
163© Springer-Verlag GmbH Germany, part of Springer Nature 2018
T. Hoppe et al. (eds.), Semantic Applications, 
https://doi.org/10.1007/978-3-662-55433-3_12

12Context-Aware Documentation in the Smart 
Factory

Ulrich Beez, Lukas Kaupp, Tilman Deuschel, Bernhard G. Humm, 
Fabienne Schumann, Jürgen Bock, and Jens Hülsmann

U. Beez (*) · L. Kaupp · T. Deuschel · B. G. Humm 
Hochschule Darmstadt, Darmstadt, Germany
e-mail: Ulrich.Beez@h-da.de; lukas.kaupp@h-da.de; tilman.deuschel@h-da.de; 
bernhard.humm@h-da.de 

F. Schumann 
dictaJet Ingenieurgesellschaft mbH, Wiesbaden, Germany
e-mail: fabienne.schumann@dictajet.de 

J. Bock 
KUKA Roboter GmbH, Augsburg, Germany
e-mail: Juergen.Bock@kuka.com 

J. Hülsmann 
ISRA Surface Vision GmbH, Herten, Germany
e-mail: jhuelsmann@isravision.com

The project ProDok 4.0 – Process-Oriented Technical Documentation for Industry 4.0 – is funded 
by the German Ministry of Education and Research (BMBF) within the framework of the Services 
2010 action plan under funding no. 02K14A110.

Key Statements
 1. In factory environments, it is important to quickly identify appropriate technical 

documentation for machinery in error and maintenance situations.
 2. Smart factory is the vision of a production environment with increasingly self- 

organising and self-adapting machinery. Identifying appropriate technical docu-
mentation in error and maintenance situations will become even more important 
in the smart factory.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-55433-3_12&domain=pdf
https://doi.org/10.1007/978-3-662-55433-3_12
mailto:Ulrich.Beez@h-da.de
mailto:lukas.kaupp@h-da.de
mailto:tilman.deuschel@h-da.de
mailto:bernhard.humm@h-da.de
mailto:bernhard.humm@h-da.de
mailto:fabienne.schumann@dictajet.de
mailto:Juergen.Bock@kuka.com
mailto:jhuelsmann@isravision.com


164

12.1  Introduction

In every factory environment, errors and maintenance situations may occur. They must be 
handled quickly and accurately. Highly experienced and skilled experts for maintenance and 
repair know exactly what they have to do in most situations. However, the larger and more 
complex the factory environment and the more specific the error situation, the more likely even 
experts need to consult technical documentation, not to mention less skilled workers who 
depend on accurate, easy-to-use technical documentation. But how is it possible quickly and 
easily identify appropriate technical documentation in an error or maintenance situation?

Technical documentation informs the user of a machine about how to operate it safely 
and in the intended way, about error situations, maintenance procedures, and proper dis-
posal. Depending on the region, there are different regulations concerning technical docu-
mentation. Inside the European Union, technical documentation has to be delivered to the 
customer in accordance with the Directive 2006/42/EC of the European Parliament and of 
the Council on machinery [5], such as user manuals, installation and assembly instructions, 
and maintenance manuals. Chapter 1.7 of ANNEX I – Essential health and safety require-
ments relating to the design and construction of machinery – deals with information and 
warnings on machinery, and with information devices connected to the machinery. It is 
stipulated that “the information needed to control machinery must be provided in a form 
that is unambiguous and easily understood. It must not be excessive to the extent of over-
loading the operator. Visual display units or any other interactive means of communication 
between the operator and the machine must be easily understood and easy to use” [5].

However, first identifying and then searching for the appropriate technical documentation 
in a given error or maintenance situation is difficult and requires much more than a full-text 
search. What does the highly skilled and experienced expert do when being faced with an 
error? First, he will analyse the situation, taking into account the symptoms he observes. 
Using those observations, the expert will form hypotheses on the error cause based on this 
experience and will generally know what to do in order to solve the problem.

For the less skilled worker, support in performing these steps can be provided through 
a semantic software application. To achieve this, the application needs to extract low-level 

 3. In order to identify appropriate documentation, the semantic context of the error 
or maintenance situation needs to be taken into account. The semantic context 
needs to be extracted and inferred from low-level machine data.

 4. The ProDok 4.0 application allows identifying appropriate documentation in 
error and maintenance situations for two use cases: robotics application develop-
ment and maintenance of industrial inspection machines.

U. Beez et al.



165

machine data in order to infer semantic context information (symptoms), link symptoms 
to causes and solutions semantically, and present appropriate solutions to the user in an 
easy-to-use way.

In this chapter, we describe such a semantic application for identifying appropriate tech-
nical documentation in a given error or maintenance situation in a factory. We call this appli-
cation ProDok 4.0. We will demonstrate its use through two use cases: robotic application 
development and maintenance of industrial inspection machines. Although the use cases are 
very different, the underlying semantic application has a common software architecture.

12.2  Use Case 1: Robotics Application Development

State-of-the-art robots such as the KUKA LBR iiwa (Fig. 12.1) are designed to be deployed 
in a wide range of application domains. A key feature to enable this flexibility is the capa-
bility to sense forces and torques, and thus, to react to haptic user interaction as well as 
physical contact or collisions with its environment. The ability to measure external forces 
and torques allows for the development of force-controlled robot applications, where the 
teach-in of exact positions is no longer required. Instead, an application could, for exam-
ple, move the end effector towards a surface until it detects physical contact and then move 
along the surface while constantly applying a certain force. This allows for the develop-
ment of sensitive joining or peg-in-hole applications without knowing the exact position 
of the surface, the hole, the parts to be joined, etc., while achieving as high a precision as 
could possibly be realised using a position control mode only.

These new features cause an increase in complexity when developing robotic applica-
tions. This is because force/torque measurements and the corresponding conditional appli-
cation control mechanisms need to be mastered in addition to a correct and more 

Fig. 12.1 LBR iiwa and ProDok 4.0 web interface

12 Context-Aware Documentation in the Smart Factory



166

comprehensive configuration of the robot, end effector, workpiece, etc. Matching both the 
machine configuration and status as well as the developers knowledge level, our ProDok 
4.0 application shall support the process of developing robotic applications by allowing 
access to helpful documentation for error situations with ease.

12.3  Use Case 2: Maintenance of Industrial Inspection Machines

In the production of glass, defects may occur. A glass inspection machine uses computer 
vision techniques for detecting such defects and for rating material quality [2]. The glass 
inspection machine consists of cameras and lights as well as servers with inspection soft-
ware [12]. In Fig. 12.2, a typical glass inspection machine setup is shown.

An error may occur in every component of the setup, including the interconnections, 
and on both the software level and the hardware level. Errors in the inspection machine 
may lead to uninspected glass or glass of unknown quality and thus impact the plant yield. 
With today’s quality requirements for glass products, only quality-inspected glass can be 
sold to customers.

Common inspection machine errors are camera failures, network errors, lighting 
issues, or incorrect configuration of external system parameters. The machine itself 
detects and reports known issues. Typically, the machine on its own cannot solve these 
issues, e.g. a lost communication signal with another node due to physical damage of the 
cable.

Less obvious or even previously unknown problems can cause an altered behaviour in 
the defects detection (over-detection or under-detection). Often, hints for these kinds of 
problems can be found provided that the distributed information the system generates at 
runtime is considered as a whole. Our approach aims at detecting errors within the inspec-
tion machine based on different indicators from this runtime information. After having 
identified an error, the system shall give a statement on its cause and, if possible, point to 
a solution to fix the problem.

Fig. 12.2 Glass inspection machine setup

U. Beez et al.



167

12.4  Requirements

Based on expert interviews conducted with personnel of manufacturers for smart factory 
equipment (robot application developers, inspection machine support engineers), the fol-
lowing requirements have been collected [1]:

R1) In case a machine error occurs in a smart factory, personnel shall be enabled to resolve 
the error quickly and with little effort.

R2) Appropriate technical documentation shall be provided, indicating causes and solu-
tions of machine errors.

R3) The provided technical documentation shall match the machine context in which the 
error occurred.

R4) The technical documentation shall be provided automatically, alerting the user as 
soon as the machine error occurs.

R5) Devices shall be supported which support the smart factory workflow, e.g., desktop 
computer, tablet PC, smartphone, or smartwatch.

R6) Usability of the user interface shall be high.
R7) User interaction shall be fast so as not to disturb the personnel’s workflow.

12.5  Architecture

12.5.1  Information Architecture

We explain the interaction concept with the robotics example use case previously outlined. 
When the robot stops during hand guiding, the user is alerted. This alert may be pushed to 
a suitable device, e.g., the development workstation, a tablet PC, or even a smartwatch. 
The alert indicates the symptom of the machine error, i.e. ‘Joint: the robot has stopped’. 
See Fig. 12.3 for a screenshot of a dashboard view on the development workstation.

An important aspect of the screen design is the clarity of information presentation, fol-
lowing the ISO Standards 9241-110 [10] and 9241-210 [11]. The user-centred design 

Fig. 12.3 Dashboard view. (Adapted from [1])

12 Context-Aware Documentation in the Smart Factory



168

approach is applied, which includes close contact with the end user to define requirements 
collaboratively and test intermediate prototypes iteratively [6].

The dashboard component implements the interaction design pattern of sequence-of- 
use, which follows the mental model of spatial alignment of semantically related objects 
[14]. Elements that share a semantic relationship are grouped and the interaction design 
provides subsequent interaction steps for the main tasks.

The dashboard’s most important components are:

 (a) The overview functionality of all connected devices as a list (Fig. 12.3, Mark 1).
 (b) A table containing the most recent errors for all connected devices. Each column dis-

plays the error symptom alongside a short cut towards the solution, e.g. ‘Joint: the 
robot has stopped’ (Fig. 12.3, Mark 2) and a corresponding navigation component 
reducing the effort a user has to invest for finding a solution (‘open most likely solu-
tion’) (Fig. 12.3, Mark 3).

With a single interaction, i.e., a click on ‘open most likely solution’ (Fig. 12.3, Mark 3), 
the user is provided with a solution to the most likely cause of this machine error. See 
Fig. 12.4.

The conceptual ideas of the Solution View (Fig. 12.4) are as follows:

 (a) Present the solution to the machine error, e.g. the solution text ‘Move joint out of 
maximum angle position’ (Fig. 12.4, Mark 1).

 (b) Provide a quick view to the user regarding error context and symptom, e.g. the blue 
headline ‘LBR iiwa 14 R820 | Joint: the robot has stopped’ (Fig. 12.4, Mark 2).

Fig. 12.4 Solution view. (Adapted from [1])

U. Beez et al.



169

 (c) Collect user feedback for a solution, e.g. ‘Problem resolved?’ (Fig. 12.4, Mark 3).
 (d) Display solution background information to the user, matching both error context and 

error, e.g. the cause and symptom (Fig. 12.4, Mark 4).
 (e) In case several causes exist (here there is only a single cause identified: ‘Joint at maxi-

mum angle’), the less likely solutions are sorted by likelihood descending, and dis-
played on the solution view following the most likely solution.

12.5.2  Ontology

An ontology specifies concepts and their relationships. One purpose of an ontology is to 
bridge terminology across different domains [3]. In this case, the event data and machine 
data, both originating from the machine, are bridged to the technical documentation. The 
ontology can be queried to retrieve symptoms, causes, and solutions (SCS), matching both 
product and error data. See Fig. 12.5 for an example following the W3C recommendation 
for concepts and abstract syntax [17].

Within the ontology, different concepts are modelled:

 (a) Hierarchies of products and errors, both interlinked, e.g.:
‘LBR iiwa R820’ ‘isA’ ‘LBR iiwa’
‘LBR iiwa’ ‘has Error’ Joint: maximum angle reached, robot stopped’

 (b) Technical documentation split into symptoms, their causes and solutions (SCS) with 
linkages to (a), e.g.:
‘Joint: maximum angle reached, robot stopped’ ‘hasSymptom’ ‘Joint: Robot has 
stopped’
‘Joint: Robot has stopped’ ‘hasCause’ ‘Joint at maximum angle’
‘Joint at maximum angle’ ‘hasSolution’ ‘Rotate joint’
all linked to ‘LBR iiwa’ via ‘hasProduct’

Fig. 12.5 Ontology example [1]

12 Context-Aware Documentation in the Smart Factory



170

The ontology enables modelling transitive relationships like ‘isA’. ‘LBR iiwa R820’ has 
no direct relationship with any error, symptom, cause, or solution. However, due to the 
‘isA’ relationship with ‘LBR iiwa’, the relationships to the respective error, symptom, 
cause, and solution can be inferred.

In addition the concepts and relationships shown in Fig.  12.5, may have additional 
attributes. For example, a solution may have an attribute containing a detailed description 
on how to apply the solution. An additional attribute for SCS may contain information 
about the target user group.

12.5.3  Software Architecture

The software architecture is shown below in Fig. 12.6 as an UML class diagram. It con-
sists of three layers [16]: Presentation, Logic, and Data. Each layer encompasses different 
modules. Following Fig. 12.6, the purpose of each module is described.

Presentation Layer: Contains the Graphical User Interface (GUI) which serves as an 
entry point for the user.

Logic Layer: This layer encompasses two modules: (a) Semantic Knowledge Retrieval 
for providing accurately matching documentation and (b) User Feedback Adapter for han-
dling user feedback.

Data Layer: Three modules are located here. (a) The Machine sends out event and 
context information, (b) the Ontology contains the hierarchies of products and errors, both 
interlinked, as well as the modularised technical documentation and (c) The User Feedback 
Store contains collected user feedback.

Presentation Layer

Logic Layer

GUI

Semantic Knowledge Retrieval

Machine Ontology User Feedback Store

User Feedback Adapter

Data Layer

Fig. 12.6 Software architecture [1]

U. Beez et al.



171

Figure 12.7 provides an inside view of the communication between components as an 
UML sequence diagram.

Step 1: When an error occurs, the machine sends event data and machine data to the 
‘Semantic Knowledge Retrieval’ component. Event data describes the machine error in 
detail, e.g. ‘Joint 3 maximum angle reached, robot stopped’ on 13:45:17. Machine data 
contains context information, e.g. the robots’ digital identification plate with manufac-
turer and type, e.g.,‘KUKA’ and ‘LBR iiwa 14 R820’.

Steps 2,3: Modularised technical documentation is retrieved from the ontology by querying 
for the event data in combination with the machine data. The modularised technical docu-
mentation consists of the documentation fragments symptom, cause, and solution (SCS).

Steps 4,5: User feedback is queried for each of the previously retrieved SCSs.
Step 6: Technical documentation accurately matching both the machine event and the per-

sonnel’s preference is forwarded to the ‘Graphical User Interface’ (GUI) component.
Steps 7,8: When the GUI sends user feedback, it is normalised and saved in the feedback 

store.

12.6  From Raw Data to Semantic Context

In some situations, machine errors are less obvious than in the example above, where the 
machine sends an error message like, e.g., ‘Joint 3 maximum angle reached, robot stopped’. 
For example, consider a communication failure between two components of the inspection 
machine. Such an error can only be detected by observing that regular messages have been 
missing for an unusual amount of time.

Machine

1 : event data and machine data 2 : query for SCSs

3 : SCSs

4 : query for user feedback

5 : feedback for SCSs

6 : send accurately case matching SCSs

7 : user feedback

8 : normalised user feedback

Semantic Knowledge Retrieval Ontology User Feedback Store GUI User Feedback Adapter

Fig. 12.7 Communication between components [1]

12 Context-Aware Documentation in the Smart Factory



172

In such situations, raw data needs to be semantically enriched to get a semantic context. 
We call the process from raw data to semantic context the Semantic Fusion Process (SFP) 
[13]. Figure 12.8 shows the SFP as a BPMN diagram. In the following, the SFP is explained 
employing the use case of ‘Maintenance of Industrial Inspection Machines’ for glass 
production.

Any internal state changes, exceptions, sensor data, and communication between com-
ponents (software or hardware components) inside the glass inspection machine is saved 
into log files. Each line in a log file corresponds to a log event (raw event). Raw events are 

Fig. 12.8 Semantic fusion process. (Adapted from [13])

U. Beez et al.



173

the inbound data of the SFP. Multiple log events are collected within a data stream and 
delivered in real-time into the process.

The Semantic Fusion Process consists of three steps. In the pre-processing step, differ-
ently formatted log events are normalised to a defined schema. In the subsequent semantic 
enrichment step, normalised raw events are refined using analysis methods, generating 
semantic events. In the smart document retrieval step, these semantic events enable a fine- 
grained query to the knowledge base, thus leading to a composition of smart documents.

12.6.1  Pre-processing

In order to support multiple log events with different encodings and formats from different 
software and hardware modules, a pre-processing step is needed. Implementing the idea of 
[15] on the input data, log events are normalised using a defined schema, hence decoupling 
the SFP from the inbound data format. Figure 12.9 shows the pre-processing step with the 
example event GlassBreakBegin.

GlassBreakBegin indicates the detection of a break within the glass layer. It is reported 
by the glass inspection machine as a formatted log message as shown in Fig. 12.9. Each 
event has general attributes such as timestamp, context, and type. The ‘timestamp’ attri-
bute indicates the time at which the error occurred. The ‘context’ attribute reflects the 
origin within the machine, e.g., for a camera event on slave 1 ‘/slave1/camera’. The ‘type’ 
attribute classifies the event, here GlassBreakBegin. In addition, an event may have spe-
cific event attributes, e.g., ticks (conveyor belt position). The formatted log message of the 
raw event gets parsed and the extracted data are stored in a normalized raw event object.

Fig. 12.9 Pre-processing of the event GlassBreakBegin [13]

12 Context-Aware Documentation in the Smart Factory



174

12.6.2  Semantic Enrichment

Each normalised raw event alone may not be sufficient to identify the machine problem. 
Consequently, in a second step, the normalised log events get lifted semantically in the 
semantic enrichment process. Figure 12.10 shows the semantic enrichment process with 
four subprocesses. Normalised raw events are input data for the semantic enrichment pro-
cess. The process can apply filters, pattern matching, value progression analysis, and time 
progression analysis to generate semantic events.

In addition, semantic events can be used as input data for semantic enrichment. In the 
case of an inbound semantic event, higher semantic events can be generated.

Figure 12.11 displays a filtering operation on a normalised event stream, here filtering 
GlassBreak events.

On the left side, the unfiltered data stream is shown containing multiple normalised 
events. On the right side, only filtered events are shown. For the filter operation, we use 
pseudocode similar to common complex event processing (CEP) languages as used in 
CEP tools such as Apache Flink.

Figure 12.12 shows an example for pattern matching operation, identifying correspond-
ing GlassBreakBegin and GlassBreakEnd events.

The pseudo code specifies a pattern in which a “GlassBreakBegin-event-immediately 
followed-by-an-GlassBreakEnd-event” is detected in the data stream. Each pattern recog-
nised can be used to generate a semantic GlassBreakDetected event.

Figure 12.13 shows an example of a value progression analysis for generating the 
semantic SpeedChanged event. The speed of the inspection process may vary, due to the 
versatility of the glass production process. A speed change may affect defect detection 
and, therefore, is important semantic information.

Fig. 12.10 Semantic enrichment process [13]

U. Beez et al.



175

Each SpeedCheck event delivers a snapshot of the speed of the conveyor belt. The 
pseudo code for implementing the value progression analysis uses sliding time windows 
of size 5000s with an overlap of 10s. For each time window, it is checked whether the dif-
ference in speed exceeds a threshold (here 0.5s). In this case, a new semantic event 
SpeedChanged is generated.

Figure 12.14 illustrates the time progression analysis with the example of the SignalLost 
event. The SignalLost event indicates a connectivity failure, e.g., between a camera and a 
server.

Fig. 12.11 Example of a filter process [13]

Fig. 12.12 Example of a pattern matching process [13]

12 Context-Aware Documentation in the Smart Factory



176

Each component within the glass inspection machine regularly sends ping events. If no 
ping event occurs within half a minute, it is considered as a loss of signal. The pseudocode 
shown in Fig. 12.14 uses a sliding time window of 30s with an overlap of 10s. If no ping 
event occurred within the time window, then a SignalLost event is generated.

As shown in Fig. 12.10, semantic events generated by semantic enrichment processes 
can be used as input for other semantic enrichment processes. So, a chain of successive 

Fig. 12.13 Example of a value progression analysis process [13]

Fig. 12.14 Example of a time progression analysis [13]

U. Beez et al.



177

enrichment processes can be established. For example, high conveyor belt speed typically 
implies a thinner glass layer. With the glass thickness, the properties of the defects change, 
and in the transition between different thicknesses many defects may occur. The semantic 
event SpeedChanged introduced above may then be used for generating a semantic 
ThicknessChanged event.

12.7  From Semantic Context to Appropriate Documentation

Technical documentation is stored in a knowledge base. Technical instructions are pro-
vided in the form of smart documents. A smart document is modularised, containing the 
building blocks symptom, cause, and solution. This structure forms the schema of the 
knowledge base. We call it the symptom / cause /solution model (SCS model).

A symptom is a misbehaviour of any form as visual, physical or nonphysical (software- 
related) aspect [7]. A cause can be the origin of a symptom, but one cause can be linked to 
multiple symptoms and symptoms can have multiple causes. In addition, a solution covers 
one or more causes and a cause can be fixed by multiple solutions. On top of this, each 
solution can have a semantic context defining the scope of the solution, e.g., server or 
camera (see Fig. 12.15).

Through this modularised structure, it is possible to assemble a smart document con-
sisting of a symptom, a cause, and solutions according to the semantic context for a given 
semantic event. The smart document is the final output of the SFP, semantically interlink-
ing semantic events and documentation for a machine-specific problem.

Fig. 12.15 SCS model with example data [13]

12 Context-Aware Documentation in the Smart Factory



178

For instance, the previously generated semantic event SignalLost can be mapped onto 
the symptom ‘signal lost’, and the ‘signal lost’ symptom within the knowledge base has a 
‘node failure’ cause with two different solutions.

In Fig. 12.16, the smart document retrieval process is shown, consisting of a ‘semantic 
symptom matching’ process and a ‘ranking and filtering’ process.

The ‘semantic symptom matching’ process queries the knowledge base, e.g., querying 
on a ‘matchingEvents’ attribute to determine the right symptom. Multiple symptoms can 
have the same ‘matchingEvent’ like SignalLost. In order to provide suitable smart docu-
ments, the symptoms get filtered by semantic context. A ranking can be applied according 
to filtered causes and solutions. For example, the frequency of occurrence of a problem- 
cause- solution triplet in the past may be used as a ranking criterion.

12.8  Recommendations

We have successfully implemented an application for providing context-aware documen-
tation in the smart factory. We summarize our main learnings from implementing and 
applying it to both use cases with the following recommendations:

 1. Normalise raw data from machinery using a common data format and a (simple) 
ontology.

 2. Queueing technology such as Apache Kafka is mature and scalable and well-suited for 
communicating events from machinery.

Fig. 12.16 Smart document retrieval process [13]

U. Beez et al.



179

 3. Complex Event Processing (CEP) technology such as Apache Flink is mature and scal-
able and well-suited for semantically enriching raw data from machinery. Functionality 
provided includes filtering, pattern matching, machine learning, value progression 
analysis, and time progression analysis.

 4. Modular documentation is required when automatically matching technical documen-
tation to machinery data. We recommend separating symptoms, causes, and solutions. 
The ontology links the machinery with their events and the events with their technical 
documentation.

 5. Check for existing ontologies before developing a custom ontology. This includes 
product hierarchies and domain vocabularies, e.g. the eCl@ss product and service clas-
sification [4], IEEE Standard Ontologies for Robotics and Automation [8], IEEE 
Suggested Upper Merged Ontology (SUMO) [9], etc.

 6. Emphasize the usability and user experience of the semantic application in order to 
increase acceptance by users.

12.9  Conclusion and Outlook

Documentation in the smart factory is a hot topic. In the project ProDok 4.0, we have regu-
larly invited an open industry board to discuss the applicability of our solution in other 
corporate use cases. The enormous interest in the topic even surprised us. Many corpora-
tions, particularly in the manufacturing sector, face the constant challenge of finding 
appropriate documentation in error and maintenance situations. Our solution of semanti-
cally selecting appropriate documentation based on the current machine context has 
proven highly attractive to the industry board members.

Where is the road leading? Distilled from intense discussions, here are some sugges-
tions for future work:

• User-specific information delivery: Context-awareness may also take into account the 
skill level and role of the user, providing even more appropriate documentation.

• Documentation at the point of action: This requires the use of mobile devices, or, more 
appropriately, augmented reality devices like Google Glass. Alternative user interaction 
mechanisms like voice control may be necessary in such settings.

• Predictive maintenance: Much better than fixing an error is avoiding it altogether. For 
certain situations, our solution can be extended to predict errors and maintenance situ-
ations based on common patterns and inform the user before issues occur.

• Executable solutions: the connectivity of machines in the smart factory allows not only 
to retrieve context for selecting appropriate documentation, but also to execute opera-
tions. Therefore, the user could be offered an additional option ‘automatically apply 
solution in certain situations’.

Semantic applications can really make a difference.

12 Context-Aware Documentation in the Smart Factory



180

References

 1. Beez U, Bock J, Deuschel T, Humm BG, Kaupp L, Schumann F (2017) Context-aware documen-
tation in the smart factory. In: Proceedings of the collaborative European research conference 
(CERC 2017), Karlsruhe

 2. Beyerer J, León FP, Frese C (2016) Automatische Sichtprüfung: Grundlagen, Methoden und 
Praxis der Bildgewinnung und Bildauswertung. Springer, Berlin

 3. Busse J, Humm B, Lubbert C, Moelter F, Reibold A, Rewald M, Schluter V, Seiler B, Tegtmeier 
E, Zeh T (2015) Actually, what does “ontology” mean?: a term coined by philosophy in the 
light of different scientific disciplines. J Comput Inf Technol 23(1):29. https://doi.org/10.2498/
cit.1002508

 4. eCl@ss (2017) Introduction to the eCl@ss standard [online]. Available at: https://www.eclass.
eu/en/standard/introduction.html. Accessed 21 Sept 2017

 5. EPC (2006) Directive 2006/42/EC of the European Parliament and of the Council of 17 May 
2006 on machinery, amending Directive 95/16/EC (recast). Off J Eur Union [online]. Available 
at: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2006.157.01.0024.01.
ENG&toc=OJ:L:2006:157:TOC. Accessed 21 Sept 2017

 6. Garrett JJ (2011) The elements of user experience: user-centered design for the web and beyond, 
2nd edn. New Riders, Berkeley

 7. Hornung R, Urbanek H, Klodmann J, Osendorfer C, van der Smagt P (2014) Model-free robot 
anomaly detection. In: 2014 IEEE/RSJ International conference on intelligent robots and sys-
tems, pp 3676–3683. https://doi.org/10.1109/IROS.2014.6943078

 8. IEEE (2015) 1872-2015 IEEE Standard ontologies for robotics and automation. IEEE Robot 
Autom Society [Online]. Availabe at https://standards.ieee.org/findstds/standard/1872-2015.
html. Accessed 25 Sept 2017

 9. IEEE, Adam Pease (2017) Suggested upper merged ontology (SUMO) [Online]. Available at 
http://www.adampease.org/OP/. Accessed 25 Sept 2017

 10. ISO (2006) DIN ISO 9241-110:2006: ‘DIN EN ISO 9241-110 Ergonomie der Mensch-System- 
Interaktion  – Teil 110: Grundsätze der Dialoggestaltung (ISO 9241-110:2006)’. Deutsche 
Fassung EN ISO 9241-110:2006: Perinorm [Online]. Available at http://perinorm-s.redi-bw.de/
volltexte/CD21DE04/1464024/1464024.pdf. Accessed 28 June 2013

 11. ISO (2010) DIN ISO 9241-210:2010: ‘Ergonomie der Mensch-System-Interaktion – Teil 210: 
Prozess zur Gestaltung gebrauchstauglicher interaktiver Systeme’ [Online]. Available at http://
perinorm-s.redi-bw.de/volltexte/CD21DE05/1728173/1728173.pdf. Accessed 29 Oct 2014

 12. ISRA VISION AG (2015) The NEW Standard In Float Glass Inspection FLOATSCAN-5D 
Product Line, ISRA VISION AG [online]. Available at: http://www.isravision.com/media/pub-
lic/prospekte2013/Brochure_Floatscan_5D_Product_Line_2013-05_EN_low.pdf. Accessed 13 
June 2017

 13. Kaupp L, Beez U, Humm BG, Hülsmann J (2017) From raw data to smart documentation: intro-
ducing a semantic fusion process. In: Proceedings of the collaborative European research confer-
ence (CERC 2017), Karlsruhe

 14. Koffka K (2014) Principles of gestalt psychology. Mimesis Edizioni, Milan
 15. Nuñez DL, Borsato M (2017) An Ontology-based model for prognostics and health management 

of machines. J Ind Inform Integr [online]. Available at: http://www.sciencedirect.com/science/
article/pii/S2452414X16300814?via%3Dihub. Accessed 21 Sept 2017

 16. Starke G (2015) Effektive Software-Architekturen: Ein praktischer Leitfaden, 7th edn. Hanser, 
München. https://doi.org/10.3139/9783446444065

 17. W3C (2014) RDF: ‘1.1 Concepts and Abstract Syntax’ [Online]. Available at https://www.
w3.org/TR/rdf11-concepts/. Accessed 16 June 2017

U. Beez et al.

https://doi.org/10.2498/cit.1002508
https://doi.org/10.2498/cit.1002508
https://www.eclass.eu/en/standard/introduction.html
https://www.eclass.eu/en/standard/introduction.html
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2006.157.01.0024.01.ENG&toc=OJ:L:2006:157:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2006.157.01.0024.01.ENG&toc=OJ:L:2006:157:TOC
https://doi.org/10.1109/IROS.2014.6943078
https://standards.ieee.org/findstds/standard/1872-2015.html
https://standards.ieee.org/findstds/standard/1872-2015.html
http://www.adampease.org/OP/
http://perinorm-s.redi-bw.de/volltexte/CD21DE04/1464024/1464024.pdf
http://perinorm-s.redi-bw.de/volltexte/CD21DE04/1464024/1464024.pdf
http://perinorm-s.redi-bw.de/volltexte/CD21DE05/1728173/1728173.pdf
http://perinorm-s.redi-bw.de/volltexte/CD21DE05/1728173/1728173.pdf
http://www.isravision.com/media/public/prospekte2013/Brochure_Floatscan_5D_Product_Line_2013-05_EN_low.pdf
http://www.isravision.com/media/public/prospekte2013/Brochure_Floatscan_5D_Product_Line_2013-05_EN_low.pdf
http://www.sciencedirect.com/science/article/pii/S2452414X16300814?via=ihub
http://www.sciencedirect.com/science/article/pii/S2452414X16300814?via=ihub
https://doi.org/10.3139/9783446444065
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

	12: Context-Aware Documentation in the Smart Factory
	12.1	 Introduction
	12.2	 Use Case 1: Robotics Application Development
	12.3	 Use Case 2: Maintenance of Industrial Inspection Machines
	12.4	 Requirements
	12.5	 Architecture
	12.5.1	 Information Architecture
	12.5.2	 Ontology
	12.5.3	 Software Architecture

	12.6	 From Raw Data to Semantic Context
	12.6.1	 Pre-processing
	12.6.2	 Semantic Enrichment

	12.7	 From Semantic Context to Appropriate Documentation
	12.8	 Recommendations
	12.9	 Conclusion and Outlook
	References




