sect. 2.3] and [8, Sect. 5.3]). Roughly
speaking, they turn a (refutation) model into a finite one by forming a quotient.
In order to preserve some relational properties of Kripke models (such as transi-
tivity, reflexivity etc.) there are several ways to define quotient models, leading
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to several notions of filtrations. In this section, we show how some well-known
filtrations can be captured by the quotient models given in Definition 1. More
precisely, for a filtration f—where f stands for the smallest, the largest, the
transitive or the smallest-transitive filtration—we will define a program πf of
PDL−∗ such that the quotient model wrt the program πf corresponds exactly
to an f -filtration. In this sense, we can say that the logic of the filtration f is the
logic KE,Σ(πf ) axiomatized in Table 1. We will also comment on the possibility
of adding additional axioms to these logics. Roughly, an axiom χ of the basic
modal language L can be safely added to the logic KE,Σ(πf ), whenever the basic
modal logic axiomatized by χ admits f-filtrations (see, e.g., [8, Chap. 5.3]).

We will refer to the smallest, the largest, the transitive (a.k.a. Lemmon fil-
trations) and the smallest-transitive filtration, by s, l, t, and st, respectively. For
the definitions of the first three filtrations, see e.g. [7, Sect. 2.3]. The smallest
transitive filtration is obtained by first taking the smallest filtration and then
replacing the resulting relation Q with its transitive closure Q+ (see e.g. [8,
Chap. 5.3])7.

We will now define programs πf in the language of PDL−∗ whose correspond-
ing quotient models coincide with that of the f -filtration for f ∈ {s, l, t, st}.
Let Σ be a finite set of formulas in the language LE . For Ψ ⊆ Σ, we set
Ψ♦ =

∧
♦ϕ∈Σ,ϕ∈Ψ ♦ϕ, Ψ♦,∨ =

∧
♦ϕ∈Σ,ϕ∈Ψ (♦ϕ ∨ ϕ), and ¬Ψ = {¬ϕ | ϕ ∈ Ψ}. We

then define the following programs: let πΣ =
⋃

Ψ⊆Σ(?Ψ̂ ; 1; ?Ψ̂), and for k ∈ N,
let π1 = r and πk+1 = r;πΣ ;πk, then define

πs := r, πl :=
⋃

Ψ⊆Σ

(?Ψ♦ ; 1; ?Ψ̂), πt :=
⋃

Ψ⊆Σ

(?Ψ♦,∨; 1; ?Ψ̂), and πst :=
⋃

1≤k≤2|Σ|
πk.

It is easy to see that the quotient model wrt the program πf corresponds exactly
to an f -filtration for f ∈ {s, l, t, st}. To prove this for the smallest-transitive
filtration, observe that by finiteness of Σ, the size of WΣ is bounded by 2|Σ|.
Thus, the transitive closure of a relation on WΣ is reached by at most 2|Σ| many
iterations.

Proposition 1. Let f ∈ {s, l, t, st}. For every finite and subformula closed8 set
Σ ⊆ LE, the model Mπf

Σ is an f-filtration of M through Σ.

The quotient models resulting from the transitive and the smallest-transitive
filtrations are always transitive. To a modal logician, these filtrations in fact
become interesting only when applied to transitive Kripke models, since other-
wise the Filtration Theorem does not hold (see, e.g., [8, Theorem 5.23]). The
transitivity of the quotient models implies that the (4)-Axiom (♦♦ϕ → ♦ϕ) is
valid on these models. Therefore, if the (4)-Axiom is added to the logics KE,Σ(πt)

7 The filtrations in the aforementioned sources are defined for a language without the
universal modality. However, as observed in [13, Sect. 5.2], the universal modality
does not cause any problems in the theory of filtrations.

8 Since filtrations are usually only defined for subformula closed sets—the reason being
that the Filtration Theorem can only be proved in this case—we add this as an
additional condition.
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and KE,Σ(πst), the necessitation rule (Nec[Σ]) for [Σ] remains sound. We can
therefore extend the logics KE,Σ(πt) and KE,Σ(πst) by the (4)-axiom and obtain
sound systems. In more general terms, whenever a quotient model wrt a filtration
type f preserves the validity of a certain axiom, this axiom can be safely added
to the dynamic logic KE,Σ(πf ) without affecting soundness and completeness.
In fact, the same is true under slightly weaker assumptions. Let χ be an axiom
that characterizes the class K of Kripke models. Sometimes the validity of χ is
not preserved in all quotient models (wrt filtration type f) of the class K , but
it is preserved in quotient models of a smaller class of models K ′ ⊆ K (e.g., the
filtration st preserves the validity of the (.2)-axiom only on rooted9 transitive
models, but not on arbitrary transitive models (see [8, Theorem 5.33])). If the
smaller class K ′ is “big enough”, meaning that the logic axiomatized by χ is
complete wrt K ′, then its dynamic extension is also complete wrt the class K ′,
where quotient models are taken wrt πf . To modal logicians such considerations
run under the name of admitting filtration, see [8, Sect. 5.2].

For a normal modal logic L (e.g., T,KB or K4 etc., see [8] for our notational
convention for the normal modal logics.), by LE,Σ(πf ), we denote the logic that
is obtained from the axioms and rules of L and from Table 1 for f ∈ {s, l, t, st}.
Using results explored in [8, Chap. 5.2], Proposition 1 and Theorem 2, we obtain
the following:

Corollary 1. 1. For f ∈ {s, l, t, st}, the logics DE,Σ(πf ) and TE,Σ(πf ) are
sound and complete wrt the class of serial Kripke models and reflexive Kripke
models, respectively (where the quotient models are taken wrt πf ).

2. KBE,Σ(πs) is sound and complete wrt symmetric Kripke models.
3. For f ∈ {t, st}, the logics K4E,Σ(πf ), D4E,Σ(πf ), and S4E,Σ(πf ) are sound

and complete wrt transitive, transitive serial, and reflexive transitive models,
respectively (where the quotient models are taken wrt πf ).

4. K4.2E,Σ(πst) and K4.3E,Σ(πst) are sound and complete wrt the class of
rooted transitive directed models, and rooted transitive connected models,
respectively. Moreover, S4.2E,Σ(πst) and S4.3E,Σ(πst) are sound and com-
plete wrt the class of Kripke models based on rooted directed quasi-orders, and
rooted linear quasi-orders, respectively.

5. For f ∈ {s, l, t, st}, the logic S5E,Σ(πf ) is sound and complete wrt the class
of Kripke models based on clusters. In fact, S5E,Σ(πst) is sound and complete
wrt the class of Kripke models based on equivalence relations.

Remark 1. We note that the above corollary can be proved for a larger class
of stable and transitive stable logics of [5,6]. These are logics that are sound
and complete with respect to classes of rooted frames closed under graph homo-
morphisms. In other words, these are the logics admitting all filtrations and all
transitive filtrations, respectively. In this respect, stable logics play a similar role
to the abstraction modality that subframe logics—logics whose frames are closed
under subframes [8, Chap. 11.3]—play for the public announcement operator.

9 Recall that a transitive Kripke model M is called rooted if there is s ∈ W such that
sRw for all w ∈ M.
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Finally, we comment on the meaning of the Filtration Theorem in our context
(see, e.g., [7, Theorem 2.39] for the filtration theorem). Due to the completeness
result stated in Theorem 2, the Filtration Theorem can be proven syntactically
in our logics KE,Σ(πf ), i.e., it can be internalized as a theorem of these systems:

Corollary 2 (Internalized Filtration Theorem). For every finite subfor-
mula closed set Σ ⊆ LE and all ϕ ∈ Σ, we have the following:

1. �KE,Σ(πf ) [Σ]ϕ ↔ ϕ, for f ∈ {s, l};
2. �K4E,Σ(πf ) [Σ]ϕ ↔ ϕ, for f ∈ {t, st}.

4 The Logic of Abstraction

This section generalizes the setting presented in Sects. 2 and 3 in many ways. To
start with, we move to a multi-relational setting, also called multi-agent setting,
allowing for many basic programs in a given PDL-language. Secondly—and
more importantly—we generalise the abstraction modalities in such a way that
the PDL-programs become a component of these modalities. More precisely,
an abstraction modality contains a sequence of programs −→π that are indexed
by the set of agents as a parameter. The program πr corresponding to agent
r determines the relation of the same agent in the quotient model. Another
generalization over the previous setting is that we allow programs in the (full)
PDL-language, i.e. the language including the star-operator. In this section, we
introduce semantics for this extended language on multi-relational Kripke models
and provide a sound and complete axiomatization for the logic of abstraction
PDLΣ. Since the star operator properly adds expressivity to the static (multi-)
modal language, our resulting dynamic logic PDLΣ will not be reducible to
basic modal logic. Instead, we will employ the language of PDL as our base
language.

We would like to stress the two different uses of the language of propositional
dynamic logic: while, in the previous sections, the language of PDL−∗ was only
used as a “meta-language” for abbreviations of formulas in LE , the language of
PDL here becomes an essential part of our logical language. Our dynamic lan-
guage PDL[−→π /Σ] is defined by extending the language of propositional dynamic
logic PDL with the abstraction modalities [−→π /Σ]ϕ. More precisely, PDL[−→π /Σ]

is defined by the grammar:

π:: = r | ?ψ | 1 | π;π | π ∪ π | π∗, and ϕ:: = p | ¬ϕ | ϕ ∧ ϕ | 〈π〉ϕ | [−→π /Σ]ϕ,

where r is an element of the set of basic programs Π0, ψ ∈ PDL, −→π = (πr)r∈Π0

is a sequence of PDL-programs, and Σ is a finite10 subset of PDL (the language
PDL[−→π /Σ] without [−→π /Σ]ϕ).

10 Similar to the case in Sect. 2, the sets Σ being finite is essential in order to obtain
reduction axioms for the corresponding dynamic logic.
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Given a (multi-relational) Kripke model M = (W, (Rr)r∈Π0 , V ), we interpret
programs as relations on M as usual and denote the relation corresponding to
the program π by Rπ. Recall that the relation Rπ is defined recursively on the
structure of π. In particular, R1 := W × W , and R?ψ := {(x, x) | M, x |= ψ},
for some ψ ∈ PDL. Just as in (1) (see Sect. 2), a finite subset Σ ⊆ PDL induces
an equivalence relation ∼Σ on W by relating two worlds that satisfy the same
formulas of Σ. We denote by |w|Σ the equivalence class of w ∈ W with respect
to ∼Σ .

Next we define the (multi-relational) quotient models. Recall that in
Definition 1 we defined quotient models wrt a fixed program π. In the current
setting, the sequence of programs −→π becomes a parameter of the quotient mod-
els, thus receives a similar status as the set Σ. This is reflected in the shape of
the abstraction modalities [−→π /Σ]ϕ.

Definition 3 (Quotient model). Let M = (W, (Rr)r∈Π0 , V ) be a Kripke
model. For every finite Σ ⊆ PDL and every sequence −→π = (πr)r∈Π0 of programs,
the quotient model M

−→π
Σ , is M

−→π
Σ = (WΣ , (Rπr

Σ )r∈Π0 , VΣ), where WΣ := {|w|Σ |
w ∈ W}, VΣ(p) := {|w|Σ | there is w′ ∼Σ w with w′ ∈ V (p)}, and for each
r ∈ Π0

|w|ΣRπr

Σ |v|Σ iff there is w′ ∼Σ w and there is v′ ∼Σ v with w′Rπr
v′.

In other words, using the terminology of Sect. 2, the quotient model M
−→π
Σ

arises from M by interpreting a basic program r ∈ Π0 via the (∃,∃)-lifting of
the relation Rπr

from W to WΣ .

Definition 4 (Semantics for PDL[−→π /Σ]). Given a Kripke model M =
(W, (Rr)r∈Π0 , V ) and a state w in W , the truth of PDL[−→π /Σ]-formulas at a world
w in M is defined recursively as for PDL with the additional clause:

M, w |= [−→π /Σ]ϕ iff M
−→π
Σ , |w|Σ |= ϕ

where M
−→π
Σ is as given in Definition 3.

Next we introduce reduction axioms that allow us to convert a formula of
PDL[−→π /Σ] to a provably equivalent formula in PDL. In the current setting, there
are two key properties that allow us to obtain reduction axioms. Firstly, the
equivalence relation ∼Σ is definable in the language PDL[π/Σ] similar to the case
in Sect. 2. Secondly, Σ being finite ensures that the model Mπ

Σ is not only finite
but its size is bounded in terms of the size of Σ. In fact, the size of Mπ

Σ is at most
2|Σ|. For this reason we can obtain reduction axioms for the star-operator. As
in (3), for every formula χ ∈ PDL[−→π /Σ] and finite Σ ⊆ PDL we fix the following
notation:

〈∼Σ〉χ :=
∨

Ψ⊆Σ

(
Ψ̂ ∧ 〈1〉

(
Ψ̂ ∧ χ

))
.

The modality 〈∼Σ〉 is the diamond modality of the relation ∼Σ , as can be shown
analogously to Lemma 1.
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For an axiomatization of PDL, see [7, Sect. 4.8] or [14]. The universal pro-
gram 1 requires the S5 axioms and rules, and 〈π〉p → 〈1〉p for every program π.
The logic PDLΣ is defined by the axioms and rules given in Table 2.

Table 2. The logic PDLΣ

(PDL) Axiom-schemes and rules of PDL

(Ax-p) [−→π /Σ] p ↔ 〈∼Σ〉p
(Ax-¬) [−→π /Σ]¬ϕ ↔ ¬[−→π /Σ]ϕ

(Ax-∧) [−→π /Σ](ϕ ∧ ψ) ↔ [−→π /Σ]ϕ ∧ [−→π /Σ]ψ

(Ax-〈1〉) [−→π /Σ]〈1〉ϕ ↔ 〈1〉[−→π /Σ]ϕ

(Ax-〈r〉) [−→π /Σ]〈r〉ϕ ↔ 〈∼Σ〉〈πr〉[−→π /Σ]ϕ for all r ∈ Π0

(Ax-∗) [−→π /Σ]〈α∗〉ϕ ↔ [−→π /Σ]
∨

n≤2|Σ|〈α〉nϕ

(Nec[−→π /Σ]) From ϕ infer [−→π /Σ]ϕ

The reduction axioms enables us to show that every formula in PDL[−→π /Σ] is
provably equivalent (in the system PDLΣ) to a formula in the language PDL.

Theorem 3 (Expressivity). For every ϕ ∈ PDL[−→π /Σ] there is a ψ ∈ PDL such
that �PDLΣ

ϕ ↔ ψ.

Using Theorem 3, the completeness of PDLΣ is a consequence of the complete-
ness theorem for PDL and the soundness of the system PDLΣ.

Theorem 4 (Completeness). PDLΣ is sound and complete.

5 Further Generalizations and Variations

In this final section, we outline some further results and alternatives.

Other Liftings: We used (∃,∃)-lifting to build the quotient models in Defini-
tion 3, but we can use other liftings as discussed in Sect. 2. However, we conjec-
ture that reduction axioms for the (∀,∀)- and the (∃,∀)-lifts are not available in
our setting. Though such reduction axioms might become available if we extend
the base language by nominals as in hybrid logics. On the other hand, the set-
ting using the (∀,∃)-lift of the relation Rπ admits reduction axioms, obtained
by replacing Ax-〈r〉 from Table 2 by:

(Ax-〈r〉) [−→π /Σ]〈r〉ϕ ↔
∨

Ψ⊆Σ

∨

Φ⊆Σ

(
Ψ̂ ∧ 〈πr〉

(
Φ̂ ∧ [−→π /Σ]ϕ

)
∧ [1]

(
Ψ̂ → 〈πr〉Φ̂

))

The ‘Semantic Option’: While in this paper we focused on the ‘syntactic
option’ (issues given by a set of formulas), we are also investigating the semantic
option: each model comes with its own equivalence “issue” relation Q. In this set-
up, models are of the shape M = (W, (Rr)r∈Π0 , Q, V ), where (W, (Rr)r∈Π0 , V )
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is a Kripke model and Q is an equivalence relation on W . We then define a
language PDLQ,−→π /Q as:

π := r | Q | ?ψ | 1 | π; π | π ∪ π | π∗, and ϕ := p | ¬ϕ | ϕ ∧ ϕ | 〈π〉ϕ | [−→π /Q]ϕ,

where r is an element of the set of the basic programs Π0 and ψ ∈ PDL
(the language PDLQ,−→π /Q without [−→π /Q]ϕ). Note that we add a symbol Q
to the basic programs whose intended interpretation is the equivalence rela-
tion Q. Its modality [Q] is the so-called issue modality from [3]. For a model
M = (W, (Rr)r∈Π0 , Q, V ) and a sequence of programs −→π , we define a model

M
−→π
Q := (WQ, (Rπr

Q )r∈Π0 , Id, VQ), where WQ := {|w| | there is w′Qw with
w′ ∈ V (p)}, VQ(p) := {|w| | w ∈ V (p)}, Id denotes the identity relation, and

|w|Rπr

Q |v| iff there is w′Qw and there is v′Qv such that w′Rπr
v′,

where |w| is the equivalence class of w wrt Q. The crucial step in the semantics is:

M, x |= [−→π /Q]ϕ iff M
−→π
Q , |x| |= ϕ.

To get a convenient representation of the reduction axioms, we define func-
tions fQ,−→π on programs by f−→π ,Q(Q) = ?�, f−→π ,Q(r) = Q;−→π , f−→π ,Q(α1 ◦ α2) =
f−→π ,Q(α1)◦f−→π ;Q(α2) for ◦ ∈ {∪, ; } and f−→π ,Q(π∗) =

(
f−→π ,Q(π)

)∗. Here is the full
list of reduction axioms (Table 3):

Table 3. The logic PDLQ

(PDL) Axiom-schemes and rules of PDL

(Q) S5-axioms and rules for Q

(Ax-p) [−→π /Q]p ↔ 〈Q〉p
(Ax-¬) [−→π /Q]¬ϕ ↔ ¬[−→π /Q]ϕ

(Ax-∧) [−→π /Q](ϕ ∧ ψ) ↔ [−→π /Q]ϕ ∧ [−→π /Q]ψ

(Ax-〈α〉) [−→π /Q]〈α〉ϕ ↔ 〈fQ,−→π (α)〉[−→π /Q]ϕ

(Ax-〈Q〉) [−→π /Q]〈Q〉ϕ ↔ [−→π /Q]ϕ

(DR-Nec) From ϕ infer [−→π /Q]ϕ

Note that in our earlier versions, the analogue of the modality 〈Q〉 was defin-
able in the language PDL[−→π /Σ] (cf. Sect. 2, Lemma 1), thus was not needed in
the syntax.

Acknowledgments. A. Özgün acknowledges financial support from European
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The Dynamics of Group Polarization
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Abstract. Exchange of arguments in a discussion often makes individ-
uals more radical about their initial opinion. This phenomenon is known
as Group-induced Attitude Polarization. A byproduct of it are bipolar-
ization effects, where the distance between the attitudes of two groups
of individuals increases after the discussion. This paper is a first attempt
to analyse the building blocks of information exchange and information
update that induce polarization. I use Argumentation Frameworks as a
tool for encoding the information of agents in a debate relative to a given
issue a. I then adapt a specific measure of the degree of acceptability of an
opinion (Matt and Toni 2008). Changes in the degree of acceptability of
a, prior and posterior to information exchange, serve here as an indicator
of polarization. I finally show that the way agents transmit and update
information has a decisive impact on polarization and bipolarization.

1 Introduction

Almost sixty years ago MIT student J.A. Stoner observed and studied a strange
group phenomenon that he classified as “risky shift”. This term categorizes the
tendency of a group to make decisions that are riskier than the average of the
individual decisions of members before the group met [27]. Subsequent research
in social psychology showed that a similar pattern applies more generally to
change of attitude and opinion after debate. This phenomenon is nowadays
famous as Group-induced attitude polarization. Understanding the dynamics that
lead to polarization is particularly relevant in the era of social networks, because
of the dramatic global effects they may cause. Indeed, virtual forums and polit-
ical debate seem to accrue so-called bipolarization effects, i.e. the tendency of
different subgroups to radicalize their opinions towards opposite directions [28].

A long tradition in social psychology has regarded polarization and bipo-
larization as a byproduct of social influence in groups [26], where the main
explanatory mechanism is social comparison [11].1 An alternative explanation is
1 According to social comparison explanations, such as [26], polarization may arise in

a group because individuals are motivated to perceive and present themselves in a
favorable light in their social environment. To this end, they take a position which
is similar to everyone else but a bit more extreme. This kind of explanation assumes
a lot. Indeed, models that explain bipolarization effects by social comparison mech-
anisms usually postulate both positive influence by ingroup members and negative
influence by outgroup members [12,16]. However, a number of criticisms have been
addressed towards the accuracy of empirical research showing the presence of nega-
tive influence in social interaction [19].
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provided by persuasive arguments theory, which was developed and tested in a
number of lab experiments in the 1970s [30].2

Both social comparison and persuasive arguments theory provide interest-
ing clues for explaining polarization phenomena. However, much more is hidden
behind the mechanisms of information transmission and update among agents.
The present work is a first attempt towards the formal description of such mech-
anisms. The aim is to unravel all the possible building blocks of polarization.
In this context we need to understand the notion of information in a general
sense, wider than, e.g., knowledge or rational belief. Polarization and bipolar-
ization are in fact distinctive features of real-life dynamics, where people form
their views (say, decide how to vote or what to buy) by exchanging information
with others, or by trusting more or less authoritative channels. Such informa-
tional items typically need not to be consistent, nor are acquired via a careful
process of individual inquiry and strict rules of belief revision and belief update.
Indeed in many such situations individuals deviate from Bayesianism, insofar as
they update their beliefs by discarding some available evidence. This happens,
e.g., when they display a dogmatic or selective attitude towards the information
received.

In the present paper I adopt Argumentation Frameworks [9] as a formalizing
tool, which are the most versatile tool to encode the type of informational items
we are interested in, as well as the argumentative process of information exchange
and update. Indeed, the theoretical tools provided by abstract argumentation
will serve to the purpose of

1. Describing both the total information available relative to a debated issue
and one agent’s partial information.

2. Provide a measure of the degree of acceptability of the debated issue given
the available information.

3. Encode the most important policies of information transmission between
agents and of information update.

4. Assess how such policies can impact polarization and bipolarization about
the given issue.

Schematically, the argumentative process generating polarization works as
in the workflow of Fig. 1. Agent i possesses some information about a given
issue a, represented by Ii(F , a), she transmits some of her information to agent,
say, j (Ti,j(F , a)), and the latter updates her previous information Ij(F , a) by
combining it with Ti,j(F , a) via some operation � to be specified.

2 This explanation assumes that individuals become more convinced of their view when
they hear novel and persuasive arguments in favor of their position, and therefore
“Group discussion will cause an individual to shift in a given direction to the extent
that the discussion exposes that individual to persuasive arguments favoring that
direction” [15]. Typically, models inspired by persuasive arguments theory do not
assume negative influence of any kind, but presuppose homophily, i.e. stronger inter-
action with like-minded individuals [23], or biased assimilation of arguments [21].
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Ii(F , a) Ti,j(Ii(F , a))
Ij(F , a) �

Ti,j(Ii(F , a))

Fig. 1. Schematic flow of information transmission and update between agent i and j

I proceed as follows. Section 2 provides a short introduction to Argumentation
Frameworks and shows how to define the scenario of a multi-agent debate. I also
show how to apply the acceptability measure defined by [24] to encode the degree
of acceptability of a given issue a. Section 3 introduces some relevant policies of
information disclosure and update. Section 4 presents two main results that show
the impact of these policies on polarization and bipolarization.

2 Argumentation Frameworks and Multi-agent Scenarios

An Argumentation Framework [9], AF for short, consists of a graph where nodes
are arguments and a directed edge between a and b is to be read as “argument
a attacks argument b”. The formal definition is the following

Definition 1 (Pointed Argumentation Framework). An Argumentation
Framework is a 2-ple F = (A, R) where A is a finite and non-empty set of
arguments and R ⊆ A × A. A Pointed Argumentation Framework F , a consists
of an Argumentation Framework F together with a specified a ∈ A.

Example 1. Figure 2 provides the graphical representation of a pointed AF,
where A = {a, b, c, d, e, f}, R = {(b, a), (c, a), (d, b), (e, c), (f, c)} and the spec-
ified argument is a. This will serve us as a running example.

An AF is usually intended to represent a completed debate process. In our
specific setting a pointed AF F , a is meant to encode what is sometimes called
a “culturally given pool of arguments” [30] about one issue a, i.e. the full set of
arguments and attacks between them that are available to a group of individuals
debating over a. Opinions held by the participants are represented as sets of
arguments they embrace. Conflicts between opinions can be formalised as attacks
between sets of arguments. We say that an opinion X attacks an opinion Y if
there is an attack R(x, y) ∈ X ×Y . For example, in Fig. 2 it holds that {d, e, a}
attacks {b, c} and viceversa.

One main purpose of argumentation theory is to identify which opinions are
intuitively “acceptable”. Such opinions are usually called solutions (or exten-
sions). Typically, one solution should have at least two basic properties, i.e.
conflict-freeness and defense of its own arguments. A set which combines these
two properties is said to be admissible.
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a

b c

d e f

Fig. 2. An example of AF. Labelled nodes represent arguments. Relations of attack
between arguments are indicated with an edge.

Definition 2 (Admissibility).

– A set X is conflict-free if there is no a, b ∈ X such that R(a, b).
– A set X defends an argument a if for all b such that R(b, a) there is a c ∈ X

such that R(c, b).
– A set X is admissible iff X is conflict-free and defends all its elements.

Intuitively, conflict-freeness encodes the internal coherence of an opinion, in the
sense that no argument attacks another. The largest conflict-free sets in Fig. 2
are {a, d, e, f} and {b, c}. The second condition (defending all its elements)
encodes the fact that for an opinion to be fully acceptable it should be able to
rebut all its counterarguments.3 The AF in Fig. 2 has ten admissible sets where
the smallest is ∅ and the largest is {a, d, e, f}.

The opinions we are interested in for our case are the pro and the contra
opinion about a given issue a. It is straightforward to identify the opinion contra
a (C(a)) as the set of arguments that attack a, while the opinion pro a (P (a))
is the set of arguments that defend a, including a itself. What is left out is the
neutral opinion N(a), i.e. the set of arguments that neither attack nor defend a.
These three opinions are then defined as follows:

Definition 3 (Pro, contra and neutral opinions).

– P (a) is the set of arguments b such that there is an R-path of even length,
including length 0, from b to a.

– C(a) is the set of arguments b such that there is an R-path of odd length from
b to a.

– N(a) is the set of arguments b such that b �∈ P (a) and b �∈ C(a).

3 Admissibility is the basis of most of the solution concepts in the standard Dung’s
framework such as preferredness, stability and groundedness. For our present pur-
poses we don’t need to introduce them.
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It is easy to ascertain that, in the pointed AF of Fig. 2, P (a) = {a, d, e, f},
C(a) = {b, c} and N(a) = ∅. Furthermore, the following holds:

Fact 4. P (a) ∩ C(a) = ∅ iff both P (a) and C(a) are conflict-free.

In the following we assume that P (a) and C(a) are conflict-free for all the infor-
mation frameworks that we consider.

2.1 A Multi-agent Debate

If we regard a specific pointed AF F , a as the total information available about
the issue a, then it is natural to encode the partial information available to
a participant to the debate as a subgraph of F , a, i.e. a partial representation
of the argumentative pool.4 This captures the fact that an individual may not
be aware of some available arguments, or may even not be aware that some
argument attacks another.5 By consequence, the setup of a debate over a can be
seen as a multiagent scenario where the information available to each agent i is
defined as follows.

Definition 5 (Agent’s information). Given the total information F , a =
(A,R), a, the information available to agent i is Ii(F , a) = (Ai, Ri), a where
Ai ⊆ A, a ∈ Ai, Ri ⊆ Ai × Ai and Ri ⊆ R.

Hereafter I denote as Pi(a), Ci(a) and Ni(a) the sets of pro, contra and neutral
arguments of agent i about the issue a.

a

b

(a) Agent 1

a

c

(b) Agent 2

a

b c

(c) Updated
graph

Fig. 3. Information of agents 1 and 2 and their merging

4 A similar approach is taken by [1,8,25]. There too the information base of an agent
is encoded by a subset of a larger universe [8] or universal argumentation framework
[1,25].

5 Being unaware that b attacks c is the case when one lacks the warrant for b to
undermine c (see also [29]). To give an example, let c be the argument “Phosphorus
is not visible in the sky tonight” and b be the argument “Look, Hesperus is there!”.
Clearly b constitutes an attack to c only if one is aware that Hesperus and Phosphorus
are the same planet.



200 C. Proietti

Example 2. Figure 3(a) (resp. Fig. 3(b)) represents the information I1(F , a)
available to Agent 1 (resp. I2(F , a) available to Agent 2) at the initial state
of a debate over a. Both are subgraphs of F , a in Fig. 2. Here C1(a) = {b}
and C2(a) = {c}. Therefore both agents have distinct informational items
contra a. Intuitively, when they merge such information together, as it hap-
pens in discussion, they should both get new information to the effect that
C1(a) = C2(a) = {b, c}.

This illustrates polarization on the intuitive level, but does not yet provide a
measure of it, which we shall present in the next section.

2.2 Degree of Acceptability

We introduced admissibility as a criterion of full acceptability for an opinion
in a debate. However, in many real-life scenarios involving a large number of
arguments and rebuttals, full acceptability is a too strict requirement. In most
cases the best thing one can do is weighting arguments pro and contra. This
is also what seems to happen in the lab experiments on polarization and risky
shift, where people is asked to provide odds for a certain decision or opinion [30]
and polarization is measured as the shift between the initial and the final odds
provided by the participants.

A large literature in abstract argumentation has recently developed to pro-
vide measures and weights for arguments and opinions in a debate (see among
others [14,20,24]). For our present purposes we shall adopt a measure of accept-
ability provided by [24], which fulfills a series of useful properties for our case.
We first define the set of attacks from set Y to set X in a framework F , a, as
X←Y

F,a = {(y, x) ∈ Y ×X | R(y, x)}. Then we can define the degree of acceptability
of X w.r.t. Y as follows:

Definition 6 (degree of acceptability, Matt and Toni 2008).

d(X, Y ) =
1
2
(1 + f(|Y ←X

F, a |) − f(|X←Y
F, a |))

where f : N → N is defined as f(n) = n
n+1

We are specially interested in the measures d(P (a), C(a)) and d(C(a), P (a)).
The nice properties of the measure d hang mostly on the fact that f is a
monotonic increasing mapping s.t. f(0) = 0 and limn→∞f(n) = 1. Such
properties are the following:

Fact 7. The following properties hold for d.

(a) 0 ≤ d(X,Y ) ≤ 1
(b) d(P (a), C(a)) = 1 − d(C(a), P (a))
(c) d(P (a), C(a)) < 1

2 iff |P (a)←C(a)
F, a | > |C(a)←P (a)

F,a |
(d) d(P (a), C(a)) > 1

2 iff |P (a)←C(a)
F, a | < |C(a)←P (a)

F,a |
(e) If F , a = ({a}, ∅), a then d(P (a), C(a)) = d(C(a), P (a)) = 1

2
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According to property (a) degrees of acceptability are scaled between 0 and 1.
Properties (b), (c) and (d) mean that d measures the relative weight of arguments
pro and contra a. (e) reflects the fact that a given issue with no arguments pro
or contra is to be labeled as undecided.

Example 3. In our argumentative pool of Fig. 2 the degree of acceptability
d(P (a), C(a)) is 13

24 and is therefore slightly favorable to the opinion support-
ing a.

Such measure d can work as the actual degree of acceptability of a. In a
context where F , a represents the overall information available and there is no
conclusive way of settling the truth, having a measure of this sort is the best
we can hope for. In the following we indicate with d(Pi(a), Ci(a)) the degree of
acceptability of a for agent i.

Example 4. It is straightforward to ascertain that d(Pi(a), Ci(a)) is 1
4 for both

agents in Fig. 3(a) and (b). If we merge the agent’s information, as in Fig. 3(c),
then d(Pi(a), Ci(a)) becomes 1

6 for each agent, i.e. it lowers. This is particularly
interesting when we interpret Fig. 3(c) as the new information available to Agent
1 and 2, as it would result from an information exchange and consequent infor-
mation update. This is exactly what happens with attitude polarization: both
agents radicalize their opinion contra a. Indeed, their degree of acceptability of a
ends up being more extreme (16 ) than its average before entering the debate (14 ).

3 Information Transmission and Information Update

Example 4 shows how polarization may arise in a group when agents share par-
tial information about a given issue. This happened by agents merging their
information together as the result of information exchange. However, the mech-
anisms of information exchange in a debate are way more complex than this.
Such mechanisms need to be cut down into their basic components if one wants
to capture all the possible ways in which polarization may arise. The basic com-
ponents are clearly information transmission from a sender to a recipient and
information update by the recipient.

3.1 Information Transmission

Information transmission is the way agents disclose the information they possess.
This is encoded as an operation T p

i,j where i is the sender, j the recipient and
p is the disclosure policy adopted by the sender. The input of such operation
is Ii(F , a), i.e. the information available to the sender. The disclosure policy
p determines the output, which in principle can be any piece of information
possessed by i. The latter is then a 2-ple (A′, R′) with the constraints A′ ⊆ Ai

and R′ ⊆ Ri.
There are many possible ways for a sender to transmit information to a

recipient. One way is full disclosure o, which consists in one agent disclosing all
the available information.
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Definition 8 (Open disclosure). The output of an open disclosure policy for
agent i is

T o
i, j(Ii(F , a)) = Ai, Ri

Policy o is typical of a debate where the agents’ common interest is to share
the best possible information or to settle an issue in the optimal way. But this
is not what usually happens in more strategic situations where agents have
different goals. People often discloses only the information that is useful for her
to win a debate or to fortify her opinion among the audience, e.g. in judicial
proceedings or panel discussions. A large set of strategies is available to agents
in such contexts. Indeed, most of the situations that can be modeled by our
framework are open to cheap talk [10], where agents are allowed to lie. In this
context, the foundational game-theoretic analysis by [5] shows that, when the
interests of the agents are not perfectly aligned, the equilibrium solution requires
players not to be fully informative.6

Here we define a radical policy s, which consists in delivering only information
that speaks in favor of one’s opinion.

Definition 9 (Strategic disclosure). The output of a strategic disclosure pol-
icy for agent i is defined by cases as T s

i, j(Ii(F , a)) = A′, R′ where:

– if d(Pi(a), Ci(a)) ≥ 1
2

A′ = Ai \ {b ∈ Ci(a)}
R′ = Ri \ {(b, c) ∈ Ci(a) × Pi(a)}

– if d(Pi(a), Ci(a)) < 1
2

A′ = Ai \ {b ∈ Pi(a)}
R′ = Ri \ {(b, c) ∈ Pi(a) × Ci(a)}

3.2 Information Update

When agent j receives new information from i she has to update her informa-
tional state in the light of it and of her prior information. This corresponds
to an operation �p which should output a new information state Ipj (F , a) on
the basis of her previous information Ij and the information Ti,j received by i.
Here again, many policies p are available to agents for such an update. For the
present purposes I restrict my attention to two of them. The first option is again
an open policy �ou, which consists in fully accepting the information received by
the sender. This gives rise to the following definition

6 As pointed out by Reviewer 1, modelling information transmission and update in
cheap talk situations is a highly interesting venue, which we must leave for future
research.
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Definition 10 (Open update). Let X = (A, R), a and Y = A′, R′ then the
output for agent i of �ou(X, Y ) is a pointed AF (Aou, Rou), a where

Aou = A ∪ A′

Rou = (R ∪ R′) ∩ (Aou × Aou)

Here the receiver accepts all the new arguments communicated by the sender as
well as all the new attacks, provided that both ends are in her updated argument
set. In what follows the set of pro (resp. contra and neutral) arguments inherits
the apex of the parent argument space, e.g. P ou (resp. Cou and Nou) is the set
of the pro (resp. contra and neutral) arguments in Aou.

In most cases, however, information update is more critical than this. Agents
often discard evidence that speaks against their prior beliefs, or else devote more
scrutiny to it [13]. The latter option is what typically happens when agents try to
reduce so-called cognitive dissonance [11]. The former is instead a form of what
has been called “kripkean dogmatism” [18]. Such update procedures are more
articulated. With the next definition we provide an example of one dogmatic
policy �d of such kind, which is built upon the previously defined �ou.

Definition 11 (Dogmatic update). Let X = (A,R), a, Y = A′, R′ and let
�ou(X, Y ) = (Aou, Rou), a be as in Definition 10. Then the output for agent i
of �d(X, Y ) is a pointed AF (Ad, Rd), a where

– If d(Pi(a), Ci(a)) ≥ 1
2

Ad = Aou \ (Cou
i (a) ∩ (A′ \ A))

Rd = Rou \ ((Cou
i (a) × P ou

i (a)) ∩ (R′ \ R)))

– If d(Pi(a), Ci(a)) < 1
2

Ad = Aou \ (P ou
i (a) ∩ (A′ \ A))

Rd = Rou \ ((P ou
i (a) × Cou

i (a)) ∩ (R′ \ R)))

Under the policy �d the agent i updates her framework on the basis of her
degree of acceptability of a prior to the exchange of information. If she had a
positive degree of accepability about the issue a, she discards all new arguments
provided by the sender (A′ \ A) against a, as well as the new attacks against it
((Cou

i (a) × P ou
i (a)) ∩ (R′ \ R)). Otherwise she discards the pro arguments and

the new attacks from pro to contra.

4 Results

I show two results holding for a two-agent debate between Agent 1 and 2. Agents
follow some combinations of the previously defined policies of information trans-
mission and update. All the following results show what happens after one round
of mutual information transmission and update.
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Theorem 1. Let F , a = (A, R), a, I1(F , a) = (A1, R1), a and I2(F , a) =
(A2, R2), a. Let Iou1 (F , a) = (Aou

1 , Rou
1 ), a = �ou(I1(F , a), T o

2,1(I2(F , a))) and
Iou2 (F , a) = (Aou

2 , Rou
2 ), a = �ou(I2(F , a), T o

1,2(I1(F , a))). Suppose further that
the distributed information of the agents covers the total information available,
i.e. (tot) A1 ∪ A2 = A and R1 ∪ R2 = R. Then

(a) Iou1 (F , a) = Iou2 (F , a) = F , a
(b) d(P ou

1 (a), Cou
1 (a)) = d(P ou

2 (a), Cou
2 (a)) = d(P (a), C(a))

Proof. (b) is an immediate consequence of (a). (a) is established as follows. By
Definitions 8 and 10 it follows that Aou

1 = A1 ∪ A2 = Aou
2 and Rou

1 = R1 ∪
R2 = Rou

2 . Then, by the condition (tot) it follows that Aou
1 = Aou

2 = A and
Rou

1 = Rou
2 = R and the result is established.

This result shows that by following open policies of information transmission and
update all agents can align their opinion to the most reasonable one. However,
we must notice that, for this to happen, (tot) is a necessary condition. Indeed,
Example 4 shows that if such condition fails, the same policies may lead all
agents far away from the most reasonable opinion.

Theorem 2. Let F , a = (A,R), a with C(a) ∩ P (a) = ∅. Let I1(F , a) =
(A1, R1), a. Let Id1 (F , a) = (Ad

1, R
d
1), a = �d(I1(F , a), T p

2,1(I2(F , a))) and
T p
2,1(I2(F , a)) = A′, R′. Furthermore suppose that N1(a) = ∅.

Then

(a) if d(P1(a), C1(a)) ≥ 1
2

d(P1(a), C1(a)) ≤ d(P d
1 (a), Cd

1 (a))

(b) if d(P1(a), C1(a)) < 1
2

d(P1(a), C1(a)) ≥ d(P d
1 (a), Cd

1 (a))

Proof. We only prove (a), since (b) follows by the same reasoning. In order to
establish (a) it is sufficient to prove that |C1(a)←P1(a)| ≤ |Cd

1 (a)←Pd
1 (a)| and

that |P1(a)←C1(a)| ≥ |P d
1 (a)←Cd

1 (a)| and the result will follow as a consequence
of Definition 6. The former is established by ascertaining that C1(a)←P1(a) ⊆
Cd

1 (a)←Pd
1 (a). The second inequality is established by showing that there are no

elements b and c such that (b, c) ∈ P d
1 (a)←Cd

1 (a) and (b, c) /∈ P1(a)←C1(a). For
reductio we suppose the contrary and then reason by cases.

Case 1. b ∈ A1, c ∈ A1 and (b, c) ∈ R1.
If c ∈ P1(a) then b ∈ C1(a) and (b, c) ∈ P1(a)←C1(a) against the assumption. If
c ∈ C1(a) then a fortiori c ∈ C(a). However we also assumed that c ∈ P d

1 (a) and
therefore c ∈ P (a). This however goes against the assumption that C(a)∩P (a) =
∅ and we get a contradiction. The last possibility is c ∈ N1(a), but this again
is excluded by the assumption that N1(a) = ∅. Therefore Case 1 leads to a
contradiction.
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Case 2. Either b /∈ A1 or c /∈ A1 or (b, c) /∈ R1.
Case 2.1. If b /∈ A1 then it must be that b ∈ (A′ \ A1). This excludes the fact
that b ∈ Cd

1 (a) since this would imply also that b ∈ Cou
1 (a) and b would therefore

have been eliminated by the policy �d.
Case 2.2 If c /∈ A1 then c ∈ (A′ \ A1). This entails that (b, c) ∈ (R′ \ R1). The
latter however contradicts the fact that (b, c) ∈ P d

1 (a)←Cd
1 (a), since a fortiori

(b, c) ∈ P ou
1 (a)←Cou

1 (a) and therefore (b, c) would have been eliminated by the
policy �d.
Case 2.3 If (b, c) /∈ R1 then (b, c) ∈ (R′ \ R1) and a contradiction follows in the
same way as in Case 2.2
Therefore Case 2 also leads to a contradiction and the proof is completed.

Under these conditions participants to a debate can only radicalize their prior
opinions. This leaves the possibility open for bipolarization to happen. This is
what the following example shows.

Example 5. Let the information states of Agent 1 and 2 be as in Fig. 4. Then
d(P1(a), C1(a)) = 5

12 and d(P2(a), C2(a)) = 13
24 . Here N1(a) = N2(a) = ∅ since

both graphs are connected. Suppose that both agents adopt the policies T o
i, j

and �d. Then Agent 1 will update his information state with argument e and
attack (e, a). Agent 2 will instead update her state by argument d and the attack
(d, c). Therefore d(P d

1 (a), Cd
1 (a)) = 3

8 and d(P d
2 (a), Cd

2 (a)) = 19
30 The group has

therefore bipolarized.

a

b c

d

(a) Agent 1

a

c e

f g h

(b) Agent 2

Fig. 4. Bipolarization

Theorem 2 may however not hold when N1(a) is not empty as the next
example shows

Example 6. Let the information states of Agent 1 and 2 be as in Fig. 5. Then
d(P1(a), C1(a)) = 1

4 . Suppose that Agent 2 adopts the policy T o
2, 1 and Agent

1 adopts �d. Then Agent 1 will update his information state with the attack
(c, a). As a result d(P d

1 (a), Cd
1 (a)) = 13

24 . So Agent 1 shifts her opinion towards
the opposite direction.
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a

b c

d e f

(a) Agent 1

a

c

(b)
Agent
2

Fig. 5. Opinion shift for Agent 1

This example illustrates how subtly information dynamics can influence opinion
change. Indeed, under certain conditions, even providing information contra a
may determine a significant positive shift in the degree of acceptability of a. In
Example 6 this happens even though the recipient holds a dogmatic attitude in
discarding information pro a.

5 Conclusions

One of the main aims of this work is to show how Argumentation Frameworks
provide an efficient tool for a formal understanding of polarization and bipolar-
ization dynamics in group discussion. Indeed, they serve to encode both the total
information available in a debate about a given issue a, as well as the agents’
partial information about it. A large number of policies of information exchange
among agents can be defined as specific operations on Argumentation Frame-
works. Moreover, the measure provided by [24] provides a way to quantify the
degree of acceptability of a, both for the single discussants and on the absolute
level. Therefore, it also serves to quantify the distance of the agents’ opinion
from the actual degree of acceptability of a. More importantly, it quantifies
polarization and bipolarization prior and posterior to information exchange.

Theorem 1 of Sect. 4 shows how an open policy of information transmission
and information update can help agents to align their views together with the
most reasonable opinion about the debated issue. This is often cited as one of
the virtues of an open discussion, held by agents without prejudices. Theorem 1
confirms such intuition, but only to a very specific extent. Indeed, the conclusion
holds only under the condition (tot) that discussants have distributed knowledge
of the total information available. Otherwise the possibility is open for polariza-
tion to happen and for the agents to be led far away from the most reasonable
opinion, as shown in Example 4.

Theorem 2 shows instead that agents who follow a dogmatic policy of infor-
mation update are bound to radicalize their opinion. This leaves the way open
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to polarization and bipolarization, as shown in Example 5. Therefore, this result
provides an alternative explanation of bipolarization, one which fully lies in the
agent’s policy of information update and does not recur to standard explana-
tions such as negative influence, as in [16] and [12], or homophily, as in [23].
Nonetheless, in this case too the conclusion holds only under a specific condi-
tion. Example 6 illustrates how, when such condition fails, opinion shifts may
happen even with a dogmatic policy of information update. This example put
the finger on the complexity and the unpredictability of the opinion dynam-
ics generated by information exchange. The study of such dynamics therefore
discloses an interesting field of investigation for future research.

As a final consideration, Example 4 illustrates how polarization can hap-
pen under conditions of “full rationality”, i.e. when agents openly disclose their
information and update it on the basis of all the available evidence. On the
other hand, Example 5 may seem to suggest that bipolarization requires instead
that agents deviate from Bayesian standards, e.g. by being dogmatic and dis-
carding some available evidence. However this conclusion jumps too far. Indeed,
Theorem 2 only provides sufficient conditions for (bi)polarization, and not neces-
sary ones. The general question remains open as to whether bipolarization entails
such a deviation from Bayesianism. Answering this question goes beyond the scope
of this paper, although it deserves the highest priority in this research agenda.7
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Abstract. We show that every indeterministic n-agent choice model M i

can be transformed into a deterministic n-agent choice model Md, such
that M i is a bounded morphic image of Md. This generalizes an earlier
result from Van Benthem and Pacuit [16] about finite two-player choice
models. It further strengthens the link between STIT logic and game
theory, because deterministic choice models correspond in a straightfor-
ward way to normal game forms, and choice models are generally used
to interpret STIT logic.

1 Introduction

At least since [9], it has become clear that there are strong links between game
theory and the model theory of STIT logic. In this paper, we focus on the relation
between normal game forms and what we call choice models.

A normal game form is a strategic game without players’ preferences.1 Choice
models will be defined in Sect. 2; they form a specific class of Kripke models for a
purely agentive STIT logic, i.e. a logic of (individual and collective) agency that
contains no temporal operators. Choice models are e.g. used in [8] to study the
complexity of STIT logic for groups. They closely resemble the choice structures
from [10], the STIT choice scenarios from [16], and the choice Kripke models
from [5].

Normal game forms and choice models are both used to represent the actions
of (group) agents, thus providing a basis for the analysis of rational (individual
and collective) interaction. The notion of effectivity for outcomes is central in
both, where an outcome can be thought of as a (non-empty) set of possible
worlds. Roughly speaking, an agent is effective for a given outcome in the model
if and only if it can ensure that outcome by some action, regardless of what the
other agents do.2

1 See e.g. [12] for a solid introduction to the theory of strategic games.
2 This notion is usually referred to as “α-effectivity” in game theory. We provide a

formal definition of it in Sect. 2.
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For reasons of space, we cannot provide the full background and history of
STIT logic and its relation to game theory in this paper. We refer to [1,9] for
general introductions to STIT logic. See [8] for a discussion of the axiomatization
and complexity of group STIT interpreted over choice models. [10] appears to
be the first paper that explicitly deals with the relation between strategic game
forms and STIT. Horty’s [9] work in deontic logic, however, was already strongly
inspired by the link between game theory and STIT theory. Publications that
are directly relevant to this paper are [5,13,14,16].

To explain the aim of this paper, let us first focus on models with only two
agents. Like normal game forms, choice models for two agents can be represented
using matrices, where the rows represent choices of agent 1 and columns represent
choices of agent 2. Figure 1 is a simple example. Each cell3 in such a matrix
represents a combination of actions of each agent – also known as action profile
– and the corresponding outcome. For instance, if agent 1 chooses row 1 and
agent 2 chooses column 2, then there is a unique outcome, viz. c. Note that the
action profile (row 1, column 1) allows for two possible worlds, viz. a and b. In
this model, agent 1 is i.a. effective for {a, b, c} and {d, e}, whereas agent 2 is
effective for {a, b, d} and {c, e}.4

a,b c
d e

Fig. 1. A choice model for two agents.

Say two models M1 and M2 – whether normal game forms or choice models –
are equivalent if and only if for any given outcome X and every agent j it holds
that j is effective for X in M1 if and only if j is effective for X in M2. Every
normal game form can be translated into an equivalent choice model, where the
action profiles in the former correspond to the worlds in the latter. This was first
observed by Tamminga in [13, Sect. 3.1]; we will recall the details in Sect. 2. As is
shown in [14], the inverse translation works for a specific class of choice models.
This class is characterized by the condition known as determinism: each choice
of the grand coalition, i.e. each action profile, singles out exactly one world. Note
that in the above example, this condition is not satisfied: if agent 1 chooses row
1 and agent 2 chooses column 1, then either a or b may result.

A common motivation for determinism is that we can get it “for free” just by
moving to a three-agent model, letting “nature” or “the environment” play the
role of the third agent (see e.g. [9, p. 91] and [16, p. 300] where this point is made).
In other words, nature is an agent that makes its own choices, and in combination
3 In the two-agent case, cells correspond to the “innermost squares” in the matrix.

See Sect. 2 for the general definition of cells in a choice model.
4 The notion of effectivity is monotonic: whenever an agent is effective for X, it is also

effective for every superset of X. In the current example, this means that agent 1 is
e.g. also effective for {a, b, c, d}.



Doing Without Nature 211

with the choices of the two “real” agents, this determines the outcome. Applying
this idea to the example from Fig. 1 yields the model depicted in Fig. 2, where
nature gets to choose between the left and right matrix. In this new choice
model, agents 1 and 2 are just as effective as they were in the original model
given by Fig. 1, but the choices by the group of all agents (including nature)
always determine a singleton outcome.

a c
d e

b c
d e

Fig. 2. A deterministic choice structure for three agents.

Leaving more philosophical issues aside, one may wonder whether this tech-
nical trick is really necessary, mathematically speaking. This question will be
answered in the present paper: we show that one can indeed do without nature,
as long as one does not consider the effectivity of the grand coalition. We prove
this by generalizing a proof method from [16], which is discussed in Sect. 3. We
generalize this method, first, to an arbitrary finite number of agents and all
groups of such agents except the grand coalition (Sect. 4) and second, to infinite
models (Sect. 5). We finish with a summary and some questions for future work
(Sect. 6).

2 Preliminaries: Group STIT

The notion of effectivity can be made exact and studied formally, using a well-
known STIT logic for group agents. In this section, we introduce the formal
language of this logic. After that, we give two different semantics for this logic,
using choice models and normal game models, and discuss the relation between
these types of semantics.

2.1 The Language of Group STIT

Throughout this paper, we assume a fixed, finite set N = {1, . . . , n} ⊂ N of
agents. We let j range over members of N and we let G range over non-empty
subgroups of N . P = {p1, p2, . . .} is a (countable) set of propositional variables.
The formal language L is given by the following Backus-Naur form, where p
ranges over P:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | [G]ϕ | �ϕ

L−N denotes the fragment of L without the operator [N ]. Parentheses, brack-
ets, and braces are omitted if the omission does not give rise to ambiguities. The
operators ∨, →, ♦, and 〈G〉 abbreviate the standard constructions.
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A formula [G]ϕ expresses that “the group G sees to it that ϕ is the case”,
or alternatively, “given G’s choice, ϕ is necessary”.5 The formula �ϕ expresses
that “ϕ is settled true”, or equivalently, “whatever the agents choose, ϕ is the
case”. In modal logic terminology, � corresponds to the universal (or global)
modality, since it quantifies over all the worlds in a given model.6

2.2 Choice Models

Choice models consist of, on the one hand, a set of possible worlds W , and
on the other hand, for every agent j ∈ N , a partition of W that represents
the choices of j in the model. The only restriction to these partitions is that
they satisfy a specific frame condition, known as independence of agents. This
condition expresses that no group of agents G ⊆ N \ {j} can render any of the
choices that are available to agent j impossible. In other words, if the agent j
has a certain choice, then it can make this choice regardless of what all the other
agents do.

To stay in line with standard modal logic terminology, the choices of each
agent j will be represented by an equivalence relation ∼j on W .

Definition 1. A choice frame F is a tuple 〈W, 〈∼j〉j∈N 〉, where W is a non-
empty set (the domain of F ), each ∼j ⊆ W ×W is an equivalence relation, and
the independence of agency condition obtains:

(IOA) for all w1, . . . , wn ∈ W , there is a w′ such that wj ∼j w′ for all j ∈ N .

For a given choice frame F = 〈W, 〈∼j〉j∈N 〉 and non-empty G ⊆ N , we define
∼G =

⋂
j∈G ∼j.7

A choice model M is a triple 〈W, 〈∼j〉j∈N , V 〉 where 〈W, 〈∼j〉j∈N 〉 is a choice
frame and V : P → ℘(W ) is a valuation function.

We say that M is deterministic iff ∼N = {(w,w) : w ∈ W}. M is finite iff
W is finite.

For every non-empty G ⊆ N , the equivalence relation ∼G in a choice frame
induces a partition of W : ChoiceG(M) =df {{w′ | w′ ∼G w} | w ∈ W}. The
members of ChoiceG(M) are referred to as the choices of the group G in M . Note
that ChoiceN (M) = {X1 ∩ . . .∩Xn | X1 ∈ Choice1(M), . . . , Xn ∈ Choicen(M)}.
It is obvious that a choice model M is deterministic iff every member of
ChoiceN (M) is a singleton. We use the common term cells to refer to the mem-
bers of a ChoiceN (M).

5 [G] is also known as the Chellas STIT, after the seminal work in the logic of agency
by Chellas [4].

6 Given our semantics, �ϕ is definable as [i][j]ϕ for i �= j. We will however treat � as
primitive for reasons of clarity.

7 This property may be called the intersection property. In Sect. 6 we briefly mention
how it relates to some completeness results.
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Definition 2. Where M = 〈W, 〈∼j〉j∈N , V 〉 is a choice model and w ∈ W ,

M,w |= p iff w ∈ V (p)
M,w |= ¬φ iff M,w �|= φ
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= �φ iff for all w′ ∈ W it holds that M,w′ |= φ
M,w |= [G]φ iff for all w′ ∈ W with w′ ∼G w it holds that M,w′ |= φ.

As usual, ‖ϕ‖M = {w ∈ W | M,w |= ϕ}.
That G is effective for a state of affairs ϕ in the choice model M can be

expressed by means of the formula ♦[G]ϕ. This formula expresses that, for some
world w in the model, [G]ϕ is true. Since ChoiceG(M) is a partition of W ,
this is equivalent to saying that there is a choice X ∈ ChoiceG(M) such that
X ⊆ ‖ϕ‖M .

2.3 Normal Game Models

In this section, we briefly spell out the semantics for group STIT using normal
game forms, following [16]. Subsequently, we discuss the relation between normal
game forms and deterministic choice models.

Definition 3. A normal game form for the set of agents N = {1, . . . , n} is a
tuple G = 〈Ai〉i∈N , where each Ai is a non-empty set of actions a, a′, . . . available
to agent i. We call ×i∈NAi the set of action profiles of the game, and denote
its members by σ, σ′, etc. Where σ = 〈a1, . . . , an〉 ∈ ×i∈NAi and j ∈ N , let
πj(σ) = aj. Where ∅ �= G ⊆ N , let πG(σ) denote G’s part in the action profile
σ, i.e., πG(σ) = 〈πj(σ)〉j∈G.

A normal game model is a tuple S = 〈〈Ai〉i∈N , V 〉, where 〈Ai〉i∈N is a normal
game form and V : P → ℘(×i∈NAi) is a valuation function.

Definition 4. Where S = 〈〈Ai〉i∈N , V 〉 is a normal game model and σ ∈
×i∈NAi:

S, σ |= p iff σ ∈ V (p)
S, σ |= ¬φ iff S, σ �|= φ
S, σ |= φ ∧ ψ iff S, σ |= φ and S, σ |= ψ
S, σ |= �φ iff for all σ′ ∈ ×i∈NAi, it holds that S, σ′ |= φ
S, σ |= [G]φ iff for all σ′ ∈ W with πG(σ) = πG(σ′) it holds that S, σ′ |= φ.

As was the case for choice models, one can use the language L to formalize
statements concerning the effectivity of a given (group) agent G for a certain
outcome, where outcomes are represented by propositions ϕ. The formula ♦[G]ϕ
expresses that there is an action profile σ such that, for all σ′ with πG(σ) =
πG(σ′), S, σ′ |= ϕ. In other words, the group G has a combined choice πG(σ)
such that, whatever the other agents do, ϕ is guaranteed.
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2.4 A Correspondence Result

As mentioned in the introduction, there is a well-known correspondence between
deterministic choice models on the one hand, and normal game models on the
other – see e.g. [5,13,14].8 To clarify the purpose of our new results, these cor-
respondence results are explicated here.

Definition 5. Let S = 〈〈Ai〉i∈N , V 〉 be a normal game model. The correspond-
ing choice model MS = 〈W, 〈∼i〉i∈N , V 〉 is defined as follows:

1. W = ×i∈NAi

2. for all i ∈ N and σ, σ′ ∈ W , σ ∼i σ′ iff πi(σ) = πi(σ′).

Theorem 1. Let S = 〈〈Ai〉i∈N , V 〉 be a normal game model. Then (a) MS is
a deterministic choice model. Moreover, (b) where ϕ ∈ L and σ ∈ ×i∈NAi:
S, σ |= ϕ iff MS , σ |= ϕ.

Proof. Suppose the antecedent holds. To obtain (a), note first that each relation
∼i is an equivalence relation. To see why the condition (IOA) holds for MS ,
let σ1, . . . , σn ∈ ×i∈NAi. Let σ = 〈π1(σ1), . . . , πn(σn)〉. It can easily be verified
that, for all j ∈ N , σ ∼j σj . Finally, to see why MS is deterministic, note that
σ ∼N σ′ iff for all j ∈ N , πj(σ) = πj(σ′) iff σ = σ′.

The proof of (b) is by a standard induction on the complexity of ϕ; it suffices
to apply the truth conditions from Definitions 2 and 4. �
Definition 6. Let M = 〈W, 〈∼i〉i∈N , V 〉 be a deterministic choice model. The
corresponding normal game model SM = 〈〈Ai〉i∈N , V ′〉 is such that the following
holds:

1. for all i ∈ N , Ai = Choicei(M)
2. where σ = 〈X1, . . . , Xn〉 ∈ ×i∈NAi and X1 ∩ . . . ∩ Xn = {w}: σ ∈ V ′(p) iff

w ∈ V (p).

Theorem 2. Let M = 〈W, 〈∼i〉i∈N , V 〉 be a deterministic choice model and
ϕ ∈ L. Then (a) SM = 〈〈Ai〉i∈N , V ′〉 is a normal game model. Moreover, where
σ = 〈X1, . . . , Xn〉 ∈ ×i∈NAi, X1 ∩ . . . ∩ Xn = {w}, and ϕ ∈ L: SM , σ |= ϕ iff
M,w |= ϕ.

Proof. Suppose the antecedent holds. To obtain (a), it suffices to check that V ′ is
a valuation function. This follows immediately in view of the fact that for every
σ ∈ ×i∈NChoicei(M), there is a world w such that w is the only member of the
intersection of all the choices that make up σ. To prove (b), we again apply a
standard induction on the complexity of ϕ, together with the semantic clauses
from Definitions 2 and 4. �

Theorems 1 and 2 give us at once:

Corollary 1. Let ϕ ∈ L. Then ϕ is valid in all deterministic choice models if
and only if ϕ is valid in all normal game models.
8 In [13,14], the authors actually establish a correspondence between strategic games

and choice models enriched with preference relations �i for the agents i ∈ N . Ignor-
ing this extra dimension, one obtains exactly the correspondence that we spell out
in the present section.



Doing Without Nature 215

3 Informal Sketch of the Proof

In the remainder we prove that, relative to the fragment L−N , every (indeter-
ministic) choice model M i is a bounded morphic image of some deterministic
choice model Md (cf. Theorems 4 and 6 below).9 In other words, for every world
w in M i there is a world w′ in Md such that, for every formula ϕ ∈ L−N , ϕ is
true at w in M i iff ϕ is true at w′ in Md. More briefly, M i and Md are pointwise
equivalent, relative to L−N . In view of the preceding, this result implies that the
set of all formulas from L−N that are valid in all choice models coincides with
the set of all formulas from L−N that are valid in all normal game models.10

This way, we fill an important gap in the comparison of normal game models on
the one hand, and choice models (and other traditional semantics of STIT logic)
on the other.

Our proof generalizes a construction by Van Benthem and Pacuit [16] that
only applies to the case where we have two agents and M i is finite. The con-
struction by Van Benthem and Pacuit is in turn based on known methods from
modal product logics.11 To guide the reader’s intuitions and to explain our own
contribution, Van Benthem and Pacuit’s construction is explained in the current
section.

Consider the model M i depicted in Fig. 3 – as before, we abstract from the
valuation function in our pictures of the models. Note that the cell that contains
the highest number of possible worlds is the one containing three worlds: h, i,
and j.

a b,c d
e,f g h,i,j

Fig. 3. An indeterministic choice model.

The proof by Van Benthem and Pacuit basically consists of two steps. The
first step is to construct an m×m matrix M(X) for every cell X in M i, where m
is the highest number of worlds that occur in one cell of M i. The points in this
matrix are copies of the members of X, and the matrix is constructed in such
a way that every x ∈ X occurs at least once in each row and in each column of
M(X). For instance, the cells in the second row of M i give us the 3× 3 matrices
depicted in Fig. 4.

To obtain such m × m matrices for every cell X in the model, Van Benthem
and Pacuit apply a simple arithmetical trick. We give a variant of theirs, that
generalizes easily to the case of n > 2 agents.
9 See e.g. [2] for an introduction to the notion of bounded morphisms in modal logic.

10 For the grand coalition N , determinism obviously makes a difference. That is, within
the class of all choice frames, determinism is characterized by the axiom [N ]ϕ ↔ ϕ,
which is not valid on indeterministic choice frames.

11 See e.g. [7] for an introduction to modal product logics.
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e f e
f e f
e f e

g g g
g g g
g g g

h i j
i j h
j h i

Fig. 4. Some 3 × 3 matrices.

For every cell X in the model, fix a surjective function gXm : {1, . . . ,m} →
X. Every point in M(X) is identified by its coordinates 〈k, l〉, where k, l ∈
{1, . . . , m}. The world x ∈ X that corresponds to the point 〈k, l〉 in M(X) is
defined by f : {1, . . . , m}2 → X as follows:12

f(〈k, l〉) = gXm(((k + l)mod m) + 1)

This way, every row k of M(X) is guaranteed to contain all members of X,
and likewise for every column l of M(X).

The second step in the construction from [16] consists in substituting the
new, “small” matrices for the cells in the matrix that corresponds to the original
model M i. Applied to the above example, this gives us a single 6 × 9 matrix
(Fig. 5).

a a a b c b d d d
a a a c b c d d d
a a a b c b d d d

e f e g g g h i j
f e f g g g i j h
e f e g g g j h i

Fig. 5. A deterministic choice model.

This new matrix corresponds to a deterministic choice model: rows are again
the actions of one agent, columns are the actions of the other agent. The crucial
point to note is that, as far as the effectivity of both agents is concerned, M i

and Md are equivalent, that is, they validate exactly the same formulas in L−N .
Only the effectivity of the grand coalition N is affected.

To see how this new matrix can be accurately defined, we first need to explain
how worlds in Md are defined. For the two-agent case, the worlds in Md are
defined by (a) an index X that refers to a cell in M i, and (b) the coordinates k, l ∈
{1, . . . , m} that specify a point in M(X). Two worlds 〈X, k, l〉 and 〈X ′, k′, l′〉 are
connected for agent 1, iff (a) the cells X and X ′ are included in a single choice
Y ∈ Choice1(M i), and (b) k = k′. Analogously, the new choices of the second
agent are defined in terms of Choice2(M i) and the indexes l, l′ of the new worlds.
12 Where i, j ∈ N, i mod j is shorthand for “i modulo j”, i.e., the remainder after

division of i by j.
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Even though it does the job, the matrix depicted in Fig. 5 is somewhat large
for our purposes: e.g. the third row is superfluous, since it is identical to the first
row. Still, the advantage of this construction is that it can easily be generalized
to models with n agents. Just as for 2 agents, every cell X in a game for n agents
can be replaced with a new, n-dimensional matrix. This is exactly what happens
in the proof to which we now turn.

4 Product Construction, Finite Case

In this section and the next one, we prove our main results. In the current section,
we will consider the case where M i is finite and construct an L−N -equivalent,
deterministic and finite model Md from it. In the next section we consider the
case where M i is infinite; using a slightly more complex construction, we con-
struct an L−N -equivalent deterministic model Md from M i. For reasons that
will be explained in Sect. 5, the second type of construction will always render
an infinite model Md, even when M i is finite. Hence, the proof in the present
section is not just a special case of the one from the next section.

Recall that we hold the number n of agents fixed in this paper; the construc-
tion of Md will depend in part on this number (see Definition 8). We first lift
the equivalence relations ∼i

j to relations ≈i
j between the cells in M i:

Definition 7. Where X,Y ∈ ChoiceN (M i): X ≈i
j Y iff for every x ∈ X and

every y ∈ Y it holds that x ∼i
j y.

Each of the following can be easily verified:

Proposition 1. X ≈i
j Y iff there are x ∈ X and y ∈ Y such that x ∼i

j y.

Proposition 2. ≈i
j is an equivalence relation.

Definition 8. Let M i = 〈W i, 〈∼i
j〉j∈N , V i〉 be a finite indeterministic choice

model. Let m be the number of worlds in the cell in ChoiceN (M i) with the
highest cardinality. For every X ∈ ChoiceN (M i), fix a surjective function
gXm : {1, . . . , m} → X. Where X ∈ ChoiceN (M i) and k1, . . . , kn ∈ {1, . . . , m},
let

f(〈X, k1, . . . , kn〉) = gXm(((k1 + . . . + kn)mod m) + 1)

The model Md = 〈W d, 〈∼d
j 〉j∈N , V d〉 is defined as follows:

W d ={〈X, k1, . . . , kn〉 : X ∈ ChoiceN (M i) and {k1, . . . , kn} ⊆ {1, . . . , m}}
∼d

j ={(〈X, k1, . . . , kn〉, 〈Y, l1, . . . , ln〉) ∈ (W d)2 : X ≈i
j Y and kj = lj}

V d(p) ={〈X, k1, . . . , kn〉 ∈ W d : f(〈X, k1, . . . , kn〉) ∈ V i(p)}.

We first make two basic observations about the set W d as given by
Definition 8. The proofs are safely left to the reader.
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Proposition 3. f : W d → W i is onto.

If X is a set, let card(X) denote the number of elements in X.13

Proposition 4. card(W d) = mn × card(ChoiceN (M i)). Hence, Md is finite.

Theorem 3. Md is a deterministic choice model.

Proof. We need to prove a number of things:

1. “W d �= ∅.” Immediate, by Proposition 3 and since W i �= ∅.
2. “Every ∼d

j is an equivalence relation.” Immediate in view of Proposition 2
and because of the definition of ∼d

j .
3. “Md satisfies Independence of Agents.” Let 〈Xj , k

j
1, . . . , k

j
n〉 ∈ W d for all

j ∈ N . We have to show that there is a 〈Y, l1, . . . , ln〉 ∈ W d such that for
all j ∈ N it holds that 〈Y, l1, . . . , ln〉 ∼d

j 〈Xj , k
j
1, . . . , k

j
n〉. First, set lj = kj

j

for all j ∈ N . Second, fix an arbitrary xj ∈ Xj for all j ∈ N . Because of
Independence of Agents for M i, there is a y ∈ W i such that xj ∼i

j y for all
j ∈ N . Let Y be the cell Y ∈ ChoiceN (M i) that contains y. Then, because
of Proposition 1, it must be that Y ≈i

j Xj for all j ∈ N . By the definition
of W d, it must be that 〈Y, l1, . . . , ln〉 ∈ W d. By the definition of ∼d

j , it must
be that 〈Y, l1, . . . , ln〉 ∼d

j 〈Xj , k
j
1, . . . , k

j
n〉 for all j ∈ N . Hence, Md satisfies

Independence of Agents.
4. “∼d

N is the identity relation over W d.” Suppose that 〈X, k1, . . . , kn〉 ∼d
N

〈Y, l1, . . . , ln〉. Hence, 〈X, k1, . . . , kn〉 ∼d
j 〈Y, l1, . . . , ln〉 for all j ∈ N . Then

X,Y ∈ ChoiceN (M i) and for all j ∈ N both X ≈i
j Y and kj = lj . Hence it

must be that (a) 〈k1, . . . , kn〉 = 〈l1, . . . , ln〉. Because X ≈i
j Y for all j ∈ N ,

it must be that for all j ∈ N and for all x ∈ X and all y ∈ Y it holds that
x ∼i

j y. Hence, for all x ∈ X and all y ∈ Y it holds that x ∼i
N y. Because

X,Y ∈ ChoiceN (M i), it must be that (b) X = Y . From (a) and (b) we
conclude that 〈X, k1, . . . , kn〉 = 〈Y, l1, . . . , ln〉.

By (i)-(iv), Md is a deterministic choice model. �

Theorem 4. f is a bounded morphism from Md to M i in L−N , i.e.:

1. f is onto.
2. For all w,w′ ∈ W d and all non-empty G ⊂ N : if w ∼d

G w′, then f(w) ∼i
G

f(w′)
3. For all u ∈ W d, all non-empty G ⊂ N , and all y ∈ W i: if f(u) ∼i

G y, then
there is a v ∈ W d such that f(v) = y and u ∼d

G v.
4. For all w ∈ W d and p ∈ P: w ∈ V d(p) iff f(w) ∈ V i(p).

13 Note that we apply the card function both to finite and infinite (even uncountable)
sets.
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Proof. Ad 1. This is Proposition 3.
Ad 2. Let w = 〈X, k1, . . . , kn〉 and w′ = 〈Y, l1, . . . , ln〉 be arbitrary members of
W d, and suppose that w ∼d

G w′. Let f(w) = x and f(w′) = y. It follows that
x ∈ X, y ∈ Y , and for all j ∈ G, X ≈i

j Y . By Definition 7, for all j ∈ G, x ∼i
j y.

Hence, x ∼i
G y.

Ad 3. Suppose the antecedent holds for u = 〈X, k1, . . . , kn〉. Note that f(u) ∈ X.
Let Y ∈ ChoiceN (M i) be such that y ∈ Y . By Proposition 1 and the supposition,
(†) for all j ∈ G, X ≈i

j Y . Fix a t ∈ N − G. For all j ∈ N − {t}, let lj = kj .
Let lt ∈ {1, . . . , m} be such that gXm(((l1 + . . . + ln)mod m) + 1) = y. It is a
matter of basic arithmetic to check that there is indeed such an lt. Let now v =
〈Y, l1, . . . , ln〉. It follows that f(v) = y. By (†) and in view of the construction,
u ∼d

j v for all j ∈ G. Hence, u ∼d
G v.

Ad 4. Immediate in view of the definition of V d. �

It is well-known that, whenever there is a bounded morphism between two
models M and M ′, then these models are pointwise equivalent – see e.g. [2,
Proposition 2.14]. Hence, Theorem 4 gives us:

Corollary 2. For all ϕ ∈ L−N and all w ∈ W d: Md, w |= ϕ iff M i, f(w) |= ϕ.

5 Product Construction, Infinite Case

The proof in Sect. 4 makes essential use of the upper bound m on the cardinality
of each X ∈ ChoiceN (M i). As a result, we can apply well-known arithmetic
techniques to construct the n-dimensional matrices that form the core of the
construction of Md. For the infinite case, a slightly different construction is
needed.

The idea behind Definition 9 below can be explained as follows. In every
world u ∈ W d, each of the agents gets to choose exactly one world from W i, and
one natural number k ∈ N. The output for this world, given by f , depends on
the one hand on the index X, on the other hand, on which agent t ∈ N chose
the highest number kt ∈ N, and the world wt that this agent t chose.

We first introduce some more notation. Where x = 〈x1, . . . , xk〉 is a k-tuple
and 1 ≤ j ≤ k, let πj(x) = xj . Where X ⊂ N is a finite set of natural numbers,
let max<(X) denote the largest element in X.

Definition 9. Let M i = 〈W i, 〈∼i
j〉j∈N , V i〉 be an infinite indeterministic choice

model. For every X ∈ ChoiceN (M i), fix a surjective function gX : W i → X.14

Where X ∈ ChoiceN (M i), w1, . . . , wn ∈ W i, and k1, . . . , kn ∈ N, let

f(〈X, 〈w1, k1〉, . . . , 〈wn, kn〉〉) = gX(wl)

where l ∈ {1, . . . , n} is the smallest natural number such that kl =
max<{k1, . . . , kn}. The model Md = 〈W d, 〈∼d

j 〉j∈N , V d〉 is defined as follows:

14 Since X ⊆ W i, it can be easily verified that there is at least one such function gX .
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W d = {〈X, 〈w1, k1〉, . . . , 〈wn, kn〉〉 : X ∈ ChoiceN (M i), w1, . . . , wn ∈ W i,
and k1, . . . , kn ∈ N}

∼d
j = {(〈X, ε〉, 〈Y, ε′〉) ∈ (W d)2 : X ≈i

j Y and πj(ε) = πj(ε′)}
V d(p) = {w ∈ W d : f(w) ∈ V i(p)}.

Note that we use ε, ε′, . . . as metavariables for tuples of the form
〈〈w1, k1〉, . . . , 〈wn, kn〉〉 that are part of a larger tuple w ∈ W d.

Theorem 5. Md is a deterministic choice model.

Proof. We need to prove a number of things:

1. “W d �= ∅.” Since W i �= ∅, also ChoiceN (M i) �= ∅. By Definition 9, W d �= ∅.
2. “Every ∼d

j is an equivalence relation.” Immediate in view of Proposition 2
and by Definition 9.

3. “Md satisfies Independence of Agents.” Consider arbitrary w1, . . . , wn ∈ W d,
where each wj = 〈Xj , 〈wj

1, k
j
1〉, . . . , 〈wj

n, kj
n〉〉. Fix an arbitrary xj ∈ Xj for all

j ∈ N . Because of Independence of Agents for M i, there is a y ∈ W i such
that xj ∼i

j y for all j ∈ N . Let Y be the cell Y ∈ ChoiceN (M i) that contains
y. Then, because of Proposition 1, it must be that (a) Y ≈i

j Xj for all j ∈ N .
Let w′ = 〈Y, ε〉 = 〈Y, 〈w1

1, k
1
1〉, . . . , 〈wn

n, kn
n〉〉. By (a) and the definition of ∼d

j ,
for all j ∈ N , wj ∼d

j w′.
4. “∼d

N is the identity relation over W d.” Suppose that 〈X, ε〉 ∼d
N 〈Y, ε′〉. Then,

for all j ∈ N , πj(ε) = πj(ε′) and hence (a) ε = ε′. Because X ≈i
j Y for all

j ∈ N , it must be that for all j ∈ N and for all x ∈ X and all y ∈ Y it
holds that x ∼i

j y. Hence, for all x ∈ X and all y ∈ Y it holds that x ∼i
N y.

Because X,Y ∈ ChoiceN (M i), it must be that (b) X = Y . From (a) and (b)
we conclude that 〈X, ε〉 = 〈Y, ε′〉.

By (i)-(iv), Md is a deterministic choice model. �

Theorem 6. f is a bounded morphism from Md to M i in L−N , i.e.:

1. f is onto.
2. For all w,w′ ∈ W d and all non-empty G ⊂ N : if w ∼d

G w′, then f(w) ∼i
G

f(w′)
3. Where u ∈ W d, G ⊂ N , and f(u) ∼i

G y for a y ∈ W i: there is a v ∈ W d

such that f(v) = y and u ∼d
G v.

4. For all w ∈ W d and p ∈ P: w ∈ V d(p) iff f(w) ∈ V i(p).

Proof. Ad 1. Let x ∈ W i be arbitrary. Let X ∈ ChoiceN (M i) be such that x ∈ X.
Let y ∈ W i be such that gX(y) = x. Finally, let u = 〈X, 〈y, 1〉, . . . , 〈y, 1〉〉 be a
sequence of length n + 1. Note that u ∈ W d. Moreover, f(u) = gX(y) = x.
Ad 2. Analogous to the proof of Theorem 4.3.
Ad 3. Suppose the antecedent holds for u = 〈X, 〈w1, k1〉, . . . , 〈wn, kn〉〉. Note
that f(u) ∈ X. Let Y ∈ ChoiceN (M i) be such that y ∈ Y . Note that, by
the supposition, (†) for all j ∈ G, X ≈i

j Y . Fix a t ∈ N − G. For all j ∈
N − {t}, let w′

j = wj and lj = kj . Let lt be an arbitrary natural number
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such that lt > lj for all j ∈ N − {t}. Fix w′
t ∈ Y such that gY (w′

t) = y. Let
v = 〈Y, 〈w′

1, l1〉, . . . , 〈w′
n, ln〉〉. It follows that f(v) = gY (w′

t) = y. By (†) and in
view of the construction, u ∼d

j v for all j ∈ G, and hence u ∼d
G v.

Ad 4. Immediate in view of the definition of V d. �

It is useful, at this point, to check how we can cut down the size of W d

given certain restrictions on M i. One can e.g. easily observe that, if there is a
Y ∈ ChoiceN (M i) such that, for all Z ∈ ChoiceN (M i), card(Y ) ≥ card(Z), then
we can replace W i with Y in the definition of gX and W d.

A natural follow-up question is: what if W i is finite? Can we construct one
proof that works for both finite and infinite models M i, and that guarantees
that the constructed model Md is finite whenever M i is finite? Note that the
change that we proposed in the previous paragraph will not do to obtain such a
proof. That is, all the natural numbers can still be used for the indices k1, . . . , kn,
whence W d is bound to be infinite under the present construction. Moreover,
the complication with double indices 〈kj , wj〉 seems necessary in order to ensure
that, whatever all the other agents do, any given agent j ∈ N can still “enforce”
every world x ∈ X for a given cell X ∈ ChoiceN (M i), by choosing a yet higher
index kj and the world y ∈ Y with gX(y) = x.

6 Concluding Remarks

In this paper, we have shown that one can retrieve determinism without adding
“nature” as an agent. We generalized an earlier result by Van Benthem and
Pacuit [16], and showed that every indeterministic n-agent choice model is point-
wise equivalent to a deterministic n-agent choice model, as long as we ignore the
grand coalition. As a corollary, any (possibly infinite) choice model for n agents
can be translated into an L−N -equivalent normal game form for n agents, where
the latter is finite if the former is finite. Our result thus contributes to connecting
STIT logic and game theory more generally.

A number of questions should be answered in future work. Let us start with
the most technical ones. First, can we rephrase the proof for the infinite case in
such a way that it also covers the finite case, ensuring that Md is finite whenever
M i is? Second, what about STIT logic with infinitely (countably many) agents?
Here, the results appear to be mixed. If we only allow for finite groups in the
language, we can easily generalize the construction from Sect. 5. However, if we
allow for infinite groups G ⊂ N , this construction no longer does the job.

A different issue concerns the axiomatization of the logic we presented. Draw-
ing on earlier results from [8,16], it can be shown that the L−N -fragment of the
logic of deterministic choice models is isomorphic to the modal product logic
S5n. The latter logic is not decidable and cannot be finitely axiomatized for
n > 2, cf. [8]. A non-standard axiomatization of S5n has been presented in
[17]. It remains to be seen how this axiomatization can be extended to the full
language L which includes [N ].
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There are various ways for retrieving (finite) axiomatizability, decidability
and acceptable complexity in the context of group STIT. First, one may restrict
the formal language. For instance, it was proven in [11, Sect. 3] that when nesting
of STIT operators is not allowed (i) the satisfiability problem becomes decidable
in non-deterministic polynomial time (Corollary 1, p. 821), and (ii) the restricted
logic becomes finitely axiomatizable (Corollary 2, p. 821).

Second, one may use different models to interpret the STIT language. Most
importantly, one may weaken the intersection property, which says that ∼G=⋂

j∈G ∼j , to the requirement of monotonic effectivity: if F ⊆ G, then ∼G⊆∼F . It
has been shown in [3] that complete logics are readily available for these models,
typically using Sahlqvist schemes [2].

A third route that was suggested in [16] is to give up the Independence
of Agency (IOA) condition. If one does not impose (IOA) on the models, one
obtains the non-deterministic counterpart of what Van Benthem and Pacuit call
general game models [15,16]. Let us call such models general choice models.
Note that in a general choice model, the choices of one agent may depend on
the choices of other agents. The logic of general choice models coincides with the
logic of distributed knowledge for arbitrary groups, which is known to be finitely
axiomatizable and decidable [6, Chap. 3]. Now, as a matter of fact, our proofs in
the current paper do not rely on (IOA), except where we show that the newly
constructed model Md also satisfies (IOA). Hence, our results reduce the problem
of axiomatization of the logic of general game models to the axiomatization of
the logic of general choice models.
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Abstract. This paper positively solves an open problem if it is possible
to provide a Hilbert system to Epistemic Logic of Friendship (EFL) by
Seligman, Girard and Liu. To find a Hilbert system, we first introduce a
sound, complete and cut-free tree (or nested) sequent calculus for EFL,
which is an integrated combination of Seligman’s sequent calculus for
basic hybrid logic and a tree sequent calculus for modal logic. Then we
translate a tree sequent into an ordinary formula to specify a Hilbert
system of EFL and finally show that our Hilbert system is sound and
complete for an intended two-dimensional semantics.

Keywords: Epistemic logics of friendship · Tree sequent calculus ·
Hilbert system · Completeness · Cut elimination theorem

1 Introduction

Epistemic Logic of Friendship (EFL) is a version of two-dimensional modal logic
proposed by [22–24]. Compared to the ordinary epistemic logic [14], one of the
key features of their logic is to encode the information of agents into the object
language by a technique of hybrid logic [1,3]. Then, a propositional variable p
can be read as an indexical proposition such as “I am p” and we may formalize
the sentences like “I know that all my friends is p” or “Each of my friends
knows that he/she is p”. Moreover, the authors of [23,24] provided a dynamic
mechanism for capturing public announcements [19], announcements to all the
friends, and private announcements [2] and established a relative completeness
result (cf. [12,23,24]). This paper focuses on the problem of axiomatizing EFL
in terms of Hilbert system, i.e., the static part of their framework.

A difficulty of the problem comes from a combination of modal logic for
agents’ knowledge and hybrid logic for a friendship relation among agents. If we
combine two hybrid logics over two-dimensional semantics of [22–24], it is noted
that there is an axiomatization of all valid formulas in the semantics by [20,
p. 471]. Our approach to tackle the problem is via a sequent calculus, whose
idea is originally from Gentzen. In particular, our notion of sequent for EFL
can be regarded as a combination of a tree or nested sequent [8,15] for modal
logic and @-prefixed sequent [7,21] for hybrid logic. One of the merits of our
c© Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 224–239, 2017.
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notion of sequent is that we can translate our sequent into an ordinary formula.
This allows us to specify our desired Hilbert system for EFL. We note that [9]
independently provided a prefixed tableau system for a dynamic extension of
EFL. There are at least three points we should emphasize on our work. First,
our tree sequent system is quite simpler than the tableau system given in [9],
i.e., the number of rules of our sequent system is almost half of the number
of rules of their system. Second, it is not clear if a prefixed formula in [9] for
the tableau calculus can be translated into an ordinary formula. Their result is
not concerned with Hilbert system. Third, their syntax contains a special kind
of propositional variable (called feature proposition) and they include a tableau
rule called propositional cut to handle such propositions. On the other hand, we
can show that our tree sequent calculus enjoys the cut elimination theorem, the
most fundamental theorem in proof-theory.

We proceed as follows. Section 2 introduces the syntax and semantics of EFL.
Section 3 provides a tree sequent calculus for EFL and establishes the sound-
ness of the sequent calculus (Theorem 1). Section 4 establishes a completeness
result of a cut-free fragment of our sequent calculus (Theorem2). As a corollary,
we also provide a semantic proof of the cut elimination theorem of our sequent
calculus (Corollary 1). Section 5 specifies a Hilbert system of EFL, and provides
a syntactic proof of the equipollence between our proposed Hilbert system and
our tree sequent calculus, which implies the soundness and completeness results
for our Hilbert system (Corollary 2). Section 6 extends our technical results to
cover extensions of EFL where a modal operator for states (or a knowledge
operator) obeys S4 or S5 axioms and a friendship relation satisfies some univer-
sal properties (Theorem 5). The result of this section subsumes the logic given
in [9], provided we drop the dynamic operator from the syntax of [9]. Section 7
concludes this paper.

2 Syntax and Two-Dimensional Kripke Semantics

Our syntax L consists of the following vocabulary: a countably infinite set
Prop = {p, q, r, . . .} of propositional variables, a countably infinite set Nom =
{n,m, l, . . .} of agent nominal variables, the Boolean connectives of → (the impli-
cation) and ⊥ (the falsum), the satisfaction operators @ and the friendship oper-
ator F as well as the modal operator �. We note that an agent nominal n ∈ Nom
is a syntactic name of an agent or an individual, which amounts to a constant
symbol of the first-order logic, while n is read indexically as “I am n.” Similarly,
we read a propositional variable p ∈ Prop also indexically by “I am p,” e.g., “I
am in danger.” The set Form of formulas in L is defined inductively as follows:

Form � ϕ:: = n | p | ⊥ |ϕ → ϕ |@nϕ |Fϕ |�ϕ,

where n ∈ Nom and p ∈ Prop. Boolean connectives other than → or ⊥ are
introduced as ordinary abbreviations. We define the dual of � as ♦ := ¬�¬ and
the dual of F as 〈F〉 := ¬F¬. Moreover, a formula of the form @nϕ is said to be
@-prefixed. Let us read � as “I know that.” Here are some examples of how to
read formulas:
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– �p, read as “I know that I am p.”
– @n�p, read as “n knows that she is p.”
– �@np, read as “I know that agent n is p.”
– Fp, read as “all my friends are p.”
– F�p, read as “all my friends know that they are p.”
– �Fp, read as “I know that all my friends are p.”
– @n〈F〉m, read as “agent m is a friend of agent n.”

We say that a mapping σ : Prop ∪ Nom → Form is a uniform substitution if σ
uniformly substitutes propositional variables by formulas and agent nominals by
agent nominals and we use ϕσ to mean the result of applying a uniform substi-
tution σ to ϕ. In particular, we use ϕ[n/k] to mean the result of substituting
each occurrence of agent nominal k in ϕ uniformly with agent nominal n.

An model M for our syntax L is a tuple (W,A, (Ra)a∈A, (	w)w∈W , V ), where
W is a non-empty set of possible states, A is a non-empty set of agents, Ra is a
binary relation on W (a ∈ A), 	w is a binary relation on A (called a friendship
relation, w ∈ W ), V is a valuation function Prop∪Nom → P(W × A) such that
V (n) is a subset of W × A of the form W × {a}, where we denote such unique
element a by n. We do not require any property for Ra and 	w but we will come
back to this point in Sect. 6. We say that a tuple F = (W,A, (Ra)a∈A, (	w)w∈W )
without a valuation is a frame.

Let M = (W,A, (Ra)a∈A, (	w)w∈W , V ) be a model. Given a pair (w, a) ∈
W × A and a formula ϕ, the satisfaction relation M, (w, a) |= ϕ (read “agent a
satisfies ϕ at w in M ”) inductively as follows:

M, (w, a) |= p iff (w, a) ∈ V (p),
M, (w, a) |= n iff n = a,
M, (w, a) 
|= ⊥
M, (w, a) |= ϕ → ψ iff M, (w, a) |= ϕ implies M, (w, a) |= ψ
M, (w, a) |= @nϕ iff M, (w, n) |= ϕ,
M, (w, a) |= Fϕ iff (a 	w b implies M, (w, b) |= ϕ) for all agents b ∈ A,
M, (w, a) |= �ϕ iff (wRav implies M, (v, a) |= ϕ) for all states v ∈ W.

Given a class M of models, we say that a formula ϕ is valid in M when M, (w, a) |=
ϕ for all pairs (w, a) in M and all models M ∈ M. This paper tackles the question
if the set of all valid formulas in the class of all models is axiomatizable.

3 Tree Sequent Calculus of Epistemic Logic of Friendship

Fig. 1. A tree sequent

A label is inductively defined as follows: Any nat-
ural number is a label; if α is a label, n is an agent
nominal in Nom and i is a natural number, then
α ·n i is also a label. When β is α ·n i, then we say
that β is an n-child of α or that α is an n-parent
of β. A tree T is a set of labels such that the set
contains the unique natural number j as the root
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label and the set is closed under taking the parent of a label, i.e., α ·n i ∈ T
implies α ∈ T for all labels α, agent nominals n and natural numbers i. For
example, all of 0, 0 ·n 1 and 0 ·k 2 are labels and they form a finite tree.

Given a label α and an @-prefixed formula ϕ, the expression α : ϕ is said
to be a labelled formula, where recall that an @-prefixed formula is of the form
@nϕ. A tree sequent is an expression of the form

Γ
T⇒ Δ

where Γ and Δ are finite sets of labelled formulas, T is a finite tree of labels,
and all the labels in Γ and Δ are in T . A tree sequent “Γ

T⇒ Δ” is read as
“if we assume all labelled formulas in Γ , then we may conclude some labelled
formulas in Δ.” A tree sequent 0 : @nϕ, 0 ·k 2 : @mρ

T⇒ 0 : @mψ, 0 ·n 1 : @kθ is
represented as in Fig. 1, where T = {0, 0 ·n 1, 0 ·k 2}. That is, 0, 0 ·n 1 and 0 ·k 2
are “addresses” of the root, the left leaf, and the right leaf, respectively.

Table 1. Tree Sequent Calculus TEFL

(⊥) α : @n⊥, Γ
T⇒ Δ (id) α : @nϕ, Γ

T⇒ Δ, α : @nϕ

α : @nm, α : ϕ[n/k], Γ
T⇒ Δ

α : @nm, α : ϕ[m/k], Γ
T⇒ Δ

(rep=1)
α : @nm, α : ϕ[m/k], Γ

T⇒ Δ

α : @nm, α : ϕ[n/k], Γ
T⇒ Δ

(rep=2)

α : @nn, Γ
T⇒ Δ

Γ
T⇒ Δ

(ref=)
β : @nm, Γ

T⇒ Δ

α : @nm, Γ
T⇒ Δ

(rigid=)

α : @nϕ, Γ
T⇒ Δ, α : @nψ

Γ
T⇒ Δ, α : @n(ϕ → ψ)

(→ R)
Γ

T⇒ Δ, α : @nϕ α : @nψ, Γ
T⇒ Δ

α : @n(ϕ → ψ), Γ
T⇒ Δ

(→ L)

Γ
T⇒ Δ, α : @mϕ

Γ
T⇒ Δ, α : @n@mϕ

(@R)
α : @mϕ, Γ

T⇒ Δ

α : @n@mϕ, Γ
T⇒ Δ

(@L)

α : @n〈F〉m, Γ
T⇒ Δ, α : @mϕ

Γ
T⇒ Δ, α : @nFϕ

(FR)∗ Γ
T⇒ Δ, α : @n〈F〉m α : @mϕ, Γ

T⇒ Δ

α : @nFϕ, Γ
T⇒ Δ

(FL)

Γ
T ∪{ α·ni }⇒ Δ, α ·n i : @nϕ

Γ
T⇒ Δ, α : @n�ϕ

(�R)† β : @nϕ, Γ
T⇒ Δ

α : @n�ϕ, Γ
T⇒ Δ

(�L)‡

Γ
T⇒ Δ

Γ
T ∪{α}⇒ Δ

(wlab)� Γ
T⇒ Δ, α : @nϕ α : @nϕ, Π

T⇒ Σ

Γ, Π
T⇒ Δ, Σ

(Cut)

∗: m is a fresh agent nominal in the lower sequent; †: i ∈ N is fresh in the lower sequent;
‡: β is an n-child of α; 
: T ∪ {α} is a tree of labels

Table 1 provides all the initial sequents and all the inference rules of tree
sequent calculus TEFL, where recall that ϕ[m/k] is the result of substituting
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each occurrence of agent nominal k in ϕ with agent nominal m. The system
without the cut rule is denoted by TEFL−. A derivation in TEFL (or TEFL−)
is a finite tree generated from initial sequents by inference rules of TEFL (or
TEFL−, respectively). The height of a derivation is defined as the maximum
length of branches in the derivation from the end (or root) sequent to an initial
sequent. A tree sequent Γ

T⇒ Δ is said to be provable in TEFL (or TEFL−) if
there is a derivation in TEFL (or TEFL−, respectively) such that the root of
the tree is Γ

T⇒ Δ.
Let M = (W,A, (Ra)a∈A, (	w)w∈W , V ) be a model and T a tree of labels.

A function f : T → W is a T -assignment in M if, whenever β is an n-child
of α in T , f(α)Rnf(β) holds. When it is clear from the context, we drop “T -”
from “T -assignment”. Given any labelled formula α : @nϕ with α ∈ T and any
T -assignment in M, we define the satisfaction for a labelled formula as follows:

M, f |= α : @nϕ iff M, (f(α), n) |= ϕ.

where “M, f |= α : @nϕ” is read as “α : @nϕ is true at (M, f)”. Given a tree
sequent Γ

T⇒ Δ and a T -assignment in M, we say that Γ
T⇒ Δ is true in (M, f)

(notation: M, f |= Γ
T⇒ Δ) if, whenever all labelled formulas of Γ is true in

(M, f), some labelled formulas of Δ is true in (M, f). The following theorem is
easy to establish.

Theorem 1 (Soundness of TEFL). If a tree sequent Γ
T⇒ Δ is provable in

TEFL then M, f |= Γ
T⇒ Δ for all models M and all assignments f .

Let us say that an inference rule is height-preserving admissible in TEFL− (or
TEFL) if, whenever all uppersequents (premises) of the inference rule is provable
by derivations with height no more than n, then the lowersequent (conclusion)
of the rule is provable by a derivation whose height is at most n. By induction
on height n of a derivation, we can prove the following.

Proposition 1. The following weakening rules (wR) and (wL) are height-
preserving admissible in TEFL− and TEFL. Moreover, the following substi-
tution rule (sub) is height-preserving admissible in TEFL− and TEFL:

Γ
T⇒ Δ

Γ
T⇒ Δ,α : @nϕ

(wR) Γ
T⇒ Δ

α : @nϕ, Γ
T⇒ Δ

(wL) Γ
T⇒ Δ

Γσ
T σ⇒ Δσ

(sub)
,

where σ is a uniform substitution, T σ is the resulting tree by substituting agent
nominals in T by σ, Θσ := {ασ : ϕσ ∈ |α : ϕ ∈ Θ} and ασ ∈ T σ is the corre-
sponding label to α ∈ T by σ.

4 Semantic Completeness of Tree Sequent Calculus
of Epistemic Logic of Friendship

In what follows in this section, sets Γ , Δ, etc. of labelled formulas and a tree
T of labels can be possibly (countably) infinite. Following this change, we say
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that a possibly infinite tree-sequent Γ
T⇒ Δ is provable in TEFL− if there exist

finite sets Γ ′ ⊆ Γ and Δ′ ⊆ Δ and finite subtree T ′ of T such that Γ ′ T ′
⇒ Δ′ is

provable in TEFL−.

Definition 1 (Saturated tree sequent). A possibly infinite tree sequent
Γ

T⇒ Δ is saturated if it satisfies the following conditions:

(rep1) If α : @nm ∈ Γ and α : ϕ[n/k] ∈ Γ then α : ϕ[m/k] ∈ Γ .
(rep2) If α : @mn ∈ Γ and α : ϕ[n/k] ∈ Γ then α : ϕ[m/k] ∈ Γ .
(ref=) α : @nn ∈ Γ for all labels α ∈ T .

(rigid=) If α : @nm ∈ Γ then β : @nm ∈ Γ for all labels β ∈ T .
(→r) If α : @n(ϕ → ψ) ∈ Δ then α : @nϕ ∈ Γ and α : @nψ ∈ Δ.
(→l) If α : @n(ϕ → ψ) ∈ Γ then α : @nϕ ∈ Δ or α : @nψ ∈ Γ .
(@r) If α : @n@mϕ ∈ Δ then α : @mϕ ∈ Δ.
(@l) If α : @n@mϕ ∈ Γ then α : @mϕ ∈ Γ .
(Fr) If α : @nFϕ ∈ Δ then α : @n〈F〉m ∈ Γ and α : @mϕ ∈ Δ for some

nominal m.
(Fl) If α : @nFϕ ∈ Γ then α : @n〈F〉m ∈ Δ or α : @mϕ ∈ Γ for all

nominals m.
(�r) If α : @n�ϕ ∈ Δ then β : @nϕ ∈ Δ for some n-child β of α.
(�l) If α : @n�ϕ ∈ Γ then β : @nϕ ∈ Γ for all n-children β of α.

By the standard argument, we can show the following saturation lemma.

Lemma 1. Let Γ
T⇒ Δ be an unprovable tree sequent in TEFL−. Then, there

exists a saturated (possibly infinite) sequent Γ+ T +

⇒ Δ+ such that it is still
unprovable in TEFL− and it extends the original tree sequent, i.e., Γ ⊆ Γ+,
Δ ⊆ Δ+ and T ⊆ T +.

Lemma 2. Let Γ
T⇒ Δ be a saturated and unprovable tree sequent in TEFL−.

Define the derived model M = (T , A, (Ra)a∈A, (	α)α∈T , V ) from Γ
T⇒ Δ by:

– A := {|n| |n is an agent nominal}, where |n| is an equivalence class of an
equivalence relation ∼ which is defined as: n ∼ m iff α : @nm ∈ Γ for some
α ∈ T .

– αR|n|β iff β is an m-child of α for some m ∈ |n|.
– |n| 	α |m| iff α : @n〈F〉m ∈ Γ .
– (α, |n|) ∈ V (m) iff α : @nm ∈ Γ (m ∈ Nom).
– (α, |n|) ∈ V (p) iff α : @np ∈ Γ (p ∈ Prop).

Then, M is a model. Moreover, for every labelled formula α : @nϕ, we have

(i) If α : @nϕ ∈ Γ then M, (α, |n|) |= ϕ;
(ii) If α : @nϕ ∈ Δ then M, (α, |n|) 
|= ϕ.
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Proof. First, let us check that M is a model. First of all, note that we can easily
verify that ∼ is an equivalence relation by the conditions (ref=), (repi) and
(rigid=) of Definition 1. We can also check that if n ∼ m then R|n| = R|m| and
that if n ∼ n′ and m ∼ m′ then α : @n〈F〉m ∈ Γ iff α : @n′〈F〉m′ ∈ Γ . So both
of R|n| and 	α are well-defined. As for the valuation of propositional variables,
when n ∼ m holds, the equivalence between α : @np ∈ Γ and α : @mp ∈ Γ holds
by the saturation conditions (rep1) and (rep2). For the valuation for agent
nominals m, we need to check that {(α, |n|) |α : @nm ∈ Γ} is T × {|m|}. But
this is clear from the saturation condition (rigid=) and the fact that ∼ is an
equivalence relation.

Now we move to check items (i) and (ii) by induction on ϕ. We only check
the cases where ϕ is of the form: Fϕ or �ϕ, since the other cases are easy to
establish by the corresponding saturation conditions of Definition 1.

– Let ϕ be of the form Fϕ. For (i), assume that α : @nFϕ ∈ Γ . We need to
show M, (α, |n|) |= Fϕ, so let us fix any agent nominal m such that |n|Rα|m|.
Our goal is to show M, (α, |m|) |= ϕ. From |n|Rα|m|, we get α : @n〈F〉m ∈ Γ

hence α : @n〈F〉m /∈ Δ by the unprovability of Γ
T⇒ Δ. By the condition (Fl),

we obtain α : @mϕ ∈ Γ , which implies our goal by induction hypothesis.
For (ii), assume that α : @nFϕ ∈ Δ. By the condition (Rr), α : @n〈F〉m ∈ Γ
and α : @nm ∈ Δ for some agent nominal m. With the help of induction
hypothesis, we have |n|Rα|m| and M, (α, |m|) 
|= ϕ for some agent nominal
m. Hence M, (α, |n|) 
|= Fϕ, as desired.

– Let ϕ be of the form �ϕ. To show (i), assume that α : @n�ϕ ∈ Γ . We need
to show M, (α, |n|) |= �ϕ, so let us fix any label β such that αR|n|β. Our goal
is to show M, (β, |n|) |= ϕ. By αR|n|β, we can find an agent nominal m ∈ |n|
such that β is an m-child of α. It follows from m ∈ |n| that γ : @nm ∈ Γ for
some label γ. By α : @n�ϕ ∈ Γ and γ : @nm ∈ Γ , the saturation condition
(rep1) implies that α : @m�ϕ ∈ Γ . By the saturation condition (�l) and
the fact that β is an m-child of α, we obtain β : @mϕ ∈ Γ . By induction
hypothesis, M, (β, |m|) |= ϕ hence we obtain our goal by |m| = |n|. This
finishes to show (i).
For (ii), assume that α : @n�ϕ ∈ Δ. By the saturation condition (�r),
β : @nϕ ∈ Δ for some n-child β of α, i.e., αR|n|β. By induction hypothesis,
M, (β, |n|) 
|= ϕ. So we conclude that M, (α, |n|) 
|= �ϕ. ��

Theorem 2 (Completeness of cut-free TEFL−). If M, f |= Γ
T⇒ Δ for all

models M and all assignments f , then Γ
T⇒ Δ is provable in TEFL−.

Proof. Suppose for contradiction that Γ
T⇒ Δ is unprovable in TEFL−. By

Lemma 1, we can extend this tree sequent into a saturated (possibly infinite) tree

sequent Γ+ T +

⇒ Δ+ which is still unprovable in TEFL−. Let M be the derived

model from Γ+ T +

⇒ Δ+. Let us define f : T → T as the identity mapping. Then
it follows from Lemma 2 that M, f 
|= Γ ⇒ Δ, as required. ��
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By Theorems 1 and 2, the cut elimination theorem of TEFL follows.

Corollary 1. The following are all equivalent:

1. M, f |= Γ
T⇒ Δ for all models M and all assignments f .

2. Γ
T⇒ Δ is provable in TEFL−.

3. Γ
T⇒ Δ is provable in TEFL.

Therefore, TEFL enjoys the cut-elimination theorem.

5 Hilbert System of Epistemic Logic of Friendship

This section provides a Hilbert system of the epistemic logic of friendship by
“translating” a tree sequent into a formula in L. First of all, let us introduce
the notion of necessity form, originally proposed in [13] by Goldblatt and used
also in [6,11]. Necessity forms are employed to formulate an inference rule of our
Hilbert system.

Definition 2 (Necessity form). Fix an arbitrary symbol # not occurring in
the syntax L. A necessity form is defined inductively as follows: (i) # is a neces-
sity form; (ii) If L is a necessity form and ϕ is a formula, then ϕ → L is also
a necessity form; (iii) If L is a necessity form and n is an agent nominal, then
@n�L is also a necessity form. Given a necessity form L(#) and a formula ϕ of
L, we use L(ϕ) to denote the formula obtained by replacing the unique occurrence
of # in L by the formula ϕ.

When L(#) is a necessity form of ψ0 → @n�(ψ1 → @m�(ψ2 → #)), then
L(ϕ) is ψ0 → @n�(ψ1 → @m�(ψ2 → ϕ)). Intuitively, this notion allows us to
capture the unique path from a label in a tree of a tree sequent to the root label
of the tree.

Table 2 presents our Hilbert system HEFL. The underlying idea of the sys-
tem is: on the top of the propositional part (Taut and MP), we combine the

Table 2. Hilbert System HEFL
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axiomatization of modal logic K for the modal operator � and the axiomati-
zation of a basic hybrid logic KH(@) (see [4,5]) for the modal operator F, with
some modification (we need to modify BG, the rule of bounded generalization,
with the help of necessity forms), and then we add three interaction axioms:
(Rigid=), (Rigid�=), and (DCom@�). We note that the axiom (DCom@�) is also
used for axiomatizing the dependent product of two hybrid logics in [20]. Let
us define the notion of provability in HEFL in as usual. We write �HEFL ϕ to
means that ϕ is provable in HEFL.1,2

Proposition 2. All the following are provable in HEFL.

1. @m@nϕ ↔ @nϕ.
2. n → (@nϕ ↔ ϕ).
3. @nm → (@nϕ ↔ @mϕ).
4. @nm ↔ @mn.
5. @n(ϕ → ψ) ↔ (@nϕ → @nψ).
6. @nm → (ϕ[n/k] ↔ ϕ[m/k]).

Proof. For the provability of item 1, it suffices to show the right-to-left direc-
tion, which is shown by (Agree) and (Selfdual). For the provability of item
2, it suffices to show n → (ϕ → @nϕ), whose provability is shown by the
contraposition of (Elim) and (Selfdual). Then items 3 to 5 are proved simi-
larly as given in [5, p. 293, Lemma 2]. Finally, item 6 is proved by induction
on ϕ. Here we show the case where ϕ ≡ �ψ alone, while we note that we
need to use item 5 for the case where ϕ ≡ @lψ. By induction hypothesis,
we obtain �HEFL @nm → (ψ[n/k] ↔ ψ[m/k]). By (K�) and (Nec�), we get
�HEFL �@nm → (�(ψ[n/k]) ↔ �(ψ[m/k])). It follows from the axiom (rigid=)
that �HEFL @nm → ((�ψ)[n/k] ↔ (�ψ)[m/k])), as desired. ��

The following translation is a key to specify our Hilbert system HEFL.

Definition 3 (Formulaic translation). Given a set Θ of labelled formulas
and a label α, we define Θα := {ϕ |α : ϕ ∈ Θ}. Let Γ

T⇒ Δ be a tree sequent.
Then the formulaic translation of the sequent at α is defined as:
[[
Γ

T⇒ Δ
]]

α
:=

∧
Γα →

∨(
Δα,@n1�

[[
Γ

T⇒ Δ
]]

β1

, . . . ,@nk
�

[[
Γ

T⇒ Δ
]]

βk

)
,

where βi is an ni-child of α, βis enumerate all children of α,
∧

∅ := �, and∨
∅ := ⊥.

The formulaic translation of a tree sequent of Fig. 1 of Sect. 3 at the root 0 is

@nϕ → (@mψ ∨ @n�(� → @kθ) ∨ @k�(@mρ → ⊥)).
1 By (K)-rules and (Nec)-rules for �, F and @n, the replacement of equivalence holds

in HEFL.
2 Given a set Γ ∪{ϕ} of formulas, we say that ϕ is deducible in HEFL from Γ if there

exist finite formulas ψ1, . . ., ψn ∈ Γ such that (ψ1 ∧ . . . ∧ ψn) → ϕ is provable in
HEFL. Then it is easy to see that the deduction theorem holds in HEFL.
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Theorem 3. If a tree sequent Γ
T⇒ Δ is provable in TEFL then the formulaic

translation [[Γ T⇒ Δ]]i is provable in HEFL, where a natural number i is the root
of T .

Proof. By induction on height n of a derivation of Γ
T⇒ Δ in TEFL, where

i is the root of the tree T . We skip the base case where n = 0. Let n > 0.
It is remarked that, when the sequent is obtained by (repl), (ref=), (@L), or
(@R), respectively, the translation of the sequent at the root is provable by
Proposition 2 (6), the axiom (Ref), (Agree), or Proposition 2 (1), respectively.
Here we focus on the cases where Γ

T⇒ Δ is obtained by (�L), (FR) or (rigid=),
since these are the cases where we need to be careful and the other cases are
easy to establish.

(�L) Suppose that α : @n�ϕ, Γ ′ T⇒ Δ is obtained by (�L) from β :
@nϕ, Γ ′ T⇒ Δ, where β ∈ T is an n-child of α. By induction hypoth-
esis, we obtain �HEFL

[[
β : @nϕ, Γ ′ T⇒ Δ

]]
i
. We show that �HEFL[[

α : @n�ϕ, Γ ′ T⇒ Δ
]]

i
. Let (α0, α1, . . . , αl) be the unique path from α

(≡ αl) to the root i (≡ α0) of tree T . By induction on 0 � h � l, we show
that �HEFL

[[
β : @nϕ, Γ ′ T⇒ Δ

]]
αl−h

→
[[
α : @n�ϕ, Γ ′ T⇒ Δ

]]
αl−h

.

Let h = 0 and so αl−h = α. It suffices to show that a formula of the
form

(γ1→(δ ∨ @n�((γ2 ∧ @nϕ)→ψ2))→((@n�ϕ ∧ γ1)→(δ ∨ @n�(γ2→ψ2))) .

is provable in HEFL. This reduces to the provability of

@n�ϕ ∧ @n�((γ2 ∧ @nϕ) → ψ2)) → @n�(γ2 → ψ2))

in HEFL. This holds by the axiom (Dcom�@) @n�@nϕ ↔ @n�ϕ.
Let h > 0. But this case is shown with the help of (Nec�) and
(Nec@). This completes our induction on h. So we conclude �HEFL[[
α : @n�ϕ, Γ ′ T⇒ Δ

]]
i
.

(FR) Suppose that Γ
T⇒ Δ′, α : @nFϕ is obtained by (FR) from α :

@n〈F〉m,Γ
T⇒ Δ′, α : @mϕ where m is fresh in the conclusion. By induc-

tion hypothesis, we have �HEFL

[[
α : @n〈F〉m,Γ

T⇒ Δ′, α : @mϕ
]]

i
,

which is equivalent to �HEFL L(@n〈F〉m → @mϕ) for some necessi-
tation form L. Fix such necessitation form L. By the inference rule
L(BG) of HEFL, we can obtain �HEFL L(@nFϕ), which is equivalent to
�HEFL

[[
Γ

T⇒ Δ′, α : @nFϕ
]]

i
.

(rigid=) Instead of dealing with a general case, we handle a simple example of
T to extract an essence of this case, where we need to use the axioms
(Rigid=) and (Rigid �=). Let T consists of three labels, i.e., the root i, a



234 K. Sano

k-child α of i and a k′-child β of i. Let us suppose that β : @nm,Γ ′ T⇒ Δ

is obtained by (rigid=) from α : @nm,Γ ′ T⇒ Δ. In what follows, for every
η ∈ T , let us write

∧
Γ ′

η and
∨

Δη by γη and δη, respectively. Here we
note that the following hold:
(α to i) �HEFL (@k�((@nm ∧ γα) → δα) ∧ @nm) → @k�(γα → δα)).
(i to β) �HEFL ¬@nm → @k′�((@nm ∧ γβ) → δβ)
For (α to i), it suffices to show �HEFL @nm → @k�@nm, which
holds by (Rigid=), the distribution of @ over the implication and
Proposition 2 (1). For (i to β), it suffices to show �HEFL ¬@nm →
@k′�¬@nm, which holds by (Rigid �=), (Selfdual) and Proposition 2 (1).

By induction hypothesis, we obtain �HEFL

[[
α : @nm,Γ ′ T⇒ Δ

]]
i
, i.e.,

�HEFL γi → (δi ∨ @k�((@nm ∧ γα) → δα) ∨ @k′�(γβ → δβ)) .

It follows from item (α to i) that

�HEFL (@nm ∧ γi) → (δi ∨ @k�(γα → δα) ∨ @k′�(γβ → δβ)) .

By this and item (i to β), we can establish:

�HEFL γi → (δi ∨ @k�(γα → δα) ∨ @k′�((@nm ∧ γβ) → δβ)) ,

which is equivalent to: �HEFL

[[
β : @nm,Γ ′ T⇒ Δ

]]
i
, as desired. ��

In what follows in this section, we prove the soundness of HEFL for the tree
sequent calculus TEFL with cut rule. The cut rule is necessary to prove the
following.

Lemma 3. The rules (→ R), (�R), (@R), and (@L) are invertible, i.e., if the
lower sequent is provable in TEFL then the upper sequent is also provable in
TEFL.

Proof. We only prove the invertibility of (→ R) and (�R). First we deal with
(→ R). Suppose that Γ

T⇒ Δ,α : @n(ϕ → ψ) is provable in TEFL. This is
shown as follows:

Γ
T⇒ Δ,α : @n(ϕ → ψ) α : @n(ϕ → ψ), α : @nϕ

T⇒ α : @nψ

α : @nϕ, Γ
T⇒ Δ,α : @nψ

(Cut)
,

where the rightmost tree sequent is provable in TEFL by (→ L). Second we
move to (�R). Suppose that Γ

T⇒ Δ,α : @n�ϕ is provable in TEFL. Then the
provability of the upper sequent of (�R) is established as follows:

Γ
T⇒ Δ,α : @n�ϕ

Γ
T ∪{α·ni}⇒ Δ,α : @n�ϕ

(wlab)
α ·n i : @nϕ, Γ

T ∪{α·ni}⇒ Δ,α ·n i : @nϕ

α : @n�ϕ, Γ
T ∪{α·ni}⇒ Δ,α ·n i : @nϕ

(L�)

Γ
T ∪{α·ni}⇒ Δ,α ·n i : @nϕ

(Cut)
.

��
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Theorem 4. If ϕ is provable in HEFL, then T⇒ α : @nϕ is provable in TEFL
for all trees T , α ∈ T and nominals n fresh in ϕ.

Proof. Suppose that there is a proof (ϕ0, . . . , ϕh) of ϕ in HEFL. By induction
on 0 � j � h, we show that T⇒ α : @nϕj is provable in TEFL for all nominals n
fresh in ϕj and α ∈ T . Since the space is limited, we demonstrate some cases.
Let us start with (Rigid=), which is shown by the left derivation below. Now we
move to (DCom@�). We show the right-to-left direction alone, since the converse
direction is shown similarly. Let us see the right derivation below, from which
we can obtain the provability of T⇒ α : @m(@n�@np → @n�p) in TEFL. Now
we deal with some inference rules below.

α ·k i : @nm
T ∪{α·ki}⇒ α ·k i : @nm

α : @nm
T ∪{α·ki}⇒ α ·k i : @nm

(rigid=)

α : @nm
T ∪{α·ki}⇒ α ·k i : @k@nm

(@R)

α : @nm
T⇒ α : @k�@nm

(�R)

α : @k@nm
T⇒ α : @k�@nm

(@L)

T⇒ α : @k(@nm → �@nm)
(→ R)

α ·n i : @np
T ∪{α·ni}⇒ α ·n i : @np

α ·n i : @n@np
T ∪{α·ni}⇒ α ·n i : @np

(@L)

α : @n�@np
T ∪{α·ni}⇒ α : ·ni : @np

(�L)

α : @n�@np
T⇒ α : @n�p

(�R)

(L(BG)) Let ϕj ≡ �ψ be obtained by (L(BG)). Fix any tree T , α ∈ T and fresh

nominal k. By induction hypothesis, T⇒ α : @kL(@n〈F〉m → @mϕ) is
provable in TEFL, where m satisfies the freshness condition. By apply-
ing Lemma 3 (i.e., the invertibility of the right rules) repeatedly to the
consequent of a resulting tree sequent, we obtain the provability of a

tree sequent of the form Γ, β : @n〈F〉m T ′
⇒ Δ,β : @mϕ. Then we apply

the right rules in a converse direction of our repeated application of
Lemma 3 to conclude that T⇒ α : @kL(@nFϕ) is provable in TEFL. To
illustrate this argument, let L ≡ @n�(ψ → #). By induction hypothe-
sis, T⇒ α : @k@n�(ψ → (@n〈F〉m → @mϕ)) is provable in TEFL, where
m satisfies the freshness condition. By applying Lemma 3 repeatedly, we

obtain the provability of α·ni : @nψ, α·ni : @n〈F〉m T ∪{α·ni}⇒ α·ni : @mϕ
in TEFL for some fresh i. Then we proceed as follows:

α ·n i : @nψ, α ·n i : @n〈F〉m T ∪{α·ni}⇒ α ·n i : @mϕ

α ·n i : @nψ
T ∪{α·ni}⇒ α ·n i : @nFϕ

(FR)

α ·n i : @nψ
T ∪{α·ni}⇒ α ·n i : @n@nFϕ

(@R)

T ∪{α·ni}⇒ α ·n i : @n(ψ → @nFϕ)
(→ R)

T⇒ α : @n�(ψ → @nFϕ)
(�R)

T⇒ α : @k@n�(ψ → @nFϕ)
(@R)

,
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as required.
(Nec�) Let ϕj ≡ �ψ be obtained by (Nec�). Fix any tree T , α ∈ T and fresh

nominal n. By induction hypothesis,
T ∪{α·ni}⇒ α ·n i : @nψ is provable in

TEFL, where i is fresh in T . By the rule (�R) of TEFL, the provability
of T⇒ α : @n�ψ follows, as desired.

(NecF) Let ϕj ≡ Fψ be obtained by (NecF). Fix any tree T , α ∈ T and fresh
nominal n. Let m be a fresh nominal in ψ. By induction hypothesis,
T⇒ α : @mψ is provable in TEFL. By the admissibility of weakening
rule from Proposition 1, we obtain the provability of α : @n〈F〉m T⇒
α : @mψ. Since m is fresh in ψ, the rule (FR) enables us to derive the
provability of T⇒ α : @nFψ in TEFL, as desired. ��

Corollary 2 (Soudness and Completenss of HEFL). The following are all
equivalent: for every formula ϕ,

1. ϕ is valid in the class of all models,3

2. T⇒ α : @nϕ is provable in TEFL− for all T , α ∈ T and nominals n fresh in
ϕ,

3. T⇒ α : @nϕ is provable in TEFL for all T , α ∈ T and nominals n fresh in ϕ,
4. ϕ is provable in HEFL.

Proof. Item 1 is equivalent to the following: T⇒ α : @nϕ is true for all pairs (M, f)
of models and assignments, trees T , α ∈ T and nominals n fresh in ϕ. Then the
equivalence between items 1, 2 and 3 holds by Corollary 1. The direction from
item 4 to item 3 holds by Theorem 4. Finally, the direction from item 3 to item
4 is established as follows. Suppose item 3. Let n be a fresh nominal. By the

supposition,
{0}⇒ 0 : @nϕ is provable in TEFL. It follows from Theorem 3 that

�HEFL [[
{0}⇒ 0 : @nϕ]]0, which implies �HEFL @nϕ. By the axiom (Elim), we

obtain �HEFL n → ϕ hence �HEFL ϕ by (Name), as required. ��

6 Extensions of Epistemic Logic of Friendship

This section outlines how we extend our tree sequent calculus TEFL and Hilbert
system HEFL. In particular, we discuss extensions where � follows S4 or S5
axioms and/or the friendship relation 	w satisfies some universal properties such
as irreflexivity, symmetry, etc. (w ∈ W ). We note that [23,24] assume that the
friendship relation 	w satisfies irreflexivity and symmetry and that � obeys S5
axioms.

Let us denote a set {�p → p,�p → ��p} by S4 and a set S4∪{p → �¬�¬p}
by S5. Let us consider formulas of the form @nm or @n〈F〉m, which are denoted
by ρi, ρ′

i, etc. below. Let us consider a formula ϕ of the following form:

(ρ1 ∧ · · · ∧ ρh) → (ρ′
1 ∨ · · · ∨ ρ′

l) ,

3 We do not need to assume that each of our models is named in the sense that each
agent is named by an agent nominal.
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where we note that h and l are possibly zero. We say that a formula of such
form is a regular implication [17, Sect. 6] (we may even consider a more general
class of formulas called geometric formulas (cf. [8]), but we restrict our attention
to regular implications in this paper for simplicity). The corresponding frame
property of a regular implication is obtained by regarding @nm or @n〈F〉m
by “an = am” and “an 	w am” and putting the universal quantifiers for all
agents and w. For example, irreflexivity and symmetry of 	w are defined by
@n〈F〉n → ⊥ and @n〈F〉m → @m〈F〉n, respectively. When Λ is one of S4 and
S5 and Θ is a finite set of regular implications, a Hilbert system HEFL(Λ ∪ Θ)
is defined as the axiomatic extension of HEFL by new axioms Λ ∪ Θ.

Now let us move to tree sequent systems. First, we introduce an inference
rule for a regular implication. For a regular implication ϕ displayed above, we
can define the corresponding inference rule (ri(ϕ)) for tree sequent calculus as
follows (cf. [8,17, Sect. 6]):

Γ
T⇒ Δ,α : ρ1 ... Γ

T⇒ Δ,α : ρh α : ρ′
1, . . . , α : ρ′

l, Γ
T⇒ Δ

Γ
T⇒ Δ

(ri(ϕ))

When 	w is irreflexive or symmetric for all w ∈ W , we can obtain the following
rule (irr�) or (sym�), respectively:

Γ
T⇒ Δ,α : @n〈F〉n

Γ
T⇒ Δ

(irr�)
Γ

T⇒ Δ,α : @n〈F〉m α : @m〈F〉nΓ
T⇒ Δ

Γ
T⇒ Δ

(sym�)
.

Let Λ be one of S4 and S5 and Θ be a possibly empty finite set of regular
implications. In what follows, we define the tree sequent system TEFL(Λ;Θ).
Recall that the side condition ‡ of the rule (�L) of Table 1. First, depending on
the choice of Λ, we change the side condition ‡ of TEFL into the following one:

– ‡S4: α �n β, where �n is the reflexive transitive closure of the n-children
relation.

– ‡S5: α ∼n β, where ∼n is the reflexive, symmetric, transitive closure of the
n-children relation.

Second, we extend the resulting system with a set {(ri(ϕ)) |ϕ ∈ Θ} of inference
rules to finish to define the system TEFL(Λ;Θ). We define TEFL(Λ;Θ)− as the
system TEFL(Λ;Θ) without the cut rule.

Given a set Ψ of formulas and a frame F = (W,A, (Ra)a∈A, (	w)w∈W ) (a
model without a valuation), we say that Ψ is valid in F (notation: F |= Ψ) if
(F, V ), (w, a) |= ψ for all ψ ∈ Ψ , valuations V and pairs (w, a) ∈ W × A. We
define a class MΨ of models as {(F, V ) |F |= Ψ}. While we omit the detail of the
proof, we can obtain the following two theorems by similar arguments to TEFL
and HEFL.

Theorem 5. Let Λ be one of S4 and S5 and Θ be a possibly empty finite set of
regular implications. The following are all equivalent:
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1. M, f |= Γ
T⇒ Δ for all models M ∈ MΛ∪Θ and all assignments f .

2. Γ
T⇒ Δ is provable in TEFL(Λ;Θ)−.

3. Γ
T⇒ Δ is provable in TEFL(Λ;Θ).

Therefore, TEFL(Λ;Θ) enjoys the cut-elimination theorem. Moreover, for every
formula ϕ, ϕ is valid in MΛ∪Θ iff ϕ is provable in HEFL(Λ ∪ Θ).

7 Further Directions

This paper positively answered the question if the set of all valid formulas of
EFL in the class of all models is axiomatizable. We list some directions for
further research.

1. Is HEFL or TEFL decidable?
2. Is it possible to provide a syntactic proof of the cut elimination theorem of

TEFL?
3. Can we reformulate our sequent calculus into a G3-style calculus, i.e., a

contraction-free calculus, all of whose rules are height-preserving invertible?
4. Provide a G3-style labelled sequent calculus for EFL based on the idea of

doubly labelled formula (x, y) : ϕ. This is an extension of G3-style labelled
sequent calculus for modal logic in [16,18].

5. Prove the semantic completeness of HEFL and its extensions by specifying
the notion of canonical model.

6. Can we apply our technique of this paper to obtain a Hilbert-system of Term
Modal Logics which is proposed in [10]?
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7. Braüner, T.: Hybrid Logic and Its Proof-Theory. Applied Logic Series, vol. 37.
Springer, Dordrecht (2011). doi:10.1007/978-94-007-0002-4
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Abstract. Inquisitive dynamic epistemic logic (IDEL) extends public
announcement logic incorporating ideas from inquisitive semantics. In
IDEL, the standard public announcement action can be extended to a
more general public utterance action, which may involve a statement
or a question. While uttering a statement has the effect of a standard
announcement, uttering a question typically leads to new issues being
raised. In this paper, we investigate the logic of this general public utter-
ance action. We find striking commonalities, and some differences, with
public announcement logic. We show that dynamic modalities admit a
set of reduction axioms, which allow us to turn any formula of IDEL into
an equivalent formula of static inquisitive epistemic logic. This leads us
to establish several complete axiomatizations of IDEL, corresponding to
known axiomatizations of public announcement logic.

1 Introduction

Dynamic epistemic logics [2,10] allow us to reason about how an epistemic sce-
nario evolves when certain actions are performed. The simplest kind of action
considered in these logics is the public announcement of a formula [1,9,11,12].
When ϕ is publicly announced, all agents learn that ϕ was true at the time
of the announcement, that other agents have also learned this, and so on. The
action of announcing a formula ϕ is associated with a dynamic modality [ϕ],
which can be used to relativize a formula to the situation that results from an
announcement of ϕ. The resulting dynamic logic, PAL, admits reduction axioms:
these are a set of equivalences that allow us to recursively eliminate the dynamic
modality, transforming each formula of PAL into a corresponding formula of sta-
tic epistemic logic. A complete axiomatization of PAL is obtained combining the
reduction axioms with a complete axiomatization of epistemic logic.

In recent years, PAL and other dynamic epistemic logics have been fruitfully
employed to analyze processes of information exchange [2,10]. However, a typical
information exchange process is not a mere sequence of announcements. Rather,
it is a process in which certain issues are raised, addressed, and possibly resolved.
Typically, issues are raisedbyaskingquestions, and resolvedbymaking statements.
Starting from this idea, Ciardelli and Roelofsen [8] introduced inquisitive epistemic
logic (IEL).This frameworkdescribes not just the information that agents have, but
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also the information that they would like to obtain, i.e., the issues they are inter-
ested in. Accordingly, the language of IEL can talk not just about the agent’s infor-
mation, but also about their issues.This is achieved by enriching classical logicwith
questions (drawing on inquisitive logic [4,5,7]) and allowing modalities to embed
both statements and questions. While more expressive than Kripke modalities, the
modalities of IEL remain logically very well-behaved. A sound and complete axiom-
atization of IEL was established in [3].

Ciardelli and Roelofsen [8] also generalized the standard account of public
announcements to the inquisitive setting. In the resulting inquisitive dynamic
epistemic logic (IDEL), agents can not only provide new information by publicly
making a statement, but also raise new issues by publicly asking a question.
Thus, IDEL provides the tools for a basic modeling of communication as a process
in which agents interact by raising and resolving issues. As in PAL, the action of
uttering a formula ϕ is associated with a dynamic modality [ϕ], whose effect is
to relativize a formula to the situation that results from the utterance of ϕ.

In this paper we investigate and axiomatize the resulting dynamic logic. We
will show that the key features of PAL are preserved in IDEL, although there are
also a few interesting differences. Like in PAL, it is possible to identify a set of
logical equivalences by means of which any IDEL-formula can be turned into an
equivalent formula of static IEL. In combination with the completeness result for
IEL given in [3], this yields a complete axiomatization of IDEL. This provides a
proof system that can be used to reason about how a communication scenario
evolves when questions are publicly asked, or statements are publicly asserted.

The paper is structured as follows: Sects. 2 and 3 provide an introduction to
IDEL. Sections 4 and 5 present novel results on the logic of dynamic modalities,
which are used in Sect. 6 to establish a complete axiomatization. Section 7 con-
cludes.

2 Inquisitive Epistemic Logic

In this section, we provide a concise introduction to the framework of inquisitive
epistemic logic, following [4]. For discussion and proofs, we refer to [4,8].

The main ingredients for the semantics are the notions of information states
and issues. The former is standard, while the latter stems from work on inquisi-
tive semantics [6,8]. An information state is modeled extensionally by identifying
it with the set of worlds compatible with it. Similarly, an issue is modeled exten-
sionally by identifying it with the set of information states where it is resolved.

Definition 1 (States and issues). If W is a set of possible worlds, then:

– an information state is a subset s ⊆ W;
– an issue is a non-empty set I of information states that is downward closed:

if s ∈ I and t ⊆ s, then t ∈ I. The set of all issues is denoted by I.
The downward closure condition captures the fact that if an issue I is resolved
in s, and if t contains all the information that s contains, then I is resolved
in t. The maximal elements in an issue I will be called the alternatives. Notice
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that I can only be truthfully resolved at a world w if some resolving state s ∈ I
contains w, i.e., if w ∈ ⋃

I. We will say that I is an issue over the state
⋃

I.
Standard epistemic models describe situations which are determined by the

truth value of certain primitive facts and by the knowledge of certain agents.
Accordingly, a possible world w is fully described by (i) a propositional valuation
V (w), specifying which atomic sentences are true at w and (ii) for every agent a,
an information state σa(w), representing the knowledge of a in w. In inquisitive
epistemic logic, what matters is not only the knowledge that agents have, but
also the issues that they entertain. Thus, the description of a possible world w
includes, for every agent a, an issue Σa(w) over σa(w), called the inquisitive state
of a in w: s belongs to Σa(w) iff all the issues entertained by a in w are resolved
in s. Intuitively, we think of a as aiming to reach one of the states s ∈ Σa(w).
Since Σa(w) is required to be an issue over σa(w), we have σa(w) =

⋃
Σa(w).

Hence, the map Σa by itself encodes both a’s knowledge and a’s issues, and we
do not need σa as a separate component in the model. As in standard epistemic
logic, the maps Σa may be constrained by specific requirements. Following [8],
we build on the strongest version of epistemic logic, which requires factivity and
introspection, where the latter now concerns both information and issues.

Definition 2 (Inquisitive epistemic models). An inquisitive epistemic model
for a set P of atoms and a set A of agents is a triple M = 〈W, ΣA, V 〉 where W
is a set (the possible worlds of the model), V : W → ℘(P) is a valuation map,
and ΣA = {Σa | a ∈ A} is a set of inquisitive state maps Σa : W → I, each of
which assigns to every world w an issue Σa(w), in accordance with the following
conditions, where σa(w) :=

⋃
Σa(w) represents the epistemic state of a in w.

– Factivity: for any w ∈ W, w ∈ σa(w)
– Introspection: for any w, v ∈ W, if v ∈ σa(w), then Σa(v) = Σa(w)

A useful way to draw the state map of an agent is illustrated in the figure below.
At a world w, the epistemic state of the agent consists of those worlds included in
the same dashed area as w; the solid blocks inside this area are the alternatives
for the issue entertained at w—the maximal states in which the issue is resolved.

w1 w2

w3 w4

At w1 and w2, the agent’s epistemic state is {w1, w2}; the
alternatives for the issue entertained are {w1} and {w2}, i.e.,
the agent is interested in whether w1 or w2 is actual. At w3

and w4, the agent’s epistemic state is {w3, w4}, and the unique
alternative for the issue entertained is {w3, w4}, i.e., the agent
is not interested in acquiring any more specific information.
The language of IEL, LIEL, is given by the following syntax,
where p ∈ P is an atomic sentence and a ∈ A an agent label:1

ϕ ::= p | ⊥ |ϕ ∧ ϕ |ϕ → ϕ |ϕ �

ϕ |Kaϕ |Eaϕ

1 Most previous presentations of IEL ([3,8]) use a dichotomous language, in which
formulas are divided into two syntactic categories: declaratives and interrogatives.
The application of connectives is then subject to syntactic restrictions. Here we
follow [4] in using a more general, non-dichotomous language; connectives apply
without any restrictions, which leads to a more elegant logic. This difference is not
an essential one; the results obtained here can be adapted to the dichotomous setting.
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The non-standard items in this language are the connective

�

, called inquisitive
disjunction and the modality Ea, which we read as entertain. As we shall see, the
former allows us to form questions, while the latter allows us to talk about the
questions that an agent is interested in. We make use the following abbreviations:
¬ϕ := ϕ → ⊥; ϕ ∨ ψ := ¬(¬ϕ∧¬ψ); ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ); ?ϕ := ϕ

� ¬ϕ.
Usually, modal formulas are interpreted in terms of truth-conditions with

respect to a possible world. However, the language of IEL comprises not only
statements, but also questions, which are not naturally analyzed in terms of
truth-conditions. Therefore, following inquisitive semantics [6], the semantics of
IEL is given by a relation of support between formulas and information states.

Definition 3 (Support). Let M be a model and s an information state in M .

1. M, s |= p ⇐⇒ p ∈ V (w) for all worlds w ∈ s
2. M, s |= ⊥ ⇐⇒ s = ∅
3. M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ
4. M, s |= ϕ

�

ψ ⇐⇒ M, s |= ϕ or M, s |= ψ
5. M, s |= ϕ → ψ ⇐⇒ for every t ⊆ s, M, t |= ϕ implies M, t |= ψ
6. M, s |= Kaϕ ⇐⇒ for every w ∈ s, M, σa(w) |= ϕ
7. M, s |= Eaϕ ⇐⇒ for every w ∈ s and every t ∈ Σa(w), M, t |= ϕ

The support-set of formula ϕ in model M is the set [ϕ]M := {s ⊆ W | M, s |= ϕ}.
A key feature of the support relation is that it is persistent : that is, more formulas
become supported as information grows: if M, s |= ϕ and t ⊆ s, then M, t |= ϕ.
As a limit case, ∅ supports all formulas: we refer to ∅ as the inconsistent state.

Although support at a state is the primitive semantic notion in IEL, truth at
a world can be defined as support at the corresponding singleton.

Definition 4 (Truth).We say that ϕ is true at a worldw, notationM,w |= ϕ, in
case M, {w} |= ϕ. The truth-set of ϕ in M is the set |ϕ|M = {w ∈ W | M,w |= ϕ}.
Spelling out Definition 3 for a singleton, one can check that standard formulas
receive the usual truth-conditions. The truth-conditions for modal formulas are:

– M,w |= Kaϕ ⇐⇒ M,σa(w) |= ϕ
– M,w |= Eaϕ ⇐⇒ for every t ∈ Σa(w), M, t |= ϕ

Notice that the truth-conditions of a modal formula Kaϕ or Eaϕ depend crucially
on the support conditions of ϕ, and not just on its truth-conditions.

A formula is said to be truth-conditional in case support at an information
state s boils down to truth at each world w ∈ s.

Definition 5 (Truth-conditionality). A formula ϕ is truth-conditional if for
all models M and information states s: M, s |= ϕ ⇐⇒ M,w |= ϕ for all w ∈ s.
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We refer to truth-conditional formulas as statements and to non-truth-
conditional formulas as questions [4]. Intuitively, we read s |= ϕ as “ϕ is estab-
lished in s” if ϕ is a statement, and as “ϕ is settled in s” if ϕ is a question.

It is often possible to tell from the form of ϕ that it is truth-conditional. We
define a set LIEL

! of declaratives as follows, where ϕ ∈ LIEL is any formula:

α ::= p | ⊥ |Kaϕ |Eaϕ |α ∧ α |ϕ → α

In other words, ϕ is a declarative if the only occurrences of

�

in ϕ, if any, are
within the scope of a modality or in a conditional antecedent. Then we have:

Fact 1. Any α ∈ LIEL
! is truth-conditional.

In particular,

� −free formulas are truth-conditional; also, modal formulas are
always truth-conditional, even when the argument of the modality is a question.

With this background in mind, let us turn to an illustration of the system.
First consider a standard propositional formula α. It follows from Fact 1 that
the meaning of α is completely determined by its truth-conditions, which are the
standard ones. So, the meaning of α is essentially the same as in classical logic.

For an example of a question, consider the formula ?p := p

� ¬p. We have:
s |= ?p ⇐⇒ s |= p

� ¬p ⇐⇒ s |= p or s |= ¬p ⇐⇒ s ⊆ |p|M or s ⊆ |¬p|M .
Thus, a state supports ?p if it implies either that p is true, or that p is false. Notice
that, in any model containing both p-worlds and ¬p-worlds, the question ?p has
two alternatives (two maximal supporting states) as shown in Fig. 1(d).

Now consider the modalities. Since Fact 1 ensures that modal formulas are
always truth-conditional, in order to understand the semantics of Kaϕ and Eaϕ
we need only look at truth-conditions. First, suppose that ϕ is a statement α.
In this case, the two modalities coincide with each other and with the standard
box modality of epistemic logic:

M,w |= Kaα ⇐⇒ M,w |= Eaα ⇐⇒ M,v |= α for all v ∈ σ(w)

Now consider the case in which ϕ is a question μ. Recall that, for a question,
being supported amounts to being settled. Thus, the clauses read as follows:

– Kaμ is true at w if μ is settled in the epistemic state σa(w) of agent a at w;
– Eaμ is true at w if μ is settled in any information state where a’s issues at w

are settled; that is, if settling the agent’s issues implies settling μ.

E.g., Ka?p is true iff the question ?p is settled in a’s epistemic state—i.e., iff a
knows whether p. By means of the modalities Ka and Ea, a wondering modality
is defined: Waϕ := ¬Kaϕ ∧ Eaϕ. The idea is that a wonders about a question μ
if her current epistemic state does not settle μ, but she wants to reach a state
that does settle μ. As an illustration, consider the model in Fig. 1. At any world,
agent a knows whether p (Ka?p); agent b doesn’t know whether p, but wonders
about it (Wb?p); agent c doesn’t know, and does not wonder (¬Kc?p ∧ ¬Wc?p).
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11 10

01 00

(a) Agent a

11 10

01 00

(b) Agent b

11 10

01 00

(c) Agent c

11 10

01 00

(d) ?p

Fig. 1. A model for three agents a, b, c, and the alternatives for ?p.

3 Uttering Statements and Questions

In this section we review how the standard account of public announcements in
epistemic logic can be lifted to a general account of public utterance in IEL [8].2

Let us start out by specifying how an model changes as a result of the public
utterance of a sentence ϕ. This works much like in PAL: when ϕ is uttered, the
worlds in which ϕ is false are dropped from the model, and the state of each
agent at a world is restricted by intersecting it with the support set [ϕ]M .

Definition 6. (Updating a model). The update of M = 〈W,ΣA, V 〉 with ϕ ∈
LIDEL is the model Mϕ = 〈Wϕ, Σϕ

A, V ϕ〉, where Wϕ = W ∩|ϕ|M , V ϕ = V � |ϕ|M ,
and Σϕ

a (w) = Σa(w) ∩ [ϕ]M .

The following fact says that the epistemic state σϕ
a (w) :=

⋃
Σϕ

a (w) of an agent
at a world in the updated model is obtained just like in PAL, by restricting the
original epistemic state σa(w) to the set |ϕ|M of worlds where ϕ is true.

Fact 2. σϕ
a (w) = σa(w) ∩ |ϕ|M

The language LIDEL of IDEL extends the static language of IEL by allowing us to
conditionalize a formula to the utterance of another formula. Formally, we have:

ϕ ::= p | ⊥ |ϕ ∧, ϕ |ϕ → ϕ |ϕ �

ϕ |Kaϕ |Eaϕ|[ϕ]ϕ

When talking of a formula [ϕ]ψ, we will refer to ϕ as the label of the dynamic
modality [ϕ], and to ψ as the argument. Semantically, assessing a sentence of
the form [ϕ]ψ at a model-state pair 〈M, s〉 requires assessing ψ at the pair
〈Mϕ, s ∩ |ϕ|M 〉 of the updated model Mϕ and the restriction of s to this model.
That is, the semantics of IDEL extends Definition 3 with the following clause:

M, s |= [ϕ]ψ
def⇐⇒ Mϕ, s ∩ |ϕ|M |= ψ

2 We use the neutral term utterance rather than announcement (used in [8]) because
the latter suggests an informational interpretation. E.g., in IDEL, the utterance of a
question such as ?p has the effect of raising the issue whether p. This should not be
confused with the action of announcing whether p, i.e., announcing the true answer
to the question ?p, which is a more standard action of providing information.
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For this extended language, support is still persistent, and the inconsistent state
∅ still supports any formula. Specializing the above support clause to singleton
states, we recover the truth-conditions that are familiar from PAL:

M,w |= [ϕ]ψ ⇐⇒ M,w |= ϕ implies Mϕ, w |= ψ

To familiarize with the effects of the public utterance action, consider first the
utterance of a truth-conditional formula α. If I is an issue and s an information
state, the restriction of I to s is the issue I �s = {t ∩ s | t ∈ I}. Then, we have:

Fact 3. If α ∈ LIDEL is truth-conditional, then Σα
a (w) = Σa(w)� |α|M

Thus, there is nothing more to the utterance of a statement α than there is in
standard PAL: as a consequence of the utterance, worlds where α was false are
removed from the model, and the agents’ states are restricted accordingly.

Now consider the utterance of a question, say a basic polar question ?p. Since
?p is true at all worlds, no world is removed from the model in the update. More-
over, by Fact 2 we have σ?p

a (w) = σa(w) ∩ |?p|M = σa(w), i.e., no knowledge
is gained from an utterance of ?p. However, the update changes the inquisi-
tive state of an agent a, from Σa(w) to Σ?p

a (w) = Σa(w) ∩ [?p]M = {s | s ∈
Σa(w) and M, s |= ?p}. This means that a’s issues after the utterance of ?p
become more demanding: to settle them, a state must settle a’s previous issues,
and in addition the question ?p. In other words, as a result of the utterance,
the agent will come to entertain the question ?p. This illustrates how uttering a
question typically results in new issues being raised. The effect of a sequence of
utterances on the state of an agent is shown in Fig. 2.

11 10

01 00
?p

==⇒

11 10

01 00
?q

==⇒

11 10

01 00
q

=⇒
01

11

Fig. 2. The effects of a sequence of utterances on the state of an agent.

Let us now look at the significance of a dynamic formula of the form [ϕ]ψ.
First, consider the special case in which ψ is a statement, i.e., truth-conditional.
Then, the following fact ensures that the whole formula [ϕ]ψ is also a statement.

Fact 4. If α is truth-conditional, then so is [ϕ]α for any ϕ.

Thus, the semantics of [ϕ]α is fully captured by the truth-conditions of [ϕ]α.
These truth-conditions are standard: [ϕ]α is true if ϕ is false, or ϕ is true and α
is true in the model resulting from an update with ϕ. Thus, as in PAL, we can
read [ϕ]α as stating that α would be the case after an announcement of ϕ. In par-
ticular, formulas from the language of PAL have the standard truth-conditions.
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Now consider the case of a formula [ϕ]μ, where μ is a question. In this case,
[ϕ]μ can be thought of as a “dynamic conditional question”, which asks to resolve
μ under the assumption not just that ϕ is true, but that ϕ were uttered. As an
example, consider the formula [p]?Kaq.

M, s |= [p]?Kaq ⇐⇒ for all w ∈ s ∩ |p|M , σa(w) ∩ |p|M ⊆ |q|M or
for all w ∈ s ∩ |p|M , σa(w) ∩ |p|M ⊆ |q|M

Thus, [p]?Kaq is settled if it is established either (i) that, if p is true and if a
were to learn that p, she would know that q, or (ii) that, if p is true and if a
were to learn that p, she would still not know that q. Thus, [p]?Kaq captures
the question: “if p were publicly uttered, would a know that q?”. And indeed,
we have [p]?Kaq ≡ [p]Kaq

�

[p]¬Kaq, which shows that [p]?Kaq can be settled
either by establishing that [p]Kaq, or by establishing that [p]¬Kaq.

4 Normal Form

In this section, which marks the start of the novel material in the paper, we begin
our study of the logic of IDEL by establishing a normal form result which will
be very useful in further investigating the logic. The first step is to generalize to
IDEL the notion of declaratives given above for IEL. The set LIDEL

! of declarative
formulas of IDEL is defined as follows, where ϕ ∈ LIDEL:

α ::= p | ⊥ |Kaϕ |Eaϕ | [ϕ]α |α ∧ α |ϕ → α

I.e., α is declarative if all occurrences of

�

in α are within (i) the scope of a static
modality or (ii) the label of a dynamic modality or (iii) a conditional antecedent.
The following can then be shown by means of a straightforward inductive proof.

Proposition 1. Any declarative formula α ∈ LIDEL
! is truth-conditional.

Next, we associate with any formula ϕ ∈ LIDEL a set R(ϕ) of declaratives such
that ϕ is equivalent with the inquisitive disjunction of the α ∈ R(ϕ). This shows
that any formula of IDEL is equivalent to an inquisitive disjunction of truth-
conditional formulas. The inductive proof of the normal form result does not
pose particular problems; we omit it here in the interest of space.

Definition 7 (Resolutions).

– R(α) = {α} if α is of the form p,⊥,Kaϕ or Eaϕ
– R(ϕ ∧ ψ) = {α ∧ β |α ∈ R(ϕ) and β ∈ R(ψ)}
– R(ϕ

�

ψ) = R(ϕ) ∪ R(ψ)
– R(ϕ → ψ) = {∧

α∈R(ϕ) α → f(α) | f : R(ϕ) → R(ψ)}
– R([ϕ]ψ) = {[ϕ]α |α ∈ R(ψ)}
Theorem 1 (Normal form for IDEL).
Let ϕ ∈ LIDEL and let R(ϕ) = {α1, . . . , αn}. Then ϕ ≡ α1

�

. . .

�

αn.
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5 Reduction

In this section, we will show that the presence of dynamic modalities does not
make IDEL more expressive than its static fragment, IEL. As in PAL, any occur-
rence of a dynamic modality can be paraphrased away, inductively on the struc-
ture of the argument. This is easy if the argument is an atom or ⊥.

Proposition 2. [ϕ]p ≡ ϕ → p and [ϕ]⊥ ≡ ¬ϕ

Proof. Both [ϕ]p and ϕ → p are declaratives, and thus truth-conditional by
Proposition 1. Thus, to establish the equivalence we just have to show that
these formulas have the same truth-conditions. This can be easily checked. The
equivalence [ϕ]⊥ ≡ ¬ϕ is established by an analogous argument. ��
As in PAL, dynamic modalities distribute smoothly over the connectives, which
now also include inquisitive disjunction. The distribution over ∧ and

�

is imme-
diate to verify, while the distribution over → requires a proof.

Proposition 3. [ϕ](ψ ∧ χ) ≡ [ϕ]ψ ∧ [ϕ]χ

Proposition 4. [ϕ](ψ
�

χ) ≡ [ϕ]ψ

�

[ϕ]χ

Proposition 5. [ϕ](ψ → χ) ≡ [ϕ]ψ → [ϕ]χ

Proof. We have the following, where the crucial passage from the second to the
third line is justified by the set-theoretic fact that the subsets of s∩ |ϕ|M are all
and only the sets of the form t ∩ |ϕ|M for some t ⊆ s.

M, s |= [ϕ](ψ → χ) ⇐⇒ Mϕ, s ∩ |ϕ|M |= ψ → χ

⇐⇒ ∀t ⊆ s ∩ |ϕ|M , if Mϕ, t |= ψ then Mϕ, t |= χ

⇐⇒ ∀t ⊆ s, if Mϕ, t ∩ |ϕ|M |= ψ then Mϕ, t ∩ |ϕ|M |= χ

⇐⇒ ∀t ⊆ s, if M, t |= [ϕ]ψ then M, t |= [ϕ]χ
⇐⇒ M, s |= [ϕ]ψ → [ϕ]χ �

From Propositions 2 and 5, we also get the standard reduction law for negation.

Corollary 1. [ϕ]¬ψ ≡ ϕ → ¬[ϕ]ψ

A dynamic modality [ϕ] over a K modality behaves as in PAL: it can be brought
within the scope of K, provided that we condition the resulting formula on ϕ.

Proposition 6. [ϕ]Kaψ ≡ ϕ → Ka[ϕ]ψ

Proof. Notice that both ϕ → Ka[ϕ]ψ and [ϕ]Kaψ are declaratives, and thus
truth-conditional. Hence, to establish the equivalence we just have to show that
they have identical truth-conditions. Making use of Fact 2, we have:
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M,w |= [ϕ]Kaψ ⇐⇒ M,w |= ϕ implies Mϕ, w |= Kaψ

⇐⇒ M,w |= ϕ implies Mϕ, σϕ
a (w) |= ψ

⇐⇒ M,w |= ϕ implies Mϕ, σa(w) ∩ |ϕ|M |= ψ

⇐⇒ M,w |= ϕ implies M,σa(w) |= [ϕ]ψ
⇐⇒ M,w |= ϕ implies M,w |= Ka[ϕ]ψ
⇐⇒ M,w |= ϕ → Ka[ϕ]ψ �

The law that allows us to push a dynamic modality through an E modality is
only slightly more complex than the one for K. However, its proof, which relies
on the normal form result, is rather difficult, and requires some preliminaries.
For this reason, it is given in AppendixAppendix 1..

Proposition 7. [ϕ]Eaψ ≡ ϕ → Ea(ϕ → [ϕ]ψ)

One may wonder whether this law could not be simplified. After all, in PAL, it
holds generally that ϕ → [ϕ]ψ ≡ [ϕ]ψ, because [ϕ]ψ is always true in a world
where ϕ is false. If this law held in IDEL as well, we could make the reduction
law for the Ea modality simpler, and completely analogous to the one for Ka.
This is indeed the case if ϕ is truth-conditional.

Proposition 8. If ϕ ∈ LIDEL is truth-conditional, then ϕ → [ϕ]ψ ≡ [ϕ]ψ

Proof. Suppose ϕ is truth-conditional, and consider any model M and state s.
Using Lemma 3 in AppendixAppendix 1., we have:

M, s |= ϕ → [ϕ]ψ ⇐⇒ M, s ∩ |ϕ|M |= [ϕ]ψ ⇐⇒ Mϕ, s ∩ |ϕ|M ∩ |ϕ|M |= ψ

⇐⇒ Mϕ, s ∩ |ϕ|M |= ψ ⇐⇒ M, s |= [ϕ]ψ �

However, this does not extend to the case in which ϕ is a question. E.g., one can
check by inspecting the support clauses that ?p → [?p]?p ≡ �, while [?p]?p ≡ ?p.
Thus, in general ϕ → [ϕ]ψ ≡ [ϕ]ψ, and Proposition 7 cannot be simplified.

Equipped with Propositions 2–7, we are now ready to prove that any IDEL-
formula is equivalent to some formula in the static language of IEL.

Theorem 2. For any ϕ ∈ LIDEL, ϕ ≡ ϕ∗ for some ϕ∗ ∈ LIEL.

Proof. By induction on ϕ. The only non-obvious step is the one for ϕ = [ψ]χ.
By i.h., we have ψ∗, χ∗ ∈ LIEL with ψ ≡ ψ∗, χ ≡ χ∗. It follows that ϕ ≡ [ψ∗]χ∗.
Now we just have to show that [ψ∗]χ∗ ≡ ϕ∗ for some ϕ∗ ∈ LIEL. We proceed by
induction on χ∗. Since χ∗ ∈ LIEL, we only have to consider the base cases and
the inductive steps for connectives, Ka and Ea. Each of these cases corresponds
to one of our equivalences above. As an illustration, we give the step for E.

– Suppose χ∗ = Eaξ. By Proposition 7 we have ϕ ≡ [ψ∗]χ∗ = [ψ∗]Eaξ ≡ ψ∗ →
Ea(ψ∗ → [ψ∗]ξ). Now, ξ is less complex than χ∗, so by induction hypothesis
there is a ξ∗ ∈ LIEL such that [ψ∗]ξ ≡ ξ∗. Hence, ϕ ≡ ψ∗ → Ea(ψ∗ → ξ∗).
Since both ψ∗ and ξ∗ are in LIEL, so is the formula ψ∗ → Ea(ψ∗ → ξ∗), which
we can thus take to be the desired ϕ∗. ��
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6 Axiomatizing IDEL

We can use the reduction of IDEL to IEL to provide a complete axiomatization of
IDEL. All we need to do is to enrich a complete system for IEL, like the natural
deduction system in [3,4], with inference rules which allow us to perform the
reduction. The easiest way to achieve this is to turn the equivalences given by
Proposition 2–7 into inference rules, and to equip our system with a rule of
replacement of equivalents. These rules are shown in Fig. 3.

!Atom !⊥ !∧ !→
[ϕ]p

ϕ → p

[ϕ]⊥
¬ϕ

[ϕ](ψ ∧ χ)

[ϕ]ψ ∧ [ϕ]χ

[ϕ](ψ → χ)

[ϕ]ψ → [ϕ]χ

!

�

!K !E RE

[ϕ](ψ

�

χ)

[ϕ]ψ

�

[ϕ]χ

[ϕ]Kaψ

ϕ → Ka[ϕ]ψ

[ϕ]Eaψ

ϕ → Ea(ϕ→ [ϕ]ψ)

ϕ ↔ ψ

χ[ϕ/p] ↔ χ[ψ/p]

Fig. 3. Inference rules for dynamic modalities. All but the last rule are bi-directional.

We will denote derivability in this system by �IDELRE , and inter-derivability
by ��IDELRE . Using the results in the previous section, it is easy to show that this
system is sound for IDEL. The next proposition states that this system can prove
any formula ϕ ∈ LIDEL to be equivalent to some ϕ∗ ∈ LIEL. To prove this, we
proceed exactly as in the proof of Theorem 2, but with ≡ replaced by ��IDELRE .

Proposition 9. For any ϕ ∈ LIDEL, ϕ ��IDELRE ϕ∗ for some ϕ∗ ∈ LIEL.

The completeness of our system follows immediately from this and from the fact
that our system includes a complete system for IEL.

Theorem 3. For any Φ ∪ {ψ} ⊆ LIDEL, Φ |= ψ ⇐⇒ Φ �IDELRE ψ.

The system described in Fig. 3 gives a simple axiomatization for IDEL, similar
to the axiomatization of PAL given in [12]. As in the case of PAL, there are some
interesting alternatives that we can use instead of replacement of equivalents to
ensure that the system can perform the reduction to IEL. One option is to notice
that, like in PAL, two dynamic modalities can always be merged into a single,
complex one. This gives the following composition law for dynamic modalities.

Proposition 10 (Composition law). [ϕ][ψ]χ ≡ [ϕ ∧ [ϕ]ψ]χ

To show the validity of the composition law, we start by proving that a sequence
of two updates can always be simulated by a single update, just as in PAL.
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Lemma 1. For any ϕ,ψ ∈ LIDEL and for any model M : (Mϕ)ψ = Mϕ∧[ϕ]ψ

Proof. We start out by showing that (Wϕ)ψ and Wϕ∧[ϕ]ψ are the same. Notice
that, if we take a world w ∈ W such that M, w |= ϕ, then M, w |= [ϕ]ψ ⇐⇒
Mϕ, w |= ψ. This means that |ϕ|M ∩ |[ϕ]ψ|M = |ϕ|M ∩ |ψ|Mϕ . So, we have:

Wϕ∧[ϕ]ψ = W ∩ |ϕ ∧ [ϕ]ψ|M = W ∩ |ϕ|M ∩ |[ϕ]ψ|M
= W ∩ |ϕ|M ∩ |ψ|Mϕ = Wϕ ∩ |ψ|Mϕ = (Wϕ)ψ

This shows that the models (Mϕ)ψ and Mϕ∧[ϕ]ψ share the same universe of
possible worlds. Since the truth-value of a propositional atom at a world is
not affected by updates, the two also have the same valuation function. We
are left with showing that the two models have the same state map for each
agent. Consider an agent a and a world w. Given an info state s ∈ [ϕ]M , we
have s ⊆ ⋃

[ϕ]M = |ϕ|M , so s ∩ |ϕ|M = s. So, for such a state s we have
M, s |= [ϕ]ψ ⇐⇒ Mϕ, s ∩ |ϕ|M |= ψ ⇐⇒ Mϕ, s |= ψ. This shows that
[ϕ]M ∩ [[ϕ]ψ]M = [ϕ]M ∩ [ψ]Mϕ . Using this fact, we obtain:

Σϕ∧[ϕ]ψ
a (w) = Σa(w) ∩ [ϕ ∧ [ϕ]ψ]M = Σa(w) ∩ [ϕ]M ∩ [[ϕ]ψ]M

= Σa(w) ∩ [ϕ]M ∩ [ψ]Mϕ = Σϕ
a (w) ∩ [ψ]Mϕ = (Σϕ

a )ψ(w) �

Proof of Proposition 10. Using the results in the previous proof, we have:

M, s |= [ϕ][ψ]χ ⇐⇒ Mϕ, s ∩ |ϕ|M |= [ψ]χ
⇐⇒ (Mϕ)ψ, s ∩ |ϕ|M ∩ |ψ|Mϕ |= χ

⇐⇒ Mϕ∧[ϕ]ψ, s ∩ |ϕ ∧ [ϕ]ψ|M |= χ

⇐⇒ M, s |= [ϕ ∧ [ϕ]ψ]χ �

We can turn the equivalence [ϕ][ψ]χ ≡ [ϕ ∧ [ϕ]ψ]χ into a bidirectional rule,
denoted !Comp. Now consider the proof system �IDEL!Comp which is like �IDELRE ,
except that the rule RE is substituted by !Comp. Theorem 4 states that this
system is sound and complete for IDEL. A proof sketch is given in Appen-
dix Appendix 2..

Theorem 4. For any Φ ∪ {ψ} ⊆ LIDEL, Φ |= ψ ⇐⇒ Φ �IDEL!Comp ψ.

This is analogous to the axiomatization of PAL given in Theorem 7.26 of [10].
Finally, there is yet another alternative that we can use, instead of the rules RE
and !Comp. This builds on the next proposition, which ensures that dynamic
modalities are monotonic. The straightforward proof is omitted.

Proposition 11 (Monotonicity). If ψ |= χ , then [ϕ]ψ |= [ϕ]χ .

We can turn this logical property into an inference rule, that we will call !Mon:
!Mon: given [ϕ]ψ and given a proof of χ from ψ, infer [ϕ]χ.
Let us denote by �IDEL!Mon the system which is like �IDELRE , except that the rule
of replacement of equivalents is substituted by !Mon. The next theorem says
that this system, too, is complete for IDEL. A proof sketch is given in Appen-
dix Appendix 2..
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Theorem 5. For any Φ ∪ {ψ} ⊆ LIDEL, Φ |= ψ ⇐⇒ Φ �IDEL!Mon ψ.

This is analogous to the axiomatization of PAL given by Corollary 12 of [14].
Thus, in this section we have established three different complete axiomatizations
for IDEL, each of which is the analogue of one known axiomatization of PAL.

7 Conclusion and Outlook

We have investigated the logic of public utterance in IDEL, and found that it
has much in common with standard public announcement logic. Just like in
PAL, dynamic modalities can be recursively eliminated, turning each formula
into an equivalent static formula. We have exploited this fact to establish three
axiomatizations of IDEL, corresponding to existing axiomatizations of PAL. The
first one contains, on top of a complete system for inquisitive epistemic logic,
the reduction rules and the rule of replacement of equivalents, RE. In the other
axiomatizations, RE is not used; instead, we use two other features that IDEL
shares with PAL: (i) that a sequence of two dynamic modalities can be reduced
to a single dynamic modality and (ii) that dynamic modalities are monotonic.

These results are exciting, as they show that the standard analysis of public
announcements, when lifted to an inquisitive semantics framework, can be gen-
eralized smoothly to an analysis that deals not only with the effect of making
statements, but also with the effect of asking questions. This provides us with a
well-behaved logic to reason about how a multi-agent situation evolves not only
as a result of new incoming information, but also as a result of new issues being
raised. Besides being interesting in its own right, this justifies a more general
hope that the wealth of results developed in the field of dynamic epistemic logics
can be extended to cover questions (for recent work in this direction, see [13]).
The outcome of this would be a more comprehensive analysis of communication
as a process in which agents interact by requesting and providing information.

Acknowledgment. Funding from the European Research Council (ERC, grant agree-
ment number 680220) is gratefully acknowledged.

Appendix 1. Proof of the reduction law for E

To prove Proposition 7, we first need some lemmata. As a first step, we provide a
characterization of the updated inquisitive state Σϕ

a (w) in terms of resolutions.

Lemma 2. Let ϕ ∈ LIDEL and let R(ϕ) = {α1, . . . , αn}. Given any M and w:
Σϕ

a (w) = Σa(w)� |α1|M ∪ · · · ∪ Σa(w)� |αn|M

Proof. Theorem 1 ensures that ϕ ≡ α1

�

. . .

�

αn. Given the support clause for�

, this implies [ϕ]M = [α1]M ∪ · · · ∪ [αn]M . Thus, we have:

Σϕ
a (w) = Σa(w) ∩ [ϕ]M = Σa(w) ∩ ([α1]M ∪ · · · ∪ [αn]M )

=
⋃

1≤i≤n

(Σa(w) ∩ [αi]M ) = Σα1
a (w) ∪ · · · ∪ Σαn

a (w)
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Since resolutions are declaratives and thus truth-conditional, we have by Fact 3
that Σαi

a (w) = Σa(w)� |αi|M . Thus, we have Σϕ
a (w) =

⋃
1≤i≤n Σa(w)� |αi|M . ��

We will also make use of the next lemma, stating that whenever the antecedent
of an implication is a truth-conditional formula α, the clause for implication can
be simplified: α → ψ is supported at s iff ψ is supported at the state s ∩ |α|M .

Lemma 3. If α ∈ LIDEL be truth-conditional. Then for any M , s, and ψ:
M, s |= α → ψ ⇐⇒ M, s ∩ |α|M |= ψ

Proof. If α is truth-conditional, then the subsets of s that support α are all and
only the subsets of s ∩ |α|M . Using this fact, the claim follows straightforwardly
by the persistence of support. ��
Finally, we will make use of the following equivalence, which can be established
simply by spelling out the support conditions for the two formulas.

Lemma 4. For any ϕ,ψ, χ ∈ LIDEL, (ϕ

�

ψ) → χ ≡ (ϕ → χ) ∧ (ψ → χ)

Proof of Proposition 7. Let R(ϕ) = {α1, . . . , αn}. First, notice that, by Lemma 2,
the information states s ∈ Σϕ

a (w) are all and only those of the form s = t∩|αi|M
for some t ∈ Σa(w) and some αi ∈ R(ϕ). Since αi ∈ R(ϕ), it follows from
Theorem 1 that |αi|M ⊆ |ϕ|M , whence t ∩ |αi|M = t ∩ |αi|M ∩ |ϕ|M .

Now suppose that M,w |= ϕ, so that w survives in the updated model Mϕ.
Making use of these facts, of Theorem 1, Lemmas 3 and 4, we have:

Mϕ, w |= Eaψ ⇐⇒ ∀s ∈ Σϕ
a (w),Mϕ, s |= ψ

⇐⇒ ∀t ∈ Σa(w),∀αi ∈ R(ϕ),Mϕ, t ∩ |αi|M |= ψ

⇐⇒ ∀t ∈ Σa(w),∀αi ∈ R(ϕ),Mϕ, t ∩ |αi|M ∩ |ϕ|M |= ψ

⇐⇒ ∀t ∈ Σa(w),∀αi ∈ R(ϕ),M, t ∩ |αi|M |= [ϕ]ψ
⇐⇒ ∀t ∈ Σa(w),∀αi ∈ R(ϕ),M, t |= αi → [ϕ]ψ
⇐⇒ ∀t ∈ Σa(w),M, t |= (α1 → [ϕ]ψ) ∧ · · · ∧ (αn → [ϕ]ψ)
⇐⇒ ∀t ∈ Σa(w),M, t |= (α1

�

. . .

�

αn) → [ϕ]ψ
⇐⇒ ∀t ∈ Σa(w),M, t |= ϕ → [ϕ]ψ
⇐⇒ M,w |= Ea(ϕ → [ϕ]ψ)

Finally, using this equivalence we get, for any model M and world w:

M,w |= [ϕ]Eaψ ⇐⇒ M,w |= ϕ implies Mϕ, w |= Eaψ

⇐⇒ M,w |= ϕ implies M,w |= Ea(ϕ → [ϕ]ψ)
⇐⇒ M,w |= ϕ → Ea(ϕ → [ϕ]ψ)

We have thus proved that [ϕ]Eaψ and ϕ → Ea(ϕ → [ϕ]ψ) have the same truth-
conditions. Since both formulas are declaratives, and thus truth-conditional by
Proposition 1, this ensures that these formulas are equivalent. ��
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Appendix 2. Proof of completeness via !Comp and !Mon

Proof of Theorem 4. The proof is analogous to the one in Sect. 7.4 of [10] for PAL.
We only provide a proof sketch. We first define a complexity measure as follows:

– c(p) = c(⊥) = 1
– c(ϕ ∧ ψ) = c(ϕ → ψ) = c(ϕ

�

ψ) = 1 + max(c(ϕ), c(ψ))
– c(Kaϕ) = c(Eaϕ) = 1 + c(ϕ)
– c([ϕ]ψ) = (4 + c(ϕ)) · c(ψ)

By recursion on this notion of complexity, we define a map (·)∗ : LIDEL → LIEL:
p∗ = p, ⊥∗ = ⊥ ([ϕ](ψ ∧ χ))∗ = ([ϕ]ψ ∧ [ϕ]χ)∗

(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗ ([ϕ](ψ → χ))∗ = ([ϕ]ψ → [ϕ]χ)∗

(ϕ → ψ)∗ = ϕ∗ → ψ∗ ([ϕ](ψ

�

χ))∗ = ([ϕ]ψ

�

[ϕ]χ)∗

(ϕ

�

ψ)∗ = ϕ∗ �

ψ∗ ([ϕ]Kaψ)∗ = (ϕ → Ka[ϕ]ψ)∗

([ϕ]p)∗ = (ϕ → p)∗ ([ϕ]Eaψ)∗ = (ϕ → Ea(ϕ→ [ϕ]ψ))∗

([ϕ]⊥)∗ = (¬ϕ)∗ ([ϕ][ψ]χ)∗ = ([ϕ ∧ [ϕ]ψ]χ)∗

We can then easily prove ϕ ��IDEL!Comp ϕ∗, using the reduction rules and !Comp.
Completeness then follows since �IDEL!Comp includes a complete system for IEL. ��
Proof of Theorem 5. The proof is similar to the previous one, and to the proof
of the analogous result for PAL in [14]. We modify the above definition of (·)∗ by
setting ([ϕ][ψ]χ)∗ = ([ϕ]([ψ]χ)∗)∗. By induction on the complexity of a formula
(as defined above), we show that (i) ϕ∗ is well-defined; (ii) if ϕ ∈ LIEL, then
c(ϕ∗) < c(ϕ); and (iii) ϕ ��IDEL!Mon ϕ∗. The only case which is not straightforward
is the inductive step for a formula [ϕ][ψ]χ, which I will spell out in detail.

For (i), notice that since [ψ]χ is less complex than [ϕ][ψ]χ, by induction
hypothesis we have that ([ψ]χ)∗ is well-defined and less complex than [ψ]χ. It
follows that [ϕ]([ψ]χ)∗ is less complex than [ϕ][ψ]χ. So, the induction hypothesis
implies that ([ϕ]([ψ]χ)∗)∗ is well-defined, i.e., that ([ϕ][ψ]χ)∗ is well-defined.

For (ii), as both [ψ]χ and [ϕ]([ψ]χ)∗ are less complex than [ϕ][ψ]χ, using the
induction hypothesis we have c(([ϕ][ψ]χ)∗) = c(([ϕ]([ψ]χ)∗)∗) < c([ϕ]([ψ]χ)∗) <
c([ϕ][ψ]χ). So, c(([ϕ][ψ]χ)∗) < c([ϕ][ψ]χ).

For (iii), as [ψ]χ is less complex than [ϕ][ψ]χ, the induction hypothesis
gives [ψ]χ ��IDEL!Mon ([ψ]χ)∗. By two applications of the rule !Mon we get
[ϕ][ψ]χ ��IDEL!Mon [ϕ]([ψ]χ)∗. Now, since [ϕ]([ψ]χ)∗ is less complex than [ϕ][ψ]χ,
the induction hypothesis applies, and gives [ϕ]([ψ]χ)∗ ��IDEL!Mon ([ϕ]([ψ]χ)∗)∗.
Putting things together, we have obtained [ϕ][ψ]χ ��IDEL!Mon ([ϕ]([ψ]χ)∗)∗ which
is what we need, since by definition ([ϕ]([ψ]χ)∗)∗ = ([ϕ][ψ]χ)∗. ��



The Dynamic Logic of Stating and Asking 255

References

1. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Proceedings of TARK 7, pp. 43–56. Morgan
Kaufmann Publishers (1998)

2. van Benthem, J.: Logical dynamics of information and interaction. Cambridge
University Press, Cambridge (2011)

3. Ciardelli, I.: Modalities in the realm of questions: axiomatizing inquisitive epis-
temic logic. In: Goré, R., Kooi, B., Kurucz, A. (eds.) Advances in Modal Logic,
pp. 94–113. College Publications, London (2014)

4. Ciardelli, I.: Questions in logic. PhD thesis, University of Amsterdam (2016)
5. Ciardelli, I., Groenendijk, J., Roelofsen, F.: On the semantics and logic of declar-

atives and interrogatives. Synthese 192(6), 1689–1728 (2015)
6. Ciardelli, I., Groenendijk, J., Roelofsen, F.: Inquisitive Semantics. Oxford University

Press, Oxford (2017, To appear)
7. Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Log. 40(1), 55–94 (2011)
8. Ciardelli, I., Roelofsen, F.: Inquisitive dynamic epistemic logic. Synthese 192(6),

1643–1687 (2015)
9. van Ditmarsch, H.: Knowledge Games. PhD thesis, Groningen University (2000)

10. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic.
Springer, Netherlands (2007)

11. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. J. log. Lang.
Inf. 6(2), 147–169 (1997)

12. Plaza, J.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S.,
Hadzikadic, M., Ras, Z.W. (eds) Proceedings of the Fourth International Sympo-
sium on Methodologies for Intelligent Systems, pp. 201–216. Oak Ridge National
Laboratory (1989)

13. van Gessel, T.: Action models in inquisitive logic. MSc thesis, University of
Amsterdam (2016)

14. Wang, Y., Cao, Q.: On axiomatizations of public announcement logic. Synthese
190(1), 103–134 (2013)



The Stubborn Non-probabilist—
‘Negation Incoherence’ and a New Way
to Block the Dutch Book Argument
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Abstract. We rigorously specify the class of nonprobabilistic agents
which are, we argue, immune to the classical Dutch Book argument.
We also discuss the notion of expected value used in the argument as
well as sketch future research connecting our results to those concerning
incoherence measures.

1 Introduction

Suppose you decide that your first task on a sunny Tuesday morning is to con-
vince your friend who does not subscribe to probabilism (that is, he claims his
degrees of belief need not be classical probabilities) of the error of his ways1.
You decide to try the classical Dutch Book argument first. To your surprise you
discover that your friend is not worried about the somewhat pragmatic nature
of the argument, allows you to set all the stakes to 1 for convenience, and, while
claiming that the set of propositions about which he holds some degree of belief
is finite, he is eager to contemplate betting on virtually anything. He also con-
siders a bet to be fair if its expected profit both for the buyer and seller is null,
and even accepts the ‘package principle’, that is, believes a set of bets to be fair
if each of the bets in that set is fair. Knowing all that, when telling your friend
about how fair betting quotients are connected with the Kolmogorov axioms,
and then about the identification of fair betting quotients with degrees of belief,
you expect him to be immediately convinced.

To your surprise he shakes his head in opposition, saying ‘I agree that fair
betting quotients are exactly those which satisfy the axioms of classical proba-
bility. Still, even when we set all stakes to 1, I don’t believe that these quotients
are my degrees of belief.’

‘But Alan’, you say, ‘this is standard. We went through this. We agreed that
if your degree of belief in A is b(A), and your degree of belief in ¬A is b(¬A),
then your betting quotient for the bet for A is that particular q for which the
expression b(A) · (1 − q) + b(¬A) · (−q), that is, what you expect to be the value

1 Why Tuesday? See [7].
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A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 256–267, 2017.
DOI: 10.1007/978-3-662-55665-8 18



The Stubborn Non-probabilist—‘Negation Incoherence’ and a New Way 257

of the bet, equals 0. And it is a matter of mundane calculation that q is exactly
b(A). In general this means that betting quotients are your degrees of belief.’

‘Still, look’ – your friend responds – ‘you’re missing one thing. It’s just that
in my case b(A) + b(¬A) is in general not equal to 1. My degrees of belief are
such that for each proposition A there is a non-zero number rA for which it holds
that b(A) + b(¬A) = rA; some of those numbers may be equal to 1, but none
need be. And so my betting quotient for the bet for a proposition A is in general
b(A)/rA. Can you run your argument using such quotients?’

Well, can you? It turns out that sometimes you can – but sometimes not. It
all depends on the particulars of your friend’s belief state. In what follows we
will specify the formal details. Notice that the way the story is set up, our friend
has granted you the assumptions needed to overcome the well known flaws of the
Dutch Book argument (discussed e.g. in [1,17]). Still, it seems that even then
he needs not be persuaded by the reasoning. This suggests that we have here a
problem for Dutch Book arguments.

The feature of a belief function described above, which we take as suggesting
a way in which a nonprobabilist can resist the Dutch Book argument, was first
described in print by [8] and called “negation incoherence”. In this paper we go
further:

• by saying something new regarding why and when a nonprobabilistic agent
might not violate the norm of rationality appealed to in Dutch Book argu-
ments;

• more explicitly, by proving a theorem describing the class of those nonprob-
abilistic agents which are, we believe, immune to Dutch Book arguments,

• and lastly, by discussing some different ways in which an incoherent agent
might approach the task of calculating the expected value of some bet.

We take negation incoherence, then, as another reason for which “betting
odds and credences come apart” ([2,13]), but which, let us note here, has nothing
to do with the issues related to self-location (for the root of a big part of modern
literature on that subject see [4]). The key to our idea is that while we see
nothing wrong with the classical Dutch Book theorems, they concern betting
quotients (or odds), while the Dutch Book argument tries to establish something
about credences. If there are situations in which these two “come apart”, that
is, should not simply be identified with each other, we should either say that the
argument is not applicable (which may be a sensible road to take in the face of
self-location problems) or try to first establish a rigorous link between them and
then to reevaluate the fate of the Dutch Book argument. The latter is the way
we have chosen for this article.2

Simply assuming that degrees of belief are to be identified with betting quo-
tients would amount to adopting some kind of operational approach to credences,
with the details depending on how the understanding of the quotients would be
fleshed out. We see little gain from this, aside from a short-lived satisfaction at a
spurious connection to empirical matters. We are motivated rather by the spirit

2 We would like to thank one of the Reviewers for pressing us on this.
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of [5]; that is, we try to keep an open mind regarding what degrees of belief
are, and investigate the relationship between them and betting quotients on a
single basic assumption: that whatever they are, they can be expressed by a real
number.

2 Details

Notice first that assuming that in general b(A) + b(¬A) = 1 does not amount to
assuming the probabilist thesis, that is, the problem is not that of pure petitio
principii. Still, by doing so we are assuming something with which a nonprob-
abilist may by no means agree. We just know that by denying it, he has to
hold that the additivity axiom or the normalization axiom (stating that the
probabilities of tautologies equal 1) is not satisfied by his degrees of belief.

We can arrive at the problem from another direction. The traditional way of
looking at the Dutch Book argument for probabilism would have it imply that
possessing degrees of belief which violate classical probability axioms is a mark
of irrationality. This should be puzzling if we think about the particular form
of the ‘normalization’ axiom used in the classical axiomatization of probability.
If we believe tautologies to a degree different from 1, we can apparently be
Dutch-booked. Surely there’s a mistake here: the choice of the number 1 as the
probability of tautologies is purely conventional. The number 2 (say) would do
just as well. But if we are careful about setting the betting quotients the way
with which our nonprobabilistic friend would agree, then if his degree of belief
in countertautologies is 0 and his degree of belief in tautologies is 2, his betting
quotient for tautologies is 1, exactly the same as in the classical case.

Let us continue towards the theorem specifying the class of cases in which a
nonprobabilist is not Dutch-bookable. In this paper we confine our attention to
finite structures.

One of the main points of this paper is to identify/determine the conditions
under which it is possible to link betting quotients with credences while arguing
for probabilism. We will see that the exact identification of betting quotients
and credences is possible when the agent is not “negation-incoherent”, and so
it should not be surprising that mathematically the betting quotient functions
and the credence (degrees of belief) functions are objects of the same type. That
is, they are functions from an algebra of events (propositions) defined over a
given set (interpreted as a set of possible worlds, sample space or whatnot). The
difference between these functions, argumentation-wise, lies in their interpreta-
tions and is justified by the way the degrees of belief of a given agent induce
betting quotients in betting scenarios via the condition of fairness of bets. All
this should be clear by the time the Reader reaches Definition 4 below. Let us
start with the basic notions of belief and betting spaces:

Definition 1 (Belief space, betting space). A belief (betting) space is a tuple
〈W,Prop, b〉, (〈W,Prop, q〉) where W is a nonempty finite set, Prop is a Boolean
algebra of subsets of W (‘propositions’), and b (q) is a function from Prop to
R, called the belief function (betting quotient function).
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In what follows we always assume that we are given a (finite) set W and a
Boolean algebra Prop ⊆ P(W ) of subsets of W (‘propositions’).

Let us now provide an intuitive description of the concept of betting quo-
tients. We say that a bet on a proposition A ∈ Prop consists of a stake s(A) and
a price p(A) (both real numbers) considered by the agent to be fair for a bet
regarding A with that particular stake (‘fair’ as in ‘not favouring either side’), as
well as the agent’s payoffs: s(A) − p(A) in the case A is true, and −p(A) in the
case A is false. Intuitively, the agent’s betting quotient for A equals p(A)

s(A) , and is
simply the price of a bet with the unit stake s(A) = 1 considered by the agent as
fair. On our account the betting quotient is attached to a proposition, and so it
is not the price p(A) that the betting quotient depends on, but rather the other
way round: the price that the agent considers fair is determined by her betting
quotients and the announced stake. Therefore, it is already here that the Reader
might observe that a thing crucial for an accurate interpretation of Dutch Book
scenarios is understanding under what conditions the agent considers a given
price of a given bet to be fair.

With the interpretation of the betting quotient function in hand, we are in the
position to state the formal definition of Dutch Books and recall the Dutch Book
Theorems that seem to constitute the main engine of Dutch Book Arguments.

Definition 2 (Dutch Book). Let W be a non-empty (finite) set and let F ⊆
P(W ) be a Boolean algebra of its subsets. Let q : F → R be a real-valued function.
We say that q is susceptible to a Dutch Book (is Dutch-Bookable; permits
a Dutch Book) if there exists a function s : F → R and F0, a finite non-empty
subset of F , such that for any w ∈ ⋃ F the following inequality holds:

U(w) =
∑

E∈F0:w∈E

(1 − q(E))s(E) −
∑

E∈F0:w �∈E

q(E)s(E) =
∑

E∈F0

(χE(w) − q(E))s(E) < 0,

where χE is the characteristic function of the set E.
We can also say in such a case that the betting space 〈W,F , q〉 permits a

Dutch Book, or that it is Dutch-bookable, or that an agent with a betting quotient
function q is susceptible to a Dutch Book (is Dutch-bookable).3

Definition 3 (Classical probability function (finite)). A function p from Prop
to R is a classical probability function if it satisfies the following three axioms:

1. p(W ) = 1 (the normalization axiom),
2. for any A in Prop p(A) ≥ 0 (the non-negativity axiom),
3. for any A and B whose intersection is empty p(A ∪ B) = p(A) + p(B) (the

additivity axiom).

Theorem 1 (Dutch Book Theorem - [9,10]). A betting quotient function is not
Dutch-bookable iff it is a classical probability function.
3 For a detailed discussion of defining Dutch Books in the more general context of

(possibly) nonclassical spaces, including a detailed discussion of the formula for
U(w), see [18].
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Let us notice that it is crucial to distinguish between:

• the Dutch Book Theorem (DBT), which is an established mathematical
result, and

• the Dutch Book Argument (DBA) for probabilism, which only uses the DBT
as one of its premises.

Let us consider that direction of the DBA which aims to establish that vio-
lating probabilism leads to violating some norm of rationality. The structure of
the argument is usually as follows:

1. Assume that a given agent’s belief function violates the classical probability
axioms.

2. Identify the agent’s credences with her betting quotients, that is, the quotients
of bets fair according to her4—this means that the agent’s betting quotient
function violates probability axioms.

3. By the Dutch Book Theorem such the agent is guaranteed a sure loss.
4. Ergo, the agent’s degrees of belief are irrational.

As the Reader sees in point 2, the argument identifies the degrees of belief
with the betting quotients. This might seem close to obvious, as for instance [2]
claim5:

“All we need is for there to be a normative link between the belief and the
bet. Something like ‘Other things being equal (risk-neutral, utility linear
with money, . . . ), an agent who accepts E with 50% certainty is rationally
permitted to accept a bet on E that pays twice the stake or better’. This
link is broadly accepted, and will be all we need.”

What we intend to show in this paper is that the broad acceptance reported
in the quote above actually deserves serious and careful scrutiny—we hope to
demonstrate that it should actually be rejected and although there is a link
between the credence and the quotient, it by no means has to be identity in all
cases.

The only constraint that we have with respect to the nature of the above-
mentioned link is to make sure that the agent expects the value of the bet for
A to be 0 (assume all stakes are set to 1; nothing important in the argument
depends on that) which is a natural explication of fairness of a given bet: it does
not favour any of the sides. Thus, what we need to guarantee, while linking the
belief function b to the betting quotient function q, is that for any event A:

b(A)(1 − q(A)) − b(¬A)q(A) = 0.

4 Some variation is possible at this point. Some may prefer to speak instead about
bets the agent would accept. This will not be important for the topic of our paper.

5 Note, though, that the authors talk about and agent being permitted to accept a bet
if she does not expect her own loss, and so they do not use the concept of fairness
as not favouring either side. This is tangential to our argument.
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Notice that as mentioned above, normalization and additivity imply that for
any A in Prop b(A) + b(¬A) = 1, that is, they imply the assumption we need
for the ‘classical’ connection between degrees of belief and betting quotients, i.e.
their identification. In our case we wish to play by our friend’s rules, that is, for
any A, we want to set the betting quotient for A to b(A)/(b(A)+b(¬A)): this way
we will make sure that indeed our friend expects the value of the bet for A to
be 0. Therefore, we may then define:

Definition 4 (Induced betting quotient). A belief space 〈W,Prop, b〉 induces a
betting quotient q : Prop → R if for any A ∈ Prop:

1. b(A) + b(¬A) 	= 0,
2. q(A) = b(A)

b(A)+b(¬A) .

Defined this way, q(A) is the betting quotient which makes a bet for or
against A such that an agent with a belief function b expects it to have value 0.6

It follows that if a belief space induces a betting quotient function, that is, if the
first condition of the above definition holds, then that function is unique.

The question which now arises is the following: are there any non-probabilistic
epistemic agents (i.e. such that their degrees credences violate the classical prob-
ability axioms) that are not susceptible to Dutch Books, i.e. such that their bet-
ting quotients (induced by their credences) are not Dutch-Bookable? The answer
is given by the following simple theorem:

Theorem 2. The betting quotient function q induced by a belief space
〈W,Prop, b〉 is a classical probability function iff the following conditions hold:

1. b(∅) = 0,
2. for any A in Prop b(A) · b(¬A) ≥ 0,
3. for any A and B in Prop with an empty intersection:

b(A ∪ B)
b(A ∪ B) + b(¬(A ∪ B))

=
b(A)

b(A) + b(¬A)
+

b(B)
b(B) + b(¬B)

.

Proof. Let q be the belief quotient function induced by a belief space 〈W,Prop, b〉.
(⇒) Assume q is a classical probability function. By the normalization axiom

q(W ) = 1, and by the additivity axiom q(∅ ∪ W ) = q(W ) = q(W ) + q(∅), so
q(∅) = 0. Thus b(∅) = q(∅) · (b(∅) + b(W )) = 0.

Let A ∈ Prop. By the definition of the induced betting quotient we have
b(A) · b(¬A) = [q(A) · (b(A) + b(¬A))] · [q(¬A) · (b(A) + b(¬A))] = q(A) · q(¬A) ·
(b(A) + b(¬A))2. As the function q is non-negative and we multiply the square
of (b(A) + b(¬A)), the value of the entire expression is ≥ 0.

The last condition holds since it basically says that q(A) + q(B) = q(A ∪ B)
for disjoint sets in Prop, which is guaranteed by the additivity axiom.

(⇐) Assume the conditions form the statement of the theorem hold. Trivially,
since b(∅) = 0 and q is induced by b, it holds that q(∅) = 0 and q(W ) =
0 + b(W )

b(W )+b(∅) = 0 + b(W )
b(W )+0 = 0 + 1 = 1, so normalization holds.

6 For more regarding the notion of expected value see Sect. 4 below.
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Let A ∈ Prop. We have q(A) = b(A)
b(A)+b(¬A) , and b(A) and b(¬A) are of

the same sign (or one of them is equal to 0). Thus, both the counter and the
denominator of the formula defining q(A) are of the same sign as well (or the
counter is equal to 0). Thus, q(A) ≥ 0.

The additivity of q follows trivially from the formulation of the third
condition. �

It is worthwhile to reflect on which steps of the above proof depend on what
properties of the classical probability measure on the one hand, and the induced
betting quotient on the other. If b satisfies the conditions in the statement of the
theorem, then the normalization axiom is implied just by the fact that b(∅) = 0.
Additivity is immediate in both directions of the reasoning. On the other hand,
the same sign of the belief function on complementary events follows from the
non-negativity of q, if the latter is the quotient function induced by b. However,
the value b(∅) = 0 follows from (the conjunction of) normalization and additivity
of q. That is, it is not the case that the conditions in the statement of the theorem
correspond directly to the respective probability axioms.

3 Discussion

To see an example of a Dutch-bookable, nonprobabilist belief space, consider the
space with three atomic propositions depicted in Fig. 1.

1

1/2 1/2 1/2

1/3 1/3 1/3

0

degrees of belief
to the left

induce
betting quotients

to the right

1

3/5 3/5 3/5

2/5 2/5 2/5

0

Fig. 1. A nonprobabilist, un-Dutch-bookable belief space and its induced betting quo-
tient function.

That is, consider 〈W,Prop, b〉 where W = {w1, w2, w3}, Prop = P(W ), and
b : Prop → R takes the values b(∅) = 0, b(W ) = 1, b({wi}) = 1

3 for each
i ∈ {1, 2, 3}, and b({wi, wj}) = 1

2 for distinct i, j ∈ {1, 2, 3}. Then the induced
betting quotient function q is as follows: q(∅) = 0, q(W ) = 1, q({wi}) = 2

5 for
each i ∈ {1, 2, 3}, and q({wi, wj}) = 3

5 for distinct i, j ∈ {1, 2, 3}.
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(Where a similar illustration appears in the remainder of the paper we shall
use the same representational convention, that is, the left algebra represents
the function b defined on P({w1, w2, w3}), and the right algebra represents the
induced betting quotient function q.)

We can see that the betting quotient function q does not satisfy the classical
probability axioms (it is not additive), therefore by Theorem1 the belief function
b is susceptible to a Dutch Book. We can see observe that the belief function b
does not satisfy the third condition of Theorem2, e.g.

b({w1, w2})

b({w1, w2}) + b({w3})
=

3

5
�= 4

5
=

b({w1})

b({w1}) + b({w2, w3})
+

b({w2})

b({w2}) + b({w1, w3})
.

−3

−1 4/3 −5/3

−1/3 2/3 −1

0

degrees of belief
to the left

induce
betting quotients

to the right

1

3/6 4/6 5/6

1/6 2/6 3/6

0

Fig. 2. A nonprobabilist, un-Dutch-bookable belief space with a “wild” belief function.

For a contrasting example, Fig. 2 depicts another nonprobabilistic belief
space. As we can see, the induced betting quotient function may be a classi-
cal probability function even though the original belief function does not seem
to be anything reasonable.

Note that you do need to subscribe to any particular interpretation of belief
functions to accept the above argument (for a survey see the already mentioned
[5]). The only two things that are needed are that you agree that degrees of
belief can be expressed by a real number (so that, for example, you are not a
strong operationalist) and agree to our description of the relation between them
and the betting quotients.

Notice also that having negative credences—whatever this would mean—does
not by itself make you prone to Dutch-Books. You might be exploitable in some
ways, and so holding such credences might be irrational. But the main goal of
this paper was to distill the essence of the power of the Dutch Book arguments,
and from the above Theorem we see that it does not exclude negative credences
as irrational.
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4 How to Expect Things When You Are Incoherent

We have intentionally used expressions like “the agent expects the bet to have
value 0” instead of “according to the agent the expected value of the bet is
0”. Consider the following argument (notice that for clarity we have omitted the
phrase “according to the agent”, but it should be immediate where it is intended
to figure):

1. A bet is a random variable;
2. a fair bet is defined as one that has expected value 0;
3. a fair set of bets is defined as one that the expected value of the sum of all

the bets in the set is 0;
4. the expected value of a sum of finitely many random variables is equal to the

sum of expected values of those random variables;
5. therefore, a finite set of bets all of which are fair is also fair;
6. therefore there are no finite Dutch Books.

Since the conclusion of this argument is false (examples of finite Dutch Books
abound), we need to see where it fails. Since a bet outputs a real number (profit)
given an element of the sample space (possible world), it can be thought of as a
random variable, and so step 1 is true. Steps 2 and 3 are definitions. Step 4 is
a basic fact about random variables. Step 5 follows from the previous four, and
step 6 is just a reformulation of 5.

So, what is wrong? The culprit is step 2. Yes, it is a definition, but its
application to an incoherent agent yields probably unintended results. Compare
defining, for an agent with a belief function b, the expected value of a bet for A
which pays 1 and costs q as

b(A) · (1 − q) + b(¬A) · (−q) (1)

(as is done e.g. by [17]; we have used the same formula in the previous sections)
with putting it as

∑

w∈A

b({w}) · (1 − q) +
∑

w/∈A

b({w}) · (−q). (2)

These two expressions may be different for agents with a nonadditive belief
function. (Notice that the former, and not the latter, is, mathematically speak-
ing, the expected value of the bet, considered as a random variable: see e.g.
Definition 4.1.1 in [14].) It seems that an incoherent agent may respond to our
result in Sect. 2 by saying “that’s all very nice, thank you very much for defend-
ing me, but really, I expect a bet for A to have value 0 precisedly when (2) is 0,
that is, I am using this atomic notion of expected value just like it is employed
in esteemed publications like [6, p. 615] and [12, Chap. 14]. And so my alleged
Dutchbookability is a matter of a different calculation!”

But is that option really available to the agent? It seems to us that the
answer is “no”. When figuring the relevant betting quotient the agent considers
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the payoff in the case of winning the bet, the payoff in the case of losing it,
and takes into account how probable he or she thinks the two outcomes are,
that is, his or hers credences in the proposition (because the bet is won if the
proposition is true) and its negation (because it is lost if the proposition is false).
The agent’s credences in the constituents of the proposition are irrelevant to this;
and so, the correct formula to be used is (1). This is of course debatable: but we
are willing just to say that at this point the non-probabilist, even though—as
pointed out—she could appear to the existing literature, would truly become
Stubborn.

4.1 Conclusions

Thus, even if we forget about all the problems of Dutch Book arguments which
are usually mentioned in the formal epistemology literature (see e.g. [1,11,17]),
it turns out that another one lurks in the basic step of connecting degrees of
belief with betting quotients. There is a gap between betting quotients, which
theorems in Dutch-Book-inspired formal epistemology are about, and degrees
of belief, which those theorems are supposed to be about. This gap prevents
the classical Dutch Book argument from being convincing to the target group,
that is, nonprobabilists. We propose to bridge that gap using the notion of
induced betting quotient; and show that susceptibility to a Dutch Book remains
a nontrivial notion: some nonprobabilists are immune, but others are not.

5 Relation to Incoherence and Inaccuracy Measures:
Some Preliminary Remarks

Since the context of this paper is an argument for probabilism, we have confined
our attention to a binary notion: either the agent can be Dutch-booked, and so
is irrational, or not, in which case if (s)he indeed is irrational, we need a different
argument to show it, since everything seems to be fine about her or his credences
at the given moment. This is fine if we are interested in norms of rationality of
ideal agents and what exactly it takes to satisfy them. However, if we think
of real agents, who—reason would dictate—can only aspire to the probabilistic
ideal, or if we would like to compare different violations of probabilism displayed
by ideal agents, some graded notion is needed: one which would aim to capture
the “distance” between an agent’s belief function and some maximally “close”
coherent function. (The word “distance” is in quotes since the two-argument
functions used in the literature may not be metrics; see e.g. [12].)

One approach would be to use a notion of Dutch Book which would enable
us to ask questions regarding “how Dutch-bookable an agent is”, for example,
intuitively, how much money can be extorted from the agent (assuming some
normalization is used). This road is taken by [15]. We have tried to make our
paper acceptable to those who think one fault of the classical Dutch Book argu-
ment for probabilism from the point view of epistemology was its pragmatic
nature; we have thus decided to use a relatively strict notion of a “a bet the
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agent considers as not favouring any side”, and not something similar to “a bet
the agent would accept since (s)he considers it to have a nonnegative expected
value for her or him”, which is the notion Schervish et al. use. We do not know
yet how our approach fares if we switch from one notion to the other—this is a
task for the future.

The approach by Schervish et al. has been criticised by e.g. [16] on both tech-
nical and philosophical grounds, but at least one of their incoherence measures,
the “neutral/max” one, stands its ground, and we will consider it in the future.
The basic question to be asked is the following. Consider the class N consisting
of all nonprobabilist agents which cannot be Dutch-booked (according to a ver-
sion of our argument which takes into account the class of bets interesting from
the point of view of Schervish et al. described above) and the class M consisting
of all nonprobabilist agents which can. Are all members of N less incoherent
according to the “neutral/max” rule than all members of M?

Another route to consider would be to investigate how members of the classes
N and M fare from the standpoint of alethic accuracy (on that notion consult
[12]). However, it is not evident what kind of question should be asked in this
context. The relationship between graded incoherence and alethic inaccuracy has
not been completely worked out and research in that area is ongoing: see e.g. [3].
There seem to be no “simple” theorems to look for in this area; for example, as
shown in [3], promoting one virtue does not in general result in promoting the
other. Just like in the case of the issues discussed in the previous paragraph,
the number of implicit quantifiers involved in researching such issues makes the
number of potential formal hypotheses quite high. However, at this moment
we are sceptical regarding the outlook of similar endeavours. Consider the non-
probabilist belief space from Fig. 3: on any reasonable inaccuracy measure its
“distance” from the closest coherent function will be minimal, and yet it belongs
to the class M : it is Dutch-bookable. We will pursue these issues further in [19].

1

0.399 0.8 0.2

0.2 0.2 0.601

0

Fig. 3. A belief space which is negation coherent (and so featuring degrees of belief
which are betting quotients) and Dutch-bookable (since the betting quotients are not
additive), but intuitively very close to a classical space.
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Abstract. In this paper we discuss the extent to which conjunction and
disjunction can be rightfully regarded as such, in the context of infectious
logics. Infectious logics are peculiar many-valued logics whose underlying
algebra has an absorbing or infectious element, which is assigned to a
compound formula whenever it is assigned to one of its components.
To discuss these matters, we review the philosophical motivations for
infectious logics due to Bochvar, Halldén, Fitting, Ferguson and Beall,
noticing that none of them discusses our main question. This is why we
finally turn to the analysis of the truth-conditions for conjunction and
disjunction in infectious logics, employing the framework of plurivalent
logics, as discussed by Priest. In doing so, we arrive at the interesting
conclusion that —in the context of infectious logics— conjunction is
conjunction, whereas disjunction is not disjunction.

Keywords: Conjunction · Disjunction · Infectious logics · Logics of
nonsense · Plurivalent logics

1 Introduction

1.1 Background, Motivation and Aim

The aim of this paper is to discuss the extent to which conjunctions and disjunc-
tions, appearing in the context of what are nowadays called infectious logics (cf.
[13,22,31]), can be rightfully called conjunction and disjunction. Infectious logics
are, in a nutshell, non-classical many-valued logics that count with a truth-value
which is assigned to a compound formula every time it is assigned to at least one
of its components. Thus, it is claimed that values behaving in this way exhibit
an infectious, contaminating or otherwise absorbing nature.

Salient examples of such logics are the {¬,∧,∨}-fragments, also called the
“classical” fragments, of Dmitri Bochvar’s and Sören Halldén’s logic of nonsense,
presented in e.g. [5,18] respectively. What differentiates these logics (or, properly
speaking, their classical fragments) is that while Bochvar treats the contaminat-
ing value as undesignated, Halldén (although derivatively, cf. [12, p. 345] and
[22]) treats it as designated. From this and the absorbing nature of this element
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it can be inferred that Bochvar’s logic is paracomplete, whereas Halldén’s logic
is paraconsistent. In fact, the classical fragment of Bochvar’s logic has been also
discussed in the relevant literature as Weak Kleene Logic Kw

3 , while the classical
fragment of Halldén’s logic has been also independently discussed in the litera-
ture as Paraconsistent Weak Kleene Logic PWK. As is easy to notice and as
has been already pointed out in many works (e.g. [29]) this logics are such that,
respectively, ∨-Introduction and ∧-Elimination are invalid in them.

To carry out our present discussion we will scrutinize various motivations
given for these infectious logics, in order to determine whether or not the target
binary operations are, after all, legitimate disjunctions and conjunctions. To this
end, for the case of paracomplete infectious logics, we will consider Bochvar’s
own nonsense-related account, Melvin Fitting’s epistemic semantics [16], Thomas
Ferguson’s computational interpretation [12,14] and Jc Beall’s off-topic reading
[2]. Whereas for the case of paraconsistent infectious logics, we will consider
Halldén’s own nonsense-related account. We will argue that none of these allow to
present a cogent reading of disjunction and conjunction, but that an alternative
account of the truth and falsity conditions for these connectives, in terms of
the discussion of Graham Priest’s plurivalent semantics carried out in [22,29],
indeed does the work.

1.2 Preliminaries

Our language L consists of a finite set {¬,∧,∨} of propositional connectives and
a countable set Prop of propositional parameters. Furthermore, we denote by
Form the set of formulas defined as usual in L. We denote formulas of L by α,
β, γ, etc. and sets of formulas of L by Γ , Δ, Σ, etc.

Definition 1 (Univalent semantics). A univalent semantics for the language
L is a structure M = 〈V,D, δ〉, where

– V is a non-empty set of truth values,
– D is a non-empty proper subset of V, the designated values,
– for every n-ary connective ∗ in the language, δ∗ : Vn → V is the truth function

for ∗.
A univalent interpretation is a pair 〈M,μ〉, where M is such a structure, and
μ is an evaluation function from the Prop to V. Given an interpretation, μ
is extended to a map from all formulas to V recursively: μ(∗(α1, . . . , αn)) =
δ∗(μ(α1), . . . , μ(αn)). Finally, Σ |=M

u α iff in every interpretation in which all
the formulas of Σ are designated, so is α.1

Note that semantic consequence relations are defined as preservation of des-
ignated values, as usual. For an alternative, see Definitions 3 and 4.

1 We will sometimes omit the subscript u, when contexts disambiguates. Also, we may
sometimes make reference of |=L instead of |=ML .



270 H. Omori and D. Szmuc

Definition 2. The univalent semantics for Weak Kleene and Paraconsistent
Weak Kleene for the language L are the structures MKw

3
= 〈VKw

3
,DKw

3
, δKw

3
〉,

and MPWK = 〈VPWK,DPWK, δPWK〉 respectively where

– VKw
3

= VPWK = {t, e, f},
– DKw

3
= {t} and DPWK = {t, e},

– δKw
3

= δPWK and is the set of truth-functions represented by Kleene’s ‘weak’
truth-tables from [19], depicted below.

δ¬
t f
e e
f t

δ∧ t e f

t t e f
e e e e
f f e f

δ∨ t e f

t t e t
e e e e
f t e f

As is pointed out in [22], Kw
3 can be understood as a logic with gaps endowed

with a characterization of logical consequence in terms of truth-preservation,
whereas PWK can be understood as a logic with gaps endowed with a charac-
terization of logical consequence in terms of non-falsity preservation. The corre-
sponding induced consequence relations being |=Kw

3 and |=PWK.
Nevertheless, it is interesting to notice that these possibilities do not exhaust

the way in which we can define logical consequence and, thus, in which we can
build logical systems out of the weak truth-tables from Kleene. We define below
a q-consequence relation and a p-consequence relation, following the proposals
of Grzegorz Malinowksi in [20] and Szymon Frankowski in [17] respectively.

Definition 3 (q-consequence for Kleene’s weak truth-tables). Σ |=WK
q

α iff in every interpretation in which all the formulae of Σ are assigned a value
in {t, e}, then α is assigned the value t.

Definition 4 (p-consequence for Kleene’s weak truth-tables). Σ |=WK
p

α iff in every interpretation in which all the formulae of Σ are assigned the value
t, then α is assigned a value in {t, e}.

2 Infectious Logics: An Overview

As we will briefly see, Weak Kleene and Paraconsistent Weak Kleene are mem-
bers of a broader family of infectious logics. Intuitively, infectious logics are
many-valued logics that have an absorbent or infectious truth-value, that is,
a truth-value such that it is assigned to a compound formula whenever it is
assigned to at least one of its components. More formally:

Definition 5. A semantics M = 〈V,D, δ〉 for the language L is infectious iff
there is an element x ∈ V such that for every n-ary connective ∗ in the language,
with an associated truth-function δ∗ ∈ δ and for all v1, . . . , vn ∈ V it holds that:
if x ∈ {v1, . . . , vn}, then δ∗(v1, . . . , vn) = x.
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It is easy to see, as has been noticed in e.g. [29], that when the infectious value in
question does not belong to the set of designated values, then the logic is para-
complete. By this we mean that there is a valuation such that both A and ¬A
are undesignated. Moreover, in these cases, yet another characteristic classical
inference is invalid, namely ∨-Introduction (sometimes also called ‘Addition’),
i.e. ϕ � ϕ ∨ ψ. By this we mean that there is a valuation such that ϕ is desig-
nated, but ϕ ∨ ψ is undesignated. This happens, particularly, when ψ receives
the infectious undesignated value in question.2

Additionally, it is also easy to see, as has been noticed in e.g. [29], that when
the infectious value in question belong to the set of designated values, then the
logic is paraconsistent. By this we mean that there is a valuation such that both
A and ¬A are designated. Moreover, in these cases, yet another characteristic
classical inference is invalid, namely ∧-Elimination (sometimes also called ‘Sim-
plification’), i.e. ϕ ∧ ψ � ϕ. By this we mean that there is a valuation such that
ϕ ∧ ψ is designated, but ϕ is undesignated. This happens, particularly, when ψ
receives the infectious designated value in question.3

However, these logical behavior could be found to be rather odd and, for
this reason, we provide an overview of the philosophical motivations they have
received in the literature, in the next subsections. Let us notice that being faithful
with the literature will require us reflecting the fact that a considerable amount of
motivations have been discussed with regard to the paracomplete case, whereas
only a few have been proposed for the paraconsistent case.4

2.1 Paracomplete Case

Bochvar’s Logic of Nonsense. In the early decades of the last century, para-
doxes of set theory devoured the attention of many philosophers and logicians.
The first conceptual motivation for an infectious logic relates to these topics.
Dmitri Bochvar developed in [5] a three-valued logic to handle the paradoxes of
set theory, like Russell’s Paradox (cf. [27]).

Bochvar’s own take on this issue was that the sentence describing such a
paradoxical sets was, properly speaking, meaningless or nonsensical and —as

2 Notice that this does not suggest that the infectious value does not belong to the
set of designated values if and only if the logic is paracomplete, for there might well
exist paracomplete logics which do not count with an infectious value at all, as in
e.g. the well-known Strong Kleene logic K3 (cf. [19]).

3 Analogous to the previous footnote, notice that this does not suggest that the infec-
tious value does belong to the set of designated values if and only if the logic is
paraconsistent, for there might well exist paraconsistent logics which do not count
with an infectious value at all, as in e.g. the Logic of Paradox due to Priest (cf. [27]).

4 We should remark that providing a full overview of these motivations will require
much more space than we have here. For that reason, we refrained from commenting
on some of the motivations for infectious logics, e.g. (the first degree of) Parry
systems (cf. [25]) and of Epstein’s Dependence and Dual Dependence systems (cf.
[11]) discussed in e.g. [12–14,23,24], Deutsch’s logic from [9], Daniels’ logic from [7],
and Priest’s logic FDEϕ from [28].
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such— it did not deserve to be regarded as either true or false. In more contem-
porary terms, we would say that Bochvar took such sentences to be truth value
gaps (cf. [27]).

More importantly, Bochvar was of the idea that sentences or statements con-
taining a meaningless part or subsentence must be, in turn, meaningless them-
selves. Thus, meaninglessness can be legitimately described as the pathology
from which paradoxical sentences suffered, which is indeed itself literally infec-
tious. Furthermore, since the meaninglessness of these very sentences is portrayed
by Bochvar via the assignment of the corresponding non-classical value we must
say that, in terms of Definition 5, the meaningless value is infectious.

These motivations led Bochvar to devise his ‘logic of nonsense’, which besides
the “classical” connectives, has also means to mark nonsensical or meaning-
less statements. The ‘external assertion’ operator acts like a characteristic func-
tion for true statements, i.e. statements assigned the value and, therefore, not
assigned the value false, or the meaningless value. To be precise, then, it is only
the {¬,∧,∨}-fragment of Bochvar’s logic of nonsense that represents an infec-
tious logic (also found in the literature as Weak Kleene Logic Kw

3 , on which
more below).

Finally, Bochvar took logical consequence as being characterized by truth-
preservation. That is, necessarily, if the premises are true, the conclusion is true.
But, again, if meaningless sentences are neither true nor false, then an inference
with true premises but a meaningless conclusion must be invalid. This is why,
by taking e.g. ϕ to be true and ψ to be meaningless, ∨-Introduction fails.

Fitting’s Epistemic Interpretation. With the intention of applying his
project (see e.g. [16]) of providing an epistemic interpretation for Kleene log-
ics (cf. [19]) and Belnap-Dunn four-valued logic FDE, Melvin Fitting provided
in [15] an epistemic interpretation for Kw

3 . For this purpose, he recurred to the
framework present in e.g. [16], where there is a set of experts expressing their
positive and negative opinion on different issues, represented by sentences ϕ,ψ,
etc. In his discussion, and taking ϕ as an example, Fitting thought of allowing
experts to be for (and not against) ϕ, or both for and against ϕ, or neither for nor
against ϕ, or against (and not for) ϕ. These four cases correspond, respectively,
(via a suitable translation) to the four values {t,b,n, f} of FDE.

In this framework, it is possible to ask (when all experts have made their
minds about the relevant issues) which is e.g. the set of experts that are in favor
of ϕ∨ψ. In this case, we might think of the union of those in favor of ϕ and those
in favor of ψ. However, Fitting notices that in some situations of this sort we
might want to cut-down the set of experts taken into account to those who have
actually expressed an opinion towards both ϕ and ψ. That is, there can be some
situations (Fitting argues) where we may not want to count an expert as being
in favor of ϕ∨ψ, if she has no opinion at all with regard to e.g. ψ. In those cases
we are interested, in Fitting’s terminology, in a ‘cut-down’ disjunction. (And, by
similar remarks, in a ‘cut-down’ negation and a ‘cut-down’ conjunction).

The failure of ∨-Introduction is, thus, properly understood in epistemic terms
by taking disjunction as cut-down disjunction. It is not the case that from e.g.
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the fact that all experts are in favor of ϕ it follows that all experts are in favor
of ϕ ∨ ψ, for some experts may have no opinion whatsoever with regard to ψ. If
we, additionally, are in a situation where no expert is both in favor and against
a certain issue (that is, if no sentence is assigned the truth-value b), the logic
induced by these cut-down operations is, precisely, Kw

3 .

Ferguson’s Computational Interpretation. In [12] Thomas Ferguson
advances a computational reading of some paracomplete infectious logics by
following Belnap’s classical remarks about how a computer should think (cf. [4]),
using FDE. Belnap motivates his system by considering a computer retrieving
information about certain sentences, where this information can be thought as
the truth-value that —the computer is told— the given sentences have. Belnap
imagines that, with regard to e.g. ϕ, the computer can be told, i.e. it can retrieve
the information that ϕ is true, or that ϕ is false, or both, or neither.5

Ferguson’s ‘faulty computer’ approach to infectious logics focuses on the idea
that a computer may fail to retrieve the value of a given sentence. He notices,
moreover, that this case must me taken to be essentially different from that where
the computer is able to retrieve the value of ϕ, but it encounters no information
regarding its truth or its falsity. The case of a failure retrieving the target value,
possibly caused by a memory crash, a physical malfunction, or other problem,
is thus different from the case of a successful retrieving attempt, accompanied
by the fact that the target value contains no information.

Failures, in Ferguson’s approach, must be represented (in an extension of
FDE) by a fifth value, behaving infectiously and being undesignated. In such a
case, ∨-Introduction is invalid, for —although a computer might be successful in
retrieving the value of ϕ and, additionally, being told that it is true— it might
encounter a critical error or a crash while retrieving the value of ψ and, therefore,
an error while retrieving the value of ϕ ∨ ψ.6

Beall’s Off-Topic Interpretation. In [2], Jc Beall proposes an alternative
interpretation for Weak Kleene Logic, which does not appeal to meaninglessness,
as Bochvar’s does. Beall focuses on theories formulated in English (or any other
natural language). Theories have a distinctive topic, that is, they are not about
everything, namely, about every concept expressible in English. Intuitively, color
theory is about colors, arithmetic is about numbers, and so on and so forth, but
color theory is not about numbers and arithmetic is not about colors. To these
assumptions Beall adds the intuitive thesis that ϕ ∨ ψ is about what ϕ is about
and about what ψ is about, and similarly for ¬ϕ and ϕ ∧ ψ.

But this is not all that can be said about theories. Theories, the standard
view goes, are sets of sentences closed under logical consequence. But the main
question is: which logic? Beall remarks that it cannot be a logic that validates

5 As is noted in [12], while this framework is regarded as a ‘single address’ approach
to Belnap computers, a ‘two address’ approach can also motivated, with the subtlety
that it induces a weaker nine-valued logic.

6 We shall also mention that in [14] Ferguson discusses another computational inter-
pretation related to McCarthy’s logic from [21].
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∨-Introduction. For, if that is the case, then any theory that is about what ϕ
is about, will end up being also about what ψ is about, even if ψ is completely
off-topic. But this is unintuitive, for then theories will be about every everything,
that is, about every concept expressible in English.

To this extent, Beall proposes that the logic under which theories should
be closed should be Weak Kleene. By doing this, he also proposes to interpret
the infectious value as off-topic, thereby understanding validity as on-topic truth
preservation. It is easy to see how this invalidates ∨-Introduction, for even if ϕ
and ψ are both true, ϕ might well be on-topic while ψ is not. Therefore, ϕ∨ψ will
be true, although off-topic, whence the failure of the corresponding inference.

2.2 Paraconsistent Case

Halldén’s Logic of Nonsense. In a similar path than Bochvar, we can find
Halldén’s own ‘logic of nonsense’, developed mainly in [18]. Besides the usual
set-theoretic paradoxes, Halldén also finds instances of meaningless or nonsen-
sical sentences involved in paradoxes of vagueness (cf. [27]). Again, just like
Bochvar, Halldén takes meaningless or nonsensical statements to be neither true
nor false, and therefore to be truth-value gaps. Halldén also shares the idea that
meaninglessness is an infectious feature.

These motivations led him, in turn, to conceive his own ‘logic of nonsense’,
which besides the usual logical connectives ¬,∧,∨, has a ‘meaningfulness opera-
tor’ that acts like a characteristic function for meaningful statements, i.e. state-
ments assigned either truth or falsity. To be precise, then, it is only the {¬,∧,∨}-
fragment of Halldén’s logic of nonsense that represents an infectious logic (also
found in the literature as PWK, on which more below).

Bochvar and Halldén’s logics of nonsense have, nevertheless, an important dif-
ference. Whereas the first is paracomplete, the latter is paraconsistent. Formally
speaking, this means that the truth-value assigned to meaningless sentences is
regarded as designated. Thus, there are sentences A (namely, meaningless sen-
tences and sentences containing meaningless statements as subsentences) such
that both A and ¬A are designated.

With regard to this, while it is argued in [6] that these renders the meaningless
value as being truth-like, a more comprehensive understanding of this feature
can be taken into account if we notice that paraconsistency, in Halldén’s case, is
a derivative phenomenon. This means that Halldén did not think of nonsensical
sentences as being both true and false, i.e. as truth-value gluts (cf. [27]), much
to the contrary he took them to neither true nor false.

The paraconsistent nature of the induced consequence relation is, therefore,
better understood if we point out (as [12, p. 345] and [22] do) that Halldén
should be regarded as taking validity to be characterized by (forwards) non-
falsity preservation, that is, if the premises are non-false, then the conclusion is
non-false —instead of the usual (forwards) truth-preservation.7 In this vein, if

7 Non-falsity preservation as a motivation for paraconsistency in ‘gappy’ contexts is
discussed in e.g. [1,3].



Conjunction and Disjunction in Infectious Logics 275

meaningless sentences are neither true nor false, then an inference with mean-
ingless premises but a false conclusion must be invalid. This is why, by taking
e.g. ϕ to be false and ψ to be meaningless, ∧-Elimination fails.

Dualizing Fitting’s Epistemic Interpretation.8 It is possible to conceive
two dualizations of Fitting’s epistemic understanding of Weak Kleene logic Kw

3 ,
which will provide an epistemic interpretation of a our target paraconsistent
infectious logic, namely, PWK. The first one takes the entire framework of
Fitting’s cut-down operations, but changes the way the consequence relation is
defined. Instead of taking validity to be defined by truth-preservation, we change
to define it as non-falsity preservation. By this we mean that an inference is valid
if and only if the premises are not taken to be false by all the experts, then the
conclusion is not taken to be false by all the experts. In such cases, the failure of
∧-Elimination is properly understood in epistemic terms by taking conjunction
as cut-down conjunction. Imagine a situation where all experts have no opinion
towards ϕ: in such a situation it is not the case that from e.g. the fact that
all experts have no opinion towards ϕ ∧ ψ it follows that all experts have no
opinion towards ψ, for all experts may have a negative opinion towards ψ. If
we, additionally, are in a situation where no expert is both in favor and against
a certain issue (that is, if no sentence is assigned the truth-value b), the logic
induced by these cut-down operations, taking validity to be defined by non-falsity
preservation, is precisely PWK.

Alternatively, we could take Fitting’s epistemic understanding of FDE and
build a different interpretation for PWK. Again, in this framework, it is possible
to ask (when all experts have made their minds about the relevant issues) which
is e.g. the set of experts that are in favor of ϕ∧ψ. In this case, we might think of
the intersection of those in favor of ϕ and those in favor of ψ. However, we might
be interested in some situations of this sort we might want to track-down those
experts who have actually expressed an inconsistent opinion towards either ϕ
or ψ. That is, there can be some situations where we may not want to count an
expert as having a consistent opinion towards e.g. ϕ∧ψ, if she has an inconsistent
opinion towards e.g. ψ. In those cases we are interested, in analogy with Fitting’s
terminology, in a ‘track-down’ disjunction. (And, by similar remarks, in a ‘track-
down’ negation and a ‘track-down’ conjunction).

Now, imagine a situation where all experts have a negative opinion towards
ϕ and all experts have an inconsistent opinion towards ψ —i.e. they are both
for and against ψ. Thus, following the track-down policy we would say that
all experts have, therefore, an inconsistent opinion towards ϕ ∧ ψ. The failure
of ∧-Elimination is, thus, properly understood in epistemic terms by taking
conjunction as track-down conjunction. In such a situation, it is not the case
that from e.g. the fact that all experts are both in favor and against of ϕ ∧ ψ it
follows that all experts are in favor of ϕ, for experts may be both for and against

8 Unlike the previous interpretations of both the paracomplete and the paraconsistent
infectious systems, the following account is our original thought. We would like
to thank one of the reviewers for the suggestion to develop further the epistemic
readings of infectious logics. For a full technical development of these ideas, see [30].
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the conjunction just because they have an inconsistent opinion towards ψ. If we,
additionally, are in a situation where no expert is silent regarding all issues
(that is, if no sentence is assigned the truth-value n), the logic induced by these
track-down operations is, precisely, PWK.

3 Plurivalent Semantics: Basics

We would like to remark that, even if all of the above formalisms involve infec-
tious connectives that are referred in their respective contexts as conjunction
and disjunction, it is never discussed in these works if the target operations are
actual conjunctions and disjunctions, or what makes them be so.

Our discussion in the sections to come is intended to answer this question,
by looking at the truth and falsity conditions of conjunction and disjunction.
We will do this within the framework of plurivalent logics developed by Priest
in [29]. Plurivalent logics and their semantics can be thought as an alternative
way to look at logical frameworks where instead of a formula’s single truth-value
coming from an arbitrary set, it is allowed for formulae to have more than one
truth-value, from a given set. Thus, for example, a setting in which each formulae
gets, as a truth-value, a single element of {t, e, f}, can also be represented in a
setting in which every formulae gets, as a truth-value, a subset of {t, f}.

The definitions and results in the first three subsections are all given by Priest
in [29] in which proofs are fully spelled out. Moreover, the definitions and results
in the last subsection can be found in [22]. Therefore, the results in this section
are stated without proofs. Note finally, that our notation as well as the order of
the presentation are slightly different from Priest’s.9

3.1 General Plurivalent Semantics

We begin with the most general case of plurivalent semantics.

Definition 6 (General plurivalent semantics). Given a univalent interpre-
tation, the corresponding general plurivalent interpretation is the same, except
that it replaces the evaluation function, μ, with a one-many evaluation relation,
R, between Prop and V. Given an interpretation, R is extended to a map from
Form to V recursively:

∗(α1, . . . , αn)R v iff for some v1, . . . , vn : (αiRvi and v = δ∗(v1, . . . , vn)).

Finally, Σ |=M
g α iff for all R, if R designates all the formulas of Σ then R

designates α, where R designates α iff αRv for some v ∈ D.

Then, we can again prove a general relation between the univalent semantics
and general plurivalent semantics. To this end, we need the following definition.

9 We would like to thank one of the reviewers for the suggestion to restructure the
presentation of plurivalent semantics.
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Definition 7. Let M = 〈V,D, δ〉 be a univalent semantics. Then we can define
a univalent semantics M̈ = 〈V̈, D̈, δ̈〉, where V̈ = 2V , D̈ = {v̈ ∈ V̈ : v ∈
v̈ for some v ∈ D} and

v ∈ δ̈∗(v̈1, . . . , v̈n) iff for some v1, . . . , vn : (vi ∈ v̈i and v = δ∗(v1, . . . , vn)).

Proposition 1. Given any univalent semantics M = 〈V,D, δ〉, its correspond-
ing general plurivalent semantics can be seen as a univalent semantics M̈ =
〈V̈, D̈, δ̈〉, i.e. for any Σ ∪ {α}: Σ |=M

g α iff Σ |=M̈
u α.

3.2 Positive Plurivalent Semantics

We now turn to the positive plurivalent semantics, which is obtained by adding
a constraint to the general plurivalent semantics. Note that the original idea
behind the general construction can be found already in [26].

Definition 8 (Positive plurivalent semantics). Given a univalent interpre-
tation, the corresponding positive plurivalent interpretation is the same, except
that it replaces the evaluation function, μ, with a one-many evaluation relation,
R, between Prop and V with the following positivity condition:

for every p ∈ Prop : pRv form some v ∈ V.

Given an interpretation, R is extended to a map from Form to V recursively:

∗(α1, . . . , αn)Rv iff for some v1, . . . , vn : (αiR vi and v = δ∗(v1, . . . , vn)).

Finally, Σ |=M
p α iff for all R, if R designates all the formulas of Σ then R

designates α, where R designates α iff αRv for some v ∈ D.

Then, we can prove a general relation between the two semantics. To state
the result, the following definition will be useful.

Definition 9. Let M = 〈V,D, δ〉 be a univalent semantics. Then we can define
a univalent semantics Ṁ = 〈V̇, Ḋ, δ̇〉, where V̇ = 2V\∅, Ḋ = {v̇ ∈ V̇ : v ∈
v̇ for some v ∈ D} and

v ∈ δ̇∗(v̇1, . . . , v̇n) iff for some v1, . . . , vn : (vi ∈ v̇i and v = δ∗(v1, . . . , vn)).

Proposition 2. Given any univalent semantics M = 〈V,D, δ〉, its correspond-
ing positive plurivalent semantics can be seen as a univalent semantics Ṁ =
〈V̇, Ḋ, δ̇〉, i.e. for any Σ ∪ {α}: Σ |=M

p α iff Σ |=Ṁ
u α.

Remark 1. Let us notice, in passing, that until now our discussion of plurivalent
logics has been mainly focused on logical consequence as preservation of “receiv-
ing at least one univalently designated value”. But that is not the only way, as
we can also think of preservation of “not receiving any univalently undesignated
value”, and more.10

10 As an anonymous reviewer points out, since univalently designated values need not
be identified with truth, preserving designated values from premises to conclusion,
does not collapse with truth-preservation (namely, the preservation of the value t).
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Once we obtain the plurivalent semantics, we can also characterize the general
plurivalent semantic consequence relation in terms of positive plurivalence.

Definition 10. Let M = 〈V,D, δ〉 be a univalent semantics. Then we can
define a univalent semantics Me = 〈Ve,De, δe〉, where: Ve = V ∪{e}, De = D,
and δe∗(v

e
1, . . . , v

e
n) = e iff ve

i = e for some ve
i ∈ Ve. Otherwise, δe∗ = δ∗.

Proposition 3. Let M be a univalent semantics. Then, for any Σ∪{α}: Σ |=M
g

α iff Σ |=Me

p α.

So far we have been looking at the general framework of plurivalent semantics.
Here are some examples, obtained by applying plurivalence to the FDE family.

Definition 11. Let M = 〈V,D, δ〉 be a univalent semantics. Then we define
a univalent semantics M b = 〈Vb,Db, δb〉, where: Vb =V ∪ {b}, Db=D ∪ {b}, and
δb∗ = δ∗.

Theorem 1. Let M be a univalent semantics of the FDE family. Then for any
Σ∪{α}, the following hold: Σ |=M

p α iff Σ |=Mb

u α, and Σ |=M
g α iff Σ |=Me,b

u α.

3.3 Yet Another Plurivalent Semantics: Negative Plurivalence

As is well known, Michael Dunn’s discovery in [10] offered an intuitive reading
of the truth values in the family of FDE. Seen in this way, Priest’s plurivalent
semantics offers yet another way of making sense of truth values in terms of
smaller number of truth values. But Priest’s construction given in [29] did not
give any clue to make sense of Weak Kleene Logic and its paraconsistent variant.
It turns out, however, that by considering a rather natural variant of Priest’s
construction, we obtain an intuitive reading of the truth values for those logics.

Definition 12 (Negative plurivalent semantics). Given a univalent inter-
pretation, the corresponding negative plurivalent interpretation is the same,
except that it replaces the evaluation function, μ, with a one-many evaluation
relation, R, between Prop and V with the following negativity condition:

for every p ∈ Prop : it is not the case that pRv for all v ∈ V.

Given an interpretation, R is extended to a map from Form to V recursively:

∗(α1, . . . , αn)Rv iff for some v1, . . . , vn : (αiRvi and v = δ∗(v1, . . . , vn)).

Finally, we have two definitions of logical consequence in this setting: truth-
preservation and non-falsity preservation. In the former case we will say that
Σ |=M

n α iff for all R, if R designates all the formulas of Σ then R designates
α, where R designates α iff αRv for some v ∈ D. For the latter we will say that
Σ |=M

n α iff for all R, if R designates all the formulas of Σ then R designates
α, where R designates α iff it is not the case that αRv for some v /∈ D.
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Then, we can again prove a relation between the univalent semantics and
negative plurivalent semantics, but the only case that is allowed for the univalent
semantics is the two-valued matrix for classical logic. As [22] shows, negative
plurivalence does not define a plurivalent consequence relation if some other
matrices from the FDE family are taken as the basis. To state the result, the
following definition will be useful —alternatively changing the definition of

...D to...D = {...
v ∈ ...V : v /∈ v̈ for all v /∈ D} for the non-falsity preservation case.

Definition 13. Let M = 〈V,D, δ〉 be the univalent semantics for classical logic.
Then we can define a univalent semantics

...
M = 〈...V ,

...D, δ̇〉, where
...V = 2V \ V,...D = {...

v ∈ ...V : v ∈ v̈ for some v ∈ D} and

v ∈ ...
δ∗(

...
v1, . . . ,

...
vn) iff for some v1, . . . , vn : (vi ∈ ...

vi and v = δ∗(v1, . . . , vn)).

Proposition 4. Let M be a univalent semantics for classical logic. Then, for
any Σ ∪ {α}: Σ |=

...
M
u α iff Σ |=Kw

3 α.

4 Reflections

4.1 On Infectious Values in Plurivalent Semantics

In the context of both the general and negative plurivalence, following the def-
initions suggested by Priest, infectious values can only be represented by the
empty set. This is remarkably so, even if we start with univalent semantics other
than two-valued classical logic, e.g. the three-valued univalent semantics for Kw

3 ,
or even FDE. If we, additionally, think of a truth-value x as being true if t ∈ x,
and respectively as being false if f ∈ x, then it is clear that being true or being
false implies being non-infectious.11

It is for these reasons that if we apply the generalized plurivalence to the e.g.
two-valued univalent semantics for classical logic, infectious values cannot be
represented with —for instance— the full set {t, f}. We would like to mention,
though, that as a remark made by an anonymous reviewer suggests, it will be
interesting to discuss definitions of the plurivalent semantics that deviate from
Priest’s, in order to determine whether or not there is a plurivalent-like setting
where, for instance, the full set {t, f} can represent an infectious value. However,
we notice that there is no such thing present in the literature, up to now.

4.2 Addressing the Main Question

In what follows we will present an account of the truth conditions for conjunc-
tion and disjunction in the context of plurivalent logics which applies both to
general plurivalence and negative plurivalence —something that we take to be
an advantage of the present discussion.

11 Although for an alternative, see [30], where designated infectious values are under-
stood as truth-value gluts, i.e. as both-true-and-false.
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In the context of infectious logics, interpreted along the lines of Sect. 2, these
operations are characterized by the following truth conditions:

ϕ ∧ ψ is true iff ϕ and ψ are true, and condition C applies to ϕ and ψ

ϕ ∨ ψ is true iff ϕ or ψ are true, and condition C applies to ϕ and ψ

where by ‘condition C applies to ϕ and ψ’ we mean, respectively, that these sen-
tences are meaningful (in Bochvar’s and Halldén’s case), that all experts have
expressed an opinion toward these sentences (in Fitting’s case), that the com-
puter was successful in retrieving the information with regard to these sentences
(in Ferguson’s case) and that these sentences are on-topic (in Beall’s case).

Remark 2. Since truth-values in the plurivalent framework are represented as
subsets of some set of univalent truth-values, this implies that the curly brackets
act as a meaningful operator (if we take into account Bochvar’s and Halldén’s
interpretation), or as a did-expressed-an-opinion operator (if we take into
account Fitting’s interpretation), or as a successful-in-retrieving value operator
(if we take into account Ferguson’s interpretation), or as an on-topic operator
(if we take into account Beall’s interpretation).

On the more conservative side, the traditional account of conjunction has
it that a conjunction is true iff both conjuncts are true, whereas the tradi-
tional account of disjunction has it that a disjunction is true iff at least one of
both disjunctions is true. We will see, through some technical remarks, that this
understanding of conjunction is respected in the plurivalent reading of infectious
logics, whence we can legitimately say that the operator called ‘conjunction’ in
the context of infectious logic is conjunction. However, the standard understand-
ing of disjunction is not respected in the plurivalent reading of infectious logics,
whence we can legitimately say that the operator called ‘disjunction’ in the con-
text of infectious logics is not disjunction.12

By the truth condition for conjunction in the plurivalent semantics, we have:

t ∈ δ̈∧(x, y) iff ∃x0,∃y0 ∈ {t, f} : [x0 ∈ x, y0 ∈ y and δ∧(x0, y0) = t].

But the fact that δ∧(x0, y0) = t, given the definition of δ∧ entails that x0 = t
and y0 = t, further implying that none of them is the empty set. Thus we have:

t ∈ δ̈∧(x, y) iff t ∈ x and t ∈ y.

From this we infer that conjunction, in the context of infectious logics represented
within the plurivalent semantics, is conjunction, as traditionally conceived.

However, we cannot say the same about disjunction, as we now turn to show.
By the truth condition for disjunction in the plurivalent semantics, we have:

t ∈ δ̈∨(x, y) iff ∃x0,∃y0 ∈ {t, f} : [x0 ∈ x, y0 ∈ y and δ∨(x0, y0) = t].

12 Notice that we took the notational liberty of using e.g. δ̈∧ as the paradigmatic case,
but nothing really depends on this, and

...
δ ∧ might be used as well, without any loss.
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Nevertheless, the fact that δ∨(x0, y0) = t, given the definition of δ∨ does not
entail that both x0, y0 ∈ {t, f}, i.e. it does not imply that none of them is
the empty set. From which we can infer that disjunction, in the context of
infectious logics represented within the plurivalent semantics, is not disjunction,
as traditionally conceived.

Let us notice, for some readers might be concerned with the case, that nega-
tion (as present in infectious logics represented within plurivalent semantics) is
negation as traditionally conceived, that is, it is an operator that flip-flops truth
and falsity.13

To conclude, we should highlight that the previous remarks about the degree
to which the operators called conjunction and disjunction in infectious logics
are legitimately called that way did not make any reference to the validity of
inference rules or principles where those connectives are features, e.g. of the
already mentioned cases of ∧-Elimination and ∨-Introduction.

We would like to point out that those are issues that essentially concern
the definition of validity. Whether we do that in terms of truth-preservation,
or in terms of non-falsity preservation, in terms of q-consequence (cf. [20]) or
p-consequence (cf. [17]), following its specific instances defined in Sect. 2, the
inferences that are going to be valid or invalid vary, as summarized below.

|=Kw
3 |=PWK |=WK

q |=WK
p

ψ |= ϕ ∨ ¬ϕ × � × �
ϕ ∧ ¬ϕ |= ψ � × × �
ϕ |= ϕ ∨ ψ × � × �
ϕ ∧ ψ |= ϕ � × × �

5 Conclusion

In this paper we discussed the extent to which conjunction and disjunction can be
rightfully regarded as logical connectives of those particular sorts, in the context
of infectious logics. By turning to the analysis of the truth-conditions for these
connectives, employing the framework of plurivalent logics, we arrived at the
conclusion that —in the context of infectious logics— conjunction is conjunction,
whereas disjunction is not disjunction in the context of infectious logics.

There are a number of directions in which further work related to infectious
logics and plurivalent logics can be carried out. Regarding the most prominent
and historically salient interpretations of infectious logics, in terms of the ‘logics
of nonsense’ due to Bochvar and Halldén, it will be worth exploring the possibil-
ity of defining the semantics of a proper meaningful operator within the pluri-
valent framework. Both Bochvar and Halldén’s logics count with such linguistic
devices, although in this work we focused mainly on the {¬,∧,∨}-fragment of
their systems. We leave these and other discussions for a subsequent paper.
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Abstract. In the study of modal and nonclassical logics, translations
have frequently been employed as a way of measuring the inferential
capabilities of a logic. It is sometimes claimed that two logics are “nota-
tional variants” if they are translationally equivalent. However, we will
show that this cannot be quite right, since first-order logic and proposi-
tional logic are translationally equivalent. Others have claimed that for
two logics to be notational variants, they must at least be composition-
ally intertranslatable. The definition of compositionality these accounts
use, however, is too strong, as the standard translation from modal logic
to first-order logic is not compositional in this sense. In light of this, we
will explore a weaker version of this notion that we will call schematicity
and show that there is no schematic translation either from first-order
logic to propositional logic or from intuitionistic logic to classical logic.

Keywords: Translation · Notational variant · Lindenbaum-Tarski
algebras · Compositionality · Schematicity

1 Introduction

In the study of modal and nonclassical logics, translations (maps between for-
mulas that faithfully preserve consequence) are frequently employed as a way of
measuring the inferential capabilities of a logic. Examples of well-known trans-
lations in the literature include:

(a) the double-negation translation of classical logic into intuitionistic logic;
(b) the standard translation of modal logic into first-order logic;
(c) the Gödel translation of intuitionistic logic into classical S4.

These translations are often taken to show that the logic being translated can be
viewed as a “notational variant” of a fragment of the logic it is translated into.
Indeed, a number of authors have conjectured that translational equivalence is
a necessary and/or sufficient condition for two logics to be notational variants
in the intuitive sense.1

Unfortunately, most of these accounts of notational variance are either too
weak or too strong. For instance, on any reasonable theory of notational variance,
1 For claims like this, see [16, p. 67], [5, p. 391], [12, p. 269], [3, p. 108], [13, p. 139],

[11, p. 7] and [6, p. 134].
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first-order logic and propositional logic are not notational variants. However, we
will show in Sect. 3 that first-order logic and propositional logic are transla-
tionally equivalent. Thus, any account which says translational equivalence is
sufficient for notational variance2 is too weak.

On the other hand, some have suggested that for two logics to be considered
notational variants, they must at least be compositionally intertranslatable, in a
sense that will be made precise in Sect. 4.3 Since there is no compositional trans-
lation from first-order logic to propositional logic, the former is not a notational
variant of the latter in this sense. However, these accounts of notational variance
are too strong, since on their definition of compositionality, even the standard
translation (in fact, any translation) of modal logic into first-order logic is not
compositional. Near the end of this paper, a generalization of this notion called
schematicity that avoids these problems will be proposed, and we will show that
there is no schematic translation from first-order logic to propositional logic, or
from intuitionistic logic to classical logic.

2 Defining Translations

We start by defining the concept of a logic and a translation in abstract terms.

Definition 1 (Logic). A logic is a pair L = 〈L,�〉 where L is a nonempty class
(of formulas) and �⊆ ℘ (L) × L (the consequence relation) such that:

(i) � is reflexive, i.e., for all φ ∈ L, φ � φ
(ii) � is transitive, i.e., for all Γ,Δ ⊆ L and all φ ∈ L, if Γ � φ and if Δ � γ for

each γ ∈ Γ , then Δ � φ.

Where φ, ψ ∈ L, we will say φ and ψ are L-equivalent , written “φ ≡ ψ”, if φ � ψ
and ψ � φ. We will say that φ is L-valid , written “� φ”, if ∅ � φ. If L is a logic,
we may write “�L” and “≡L” for the consequence and equivalence relations
for L respectively. We may also write “�i” instead of “�Li

”, “≡i” instead of
“≡Li”, etc.

This notion of a logic is meant to be fairly general. While it can be generalized
even further (allowing for substructural logics, multiple-conclusion logics, etc.),
such generalizations will not concern us here. Classical, intuitionistic, modal,
and predicate logics can all be viewed as logics in the sense of Definition 1.

Next, we define the concept of a translation.

Definition 2 (Translation). Let L1 and L2 be logics. A translation from L1

to L2 is a map t : L1 → L2 such that for all Γ ⊆ L1 and φ ∈ L1, Γ �1 φ iff
t[Γ ] �2 t(φ). If t is a translation from L1 to L2, we will write “t : L1 ù L2”.
We will say L1 is translatable into L2, written as “L1 ù L2”, if there is a
translation from L1 to L2. We will say L1 and L2 are intertranslatable , written
as “L1

ùù L2”, if L1 ù L2 and L2 ù L1.
2 E.g., [13, p. 139], [11, p. 7] and [6, p. 134].
3 E.g., [16, p. 67], [5, p. 391], [12, p. 269] and [3, p. 108].
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Example (Double-Negation Translation). Define At = {p0, p1, p2, . . . }. Let Lprop

be the set of formulas defined recursively over At as follows:

φ ::= p | ¬φ | (φ ∧ φ).

Let CPL be classical propositional logic over Lprop, and let IPL be intuitionistic
propositional logic over Lprop(∨,→), i.e., the result of extending Lprop with
connectives ∨ and →. Define t(φ) := ¬¬φ. Then t : CPL ù IPL.

Example (Standard Translation). Let Var = {x0, x1, x2, . . . } (the set of vari-
ables) and for each n ∈ N, let Predn = {Pn

0 , Pn
1 , Pn

2 , . . . } (the set of n-place
predicates). Define Lpred to be the set of formulas defined recursively as follows:

φ ::= Pn(y1, . . . , yn) | ¬φ | (φ ∧ φ) | ∀xφ.

Let FOL be classical first-order logic over Lpred. Define Lprop(l) to be the set
of formulas defined recursively over At as follows:

φ ::= p | ¬φ | (φ ∧ φ) | lφ.

Let K be the minimal normal modal logic over Lprop(l). Where R is an arbi-
trarily chosen binary predicate and where n ∈ N, we define the map STn from
propositional modal formulas to first-order formulas as follows:

STn(pi) = P 1
i (xn)

STn(¬φ) = ¬STn(φ)
STn(φ ∧ ψ) = (STn(φ) ∧ STn(ψ))

STn(lφ) = ∀xn+1 (R(xn, xn+1) → STn+1(φ)).

Then STn : K ù FOL.

Example (Non-normal Modal Logics). A modal logic over Lprop(l) is said to be
monotonic if it contains all classical tautologies as well as the axiom l(p∧q) →
(lp ∧ lq) and it is closed under uniform substitution, modus ponens, and the
rule φ ↔ ψ/lφ ↔ lψ. Kracht and Wolter [9, p. 109, Theorem 4.7] showed that
the following map is a translation from any monotonic modal logic to a normal
bimodal logic (i.e., a modal logic over the language Lprop(l1,l2), where each
li is a normal modal operator):

t(p) = p

t(¬φ) = ¬t(φ)
t(φ ∧ ψ) = t(φ) ∧ t(ψ)

t(lφ) = ♦1 l2 t(φ).

Thomason [14,15] also shows how to translate any tense logic into a normal
(mono)modal logic, though the translation is too complex to state succinctly
here.
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Logicians have typically taken the existence of such translations to show that
the source logic is a mere notational variant of a fragment of the target logic.
Gödel [7] (reprinted in [8]) says of the translation from CPL to IPL:

If to the primitive notions of Heyting’s propositional calculus we let corre-
spond those notions of the classical propositional calculus that are denoted
by the same sign and if to absurdity (¬) we let correspond negation (∼),
then the intuitionistic propositional calculus H turns out to be a proper
subsystem of the ordinary propositional calculus A. With another cor-
relation (translation) of the notions, however, the classical propositional
calculus is, conversely, a subsystem of the intuitionistic one [8, p. 287].

Blackburn et al. [2, p. xi] say of the standard translation from modal logic to
first-order logic:

By adopting the perspective of correspondence theory, modal logic can be
regarded as a fragment of first- or second-order classical logic.

Kracht and Wolter [9, p. 100] informally explain the significance of their result
that monotonic modal logics are translatable into normal bimodal logics as fol-
lows:

The positive results on simulations [i.e., translations] show that there is
no essential difference between the classes of monomodal normal logics,
monotonic logics, and polymodal logics.

Finally, Thomason [15, p. 154] summarizes his result that tense logics are trans-
latable into normal (mono)modal logics as follows:

In general terms, these results would seem to indicate that there is nothing
to be gained by considering many modalities rather than just one, except
simplicity—anything which can be expressed about the universe in terms of
many notions of necessity can be expressed in terms of one, very complex,
notion of necessity, by a translation which preserves both the semantic and
syntactic consequence relations.

Although we will show that translations between logics are fairly easy to
come by, there are non-trivial failures of translatability. For instance, Jeřábek
[10, p. 672] showed that there is no translation from CPL to the logic of paradox
LP. As another example, the following is readily verified:

Proposition 3. If L1 ù L2, then L2 is compact only if L1 is.

From this, it follows that second-order logic is not translatable into first-order
logic. Moreover, as the next example shows, there are pairs of logics such that
neither logic is translatable into the other.4

4 This thereby answers a question posed by Epstein [5, p. 388] in the affirmative. It
is also straightforward to generate artificial counterexamples using any two partial
orders such that neither is order-embeddable in the other.
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Example (Kleene Logic). Let K3 be the strong Kleene logic over Lprop. Let us
write CPLn and K3n for the logics obtained from CPL and K3 respectively by
restricting the set of formulas to those whose atomics are all among {p1, . . . , pn}.
Then neither CPLn nor K3n is translatable into the other. CPLn is not trans-
latable into K3n since there are no tautologies in K3n (this generalizes to CPL
and K3). And K3n is not translatable into CPLn since the former has strictly
more formulas up to equivalence than the latter (this does not generalize to CPL
and K3; in fact, K3 ù CPL by Theorem 14 below).

One might conjecture that two logics are notational variants if they are inter-
translatable. However, a number of authors have claimed that intertranslatability
is not enough for two logics to be properly called “notational variants”. Rather,
they must additionally be translationally equivalent in the following sense:5

Definition 4 (Translational Equivalence). Let L1 and L2 be logics. We will
say that 〈t1, t2〉 is a translation scheme between L1 and L2 (written as
“t1, t2 : L1 � L2”) if t1 : L1 ù L2 and t2 : L2 ù L1 and for all φ ∈ L1

and all ψ ∈ L2:

t2(t1(φ)) ≡1 φ

t1(t2(ψ)) ≡2 ψ.

We will say L1 and L2 are translationally equivalent (written “L1 � L2”)
if t1, t2 : L1 � L2 for some t1 and t2.

Translational equivalence is strictly stronger than intertranslatability. In par-
ticular, as we will now show, CPL and IPL are intertranslatable but not trans-
lationally equivalent.

Definition 5 (Lindenbaum-Tarski Algebra). Let L = 〈L,�〉 be a logic. The
Lindenbaum-Tarski algebra of L is the poset LL = 〈L/ ≡,≤〉 where L/ ≡ is
the class of≡ -classes on L and where [φ]L , [ψ]L ∈ L/ ≡, [φ]L ≤ [ψ]L iff φ � ψ
(it is easy to verify this is well-defined since � is transitive).

Proposition 6. CPL ùù IPL but not CPL � IPL.

Proof. We saw above that CPL ù IPL via the double-negation translation.
Moreover, by Theorem 14 below, IPL ù CPL. Thus, CPL ùù IPL. Suppose
t, s : CPL � IPL. Define f : LCPL → LIPL and g : LIPL → LCPL such that
f([φ]CPL) = [t(φ)]IPL and g([φ]IPL) = [s(φ)]CPL (this is well-defined since
translations preserve equivalence). It is easy to check that f and g are order-
embeddings such that f(g([φ]IPL)) = [φ]IPL and g(f([φ]CPL)) = [φ]CPL. Thus,
if CPL � IPL, then LCPL and LIPL would be order-isomorphic, E. ��

There is an even stronger notion of equivalence between logics, viz., that of
isomorphism:

5 See, e.g., [12, p. 269], [3, p. 108], [13, p. 139] and [6, p. 134].



On the Concept of a Notational Variant 289

Definition 7 (Isomorphism). We will say L1 is isomorphic to L2, written as
“L1

∼= L2”, if there is a bijective t : L1 ù L2.

Observe that if t : L1 ù L2 is bijective, then t−1 : L2 ù L1, and therefore
t, t−1 : L1 � L2. Thus, isomorphism implies translational equivalence. The
converse can fail for trivial cardinality reasons. For example, let CPL∗ be the
result of adding uncountably many “redundant” unary operators �r for each
r ∈ R such that �rφ ≡CPL∗ φ. Then CPL � CPL∗ but CPL �∼= CPL∗. Yet
intuitively, CPL∗ is a notational variant of CPL. After all, each �r is quite
straightforwardly definable in CPL, and intuitively, adding definable operators
to a logic does not yield a new logic. Hence, requiring notational variants to be
isomorphic would be unreasonably restrictive. One would prefer a weaker notion
of notational variance (such as translational equivalence) on which such artificial
cardinality considerations are not deemed essential to a logic.

So suppose we stipulate for a moment that two logics are notational variants
just in case they are translationally equivalent. We will now show that L1 ù L2

just in case L1 is a notational variant of a fragment of L2.

Definition 8 (Fragment). Let L1 and L2 be logics. We will say L1 is a frag-
ment of L2 (written as L1 ⊆ L2) if (a) L1 ⊆ L2, and (b) for all Γ ⊆ L1 and
φ ∈ L1: Γ �1 φ iff Γ �2 φ.

Proposition 9. Let L1 and L2 be logics. Then the following are equivalent:

(a) L1 ù L2.
(b) There is an L′

2 ⊆ L2 such that L1
ùù L′

2.
(c) There is an L′

2 ⊆ L2 such that L1 � L′
2.

Proof. Obviously, (c) implies (b), which implies (a) (since the composition of two
translations is also a translation). To show that (a) implies (c), let t : L1 ù L2.
Define Lt[1] = 〈t[L1],�t[1]〉 where t[Γ ] �t[1] t(φ) iff t[Γ ] �2 t(φ). By definition,
Lt[1] ⊆ L2. Hence, it suffices to show that L1 � Lt[1].

Now, t−1 (the inverse of t) may not be a function from t[L1] to L1, since
t might not be injective. But since t−1 is total on t[L1], we can always find a
function t∗ ⊆ t−1 (using the axiom of choice) by selecting a ψ ∈ {ψ′ ∈ L1|t(ψ′) =
φ} arbitrarily for each φ ∈ Lt[1] and setting t∗(φ) = ψ. Observe that t∗ is
a right-inverse of t, i.e., for all φ ∈ t[L1], t(t∗(φ)) = φ. Using this fact, it is
straightforward to verify that t, t∗ : L1 � Lt[1]. ��

Hence, if notational variance is translational equivalence, then to show that
L1 is a translatable into L2 just is to show that L1 is a notational variant of a
fragment of L2.

3 Translating First-Order Logic into Propositional Logic

We will now show that first-order logic is translationally equivalent with propo-
sitional logic. In fact, we will show any logic satisfying a few simple properties
can be translated into propositional logic.
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Definition 10 (Monotonic Logic). We will say a logic L monotonic if for all
Γ,Δ ⊆ L such that Γ ⊆ Δ and for all φ ∈ L, if Γ �L φ, then Δ �L φ.

(Note I am using “monotonic” here in a sense different from the sense of
“monotonic” when applied specifically to non-normal modal logics. In what fol-
lows, I will only use “monotonic” in the sense of Definition 10.)

Definition 11 (Compact Logic). We will say a logic L is compact if for all
Γ ⊆ L and φ ∈ L, Γ �L φ only if for some finite Γ0 ⊆ Γ , Γ0 �L φ.

The following result is due to Jeřábek [10]:

Theorem 12 (Jeřábek). Let L be a compact monotonic logic with at most
countably many formulas. Then L ù CPL.

Jeřábek provides an explicit construction of the translation and shows that the
translation is Turing-equivalent to the consequence relation of the source logic.
This is quite general, but the details of the proof are quite involved. What is
more, the construction is not guaranteed to produce a translation scheme. This
raises the question of whether FOL and CPL are translationally equivalent. We
will now show the answer is affirmative. Unlike Jeřábek’s constructive proof, our
proof will go indirectly via Lindenbaum-Tarski algebras. First, some terminology.
A poset 〈P,≤〉 is a meet-semilattice if every finite subset of P has a greatest
lower bound.

Definition 13 (Adjunctive Logic). A logic L is adjunctive if for any Γ ⊆ L,
if there is a formula φ such that [φ]L =

∧
γ∈Γ [γ]L, then Γ �L φ. We will often

write such a φ as “
∧

Γ” given it exists.

Theorem 14. Let L1 and L2 be compact monotonic adjunctive logics. Suppose
also that L1 and L2 are meet-semilattices.

(a) L1 ù L2 iff there is an order-embedding from L1 to L2 that preserves finite
meets.

(b) L1 � L2 iff L1 is order-isomorphic to L2.
(c) L1

∼= L2 iff there is an f : L1
∼= L2 where |[φ]1| = |f([φ]1)| for each φ ∈ L1.

Proof. The left-to-right directions are straightforward. For the right-to-left direc-
tions:

(a) Let f : L1/ ≡1→ L2/ ≡2 be an order-embedding that preserves finite meets.
For each [φ]1 ∈ L1/ ≡1, let f[φ]1 : [φ]1 → f([φ]1) be an arbitrary map. Define
t(φ) = f[φ]1(φ). Since L1 is compact, Γ �1 φ iff for some finite Γ ′ ⊆ Γ ,
Γ ′ �1 φ. And if Γ ′ is finite, then Γ ′ �1 φ iff

∧
Γ ′ �1 φ (

∧
Γ ′ exists since L1

is a meet-semilattice). Likewise, t[Γ ] �2 t(φ) iff t[Γ ′] �2 t(φ) for some finite
Γ ′ ⊆ Γ , and t[Γ ′] �2 t(φ) iff

∧
t[Γ ′] �2 t(φ). Since f preserves finite meets,∧

γ∈Γ ′ f([γ]1) = f(
∧

γ∈Γ ′ [γ]1) = f([
∧

Γ ′]1). Thus,
∧

t[Γ ′] ≡2 t(
∧

Γ ′). So
to show that t is a translation, it suffices to show that for any φ, ψ ∈ L1,
φ �1 ψ iff t(φ) �2 t(ψ). But φ �1 ψ iff [φ]1 ≤1 [ψ]1, iff f([φ]1) ≤2 f([ψ]1), iff
t(φ) �2 t(ψ). So t : L1 ù L2.
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(b) Let f : L1/ ≡1→ L2/ ≡2 be an order-isomorphism. As before, for each
[φ]1 ∈ L1/ ≡1, let f[φ]1 : [φ]1 → f([φ]1) be an arbitrary map. Likewise, for
each [ψ]2 ∈ L2/ ≡2, let g[ψ]2

: [ψ]2 → f−1([ψ]2) be arbitrary. Define t(φ) =
f[φ]1(φ) and s(ψ) = g[ψ]2

(ψ). The reasoning above shows that t : L1 ù L2

and s : L2 ù L1. Now, let φ ∈ L1. Then φ ≡1 s(t(φ)) iff [φ]1 = [s(t(φ))]1 =
f−1([t(φ)]2) = f−1(f([φ]1)) = [φ]1. So φ ≡1 s(t(φ)) for all φ ∈ L1. Likewise,
ψ ≡1 t(s(ψ)) for all ψ ∈ L2. Hence, t, s : L1 � L2.

(c) Under these conditions, we can take each f[φ]1 to be bijective, making t as
a whole bijective. ��

Corollary 15. FOL ∼= CPL.

Proof. Immediate since LFOL and LCPL are countable atomless Boolean alge-
bras and any two countable atomless Boolean algebras are isomorphic. ��

Note that such an isomorphism is obviously undecidable. One might try to
block this result by requiring notational variants to be Turing-equivalent. But
this requirement is both too weak and too strong. On the one hand, it is too
weak, since monadic first-order logic, which is decidable, would still be deemed
to be a notational variant of propositional logic. On the other hand, it is too
strong, since it seems plausible that some notational variants of a logic can be
more computationally efficient than others. We can illustrate this point with a
simple example.

Example. Let X ⊆ N be a nonrecursive set, and let Lprop(�	) be the result of
adding countably many binary connectives �	i (where i ∈ N) to Lprop. We will
define the logic CPL�� semantically. The semantics for atomics and the standard
boolean connectives is the same as before. The semantics of �	i is as follows: if
i ∈ X, then φ �	i ψ is true on a valuation iff φ and ψ are true on that valuation;
if i /∈ X, then φ �	i ψ is true on a valuation iff φ or ψ is true on that valuation.
Finally, CPL�� = 〈Lprop(�	),���〉, where Γ ��� φ iff φ is true on every valuation
on which Γ is true. Intuitively, CPL�� is a notational variant of CPL. After all,
each �	i is definable in terms of connectives in CPL: CPL(�	) is just CPL with
infinitely many connectives expressing conjunction or disjunction. But CPL�� is
not decidable, since a decision procedure for CPL�� would generate a decision
procedure for X (just check to see if p ��� p �	i q).

Thus, we cannot avoid Theorem 14 by appealing to computability considerations.
Something else must explain why FOL and CPL are not merely notational
variants.

Corollary 15 allows us to define a t and s such that t, s : FOL � CPL that
preserves the boolean connectives exactly:

Proposition 16. There are some t, s : FOL � CPL such that t(¬φ) = ¬t(φ)
and t(φ ∧ ψ) = t(φ) ∧ t(ψ) (and likewise for s).



292 A.W. Kocurek

Proof. Let i : FOL ù CPL be bijective. Define t and s as follows:

t(Pn(y1, . . . , yn)) = i(Pn(y1, . . . , yn)) s(p) = i−1(p)
t(¬φ) = ¬t(φ) s(¬φ) = ¬s(φ)

t(φ ∧ ψ) = t(φ) ∧ t(ψ) s(φ ∧ ψ) = s(φ) ∧ s(ψ)

t(∀xφ) = i(∀x i−1(t(φ))).

It is straightforward to check by induction that t(φ) ≡CPL i(φ) for all φ ∈ Lpred

and s(ψ) ≡FOL i−1(ψ) for all ψ ∈ Lprop. Hence, for any φ ∈ Lpred, s(t(φ)) ≡FOL

i−1(i(φ)) = φ. Likewise, for any ψ ∈ Lprop, t(s(ψ)) ≡CPL i(i−1(ψ)) = ψ. So
t, s : FOL � CPL.

It is interesting to note that there is no isomorphism between FOL and CPL
with this property. If there were such an i, then it would have to map both
atomic predicate formulas and quantified formulas to atomic propositional for-
mulas (e.g., if i(F (x)) = ¬θ, then F (x) = i−1(i(F (x))) = i−1(¬θ) = ¬i−1(θ),
contrary to the fact that F (x) has no negation, E). But then i(∀xF (x)) and
i(F (x)) would need to be logically independent atomic formulas, contrary to the
fact that ∀xF (x) �FOL F (x), E.

4 Compositionality and Schematicity

The notion of a translation as defined in Definition 2 is fairly minimal. In the-
ory, a translation could be quite gerrymandered and complex. In practice, most
translations that have been studied are fairly schematic. Usually one defines a
translation by first defining how to translate the atomic formulas, and then set-
tling how to define the translation of complex formulas in terms of their parts
via another schema. And indeed, the translations from FOL to CPL described
in Theorem 14 and Proposition 16 do not have this property. This suggests the
thesis that two logics are notational variants just in case they are translationally
equivalent via schematic translations. In this section, we will explore different
ways of fleshing out this idea.

First, to explicate this idea more precisely, we need to build more structure
into the definition of a logic. As it stands, a logic is just a class of formulas
together with a consequence relation on those formulas. Nothing in Definition 1
demands that the class of formulas a logic is built from must have any under-
lying compositional structure. Thus, if we want to make use of the notion of
schematicity, the definition of a logic must include a specification of its under-
lying syntactic structure.

Definition 17 (Signature). A signature is a pair Σ = 〈At, Op〉 where At and
Op are nonempty classes and Op is a class of pairs 〈�, γ〉 where � is a set and
γ is an ordinal. The Σ-syntax is the smallest class LΣ such that:

(i) for all φ ∈ At, 〈φ〉 ∈ LΣ
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(ii) for all 〈�, γ〉 ∈ Op and all ρ ∈ Lγ
Σ (= the class of γ-sequences of elements

of LΣ), 〈�, ρ〉 ∈ LΣ (we may write “�(ρ)” in place of “〈�, ρ〉”).

We call the members of LΣ the Σ-formulas. A Σ-logic is a pair 〈Σ,�〉 where Σ
is a signature and 〈LΣ ,�〉 is a logic in the sense of Definition 1. A translation
from L1 = 〈Σ1,�1〉 to L2 = 〈Σ2,�2〉 is just a translation from 〈LΣ1 ,�1〉 to
〈LΣ2 ,�2〉.

A number of authors have claimed that for two logics to be notational vari-
ants, there need to exist some compositional translations between them.6 To
make this precise, we need the following definition:

Definition 18 (Schema). Let Σ = 〈At, Op〉 be a signature, and let Π be disjoint
from LΣ . A Σ-schema with parameters in Π is a Σ(Π)-formula where Σ(Π) =
〈At ∪ Π, Op〉. If ρ ∈ Lγ

Σ and if Θ(π) is a Σ-schema where π is a γ-sequence
listing the parameters in Θ, we may write “Θ(ρ)” for the Σ-formula obtained
by replacing each π(β) in Θ(π) with ρ(β) for β < γ.

Definition 19 (Compositionality). Let L1 and L2 be Σ1- and Σ2-logics respec-
tively. A translation t : L1 ù L2 is compositional if for all � ∈ Op1, there is
an Σ2-schema Θ�(π) such that for all ρ ∈ Lγ

1 , t(�(ρ)) = Θ�(t ◦ ρ).

The existence of a translation from one logic to another does not in general
imply the existence of a compositional translation from the former to the latter.
In particular, there is no compositional translation from FOL to CPL, nor one
from IPL to CPL.7. On the other hand, there is a compositional translation from
CPL to FOL and a compositional translation from CPL to IPL. Compositional
translations can also be used to distinguish CPL and most normal modal logics:

Proposition 20. If L is a normal modal logic and if t : L ù CPL is compo-
sitional, then lφ ≡L φ ∨l⊥.

Proof. Suppose Θl(π) is a LCPL-schema such that t(lφ) = Θl(t(φ)). Observe
that Θl(t(φ)) ≡CPL (t(φ) ∧ λ) ∨ (¬t(φ) ∧ μ), where λ and μ are some LCPL-
formulas. Since �L l�, we have that �CPL t(l�) ≡CPL (t(�) ∧ λ) ∨ (¬t(�) ∧
μ) ≡CPL λ. Hence, t(lφ) ≡CPL t(φ) ∨ μ. Thus, t(φ) �CPL t(lφ), and so
φ �L lφ, from which it follows that lφ ≡L φ ∨l⊥. ��

Most translations that have been studied in the literature are compositional.
So one might suspect we could simply postulate that two logics are notational

6 [5, p. 391] uses the term “grammatical” instead of “compositional”. [9, p. 100], [12,
p. 269] and [3, p. 108] build compositionality into the definition of a translation from
the start.

7 This follows from Theorems 23 and 24 below. There are also more direct proofs of
these claims. For instance, suppose there were a compositional t : FOL ù CPL.
Then where Θ is the CPL-schema such that t(∀x φ) = Θ(t(φ)), we have t(∀x�) =
Θ(t(�)) ≡CPL Θ(�). Hence, t(φ) �CPL t(φ) ↔ � �CPL Θ(t(φ)) ↔ Θ(�) �CPL

Θ(t(φ)) = t(∀x φ) for any φ ∈ Lpred. But then φ �FOL ∀x φ for any φ ∈ Lpred, E.



294 A.W. Kocurek

variants just in case they are compositionally translationally equivalent. But
this would be too restrictive. For instance, a number of modal logicians see
the van Benthem characterization theorem as showing that modal logic is just
(a notational variant of) the bisimulation-invariant fragment of first-order logic
via the standard translation.8 But the standard translation of modal logic into
first-order logic is not compositional according to Definition 19.9 In particular,
consider the l-clause:

STn(lφ) = ∀xn+1 (R(xn, xn+1) → STn+1(φ)) .

Since STn(φ) does not occur anywhere as a subformula of STn(lφ) (rather,
STn+1(φ) does), and since compositional translations are required to have the
translations of their constituents as subformulas, STn is not compositional. In
fact, it can be shown that there is no compositional t : K ù FOL, where K is
the minimal normal modal logic. The following is proved in the appendix:10

Theorem 21. Let L be a normal modal logic. If t : L ù FOL is compositional,
then lφ ≡L ll φ.

Hence, it would be too restrictive to demand that notational variants be com-
positionally translationally equivalent. Still, arguably there is a sense in which
the standard translation is nearly compositional. The problem with the defini-
tion of compositionality (Definition 19) is that sometimes a translation can only
be defined simultaneously with other translations. This is what the standard
translation of modal logic into first-order logic illustrates. But intuitively, that
should not matter. What is important is not that the translation of a complex
formula is strictly a schema of the translation of the parts, but rather that the
translation of a complex formula is uniform and fixed solely by its syntactic
structure. This motivates a more general notion of compositionality along the
following lines:11

Definition 22 (Schematicity). Let L1 and L2 be Σ1- and Σ2-logics respectively,
and let T be a class of translations from L1 to L2. We will say T is compo-
sitionally interdependent if for each t ∈ T and for each � ∈ Op1, there
is an Σ2-schema Θ�(π) with a γ-sequence of distinct parameters π and there
is a τ ∈ T γ such that for all ρ ∈ Lγ

1 , t(�(ρ)) = Θ�(τ · ρ), where we define
(τ ·ρ)(β) = τ(β)(ρ(β)). We will say a translation is schematic if it is a member
of a compositionally interdependent set.12

8 See, e.g., [1, p. 1] and [2, p. 70].
9 Mossakowski et al. [11, p. 4] make this observation as well, though they do not offer

any alternative notion in its place.
10 The theorem cannot be extended to all normal modal logics, since there is a com-

positional translation from S5 to FOL (setting t(lφ) = ∀x t(φ)). It is unknown
whether the result extends to other logics like S4 that validate lφ ↔ ll φ.

11 The definition is inspired by the definition of “recursive” translations from [6, p. 16],
who attributes the definition to Steven Kuhn.

12 We could also require schematic translations to translate atomic formulas schemat-
ically. Such a constraint seems well-motivated, but it was not included in this defi-
nition for purposes of generality, as it was not necessary in the results to follow.
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If t is compositional, then it is a member of a compositionally interdependent
set, but not vice versa, as the standard translation from K into FOL shows. So
the fact that no compositional translation from FOL to CPL exists does not
immediately imply that there is no schematic translation from FOL to CPL.
Fortunately, with a little more work, we can achieve this result as well.

Theorem 23. There is no schematic t : FOL ù CPL.

Proof. Suppose there were such a t. Let Θ(π) be a ΣCPL-schema with a sin-
gle parameter π and let t′ : FOL ù CPL be such that t(∃xφ) = Θ(t′(φ))
(such a schema must exist if there are such schemas for ∀x and ¬). Then
�CPL t(�) ≡CPL t(∃x�) = Θ(t′(�)) ≡CPL Θ(�) (since t′(�) ≡CPL �).
Hence, t′(φ) �CPL t′(φ) ↔ � �CPL Θ(t′(φ)) ↔ Θ(�) �CPL Θ(t′(φ)) = t(∃xφ).
So t′(φ) �CPL t(∃xφ) for all φ ∈ LFOL.

Now, Θ(t′(φ)),¬t′(φ) �CPL Θ(⊥). Moreover, ¬t′(⊥) �CPL t′(⊥) ↔ ⊥ �CPL

Θ(t′(⊥)) ↔ Θ(⊥). So t(∃xφ),¬t′(φ),¬t′(⊥) �CPL Θ(t′(⊥)). But t′(⊥) �CPL

Θ(t′(⊥)), so either way, t(∃xφ),¬t′(φ) �CPL Θ(t′(⊥)) = t(∃x⊥) ≡CPL t(⊥).
Hence, t(∃xφ) �CPL t′(φ) ∨ t(⊥). Moreover, the converse holds too, since
t′(φ) �CPL t(∃xφ) and t(⊥) �CPL t(∃xφ). So t(∃xφ) ≡CPL t′(φ) ∨ t(⊥) for all
φ ∈ LFOL. Now, observe that if s : FOL ù CPL, s(φ∧ψ) ≡CPL s(φ)∧s(ψ) for
any φ, ψ ∈ LFOL. Thus, we have t(∃xφ∧∃x¬φ) ≡CPL t(∃xφ)∧ t(∃x¬φ) �CPL

(t′(φ) ∧ t′(¬φ)) ∨ t(⊥) ≡CPL t′(φ ∧ ¬φ) ∨ t(⊥) ≡CPL t′(⊥) ∨ t(⊥) ≡CPL

t(∃x⊥) ≡CPL t(⊥), E. ��
We have yet to find a natural example of a pair of logics L1 and L2 that are

schematically intertranslatable but not schematically translationally equivalent.
Given Proposition 6, one might wonder whether IPL and CPL could witness
schematic intertranslatability without schematic translational equivalence. The
answer is negative:

Theorem 24. There is no schematic t : IPL ù CPL.

Proof. Suppose there were a such a t. Let Θ(π) be a ΣCPL-schema and let
t′ : IPL ù CPL be such that t(¬φ) = Θ(t′(φ)). Then �CPL t(�) = t(¬⊥) =
Θ(t′(⊥)). So �CPL Θ(t′(⊥)). So t′(¬φ) �CPL t′(φ ↔ ⊥) �CPL t′(φ) ↔
t′(⊥) �CPL Θ(t′(φ)) ↔ Θ(t′(⊥)) �CPL Θ(t′(φ)). So t′(¬φ) �CPL t(¬φ).

Since �CPL t′(⊥) ∨ ¬t′(⊥) and �CPL Θ(t′(⊥)), we have that �CPL Θ(�) ∨
Θ(⊥). Now, t(⊥) �CPL t(¬φ); so ¬t(¬φ) �CPL ¬t(⊥) ≡CPL ¬t(¬�) =
¬Θ(t′(�)) ≡CPL ¬Θ(�) �CPL Θ(⊥) �CPL Θ(t′(¬φ)) (since ¬t(¬φ) �CPL

¬t′(¬φ) �CPL t′(¬φ) ↔ ⊥). Thus, ¬t(¬φ) �CPL Θ(t′(¬φ)) = t(¬¬φ). Hence,
�CPL t(¬φ) ∨ ¬t(¬φ) �CPL t(¬φ) ∨ t(¬¬φ). But t(φ) ∨ t(ψ) �CPL t(φ ∨ ψ). So
�CPL t(¬φ ∨ ¬¬φ), even though �IPL ¬φ ∨ ¬¬φ. ��
These results suggest that a more adequate precisification of the concept of nota-
tional variance can be stated in terms of schematicity: two logics are notational
variants just in case they are schematically translationally equivalent.

This is not to say that schematic translational equivalence is the correct
precisification of notational variance. Perhaps one will find this particular pre-
cisification too restrictive or too general, in which case one might want to explore
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other notions of notational variance for different purposes. It might turn out that
there simply is no unique precisification of this informal concept. Still, schematic
translational equivalence at least seems to be an improvement over other notions
in the literature in its ability to align more closely with our intuitive judgments.

5 Conclusion

Translations are often employed as a way of determining whether or not one
logic is a notational variant of a fragment of another. We saw, however, that
most attempts to precisify the concept of a notational variant using translations
are either too weak or too strong. If, on the one hand, we stipulate that trans-
lational equivalence is sufficient for notational variance, then we will be forced
to say that first-order logic and propositional logic are notational variants. If,
on the other hand, we require notational variants to be compositionally inter-
translatable, then modal logic will not be a notational variant of a fragment of
first-order logic. Fortunately, we saw that we could balance between these two
proposals by stipulating that two logics are notational variants just in case they
are schematically translationally equivalent. Thus, equating notational variance
with schematic translational equivalence seems to be a plausible alternative to
the previous accounts of notational variance.

A Proof of Theorem21

Let Θ(ξ) be a first-order schema such that t(lφ) = Θ(t(φ)). Without loss of
generality, we may assume Θ(ξ) is in (roughly) prenex normal form, i.e., that:

Θ(t(φ)) = Q1y1 . . .Qnyn ((t(φ) ∧ λ) ∨ (¬t(φ) ∧ μ))

where λ and μ are boolean combinations of atomic FOL-formulas and each
Qi ∈ {∀,∃}. Observe that:

�FOL t(l�) = Q1y1 . . .Qnyn ((t(�) ∧ λ)∨(¬t(�) ∧ μ))≡FOL Q1y1 . . .Qnyn λ.

So �FOL Q1y1 . . .Qnyn λ.
First, we show lφ �L ll φ. Using the fact that �FOL Q1y1 . . .Qnyn λ:

t(lφ) �FOL t(lφ) ∧ Q1y1 . . .Qnyn λ

≡FOL Q1y1 . . .Qnyn (t(lφ) ∧ λ) ,

since y1, . . . , yn are already bound in t(lφ). So:

t(lφ) �FOL Q1y1 . . .Qnyn (t(lφ) ∧ λ)
�FOL Q1y1 . . .Qnyn ((t(lφ) ∧ λ) ∨ (¬t(lφ) ∧ μ))
= t(ll φ).

Hence, t(lφ) �FOL t(ll φ), and thus, lφ �L ll φ.



On the Concept of a Notational Variant 297

Next, we show ll φ �L lφ. Observe that:

Θ(t(φ)) ≡FOL Q1y1 . . .Qnyn ((t(φ) ∨ μ) ∧ (¬t(φ) ∨ λ))

So:

t(ll φ) ≡FOL Q1y1 . . .Qnyn ((t(lφ) ∨ μ) ∧ (¬t(lφ) ∨ λ))
�FOL Q1y1 . . .Qnyn (t(lφ) ∨ μ)
≡FOL t(lφ) ∨ Q1y1 . . .Qnyn μ

≡FOL t(lφ) ∨ (¬t(lφ) ∧ Q1y1 . . .Qnyn μ)
≡FOL (t(lφ) ∧ Q1y1 . . .Qnyn λ) ∨ (¬t(lφ) ∧ Q1y1 . . .Qnyn μ)
≡FOL Q1y1 . . .Qnyn (t(lφ) ∧ λ) ∨ Q1y1 . . .Qnyn (¬t(lφ) ∧ μ)
�FOL Q1y1 . . .Qnyn ((t(lφ) ∧ λ) ∨ (¬t(lφ) ∧ μ))
= t(ll φ).

Thus, in particular, t(l l φ) ≡FOL t(lφ) ∨ Q1y1 . . .Qnyn μ. Now, note that
t(φ ∧ ψ) ≡FOL t(φ) ∧ t(ψ). Hence, unpacking t(l(φ ∧ ψ)):

t(l(φ ∧ ψ)) ≡FOL Q1y1 . . .Qnyn ((t(φ ∧ ψ) ∧ λ) ∨ (¬t(φ ∧ ψ) ∧ μ))
≡FOL Q1y1 . . .Qnyn ((t(φ ∧ ψ) ∧ λ) ∨ (¬ (t(φ) ∧ t(ψ)) ∧ μ))
≡FOL Q1y1 . . .Qnyn ((t(φ ∧ ψ) ∧ λ) ∨ ((¬t(φ) ∨ ¬t(ψ)) ∧ μ))
≡FOL Q1y1 . . .Qnyn ((t(φ ∧ ψ) ∧ λ) ∨ (¬t(φ) ∧ μ) ∨ (¬t(ψ) ∧ μ)) .

Since l(φ ∧ ψ) �L lφ, and since Q1y1 . . .Qnyn (¬t(ψ) ∧ μ) �FOL t(l(φ ∧ ψ)
(given the last equivalence above), that means that Q1y1 . . .Qnyn (¬t(ψ) ∧
μ) �FOL t(lφ) for any φ and ψ. In particular, Q1y1 . . .Qnyn (¬t(lφ)∧μ) ≡FOL

¬t(lφ) ∧ Q1y1 . . .Qnyn μ �FOL t(lφ). Hence, Q1y1 . . .Qnyn μ �FOL t(lφ).
Thus, we have that t(ll φ) ≡FOL t(lφ). ��
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Abstract. In this paper, we model the behavior of an epistemic agent
that faces a deliberation against a background of oughts, beliefs and
information. We do this by introducing a dynamic epistemic logic where
ought operators are defined and release of information makes beliefs and
oughts co-vary. The static part of the logic extends single-agent Con-
ditional Doxastic Logic by combining dyadic operators for conditional
beliefs and oughts that are interpreted over two distinct preorders. The
dynamic part of the logic introduces concurrent upgrade operators, which
are interpreted on operations that change the two preorders in the same
way, thus generating the covariation of beliefs and oughts. The effect of
the covariation is that, after receiving new information, the agent will
change both her beliefs and her oughts accordingly, and in deliberating,
she will pick up the best states among those she takes to be the most
plausible.

1 Introduction

Recent works on deontic notions and preferences [8,16,21] have highlighted that
deliberation about what ought to be the case or to be done depends on the
information available to the agents. However, these works discuss the case where
information comes from an infallible source, to the effect that the agent increases
her knowledge. In real situations, confining ourselves to these cases proves limit-
ing. In particular, we often deliberate on the ground of what we believe, simply,
and if we come to change our beliefs, our deliberation changes accordingly. Take
the following example:

Stolen Wallet. Bob has his wallet stolen. He believes that Jones did not steal it,

and he knows that Jones ought to be punished if and only if he stole the wallet.

Hence, Bob believes Jones ought not to be punished. Ann, whom Bob trusts

much, tells Bob that Jones stole his wallet. Bob comes to believe that Jones

stole the wallet, and, consequently, he comes to the conclusion that Jones ought

to be punished.

The author wishes to thank two anonymous reviewers and Ilaria Canavotto, Davide
Grossi, Carlo Proietti for their helpful comments. Research for this paper was carried
while the author was a Marie Curie IE Fellow with the WADOXA project at the
Institute of Logic, Language and Computation, University of Amsterdam (2015–
2016).
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In this scenario, the agent assesses what ought to be the case on the ground of
a prior set of (conditional) oughts and his beliefs on what is the case. The same
mechanism is at stake in any deliberation scenario. Also, the example comes with
static and dynamic parts. The static part details what Bob believes and what
(he knows) ought to be the case. This includes conditional oughts, which provide
an instruction on what option turns best in given circumstances. The dynamic
part details how received information (from a highly trusted source) changes
Bob’s beliefs on how things are and his deliberation on what ought to be the
case. In particular, after Ann’s announcement, the beliefs and oughts defined in
the static part co-vary : Bob comes to assume that what is best must come along
with the situation that he now believes—hence, he comes to believe that Jones
ought to be punished.

In this paper, we combine maximality-based semantics for beliefs in the style
of [4,7,20] and oughts in the style of [11,17,19] in order to model the statics of
single-agent deliberations scenarios. These semantics interpret conditional belief
operators Bψ on a plausibility preorder [4,7,20] and conditional ought operators
Oψ on a betterness preorder [11,17,19]. In turn, this combination amounts to
extend the setting of (single-agent) Conditional Doxastic Logic CDL from [3,4]
with ought operators. In order to express the dynamics of such scenarios, we
extend the framework of DEL (Dynamic Epistemic Logic) [2,4,9,10] by defining
concurrent upgrade operations that change the plausibility and betterness pre-
order at once. Ideally, these operations capture the effect of information release
on the oughts in the system and the beliefs of the agent. The distinctive mark
of the new operations is a Principle of Belief-Ought Covariation (Sect. 3), which
states that a successful information release � φ promotes φ-states to best and
most plausible states at once.

Deliberation scenarios include some of the most important phenomena of
social interaction and individual agency, such as voting, decision-making, pro-
mulgation of a verdict in a trial.1 This calls for the relevance of the logic of
plausibility-betterness models (Sect. 2) and the logic of concurrent upgrades
(Sect. 3). Indeed, they capture the connection between beliefs, information and
oughts, which plays a crucial in the above scenarios. Since the Stolen Wallet
scenario seems to display the basic features of deliberation scenarios, we use it
here as a motivating example, and we test our framework against it (Sect. 5).

One clarification is in order about deliberation. This is a complex phenom-
enon that involves, for instance, cognitive processes, psychological elements, and
conditions that trigger a concrete interest in taking side on a given issue. Here,
we abstract from these aspects, since we are interested in the role played by
(interaction of) beliefs and oughts in deliberation scenarios, and in the impact

1 The role played by belief change in decision-making has been investigated by [5] in
the context of epistemic game theory. Here, we take a more general stance, and we
do not aim at modeling game- or decision-theoretical scenarios. Also, the language
from [5] does not include ought operators.
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of trusted information on the outcome of a deliberation.2 In this idealized fash-
ion, we say that our agent deliberates that φ—or is in a position to deliberate that
φ—if the model we use to describe the agent satisfies the set {B�ψ,Oψφ,O�φ}
for some formula ψ. This captures the fact that, in order to deliberate (say)
that Jones ought to be punished, the agent needs to believe in the antecedent of
a conditional ought that prescribes punishment for Jones. An interesting point
is that, while some plausibility-betterness models from Sect. 2 may fail to sat-
isfy set {B�ψ,Oψφ,O�φ} for some formula φ and ψ, a successful concurrent
upgrade � ψ secures that one such set is satisfied: relevant information from a
highly trusted source always puts the agent in a position to deliberate.

The paper proceeds as follows. Section 2 introduces the logic of plausibility-
betterness models and the static language that we need in order to reason about
deliberation. Section 3 introduces concurrent upgrades and explains their dis-
tinctive features and relations with existing upgrades operation from the DEL
tradition. Section 4 presents Hilbert-style axiom systems for the two logics, which
are easily proved sound and complete on the ground of established results in con-
ditional and dynamic logics. Section 5 applies our framework to the motivating
example above. Section 6 briefly discusses a notion of ‘ought as’ ‘norm-abiding’
that must be kept distinct from the notion of ‘ought’ as ‘best’ on which we focus
on this paper. Finally, Sect. 7 discusses a possible extension.

2 The Static Logic of Plausibility-Betterness Models

Syntax . Given a non-empty set P of atoms, our language LP has the following
BNF:

φ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | � | ⊥ | Bψφ | Oψφ

where p ∈ P and ¬, ∧, ∨, →, � and ⊥ receive their standard interpretation.
Bψφ reads ‘the agent believes φ conditionally on ψ’, and Bψ expresses a belief
that is conditional on ψ. Unconditional beliefs can be captured by B�, with B�φ
reading ‘the agent believes φ’. Oψφ reads ‘(for the agent) it ought to be the case
that φ conditionally on ψ’, and Oψ expresses an obligation that is conditional
on ψ. Unconditional oughts can be captured by O�, with O�φ reading ‘(for the
agent) it ought to be the case that φ’. We define the duals of the two operators
by B̂ψφ = ¬Bψ¬φ and Ôψφ = ¬Oψ¬φ. We omit reference to P when possible.

Semantics. We interpret L on structures combining single-agent epistemic
plausibility models [4,20] and Hansson-style models [11,19].3 We use the resulting

2 Also, we do not presuppose that the deliberating agent has a particular position with
respect to the issue in question (for instance, some kind of authority). We attribute
deliberation to any agent that can assess what ought to be the case on the ground
of believed circumstances.

3 Similar combinations are defined in [13,14], but the logics defined in those papers
differ considerably from the one we are presenting here.
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models to define a maximality-based semantics for the belief operators—in the
style of [4,7,20]—and for the ought operators—in the style of [11,17,19,21].

Definition 1 (Plausibility-betterness models). A plausibility-betterness
model M is a tuple (S,RB , RO , I) where:

• S is a nonempty set of states;
• RB and RO are two distinct preorders satisfying connectedness and upward

well-foundedness.4

• I : P �−→ ℘(S) is an interpretation assigning a truth-set to each atom.

RB (s, s′) reads ‘s′ is at least as plausible as s,’ and RO (s, s′) reads ‘s′ is at least
as good as s.’ The interpretation of Boolean constructions is defined recursively
in the standard way. A useful notation is this: �φ�M denotes the truth-set of a
formula φ in M. Where R• ∈ {RB , RO}, we define the set of R•-maximal set
of φ-states for every formula φ ∈ L:

maxR•(�φ�M) = {s ∈ �φ�M | ∀s′ ∈ �φ�M : R•(s′, s)}

More specifically, maxRB (�φ�M) is the set of the most plausibile φ-states, and
maxRO (�φ�M) is the set of the best φ-states. Upward well-foundedness guarantees
that maxR•(�φ�M) is nonempty if �φ�M is nonempty. Two special cases are
maxR•(�⊥�M) = ∅ and maxR•(���M) = {s ∈ S | ∀s′ ∈ S : R•(s′, s)}. The
latter denotes the most plausible (best) states of the model in question.

Remark 1 (Betterness Preorder). The relation RO can get different interpreta-
tions. One can take it to represent the preferences of the agents, or the ranking of
states induced from exogenous sets of norms. Here, we do not need to take side,
since the deliberation of an agent can be cast either against the agents’ prefer-
ences, or against a background of norms dictated by some external authority.

Definition 2 (Satisfaction Relation, static). Where M = (S,RB , RO , I)
is a plausibility-betterness model, the satisfaction relation |= between model and
formulas in L is defined recursively as follows:5

M, s |= p ⇔ s ∈ I(p)
M, w |= Bψφ ⇔ maxRB (�ψ�M) ⊆ �φ�M

M, w |= Oψφ ⇔ maxRO (�ψ�M) ⊆ �φ�M

4 A preorder R is connected if ∀s, s′ ∈ S : R(s, s′) or R(s′, s). It is upward well-founded

if, for every U ⊆ S, if U 
= ∅, then {s ∈ U | ∀s′ ∈ U : /̃R(s, s′)} 
= ∅—the set of
the ‘most R’ among the states in U is nonempty. Here, /R = S2 \ R, and R̃(s, s′) is
short for ‘R(s, s′) and /R(s′, s)’.

5 We omit the definition for the Boolean constructions, which is standard.
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Satisfaction and validity are defined in the standard way. The agent believes
those things that hold in the most plausible states available in the system. Sim-
ilarly, what ought to be the case is what holds in the best states in the system.
It is clear from the definitions above that beliefs and oughts are absolute:6

M, s |= •ψφ ⇔ ∀s′ ∈ S : M, s′ |= •ψφ

where •ψ ∈ {Bψ,Oψ}. In our semantics, an S5-type knowledge operator can be
defined as follows:7

Kφ = B¬φ⊥
This is the standard definition of ‘classical’ knowledge in conditional doxastic
logic [3,4], and it justifies the reading of K as unrevisable true belief. Notice
that, in the present setting, K is a universal modality [6], to the effect that
knowledge coincides with ‘truth in all the possible states’: the agent considers
possible anything that is not ruled out by the model. Absoluteness extends to
the knowledge operator. We define the dual of the operator by K̂φ = ¬K¬φ.

Remark 2 (Conditional Beliefs and Oughts). We read a conditional belief as pre-
encoding potential belief revision in the sense of [20]: Bψφ means that the agent
would believe that φ was the case, if she came to believe that ψ is the case. We
extend this reading to the conditional ought operators, so that Oψφ means that
φ would turn to be the best option if persuasive information that ψ were released.
As is well known, conditional beliefs and oughts cannot express the change of
beliefs or oughts.8 This can be expressed by the new upgrade operators that we
introduce in Sect. 3.

This is a plausibility-betterness model—arrows labelled with RB stay for
plausibility relations, black curves for betterness relations, and double arrows
are for equally good/plausible states.9 Reflexive loops are omitted:

The model satisfies B�p and Opq, but it does not satisfy O�q. This makes

B�φ → (Oφψ → O�ψ) (*)

invalid: belief in the antecedent of a conditional ought does not induce an uncon-
ditional ought. An equivalent reading is that the agent is not always in a position
to deliberate about a given issue. Indeed, failure of the above formulas means that
some plausibility-betterness model does not satisfy the set {B�φ,Oφψ,O�ψ}
(for some formulas φ, ψ ∈ L) and, in our reading, this means that the agent
is not deliberating about ψ.10 Notice that B�O�q is also not satisfied, due to
6 That is, their valuations do not vary across states in S of a given model M.
7 Of course, we could also define Kφ as O¬φ⊥. However, given the conceptual nexus

between knowledge and belief, we prefer the definition above.
8 See for instance [4, pp. 36–37]. [4] discusses the relations between change of beliefs

and conditional beliefs, (the crucial point here concerns the so-called Moore sen-
tences) but the very same line of reasoning applies to change of oughts and condi-
tional oughts.

9 Two states s and s′ are equally good if RO (s, s′) and RO (s′, s). They are equally
plausible if RB (s, s′) and RB (s′, s).

10 Unless, of course, there is another formula θ such that {B�θ, Oθψ, O�ψ}.
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p, q q p
RB RB RB

Fig. 1. A plausibility-betterness model.

the absoluteness of Oψ. The following helps understand what kind of agent is
described by plausibility-betterness models:

Oψφ → KOψφ (1)

Oψφ → (Kψ → O�φ) (2)

that is, the agent has perfect knowledge of the oughts that hold in the model
and something ought to be the case, if it ought to be the case conditionally on
a known formula. The latter marks a difference between the way knowledge
and belief interact with oughts. Formulas (1) and (2) equally apply to belief
operators.

Operators K and Bψ obey the standard principles of S5-type knowledge and
conditional belief (interpreted on preorders) such as the ones presented in [4, pp.
34–35]. Further principles are presented in the axiomatization from Theorem 1
in Sect. 4.

Remark 3 (Correlation between Beliefs and Oughts). The failure of B�φ →
(Oφψ → O�ψ) captures the natural thought that beliefs and oughts are some-
how independent from one another. However, a correlation between beliefs and
oughts is needed in order to model deontic deliberation. Coming back to the
Stolen Wallet scenario, if Bob believes that Jones stole his wallet, and (he knows)
it ought to be the case that he is punished in this case, then Bob deliberates that
a sanction ought to be enforced. If we cannot draw this conclusion, then we can-
not model the connection between what Bob believes and what he deliberates.

In the next section, we introduce dynamic operations that help secure the
correlation between beliefs and oughts that is needed in deontic deliberation.

Remark 4 (‘Ought’ as ‘best’). The maximality semantics we are using gives us a
semantical reading of ‘ought’ as ‘best’. This reading fits a long-standing intuition
that deontic notions involve some kind of ‘ideality ordering’—see for instance
[11,15,19]. Of course, what is best depends on the circumstances, in a sense:
the best scenarios where Jones steals something prescribe an option that is not
prescribed by the best scenarios where Jones does not steal anything—Jones
ought to be punished conditionally on the former scenario, but not conditionally
on the latter scenario.11 Thus, conditional oughts work as instructions to what
11 Under this reading, the validity of Oφφ does not cause any concern, even in cases

where O�¬φ is satisfied: the best among the scenarios where Jones steals something
are still scenarios where he steals something.
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option turns best in given circumstances. In this sense, the oughts we are focusing
in this paper are revisable, or better adaptive: a conditional ought tells us how
oughts would be adapted to the circumstances. The dynamics from Sect. 3 will
show that information release may induce a change of ought that realizes the
potential for adaptation expressed by conditional oughts. Also, there are other
(non-adaptive) notions of ought beside the one we are considering. In Sect. 6, we
briefly discuss one such notion.

3 The Dynamic Logic of Concurrent Upgrades

Our dynamic language L� has the following BNF:

φ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | � | ⊥ | Bψφ | Oψφ | [� ψ]φ

[� ψ]φ reads ‘after ψ is announced, φ holds true’. The new formulas are inter-
preted in terms of model transformers � ψ that we call concurrent upgrades.
These operations are a special kind of radical upgrade [4,20] that change the
preorders RB and RO at once:

Definition 3 (Concurrent Upgrades). Given a betterness model M =
(S,RB , RO , I) and a formula ψ ∈ L, the upgraded (plausibility-betterness) model
M�ψ is the tuple (S,R�ψ

B , R�ψ
O , I), where:

R�ψ
B = {(s, s′) ∈ RB | s, s′ ∈ �ψ�M} ∪ {(s, s′) ∈ RB | s, s′ /∈ �ψ�M}∪

∪{(s, s′) ∈ S × S | s /∈ �ψ�M and s′ ∈ �ψ�M}
R�ψ

O = {(s, s′) ∈ RO | s, s′ ∈ �ψ�M} ∪ {(s, s′) ∈ RO | s, s′ /∈ �ψ�M}∪
∪{(s, s′) ∈ S × S | s /∈ �ψ�M and s′ ∈ �ψ�M}

In words, concurrent upgrades promote ψ-states to both most plausible and best
states, downgrade ¬ψ-states accordingly, and leave the orders within the two
sets as they are. In particular, if �ψ�M �= ∅, then:

CU1 ∀s, s′ ∈ S : s ∈ �¬ψ�M and s′ ∈ �ψ�M ⇒ R̃�ψ
• (s, s′)

CU2 maxR•(���M�ψ

) ⊆ �ψ�M

where R̃•(s, s′) is short for R•(s, s′) and /R•(s
′, s). As any upgrade, concurrent

upgrades do not change facts, thus leaving both S and I unaltered. It is easy to
check that upgraded models are themselves plausibility-betterness models.

Remark 5. Upgrades over plausibility preorders are the signature marks of
dynamic logics for belief revision [4,20] from the DEL tradition, where they
are introduced to capture the effects of soft information—that is, information
released by a trustworthy yet fallible source. Upgrades over betterness relations
are also introduced by [14,22] in order to model the effects of a change of pref-
erence. Concurrent upgrades are the first to operate on both preorders at once,
to the effect that the two relations change in a uniform way.
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Definition 4 (Satisfaction Relation, dynamic). Where M = (S,RB ,
RO , I) is a plausibility-betterness model, the satisfaction relation |= between
model and formulas in L extends the satisfaction relation from Definition 2
with:

M, s |= [� ψ]φ ⇔ M�ψ, s |= φ

This is the result of � p on the model from Fig. 1:12

Fig. 2. Upgraded model.

Distinctive features of concurrent upgrades. Along with B�p and Oqp,
the upgraded model satisfies O�p. Going from concrete to general, the following
formula

[� φ](B�φ ↔ O�φ) (3)

is valid—it follows from Definition 3. This is a Principle of Belief-Ought Covaria-
tion, stating that, in presence of new information, the relevant oughts and beliefs
of the agent co-vary. We come back to this in Remark 6 below. By contrast,

[� φ](Bφψ ↔ Oφψ) (*)

fails, since concurrent upgrades leave the zones within φ- and ¬φ-states as they
are in the initial model. Notice that a consequence of formula (3) is the formula

[� φ](O�φ → B̂�φ) (4)

which is a doxastic version of the principle of Ought implies Can, stating that
after φ is announced, what ought to be the case is compatible with the agent’s
belief. An important principle relating concurrent upgrades and deliberation is:

[� φ](B�φ → (Oφψ → O�ψ)) (5)

that follows from formula (3) and the detachment principle O�φ → (Oφψ →
O�ψ). Ideally, an agent deliberates about ψ any time she gets relevant informa-
tion from a highly trusted source. Thus, our framework does not model explicit
deliberation processes—that is, the processes that are triggered when the agent
asks herself what ought to be the case in the believed circumstances—but rather
implicit deliberations, which hold as soon as the agent is (from a doxastic point
of view) in the position to deliberate about a given issue.
12 As for the missing arrows, remember that concurrent upgrade � p leaves relations

within the p- and ¬p-zones as they were in Fig. 1.
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Strong Beliefs and Oughts. Any formula (atomic, complex, modal, dynamic)
can be announced, but our subsequent applications will involve the announce-
ments of factual statements—that is, formulas that contain no modal or dynamic
operator.13 As any radical upgrade, concurrent upgrade � φ induces a strong
belief that φ—that is, a belief that is revised only if the agent receives further
information that is inconsistent with φ. Indeed:

Fact 1. For every φ ∈ L, if �φ�M �= ∅, then:
M�φ, s |= Bψφ for every ψ ∈ L such that �ψ�M ∩ �φ�M �= ∅

Indeed, CU1 implies that, for every model M and φ, ψ ∈ L such that �ψ�M ∩
�φ�M �= ∅, if all φ-states are more plausible than all ¬φ-states, then all ψ ∧ φ-
states are more plausible than all ψ∧¬φ-states for every ψ. Fact 1 equally applies
to Oψ, thus pointing at a particular kind of oughts—namely, those that are not
dropped until we receive the information that they have been violated.

Remark 6 (Belief-Ought Covariation). The Principle of Belief-Ought Covaria-
tion—formula (3) above—just tells us that the plausibility and betterness pre-
orders change in the same way. In our intended (DEL-style) interpretation, how-
ever, � φ is an information release, and under this interpretation, it is naturally
seen as something that operates primarily on the agent’s beliefs. In line with this,
[� φ]O�ψ reads ‘after the information that φ is released, it ought to be the case
that ψ’. The natural interpretation is that a formula like [� φ]O�ψ captures an
information-induced revision of oughts. Thus, in Fig. 2 [� p]O�q tells you what
the agent takes as best after she receives information that p. Since p is factual and
consistent with the initial model (Fig. 1), the formula states what the agent takes
as best after she comes to believe that p. In general, after a successful announce-
ment that a factual statement φ is made, the agent will revise oughts by picking
the best states among those that she takes to be the most plausible. Thus, change
of belief works as a trigger for oughts that were in a sense ‘dormant’—that is,
oughts that become operative only if the relevant circumstances are believed to
be the case.

The principles that we have discussed in the last two sections give us an
idea of what kind of agent can be modeled by our framework. In particular, the
logic of concurrent upgrades describes an agent that has perfect knowledge of
the oughts defined in the system and is a cautious agent—that is an agent that
revises her beliefs and deliberations just after receiving new information from a
highly trusted source. This equates with saying that the agent revises oughts in
relation to what she comes to (strongly) believe to be the case.

13 These prove especially interesting. In contrast to announcements of factual formulas,
announcements of �,⊥, or any (true or false) modal formula in L cannot change the
initial model M. An interesting case holds when Moore sentences are (unsuccess-
fully) announced. We will not face these cases here, and we refer the reader to [9]
for them.
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4 Axiom System

Axiomatics for the static logic of plausibility-betterness models and the dynamic
logic of concurrent upgrades can be easily determined on the ground of estab-
lished results on static conditional logics and dynamic logics:

Theorem 1. The static logic of plausibility-betterness models is completely
axiomatized by the following Hilbert-style proof-system—where • is either O or
B, and Kφ is short for B¬φ�:

A1 Propositional logic
A2 S5-axioms for K
A3 •ψφ → K •ψ φ
A4 Kφ → •ψφ
A5 •φφ

A6 K̂φ → (•ψφ → •̂ψφ)
A7 •̂ψφ → (•ψ(φ → θ) → •φ∧ψθ)
A8 •ψ(φ → θ) → (•ψφ → •ψθ)
A9 K(φ ↔ ψ) → (•φθ ↔ •ψθ)
A10 •φ∧ψθ → •φ(ψ → θ)

R1 φ, φ → ψ/ψ
R2 φ/Kφ

The proof is a straightforward adaptation of the completeness proof for system
G in [17, Theorems 8, 9, 12, 13].

Proposition 1. The axiom system resulting by replacing A4–A5 in Theorem 1
with:

A∗ K(ψ → φ) → •ψφ

is equivalent with the axiom system consisting of A1–A10 and R1–R2.

Proof. We prove that A∗ is derivable from A4 and A5 in the axiom system
from Theorems 1, and that A4 and A5 are derivable from A∗ in the alternative
axiomatic system.

1. A∗ � A4. We have Kφ → K(ψ → φ) from propositional logic, R2, axiom K
for K (A2) and MP. From this and A∗, we have Kφ → •ψφ by transitivity of
implication. But this is A4.

2. A∗ � A5. We have K(φ → φ) from propositional logic and R2. From this and
K(φ → φ) → •φφ (instance of A∗), we have •φφ by MP.

3. A4 ∧ A5 � A∗. We have (1) •ψ(ψ → φ) → (•ψψ → •ψφ) (instance of A8).
From (1) and propositional logic, we derive (2) •ψ(ψ → φ) ∧ •ψψ → •ψφ.
From (2), A5 and propositional logic, we derive (3). •ψ(ψ → φ) → •ψφ. From
K(ψ → φ) → •ψ(ψ → φ)—instance of A4—and (3), we get K(ψ → φ) → •ψφ
by propositional logic. But this is A∗.
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Theorem 2. The dynamic logic of concurrent upgrades is completely axioma-
tized by a Hilbert-style system including:

– axioms A1–A10 and rules R1–R2,
– the following reduction axioms:

D1 [� ψ]p ↔ p
D2 [� ψ]¬φ ↔ ¬([� ψ]φ)
D3 [� ψ](φ ∧ θ) ↔ [� ψ]φ ∧ [� ψ]θ
D4 [� ψ] •θ φ ↔ (K̂(ψ ∧ [� ψ]θ) ∧ •ψ∧[�ψ]θ[� ψ]φ ∨ •[�ψ]ψ[� ψ]φ
D5 [� ψ]Kφ ↔ K[� ψ]φ
D6 [� φ](B�φ ↔ O�φ)

See [20] for soundness of D1–D5. Soundness of D6 follows from Definition 3. As
for completeness of the axiom system in Theorem 2, the proof is similar to the
ones in [9]. The reduction axioms D1–D6 are used to inductively simplify any
formula until it is reduced to a formula in the static language L.

Notice that, while the logic of plausibility-betterness models is similar to the
logic of conditional beliefs on plausibility models with two agents, the latter
comes with different information partitions (one per agent), while in our models
we have just one information partition, which coincides with the set S of states.
Thus, the logic of plausibility-betterness models does not reduce to a special
logic of interactive beliefs in the style of [4].

5 Modeling the Stolen Wallet Scenario

Figure 3 displays a model of the static part of the Stolen Wallet scenario—that
is, the part before Ann talks to Bob. Here, s is ‘Jones stole the wallet’ and p is
‘Jones gets punished’.

Fig. 3. Stolen Wallet scenario (static).

The model satisfies O�¬p: the best states are those where Jones does not get
punished, since these are the states where he did not steal the wallet. The model
also satisfies B�¬s, KO¬s¬p and KOsp: the agent knows that Jones ought to
be punished only in case he stole the wallet. More in general, Bob has perfect
knowledge of the oughts defined in the system.

Contrary to the model in Fig. 1, the present model captures a deliberation
scenario. Indeed, it also satisfies B�¬s → (O¬s¬p → O�¬p), which, together
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with B�¬s and O¬s¬q above, implies that the set {B�¬s,O¬s¬p,O�¬p} is sat-
isfied in the model. In our interpretation, this means that Bob is in the position
to deliberate that Jones be not punished.

Going to the dynamic part of the example, information release by Ann
changes Bob’s beliefs and deliberation as described by the Stolen Wallet—see
Introduction. We model Ann conversation with Bob as the announcement � s.
This is the effect of the announcement on the beliefs and oughts from Fig. 3:14

Fig. 4. Stolen Wallet scenario (dynamic).

In particular, the upgraded model satisfies B�s: Bob has come to believe
that Jones stole his wallet. At this point, formula (5) and Osp suffice for us to
realize that O�p is also satisfied in the new model: Bob has adjusted the oughts
provided by the initial model by taking into account just the best states among
the s-states. This also implies that the set {B�s,Osp,O�p} is now satisfied: in
line with his new beliefs, Bob has revised his previous deliberation and has come
to deliberate that Jones be punished (Fig. 4).

Notice that, after talking with Ann, Bob has a strong belief that Jones stole
his wallet. Informally, this means that he revises his beliefs and deliberations just
in case the information he receives comes from a highly trusted source: our frame-
work describes Bob as a cautious agent. Also, the new models satisfies K̂¬s—Bob
still considers it possible that Jones did not steal the wallet—upgrades do not
increase knowledge. A natural interpretation of this is that Bob knows that Ann
is fallible.

The Stolen Wallet scenario cannot be successfully modeled by traditional
upgrade operations. A radical upgrade ⇑ s over the plausibility relation [4,20]
would just change Bob’s beliefs, but not his deliberations. By contrast, a radical
upgrade ⇑ s over the betterness relation [14,22] just change the oughts in the
model, leaving Bob’s beliefs as they are. Neither upgrades can capture a delib-
eration scenario: the first makes {B�s,Osp,O�¬p} satisfied in the new model;
the second makes {B�¬s,Osp,O�p} satisfied. In our interpretation, this means
that Bob is not deliberating that p, or that ¬p.

6 Different Senses of Oughts

The notion of ‘ought’ we focus on in this paper is context-sensitive and adap-
tive—see Remark 4. A different, non-adaptive sense of ‘ought’ is at stake when
14 As for the missing arrows and curves, remember that concurrent upgrade � s leaves

relations within the s- and ¬s-zones as they were in Fig. 3. This helps with the
missing arrows.
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we maintain, for instance, that it ought to be the case that Jones does not
steal, even in the scenarios where he is indeed stealing something. This example
deploys a notion of ‘ought’ as ‘norm-abiding’, which in turn equates ‘what ought
to be the case’ with ‘what follows from the norms’.15 We maintain that features
such as adaptivity and belief-ought covariation apply to the notion of ‘ought’ as
‘best’, but should not be applied to the notion of ‘ought’ as ‘norm-abiding’.

We do not detail a formal semantics for this further notion here, since this
would take us too far from our current focus—that is on the ‘ought’ as ‘best’
reading. However, we give a short hint at some possible options.

As for a formal rendering of ‘ought’ as ‘norm-abiding’, one option is to intro-
duce a propositional constant d in the style of [1] expressing—informally—that
all norms are satisfied, and define ‘φ follows from the norms’ (�φ) as ‘the agent
knows that the norms imply φ’:16

�φ = K(d → φ)

It is easy to see that, if φ is a factual formula, then

[� φ](B�φ ↔ �φ) (*)

is not valid: information release does not make ‘ought as norm-abiding’ co-vary
with beliefs.17 As for the interaction between the ‘adaptive’ oughts and the ‘non-
adaptive’ ones, we may want that they coincide before any announcement is
made and possibly come to diverge only after some announcement is made. We
can secure the first point by imposing the formula

O�φ ↔ �φ

which selects (as ‘initial models’) only those models M where maxRO (���M) =
�d�M. Since the formula

[� ¬φ](O�¬φ → �¬φ) (*)

is invalid (for φ a factual formula), we have that coincidence of the two oughts
may be lost after suitable information is announced. We plan to discuss these
options in future research, together with other issues concerning the interaction
of the two ‘oughts’ and the formal definition of ‘ought’ as ‘norm-abiding’.

15 Just to get a concrete feeling of this: the fact (or information) that Jones steals does
not make stealing (by Jones) norm-abiding.

16 This reading relies on the fact that K is a universal modality in our framework, to
the effect that the above definition equates with �d�M ⊆ �φ�M in our framework.
The definition extends perfect knowledge of the agent to the new deontic component.

17 Any model M satisfying K(d → p) and [� ¬p]B�¬p fails to satisfy [� ¬p](B�¬p →
�¬p). Indeed, since d and p contains no modal operators, the interpretation of d and

p does not change in the upgraded model, to the effect that �d�M�p ⊆ �p�M�p

.



312 R. Ciuni

7 Multi-agent Extension and Deliberating Societies

In this paper, we have applied our DEL-style framework of concurrent upgrades
(Sects. 2 and 3) to a motivating example, which involved a deliberation sce-
nario and information-induced change of deliberation. The framework equally
applies to a variety of crucial real-life scenarios such as voting, verdicts in tri-
als, and decision-making. As a consequence, the present framework may have a
wide range of applications. Here, we briefly discuss the extension to multi-agent
scenarios and its potential for applications.

A multi-agent deliberation framework can be easily obtained along the lines
yielding multi-agent plausibility models from single-agents ones in [4]. The result-
ing framework would include a variety of plausibility relations, each interpreting
the conditional beliefs of an agent, and a variety of betterness relations, each
interpreting the oughts relative to an agent. Public announcements of informa-
tion from a trusted source would be expressed by concurrent upgrades � φ
and would induce a strong belief in φ in all agents; at the same time, they
would promote φ as the best option w.r.t. believed circumstances. Notice that
agents would come to different deliberations, depending on their own prefer-
ence rankings and conditional oughts. By contrast, in a deontically homogeneous
community—sharing moral norms, legal system, or social conventions—a pub-
lic announcement would suffice to create a uniform deliberation. Here, we have
at stake a dynamic of public opinion formation, but two different dynamics of
deliberation of a group of agents. A multi-agent version of our framework would
provide a straightforward logical tool to model the different dynamics.

An interesting question is whether the dynamics at stake in (deontically)
pluralistic societies can decrease or block the effect of information bubbles [12]
on policy making. This research perspective would naturally complement formal
studies on pluralistic ignorance [18] and cascades in the information society [12],
by securing a connection with the crucial issue of policy-making and the efficiency
of a deliberating society.
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Abstract. This paper proposes three subtle revision policies that are
not propositionally successful (after a single application the agent might
not believe the given propositional formula), but nevertheless are not
propositionally idempotent (further applications might affect the agent’s
epistemic state). It also compares them with two well-known revision
policies, arguing that the subtle ones might provide a more faithful rep-
resentation of humans’ real-life revision processes.

1 Introduction

Belief revision [1,2] is concerned with belief change fired by incoming informa-
tion. It emerged as a proper subject in the 80s, when philosophical traditions
dealing with both the requirements of rational belief change and the mecha-
nisms by which scientific theories develop [3] converged with computer-science
oriented approaches on database updates [4,5] and deontic studies focussed on
derogations in legal codes [6]. The seminal [7] is considered the birth of the field;
since then, many of its concerns and ideas have been proved relevant not only
in philosophy and computer science but also in learning theory [8], among other
fields.

Unsurprisingly, there have been many different proposals for representing this
process. While one important difference among them has been the representation
of beliefs themselves (e.g., syntactically, as either a plain set of formulas or else
a deductively closed one [9]; semantically, by means of ordinal functions [10],
a system of spheres [11], or a plausibility relation [12]), a more fundamental
one has been the actual mechanism though which these beliefs change. Indeed,
different revision policies have been proposed over time (see, e.g., [24]).

Despite the number of proposals, most revision policies share one crucial
feature: incoming information outweighs current information. Hence, in case of
conflict, the new information will prevail. This feature is not accidental, and
in fact this success requirement is, among the AGM postulates [7], the first
one: any successful revision act with a consistent formula χ as the new informa-
tion (a χ-revision) should make χ part of the agent’s beliefs.1 This requirement
is reasonable when one considers the situations targeted by the field’s origins.

1 Still, there are proposals rejecting the postulate. In Sect. 3 the reader can find some
of them and their relationship with this manuscript’s contents.
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Indeed, if a new observation contradicts a scientific theory, the theory should be
adapted to account for it; if new information is entered into a database, the data-
base should not return old data in future searches; if a law changes, subsequent
decisions should be ruled by its most recent version.

However, if one is interested in representing the way actual humans revise
their beliefs, giving precedence to the new information might be neither the
best nor the most realistic choice. For the first, information simply might not
be 100% trustworthy (think of unreliable sources, now infamously called ‘fake
news’); for the second, we humans tend to be self-righteous [13], assuming most
of the time that our beliefs are the correct ones, and thus looking for alternative
explanations when something contradicts them.

Is it possible to reconciliate proposed revision policies that give priority to
external information with human behaviour which gives priority to what one
has? An observation that might prove useful is that revision strategies also tend
to be idempotent : after a χ-revision, immediate repetitions will not make any
difference. But this is not what happens in real life: for human beings, reiterated
observations of the same phenomena is likely to have an effect, regardless of
whether it contradicts our beliefs or how much we distrust its (possibly different)
sources. For human beings, repetition matters.

This work proposes three subtle revision policies that might not lead to a
belief after a single revision step, but will lead to a belief after they are repeated
enough number of times. In doing so it shows how the effect of a single applica-
tion of some well-known revision strategies can be reached (and, in some cases,
surpassed) by the repetition of the short-term weaker but nevertheless long-term
stronger revision policies that will be presented. It starts by providing the tools
it will use for depicting beliefs and belief change, then recalling two well-known
revision policies (Sect. 2). Then it continues by introducing the subtle revision
policies, discussing their short-term and long-term effect, and comparing them
with those in the literature (Sect. 3). It ends (Sect. 4) summarising the proposal
and discussing further research directions.

2 Preliminaries: Representing Beliefs and Belief Change

In this paper, beliefs are represented by plausibility models [12,14], a qualitative
version of the ordinal functions used in [10], and similar to the system of spheres
of [11]. In such structures, belief change amounts to plausibility change, for
which the layered upgrade of [15] will be used. This section provides the basic
definitions the proposal requires. Let P be a countable set of atomic propositions.

Definition 2.1 (Plausibility model). A plausibility model M (PM) is a tuple
〈W,≤, V 〉 with W �= ∅ a finite set of worlds, ≤ ⊆ (W ×W ) a total preorder, the
agent’s plausibility relation over W (u ≤ v is read as “u is at most as plausible
as v”) and V : P → ℘(W ) a valuation function, indicating the worlds V (p) ⊆ W
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in which each p ∈ P holds.2 Given a plausibility model M , its set of worlds will
be also denoted by DM .

Intuitively, a PM represents the order the agent assigns to her epistemic
possibilities. Thus, while her knowledge is given by what holds in all possible
worlds, her beliefs are given by what holds in the most plausible. In order to
provide formal definitions for these notions, the following will be useful.

Definition 2.2. Let ≤ ⊆ (W × W ) be a total preorder over W .

• u < v ( “u is less plausible than v”) iffdef u ≤ v and v �≤ u.
• u ∼ v ( “u and v are comparable”) iffdef u ≤ v or v ≤ u.
• u 
 v ( “u and v are equally plausible”) iffdef u ≤ v and v ≤ u.
• A layer L ⊆ W is a set such that ≤ restricted to L is a universal relation on

L, but this is not the case for any strict superset of L.
• The set of ≤-maximum elements in U ⊆ W is given by

Mx(U) := {u ∈ U | v ≤ u for all v ∈ U} .

A PM can be understood as one or more layers of equally-plausible worlds,
with the layers ordered according to their plausibility.

Definition 2.3 (Induced layers). A PM M = 〈W,≤, V 〉 induces the following
sequence of layers:

L0(W ) := Mx(W ) Lk+1(W ) := Mx(W \
k⋃

�=0

L�(W ))

Thus, while L0(W ) is the set of ≤-maximum worlds in W , L1(W ) is the set of
≤-maximum worlds in W \ L0(W ), L2(W ) is the set of ≤-maximum worlds in
W \ (L0(W ) ∪ L1(W )) and so on. Note how indeed ≤ is the universal relation
inside each Lk(W ); moreover, as W is finite, there is n > 0 such that k ≥ n
implies Lk(W ) = ∅ (denote the smallest such n by nlM ). Finally, the sets Lk(W )
with k ∈ {0, . . . ,nlF −1} form a partition of W .

A formal language. As it will be discussed below, PMs can be described by
different formal languages. Here, the following one [15] will be used.

Definition 2.4 (Language L). Formulas ϕ,ψ (Lf ) and relational expressions
π, σ (Lr) of the language L are given, respectively by

ϕ, ψ :: =� | p | ¬ϕ | ϕ ∨ ψ | 〈π〉 ϕ π, σ :: =1 | ≤ | ≥ | ?(ϕ, ψ) | −π | π ∪ σ | π ∩ σ

with p ∈ P. Propositional constants (,⊥), other Boolean connectives (∧,→,↔)
and dual modal operators [π] are defined as usual ([π] ϕ := ¬ 〈π〉 ¬ϕ for the
latter).
2 In [14] the plausibility relation is also conversely well-founded, forbidding infinite

strictly ascending ≤-chains. Here the domain is finite, so this requirement is satisfied
automatically.
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The set of formulas of L contains the always true formula () and atomic
propositions (p), and it is closed under negation (¬), disjunction (∨) and modal
operators of the form 〈π〉 with π a relational expression. The set of relational
expressions contains a symbol representing the global relation (1), a symbol
representing the plausibility relation (≤) and another representing its converse
(≥; [16,17]) and an additional construction of the form ?(ϕ,ψ) with ϕ and ψ
formulas of the language, and it is closed under Boolean operations over relations
(the so called boolean modal logic; [18]).

Definition 2.5 (Semantic interpretation). Let M = 〈W,≤, V 〉 be a PM.
The function �·�M : Lf → ℘(W ), from formulas in L to subsets of W , and the
function 〈〈·〉〉M : Lr → ℘(W × W ), from relational expressions in L to binary
relations over W , are defined inductively and simultaneously as follows.

���M := W �ϕ ∨ ψ�M := �ϕ�M ∪ �ψ�M

�p�M := V (p) �〈π〉 ϕ�M := {w ∈ W | 〈〈π〉〉M
w ∩ �ϕ�M 
= ∅}

�¬ϕ�M := W \ �ϕ�M

with 〈〈π〉〉M
w the set of worlds reachable from w via 〈〈π〉〉M ,3 and

〈〈1〉〉M := W × W 〈〈−π〉〉M := (W × W ) \ 〈〈π〉〉M

〈〈≤〉〉M := ≤ 〈〈π ∪ σ〉〉M := 〈〈π〉〉M ∪ 〈〈σ〉〉M

〈〈≥〉〉M := {(v, u) | u ≤ v} 〈〈π ∩ σ〉〉M := 〈〈π〉〉M ∩ 〈〈σ〉〉M

〈〈?(ϕ, ψ)〉〉M := �ϕ�M × �ψ�M

As usual, a formula ϕ is true at world w in M iff w ∈ �ϕ�M (in such case, w is
called a ϕ-world). As usual, ϕ is valid (� ϕ) iff �ϕ�M = DM for every PM M .

Relational expressions can be used for defining new modalities:

〈<〉 ϕ := 〈≤ ∩ −≥〉 ϕ, 〈∼〉 ϕ := 〈≤ ∪ ≥〉 ϕ, 〈>〉 ϕ := 〈≥ ∩ −≤〉 ϕ.

For a sound and complete axiom system characterising formulas of L valid
in PMs, the reader is referred to [15,19].

Knowledge, belief and other epistemic attitudes. As mentioned, while
knowledge in PMs corresponds to what holds in all epistemic possibilities, beliefs
correspond to what holds in the most plausible ones. But these models can repre-
sent further epistemic attitudes. There is the safe belief of [20], a belief persistent
under revision with any true information, which corresponds to what holds in
all worlds ≤-reachable from the evaluation point [14]. There is also the strong
belief of [21,22] (called robust belief in [20]), a belief that can only be defeated
by evidence (truthful or not) that is known to contradict it, corresponding to
those formulas ϕ for which all ϕ-worlds are strictly more plausible than all ¬ϕ-
worlds [14,22]. Another concept that will be useful is that of very strong belief,
given by those formulas ϕ for which all ϕ-worlds appear at the topmost layer.
Two further relevant concepts are that of conditional belief [12,14,20], what the

3 Formally, 〈〈π〉〉M
w := {u ∈ W | (w, u) ∈ 〈〈π〉〉M}.



318 F.R. Velázquez-Quesada

agent would have believed it was the case if she would have learnt that some
condition was true, and the qualitative degree of beliefs [10,11], looking for what
holds ‘from some level up’. More precisely, at w in M the agent4

knows ϕ iffdef �ϕ�M = W
believes ϕ iffdef L0(W ) ⊆ �ϕ�M

safely believes ϕ iffdef 〈〈≤〉〉M
w ⊆ �ϕ�M

strongly believes ϕ iffdef there is k < nlM such that
⋃k

i=0 Li(W ) = �ϕ�M

very strongly believes ϕ iffdef L0(W ) = �ϕ�M

believes ϕ conditionally to ψ iffdef Mx(�ψ�M ) ⊆ �ϕ�M

believes ϕ with a degree k iffdef Mxk(W ) ⊆ �ϕ�M

Note how all these attitudes can be expressed with formulas in L. Indeed,
define

knowledge: K ϕ := [∼] ϕ,
belief: B ϕ := 〈≤〉 [≤] ϕ,

safe belief: Sf ϕ := [≤] ϕ,

strong belief: St ϕ := 〈≤〉 [≤] ϕ ∧ [∼](ϕ → [≤] ϕ),
very strong belief:VSt ϕ := [∼](ϕ ↔ [<] ⊥),

conditional belief: Bψ ϕ := 〈∼〉 ψ→〈∼〉(ψ ∧ [≤](ψ→ϕ)),

degree of belief: Bk ϕ := [∼]((λ0 ∨ · · · ∨ λk) → ϕ),

with the sequence of formulas λk (k ≥ 0) for the degree of belief case given by

λ0 := [<] ⊥ and λk+1 := (¬λ0 ∧ · · · ∧ ¬λk) ∧ [<](λ0 ∨ · · · ∨ λk), so Lk(W ) = �λk�M .

Then, for every PM M and world w ∈ DM ,

w ∈ �K ϕ�M iff �ϕ�M = W
w ∈ �B ϕ�M iff L0(W ) ⊆ �ϕ�M

w ∈ �Sf ϕ�M iff 〈〈≤〉〉M
w ⊆ �ϕ�M

w ∈ �St ϕ�M iff ∃ k < nlM s.t.
⋃k

i=0 Li(W ) = �ϕ�M

w ∈ �VSt ϕ�M iff L0(W ) = �ϕ�M

w ∈ �Bψ ϕ�M iff Mx(�ψ�M ) ⊆ �ϕ�M

w ∈ �Bk ϕ�M iff Mxk(W ) ⊆ �ϕ�M

This shows how L can express several different epistemic attitudes.5 More-
over, its expressivity is what allows the existence of an axiom system for a modal-
ity describing the effects of the general layered upgrade, the model operation that
will be used here for representing plausibility change.

A plausibility change operation. The ‘subtle’ policies to be provided in
Sect. 3 will be represented with the general layered upgrade of [15, Definition 8].
This operation receives a PM M and a layered list S over DM : a finite (possibly
empty) list of pairwise disjoint (possible empty) subsets of DM together with a
default plausibility ordering over DM . The list’s length is denoted by |S|, its kth
element is denoted by S[k − 1] (with 0 ≤ k < |S|, so S = �S[0], · · · , S[ |S| − 1 ]�),
and ≤d

S
is its default plausibility ordering. Intuitively, S defines layers of elements

of DM in a new plausibility ordering ≤S, with S[0] the set of worlds from which
the topmost layer will be defined, and ≤d

S
used to sort not only each individual

set but also those worlds not in
⋃|S|−1

k=0 S[k].

4 With Mxk(W ) :=
⋃k

i=0 Li(W ). This is the plausibility-order-is-total version of the
standard definition.

5 In particular, it can characterise all layers of any PM.



On Subtler Belief Revision Policies 319

As shown in [15], the general layered upgrade can define several well-known
order change operations. Still, for this work, a simpler version is enough. Call a
layered list explicit (E) when its sets define a quasi-partition on DW (the sets
are both pairwise disjoint and collectively exhaustive, but some of them might
be empty) and its default ordering is the universal relation (u ≤d

S
v for every

u, v ∈ DW ). Call it syntactically defined (SD) when each S[k] is given by a
formula ξk that can be evaluated in PMs. Then,

Definition 2.6 (General layered upgrade). Let M be a PM. If S is an E-SD
list over DM in which each S[k] is given by a formula ξk, then u ≤S v holds iff
either both worlds are in the same set (part 1 below), or else u’s set is not above
v’s (i.e., v’s set is strictly above u’s; part 2). Formally,

u ≤S(M) v iffdef

|S|−1∨

k=0

{u, v} ⊆ �ξk�M

︸ ︷︷ ︸
1

∨
|S|−1∨

k=0

(
v ∈ �ξk�M ∧ u /∈

k⋃

l=0

�ξl�
M
)

︸ ︷︷ ︸
2

It is not difficult to see that ≤S is indeed a total preorder. Then,

Definition 2.7. Let M = 〈W,≤, V 〉 be a PM. If S is an E-SD layered list,
then the PM Mly(S) is defined as 〈W,≤S(M), V 〉. In order to describe the effects
of this operation, the language Lly extends L with a modality 〈ly(S)〉 for every
E-SD layered list S. Given a PM M , define

�〈ly(S)〉 ϕ�M := �ϕ�Mly(S)

For a sound and complete axiom system for Lly w.r.t. PMs, see [15]. Note
that this paper works with E-SD layered lists because it is both possible and
useful. For E, the discussed policies are ‘simple’, so it is possible (and clearer) to
provide explicit definitions for all layers in the resulting plausibility orderings.
For SD, L is expressive enough to characterise syntactically these layers, which
yields an (albeit indirect) axiomatisation for the discussed revision policies.

Two well-known revision policies. For a later comparison, here is the gen-
eral layered upgrade representation of two well-known revision policies. Note, in
particular, the discussed crucial properties.
Moderate revision. This policy (see [23] among others) is called lexicographic
in [24]. A moderate χ-revision makes all χ-worlds more plausible than all ¬χ-
worlds, keeping the old ordering within each zone. It can be defined by a general
layered upgrade whose (E-SD) layered list uses the following formulas.

Definition 2.8 (Moderate revision). Let M be a PM with n := nlM ; let χ be
a formula in L. The formulas ξχ

k for moderate revision, with 0 ≤ k ≤ (2n − 1),
are defined in the following way (with formulas λk as in Page 2).

ξχ
0 := λ0 ∧ χ, . . . , ξχ

n−1 := λn−1 ∧ χ, ξχ
n := λ0 ∧ ¬χ, . . . , ξχ

2n−1 := λn−1 ∧ ¬χ.
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With these formulas, a general layered upgrade defines a moderate revision:
all former χ-worlds will be above all former ¬χ-worlds, with the relative order
within the two zones preserved. Although �ξχ

i �M = ∅ might hold for some
0 ≤ i ≤ (2n − 1), this is not a problem: the sets �ξχ

0 �M , . . . , �ξχ
2n−1�

M define a
quasi-partition of DM , as required. Here is a modality for this policy.

Definition 2.9. Let the formulas in {ξχ
k | 0 ≤ k ≤ (2n − 1)} be as in Definition

2.8. Then,

M⇑χ : =M�ξ
χ
0 ,...,ξ

χ
2n−1� and �〈χ⇑〉 ϕ�M : =�ϕ�M⇑χ

Conservative revision. This revision policy [25] is called natural in [26] and min-
imal conditional in [27]. It makes the most plausible χ-worlds the only ones at
the top of the ordering, keeping the old order among the rest.

Definition 2.10 (Conservative revision). Let M be a PM with n := nlM ; let
χ be a formula in L. Define λχ

� := χ ∧ [<] ¬χ, characterising the most plausible
χ-worlds. Formulas ξχ

k for conservative revision, with 0 ≤ k ≤ n, are given by

ξχ
0 := λχ

� , ξχ
1 := λ0 ∧ ¬λχ

�, . . . , ξχ
n := λn−1 ∧ ¬λχ

�.

The former most plausible χ-worlds (λχ
�) will move to the top, with the rest

keeping their old ordering. Again, the formulas define a quasi-partition of DM .

Definition 2.11. Let the formulas in {ξχ
k | 0 ≤ k ≤ n} be as in Definition 2.10.

M↑χ : =M�ξ
χ
0 ,...,ξ

χ
n� and �〈χ↑〉 ϕ�M : =�ϕ�M↑χ

These policies satisfy two important properties. First, they are propositionally
successful : if the agent considers a propositional χ possible, then after a χ-
revision she will believe χ. Second, they are propositionally idempotent : after a
first revision with a propositional χ, further χ-revisions will not have any effect,
not only on the agent’s beliefs (the topmost worlds), but also on the agent’s
plausibility relation.

Proposition 2.1 ((Propositional) success and idempotence). Let χ be a
propositional formula; define K̂ χ := ¬K ¬χ. Then

Success: � K̂ χ → [χ⇑] B χ, � K̂ χ → [χ↑] B χ.
Idempotence: (M⇑χ)⇑χ = M⇑χ, (M↑χ)↑χ = M↑χ.

Proof (Sketch). Success is straightforward. For idempotence, it is enough to show
that in both models the ordering is the same. (Since χ is propositional, �χ�M =
�χ�M⇑χ = �χ�M↑χ .) For moderate revision, in M⇑χ all χ-worlds are already
above all ¬χ-worlds; for the conservative, the most plausible χ-worlds in M↑χ

are already the most plausible overall. Thus, repetitions will not have any effect.
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These properties might fail when χ involves modalities.6 Still, as the policies
introduced next show, the fact that χ is propositional is not the decisive one.

3 Three Subtle Belief Revision Policies

‘All one level up’ (ALU). Here is the first subtle revision policy.

Definition 3.1 (‘All one level up’). Let M be a PM with n := nlM ; let χ be
a formula in L. The formulas ξχ

k for ALU revision (0 ≤ k ≤ n) are given by

ξχ
0 := λ0 ∧ χ, ξχ

1 := (λ1 ∧ χ) ∨ (λ0 ∧ ¬χ), · · · ,
· · · , ξχ

n−1 := (λn−1 ∧ χ) ∨ (λn−2 ∧ ¬χ), ξχ
n := (λn−1 ∧ ¬χ).

From the definition, each ¬χ-world is moved to the layer below. In other
words, in the resulting model, all χ-worlds have been pushed ‘one level up’. The
formulas clearly define a quasi-partition of any model’s domain.

Definition 3.2. Let the formulas in {ξχ
k | 0 ≤ k ≤ n} be as in Definition 3.1.7

M �χ := M�ξ
χ
0 ,...,ξ

χ
n� and �〈χ �〉 ϕ�M := �ϕ�

M �χ

Note how ALU does not satisfy the previous two properties.

Fact 3.1. ALU is neither propositionally successful nor propositionally idempo-
tent.

Proof. The following sequence of diagrams (reflexive and transitive arrows omit-
ted) shows (left to right) the effect of a successive application of the ALU policy
with p.

w0

w1

pw2

pw3

p �⇒

w0

p
w2 w1

p
w3

p �⇒
w1

p
w3

w0

p
w2

p �⇒

p
w2

p
w3 w0

w1

p �⇒

p w2

p w3

w0

w1

Thus, the ALU policy with a propositional χ might not lead to a belief in χ
in one step. Nevertheless, further applications do make a difference.

Proposition 3.1. For any (mind: finite) PM M and propositional χ there is
m ≥ 0 s.t.
6 For success, Moorean phenomena [29] might appear. For idempotence, the L-formula

[>] ⊥ characterises the bottommost elements of the ordering; thus, if the initial
ordering is not flat (not all worlds equally plausible), each [>] ⊥-revision will move
to the top different worlds.

7 Thus, [χ �] ϕ := ¬ 〈χ �〉 ¬ϕ is such that � [χ �] ϕ ↔ 〈χ �〉 ϕ.
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�K̂ χ → [χ �

m] B χ�M= DM

with [χ �
0] ϕ := ϕ, [χ �

1] ϕ := [χ �] ϕ and [χ �

k+1] ϕ := [χ �] [χ �

k] ϕ.

Proof (Sketch). If M has no χ-worlds, any m ≥ 0 works. Otherwise take m :=
layχ

� +1, with layχ
� the number of the layer in M where the most plausible χ-

worlds appear: after layχ
� applications of χ �, these worlds will reach the topmost

layer, and after one more, only they will be up there; hence, after layχ
� +1 steps,

the agent will believe χ.8

Even though ALU does not have a strong initial effect (it is not propositionally
successful), its repetition is not idle (it is not propositionally idempotent), as it
eventually leads to a belief in the involved formula. In fact, this policy’s long-term
effect is stronger than that of the conservative policy, as it becomes idempotent
only after all χ-worlds are above all ¬χ-worlds. In other words, its effect become
null only when a strong belief on χ has been reached.

Proposition 3.2. Let M be a PM; let χ be propositional. There is m ≥ 0 s.t.

�K̂ χ → [χ �

m]St ϕ�M= DM .

Proof (Sketch). ALU has an effect until no χ-world can move up, i.e., until
the ‘worst’ χ-worlds are strictly above the ‘best’ ¬χ-worlds. Thus, define m :=
(layχ

� − lay¬χ
� ) + 1, with layχ

� the number of the layer in M where the least
plausible χ-worlds appear. After layχ

� − lay¬χ
� applications of χ �, the ‘worst’ χ-

worlds and the ‘best’ ¬χ-worlds will be in the same layer; after one more, a
strong belief on χ will be reached.9

‘Bottommost one level up’ (BLU). The ‘all one level up’ policy works by
pushing all χ-worlds to the upper layer. The ‘bottommost one level up’ policy
below only acts on the least plausible χ-worlds.

Definition 3.3 (‘Bottommost one level up’). Let M be a PM with n :=
nlM ; let χ be a formula in L. Define λχ

� := χ ∧ [>] ¬χ, characterising the least
plausible χ-worlds. Formulas ξχ

k for BLU revision (0 ≤ k ≤ n − 1) are given by

ξχ
i := (〈∼〉(λi+1 ∧ λχ

�) → (λi ∨ λχ
�)) ∧ (¬ 〈∼〉(λi+1 ∧ λχ

�) → (λi ∧ ¬λχ
�))

Although more elaborated than the previous case, these formulas fulfil their
goal. Indeed, when defining the new model’s ith layer (ξχ

i ), it is asked whether the
next layer in M contains the least plausible χ-worlds (the condition 〈∼〉(λi+1 ∧
λχ

�)). If that is the case, this ith layer will contain those worlds in the original
ith layer plus the least plausible χ-worlds (λi ∨ λχ

�); otherwise, it will contain
those worlds in the original ith layer that are not the least plausible χ-worlds
(λi ∧ ¬λχ

�). The formulas certainly define a quasi-partition: the consequent of
the implications in each one of them shows how each world satisfies exactly one
formula. Then,
8 This relies on the fact that χ is propositional: the set of χ-worlds does not change.
9 If layχ

� − lay¬χ
� < 0, then there is already a strong belief on χ at M , and any m ≥ 0

works.
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Definition 3.4. Let the formulas in {ξχ
k | 0 ≤ k ≤ n − 1} be as in Definition

3.3.10 Then,

M �→χ := M�ξ
χ
0 ,...,ξ

χ
n−1� and �〈χ �→〉 ϕ�M := �ϕ�

M �→χ

Just as the ALU policy, BLU one does not satisfy the discussed properties.

Fact 3.2. BLU is neither propositionally successful nor propositionally idempo-
tent.

Proof. Here is an example of effect of a successive application of BLU with p.

w0

w1

pw2

pw3

p �→⇒

w0

w1

p
w2

p
w3

p �→⇒

w0

p
w2 w1

p
w3

p �→⇒

w0

p
w2

p
w3

w1

p �→⇒

w1

w0

p
w3

p
w2

Just as the ALU policy, while a BLU revision with a propositional χ does not
need to lead to a belief in χ in one step, further repetitions do make a difference.

Proposition 3.3. For any PM M and propositional χ there is m ≥ 0 s.t.

�K̂ χ → [χ �→ m] B χ�M= DM

with [χ �→ 0] ϕ := ϕ, [χ �→ 1] ϕ := [χ �→] ϕ and [χ �→ k+1] ϕ := [χ �→] [χ �→ k] ϕ.

Proof (Sketch). Similar to that for the ALU case (Proposition 3.1), the difference
being that it takes m := layχ

� +1 BLU steps for the agent to believe χ: the most
plausible χ-worlds do not move up until they become also the least plausible χ-
ones.

Once again, even though this revision policy does not have a strong initial
impact, its repetition has an effect, as it eventually leads to a belief in the given
formula χ. As the proof of the previous proposition shows, this policy is ‘slower’
(i.e., even subtler) than ALU: it might require more iterations in order to reach
the belief point (layχ

� +1 for BLU vs the potentially smaller layχ
� +1 for ALU).

Nevertheless, this ‘take care of the worst first’ approach has its advantages: this
policy becomes idle not when the agent has a strong belief on χ but rather when
she has a very strong belief on it.

Proposition 3.4. Let M be a PM; let χ be propositional. There is m ≥ 0 s.t.

�K̂ χ → [χ �→ m]VSt χ�M= DM .

Proof (Sketch). BLU acts until the ‘worst’ χ-worlds cannot be moved up, i.e.,
until they are at the top. This happens after m := layχ

� +1 BLU revision steps.
10 Thus, [χ �→] ϕ := ¬ 〈χ �→〉 ¬ϕ is such that � [χ �→] ϕ ↔ 〈χ �→〉 ϕ.
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‘Opposite topmost one level down’ (OTLD). The ‘bottommost one level
up’ policy shifts the least plausible χ-worlds one level up. The ‘opposite topmost
one level down’ policy is its dual: the most plausible ¬χ-worlds go one level
down.

Definition 3.5 (‘Opposite topmost one level down’). Let M be a PM with
n := nlM ; let χ be a formula in L. Define λ−1 := ⊥. The formulas ξχ

k for OTLD
revision (0 ≤ k ≤ n − 1) are given by

ξχ
i := (〈∼〉(λi−1 ∧ λ¬χ

� ) → (λi ∨ λ¬χ
� )) ∧ (¬ 〈∼〉(λi−1 ∧ λ¬χ

� ) → (λi ∧ ¬λ¬χ
� ))

When defining the new model’s ith layer (ξχ
i ), it is asked whether the upper

layer in M contains the most plausible ¬χ-worlds (the condition 〈∼〉(λi−1∧λ¬χ
� )).

If that is the case, this ith layer will contain those worlds in the original ith
layer plus the most plausible ¬χ-worlds (λi ∨ λ¬χ

� ); otherwise, it will contain
those worlds in the original ith layer that are not the most plausible ¬χ-worlds
(λi ∧ ¬λ¬χ

� ).

Definition 3.6. Let the formulas in {ξχ
k | 0 ≤ k ≤ (n − 1)} be as in Definition

3.5.11 Then,

M

�→

χ
:= M�ξ

χ
0 ,...,ξ

χ
n−1� and �〈χ�→ 〉 ϕ�M := �ϕ�

M

�→

χ

Again, the OTLD policy is neither (propositionally) successful nor idempotent.

Fact 3.3. OTLD is neither propositionally successful nor propositionally idem-
potent.

Proof. Here is an example of effect of a successive application of OTLD with p.

w0

w1

pw2

pw3

p

�→

⇒
p

w3

pw2

w0 w1

p

�→

⇒

w1w0

p
w2

p
w3

p

�→

⇒
w1w0

p
w3

p
w2

p

�→

⇒

p
w2

p w3

w0 w1

As with the previous cases, OTLD reaches a belief in the involved formula
after some repetition.

Proposition 3.5. For any PM M and propositional χ there is m ≥ 0 s.t.

�K̂ χ → [χ

�→ m] B χ�M= DM

with [χ

�→ 0] ϕ := ϕ, [χ

�→ 1] ϕ := [χ

�→

] ϕ and [χ

�→ k+1] ϕ := [χ

�→

] [χ

�→ k] ϕ.

11 Thus, [χ

�→

] ϕ := ¬ 〈χ�→ 〉 ¬ϕ is such that � [χ

�→

] ϕ ↔ 〈χ�→ 〉 ϕ.
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Proof (Sketch). Similar to that for of Proposition 3.3, here with m :=
(layχ

� − lay¬χ
� )+1: there will be only χ-worlds at the top after the most plausible

¬χ-worlds have been pushed below the most plausible χ-worlds.12

This policy requires (layχ
� − lay¬χ

� ) + 1 steps to reach a “belief on χ” state,
so it is at least as fast as both ALU (layχ

� +1) and BLU (layχ
� +1). In the long

term it leads to a strong belief: it keeps changing the plausibility order until
all ¬χ-worlds lie at the bottom. Thus, its overall ‘belief’ effect is stronger than
ALU (belief) but weaker than BLU (a very strong belief might not be reached,
as the relative position of χ-worlds never changes). Still, by pushing all ¬χ-
worlds to the bottom, it reaches what can be called a very strong disbelief in ¬χ
(syntactically, VSt χ := [∼](χ ↔ [>] ⊥)).

Proposition 3.6. Let M be a model; let χ be propositional. There is m ≥ 0 s.t.

�K̂ χ → [χ
�→ m](St χ ∧ VSt ¬χ)�M= DM .

Proof (Sketch). OTLD acts until all ¬χ-worlds lie at the bottom, thus yielding a
strong belief in χ and a very strong disbelief in ¬χ. Its works by pushing down
the most plausible ¬χ-worlds one level at the time, so it reaches its goal after
m := nlM − lay¬χ

� steps.

Comparison. The table below compares the short- and long-term effects of the
policies discussed so far (with χ a propositional formula). In fact, informally one
can write

short-term: {�→

, �→} < � < ↑ < ⇑ and long-term: ↑ < {⇑, �} <

�→

< �→,

with, in the short-term case, {�→

, �→} < � because the latter shifts up all χ-worlds.
Thus, while in the short-term the subtle policies are weaker, their long-term
effect is at least as strong as that of the others.

Policy Short-term effect on beliefs Long-term effect on beliefs

Moderate χ⇑ Strong belief in χ Strong belief in χ

Conservative χ↑ Belief in χ Belief in χ

ALU χ � —– Strong belief in χ

BLU χ �→ —– Very strong belief in χ

OTLD χ

�→

—– Strong belief in χ and
very strong disbelief in ¬χ

Other approaches. Some approaches study revision operators that might not
satisfy the success postulate. One of the earliest is non-prioritized belief revision
12 If layχ

� − lay¬χ
� < 0, then there is already a belief on χ at M , and any m ≥ 0 works.
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[30], under which new information will be accepted only if it has more ‘epistemic
value’ than the original beliefs it might contradict. This notion of ‘epistemic
value’ is defined sometimes by a set of core beliefs (the input will be accepted
only if it is consistent with such set: screened revision [31]) and sometimes by
a set of credible formulas (the input will be accepted only if it belongs to such
set: credibility-limited revision [32]). Neither of the policies proposed here fall
into this category. First, the presented setting does not use notions of ‘epistemic
value’ to contrast the input formula with the current beliefs. More importantly,
the three policies proposed here always ‘accept’ the incoming information, albeit
with a very high degree of cautiousness (and each one of them in a different way).

A related research line sets the plausibility of the incoming information as
that of a second ‘reference’ formula; thus, the new information might not lie at
the top of the ordering after the revision. Approaches following this idea (called
raising and lowering in [33], revision by comparison in [34] and two-dimensional
in [35]) require two formulas as the input for the operation (plus, of course,
the representation of the agent’s beliefs), and as such differ from the strategy
followed by the policies proposed here.

A closer research line is that of improvement operators [36]: the incoming
χ might not be believed after the improvement, but its plausibility will be
increased. A taxonomy of improvement operators is provided in [37], with all
of them satisfying S1 (the ordering within �χ�M is invariant), and S2 (so is the
ordering within �¬χ�M ). The first subtle policy presented here, ALU, is in fact
the unique improvement operator of [36], called one-improvement in [37]. How-
ever, neither BLU nor OTLD fall in the category: while the first fails to satisfy
S1, the second fails to satisfy S2. Still, lacking such behaviour does not weaken
these policies, and in fact it is part of what gives them such a strong long-term
effect (Propositions 3.4 and 3.6, respectively).

Other works have proposed policies for small changes in plausibility. As exam-
ples, the operation in [38] (called refinement in [24]) splits each layer of the orig-
inal plausibility ordering, placing the χ-worlds above the ¬χ-ones. Refinement
is not propositionally successful, but it is propositionally idempotent: once the
initial layers have been split, further attempts will not change the ordering. On
the other hand, [24] also discusses a gentle lowering revision, which pushes the
most plausible χ-worlds one level up. Such operation is neither propositionally
successful nor propositionally idempotent. Still, its long-term effect is weaker:
its iteration will lead to a belief in (a propositional) χ, but neither strong belief
nor very strong belief need to be reached.

4 Summary and Future Work

This paper uses PMs for representing beliefs and the general layered upgrade
for representing plausibility change. It starts recalling two well-known revision
policies, moderate and conservative, both of them being (as many others) propo-
sitionally successful (after a χ-revision, the agent will believe χ) and proposi-
tionally idempotent (additional χ-revisions are idle). Thus, they have a strong
initial effect, but afterwards they do not change the agent’s epistemic state.
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Then it introduces three ‘weaker-yet-stronger’ revision policies: ‘all one level
up’, ‘bottommost one level up’ and ‘opposite topmost one level down’. They are
weaker in the sense of not being propositionally successful (a single χ-revision
might not lead to a belief in χ); they are stronger in the sense of not being propo-
sitionally idempotent (further repetitions might have an effect on the agent’s
epistemic state). In fact, if χ is compatible with the agent’s knowledge, ALU
eventually leads not only to a belief in χ, but also to a strong belief in it. Under
the same condition, BLU also leads to an eventual belief in χ. While it might
require more iterations to reach such stage, it makes up for its slowness by
strengthening the agent’s attitude towards χ even more: it eventually leads to
a very strong belief in it. Finally, OTLD also leads to both a belief and then a
strong belief; while it might not reach a very strong belief in χ, it reaches a very
strong disbelief in ¬χ. These revision policies are realistic, as indeed there are
ideas that are initially refused, only to become eventually accepted after a num-
ber of repetitions.13 Maybe more interesting, such policies could be understood
as forms of propositional inductive reasoning, as they lead to a given outcome
(a belief on χ) not in one single step, but rather after a number of them.

For future work, a first goal is to characterise the presented policies (e.g.,
in terms of postulates) to provide a more precise comparison.14 Then one can
also explore not only other ‘subtle’ revision policies, but also ‘subtle forms of
contraction. Finally, this paper has focussed on the single-agent case, but the
technical details will be different in multi-agent scenarios (in particular when
considering private revisions).
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2 LORIA-CNRS, Université de Lorraine, Nancy, France

Abstract. We extend the ‘topologic’ framework [13] with dynamic
modalities for ‘topological public announcements’ in the style of
Bjorndahl [5]. We give a complete axiomatization for this “Dynamic
Topo-Logic”, which is in a sense simpler than the standard axioms of
topologic. Our completeness proof is also more direct (making use of
a standard canonical model construction). Moreover, we study the rela-
tions between this extension and other known logical formalisms, showing
in particular that it is co-expressive with the simpler (and older) logic of
interior and global modality [1,4,10,14]. This immediately provides an
easy decidability proof (both for topologic and for our extension).

1 Introduction

The ‘topologic’ formalism, introduced by Moss and Parikh [13], and investigated
further by Dabrowski et al. [6], Georgatos [8,9] and others, presented a single-
agent subset space logic (SSL) for the notions of knowledge and effort (where
“effort” refers to any type of evidence-gathering—via, e.g., measurement, com-
putation, approximation, experiment or announcement—that can lead to an
increase in knowledge). They proposed a bimodal language with modalities K
and �, where Kϕ is read as “the agent knows ϕ (is true)”, and the effort modal-
ity �ϕ says that “ϕ stays true no matter what further evidence-gathering efforts
are made”. So � captures a notion of stability under evidence-gathering. The
formulas are interpreted on subset spaces, which include the class of topologi-
cal spaces. In [13] Moss and Parikh gave a sound and complete axiomatization
with respect to the class of all subset spaces. The axiomatization for topological
spaces has later been studied by Georgatos [8,9], and Dabrowski et al. [6], who
independently provided complete axiomatizations and proved decidability. The
completeness proofs involve however rather complicated constructions. More-
over, one of the main axioms (the so-called Union Axiom, capturing closure of
the topology under binary unions) is extremely complex and looks rather unin-
tuitive.

A different logical formalism with a topological semantics was proposed by
Bjorndahl [5], motivated by developments in dynamic epistemic logic. Namely,
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he proposed a topological semantics (in the style of subset space semantics) for
the syntax of Public Announcement Logic (PAL), that assumes as precondition
of learning ϕ the sentence int(ϕ), saying that ϕ is learnable. Topologically, this
corresponds to the interior operator of McKinsey and Tarski [12]. He axiomatized
this logic, using natural analogues of the standard reduction axioms of PAL, and
showed that this formalism is co-expressive with the simpler (and older) logic
of interior int(ϕ) and global modality Kϕ (previously investigated by Bennett,
Goranko and Passy, Aiello, and Shehtman [1,4,10,14], extending the work of
McKinsey and Tarski [12] on interior semantics).

Another recent development is the work of van Ditmarsch et al. [15], who
studied the extension of Bjorndahl’s system with a Topological Arbitrary Public
Announcement modality (‘Topo-APAL’, for short), that quantifies universally
over Bjorndahl-style public announcements (similarly to the way classical APAL
modality in [2] quantifies over public announcements). They proved that this is
co-expressive with Bjorndahl’s logic.

In this paper, we investigate a natural extension of ‘topologic’, obtained by
adding to it Bjorndahl-style dynamic modalities for ‘updates’ (public announce-
ments). The resulting ‘Dynamic Topo-Logic’ can be thought of as a logic of
evidence-based knowledge Kϕ, knowability int(ϕ), learning of new evidence [ϕ]ψ
and stability �ϕ (of some truth ϕ) under any such evidence-acquisition. We
show that this extension is co-expressive with the above-mentioned three logical
formalisms: Topo-APAL [15], Bjorndahl’s logic of topological public announce-
ments [5], and the logic of interior and global modality [1,4,10,14]. This finally
elucidates the relationships between topologic and other modal (and dynamic-
epistemic) logics for topology: in particular, topologic is directly interpretable
in the simplest logic above (of interior and global modality), which immediately
provides a simpler decidability proof (both for topologic and for our extension).

We give a complete axiomatization for Dynamic Topo-Logic, which is in a
sense simpler than the standard axioms of Topologic: though we have more
axioms, each of them is transparent, natural and easily readable, directly reflect-
ing the intuitive meanings of the connectives. Our axiomatization consists of a
slightly different version of Bjorndahl’s axioms, together with only two additional
proof principles governing the behavior of the topologic “effort” modality �ϕ
(which we call “stable truth”): an introduction rule and an elimination axiom.
Everything to be said about the effort modality is captured by these two simple
principles, which together express the fact that � quantifies universally over all
updates with any new evidence. In particular, the complicated Union Axiom
[8,9] is not needed in our system. Our completeness proof is also simpler than
the existing completeness proofs for Topologic, making direct use of a standard
canonical topo-model construction. This shows the advantage of adding dynamic
modalities: when considered as a fragment of a dynamic-epistemic logic, Topo-
logic becomes a more transparent and natural formalism, with intuitive axioms
and canonical behavior.

In its turn, the effort modality helps to simplify and streamline the axioma-
tization of Topo-APAL. Indeed, although the two are equivalent, note that the
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axiomatization of this latter operator in [15] was essentially infinitary : it used
an inference rule that takes as inputs infinitely many premisses! In contrast, our
axiomatization is recursive, being obtained by replacing the infinitary rule with
a finitary one, involving the use of “fresh” propositional variables. This rule’s
soundness is due to the “pure semantical” character of the effort modality �ϕ
(whose meaning does not depend on the valuation of variables not occurring in
ϕ), in contrast to the “syntactical” character of the APAL modality.1

Due to page-limit constraints, this Proceedings version includes only the
shortest proofs. The other relevant proofs can be found in the long version
of this paper, available online at https://sites.google.com/site/ozgunaybuke/
publications.

2 Dynamic Topo-Logic: Syntax, Semantics
and Axiomatization

In this section, we present the language of Dynamic Topo-Logic, which is
obtained by extending Bjorndahl’s logic L!Kint [5] with the effort modality from
Topologic [13]; or equivalently, by extending Topologic with the Tarki-McKinsey
interior operator int [12] and with Bjorndahl’s topological public announce-
ments. As it turns out, interior is in fact definable using topological public
announcements (since int(ϕ) = 〈ϕ〉�). So, although we keep the int opera-
tor as primitive for technical reasons, in a sense our syntax is essentially given
by adding to topologic only the dynamic modalities.

Syntax. Given a countable set of propositional variables Prop, the language L
of Dynamic Topo-Logic is defined recursively by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | int(ϕ) | [ϕ]ϕ | �ϕ,

where p ∈ Prop. The update operator [ϕ]ψ is sometimes denoted by [!ϕ]ψ in
Public Announcement Logic literature; we skip the exclamation sign, but we
will use the notation [!] for this modality when we do not want to specify the
announcement formula ϕ (so that ! functions as a placeholder for the content
of the announcement). We employ the usual abbreviations for propositional
connectives �,⊥,∨,→,↔. The dual modalities are defined as K̂ϕ := ¬K¬ϕ,
♦ϕ := ¬�¬ϕ, 〈ϕ〉ψ := ¬[ϕ]¬ψ, and cl(ϕ) := ¬int¬ϕ.

Several fragments of the language L are of both technical and conceptual
interest. For all the fragments studied in this paper, we use a notational con-
vention listing in subscript all the modalities of the corresponding language. For
example, Lint denotes the fragment of L having only the modality int (besides
propositional connectives); LKint has only modalities K and int ; LK� has only
modalities K and �, etc.
1 Indeed, the original paper [2] on “classical” (non-topological) APAL modality con-

tained a similar attempt of converting an infinitary rule into an finitary rule. That
was later shown to be flawed: the finitary rule was not sound for the APAL modality
(though it is sound for effort)!

https://sites.google.com/site/ozgunaybuke/publications
https://sites.google.com/site/ozgunaybuke/publications
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Topological Semantics: Intuitions and Motivation. The semantics of this
language is over topological spaces2 (X, τ). The points of the space represent
“possible worlds” (or states of the world). The open sets in the topology are
meant to represent potential evidence, i.e. facts about the world that are in prin-
ciple knowable, in the sense of being verifiable: whenever (in any world in which)
they are true, they can be known. In contrast, closed sets represent facts that
are in principle falsifiable (whenever they are false, their falsity can be known).
As it was remarked in [11,16], the closure properties of a topology are intuitively
satisfied in this interpretation. First, contradictions (∅) and tautologies (X) are
in principle verifiable (as well as falsifiable). The conjunction P ∧Q of two verifi-
able facts is also verifiable: if P ∧Q is true, then both P and Q are true, and since
both are assumed to be verifiable, they can both be known, and hence P ∧Q can
be known. Finally, if {Pi : i ∈ I} is a (possibly infinite) family of verifiable facts,
then their disjunction

∨
i∈I Pi is verifiable: indeed, if the disjunction is true, then

there must exist some i ∈ I such that Pi is true, and so Pi can be known (since
it is verifiable), and as a result the disjunction

∨
i∈I Pi can also be known (by

inference from Pi).

Semantics. A subset space is a pair (X,O), where X is a non-empty set and
O ⊆ P(X) is a non-empty collection of subsets of X. A subset model M =
(X,O, V ) is triple where (X,O) is a subset space and V : Prop → P (X) is a
valuation function. A topological model (or, in short, a topo-model) is a subset
model M = (X, τ, V ) where (X, τ) is a topological space. Following the Subset
Space Semantics [13], formulas are interpreted on pairs of the form (x,U) where
x ∈ U ∈ O. Such pairs are called epistemic scenarios. The set of all epistemic
scenarios of a given topo-model M is denoted by ES(M). Given a topo-model
M = (X, τ, V ) and an epistemic scenario (x,U) ∈ ES(M), the semantics for
the language L is given by defining a satisfaction relation (x,U) |=M ϕ, as well
as a truth set (interpretation) [[ϕ]]UM =: {x ∈ U | (x,U) |=M ϕ}, for all formulas
ϕ. We omit the subscript, writing simply (x,U) |= ϕ and [[ϕ]]U , whenever the
model M is fixed. The definition of satisfaction is by recursion on the complexity
of formulas ϕ:

2 For a general introduction to topology we refer to [7]. A topological space (X, τ)
consists of a non-empty set X and a “topology” τ ⊆ P(X), i.e. a family of subsets
of X (called open sets) such that X, ∅ ∈ τ, and τ is closed under finite intersections
and arbitrary unions. The complements X \ U of open sets are called closed. The
collection τ is called a topology on X and elements of τ are called open sets. An open
set containing x ∈ X is called an open neighborhood of x. The interior Int(A) of a
set A ⊆ X is the largest open set contained in A, i.e., Int(A) =

⋃{U ∈ τ | U ⊆ A},
while the closure cl(A) is the smallest closed set containing A. A family B ⊆ τ is
called a basis for a topological space (X, τ) if every non-empty element of τ can be
written as a union of elements of B.
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(x,U) |= p iff x ∈ V (p) (for p ∈ Prop)
(x,U) |= ¬ϕ iff (x,U) |= ϕ
(x,U) |= ϕ ∧ ψ iff (x,U) |= ϕ and (x,U) |= ψ
(x,U) |= Kϕ iff (∀y ∈ U)(y, U) |= ϕ
(x,U) |= int(ϕ) iff x ∈ Int([[ϕ]]U )
(x,U) |= [ϕ]ψ iff (x,U) |= int(ϕ) implies (x, Int([[ϕ]]U )) |= ψ
(x,U) |= �ϕ iff (∀O ∈ τ) (x ∈ O ⊆ U implies (x,O) |= ϕ)

We say that a formula ϕ is valid in a model M, and write M |= ϕ, if (x,U) |=
Mϕ for all scenarios (x,U) ∈ ES(M). We say ϕ is valid, and write |= ϕ, if
M |= ϕ for all M.

Intuitive Reading. In an epistemic scenario (x,U), the first component x rep-
resents the actual state of the world, while U is the current evidence possessed
by the agent; x ∈ U expresses the factivity of evidence. The operator K cap-
tures “knowledge” (in the sense of absolute certainty: “infallible knowledge”): in
a scenario (x,U), Kϕ holds iff ϕ is entailed by the agent’s evidence U (hence,
the above semantic clause). int(ϕ) means that ϕ is “knowable” in the actual
state of the world (though not necessarily knowable in general, in other worlds):
there exists some potential evidence (open set containing the actual state) U
that entails ϕ (hence, the actual state is in the interior of ϕ); the dual closure
operator cl(ϕ) means that ϕ is “unfalsifiable” in the actual state (i.e. it is con-
sistent with all potential evidence at that state). The ‘effort’ modality �ϕ is
read as “ϕ is stably true” under evidence-acquisition: i.e. ϕ is true, and will stay
true no matter further evidence is obtained. Finally, we read the dynamic update
modalities [ϕ]ψ as “ψ will be true after learning ϕ”. The difference between these
Bjorndahl-style updates and the standard update operators (sometimes called
public announcements)3 is that not every truth is automatically “learnable”; so
the precondition of updating with ϕ is the proposition int(ϕ) saying that ϕ is
knowable in the actual world (i.e. there exists some true evidence supporting ϕ).

The above topological semantics for the language L was in fact previously
studied for some of its subfragments. While the semantic clauses for K and �
were first introduced in [13], the fragment L!Kint examined in [5]. Bjorndahl
provided sound and complete aximatizations for the associated dynamic logic
L!Kint (see Table 1 for the axiomatizations). Moreover, he proved—via a trans-
lation using so-called Reduction Axioms (see Table 1)—that the languages LKint

and L!Kint are equally expressive under the proposed topological semantics:

Theorem 1 [5, Proposition 5]. LKint and L!Kint are equally expressive with
respect to topo-models.4

3 We prefer to talk about “updates”, rather than public announcements, since our
setting is single-agent: there is no “publicity” involved. The agent simply learns ϕ
(and implicitly also learns that ϕ was learnable).

4 In fact, the modality int can be defined in terms of the public announcement modality
as int(ϕ) := ¬[ϕ]⊥, thus, the language L!Kint and its fragment L!K without the
modality int are also co-expressive.
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A Close Relative: Topo-APAL. Yet another relevant variation of L is the
language LAPAL obtained by replacing the effort modality � with the so-called
arbitrary announcement modality � that was introduced by Balbiani et al. [2].
Roughly speaking, the arbitrary announcement modality �ϕ is read as “ϕ stays
true after any epistemic update”. While Balbiani et al. [2] studied this modality
on Kripke frames, a topological semantics for � was proposed by van Ditmarsch
et al. [15]:

(x,U) |= �ϕ iff (∀ψ ∈ L!Kint)((x,U) |= [ψ]ϕ),

where [!] is the dynamic operator for topological updates (in the sense above).
So � quantifies over all Bjorndahl-style topological public announcements of
epistemic formulas. In [15], van Ditmarsch et al. proved that:

Theorem 2 [15, Theorem19]. LKint and LAPAL are equally expressive expres-
sive with respect to topo-models.

As stated in the above semantic clause, the arbitrary announcement modality
only quantifies over the�-free formulas, whereas the effortmodality quantifies over
all open neighborhoods of the actual state x. Intuitively speaking, the effort modal-
ity seems stronger than the arbitrary announcement modality. However, quite sur-
prisingly, this is not the case: in this paper, we will show that the effort modality is
in fact semantically equivalent to the arbitrary announcement modality.

Axiomatizations. Given a formula ϕ ∈ L, we denote by Pϕ the set of all propo-
sitional variables occurring in ϕ (we will use the same notation for the necessity
and possibility forms defined below). The axiomatization of our Dynamic Topo-
Logic L consists of all axioms and rules in Table 1 below.

The intuitive nature of these axioms should be obvious. The first six need
no explanation. The Replacement of Equivalents rule (RE) says that updates
are extensional : learning equivalent sentences gives rise to equivalent updates,
while the reduction axiom (R[�]) says that updating with tautologies is redundant
(nothing changes). The other reduction axioms are the natural analogues of the
standard reduction laws in Public Announcement Logic, when one takes into
account the fact that the precondition of a Bjorndahl-style update with ϕ is
that ϕ is (not only true, but also) knowable: i.e. int(ϕ). The only essentially new
components of our system are the last two: the elimination axiom ([!]�-elim)
and the introduction rule ([!]�-intro) for the effort modality. Taken together,
they say that θ is a stable truth after learning ϕ iff θ is true after learning any
stronger evidence ϕ∧ρ. The left-to-right implication in this statement is directly
captured by ([!]�-elim), while the converse is captured by the rule ([!]�-intro).
The “freshness” of the variable p ∈ P in this rule ensures that it represents any
‘generic’ further evidence: this is similar to the introduction rule for the universal
quantifier. In essence, the effort axiom and rule express the fact that the effort
modality is in fact a universal quantifier (over potential evidence).

Simplicity of Our Axioms. One can compare the transparency and simple
nature of our axioms with the complexity of the standard axiomatization of
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Table 1. The axiomatization L of Dynamic Topo-Logic.

topologic, containing among others the intricate and opaque Union Axiom, which
in our notation reads as:

♦ϕ ∧ K̂♦ψ → ♦(♦ϕ ∧ K̂♦ψ ∧ K♦K̂(ϕ ∨ ψ))

The fragment LKint , having only modalities K and int , was first studied in
[10] (with a Kripke semantics) and [4] (with the above topological semantics).
A complete axiomatization for the topological interpretation was provided by
Aiello [1], though a full completeness proof was given later by Shehtman [14]:

Proposition 1 ([14]). The system LKint , consisting of the axioms and rules in
group (I) of Table 1, is sound and complete for the language LKint .

The fragment L!Kint , obtained by extending LKint with topological
update operators (‘public announcement’), was introduced and axiomatized by
Bjorndahl [5]:

Proposition 2 ([5]). The system L!Kint , consisting of all the axioms and rules
in groups (I) and (II) of Table 1, is sound and complete for the language L!Kint .

Proof. It is easy to see that all the axioms and rules of L!Kint are sound. A proof
of completeness is in [5], for a slightly different, but equivalent, axiomatization.
Bjorndahl’s system consists of the axioms of LKint (i.e. group (I) in our Table),
together with our reduction axioms (Rp), (R¬), (RK) and (R!), as well as the
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additional reduction laws, (R∧) and (Rint) in the Proposition below.5 Since the
latter ones are provable in our system L!Kint , it follows that L!Kint is complete
as well.

Proposition 3. The first six reduction laws below are provable both in L!Kint

and L (for languages L!Kint and L, respectively). The seventh schema and the
inference rule below can be derived in our full proof system L:

1. (〈!〉) 〈ϕ〉ψ ↔ (int(ϕ) ∧ [ϕ]ψ)

2. (R⊥) [ϕ]⊥ ↔ ¬int(ϕ)

3. (R∧) [ϕ](ψ ∧ θ) ↔ ([ϕ]ψ ∧ [ϕ]θ)

4. (Rint) [ϕ]int(ψ) ↔ (int(ϕ) → [ϕ]ψ)

5. (R[int ]) [int(ϕ)]ψ ↔ [ϕ]ψ

6. (R[p]) [ϕ][p]ψ ↔ [ϕ ∧ p]ψ

7. (�-elim) �θ → [ρ]θ (ρ ∈ L arbitrary formula)

8. (�-intro) From � χ → [p]θ, infer � χ → �θ (p �∈ Pχ ∪ Pθ atom).

3 Soundness and Expressivity

In this section, we introduce a more general class of models for our language,
called pseudo-models: these are a special case of the (even more general) Sub-
set Space Semantics introduced in [13]. Pseudo-models include all topo-models,
as well as other subset-space models, but they have the nice property that the
interior operator int can still be interpreted in the standard way. These struc-
tures, though interesting enough in themselves, are for us only an auxiliary
notion, playing an important technical role in our completeness proof. But for
now, we will first prove the soundness of our full system L from Table 1 with
respect to pseudo-models (and thus also over topo-models), and we provide sev-
eral expressivity results concerning the above defined languages with respect to
(both topo-models and) pseudo-models.

Definition 1 (Lattice spaces and Pre-models). A subset space (X,O) is
called a lattice space if ∅,X ∈ O, and O is closed under finite intersections and
finite unions. A pre-model (X,O, V ) is a triple where (X,O) is a lattice space
and V : Prop → P(X) is a valuation map.

Although a lattice space (X,O) is not necessarily a topological space, the
family O constitutes a topological basis over X. Therefore, every pre-model
M = (X,O, V ) has an associated topo-model M = (X, τO, V ), where τO is the
topology generated by O (i.e., the smallest topology on X such that O ⊆ τO).
5 Although Bjorndahl’s formulations of (R!) and (Rint) are unnecessarily compli-

cated: the first is stated as [ϕ][ψ]χ ↔ [int(ϕ) ∧ [ϕ]int(ψ)]χ, while the second as
[ϕ]int(ψ) ↔ (int(ϕ) → int([ϕ]ψ)). It is easy to see that these are equivalent to our
simpler formulations, given the other axioms.
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Satisfaction relation in pre-models. Given a pre-model M = (X,O, V ), the
semantics for L on pre-models can be defined for all pairs of the form (x, Y ),
where Y ⊆ X is an arbitrary subset such that x ∈ Y . It is important to notice
that, for a given evaluation pair (x, Y ) on pre-models, the set Y is not neces-
sarily an element of O. The semantic clauses for the modalities in L are defined
similarly as in Sect. 2, except that � quantifies over the elements of O, and int is
interpreted as the interior operator of the associated topology τO. More precisely,
given a pre-model M = (X,O, V ) and (x, Y ) with x ∈ Y ⊆ X, we set

(x, Y ) |= int(ϕ) iff x ∈ Int([[ϕ]]Y )
(x, Y ) |= [ϕ]ψ iff (x, Y ) |= int(ϕ) implies (x, Int([[ϕ]]Y )) |= ψ
(x, Y ) |= �ϕ iff (∀O ∈ O)(x ∈ O ⊆ Y implies (x,O) |= ϕ)

where Int is the interior operator of τO.

Validity in pre-models. Although we did not require the neighbourhood Y
to be an element of O in the definition of the satisfaction relation above, the
validity on pre-models is defined by restricting to epistemic scenarios (x,U) such
that x ∈ U ∈ O, as in the case for the topo-models. More precisely, we say that
a formula ϕ is valid in a pre-model M, and write M |= ϕ, iff (x,U) |=M ϕ for
all epistemic scenarios (x,U) ∈ ES(M). A formula ϕ is valid, denoted by |= ϕ,
iff M |= ϕ for all M.

Definition 2 (Pseudo-models for L). A pseudo-model M = (X,O, V ) is a
pre-model such that [[int(ϕ)]]U ∈ O, for all ϕ ∈ L and U ∈ O.

It is obvious that the class of pseudo-models includes all topo-models, and
that all formulas that are valid on pseudo-models are also valid on topo-models.6

Theorem 3. The system L is sound with respect to the class of all pseudo-
models (and hence also with respect to the class of all topo-models).

We first prove that L!Kint and LKint are equally expressive on pseudo-models:

Lemma 1. L!Kint and LKint are co-expressive with respect to pseudo-models.
In other words, for every formula ϕ ∈ L!Kint there exists a formula ψ ∈ LKint

such that ϕ ↔ ψ is valid in all pseudo-models.

The proof (in Appendix B.2 of the on-line long version) goes over standard
lines, using the reduction laws to push dynamic modalities inside the formula
and then eliminate them. The proof uses induction on a non-standard notion of
complexity of formulas <, given by:

Lemma 2. There exists a well-founded strict partial order < on formulas of L
such that

6 Indeed, this is because the satisfaction relation for epistemic scenarios in any pseudo-
model that happens to be a topo-model agrees with the topo-model satisfaction
relation.
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1. ϕ ∈ Sub(ψ) implies ϕ < ψ,
2. (int(ϕ) → p) < ([ϕ]p),
3. (int(ϕ) → ¬[ϕ]ψ) < ([ϕ]¬ψ),
4. ([ϕ]ψ ∧ [ϕ]χ) < ([ϕ](ψ ∧ χ)),
5. (int(ϕ) → int([ϕ]ψ)) < ([ϕ]ψ),
6. (int(ϕ) → K[ϕ]ψ) < ([ϕ]Kψ),
7. [〈ϕ〉ψ]χ < ([ϕ][ψ]χ).
8. ϕ ∈ L implies int(p) < �ϕ,
9. [p]ϕ < �ϕ,

Next, we prove that L and LKint are equally expressive with respect to the
pseudo-models. This result will also be useful in the completeness proof of L
for topo-models. Toward proving the co-expressivity of L and LKint , we follow
a similar strategy as in [2,15] and use normal forms in LKint as defined in [15,
Definition 8].

Definition 3 (Normal form for the language LKint). We say a formula
ψ ∈ LKint is in normal form if it is a disjunction of conjunctions of the form

δ := α ∧ Kβ ∧ K̂γ1 ∧ · · · ∧ K̂γn

where α, β, γi ∈ Lint for all 1 ≤ i ≤ n.

Proposition 4. For any ϕ,ϕi ∈ Lint , the following is valid in all pseudo-
models:

♦(ϕ ∧ Kϕ0 ∧
∧

1≤i≤n

K̂ϕi) ↔ (ϕ ∧ int(ϕ0) ∧
∧

1≤i≤n

K̂(int(ϕ0) ∧ ϕi)) (NFn)

We now have sufficient machinery to show that L and LKint are equally
expressive with respect to pseudo-models.

Theorem 4. L and LKint are co-expressive with respect to pseudo-models.

The proof (in Appendix B.4 of the on-line version) uses the above proposition,
as well as the co-expressivity of L!Kint and LKint , in a similar way to the analogue
proofs concerning the arbitrary public announcement logic in [2,15].

Theorem 4 will be used in the completeness proof of L for topo-models. Con-
cerning expressivity of L, we also obtain the following result with respect to
topo-models.

Theorem 5. L and LKint are co-expressive with respect to topo-models.

Theorem 6. LK� and LKint are also co-expressive with respect to topo-models.

Corollary 1. L, L!Kint and LKint , as well as the language of topologic LK�
are all co-expressive with respect to topo-models.

Proof. The proof follows easily from Theorems 5 and 6, since LKint ⊆ L!Kint ⊆ L
and LK� ⊆ L.



340 A. Baltag et al.

Corollary 2. Dynamic Topo-Logic L is decidable and has the Finite Model
Property (and thus all its fragments, including in particular topologic, have these
properties).

Proof. This follows from Corollary 1, together with the fact that LKint is eas-
ily shown to have these properties, by a standard filtration argument. (This is
already known, see e.g., [10,14]).

Moreover, not only that LAPAL and L are co-expressive for topo-models,
but also the effort modality � and the topological APAL modality � are in fact
equivalent, in the following sense.

Theorem 7. Let t : LAPAL → L be the map that replaces each instance of
� with �. Then for every ϕ ∈ LAPAL, we have that ϕ ↔ t(ϕ) is valid in all
topo-models.

4 Completeness

In this section we prove the completeness of the proof systems L with respect
to (both pseudo- and) topo-models. The plan of our proof is as follows. We first
prove completeness of L with respect to a canonical pseudo-model, consisting of
maximally consistent witnessed theories. Roughly speaking, a theory is witnessed
if every ♦ϕ (occurring in every “existential context”) in the theory is “witnessed”
by some atomic formula p, i.e. 〈p〉ϕ occurs (in the same existential context) in
the theory. Next, we use the co-expressivity of L and LKint , as well as the fact
that LKint cannot distinguish between a pseudo-model and its associated topo-
model, to show that L is complete with respect to the canonical topo-model
(associated to the canonical pseudo-model).

The appropriate notion of “existential contexts” is represented by possibility
forms, in the following sense:

Definition 4 (“Pseudo-modalities”: necessity and possibility forms).
For any finite string s ∈ ({ϕ → | ϕ ∈ L} ∪ {K} ∪ {ψ | ψ ∈ L})∗ = NF ,
we define pseudo-modalities [s] and 〈s〉, that generalize our dynamic modalities
[ψ] and 〈ψ〉. These pseudo-modalities are functions mapping any formula ϕ ∈ L
to another formula [s]ϕ ∈ L (necessity form), respectively 〈s〉ϕ ∈ L (possibility
form). The definition is by recursion, putting for necessity forms: [λ]ϕ := ϕ,
[ϕ →, s]ϕ := ϕ → [s]ϕ, [K, s]ϕ := K[s]ϕ, [ψ, s]ϕ := [ψ][s]ϕ, where λ is the
empty string. For possibility forms, we put 〈s〉ϕ := ¬[s]¬ϕ.

Lemma 3. For every necessity form s ∈ NF , there exist formulas θ, ψ ∈ L such
that for all ϕ ∈ L, we have

� [s]ϕ iff � ψ → [θ]ϕ.

Proof. The proof follows similarly as in [2, Lemma 4.8] and [3, Lemma 2.7].
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Lemma 4. The following rule is admissible in L:

if � [s][p]ϕ then � [s]�ϕ, where p ∈ Ps ∪ Pϕ.

Proof. Suppose � [s][p]ϕ. Then, by Lemma 3, there exist θ, ψ ∈ L such that
� ψ → [θ][p]ϕ. By the auxiliary reduction law (R[p]) in Proposition 3, we get
� ψ → [θ ∧ p]ϕ. By the construction of the formulas ψ and θ, we know that
Pψ ∪ Pθ ⊆ Ps, and so p ∈ Pψ ∪ Pθ ∪ Pϕ. Therefore, by ([!]�-intro)), we have
� ψ → [θ]�ϕ. Applying again Lemma3, we obtain � [s]�ϕ.

Definition 5. For every countable set of propositional variables P , let LP be
the language of L based only on the propositional variables in P . Similarly, let
LP

Kint ,LP
!Kint and NFP denote the corresponding languages restricted by P . A P -

theory is a consistent set of formulas in LP . Here, “consistent” means consistent
with respect to the axiomatization L formulated for LP . A maximal P -theory is
a P -theory Γ that is maximal with respect to ⊆ among all P -theories; in other
words, Γ cannot be extended to another P -theory. A P -witnessed theory is a
P -theory Γ such that, for every s ∈ NFP and ϕ ∈ LP , if 〈s〉♦ϕ is consistent
with Γ then there is p ∈ P such that 〈s〉〈p〉ϕ is consistent with Γ . A maximal
P - witnessed theory Γ is a P -witnessed theory that is not a proper subset of any
P -witnessed theory.

Lemma 5 (Lindenbaum’s Lemma). Every P -witnessed theory Γ can be
extended to a maximal P -witnessed theory TΓ .

Lemma 6 (Extension Lemma). Let P be a set of propositional variables and
P ′ be a countable set of fresh propositional variables, i.e., P ∩ P ′ = ∅. Let
∼
P = P ∪ P ′. Then, every P -theory Γ can be extended to a

∼
P -witnessed theory

∼
Γ ⊇ Γ , and hence to a maximal

∼
P -witnessed theory TΓ ⊇ Γ .

We are now ready to build the canonical pseudo-model. For a fixed countable
set P , we define an equivalence relation on maximal P -witnessed theories T
and S:

T ∼ S iff (∀ϕ ∈ LP )(Kϕ ∈ T ⇒ ϕ ∈ S).

Definition 6 (Canonical Pseudo-Model for T0). Let T0 be a maximal
P -witnessed theory. The canonical pseudo-model for T0 is a tuple Mc =
(Xc,Oc, V c) such that

– Xc = {T ⊆ LP | T is a maximal P -witnessed theory such that T ∼ T0},
– Oc = { ̂int(ϕ) | ϕ ∈ LP }, where θ̂ = {T ∈ Xc | θ ∈ T} for any θ ∈ LP ,
– V c(p) = {T ∈ Xc | p ∈ T}.
We let τ c denote the topology generated by Oc. The associated topo-model Mc

τ =
(Xc, τ c, V c) is called the canonical topo-model for T0.

Clearly Mc = (Xc,Oc, V c) is a pre-model, but in fact we prove more,
namely:
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Lemma 7. Mc = (Xc,Oc, V c) is a pseudo-model.

Proof. We need to show that (a) Oc is closed under finite intersections and
finite unions, and (b) for all ϕ,α ∈ LP we have [[int(ϕ)]] ̂int(α) ∈ Oc. The last
item (b) follows from the Truth Lemma (see Appendix C.3 of the on-line version
for the proof). We here sketch the proof for the first item: (a.1) closure under
finite intersection follows from the normality of int , namely from the fact that
� int(ϕ) ∧ int(ψ) ↔ int(ϕ ∧ ψ). (a.2) closure under finite union follows from
the fact that � (int(ϕ) ∨ int(ψ)) ↔ int(int(ϕ) ∨ int(ψ)), and that int(int(ϕ) ∨
int(ψ)) ∈ LP .

Lemma 8. Let T ∈ Xc, ϕ,α ∈ LP such that int(α) ∈ T and K[α]ϕ ∈ T . Then,
there is S ∈ Xc with int(α) ∈ S and [α]ϕ ∈ S.

Lemma 9 (Truth Lemma). Let Mc = (Xc,Oc, V c) be the canonical pseudo-
model for a maximal P -witnessed theory T0 and ϕ ∈ LP . Then, for all α ∈ LP

we have

[[ϕ]]
̂int(α) = ̂〈α〉ϕ.

Proof. The proof is by induction on the well-founded partial order < on formulas
introduced in Lemma 2. We assume the following Induction Hypothesis (IH): For
ψ < ϕ, we have [[ψ]] ̂int(α) = ̂〈α〉ψ for all α ∈ LP .

Base case ϕ = p:

[[p]]
̂int(α) = ̂int(α) ∩ [[p]]X

c

(since p is bi-persistent)

= ̂int(α) ∩ V c(p) (by the semantics)

= ̂int(α) ∩ p̂ (by the definition ofV c)

= int(α) ∧ p
∧

= int(α) ∧ (int(α) → p)
∧

(by propositional tautologies)

= int(α) ∧ [α]p
∧

(by(Rp))

= 〈α〉p
∧

(Proposition 3-(〈!〉))
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Case ϕ := ¬ψ:

[[¬ψ]]
̂int(α) = ̂int(α) \ [[ψ]]

̂int(α) (by the semantics of ¬)

= ̂int(α) \ ̂〈α〉ψ (by IH)

= ̂int(α) ∩ (Xc \ ̂〈α〉ψ)

= ̂int(α) ∩ ¬〈α〉ψ
∧

(since Xc \ ̂〈α〉ψ = ¬〈α〉ψ)
∧

= int(α) ∧ ¬〈α〉ψ
∧

= int(α) ∧ [α]¬ψ
∧

= 〈α〉¬ψ
∧

(Proposition 3-(〈!〉))
Case ϕ = ψ ∧ χ:

[[ψ ∧ χ]]
̂int(α) = [[ψ]]

̂int(α) ∩ [[χ]]
̂int(α) (by the semantics of ∧)

= 〈α〉ψ ∧ 〈α〉χ
∧

(by IH)

= 〈α〉(ψ ∧ χ)
∧

(since �L (〈α〉ψ ∧ 〈α〉χ) ↔ 〈α〉(ψ ∧ χ))

Case ϕ = Kψ:

(⇒) Suppose T ∈ [[Kψ]] ̂int(α). This implies, by the semantic clause of K, that
T ∈ ̂int(α) and [[ψ]] ̂int(α) = ̂int(α). We want to show that T ∈ 〈α〉Kψ

∧

. By
Proposition 3-(〈!〉) and the reduction axiom (RK), we obtain � 〈α〉Kψ ↔
int(α) ∧ K[α]ψ. We therefore only need to show that T ∈ ̂int(α) and
T ∈ K[α]ψ
∧

. We have the former by the assumption. Suppose toward con-
tradiction that T ∈ K[α]ψ

∧

, i.e., K[α]ψ ∈ T . Then, by Lemma 8, there
exists S ∈ Xc such that int(α) ∈ S and [α]ψ ∈ S. Since � 〈α〉ψ → [α]ψ,
we obtain 〈α〉ψ ∈ S. Therefore, by IH, we have S ∈ [[ψ]] ̂int(α). Thus, since
S ∈ ̂int(α), we then conclude [[ψ]] ̂int(α) = ̂int(α). By the semantics of K,
this means that [[Kψ]] ̂int(α) = ∅, contradiction our first assumption. Hence,
T ∈ int(α) ∧ K[α]ψ
∧

= 〈α〉Kψ
∧

.
(⇐) Suppose T ∈ 〈α〉Kψ

∧

. Then, by the equality 〈α〉Kψ ↔ int(α) ∧ K[α]ψ, we
have T ∈ ̂int(α) and T ∈ K[α]ψ

∧

. Let S ∈ ̂int(α). Since S ∼ T and T ∈
K[α]ψ
∧

, we also have [α]ψ ∈ S. Therefore, by Proposition 3-(〈!〉), we obtain
〈α〉ψ ∈ S. This implies, by IH, that S ∈ [[ψ]] ̂int(α). Since this holds for all
S ∈ ̂int(α), we have [[ψ]] ̂int(α) = ̂int(α). Hence, [[Kψ]] ̂int(α) = ̂int(α) � T .

Case ϕ = int(ψ):

(⇒) Suppose T ∈ [[int(ψ)]] ̂int(α). Then, by the semantics of int , there exists
U ∈ Oc such that T ∈ U ⊆ ̂int(α) and U ⊆ [[ψ]] ̂int(α) (since Oc constitutes
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a basis for τ c). Then, by IH, we have U ⊆ ̂〈α〉ψ. By the construction of
Oc, we know that U = ̂int(γ) for some γ ∈ LP . We therefore obtain that
T ∈ ̂int(γ) ⊆ ̂〈α〉ψ. This means that, for all S ∈ ̂int(γ), we have S ∈ ̂〈α〉ψ.
Therefore, {θ ∈ LP | Kθ ∈ T} ∪ {¬(int(γ) → 〈α〉ψ)} is inconsistent. Then
there exists a χ ∈ {θ ∈ LP | Kθ ∈ T} such that � χ → (int(γ) → 〈α〉ψ).
Thus, by the normality of K, we have � Kχ → K(int(γ) → 〈α〉ψ). As
Kχ ∈ T , we obtain K(int(γ) → 〈α〉ψ) ∈ T . Then by axiom (K-int),
we have int(int(γ) → 〈α〉ψ) ∈ T . Since int is an S4 modality, we have
int(γ) → int(〈α〉ψ) ∈ T . Since T ∈ ̂int(γ), we obtain int(〈α〉ψ) ∈ T .
Moreover, we have

�int(〈α〉ψ) ↔ int(int(α) ∧ [α]ψ) (Proposition 3-(〈!〉))
�int(int(α) ∧ [α]ψ) ↔ (int(α) ∧ int([α]ψ))

�(int(α) ∧ int([α]ψ)) ↔ (int(α) ∧ (int(α) → [α]int(ψ))) (Proposition 3-(Rint))

�(int(α) ∧ (int(α) → [α]int(ψ))) ↔ (int(α) ∧ [α]int(ψ)))

�(int(α) ∧ [α]int(ψ))) ↔ 〈α〉int(ψ) (Proposition 3-(〈!〉))

Therefore, as T is maximal, we obtain 〈α〉int(ψ) ∈ T , i.e., T ∈ 〈α〉int(ψ)
∧

.
(⇐) Suppose T ∈ 〈α〉int(ψ)

∧

. This implies, by the above derivation, that T ∈
int(〈α〉ψ)
∧

. By the constraction of Oc, we have int(〈α〉ψ)
∧

∈ Oc. Moreover,
by the T-axiom for int , we have that int(〈α〉ψ)

∧

⊆ 〈α〉ψ
∧

. By IH, we also
have that 〈α〉ψ

∧

= [[ψ]] ̂int(α). Therefore T ∈ int(〈α〉ψ)
∧

⊆ 〈α〉ψ
∧

= [[ψ]] ̂int(α),
i.e., T ∈ [[int(ψ)]] ̂int(α).

Case ϕ = 〈χ〉ψ:

[[〈χ〉ψ]]
̂int(α) = {T ∈ ̂int(α) | (T, Int([[χ]]

̂int(α))) |= ψ}

= {T ∈ ̂int(α) | (T, [[int(χ)]]
̂int(α)) |= ψ} (by the semantics of int)

= {T ∈ ̂int(α) | (T, 〈α〉int(χ)
∧

|= ψ} (by IH, since int(χ) < 〈χ〉ψ)

= [[ψ]]〈α〉int(χ)
∧

(since〈α〉int(χ)
∧

⊆ ̂int(α))

= 〈(〈α〉int(χ))〉ψ
∧

(by IH, sinceψ < 〈χ〉ψ)

= 〈α〉〈χ〉ψ
∧

(� 〈α〉〈χ〉ψ ↔ 〈〈α〉int(χ)〉ψ)

Case ϕ = �ψ:

(⇒) Suppose T ∈ [[�ψ]] ̂int(α), i.e., (T, ̂int(α)) |= �ψ. This means that for all
U ∈ O with T ∈ U ⊆ ̂int(α), we have (T,U) |= ψ. This in particular implies
that (T, ̂int(α)) |= [p]ψ for all p ∈ P . To show, let p ∈ P and suppose
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(T, ̂int(α)) |= int(p), i.e., T ∈ Int([[p]] ̂int(α)) = [[int(p)]] ̂int(α). Since int(p) <

�ψ (see Lemma 2.8), we know by IH that [[int(p)]] ̂int(α) = 〈α〉int(p)
∧

. But,
as shown in the case for the modality int above, � 〈α〉int(p) ↔ int(〈α〉p),
hence, [[int(p)]] ̂int(α) = int(〈α〉p)

∧

, thus, [[int(p)]] ̂int(α) ∈ Oc. Hence, by the
first assumption, we obtain (T, Int([[p]] ̂int(α))) |= ψ, thus, (T, ̂int(α)) |=
[p]ψ. Therefore, T ∈ [[[p]ψ]] ̂int(α) for all p ∈ P . Then, by IH (since [p]ψ <

�ψ, by Lemma 2.9), we have [[[p]ψ]] ̂int(α) = 〈α〉[p]ψ
∧

, thus, 〈α〉[p]ψ ∈ T .
Hence, by Proposition 3-(〈!〉), int(α) ∧ [α][p]ψ ∈ T for all p ∈ P . Since T
is P -witnessed and maximal, we then obtain int(α) ∧ [α]�ψ ∈ T . Then, by
Proposition 3-(〈!〉), we conclude 〈α〉�ψ ∈ T .

(⇐) Suppose T ∈ 〈α〉�ψ
∧

. This means (by Proposition 3-(〈!〉)) that T ∈
int(α) ∧ [α]�ψ
∧

, i.e., that int(α) ∈ T and [α]�ψ ∈ T . Then, by axiom ([!]�-
elim), we have that [α ∧ χ]ψ ∈ T for all χ ∈ LP . We want to show that
T ∈ [[�ψ]] ̂int(α). Let U ∈ Oc such that T ∈ U ⊆ ̂int(α) and show T ∈ [[ψ]]U .
By the construction of Oc, we know that U = ̂int(γ) for some γ ∈ LP . We
therefore have that T ∈ U = ̂int(γ) = ̂int(γ) ∩ ̂int(α) = int(γ) ∧ int(α)

∧

=
int(γ ∧ α)
∧

. Hence, int(α ∧ γ) ∧ [α ∧ γ]ψ ∈ T . Therefore, by Proposition
3-(〈!〉) and the fact that T is maximal, we obtain 〈α ∧ γ〉ψ ∈ T . Thus, by

IH (since ψ < �ψ, by Lemma 2.1), T ∈ [[ψ]]int(α ∧ γ)
∧

, i.e., T ∈ [[ψ]]U .

Lemma 10. Let M = (X,O, V ) be a pseudo-model and Mτ = (X, τO, V ) be
the associated topo-model. Then, for all ϕ ∈ LKint and (x,U) ∈ ES(M), we
have

(x,U) |=M ϕ iff (x,U) |=Mτ
ϕ.

Corollary 3. L is complete for canonical pseudo-models and canonical topo-
models (and so also complete wrt pseudo-models, as well as wrt topo-models).

Proof. Let ϕ be an L-consistent formula, i.e., it is a Pϕ-theory. Then, by
Lemma 6, it can be extended to a maximal Prop-witnessed theory T . Then,
by axiom (R[�]), we have 〈�〉ϕ ∈ T , i.e., T ∈ ̂〈�〉ϕ. Then, by Truth Lemma
(Lemma 9), we obtain that (T,Xc) |=Mc ϕ, where Mc = (Xc,Oc, V c) is
the canonical pseudo-model for T . This proves the first completeness claim.
As for the second: by the co-expressivity of LKint and L on pseudo-models
(Theorem 4), there exists a ψ ∈ LKint such that ϕ ↔ ψ is valid in all
pseudo-models. We therefore have (T,Xc) |=Mc ψ. By Lemma 10, we obtain
(T,Xc) |=Mτ

ψ where Mτ is the canonical topo-model. Using again the seman-
tic equivalence of ϕ and ψ (applied to the model Mτ ), we conclude that
(T,Xc) |=Mτ

ϕ.

5 Conclusions

This paper throws new light on Topologic and Topo-APAL, elucidating their
relations with each other and other modal logics for topology. The addition of
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dynamic modalities is shown to greatly simplify the axiomatization and com-
pleteness proof of Topologic. In on-going work we look at doxastic versions of
this logic, able to capture learning-theoretic notions; while in future work we
plan to investigate multi-agent versions.
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Abstract. We propose an epistemic strategy logic with future and past
time operators, called SLKP, for Strategy Logic with Knowledge of the
Past. With SLKP we can model mutually observed moves/actions in
strategic contexts. In a semantic game, agents may completely or par-
tially observe other agents’ moves, their moves may depend on their
knowledge of other players’ strategies, and their knowledge may depend
on the history of their own or other’s moves. The logic SLKP also allows
us to describe temporal properties involving past, future, and composed
tenses such as future perfect or counterfactual assertions. We illustrate
SLKP by formalising the quantum cryptography protocol BB84, with
the purpose to initiate an integrated epistemic and strategic treatment
of agent interactions in quantum systems.

1 Introduction

Strategy Logic (SL) [1,2] provides formal tools to model the ability of agents
or coalitions of agents to ensure temporal properties in strategic contexts. In
SL, one considers sequences of transitions between possible states of a modelled
system. In these states agents can concurrently perform actions, determining
transitions to other states.

Strategy logic has powerful modelling possibilities. But more may be needed.
In SL, an agent is able to reach a goal if she can perform (play) a conditioned
sequence of actions (a strategy) to realise that goal. But how to build this strat-
egy is not addressed. A classical illustration of this restriction is the problem of
how to open a strong-box: for any password, any agent is able to compose it.
So, the agent has a winning strategy to open the strong-box. But she cannot be
called able to open the strong-box.

This problem can be solved by modelling agent’s knowledge: in order to open
the strong-box, the agent needs to know the password. Knowledge is interpreted
by identifying, for every agent, an equivalence relation over states. These are the
states that the agent cannot distinguish. To realise a goal it is insufficient to have
a strategy, the agent must have a uniform strategy, indicating the same actions
from two states the agent is unable to distinguish. This notion of ability there-
fore combines knowledge and being able to perform actions. Formal approaches
include epistemic multi-agent logics [3,4] and epistemic strategy logics [5,6].
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The latter basically enrich the former by use of explicit quantifications over
strategies and strategy contexts.

One further issue is how agents observe other agents in the concurrent exe-
cution of actions. For example, in a semantic game featuring two agents Alice
and Bob, if Alice performs an action, is it (always/sometimes/at some condi-
tions) the case that, after she does, Bob knows this performance has occurred?
Public and partial observations are the traditional concern of Dynamic Epis-
temic Logic (DEL) [7]. In strategy logics, the state of a system is always highly
dependent on the strategies played so far. Therefore, SLKP enables to express
the knowledge agents may have about the strategies played so far. This affects
their knowledge about the current state and about what they can achieve. The
logic SLKP enriches epistemic strategy logics of [5,6] with past tense temporal
operators. With these operators agents can refer to sequences of past actions,
that thus can become conditions for future strategic choices. It can also be seen
as an enrichment of DEL with temporal assertions and strategic framework.

We apply our logic SLKP to the modelling of the cryptographic protocol
BB84 [8]. This protocol handles information encoded in qubits, held by quan-
tum states of particles. Quantum states cannot be observed without probably
being altered. Therefore, eavesdropping may be identified a posteriori, by detect-
ing alterations on the sent message. In this paper we use polarised photons as
quantum information holders, as in the original description of the protocol [8].
Logical aspects of protocol BB84 have been studied in [9,10]. However, to the
best of our knowledge, its multi-agent and epistemic aspects have not yet been
investigated. This is what we will do in our contribution.

Modal logical approaches to quantum physics and quantum computing
include [11–13]. A recent addition to this corpus is Logic of Quantum Pro-
gram (LQP) [14,15]. In LQP, actions model the possible or necessary effects
of tests for truth of quantum properties. Instead, an action in our framework
models quantum measurement by undeterministically bringing one of the mutu-
ally incompatible possible results of this measurement. In SLKP, actions are
units in a temporal conditional plan: a strategy. Thus we can formalise how an
agent reaches a goal after a sequence of actions, depending on other agents’ con-
current actions. Quantum epistemic logics [16–18] allow to distinguish between
the information contained by a system and the information that an agent may
extract from it. Here again, we add a strategic aspect: agents knowledge specifies
whether they may acquire further information and reach their goals.

In SLKP, the behaviour of propositional connectives is classical, satisfying
distributivity of conjunction over disjunction and the principle of bivalence. In
this article, quantum effects are implicitly encoded in an interpretation model
that represents the possible transitions in the orthomodular lattice for a Hilbert
space. The explicit characterisation of this model class and its axiomatisation is
left for future research. This probably also requires an extension of SLKP.

We close the introduction with an overview of our contribution. In Sect. 2 we
introduce the protocol BB84. In Sect. 3 we present the syntax and the semantics
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of SLKP. In Sect. 4 we model the protocol in SLKP and prove the adequation
of this modelling. Section 5 contains the conclusions.

2 Protocol BB84

Qubits and measurements. The unit of information in protocol BB84 is the
qubit. In our description qubits are holded by polarised photons. A qubit is
represented by a projective ray (or simply a ray, that is an element of a vector
space quotiented by scalar multiplication) in R

2. The information encoded in
a polarised photon is relative to a given basis (a pair of orthogonal rays) of
R

2, where each element of this basis stands for a value in {0,1}. Here we are
using the basis + = {�,↔} and × = {↗↙,↖↘}. To extract information from a
qubit, one can apply a measurement. The measurement is, again, relative to a
choice of a basis. A measurement is non-deterministic. If the basis chosen for the
measurement corresponds to the state of the photon, the result is determined,
but if the choice is different the outcome of the measurement may be any state
in the qubit’s basis that is not orthogonal to the actual state. For example,
a ×-measurement performed on a photon initially in state � of the different
basis + may give result ↖↘ or ↗↙, whereas the same measurement on a photon
in state ↖↘, of the same basis × as the measurement, will correctly get ↖↘.
A wrong measurement (that is, in a basis different from the one containing the
current state of the photon) alters its object. Furthermore, a sequence of two such
alterations may result in a bitflip. This enables the detection of eavesdropping
in protocol BB84.

Protocol BB84. The protocol enables an agent (Alice in the following) to send
an encryption key to another agent (Bob) and detect potential eavesdropping
attempt with high probability. It proceeds as follows:

1. Alice chooses a finite sequence of basis, that is an element in {×,+}∗. She
encodes her message as a series of qubit in this sequence of basis and sends
it towards Bob.

2. A potential eavesdropper (Eve), may intercept it. To do so, for each qubit she
must choose a measurement basis. If she makes the wrong choice she alters
the state of the supporting photon.

3. Bob receives the perhaps altered message. Again, for each qubit he needs to
choose a basis. If this qubit has been altered by Eve, then if he chooses the
original basis he has a 50% chance to observe the photon in the right basis
but with opposite value (as compared to the original encoding).

The communications for the rest of the protocol occur in a public channel:

4. Alice and Bob share the sequence of basis they respectively used. For approx-
imately half the qubits, they used the same basis and the value held by Bob
is supposed (if there has not been any eavesdropping attempt) to be conform
to Alice’s encoding.
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In the meanwhile, Eve may also intercept this communication. In this case
she also learns which part of the information she got from her measurement
was reliable. Then she can read it.

5. Alice and Bob then sacrifice a fraction of the resulting qubits, for which
Alice reveals the value she encoded. If they observe, for any sacrificed qubit,
that the value measured by Bob differs from Alice’s encoding, then someone
has altered this qubit by performing a measurement in the wrong basis. In
this case they know the transmitted message is not reliable. Otherwise the
resulting part of the message constitute their encryption key.

Note that the possibility of a non-detected eavesdropping is not null, depend-
ing on the length of the message. A reliable execution of the protocol will use a
message sufficiently long so as to keep it below an accepted risk.

We will now introduce SLKP and model the protocol as a run in an inter-
pretation model for SLKP. We will then describe in SLKP the exchanges of
informations in the protocol, eavesdropping attempts, and their detection a pos-
teriori by Alice and Bob, and verify them in the model.

3 SLKP

First, let us present SLKP syntax. It distinguishes between state and path formu-
las. In addition to boolean operators, state formulas bring strategic material: for
each considered agent a, an existential quantifier ∃ax , over the set of strategies
that are available for a and a binder ↓x, stating that the (previously quantified
and instantiated) strategy x is played in the current semantic game, and an
unbinder ↑x, by which a strategy is deleted from the current context. This last
operator is not used in the present modelling of protocol BB84. Our logic enables
strategy refinements for agents: in a given context, an agent may be committed
to different strategies at the same time. Then she plays together the actions
indicated by these different strategies. In case she cannot (if she is committed to
contradictory strategies), the execution stops. For more details about strategy
refinement see [19,20].

Path formulas describe the future, with classical LTL operators X (next) and
U (until), or the past, with symmetrical operators P (previous) and S (since).

Definition 1 (Pseudo-formulas). Let Ag be a finite set of agents, let At be
an enumerable set of propositions, and let X be a set of (strategy) variables.
Then the set of SLKP pseudo-formulas is defined by the following grammar:

– State formulas: ψ ::= p | ¬ψ | ψ ∧ ψ | ∃ax ψ |↓x ϕ |↑x ϕ | Kaψ
– Path formulas: ϕ ::= ζ | ξ

• Future: ζ ::= ψ | ¬ζ | ζ ∧ ζ | Xζ | ζ U ζ
• Past: ξ ::= ψ | ¬ξ | ξ ∧ ξ | Pξ | ξ S ξ

where a ∈ Ag , p ∈ At and x ∈ X.

The universal quantifier ∀ax and booleans ∨ and → are introduced in the
usual way. The double arrow is written ⇔ (to distinguish it from state ↔ for
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photons). For O ∈ {X,S} and k ∈ N, we write Ok for a sequence of k succes-
sive occurrences of O. As strategy variable names are taken into account in the
semantics of formulas, some care must be taken when a quantifier is encountered.
Thus, well-formed formulas are pseudo-formulas such that every quantifier intro-
duces a fresh strategy variable with regard to the scope in which it appears.
Formulas are interpreted, by help of strategy contexts, in Concurrent Epistemic
Transition Systems (CETSs). We first define the latter:

Definition 2 (Concurrent Epistemic Transition Systems). A CETS is a
tuple G = 〈St ,At , v ,Ag , {Ra}a∈Ag ,Act, c0〉 where:

– St is an enumerable non-empty set of configurations1.
– At is a finite non-empty set of atomic propositions.
– v : St → P(At) is a valuation function which maps each configuration c to the

set of propositions true at c.
– Ag is a finite non-empty set of agents.
– For each a ∈ Ag, Ra is an equivalence accessibility relation. It induces a

partition [St ]a of St. For any configuration c, we write [c]a its equivalence
class in [St ]a.

– For each a ∈ Ag ,Acta is an enumerable set of actions in St × St. Then,
Act =

⋃
a∈Ag Acta. An action aca ∈ Acta is such that there are C1 and C2 in

P([St ]a) such that dom(aca) = ∪C1 and im(aca) = ∪C2 (where dom(aca)
and im(aca) respectively denote the left and right projection of acA).

– c0 ∈ St is the initial configuration.

A strategic context for a CETS is a pair of an assignment for strategy vari-
ables and a commitment of agents to strategies:

Definition 3 (Strategy, Assignment, Commitment, Context)

– A strategy σa for an agent a is a map with domain of definition dom(σa) =⋃
ac∈Acta

dom(ac). Given an equivalence class [s]a ⊆ dom(σa), it yields an
action aca for a such that [s]a ⊆ dom(aca).

– A strategy is the couple σ = 〈π1(σ), π2(σ)〉 of an agent π1(σ) = a and a
strategy π2(σ) for a.

– An assignment α is a map which, given a strategy variable x in its domain of
definition, yields a strategy α(x).

– A commitment γ is a set of variables γ ⊆ X, gathering bindings of strategies
to their relative agents.

– A context κ is a “well-formed” pair 〈α, γ〉 of an assignment α and a commit-
ment γ, that is a pair such that each strategy variable in the commitment is
instantiated: γ ⊆ dom(α).

1 Configurations are commonly referred to as states. In this paper we use the word
configuration instead, to avoid ambiguities since state is also used in its physical
sense, to designate the state of a photon in {�,↔,↖↘,↗↙}.
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During the semantic evaluation of a formula, a context κ = 〈α, γ〉 must
be transformed as we encounter a strategy quantifier ∃ax, a binding ↓x or an
unbinding ↑x operator. We write α[x �→ σ] the assignment of domain dom(α) ∪
{x} such that α[x �→ σ](x) = σ and for all y ∈ dom(α)\{x}, α[x �→ σ](y) = α(y).
This notation is extended to contexts: κ[x �→ σ] = 〈α[x �→ σ], γ〉. We also write
κ ∪ {x} (respectively κ \ {x}) for the context 〈α, γ ∪ {x}〉 (respectively 〈α, γ \
{x}〉). Furthermore, if γ = dom(α) = {x0, x1, . . . , xi}, then we commonly write
〈α(x0), α(x1), . . . , α(xi)〉 for the context 〈α, γ〉.

A context κ induces possible incomes and outcomes from a configuration
c. We call in-outcomes of κ and c the set of executions that can be if, in c,
agents play (and played) according to the strategies stored in κ. To define the
in-outcome function, we need to introduce executions and the set of possible
immediate successors of a configuration, given a context.

Definition 4 (Execution, Successor, In-outcome). Let G be a CETS and
let κ = 〈α, γ〉 be a context for G.

– An execution is a non-empty finite or infinite ]|λ|−, |λ|+[-indexed sequence of
configurations λi for i ∈]|λ|−, |λ|+[. It is such that |λ|− ∈ Z

− ∪ {−∞} and
|λ|+ ∈ Z

+ ∪ {∞}. Given i ∈]|λ|−, |λ|+[, we write λ�−i for the subsequence of
λ ending at index i, and λ�−i for its subsequence starting at index i.

– The successor function succκ : St → P(St) induced by κ characterises, for any
configuration c, the set of transitions that are possible if each agent respects
the different strategies it is bound to:

succκ(c) = {c′ ∈ St | there is x ∈ γ ∩ dom(α) such that

α(x) = 〈a, σa〉, [c]a ∈ dom(σa) and (c, c′) ∈ σa([c]a)}

– Let c be a configuration in G. The in-outcomes of κ and c in G is the set
I/0(κ, c) of Sλ labelled executions λ in G such that λ0 = c and, for any i ∈ Z,
iff {i, i + 1} ∈ Sλ, then λi+1 ∈ succκ(λi).

We conclude this section by defining the truth conditions for SLKP formulas:

Definition 5 (Satisfaction). Let G be a CEGS, with the notations of
Definition 2. Let κ be a context, s be a state in St and λ be an execution. Then:

– State formulas
• G, κ, c |= p iff p ∈ v(s), with p ∈ At
• G, κ, c |= ¬ψ iff G, κ, c �|= ψ
• G, κ, c |= ψ1 ∧ ψ2 iff G, κ, c |= ψ1 and G, κ, c |= ψ2

• G, κ, c |= ∃ax ψ iff there is a strategy σ for a such that G, κ[x �→ σ], c |= ψ
• G, κ, c |=↓x ϕ iff for any λ ∈ I/0(κ ∪ {x}, c),G, κ ∪ {x}, λ |= ϕ
• G, κ, c |=↑x ϕ iff for any λ ∈ I/0(κ \ {x}, c),G, κ \ {x}, λ |= ϕ
• G, κ, c |= Kaψ iff for any c′ ∈ [c]a,G, 〈α, ∅〉, c′ |= ψ
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– Path formulas
• G, κ, λ |= ψ iff G, κ, λ0 |= ψ, if ψ is a state formula
• G, κ, λ |= ¬ϕ iff G, κ, λ �|= ϕ
• G, κ, λ |= ϕ1 ∧ ϕ2 iff G, κ, λ |= ϕ1 and G, κ, λ |= ϕ2

• G, κ, λ |= Xζ iff |λ|+ > 1 and G, κ, λ�1 |= ζ
• G, κ, λ |= ζ1 U ζ2 iff there is a number i ∈ N such that |λ|+ > i, such that

G, κ, λ�i |= ζ2 and such that for any 0 � j � i, G, κ, λ�j |= ζ1.
• G, κ, λ |= Pξ iff |λ|− > 1 and G, κ, λ�−1 |= ξ
• G, κ, λ |= ξ1Sξ2 iff there is a number i ∈ N such that |λ|− > i, such that

G, κ, λ�−i |= ξ2 and such that for any 0 � j � i, G, κ, λ�−j |= ξ1.

Given the empty context κ∅ and a sentence ψ, we write G, s |= ψ iff G, κ∅, s |= ψ,
and G |= ψ iff G, s0 |= ψ.

Note that the evaluation of an operator Ka deletes the commitment stored
in the current context. If needed, the knowledge an agent has about the context
is explicitly stated. For example, let ϕ be a path formula, then formula Ka ↓x ϕ
states that a knows that, if x is played by its relative agent, then ϕ is ensured:
it is true in state c and context κ if and only if, for any c′ ∈ [c]a, for any
λ ∈ I/0(〈κ ∪ {x}〉, c′), ϕ is true in λ.

4 Modelling and Verifying BB84 into SLKP Framework

In Sect. 4.1, we model the BB84 transmission of qubits into CETSs framework.
In Sect. 4.2, eavesdropping attempts and detections are characterised by SLKP
formulas. They are then verified in Sect. 4.3.

4.1 Modelling the Transmission

Figure 1 depicts a partial execution of protocol BB84. Configurations are given
a name ci. In the logical language we represent a state of a photon by a similarly
named proposition describing that the photon is in that state, e.g., ↔ means
“the photon is in state ↔”. The resulting valuation is given in the figure. We
also introduce macros for identifying basis and encoding values:

0 := ↔ ∨ ↗↙ 1 := � ∨ ↖↘ C := ↔ ∨ � D := ↗↙ ∨ ↖↘
Transitions are labelled with the actions firing them, each with the mention of its
related agent as index. Note that this model happens to be turn-based. This is
not a requirement for SLKP but results from modelling choices that were made
for sake of simplicity. Except for Bob in the righmost column (configurations
whose labels starts with a 3 are called c3·-configurations ), the indistiguishability
relations are obtained by the transitive closure of the relation given by dashed
(for Eve) and dotted (for Bob) edges. For example, Bob distinguishes between
two c3·-configurations if and only if the photon is in the same state in them.
For sake of readability, we only indicated the case for state ↔. Since Alice’s
knowledge is not at stake in our modelling, we did not represent it.
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Fig. 1. A CETS for protocol BB84: model GB

Note also that each agent plays once only in a path leading from c0 to a c3·-
configuration, and she is never able to distinguish between two configurations
where it is her turn. Therefore, for any agent a, a strategy reduces to a single
choice of an action ac she plays when it is her turn. We designate it by σac.
In our modelling, after each sending of a qubit by Alice to Bob, we consider
the possibility of a call from Alice to Bob and exchanges of information about
this qubit sending. Therefore we only focus on sequences from c0 to c3·-confi-
gurations. From each c3·-configuration, the execution goes back to state c0 to
enter a new cycle. For sake of readability of the model, we did not represent the
transitions from c3·-configurations to c0. Now, let us explain the transitions of
the model, referring to the steps of the protocol as described in Sect. 2.
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Encoding (step 1). First, Alice plays simultaneously two actions: she chooses an
encoding basis (by playing +A or ×A) and a value to send (action 0A or 1A).
Neither Bob nor Eve is able to distinguish between realisations of any in the
four possible resulting states.

Potential eavesdropping (step 2). Then the message comes to Eve’ hands.

– She may try to get some information from it, by help of a measurement oper-
ation in {+E ,×E}. Doing so she may:

• choose the wrong measurement basis (the one that Alice did not use for
encoding) and alter the photon’s state, with two possible results,

• choose the right basis and observe the photon as it was encoded by Alice.
In the latter case the execution goes to one of configurations {ci}i∈[20,...,23],
where Eve knows the current state of the photon. But she does not know this
state was the same in the previous configuration. To know that she lacks the
information among which Alice made use of the same basis as her.

– She may also not attempt to read the message. We represent this possibility
by a third action wait (W). In this case she remains unaware of the current
state of the photon and the execution goes to a configuration in {ci}i∈[24,...,27].

After Eve’s move, Bob does not know either if she made a measurement or
played action W, nor the current state of the photon.

Reception (step 3). Now, Bob tries to read the message, by performing again
a measurement operation randomly chosen in {+B ,×B}. Doing so, he observes
the photon in a given state, but he cannot distinguish between configurations
resulting from different scenarios ending with the photon in this state.

Communications from Alice to Bob (steps 4 and 5). Suppose, for example, that
Alice originally sent a � (configuration c10) and Bob gets a ↔ (configuration
c312). Then:

1. the basis used by Alice and Bob are the same.
2. the value obtained by Bob is opposite to the one sent by Alice.

At this stage, Bob does not have these informations. Getting the former at
step 4 and the latter at step 5, he will be able to detect an eavesdropping
attempt. Note that this identified gap between the state of the photon when
sent and its received state could also be due to some noise in the transmission.
Then, in practice, the identification of an eavesdropping attempt results from the
observation of an unexpected rate of altered photons. We let this consideration
for future works and, in the current modelling, we treat any noticed altered
transmission of a photon as a potential eavesdropping attempt. Next, we build
formulas for characterising eavesdropping attempts, exchanges of informations
from Alice to Bob and eavesdropping attempt detections.
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Fig. 2. Step 2: Eve plays ×E.

4.2 Formalising Eavesdroppings Attempts and Detection

Eavesdropping attempt. At her turn in the semantic game, Eve does not distin-
guish between configurations in {ci}i∈[10,...,13]. Nevertheless, she knows that by
playing ×E, she enforces the ongoing execution to be prefixed by either c0·c10·c21,
c0 · c10 · c23, c0 · c11 · c21, c0 · c12 · c21, c0 · c12 · c23 or c0 · c13 · c23 (see Fig. 2a). Note
that only two of them (c0 · c11 · ·c21 and c0 · c13 · ·c23, represented in Fig. 2b) are
compatible with Alice playing ×A. Furthermore, Eve can distinguish between
these two since they differ by the ending photon state. Therefore, if Eve plays
×E, then if Alice happens to have played ×A and in case Eve gets this informa-
tion, she will be able to infer the state of the photon as encoded by Alice. More
generally, an eavesdropping attempt for Eve is a strategy y such that there is
a choice of basis x such that if Alice plays x and Eve plays y, then after two
steps, these two informations (that Alice plays x and Eve plays y) result in Eve
knowing the value originally encoded in the photon. Let us first identify a choice
of a basis by Alice, that is a strategy enforcing the photon either to be a ray in
basis + or to be a ray in ×:

B(x) :=
(( ↓x X(C)

) ∨ ( ↓x X(D)
))

Now we can define predicate Att, with one free variable. It is true of a strategy
y for Eve if and only if y is an eavesdropping attempt:

Definition 6. Let y stand for a strategy for Eve. Then:

Att(y) := ∃Ax

[

B(x) ∧
(

↓x↓y X
∧

V∈{0,1}

(
V → (

X KE (↓x↓y (PV ))
))

)]
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Fig. 3. Step 2: Bob observes ↔.

Eavesdropping detection. An eavesdropping detection is relative to a pair of
strategies (x, x′) Alice plays together. Suppose, after step 3 of the protocol, Bob
observes the photon in state ↔. Then he can interpret it as the conclusion of
several possible scenarios, consisting in the paths made up of transitions rep-
resented in Fig. 3. Now, if Alice has played actions +A and 0A in the ongoing
semantic game and if, in addition Bob gets this information, then the only sce-
narios that are still compatible with his knowledge are those represented with
double arrows in Fig. 3 (s0 · c10 · c21 · c312 and s0 · c10 · c23 · c332). In both Eve
has played action ×E: knowing the strategies x and x′ played by Alice informed
Bob that Eve had played an attempt to eavesdrop the message:

Definition 7. Let x, x′ stand for strategies for Alice. Then:

D(x, x′) := KB

(
∀Ey

( ↓x↓x′↓y P3(Att(y))
))

More general, we can formalise that whatever Eve does, if it is an eavedrop-
ping attempt, then there are strategies for Alice such that the overall outcome
may lead to a detection of this attempt. This is predicate ED:

Definition 8. ED := ∀Ey
(
Att(y) ⇔ ∃Ax ∃Ax′ (¬ ↓x↓x′↓y ¬(X3D(x, x′))

))

4.3 Verification

In this section, we verify our modelling for the characterisation of eavesdropping
strategies from intruders and their detection. First, we prove that predicate
Att(y) adequately catches eavesdropping attempts:
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Proposition 1. Let y be strategy variable and σac be a strategy for Eve. Then:

GB, 〈〈(y → σac)〉, ∅〉, s0 |= Att(y) iff ac = ×E or ac = +E

Proof. – Case ×E: from c0, the outcomes of 〈σ×A
, σ×E

〉 all are prefixed by
either c0·c11·c21 or c0·c13·c23. Furthermore, [c21]E = {c21} and from {c21}, the
single income of 〈σ×A

, σ×E
〉 is suffixed by c11·c21. Then for any c′ in [c21]E , for

any λ ∈ I/0(〈σ×A
, σ×E

〉, c′),GB, 〈σ×A
, σ×E

〉, λ |= P ↖↘. Similarly for any c′ in
[c23]E , with state ↗↙ instead of ↖↘. Since GB, c11 |=↖↘ and GB, c13 |=↗↙, for any
λ ∈ I/0(〈σ×A

, σ×E
〉, s0) we have that GB, 〈σ×A

, σ×E
〉, λ |= X

∧
V∈{0,1}

(
V →

(
XKE (↓x↓y (PV ))

))
. So σ×A

is an existential witness for the truth of Att(y)
at c0 with context 〈〈(y → σ×E

)〉, ∅〉.
– Case +E is similar.
– Case W: let us write [W]E = {ci}i∈[24,...,27]. For any λ ∈ I/0(〈σW〉, s0),

λ2 ∈ [W]E , so [λ2]E = [W]E . Now, check that for any ac ∈ {+A,×A}, there
are c, c′ ∈ [W]E , λ′ ∈ I/0(〈σW, σac〉, c) and λ′′ ∈ I/0(〈σW, σac〉, c′) such that
GB, 〈σW, σac〉, λ′ |= P0 and GB, 〈σW, σac〉, λ′′ |= P1. So,

GB, 〈(y → σW)〉, γ∅〉s0 |=
∀Ax

[

B(x) →
(

↓x↓y X
∨

V ∈{0,1}

(
V ∧ (¬ KE (↓x↓y (PV ))

))
)]

Hence Att(y) is not true at c0 with context 〈〈(y → σW)〉, ∅〉.
Next, we establish that for any strategies x and x′ for Alice, D(x, x′) is true only
in c3·-configurations c such that x and x′ enforce a state contradicting c.

Proposition 2. Let σB and σV be strategies for Alice, and let c be a c3·-
configuration. Then, GB, 〈〈(x → σB), (x′ → σV )〉, γ∅〉, c |= D(x, x′) iff:

– (σB , σV ) is a pair of a choice of a basis and a choice of an encoded value (a
strategy in {σ0A

, σ1A
})

– and there is s ∈ {�,↔,↗↙,↖↘} such that for all λ in I/0(〈σB , σV 〉, s0),
GB, 〈σB , σV 〉, λ1 |= s and GB, λ3 |= s, where s ∈ {�,↔,↗↙,↖↘} is the state
in the same basis as s, with the opposite value.

Proof (sketch)

– From left to right: if the second item is false then either σB does not choose
the same basis as c, or σV chooses the same value as c. In both cases there are
incomes of 〈σB , σV 〉 and c where Eve played W. Now, suppose the first item
is false. Then either σB and σV have empty intersection, and ↓σB

↓σV
↓y Pϕ is

false for any configuration c, any strategy y, and any formula ϕ, or they are
equal and, again, there are incomes of 〈σB , σV 〉 and c where Eve played W.
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– From right to left: Fig. 3 illustrates the case where s is �, σB = σ+A
, σV =

σ1A
, s is ↔ and, to satisfy the second item in Proposition 2, c must be in

{s312, s332}. Then for any income of 〈σB , σV 〉 and c′ ∈ [c]B (double edges in
Fig. 3), Eve played ×E. The other cases are similar.

We can conclude that ED is true at configuration c0: strategies for Eve that
may be detected are the actual eavesdropping attempts.

Proposition 3. GB, s0 |= ED

Proof (sketch)

– As established in Proposition 1, possible attempts for Eve are σ+E
and σ×E

.
Suppose she plays σ×E

. Consider path λ = s0 ·c10 ·c21 ·c312. We have that λ ∈
I/0(〈σ+A

, σ1A
, σ×E

〉). Since GB, 〈(x → σ+A
), (x′ → σ1A

)〉, ∅〉, c312 |= D(x, x′),
σ×E

is detectable by σ+A
and σ1A

. Similarly, σ+E
is detectable by σ×A

and
σ0A

(note that σ1A
can be used instead of σ0A

, and reciprocally).
– Now, suppose Eve plays a strategy y such that Att(y) is not true. Then y =

σW and for all λ ∈ I/0(s0), for any s, s′ ∈ {�,↔,↗↙,↖↘}, if λ1 |= s and
λ3 |= s′, either s and s′ share the same encoded value or they belong to
different basis. Then for any strategies σB and σV for Alice, for any λ ∈
I/0(〈σB , σV , σW〉, s0),GB, 〈σB , σV , σW〉, λ |= ¬X3D(σB , σV ).

5 Conclusion and Future Works

We presented SLKP, an epistemic strategy logic with past time operators. In
SLKP we can express the knowledge agents have about the evolution of a sys-
tem, may it be about the future, about the past or in more structured tense
schemes such as future perfect or counterfactual analysis. We illustrated SLKP
by modelling the cryptography protocol BB84.

Our work attempts to advance on established research traditions. The logic
SLKP is inspired by the strategic reasoning framework [2], by dynamic epistemic
logics [7], and by logics for past time as in [21,22]. Featuring strategy refinements,
thanks to which an agent may compose her behaviour along different strategies,
it can be seen as an epistemic extension of USL [19,20], a non-epistemic extension
of SL. In case an agent is committed to contradictory strategies, our semantics
adopts the classical interpretation of finite executions [23,24]. The use of epis-
temic modalities for the analysis of quantum systems has been entertained in
many prior publications [16–18,25]. With respect to those our novelty is the
usage of a strategic framework and of temporal operators.

We are presently addressing the computational complexity of SLKP. We con-
jecture that the model-checking problem is PSPACE-complete, and that satis-
fiability is undecidable, proved by a reduction to the recurrent tiling problem.
This line should be continued by search for axiomatized fragments of SLKP.

The expressive power of SLKP should also be further investigated. In particu-
lar, since it syntactically enables to discuss the knowledge agents may have about
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the past, SLKP shines new light on the concept of memory. Although SLKP
exclusively uses memoryless strategies, agents are able to determine strategies
depending on their knowledge of the past. We also plan to continue the study
modelling of quantum systems with SLKP or an adequate extension. This would
be, as first steps, by extending the current work on protocol BB84. Such an
enrichment would consider Alice sending a whole sequence of photons in a row
and would take into account the possible noise in such a transmission. Also, the
study could be extended to further quantum cryptography protocols, such as
B92 [26] or extensions of BB84 with six states [27]. A further step would be to
characterise and axiomatise the class of CETSs that are relevant for the mod-
elling of quantum systems. Then, we would like to model entangled systems and
the possible observations and information flows they enable.

Acknowledgement. We thank the reviewers for their helpful comments. We acknowl-
edge financial support from ERC project EPS 313360. Hans van Ditmarsch is also
affiliated to IMSc, Chennai, India.

References

1. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comp. 208(6),
677–693 (2010)

2. Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: Proceed-
ings of FSTTCS, vol. 8, pp. 133–144 (2010)
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Abstract. I propose a new definition of identification in the limit, also
called convergence to the truth, as a new success criterion that is meant
to complement, but not replace, the classic definition due to Putnam
(1963) and Gold (1967). The new definition is designed to explain how
it is possible to have successful learning in a kind of scenario that the
classic account ignores—the kind of scenario in which the entire infinite
data stream to be presented incrementally to the learner is not presup-
posed to completely determine the correct learning target. For example,
suppose that a scientists is interested in whether all ravens are black,
and that she will never observe a counterexample in her entire life. This
still leaves open whether all ravens (in the universe) are black. From a
purely mathematical point of view, the proposed definition of conver-
gence to the truth employs a convergence concept that generalizes net
convergence and sits in between pointwise convergence and uniform con-
vergence. Two results are proved to suggest that the proposed definition
provides a success criterion that is by no means weak: (i) Between the
proposed identification in the limit and the classic one, neither implies
the other. (ii) If a learning method identifies the correct target in the
limit in the proposed sense, any U-shaped learning involved therein has
to be essentially redundant. I conclude that we should have (at least)
two success criteria that correspond to two senses of identification in the
limit: the classic one and the one proposed here. They are complemen-
tary: meeting any one of the two is good; meeting both at the same time,
if possible, is even better.

Keywords: Identification in the limit · Convergence to the truth · Enu-
merative induction · Uniform convergence · Net convergence

1 Introduction

The goal of this paper is to find a new definition of identification in the limit—a
new success criterion that is meant to complement, but not replace, the classic
definition due to Putnam (1963) and Gold (1967). Let me begin with a motiva-
tion. Theoretical computer science has a tradition:

(1) An important part of theoretical computer science is basically the science of
problem solving; in this science, we define a number of success criteria for
problem solving.

c© Springer-Verlag GmbH Germany 2017
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DOI: 10.1007/978-3-662-55665-8 25
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(2) If a difficult problem cannot be solved by meeting a high success criterion,
we try to find out whether it can be solved by meeting a success criterion
that is lower—or at least not as high if success criteria are partially ordered.

(3) If there is an interesting, tough problem that cannot be solved by meeting
any success criterion we have defined, we try to find out whether it is possible
to define a new criterion that is low enough to be met for solving the tough
problem but, simultaneously, still high enough to deserve to be called a
success criterion

The kind of situation described by (3) has happened a number of times in the his-
tory of theoretical computer science. Classic examples in learning theory include
the following: When encountering an interesting problem that cannot be solved
by a decision procedure, i.e. by an exact learning method, Valiant (1984) defined
a new success criterion called probable approximate correctness. In a similar sit-
uation, Putnam (1963) and Gold (1967) defined a new success criterion called
identification in the limit. I suspect that we are now in a similar situation, too.
Let me illustrate with an example.

Consider the following empirical problem. An inquirer is wondering whether
all ravens are black. She is to collect more and more ravens, observe their colors,
and put forward conjectures after each observation. In standard learning theory,
it is typically presupposed that if there are nonblack ravens, then they will be
observed by the inquirer sooner or later. With this presupposition, we have the
easy raven problem, for which there are learning methods that are guaranteed
to identify the truth in the limit, meeting the classic success criterion due to
Putnam and Gold. But what if that presupposition is not made? Then we have
the hard raven problem, in which two globally indistinguishable possibilities
are both on the table: given that the inquirer only observes ravens that are
black in her entire life, it might be that all ravens (in the universe) are black,
and it might be that some ravens are not black. The former possibility is a
happy possible world; the latter, unfortunate. Nature need not be malicious to
make the unfortunate world actual; all it takes is just bad luck, and the bad luck
could be generated, for example, by an unknown deterministic process, or by
an unknown probabilistic process that involves a sequence of random variables
that might or might not be independent and identically distributed. For the hard
raven problem, there is no learning that meets the classic success criterion. Then
what to do?

I tend to think that the hard raven problem is very interesting. (How inter-
esting is it? More on this below.) If so, by tradition (1)–(3), we should try to
look for an alternative to the classic success criterion. Furthermore, the task of
at least trying to do so is not daunting at all. Indeed, Putnam and Gold only
employ the most familiar concept of limit and convergence, namely convergence
of a sequence. But in analysis and topology mathematicians have already worked
out more elaborated concepts of convergence (and put them to good work):

• convergence of a sequence can be generalized to convergence of a so-called
net;
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• convergence of a sequence of functions comes in two flavors: pointwise con-
vergence and uniform convergence.

The classic success criterion basically requires that, in a sense to be explained
in this paper, the learner’s convergence to the correct target be “pointwise”
and “sequence-like”. And, if I am right, it has a very natural variant, which
requires that the learner’s convergence be “semi-uniform” and “generalized-net-
like”. Once this idea is developed in rigorous mathematical terms (Definition 6),
I will be able to show that this new criterion of identification in the limit is
achievable for the hard raven problem (Proposition 2). Two further results are
proved to suggest that this new criterion is still high and demanding enough to
deserve to be called a success criterion: First, the new criterion is neither stronger
nor weaker than the classic criterion (Theorem 1). Second, if the learner can ever
solve the problem in the limit in the new sense, then in principle she can do it
in pretty much the same way without U-shaped learning (Theorem 2)—namely,
without accepting a hypothesis, retracting it, and coming to accept it again. The
conclusion to be drawn is that the new success criterion and the classic one are
complementary: meeting any one of them is good; meeting both at the same
time is even better. In the unfortunate event that only one can be met, let us
meet at least one.

The hard raven problem is interesting for a number of reasons. First, it
is a paradigmatic case in which enumerative induction is employed. Second,
scientists seem to proceed without the presupposition that they are not living
in the unfortunate world, or, even if they make that presupposition, they do it
only tacitly and probably unconsciously. Whether or not scientists can be said to
tacitly make that presupposition, it is interesting to see if they can do without it.

It might be worried that the hard raven problem is not really interesting
because of the following Kantian objection: “In order for us to think that the
success of science is possible, we have to presuppose that the kind of global under-
determination mentioned above does not hold in the world we actually live in.
And, if we presuppose so, we will fall back to the easy raven problem, making the
hard problem irrelevant. Granted, this sounds like wishful thinking. But the point
is that we have no alternative but to presuppose so—if we really want to think
that the success of science is possible.” I used to be sympathetic to this Kantian
line of thought until I recognized that it presupposes a lot: as a claim about the
possibility of success, it tacitly presupposes that there is no more success crite-
rion than those we have already formulated and put on the table. I propose that
we challenge this tacit presupposition, look for a new success criterion, and hold
on to the tradition (1)–(3) in theoretical computer science. This paper shows
how to do that.
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2 Classic Convergence to the Truth

This section presents the Putnam-Gold-style learning model in a very general
setting, and defines the hard raven problem. The presentation might appear
more complicated than necessary—just look at how long the first definition right
below is! But we will gradually see its value: it reveals the moving parts of the
classic definition of identification in the limit and, thereby, suggests possible new
definitions.

Definition 1 (Problem). A (learning) problem is a 5-tuple P =(H, I,≤,W, |·|) that satisfies the following conditions (accompanied by inter-
pretations):

• H is a nonempty set of hypotheses, understood as certain theories, languages,
concepts, or whatever targets to learn or choose from.

• I is a nonempty set of information states, which are possible inputs into a
learning method.

• ≤ is a partial order over I. Understand i ≤ i′ to say that a learner might go
from information state i to i′ and, when she does, she has more or the same
information.

• W is a nonempty set of possible states of the world, or possible worlds for
short. W need not contain all logically possible worlds, but contains exactly
those that are logically compatible with the presupposition of the problem—
that is, W represents the content of the presupposition.

• |·| is an (interpretation) function defined on I ∪ H, mapping all i ∈ I and
all h ∈ H to subsets of W. |i| is understood to contain exactly the possible
worlds in W at which i is true. Similarly, |h| is understood to contain exactly
the possible worlds in W at which h is true.

• For all h, h′ ∈ H and i, i′ ∈ I, the following axioms hold:
• (Nonemptiness) |h| and |i| are nonempty.
• (Disjointness) h �= h′ implies |h|∩|h′| = ∅. (That is, distinct hypotheses

are mutually incompatible, competing with each other.)
• (Monotonicity) i ≤ i′ implies |i| ⊇ |i′|. (That is, there is no loss of

information in the state transition from any i to any i′ ≥ i.)
• (Linearity) Let I(w) denote {i ∈ I : w ∈ |i|}, the set of information

states that are true at possible world w. Then each partially ordered set
(I(w),≤) is linear and not longer than the sequence ω = {0, 1, 2, . . .} of
natural numbers. (This linear order is basically the data stream to be
presented in possible world w.)

All results in this paper are actually proved in a more general setting, which
weakens the axiom of linearity to an axiom called directedness.1 But the above
definition is already general enough to capture all Gold-style language learning
problems and the easy and hard raven problems.

1 (Directedness) Each partially ordered set (I(w),≤) is directed, namely i, j ∈ Iw

implies i, j ≤ k for some k ∈ Iw.
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Definition 2 (Method). A (learning) method for a problem P =(H, I,≤,W, |·|) is a function M : I → H ∪ {?}, which is interpreted as fol-
lows:2

M(i) = h means that M chooses hypothesis h given information/input i;
M(i) = ? means that M suspends judgment given information/input i.

Definition 3 (Classic Identification in the Limit). A method M for a
problem P =

(H, I,≤,W, |·|) is said to classically converge to the truth—or
classically identify the correct target in the limit—just in case:

(1) for each hypothesis h ∈ H,
(2) – for each possible world w ∈ |h|,
(3) —- there exists an information state i ∈ I(w) such that
(4) —— M(i′) = h for all i′ ≥ i in I(w).

If a problem admits of such a learning method, it is said to be classically
solvable—or learnable—in the limit.3

This definition is formulated in a way meant to reveal its moving parts: the
order of (1)–(4), and the respective roles played by the five components in a
learning problem

(H, I,≤,W, |·|). In Sect. 3, I will exchange the order of (2)
and (3) to generate a kind of “semi-uniform” convergence, and then modify here
and there to result in the new success criterion promised above.

Imagine a scientist who wonders whether all ravens are black; there are two
potential answers: yes and no. She is going to observe a raven at a time. 0
represents an event of observing a black raven; 1, a nonblack raven. An informa-
tion state is a binary sequence of finite length. For example, (0, 0, 1) denotes the
information state at which the scientist has observed 2 black ravens followed by
a nonblack raven. Let s = (s1, s2, . . .) be a binary sequence of infinite length. In a
possible world denoted by (yes, s), all ravens are black and the scientist receives
data in the order of s1, s2, . . ., one at a time—so s only contains 0. Similarly,
in a possible world denoted by (no, s), not all ravens are black and the scientist
receives data in the order of s1, s2, . . ., but this time s can be any infinite binary
sequence. For example, let (0, 0, . . . , 0, . . .) denote the infinite sequence of 0s.
Then (no, (0, 0, . . . , 0, . . .)) is the unfortunate world in which not all ravens are

2 For the problems and learning methods defined here to be interesting in computer
science, we need to require that the hypotheses in H and the information states in I
can in principle be encoded by natural numbers. But the results in this paper hold
generally whether or not we add this requirement. Furthermore, this definition can
be generalized by allowing a learning method to output not just hypotheses in H
but also their Boolean combinations.

3 Definitions 1–3 are essentially the order-theoretic counterparts of the topologically
formulated definitions proposed in Baltag et al. (2015) and in Kelly et al. (2016), pro-
vided that we include the generalizations mentioned in preceding footnotes: allowing
(I(w),≤) to be directed, and allowing a learning method to output Boolean combi-
nations of hypotheses.
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black but the scientist will never observe a counterexample in her entire life. Let
WAll denote the set of all possible worlds just defined, or formally:

WAll =
{
(yes, (0, 0, . . . , 0, . . .))

} ∪ {
(no, s) : s ∈ {0, 1}ω

}
.

Example 1 (Easy Raven Problem). The easy raven problem P =
(H, I,≤,W,

|·|) is defined by:

• H = {yes, no}.
• I = the set of all binary sequences of finite length.
• i ≤ i′ iff i is extended by i′, for all sequences i and i′ ∈ I.
• W = WAll � {(no, (0, 0, . . . , 0, . . .))}, which excludes the unfortunate possible

world.
• |i| = the set of possible worlds (h, s) in W such that s extends i.

|yes| = the set of possible worlds (h, s) in W such that h = yes.
|no| = the set of possible worlds (h, s) in W such that h = no.

So this problem presupposes that the scientist does not live in the unfortunate
world, and hence that each infinite binary sequence that might be presented to
the scientist uniquely determines the true hypothesis.

Example 2 (Hard Raven Problem). The hard raven problem is the same as the
easy problem except that:

• W = WAll, which does contain the unfortunate possible world
(no, (0, 0, . . . , 0, . . .)).

Then we have the following result:

Proposition 1. The easy raven problem is classically learnable in the limit, but
the hard one is not.

Proof. The claim about the easy raven problem is well known. The non-
learnability result of the hard raven problem follows from the fact that any
method M is doomed to have this property: M(i) converges to the truth as i
travels in the data stream in possible world (yes, (0, 0, . . . , 0, . . .)) iff it fails to
do so in possible world (no, (0, 0, . . . , 0, . . .)). 
�

So, given this result and the discussion in the introduction, we should look
for a new success criterion that complements the classic one.

3 A New Convergence Concept in Learning Theory

The success criterion to be proposed is based on a new convergence concept.
This section will provide the formal definition with a motivating line of thought,
which explores possible combinations and/or generalizations of the ideas that lie
behind convergence.

The classic definition of identification in the limit can be understood as an
implementation of the following informal template:
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A. (Pointwise Convergence to the Truth)
No matter which hypothesis h ∈ H is true,
– no matter which world w ∈ |h| is actual,
—- there exists a concept SI of “sufficient information” associated
—- with w such that,
—— M outputs the truth h as long as the input i is “sufficiently informative”
—— (i.e. in SI) and true at w.

This template gives rise to the classic definition when so-called “concepts of suf-
ficient information associated with w” are defined to be principal upper subsets
of (I(w),≤). For your reference, a subset S of (I,≤) is upper just in case it
has the upward-closure property: for all i, i′ ∈ I, if i ∈ S and i ≤ i′ ∈ I, then
i′ ∈ S. A principal upper subset of a poset (I,≤) is a set S that takes this form:
S = {i′ ∈ I : i ≤ i′}, for some i ∈ I.

The above template is called “pointwise” because each world—or point—is
associated with a concept of sufficient information, i.e. a criterion for conver-
gence. Once this is seen, it is very natural to seek a “more uniform” kind of
convergence by exchanging the order of the quantifications over w and over SI.
Then we have:

B. (Semi-uniform Convergence to the Truth)
No matter which hypothesis h ∈ H is true,
– there exists a concept SI of “sufficient information” associated
– with h such that,
—- no matter which world w ∈ |h| is actual,
—— M outputs the truth h as long as the input i is “sufficiently informative”
—— (i.e. in SI) and true at w.

Note how the existential quantifier is modified: SI is required to be a concept
of sufficient information that is associated with, not w, but h. What does that
mean? It means that SI has to be a subset of, not I(w), but I(h), which is
defined as the set of information states that might be true given hypothesis h,
namely:

I(h) =
⋃

w∈|h|
I(w) .

Note that, although (I(w),≤) is assumed to be linear, (I(h),≤) could be a mere
poset. Then the above two informal templates A and B can be made “almost
formal” as follows, pending the two blanks to be filled in.

Definition Template 4. The following conditions are two templates for defin-
ing convergence to the truth or identification in the limit:

A. (Pointwise Convergence to the Truth)
For each hypothesis h ∈ H,
– for each possible world w ∈ |h|,
—- there exists a upper subset SI of linear poset (I(w),≤) such that
—— M(i) = h for each information state i ∈ SI (that is true at w).
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B. (Semi-uniform Convergence to the Truth)
For each hypothesis h ∈ H,
– there exists a upper subset SI of poset (I(h),≤) such that,
—- (for each possible world w ∈ |h|,)
—— M(i) = h for each information state i ∈ SI (that is true at w).

The parts enclosed in parentheses are redundant, which can be easily proved
from the definitions of learning problems and I(·). But it is important to keep
them here—to emphasize the parallel to the informal templates. Note that the
term ‘upper’ has been built into the templates, and rightly so. For if a state i is
more informative than some state that has “sufficient information” then i itself
should also be taken as a state that has “sufficient information”.

It remains to fill in the blank in template B—and this is the crux. In template
B, each hypothesis h is required to be associated with a concept SI of sufficient
information, which is a subset of I(h) and serves as a “convergence zone” in
which learning methods are required to output the true hypothesis. This suggests
that we do not want to fill in the blank in template B with ‘principal’. Here is
why: if a convergence zone in a partially ordered set (I(w),≤) is allowed to be
a principal upper subset, then in effect a convergence zone is allowed to be a
narrow cone in a wide ambient poset (I(w),≤). This would make the convergence
criterion very weak, too weak to result in what deserves to be called a success
criterion. So, for template B, we need to fill in the blank in such a way that
requires a convergence zone SI to be reasonably wide.

So I propose that we fill in the blank with ‘cofinal’, which is defined in order
theory as follows:

Definition 5 (Cofinal Subset). A subset S of a poset (I,≤) is cofinal just in
case, for each i ∈ I, there exists i′ ∈ S with i ≤ i′.

A cofinal subset is almost as “wide” as its ambient poset. Furthermore, the con-
cept of cofinal subsets also serves to capture an intuitive idea about sufficient
information: whatever information i we have, in principle it should be always
possible for us to obtain more information and (come to) have sufficient infor-
mation i′. Now, putting things together, we have:

Definition 6 (Semi-uniform Convergence to the Truth). A method M
for a problem P =

(H, I,≤,W, |·|) is said to semi-uniformly converge to the
truth—or semi-uniformly identify the correct target in the limit—just in case it
satisfies the following implementation of template B:

for each hypothesis h ∈ H,
– there exists a cofinal upper subset SI of (I(h),≤) such that,
—- (for each possible world w ∈ H,)
—— M(i) = h for each information state i ∈ SI (that is true at w).

If a problem admits of such a learning method, it is called solvable—or
learnable—in the limit semi-uniformly.
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This proposal is actually based on a new convergence concept that generalizes
standard convergence concepts in analysis and topology. The concept of sequence
convergence, which is familiar in analysis, makes use of principal upper sub-
sets as convergence zones in a linear poset. Now, by generalizing from
‘linear’ to ‘directed’, we obtain net convergence, which is the right convergence
concept to employ in general topology. Now, the concept of net convergence uses
principal upper subsets as convergence zones in a directed poset. That
is provably equivalent to using cofinal upper subsets as convergence zones
in a directed poset (by Proposition 3 in AppendixA). As a further step of
generalization, I propose to drop ‘directed’ and work with any poset. The result
is to use cofinal upper subsets as convergence zones in a poset, which
is exactly the convergence concept that underlies the new, proposed definition
of convergence to the truth. See AppendixA for a more rigorous presentation of
convergence concepts in analysis and topology.

Now return to learning theory. We have:

Proposition 2 (Hard Raven Problem Solved Semi-uniformly). The hard
raven problem is solvable in the limit semi-uniformly.

Proof. Consider this learning method: “Say yes when you have not seen any
nonblack raven; otherwise say no.” This method converges to the truth semi-
uniformly for the following two reasons. First, concerning output yes, this
method has a “convergence zone” SI = I(yes), which is (trivially) a cofinal
upper subset of (I(yes),≤). Second, concerning output no, this method has a
“convergence zone” SI ′ = {i ∈ I : i extends 0n1 for some n ∈ ω}, which is a
cofinal upper subset of (I(no),≤). This is because I(no) = I and any sequence
in I either takes the form of 0n, which can be extended to a sequence 0n1 in
SI ′, or takes the form of 0n1 · · · , which is already in SI ′. 
�

The learning method employed in the above proof fails to identify the truth
in the unfortunate world (no, (0, 0, . . . , 0, . . .)). Indeed, any method that solves
the hard raven problem in the limit semi-uniformly has to fail to do so.4

So it might be worried that semi-uniform convergence to the truth is just a
way of making the hard raven problem solvable by “ignoring” the unfortunate
world, while there are other ways of ignoring worlds. Perhaps the simplest way
of ignoring worlds is to adopt the “presupposition” strategy: to presuppose that
the inquirer is not living in the unfortunate world and, hence, to change the hard
raven problem into the easy raven problem. So, the worry continues, why not
just adopt the presupposition strategy?

My reply has two parts, depending on what presupposition really is. First,
if presupposition is not something that an inquirer can freely make but is given
to the inquirer by the context (such as the context in which the inquirer talks

4 Sketch of Proof. Suppose that M solves the hard raven problem in the limit semi-
uniformly. Then, since I(yes) is the set of all finite sequences of 0s linearly ordered by
extension,M has to identify the truth yes in the limit at world (yes, (0, 0, . . . , 0, . . .)).
So M has to fail to identify the truth no in the limit at world (no, (0, 0, . . . , 0, . . .)).
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to a certain skeptic), then the presupposition strategy does not make sense.
Second, if the inquirer can freely add a presupposition and thereby make the
problem easier, then it is not clear why she has to change the problem by making
a presupposition. She could, instead, entertain a slightly different but closely
related set of competing hypotheses, such as “All ravens observed in my entire
life are black” and its negation. In general, a hard problem can be changed
into multiple easier ones—but then which one to change into? I propose that, if
the inquirer is really interested in addressing the hard raven problem, she should
stick to it rather than changing the problem unless there is no achievable success
criterion. Is there an achievable success criterion? Yes. Semi-uniform convergence
to the truth is achievable for the hard raven problem and, as I shall argue in the
next section, it deserves to be taken as a success criterion.

4 Why It’s a New Success Criterion

This section provides two reasons for thinking that the new convergence criterion
is high enough—demanding enough—to deserve to be called a success criterion.
Those two reasons are rooted in the two main theorems of this paper.

The first theorem says that, between the two criteria of identification in the
limit (the semi-uniform and the classic), neither is strictly more demanding than
the other. The following example will be used to prove this claim.

Example 3 (Even-vs-Odd Raven Problem). Now the scientist wonders whether
the number of nonblack ravens in the world is even or odd, while presupposing
that this number is finite and that data presentations are complete, uniquely
determining the truth (as in the easy raven problem). The even-vs-odd raven
problem is formally defined as follows:

• H = {even, odd}.
• I = the set of all binary sequences of finite length (as usual).
• i ≤ i′ iff i is extended by i′, for all sequences i and i′ ∈ I (as usual).
• W = {s ∈ {0, 1}ω : the occurrences of 1 in s are finite in number}
• |i| = {s ∈ W : s extends i}.

|even| = {s ∈ W : the occurrences of 1 in s are even in number}.
|odd| = {s ∈ W : the occurrences of 1 in s are odd in number}.

Theorem 1 (Independence Result). Semi-uniform learnability in the limit
and its classical counterpart are independent of each other; that is, neither
implies the other. For example, consider the three raven problems defined above:
the hard, the easy, and the even-vs-odd. Their respective learnability in the limit
is summarized by the following table:

Raven Problems: Hard Easy Even-vs-Odd
Classically Learnable in the limit? No Yes Yes
Semi-uniformly Learnable in the limit? Yes Yes No
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Proof. Thanks to Proposition 2, it suffices to prove the part for the even-vs-
odd raven problem. Suppose, for reductio, that some learning method M for
the even-vs-odd raven problem solves it in the limit semi-uniformly. So there
exists a cofinal upper subset SI of (I(even),≤) such that M(i) = even for all
i ∈ SI. Similarly, there exists a cofinal upper subset SI ′ of (I(odd),≤) such
that M(i) = odd for all i ∈ SI ′. But here is the key: I(even) = I(odd) = I.
So, by the order-theoretic result that two cofinal upper subsets SI and SI ′ of
a nonempty poset (I,≤) share at least one common element i∗, we have that
M(i∗) = even = odd, contradiction. The classical learnability of the even-vs-odd
problem is witnessed by this learning method: “Say even when you have seen
an even number of nonblack ravens; otherwise say odd.” 
�

The second theorem concerns a kind of learning process that cognitive sci-
entists and computational learning theorists call U-shaped learning (Carlucci
et al. 2005, 2013). U-shaped learning consists of accepting a hypothesis, then
retracting it, and then accepting it again:

Definition 7 (U-Shaped Learning). Let M be a learning method for a prob-
lem P =

(H, I,≤,W, |·|). An instance of U-shaped learning of M is a sequence
(i1, i2, i3) of three information states in I such that:

1. i1 ≤ i2 ≤ i3,
2. M(i1) �= M(i2) �= M(i3),
3. M(i1) = M(i3) ∈ H.

Following Kelly et al. (2016), I submit that such a learning process is epis-
temically undesirable. So, other things being equal, it had better be avoided or
removed whenever possible. Removal of U-shaped learning is defined as follows:

Definition 8 (Removal of U-Shaped Learning). For any learning methods
M and M∗, say that M∗ can be constructed from M by removing U-shaped
learning just in case:

1. M(i) = ? implies M∗(i) = ?,
2. M(i) = h implies M∗(i) = h or ?,
3. M∗ has no instance of U-shaped learning.

Then we have:

Theorem 2 (Persistence under Removal of U-Shaped Learning). A
method M solves a problem P in the limit semi-uniformly only if a method M∗

can be constructed from M by removing U-shaped learning such that M∗ also
solves P in the limit semi-uniformly.

Proof. Suppose that method M identifies the correct target for problem P =(H, I,≤,W, |·|) in the limit semi-uniformly. Then, for each hypothesis h ∈ H,
(I(h),≤) has a cofinal upper subset SIh such that, for all i ∈ SIh, M(i) = h.
Construct a learning method M∗ from M as follows:

M∗(i) =

{
h if i ∈ SIh

? otherwise.
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By construction, M∗ solves the same problem in the limit semi-uniformly. And,
by construction again, it satisfies the first two of the three conditions that jointly
define “constructability by removing U-shaped learning”. So it suffices to show
that M∗ satisfies the last of the three conditions, namely that M∗ has no instance
of U-shaped learning. Suppose, for reductio, that M∗ has an instance (i1, i2, i3) of
U-shaped learning. Then there exists h∗ ∈ H such that M∗(i1) = M∗(i3) = h∗.
So, by construction, both i1 and i3 are in SIh∗ . It follows that i3 ∈ I(h∗).
So, by the definition of I(·), there exists w∗ ∈ W such that w∗ ∈ |i3| ∩ |h∗|.
Furthermore, since (i1, i2, i3) is an instance of U-shaped learning of M∗, we have
i1 ≤ i2 ≤ i3. So, by Monotonicity, we have |i1| ⊇ |i2| ⊇ |i3|. It follows
that |i1| ⊇ |i2| ⊇ |i3| � w∗ ∈ |h∗|. So w∗ ∈ |i2| ∩ |h∗|, and hence i2 ∈ I(h∗).
To summarize what we have obtained so far: SIh∗ contains i1 and is an upper
subset of (I(h∗),≤), and i1 ≤ i2 ∈ I(h∗). It follows from upward closure that
SIh∗ contains i2, too. So, by construction, M∗(i1) = M∗(i2) = M∗(i3) = h∗. But
this contradicts the reductio hypothesis that (i1, i2, i3) is an instance of U-shaped
learning of M∗. 
�

So semi-uniform identification in the limit seems to set a standard for problem
solving that is by no means low: if a learning method achieves this standard, it
has to do so without involving U-shaped learning in any essential, unremovable
way. We may say that semi-uniform identification in the limit has the property
called persistence under removal of U-shaped learning. By way of contrast, this
property is not shared by classic identification in the limit. Here is a proof
sketch: U-shaped learning is provably involved in all learning methods that solve
the even-vs-odd raven problem in the limit classically. So, when we tackle this
problem, removal of U-shaped learning implies no longer having a method that
solves it in the limit classically.

Thanks to the above two theorems, semi-uniform identification in the limit
is by no means a low criterion. I submit that it is high enough to deserve to
be called a success criterion for problem solving. To clarify: I am not saying
that we should always be satisfied with a solution to a problem that meets only
the new success criterion. If a problem can be solved by meeting semi-uniform
identification in the limit because it can be solved by meeting a strictly higher
criterion—such as the conjunction of classical and semi-uniform identifications
in the limit—then we ought to strive for meeting the higher criterion. A success
criterion marks an achievement, but does not necessarily mark an achievement
that we should be satisfied with. We ought to strive for meeting the highest
achievable success criterion.

I also submit that the two kinds of identification in the limit, the classic and
the semi-uniform, are complementary criteria of success. They set very similar
standards of success, but nonetheless each describes a unique way of success—so
unique that meeting one does not entail meeting the other. Meeting any one of
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these two is good; meeting both at the same time, if possible, is even better.5 This
is the sense in which these two success criteria are complementary.

That said, it might be possible for their relationship to turn competitive
occasionally. Imagine that we have a problem and there are learning methods
that solve it in the limit—some do it classically, some do it semi-uniformly,
but no single one can do it both classically and semi-uniformly. This raises two
questions. Does there exist such a problem? If yes, which of the two success
criteria should be met at the cost of the other? I do not have an answer at the
moment.

Acknowledgements. I thank Kevin Kelly, Konstantin Genin, and two anonymous
referees for their helpful comments and suggestions.

A Convergence Generalized

As mentioned in the introduction, the classic definition of identification in the
limit only employs the most familiar concept of convergence—pointwise conver-
gence of sequences—while in analysis and topology mathematicians have already
worked out more elaborated concepts of convergence. This section provides a
quick review of those concepts.

Definition 9 (Sequence Convergence). Let f : ω → Y be a sequence of
points in a topological space Y . Say that f(n) converges to y as n travels upward
in (ω,≤) just in case:

for any open neighborhood U of y in Y ,
there exists n ∈ ω such that
f(m) ∈ U for every m ≥ n in ω.

The next step is to go from convergence of a sequence to convergence of a
“generalized” sequence, a.k.a. “net”. A sequence is defined on a very special set
of indices, namely ω, linearly ordered by ≤. Let us have a more general set I of
indices with a weaker ordering structure:

Definition 10 (Directed Poset). A poset (I,≤) consists of a set I partially
ordered by ≤. It is directed just in case i, j ∈ I implies i, j ≤ k for some k ∈ I.

Definition 11 (Generalized Sequence, or Net). A generalized sequence or
net f : (I,≤) → Y , is a function from a nonempty directed poset (I,≤) to a
topological space Y .

5 For example, consider the following problem P =
(H, I,≤,W, |·|) with W =

{w0, w1, w2}, I = {0, 1, 2}, 0 < 1 < 2, |0| = {w0, w1, w2}, |1| = {w1, w2}, |2| = {w2},
H = {Heven, Hodd}, |Heven| = {w0, w2}, |Hodd| = {w1}. Consider this method
M : 0 �→ ?, 1 �→ Hodd, 2 �→ Heven. This solves the problem in the limit semi-
uniformly. But we should not be satisfied with this method, for there is a better
one: M ′ : 0 �→ Heven, 1 �→ Hodd, 2 �→ Heven, which solves the problem both semi-
uniformly and classically. I thank Konstantin Genin for bringing this example to my
attention.
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Definition 12 (Net Convergence). Let f : (I,≤) → Y be a net. Say that
f(i) converges to y as i travels in (I,≤) just in case:

for any open neighborhood U of y in Y ,
there exists i in I such that
f(i′) ∈ U for every i′ ≥ i in I.

Note that the definition of net convergence is formally identical to that of
sequence convergence, except that the underlying spaces of indices are general-
ized. Net convergence has a number of equivalent formulations, some of which
are very sophisticated (and stated in terms of, say, filters).6 Let me introduce
the following one:

Proposition 3 (Net Convergence Redefined by “Cofinal Upper”). Let
f : (I,≤) → Y be a net. Then net convergence of f can be equivalently redefined
in terms of cofinal upper subsets as follows. f(i) converges to y as i travels in
(I,≤) if and only if:

• for any open neighborhood U of y,
there exists a cofinal upper subset S of (I,≤) such that
f(i) ∈ U for all i ∈ S.

Proof. The (⇒) side follows immediately from the order-theoretic result that
every principal upper subset of a nonempty directed poset is cofinal. The (⇐)
side follows immediately from the order-theoretic result that every cofinal upper
subset of a nonempty directed poset is nonempty (because of cofinality) and thus
(by upward closure) includes a principal upper subset. 
�
With the above formulation of net convergence, we can generalize further by
relaxing the restriction to directed posets and allowing any nonempty posets:

Definition 13 (Generalized Convergence and Limit). Let f be a function
from a nonempty poset (I,≤) to an arbitrary topological space Y . Say that f(i)
converges to y as i travels in (I,≤) (in the sense of generalized convergence) just
in case:

for any open neighborhood U of y,
there exists a cofinal upper subset S of (I,≤) such that
f(i) ∈ U for all i ∈ S.

If such a y exists uniquely, also say that y is the generalized limit of f(i) as i
travels in (I,≤).

The above is the concept of convergence that underlines the definition of
semi-uniform identification in the limit: the index i travels in a partially ordered
set I in general, a convergence zone is required to be cofinal and upper, and the
underlying topology of the codomain is discrete.

6 See Kelley (1991) for a review.
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Abstract. This paper studies the logical features of social group cre-
ation. We focus on the mechanisms which indicate when agents can form
a team based on the correspondence in their set of features (behavior,
opinions, etc.). Our basic approach uses a semi-metric on the set of
agents, which is used to construct a network topology. Then it is extended
with epistemic features to represent the agents’ epistemic states, allow-
ing us to explore group-creation alternatives where what matters is not
only the agent’s differences but also what they know about them. We
use tools of dynamic epistemic logic to study the properties of different
strategies to network formations.

1 Introduction

It is commonly accepted that our social contacts affect the way we form our
opinions about the world. Think, e.g., about socialization (inheriting and dis-
seminating norms, customs, values and ideologies), conformity (changing our
attitudes, beliefs and behaviors to match those of others), peer pressure and
obedience. These phenomena have been studied not only by empirical sciences
(e.g., sociology and social psychology: [1]) but also by theoretical computer sci-
ence and economy [2]. Within the logic community, epistemic social phenomena
have been studied with a diversity of logical tools. Since the birth of dynamic
epistemic logic in the late eighties and ninetees, models were first designed to
reason about agent’s epistemic states in multi-agent environments, and the social
dimension has gradually received more attention. As examples we mention the
work on communication networks and protocols [3–7], belief change in social
networks [8], the analysis of peer pressure [9], the study of informational cas-
cades [10], priority-based peer influence [11], reflective social influence in [12] and
the study of diffusion and prediction update in [13]. Still, while the structure of
social groups plays an important role in these logical studies, the way the groups
are created has till now received much less attention.

This paper focuses on the logical structure behind the creation of social net-
works. Our basic mechanism for group-creation focusses on agents who become
socially connected when the number of features in which they differ is small
enough. In line with this idea we propose several group-creation policies, explor-
ing the properties of the resulting networks. In Sect. 2, we introduce a similarity
c© Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 377–390, 2017.
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update operation which generates new reflexive and symmetric social networks.
We then discuss alternatives that produce irreflexive and not necessarily sym-
metric variations. After this, we introduce a version that asks for the agents not
only to be ‘close enough’, but also for the existence of a middleman who can ‘con-
nect’ them. In Sect. 3, we extend our setting with an epistemic dimension, as in
real-life what matters its not only the actual situation, but also what the agents
know about it. In this epistemic setting two new operations will be defined, both
extending the similarity and middleman similarity operations by asking for the
agents to have knowledge of the required condition. In both cases, the de dicto
and de re variations of the epistemic conditions are further explored. The differ-
ent logical settings in this paper make use of the techniques of dynamic epistemic
logic (DEL; [14–16]) to represent group-creation actions, to define new languages
to describe their effects, and to provide sound and complete axiom systems. In
Sect. 4 we conclude this paper with a list of topics for future work.

2 Modelling Social Networks

We adopt the basic setting of [13], which is a relational ‘Kripke’ model in which
the domain is interpreted as the set of agents, the accessibility relation represents
a social connection from one agent to another, and the atomic valuation describes
the features (behavior/opinions) each agent has. Let A denote a finite non-empty
set of agents, and P (with A ∩ P = ∅) a finite set of features that each agent
might or might not have:

Definition 2.1 (Social Network Model). A social network model (SNM) is
a tuple M = 〈A, S, V 〉 where S ⊆ A×A is the social relation (Sab indicates that
agent a is socially connected to agent b) and V : A → ℘(P) is a feature function
(p ∈ V (a) indicates that agent a has feature p).

Relation S is not required to satisfy any specific property (neither irreflexivity
nor symmetry). Hence our social relation differs from the friendship relation in
e.g. [8,12,13]. Given a social network model, we define a notion of ‘distance’
between agents based on the number of features in which they differ.

Definition 2.2 (Distance). Let M = 〈A, S, V 〉 be a SNM. Define the set of
features distinguishing agents a, b ∈ A in M as msmtchM (a, b) :=

(
V (a)\V (b)

)∪(
V (b) \ V (a)

)
. Then, the distance between a and b in M is given by

distM (a, b) := |msmtchM (a, b)|

Proposition 2.1 Let M = 〈A, S, V 〉 be a SNM and take a, b, c ∈ A. Then,

• Non-negativity: distM (a, b) ≥ 0.
• Symmetry: distM (a, b) = distM (b, a).
• Reflexivity: distM (a, a) = 0.
• Subadditivity: distM (a, c) ≤ distM (a, b) + distM (b, c).
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Here distM (a, b) is a mathematical distance (satisfying non-negativity, sym-
metry and reflexivity) and also a semi-metric (a distance satisfying subaddi-
tivity).1 It is not a metric as it does not satisfy identity of indiscernibles:
distM (a, b) = 0 does not imply a = b, as two different agents may have exactly
the same features.
Static Language L. Following [13], social network models are described by a
propositional language L with special atoms describing the agents’ features and
their social relationship. More precisely, formulas in L are given by

ϕ, ψ ::= pa | Sab | ¬ϕ | ϕ ∧ ψ

with p ∈ P and a, b ∈ A. We read pa as “agent a has feature p” and Sab as
“agent a is socially connected to b”. Other Boolean operators (∨,→,↔,�, the
latter representing the exclusive disjunction) are defined as usual. Given a SNM
M = 〈A, S, V 〉, the semantic interpretation of L-formulas in M is given by:

M � pa iffdef p ∈ V (a),
M � Sab iffdef Sab,

M � ¬ϕ iffdef M �� ϕ,
M � ϕ ∧ ψ iffdef M � ϕ and M � ψ.

A formula ϕ ∈ L is valid (notation: � ϕ) when M � ϕ holds for all models
M . Since there are no restrictions on the social relation nor on the feature
function, any axiom system for classical propositional logic is fit to characterize
syntactically the validities of L over the class of social network models.

The remainder of this section deals with the creation of new networks by
updating the network relation. In contrast to [13], which uses SNMs to study
how the fixed network structure leads to changes in features, here we keep the
agents’ features fixed, focussing instead on the changes in the social structure.

2.1 Similarity Update

There are several ways in which new social relations can be defined. A natural
option is to let two agents become friends when they are ‘similar’ enough. If a
threshold θ ∈ N is given, with θ < |P| (recall: P is finite), then we can define
a similarity update operation allowing agents to establish connections to others
who differ in at most θ features.

Definition 2.3 (Similarity Update). Let M = 〈A, S, V 〉 be a SNM; take θ ∈
N. The similarity update of M generates a new SNM M�θ

= 〈A, S�θ
, V 〉 which

differs from M only in its social relation, given by

S�θ := {(a, b) ∈ A × A : distM (a, b) ≤ θ}

Intuitively, each agent defines a circle of ratio θ with herself at the center,
and her social contacts will be those agents falling inside it. The social relation
of the updated model M�θ

satisfies:

Proposition 2.2. Let M = 〈A, S, V 〉 be a SNM, with M�θ
= 〈A, S�θ

, V 〉 as in
Definition 2.3. Then, S�θ

is reflexive and symmetric.
1 See [17, Chap. 1] for more on mathematical distances.
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Proof. Each property follows from its namesake distance property (Proposition
2.1) and, in the case of reflexivity, from the fact that θ’s lower bound is 0.

One can think of the social network that is generated by a similarity update
as representing friends that have mutual access to each others feature-database,
allowing every agent to access also her own database. Note that although reflex-
ivity implies that every agent will have at least one friend (i.e., S�θ

is serial),
nothing guarantees an agent will have a friend other than herself (as the thresh-
old may be ‘too strict’).

If a ‘friendship’ (irreflexive and symmetric) network is required, the update
operation has to be adjusted to keep identity pairs out (e.g., S′�θ

:={(a, b) ∈
A × A : a = b and distM (a, b) ≤ θ}). If, on the other hand, one requires a not
necessarily symmetric network of ‘informational access’ (as in [18]), we can use
a personal threshold for each agent a ∈ A (i.e., a function Θ : A → N). Then
each agent can choose ‘how different’ others may be in order to add them to
her social group, and the updated relation is given by S′�Θ

:= {(a, b) ∈ A×A :
distM (a, b) ≤ Θ(a)}. Note how, for example, the distance between a and b, say
2, may be good enough for a to consider b a social contact (2 ≤ Θ(a)), but not
for b to consider a a social contact (Θ(b) < 2).

We illustrate briefly why other relational properties cannot be guaranteed.

Fact 2.1. The relation S�θ
needs to be neither transitive nor Euclidean.

Proof. Transitivity can fail because, given agents a, b and c, what distinguishes
a and b may be only part of what distinguishes a and c (i.e., msmtchM (a, b) ⊂
msmtchM (a, c)). For example, let θ = 1 and consider the updated model below
on the right, in which S�θ

ab and S�θ
bc, but not S�θ

ac.

p, q

a

p

b c
�1⇒ p, q

a

p

b c

The relation may not be Euclidean because what distinguishes a and b may be
different from what distinguishes a and c (i.e., msmtchM (a, b)∩msmtchM (a, c) =
∅). For example, take θ = 1: the updated model below on the right is such that
S�θ

ab and S�θ
ac, but neither S�θ

bc nor S�θ
cb.

p, q

a

p

b

q

c
�1⇒ p, q

a

p

b

q

c

Dynamic Language L�θ
. To express how a social network changes, we use the

language L�θ
which extends the language L with a ‘dynamic’ modality [�θ] to

build formulas of the form [�θ] ϕ (“after a similarity update, ϕ is the case”). The
semantic interpretation of this modality refers to the similarity-updated model
in Definition 2.3 as follows: Let M be a SNM, then

M � [�θ] ϕ iffdef M�θ � ϕ.
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Different from the well-known case of information updates under public
announcements [19,20], no precondition is required for a similarity update of a
social network: the operation can take place in any situation. Because of this and
the functionality of the model operation, the dual modality 〈�θ〉 ϕ :=¬ [�θ] ¬ϕ
is such that � [�θ] ϕ ↔ 〈�θ〉 ϕ.

The following axiom system is build via the DEL technique of recursion
axioms. First, note that, as P is finite, the following L-formula is true in a model
M if and only if agents a and b differ in exactly t ∈ N features. (The formula
states that there is at least one set of features Q, of size t, such that a and b
differ in all features in Q and coincide in all features in P \ Q. There can be a
most one such set, therefore the formula is true exactly when a and b differ in
exactly t features.)

Distt
ab :=

∨
{Q⊆P : |Q|=t}

(∧
p∈Q(pa � pb) ∧∧p∈P\Q(pa ↔ pb)

)

The following L-formula is true in M iff a and b differ in at most θ ∈ N

features:

Dist≤θ
ab :=

∨θ
t=0 Distt

ab

Hence the following L�θ
-formula characterizes the social relation in the similar-

ity-updated model: a will consider b as a social contact if and only if, before the
operation, a and b differed in at most θ features;

� [�θ] Sab ↔ Dist≤θ
ab

As only the social relation changes, the reduction axioms and the rules in Table 1
form, together with a propositional system, a sound and strongly complete axiom
system characterizing the validities of L�θ

. The here given syntax adapts the
work of [13] for threshold-limited influence to the case of similarity update.

Table 1. Axiom system for L�θ over social network models (a, b ∈ A).

� [�θ] pa ↔ pa From � ϕ infer � [�θ] ϕ

� [�θ] Sab ↔ Dist≤θ
ab From � ψ1 ↔ ψ2 infer � ϕ ↔ ϕ [ψ2/ψ1]

(with ϕ [ψ2/ψ1] any formula obtained by
replacing one or more occurrences of ψ1

in ϕ with ψ2)

� [�θ] ¬ϕ ↔ ¬ [�θ] ϕ

� [�θ](ϕ ∧ ψ) ↔ ([�θ] ϕ ∧ [�θ] ψ)

If the mentioned ‘irreflexive’ version of similarity update is used, the axiom
characterizing the new social relation should be restricted to cases with a = b,
with a new axiom for the missing case:

� [�θ] Sab ↔ Dist≤θ
ab for a �= b, � [�θ] Saa ↔ ⊥
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If the ‘personal threshold’ option is chosen, then the axiom should state that,
after the operation, a includes b as her social contact iff they differ in at most
Θ(a) features:

� [�Θ] Sab ↔ Dist
≤Θ(a)
ab

2.2 Middleman Similarity Update

The network generated via a similarity update does not depend on the topology
of the original network but only on the agent’s current ‘distance’, regardless of
whether they were earlier socially connected or not. Yet in most social scenarios,
we see that the past network does play a role and that it takes a common
acquaintance to introduce new friends to each other who are similar enough.

Definition 2.4. (Middleman Similarity Update). Let M = 〈A, S, V 〉 be
a SNM; take θ ∈ N. The middleman similarity updated model SNM M

̂�θ
=

〈A, S
̂�θ

, V 〉 differs from M only in its social relation, which is given by

S
̂�θ

:= {(a, b) ∈ A × A : distM (a, b) ≤ θ and ∃ c ∈ A with Sac and Scb}

In the new network, agent a will include agent b as a social contact if and
only if they are similar enough and there is an agent c who belongs to a’s social
network and who includes b as one of her social contacts. Of course, the social
requirements for the middleman c might vary. In some cases, a symmetric social
relation between him and the two involved agents a and b might be required;
while in other cases, an agent who has both a and b in her social network might
be enough. Thanks to the formulae describing the social relation S in the syntax,
our logical system is capable of dealing with all these cases, and other similar
variations. Note also that, in line with our definition, the role of the middleman
can be played by agent a or b themselves if they were already friends. Still,
requiring a middleman changes the properties of the resulting network:

Fact 2.2. If M = 〈A, S, V 〉 is a SNM, then S
̂�θ

needs to be neither reflexive nor
symmetric. As the diagrams show, a middleman who can establish new relations
may not exist (no reflexivity on the left, no symmetry on the right):

a
̂�θ⇒

a a b
̂�θ⇒

a b

The middleman similarity update is not a monotone operation (i.e., new
social links may form and old ones can disappear). To illustrate that the existing
social relations are not preserved, take for example a given model with S =
{(a, b)}. The middleman similarity update yields S

̂�θ
= { } regardless of a and

b’s similarities: neither Saa nor Sbb holds, hence neither a nor b can now play
the role of the middleman. Of course, one can always enforce monotonicity by
defining the new social relation in an ‘accumulative’ way (S

̂�θ
:=S∪· · · ), yet this

is not always appropriate: in real scenarios, social connections can be created,
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but unfortunately (and in some cases, fortunately) they can also be dropped. One
advantage of not enforcing monotonicity is that it is possible to identify those
situations that lead to it in a natural way. In our setting, a reflexive S guarantees
that old social contacts will be preserved (modulo the agents’ distance). In other
words, for the agent to preserve her social connections, she should first consider
herself ‘worthwhile’ as a friend.

The middleman similarity update operation preserves symmetry and more-
over, if the initial M is fully symmetric and the update adds an edge from some a
to some b, then it also adds its converse. Of course these preservation properties
are no guarantee that S

̂�θ
is symmetric, as even when c plays the role of the

middleman ‘from left to right’, lack of symmetry in the original M may make
her unable to play the role ‘from right to left’.2

Dynamic Language L
̂�θ

. We extend the above language L with a modality for
describing the effect of the middleman similarity update. The resulting language
L
̂�θ

includes a modality [�̂θ] for building formulas of the form [�̂θ] ϕ (“after
a middleman similarity update, ϕ is the case”). Its semantics is as follows: let
M = 〈A, S, V 〉 be a SNM, then

M � [�̂θ] ϕ iffdef M
̂�θ

� ϕ.

Since both A and P are finite, the axioms and rules in Table 2 (plus a proposi-
tional axiom system) characterize the validities of L

̂�θ
in SNMs. The difference

w.r.t. Table 1 is the axiom characterizing the new social relation, asking now
for the required middleman. Axiom systems for the variations mentioned before
(keeping identity pairs out, personal thresholds) can be obtained as in the ‘non-
middleman’ similarity update case (Page 5).

Table 2. Axiom system for L
̂�θ

over social network models (a, b, c ∈ A).

� [�̂θ] pa ↔ pa � [�̂θ](ϕ ∧ ψ) ↔ ([�̂θ] ϕ ∧ [�̂θ] ψ)

� [�̂θ] Sab ↔ (Dist≤θ
ab ∧∨c∈A(Sac ∧ Scb)

)
From � ϕ infer � [�̂θ] ϕ

� [�̂θ] ¬ϕ ↔ ¬ [�̂θ] ϕ From � ψ1 ↔ ψ2 infer � ϕ ↔ ϕ [ψ2/ψ1]

3 Epistemic Social Networks

The described approach for creating social networks connects agents that are
similar enough. However, in real life, two ‘identical souls’ may never relate to
each other, as they may not know about their similarities. Thus, a more realistic
representation of social network creation should take into account not only the
agents’ similarities, but also the knowledge they have about them.
2 Note that several further constraints can be imposed, for instance one can require

that any agent c playing the middleman for a and b should be fully connected to the
agents she will ‘introduce’ (Sac, Sca, Scb, Sbc).
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Definition 3.1 (Epistemic Social Network Model). An epistemic social
network model (ESNM) is a tuple M = 〈W,A,∼, S, V 〉 having a set W = ∅

of possible worlds, a set of agents A, an epistemic equivalence relation ∼: A →
(W ×W ) for each a ∈ A, and at each world the social relation S : W → ℘(A × A)
and feature function V : W → (A → ℘(P)).

An ESNM is a standard possible worlds model [21] in which each possible
world represents a SNM (Definition 2.1) and the epistemic relation is an equiv-
alence relation. Derived concepts, such as msmtchM (·, ·) and distM (·, ·), can be
defined as before for each possible world w ∈ W .

Additional constrains can be imposed in the model. For instance, one can
ask for the agents to know themselves (agent a knows herself at world w if and
only if w ∼a u implies Vw(a) ⊆ Vu(a)) or to know who are her contacts (a knows
who are her contacts at w if and only if w ∼a u implies Sw[a] ⊆ Su[a]). For the
sake of generality, here no such assumptions will be made.

Epistemic Language LK. We follow [13] in designing an epistemic language
LK with special atoms to describe the agents’ features and social relationship.
The formulas ϕ,ψ of LK are given by

ϕ, ψ ::= pa | Sab | ¬ϕ | ϕ ∧ ψ | Ka ϕ

with p ∈ P and a, b ∈ A. Formulas of the form Ka ϕ are read as “agent a knows
ϕ”. Given a ESNM model M = 〈W,A,∼, S, V 〉, the semantic interpretation of
LK-formulas is standard for Boolean operators and the epistemic modalities,
with atoms pa and Sab interpreted relative to the point of evaluation.

(M, w) � pa iffdef p ∈ Vw(a), (M, w) � Sab iffdef Swab.

The definition of (modal) validity (�) is as usual. We adopt here the well-known
multi-agent S5 axiom system, as no extra restrictions are imposed in the model.

3.1 Knowledge-Based Social Network Creation

Definition 3.2 (Knowledge-based Similarity Update). Let M = 〈W,A,∼,
S, V 〉 be an ESNM; take θ ∈ N. The knowledge-based similarity update operation
generates the ESNM M�K

θ
= 〈W,A,∼, S�K

θ
, V 〉, differing from M only in the social

relation at every w ∈ W , given by

(S�K
θ
)w := {(a, b) ∈ A × A : ∀u ∼a w , distM

u (a, b) ≤ θ}

This update operation is based on the operation in Definition 2.3 but asks
for an additional epistemic requirement: in world w agent a will add b to her
social network if and only if in this world a knows that b is similar enough (i.e.,
b is similar enough in all a’s epistemic alternatives from w).

Note how, after this update, the social network at each possible world will
be reflexive, even in those cases in which the agent ‘does not know herself’.3

3 In any possible world, the distance between any agent and herself is 0.
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On the other hand, social relations do not need to be symmetric, as the agents’
knowledge might not have such property: at w agent a may know that she and b
are similar enough (so (S�K

θ
)wab will hold), but b may not know this (and thus

(S�K
θ
)wba will fail).

De dicto vs. de re. The knowledge-based similarity update uses a de dicto
approach: after the operation, a includes b in her network when a knows that b
is close enough, even if she does not know exactly which are the features that
she shares with b. Indeed, consider the ESNM below on the left:

�K
1⇒p, q

a

p

b

p, q

a

q

b
a

p, q

a

p

b

p, q

a

q

b
a

Even though a does not know which features b has, she knows the ‘distance’
between them is just 1. Thus, after a knowledge-based similarity update with
any θ ≥ 1, she will add b to her network (the ESNM on the right).

On the other hand, a de re approach would ask not for a to know that the
number of differences between her and b is ‘small enough’, but rather for her to
point out a ‘large enough’ set of features on which she and b coincide:

(S′
�K

θ
)w := {(a, b) ∈ A × A : ∃ Q ⊆ P s.t.

(i) |Q| ≥ |P| − θ and (ii) ∀u ∼a w , Vu(a) ∩ Q = Vu(b) ∩ Q }
Thus, a will include b in her social network if and only if there is a set of
features she knows she and b share, and this set is large enough for their number
of differences to be smaller than θ.4 This variation also highlights an alternative
to the basic idea of this proposal: we have related agents when their differences
are small enough, but a (perhaps more ‘human’) alternative is to relate them
when their similarities are large enough.

The de dicto version, asking for the agents to be ‘close enough’ in all epis-
temic possibilities, regardless of which one is the set of features in which the
agents differ in each one of them, emphasizes that, for the agents, all features
are equally important. But one can imagine a more realistic scenario in which
certain features are more important than others: take an agent with features
{p, q, r} choosing an agent with {p} over an agent with {q, r} because, for her,
p is more important than q and r together. Such a setting would require a de re
approach.

Dynamic Epistemic Language LK
�K

θ
. In order to express the way a knowledge-

based similarity update affects a social network, a dynamic modality [�K
θ ] is

added to LK to yield language LK
�K

θ
. This allows us to express that “after a

knowledge-based similarity update, ϕ is the case”, [�K
θ ] ϕ. For its semantic

interpretation, let M be an ESNM. Then,

(M, w) � [�K
θ ] ϕ iffdef (M�K

θ
, w) � ϕ.

4 Both P and θ are commonly known, so a knows Q is enough to make her differences
with b smaller than θ.
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The axiom system is presented in Table 3. Note first the axiom describing the way
the agents’ knowledge changes: each epistemic modality Ka simply commutes
with the dynamic modality, as the epistemic relation is not affected by the update
operation. More importantly, the crucial reduction axiom states how, in order
for a to ‘add’ b to her network, it is not enough for a and b to be ‘similar
enough’: a should also know this. The unfolding of Dist≤θ

ab in such an axiom
makes explicit the de dicto approach: a only needs to know that |msmtch(a, b)|
is smaller than θ.

� [�K
θ ] Sab ↔ Ka

∨θ
t=0

∨
{Q⊆P : |Q|=t}

(∧
p∈Q(pa � pb) ∧∧p∈P\Q(pa ↔ pb)

)

If the de re variation proposed above is chosen, the axiom becomes

� [�K
θ ] Sab ↔ ∨|P|

t=|P|−θ

∨
{Q⊆P : |Q|=t} Ka

∧
p∈Q(pa ↔ pb)

Note the differences with the de dicto axiom. The fundamental one is the position
of the knowledge modality Ka, now under the scope of the disjuctions asking for
the existence of the ‘large enough’ set of features Q (“there is Q of size at least
|P|−θ such that agent a knows that . . . ”). The other difference is that a does
not need to know that Q is exactly what distinguishes her and b; it is enough for
her to know that features in Q are common for them. (Note, again how the fact
that P and θ are common knowledge implies that a knows Q is large enough.)

Table 3. Axiom system for LK
�K

θ
over social network models (a, b ∈ A).

� [�K
θ ] pa ↔ pa � [�K

θ ] Ka ϕ ↔ Ka [�K
θ ] ϕ

� [�K
θ ] Sab ↔ Ka Dist≤θ

ab From � ϕ infer � [�K
θ ] ϕ

� [�K
θ ] ¬ϕ ↔ ¬ [�K

θ ] ϕ From � ψ1 ↔ ψ2 infer � ϕ ↔ ϕ [ψ2/ψ1]

� [�K
θ ](ϕ ∧ ψ) ↔ ([�K

θ ] ϕ ∧ [�K
θ ] ψ)

3.2 Middleman Knowledge-Based Social Network Creation

In the epistemic setting one can ask for a middleman requirement. This again
leads to a de dicto vs de re choice: either a knows there is someone who can
link her with the ‘similar enough’ b (but she might not know who), or else there
is someone a knows can link her with b. The definition below follows the de re
alternative as, intuitively, a should know who is this middleman.

Definition 3.3 (Middleman Knowledge-Based Similarity Update). Let
M = 〈W,A,∼, S, V 〉 be an ESNM; take θ ∈ N. The middleman knowledge-based
similarity update generates ESNM M

̂�K
θ

= 〈W,A,∼, S
̂�K

θ
, V 〉, which differs from

M in its social relation at every w ∈ W as follows:

(S
̂�K

θ
)w := {(a, b) ∈ A × A : ∃ c ∈ A s.t. ∀u ∼a w ,

(i) distM
u (a, b) ≤ θ and (ii) Suac and Sucb }
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Of course, this is not the only alternative in this epistemic-middleman set-
ting. Besides the alternatives to the social requirements for the middleman
discussed above, another possibility (suggested by a reviewer) is to shift the
epistemic burden to the middleman: a will add agent b to her social network if
and only if they are ‘close enough’ and the middleman knows this (syntactically,∨

c∈A Kc(Dist≤θ
ab ).

The new relation will be reflexive for an agent a in a world w if the original
relation for a was reflexive in all worlds accessible from w, but also if somebody
else plays the middleman role in all a’s epistemic possibilities from w. Addition-
ally, if the original relation is reflexive in all possible worlds, then the operation
preserves it (modulo the agents’ distance). With respect to symmetry, new rela-
tionships may not be ‘mutual’, as the agents may have ‘asymmetric knowledge’.

A weaker de dicto requirement on the middleman condition, gives us:

(S′
̂�K

θ
)w := {(a, b) ∈ A × A : ∀ u ∼a w ,

(i) distM
u (a, b) ≤ θ and (ii) ∃ c ∈ A s.t. Suac and Sucb }

In this variation, it i s enough for a to know there is someone linking her with
b, even if she does not know exactly who this middleman is.

A dynamic epistemic language. Our language LK
̂�K

θ

extends LK with a modal-

ity [�̂K

θ ] to express formulas of the form [�̂K

θ ] ϕ (“after a middleman knowledge-
based similarity update, ϕ is the case”). For its semantic interpretation, let M
be an ESNM, then

(M, w) � [�̂K
θ ] ϕ iffdef (M

̂�K
θ

, w) � ϕ.

The axiom characterizing the way the social network changes (see Table 4)
reflects both the de dicto approach for the knowledge about the distance and
the de re approach for the knowledge about the middle man. For the alternative
de dicto-de dicto proposed above (i.e., only knowledge of the existence for both
the distance and the middle man), this axiom becomes

� [�̂K
θ ] Sab ↔ Ka

(
Dist≤θ

ab ∧∨c∈A(Sac ∧ Scb)
)

Table 4. Axiom system for LK
̂�K

θ
over social network models (a, b, c ∈ A).

� [�̂K
θ ] pa ↔ pa � [�̂K

θ ] Ka ϕ ↔ Ka [�̂K
θ ] ϕ

� [�̂K
θ ] Sab ↔ ∨c∈A Ka(Dist≤θ

ab ∧ Sac ∧ Scb) From � ϕ infer � [�̂θ] ϕ

� [�̂K
θ ] ¬ϕ ↔ ¬ [�̂K

θ ] ϕ From � ψ1 ↔ ψ2 infer � ϕ ↔ ϕ[ψ2/ψ1]

� [�̂K
θ ](ϕ ∧ ψ) ↔ ([�̂K

θ ] ϕ ∧ [�̂K
θ ] ψ)
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4 Conclusions

The present proposal explores a threshold approach to social network creation
based on the agents’ similarities, the key idea being that an agent will add some-
one to her social network if and only if the distance between them is smaller or
equal than the given threshold. In this paper we have studied this idea as well
as the middleman and knowledge-based variations; in each case, the properties
of the resulting networks have been explored, and a sound a complete axiom
system for the corresponding modality has been presented. The exploration can
go deeper: for example, one can look for conditions guaranteeing that the result-
ing social network will have certain properties (reflexivity, seriality, symmetry,
transitivity, Euclideanity). In the middleman case, one can also try to identify
those situations in which the update operation will become idempotent, and thus
further applications of it will not make a difference.

While this work is an initial exploration of the logical structure behind social
group creation, our setting suggests several interesting alternatives. For example,
as shown by the de dicto understanding of the knowledge requirement about the
agent’s distances, all features are equally important for all agents: what matters
is the number of differences, and not what these differences are. In an alternative
setting, we can treat certain features as more important than others, and we can
let this ‘priority ordering’ among features differ from agent to agent. In a similar
line, one can imagine situations in which not all features are relevant. Indeed,
in [22] the authors use a game theoretic setting to define the agreement and
disagreement of agents on a specific feature (or issue), which yields a way for
them to update the social relation of agents with respect to one specific feature
at a time. A similar idea can be worked out in our setting, which would require
that only a subset of all features is relevant for each update operation. Such
a structure can be useful when we want agents to control when one of their
features becomes visible to other agents. A related alternative is to use an issue-
dependent update to define different types of networks or social groups related
to agent’s different issues; after all, the network of football fans will be rather
different from Lady Gaga’s fan club.

There are also alternatives to the ‘threshold’ similarity idea of this pro-
posal. An interesting idea, arising from the cognitive science literature, takes
into account the size of the agent’s ‘social space’. In real life, agents may be will-
ing to keep expanding their social network (even including people who are very
different from them) as long as there is still enough space in their social envi-
ronment. This is famously known as the Dunbar’s number : a suggested cognitive
limit to the number of people with whom one can maintain stable social relation-
ships (see, e.g., [23]). Such a ‘group-size’ similarity approach produces different
social relations, for example the lack of symmetry: in situations in which most
agents are ‘closer’ (i.e., more similar) to agent b than to agent a, while the second
may have ‘enough space’ to include the first in her social group, the first may
be ‘out of space’ before she even considers the second. This group-size approach
can be used in combination not only with the presented epistemic models, but
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also with the above ideas requiring ‘some features to be more important than
others’ or ‘not all features to be visible’.

Both the threshold and the mentioned group-size approaches relate agents
when they are similar enough, where similarity is based on a distance measure
that we have taken to be the standard Hamming distance between two sets
of atomic formulae. It would be interesting to compare our obtained results to
settings in which other notions of distances between sets are used (such as e.g.
the Jaccard distance). An even bigger change is to consider the dual situation
in which agents connect when they complement each other. In order to deal
formally with this complementary idea, a more fine-grained setting is needed
that takes into account not only the agents’ features/behaviors, as in this paper,
but also their doxastic state and their preferences (e.g., [11,24]).

In our epistemic setting, an obvious next step is to study also ‘knowl-
edge changing operations’ within the presented models (e.g., public and private
announcements), focussing not only on the changes of the agents’ knowledge
about each other’s features and social connections, but also on the interplay
with knowledge-based social network changing operations. There are interesting
situations in which agents can learn new facts about each other’s features and
about each other’s social relations from both the knowledge they have about the
group-formation rules and the way a network has changed.

Finally, we observe the importance of the interplay between the social net-
work changing operations of this proposal, and the operations that change the
features (or behaviour/beliefs) in the proposals mentioned in the introduction.
Both ideas deserve to be studied in tandem: the dynamics studied in one can
affect the dynamics studied in the other, and our logical setting might be able
to capture interesting properties about the interplay of these dynamic mecha-
nisms.5
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Abstract. In this paper we present an agent-based model (ABM) of
scientific inquiry aimed at investigating how different social networks
impact the efficiency of scientists in acquiring knowledge. The model is
an improved variant of the ABM introduced in [3], which is based on
abstract argumentation frameworks. The current model employs a more
refined notion of social networks and a more realistic representation of
knowledge acquisition than the previous variant. Moreover, it includes
two criteria of success: a monist and a pluralist one, reflecting different
desiderata of scientific inquiry. Our findings suggest that, given a rea-
sonable ratio between research time and time spent on communication,
increasing the degree of connectedness of the social network tends to
improve the efficiency of scientists.

1 Introduction

Agent-based models (ABMs) have in recent years been increasingly utilized as a
method for tackling socio-epistemic aspects of scientific inquiry [6,18,21,23,24].
The primary value of this approach is that it allows us to tackle questions that
are difficult to answer with qualitative methods, such as historical case studies.
One such question concerns the impact of different degrees and structures of
information flow among scientists on their efficiency in acquiring knowledge.
Zollman’s pioneering work in this domain [23,24] suggested that a high degree
of connectedness of a social network may be epistemically harmful, and that there
is a trade-off between the success of agents and the time they need to reach a
consensus. Even though it has been shown in [15] that this result, dubbed as
“Zollman effect”, does not hold for a large portion of the relevant parameter
space, structurally different ABMs have come to similar conclusions [9,10].
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The highly idealized nature of these ABMs makes it difficult to assess how
relevant their findings are for actual scientific inquiry [15]. On the one hand, ide-
alization and abstraction are necessary for simulations that aim at representing
complex real world phenomena [14]. On the other hand, unless we include the
most important ‘difference making’ factors figuring in the target phenomenon,
the model might not represent any realistic scenario. Instead, it may represent
only a logical possibility, uninformative about the real world.1 Since due to their
high degree of idealization such models operate at a significant representational
distance from their intended target, we are faced with the methodological diffi-
culty to judge their adequacy and epistemic merit. What we can do is to compare
models with the same intended target that differ in various important respects,
such as in the way they structure the phenomenon, in the way some of its ele-
ments are represented, in their degree of abstraction and idealization, etc. The
possible gain may be that in virtue of this we are able to identify results that are
robust under different modeling choices, and, based on that, to identify causes
and explanatory relevant properties underlying these commonalities. Similarly,
if specific types of models give rise to different outcomes, we may sharpen our
understanding of their possible target phenomena and how they apply to them.
For example, we may be able to identify distinct sub-classes of phenomena to
which the different types of models apply.

The ABM presented in this paper has the same intended target phenomenon as
the ones presented in [23,24]. Nevertheless, the representation of social networks,
the content of the exchanged information, and the behavior of agents is different,
which raises the question whether the “Zollman effect” also occurs in our model. As
will be demonstrated, it does not. Given the differences between our models, this
result may not be surprising. Nevertheless, it suggests that further investigation is
needed to determine to which target phenomena the results of each model apply.

Our model is based on a recently developed argumentative ABM of scientific
inquiry (AABMSI) [3]. It represents scientific interaction as argumentative in
nature. This means that instead of a simple information flow that lacks critical
assessment, in AABMSI agents may refute previously accepted or new informa-
tion in view of counterarguments. Second, information about a given scientific
theory is represented as consisting of a set of arguments (rather than being fully
aggregated in a single value, representing one’s credence in the given theory
[23,24] or the epistemic success of the theory [9,10]). As a result, information
sharing is represented as concerning particular parts of the given scientific the-
ory, rather than an aggregated attitude about the whole theory. Third, receiving
criticism triggers a search for defense of the given attacked argument. Fourth,
the model takes into account that sharing information costs time and hence, that
there is a trade-off between time spent on research and time spent on interaction.

1 Accordingly, we can distinguish between models that provide how actually and how
possibly explanations. While some have suggested that modeling a possibility is
epistemically valuable [11], others have argued that if a model merely captures a
possibility, it is epistemically and pragmatically idle [19]; instead, the presented
possibility has to be understood within a specified context, which makes it relevant
for real world phenomena.
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In this paper we present an improved and more encompassing variant of
AABMSI, aimed at examining the effects of different social networks on the effi-
ciency of scientific inquiry. The model represents a situation in which scientists
pursue different scientific theories, with the aim of determining which one is
the best, and where they exchange arguments regarding their pursued theories.
Compared to the model presented in [3], the current model introduces a number
of improvements: (1) it employs the notion of social networks that is typically
used in other ABMs of science, such as the complete graph, the wheel and the
cycle [9,10,23,24] – this allows for the representation of an increase in informa-
tion sharing proportional to the population size, which is absent from AABMSI;
(2) the heuristic behavior of agents is represented in a more adequate way;
(3) an additional criterion of success has been introduced in order to exam-
ine the robustness of the results under different standards relevant in scientific
practice; (4) the time cost of learning is now proportional to the amount of
new information received by the agent; (5) the model has been computation-
ally improved, allowing for statistical analysis of the data and for more reliable
results.

Our findings suggest that a higher degree of connectedness leads to a more
efficient inquiry, given a reasonable ratio between research time and time spent
on communication. While our ABM is still too idealized to draw normative
conclusions concerning scientific inquiry that would be useful, for instance, to
policy makers,2 it represents a step further in this direction.

The paper is structured as follows. In Sect. 2 we explicate the main features of
our ABM. In Sect. 3 we present the main results of the simulations. In Sect. 4 we
compare our model with an argumentation-based ABM introduced in [8], as well
as with other ABMs of scientific interaction. We conclude the paper in Sect. 5
by suggesting further enhancements of our model and future research avenues.

2 The Model

Agents in our model represent scientists who inquire into a number of rivaling
theories in a given scientific domain. Theories are represented by sets of argu-
ments which scientists can discover and investigate. This is modeled in terms
of an argumentative landscape where scientists can investigate arguments by
spending time on them, which allows them to discover other arguments or argu-
mentative attacks between arguments of different theories. In certain intervals
scientists evaluate theories on the basis of their knowledge about the argumenta-
tive landscape and decide which theory to pursue further. Additionally, scientists
are situated in communication networks. By communicating with other scien-
tists they enhance their knowledge about the argumentative landscape which
may help them to make more informed evaluations.

2 To this end, one of the tasks for future research is the empirical calibration of the
parameters used in the model, as pointed out in [13].
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In the remainder of this section we describe the main components of our
model in more detail: the underlying argumentative landscape, the behavior of
agents and the notion of social networks.3

2.1 The Argumentative Landscape

An abstract argumentation framework, as introduced by Dung [7], is a directed
graph AF = 〈A,�〉 where A is a set of abstract entities called arguments and
� is an attack relation between arguments. Where a, b ∈ A, a attacks b if a � b.
A set of arguments S is conflict-free if there are no a, b ∈ S such that a � b.

For our purposes it is useful to add another relation between arguments, the
discovery relation ↪→. It represents possible paths scientists can take to discover
arguments:4 if a ↪→ b, then b can be discovered by the scientists if a has been
previously discovered.

A theory is represented by a conflict-free set of arguments connected in a
tree-like graph by discovery relations. Argumentative attacks exist only between
arguments of different theories. Formally, an argumentative landscape is a triple
L = 〈A,�, ↪→〉 where the set of arguments A is partitioned into m theories
〈A1, . . . ,Am〉 such that for each i ∈ {1, . . . , m} the theory Ti = 〈Ai, ai, ↪→〉 is a
tree with root ai ∈ Ai and

� ⊆
⋃

1≤i,j≤m
i�=j

(Ai × Aj) and ↪→ ⊆
⋃

1≤i≤m

(Ai × Ai).

This definition of the attack relation � ensures that each theory is conflict-free
and that attacks only occur between members of different theories.

At the beginning of the simulation only the roots of each theory (representing
a basic underlying hypothesis) are visible to the agents. During the simulation
the agents gradually discover arguments and attacks between them (see also
Sect. 2.2). Each argument a has a degree of exploration: expl(a) ∈ {0, . . . , 6}
where 0 means that the argument has not been discovered and 6 means that
the argument has been fully researched and it cannot be explored further. By
spending time on an argument a, a scientist increases its degree of exploration.
The higher the degree of exploration of a, the higher is the likelihood that the
connected arguments will become visible. This concerns both arguments con-
nected to a via the discovery relation in the same theory and arguments that
attack a or that are being attacked by a. If expl(a) = 0 [resp. expl(a) = 6] no
[resp. all] relation[s] from a to other arguments have been discovered.

Agents only have subjective knowledge of the landscape, which consists of
arguments, their respective degrees of exploration, and attacks. During the sim-
ulation agents gain knowledge, on the one hand, by exploring the landscape,

3 Our ABM is created in NetLogo [22]. The source code is available at: https://github.
com/g4v4g4i/ArgABM/tree/LORI-VI-2017.

4 Other ways of discovering arguments and attacks (via social networks) are discussed
below.

https://github.com/g4v4g4i/ArgABM/tree/LORI-VI-2017
https://github.com/g4v4g4i/ArgABM/tree/LORI-VI-2017
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and on the other hand, by communicating with other agents. This way two
agents may have different knowledge about the degree of exploration of an argu-
ment or about discovered relations. See also Sect. 2.3.

2.2 Basic Behavior of Agents

Our model is round based. Each round every agent performs actions that are
among the following:

1. the agent investigates the argument a she is currently situated at (i.e. she
increases expl(a)) and while doing so she gradually reveals outgoing discovery
relations as well as attacks from and to a;

2. the agent explores her current branch of the theory further by moving along
a discovery relation to a neighboring argument (that she can see);

3. the agent leaves her current theory and moves to an argument of a rivaling
theory (that she can see).

Every round each agent decides (based on a certain probability) whether to stay
on her current argument (option 1) or to move to a new argument in her direct
neighborhood (relative to the discovery relation, option 2). If she has reached a
leaf of her branch, which is fully explored (i.e., expl(a) = 6), she backtracks on
this branch to find an argument that is not fully explored. In case this fails, she
moves to another not fully explored argument in the same theory.

Additionally, every 5 rounds agents consider whether they are still working
on the theory they consider the best (with respect to their current subjective
knowledge of the landscape). Depending on this decision, they continue with 1
and 2, or move to an alternative theory and start to explore that one (3). Their
decision is based on an evaluation of the degree of defensibility of a theory.

The degree of defensibility of a theory is the number of defended arguments
in this theory, where –informally speaking– an argument a is defended in the
theory if it is not attacked or if each attacker b from another theory is itself
attacked by some defended argument c in the current theory.

Let us give a more precise formal definition. First, we call a subset of argu-
ments A of a given theory T admissible iff for each attacker b of some a in A
there is an a′ in A that attacks b (we say that a′ defends a from the attack
by b). Since every theory is conflict-free, it can easily be shown that for each
theory T there is a unique maximally admissible subset of T (with respect to set
inclusion). An argument a in T is said to be defended in T iff it is a member of
this maximally admissible subset of T .5 The degree of defensibility of T is equal
to the number of defended arguments in T .

5 Given that theories in our model are conflict-free, our notion of admissibility is
actually the same as the one introduced in [7]. In Dung’s terminology, our sets
of defended arguments correspond to preferred extension (which are exactly the
maximally admissible sets), except that we determine these sets relative to given
theories.
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theory defended degree of def.

T1 = {e, f} (white) {f} 1
T2 = {a, b, g} (gray) {} 0

T3 = {c, d} (dark gray) {} 0

Fig. 1. Argumentation Framework 1

g

e a c

f b d

theory defended degree of def.

T1 = {e, f} (white) {} 0
T2 = {a, b, g} (gray) {a, b, g} 3

T3 = {c, d} (dark gray) {} 0

Fig. 2. Argumentation Framework 2

Example 1. Figure 1 depicts a situation with three theories as it might occur
from the perspective of a given agent: T1 consisting of arguments e and f (white
nodes), T2 consisting of arguments a, b and g (gray nodes), and T3 consisting
of arguments c and d (dark gray nodes). The arrows represent attacks, we omit
discovery relations. We are now interested in the degrees of defensibility our
agent would ascribe to the given theories. The table shows which arguments are
defended in each theory and their corresponding degree of defensibility. The only
defended argument in this situation is f in theory 1. Note for instance that in
T3 the argument d is not defended since no argument in T3 is able to defend it
from the attack by b. Although the argument f in T1 attacks b, it doesn’t count
as a defender of d for theory T3 when determining the defended arguments in T3

since in our account a theory is supposed to defend itself.
Figure 2 depicts the situation after an attack from a to f has been discovered.

Consider theory T2. In this situation a defends b from the attack by f , b defends
a from the attack by d, a defends g from the attack by e and g defends a
from the attack by c. Hence, all arguments are defended resulting in a degree of
defensibility of 3.

A scientist decides to work on another theory T ′ instead of her current theory
T if the degree of defensibility of T ′ surpasses the one of T by a certain margin.
We represent the objectively best theory as a fully defended one.

Moreover, agents are equipped with heuristic abilities. An agent that encoun-
ters an attack from an argument b on the argument a, she is currently working
on, will try to find a defense for this argument. For this she will consider all
the arguments in her subjective knowledge that belong to the same theory as a.
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If there is an argument a′ among these that can potentially defend a from the
attack, she will begin to investigate it. That a′ potentially defends a from b
means that there is an attack from a′ to b but this attack has not yet been
added to the subjective representation of the landscape of our agent (e.g., since
expl(a′) is too low or since it has not been communicated to her). This means
that agents are equipped with ‘professional hunches’ which help them to tackle
problems in their theories.6

2.3 Social Networks

Besides discovering the argumentative landscape by exploring it on her own (see
Sect. 2.2), an agent can share information about the landscape with other agents.

At the start of a simulation agents are divided into local collaborative net-
works, each consisting of exactly five individuals working on the same theory.
During the simulation each agent gathers information (i.e., the degree of explo-
ration of arguments, discovery and attack relations) on her own. Agents of the
same collaborative network have the same subjective knowledge of the landscape
since whenever an agent learns something new, this is communicated with the
other agents in the same collaborative group.

Additionally, the collaborative groups form a community network. These have
one of the following three structures: a cycle, in which each collaborative group
is connected to exactly two other groups, a wheel which is similar to the cycle,
except that a unique group is connected to every other group, and a complete
graph where each group is connected to all other groups (Fig. 3). Every five
rounds, randomly chosen representative agents of the collaborative groups com-
municate along the communication channels of the community network. The
different network structures allow us to represent varying degrees of information
flow in the scientific community, with the cycle representing the lowest and the
complete graph the highest degree of information sharing.7

Fig. 3. A cycle, a wheel and a complete graph. Each node is a collaborative group,
while the edges represent communication channels

Representative agents do not share their whole knowledge of the landscape
with agents from other collaborative networks. Instead, they share the knowl-
edge they have obtained recently by their own exploration of the landscape,
6 Such hunches are not considered when agents evaluate theories.
7 In contrast to the current model, in AABMSI [3] network structures are generated

probabilistically in specific time intervals.
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which consists of the argument they are currently at, its neighboring arguments
connected via the discovery relation, their respective degrees of exploration, and
attacks to and from their current argument. One way of interpreting this limited
knowledge sharing is by considering this to be a situation where the agent writes
a paper or gives a presentation on her current research results.

An alternative interpretation of collaborative groups is that they represent
one individual working on 5 different arguments (papers, hypotheses, etc.) in
a given theory. Whenever this individual communicates with other individuals
from the community network it exchanges the information from the neighbor-
hood of one of the 5 arguments she is currently engaged with.

Our model takes into account that information sharing and especially receiv-
ing information is time costly: agents who receive information (the representative
agents of each collaborative network) are blocked from further exploration for a
certain number of rounds. The costs of information sharing are proportional to
the amount of new information obtained.8

Finally, we distinguish two types of information sharing, characterizing two
types of scientists. A reliable agent shares all her recent discoveries, whereas a
deceptive agent withholds the information about attacks on her current theory.
This way, agents receiving information from a deceptive agent from theory T
might come to a more favorable interpretation of T than if they would have
communicated with a reliable agent [4].

3 The Main Findings

We will now specify the parameters used in the simulations and then present
our most significant results.

3.1 Parameters Used in Simulations

We have run simulations with a landscape consisting of 3 theories. The landscape
is created in three steps: First, each theory is represented by a tree (as explained
in Sect. 2.1) of depth 3 such that each node has 4 children (except for the leaves)
resulting in 85 arguments per theory. Second, with a chance of 0.3, each argument
gets randomly attacked by an argument from another theory. Third, for every
argument in theories T2 and T3 that attacks an argument in theory T1 and that
is not attacked by an argument from T1 we add an attack from some random
argument in T1. Thus, it is made sure that T1 is the objectively best theory and
as such is fully defended from all attacks. In this way we wish to represent a
scenario in which theories that are rivals to the best one are worse, though not
completely problematic (as it would be the case with pseudo-scientific theories).

8 A representative agent is excluded from research for 1–4 rounds: she always pays the
basic cost of information sharing which is 1 round, and in addition, for every 2 fully
explored arguments she will pay an additional round. The cost of learning an attack
is equivalent to learning one degree of exploration of an argument.
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Simulations were run 10.000 times for each of the scenarios with 10, 20, 30,
40, 70 and 100 agents. The scenarios are created by varying:

1. the community network: in the form of a cycle, a wheel and a complete graph;
2. two types of information sharing: reliable and deceptive.9

A simulation stops when one of the theories is completely explored. At this
point all the agents have one more chance to make their final evaluation and
choose their preferred theory. We then evaluate whether the agents have been
successful according to the following criteria (where T1 is the objectively best
theory):

1. monist criterion, according to which a run is considered successful if, at the
end of the run, all agents have converged onto T1;

2. pluralist criterion, according to which a run is considered successful if, at the
end of the run, the number of agents working on T1 is not smaller than the
number of agents working on any of the other theories.

The monist criterion is the standard notion of success, often employed in
other ABMs of science, e.g. [23,24]. The pluralist criterion, on the other hand,
is motivated by the philosophical conception of scientific pluralism, according
to which a parallel existence of multiple theories in a given scientific domain
is considered epistemically and heuristically beneficial e.g. [5]. This means that
the convergence of all scientists onto the objectively best theory isn’t a primary
epistemic concern for pluralists. Rather, what matters is that the best theory is
one of the most actively researched theories.10

3.2 Results

In this section we describe the most important findings of the simulations.

9 Further parameters, with short explanations, are as follows. The move probability
(set to 0.5) together with the degree of exploration of the argument an agent is
situated at, determines the chance that she will move to another argument every
5 rounds (the move incentive is further decreased by 1

5
for time steps in between).

The visibility probability (set to 0.5) is the probability with which a new attack is
discovered when an agent further explores her argument. The research speed (set to
5) determines the number of time steps an agent has to work on an argument a before
a reaches its next level of exploration. The strategy threshold (set to 0.9) concerns
the fact that each theory with a degree of defensibility that is at least 90% of the
degree of defensibility of the best theory is considered good enough to be researched
by agents. The jump threshold (set to 10) concerns the number of evaluations an
agent can remain on a theory that is not one of the subjectively best ones.

10 While our criterion is moderately pluralist, a more radical version would make plu-
rality a necessary condition of success (i.e. populations would be punished for con-
verging on one theory). We leave this consideration for future research.
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Fig. 4. Pluralist criterion of success, reliable and deceptive agents

Fig. 5. Monist criterion of success, reliable and deceptive agents

Reliable vs. deceptive agents. With respect to both criteria of success, reli-
able agents are clearly more successful than the deceptive ones (Figs. 4 and 5),
while being only slightly slower (Fig. 6).11

11 The plots concern the landscape consisting of three theories. The results were similar
in case of two theories in all the discussed respects, except that the agents were
comparatively more efficient.
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Fig. 6. Time needed

The degree of connectedness. In case of reliable agents, the complete graph
tends to outperform the wheel and cycle, with respect to both criteria of success
(Figs. 4 and 5), as well as with respect to the speed of exploration (Fig. 6). In
other words, a higher degree of connectedness tends to lead to a more efficient
inquiry.

In case of deceptive agents, the situation is a bit trickier. On the one hand,
higher degrees of connectedness are also beneficial for the success according to
the monist criterion (Fig. 5). However, the effect of connectedness is inverse for
the pluralist criterion given populations with up to 70 agents (Fig. 4). A possible
explanation for this asymmetry between the two success criteria is that deceptive
agents in more connected networks share more false positives. As a result, if one
theory is explored by a larger number of agents than either of the other theories,
for the agents on this theory it will be easier to attract the whole population to
it, leading to a fast, possibly wrong, convergence. In contrast, deceptive agents
in the less connected networks will spread less information among each other,
resulting in fewer cases of wrong convergence. For populations larger than 70
agents these premature convergences of the complete graph are prevented by
the fact that each theory has on average enough researchers praising it and
pointing out problems with the other theories so that the false positives are
debunked as such more often.

Size of the community. Larger populations tend to be more efficient if agents
are connected in the complete graph. In contrast, larger populations of agents
in less connected networks perform similarly to smaller ones with respect to the
pluralist criterion, and drastically worse with respect to the monist criterion.
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The latter results from the lack of sufficient information flow, which is why
larger populations fail to converge on any (including the best) theory.

4 Discussion

In this section we will first comment on some of our results and then we will
compare our model with other ABMs designed to tackle similar questions.

We focus on two particularly interesting results: the impact of deceptive infor-
mation sharing in contrast to the reliable one, and the impact of the degree of
connectedness on reliable agents. Concerning the former, deceptiveness has not
been studied in ABMs of science to a large extent.12 This is, however, an impor-
tant issue for the efficiency of scientific inquiry. For instance, withholding results
that would undermine one’s theory, typical for scientific fraud, is an example
of deceptive information sharing. Even though deception is clearly problematic
from the perspective of ethics of scientific conduct, its effects on the efficiency
of the given scientific community aren’t immediately clear. For instance, one
could assume that presenting one’s theory in positive light, in spite of the early
problems can attract new researchers and help in developing it further. Our
findings suggest that this is in general not the case, i.e. that deception tends to
be epistemically harmful. More precisely, assuming that the whole community
consists of deceptive scientists, and that scientists prefer theories that have the
highest number of defensible results, deception leads to significantly less success-
ful (though slightly faster) inquiry. Whether these results hold also under other
assumptions remains to be examined in future research.

Our findings suggest that increasing the degree of connectedness of the com-
munication network tends to be epistemically beneficial. This contrasts with
findings obtained in other ABMs [9,10,23,24], according to which agents con-
nected in a cycle perform better than agents connected in a complete graph. In
order to see whether and in which sense our results challenge the latter results we
first need to highlight some differences between our approach and these ABMs.

First, while in the latter agents are directly connected in the given networks,
we employ a more structured approach by distinguishing between collaborative
(local research) groups and communal networks between these groups. Note
that in the real world it is impossible for each member of a larger scientific
community to invest time in communicating with all the other members for the
simple fact that communication (such as, e.g. reading papers) costs time, which
could otherwise be spent on doing research. Thus, we have started from the
assumption that scientists only have limited time for interacting with members
of other collaborative groups, while they fully share information within their
own collaborative projects. Altogether this means, however, that the highest

12 One example of an ABM that studies deception in science is [12], which examines
the effects of a deceptive agent in a community of epistemically pure agents. The
authors show that in general a higher degree of connectivity helps against decep-
tive information. While our model doesn’t examine the case of mixed (reliable and
deceiving) agents, our results are, generally speaking, in line with their results.
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degree of connectedness examined in our model gives rise to less information
flow than in models in which agents are directly linked into a complete graph.
Second, the content of the information shared among our agents is more localized
and patchy since only representative agents exchange information about local
aspects of their theory, namely their current argument and its neighborhood. As
a result, agents from different collaborative groups end up having more diverse
subjective representations of the landscape than e.g. agents in [23,24]. Third, our
representation of interaction includes a critical component. This is important for
a model designed to examine the efficiency of scientific knowledge acquisition
due to the fact that criticism has been shown to be truth conducive since it
allows for false beliefs to be exposed as such [2]. Finally, similarly to ABMs
that employ epistemic landscapes [9,10,21], our argumentative landscape allows
for the representation of the process of discovery and its timeline. However,
unlike the models employing epistemic landscapes, the information that agents
encounter via an argumentative landscape is defeasible. This feature allows not
only for the representation of critical interaction, but also for specific heuristic
behaviors,13 such as the search for a defense of an argument in case it has been
attacked.14 In this sense, our respective results might concern a different kind of
scenario and thus refer to different target phenomena.

Having explicated the differences between our and other ABMs, it is impor-
tant to notice though that there is no reason to assume that our model introduces
more problematic idealizing assumptions than the previous ABMs of scientific
interaction when it comes to the representation of a typical scientific inquiry.
To the contrary, it includes a number of assumptions directly relevant for its
adequate representation. Thus, our findings suggest that the results obtained by
others models might not hold for usual cases of scientific inquiry. Instead, they
may hold only for some very specific contexts. Which subclass of the phenom-
enon of scientific inquiry each of these models reliably represents, remains to be
tackled in future research.

Finally, let us compare our model with Gabbriellini and Torroni’s (G&T)
ABM [8]. Their aim is to study polarization effects, e.g., in online debates. Simi-
larly to our approach, their model is based on an abstract argumentation frame-
work. Agents start with an individual partial knowledge of the given framework
and enhance their knowledge by means of communication. Since G&T do not
model inquiry, their agents cannot discover new parts of the graph by means
of ‘investigating’ arguments. Rather, they exchange information by engaging in

13 Interestingly, comparing the results of our model that employs the heuristic behavior
(HB) and the results produced when HB is removed, shows that HB has hardly any
impact on the success of agents, and in some cases it even slightly lowers their
success. This seems to suggest that HB, by making agents stay on an undefended
argument, waiting to find how to defend it, shields not only the best theory but also
the worse ones, leading to an overall less successful inquiry. Examining this issue in
more detail remains a task for future research.

14 Another important difference between our ABM and those in [23,24] is that the latter
examine a fringe case of epistemically similar theories, which makes distinguishing
the best one difficult.
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a dialogue. This way, agents may learn about new arguments and attacks but
also remove attacks. Whether new information is incorporated in the knowledge
of an agent depends on the trust relation between the discussants. The beliefs
of agents are represented by applying Dung-style admissibility-based semantics
to the known part of the argumentation framework of an agent. This is quite
different from our model where the underlying graph topology is given by several
discovery trees of arguments representing scientific theories and attacks between
them. This additional structure of the argumentation graph is essential since
we do not model the agents’ beliefs in individual arguments but rather evalu-
ative stances of agents that inform their practical decision of which theory to
work on. While an admissibility-based semantics would lead to extensions that
feature unproblematic sets of arguments from different theories (ones that form
conflict-free and fully defensible sets), in our approach agents pick theories to
work on. For this, they compare the merits of the given theories, pick the one
that is most defended, and employ heuristic behavior to tackle open problems of
theories. It will be the topic of future research to include dialogue protocols that
are relevant for scientific communication, such as information-seeking, inquiry
and deliberation dialogues [20].

5 Conclusion

In this paper we have presented an argumentative ABM aimed at modeling the
argumentative nature of scientific inquiry. The model is designed to examine how
different kinds of social networks affect the efficiency of scientists in acquiring
knowledge. Under the assumption that, in order to conduct their inquiry, scien-
tists only have limited time to spend on communicating with others, our results
suggest that a high information flow tends to be epistemically beneficial.

A variety of enhancements can be added to our model in order to make it apt
for tackling similar or related questions. First, our current notion of the degree
of defensibility represents scientists who prefer theories that exhibit a greater
number of defensible results than their rivals. An alternative notion of defensi-
bility would punish theories for having more anomalies (indefensible arguments)
than their rivals, thus representing scientists who stick to their theories as long
as they are not too anomalous (irrespective of how many positive results they
have). Second, adding an explanatory relation and a set of explananda [16] would
allow for a more refined representation of the desiderata of scientific theories and
evaluative procedures which agents perform when selecting their preferred the-
ory (e.g. in addition to the degree of defensibility, agents can take into account
how much their current theory explains, or how well it is supported by evi-
dence). Furthermore, a number of enhancements available from the literature on
argumentation frameworks, such as probabilistic semantics [17], values [1], etc.
can be introduced in future variants of our ABM. In addition to examining the
impact of social networks, the model can be used to examine different heuristic
behaviors and evaluations that guide scientific inquiry.
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3. Borg, A., Frey, D., Šešelja, D., Straßer, C.: An Argumentative Agent-Based Model
of Scientific Inquiry, pp. 507–510. Springer, Cham (2017). http://dx.doi.org/10.
1007/978-3-319-60042-0 56

4. Caminada, M.: Truth, lies and bullshit: distinguishing classes of dishonesty. In:
Social Simulation Workshop at the International Joint Conference on Artificial
Intelligence (IJCAI) (2009)

5. Chang, H.: Is Water H2O? Evidence, Pluralism and Realism. Springer, Dordrecht
(2012)

6. Douven, I.: Simulating peer disagreements. Stud. Hist. Philos. Sci. Part A 41(2),
148–157 (2010)

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77,
321–358 (1995)

8. Gabbriellini, S., Torroni, P.: A new framework for ABMs based on argumen-
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Abstract. This paper puts forward a generalization of the account of
pooling information – offered by standard epistemic logic – based on
intersection of sets of possible worlds. Our account is based on infor-
mation models for substructural logics and pooling is represented by
fusion of information states. This approach yields a representation of
pooling related to structured communication within groups of agents. It
is shown that the generalized account avoids some problematic features
of the intersection-based approach. Our main technical result is a sound
and complete axiomatization of a substructural epistemic logic with an
operator expressing pooling.

1 Introduction

Alice is visiting her friends, Bob and Cathy. She needs to get to the train station
now, and the only option is to take a bus. Alice is not familiar with the bus
routes. Bob tells her that it is best to take the bus no. 25, get off at the Main
Square and change lines there. However, he does not remember the no. of the
connecting line. Cathy does not know this either (she rather bikes), but she takes
a look the public transport mobile application and learns that the right bus to
take at the Main Square is no. 17.

The information provided by Bob and Cathy needs to be pooled together to
be helpful for Alice. Similar situations arise on a daily basis. In order to perform
even the most rudimentary tasks, agents need to pool information coming from a
multitude of sources. While communicating with others, agents pool the received
information with the information they already have and possibly send the results
further. A good model of pooling is therefore crucial for modelling deliberations,
actions and interactions of agents, be they human or artificial.

In epistemic logic the standard representation of information is a set of pos-
sible worlds [1]. Information available to an agent (her information state) is
modelled as a set of possible worlds “accessible” to the agent [2]. Pooling infor-
mation states or pieces of information in general is represented by intersection of
the corresponding sets. This paper puts forward a generalization of the standard
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model. Our account, motivated by some unintuitive features of the standard
framework, is based on information models for substructural logics.1 Pooling is
modelled by fusion of information states, a binary operation that generalizes
intersection. This approach yields a more fine-grained representation of pool-
ing; one that allows to model, for example, structured communication within
groups of agents (“structured pooling”). Our main technical result is a sound
and complete axiomatization of a substructural epistemic logic with an operator
expressing outcomes of structured pooling.

Section 2 motivates our approach in more detail. Section 3 introduces the
semantics based on information models and Sect. 4 extends the semantics by
modalities representing outcomes of structured pooling; our main technical
result is established in this section as well. Section 5 shows that the standard
intersection-based model is a special case of our framework. Section 6 concludes
the paper.

2 Motivation

In general, we may see information states and pieces of information as elements
of a partially ordered set, with x ≤ y meaning that x supports y. Equivalently,
x ≤ y means that x “extends” y as x ≤ y iff every z supported by y is supported
by x. Information pooling can be represented by a binary operation; let us denote
as x · y the result of pooling x with y. The representation of information by sets
of possible worlds combined with the representation of information pooling in
terms of intersection then corresponds to a special case of this framework where
the poset at hand is a subset-ordered system of sets closed under intersection.

This special case is intuitively objectionable on several grounds. Firstly, the
intersection-based model is monotonic; x pooled with y, i.e. x ∩ y, extends both
x and y. This means that support is irrevocable (every piece of information
supported by x or y remains supported).

Example 1. As a counterexample to monotonicity, let us consider the following
situation. Assume that Ann had believed that her boyfriend David is an honest
man (Ann’s information state at some point in time, x, supports the information
that David is honest, h). Then she dropped that belief as the result of the
conversation with Bob who told her that David had an affair with Cathy (the
result of pooling x with Bob’s information state, y, does not support h; we may
assume for the sake of simplicity that it supports ¬h).

The standard model would represent the situation incorrectly; Ann would
believe that David is honest and that he had an affair with Cathy at the same
time.

A related feature of the standard model is that, if x is inconsistent with y (i.e.
x ∩ y = ∅), then the result of pooling x with y is the empty set. Hence, pooling

1 We do not have space to provide an outline of substructural logics. We refer the
reader to [7,9,10].
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any pair of inconsistent pieces of information gives the same result, and this
result supports every piece of information (this feature is known as explosion).

Example 2. Let us consider the following counterexample to explosion. Assume
that Ann believes that she has free will and that free will is incompatible with
physical determinism. Then she talks to Bob who persuades her that the physical
world is deterministic. However, as it sometimes happens, she does not aban-
don the belief that she has free will. This means that the system of her beliefs
is inconsistent, but not necessarily that the system supports any information
whatsoever. She might hold inconsistent beliefs abut free will without being a
right-wing extremist.

A feature of the standard model that comes into play here is that support is
closed under classical consequence which validates ex falso quodlibet.

Monotonicity and explosion can be avoided by generalizing the standard
model so that (i) a pooling operation is used such that x · y ≤ x does not hold
in general; (ii) mutual inconsistency of x and y is not modelled by x · y = 0,
where 0 is a trivially inconsistent piece of information; (iii) the support relation
between pieces of information is not closed under classical consequence.

In what follows, we provide such a model. Models of this kind are offered,
for instance, by various versions of operational semantics for substructural logics
dating back to [14]. A more complete formulation was provided by Došen [3] and
recently by Punčochář [8]. We build on the latter kind of model, extending it
with modalities expressing structured communication within groups of agents. To
motivate the introduction of such modalities, let us take a look at the connection
between the standard model of pooling and communication within groups of
agents.

A widespread intuitive interpretation of the standard model of pooling is that⋂
a∈G xa is the information state the members of a group G (having information

states xa for a ∈ G) would end up with after communicating with each other.2

From the perspective of this interpretation, the standard framework represents
a very special kind of communication within a group of agents, one in which
agents pool all their information instantenously and every piece of information
shared by each agent is equally considered. This is not how communication within
groups usually works. Imagine an office or a research team; members of such
groups may exchange partial information sequentially (e.g. Ann talks to Bob
and then to Cathy) and some information may not be considered at all (e.g.

2 For example, “A group has distributed knowledge of a fact ϕ if the knowledge of
ϕ is distributed among its members, so that by pooling their knowledge together
the members of the group can deduce ϕ, even though it may be the case that no
member of the group individually knows ϕ.” [4, p. 3]. This interpretation suffers from
well-known problems [5,11,16]; we point out some additional ones. Hence, our paper
can be seen as providing an additional argument against considering the standard
model to be a good model of communication-related pooling. In the future, we plan
to study the “full communication principle” of [5,11] and the dynamic approach of
[16] in the context of our framework.
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information that contradicts a belief that an agent is not willing to give up).
The structure of such communication scenarios is often critical when it comes
to the outcome of communication.

Before developing this point, we introduce some notation. We may represent
the (hypothetical) communication scenario of Ann talking to Bob and then to
Cathy (about some issue) by the expression (a ∗ b) ∗ c. “Communication within
group G = {a, b, c}” can be seen as being ambiguous between (a∗ b)∗c, (a∗c)∗ b
etc. Alternatively, the different expressions are related to different ways how
agents in G can communicate with each other. If x, y, z are information states
of a, b and c, respectively, then the outcome of (a ∗ b) ∗ c should be related to
the structured pooling resulting in (x · y) · z. When a more specific formulation
is preferred, we may say that (x · y) · z represents a’s information state after the
scenario (a ∗ b) ∗ c has been realized.

It turns out that, given the link between communication scenarios and pool-
ing, some algebraic properties of intersection are problematic. Take commuta-
tivity and associativity, for example.3

Example 3. Assume that Ann has not yet formed an opinion about a new col-
league, Bob. She has the tendency to accept the first strong opinion she hears
from others. Cathy likes Bob very much but David does not like him at all.
When it comes to her eventual opinion about Bob, it is obviously important to
whom she talks first.

In general, assume that a’s information state is partial with respect to p (it
supports neither p nor ¬p), b’s state supports p and c’s state supports ¬p. Assume
that when communicating with other agents, a accepts only information that is
consistent with her state. Now if a communicates with b and then with c – that is
scenario of the type (a ∗ b) ∗ c – then her resulting state supports p; if a commu-
nicates with c and then with b – that is scenario of the type (a ∗ c) ∗ b – her state
supports ¬p.

Example 4. Assume that Cathy has read recently in a newspaper that Ms. X,
Bob’s favourite politician, obtained some money from Mr. Y, a man involved
in organized crime. Consider two communication scenarios about the credibility
of Ms. X. In the first scenario, which is of the type a ∗ (b ∗ c), Cathy first talks
to Bob and Bob is subsequently discussing the same issue with Ann. Since Bob
trusts Ms. X, he does not believe the information conveyed by Cathy about the
problematic money from Mr. Y, and he does not pass this information to Ann.
In the second scenario, which is of the type (a ∗ b) ∗ c, Ann is discussing Ms.
X’s credibility with Bob first and subsequently with Cathy. Unlike in the first
scenario, she ends up believing that Ms. X obtained some money from Mr. Y,
which she learned from Cathy.

These examples show that scenarios (a∗b)∗c and (a∗c)∗b, and (a∗b)∗c and
a ∗ (b ∗ c), respectively, might actually lead to different outcomes. In addition,
some communication scenarios may be more effective or leading to more desirable

3 For associativity, see also [13].
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results than others. It makes sense, therefore, to extend the formal language
at hand with modalities indexed by communication scenarios; e.q. �(a∗b)∗cα
meaning that, after (a ∗ b) ∗ c is realized, a’s information state supports α. This
language can then be used to formalize reasoning of agents about communication
scenarios. Such reasoning is, of course, a vital part of reasoning about agent
interactions.

Example 5. Going back to Example 1, we may assume that if David’s informa-
tion state supports �ah and �a∗b¬h, then he would try to prevent a ∗ b from
realizing.

As another example, consider the situation where a team leader’s information
state supports both �(a∗b)∗cα and �a∗cα, where α is necessary for a to perform
some task. It is then reasonable for the team leader to suggest a ∗ c and not
(a ∗ b) ∗ c as the former requires less resources (team members, time) than the
former to reach the same goal (a’ having information α).

Our framework, introduced in the next two sections, combines a generaliza-
tion of the intersection-based model of pooling, based on operational substruc-
tural semantics, with a modal language allowing to express reasoning about
hypothetical communication scenarios.

3 Information Models

In this section, we reconstruct the semantic framework for substructural logics
introduced in [8] and summarize some of the results needed in the next section.
For the sake of brevity, the results are presented without proofs; the interested
reader is referred to [8].

Let us fix a set of atomic formulas At. The variables p, q, . . . range over
elements of At. An information model is a structure of the following type:

M = 〈S,+, ·, 0, 1, C, V 〉.
S is an arbitrary nonempty set, informally construed as a set of information
states4; + and · are binary operations on S (addition and fusion of states); 0
and 1 are two distinguished elements of S (the trivially inconsistent state and
the logical state); and V is a valuation, that is a function assigning to every
atomic formula a subset of S. The following conditions are assumed:

1. 〈S,+, 0〉 is a join-semilattice with the least element 0, i.e. + is idempotent,
commutative and associative, and x + 0 = x for every x ∈ S. The semilattice
determines an ordering of S: a ≤ b iff a + b = b.

2. The operation · is distributive in both directions over +, i.e. x · (y + z) =
(x · y) + (x · z) and (y + z) · x = (y · x) + (z · x)

3. 1 · x = x and 0 · x = 0
4 By “information states” we mean bodies of information that might be “available to”

agents, but we do not assume that every information state is an information state
of an agent.
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4. C satisfies the following conditions: (a) there is no x such that 0Cx, (b) if
xCy, then yCx, (c) (x + y)Cz iff xCz or yCz

5. V assigns to every atomic formula an ideal in M, that is a subset I ⊆ S
satisfying: (a) 0 ∈ I, (b) x + y ∈ I iff x ∈ I and y ∈ I

Information models derive from Došen’s grupoid models for substructural logics
[3]. We extend Došen’s models with 0, allowing us to have a simpler semantic
clause for disjunction. Moreover, these structures are enriched with the compat-
ibility relation C that allows us to introduce a paraconsistent negation avoiding
the principle of explosion (ex falso quotlibet).5

Informally, information states x ∈ S represent bodies of information that can
be said to support specific pieces of information. For example, the beliefs of an
agent or the evidence produced during a criminal trial can be seen as bodies
of information supporting information that is not explicitly part of the respec-
tive body. The state 1 represents the “logical” state supporting all the logically
valid formulas and 0 represents the trivially inconsistent state supporting every
formula. The relation C represents compatibility between information states.
Informally, xCy means that y does not support any information that contra-
dicts the information supported by x; for more details, see [6]. The operation +
yields the common content of the states x, y. The state x+ y supports any piece
of information supported by both x and y. The operation + will correspond to
intersection of the sets of supported formulas (see the construction of canoni-
cal models in this section). Dually, in the specific models in which the states x
and y are represented as sets of possible worlds, + corresponds to union (see
Sect. 5). The operation · yields a fusion x · y of information states x, y. Impor-
tantly, a fusion of two information states may involve far more (or less) than the
intersection of sets of possible worlds. None of the following are assumed:

– x · y ≤ x (monotonicity)
– if not xCy, then x · y = 0 (explosion)
– (x · y) · z = (x · z) · y (commutativity)
– x · (y · z) = (x · y) · z (associativity)

Formulas of the language L are defined as follows:

α ::= p | ⊥ | t | ¬α | α → α | α ∧ α | α ⊗ α | α ∨ α.

With respect to a given information model M a relation of support �M between
information states from S and L-formulas is defined recursively by the following
clauses (we drop the subscript):

– x � p iff p ∈ V (x).
– x � ⊥ iff x = 0.
– x � t iff x ≤ 1.
– x � ¬α iff for any y, if yCx then y � α.
– x � α → β iff for any y, if y � α, then x · y � β.
– x � α ∧ β iff x � α and y � β.
5 An alternative extension of Došen’s semantics is due to Wansing [15] who adds to

Došen’s models a constructive negation based on positive and negative valuation.
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– x � α ⊗ β iff there are y, z such that y � α, z � β, and x ≤ y · z.
– x � α ∨ β iff there are y, z such that y � α, z � β, and x ≤ y + z.

If x � α, we say that x supports α. The proposition ||α||M expressed by α in
M is the set of states of M that support α.

Theorem 1. For any information model M and any L-formula α, ||α||M is an
ideal in M.

Accordingly, y ≤ x only if every α supported by x is supported by y (“informa-
tion state y extends x”). We say that an L-formula α is valid in an information
model M if the logical state 1 supports α in M. An L-formula is valid in a
class of information models if it is valid in every model in the class. Let α be an
L-formula and Δ a nonempty set of L-formulas. We say that α is semantically
FL-valid (�FL α) if α is valid in every information model. α is a semantic FL-
consequence of Δ (Δ �FL α) if for any state x of any information model, if x
supports every formula from Δ, then x supports α.

Lemma 1. An implication α → β is valid in M iff, for all x ∈ S, x � α only
if x � β.

The logic of all information models is a non-distributive, non-associative,
and non-commutative version of Full Lambek calculus with a paraconsistent
negation. The logic can be axiomatized by a Hilbert-style axiomatic system
(that we call FL) containing the following axiom schemata and inference rules:

A1 α → α
A2 ⊥ → α
A3 (α ∧ β) → α
A4 (α ∧ β) → β
A5 α → (α ∨ β)
A6 β → (α ∨ β)
A7 (α ⊗ (β ∨ γ)) → ((α ⊗ β) ∨ (α ⊗ γ))

R1 α, α → β/β
R2 α → β/(β → γ) → (α → γ)
R3 γ → α, γ → β/γ → (α ∧ β)
R4 α → γ, β → γ/(α ∨ β) → γ
R5 α → ¬β/β → ¬α
R6 α → β/(γ ⊗ α) → (γ ⊗ β)
R7 α → (β → γ)/(α ⊗ β) → γ
R8 (α ⊗ β) → γ/α → (β → γ)
R9 t → α/α
R10 α/t → α

Lemma 2. Every axiom of FL is semantically FL-valid and all the rules pre-
serve semantic FL-validity in all information models.
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A proof in the system FL is defined in the standard way as a finite sequence of L-
formulas such that every formula in the sequence is either an instance of an axiom
schema, or a formula that is derived by applying an inference rule to formulas
that occur earlier in the sequence. We say that α is FL-provable (�FL α), if
there is a proof β1, . . . , βn such that α = βn. The expression α1, . . . , αn �FL β
is an abbreviation for �FL (α1 ∧ . . . ∧ αn) → β, and if Δ is a set of L-formulas,
Δ �FL β means that there are α1, . . . , αn ∈ Δ such that α1, . . . , αn �FL β.

Definition 1. A set of L-formulas λ is a logic over FL iff (a) λ contains all the
axioms of FL, (b) λ is closed under the rules of FL, and (c) λ is closed under
uniform substitutions of L-formulas.

For any logic over FL we construct a canonical model. For a given logic λ the
canonical model of λ is constructed out of λ-theories.

Definition 2. Let λ be a logic over FL. A nonempty set of L-formulas Δ is an
λ-theory if it satisfies the following two conditions:

(a) if α ∈ Δ and β ∈ Δ, then α ∧ β ∈ Δ,
(b) if α ∈ Δ and α → β ∈ λ, then β ∈ Δ.

Definition 3. Let λ be a logic over FL. The canonical model of λ is the struc-
ture Mλ = 〈Sλ,+λ, ·λ, 0λ, 1λ, Cλ, V λ〉, where

– Sλ is the set of all λ-theories,
– Γ +λ Δ = Γ ∩ Δ,
– Γ ·λ Δ = {α; for some γ ∈ Γ and δ ∈ Δ, (γ ⊗ δ) → α ∈ λ},
– 0λ is the set of all L-formulas,
– 1λ = λ,
– ΓCλΔ iff for all α, if ¬α ∈ Γ , then α /∈ Δ,
– Γ ∈ V λ(p) iff p ∈ Γ .

Theorem 2. Mλ is an information model.

Theorem 3. For any L-formula α and λ-theory Γ , the following holds:
Γ � α in Mλ iff α ∈ Γ .

Assume that λ is given by an axiomatic system that is sound with respect to a
class of information models that contains the canonical model of λ. The following
direct corollary of Theorem 3 guarantees that the system must be also complete
with respect to the class.

Corollary 1. α ∈ λ iff α is valid in Mλ.

In particular, using Lemma 2 and Corollary 1 we obtain completenes of FL.

Corollary 2. Δ �FL β iff Δ �FL β.

Since the construction leads to strong completeness of FL, we obtain compact-
ness immediately.

Corollary 3. If Δ �FL β, then there is a finite Γ ⊆ Δ such that Γ �FL β.
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4 Communication Models

This section extends information models by a representation of information
about the results of communications scenarios.

Let us fix a set of expressions Ag, representing a set of agents. We will define
inductively a set of expressions CS (Ag) (structured communication scenarios
over Ag), or just CS , in the following way: 1. every a ∈ Ag is in CS . 2. if G
and H are in CS , then the expression (G ∗ H) is also in CS . 3. Nothing else is
in CS . A communication scenario can be viewed as a binary tree whose leaves
represent agents. The principal agent of G ∈ CS is the agent denoted by the
leftmost occurrence of an agent variable in G. For example, the principal agent
of both a ∗ (b ∗ c) and (a ∗ b) ∗ c is a.

Variables G,H, . . . range over elements of CS . A communication model is
any tuple

M = 〈S,+, ·, 0, 1, C, {fG}G∈CS , V 〉,
where M = 〈S,+, ·, 0, 1, C, V 〉 is an information model and {fG}G∈CS is a col-
lection of unary functions on S satisfying for every G,H ∈ CS :

(f0) fG(0) = 0
(f+) fG(x + y) = fG(x) + fG(y)
(f ·) fG∗H(x) ≤ fG(x) · fH(x)

Informally, fa(x) is the information state of agent a, according to the body
of information x; see [12]. fa∗b(x) is the information state of a, according to
x, after the communication scenario a ∗ b is realized.6 In general, fG(x) is the
information state of the principal agent of scenario G after G has been carried
out, according to x. The result of pooling the information of the principal agent
of G after realizing G with the information state of the principal agent of H
after realizing H is represented by fG∗H . We call this the information state of
the scenario G ∗ H.

Our three “frame conditions” represent the following informal assumptions
about communication scenarios. First, every G has an inconsistent information
state according to 0, (f0). This is straightforward as 0 supports every piece of
information, i.e. it supports every piece of information about every G. Second,
the information state of G according to the common content of x and y is
the common content of fG(x) and fG(y), (f+). This is a consequence of the
interpretation of x + y as the intersection of the information provided by x and
y. Third, the information state of G ∗ H according to x extends the fusion of
fG(x) and fH(x), (f ·). This represents the fact that structured pooling is based
on fusion of information states.

6 The body of information x consists of information on a number of topics, including
agents a and b, and how they react to receiving specific information in communi-
cation. fa∗b(x) is the information constituting a’s information state after receiving
information from b, according to what x says about a and b.
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Note, however, that on the level of information states we do not define pooling
as fusion, that is we do not require

(f=) fG∗H(x) = fG(x) · fH(x)

The reason will become clear in the next section where we explain how our frame-
work generalizes the standard intersection-based model of pooling (i.e. epistemic
logic with distributed knowledge). A spoiler: in the particular cases where our
models correspond to standard models, the information states are sets of possi-
ble worlds, ∗ is union and · is intersection. In these cases (f=) naturally fails; it
is only the case that fG∪H(x) ⊆ fG(x) ∩ fH(x).

The language L� is obtained by adding to L a modality �G for every com-
munication scenario G:

α ::= p | ⊥ | t | ¬α | α → α | α ∧ α | α ⊗ α | α ∨ α | �Gα

The semantic clauses for the language L� extend the semantic clauses for L with
the following clause for the group modalities:

x � �Gα iff fG(x) � α.

The following result extends Theorem 1. The result shows that complex for-
mulas and atomic formulas express propositions of the same kind. This will
guarantee that the logic of all communication models is closed under uniform
substitution.

Theorem 4. For any communication model M and any L�-formula α, ||α||M
is an ideal in M.

Proof. Let M be a communication model and α an L�-formula. We have to
show that ||α||M is an ideal in M. This can be proved by induction. We will
show the inductive step for �G. The inductive assumption is that for a given
L�-formula β, ||β||M is an ideal in M. We will show that ||�Gβ||M is also an
ideal. First, since 0 � β and fG(0) = 0, we have fG(0) � β, i.e. 0 � �Gβ. Second,
x+y � �Gβ iff fG(x+y) � β iff fG(x)+fG(y) � β iff fG(x) � β and fG(y) � β
iff x � �Gβ and y � �Gβ.

Let α be an L�-formula and Δ a nonempty set of L�-formulas. We say that α
is semantically PFL-valid (�PFL α) if α is valid in every communication model;
α is a semantic PFL-consequence of Δ (Δ �PFL α) if for any state x of any
communication model, x supports every formula from Δ only if x supports α.

The axiomatic system PFL is given by axioms and rules of FL plus the
axiom A8, and the rules R11 and R12.

A8 (�Gα ∧ �Gβ) → �G(α ∧ β)
R11 α → β/�Gα → �Gβ
R12 (α ⊗ β) → γ/(�Gα ∧ �Hβ) → �G∗Hγ.

The following claim extends Lemma 2.

Lemma 3. Every axiom of PFL is semantically PFL-valid and all the rules
preserve semantic PFL-validity in all communication models.
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Proof. (a) Let x be an arbitrary state of a communication model such that
x � �Gα ∧ �Gβ. Then fG(x) � α and fG(x) � β, i.e. fG(x) � α ∧ β. So
x � �G(α ∧ β). It follows that 1 � (�Gα ∧ �Gβ) → �G(α ∧ β), so we have
proved that A8 is semantically PFL-valid.

(b) Assume that 1 � α → β in an arbitrary communication model. Let x be
a state of that model such that x � �Gα. Then fG(x) � α and it follows from
our assumption that fG(x) � β. So x � �Gβ. It follows that 1 � �Gα → �Gβ,
so we have proved that R11 preserves semantic PFL-validity.

(c) Assume that in a communication model M, 1 � (α ⊗ β) → γ. We will
prove that 1 � (�Gα ∧ �Hβ) → �G∗Hγ. Assume x � �Gα ∧ �Hβ. Then
fG(x) � α and fH(x) � β. It follows that fG(x) · fH(x) � α ⊗ β, and so
fG(x) · fH(x) � γ. Since fG∗H(x) ≤ fG(x) · fH(x), it holds fG∗H(x) � γ, due to
Theorem 4. As a consequence, x � �G∗Hγ.

Definition 4. A set of L�-formulas λ is called a logic over PFL if the following
three conditions are satisfied: (a) λ contains all the axioms of PFL, (b) λ is
closed under the rules of PFL, (c) λ is closed under uniform substitutions of
L�-formulas.

Theories related to logics over PFL are defined in the same way as theories
related to logics over FL (see Definition 2) with the difference that if λ is a
logic over PFL then λ-theories are sets of L�-formulas. The construction of the
canonical model for a given logic over PFL extends the construction from the
previous section.

Definition 5. Let λ be a logic over PFL. The canonical model of λ is the struc-
ture Mλ = 〈Sλ,+λ, ·λ, 0λ, 1λ, Cλ, {fλ

G}G∈CS , V λ〉, where Sλ,+λ, ·λ, 0λ, 1λ, Cλ

and V λ are defined as in Definition 3 and for any G ∈ CS and any λ-theory Γ
we define:

fλ
G(Γ ) = {α ∈ L�;�Gα ∈ Γ}.

Let us fix a logic λ over PFL. We will write just S, +, ·, 0, 1, C, fG, V instead
of Sλ, +λ, ·λ, 0λ, 1λ, Cλ, fλ

G, V λ.

Lemma 4. If Γ is a λ-theory, then fG(Γ ) is also a λ-theory.

Proof. (a) Assume that α ∈ fG(Γ ) and β ∈ fG(Γ ), i.e. �G(α) ∈ Γ and �G(β) ∈
Γ . Since Γ is a λ-theory, �Gα ∧ �Gβ ∈ Γ . Since λ contains all the axioms of
PFL, �G(α ∧ β) ∈ Γ , due to A8. It follows that α ∧ β ∈ fG(Γ ).

(b) Assume that α ∈ fG(Γ ) and α → β ∈ λ. Then �Gα ∈ Γ and since λ is
closed under the rules of PFL, �Gα → �Gβ ∈ λ, due to R11. It follows that
�Gβ ∈ Γ . So, β ∈ fG(Γ ).

Lemma 5. For any λ-theories Γ,Δ the following conditions are satisfied:

(a) fG(0) = 0,
(b) fG(Δ + Γ ) = fG(Δ) + fG(Γ ),
(c) fG∗H(Δ) ≤ fG(Δ) · fH(Δ).
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Proof. The case (a) is immediate. (b) We are proving fG(Δ∩Γ ) = fG(Δ)∩fG(Γ ).
It holds that α ∈ fG(Δ ∩ Γ ) iff �Gα ∈ Δ ∩ Γ iff �Gα ∈ Δ and �Gα ∈ Γ iff
α ∈ fG(Δ) and α ∈ fG(Γ ) iff α ∈ fG(Δ) ∩ fG(Γ ).

(c) We are proving fG(Δ) · fH(Δ) ⊆ fG∗H(Δ). Assume α ∈ fG(Δ) · fH(Δ).
That means that there are β ∈ fG(Δ) and γ ∈ fH(Δ) such that (β⊗γ) → α ∈ λ.
The rule R12 gives us (�Gβ ∧ �Hγ) → �G∗Hα ∈ λ. Moreover, �Gβ ∈ Δ and
�Hγ ∈ Δ, so �Gβ ∧ �Hγ ∈ Δ. It follows that �G∗Hα ∈ Δ, and, consequently,
α ∈ fG∗H(Δ).

Lemmas 4 and 5 lead to the following strengthening of Theorem 2.

Theorem 5. Mλ is a communication model.

Theorem 5 allows us to express the following “truth-lemma” as a meningful state-
ment. In addition, we will show that the statement is true.

Theorem 6. For any L�-formula α and any λ-theory Γ :

Γ � α in Mλ iff α ∈ Γ .

Proof. We can proceed by induction on the complexity of α. The base of the
induction and the inductive steps for ¬, →, ∧, ⊗, and ∨ are the same as in the
proof of Theorem 3. Let us consider the case of �G. The induction hypothesis
is that the claim holds for an L�-formula β. To see that then the claim holds
also for �Gβ, we can observe that the following equivalences hold: Γ � �Gβ iff
fG(Γ ) � β iff β ∈ fG(Γ ) iff �Gβ ∈ Γ .

Corollary 4. α ∈ λ iff α is valid in Mλ.

Corollary 5. Δ �PFL β iff Δ �PFL β.

Corollary 6. If Δ �PFL β, then there is a finite Γ ⊆ Δ such that Γ �PFL β.

5 The Standard Framework as a Special Case

We show in this section that every model of standard epistemic logic with dis-
tributed knowledge (i.e. every standard intersection-based model) corresponds
to a particular communication model. The modality �G will boil down to stan-
dard distributed knowledge in these specific cases. The language LD is a basic
language of classical propositional logic enriched with a modality of distributed
knowledge for every set of agents A ⊆ Ag:

α ::= p | ¬α | α ∧ α | DAα.

A standard model is a tuple M = 〈W, {Ra}a∈Ag, V 〉, where W is a non-empty
set (of possible worlds), Ra : W → P(W ), for every a ∈ Ag, and V : At → P(W ).
Moreover, for every set of agents A ⊆ Ag, we define a function RA : W → P(W )
in the following way:

RA(w) =
⋂

a∈A Ra(w).
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In a given standard model 〈W,R, V 〉, a relation of truth between worlds and
LD-formulas is defined in the following way:

– w � p iff w ∈ V (p),
– w � ¬α iff w � α,
– w � α ∧ β iff w � α and w � β,
– w � DAα iff for every v ∈ RA(w), v � α.

An LD-formula is valid in a standard model iff it is true in every world of that
model. We can assign to every communication scenario G a set of agents s(G)
by the following recursive equations:

s(a) = {a}, for every a ∈ Ag, and s(G ∗ H) = s(G) ∪ s(H).

So, s(G) is the set of agents occurring in G. Now we will construct for any
given standard model M = 〈W, {Ra}a∈Ag, V 〉 a communication model Mi =
〈S,+, ·, 0, 1, C, {fG}G∈CS , V †〉 in the following way:

– S = P(W ),
– x + y = x ∪ y and x · y = x ∩ y,
– 0 = ∅ and 1 = W ,
– xCy iff x ∩ y �= ∅,
– fG(x) =

⋃
w∈x Rs(G)(w),

– x ∈ V †(p) iff x ⊆ V (p).

Lemma 6. For all M, Mi is a communication model.

Proof. We will verify only that the three conditions for the group functions are
satisfied. In Mi these conditions boil down to the following claims:

–
⋃

w∈∅ RA(w) = ∅,
–

⋃
w∈x∪y RA(w) = (

⋃
w∈x RA(w)) ∪ (

⋃
w∈y RA(w)),

–
⋃

w∈x RA∪B(w) ⊆ (
⋃

w∈x RA(w)) ∩ (
⋃

w∈x RB(w)).

The first two claims are obvious. We will prove the third one. Assume that
v ∈ ⋃

w∈x RA∪B(w). Then there is w ∈ x such that v ∈ RA∪B(w), i.e. for all
a ∈ A ∪ B, v ∈ Ra(w). It follows that there is w ∈ x such that for all a ∈ A,
v ∈ Ra(w), and there is w ∈ x such that for all a ∈ B, v ∈ Ra(w). In other words,
there is w ∈ x such that v ∈ RA(w), and there is w ∈ x such that v ∈ RB(w),
i.e. v ∈ (

⋃
w∈x RA(w)) ∩ (

⋃
w∈x RB(w)).

Now it can be explained why we did not require fG∗H(x) = fG(x) · fH(x). This
equation does not hold even in the most simple models generated by standard
epistemic models. In particular, it does not generally hold that

(
⋃

w∈x RA(w)) ∩ (
⋃

w∈x RB(w)) ⊆ ⋃
w∈x RA∪B(w).

For the sake of simplicity, assume that A = {a}, B = {b}, and x = {w1, w2}.
Consider for example the situation described by this table:
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Ra Rb R{a,b}
w1 {w1, v} {w1} {w1}
w2 {w2} {w2, v} {w2}

In this situation, v ∈ (
⋃

w∈x RA(w)) ∩ (
⋃

w∈x RB(w)) but v /∈ ⋃
w∈x RA∪B(w).

(Nevertheless, (f=) holds in Mi for singleton states x.) Dually speaking, suppose
that v is the only world in which p is false. Then, the state fA∪B(x) = {w1, w2}
supports the information that p but the state fA(x) ∩ fB(x) = {v, w1, w2} does
not support p.

As the last step, let us introduce a recursive translation tr of L� into LD.
For every atomic formula p, we define tr(p) = p. Moreover, tr(⊥) = q ∧ ¬q and
tr(t) = ¬(q ∧ ¬q), for a selected atomic formula q. The translation operates on
complex formulas according to these equations:

tr(¬α) = ¬tr(α) tr(�Gα) = Ds(G)tr(α)
tr(α ∧ β) = tr(α) ∧ tr(β) tr(α ⊗ β) = tr(α) ∧ tr(β)
tr(α → β) = ¬(tr(α) ∧ ¬tr(β)) tr(α ∨ β) = ¬(¬tr(α) ∧ ¬tr(β))

Theorem 7. For every M, every set x of its worlds, and every L�-formula α,
the following holds:

x � α in Mi iff for all w ∈ x, w � tr(α) in M.

Proof. Induction on the complexity of α. We will show just the case of �G. As
the induction hypothesis we assume that our claim holds for an L�-formula β.
The following equivalences show that then it must hold also for �Gβ.

x � �Gβ iff fG(x) � β
iff

⋃
w∈x Rs(G)(w) � β

iff for all v ∈ ⋃
w∈x Rs(G)(w), v � tr(β)

iff for all w ∈ x and for all v ∈ Rs(G)(w), v � tr(β)
iff for all w ∈ x, w � Ds(G)tr(β)
iff for all w ∈ x, w � tr(�Gβ).

Corollary 7. For every L�-formula α, tr(α) is valid in M iff α is valid in Mi.

6 Conclusion

In this paper, we have formulated a generalization of the standard semantics for
distributed knowledge. The standard modality of distributed knowledge/belief
that is indexed by sets of agents has been generalized to an epistemic modality
which is relative to structured communication scenarios. Our general framework
allows to add this modality to a large class of non-classical logics extending a
weak, non-associative, non-distributive and non-commutative Full Lambek Cal-
culus with a paraconsistent negation.
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Abstract. The concept of “argumentative consequence” is introduced,
involving only the attack relations in Dung-style abstract argumentation
frames. Collections of attack principles of different strength, referring to
the logical structure of claims of arguments, lead to new characteriza-
tions of classical and nonclassical consequence relations. In this manner
systematic relations between structural constraints on abstract argumen-
tation frames, sequent rules, and nondeterministic matrix semantics for
corresponding calculi emerge.

Keywords: Argumentation · Sequent calculus · Nondeterministic
matrices

1 Introduction

In a seminal paper Dung [7] demonstrated that various concepts of nonmonotonic
reasoning, logic programming, and game theory can be modeled profitably using
so-called abstract argumentation frameworks. The latter are just directed graphs,
where the vertices are identified with arguments and the edges represent an
attack relation between arguments. A lot of research is devoted to different
‘semantics’ of abstract argumentation and to corresponding reasoning mecha-
nisms as documented, e.g., in [5,15]. While the technical progress as well as
application oriented developments in this area are impressive, certain founda-
tional issues, in particular regarding logical principles guiding the search for
consequence relations that lurk behind frameworks of (explicit and implicit)
arguments, remain less well explored.

We are interested in “logics of argumentation”. Of course, quite different con-
cepts can be associated with this term. Here, we refer to consequence relations
extracted solely from the structure of attack relations, thus providing an alter-
native semantics of formal logic that does not involve Tarski’s classic concept of
truth in a model, but rather takes (potential) counter-arguments as central. We
call a proposition G an argumentative consequence of propositions F1, . . . , Fn

if every argument that attacks G also attacks at least one of the premises Fi

(see Sect. 4). Admittedly, the identification of arguments with single proposi-
tions, that is at play here, calls for further explanation. We take up this issue
c© Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 422–437, 2017.
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in Sect. 2, but right away declare that by a semi-abstract argumentation frame
we mean a directed graph, where each vertex carries a propositional formula
that can be understood as the claim of an argument and where the edges repre-
sent attacks between corresponding arguments. In other words, a semi-abstract
argumentation frame is just like an ordinary abstract argumentation frame in
the sense of Dung [7], where additionally each vertex is labeled by a formula
representing its claim.

The endeavor to extract a consequence relation from given semi-abstract
argumentation frames gets off the ground by realizing that the logical structure
of (claims of) arguments poses constraints on the structure of attack relations.
For example, it seems natural to stipulate that every argument that attacks
an argument with claim F also attacks (at least implicitly) all arguments that
feature the stronger claim F ∧ G. Similarly, if an argument X attacks a dis-
junctive claim F ∨ G then it seems reasonable to assume that X also attacks
any (bolder) argument with either claim F or claim G. Note that the mentioned
“attack principles” are intuitively justified, independently of whether we inter-
pret claims classically, intuitionistically or according to an even weaker logic.
We discuss such principles in Sect. 3 and investigate in the rest of the paper the
prospects of extracting a corresponding logic of argumentation. In particular, we
are interested in determining a collection of attack principles that yields classical
logic as the corresponding argumentative consequence relation. To this aim we
employ Gentzen’s classical sequent calculus LK [11] and relate its inference rules
to argumentation in a systematic manner in Sect. 5. Perhaps not surprisingly, it
turns out that some of the principles, that have to be imposed on the attack rela-
tion in order to induce classical consequence, are intuitively very demanding and
in fact unjustified in a specific sense, that will be made precise in Sect. 6. This
triggers the question whether a collection of attack principles, that are justifiable
intuitively as well as formally, gives raise to some interesting nonclassical logic.
A simple positive answer arises in Sects. 7 and 8 as a straightforward application
of the theory of canonical sequent calculi [3,4]: disregarding problematic attack
principles corresponds to a fragment of the classical sequent calculus in which
some of the logical rules are missing. The resulting logic can be characterized
by nondeterminstic matrices. In Sect. 9 we will hint at related literature, before
concluding with some questions for future research in Sect. 10.

2 Semi-abstract Argumentation

As already indicated, we look at arguments as logical propositions. Although one
can find several examples in the literature, where arguments indeed consist in
single (possibly logically complex) propositions (see, e.g., many articles in [15]),
it is more common to distinguish explicitly between the support and the claim of
an argument. Whereas the latter usually is indeed a single sentence, the support
may consist of several statements, rules, or even of small theories, including
default rules (see, e.g., [5]). Here we focus on semi-abstract argumentation, which
identifies claims of arguments with (interpreted) logical formulas, but ignores
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supports.1 More formally, let PV be an infinite set of propositional variables
and define the set of propositional formulas PL over PV by

F ::= F ∨ F | F ∧ F | F ⊃ F | ¬F | PV

where F and PV are used as meta-variables for formulas and propositional vari-
ables, respectively.

Definition 1. A semi-abstract argumentation frame (SAF) is a directed graph
(A, R→), where each vertex a ∈ A is labeled by a formula of PL, representing the
claim of argument a, and the edges (R→) represent the attack relation between
arguments.

Note that an SAF is like an ordinary abstract argumentation frame as introduced
by Dung [7], except for attaching a formula (its claim) to each argument. We
say that F attacks G and write F−→G if there is an edge from an argument
labeled by F to one labeled by G.2 But the reader should be aware of the fact
that, in general, F−→G stands for “an argument with claim G is attacked by
some argument with claim F”. We abbreviate “not F−→G” by F �−→G.

Example 1. Consider the following statements:

– “The overall prosperity in society increases.” (P )
– “Warlike conflicts about energy resources arise.” (W )
– “The level of CO2 emissions is getting dangerously high.” (C)
– “Awareness about the need of environmental protection increases.” (E)

Consider an argumentation frame containing arguments, where the claims consist
in some of these statements or in some simple logical compounds thereof. Using
the indicated abbreviations and identifying vertices with theirs labels, a concrete
corresponding SAF SE = (A, R→) is given by A = {P,E,W,P ⊃ C,E∨C,P∧C}
and R→ = {E−→P ⊃ C, W−→E ∨ C, W−→P ∧ C, E ∨ C−→P}.

3 Logical Attack Principles

It seems reasonable to expect that an argument that attacks G also attacks
claims that logically entail G. In our notation, this amounts to the following
general attack principle:

(A) If F−→G and G′ |= G then F−→G′.

1 Of course, the idea to label arguments in an argumentation frame with formulas
is not new (see, e.g., [6,12,13]). We use the labels to highlight the logical form of
concrete claims, while abstracting away from their particular support or any specific
form of attack.

2 The same formula may occur as claim of different arguments. Thus we (implictly)
refer to occurrences of formulas, rather than to formulas themselves when talking
about attacks in a given SAF.
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Applied naively, principle (A) is problematic for at least two reasons. (1) We
have not specified which logic the consequence relation |= refers to. Classical
logic may be a canonical choice, but we should not dismiss weaker logics, that
are potentially more adequate in the context of defeasible reasoning, too quickly.
(2) Even for classical propositional logic deciding logical consequence is compu-
tationally intractable, in general. Arguably, a realistic model of argumentation
might insist on constraining (A) to arguments G that immediately follow from
G′ in some appropriate sense. This motivates our focus on principles that follow
already from simple and transparent instances of (A):

(A.∧) If F−→A or F−→B then F−→A ∧ B.
(A.∨) If F−→A ∨ B then F−→A and F−→B.
(A.⊃) If F−→A ⊃ B then F−→B.

These specific instances of (A) involve only very basic consequence claims, that
are already valid in minimal logic [16], i.e. in the positive fragment of intuition-
istic logic (and in fact in even weaker logics).

Proposition 1. If “ |= ” refers to minimal logic, then the general attack princi-
ple (A) entails the specific attack principles (A.∧), (A.∨), (A.⊃).

Proof. Immediate from the fact that A ∧ B |= A, A ∧ B |= B, A |= A ∨ B,
B |= A ∨ B, B |= A ⊃ B in minimal logic. �	

Principle (A.⊃) might be considered intuitively less obvious than (A.∧)
and (A.∨). Indeed, the above justification of (A.⊃) depends on the fact that
B |= A ⊃ B according to minimal logic and thus involves a logical principle
that may be disputed, e.g., from the point of view of “relevant entailment” (see
[8]). Therefore we prefer to replace (A.⊃) by the following attack principle:

(B.⊃) If F−→B and F �−→A then F−→A ⊃ B.

As we will see in Sects. 5 and 6, (B.⊃) relates to a basic inference principle
about implicative premises in logical consequence claims, that holds in a very
wide range of logics.

We have not yet specified any principle involving negation. Negation is often
defined by ¬F =df F ⊃ ⊥, where ⊥ is an atomic formula that signifies an ele-
mentary contradiction. But minimal logic treats ⊥ just like an arbitrary propo-
sitional variable and thus does not give rise to any specific attack principle for
negation. However the following principle seems intuitively plausible: If an argu-
ment attacks (an argument with claim) A then it does not simultaneously also
attack the negation of A. In symbols: dummy

(B.¬) If F−→A then F �−→¬A.

We will show in Sect. 8 that the (weak) attack principles mentioned so far give
raise to a logic that arises from dropping some logical rules from Gentzen’s
classical sequent calculus LK. But we are also interested in the question, which
(stronger) attack principles have to be imposed on semi-abstract argumentation
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frames in order to recover ordinary classical logic. To this aim we introduce the
following additional attack principles that are inverse to (A.∧), (A.∨), (B.⊃),
and (B.¬), respectively.

(C.∧) If F−→A ∧ B then F−→A or F−→B.
(C.∨) If F−→A and F−→B then F−→A ∨ B.
(C.⊃) If F−→A ⊃ B then F−→B and F �−→A.
(C.¬) If F �−→A then F−→¬A.

Conditions like (A.∧) seem to entail that the corresponding SAFs are infinite.
However, we may relativize the attack principles to sets of formulas Γ (usually
the set of claims of arguments of some finite argumentation frame). E.g.,

(A.∧) For every A,B, F ∈ Γ : F−→A or F−→B implies F−→A ∧ B,
if A ∧ B ∈ Γ .

In the following we will tacitly assume that attack principles are relativized
to some (finite) set of formulas that will always be clear from the context.

4 Argumentative Consequence

Viewing an argument attacking a certain claim F as a kind of counter-model
to F suggests the following definition of consequence, that, in contrast to usual
definitions of logical consequence, neither refers to truth values nor to interpre-
tations in the usual (Tarskian) sense.

Definition 2. F is an argumentative consequence of (the claims of) arguments
A1, . . . , An with respect to an SAF S (A1, . . . , An |=S

arg F ) if all arguments in
S that attack F also attack Ai for some i ∈ {1, . . . , n}.3 For a set of SAFs S
A1, . . . , An |=S

arg F if A1, . . . , An |=S
arg F for all S ∈ S.

To render this notion of consequence plausible from a logical perspective, the
underlying SAFs should be rich enough to contain (potential) arguments that
feature also the subformulas of occurring formulas as claims. Moreover, we want
these SAFs to satisfy at least some of our logical attack principles.

Definition 3. An SAF S is logically closed with respect to the set of formulas
Γ if all subformulas of formulas in Γ occur as claims of some argument in S.

Let AP be a set of attack principles, then F is an argumentative AP -
consequence of A1, . . . , An (A1, . . . , An |=AP

arg F ) if A1, . . . , An |=S
arg F for every

SAF S that is logically closed with respect to {A1, . . . , An, F} and moreover sat-
isfies all (appropriately relativized) attack principles in AP.

3 Note that, if we identify arguments with counter-models and if S contains all rele-
vant counter-models, then argumentative consequence coincides with ordinary logical
consequence: every counter-model of the conclusion must invalidate some premise.
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We do not suggest that argumentation frames should always be logically closed.
We rather view logical closure as an operation that augments a given SAF by
“potential claims of arguments”, which are implicit according to logical attack
principles. Argumentative consequence thus refers to a “logical completion” of
interpreted argumentation frames, rather than directly to arbitrarily given col-
lections of arguments.

Example 2. Continuing Example 1 of Sect. 2, we observe the SAF SE is almost,
but not yet fully, logically closed with respect to the statements that appear
as claims of arguments: we just have to add one more vertex with label C (for
“Awareness about the need of environmental protection increases”) to obtain
logical closure.

More interestingly, we may check which additional (implicit) attacks are
induced by which of our attack principles: Since there is an argument with claim
E ∨ C that attacks an argument with claim P , principle (A.∧) stipulates that
there is also an attack from E ∨ C to an argument with the the stronger claim
P ∧ C. In other words (A.∧) induces the addition of the edge E ∨ C−→P ∧ C.
Note that this corresponds to the plausible assumption that an argument that
attacks the claim that “the overall prosperity in society increases” also attacks
the statement “The overall prosperity in society increases and (moreover) the
level of CO2 emissions is getting dangerously high.” Similarly the principle (A.∨)
stipulates that an argument with claim C (added for logical closure, as explained
above) should be attacked by an argument with claim W , since such an argument
already attacks the weaker claim E∨C. The addition of W−→C, likewise induces
the additional attack edge W−→E. Moreover, since we have E−→P ⊃ C, but
E �−→P , the principle (B.⊃) induces the addition of E−→C to R→. The stronger
principle (C.⊃) would call for E−→C even without E �−→P . The strong con-
junction principle (C.∧) demands that either W−→P or W−→C. Both seem
reasonable with respect to the intended interpretation of SE . However, W−→C
is already present anyway if (A.∨) is imposed, as explained above. Likewise the
strong disjunction principle (C.∨) is already satisfied.

In the next section we will investigate which collection AP of attack prin-
ciples allows one to recover classical logical consequence as argumentative AP-
consequence. Gentzen’s classical sequent calculus LK turns out to be a perfect
tool for this task. Hence, we generalize the consequence relation to (disjunctive)
sets of premises, as usual in proof theory. Moreover, we adopt the convention to
identify finite lists and sets of formulas, and write, e.g., Γ, F for Γ ∪ {F}.

Definition 4. Let Γ and Δ be finite sets of formulas and let S be an SAF. Δ
is an argumentative consequence of Γ with respect to an SAF S (Γ |=S

arg Δ) if
all arguments in S that attack every F ∈ Δ attack at least some G ∈ Γ .

The generalization to sets of SAFs and sets of attack principles is just as
indicated above.

With respect to an SAF S = (A, R→) we define:

– attsS(F ) =df {A | A−→F,A ∈ A},
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– attsS(Γ ) =df

⋃
F∈Γ attsS(F ),

– attsS(Γ ) =df

⋂
F∈Γ attsS(F ).

The following simple facts will be useful below:

(a) Γ |=S
arg Δ iff attsS(Δ) ⊆ attsS(Γ ).

(b) attsS(Γ, F ) = attsS(Γ ) ∪ attsS(F ).
(c) attsS(Γ, F ) = attsS(Γ ) ∩ attsS(F ).

We will drop the index S if no ambiguity arises.

5 Relating Sequent Rules and Attack Principles

In our version of Gentzen’s classical sequent calculus LK [11], sequents are pairs
of sets of formulas, written as Γ � Δ. Initial sequents (axioms) are of the form
A,Γ � Δ,A. The logical rules (for introducing logical connectives) are as follows:

A,Γ � Δ

Γ � Δ,¬A
(¬, r)

Γ � Δ,A

¬A,Γ � Δ
(¬, l)

Γ � Δ,A Γ � Δ,B

Γ � Δ,A ∧ B
(∧, r)

A,B, Γ � Δ

A ∧ B,Γ � Δ
(∧, l)

Γ � Δ,A,B

Γ � Δ,A ∨ B
(∨, r)

A,Γ � Δ B,Γ � Δ

A ∨ B,Γ � Δ
(∨, l)

A,Γ � Δ,B

Γ � Δ,A ⊃ B
(⊃, r)

Γ � Δ,A B,Γ � Δ

A ⊃ B,Γ � Δ
(⊃, l)

Note that we do not need to use structural rules: weakening is redundant because
of the more general form of axioms compared to Gentzen’s A � A; contraction is
eliminated because we treat sequents as pairs of sets of formulas. Moreover the
calculus is cut-free complete with respect to the classical consequence relation
|=cl (generalized to disjunctions of premises, as usual). We rely on the following
well known facts (see, e.g., [16]).

Proposition 2. Γ � Δ is derivable in LK iff Γ |=cl Δ.

Proposition 3 (e.g., [16], Proposition 3.5.4). The rules of LK are invertible;
i.e., if a sequent Γ � Δ is derivable and Γ � Δ is an instance of a lower sequence
of an LK-rule then the corresponding instance(s) of the upper sequent(s) is (are)
derivable, too.

Let CAP consist of the attack principles (A.∧), (A.∨), (B.⊃), (B.¬), (C.∧),
(C.∨), (C.⊃), and (C.¬). We first show that LK is sound with respect to argu-
mentative CAP-consequence.
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Theorem 1. If Γ � Δ is derivable in LK then Γ |=CAP
arg Δ.

Proof. Clearly, A,Γ |=CAP
arg Δ,A. It remains to check that the inference rules of

LK preserve CAP-consequence. We only present two cases.

(¬, r) We have to show that A,Γ |=CAP
arg Δ implies Γ |=CAP

arg Δ,¬A. The premise
states that attsS(Γ,A) ⊇ attsS(Δ) for every SAF S that is logically closed
with respect to Γ ∪ Δ ∪ {A} and satisfies the CAP-principles. The conclusion
states that attsS′(Γ ) ⊇ attsS′(Δ,¬A), where S′ now ranges over the CAP-
complying SAFs that are closed with respect to Γ ∪ Δ ∪ {¬A}. Since every
SAF S′ of the second kind reduces to one of the first kind (without ¬A)
we may argue over any such SAF and drop the reference. We obtain:

atts(Γ,A) ⊇ atts(Δ)
⇔ atts(Γ ) ∪ atts(A) ⊇ atts(Δ)
⇒ (atts(Γ ) ∪ atts(A)) ∩ atts(¬A) ⊇ atts(Δ) ∩ atts(¬A)
⇔ (atts(Γ ) ∩ atts(¬A)) ∪ (atts(A) ∩ atts(¬A)) ⊇ atts(Δ) ∩ atts(¬A)
⇔ atts(Γ ) ∩ atts(¬A) ⊇ atts(Δ) ∩ atts(¬A) [using (B.¬)]
⇒ atts(Γ ) ⊇ atts(Δ) ∩ atts(¬A)
⇔ atts(Γ ) ⊇ atts(Δ,¬A).

Crucially, (B.¬) amounts to atts(A) ∩ atts(¬A) = ∅.

(⊃, l) We show that, if Γ |=CAP
arg Δ,A and B,Γ |=CAP

arg Δ, then A ⊃ B,Γ |=CAP
arg Δ.

Like above, the premises amount to atts(Γ ) ⊇ atts(Δ,A) and atts(B,Γ ) ⊇
atts(Δ), respectively; whereas the conclusion is atts(A ⊃ B,Γ ) ⊇ atts(Δ).
We use (·)c to denote the complement with respect to the set of arguments
in question.

atts(Δ) ∩ atts(A) ⊆ atts(Γ ) and atts(Δ) ⊆ atts(Γ ) ∪ atts(B)
⇔ atts(Δ) ∩ atts(A) ∩ (atts(Γ ))c = ∅ and atts(Δ) ∩ (atts(Γ ) ∪ atts(B))c = ∅
⇔ atts(Δ) ∩ (atts(Γ ))c ∩ atts(A) = ∅ and atts(Δ) ∩ (atts(Γ ))c ∩ (atts(B))c = ∅
⇔ atts(Δ) ∩ (atts(Γ ))c ∩ (atts(A) ∪ (atts(B))c) = ∅
⇔ atts(Δ) ∩ (atts(Γ ))c ∩ ((atts(A))c ∩ atts(B))c = ∅
⇔ atts(Δ) ∩ (atts(Γ ) ∪ (atts(A))c ∩ atts(B))c = ∅
⇔ atts(Δ) ⊆ atts(Γ ) ∪ (atts(B) \ atts(A)) [using (B.⊃)]
⇒ atts(Δ) ⊆ atts(Γ ) ∪ atts(A ⊃B)

Note that (B.⊃) amounts to atts(B)\atts(A) ⊆ atts(A⊃B).

The other cases are analogous. For later reference, we list which of the attack
principles are used for which further rules: (C.¬) for (¬, l), (C.∧) for (∧, r),
(A.∧) for (∧, l), (A.∨) for (∨, r), (C.∨) for (∨, l), and (C.⊃) for (⊃, r). �	

To show the completeness of LK with respect to argumentative CAP-
consequence, we rely on the invertibility of the logical rules (Proposition 3).
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Theorem 2. If Γ |=CAP
arg Δ then Γ � Δ is derivable in LK.

Proof. We have to check the inverse directions of the implications in the proof
of Theorem 1. Again, we just present two cases, since the others are similar.

(¬, r) We show that A,Γ �|=CAP
arg Δ implies Γ �|=CAP

arg Δ,¬A. To this aim assume
that attsS(A,Γ ) �⊇ attsS(Δ) for some CAP-complying SAF S = (AS , RS

→)
that is logically closed with respect to Γ ∪ Δ ∪ {A}. In other words there is
an F ∈ attsS(Δ), such that F �∈ attsS(A,Γ ). The latter implies F �−→A in
S. Now let S′ be an CAP-complying SAF that is logically closed with respect
to Γ ∪ Δ ∪ {¬A}, where the attack relation restricted to those (claims of)
arguments that already occur in S coincides with RS

→. Since F �−→A also in S′,
we obtain F−→¬A from (C.¬). Since F ∈ attsS′(Δ) we conclude that F ∈
attsS′(Δ,¬A). On the other hand, F �∈ attsS′(Γ ), since otherwise we already
had F ∈ attsS(A,Γ ). Thus we have shown that attsS′(Γ ) �⊇ attsS′(Δ,¬A),
which entails Γ �|=CAP

arg Δ,¬A.
(⊃, l) We again proceed indirectly and show that (1) Γ �|=CAP

arg Δ,A implies
A ⊃ B,Γ �|=CAP

arg Δ, and (2) B,Γ �|=CAP
arg Δ implies A ⊃ B,Γ �|=CAP

arg Δ.
For (1) assume that attsS(Γ ) �⊇ attsS(Δ,A) for some CAP-complying SAF
S = (AS , RS

→) that is logically closed with respect to Γ ∪Δ∪{A}. Thus there
is an F ∈ attsS(Δ,A), such that F �∈ attsS(Γ ). In particular F ∈ attsS(Δ).
Let S′ be an CAP-complying SAF that is logically closed with respect to
Γ ∪ Δ ∪ {A ⊃ B}, where the attack relation restricted to those (claims of)
arguments that already occur in S coincides with RS

→. Then (C.⊃) implies
F �−→A ⊃ B in S′. Therefore attsS′(A ⊃ B,Γ ) �⊇ attsS′(Δ), which in turn
entails A ⊃ B,Γ �|=CAP

arg Δ.

For (2) assume that attsS(Γ,B) �⊇ attsS(Δ) for some CAP-complying SAF
S = (AS , RS

→) that is logically closed with respect to Γ ∪ Δ ∪ {B}. Thus
there is an F ∈ attsS(Δ), such that F �∈ attsS(Γ,B). Let S′ be an SAF like
in case (1). Then F �−→B also in S′. Therefore (C.⊃) implies F �−→A ⊃ B in
S′, which entails A ⊃ B,Γ �|=CAP

arg Δ, like in case (1). �	

6 Sorting Out Attack Principles

We have seen that the collection CAP of attack principles leads to a characteri-
zation of classical logical consequence, that replaces model theoretic (Tarskian)
semantics by a reference to specific structural properties of logically closed semi-
abstract argumentation frames. Remember that classical logic is the top element
in the lattice of all possible logics over the language PL. (As usual, we identify a
logic with a set of formulas that is closed under substitution and modus ponens,
here.) Therefore it is hardly surprising that some of the principles in CAP might
be considered too demanding to be adequate for models of logical argumentation.
Consider for example (C.¬): it says that any argument that does not attack a
claim A can be understood as an argument that attacks ¬A. In other words every
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argument has to attack either A or ¬A. This is hardly plausible and should be
contrasted with the inverse principle (B.¬), which just stipulates that no argu-
ment attacks A and ¬A, simultaneously. We have justified (A.∨) and (A.∧)
in Sect. 3 as immediate instances of the general principle that, if an argument
attacks a claim A, then it (implicitly) also attacks claims from which A logically
follows. But the plausibility of the inverse principles (C.∨) and (C.∧) remains
in question. Intuitively, it seems justifiable to stipulate that an argument that
attacks both, A and B, attacks also A ∨ B (C.∨). However the requirement
that any argument attacking a conjunction must attack also at least one of the
conjuncts intuitively seems too strong: think of the instance A ∧ ¬A, against
which an agent presumably may have a reasonable (general) argument, without
knowing an argument that attacks either A or ¬A.

Rather than to simply appeal to pre-theoretic intuitions, as just outlined,
we want to present a simple formal interpretation of attacks involving logically
compound claims, that supports some, but not all of the attack principles in CAP.
To this aim we employ standard modal logic and refer to Kripke interpretations
〈W,R, V 〉, where W is a non-empty set of states, R ⊆ W × W the accessibility
relation, and V a valuation V : W × PV −→{t, f} that assigns a truth value
to each propositional variable in each state. The language PL is enriched by a
modal operator � and its dual ♦ = ¬�¬. The valuation V is extended from
propositional variables to classical formulas (elements of PL) as usual. For � we
have

V (w,�F ) = t iff ∀v: wRv implies V (v, F ) = t.

A Kripke interpretation 〈W,R, V 〉 is a model of formula F if V (w,F ) = t for all
w ∈ W . F is a K-consequence of G1, . . . , Gn with respect to a class K of Kripke
interpretations if every model of G1, . . . , Gn is also a model of F .

We view the states W as possible states of affairs and interpret wRv as “v
is a possible alternative from the viewpoint of w”. An attack is considered to
involve the claims of the involved arguments in two ways: (1) the claim of the
attacking argument is asserted to hold in all alternatives; (2) the negation of the
claim of the attacked argument is asserted to hold there. Accordingly, we define:

Definition 5. For all F,G ∈ PL:

– ι(F−→G) =df �(F ∧ ¬G);
– ι(F �−→G) =df ♦(¬F ∨ G) (or, equivalently, ¬�(F ∧ ¬G)).

Recall that attack principles are implications between (disjunctions or conjunc-
tions) of assertions of the form F−→G or F �−→G. We call an attack principle
K-justified if the implication translates into a valid K-consequence claim via ι.

We have not yet imposed any restriction on Kripke interpretations. The
intended interpretation of the accessibility relation R as “possible alternative”
might suggest that R is an equivalence relation, or at least reflective. However
we will only impose the weaker condition of seriality. Let D be the corresponding
class of Kripke interpretations, where for every w ∈ W there is a v ∈ W such
that wRv.
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Theorem 3. The attack principles (A.∧), (A.∨), (C.∨), (C.⊃), and (B.¬)
are all D-justified.

Proof. To show that (A.∧) is D-justified we have to check that �(F ∧ ¬A) |=D
�(F ∧ ¬(A ∧ B)) as well as �(F ∧ ¬B) |=D �(F ∧ ¬(A ∧ B)), which is obvious.
The cases for (A.∨), (C.∨) and (C.⊃) are similar.

(B.¬) is D-justified because �(F ∧¬A) |=D ♦(¬F ∨¬A), where the seriality
of D-models is used. �	
Theorem 4. The attack principles (C.∧), (C.¬), and (B.⊃) are not D-justified.

Proof. It is straightforward to find counter-models for the following consequence
claims:

– �(F ∧ ¬(A ∧ B)) |=D �(F ∧ ¬A),
– �(F ∧ ¬(A ∧ B)) |=D �(F ∧ ¬B),
– ♦(¬F ∨ ¬A) |=D �(F ∧ ¬A),
– ♦(¬F ∨ A), �(F ∧ ¬B) |=D �(F ∧ (A ∧ ¬B)). �	

To sum up, we have seen that our (admittedly rather unsophisticated and
coarse) modal interpretation of the attack relation supports a formal justifica-
tion of the collection of attack principles MAP ={ (A.∧), (A.∨), (C.∨), (C.⊃),
(B.¬)}. Moreover, the modal interpretation allows us to reject the attack prin-
ciples (C.∧) and (C.¬), thus suggesting that a corresponding “logic of argu-
mentation” should be weaker than classical logic.

Of course, the interpretation of the attack relation using modalities is not
unique. We briefly discuss three alternatives.

Definition 6. For all F,G ∈ PL:
– ι1(FG) =df ♦(F ∧ ¬G); – ι1(F �−→G) =df �(¬F ∨ G).
– ι2(FG) =df ♦(¬F ∨ ¬G); – ι2(F �−→G) =df �(F ∧ G).
– ι3(FG) =df �(¬F ∨ ¬G); – ι3(F �−→G) =df ♦(F ∧ G).

The interpretation ι1 is similar to ι, but less demanding because (1) the
claim of the attacking argument is asserted to hold in just one of the alterna-
tives and (2) the negation of the claim of the attacked argument is asserted to
hold only there. Interpretation ι2 suggests that F−→G means that there is at
least one possible state in which F ⊃ ¬G (equivalently: ¬F ∨¬G) holds; whereas
according to ι3 all possible states must be of this form. These alternative inter-
pretations of the attack relation (abstracted to the claims of the argument) are
arguably more problematic than the interpretation ι suggested in Definition 5.
This is also witnessed by the attack principles that are justified or rejected by
the respective interpretations: The set of attack principles justified by ι1 is MAP1

={(A.∧), (A.∨), (B.⊃), (C.∧)}; ι2 justifies MAP2 ={(A.∧), (A.∨), (B.⊃),
(C.∧), (C.¬)}; whereas ι3 is extremely demanding and rejects all of our attack
principles except (A.∧) and (A.∨).
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7 A ‘Logic of Argumentation’

We have seen that the attack principles in MAP are more plausible than the
collection CAP that induces classical logical consequence. Thus the question
arises, whether argumentative consequence relative to MAP can be characterized
in a similar manner. We provide a positive by showing that |=MAP

arg matches the
sequent calculus LM, that arises from dropping the rules (¬, l), (∧, r), and (⊃, l)
from LK.

Theorem 5. Γ � Δ is derivable in LM iff Γ |=MAP
arg Δ.

Proof. For the left-to-right direction (soundness of LM with respect to |=MAP
arg )

it suffices to observe that only attack principles in MAP are used to show the
soundness of those LM-rules in the proof of Theorem 1.

For the other direction (completeness of LM with respect to |=MAP
arg ) we can

no longer rely on the invertibility of rules, as we did for LK. We rather show that
for every sequent Γ � Δ that is not derivable in LM there is an MAP counter
model ; i.e., an SAF S that is logically closed with respect to Γ∪ and satisfies all
principles in MAP, such that Γ �|=S

arg Δ.
A sequent Γ0 � Δ0 is called LM-irreducible if it is neither an axiom nor

an instance of a lower sequent of an LM-rule. Note that every sequent that
is not derivable in LM, results from applying LM-rules backwards until one
hits an LM-irreducible sequent Γ0 � Δ0. It follows from the soundness of LM
with respect to |=MAP

arg that Γ � Δ has an MAP-counter-model if Γ0 � Δ0 has
one, too. It thus remains to show that every LM-irreducible sequent has an
MAP-counter-model.

First observe that every LM-irreducible sequent Γ0 � Δ0 is of the following
form:

– Γ0 ∩ Δ0 = ∅;
– every F ∈ Γ0 is atomic, a negation or an implication;
– every F ∈ Δ0 is atomic or a conjunction.

We construct an SAF S = (A, R→) where the set of claims of arguments in
A consists of all subformulas occurring in Γ0 ∪ Δ0. Additionally there is special
argument in A with a claim x that is a new atomic formula (i.e., x does not occur
as a subformula in Γ0∪Δ0). The attack relation R→ is obtained by setting x → F
for all F ∈ Δ0. Moreover, because of (C.∨), we have to add an attack from x
to a disjunction G ∨ H, if x attacks G as well as H (and if G ∨ H occurs as
a subformula of some formula in Γ0 ∪ Δ0). It is easy to check that S satisfies
all attack principles in MAP and that Γ0 �|=S

arg Δ0. (Remember in particular,
that no disjunctions can occur in an irreducible sequent.) I.e., S is an MAP
counter-model of Γ0 � Δ0. �	

8 Nondeterministic Matrices

We have identified a ‘logic of argumentation’ with a consequence relation arising
from certain plausible principles about logically closed collections of (claims of)
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arguments and managed to characterize this logic in terms of a variant of
Gentzen’s classical sequent calculus LK, where some of the logical rules have
been discarded. We finally ask whether our logic appears already in a different
context, pointing to a different type of semantics. A positive answer is provided
by the theory of canonical signed calculi and nondeterministic matrix semantics
(see [3,4]).

Definition 7. A classical Nmatrix N consists in a function ¬̃ : {t, f} → 2{t,f}\∅
and a function ◦̃ : {t, f}2 → 2{t,f}\∅ for each ◦ ∈ {∧,∨,⊃}.

A corresponding dynamic valuation is a function ṽN : PL → {t, f} such that
ṽN (¬A) ∈ ¬̃(ṽN (A)) and ṽN (A ◦ B) ∈ ◦̃(ṽN (A), ṽN (B)) for ◦ ∈ {∧,∨,⊃}. ṽN
is a model of A if ṽN (A) = t; it is a model of Γ if it is a model of every A ∈ Γ .

Δ is a dynamical consequence of Γ with respect to N , written Γ |=N
dyn Δif

every model of Γ is a model of some A ∈ Δ.

Consider the following classical Nmatrix MMAP:

∧̃ ∨̃ ⊃̃
t t {t, f} {t} {t}
t f {f} {t} {t, f}
f t {f} {t} {t}
f f {f} {f} {t}

¬̃
t {t, f}
f {t}

The following is just an instance of Theorem 62 of [4].

Corollary 1. Γ � Δ is derivable in LM iff Γ |=MMAP

dyn Δ.

Combing this observation with Theorem 5, we have thus connected argu-
mentative consequence with respect to the attack principles in MAP with logical
consequence defined with respect to a specific nondeterministic valuation. (This
type of analysis can straightforwardly be extended to, e.g., the collection MFAP
of principles, Sect. 6).

9 Remarks on Related Work

To our best knowledge, the idea to saturate argumentation frames with respect to
principles that make logically implicit arguments explicit, engendering a notion
of logical consequence that is based on (attacking) arguments in place of classical
(counter-)models, is new. However there are a number of interesting approaches
that also aim at connecting Dung-style argumentation with logical inference. We
briefly review some of this work.

Arieli and Straßer [2] provide an analysis of logical argumentation that is
based on the identification of sequents with logical arguments. They analyze and
characterize various forms of attack in a corresponding proof theoretic frame-
work. Note however, that our approach is more general in the sense that we
do not restrict attention to (purely) logical arguments, i.e., to arguments were
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the claim logically follows from its support. Moreover we deliberately abstract
away from the internal structure of arguments and focus on the logical forms of
their claims in order to obtain an alternative consequence relation not between
arguments, but, as usual, between propositions.

Grossi [13,14] has shown that one can compactly characterize a wide range
of Dung-style semantics by viewing argumentation frames as Kripke frames and
introducing a modal operator that refers to the inverse of the attack relation.
Also Caminada and Gabbay [6] exploit connections between modal logic and
argumentation. This might be somewhat reminiscent of our interpretation of
the attack relation in semi-abstract argumentation frames in Sect. 6. However,
rather that identifying accessibility with (inverted) attack or arguments with
states, we use the notions of standard normal modal logics to obtain a simple
model of argumentative attack that enables one to distinguish plausible and
implausible logical attack principles.

Yet further interesting foundational approaches to what can be viewed as
‘logic of argumentation’, albeit in a very different sense than the one outlined in
this paper can be found, e.g., in [1,9,10].

10 Conclusion

We have specified some simple principles about attacking logically compound
claims. The collection CAP of such principles leads to a characterization of clas-
sical logical consequence that only involves argumentation frames. But only a
proper subset MAP ⊂ CAP is justified with respect to a simple and coarse, but
still useful modal model of attack. We characterized the corresponding ‘argumen-
tative’ consequence relation |=MAP

arg by a variant of Gentzen’s sequent calculus,
where some of the logical rules are missing. This, in turn, triggers an alternative
characterization in terms of nondeterministic valuations. We emphasize that do
not claim technical sophistication or originality; to the contrary, we consider the
technical simplicity of our approach a virtue, rather than an obstacle, in view of
potential applications.

The interplay between logical principles about argumentation, on the one
hand, and inference principles as studied in proof theory, on the other hand,
certainly deserves further studies. Among many possible directions for further
research, we single out the following questions:

– Can one extend the approach to cover also bi-polar argumentation frame-
works, where in addition to attacks also a support relation between arguments
and corresponding logical argument principles are considered?

– Is it possible to define a modal interpretation of support that justifies the
corresponding support principles of MAP?

– How to generalize from semi-abstract frameworks to fully interpreted argu-
mentation models, where also the support part of arguments is instantiated?

– Is it possible to relate the nondeterministic matrix semantics of Sect. 8 to
logical argument principles in a more direct manner?
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– Do more subtle modal interpretations of argument attack (or support) than
the one of Sect. 6 lead to interesting alternative ‘logics of argumentation’?

– Is there a relation between relevance logic and logics of argumentation?
– Can these theoretical insights into (‘semi-abstract’) logical argumentation

be usefully employed to shed light on more practical (e.g., computational)
problems in formal argumentation?

We think that the answer to all these question is positive. In particular, we
already have promising results regarding bipolar argumentation frameworks that
we plan to include in an extended version of this paper.

Acknowledgments. We like to thank Stefan Woltran and the referees for interesting
suggestions regarding related work.
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1 Introduction

It is well known that naive theories of truth based on the three-valued schemes
K3 and LP are non-trivial. This is shown by the fixed-point model construction
of Kripke (1975). Kremer (1988) presents sequent systems for some fixed-point
theories of truth, proves a completeness result, and provides an inferentialist
interpretation of these systems. Kremer’s model constructions show that the
systems are non-trivial. Yet, there has been little work done to obtain a proof-
theoretic explanation for why these systems are non-trivial, whereas a similar
classical system is trivial.

Our goal is to gain some insight into why systems like K3 and LP are, when
endowed with a truth predicate and enough syntactic machinery to get us into
trouble, non-trivial by examining how to prove this in a purely proof-theoretic
manner—attending to sequent calculi formulations of the two systems. For the
sake of simplicity we focus on K3 for the bulk of the paper; the considerations
for LP are largely dual. We begin with the basic sequent system and some
results and problems in Sect. 2. These problems motivate a different sequent
formulation in Sect. 3, which we show to be non-trivial. We then close in Sect. 4
with directions for future work.

2 Opening Moves

The kind of the sequent calculus we have in mind is found in Fig. 1. Throughout,
±A stands for A or ¬A, depending on whether the sign is + or −. We note that
to obtain a sequent calculus for LP , one would replace the axiom [K3] with
[LP ].

Γ � Δ, p,¬p
[LP ]

We will focus on the quantifier-free fragment that includes no variables
and no function symbols. There are two reasons. First, the addition of quan-
tifiers changes little with respect to the question with which we are concerned,
namely why are certain naive truth theories non-trivial. There is little interac-
tion between the quantifiers and the syntactic theory that we will adopt, namely
quotation names. Quantifiers will be more involved with a more complex syntac-
tic theory, such as classical Peano arithmetic, and further issues will be raised
c© Springer-Verlag GmbH Germany 2017
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Fig. 1. A Sequent Calculus for K3

there, such as ω-consistency. The second reason is that quantifiers bring some
additional complexity that we think detracts from the overall aim of this project,
getting a proof-theoretic grip on non-triviality. We expect that the arguments
that we develop can be adapted to include quantifiers with standard rules.

Proposition 1. Suppose that the sequent �Δ is provable in the above sequent
calculus. Then there are some formulas Δ′, where each formula A ∈ Δ′ is a
subformula or a negated subformula of a formula in Δ such that �Δ′.

Proof. By induction on the construction of derivations, noting that (i) each of
the right-rules have the feature in question, and (ii) that there are no rules which
move formulas from the antecedant to the succedent of sequents. ��

For the moment, we will say that a system is trivial if the sequent ∅ � ∅ is
derivable. Since the systems under consideration will have admissible weakening
rules, all sequents will be derivable in a trivial proof system. A system is non-
trivial just in case it is not trivial.

Theorem 2. The above system is non-trivial.

Proof. Suppose that we can derive ∅�∅. By inspection of the above rules it is easy
to see that it must be that the final rule in such a derivation was [Cut], which
means that we have, for some A, (i) A�, and (ii) �A. By the above Proposition
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and (ii) it follows that we have some instance of one of our initial sequents of
the form

�A1, . . . , An

for some formulas A1, . . . , An. This is impossible, though, so there is no such
derivation. ��

The basic idea of the consistency proof is simple. In order for ∅ � ∅ to be
derivable, we need the sequents ∅ � A and A � ∅ to be derivable. The sequents
are unbalanced, in the sense that they each have an empty side. Either the
antecedents or the succedents have been cleared out. If one can show that one
cannot derive sequents that are unbalanced on each side, then non-triviality
follows. A similar argument can be run for LP, changing Δ and Δ′ to be in
antecedent, rather than succedent position in Proposition 1 and adjusting the
argument in the proof of Theorem2 accordingly.

The system, as it stands, does not incorporate any syntactic theory. As a
result, equivalences, such as a liar Ta being equivalent to ¬Ta, or even the
weaker co-entailments, are not derivable. For the syntactic theory, we will use
quotation names.1 We start with a classical base language L and extend it to
a language, L+ with truth and quotation names, 〈A〉, for each sentence A. The
names and formulas of L+ are defined by simultaneous induction, so that T 〈Fb〉
is a formula, as is T 〈T 〈Gc〉〉. The use of quotation names does not force there to
be, for example, liar sentences in the language, although we will assume there
are such. To use the syntactic theory, we require that there are new axioms or
rules in the language for quotation names and identity. The rules we would like
to add are in Fig. 2.2 These rules, however, will encounter serious difficulties that
will lead us to proceed in a different direction.

Fig. 2. Identity and quotation name rules for K3

1 See Gupta (1982), Kremer (1988), or Ripley (2012).
2 These two rules are based on those from Kremer (1988) and from Negri and von
Plato (2001).
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Identity is not treated partially, as truth is. The classical treatment of identity
extends to identities between terms not in the base language. More generally,
we also want to consider languages that have predicates in addition to the truth
predicate and identity. These base language expressions, including identity, are,
in the K3T theory, treated classically. To accommodate them in the sequent
calculus, we can add the following axioms, where p is a T -free atom.3

Γ � p,¬p,Δ
[Cl]

An alternative, which we will not adopt, is to use the following rule.

Γ, p � Δ Γ,¬p � Δ

Γ � Δ
[Cl]

Let us call the system with the axiom [Cl] and the rules above K3TL=, where
L is the classical base language. The addition of [Cl] adds another way to
obtain derivable sequents of the form �A1, . . . , An. This, along with the identity
rules that delete formulas raise problems for extending the balance argument in
Theorem 2 to work for the extended system.

With identity in the system, the definition of triviality has to be modified,
since it may be the case, for example, that while ∅�∅ isn’t derivable, a = 〈¬Ta〉�∅
is.4 A more general definition of triviality is needed. A system is trivial, in the
extended sense, if Γ0 �Δ0 is derivable, where Γ0 is a multiset of equalities, Δ0 is
a multiset of inequalities, and at least one contains a formula with a quotation
name on one side and a non-quotation name on the other. Apart from the new
definition of triviality, the addition of the identity rules requires modifying the
non-triviality proof, since sequents of the form �A1, . . . , An are now derivable.
Apart from the preceding issue, the balance argument does not seem to guarantee
that the system isn’t trivial in the extended sense. While it guarantees that both
sides do not end up empty, it does not appear to guarantee non-triviality in the
extended sense.

We would like to prove the system K3TL= non-trivial, but the proof-
theoretic methods for doing so run into difficulties. We have not seen these
pointed out before, so we will briefly indicate some of the hurdles. One way
to prove the non-triviality of K3TL= would be to give a cut elimination argu-
ment. For a sequent calculus with the structural rules of contraction and weak-
ening absorbed, a common route to eliminating cuts proceeds via a few lemmas,
including the inversion lemma showing that all the rules are invertible, which
says, roughly, that if a derivable sequent could be the conclusion of a rule, then
the premiss of that rule is also derivable.5 In particular, it would require that if
T 〈A〉, Γ �Δ is derivable in n steps, then A,Γ �Δ is also derivable in n steps. Our
diagnosis of the problem arises is the following: atoms using the truth predicate
can occur as the conclusions of rules and as atoms in axioms. Inversion requires
3 The appropriate [Cl] axiom for LP would be Γ, p,¬p � Δ.
4 This problem was pointed out by Kremer (1988).
5 Negri and von Plato (2001, 32).
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that for arbitrary A, Γ,A�T 〈A〉,Δ be derivable in 1 step, since Γ, T 〈A〉�T 〈A〉,Δ
is. But, that is not generally the case.

One might try to force the inversion lemma, by adding as an axiom
Γ,A � T 〈A〉,Δ, but this, in turn, would require that an arbitrary A could be
inverted. For example, if A is B ∨ C, then Γ,B � T 〈A〉,Δ and Γ,C � T 〈A〉,Δ
would have to be axioms. It appears, then, that obtaining the inversion lemma
for these rules would require the addition of a rule with no premises that allows
one to infer any derivable sequent. While that would make derivations shorter, it
would not be insightful, even if the rest of the argument for the cut elimination
theorem worked.

There is one additional hurdle for giving a direct cut elimination argument
that we will highlight, as it is important for the approach adopted in the next
section. In this style of sequent system, there is usually only an identity substi-
tution rule on the left, in our case the [= L1] and [	= R1] rules. Substitution on
the right is achieved indirectly, starting with the desired term in a formula on
the right, e.g. Fb and then proceeding to replace it on the left by means of the
rule to obtain, e.g. a = b, Fa � Fb. This appears, however, to be inadequate in
the case of truth as the truth rules can introduce distinguished terms, namely
quotation names, in either the antecedent or succedent. None of the other rules
introduce terms that are new to the proof. The use of identity substitution rules
on the right, as well as the left, creates the same sort of trouble for the elimina-
tion proof that truth case did above. There appears, then, not to be any way to
obtain a = 〈Fb〉, F b�Ta without using cut, as the truth rule would yield T 〈Fb〉
in the succedent, requiring the use of a term substitution. We will, then, move
to a different setting for proving non-triviality.

3 Sequent Systems with Annotations

We will use an alternative sequent system to deal with some of the indicated
issues related to truth and quotation names. Specifically, we will use a modified
form of K3TL, without identity rules and without identity in the object lan-
guage. Suppose one is given a language L+. Let a syntax set E for L+ be a set
of identities, each of which is of one of the following three forms: 〈A〉 = 〈B〉,
a = 〈B〉, or b = c, where a, b, c are names that are not quotation names.6 An
identity set E is a syntax set obeying the following closure conditions:

1. for all sentences A, 〈A〉 = 〈A〉 is in E ,
2. if s = t is in E , then t = s is in E , and
3. if s = t and t = u are in E , then s = u is in E .

Finally, an annotation set E is an identity set not containing 〈A〉 = 〈B〉, where
A and B are distinct formulas. Given an annotation set E , say that two terms,
s, t, appearing in identities in E are equivalent in E just in case s = t is in E .
We will consider the proof systems K3TLE , for each E . So, a given proof will
have a particular annotation set E that affects its rules.
6 Note that we are assuming there are no function symbols in the language.
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Taking the interpretations of the identities in an annotation set E to be fixed
to a standard interpretation, then, E contains the syntactic information of L+.
A particular ground model for L+ may interpret the non-quotation names, and
names outside of E differently, as well as the predicates, but that is fine, since
we are only interested in the syntactic theory, as captured by E . From an infer-
entialist point of view, the use of the annotation sets presents no philosophical
problems.

Rather than use multisets, the systems K3TLE will use sequences on either
side of the turnstile. The sequences Γ,Δ are permitted to be empty. We also add
a permutation rule for both sides, although we will generally suppress it in what
follows. The purpose of the switch from multisets to sequences is to facilitate
the definition of a trace and an ancestor, which are used for the proof of the
elimination theorem.

The next definition is used to integrate E into the proof system. Say that two
formulas A and B are equivalent in E just in case there are sequences of terms
c1, . . . , cn, and d1, . . . , dn, not occurring in quotation names in A, such that B
can be obtained from A by replacing one or more occurrences of ci in A with di,
where for each i, ci and di are equivalent in E .

The axioms, [Id] and [K3], are generalized to include the following instances,
where ±p is of the form ±Tb. In [K3], the antecedent formulas may be in any
order.

Γ,±Tb,Σ � Θ,±Tc,Δ
[Id]

Γ, Tb,¬Tc,Σ � Δ
[K3]

In these axioms, b and c must be equivalent in E . The axiom form of [Cl] does
not need to be changed.

The truth rules are similarly modified.

Γ,A,Σ � Δ

Γ, Tb,Σ � Δ
[TL]

Γ � Δ,A,Σ

Γ � Δ,Tb,Σ
[TR]

Γ,¬A,Σ � Δ

Γ,¬Tb,Σ � Δ
[¬TL]

Γ � Δ,¬A,Σ

Γ � Δ,¬Tb,Σ
[¬TR]

In these rules, b and 〈A〉 must be equivalent in E .
We add the following rules to K3TLE .

Γ,A,A,Σ � Δ

Γ,A,Σ � Δ
[WL]

Γ � Δ,A,A,Σ

Γ � Δ,A,Σ
[WR]

Γ,A,B,Σ � Δ

Γ,B,A,Σ � Δ
[CL]

Γ � Δ,A,B,Σ

Γ � Δ,B,A,Σ
[CR]

Finally, K3TLE does not take the rule [Cut] as primitive, although, as we will
show, this does not affect what sequents are provable.

An upshot of internalizing the syntactic theory, in the manner that we have
done, is that it permits us to return to the simple definition of triviality, namely
the derivability of ∅ � ∅. The reason that we had to move to a more complicated
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definition of triviality in Sect. 2 was that we wanted to permit the use of syntactic
resources in the derivation of triviality, as the syntactic resources, in a sense,
come for free. The use of any syntactic resources, however, would preclude the
derivation of ∅ � ∅. Since we no longer record appeal to syntactic resources with
identities and negations of identities in sequents, the complications are no longer
needed.

We will state two lemmas concerning equivalence in E , to be used later.

Lemma 3. If A and A′ are equivalent in E and B and B′ are equivalent in E ,
then the following are equivalent in E .

– ¬A and ¬A′

– A ∧ B and A′ ∧ B′

– ¬(A ∧ B) and ¬(A′ ∧ B′)

Proof. This is proved by induction on the complexity of A and B. ��
It is not the case that if A and B are equivalent in E then T 〈A〉 and T 〈B〉 will
be. This is because A and B may be distinct sentences, in which case, one will
not have 〈A〉 = 〈B〉 in E . This is, however, as it should be. We can say something
about relations between formulas equivalent in E .

Lemma 4. Suppose A and A′ are equivalent in E . Then, if Γ � Δ,A,Σ is
derivable, then Γ � Δ,A′, Σ is derivable, and if Γ,A,Σ � Δ is derivable, then
Γ,A′, Σ �Δ is derivable. Furthermore, if the original sequent was derivable in n
steps, then the new sequent is derivable in at most n steps.

Proof. The proof is by induction on the construction of the proof. If A is principle
in an axiom, then the result of replacing A with A′ in the axiom will still be an
axiom, and similarly if A is parametric.

The structural rules are taken care of by the induction hypothesis. We will
present [WL], [WR] being similar. Suppose Γ,A,A,Σ � Δ is derivable. By the
inductive hypothesis, then Γ,A′, A′, Σ � Δ is derivable. By [WL], Γ,A′, Σ � Δ is
derivable. The connective rules are immediate from the induction hypothesis.

Let us look at the truth rules. If A is principle in one of the truth rules, then
it is of the form ±Tb. Since A′ is equivalent in E , then A′ is of the form ±Tc
and c and b are equivalent in E . It follows that the sequent replacing A with A′

is also a conclusion of a truth rule. ��
The contraction rule we use does not permit contraction across formulas

equivalent in E . This is, however, shown to be admissible by the previous proof.

Corollary 1. Fix E and let A and A′ be equivalent in E . If Γ,A,A′, Σ � Δ
is derivable, then so is Γ,A,Σ � Δ. If Γ � Δ,A,A′, Σ is derivable, then so is
Γ � Δ,A,Σ.
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The form the cut rule that we will show is admissible is the following.

Γ � Δ,M,Ξ Φ,M ′, Σ � Θ

Φ,Γ,Σ � Δ,Θ,Ξ
[Cut]

In this rule, M and M ′ must be equivalent in E . In light of Lemma 3, we could
require that M is identical to M ′, but we will not do so here.

We need to define the notions of being parametric in a rule and parametric
ancestor. We use the definitions of Bimbó (2015, 34–35) modified in the obvious
way for our rules, which for reasons of space we will leave slightly informal
here. The non-displayed formulas in the axioms are parametric in the axioms. In
the connective and structural rules, the non-displayed formulas are parametric.
A formula occurrence A in the premiss of a rule is a parametric ancestor of
a formula occurrence B in the conclusion of that rule iff they are related by
the transitive closure of the following relation: Both are occurrences of the same
formula and either (i) they are both parametric in the rule and occur in the same
position, (ii) they are displayed in [CL] or [CR] and not in the same position,
or (iii) they are displayed in [WL] or [WR]. Note that in some rules, such as
[¬∧L] and [WR], formulas in the conclusion can have more than one parametric
ancestor in the premises, e.g. each formula in Γ in [¬ ∧ L] and A in [WR]. The
contraction count of a formula occurrence is the number of applications of [WL]
or [WR] in which one of its parametric ancestors is displayed. The contraction
count of an application of cut is the sum of the contraction counts of the two
occurrences of the cut formula.

Define the trace tree of an occurrence of a formula as follows. If A is para-
metric in an inference, then A’s trace is extended with a branch containing the
corresponding occurrence of A in the premises. If A is principle in a ¬ rule, so
is of the form ¬¬B, then its trace tree is extended with a branch containing B.
If A is principle in a ∧ rule, then it is of the form B ∧ C and its trace tree is
extended with a branch containing B and one containing C. If A is principle in
a ¬∧ rule, then it is of the form ¬(B ∧ C) and its trace tree is extended with a
branch containing ¬B and one containing ¬C. If A is principle in a truth rule,
then it is of the form Tb, and its trace is the displayed B in the premiss. The
negated truth rules are similar. If A is principle in a contraction rule, then its
trace tree is extended with a branch containing one occurrence of A and one
containing the other.

Define the trace weight t(A) of an occurrence of a formula A as the number
of truth rules featuring nodes of A’s trace tree as principle in their conclusions.
Define the grade g(A) of A as the number of logical connectives appearing in A
outside the scope of quotation names. Define the complexity of a cut as being
ω · (t(M) + t(M ′)) + g(M), where M and M ′ are, respectively, the occurrences
of M and M ′ displayed in the left and right premises of [Cut]. The rank of the
cut is defined as the sum of the left rank, which is the number of steps in which
a parametric ancestor of M occurs in the succedent of the left premiss, plus
the right rank, which is the number of steps in which a parametric ancestor of
M ′ occurs in the antecedent of the right premiss. We will follow Bimbó’s triple
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induction proof technique, modified in the indicated ways to account for the
differing rules.7

Proposition 5. Let E be an annotation set. If Γ �Δ,M,Ξ and Φ,M ′, Σ�Θ are
derivable, where M,M ′ are equivalent in E , then Φ, Γ,Σ � Δ,Θ,Ξ is derivable
without cut.

Proof. It is sufficient to show that uppermost cuts can be eliminated from deriva-
tions. The proof proceeds by triple induction on the cut complexity, rank, and
contraction count. The left rank is lowered, and then the right rank is lowered,
then the complexity is lowered, lowering the contraction count as needed. As
usual, we can break the cases into groups, depending on the rank of the left cut
premiss and the rank of the right cut premiss. We will present a selection of the
cases, generally presenting instances where the cuts are simpler than the general
case due to the ordering of formulas.

We will start with the cases in which both cut premises come via axioms.
Case: Both premises are from [Id]. This splits into subcases, depending on

whether either cut formula is parametric in the axiom. In the case in which both
cut formulas are principle, we may have one premiss as Γ, Ta � Tb,Δ and the
other as Σ,Tc � Td,Θ. Since we know that the following pairs are equivalent in
E , 〈a, b〉, 〈c, d〉, and 〈b, c〉, it follows that a and d are equivalent in E . This means
that the sequent Γ,Σ, Ta � Td,Δ,Θ is an axiom.

The case in which one premiss comes from [K3] and one from [Cl] is straight-
forward. Similarly, the case in which one comes from [Id] and one from either
[K3] or [Cl] is straightforward.

The permutation cases are taken care of by the induction hypothesis on rank.
Case: The left premiss comes via [WR]. This breaks into subcases depending

on the complexity of the cut formula. Here we will assume that it is greater than
1. The proof then looks like the following.

Γ � Δ,M,M ′

Γ � Δ,M M ′′, Σ � Θ

Γ,Σ � Δ,Θ

Since M and M ′ are equivalent in E , as are M and M ′′, it follows that M ′ and
M ′′ are. We can then permute the cut upwards as follows.

Γ � Δ,M,M ′ M ′′, Σ � Θ

Γ,Σ � Δ,Θ,M M ′′, Σ � Θ

Γ,Σ,Σ � Δ,Θ,Θ

The new cuts can be eliminated by the induction hypothesis on the contrac-
tion count. The desired endsequent can then be obtained by repeated use of
contraction and permutation rules.

The other cases involving [WL] and [WR] are similar.

7 See Bimbó (2015, 36-51) for details.
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The cases in which one or both cut formulas are parametric in their respective
inferences are handled by the usual induction hypothesis on rank.

We will do a few cases in which both cut formulas are principle in their
inferences.

Case: [∧]. Both cut formulas are principle, so the proof looks like the follow-
ing.

Γ � Δ,A Γ � Δ,B

Γ � Δ,A ∧ B

A′, B′, Σ � Θ

A′ ∧ B′, Σ � Θ

Γ,Σ � Δ,Θ

In this proof, A and A′, as well as B and B′, are, respectively, equivalent in E .
This is transformed into the following.

Γ � Δ,B

Γ � Δ,A A′, B′, Σ � Θ

B′, Γ,Σ � Δ,Θ

Γ, Γ,Σ � Δ,Δ,Θ

The new cuts can be eliminated using the induction hypothesis on complexity.
The desired endsequent can then be obtained by repeated use of contraction and
permutation rules.

The [¬∧] and double negation cases are similar.
Case: [T ]. The proof ends with the following.

Γ � Δ,A

Γ � Δ,Tb

A,Σ � Θ

Tc,Σ � Θ

Γ,Σ � Δ,Θ

In this proof, b and c are equivalent in E .
This can be transformed into the following.

Γ � Δ,A A,Σ � Θ

Γ,Σ � Δ,Θ

The new cut can be eliminated by appeal to the induction hypothesis on com-
plexity, since the trace weight of the cut formula has been reduced.

Case: [¬T ]. The proof ends with the following.

Γ � Δ,¬A

Γ � Δ,¬Tb

¬A,Σ � Θ

¬Tc,Σ � Θ

Γ,Σ � Δ,Θ

In this proof, b and c are equivalent in E .
This can be transformed into the following.

Γ � Δ,¬A ¬A,Σ � Θ

Γ,Σ � Δ,Θ

The new cut can be eliminated by appeal to the induction hypothesis on com-
plexity, since the trace weight of the cut formula has been reduced.

Finally, we observe that in no case did the trace weight of a cut formula
increase from the original cut to the new cuts in the transformed proof. ��
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Fig. 3. Identity and truth rules in KR

Since this proof system is somewhat non-standard, we will demonstrate its
adequacy by showing that it is equivalent to a fragment of the sequent system
for Strong Kleene truth from Kremer (1988). Rather than give Kremer’s rules,
we will use the rules from K3TL=, with restrictions that we will indicate. These
rules are admissible in Kremer’s system. The fragment in which we will be inter-
ested here is the quantifier-free fragment without identity axioms and whose
identity rules are restricted to operate only on literals using the truth predicate
(Fig. 3). Further, the proofs are required to be syntax consistent, in the sense
that for a given derivation, the equalities on the left and negations of equalities
on the right of the end sequent do not imply, using classical equational logic,
〈A〉 = 〈B〉, for any distinct formulas A and B.8 Call this fragment KR. For
a given E and an instance of a truth rule whose displayed premiss formula is
±A and whose conclusion is ±Tb, say that a set of identities Ξ underwrites the
application of the rule just in case Ξ contains the identity 〈A〉 = b. Say that a
set of identities underwrites a truth axiom of one of the followings forms,

– Γ,±Tb,Σ � Δ,±Tc,Θ, or
– Γ, Tb,¬Tc,Σ � Δ,

just in case Ξ contains b = c. A set of identities Ξ underwrites a proof just in
case Ξ underwrites each truth rule and truth axiom in the proof.

The axioms in KR can be used for arbitrary formulas, rather than being
restricted to atoms. This is not a problem, since K3TLE allows one to prove
that the axioms hold for arbitrary formulas.

8 Syntax consistency says, roughly, that the set of equalities on the left and negations
of equalities on the right can be extended to an annotation set.
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Lemma 6. The axioms [Id] and [K3] are derivable with an arbitrary formula
A replacing p. The axioms [Cl] are derivable with an arbitrary T -free formula B
replacing p.

The proof is by induction on the construction of A, or B. The proof is routine,
so we omit it.

With that lemma in hand, we can now state the equivalence between the
systems.

Theorem 7. 1. Let Π be a K3TLE derivation of Γ �Δ. Then there is a deriva-
tion of Γ,Ξ � Δ in KR, where Ξ is a set of identities that underwrites each
truth rule and truth axiom used in Π.

2. Let Π be a proof of Γ,Σ�Δ,Θ in KR, where Σ is a set of identities introduced
via identity rules and Θ is a set of negated identities introduced via identity
rules. Then Γ �Θ is derivable in K3TLE, provided E contains Σ ∪Θ∗, where
Θ∗ = {s = t : s 	= t ∈ Θ}.
For reasons of space, we will sketch the proof. For 1, one translates a proof

Π of Γ � Δ in K3TLE into a proof Π ′ in KR. We briefly describe some of the
cases. Whenever a truth rule is used in Π, a truth rule is used in Π ′, followed
by an appropriate identity rule if the principal formula in the rule in Π was of
the form ±Ta rather than ±T 〈A〉. These additional identities make up Ξ.

For 2, one translates a proof Π ′ of Γ,Σ � Δ,Θ into a proof Π of Γ � Δ in
K3TLE . The important cases for this proof are the identity cases. These are
taken care of by global transformations on trace trees in Π.

We will note that the theorem, and proof, carry over to LP , using Kremer’s
sequent calculus for LP .

The restriction in KR to use identity rules only on literals using the truth
predicate is to facilitate the proof of Theorem7, and it is not a great restriction.
Nothing additional is provable if the identity rules are allowed to substitute into
truth atoms in complex formulas.

Proposition 8. Let A be a formula with at least one occurrence of Ta and let
A′ be A with one or more occurrences of Ta replaced by Tb. The rules

Γ,A � Δ

a = b, Γ,A′
� Δ

[=L]
Γ,A � Δ

b = a, Γ,A′
� Δ

[=L]

Γ,A � Δ

Γ,A′
� Δ, a 	= b

[ �=R]
Γ,A � Δ

Γ,A′
� Δ, b 	= a

[ �=R]

are admissible in KR.

The proof is by induction on the construction of A. It is straightforward, so we
omit it. We will turn to the conclusion.
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4 Conclusion

We began with the aim of providing some proof-theoretic explanation of why the
fixed-point theories of truth based on K3 and LP are non-trivial. Focusing on
K3, we proved that a very basic system, one with no additional syntactic theory,
is non-trivial by a balancing argument. The argument extends to LP . Enrich-
ing this system with a modest syntactic theory and identity, leads to difficulties
showing that cut is eliminable. Indeed, the enrichment requires a more compli-
cated definition of triviality. We proposed non-standard systems that internalize
the syntactic theory in the annotation sets and their effect on the truth rules. A
cut elimination argument can be carried out for those systems, showing that the
systems are non-trivial in the original sense that ∅ � ∅ is not derivable. Finally,
we showed that the systems are intertranslatable with fragments of Kremer’s
system.

There is still work to be done. It would be good to obtain a completeness
result of some kind for the systems with annotation sets. We also hope to gen-
eralize the initial balancing argument to work more broadly. But, we have made
some progress towards our initial goal of getting a proof-theoretic justification
for the non-triviality of naive truth in K3 and LP .
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Abstract. One of the simple approaches to paraconsistent logic is
in terms of three-valued logics. Assuming the standard behavior with
respect to the “classical”values, there are only two possibilities for para-
consistent negation, namely the negation of the Logic of Paradox and the
negation of Sette’s logic P1. From a philosophical perspective, the para-
consistent negation of P1 is less discussed due to the lack of an intuitive
reading of the third value. Based on these, the aim of this paper is to fill
in the gap by presenting a semantics for P1 à la Jaśkowski which sheds
some light on the intuitive understanding of Sette’s logic. A variant of
P1 known as I1 will be also discussed.

1 Introduction

1.1 Background and Aim

Paraconsistent logics are characterized by the failure of ex contradictione quodli-
bet (ECQ hereafter). Since the modern birth of paraconsistency, infinitely many
systems of paraconsistent logic have been devised and studied through various
approaches based on various motivations.

One of the simple approaches to paraconsistent logic is in terms of three-
valued logics. Assuming the standard behavior with respect to the “classical”
values, namely two truth values except the third or intermediate truth value,
there are only two possibilities for paraconsistent negation, namely the negation
of the Logic of Paradox (cf. [20], LP hereafter) and the negation of P1. P1 is
one of the oldest and famous systems of paraconsistent logic devised by Antonio
Sette in [22]. The logic has been studied in depth by e.g. [15,21]. However, these
examinations are all guided by more mathematical/technical interest, and its
philosophical interest has been rather small. This is not a surprise since the three-
valued semantics for P1 seems extremely artificial. This is in sharp contrast with
LP. Indeed, due to the two-valued relational semantics devised by Michael Dunn
in [9] for logics in the FDE family, to which LP belongs, we now have a very clear
understanding that the truth and falsity conditions for the logical connectives
in FDE family are identical with those for classical logic. The crucial difference
lies in the relation between the truth and falsity. And thus we can discuss the
philosophical issues in view of the relation between the truth and falsity.

For the case with P1, however, alternative semantics are not completely non-
existent. There are two previous attempts to the best of author’s knowledge.
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First, there is a Kripke semantics for the system, developed in [1], but unfortu-
nately, the semantics does not give us too much philosophical insight. Second,
there is a semantics devised by Walter Carnielli and Mamede Lima-Marques in
[5]. However, their semantics also leaves some room for improvement, especially
its semantics not being compositional, and its philosophical implications have
been rather limited.

The main motivation behind the paper is to offer a two-valued semantics for
P1 that would shed some new light on the understanding of the third value in
its semantics as well as negation of P1, very much in the same spirit of Dunn’s
discovery. And, the aim of this paper is to present a new semantics for P1 along
the line of Stanis�law Jaśkowski’s discussive logics. I will also deal with the system
I1 which is a dual of P1, introduced in [23].

1.2 Preliminaries

Our language L throughout this paper, unless otherwise stated, consists of a set
{∼,→} of propositional connectives and a countable set Prop of propositional
variables. We denote by Form the set of formulas defined as usual in L. Moreover,
we denote a formula by A, B, C, etc. and a set of formulas by Γ , Δ, Σ, etc.

2 The Paraconsistent Case

I first review the basic results well-known for the system P1. I then briefly
introduce discussive logic of Jaśkowski, and this will be followed by a presentation
of the new semantics which is equivalent to the original three-valued semantics.

2.1 Basics

First, we begin with the three-valued semantics.

Definition 1. A three-valued P1-valuation is a homomorphism from Form to
{1, i,0}, induced by the following truth tables:

A ∼A

1 0
i 1
0 1

A→B 1 i 0

1 1 1 0
i 1 1 0
0 1 1 1

Note that the designated values are 1 and i, and we define the semantic conse-
quence relation |=3 as usual in terms of the preservation of designated values.

Remark 1. Conjunction and disjunction may be defined by ∼(A → ¬B) and
¬A → B respectively where ¬A =def. ∼(∼A → A), and have the following truth
tables.1

1 These definitions can be found in [16].
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A∧B 1 i 0

1 1 1 0
i 1 1 0
0 0 0 0

A∨B 1 i 0

1 1 1 1
i 1 1 1
0 1 1 0

However, for the sake of simplicity, I will not consider these connectives in the
rest of this paper.

We now turn to the proof theory in terms of a Hilbert-style calculus.

Definition 2. The system P1 consists of the following axiom schemata and a
rule of inference.2

A→(B→A)(Ax1)
(A→(B→C))→((A→B)→(A→C))(Ax2)
(∼A→∼B)→((∼A→∼∼B)→A)(Ax3)

(A→B)→∼∼(A→B)(Ax4)
A A→B

B
(MP)

Finally, we write Γ �P1 A iff there is a sequence of formulas B1, . . . , Bn, A
(n ≥ 0), called a derivation, such that every formula in the sequence either (i)
belongs to Γ ; (ii) is an axiom of P1; (iii) is obtained by (MP) from formulas
preceding it in the sequence.

Then, Sette established two results in [22]. First one is the following soundness
and completeness result.

Theorem 1 (Sette). For all Γ ∪ {A} ⊆ Form, Γ |=3 A iff Γ �P1 A.

In order to state the second result, it is convenient to introduce the following
definition.

Definition 3. Let L1 and L2 be logics taken as sets of formulas closed under
an appropriate relation of deducibility. Then, L1 is said to be maximal relative
to L2 if the following holds:

– The languages of L1 and L2 are the same;
– L1 ⊆ L2;
– L1 ∪ {G} = L2 for any theorem G of L2 which is not a theorem of L1.

With this definition in mind, the second result may be stated as follows.

Theorem 2 (Sette). P1 is maximal relative to classical logic.

Remark 2. Note that in view of a general result established by Arnon Avron,
Ofer Arieli and Anna Zamansky, it follows that |=3 is maximally paraconsistent
in the strong sense by [2, Corollary 3.6].

2 The original axiomatization had one more axiom ∼(A → ∼∼A) → A which was
later proved to be redundant. See, for example, [16].
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Remark 3. Here are a few more facts that are well-known in relation to P1.

– Even though A → (∼A → B) is not provable, ∼A → (∼∼A → B) is provable.
Other systems with the same feature include the system Z of Jean-Yves Béziau
(cf. [4]), TCCω of Gordienko (cf. [10]) and PCL1 of Toshiharu Waragai and
Tomoki Shidori (cf. [24,25]).

– P1 is obtained by adding the following axioms to the so-called Cn-systems
devised by Newton da Costa (cf. [8]): (∼A)(n), (A ∧ B)(n), (A ∨ B)(n) and
(A → B)(n). In other words, not only negation but every complex formulas
behave as in classical logic in P1.

2.2 Discussive Logics: An Interlude

Our new semantics for Sette’s P1 is a variant of the semantics for discussive
logics, originally developed by Jaśkowski in [12,13] (note that [12] is a new trans-
lation of [11]). In this subsection, we quickly review the semantics for discussive
logics.

Definition 4. The discussive language Ld consists of a set {∼,∨,∧d,→d} of
propositional connectives and a countable set Prop of propositional variables.
We denote by Formd the set of formulas defined as usual in Ld. Moreover, we
denote a formula by A, B, C, etc. and a set of formulas by Γ , Δ, Σ, etc.

Then, Jaśkowski’s definition of discussive validities relies on the modal logic
S5 as follows.

Definition 5. Let Ld and LM be the discussive language and the language for
S5 respectively. Then, the translation τ from Ld to LM is defined as:

– τ(p) = p for p ∈ Prop,
– τ(∼A) = ¬τ(A),
– τ(A ∨ B) = τ(A) ∨ τ(B),
– τ(A ∧d B) = τ(A) ∧ ♦τ(B),
– τ(A→dB) = ♦τ(A) ⊃ τ(B).

Then, a discussive formula A is D2-valid iff �S5 ♦τ(A).

Remark 4. Note that there are several translations discussed in the literature
of discussive logics. The difference among translations lies in how the discussive
conjunction is translated. For the details, see [19].

Remark 5. One may wonder what happens if we replace S5 by other modal
logics. In fact, this question has been one of the main topics for the Polish
school of paraconsistency. For example, [17] explores the weakest modal logic
that defines D2, and [18] explores the weakest normal and regular modal logics
that defines D2.

We may also state the semantics of discussive logic without the help of trans-
lation, as suggested by Janucz Ciuciura in [7].
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Definition 6. A discussive model is a pair 〈W, v〉 where W is a non-empty set
and v : W × Prop −→ {0, 1}, an assignment of truth values to state-variable
pairs. Valuations v are then extended to interpretations I to state-formula pairs
by the following conditions.

– I(w, p) = v(w, p),
– I(w,∼A) = 1 iff I(w,A) �= 1,
– I(w,A∧dB) = 1 iff I(w,A) = 1 and for some x ∈ W : 1 ∈ I(x,B),
– I(w,A∨B) = 1 iff I(w,A) = 1 or I(w,B) = 1,
– I(w,A→dB) = 1 iff for all x ∈ W : I(x,A) �= 1 or I(w,B) = 1.

Then, |=j A iff for every discussive model 〈W, v〉, I(w,A) = 1 for some w ∈ W .

Remark 6. Note the unusual definition of the valid formulas which is not a mis-
take but reflects the “diamond effect” of the original definition of D2-validities.
Note also that elements of W may be regarded as discussants in a discussion.

2.3 Discussive Semantics

We now present a new semantics. Since it may be seen as a variation of the
semantics for discussive logic, we refer to the semantics as discussive semantics.

Definition 7 (P1-discussive-model). P1-discussive-model is a pair 〈W, v〉,
where W is a nonempty set and v : W ×Prop −→ {0, 1}, an assignment of truth
values to state-variable pairs. Valuations v are then extended to interpretations
I to state-formula pairs by the following conditions.

– I(w, p) = v(w, p),
– I(w,∼A) = 1 iff for some x ∈ W : I(x,A) = 0,
– I(w,A→B) = 1 iff for all x∈W : I(x,A) = 0 or for some y∈W : I(y,B) = 1.

Then, |=d A iff for everyP1-discussive-model 〈W, v〉, I(w,A) = 1 for some w ∈ W .

Remark 7. Here are a few remarks. First, note the “diamond feature” of the
definition of the validity. Again, this is not a mistake but reflects the idea of
Jaśkowski. Second, note that the above truth condition for negation is also con-
sidered by Ciuciura in [6] in terms of a variant of D2 based on a comment (as a
translator) by Jerzy Perzanowski (cf. [13, p. 59]).3 Finally, note that the truth
condition for the conditional is even more “modalised” than that for the condi-
tional in D2. More specifically, in order to evaluate the conditional to be true
at a state w, it suffices for the consequent of the conditional to be true at some
state, not necessarily at the state w.

Now, by considering a special case of the above semantics in which there are
only two states (or discussants), we obtain the following four-valued semantics.

3 Note however that the main result of Ciuciura contains a mistake, as pointed out in
[19]. Therefore, the variant of D2 remains to be explored further.
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Definition 8. A four-valued P1-valuation is a homomorphism from Form to
{1, i, j,0}, induced by the following matrices:

A ∼A

1 0
i 1
j 1
0 1

A→B 1 i j 0

1 1 1 1 0
i 1 1 1 0
j 1 1 1 0
0 1 1 1 1

Note that the designated values are 1, i and j, and we define the semantic con-
sequence relation |=4 as usual in terms of the preservation of designated values.

Remark 8. In this four-valued semantics, the intermediate values are represent-
ing the two possibilities depending on which of the two participants are saying
false. We can in fact “merge” these two possibilities, and let the third value stand
for the case in which the two participants disagree. As a result, we obtain the
three-valued semantics presented in Definition 1. The precise relation between
the two semantics will be established in Remark 9.

Since |=4 may be seen as a special case of |=d, we obtain the following lemma.

Lemma 1. For all A ∈ Form, if |=d A then |=4 A.

2.4 The Main Result

We now turn to the main result that the three-valued semantics and discussive
semantics are equivalent. To this end, we need the following key lemma.

Lemma 2. If Γ |=4 A then Γ |=3 A.

Proof. We prove the contrapositive. Assume Γ �|=3 A. Then there is a three-
valued-P1-valuation I0 such that I0(Γ ) ∈ D and I0(A) �∈ D. Then let I1 be a
four-valued-P1-valuation such that I1(p) = I0(p). Then, we have that I1(A) = 1
iff I0(A) = 1 and I1(A) = 0 iff I0(A) = 0. This can be proved by a simple
induction on the complexity of A as follows:

– The base case when A is a propositional variable, it is obvious by definition.
– For induction step, we consider the following two cases.

• If A is of the form ∼B, then by IH, we have that
* I1(B) = 1 iff I0(B) = 1 and
* I1(B) = 0 iff I0(B) = 0.
Then, by the truth-table, we obtain that

I1(∼B) = 0 iff I1(B) = 1 By the truth table
iff I0(B) = 1 IH
iff I0(∼B) = 0 By the truth table

I1(∼B) = 1 iff I1(B) �= 1 By the truth table
iff I0(B) �= 1 IH
iff I0(∼B) = 1 By the truth table
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• If A is of the form B → C, then by IH, we have that
* I1(B) = 1 iff I0(B) = 1, I1(B) = 0 iff I0(B) = 0, and
* I1(C) = 1 iff I0(C) = 1, I1(C) = 0 iff I0(C) = 0.
Then, by the truth-table, we obtain that

I1(B → C) = 0 iff I1(B) �= 0 and I1(C) = 0 By the truth table
iff I0(B) �= 0 and I0(C) = 0 IH
iff I0(B → C) = 0 By the truth table

I1(B → C) = 1 iff I1(B) = 0 or I1(C) �= 0 By the truth table
iff I0(B) = 0 and I0(C) �= 0 IH
iff I0(B → C) = 1 By the truth table

This completes the proof.

Once this is established, it is easy to see that the desired result holds since
I1(A) = 0 iff I0(A) = 0 implies that I1(A) �∈ D iff I0(A) �∈ D. ��

We are now ready to prove the main result.

Theorem 3 (Main Theorem). For all A ∈ Form, |=3 A iff |=d A.

Proof. For the left-to-right direction, if |=3 A then �P1 A by Theorem 1. And
one may check the soundness with respect to the Kripke semantics, i.e. that if
�P1 A then |=d A. The details are left as an exercise. For the other direction,
if |=d A then |=4 A by Lemma 1. Thus, together with Lemma 2, we obtain the
desired result. ��
Corollary 1. For all A ∈ Form, �P1 A iff |=d A.

Proof. By Theorems 1 and 3. ��
Remark 9. Note that by Lemma 2, we obtain that |=4 A implies |=3 A. Moreover,
in view of Theorem 3, we obtain that |=3 A implies |=d A and since |=d A implies
|=4 A by Lemma 1, we obtain |=3 A implies |=4 A. Therefore we reach that |=4 A
iff |=3 A for all A ∈ Form.

3 The Paracomplete Case

We now turn to the dual case. Namely, we deal with the system I1 developed by
Sette and Carnielli in [23]. The section is structured as in the previous section.
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3.1 Basics

Again, we begin with the three-valued semantics.

Definition 9. A three-valued I1-valuation is a homomorphism from Form to
{1, i,0}, induced by the following matrices:

A ∼A

1 0
i 0
0 1

A→B 1 i 0

1 1 0 0
i 1 1 1
0 1 1 1

Note that the designated value is 1, and we define the semantic consequence
relation |=i

3 as usual in terms of the preservation of the designated value.

We now turn to the proof theory, again in terms of a Hilbert-style calculus.

Definition 10. The system I1 consists of the following axiom schemata and a
rule of inference.

A→(B→A)(Ax1)
(A→(B→C))→((A→B)→(A→C))(Ax2)
(∼∼A→∼B)→((∼∼A→B)→∼A)(Ax3)

∼∼(A→B)→(A→B)(Ax4)
A A→B

B
(MP)

Finally, we define Γ �I1A iff there is a sequence of formulas B1, . . . , Bn, A (n ≥
0), called a derivation, such that every formula in the sequence either (i) belongs
to Γ ; (ii) is an axiom of I1; (iii) is obtained by (MP) from formulas preceding
it in the sequence.

Then, the following results, together with some further results, were estab-
lished by Sette and Carnielli in [23].

Theorem 4 (Sette & Carnielli). For all Γ ∪ {A} ⊆ Form, Γ |=i
3 A iff

Γ �I1 A.

Theorem 5 (Sette & Carnielli). I1 is maximal relative to classical logic.

3.2 Kripke Semantics

We now present a new semantics for I1 à la Kripke.

Definition 11 (I1-Kripke-model). I1-Kripke-model is a pair 〈W, v〉, where
W is a nonempty set and v : W ×Prop −→ {0, 1}, an assignment of truth values
to state-variable pairs. Valuations v are then extended to interpretations I to
state-formula pairs by the following conditions.

– I(w, p) = v(w, p),
– I(w,∼A) = 1 iff for all x ∈ W : I(x,A) = 0,
– I(w,A→B) = 1 iff for some x∈W : I(x,A)=0 or for all y∈W : I(y,B)=1.

Finally, |=k A iff for every I1-Kripke-model 〈W, v〉, I(w,A) = 1 for all w ∈ W .
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Remark 10. Unlike the discussive semantics for P1, the semantic consequence
relation requires to check all worlds/states to make the concerned sentence valid.
Moreover, compared to the Kripke semantics for intuitionistic logic, the negation
has the same truth condition of the form “necessarily not” (of course the frame
condition is different, so not completely the same), but this is not the case for
the conditional.

Now, by considering a special case of the Kripke semantics in which there
are only two participants, we obtain the following four-valued semantics.

Definition 12. A four-valued I1-valuation is a homomorphism from Form to
{1, i, j,0}, induced by the following matrices:

A ∼A

1 0
i 0
j 0
0 1

A→B 1 i j 0

1 1 0 0 0
i 1 1 1 1
j 1 1 1 1
0 1 1 1 1

Note that the designated value is 1, and we define the semantic consequence
relation |=i

4 as usual in terms of the preservation of the designated value.

Remark 11. Note first the difference in the set of designated values between |=4

and |=i
4 are due to the different definitions of validities in |=d and |=k respectively.

Intuitively speaking, being more strict in the modal semantics corresponds to
less designated values in the many-valued semantics. Note too that as with the
case for P1, we obtain the three-valued semantics by “merging” the intermediate
values in the above four-valued semantics.

Since |=i
4 may be seen as a special case of |=k, we obtain the following lemma.

Lemma 3. For all A ∈ Form, if |=k A then |=i
4 A.

3.3 The Main Result

Now we turn to the main observation. Once again, we need the following lemma.

Lemma 4. If Γ |=i
4 A then Γ |=i

3 A.

Proof. We prove the contrapositive. Assume Γ �|=i
3 A. Then there is a three-

valued-I1-valuation I0 such that I0(Γ ) ∈ D and I0(A) �∈ D. Then let I1 be a
four-valued-I1-valuation such that I1(p) = I0(p). Then, we have that I1(A) = 1
iff I0(A) = 1 and I1(A) = 0 iff I0(A) = 0. This can be proved by a simple
induction on the complexity of A. Once this is established it is easy to see that
the desired result holds since I1(A) = 1 iff I0(A) = 1 implies that I1(A) �= 1 iff
I0(A) �= 1, namely I1(A) �∈ D iff I0(A) �∈ D. ��

We are now ready to prove the main result.
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Theorem 6 (Main Theorem). For all A ∈ Form, |=i
3 A iff |=k A.

Proof. For the left-to-right direction, if |=i
3 A then �I1 A by Theorem 1. And

one may check the soundness with respect to the Kripke semantics, i.e. that if
�I1 A then |=k A. The details are left as an exercise. For the other direction,
if |=k A then we obtain |=i

4 A by Lemma 3. Thus, together with Lemma 4, we
obtain the desired result. ��
Corollary 2. For all A ∈ Form, �I1 A iff |=k A.

Proof. By Theorems 1 and 6. ��

4 Reflections

In this section, we first observe some differences from the two alternative seman-
tics for P1 offered in the literature. These will be followed by a brief discussion in
relation to the results established by Barteld Kooi and Allard Tamminga. Finally,
we sketch some of the philosophical implications of the discussive semantics pre-
sented in this paper.

4.1 A Comparison to the Semantics by Araujo, Alves, and Guerzoni

The semantics developed by Araujo, Alves, and Guerzoni in [1] takes the form
of the more familiar Kripke semantics, as follows.

Definition 13 (Araujo & Alves & Guerzoni). An AAG-P1-model is a
triple 〈W,R, v〉 where W is a non-empty set, R is a binary reflexive relation on
W and v : W × Prop −→ {0, 1}, an assignment of truth values to state-variable
pairs. Valuations v are then extended to interpretations I to state-formula pairs
by the following conditions:

– I(w, p) = v(w, p),
– I(w,∼p) = 1 iff for some w′ ∈ W : (wRw′ and I(w′, A) �= 1) if p ∈ Prop,
– I(w,∼A) = 1 iff I(w,A) �= 1 if A �∈ Prop,
– I(w,A→B) = 1 iff I(w,A) �= 1 or I(w,B) = 1.

Based on this model, the validity is defined in the usual manner.

Definition 14. For all A ∈ Form, |=AAG A iff for every AAG-P1-model
〈W,R, I〉, I(w,A) = 1 for all w ∈ W .

Then, Araujo, Alves, and Guerzoni established the following result (cf. [1,
Proposition 4.8]).

Theorem 7 (Araujo & Alves & Guerzoni). For all A ∈ Form, �P1 A iff
|=AAG A.

Remark 12. Compared to the P1-discussive-model, we may observe the following
differences:
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– the binary relation R on W is taken to be reflexive. This is a reasonable
option since the validity of the law of the excluded middle corresponds to
the reflexivity of R when negation is seen as negative modality of the form
“possibly not”.

– the truth condition for negation is divided into two cases depending on the
negated formula being atomic or not. This is also a reasonable option since
after some calculations, one realize that the paracosistent behavior is observed
only with respect to the atomic level.

– the truth condition for conditional is stated point-wise, exactly like in modal
logics based on classical logic.

The main problem with this semantics, however, is that we do not have a uniform
understanding of negation since the truth condition for negation depends on the
negated formula. This is not the case in the discussive semantics presented in
this paper in which we have a clear understanding of paraconsistent negation as
a negative modality.

4.2 A Comparison to the Semantics by Carnielli and Lima-Marques

We now turn to compare the new semantics with the so-called Society Semantics
devised by Carnielli and Lima-Marques in [5].

Definition 15. A society S is a denumerable set of agents S = {Ag1,Ag2, . . . , }
where an agent Agi is a pair 〈Ci, Li〉 formed by a collection Ci of propositional
variables in a formal language and an underlying logic Li.

Remark 13. For our purposes, we assume that the underlying logic is classical
logic for all agents.

Definition 16. An agent Ag accepts a formula A iff all classical valuations
which satisfy the variables of Ag also satisfy A. Moreover, a society is open if it
accepts a formula in case any of its agent do. We denote open societies by S+.

Definition 17. Let S+ be an open society. Then the satisfiability relation �
between S+ and an arbitrary formula A is inductively defined as follows.

– S+ � p iff for some agent Ag ∈ S+: p ∈ Ag,
– S+ � ∼p iff for some agent Ag ∈ S+: p �∈ Ag,
– S+ � ∼A iff S+ �� A for A �∈ Prop,
– S+ � A → B iff S+ �� A or S+ � B.

Definition 18. A formula A is satisfiable in an open society iff for some open
society S+, S+ � A. Moreover, A is an open-tautology (notation: |=o A) iff A
is satisfiable in every open society.

Based on these definitions, Carnielli and Lima-Marques established the fol-
lowing result.
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Theorem 8 (Carnielli & Lima-Marques). For all A∈Form, �P1 A iff |=o A.

Remark 14. Note that Carnielli and Lima-Marques introduces a variant of the
Kripke semantics of Araujo, Alves, and Guerzoni based on their semantics. Note
also that Carnielli and Lima-Marques also introduced close society to character-
ize the semantic consequence relation of I1. For the details, see [5].

Remark 15. Compared to the P1-discussive-model, we may observe the follow-
ing differences. First, as Carnielli and Lima-Marques admits, the truth condition
for negation is not compositional. This is also the feature of the Kripke seman-
tics of Araujo, Alves, and Guerzoni which seems to be not so plausible from
a philosophical perspective. However, this problem is solved in our discussive
semantics. Second, the truth condition for the conditional is exactly as in clas-
sical modal logic which was also the case with the Kripke semantics of Araujo,
Alves, and Guerzoni. However, by having a variant of discussive conditional, we
reach a more uniform perspective on Sette’s logics, and this seems to be quite
surprising as well as interesting.

In sum, compared to the previous two attempts in offering alternative seman-
tics for P1, the notable feature of the discussive semantics presented in this paper
is the finding of the truth condition for the conditional. This turns out to be the
key to afford a compositional semantics along the path that Jaśkowski paved
already a while ago.

4.3 Yet Another Comparison

When it comes to the relation between three-valued logics and modal logics, there
is an extremely interesting and general result established by Barteld Kooi and
Allard Tamminga in [14].4 In brief, Kooi and Tamminga observe that every truth-
functional three-valued propositional logics can be conservatively translated into
the modal logic S5. Since P1 is also a three-valued logic, it follows from the
general result of Kooi and Tamminga that there is a close connection between
P1 and S5, and so the observation of the paper may seem to be not so surprising.5

The general translation manual offered by Kooi and Tamminga is quite com-
plex. Indeed, as they point out, the length of the translations produced by their
manual is exponential. This gives rise to a question if there is a shorter trans-
lation into S5 for some three-valued logics. In order to show that the answer
is affirmative, Kooi and Tamminga present translations for LP and the Strong
Kleene logic whose translations are quite distinct from the one in the manual.

Now, back to the worry of one of the reviewers. Is the close connection
between P1 and S5 surprising? To my surprise, it turns out that the appli-
cation of the translation manual for P1 and I1 will give rise to the discussive

4 I would like to thank one of the reviewers for directing my attention to the result by
Kooi and Tamminga reported in [14].

5 This was a worry of one of the reviewers.
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and Kripke semantics, presented in this paper, respectively.6 Thus, one of the
reviewer’s insight is justified.

Still, some of the results in this paper are not immediate corollaries of the
general result of Kooi and Tamminga. For example, the four-valued semantics
which bridges the three-valued and discussive semantics is not an immediate
corollary. Moreover, we may raise the following question: what is the relation
between the translation manual of Kooi and Tamminga and discussive logics in
general? For example, is it possible to characterize three-valued logics that have
discussive semantics? I will leave these questions for another occasion.

4.4 A Brief Philosophical Sketch

Finally, I wish to briefly discuss some philosophical implications of the discussive
semantics.

One of the obvious problems of the three-valued semantics of P1 is that it is
not clear at all how we can make sense of the third truth value. Another problem,
related to the first problem is that it is hard to grasp the intuitive meaning of
negation and the conditional. Negation is particularly problematic since it plays
an important role in defining paraconsistent logics.

In face of these problems, the discussive semantics does offer one of the many
ways to make sense of the third truth value and understand the unary connective
intended to be negation. Indeed, for the truth values, we obtain an intuitive
reading of the truth values. More specifically, the values may be read discussively
within the context of a discussion by two person: 1 stands for evaluated as true
by both discussants, 0 for evaluated as false by both discussants, and i for
evaluated as true by one of the discussants and false by another.7 Moreover,
we may understand the paraconsistent negation of P1 as a negative modality
“possibly not”. In this way, we may assess P1 in view of motivations along
discussive logic, although this was obviously not the intended reading of Sette.

Of course, discussive semantics is not the only semantics that makes sense of
the three-valued semantics. For example, we may consider the following seman-
tics which may be seen as a variant of Dunn semantics.

Definition 19. A P1-interpretation is a left-total relation, r, between proposi-
tional parameters and the values 1 and 0. More precisely, r ⊆ Prop×{1, 0} such
that pR1 or pR0 for all p ∈ Prop. Given an interpretation, r, this is extended to a
left-total relation between all formulas and truth values by the following clauses:

∼Ar1 iff Ar0, ∼Ar0 iff not Ar1,
A→Br1 iff not Ar1 or Br1, A→Br0 iff Ar1 and not Br1.

Based on this, A is a P1-relational semantic consequence of Γ (Γ |=r A) iff for
every P1-interpretation r, if Br1 for all B ∈ Γ then Ar1.

Then, as expected, we may observe the following fact.
6 The details are left for interested readers.
7 Recall here that we may obtain the four-valued semantics in which the disagreement
case will be split into two cases depending on which of the two discussants is seeing
the proposition as true.
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Proposition 1. For all Γ ∪ {A} ⊆ Form, Γ |=r A iff Γ |=3 A.

Now, the above semantics may suggest that P1 may fit the dialetheic app-
roach to paraconsistency as well. Indeed, the above semantics relies only on two
truth values, truth and falsity, and compatible with the view that some proposi-
tions are both truth and false. Note, of course, that the above falsity conditions
for negation and the conditional are quite distinctive, and how dielatheists should
set up the falsity condition is quite independent of the non-exclusiveness of truth
and falsity. This seems to be an interesting implication for dialetheists.

In the end, there are at least four semantics for the proof system of P1: three-
valued, four-valued, discussive and Dunn semantics. This is somewhat similar
to the case with FDE in which there are at least three kinds of semantics
four-valued semantics, Dunn semantics, and Routleys’ star semantics. Further
details towards more satisfactory assessment of P1, especially contrasting some
differences between |=d and |=r, will be a topic for further discussion.

5 Concluding Remarks

In this paper, I offered a new discussive semantics for Sette’s paraconsistent logic
P1 and a new Kripke semantics for Sette and Carnielli’s paracomplete logic I1.
I hope this will be of help to deepen our philosophical understanding or assess
the philosophical importance of both systems.

For future directions, there are some technical questions that might be of
interest on its own. For example, one may ask the same question explored in the
context discussive logic to see if we can replace S5-like set up by more weaker set
up. Another question that is more challenging is to find an alternative semantics
for C-systems of da Costa. Thanks to the extensive work by Avron and his
colleagues, we now have non-deterministic semantics for C-systems. However,
when it comes to Kripke semantics, it is still unclear if we can devise one beside
the “limit” system Cω which was explored by Matthias Baaz in [3]. Based on
our tour in this paper, we should perhaps keep some distance from Kripke and
get closer to Jaśkowski. I do not have any idea more than this, unfortunately,
and I must leave the problem for interested readers.
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Abstract. Revising a belief set K with a proposition a results in a theory
that entails a. We consider the case of a multiset of beliefs, representing the
beliefs of multiple agents, and define its revision with a multiset of desired
beliefs the group of agents should have. We give graph theoretic semantics
to this revision operation and we postulate two classes of distance-based
revision operators. Further, we show that this multiset revision operation
can express the merging of the beliefs of multiple agents.

Keywords: Belief revision · Reasoning with multisets · Graph-based
reasoning · Geodesic reasoning · Reasoning with similarity · Distance-
based reasoning · Belief merging

1 Introduction

When there is agent interaction, we need to keep track of the beliefs of several
agents simultaneously. The belief of a single agent may result in an action that
modifies the belief of other agents. Such an action can be simply a disclosure
of an agent belief to another agent. In addition, we may need to keep track of
the beliefs that agents have of each other. For example, when an agent makes
an announcement to a group of other agents, then the belief of the announcer
becomes common knowledge among the receiving group of agents. It is impera-
tive, therefore, that the logical system we use to describe the interaction of agents
is able to express the resulting epistemic scenarios. Traditionally, the language
employed to describe the interaction of multiple agents makes use of an indexed
modality Ki to describe the knowledge of an agent i (see [4]); that is, the index
varies over the agents, and we can express, for example, that agent i knows that
agent j knows a with the formula KiKja. This representation, however, is not
always appropriate. Consider for example an announcement from an agent that
is only partially successful, e.g. in the case of a faulty channel. We do not know
which agents have received it and, therefore, it is not clear how to represent
this uncertain epistemic state using indices. Similarly, if the group of agents is
anonymous, e.g. in the case of anonymous polling, indexical modalities is not an
appropriate representation.
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This paper builds on the observation that multiple agent modeling may ben-
efit by the use of multisets. In the case of multiple agents, we can use a multiset
A of propositions to represent the beliefs of each individual. As two or more
agents may have the same belief, a belief can appear more than once in the
epistemic state and therefore the epistemic state denoted by A should express
this multiplicity. For example, there are three reviewers of an article. Two of
them believe that the paper should be accepted, denoted by a, and one believes
that the paper should be rejected, denoted by r. Their group belief corresponds
to the multiset {a, a, r}. Notice that a multiset representation is not sensitive to
order, so beliefs in a multiset cannot be indexed. Therefore, this representation
is appropriate when the set of multiple agents is anonymous.

The representation of belief states solely with multisets is limited, too. To
see that, suppose there are three reviewers of an article as above. The paper
is accepted so at least two of them believe it should be accepted. There is no
multiset of propositions that can represent the majority. We need an additional
construct such as the following

(a, a, r) ∨ (a, a, a)

Now, consider the revision A ∗ b of a multiset A representing the beliefs of
a group of agents with a formula b. It is natural to assume that b is a single
proposition, as it could represent the common hypothesis that the agents need
to assume or even the common constraint that the agents need to agree with.
This view of revision is limited. Revision is not always completely successful. For
example, suppose five agents revise their beliefs with b with 60% sucess. In this
case it will be more appropriate to revise with the multiset

(b, b, b,�,�)

instead of a single formula b. Therefore, multisets of formulas should combine to
express group epistemic change.

Finally, consider four agents that meet to agree on either a or ¬a. How would
we represent their agreement? For example

{a ∨ ¬a, a ∨ ¬a, a ∨ ¬a, a ∨ ¬a}
is not appropriate as it is equivalent to a multiset of tautologies. The following
expression seems more appropriate

{a, a, a, a} ∨ {¬a,¬a,¬a,¬a}.

which is not expressible using a single multiset of formulas.
To summarize:

– single formulas cannot convey the quantitative information (such as majority
or probability judgments) inherent in a multiset

– single multisets cannot be used to reason with cases, or represent conditional
or disjunctive information.
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In this paper, we define a framework that employs a more general language
that allows boolean combinations of multisets. In other words, a belief change
operation, say revision, A ∗ B, will combine A and B which are boolean com-
binations of multisets of formulas and are interpreted over multisets of worlds
but they are not necessarily single multisets of formulas. We will use a single
language for A, B and A ∗ B and therefore several results from the traditional
propositional belief change theory apply at both the syntactic and semantic level.
Our approach is very similar to the jump from real numbers to vectors of real
numbers of a fixed dimension.

In the next section, we will define the extended language. In Sect. 3, we will
introduce and characterize geodesic belief revision in the extended language and
in Sect. 4 we will show how some belief merging formalism can be expressed
using the new framework. In the last section, we conclude.

2 Language and Semantics of Multisets

We will use a propositional language L with a finite set of atomic propositions
closed under the usual classical connectives ¬,∧ and ∨ and with a finite set of
atomic propositions. An interpretation w is a function from atomic propositions
to {T, F}. An interpretation extends to a map from L to {T, F} and will be
called a model of φ if it maps φ to T . We write W for the set of all models. If A
is a set of formulas then we write v(A) to denote the set of all models of A.

In order to express theories based on multisets, we will consider a new lan-
guage Lmulti closed under the boolean connectives, but whose atomic formulas
are multisets of formulas in L and formulas In

φ , for each φ ∈ L and n ∈ {1, 2, . . .},
that are not expressible using multisets of formulas in Ln, called diagonal for-
mulas. In the following, we will draw attention to fragments Ln, for a given
positive integer n, of Lmulti, that are formed like Lmulti but the atomic formulas
are diagonals In

φ and multisets of size n. We have

Lmulti =
n⋃

Ln.

We will use curly brackets { and } to write multisets. For example

{a, b, b} ∨ {c, d, f} ∨ I3a

belongs to L3, for a, b, c ∈ L, and

{a, b, b} ∨ {c, d, f, d} ∨ I5a

does not belong to L3 but belongs to Lmulti.
To interpret Lmulti we use finite multisets from W , the set of binary valuations

that interpret L. Let M be the set of finite multisets from W , i.e.,

M = {{w1, . . . , wn} : wi ∈ W,n > 1}.
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We will write Mn for the subset of M that contains all multisets of cardinality
n for some positive integer n. A state is a subset of M . A product state is a state
of the form

{A1, A2, . . . , An} = {{w1, w2, . . . , wn} : wi ∈ Ai, for i = 1, . . . , n},

where Ai ⊆ W and n > 1. A product state is obviously a state but a state is not
necessarily a product state. For this reason, multisets of propositions correspond
to product states but general formulas in Lmulti are interpreted as states.

The interpretation of Lmulti on M is straightforward. Suppose that v(φ)
returns all valuations that make φ ∈ L true. This map extends to atomic formulas
with

v({a1, a2, . . . , an}) = {v(a1), v(a2), . . . , v(an)}
and

v(In
a ) = {{w,w, ..., w} ∈ Mn : w ∈ v(a)},

and to the whole of Lmulti using intersection, union and complement. We will
use a, b, c, . . . for propositions in Lmulti and we will use A,B,C, . . . for theories.

Consequence and consistency in Lmulti is defined semantically using the above
interpretation. We have that a implies b iff v(a) ⊆ v(b), and a and b are consistent
iff v(a) ∩ v(b) 	= ∅, where a, b ∈ Lmulti.

In particular, for multisets of propositions we have

{a1, a2, . . . , an} implies {b1, b2, . . . , bn}
if ai implies bπ(i) for all i, where 1 � i � n, and some π permutation on n. The
opposite direction does not hold. That is, we may have

{a1, a2, . . . , an} implies {b1, b2, . . . , bn}
but there is no permutation π such that ai implies bπ(i) for all i. As a counterex-
ample, we have

{a ∧ b, a ∨ b} implies {a, b},

where v(a) = {w1, w2} and v(b) = {w1, w3}.
It is known (see [2]) that

{a1, a2, . . . , an} is equivalent to {b1, b2, . . . , bn},

if and only if, ai is equivalent to bπ(i), for all i, where 1 � i � n, and some π per-
mutation on n. Similarly, it is easy to see that {a1, a2, . . . , an} and {b1, b2, . . . , bn}
are consistent iff ai and bπ(i) are consistent, for all i, where 1 � i � n, and some
π permutation on n.

3 Geodesic Revision

We will study geodesic revision operators on multisets of fixed cardinality n,
where n > 2. Considering a fixed cardinality n will allow us to work on metric
spaces whose metric is generated by a geodesic metric on worlds.
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The use of geodesic metric rests on a novel view of similarity as a derived con-
cept. Traditionally, similarity has been conceived as a primitive concept usually
represented by distance; that is, the following identification is made:

similarity = distance

Our idea [5] is that similarity does not have to be primitive but it can be gen-
erated by a relation of indistinguishability. In particular, we do not need quan-
titative data, such a measurements, to generate a distance function. This idea
can be summarized by the following maxim: two objects are similar when there
is a context within which they are indistinguishable. Further, similarity can be
measured with degrees of indistinguishability.

For example, although two similar houses might appear different in various
details when we stand in front of them, they will appear identical if we observe
them from an appropriate distance x. Thus, indistinguishability at distance x
implies similarity. The smaller the distance x, the more similar the objects are.

A simple representation of indistinguishability by a reflexive symmetric non-
transitive relation goes back to [15]. Such relations have been studied together
with a set under various names such as tolerance spaces [18], proximity spaces
[1], and others, but the best way to describe a set of worlds with an indistin-
guishability relation is simply a graph. Similarity now will be the distance map
defined on the graph defined by the shortest path. Given a relation R the dis-
tance from y to x is the least number of times we need to apply R in order to
reach y from x. Traditionally, this kind of relation has been called geodesic. We
have

similarity = geodesic distance (of a graph)

Note that similarity for us is a distance rather than a relation taking values to the
interval [0, 1] as in the representation of similarity in fuzzy reasoning that usually
assumes transitivity. Using graphs with their geodesic metric generalizes several
popular formalisms such as threshold and integer metrics as well as hamming
distance (see [7]).

Geodesic semantics have been successfully developed for a variety of belief
change operators such as revision, update, conditionalization, and contraction
[6–9] and this paper is an effort towards extending geodesic semantics to multisets.

Definition 1. Let W be a set and R ⊆ W × W a relation on W . Then (W,R) is
called a (connected) tolerance space when R is reflexive, symmetric, and (W is)
connected, i.e., for all x, y ∈ W there is a non negative integer n such that xRny.

In the above definition, we assume R0 = idW , Rn = Rn−1 ◦ R for n > 0.
Given a tolerance space (W,R) we can define a metric called geodesic with a

map d from W × W to Z+ (the set of non-negative integers) where

d(x, y) = min{n | xRny}.

Note that a geodesic metric is not any integer metric. The values of the geodesic
metric are determined by adjacency. This property can be described with: for
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all x, y ∈ W such that d(x, y) = n with 1 < n < ∞ there is z ∈ W with
z 	= x, y such that d(x, y) = d(x, z) + d(z, y). In particular we can choose z so
that d(x, z) = 1. Note here that a geodesic metric is a topological metric, that
is, it satisfies identity, symmetry and triangle inequality.

The geodesic distance extends to distance between non-empty subsets with

d(A,B) = min{d(x, y) | x ∈ A, y ∈ B}. (1)

We shall also write d(x,A) for d({x}, A). Similarly for d(A, x). We will write
Ac for the complement of A and An for the set {x ∈ W : d(A, x) � n} (where
n = 0, 1, . . .).

The distance d between models lifts to a distance between subsets of models
using (1). We can now define a revision operator in terms of distance. Let

A ∗ B =
{{y ∈ B : d(A, y) = d(v(A), v(B)} if A,B 	= ∅

B otherwise (2)

or, equivalently,

A ∗ B =
{

Ad(A,B) ∩ B if A,B 	= ∅

B otherwise.

The operator ∗ is a revision operator because it is defined through distance
minimization as in [7,13]. We illustrate the above definition with the following

Example 1. In Fig. 1 and the rest of the figures graph edges represent the
(irreflexive part of the) indistinguishability relation R. Let A = {a}, B = {b},
and C = {c1, c2}. Then A ∗ (B ∗ C) = {c1} 	= {c1, c2} = (A ∗ B) ∗ C (this also
shows that revision does not satisfy association).

Fig. 1. Geodesic revision example

Table 1. Geodesic revision rules
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Call a revision operator geodesic if it satisfies the properties of Table 1. (For
an explanation of of the postulates appearing in Table 1 we refer the reader
to [7].)

The following has been proved in [7].

Proposition 1. If ∗ is an operator that satisfies (2), then ∗ is a geodesic revision
operator. Conversely, given a geodesic revision operator ∗, then there exists a
binary relation R such that (W,R) is a tolerance space, where W is the set of
models, and ∗ satisfies (2).

The above framework applies to multisets as well. Let (W,R) be a tolerance
space. Then, let Let Mn be the set of multisets from W with a fixed length n,
i.e.,

Mn = {{w1, . . . , wn} : wi ∈ W}.

The relation of indistinguishability R can be extended to a relation R′ of indis-
tinguishability between multisets of worlds in two ways as follows

1. We have (x1, . . . , xn)R′(y1, . . . , yn) if there exists a permutation π and j ∈
{1, . . . , n} such that xjRyπ(j) and xi = yπ(i) for i = 1, . . . , n and i 	= j. Now
that we have an indistinguishability relation among multisets we can define
a tolerance space with a geodesic metric. The geodesic metric is defined as
the shortest path (of R′) between the two multisets but one may show that
it can be reduced to the geodesic metric d of the original space W :

dΣ({w1, w2, . . . , wn}, {w′
1, w

′
2 . . . , w′

n}) = min
π

{Σid(wi, w
′
π(i))},

where π varies over the set of permutations of {1, 2, . . . , n}.
2. We have (x1, . . . , xn)R′(y1, . . . , yn) if there exists a permutation π such that

xiRyπ(i) for all i = 1, . . . , n. As in (1) above, we can define a tolerance space
with a geodesic metric using the shortest path (of R′) between the two mul-
tisets and again one may show that it can be reduced to the geodesic metric
d of the original space W :

dm((x1, . . . , xn), (y1, . . . , yn)) = min
π

{max
i

{d(xi, yπ(i))}}.

In both cases, the geodesic metric lifts to a metric between subsets of multi-
sets and therefore a revision operator can be defined the same way as in (2). We
will denote the revision operators based on dΣ and dm with ∗Σ and ∗m, respec-
tively. Both operators ∗Σ and ∗m are defined using Eq. (2) so by Proposition 1
both operators are geodesic and, therefore, satisfy the postulates of Table 1
(where formulas in the table belong to Lmulti). To illustrate the process and
difference of those two operators consider the following example.

Example 2. Consider the model of Fig. 2 consisting of five worlds and four propo-
sitions a, b, c, and d where v(a) = {w1}, v(b) = {w5}, v(c) = {w2}, and
v(d) = {w4, w5}.
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Fig. 2. Multiset revision

Now consider the revision of the multiset {a, a, b} with the multiset {c, c, d}.
We have that

v({a, a, b}) = {{w1, w1, w5}}
and

v({c, c, d}) = {{w2, w2, w4}, {w2, w2, w5}}.

We have that
v({a, a, b} ∗Σ {c, c, d}) = {c, c, b}

because the multiset {w2, w2, w5} is closer to {w1, w1, w5} than {w2, w2, w4} since
dΣ({w1, w1, w5}, {w2, w2, w5}) = 2 and dΣ({w1, w1, w5}, {w2, w2, w4}) = 3.

In contrast, we have that

v({a, a, b} ∗m {c, c, d}) = {c, c, d}
because the multisets {w2, w2, w4} and {w2, w2, w5} are equidistant to {w1, w1,
w5} since dm({w1, w1, w5}, {w2, w2, w5}) = dm({w1, w1, w5}, {w2, w2, w5}) = 1.

Our aim is to give a logical characterization of the operators ∗Σ and ∗m. To
this end:

Definition 2. Let ∗ and ∗′ be binary operators on L and Ln, respectively, then

1. ∗′ will be called locally generated (by ∗) if

v({a1, . . . , an} ∗′ ¬{a1, . . . , an}) = v(
n∨

j=1

{a1, . . . , aj ∗ ¬aj , . . . , an})

2. ∗′ will be called globally generated (by ∗) if

v({a1, . . . , an} ∗′ ¬{a1, . . . , an}) = v({a1 ∗ ¬a1, . . . , an ∗ ¬an}).

The above properties although restricted to multisets of L are enough to char-
acterize the operators as the following shows.

Theorem 1. Let ∗ and ∗′ be binary operators on L and Ln, respectively, then

1. ∗′ is coordinate generated by ∗, if and only if, ∗′ = ∗Σ, and
2. ∗ is globally generated by ∗, if and only if, ∗′ = ∗m,

where ∗Σ and ∗m are induced by the geodesic metric d corresponding to ∗.
The above shows that globally generated revision operators are associated

with the standard distance of multisets of fixed cardinality called metric distance
of roots (akin to Frechet distance–see [3]). The coordinate generated revision
operators are associated with a minimization of the so-called Manhattan or �1

distance over all possible permutations. If the above metrics are restricted to the
distance between a multiset and a single element then one obtains the Σ and
Max operators of Sect. 4 in [12].
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4 Comparison with Other Work

In this section, we will express a few merging operators studied in the literature
using a multiset revision operator.

We start with the traditional notion of merging [14,16], that was perceived as
a commutative version of revision. When we perform this sort of binary merging,
we choose the models of the belief sets to be merged that are the most similar.
We will confine ourselves to the geodesic framework; therefore we will pick the
closest models with respect to the geodesic distance.

Example 3. We illustrate the process with the following example (edges repre-
sent the reflexive symmetric tolerance relation).

Fig. 3. Non-commutative revision

In Fig. 3, let A = {a, b} and B = {d, e}. Then the merging, denoted by A⊗B,
of A with B equals the subset {b, d} containing the elements of A and B whose
distance is the least among the elements of the two sets: the distance of b from
d is 2 while the distance of a from d and e from d is 3. This form of merging
corresponds to arbitration of [14], and is a special case of the distance-based
merging operator of [17].

This merging operator is defined on subsets of the tolerance space as follows:

A ⊗ B =
{{x ∈ A, y ∈ B : d(x, y) = d(A,B)} if A,B 	= ∅

A ∪ B otherwise.

We can show that

Theorem 2. Assume v(φ), v(ψ) 	= ∅. Then, if ⊗ is a geodesic merging operator
on L, then there exists a coordinate generated revision operator on L2 such that

v(φ ⊗ ψ) = {w : {w,w} ∈ v({φ, ψ} ∗ Iφ∨ψ)},

The merging operator defined has an important property, namely, it implies
disjunction:

φ ⊗ ψ � φ ∨ ψ.

There are cases, however, where this is not possible or not desirable. Next, we
will express two forms of binary merging (introduced in [10]), that do not imply
disjunction.
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Example 4. Suppose that we count the pennies saved in a jar. An initial count
finds 112 pennies. A second count finds 114 pennies. It seems plausible that the
merge of these two counts is the set {112, 113, 114} as one or both counts could
have been wrong. Using the propositions of Example 3, we would like that the
extension of A⊗c B is the set {b, c, d} (see Fig. 4). This form of merging is called
convex.

Fig. 4. Convex merging

Example 5. Suppose now that we need to classify submitted articles into three
groups: accept, reject and borderline. For a given paper, we receive reviews from
two referees. One thinks it belongs to the accept group and the other to the
reject group. It seems to me that the merge of those two opinions is borderline.
Obviously this notion of merging seems more appropriate when beliefs have
different sources such as the case of voting. Using the propositions of Example 3,
we would like that A � B is modeled by the set {b} (see Fig. 5). This form of
merging is called barycentric.

Fig. 5. Barycentric merging

The above merging operators are defined on subsets with

A ⊗c B =
{{x : d(A, x) + d(B, x) = d(A,B)} if A,B 	= ∅

A ∪ B otherwise.

and

A � B =
{{x ∈ mid(A,B) : d(A, x) + d(B, x) = d(A,B)} if A,B 	= ∅

A ∪ B otherwise.

where
mid(A,B) = Ak ∩ Bk, k = min{l : Al ∩ Bl 	= ∅}.
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Theorem 3. Assume v(φ), v(ψ) 	= ∅. Then,

1. if ⊗c is a convex merging operator on L, then there exists a coordinate gen-
erated revision operator on L2 such that

v(φ ⊗c ψ) = {w : {w,w} ∈ v({φ, ψ} ∗ I�)}, and

2. if � is barycentric merging operator on L, then there exists a pair generated
revision operator on L2 such that

v(φ � ψ) = {w : {w,w} ∈ v({φ, ψ} ∗ I�)}.

Finally, we show how multiset revision can be used to express belief aggre-
gation of multiple agents using the Integrity Constraints (IC) merging operator.
An IC merging operator is a map from a multiset E of bases called profile and a
formula to a base. A base is a finite set of propositional formulas. As IC merg-
ing operators allow bases in the multisets, we will assume that profiles, as well
as the output of an IC merging operator, are made out of single propositional
formulas. Further, we will also assume that profiles are restricted to a fixed size
group of agents. Therefore, such profiles cannot be combined into a single one,
as the group of agents represented by the resulting profile will double in size.
In other words, we will assume that an IC merging operator Δ is a map from
Ln × L → L. Now, we have that

v(Δμ(E)) = {w : {w,w, . . . , w} ∈ v(E ∗ In
μ )},

where ∗ can be any multiset merging operator introduced earlier.
In order to simulate fully IC operators, our framework needs to define merging

revision over multisets of arbitrary dimensions, that is on Lmulti rather than Ln.
We think that such an extension will also express more sophisticated merging
operators that deal with possibly inconsistent bases such as the DA2 operators
(see [11]). Nevertheless, multiset revision shows that merging can be conceived
through a unified process of minimization, at least within geodesic metric spaces.
In other words, we only need to logically describe a single minimization operation
and the various belief change operators arise from this minimization operation
by varying the underlying language.

5 Further Work

The assumption in Sect. 3 that multisets have a fixed size n is critical—not only
because this assumption underlies the technical development of the results of
Sect. 3, but also because it corresponds to a very specific epistemic scenario;
namely, the case where the population is fixed and we receive information from
all individuals in the population, albeit anonymously. However, this is not always
the case: we may have access to only proper subgroups of all agents. For exam-
ple consider two belief multisets taken from two different college classes. Those
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multisets not only may differ in size, but they may not be combined into a single
multiset as there might be students who belong to both classes.

The above framework can be made to accommodate multisets of varying
size. In order to retain the validity of the results of Sect. 3, we will reinterpret
an extended language of multisets of formulas with varying sizes on a toler-
ance space of multisets of valuations of a large enough fixed size. First, we will
allow multisets of formulas of arbitrary size bounded by a fixed number N that
represents the population size. That is, our language is

L↓N =
N⋃

n=1

Ln.

We will alter the semantics of L↓N by interpreting them on the set MN of
multisets of binary valuations of fixed size N (see Sect. 2) as follows

v({a1, a2, . . . , am})
= {{w1, w2, . . . , wN} : wi ∈ M for 1 � i � N,wi ∈ v(ai) for 1 � j � m}

(3)

where 1 � m � N , so {a1, a2, . . . , am} ∈ L↓N and v({a1, a2, . . . , am}) ⊆ MN . In
effect, we interpret multisets of size less than N with multisets of size N using
the following equivalence:

{a1, a2, . . . , am} ↔ {a1, a2, . . . , am,�, . . . ,�},

where 1 � m � N , {a1, a2, . . . , am} ∈ Lm and {a1, a2, . . . , am,�, . . . ,�} ∈ LN .
Interpreting L↓N on MN allow us to replace Ln with L↓N in both Definition 2
and Theorem 1.

Although the above extension allows us to express incomplete information
from subgroups of agents, by way of smaller size multisets, it does not fully
address the complex issues arising from the employment of varying size multisets.
One such issue is the way we combine multisets. Combining multisets of beliefs
can be accomplished through a sophisticated merging mechanism (such as the
ones discussed in Sect. 4), or can be as simple as concatenation. For example, if
we combine two multisets that may include agents that are common in both, a
with-replacement choice of sorts, conjunction of the multisets seems adequate:

v({a1, a2, . . . , ak} ∧ {b1, b2, . . . , bl}) = v({a1, a2, . . . , ak}) ∩ v({b1, b2, . . . , bl}).

This intersection is well defined as both multisets are interpreted over the same
space. If, instead, we combine two multisets that represent disjoint groups of
agents (without-replacement choice) then concatenation ◦ is more appropriate:

v({a1, a2, . . . , ak} ◦ {b1, b2, . . . , bl}) = v({a1, a2, . . . , ak, b1, b2, . . . , bm},

where k + l � N . A comprehensive approach to multisets should include logical
operators that correspond to all natural ways we can combine them.
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Finally, the tolerance space itself may need to be adjusted according to the
way multisets arise. An interesting reading of a multiset of beliefs arises when
the set of agents, whose beliefs are represented in the multiset, is randomly
selected. In this scenario, projecting the multiset to a population multiset via
Eq. (3) is not appropriate. As an example, suppose that political leanings of
agents can be conservative (c), liberal (l) and mixed (m) and those are mutually
exclusive. Also, suppose that the basic tolerance relation among the resulting
binary valuations is {c}R{m} and {m}R{l} but not {c}R{l}. For simplicity,
assume that the population is of size 6 and we observe the multiset {c, c, c} of a
random sample of size 3. According to Eq. (3), the multiset {c, c, c} is equivalent
to {c, c, c,�,�,�}. Therefore,

d({c, c, c}, {c, c, c, l, l, l}) = d({c, c, c}, {c, c, c, c, c, c}) = 0.

However, observing {c, c, c} through a random sample indicates a slight prefer-
ence for a population that is all conservative, and the tolerance space of multisets
should reflect this preference. Therefore, our framework is not developed enough
to account for all epistemic scenarios that may arise through the use of multisets,
but it is useful as it help us express those scenarios naturally.

6 Conclusion

We have defined and axiomatized two revision operators over multisets of propo-
sitional formulas, representing the belief state of a group of multiple agents. We
have shown that these revision operators can express a variety of merging oper-
ations, thereby reducing the process of merging to revision. We think that these
operators, including their extensions to richer language and variants to diverse
metric spaces, merit further study. The belief change of multiple agents is more
complicated and includes changes that do not necessarily arise in the single agent
case, but this framework shows that many central tools for the single agent case,
such as minimization, carry over to the multiple agent case.
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Abstract. Belief revision has been studied for more than 30 years, and
the theoretical properties of the belief revision operators are now well-
known. Contrastingly, there are almost no practical applications of these
operators. One of the reasons is the computational complexity of the
corresponding inference problem, which is typically NP-hard and coNP-
hard. Especially, existing implementations of belief revision operators are
capable to solve toy instances, but are still unable to cope with real-size
problem instances. However, the improvements achieved by SAT solvers
for the past few years have been very impressive and they allow to tackle
the solving of instances of inference problems located beyond NP. In
this paper we describe and evaluate SAT encodings for a large family
of distance-based belief revision operators. The results obtained pave
the way for the practical use of belief revision operators in large-scale
applications.

1 Introduction

Propositional belief revision has received much attention for the past thirty years
[1,9], and the theoretical properties of belief revision operators are nowadays
well-known. Contrastingly, far less studies have focused so far on the compu-
tational aspects of propositional belief revision. An explanation of this is that
the inference problem for belief revision operators (i.e., the problem of decid-
ing whether ϕ ◦ μ |= α holds, given three formulae ϕ, μ and α) is typically
intractable. Indeed, the complexity of this problem has been identified for many
operators, and it is typically both NP-hard and coNP-hard [14] and lies at the
first or even at the second level of the polynomial hierarchy [8,14]. Existing
implementations [7,18] are able to handle very small instances, but are far from
being able to deal with real-size belief revision instances.

Interestingly, the improvements achieved by SAT solvers for the past few
years have been huge. A current research direction is to leverage them to address
the solving of instances of inference problems located beyond NP. Following this
research line, we describe and evaluate SAT encodings for a large family of
distance-based belief revision operators. For such operators, the models of the
revised base are the models of the new piece of information μ which are at a
minimal distance of the belief base ϕ. Among them, Dalal revision operator,

c© Springer-Verlag GmbH Germany 2017
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based on the Hamming distance between propositional worlds, is probably the
best known [3].

In this paper, we define, give SAT encodings, and do experiments on the fam-
ily of topic-decomposable distance-based revision operators. Topic-decomposable
distances are complex distances, obtained by aggregating simpler distances
defined on topics, which are (possibly non-disjoint) subsets of variables. The
family includes as specific cases standard distances considered in belief revision,
especially the Hamming distance and the drastic distance.

We present and evaluate SAT encoding schemes E◦d
(ϕ, μ) for such operators

◦d. The encodings are CNF formulae which are query-equivalent to the revised
bases ϕ ◦d μ corresponding to the distance-based revision operator ◦d under
consideration. Roughly, the idea underlying the encoding schemes is to make
independent the languages used for the belief base ϕ and for the new piece
of information μ, then to define defaults aiming to reconcile these languages.
These defaults are used to compute the minimal distance min between the belief
base and the new information (using a weighted partial MAXSAT solver). A
constraint ensuring that the distance between any model of μ and ϕ is equal
to min is finally added. The resulting encoding can thus be viewed as a query-
equivalent compilation of the revised base. Indeed, in order to determine whether
ϕ◦d μ |= α holds, it is enough to check whether E◦d

(ϕ, μ) |= α holds, which can
be solved by checking the (un)satisfiability of E◦d

(ϕ, μ) ∧ ¬α. Empirically, our
approach is efficient enough to compute encodings for belief revision instances
based on thousands of variables.

The contributions of this work are:

– the definition of the family of topic-decomposable distance-based revision
operators,

– the proposal of SAT encoding schemes for several topic-decomposable
distance-based revision operators,

– the description of a set of benchmarks for distance-based belief revision,
– and the experimental evaluation of our encodings on these benchmarks.

2 Some Background on Belief Revision

Let LP be a propositional language built up from a finite set of propositional
variables P and the usual connectives. ⊥ (resp. �) is the Boolean constant
always false (resp. true). An interpretation (or world) is a mapping from P to
{0, 1}, denoted by a bit vector whenever a strict total order on P is specified.
The set of all interpretations is denoted W. An interpretation ω is a model of a
propositional formula α ∈ LP if and only if it makes it true in the usual truth
functional way. Mod(α) denotes the set of models of ϕ, i.e., Mod(α) = {ω ∈ W |
ω |= α}. |= denotes logical entailment and ≡ logical equivalence, i.e., α |= β iff
Mod(α) ⊆ Mod(β) and α ≡ β iff Mod(α) = Mod(β). Var(α) denotes the set of
variables occurring in α.

Let X be any subset of P, the X-projection of an interpretation ω on X,
noted ω↓X , is the restriction of ω on the variables in X. For instance, with
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P = {a, b, c, d, e, f} (ordered in this way), if X = {a, b, c}, and ω = 101001, then
ω↓X = 101.

A belief base is a propositional formulae (or equivalently a finite set of propo-
sitional formulae interpreted conjunctively) ϕ, that represents the current beliefs
of an agent.

A belief revision scheme ◦ is a mapping from LP × LP to LP , associating
with a belief base ϕ and a formula (a new piece of information) μ a belief base
ϕ ◦ μ called the revised base. Belief revision operators are the belief revision
schemes satisfying the following postulates:

Definition 1 ([9]). A belief revision scheme ◦ is a belief revision operator sat-
isfying the following postulates. For every formula μ, μ1, μ2, ϕ,ϕ1, ϕ2:

(R1) ϕ ◦ μ |= μ
(R2) If ϕ ∧ μ is consistent, then ϕ ◦ μ ≡ ϕ ∧ μ
(R3) If μ is consistent, then ϕ ◦ μ is consistent
(R4) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2, then ϕ1 ◦ μ1 ≡ ϕ2 ◦ μ2

(R5) (ϕ ◦ μ1) ∧ μ2 |= ϕ ◦ (μ1 ∧ μ2)
(R6) If (ϕ ◦ μ1) ∧ μ2 is consistent, then ϕ ◦ (μ1 ∧ μ2) |= (ϕ ◦ μ1) ∧ μ2

Belief revision operators can be characterized in terms of total preorders over
interpretations. Indeed, each belief revision operator corresponds to a faithful
assignment [9]:

Definition 2 (faithful assignment). A faithful assignment is a mapping
which associates with every base ϕ a preorder ≤ϕ over interpretations such that
for every base ϕ, ϕ1, ϕ2, it satisfies the following conditions:

(1) If ω |= ϕ and ω′ |= ϕ, then ω 
ϕ ω′

(2) If ω |= ϕ and ω′ � |= ϕ, then ω <ϕ ω′

(3) If ϕ1 ≡ ϕ2, then ≤ϕ1=≤ϕ2

where <ϕ is the strict part of ≤ϕ and 
ϕ is the indifference relation induced
by ≤ϕ.

Theorem 1 ([9]). A belief revision scheme ◦ is a belief revision operator if and
only if there exists a faithful assignment associating every base ϕ with a total pre-
order ≤ϕ over W such that for every formula μ, Mod(ϕ◦μ) = min(Mod(μ),≤ϕ).

3 Topic-Decomposable Distance-Based Revision
Operators

Among revision operators are distance-based operators, which select as result the
models of μ that are the closest ones to ϕ:
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Definition 3 (pseudo-distance, distance). Let X be a subset of P. A
pseudo-distance d between X-interpretations is a mapping d : WX × WX → N

such that for any X-interpretations ω1 and ω2:

– d(ω1, ω2) = 0 if and only if ω1 = ω2

– d(ω1, ω2) = d(ω2, ω1)

d is a distance when it satisfies in addition the triangular inequality, i.e., for
any interpretations ω1, ω2, and ω3:

– d(ω1, ω3) ≤ d(ω1, ω2) + d(ω2, ω3)

Usual distances are the drastic distance (dD(ω, ω′) = 0 if ω = ω′ and
1 otherwise), which corresponds to the infinity-norm distance, also known as
Chebyshev distance, and the Hamming distance (dH(ω, ω′) = n if ω and
ω′ differ on n variables), which corresponds to the 1-norm distance, also
referred to as the Manhattan distance. One can also consider weighted ver-
sions of these distances, where each propositional variable x is associated with
a (non-null) weight ρ(x), and then the weighted Hamming distance is given
by dHρ(ω, ω′) =

∑
{x|ω(x) �=ω′(x)} ρ(x). Similarly, a weighted drastic distance is

defined as dDρ(ω, ω′) = max{x|ω(x) �=ω′(x)} ρ(x).
Sometimes one can identify different topics, on which formulae and inter-

pretations can be evaluated. Some of these topics can be more important than
others, so having conflicts on some topics can be more problematic than on some
others. See [11] for a criticism of (simple) Hamming distance, and a justification
of the use of weights or topics.

Let f be an aggregation function, i.e., a mapping associating an integer i =
f(vn) with any finite vector vn = (i1, . . . , in) of integers. Let us recall the
definition of topic-decomposable distance from [11]:

Definition 4 (topic-decomposable distance). Let T = {T1, . . . , Tm} be a
collection of non-empty subsets of P (topics) such that

⋃m
i=1 Ti = P. A pseudo-

distance d between interpretations is T -decomposable if and only if there exist
m pseudo-distances d1, . . . , dm and an aggregation function f such that each di

(i ∈ {1, . . . , m}) is between Ti-interpretations, and for all ω, ω′ ∈ W:

d(ω, ω′) = f(d1(ω↓T1 , ω′↓T1), . . . , dm(ω↓Tm , ω′↓Tm)).

Note that distinct topics from a topic decomposition T of X may share some
variables of X.

In [11] Lafage and Lang do not specify the properties they expect for the
aggregation function. In this work we require the following:

Definition 5 (aggregation function). An aggregation function f is a map-
ping associating an integer i = f(vn) with any finite vector vn = (i1, . . . , in)
of integers. It is assumed that whatever the integer n, f(vn) = 0 if and only
if vn = 0n where 0n is the vector of size n containing only null coordinates. f
should also be non-decreasing in each argument. We finally assume that if vm

(m ≥ n) is any vector containing the same coordinates as vn but completed with
m − n zeroes, then f(vm) = f(vn).
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Note that standard aggregation functions, as Σ (sum), max , Leximax or
Leximin satisfy these requirements.

In order to define T -decomposable distances from their components, we will
take advantage of the following structure:

Definition 6 (decomposition distance). Let δ = {T ,D, f}, with T =
{T1, . . . , Tm} be a collection of non-empty subsets of P (topics) such that⋃m

i=1 Ti = P, D = {d1, . . . , dm} be a collection of pseudo-distances such that
each di (i ∈ {1, . . . , m}) is between Ti-interpretations, and f be an aggrega-
tion function. We call such a δ a composition frame, and dδ the decomposition
distance induced by δ (or simply the δ-decomposable distance).

Let us now introduce topic-decomposable distance-based revision operators:

Definition 7 (topic-decomposable distance-based revision operator).
Let δ be a composition frame. A topic-decomposable distance-based revision
operator ◦δ

d is defined as Mod(ϕ ◦δ
d μ) = min(Mod(μ),≤δ

ϕ), where

– ω ≤δ
ϕ ω′ iff dδ(ω, ϕ) ≤ dδ(ω′, ϕ)

– dδ(ω, ϕ) = minω′ |=ϕ dδ(ω, ω′)
– dδ is the δ-decomposable distance

We can easily show that:

Proposition 1. Any topic-decomposable distance-based revision operator ◦δ
d is

a belief revision operator.

It is easy to check that the drastic distance dD and the Hamming distance dH

(and, similarly, their weighted counterparts dDρ
and dHρ

) are (somewhat trivial)
topic-decomposable pseudo-distances. Indeed, each of them is the decomposition
distance induced by the composition frame {T = {{P}},D, f} where D is the
singleton consisting of the distance itself, and f is the identity function.

Several new, yet interesting belief revision operators can be defined as mem-
bers of this family. For instance, a revision operator that first looks at Hamming
distance between interpretations (like Dalal revision ◦dH

), but in case of equality,
focuses on some specific variables. The corresponding topic-decomposable dis-
tance can be built up using Σ as the aggregation function on a first topic equal
to P, and then on other topics containing the variables of interest. Formally:

Definition 8 (DVI revision operators). Let Y = 〈x1, . . . , xk〉 be a vector of
propositional variables of P. The Dalal revision with Variables of Interests oper-
ator ◦δDV I(Y )

d is the topic-decomposable distance-based revision operator defined
by the decomposition frame δDV I(Y ) = {T ,D, ΣDV I(Y )} such that:

– T = {P, {x1}, . . . , {xk}}
– D = {dH , dD, . . . , dD}
– ΣDV I(Y )(i0, i1, . . . , ik) = 2k+1.i0 + Σk

j=12
j .ij

Here is an illustrative example.
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Example 1. Suppose that P = {x1, x2, x3} and Y = 〈x1, x2, x3〉. Let ϕ ≡ (x1 ↔
x2) ∧ (x2 ↔ ¬x3) and let μ = (x1 ∧ x3) ∨ (x2 ∧ x3). Assuming x1 < x2 < x3,
we have Mod(ϕ) = {001, 110} and Mod(μ) = {011, 101, 111}. Every model of
μ is at Hamming distance 1 from ϕ. Accordingly, ϕ ◦dH

μ is equivalent to μ.
Contrastingly, the distance of 011 (resp. 101, 111) to ϕ for the Dalal revision
with Variables of Interests operator defined above is 20 (resp. 18, 24). Thus, we
have that ϕ ◦δDV I(Y )

d μ is equivalent to x1 ∧ ¬x2 ∧ x3.

Proposition 2. For any set Y , for any ϕ, μ, ϕ ◦δDV I(Y )

d μ |= ϕ ◦dH
μ.

Many other refinements of (and variations around) Dalal revision operator
can be figured out from topic-decomposable distances.

4 SAT Encodings

We now describe SAT encodings for the topic-decomposable distance-based
revision operators based on the Hamming distance or the drastic distance on
each topic, and on the aggregation functions wΣ,wLeximax, wLeximin, which
are weighted versions of the standard aggregation function Σ, Leximax, Leximin,
where w is a weight function on topics (it associates an integer w(Ti) with
each topic), and a topic Ti of weight w(Ti) is duplicated w(Ti) times before the
aggregation.

Our SAT encodings for topic-decomposable distance-based belief revision
mainly use the same techniques as those considered in our previous work [10] on
belief merging.

Given a topic-decomposable pseudo-distance d, a belief base ϕ represented
as a CNF formula, a change formula μ represented as a CNF formula, we are going
to show that our encoding scheme E generates a CNF formula E◦d

(ϕ, μ) of size
polynomial in |ϕ| + |μ| which is query-equivalent to ϕ ◦d μ. Let us first make
precise what query-equivalent means.

Definition 9 (query-equivalence).

– A propositional formula α is said to be query-equivalent to a propositional
formula β whenever α has the same logical consequences as β over Var(β),
i.e., for ever formula γ over Var(β), we have α |= γ if and only if β |= γ.

– A mapping τ associating a CNF formula α with a given propositional formula
β is query-equivalence preserving if and only if α is query-equivalent to β.

In our approach, both ϕ and μ are supposed to be CNF formulae. This is not
a limitation of the framework, since any formula can be transformed in linear
time into a query-equivalent CNF formula using Tseitin or Plaisted/Greenbaum
translation functions [15,17]. Indeed, Tseitin and Plaisted/Greenbaum transla-
tion functions τT and τPG (respectively) [15,17] are query-equivalence preserving
mappings from propositional circuits to CNF, and they can be computed in linear
time in the size of the input β.
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Example 2. As a matter of example, let us consider again ϕ represented by
(x1 ↔ x2) ∧ (x2 ↔ ¬x3) and μ = (x1 ∧ x3) ∨ (x2 ∧ x3). Using Tseitin translation
function, we get τT (ϕ) = a0 ∧ (¬a0 ∨ a1)∧ (¬a0 ∨ a2)∧ (a0 ∨¬a1 ∨¬a2)∧ (¬a1 ∨
¬x1 ∨ x2) ∧ (¬a1 ∨ x1 ∨ ¬x2) ∧ (a1 ∨ x1 ∨ x2) ∧ (a1 ∨ ¬x1 ∨ ¬x2) ∧ (¬a2 ∨ ¬x2 ∨
¬x3) ∧ (¬a2 ∨ x2 ∨ x3) ∧ (a2 ∨ x2 ∨ ¬x3) ∧ (a2 ∨ ¬x2 ∨ x3).

The auxiliary, fresh variables a0, a1, a2 correspond respectively to ϕ, and its
two main subformulae x1 ↔ x2 and x2 ↔ ¬x3. The unit clause x0 expresses that
β holds, the next three clauses that it is equivalent to a1 ∧ a2, the next three
clauses that a1 is equivalent to x1 ↔ x2, and finally the last three clauses that
a2 is equivalent to x2 ↔ ¬x3.

Similarly, we get τT (μ) = b0 ∧ (¬b0 ∨ b1 ∨ b2)∧ (b0 ∨¬b1)∧ (b0 ∨¬b2)∧ (¬b1 ∨
x1) ∧ (¬b1 ∨ x3) ∧ (b1 ∨ ¬x1 ∨ ¬x3) ∧ (¬b2 ∨ x2) ∧ (¬b2 ∨ x3) ∧ (b2 ∨ ¬x2 ∨ ¬x3).
This time, the auxiliary variables which are introduced are b0, b1, b2.

Plaisted/Greenbaum translation function is a bit lighter (it leads to less
clauses). Here, τPG(ϕ) = a0 ∧ (¬a0 ∨ a1) ∧ (¬a0 ∨ a2) ∧ (¬a1 ∨ ¬x1 ∨ x2) ∧
(¬a1 ∨ x1 ∨ ¬x2) ∧ (¬a2 ∨ ¬x2 ∨ ¬x3) ∧ (¬a2 ∨ x2 ∨ x3). τPG(μ) = b0 ∧ (¬b0 ∨
b1 ∨ b2) ∧ (¬b1 ∨ x1) ∧ (¬b1 ∨ x3) ∧ (¬b2 ∨ x2) ∧ (¬b2 ∨ x3).

We can observe that each of τT (ϕ) and τPG(ϕ) is query-equivalent to ϕ.
And similarly for τT (μ) and τPG(μ) w.r.t. μ Especially, the clause ¬x1 ∨ ¬x3

is a logical consequence of ϕ, so it is also a logical consequence of τT (ϕ) and
of τPG(ϕ).

Whatever the used translation function τ , let us denote by A(τ(β)) =
Var(τ(β)) \ Var(β) the set of auxiliary variables introduced in τ(β). In the case
when ϕ and/or μ are not given as CNF formula(e), one can always take advantage
of τ = τT and/or τ = τPG to turn them into query-equivalent formulae. The
point is that this translation is safe as to the solving of the (inference problem
associated to) revision. To be more precise:

Proposition 3. Let X = Var(ϕ) ∪ Var(μ) and let dX be a topic-decomposable
distance over WX induced by a topic decomposition TX = {T1, . . . , Tm} of X,
an aggregation function f , and m pseudo-distances d1, . . . , dm where each di

(i ∈ {1, . . . , m}) is between Ti-interpretations. Let Y = X ∪ A(τ(ϕ)) ∪ A(τ(μ)).
Then, provided that A(τ(ϕ)) ∩ A(τ(μ)) = ∅ (which is harmless, since the names
given to the auxiliary variables do not matter), one can associate with dX a
topic-decomposable pseudo-distance dY over WY induced by a topic decomposi-
tion TY = {T1, . . . , Tm, Tm+1} of Y , the aggregation function f , and the m + 1
pseudo-distances d1, . . . , dm, dm+1, with Tm+1 = A(τ(ϕ)) ∪ A(τ(μ)) and dm+1

any pseudo-distance between Tm+1-interpretations. By construction, dY is such
that τ(ϕ) ◦dY

τ(μ) is query-equivalent to ϕ ◦dX
μ.

Let us now explain how SAT encoding schemes can be exploited to compute
polynomial-size encodings, given by CNF formulae which are query-equivalent
to the revised bases ϕ ◦d μ for the topic-decomposable distance-based revision
operators.

Formally, the objective is to associate with each ϕ and μ a CNF propositional
formula noted E◦d

(ϕ, μ) which is query-equivalent to ϕ ◦d μ; thus, E◦d
(ϕ, μ)
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must have the same logical consequences ϕ as those of ϕ ◦d μ, provided that the
queries ϕ are built up from the variables occurring in ϕ or μ. Furthermore, one
expects the size of the encoding E◦d

(ϕ, μ) to be polynomial in the size of ϕ plus
the size of μ.

Such encodings E◦d
(ϕ, μ) are computed via a two-step compilation process:

(1) using a solver for weighted partial MAXSAT, one first computes the value
min, which is the distance of μ to ϕ, i.e., the minimal value of {d(ω, ϕ) |
ω |= μ},

(2) once min has been computed, one generates the encoding E◦d
(ϕ, μ) which

states (among other things) that the distance of μ to ϕ must be equal to
min.

The generated encoding E◦d
(ϕ, μ) is a CNF formula, enabling to take advan-

tage of the power of SAT solvers for solving the inference problem when the
queries ϕ are also given as CNF formulae.

From now on, we suppose that Var(ϕ) ∪ Var(μ) = {x1, . . . , xn}. All the
encodings E◦d

(ϕ, μ) described in the following share a common part C(ϕ, μ)
given by

μ ∧ ϕ′ ∧
n∧

j=1

(dj ∨ ¬xj ∨ x′
j) ∧ (dj ∨ xj ∨ ¬x′

j).

ϕ′ is a clone of ϕ obtained by renaming in it every occurrence of a variable xj

by an occurrence of the fresh variable x′
j . Such a renaming of the bases enables

it to freeze any conflict which would exist in the conjunction of μ and ϕ. This
is reminiscent to the consistency-based approach to belief merging reported in
[6]. The last conjunct of C(ϕ, μ) is a constraint based on discrepancy variables
dj , such that dj must be set to true whenever it is not possible to assume that
xj ↔ x′

j holds without violating C(ϕ, μ).

Distances. Taking into account the distance d under consideration (dD or dH)
requires to add a further constraint of the form

∧m
i=1 Di to C(ϕ, μ) where m

is the number of topics of T . For each topic Ti ∈ T , Di is a CNF formula over
the variables d1, . . . , dn plus a number of additional fresh variables. Some (actu-
ally ri) of them give the binary representation bi

ri
, . . . , bi

1 of maxxj∈Ti
dj (resp.

Σxj∈Ti
dj) when the drastic distance (resp. the Hamming distance) is considered

(see [10] for more details). For each model ω of C(ϕ, μ)∧
∧m

i=1 Di, the bit vector
obtained by projecting ω over those Σm

i=1ri additional variables is the binary
representation of the distance of the projection of ω over the variables of μ with
the projection of ω over the variables of ϕ′.

Aggregators. The objective is now to find min, the minimal distance of μ to ϕ.
Let us first focus on the easiest case f = Σ. In this case, the value we look for is
the minimal value min which can be taken by Σm

i=1wTi
× (Σri

j=12
j−1 × bi

j). Since
this objective function is linear, in order to compute min, we take advantage
of a weighted partial MAXSAT solver. Once this is done, to get E◦d

(ϕ, μ), it is
enough to conjoin with C(ϕ, μ)∧

∧m
i=1 Di a CNF formula query-equivalent to the
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constraint Σm
i=1ki×(Σri

j=12
j−1×bi

j) = min. A polynomial-size CNF formula query-
equivalent to this last constraint can be computed using a weighted parallel
binary counter [16].

Let us now consider the harder cases f = Leximax and f = Leximin. Let r
be maxm

i=1ri. First of all, for aligning the binary representations bi
ri

, . . . , bi
1 over

r bits when i varies from 1 to m, we introduce some fresh variables assigned to
false. Then we generate an additional CNF constraint P (ϕ) which requires the
introduction of m2 additional variables pi,j . This constraint is used to “sort” the
bit representations associated with the topics (i.e., to associate with each j a
position i) depending on the respective values of their bit vectors bj

r . . . bj
1. As in

[10], P (ϕ) requires (5 × r + 2) × m3 clauses: 2 × m3 clauses are used to express
the fact that each j is associated with a unique i (a pigeonhole instance) and
5 × r × m3 clauses are used to ensure (thanks to a standard comparator) that
for every j, k ∈ {1, . . . , m}, i ∈ {1, . . . , m-1}, if pi,j and pi+1,k are set to true,
then bj

r . . . bj
1 is greater than or equal to (resp. lower than or equal to) bk

r . . . bk
1

when f = Leximax (resp. f = Leximin). Thus, the only j such that p1,j is true
is such that the value of bj

r . . . bj
1 is maximal (resp. minimal) when f = Leximax

(resp. f = Leximin), and so on.
The following step aims at taking account for the weights wTi

(i ∈
{1, . . . , m}). We determine the positions of the binary representations associ-
ated with the topics for which the corresponding bit vectors take the same values
(they are necessarily pairwise adjacent because of the constraint P (ϕ)). To do
so, we add a further CNF constraint A(ϕ) requiring the introduction of m fresh
variables ei, so that e1 is set to true and for every i ∈ {1, . . . ,m − 1}, ei is set
to true precisely when the binary representations corresponding to the topics
associated with positions i and i − 1 correspond to different bit vectors. A(ϕ)
requires (r + 1) × m3 additional clauses.

The next step is to add a constraint K(ϕ) which is used to make the sums
of the weights wTi

which are associated with equal bit vectors (indeed, unlike
for the case f = Σ, multiplying by wTi

the value of the corresponding bit
vector is not convenient when a lexicographic comparison is to be achieved). Let
s = �log2(Σm

i=1wTi
)�. Constraint K(ϕ) requires the introduction of m × s fresh

variables, i.e., m bit vectors tis . . . ti1, and it ensures that for each i ∈ {1, . . . , m},
tis . . . ti1 is the binary representation of wTi

when ei is true, and tis . . . ti1 is the
binary representation of the sum of the value of ti−1

s . . . ti−1
1 with wTi

when ei

is false. K(ϕ) is based on a half-adder and requires 6 × m × s clauses. Then
one needs to add a further constraint O(ϕ) which is used to ”sort” the bit
vectors bi

r, . . . , b
i
1 for i ∈ {1, . . . ,m}. This constraint requires the introduction

of m × r fresh variables, i.e., m bit vectors oi
r . . . oi

1. It ensures that for every
i, j ∈ {1, . . . , m}, if pi,j is set to true, then bj

r . . . bj
1 is equal to oi

r . . . oi
1. This

constraint requires 2 × r × m2 additional clauses.
Now, in order to compute min (which can be viewed here as a sorted list of

ordered pairs of integers, where the second element of each pair is the num-
ber of repetitions of the first element that must be considered), one needs
first to compute a model which minimizes the value v1

o of o1r . . . o11, and then
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minimizes (resp. maximizes) the value v1
t of t1s . . . t11 when f = Leximax (resp.

f = Leximin). We achieve the two optimization processes in one step, using a
weighted partial MAXSAT solver on the instance given by the hard constraint
E◦d

(ϕ, μ) = C(ϕ, μ)∧
∧m

i=1 Di∧P (ϕ)∧A(ϕ)∧K(ϕ)∧O(ϕ) and the objective func-
tion 2s×Σr

i=12
i−1×o1i +Σs

i=12
i−1×t1i (resp. 2s×Σr

i=12
i−1×o1i +Σs

i=12
i−1×¬t1i )

when f = Leximax (resp. f = Leximin).
Once an optimal solution is found, we add to the hard constraint s+r×v1t unit

clauses in order to set the variables t1s, . . . , t
1
1, as well as the variables oj

r, . . . , o
j
1

(j ∈ {1, . . . , v1t }) to the truth values they have in this solution. We iterate this
process by considering then the second greatest (resp. least) value of the bit
vectors o

v1
t +1

r , . . . , o
v1

t +1
1 for i ∈ {1, . . . , m}, and so on. The number of iterations is

upper bounded by m. The computation of min is achieved when all the iterations
have been done. Then E◦d

(ϕ, μ) is equal to C(ϕ, μ) ∧
∧m

i=1 Di ∧ P (ϕ) ∧ A(ϕ) ∧
K(ϕ) ∧ O(ϕ) conjoined with all the unit clauses which have been generated
during the optimization step.

By construction of the encodings, all the belief revision operators under con-
sideration are query-compactable [2]:

Proposition 4. For each topic-decomposable distance d induced by f ∈ {wΣ,
wLeximax, wLeximin} and local distances which are Hamming or drastic ones, the
size of E◦d

(ϕ, μ) is polynomial in the size of ϕ plus the size of μ and E◦d
(ϕ, μ)

is query-equivalent to ϕ ◦d μ.

A direct consequence of the previous proposition is that the inference prob-
lems for the topic-decomposable distance-based belief revision operators under
consideration can be reduced to the classical entailment problem by taking
advantage of our encoding schemes. Since the size of E◦d

(ϕ, μ) is in every case
polynomial in the size of ϕ plus the size of μ, we get that the corresponding
inference problems (when queries ϕ are unrestricted propositional formulae) are
compilable to coNP, and are among the hardest ones (see [12] for more details
on the compilability classes):

Corollary 1. For each topic-decomposable distance d induced by f ∈ {wΣ,
wLeximax, wLeximin} and local distances which are Hamming or drastic ones,
the inference problem for ◦d is compcoNP-complete.

Accordingly, our results extend some compilability results known for Dalal
revision operator [12]. From the practical side, the computational effort required
to generate E◦d

(ϕ, μ) is spent only once (during the compilation phase), indepen-
dently of the number of queries. Since the complexity of the inference problem
falls to coNP once the preprocessing has been done, this effort can be easily
balanced by considering sufficiently many queries.

5 Empirical Evaluation

Benchmarks. The non-availability of belief revision benchmarks corresponding
to an actual application was a difficulty we had to face. To deal with it, we started
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with 295 unsatisfiable CNF instances used as benchmarks for the MUS compe-
tition in 2011 (http://www.cril.fr/SAT11/). We filtered from those benchmarks
220 CNF instances, precisely the ones which can be solved in less than 300 s by
the weighted partial MAXSAT solver MaxHS [4,5] (the objective was to remove
the most difficult MAXSAT instances). The number of variables of the selected
instances varies from 26 to 4426259, with an average of 83240 variables. The
number of clauses varies from 70 to 15983633 with an average of 279887 clauses.

From each such CNF formula Σ, we selected at random (following a uniform
distribution and using a generate-and-test approach) a satisfiable subset ϕΣ of
clauses containing 80% of the number of clauses of Σ. For generating μΣ we
followed a similar generation methodology, but limited the number of selected
clauses to (approximately) 5%, 15%, 35%, or 50% of the number of clauses of Σ.
Those 4 thresholds are intended to capture different revision scenarios, from a
“light” revision where the revision formula μΣ consists of only a few clauses to a
more ”severe” revision situation, where μΣ is quite huge. The generation process
ensures that μΣ is a satisfiable CNF formula and that ϕΣ ∧ μΣ is unsatisfiable.
Indeed, one wants to avoid trivial cases of belief revision, i.e., the ones when
ϕΣ∧μΣ is satisfiable (in this case, (R2) requires the revised base to be equivalent
to ϕΣ ∧ μΣ). This explains why the retained thresholds are only approximate
ones (sometimes additional clauses must be added to μΣ for guaranteeing the
unsatisfiability of ϕΣ ∧ μΣ). Following this approach, we derived 220 × 4 = 880
belief revision instances (ϕΣ , μΣ).

As to the topics, we considered sets T consisting of 1, 2, 5, 10, 15 and 20
elements. The case when only one topic is considered amounts to “standard”
distance-based revision. Each topic Ti of T is obtained by selecting at random
(following a uniform distribution) 30% of the variables of Var(ϕΣ) ∪ Var(μΣ).
When necessary, an additional topic is added to T for ensuring that

⋃
Ti∈T Ti =

Var(ϕΣ) ∪ Var(μΣ). Each topic Ti is associated with a weight w(Ti) between
1 and 10 and chosen at random. w(Ti) represents the significance of T . From
the aggregation point of view, when Ti (i ∈ {1, . . . , n}) has a weight w(Ti), in
the computation of the distance between two worlds ω and ω′, the argument
di(ω↓Ti , ω′↓Ti) is repeated w(Ti) times. Clearly enough, this is the same as mul-
tiplying di(ω↓Ti , ω′↓Ti) by w(Ti) when the global aggregation function f is wΣ,
but it leads to distinct distances in general when f is wLeximin or wLeximax.
Considering 6 possible sizes for T led to 880 × 6 = 5280 topic-decomposable
instances (T , ϕΣ , μΣ). The instances, their generator (and the whole set of empir-
ical results) are available at http://www.cril.fr/KC/br2cnf.html.

Setting. For each of the 5280 topic-decomposable belief revision instances, we
have considered 2 candidate distances for each local distance di: the Hamming
distance and the drastic distance. Finally, as to the global aggregation function f
needed to define the topic-decomposable distance d inducing the belief revision
operator under consideration, we have considered 3 functions: wΣ, wLeximin,
and wLeximax. This finally led to 5280 × 2 × 3 = 31680 topic-decomposable
distance-based belief revision instances (T , ϕΣ , μΣ , ◦d).

http://www.cril.fr/SAT11/
http://www.cril.fr/KC/br2cnf.html
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For each instance, we took advantage of the SAT encoding schemes E◦d
(ϕΣ ,

μΣ) as reported in Sect. 4 to generate a query-equivalent CNF formula. Our exper-
iments have been conducted on Intel Xeon E5-2643 (3.30 GHz) processors with
32 GiB RAM on Linux CentOS. We allocated 900 s CPU time and 8 GiB of
memory per instance.

100

130

160

190

220

wsum wleximin wleximax

5% 15% 35% 50%

1     2    5    10   15  20 1     2    5    10   15  20 1     2    5    10   15  20 1     2    5    10   15  20

Fig. 1. Number of solved instances for different sizes of μ and different numbers of
topics. The distance used is the Hamming one dH .

Empirical results. Let us first focus on the drastic distance dD which turned
out to be the easiest case, computationally speaking. Given the computational
resources allocated, we have been able to generate the encodings for all the
31680 instances but 336 (288 of them coming from the same 6 CNF instances).
This represents (approx.) 99% of the topic-decomposable distance-based belief
revision instances we have considered. For the instances for which the generation
was feasible, the average generation time was 22.43 s, the worst case was 785 s. As
to the number of variables (resp. clauses), the worst case was equal to (approx.)
3.6 million (resp. 14 million).

Let us then focus on the Hamming distance dH . In Fig. 1 are indicated the
numbers of solved instances (out of the 220) for different sizes of μ and numbers
of topics when dH is considered. One can easily see in this figure that both
parameters have an impact on the difficulty of generating the encoding.

We now give more detailed results for the case f = wLeximin and d = dH ,
which proved to be the most difficult scenario. In Table 1, for each size of μ (i.e.,
5%, 15%, 35%, 50%) and each number of topics (i.e., 1, 2, 5, 10, 15, 20), we report
the number of solved instances (out of 220) within the time and memory bounds,
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Table 1. Results for f = wLeximin and d = dH .

%mu#T#solved avg. timemax. timemin. time avg. #varmax. #varmin. #var avg. #cl max. #cl min. #cl

5 1 213 38.4808 899.46 0 386026 5907706 226 778634 11811657 437

5 2 205 45.7588 756.69 0 566257 5084802 391 1236960 11097772 984

5 5 199 82.2348 887.36 0 879919 8737708 628 2019340 19966128 2203

5 10 178 122.551 859.89 0 1024460 9783278 1349 2414570 22654048 7040

5 15 160 121.378 676.36 0.01 800255 8947349 2062 1911580 21226404 13322

5 20 148 172.762 892.44 0.14 726893 7835375 3047 1769200 18978889 25198

15 1 201 54.7176 876.86 0 289224 2743707 226 588028 5255155 438

15 2 196 76.058 875.09 0 444427 4947647 391 980266 10731927 985

15 5 181 86.3864 856.39 0 583383 8737708 628 1342630 20065116 2204

15 10 167 132.848 834.85 0 688920 8380732 1349 1632140 20248744 7041

15 15 149 129.767 893.95 0.01 534537 8947349 2062 1285300 21281274 13323

15 20 139 196.685 858.48 0.18 527622 9125590 3047 1292340 21866643 25199

35 1 175 61.0705 803.32 0 126799 1689229 226 267289 3449743 452

35 2 172 80.4879 829.02 0 245727 4947647 391 551284 10929903 999

35 5 160 90.1234 896.61 0 198657 3817739 628 465638 8860787 2218

35 10 147 111.083 872.56 0 280196 6865407 1349 671725 16267341 7055

35 15 139 124.084 605.08 0 284763 5856095 2062 697729 14120161 13337

35 20 133 189.07 883.93 0.18 329617 7316079 3047 820222 17616391 25213

50 1 165 57.246 837.68 0 70207.7 716066 226 156578 1465372 463

50 2 159 51.0458 628.34 0 94154.6 1101822 391 217551 2396056 1010

50 5 152 79.0841 872.84 0 132565 2000729 628 314010 4609591 2229

50 10 142 101.54 897.53 0 194128 6865407 1349 471072 16348489 7066

50 15 135 136.915 877.36 0.01 199578 783143 2062 495474 1909354 13348

50 20 130 191.321 825.83 0.18 302605 7316079 3047 757717 17655136 2522

and the average avg and the maximum and the minimum of the values of the
following measurements: the compilation time (in seconds) needed to compute
the encoding (time), the number #var of variables in the encoding, and the
number #cl of clauses in it.

From these experiments, one can make the following observations. First, one
can note that the size of the formula μ has an impact on the difficulty (for
instance, for a unique topic, 213 instances have been solved for a size of μ of
5%, and “only” 165 instances for a size of μ of 50%). But the greatest source of
difficulty seems to be the number of topics (213 instances solved for one topic vs.
148 instances for 20 topics for a size of μ of 5%, and from 165 to 130 instances
solved for a size of μ of 50%).

Table 2 (resp. Table 3) reports the same kind of measurements for f =
wLeximax (resp. f = wΣ). Similar observations as the ones made for f =
wLeximin about the impact of the size of μ and the number of topics can also be
done for those two aggregation functions. Unsurprisingly, looking at the number
of instances “solved”, the “hardness” of the instances obtained for f = wLeximax
appears as similar to the ones of the corresponding instances for f = wLeximin.
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Table 2. Results for f = wLeximax and d = dH .

%mu#T#solved avg. timemax. timemin. time avg. #varmax. #varmin. #var avg. #cl max. #cl min. #cl

5 1 213 39.931 868.64 0 386026 5907706 226 778634 11811657 437

5 2 207 39.5016 691.14 0 569724 5084802 391 1245750 11097772 984

5 5 201 74.6523 760.76 0 885310 8737708 628 2031650 19966128 2203

5 10 182 111.554 804.17 0 1026790 9783278 1349 2419830 22654050 7042

5 15 163 123.695 824.42 0.01 827095 8947349 2062 1976280 21226417 13322

5 20 147 177.478 876.36 0.08 708300 9125590 3047 1722970 21833514 25209

15 1 201 53.4791 762.6 0 289224 2743707 226 588028 5255155 438

15 2 197 54.9609 796.77 0 452246 4947647 391 995154 10731927 985

15 5 185 80.3196 839.36 0 658773 8737708 628 1517230 20065116 2204

15 10 170 126.352 845.67 0 784672 8751179 1349 1854490 20848972 7043

15 15 155 142.257 816.41 0.01 762194 8947349 2062 1825040 21281287 13323

15 20 143 193.719 893.73 0.08 555254 7373477 3047 1358460 17699333 25210

35 1 176 65.2532 899.82 0 137931 2086001 226 290681 4384428 452

35 2 174 79.3148 870.4 0 249685 4947647 391 560567 10929903 999

35 5 163 86.8453 858.17 0 279900 6083327 628 653163 14037642 2218

35 10 148 106.351 867.95 0 328283 6865407 1349 786258 16267343 7057

35 15 142 133.89 890.64 0 375744 8221280 2062 913011 19275067 13337

35 20 135 230.019 894.36 0.1 373476 7373477 3047 926447 17781160 25224

50 1 165 57.7481 848.88 0 70207.7 716066 226 156578 1465372 463

50 2 162 61.9183 859.48 0 103994 1101822 391 240676 2396056 1010

50 5 153 74.1976 891.83 0 151718 2745305 628 359986 6433006 2229

50 10 142 92.8003 892.33 0 171436 3639701 1349 416643 8615495 7068

50 15 139 146.263 770.45 0 343132 8380242 2062 837112 19729492 13348

50 20 129 221.471 703.56 0.11 324223 7316079 3047 809519 17655148 25235

Furthermore, the instances obtained for f = wΣ appears as slightly easier than
the ones of the corresponding instances for f = wLeximax (especially when the
size of μ and the number of topics are high).

In Tables 1, 2, and 3, the case when #T = 1 corresponds precisely to Dalal
revision. We can observe on Table 3 that for a small size of μ (5%) most instances
have been solved (214 out of 220), with a reasonable average time of 43 s. The
average number of variables in the instances is 83240, and the average number of
clauses is 279887. This shows that undoubtedly Dalal revision can be computed
efficiently for large-size instances thanks to the encoding we point out.

These results should be contrasted with previous implementations of belief
revision operators, for which solving instances of such a size was clearly out
of reach. Note that those implementations do not correspond to distance-based
operators: [18] encodes revision operators based on transmutation, [7] encodes
revision operators based on language reconciliation, and [13] encodes partial-
meet and kernel contraction. But noticeably in each of these three cases, no
empirical evaluation was reported, or the instances under consideration were
limited to be built up from a few dozens of variables.
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Table 3. Results for f = wΣ and d = dH .

%mu#T#solved avg. timemax. timemin. time avg. #varmax. #varmin. #var avg. #cl max. #cl min. #cl

5 1 214 43.5343 866.03 0 388336 5907706 226 784187 11811657 437

5 2 204 48.5623 514.68 0 555211 5086581 487 1213040 11101977 1052

5 5 199 94.8606 892.67 0 883152 8741391 713 2026030 19973570 1576

5 10 181 99.4129 760.91 0 1029270 9789091 1422 2420080 22660787 3268

5 15 164 97.8304 729.02 0 824714 8955449 2223 1955560 21228391 5176

5 20 156 117.773 825.72 0 748603 9135718 3118 1791345 21824355 7289

15 1 202 57.6379 870.47 0 293132 2743707 226 596101 5255155 438

15 2 194 70.8754 897.13 0 438054 4949485 487 967042 10736273 1053

15 5 185 91.2105 747.01 0 682350 8741391 713 1572110 20072558 1577

15 10 174 111.604 791.15 0 877804 9377697 1422 2069170 22358992 3269

15 15 159 113.972 864.67 0 793179 8955449 2223 1884540 21283261 5177

15 20 150 128.309 882.78 0 580689 7845670 3118 1392370 18998942 7290

35 1 175 60.3497 790.45 0 126799 1689229 226 267289 3449743 452

35 2 170 73.1915 813.47 0 238452 4949485 487 535214 10934249 1067

35 5 163 98.3538 834.7 0 326413 6086818 713 759278 14044635 1591

35 10 160 120.138 896.45 0 589290 7158010 1422 1396320 16958646 3283

35 15 146 108.166 844.91 0 393917 8387940 2223 940866 19662489 5191

35 20 139 133.365 886.58 0 348501 7049833 3118 838498 17026971 7304

50 1 165 59.0681 886.05 0 70207.7 716066 226 156578 1465372 463

50 2 159 63.7416 681.17 0 94895.7 1103118 487 219139 2399027 1078

50 5 153 84.6987 854.33 0 198170 3888204 713 466058 9157465 1602

50 10 149 94.5133 848.7 0 348109 6871077 1422 831604 16355040 3294

50 15 143 121.752 859.69 0 346522 8387940 2223 830872 19730597 5202

50 20 134 145.103 838.1 0 318841 7049833 3118 769852 17067544 731

6 Conclusion

We have introduced a general family of revision operators, based on topic-
decomposable distances. This family captures well-known distance-based oper-
ators, but contains as well new interesting variations of previous operators. We
have presented SAT encoding schemes for operators of this family. Based on
them, one can compute polynomial-size encodings which are query-equivalent
to the corresponding revised bases. This shows that the inference problem for
belief revision for those operators is compilable to coNP.

We have evaluated our encoding schemes on non-trivial instances; leverag-
ing the power of SAT solvers, we have shown that the resulting encodings can
be computed within reasonable time and space limits, for instances based on
thousands of variables which are out of reach of previous implementations.

We would like to insist on the fact that these instances have been defined from
benchmarks from the 2011 MUS competition, which are non-trivial formulae.
Being able to compute the result of the revision process for most of them shows
that our approach can be used for real, large-scale applications where belief
revision is required. Dalal revision being a specific operator of our family (among
the easiest ones), this paper is the first one (as far as we know) presenting a
convincing implementation of Dalal revision for practical applications.
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By showing how SAT solvers can be exploited for solving revision problems
located higher than coNP, this work also contributes to the recent Beyond NP
initiative (beyondnp.org). As a perspective for further research, other distances
and other aggregation functions will be targeted.
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Abstract. We motivate and develop an extension of Nelson’s construc-
tive logic N3 that adds a counterfactual conditional to the existing setup.
After developing the semantics, we will outline how our account will be
able to give a nice analysis of natural language counterfactuals. In partic-
ular, the account does justice to the intuitions and arguments that have
lead Alan Hájek to claim that most conditionals are false, but assertable,
without actually forcing us to endorse that rather uncomfortable claim.

1 Introduction

1.1 Aim

In this paper, we will motivate and develop an extension of Nelson’s constructive
logic N3 that adds a subjunctive or counterfactual conditional to the existing
setup. We will mostly be concerned with somewhat technical questions about
the formal semantics, but we will outline how our account will be able to give
a nice analysis of natural language counterfactuals. In particular, we will be
able to do justice to the intuitions and arguments that have lead Alan Hájek
to claim that most conditionals are false, but assertable (cf. [3]) without having
to actually endorse that rather strange claim. This will, due to restrictions of
space, remain a very rough outline of a theory of natural language conditionals.
A more full-blooded theory will appear as a companion paper that focuses more
on the linguistic evidence than the technical ideas, problems and solutions that
are at the center of this paper.

1.2 Preliminaries

Throughout this paper, our languages L�, L→ and L�,→ consist of finite
sets {−,∧,∨,�}, {−,∧,∨,→} and {−,∧,∨,�,→} of propositional connectives,
respectively, and a countable set Prop of propositional variables which we denote
by p, q, etc. Furthermore, we denote by Form�, Form→ and Form�,→ the set of
formulas defined in the languages L�, L→ and L�,→ respectively as follows.

A ::=p | −A | (A ∧ B) | (A ∨ B) | (A � B),
A ::=p | −A | (A ∧ B) | (A ∨ B) | (A→B),
A ::=p | −A | (A ∧ B) | (A ∨ B) | (A � B) | (A→B).

We denote a formula of the language by A,B,C, etc. and a set of formulas of
the language by Γ , Δ, Σ, etc.
c© Springer-Verlag GmbH Germany 2017
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1.3 Revisiting Nelson Logics

Our starting point are the so-called Nelson logics, named after David Nelson.
There are two main variants of these logics called N3 and N4. N3 allows for
gaps in the semantics, and N4 features both gaps and gluts.

Definition 1. A N3-model for L→ is a structure 〈W,≤,�〉, W being a non-
empty set of partially ordered (≤) worlds and � : W × Prop −→ {∅, {0}, {1}} is
an assignment of truth values to state-variable pairs with the following condition:

– for all p and all worlds w and w′, if w ≤ w′ and w �1 p, then w′ �1 p, and
– for all p and all worlds w and w′, if w ≤ w′ and w �0 p, then w′ �0 p.

Valuations � are then extended by the following conditions:

w �1 −A iff w �0 A
w �0 −A iff w �1 A
w �1 A ∧ B iff w �1 A and w �1 B
w �0 A ∧ B iff w �0 A or w �0 B
w �1 A ∨ B iff w �1 A or w �1 B
w �0 A ∨ B iff w �0 A and w �0 B
w �1 A→B iff for all x ≥ w, x �1 A or x �1 B
w �0 A→B iff w �1 A and w �0 B

Remark 1. Here are some intuitive explanations of N3-models. Worlds are intu-
itively to be understood as stages of investigation, and the accessibility relation
marks that one stage is an epistemically possible development from one stage to
another. We give both of the values 1 and 0 a substantive reading: 1 stands for
verifiable, 0 for falsifiable. This is in contrast to the semantics of intuitionistic
logic, in which value 1 marks the constructive notion of being provable and the
other the mere absence of that notion.

Moreover, for N3 we allow � to be a partial function, so that statements
might not receive either value at a given world. This reflects the fact that at
a stage of investigation, a statement might be neither verifiable nor falsifiable.
Note that w �0 p is not equivalent to w �1 p any more, and that the same of
course goes for w �1 p and w �0 p.

Note also that hereditary constraints for both 1 and 0 reflect that we assume
that verifications and falsifications are conclusive.

Finally, the verification and falsification conditions are guided by the BHK-
style clauses. The philosophical plausibility of these clauses is discussed at length
in [5], where it is argued that these clauses give a much more faithful formal
representation of the constructive thoughts in semantics that Michael Dummett
has campaigned for throughout his career (even though Dummett himself was
championing intuitionistic logic).1 In this connection, of special interest is the
negation, which combines a strong claim to being constructive with a more
natural behavior than intuitionistic logic shows. All double negation laws, for
example, are valid in N3; on the other hand, the Law of Excluded Middle fails.
1 For more technical discussions related to Nelson’s logics, see [4,7].
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Remark 2. The logic N4 gives even more options: It allows � to assign 1, 0,
neither or both values to a statement at a world. That is, we are not dealing
with a valuation function any more, but with a valuation relation.2 This is the
only difference between the two logics, and everything else that follows in this
section applies to both of them.

The most significant difference between N3 and N4 is that the Law of Explo-
sion, (A ∧ −A) � B, holds in the former, but not in the latter. In light of the
intended interpretation, the choice between the two comes down to this ques-
tion: Do we want to consider it possible that the very same proposition is verified
and falsified at the same time. The intuitive answer, and the answer that both
Dummett and [5] give, is “no”. Therefore, we consider N3 to be our preferred
logic, even though there might be some reason to move to N4 once we add
counterfactual conditionals, as we will see below.

The second item of interest in the stock of propositional connectives, after
negation, is the conditional. It combines, in its positive clause, the intuitionistic
account with the classical account in its negative clause. The intuitionistic idea
is that A→B is verified at a world iff in every world that presents a conceivable
extension of our knowledge at the original world, either A is not (yet) verified,
or B is verified. The classical idea is that A→B is falsified in just one kind of
situation: One where A is verified and B falsified. Again, [5] presents an extended
discussion that concludes that these clauses are both in considerable harmony
with what Dummett had to say about conditionals, as well as a good model of our
actual intuitions about verifiability and falsifiability conditions for conditionals.

However, the account can only claim to be one of conditionals in the indicative
mood, such as “If it rains tomorrow, I will stay at home.” Counterfactual or
subjunctive conditionals, such as “If kangaroos had no tails, they would topple
over.” will clearly need to be analyzed differently. It is the aim of this paper to
show how that can be done.

2 Expanding N3 with a Counterfactual Conditional

In our search for a suitable account for semantic clauses that we might add to
Nelson logic to obtain a counterfactual conditional, we turn to one of the most
influential accounts available, namely David Lewis’s. In a nutshell, he considers
counterfactuals to be about possible worlds that bear a particular relation to
the actual world: They are worlds in which the antecedent of the counterfactual
conditional is true and which, moreover, are maximally similar to the actual
world. The question whether the conditional is true then comes down to the
question whether the consequent is true in all of these possible worlds. Talk of
similarity is notoriously slippery here, even though Lewis has a point when he
argues that our intuitions about conditionals tend to be slippery to just the same
degree (see [6, p. 91]).

2 In other words, it is like the Michael Dunn’s semantics (cf. [1]) for the so-called
Belnap-Dunn logic or FDE.
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We first review some of the basics of conditional logics, by following the
presentation given by Graham Priest in [12].3

Definition 2. A Chellas-model for L� is a structure 〈W, {RA : A ∈ Form},�〉,
where W is a nonempty set, {RA : A ∈ Form} is a collection of binary relations
on W , RA, one for every formula, A, and � : W ×Prop −→ {0, 1} is an assign-
ment of truth values to state-variable pairs.4 Valuations � are then extended by
the following conditions:

(−) w �1 −A iff w ��1 A ;
(∨) w �1 A ∨ B iff w �1 A or w �1 B ;
(∧) w �1 A ∧ B iff w �1 A and w �1 B ;
(�) w �1 A � B iff for all y ∈ W such that wRAy; y �1 B.

Furthermore, |=l A iff for every Chellas-model 〈W, {RA : A ∈ Form},�〉, w �1 A
for all w ∈ W .

Remark 3. The above system is like the modal logic K in the sense that it has
no constraints on the binary relations RA (A ∈ Form). And as in standard
modal logic, we may consider some additional conditions on RA. Let us first fix
additional notations:

– fA(w) := {x ∈ W : wRAx}
– [A] := {x ∈ W : w �1 A}
Following Priest in [12], we may consider the following six conditions.

1. fA(w) ⊆ [A]
2. If w ∈ [A] then w ∈ fA(w)
3. If [A] �= ∅ then fA(w) �= ∅
4. If fA(w) ⊆ [B] and fB(w) ⊆ [A] then fA(w) = fB(w)
5. If fA(w) ∩ [B] �= ∅ then fA∧B(w) ⊆ fA(w)
6. If w ∈ [A] and w′ ∈ fA(w) then w = w′.5

Now, the adoption and implementation of these ideas into the Nelson frame-
work presents us with some fascinating questions and puzzles. First and foremost,
we must decide what the verification and falsification clauses of the counterfac-
tual conditional will look like, a highly non-trivial task, as we will see. Then,
we need to consider in which ways the two accessibility relations that will show
3 Note, however, that for the notation we follow Krister Segerberg’s notation in [13].

More specifically, we use � and > for would- and might-conditionals respectively.
This has an intuitive appeal since these symbols are half-box and diamond which
reflect the truth conditions for those conditionals.

4 Note that we have w �0 A iff w ��1 A here since we are reviewing the conditional
logic based on classical logic.

5 See [6, p.15] for the original discussion of these requirements and their motivation.
If, instead of the last requirement, we add
– If x ∈ fA(w) and y ∈ fA(w) then x = y,
we get the system preferred by Robert Stalnaker.
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up in our models, RA and ≤, should interact. Lastly, we may wonder what our
account let’s us say about so-called “might conditionals”, which are normally
taken to be the duals of the “would conditionals”. As we will see, upholding this
duality might not be the most natural option to take in our setting.

Let us start, then, by considering the ways in which we might want to say that
a counterfactual can be verified, and what we should ask for it to be falsified.
Here is what we take to be the most natural first response to this question:
We leave the positive clause as we found it in Lewis. That is, we say that a
counterfactual is verified iff the consequent is verified at all the maximally close
worlds in which the antecedent is verified.

We will take this as our starting point in judging when a counterfactual
is verified. There is a small but important difference in our setup, in that we
will have the same kinds of worlds in our similarity relation as in our model
generally. That is, we are not, as Lewis is, dealing with complete worlds. Our
valuation function stays partial. Otherwise, however, we will take the clause on
board unchanged, at least to characterize our positive notion. We will say that
a counterfactual is verified in the same circumstances (modulo the incomplete
worlds) in which Lewis would call it true. But unlike him, we will not call it
falsified (or false) in all other cases. The Nelson set-up allows us to think of how
to falsify a counterfactual independently. As we will see, that opens up a wide
space of counterfactuals that are neither verifiable nor falsifiable (and, as it will
further unfold, these are really the most interesting and useful counterfactuals
in normal conversations).

So, what would a falsified counterfactual look like? First, are there such
things at all? We believe so. How about “If Kennedy had not been shot, Obama
would have been sworn into office as president of the United States three decades
earlier”? That, we hope you agree, would not have happened. Anyone who made
such a claim would not be seen to have made a correct assertion, unless it was a
very unusual context in which he uttered it (or, maybe, unless he succeeded, in
the course of the conversation, in making the context so unusual that it would
have been appropriate to say what he did).

Taking this as an intuitively clear case of what we are out to model, we
propose the following in analogy to the Lewisian positive clause:

A counterfactual is falsified iff in all the closest, most similar worlds in which
the antecedent is verified, the consequent is falsified.

We will have occasion to slightly tweak this clause for technical reasons, but we
start here as the most intuitive first attempt, at least according to our intuitions.
Here is the intuition spelled out: In every world that is otherwise as similar as
possible as ours, but in which Kennedy was not shot, it would be possible to
verify that Obama was not elected into office three decades earlier. For starters,
in those worlds, without further prompts from the context that time travel or
some such device is under consideration, Obama would simply have been too
young to run for president. That is actually enough to note, even though there
are other reasons why we should regard this counterfactual as falsified.
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There are other possibilities we might consider. As there now is a space
between falsifiable and unverifiable statements, we could think of utilizing the
latter in our clause, i.e.:

A counterfactual is falsified iff in all the closest, most similar worlds in which
the antecedent is verified, the consequent is unverified.

We think this less plausible, but leave more detailed discussion of this and other
alternatives for another time.6 What we will try in this paper is to find a formal
account that captures the above idea of falsifiability for counterfactuals as fully as
possible. If we hook up all the preceding ideas, formally we will get the following:

Definition 3 (Lewis-Nelson model). A Lewis-Nelson-model for L�,→ is a
structure 〈W,≤, {RA : A ∈ Form},�〉, where W is a non-empty set (of states);
≤ is a partial order on W ; {RA : A ∈ Form} is a collection of binary relations
on W , RA, one for every formula, A with the above constraints; and � : W ×
Prop −→ {∅, {0}, {1}} is an assignment of truth values to state-variable pairs
with the condition that w1 �i p and w1 ≤ w2 only if w2 �i p for all p ∈ Prop,
all w1, w2 ∈ W and i ∈ {0, 1}. Valuations � are then extended by the following
conditions in addition to those in N3-model:

– w �1 A � B iff for all y ∈ W such that wRAy, y �1 B,
– w �0 A � B iff for all y ∈ W such that wRAy, y �0 B.

Finally, the semantic consequence is now defined as follows: Σ |=ln A iff for all
Lewis-Nelson-models 〈W,≤, {RA : A ∈ Form},�〉, and for all w ∈ W : w �1 A if
w �1 B for all B ∈ Σ.

Remark 4. This way of fixing the clauses for the counterfactual brings a certain
limitation in expressivity: We have not given a semantics for indicatives embed-
ded into counterfactuals, i.e., statements like A � (B→C). The reason for that
is that we are only relating single worlds in RA. To get an account of statements
like the one just mentioned, we should rather relate worlds to pointed Nelson
models. The modification is straightforward, but it makes the following exposi-
tion rather messy, and, from a natural language point of view, the loss seems
not too great. “If A had been the case, then, if B, then C” seems something one
would utter in the rarest of circumstances. We have, at any rate, bigger problems
than such contrived statements to worry about, as we will see presently.

3 Bad News: Triviality

While the clauses above look, we believe, quite compelling at first blush, we
immediately run into dire trouble with them.
6 One reason why this alternative might seem tempting is that it leaves our original

condition free to serve as the falsification clause for an added might-conditional.
Might-conditionals, however, are yet another topic we don’t have the space to cover
in this piece.
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3.1 The Collapse

Theorem 1. |=ln is inconsistent.

Proof. Just note that both |=ln (A ∧ −A) � A and |=ln −((A ∧ −A) � A) holds
in the concerned semantics. Indeed, we have that wRA∧−Ax does not hold for
all x ∈ W in view of the constraint 1, and so by ex contradictione quodlibet, we
obtain the desired result. ��
Remark 5. This is a similar observation to Wansing’s observation in [17] for a
connexive variant of N3 being inconsistent.

Now, in order to overcome the problem of inconsistency, there are at least two
avenues to pursue. We will outline those avenues in the following two subsections.

3.2 Route 1: From N3 to N4

The first option is to step back from N3 to N4, a contradiction-friendly (i.e.,
paraconsistent) subsystem of N3 mentioned at the beginning of our piece.7 We
refer to the new model with four-valued valuation instead of three-valued valu-
ation as Lewis-N4 model. Then, from a technical viewpoint, we still obtain the
following result.

Proposition 1. Both (A ∧ −A) � A and −((A ∧ −A) � A) are valid.

Proof. For the first formula, we use the fact that A ∧ −A is satisfiable in N4,
and that we have the constraint 5. For the second formula, we also use the falsity
condition for �. ��

Of course, there is a worry of collapsing again. Thankfully, this is not the
case due to the following result.

Proposition 2. (A ∧ −A) � B is invalid, and thus it is not trivial.

Proof. Let us consider a one-world Lewis-N4 model with wRAx identified with
w = x & x �1 A. We can then see that the six conditions are satisfied as follows.

– For the first condition, it is obvious that if wRAx then x �1 A.
– For the second condition, it is also obvious that if w �1 A then w = w &

w �1 A.
– For the third condition, if x0 �1 A for some x0 ∈ W , then since W is one-

element world, we obtain that w = x0 and thus we obtain that wRAx0.
– For the fourth condition, if wRAx implies x �1 B, then by the definition of

RA, we obtain that wRAx implies wRBx. Similarly, if wRBx implies x �1 A,
then we obtain that wRBx implies wRAx, as desired.

– For the fifth condition, it is immediate that wRA∧Bx implies wRBx in view
of the definition of RA and the truth condition for conjunction.

– For the final condition, it is obvious by the definition of RA.
7 This also works for the case with Wansing’s connexive logic C, a variant of N4.
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Now, let A and B be such that w �1 A, w �0 A and w ��1 B. Then it follows
that w ��1 (A ∧ −A) � B, as desired. ��
Remark 6. Note that one-world model is the “classical” model in which the
indicative conditional will be not constructive, but classical. This might be of
interest for those who are more sympathetic with classical logic rather than
intuitionistic logic.

Therefore, from a purely technical perspective, a shift from N3 to N4 works
well, in that it avoids the triviality result.8 However, it is not so straightforward
from a more philosophical perspective. In particular, the understanding of the
verification and falsification becomes less intuitive once we allow these kinds of
overlaps between them (see [5, pp. 150–153] for discussion). And this motivates
us to consider the second avenue to which we turn in the next subsection.

3.3 Route 2: Different Verification and Falsification Conditions

As we have observed, the move to the N4-based logic works well technically, but
philosophically it is a doubtful one. So, we here seek for options to keep N3.

A quick reflection on our proof of the inconsistency reveals that we are relying
on the fact that none of the worlds are (A∧−A)-world. In order to fix this feature,
one simple and natural option is to require that there is at least one A-world in
the truth and falsity conditions which is maximally similar to the present world
and in which the antecedent holds. This is an idea that can already be found in
Lewis’s original discussion ([6, p. 25]); of course in his case he only considered
adding the requirement to the truth condition of the counterfactual.9 He was
brought to ponder this alternative because he was wondering how natural it is
to consider a counterfactual with impossible antecedent to be true. In the end,
he opted for the earlier, simpler variant, but he was far from displaying strong
feelings on the matter. He thought that our intuitions about such impossible
counterfactuals were malleable and not indicative of much of substance, so he
more or less left the readers free to choose their favorite option. We cannot afford
an equally leisurely stance; for us, the consistency of the system is at stake, so
we should better explore the alternative clauses to make sure they give us a
well-behaved system. To be specific, we want to replace the truth and falsity
conditions in the Chellas-Nelson model as follows:

– w �1 A � B iff

{
for some x ∈ W,wRAx and
for all x ∈ W such that wRAx, x �1 B,

– w �0 A � B iff

{
for some x ∈ W,wRAx and
for all x ∈ W such that wRAx, x �0 B.

8 We emphasize again that (A ∧ −A)→B is invalid in N4.
9 Basically the same idea is applied by Priest in [11] in which he discusses the cancel-

lation account of negation.
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Once this adjustment is made, the same proof for the inconsistency will not
work any more.10 In particular, we obtain both �|=ln (A ∧ −A) � A and �|=ln

−((A ∧ −A) � A).

Proposition 3. (A ∧ −A) � A is not valid, and thus the system is non-trivial.

Proof. Let us again consider a one-world Lewis-Nelson model with wRAx iden-
tified with w = x & x �1 A. We can then see that the six conditions are satisfied
as in the proof of Proposition 2. Then the desired result follows since we have
w ��1 A ∧ −A for all A. The same model shows that −((A ∧ −A) � A) is not
valid. ��
Remark 7. Once fears of triviality are out of the way, it deserves to be highlighted
that we obtain the following equivalence: −(A � B) ↔ (A � −B). In view of this
equivalence, we obtain the following characteristic thesis of connexive logics11

with respect to �:

– Boethius’s thesis: (A � B)→−(A � −B)

Note that there are some connections between conditional logics and connexive
logics discussed since [10], and more recently in [15]. The interesting feature in
the present context is that some rather natural considerations led us to connex-
ivity, which is a highly nonclassical property. In particular, it led us down an
intensional route to connexivity, one of the approaches suggested by Wansing
in [17].12

These reflections will have to suffice, at least in this piece, to give an idea of
the wealth of interesting questions and connections we tapped into. There are, on
closer inspection, many more combinations that might be plausible alternatives
to our choice that would be worth exploring. And crucially, we have yet to give
our account of might conditionals, conditionals of the form “If A had been the
case, B might have been the case”. This important part of our story will have to
be told another time when more space is available. Instead, we close our technical
discussion with some reflections on the two accessibility relations and then turn
at the end of the paper to the question of how well our account can actually
make sense of assertions of counterfactuals.
10 One of the reasons why Lewis was not too concerned about the “right” choice

between the two clauses for the truth of conditionals is this: He realized that, in
the classical case he was considering, he could define either one of the two condi-
tionals in terms of the other ([6, p. 26]). Here is how to define the old condition
in terms of the new one: A �old B =def (A �new A) ⊃ (A �new B). Now, if this
was possible in our setting as well, of course, then we would be faced with disas-
ter again. Luckily, the equivalence does not hold in our system if we replace the
material conditional with the constructive Nelson conditional. The same is true of
−(A �new A) ∨ (A �new B).

11 For more on connexive logics in general, see [19].
12 For another interesting case for connexive logics through a natural consideration, see

[18]. Note also that Wansing’s approach to connexive logics can be applied to other
systems than Nelson logics. For some examples, see [8,9].
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4 Issues of Accessibility

As we have two accessibility relations in our model, a natural question to ask is
how they interact. As it stands, any assumptions we make here will only affect
formulas in which both indicative and subjunctive conditionals occur embedded
into each other, which is something rarely observed in natural language. Nonethe-
less, it would be nice to have our models the most plausible interpretation that
we can find.

The first thing to notice here is that, unless we impose rather ad hoc restric-
tions, we will lose the hereditary property of the Nelson model, at least for
statements with counterfactual conditionals in them.13 This should not be seen
as cause for alarm. For starters, this is known to happen in other cases of modal
extensions of Nelson logic.14 But more importantly, on reflection it really strikes
us as a desirable property. Think of the so-called Sobel sequences that are of
central interest in the discussions of counterfactuals. These are sequences of
counterfactuals with more and more elaborate antecedents that go back and
forth from being true to being false. An example that is often discussed is:

If the U.S. threw all its nuclear weapons into the sea, there would be war;
but if all nations with nuclear weapons threw them into the sea, there
would be peace.

Now, let’s assume that these are true counterfactuals. Consider what change the
single counterfactual

If the U.S. threw all its nuclear weapons into the sea, there would be war.

will go through if we utter it before and after we learn that all nations except the
U.S. have indeed thrown their nuclear weapons into the sea. Before we learned
that fact, it would seem that the counterfactual should be counted as true,
while afterwards, it should be seen as false. In other words, thinking in terms
of verifications and falsifications in Nelson logics, the counterfactual should be
verifiable at x, but falsifiable (or not verifiable) at y, where x < y. That is, the
heredity constraint must be watered down if we want to accommodate these
analogues to Sobel sequences; all is well with our model in that regard.

A different question here is which combinations of worlds that stand in the
Nelson relation, x < y, such that y is a true expansion of x, should we possibly
want to find in the relation RA to our world. That is, should it be possible
that (1) neither wRAx nor wRAy, (2) wRAx but not wRAy, (3) wRAy but not
wRAx or that (4) both wRAx and wRAy? (1) is obviously a combination that
we need. But to get an account that is of any interest, we will in addition need
to countenance at least one of the other possibilities. Which one(s)?

13 We would like to thank Massimiliano Carrara for directing our attention to this
issue.

14 See, for example, [16].
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(2) looks like a possibility that we would like to keep. Is a world in which it
is neither verifiable nor falsifiable that Bigfoot exists closer to our world than
one in which it is verifiable that he exists? To us, it seems so.

It also seems that we will want that possibility (3), mostly in cases in which
y exceeds x in information that we in the actual world have available also. If x
is a world in which it is uncertain whether the moon is made of green cheese
and y is one in which it is verifiably not, then y is closer to ours. (A little care
is needed here, because factual similarity is actually not necessarily at the top
of the list for judging the counterfactual similarity of worlds, see the discussion
about “If Nixon had pushed the button...” in the literature about conditional
logics. Nonetheless, there are clearly cases in which factual similarity will make
the difference, and that is enough to answer our question here).

Finally, (4) seems to be the most disposable option, but we think it is plausi-
ble to keep it, as well. If the things that make the difference between x and y are
completely unrelated to the content of the counterfactual, it seems unnecessary
to ban either one from the circle of closest worlds if the other one is in it.

These are tentative conclusions that we are happy to reconsider. At this point,
however, we will not impose any restrictions and allow all of the combinations
(1) to (4) in our models.15

5 Unfalsifiability as an Assertability Condition

What we have achieved so far is an account of the verification and falsification
conditions of counterfactual conditionals in a N3 setting, and we showed that
the resulting system is non-trivial. In this sense, we have offered a constructive
alternative to the conditional logics of a more classical provenance. However,
the account allows us to do more, namely to give a new and, we believe, very
attractive analysis of what it is to correctly assert a counterfactual. The key move
is to question the natural correlation between verifiability and assertability of
counterfactuals.

The idea behind this account is one developed for other kinds of statements
in [5] (drawing on and greatly expanding corresponding ideas in Dummett’s
own writing). Namely, that for a certain number of assertions, the question
whether they have been made correctly does not come down to whether they
are verifiable, but rather whether they are unfalsifiable.

15 A more intricate condition on the two relation was proposed by a reviewer, and we
thank her or him for the inspiration:

If w ≤ x and xRAx
′ then there is a w′ ∈ W such that wRAw

′ and w′ ≤ x′.
This condition is analogous to what in many-dimensional modal logics is called left-
commutativity (see [2, p. 221]). Once parsed, this condition indeed seems eminently
plausible. With the vocabulary we have introduced so far, however, it seems that no
difference to the consequence relation is made by imposing the condition. This will
change when, in later work, we will introduce a suitable might-conditional, a topic
we have to leave out for reasons of space. When we will address this, we will be sure
to come back to the reviewer’s condition.
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Take, for example, future tense statements. If I had to be able to supply a
verification of every statement in the future tense I correctly assert, I would not
be able to say much of interest. The better way to deal with this is to say that
such statements are correct as long as they are unfalsifiable. The day might come
when the audience finds out that what the statement had claimed did not come
to pass. In that case, the speaker will have to take back his assertion. But until
that day, what he has said will stand.

In the present context, we would like to suggest that many counterfactuals
are of the same kind. In many cases, we seem to be able to assert them without
it being clear at all that they are verifiable (or true, in the classical case). For
reasons of space, this is not the place in which we will convince the reader fully
of that claim. However, we can give some gestures in the right direction that, we
believe, shows this to be a path worth investigating.

Let us start by giving an example that illustrates what we have in mind (and
one which many readers might be familiar with):16

Years ago, a few of us were at a restaurant in NY–Red Smith, Frank
Graham, Allie Reynolds, Yogi [Berra] and me. At about 11.30 p.m., Ted
[Williams] walked in helped by a cane. Graham asked us what we thought
Ted would hit if he were playing today. Allie said, “due to the better
equipment probably about .350.” Red Smith said. “About .385.” I said,
“due to the lack of really great pitching about .390.” Yogi said, “.220.”
We all jumped up and I said, “You’re nuts, Yogi! Ted’s lifetime average is
.344.” “Yeah,” said Yogi, “but he is 74 years old.”

Buzzie Bavasi, baseball executive

This story nicely illustrates several points. First, the speakers in it are dis-
agreeing, and we would presumably have some trouble convincing ourselves that
one of them is really, clearly, objectively at fault. This is very typical for state-
ments made under the unfalsifiability norm: They easily accommodate cases of
faultless disagreement, a topic which over the last years has attracted a lot of
attention from philosophers of language (see [5]). However, the example seems,
under closer inspection, also to suggest an alternative resolution: Maybe it would
be best to say that the original conditional was ambiguous, and there was no fact
of the matter whether what it expressed concerned possible worlds in which Ted
Williams was playing as a young man today and worlds in which he was playing
as an old one. This is, we believe, very likely to be correct, and our account is
not meant to supplant an unusual story for a much more recognizable one.17 On
that account, many counterfactuals are ambiguous, and without disambiguation
will leave space for apparent disagreement that will dissolve once it is agreed
upon which sense of the counterfactual is talked about. Lewis’s classic example
“If kangaroos had no tails, they would topple over” is a case in point. Yes, they
would, if the existing animals were all of a sudden stripped of their appendage.
16 A quote from [14, p. 202].
17 In this sense, the example serves to show that we are not overly and unnecessarily

ambitious here.
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No, they wouldn’t, for evolution would not have allowed a species that falls over
all the time, so they would have adopted a different posture if they had come up
without tails. This is no deep disagreement, for we can spell out which counter-
factual we are really interested in discussing, and once we do it, it seems clear
which answer is the right one.

But note something about the baseball story: There is more disagreement in
the story than just the one between Yogi Berra and the others (a disagreement
that, if the speakers were feeling serious about it in the first place, could be
easily resolved by disambiguation in just the way the kangaroo case can be dealt
with). The others were disagreeing with each other, as well. And here, it is clear
that they had the same counterfactual in mind.

Now, what do we want to say about that (very real, even if good-humored)
disagreement? That there is a precise average that would be the right answer
to the question, and thus, that at most one of them could have been right to
say what he said (and much more likely, none of them)? And that, if someone
had been there to point that fact out, they all would have had to retract their
statements?

Or would we rather say that they, somehow, all were making correct asser-
tions, at least correct in the sense that none of them could have rightly been
required by the others to retract his statement?

We think that the latter is much more appealing, and it is just what the
unfalsifiability account allows us to say. Among the closest possible worlds in
which Ted Williams, as a young man, would play today, there is a world in
which he hits .350, one where he hits .385, and one in which he manages .390.
There are many worlds in between, but there is no closest world in which he hits
.220, at least not as a young man. That is, there are indeed things in this context
that are falsifiable in our sense. It’s just the things the three first speakers were
saying were not among them: They all said something unfalsifiable, and thus
they all made a correct assertion, their disagreement notwithstanding.

They all make correct assertions, at least ones that could under normal cir-
cumstances be uttered seriously and without reprimand. In [5], we argue at
length for this weak understanding of correctness. Smith, Graham, Reynolds
and Bavasi were in faultless disagreement, a rather typical dialectical pattern
also discussed in [5].

6 Updating Hájek: Most Counterfactuals Are
Unverifiable

Our analysis points to a possible solution to a potentially uncomfortable theoret-
ical situation that Hájek has diagnosed. He has (in unpublished but much read
work) argued at length that while many counterfactuals are assertable, most of
them are false. His arguments come in many different guises, but they all have
a similar basic pattern. In each case in which

(1) If A had been the case, not-B might have been the case?
is true, and there are many of these cases,
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(2) If A had been the case, B would have been the case?
cannot be true.

It is simply in their semantical nature that the truth of the two statements
are incompatible. Then he goes through many examples in which we would like
to say that a would-counterfactual of form (2) is true and points out that the
corresponding might-conditional of the form (1) is true. Even if that might-
conditional speaks of the remotest possibility (“If I had jumped just now, I
might not have come down, because I might have quantum-tunnelled to China”),
it rules out the truth of the sane-sounding would-conditional (“If I had jumped
just now, I would have come down”). To insist on the truth of the second is,
so Hájek, tantamount to insisting on the falsity of the first, which in turn is
to deny the lessons of quantum physics. So, Hájek argues, if you would like
to hold on to quantum physics, you will have to consider “If I had jumped
just now, I would have come down” to be false, but of course it seems like
something you should surely be allowed to say in normal conversation. Hence,
even though most counterfactuals are false, many of them are assertable. Hájek
himself acknowledges that this is a rather strange conclusion to draw, but he
sees no way of avoiding it.

Here is how our story gives a twist to the situation that makes it, in our
view, much more palatable. First of all, we will speak of verifiability instead of
truth, but that is just for consistency with the general story we have presented
so far. Hájek might reject all that and keep speaking of realistic truth and still
be enamored by our account; he only would have to accept realistic truth value
gaps, at least for counterfactuals.

So, where Hájek says that most counterfactuals are not true, we agree to the
corresponding claim: Most counterfactuals are not verifiable. But where he goes
on to conclude that most counterfactuals are false, we resist the corresponding
conclusion: It is not the case that most counterfactuals are falsifiable. For that
would mean, on our account, that in all the nearest A-worlds, B is actually
falsified. What we say is that most counterfactuals are neither verifiable nor
falsifiable, but that many of them are assertable nonetheless. Again, that is just
what we are saying about future tense statements, and it seems to us a conclusion
that is much easier to find our peace with than Hájek’s conclusion.

To fully convince you (and us) of the viability of our alternative, we will
have to give the examples Hájek gives much more detailed attention, and, even
more importantly, we will have to submit something we have not yet given you:
Our explanation of might-conditionals in our framework. The simple solution of
classicists to assume might- and would-conditionals to be duals does not service
us well, and our alternative takes more space to motivate than we have available
here.

7 Conclusion

The last section gives a hint of the direction in which our further research is
going to move. In this paper, we have laid the groundwork in showing how a
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constructive counterfactual conditional can be added to Nelson logic. This is
of interest to the growing community of researchers working on Nelson logic,
whether or not they see the same potential we see in the idea that assertions of
counterfactuals are often to be judged by the standard of unfalsifiability.
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Abstract. State commands refer to states, not actions. They have a
temporal dimension explicitly or implicitly. They indirectly change what
we are permitted, forbidden or obligated to do. This paper presents
DTNL , a deontic logic meant to handle state commands based on the
branching-time temporal logic PCTL∗. The models of DTNL are trees
with bad states, which are identified by a propositional constant b intro-
duced in the language. To model state commands, a dynamic operator
that adds states to the extension of b is introduced.

Keywords: Deontic logic · Temporal logic · Commands · Deadlines

1 Background

There are two types of commands that refer to actions and states respectively.
The former can be called action commands and the latter state ones. For example
never touch the button is an action command since it imposes a restriction on
which actions can be legally performed, while ensure that the table is clean before
the meeting ; everything be in order until I get back [12]; nobody sit in the first
row [12] are state commands as they impose conditions on the future state of
affairs.

Commands of both types can change what the agent is permitted, forbidden
or obligated to do. After the action command never touch the button, the agent
is not allowed to touch the button any more. After the state command ensure
that the table is clean, the agent has the obligation to make it true that the table
is clean.

Unlike action commands, state commands change what the agent can do
indirectly. The state command ensure that the table is clean is not ordering the
agent to clean the table himself. All it requires is that the agent makes it the case
that the table is clean. The agent can execute the command by letting someone
else clean the table.
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Commands have a temporal dimension. Ensure that the table is clean before
the meeting imposes a deadline conditional on future events: the command is
fulfilled if the table is clean just before the meeting; everything be in order until
I get back imposes a certain obligation until some other condition is fulfilled;
nobody sit in the first row imposes a permanent condition: the agent should
prevent from now on that someone sits in the first row.

There are two perspectives concerning how the agent should behave after
a command: the perspective of the agent himself and the external perspective.
They make a difference for the commands without a deadline. We take ensure
that the table is clean some day as an example. From the external perspec-
tive, after the command, the agent should make it true that the table is clean,
although he can do it in whichever day he wants. But from the perspective of
the agent, the command creates no obligation, as it will not be violated at any
point in time. This difference was already pointed out by [6] in the context of
deadlines of norms.

Computation Tree Logic (CTL), proposed in [5], is a branching-time temporal
logic broadly used in computer science. Examples of properties expressible by
CTL are it is sure that φ will happen in the next moment ; it is sure that φ
will eventually happen; it is possible that φ will hold until ψ. By generalizing
CTL, [1] presents a deontic logic, called Normative Temporal Logic (NTL). The
models of this logic are transition systems plus illegal transitions. An example
of properties expressible in NTL is the agent is allowed to act to make φ true
in the next moment. Compared with conventional deontic logics, NTL has two
interesting features. Firstly, it makes the idea explicit that the agent acts to
make things true. Secondly, normative notions expressible by it have a temporal
dimension.

NTL is conceptually suitable to handle state commands, but technically has
two problems. Firstly, NTL, as CTL, has a syntactic restriction on applications of
temporal operators: they have to be immediately preceded by path quantifiers.
This implies that the temporal formulas such as φ will eventually happen are not
well-formed formulas and iterations of temporal operators are not allowed. So it
is hard to express and interpret state commands within NTL. Secondly, NTL uses
transition systems with illegal transitions to handle normative notions, but these
models are historyless in the sense that whether a transition is illegal or not has
nothing to do with what the agent has done in the past. However, normative
notions with a temporal dimension essentially involve past actions. For example,
assume a scenario in which a child has to collect 100 coins in a piggy bank, and
only then retrieve them by crashing the container. As the difference made by
putting a coin into the bank can not be seen, the child has to rely on his memory
of the past actions to know when to break the bank.

Full Computation Tree Logic (CTL∗), introduced in [7], is an extension of
CTL that does not have the syntactic restriction mentioned previously. PCTL∗

is a further extension of CTL∗ with two past operators whose completeness is
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shown in [9]. In what follows we present DTNL (“Dynamic Temporal Normative
Logic”), a deontic logic based on PCTL∗. This logic takes trees with bad states as
its models, instead of general transition systems with bad transitions. A special
propositional constant b is introduced to indicate bad states. Using this constant,
the normative notions of permission, prohibition and obligation can be defined as
in [3,8]. A dynamic operator representing state commands is also introduced. Its
function is to update the model, adding those states that violate the command
to the extension of b. The logic follows the agent’s perspective, and commands
without a deadline might not create the corresponding obligations. Our way of
viewing commands follows [2,10] which think that the meaning of commands
lies in how they change the agent’s internal state.

2 Language

Let Φ0 be a countable set of atomic propositions and p range over Φ0. Define
the language ΦDTNL as the following:

φ ::= p | � | b | ¬φ | (φ ∧ φ) | Yφ | (φSφ) | Xφ | (φUφ) | Aφ | [!φ]φ

The featured formulas of this language are read as follows:

1. b: this is a bad state.
2. Yφ: φ was the case in the last moment.
3. φSψ: φ has been the case since ψ.
4. Xφ: φ will be the case in the next moment.
5. φUψ: φ will be the case until ψ.
6. Aφ: no matter how the agent will act in the future, φ is the case now.
7. [!φ]ψ: ψ is the case after the command make φ true is given.

Note that the language ΦDTNL is the language of PCTL∗ plus the propositional
constant b and the dynamic operator [!φ].

It seems strange to say that no matter how the agent will act in the future,
φ is the case now, but in fact this is fine. Whether a sentence that involves time
relations is true or not now might be dependent on how the agent will act in the
future. For example, whether a student will pass an exam is dependent on how
he will study. In order to make a sentence true now, the agent has to act in a
certain way in the future.

The other usual propositional connectives and the falsum ⊥ are defined in
the usual way:

1. f := ¬b: this is a fine state.
2. Pφ := (�Sφ): φ was the case.
3. Hφ := ¬P¬φ: φ has been the case.
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4. Fφ := (�Uφ): φ will be the case.
5. Gφ := ¬F¬φ: φ will always be the case.
6. Eφ := ¬A¬φ: the agent has a way to act in the future s.t. φ is the case now;

Eφ intuitively means that making φ true is achievable.

Let Xnφ denote X . . . Xφ where n is the number of occurrences of X. The
state commands mentioned in the beginning can be expressed as follows:

1. Ensure that the table is clean before the meeting : !Xk−1c
2. Everything be in order until I get back : !(oUb)
3. Nobody sit in the first row : !G¬s

For the first example, we suppose that the starting time of the meeting is already
fixed and there are k units of time from now to it.

3 Models

Let W be a nonempty set of states and R a binary relation on it. A sequence
w0 . . . wn of states (possibly of length one) is called an R-sequence if w0R . . . Rwn.
(W,R) is a tree if there is a r ∈ W , called the root of the tree s.t. for any w, there
is a unique R-sequence from r to w. Immediate consequences of the definition
are that the root is unique and R is irreflexive. R is serial if for any w, there is
a u s.t. Rwu (there are no end points).

A serial tree (W,R) is understood as a time structure encoding an agent’s
actions (the transitions) and states in time (the nodes). At any state w, the
history of the agent up to that point is represented by the path connecting the
root to w (the actions performed). The seriality condition corresponds to the
fact that the agent can always perform an action at any given time, while a
branching in the tree is interpreted as a situation in which the agent can choose
between different possible actions.

Fix a serial tree (W,R). Here are some auxiliary notations. An R-sequence
w0 . . . wn starting from the root is an history of wn. For any w and u, u is a
historical state of w if there is an R-sequence u0 . . . un s.t. 0 < n, u0 = u and
un = w. w is a future state of u if u is a historical state of w. Note that a state
can not be a historical or future state of itself.

An infinite R-sequence is a path. A path starting at the root is a timeline. A
path w0 . . . passes by a state x if x = wi for some i > 0. Let π be a path. We use
π(i) to denote the i+1-th element of π, iπ the prefix of π to the i+1-th element
and πi the suffix of π from the i+1-th element. For example, if π = w0 . . . , then
π(2) = w2, 2π = w0w1w2 and π2 = w2 . . . . For any history w0 . . . wn and path
u0 . . . s.t. wn = u0, let w0 . . . wn ⊗ u0 . . . denote the timeline w0 . . . wnu1 . . . .
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A tuple M = (W,R, r,B, V ) is a model if

1. (W,R) is a serial tree with r as the root
2. B is a subset of W meeting the following conditions:

(a) if w ∈ B, then u ∈ B for any u s.t. Rwu
(b) if w /∈ B, then there is a u s.t. Rwu and u /∈ B

3. V is a function from Φ0 to 2W

B is called the set of bad states and W − B the set of fine ones. Intuitively, a
transition (w, u) is illegal if u is a bad state. The first constraint on B is called
persistency of liability ; it indicates that if we reached a state in which we failed
to fulfill a command, then this holds for all its successors. This constraint implies
that if a state is bad, then all of its future states are bad, and if a state is fine,
then all of its historical states are fine. The second constraint on B is called
seriality of legality ; it means that if a state is fine, then at least a successor of
it is fine. The conjunction of the two constraints is called normative coherence.
Figure 1 illustrates a model.
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Fig. 1. This figure indicates a model. w0 is the root. Dotted circles denote bad states
and solid circles fine states. Arrows are transitions.

The following is an intuitive interpretation of the models: an agent’s possible
actions are encoded by a serial tree (as mentioned above). At any moment, the
agent has a set of rules he should respect, and these rules are encoded by the
bad states: the agent is allowed to travel to the fine states but not to the bad
ones. If the agent has not done anything illegal, there is always something legal
for him to do, and if he has done something illegal, there is nothing legal for him
to do. We will get back to the last point again in Sect. 6.

4 Semantics

Following the dynamic approach, we define by mutual recursion the truth of
formulas with respect to a model and an update operation to interpret the
dynamic operator !φ.
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M, π, i � φ, the formula φ being true at the state π(i) relative to the timeline
π in the model M, is defined as follows:

M, π, i � p ⇔ π(i) ∈ V (p)
M, π, i � �
M, π, i � b ⇔ π(i) ∈ B
M, π, i � ¬φ ⇔ not M, π, i � φ
M, π, i � φ ∧ ψ ⇔ M, π, i � φ and M, π, i � ψ
M, π, i � Yφ ⇔ i > 0 and M, π, i − 1 � φ
M, π, i � φSψ ⇔ there is a j ≤ i s.t. M, π, i − j � ψ

and M, π, i − k � φ for any k < j
M, π, i � Xφ ⇔ M, π, i + 1 � φ
M, π, i � φUψ ⇔ there is a j s.t. M, π, i + j � ψ

and M, π, i + k � φ for any k < j

M, π, i � Aφ ⇔ for any path ρ starting at π(i), M, iπ ⊗ ρ, i � φ

M, π, i � [!φ]ψ ⇔ M!φ
π(i), π, i � ψ

A is a universal quantifier over possible timelines. The evaluation of some for-
mulas does not depend on the whole path but only on the point of the path with
the selected index (e.g., p, �, b and Aφ). We will call a formula for which this
property holds in every model a state formula, while a formula whose semantical
interpretation depends on other points of the path (e.g., Yφ, φSψ, Xφ and φUψ)
will be called a temporal formula. In particular, if ψ is a state formula then [!φ]ψ
is a state formula too.

A path w0 . . . is legal if wi is a fine state for every i > 0. The update model
M!φ

π(i) is defined as follows.

Definition 1 (Update with commands). Let M = (W,R, r,B, V ) be a
model, φ a formula and w a state. Let w0 . . . wi be the history of w. Define
a set X !φ

w of states as follows: for any x ∈ W , x ∈ X !φ
w ⇔ (i) x is a future

state of w, (ii) x is a fine state, and (iii) there is no legal path ρ starting at w
and passing by x s.t. M, w0 . . . wi ⊗ ρ, i � φ. Let M!φ

w = (W,R, r,B ∪ X !φ
w , V ) if

B ∪ X !φ
w is normatively coherent, or else M!φ

w = M. M!φ
w is called the result of

updating M at w with the command !φ.

Proposition 1. Fix M = (W,R, r,B, V ), π, i and φ. B ∪ X !φ
π(i) is not norma-

tively coherent ⇔ π(i) is a fine state in M and there is no legal path ρ starting
at π(i) s.t. M, iπ ⊗ ρ, i � φ.

Proof. (⇐) Assume that π(i) is as in the hypothesis. Since π(i) is not reachable
from π(i), by definition of X !φ

π(i) it follows that π(i) /∈ B ∪ X !φ
π(i).

Consider now a successor u of π(i). If u /∈ B, by hypothesis we know that
there is no legal path ρ starting at π(i) s.t. M, iπ⊗ρ, i � φ and passing by u. By
definition of X !φ

π(i) this implies u ∈ X !φ
π(i), and because u was arbitrary, it follows

that all the successors of π(i) lie in B ∪ X !φ
π(i), and so the set is not normatively

coherent.
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(⇒) The result is proved by contraposition. We want to show that B ∪X !φ
π(i)

is normatively coherent assuming that π(i) is a bad state or that there is a legal
path ρ starting at π(i) s.t. M, iπ ⊗ ρ, i � φ.

The former case: assume that π(i) is a bad state in M. Then X !φ
π(i) = ∅ and

B ∪ X !φ
π(i) = B. Then B ∪ X !φ

w is trivially normatively coherent.
The latter case: assume that there is a legal path ρ as described above.

Spelling out the definition of normative coherence, we have to show that the
successors of a state in B ∪X !φ

π(i) are again in B ∪X !φ
π(i) (persistency of liability)

and that given a state w /∈ B ∪ X !φ
π(i) then it has a successor u s.t. u /∈ B ∪ X !φ

π(i)

(seriality of legality).
The first condition it’s easily checked. If w ∈ B then all its successors are in

B because we assumed that M is normative coherent. Otherwise if w ∈ X !φ
π(i),

consider u s.t. Rwu; clearly we have

w ∈ X !φ
π(i) ⇒ Rπ(i)w and for all ρ starting at π(i)

and passing by w: M, iπ ⊗ ρ, i � φ
⇒ Rπ(i)u and for all ρ starting at π(i)

and passing by u: M, iπ ⊗ ρ, i � φ

⇒ u ∈ B or u ∈ X !φ
π(i)

⇒ u ∈ B ∪ X !φ
π(i)

For the second condition, consider w /∈ B ∪ X !φ
π(i) and suppose that Rπ(i)w

(otherwise the result trivially follows). We have, by definition of X !φ
π(i), that there

exists a legal path ρ starting at π(i) passing by w such that M, iπ ⊗ ρ, i � φ.
And now it easily follows that for any successor u of w in the path ρ we have
u /∈ B (as ρ is legal) and u /∈ X !φ

π(i) (as the path π(i) ⊗ ρ witness this). ��

The proof of this proposition is omitted due to limit of space. That there is
no legal path ρ starting at π(i) s.t. M, π ⊗ ρ, i � φ means that making φ true
at π(i) is forbidden. M!φ

w is understood as follows. Assume that the agent is at
the state w and the command make φ true is given to him. If w is a fine state
but it is not allowed to make φ true, then the agent considers the command
strange and ignores it. Assume otherwise. Then the agent scans the fine states
that he can reach from w one by one. He marks a state bad if he finds this: if he
travels to it, there would be no legal way to make φ true at w, no matter where
he goes afterwards. X !φ

w is the collection of the states that he marks bad. After
marking, the agent behaves by taking the new bad states into consideration.
Figure 2 illustrates how a command updates a model.

Note that the set X !φ
w is defined w.r.t. M. Updating M at w with !φ only

changes the future states of w.
A formula φ is valid if for any M, π and i, M, π, i � φ. Let Γ be a set

of formulas and φ a formula. Γ |= φ, Γ entails φ, if for any M, π and i, if
M, π, i � Γ , then M, π, i � φ. We in the sequel use DTNL to denote the set of
valid formulas.
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Fig. 2. This figure illustrates how a model is updated by a command. The valuation
of two propositions p and q is depicted. M!Xp

w1 is the result of updating M at w1 with
the command make p true in the next moment (!Xp).

5 A Static Deontic Logic by Reduction

Without the dynamic operator, the static part of DTNL is just PCTL∗ plus
the propositional constant b. As mentioned in the introduction, there is already
a complete axiomatization of PCTL∗ in the literature. We can get a complete
axiomatization for the static part of DTNL by adding the axioms b → AXb and
f → EXf to PCTL∗. The two formulas respectively express the two constraints
on the models of DTNL : persistency of liability and seriality of legality.

The formula XGf indicates that from the next moment on, the state will
always be fine. It expresses legal paths in the following sense: for any model M
and history w0 . . . wi, a path ρ is legal iff M, w0 . . . wi ⊗ ρ, i � XGf. Using this
formula and the path quantifiers A and E, we can define some deontic notions.

1. Pφ := E(XGf∧ φ): the agent has a legal way to act in the future s.t. φ is the
case now. That is, the agent is permitted to make φ true now.

2. Fφ := A(XGf → ¬φ): no matter how the agent will legally act in the future,
φ is not the case now. That is, the agent is forbidden to make φ true now.

3. Oφ := A(XGf → φ): no matter how the agent will legally act in the future,
φ is the case now. That is, the agent is obligated to make φ true now.

The truth conditions of the normative formulas can be specified by use of
legal paths.

M, π, i � Pφ ⇔ there is a legal path ρ from π(i) s.t. M, iπ ⊗ ρ, i � φ
M, π, i � Fφ ⇔ there is no legal path ρ from π(i) s.t. M, iπ ⊗ ρ, i � φ
M, π, i � Oφ ⇔ for any legal path ρfrom π(i),M, iπ ⊗ ρ, i � φ

The deontic operators can be treated as quantifiers over legal paths.
We obtained a deontic logic, namely the static part of DTNL , for which

normative formulas have a temporal dimension. For example, OFp says that the
agent ought to make p true at some point in the future.
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A quite different case is Op. This formula does not mean that the agent
ought to make p true, but that the agent ought to act in the future to make
p true at the present moment. As the condition is independent from the future
events, this should count as a trivial obligation, and in fact it can be verified
that f → (p ↔ Op) is a valid formula.

As defined above, a path is legal if it consists only of legal transitions, but
there are other properties of paths expressible in DTNL that are interesting in
normative contexts. One of them is containing finitely many illegal transitions,
which is expressed by FGf. This property can be intuitively understood as mainly
consisting of legal transitions and is slightly weaker than legal paths. Using this
property, we can define different normative notions in a similar fashion as the
one presented above. This issue deserves a closer look.

6 Explanations

The models of DTNL are trees with bad states. Note that in trees, defining bad
states or bad transitions results in equivalent semantics and there is no real
difference between the two approaches. We mentioned in Sect. 1 that bad tran-
sitions in general transition systems are historyless and not suitable to handle
normative notions with a temporal dimension. A concrete example is given in
Fig. 3.

p ¬p
w u

Fig. 3. The structure in this figure represents a conceivable scenario. Let φ = O(X¬p∧
XXGp). This formula says what follows is obligatory: firstly make p false; then make p
true; then keep p true forever. In fact, it can be checked that there is no way to arrange
illegal transitions in this structure s.t. φ is true at w. This shows the importance of
keeping track of the past actions.

Note that technically, trees with bad states are equivalent to general transi-
tion systems with history-dependent bad transitions. By history-dependent, we
mean whether a transition is bad or not is dependent on specific histories, that
is, finite transition sequences. Roughly, the arguments for the equivalence can go
as follows: point generated submodels preserve truth; pointed transition systems
with history-dependent bad transitions can be safely unwound to trees with bad
states. We refer to [4] for the details of generated submodels and unwinding.
However, if we work with transition systems with history-dependent bad tran-
sitions, the definitions, especially the definition for the update with commands,
would be very complicated. Working with trees plus bad states makes things
much easier.
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The special constraint persistency of liability on the models of DTNL denotes
that if a state is bad, then all of its successors are bad as well. We use this
constraint for two reasons. One reason concerns offering state permissions such
as you may let the prisoners go today or tomorrow. Offering permissions tends
to make bad states fine. This paper focuses on giving commands and does not
deal with offering permissions, but once we want to handle it in this framework,
it becomes clear why the constraint is needed. Another reason is conceptual. If
a command has been violated, then this fact will remain true also in the future.
The constraint persistency of liability is coherent with this.

7 Commands Without a Deadline

The formula [!φ]Oφ is not generally valid. For example, [!Fp]OFp is not valid, as
shown in Fig. 4. Therefore, commands do not always cause the expected effects,
sometimes they fail. Note that the command !Fp does not have a deadline and
so it can not be checked if it has been violated after a finite amount of time.
Actually, this failure only happens for this kind of commands.
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Fig. 4. This figure explains why [!Fp]OFp is not valid. The model M does not contain
any bad state and all the paths in it are legal. The command !Fp at w0 in M does
not change anything, as no matter where the agent goes from w0, there is a way to
make Fp true at w0. Therefore, w0w1 . . . is a legal path of M!Fp

w0 . However, it can be
seen that not M!Fp

w0 , w0w1 . . . , 0 � Fp. Then not M!Fp
w0 , w0w1 . . . , 0 � OFp, that is, not

M, w0w1 . . . , 0 � [!Fp]OFp.

We say that a formula φ is colorless if it contains no occurrence of b. Colorless
formulas are not sensitive to badness of states.

Proposition 2. Let φ be a colorless formula. Then M, π, i � [!φ]Oφ ⇔ for
any path ρ starting at π(i), if M, iπ ⊗ ρ, i � {XnEYn(XGf ∧ φ) |n ∈ N}, then
M, iπ ⊗ ρ, i � φ.
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Proof. (⇐) By contraposition, assume M, π, i � [!φ]Oφ. By spelling out the
semantic clauses, this means that there exists a legal path ρ of M!φ

π(i) starting at

π(i) s.t. M!φ
π(i),

iπ ⊗ ρ, i � φ. It is straightforward that ρ is also a legal path of
M as well. Moreover, as φ is colorless, M, iπ ⊗ ρ, i � φ.

It remains to show that M, iπ ⊗ ρ, i � XnEYn(XGf ∧ φ) for every value
of n ∈ N. Fix the notation ρ = u0u1 . . . and j ≥ 0. As uj is a fine state in
M!φ

π(i), there exists a legal path τ in M starting at π(i) and passing by uj s.t.
M, iπ ⊗ τ, i � φ (notice that τ and ρ coincide up to the n-th state because
our structure is a tree). Then clearly M, iπ ⊗ τ, i � XGf ∧ φ and consequently
M, iπ ⊗ ρ, i � XjEYj(XGf ∧ φ). Since j was arbitrary, it follows M, iπ ⊗ ρ, i �
{XnEYn(XGf ∧ φ) |n > 0}, as wanted.

(⇒) By contraposition, assume there is a path ρ starting at π(i) s.t. M, iπ ⊗
ρ, i � {XnEYn(XGf∧φ) |n ∈ N} but M, iπ⊗ρ, i � φ. Note that, as φ is colorless,
this is equivalent to M!φ

π(i),
iπ ⊗ ρ, i � φ. So in order to show M, π, i � [!φ]Oφ, it

suffices to prove that ρ is a fine path of M!φ
π(i).

Let ρ = u0u1 . . . and j ≥ 0. It is easy to show, using again that φ is colorless,
that the hypothesis M, iπ ⊗ ρ, i � XjEYj(XGf∧φ) implies that every uj is a fine
in M and is not an element of X !φ

π(i), and this means exactly that uj is a fine state

of M!φ
π(i). Since j was arbitrary, it follows that ρ is a fine path, as wanted. ��

A formula φ is co-compact if {XnEYnφ |n ∈ N} |= φ. An example of such
a formula is Gp, while Fp is not. Co-compact formulas are exactly the formulas
that can be falsified in finite steps: if the formula is not true at a path, this is
attested by an initial segment. For example, if Gp is false at π, then in order to
know this, we just have to scan π up to a state in which p is false. Note that if
Gp is true, we might need to scan the whole path: it is possible that the agent
will never execute !φ but we are unable to attest this. In other words, if φ is not
co-compact, then !φ is a command without a deadline.

Proposition 3. Let φ be a colorless formula. Then [!φ]Oφ is valid ⇔ φ is
co-compact.

Proof. By Proposition 2, it suffices to show that {XnEYn(XGf∧φ) |n ∈ N} |= φ
⇔ {XnEYnφ |n ∈ N} |= φ. As XnEYn(XGf∧φ) implies XnEYnφ for any n, the
direction from right to left is trivial.

For the other direction, reasoning by contraposition, assume {XnEYnφ |n ∈
N} |= φ. Then there is M, π and i s.t. M, π, i � {XnEYnφ |n ∈ N} but M, π, i �
φ. Note that, as φ is colorless, we can assume that all the states in M are fine,
and so it follows trivially M, π, i � {XnEYn(XGf ∧ φ) |n ∈ N}, thus showing
that {XnEYn(XGf ∧ φ) |n ∈ N} � φ as wanted. ��

Something worth mentioning is that a command containing a co-compact
formula might have different deadlines in different situations and so a bound
to the length of the initial segment falsyfing the formula can not be given. An
example is !Gp. These commands just have implicit deadlines. We say that a
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formula φ is explicitly co-compact if there is a n s.t. XnEYnφ → φ is valid. The
commands containing this sort of formulas have explicit deadlines. For example,
!(Xp ∨ XXp) has an explicit deadline, that is, two steps; if p is not true in two
steps, then the command is violated.

It can be seen that past operators let us easily state the condition of [!φ]Oφ
being true and the definition of co-compact formulas. This is the reason that we
introduce them.

8 Connections with Other Work

We mentioned in Sect. 1 the deontic logic NTL which is based on CTL and pre-
sented in [1]. The language of NTL, ΦNTL, is defined as follows1:

φ ::= p | � | ¬φ | (φ ∧ φ) | PXφ | P(φUφ) | OXφ | O(φUφ)

Note that ΦNTL is a fragment of ΦDTNL that contains only state formulas.
A model of NTL is a structure (W,R, η, V ) where W and V are as usual, R is

a serial relation on W , and η is a subset of R whose complement is serial, called
the set of illegal transitions2. A path w0w1 . . . is called legal if (wi, wi+1) /∈ η
for any i. The semantics of ΦNTL is a special case of the semantics of ΦDTNL ,
but now P and O can be regarded as an existential and universal quantifier over
legal paths respectively.

Say that a formula φ in ΦDTNL is f-valid if for any M, π and i, if π(i) is a
fine state, then M, π, i � φ. NTL can be embedded into DTNL under the notion
of f-validity.

Let M = (W,R, η, V ) be a NTL model s.t. (W,R) is a tree. Let r be the root
of (W,R). Let B = {y ∈ W | (x, y) ∈ η for some x} and B′ be the smallest set
containing B and closed under R. It can be verified that for any w, if w /∈ B′, then
there is a u s.t. Rwu and u /∈ B′. Define M× as the structure (W,R, r,B′, V ),
which is a DTNL model.

Lemma 1. Let M = (W,R, η, V ) be a NTL model s.t. (W,R) is a tree. Let w
be a fine state of M×. Then for any φ ∈ ΦNTL, M, w � φ ⇔ M×, w � φ.

The lemma follows immediately by noticing that for any fine state u of M×, a
path π starting at u is legal in M iff it is legal in M×.

Proposition 4. For any φ of ΦNTL, φ is valid in NTL ⇔ φ is f-valid in DTNL .

Proof. Assume that φ is not valid in NTL. Then there is an NTL model M =
(W,R, η, V ) and a state w s.t. M, w � φ. Let M′ = (W ′, R′, η′, V ′) be the
unwinding of M from w. It follows immediately that M′ is also an NTL model,

1 In [1], every deontic operator has a parameter referring to a specific set of illegal
transitions. Here we ignore the parameter, but this is not crucial for the comparison
between NTL and DTNL .

2 The models of NTL in [1] have initial states that are omitted here.
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that M′, w � φ and that w is a fine state of (M′)×. By Lemma 1, (M′)×, w � φ
and so φ is not f-valid in DTNL .

Assume that φ is not f-valid in DTNL . Then there is a DTNL model M =
(W, r,R,B, V ) and a fine state w s.t. M, w � φ. Let M′ = (W,R, η, V ) where
η = {(x, y) | y ∈ B}. Then M′ is an NTL model and it can be seen that (M′)× =
M. By Lemma 1, M′, w � φ and so φ is not valid in NTL. ��

Standard Deontic Logic (SDL), proposed in [11], is one of the most well-known
deontic logics. SDL is a typical normal modal logic, where �φ is interpreted as
it ought to be that φ, and ♦φ as it may be that φ. The frames of SDL are serial
relational structures.

As mentioned in [1], SDL is a sublogic of NTL under the translation σ defined
as follows:

pσ = p
(¬φ)σ = ¬φσ

(φ ∧ ψ)σ = φσ ∧ ψσ

(�φ)σ = OXφσ

(♦φ)σ = PXφσ (derived)

Under this translation, the formulas of ΦSDL have temporal reading: �φ means
that it ought to be that φ is true in the next moment. Note that for any φ ∈ ΦSDL,
φσ is a state formula.

Actually, this previous fact can be stronger: SDL can be embedded to NTL.
As NTL can be embedded to DTNL, SDL can be embedded to DTNL too.

9 Future Work

The expressive power of DTNL needs further study. It is still not known whether
the dynamic operator can be reduced: if this is the case, then the completeness
of DTNL follows by the completeness of PCTL∗. Another point worth men-
tioning is that in defining the commands with a deadline, we use the inference
{XnEYnφ |n ∈ N} |= φ. It’s still not known if this entailment can be expressed
by a formula of DTNL .

Offering state permissions is another important way to change the normative
state of an agent, but it is harder to capture as it raises some interesting issues
such as free-choice permission. Formalizing giving permissions is another future
work.

The constraint persistency of liability on the models of DTNL says that if
the agent has done something illegal, then there will be nothing legal for him to
do. This implies that DTNL only works for ideal agents who always comply, so
this logic is far from being realistic. One way to solve this issue is to introduce
more shades, instead of a simple distinction between bad and fine states.
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1. Ågotnes, T., van der Hoek, W., Rodŕıguez-Aguilar, J., Sierra, C., Wooldridge, M.:
A temporal logic of normative systems. In: Makinson, D., Malinowski, J., Wansing,
H. (eds.) Towards Mathematical Philosophy, pp. 69–106. Springer, Netherlands
(2009)

2. Aloni, M.: Free choice, modals, and imperatives. Nat. Lang. Seman. 15(1), 65–94
(2007)

3. Anderson, A.: Some nasty problems in the formal logic of ethics. Noûs 1(4), 345–
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Abstract. A contraction-free and cut-free labelled sequent calculus
GInqL for inquisitive logic is established. Labels are defined by a set-
theoretic syntax. The completeness of GInqL is shown by the equivalence
between the Hilbert-style axiomatic system and sequent system.

Keywords: Inquisitive logic · Labelled sequent calculus · Cut-
elimination

1 Introduction

The natural language meaning processing has been more conversational and
dynamic since Stalnaker [9] proposed to treat the meaning of a sentence to be
its potential to update the common ground (shared information) of conversa-
tional participants. Stalnaker’s approach is dynamic in the sense that a sentence
provides information to eliminate possibilities from the common ground of par-
ticipants. This kind of pragmatic theory is generalized to inquisitive semantics
in Groenendijk [3] and Mascarenhas [4], which characterizes the assertions and
questions in conversations by informative and inquisitive semantic terms. The
associated logic was axiomatized by Mascarenhas [4], and a sound and complete
tree sequent calculus was independently established by Sano [8].

Ciardelli and Roelofsen [1] propose a sound and complete Hilbert-style
axiomatic system InqL for the generalized inquisitive semantics. It is the exten-
sion of the intermediate logic KP with the axiom ¬¬p → p where only proposi-
tional variables are allowed to substitute for the variable p in the axiom. The set
of all theorems of the logic InqL is hence not closed under uniform substitution.
The semantics for InqL is not based on the Kripke semantics for the intermedi-
ate logic KP but given in a fixed set of states. The basic semantic notion is the
support relation between a state and a formula.

The labelled sequent calculi for normal modal logics are systematically estab-
lished by Negri [5] as an uniform approach to the proof analysis of modal logics.
The basic idea is that the Kripke semantics of a modal operator is transformed
into sequent rules. The meaning of a modal operator is written into the right
introduction rule of that operator, and the inversion principle provides the left
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introduction rule. This is a very uniform approach to the proof theory of normal
modal logics. Moreover, Dyckhoff and Negri [2] extend the labelled approach to
intermediate logics, where the intermediate logic KP was not investigated.

Given the inquisitive semantics of propositional logic, the present paper shall
extend the labelled approach to the inquisitive logic Inq. A contraction-free and
cut-free labelled sequent calculus GInqL is established. Compared with labelled
sequent calculi for normal modal logics and intermediate logics, there is a kind
of complexity about labels used in the labelled sequent calculus GInqL. This is
partially due to the validity of the special axiom ¬¬p → ¬p, and partially due
to the semantics of implication. The present paper starts from an introduction
to inquisitive logic in Sect. 2. The labelled sequent calculus GInqL is established
in Sect. 3. Section 4 proves the admissibility of structural rules, and finally the
soundness and completeness of GInqL is shown in Sect. 5.

2 Inquisitive Logic

Let P be a denumerable set of propositional variables. The set of all formulas L
is defined inductively by

L � α ::= p | ⊥ | (α ∧ β) | (α ∨ β) | (α → β), where p ∈ P.

Define � := ⊥ → ⊥ and ¬α := α → ⊥. The length of a formula is the number
of connectives occuring in it.

An index, denoted by w, u, v etc., is a subset of P. A state, denoted by s, t
etc., is a set of indices. The empty set ∅ is called the inconsistent state. The set
of all states is denoted by SP .

Definition 1. The support relation between a state s and a formula α, notation
s |= α, is defined inductively as follows:

(1) s |= p iff p ∈ X for all X ∈ s.
(2) s |= ⊥ iff s = ∅.
(3) s |= α ∧ β iff s |= α and s |= β.
(4) s |= α ∨ β iff s |= α or s |= β.
(5) s |= α → β iff for every state t ⊆ s, if t |= α, then t |= β.

A formula α is valid, notation |= α, if s |= α for every state s ∈ SP .

Lemma 1. For every formula α and states s, t, the following hold:

(1) ∅ |= α.
(2) if s |= α, then t |= α for every t ⊆ s.
(3) if s |= ¬α and t |= ¬α, then s ∪ t |= ¬α.

Proof. The condition (1) is obvious by definition. The persistency condition (2)
is shown in [1]. For (3), assume s |= ¬α and t |= ¬α. Let t′ ⊆ s ∪ t and t′ |= α.
Then t′ = t′ ∩ (s ∪ t) = (t′ ∩ s) ∪ (t′ ∩ t). By (2), t′ ∩ s |= α and t′ ∩ t |= α. By
assumption, t′ ∩ s = ∅ = t′ ∩ t. Hence t′ = ∅. �
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Definition 2. The Hilbert-style axiomatic system HInqL for inquisitive logic
consists of the following axiom schemata and inference rules:

– Axiom schemata:
(A1) α → (β → α)
(A2) (α → (β → γ)) → ((α → β) → (α → γ))
(A3) α ∧ β → α
(A4) α ∧ β → β
(A5) α → α ∨ β
(A6) β → α ∨ β
(A7) (α → γ) → ((β → γ) → (α ∨ β → γ))
(A8) α → (β → α ∧ β)
(A9) ⊥ → α
(KP) (¬α → β ∨ γ) → (¬α → β) ∨ (¬α → γ)
(N) ¬¬p → p, for every propositional variable p ∈ P.

– Inference rule (MP): from α and α → β infer β.

By �HInqL α we mean that α is provable in the system HInqL.

Theorem 1 ([1]). For any formula α, �HInqL α if and only if |= α.

3 A Labelled Sequent Calculus

Let A = {ai | i ∈ N} be a set of variables ranging over the set of all singleton
states. Let V = {xi | i ∈ N} be a set of variables ranging over the set of all
states SP . We use a, b, c etc. as metavariables for variables in A, and x, y, z etc.
as metavariables for V. In particular, let ε be a constant symbol standing for the
state ∅. Moreover, let ∪ and ∩ be set-theoretic symbols of union and intersection.

Definition 3. The set of labels is defined inductively by the following rule:

L � s ::= ε | a | x | (s ∪ s) | (s ∩ s),

where a ∈ A and x ∈ V. Let R be a binary relational symbol. A relational atom
is an expression of the form sRt where s, t ∈ L.

A labelled formula is of the form s : α where α is a formula and s is a label.
A term is a labelled formula or a relational atom. We use A,B,C etc. to denote
terms. A sequent is an expression of the form Γ ⇒ Δ where Γ and Δ are finite
(possibly empty) multisets of terms.

Definition 4. The labelled sequent calculus GInqL consists of the following
axioms and rules:

(1) Axioms:

(IdP ) a : p, Γ ⇒ Δ, a : p (IdR) sRt, Γ ⇒ Δ, sRt (Id⊥) s : ⊥, Γ ⇒ Δ, s : ⊥
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(2) Rules:

(L∧)
s : α, s : β, Γ ⇒ Δ

s : α ∧ β, Γ ⇒ Δ
(R∧)

Γ ⇒ Δ, s : α Γ ⇒ Δ, s : β

Γ ⇒ Δ, s : α ∧ β

(L∨)
s : α, Γ ⇒ Δ s : β, Γ ⇒ Δ

s : α ∨ β, Γ ⇒ Δ
(R∨)

Γ ⇒ Δ, s : α, s : β

Γ ⇒ Δ, s : α ∨ β

(Lp)
a : p, s : p, sRa, Γ ⇒ Δ

Γ, s : p, sRa ⇒ Δ
(Rp)

sRa, Γ ⇒ Δ, a : p

Γ ⇒ Δ, s : p

(L→)
sRt, s : α → β, Γ ⇒ Δ, t : α t : β, sRt, s : α → β, Γ ⇒ Δ

sRt, s : α → β, Γ ⇒ Δ

(R→)
sRx, x : α, Γ ⇒ Δ,x : β

Γ ⇒ Δ, s : α → β
(tran)

sRt, sRu, uRt, Γ ⇒ Δ

sRu, uRt, Γ ⇒ Δ

(∪R)
(s ∪ t)Rs, Γ ⇒ Δ

Γ ⇒ Δ
(R∪)

sR(u ∪ v), sRu, sRv, Γ ⇒ Δ

sRu, sRv, Γ ⇒ Δ

(⊥1)
a : ⊥, Γ ⇒ Δ

(⊥2)
εRt, Γ ⇒ Δ Γ ⇒ Δ, t : ⊥

Γ ⇒ Δ
(⊥3)

εRt, t : α, Γ ⇒ Δ

εRt, Γ ⇒ Δ

(⊥4)
Γ ⇒ Δ, εRt, t : ⊥

Γ ⇒ Δ, t : ⊥ (⊥5)
Γ ⇒ Δ, εRt, t : ⊥

Γ ⇒ Δ, εRt

(S)
aRt, t : ⊥, Γ ⇒ Δ aRt, tRa, Γ ⇒ Δ

aRt, Γ ⇒ Δ

(∩1)
sR(s ∩ t), Γ ⇒ Δ

Γ ⇒ Δ
(LE)

sRs, Γ ⇒ Δ

Γ ⇒ Δ
(RE)

Γ ⇒ Δ, εRa

Γ ⇒ Δ

(R1)
Γ ⇒ Δ, εRs, εR(s ∪ t) Γ ⇒ Δ, εRt, εR(s ∪ t)

Γ ⇒ Δ, εR(s ∪ t)

(R2)
(t1 ∪ t2)Rt, Γ ⇒ εR((t1 ∩ t) ∪ (t2 ∩ t)), εRt,Δ

(t1 ∪ t2)Rt, Γ ⇒ εRt,Δ

In the rule (Rp), a ∈ A does not occur in the conclusion. In the rule (R →),
x ∈ V does not occur in the conclusion.

A labelled formula s : α in the lower sequent of a rule in GInqL is called
principal. The height of a derivation in GInqL is the greatest number of successive
applications of rules in it, where an axiom has height 0. By GInqL �k Γ ⇒ Δ we
mean that Γ ⇒ Δ is derivable with a height of derivation at most k. We say a
sequent rule

Γ1 ⇒ Δ1 . . . Γn ⇒ Δn

Γ0 ⇒ Δ0
(R)

is height-preserving admissible in a sequent calculus if the conclusion Γ0 ⇒ Δ0

has a derivation with the height not larger than the maximal height of derivations
of premisses. We say that (R) is height-preserving invertible if GInqL �k Γ0 ⇒ Δ0

implies GInqL �k Γi ⇒ Δi for all 1 ≤ i ≤ n.
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Lemma 2. The following rules are admissible in GInqL:

(1) The rule (∪⊥): if �GInqL Γ ⇒ Δ, εRs, εR(s ∪ t), s : ⊥, (s ∪ t) : ⊥, (s ∪ t) : ⊥
and �GInqL Γ ⇒ Δ, εRt, εR(s ∪ t), t : ⊥, (s ∪ t) : ⊥, (s ∪ t) : ⊥, then �GInqL

Γ ⇒ Δ, (s ∪ t) : ⊥.
(2) The rule (∪∩): if �GInqL (t1 ∪ t2)Rt, Γ ⇒ εR((t1 ∩ t) ∪ (t2 ∩ t)), εRt, ((t1 ∩

t) ∪ (t2 ∩ t)) : ⊥, t : ⊥, t : ⊥,Δ, then �GInqL (t1 ∪ t2)Rt, Γ ⇒ t : ⊥,Δ.

Proof. For (∪⊥), assume �GInqL Γ ⇒ Δ, εRs, εR(s∪t), s : ⊥, (s∪t) : ⊥, (s∪t) : ⊥.
By two applications of (⊥5), we have Γ ⇒ Δ, εRs, εR(s∪ t), (s∪ t) : ⊥. Similarly,
we get Γ ⇒ Δ, εRt, εR(s∪t), (s∪t) : ⊥. By (R1), we have Γ ⇒ Δ, ε(s∪t), (s∪t) :
⊥. By (⊥4), we have Γ ⇒ Δ, (s ∪ t) : ⊥.

For (∪∩), assume �GInqL (t1 ∪ t2)Rt, Γ ⇒ εR((t1 ∩ t)∪ (t2 ∩ t)), εRt, ((t1 ∩ t)∪
(t2 ∩ t)) : ⊥, t : ⊥, t : ⊥,Δ. By two applications of (⊥5), we have (t1 ∪ t2)Rt, Γ ⇒
εR((t1∩t)∪(t2∩t)), εRt, t : ⊥,Δ. By (R2), we have (t1∪t2)Rt, Γ ⇒ εRt, t : ⊥,Δ.
By (⊥4), we have (t1 ∪ t2)Rt, Γ ⇒ t : ⊥,Δ. �
Proposition 1. The following sequents are derivable in GInqL:

(1) s : α, Γ ⇒ Δ, s : α.
(2) sRt, s : α, Γ ⇒ Δ, t : α.
(3) sRt, s : α → β, t : α, Γ ⇒ Δ, t : β.
(4) s : ⊥, Γ ⇒ Δ, s : α.
(5) t1 : ¬α, t2 : ¬α, Γ ⇒ Δ, t1 ∪ t2 : ¬α.

Proof. We sketch only the proofs of (1), (2) and (5), and the proofs of (3) and
(4) are similar. For (1), we show it by induction on the length of α. Consider
the case α = p ∈ P. By (Idp), we have a : p, sRa, s : p, Γ ⇒ Δ, a : p. By (Lp),
we have sRa, s : p, Γ ⇒ Δ, a : p. By (Rp), we have s : p, Γ ⇒ Δ, s : p.

The case α = ⊥ follows from (Id⊥1).
The cases for ∨ and ∧ are easily done. Suppose α = β → γ. By inductive

hypothesis, we have x : β, sRx, s : β → γ, Γ ⇒ Δ,x : β, x : γ and x : γ, x :
β, sRx, s : β → γ, Γ ⇒ Δ,x : γ. Then by (L →), we have x : β, sRx, s : β →
γ, Γ ⇒ Δ,x : γ. By (R →), we have s : β → γ, Γ ⇒ Δ, s : β → γ.

(2) By induction on the length of α. Consider the case α = p ∈ P. From
(1), we have a : p, sRt, tRa, sRa, s : p, Γ ⇒ Δ, a : p. By (LP), we have
sRt, tRa, sRa, s : p, Γ ⇒ Δ, a : p. By (tran), we have sRt, tRa, s : p, Γ ⇒
Δ, a : p. By (RP), we have sRt, s : p, Γ ⇒ Δ, t : p.

Consider the case α = ⊥. By (IdR), we have εRt, Γ, εRs, sRt, s : ⊥ ⇒
Δ, εRt, t : ⊥. By (tran), we have Γ, εRs, sRt, s : ⊥ ⇒ Δ, εRt, t : ⊥. By
(1), we have Γ, εRs, sRt, s : ⊥ ⇒ Δ, εRt, t : ⊥, s : ⊥. Applying (⊥2) to the
last two sequents, we have Γ, sRt, s : ⊥ ⇒ Δ, εRt, t : ⊥. By (⊥4), we have
Γ, sRt, s : ⊥ ⇒ Δ, t : ⊥.

The cases for ∨ and ∧ are easily done. Suppose α = β → γ. From (1), we have
Γ, sRt, tRx, sRx, s : β → γ, x : β ⇒ x : γ,Δ, x : β and x : γ, Γ, sRt, tRx, sRx, s :
β → γ, x : β ⇒ x : γ,Δ. By (L →), we have Γ, sRt, tRx, sRx, s : β → γ, x : β ⇒
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x : γ,Δ. By (tran), we have Γ, sRt, tRx, s : β → γ, x : β ⇒ x : γ,Δ. By (R →),
we have Γ, sRt, s : β → γ ⇒ t : β → γ,Δ.

(5) From (2), we have t1 : ¬α, t2 : ¬α, t1R(t1 ∩ x), xR(x ∩ t1), x : α, Γ ′ ⇒
Δ′, (t1∩x) : α, (t1∩x) : ⊥. Then by (∩1), we have t1 : ¬α, t2 : ¬α, t1R(t1∩x), x :
α, Γ ′ ⇒ Δ′, (t1 ∩ x) : α, (t1 ∩ x) : ⊥. From (4), we have t1 : ¬α, t2 : ¬α, t1R(t1 ∩
x), (t1 ∩ x) : ⊥, x : α, Γ ′ ⇒ Δ′, (t1 ∩ x) : ⊥. Applying (L →) to the last two
sequents for t1 : ¬α and t1R(t1 ∩ x), we have t1 : ¬α, t2 : ¬α, t1R(t1 ∩ x), x :
α, Γ ′ ⇒ Δ′, (t1 ∩ x) : ⊥. Then by (∩1), we have t1 : ¬α, t2 : ¬α, x : α, Γ ′ ⇒
(t1 ∩ x) : ⊥,Δ′.

Let Δ′ = {εR(t1∩x), εR((t1∩x)∪(t2∩x)), ((t1∩x)∪(t2∩x)) : ⊥, ((t1∩x)∪(t2∩
x)) : ⊥,Δ′′}, we have t1 : ¬α, t2 : ¬α, x : α, Γ ′ ⇒ (t1∩x) : ⊥, εR(t1∩x), εR((t1 ∩
x)∪(t2∩x)), ((t1∩x)∪(t2∩x)) : ⊥, ((t1∩x)∪(t2∩x)) : ⊥,Δ′′. Similarly, starting
from t1 : ¬α, t2 : ¬α, t2R(t2∩x), xR(x∩t2), x : α, Γ ′ ⇒ Δ′, (t2∩x) : α, (t2∩x) : ⊥,
we have t1 : ¬α, t2 : ¬α, x : α, Γ ′ ⇒ (t2 ∩ x) : ⊥, εR(t2 ∩ x), εR((t1 ∩ x) ∪ (t2 ∩
x)), ((t1 ∩ x) ∪ (t2 ∩ x)) : ⊥, ((t1 ∩ x) ∪ (t2 ∩ x)) : ⊥,Δ′′. Applying Lemma 2
(∪⊥), we have t1 : ¬α, t2 : ¬α, x : α, Γ ′ ⇒ ((t1 ∩ x) ∪ (t2 ∩ x)) : ⊥,Δ′′. Let
Γ ′ = {(t1 ∪ t2)Rx, Γ} and Δ′′ = {εR((t1 ∩x)∪ (t2 ∩x)), εRx, x : ⊥, x : ⊥,Δ} and
apply Lemma 2(∪∩), we have (t1 ∪ t2)Rx, t1 : ¬α, t2 : ¬α, Γ, x : α ⇒ Δ,x : ⊥.
Finally by (R→), we have t1 : ¬α, t2 : ¬α, Γ ⇒ Δ, t1 ∪ t2 : ¬α. �
Proposition 2. For any axiom α in HInqL, ⇒ s : α is derivable in GInqL.

Proof. We sketch only the proof of (KP) and (N), and the remaining axioms
are shown similarly. For (KP), by Proposition 1(2) for (x2 ∪ x3)Rx3, we have
sRx1, x1Rx2, x1Rx3, x1R(x2 ∪ x3), (x2 ∪ x3)Rx3, x1 : ¬α → β ∨ γ, x2 : ¬α, x3 :
¬α, x2 ∪x3 : γ ⇒ x2 : β, x3 : γ. By (∪R), we have sRx1, x1Rx2, x1Rx3, x1R(x2 ∪
x3), x1 : ¬α → β ∨ γ, x2 : ¬α, x3 : ¬α, x2 ∪ x3 : γ ⇒ x2 : β, x3 : γ.
Similarly, we have sRx1, x1Rx2, x1Rx3, x1R(x2 ∪ x3), x1 : ¬α → β ∨ γ, x2 :
¬α, x3 : ¬α, x2 ∪ x3 : β ⇒ x2 : β, x3 : γ. Applying (L∨) to above two
sequents, we have sRx1, x1Rx2, x1Rx3, x1R(x2 ∪ x3), x1 : ¬α → β ∨ γ, x2 :
¬α, x3 : ¬α, x2 ∪ x3 : β ∨ γ ⇒ x2 : β, x3 : γ. By Proposition 1(5), we have
sRx1, x1Rx2, x1Rx3, x1R(x2 ∪ x3), x1 : ¬α → β ∨ γ, x2 : ¬α, x3 : ¬α ⇒ x2 :
β, x3 : γ, x2 ∪ x3 : ¬α. Taking this to be the left premiss and the above one as
the right premiss, by (L →) for x1R(x2 ∪ x3) and x1 : ¬α → β ∨ γ, we have:
sRx1, x1Rx2, x1Rx3, x1R(x2 ∪ x3), x1 : ¬α → β ∨ γ, x2 : ¬α, x3 : ¬α ⇒ x2 :
β, x3 : γ. Applying (R∪) and (R →) two times, and then (R∨) and (R →), we
have the desired result.

(N) By Proposition 1(1), we have sRx, xRa, aRy, x : ¬¬p, y : p, y : ⊥ ⇒ a :
p, y : ⊥. By (IdR), we have a : p, yRa, sRx, xRa, aRy, x : ¬¬p, y : p ⇒ a : p, y :
⊥. Then by (Lp), we have yRa, sRx, xRa, aRy, x : ¬¬p, y : p ⇒ a : p, y : ⊥.
Applying (S) to these two sequents, we have sRx, xRa, aRy, x : ¬¬p, y : p ⇒ a :
p, y : ⊥. Then by (R→), we have sRx, xRa, x : ¬¬p ⇒ a : p, a : p → ⊥. By (⊥1),
we have a : ⊥, sRx, xRa, x : ¬¬p ⇒ a : p. By (L →), we have xRa, sRx, x :
¬¬p ⇒ a : p. By (Rp), we have sRx, x : ¬¬p ⇒ x : p. By (R →), we have
⇒ s : ¬¬p → p. �
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4 Admissibility of Structural Rules

In this section, we shall show the height-preserving admissibility of substitution,
weakening and contraction rules, and the admissibility of the cut rule.

Definition 5 (Label substitution). Suppose labels s, t ∈ A or [s, t �= ε and
s, t �∈ A]. For every term A, define A[s/t] inductively as follows:

sRt[s′/t′] = sRt if t′ �∈ {s, t}; sRt[s′/s] = s′Rt if s �= t;
sRt[s′/t] = sRs′ if s �= t; sRs[s′/s] = s′Rs′;

(s : α)[s′/t] = s : α if s �= t; (s : α)[s′/s] = s′ : α.

For any finite multiset of terms Γ , let Γ [s/t] = {A[s/t] | A ∈ Γ}.
Lemma 3. The following rule of substitution

Γ ⇒ Δ

Γ [t/s] ⇒ Δ[t/s]
(sub)

is height-preserving admissible in GInqL.

Proof. By induction on the height of the derivation of Γ ⇒ Δ in GInqL. Suppose
that n = 0 and [t/s] is not a vacuous substitution. Then Γ ⇒ Δ is an axiom
or the conclusion of (⊥1). Obviously, Γ [t/s] ⇒ Δ[t/s] is also an axiom or the
conclusion of (⊥1). Suppose n > 0 and the substitution is not vacuous. We have
the following cases:

Case 1. The last rule is (L∧), (R∧), (L∨), (R∨), (L→), (Lp), (∪R), (R∪),
(tran), (⊥2), (⊥3), (⊥4),(⊥5) (S), (∩1), (R1), (R2), (LE) or (RE). These cases
are similar. First apply the (sub) to the premisses and then apply the rule. We
specify only the case for (L∧) where the derivation ends with

�n−1 s : α, s : β, Γ ′ ⇒ Δ
(L∧)�n s : α ∧ β, Γ ′ ⇒ Δ

By the induction hypothesis, we have �n−1 t : α, t : β, Γ ′[t/s] ⇒ Δ[t/s]. By
(L∧), one gets �n t : α ∧ β, Γ ′[t/s] ⇒ Δ[t/s].

Case 2. The last rule is (R→) or (Rp). These two cases are similar and we
specify only (R→). Let the derivation be

�n−1 sRt′, t′ : α, Γ ⇒ Δ′, t′ : β
(R→)�n Γ ⇒ Δ′, s : α → β

where t′ �= s and t′ is a state variable not in the conclusion. By the induction
hypothesis, we obtain the following derivation:

�n−1 tRt′, t′ : α, Γ [t/s] ⇒ Δ′[t/s], t′ : β
(R→)�n Γ [t/s] ⇒ Δ′[t/s], t : α → β
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If t is the eigenvariable, the derivation ends with

�n−1 sRt, t : α, Γ ⇒ Δ′, t : β
(R→)�n Γ ⇒ Δ′, s : α → β

By the induction hypothesis, we have �n−1 sRu, u : α, Γ ⇒ Δ′, u : β where
u is a fresh state variable. Again by the induction hypothesis, one gets tRu, u :
α, Γ [t/s] ⇒ Δ′[t/s], u : β. By (R→), one gets �n Γ [t/s] ⇒ Δ′[t/s], t : α → β. �
Proposition 3. The following rules of weakening

Γ ⇒ Δ

A,Γ ⇒ Δ
(wl)

Γ ⇒ Δ

Γ ⇒ Δ,A
(wr)

are height-preserving admissible in GInqL.

Proof. By induction on the height of the derivation of the premiss. If Γ ⇒ Δ
is an axiom or the conclusion of (⊥1), so are A,Γ ⇒ Δ and Γ ⇒ Δ,A. If the
last rule (Lp), (L∧), (R∧), (L∨), (R∨),(L→), (∪R), (R∪), (tran), (⊥2), (⊥3),
(⊥4),(⊥5), (S), (∩1), (R1), (R2), (LE) or (RE), it is done by straightforward
induction. If the last rule is (R→) or (Rp), by applying (sub) to the premiss,
one gets a sequent in which the eigenvariable does not occur in A or Γ,Δ. The
conclusion is obtained by induction hypothesis and the rule (R→) or (Rp). �
Proposition 4. All rules in GInqL are height-preserving invertible.

Proof. The height-preserving invertibility of rules for ∧ and ∨ is done as for
classical propositional logic in [7]. The invertibility of (Lp), (L→), (∪R), (R∪),
(tran),(⊥2), (⊥3),(⊥4),(⊥5),(S), (∩1), (R1), (R2), (LE) and (RE) is obtained
by height-preserving weakening. For (R→), we do it by induction on the height
n of the derivation of the premiss Γ ⇒ Δ, s : α → β. When n = 0, it is an axiom
or the conclusion of (⊥1). But then sRt, t : α, Γ ⇒ Δ, t : β is also an axiom or
the conclusion of (⊥1). If Γ ⇒ Δ, s : α → β is obtained by a rule (R) other than
(R→) and (RP ), then we apply the induction hypothesis to the premiss(es) of
(R) and then apply (R). Now consider the case that the last rule is (Rp). Let
the derivation be:

�n−1 sRa, Γ ⇒ Δ, a : p, s : α → β
(RP )�n Γ ⇒ Δ, s : p, s : α → β

The sequent we have to derive is sRx, sRa, Γ, x : α ⇒ Δ, a : p, x : β. Since x
cannot be equal to a, the process goes as other rules. If α → β is principal, then
the premiss of (R→) gives the desired sequent. The proof of invertibility of (Rp)
is similar to that of (R→). �
Theorem 2. The rules of contraction

(cl)
A,A, Γ ⇒ Δ

A,Γ ⇒ Δ
(cr)

Γ ⇒ Δ,A,A

Γ ⇒ Δ,A

are height-preserving admissible in GInqL.
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Proof. By induction on the height n of the derivation of A,A, Γ ⇒ Δ and
Γ ⇒ Δ,A,A. If n = 0, then A,A, Γ ⇒ Δ and Γ ⇒ Δ,A,A are axioms or
the conclusions of (⊥1), and so are A,Γ ⇒ Δ and Γ ⇒ Δ,A. Assume n > 0.
Consider the last rule (R). If the contraction term A is not principle, then by
the induction hypothesis and (R) we get �n A,Γ ⇒ Δ and �n Γ ⇒ Δ,A.
Suppose that the contraction term A is principal. The proof is quite similar to
the admissibility of contraction in [2]. For instance, the derivation ends with

�n−1 sRx1, x1 : α, Γ ⇒ Δ,x1 : β, s : α → β
(R→)�n Γ ⇒ Δ, s : α → β, s : α → β

By the invertibility of (R→), one gets �n−1 sRx1, sRx2, x1 : α, x2 : α, Γ ⇒
Δ,x1 : β, x2 : β. By (sub), one gets �n−1 sRx1, sRx1, x1 : α, x1 : α, Γ ⇒ Δ,x1 :
β, x1 : β. By the induction hypothesis, one gets �n−1 sRx1, x1 : α, Γ ⇒ Δ,x1 : β.
By (R→), one gets �n−1 Γ ⇒ Δ, s : α → β. �
Theorem 3. The cut rule

(cut)
Γ ⇒ Δ, s : α s : α, Γ ′ ⇒ Δ′

Γ, Γ ′ ⇒ Δ′,Δ

is admissible in GInqL.

Proof. The proof is organized as follows. We consider first the case that at least
one premiss in a cut is an axiom or conclusion of (⊥1) and show how cut is
eliminated. For the rest there are three cases: (1) The cut term is not principal
in either premiss of cut. (2) The cut term is principal in just one premiss of cut.
(3) The cut term is principal in both premisses of cut.

(1) Cut with an axiom or conclusion of (⊥1) as premiss. If at least one of the
premisses of cut is an axiom or conclusion of (⊥1), we distinguish two cases:

(1.1) The left premiss Γ ⇒ Δ, s : α of cut is an axiom or conclusion of (⊥1).
If the cut term s : α is in Γ , we derive Γ, Γ ′ ⇒ Δ′,Δ from s : α, Γ ′ ⇒ Δ′ by
weakening. If a : ⊥ is a term in Γ , then Γ, Γ ′ ⇒ Δ′,Δ is a conclusion of (⊥1).

(1.2) The right premiss s : α, Γ ′ ⇒ Δ′ is an axiom or conclusion of (⊥1). The
conclusion is an axiom except the case that the cut term is a : ⊥. In this case,
either the first premiss Γ ⇒ Δ, a : ⊥ is an axiom and Γ, Γ ′ ⇒ Δ′,Δ follows as in
case 1, or Γ ⇒ Δ, a : ⊥ has been derived. There are many cases according to the
rule used. Theses are transformed into derivations with cuts of lesser cut-height.
The transformations are special cases of the transformations below.

(2) Cut with neither premiss an axiom. We have three cases.
(2.1) Cut term s : α is not principal in the left premiss. We have subcases

according to the rule used to derive the left premiss. For (L∨), (R∨), (L∧) and
(R∧), the transformations are easily done. Now we consider other cases.

(2.1.1) (Lp) with Γ = a : p, s : p, sRa, Γ ′′. The derivation

a : p, s : p, sRa, Γ ′′ ⇒ Δ, s : α
(Lp)

Γ ′′, s : p, sRa ⇒ Δ, s : α s : α, Γ ′ ⇒ Δ′
(Cut)

Γ ′, Γ ′′, s : p, sRa ⇒ Δ,Δ′
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is transformed into the derivation with a cut of lower height:

a : p, s : p, sRa, Γ ′′ ⇒ Δ, s : α s : α, Γ ′ ⇒ Δ′
(Cut)

a : p, s : p, sRa, Γ ′, Γ ′′ ⇒ Δ,Δ′
(Lp)

Γ ′, Γ ′′, s : p, sRa ⇒ Δ,Δ′

(2.1.2) (Rp) with Γ = Γ ′′, sRa and Δ = Δ′′, a : p. The derivation

sRa, Γ ′′ ⇒ Δ′′, a : p, s : α
(Rp)

Γ ′′ ⇒ Δ′′, s : p, s : α s : α, Γ ′ ⇒ Δ′
(Cut)

Γ ′, Γ ′′ ⇒ Δ′,Δ′′, s : p

is transformed in to the derivation with a cut of lower height:

sRa, Γ ′′ ⇒ Δ′′, a : p, s : α s : α, Γ ′ ⇒ Δ′
(Cut)

sRa, Γ ′, Γ ′′ ⇒ Δ′,Δ′′, a : p
(Rp)

Γ ′, Γ ′′ ⇒ Δ′,Δ′′, s : p

(2.1.3) (L →) with Γ = sRt, s : α → β, Γ ′′. The left premiss sRt, s : α →
β, Γ ′′ ⇒ Δ, s : α is obtained by (L →) from sRt, s : α → β, Γ ′′ ⇒ Δ, s : α, t : α
and t : β, sRt, s : α → β, Γ ′′ ⇒ Δ, s : α. The cut is

sRt, s : α → β, Γ ′′ ⇒ Δ, s : α s : α, Γ ′ ⇒ Δ′
(Cut)

sRt, s : α → β, Γ ′, Γ ′′ ⇒ Δ,Δ′

We have the following two cuts of lower height:

sRt, s : α → β, Γ ′′ ⇒ Δ, s : α, t : α s : α, Γ ′ ⇒ Δ′
(Cut)

sRt, s : α → β, Γ ′, Γ ′′ ⇒ Δ,Δ′, t : α

and
t : β, sRt, s : α → β, Γ ′′ ⇒ Δ, s : α s : α, Γ ′ ⇒ Δ′

(Cut)
t : β, sRt, s : α → β, Γ ′, Γ ′′ ⇒ Δ,Δ′

By (L→), we have sRt, s : α → β, Γ ′, Γ ′′ ⇒ Δ,Δ′.
(2.1.4) (R →) with Γ = sRx, x : α, Γ ′′ and Δ = s : α → β,Δ′′. The

derivation

sRx, x : α, Γ ′′ ⇒ Δ′′, x : β, s : α
(R→)

Γ ′′ ⇒ Δ′′, s : α → β, s : α s : α, Γ ′ ⇒ Δ′
(Cut)

Γ ′, Γ ′′ ⇒ Δ′,Δ′′, s : α → β

is transformed into the derivation with a cut of lower height

sRx, x : α, Γ ′′ ⇒ Δ′′, x : β, s : α s : α, Γ ′ ⇒ Δ′
(Cut)

sRx, x : α, Γ ′, Γ ′′ ⇒ Δ′,Δ′′, x : β
(R→)

Γ ′, Γ ′′ ⇒ Δ′,Δ′′, s : α → β



536 J. Chen and M. Ma

(2.1.5) Transformations of other rules are similar. We apply the cuts of lower
height then apply the rule.

(2.2) Cut term s : α is principal in the left premiss only. The derivation is
transformed in one with a cut of lower cut-height according to derivation of the
right premiss. We have a few subcases according to the rule used. For L∨, R∨,
L∧ and R∧, the transformations are easily done. Now we consider other cases:

(2.2.1) (Lp) with Γ ′ = a : p, s : p, sRa, Γ ′′. The derivation

Γ ⇒ Δ, s : α

s : α, a : p, s : p, sRa, Γ ′′ ⇒ Δ′
(Lp)

s : α, Γ ′′, s : p, sRa ⇒ Δ′
(Cut)

Γ, Γ ′′, s : p, sRa ⇒ Δ,Δ′

is transformed into the derivation with a cut of lower cut-height

Γ ⇒ Δ, s : α s : α, a : p, s : p, sRa, Γ ′′ ⇒ Δ′
(Cut)

a : p, s : p, sRa, Γ, Γ ′′ ⇒ Δ,Δ′
(Lp)

Γ, Γ ′′, s : p, sRa ⇒ Δ,Δ′

(2.2.2) (Rp) with Γ ′ = Γ ′′, sRa and Δ′ = Δ′′, a : p. The derivation

Γ ⇒ Δ, s : α

s : α, sRa, Γ ′′ ⇒ Δ′′, a : p
(Rp)

s : α, Γ ′′ ⇒ Δ′′, s : p
(Cut)

Γ, Γ ′′ ⇒ Δ,Δ′′, s : p

is transformed in to the derivation with a cut of lower height

Γ ⇒ Δ, s : α s : α, sRa, Γ ′′ ⇒ Δ′′, a : p
(Cut)

sRa, Γ, Γ ′′ ⇒ Δ,Δ′′, a : p
(Rp)

Γ, Γ ′′ ⇒ Δ,Δ′′, s : p

(2.2.3) (L →) with Γ ′ = sRt, s : α → β, Γ ′′. Let the left premiss of cut be
Γ ⇒ Δ, s : α, and let the right premiss end with

s : α, sRt, s : α → β, Γ ′′ ⇒ Δ, t : α s : α, t : β, sRt, s : α → β, Γ ′′ ⇒ Δ′
(L→)

s : α, sRt, s : α → β, Γ ′′ ⇒ Δ′

and let the conclusion of cut be sRt, s : α → β, Γ, Γ ′′ ⇒ Δ,Δ′. Then we have
the following cuts

Γ ⇒ Δ, s : α s : α, sRt, s : α → β, Γ ′′ ⇒ Δ′, t : α
(Cut)

sRt, s : α → β, Γ, Γ ′′ ⇒ Δ,Δ′, t : α

and
Γ ⇒ Δ, s : α s : α, t : β, sRt, s : α → β, Γ ′′ ⇒ Δ′

(Cut)
t : β, sRt, s : α → β, Γ, Γ ′′ ⇒ Δ,Δ′

Then by (L→), we have sRt, s : α → β, Γ, Γ ′′ ⇒ Δ,Δ′.
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(2.2.4) (R →), with Γ ′ = sRx, x : α, Γ ′′ and Δ′ = s : α → β,Δ′′. The
derivation

Γ ⇒ Δ, s : α

s : α, sRx, x : α, Γ ′′ ⇒ Δ′′, x : β
(R→)

s : α, Γ ′′ ⇒ Δ′′, s : α → β
(Cut)

Γ, Γ ′′ ⇒ Δ,Δ′′, s : α → β

is transformed into the derivation with a cut of lower cut-height

Γ ⇒ Δ, s : α s : α, sRx, x : α, Γ ′′ ⇒ Δ′′, x : β
(Cut)

sRx, x : α, Γ, Γ ′′ ⇒ Δ,Δ′′, x : β
(R→)

Γ, Γ ′′ ⇒ Δ,Δ′′, s : α → β

(2.2.5) Transformations of other rules are similar: apply the cut of lower
cut-height then apply the rule.

(2.3) Cut formula s : α is principal in both premisses, and we have a few
subcases. We prove by considering different forms of s : α. Conjunction and
disjunction are easily done.

(2.3.1) α is ⊥. Then the left premiss of (Cut) is derived by (⊥4) and the right
premiss is derived by (⊥1). We transform the derivation

Γ ⇒ Δ, a : ⊥, εRa
(⊥4)

Γ ⇒ Δ, a : ⊥ (⊥1)
a : ⊥, Γ ′ ⇒ Δ′

(Cut)
Γ, Γ ′ ⇒ Δ,Δ′

into
Γ ⇒ Δ, a : ⊥, εRa a : ⊥, Γ ′ ⇒ Δ′

(Cut)
Γ, Γ ′ ⇒ Δ,Δ′, εRa

(RE)
Γ, Γ ′ ⇒ Δ,Δ′

(2.3.2) s : α is s : p. The derivation is

sRa, Γ ⇒ Δ, a : p
(Rp)

Γ ⇒ Δ, s : p

b : p, s : p, sRb, Γ ′′ ⇒ Δ′
(Lp)

Γ ′′, s : p, sRb ⇒ Δ′
(Cut)

sRb, Γ, Γ ′′ ⇒ Δ,Δ′

If s �∈ A and s �= ε, the derivation can be transformed into

sRb, Γ ⇒ Δ, b : p

Γ ⇒ Δ, s : p b : p, s : p, sRb, Γ ′′ ⇒ Δ′
(Cut)

b : p, sRb, Γ, Γ ′′ ⇒ Δ,Δ′
(Cut)

sRb, sRb, Γ, Γ, Γ ′′ ⇒ Δ,Δ,Δ′
(Ctr∗)

sRb, Γ, Γ ′′ ⇒ Δ,Δ′

where the upper cut is of smaller derivation height and the lower on a smaller
cut formula (the reason why a : p is shorter than s : p is that we can define
the weight of a labelled formula such that the weight of a : p is smaller that
the weight of s : p where ε �= s �∈ A), Ctr∗ denotes repreated applications of
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contraction rules, and the leftmost premiss is obtained by the substitution (b/a)
from sRa, Γ ⇒ Δ, a : p.

If s ∈ A, applying substitution to the upper sequent of left premiss, we have
sRs, Γ ⇒ Δ, s : p. Cutting with Γ ′′, s : p, sRb ⇒ Δ′, we have sRs, sRb, Γ, Γ ′′ ⇒
Δ,Δ′. By (LE), we have sRb, Γ, Γ ′′ ⇒ Δ,Δ′.

If s = ε, the derivation is transformed into

Γ ⇒ Δ, ε : p b : p, ε : p, εRb, Γ ′′ ⇒ Δ′
(Cut)

b : p, εRb, Γ, Γ ′′ ⇒ Δ,Δ′
(⊥3)

εRb, Γ, Γ ′′ ⇒ Δ,Δ′

where the cut is of smaller derivation height.
(2.3.3) s : α is s : α → β. Let the left premiss of cut end with

sRx1, x1 : α, Γ ⇒ Δ,x1 : β
(R→)

Γ ⇒ Δ, s : α → β

and let the right premiss of cut end with

sRx2, s : α → β, Γ ′′ ⇒ Δ′, x2 : α x2 : β, sRx2, s : α → β, Γ ′′ ⇒ Δ′
(L→)

sRx2, s : α → β, Γ ′′ ⇒ Δ′

and let the conclusion of cut be sRx2, Γ, Γ ′′ ⇒ Δ,Δ′. Suppose the premisses
from left to right are of height m, n, k, respectively. The (Cut) above is of
cut-height m + max(n + k) + 2. The transformed derivation contains four cuts

Γ ⇒ Δ, s : α → β sRx2, s : α → β, Γ ′′ ⇒ Δ′, x2 : α
(Cut)

sRx2, Γ, Γ ′′ ⇒ Δ,Δ′, x2 : α

Γ ⇒ Δ, s : α → β x2 : β, sRx2, s : α → β, Γ ′′ ⇒ Δ′
(Cut)

sRx2, x2 : β, Γ, Γ ′′ ⇒ Δ,Δ′

sRx2, Γ, Γ ′′ ⇒ Δ,Δ′, x2 : α sRx2, x2 : α, Γ ⇒ Δ,x2 : β
(Cut)

sRx2, sRx2, Γ, Γ, Γ ′′ ⇒ Δ,Δ,Δ′, x2 : β

sRx2, sRx2, Γ, Γ, Γ ′′ ⇒ Δ,Δ,Δ′, x2 : β sRx2, x2 : β, Γ, Γ ′′ ⇒ Δ,Δ′
(Cut)

sRx2, sRx2, sRx2, Γ, Γ, Γ, Γ ′′, Γ ′′ ⇒ Δ,Δ,Δ,Δ′,Δ′

where sRx2, x2 : α, Γ ⇒ Δ,x2 : β is obtained by the substitution (x2/x1) from
sRx1, x1 : α, Γ ⇒ Δ,x1 : β. The first two cuts are of less cut height. Others are
on shorter formulas. Then we apply (Ctr) to obtain sRx2, Γ, Γ ′′ ⇒ Δ,Δ′. �
Corollary 1. The following rule is admissible in GInqL:

⇒ s : α ⇒ s : α → β

⇒ s : β

Proof. Assume ⇒ s : α and ⇒ s : α → β. By (sub), ⇒ t : α. By the invertibility
of (R→), from ⇒ s : α → β, we have sRt, t : α ⇒ t : β. By (cut), sRt ⇒ t : β.
By (sub), sRs ⇒ s : β. By (LE), one gets ⇒ s : β. �
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5 Soundness and Completeness

In this section, we shall prove the completeness of GInqL with respect to the
Hilbert-style axiomatic system HInqL. First of all, we need to interpret labelled
formulae and sequents in the state space ℘℘(P).

Definition 6. A interpretation I is a surjective function from the set of labels
L to ℘℘(P) satisfying the following conditions:

(1) I(ε) = ∅.
(2) For any variable x ∈ V , I(x) ∈ ℘℘(P).
(3) For any variable a ∈ A, I(a) = {w} for some w ∈ ℘(P).
(4) I((s ∪ t)) = I(s) ∪ I(t).
(5) I((s ∩ t)) = I(s) ∩ I(t).

Given an interpretation I, we say that a labelled formula s : α is true under
I, notation I |= s : α, if I(s) |= α. A relational atom sRt is true under I, notation
I |= sRt, if I(s) ⊇ I(t). A sequent Γ ⇒ Δ is true under I, notation I |= Γ ⇒ Δ,
if the following condition holds: if I |= A for all A in Γ , then there is at least one
term B in Δ such that I |= B. We say that a sequent Γ ⇒ Δ is valid, notation
|= Γ ⇒ Δ if I |= Γ ⇒ Δ for all interpretations I.

Theorem 4. If a sequent Γ ⇒ Δ is derivable in GInqL, then Γ ⇒ Δ is valid.

Proof. By induction on the height of derivation of Γ ⇒ Δ in GInqL. Obviously
all axioms are valid. It suffices to show that every rule preserves validity. Here
we sketch the proof of some cases and the remaining cases are easily shown.

(Rp) Suppose I |= Γ . Suppose that no term in Δ is true under I. To show
that I(s) |= p, we have to show that for every w ∈ I(s), p ∈ w. For a specific w,
since I is surjective, we can pick a singleton variable a which does not occur in
the conclusion such that I(a) = {w}. Then I(a) |= p. Hence I(s) |= p.

(L→) Suppose I |= sRt, s : α → β, Γ . Then I(s) ⊇ I(t) and I(s) |= α → β.
By the validity of the first premiss, at least one term in Δ is satifiable or I
satisfies t : α. If it is the former case, this complete the proof. If it is the latter
case, since I(s) ⊇ I(t) and I(s) |= α → β, we have I(t) |= β. Then we can
conclude that at least one term in Δ is true.

(R→) Suppose that I |= Γ and no term in Δ is true under I. To show that
I(s) |= α → β, we have to show that for any t′ ⊆ I(s) and t′ |= α, t′ |= β. For
a specific t′, since I is surjective, we can pick a label x which does not occur in
Γ , Δ and s : α → β such that I(x) = t′. Then I(x) |= β, i.e., t′ |= β. Since t′ is
arbitrary, I(s) |= α → β.

(R∪) Suppose I |= sRu, sRv, Γ . Then we have I(s) ⊇ I(u) and I(s) ⊇ I(v).
It follows that I(s) ⊇ (I(u)∪ I(v)), i.e., I(s) ⊇ (I(u∪ v)). By the validity of the
premiss, we have the desired result.

(R1) Suppose that I |= Γ and no term in Δ is true under I. Then I |=
εR(s ∪ t). Suppose not, by the validity of left premiss, I satisfies εRs. By the
validity of right premiss, I |= εRt. Then ∅ ⊇ I(s) and ∅ ⊇ I(t). It follows that
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∅ ⊇ (I(s) ∪ I(t)). Then ∅ ⊇ I(s ∪ t). Hence, I satisfies εR(s ∪ t). Contradiction.
Hence, I satisfies εR(s ∪ t).

(R2) Suppose that I |= (t1 ∪ t2)Rt, Γ and no term in Δ is true under I.
By the validity of the premiss, I satisfies εR((t ∩ t1) ∪ (t ∩ t2)) or εRt. Since
I(t1 ∪ t2) ⊇ I(t), I((t ∩ t1) ∪ (t ∩ t2)) = I(t). Hence I |= εRt. �
Lemma 4. Suppose Γ is the set of labelled formulas with the same label x and
Γ ′ = {β | x : β ∈ Γ}. If Γ ⇒ x : α is valid, then Γ ′ |= α.

Proof. Assume that Γ ⇒ x : α is valid. Then for any interpretation I, if I(x) |=
Γ , then I(x) |= α. If follows that x can range over ℘℘(P). Hence Γ ′ |= α. �
Theorem 5. Suppose Γ is the set of labelled formulas with the same label x
and Γ ′ = {β | x : β ∈ Γ}. For every formula α, Γ ′ �HInqL α iff Γ ⇒ x : α is
derivable in GInqL.

Proof. Assume that Γ ⇒ x : α is derivable in GInqL. By the soundness of
GInqL, Γ ⇒ x : α is valid. By Lemma 4, Γ ′ |= α. By the completeness of HInqL,
Γ ′ �HInqL α. Conversely, assume Γ ′ �HInqL α. By Proposition 2 and Corollary 1,
Γ ⇒ x : α is derivable in GInqL. �

6 Concluding Remarks

The labelled sequent calculus GInqL for inquisitive logic seems not to be pure in
the sense that the semantics of logical connectives is integrated into the calculus.
The surfacial difference with non-labelled sequent calucli for normal modal logics
is not essential because it is a real proof system consisting of right introduction
rules and left introduction rules for all logical connectives. The meaning of a
logical connective is indicated by its right introduction rule. The calculus GInqL is
a proof system for the complete inquisitive logic InqL, and it is designed according
to the inquisitive semantics.
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Abstract. Richard Pettigrew [13,14] defends the following theses: (1)
epistemic disutility can be measured with strictly proper scoring rules
(like the Brier score) and (2) at the beginning of their credal lives,
rational agents ought to minimize their worst-case epistemic disutility
(Minimax). This leads to a Principle of Indifference for ignorant agents.
However, Pettigrew offers no argument in favour of Minimax, suggesting
that the epistemic conservatism underlying it is a “normative bedrock.”
Is there a way to test Minimax? In this paper, we argue that, since
Pettigrew’s Minimax is impermissive, an argument against credence per-
missiveness constitutes an argument in favour of Minimax, and that argu-
ments for credence permissiveness are arguments against Minimax.

Keywords: Rationality · Minimax · Uniqueness · Permissiveness · Scor-
ing rule · Objective bayesianism

1 Introduction

Meet Pria, a perfectly rational ignorant agent.1 Pria wants some coins to gamble
with her friends. She visits four coin factories, where she is told the following:

1. Fair Coin Factory produces unbiased coins. The objective probability that
their coins will land heads is 0.5.

2. Mystery Coin Factory is short on specifics. The objective probability that
their coins will land heads is kept secret.

Now, consider the proposition “when tossed, the coin will land on heads” (H).
For each of the coins produced in these factories, what epistemically rational
credence in H can Pria have? Clearly, if she got a coin from Fair Coin Factory,
Pria is rationally required to assign a credence of 0.5 in H. However, if she got
a coin from Mystery Coin Factory, things get complicated.

Richard Pettigrew [13, Chap. 12–13]; [14] defends the claim that, at the
beginning of their credal lives, rational agents ought to minimize their worst-
case disutility (as measured by strictly proper scoring rules). Call this the Min-
imax rule. If Pettigrew is right, it leads to a Principle of Indifference for prior
credence assignments. Such a principle would state that, if a rational ignorant
agent entertains only P and ∼ P , then his or her credence in P should be equal
1 We borrowed this example from Schoenfield [18, p. 640].
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to his or her credence in ∼ P . Suppose that an agent has no evidence concerning
H’s objective probability. In such a case, an agent minimizes his or her worst-
case disutility by assigning a credence of 0.5 in H and a credence of 0.5 in ∼ H.
Therefore, in a case like Mystery Coin Factory, Pria’s credence in H should be
equal to his or her credence in ∼ H, and this is precisely what the Principle of
Indifference would recommend.2

Is Minimax a genuine rationality requirement? Could Pria follow a different
decision rule and yet be rational? Pettigrew has little to say in favour of the
Minimax rule. According to him, accepting or rejecting Minimax is a matter of
“normative bedrock,” as he indicates in the following:

Minimax makes all but the most risk-averse behaviour irrational; Max-
imax makes all but the most risk-seeking behaviour irrational ... Why
favour Minimax over Maximax? The answer, I think, lies in cognitive con-
servatism ... At this point, it seems to me, we have reached normative
bedrock: one cannot argue for cognitive conservatism from more basic
principles. [14, p. 45–46]

We think that Pettigrew is partly right: a proof of the Minimax rule cannot
be offered. However, such a definitive answer is unsatisfactory to us. Moreover,
there is an indirect way to defend Minimax, namely by rejecting competing
decision rules. In this paper, we argue that Minimax is the only impermissive
decision rule for ignorant agents. Conversely, if credence permissiveness is true,
then Pettigrew’s account of epistemic norms is compromised, since Minimax is
the only impermissive decision rule for ignorant agents. This means that there is
a test for Minimax: in defending credence uniqueness, one argues for the rejection
of all decision rules for ignorant agents except Minimax.

In addition to providing an evaluation of the Minimax rule as a rationality
requirement, our paper aims at showing that maximal risk-aversion under igno-
rance and the denial of permissiveness go hand in hand. Moreover, our results
could be relevant in other contexts. For example, the argument of this paper
could provide grounds for constraints on priors probabilities assigned to hypothe-
ses in science, machine learning or rational reasoning in economics. After all,
whether we are concerned with doxastic states, scientific hypotheses or members
of a partition in a database, the problem is essentially the same: we want to
determine the rational constraints on the initial probabilities assigned to propo-
sitions.

In Sect. 2, we introduce strictly proper scoring rules, the Minimax rule and
credence permissiveness. In Sect. 3, we argue that Minimax is the only impermis-
sive decision rule for ignorant agents. In Sect. 4, we reply to various objections.

2 In such a case Pria is facing a situation akin to the one an agent faces in the famous
Ellsberg paradox. In our framework, however, there is no need to make a distinction
between risk and uncertainty, since in all cases, Pria is maximally ignorant. Indeed,
since she has no prior information, she is always dealing with uncertainty. Minimax
does not in fact solve the Ellsberg paradox: it simply avoids it when it is used by a
maximally ignorant agent.



Testing Minimax for Rational Ignorant Agents 543

2 Scoring Rules, Minimax and Credence Permissiveness

In this section, we introduce Pettigrew’s account using strictly proper scoring
rules, the Minimax rule and credence permissiveness.3 A scoring rule is a func-
tion measuring the inaccuracy of a prediction. The more accurate an agent’s
prediction is, the better his or her score is. Some scoring rules have particu-
lar properties. For example, strictly proper scoring rules are uniquely optimized
when agents report objective (or true) probabilities. Specifically, only one cre-
dence assignment optimizes the expected score of a strictly proper scoring rule.
A well-known strictly proper scoring rule is the Brier score, a quadratic scoring
rule.4 When an agent assigns a credence X in P , the Brier score is measured by
the following:

1. If P is true, then the agent’s score is (1 − X)2.
2. If P is false, then the agent’s score is (0 − X)2.

The lower an agent’s total score is, the more accurate his or her credence assign-
ments are.

Here is an example of how the Brier score works. Suppose that Pria, our
perfectly rational ignorant agent, wonders what her credence in P should be.
She has evidence that P ’s objective probability is 0.6. She assigns a credence
X in P . If P happens to be true, then her Brier score will be (1 − X)2. If P
happens to be false, then her Brier score will be (0 −X)2. What is her expected
Brier score?5 Since Pria has evidence that P ’s objective probability is 0.6, her
expected score is (0.6 · (1 −X)2) + (0.4 ·X2). So if she assigned a credence in P
of 0.8, her expected score would be (0.6 · 0.22) + (0.4 · 0.82) = 0.28.

Since the Brier score is a strictly proper scoring rule, Pria will optimize her
expected score by satisfying the following: X must be equal to 0.6. In other
words, Pria will optimize her expected score by assigning a credence in P that
is equal to P ’s objective probability (relative to her evidence).

Pettigrew [13, Chap. 12–13], [13] also defends the claim that, at the beginning
of their credal lives, rational agents ought to minimize their worst-case disutility.
This is the Minimax rule. Pettigrew argues that, since epistemic disutility is
measured by strictly proper scoring rules, these requirements lead to a Principle
of Indifference for ignorant agents. According to such a principle, if a rational
ignorant agent entertains only P and ∼ P , then his or her credence in P should
be equal to his or her credence in ∼ P .

3 Readers interested in the formal aspects of strictly proper scoring rules and the
Principle of Indifference may consult [13–15], and also [19] for a discussion on the
relation between the Principle of Indifference and inductive inference.

4 See [3].
5 The expected result is sometimes called the weighted mean result. For example,

suppose that, in a fair lottery, 5 participants each have 1 chance in 5 to win a single
prize of $50. In that lottery, 4 participants won’t win a prize, and 1 participant will
win $50. Since (40 + 150)/5 = 10, the weighted mean value of this lottery is $10.
This means that $10 is the expected prize to each participant.
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In the next sections, we will argue that Minimax is the only impermissive
decision rule for ignorant agents. In other words, we will soon argue that there
is a strong connection between Minimax and credence uniqueness.6 Here is how
White defines Uniqueness:

1. Epistemic uniqueness: “If an agent whose total evidence is E is fully rational
in taking doxastic attitude D to P, then necessarily, any subject with total
evidence E who takes a different attitude to P is less than fully rational” [21,
p. 312].

Since, in this paper, we are concerned with rational credences, we will only
address the following types of Uniqueness and permissiveness:

1. Credence uniqueness: relative to an agent’s total evidence E, there is a unique
rational credence assignment function towards any proposition P ;

2. Permission to have incompatible epistemic standards: relative to a body of
evidence, it is possible for a rational agent to choose between incompatible
rational standards governing credence assignments, such as prior functions;

3. Permission within some epistemic standards: relative to a body of evidence
and some rational standards, it is possible for a rational agent to assign
incompatible credences towards a proposition P .

Uniqueness is controversial. Kelly in [8, pp. 175–76]; [9, pp. 120–22]; [10]
thinks that Uniqueness is implausible since it does not admit of any exceptions.
Following [1], he acknowledges that two rational agents with common prior prob-
abilities who update their beliefs by conditionalization may never come to hold
incompatible credences. What Kelly rejects, however, is that there is a unique set
of rational prior probabilities relative to a body of evidence. Another argument
against credence uniqueness comes from [17], who thinks that distinct rational
agents are entitled to hold incompatible epistemic standards, such as distinct pri-
ors or conditional probability functions. According to her, “ two people with the
same evidence reasonably have different opinions about whether P , it is because
these people have each adopted a different set of reasonable epistemic standards”
[17]. If she is right, the Minimax rule is merely permitted, not required.7

Even if there are intuitive reasons to defend permissiveness, there are some
serious objections against such a view. A plausible argument against credence
permissiveness comes from White [20]. We normally think of rational agents as
holding prior updating functions and responding to new evidence in accordance
with these functions. Responding to evidence is a one-way process: once a ratio-
nal agent gathers new evidence, that rational agent updates his or her credences
accordingly. However, according to White, credence permissiveness implies that,
6 For various recent arguments against credence uniqueness, one may consult [2,9,10,

12,15,16]. For various recent arguments in favour of credence uniqueness, one may
consult [5,6,20,21].

7 Specifically, while every agent could be bound to a specific impermissive scoring rule
and a specific impermissive decision rule, different agents could be bound to distinct
incompatible scoring rules or distinct incompatible decision rules.
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relative to a body of evidence, incompatible prior updating functions are ratio-
nally permitted. Therefore, it would mean that, even when gathering new evi-
dence in favour of P , a rational agent might not have to change his or her
credence in P . Instead, that agent could simply change his or her prior updating
function. That is incompatible with the claim that rational agents are responsive
to new evidence (by updating their credences). White explains his argument in
the following:

Suppose that you and I share our total evidence E. My subjective prob-
ability for P is x, and yours is lower at y. We each now obtain additional
evidence E’, which supports P. My confidence in P rises to x’ and yours
to y’, which happens to be equal to the x that I held prior to obtaining
E’. We have each updated our convictions appropriately in response to
the new evidence. But now let’s suppose that we were each fully rational
in holding our different degrees of belief x and y given just evidence E ...
Why then shouldn’t I just keep my confidence in P at x, if it suits me?
[20, pp. 454–55]

3 A Test for Minimax

3.1 Minimax as the only Impermissive Decision Rule for Ignorant
Agents

We will now argue that Minimax is the only risk-based impermissive decision
rule for ignorant agents. By risk-based decision rules, we simply mean decision
rules that are primarily based on risk considerations. Before offering a formal
proof of that connection, we will offer an informal explanation of why this is the
case.

First, it is important to mention that we are interested in decidable and risk-
based decision rules. We are interested in decision rules for which there exists
a known effective method based on risk factors for determining which decisions
are warranted. For example, suppose that Pria is in front of two glasses. One
of them contains petrol, and one of them contains gin. She is ignorant of which
glass contains gin. Suppose that Pria is subject to the following rule: she must
choose the glass containing gin. Surely, that rule would be impermissive, since
there is only one glass containing gin. But since Pria is ignorant, she cannot
follow such a rule. From her perspective, it is equally risky to drink from either
glass. This means that there is no effective risk-based method available to her
for determining which glass to choose.

Now, suppose that there is an impermissive and decidable decision rule A
for ignorant agents such that A is not Minimax. To make things simpler, we
will focus on the folllowing carving of two mutually exclusive and exhaustive
possibilities:
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1. Two-propositions carving : if the set of propositions contains only “the coin
will land on heads” (H) and “the coin will land on tails” (T ), then Pria should
assign a credence of X and (1 − X) in each proposition.8

Minimax would recommend assigning a credence of 0.5 in each of the propo-
sitions. Since A is different from Minimax, X must be different from 0.5. Now,
suppose that A is the rule assigning a credence of 0.6 in one proposition and 0.4
in the other. Surely, A is impermissive, since there is a unique credence assign-
ment towards each proposition. Unfortunately, Pria is ignorant, which makes it
difficult for her to apply the rule correctly. Pria could assign a credence of 0.6
in H, but she could also assign a credence of 0.6 in T. Surely, she knows that, if
she assigns a credence of 0.6 in H, she has to assign a credence of 0.4 in T, since
H and T form the mutually exclusive and exhaustive carving of logical possibil-
ities. But how is she supposed to decide between assigning a credence of 0.6 in
H or assigning a credence of 0.6 in T? This situation is similar in fashion to the
situation where Pria ought to choose between the gin and the petrol glasses. As
with the glasses, there is no way to decide how the rule should be applied.

Besides, if she is permitted to assign a credence of 0.6 in one of these proposi-
tions while having no information at all concerning H and T, there is no difference
for her in terms of risk between assigning a higher credence in H and assign-
ing a higher credence in T. In such a context, a risk-based decision rule should
recommend assigning a credence of 0.6 in either proposition, since no risk-based
distinction can be made between H and T.

3.2 A Formal Proof in Favour of that Connection

We will now argue that, necessarily, if A is an impermissive, risk-based, decid-
able decision rule for an ignorant agent entertaining a carving of mutually exclu-
sive and exhaustive logical possibilities (L1, L2, ..., Ln) and a set of credences
(1/m1, 1/m2, ..., 1/mn), then A is Minimax.

Definitions and Assumptions
(i) Decidability: a situation is decidable when, relative to a relation between

a set of inputs and a set of outputs, there exists a known effective method for
determining which output is associated with an input.9

(ii) Ignorance*: an agent is ignorant* when, except for carvings of logical
possibilities and rational risk factors, he or she has no background knowledge
about the world. His or her body of evidence is maximally uninformative.

8 What we here call a “carving” is sometimes called a partition elsewhere. The reason
for this terminological choice is that, in the literature from which our paper draws,
“carving” is a much more popular term.

9 Decidability should be understood in its most basic sense: given an input (eviden-
tial carving), there is always an effective method for returning an output (credence
assignment).
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(iii) Risk Factor: Suppose that (Y1, Y2, ..., Yn) are some possible truth values
of propositions that are part of the carving of mutually exclusive and exhaus-
tive logical possibilities (L1, L2, ..., Ln). A risk factor is an interval [Bn,Wn]
such that, relative to possibilities (L1, L2, ..., Ln) and credence assignments
(1/m1, 1/m2, ..., 1/mn), Bn is the best-case sum of (Y1 − (1/m1))2 + (Y2 −
(1/m2))2, ...,+(Yn−(1/mn))2 and Wn is the worst-case sum of (Y1−(1/m1))2+
(Y2 − (1/m2))2, ...,+(Yn −(1/mn))2.

(iv) Minimax: Minimax is a decidable and impermissive decision rule such
that, when entertaining the carving of mutually exclusive and exhaustive logical
possibilities (L1, L2, ..., Ln), agents assign credences (1/m1, 1/m2, ..., 1/mn) such
that the worst-case sum of (Y1 − (1/m1))2 +(Y2 − (1/m2))2, ...,+(Yn − (1/mn))2

is minimized. This also means that Minimax has a risk factor of [Wn,Wn].

(v) Principle of Indifference: a decision rule such that, when entertaining a
carving of mutually exclusive and exhaustive logical possibilities (L1, L2, ..., Ln),
an ignorant* agent assigns the credences (1/n, 1/n, ..., 1/n).

(vi) Minimax implies the Principle of Indifference: as established in
Pettigrew [13,14], Minimax leads to the Principle of Indifference. So when igno-
rant* agents assign credences (1/m1, 1/m2, ..., 1/mn), Minimax is satisfied if and
only if 1/m1 = 1/n, 1/m2 = 1/n, ..., 1/mn = 1/n.

(vii) Risk-based decision rule: a risk-based decision rule relies on a risk factor.
For example, Minimax is based on a risk factor of [Wn,Wn].

(viii) Permissive decision rule: a decision rule is permissive if and only if
distinct incompatible credence assignments satisfy the rule. For example, if A
permits (L1, L2) to be in relation with credence assignments (1/m1, 1/m2) and
(1/m2, 1/m1) while 1/m2 �= 1/m1, then A is permissive.

Theorem
Necessarily, if A is an impermissive, risk-based, decidable decision rule for

an ignorant* agent entertaining a carving of mutually exclusive and exhaustive
logical possibilities (L1, L2, ..., Ln) and a set of credences (1/m1, 1/m2, ..., 1/mn),
then A is Minimax.

Proof
(1) Assume for reductio: A is not Minimax and A is a risk-based, decidable

and impermissive decision rule for an ignorant* agent entertaining a carving
of mutually exclusive and exhaustive logical possibilities (L1, L2, ..., Ln) and a
unique set of credences (1/m1, 1/m2, ..., 1/mn).

(2) Given (vi), (vii) and (1), A is not Minimax, which means that,
relative to the carving (L1, L2, ..., Ln) in relation with the credences
(1/m1, 1/m2, ..., 1/mn), there is the smallest credence assignment 1/mi and the
greatest credence assignment 1/mj such that 1/mi �= 1/mj .

(3) Given (iii) and (2), since 1/mi �= 1/mj , A is based on a risk factor
[Bn,Wn] where Bn �= Wn.



548 M.-K. Daoust and D. Montminy

(4) Relative to a carving of two possibilities, the carving (L1, L2) in relation
with either (1/mi, 1/mj) or (1/mj , 1/mi), where 1/mi �= 1/mj .

(5) First possibility: (L1, L2) is in relation with (1/mi, 1/mj). Since 1/mi is
the smallest credence assignment and 1/mj the greatest credence assignment,
this means that B2 = (1 − (1/mj))2 + (0 − (1/mi))2 and W2 = (1 − (1/mi))2 +
(0 − (1/mj))2.

(6) Second possibility: (L1, L2) is in relation with (1/mj , 1/mi). Since 1/mi

is the smallest credence assignment and 1/mj the greatest credence assignment,
this means that B2 = (1 − (1/mj))2 + (0 − (1/mi))2 and W2 = (1 − (1/mi))2 +
(0 − (1/mj))2.

(7) So given (4), (5) and (6), B2 = (1 − (1/mj))2 + (0 − (1/mi))2 and W2 =
(1 − (1/mi))2 + (0 − (1/mj))2, regardless of whether (L1, L2) is in relation with
(1/mj , 1/mi) or in relation with (1/mi, 1/mj).

(8) Assume that, for a carving containing n−1 elements, there are at least two
credence assignments satisfying a risk factor [Bn−1, Wn−1] where Bn−1 �= Wn−1.

(9) Relative to a carving of n possibilities, the carving (L1, L2, ..., Lc,
Ld, ..., Ln) can be in relation with either (1/m1, 1/m2, ..., 1/mi, 1/mj , ..., 1/mn)
or (1/m1, 1/m2, ..., 1/mj , 1/mi, ..., 1/mn), where 1/mi �= 1/mj .

(10) We can rearrange the credence assignments (1/m1, 1/m2..., 1/mn) from
the smallest to the greatest credence assignment. This new set can be denoted
by (R1, R2, R3, ..., Rn). Naturally, if 1/mi is the smallest credence assignment
and 1/mj the greatest credence assignment, this means that (R1, R2, R3, ..., Rn)
amounts to (1/mi, R2, R3, ..., 1/mj).

(11) Given (9) and (10), Bn = (0− (1/mi))2 +(0−R2)2 +(0−R3)2...+(1−
(1/mj))2 and Wn = (1 − (1/mj))2 + (0 − R2)2 + (0 − R3)2... + (0 − (1/mi))2,
regardless of whether (Lc, Ld) is in relation with (1/mj , 1/mi) or in relation with
(1/mi, 1/mj).

(12) By induction from (7), (8) and (11), for any carving containing n ≥ 2
elements, there are at least two credence assignments satisfying a risk factor
[Bn,Wn] where Bn �= Wn.

(13) Given (3) and (12), for A and any carving of n possibilities, an agent
cannot determine if (Lc, Ld) is in relation with (1/mj , 1/mi) or in relation with
(1/mi, 1/mj) by making a risk-based distinction.

(14) Following (viii), if A permits (Lc, Ld) to be in relation with (1/mi, 1/mj)
and (1/mj , 1/mi), then A is permissive.

(15) However, given (1), A is impermissive.
(16) So (Lc, Ld) is not in relation with (1/mi, 1/mj) and (1/mj , 1/mi).
(17) Given (13), we cannot explain why (Lc, Ld) is not in relation with

(1/mi, 1/mj) and (1/mj , 1/mi) by making a risk-based distinction.
(18) Given (1) and (15), (Lc, Ld) is in relation with (1/mi, 1/mj) if and only

if it is false that (Lc, Ld) is in relation with (1/mj , 1/mi).
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(19) Following (i), if A is decidable, the agent has an effective method for
determining if (Lc, Ld) is in relation with (1/mi, 1/mj).

(20) Given (ii), if the agent is ignorant*, he or she has no knowledge of an
effective method for determining if (Lc, Ld) is in relation with (1/mi, 1/mj).

(21) Following (1), the agent is ignorant*.
(22) So given (20) and (21), the agent has no effective method for determining

if (Lc, Ld) is in relation with (1/mi, 1/mj).
(23) If A is decidable, the agent has an effective method for determining if

(Lc, Ld) is in relation with (1/mj , 1/mi).
(24) But, once again, given (1), the agent is ignorant*.
(25) So following (23) and (24), the agent also has no effective method for

determining if (Lc, Ld) is in relation with (1/mj , 1/mi).
(26) Given (i), (17), (22) and (25), A is undecidable.
(27) By reductio from (1), (2) and (26), necessarily, if A is not Minimax

and A is a risk-based decidable and impermissive relation between an ignorant*
agent’s carving (L1, L2, ..., Ln) and a set of credences (1/m1, 1/m2, ..., 1/mn),
then there is a counterexample to A.

(28) Given (iv) and (vii), Minimax is a risk-based, decidable and impermissive
decision rule.

(29) Given (27) and (28), necessarily, if A is an impermissive, risk-based and
decidable decision rule between an ignorant* agent’s carving (L1, L2, ..., Ln) and
a set of credences (1/m1, 1/m2, ..., 1/mn), then A is Minimax.

��

4 Objections and Replies

In this section, we answer some objections one could raise against our test.

4.1 Endorsing Versus Conforming to Minimax

Here is a first objection against our model. Minimax is a rule governing an
agent’s attitudes towards epistemic risk at the beginning of his or her credal life.
Pettigrew, for example, argues that “Minimax makes all but the most risk-averse
behaviour irrational; Maximax makes all but the most risk-seeking behaviour
irrational” [14, p. 45]. Even if Uniqueness is true, that does not provide a reason
to think that agents ought to be risk-averse at the beginning of their credal lives.
This would mean only that, regardless of how we interpret an ignorant agent’s
attitude towards epistemic risk, his or her credences will be compatible with
Minimax. Interestingly, some defenders of Uniqueness reject Pettigrew’s defense
of Minimax. For example, Sophie Horowitz thinks that Pettigrew’s defense of
Minimax is puzzling, as she indicates in the following:
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Maximin yields such unreasonable recommendations under normal circum-
stances. A maximally risk-averse believer would never form any opinions
unless she could be sure she was right; a maximally risk-averse actor
would never leave the house. So can we give any further argument for
why superbabies should follow Maximin? ... Why should superbabies use
a special decision rule? Without a significant backstory, it seems arbitrary
to treat an agent’s very first decision differently from others [7, pp. 5–6].10

This is a perfectly good objection. Agents could hold credences in conformity
with Minimax without having a genuine aversion towards epistemic risk. We have
not offered reasons to think that, if Uniqueness is true, agents ought to be risk-
averse at the beginning of their credal lives. There could be another explanation
of why agents ought to have credences in accordance with Minimax, and this
is a limit to our testing procedure. However, Minimax could also be a sound
consequence of credence uniqueness. So while such an objection is relevant to
shed light on what we proved exactly, it does not affect our conclusion that, if
credence permissiveness is false, the only decision rule left for rational ignorant
agents is Minimax.

4.2 Minimax and Strictly Proper Scoring Rules

Here is another objection. We claimed that the Minimax rule is impermissive.
However, one reason why Minimax is impermissive is that an agent’s epistemic
disutility is measured with strictly proper scoring rules. If epistemic disutil-
ity could be measured differently, Minimax could be permissive. At least, since
Pettigrew’s Principle of Indifference would not necessarily hold, satisfying the
Minimax rule would not necessarily lead to impermissive credence assignments.
In such a context, we need a reason to think that epistemic disutility ought to
be measured with strictly proper scoring rules.

According to Pettigrew in [13], five principles offer grounds in favour of
strictly proper scoring rules. Alethic Vindication states that the omniscient cre-
dence function is the ideal function; Perfectionism states that a function’s inac-
curacy is its divergence from the ideal one; Divergence Additivity sums up local
functions; and Divergence Continuity makes them continuous; finally, Decompo-
sition, which is the ceteris paribus version of Calibration, states that a legitimate
inaccuracy measure is determined both by the divergence of a function c from its

10 Horowitz refers to Pettigrew’s book Accuracy and the Laws of Credence [13], where
he uses the expression “Maximin”. We refer to his paper “Accuracy, Risk and the
Principle of Indifference” [14] where he uses the expression “Minimax”. Both terms
refer to the same decision rule.
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well-calibrated counterpart c′ and by the divergence of c′ from the ideal credence
function.11

We can easily see why a rational agent’s epistemic disutility ought to be mea-
sured with strictly proper scoring rules. Improper scoring rules can be optimized
through inconsistent combinations of credences. Surely, consistency is a mini-
mal rationality requirement.12 Therefore, there is an independent justification
in favour of strictly proper scoring rules.

To begin with, consider the following expected scoring rule:

(1) Variable function: Z · ((1 −X)(n+1)) + (1 −Z) · ((0 −X)(n+1)) for n ≥ 0

Z is P ’s objective probability. X is an agent’s credence in P . This function is
a polynomial generalization of the quadratic scoring rule. Indeed, when n equals
1, this expected scoring rule is the expected Brier score, a strictly proper scoring
rule. However, when n is not equal to 1, this expected scoring rule is improper
and recommends either “liberal” or “conservative” credences. If it is possible
to measure an agent’s epistemic disutility through distinct incompatible scoring
rules, some distinct values of n could be rationally permitted, depending on the
epistemic objectives of agents.

Here are two examples of distinct scoring rules. Suppose that n equals 0.5.
We get the following expected scoring rule function:

(2) Liberal scoring rule: Z · ((1 − X)3/2) + (1 − Z) · ((0 − X)3/2)

This scoring rule rewards “liberal” credences. If an agent has evidence that
P ’s objective probability is 0.8, his or her expected score would be optimized

11 See [13], Sect. 4.3] for formal definitions and the importance of calibration. Decom-
position is crucial to Pettigrew’s account of accuracy: it allows him to exclude uncal-
ibrated divergence measures. Roughly, an agent has a calibrated credence X in P if,
relative to a body of evidence, X is the proportion of all propositions of a certain
type (P ) that appear to be true. This is the distinctive feature of strictly proper scor-
ing rules: an agent’s expected score is maximized by assigning calibrated credences
in P . For example, the following improper scoring rule respects Alethic vindica-
tion, Perfectionism, Divergence Additivity and Divergence Continuity but violates
Decomposition:

1. Relative to an agent’s credence X in P , if P is true, then the agent’s score is
(1 − X);

2. Relative to an agent’s credence X in P , if P is false, then the agent’s score is
|0 − X|.
See also [13, pp. 37–40, 48].

12 Some authors have suggested that there are no distinct consistency requirements of
rationality. Specifically, it is possible that process requirements of rationality, which
govern how rational agents form and revise beliefs, secure consistency [11]. What
matters in this paper is that inconsistent agents violated at least one rationality
requirement. See also [4, sect. 9.2] on consistency requirements.
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by assigning a credence of ≈ 0.941 in P . In general, this scoring rule rewards
credences that are closer to 0 or 1.13

Now, by way of contrast, suppose that n equals 2. We get the following
expected scoring rule function:

(3) Conservative scoring rule: Z · ((1 − X)3) + (1 − Z) · ((0 − X)3)

This scoring rule rewards “conservative” credences. If an agent has evidence
that P ’s objective probability is 0.8, his or her expected score would be optimized
by assigning a credence of ≈ 0.666 in P . In general, this scoring rule is optimized
by credences that are closer to 0.5.14

What’s wrong with these scoring rules (either liberal or conservative)? The
problem is that they are sometimes optimized by irrational credence combina-
tions. Indeed, in many situations, these scoring rules would recommend holding
inconsistent combinations of credences. Here is an example of such inconsisten-
cies. Suppose that Pria is about to roll a fair six-sided die. She believes that the
objective probability of rolling any of the 6 numbers is 1. She also believes that
the objective probability of rolling one of the 6 numbers is ≈ 0.17. First, consider
the liberal scoring rule (n = 0.5). If the objective probability of rolling a one is
≈ 0.17, her expected score would be optimized by assigning a credence of ≈ 0.04
in that proposition. The same goes for rolling a two, a three, and so forth. Since
all 6 numbers form the collectively exclusive and exhaustive possibilities, Pria
should believe that the sum of her credences in each of the propositions equals
1. However, she assigned a credence of ≈ 0.04 in each outcome. Since ≈ 0.04 · 6
does not equal 1, that scoring rule would lead to inconsistent credence assign-
ments. The same goes for the conservative scoring rule (n = 2). If the objective
probability of rolling a one is ≈ 0.17, her expected score would be optimized
by assigning a credence of ≈ 0.31 in that proposition. Since all 6 numbers are
the collectively exclusive and exhaustive possibilities, Pria should believe that
the sum of her credences in each of the propositions equals 1. But again, since
≈ 0.31 · 6 does not equal 1, that scoring rule leads to inconsistent credence
assignments.15 Therefore, measuring an agent’s epistemic disutility with strictly
proper scoring rules appears uncontroversial.

13 We simply calculated the derivative of this function to find its optimum. The deriv-
ative of the function f(X) = 0.8 · ((1 −X)3/2) + 0.2 · ((0 −X)3/2) is equal to 0 when
X ≈ 0.941.

14 The derivative of the function f(X) = 0.8 · ((1 − X)3) + 0.2 · ((0 − X)3) is equal to
0 when X ≈ 0.666.

15 While we focused on two instances of improper scoring rules, the same problem would
arise with any improper scoring rule. The fact that a scoring rule is not uniquely
optimized when Z = X explains why an agent could end up with an inconsistent
combination of attitudes. Only improper scoring rules are not uniquely optimized
when Z = X.
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5 Conclusion

This paper started with the following problem: how can we offer an argument
in favour of Pettigrew’s Minimax? We suggested that, since Minimax is the only
impermissive decision rule for rational ignorant agents, analyzing the plausibility
of credence uniqueness is an indirect way to test Minimax. Conversely, if credence
permissiveness is true, then there are rational alternatives to Minimax.
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Abstract. This paper is intended to offer a philosophical analysis of the
propositional intuitionistic logic formulated as NJ. This system has been
connected to Prawitz and Dummett’s proof-theoretic semantics and its
computational counterpart. The problem is, however, there has been no
successful justification of ex falso quodlibet (EFQ): “From the absurdity
‘⊥’, an arbitrary formula follows.” To justify this rule, we propose a
novel intuitionistic natural deduction with what we call quasi-multiple
conclusion. In our framework, EFQ is no longer an inference deriving
everything from ‘⊥’, but rather represents a “jump” inference from the
absurdity to the other possibility.

Keywords: Ex Falso Quodlibet · Intuitionistic logic · Proof-theoretic
semantics · Curry–Howard correspondence · Catch/throw mechanism

1 Introduction

The aim of this paper is to provide a better understanding of the logical system
of the propositional fragment of intuitionistic logic formulated as NJ. As the logic
of constructivism, NJ has been regarded as being best explained by Prawitz and
Dummett’s proof-theoretic semantics and its computational counterpart through
the Curry–Howard correspondence. We agree with this understanding as a basic
direction. At the same time, however, it should also be pointed out that such
understanding has certain inadequacies. The subject matter of the problem is
about ex falso quodlibet (EFQ), which is usually formalized as ‘⊥’-elimination:

⊥ EFQ
A

As various previous studies pointed out, it cannot be said that there is a
good justification for EFQ to dispel the counter-intuitive look of EFQ. A point
of skepticism regarding EFQ is, of course, from its inference: “From the absurdity
(i.e., falsum or contradiction) ‘⊥’, an arbitary formula A follows.” The problem
is, there seems to be no relevance between ‘⊥’ and arbitary A. As a matter of
fact, people who are considered the founders of intuitionism have adopted such
c© Springer-Verlag GmbH Germany 2017
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a position of skepticism, as van Dalen’s article points out [19]. Thus, we justify
EFQ in such a way as to avoid as much as possible the skepticism that has
been presented so far, by using what we call quasi-multiple-conclusion natural
deduction.

As a thread of guidance in such an attempt, we will incorporate two ideas that
come from logical and computational points of view. One is Tennant’s consider-
ation [17] on logical consequence that ‘⊥’ represents deadend in reasoning. The
second is an intuition, which is probably shared by some computer scientists, that
EFQ expresses some sort of exception handling in computation. According to these
views, we abandon the policy of justifying EFQ, appealing to the semantical value
of ‘⊥’. Rather, we characterize EFQ as a structural rule that expresses jump infer-
ence, which is particularly characteristic of the computational interpretation of
classical logic, e.g., as Griffin and Parigot studied [4,11]. In our view, EFQ is not an
inference deriving everything from ‘⊥’, but represents a “jump” from deadend to
another possibility. To formalize this, we think a system with a catch/throw mech-
anism is most appropriate. Regarding such a system, one formulated by Nakano
[8] already exists. However, because the system of Nakano is minimal logic and
does not contain an inference on ‘⊥’, we extend it to intuitionistic. Moreover, the
logic obtained in this manner takes a form that naturally expands the construc-
tive semantics originally associated with NJ, such as proof-theoretic semantics of
Prawitz and Dummett, and the computational explanation, in a way that avoids
the difficulties already pointed out.

2 Backgrounds

2.1 Theory of Meaning and the Computational Interpretation

According to the use theory of meaning, proof-theoretic semantics claims that
the introduction rule in natural deduction, as itself, explains the meaning of a
connective. This is because the introduction rule defines the usage of the connec-
tive, i.e., under what condition we can assert it. For example, the introduction
rule of conjunction stipulates the usage that from proofs of propositions A and
B, one can conclude A ∧ B. From a computational point of view, it means from
constructions a of type A and b of type B, it is possible to construct a pair 〈a, b〉
of type A ∧ B in simply-typed λ-calculus. This correspondence between natural
deduction and typed λ-calculus relies on a general framework, the Curry–Howard
correspondence [15], which has substantially been studied by various computer
scientists. On the other hand, the elimination rule is understood just as the
“consequence” of the introduction rule. To stipulate appropriate condition for
this “consequence” relation between introduction and elimination, Dummett [2]
introduced the notion of “harmony,” that is, the reducibility of proof detours.
This condition, as a global property of the whole system, corresponds to the
normalizability of deductions, which is that of terms in typed λ-calculus.
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Furthermore, the correspondence has now been studied for what was consid-
ered to be a particular concept of computation so far. The catch/throw mech-
anism is one of them, and it is used in some practical programming languages,
such as Common Lisp [16], for exception handling. For instance, given a list
of natural numbers 〈n1, n2, · · · , nm〉, let us consider calculating their product∏m

i=1 ni. Without the mechanism, we have to calculate “all” of the products one
by one from n1, even if there is 0 in the list. However, by using the catch/throw,
we can immediately “throw” 0 as the result at the time that 0 appears in the list;
namely, the mechanism is used for an evacuation from redundant computations.

2.2 Previous Validations for EFQ and Their Inadequacies

There are some validations for EFQ by Dummett [2,3] and Prawitz [13]. However,
it has been pointed out that both of the works are inadequate (cf., Tennant [17],
Hand [5], Onishi [10], Tranchini [18], and Cook and Cogburn [1]). First, Prawitz
seems to think that because there is no proof detour of ‘⊥’ due to the lack of
the introduction rule, ‘⊥’-elimination is vacuously in “harmony.” The problem
here is, as Tennant [17] pointed out, that this justification apparently appeals to
the meta-level ‘⊥’-elimination or something equivalent, and is not so good of an
explanation as to avoid the skepticism of EFQ. Second, Dummett proposed two
kinds of justification: One identifies ‘⊥’ with “0 = 1”, and the other considers
an implicit introduction rule of ‘⊥’ that has all atomic formulae as assumptions:

0 = 1 ⊥E
A

p0 p1 p2 . . . ⊥I⊥
where pi is an atomic formula for all natural numbers i.

In the former, although every proposition indeed can be derived from “0 = 1”
in some mathematical theories, this solution works only when the theory is of
arithmetic; in the latter, the introduction and the elimination is harmonious,
but the meaning of ‘⊥’ relies on a particular language (cf., Onishi [10])1. In a
nutshell, depending on particular theories, both lack a kind of generality that is
expected for logical constants.

3 A Quasi-Multiple-Conclusion Natural Deduction: NQ

The first step toward giving an intuitive meaning to EFQ is to define our natural
deduction NQ, whose main feature is to handle EFQ as a kind of structural infer-
ence rule via what we call quasi-multiple conclusion. Its main part is based on
Nakano’s constructive minimal logic [8,9], but because his setting is for minimal
logic, we extend it with ‘⊥’ to deal with EFQ.

1 There is another formalization by using second-order propositional logic, but it seems
that the formalization has the same problem.
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3.1 Syntax and Semantics

The syntax and semantics of NQ are defined in what follows.

Definition 1 (Formulae). The formulae are inductively defined as follows:

A,B ::= p | ⊥ |A ∨ B |A ∧ B |A ⊃ B

p denotes a propositional variable. ‘⊥’ is the absurdity, which represents a logical
deadend. The connectives of ‘∨’, ‘∧’, and ‘⊃’ are for disjunction, conjunction,
and implication respectively. We define the negation of A, written ¬A, as A ⊃ ⊥.

The formulae of NQ are exactly the same as the propositional fragment of intu-
itionistic natural deduction NJ.

Definition 2 (Judgments). A judgment is a triple, written Γ � A;Δ, where
A is a formula; each of Γ and Δ is a (possibly empty) set of formulae.

A judgment Γ � A;Δ means that: there exists at least one construction (or wit-
ness) of the formulae of {A}∪Δ under the constructions of Γ . It also represents
that A is the current formula of concern within deductions, and Δ is a container
holding the other formulae. Intuitively speaking, in Γ � A;Δ, propositions in
Δ can be understood as other possibilities that are temporary “put aside,” and
‘A’ is a formula that is provisionally asserted. From this point of view, single-
conclusion natural deduction can be regarded as a special case where there is
only one possibility.

For example, let us consider a case where one is looking for one’s wallet. One
knows that the wallet is in the desk or the chest or possibly the fridge. In such a
situation, one may guess that the wallet is in the desk and confirm this. In this
seeking process, “in the desk” corresponds to ‘A’ and the others to ‘Δ’. Note
that although according to Theorem1 below, quasi-multiple-conclusion “A;Δ”
is logically equivalent to a disjunction of all formulae in {A} ∪ Δ, it cannot be
identified with an assertion of the disjunction when they are viewed as speech
acts. This is because in the former case, only A is in the scope of the assertion,
whereas in the latter, the assertion concerns with all disjuncts2.

Definition 3 (Inference rules). The inference rules of NQ are inductively
defined as follows (Note that here, we use ‘∅’ to denote the empty set):

Structural rules

Ax
A � A; ∅

Γ � A;Δ
LW

Γ,B � A;Δ
Γ,B,B � A;Δ

LC
Γ,B � A;Δ

Γ � ⊥;A,Δ
EFQ

Γ � A;Δ
Γ � A;A,Δ

Catch
Γ � A;Δ

Γ � A;Δ
Throw

Γ � B;A,Δ

2 At this point, our system avoids the problem of multiple conclusion pointed out by
Dummett [2]. However, we will not go further into this debate.
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Logical rules

Γ � A; Δ Γ ′ � B; Δ′
∧I

Γ, Γ ′ � A ∧ B; Δ, Δ′
Γ � A ∧ B; Δ ∧E0

Γ � A; Δ

Γ � A ∧ B; Δ ∧E1
Γ � B; Δ

Γ � A ∨ B; Δ Γ ′, A � C; Δ′ Γ ′′, B � C; Δ′′
∨E

Γ, Γ ′, Γ ′′ � C; Δ, Δ′, Δ′′
Γ � A; Δ ∨I0

Γ � A ∨ B; Δ

Γ � B; Δ ∨I1
Γ � A ∨ B; Δ

Γ, A � B; Δ
(∗), ⊃I

Γ � A ⊃ B; Δ

Γ � A ⊃ B; Δ Γ ′ � A; Δ′
⊃E

Γ, Γ ′ � B; Δ, Δ′

The structural rules are described as follows. Ax states that there exists a triv-
ial witness of A. The EFQ’s premise expresses that the current formula ‘⊥’ is
deadend3, so one considers the inference with A as current by taking it from the
container. In this setting, EFQ is no longer an inference that derives everything
from absurdity4. Hence, it avoids the skepticism mentioned earlier.

The Throw and Catch are rules that correspond to the catch/throw mech-
anism of a typed λ-calculus explained later, but logically, they are structural
rules for quasi-multiple conclusion. It may seem that this solution is just passing
the problem of EFQ to Throw, as there appears to be an arbitary formula in
the conclusion. This suspicion is, however, pointless. This is because Throw is a
kind of weakening and intuitively corresponds to a process that, “putting aside”
the proposition currently considered, starts to think about a new possibility. In
this sense, Throw is not an inference that derives an arbitary conclusion from
the premise, which is considered problematic. On the other hand, Catch is a
kind of contraction and corresponds to a process “going back” to the possibility
considered before.

The logical rules are defined in the same manner of Nakano’s formalization [8]
because NQ is just an extension of Nakano’s logic with ‘⊥’, and the difference
does not affect the logical rules. Note that there is a side condition for ⊃ I,
marked (∗), to keep NQ constructive. We omit the precise definition of the
condition because it is the same as Nakano’s and is a little difficult to explain
due to limitations of space. The condition is also needed for the compositionality
of derivations explained in Sect. 4.1.

According to the framework of proof-theoretic semantics, each I-rule success-
fully explains the meaning of the connective. It is also obvious that all structural
rules are valid in terms of the reading of judgments explained above. With regard
to EFQ, there are no constructions of ‘⊥’, because it represents a logical dead-
end. Thus, from the assumption of EFQ, it follows that at least one formula in
{A} ∪ Δ has a construction. We can also provide a rigorous definition of proof-
theoretic validity [12] for NQ instead of the naive notion of “construction” by
expanding the original definition. However, we will not go into detail about this

3 An intuition behind here is Tennant’s remark [17]: “‘⊥’ represents a logical deadend,
and thus there are no further inferences after it appears within deductions.”

4 In this sense, this rule is not well expressed its name, i.e., “from contradiction,
anything” (ex falso quodlibet). In the following, however, we will continue to use
this name for the sake of simplicity.
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because it requires further technical and philosophical consideration, and the
space is limited.

3.2 Examples and Properties of NQ

In this section, we are going to see characteristic examples of NQ and discuss
some desired properties of NQ.

First, whereas there are no structural rules as primitive for the succedent of
judgments, all of the common structural rules follow from the Throw and Catch
rules.

Lemma 1 (Structural rules for the succedent). The following exchange,
weakening, and contraction rules are derivable:

Γ � A;B,Δ
Ex

Γ � B;A,Δ

Γ � A;Δ
W

Γ � A;B,Δ

Γ � A;B,B,Δ
C

Γ � A;B,Δ

Proof. By the following derivations, respectively:

Γ � A;B,Δ
Throw

Γ � B;A,B,Δ
Catch

Γ � B;A,Δ

Γ � A;Δ
Throw

Γ � B;A,Δ
Ex

Γ � A;B,Δ

Γ � A;B,B,Δ
Ex

Γ � B;A,B,Δ
Catch

Γ � B;A,Δ
Ex

Γ � A;B,Δ ��
Second, in our framework, we can use another form of disjunction rules, which

are defined as direct inference rules by using quasi-multiple-conclusion.

Theorem 1 (Another formalization of disjunction). The following I-rule
and E-rule for disjunction are derivable from the original rules.

Γ � A;B,Δ ∨I ′
Γ � A ∨ B;Δ

Γ � A ∨ B;Δ ∨E′
Γ � A;B,Δ

Proof. By the following derivations respectively:
Γ � A;B,Δ ∨I0Γ � A ∨ B;B,Δ

Ex
Γ � B;A ∨ B,Δ ∨I1Γ � A ∨ B;A ∨ B,Δ

Catch
Γ � A ∨ B;Δ

Γ � A ∨ B;Δ Ax
A � A; ∅

Ax
B � B; ∅

Throw
B � A;B ∨E

Γ � A;B,Δ

��
This formalization is intuitively described as follows: for a disjunctive formula
that expresses plural possibilities, the elimination rule enables us to focus on
one possibility (i.e., one disjunct) within reasoning, and the introduction is the
reverse inference rule to combine such possibilities.

Finally, the following is an instructive example that shows us how EFQ works
in inferences.
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Theorem 2 (Disjunctive Syllogism). ¬A,A ∨ B � B; ∅ is derivable.

Proof. By the following derivation:

Ax¬A � ¬A; ∅

Ax
A ∨ B � A ∨ B; ∅ ∨E′

A ∨ B � A;B ⊃E¬A,A ∨ B � ⊥;B
EFQ¬A,A ∨ B � B; ∅

��
Interestingly, the proof reflects an intuition of disjunctive syllogism such that:
“Since we have ¬A and A ∨ B, there is no possibility that A holds. Hence B
holds.” Namely, we first focus on A as the current concerned formula from A∨B
by ∨E′. Noticing that there will be a deadend ‘⊥’ from A and ¬A, we abort
proving ‘⊥’ but assert B by EFQ. This inference demonstrates EFQ’s behavior
in deductions as “jump” from the deadend to another possibility.

In the above, we defined NQ as an appropriate system for justifying intu-
itionistic logic in terms of proof-theoretic semantics. To accomplish this purpose,
however, there are two things left that we have to show:

– Harmony, or normalizability of deductions
– Soundness and completeness with regard to NJ

To show this fact, we will construct a corresponding λ-calculus in the next
section.

4 The Corresponding Typed λ-Calculus: λNQ

In this section, we define λNQ as a tool for investigating the properties of NQ.

Definition 4 (Syntax). A countably infinite set of type variable, written Vty,
is assumed to be given. Similarly, Vind and Vtag are for individual variables and
tag variables. We also assume that all of the Vty, Vind, and Vtag are disjoint.
Then, types and terms are defined by the following grammar:

Types A,B ::= p | ⊥ |A ∨ B |A ∧ B |A ⊃ B

Terms M,N,L ::=x |λx.M |MN | 〈M,N〉 |π0M |π1M | ι0M | ι1M
| case M of [x]N or [y]L |u | throw u M | catch u M

where p, x, and u range over Vty, Vind, and Vtag respectively.

The type constructors of ‘∨’, ‘∧’, and ‘⊃’ are for the cartesian product, disjoint
sum, and function space, respectively. Under the Curry–Howard isomorphism, we
may identify them with connectives: disjunction, conjunction, and implication.
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The term constructors are all standard as defined in the literature5, except
for the terms of u, throw, and catch. Namely, (1) x is a variable; (2) (λx.M)
and (MN) are for function abstraction and application respectively; (3) 〈M,N〉
is for pairing and π0M (resp., π1M) is the left (resp., right) projection; (4) ι0M
(resp., ι1M) is the left (resp., right) injection to make a disjoint sum, and
(case M of [x]N or [y]L) is a pattern maching of the disjoint sum. The rest of
terms, are in the same way as Nakano’s Lc/t, used to deal with the catch/throw
mechanism. Namely, (5) u is a tag variable for labeling a pair of catch and throw
constructs; (6) (throw u M) is an exception operation that throws M as a result
to the corresponding “catch” labeled by the same u; and (7) (catch u M) catches
an exception raised by some “throw,” labeled by u within M .

Definition 5 (Substitution). The substitution of a term N for a variable x
in a term M , written M [x := N ], is defined as usual, that is, it is the term
obtained by replacing all of the free occurrences of x in M with N . The simulta-
neous substitution, written as M [x0 := N0, · · · , xn−1 := Nn−1], is also defined
similarly.

Definition 6 (Reduction). An evaluation context C is, used for “global
reduction,” defined to be a pseudo-term M , which has a hole [] within the term,
which is no different from the usual term except it must have exactly one hole
so as to be substituted with some term. For a context C and a term M , C[M ] is
defined to be the term obtained by replacing the [] in C with M .

Then, the one-step reduction relation for redex, written →, is defined to be
the least relation closed under the following rules:

(λx.M)N → M [x := N ]
π0(〈M,N〉) → M

π1(〈M,N〉) → N

case (ι0M) of [x]N or [y]L → N [x := M ]
case (ι1M) of [x]N or [y]L → L[y := M ]

C[throw u M ] → throw u M if (†) holds
catch u M → M if u �∈ FV(M)

catch u (throw u M) → M if u �∈ FV(M)

where (†) is defined as:

C �≡ [] and C do not capture any free variables occurring in (throw u M).

Then, the one-step reduction relation, written →β, is defined to be the least
relation closed under the following rule:

C[M ] →β C[N ] if M → N

5 We recommend some text (e.g., Sørensen and Urzyczyn’s [15]) for people who are not
familiar with these definitions, although the precise one is determined by Definition 6.



562 Y. Fukuda and R. Igarashi

The multi-step reduction relation, written →+
β , is defined to be the transitive

closure of →β. Namely, if M1 →β · · · →β Mn holds, then so does M1 →+
β Mn.

Example 1. C1 = (M []) and C2 = 〈[], L〉 are both evaluation contexts. Then,
C1[N ] = (MN) and C2[N ] = 〈N,L〉 are terms.

Example 2. The following are reduction examples. Note that the last two show
that the throw operation cannot throw a variable to the outside of its bound
scope.

1. catch u (π0〈x, throw u y〉) →β catch u x →β x
2. catch u (π0〈x, throw u y〉) →β catch u (throw u y) →β y
3. (λx.(throw u x)) �→β throw u x
4. catch u (case M of [x]N or [y](throw u y)) �→β catch u (throw u y)

Then, the type judgment and typing rules are defined in what follows.

Definition 7 (Type judgment). An expression is a pair of a term M and a
type A, written as M : A. We say an expression is individual (resp. tag) if its
term is a individual (resp. tag) variable. Then, a type judgment Γ � M : A;Δ
is defined to be a triple that consists of a set of individual expressions Γ , an
expression M : A, and a set of tag expressions Δ.

Definition 8 (Typing rules). The typing rules are defined as follows:

Structural typing rules

Ax
x : A � x : A;∅

Γ � M : A;Δ
LW

Γ, x : B � M : A;Δ
Γ � M : A;Δ

RW
Γ � M : A;u : B, Δ

Γ, x : B, y : B � M : A;Δ
LC

Γ, z : B � M [x := z, y := z] : A;Δ
Γ � M : ⊥;u : A, Δ

EFQ
Γ � catch u M : A;Δ

Γ � M : A;u : A, Δ
Catch

Γ � catch u M : A;Δ
Γ � M : A;Δ

Throw
Γ � throw u M : B;u : A, Δ

Logical typing rules

Γ � M : A;Δ Γ ′ � N : B;Δ′
∧I

Γ, Γ ′ � 〈M, N〉 : A ∧ B;Δ, Δ′
Γ � M : A ∧ B;Δ ∧E0
Γ � π0M : A;Δ

Γ � M : A ∧ B;Δ ∧E1
Γ � π1M : B;Δ

Γ � M : A;Δ ∨I0
Γ � ι0M : A ∨ B;Δ

Γ � M : B;Δ ∨I1
Γ � ι1M : A ∨ B;Δ

Γ � M : A ∨ B;Δ Γ ′, x : A � N : C;Δ′ Γ ′′, y : B � L : C;Δ′′
∨E

Γ, Γ ′, Γ ′′ � case M of [x]N or[y]L : C;Δ, Δ′, Δ′′

Γ, x : A � M : B;Δ
(∗), ⊃I

Γ � (λx.M) : (A ⊃ B);Δ
Γ � M : A ⊃ B;Δ Γ ′ � N : A;Δ′

⊃E
Γ, Γ ′ � (MN) : B;Δ, Δ′

Among the structural typing rules, Ax and LW are standard, and LC is a natural
rule for formalizing the notion of contraction. The Catch and Throw rules, in the
same manner as Nakano’s Lc/t, reflect their mechanism. The term (throw u M)
in the conclusion of Throw is intended to “jump” to the corresponding “catch”
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(of type B), and thus, the Catch rule requires that M and u have the same type,
so as to catch an exception raised by the throw operation. The rule EFQ also
constructs a “catch” term because the term M will get stuck in the computation,
as ‘⊥’ represents the type of “deadend,” but it may also “jump” as an evacuation
from the deadend, and hence EFQ wraps the term M with catch. We will discuss
this rule further in a later section.

Note that there is, compared with those of NQ, one additional rule RW. It
is logically equivalent to NQ even if we remove RW, but we adopt it to capture
the fine-grained computational structures of λNQ. In other words, as a technical
reason, we need this rule to prove the subject reduction theorem explained later.

All of the logical typing rules are standard w.r.t terms, namely, they are the
same as simply-typed λ-calculus, and are defined in the same manner as Nakano
[8]. We also require the same side condition of ⊃I mentioned in Definition 3.

4.1 Properties of λNQ

In this section, we prove and discuss some properties of λNQ. The main results
of λNQ are proofs of the so-called subject reduction theorem and strong nor-
malization theorem, which are famous criteria for well-definedness of calculi.
Through these theorems and the Curry–Howard correspondence, we will give a
computational meaning to the reasoning of NQ w.r.t. ‘⊥’ and EFQ.

First, as we mentioned already, there exists a correspondence between logical
system NQ and typed λ-calculus λNQ. Namely, the provability of NQ and the
typability of λNQ coincide as the following theorem states.

Theorem 3 (Curry–Howard isomorphism). Γ � A;Δ is derivable in NQ
iff Γ � M : A;Δ is derivable in λNQ for some M .

Proof. Straightforward. ��
To solve the normalizability, we show the following lemma and theorem.

Lemma 2 (Substitution). If Γ, x0 : A, . . . , xn−1 : A � M : B;Δ and Γ ′ � N :
A;Δ′ are derivable, then so is Γ, Γ ′ � M [x0 := N, · · · , xn−1 := N ] : B;Δ,Δ′.

Proof. By induction on Γ, x0 : A, . . . , xn−1 : A � M : B;Δ. ��
Theorem 4 (Subject reduction). If Γ � M : A;Δ is derivable and M →β

M ′, then Γ � M ′ : A;Δ is also derivable.

Proof. Because we formalized the typing rules of λNQ as multiplicative, the proof
is a little bit different from one used in Nakano’s additive system, but together
with Lemma 2, it readily holds in almost the same manner presented in [9]. ��
From a logical viewpoint, both the lemma and the theorem state that the compo-
sitionality of derivations and proof normalization are well-defined in NQ respec-
tively through the Curry–Howard correspondence.
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Now, the strong normalization theorem is proved by embedding from λNQ

into Kameyama and Sato’s L′
c/t [6]6, which is known to be a strong normalizing

calculus and is an extension of Nakano’s Lc/t with ‘⊥’ and the following rule:

Γ � M : ⊥;Δ
Abort

Γ � abort M : A;Δ

At a glance, this Abort rule is a kind of EFQ rule, and, in fact, their L′
c/t

logically corresponds to intuitionistic logic. However, this Abort, a kind of EFQ
rule, causes the same problems as mentioned in Sect. 2.2. Moreover, they did not
give any intuitive meanings of EFQ because it is not in their scope. We use L′

c/t

just as a technical tool for proving properties of λNQ.
Then, we define a translation map from λNQ into L′

c/t, that preserves their
typabilities, and prove a lemma to show that the map also preserves reductions.

Definition 9 (Translation map). The translation map [[−]] is a function
which maps λNQ’s derivations Γ � M : A;Δ to L′

c/t’s derivations [[Γ � M :
A;Δ]]. It is defined to be a one-to-one mapping by induction on Γ � M : A;Δ.

We show only the translation of EFQ, and the other translations are defined
so as to be one-to-one mapping. Note that we use [[M ]] to denote the resulting
term of [[Γ � M : A;Δ]] for some presupposed derivation Γ � M : A;Δ.�

Γ � M : ⊥;u : A,Δ
EFQ

Γ � catch u M : A;Δ

�
def
=

Γ � [[M ]] : ⊥;u : A,Δ
Abort

Γ � abort [[M ]] : A;u : A,Δ
Catch

Γ � catch u (abort [[M ]]) : A;Δ
Then, the well-definedness of [[−]]:

“If Γ � M : A;Δ is derivable in λNQ, then so is [[Γ � M : A;Δ]] in L′
c/t.”

can be proved by straightforward induction.

Lemma 3. If Γ � M : A;Δ is derivable and M →β M ′, then [[M ]] →+
β [[M ′]].

Proof. M →β M ′ is derived from N → N ′ for some terms N,N ′ s.t. M ≡ C[N ]
and M ′ ≡ C[N ′] for some context C. Then, it is enough to show that [[N ]] →+

[[N ′]] by cases on the redex N .

Case 1: N ≡ catch u (throw u L) for some L. If N is derived by EFQ, [[N ]] ≡
catch u (abort (throw u [[L]])) → catch u (throw u [[L]]) → [[L]] ≡ [[N ′]].
Otherwise, N from Catch, and [[N ]] ≡ catch u (throw u [[L]]) → [[L]] ≡ [[N ′]].

Case 2: N is one of the rest. In this case, the redex [[N ]] one-to-one corresponds
to the original N , namely, [[N ]] → [[N ′]] holds because N → N holds. ��
Finally, we can now obtain the following two main results for NQ.

6 L′
c/t was named as Lc/t in their paper, which is the same name as Nakano’s calculus.

In this paper, we use L′
c/t to denote Kameyama and Sato’s calculus.
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Theorem 5 (Soundness and completeness w.r.t. NJ). Γ �NQ A;Δ if and
only if Γ �NJ

∨
({A}∪Δ), where

∨
Σ means the disjunction of all the formulae

in Σ. In particular, Γ �NQ A; ∅ if and only if Γ �NJ A.

Proof. For the only-if part, suppose that Γ �NQ A;Δ. Then, Γ �NQ

∨
({A} ∪

Δ); ∅ follows from ∨E′ and hence [[Γ � ∨
({A}∪Δ); ∅]] holds in Lc/t. Therefore,

Γ �NJ

∨
({A}∪Δ) follows from a fact that Lc/t logically corresponds to NJ [6].

For the if part, we first show that Γ �NJ

∨
({A}∪Δ) implies Γ �NQ

∨
({A}∪

Δ); ∅ by induction on the derivation. The only non-trivial case is EFQ, but it can
be dealt with the following translation from NJ derivations into NQ derivations:

Γ � ⊥ EFQ
Γ � A

=⇒
Γ � ⊥; ∅

W
Γ � ⊥;A

EFQ
Γ � A; ∅

Then, Γ �NQ A;Δ follows from Γ �NQ

∨
({A} ∪ Δ); ∅ by using ∨E′ and Ex. ��

Theorem 6 (Strong normalization). For every typable term M in λNQ,
there is no infinite reduction sequence starting from M .

Proof. Suppose that there exists an infinite reduction sequence starting from M .
Considering the subject reduction property of λNQ and Lemma 3, there will be
an infinite reduction sequence starting from [[M ]], in L′

c/t, but this contradicts
the strong normalization property of L′

c/t. ��
Thanks to these theorems, we can conclude that NQ is logically equivalent

to NJ and successfully represents intuitionistic logic, and NQ satisfies the nor-
malizability of deduction, which is a criterion for “harmony” as mentioned in
Sect. 2.

4.2 ‘⊥’ as a Type of Computational Deadend

As a consequence of the strong normalizability of λNQ, we show that ‘⊥’ actually
represents the type of “computational deadend,” that is, every term of type ‘⊥’
will “get stuck in computation” eventually. Here, we will explain what is intended
by the word “computation” before explaining the intuitive meaning of ‘⊥’.

Firstly, let us imagine an extension of λNQ with natural numbers, the type
Nat for the numbers, and addition operator in order to compute mathematical
expressions. Then, for instance, an expression of type Nat is computed as follows:

(λx.(x + 4))(1 + 2) →β (λx.(x + 4)) 3 →β (3 + 4) →β 7

In this example, we eventually get 7 as the final result of the program. The
important point here is that: when we want to do “computation” of a program,
we intend to obtain some “concrete” result, such as the above 7 in the final analy-
sis, whereas there may be “auxiliary” computations, such as value propagation
through variables, as (λx.(x + 4)) did in the above example.

For the above view of computation, we say that a program will get stuck in
computation when the program does not produce any kind of concrete results,
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and we can see that programs of type ‘⊥’ are indeed in computational deadend,
as we discuss it hereafter.

For the sake of simplicity, we consider the judgments of form “Γ � M :
⊥; ∅” in what follows, but the same story holds in general, i.e., for judgments
of form “Γ � M : ⊥;Δ”. Then, it is easy to see, through the Curry–Howard
correspondence, that there is no derivable judgment of form “∅ � M : ⊥; ∅”
because of the consistency of NJ and Theorem 5. It also means that if a judgment
“Γ � M : ⊥; ∅” is derivable, the term M must be constructed from some
variable in Γ , whose type has ‘⊥’ as a subformula7. Therefore, considering the
strong normalization theorem, M will eventually get stuck in some normal form8

because no further reductions occur in such variables. In particular, unlike in the
case of the variables of type Nat, there is no “concrete” term instantiation to
the variables of type ‘⊥’. This is why we say that every program of type ‘⊥’ will
get stuck and hence is in computational deadend.

To see the above intuition more precisely, let us consider the following:

Example 3. A typing of a kind of disjunctive syllogism is derived as follows. Note
that, here we use MA to express M : A for space convenience.

...
Γ � M¬A; ∅

...
Γ ′ � NA∨B; ∅

Ax
xA � xA; ∅

Ax
yB � yB; ∅

Throw
yB � (throw u y)A;uB

∨E
Γ ′ � (case N of [x]x or [y](throw u y))A;uB

⊃E
Γ, Γ ′ � (M(case N of [x]x or [y](throw u y)))⊥;uB

EFQ
Γ, Γ ′ � (catch u (M(case N of [x]x or [y](throw u y))))B ; ∅

The last term derived by EFQ is a construction that represents the proof of the
disjunctive syllogism. The computation (i.e., proof normalization) of the term
captures how the actual reasoning of the proposition works, and its computation
proceeds depending on the form of N as follows: if N was constructed from ∨I1,
i.e., N ≡ ι1L for some LB , then the last term reduces to L via the throw
operation; however, if N is constructed from ∨I0, i.e., N ≡ ι0L for some LA,
then the last term will reduce to (catch u (ML)), and because the type of (ML)
is ‘⊥’, the whole computation will gets stuck.

In the sequel, if a term of type ‘⊥’ appears within a deduction, then the
reasoning process of the derivation will be described depending on the following
two cases: (i) if the construction actually needs the term of ‘⊥’, then it will get
stuck; (ii) otherwise, that is, if the reasoning does not need such terms, then a
concrete construction will appear eventually.

7 It is equal to say, also through the Curry–Howard correspondence, that: “if Γ � ⊥
holds in NJ, then the proof must depend on some assumption consisted of ‘⊥’.”

8 A term M is said to be in normal form if there is no further reduction from M .
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5 Related Work

Sørensen and Urzyczyn proposed a dialogue semantics (i.e., game semantics) to
model the implicational fragment of intuitionistic logic, in their textbook [15].
The semantics deals with a game with two players, prover and skeptic, to prove
propositions by the players’ dialogue. In their setting, when a player is supposed
to prove ‘⊥’, the player aborts the dialogue’s process but asserts another formula
with knowledge gained during the dialogue. Thus, their formalization seems to
rely on the same intuition as ours regarding ‘⊥’ and EFQ, whereas their model
is not a natural deduction and is not proper based on our motivation.

It is worth noting that there is a justification of classical logic by using
multiple-conclusion natural deduction [14]. It is also well known that Parigot’s
λμ-calculus [11] for classical logic has multiple-conclusion judgments, and λμ
had already involved essentially the same intuition that EFQ as a structural
rule. Because intuitionistic logic is a subsystem of classical logic, we can also
appeal to these results to justify EFQ. These are, however, too strong because
our subject is an analysis of intuitionistic logic. Although we adopted Nakano’s
Lc/t as a basis because our aim is to justify intuitionistic logic, it is another
interesting direction to give a novel justification of classical logic with λμ.

6 Conclusion

We have proposed NQ to justify EFQ by using quasi-multiple-conclusion natural
deduction and “jump inference.” In a nutshell, the problem of the justifications
of EFQ appealing to the meaning of ‘⊥’ is that there is no semantic connection
between ‘⊥’ and arbitrary propositions. In NQ, on the other hand, EFQ is
considered a structural rule that expresses a “jump” inference from the deadend
to another possibility. In terms of this reinterpretation, EFQ is no longer a
counter-intuitive rule that derives every proposition from the meaning of ‘⊥’,
but rather one that retrieves another possibility on the grounds that the curernt
reasoning reaches the deadend.

The above result also indicates that it is indeed minimal logic that is most
fitting for the standard proof-theoretic semantics via single-conclusion natural
deduction and simply-typed λ-calculus. Together with the result in Parigot [11],
we can now obtain a rough yet instructive sketch of the correspondence among
the logics, natural deduction systems, and calculi in Table 1. Although the cor-
respondence between logics and systems is well known in the literature [7,15],
our study supports this view from the philosophical viewpoint of proof-theoretic
semantics.

In spite of the substantial change of the underlying systems, intuitionistic
logic represented as NQ is still constructive in the sense that the disjunctive
property still holds. On the other hand, it can also be said that intuitionic logic,
truly viewed, takes a step toward unconstructivity in that it essentially contains
the function of “jump inference,” which has been considered a characteristic of
classical logic. This fact suggests that its status of the logic of “constructivism”
should be reconsidered.
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Table 1. Logics, systems, and calculi

Logic System Calculus

Classical Multiple λμ

Intuitionistic Quasi-multiple λNQ

Minimal Single λ→
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Abstract. Motivated by semantic inferentialism and logical expressivism
proposed by Robert Brandom, in this paper, I submit a nonmonotonic modal
relevant sequent calculus equipped with special operators, □ and R. The base
level of this calculus consists of two different types of atomic axioms: material
and relevant. The material base contains, along with all the flat atomic sequents
(e.g., C0, p |*0 p), some non-flat, defeasible atomic sequents (e.g., C0, p |*0 q);
whereas the relevant base consists of the local region of such a material base that
is sensitive to relevance. The rules of the calculus uniquely and conservatively
extend these two types of nonmonotonic bases into logically complex
material/relevant consequence relations and incoherence properties, while pre-
serving Containment in the material base and Reflexivity in the relevant base.
The material extension is supra-intuitionistic, whereas the relevant extension is
stronger than a logic slightly weaker than R. The relevant extension also avoids
the fallacies of relevance. Although the extended material consequence relation
is defeasible and insensitive to relevance, it has local regions of indefeasibility
and relevance (the latter of which is marked by the relevant extension). The
newly introduced operators, □ and R, codify these local regions within the same
extended material consequence relation.

Keywords: Nonmonotonicity � Defeasibility � Relevance � Semantic
inferentialism � Logical expressivism

1 Introduction

1.1 Background

There are two features of inference that may motivate us to reject monotonicity: rel-
evance and defeasibility. On one hand, we usually demand, in everyday inferential
practice, that the premise and the consequence be relevant. For example, it sounds
inappropriate to say, “The grass is green; therefore, the snow is white.” Relevance
logicians take this feature of our folk concepts of inference seriously and bring it into
the context of formal inference by imposing a certain constraint on the validity of their
conditionals. Attention to defeasibility, on the other hand, is raised on rather different
grounds. While formal inferences, such as Modus Ponens, are safely assumed to be
indefeasible, once we go beyond that well-domesticated realm of inferences, indefea-
sibility no longer appears to be the norm. For instance, an everyday inference—such as,
“The road is wet; therefore, it rained”—is easily defeated by a new piece of

© Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455 pp. 570–584, 2017.
DOI: 10.1007/978-3-662-55665-8_39

http://orcid.org/0000-0001-6453-3007


information, such as, “A street cleaner has just passed by.” Such fragility is broadly
observed even in inferences in more sophisticated areas, such as law and sciences
(except, perhaps, for microscopic physics). People interested in reasoning in these areas
have sought for a system to deal with defeasible inferences.

These two nonmonotonic features of inference, relevance and defeasibility, have
mainly been investigated separately in the contexts of formal and non-formal infer-
ences. However, there seems to be no reason this must be so. After all, sensitivity to
relevance also appears to be an important feature of non-formal inferences. For
example, it would be strange to say, “The road is wet; and the snow is white; therefore,
it rained.” What I offer in this paper is a system capable of dealing with inferences that
are both defeasible and relevant. Such a system is not only rarely investigated, but also
philosophically motivated. In particular, my system is motivated by two distinctive
philosophical ideas.1

1.2 Philosophical Motivations

Semantic Inferentialism. One such philosophical motivation is semantic inferential-
ism advocated by Robert Brandom [3, 4]. Semantic inferentialism is a radical gener-
alization of inferentialist semantics in logics. According to the latter, more modest
view, the meaning of a logical connective is explained, roughly, by the rules governing
its use in formal inferences. The former view radicalizes this idea by claiming that even
the meaning of a non-logical expression can be explained by the rules governing its
inferential use. If such inferential use is restricted to the use in formal inferences,
however, this view is hopeless. After all, the validity of a formal inference tells us
nothing about the meanings of its non-logical components, as the inference is always
valid, by its formal nature, no matter what those components are. From a wider per-
spective, however, there appear to be those inferences in which non-logical expressions
are involved materially―in that the correctness of those inferences depends on the
involvement of particular non-logical expressions. Remember the inference from “The
road is wet” to “It rained.” Here, “The road” is materially involved, since this inference
turns incorrect if “The road” is replaced by, say, “The water.” According to semantic
inferentialism, the meaning of “The road” is explained by the rule governing its use in
this or many other inferences of the same sort. Those inferences are called material
inferences. As illustrated by the above example, material inferences are typically
defeasible. Thus, semantic inferentialists who care about relevance need a system that
can deal with defeasible, relevant inferences.

Logical Expressivism. The other philosophical background motivating my system is
logical expressivism, proposed, again, by Brandom [5]. For semantic inferentialists,
meanings of both logical and non-logical expressions are explained by their inferential
rules. Then, what distinguishes the logical vocabulary from the non-logical vocabu-
lary? Logical expressivists answer this question by offering, roughly, the following two

1 This is a product of our collaborative work with Robert Brandom’s research group. The technical
results reported here are mine.
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requirements for logicality: (i) the usage of logically complex expressions must be
elaborated from (or determined by) the usage of non-logical expressions in the
underlying material inferential practice; (ii) the inferential role of a piece of logical
vocabulary must be to express (or codify at the level of the object language) various
features of the underlying material inferential practice.

These two requirements of logical expressivism put several constraints on my
logical system. On one hand, (i) demands that an expressivist logical system must
provide a set of rules that uniquely extend the underlying material (therefore, defea-
sible) inferential relation over non-logical (i.e., atomic) sentences into the ones over
logically complex sentences. On the other hand, (ii) imposes two more constraints on
such a system. First, if adding a bit of logical vocabulary changed a feature of the
underlying material inferential practice that it is supposed to express, it would not count
as expressing that feature. Therefore, the logical extension required by (i) must be done
conservatively. Second, (ii) also requires that for a piece of logical vocabulary to play
an expressive role, it must codify some distinctive feature of the underlying material
inferential relation. A typical instance of such expressive vocabulary is the conditional.
As long as the deduction theorem holds (i.e., C |* A ! B iff C, A |* B, where
|* stands for the material implication), the conditional codifies a piece of information
on which sentence follows from which in a given context.

Now, what other features of the underlying material inferential relation are worth
expressing? Indefeasibility and relevance should naturally be included. Although the
material inferential relation is defeasible in general, there is a local region in which
inferences hold indefeasibly. Modus Ponens (i.e., A, A ! B |* B), for instance,
typically belong to that region. In my system, such local indefeasibility is expressed by
a box operator such that C |* □ A iff 8D (D, C |* A).2 Similarly, although semantic
inferentialists do not explicitly require that the underlying material inferential relation
must be relevant, it would be helpful to delineate a local region in which inferences are
sensitive to relevance. After all, that “The road is wet” is relevant to “It rained,” while
“The snow is white” is not also seems to be an important aspect of the usage of these
non-logical expressions involved, and therefore, according to semantic inferentialism,
to their meanings. (It is no wonder that instances of material inferences that semantic
inferentialists like to cite are almost always relevant ones.) In my system, such a local
region of relevant inferences is expressed by a new operator, R, such that C |* RA iff
C |*r A, where |*r stands for the implication sensitive to relevance.

1.3 Prospects

Here is what I offer in the rest of this paper. As semantic inferentialists, we begin with
the underlying material consequence relation and incoherence property over atomic
language, |*0, which I call the material base. Although the material base is defeasible
(and therefore nonmonotonic), we stipulate that it satisfies Containment (i.e., 8C08p
(C0, p |*0 p)) and therefore has a local region of indefeasibility. We also stipulate that
although the entire base is not relevant, it has a local region of relevance, |*r0 � |*0,

2 This indefeasibility box and the mechanism that makes it work are proposed by Hlobil [6].
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which I call the relevant base, and this region satisfies Reflexivity (i.e., 8p (p |*r0 p)).
Now, our sequent calculus uniquely extends such a material/relevant base into the
logically complex material/relevant consequence and incoherence, |*/|*r. Such log-
ical extensions are conservative and preserve Containment in |* and Reflexivity in |*r.
Moreover, |* is supra-intuitionistic, whereas |*r is stronger than a logic slightly
weaker than logic R. |*r also avoids the fallacies of relevance. Finally, our logical
connectives include, among others, !, □, and R. These connectives jointly allow us to
codify, within the object language (more specifically in |*), which sentence is inde-
feasibly and/or relevantly implied by which in a given context.

2 The System

2.1 The Material Base

Our atomic language (L0) consists of a set of atomic sentences (L�
0 ) and ⊥. The

underlying material consequence relation and incoherence over L0, or the material base,
is defined as |*0 � P(L�

0 ) � L0. Since we treat premises as a set of formulas, Per-
mutation and Contraction are stipulated. We also stipulate that the material base obeys
(at least) the following two principles:

Containment: 8C0 � L�
0 8p 2 L�

0 C0; p j � 0pð Þ:
ExFalso FixoQuodlibet ExFFð Þ: 8C0 � L�

0 8p 2 L�
0 ð8D0 � L�

0 ðD0; C0 j � 0 ? )
C0 j � 0 pÞÞ:

ExFF is our restricted version of explosion principle, according to which explosion
occurs only if the premise-set is indefeasibly incoherent (i.e., remains incoherent under
the arbitrary addition of extra premises). Since we consider the material base as
defeasible, however, Weakening is not a part of our stipulations.

2.2 The Relevant Base

There is no guarantee that the material base is sensitive to relevance. That is, when C0 |
*0 p, C0 may contain a premise that is irrelevant to the implication of p. To make the
material base sensitive to relevance, we must rule out such an irrelevant implication
from a redundant premise-set. This means that the underlying consequence and inco-
herence that are sensitive to relevance, or the relevant base (|*r0), must be a subset of
the material base.

Subset: C0 � L�
0 8p 2 L0ðC0 j � r0 p ) C0 j � 0 pÞ:

In the relevant base, any versions of the explosion principle should not be stipu-
lated, as they, by their nature, ignore the relevance of implications. Containment should
also be rejected on the same grounds. Instead of Containment, however, the following
weaker stipulation should be acceptable even in the relevant base:
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Reflexivity: 8p 2 L�
0 ðp j � r0 pÞ:

Now, it is an open question whether we should make any other stipulations in the
relevant base. The answer to this question depends on how we understand the concept
of relevance. In the context of the formal inference, for example, the concept of
relevance is understood to involve the variable sharing principle.3 According to this
principle, A ! B is a theorem of (i.e., formally valid in) a given relevance logic only if
A and B share at least one propositional variable. Is there any similar principle that
captures an aspect of relevance in the context of the non-formal, material inference?
Arguably, the following principle might be a candidate:

NoRedundancy: 8C0 � L�
0 8p 2 L0ðC0; p j � r0 p ) C0 ¼ [Þ:

In any case, it is a new and important task to analyze the concept of relevance in the
material inference. To make room for different conceptions of such material relevance,
in this paper, I do not impose any constraints, except for Subset and Reflexivity.

2.3 Logical Extension

Next, let us extend these material/relevant bases over atomic language (|*0/|*r0) into
logically complex material/relevant consequence relations and incoherence properties
(|*/|*r � P(L�) � L). Our logically complex language (L) is defined as {⊥} [ L�,
where L� has the following syntax:

Syntax of L� : u ::¼ p u ! uj j : u u & uj ju _ u h uj jR u:

Now, we are going to take in the material/relevant bases as axioms of our logical
system and extend them via our logical rules. Let us call this system nonmonotonic
modal relevant sequent calculus (NMMR for short). NMMR must deal with quite a
number of different snake turnstiles (to be exact, the number is four times the cardi-
nality of the power set of the atomic language). To avoid confusion, let me provide a
quick overview of the intended readings and mutual relationship of these turnstiles.
First, NMMR distinguishes four types of consequence relations and incoherence
properties: That is, (i) the extended material consequence and incoherence (|*), (ii) the
flat region of (i) (|*f); (iii) the relevant region of (i) (|*r); and the flat region of
(iii) (|*rf). The flat snake turnstile (|*f) is supposed to mark, within the material
consequence and incoherence (|*), the logical ramifications from the tautological
implications of Containment; while the relevant flat snake turnstile (|*rf) is supposed
to mark, within the relevant material consequence and incoherence (|*r), the logical
ramifications from the tautological implications of Reflexivity.

Furthermore, in NMMR, each of these four snake turnstiles is superscripted by an
indexed upward arrow ("X), where X is a set of sets of atomic formulas. The intended
reading of, say, “C |*"X A” is that for any atomic D02X, D0[C implies A. In other

3 See, for instance, Anderson & Belnap [1]. Also Mares [7].
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words, X is supposed to keep track of sets of atomic sentences that do not jointly defeat
the implication of A from C. If X = {Ø}, “C |*"X A” is abbreviated as “C |* A”;
while if X = P(L0), “C |*"X A” is abbreviated as “C |*" A”. The same reading and
abbreviations apply to all the other types of snake turnstiles with “"X”. The unindexed
upward arrow (") plays a pivotal role in introducing the nonmonotonicity box (□) into
our system.

It is important to keep in mind, however, that the principal consequence relation
and incoherence property in NMMR is the one represented by the plain snake turnstile
without the upward arrow (i.e., |*). After all, all the other turnstiles are simply means
for marking those properties of the principal turnstile in which we are interested, such
as relevance (|*r), logical derivability (|*f and |*rf), and robustness under the aug-
mentation of the premise-set (|*"X). In the end, some pieces of such information are
encoded in the principal turnstile by means of our special operators, such as R and □.

Now, let us turn to the logical extension. First, there are four types of axioms,
which correspond to the four types of consequence and incoherence, as mentioned
above.

Axioms of NMMR
Ax1: If C |*0 p, then C |* p is an axiom.
Ax2: C, p |*f p is an axiom.
Ax3: If C |*r0 p, then C |*r p is an axiom.
Ax4: p |*rf p is an axiom.

Recall that Containment is stipulated in |*0, and Reflexivity and Subset are stip-
ulated in |*r0. Thus, it is obvious that at this stage of the construction, |* � |*f, |*r

� |*rf, and |* � |*r.
Next, let us set down the connective rules that extend these four consequence

relations and incoherence properties over the atomic language into the ones over the
logically complex language as defined above. (Note that since we treat the premise(s)
as a set, Permutation and Contraction are automatically built into our system.)

Connective rules of NMMR

C � r½ �½f�"X B D; C j � r½ �f"Y A
��

C;D; B ! C � ½r�½f�"X =Y½ � A
�� LLC1

C; A � r½ �½f�"X B
��

C � r½ �½f�"X A ! B
�� RC

(where R does not appear in D;C, or A)

C � r½f�"X B
�� D; C � r½ �f"Y A

��
C; D; B ! C � r½ �½f�"X =Y½ � A

�� LLC2

(where R appears in D;C, or AÞ

C � r½ �½f�"X A
��

C;:A � r½ �½f�"X ?�� LN
C; A � r½ �½f�"X?

��
C � r½ �½f�"X:A
�� RN
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C; B � r½ �f"X A
��

C; C&B =B&C½ � � r½ �½f�"X A
�� LL&

C � r½ �½f�"X A
�� C � r½ �½f�"X B

��
C � r½ �½f�"X A&B
�� R&

C; A � r½ �½f�"X C
�� C; B � r½ �½f�"X C

��
C; A _ B � r½ �½f�"X C

�� LV
C � r½ �½f�"X A =B½ ���
C � r½ �½f�"X A _ B
�� RV

C; Aj � r½ �½f�"X B
C;hAj � r½ �½f�"X B

LB
Cj � r½ �½f�" A
Cj � r½ �½f�½"�hA

RB

C; A j � r½ �½f�"X B
C;RA j � r½ �½f�"X B

LR
C j � r½f�"X A

C j � r½ �½f�"X RA
RR

C � ½f�"Aj
C; B½ � � ½f� ½"�Aj pW

C; p1;...;pn � ½f�"X Aj C j � ½f�"Y A
C � ½f�" p1;...;pnf gf g[X[Y Aj PushUpUN

ðwhere R does not appear in AÞ ðwhere R does not appear in A, and p1; . . .; pn 2 L�
0 Þ

C j � ½f�" ?
Cj � ½f�½"� A

ExFF

ðwhere R does not appear in AÞ

These rules are systematically ambiguous with respect to the square-bracketed
elements. First, if the same element is square-bracketed at both top and bottom
sequents, it must be shared by both sequents. Take RC as an example. RC says that for
any of the four types of consequence and incoherence, if C together with A imply B,
then C implies A ! B in that same consequence and incoherence. The same reading
also applies to all the other rules. Second, if an element is square-bracketed only at the
bottom sequent, it is optional at the bottom. For instance, take RR. Since there is no
square-bracket around “r” at the top sequent of RR, the top sequent must be relevant.
However, since “r” at the bottom sequent is square-bracketed, the bottom sequent can
be either relevant or non-relevant. The similar reading goes for LLC1, LLC2, LL&,
RB, pW, and ExFF. Finally, if an element is square-bracketed and prefixed with a
backslash, it can replace the adjoining element. For example, LL& says that from C, B
� ½r�f"X A
�� , both C, C & B � ½r�½f�"X A

�� and C, B & C � ½r�½f�"X A
�� are derivable. LLC1,

LLC2, and RV should be read in the similar manner.
Setting these complications aside, most of the rules are, more or less, familiar from

Gentzen’s LJ. However, there are several rules that may need further explanations.
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First, pW and PushUpUN are supposed to guarantee that |*" marks what it is
supposed to mark, namely, the indefeasibility of implications (for technical details, see
the proof of Lemma 4 below). Then, RB allows us to encode, within the object
language, such indefeasibility of implications by means of □. Note that since “"” of the
bottom sequent of RB is optional, this encoding can also be done in |*, our principal
turnstile.

Second, RR does a similar job with respect to the relevance of implications, which
is supposed to be marked by |*r. RR allows us to encode this by means of our newly
introduced operator, R. Again, since “r” at the bottom sequent of RR is optional, such
encoding can also be done in |*.

Third, it may also be noted that the left rules for the conditional and the conjunction
(i.e., LLC1, LLC2, and LL&) are remarkably weaker than the other left rules, as they
demand that (one of) the top sequent(s) must be flat (i.e., |*f or |*rf). This restriction is
forced by one of our motivating ideas for the entire project, that we are dealing with
consequence relations and incoherence properties that are defeasible. Consider LL&,
for instance. Without the restriction at issue, LL& would allow us to derive p&q |* r
from p |* r. However, q is arbitrary and may be a defeater of the implication of r from
p (e.g., consider the case where p: the match is struck, q: the match is wet, and r: the
match lights). Thus, assuming that the conjunction means what it is supposed to mean
on the left-hand side (i.e., p and q), LL& should not be applied across the board. Then,
under what condition is LL& applied safely? Our answer is that it is when LL& is
applied in logical derivations―namely those derivations that are traced back to the
tautological implications of Containment or Reflexivity, as we are happy to acknowl-
edge that tautological implications and their logical ramifications are indefeasible
(although implications are defeasible across the board). Thus, the restriction above
follows. The same justification, mutatis mutandis, can be applied to LLC1 and LLC2.4

Finally, remember that at the atomic level, it is stipulated that |* � |*f, |*r � |
*rf, and |* � |*r. These inclusion relations between different types of snake turn-
stiles are preserved by our logical rules. In other words, |*f, |*r, and |*rf can be
understood as marking a special region of our main turnstile, |*. Given our rules, this
intuitively makes sense. After all, most of our rules (i.e., RC, LN, RN, R&, LV, RV,
LB, LR) uniformly extend all the four types of turnstiles. For the rules that require the
top sequent(s) of having a special property (i.e., LLC1, LLC2, LL&, RB, RR, pW, and

4 Two more comments are in order for LLC1 and LLC2. First, it may be unnoticeable how LLC2
differs from LLC1. The only formal difference is that the left top sequent of LLC2 must be relevant,
while the corresponding sequent of LLC1 need not. This requirement on LLC2 is crucial for R to
codify what it is supposed to codify (see Proposition 12 below). Second, given that the indexed
upward arrow is supposed to mark sets of non-defeaters of a given implication, one may find the
upward arrow of the bottom sequent of LLC1 and LLC2 (i.e., "X[/Y]) counterintuitive. Upon closer
look, however, there is no substantial harm here. After all, if the bottom sequent is non-relevant, then
it is supposed to hold indefeasibly (remember that the right top sequent must be flat, and therefore is
supposed to hold indefeasibly). If the bottom sequent is relevant, on the other hand, both right and
left top sequents must also be relevant. Then, both indices of those top sequents (i.e., "X and "Y) must
be the empty set, since PushUpUN has no application in relevant sequents. The technical advantage
of the current formulations of LLC1 and LLC2 are substantial. They enable us to prove the
admissibility of restricted versions of Cut in NMMR (see Proposition 7 below).
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ExFF), it is always optional whether to keep that special property at the bottom
sequent. (For a rigorous proof of this point, see Proposition 6 below.)

3 Properties of the System

In this section, we show that NMMR has several desirable properties, as stated in
Sect. 1.3.

3.1 Conservativeness

First, NMMR does not add any atomic relevant consequence or incoherence that does
not hold at the relevant base. That is, NMMR conservatively extends |*r0.

Proposition 1. 8C0 � L�
0 8p 2 L0ðC0j � rp , C0j � r0pÞ:

Proof. The right-to-left direction. Straightforward from Ax3. The left-to-right direc-
tion. Straightforward from the fact that all the connective rules concerning |*r are
complicating. ■

For the Conservativeness proof for the material base, we first need to prove the
following lemma.5

Lemma 1. 8C0 � L�
0 8p 2 L0ðC0j � "Xp ) 8D0 2 X C0; D0j � 0pð ÞÞ:

Proof. By induction on the proof height of the antecedent sequent. The base case is
trivial. In induction step, the antecedent sequent can only come by PushUpUN, pW, or
ExFF. In any of these cases, given the Induction Hypothesis, the consequent sequent
follows. ■

Now, we are in a position to prove that NMMR also conservatively extends |*0.

Proposition 2. 8C0 �L�
0 8p 2 L0ðC0j � p , C0j � 0pÞ:

Proof. The right-to-left direction. Straightforward from Ax1. The left-to-right direc-
tion. Straightforward from Lemma 1. ■

3.2 Preservation of Reflexivity and Containment

On the one hand, NMMR preserves Reflexivity in the relevant base with respect to the
!-free fragment of the extended relevant (flat) consequence and incoherence.

Proposition 3. 8A 2 L� A j � r½f�A
� �

; where no □ appears in A.

Proof. By induction on the complexity of the formula on the right-hand side. ■
On the other hand, NMMR also preserves Containment in the material base with

respect to the R-free fragment of the extended material (or flat) consequence and
incoherence. We first need to prove the following lemma.

5 Recall that it is syntactically stipulated that X � P(L0).
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Lemma 2. 8C�L�8A 2 L�ðC; A � ½f� "½ �AÞ;�� where no R appears in C or A.

Proof. By induction on the complexity of the formula on the right-hand side. ■
Now, we are in a position to prove our target proposition.

Proposition 4. 8C�L�8A 2 L�ðC; A � ½f� "½ �AÞ;�� where no R appears in A.

Proof. Take arbitrary C, and let C’ be the largest R-free subset of C. By Lemma 2, for
any R-free A, C’, A � ½f�" A

�� . By (repeated) applications of pW, C, A � ½f�½"� A
�� ■

3.3 Avoiding Fallacies of Relevance

One may well wonder in what sense the extended “relevant” consequence and inco-
herence (|*r) of NMMR are relevant. Here is one answer: In |*r, the fallacies of
relevance6 are not derivable as a theorem.

Proposition 5. None of the following formulas are a theorem in |*r of NMMR:
(1) (A & : A) ! B; (2) A ! (B ! A); (3) A ! (B ! B); (4) : A ! (A ! B);
(5) (A ! B) _ (B ! C); (6) A ! (B _ : B).

Proof. By counterexamples. Suppose that A = p, B = q, and C = r. Pick up a relevant
base in which (i) No Redundancy holds, (ii) neither p |*r0 q nor q |*r0 r, and
(iii) neither p |*r0 q nor p, q |*r0 ⊥. (1): |*r (p & : p) ! q can only come (by RC)
from p & : p |*r q. But the latter sequent is not derivable by any of our rules. (2): |*r

p ! (q ! p) can only come (by RC) from p, q |*r p. But the latter sequent does not
hold because of (i). (3): |*r p ! (q ! q) can only come (by RC) from p, q |*r q. But
the latter sequent does not hold because of (i). (4): |*r : p ! (p ! q) can only come
(by RC) from p, : p |*r q. But given that q 6¼ ⊥, the latter sequent is not derivable
from any of our rules. (5): |*r (p ! q) _ (q ! r) can come from either p |*r q or q |
*r r. Neither of them holds by (ii). (6): |*r p ! (q _ : q) can come from either p |*r

q or p, q |*r ⊥. Neither of them holds by (iii). ■

3.4 Strength of the System

Inclusion Relations Between Different Snake Turnstiles. It is supposed to be the
case that subscripted snake turnstiles (i.e., |*f, |*r, and |*rf) mark a special region of
corresponding non-subscripted snake turnstiles (i.e., |*, |*, and |*r, respectively).
This is shown to be the case by the following proposition.

Proposition 6. The following inclusion relations hold between � "X�� , � f
"X�� , � r

"X�� ,
and � rf

"X�� :

(1) If C � rf
"X A

�� , then C � r
"X A

�� ;
(2) If C � r½f�"X A

�� , then C � ½f�"X A
�� ;

(3) If C � f
"X A

�� , then C � "X A
�� .

6 See, for instance, Anderson & Belnap [1] and Mares [7].
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Proof. Induction on the proof height of the antecedent sequents. (Note that the
inductive proof of (3) relies on (1) for some special cases (i.e., the cases for LLC2 and
RR) in its induction step.) ■
These inclusion relations (especially, (1) and (3)) enable us to estimate the strength of
|* and |*r on the basis of the strength of |*f and |*rf, which we are going to estimate
below in this section.

Admissibility of (Restricted Versions of) Cut. Remember that NMMR does not have
any version of Cut as its rule. However, it is provable that the following restricted
versions of Cut are admissible in NMMR:

(1)

C j � f
"XM D; M j � f

"YA
C;D j � f

½"�A
fCut

(where R does not appear in C;D;M, or AÞ

(2)

C j � rf
"XM D; M j � rf

"YA
C;D j � rf A

rfCut

ðwhere h does not appear in C;D;M; or AÞ

Proposition 7. Both fCut and rfCut are admissible in NMMR.

Proof. The proposition is equivalent to the conjunction of the following two claims:
(1) Every proof tree of NMMR + fCut such that fCut is applied only at the last step can
be transformed into a proof tree that shares the same top and bottom sequents but has
no fCut application in it; (2) every proof tree of NMMR+rfCut such that rfCut is
applied only at the last step can be transformed into a proof tree that shares the same
top and bottom sequents but has no rfCut application in it. Both (1) and (2) can be
shown by double induction on the rank of the proof tree at issue and the depth of M as
usually defined. ■

Before turning to the estimating job, we need to show one more lemma.

Lemma 3. C j � r½ �½f�"XA ! B ) C; A j � r½ �½f�"XB

Proof. By induction on the proof height of the left-hand side sequent. ■

The Extended Material Consequence and Incoherence. Now, let us estimate how
strong the extended material consequence and incoherence of NMMR are. The fol-
lowing proposition answers this question.

Proposition 8.|*f is as strong as the intuitionistic logic.

Proof. By Proposition 7 and Lemma 3, in the R-free fragment of |*f, Modus Ponens is
admissible (i.e., (|*f A and |*f A ! B) ) |*f B). For anyR-free formula, the following
eight axioms of Hilbert-style axiomatization of the intuitionistic logic are all derivable as
theorems with respect to the same fragment of |*f: (1) (A ! B) ! (A ! (B ! C))
(A ! C)); (2) A ! (B ! A); (3) A ! (A _ B) and B ! (A _ B); (4) (A ! C)
((B ! C) ! ((A _ B) ! C))); (5) B ! (A ! (A _ B)); (6) (A & B) ! A and
(A & B) ! B; (7) (A ! B) ! ((A ! : B) ! : A); (8) : A ! (A ! B). ■
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Since |* � |*f (see (3) of Proposition 6), we conclude that the extended material
consequence and incoherence are supra-intuitionistic.

The Extended Relevant Material Consequence and Incoherence. Similarly, one
may wonder how strong the logic of the extended relevant consequence and inco-
herence of NMMR is. The following proposition provides us with an answer.

Proposition 9. In the □-free fragment of |*rf, nine of eleven axioms of a Hilbert-style
axiomatization of logic R7 are derivable as theorems, and the two inference rules of that
axiomatization are admissible.

Proof. Adjunction is equivalent to R&. By Proposition 7 and Lemma 3, in the □-free
fragment of |*rf, Modus Ponens is admissible (i.e., (|*rf A and |*rf A ! B) ) |*rf

B). Among the following eleven axioms of Hilbert-style axiomatization of logic R, all
but (9) and (11) are derivable as theorems with respect to the same fragment of |*rf:
(1) A ! A; (2) (A ! B) ! ((B ! C) ! (A ! C)); (3) A ! ((A ! B) ! B);
(4) (A ! (A ! B)) ! (A ! B); (5) (A & B) ! A and (A & B) ! B; (6) A !
(A _ B) and B ! (A _ B); (7) ((A ! B) & (A ! C)) ! (A ! (B & C)); (8) (((A
! B) ! C) ! ((A ! C) & (B ! C))) & (((A ! C) & (B ! C)) ! ((A ! B) ! C));
(9) (A & (B _ C)) ! ((A & B) _ (A & C)); (10) (A ! : B) ! (B ! : A);
(11) :: A ! A. ■

Since |*r � |*rf (see (1) of Proposition 6), we conclude that the extended relevant
consequence and incoherence are stronger than a logic that is slightly weaker than logic R.

3.5 The Expressive Power of Logical Connectives

As logical expressivists, we want our logical connectives to express (i.e., codify within
the object language) various features of the material/relevant consequence and inco-
herence. Let us take the conditional as an example. A conditional implied by a given
premise-set is supposed to express that the antecedent implies the consequent in the
context of that premise-set. Similarly, a negation implied by a given premise-set is
supposed to express that the negated formula is incompatible with that premise-set. Such
expressive readings of our connectives are supported by the following proposition:

Proposition 10

(1) C j � r½ �½f�"X A ! B , C; A j � r½ �½f�"X B;

(2) C � r½ �½f�"X
�� :A , C; A � r½ �½f�"X ?;

��

(3) C j � r½ �½f�"X A&B , ðC j � r½ �½f�"X A and C j � r½ �½f�"X BÞ:

7 See Anderson & Belnap [1] and Anderson, Belnap, & Dunn [2].
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Proof. The right-to-left direction: Straightforward from RC, R&, and RN, respectively;
The left-to-right direction: (1) is already shown as Lemma 3. (2) and (3) are similarly
shown by induction on the proof height of the left-hand side sequents. (Note that the
inductive proof of (3) relies on (2) of Proposition 6 for the case for LLC2 in its
induction step). ■

Our box operator (i.e., □) is introduced to express that a boxed formula is inde-
feasibly implied by a given premise-set. This is shown to be the case in two steps. First,
the following lemma guarantees that the unindexed upward arrow (i.e., “"”) indicates
that an implication is indefeasible:

Lemma 4. 8D C;Dj �Að Þ , C j � "A:

Proof. The left-to-right direction. Suppose C, D |* A, for any D. Thus, C, D0 |* A,
for any atomic D0. By repeated applications of PushUpUN, C |*" A. The right-to-left
direction. Suppose C |*" A. Take an arbitrary D. Enumerate D as {B1, …, Bn}. By
repeated applications of pW, C, B1, …, Bn-1 |*

" A. Then, by the last application of
pW, C, B1, …, Bn |* A. Since D is arbitrary, 8D (C, D |* A). ■

Next, via the following sublemma and lemma, the following proposition guarantees
that such indefeasibility of an implication is expressed by our modality box.

Sublemma 1. C j � ½f�"X hA ) C j � ½f�"A:

Proof. By induction on the proof height of the left-hand side sequent. ■

Lemma 5. C j � " A , C j � hA:

Proof. The left-to-right direction. Straightforward from RB. The right-to-left direction.
Straightforward from Sublemma 1. ■

Proposition 11. C j � hA , 8D C;D j � Að Þ:
Proof. Straightforward from Lemmas 4 and 5. ■

Finally, how do we codify, within the object language, the relevance of implica-
tions? Here, our new operator, R, plays a crucial role. Remember that the material
consequence and incoherence that the snake turnstile subscripted with “r” represents
are sensitive to relevance in that the fallacies of relevance do not hold there (see
Proposition 5). To show that such relevant consequences are expressed by the new
operator, we first need to prove the following slightly stronger lemma.

Lemma 6. C j � r½ �½f�"X RA , C j � r½f�"X A:8

Proof. The right-to-left direction. Straightforward from RR. The left-to-right direction.
By induction on the proof height of the left-hand side sequent. ■

Now, our target proposition immediately follows from this lemma.

Proposition 12. C j � RA , C j � r A:

Proof. Straightforward from Lemma 6. ■

8 A note on the intended reading of this biconditional: It is optional whether the left-hand sequent is
relevant, while the right-hand sequent must be relevant.
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Given the expressive power of the logical vocabulary at hand, we are now in a
position to express, within the object language, various interesting features of the
material consequence relation and incoherence property. For instance, that A inde-
feasibly and relevantly implies B in the context of C is expressed by “ □ (A ! B) &
R (A ! B)” implied by C.

4 Conclusion

Motivated by semantic inferentialism and logical expressivism, in this paper, I propose
a nonmonotonic sequent calculus equipped with special logical operators, □ and
R. The base level of this calculus includes two different types of atomic axioms:
material and relevant. The material base comprises defeasible atomic sequents, as well
as indefeasible (including formally valid) ones, whereas the relevant base consists of
the local region of such a material base that is sensitive to relevance. The rules of the
calculus uniquely and conservatively extend these two sorts of nonmonotonic bases
into logically complex consequence relations and incoherence properties, while pre-
serving Containment in the material base and Reflexivity in the relevant base. The
material extension is supra-intuitionistic, whereas the relevant extension is stronger
than a logic slightly weaker than R. The relevant extension also avoids the fallacies of
relevance. Although the extended material consequence relation, as a whole, is
defeasible and insensitive to relevance, it has local regions of indefeasibility and rel-
evance (the latter of which is marked by the relevant extension). The newly introduced
operators, □ and R, codify these local regions within the same extended material
consequence relation.

Given these properties, it would be fair to conclude that this system can be a
common platform for people interested in different sorts of inferences, such as
defeasible/indefeasible (including formal) inferences and relevant/non-relevant infer-
ences. The system can not only deal with these (combinatorially four) different types of
inferences at the same time, but can also allow us to “talk about”, within its object
language and the same extended material consequence relation, those different
inferences.
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Abstract. The greater fools explanation of financial bubbles says that
traders are willing to pay more for an asset than they deem it worth,
because they anticipate they might be able to sell it to someone else
for an even higher price. As agents’ beliefs about other agents’ beliefs
are at the heart of the greater fools theory, this paper comes to formal
terms with the theory by translating the phenomenon into the language
and models of dynamic epistemic logic. By presenting a formalization of
greater fools reasoning, structural insights are obtained pertaining to the
structure of its higher-order content and the role of common knowledge.

1 Introduction

A financial bubble describes specific scenarios in which asset prices rise way
beyond fundamental value and in which eventually the market crashes. Such
scenarios are unwelcome because they make the market unpredictable and uncon-
trollable, and because they create inequality at the risk of ruining individuals,
firms and even nations. To understand the circumstances under which prices may
deviate from their fundamental value to subsequently prevent the occurence of
bubbles – or at least limit their consequences – financial bubbles have been
extensively studied both theoretically and empirically.1 Nevertheless, there are
contrasting explanations for the occurrence of financial bubbles. Some explain
the sudden rise of prices by irrational or noise traders [10]; others suggest that
traders’ herding behavior lead the price astray from the asset’s fundamental
value [16]; yet others point to traders who are rationally willing to pay more for
an asset than they deem it worth, because they anticipate they might be able
to sell it to someone else for an even higher price, known as the greater fools
explanation for bubbles [1,8,14]. The greater fools theory sounds like a crisp
and clear explanation for a mismatch between price and value, but the variety
of results on the theory shows that it is a surprisingly difficult theory to model
and analyze [5]. This paper aims for a structural epistemic understanding of the
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1 See [7] for an extensive overview of studies of financial bubbles.
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greater fools theory by focussing on micro-economic features as investor informa-
tion and behavior rather than on the macro-economic perspective of regulation
and market conditions.

The following describes a greater fools scenario that will be repeatedly
referred to in this paper. Imagine a market with one orange tree and a boy called
Arthur interested in buying the tree. Based on certain predictions of the tree’s
harvest, Arthur believes ownership of the orange tree is worth 2 euro. Would it
be rational for him to pay 3 euro for the orange tree? Not if he is buying the
orange tree exclusively for the tree’s harvest. However, imagine that instead of
owning the orange tree, Arthur is interested in reselling the orange tree for 4
euro to his friend Barbara, making a profit of 1 euro. The story continues with
Barbara, who agrees that the orange tree is worth 2 euro but is willing to pay 4
euro because she expects to sell the orange tree for 5 euro to her friend Chris.
When the orange tree is traded further based on similar reasoning, the price may
rise far beyond it’s assumed value of 2 euro. In this story, Arthur seems to act
like a fool by paying more for the tree than he deems it worth, but his behavior
is justified by his belief in a greater fool named Barbara, who believes in the
even greater fool Chris, etc.

Although agents’ beliefs about other agents’ beliefs are at the heart of the
greater fools theory, existing studies typically do not formally include higher-
order reasoning. As an epistemic approach is currently lacking from the lit-
erature, epistemic (including doxastic) logic seems like a suitable candidate
framework for obtaining a novel understanding of the theory. On top of the
framework’s language and model representation appropriate for studying higher-
order epistemic structures, dynamic epistemic logics introduce action models to
describe changes due to interaction between agents. This paper comes to for-
mal terms with the greater fools theory by translating the phenomenon into
the language and models of public announcement logic, thereby unfolding the
higher-order content of the theory. By presenting an epistemic formalization of
a greater fools bubble, structural insights are obtained pertaining to the pattern
of it’s higher-order beliefs and the role of common knowledge in the burst.

A proper understanding of investors’ reasoning about the market and about
each other potentially plays a key role in preventing future crises. The ambition
to apply dynamic epistemic logics to strategic reasoning in finance is still quite
young. In 2012 [9] and 2014 [11], authors use probabilistic dynamic epistemic
logics to model Aumann’s agreement theorem. The current paper adds to the
application of dynamic epistemic logics to social interaction and rationality in
general and in specific to studies of the bubble-fueling herding behavior, such as
models of informational cascades [3,17].2

2 The greater fools explanation of a bubble must not be confused with herding phe-
nomena as the two are fundamentally different: where in a herding bubble investors
act the same because of an incentive to follow the crowd, investors in a greater fools
bubble simply act the same as a result of similar reasoning, as will be elaborately
discussed in this paper.
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The next section discusses essential concepts of the greater fools theory, while
at the same time motivating the abstractions made in the models in Sect. 3, where
a semantic formalization of greater fools bubbles is introduced by means of a
public announcement logic, illustrated by three cases of greater fools reasoning.
In Sect. 4 some results of the formalization are observed and proven, and the
final section concludes and mentions directions for further work.

2 Central Concepts

Market Place. Theoretical models of finance offer a great variety of descrip-
tions of the highly complex market places. As models of dynamic epistemic logic
focus on interacting individuals, rather than on the crowd as a whole, a market
in this paper is a place where individuals sequentially trade one asset at a time
with each other.

Traders in a market may have different motivations for buying and selling.
For instance, agents may choose to trade to spread risks, to stimulate liquidity
in the market, to mislead others, to profit by speculation, or to enjoy dividend
pay out. As only the last two motivations are relevant to greater fools reasoning,
all other possible motivations are ignored in the forthcoming analyses.

Furthermore, in this paper the price is a variable on which agents’ attitudes
are defined, as will be shown in Sect. 3. When a seller and a buyer agree on
the price, the trade may take place, thereby letting the price be determined by
supply and demand only on an individual level.

Fundamental Value. A bubble is typically defined by referring to the devia-
tion of the price from the so-called fundamental value, also instrinsic or natural
value. As the concept of fundamental value often gives rise to many questions -
e.g. when confused for the market value and in discussions related to the efficient
market hypothesis - a few notes on it’s nature must be given. The fundamental
value is derived from expected (discounted) cash flows that the asset pays out,
such as it’s future dividend.3 This value is objective in the sense that given the
same information about the asset, all agents would agree on the fundamental
value. To ensure the existence of an objective fundamental value in the most
simple way, it is in the forthcoming assumed that resources are efficiently allo-
cated, such that traders expect to profit exclusively at the expense of others.4

As a consequence, the fundamental value is never based on personal preferences
or needs.

Reasoning under Uncertainty. In practise, though, agents typically do not
agree on the fundamental value, because they have access to different information

3 See [19] for a more eleborate definition of the fundamentals that influence the fun-
damental value.

4 This eliminates the situation where Arthur, who owns an apple tree, and Barbara,
who owns an orange tree, trade apples for oranges and mutually benefit from the
trade.
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about an asset’s fundamentals. As will be shown in Sect. 4, the possibility of
a disagreement about the asset’s value is essential to the rise of greater fools
bubbles: as soon as all uncertainties about other traders’ beliefs are eliminated,
the price will fall back to the fundamental value.

A distinction must be made here between uncertainty about the fundamen-
tal value of the asset on one hand and uncertainty about the (future) beliefs
and behavior of other traders on the other hand. Having no crucial role in the
reasoning driving a greater fools bubble, the models in the forthcoming formal-
ization do not include informative updates on the asset’s value itself: that is,
agents are not directly informed about the asset’s fundamentals, nor is informa-
tion about the asset somehow indirectly revealed through prices or actions that
traders take.

Rational Bubbles. As said before, there is no consensus about the circum-
stances under which a bubble may occur. There is one topic in particular that
nourishes much debate: the relation between rational traders and the possibil-
ity of a bubble, e.g. [6]. Some claim that under specific assumptions, rational
bubbles will not form: as traders are immediately aware that they are being
exploited, they will refuse to buy an overpriced asset, even under presence of
asymmetric information [18]. Others suggest that enough rational traders will
guarantee that any potential mispricing induced by behavioral traders (or noise)
will be corrected [12]. Contrarily to those two theories, others argue that ratio-
nal traders will not necessarily prevent a greater fools bubble from occurring,
because rational traders prefer to ride the bubble rather than attack it [2,8].
That is, because they can profit from less informed traders only if they exit the
market just prior to the crash, which seems to capture aspects of what often
happens during real episodes of bubbles [1].

The next sections try to answer the question under which epistemic circum-
stances greater fools reasoning may lead to overpricing of the asset and what
may cause the bubble to crash.5

3 A Formalization of the Greater Fools Theory

Even though the intuition behind the greater fools theory is simple, coming to
formal terms with the idea it represents reveals some obscurities. To focus on the
epistemic structures of the greater fools theory, only the necessary ingredients are
used in the forthcoming qualitative analysis: a finite set of traders,6 an asset (an
orange tree), traders’ attitudes towards trading the asset, and communication
that reveals traders’ first- and higher-order beliefs about the value of the asset.
For simplicity, all agents are assumed to have unlimited financial resources. In
addition, when agents are indifferent with respect to trading or not, agents refrain
from trading.
5 A rational model of greater fools bubble should however not rule out the important

role played by irrational behavior and mass psychology.
6 Although the models are a representation of the epistemic states of a few individuals,

these individuals can be interpreted to represent a group of homogeneous traders.
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3.1 Language and Plausibility Models

The semantic formalization of the greater fools theory comes down to unfolding
the meaning of being willing to buy an asset for a price that is higher than
the assumed value of the asset. To construct a translation of this meaning in
epistemic logic, the following language is used:

Definition 1 (Language)

ϕ :: = v=n | ¬ϕ | ϕ ∨ ϕ | Kiϕ | Biϕ | CKϕ | selli(p) | buyi(p) | [!ϕ]ϕ

for 0 ≤ n, p ≤ L ∈ N and i ∈ A
Here, v=n says “the value of the orange tree is n”, ¬ and ∨ translate to “not”
and “or”, Kiϕ expresses that agent i knows ϕ while Biϕ expresses that agent i
believes ϕ. Furthermore, CKϕ says “it is common knowledge among all agents
that ϕ”. The expression selli(p) says: “if agent i owns the asset, then she wants
to sell it for price p” and similarly, buyi(p): “if agent i does not own the asset,
then she wants to buy it for p”. The dynamic sentence [!ϕ]ϕ means “after a
public announcement of ϕ, ϕ is true”. The set A is the set of agents, currently
defined as {a, b, c, f} existing of Arthur, Barbara, Chris and Farmer Flora. Due
to constructions later, n and p are limited to an unspecified large finite natural
number L. Furthermore, let v > n (“v is strictly higher than n”) be short for∨

n<n′≤L v=n′ and v < n (“v is strictly lower than n”) short for
∨

n′<n v=n′. The
language is intepreted on standard plausibility models, cf. [4].

Definition 2 (Plausibility model). Given a set of agents A and a limit L ∈ N,
a plausibility model is a tuple M = 〈W,V,�〉 with W a set of worlds, V : W →
{v=n}0≤n≤L a valuation map assigning a value of the asset to each world, and
�: A → P(W × W) a plausibility relation such that for all i ∈ A, the relation
� (i) is reflexive, transitive, conversely well-founded and locally connected.7 A
pointed plausibility model (M, w) designates one real world w ∈ W.

Note that by definition of the valuation map, at every world w ∈ W the asset
is assigned exactly one value n (while there may be values that are assigned to
none or more worlds). The expression (w, u) ∈� (i) is usually written w �i u
and says “u is at least as plausible as w”. Because �i is converselly well-founded
there exists necessarily a set of worlds that are considered most plausible. Let
the indistinguishability relation ∼: A → P(W × W) be defined by w ∼i u only
if w �i u or u �i w. This implies that ∼i is an equivalence relation. Finally, let
∼◦:=

⋃
i∈A ∼i. At the end of the next section, Fig. 1 shows two examples of a

plausibility model and satisfaction in a model (given in Definition 4).

7 The relation �i being locally connected means that for all w, u ∈ W whenever they
are related by the symmetric closure of �i, then w �i u or u �i w.
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3.2 A Meaningful Translation

In order to characterize the reasoning used in a greater fools episode, the meaning
of selli(p) and buyi(p) need introduction. The most generalized justification for
selling an asset for a certain price is to believe that the asset is worth less than
that price. For a price equal or lower than the value of the asset, the agent would
rather keep the asset and enjoy the dividend cash flow that corresponds to the
value. In addition, an agent wants to sell the asset for at least the highest price
she believes she can get for it,8 as characterized below:

selli(p) ↔
⎛

⎝Bi(v < p) ∧ Bi¬
⎛

⎝
∨

j �=i

∨

p′>p

buyj(p
′)

⎞

⎠

⎞

⎠

A trader may have two different kinds of motivation for buying the orange
tree for price p: either the agent believes the tree is worth more than the price,
or the agent believes she can sell the asset to another trader j ∈ A for a higher
price p′ > p, as characterized below:

buyi(p) ↔
⎛

⎝Bi (v > p) ∨ Bi

⎛

⎝
∨

j �=i

∨

p′>p

buyj(p
′)

⎞

⎠

⎞

⎠

The meaning of buyj(p′) is that agent j either believes v > p′, or that she can
sell the asset for p′′ > p′ to another agent j′, etc. Hence buyi(p) gives rise to
an up to k-th order belief about the value of the asset. The k-th order belief
refers to the asset being traded k times for a rising price at each next trade
p < p2 < ... < pk. Note that this is a static encoding of being willing to buy the
asset. In the next section it is argued by means of an example that one might
intuitively prefer a dynamic encoding of buying (see Definition 5). For now, let
the static interpretations of selling and buying be as in Definition 4.

Definition 3 (Information update). Given a plausibility model M and a public
announcement ϕ, the updated model Mϕ is the restriction of M to all worlds
where ϕ is true, i.e. 〈Wϕ,Vϕ,�ϕ〉 such that Wϕ := {w ∈ W|(M, w) |= ϕ} and
Vϕ and �ϕ are defined as V and � restricted to w ∈ Wϕ. When Wϕ is empty,
Mϕ is undefined.

Through the dynamic operator [!ϕ] agents as well as third person modellers
may reason about what will happen after an announcement of ϕ, cf. [13]. The
models to follow will specifically reason about announcements of an agent’s
(un)willingness to buy or sell.

8 The second condition has the realistic consequence that when for example Arthur
believes he can sell the asset for 10, after which he learns no other agent in fact wants
to buy the asset for 10, he will lower the price for which he offers to sell. The price
will continue to drop until he either has an agreement to trade, or Arthur realizes
he cannot sell the asset for more than the value he deems it worth.
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Definition 4 (Truth). Given a plausibility model M and a world w ∈ W, truth
is defined:

(M, w) |= � always

(M, w) |= v=n iff v=n ∈ V(w)

(M, w) |= ¬ϕ iff (M, w) �|= ϕ

(M, w) |= ϕ ∨ ψ iff (M, w) |= ϕ or (M, w) |= ψ

(M, w) |= Kiϕ iff (M, w′) |= ϕ for all w′ ∼i w

(M, w) |= Biϕ iff (M, w′) |= ϕ for all w′ ∈ max�i{u ∈ W|u ∼i w}
(M, w) |= CKϕ iff (M, w′) |= ϕ for all w′ ∼◦ w

(M, w) |= selli(p) iff (M, w) |= Bi(v < p) and (M, w) |= Bi¬
∨

j �=i

∨

p′>p

buyj(p
′)

(M, w) |= buyi(p1) iff (M, w) |= Bi(v > p1) or there is a k ≥ 1

such that pn < pn+1 for all 1 ≤ n < kand

(M, w) |= BiBj1 ...Bjk (v > pk)

(M, w) |= [!ϕ]ψ iff (Mϕ, w) is defined implies Mϕ, w |= ψ

Here, max�i
U := {u ∈ U|w �i u for all w ∈ U}. The meaning of belief thus refers

to the most plausible states that are consistent with the agent’s knowledge at
state w. This implies that belief (and also selli(p) and buyi(p)) is universally true
within an agent’s knowledge set: if (M, w) |= Biϕ then also (M, u) |= Biϕ for
all u such that u ∼i w.

v=2

w1

v=3
u1

v=2
w2

v=3
u2

(M, w1) :
b

aa a

a, b

v=3

x
v=4

y
v=2

u
v=5

z

(M′, u) :
a

b

a, b b

Fig. 1. Two examples of plausibility models

Figure 1 presents two different pointed plausibility models where the true world is
signed bold and w →i u represents that w �i u. Reflexive, transitive and locally
connected arrows are omitted from all figures. In the left model, both Arthur
and Barbara know that the orange tree is worth either 2 or 3 euro. Barbara
believes the asset is worth 2 euro while Arthur believes it is worth 3 euro, as
(M, w) |= v=2 for all w ∈ max�b

{u ∈ W|u ∼b w1} and similarly for Arthur.
Furthermore, note that Barbara knows Arthur’s beliefs, while Arthur incorrectly
believes that Bb(v=3). In the right model, Arthur is indifferent whether v=3 or
v=4 while he does believe that v < 3. As Arthur however believes that that
buyb(4), it is false that sella(3), while sella(4) and sella(10) are true.
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3.3 Three Cases of Greater Fools Reasoning

Inspired by reality and theoretical models of trade, the following protocol for
trading is chosen: first the agent holding the orange tree publicly announces
that she wants to sell it for price p (given that she wants to). Then, if possible,
another agent publicly replies that he is willing to buy the tree for that price
and only if two agents publicly agree on a price, a trade will take place. If this
is not possible, all agents will announce that they are not willing to buy the tree
for that price. In that case the selling agent lowers the price of her offer, unless
the price is equal to her believed fundamental value. To establish this,9 a trade
between i and j for price p is formally defined as a public announcement:

!tradei,j(p) :=!CK
(
selli(p) ∧ buyj(p)

)

To get a better intuition about the formal interpretation of buying, and to
conclude that greater fools bubbles can exist (see Proposition 2), three different
scenarios will now be modelled, each with a different justification for Arthur
buying the orange tree for 2 euro. To focus on the mismatch between traders’
beliefs about value of the asset and the price it is traded for, all agents in the
examples correctly agree that the value is 2. This is generalised in Sect. 4.

v=2
u2

v=3

x2

v=4
y2

v=2

u1

v=3

x1

v=4

y1

(M1, u1) :

b

a

b

a

a a a

a, b a, b v=2

u′
1

v=3

x′
1

v=4

y′
1

(M′
1, u

′
1) :

a, b a, b

v=2
u1

v=3

x1

v=4

y1
v=5

z1

v=2

u2

v=3

x2

v=4

y2
v=5

z2

v=2
u3

v=3

x3

v=4
y3

v=5
z3

(M2, u2) :

a, b a, b a, b

a a a a

a, b a, b a, b

b b b b
a

b

a, b

a

b

v=2

u′
2

v=3

x′
2

v=4

y′
2

v=5

z′
2

(M′
2, u

′
2) :

a, b a, b a, b

Fig. 2. Models of Scenario 1 and 2

Scenario 1: BaBb(v > 3) Suppose Farmer Flora (whose epistemic and doxastic
relations are not represented in the models for sake of simplicity) has offered
to sell the orange tree for 2 euro. Consider pointed plausibilty model (M1, u1)

9 Following the protocol, communication should precede the trade such that the trade
does not envoke any epistemic change. Moreover, the framework does not formally
keep track of who owns the tree, thus a trade should not envoke any atomic change.
The chosen encoding of trading fulfills both desiderata.
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in Fig. 2, representing Arthur’s and Barbara’s epistemic and doxastic attitudes.
Note that BaBb(v > 3) indeed holds. By the truth definition of buyi(p), this
means that Arthur wants to buy the tree for 2 euro. After Arthur’s announcement
!buya(2) the trade takes place: !tradef,a(2). Unfortunately for Arthur, his belief
about Barbara is wrong: (M1, u1) � |= Bb(v > 3) because (M1, u1) |= Bb(v=2).
Thus, after Arthur announces he wants to sell the tree for 3, Barbara rejects his
offer by announcing ¬buyb(3), resulting in model (M′

1, u
′
1).

This scenario demonstrates a miniature bubble scenario where Arthur bought
the orange tree for a price higher than he believed it was worth because he
expected to sell the tree to Barbara for even more. As his expectation turned
out to be false, he could not sell the tree and the bubble crashed softly in the
sense of leaving Arthur with the unsellable asset.

Scenario 2: BaBbBa(v > 4) Again, suppose Farmer Flora offers to sell the
orange tree for 2 euro. Now, Arthur knows that Bb(v=2) but he still wants to
buy the tree for 2 euro because now BaBbBa(v > 4). This can be seen in (M2, u2)
in Fig. 2 where (M2, u3) |= Ba(v > 4), and therefore (M2, u2) |= BbBa(v > 4),
and therefore (M2, u2) |= BaBbBa(v > 4). Like in Scenario 1, announcements
of !buya(2) and !tradef,a(2) will be executed. Note that this time, Arthur is right
about Barbara: BbBa(v > 4) is true at u2. However, when Arthur announces to
sell for 3 euro, Barbara learns that Arthur believes the value is lower than 3 such
that no longer BbBa(v > 4) as can be seen in the resulting model (M′

2, u
′
2).

10

As a result, Barbara does not want to buy the orange tree for 3 euro, because
she knows she will not be able to sell it back to Arthur for 4 euro. As in the
previous scenario, Arthur is left with the unsellable asset.

This raises the question whether Arthur could foresee this series of events.
Under the current definition of buyi(p), agents do not look forward in time.
However, Arthur can reason about what would happen after announcing sella(3)
as (M2, u2) |= Ka[!sella(3)]Kb¬Ba(v > 4).

In general, a trader (e.g. a) that is willing to buy an asset for price p because
he believes in the existence of a greater fool who believes in an even greater fool,
etc., must not be able to predict that the trader he anticipates to resell the asset
to (e.g. b) will refrain from buying at some point in the expected future. Under
this dynamic interpretation of rationality, the meaning of buy has to be altered
as following:

Definition 5 (Truth predictive rationality)

(M, w) |= buyi(p1) iff (M, w) |= Bi(v > p1) or, there is a k ≥ 1
such that pn < pn+1 for all 1 ≤ n < k and
(M, w) |= Bi[!selli(p2)]...Bjk−1 [!selljk−1(pk−1)]Bjk(v > pk)

10 After the update, worlds u′
1, x

′
1, y

′
1 and z′

1 become redundant by their bisimulation
to worlds u1, x1, y1 and z1 respectively. Such bisimulation contraction is harmless in
epistemic logic.
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This definition is essentially a model restriction revealing agents’ predictive
abilities. In Scenario 2, this means that Arthur initially does not want to buy
the orange tree for 2 from Farmer Flora, because he can predict that Barbara
will learn that she cannot resell the tree to Arthur for 4 euro.

Notice the difference between Arthur’s predictive abilities in Scenario 1 and
Scenario 2. In the former, Arthur’s justification for buying was Barbara’s belief
pertaining to the value – which he can only learn after he bought the asset and
announces to Barbara that he wants to sell it. In the latter, his justification for
buying was Barbara’s belief about his belief – which he can predict to change
before buying the asset.
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Fig. 3. The first two models of Scenario 3

Scenario 3: BaBbBc(v > 4) Consider plausibility model (M3, u3) in Fig. 3,
where Farmer Flora offered to sell the orange tree for 2 euro and Arthur is
willing to buy the tree because BaBbBc(v > 4). As Barbara indeed believes that
Bc(v > 4), Barbara is willing to buy the tree for 3 euro. The announcements
!buyb(3) and !tradea,b(3) result in (M′

3, u
′
3) in Fig. 3. Notice that this model

resembles (M1, u1) from Scenario 1, where in this case Barbara offers to sell
the orange tree for 4 euro and Chris will reply that he does not want to buy,
resulting in a model similar to (M′

1, u
′
1) from Fig. 2. This time, Barbara is left

with a tree she can only sell for 1 euro. Note that by same reasoning as Arthur’s
in Scenario 1, Barbara could not foresee the bubble to crash in her hands. Given
her beliefs about Chris, Barbara was rational to buy the tree from Arthur for
3 euro.

4 Results

The last scenario may be extended with more agents following the same or similar
patterns. However, under predictive rationality (Definition 5), a justification
like BaBbBa(v > 4) becomes invalid for buya(2). The consequence of predictive
rationality for the structure of higher-order beliefs can be generalized as follows:
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Proposition 1. Given (M, w), 〈i, j1, ..., jk〉 and pn < pn+1 for all 1 ≤ n < k,
it holds that: (M, w) |= BiBj1 ...Bjk(v > pk) and all agents in 〈i, j1, ..., jk〉 are
pairwise distinct, if and only if,
(M, w) |= Bi[!selli(p2)]...Bjk−1 [!selljk−1(pk−1)]Bjk(v > pk).

Proof. By definition of selli(p), an announcement of selling can only reveal
information about the beliefs of the announcing agent. Hence whenever all
traders in the sequence are fresh, nothing can be derived from the announce-
ments of selling about agents who are expected to trade in the future. How-
ever if there are some agents jn = jn′ for n �= n′, the announcement
!selljn(pn) after jn’s first trade will inform all other traders that she will not
want to buy the asset for pn′ > pn further down the line. In particular,
(M, w) |= Ki[!selljn(pn)]¬buyjn(pn′). By definition of buyi(p), this implies
(M, w) � |= Bi[!selli(p2)]...Bjk−1 [!selljk−1(pk−1)]Bjk(v > pk).

Next, the examples from the previous section are used to prove that greater
fools bubbles may occur11 and the observations are generalized into a conclusion
regarding the role of common knowledge in the burst. But first, some concepts
need clarification.

Definition 6 (Highest Fundamental Value). Given a (M, w), let the unique
highest fundamental value vmax be such that there exists an agent i ∈ A and a
world u ∈ max�i

such that (M, u) |= v=vmax and there is no agent i ∈ A and a
world u ∈ max�i

where (M, u) |= v > vmax.

Definition 7 (Overpricing). An asset is overpriced in (M, w) when
(M, w) |= ∨

i,j∈A
∨

p>vmax
[!tradei,j(p)]�.

Definition 8 (Bubble). A sequence of events 〈α1, ..., αn〉 of type !selli(p),
!buyi(p), !¬buyi(p) or !tradei,j(p) is called a bubble if for some (M, w) and l < n
it holds that (M, w) |= [α1]...[αl]

∨
i,j∈A

∨
p>vmax

[tradei,j(p)]� while
(M, w) |= [α1]...[αl]...[αn]¬∨

i∈A
∨

p>vmax
buyi(p).

That is, a bubble describes a sequence of events in which the asset can be traded
for a price that is mutually believed to be too high and in the end the price falls
back to the fundamental value: the crash.12

Proposition 2. A bubble may form under the current greater fools encoding of
buying and selling, even when all agents agree about the value of the asset.

11 This is not evident, as e.g. [1] merely shows – by simulating a growing bubble with
a price that runs up automatically in every period – that if a bubble exists, people
are willing to ride the bubble.

12 Note that while a bubble is typically described by referring to an extreme overpricing,
this definition allows for a minimal overpricing of vmax+1. It is here chosen to refrain
from an ad hoc specification of “extreme”, but if preferred one can easily adjust the
definition and examples accordingly.
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Proof. The scenarios in Sect. 3.3 constitute proof by example.

Firstly, note that Proposition 2 is proven for both the static and dynamic inter-
pretation of buying. The difference between the two is that under the dynamic
interpretation an asset can only be traded as most as many times as there are
agents in the model. Secondly, note that greater fools bubbles are thus robust to
symmetric atomic information. Instead, it is the higher-order uncertainty that
sustains the asset to be traded for prices exceeding the fundamental value. It
follows that the price drops to vmax when it is common knowledge that nobody
believes the asset is worth more than vmax:

Proposition 3. Given (M, w), (M, w) |= CK¬∨
i∈A Bi(v > vmax) implies

(M, w) |= ¬∨
i∈A

∨
p>vmax

buyi(p).

Proof. Suppose (M, w) |= CK¬∨
i∈A Bi(v > p). This means, there is no

sequence of agents 〈j1, ..., jk〉 such that Bj1 ...Bjk(v > vmax). By definition of
buyi(p) this implies that nobody wants to buy the asset for p > vmax.

Proposition 3 demonstrates the informational transparancy of common knowl-
edge that leads to the burst of a bubble. As illustrated in the three scenarios,
the beliefs of all traders are sequentially revealed by all traders offering to sell
the asset for a gradually rising price and finally all traders reject to buy. This
conclusion supports Conlon [8] who presents a finite horizon “nth order” rational
asset price bubble, where greater fools bubbles can only grow when there is a
higher order possibility of a trader who does not believe the asset is overpriced.

5 Conclusions and Further Work

The greater fools explanation of an asset bubble is a theory that explains why
an asset may be traded at prices far exceeding the fundamental value of an
asset, even when all traders are rational. This paper provided a formal epistemic
interpretation of being willing to sell or buy during greater fools episodes, which
shows that epistemic logic is a natural setting in which to formalize the greater
fools theory. It has been shown that under two different interpretations of ratio-
nality a greater fools bubble may arise even though all agents agree about the
value. The literature is not clear about whether or not predictive rationality is
assumed, even though it appears that it has consequences for the structure of
the beliefs that form greater fools bubbles. It has finally been shown that com-
mon knowledge, which is achieved through communication, is an informational
bubble buster.

This first formalization creates venues for future research, continuing the
persuit of a deep understanding and a detailed description of the financial mar-
ket. Firstly, it should be noted that the models rely on the assumption that all
trade is publicly executed and all traders know each others’ identity. Opening
the model to anonymous traders and belief upgrades about the fundamental
value – thereby shifting focus slighty away from purely greater fools reasoning –
may change the conclusions. Furthermore, the used framework of standard epis-
temic logic can be enriched with for example probabilities (cf. [15]) to specify
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the risk of actions or the deeper justifications of agents’ beliefs. The scenarios
can be further formalized by translating the natural language protocol to tran-
sition rules cf. [17]. Furthermore, it would be interesting to study the interplay
of different types of agents (based on e.g. strategy, level of rationality, mutual
trust, expertise) in a greater fools bubble.
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Abstract. The Game Description Language (GDL) has been intro-
duced as an official language for specifying games in the AAAI General
Game Playing Competition since 2005. It was originally designed as a
declarative language for representing rules of arbitrary games with per-
fect information. More recently, an epistemic extension of GDL, called
EGDL, has been proposed for representing and reasoning about imper-
fect information games. In this paper, we develop an axiomatic system
for a variant of EGDL and prove its soundness and completeness with
respect to the semantics based on the epistemic state transition model.
With a combination of action symbols, temporal modalities and epis-
temic operators, the completeness proof requires novel combinations of
techniques used for completeness of propositional dynamic logic and epis-
temic temporal logic. We demonstrate how to use the proof theory for
inferring game properties from game rules.

1 Introduction

General Game Playing (GGP) is concerned with creating intelligent agents that
can play previously unknown games by just being given their rules [6]. To spec-
ify a game played by autonomous agents, a formal game description language,
called GDL, has been introduced as an official language for GGP since 2005.
GDL is defined as a high-level, machine-processable language for representing
the rules of arbitrary games with perfect information [16]. Originally designed
as a logic programming language, GDL has been recently adapted as a logical
language for game specification and strategic reasoning [25]. Based on this, the
epistemic extension of GDL, called EGDL, has been developed for representing
and reasoning about imperfect information games [14].

Syntactically, EGDL extends GDL with the standard epistemic operators
to specify the rules of imperfect information games and capture the epistemic
status of agents. For example, an EGDL-formula Kr(does(a) ∧ ©wins(r)) →
does(a) specifies that if an agent knows that taking an action leads to win at
the next state, then she takes that action at the current state. Semantically,
EGDL is interpreted over epistemic state transition models which are used to
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represent synchronous and deterministic games with imperfect information. The
expressive power and computational efficiency of EGDL have been investigated
in [14]. In this paper, we address the fundamental logical question of a complete
axiomatization for EGDL.

The axiomatic system for EGDL that we present is composed of axiom
schemes and inference rules that capture the logical properties of the semantical
models. With action, temporal and epistemic operators, the completeness proof
of EGDL, however, is non-trivial. It requires novel combinations and extensions
of techniques from both propositional dynamic logic (PDL) [15] and epistemic
temporal logics (ETLs) [7].

To achieve the completeness of EGDL, we first construct a pre-model for a
consistent EGDL-formula ϕ out of maximal consistent subsets of a finite set of
formulas, called the closure of ϕ. Similar to [7], we define a number of different
distinct levels of closure so as to deal with the epistemic operators. The tech-
niques to construct the pre-model has been strongly influenced by two sources
which gave us valuable insights: [15] providing an elementary proof of the com-
pleteness of PDL, and [7] presenting a general framework for completeness proofs
of ETLs. Unfortunately, the pre-model is non-deterministic and thus is not an
epistemic state transition model. To fill this gap, we then transform the pre-
model into an epistemic state transition model with an equivalent satisfiability
of EGDL-formulas. Such transformation is inspired by the method used in [18]
to transform a non-deterministic automata into a deterministic one. From the
completeness proof, we derive the finite model property for EGDL: every EGDL-
formula that is satisfiable in some epistemic state transition model is satisfiable
in a finite epistemic state transition model. We also demonstrate how to use the
proof theory for inferring game properties from game rules.

The rest of this paper is structured as follows: Sect. 2 establishes the syntax
and the semantics of EGDL. Section 3 provides a sound and complete axiomatic
system for EGDL and demonstrates how to use the proof theory for reasoning
about game rules. Section 4 discusses the related work. Finally we conclude with
future work.

2 The Framework

All games are assumed to be played in multi-agent environments. Each game is
associated with a game signature. A game signature S is a triple (N,A, Φ), where
N = {1, 2, · · · ,m} is a non-empty finite set of agents; A =

⋃
r∈N Ar, where Ar

consists of a non-empty finite set of actions for agent r such that different agents
have different actions, i.e., Ar1 ∩Ar2 = ∅ if r1 �= r2 and each agent has an action
without effects, i.e., noopr ∈ Ar, and Φ = {p, q, · · · } is a finite set of propositional
atoms for specifying individual features of a game state.

Through the rest of the paper, we will fix a game signature S and all concepts
will be based on this game signature unless otherwise specified.
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2.1 Epistemic State Transition Models

We consider synchronous imperfect information games where all players move
simultaneously and may have partial information of the game states. The struc-
tures of these games may be specified by epistemic state transition models
defined as follows:

Definition 1. An epistemic state transition (EST) model M is a tuple
(W, I, T, {Rr}r∈N , {Lr}r∈N , U, g, π), where

– W is a non-empty set of possible states.
– I ⊆ W , representing a set of initial states.
– T ⊆ W\I, representing a set of terminal states.
– Rr ⊆ W ×W is an equivalence relation for agent r, indicating the states that

are indistinguishable for r.
– Lr ⊆ W × Ar is a legality relation for agent r, describing the legal actions

of agent r at each state. Let Lr(w) = {a ∈ Ar : (w, a) ∈ Lr} be the set of
all legal actions of agent r at state w. To make a game playable, we assume
that (i) each agent has at least one available action at each state: Lr(w) �= ∅
for all r ∈ N and w ∈ W , and (ii) at all terminal states each agent can only
take action noop: Lr(w) = {noopr} for any r ∈ N and w ∈ T .

– U : W × ∏
r∈N Ar ↪→ W\I is a partial update function, specifying the state

transformations, such that U(w, 〈noopr〉r∈N ) = w for any w ∈ T .
– g : N → 2W is a goal function, specifying the winning states for each agent.
– π : W → 2Φ is a standard valuation function.

Note that different from [14], (i) we consider a general case without assuming
a unique initial state; (ii) the update function is partial, as not all joint actions
are possible in all states due to the legality relation. In particular, there is no
semantical condition to guarantee that all joint legal actions lead to valid next
states. Such a condition is not easy to provide, giving the legal conditions are
defined for individual agents. Besides this, we do not require each agent knows
her own legal actions, since in GGP it may occur that an agent fails to figure out
her legal actions given the limited time. In that case, the game master assigns
a random legal action for her. For convenience, let D denote the set of all joint
actions

∏
r∈N Ar. For d ∈ D, let d(r) denote agent r’s action in the joint action

d. We write Rr(w) for the set of all states that agent r cannot distinguish from
w, i.e., Rr(w) = {u ∈ W : wRru}. We now define the notion of a path to
specify the set of all possible ways in which a game can develop.

Definition 2. Given an EST-model M = (W, I, T, {Rr}r∈N , {Lr}r∈N , U, g, π),

a path δ is an infinite sequence of states and actions w0
d1→ w1

d2→ w2 · · · dj→ · · ·
such that for all j ≥ 1 and for any r ∈ N ,

1. wj = U(wj−1, dj) (state update);
2. (wj−1, dj(r)) ∈ Lr (that is, any action that is taken must be legal);
3. if wj−1 ∈ T , then wj−1 = wj (that is, a loop after reaching a terminal state).



On Axiomatization of Epistemic GDL 601

It follows that only the first state may be initial, i.e., wj �∈ I. Let P(M) denote
the set of all paths in M . When M is fixed, we simply write P. For a path δ ∈ P
and a position j ≥ 0, we use δ[j], δ[0, j] and δ[j,∞] to denote the j-th state

of δ, the finite prefix w0
d1→ w1

d2→ · · · dj→ wj of δ and the infinite suffix path

wj
dj+1→ wj+1

dj+2→ · · · of δ, respectively. Finally, we write θr(δ, j) for the action
of agent r taken at stage j of δ.

The following definition, by extending equivalence relations over states to
paths, characterizes precisely what an agent with imperfect recall and perfect
reasoning can in principle know during a game.

Definition 3. Two paths δ, δ′ ∈ P are imperfect recall (also called memoryless)
equivalent for agent r, written δ ≈r δ′, iff δ[0]Rrδ

′[0].

That is, imperfect recall requires an agent to be only aware of the present state
but forget everything that happened. This is similar to the notion of imperfect
recall in ATL [20].

2.2 The Syntax

Let us now introduce an epistemic extension of the game description language
GDL [25] to represent games with imperfect information. We further provide a
semantics for the language based on the epistemic state transition model. In the
following, we call this resulting framework EGDL for short.

Definition 4. The language L of EGDL is generated by the following BNF:

ϕ ::= p | initial | terminal | legal(ar) | wins(r) | does(ar) |

¬ϕ | ϕ ∧ ψ | ©ϕ | Krϕ | Cϕ

where p ∈ Φ, r ∈ N and ar ∈ Ar.

Other connectives ∨, →, ↔, �, ⊥ are defined by ¬ and ∧ in the standard
way. Intuitively, initial and terminal specify the initial state and the terminal
states of a game, respectively; does(ar) asserts that agent r takes action a at the
current state; legal(ar) asserts that action a is available to agent r at the current
state; and wins(r) asserts that agent r wins at the current state. The formula
©ϕ means “ϕ holds in the next state”. All these components are inherited from
GDL. The epistemic operators K and C are taken from the Modal Epistemic
Logic [5,9]. The formula Krϕ is read as “agent r knows ϕ”, and Cϕ as “ϕ is
common knowledge among all the agents in N”. As usual, we write K̂r for the
dual of Kr and Eϕ for

∧
r∈N Krϕ, saying that every agent in N knows ϕ.

To illustrate the intuition of the language, let us consider a variant of the
Tic-Tac-Toe, called Krieg-Tictactoe in [19].

Example 1. Krieg-Tictactoe is played by two players, cross x and naught o, who
take turns marking cells in a 3 × 3 board. Different from standard Tic-Tac-Toe,
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Fig. 1. An EGDL description of Krieg-Tictactoe.

each player can see her own marks, but not those of her opponent, just like the
chess variant Kriegspiel [17].

To represent the Krieg-Tictactoe, we first describe its game signature, writ-
ten SKT , as follows: NKT = {x,o} where x denotes the player who marks
the symbol cross and o denotes the player who marks the symbol naught;
Ar

KT = {ar
i,j : 1 ≤ i, j ≤ 3}∪{noopr}, where ar

i,j denotes the action that player r
marks cell (i, j) with her symbol; ΦKT = {pr

i,j , tried(ar
i,j), turn(r) : r ∈ {x,o} and

1 ≤ i, j ≤ 3}, where pr
i,j represents the fact that cell (i, j) is marked with player

i’s symbol, tried(ar
i,j) represents the fact that player r has tried to mark cell (i, j)

but failed before, and turn(r) says that it is player r’s turn now. The rules of
Krieg-Tictactoe are specified by EGDL in Fig. 1 (where 1 ≤ i, j ≤ 3, r ∈ {x,o}
and −r represents r’s opponent).

Rules 1–5 specify the initial state, each player’s winning states, the terminal
states and the turn-taking. In particular, Rule 2 specifies that if a player has
tried to mark a cell, then the corresponding cell is marked by the opponent.

The preconditions of each action (legality) are specified by 6 and 7. The
player who has the turn can mark any non-terminal cell such that (i) it is not
marked by herself, and (ii) she has never tried to mark it before. A player can
only do action noop at the terminal states or the states where it is not her turn.

Rules 8 and 9 are the combination of the frame axioms and the effect axioms.
Rule 8 states that a cell is marked with a player’s symbol in the next state if the
player takes the corresponding action at the current state or the cell has been
marked by her symbol before. Similarly, Rule 9 says that an action is tried by a
player in the next state if the action is ineffective while still taken by the player
at the current state, or this action has been tried before.
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The rest of the rules specify the epistemic status of the game. Rule 10 states
each player knows which action she is taking. Rule 11 and Rule 12 say both
players know the initial state and their turns, respectively. Rule 13 says that
each player knows which cell is marked or not with her symbol. Similarly, Rule
14 states that each player knows which cell is tried or not by herself.

Note that rules 12–14 together specify the epistemic relations for each player:
two states are indistinguishable for a player if their configurations are the same
from her point of view. Finally, let ΣKT be the set of rules 1–14.

2.3 The Semantics

The semantics of EGDL-formulas is based on the epistemic state transition
models.

Definition 5. Let M be an EST-model. Given a path δ in M and a formula
ϕ ∈ L, we say ϕ is true at δ under M , denoted by M, δ |= ϕ, according to the
following definition:

M, δ |= p iff p ∈ π(δ[0])
M, δ |= ¬ϕ iff M, δ �|= ϕ
M, δ |= ϕ1 ∧ ϕ2 iff M, δ |= ϕ1 and M, δ |= ϕ2

M, δ |= initial iff δ[0] ∈ I
M, δ |= terminal iff δ[0] ∈ T
M, δ |= wins(r) iff δ[0] ∈ g(r)
M, δ |= legal(ar) iff (δ[0], ar) ∈ Lr

M, δ |= does(ar) iff θr(δ, 0) = ar

M, δ |= ©ϕ iff M, δ[1, ∞] |= ϕ
M, δ |= Krϕ iff for any δ′ ∈ P, if δ ≈r δ′, then M, δ′ |= ϕ
M, δ |= Cϕ iff for any δ′ ∈ P, if δ ≈N δ′, then M, δ′ |= ϕ

where ≈N is the transitive closure of
⋃

r∈N ≈r.

A formula ϕ is globally true or valid in an EST-model M , written M |= ϕ, if
M, δ |= ϕ for any δ ∈ P. A formula ϕ is valid, written |= ϕ, if M |= ϕ for
any EST-model M . Let Σ be a set of formulas in L, then M is a model of Σ if
M |= ϕ for all ϕ ∈ Σ.

The following result specifies some generic game properties.

Proposition 1. For any r ∈ N , ϕ ∈ L and ar, br ∈ Ar,

1. |= ¬ © initial
2. |= terminal → ∧

ar∈Ar\{noopr} ¬legal(ar) ∧ legal(noopr)
3. |= ∨

ar∈Ar does(ar)
4. |= ¬(does(ar) ∧ does(br)) for ar �= br

5. |= does(ar) → legal(ar)
6. |= ∨

ar∈Ar legal(ar)
7. |= terminal ∧ ϕ → ©ϕ
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The first formula says that a game would never go back to its initial state
once it starts. The second formula specifies that all players can only take action
“noop” at the terminal states. The third and forth formulas prescribe that there
is a unique action for each player at all game states. The fifth formula asserts
that any action that is taken should be legal. The sixth formula specifies that
each player has at least one legal action at each state. The last formula requires
that a terminal state leads to a self-loop.

Besides those generic game properties, EGDL is also able to specify epistemic
properties of a game. For instance, whether each player always knows her own
legal actions in the course of the game. This property as well as some other
well-known properties have been discussed in [14]. It is worth of mentioning that
although these properties are expressible in EGDL, different from the generic
game properties, they are not valid for any game model.

3 Axiomatization

In this section, we develop an axiomatic system for the logic EGDL, and provide
its soundness and completeness with respect to the epistemic state transition
models.

3.1 The Axiomatic System

EGDL consists of the following axiom schemas and inference rules: For any ar,
br ∈ Ar, r ∈ N and ϕ,ψ ∈ L,

– Axiom Schemas:
1. All tautologies of classical propositional logic.
2. ¬ © initial
3. terminal → ∧

ar∈Ar\{noopr} ¬legal(ar) ∧ legal(noopr)
4.

∨
ar∈Ar does(ar)

5. ¬(does(ar) ∧ does(br)) for ar �= br.
6. ©(ϕ → ψ) → (©ϕ → ©ψ)
7. ¬ © ϕ ↔ ©¬ϕ
8. does(ar) → legal(ar)
9. ϕ ∧ terminal → ©ϕ

10. Kr(ϕ → ψ) → (Krϕ → Krψ)
11. Krϕ → ϕ
12. Krϕ → KrKrϕ
13. ¬Krϕ → Kr¬Krϕ
14. Eϕ ↔ ∧m

r=1 Krϕ
15. Cϕ → E(ϕ ∧ Cϕ)

– Inference Rules:
(R1) From ϕ, ϕ → ψ infer ψ.
(R2) From ϕ infer ©ϕ.
(R3) From ϕ infer Krϕ.
(R4) From ϕ → E(ϕ ∧ ψ) infer ϕ → Cψ.
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Besides the axioms mentioned in Proposition 1, the axioms for temporal and
epistemic operators are well-known. Note that since we focus on games with
imperfect recall, thus there is no interaction properties between epistemic and
temporal operators. Let � denote the provability in EGDL. The notion of the
syntactic consequence (derivation) is defined in the standard way.

With the proof theory, we are now able to derive the following formulas from
the rules of Krieg-Tictactoe specified in Fig. 1.

Proposition 2. For any r ∈ NKT and ar
i,j ∈ Ar

KT ,

1. �ΣKT
initial → Cinitial

2. �ΣKT
legal(ar

i,j) → Kr(legal(ar
i,j))

3. �ΣKT
does(ar

i,j) → ©Kr(pr
i,j ∨ tried(ar

i,j))
4. �ΣKT

Krtried(ar
i,j) → Krp

−r
i,j

That is, in Krieg-Tictactoe, the turn-taking is common knowledge (Clause 1).
Each player knows her own available actions (Clause 2). If an agent marks a
cell at the current state, then she will knows either this cell has been marked or
been tried by herself at the next state (Clause 3). Moreover, if a player knows
that she has tried to mark a cell, then she knows the corresponding cell has been
marked by the opponent (Clause 4).

3.2 Completeness Proofs

The completeness result is achieved in two step. First, we construct a pre-model
for a consistent formula ϕ out of consistent subsets of a finite set of formulas,
called the closure of ϕ. The construction resembles those previously used for
completeness of propositional dynamic logic [15] and epistemic temporal logics
[7]. Next we transform the pre-model into an epistemic state transition model
and show that the satisfiability of EGDL-formulas is invariant under such trans-
formation. This idea is captured in Figure 2 (where r ∈ N and k ∈ N).

Let us now fix a formula ϕ ∈ L, which is consistent in EGDL, i.e., not
� ¬ϕ. We define ad(ϕ) to be the greatest number of alternations of distinct
Kr’s along any branch in ϕ’s parse tree. If ϕ involves the common knowledge
operator C, let ad(ϕ) = 0. For instance, ad(Kr1Kr2Kr1p) = 3; ad(Kr1Kr1Kr2p) =
2; ad(CKr1Kr2p) = 0; temporal operators are not considered, so that ad(Kr1Kr2©
Kr1p) = 3.

A finite sequence σ = r1r2 · · · rk of agents, possibly equal to the null sequence
ε, is called an index if ri �= ri+1 for all i < k. We write |σ| for the length k of
such a sequence. In particular, |ε| = 0.

Let N∗ be the set of all finite sequences over N , we define the absorptive
concatenation function # from N∗ × N to N∗ as follows: Given a sequence
σ ∈ N∗ and an agent r ∈ N ,

σ#r =
{

σ if the final element ofσis r;
σr otherwise.

Given ϕ ∈ L, for each k ≥ 0, we define the k-closure clk(ϕ), and for each
agent r ∈ N , we define the k, r-closure clk,r(ϕ). The definitions of these sets
proceeds by mutual recursion:
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Fig. 2. The roadmap of the completeness proof for EGDL. Note that solid arrows
denote the process to achieve the completeness, and dashed arrows denote the notions
and their properties to obtain the intermediate results. The abbreviation “MCS”
denotes the maximal consistent set.

1. The basic closure cl0(ϕ) is the smallest set containing ϕ such that
(a) it is closed under subformulas.
(b) if Eψ ∈ cl0(ϕ), then Kr1ψ, · · · ,Krm

ψ ∈ cl0(ϕ).
(c) if Cψ ∈ cl0(ϕ), then ECψ ∈ cl0(ϕ).
(d) if ψ ∈ cl0(ϕ) and ψ is not of the form ¬ψ′, then ¬ψ ∈ cl0(ϕ).

2. Let clk,r(ϕ) be the union of clk(ϕ) with the set of formulas of the form Kr(ψ1∨
· · · ψn) or ¬Kr(ψ1 ∨ · · · ψn), where the ψi are distinct formulas in clk(ϕ).

3. clk+1(ϕ) =
⋃m

r=1 clk,r(ϕ).

If X is a finite set of formulas, we write φX for the conjunction of all the for-
mulas in X. A finite set X of formulas is said to be consistent if φX is consistent.
A finite set Cl of formulas is said to be negation-closed if, for all ψ ∈ Cl, either
¬ψ ∈ Cl or ψ is of the form ¬ψ′ and ψ′ ∈ Cl. Note that the sets clk(ϕ) and
clk,r(ϕ) are negation-closed. We define an atom of Cl to be a maximal consistent
subset of Cl. The set of all atoms of Cl is denoted as ACl. We have the following
properties.

Proposition 3. Suppose that X is a finite set of formulas and Cl is a negation-
closed set of formulas. For any ϕ1, ϕ2 ∈ L,

1. if � φX → ϕ1 and � ϕ1 → ϕ2, then � φX → ϕ2.
2. if X is an atom of Cl and ψ ∈ Cl, then either � φX → ψ or � φX → ¬ψ.
3. � ∨

X∈ACl
φX .

The construction of the pre-model of ϕ is based on the atoms of the closures
of ϕ. Let d = ad(ϕ).
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Definition 6. The pre-model of ϕ, denoted by Mϕ = (Wϕ, Iϕ, Tϕ, {Rϕ
r }r∈N ,

{Lϕ
r }r∈N , Uϕ, gϕ, πϕ), is constructed as follows:

1. Wϕ consists of all the pairs (σ,X) such that σ is an index, |σ| ≤ d, and
(a) if σ = ε then X is an atom of cld(ϕ), and
(b) if σ = τr then X is an atom of clk,r(ϕ), where k = d − |σ|.

2. Iϕ = {(σ,X) ∈ Wϕ : � φX → initial}.
3. Tϕ = {(σ,X) ∈ Wϕ : � φX → terminal}.
4. (σ,X)Rϕ

r (τ, Y ) iff σ#r = τ#r and {ψ : Krψ ∈ X} = {χ : Krχ ∈ Y }.
5. ((σ,X), ar) ∈ Lϕ

r iff � φX → legal(ar).
6. Uϕ((σ,X), d) = (τ, Y ) iff � φX → ∧

r∈N legal(d(r)), σ = τ and the formula
φX ∧ ©φY is consistent.

7. gϕ(r) = {(σ,X) ∈ Wϕ : � φX → wins(r)}.
8. πϕ((σ,X)) = {p ∈ Φ : � φX → p}.
It is easy to see that the update function in Mϕ is non-deterministic, and thus
Mϕ is not an EST-model. We redefine the notion of a path as follows:

Definition 7. Given the pre-model Mϕ = (Wϕ, Iϕ, Tϕ, {Rϕ
r }r∈N , {Lϕ

r }r∈N ,
Uϕ, gϕ, πϕ) of ϕ, a path δ of Mϕ is an infinite sequence of states and actions
w0

d1→ w1
d2→ · · · such that the conditions are the same as those in Definition 2

except changing Condition 1 to wj ∈ Uϕ(wj−1, dj) due to nondeterminacy.

Similarly, we generalize the indistinguishable relation to the paths. We say that
two paths δ, δ′ of Mϕ are indistinguishable for agent r, denoted by δ ≈ϕ

r δ′, iff
δ[0]Rϕ

r δ′[0]. The truth conditions for all EGDL-formulas under the pre-model
are exactly the same as those in Definition 5. In particular, we use Mϕ, δ |=∗ ϕ
to denote that ϕ is true at path δ under Mϕ.

If w = (σ,X) is a state, we define φw to be the formula φX . Following [7],
we say that the state w directly decides a formula ψ if either ψ ∈ w, ¬ψ ∈ w,
or ψ = ¬ψ′ and ψ′ ∈ w. We say that w decides ψ if either � φw → ψ, or
� φw → ¬ψ. Clearly, if w directly decides ψ, then w decides ψ. Note that
if σ = τr, then each σ-state directly decides every formula in clk,r(ϕ). Also,
every ε-state directly decides every formula in cld(ϕ). In particular, we have the
following results about formulas with K-operators.

Proposition 4. Given two states w = (σ,X) and u = (τ, Y ), if σ#r = τ#r,
then the same formulas of the form Krψ are directly decided by w and u.

Given a σ-state w, we use Φw,r for the disjunction of all the formulas φu,
where u is a σ-state satisfying wRϕ

r u, and we use Φ+
w,r for the disjunction of all

the formulas φu, where u is a σ#r-state satisfying wRϕ
r u.

Proposition 5. 1. If w is a σ-state and u is a σ-state or σ#r-state such that
not wRϕ

r u, then � φw → Kr¬φu.
2. For all σ-states w, � φw → KrΦw,r.
3. For all σ-states w, if |σ#r| ≤ d, then � φw → KrΦ

+
w,r.
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The following two propositions show that the pre-model has properties resem-
bling those for the truth conditions for formulas in the basic closure.

Proposition 6. For all σ-states w andKrψ ∈ cl0(ϕ), the following are equivalent.

1. � φw → ¬Krψ.
2. There is some σ-state u such that wRϕ

r u and � φu → ¬ψ.

Please recall that when the formula ϕ contains the common knowledge oper-
ator, we take d = 0, so that all states are ε-states.

Proposition 7. Given Cψ ∈ cl0(ϕ), the following are equivalent.

1. � φw → ¬Cψ
2. there is a state u reachable from w through the relation Rϕ

r such that � φu → ¬ψ.

The next definition specifies how to extend a σ-state for ϕ to a path in the
pre-model.

Definition 8. Given an arbitrary σ-state w, we define a sequence δw of states
and actions w0

d1→ w1
d2→ · · · as follows: for any r ∈ N and j ≥ 1,

1. wj is a σ-state in Wϕ, and dj ∈ D.
2. w0 = w.
3. φwj−1 ∧ ©φwj

is consistent.
4. dj(r) = ar

j iff � φwj−1 → does(ar
j).

The following result shows such generated sequence is indeed a path of Mϕ.

Proposition 8. Given an arbitrary σ-state w, the sequence δw is a path of Mϕ.

Proof. We first show that δw is infinite. Suppose not that there is some state
wl with no successor. By Axiom 4 and Axiom 5, such an action ar

j for each
agent always exists. Then it is only the case that � φwl

→ ¬ © φs for all
atoms s of clk,r(ϕ) where k = d − |σ| if σ = τr, or cld(ϕ) if σ = ε. But by
Proposition 3.3 and (R2) we have � ©∨

X∈Aclk,r(ϕ)
φX where k = d − |σ| if σ =

τr; � ©∨
X∈Acld(ϕ)

φX if σ = ε, which contradicts that wl is consistent. With
this, it remains to show that δw satisfies the conditions of a path in Definition 7.

Condition 1 holds directly by the definition of Uϕ and Axiom 8. Regarding
Condition 2, by Clause 3 and Axiom 8, we have � φwj−1 → legal(dj(r)) for
any r ∈ N and j ≥ 1, so dj(r) ∈ Lϕ

r (wj−1). Regarding Condition 3, assume
wl−1 ∈ Tϕ and wl−1 �= wl for some l ≥ 1. Without loss of generalization, say
wl−1 = (σ,Xl−1) and wl = (σ,Xl). Then � φXl−1 → terminal, and there is some
α ∈ clk,r(ϕ) where k = d − |σ| if σ = τr, or α ∈ cld(ϕ) if σ = ε, such that either
(α ∈ Xl−1 and α �∈ Xl) or (α �∈ Xl−1 and α ∈ Xl). By symmetry, it suffices
to show the case α �∈ Xl−1 and α ∈ Xl. Then � φXl−1 → ¬α and � φXl

→ α.
From the former and by Axiom 9, we get � φXl−1 → ©¬α, so � φXl−1 → ¬ © α
by Axiom 7. While from � φXl

→ α and by (R2), � ©φXl
→ ©α, which

contradicts that φXl−1 ∧ ©φXl
is consistent. Thus, for all j ≥ 1, if wj−1 ∈ Tϕ,

then wj−1 = wj . This completes the proof. (�)
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We now come to one of the main intermediate results.

Lemma 1. For every α ∈ cl0(ϕ) and every ε-state w,

Mϕ, δw |=∗ α iff � φw → α.

It is routine to prove this by induction on the complexity of α. As we noted
before, the pre-model Mϕ of ϕ is not an EST-model. To achieve the completeness
result of EGDL, it suffices to transform the pre-model of φ into a deterministic
model with an equivalent satisfiability. Inspired by [18], we redefine states as a
subset of atoms and treat all the successors as a single state in the new model.
The transformation is given as follows:

Definition 9. Let Mϕ = (Wϕ, Iϕ, Tϕ, {Rϕ
r }r∈N , {Lϕ

r }r∈N , Uϕ, gϕ, πϕ) be the
pre-model of ϕ. Then A(Mϕ) is a model (S, I, T, {Rr}r∈N , {Lr}r∈N , U, g, π)
based on Mϕ such that

1. S consists of all the pairs (σ, Γ ) such that σ is an index, |σ| ≤ d, and
(a) if σ = ε then Γ is a non-empty subset of Acld(ϕ), and
(b) if σ = τr then Γ is a non-empty subset of Aclk,r(ϕ), where k = d − |σ|.

2. I = {(σ, Γ ) ∈ S : Γ ⊆ {X : (σ,X) ∈ Iϕ}}.
3. T = {(σ, Γ ) ∈ S : Γ ⊆ {X : (σ,X) ∈ Tϕ}}.
4. (σ, Γ )Rr(τ,Δ) iff σ#r = τ#r and {ψ : Krψ ∈ ⋃

Γ} = {χ : Krχ ∈ ⋃
Δ}.

5. Lr((σ, Γ )) =
⋃

X∈Γ Lϕ
r ((σ,X)).

6. U((σ, Γ ), d) = (σ,Δ) where Δ = {Y : (σ, Y ) ∈ ⋃
X∈Γ Uϕ((σ,X), d)}.

7. g(r) = {(σ, Γ ) ∈ S : Γ ⊆ {X : (σ,X) ∈ gϕ(r)}}.
8. π((σ, Γ )) =

⋃
X∈Γ πϕ((σ,X)).

The following result shows the associated model A(Mϕ) is just what we want.

Proposition 9. Given a pre-model Mϕ of ϕ, the model A(Mϕ) is an EST-
model.

Proof. Clearly, S �= ∅ and I ∩ T = ∅ follows from � ¬(initial ∧ terminal). It
is straightforward that the epistemic relation Rr is equivalent. Regarding Lr,
for any (σ, Γ ) ∈ S, since Γ �= ∅ and Lϕ

r ((σ,X)) �= ∅ for any (σ,X) ∈ Wϕ,
so by definition Lr((σ, Γ )) �= ∅ (Condition (i)). Assume (σ, Γ ) ∈ T , then by
the definition we have (σ,X) ∈ Tϕ for any X ∈ Γ , so � φX → terminal.
And by Axiom 3, we have � φX → ∧

ar∈Ar\{noopr} ¬legal(ar) ∧ legal(noopr), so
Lϕ

r ((σ,X)) = {noopr} for any X ∈ Γ . Thus, Lr((σ, Γ )) = {noopr} (Condition
(ii)). It remains to show that the update function U satisfies the assumption.

We first show that for any state (σ, Γ ) ∈ S and joint action d ∈ D,
U((σ, Γ ), d) is non-initial. This follows from the fact that for any d ∈ D and
(σ,X) ∈ Wϕ, Uϕ((σ,X), d) ∩ Iϕ = ∅ (by Axiom 2).

We next show that U((σ, Γ ), d) is unique if exists. Suppose not, then there
are (σ,Δ) and (σ,Δ′) such that U((σ, Γ ), d) = (σ,Δ), U((σ, Γ ), d) = (σ,Δ′)
and Δ �= Δ′. But by the definition we have Δ = Δ′ = {Y : (σ, Y ) ∈⋃

X∈Γ Uϕ((σ,X), d)}: a contradiction. Thus, U(s, d) is unique.
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The last assumption follows from the
fact that for any (σ,X) ∈ Tϕ, Uϕ((σ,X), 〈noopr〉r∈N ) = (σ,X). This is

proved by a similar method of Proposition 8. (�)

To complete the transformation, we next show how to generate a path in
A(Mϕ) from a given path in the pre-model Mϕ of ϕ.

Definition 10. Let Mϕ be the pre-model of ϕ. For any path δ := (σ,X0)
d1→

(σ,X1)
d2→ · · · of Mϕ, we define a sequence of states and joint actions δ̂ :=

(τ, Γ0)
d′
1→ (τ, Γ1)

d′
2→ · · · with respect to δ as follows: for any j ≥ 1,

1. σ = τ and dj = d′
j,

2. Γ0 = {X0}, and
3. Γj = {Xj : (σ,Xj) ∈ ⋃

Xj−1∈Γj−1
Uϕ((σ,Xj−1), dj)}.

Proposition 10. For any path δ of Mϕ, the sequence δ̂ is a path of A(Mϕ).

Proof. Let δ := (σ,X0)
d1→ (σ,X1)

d2→ · · · and δ̂ := (τ, Γ0)
d1→ (τ, Γ1)

d2→ · · · .
Clearly, δ̂ is infinite as δ is infinite. It suffices to show that δ̂ satisfies all the
conditions of a path in Definition 2. Let us first consider Condition 1. Suppose
not that there is some k ≥ 1 such that δ̂[k] ∈ I, then by the definition of
A(Mϕ), we have for all (σ,X) ∈ δ̂[k], (σ,X) ∈ Iϕ. In particular, (σ,Xk) ∈ Iϕ,
so � Xk → initial. Then by (R2) we have � ©Xk → ©initial. But by Axiom 2
we have � Xk−1 → ¬ © initial, contradicting that the formula Xk−1 ∧ ©Xk is
consistent. Thus, δ̂[j] �∈ I for all j ≥ 1. Condition 2 holds directly by the last two
clauses of Definition 10. Regarding Condition 3, for any r ∈ N , we have dj(r) ∈
Lϕ

r ((σ,Xj−1)) by Definition 7. Since Xj−1 ∈ Γj−1, so we have Lϕ
r ((σ,Xj−1)) ⊆

Lr((σ, Γj−1)) by Definition 9. Thus, dj(r) ∈ Lr((σ, Γj−1)). Regarding Condition
4, it suffices to show the following fact that for any (σ,X) ∈ Tϕ and d ∈ D,

Uϕ((σ,X), d) =
{{(σ,X)} if d = 〈noopr〉r∈N ;

∅ otherwise.

By Axiom 3, � φX → ∧
r∈N (

∧
ar∈Ar\{noopr} ¬legal(ar) ∧ legal(noopr)). And

by Axiom 8, we have � φX → ∧
r∈N (

∧
ar∈Ar\{noopr} ¬does(ar)). Thus,

Uϕ((σ,X), d) = ∅ for any d �= 〈noopr〉r∈N . Then by Axiom 4, we have
� φX → ∧

r∈N does(noopr). Since φX ∧ ©φX is consistent, so (σ,X) ∈
Uϕ((σ,X), 〈noopr〉r∈N ). Suppose there is another state (τ, Y ) ∈ Wϕ such that
(τ, Y ) ∈ Uϕ((σ,X), 〈noopr〉r∈N ) and (σ,X) �= (τ, Y ). Then there is some
α ∈ clk,r(ϕ) where k = d − |σ| if σ = τr, or α ∈ cld(ϕ) if σ = ε, such that either
(α ∈ X and α �∈ Y ) or (α �∈ X and α ∈ Y ). By symmetry, it suffices to show
the case α ∈ X and α �∈ Y . Then � φX → terminal ∧ α. And by Axiom 9, we
get � φX → ©α. By Proposition 3.2, we have either � φY → α or � φY → ¬α.
The former contradicts with the assumption α �∈ Y . Thus, � φY → ¬α. Then
by (R2), we have � ©(φY → ¬α), so � ©φY → ¬ © α, contradicting that
φX ∧ ©φY is consistent. Thus, Uϕ((σ,X), 〈noopr〉r∈N ) = {(σ,X)}. For any
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(σ, Γj−1) ∈ T , by the definition we have (σ,X) ∈ Tϕ for any X ∈ Γj−1, then by
the fact for any X ∈ Γj−1, Uϕ((σ,X), dj) = {(σ,X)} and dj = 〈noopr〉r∈N , so
{Xj : (σ,Xj) ∈ ⋃

X∈Γj−1
Uϕ((σ,X), 〈noopr〉r∈N )} = Γj−1. Thus, Γj = Γj−1.

This completes the proof of the proposition. (�)

Then we have the following equivalent result in terms of the transformations.

Lemma 2. Let Mϕ be the pre-model of ϕ and δ be a path of Mϕ. Then for any
α ∈ L,

Mϕ, δ |= ∗α iff A(Mϕ), δ̂ |= α.

We are now in the position to prove the soundness and completeness results
of EGDL with respect to the epistemic state transition models.

Theorem 1. The logic EGDL is sound and complete with respect to the class
of epistemic state transition models, i.e., for every ϕ ∈ L, |= ϕ iff � ϕ.

Proof. We only show the completeness. Assume �� ϕ, then ¬ϕ is consistent, so
there is an ε-state w such that � φw → ¬ϕ. By Lemma 1, M¬ϕ, δw |= ∗¬ϕ.
And by Lemma 2, we have A(M¬ϕ), δ̂w |= ¬ϕ. Thus, � |= ϕ. This completes the
proof. (�)

Then we have the following result saying that EGDL has the finite model
property.

Theorem 2. Let ϕ be a formula in EGDL. If ϕ is satisfiable, then it is satisfiable
in a finite epistemic state transition model.

4 Related Work

To deal with imperfect information games, many logics, mostly epistemic exten-
sions of Alternating-time Temporal Logic, Strategy Logic and PDL, have been
developed [1,2,10–13]. Different from them, as shown in [14], EGDL uses a
bottom-up approach in order to create a balance between expressive power and
computational efficiency. It is a conservative extension of a simple and practi-
cal logical language GDL. Besides the literature discussed in Introduction, the
following is also worth mentioning.

Zhang and Thielscher propose a dynamic extension of GDL for reasoning
about game strategies, and develop a sound and complete axiomatic system
for this logic [24]. With different languages and semantics, their axiomatization
and techniques to prove the completeness are different from ours. In particular,
they make use of forgetting techniques while we combine techniques used for
completeness of PDL and ETLs.

As a logic programming language, GDL has recently been extended to GDL-
II and GDL-III so as to incorporate imperfect information games [22,23]. They
are different from EGDL in two aspects: (i) GDL-II and GDL-III are purely
logic programming languages and do not provide a reasoning facility to reason
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about epistemic game rules. While as a logic EGDL is able to represent and
reason about rules of imperfect information. Moreover, we have developed an
axiomatic system for EGDL. (ii) GDL-II and GDL-III considers games with
perfect recall players and randomness, such as dice rolling and card shuffling.
While EGDL focuses on imperfect recall games without randomness. Yet EGDL
is flexible enough to specify perfect recall as well as the state-based memory and
the action-based memory [4].

Finally, it is worth mentioning that EGDL has similarities with ETLs such
as CKLm [7], but they are significantly different in the following ways: (i) With
does(.) operator, EGDL can express actions and their effects, thus it can be used
for reasoning about actions, while epistemic temporal logics are not. Moreover,
with action operator, the completeness proof of EGDL is different from those
of epistemic temporal logics; (ii) EGDL contains a single temporal operator
(“next”), and can only represent finite steps of time. (iii) Model checking for
EGDL is in Δp

2, while, for epistemic temporal logics, it is at least PSPACE-
hard [21].

5 Conclusion

We have developed a sound and complete axiomatic system for a variant of
EGDL. From the completeness proof, we have derived the finite model property
of this logic. We have also demonstrated how to use the proof theory for inferring
game properties from game rules.

Directions of future research are manifold. We intend to investigate the satis-
fiability problem of EGDL. The hardness of the satisfiability problem for EGDL
follows from the fact that EGDL is a conservative extension of S5C

n , and the
satisfiability problem for S5C

n is EXPTIME-complete [8]. We also want to study
the definability problem of EGDL [3]: which properties of games are definable by
means of EGDL-formulas? For instance, this paper shows that EGDL is able to
provide a description for Krieg-Tictactoe. It would be interesting to consider the
other direction: whether Krieg-Tictactoe is completely or even uniquely specified
by such a description.

Acknowledgments. We are grateful to Prof. Thomas Ågotnes and A/Prof. Yi Wang
for their valuable suggestions, and special thanks are due to two anonymous referees
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Abstract. We have proposed in previous works [14,15] a construction
that allows to define operators for iterated revision from classical AGM
revision operators. We called these operators revision operators with
memory and show that the operators obtained have nice logical prop-
erties. But these operators can be considered as too conservative, since
the revision policy of the agent, encoded as a faithful assignment, does
not change during her life. In this paper we propose an extension of these
operators, that aims to add more dynamics in the revision process.

1 Introduction

The predominant approaches for modelling belief change was proposed by
Alchourrón, Gärdenfors and Makinson and is known as the AGM framework
[1,10]. The core of this framework is a set of logical properties that a revision
operator has to satisfy to guarantee a nice behaviour. A drawback of AGM defi-
nition of revision is that it is a static one, which means that, with this definition
of revision operators, one can have a rational one step revision but the conditions
for the iteration of the process are very weak. The problem is that AGM postu-
lates state conditions only between the initial knowledge base, the new evidence
and the resulting knowledge base. But the way to perform further revisions on
the new knowledge base does not depend on the way the old knowledge base
was revised.

Numerous proposals have tried to state a logical characterization that ade-
quately models iterated belief change behaviour [6,8,9,14,17,19,20]1. The core
work on iterated revision is the proposal of Darwiche and Pearl [9] and its devel-
opments [4,11,13,16]. The main idea that is common to all of these works is
that the belief base framework is not sufficient to encompass iterated revision,
since one needs some additional information for coding the revision policy of the
agent. So the need of epistemic states to encode the agent’s “state of mind” is
widely accepted. An epistemic state allows to code the agent’s beliefs but also to
code her relative confidence in alternative possible states of the world. Epistemic
1 See also [22–24]. We do not adress this kind of operators in this paper since they

require an additional numerical information with the new evidence.
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states can be represented by several means: pre-orders on interpretations [9,17],
conditionals [6,9], epistemic entrenchments [19,23], prioritized belief bases [2,3],
etc. In this work we will focus on the representation of epistemic states in terms
of pre-orders on interpretations.

In [14,15], we define a family of revision operators that we have called revision
operators with memory. These operators can be defined from any classical AGM
revision operator [1,12] and they have good properties for iterated revision.

In fact revision operators with memory use the faithful assignment provided
by the classical AGM revision operator as an a priori information. This a priori
information is attached to the new evidence, and the completed information
obtained is then incorporated to the old epistemic state with the usual primacy
of update requirement. The ontology for this pre-processing step, associating an
additional information to the incoming new evidence is the following. Suppose
that the agent has no information (no belief) about the world and learns a
(first) new evidence. Then, this new evidence alone can provide more change in
the agent’s mind than just the addition of a belief.

As an example, suppose that the agent learns ϕ = a∧b∧c∧d, where a, b, c, d
are atomic formulae. Then her preferred worlds (the ones she finds the more
plausible) will be the ones where the four atomic formulae are true. But it can
be sensible for her to find the worlds where three of the atomic formulae are true
more plausible than the ones where only two are, etc.

So the new evidence does not simply imply a partition between the believed
worlds and the unbelieved ones, but defines several stratas, depending of the
plausibility of each world, given the new evidence. We call this property strong
primacy of update. This induced preferential information was given here by a
“Dalal distance” policy2, but more complex or realistic policies can be also used
depending on the particular context.

The point in the definition of revision operators with memory, is that this a
priori information, carried by a new evidence depends only on the new evidence
by itself, and does not depend on the current agent’s beliefs. Going back to the
previous example, the fact that the worlds where three of the four atomic formulae
are true are preferred to the ones where only two are, does not depend on any other
information than the new evidence itself. So this a priori information has to be
added to the new evidence before incorporating it in the agent’s epistemic state.

More precisely, the revision policy of revision operators with memory is the
following: the revision of the current epistemic state Φ – represented by a pre-
order over possible worlds – by a new piece of information α – a formula – is the
epistemic state (pre-order) obtained after the following two steps:

– First, take the pre-order ≤α associated to α by the AGM revision operator
(faithful assignment [12]) given at the beginning of the process.

– Second, take the lexicographical pre-order associated to ≤α and Φ. The pre-
order obtained in this way is the new epistemic state.

Note that there is a very static feature in this process: the way in which we
associate a pre-order to the new piece of information is always the same; it is

2 The Dalal distance [7] is a Hamming distance between interpretations.
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given by the fixed AGM operator from which we start all the process. In some
sense this is contrary to the principle of priority of the new information.

In this work we solve this problem. In order to do that we take the revi-
sion policy as an epistemic state and naturally this revision policy will change
progressively with the successive revisions. The new process can be described in
the following manner: first of all, an epistemic state is composed by a faithful
assignment, say f , and a distinguished formula φ. When α, the new evidence,
arrives, we revise as follows:

(i) the new distinguished formula φ′ will be a formula having as models the
minimal models of α with respect to the f(φ) pre-order.

(ii) The new assignment f ′ will coincide with f on the formulas not equivalent
to φ′. On formulas equivalent to φ′ it will be the lexicographical pre-order
associated to f(α) and f(φ).

Thus, this method allows to incorporate the changes step by step in a very
natural way. This process agrees with the postulate of primacy of the new infor-
mation. Unlike our original revision operators with memory that mix the new
piece of information with the oldest information (which is static), our present
operators mix the new piece of information with the current epistemic state.

The rest of the paper is organized as follows: in Sect. 2, we recall the logical
characterization of iterated revision operators of Darwiche and Pearl. In Sect. 3,
we recall the definition of revision operators with memory and state the general
logical results. Then, in Sect. 4, we show how to add more dynamics to revision
operators with memory. We conclude in Sect. 5 with some general remarks.

2 Iterated Revision Postulates

We give here a formulation of AGM postulates for belief revision à la Katsuno
and Mendelzon [12]. More exactly, we give a formulation of these postulates in
terms of epistemic states [9]. The epistemic states framework is an extension of
the belief bases one. Intuitively an epistemic state can be seen as a composed
information: the beliefs of the agent, plus all the information that the agent needs
about how to perform revision (preference ordering, conditionals, etc.). Then we
give the additional iteration postulates proposed by Darwiche and Pearl [9].

2.1 Formal Preliminaries

We will work in the finite propositional case. A belief base ϕ is a finite set of
formulae, which can be considered as the formula that is the conjunction of
its formulae. The set of all interpretations is denoted W. Let ϕ be a formula,
Mod(ϕ) denotes the set of models of ϕ, i.e. Mod(ϕ) = {I ∈ W : I |= ϕ}.

A pre-order ≤ is a reflexive and transitive relation, and < is its strict coun-
terpart, i.e. I < J if and only if I ≤ J and J �≤ I. As usual, � is defined by
I � J iff I ≤ J and J ≤ I. A pre-order is total if and only if ∀I, J , I ≤ J or
J ≤ I.
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To each epistemic state Ψ is associated a belief base Bel(Ψ) which is a propo-
sitional formula representing the objective (logical) part of Ψ . The models of Ψ
are the models of its associated belief base, thus Mod(Ψ) = Mod(Bel(Ψ)). Let
Ψ be an epistemic state and μ be a sentence denoting the new information. Ψ ◦μ
denotes the epistemic state resulting of the revision of Ψ by μ. For reading conve-
nience we will write respectively Ψ 	 μ, Ψ ∧ μ and I |= Ψ instead of Bel(Ψ) 	 μ,
Bel(Ψ) ∧ μ and I |= Bel(Ψ).

Two epistemic states are equivalent, noted Ψ ≡ Ψ ′, if and only if their objec-
tive parts are equivalent formulae, i.e. Bel(Ψ) ↔ Bel(Ψ ′). Two epistemic states
are equal, noted Ψ = Ψ ′, if and only if they are identical. Thus equality is
stronger than equivalence.

2.2 AGM Postulates for Epistemic States

Let Ψ be an epistemic state and μ and ϕ be formulae. An operator ◦ that maps
an epistemic state Ψ and a formula μ to an epistemic state Ψ ◦ μ is said to be a
revision operator on epistemic states if it satisfies the following postulates [9]:

(R*1) Ψ ◦ μ 	 μ
(R*2) If Ψ ∧ μ � ⊥, then Ψ ◦ μ ↔ Ψ ∧ μ
(R*3) If μ � ⊥, then Ψ ◦ μ � ⊥
(R*4) If Ψ1=Ψ2 and μ1↔μ2, then Ψ1 ◦ μ1 ≡ Ψ2 ◦ μ2

(R*5) (Ψ ◦ μ) ∧ ϕ 	 Ψ ◦ (μ ∧ ϕ)
(R*6) If (Ψ ◦ μ) ∧ ϕ � ⊥, then Ψ ◦ (μ ∧ ϕ) 	 (Ψ ◦ μ) ∧ ϕ

This is nearly the Katsuno and Mendelzon formulation of AGM postulates
[12]; the only differences are that we work with epistemic states instead of belief
bases and that postulate (R*4) is weaker than its AGM counterpart. See [9] for
a full motivation of this definition.

A representation theorem states how revisions can be characterized in terms
of pre-orders on interpretations. In order to give such a semantical representa-
tion, the concept of faithful assignment on epistemic states is defined.

Definition 1. A function that maps each epistemic state Ψ to a pre-order ≤Ψ

on interpretations is called a faithful assignment over epistemic states if and
only if: 1. If I |= Ψ and J |= Ψ , then I �Ψ J

2. If I |= Ψ and J �|= Ψ , then I <Ψ J
3. If Ψ1 = Ψ2, then ≤Ψ1=≤Ψ2

Now the reformulation of the Katsuno and Mendelzon [12] representation
theorem in terms of epistemic states is:

Proposition 1 ([9]). A revision operator ◦ satisfies postulates (R*1-R*6) if
and only if there exists a faithful assignment (over epistemic states) that maps
each epistemic state Ψ to a total pre-order ≤Ψ such that

Mod(Ψ ◦ μ) = min(Mod(μ),≤Ψ )
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Notice that this theorem gives information only on the objective part of
the resulting epistemic state, but does not allow to know what is the pre-order
associated with Ψ ◦ μ, i.e. we can not identify the new epistemic state, but only
its associated belief base Mod(Ψ ◦ μ). Making the parallel with the classical
Katsuno and Mendelzon representation theorem (cf Definition 2 and [12]), that
allows to define exactly what is the belief base Mod(Ψ ◦ μ)3, the last theorem is
only a weak representation theorem.

2.3 Darwiche and Pearl Postulates

A strong limitation of AGM revision postulates is that they impose very weak
constraints on the iteration of the revision process. Darwiche and Pearl [8,9]
proposed postulates for iterated revision. The aim of these postulates is to keep
as much as possible of conditional beliefs (a conditional belief can be expressed
as “if μ would be the case, then ϕ must be true”) of the old belief base. These
conditional beliefs are encoded in the total pre-orders on interpretations. So,
besides postulates (R*1-R*6), a revision operator has to satisfy:

(C1) If ϕ 	 μ, then (Ψ ◦ μ) ◦ ϕ ≡ Ψ ◦ ϕ
(C2) If ϕ 	 ¬μ, then (Ψ ◦ μ) ◦ ϕ ≡ Ψ ◦ ϕ
(C3) If Ψ ◦ ϕ 	 μ, then (Ψ ◦ μ) ◦ ϕ 	 μ
(C4) If Ψ ◦ ϕ � ¬μ, then (Ψ ◦ μ) ◦ ϕ � ¬μ

These postulates can be explained as follows: (C1) states that if two pieces of
information arrive and if the second implies the first, the second alone would give
the same belief base. (C2) says that when two contradictory pieces of information
arrive, the second alone would give the same belief base. (C3) states that an
information should be retained after revising by a second information such that,
when revising the current belief base by it, the first one holds. (C4) says that no
piece of information can contribute to its own denial.

3 Revision Operators with Memory

A “classical” AGM revision operator is equivalent to a faithful assignment over
belief bases as stated in the following theorem [12].

Definition 2. A function that maps each belief base ϕ to a pre-order ≤ϕ on
interpretations is called a faithful assignment over belief bases if and only if:

1. If I |= ϕ and J |= ϕ, then I �ϕ J
2. If I |= ϕ and J �|= ϕ, then I <ϕ J
3. If ϕ1 ↔ ϕ2, then ≤ϕ1=≤ϕ2

3 Recall that classical AGM operators are functions that map a belief base and a
formula to a belief base, which is (completely) defined by the theorem, whereas
Proposition 1 concerns operators that are functions which map an epistemic state
and a formula to an epistemic state, that is not completely defined by the theorem.
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It is important to note that, in what follows, we have two distinct kinds of
faithful assignments: one over belief bases and one over epistemic states.

Proposition 2 ([12]). A revision operator ◦ satisfies classical AGM postulates
(R1-R6)4 if and only if there exists a faithful assignment (over belief bases)
that maps each belief base ϕ to a total pre-order ≤ϕ such that: Mod(ϕ ◦ μ) =
min(Mod(μ),≤ϕ).

So one can define a revision operator directly by defining the correspond-
ing faithful assignment over belief bases. It is the case for most distance-based
revision operators such as Dalal operator [7,12].

More precisely we say that a revision operator ◦ is defined from a distance d
iff the following conditions hold:

– d is a (pseudo-)distance, that is d is a function d : W × W → IN which
satisfies: d(I, J) = d(J, I) and d(I, J) = 0 iff I = J .

– The distance between an interpretation I and a belief base ϕ is defined as:

d(I, ϕ) = min {d(I, J) : J |= ϕ}

– This distance induces a faithful assignment: I ≤ϕ J iff d(I, ϕ) ≤ d(J, ϕ)
– And the revision operator is defined by Mod(ϕ ◦ μ) = min(Mod(μ),≤ϕ)

One can check that the assignment obtained like this is a faithful assignment
and thus that all operators defined in this way satisfy AGM postulates. It can
also be easily checked that operators defined in this way do not satisfy many of
the iterated revision postulates.

Now we will give a construction that allows, from a given faithful assignment
(i.e. from a given classical AGM revision operator), to define another revision
operator that satisfies AGM postulates but also most of the iterated revision
postulates.

First, let us notice that an epistemic state can be represented by a total pre-
order on interpretations as suggested by Proposition 1 and by several related
works (cf e.g. [3,9]). So, with this particular representation (identifying the epis-
temic state Ψ with a pre-order ≤Ψ ), the belief base Bel(Ψ) is simply the formula
whose models are minimal for the pre-order, that is Bel(Ψ) = min(W,≤Ψ ). And
the other interpretations are ordered according to their relative plausibility for
the agent. For example, I ≤Ψ J means that the agent that is in the epistemic
state Ψ considers I as at least as plausible as J . It is this preferential information
that can be used to encompass the iterated revision behaviour, by considering
revision operators as functions that map a pre-order (epistemic state) and a for-
mula (new information) into a new pre-order (epistemic state). This idea is the
mainstay in most of iterated revision works [4,9,11,13,16,19,23].

So, using this representation by means of pre-orders on interpretations and
Proposition 1 we will define a familly of revision operators as follows:
4 It is the same set of postulates than (R*1-R*6) but expressed for belief bases instead

of epistemic states (cf [12]).
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Definition 3. Suppose that we have a function that maps each belief base ϕ to a
pre-order ≤ϕ. Then, we define the epistemic state (the pre-order) Ψ ◦ϕ resulting
of the revision of Ψ by the new information ϕ as:

I ≤Ψ◦ϕ J iff I <ϕ J or (I �ϕ J and I ≤Ψ J)

Then one can check that:

Proposition 3 ([15]). If the function that maps each belief base ϕ to a total
pre-order ≤ϕ is a faithful assignment over belief bases, then the revision operator
on epistemic states defined in Definition 3 satisfies postulates (R*1-R*6). We
will call such operators revision operators with memory.

So, with Definition 3, one can start from any epistemic state (total pre-order
over interpretations) and carry on iterated revisions. A particular epistemic state
we can mention is the “empty” epistemic state, where the agent has no belief
and no preferential information, that is, such that ∀I, J ∈ W I � J . We will
denote by Ξ this epistemic state. So, the objective part of this epistemic state
is Bel(Ξ) = �. It can be considered as the epistemic state generalisation of
� for the belief base framework, since they are both neutral elements for the
corresponding operators: Ξ ◦ϕ ≡ ϕ (as �◦ϕ ≡ ϕ in the belief base framework).
One can consider that all agents start with this epistemic state (we will consider
this in the examples). Concerning iteration postulates:

Proposition 4 ([15]). Revision operators with memory satisfy postulates (C1),
(C3) and (C4).

It can be also easily checked that (C2) is satisfied by a unique revision oper-
ator with memory, since it demands (in the presence of the other revision postu-
lates), that the pre-order associated to a belief base by the faithful assignment
on belief base used in Definition 3 is a two-level pre-order with the models of the
belief base at the lowest level and the counter-models at the higher one. This
operator will be presented in the next section.

So most of our revision operators with memory do not satisfy (C2). But we do
not consider this as a drawback. We rather think that it is (C2) that is not fully
satisfactory. In fact C2 demands that a piece of information that is accepted but
later contradicted is completely discarded. One could argue for a more subtle
behavior where only the contradicted part (so not all the formula) is discarded.
See [15,17] for more explanations on this point. For instance suppose that you
learn a big conjunction a ∧ b ∧ . . . ∧ z and that later you learn ¬a. Couldn’t be
natural to try to keep b∧ . . .∧z ? Or should we discard it completely as required
by (C2) ? According to us (C2) should not be regarded as a first class require-
ment (conversely to other postulates), but as an optional property that makes a
distinction between two kinds of revision operators: the ones that consider that
contradicting a piece of information amounts to discrediting its source, and then
to discard it completely, and the ones that have a more subtle behavior and that
only remove the contradicting parts of the pieces of information.

For a more complete logical characterization of this family of operators
see [14].
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3.1 Basic Memory Operator

Let us define the assignment that maps each belief base to a pre-order in the
following way:

Definition 4. Let ϕ be a belief base, the basic pre-order ≤b
ϕ associated to ϕ is

defined as: I ≤b
ϕ J if and only if I |= ϕ or (I �|= ϕ and J �|= ϕ)

So we have what we call a basic order, which is a two-level order (at most),
with the models of ϕ at the lowest level and the other worlds at the highest level.

Definition 5. The basic memory operator is the memory operator obtained
from this assignment (i.e. the operator obtained by Definitions 4 and 3).

It is worthy to note that if one uses this faithful assigment (Definition 4)
to define a classical AGM operator (Proposition 2), one obtains the full meet
revision operator which is not a good operator. But, even with this basic order on
belief bases in the revision with memory framework, one can build very complex
epistemic states. This is due to revision memory. The assignment of Definition
4 is a faithful assignment on belief bases; with Propositions 3 and 4, it is easy
to show that:

Proposition 5 ([15]). The only revision operator with memory that satisfies
(R*1-R*6) and (C1–C4) is the basic memory revision operator.

This operator has been already studied in the literature under different par-
ticular representations: in [19] with epistemic entrenchments, in [2,21] with
polynomials and syntactic belief bases. Finally, we can note that Liberatore
has shown [18] that several problems are computationally simpler for the basic
memory operator than for the other iterated belief revision proposals (including
Boutilier’s natural revision [5], Lehmann’s ranking revision [17] and Williams’
transmutations [23]).

3.2 Dalal Memory Operator

We use in this section the Hamming distance dH between interpretations5. The
Dalal distance between an interpretation I and a belief base ϕ is defined as
dD(I, ϕ) = minJ|=ϕ(dH(I, J)).

Let’s define the assignment that maps each belief base to a pre-order in the
following way:

Definition 6. Let ϕ be a belief base, the pre-order ≤d
ϕ associated to ϕ is defined

as: I ≤d
ϕ J if and only if dD(I, ϕ) ≤ dD(J, ϕ)

So we have a pre-order with the models of ϕ at the lowest level and the other
worlds in the higher levels, according to their Dalal distance.
5 The Hamming distance between two interpretations is the number of propositional

letters on which the two interpretations differ.
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Definition 7. The Dalal memory operator is the memory operator obtained
from this assignment (i.e. the operator obtained by Definitions 6 and 3).

We can show through a simple example that this operator differs from the
classical Dalal revision operator [7,12]. Let a and b be two propositional letters
and consider for example the sequence Ψ = Ξ ◦a◦b◦¬(a∧b). The classical Dalal
operator gives Bel(Ψ) = (a ∧ ¬b) ∨ (¬a ∧ b), whereas Dalal memory operator
gives Bel(Ψ) = (¬a∧ b). This behaviour seems more natural since at the next to
last step we learned that b was true, and it is normal to keep some credit for this
evidence in the following step. It is in this way, that our operators use revision
with “memory”.

4 Dynamical Revision Operators with Memory

For revision operators with memory, the revision policy is fixed once the operator
is chosen. For example for the Dalal memory operator, the way to associate a
pre-order to each new evidence is completely determined at the beginning of the
process by the Dalal distance.

So, whereas the aim of revision operators with memory is to give a strong
preference to the new evidence, one can object that the faithful assignment used
to associate a pre-order to the new evidence does not change and so, that an old
information is used in each revision step.

The solution to cope with this objection is to find a way to change the faithful
assignment during the course of revisions. Such a solution will be given in this
section. So, first, let’s sum up the way revision operators with memory work:

– The definition of a particular operator lies in the chosen faithful assignment
over belief bases. Let’s call f such an assignment. So, for each formula ϕ, f
associates a total pre-order f(ϕ) (also noted ≤f(ϕ)) satisfying the conditions
of Definition 2.

– Each time a new evidence ϕ comes, the operator associates to it its corre-
sponding pre-order f(ϕ).

– The new epistemic state is the result of incorporating the pre-order in the old
epistemic state, giving preference to the new evidence (i.e. to the pre-order)
by using a lexicographical order: ≤Φ◦ϕ=≤lex(f(ϕ),Φ)

6.

So, what we want now is to be able to change f during the agent’s life. That
is, to dynamically change the revision policy of the agent, so that when a new
evidence comes, it is not always associated to the same pre-order.

The idea is to start from an a priori faithful assignment over belief bases
such as for revision by memory operators, but then to modify it at each revision
step. To be able to do that, we have to use a more general definition of epistemic
states. The (representation of) epistemic states we use for revision operators
with memory are pre-orders on interpretations ≤Φ, from which we can extract
the corresponding belief base Bel(Φ) = min(W,≤Φ).
6 Where I ≤lex(≤1,≤2) J means I <1 J or (I �1 J and I ≤2 J).
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For dynamical revision operators with memory, the representation of an epis-
temic state we use is a couple Φ = (ϕ, f), where ϕ is the current belief base
and f is the current faithful assignment (So, with this representation, we can
extract the pre-order corresponding to the belief base: f(ϕ), and straightfor-
wardly Bel(Φ) = ϕ).

As for classical revision operators with memory, to define a particular dynam-
ical revision with memory operator, one needs an initial, a priori faithful assign-
ment over belief bases (i.e. a classical AGM revision operator), that will encode
the initial revision policy of the agent.

So let’s define dynamical revision operators with memory:

Definition 8. Let Φ = (ϕ, f) be an epistemic state and let μ be a formula
denoting a new evidence. We define the new epistemic state Φ ◦ μ, resulting of
the dynamical revision with memory of Φ by μ, as Φ ◦ μ = (ϕ′, f ′), where ϕ′ is
a formula whose models are min(Mod(μ), f(ϕ)), and f ′ is a function (faithful
assignment over belief bases) that is identical to f for each belief base ψ except
when ψ ↔ ϕ′. In this case f ′(ψ) is defined as:

I ≤f ′(ψ) J iff I <f(μ) J or (I �f(μ) J and I ≤f(ϕ) J)

So, pointwise, the dynamical operators work exactly the same way as memory
operators. The difference is that they also change the given faithful assignment
over belief bases at each step. One could believe that the difference between the
two families of operators is not huge, since the corresponding pre-orders (faithful
assignment) used change only for one value at each step. But as we will see next
the dynamical revision operators with memory satisfy the following postulate
that the revision operators with memory do not (always) satisfy (cf Example 1):

(C5) If Bel(Φ) ↔ μ then Φ ◦ μ = Φ.

This axiom says that the current epistemic state does not change in all cases
where the new piece of information coincides with the observable part of this
epistemic state. Note that this axiom is almost trivial in the classical AGM
framework7. But in the framework of complex epistemic states it is not the case.
In fact, as we already mentioned, the revision operators with memory do not
(always) satisfy (C5) as can be seen in the following example.

Example 1. We are reasoning about an electronic circuit with two components,
the left one and the right one. The propositional variable l means that the left
component is working, and r encodes the fact the right component is working.
Suppose we start from the Dalal classical AGM revision operator. Let Φ be the
epistemic state with observable part being the following formula: “only one of
the two components is working” (Bel(Φ) = (l ∧ ¬r) ∨ (¬l ∧ r)). Let μ be the
formula expressing that “the component on the left is not working” (μ = ¬l).
The beliefs of the epistemic state after the revision Φ ◦ μ using Dalal memory
operator is “only the component on the right is working”. The other (conditional)

7 In that framework, it is a consequence of the other axioms.



624 S. Konieczny and R. Pino Pérez

information of this epistemic state can be described by the conditionals “if the
component on the right is not working then the two components are bad” and
“if the components on the left is working then only the component on the left
is working”. Now if we revise this current epistemic state by the fact that “only
the component on the right is working” (ϕ = ¬l ∧ r), which is indeed the beliefs
of the current epistemic state, we obtain a different epistemic state in which for
instance we have the conditional “if the component on the left is working then
the two components are working”. On the contrary, the current epistemic state
does not change after revision by this new information when the operator is the
dynamical Dalal revision with memory operator.

We illustrate this example below. In order to do that consider a language
L with only two propositional letters l and r. We will denote interpretations
simply by the truth assignment, i.e. 10 denotes the interpretation mapping l
to true and r to false. Two interpretations are equivalent, with respect to the
pre-order, if they appear at the same level. An interpretation I is better than
another interpretation J (I < J) if it appears at a lower level. ◦MD denotes the
Dalal revision with memory operator and ◦DMD the dynamical Dalal with memory
operator.

Let’s see the pre-order associated to some belief bases by the faithful assign-
ment over belief bases given by the Dalal distance:

≤D

Φ=
11 00
01 10 ≤D

μ=
10 11
00 01 ≤D

ϕ=
10

11 00
01

And the epistemic states reached by the operators are:

≤Φ=
11 00
01 10 ≤Φ◦MDμ=

11
10
00
01

≤Φ◦MDμ◦MDϕ=

10
11
00
01

≤Φ=
11 00
01 10 ≤Φ◦DMDμ=

11
10
00
01

≤Φ◦DMDμ◦DMDϕ=

11
10
00
01

Note that the idea here is that, when the agent receives a new evidence that
she has met before, the repetition of this evidence suggests that the old beliefs of
the agent were correct, and so she holds on to the last pre-order that corresponds
to this evidence.

In fact, if one considers the definition of iterated revision operators accord-
ing to Darwiche and Pearl (cf Sect. 2.2), it amounts to say that we change the
revision operators at each step, since the corresponding faithful assignment over
epistemic states changes at each step. So, in a sense, dynamical revision opera-
tors with memory are definable by a family of revision operators with memory
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(that corresponds to the set of all faithful assignments over belief bases reached
by the course of revisions).

Concerning the logical properties of this family of operators, it is easy to
check the following:

Theorem 6. A dynamical revision operator with memory satisfies (R*1)–
(R*6). It satisfies (C1), (C3), (C4) and (C5) but it never satisfies (C2).

Finally, as another example, let’s see the behaviour of the full meet revision
operator ◦B , the basic memory operator ◦MB and the dynamical basic memory
operator ◦DMB (they are all built from the same faithful assignment over belief
bases) on the same situations.

Example 2. Consider a language L with only two propositional letters a and b
(considered in that order for the valuations). Let’s see the pre-order associated to
some belief bases by the faithful assignment over belief bases given by the Basic
distance:

≤B
a=

00 01
10 11 ≤B

b=
00 10
01 11

≤B

a∧b=
00 01 10

11 ≤B
¬a=

10 11
00 01

And the epistemic states reached by the operators are:

≤a◦MBb = ≤a◦DMBb=

00
10
01
11

≤a◦MBb◦MB¬a = ≤a◦DMBb◦DMB¬a=

10
11
00
01

≤a◦MBb◦MB¬a◦MBa∧b=

10
00
01
11

≤a◦DMBb◦DMB¬a◦DMBa∧b=

00
10
01
11

So we have that:
a ◦B b ◦B ¬a ◦B a ∧ b ◦B ¬b ≡ ¬b

a ◦MB b ◦MB ¬a ◦MB a ∧ b ◦MB ¬b ≡ ¬a ∧ ¬b
a ◦DMB b ◦DMB ¬a ◦DMB a ∧ b ◦DMB ¬b ≡ a ∧ ¬b

As noted previously, the full meet revision operator ◦B does not have a very
good behaviour: each time the new evidence contradicts the current beliefs,
the new beliefs are only the logical consequences of the new evidence. So, it
absolutely does not consider the previous revisions. With the revision operator
with memory ◦MB, the agent is able to build complex epistemic states (pre-
orders), that lead to a satisfactory behaviour for iterated revision. With this
operator, the two evidences ¬a and ¬b recently learned lead to this belief base.
With the dynamical revision operator with memory ◦DMB, the evidence learned
at the next to last step (a ∧ b) recalls the agent the last time she had this belief
(after a ◦DMB b), and this modifies her epistemic state.
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5 Conclusion

It is worthy to note that the two families of operators defined, revision with
memory and dynamical revision with memory, are revision operators in the sense
of Darwiche and Pearl, that is, they map an epistemic state and a formula (new
evidence) to an epistemic state. We have shown that one can use any standard
AGM revision operator and turns it to a DP iterated revision operator using
revision with memory and dynamical revision with memory (C2 is not satisfied,
but this postulate is criticizable).

Note that [3] considers revision of epistemic states by epistemic states. In this
work, even if at the end of the process we work with two pre-orders, the second
one is obtained from the input, that is a single formula (as usual in AGM/DP
framework), by a pre-processing step.

It is interesting also to note that our definition of epistemic states for dynam-
ical revision with memory is more complicated than usual DP ones: so this work
illustrates that one can encode sublter behaviours with more complicated epis-
temic states. Studying this kind of generalized epistemic states and its applica-
tion seems to be an interesting research issue.
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15. Konieczny, S., Pérez, R.P.: Some operators for iterated revision. In: Benferhat,
S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 498–509.
Springer, Heidelberg (2001). doi:10.1007/3-540-44652-4 44
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Abstract. The laws of classical logic are taken to be logical truths, which in turn
are taken to hold objectively. However, we might question our faith in these truths:
why are they true? One general approach, proposed by Putnam [8] and more
recently Dickson [3] or Maddy [5], is to adopt empiricism about logic. On this
view, logical truths are true because they are true of the world alone – this gives
logical truths an air of objectivity. Putnam and Dickson both take logical truths
to be true in virtue of the world’s structure, given by our best empirical theory,
quantum mechanics. This assumes a determinate logical structure of the world
given by quantum mechanics. Here, I argue that this assumption is false, and that
the world’s logical structure, and hence the related ‘true’ logic, are underdeter‐
mined. This leads to what I call empirical conventionalism.

Keywords: Philosophy of logic · Philosophy of physics · Conventionalism

1 Empiricism

Consider the classical distributive law over conjunctions for all sentences p, q, and r:

(𝐃𝐈𝐒𝐓): p and (q or r) ↔ (p and q) or (p and r)

As with other ‘laws’ of classical logic (CL), DIST is often taken as a logical truth
– regardless of p, q or r, it objectively holds. Braving heresy, one might ask: why are
they true? Logical conventionalism, a once-popular approach, takes logical truths to
follow from the meanings of subsentential operators. In short, logical truths, e.g.
DIST, are true ‘in virtue of meaning’ or ‘true by convention’. 1 However, such conven‐
tionalism appears intuitively unsatisfactory for explaining DIST’s objective truth given
its dependence on (at best) intersubjective conventions.2

One attractive alternative is empiricism: facts about the world alone determine the
logical truths, independent of conventions. This prima facie avoids the aforementioned
problem, since a logic is true in virtue of facts about a mind-independent world. How is
a logic validated by the world? Maddy [5] proposes3 that ‘logic is true of the world
because of its underlying structural features’. The difficulty, then, is determining the

1 Warren [12], p. 120.
2 Quine [9] remains the starting point against explicit conventionalism. However, see [12] who

argues for implicit conventionalism.
3 Maddy [5], p. 226.
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world’s actual logical structure. Here, the empiricist strategy is to ‘read off’ logic from
our best fundamental sciences,4 often taken to be quantum mechanics (QM). Notably,
Putnam [8] and Dickson [3] employ this strategy to argue that DIST is false, in light of
the logic of quantum mechanics, quantum logic (QL). Instead, QL is the ‘true’ logic.5
The objectivity of empiricism thus comes at a cost: DIST was, after all, a logical law
whose objective truth we hoped to establish. The empiricist bites the bullet here:
forsaking DIST is a worthwhile price for reclaiming objectivity.

Here, I offer a critique of this strategy, specifically its presupposition of a determinate
world-structure prescribed by QM, by showing that the world-structure in QM is
empirically conventional: nothing within QM’s formalism, from which all empirical
results are derived, can determine the choice of world-structure. Since logic is tied to
world-structure, the world alone fails to decide our logic. Putnam’s challenge to the
conventionalist fails: the relevant empirical facts determining ‘true’ logic are still
conventional, leaving us with another form of conventionalism.

Going forward, I assume a basic understanding of QL and QM. In Sect. 2, I introduce
the disagreement between QL and CL regarding DIST. In Sect. 3, I present two well-
known interpretations of QM with different prescriptions of world-structure. In Sect. 4,
I argue that the choice between these prescription is empirically conventional. A
fortiori, so is the ‘true’ logic. This leads to a form of conventionalism even within
empiricism.

2 Distribution

The distinguishing feature of QL is the sort of propositions it governs, viz. experimental
propositions about quantum systems, e.g. ‘the system passes a test for some possible
state P with probability 1’, with a bijection to subspaces in Hilbert space. While disjunc‐
tion in CL is equivalent to classical union ∪, it is well-known that the disjunction in QL,
𝐀 ∨QL 𝐁, is not 𝐀 ∪ 𝐁. Rather, it is A and B’s span.6 Indeed, two subspaces’ union is
generally not itself a subspace in QL. Recall the empiricist claim: QL, based off the
structure of QM, shows that DIST is false. Consider QL’s equivalent of DIST:

(𝐃𝐈𝐒𝐓†): R ∧
(
P ∨QL Q

)
= (R ∧ P) ∨QL (R ∧ Q)

Here, P, Q and R are arbitrary distinct subspaces, ∧ is interpreted as intersection, and
∨QL is interpreted as span. By considering P, Q and R as any three distinct coplanar
subspaces we can trivially demonstrate that 𝐃𝐈𝐒𝐓† is not a logical truth in QL.

Objection: we have not yet shown DIST’s failure, using classical ‘and’ and ‘or’. I
merely demonstrated DIST†’s falsehood using ‘∧’ and ‘∨QL’, on a restricted class of
experimental propositions. Hence Maudlin’s complaint: “quantum ‘logic’ isn’t logic,

4 Putnam [8], p. 179.
5 Dickson [3], p. 2.
6 The span of two subspaces is the plane containing them and their superpositions.
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i.e. isn’t an account of conjunction and disjunction”.7 In response, proponents of QL
must show that, in some sense, the world’s apparent CL-structure, in virtue of which
we adopted CL, is ‘really’ a QL-structure: we were simply mistaken about the world’s
logical structure underlying our use of ‘or’.

One strategy comes to mind. First, in the context of experimental propositions, show
that there is (a) no meaningfully definable classical ‘or’, and (b) the best replacement
for ‘or’ is ‘∨QL’. Next, (c) show that the experimental propositions of QL exhaust all
propositions about the world. Without (c), a possibility that the world’s logical structure
is really classical remains: the non-classical nature of QL only arises in specific contexts,
e.g. measurements. Given (a) – (c), the empiricist can assert that there is no other way
to ‘read off’ an appropriate notion of disjunction from the world’s structure without
‘∨QL’. The empiricist takes this to mean that what we meant by ‘or’ was really ‘∨QL’,

and so what we thought was DIST was really DIST†. Since DIST† is false, so is DIST.
In the context of experimental propositions, there is justification for both (a) and

(b). Regarding (a), there is no clear way to introduce classical ‘or’ into the logic of
experimental propositions, QL, since there is, in general, no experimental proposition
or subspace in Hilbert space corresponding to the classical ‘P or Q’.8 This gives us reason
to claim that we cannot even speak of the classical ‘or’ meaningfully in terms of exper‐
imental propositions. Dickson [3] argues further for (b): plausibly, ‘∨QL’ is the only other
candidate9 in this framework for replacing the classical ‘or’, in the sense that ‘∨QL’ share
many similarities in terms of logical behavior with classical disjunction, apart from
distribution.10

3 Interpretation

It seems clear that DIST† cannot be ‘read off’ the structure of experimental propositions
in QM. However, do experimental propositions exhaust all propositions about the
world? There are at least two interpretations of QM – Bohmian mechanics (BM) and
Everettian mechanics (EM) – which are well-known for capturing the same empirical
results as the standard QM algorithm. They are empirically equivalent, despite
prescribing radically different world-structures and thereby answers to (c).

The relevant difference here turns on the status of superpositions in the world, and
hence ‘∨QL’: under BM, the wave-function of a superposed system is a physical pilot
wave ‘piloting’ particles with classically determinate positions and trajectories to one
of the superposed states with a stochastic distribution constrained by the Born rule.11

Importantly, the particles themselves are either in ‘support’ of one state or another in
the sense of CL: “the [position/trajectory] configuration of the system is located only in

7 Maudlin [6], p. 479.
8 Bacciagaluppi [1], p. 19.
9 Dickson [3], p. 4.

10 For an exposition of the logical behavior of ‘⋁QL’, see Humberstone [4], pp. 913-917.
11 See Bohm [2].
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one of these different components, and this is already a matter of classical logic”.12 On
this view, (c) fails to obtain since the world is fundamentally classical: we are not justified
to replace all propositions about the world with experimental propositions, and the more
fundamental propositions obey CL. The use of QL reflects not the world-structure but
our epistemic inability to access the hidden position variables.

Contra BM, EM claims that the experimental propositions of QL, does completely
describe the world (as a sum of many dynamically-decohered ‘worlds’13). Regarding
quantum disjunction: EM takes superposed states as descriptions of single systems. On
EM, systems which are in superposed states stay so after measurement: each component
state of superpositions actually obtains (in dynamically isolated ‘worlds’). Hence, on
this view, all propositions about the world really do behave like experimental proposi‐
tions of QL: we use quantum disjunction not as a result of some epistemic limitations
a la BM but as a true description of world-structure. Thus (c) obtains under EM.

4 Empirical Conventionalism

I began by asking why logical truths are true. Hoping to avoid the conventionalist path,
I turned to empiricism. Yet, as demonstrated with BM and EM, there is no determinate
answer to one key part of the empiricist strategy, viz. (c). This situation leads us back
to a form of conventionalism distinct from traditional logical conventionalism, empirical
conventionalism, best described by Sklar [10]: “insofar as the two theories have the same
predictive content with regard to the directly observable facts, they ought to be viewed
as merely conventional alternatives to one another and not as genuinely alternative
theories about the nature of the world.”14 In other words, QM does not enforce a single
interpretation. A fortiori, QM does not enforce a single ‘true’ logic.

To break the purported symmetry between interpretations of QM, we might invoke
some ‘further fact’ to decide on one interpretation over another. Putnam [7] famously
distinguished two types of facts constraining total science:15 internal coherence
constraints (ICC) demand that science must cohere with simplicity, agree with intuition,
and so on, while external coherence constraints (ECC) demand that science must agree
with experimental checks, i.e. empirical facts. Hence, an interpretation is chosen not
only because it coheres with all possible empirical facts, viz. ECC, but also because of
simplicity, intuitiveness, etc., viz. ICC. Putnam suggests that ICC provides a further
fact which decides between empirically conventional choices; in considering ICC one
may ‘refute’ conventionalism. However, I see two problems with this strategy.

Firstly, ICC simply makes the unobjective elements involved in interpretational
choice more obvious. While something can be a determinate fact of the matter given
ICC, these considerations of simplicity, intuitiveness, etc., are exactly what appears to

12 Bacciagaluppi [1], p. 31.
13 For more on decoherence or the status of ‘worlds’ in EM, see Wallace [11].
14 Sklar [10], p. 958.
15 Putnam [7], p. 33.
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be less-than-objective. Even if there could be a decisive fact of the matter given ICC, I
am not sure there are objective grounds for the ICCs themselves.

Secondly, it is unclear whether there even is a fact of the matter under ICC as to
whether BM or EM is better. It is simply not apparent which is simpler and so on. Given
the complicated nature of QM, and the technical and conceptual apparatus required for
both BM (hidden level of phenomena, physical ‘pilot-wave’, non-locality) and EM (a
world of infinitely many decohered ‘worlds’), neither BM nor EM obviously satisfies
ICC better than the other. One is left to their metaphysical predilections.

In any case, the empiricist has already lost much in adopting ICC. Empiricism aimed
to place logical truths on objective grounds, contra logical conventionalism, by
appealing to empirical facts about a mind-independent world. The situation I have briefly
sketched, however, is one where there is no determinate interpretation for QM. ECC
alone does not determine the true world-structure and ‘true’ logic; we must appeal to
considerations about ICC. The resulting decision seems to turn on something about us,
as rational beings, as scientists, and so on. Empiricism thus fails to obtain objectivity
for logic, leading instead to empirical conventionalism in the context of QM.

5 Conclusion

Empiricists hoping to recover the ‘true’ logic by appealing to the world alone should
see that the world-structure in our best theory, QM, is underdetermined: a choice
between them, and hence a choice of ‘true’ logic, is empirically conventional – we have
no empirical reason to think that DIST (and CL) is true of the world or otherwise.
Relying on ICC to resolve this only ameliorates the situation by relying on less-than-
objective facts. Thus, empiricism fares no better than logical conventionalism in
accounting for the objectivity of logical truths: something broadly conventional lurks.
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Abstract. A probabilistic model for the narrative approach to reasoning
in legal fact-finding is developed and applied to the gatecrasher paradox.

According to Classical Legal Probabilism CLP, the fact-finders’ degrees of beliefs
are to be modeled by standard probability distributions, and criminal standard of
proof beyond reasonable doubt should be equated with a certain high threshold
probability of guilt [3]. The paradox of the gatecrasher [4] was formulated as a
criticism of CLP.1

Suppose our guilt threshold is high, say at 0.99. Consider the situation in
which 1000 fans enter a football stadium, and 999 of them avoid paying for
their tickets. A random spectator is tried for not paying. The probability
that the spectator under trial did not pay exceeds 0.99. Yet, intuitively, a
spectator cannot be considered guilty on the sole basis of the number of
people who did and did not pay.

CLP has also been criticized for not being a sensible or useful model of judiciary
fact-finding reasoning from various angles (see for example [2,4–6,9,10,13–18]).
The critics of CLP argue that the view is blind to various phenomena that an ade-
quate philosophical account of legal fact-finding should explain. Some of them per-
tain to procedural issues [14]: proceedings are back-and-forth between opposing
parties, cross-examination is crucial, and yet CLP seems to take no notice of this
dynamics. Some have to do with reasoning methods which are not only evidence-
to-hypothesis, but also hypotheses-to-evidence [2,18] and involve inference to the
best explanation [6].

The main competing approach—the no plausible alternative story (NPAS)
theory [1]—is one in which the fact-finding process is seen as an interplay of evi-
dence and various explanations (often called narratives) presented by opposing

The research has been supported by Research Foundation Flanders.
The research was funded by National Centre for Science grant number
2016/22/E/HS1/00304.

1 The paradox is mathematically the same as the prisoners in a yard scenario [13],
where a group of prisoners commits a group killing, and it’s impossible to identify
the single innocent prisoner.
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parties [10]. The most plausible one with no plausible alternative is to be the
decisive one. From this perspective, intuitively, the gatecrasher is a no-started,
for it provides no real narration of what happened.

Alas, the notion of plausibility as used in NPAS [1] is a primitive notion with
no explication. If formal, especially probabilistic, methods are of any value, the
view is a step back in this respect, for it “solves” a selection of problems with
the probabilistic tools by giving up on them.

New Legal Probabilism (NLP) [7] improves on NPAS by developing an informal
and real-case-based analysis of the conditions on conviction beyond reasonable
doubt. The key conditions are:

(Evidential support) The defendant’s guilt probability on the evidence
should be sufficiently supported by the evidence, and
a successful accusing narration should explain the
relevant evidence

(Evidential completeness) The evidence available at trial should be complete
as far as a reasonable fact-finders’ expectations are
concerned

(Resiliency) The prosecutor’s narrative, based on the available
evidence, should not be susceptible to revision given
reasonably possible future arguments and evidence

(Narrativity) The narrative offered by the prosecutor should
answer all the natural or reasonable questions one
may have about what happened, given the content
of the prosecutor’s narration and the available evi-
dence.

The analysis is informal, but it’s specific enough to be a part of departure
for a formal explication. The goal of this paper is to use probabilistic tools to
provide a formal theory of narratives as used in judiciary fact-finding, inspired
by NLP.

The object language is a standard propositional language L extended to a
language L+ with primitive unary operators E,NA

1 , . . . , NA
k , ND

1 , . . . , ND
k , and

the guilt statement constant G.2 The intended interpretation of Ep is p is part
of evidence, and the operator is needed because in judiciary fact-finding the
information what is and what isn’t evidence plays an important role (the same
point will hold for narratives).

NA
i p means p is part of an accusing narration NAi and ND

i p means p is part
of a defending narration NDi . Each narration Ni is taken to be a finite set of
sentences ni1, ni2, . . . , niki

of L+.3

2 The content of the guilt statement is G which has the form of G ≡ g1 ∧ · · · ∧ gl for
appropriate g1, . . . , gl ∈ L.

3 In contexts in which it is irrelevant whether a narration is an accusing one or not, I
will suppress the superscripts.
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E stands ambiguously for the set of all sentences constituting evidence and
for the conjunction thereof. Which reading is meant will always be clear from
the context (this convention applies to all finite sets of sentences considered in
this paper). Ed stands for Ed = {Eϕ|ϕ ∈ E} and E− is {¬Eϕ|ϕ �∈ E}. For any
narration Ni, symbols Ni, Ndi , and N−

i are to be understood analogously to E, Ed

and E−. Nd is the (positive) description of all the narrations,
⋃

i N
d
i , and N−=⋃

i N
−
i adds that this description is complete.

Priors are modeled as a partial probabilistic distribution (to be able to model
ignorance and the suspension of illegitimate bias) P, which (partially) maps
L+ × P(L+) to [0, 1] [11,12]. P has to have an extension to a total conditional
probability distribution over L+ satisfying the standard axioms of conditional
probability, and it has to satisfy the following:

P(�|Γ ) = 1 P(⊥|Γ ) = 0 (1)
ϕ ∈ Γ ⇒ P(ϕ|Γ ) ↓ (2)

P(ϕ|Γ ) ↓ ⇔ P(¬ϕ|Γ ) ↓ P(ϕ ∧ ψ|Γ ) ↓ ⇔ P(ψ ∧ ϕ|Γ ) ↓ (3)
P(ϕ ∧ ψ|Γ ) > 0 ⇒ P(ϕ|Γ ) ↓, P(ψ, |Γ ) ↓ P(ϕ|Γ ) = 0 ⇒ P(ϕ ∧ ψ|Γ ) ↓ (4)

P(ϕ|Γ ) ↑ ⇒ P(ϕ ∧ ψ|Γ ) ↑ unless P(ψ|Γ ) = 0 (5)
If P(ϕ|Γ ) > 0, P(ϕ ∧ ψ|Γ ) = 0, then P(ψ|Γ ) = 0 (6)

Four types of stances that a fact-finder might take towards a claim will
be considered: uncontroversial acceptability threshold, a, negligibility threshold,
n =df 1 − a, strong plausibility s and rejectability, r =df 1 − s. We require
a > s > r > n. Updates used in what follows are:

name notation meaning
full Pf (ϕ|Γ ) P(ϕ|E, Ed, E−, Nd, N−, G, Γ )
n-full Pnf (ϕ|Γ ) P(ϕ|E, Ed, Nd, N−, G, Γ )
informed Pi(ϕ|Γ ) P(ϕ|E, Ed, Nd, G, Γ )
evidential Pe(ϕ|Γ ) P(ϕ|E, Ed, E−, G, Γ )
argued Pa(ϕ|Γ ) P(ϕ|Nd, G, Γ )
play-along PNj (ϕ|Γ ) P(ϕ|Nj , Nd, N−, G, Γ )
n-extended play-
along

PnNj (ϕ|Γ ) P(ϕ|Nj , E, Ed, Nd, N−, G, Γ )

e-extended play-
along

PeNj (ϕ|Γ ) P(ϕ|Nj , E, Ed, E−, Nd, G, Γ )

f-extended play-
along

PfNj (ϕ|Γ ) P(ϕ|Nj , E, Ed, E−, Nd, N−, G, Γ )
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The conditions on narratives are:

Pf (¬(Ni ∧ Nj)) ≥ a, for i �= j (Exclusion)

PfN
A
i (G) ≥ a ∧ PfN

D
k (¬G) ≥ a (Decision)
Pe(Nk) ≥ n (Initial plausibility)

Pf (N1 ∨ · · · ∨ Nk) ≥ s (Exhaustion)

In general, we’d normally expect the persecution to accept any claim relevant
to the case that, given the evidence and the persecution’s narration, is at least
as likely as the guilt statement that they’re putting forward. This motivates the
following requirement:4

(Commitment) For any ϕ relevant to the case, if PfN
A
i (ϕ) ≥ PfN

A
i (G), then

PeNi(Ni(ϕ)) ≥ s.

Now we turn to assessment criteria. An accusing narration has to satisfy
(Explaining Evidence A) and a defending narration has to satisfy (Explaining
Evidence D). A narration shouldn’t miss any evidence: there shouldn’t be any
piece of evidence that is expected, given the narration and the background knowl-
edge, but isn’t. We say that Ni is gappy (G(Ni)) just in case there are claims
that the narration should choose from and yet it doesn’t. An accusing narration
NAi dominates the set of all accusing narrations N

A just in case it doesn’t miss
any evidence, it doesn’t contain any gap, in light of all available information and
evidence it is at least as likely any other accusing narration, and it is strongly
plausible, given all available information. A dominating narration NAi is resilient
(R(NAi )) just in case there is no non-negligible potential evidence that might
undermine it, at least in light of all we know (minus the negative description of
the evidence, to avoid triviality)—that is, no ϕ with Pnf (Eϕ) ≥ n – such that
if E was modified to E∪ {ϕ}, NAi would no longer dominate. A defense narration
NDk raises reasonable doubt (RD(NDk )) if it has no gaps, and hasn’t been rejected
given all that we know.

4 A set of sentences is relevant for the case if it is consistent with the background
knowledge and there is a narration such that its posterior probability given all back-
ground knowledge together with that set is different from its posterior probability
given all background knowledge only. A set of sentences is a minimal relevant set if
no proper subset thereof is a relevant set. A sentence is relevant if it or its negation
is a member of a minimal relevant subset.
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For any e ∈ E, [¬PNAi (¬Ee) ≥ s ⇒ PN
A
i (e) ≥ s] (Explaining evidence A)

For any e ∈ E, if there is NA
i (Explaining evidence D)

such that P(NAi |e) > P(NAi ),

then PN
D
k (e) ≥ r.

ME(Ni) ⇔ for some ϕ1, . . . , ϕu �∈ E : (Missing evidence)

[PnNi(E(ϕ1) ∨ · · · ∨ E(ϕu)) ≥ s]..
G(Ni) ⇔ for some ϕ1, . . . , ϕu �∈ Ni (Gap)

PfNi(ϕ1 ∨ · · · ∨ ϕu) ≥ s∧
PeNi(Ni(ϕ1) ∨ · · · ∨ Ni(ϕu)) ≥ s.

D(NAi ) ⇔ ¬ME(NAi ) ∧ ¬G(NAi )∧ (Domination)

Pf (NAi ) ≥ Pf (NAj ) for all j �= i∧
Pf (NAi ) ≥ s.

RD(NDk ) ⇔ ¬G(NDk ) ∧ Pf (NDk ) ≥ r (Reasonable doubt)

We say that a conviction is beyond reasonable doubt if it is justified by a resilient
dominating narration and no defense narration raises reasonable doubt.

Let’s now look back at the gatecrasher. Name the suspects 1, 2, . . . , 1000.
gi means “i is guilty of gatecrashing” and e is the evidence available in the
gatecrasher. Take the accusing narration “1, together with 998 other people
crashed the gates” to be N1 = {g1, e}. Given the relevance of all gi (i �= 1),
(Commitment) entails that for any i �= 1 we have PeN1(N1(gi)) ≥ s. By (Decision)
PfN1(gi) ≥ a > s. It’s also obvious that gi �∈ N1. These taken together, however,
mean that N1 fails to satisfy (Gap) and so it fails to justify a conviction beyond
reasonable doubt. If N1 is replaced with N+1 = {g1, e}∪{gk|k �= 1}, so that (Gap)
is satisfied, the resulting narration simply becomes highly implausible, because
it contradicts evidence.
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1 Introduction

As is known, by putting their knowledge together, agents can obtain distributed
knowledge. However, by pooling their non-ignorance, agents can only obtain
distributed knowledge as to whether something holds, rather than distributed
knowledge (of something). Take a simple example. Suppose that Ann knows
whether ϕ and Bob knows whether ψ. Then by ‘sharing’ their non-ignorance,
what Ann and Bob obtain is not distributed knowledge of ϕ∧ψ, but distributed
knowledge as to whether ϕ ∧ ψ.

Despite so many results about the notion of distributed knowledge in the
literature (see e.g. [2,6,8,12,15]), the notion of ‘distributed knowledge whether’
has not yet received its deserved attention. A natural question arises: what does
it mean when one says “a group G distributedly knows whether ϕ”? To answer
this question, let us first look at the following statement:

· · · Although Alice and Bob do not have distributed knowledge as to whether
p is true or false before any messages are sent, if p is true then they can obtain
distributed knowledge that p is true by communication, and if p is false, then they
can obtain distributed knowledge that p is false by communication. [2, p. 331]

When omitted the modifier ‘can’, the above sentence contains an idea: “A
group has distributed knowledge (as to) whether p (is true or false)” is equivalent
to “if p is true then the group has distributed knowledge that p (is true), and
if p is false, then the group has distributed knowledge that p is false”. Since
distributed knowledge is always true (cf. e.g. [1, p. 34]), this is equivalent to “the
group has distributed knowledge that p, or the group has distributed knowledge
that ¬p”.

Inspired by the above-mentioned intuitive meaning of ‘distributed knowledge
whether’, we will understand this notion in the following way:

distributedly knows whether ϕ ⇐⇒ distributedly knows ϕ or distributedly knows ¬ϕ.

Due to the intuition of distributed knowledge (see e.g. [2]), the intuition of ‘dis-
tributed knowledge whether’ can be understood as follows: a group distributedly

This research is funded by China Postdoctoral Science Foundation (2017T100050).
The author thanks two anonymous referees for their insightful comments. Xingchi
Su [13] also proposed the ‘distributed knowledge whether’ operator independently.
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knows whether ϕ, if by putting their non-ignorance together, the members of the
group could know whether ϕ.

Section 2 introduces the language PLKwDw of ‘distributed knowledge
whether’ logic and its extension with public announcements, and their semantics,
both of which are fragments of a much larger logic. After proposing a suitable
bisimulation notion for PLKwDw in Sect. 3, we compare the expressive hier-
archy for this logic and some variations in Sect. 4, on both K and S5. Section 5
presents proof systems for PLKwDw and its public announcements extension,
and shows the soundness and the completeness. Finally we conclude in Sect. 6.

2 Preliminaries

In this paper, we will assume P and I, respectively, to be a fixed nonempty
set of propositional variables and a finite nonempty group of agents. Let Gr =
P(I)\{∅}, i.e., the set of all nonempty subgroup of I. We here list the logical
languages involved in this paper, with the left being their respective notation
and the right their respective original sources, where p ∈ P, i ∈ I and G ∈ Gr.

Definition 1 (Languages).

EL ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ [9]
PLKw ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kwiϕ [4,5]
PAL ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [ϕ]ϕ [11]
PLKwA ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kwiϕ | [ϕ]ϕ [5]
ELD ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | DGϕ [7,8]
PLKwDw ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kwiϕ | DwGϕ this paper
PALD ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [ϕ]ϕ | DGϕ [14]
PLKwADw ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kwiϕ | [ϕ]ϕ | DwGϕ this paper

Intuitively, Kiϕ means “agent i knows that ϕ”, Kwiϕ means “agent i knows
whether ϕ” (or equivalently, “i is not ignorant about ϕ” [10]), [ψ]ϕ means “after
every announcement of ψ, ϕ holds”, DGϕ means “group G has distributed knowl-
edge of ϕ”, and DwGϕ means “group G distributedly knows whether ϕ”.

Although the knowledge operator K has mostly been interpreted on epistemic
models, it can also be investigated in the absence of any condition. In the sequel,
we mainly focus on models without any constraints.

Definition 2 (Models and pseudo models). A model is a triple M =
〈S, {→i| i ∈ I}, V 〉, where S is a nonempty set of states, for every i ∈ I,
→i⊆ S × S is an accessibility relation over S, and V : P → P(S) is a valu-
ation. In models, for each G ∈ Gr, we define →DG

as
⋂

i∈G →i. We use K
and S5, respectively, to mean the class of all models and the class of reflexive,
transitive and symmetric models.

M = 〈S, {→i| i ∈ I}, {→DG
| G ∈ Gr}, V 〉 is said to be a pseudo model, if

〈S, {→i| i ∈ I}, V 〉 is a model, and →DG
is a binary relation on S such that for

any G ∈ Gr, any i ∈ I, →Di=→i and, for any G,G′ ∈ Gr, G ⊆ G′ implies
→DG′ ⊆→DG

.
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Let M = 〈S, {→i| i ∈ I}, {→DG | G ∈ Gr}, V 〉 be a pseudo model and s ∈ S.
The semantics for Boolean formulas are as usual, and

M, s � Kiϕ ⇐⇒ for all t ∈ S such that s →i t : M, t � ϕ
M, s � DGϕ ⇐⇒ for all t ∈ S such that s →DG

t : M, t � ϕ
M, s � Kwiϕ ⇐⇒ for all t1, t2 ∈ S such that s →i t1, s →i t2 :

M, t1 � ϕ ⇐⇒ M, t2 � ϕ
M, s � DwGϕ ⇐⇒ for all t1, t2 ∈ S such that s →DG

t1, s →DG
t2 :

M, t1 � ϕ ⇐⇒ M, t2 � ϕ
M, s � [ψ]ϕ ⇐⇒ M, s � ψ implies M|ψ, s � ϕ

Where M|ψ is the model of M restricted to ψ-states.
Satisfaction in a pseudo model is defined as usual. The semantics on a model

is similar, except that in that case, →DG
is a defined notation rather than a

primitive one. We say that ϕ is valid (with respect to models), written � ϕ, if
M, s � ϕ for any pointed model (M, s). Given any language L, we use (M, s) ≡L
(M′, s′) to denote that (M, s) and (M′, s′) satisfy the same L-formulas.

3 Bisimulation

This section proposes a suitable bisimulation notion for PLKwDw. The ‘dis-
tributed knowledge whether’ operators are not invariant under Kw-bisimulation
(called ‘Δ-bisimulation’ in [4, Definition 3.3]), as illustrated by two models
(M, s) and (M′, s′), where p-state s ij-accesses to a p-state and a ¬p-state, and
p-state s′ i-access to a p-state and a ¬p-state, but j-access to another p-state
and another ¬p-state.

The following notion of bisimulation is inspired by the similarity between
‘distributed knowledge whether’ and ‘knowledge whether’, and Kw-bisimulation.

Definition 3 (DKw-bisimulation). Let M = 〈S, {→i| i ∈ I}, {→DG
| G ∈

Gr}, V 〉 be a pseudo model. We say that a nonempty binary relation Z ⊆ S × S
is a DKw-bisimulation on M, if for all i ∈ I, all G ∈ Gr, (s, t) ∈ Z implies

(INV) s ∈ V (p) iff t ∈ V (p) for all p ∈ P,
(Kw-ZIG) for all s′, if s →i s′ and s →i s1 and s →i s2 for some s1, s2 such

that (s1, s2) /∈ Z, then there is a t′ such that t →i t′ and (s′, t′) ∈ Z,
(Kw-ZAG) for all t′, if t →i t′ and t →i t1 and t →i t2 for some t1, t2 such

that (t1, t2) /∈ Z, then there is a s′ such that s →i s′ and (s′, t′) ∈ Z,
(Dw-ZIG) for all s′, if s →DG

s′ and s →DG
s1 and s →DG

s2 for some s1, s2
such that (s1, s2) /∈ Z, then there is a t′ such that t →DG

t′ and (s′, t′) ∈ Z,
(Dw-ZAG) for all t′, if t →DG

t′ and t →DG
t1 and t →DG

t2 for some t1, t2
such that (t1, t2) /∈ Z, then there is a s′ such that s →DG

s′ and (s′, t′) ∈ Z.
Models (M, s) and (M′, s′) are DKw-bisimilar, notation: (M, s) ↔DKw

(M′, s′), if there exists a DKw-bisimulation Z on the disjoint union of M and
M′ such that (s, s′) ∈ Z.

Proposition 1. Given pseudo models (M, s) and (M′, s′), if (M, s) ↔DKw

(M′, s′), then (M, s) ≡PLKwDw (M′, s′), and the converse holds when both M
and M′ are image-finite pseudo models.
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4 Expressivity

This section compares the relative expressivity of the languages introduced in
Definition 1, on both K and S5. We adopt the definition of expressivity in [3].

The expressivity hierarchy on K is as follows, where the arrow from a language
A to another B denotes B > A, and arrows are transitive, whereas two languages
connected with neither direct nor indirect arrows are incomparable.

PLKw = PLKwA

���������������������
�� PLKwDw = PLKwADw

�������������������

EL = PAL �� ELD = PALD

PLKwDw > PLKw follows from the fact that Dw operators are not invariant
under Kw-bisimulation; PLKwDw = PLKwADw is immediate by the validity
� [ψ]DwGϕ ↔ (ψ → DwG[ψ]ϕ ∨ DwG[ψ]¬ϕ); PLKwDw � EL is because
Dw operators are not invariant under K-bisimulation and K operators are not
invariant under DKw-bisimulation. ELD > PLKwDw follows from the fact
that Kw and Dw operators are definable with K and D operators and that
PLKwDw �≥ EL; and other expressivity results can be found in [5,11,12,14].

However, on S5, since operators K and D are definable with operators Kw
and Dw, respectively, we thus get the following expressive hierarchy:

PLKw = PLKwA = EL = PAL �� PLKwDw = PLKwADw = ELD = PALD.

5 Axiomatizations

The proof system PLKWADW is the extension of CLA in [5] with the following
axioms and rules. By deleting all reduction axioms, we obtain PLKWDW.

A-Dw [ψ]DwGϕ ↔ (ψ → DwG[ψ]ϕ ∨ DwG[ψ]¬ϕ)
Dw∧ DwG(χ → ϕ) ∧ DwG(¬χ → ϕ) → DwGϕ
Dw ↔ DwGϕ ↔ DwG¬ϕ
Dw1 Kwiϕ ↔ Dwiϕ
Dw2 DwGϕ → DwG′ϕ, where G ⊆ G′

REDw from ϕ ↔ ψ infer DwGϕ ↔ DwGψ

Theorem 1. PLKWDW and PLKWADW are both sound and strongly complete
with respect to both the class of all pseudo models and the class of all models.

The completeness of PLKWADW reduces to that of PLKW, which in turn
consists of two steps. First, every consistent set of formulas is satisfiable in
a pseudo model. For this, we define a canonical pseudo model for the system,
where the domain and valuation are as usual, the canonical relation →c

i is defined
such that s →c

i t iff there exists χ such that for all ϕ, if Kwi(χ → ϕ) ∈ s, then
ϕ ∈ t, and →c

DG
is such that s →c

DG
t iff there exists χ such that for all ϕ,

if DwG(χ → ϕ) ∈ s, then ϕ ∈ t. Second, if a set of formulas is satisfiable in
a pseudo model, then it is also satisfiable in a model. The proof strategy is to
think of each DGj as an agent and add it to Gj , which extends an idea in [2,
pp. 357–358]. We omit the proof details due to space limitations.



Distributed Knowledge Whether 647

6 Conclusion

In this paper, we defined an intuitive formal semantics for the notion of ‘dis-
tributed knowledge whether’, proposed a suitable bisimulation for the knowing
whether logic PLKwDw with this notion. We compared the relative expressiv-
ity of PLKwDw and some variations, on both K and S5. We presented complete
axiomatizations for PLKwDw and its extension with public announcements.

For future work, we can study other group notions of ‘knowledge whether’,
for example, common knowledge whether.
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14. Wáng, Y.N., Ågotnes, T.: Public Announcement Logic with Distributed Knowl-

edge. In: Ditmarsch, H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS, vol. 6953, pp.
328–341. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24130-7 24
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Abstract. The epistemic verb to believe does not embed polar ques-
tions, unlike the verb to know. After reviewing this phenomenon, I pro-
pose an explanation which connects the neg-raising behavior of belief
with its embedding patterns (following [14]). I use dynamic epistemic
logic to model the presuppositions and the effects associated with belief
assertions.

1 Introduction

This note is concerned with the failure of the English verb to believe to embed
polar questions, as opposed to to know, a phenomenon exemplified in the follow-
ing pairs of sentences (infelicitous sentences are marked with *):

(1) (a) * Michael believes whether it is raining in Munich.
(b) Michael knows whether it is raining in Munich.

(2) (a) * Michael does not believe whether it is raining in Munich.
(b) Michael does not know whether it is raining in Munich.

(1) (a) exemplifies the failure of embedding whether complements in to believe;
(2) (a) exemplifies the failure of embedding whether complements under negation
in to believe. The behavior of to believe differs from predicates such as to be
certain and to be sure, which allow for whether complements under negation (but
not otherwise), and responsive verbs like to know and to see, which embed all
interrogatives (wh-complements). While a full theory should be able to explain
the embedding patterns of a wide class of predicates, this short note will only
be concerned with the behavior of to believe.1

The focus on the behavior of to believe and to know has an epistemological
motivation. The above phenomenon points to a certain tension between two ten-
dencies within epistemology: one tendency is to tightly connect the notions of
knowledge and belief by some logical relations; a different tendency, albeit less
common, connects knowledge with questions.2 Explaining the above phenom-
enon can resolve the apparent tension between these two tendencies.

1 For an overview of the problem of the embedding patterns of questions, see e.g. [5].
2 For a few examples of this tendency, within both epistemology and epistemic logic,

see e.g. [3,11].
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In [9], Hintikka argues that the difference between verbs like to know and
verbs like to believe lies in veridicality : the former verb is veridical, the latter is
not.3 However, this hypothesis fails to explain why to be certain and to believe
behave differently, given that they are both non-veridical.4

A different approach, going back to Zuber [14], connects the embedding
behavior of to believe with its neg-raising (NR) behavior. Neg-raising predicates
are predicates in which the wide scope of the negation tends to be interpreted
with a narrow scope. For an example with to believe consider (3):

(3) Michael does not believe that it is raining � Michael believes that it is not
raining.

Here, I follow Zuber’s approach: I will try to account for the infelicity of
‘believe whether’ sentences using patterns such as the one in (3). NR can be
formally stated as the material implication ¬V p → V ¬p (where V is some
epistemic verb). Call the latter formula Strong NR. Strong NR is materially
equivalent to the disjunction V p ∨ V ¬p. If Strong NR is always true for the
verb to believe in natural language, the disjunction is always true for belief. But
the disjunction V p ∨ V ¬p should be equivalent to the construction V whether
p. Thus, if Strong NR is valid for some verb V , then V whether p is valid. It
follows that assertions of the form V whether p are necessarily uninformative,
and therefore defective.5 I will expand and refine this basic proposal below.

2 The Present Proposal

One major weakness of the basic proposal above is that the principle Strong
NR for belief seems to be too strong. Strong NR predicts that sentences that
express agnosticism using the verb to believe are contradictory, which clearly is
not the case. Consider (4):

(4) Noor does not believe that God exists, but she does not believe that God
does not exist either.

The surface form of (4) is ¬Bnp ∧ ¬Bn¬p, which is inconsistent with Strong
NR for belief, stated as ¬Bnp → Bn¬p.6 My account below aims to avoid this
problem.

In what follows, I start by presenting the logical framework, then explain the
way I model presuppositions and assertions in the logic, and finally explain the
linguistic phenomena.
3 A verb is veridical if it entails the truth of its complement.
4 See [5] for a recent overview and a development of Hintikka’s proposal.
5 Similar arguments have been proposed. Zuber’s [14] original argument uses strong

assumptions about factivity and concludes that the construction ‘* believing
whether’ is contradictory. Egré ([5], footnote 3) acknowledges the possibility of this
proposal, but does not develop it. [12] endorses a similar kind of argument and devel-
ops it using inquisitive semantics (on grounds independent from mine). [10] proposes
a similar solution but develops it differently.

6 The account in [10] is open to this kind of criticism.
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I set my account in dynamic doxastic logic, a version of dynamic epistemic
logic (DEL) based on plausibility models (see [2] for the appropriate formal
definitions). I present a model in which: (i) we have a neg-raising behavior for
beliefs, and (ii) the construction ‘believe whether’ is in some way defective, by
virtue of (i).

The doxastic part of the logic allows me to represent agents’ beliefs, taken as
listeners of an assertion. The dynamic part allows me to represent the effect of
assertions on the information states of the agents. The language L is given by

ϕ := p | ϕ ∨ ψ | ¬ϕ | Baϕ | �aϕ | CGϕ | [ϕ!]ψ

Baϕ reads ‘agent a believes that ϕ’; CG reads ‘ϕ is a common belief among
group G’; [ϕ!]ψ reads ‘after the update with ϕ, ψ is the case’. I assume a reductive
approach to interrogative complements (see [13] for a defense), which predicts
that the meaning of V whether p is equivalent to V that p or V that not p. Thus,
in the context of doxastic logic, the non-contingency operator �aϕ is taken to
be equivalent to Baϕ ∨ Ba¬ϕ and represents the ungrammatical construction ‘a
believes whether ϕ’.

The language is interpreted over epistemic plausibility models (see [2]). An
epistemic plausibility model is a Kripke model M = (W,≥a,≥b, ...V ), where W
is a non-empty finite set of possible worlds, V is a valuation function, and ≥a

is the epistemic plausibility order of agent a, a reflexive transitive relation on
W . As usual, a believes ϕ in w iff the set of epistemically best worlds (worlds
ranked highest in the ordering) is a subset of ϕ. The CG operator represents the
transitive closure of the derived belief relations of a group of agents.

The semantics of the [ϕ!]ψ operator is understood in terms of elimination
of possible worlds (i.e. as a hard update). We follow the standard treatment in
DEL and assume that updates are truthful. This means that for a model and a
world (M,w), updating with ϕ results in (Mϕ, w), a model in which all the ¬ϕ
worlds are eliminated, if ϕ is true in (M,w). If ϕ is false in (M,w), we say that
the update aborts, in which case it does not change the model (see [6] for the
latter terminology).

With this logical framework, we can model the presuppositions of assertions.
I take NR to be an effect on the doxastic states of the listeners of an assertion.
This can be stated informally as:

(5) In standard contexts, after the assertion that ¬Bcp, the result is BaBc¬p.

This formulation of NR is much weaker than Strong NR: it takes NR to be
an effect of an assertion, and not a semantic validity. Similarly to [8], I take NR
predicates to have an excluded middle presupposition. In the case of belief, this
amounts to an opinionatedness presupposition Baϕ ∨ Ba¬ϕ. However, in line
with (5), I treat this presupposition as a soft presupposition: a presupposition
that arises in default contexts but is easily cancelable.7

To do so, let us first define a pre function on the logical language that takes a
formula and returns its presupposition, s.t. pre(¬ϕ) = pre(ϕ) and pre(Baϕ) =
7 See [1] for more about the notion of soft presuppositions.
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pre(�aϕ) = Baϕ ∨ Ba¬ϕ. I require that pre(ϕ) = pre(¬ϕ) to capture the idea
that presuppositions survive under negation. Moreover, I specify that pre(�ϕ) =
pre(Baϕ) = Baϕ∨Ba¬ϕ to capture the idea that NR verbs (like to believe) have
an opinionatedness presupposition. Combining the two restrictions, we get that
pre(¬Baϕ) = Baϕ ∨ Ba¬ϕ.

A crucial point of my proposal pertains to the way I represent assertions and
their presuppositions in DEL. Here, I follow the ideas in [6] with some crucial
modifications. The idea is to represent the assertion of ϕ in the logical language
in the following way:

(6) Asserting ϕ ≈ [CG(pre(ϕ))!][ϕ!]

In other words, asserting ϕ formally amounts to a sequence of two updates: the
first is with the information that the presupposition of ϕ is common belief within
the group, the second is with ϕ itself. This has the following (desirable) effect:
if the presupposition of ϕ is not accepted as common belief before the assertion,
then the first update aborts (as it is false) and does not change the model. This
models presupposition failure.

We are now in a position to answer our main question. I start by explaining
NR in the current system. In line with (5), we formalize NR as:

(7) [CG(pre(¬Bcϕ))!][¬Bcϕ!]Ba(Bc¬ϕ)

(7) represents the assertion that ¬Bcϕ, divided into an update with the
presupposition and an update with the proposition asserted, and the effect that
it has: Ba(Bc¬ϕ). Now let us suppose that the assertion ¬Bcϕ is accepted in
a context, i.e. the two updates do not abort. Then agent a’s conclusion about
agent c’s beliefs is a result of a simple disjunctive syllogism performed by a: the
move from Ba(Bcϕ ∨ Bc¬ϕ) (which is the case since the first update did not
abort) and Ba¬Bcϕ (which holds due to the second update) to BaBc¬ϕ. We
thus have a dynamic representation of the NR behavior of belief.

What is the effect of asserting �aϕ? Given (6), asserting �aϕ will amount to
the following sequence of updates: [CG(�aϕ)!][�aϕ!]. It is easy to see that such
a sequence of updates cannot be informative: if the first update does not abort
then everybody believes that �aϕ. In that case, the second update with �aϕ
makes no difference on the agents’ beliefs. The framework therefore predicts that
assertions of �aϕ are necessarily uninformative. This gives us an answer to our
main question: the construction ‘believe whether’ is ungrammatical since it is
necessarily uninformative.8 A similar explanation predicts that an assertion of
¬�aϕ will always contradict background context.

The present proposal also accounts for the felicity of sentences like (4), which
express agnosticism. Unlike the original proposal, the assertion of (4) does not
result in contradiction, rather in belief revision.

8 The exact connection between uninfomativness and ungrammaticality should be
spelled out. [7] offers a possible approach.
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I model (4) as a sequence of two assertions, ¬Bnp and then ¬Bn¬p. This
gives a us a sequence of four updates:

(8) [CG(Bnp ∨ Bn¬p)!][¬Bnp!][CG(Bnp ∨ Bn¬p)!][¬Bn¬p!]Ba(¬Bnp ∧ ¬Bn¬p)

Assuming for simplicity that agent a is the only hearer of (4), consider an
initial context in which a believes that n is opinionated: Ba(Bnp∨Bn¬p). Thus,
the first update of (8) does not abort. The second update eliminates worlds in
which Bnp is the case. After that, Ba(Bn¬p) is the case. Hence, the third update
does not abort (a still believes n is opinionated). The fourth update eliminates
all worlds in which Bn¬p is the case. This forces a to revise her old belief that
Bn¬p, resulting in a model in which Ba(¬Bnp∧¬Bn¬p) holds. This shows that
sentences like (4) can be informative under the current proposal.9
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Abstract. Standard epistemic logic studies reasoning patterns about
‘knowing that’, where interesting group notions of ‘knowing that’ arise
naturally, such as distributed knowledge and common knowledge. In
recent research, other notions of knowledge are also studied, such as
‘knowing whether’, ‘knowing how’, and so on. It is natural to ask what
are the group notions of these non-standard knowledge expressions. This
paper makes an initial attempt in this line, by looking at the notion cor-
responding to distributed knowledge in the setting of ‘knowing whether’.
We introduce the distributed know-whether operator, and give complete
axiomatizations of the resulting logics over arbitrary or S5 frames, based
on the corresponding axiomatizations of ‘knowing whether’.

Keywords: Epistemic logic · Distributed knowledge · Knowing
whether · Completeness

1 Introduction

The concept of distributed knowledge was proposed in [1] by computer scientists
to ascribe knowledge to machines in distributed systems. It is one of the most
important notions of group knowledge discussed in [2] besides general knowledge
(everyone knows) and common knowledge (everyone knows that everyone knows
that everyone knows...). Intuitively, a group has the distributed knowledge of φ
means that φ can be known to an ‘wise man’ if he has all the knowledge of the
group members. Compared to other kinds of group knowledge, the distributed
knowledge of a group may not be known by any individual in the group.

Since the work of [1,2], distributed knowledge has attracted a lot of attention
in epistemic logic and computer science. A complete axiom system of epistemic
logic with distributed knowledge is given in [3]. Adding distributed knowledge
to epistemic language also brings new technical questions, e.g., the language is
no longer invariant under bisimulation as discussed in [4], which also leads to
some alternative semantics for distributed knowledge operator [5].

Besides group knowledge, some new notions of knowledge are also drawing
attention in recent years (cf. [6] for a survey). For example, ‘agent i knows
whether φ’ [7], ‘agent i knows how to achieve φ’ [8], and ‘agent i knows why φ
is true’ [9]. Clearly, ‘knowing whether’ can be expressed by ‘knowing that’, but
c© Springer-Verlag GmbH Germany 2017
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the logic with ‘knowing whether’ operator only is less expressive than standard
epistemic logic [10]. A natural question is to ask what are the intuitive group
knowledge notions of such non-standard notions of knowledge. In this line of
work, we make the first attempt by considering the counterpart of distributed
knowledge in the setting of ‘knowing whether’.1

Informally, a group G distributedly knows whether φ if we know whether φ
given all information from all members of G. For example, if A knows whether
p and B knows whether q, and A and B share their information with C, then
C should know whether p ∨ q is true. In this case we can say group {A,B}
distributedly knows whether p ∨ q.

In the rest of this introduction we review the standard distributed knowledge
logic and the logic of ‘knowing whether’.

Given a set of agents A, and a set of propositional variable P , the language
ELD of epistemic logic with distributed knowledge is given by:

φ := p | φ ∧ φ | ¬φ | Kiφ | Dφ

where p ∈ P , i ∈ A. The model for ELD is the classical multi-agent Kripke
model: M =< W, { →i| i ∈ A}, V >.

The semantics of ELD is given as usual in modal logic with Kiφ and Dφ
defined as follows where the interaction relation

⋂
i∈A →i captures the intuition

that the agents put their information together:
M,w |= Kiφ ⇐⇒ M,v |= φ for all v such that w →i v.
M,w |= Dφ ⇐⇒ M,v |= φ for all v such that (w, v) ∈ ⋂

i∈A →i.

On the other hand, knowing whether φ (Kw
i φ) means knowing that φ is true

or knowing that φ is false. Formally:
M, s |= Kw

i φ ⇐⇒ for all t1, t2 with s →i t1, s →i t2 : (M, t1 |= φ ⇔ M, t2 |= φ).
A complete axiom system called NCL2 for the modal language containing

Kw
i as the only primitive modality is given in [10]:

TAUT and all instances of tautologies Kw
i φ ↔ Kw

i ¬φ
(KwCon) : Kw

i (χ → φ) ∧ Kw
i (¬χ → φ) → Kw

i φ (MP ) : φ, φ → ψ /ψ
(KwDis) : Kw

i φ → Kw
i (φ → ψ) ∨ Kw

i (¬φ → χ) (NEC) :
 φ ⇒
 Kw
i φ

(REKw) :
 φ ↔ ψ ⇒
 Kw
i φ ↔ Kw

i ψ

Note that NCL is not a normal modal logic, where the K axiom for Kw
i is

not admissible.

2 Syntax and Semantics of DKW

In this section, we give the language and semantics of distributed knowing
whether logic DKW with both knowing whether operator and distributed know-
ing whether operator.
1 Jie Fan also proposed the distributed-knowing-whether operator independently, with
a citation to [11] in the same proceedings.

2 The name NCL comes from non-contingency logic, cf. [10].
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Definition 1. Let P be a set of propositional variables and A be a set of agents.
The language LDw

for DKW is defined as:

φ := � | p | ¬φ | φ ∧ φ | Kw
i φ | Dwφ

where p ∈ P and i ∈ A. We use the operator Dw to refer to the distributed
knowing whether.

Definition 2. Given a model M = 〈S, {→i | i ∈ A}, V 〉, the semantics of DKW
is defined as follows (semantics of Kw

i is defined as before): M, s |= Dwφ ⇐⇒
M, t |= φ for all (s, t) ∈ ⋂

i∈A →i or M, t |= ¬φ for all (s, t) ∈ ⋂
i∈A →i.

Note that the semantics of Dw
i is in the line of the semantics of the standard

distributed knowledge operator Di.
We propose the axiom system of DKW based on all of axioms and rules in

NCL and the following extra axioms:

(DwCon) : Dw(χ → φ) ∧ Dw(¬χ → φ) → Dwφ (KwD) Kw
i φ → Dwφ

(DwDis) : Dwφ → Dw(φ → ψ) ∨ Dw(¬φ → χ) Dwφ ↔ Dw¬φ
REDw :
 φ ↔ ψ ⇒ 
 Dwφ ↔ Dwψ

Similar to the axiomatization of epistemic logic with distributed knowledge
[3], the distributed knowing whether operator has the axioms for the knowing
whether operator in NCL, and (KwD) captures the interaction of Kw

i and Dw.
Intuitively we can think Dw captures the knowledge-whether of the wise man
who have all the information of the group members.

3 Completeness to the Class of K-frames

In order to prove the completeness of DKW , we take a method proposed by
Fagin, Halpern and Vardi in [3]. The basic proof idea consists of 3 steps: 1. we
show that DKW is pseudo-satisfied in pseudo-model ; 2. we unravel the pseudo-
model to make it tree-like and prove that all formulas are invariant on the
corresponding nodes of two models; 3. finally we transform the pseudo-model
into a real model by replacing every relation →D with →i for each i ∈ A and
also prove that all the formulas are invariant on every node.

The main idea of the pseudo-model is just regarding the operator Dw as
a knowing-whether operator. And the construction of the pseudo-model M∗ is
same as the construction of the canonical model given in [10].

Lemma 1. Truth Lemma∗: M∗, s |=∗ φ iff φ ∈ S for all φ ∈ LDw

where |=∗

represents pseudo-satisfaction.

The approach to unravel M∗ has been given in [3]. The tree-like model is
M∗

T = 〈T, { →T
i | i ∈ A},→T

D, V T 〉. We can show:

Proposition 1. M∗
T , s |=∗ ψ iff M∗, g(s) |=∗ ψ for all ψ ∈ LDw

.
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However, M∗
T is still a pseudo-model and the relations →D actually should

not exist in a real model. The key process to construct the real model is chang-
ing the relations in the tree-like model M∗

T . The state space and the valuation
inherited from M∗

T directly.

Definition 3. Let M = 〈T, {→i | i ∈ A}, V T 〉. We set w→+
i v if w→Dv in M∗

T

for each i ∈ A. Let →i = →T
i ∪ →+

i for any i ∈ A.

Because M and M∗
T have the same state space T , we should show that the

set of formulas Φ satisfied in M is exactly the set of formulas pseudo-satisfied in
the corresponding node in M∗

T .

Proposition 2. For any ψ ∈ LDw

, there is M, s |= ψ iff M∗
T , s |=∗ ψ.

Theorem 1. The logic DKW is strongly complete with respect to the class K of
all frames.

4 Axiomatization for DKWS5 and Completeness

The axiom system of DKWS5 is formed by the system of DKW and the following
axioms:

(KwT ) Kw
i φ ∧ Kw

i (φ → ψ) ∧ φ → Kw
i ψ (wKw5) ¬Kw

i ψ → Kw
i ¬Kw

i φ
(DwT ) Dwφ ∧ Dw(φ → ψ) ∧ φ → Dwψ (wDw5) ¬Dwψ → Dw¬Dwφ

To prove the completeness to S5-frames, the basic idea is similar. Construct
the new S5-pseudo-model M◦ by reflexive closure of →∗

i in M∗. We can show
that the {→◦

i | i ∈ A} is Euclidean. The truth lemma can be proved in the same
way. Then, the way to change M◦ into a tree-like model M◦

T is almost same to
that mentioned above. But after unraveling, we have to do reflexive, symmetric
and transitive closure step by step. We can prove:

M◦
T , s |=∗ ψ iff M◦, g(s) |=∗ ψ for all ψ ∈ LDw

Finally, construct the real model as following definition:

Definition 4. Let ME = 〈T, {→E
i | i ∈ A}, V T 〉. We set w→E+

i v if w→◦T
D v in

M◦
T for each i ∈ A. Let →E

i be the transitive closure of →◦T
i ∪ →E+

i for every
i ∈ A.

It is trivial that →E
i is reflexive. Then we can prove that it preserved symmetry

after doing transitive closure. Finally, we can show:
For any ψ ∈ LDw

, there is ME , s |= ψ iff M◦
T , s |=∗ ψ.

Theorem 2. The logic DKWS5 is strongly complete with respect to the class of
all S5 frames.
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5 Conclusion

Reconstructing the distributed knowledge of a group with the non-classical oper-
ator knowing whether is the main contribution of the paper. In DKW , we give
the axioms (DwCon) and (DwDis) which are similar to (KwCon) and (KwDis)
in form. Recalling the original idea of distributed knowledge, we can regard it as
the knowledge owned by an outsider who has exactly all the information from
every members in the group. In this sense, the outsider has the same ability to
infer as any other agent.

When proving the completeness, we take the method of pseudo-model. Regard
operator Dw as another Kw

i to construct a pseudo-model. Then transform it into
a tree-like model with better properties. Following that, construct the real model
based on the tree-like model by replacing these →D with →i for each i ∈ A.

As mentioned above, this research focus on one kind of group knowledge (dis-
tributed knowledge) and one type of knowledge expression (knowing whether).
Further questions for consideration include:

– Some other kinds of group knowledge can also be combined with ‘knowing
whether’. For example, ‘commonly knowing whether’.

– Apart from ‘knowing whether’, there are also other expressions of knowl-
edge including ‘knowing what’, ‘knowing why’, ‘knowing how’, etc. Combin-
ing these expressions of knowledge with group knowledge may be of continued
interest.
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Abstract. In speech acts, a speaker utters sentences that might affect
the belief state of a hearer. To formulate causal effects in assertive speech
acts, we introduce a logical theory that encodes causal relations between
speech acts, belief states of agents, and truth values of sentences. We
distinguish trustful and untrustful speech acts depending on the truth
value of an utterance, and distinguish truthful and untruthful speech
acts depending on the belief state of a speaker. Different types of speech
acts cause different effects on the belief state of a hearer, which are
represented by the set of models of a causal theory. Causal theories of
speech acts are also translated into logic programs, which enables one to
represent and reason about speech acts in answer set programming.

1 Introduction

An assertive speech act commits a speaker to the truth of the expressed proposi-
tion [5]. Although assertive sentences are either true or false, a speaker generally
does not have complete knowledge of the world. It may happen that a speaker
utters a sentence that is believed to be true by herself while it is actually false.
In this case, a speaker acts truthfully but a hearer would consider the speaker
untrustful. On the other hand, there is a case that a speaker utters a sentence
disbelieved by himself while the statement happens to be true. In this case,
a speaker acts untruthfully but a hearer would consider the speaker trustful.
Whether a speech act is truthful or not depends on the belief state of a speaker,
while whether a speech act is trustful or not is judged by the truth of information
conveyed by the utterance. At this point, four different combinations of speech
acts are considered—(i) both truthful and trustful, (ii) truthful but untrustful,
(iii) untruthful but trustful, and (iv) both untruthful and untrustful.

In this paper, we distinguish truthful/untruthful and trustful/untrustful
speech acts and consider their performative effects on hearers. Different from
previous studies based on modal logic [2,3] or dynamic epistemic logic [6], we
formulate assertive speech acts using a causal logic introduced in [4]. The logic
can simply encode causal relations in speech acts and a causal theory is imple-
mented by logic programming.

2 Causal Theory

We first review a causal logic of [4]. Let L be a language of propositional logic
and A a finite set of atoms in the language. Formulas (or sentences) in L are
c© Springer-Verlag GmbH Germany 2017
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defined as follows: (i) If p ∈ A, then p is a formula. (ii) If ϕ and ψ are formulas,
then ¬ϕ, ϕ ∧ ψ,ϕ ∨ ψ, ϕ ⊃ ψ, and ϕ ≡ ψ are all formulas. In particular, � and ⊥
represent valid and contradictory formulas, respectively. We often use parenthe-
ses “()” in a formula as usual. A finite set T of formulas is identified with the
conjunction of all formulas in T . The set of all formulas in L is represented by F .
A literal is an atom A or its negation ¬A. An interpretation I is a complete and
consistent (finite) set of literals, i.e., L ∈ I iff ¬L 	∈ I for any literal L appearing
in a theory. A literal L is true in an interpretation I iff L ∈ I. The truth value
of a formula ϕ in I is defined based on the usual truth tables of propositional
connectives. An interpretation I satisfies a formula ϕ (written I |= ϕ) iff ϕ is
true in I. Given formulas ϕ and ψ, ϕ ⇒ ψ is called a causal rule meaning that
“ψ is caused if ϕ is true.” In particular, the rule (� ⇒ ψ) is a fact representing
that ψ is true, and (ϕ ⇒ ⊥) is a constraint representing that ϕ cannot be true.

A causal theory is a finite set of causal rules. Given a causal theory T and
an interpretation I, define T I = {ψ | (ϕ ⇒ ψ) ∈ T for some ϕ and I |= ϕ }.
Then I is a model of T if and only if I = {L | T I |= L } where T I |= L
means that T I entails L in classical logic. We say that I satisfies every rule
in T if I is a model of T . By definition, I is a model of T iff I is the unique
model of T I . A causal theory T is consistent if it has a model; otherwise, T
is inconsistent . Actions and their effects are represented by a causal theory as
follows. First, atoms of the language are expressions of the forms: at and ft

where a, f and t are action, fluent, and time names, respectively. at means that
an action a occurs at time t, and ft means that a fluent f holds at time t. In this
paper we consider actions as assertive speech acts by an agent. An utterance of
a sentence σ by an agent x at time t is represented by the atom Utter t(x, σ).1

The truth value of a sentence is represented by a fluent. When a sentence σ
is true (resp. false) at time t, we write Hold t(σ) (resp. ¬Hold t(σ)). A belief
state of an agent is also represented by a fluent. When an agent x believes (resp.
disbelieves) a sentence σ at time t, it is represented by the literal Bel t(x, σ) (resp.
¬Bel t(x, σ)). We define Hold t(�) ≡Bel t(x,�) ≡�, Hold t(⊥) ≡ Bel t(x,⊥) ≡ ⊥
and Hold t(¬σ) ≡ ¬Hold t(σ) for any x, σ and t.

A causal theory must specify conditions that are sufficient for every fact to
be caused. To this end, a causal theory of action contains action rules: (at ⇒ at)
and (¬at ⇒ ¬at) which represent that the occurrence (resp. non-occurrence) of
an action a at a time t is caused whenever a occurs (resp. does not occur) at t.
Likewise, to explain facts at the moment t when a fluent f comes into existence,
a causal theory of action contains fluent rules: (ft ⇒ ft) and (¬ft ⇒ ¬ft)
which represent that the state of a fluent f at a time t is determined outside
the theory. Finally, fluents that do not change by an action are represented by
inertia rules: (ft ∧ ft+1 ⇒ ft+1) and (¬ft ∧ ¬ft+1 ⇒ ¬ft+1) which represent
that if the truth value of f at time t is identical with the value at time t+1 then
the truth value at time t + 1 is caused by virtue of its persistence. Note that
⇒ is not identical to material implication in classical logic. In fact, the above

1 Utter t(x, σ) is represented by the proposition utter x σt where utter x σ is an action
name. We write utter x σt by Utter t(x, σ) for notational convenience.
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rules become tautologies if ⇒ is replaced by ⊃. Those rules are not tautologies
in causal logic. For notational convenience, we use L± meaning L or ¬L. For
instance, (a±

t ⇒ a±
t ) means (at ⇒ at) and (¬at ⇒ ¬at), and (f±

t ∧ f±
t+1 ⇒ f±

t+1)
means (ft ∧ ft+1 ⇒ ft+1) and (¬ft ∧ ¬ft+1 ⇒ ¬ft+1).

3 Causal Theories of Speech Acts

Definition 3.1 (causal theory of speech acts). Let x be an agent, σ ∈ F ,
and t a parameter representing time. A causal theory of speech acts CT t

xσ consists
of rules:

Utter±
t (x, σ) ⇒ Utter±

t (x, σ), (1)
Hold±

t (σ) ⇒ Hold±
t (σ), (2)

Hold±
t (σ) ∧ Hold±

t+1(σ) ⇒ Hold±
t+1(σ), (3)

Bel±t (x, σ) ⇒ Bel±t (x, σ), (4)
Bel±t (x, σ) ∧ Bel±t+1(x, σ) ⇒ Bel±t+1(x, σ). (5)

The rules (1) are action rules, the rules (2) and (4) are fluent rules, and the
rules (3) and (5) are inertia rules. The rules (1) represent that an agent x utters
(or does not utter) a sentence σ at time t. (2) represent that a sentence σ is
true (or false) at time t. (4) represent that an agent x believes (or disbelieves) a
sentence σ at time t.

A speech act by an agent is trustful (resp. untrustful) if the agent utters a
true (resp. false) sentence. They are represented by causal theories as follows.

Definition 3.2 (trustful/untrustful speech acts). A trustful (or untrustful)
speech act of a sentence σ by an agent a at time t is defined as follows.

Trustful(a, σ, t) := CT t
aσ ∪ {Utter t(a, σ) ∧ ¬Hold t(σ) ⇒ ⊥}.

Untrustful(a, σ, t) := CT t
aσ ∪ {Utter t(a, σ) ∧ Hold t(σ) ⇒ ⊥}.

By contrast, a speech act by an agent is truthful (resp. untruthful) if the
agent utters a sentence believed (resp. disbelieved) to be true.

Definition 3.3 (truthful/untruthful speech acts). A truthful (or untruth-
ful) speech act of a sentence σ by an agent a at time t is defined as follows.

Truthful(a, σ, t) := CT t
aσ ∪ {Utter t(a, σ) ∧ ¬Bel t(a, σ) ⇒ ⊥}.

Untruthful(a, σ, t) := CT t
aσ ∪ {Utter t(a, σ) ∧ Bel t(a, σ) ⇒ ⊥}.

Whether a speech act is trustful or not is determined by the truth of
an utterance, while whether a speech act is truthful or not is determined
by the belief state of a speaker. Any logical combination of trustfulness and
truthfulness is consistent, for instance, Trustful(a, σ, t)∧ Untruthful(a, σ, t)
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has the model:2 {Ut(a, σ), ¬Bt(a, σ),¬Bt+1(a, σ), Ht(σ), Ht+1(σ)} which rep-
resents that a speaker a utters a disbelieved sentence σ that happens
to be true. Untrustful(a, σ, t)∧ Truthful(a, σ, t) has the model {Ut(a, σ),
Bt(a, σ), Bt+1(a, σ), ¬Ht(σ), ¬Ht+1(σ)} which represents that a speaker a utters
a believed-true sentence σ that is in fact false.

Next we consider the effect of a speech act on a hearer. Suppose that a
speaker a utters a sentence σ at time t, which brings about a hearer b’s believing
σ at time t + 1. It is represented by the causal rule:

Utter t(a, σ) ⇒ Bel t+1(b, σ). (6)

On the hearer’s side, she would believe an utterance only when it is consistent
with her own belief. The situation is represented by the constraint:

Bel t(b,¬σ) ∧ Bel t(b, σ) ⇒ ⊥. (7)

Prepare rules (4) and (5) for b and ¬σ, and put them together with (6)
and (7). Let Δt

abσ = {Bel±t (b, σ) ⇒ Bel±t (b, σ), Bel±t (b, σ) ∧ Bel±t+1(b, σ) ⇒
Bel±t+1(b, σ), Bel±t (b,¬σ) ⇒ Bel±t (b,¬σ), Bel±t (b,¬σ) ∧ Bel±t+1(b,¬σ) ⇒
Bel±t+1(b,¬σ), Utter t(a, σ) ⇒ Bel t+1(b, σ), Belτ (b,¬σ) ∧ Belτ (b, σ) ⇒
⊥ (for τ = t, t + 1)}.

Definition 3.4 ((mis)inform/(in)sincere). Let a and b be two agents, σ ∈
F , and t a parameter representing time. Then define

Inform(a, b, σ, t) := Trustful(a, σ, t) ∪ Δt
abσ.

Misinform(a, b, σ, t) := Untrustful(a, σ, t) ∪ Δt
abσ.

Sincere(a, b, σ, t) := Truthful(a, σ, t) ∪ Δt
abσ.

Insincere(a, b, σ, t) := Untruthful(a, σ, t) ∪ Δt
abσ.

If the speech act is trustful (resp. untrustful), the speaker brings true
(resp. false) information to the hearer. In this case, we say that a informs
(resp. misinforms) b of σ. On the other hand, if the speech act is truth-
ful (resp. untruthful) a speaker a communicates a believed-true (resp. disbe-
lieved) sentence σ to a hearer b. In this case, we say that a sincerely (resp.
insincerely) communicates σ to b. The effect of an utterance is observed, for
instance, by comparing two models: M1 = {Ut(a, σ), ¬Bt(b, σ), Bt+1(b, σ)} ∪ N
and M2 = {¬Ut(a, σ), ¬Bt(b, σ), ¬Bt+1(b, σ)} ∪ N of Inform(a, b, σ, t) where
N = {Bt(a, σ), Bt+1(a, σ), ¬Bt(b,¬σ), ¬Bt+1(b,¬σ), Ht(σ), Ht+1(σ) }. When
a hearer b disbelieves the sentence σ at time t, an utterance of σ changes
the belief state of the hearer at time t + 1 as far as b disbelieves ¬σ. Such
a belief change does not happen if b believes ¬σ at t. When a speaker a
utters a believed-true sentence σ that is actually false, it would mislead a
hearer b’s acquiring the false belief σ. The situation is represented by the model
{Ut(a, σ), Bt(a, σ), ¬Bt(b, σ), ¬Bt(b,¬σ), ¬Ht(σ), Bt+1(a, σ), Bt+1(b, σ),¬Bt+1

2 U means Utter , B means Bel, and H means Hold.
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(b,¬σ),¬Ht+1(σ) } of Sincere(a, b, σ, t). On the other hand, if a speaker a
utters a disbelieved sentence σ that is actually false and it causes a hearer
b’s acquiring the false belief σ, the speaker deceives the hearer. The situation
is represented by the model {Ut(a, σ), ¬Bt(a, σ), ¬Bt(b, σ),¬Bt(b,¬σ),¬Ht(σ),
¬Bt+1(a, σ), Bt+1(b, σ), ¬Bt+1(b,¬σ), ¬Ht+1(σ) } of Insincere (a, b, σ, t).

Some formal properties are addressed as follows.

Proposition 3.1. Let a and b be two agents, σ ∈ F , and t a parameter rep-
resenting time. Also let Comm be either Inform, Misinform, Sincere, or
Insincere. It holds that

(i)Trustful(a, σ, t)∧ Untrustful(a, σ, t) ⊃ ¬Utter t(a, σ).
(ii)Truthful(a, σ, t)∧ Untruthful(a, σ, t) ⊃ ¬Utter t(a, σ).
(iii)Trustful(a, σ, t)∧ Truthful(a, σ, t) ⊃ (Utter t(a, σ) ⊃ Hold t(a, σ) ∧

Bel t(a, σ)).
(iv)Trustful(a, σ, t)∧ Untruthful(a, σ, t)

⊃ (Utter t(a, σ) ⊃ Hold t(a, σ) ∧ ¬Bel t(a, σ)).
(v)Untrustful(a, σ, t)∧ Truthful(a, σ, t)

⊃ (Utter t(a, σ) ⊃ ¬Hold t(a, σ) ∧ Bel t(a, σ)).
(vi)Untrustful(a, σ, t)∧ Untruthful(a, σ, t)

⊃ (Utter t(a, σ) ⊃ ¬Hold t(a, σ)∧¬Bel t(a, σ)).
(vii)Comm(a, b, σ, t) ⊃ (Utter t(a, σ) ∧ Bel t+1(b, σ) ⊃ ¬Bel t(b,¬σ)).
(viii)Comm(a, b, σ, t) ⊃ (Utter t(a, σ) ∧ ¬Bel t+1(b, σ) ⊃ Bel t(b,¬σ)).

4 Encoding in Logic Programs

A causal rule L1∧· · ·∧Ln ⇒ L0 where Li (0 ≤ i ≤ n) is a literal, is translated into
the logic programming rule: L0 ← not ¬L1, . . . , not¬Ln where not represents
negation as failure. Let ΠT be the logic program that is obtained from a causal
theory T by translating each causal rule in T into the logic programming rule in
ΠT . Then an interpretation I is a model of T iff I is a consistent and complete
answer set of ΠT [4]. By this fact, a causal theory of speech acts is represented
by a logic program as follows.

Definition 4.1 (logic program of speech acts). Let CT t
xσ be a causal theory

of speech acts of Definition 3.1. Then a logic program Πt
xσ associated with CT t

xσ

consists of rules:

Utter t(x, σ) ← not ¬Utter t(x, σ), ¬Utter t(x, σ) ← notUtter t(x, σ),
Hold t(σ) ← not ¬Hold t(σ), ¬Hold t(σ) ← notHold t(σ),
Hold t+1(σ) ← not ¬Hold t(σ), not ¬Hold t+1(σ),
¬Hold t+1(σ) ← notHold t(σ), notHold t+1(σ),
Bel t(x, σ) ← not ¬Bel t(x, σ), ¬Bel t(x, σ) ← notBel t(x, σ),
Bel t+1(x, σ) ← not ¬Bel t(x, σ), not ¬Bel t+1(x, σ),
¬Bel t+1(x, σ) ← notBel t(x, σ), notBel t+1(x, σ).



A Causal Theory of Speech Acts 663

By the correspondence between a causal theory T and its logic programming
translation ΠT , we have the next result.

Proposition 4.1. Let Πt
xσ be a logic program associated with a causal theory

CT t
xσ. Then, I is a model of CT t

xσ iff I is an answer set of Πt
xσ.

(Un)trustful or (un)truthful speech acts, and (mis)inform or (in)sincere com-
munication are also represented by logic programs. In this way, we can compute
the effect of assertive speech acts in answer set programming [1].
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Abstract. A two-dimensional modal logic, intended for applications
in social epistemic logic, with one dimension for agents and the other
for epistemic states is given. The language has hybrid logic devices for
agents, as proposed in earlier papers by Seligman, Liu and Girard. We
give an axiomatisation and a proof of its completeness.

We start with a minimal language, with no restrictions on the epistemic and
social relations. Even the denotation of names is not assumed to be the same in
every state. Like standard hybrid logic, our language has a mixture of devices
from modal propositional logic (modalities) and predicate logic (names and pred-
ication). But unlike hybrid logic the names do not refer to points of evaluation
(worlds, in the case of hybrid logic) but to agents. This imbalance upsets the
canonical model method of proving completeness in a way that is hard to restore
using the technique of “witnesses” familiar from predicate logic.

1 Language, Semantics and Axiomatisation

Definition 1. The language of social epistemic logic consists of a set Prop of
propositional variables p, a set Nom of agent names n and the set of formulas ϕ
constructed from them as follows:

ϕ ::= p | n | ¬ϕ | (ϕ ∧ ϕ) | 〈K〉ϕ | 〈S〉ϕ | @nϕ

Standard abbreviations for ∨, → and ↔ and duals for [K] = ¬〈K〉¬ and [S] =
¬〈S〉¬.

Formulas express agent-indexical propositions: they must be evaluated from the
perspective of an agent to receive a truth value. From my perspective, 〈S〉ϕ
means that I stand in some relationship to someone else, from whose perspec-
tive ϕ is true. 〈K〉ϕ means that it is possible for me that ϕ is true. Shifts in
perspective are achieved with the @ operator: @nϕ means that ϕ is true from
n’s perspective.

Definition 2. A social epistemic model M is a tuple 〈W,A, k, s, g, V 〉 where W
is a set (of states), A is a non-empty set (of agents), ka is a binary relation on
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W for each agent a, sw is a binary relation on A for each state w, gw : Nom →
A assigns an agent gw(n) to each name n in each state w, and V : Prop →
pow(W × A) assigns a subset of W × A (i.e., an agent-indexical proposition) to
each propositional variable.

Definition 3. Given a model M = 〈W,A, k, s, g, V 〉, the relation |= (satisfies)
is defined recursively as follows:

M,w, a |= p iff 〈w, a〉 ∈ V (p)

M,w, a |= n iff gw(n) = a

M,w, a |= ¬ϕ iff M,w, a 	|= ϕ

M,w, a |= (ϕ ∧ ψ) iff M,w, a |= ϕ and M,w, a |= ψ

M,w, a |= 〈K〉ϕ iff M,v, a |= ϕ for some v such that ka(w, v)

M,w, a |= 〈S〉ϕ iff M,w, b |= ϕ for some b such that sw(a, b)

M,w, a |= @nϕ iff M,w, gw(n) |= ϕ

As usual, ϕ is valid in M if M,w, a |= ϕ for all w and a; it is valid if it is
valid in every social epistemic model.

� ϕ if ϕ ygolotuaTygolotuatasi

� [S](ϕ → ψ) → ([S]ϕ → [S]ψ) KS

� [K](ϕ → ψ) → ([K]ϕ → [K]ψ) KK

� @n(ϕ → ψ) → (@nϕ → @nψ) K@

� @nϕ ↔ ¬@n¬ϕ Selfdual@

� @nn Ref@

� @n@mϕ ↔ @mϕ Agree

� @mn → @nm Symmetric

� n → (ϕ ↔ @nϕ) Introduction

� @nϕ → [S]@nϕ Back

if � ϕ and � ϕ → ψ, then � ψ Modus ponens

if � ϕ then � [S]ϕ Necessitation of S

if � ϕ then � @nϕ Necessitation of @

if � ϕ then � [K]ϕ Necessitation of K

if � @nϕ → (n1 ∨ n2 ∨ . . . ∨ nk) then � ¬@nϕ Nominal Rule

Fig. 1. The system HSEL of minimal social epistemic logic.
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Although HSEL is closely based on the usual axiomatisation for hybrid logic,
the Back Axiom is restricted to the social modality and we have an additional
rule: the Nominal Rule. This is sound in hybrid logic and so must be admissible,
but it is not needed to proof the completeness of hybrid logic. We need to know
that is it sound:

Proposition 1. The Nominal Rule is sound.

Theorem 1 (Soundness HSEL). If HSEL 
 ϕ then ϕ is a SEL-validity.

2 Completeness

We assume standard concepts, such as consistency, maximal consistency, logical
closure, etc. First, fix an enumeration e for the set of formulas. By a standard
Linenbaum argument we can prove:

Proposition 2. There is a function Γ �→ Γ e over the sets of formulas such that
if Γ is consistent, Γ e is maximal consistent and Γ ⊆ Γ e .

Definition 4. A network N = 〈W,A, k,s,δ〉 consists of non-empty sets W,A ⊆
N, a relation ka ⊆ W ×W for each a ∈ A, a relation sw ⊆ A×A for each w ∈ W ,
and for each node 〈w, a〉, maximal consistent set δ(w, a).

Definition 5. A network N is coherent iff for every w, v ∈ W,a, b ∈ A

(k) if ka(w, v) then if [K]ϕ ∈ Σ, then ϕ ∈ Γ , for any formula ϕ
(n) δ(w, a) ∩ δ(w, b) ∩ Nom = ∅ if a 	= b
(s) if sw(a, b) then if [S]ϕ ∈ Σ, then ϕ ∈ Γ , for any formula ϕ

(@) @δ(w, a)1 = @δ(w, b)

N is saturated iff

(S) if 〈S〉ϕ ∈ δ(w, a) then there is a b ∈ A such that sw(a, b) and ϕ ∈ δ(w, b)
(@n) if @nϕ ∈ δ(w, a) then there is a b ∈ A such that n ∈ δ(w, b)
(K) if 〈K〉ϕ ∈ δ(w, a) then there is a v ∈ W such that ka(w, v) and ϕ ∈ δ(v, a)
N is perfect iff it is both coherent and saturated.

The saturation conditions all impose existential demands on a network.

Proposition 3. For any perfect network N = 〈W,A, k,s,δ〉 the structure
MN = 〈W,A, k,s,g, V 〉 where gw(n) = a iff n ∈ δ(w, a)

V (p) = {〈w, a〉| p ∈ δ(w, a), p ∈ Prop}
is a social network model.

Lemma 1 (Truth). Given any perfect network N , for any w ∈ W,a ∈ A and
any formula ϕ, MN , w, a |= ϕ iff ϕ ∈ δ(w, a).

1 In this paper, @X = {@nϕ|@nϕ ∈ X}.
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We will show at the end of paper that every consistent set Γ has a perfect
network N with Γ ⊆ δ(0, 0). The Truth Lemma then implies that MN , 0, 0 |= ϕ
for every ϕ ∈ Γ . As it conventionally, this, together with soundness (Theorem 1)
is enough to prove:

Theorem 2 (Completeness). ϕ is derivable from formulas in Γ in HSEL iff
ϕ is a consequence of Γ , i.e. ϕ is satisfied by every M,w, a that satisfies Γ .

3 A Perfect Network

The goal of this section is to build a perfect network by removing defect, one-
by-one.

Definition 6. Given network N with node 〈w, a〉 and a formula ϕ,
[w, a, 〈S〉ϕ] is an S defect iff 〈S〉ϕ ∈ δ(w, a) but no b has sw(a, b) and ϕ ∈ δ(w, b)
[w, a,@nϕ] is an @n

defect
iff @nϕ ∈ δ(w, a) but no b has n ∈ δ(w, b)

[w, a, 〈K〉ϕ] is a K defect iff 〈K〉ϕ ∈ δ(w, a) but no v has ka(w, v) and ϕ ∈
δ(v, a)

We say that N ′ = 〈W ′, A′, k′ , s′ , δ′〉 is an extension of network N =
〈W,A, k,s,δ〉 and write N � N ′ if all the obvious inclusions hold: W ⊆ W ′,
A ⊆ A′, ka ⊆ ka′ , sw ⊆ sw′ , and δ(w, a) ⊆ δ′(w, a) for each w ∈ W and a ∈ A.
In the final case, we actually have an equality, δ(w, a) = δ′(w, a), since they are
both maximal.

Definition 7. If D is a defect of network N then network N ′ is a repair of D
in N iff

N ′ is a coherent extension of N and neither have D nor new defects at nodes
of N .

Due to space constraint, we just give the constructions for Lemmas 2, 3 and 4.

Lemma 2. For any coherent network N and w ∈ W , a ∈ A, [w, a, 〈S〉ϕ] has a
repair.

Proof. Case One: 〈S〉(m∧ϕ) ∈ δ(w, a) and m ∈ δ(w, b) for some m ∈ Nom and
b ∈ A. Here is a formal definition of N ′ = 〈W,A, k,s

′, δ〉 where

s′v =
{
sv if v 	= w
sw ∪ {〈a, c〉} Otherwise

where c ∈ A is the least b satisfying the condition of Case One.
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Case Two: Otherwise.
N ′ = 〈W,A′, k, s′, δ′〉 such that
A′ = A ∪ {|A|}2

s′v =
{
sv if v 	= w
sw ∪ {〈a, |A|〉} Otherwise

δ′(v, b) =

⎧⎨
⎩

[{ϕ} ∪ {ψ|[S]ψ ∈ δ(w, a)}]e if v = w, b = |A|
[@δ(v, a) ∪ {¬n|n ∈ Nom}]e if v 	= w, b = |A|
δ(v, b) Otherwise

Lemma 3. For any coherent network N and w ∈ W , a ∈ A, [w, a,@nϕ] has a
repair.

Proof. Define N ′ = 〈W,A′, k,s,δ
′〉 as follows:

A′ = A ∪ {|A|}

δ′(v, b) =

⎧⎨
⎩

[{n} ∪ @δ(w, a)]e if v = w, b = |A|
[@δ(v, a) ∪ {¬n|n ∈ Nom}]e if v 	= w, b = |A|
δ(v, b) Otherwise

Lemma 4. For any coherent network N and w ∈ W , a ∈ A, [w, a, 〈K〉ϕ] has a
repair.

Proof. Define N ′ = 〈W ′, A, k′, s,δ′〉 as follows:
W ′ = W ∪ {|W |}
k′

b =
{
kb if b 	= a
kb ∪ {〈w, |W |〉} Otherwise

δ′(|W |, a) = [{ϕ} ∪ {ψ|[K]ψ ∈ δ(w, a)}]e

For all b 	= a, δ′(v, b) =
{

[@δ′(|W |, a) ∪ {¬n|n ∈ Nom}]e if v = |W |
δ(v, b) Otherwise

Let d be an enumeration of all potential defects.

Definition 8. Given a consistent set Γ , define a sequence of networks N0 �
N1 � . . . as follows: N0 = 〈W0, A0, k0, s0, δ0〉 is defined by W0 = {0}, A0 = {0},
k0 = ∅, s0 = ∅ and δ0(0, 0) = Γ e. Then Ni+1 is the repair of d(j) in Ni, where j
is the least number such that d(j) is a defect of Ni.

Then define the network of Γ to be NΓ = 〈⋃i Wi,
⋃

i Ai,
⋃

i ki,
⋃

i si,
⋃

i δi〉.
Lemma 5. NΓ is perfect.

Lemma 6. For any consistent set Γ , there is a perfect network N for which
Γ ⊆ δ(0, 0)

2 |W | and |A| are the successors of the largest number in W and A respectively since
W, A ⊆ N.
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4 Conclusion and Further Work

We have provided a complete axiomatisation for the minimal social epistemic
logic. Several obvious extensions present themselves:

1. Rigid social epistemic models
2. Strengthening the epistemic logic to S4, S5, KD45
3. Interactions between K and S
4. Downarrow. The binder ↓n ϕ from hybrid logic.
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Abstract. This paper introduces the concept of relief maximization in
decisions and games and shows how it can explain experimental behavior,
such as asymmetric dominance and decoy effects. Next, two possible
evolutionary explanations for the survival of relief-based behavior are
sketched.
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1 Introduction: Asymmetric Dominance

A popular book by Dan Ariely [Ari08], entitled Predictably Irrational, begins
with the case of an advertisement for a yearly subscription to the Economist.
The customer was offered the following three alternatives: (1) online subscription,
$59; (2) print subscription, $125; (3) print-and-online subscription, $125. The
second option is obviously dominated by the third. When Ariely wanted to test
the effect of including the dominated alternative (called the “decoy option”), he
asked one hundred MIT students to choose one of the options in the menu and
found that the students decided as follows: 16 students chose (1), 0 students
chose (2), 84 students chose (3). Then Ariely removed the decoy option from
the menu and asked the students again. In this case 68 students opted for (1),
while only 32 chose (3). The mere existence of a dominated option, that nobody
opted for, caused a substantial difference in the choice between the other two
alternatives. The first chapter of his book is full of similar examples, where the
decoy effect is evidently playing a considerable role in the individuals’ decisions.

The subscription case presented by Ariely is an example of decision under
certainty. Decoy effects, also called “asymmetric dominance” effects, have been
recently investigated in the context of decisions under uncertainty too, and in
game theory in particular. In [CPB07], the authors conducted an experimental
analysis on a set of two-player games with three possible actions, one of which
(the decoy action E) was dominated by just one of the remaining two (action C),
and with no other dominance relation between other actions. Their experiments
were performed both on symmetric and asymmetric games, with similar results.

c© Springer-Verlag GmbH Germany 2017
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For the purposes of this work, however, it will be enough to present the symmetric
case. The symmetric games used in [CPB07] are the following.1

I C D E
C 40 20 60
D 60 40 20
E 20 0 40

II C D E
C 60 20 40
D 0 80 0
E 20 0 20

III C D E
C 80 20 40
D 40 80 0
E 60 0 20

IV C D E
C 60 20 40
D 0 80 0
E 40 0 20

V C D E
C 80 20 20
D 40 80 0
E 60 0 0

Players first had to play the 3×3 games, and later, as control condition, they had
to play the 2×2 games without the dominated action E. In short, the conclusions
were that asymmetric dominance effects were significantly exhibited.

2 Relief Maximization

We can formulate a general choice principle, that we call relief maximization,
giving rise and possible explanation to asymmetric dominace effects. Formally,
a game is a tuple G = 〈I, (Ai, ui)i∈I〉, with I the set of players, and action
set Ai and utility function ui : ×i∈IAi → R for each i ∈ I. Let us denote
A−i := ×j �=iAj , and define the following quantity as the relief of action ai ∈ Ai:

min
a−i∈A−i

{ui(ai, a−i) − min
a′
i∈Ai

ui(a′
i, a−i)}. (1)

Intuitively, the relief of action ai is the minimal gain that ai can secure with
respect to the worst choices in all action profiles a−i ∈ A−i. Relief maximization
is the principle that “cares” about this quantity and wants to maximize it:

arg max
ai∈Ai

min
a−i∈A−i

{ui(ai, a−i) − min
a′
i∈Ai

ui(a′
i, a−i)} .

To the best of our knowledge, the concept of relief appeared in decision theory
only as an exercise in Problem 2.5.7 in [Jef90], and has gone unused since then.2

However, the link between relief maximization and decoy effects is apparent.
Relief maximization would capture asymmetric dominance effects in all games
presented before: since only actions that are never worst responses have nonzero
relief, an agent who maximizes relief will always choose the dominant action, in
line with the behavior largely observed in the experiments.
1 The symmetric games presented there are actually six, but one of them is irrelevant

for our study. As usual, since games are symmetric, it suffices to specify row player’s
payoffs.

2 For a (compact convex) set of probabilities Γ ⊆ Δ(A−i), it is also straightforward
to generalize the definition to the “multiple-prior version” of relief maximization:
arg maxai minP∈Γ {EP [ui(ai, a−i)] − mina′

i
EP [ui(a

′
i, a−i)]}.
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3 On the Rationality of Maximizing Relief

Mostly due to the axiomatization given in [Sav54], the notion of rationality is
usually associated with the maximization of expected utility: an agent is rational
if and only if she maximizes her expected utility. In this perspective, the agent is
required to form beliefs in terms of a single probability distribution P ∈ Δ(A−i),
and to choose an action that maximizes the expected utility EP [ui(ai, a−i)]. Are
then asymmetric dominance effects irrational? First of all, it is easy to check
that relief maximization violates the independence of irrelevant alternatives and
Savage’s axiom P1 (see [CPB07,Sav54]). Relief maximization and asymmetric
dominance effects are hence at odds with expected utility maximization, and
they would be irrational according to standard rational choice theory.

According to a more ecological perspective instead (e.g., [Gig08]), the qual-
ities and the rationality of a choice cannot be evaluated independently of the
environment in which it takes place. To study the evolutionary performance of
relief maximization we can use a multi-game model where different principles
compete with each other in an environment that consists of a variety of decision
problems (see [GF17]). Consider for example a population living in an environ-
ment composed of the five games from Sect. 1. Since in all those games the Nash
equilibria are in the main diagonal, they incentivize coordination between the
players. To have a more diverse environment, let us also consider their “anti-
coordination” versions, where rows C and D are swapped for each other in all
five payoff matrices. Notice that E is still dominated by C, and no other dom-
inance relations exist in the games. So C is still the relief maximizing action in
all ten games. For the sake of example suppose also that each game has the same
probability of occurring, and that the only two principles in the population are
relief maximization Rel and maxmin Mm, that is defined as follows:

arg max
ai

min
a−i

ui(ai, a−i).

When agents from this population are repeatedly matched to play the games in
the environment, each agent chooses actions according to his or her own choice
principle in all games he or she is involved. The mutual choices of the agents,
together with the occurrence probability of each game, define an expected utility
for any of the choice principles in the multi-game, as specified by the next table.
Each number denotes the expected utility of the principle listed in the row when
the co-player is choosing according to the principle in the column.

Mm Rel

Mm 44 44

Rel 42 42

Relief maximization (and, therefore, asymmetric dominance effects) turns out
to be strictly dominated by maxmin. In general, relief maximization has no
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bite unless there is an action that is a never-worst response and seldom pre-
scribes a unique choice consequently. Because of this weakness, relief maximizers
would often lose the evolutionary competition in many environments that are
not explicitly tailored to relief maximization.

4 Combining Principles

One might then wonder why asymmetric dominance effects are still consistently
observed in actual behavior, given that agents who fall prey to decoys should go
extinct in most reasonable circumstances. We sketch two possible explanations
here. The first is centered on the notion of context dependency. A choice prin-
ciple is context-dependent if the evaluation of each action is not independent
of the menu of actions available to the decision maker (DM henceforth). Think
of maxmin: each action is evaluated by looking at the minimal utility possi-
bly achievable, which does not vary across different menus and is thus context-
independent. Instead, the relief of an action ai, as defined in (1), essentially
depends on the other actions a′

i in the menu of possible alternatives. It is then
possible that relief-based reasoning survived as a side effect of the evolutionary
success of other context-dependent principles, such as regret minimization (see
[GF17]). Humans might have simply retained a general propensity for choosing
in a context-dependent manner (by comparing options with each other), that can
be evolutionarily beneficial when implemented in terms of regret, but much less
beneficial when implemented in terms of relief. This direction would be in line
with the observation in [Ari08] that “humans rarely choose things in absolute
terms. [...] Rather, we focus on the relative advantage of one thing over another,
and estimate value accordingly” (p. 2). The human attitude of judging things
relative to the context might then be much more rational than it is normally
believed in the literature. Not all context-dependent principles are equally good,
though.

A second explanation is based on the possibility that different choice prin-
ciples could also be mixed towards a final decision. Indeed, different principles
may be triggered by different (features of) choice situations, as it is the case
for relief maximization in the presence of an asymmetrically dominated action,
but agents might also combine, in a lexicographic or in a weighted way, different
principles in the same decision problem. In some decision situations in fact two
or more actions may be equally optimal according to a given principle. How will
DM choose between them? An option is to assume that DM will simply pick one
at random, but an alternative would be to reconsider the equally optimal actions
in the light of a different principle, i.e., to use a second principle to break the
tie. In the following we investigate the possibility of using relief maximization as
tie-breaker.3

3 Note that in general a tie-breaker is needed for a principle to always output a single
action.
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Let us introduce two more sophisticated variants of maximinimizers Mm and
regret minimizers Reg, which is defined as follows:

arg max
ai

min
a−i

{ui(ai, a−i) − max
a′
i

ui(a′
i, a−i)}.

So, type Mm+ first discards all actions that do not maximize the minimum, and
then, among the surviving actions, discards all those that do not maximize relief;
and mutatis mutandis for Reg+. If we consider the multi-game environment
consisting of the ten games introduced before, the resulting expected utilities are
in the next table. It turns out that reasoning in terms of relief, in combination
with other principles, is not necessarily detrimental to the player’s utility.

Mm Mm+ Reg Reg+

Mm 44 44 44 44

Mm+ 42 42 42 42

Reg 46 46 46 46

Reg+ 46 46 46 46

When combined with maxmin, relief maximization performs rather poorly, but
when combined with the other context-dependent principle presented here,
namely regret minimization, then relief-based reasoning can survive the evo-
lutionary competition. In the example considered, principles Mm and Mm+

are dominated by both Reg and Reg+, and the evolutionarily stable states (see
[Wei95]) are all population states with the two principles Reg and Reg+ only.
If we allow the agents to evaluate options according to multiple choice princi-
ples, that is, to tackle the decision problem from many different perspectives
and combine them into a final decision, then it is evolutionarily less implausi-
ble to observe the survival of relief-maximizing behaviors, such as asymmetric
dominance effects.

5 Conclusion

This paper presented a choice principle, relief maximization, that is able to cap-
ture asymmetric dominance and decoy effects. We next sketched two possible
explanations for the survival of relief-based behaviors and considered a more
ecological and multi-principled view on rational choice, where DM combines dif-
ferent principles to evaluate choices, and different combinations are evolutionar-
ily selected over others depending on the decision problems in the environment.
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Abstract. In this paper we study the relation between nonmonotonic
reasoning and belief revision. Our main conceptual contribution is to
suggest that nonmonotonic reasoning guides but does not determine
an agent’s belief revision. To be adopted as beliefs, defeasible conclu-
sions should remain stable in the face of certain bodies of information.
This proposal is formalized in what we call a two-tier semantics for non-
monotonic reasoning and belief revision. The main technical result is a
sound and complete axiomatization for this semantic.

1 Introduction

Nonmonotonic reasoning and belief revision, although structurally very simi-
lar [12], are conceptually distinct. Paraphrasing Gärdenfors [6], nonmonotonic
reasoning consists in drawing defeasible conclusions from what you believe. In
this paper we view these as permissible conclusions. You may, but do not have
to draw them. Belief revision, on the other hand, is a theory of how you should
change your mind in the face of new information. It describes how this “change in
view” [8] ought to take place. Belief revision is thus more normatively demanding
than nonmonotonic reasoning. The first consists in keeping track of what “nor-
mally” or “commonsensically” follows from your beliefs. The second requires you
to come to new beliefs and retract old ones.

How should nonmonotonic reasoning and belief revision be related? How, in
other words, should permissible but defeasible conclusions relate to the way you
should update your belief upon learning? In this paper we study an answer to
these questions in terms of cautiousness. As belief revision is more normatively
demanding than nonmonotonic reasoning, agents may use caution in forming new
beliefs in the face of incoming information, refraining from drawing all defeasible
conclusions from their original beliefs.

To be more specific, the agent circumscribes the range of what she may come
to believe upon learning new information by nonmonotonic reasoning. Among the
defeasible conclusions derived from her nonmonotonic reasoning, the agent filters
out the ones which are not entrenched enough. Conclusion A is more entrenched
than conclusion B if, when more information is taken into account in the non-
monotonic reasoning, conclusion A still follows while conclusion B does not.

The paper presents a formal framework in which we characterize the rela-
tion between nonmonotonic reasoning and belief revision as described above.
c© Springer-Verlag GmbH Germany 2017
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The framework we use i interesting in itself in the sense of integrating two
heterogeneous parts, one is qualitative and the other is quantitative. The inter-
action between them leads to the formation and revision of the agent’s beliefs.

Furthermore, we provide a sound and complete logic for reasoning about the
key notions involved in our framework. However, due to the page limit, we decide
not to include the details. The interested readers are referred to the long version
of this paper.

2 Two-Tier Mechanism for Belief Revision

In this section, we aim to characterize the notion of belief revision based on the
agent’s nonmonotonic reasoning and cautiousness. To achieve this, we introduce
a frame which includes a set of possible worlds W . All subsets of W are taken as
propositions. The usual power set algebra on W gives us the boolean connectives:
P ∧ Q := P ∩ Q, P ∨ Q := P ∪ Q, ¬P := W − P , P → Q := ¬P ∨ Q.

Moreover, we impose a transitive and reflexive order �⊆ W × W and an
equivalence relation R ⊆ W × W on W . � is interpreted as a normality order
[3,9] and u � v means u is at least as normal as v to the agent. For simplicity, we
will assume that 	:=� \ ≈ is well-founded, where ≈:=� ∩ �. Then Max�(X) =
{w ∈ X | ¬∃v ∈ X : v 	 w} denotes the most normal worlds the agent would
take given the proposition X. As in the literature on epistemic logic [5], R is
taken as the epistemic accessibility relation and Ruv means that the agent cannot
epistemically distinguish v from u. If w is the actual world where the agent is
located, then R(w) = {v ∈ W | Rwv} denotes the set of possible worlds the
agent takes epistemically possible.

The agent’s nonmonotonic reasoning is expressed by an operator DPQ which
says that the agent would expect Q to be the case given the information that P
is the case. In the frame, given � and R, the operator DPQ is defined as follows.

DPQ is the case in the world w iff Max�(P ∩ R(w)) ⊆ Q

where P,Q ⊆ W . This definition says that the agent would take those propo-
sitions which hold on all the most normal worlds in P ∩ R(w) as permissible
conclusions. Note that in the definition, R(w) represents what the agent knows.
The agent’s nonmonotonic reasoning is made by applying those default rules
(represented by the normality order in the frame) to the given information P
and what she has already known.

The way we characterize the agent’s nonmonotonic reasoning follows the line
of [3,9]. The difference is that we model the agent’s knowledge base and how it
is involved in the agent’s nonmonotonic reasoning explicitly in the frame.

The same characterization can also be applied to the agent’s belief revision
as did in [2,4] by interpreting the normality order as a plausibility order and
the operator DPQ as the agent’s conditional belief. This way of modeling belief
revision implies that belief revision and nonmonotonic reasoning are governed
by the same logic.

Our approach to belief revision is different from the model using plausibility
order. As described in the Introduction, we think that the agent’s belief revision
is guided but not determined by her nonmonotonic reasoning. So the remaining
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part of this section will show how the agent’s nonmonotonic reasoning guides
her belief revision and what extra process contributes to the agent’s belief revi-
sion. Moreover, we will investigate whether belief revision and nonmonotonic
reasoning in our setting follow the same logic.

As we have said in the Introduction, by nonmonotonic reasoning, the agent
collects some defeasible conclusions which are not yet qualified as her belief.
These conclusions need to pass a further test called “stability test”: when taking
more information into account, whether the agent would still expect those con-
clusions to hold. Next we will address the question of what information should
be taken into consideration in the stability test to evaluate the conclusions. The
idea is that the agent would consider those propositions credible enough. To
model the credibility of each proposition, we use a probability function.

Definition 1 (Two-tier frame). A two-tier frame F = (W,R,�, µ) is a
structure where W,R,� are a set of possible worlds, an equivalence relation on W
and a transitive and reflexive order on W as explained above. And µ : W → P
is a function assigning to each possible world w ∈ W a probability function
µw : 2R(w) → [0, 1] satisfying Kolmogorov’s Axioms such that

– µw(w) > 0;
– µv = µw for any v ∈ R(w).

Given w ∈ W and X ⊆ W , we define the probability function conditional on
X with X ∩ R(w) �= ∅ as

Pw(Y |X) :=
µw(Y ∩ X ∩ R(w))
µw(X ∩ R(w))

where Y ⊆ W .

Then how is the agent’s probability function applied in the stability test?
It is used to measure the entrenchment of the conclusions derived in the non-
monotonic reasoning. The details are spelled out in the following definition of
the operator �r.

Definition 2. For any r ∈ [0, 1], F , w |= X �r Y 1 if and only if for any
Q ⊆ W , if Pw(Q | X) ≥ r, then Max�(Q ∩ X ∩ R(w)) ⊆ Y .

To get a feeling for this definition, take X in X �r Y as W . The formula
W �r Y says that conditional on any proposition P ⊆ W whose probability
is not less than r, the agent would draw the conclusion Y from W . To put it
another way, taking into account each item of information which is sufficiently
probable, i.e. not lower than r, the agent would still expect the conclusion Y .

Therefore, the smaller is the number r, the more entrenched is the conclusion
Y . Note that

F , w |= W �0 Y iff R(w) ⊆ Y ,

which can be interpreted as the knowledge operator (the agent knows Y ) and

F , w |= X �1 Y iff Max�(X ∩ R(w)) ⊆ Y ,

which is the same as the operator DXY for nonmonotonic reasoning.
1 We write w ∈ P ⊆ W as F , w |= P .
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With this in hand, we can state our definition of belief revision based on
cautious nonmonotonic inferences.

Definition 3. Given a two-tier frame F and w ∈ W ,

F , w |= BX
0.5Y if and only if F , w |= X �0.5 Y .

This definition definitely ought to remind some readers of the notion of belief
which only requires a sufficiently high probability (beyond 0.5 for example).
Indeed, our notion of belief implies belief with high probability. If F , w |= BX

0.5Y ,
then Pw(Y |X) > 0.5. But it is more than high probability alone. It relies even
more heavily on the agent’s nonmonotonic reasoning. This ensures that under
|=, BX

0.5Y is deductively closed: for any two-tier frame F and any world w in it,
F , w |= BX

0.5(P ∧ Q) ↔ BX
0.5P ∧ BY

0.5Q.2

We next show that our notion of belief revision BX
0.5Y is not governed by

the same logic of nonmonotonic reasoning DPQ. Several results about valid and
invalid formulas are summarized in the following table, including those in the
class of two-tier frames where � is connected.

In any F where � is not necessarily connected

O = D O = B0.5

CM:OPQ ∧ OPY → OP∧QY � �
Cut: OPQ ∧ OP∧QY → OPY � ×
Or:OPY ∧ OQY → OP∨QY � ×
And: OXP ∧ OXQ → OX(P ∧ Q) � �
In any F where � is connected

O = D O = B0.5

NR: ¬OP∧QY ∧ ¬OP∧¬QY → ¬OPY � �
RM: (OPY ∧ ¬OP∧QY ) → OP¬Q � ×
CV: ¬OPQ → (OPY → OP∧¬QY ) � ×
DR:¬OPY ∧ ¬OQY → ¬OP∨QY � ×

3 Future Work

The mechanism presented in Sect. 2 can also be seen as a proposal for how
categorical, i.e. normality- or plausibility-based reasoning should relate to quan-
titative, graded reasoning. We did not, however, impose any restrictions on the
relationship between the agent’s normality order and credence function. In recent
years there has been a renewal of interest in such bridges between categorical and
graded reasoning [10,11]. One obvious next step would be to compare the present
proposal with these, especially in view of the dynamic interaction between the
normality order and the probability function.

Our notion of belief revision as cautious nonmonotonic reasoning uses the
idea that the agent’s defeasible conclusions should remain stable in the face of
2 The validity of a formula in this framework is defined in the usual way.
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certain bodies of information. This of course raises the question of the relation
between our proposal and the stability theory of knowledge [13] and of belief [10].

The former requires that the agent’s belief remains stable in the face of any
true information. The latter requires that for the agent the probability of a cer-
tain proposition remains beyond a particular threshold in face of any information
consistent with the proposition. What is then the relation between our stabil-
ity theory of belief and the other two stability theories? It is worth mentioning
that the stability theory of belief [10] aims to achieve a notion of belief which
can imply a sufficiently high probability while still validating the closure under
conjunction. This aim is also achieved by our notion of belief.

Our definition of the operator �r provides a way of measuring the entrench-
ment of the agent’s defeasible conclusions. How does this measurement of
entrenchment relate to the discussion of entrenchment in the literature of belief
revision [7]? To be more concrete, how is our method of measurement differ-
ent from and connected to Sphon’s “degree of belief” [14] which is also studied
in [1,15]?
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Abstract. The importance of logics with approximate conditional prob-
abilities is reflected by the fact that they can model non-monotonic
reasoning. We introduce a new logic of this kind, CPJ, which extends
justification logic and supports non-monotonic reasoning with and about
evidences.

1 Introduction

Justification logic [1] is a variant of modal logic that ‘unfolds’ the �-modality
into justification terms, i.e., justification logics replace modal formulas �α with
formulas of the form t:α that mean t is a justification for the agent’s belief (or
knowledge) in α. This interpretation of justification logic has many applications
and has been successfully employed to analyze many different epistemic situa-
tions including certain forms of defeasible knowledge [2–5,12].

In a general setting, justifications need not to be certain. Milnikel [14] was the
first to approach this problem with his logic of uncertain justifications. Kokkinis
et al. [8–10] study probabilistic justification logic, which provides a very general
framework for uncertain reasoning with justifications that subsumes Milnikel’s
system.

In the present paper we extend probabilistic justification logic with opera-
tors for approximate conditional probabilities. Formally, we introduce formulas
CP≈r(α, β) meaning the probability of α under the condition β is approximately
r. This makes it possible to express defeasible inferences for justification logic.
For instance, we can express

if x justifies that Tweety is a bird, then usually t(x) justifies that Tweety flies

as CP≈1(t(x):flies, x:bird).
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Our paper builds on previous work on probabilistic logics and non-monotonic
reasoning. Logics with probability operators are important in artificial intelli-
gence and computer science in general [6,15]. They are interpreted over Kripke-
style models with probability measures over possible worlds. Ognjanović and
Rašković [16] develop probability logics with infinitary rules to obtain strong
completeness results. The recent [17] provides an overview over the topic of
probability logics.

Kraus et al. [11] propose a hierarchy of non-monotonic reasoning systems. In
particular, they introduce a core system P for default reasoning and establish
that P is sound and complete with respect to preferential models. Lehmann
and Magidor [13] propose a family of non-standard (∗

R) probabilistic models. A
default α � β holds in a model of this kind if either the probability of α is 0 or
the conditional probability of β given α is infinitesimally close to 1. Using this
interpretation, they show that system P is also sound and complete with respect
to ∗

R-probabilistic models. Rašković et al. [18] present a logic with approximate
conditional probabilities, LPPS, whose models are a subclass of non-standard
∗
R-probabilistic models. They prove the following: for any finite default base Δ

and for any default α � β

Δ �P α � β iff Δ �LPPS α � β.

We will introduce operators for approximate conditional probabilities to jus-
tification logic. This makes it possible to formalize non-monotonic reasoning with
and about evidences.

2 Basic Justification Logic J

Let C be a countable set of constants, V a countable set of variables, and Prop a
countable set of atomic propositions. Justification terms and formulas are given
as follows:

t :: = c | x | (t · t) | (t + t) | !t and α :: = p | ¬α | α ∧ α | t : α

where c ∈ C, x ∈ V , and p ∈ Prop. We denote the set of all justification formulas
by FmlJ. Other classical Boolean connectives, ∨, →, ↔, as well as ⊥ and 	, are
defined as usual.

The axioms of the logic J are following:

all propositional tautologies u : (α → β) → (v : α → u · v : β)
u : α → u + v : α v : α → u + v : α

A set CS ⊆ {(c, α) | c ∈ C,α is an instance of any axiom of J} is called con-
stant specification. For a given constant specification CS, we define the Hilbert-
style deductive system JCS by adding the following two rules to the axioms of J:

1. For (c, α) ∈ CS, n ∈ N, infer !nc :!n−1c : · · · :!c : c : α
2. From α and α → β infer β
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A basic evaluation for JCS, where CS is any constant specification, is a func-
tion ∗ such that ∗ : Prop → {true, false} and ∗ : Term → P(FmlJ), and for
u, v ∈ Term, any constant c and α ∈ FmlJ we have:

1. if there is β ∈ v∗ with β → α ∈ u∗, then α ∈ (u · v)∗

2. u∗ ∪ v∗ ⊆ (u + v)∗

3. if (c, α) ∈ CS, then α ∈ c∗ and for each n ∈ N, !nc :!n−1c : · · · :!c : c : α ∈
(!n+1c)∗.

Instead of writing ∗(t) and ∗(p), we write t∗ and p∗ respectively. Now, we are
ready to define the notion of truth under a basic evaluation. The binary relation
� is defined by:

∗ � p iff p∗ = true ∗ � ¬α iff ∗ � α

∗ � α ∧ β iff ∗ � α and ∗ � β ∗ � t : α iff α ∈ t∗

3 The Logic CPJ

Consider a non-standard elementary extension ∗
R of the real numbers. An ele-

ment ε of ∗
R is called an infinitesimal iff |ε| < 1

n for every n ∈ N. Let S be the
unit interval of the Hardy field Q[ε], which contains all rational functions of a
fixed positive infinitesimal ε of ∗

R, for details see, e.g., [7].
The set of probabilistic formulas, denoted by FmlP, is the smallest set that

contains all the formulas of the form

CP≥s(α, β) CP≤s(α, β) CP≈r(α, β)

for α, β ∈ FmlJ, s ∈ S, and r ∈ Q ∩ [0, 1] and that is closed under negation and
conjunction. We use ϕ,ψ, . . . to denote FmlP-formulas. The set of all formulas,
Fml, of the logic CPJ is defined by Fml = FmlJ ∪ FmlP. Elements of Fml will be
denoted by θ, θ1, θ2, . . .. We use the following standard abbreviations, see [18]:

CP<s(α, β) CP>s(α, β) CP=s(α, β) Pρsα with ρ ∈ {≥,≤, >,<,=,≈}.

The semantics for the logic CPJ is based on possible worlds models. Let
CS be the constant specification. A CPJCS-model (or just model) is a tuple
M = 〈W,H, μ, ∗〉 where:

• W is a non-empty set of objects called worlds
• H is an algebra of subsets of W
• μ is a finitely additive probability measure on H
• ∗ is a function from W to all basic JCS-evaluations. We write ∗w for ∗(w).

Let M = 〈W,H, μ, ∗〉. We put [α]M := {w ∈ W | ∗w � α}. Whenever M is
clear from the context, we will write [α] instead of [α]M .

A CPJCS-model M is measurable if and only if [α]M ∈ H, for every α ∈ FmlJ.
A CPJCS-model M is neat if and only if the empty set has the zero probability
and no other set has. The class of all measurable and neat CPJCS models is
denoted by CPJCS,Meas,Neat.
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Let CS be any constant specification. The satisfaction relation |= ⊆
CPJCS,Meas,Neat × Fml is defined, for any M ∈ CPJCS,Meas,Neat, as follows:

1. M |= α if for every w ∈ W , ∗w � α,
2. M |= CP≤s(α, β) if either μ([β]) = 0 and s = 1, or μ([β]) > 0 and

μ([α∧β])
μ([β]) ≤ s,

3. M |= CP≥s(α, β) if either μ([β]) = 0, or μ([β]) > 0 and μ([α∧β])
μ([β]) ≥ s,

4. M |= CP≈r(α, β) if either μ([β]) = 0 and r = 1, or μ([β]) > 0 and for each
n ∈ N, μ([α∧β])

μ([β]) ∈ [max{0, r − 1
n},min{1, r + 1

n}],
5. M |= ¬ϕ iff it is not the case that M |= ϕ,
6. M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ.

We assume that the conditional probability is by default 1, whenever the
condition has the probability 0, which explains the formulation of case 3 in the
above definition.

We introduce the following axiom system for CPJCS, where we set f(s, t) :=
min{1, s + t}, r− := Q ∩ [0, r), and r+ := Q ∩ (r, 1]:

Axiom schemes

1) all JCS-provable formulas 2) all FmlP-instances of classical tautologies

3) CP≥0(α, β) 4) CP≤s(α, β) → CP<t(α, β), t > s

5) CP<s(α, β) → CP≤s(α, β) 6) P≥1(α ↔ β) → (P=sα → P=sβ)

7) P≤sα ↔ P≥1−s¬α 8) (P=sα ∧ P=tβ ∧ P≥1¬(α ∧ β)) → P=f(s,t)(α ∨ β)

9) P=0β → CP=1(α, β) 10) (P=tβ ∧ P=s(α ∧ β)) → CP= s
t
(α, β), t �= 0

11) CP≈r(α, β) → CP≥r1 (α, β), r1 ∈ r
−

12) CP≈r(α, β) → CP≤r1 (α, β), r1 ∈ r
+

.

Inference Rules

1. From θ1 and θ1 → θ2 infer θ2.
2. From α infer P≥1α.
3. From the set of premises {ϕ → P�=sα | s ∈ S} infer ϕ → ⊥.
4. Let r ∈ Q ∩ [0, 1]. From the two sets of premises {ϕ → CP≥r− 1

n
(α, β) | n ≥

1
r , n ∈ N} and {ϕ → CP≤r+ 1

n
(α, β) | n ≥ 1

1−r , n ∈ N} infer ϕ → CP≈r(α, β).

Axiom 3, putting 	 instead of β, says that the probability of each formula
being satisfied in some set of worlds is at least 0, and we can easily infer (using
¬α instead of α) that the upper bound is 1, i.e. P≤1α. Axioms 4 and 5 say
that we can weaken the degree of confidence of truth, while Axiom 6 says that
equivalent formulas have the same probability. Axiom 8 corresponds to finite
addivity of a measure. Axiom 9 ensures that the conditional probability is equal
to 1 whenever the condition has probability 0. Axiom 10 is the formula that
states the standard definition of the conditional probability. Finally, the Axioms
11 and 12 (together with Inference Rule 4) give us the relationship between the
conditional probability infinitesimally close to the some rational number r ∈ [0, 1]
and the standard conditional probability.
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Note that there are two bottom elements in Fml, namely ⊥J ∈ FmlJ and
⊥P ∈ FmlP. Accordingly we say that a set T of Fml-formulas is CS-consistent if
T �CS ⊥J and T �CS ⊥P.

Similar to [18], we can establish an extended completeness result.

Theorem 1. Let CS be any constant specification. A set T of Fml-formulas is
CS-consistent if and only if T has a CPJCS,Meas,Neat-model, i.e., there exists a
CPJCS,Meas,Neat-model M with M |= θ for each θ ∈ T .

4 Conclusion

We extended probabilistic justification logic with operators for approximate con-
ditional probabilities, which makes it possible to express defaults in justification
logic. In particular:

CP≈1(t(x):flies, x:bird) (1)

means if x justifies that Tweety is a bird, then usually t(x) justifies that Tweety
flies;

CP≈1(¬t(x):flies, x:penguin) (2)

means if x justifies that Tweety is a penguin, then usually it is not the case that
t(x) justifies that Tweety flies;

CP≈1(x:bird, x:penguin) (3)

means if x justifies that Tweety is a penguin, then usually x also justifies that
Tweety is a bird.

Similar to [13,18], it is possible to show that (the corresponding translations)
of the axioms and rules of system P are sound with respect to CPJ. In particular
we can apply the rule of cautious monotonicity to (2) and (3) in order to infer

CP≈1(¬t(x):flies, x:penguin ∧ x:bird),

which is consistent with (1).
Besides the possibility of expressing defaults, CPJ also features non-

monotonic versions of classical operations on justifications. Let us consider the
sum operator with its defining axiom

u : α ∨ v : α → u + v : α. (4)

This axiom states that justifications are monotone: if u justifies α, then the
combination of u with v still justifies α. Often the sum operation is motivated
as follows. Think of u and v as two volumes of book collection and u + v as
the set of those two volumes. Imagine that volume u contains a justification for
a proposition α, i.e., u : α is the case. Then the larger set u + v also contains
a justification for α, i.e., u + v : α. This idea is reflected in the provability
semantics of justification logic where the sum operation is interpreted as proof
concatenation, which, of course, is monotone.
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This motivational example can also be read in another way. It is possible that
the second volume v contains a retraction of α, i.e., it withdraws the justification
given for α in volume u. To model situations of this kind, one could introduce a
non-monotonic sum operation, ∼� , with

CP≈1(u ∼� v:α, u:α) and CP≈1(u ∼� v:α, v:α).

Using the (Or) rule of system P we get CP≈1(u ∼� v:α, u:α ∨ v:α), which is a
non-monotonic version of (4).
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Abstract. In this research constructivist epistemology provides a ground for
conceptual analysis of concept construction, conception production, and concept
learning processes. Relying on a constructivist model of knowing, this research
will make an epistemological and logical linkage between concepts and
predicates.

1 Introduction

Constructivist epistemology, as a style of thinking about knowledge, focuses on the
question of whether, and under which conditions, human beings may construct their
own knowledge structures and produce their understanding of the world. It holds that
humans can know [about] their personal built up constructions. Actually constructivist
epistemology focuses on HowNess of meaning construction with regard to humans’
own experiences of the world. It assumes that humans reflect their constructed
knowledge on their experiences and pre-conceptions of the world. Regarding [8, 9], I
assume that knowledge is not a representation of objective entities (e.g., objective facts,
objective procedures), but a compendium (and construction) of concepts, conceptual
relationships, and rules that have proven to be useful in expressing humans’ experi-
ential world. According to [5, 6], Bruner believed that knowing is how human beings
get beyond the information given. According to Bruner, knowing the world is not just
perceiving something, but it’s constructing it. I shall therefore conclude that the active
process of knowledge construction includes information selection, information trans-
formation, decision making, hypothesis generation, and meaning construction from
information and experiences. My central focus is on the assumption that we can,
reasonably and logically, employ a constructivist model of knowing in order to
describe knowledge construction over concepts as a kind of conditional reasoning. This
research will focus on conceptual analysis of concepts, concept constructions, con-
ceptions, and concept learning in order to make a logical junction between conceptions
and predications. Relying on a constructivist model of knowing, this research will
make an epistemological and logical linkage between concepts and predicates.
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2 Concepts in the Framework of Constructivism

Over the years, the concept of ‘concept’ has been quite imprecise and concepts have
not been used consistently, see [11, 13, 15]. More specifically, it is not always trans-
parent if what is meant by the expression ‘concept’ is some mental representation of
phenomena in the world, for example as mental pictures of ‘red dog’, or whether a
concept always has to be bound up with some linguistic expression, e.g., the words
‘dog’ and ‘red’ in the concept ‘red dog’, see [10]. In my opinion, it seems to be
plausible that concepts could be the primary units of knowledge—the basic materials, it
is often said—out of which humans’ thoughts are built and developed. In order to
express my conception of ‘concepts’, I need to focus on the concept of ‘meaning’. In
the framework of constructivism, a meaning might be interpreted as a ‘conceptual
structure’ and, as such, meanings, to a large extent, influence any individual human
being’s constructions and developments of her/his individual experiential reality.
Therefore, meanings could be interpreted to be constructed over conceptual entities.
Thus, any conceptual entity can be interpreted as a building block of a conceptual
structure. Note that we can have different perceptions of conceptual entities and, of
course, there is no absolute schema for conceptual entities. In my opinion, conceptual
entities might be labelled ‘concepts’ and, subsequently, a conceptual entity, as a rep-
resentation of a piece of reality, or even fiction, in an individual’s mind, can be
interpreted to be a basic material of [to-be-constructed] meanings. This could be in line
with Bartlet’s idea that concepts might be realised as representations of [pieces of]
reality in the minds of humans, see [3].

A concept construction process is structured over the union of three sub-processes
consisting of (i) concept formation, (ii) concept trans-formation, and (iii) concept
re-formation, see [1, 2]. Concept reformation happens either after transformation, or at
the more specific levels of conceptualisations (of the formed concepts) and as the
outcome of conceptual changes (see [12]). For example, the concept ‘red dog’ could be
constructed by Bob based on his intra-psychological and inter-psychological processes.
More specifically, (a) some processes, like, thinking about red dogs and studying the
topic ‘red dogs’ are intra-psychological. Accordingly, the concept ‘red dog’ could be
reflected and epitomised in Bob’s mind in order to be developed; (b) according to
inter-psychological processes, the concept ‘red dog’ can become transformed from Bob
into other agents, and vice-versa. For example, his interactions with other humans,
animals, and dogs are inter-psychological. Bob may have conversational exchanges
with other humans about their conceptions of red dogs. He can watch and touch red
dogs. Bob—by moving from (a) to (b) and vice-versa and, by modifying his conception
of ‘red dog’ over time—becomes concerned with the development of his mental
construction of the concept ‘red dog’. He can, at anytime, make inferences based on his
most modified conception of ‘red dogs’. Note that his most modified conception(s)
is/are produced based on his most specified constructed ‘red dog’. This conclusion is in
line with Vygotsky’s theory of social constructivism. Vygotsky in [16] stated that
“Every function in the child’s cultural development appears twice: first, on the social
level, and later, on the individual level; first, between people (inter-psychological) and
then, inside the child (intra-psychological)”.
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3 Constructivist Concept Learning

Bruner believed that “to perceive is to categorize, to conceptualize is to categorize, to
learn is to form categories, to make decisions is to categorize”. In the framework of
constructivism, a categorisation (or classification) can be interpreted as a process of
‘constructing’, which is dependent on ‘representations’. In addition, a classification
corresponds with an ‘assignment’. It is worth mentioning that the term ‘construction’
can also express the creation of an abstract entity, see [7, 14]. Actually any individual
human being is capable of classifying a phenomenon as belonging to one or to multiple
classes with her/his determined and specified labels. I shall claim that humans form and
produce multiple classes of different phenomena in order to construct knowledge over
those phenomena. It seems to be undeniable that classifications are strongly dependent
on mental representations of any individual’s personal to-be-constructed constructions
based on her/his own conceptions (as the products of her/his constructed concepts).
Taking the concepts of ‘classification’ and ‘construction’ into account, we could realise
that there is a strong logical bi-conditional relationship between the categories
(i) classification, regarding hierarchical viewpoints, and (ii) mental construction, as
well as mental representation of a phenomenon.

Concept learning can, by seeing concepts as classes, be regarded as (a) the
developmental process of concept construction and, accordingly, as (b) the specifica-
tion of the conceptualisation of the constructed concepts. Concept learning is activable
with regard to humans’ specification of the conceptualisations of the characteristics and
properties of concepts and through experiencing various collections of examples of
those concepts. Through concept learning, the phenomena of ‘classification’, ‘repre-
sentation’, ‘construction’, and ‘abstraction’ are linked together. In addition, I want to
stress that the conceptual interrelationships between ‘concepts’ (as basic materials of
meanings) and ‘meanings’ (as conceptual structures) establish a semantics based upon
humans’ concept constructions within their constructivist concept learning process.

4 From Conceptions to Predicates

How could we establish a logical junction between humans’ constructed concepts and
their expressed conceptions? By taking the phenomenon of ‘classification’ into
account, we can, logically, consider any conception as a class (and, in fact, as a
mathematical set). Subsequently, by representing that set in the form of a predicate, that
conception can be expressed and stated. More specifically, a unary set and its superset
make a class inclusion relationship in the form of SubClass � SuperClass. For
example, Dog � Animal and Red � Colour. Accordingly, a class inclusion rela-
tionship can be expressed in the form of a [unary] predicate inclusion. For example,
Dog � Animal and Red � Colour are representable in the form of Dog ⊑ Ani-
mal and Red ⊑ Colour, respectively. Subsequently, a unary predicate inclusion can
be expressed in the form of a predicate assertion. For example, Dog ⊑ Animal and
Red ⊑ Colour are expressible by Animal(Dog) and Colour(Red), respec-
tively. The logical expression ‘Animal(Dog)’ expresses that the class Animal
covers the class Dog and, in fact, all Dogs are interpreted and understood as Animals.
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Therefore, the class Dog is subsumed under the class Animal. Furthermore, relying
on inductive rules, the class inclusions Dog ⊑ Animal and Red ⊑ Colour can be
merged in order to produce RedDog ⊑ ColouredAnimal and, subsequently, to
produce ColouredAnimal(RedDog). I shall conclude that representing the log-
ical description ‘Dog ⊑ Animal’ is strongly dependent on the following processes in
one’s mind:

(I) Constructing Dog and Animal and, respectively, producing personal concep-
tions of them. (II) Scheming some individual dogs and animals (as the instances of
Dog and Animal, respectively) and, accordingly, producing personal conceptions of
them. (III) Constructing logical relationships between Dog and Animal and, subse-
quently, producing personal conceptions of them. It shall be emphasised that any
semantic interpretation is given sense over the collection of (I), (II), and (III). Logi-
cally, the triple (I, II, III) is equivalent to: (classes, inclusions and memberships in
classes, the interrelationships between the members of various classes).

Assessed by formal logic, a predicate is an expression that makes an ‘assignment’.
Human beings, by their semantic interpretations, assign their own conceptions and the
interrelationships between those conceptions into logical values. A predicate is capable
of connecting with one or more singular terms to make a proposition. Predicates
express the conditions that the entities referred to may satisfy, see [4]. More specifi-
cally, predicates, by employing semantic interpretations (i.e., generated interpretation
functions from words and symbols into truth values), transmit the characteristics as
well as the properties of conceptions into either statements or values. Consequently,
unary predicates could stand in the place of conceptions and n-ary predicates (for
n � 2) could stand in the place of conceptions’ interrelationships. It can, therefore, be
concluded that ‘a predicate is an assignment function from characteristics and prop-
erties of a conception (and in fact, of a constructed concept) into subjects’. A subject is
something which is—in a situation/setting—the conceptual entity (i.e., a configuration)
of the act of linguistic communication (i.e., transfer of information) or cognition (i.e.,
transformation of information) of the interlocutor uttering the statement. Therefore,
subjection is an assertive predication, see [10]. Figure 1 represents the analysed con-
ceptual relationship between concepts and predicates.

5 Concluding Remarks

Predication of a conception (or, equivalently: a to-be-created class) is concerned with
the question ‘what is it to state something about that conception?’ and, thus, a predi-
cation tackles to find an answer for describing and expressing the question ‘what is

Fig. 1. From concepts to predicates in the framework of constructivism
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there for a produced conception?’. Heuristically, the latter question focuses on the
existence of a constructed concept. This question is concerned with ontological
descriptions of a constructed concept, while the first question is concerned with a
description of that concept. I shall acknowledge that there is a strong correlation
between predication of a conception and that concept’s ontology. Relying on con-
structivist ontology, any individual human being has her/his personal constructed
concepts, and hence, it is reasonable to assume that the constructed concepts are valid.
Let me conclude that a predication is, indirectly, concerned with a kind of ontological
underpinning of a conception and, in fact, of a constructed concept. In addition, it must
be assumed that the background knowledge has strong interrelatedness with humans’
ontological conceptions that are generated with regard to the structures of the pieces of
reality in their minds. So, there are strong correlations between ‘pre-concept descrip-
tions and pre-conceptions’ and ‘ontological conceptions’. Accordingly, the pre-concept
descriptions and pre-conceptions could be realised as the outcomes of ontological
conceptions. I shall therefore conclude that there is a triangle covering (a) ontological
realisation of a concept, (b) concept construction, and (c) predication of a conception.
In my opinion, the realisation of characteristics and properties of concepts, tackle to
deal with their ontologies (note that the predications are generated in order to express
the properties of concepts and in order to reflect those concepts in multiple subjects).
Therefore, the predication functions are from those characteristics and properties into
subjects. I shall also conclude that the philosophy of constructivism is a kind of
comprehensive and explanatory ontology of human beings, and the constructivist
epistemology provides a model of knowing over this ontology. The central focus of
constructivist epistemology is the origin of an individual’s constructed knowledge.
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