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Abstract. There exist two known concepts of ultrafilter extensions of
first-order models, both in a certain sense canonical. One of them [1]
comes from modal logic and universal algebra, and in fact goes back to [2].
Another one [3,4] comes from model theory and algebra of ultrafilters,
with ultrafilter extensions of semigroups [5] as its main precursor. By
a classical fact, the space of ultrafilters over a discrete space is its largest
compactification. The main result of [3,4], which confirms a canonicity
of this extension, generalizes this fact to discrete spaces endowed with
a first-order structure. An analogous result for the former type of ultra-
filter extensions was obtained in [6].

Here we offer a uniform approach to both types of extensions. It is
based on the idea to extend the extension procedure itself. We propose
a generalization of the standard concept of first-order models in which
functional and relational symbols are interpreted rather by ultrafilters
over sets of functions and relations than by functions and relations them-
selves. We provide two specific operations which turn generalized mod-
els into ordinary ones, and establish necessary and sufficient conditions
under which the latter are the two canonical ultrafilter extensions of
some models.

1. Fix a first-order language and consider an arbitrary model

A = (X,F, . . . , R, . . .)

with the universe X, operations F, . . . , and relations R, . . . . Let us define an
abstract ultrafilter extension of A as a model A′ (in the same language) of form

A′ = (βX,F ′, . . . , R′, . . .)

where βX is the set of ultrafilters over X (one lets X ⊆ βX by identifying
each x ∈ X with the principal ultrafilter given by x), and operations F ′, . . . and
relations R′, . . . on βX extend F, . . . and R, . . . resp. There are essentially two
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known ways to extend relations by ultrafilters, and one to extend maps. Partial
cases of these extensions were discovered by various authors in different time
and different areas, typically, without a knowledge of parallel studies in adjacent
areas.

Recall that βX carries a natural topology generated by basic open sets

˜A = {u ∈ βX : A ∈ u}

for all A ⊆ X. Easily, the sets are also closed, so the space βX is zero-
dimensional. In fact, βX is compact, Hausdorff, extremally disconnected (the
closure of any open set is open), and the largest compactification of the discrete
space X. This means that X is dense in βX and every (trivially continuous)
map h of X into any compact Hausdorff space Y uniquely extends to a contin-
uous map ˜h of βX into Y :

The largest compactification of Tychonoff spaces was discovered independently
by Čech [7] and Stone [8]; then Wallman [9] did the same for T1 spaces (by using
ultrafilters on lattices of closed sets); see [5,10,11] for more information.

The ultrafilter extensions of unary maps F and relations R are exactly ˜F
and ˜R (for F : X → X let Y = βX); thus in the unary case the procedure gives
classical objects known in 30s. As for mappings and relations of greater arities,
several instances of their ultrafilter extensions were discovered only in 60s.

Studying ultraproducts, Kochen [12] and Frayne et al. [13] considered a “mul-
tiplication” of ultrafilters, which actually is the ultrafilter extension of the n-ary
operation of taking n-tuples. They shown that the successive iteration of ultra-
powers by ultrafilters u1, . . . , un is isomorphic to a single ultrapower by their
“product”. This has leaded to the general construction of iterated ultrapowers,
invented by Gaifman and elaborated by Kunen, which has become common in
model theory and set theory (see [14,15]).

Ultrafilter extensions of semigroups appeared in 60s as subspaces of func-
tion spaces; the first explicit construction of the ultrafilter extension of a group
is due to Ellis [16]. In 70s Galvin and Glazer applied them to give an easy
proof of what now known as Hindman’s Finite Sums Theorem; the key idea
was to use idempotent ultrafilters. The method was developed then by Blass,
van Douwen, Hindman, Protasov, Strauss, and many others, and gave numerous
Ramsey-theoretic applications in number theory, algebra, topological dynamics,
and ergodic theory. The book [5] is a comprehensive treatise of this area, with an
historical information. This technique was applied also for obtaining analogous
results for certain non-associative algebras (see [17,18]).

Ultrafilter extensions of arbitrary n-ary maps have been introduced inde-
pendently by Goranko [1] and Saveliev [3,4]. For F : X1 × . . . × Xn → Y , the
extended map ˜F : βX1 × . . . × βXn → βY is defined by letting
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˜F (u1, . . . , un) =
{

A ⊆ Y : {x1 ∈ X1 : . . . {xn ∈ Xn : F (x1, . . . , xn) ∈ A} ∈ un . . .} ∈ u1
}

.

One can simplify this cumbersome notation by introducing ultrafilter quanti-
fiers: let (∀ ux)ϕ(x, . . .) means {x : ϕ(x, . . .)} ∈ u. In fact, this is a second-order
quantifier: (∀ ux) is equivalent to (∀A ∈ u)(∃x ∈ A), and also (since u is ultra)
to (∃A ∈ u)(∀x ∈ A). Such quantifiers are self-dual, i.e. ∀ u and ∃ u coincide, and
generally do not commute with each other, i.e. (∀ ux)(∀ vy) and (∀ vy)(∀ ux) are
not equivalent. Then the definition above is rewritten as follows:

˜F (u1, . . . , un) =
{

A ⊆ Y : (∀ u1x1) . . . (∀ unxn) F (x1, . . . , xn) ∈ A
}

.

The map ˜F can be also described as the composition of the ultrafilter exten-
sion of taking n-tuples, which maps βX1 × . . . × βXn into β(X1 × . . . × Xn),
and the continuous extension of F considered as a unary map, which maps
β(X1 × . . . × Xn) into βY .

One type of ultrafilter extensions of relations goes back to a seminal paper
by Jónsson and Tarski [2] where they have been appeared implicitly, in terms of
representations of Boolean algebras with operators. For binary relations, their
representation theory was rediscovered in modal logic by Lemmon [19] who cred-
ited much of this work to Scott, see footnote 6 on p. 204 (see also [20]). Goldblatt
and Thomason [21] used this to characterize modal definability (where Sect. 2
was entirely due to Goldblatt); the term “ultrafilter extension” has been intro-
duced probably in the subsequent work by van Benthem [22] (for modal defin-
ability see also [23,24]). Later Goldblatt [25] generalized the extension to n-ary
relations.

Let us give an equivalent formulation: for R ⊆ X1 × . . . × Xn, the extended
relation R∗ ⊆ βX1 × . . . × βXn is defined by letting

R∗(u1, . . . , un) iff
(∀A1 ∈ u1) . . . (∀An ∈ un)(∃x1 ∈ A1) . . . (∃xn ∈ An) R(x1, . . . , xn).

Another type of ultrafilter extensions of n-ary relations has been recently
discovered in [3,4]:

˜R(u1, . . . , un) iff
{

x1 ∈ X1 : . . . {xn ∈ Xn : R(x1, . . . , xn)} ∈ un . . .
} ∈ u1,

or rewritting this via ultrafilter quantifiers,

˜R(u1, . . . , un) iff (∀ u1x1) . . . (∀ unxn) R(x1, . . . , xn).

Or else, by decoding ultrafilter quantifiers, this can be rewritten by

˜R(u1, . . . , un) iff
(∀A1 ∈ u1)(∃x1 ∈ A1) . . . (∀An ∈ un)(∃xn ∈ An) R(x1, . . . , xn),
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whence it is clear that ˜R ⊆ R∗. For unary R both extensions coincide with the
basic open set given by R. If R is functional then R∗ (but not ˜R) coincides with
the above-defined extension of R as a map. An easy instance of ˜ -extensions
(where R are linear orders) is studied in [26].

A systematic comparative study of both extensions (for binary R) is under-
taken in [6]. In particular, there is shown that the ∗ - and the ˜ -extensions have
a dual character w.r.t. relation-algebraic operations: the former commutes with
composition and inversion but not Boolean operations except for union, while
the latter commutes with all Boolean operations but neither composition nor
inversion. Also [6] contains topological characterizations of ˜R and R∗ in terms of
appropriate closure operations and in terms of Vietoris-type topologies (regard-
ing R as multi-valued maps).

Ultrafilter extensions of arbitrary first-order models were considered for the
first time independently in [1] with ∗ -extensions of relations, and in [3] with
their ˜ -extensions. We shall denote them by A∗ and ˜A resp. Thus for a model
A = (X,F, . . . , R, . . .) we let

A∗ = (βX, ˜F , . . . , R∗, . . .) and ˜A = (βX, ˜F , . . . , ˜R, . . .).

The following is the main result of [1]:

Theorem 1. If h is a homomorphism between models A and B, then the con-
tinuous extension ˜h is a homomorphism between A∗ and B∗:

A full analog of Theorem1 for the ˜ -extensions has been appeared in [3]
(called the First Extension Theorem in [4]):

Theorem 2. If h is a homomorphism between models A and B, then the con-
tinuous extension ˜h is a homomorphism between ˜A and ˜B :

Moreover, both theorems remain true for embeddings and some other model-
theoretic interrelations (see [1,3,4]).

Theorem 2 is actually is a partial case of a much stronger result of [3] (called
the Second Extension Theorem in [4]). To formulate this, we need the following
concepts (introduced in [3]).

Let X1, . . . , Xn, Y be topological spaces, and let A1 ⊆ X1, . . . , An−1 ⊆ Xn−1.
An n-ary function F : X1× . . .×Xn → Y is right continuous w.r.t. A1, . . . , An−1
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iff for each i, 1 � i � n, and every a1 ∈ A1, . . . , ai−1 ∈ Ai−1 and xi+1 ∈
Xi+1, . . . , xn ∈ Xn, the map

x �→ F (a1, . . . , ai−1, x, xi+1, . . . , xn)

of Xi into Y is continuous. An n-ary relation R ⊆ X1 × . . . × Xn is right open
(right closed , etc.) w.r.t. A1, . . . , An−1 iff for each i, 1 � i � n, and every
a1 ∈ A1, . . . , ai−1 ∈ Ai−1 and xi+1 ∈ Xi+1, . . . , xn ∈ Xn, the set

{

x ∈ Xi : R(a1, . . . , ai−1, x, xi+1, . . . , xn)
}

is open (closed, etc.) in Xi.
Theorem 3 [3,4] characterizes topological properties of ˜ -extensions, it is

a base of Theorem 4 (the Second Extension Theorem of [4]).

Theorem 3. Let A be a model. In the extension ˜A , all operations are right
continuous and all relations right clopen w.r.t. the universe of A.

Theorem 4. Let A and C be two models, h a homomorphism of A into C, and let
C carry a compact Hausdorff topology in which all operations are right continuous
and all relations are right closed w.r.t. the image of the universe of A under h.
Then ˜h is a homomorphism of ˜A into C:

Theorem 2 (for homomorphisms) easily follows: take ˜B as C. The meaning
of Theorem 4 is that it generalizes the classical Čech–Stone result to the case
when the underlying discrete space X carries an arbitrary first-order structure.

A natural question is whether ∗ -extensions also canonical in a similar sense.
The answer is positive; two following theorems are counterparts of Theorems 3
and 4 resp. (essentially both have been proved in [6]).

Theorem 5. Let A be a model. In the extension A∗, all relations are closed (and
all operations are right continuous w.r.t. the universe of A).

Theorem 6. Let A and C be two models, h a homomorphism of A into C, and let
C carry a compact Hausdorff topology in which all operations are right continuous
w.r.t. the image of the universe of A under h, and all relations are closed. Then
˜h is a homomorphism of A∗ into C.

Similarly, Theorem1 (for homomorphisms) follows from Theorem 6. The lat-
ter also generalizes the Čech–Stone result for discrete spaces to discrete models
but with a narrow class of target models C: having relations rather closed than
right closed in Theorem 4.
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2. The immediate purpose of this section is to provide a uniform approach to
both types of extensions. This approach will lead us to certain structures, called
here generalized models, which generalize ultrafilter extensions of each of the
two types.

First we shall show that the ∗ -extension can be described in terms of the
basic (cl)open sets and the continuous extension of maps. For this, let us consider
the continuous extension of the continuous extension operation itself . To make
notation easier, denote by ext the operation of continuous extension of maps;
i.e. ext(f) is another notation for ˜f :

ext(f) = ˜f.

So if we consider maps of X into Y , then ext is a map of Y X into C(βX, βY ).
Since C(βX, βY ) with the standard (i.e. pointwise convergence) topology is
a compact Hausdorff space, ext continuously extends to the map ˜ext of β(Y X)
into this space:

The extended map ˜ext is surjective and non-injective.

Lemma 1. Let R ⊆ Y X . Then ˜ext maps the closure of R in the space β(Y X)
onto the closure of R in the space C(βX, βY ):

{

˜ext(f) : f ∈ cl β(Y X)R
}

= cl C(βX,βY )R.

For our purpose, let X = n. Then βX = n and C(βX, βY ) is (βY )n, which
can be identified with βY × . . .× βY (n times). Now the required description of
the ∗ -extension follows from Theorem 5:

Theorem 7. Let R ⊆ X × . . . × X. Then R∗ ⊆ βX × . . . × βX is (identified
with) the image of cl β(Xn)R under ˜ext.

Using ultrafilters over maps leads to the following concept. Given a language,
we define a generalized (or ultrafilter) interpretation (the term is ad hoc) as
a map ı that takes each n-ary functional symbol F to an ultrafilter over the set
of n-ary operations on X, and each n-ary predicate symbol R to an ultrafilter over
the set of n-ary relations on X; let also v be an ultrafilter valuation of variables,
i.e. a valuation which takes each variable x to an ultrafilter over a given set X:

v(x) ∈ βX, ı(F ) ∈ β(XX×...×X), ı(R) ∈ β P(X × . . . × X).

The set (βX, ı(F ), . . . , ı(R), . . .) is a generalized model . Now we are going to
define the satisfiability relation in generalized models, which will be denoted by
the symbol (.
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First, given an interpretation ı of non-logical symbols, we expand any
valuation v of variables to the map vı defined on all terms as follows. Let
app : X1 × . . . × Xn × Y X1×...×Xn → Y be the application operation:

app(a1, . . . , an, f) = f(a1, . . . , an).

Extend it to the map ãpp : βX1 × . . . × βXn × β(Y X1×...×Xn) → βY right
continuous w.r.t. the principal ultrafilters, in the usual way:

Let vı coincide with v on variables, and if vı has been already defined on
terms t1, . . . , tn, we let

vı(F (t1, . . . , tn)) = ãpp(vı(t1), . . . , vı(tn), ı(F )).

Further, given a generalized model A = (βX, ı(F ), . . . , ı(R), . . .), define the
satisfiability in A as follows. Let in ⊆ X1 × . . .×Xn ×P(X1 × . . .×Xn) be the
membership predicate:

in (a1, . . . , an, R) iff (a1, . . . , an) ∈ R.

Extend it to the relation ˜in ⊆ βX1× . . .×βXn×β P(X1× . . .×Xn) right clopen
w.r.t. principal ultrafilters. Let

A ( t1 = t2 [v] iff vı(t1) = vı(t2).

If R(t1, . . . , tn) is an atomic formula in which R is not the equality predicate,
we let

A ( R(t1, . . . , tn) [v] iff ˜in (vı(t1), . . . , vı(tn), ı(P )).

(Equivalently, we could define the satisfiability of atomic formulas by identify-
ing predicates with their characteristic functions and using the satisfiability of
equalities of the resulting terms.) Finally, if ϕ(t1, . . . , tn) is obtained by nega-
tion, conjunction, or quantification from formulas for which ( has been already
defined, we define A ( ϕ [v] in the standard way.

When needed, we shall use variants of notation commonly used for ordinary
models and satisfiability, for the generalized ones. E.g. for a generalized model A
with the universe βX, a formula ϕ(x1, . . . , xn), and elements u1, . . . , un of βX,
the notation A ( ϕ [u1, . . . , un] means that ϕ is satisfied in A under a valuation
taking the variables x1, . . . , xn to the ultrafilters u1, . . . , un.

Generalized models actually generalize not all ordinary models but those
that are ultrafilter extensions of some models. It is worth also pointing out that
whenever a generalized interpretation is principal, i.e. all non-logical symbols
are interpreted by principal ultrafilters, we naturally identify it with the obvious
ordinary interpretation with the same universe βX; however, not every ordinary
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interpretation with the universe βX is of this form. Precise relationships between
generalized models, ordinary models, and ultrafilter extensions will be described
in Theorems 9 and 10.

An ultrafilter valuation v is principal iff it takes any variable to a principal
ultrafilter.

Lemma 2. Let two generalized models A = (βX, ı(F ), . . . , ı(R), . . .) and B =
(βX, j(F ), . . . , j(R), . . .) have the same universe βX. If for all functional sym-
bols F , predicate symbols R, variables x1, . . . , xn, and principal valuations v,

ãpp(v(x1), . . . , v(xn), ı(F )) = ãpp(v(x1), . . . , v(xn), j(F )),
˜in (v(x1), . . . , v(xn), ı(R)) iff ˜in (v(x1), . . . , v(xn), j(R)),

then for all formulas ϕ, terms t1, . . . , tn, and valuations v,

A ( ϕ(t1, . . . , tn) [v] iff B ( ϕ(t1, . . . , tn) [v].

Corollary 1. Let A = (βX, ı(F ), . . . , ı(R), . . .) be a generalized model and
B = (βX, j(F ), . . . , j(R), . . .) the generalized model having the same universe
βX and such that j coincides with ı on functional symbols and for each predicate
symbol R, j(R) is the principal ultrafilter given by

{

(a1, . . . , an) ∈ Xn : ˜in (a1, . . . , an, ı(R))
}

.

Then for all valuations v, formulas ϕ, and terms t1, . . . , tn,

A ( ϕ(t1, . . . , tn) [v] iff B ( ϕ(t1, . . . , tn) [v].

Let us say that an ultrafilter f over functions is pseudo-principal iff ãpp
takes any tuple consisting of principal ultrafilters together with f to a principal
ultrafilter, i.e. for f ∈ β(Y X1×...×Xn),

a1 ∈ X1, . . . , an ∈ Xn implies ãpp(a1, . . . , an, f) ∈ Y.

Every principal f is pseudo-principal, and there exist pseudo-principal ultrafil-
ters that are not principal as well as ultrafilters that are not pseudo-principal.
A generalized interpretation ı is pseudo-principal on functional symbols iff ı(F ) is
a pseudo-principal ultrafilter for each functional symbol F (and then, for each
term t).

Corollary 2. Let A = (βX, ı(F ), . . . , ı(R), . . .) be a generalized model with ı
pseudo-principal on functional symbols. Let B = (βX, j(F ), . . . , j(R), . . .) be the
generalized model having the same universe βX and such that j coincides with ı
on predicate symbols and for each functional symbol F , j(F ) is the principal
ultrafilter given by f : Xn → X defined by letting

f(a1, . . . , an) = ãpp(a1, . . . , an, ı(F )).

Then for all valuations v, formulas ϕ, and terms t1, . . . , tn,

A ( ϕ(t1, . . . , tn) [v] iff B ( ϕ(t1, . . . , tn) [v].
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It follows that for any generalized model A whose interpretation is pseudo-
principal on functional symbols, by replacing its relations as in Corollary 1 and
its operations as in Corollary 2, one obtains an ordinary model B with the same
universe such that for all formulas ϕ and elements u1, . . . , un of the universe,
A ( ϕ [u1, . . . , un] iff B � ϕ [u1, . . . , un].

We do not formulate this fact as a separate theorem since we shall be able to
establish stronger facts soon. In Theorem 8, we shall establish that for any gen-
eralized model A, not only one with a pseudo-principal interpretation, one can
construct a certain ordinary model e(A) satisfying the same formulas; and then,
in Theorem 9, that whenever A has a pseudo-principal interpretation, e(A) is
nothing but the ˜-extension of some model. In fact, in the latter case, e(A) coin-
cides with B from the previous paragraph.

Now we provide two operations, e and E, which turn generalized models into
certain ordinary models that generalize ∗ - and ˜ -extensions. Both operations
are surjective and non-injective.

Define a map e on ultrafilters over functions to functions over ultrafilters,

e : β(Y X1×...×Xn) → βY βX1×...×βXn ,

by induction on n. For n = 1, let e coincide with ˜ext. Assume that e has been
already defined for n. First we identify Y X1×X2×...×Xn+1 with (Y X2×...×Xn+1)X1

(by the so-called evaluation map, or carrying). Under this identification, each
f ∈ β(Y X1×X2×...×Xn+1) corresponds to a certain f′ ∈ β((Y X2×...×Xn+1)X1). Now
we define e(f) by letting

e(f)(u1, u2, . . . , un+1) = e(e(f′)(u1))(u2, . . . , un+1)

(since e has been already defined on f′ and e(f′)(u1) by induction hypothesis).
Alternatively, we can define e as follows. Expand the domain of ext by letting

ext(f) = ˜f

for n-ary functions f with any n, not only unary ones. Thus, if we con-
sider functions of X1 × . . . × Xn into Y , then ext maps Y X1×...×Xn into
RCX1,...,Xn−1(βX1 × . . .× βXn, βY ), the set of all functions of βX1 × . . .× βXn

into βY that are right continuous w.r.t. X1, . . . , Xn−1. It can be shown that the
latter set forms a closed subspace in the compact Hausdorff space βY βX1×...×βXn

of all functions of βX1 × . . . × βXn into βY with the standard (i.e. pointwise
convergence) topology, and hence, is compact Hausdorff too. Therefore, ext con-
tinuously extends to the map ˜ext of β(Y X1×...×Xn) into it:

Now we can identify e with ˜ext in this expanded meaning.
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By identifying relations with their characteristic functions, we can also let
that e takes ultrafilters over relations to relations over ultrafilters:

e : β P(X1 × . . . × Xn) → P(βX1 × . . . × βXn).

In fact, e and ãpp (or ˜in ) are expressed via each other:

Lemma 3. For all f ∈ β(Y X1×...×Xn), r ∈ β P(X1 × . . . × Xn), and u1 ∈
βX1, . . . , un ∈ βXn,

e(f)(u1, . . . , un) = ãpp(u1, . . . , un, f),

e(r)(u1, . . . , un) iff ˜in (u1, . . . , un, r).

In other words,

e(f) =
{

(u1, . . . , un, v) ∈ βX1 × . . . × βXn × βY : ãpp(u1, . . . , un, f) = v
}

,

e(r) =
{

(u1, . . . , un) ∈ βX1 × . . . × βXn : ˜in (u1, . . . , un, r)
}

.

Corollary 3. For all generalized models A = (βX, ı(F ), . . . , ı(R), . . .) and val-
uations v,

vı(F (t1, . . . , tn)) = e(ı(F ))(vı(t1), . . . , vı(tn)),
A ( R(t1, . . . , tn) [v] iff e(ı(R))(vı(t1), . . . , vı(tn)).

For a generalized model B = (βX, f, . . . , r, . . .), let

e(B) = (βX, e(f), . . . , e(r), . . .).

Note that e(B) is an ordinary model.

Theorem 8. If A is a generalized model, then for all formulas ϕ and elements
u1, . . . , un of the universe of A,

A ( ϕ [u1, . . . , un] iff e(A) � ϕ [u1, . . . , un].

Define a map E, with the same domain and range that the map e has, as
follows: E and e coincide on β(Y X1×...×Xn), and if r ∈ β P(X1 × . . .×Xn) then

E(r) =
{

˜ext(q) : q ∈ ˜ext(r)
}

.

Here ˜ext(r) is a clopen subset of β(X1 × . . . × Xn), if q ∈ ˜ext(r) then ˜ext(q) is
identified with an element of the space βX1 × . . .× βXn (as in Theorem 7), and
the resulting E(r) is closed in the space.

Lemma 4. Let r ∈ β P(X1 × . . . × Xn). Then

e(r) = ˜R and E(r) = R∗

for R = e(r) ∩ (X1 × . . . × Xn) = E(r) ∩ (X1 × . . . × Xn) =
⋂

S∈r

⋃

S.
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One may write up this R more explicitly:

R =
{

(a1, . . . , an) ∈ X1 × . . . × Xn : (∀S ∈ r) (∃Q ∈ S) Q(a1, . . . , an)
}

.

For a generalized model B = (βX, f, . . . , r, . . .), let

E(B) = (βX,E(f), . . . , E(r), . . .).

Then E(B), like e(B), is an ordinary model.
By Lemma 4, relations of the model e(B) are ˜-extensions of some relations

on X, while relations of the model E(B) are ∗ -extensions of the same relations.
Whether the whole models e(B) and E(B) are ultrafilter extensions of some
models depends only on the (generalized) interpretation of functional symbols
in B:

Theorem 9. Let B be a generalized model with the universe βX. The following
are equivalent:

(i) e(B) = ˜A for a model A with the universe X,
(ii) E(B) = A∗ for a model A with the universe X,
(iii) The interpretation in B is pseudo-principal on functional symbols.

Moreover, the model A in (i) and (ii) is the same.

Finally, we point out that the fact whether an ordinary model with the
universe βX is of form e(B), and whether it is of form E(B), for some generalized
model B (clearly, with the same universe βX) depends only on its topological
properties:

Theorem 10. Let A be a model with the universe βX. Then:

(i) A = e(B) for a generalized model B iff in A all operations are right con-
tinuous and all relations right clopen w.r.t. X,

(ii) A = E(B) for a generalized model B iff in A all operations are right con-
tinuous w.r.t. X and all relations closed.

Since by Theorem 9, e and E applied to generalized models with pseudo-
principal interpretations give the ˜- and ∗-extensions of ordinary models,
Theorem 10 can be considered as a generalization of Theorems 3 and 5.

In conclusion, let us mention that various characterizations of both types of
ultrafilter extensions lead to a spectrum of similar extensions as proposed at the
end of [6]; so natural tasks are to study all of the spectrum as well as to isolate
special features of the two canonical extensions among others.

Acknowledgement. We are indebted to Professor Robert I. Goldblatt who provided
some useful historical information concerning the ∗-extension of relations.
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