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Abstract. We introduce a proper display calculus for (non-distributive) Lattice
Logic which is sound, complete, conservative, and enjoys cut-elimination and
subformula property. Properness (i.e. closure under uniform substitution of all
parametric parts in rules) is the main interest and added value of the present pro-
posal, and allows for the smoothest Belnap-style proof of cut-elimination, and
for the most comprehensive account of axiomatic extensions and expansions of
Lattice Logic in a single overarching framework. Our proposal builds on an alge-
braic and order-theoretic analysis of the semantic environment of lattice logic,
and applies the guidelines of the multi-type methodology in the design of display
calculi.
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1 Introduction

Lattice logic (i.e. the restriction of classical propositional logic to the {∧,∨,�,⊥}-
fragment without distributivity) is the propositional base of many well known ‘lattice-
based’ logics (e.g. the full Lambek calculus [31], bilattice logic [1], orthologic [35],
linear logic [33]), and as such is hardly ever studied in isolation. An important question
in structural proof theory concerns how to smoothly account for the transition between
a given (lattice-based) logic and its axiomatic extensions and expansions [50, Chap.
1], [23, p. 352], [24,27]. In the present paper, we introduce a calculus for lattice logic
aimed at supporting this smooth transition for a class of lattice-based logics which is
the widest so far.

Toward this goal, research in structural proof theory [24,46,50] has identified two
general criteria: (a) all introduction rules for logical connectives are to have one and
the same form; (b) the information on the distinctive features of each logical connec-
tive and on the interaction between connectives is to be encoded in structural rules
satisfying certain requirements, captured by the notion of analiticity. These criteria are
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fulfilled, among others, by proper display calculi, a refinement of Belnap’s display cal-
culi [2] introduced by Wansing [50]. However, in most calculi for lattice-based logics
(cf. e.g. [47,48]), including display calculi [3], the introduction rules for conjunction
and disjunction have the so-called additive form, while those of the other connectives
typically are in multiplicative form (see Sect. 2.2). More fundamentally, conjunction
and disjunction do not have structural counterparts in these calculi. This non-standard
treatment can be explained, in the setting of display calculi, by the following trade-off:
introducing the structural counterparts of these connectives would require the addition
of the display postulates in order to enforce the display property, which is key to the
Belnap-style cut elimination metatheorem [2,50]; however, the addition of display pos-
tulates would make it possible for the resulting calculus to derive the unwanted distrib-
utivity axioms as theorems. So, the need to block the derivation of distributivity is at
the root of the non-standard design choice of having logical connectives without their
structural counterpart (cf. [4]).

In the present paper, we introduce the proper display calculus D.LL for lattice logic
which enjoys the full display property, and is such that all introduction rules have the
same form (namely the multiplicative form). We succeed in circumventing the trade-
off described above by introducing a richer language, with terms of different types.
This solution applies the principles of a design for proof calculi (the multi-type display
calculi) introduced in [25,26,28,36] with the aim of displaying dynamic epistemic logic
and propositional dynamic logic, then successfully applied to several other logics (such
as linear logic with exponentials [39], inquisitive logic [29], semi De Morgan logic
[34]) which are not properly displayable1 in their single-type formulation, and has also
served as a platform for the design of novel logics [5].

The main feature of D.LL is that it makes it possible to express the interactions
between conjunction and disjunction and between them and other connectives at the
structural level, by means of analytic structural rules. The remarkable property of these
rules is that adding them to a given proper multi-type calculus preserves the package
of basic properties of that calculus (soundness, completeness, conservativity, cut elimi-
nation and subformula property). This is all the more an advantage, because a uniform
theory of analytic extensions of proper multi-type calculi is being developed thanks to
the systematic connections established in [37] between proper display calculi and uni-
fied correspondence theory. These connections have made it possible to characterize
the syntactic shape of axioms (the so-called analytic inductive axioms) which can be
equivalently translated into analytic rules of a proper display calculus. Thus, the main
feature of this calculus paves the way to the creation of the most comprehensive and
modular proof theory of analytic extensions of lattice-based logics. The specific solu-
tion for lattice logic is justified semantically by Birkhoff’s representation theorem for
complete lattices.

1 Properly displayable logics (cf. [50]) are those amenable to be presented in the form of a
proper display calculus. The notion of properly displayable logic has been characterized in
a purely proof-theoretic way in [9]. In [37], an alternative characterization of properly dis-
playable logics has been proposed which builds on the algebraic theory of unified correspon-
dence [10,12,14,15,18–21,30,42–45]. The techniques and insights of unified correspondence
are also available for lattice-based logics, cf. [11,13,16,17]).
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Structure of the Paper. In Sect. 2, we briefly report on a Hilbert-style presentation of
lattice logic and its algebraic semantics, and discuss the issue of a modular account of
its axiomatic extensions and expansions. In Sect. 3, we report on well known order-
theoretic facts related with the representation of complete lattices, which help to intro-
duce an equivalent multi-type semantic environment for lattice logic. In Sect. 4, we
introduce the multi-type language naturally associated with the semantic environment
of the previous section. In Sect. 5, we introduce the multi-type calculus D.LL for lattice
logic which constitutes the core contribution of the present paper. In Sect. 6, we discuss
the basic properties of D.LL (soundness, completeness, cut-elimination, subformula
property, and conservativity). In Sect. B, we collect some derivations, and prove that
(the translation of) the distributivity axiom is not derivable in D.LL.

2 Lattice Logic and Its Single-Type Proof Theory

2.1 Hilbert-Style Presentation of Lattice Logic and Its Algebraic Semantics

The language L of lattice logic over a set AtProp of atomic propositions is so defined:

A ::= p | � | ⊥ | A∧A | A∨A.
Lattice logic has the following Hilbert-style presentation:

A � A, ⊥ � A, A � �, A � A∨B, B � A∨B, A∧B � A, A∧B � B

A � B B �C
A �C

A � B
A[C/p] � B[C/p]

A � B A �C
A � B∧C

A �C B �C
A∨B �C

where A[C/p] indicates that all occurrences of p ∈ AtProp in A are replaced by C.
The algebraic semantics of lattice logic is given by the class of bounded lattices (cf.

[6,8]), i.e. (2,2,0,0)-algebras A = (X,∧,∨,�,⊥) validating the following identities:

Commutative laws Associative laws
cC. a∧b = b∧a cA. a∧ (b∧ c) = (a∧b)∧ c
dC. a∨b = b∨a dA. a∨ (b∨ c) = (a∨b)∨ c

Identity laws Absorption laws
cI. a∧� = a cAb. a∧ (a∨b) = a
dI. a∨⊥ = a dAb. a∨ (a∧b) = a

A bounded lattice is distributive if it validates the distributivity laws below. A
bounded lattice is residuated (resp. dually residuated) if it validates the residuation
law cR (resp. dR). If a lattice is (dually) residuated then is distributive (cf. [22,31]).

Distributivity laws Residuation laws
cD. a∧ (b∨ c) = (a∧b)∨ (a∨ c) cR. a∧b ≤ c iff b ≤ a→ c
dD. a∨ (b∧ c) = (a∨b)∧ (a∨ c) dR. a ≤ b∨ c iff b> a ≤ c
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2.2 Towards a Modular Proof Theory for Lattice Logic

To motivate the calculus introduced in Sect. 5, it is useful to discuss preliminarily the
following Gentzen-style sequent calculus for lattice logic (cf. e.g. [49]):

– Identity and Cut rules

Idp � p
X � A A � Y

Cut
X � Y

– Operational rules (where i ∈ {1,2})
⊥ ⊥ � I

X � I ⊥
X � ⊥

Ai � X∧i
A1∧A2 � X

X � A X � B ∧
X � A∧B

I � X� � � X �
I � �

A � X B � X∨
A∨B � X

X � Ai ∨i
X � A1∨A2

The calculus above, which we refer to as L0, is sound w.r.t. the class of lattices, com-
plete w.r.t. the Hilbert-style presentation of lattice logic, and enjoys cut-elimination.
Hence, L0 is perfectly adequate as a calculus for lattice logic, when this logic is regarded
in isolation. However, as discussed in the introduction, the main interest of lattice logic
lays in its serving as a base for its axiomatic extensions (cf. e.g. [40]) and language-
expansions. Axiomatic extensions of lattice logic can be supported by L0 by adding
suitable axioms. For instance, modular and distributive lattice logic can be respectively
captured by adding the following axioms to L0:

((C∧B)∨A)∧B � (C∧B)∨ (A∧B) and A∧ (B∨C) � (A∧B)∨ (A∨C).

However, cut elimination for the resulting calculi needs to be proved from scratch. More
in general, we lack uniform principles or proof strategies aimed at identifying axioms
which can be added to L0 so that cut elimination transfers to the resulting calculus.
Another source of nonmodularity arises from the fact that L0 lacks structural rules.
Indeed, the additive formulation of the introduction rules of L0 encodes the informa-
tion which is stored in standard structural rules such as weakening, contraction, asso-
ciativity, and exchange. Hence, L0 cannot be used as a base to capture logics aimed
at ‘negotiating’ these rules, such as the Lambek calculus [41] and other substructural
logics [31]. To remedy this, one can move to the following calculus L1, which fulfills
the visibility property,2 isolated by Sambin et al. in [47] to formulate a general strat-
egy for cut elimination. Visibility generalizes Gentzen’s idea, realized in his calculus
LJ, that intuitionistic logic could be captured by restricting the shape of sequents and
admitting at most one formula in succedent position [32]. The calculus L1 has a struc-
tural language consisting of one structural constant ‘I’, interpreted as � (resp. ⊥) when
occurring in precedent (resp. succedent) position, and one binary connective ‘ ,’, inter-
preted as conjunction (resp. disjunction) in precedent (resp. succedent) position. The
rules Exchange, Associativity, Weakening and Contraction are the usual ones and are
not reported here.

2 A sequent calculus verifies the visibility property if both the auxiliary formulas and the prin-
cipal formula of each operational rule of the calculus occur in an empty context. Hence, by
design, L1 verifies the visibility property.
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– Identity and Cut rules

Idp � p
X � A (Y � Z)[A]pre

L-Cut
(X � Y)[Z/A]pre

(X � Y)[A]succ A � Z
R-Cut

(X � Y)[Z/A]suc

where (Y � Z)[A]pre (resp. (Y � Z)[A]succ) indicates that the A occurs in precedent
(resp. succedent) position in the sequent Y � Z.

– Operational rules

⊥ ⊥ � I
X � I ⊥
X � ⊥

A ,B � X∧
A∧B � X

X � A Y � B ∧
X ,Y � A∧B

I � X� � � X �
I � �

A � X B � Y∨
A∨B � X ,Y

X � A ,B ∨
X � A∨B

Unlike the operational rules of L0 which are additive, the operational rules of L1 are
multiplicative.3 The latter formulation is more general, and implies that weakening,
exchange, associativity, and contraction are not anymore subsumed by the introduction
rules.

The visibility of L1 blocks the derivation of the distributivity axiom. Hence, to be
able to derive distributivity, one option is to relax the visibility constraint both in prece-
dent and in succedent position. This solution is not entirely satisfactory, and suffers
from the same lack of modularity which prevents Gentzen’s move from LJ to LK to
capture intermediate logics. Specifically, relaxing visibility captures the logics of Sam-
bin’s cube, but many other logics are left out. Moreover, without visibility, we do not
have a uniform strategy for cut elimination.

To conclude, a proof theory for axiomatic extensions and expansions of general lat-
tice logic is comparably not as modular as that of the axiomatic extensions and expan-
sions of the logic of distributive lattices, which can rely on the theory of proper display
calculi [37,50]. The idea guiding the approach of the present paper, which we will elab-
orate upon in the next sections, is that, rather than trying to work our way up starting
from a calculus for lattice logic, we will obtain a calculus for lattice logic from the stan-
dard proper display calculus for the logic of distributive lattices, by endowing it with a
suitable mechanism to block the derivation of distributivity.

3 Multi-type Semantic Environment for Lattice Logic

In the present section, we introduce a class of heterogeneous algebras [7] which equiv-
alently encodes complete lattices, and which will be useful to motivate the design of the
calculus for lattice logic from a semantic viewpoint, as well as to establish its properties.
This presentation takes its move from very well known facts in the representation theory
of complete lattices, which can be found e.g. in [6,22], formulated—however—in terms
of covariant (rather than contravariant) adjunction. For every partial order Q = (Q,≤),

3 The multiplicative form of the introduction rules is the most important aspect in which L1
departs from the calculus of [47], which adopts the additive formulation for the introduction
rules for conjunction and disjunction.
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we letQop := (Q,≤op), where ≤op denotes the converse ordering. IfQ= (Q,∧,∨,⊥,�) is
a lattice, we let Qop := (Q,∧op,∨op,⊥op,�op) denote the lattice induced by ≤op. More-
over, for any b ∈ Q, we let b↑ := {c | c ∈ Q and b ≤ c} and b↓ := {a | a ∈ Q and a ≤ b}.

A polarity is a structure P = (X,Y,R) such that X and Y are sets and R ⊆ X×Y . Every
polarity induces a pair of maps ρ : P(Y)op → P(X), λ : P(X)→ P(Y)op, respectively
defined by Y′ �→ {x ∈ X | ∀y(y ∈ Y′ → xRy)} and X′ �→ {y ∈ Y | ∀x(x ∈ X′ → xRy)}. It is
well known (cf. [22]) and easy to verify that these maps form an adjunction pair, that
is, for any X′ ⊆ X and Y′ ⊆ Y ,

λ(X′) ⊆op Y′ iff X′ ⊆ ρ(Y′).
The map λ is the left adjoint, and ρ is the right adjoint of the pair. By general order-
theoretic facts, this implies that λ preserves arbitrary joins and ρ arbitrary meets: that
is, for any S ⊆ P(X) and any T ⊆ P(Y),

λ(
⋃

S ) =
op⋃

s∈S
λ(s) and ρ(

op⋂
T ) =

⋂

t∈T
ρ(t). (1)

Other well known facts about adjoint pairs are that ρλ : P(X)→P(X) is a closure oper-
ator and λρ : P(Y)op →P(Y)op an interior operator (cf. [22]). Moreover, λρλ = λ, and
ρλρ = ρ (cf. [22]). That is, λρ restricted to Range(λ) is the identity map, and like-
wise, ρλ restricted to Range(ρ) is the identity map. Hence, Range(ρ) = Range(ρλ),
Range(λ) = Range(λρ) and

P(X) ⊇ Range(ρ) � Range(λ) ⊆ P(X)op.

Furthermore, ρλ being a closure operator on P(X) implies that Range(ρ) = Range(ρλ)
is a complete sub

⋂
-semilattice of P(X) (cf. [22]), and hence L =Range(ρ) is endowed

with a structure of complete lattice, by setting for every S ⊆ L,
∧

L

S :=
⋂

S and
∨

L

S := ρλ(
⋃

S ) (2)

Likewise, λρ being an interior operator on P(Y)op implies that Range(λ) is a complete
sub
⋃

-semilattice of P(Y)op, and hence L = Range(λ) is endowed with a structure of
complete lattice, by setting

∨

L

T :=
op⋃

T and
∧

L

T := λρ(
op⋂

T ) (3)

for every T ⊆ L. Finally, for any S ⊆ Range(ρ),

λ(
∨
S ) = λ(ρλ(

⋃
S )) (2)

= λ(
⋃
S ) λρλ = λ

=
⋃op

s∈S λ(s) (1)
=
∨

s∈S λ(s), (3)
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and
∧

s∈S λ(s) = λρ(
⋂op

s∈S λ(s)) (3)
= λ(
⋂

s∈S ρλ(s)) (1)
= λ(
⋂
S ) S ⊆ Range(ρ) and ρλρ = ρ

= λ(
∧
S ), (2)

which shows that the restriction of λ to Range(ρ) is a complete lattice homomorphism.
Likewise, one can show that the restriction of ρ to Range(λ) is a complete lattice homo-
morphism, which completes the proof that the bijection

P(X) ⊇ Range(ρ) � Range(λ) ⊆ P(X)op

is an isomorphism of complete lattices, and justifies the abuse of notation which we
made by denoting both the lattice Range(ρ) and the lattice Range(λ) by L.

Conversely, for every complete lattice L, consider the polarity PL := (L,L,≤) where
L is the universe of L and ≤ is the lattice order. Then the maps λ : P(L)→P(L)op and
ρ :P(L)op→P(L) are respectively defined by the assignments S �→ {a ∈ L | ∀b(b ∈ S →
b ≤ a)} = (

∨
S )↑ and T �→ {a ∈ L | ∀b(b ∈ T → a ≤ b)} = (

∧
T )↓ for all S ,T ⊆ L. Since∧

((
∨
S )↑) =∨S and

∨
((
∧
T )↓) =∧T , the closure operator ρλ :P(L)→P(L) and the

interior operator λρ : P(L)op→P(L)op are respectively defined by

S �→ (
∨

S )↓ and T �→ (
∧

T )↑. (4)

The lattice L can be mapped injectively both into Range(ρ) = Range(ρλ) and into
Range(λ) =Range(λρ) by the assignments a �→ a↓ and a �→ a↑ respectively. Moreover,
since L is complete, the maps defined by these assignments are also onto Range(ρλ)
and Range(λρ). Finally, for any S ⊆ L,

∧
Range(ρ){a↓ | a ∈ S } = ⋂{a↓ | a ∈ S } (2)

= (
∧
S )↓

∨
Range(ρ){a↓ | a ∈ S } = ρλ(⋃{a↓ | a ∈ S }) (2)

= (
∨⋃{a↓ | a ∈ S })↓ (4)

= (
∨
S )↓,

which completes the verification that the map L→Range(ρ) defined by the assignment
a �→ a↓ is a complete lattice isomorphism. Similarly, one verifies that the map L→
Range(λ) defined by the assignment a �→ a↑ is a complete lattice isomorphism. The
discussion so far can be summarized by the following.

Proposition 1. Any complete lattice L can be identified both with the lattice of closed
sets of some closure operator c : D → D on a complete and completely distributive
lattice D = (D,∩,∪,℘,∅), and with the lattice of open sets of some interior operator
i : E→ E on a complete and completely distributive lattice E = (E,�,�,�,∅).
Hence, in what follows, L will be identified both with Range(c) endowed with its
structure of complete lattice defined as in (2) (replacing ρλ by c), and with Range(i)
endowed with its structure of complete lattice defined as in (3) (replacing λρ by i). Tak-
ing these identifications into account, general order-theoretic facts (cf. [22, Chap. 7])
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imply that c = e� ◦ γ, where γ : D� L is defined by α �→ c(α) and e� : L ↪→ D is the
natural embedding, and moreover, these maps form an adjunction pair as follows: for
any a ∈ L and any α ∈ D,

γ(α) ≤ a iff α ≤ e�(a),

with the additional property that γ ◦ e� = IdL. Likewise, i = er ◦ ι, where ι : E� L is
defined by ξ �→ i(ξ) and er : L ↪→ E is the natural embedding, and moreover, these maps
form an adjunction pair as follows: for any a ∈ L and any ξ ∈ E,

er(a) ≤ ξ iff a ≤ ι(ξ),
with the additional property that ι◦ er = IdL.

D L E

��

e� er

ιγ

Summing up, any complete lattice L can be associated with a heterogeneous LL-
algebra, i.e. a tuple (L,D,E,e�,γ,er, ι) such that:

H1. L = (L,≤) is a bounded poset;4

H2. D and E are complete and completely distributive lattices;
H3. γ : D→ L and e� : L→ D are such that γ � e� and γ ◦ e� = IdL;
H4. ι : E→ L and er : L→ E are such that er � ι and ι◦ er = IdL.

Conversely, for any heterogeneous LL-algebra as above, the poset L can be endowed
with the structure of a complete lattice inherited by being order-isomorphic both to
the poset of closed sets of the closure operator c := γ ◦ e� on D and to the poset of
open sets of the interior operator i := ι ◦ er on E. Finally, no algebraic information is
lost when presenting a complete lattice L as its associated heterogeneous LL-algebra.
Indeed, the identification of L with Range(c), endowed with the structure of complete
lattice defined as in (2), implies that for all a,b ∈ L,

a∨b = γ(e�(a)∪ e�(b)).

As discussed above, e� being a right adjoint and γ a left adjoint imply that e� is com-
pletely meet-preserving and γ completely join-preserving. Therefore, e�(�) = ℘ and
⊥= γ(∅). Moreover, γ being both surjective and order-preserving implies that�= γ(℘).
Furthermore, for all a,b ∈ L,

a∧b = γ ◦ e�(a∧b) = γ(e�(a)∩ e�(b)).

Thus, the whole algebraic structure of L can be captured in terms of the algebraic struc-
ture of D and the adjoint maps γ and e� as follows: for all a,b ∈ L,

⊥ = γ(∅) � = γ(℘) a∨b = γ(e�(a)∪ e�(b)) a∧b = γ(e�(a)∩ e�(b)). (5)

Reasoning analogously, one can also capture the algebraic structure of L in terms of the
algebraic structure of E and the adjoint maps ι and er as follows: for all a,b ∈ L,

� = ι(�) ⊥ = ι(∅) a∧b = ι(er(a)� er(b)) a∨b = ι(er(a)� er(b)). (6)
4 We overload the symbol L and use it both to denote the complete lattice and its underlying

poset.
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4 Multi-type Language for Lattice Logic

In Sect. 3, heterogeneous LL-algebras have been introduced and shown to be equivalent
presentations of complete lattices. The toggle between these mathematical structures is
reflected in the toggle between the logical languages which are naturally interpreted in
the two types of structures. Indeed, the heterogeneous LL-algebras of Sect. 3 provide a
natural interpretation for the following multi-type language LMT over a set AtProp of
Lattice-type atomic propositions:

Left � α ::= e�(A) | ℘ | ∅ | α∪α | α∩α
Right � ξ ::= er(A) | � | ∅ | ξ� ξ | ξ� ξ

Lattice � A ::= p | γ(α) | ι(ξ) | � | ⊥
where p ∈ AtProp. The interpretation of LMT-terms into heterogeneous LL-algebras
is defined as the straightforward generalization of the interpretation of propositional
languages in algebras of compatible signature. At the end of the previous section, we
observed that the algebraic structure of the complete lattice L can be captured in terms
of the algebraic structure of its associated heterogeneous LL-algebra. This observation
serves as a base for the definition of the translations (·)�, (·)r : L → LMT between the
original language L of lattice logic and LMT:

p� = γe�(p) pr = ιer(p)⊥
�� = γe�(�) �r = ιer(�)
⊥� = γe�(⊥) ⊥r = ιer(⊥)

(A∧B)� = γ(e�(A�)∩ e�(B�)) (A∧B)r = ι(er(Ar)� er(Br))
(A∨B)� = γ(e�(A�)∪ e�(B�)) (A∨B)r = ι(er(Ar)� er(Br))

For every complete lattice L, let L∗ denote its associated heterogeneous LL-algebra as
defined in Sect. 3. The proof of the following proposition relies on the observations
made at the end of Sect. 3.

Proposition 2. For all L-formulas A and B and every complete lattice L,

L |= A ≤ B iff L
∗ |= A� ≤ Br.

5 Proper Display Calculus for Lattice Logic

5.1 Language

The language of the calculus D.LL includes the types Lattice, Left, and Right, some-
times abbreviated as L, P, and Pop respectively.

L

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A ::= p | �α | �ξ

X ::= p | I | •Γ | •opΠ

P

⎧⎪⎪⎪⎨⎪⎪⎪⎩

α ::= �A

Γ ::= ◦X |� | Γ �Γ | Γ ⊃ Γ

Pop

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ ::= �opA

Π ::= ◦opX |�op | Π �opΠ | Π ⊃op Π
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Our notational conventions assign different variables to different types. This allows
us to drop the subscripts op, since the parsing of expressions such as •Γ and •Π is
inherently unambiguous, and the parsing of e.g. ◦X is contextually unambiguous.

– Structural and operational pure L-type connectives:5

L connectives
I

� ⊥
– Structural and operational pure P-type and Pop-type connectives:

P connectives
� � ⊃

(℘) (∅) ∩ ∪ (⊃ ) ( ⊃ )

Pop connectives
�op �op ⊃op

(℘op) (∅op) ∩op ∪op (⊃ op ) ( ⊃op )

– Structural and operational multi-type connectives:

L→ P L→ Pop P→ L Pop→ L

◦ ◦op • •
� �op � �op

The connectives �, �op, � and �op are interpreted in heterogeneous LL-algebras as the
maps e�, er, γ, and ι, respectively.

5.2 Rules

In what follows, structures of type L are denoted by the variables X,Y,Z, and W; struc-
tures of type P are denoted by the variables Γ,Δ,Θ, and Λ; structures of type Pop are
denoted by the variables Π,Σ,Ψ, and Ω. Given the semantic environment introduced in
Sect. 3, it will come as no surprise that there is a perfect match between the pure P-type
rules and the pure Pop-type rules. In order to achieve a more compact presentation of
the calculus, in what follows we will also reserve the variables S ,T,U, and V to denote
either P-type structures or Pop-type structures, and s, t,u and v to denote operational
terms of either P-type or Pop-type, with the proviso that they should be interpreted in
the same type in the same pure type-rule.

– Multi-type display rules

Γ � ◦X
DP-L•Γ � X

◦X � Π
DP-L

X � •Π
– Pure P-type and Pop-type display rules

S �T � U
DP

T � S ⊃ U
S � T �U

DP
T ⊃ S � U

5 We follow the notational conventions introduced in [36]: Each structural connective in the
upper row of the synoptic tables is interpreted as the logical connective in the left (resp. right)
slot in the lower row when occurring in precedent (resp. succedent) position.



Lattice Logic Properly Displayed 163

– Structural and operational pure P-type and Pop-type rules

S � s s � T
Cut

S � T
s � t � S∩
s∩ t � S

S � s T � t ∩
S �T � s∩ t

S � T
�

S �� � T
S � T

�
S � T ��

s � S t � T∪
s∪ t � S �T

S � s � t ∪
S � s∪ t

(S �T ) �U � V
A

S � (T �U) � V
S � (T �U) �V

A
S � T � (U �V)

S �T � U
E

T �S � U
S � T �U

E
S � U �T

S � T
W

S �U � T
S � T

W
S � T �U

S �S � T
C

S � T
S � T �T

C
S � T

– Structural and operational pure L-type rules

Id p � p
X � A A � Y

Cut
X � Y

I � X� � � X �
I � �

I � X
I-W

Y � X ⊥ ⊥ � I
X � I ⊥
X � ⊥

– Operational rules for multi-type connectives:

L→ Pop Pop→ L
◦A � Π�
�A � Π

X � A �◦X � �A
X � •ξ

�
X � �ξ

ξ � Π
�

�ξ � •Π
P→ L L→ P

•α � X�
�α � X

Γ � α �•Γ � �α
Γ � ◦A�
Γ � �A

A � X �
�A � ◦X

6 Properties

Soundness. First, structural symbols are interpreted as logical symbols according to
their (precedent or succedent) position, as indicated in the tables of Sect. 5.1. Then,
sequents are interpreted as inequalities, and rules as quasi-inequalities in heterogeneous
LL-algebras. Rules of D.LL are sound if their corresponding quasi-inequalities are valid
in heterogeneous LL-algebras. This verification is routine.

Conservativity. We need to show that, for all formulas A and B of the original lan-
guage of lattice logic, if Aτ � Bτ is a D.LL-derivable sequent, then A � B is a theorem
of the Hilbert-style presentation of lattice logic. The argument follows the standard
proof strategy discussed in [36,37], using the following facts: (a) the rules of D.LL
are sound w.r.t. heterogeneous LL-algebras (cf. Sect. 6); (b) lattice logic is strongly
complete w.r.t. the class of complete lattices, and (c) complete lattices are equivalently
presented as heterogeneous LL-algebras (cf. Sect. 3), so that Proposition 2 holds.
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Cut Elimination and Subformula Property. These can be inferred from the meta-
theorem, in [26]; in [39, Theorem A.2] a restricted version of it is stated which specif-
ically applies to proper multi-type display calculi (cf. [39, Definition A.1]). The verifi-
cation is straightforward, and is omitted.

Completeness. First, we translate L-sequents A � B into D.LL-sequents Aτ � Bτ, using
the following translations:

�τ ::= ��� �τ ::= �op�op�
⊥τ ::= ��⊥ ⊥τ ::= �op�op⊥
pτ ::= �� p pτ ::= �op�op p

(A∧B)τ ::= �(�Aτ∩�Bτ) (A∧B)τ ::= �op(�op Aτ∩op�op Bτ)
(A∨B)τ ::= �(�Aτ∪�Bτ) (A∨B)τ ::= �op(�op Aτ∪op�op Bτ)

Proposition 3. For every A ∈ L, the multi-type sequent Aτ � Aτ is derivable in D.LL.
Proof. By simultaneous induction on A ∈ L, α ∈ P, and ξ ∈ Pop.

In what follows, we collect all the translations of the axioms involving conjunction,6

and derive some of them in D.LL (cf. Sect. A). The full set of derivations can be found
in the extended version of the present paper [38]. All derivations are standard and make
use only of Weakening, Contraction and Exchange as structural rules.

Commutative laws translation
cC1 (A∧B)τ � (B∧A)τ � �(�Aτ∩�Bτ) � �(�Bτ∩�Aτ)
cC2 (B∧A)τ � (A∧B)τ � �(�Bτ∩�Aτ) � �(�Aτ∩�Bτ)

Associative laws translation
cA1 (A∧ (B∧C))τ � ((A∧B)∧C)τ � �(�Aτ∩��(�Bτ∩�Cτ)) � �(��(�Aτ∩�Bτ)∩�Cτ)
cA2 ((A∧B)∧C)τ � (A∧ (B∧C))τ � �(��(�Aτ∩�Bτ)∩�Cτ) � �(�Aτ∩��(�Bτ∩�Cτ))

Identity laws translation where A =C∧D
cI1 (A∧�)τ � Aτ � �(��(�Cτ∩�Dτ)∩����) � �(�Cτ∩�Dτ)
cI2 Aτ � (A∧�)τ � �(�Cτ∩�Dτ) � �(��(�Cτ∩�Dτ)∩����)

Absorption laws translation where A = ⊥
cAb1 (A∧ (A∨B))τ � Aτ � �(���⊥∩��(���⊥∪�Bτ)) � ��⊥
cAb2 Aτ � (A∧ (A∨B))τ � ��⊥ � �(���⊥∩��(���⊥∪�Bτ))

A Completeness

In the cases of the Identity and Absorption laws a formula occurs in isolation on one
side of the turnstile, therefore we need to proceed by cases according to the shape of A
(we just show A =C∧D and A = ⊥, respectively).

6 The translations of the axioms involving disjunction are perfectly symmetric, and are omitted.
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C � C
◦C � �C
C � •�C
�C � ◦•�C

W
�C � �D � ◦•�C
�C∩�D � ◦•�C
•�C∩�D � •�C
�(�C∩�D) � •�C
��(�C∩�D) � ◦•�C

W
��(�C∩�D) � ���� � ◦•�C
��(�C∩�D)∩���� � ◦•�C
•��(�C∩�D)∩���� � •�C
�(��(�C∩�D)∩����) � •�C
◦�(��(�C∩�D)∩����) � �C

D � D
◦D � �D
D � •�D
�D � ◦•�D

W
�D � �C � ◦•�D

E
�C � �D � ◦•�D
�C∩�D � ◦•�D
•�C∩�D � •�D
�(�C∩�D) � •�D
��(�C∩�D) � ◦•�D

W
��(�C∩�D) � ���� � ◦•�D
��(�C∩�D)∩���� � ◦•�D
•��(�C∩�D)∩���� � •�D
�(��(�C∩�D)∩����) � •�D
◦�(��(�C∩�D)∩����) � �D

◦�(��(�C∩�D)∩����) �◦�(��(�C∩�D)∩����) � �C∩�D
C ◦�(��(�C∩�D)∩����) � �C∩�D

�(��(�C∩�D)∩����) � •�C∩�D
�(��(�C∩�D)∩����) � �(�C∩�D)

⊥ � I
⊥ � ⊥
◦⊥ � �⊥
⊥ � •�⊥
⊥ � ��⊥
�⊥ � ◦��⊥
•�⊥ � ��⊥
��⊥ � ��⊥
���⊥ � ◦��⊥

W
���⊥ � ��(���⊥∪�B) � ◦��⊥
���⊥∩��(���⊥∪�B) � ◦��⊥
•���⊥∩��(���⊥∪�B) � ��⊥
�(���⊥∩��(���⊥∪�B)) � ��⊥

⊥ � ⊥
�⊥ � ◦⊥
•�⊥ � ⊥
��⊥ � ⊥
◦��⊥ � �⊥
��⊥ � •�⊥
��⊥ � ��⊥
◦��⊥ � ���⊥

⊥ � I
⊥ � ⊥
�⊥ � ◦⊥
•�⊥ � ⊥
��⊥ � ⊥
◦��⊥ � �⊥
��⊥ � •�⊥
��⊥ � ��⊥
◦��⊥ � ���⊥

W◦��⊥ � ���⊥ ��B
◦��⊥ � ���⊥∪�B
��⊥ � •���⊥∪�B
��⊥ � �(���⊥∪�B)

◦��⊥ � ��(���⊥∪�B)

◦��⊥ �◦��⊥ � ���p∩��(���⊥∪�B)
C ◦��⊥ � ���⊥∩��(���⊥∪�B)

��⊥ � •���⊥∩��(���⊥∪�B)

��⊥ � �(���⊥∩��(���⊥∪�B))

B Distributivity Fails

Distributivity law translation
cD1 (A∩ (B∪C))τ � ((A∩B)∪ (A∪C))τ�
�
(
�Aτ∩��(�Aτ∪�Bτ)

)
� �
(
��(�Aτ∩�Bτ)∪��(�Aτ∩�Cτ)

)

We will show that all the paths in the backward proof-search of the translation of
the distributivity axiom end in deadlocks. First, we apply exhaustively all invertible
operational rules (modulo display rules):
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???

•
(
�A � ��(�B∪�C)

)
� •
(
��(�A∩�B) ���(�A∩�C)

)

�A � ��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

�A∩��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

•
(
�A∩��(�B∪�C)

)
� •
(
��(�A∩�B) ���(�A∩�C)

)

◦•
(
�A∩��(�B∪�C)

)
� ��(�A∩�B) ���(�A∩�C)

◦•
(
�A∩��(�B∪�C)

)
� ��(�A∩�B)∪��(�A∩�C)

•
(
�A∩��(�B∪�C)

)
� •
(
��(�A∩�B)∪��(�A∩�C)

)

•
(
�A∩��(�B∪�C)

)
� �
(
��(�A∩�B)∪��(�A∩�C)

)

�
(
�A∩��(�B∪�C)

)
� �
(
��(�A∩�B)∪��(�A∩�C)

)

There are no rules in which • and � interact, hence we are reduced to either isolate

X = �A � ��(�B∪�C)

in precedent position by the backward application of a display rule, or isolate the fol-
lowing structure in succedent position:

Y = ��(�A∩�B) ���(�A∩�C)

We only treat the first case, the second being analogous. Once in isolation, we can act
on X only via Exchange, Weakening or Residuation. In each case we reach a dead end:

– Case 1: (Exchange or) Residuation.

As an intermediate step, we can isolate any of the substructures of X via Residuation,
or via Exchange and Residuation, as shown below. In each case we reach a dead end.

???

��(�B∪�C) � �A ⊃ ◦•
(
��(�A∩�B) ���(�A∩�C)

)

�A � ��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

???

�A � ��(�B∪�C) ⊃ ◦•
(
��(�A∩�B) ���(�A∩�C)

)

��(�B∪�C) � �A � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

�A � ��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

– Case 2: (Exchange or) Weakening.

As an intermediate step, we can try to isolate an immediate substructure of X by apply-
ing backward Weakening. By directly applying Weakening, we obtain

�A � ◦•
(
��(�A∩�B) ���(�A∩�C)

)
,

and by applying Exchange and Weakening, we obtain
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��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)
.

Notice that the second subcase can be reduced to the first one as follows:

??

�B � ◦•
(
��(�A∩�B) ���(�A∩�C)

) ??

�C � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

�B∪�C � ◦•
(
��(�A∩�B) ���(�A∩�C)

)
�◦•
(
��(�A∩�B) ���(�A∩�C)

)

�B∪�C � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

•(�B∪�C)
)
� •
(
��(�A∩�B) ���(�A∩�C)

)

�(�B∪�C)
)
� •
(
��(�A∩�B) ���(�A∩�C)

)

��(�B∪�C)
)
� ◦•
(
��(�A∩�B) ���(�A∩�C)

)

As to the proof of the first subcase, let us preliminarily perform the following steps:

??
◦A � ��(�A∩�B) ���(�A∩�C)

A � •
(
��(�A∩�B) ���(�A∩�C)

)

�A � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

Again, we are in a situation in which we can act on Y only via Exchange, Weakening
or Residuation, and also in this case any option leads to a dead end. Indeed:

– Case 2.1: Exchange or Weakening. We can delete one of the immediate substructures
of Y via Weakening or, respectively, Exchange and Weakening, obtaining

◦A � ��(�A∩�B) and ◦A � ��(�A∩�C).

In each case, we reach a dead end, as shown below:

?
◦A � �A∩�B
A � •(�A∩�B)
A � �(�A∩�B)
◦A � ��(�A∩�B)

?
◦A � �A∩�C
A � •(�A∩�C)
A � �(�A∩�C)
◦A � ��(�A∩�C)

– Case 2.2: Residuation. We can isolate any of the substructures of Y via Residuation,
or via Exchange and Residuation. In each case we reach a dead end:

?
��(�A∩�B) ⊃ ◦A � ��(�A∩�C)

◦A � ��(�A∩�B) ���(�A∩�C)

?
��(�A∩�C) ⊃ ◦A � ��(�A∩�B)

◦A � ��(�A∩�C) ���(�A∩�B)
◦A � ��(�A∩�B) ���(�A∩�C)
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