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Abstract. We define new fragments of higher-order logics of order three
and above, and investigate their expressive power over finite models. The
key unifying property of these fragments is that they all admit inexpen-
sive algorithmic translations of their formulae to equivalent second-order
logic formulae. That is, within these fragments we can make use of third-
and higher-order quantification without paying the extremely high com-
plexity price associated with them. Although theoretical in nature, the
results reported here are more significant from a practical perspective.
It turns out that there are many examples of properties of finite mod-
els (queries from the perspective of relational databases) which can be
simply and elegantly defined by formulae of the higher-order fragments
studied in this work. For many of those properties, the equivalent second-
order formulae can be very complicated and unintuitive. In particular
when they concern properties of complex objects, such as hyper-graphs,
and the equivalent second-order expressions require the encoding of those
objects into plain relations.

1 Introduction

There are many examples of properties of finite models (queries from the perspec-
tive of relational databases) that can be defined by simple and elegant sentences
of higher-order logics of order three and above. Take for instance the property
of a graph of being an n-hypercube graph Qn, i.e., an undirected graph whose
vertices are binary n-tuples and such that two vertices are adjacent iff they differ
in exactly one bit. We can build an (n + 1)-hypercube Qn+1 by simply taking
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two isomorphic copies of an n-hypercube Qn and adding edges between the cor-
responding vertices. This strategy can be formally expressed by means of a clear
and elegant third-order logic sentence which expresses that G is an n-hypercube
graph for some n iff the following holds:

– There is a sequence S of graphs, i.e., a third-order linear digraph whose nodes
are undirected (second-order) graphs.

– The sequence S starts with a K2-graph and ends with G.
– For every graph Gsucc and its immediate predecessor Gpred in the sequence

S, there is a pair of injective functions f1, f2 from Gpred to Gsucc such that
• f1 and f2 induce in Gsucc two isomorphic copies of Gpred ,
• f1 and f2 define a partition in the vertex set of Gsucc , and
• for every edge (x, y) of Gsucc , f−1

1 (x) = f−1
2 (y) or either the edge

(f−1
1 (x), f−1

1 (y)) or (f−1
2 (x), f−1

2 (y)) belongs to Gpred .

Yet another example of a property that can be expressed by a simple and
elegant third-order sentence is given by the formula-value query, consisting on
determining whether a propositional formula ϕ with constants in {F, T} eval-
uates to true. We can express it in third-order logic by writing that there is
a sequence of propositional formulae (represented as finite structures) which
starts with ϕ, ends with the formula T , and such that every formula ϕsuc in
the sequence results from applying to exactly one sub-formula of its immediate
predecessor ϕpred an operations of conjunction, disjunction, or negation which is
“ready” to be evaluated (e.g., the conjunction in “(T ∧ F )”), or the elimination
of a pair of redundant parenthesis (e.g., the parenthesis in “(T )”).

The high expressive power of third-order logic is not really necessary to
characterize hypercube graphs, since they can be recognized in non-deterministic
polynomial time (NP) and by Fagin’s theorem [6] existential second-order logic
is then powerful enough to define this property. Nevertheless, to define the class
of hypercube graphs in second-order logic is certainly more challenging than to
define it in third-order logic (see the two strategies for hypercube graphs in [8]).
Likewise, we do not really need third-order logic to express the formula-value
query, since it is in DLOGSPACE [2].

It is then relevant to distinguish formulae of order three or higher which
do have a second-order equivalent formula, from those which (most likely) do
not. Beyond the significance of this questions to advance the theory of descrip-
tive complexity, such a development can clearly empower us to write simpler
and more intuitive queries, although still formal, by taking advantage of the
higher level of expressivity of higher-order logics. Provided that those queries
can be translated into formal languages with lower complexity of evaluation,
this can be done without paying the extremely high complexity price which is
associated to higher-order logics. Note that by the results in [6,13], existential
second-order logic captures NP while existential third-order logic already cap-
tures NTIME (2nO(1)

).

Outline of Contributions. We define new fragments of higher-order logics of
order three and above, and investigate their expressive power over finite models.
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The key unifying property of these fragments is that they all admit inexpen-
sive algorithmic translations of their formulae to equivalent second-order logic
formulae.

We start by defining in Sect. 3 a general schema of existential third-order
formulae. The schema generalizes the approach described in our previous exam-
ples for hypercube graph and formula-value query. It essentially allows us to
express an iteration of polynomial length. This iteration is represented by an
unfolded sequence of relational structures which can be seen as a computation
or derivation. Transitions are then specified by explicitly stating the operations
which can be involved in the construction of a given structure in the sequence,
when applied to the previous one. As further discussed in Sect. 3, this is a very
usual, intuitive, and convenient schema in the expression of properties.

In Sect. 4, we characterize a broader fragment of third-order logic which is no
longer restricted to formulae of a fixed schema as in the previous section. We call
this fragment TOP , for polynomial third-order, and give a constructive proof of
the fact that it collapses to second-order logic. Although the schema of existential
third-order formulae proposed in Sect. 3 turned out to be a special case of TOP ,
it is still relevant. The translation of the formulae of that schema yields second-
order formulae which are more intuitive and clearer than the general translation
of TOP formulae. Moreover, taking into consideration the examples in this paper,
the translation proposed in Sect. 3 always results in second-order formulae which
use relation variables of considerable smaller arity than the equivalent, but also
more general translation proposed in this section. Since the maximum arity of the
relation variables in the second-order formulae is relevant for the complexity of
their evaluation (see [13] among others), it makes sense to study specific schemas
of third-order formulae with the aim of finding more efficient translations.

In Sect. 5 we generalize the result in Sect. 4 by characterizing, for each order
i ≥ 4, a fragment HOi,P of the i-th order logic which collapses to second-order.
Again this result has interesting practical applications. As an example, consider a
multilevel PERT chart such as those commonly used in engineering for planning
and scheduling tasks of complex projects. The encoding of higher-order relations
of order ≥ 3 into second-order relations can be exploited as a normal form to
store such type of complex multilevel PERT charts into a standard relational
database. Under certain conditions, higher-order queries of order ≥ 3 could then
be synthesised into efficient SQL queries over such normalized relational data-
base. Notice that, a related approach with synthesisation to efficient algorithms
was already taken in [14].

We conclude the paper in Sect. 6 where we discuss in detail the expressive
power of different fragments of the HOi,P logics and their relationship with
known fragments of second-order logic. In particular, adapting Makowsky and
Pnueli [16] approach to prove hierarchies of arity and alternation of second-order
formulae, we are able to prove interesting strict hierarchies of HOi,P formulae.

Due to space limitations, in most cases we only present sketches of the proofs.
Nevertheless, a technical report with the omitted details in Sects. 3–5 is accessible
as a CoRR abstract in [9].
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2 Preliminaries

We assume familiarity with the basic concepts of finite model theory [5,15]. We
only consider signatures, or vocabularies, which are purely relational. We use the
classical Tarski’s semantics, except that in the context of finite model theory,
only finite structures or interpretations are considered. If A is a structure of
vocabulary σ, we denote its finite domain by dom(A) or A. By ϕ(x1, . . . , xr)
we denote a formula of some logic whose free variables are exactly {x1, . . . , xr}.
We write A |= ϕ(x1, . . . , xr)[ā] to denote that ϕ is satisfied by the structure A
under all valuations v such that v(xi) = ai for 1 ≤ i ≤ r.

With HOi we denote the i-th order logic which extends first-order logic
with quantifiers of any order 2 ≤ j ≤ i, which in turn bind j-th order rela-
tion variables. In particular, HO2 denotes second-order logic as usually stud-
ied in the context of finite model theory [5,15], and HO3 denotes third-order
logic. A third-order relation type of width w is a w-tuple τ = (r1, . . . , rw) where
w, r1, . . . , rw ≥ 1, and r1, . . . , rw are arities of (second-order) relations. For i ≥ 4,
an i-th order relation type of width w is a w-tuple τ = (ρ1, . . . , ρw) where w ≥ 1
and ρ1, . . . , ρw are (i − 1)-th order relation types. A second-order relation is a
relation in the usual sense. A third-order relation of type τ = (r1, . . . , rw) is
a set of tuples of (second-order) relations of arities r1, . . . , rw, respectively. For
i ≥ 4, an i-th order relation of type τ = (ρ1, . . . , ρw) is a set of tuples of (i−1)-th
order relations, of types ρ1, . . . , ρw, respectively. Aτ denotes the set of all higher-
order relations of type τ over the domain of individuals A. We use uppercase
calligraphic letters X i, Yi, Zi, . . . to denote i-th order variables of order i ≥ 3,
uppercase letters X,Y,Z, . . . to denote second-order variables, and lower case
letters x, y, z, . . . to denote first-order variables. With X i,τ we denote an i-th
order variable of type τ . If X i is a third-order variable, we tend to omit the
superscript. We sometimes use Xr to denote that X is a second-order variable
or arity r. Second-order variables of arity r are valuated with r-ary relations. For
i ≥ 3, i-th order relation variables are valuated with sets of tuples of (i − 1)-th
order relations according to their relation types. Thus, if v is a valuation, A
is a structure and X i,τ is a higher-order variable, then v(X i,τ ) is a i-th order-
relation of type τ in Aτ . Independently of the order and type of the variables,
we say that two valuations v and v′ are X -equivalent if v(Y) = v′(Y) for every
variable Y other than X . For any i ≥ 3, we define the notion of satisfaction in
HOi by extending the usual notion of satisfaction of second-order logic formula
as follows: A, v |= ∃X i,(ρ1,...,ρw)(ϕ(X )), where X is an i-th order relation vari-
able and ϕ is a well-formed formula, iff there is a i-th order relation R of type
τ = (ρ1, . . . , ρw) in Aτ , such that A, v′ |= ϕ(X ) whenever v′ is X -equivalent
to v and v′(X ) = R. Likewise, A, v |= ∀X i,(ρ1,...,ρw)(ϕ(X )) iff for all i-th order
relation R in Aτ , it holds that A, v′ |= ϕ(X ) whenever v′ is X -equivalent to v
and v′(X ) = R.
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3 A General Schema of Existential Third-Order Formulae

We define next a general schema of ∃TO formulae which consists of existentially
quantifying a third-order linear digraph of polynomial length (i.e., a sequence of
structures that represents a computation) by explicitly stating which operations
are the ones which can be involved in the construction of a given structure in
the sequence, when applied to the previous one. The schema is as follows:

∃C s̄Os̄s̄
(
TotalOrder(C,O)∧
∀G

(
First(G) → αFirst(G) ∧ Last(G) → αLast(G)

)∧
∀GpredGsucc

(C(Gpred ) ∧ C(Gsucc) ∧ Pred(Gpred , Gsucc)

→ ϕ(Gpred , Gsucc)
))

,

(1)

where
– C ranges over third-order relations of type s̄ = (i1, . . . , is), i.e., over sets of

s-tuples of relations of arities i1, . . . , is ≥ 1.
– TotalOrder(C,O), First(G), Last(G) and Pred(Gpred , Gsucc) denote fixed

second-order formulae which express that O is a total order over C, G is
the first relational structure in O, G is the last relational structure in O, and
Gpred is the immediate predecessor of Gsucc in O, respectively.

– αFirst(G) and αLast(G) denote arbitrary second-order formulae which define,
respectively, the properties that the first and last structure in O should satisfy.

– ϕ(Gpred , Gsucc) denotes an arbitrary second-order formula that expresses the
transition from Gpred to Gsucc , i.e., which operations can be used to obtain
Gsucc from Gpred .

This is a very usual, intuitive, and convenient schema in the expression of nat-
ural properties of finite models. For a start, it can clearly be used to express the
hypercube and formula-value query as described in the introduction. Significant
additional examples are provided by the different relationships between pairs of
undirected graphs (G,H) that can be defined as orderings of special sorts. Using
schema (1) these relationships can be expressed by defining a set of possible oper-
ations that can be applied repeatedly to H, until a graph which is isomorphic to
G is obtained. In particular, the following relationships fall into this category: (a)
G ≤immersion H: G is an immersion in H (see [1,4,12]); (b) G ≤top H: G is topo-
logically embedded or topologically contained in H (see [1,4,12]); (c) G ≤minor H:
G is a minor of H (see [4,11]); (d) G ≤induced−minor H: G is an induced minor of
H (see [4]). Interestingly, in all these cases the length of the sequence is at most
linear. The operations on graphs needed to define those orderings are: (E) delete
an edge, (V) delete a vertex, (C) contract an edge, (T) degree 2 contraction,
or subdivision removal, and (L) lift an edge. In particular the set of allowable
operations for each of those orderings are: {E, V, L} for ≤immersion , {E, V,C}
for ≤minor , {E, V, T} for ≤top , and {V,C} for ≤induced−minor (see [4]).

The classical Kuratowski definition of planarity, provides yet another example
of a property that can be defined using our schema (1) and also results in a
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polynomially bounded sequence of structures. By Wagner’s characterization [3]:
a graph is planar if and only if it contains neither K5 nor K3,3 as a minor.

Provided some simple conditions are met, every third-order formula of the
schema (1) can be translated into an equivalent second-order formula. Note that
the proof of this results directly implies that the translation can be done by
means of a simple and inexpensive algorithm.

Theorem 1. Every third-order formulae Ψ ≡ ∃C s̄Os̄s̄ψ(C,O) of the schema (1)
can be translated into an equivalent second-order formula Ψ ′ whenever the fol-
lowing conditions hold.

i. The sub formulae αFirst, αLast and ϕ of Ψ are second-order formulae.
ii. There is a d ≥ 0 such that for every valuation v with v(C) = R, if A, v |=

∃Os̄s̄ψ(C,O), then |R| ≤ |dom(A)|d.
Proof (Sketch). Let us first consider the case in which C is valuated with sets of
non-empty graphs. Let t be the degree of a polynomial bounding the size of those
graphs. Our strategy consists on encoding C as a pair of second-order variables
C and EC of arities d + t and 2(d + t), respectively. Notice that every formula
that complies with schema (1) stipulates that O is a linear order of the graphs
in C which represents the stages (or steps) of a computation. Consequently the
number of stages needed is bounded by nd, where n is the size of the structure.
Since in turn each stage has a bound on the number of elements it adds or
changes (at most nt), we have to consider a set of (d + t)-tuples.

The encoding into second-order is completed by a total relation R ⊆ ST ×C,
where C is the union of the domains of all the structures in the sequence. Every
node in ST represents one stage, and through the forest R defines a subset
of nodes, which is the vertex set of a sub graph (not necessarily connected)
of the whole graph (C,EC). We use C|R(x̄), EC |R(x̄) to denote the restriction
of C and EC , respectively, to R(x̄), i.e., C|R(x̄) = {ȳ | C(ȳ) ∧ R(x̄, ȳ)} and
EC |R(x̄) = {(v̄, w̄) ∈ EC | R(x̄, v̄) ∧ R(x̄, w̄)}. The sub graph of (C,EC) which
corresponds to the stage ST (x̄) is denoted as (C|R(x̄), EC |R(x̄)). In this way, Ψ
can then be translated into an equivalent second-order formula Ψ ′ as follows:

∃Cd+tE
2(d+t)
C ST dE2d

ST R2d+t
(
Linear(ST,EST ) ∧ R ⊆ ST × C ∧ Total(R)∧

∀x̄∀ȳ
(
(First(x̄) → α̂First) ∧ (Last(x̄) → α̂Last)∧
((ST (x̄) ∧ ST (ȳ) ∧ Pred(x̄, ȳ)) →

ϕ̂((C|R(x̄), EC |R(x̄)), (C|R(ȳ), EC |R(ȳ))))
))

,

(2)

where
– Linear(ST,EST ), First(x̄), Last(x̄) and Pred(x̄, ȳ)) denote second-order for-

mulae which express that (ST,EST ) is a linear digraph, x̄ is the first node in
(ST,EST ), x̄ is the last node in (ST,EST ), and x̄ is the immediate predecessor
of ȳ in (ST,EST ), respectively.

– R ⊆ ST ×C and Total(R) are shorthands for ∀x̄ȳ(R(x̄, ȳ) → (ST (x̄)∧C(ȳ)))
and ∀x̄(ST (x̄) → ∃ȳ(R(x̄, ȳ))), respectively.
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– α̂First and α̂Last are second-order formulae built from αFirst and αLast, respec-
tively, by modifying them to talk about the graph described by x̄ through
ST (x̄), EST and R.

– ϕ̂ is an second-order formula built from ϕ by modifying it to talk about the
graphs described by x̄ and ȳ through ST (x̄), ST (ȳ), EST and R.

For the case of relations of arbitrary arity, say S of arity r ≥ 1, we sim-
ply need to consider EC as an r-ary relation (denoted ES

C). Thus ES
C |R(x̄) =

{(v̄1, . . . , v̄r) ∈ ES
C : R(x̄, v̄1)∧ . . .∧R(x̄, v̄r)}. If we have a tuple of relations, say

l ≥ 1 relations of arities r1, . . . , rl ≥ 1, respectively, then we have to consider
similarly ES1

C1
,. . . ,ESl

Cl
. ��

Remark 1. Every property definable by a third-order formula of the schema (1),
where αFirst, αLast and ϕ are existential second-order formulae and condition (ii)
in Theorem 1 also holds, can be checked in NP exactly as it happens for every
property definable in existential second-order. It suffices to additionally guess
polynomial-sized valuations for the existentially quantified third-order variables.
Then, by Fagin’s theorem, we get that every property definable by such kind of
third-order formulae can also be defined in existential second-order. Our app-
roach however is fundamentally different. Instead of producing a non determin-
istic Turing machine, we produce a clear and intuitive second-order formula.

4 TOP : A Restricted Third Order Logic

We define the logic TOP as third-order logic restricted to third-order quantifica-
tion ranging over third-order relations of cardinality bounded by a polynomial in
the size of the structure. By contrast, the cardinality of an arbitrary third-order
relation R over a structure A is exponentially bounded by 2|dom(A)|O(1)

.
Beyond the usual symbols, the alphabet of TOP includes a third-order quan-

tifier ∃P,d and countably many third order variable symbols X d,r̄ for every d ≥ 0
and third-order type r̄. Whenever it is clear from the context, we avoid the
superscript d in the TOP variables. A valuation in a structure A assigns to each
variable X d,r̄ a third-order relation R in Ar̄, such that |R| ≤ |dom(A)|d. The
quantifier ∃P,d has the following semantics: A |= ∃P,dX d,r̄ϕ(X ) iff there is TO
relation Rr̄ of type r̄, such that A |= ϕ(X )[R] and |R| ≤ |dom(A)|d.

The following result shows that the expressive power of TOP collapses to
second-order logic. Same as in the previous section, the proof is constructive
and directly implies that the translation can be done algorithmically.

Theorem 2. Every TOP formula α can be translated into an equivalent second-
order formula α′.

Proof (Sketch). Let A be a structure and R(r1,...,rs) be a TOP relation of
type (r1, . . . , rs) in A(r1,...,rs) which is bounded by a polynomial of degree
d ≥ 0, i.e., such that |R| ≤ |dom(A)|d. Assuming that all relations which
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appear in the tuples of R are non-empty, we can use a second-order rela-
tion Rd+r1+...+rs

R of arity (d + r1 + . . . + rs) to encode R(r1,...,rs). More pre-
cisely, we can use d-tuples from dom(A)d as identifiers of tuples of second-
order relations in R, so that whenever a tuple (a1, . . . , ad, ad+1, . . . , ad+r1 , . . . ,
ad+r1+...+rs−1+1, . . . , ad+r1+...+rs

) ∈ RR, then there is a tuple in R which
can be identified by (a1, . . . , ad), which consists of s second-order relations
Sr1
1 , . . . , Srs

s , of arities r1, . . . , rs, respectively, such that (ad+1, . . . , ad+r1) ∈
S1, . . . , (ad+r1+...+rs−1+1, . . . , ad+r1+...+rs

) ∈ Ss.
The actual translation can be done by structural induction on the TOP -

formula α. We present next the two non-trivial cases.

Atomic Formulae. Let α be of the form X d,(r1,...,rs)(Xr1
1 , . . . , Xrs

s ), where
s, r1, . . . , rs ≥ 1 and X is a TOP variable.

Note that there are 2s possible patterns of empty and non-empty relations in
an s-tuple of second-order relations. We denote by ω = (i1, . . . , i|ω|) the pattern
of empty relations, with 1 ≤ i1 < i2 < . . . < i|ω| ≤ s being the indices of the
components which are empty. Correspondingly, we denote by ω̄ = (j1, . . . , j|ω̄|)
the pattern of non-empty relations. By abuse of notation, we denote as {ω} and
{ω̄} the sets of indices in ω and ω̄, respectively. In particular if {ω} = ∅ and
ω̄ = (1, . . . , s), then all the components of the s-tuple of second-order relations
are non-empty.

The idea for the translation is to replace X with 2s second-order variables,
one for each pattern ω of empty second-order relations. We use XX ,e,ω to denote
the second-order variable that encodes those tuples of second-order relations (in
the TOP relation that valuates X ) which follow ω. The arity of the second-order
relation XX ,e,ω is d + rj1 + · · · + rj|ω| where ω̄ = (j1, . . . , j|ω̄|). In what follows
we use f̄ω̄ = f̄j1 . . . f̄j|ω̄| to denote a tuple of first-order variables formed by the
concatenation of the tuples of first-order variables f̄j1 = (fj11, . . . , fj1rj1

),. . . ,
f̄j|ω̄| = (fj|ω̄|1, . . . , fj|ω̄|rj|ω̄|

).
Let Ω = {ω | ω = (i1, . . . , i|ω|) ; 1 ≤ i1 < i2 < . . . < i|ω| ≤ s ; 0 ≤ |ω| ≤

s ; ω̄ = (j1, . . . , j|ω̄|) ; {ω̄} ∪ {ω} = {1, . . . , s} ; {ω̄} ∩ {ω} = ∅}. The translation
to second-order of X d,(r1,...,rs)(Xr1

1 , . . . , Xrs
s ) is as follows:

∨

ω∈Ω

(
“(Xi1 = ∅ ∧ . . . ∧ Xi|ω| = ∅)” ∧ “(Xj1 �= ∅ ∧ . . . ∧ Xj|ω̄| �= ∅)”∧

∃v1 . . . vd

(
XX ,e,ω(v1, . . . , vd, f̄ω̄)∨
∀f̄ω̄

(
XX ,e,ω(v1, . . . , vd, f̄ω̄) ↔

∧

l∈{j1,...,j|ω̄|}
Xl(f ′

l1, . . . , f
′
lrl

)
)))

Existential Case. Let α be of the form ∃P,dX d,(r1,...,rs)(ϕ). In the translation
we simply replace the existentially quantified X by its corresponding 2s second-
order variables and state that no d-tuple can be in more than one of the different
second-order relations that encode the value of X . The formula is as follows:
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α̂ ≡{∃X
d+|f̄ω̄|
X ,e,ω }ω∈Ω

(∀z1 . . . zd

[ ∧

ω=(i1,...,i|ω|)
0≤i1<i2...<i|ω|≤s

1≤|ω|≤s

∀f̄ω̄[XX ,e,ω(z1, . . . , zd, f̄ω̄) →

(
∧

ω′=(i′
1,...,i′

|ω′|)
1≤i′

1<i′
2...<i′

|ω′|≤s

0≤|ω′|≤s; ω′ �=ω

∀f̄ ′
ω̄′(¬XX ,e,ω′(z1, . . . , zd, f̄

′
ω̄′)))]

]) ∧ ϕ̂,

where Ω is as before and ϕ′ is the second-order formula equivalent to the TOP

formula ϕ, obtained by applying inductively the described translations. ��

5 HOi,P: Restricted Higher Order Logics

We say that a third-order relation R is downward polynomially bounded by d in
a structure A if |R| ≤ |dom(A)|d. Likewise, we say that a relation R of order
i > 3 is downward polynomially bounded by d in A if |R| ≤ |dom(A)|d and
further every relation Rj

i of order 3 ≤ j < i which appears in a tuple of R is
downward polynomially bounded by d.

For i = 4, we define HO4,P as the extension of TOP with quantifiers that
range over downward polynomially bounded relations of order 4. More general,
for i ≥ 5 we define HOi,P as the extension of HOi−1,P with quantifiers that
range over downward polynomially bounded relations of order i.

Beyond the symbols in the alphabet of TOP , the alphabet of HOi,P includes
a j-th order quantifier ∃j,P,d for every i ≥ j ≥ 4, as well as countably many
variable symbols X j,d,τ for every j-th order type τ . We sometimes avoid the
superscripts d and τ for clarity.

A valuation in a structure A assigns to each variable X j,d,τ a j-th order
relation R in Aτ which is downward polynomially bounded by d. The quantifier
∃j,P,d has the following semantics: A |= ∃j,P,dX j,d,τϕ(X ) iff there is a j-th order
relation R of type τ , such that A |= ϕ(X )[R] and R is downward polynomially
bounded by d in A.

Same as with TOP , for every order i ≥ 4 the expressive power of HOi,P

collapses to second-order logic.

Theorem 3. For every order i ≥ 3, every HOi,P formula α can be translated
into an equivalent second-order formula α′.

The actual proof of this theorem is quite long and cumbersome. Due to space
limitations we omit it here. The details can nevertheless be consulted in the
technical report in [9]. To gain some intuition on how this translations works, let
us consider the case of HO4,P . The general idea is to represent the fourth-order
relations as a normalized relational database. Assume w.l.o.g. that the type of
every relations of order 3 and 4 has width s ≥ 1, and that every such relation is
downward polynomially bounded by d ≥ 1. In the case of a formula of the form
X 4,d,τ (Y3

1 , . . . ,Y3
s ) of HO4,P we can represent the fourth-order variable X 4,d,τ
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using 2s second-order variables XX 4,ω3,X of arities between d and d+(s · (d+s)),
depending on the pattern ω3,X of non-empty relations. Thus, each XX 4,ω3,X can
encode the tuples of (non-empty) third-order relations whose pattern is ω3,X . In
turns, each Y3

j can be represented by 2s second-order variables as explained in
Sect. 4 for the case of TOP .

6 Fragments of HOi,P Formulae

The aim of this section is to gain a better understanding of the syntactic restric-
tions relevant as to the expressive power of the HOi,P logics.

In [17] we showed that for any i ≥ 3 the deterministic inflationary fixed-
point quantifier (IFP ) in HOi (i.e., where the variable which is bound by the
IFP quantifier is an (i + 1)-th order variable) is expressible in ∃HOi+1. Let
IFP |P denote the restriction of IFP where there is a positive integer d such
that in every structure A, the number of stages of the fixed-point is bounded
by |dom(A)|d. And let (SO + IFP ) denote second-order logic extended with
the deterministic inflationary fixed-point quantifier, where the variable which is
bound by the IFP quantifier is a third order variable. Note that the addition
of such IFP quantifier to second-order means that we can express iterations of
length exponential in |dom(A)|, so that it is strongly conjectured that (SO +
IFP ) strictly includes second-order logic as to expressive power. However, as a
consequence of Theorem 2 this is not the case with IFP |P .

Corollary 1. For every formula in (SO+IFP |P ) there is an equivalent second-
order formula.

Let us define ΣTOP
n as the restriction of TOP to prenex formulae of the form

Q1V1 . . . QkVk(ϕ) such that:

– Q1, . . . , Qk ∈ {∀P,d,∃P,d,∀,∃}.
– Vi for 1 ≤ i ≤ k is either a second-order or TOP variable (depending on Qi).
– ϕ is a TOP formula free of TOP as well as second-order quantifiers (first-order

quantifiers as well as free TOP and second-order variables are allowed).
– The prefix Q1V1 . . . QkVk starts with an existential block of quantifiers and

has at most n alternating (between universal and existential) blocks.

By the well known Fagin-Stockmeyer characterization [18] of the polynomial-
time hierarchy, for every n ≥ 1 the prenex fragment Σn of second-order logic
captures the level Σpoly

n of the polynomial-time hierarchy. From the proof of
Theorem 2 is immediate that every formula in ΣTOP

n can be translated into an
equivalent second-order formula in Σn.

Corollary 2. ΣTOP
n captures Σpoly

n .

Consider the AA(r,m) classes of second-order logic formulae where all quantifiers
of whichever order are grouped together at the beginning of the formula, forming
up to m alternating blocks of consecutive existential and universal quantifiers,
and such that the arity of the second-order variables is bounded by r. Note that,



On Fragments of Higher Order Logics 135

the order of the quantifiers in the prefix may be mixed. As shown by Makowsky
and Pnueli [16], the AA(r,m) classes constitute a strict hierarchy of arity and
alternation. Their strategy to prove this result consisted in considering the set
AUTOSAT (AA(r,m)) of formulae of AA(r,m) which, encoded as finite struc-
tures, satisfy themselves. As the well known diagonalization argument applies, it
follows that AUTOSAT (AA(r,m)) is not definable by any formulae of AA(r,m),
but it is definable in a higher level of the same hierarchy. Similarly to Makowsky
and Pnueli arity and alternation hierarchy of second-order formulae, we can we
define hierarchies of HOi and HOi,P formulae as follows.

Definition 1 (AAi- and AAD i-hierarchies). The maximum-width of a type
τ = (ρ1, . . . , ρs) of order i ≥ 3 (denoted as max-width(τ)) is defined as follows:

– max-width(τ) = max({s, ρ1, . . . , ρs}) if i = 3.
– max-width(τ) = max({s,max-width(ρ1), . . . ,max-width(ρs)}) if i > 3.

For r,m, i ≥ 1, we define the level AAi(r,m) of the AAi-hierarchy as the
class of formulae ϕ ∈ HOi+1 of the form Q1V1 . . . QkVk(ψ) such that:

i ψ is a quantifier-free HOi-formula.
ii For j = 1, . . . , k, each Qj is either an existential or universal quantifier and

each Vj is a variable of order ≤ i + 1.
iii The prefix Q1V1 . . . QkVk has at most m alternating blocks of quantifiers.
iv If Vj is a second-order variable, then its arity is bounded by r.
v If Vj is of order ≥ 3, then the maximum-width of the type τ of Vj is ≤ r.

For r,m, i, d ≥ 1, the level AAD i(r,m, d) of the AAD i-hierarchy is obtained
by adding the following condition to the definition of AAi(r,m).

– If Vj is a variable of order ≥ 3, then the quantifier Qj has a superscript
dj ≤ d, which denotes the degree of the polynomial bounding the size of the
valuations of Vj (recall definition of HOi,P ).

Note that in the formulae of the AAi and AAD i hierarchies the quantifiers
of the highest order do not necessarily precede all the remaining quantifiers in
the prefix, as it is the case in the Σi

m hierarchies of higher-order logics.
As proven in [7,10], it is possible to gerenarlize Makowsky and Pnueli result

regarding the AA-hierarchy [16] to every higher-order logic of order i ≥ 2.

Theorem 4 (Theorem 4.28 in [7]). For every i, r,m ≥ 1, there are Boolean
queries not expressible in AAi(r,m) but expressible in AAi(r+c(r),m+6), where
c(r) = 1 for r > 1 and c(r) = 2 for r = 1.

The proof of the previous result in [7] also follows the strategy introduced
in [16]. That is, it uses the diagonalization argument to prove the lower bound
for the definability of AUTOSAT (AAi(r,m)), and shows a formula in AAi(r +
c(r),m + 6) that defines AUTOSAT (AAi(r,m)) to prove the upper bound.

Interestingly, the formula ψA ∈ AAi(r + c(r),m + 6) used in the proof of
Proposition 4.27 in [7] to define AUTOSAT (AAi(r,m)) can be straightforwadly
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translated to a formula ψd
A that defines AUTOSAT (AAD i(r,m, d)). We sim-

ply need to qualify with an appropriate superscript dj ≤ d the existential and
universal quantifiers associated to each higher-order variable Vj of order ≥ 3
which appears in ψA, so that Vj becomes restricted to range over higher-order
relations which are downward polynomially bounded by dj . Since d as well as
the order and the maximum-width of the higher-order types are bounded, a
finite set of variables is still sufficient to encode the valuations for the different
variables that might appear in any arbitrary sentence in AAD i(r,m, d). The
resulting ψd

A formula is clearly in AAD i(r + c(r),m + 6, d). It no longer defines
AUTOSAT (AAi(r,m)) when i ≥ 2, since the size of the higher-order relations
that interpret the higher-order variables of order ≥ 3 in ψd

A are downward poly-
nomially bounded by d and thus insufficient to encode every possible valuation
for variables of order ≥ 3. This is clearly not a problem if we only consider sen-
tences in AAD i(r,m, d). In fact, in this latter case we need higher-order variables
that encode only those valuations which are downward polynomially bounded
by some positive integer ≤ d.

The previous observation together with the fact that by using the same diag-
onalization argument we can prove that AUTOSAT (AAD i(r,m, d)) is not defin-
able in AAD i(r,m, d), gives us the following strict hierarchies of HOi,P formulae
for every order i.

Theorem 5. For every i ≥ 2 and r,m, d ≥ 1, there are Boolean queries not
expressible in AAD i(r,m, d) but expressible in AAD i(r + c(r),m + 6, d), where
c(r) = 1 for r > 1 and c(r) = 2 for r = 1.

Lemma 1 is a direct consequence of the translations in Theorems 2 and 3.

Lemma 1. Let r,m, d ≥ 1 and i ≥ 2. For every sentence ϕ in AAD i(r,m, d),
there is an equivalent sentence ϕ′ in AA1(ri + d · (i − 1),m + 2).

The following result suggest that the exact converse of the previous lemma is
unlikely to hold. It further shows the relationship between the levels of the arity
and alternation hierarchy of Makowsky and Pnueli and the AADi hierarchies.

Lemma 2. Let r,m ≥ 1. For every second-order sentence ϕ in AA1(r,m), there
are three sentences ϕ′, ϕ′′ and ϕ′′′, each of them equivalent to ϕ, such that:

i. ϕ′ ∈ AAD� r
2�+1(2,m, 2).

ii ϕ′′ ∈ AAD2(2,m, r).
iii ϕ′′′ ∈ AAD2(� 2

√
r� ,m, � 2

√
r� (� 2

√
r� − 1)).

A Sketch of the proof of Lemma2 is included in AppendixA.
Our final result gives a fine grained picture of the effect, as to expressive

power, of simultaneously bounding the arity, alternation and maximum degree
of the HOi,P -sentences.

Theorem 6. For every r,m, d ≥ 1, there are Boolean queries not expressible in
AAD2(r,m, d) but expressible in AADc(2,m + 8, 2) as well as in AAD2(2,m +
8, (r + 1)2 + d) and in AAD2(q,m + 8, q(q − 1)), where c =

⌈
((r+1)2+d

2

⌉
+ 1 and

q =
⌈

2
√

((r + 1)2 + d)
⌉
.
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Proof. By Lemma 1, we get that AAD2(r,m, d) ⊆ AA1(r2 + d,m + 2), i.e.,
the class of Boolean queries definable by TOP -sentences in AAD2(r,m, d) is
included in those definable by second-order sentences in AA1(r2 + d,m + 2). In
turns, by Makowsky and Pnueli [16] result (first level (i = 1) in Theorem 4),
we get that AA1(r2 + d,m + 2) ⊂ AA1(r2 + d + 1,m + 8). Finally, by Lemma2
we get that the class of Boolean queries definable in AA1(r2 + d + 1,m + 8) is
included in AADc(2,m + 8, 2) as well as in AAD2(2,m + 8, (r + 1)2 + d) and in
AAD2(q,m + 8, q(q − 1)). ��

Appendix A Proof Sketch of Lemma2

All three sentences ϕ′, ϕ′′ and ϕ′′′ can be defined by structural induction on ϕ.
We show only the non trivial cases.

If ϕ is an atomic formula of the form X(x1, . . . , xs) where s ≤ r. Then

– ϕ′ is X c(X c−1
1 ,X c−1

2 ) ∧ X c−1
1 (X c−2

1 ) ∧ X c−1
2 (X c−2

2 ,X c−2
3 ) ∧ · · · ∧

X 3
1 (X1) ∧ X 3

2 (X2) ∧ · · · ∧ X 3
c−2(Xc−2,Xc−1)∧

Xc−1(xs−1, xs) ∧ Xc−2(xs−3, xs−2) ∧ · · · ∧ X1(x̄),
where x̄ = (x1) or x̄ = (x1, x2) depending on whether s is odd or even,
respectively, and c =

⌈
r
2

⌉
+ 1.

– ϕ′′ is
∧

w̄∈W

(( ∧

1≤j<l≤s

αi,j

) → ψw̄

)
, where

• W = {(i1, i2, · · · , is) | 1 ≤ j ≤ s and 1 ≤ ij ≤ j}
• αi,j = {xi=xj if i=j

xi �=xj if i�=j

• ψw̄ is X1w̄
(x1, x1) if iu = iv for every iu, iv ∈ w̄.

Otherwise ψw̄ is
∧

(u,v)∈Aw̄

X1w̄
(xu, xv), where

Aw̄ = {(u, v) | 1 ≤ u < v ≤ s, iu, iv are the u-th and v-th elements of w̄,
respectively, iu = u, iv = v, and it < t for all v < t < u}.

– ϕ′′′ is X (X1, · · · ,Xt)
∧

1≤i≤t−1

Xi(xki+1, · · · , xki+u) ∧ Xt(xs−t, · · · , xs)

Where t = � 2
√

r�, ki = ((i − 1)t) + min((i − 1), (s − t) mod (t − 1)), u =
| s−t
t−1 | + c, and c = 1 if i ≤ (s − t) mod (t − 1), c = 0 otherwise.

If ϕ is a formula of the form ∃X(ψ) where X is a second-order variable of
arity s ≤ r. Then

– ϕ′ is ∃c,P,2X c∃c−1,P,2X c−1
1 X c−1

2 ∃c−2,P,2X c−2
1 X c−2

2 X c−2
3 · · ·

∃P,2X 3
1 X 3

2 · · · X 3
c−2∃X1X2 · · · Xc−1(ψ′),

where again c =
⌈

s
2

⌉
+ 1, and ψ′ is the formula in AADc(2,m, 2) equivalent

to ψ, obtained by applying the translation inductively.
– ϕ′′ is ∃P,sXw̄1Xw̄2 · · · Xw̄|W |∃X1w̄1

X2w̄1
X1w̄2

X2w̄2
· · · X1w̄|W |

X2w̄|W |
(ψ′′),

where w̄1, w̄2, · · · , w̄|W | is an arbitrary lexicographic order of W and ψ′′ is the
formula in AAD2(2,m, s) equivalent to ψ, obtained by applying the transla-
tion inductively.
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– ϕ′′′ is ∃P,hX∃X1X2 · · · Xt(ψ′′′) where t = � 2
√

s�, h = t(t − 1) and ψ′′′ is the
formula in AAD2(t,m, t(t − 1)) equivalent to ψ, obtained by applying the
translation inductively.

It is not difficult to show by structural induction that ϕ′, ϕ′′ and ϕ′′′ are
equivalent to ϕ. We only need to see that every second-order relation of arity
s ≤ r can be encoded as a higher-order relation of the type used in the translation
and with the required polynomial bound.
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