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Abstract. Ordering theorems, characterizing when partial orders of a
group extend to total orders, are used to generate hypersequent calculi for
varieties of lattice-ordered groups (�-groups). These calculi are then used
to provide new proofs of theorems arising in the theory of ordered groups.
More precisely: an analytic calculus for abelian �-groups is generated
using an ordering theorem for abelian groups; a calculus is generated
for �-groups and new decidability proofs are obtained for the equational
theory of this variety and extending finite subsets of free groups to right
orders; and a calculus for representable �-groups is generated and a new
proof is obtained that free groups are orderable.

1 Introduction

Considerable success has been enjoyed recently in obtaining uniform algebraic
completeness proofs for analytic sequent and hypersequent calculi with respect
to varieties of residuated lattices [3,4,20]. These methods do not encompass,
however, “ordered group-like” structures: algebras with a group reduct such as
lattice-ordered groups (�-groups) [1,14] and others admitting representations
via ordered groups such as MV-algebras [5], GBL-algebras [13], and varieties
of cancellative residuated lattices [17]. Hypersequent calculi have indeed been
defined for abelian �-groups, MV-algebras, and related classes in [15,16] and for
�-groups in [9], but the completeness proofs in these papers are largely syntactic,
proceeding using cut elimination or restricted quantifier elimination.

The first aim of the work reported here is to use ordering theorems for groups,
characterizing when a partial (right) order of a group extends to a total (right)
order, to generate hypersequent calculi for varieties of lattice-ordered groups,
thereby taking a first step towards a general algebraic proof theory for ordered
group-like structures. A second aim is to then use these calculi to provide new
syntactic proofs of various theorems arising in the theory of ordered groups.

More concretely, this paper makes the following contributions:

(i) A theorem of Fuchs [8] for extending partial orders of abelian groups to
total orders is used to generate an analytic (cut-free) hypersequent calculus
for the variety of abelian �-groups. This system can be viewed as a one-sided
version of the two-sided hypersequent calculus introduced in [15].
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(ii) A theorem of Kopytov and Medvedev [14] for extending partial right orders
of groups to total right orders is used to generate a hypersequent calculus
for the variety of �-groups, a variant of a calculus appearing in [9]. The
method also provides a correspondence between validity of equations in
�-groups and the extension of finite subsets of free groups to total right
orders, giving new proofs of decidability for these problems.

(iii) A theorem of Fuchs [8] for extending partial orders of groups to total
orders is used to generate a calculus for representable �-groups (equiva-
lently, ordered groups) and to provide a new proof that free groups are
orderable.

2 Ordered Groups

In this section, we recall some pertinent definitions and basic facts about ordered
groups, referring to [1,14] for further details. Consider a group G = 〈G, ·, −1, e〉.
A partial order ≤ of G is called a partial right order of G if for all a, b, c ∈ G,

a ≤ b =⇒ ac ≤ bc.

Its positive cone P≤ = {a ∈ G : e < a} is a subsemigroup of G that omits e.
Conversely, if P is a subsemigroup of G omitting e, then

a ≤P b ⇐⇒ ba−1 ∈ P ∪ {e}

is a partial right order of G satisfying P≤P = P . Hence partial right orders of G
can be identified with subsemigroups of G omitting e. Note also that for S ⊆ G,
the subsemigroup of G generated by S, denoted by 〈S〉, is a partial right order
of G if and only if e 
∈ 〈S〉. Partial left orders of G are defined analogously.

A partial left and right order ≤ of G is called a partial order of G. In this
case, the positive cone P≤ is a normal subsemigroup of G omitting e; that is,
whenever a ∈ P≤ and b ∈ G, also bab−1 ∈ P≤. Conversely, if a subset P ⊆ G has
these properties, then ≤P is a partial order of G; hence, partial orders of G can
be identified with normal subsemigroups of G omitting e. Also, for S ⊆ G, the
normal subsemigroup of G generated by S, denoted by 〈〈S〉〉, is a partial order
of G if and only if e 
∈ 〈〈S〉〉.

A partial order or partial right order ≤ of G is called, respectively, a (total)
order or (total) right order of G if G = P≤ ∪ P≤−1 ∪ {e}. Note also that if ≤ is
an order or a right order of G, then the same holds for the inverse order defined
by a ≤δ b if and only if b ≤ a. In this paper we focus mostly on (right) orders of
a finitely generated free (abelian) group F and address the following problem.

Problem 1. Does a given finite S ⊆ F extend to an order or a right order of F?

We also consider a purely algebraic perspective on ordered groups. That is,
a lattice-ordered group (or �-group) may be defined as an algebraic structure
L = 〈L,∧,∨, ·, −1, e〉 satisfying
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(i) 〈L, ·, −1, e〉 is a group;
(ii) 〈L,∧,∨〉 is a lattice (with a ≤ b ⇔ a ∧ b = a, for all a, b ∈ L);
(iii) a ≤ b =⇒ cad ≤ cbd, for all a, b, c, d ∈ L.

It follows also that 〈L,∧,∨〉 must be a distributive lattice and that L satisfies
e ≤ a ∨ a−1 for all a ∈ L (see [1]). If ≤ is a total order of the group 〈L, ·, −1, e〉,
then L is called an ordered group (or o-group), observing that L can also be
obtained by adding to the group operations the meet and join operations for ≤.
An �-group whose group operation is commutative is called an abelian �-group.

Example 1. Standard examples of abelian �-groups are subgroups of the additive
group over the real numbers equipped with the usual order, e.g.,

Z = 〈Z,min,max,+,−, 0〉.
Indeed this algebra generates the variety A of all abelian �-groups [21], which
means in particular that an equation is valid in A if and only if is valid in Z.

Example 2. Fundamental examples of (non-abelian) �-groups are provided by
considering the order-preserving bijections of some totally-ordered set 〈Ω,≤〉.
These form an �-group Aut(〈Ω,≤〉) under coordinate-wise lattice operations,
functional composition, and functional inverse. Indeed, it has been shown by
Holland that every �-group embeds into an �-group Aut(〈Ω,≤〉) for some totally-
ordered set 〈Ω,≤〉 [10], and that the variety LG of �-groups is generated by
Aut(〈R,≤〉), where ≤ is the usual order on R [11]. This means in particular
that an �-group equation is valid in LG if and only if is valid in Aut(〈R,≤〉).

Let us turn our attention now to the syntax of �-groups. We call a variable
x and its inverse x−1 literals, and consider terms s, t, . . . built from literals over
variables x1, x2, . . ., operation symbols e, ∧, ∨, and ·, defining also inductively

x = x−1 x−1 = x e = e
s ∧ t = s ∨ t s ∨ t = s ∧ t s · t = t · s.

Using the strong distributivity properties of the �-group operations, it follows
that every �-group term is equivalent in LG to a term of the form ∧i∈I ∨j∈Ji

tiji
where each tiji is a group term. Hence to check the validity of equations in some
class K of �-groups, it suffices to address the following problem.

Problem 2. Given group terms t1, . . . , tn, does it hold that

K |= e ≤ t1 ∨ . . . ∨ tn?

Let us therefore define a sequent Γ as a finite sequence of literals �1, . . . , �n with
inverse Γ = �n, . . . , �1, and a hypersequent G as a finite set of sequents, written

Γ1 | . . . | Γn.

In what follows, we identify a sequent �1, . . . , �n with the group term �1 · . . . · �n

for n > 0 and e for n = 0, and a non-empty hypersequent Γ1 | . . . | Γn with the
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�-group term Γ1 ∨ . . .∨Γn. We will say that a non-empty hypersequent G is valid
in a class of �-groups K and write K |=G, if K |= e ≤ G. We will also say that a
sequent Γ is group valid if Γ ≈ e is valid in all groups.

A hypersequent rule is a set of instances, each instance consisting of a finite set
of hypersequents called the premises and a hypersequent called the conclusion.
Such rules are typically written schematically using Γ,Π,Σ,Δ and G,H to denote
arbitrary sequents and hypersequents, respectively. A hypersequent calculus GL
is a set of hypersequent rules, and a GL-derivation of a hypersequent G is a finite
tree of hypersequents with root G such that each node and its parents form an
instance of a rule of GL. In this case, we write �GL G. A hypersequent rule is
said to be GL-admissible if for each of its instances, whenever the premises are
GL-derivable, the conclusion is GL-derivable.

Remark 1. Sequents are often defined (see, e.g., [3,4,15,16]) as ordered pairs
of finite sequences (or sets or multisets) of terms, and hypersequents as finite
multisets of sequents. Here we exploit the strong duality properties of �-groups to
restrict to one-sided sequents and define hypersequents as finite sets of sequents
to emphasize the connection with finite sets of group terms.

3 A Hypersequent Calculus for Abelian �-Groups

We use the following ordering theorem for abelian groups to rediscover a single-
sided version of the hypersequent calculus for abelian �-groups defined in [15].

Theorem 1 (Fuchs 1963 [8]). Every partial order of a torsion-free abelian
group G extends to an order of G.

Let Ab be the variety of abelian groups and let T(k) be the algebra of group
terms on k ∈ N generators. We may identify the free abelian group FAb(k) on k
generators with the quotient T(k)/ΘAb, where ΘAb is the congruence on T(k)
defined by sΘAbt ⇔ Ab |= s ≈ t (see [2] for further details). For convenience,
we will use t ∈ T (k) to denote also t/ΘAb in FAb(k), noting that Ab |= s ≈ t if
and only if s = t in FAb(k). It follows easily that FAb(k) is torsion-free.

Theorem 2. The following are equivalent for t1, . . . , tn ∈ T (k):

(1) A |= e ≤ t1 ∨ . . . ∨ tn.
(2) {t1, . . . , tn} does not extend to an order of FAb(k).
(3) e ∈ 〈{t1, . . . , tn}〉.
(4) Ab |= e ≈ tλ1

1 · · · tλn
n for some λ1, . . . , λn ∈ N not all 0.

Proof. (1) ⇒ (2). By contraposition. If {t1, . . . , tn} extends to an order of
FAb(k), then, taking the inverse order, we obtain an ordered abelian group where
t1, . . . , tn are negative. But this ordered abelian group may also be viewed as an
abelian �-group and taking the evaluation mapping t ∈ T (k) to t ∈ FAb(k), we
obtain A 
|= e ≤ t1 ∨ . . . ∨ tn.
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G | Δ,Δ
(id)

G | Π,Δ,Γ

G | Π,Γ,Δ
(ex)

G | Γ,Δ

G | Γ | Δ
(split)

Fig. 1. The hypersequent calculus GA

(2) ⇒ (3). Suppose that {t1, . . . , tn} does not extend to an order of FAb(k).
Then, since FAb(k) is torsion-free, by Theorem 1, the subsemigroup 〈{t1, . . . , tn}〉
is not a partial order of FAb(k). That is, e ∈ 〈{t1, . . . , tn}〉.

(3) ⇒ (4). Suppose that e ∈ 〈{t1, . . . , tn}〉. Then e = tλ1
1 · · · tλn

n in FAb(k) for
some λ1, . . . , λn ∈ N not all 0, and hence Ab |= e ≈ tλ1

1 · · · tλn
n .

(4) ⇒ (1). Suppose that Ab |= e ≈ tλ1
1 · · · tλn

n for some λ1, . . . , λn ∈ N not
all 0. Then also A |= e ≤ tλ1

1 · · · tλn
n . It is easily proved that A |= e ≤ uv∨t implies

A |= e ≤ u ∨ v ∨ t (see, e.g. [9]). Hence, applying this implication repeatedly, we
obtain A |= e ≤ t1 ∨ . . . ∨ tn. ��
Remark 2. Theorem 2 may be interpreted geometrically as a variant of Gordan’s
theorem of the alternative (with integers swapped for real numbers) and close
relative of Farkas’ lemma (see, e.g., [7]). Namely, given an m × n integer matrix
A = (aij), exactly one of the following systems has a solution:

(a) yT A < 0 for some y ∈ Z
m.

(b) Az = 0 for some z ∈ N
n \ {0}.

To prove this, define ti = xa1i
1 · . . . · xami

m for i = 1, . . . , n. Then (a) is equivalent
to Z 
|= e ≤ t1 ∨ . . . ∨ tn, which is in turn equivalent to A 
|= e ≤ t1 ∨ . . . ∨ tn
(see Example 1). So, by Theorem 2, (a) fails if and only if Ab |= e ≈ tλ1

1 · · · tλn
n

for some λ1, . . . , λn ∈ N not all 0, which is in turn equivalent to (b).

Theorem 2 can be used to establish soundness and completeness for the
hypersequent calculus GA presented in Fig. 1.

Theorem 3. For any non-empty hypersequent G, A |= G if and only if �GA G.
Proof. By Theorem 2, A |= Γ1 | . . . | Γn if and only if Ab |= e ≈ Γλ1

1 · · · Γλn
n

for some λ1, . . . , λn ∈ N not all 0. But if this latter condition holds, then the
number of occurrences of a variable x in Γλ1

1 · · · Γλn
n must equal the number of

occurrences of x−1, and, using (ex) and (id), we obtain �GA Γλ1
1 · · · Γλn

n . Hence
also, using (split) repeatedly, �GA Γ1 | . . . | Γn. Conversely, we can prove by
induction on the height of a derivation that whenever �GA Γ1 | . . . | Γn, there
exist λ1, . . . , λn ∈ N not all 0 such that Ab |= e ≈ Γλ1

1 · · · Γλn
n . The cases for

(id) and (ex) are immediate, and the case of (split) follows directly by an
application of the induction hypothesis. ��

Remark 3. The calculus for abelian �-groups presented in [15] uses hypersequents
defined as finite multisets of two-sided sequents, each consisting of an ordered
pair of finite multisets of �-group terms, and therefore requires a quite different
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set of rules. In particular, this calculus contains rules for operation symbols and
external contraction and weakening structural rules, but not the exchange rule
(ex). These differences are of an essentially cosmetic nature, however. We can
easily add sound and invertible rules for the operation symbols ·, e, ∧, and ∨
to the calculus GA that serve to rewrite hypersequents of arbitrary terms into
hypersequents built only from literals, and it remains then simply to translate
two-sided sequents Γ ⇒ Δ into one-sided sequents Γ,Δ.

4 Right Orders on Free Groups and Validity in �-Groups

Let G be the variety of groups and F(k) the free group over k generators, which,
as before, we may identify with T(k)/ΘG , where ΘG is the congruence on T(k)
defined by sΘGt ⇔ G |= s ≈ t. An element of F (k) can again be represented
by a term from T (k): in particular, by a reduced term obtained by cancelling
all occurrences of xx−1 and x−1x. Our first aim in this section will be to show
that checking validity of equations in �-groups is equivalent to checking whether
finite subsets of F (k) extend to right orders on F(k).

Theorem 4. The following are equivalent for t1, . . . , tn ∈ T (k):

(1) LG |= e ≤ t1 ∨ . . . ∨ tn.
(2) {t1, . . . , tn} does not extend to a right order of F(k).
(3) There exist s1, . . . , sm ∈ F (k) \{e} such that

e ∈ 〈{t1, . . . , tn, sδ1
1 , . . . , sδm

m }〉 for all δ1, . . . , δm ∈ {−1, 1}.

Observe that the equivalence of (2) and (3) is an immediate consequence of
the following ordering theorem for groups.

Theorem 5 (Kopytov and Medvedev 1994 [14]). A subset S of a group
G extends to a right order of G if and only if for all a1, . . . , am ∈ G \{e}, there
exist δ1, . . . , δm ∈ {−1, 1} such that e 
∈ 〈S ∪ {aδ1

1 , . . . , aδm
m }〉.

Condition (3) corresponds directly to derivability in the hypersequent calculus
GLG∗ presented in Fig. 2. It is not so easy, however, to show directly that the cal-
culus GLG∗ is sound with respect to �-groups (i.e., to show that �GLG∗ G implies
LG |= G), since the rule (∗) is not valid as an implication between premises and
conclusion in all �-groups. We therefore consider also a further hypersequent cal-
culus GLG, displayed in Fig. 3, and establish the following relationship between
the calculi.

Lemma 1. For any non-empty hypersequent G, if �GLG∗ G, then �GLG G.
Proof. It suffices to show that the rules (split) and (∗) of GLG∗ are GLG-
admissible. First, it is easily shown, by an induction on the height of a derivation,
that the following rule is GLG-admissible:

G
G | H (ew)
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G | Γ
(gv)

G | Γ,Δ

G | Γ | Δ
(split)

G | Δ G | Δ

G (∗)

Γ group valid Δ not group valid.

Fig. 2. The hypersequent calculus GLG∗

G | Γ
(gv) G | Δ | Δ

(em)
G | Γ,Δ G | Δ,Σ

G | Γ,Σ
(cut)

Γ group valid

Fig. 3. The hypersequent calculus GLG

Now for (split), if �GLG G | Γ,Δ, then, by (ew), we obtain �GLG G | Γ,Δ | Δ.
But also, by (em), �GLG G | Δ | Δ, so, by (cut), we obtain �GLG G | Γ | Δ.

To show that (∗) is admissible in GLG, we consider a restricted version
of the calculus where (cut) is never applied to some particular sequent. For
a hypersequent G and a sequent Π, we call the ordered pair 〈Π,G〉 a pointed
hypersequent (just a hypersequent with one sequent marked) and transfer the
usual definitions for hypersequent calculi to pointed hypersequent calculi. We
let the pointed hypersequent calculus GLGp consist of all pointed hypersequents
〈Π,G〉 such that either some Γ ∈ G ∪ {Π} is group valid or there exist Δ and Δ
in G ∪ {Π}, together with the restricted cut rule

〈Π, (G | Γ,Δ)〉 〈Π, (G | Δ,Σ)〉
〈Π, (G | Γ,Σ)〉 (cut)

Claim. �GLG G | Π if and only if �GLGp 〈Π,G〉.
Proof of Claim. The right-to-left direction is a simple induction on the height of
a derivation of 〈Π,G〉 in GLGp. For the left-to-right direction, we first note that
(by a straightforward induction) whenever �GLGp 〈Π,G〉, also �GLGp 〈Π,G |H〉
and �GLGp 〈Δ,G |Π〉. It suffices now to prove that

�GLGp 〈(Γ,Δ),G〉 and �GLGp 〈(Δ,Σ),H〉 =⇒ �GLGp 〈(Γ,Σ),G |H〉.

We proceed by induction on the sum of heights of derivations for �GLGp

〈(Γ,Δ),G〉 and �GLGp 〈(Δ,Σ),H〉.
For the base case, there are several possibilities. If G or H contains a group

valid sequent or both Π and Π, then the conclusion follows trivially. If Γ,Δ and
Δ,Σ are both group valid, then Γ,Σ is group valid and so �GLGp 〈(Γ,Σ),G |H〉.
Suppose then that G = G′ |Δ,Γ, that is, �GLGp 〈(Γ,Δ),G′ |Δ,Γ〉. Observe that

�GLGp 〈(Γ,Σ),G′ |H|Δ,Σ〉 and �GLGp 〈(Γ,Σ),G′ |H|Σ,Γ〉.

Hence, by (cut), we get �GLGp 〈(Γ,Σ),G′ |H|Δ,Γ〉; that is, �GLGp 〈(Γ,Σ),G |H〉
as required. The case where H = H′ |Σ,Δ is symmetrical.
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For the induction step, we apply the induction hypothesis twice to the
premises of an application of (cut), and the result follows by applying
(cut). ��

Now to prove that (∗) is admissible in GLGp, it suffices by the claim to show
that for Δ not group valid,

�GLGp 〈Δ,G〉 and �GLGp 〈Δ,H〉 =⇒ �GLG G | H.

We proceed by induction on the height of a GLGp-derivation of 〈Δ,G〉. For the
base case, there are several possibilities. If G contains a group valid sequent or
both Π and Π, then the conclusion follows trivially. Suppose that 〈Δ,G〉 has the
form 〈Δ,G′ |Δ〉. Since �GLGp 〈Δ,H〉, also �GLG H | Δ | G′, i.e., �GLG G | H. For
the induction step, suppose that G = G′ | Γ,Σ and that 〈Δ,G〉 is the conclusion
of an application of (cut) with premises 〈Δ,G′ |Γ,Π〉 and 〈Δ,G′ |Π,Σ〉. By the
induction hypothesis twice, �GLG G′ | Γ,Π | H and �GLG G′ | Π,Σ | H. Hence,
by (cut), we obtain �GLG G′ | Γ,Σ | H; that is, �GLG G | H. ��

We now have all the ingredients required to complete the proof of Theorem 4.
Proof of Theorem 4.
(1) ⇒ (2). Suppose contrapositively that {t1, . . . , tn} extends to a right order
of F(k). Then the inverse order is a right order ≤ of F(k) where t1, . . . , tn are
negative. Consider the �-group Aut(〈F (k),≤〉) and evaluate each variable x by
the map s �→ sx. Then each group term t is evaluated by the map s �→ st. In
particular, each ti maps e to ti < e, and hence t1∨ . . .∨tn maps e to some tj < e,
where j ∈ {1, . . . , n}. That is, e 
≤ t1 ∨ . . . ∨ tn in Aut(〈F (k),≤〉) and we obtain
LG 
|= e ≤ t1 ∨ . . . ∨ tn.
(2) ⇒ (3). Immediate from Theorem 5.
(3) ⇒ (1). Consider s1, . . . , sm ∈ F (k) \{e} where e ∈ 〈{t1, . . . , tn, sδ1

1 , . . . , sδm
m }〉

for all δ1, . . . , δm ∈ {−1, 1}. We prove first that �GLG∗ t1 | . . . | tn. For each
particular choice of δ1, . . . , δm ∈ {−1, 1}, there exist λ1, . . . , λn, μ1, . . . , μm ∈ N

not all 0 such that e = tλ1
1 · . . . · tλn

n · (sδ1
1 )μ1 · . . . · (sδm

m )μm in F(k). Hence
G |= e ≈ tλ1

1 ·· · ··tλn
n ·(sδ1

1 )μ1 ·· · ··(sδm
m )μm and, by (gv), �GLG∗ tλ1

1 ·· · ··tλn
n ·(sδ1

1 )μ1 ·
· · · · (sδm

m )μm . But using (split) repeatedly, �GLG∗ t1 | . . . | tn | sδ1
1 | . . . | sδm

m .
So, by applying (∗) iteratively, �GLG∗ t1 | . . . | tn. It follows now by Lemma 1
that �GLG t1 | . . . | tn. But then a simple induction on the height of a derivation
in GLG, shows that LG |= e ≤ t1 ∨ . . . ∨ tn as required. ��

Soundness and completeness results for GLG∗ and GLG follow directly.

Corollary 1. The following are equivalent for any hypersequent G:
(1) LG |= G; (2) �GLG G; (3) �GLG∗ G.

In the last part of this section, we use Theorem 4 to derive new decision
procedures for Problems 1 and 2 (see Sect. 2). Let us denote the length of a
reduced term t in F (k) by |t|, and for N ∈ N, let FN (k) denote the set of
all elements of F(k) of length ≤ N . Given a subset S of F(k) which omits e,
we call S an N -truncated right order on F(k) if S = 〈S〉 ∩ FN (k) and, for all
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t ∈ FN−1(k) \ {e}, either t ∈ S or t−1 ∈ S. It has been shown that this notion
precisely characterizes the finite subsets of F (k) that extend to a right order.

Theorem 6. (Clay and Smith [6,19]). A finite subset S of F (k) extends to
a right order of F(k) if and only if S extends to an N -truncated right order of
F(k) for some N ∈ N.

The condition described in this theorem can be decided as follows. Let N be the
maximal length of an element in S. Extend S to the finite set S∗ by adding st
whenever s, t occur in the set constructed so far and |st| ≤ N . This ensures that
S∗ = 〈S∗〉 ∩ FN (k). If e ∈ S∗, then stop. Otherwise, for every t ∈ FN−1(k) \ {e}
such that t 
∈ S∗ and t−1 
∈ S∗, add t to S∗ to obtain S1 and t−1 to S∗ to obtain
S2, and repeat the process with these sets. This procedure terminates because
FN (k) is finite. Hence we obtain a decision procedure for Problem 1.

Corollary 2. The problem of checking whether a given finite set of elements of
a finitely generated free group extends to a right order is decidable.

Moreover, using Theorem 4, we obtain also a decision procedure for Problem 2.

Corollary 3. The problem of checking whether an equation is valid in all
�-groups is decidable.

Example 3. Consider S = {xx, yy, x−1y−1} ⊆ F (2). By adding all products in
F2(2) of members of S, we obtain

S∗ = {xx, yy, x−1y−1, xy−1, x−1y, xy}.

We then consider all possible signs δ for x, y ∈ F1(2). If we add x−1 or y−1 to
S∗ and take products, then clearly, using xx or yy, we obtain e. Similarly, if we
add x and y to S∗, then, taking products, using x−1y−1, we obtain e. Hence we
may conclude that S does not extend to a right order of F(2) and obtain

LG |= e ≤ xx ∨ yy ∨ x y.

Consider now T = {xx, xy, yx−1} ⊆ F (2). By adding all products in F2(2) of
members of T , we obtain

T ∗ = {xx, xy, yx−1, yx, yy}.

We choose x, y ∈ F1(2) to be positive and obtain {xx, xy, yx−1, yx, yy, x, y}, a
2-truncated right order of F(2). Hence T extends to a right order of F(2) and

LG 
|= e ≤ xx ∨ xy ∨ yx.

The decidability result stated in Corollary 3 was first established by Holland
and McCleary in [12] using a quite different decision procedure. Let S be a finite
set of reduced terms from F(k). We denote by is(S) the set of initial subterms
of elements of S, and define cis(S) to consist of all reduced non-identity terms
s−1t, where s, t ∈ is(S). The following equivalence (expressed quite differently
using “diagrams”) is proved in [12].
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Theorem 7 (Holland and McCleary [12]). The following are equivalent for
t1, . . . , tn ∈ T (k):

(1) LG |= e ≤ t1 ∨ . . . ∨ tn.
(2) There exist s1, . . . , sm ∈ cis({t1, . . . , tn}) such that

e ∈ 〈{t1, . . . , tn, sδ1
1 , . . . , sδm

m }〉 forall δ1, . . . , δm ∈ {−1, 1}.

Since the set cis({t1, . . . , tn}) is finite and checking e ∈ 〈S〉 for a finite subset S
of F (k) is decidable, we obtain a decision procedure for Problem 2. Moreover,
again using Theorem 4, we obtain also a decision procedure for Problem 1.

Remark 4. Variants of the hypersequent calculi GLG∗ and GLG were defined
already in [9], but without the connection to right orders on free groups. They
were used to give an alternative proof of Holland’s theorem (see [11]) that the
algebra Aut(〈R,≤〉) generates the variety LG of �-groups and also to prove
that the equational theory of �-groups is co-NP complete. Let us note here that
it follows from the results above that the problem of checking whether a finite
subset of F(k) extends to a right order must also be in co-NP; hardness, however,
is still an open problem. Let us also remark that in [9], the following analytic (i.e.,
having the subformula property) hypersequent calculus is shown to be sound and
complete for �-groups:

G | Γ
(gv)

G | Γ G | Δ
G | Γ,Δ

(mix)
G | Γ,Σ G | Π,Δ

G | Γ,Δ | Π,Σ
(com)

Γ group valid

The proof, however, relies on a rather complicated cut elimination procedure and
it is not yet clear how this calculus might relate to right orders on free groups.

5 Ordering Free Groups and Validity in Ordered Groups

In this section, we consider the variety RG of representable �-groups generated by
the class of o-groups. Similarly to the previous section, we establish the following
theorem relating validity of equations in this variety (equivalently, the class of
o-groups) to extending finite subsets of free groups to (total) orders.

Theorem 8. The following are equivalent for t1, . . . , tn ∈ T (k):

(1) RG |= e ≤ t1 ∨ . . . ∨ tn.
(2) {t1, . . . , tn} does not extend to an order of F(k).
(3) There exist s1, . . . , sm ∈ F (k) \{e} such that

e ∈ 〈〈{t1, . . . , tn, sδ1
1 , . . . , sδm

m }〉〉 for all δ1, . . . , δm ∈ {−1, 1}.

In this case, we will not be able to obtain any decision procedure for checking
these equivalent conditions. However, we do obtain a new syntactic proof of the
orderability of finitely generated free groups [18].
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Corollary 4. Every finitely generated free group is orderable.

Proof. The equation e ≤ x is not valid in the o-group Z, so RG 
|= e ≤ x. But
then, by Theorem 8, there must exist an order of F(k) where x is positive. ��

The proof of Theorem 8 makes use of the following ordering theorem for
groups.

Theorem 9 (Fuchs 1963 [8]). A subset S of a group G extends to an order
of G if and only if for all a1, . . . , am ∈ G \{e}, there exist δ1, . . . , δm ∈ {−1, 1}
such that e 
∈ 〈〈S ∪ {aδ1

1 , . . . , aδm
m }〉〉.

Similarly to the previous section, we introduce hypersequent calculi GRG∗

and GRG as extensions of, respectively, GLG∗ and GLG with the rule

G | Δ,Γ
G | Γ,Δ

(cycle)

and establish the following relationship between these calculi.

Lemma 2. For any non-empty hypersequent G, if �GRG∗ G, then �GRG G.
Proof. The proof is almost exactly the same as that of Lemma 1 except that we
must take account also of the extra rule (cycle). That is, we define the pointed
hypersequent calculus GRGp as the extension of GLGp with the restricted rule

〈Π, (G |Δ,Γ)〉
〈Π, (G |Γ,Δ)〉 (cycle)

and prove that �GRG G | Π if and only if �GRGp 〈Π,G〉. In this case, we also
prove by a straightforward induction on the height of a derivation in GRGp that

�GRGp 〈(Γ,Δ),G〉 =⇒ �GRGp 〈(Δ,Γ),G〉.
Finally, the proof that (∗) is admissible in GRGp proceeds in exactly the same
way as in the proof of Lemma 1. ��
Proof of Theorem 8.
(1) ⇒ (2). Suppose contrapositively that {t1, . . . , tn} extends to an order of F(k).
Then the inverse order is an order ≤ of F(k) where t1, . . . , tn are negative. But
this ordered group may also be viewed as a representable �-group and taking the
evaluation mapping t ∈ T (k) to t ∈ F (k), we obtain RG 
|= e ≤ t1 ∨ . . . ∨ tn.
(2) ⇒ (3). Immediate from Theorem 9.
(3) ⇒ (1). Consider s1, . . . , sm ∈ F (k) \{e} where e ∈ 〈〈{t1, . . . , tn, sδ1

1 , . . . ,
sδm

m }〉〉 for all δ1, . . . , δm ∈ {−1, 1}. We prove first that �GRG∗ t1 | . . . | tn. For
each choice of δ1, . . . , δm ∈ {−1, 1}, there exist l > 0 and conjugates r1, . . . , rl of
t1, . . . , tn, sδ1

1 , . . . , sδm
m such that e = r1 · . . . · rl in F(k). So G |= e ≈ r1 · . . . · rl

and, by (gv), �GRG∗ r1 · . . . · rl. But then, by (split) and (cycle), also �GRG∗

t1 | . . . | tn | sδ1
1 | . . . | sδm

m . Hence, by repeated applications of (∗), we get
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�GRG∗ t1 | . . . | tn. It follows now also by Lemma 2 that �GRG t1 | . . . | tn.
Finally, a simple induction on the height of a derivation in GLG shows that
RG |= e ≤ t1 ∨ . . . ∨ tn as required. ��

Soundness and completeness for GRG∗ and GRG follow directly.

Corollary 5. The following are equivalent for any hypersequent G:
(1) RG |= G; (2) �GRG G; (3) �GRG∗ G.
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