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Abstract. Categorical compositional models of natural language
exploit grammatical structure to calculate the meaning of sentences from
the meanings of individual words. This approach outperforms conven-
tional techniques for some standard NLP tasks. More recently, similar
compositional techniques have been applied to conceptual space models
of cognition.

Compact closed categories, particularly the category of finite dimen-
sional vector spaces, have been the most common setting for categorical
compositional models. When addressing a new problem domain, such as
conceptual space models of meaning, a key problem is finding a compact
closed category that captures the features of interest.

We propose categories of generalized relations as source of new, prac-
tical models for cognition and NLP. We demonstrate using detailed
examples that phenomena such as fuzziness, metrics, convexity, seman-
tic ambiguity and meaning that varies with context can all be described
by relational models. Crucially, by exploiting a technical framework
described in previous work of the authors, we also show how we can
combine multiple features into a single model, providing a flexible family
of new categories for categorical compositional modelling.

1 Introduction

Distributional models of language describe the meaning of a word using co-
occurrence statistics derived from corpus data. A central question with these mod-
els is how to combine meanings of individual words, in order to understand phrases
and sentences. Categorical compositional models of natural language [15] address
this problem, providing a principled approach to combining the meanings of words
to form the meanings of sentences, by exploiting their grammatical structure. They
also outperform conventional techniques for some standard NLP tasks [23,29].

Distributional models of language can be thought of as “process theories” [16]
A process theory consists of a graphical language for reasoning about compos-
ite systems of abstract processes, and a categorical semantics modelling the
application domain. A particularly important class of categorical models are the
compact closed categories, which come equipped with an elegant graphical cal-
culus. Process theoretic models built upon compact closed categories have been
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successfully exploited in many application areas, including quantum computa-
tion [1], signal flow graphs [11], control theory [2], Markov processes [4], electrical
circuits [3] and even linear algebra [43].

Recently [9], the categorical compositional approach to meaning has been
applied to the conceptual space models of human cognition introduced in [21,22].
When addressing a new application domain, it is necessary to identify a compact
closed category with mathematical structure compatible with the application
phenomena of interest.

Amongst the compact closed categories the hypergraph categories [20] are a
particularly well behaved class of practical interest. In [33] we presented a flexible
parameterized mathematical framework for constructing hypergraph categories.
We view this framework as a practical tool for building new models in a prin-
cipled manner, by varying the parameter choices according to the needs of the
application domain. These models are based upon generalizing the well under-
stood notion of a binary relation, providing a concrete and intuitive setting for
model development.

In the present work we demonstrate, via extensive examples, that categories
of generalized relations present an attractive setting for constructing new models
of language and cognition. We emphasize the intuitive interpretation of the mod-
els under construction, and their connections to concrete ideas in computation,
NLP and further afield. These examples are structured as follows:

– In Sect. 3 we introduce relations with generalized truth values, and exploit
them to model features such as distances, forces, connectivity and fuzziness.
Relations with generalized truth values are well known in the mathematical
community, but seem to have received little attention from the perspective of
compositional semantics, with the recent exception of [19].

– In Sect. 4 we generalize relations in another direction, considering relations
that respect algebraic structure. These relations can capture features such
as convexity, which is important in conceptual spaces models [21,22]. In this
case, we recover a model first used in [9], originally constructed in an ad-hoc
manner using techniques from monad theory and the theory of regular cate-
gories. Importantly, we then show that we can combine generalized truth val-
ues with relations respecting algebraic structure, providing conceptual space
models with access to distance measures.

– In Sect. 5 we view spans as generalized “proof aware” relations in which the
apex of the span contains witnesses to relatedness between the domain and
codomain. Spans can be extended to support generalized truth values, and
to respect algebraic structure. Exploiting a combination of these features,
we construct a new model of semantic ambiguity in conceptual space models
of natural language, in which different proof witnesses allow us to vary how
strongly different words are related, depending on how they are interpreted.

– The previous examples were essentially built upon the category of sets. Our
techniques can be applied with different choices of ambient topos. In Sect. 6,
as a practical example of this feature, we use presheaf toposes to build models
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in which meanings can vary with context, such as the progress of time or states
of the world.

All of our models are preorder enriched, providing a natural candidate for
modelling semantic entailment or hyponymy [5,6]. Preorder enrichment also
means we can consider internal monads within our various categories of relations.
We emphasize the importance of these internal monads throughout our discus-
sions. They provide access to important structured objects such as preorders,
generalized metric spaces and ultrametric spaces, and similar well behaved rela-
tionships when we combine various modelling features.

2 Compositional Models of Meaning

The grammatical structure of natural language can be modelled using Lambek’s
pregroup grammars [31].

Definition 1. A pregroup is a tuple (X, ·, 1, (−)l, (−)r,≤) where (X, ·, 1,≤)
is a partially ordered monoid, or pomonoid, and (−)r, (−)l are unary functions
of type X → X such that for all x ∈ X the following conditions hold,

1 ≤ x · xl xl · x ≤ 1 1 ≤ xr · x x · xr ≤ 1

We say that x reduces to x′ if x ≤ x′.

A grammar is typically described using the free pregroup over some set of basic
types. For example, we may consider the free pregroup of the set {n, s} where n
and s are basic types for nouns and sentences respectively. More complex terms
are then built up using the algebraic operations, for example the type of a
transitive verb is nrsnl. We can calculate the type of a phrase by composing the
types of the individual terms using the monoid multiplication. For example, the
phrase “mice eat cheese” has type n(nrsnl)n. A composite term is then a well
typed sentence if its type reduces to the sentence type. For example:

n(nrsnl)n = (nnr)s(nln) ≤ s(nln) ≤ s

and so “mice eat cheese” is a well typed sentence. In this way, pregroups give us
access to the compositional features of language.

On the other hand, distributional models [40] of the meaning of words in
natural language are built using vector space models automatically derived from
co-occurrence statistics in a large corpus of text. The key observation of the cat-
egorical compositional approach to natural language is that both pregroups and
the category of finite dimensional real vector spaces carry the same categorical
structure, that of an autonomous category.

Definition 2. A monoidal category V has left/right duals if every object has
an internal left/right adjoint when V is regarded as a one object bicategory.
An autonomous category is a monoidal category in which every object has
both left and right duals. A compact closed category is a symmetric monoidal
category in which every object has right duals.
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A straightforward application oriented introduction to monoidal categories and
compact closed categories can be found in [17].

This observation can be exploited to derive the meanings of sentences from
the meanings of words. We fix a strong monoidal functor from a pregroup describ-
ing grammatical structure to the category of finite dimensional vector spaces.
This functor maps type reductions to linear maps, allowing us to automatically
derive the meaning of a sentence from its constituent parts. Clearly, this app-
roach can be seen as an instance of functorial semantics. By varying the domain
and preserved structure we can consider different categorial grammars [14]. By
varying the codomain we can consider different models, as has been important in
recent work broadening the scope to mathematical models of cognition [9,10].
When varying the category of meanings, it is desirable to remain within the
domain of compact closed categories, in order to exploit connections with pre-
vious linguistic developments, and to retain access to their powerful graphical
calculus.

The question then becomes: How can we find or construct compact closed cat-
egories with desirable mathematical properties? This is the question we explore
in this paper. In fact, our constructions produce a subclass of compact closed
categories, referred to as hypergraph categories [20,30], and so this is where we
shall focus our attention.

Definition 3. A hypergraph category is a symmetric monoidal category in
which every object is equipped with a choice of special commutative Frobenius
algebra, coherently with the monoidal structure.

Details of the notion of a Frobenius algebra, and linguistic applications including
modelling relative pronouns can be found in [38,39]. If I is the monoidal unit, we
will occasionally refer to morphisms of types I → X and X → I as the states
and effects of X. Morphisms of type I → I are referred to as numbers.

Example 1. The category Rel of sets and binary relations between them can be
given the structure of a hypergraph category. The monoidal structure is given
by forming Cartesian products of sets. A state of a set X is a subset of X and
the numbers are the Boolean truth values. The Frobenius algebra is given by the
copying relation x ∼ (x, x) : X → X × X, the deletion relation x ∼ ∗ : X → I,
and their converses.

All the compact closed categories discussed in this paper will be hypergraph
categories, generalizing Example 1 along different axes of variation.

3 Generalized Truth Values

A binary relation R : A → B between sets can be identified with a characteristic
function of type A×B → {�,⊥} mapping the related pairs of elements to �. It
is fruitful to consider generalizing the codomain of such characteristic functions
to a set Q, thought of as a collection of truth values. We can then consider
functions of the form A × B → Q as generalized relations, with truth values
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in Q. In order for the corresponding binary relations to have satisfactory notions
of identities and composition, the set Q must carry the structure of a quantale.

Definition 4 (Quantale). A quantale is a join complete partial order Q
with a monoid structure (⊗, k) satisfying the following distributivity axioms, for
all a, b ∈ Q and A,B ⊆ Q:

a ⊗
[∨

B
]

=
∨

{a ⊗ b | b ∈ B}
[∨

A
]

⊗ b =
∨

{a ⊗ b | a ∈ A}

A quantale is said to be commutative if its monoid structure is commutative.

All the quantales encountered in this paper will be commutative. We introduce
some examples of importance in later developments.

Example 2. The Boolean quantale is given by the two element complete
Boolean algebra B = {�,⊥}, with the join and multiplication given by the
join and meet in the Boolean algebra.

Example 3. The Lawvere quantale L is given by the chain [0,∞] of extended
positive reals with the reverse ordering, hence minima in [0,∞] provide the joins
of the quantale, and the monoid structure is given by addition.

Example 4. The quantale F has again the extended positive reals with reverse
order as its partial order, but now with max as the monoid multiplication.

Example 5. The interval quantale I is given by the ordered interval [0, 1] with
minima as the monoid structure.

For a quantale Q, the Q-relations form a category Rel(Q) with composition and
identities1

(S ◦ R)(a, c) =
∨
b

R(a, b) ⊗ S(b, c) 1A(a, b) =
∨

{k|a = b}

If Q is a commutative quantale, Rel(Q) carries a symmetric monoidal structure,
with the tensor product of objects given by the cartesian product of sets, and
the action on relations given for R : A → C and S : B → D by

(R ⊗ S)(a, b, c, d) = R(a, c) ⊗ S(b, d)

The singleton set is the monoidal unit. A key observation from the perspective
of this paper is:

Theorem 1. Rel(Q) is compact closed with respect to this monoidal structure.

Now that we have described how Q-relations compose, we can consider com-
putational interpretations for our example choices of quantale.
1 The slightly unusual formulation of identities is to avoid definition by cases. This

means they can be interpreted in the internal language of an arbitrary topos.
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Example 6. The relations over the Lawvere quantale L can be thought of as
describing costs. The value R(a, b) describes the cost of converting a into b.
A cost of 0 means they are maximally related and can be freely inter-converted.
A cost of ∞ indicates completely unrelated values, that cannot be converted
between each other for finite cost. The value (S ◦R)(a, c) describes the cheapest
way of converting a into some b, and then converting that b into c, and adds the
associated costs. If we perform two conversions in parallel (R ⊗ R′)(a, a′, b, b′)
describes the sum of the two individual conversion costs.

In this setting, we can think of a state I → A as giving a table of costs for
acquiring the resources in A, and similarly an effect A → I is a table of costs for
disposing of resources in A.

Example 7. The quantale F has the same underlying set as the Lawvere quan-
tale, but its different algebraic structure leads to a very different interpretation.
We think of R(a, b) as the peak force required to move a to b. The value given
by the composite (S ◦R)(a, c) then describes optimum peak force we will require
to move a to c. For example if we can convert a to b with one unit of force,
and then move b to c for two units of force, then the peak force required is
two units. An alternative procedure converting a to b′ for zero units of cost,
and then converting b′ to c for 2.5 units of cost has a peak cost of 2.5 units, so
we would prefer the first procedure to minimize our peak effort. Similarly, the
truth value (R ⊗ R′)(a, a′, b, b′) gives the peak force required to complete both
conversions, assuming these costs are independently incurred.

As with Example 6, we can think of states and effects as tables of acquisition
and elimination forces.

Example 8. We can interpret ordinary relations over the Boolean quantale as
modelling connectivity. R(a, b) tells us that a is connected to b, composition
tells us that we can chain connections together, and the tensor product tells
us that we can connect pairs of elements together using a pair of connections
between their components. Generalizing to the interval quantale, we now think
of R(a, b) as a “connection strength” between a and b. The composite (S◦R)(a, c)
gives the best connection quality that we can achieve in two steps via B. Sim-
ilarly, the parallel composite (R ⊗ R′)(a, a′, b, b′) gives a conservative judgment
of the connection quality we can achieve simultaneously between both a and b
and a′ and b′ as the lower of the two individual connection strengths. States
describe the “transmission strength” with which signals enter the system from
the environment, and effects describe the “reception quality” when consuming
output signals.

Alternatively, we could view relations over I as fuzzy relations, with states
and effects sets with fuzzy membership, and fuzzy predicates. Graded member-
ship is widely used in cognitive science, for example in [8,18,24,25,37]. Concepts
such as ‘tall’ have no crisp boundary and are better modelled using grades of
membership. Although human concept use does not obey fuzzy logic [35], fuzzy
relations may prove useful.
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Rel(Q) is partial order-enriched if we order relations pointwise with respect
to the underlying quantale order. It therefore makes sense to consider internal
monads in Rel(Q) as interesting “structured objects”. An internal monad on an
object in a partially ordered category is an endomorphism R satisfying:

(R ◦ R) ⊆ R, 1A ⊆ R (1)

Example 9. If we specialize condition (1) to Rel(L), it is equivalent to:

R(a, b) + R(b, c) ≥ R(a, c), 0 = R(a, a)

We therefore consider these internal monads as describing generalized metric
spaces. This observation is important in the field of monoidal topology [26].

As before, we can also interpret our internal monad as giving a well behaved
collection of conversion costs between resources. Converting a resource to itself is
free, and converting a resource via an intermediate state is at least as expensive
as taking the direct route. Similarly, if we consider Rel(F) the conditions of (1)
become:

max(R(a, b), R(b, c)) ≥ R(a, c), 0 = R(a, a)

and we can therefore see such internal monads as generalized ultrametric spaces.
Again, the interpretation in terms of maximum force requirements extends to a
sensible interpretation of these axioms.

Example 10. Internal monads in the category of ordinary relations are preorders
on their underlying set. The generalization to the interval quantale then gives a
fuzzy generalization of the notion of preorder. We can also apply our intuition
in terms of connection strengths. Reflexivity tells us that every element can be
perfectly connected to itself. Transitivity tell us that the optimal connection
strength available is always at least as good as connecting via an intermediate
node.

4 Incorporating Convexity

Up to this point, the domain and codomain of our relations have been sets. If we
fix an algebraic structure (Σ,E) with set of operations Σ and equations between
terms E, we can define a notion of binary relation between these algebras.

Definition 5. An algebraic Q-relation of type A → B is an ordinary Q-
relation R between the underlying sets, such that for each operation σ ∈ Σ of
arity n the following inequation holds in the quantale order:

R(a1, b1) ⊗ ... ⊗ R(an, bn) ≤ R(σ(a1, ..., an), σ(b1, ..., bn))

As shown in [33], algebraic Q-relations form a hypergraph category:

Theorem 2. For commutative quantale Q and algebraic signature (Σ,E) there
is a hypergraph category Rel(Σ,E)(Q) with objects (Σ,E)-algebras and mor-
phisms algebraic Q-relations.
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In the conceptual spaces literature, convexity is conceptually important. In [9]
this convexity was captured using relations between convex algebras. We refer
to [9] and the extended paper [10] for explicit modelling of toy computations of
composed concepts in this category.

These convex algebras can be described as the Eilenberg-Moore algebras of
the finite distribution monad. They can in fact be presented by a family Σc of
binary operations

+p, p ∈ (0, 1)

satisfying suitable axioms. We can read x +p y as “choose x with probability p
and y with probability (1 − p)”. By considering algebraic B-relations over this
signature, we can construct a category isomorphic to the category ConvexRel
of convex relations from [9]. By changing our quantale of truth values, we can
go further than this.

Proposition 1. In the category of convex L-relations, the internal monads are
generalized metric spaces satisfying the additional axioms for p ∈ (0, 1):

R(a1, b1) + R(a2, b2) ≥ R(a1 +p b1, a2 +p b2)

So internal monads in the category of convex relations over the Lawvere quan-
tale are generalized metric spaces that interact well with formation of convex
mixtures. The usual distance on R

n is an example of such a metric.
As shown in [33], every quantale homomorphism h : Q1 → Q2 induces a

strict monoidal functor of type Rel(Σ,E)(Q1) → Rel(Σ,E)(Q2). If the quantale
morphism is injective, this functor is faithful. In particular, the mapping ⊥ �→
∞;� �→ 0 is an injective quantale homomorphism from the Boolean to the
Lawvere quantale. This means we can find the ordinary Boolean binary relations
as a monoidal subcategory of the category Rel(L). This presents some flexible
modelling possibilities. If U and V are two subsets of a set X, they induce two
states U, V : I → X in Rel(B). If we consider the number V ◦ ◦ U , where R◦

denotes relational converse, it evaluates to true if and only if U ∩ V �= ∅.

Proposition 2. If U, V ⊆ X and d is an internal monad in Rel(L), the com-
posite V ◦ ◦ d ◦ U is the infimum of the distances between elements in U and V .

This gives us the greatest lower bound on the distances between elements in U
and V , providing a finer grain measure of similarity than can conventionally be
achieved in relational models. We note that as distances are in general asymmet-
ric, the number U◦◦d◦V may give a different measure of similarity. Similarly, we
can find the ordinary Boolean convex relations within the category of L-valued
convex relations, presenting analogous opportunities for performing calculations
with discrete convex relations, and then measuring their separation on a contin-
uum of values.

Such asymmetric distance measures are of practical use in cognitive science
applications. A fundamental concept in psychology is that of similarity, which
can be used as the basis of concept formation. Similarity between objects or
concepts can be explained by locating objects in some sort of conceptual or
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feature space, and modelling similarity as a function of distance, for example
in [42]. However, judgements of similarity are not necessarily symmetric [45].
In one study examining the similarity between pairs of countries, participants
are asked to choose between statements ‘Country A is similar to country B’
or ‘Country B is similar to country A’. In all cases, a majority of participants
preferred the statement where the latter country was considered more prominent.

5 Proof Relevance

A span S of sets, between sets A and B, is a set X and a pair of functions
X

p1−→ A and X
p2−→ B. Paralleling the notation for relations, we will write

Sx(a, b) := x ∈ X ∧ p1(x) = a ∧ p2(x) = b

We can think of such a span as a proof relevant relation in which Sx(a, b) tells
us that x witnesses that a and b are related. In a computational linguistics or
cognition application where relations may have been derived automatically from
data in some way, we can exploit these proof witnesses to track evidence for our
beliefs that certain relationships hold.

Sets and spans between them form a hypergraph category Span with compo-
sition given by pullback, and tensor product induced by a choice of products2. In
fact, as we did for relations, we can extend these spans with algebraic structure
and a choice of truth values in a partially ordered monoid. We no longer require
full quantale structure on our truth values, as multiple proof witnesses mean
we don’t need to choose a single representative truth value when composing
relations.

Definition 6. For an algebraic signature (Σ,E) and pomonoid Q an algebraic
Q-span of type A → B between (Σ,E)-algebras is a span A

p1←− X
p2−→ B

between the underlying objects, with a characteristic morphism χ : X → Q.
We require that the algebraic structure is respected in that for all σ ∈ Σ, with
arity n:

∧
1≤i≤n

(p1(xi) = ai ∧ p2(xi) = bi) ⇒
⊗

1≤i≤n

χ(xi) ≤ χ(σ(x1, ..., xn))

Intuitively, these are intensional relations in which proof witnesses are weighted
by a truth value, and the relations respect the algebraic structure. As shown
in [33], algebraic Q-spans also form a hypergraph category:

Theorem 3. For commutative pomonoid Q and algebraic signature (Σ,E) there
is a hypergraph category Span(Σ,E)(Q) with objects (Σ,E)-algebras and mor-
phisms algebraic Q-spans.

2 In fact, in order for composition to be associative, it is necessary to work with
equivalence classes of spans. It is sufficient to consider representatives, and we do so
to avoid distracting technicalities.
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For algebraic Q span S we define

Sq
x(a, b) := x ∈ X ∧ p1(x) = a ∧ p2(x) = b ∧ χ(x) = q

We then read Sq
x(a, b) as telling us that x witnesses that a and b are related with

strength q. In fact, we can order algebraic Q-spans in a manner similar to that
for relations, but accounting for proof witnesses.

Definition 7. For pomonoid Q, we define a preorder on algebraic Q-spans by
setting (X1, f1, g1, χ1) ⊆ (X2, f2, g2, χ2) if there is a Set-monomorphism ϕ :
X1 → X2 such that f1 = f2 ◦ ϕ, g1 = g2 ◦ ϕ and ∀x . χ1(x) ≤ χ2(ϕ(x)).

The ordering accounts pointwise for strengths of relatedness in a natural way.
The requirement that the function ϕ in Definition 7 is a monomorphism ensures
that even if our truth values are trivial, we take account of the “number” of
proof witnesses available.

As internal monads provided interesting objects in the setting of relations,
we should consider them in the span setting as well.

Proposition 3. An internal monad on A in Span(L) is an L-span S : A → A
such that if Sp

x(a1, a2) and Sq
y(a2, a3) we can choose an element ϕ(x, y) of the

apex such that Sr
ϕ(x,y)(a1, a3) and p + q is greater than r in the usual order-

ing on the real numbers. Furthermore, we can do this in a way such that the
assignment ϕ is injective.

So internal L-span monads further generalize metric spaces to incorporate mul-
tiple possible distances, which we can think of as describing different paths
between points. We now outline a new practical application of spans in models of
language.

Example 11 (Semantic Ambiguity via Spans). In natural language, we often
encounter ambiguous situations. For example the word “bank” can refer to either
a “river bank” or a “financial bank”. A compositional account of semantic ambi-
guity was presented in [36], using mathematical models of incomplete informa-
tion from quantum theory. The techniques applied implicitly assume meanings
are built upon a vector space model, to which we apply Selinger’s CPM construc-
tion [41] to yield a new category of ambiguous meanings. The CPM construction
can also be applied to categories of relations, but in this case it does not provide
a satisfactory model of ambiguity [34].

An alternative approach to ambiguity in relational models is to use spans.
We consider how the ambiguous word “bank” is related to the word “water”

– In the “river bank” context, we would expect a strong relationship
– In the “financial bank” context, we would expect a weaker relationship

By using spans rather than relations, we can introduce two different proof wit-
nesses for the different contexts under consideration. By choosing our quantale
of truth values to be the Lawvere quantale L, we can attach a different choice
of distance to each of these choices. As we compose spans to describe the mean-
ings of phrases and sentences, the proof witnesses will keep track of the different
possible relationships in play.
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6 Variable Contexts

Our definitions of algebraic Q-relations and algebraic Q-spans are constructive.
This means that Theorems 2 and 3 continue to hold for any elementary topos,
as proved in [33]. Standard sources on topos theory are [12,27,28,32]. We will
write RelE(Σ,E)(Q) and SpanE

(Σ,E)(Q) for the categories of spans and relations, to
make the choice of topos E explicit. This generalization has practical implications
if we move to different choices of background topos.

Definition 8. Let C be a small category. A presheaf on C is a functor of
type Cop → Set. Presheaves and natural transformations between them form
a topos, denoted SetCop

. For presheaf X over a preorder, we will write Xi for
the set in the image under X of element i of the preorder, and Xi,j for the image
of j ≤ i under X.

Presheaves can be interpreted as sets varying with context. This is exactly the
perspective we shall adopt in our examples. To exploit our generalized span
construction, we need to describe internal pomonoids in presheaf categories.

Lemma 1. A commutative partially ordered monoid in a presheaf cate-
gory SetCop

is a presheaf Q such that for each C-object x and C-morphism f ,
Q(x) is a commutative pomonoid and Q(f) is a pomonoid morphism in Set.
See [28, D1.2.14].

Example 12 (Temporal dependence). In Example 11 we modelled ambiguity
using multiple proof witnesses to describe different interpretations of words.
We now investigate the description of time dependent ambiguous relationships,
by exploiting spans over presheaves. To do so, we consider presheaves over the
partial order N = 0 ← 1 ← 2... having objects natural numbers. We view these
presheaves as sets varying in time. We assume our notion of truth is fixed, and
so we will consider SpanSetN

op

(L), where L is the constant presheaf on the
pomonoid underlying the Lawvere quantale. An L-span between presheaves X
and Y then consists of natural transformations p1 : X ⇒ A and p2 : X ⇒ B,
and a characteristic natural transformation χ : X ⇒ L. We see naturality as a
consistency condition between the relationships described by proof witnesses, as
they move forward in time. As our pomonoid is constant, χi(x) = χj(Xi,j(x)),
so the truth value associated with a proof witness is preserved through time.
Intuitively, in this model, a steadily increasing collection of relationships hold
over time.

Example 13 (Perspective Dependence). In Example 12, the truth object was
fixed in all contexts. We now examine a brief example in which our notion of
truth is context dependent. Consider two agents. Agent 0 has a binary view of
the world, relationships either hold or they don’t. Agent 1 has a richer view incor-
porating different strengths of relation in the unit interval. Consider presheaves
on the category C with a single non-trivial arrow 0 ← 1. We define an internal
pomonoid Q with Q(0) = B, Q(1) = I and Q0,1 the canonical pomonoid mor-
phism between the Boolean and interval quantales. Now if we consider a Q-span
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between constant presheaves A and B with apex an arbitrary presheaf X, we can
think of it as follows. Each element of X0 relates two elements a ∈ A and b ∈ B
with strength 0 or 1. The structure of X then forces that X1 contains a witness
relating those two elements with the same strength. As X1 encodes the views
of the more powerful agent, it may describe additional relationships, now with
strengths weighted in the interval [0, 1].

If we wish to consider algebraic Q-relations over an arbitrary topos things are
more delicate since internal quantales cannot be defined pointwise. Nevertheless
there are standard sources of internal commutative quantales, for example:

– If C is a groupoid and Q is a commutative quantale in Set, then Q can be
lifted to an internal commutative quantale in SetCop

.
– The subobject classifier Ω of a topos is an internal locale, and therefore an

internal commutative quantale.

We conclude by establishing the relationship between our framework of general-
ized relations and the standard notion of the category of relations over a regular
category. This will involve the internal locale given by the subobject classifier.

Definition 9. A category C is regular if it is finitely complete, every kernel
pair has a coequalizer and regular epimorphisms are stable under pullback.

There is standard construction of a category of relations Rel(C) of a regular cate-
gory C, see for example [13]. For the category Set for example, this construction
recovers exactly the usual category of binary relations. As we have been con-
structing categories of relations in this paper, it would be interesting to know
how this relates to the relations of a regular category. Every topos is regular, and
in fact for any algebraic theory (Σ,E), the category of internal (Σ,E)-algebras
in a regular category [7], meaning we can consider the impact of algebraic struc-
ture. In fact, the resulting category of relations is equivalent to the one produced
by our construction with the subobject classifier as the object of truth values.

Theorem 4. Let E be a topos, Ω its subobject classifier and (Σ,E) an algebraic
signature. The category RelE(Σ,E)(Ω) resulting from the algebraic Q-relations
construction is equivalent to the category of internal relations over the regular
category of internal (Σ,E)-algebras in E.
In this way, we see that relations over suitable regular categories are a special
case of our construction.

7 Conclusion

We have demonstrated that categories of generalized relations present a flexible
modelling tool for categorical compositional models of natural language and cog-
nition. We presented various potential models worthy of further investigation,
capturing features such as fuzziness, distances, convexity, ambiguity and context
sensitivity, and showed how these features can be used in combination within
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a generic framework. One natural direction for further work would be empiri-
cal investigation of the compatibility of these theoretical models with concrete
applications. Another one would be to investigate whether the techniques in [44]
can be used to build models with either non-commutative or typed quantales,
known as quantaloids.
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