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Abstract. Shapelets have recently been proposed as a new primitive for
time series classification. Shapelets are subseries of series that best split
the data into its classes. In the original research, shapelets were found
recursively within a decision tree through enumeration of the search
space. Subsequent research indicated that using shapelets as the basis
for transforming datasets leads to more accurate classifiers. Both these
approaches evaluate how well a shapelet splits all the classes. However,
often a shapelet is most useful in distinguishing between members of the
class of the series it was drawn from against all others. To assess this
conjecture, we evaluate a one vs all encoding scheme. This technique
simplifies the quality assessment calculations, speeds up the execution
through facilitating more frequent early abandon and increases accu-
racy for multi-class problems. We also propose an alternative shapelet
evaluation scheme which we demonstrate significantly speeds up the full
search.

1 Introduction

Time series classification (TSC) is a subset of the general classification problem.
The primary difference is that the ordering of attributes within each instance is
important. For a set of n time series, T = {T1, T2, ..., Tn}, each time series has
m ordered real-valued observations, Ti = {ti1, ti2, ..., tim} and a class value ci.
The aim of TSC is to determine a function that relates the set of time series to
the class values.

One recently proposed technique for TSC is to use shapelets [1]. Shapelets
are subseries of the series T that best split the data into its classes. Shapelets
can be used to detect discriminatory phase independent features that cannot
be found with whole series measures such as dynamic time warping. Shapelet
based classification involves measuring the similarity between a shapelet and each
series, then using this similarity as a discriminatory feature for classification. The
original shapelet-based classifier [1] embeds the shapelet discovery algorithm in
a decision tree, and uses information gain to assess the quality of candidates.
A shapelet is found at each node of the tree through an enumerative search.
More recently, we proposed using shapelets as a transformation [2]. The shapelet
transform involves a single-scan algorithm that finds the best k shapelets in a
set of n time series. We use this algorithm to produce a transformed dataset,
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where each of the k features is the distance between the series and one shapelet.
Hence, the value of the ith attribute of the jth record is the distance between
the jth record and the ith shapelet. The primary advantages of this approach
are that we can use the transformed data in conjunction with any classifier, and
that we do not have to search sequentially for shapelets at each node. However,
it still requires an enumerative search throughout the space of possible shapelets
and the full search is O(n2m4). Improvements for the full search technique were
proposed in [1,3] and heuristics techniques to find approximations of the full
search were described in [4–6].

Our focus is only on improving the exhaustive search. One of the problems
of the shapelet search is the quality measures assess how well the shapelet splits
all the classes. For multi-class problems measuring how well a shapelet splits
all the classes may confound the fact that it actually represents a single class.
Consider, for example, a shapelet in a data set of heartbeat measurements of
patients with a range of medical conditions. It is more intuitive to imagine that
a shapelet might represent a particular condition such as arrhythmia rather
than discriminating between multiple conditions equally well. We redefine the
transformation so that we find shapelets assessed on their ability to distinguish
one class from all, rather than measures that separate all classes. This improves
accuracy on multi-class problems and allows us to take greater advantage of the
early abandon described in [1].

A further problem with the shapelet transform is that it may pick an excessive
number of shapelets representing a single class. By definition, a good shapelet will
appear in many series. The best way we have found to deal with this is to generate
a large number of shapelets then cluster them [2]. However, there is still a risk
that one class is generally easier to classify and hence has a disproportionate
number of shapelets in the transform. The binary shapelet allows us to overcome
this problem by balancing the number of shapelets we find for each class.

Finally, we describe an alternative way of enumerating the shapelet search
that facilitates greater frequency of early abandon of the distance calculation.

2 Shapelet Based Classification

The shapelet transform algorithm described in [2] is summarised in Algorithm 1.
Initially, for each time series, all candidates of length min to max are generated
(i.e. extracted and normalised in the method generateCandidates). Then the
distance between each shapelet and the other n− 1 series are calculated to form
the order list, DS . Distance between a shapelet S of length l and a series T is
given by

sDist(S, T ) = min
w∈Wl

(dist(S,w)) (1)

where Wl is the set of all l length subseries in T and dist is the Euclidean distance
between the equal length series S and w. The order list is used to determine the
quality of the shapelet in the assessCandidate method. Quality can be assessed
by information gain [1] or alternative measures such as the F, moods median or
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rank order statistic [7]. Once all the shapelets for a series are evaluated they are
sorted and the lowest quality overlapping shapelets are removed. The remaining
candidates are then added to the shapelet set. By default, we set k = 10n with
the caveat that we do not accept shapelets that have zero information gain.

Algorithm 1. FullShapeletSelection(T, min, max, k)
Input: A list of time series T, min and max length shapelet to search for and k, the

maximum number of shapelets to find)
Output: A list of k shapelets
1: kShapelets ← ∅
2: for all Ti in T do
3: shapelets ← ∅
4: for l ← min to max do
5: Wi,l ← generateCandidates(Ti, l)
6: for all subseries S in Wi,l do
7: DS ← findDistances(S,T)
8: quality ← assessCandidate(S, DS)
9: shapelets.add(S, quality)

10: sortByQuality(shapelets)
11: removeSelfSimilar(shapelets)
12: kShapelets ← merge(k, kShapelets, shapelets)
13: return kShapelets

Once the best k shapelets have been found, the transform is performed with
Algorithm 2. A more detailed description can be found in [8].

Extensions to the basic shapelet finding algorithm can be categorized into
techniques to speed up the average case complexity of the exact technique and
those that use heuristic search. The approximate techniques include reducing the
dimensionality of the candidates and using a hash table to filter [4], searching
the space of shapelet values (rather than taking the values from the train set
series) [5] and randomly sampling the candidate shapelets [6]. Our focus is on
improving the accuracy and speed of the full search. Two forms of early abandon
described in [1] can improve the average case complexity. Firstly, the Euclidean
distance calculations within the sDist (Eq. 1) can be terminated early if they
exceed the best found so far. Secondly, the shapelet evaluation can be abandoned
early if assessCandidate is updated as the sDist are found and the best possible
outcome for the candidate is worse than the current top candidates.

A speedup method involving trading memory for speed is proposed in [3].
For each pair of series Ti, Tj , cumulative sum, squared sum, and cross products
of Ti and Tj are pre-calculated. With these statistics, the distance between sub-
series can be calculated in constant time, making the shaplet-discovery algorithm
O(n2m3). However, pre-calculating of the cross products between all series prior
to shapelet discovery requires O(n2m2) memory, which is infeasible for most
problems. Instead, [3] propose calculating these statistics prior to the start of the
scan of each series, reducing the requirement to O(nm2) memory, but increasing
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the time overhead. Further refinements applicable to shapelets were described
in [9], most relevant of which was a reordering of the sequence of calculations
within the dist function to increase the likelihood of early abandon. The key
observation is that because all series are normalized, the largest absolute values
in the candidate series are more likely to contribute large values in the distance
function. Hence, if the distances between positions with larger candidate values
are evaluated first, then it is more likely the distance can be abandoned early.
This can be easily implemented by creating an enumeration through the nor-
malized candidate at the beginning, and adds very little overhead. We use this
technique in all experiments.

Algorithm 2. FullShapeletTransform(Shapelets S,T)
1: T′ ← ∅
2: for all T in T do
3: T ′ ←<>
4: for all shapelets S in S do
5: dist ← sDist(S, T )
6: T ′ ← append(T ′, dist)
7: T ′ ← append(T ′, T.class)
8: T′ ← T′ ∪ T ′

9: return T′

3 Classification Technique

Once the transform is complete we can use any classifier on the problem. To
reduce classifier induced variance we use a heterogenous ensemble of eight clas-
sifiers. The classifiers used are the WEKA [10] implementations of k Nearest
Neighbour (where k is set through cross validation), Naive Bayes, C4.5 decision
tree [11], Support Vector Machines [12] with linear and quadratic basis func-
tion kernels, Random Forest [13] (with 100 trees), Rotation Forest [14] (with 10
trees) and a Bayesian network. Each classifier is assigned a weight based on the
cross validation training accuracy, and new data are classified with a weighted
vote. The set of classifiers were chosen to balance simple and complex classifiers
that use probabilistic, tree based and kernel based models. With the exception
of k-NN, we do not optimise parameter settings for these classifiers via cross
validation. More details are given in [8].

4 Alternate Shapelet Techniques

4.1 Fast Shapelets

The fast shapelet (FS) algorithm was proposed in 2013 [4]. The algorithm is
a refinement of original decision tree shapelet selection algorithm. It employs a



28 A. Bostrom and A. Bagnall

number of techniques to speed up the finding and pruning of shapelet candidates
at each node of the tree [15]. The major changes made to the enumerative search
is the introduction of symbolic aggregate approximation (SAX) [16] as a means
for reducing the length of each series as well as smoothing and discretising the
data. The other major advantage of using the SAX representation is that shapelet
candidates can be pruned by using a collision table metric which highly correlates
with Information Gain to reduce the amount of work performed in the quality
measure stage. In the description in Algorithm 3 the decision tree has been
omitted to improve clarity.

The first stage of the shapelet finding process is to create a list of SAX
words [16]. The basic concept of SAX is a two stage process of dimension reduc-
tion and discretisation. SAX uses piece-wise aggregate approximation (PAA),
to transform a time series into a number of smaller averaged sections before
z normalization. This reduced series is discretised into a given alphabet size.
Breakpoints are defined by equally likely areas of a standard normal distribu-
tion and each series forms a single string of characters. These strings are much
smaller in length compared to the original series, so finding shapelets is faster.
To increase the likelihood of word collisions a technique called random projects
is employed. Given some SAX words random projection reduces their dimen-
sionality by masking a number of their letters. The SAX words are randomly
projected a number of times, the projected words are hashed and a frequency
table for all the SAX words is built.

From this frequency table a new set of tables can be built which represent
how common the SAX word is with respect to each class. A score for each SAX
word can be calculated based on these grouping scores, and this value is used for
assessing the distinguishing power of each SAX word. From this scoring process
a list of the top k SAX shapelets can be created. These top k SAX shapelets are
transformed back into their original series, where the shapelets information gain
can be calculated. The best shapelet then forms the splitting rule in the decision
tree.

Algorithm 3. FindBestShapelet(Set of time series T)
1: bsfShapelet, shapelet
2: topK = 10
3: for length ← 5 to m do
4: SAXList =FindSAXWords(T, length)
5: RandomProjection(SAXList)
6: ScoreList =ScoreAllSAX(SAXList)
7: shapelet =FindBestSAX(ScoreList, SAXList, topK)
8: if bsfShapelet < shapelet then
9: bsfShapelet = shapelet

10: return bsfShapelet
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4.2 Learn Shapelets

Learn shapelets (LS) was proposed by Grabocka et al. in 2014 [5]. Rather than
uses subseries in the data as candidate shapelets, LS searches the space of all
possible shapelets using a gradient descent approach on an initial set of shapelets
found through clustering. An set of series is taken from the data and clustered
using k-Means. The resulting centroids are refined with a two stage gradient
descent model of shapelet refinement and logistic regression assessment. The
learning is continued until either the model has converged or the number of
iterations has exceeded a hard limit (maxIter). We show a high level overview
of the algorithm presented in [5] in Algorithm 4.

Algorithm 4. LearnShapelets(Set of time series T)
1: Parameters: K,R,Lmin,η,λ
2: S ← InitKMeans(T,K,R,Lmin)
3: W ← InitWeights(T,K,R)
4: for i ← maxIter do
5: M ← updateModel(T,S,α, Lmin, R)
6: L ← updateLoss(T,M,W)
7: W,S← updateWandS(T,M,W,S, η, R, Lmin, L, λW , α)
8: if diverged() then
9: i = 0

10: η = η/3

5 Shapelet Transform Refinements

5.1 Binary Shapelets

The standard shapelet assessment method measures how well the shapelet splits
up all the classes. There are three potential problems with this approach when
classifying multi-class problems. The problems apply to all possible quality mea-
sures, but we use information gain to demonstrate the point. Firstly, useful infor-
mation about a single class may be lost. For example, suppose we have a four
class problem and a shapelet produces the order line presented in Fig. 1, where
each colour represents a different class.

The first shapelet groups all of class 1 very well, but cannot distinguish
between classes 2, 3 and 4 and hence has a lower information gain than the split
produced by the second shapelet in Fig. 1 which separates class 1 and 2 from class
3 and 4. The more classes there are, the more likely it is that the quantification
of the ability of a shapelet to separate out a single class will be overwhelmed by
the mix of other class values. We can mitigate against this potential problem by
defining a binary shapelet as one that is assessed by how well it splits the class
of the series it originated from all the other classes. The second problem with
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Fig. 1. An example order line split for two shapelets. The top shapelet discriminates
between class 1 and the rest perfectly, yet has lower information gain than the orderline
shown below it.

searching all shapelets with multi-class assessment arises if one class is much
easier to classify than the others. In this case it is likely that more shapelets will
be found for the easy class than for the other classes. Although our principle is to
find a large number of shapelets (ten times the number of training cases) and let
the classifier deal with redundant features, there is still a risk that a large number
of similar shapelets for one class will crowd out useful shapelets for another
class. If we use binary shapelets we can simply allocate a maximum number of
shapelets to each class. We adopt the simple approach of allocating a maximum
of k/c shapelets to each class, where c is the number of classes. The final problem
is that the shapelet early abandon described in [1] is not useful for multi-class
problems. Given a partial orderline and a split point, the early abandon works by
upper bounding the information gain by assigning the unassigned series to the
side of the split that would give the maximum gain. However, the only way to
do this with multi-class problems is to try all permutations. The time this takes
quickly rises to offset the possible benefits from the early abandon. If we restrict
our attention to just binary shapelets then we can take maximum advantage of
the early abandon. The binary shapelet selection is described by Algorithm 5.

5.2 Changing the Shapelet Evaluation Order

Shapelets are phase independent. However, for many problems the localised fea-
tures are at most only weakly independent in phase, i.e. the best matches will
appear close to the location of the candidate. Finding a good match early in
sDist increases the likelihood of an early abandon for each dist calculation.
Hence, we redefine the order of iteration of the dist calculations within sDist so
that we start with the index the shapelet was found at and move consecutively
left and right from that point. Figure 2 demonstrates the potential benefit of this
approach. The scan from the beginning is unable to early abandon on any of the
subseries before the best match. The scan originating at the candidates location
finds the best match faster an hence can early abandon on all the distance calcu-
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Algorithm 5. BinaryShapeletSelection(T, min, max, k)
Input: A list of time series T, min and max length shapelet to search for and k,the

maximum number of shapelets to find)
Output: A list of k Shapelets
1: numClasses ← getClassDistribution(T )
2: kShapeletsMap ← ∅
3: prop ← k/numClasses
4: for all Ti in T do
5: shapelets ← ∅
6: for l ← min to max do
7: Wi,l ← generateCandidates(Ti, l)
8: for all subseries S in Wi,l do
9: DS ← findDistances(S,T)

10: quality ← assessCandidate(S, DS)
11: shapelets.add(S, quality)
12: sortByQuality(shapelets)
13: removeSelfSimilar(shapelets)
14: kShapelets ← kShapeletsMap.get(T.class)
15: kShapelets ← merge(prop, kShapelets, shapelets)
16: kShapeletsMap.add(kShapelets, T.class)
17: return kShapeletsMap.asList()

lations at the beginning of the series. Hence, if the location of the best shapelet is
weakly phase dependent, we would expect to observe an improvement in the time
complexity. The revised function sDist, which is a subroutine of findDistances
(line 9 in Algorithm 5), is described in Algorithm 6.

6 Results

We demonstrate the utility of our approach through experiments using 74 bench-
mark multi-class datasets from the UCR Time Series Classification archive [17].
In common with the vast majority of research in this field, we present results
on the standard train/test split. The min and max size of the shapelet are set
to 3 and m (series length). As a sanity check, we have also evaluated the binary
shapelets on two class problems to demonstrate there is negligible difference. On
25 two class problems, the full transform was better on 6, the binary transform
better on 19 and they were tied on 1. All the results and the code to generate
them are available from [18,19].

6.1 Accuracy Improvement on Multi-class Problems

Table 1 gives the results for the full shapelet transform and the binary shapelet
transform on problems with 2-50 classes. Overall, the binary shapelet transform
is better on 48 data sets, the full transform better on 21 and on 4 they are equal.
On multi class problems, the binary shapelet transform is better on 29 problems
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Fig. 2. An example of Euclidean distance early abandon where the sDist scan starts
from the beginning (a) and from the place of origin of the candidate shapelet (b). For
the scan from the beginning, there are no early abandons until the scan has passed the
best match. Because the best match is close to the location of the candidate shapelet,
starting from the shapelets original location allows for a greater number of early
abandons.

Algorithm 6. sDist(shapelet S, series Ti)
1: subSeq ← getSubSeq(Ti, S.startPos, S.length)
2: bestDist ← euclideanDistance(subSeq, S)
3: i ← 1
4: while leftExists || rightExists do
5: leftExists ← S.startPos − i ≥ 0
6: rightExists ← S.startPos + i < Ti.length
7: if rightExists then
8: subSeq ← getSubSeq(Ti, S.startPos + i, S.length)
9: currentDist ← earlyAbandonDistance(subSeq, S, bestDist)

10: if currentDist > bestDist then
11: bestDist ← currentDist
12: if leftExists then
13: subSeq ← getSubSeq(Ti, S.startPos − i, S.length)
14: currentDist ← earlyAbandonDistance(subSeq, S, bestDist)
15: if currentDist > bestDist then
16: bestDist ← currentDist
17: i ← i + 1
18: return bestDist

compared with the full shapelet transform being better on 15. The difference
between the full and the binary shapelet transform is significant at the 5% level
using a paired T test.

Figure 3 shows the plot of the difference in accuracy of the full and binary
shapelet transform plotted against the number of classes. There is a clear trend of
increasing accuracy for the binary transform as the number of classes continues.
This is confirmed in Table 2, which presents the same data grouped into bins of
ranges of number of classes.
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Table 1. Full shapelet transform vs. Binary shapelet transform.

Dataset #Classes FST binaryST

Adiac 37 0.565 0.783

ArrowHead 3 0.771 0.737

Beef 5 0.833 0.9

BeetleFly 2 0.75 0.6

BirdChicken 2 0.75 0.8

Car 4 0.733 0.917

CBF 3 0.997 0.974

ChlorineConcentration 3 0.7 0.7

CinCECGtorso 4 0.846 0.954

Coffee 2 1 0.964

Computers 2 0.7 0.736

CricketX 12 0.782 0.772

CricketY 12 0.764 0.779

CricketZ 12 0.772 0.787

DiatomSizeReduction 4 0.876 0.925

DistalPhalanxOutlineAgeGroup 3 0.741 0.77

DistalPhalanxOutlineCorrect 2 0.736 0.775

DistalPhalanxTW 6 0.633 0.662

Earthquakes 2 0.734 0.741

ECGFiveDays 2 0.999 0.984

FaceAll 14 0.737 0.779

FaceFour 4 0.943 0.852

FacesUCR 14 0.913 0.906

fiftywords 50 0.719 0.705

fish 7 0.977 0.989

FordA 2 0.927 0.971

FordB 2 0.789 0.807

GunPoint 2 0.98 1

Haptics 5 0.477 0.523

Herring 2 0.672 0.672

InlineSkate 7 0.385 0.373

ItalyPowerDemand 2 0.952 0.948

LargeKitchenAppliances 3 0.883 0.859

Lightning2 2 0.656 0.738

Lightning7 7 0.74 0.726

MALLAT 8 0.94 0.964

(Continued)
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Table 1. (Continued)

Dataset #Classes FST binaryST

MedicalImages 10 0.604 0.67

MiddlePhalanxOutlineAgeGroup 3 0.63 0.643

MiddlePhalanxOutlineCorrect 2 0.725 0.794

MiddlePhalanxTW 6 0.539 0.519

MoteStrain 2 0.891 0.897

NonInvasiveFatalECGThorax1 42 0.9 0.95

NonInvasiveFatalECGThorax2 42 0.903 0.951

OliveOil 4 0.9 0.9

OSULeaf 6 0.715 0.967

PhalangesOutlinesCorrect 2 0.748 0.763

Plane 7 1 1

ProximalPhalanxOutlineAgeGroup 3 0.854 0.844

ProximalPhalanxOutlineCorrect 2 0.9 0.883

ProximalPhalanxTW 6 0.771 0.805

RefrigerationDevices 3 0.557 0.581

ScreenType 3 0.533 0.52

ShapeletSim 2 0.919 0.956

SmallKitchenAppliances 3 0.773 0.792

SonyAIBORobotSurface1 2 0.933 0.864

SonyAIBORobotSurface2 2 0.885 0.934

StarLightCurves 3 0.976 0.979

SwedishLeaf 15 0.907 0.928

Symbols 6 0.886 0.882

SyntheticControl 6 0.983 0.983

ToeSegmentation1 2 0.956 0.965

ToeSegmentation2 2 0.854 0.908

Trace 4 0.98 1

TwoLeadECG 2 0.996 0.997

TwoPatterns 4 0.941 0.955

UWaveGestureLibraryX 8 0.784 0.803

UWaveGestureLibraryY 8 0.697 0.73

UWaveGestureLibraryZ 8 0.727 0.748

wafer 2 0.998 1

WordSynonyms 25 0.597 0.571

Worms 5 0.701 0.74

WormsTwoClass 2 0.766 0.831

Yoga 2 0.805 0.818

Total wins 21 48
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Fig. 3. Number of classes plotted against the difference in error between the full
shapelets and the binary shapelets. A positive number indicates the binary shapelets
are better. The dotted line is the least squares regression line.

6.2 Accuracy Comparison to Other Shapelet Methods

To establish the efficacy of the binary shapelet approach we wanted to thoroughly
compare it to other shapelet approaches within the literature, Fast Shapelets
(FS) [4] and Learn Shapelets (LS) [5]. The 85 datasets from the updated reposi-
tory [18] were stratified and resampled 100 times, to produce 8500 problems. All
folds and results are reproducible within our common Java WEKA [10] frame-
work [19]. Where possible we tried to match the experimental procedure for
parameter searching outlined in the original work. We performed very exten-
sive tests and analysis on the algorithms implemented to make sure they were

Table 2. Number of data sets the binary shapelet beats the full shapelet split by
number of classes.

Number of classes Full better Binary better

2 6 19

3 to 5 7 13

6 to 9 4 8

10 and above 4 8

All 21 48
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Table 3. The average accuracies for the ShapeletTransform, LearnShapelets and Fast-
Shapelets averaged over a 100 resamples for the 85 UCR datasets

Datasets ST LS FS

Adiac 0.768 0.527 0.555

ArrowHead 0.851 0.841 0.675

Beef 0.736 0.698 0.502

BeetleFly 0.874 0.861 0.795

BirdChicken 0.927 0.863 0.862

Car 0.902 0.856 0.736

CBF 0.986 0.977 0.924

ChlorineConcentration 0.682 0.586 0.566

CinCECGtorso 0.918 0.855 0.741

Coffee 0.995 0.995 0.917

Computers 0.785 0.654 0.5

CricketX 0.777 0.744 0.479

CricketY 0.762 0.726 0.509

CricketZ 0.798 0.754 0.466

DiatomSizeReduction 0.911 0.927 0.873

DistalPhalanxOutlineCorrect 0.829 0.822 0.78

DistalPhalanxOutlineAgeGroup 0.819 0.81 0.745

DistalPhalanxTW 0.69 0.659 0.623

Earthquakes 0.737 0.742 0.747

ECG200 0.84 0.871 0.806

ECG5000 0.943 0.94 0.922

ECGFiveDays 0.955 0.985 0.986

ElectricDevices 0.895 0.709 0.262

FaceAll 0.968 0.926 0.772

FaceFour 0.794 0.957 0.869

FacesUCR 0.909 0.939 0.701

FiftyWords 0.713 0.694 0.512

Fish 0.974 0.94 0.742

FordA 0.965 0.895 0.785

FordB 0.915 0.89 0.783

GunPoint 0.999 0.983 0.93

Ham 0.808 0.832 0.677

HandOutlines 0.924 0.837 0.841

Haptics 0.512 0.478 0.356

(Continued)
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Table 3. (Continued)

Datasets ST LS FS

Herring 0.653 0.628 0.558

InlineSkate 0.393 0.299 0.257

InsectWingbeatSound 0.617 0.55 0.488

ItalyPowerDemand 0.953 0.952 0.909

LargeKitchenAppliances 0.933 0.765 0.419

Lightning2 0.659 0.759 0.48

Lightning7 0.724 0.765 0.101

Mallat 0.972 0.951 0.893

Meat 0.966 0.814 0.924

MedicalImages 0.691 0.704 0.609

MiddlePhalanxOutlineCorrect 0.815 0.822 0.716

MiddlePhalanxOutlineAgeGroup 0.694 0.679 0.613

MiddlePhalanxTW 0.579 0.54 0.519

MoteStrain 0.882 0.876 0.793

NonInvasiveFatalECGThorax1 0.947 0.6 0.71

NonInvasiveFatalECGThorax2 0.954 0.739 0.758

OliveOil 0.881 0.172 0.765

OSULeaf 0.934 0.771 0.679

PhalangesOutlinesCorrect 0.794 0.783 0.73

Phoneme 0.329 0.152 0.173

Plane 1 0.995 0.97

ProximalPhalanxOutlineCorrect 0.881 0.793 0.797

ProximalPhalanxOutlineAgeGroup 0.841 0.832 0.797

ProximalPhalanxTW 0.803 0.794 0.716

RefrigerationDevices 0.761 0.642 0.574

ScreenType 0.676 0.445 0.365

ShapeletSim 0.934 0.933 1

ShapesAll 0.854 0.76 0.598

SmallKitchenAppliances 0.802 0.663 0.333

SonyAIBORobotSurface1 0.888 0.906 0.918

SonyAIBORobotSurface2 0.924 0.9 0.849

StarlightCurves 0.977 0.888 0.908

Strawberry 0.968 0.925 0.917

SwedishLeaf 0.939 0.899 0.758

(Continued)
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Table 3. (Continued)

Datasets ST LS FS

Symbols 0.862 0.919 0.908

SyntheticControl 0.987 0.995 0.92

ToeSegmentation1 0.954 0.934 0.904

ToeSegmentation2 0.947 0.943 0.873

Trace 1 0.996 0.998

TwoLeadECG 0.984 0.994 0.92

TwoPatterns 0.952 0.994 0.696

UWaveGestureLibraryX 0.806 0.804 0.694

UWaveGestureLibraryY 0.737 0.718 0.591

UWaveGestureLibraryZ 0.747 0.737 0.638

UWaveGestureLibraryAll 0.942 0.68 0.766

Wafer 1 0.996 0.981

Wine 0.926 0.524 0.794

WordSynonyms 0.582 0.581 0.461

Worms 0.719 0.642 0.622

WormsTwoClass 0.779 0.736 0.706

Yoga 0.823 0.833 0.721

Total wins 71 14 4

identical to the available source code, and provide statistically similar results as
published. This often required working with the original authors to help replicate
and fix errors.

We present the results of the mean accuracy for the binary shapelet trans-
form, FS and LS in Table 3. We found that binary shapelets was better than FS
and LS on 67 problems, and on a pair wise t-test was significantly better at the
5% level. We show the critical difference of the three approaches in Fig. 4.

6.3 Accuracy Comparison to Standard Approaches

Using the same methodology for comparing shapelet methodsm we compared the
shapelet approach to more standard approaches. These were 1-nearest neighbour
using Euclidean distance, 1 nearest neighbour with dynamic time warping and
lastly rotation forest. We present the results in Table 4 showing that on the 85
datasets, the binary shapelet wins on 55 problems and is significantly better
than other the standard approaches. We show the comparison of these classifiers
in the critical difference diagram in Fig. 5.
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Fig. 4. The critical difference diagram of the Shapelet Transform, Fast Shapelets and
Learn Shapalets, the data is presented in 3

Table 4. The average accuracies for the BinaryShapeletTransform, 1NN with Euclid-
ean distance, 1NN with DTW setting window size through cross-validation and Rota-
tion Forest, averaged over a 100 resamples for the 85 UCR datasets

Datasets ST ED DTW RotF

Adiac 0.768 0.617 0.615 0.754

ArrowHead 0.851 0.841 0.829 0.789

Beef 0.736 0.533 0.532 0.819

BeetleFly 0.875 0.686 0.785 0.791

BirdChicken 0.927 0.693 0.823 0.747

Car 0.902 0.724 0.714 0.788

CBF 0.986 0.870 0.974 0.898

ChlorineConcentration 0.682 0.652 0.651 0.846

CinCECGtorso 0.918 0.891 0.928 0.712

Coffee 0.995 0.981 0.981 0.995

Computers 0.785 0.575 0.688 0.666

CricketX 0.777 0.579 0.774 0.620

CricketY 0.762 0.545 0.749 0.599

CricketZ 0.798 0.589 0.779 0.626

DiatomSizeReduction 0.911 0.943 0.944 0.881

DistalPhalanxOutlineCorrect 0.829 0.744 0.756 0.812

DistalPhalanxOutlineAgeGroup 0.819 0.731 0.733 0.807

DistalPhalanxTW 0.690 0.628 0.621 0.692

Earthquakes 0.737 0.682 0.696 0.759

ECG200 0.840 0.879 0.872 0.851

(Continued)
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Table 4. (Continued)

Datasets ST ED DTW RotF

ECG5000 0.943 0.927 0.927 0.942

ECGFiveDays 0.955 0.811 0.835 0.860

ElectricDevices 0.895 0.695 0.783 0.788

FaceAll 0.968 0.878 0.958 0.905

FaceFour 0.794 0.778 0.851 0.853

FacesUCR 0.909 0.764 0.918 0.784

FiftyWords 0.713 0.659 0.770 0.675

Fish 0.974 0.802 0.814 0.859

FordA 0.965 0.682 0.684 0.837

FordB 0.915 0.648 0.661 0.808

GunPoint 0.999 0.891 0.947 0.924

Ham 0.808 0.758 0.749 0.822

HandOutlines 0.924 0.853 0.857 0.912

Haptics 0.512 0.386 0.409 0.469

Herring 0.653 0.496 0.545 0.608

InlineSkate 0.393 0.326 0.400 0.340

InsectWingbeatSound 0.617 0.553 0.555 0.633

ItalyPowerDemand 0.953 0.954 0.951 0.967

LargeKitchenAppliances 0.933 0.524 0.788 0.622

Lightning2 0.659 0.716 0.831 0.760

Lightning7 0.724 0.618 0.744 0.701

Mallat 0.972 0.933 0.943 0.946

Meat 0.966 0.981 0.980 0.994

MedicalImages 0.691 0.701 0.748 0.756

MiddlePhalanxOutlineCorrect 0.815 0.776 0.775 0.820

MiddlePhalanxOutlineAgeGroup 0.694 0.583 0.570 0.669

MiddlePhalanxTW 0.579 0.493 0.496 0.568

MoteStrain 0.882 0.866 0.862 0.859

NonInvasiveFatalECGThorax1 0.947 0.822 0.820 0.899

NonInvasiveFatalECGThorax2 0.954 0.889 0.884 0.928

OliveOil 0.881 0.877 0.876 0.889

OSULeaf 0.934 0.573 0.634 0.587

PhalangesOutlinesCorrect 0.794 0.768 0.766 0.833

Phoneme 0.329 0.104 0.230 0.127

(Continued)
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Table 4. (Continued)

Datasets ST ED DTW RotF

Plane 1.000 0.967 0.994 0.986

ProximalPhalanxOutlineCorrect 0.881 0.818 0.816 0.875

ProximalPhalanxOutlineAgeGroup 0.841 0.770 0.765 0.847

ProximalPhalanxTW 0.803 0.713 0.732 0.808

RefrigerationDevices 0.761 0.426 0.573 0.570

ScreenType 0.676 0.432 0.465 0.466

ShapeletSim 0.934 0.505 0.652 0.488

ShapesAll 0.854 0.754 0.804 0.760

SmallKitchenAppliances 0.802 0.370 0.674 0.714

SonyAIBORobotSurface1 0.888 0.785 0.804 0.814

SonyAIBORobotSurface2 0.924 0.855 0.855 0.846

StarlightCurves 0.977 0.853 0.908 0.970

Strawberry 0.968 0.956 0.955 0.974

SwedishLeaf 0.939 0.772 0.842 0.884

Symbols 0.862 0.876 0.920 0.842

SyntheticControl 0.987 0.903 0.989 0.967

ToeSegmentation1 0.954 0.612 0.722 0.578

ToeSegmentation2 0.947 0.781 0.851 0.646

Trace 1.000 0.778 0.993 0.932

TwoLeadECG 0.984 0.735 0.881 0.928

TwoPatterns 0.952 0.906 0.999 0.928

UWaveGestureLibraryX 0.806 0.740 0.777 0.779

UWaveGestureLibraryY 0.737 0.665 0.695 0.717

UWaveGestureLibraryZ 0.747 0.661 0.687 0.728

UWaveGestureLibraryAll 0.942 0.943 0.960 0.946

Wafer 1.000 0.995 0.995 0.995

Wine 0.926 0.893 0.891 0.919

WordSynonyms 0.582 0.615 0.730 0.586

Worms 0.719 0.491 0.569 0.605

WormsTwoClass 0.779 0.624 0.661 0.657

Yoga 0.823 0.840 0.858 0.854

Total wins 55 1 13 16



42 A. Bostrom and A. Bagnall

Fig. 5. The critical difference diagram showing the comparison of the new Shapelet
Transform compared with a number of standard benchmark classifiers; 1 Nearest Niegh-
bour with Euclidean Distance, 1 Nearest Neighbour with Dynamic Time Warping set-
ting the windows size through cross-validation and Rotation Forest, results are shown
in Table 4

6.4 Average Case Time Complexity Improvements

One of the benefits of using the binary transform is that it is easier to use the
shapelet early abandon described in [3]. Early abandon is less useful when finding
the best k shapelets than it is for finding the single best, but when it can be
employed it can give real benefit. Figure 6 shows that on certain datasets, using
the binary shapelet discovery means millions of fewer sDist evaluations.

We assess the improvement from using Algorithm 6 by counting the number
of point wise distance calculations required from using the standard approach,
the alternative enumeration, and the state of art the enumeration in [2].

For the datasets used in our accuracy experiments, changing the order of
enumeration reduces the number of calculations in the distance function by 76%
on average. The improvement ranges from negligible (e.g. Lightning7 requires
99.3% of the calculations) to substantial (e.g. Adiac operations count is 63% of
the standard approach). This highlights that the best shapelets may or may not
be phase independent, but nothing is lost from changing the evaluation order and
often substantial improvements are achieved. This is further highlighted in Fig. 7
where the worst dataset Synthetic control does not benefit from the alternate
enumeration. For the average and the best case we see a reduction of approx.
15% fewer operations required. On the Olive Oil dataset we see a 99% reduction
in the number of distance calculations required.

Full results, all the code and the datasets used can be downloaded from [18,19].
The set of experiments, and results are constantly being expanded and evaluated
against the current state of the art.

We define the opCounts as the number of operations performed in the Euclid-
ean distance function when comparing two series. This enables us to estimate the
improvements of new techniques. We show in Table 5 the op counts in millions
for 40 datasets. The balancing in some rare cases can increase the number of
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Fig. 6. Number of sDist measurements that were not required because of early aban-
don (in millions) for both full and binary shapelet discovery on seven datasets.

Fig. 7. Percentage of operations performed of Full search, compared with previous
sDist optimisations, and our two new speed up techniques.

operations performed. Typically these datasets have a large number of a class
swamping the shapelet set. The balancer has individual lists for each class, and
thus the shapelet being compared to for early abandon entropy pruning is dif-
ferent for each class, and in some cases can mean more work is done. In these
experiments we wanted to show the progression of op count reduction as we
combined techniques. When comparing to the previous best early abandon tech-
nique, the combination of the new methods proposed has seen a reduction of on
average 35% of the required operations, to find and evaluate the same shapelets.
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Table 5. A table to show the opCounts in millions for the Full method, and the current
and new techniques as a proportion of the calculations performed

Datasets Full ST Online ImpOnline Binary New ST

ArrowHead 423196 0.496 0.307 0.298 0.301

Beef 3567380 0.357 0.234 0.266 0.285

BeetleFly 2192860 0.576 0.555 0.555 0.557

BirdChicken 2192860 0.475 0.398 0.398 0.403

CBF 20033 0.768 0.726 0.726 0.726

Coffee 427243 0.449 0.090 0.090 0.089

DiatomSizeReduction 286551 0.364 0.088 0.088 0.088

DistalPhalanxOutlineAgeGroup 569421 0.475 0.191 0.191 0.187

DistalPhalanxOutlineCorrect 1282270 0.489 0.218 0.218 0.218

DistalPhalanxTW 569421 0.474 0.192 0.192 0.178

ECG200 72759 0.568 0.448 0.448 0.448

ECG5000 8203050 0.608 0.512 0.512 0.487

ECGFiveDays 14826 0.580 0.326 0.326 0.326

FaceAll 7903390 0.717 0.692 0.692 0.692

FaceFour 698003 0.686 0.561 0.566 0.566

FacesUCR 1004840 0.740 0.676 0.676 0.670

GunPoint 105975 0.585 0.364 0.364 0.364

ItalyPowerDemand 136 0.529 0.397 0.397 0.397

Lightning7 4219010 0.732 0.712 0.706 0.696

MedicalImages 1202180 0.640 0.622 0.622 0.534

MiddlePhalanxOutlineAgeGroup 569421 0.456 0.156 0.156 0.153

MiddlePhalanxOutlineCorrect 1282270 0.458 0.161 0.161 0.161

MiddlePhalanxTW 566573 0.453 0.159 0.159 0.158

MoteStrain 1645 0.694 0.576 0.576 0.578

OliveOil 7706080 0.280 0.007 0.009 0.009

Plane 401574 0.567 0.455 0.455 0.455

ProximalPhalanxOutlineAgeGroup 569421 0.441 0.138 0.138 0.136

ProximalPhalanxOutlineCorrect 1282270 0.447 0.140 0.140 0.140

ProximalPhalanxTW 569421 0.443 0.138 0.138 0.137

ShapeletSim 1994760 0.690 0.673 0.673 0.679

SonyAIBORobotSurface1 799 0.579 0.397 0.397 0.397

SonyAIBORobotSurface2 1101 0.654 0.561 0.561 0.561

SwedishLeaf 5745210 0.550 0.393 0.393 0.389

Symbols 1266960 0.632 0.601 0.601 0.601

SyntheticControl 102522 0.771 0.768 0.768 0.768

ToeSegmentation1 776099 0.620 0.611 0.611 0.607

ToeSegmentation2 1469900 0.555 0.556 0.556 0.554

Trace 4785000 0.691 0.634 0.634 0.634

TwoLeadECG 1991 0.497 0.203 0.203 0.203

Wine 810711 0.383 0.023 0.023 0.023
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7 Conclusion

Shapelets are useful for classifying time series where the between class vari-
ability can be detected by relatively short, phase independent subseries. They
offer an alternative representation that is particularly appealing for problems
with long series with recurring patterns. The downside to using shapelets is the
time complexity. The heuristic techniques described in recent research [4,5] offer
potential speed up (often at the cost of extra memory) but are essentially dif-
ferent algorithms that are only really analogous to shapelets described in the
original research [1]. Our interest is in optimizing the original shapelet finding
algorithm within the context of the shapelet transform. We describe incremen-
tal improvements to the shapelet transform specifically for multi-class problems.
Searching for shapelets assessed on how well they find a single class is more intu-
itive, faster and becomes more accurate than the alternative as the number of
classes increases. We demonstrated that the binary shapelet approach is signif-
icantly more accurate than other shapelet approaches and is significantly more
accurate than conventional approaches to the TSC problem.
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