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Abstract. Multi-version concurrency control method has nowadays
been widely used in data warehouses to provide OLAP queries and
ETL maintenance flows with concurrent access. A snapshot is taken on
existing warehouse tables to answer a certain query independently of
concurrent updates. In this work, we extend the snapshot in the data
warehouse with the deltas which reside at the source side of ETL flows.
Before answering a query which accesses the warehouse tables, relevant
tables are first refreshed with the exact source deltas which are captured
until this query arrives and haven’t been synchronized with the tables
yet (called on-demand maintenance). Snapshot maintenance is done by
an incremental recomputation pipeline which is flushed by a set of con-
secutive, non-overlapping delta batches in delta streams which are split
according to a sequence of incoming queries. A workload scheduler is
thereby used to achieve a serializable schedule of concurrent mainte-
nance jobs and OLAP queries. Performance has been examined by using
read- /update-heavy workloads.

1 Introduction

Nowadays companies are emphasizing the importance of data freshness of ana-
lytical results. One promising solution is executing both OLTP and OLAP work-
loads in a 1-tier one-size-fits-all database such as Hyper [8], where operational
data and historical data reside in the same system. Another appealing approach
used in a common 2-tier or 3-tier configuration is near real-time ETL [1] by
which data changes from transactions in OLTP systems are extracted, trans-
formed and loaded into the target warehouse in a small time window (five to
fifteen minutes) rather than during off-peak hours. Deltas are captured by using
Change-Data-Capture (CDC) methods (e.g. log-sniffing or timestamp [10]) and
propagated using incremental recomputation techniques in micro-batches.
Data maintenance flows run concurrently with OLAP queries in near real-
time ETL, in which an intermediate Data Processing Area (DPA, as counterpart
of the data staging area in traditional ETL) is used to alleviate the possible
overload of the sources and the warehouse. It is desirable for the DPA to relieve
traffic jams at a high update-arrival rate and meanwhile at a very high query
rate alleviate the burden of locking due to concurrent read/write accesses to
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shared data partitions. Alternatively, many data warehouses deploy the Multi-
Version Concurrency Control (MVCC) mechanism to solve concurrency issues. If
serializable snapshot isolation is selected, a snapshot is taken at the beginning of
a query execution and used during the entire query lifetime without interventions
incurred by concurrent updates. For time-critical decision making, however, the
snapshot taken at the warehouse side is generally stale since at the same moment,
there could be deltas that haven’t captured yet from the source OLTP systems or
being processed by an ETL tool. In order to achieve a more refreshed snapshot,
it is needed to first synchronize the source deltas with the relevant tables before
taking the snapshot. Hence, a synchronization delay cannot be avoided which is
incurred by an ETL flow execution.

The scope of our work is depicted in Fig. 1. We assume that a CDC process
runs continuously and always pulls up-to-date changes without those mainte-
nance anomalies addressed in [5].
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Fig. 1. Consistency scope in warehouse model

Correct and complete sets of delta tuples (A: insertions, updates and dele-
tions on source tables R and S) are continuously pushed into so-called source
delta streams in DPA. An event of a query arrival at the warehouse side triggers
the system to group the current delta tuples in every source delta stream as a
delta batch and to construct a maintenance job which takes the delta batches
as input and perform one run of maintenance flow execution using incremental
ETL techniques. The final delta batch which is produced by this maintenance
flow execution is used to refresh the target warehouse tables and then a snapshot
is taken for answering this query. For example, as shown in Fig. 1, the arrival of
(1 leads to the construction of a maintenance job mi. The input for m; are two
delta batches b; with the delta tuples as AR, and AS; that are derived from
the source transactions committed before the arrival time of Q1. The query exe-
cution of @) is initially suspended and later resumed when relevant tables are
refreshed by the output of m;. We call this on-demand maintenance policy.

With a sequence of incoming queries, a list of chained maintenance jobs are
created for ETL flow to process. For efficiency and consistency, several challenges
exist and are listed as follows. Firstly, sequential execution of ETL flow instances
can lead to high synchronization delay at a high query rate. Parallelism needs to
be exploited at certain level of the flow execution to improve performance. Fur-
thermore, general ETL flows could contain operations or complex user-defined
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procedures which read and write shared resources. While running separate ETL
flow/operation instances simultaneously for different maintenance jobs, inconsis-
tency may occur due to uncontrolled access to shared resources. Finally, in our
work, a warehouse snapshot S; is considered as consistent for an incoming query
Q; if S; is contiguously updated by final delta batches from preceding mainte-
nance jobs (mj—m;) before the submission time of @; and is not interfered by fast
finished succeeding jobs (e.g. m;y1, which leads to non-repeatable read /phantom
read anomalies). While timestamps used to extend both delta tuples and target
data partitions could be a possible solution to ensure query consistency, this will
result in high storage and processing overheads. A more promising alternative is
to introduce a mechanism to schedule the update sequence and OLAP queries.

In this work, we address the real-time snapshot maintenance problem in
MVCC-supported data warehouse systems using near real-time ETL techniques.
The objective of this work is to achieve high throughput at a high query rate
and meanwhile ensure the serializability property among concurrent maintenance
flow executions in ETL tools and OLAP queries in warehouses. The contributions
of this work are as follows:

— We introduce our on-demand maintenance policy for snapshot maintenance
in data warehouses according to a computational model.

— Based on the infrastructure introduced for near real-time ETL [1], we proposed
for an incremental ETL pipeline as a runtime implementation of the logical
computational model using an open-source ETL tool called Pentaho Data
Integration (Kettle) (shortly Kettle) [10]. The incremental ETL (job) pipeline
can process a list of chained maintenance jobs simultaneously for high query
throughput.

— We define the consistency notion in our real-time ETL model based on which a
workload scheduler is proposed for a serializable schedule of concurrent main-
tenance flows and queries that avoids using timestamp-based approach. An
internal queue is used to ensure consistency with correct execution sequence.

— Furthermore, we introduce consistency zones in our incremental ETL pipeline
to avoid potential consistency anomalies, using incremental join and slowly
changing dimension maintenance as examples.

— The experimental results show that our approach achieves nearly similar
performance as in near real-time ETL while the query consistency is still
guaranteed.

This paper is an extended version of our previous work [16] and is structured
as follows. We start by introducing terminology in our work and then describe
the computational model for our on-demand maintenance policy in Sect. 2. The
incremental ETL pipeline is proposed in Sect. 3 as a runtime implementation of
the computational model, which addresses the performance challenge. In Sect. 4,
we explain the consistency model used in our work, based on which a work-
load scheduler is introduced in Sect. 5 to achieve the serializability property. In
Sect. 6, we address potential consistency anomalies in incremental ETL pipeline
and describe the consistency zones as the solutions. We validate our approach
with read-/update-heavy workloads and the experimental results are discussed
in Sect. 7.
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2 The Computational Model

In this section, we describe the computational model for our on-demand mainte-
nance policy. In our work, we use a dataflow system to propagate source deltas
to the data warehouse and the ETL transformation programs are interpreted as
dataflow graphs. As shown in Fig. 2, a dataflow graph is a directed acyclic graph
G(V, E), in which nodes v € V represent ETL transformation operators or user-
defined procedures (in triangle form), and edges e € E are delta streams used to
transfer deltas from provider operators to consumer operators. A delta stream is
an ordered, unbounded collection of delta tuples (A: insertions (I), deletions (D)
and updates (U)) and it can be implemented as an in-memory queue, a database
table or a file. There are two types of delta streams: source delta streams (e.g.
streams for AR and AS) and interior delta streams. The source delta streams
buffer source delta tuples that are captured by an independent CDC process and
maintained in commit timestamp order in terms of source-local transactions. The
interior delta stream stores the output deltas that are processed by the provider
operator and at the same time, transfers them to the consumer operator. Hence,
the same delta stream can be either the input or the output delta stream for
two different, consecutive operators.

b, delta batch (b))
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Fig. 2. Dataflow graph

Moreover, an event of a query arrival at timestamp ¢; groups all source deltas
with commit-time (A) < ¢; in each source delta stream into a delta batch b; and
constructs a maintenance job m;. Each delta batch b; is a finite, contiguous sub-
sequence of a delta stream and each tuple in b; contains not only general infor-
mation for incremental processing (e.g. change flag (I, D, U), change sequence
number), but also the id of the maintenance job m;. All the tuples in b; have
the same maintenance job id and should be processed together as a unit in sub-
sequent transformation operators (e.g. op; and ops). The output tuples after a
delta batch processing are also assigned the same maintenance job id and are
grouped into a new delta batch for downstream processing (e.g. opsz and opy).
The maintenance job m; is an abstraction of one maintenance flow execution
where all the operators in the dataflow graph process the delta batches referring
to the same job in their owning delta streams. (In the rest of the paper, we use
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the terms “delta batch” and “maintenance job” interchangeably to refer to the
delta tuples used in one run of each transformation operator.)

With a sequence of incoming queries, the source delta streams are split to
contiguous, non-overlapping delta batches and a list of chained maintenance jobs
are created for the dataflow graph to process. To deliver warehouse tables with
consistent deltas, the maintenance jobs needed to be processed in order in each
operator. With continuous delta batches in the input delta stream, the operator
execution is deployed in the following three types, depending on how the state
of (external) resources is accessed.

— For operators that only write or install updates to external resources, the
operator execution on each delta batch can be wrapped into a transaction.
Multiple transaction instances could be instantiated for continuous incoming
delta batches and executed simultaneously while these transactions have to
commit in the same order as the sequence in which the maintenance jobs
are created. Transaction execution protects the state from system failure, e.g.
the external state would not be inconsistent in case a system crash occurs
in the middle of one operator execution with partial updates. In Fig. 2, such
operators can be ops or ops which continuously update the target warehouse
tables. Having multiple concurrent transaction executions on incoming delta
batches with a strict commit order is useful to increase the throughput.

— For operators or more complex user-defined procedures which could both read
and write the same resources, transactions run serially for incoming delta
batches. For example, op, calculates average stock price, which needs to read
the stock prices installed by the transaction executions on the preceding delta
batches.

— For operators that do not access any external state or probably read a pri-
vate state which is rarely mutated by other applications, no transaction is
needed for the operator execution. The drawback of running a transformation
operator in one transaction is that the output deltas will only be visible to
downstream operator when the transaction commits. To execute operators,
e.g. filter or surrogate-key-lookup (op2), no transactions are issued. The out-
put delta batches of these operators are generated in a tuple-by-tuple fashion
and can be immediately processed by subsequent operators, thus increasing
the throughput of flow execution.

— A more complicated case is that multiple separate operators could access the
same shared (external) resources. Thus, additional scheduling and coordina-
tion of operator executions are needed, which is detailed in Sect. 6.

3 Incremental ETL Pipeline

As introduced before, a sequence of query arrivals force our ETL maintenance
flow to work on a list of chained maintenance jobs (called maintenance job chain),
each of which brings relevant warehouse tables to the consistent state demanded
by a specific query. We address the efficiency challenge of ETL maintenance flow
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execution in this section. We exploit pipeline parallelism and proposed an idea
of incremental ETL pipeline.

In more detail, we define three status of a maintenance job: pending, in-
progress and finished. When the system initially starts, a pending maintenance
job is constructed and put in an empty maintenance job chain. Before any query
arrives, all captured source delta tuples are tagged with the id of this job. With
the event of a query arrival, the status of this pending job is changed to in-
progress and all delta tuples with this job id are grouped to a delta batch as input.
A new pending maintenance job is immediately constructed and appended to the
end of the job chain, which is used to mark subsequent incoming source deltas
with this new job id. The job ids contained in the tuples from delta batches are
used to distinguish different maintenance jobs executed in the incremental ETL
pipeline. The ETL pipeline is an runtime implementation of the dataflow graph
where each node runs in a single, non-terminating thread (operator thread') and
each edge e € F is an in-memory pipe used to transfer data from its provider
operator thread to the consumer operator thread. Each transformation operator
contains a pointer which iterates through the elements in the maintenance job
chain. An operator thread continuously processes tuples from incoming delta
batches and only blocks if its input pipe is empty or when it points at a pending
job. When the job status changes to in-progress (e.g. when a query occurs), the
blocked operator thread wakes up and uses the current job id to fetch delta tuples
with matching job id from its input pipe. When an operator thread finishes the
current maintenance job, it re-initializes its local state (e.g. cache, local variables)
and tries to fetch the next (in-progress) maintenance jobs by moving its pointer
along the job chain. In this way, we construct a maintenance job pipeline where
every operator thread works on its own job (even for blocking operators, e.g.
sort, as well). The notion of pipelining in our case is defined at job level instead
of row level. However, row-level pipelining still occurs when threads of multiple
adjacent operators work on the same maintenance job.

Figure 3 illustrates a state where the ETL pipeline is flushed by four main-
tenance jobs (mi—my). These jobs are triggered by either queries or update
overload?. At the end of this maintenance job chain exists a pending mg job
used to assign the id of mg to later captured deltas. In this example, the down-
stream aggregation thread has delivered target deltas of m; to the warehouse
and blocks when it tries to work on msy since there is still no output from its
preceding (blocking) join thread. The lookups in the bottom join branch is still
working on msy due to slow speed or large input size while the lookup; in the
upper join branch is generating output deltas of mg3. However, the deltas with
the id of mg in the input pipe are invisible to the join thread until it finishes

! As defined in Sect.2, there are three deployment types of operator which decide
whether the operator execution in this thread is wrapped in a transaction or not.

2 We also introduce system-level maintenance jobs which are generated when the size
of an input delta stream exceeds a certain threshold without any necessary query
arrival. This partially hides maintenance overhead from query response time, thus
shrinking the synchronization delay for answering a late query.
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Fig. 3. Incremental ETL pipeline

ms. Besides, a large pile-up exists in the input pipe of lookups and more CPU
cycles could be needed for it to solve transient overload. From this example, we
see that our incremental ETL pipeline is able to handle continuously incoming
maintenance jobs simultaneously and efficiently.

4 The Consistency Model

In this section, we introduce the notion of consistency which our work is building
on. For simplicity, let us assume that an ETL flow f is given with one source
table I and one target warehouse table S as sink. With an arrival of a query Q)
at point in time t¢;, the maintenance job is denoted as m; and the delta batch
in the source delta stream for source table I is defined as A,,,I. After one run
of maintenance flow execution on A,,, I, the final delta batch for updating the
target table S is defined as follows:

Ay, S = f(AmiI)

Given an initial state S,;4 for table S, the correct state that is demanded by the
first incoming query Q; is derived by updating (denoted as W) the initial state
Soia with the final delta batch A,,,S. As defined above, A,,,, S is calculated from
the source deltas A,,, I which is captured from the source-local transactions
committed before the arriving time of ()1, i.e. t1.

Sm1 = Sold U] Amls = Sold ) f(Aml I)
sz = Sm1 (G Am25 =S¥ AmIS W AWQS =S¥ f(AmII) () f(Amzf)

Sm; = Smy;_, WA, S
=Sm, WA, SWA,S

= Spa ¥ A, SW AL, S W Ay, SWA, S
= Sa W f(Am, D)W F(Apy D)oo F(Apy D)W f(Ar,])
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Fig. 4. Consistency model example

Therefore, we define that a snapshot of table S,,, is consistent for the query
Q; if Sy, is contiguously updated by final delta batches from preceding main-
tenance jobs (mi—m;) before the submission time of @); and has not received
any updates from fast-finished succeeding jobs (e.g. m;;1, which leads to non-
repeatable read /phantom read anomalies).

An example is depicted in Fig.4. The CDC process is continuously running
and sending captured deltas from OLTP sources (e.g. transaction log) to the
ETL maintenance flow which propagates updates to warehouse tables on which
OLAP queries are executed. In our example, the CDC process has successfully
extracted delta tuples of three committed transactions 77, T5 and T3 from the
transaction log files and buffered them in the DPA of the ETL maintenance flows.
The first query (1 occurs at the warehouse side at time t5. The execution of ()1
is first suspended until its relevant warehouse tables are updated by maintenance
flows using available captured deltas of T7 and 75 which are committed before
to. The delta tuples of 77 and T5 are grouped together as an input delta batch
with the id of the maintenance job mj. Once m is finished, @); is resumed and
sees an up-to-date snapshot. The execution of the second query Q9 (at ¢3) forces
the warehouse table state to be upgraded with another maintenance job mg
with only source deltas derived from T3. Note that, due to serializable snapshot
isolation mechanism, the execution of )7 always uses the same snapshot that is
taken from the warehouse tables refreshed with the final delta batch of mq, and
will not be affected by the new state that is demanded by )2. The third query
Q3 occurs at t3 s preceding the commit time of Tj. Therefore, no additional
delta needs to be propagated for answering ()3 and it shares the same snapshot

In our work, we assume that the CDC is always capable of delivering up-
to-date changes to the DPA for real-time analytics. However, this assumption
normally does not hold in reality and maintenance anomalies might occur in
this situation as addressed by Zhuge et al. [5]. In Fig. 4, there is a CDC delay
between the recording time of T’s delta tuples in the transaction log and their
occurrence time in the DPA of the ETL flow. The occurrence of the fourth query
Q4 arriving at t, requires a new warehouse state updated by the deltas of T}
which are still not available in the DPA. We provide two realistic options here
to compensate for current CDC implementations. The first option is to relax the
query consistency of ()4 and let it share the same snapshot with Q2 and Q3. The
OLAP queries can tolerate small delays in updates and a “tolerance window”
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can be set (e.g., 30s or 2min) to allow scheduling the query without having to
wait for all updates to arrive. This tolerance window could be set arbitrarily.
Another option is to force maintenance processing to hang on until the CDC has
successfully delivered all required changes to the DPA with known scope of input
deltas for answering Q4. With these two options, we continue with introducing
our workload scheduler and incremental ETL pipeline based on the scope of our
work depicted in Fig. 1.

5 Workload Scheduler

As we defined the consistency notion in the previous section, the suspended
execution of any incoming query resumes only if relevant tables are refreshed by
corresponding final delta batch. Updating warehouse tables is normally done by
the last (sink) operator in our incremental ETL pipeline and transactions are
run to permanently install updates from multiple delta batches into warehouse
tables. We denote the transactions running in the last sink operator thread as
sink transactions (ST). In this section, we focus on our workload scheduler which
is used to orchestrate the execution of sink transactions and OLAP queries.
Integrity constraints are introduced which deliver an execution order of begin
and commit actions among sink transactions and OLAP queries.

Recall that an event of a query arrival (); immediately triggers the creation
of a new maintenance job m;, which updates the warehouse state for Q);. The
execution of @Q; is suspended until m; is completed in the ST; (i.e. the i-th
transaction execution of ST commits successfully with its commit action ¢(ST;)).
Query @; is later executed in a transaction as well in which the begin action
(denoted as b(Q;)) takes a snapshot of the new warehouse state changed by
ST;. Therefore, the first integrity constraint enforced by our workload scheduler
is t(c(ST;)) < t(b(Q;)) which means that ST; should be committed before Q);
starts.

With arrivals of a sequence of queries {Q;, Qi+1, Qi+2, ...}, a sequence of cor-
responding sink transactions {ST;, ST;y1, STit2, ...} are run for corresponding
final delta batches. Note that, once the b(Q;) successfully happens, the query Q;
does not block its successive sink transaction ST; 1 for consistency control since
the snapshot taken for Q; is not interfered by ST;,1. Hence, {ST;, ST;11, ST; 2,
...} can run concurrently and commit in order while each b(Q);) is aligned with
the end of its corresponding ¢(ST;) into {c¢(ST;), b(Q;), ¢(STi+1), ...}. However,
only with the first constraint, the serializability property is still not guaranteed
since the commit action ¢(ST;4+1) of a simultaneous sink transaction execution
might precede the begin action b(Q);) of its preceding query. For example, after
ST; is committed, the following ST;;; might be executed and committed so
fast that @; has not yet issued the begin action. The snapshot now taken for Q;
includes rows updated by deltas occurring later than );’s submission time, which
incurs non-repeatable/phantom read anomalies. In order to avoid these issues,
the second integrity constraint is ¢(b(Q;)) < t(c(STi+1)). This means that each
sink transaction is not allowed to commit until its preceding query has success-
fully begun. Therefore, a serializable schedule can be achieved if the integrity
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constraint ¢(c(ST;)) < t(b(Q;)) < t(c(ST;+1)) is not violated. The warehouse

state is incrementally maintained by a sequence of consecutive sink transactions
in response to the consistent snapshots required by incoming queries.
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Fig. 5. Scheduling sink transactions and OLAP queries

Figure 5 illustrates the implementation of the workload scheduler. An inter-
nal queue called ssq is introduced for a serializable schedule of sink and query
transactions. Each element e in ssq represents the status of a corresponding
transaction and serves as a waiting point to suspend the execution of its trans-
action. We also introduced the three levels of query consistency (i.e. open, closed
and complete) defined in [6] in our work to identify the status of the sink trans-
action. At any time there is always one and only one open element stored at the
end of ssq to indicate an open sink transaction (which is STy in this example).
Once a query (e.g. Q4) arrives at the workload scheduler (D), the workload sched-
uler first changes the status of the last element in ssq from open to closed. This
indicates that the maintenance job for a pending ST, has been created and the
commitment ¢4 of ST should wait on the completion of this ssq element 2). Fur-
thermore, a new element b4 is pushed into ssq which suspends the execution of
Q4 before its begin action (3). Importantly, another new open element is created
and put at the end of ssq to indicate the status of a subsequent sink transaction
triggered by the following incoming query (e.g. @5) @. The STy is triggered
to be started afterwards (5). When ST} is done and all the deltas have arrived
at warehouse site, it marks its ssq element ¢, with complete and keeps waiting
until ¢4 is removed from ssq. Our workload scheduler always checks the status of
the head element of ssq. Once its status is changed from closed to complete, it
removes the head element and notifies the corresponding suspended transaction
to continue with subsequent actions. In this way, the commitment of ST, would
never precede the beginning of Q3 which takes a consistent snapshot maintained
by its preceding maintenance transactions {STs, ST,>, ST3}. Besides, Q4 begins

3 A system-level maintenance job is constructed and executed by the ST} transaction,
as certain source delta stream exceeds a pre-defined threshold.
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only after STy has been committed. Therefore, the constraints are satisfied and
a serializable schedule is thereby achieved.

6 Operator Thread Synchronization and Coordination

In the Sect. 3, we see that the incremental ETL pipeline is capable of handling
multiple maintenance jobs simultaneously. However, for those operator threads
which read and write the same intermediate staging tables or warehouse dimen-
sion tables in the same pipeline, inconsistencies can still arise in the final delta
batch. In this section, we first address inconsistency anomalies in two cases:
incremental join and slowly changing dimensions. After that, we introduce a
new concept of consistency zone which is used to synchronize/coordinate oper-
ator threads for consistent target deltas. In the end, we discuss the options to
improve the efficiency of an incremental ETL pipeline with consistency zones.

6.1 Pipelined Incremental Join

An incremental join is a logical operator which takes the deltas (insertions,
deletions and updates) on two join tables as inputs and calculates target deltas
for previously derived join results. In [3], a delta rule* was defined for incremental
joins (shown as follows). Insertions on table R are denoted as AR and deletions as
VR. Given the old state of the two join tables (Ro;q and Sy;4) and corresponding
insertions (AR and AS), new insertions affecting previous join results can be
calculated by first identifying matching rows in the mutual join tables for the
two insertion sets and further combining the newly incoming insertions found in
(AR x AS). The same applies to detecting deletions.

A(R X S) = (AR X Sold) U (Rold X AS) U (AR X AS)
V(R x S)= (VR X Sp1q) U(Roig ¥ VS)U (VR x VS)

For simplicity, we use the symbol A to denote all insertions, deletions and
updates in this paper. Hence, the first rule is enough to represent incremental join
with an additional join predicate (R.action = S.action) added to (AR x AS)
where action can be insertion I, deletion D or update U.

We see that a logical incremental join operator is mapped to multiple phys-
ical operators, i.e. three join operators plus two union operators. To implement
this delta rule in our incremental ETL pipeline, two tables R,q and S,;q are
materialized in the staging area during historical load and two extra update
operators (denoted as W) are introduced. One W is used to gradually maintain
the staging table S,;q4 using the deltas (A, S, A, S, ...Am,_,S) from the exe-
cutions of preceding maintenance jobs (my, ma, ...,m;_1) to bring the join table
Soia to consistent state Sy, , for A, R:

Sy = Sota W A, Se W A, S

4 Updates are treated as deletions followed by insertions in this rule.
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Another update operator W performs the same on the staging table R4 for
Ay, S. Therefore, the original delta rule is extended in the following based on
the concept of our maintenance job chain.

A (R % S) = (A R % S ) U (Ros s X A S) U (A R 3¢ Ay, S)
= (AmiR X (Sold g A S)) U ((Rold ) Am1~ R) X AmiS)
U (Am, R x Ay, S)

M1~ (i—1) (i—1)

The deltas A,,,(R x S) of job m; are considered as consistent only if the
update operators have completed job m;_1) on two staging tables before they
are accessed by the join operators. However, our ETL pipeline only ensures
that the maintenance job chain is executed in sequence in each operator thread.
Inconsistency can occur when directly deploying this extended delta rule in our
ETL pipeline runtime. This is due to concurrent executions of join and update
operators on the same staging table for different jobs.

Customer (refreshed by m;) Company (refreshed by m;) A(Customer > Company)
id | name |company name | nation job |action value
1 bob IBM IBM | USA m, | — o
2 mary SAP my 1 (3, Yjack', 'HP', 'USA")
(2, 'mary', 'SAP', 'Germany')
my 1 (4, 'peter’, 'SAP', 'Germany')
ACustomer ACompany Incorrect A(Customer P<| Company):
job |action value job |action value ‘UAK;r“g'l“’\'l“‘;:qTDS]"A"‘V:";H;;;V‘)C“““’““”4 > ApaCompany)
m [ — — m, | 1 | (HP,'USA) - -
job | action value
my 1 (3, jack', 'HP') my I |('SAP', 'Germany") - — — -
my 1 (2, 'mary’, 'SAP', 'Germany"),
my | (4, 'peter’, 'SAP") my [ — — (4, 'peter’, 'SAP', 'Germany')

Fig. 6. Anomaly example for pipelined incremental join

We use a simple example (see Fig.6) to explain the potential anomaly. The
two staging tables Customer and Company are depicted at the left-upper part
of Fig. 6 which both have been updated by deltas from m;. Their input delta
streams are shown at left-bottom part and each of them contains a list of tuples
in the form of (job, action, value) which is used to store insertion-/deletion-
/update-delta sets (only insertions with action I are considered here) for each
maintenance job. Logically, by applying our extended delta rule, consistent deltas
A(Customer X Company) would be derived which are shown at the right-upper
part. For job m3, a matching row (‘HP’, ‘USA’) can be found from the com-
pany table for a new insertion (3, ‘jack’, ‘HP’) on the customer table after
the company table was updated by the preceding job ms. With another success-
ful row-matching between A,,,Company and Customer,,,, the final deltas are
complete and correct.
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However, since at runtime, each operator thread runs independently and has
different execution latencies for inputs of different sizes, an inconsistent case can
occur which is shown at the right-bottom part. Due to various processing costs,
the join operator A,,, Customer x Company ,,, has already started before
the update operator completes mo on the company table, which mistakenly
missed the matching row (‘HP’, ‘USA’) from m2. And the other join operator
Customer ,,, X A,,, Company accidentally reads a phantom row (4, ‘peter’,
‘SAP’) from the maintenance job my4 that is accomplished by the fast update
operator on the customer table. This anomaly is caused by a pipeline execution
without synchronization of read-/write-threads on the same staging table.

Fig. 7. Pipelined incremental join with consistency zones

To address this problem, we propose a pipelined incremental join for the
maintenance job chain. It is supported by newly defined consistency zones and an
extra duplicate elimination operator. Figure 7 shows the implementation of our
pipelined incremental join®. In a consistency zone, operator thread executions are
synchronized on the same maintenance job and processing of a new maintenance
job is not started until all involving operator threads have completed the current
one. This can be implemented by embedding a cyclic barrier(cb) (Java) object
in all covered threads. Each time a new job starts in a consistency zone, this
cb object sets a local count to the number of all involved threads. When a
thread completes, it decrements the local count by one and blocks until the
count becomes zero. In Fig. 7, there are two consistency zones: z;(update-R4,
Roia X AS) and 22(A R X Sy, update-Syiq), which groups together all the
threads that read and write the same staging table. The processing speeds of both
threads in z; are very similar and fast, so both of them are currently working on

5 The two sort operators are just required for merge join and can be omitted if other
join implementations are used.
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my and there is no new maintenance job buffered in any of the in-memory pipes
of them. However, even though the original execution latency of the join operator
thread AR X S,;4 is low, it has to be synchronized with the slow operator update-
Seia on mg and a pile-up of maintenance jobs (mo—_4) exists in its input pipe. It is
worth to note that a strict execution sequence of two read-/write threads is not
required in a consistency zone (i.e. update-R,;q does not have to start only after
Roia X AS completes to meet the consistency requirement R,,, , X A,,,S). In
case Ry, , X Ay, S reads a subset of deltas from m; (in R) due to concurrent
execution of update-R,,,,_, on m;, duplicates will be deleted from the results of
A, R X Ay, S by the downstream duplicate elimination operator. Without a
strict execution sequence in consistency zones, involved threads can be scheduled
on different CPU cores for performance improvement. Furthermore, even though
two consistency zones finish maintenance jobs in different paces, this duplicate
elimination operator serves as a Merger and only reads correct input deltas for
its current maintenance job, which is ms in the example.

6.2 Pipelined Slowly Changing Dimensions

In data warehouses, slowly changing dimension (SCD) tables need to be main-
tained which change over time. The physical implementation depends on the
type of SCD (three SCD types are defined in [9]). For example, SCDs of type
2 are history-keeping dimensions where rows comprising the same business key
represent a history of one entity while each row has a unique surrogate key in the
warehouse and was valid in a certain time period (from start date to end date
and the current row version has the end date null). With a change occurring in
the source table of a SCD table, the most recent row version of the corresponding
entity (end date is null) is updated by replacing the null value with the current
date and a new row version is inserted with a new surrogate key and a time
range (current date - null). In the fact table maintenance flow, the surrogate key
of this current row version of an entity is looked up as a foreign key value in the
fact table.

Assume that the source tables that are used to maintain fact tables and
SCDs reside in different databases. A globally serializable schedule S of the
source actions on these source tables needs to be replayed in ETL flows for
strong consistency in data warehouses [12]. Otherwise, a consistency anomaly
can occur which will be explained in the following (see Fig. 8).

At the upper-left part of Fig. 8, two source tables: plin and item-S are used
as inputs for a fact table maintenance flow (Flow 1) and a dimension mainte-
nance flow (Flow 2) to refresh warehouse tables sales and item-I, respectively.
Two source-local transactions T (start time: t; ~ commit time: t2) and Tj
(t4~tg) have been executed on item-S to update the price attribute of an item
with business key (‘abc’) in one source database. Two additional transactions Ts
(tg~t5) and T4 (t7~tg) have been also completed in a different database where
a new state of source table plin is affected by two insertions sharing the same
business key (‘abc’). Strong consistency of the warehouse state can be reached
if the globally serializable schedule S: Ty <« Ty « T3 « T, is also guaranteed
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— .
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Fig. 8. Anomaly example for ETL pipeline execution without coordination

in ETL pipeline execution. A consistent warehouse state has been shown at the
bottom-right part of Fig. 8. The surrogate key (101) found for the insertion (1,
‘abc’, ...) is affected by the source-local transaction T; on item-S while the
subsequent insertion (2, ‘abc’, ...) will see a different surrogate key (102)
due to T3. However, the input delta streams only reflect the local schedules Sy:
Ty <« T3 on item-S and Sy: Ty < T4 on plin. Therefore, there is no guaran-
tee that the global schedule S will be correctly replayed since operator threads
run independently without coordination. For example, at time tg, a warehouse
query occurs, which triggers an immediate execution of a maintenance job mq
that brackets To and T4 together on plin and groups T; and Tj together on
item-S. Two incorrect states of the sales fact table have been depicted at the
upper-right part of the figure. The case where item_sk has value 101 twice cor-
responds to an incorrect schedule: Ty <« Ty «— T4 <« T3 while another case
where item_sk has value 102 twice corresponds to another incorrect schedule:
Ty « T3 «— Ty «—T4. This anomaly is caused by an uncontrolled execution
sequence of three read-/write-operator threads: item_sk-lookup in Flow 1 and
update-1 g and insert-I,,¢, in Flow 2.

To achieve a correct globally serializable schedule S, the CDC component
should take the responsibility of rebuilding S by first tracking start or commit
timestamps of source-local transactions®, mapping them to global timestamps
and finally comparing them to find out a global order of actions. In addition,

5 Execution timestamps of in-transaction statements have to be considered as well,
which is omitted here.
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the execution of relevant operator threads needs to be coordinated in this global
order in the incremental ETL pipeline. Therefore, another type of consistency
zone is introduced here.

Before we introduce our new consistency zone for our pipelined SCD, it is
worth to note that the physical operator that is provided by the current ETL
tool to maintain SCDs does not fulfill the requirement of the SCD (type 2) in
our case. To address this, we simply implement SCD (type 2) using update-I 4
followed by insert-1,¢.,. These two operator threads need to be executed in an
atomic unit so that queries and surrogate key lookups will not see an inconsistent
state or fail when checking a lookup condition. Another case that matters is
that the execution of Flow 1 and Flow 2 mentioned previously is not performed
strictly in sequence in a disjoint manner. Instead of using flow coordination for
strong consistency, all operators from the two flows (for fact tables and dimension
tables) are merged into a new big flow where the atomic unit of update-I,4
insert-1 ¢, operator threads can be scheduled with the 1tem_sk-lookup operator
thread at a fine-grained operator level.

Our approach for pipeline coordination used in pipelined SCD is illustrated in
Fig. 9. We first explain how the CDC process can help rebuild the global schedule
S. Recall that a maintenance job is constructed when a query is issued or when
the size of any input delta stream exceeds a threshold (see Sect. 3). We refine the
maintenance job into multiple internal, fine-grained tasks whose construction is
triggered by a commit action of a source-local transaction affecting the source
table of a SCD.

T ——
) task; task, task,
Aplin  —t— —~— ——
N
| Iﬂ . | ......
—
@ m
T task, ,‘task;, - ® lookup Y
Aitem-S et 7 item_seq
[ ——

Fig. 9. Pipelined SCD with consistency zone

As shown in Fig.9, @ the CDC continuously puts those captured source
deltas into the input delta streams (one is Aplin) of the fact table maintenance
flow. At this time, a source-local update transaction commits on item-S, which
creates a task; and comprises the delta tuples derived from this update transac-
tion ). This immediately creates another task; in the input delta stream Aplin
which contains all current available delta tuples 3). This means that all source-
local, update transactions belonging to the task; in Aplin have committed before
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the task; of Aitem-S. With a commit of the second update transaction on source
table item-S, two new tasks are created in both input delta streams @. When a
query is issued at a later time, a new my is constructed which contains taskj.o
on Aitem-S and taskj~g on Aplin (delta tuples in tasks commit after the tasks
in Aitem-S). During execution on mq, a strict execution sequence between the
atomic unit of wupdate-I,4 and insert-I1,., and the item_sk-lookup is forced
for each task; in my. The update-1,4 and insert-1,,., have to wait until the
item_sk-lookup finishes task; () and the item_sk-lookup cannot start to process
tasks until the atomic unit completes task; (6). This strict execution sequence
can be implemented by the (Java) wait/notify methods as a provider-consumer
relationship. Furthermore, in order to guarantee the atomic execution of both
update-1 g and insert-1,.,, at task level, (Java) cyclic barrier can be reused
here to let update-I,4 wait to start a new task until insert-I,.,, completes the
current one (6). Both thread synchronization and coordination are covered in
this consistency zone (7).

6.3 Discussion

In several research efforts on operator scheduling, efficiency improvements can be
achieved by cutting a data flow into several sub-flows. In [14], one kind of sub-flow
called superbozes are used to batch operators to reduce the scheduling overhead.
And authors of [15] use another kind of sub-flow (strata) to exploit pipeline
parallelism to some extent. In this work, the operators involved in a sub-flow are
normally connected through data paths. However, as described in the previous
two sections, consistency zones can have operator threads scheduled together
without any connecting data path. This increases the complexity of algorithms
which try to increase the pipeline efficiency as much as possible by minimizing the
execution time of operator with max(time(op;)). However, we will not validate
the performance of the scheduling algorithms extended for consistency zones
using experiments in this paper. A pipeline that was previously efficient can be
slowed down dramatically when one of its operator is bound with a very slow
operator in a consistency zone, which increases the maz(time(op;)).

The efficiency of an incremental ETL pipeline with consistency zones could be
improved if the data storage supports multi-version concurrency control, where
reads do not block writes and vice versa. Therefore, a fast update operator on a
staging table will not be blocked by a slow join operator which reads rows using
version number (possibly maintenance job id in our case). However, in another
case, a fast join operator may still have to wait until the deltas with the desired
version are made available by a slow update operator.

7 Experimental Results

We examine the performance in this section with read-/update-heavy workloads
running on three kinds of configuration settings.
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Test Setup: We used the TPC-DS benchmark [11] in our experiments. Our
testbed is composed of a target warehouse table store sales (SF 10) stored in
a Postgresql (version 9.4) instance which was fine-tuned, set to serializable iso-
lation level and ran on a remote machine (2 Quad-Core Intel Xeon Processor
E5335, 4 x 2.00 GHz, 8GB RAM, 1TB SATA-IT disk), an ETL pipeline (an
integrated pipeline instance used to update item and store sales tables) run-
ning locally (Intel Core i7-4600U Processor, 2 x 2.10 GHz, 12 GB RAM, 500 GB
SATA-II disk) on an extended version of Kettle (version 4.4.3) together with
our workload scheduler and a set of query streams, each of which issues queries
towards the remote store sales table once at a time. The maintenance flow is
continuously fed by deltas streams from a CDC thread running on the same
node. The impact of two realistic CDC options (see Sect.4) was out of scope
and not examined.
We first defined three configuration settings as follows.

Near Real-time (NRT): simulates a general near real-time ETL scenario
where only one maintenance job was performed concurrently with query streams
in a small time window. In this case, there is no synchronization of maintenance
flow and queries. Any query can be immediately executed once it arrives and
the consistency is not guaranteed.

PipeKettle: uses our workload scheduler to schedule the execution sequence of a
set of maintenance transactions and their corresponding queries. The consistency
is thereby ensured for each query. Furthermore, maintenance transactions are
executed using our incremental ETL pipeline.

Sequential execution (SEQ): is similar to PipeKettle while the maintenance
transactions are executed sequentially using a flow instance once at a time.

Orthogonal to these three settings, we simulated two kinds of read-/update-
heavy workloads in the following.

Read-heavy workload: uses one update stream (SF 10) consisting of purchases
(#: 10K) and lineitems (f: 120K) to refresh the target warchouse table using the
maintenance flow and meanwhile issues totally 210 queries from 21 streams,
each of which has different permutations of 10 distinct queries (generated from
10 TPC-DS ad-hoc query templates, e.g. q[88]). For PipeKettle and SEQ, each
maintenance job consists of 48 new purchases and 570 new lineitems in average.

Update-heavy workloads: uses two update streams (f: 20K & 240K) while
the number of query streams is reduced to seven (totally 70 queries). Before
executing a query in PipeKettle and SEQ, the number of deltas to be processed
is 6-times larger than that in read-heavy workloads.

Test Results: Figure 10 illustrates a primary comparison among NRT, PipeKet-
tle and SEQ in terms of flow execution latency without query interventions. As
the baseline, it took 370s for NRT to processing one update stream. The update
stream was later split into 210 parts as deltas batches for PipeKettle and SEQ.
It can be seen that the overall execution latency of processing 210 maintenance
jobs in PipeKettle is 399 s which is nearly close to the baseline due to pipelining
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parallelism. However, the same number of maintenance jobs is processed longer
in SEQ (~650s, which is significantly higher than the others).

Figure 11 and 12 show the query throughputs measured in three settings using
both read-/update-heavy workloads. Since the maintenance job size is small in
read-heavy workload, the synchronization delay for answer each query is also
small. Therefore, the query throughput achieved by PipeKettle (2.22 queries/s) is
very close to the one in baseline NRT (2.30) and much higher than the sequential
execution mode (1.37). We prove that our incremental pipeline is able to achieve
high query throughput at a very high query rate. However, in update-heavy
workload, the delta input size becomes larger and the synchronization delay
grows increasingly, thus decreasing the query throughput in PipeKettle. Since
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Fig. 13. Average latencies of 10 ad-hoc query types in read-heavy workload
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our PipeKettle automatically triggered maintenance transactions to reduce the
number of deltas buffered in the delta streams, the throughput (0.82) is still
acceptable as compared to NRT(0.93) and SEQ (0.63).

The execution latencies of 10 distinct queries recorded in read-heavy workload
is depicted in Fig.13. Even with synchronization delay incurred by snapshot
maintenance in PipeKettle, the average query latency over 10 distinct queries is
approaching the baseline NRT whereas NRT does not ensure the serializability
property. SEQ is still not able to cope with read-heavy workload in terms of
query latency, since a query execution might be delayed by sequential execution
of multiple flows.

140

PipeKettle Exzzz=
T

—_
on
< 80 F 4
c
© 60
—
R
K]
% Kk
L iz — KL k] 1] u
4 1] X X %
0 k& R K KK k&
K¥ KE ] KXY - oo 1]
%! b K L 2 K] !
%] %] ke 14 . 5% ! S 1559
kS RES o] KX ] % 1] K¥ Mot
K] k] (] K& 15! 3 3 k% K
ool R %59} %% k< [ [ %% 0 X
k& ] K] 1o 1] X o bote! k] 1]
KX X K 14 %5% 1231 [ 1] R ot
1] 1005 K& ol %% K 15! R 1] 15
R 3 R K5 oot 131 13 1559 ] KK
- & 008 1] o 1] RS ) 1o kS o5 u
o o S 1] 202 9% 1] 1055 % kS
1] [ 1] RS [ ool o e %] toted
S o bo% 005 o 1] ro%s! [ b
54 [5x4 5] R 1] K] K KX 60! ote!
% o K K] o 1005 1] K] ) 9
1] 1] 1] roos 1995 o 103! ol K 1]
X K ) 10034 193! 1] 1] 0% R 9
1 1005 1] o 1] 8 ol R kxS 008
o o, 5 K] o 1] 1] 1%o% X ol
1] 008 1 P! 1 X b0 % K] 1]
o o RS 0o S 555 ] 1] 1o kS
1] 1] 9% ] K] S o ) k& ]
S X X o 1] 1995 K] 3
0 e re%! 2o K k&l %% £ i%e% £ K

qe8]  q45]  qI56]  q15]  q[59]  q[27]  q[82]  q61]  q[32]  q[21]

Fig. 14. Average latencies of 10 ad-hoc query types in update-heavy workload

Figure 14 shows query latencies in update-heavy workload. With a larger
number of deltas to process, each query has higher synchronization overhead
in both PipeKettle and SEQ than that in read-heavy workload. However, the
average query latency in PipeKettle still did not grow drastically as in SEQ since
the workload scheduler triggered automatic maintenance transactions to reduce
the size of deltas stored in input streams periodically. Therefore, for each single
query, the size of deltas is always lower than our pre-defined batch threshold,
thus reducing the synchronization delay.

8 Related Work

Our incremental ETL pipeline was inspired by the work from [13] where mate-
rialized views are lazily updated by maintenance tasks when a query is issued
to the database. Additional maintenance tasks are also scheduled when the sys-
tem has free cycles to hide maintenance overhead partially from query response
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time. As we mentioned in the introduction section, ETL flows can be seen as a
counterpart to the view definitions in databases where materialized view mainte-
nance is performed in transactions to ensure the consistency property. Therefore,
we addressed the potential consistency anomalies in general ETL engines which
normally lack global transaction support.

Thomsen et al. addressed on-demand, fast data availability in so-called right-
time DWs [4]. Rows are buffered at the ETL producer side and flushed to DW-
side, in-memory tables with bulk-load insert speeds using different (e.g. immedi-
ate, deferred, periodic) polices. A timestamp-based approach was used to ensure
accuracy of read data while in our work we used an internal queue to schedule
the workloads for our consistency model. Besides, we also focused on improving
throughput by extending an ETL tool.

Near real-time data warehousing was previously referred to as active data
warehousing [2]. Generally, incremental ETL flows are executed concurrently
with OLAP queries in a small time window. In [1], Vassiliadis et al. detailed a
uniform architecture and infrastructure for near real-time ETL. Furthermore, in
[3], performance optimization of incremental recomputations was addressed in
near real-time data warehousing. In our experiments, we compare general near
real-time ETL approach with our work which additionally guarantees the query
consistency.

n [6,7], Golab et al. proposed temporal consistency in a real-time stream
warehouse. In a certain time window, three levels of query consistency regard-
ing a certain data partition in warehouse are defined, i.e. open, closed and
complete, each which becomes gradually stronger. As defined, the status of a
data partition is referred to open for a query if data exist or might exist in it.
A partition at the level of closed means that the scope of updates to partition
has been fixed even though they haven’t arrived completely. The strongest level
complete contains closed and meanwhile all expected data have arrived. We
leverage these definitions of temporal consistency levels in our work.

9 Conclusion

In this work, we addressed the on-demand snapshot maintenance policy in
MVCC-supported data warehouse systems using our incremental ETL pipeline.
Warehouse tables are refreshed by continuous delta batches in a query-driven
manner. We discussed a logical computational model and described the incre-
mental ETL pipeline as a runtime implementation which addresses the per-
formance challenge. Moreover, based on the consistency model defined in this
paper, we introduced the workload scheduler which is able to achieve a serializ-
able schedule of concurrent maintenance flows and OLAP queries. We extended
an open-source ETL tool (Kettle) as the platform of running our incremental
ETL pipeline and also addressed potential inconsistency anomalies in the cases
of incremental join and slowly changing dimension tables by proposing the con-
sistency zone concept. The experimental results show that our approach achieves
average performance which is very close to traditional near real-time ETL while
the query consistency is still guaranteed.
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