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Abstract. In this paper we present a new proof of Solovay’s theorem on
arithmetical completeness of Gödel-Löb provability logic GL. Originally,
completeness of GL with respect to interpretation of � as provability in
PA was proved by Solovay in 1976. The key part of Solovay’s proof was
his construction of an arithmetical evaluation for a given modal formula
that made the formula unprovable in PA if it were unprovable in GL. The
arithmetical sentences for the evaluations were constructed using certain
arithmetical fixed points. The method developed by Solovay have been
used for establishing similar semantics for many other logics. In our proof
we develop new more explicit construction of required evaluations that
doesn’t use any fixed points in their definitions. To our knowledge, it is
the first alternative proof of the theorem that is essentially different from
Solovay’s proof in this key part.

1 Introduction

The study of provability as a modality could be traced back to at least as early
as Gödel work [Gö33]. Löb [Lö55] have proved a generalization of Gödel’s Sec-
ond Incompleteness Theorem that is now known as Löb’s Theorem. In order
to formulate his theorem Löb have stated conditions on provability predicates
that are now known as Hilbert-Bernays-Löb derivability conditions. Despite Löb
haven’t mentioned the interpretation of a modality as a provability predicate
there, his conditions essentially corresponded to the standard axiomatization of
modal logic K4. Also note that arithmetical soundness of Gödel-Löb provability
logic GL immediately follows from Löb’s Theorem.

The axioms of modal system GL have first appeared in [Smi63]. Segerberg
have shown that GL is Kripke-complete and moreover that it is complete with
respect to the class of all finite transitive irreflexive trees [Seg71]. The arithmeti-
cal completeness of the system GL were established by Solovay [Sol76]. Solovay
have proved that a modal formula ϕ is a theorem of GL iff for every arithmetical
evaluation f(x) the arithmetical sentence f(ϕ) is provable in PA.

Latter modifications of Solovay’s method were used in order to prove a lot of
other similar results, we will mention just few of them. Japaridze have proved
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arithmetical completeness of polymodal provability logic GLP [Jap86]. Shavrukov
[Sha88] and Berarducci [Ber90] have determined the interpretability logic of PA.

The key part of Solovay’s proof was to show that in certain sense every finite
GL-model is “embeddable” in arithmetic. Using the construction of “embed-
dings”, it is easy to construct evaluations fϕ(x) such that PA � fϕ(ϕ), for
all GL-unprovable modal formulas ϕ. In order to construct the “embeddings”,
Solovay have used Diagonal Lemma to define certain primitive-recursive function
(Solovay function), for every finite GL Kripke model. Then, using the functions,
Solovay have defined the sentences that constituted the “embeddings”.

de Jongh, Jumelet, and Montagna have shown that GL is complete with
respect to Σ1-provability predicates for theories T ⊇ IΔ0 + Exp [dJJM91]. Their
proof have avoided the use of Solovay functions, however, their construction
still “emulated” Solovay’s approach using individual sentences constructed by
Diagonal Lemma.

In a discussion on FOM (Foundation of Mathematics mailing list) Shipman
have asked a question about important theorems that have “essentially” only one
proof [Shi09]. The example of Solovay’s theorem were provided by Sambin. To
the author knowledge, up to the date there were no proofs of Solovay’s theorem
that have avoided the central idea of Solovay’s proof—the Solovay’s method of
constructing required sentences in terms of certain fixed points.

We note that completeness of some extensions of GL with respect to interpre-
tations of � that are similar to formalized provability were proved by the com-
pletely different methods. Solovay in his paper [Sol76] have briefly mentioned a
method of determining modal logics of several natural interpretations of � in
set theory, namely for the interpretations of � as “to be true in all transitive
models” and as “to be true in all models Vκ, where κ is an inaccessible cardinal”
(there are more detailed proofs in Boolos book [Boo95, Chap. 13]). A modifica-
tion of the method also have been used to show completeness of wide variety
of extensions of GL with respect to artificially defined (not Σ1) provability-like
predicates [Pak16].

In the paper we present a new approach to the proof of arithmetical com-
pleteness theorem for GL. We introduce a different method of “embedding” of
finite GL Kripke models. As the result, the completeness of GL is achieved with
the use of evaluations given by more explicitly constructed and more “natural”
sentences (in particular, we do not rely on Diagonal Lemma in the construction).
In order to avoid potential misunderstanding, we note that despite the sentences
from evaluations are given explicitly, our proof rely on Gödel’s Second Incom-
pleteness Theorem and the results by Pudlák [Pud86] that were proved with the
use of Diagonal Lemma.

Now we will give an example of unprovable GL-formula ϕ and an evaluation
f(x) provided by our proof such that PA � f(ϕ). We consider the formula

ϕ � ♦v → (♦u → ♦(v ∧ u)).
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We use the following definitions for numerical functions in order to define the
evaluation f(x):

exp(x) = 2x, log(x) = max({y | exp(y) ≤ x} ∪ 0),

exp�(x) = exp(exp(. . . exp(
︸ ︷︷ ︸

x times

0) . . .)), log�(x) = max({y | exp�(y) ≤ x} ∪ 0)

(note that the functions exp�(x) and log�(x) are called super exponentiation
and super logarithmic functions, respectively). The evaluation f(x) is given as
following:

f(v) � ∃x(Prf(x, �0 = 1�) ∧ ∀y < x(¬Prf(y, �0 = 1�)) ∧ log�(x) ≡ 0 (mod 2)),

f(u) � ∃x(Prf(x, �0 = 1�) ∧ ∀y < x(¬Prf(y, �0 = 1�)) ∧ log�(x) ≡ 1 (mod 2)).

We note that somewhat similar approach based on the parity of log� were
used by Solovay in his letter to Nelson [Sol86]. Solovay proved that there are
sentences F and G such that IΔ0 + Ω1+F and IΔ0 + Ω1+G are cut-interpretable
in IΔ0 + Ω1, but IΔ0 + Ω1 + F ∧ G isn’t cut-interpretable in IΔ0 + Ω1. Also,
Kotlarski in [Kot96] have used an explicit parity-based construction of a pair of
sentences in order to give an alternative proof for Rosser’s Theorem.

2 Preliminaries

Let us first define Gödel-Löb provability logic GL. The language of GL extends
the language of propositional calculus with propositional constants 
 (truth) and
⊥ (false) by the unary modal connective �. GL have the following Hilbert-style
deductive system:

1. axiom schemes of classical propositional calculus PC;
2. �(ϕ → ψ) → (�ϕ → �ψ);
3. �(�ϕ → ϕ) → �ϕ;
4. ϕ ϕ→ψ

ψ ;
5. ϕ

�ϕ .

The expression ♦ϕ is an abbreviation for ¬�¬ϕ.
A set with a binary relation (W,≺) is called irreflexive transitive tree if

1. ≺ is a transitive irreflexive relation;
2. there is an element r ∈ W that is called the root of (W,≺) such that the

upward cone {a | r ≺ a} coincides with W ;
3. for any element w ∈ W the restriction of ≺ on the downward cone {a | a ≺ w}

is a strict well-ordering order.

Segerberg [Seg71] have shown that the logic GL is complete with respect to the
class of all finite irreflexive transitive trees.
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Our proof relies on the results by Verbrugge and Visser [VV94] and indirectly
on the results by Pudlák [Pud86]. This results are sensitive to details of formal-
ization of some metamathematical notions. Thus unlike some other papers, where
this kind of details could be safely be left unspecified, we will need to be more
careful here.

We identify syntactical expressions with binary strings. We encode binary
strings by positive integers numbers. A positive integer n of the form 1ak−1 . . . a0

in binary notation encodes the binary string ak−1 . . . a0. We note that the binary
logarithm log(n) of a number n coincides with the length of the binary string
that the number n encodes. For a formula F the number n that encodes F is
known as the Gödel number of F.

A proof of an arithmetical formula ϕ in an arithmetical theory T is a list
of arithmetical formulas such that it ends with ϕ and every formula in the list
is either an axiom of T, or is an axiom of predicate calculus, or is obtained by
inference rules from previous formulas.

We will be interested in formalization of provability in the theory PA and its
extensions by finitely many axioms. We take the standard axiomatization of PA
(by axioms of Robinson arithmetic Q and the induction schema). We consider
the natural axiomatization in arithmetic of the property of a number to be the
Gödel number of some axiom of PA. For all extensions T of PA by finitely many
axioms this gives us Δ0-predicates PrfT(x, y) that are natural formalizations of
“x is a proof of the formula with Gödel number y in the theory T” that is based
on the definition of the notion of proof given above. And we obtain Σ1-provability
predicates

PrvT(y) � ∃xPrfT(x, y).

We will use effective binary numerals. The n-th numeral is defined as follows:

1. 0 is the term 0;
2. 1 is the term 1;
3. 2n is the term (1 + 1) · n;
4. 2n + 1 is the term (1 + 1) · n + 1.

Clearly, the length of n is O(log(n)).
For an arithmetical formula F we denote by �F� the n-th numeral, where n

is the Gödel number of the formula F.
We denote by Prv(x) and Prf(x, y) the predicates PrvPA(x) and PrfPA(x, y).
An arithmetical evaluation is a function f(x) from GL formulas to the sen-

tences of the language of first-order arithmetic such that

1. f(ϕ ∧ ψ) � f(ϕ) ∧ f(ψ);
2. f(ϕ ∨ ψ) � f(ϕ) ∨ f(ψ);
3. f(¬ϕ) � ¬f(ϕ);
4. f(ϕ → ψ) � f(ϕ → ψ);
5. f(
) � 0 = 0;
6. f(⊥) � 0 = 1;
7. f(�ϕ) � Prv(�f(ϕ)�).
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Note that an arithmetical evaluation is uniquely determined by its values on
propositional variables u, v, . . ..

We will use 
, ⊥, �, and ♦ within arithmetical formulas: the expression 

is an abbreviation for 0 = 0, the expression ⊥ is an abbreviation for 0 = 1,
the expression �F is an abbreviation for Prv(�F�), and the expression ♦F is
an abbreviation for ¬Prv(�¬F�). The expressions of the form �nF and ♦nF are
abbreviations for �� . . . �

︸ ︷︷ ︸

n times

F and ♦♦ . . . ♦
︸ ︷︷ ︸

n times

F, respectively.

3 Proof of Solovay’s Theorem

In the section we will just give a proof of “completeness part” of Solovay’s
theorem. Soundness of the logic GL essentially is due to Löb [Lö55] and we refer
a reader to Boolos book [Boo95, Chap. 3] for a detailed proof.

Theorem 1. If a modal formula ϕ is not provable in GL then there exists an
arithmetical evaluation f(x) such that PA � f(ϕ).

Let us fix some modal formula ϕ that is not provable in GL. By Segerberg’s
result [Seg71], we can find a finite transitive irreflexive tree F = (W,≺) such that
r is the root of F and there is a model M on F with M, r � ϕ. For all the worlds
a of F we denote by h(a) their “height”:

h(a) = sup({0} ∪ {h(b) + 1 | a ≺ b}).

Let us assign arithmetical sentences Ca to all the worlds a of F. We put Cr

to be 0 = 0. We consider a non-leaf world a and assign sentences Cb to all its
immediate successors b. Suppose b0, . . . , bn are all the immediate successors of
a. We fix some enumeration b0, . . . , bn such that h(bn) = h(a) − 1. For i < n we
put Cbi to be the sentence

∃x(PrfPA+♦h(a)−1�(x, �0 = 1�) ∧ ∀y < x(¬PrfPA+♦h(a)−1�(y, �0 = 1�))
∧ log�(x) ≡ i (mod n + 1)
∧ ∃y < exp(exp(x))(PrfPA+♦h(bi)�(y, �0 = 1�))).

The sentence Cbn is
�h(a)⊥ ∧

∧

i<n

¬Cbi .

Note that PA � ¬(Cbi ∧ Cbj ), for i �= j and

PA � �h(a)⊥ ↔
∨

i≤n

Cbi .

We note that all Cbi are PA-equivalent to Σ1-sentences: it is obvious for i �= n
and Cbn is equivalent to Σ1-sentence since it states that there is a PA+♦h(a)−1
-
proof of 0 = 1 and in addition it states that the least PA + ♦h(a)−1
-proof of
0 = 1 satisfy certain Δ0(exp)-property.
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We assign sentences Fa to all the worlds a of F. The sentence Fa is
∧

b�a

Cb ∧ ♦h(a)
.

It is easy to see that the disjunction of all Fa’s is provable in PA and any
conjunction Fa ∧ Fb, for a �= b, is disprovable in PA.

Lemma 1. For any set of worlds A we have

PA + �h(r)+1⊥ � ♦
( ∨

a∈A

Fa

)

↔
∨

b,∃a∈A(b≺a)

Fb.

Let us first prove Theorem 1 using Lemma 1 and only then prove the lemma.

Proof. For a variable v we assign the evaluation f(v):
∨

M,a�v

Fa.

By induction on the length of modal formulas ψ we prove that

PA + �h(r)+1⊥ � f(ψ) ↔
∨

M,a�ψ

Fa.

The only non-trivial case for the induction step is when the topmost connective
of ψ is modality. Assume ψ is of the form �χ. From inductive assumption we
know that

PA � �h(r)+1⊥ → (f(χ) ↔
∨

M,a�χ

Fa).

We use Lemma 1:

PA + �h(r)+1⊥ � f(�χ) ↔ �(f(χ))

↔ �(�h(r)+1⊥ ∧ f(χ))

↔ �(�h(r)+1⊥ ∧
∨

M,a�χ

Fa)

↔ �(
∨

M,a�χ

Fa)

↔ �(¬
∨

M,a�¬χ

Fa)

↔ ¬♦(
∨

M,a�¬χ

Fa)

↔ ¬
∨

M,a�♦¬χ

Fa.

↔
∨

M,a��χ

Fa.
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Therefore,
PA + �h(r)+1⊥ � f(ϕ) ↔

∨

M,a�ϕ

Fa.

Since M, r � ϕ, we have PA + �h(r)+1⊥ + Fr � ¬f(ϕ). The sentence Fr is just
equivalent to ♦h(r)
. Hence, by Gödel’s Second Incompleteness Theorem for
PA + ♦h(r)
, the theory PA + �h(r)+1⊥ + Fr is consistent. Therefore, ¬f(ϕ) is
consistent with PA and thus PA � f(ϕ).

In order to prove Lemma 1, clearly, it will be enough to prove the following
two lemmas:

Lemma 2. For any world a from F, we have

PA + �h(r)+1⊥ � ♦Fa →
∨

b≺a

Fb.

Proof. Let us reason in PA + �h(r)+1⊥. Assume ♦Fa. We need to prove
∨

b≺a

Fb.

Let us denote by r = c0 ≺ c1 ≺ . . . ≺ cn = a the maximal chain from r to a. Let
us find the greatest k such that Cck holds.

Note that for any 1 ≤ i ≤ n the sentence �h(ci−1)⊥ implies Cci . Indeed,
�h(ci−1)⊥ implies that Cc for some immediate successor c of ci−1. But since Cc

is Σ1 and we assumed ♦Fa, we would have ♦(Fa ∧Cc), which is possible only for
c = ci.

By a simple check of cases k = 0 and k �= 0 we obtain �h(ck)+1⊥. Therefore,
for all i < k, we have �h(ci)⊥ and hence, for all i ≤ k, the sentence Cci holds.
From �(Fa → ♦h(a)
) and ♦Fa we derive ♦h(a)+1
. Thus, ¬Ca and hence k < n.
Since �h(ck)⊥ implies Cck+1 , we have ♦h(ck)
. Therefore the sentence Fck holds
and finally we derive

∨

b≺a

Fb.

Lemma 3. For any worlds a ≺ b, we have PA + �h(r)+1⊥ � Fa → ♦Fb.

We will use model-theoretic methods in our proof of Lemma 3. More precisely,
we will need to use within PA some facts that we will establish using model-
theoretic methods. There is an approach to formalization in arithmetic of results
obtained by model-theoretic methods that is based on the use of the systems of
the second-order arithmetic. In particular there is a well-known system ACA0

that is a conservative extension of PA. We will use the formalization of model-
theoretic notions in systems of second-order arithmetic that could be found in
Simpson book [Sim09, Sects. II.8 and IV.3].

The key model-theoretic result that we use is the Injecting Inconsistencies
Theorem. We will use the version of the theorem that is a corollary of the version
of the theorem that were proved by Visser and Verbrugge [VV94, Theorem 5.1].
Earlier similar results are due to Hájek, Solovay, Kraj́ıček, and Pudlák [Há84,
Sol89,KP89].
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Definition 1. Suppose M is a model of PA. We denote by M � a the structure
with the domain {e ∈ M | M |= e ≤ a} the constant 0 and partial functions S,
+, and · induced by M on the domain. For two structures A and B with the
constant 0 and (maybe) partial functions S, +, and · we write

1. A ⊆ B if the domain of A is a subset of the domain of B and for any
arithmetical term t(x1, . . . , xn) and elements q1, . . . , qn ∈ A:
(a) if p is the value of t(q1, . . . , qn) in B and p ∈ A then the value of

t(q1, . . . , qn) is defined in A and is equal to p,
(b) if p is the value of t(q1, . . . , qn) in A then the value of t(q1, . . . , qn) is

defined in B and is equal to p;
2. A = B if A ⊆ B and B ⊆ A.

We note that the definition actually could also be applied to models of IΔ0.

We will show in AppendixB that the following theorem is formalizable in
ACA0:

Theorem 2. Let T be an extension of PA by finitely many axioms. Let ConT(x)
denote the formula ∀y(log(y) ≤ x → ¬PrfT(y, �0 = 1�)). Let M be a non-
standard countable model of T. And let q, p be nonstandard elements of M such
that M |= q ≤ p and M |= ConT(pk), for all standard k. Then there exists a
countable model N of T such that p ∈ N and

1. M � p = N � p;
2. M � exp(pk) ⊆ N, for all standard k;
3. N |= ¬ConT(pq);
4. N |= ConT(pk), for all standard k.

Let us now prove Lemma 3 using the formalization of Theorem2.

Proof. It would be enough to prove the lemma for the case when b is an imme-
diate successor of a. Indeed, after that we will be able to derive ♦nFb for any b,
a ≺ b, where n is the length of the maximal chain from a to b; next we could
conclude that we have the required ♦Fb.

Now let us consider the case when b is an immediate successor of a and is bk

in our fixed order b0, . . . , bn of the immediate successors of a.
For the rest of the proof we reason in ACA0 + Fa + �h(r)+1⊥ in order to

show that we have ♦Fb; since ACA0 is a conservative extension of PA, this will
conclude the proof.

Since we have ♦h(a)
, we could construct a model M of PA + ♦h(a)−1
.
Suppose v ∈ M is the least PA + ♦h(a)−1
-proof of 0 = 1 in M, if there exists
one and an arbitrary nonstandard number, otherwise. Note that since we have
♦h(a)
, the element v couldn’t be standard. Next we find some nonstandard
u ∈ M such that

1. M |= exp(exp(u)) < v,
2. M |= log�(u + 1) ≡ k − 1 (mod n + 1),
3. M |= log�(u) ≡ k − 2 (mod n + 1).
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We can find u with this properties since we know that the functions exp(x)
and exp�(x) are total on standard natural numbers and hence we know that the
functions log(x) and log�(x) map nonstandard elements to nonstandard elements
in M.

Now we apply Theorem 2 to the model M with p = u and q = log(u)+1. We
obtain a model M′ of PA + ♦h(a)−1
 such that M � u = M′ � u and there is the
least PA + ♦h(a)−1
-proof d ∈ M′ of 0 = 1 such that

M′ |= u + 1 < u2 < log(d) ≤ ulog(u)+1 ≤ exp((log(u) + 1)2) < exp(u).

Thus,
M′ |= log�(d) ≡ k (mod n + 1).

If h(b) = h(a) − 1, then we have constructed a model of PA + Cb + ♦h(b)
.
Assume h(b) < h(a) − 1. Clearly, there are no PA + ♦h(b)
-proofs of 0 = 1

in M′. We apply Theorem 2 to M′ with p = dlog(d)+1 and q = log(d) + 1. We
obtain a model M′′ of PA + ♦h(b)
 such that

M′ � dlog(d)+1 = M′′ � dlog(d)+1,

there is a PA + ♦h(b)
-proof of 0 = 1 in M′′ and for the least PA + ♦h(b)
-proof
e ∈ M′′ of 0 = 1 we have

M′′ |= log(e) ≤ d(log(d)+1)2 ≤ exp((log(d) + 1)3) < exp(d).

Since M′ � dlog(d)+1 = M′′ � dlog(d)+1 and Prf(x, y) is a Δ0 predicate, we see
that d is the least PA + ♦h(a)−1
-proof of 0 = 1 in M′′. Hence M′′ is a model of
PA + Cb + ♦h(b)
.

Thus, under no additional assumptions, we have a model of PA+Cb +♦h(b)
.
Since all Cc, for c � a, are Σ1-sentences, actually we have a model of PA + Fb.
Therefore, ♦Fb.

4 Conclusions

In the present paper we have gave a new method of constructing arithmetical
evaluations of modal formulas from a given Kripke model and proved arithmeti-
cal completeness of GL with respect to provability in PA using the method. We
consider the evaluations that have been constructed in the paper to be more
“natural” than the evaluations provided by Solovay’s proof.

We proved the theorem specifically for the standard provability predicate for
PA. It is unclear to author, for what exact class of provability predicates our
methods are applicable. The most essential limitation for our technique seems
to be the fact that it relies on the formalized version of Theorem 2. It seems very
likely that for theories that are stronger than PA one could apply our method
with only minor adjustments. In particular, it seems that for a general result
one would need to modify Prf-predicates while preserving Prv-predicate (up to
provable equivalence) in order to ensure that [VV94, Theorem 5.1] is applicable.
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For theories that are weaker than PA, there are more significant problems with
adopting our technique. Namely, our technique essentially relies on formalized
version of the Injecting Inconsistencies Theorem. And the proofs of stronger
versions of this theorem [KP89,VV94] essentially rely on the Omitting Types
Theorem. We have provided a proof of the Omitting Types Theorem in ACA0 in
AppendixA, but it is not clear whether it could be done in weaker systems. The
author is not familiar with results that calibrate reverse mathematics strength
of the required version of the Omitting Types Theorem. We note that reverse
mathematics analysis of other version of Omitting Types Theorem have been
done by Hirschfeldt et al. [HSS09], in particular from their results it follows
that their version of the Omitting Types Theorem is not provable in WKL0 but
follows from RT2

2 (and thus couldn’t be equivalent to ACA0 over RCA0). But
nevertheless, we conjecture that the same kind of evaluations as we have gave in
Sect. 3 will provide completeness of GL for all finitely axiomatizable extensions
of IΔ0 + Exp.

Also, since the technique that were introduced in the paper is significantly
different from Solovay’s technique, it seems plausible that it may give some
advantage for some open problems, for which Solovay’s method have been the
“default approach” before (see [BV06] for open problems in provability logic).
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A Formalization of the Omitting Types Theorem

In order to formalize Theorem2 in ACA0 we will first show that the Omitting
Types Theorem is formalizable in ACA0. We will adopt the proof from [CK90].
We remind a reader that we use the approach to formalization of model theory
from Simpson book [Sim09].

Definition 2 (ACA0). Let T be a first-order theory and Σ = Σ(x1, . . . , xn) be
a set of formulas of the language of T that have no free variables other than
x1, . . . , xn. We say that T locally omits Σ if for every formula ϕ(x1, . . . , xn) at
least one of the following fails:

1. the theory T + ϕ is consistent;
2. for all ψ ∈ Σ we have T � ∀x1, . . . , xn(ϕ → ψ).

We say that a model M of T omits Σ if for any a1, . . . , an ∈ M there is a
formula ψ(x1, . . . , xn) ∈ Σ such that M �|= ψ(a1, . . . , an).

Theorem 3 (ACA0). Suppose T is a consistent theory that locally omits the set
of formulas Σ(x1, . . . , xn). Then there is a model M of T that omits the set Σ.
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Proof. We will follow the proof of [CK90, Theorem 2.2.9] but make sure that our
arguments could be carried out in ACA0.

We will prove the theorem for n = 1, i.e. Σ = Σ(x). The case n > 1 could be
proved essentially the same way, but the notations would be more complicated.

We extend the language of T by fresh constants c0, c1, . . .. We arrange all
sentences of the extended language in a sequence ϕ0, ϕ1, . . . (since we work in
ACA0 the formulas are encoded by Gödel numbers and we could arrange them
by their Gödel numbers). We will construct a sequence of finite sets of sentences

∅ = U0 ⊂ U1 ⊂ . . . ⊂ Um ⊂ . . .

such that for every m we have the following:

1. Um is consistent with T;
2. either ϕm ∈ Um+1 or ¬ϕm ∈ Um+1;
3. if ϕm is of the form ∃xψ(x) and ϕm ∈ Um+1 then ψ(cp) ∈ Um+1, where cp is

the first ci that doesn’t occur in Um or ϕm;
4. there is a formula χ(x) ∈ Σ such that ¬χ(cm) ∈ Um+1.

We will give the definition that will determine unique sequence U0,U1, . . .. We
want to make sure that for our definition of the sequence U0,U1, . . ., the property
of a number x to be the code of the sequence 〈U0,U1, . . . ,Uy〉 is expressible by a
formula without second-order quantifiers. If we will ensure this, then we will be
able to construct a set that encodes the sequence U0,U1, . . . ,Um, . . . using the
arithmetic comprehension.

Let us define Um+1 in terms of Um. If ϕm is consistent with T ∪ Um then we
put σm to be ϕm. Otherwise we put σm to be ¬ϕm. If σm is ϕm and is of the form
∃xψ(x) then we put ξm to be ψ(cp), where cp is the first ci that doesn’t occur in
Um or ϕm. Otherwise, we put ξm to be equal to σm. We choose the formula χ(x)
with the smallest Gödel number such that χ(x) ∈ Σ and T �

∧

Um → χ(cm).
We put Um+1 = Um ∪ {ξm, σm, χ(cm)}.

It is easy to see that for this definition, indeed, we could express by a formula
without second-order quantifiers the property of a number x to be the code of
the sequence 〈U0,U1, . . . ,Uy〉. By a trivial induction on y we could prove that
for every y the said sequence exists and unique. Thus, we have obtained the
sequence U0,U1, . . . ,Um, . . . encoded by a set.

Now, using the definition of the sequence, we could easily prove that the
sequence satisfy the conditions 1, 2, 3, and 4.

We consider the union T ∪ ⋃

i∈N

Ui = T′. By condition 1. the theory T′ is

consistent. By condition 2. the theory T′ is complete. By condition 3. the theory
T′ gives the truth definition with Tarski conditions for a model with the domain
{c0, c1, . . .}; this gives us a model M of T′ with the domain {c0, c1, . . .}. By
condition 4. The model M omits the set Σ.
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B Formalization of the Injecting Inconsistencies Theorem

Now we are going to check that Theorem 2 is provable in ACA0. Below we assume
that a reader is familiar with the paper [VV94] and we will use some notions
from the paper without giving the definitions here.

Theorem 4. Let R ⊂ IΔ0 + Ω1 be a finitely axiomatizable theory. Then ACA0

proves the following:
Let T ⊇ IΔ0 + Ω1 be a Σb

1-axiomatized theory for which the small reflection
principle is provable in R. Let ConT(x) denote the formula ∀y(log(y) ≤ x →
¬PrfT(y, �0 = 1�)). Let M be a non-standard model of T and let c, a be non-
standard elements of M such that M |= c ≤ a, exp(ac) ∈ M, and M |= ConT(ak),
for all standard k. Then there exists a model K of T such that a ∈ K and

1. M � a = K � a;
2. M � exp(ak) ⊆ K, for all standard k;
3. K |= ¬ConT(ac);
4. for all standard k we have K |= ConT(ak);
5. K |= exp(ac) ↓.
Proof. Essentially, we just need to formalize the proof of [VV94, Theorem 5.1]
in ACA0. The only difference between our formulation and the formulation by
Visser and Verbrugge is that we have replaced the requirement that the small
reflection principle is provable in IΔ0 + Ω1 with a stronger requirement that
states that the small reflection principle is provable in R. First, we show how to
formalize the proof itself and then explain why the results used in the proof are
formalizable in ACA0.

The only non-trivial part of the formalization of the proof itself is the issue
with the lack of truth definition for the cut

N = {u ∈ M | u < exp(ak), for some standard k}
of M. However, for the purposes of the proof, it would be enough for N to
be a weak model (i.e. poses truth definition only for axioms, [Sim09, Defini-
tion II.8.9]). Moreover, unlike the original proof of Visser and Verbrugge, we
just need N to be a weak model of R + BΣ1 rather than a model of BΣ1 + Ω1.
And since R is externally fixed finitely axiomatizable theory, we could create
the required truth definition straightforward using arithmetical comprehension.
Other parts of the proof could be formalized without any complications.

The proof of [VV94, Theorem 5.1] used Wilkie and Paris result
[WP89, Theorem 1], Pudlák results from [Pud86], and the Omitting Types The-
orem. We have already formalized the Omitting Types Theorem in AppendixA.
The proof of [WP89, Theorem 1] is trivial and could be easily formalized in ACA0.
The technique of [Pud86] is purely finitistic and thus could be easily formalized
in ACA0.

Now we want to derive the formalization of Theorem 2 from Theorem 4. In
order to do it, we first need to fix some finite fragment R ⊂ IΔ0 + Ω1. And next we
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need to show in ACA0 that all the extensions of PA by finitely many axioms are
Σb

1-axiomatizable extensions of IΔ0 + Ω1 for which R proves the small reflec-
tion principle. Obviously, extensions of PA by finitely many axioms are
Σb

1-axiomatizable (and it could be checked in ACA0).
In [VV94, Theorem 4.20] it were established that IΔ0 + Ω1 proves small reflec-

tion principle for IΔ0 + Ω1. By inspecting the proof, it is easy to see that it is
possible to use only finitely many axioms of IΔ0 + Ω1 in order to prove all the
instances of the small reflection principle. Now we will indicate how to mod-
ify the proof of [VV94, Theorem 4.20] in order to prove in a finite fragment of
IΔ0 + Ω1 all the instances of the small reflection principle for all the extensions
of PA by finitely many axioms. Actually, the only part of the proof that should
be changed is [VV94, Lemma 4.16] that were needed to deal with the schema of
Δ0-induction schema in the case of IΔ0 + Ω1-provability. For our adaptation we
need to replace it with the analogous lemma that will deal with schema of full
induction in the case of provability in PA. This analogous lemma could be proved
essentially in the same way as [VV94, Lemma 4.16] itself with the only differ-
ence that the last part of the proof that were reducing an instance of induction
schema to an instance of Δ0-induction schema will not be needed any longer.
This concludes the proof of Theorem 2 in ACA0.
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