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Preface

This volume contains the papers presented at the 24th Workshop on Logic, Language,
Information and Computation (WoLLIC 2017) held during July 18–21, 2017, at the
Department of Computer Science, University College London, London, UK. The
WoLLIC series of workshops started in 1994 with the aim of fostering interdisciplinary
research in pure and applied logic. The idea is to have a forum which is large enough in
the number of possible interactions between logic and the sciences related to infor-
mation and computation, and yet is small enough to allow for concrete and useful
interaction among participants.

There were 61 submissions. Each submission was reviewed by at least three Pro-
gram Committee members. The committee decided to accept 28 papers. The program
included eight invited lectures by Hazel Brickhill (Bristol) (University of Bristol),
Michael Detlefsen (University of Notre Dame), Alexander Kurz (University of
Leicester), Frederike Moltmann (New York University), David Pym (University Col-
lege London), Nicole Schweikardt (Humboldt Universitat), Fan Yang (Delft Univer-
sity), and Boris Zilber (University of Oxford). There were also four tutorials given by
Michael Detlefsen, Alexander Kurz, Frederike Moltmann, and Nicole Schweikardt.

As a tribute to a recent project focusing on the cross-cultural connections that are
made through mathematics and the impact that Navajo Math Circles can have on a
community, there was also a screening of Csicsery’s Navajo Math Circles (2016), a
one-hour film, documenting the process of a two-year period in which hundreds of
Navajo children in recent years have found themselves at the center of a lively col-
laboration with mathematicians from around the world.

We would very much like to thank all Program Committee members and external
reviewers for the work they put into reviewing the submissions. The help provided by
the EasyChair system created by Andrei Voronkov is gratefully acknowledged. Finally,
we would like to acknowledge the generous financial support by the University College
London’s Department of Computer Science, and the scientific sponsorship of the
following organizations: Interest Group in Pure and Applied Logics (IGPL), The
Association for Logic, Language and Information (FoLLI), Association for Symbolic
Logic (ASL), European Association for Theoretical Computer Science (EATCS),
European Association for Computer Science Logic (EACSL), Sociedade Brasileira de
Computação (SBC) and Sociedade Brasileira de Lógica (SBL).

July 2017 Juliette Kennedy
Ruy de Queiroz
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Graph Turing Machines

Nathanael L. Ackerman1 and Cameron E. Freer2(B)

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
nate@math.harvard.edu

2 Remine, Falls Church, VA 22043, USA
cameron@remine.com

Abstract. We consider graph Turing machines, a model of parallel com-
putation on a graph, which provides a natural generalization of several
standard computational models, including ordinary Turing machines and
cellular automata. In this extended abstract, we give bounds on the com-
putational strength of functions that graph Turing machines can com-
pute. We also begin the study of the relationship between the computa-
tional power of a graph Turing machine and structural properties of its
underlying graph.

1 Introduction

When studying large networks, it is important to understand what sorts of com-
putations can be performed in a distributed way on a given network. In partic-
ular, it is natural to consider the setting where each node acts independently in
parallel, and where the network is specified separately from the computation to
be performed. In order to study networks whose size is considerably larger than
can be held in memory by the computational unit at any single node, it is often
useful to model the network as an infinite graph. (For a discussion of modeling
large networks via infinite graphs, see, e.g., [14].)

We define a notion of graph Turing machine that is meant to capture this
setting. This notion generalizes several other well-known models of computa-
tion, including ordinary Turing machines, cellular automata, and parallel graph
dynamical systems. Each of these models, in turn, occurs straightforwardly as a
special case of a graph Turing machine, suggesting that graph Turing machines
capture a natural concept of parallel computation on graphs.

A graph Turing machine (henceforth abbreviated as “graph machine”) per-
forms computation on a vertex-labeled edge-colored directed multigraph satis-
fying certain properties. This notion of computation is designed to capture the
idea that in each timestep, every vertex performs a limited amount of computa-
tion (in parallel, independently of the other vertices), and can only distinguish
vertices connected to it when they are connected by different colors of edges.

In this paper we study the functions that can be computed using graph
machines, which we call graph computable functions. As we will see, this parallel
notion of computation will yield significantly greater computational strength
c© Springer-Verlag GmbH Germany 2017
J. Kennedy and R.J.G.B. de Queiroz (Eds.): WoLLIC 2017, LNCS 10388, pp. 1–13, 2017.
DOI: 10.1007/978-3-662-55386-2 1



2 N.L. Ackerman and C.E. Freer

than ordinary Turing machines. We will see that the computational strength
of graph machines is exactly that of 0(ω), the Turing degree of true arithmetic
(thereby providing another natural construction of this degree). We also begin to
examine the relationship between various properties of the underlying graph
(e.g., finiteness of degree) and the computational strength of the resulting graph
machines.

In this extended abstract, we state the main results and provide proofs or
proof sketches of several of these results. For detailed proofs and other related
results, see the full version at https://arxiv.org/abs/1703.09406.

1.1 Main Results and Overview of the Paper

We begin by introducing the notions of colored graphs, graph machines, and
graph computability in Sect. 2.

Our main results fall into two classes: bounds on the computational power
of arbitrary computable graph machines, and bounds among machines with an
underlying graph every vertex of which has finite degree (in which case we say
the graph is of finite degree).

Theorem 3.6 states that every graph computable function is Turing reducible
to 0(ω). In the other direction, we show in Theorem3.10 that this bound is
attained by a single graph Turing machine.

Sitting below 0(ω) are the arithmetical Turing degrees, i.e., those less than
0(n) for some n ∈ N, where 0(n) denotes the n-fold iterate of the halting problem.
We show in Corollary 3.9 that every arithmetical Turing degree contains a func-
tion that is graph Turing computable. (It remains open whether every degree
below 0(ω) can be achieved.)

We next show in Corollary 4.9 that functions determined by graph machines
with underlying graph of finite degree are reducible to the halting problem, 0′.
Further, we show in Corollary 4.10 that if we restrict to graph machines where
every vertex has the same (finite) degree, then the resulting graph computable
function is computable by an ordinary Turing machine.

We also show in Theorem 4.11 that every Turing degree below 0′ is the degree
of some graph computable function with underlying graph of finite degree.

In Sect. 5, we examine how several other models of computation can be viewed
as special cases of graph machines, including ordinary Turing machines, cellular
automata, and parallel graph dynamical systems. Note that there have been
many other attempts (which we do not discuss at length here) to extend Turing
machines to operate on graphs, including [3], [12, pp. 462–463], [13,15]—the first
of which calls its different notion a “graph Turing machine” as well.

1.2 Notation

If f : A → ∏
i≤n Bi and k ≤ n ∈ N, then we let f[k] : A → Bk be the composition

of f with the projection map onto the k’th coordinate.
Fix an enumeration of computable partial functions, and for e ∈ N, let {e}

be the e’th such function in this list. If X and Y are sets with 0 ∈ Y , let

https://arxiv.org/abs/1703.09406


Graph Turing Machines 3

Y <X = {η : X → Y : |{a : η(a) �= 0}| < ω}, i.e., the collection of functions
from X to Y for which all but finitely many inputs yield 0. (Note that by this
notation we do not mean partial functions from X to Y supported on fewer than
|X|-many elements.) For a set X, let P(X) denote the collection of subsets of X
and let P<ω(X) denote the collection of finite subsets of X. Note that the map
which takes a subset of X to its characteristic function is a bijection between
P<ω(X) and {0, 1}<X .

When working with computable graphs, sometimes the underlying set of the
graph will be a finite coproduct of finite sets and N

k for k ∈ N. The standard
notion of computability for N transfers naturally to such settings, making implicit
use of the computable bijections between N

k and N, and between
∐

i≤k N and
N, for k ∈ N. We will sometimes say computable set to refer to some computable
subset (with respect to these bijections) of such a finite coproduct X, and com-
putable function to refer to a computable function having domain and codomain
of that form or of the form F<X for some finite set F .

For sets X,Y ⊆ N, we write X ≤T Y when X is Turing reducible to Y (and
similarly for functions and other computably presented countable objects). We
write X ≡T Y when X ≤T Y and Y ≤T X. For more details on results and
notation in computability theory, see [16].

2 Graph Computing

We now define graph Turing machines and graph computable functions. Note
that these definitions differ from those in the full version of this paper, as here we
require the sets of labels and colors to be finite. This simplifies the presentation,
while losing little generality (since all of our constructions produce graphs with
this property).

Definition 2.1. A colored graph is a tuple G of the form (G, (L, V ), (C,E))
where

• G is a set, called the underlying set or the set of vertices,
• L is a finite set, called the set of labels, and V : G → L is called the labeling

function, and
• C is a finite set, called the set of colors, and E : G × G → P(C) is called

the edge coloring.

A computable colored graph is a colored graph such that G is a com-
putable set and V and E are computable functions.

The intuition is that a colored graph is an edge-colored directed multigraph
where each vertex is assigned a label, and such that among the edges from one
vertex to another, there is at most one of each color. Eventually, we will allow
each vertex to do some fixed finite amount of computation, and we will want
vertices with the same label to perform the same computations.

For the rest of the paper by a graph we will always mean a colored graph,
and will generally write the symbol G to refer to graphs.
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Let G be a graph with underlying set G, and suppose A ⊆ G. Define G|A
to be the graph with underlying set A having the same set of labels and set of
colors as G, such that the labeling function and edge coloring function of G|A
are the respective restrictions to A.

Definition 2.2. A graph Turing machine, or simply graph machine, is a
tuple M = (G, (A, {0, 1}), (S, s), T ) where the following hold.

• G = (G, (L, V ), (C,E)) is a graph, called the underlying graph. We will
speak of the components of the underlying graph as if they were components
of the graph machine itself. For example, we will call G the underlying set of
M as well as of G.

• A is a finite set, called the alphabet, having distinguished symbols 0 and 1.
• S is a finite set, called the collection of states.
• s is a distinguished state, called the initial state.
• T : L × P(C) × A × S → P(C) × A × S is a function, called the lookup
table, such that T (�, ∅, 0, s) = (∅, 0, s) for all � ∈ L, i.e., if any vertex is in
the initial state, currently displays 0, and has received no pulses, then that
vertex doesn’t do anything in the next step. This lookup table can be thought
of as specifying a transition function.

A G-Turing machine (or simply a G-machine) is a graph machine with
underlying graph G. A computable graph machine is a graph machine whose
underlying graph is computable.

If A is a subset of the underlying set of M, then M|A is the graph machine
with underlying graph G|A having the same alphabet, states, and lookup table
as M.

The intuition is that a graph machine should consist of a graph where at
each timestep, every vertex is assigned a state and an element of the alphabet,
which it displays. To figure out how these assignments are updated over time,
we apply the transition function determined by the lookup table which tells us,
given the label of a vertex, its current state, and its currently displayed symbol,
along with the colored pulses the vertex has most recently received, what state
to set the vertex to, what symbol to display next, and what colored pulses to
send to its neighbors.

For the rest of the paper, M = (G, (A, {0, 1}), (S, s), T ) will denote a com-
putable graph machine whose underlying (computable) graph is G = (G, (L, V ),
(C,E)).

Definition 2.3. A configuration of M is a function f : G → P(C) × A × S.
A configuration f is a bounded configuration when |{v ∈ G : f[2](v) �= 0}|
is finite. A bounded configuration f is a starting configuration when further
f[1](v) = ∅ and f[3](v) = s for all v ∈ G.

In other words, a starting configuration is an assignment in which all vertices
are in the initial state s, no pulses have been sent, and only finitely many vertices
display a non-zero symbol.
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Note that if A is a subset of the underlying set of M and f is a starting
configuration for M, then f |A is a starting configuration for M|A.

Definition 2.4. Given a configuration f for M, the run of M on f is the
function 〈M, f〉 : G × N → P(C) × A × S satisfying, for all v ∈ G,

• 〈M, f〉(v, 0) = f(v) and
• 〈M, f〉(v, n + 1) = T (V (v),X, z, t) for all n ∈ N, where

– X =
⋃

w∈G

(
E(w, v) ∩ 〈M, f〉[1](w, n)

)
,

– z = 〈M, f〉[2](v, n), and
– t = 〈M, f〉[3](v, n).

We say that a run halts at stage n if 〈M, f〉(v, n) = 〈M, f〉(v, n + 1) for
all v ∈ G.

A run of a graph machine is the function which takes a configuration for the
graph machine and a natural number n, and returns the result of letting the
graph machine process the configuration for n-many timesteps.

The following lemma is immediate from Definition 2.4.

Lemma 2.5. Suppose f is a configuration for M, and for each n ∈ N, define
fn := 〈M, f〉( · , n). Then for all n,m ∈ N and v ∈ G, the function fn is a
configuration for M such that fn+m(v) = 〈M, fn〉(v,m) = 〈M, f〉(v, n + m). �

We now describe how a graph machine defines a function.

Definition 2.6. For x ∈ A<G, let x̂ be the configuration such that x̂(v) =
(∅, x(v), s) for all v ∈ G. Let {M} : A<G → AG be the partial function such
that

• {M}(x)↑, i.e., is undefined, if the run 〈M, x̂〉 does not halt, and
• {M}(x) = y if 〈T, x̂〉 halts at stage n and y(v) = 〈M, x̂〉[2](v, n) for all v ∈ G.

Note that {M}(x) is well defined as x̂ is always a starting configuration for M.
The graph machine M is total bounded if {M}(x̂) ∈ A<G for all x ∈ A<G;

in particular, the partial function {M} is total. When M is total bounded, we
will sometimes write {M} : A<G → A<G.

While in general, the output of {M}(x) might have infinitely many non-
zero elements, for purposes of considering which Turing degrees are graph com-
putable, we will mainly be interested in the case of total bounded machines.

When defining a function using a graph machine, it will often be conve-
nient to have extra vertices whose labels don’t affect the function being defined,
but whose presence allows for a simpler definition. These extra vertices can be
thought as “scratch paper” and play the role of extra tapes (beyond the main
input/output tape) in a multi-tape Turing machine. We now make this precise.
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Definition 2.7. Let X be an infinite computable subset of G. A map ζ : A<X →
AX is 〈G,X〉-computable via M if

(a) {M} is total,
(b) for x, y ∈ A<G, if x|X = y|X then {M}(x) = {M}(y), and
(c) for all x ∈ A<G, for all v ∈ G \ X, we have {M}(x)(v) = 0, i.e., when

{M}(x) halts, v displays 0, and
(d) for all x ∈ A<G, we have {M}(x)|X = ζ(x|X).

A function is G-computable via M if it is 〈G,X〉-computable via M for
some infinite computable X ⊆ G. A function is G-computable if it is G-
computable via M◦ for some computable G-machine M◦. A function is graph
Turing computable, or simply graph computable, when it is G◦-computable
for some computable graph G◦.

The following easy lemma captures the sense in which functions that are
〈G,X〉-computable via M are determined by their restrictions to X.

Lemma 2.8. Let X be an infinite computable subset of G. There is at most one
function ζ : A<X → AX that is 〈G,X〉-computable via M, and it must be Turing
equivalent to {M}. �

3 Arbitrary Graphs

In this section, we consider the possible Turing degrees of total graph computable
functions. We begin with a bound for finite graphs.

Lemma 3.1. Suppose G is finite. Let h be the map which takes a configuration f
for M and returns n ∈ N if 〈M, f〉 halts at stage n (and not earlier), and returns
∞ if 〈M, f〉 doesn’t halt. Then 〈M, f〉 is computable and h is computable.

Proof. Because G is finite, 〈M, f〉 is computable. Further, there are only finitely
many configurations of M. Hence there must be some n, k ∈ N such that for all
vertices v in the underlying set of M, we have 〈M, f〉(v, n) = 〈M, f〉(v, n + k),
and the set of such pairs (n, k) is computable. Note that 〈M, f〉 halts if and only
if there is some n, less than or equal to the number of configurations for M,
for which this holds for (n, 1). Hence h, which searches for the least such n, is
computable. �

We next investigate which Turing degrees are achieved by arbitrary com-
putable graph machines.

3.1 Upper Bound

We now show that every graph computable function is computable from 0(ω).

Definition 3.2. Let f be a configuration for M, and let A be a finite subset of
G. We say that (Bi)i≤n is an n-approximation of M and f on A if
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• A = B0,
• Bi ⊆ Bi+1 ⊆ G for all i < n, and
• if Bi+1 ⊆ B ⊆ G then 〈M|Bi+1 , fi|Bi+1〉(v, 1) = 〈M|B , fi|B〉(v, 1) for all

v ∈ Bi+1, where again fi := 〈M, f〉( · , i).
The following proposition (in the case where � = n−n′) states that if (Bi)i≤n

is an n-approximation of M and f on A, then as long as we are only running
M with starting configuration f for �-many steps, and are only considering the
states of elements within Bn′ , then it suffices to restrict M to Bn. It follows by
a straightforward though technical induction.

Proposition 3.3. The following claim holds for every n ∈ N: For every config-
uration f for M, and finite A ⊆ G,

• there is an n-approximation of M and f on A, and
• if (Bi)i≤n is such an approximation, then

(∀n′ < n)(∀� ≤ n − n′)(∀v ∈ Bn′)〈M|Bn′+�
, f |Bn′+�

〉(v, �) = 〈M, f〉(v, �). �

We now analyze the computability of approximations and of runs.

Proposition 3.4. Let n ∈ N. For all computable graph machines M and con-
figurations f for M, the following are f (n)-computable, uniformly in n, where f
is the Turing degree of f .

• The collection Pn(f) := {(A, (Bi)i≤n) : A ⊆ G is finite and (Bi)i≤n is an
n-approximation of M and f on A}.

• The function fn := 〈M, f〉( · , n). �
Corollary 3.5. If f is a configuration for M, then fn is f (n)-computable and
so 〈M, f〉 is f (ω)-computable, where f is the Turing degree of f .

Proof. By Proposition 3.3, for each v ∈ G (the underlying set of M) and each
n ∈ N, there is an approximation of M for f and {v} up to n. Further, by
Proposition 3.4 we can f (n)-compute such an approximation, uniformly in v
and n. But if (Bv

i )i≤n is an approximation of M for f and {v} up to n then
〈M|Bv

n
, f |Bv

n
〉(v, n) = 〈M, f〉(v, n). So fn = 〈M, f〉( · , n) is f (n)-computable, uni-

formly in n. Hence 〈M, f〉 is f (ω)-computable. �
Theorem 3.6. Suppose that {M} is a total function. Then {M} is computable
from 0(ω).

Proof. Let f be any starting configuration of M. Then f is computable. Hence
by Corollary 3.5, 〈M, f〉(v, n + 1) is 0(n+1)-computable. This then implies that
the function determining whether or not {M}(x) halts after n steps is 0(n+2)-
computable.

But by assumption, {M}(x) halts for every x ∈ A<G, and so {M} is 0(ω)-
computable. �
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3.2 Lower Bound

We have seen that every graph computable function is computable from 0(ω). In
this subsection, we will see that this bound can be obtained. We begin by showing
that every arithmetical Turing degree has an element that is graph computable.
From this we then deduce that there is a graph computable function Turing
equivalent to 0(ω).

We first recall the following standard result from computability theory (see
[16, III.3.3]).

Lemma 3.7. Suppose n ∈ N and X ⊆ N. Then the following are equivalent.

• X ≤T 0(n).
• There is a computable function g : Nn+1 → N such that

– h( · ) := limx0→∞ · · · limxn−1→∞ g(x0, . . . , xn−1, · ) is total.
– h ≡T X. �

We now sketch the following construction.

Proposition 3.8. Let n ∈ N and suppose g : Nn+1 → N is computable such that

h( · ) := lim
x0→∞ · · · lim

xn−1→∞ g(x0, . . . , xn−1, · )

is total. Then h is graph computable via a graph machine whose lookup table does
not depend on n or g.

Proof sketch. We define a “subroutine” graph machine that, on its own, com-
putes the limit of a computable binary sequence. We then embed n repetitions
of this subroutine into a single graph machine that computes the n-fold limit of
the (n + 1)-dimensional array given by g.

The subroutine graph machine has a countably infinite sequence (with one
special vertex) as its underlying graph, in that every vertex is connected to
all previous vertices (and all are connected to the special vertex). Each vertex
first activates itself, setting its displayed symbol to the appropriate term in the
sequence whose limit is being computed. Each vertex sends a pulse to every
previous vertex, signaling its displayed state. Any vertex which receives both 0
and 1 from vertices later in the sequence knows that the sequence alternates at
some later index. Finally, any vertex which only receives a 0 or 1 pulse, but not
both, sends a pulse corresponding to the one it receives to the special vertex.
This special vertex then knows the limiting value of the sequence. �

This technical construction allows us to conclude the following.

Corollary 3.9. Suppose X ⊆ N is such that X ≤T 0(n) for some n ∈ N. Then
X is Turing-equivalent to some graph computable function.

Proof. By Lemma 3.7, X is Turing equivalent to the n-fold limit of some com-
putable function. By Proposition 3.8, this n-fold limit is graph computable. �

Not only are all graph computable functions Turing reducible to 0(ω), but
this bound can be achieved.

Theorem 3.10. There is a graph computable function that is Turing equivalent
to 0(ω). �
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4 Finite Degree Graphs

We have seen that every arithmetical function is graph computable. However,
as we will see in this section, if we instead limit ourselves to graphs where
each vertex has finite degree, then not only is every graph computable function
computable from 0′, but also we can obtain more fine-grained control over the
Turing degree of the function by studying the degree structure of the graph.

4.1 Upper Bound

Before we move to the specific case of graphs of finite degree (defined below),
there is an important general result concerning bounds on graph computability
and approximations to computations.

Definition 4.1. Let Θ : P<ω(G) → P<ω(G). We say that Θ is a uniform
approximation of M if for all finite subsets A ⊆ G, we have A ⊆ Θ(A), and
for any configuration f for M, the pair (A,Θ(A)) is a 1-approximation of M
and f on A.

The following is an easy induction on n.

Lemma 4.2. Let Θ(A) be a uniform approximation of M. Then for any
finite subset A of G, any configuration f for M, and any n ∈ N, the tuple
(A,Θ(A), Θ2(A), . . . , Θn(A)) is an n-approximation of M and f on A. �

Note that while we will be able to get even better bounds in the case of
finite degree graphs, we do have the following bound on computability, as a
straightforward consequence of Lemma 4.2.

Lemma 4.3. Let Θ be a uniform approximation of M. Then for any configura-
tion f , the function 〈M, f〉 is computable from Θ and f (uniformly in f), and
if {M} is total, then {M} ≤T Θ′. �

We now introduce the degree function of a graph.

Definition 4.4. For v ∈ G, define the degree of v to be the number of ver-
tices incident with it, i.e., degG(v) := |{w : E(v, w) ∪ E(w, v) �= ∅}|, and call
degG( · ) : G → N ∪ {∞} the degree function of G.

We say that G has finite degree when rng(degG) ⊆ N, and say that G has
constant degree when degG is constant.

We will see that for a graph G of finite degree, its degree function bounds
the computability of G-computable functions.

The following easy lemma (using the fact that each vertex of a computable
graph has a computably enumerable set of neighbors) allows us to provide a
computation bound on graph Turing machines all vertices of whose underlying
graph have finite degree.

Lemma 4.5. Suppose that G has finite degree. Then degG ≤T 0′. �
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We next need the following definition.

Definition 4.6. For each A ⊆ G and n ∈ N, the n-neighborhood of A, writ-
ten Nn(A), is defined by induction as follows.
Case 1 : The 1-neighborhood of A is N1(A) := A ∪ {v ∈ G : (∃a ∈ A) E(v, a) ∪
E(a, v) �= ∅}.
Case k + 1 : The k + 1-neighborhood of A is Nk+1(A) = N1(Nk(A)).

Lemma 4.7. Suppose that G has finite degree. Then

(a) the 1-neighborhood map N1 is computable from degG, and
(b) for any G-machine M, the map N1 is a uniform approximation to M.

Proof. Clause (a) follows from the fact that given the degree of a vertex one can
search for all of its neighbors, as this set is computably enumerable (uniformly
in the vertex) and of a known finite size.

Clause (b) follows from the fact that if a vertex receives a pulse, it must have
come from some element of its 1-neighborhood. �

The following more precise upper bound on the computability of a graph
computable function holds when the underlying graph has finite degree.

Theorem 4.8. Suppose that G has finite degree and {M} is total. Then M is
bounded and {M} is computable from degG. �

The following important corollaries are immediate from Lemma4.5,
Theorem 4.8, and the fact that if degG is constant, it is computable.

Corollary 4.9. Suppose that G has finite degree. Then any G-computable func-
tion is 0′-computable. �
Corollary 4.10. Suppose that G has constant degree. Then any G-computable
function is computable (in the ordinary sense). �

4.2 Lower Bound

Finally we consider the possible Turing degrees of graph computable functions
where the underlying graph has finite degree. In particular, we show that every
Turing degree below 0′ is the degree of some total graph computable function
where the underlying graph has finite degree.

Recall from Lemma 3.7 (for n = 1) that a set X ⊆ N satisfies X ≤T 0′

when the characteristic function of X is the limit of a 2-parameter computable
function.

Theorem 4.11. For every X : N → {0, 1} such that X ≤T 0′ there is a graph
machine NX such that every vertex of its underlying graph has degree at most
3, and {NX} is total and Turing equivalent to X. �
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5 Representations of Other Computational Models via
Graph Machines

Many other models of computation can be viewed as special cases of graph
machines, providing further evidence for graph machines being a universal model
of computation on graphs.

5.1 Ordinary Turing Machines

An ordinary Turing machine can be simulated by a graph Turing machine, where
the tape of the Turing machine is encoded by an underlying graph that is a Z-
chain.

The doubly-infinite one-dimensional read/write tape of an ordinary Turing
machine has cells indexed by Z, the free group on one generator, and in each
timestep the head moves according to the generator or its inverse. This interpre-
tation of a Turing machine as a Z-machine has been generalized to H-machines
for arbitrary finitely generated groups H by [4], and the simulation mentioned
above extends straightforwardly to this setting as well.

One might next consider how cleanly one might embed various extensions of
Turing machines where the tape is replaced by a graph, such as Kolmogorov–
Uspensky machines [13], Knuth’s pointer machines [12, pp. 462–463], and
Schönhage’s storage modification machines [15]. For a further discussion of these
and their relation to sequential abstract state machines, see [10,11].

5.2 Cellular Automata

Cellular automata (which we take to be finite-dimensional, finite-radius and with
finitely-many states) can be naturally simulated by graph machines, moreover
of constant degree. In particular, Corollary 4.10 applies to this embedding. For
background on cellular automata, see, e.g., the book [18].

Cells of the automata are taken to be the vertices of the graph, and cells are
connected to its “neighbors” (other cells within the given radius) by a collection
of edges (of the graph) whose labels encode their relative position (e.g., “1 to
the left of”) and all possible cellular automaton states. (In particular, every
vertex has the same finite degree.) The displayed symbol of each vertex encodes
the cellular automaton state of that cell. The rule of the cellular automaton is
encoded in the lookup table so as to provide a bisimulation between the original
cellular automaton and the graph machine built based on it.

Not only is the evolution of every such cellular automata computable (more-
over via this embedding as a graph machine), but there are particular automata
whose evolution encodes the behavior of a universal Turing machine [9,19]. Sev-
eral researchers have also considered the possibility of expressing intermediate
Turing degrees via this evolution [5,8,17]. Analogously, one might ask which
Turing degrees can be expressed in the evolution of graph machines.
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5.3 Parallel Graph Dynamical Systems

Parallel graph dynamical systems [2] can be viewed as essentially equivalent
to the finite case of graph Turing machines, as we now describe. Finite cellu-
lar automata can also be viewed as a special case of parallel graph dynamical
systems, as can finite boolean networks, as noted in [2, Sect. 2.2]. For more on
parallel graph dynamical systems, see [1,2,6].

In contrast, it is not immediately clear how best to encode an arbitrary
(parallel) abstract state machine [7] as a graph Turing machine (due to the
higher arity relations of the ASM).

Acknowledgements. The authors would like to thank Tomislav Petrović, Linda
Brown Westrick, and the anonymous referees of earlier versions for helpful comments.
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Abstract. We analyze from a global point of view the expressive
resources of IF logic that do not stem from Henkin (partially-ordered)
quantification. When one restricts attention to regular IF sentences, this
amounts to the study of the fragment of IF logic which is individuated
by the game-theoretical property of Action Recall. We prove that the
fragment of Action Recall can express all existential second-order (ESO)
properties. This can be accomplished already by the prenex fragment
of Action Recall, whose only second-order source of expressiveness are
the so-called signalling patterns. The proof shows that a complete set of
Henkin prefixes is explicitly definable in the fragment of Action Recall.
In the more general case, in which also irregular IF sentences are allowed,
we show that full ESO expressive power can be achieved using neither
Henkin nor signalling patterns.

Keywords: Independence-Friendly logic · Game-theoretical semantics ·
Henkin quantification · Action recall · Signalling · Existential second-
order logic · Expressive power

1 Introduction

Independence-Friendly logic [10,15] is one of a number of formalisms that have
been developed in order to make various notions of dependence and independence
accessible to the instruments of logical investigation. Independence-Friendly (IF)
logic and similar formalisms (Dependence-Friendly logic, Dependence logic [18]),
in particular, were developed as a more flexible approach to the logic of Henkin
quantifiers [9]. The Henkin quantifier Hn

k is a matrix
⎛
⎜⎝

∀x1
1 ∀x2

1 . . . ∀xn
1 ∃y1

...
...

. . .
...

...
∀x1

k ∀x2
k . . . ∀xn

k ∃yk

⎞
⎟⎠

which, differently from a linear sequence of the same quantifiers, is meant to
state that each yi is supposed to be chosen as a function of x1

i , . . . , x
n
i only. In IF
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logic, the same is achieved by means of a linear prefix, together with a slashing
device. For example, the Henkin quantifier H1

2 is expressed in IF logic by the
sequence of quantifiers

∀x1
1∃y1∀x1

2(∃y2/{x1
1, y1}).

The slashed quantifier (∃y2/{x1
1, y1}) expresses the fact that y2 is independent

from x1
1 and y1.

It has been gradually realized that, in spite of the fact that it stems from the
study of Henkin quantifiers, IF logic derives its expressiveness also from other
sources. Henkin quantifiers are partial orderings of first-order quantifiers; but in
IF logic also intransitive (thus not ordered) dependence sequences are allowed,
for example

∀x∃y(∃z/{x}).

Here y depends on x, z depends on y, but z does not depend on x. It is known that
such quantifier sequences, also known as signalling sequences (or patterns) can
be used to express higher-order concepts [4,7,17]; for example, the IF sentence
∃v∀x∃y(∃z/{x})(x = z ∧ y �= v) is known to characterize the class of all infinite
structures (this idea is attributed, in [7], to Fred Galvin).

Henkin and signalling patterns are known to exhaust the higher-order expres-
sive power of prenex regular1 IF logic: if a regular sentence is in prenex normal
form and does not contain Henkin or signalling patterns, then it is equivalent to
some first-order sentence [17]. Non-prenex, regular IF logic is known to contain
further expressive synctactical patterns (involving the interaction of quantifiers
and disjunctions) that are neither of the Henkin nor the signalling type, yet
allow describing NP-complete problems such as SAT and SET PARTITIONING
[2]; the problem of a complete classification of such patterns is still open. Less
is known of irregular IF logic, which will be addressed here in Sect. 5. The aim
of the present paper is a better understanding of the resources of IF logic that
do not stem from Henkin quantification.

A peculiarity of Independence-Friendly logic is the close link between its
syntax and the theory of extensive games of imperfect information. The link is
given by the so-called Game-Theoretical Semantics, that we will review in Sect. 2.
Through this connection, game-theoretical concepts throw light on peculiarities
of the logic; and vice versa, the study of logical phenomena can cast new light
on the foundations of game theory.

It is well known, through the works of Henkin, Hintikka and others, that it is
possible to define a notion of truth for first-order languages in terms of certain
games of perfect information, which involve two players called Verifier (“Eloise”)
and Falsifier (“Abelard”), who take it in turns to point out evidence for or against
the truth of a given sentence ϕ in a given structure M . The resulting Game-
Theoretical Semantics (GTS) is equivalent to the usual Tarskian one.

1 The notion of regularity will be defined in Sect. 2.
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When moving from first-order to IF languages, extending the Tarskian
semantics is not straightforward;2 instead, it is quite natural to generalize the
semantic games by allowing imperfect information, in a way that the indepen-
dence constraints expressed by syntax correspond (roughly speaking) to the fact
that a player is forced to make his/her choices in ignorance of the outcomes
of some earlier moves [10]. This generalization allows new complex possibilities.
Many IF games are actually games of imperfect recall : the players may forget
what they knew at earlier stages of the game.

In this paper, we will be particularly interested in a game-theoretical property
called action recall. Eloise has action recall if she cannot forget her own moves;
assuming regularity, an IF sentence has action recall (i.e., all its corresponding
games have action recall) for Eloise if its sets of slashed variables associated
to existential quantifiers contain no existentially quantified variables. Thus for
example ∀x(∃y/{x})R(x, y) has action recall, while ∃x(∃y/{x})R(x, y) does not.

The fragment of sentences with action recall for Eloise is particularly impor-
tant, because, in it, it is impossible to write the usual IF translations of Henkin
prefixes,3 and yet, it is a highly expressive fragment. Therefore, it is natural
to wonder to what degree the IF-definable concepts are expressible under the
restriction of action recall. IF logic is known to capture exactly the existential
second-order (ESO) definable classes. In Sect. 4 we will show that the Henkin
prefixes Hn

2 are explicitly definable in the prenex, regular fragment of action
recall (therefore, by means of signalling). The Hn

2 prefixes, taken together, are
known to capture all ESO definable concepts [14]; therefore, the prenex, regular
fragment of action recall suffices for full IF expressive power.

When irregular IF sentences are allowed, instead, it becomes possible to
violate action recall in new ways; in Sect. 5 we use this fact to show, by means
of a translation procedure, that it is possible to express all IF properties using
neither Henkin nor signalling quantifier patterns. Section 2 reviews preliminary
notions about game-theoretical semantics and action recall, while Sect. 3 presents
some significant examples.

2 Preliminaries

Notation. Structures are denoted by capital italic letters. To keep the notation
simple, we do not introduce a separate symbol for the domain of a structure;
thus if M is a structure, a ∈ M and R ⊆ M2 mean that a is an element of the
domain of M and R is a binary relation on the domain of M , respectively.

An assignment of variables on a structure M is a function s : V → M , where
the domain V of s is a finite set of variables. We denote the set of all assignments
on M with domain V by As(V,M). Given an assignment s ∈ As(V,M) and an
element a ∈ M , we write s(a/v) for the assignment with domain V ∪ {v} such
2 It can be done, at the cost of defining a notion of satisfaction by sets of assignment,

instead of the usual single assignments. See e.g. [5,11,12,15,18].
3 This point is exemplified by the IF rendition of the H1

2 prefix, shown above: its “slash
set” {x1

1, y1} contains an existentially quantified variable, y1.
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that s(a/v)(v) = a and s(a/v)(u) = s(u) for u ∈ V \ {v}. If x = (x1, . . . , xn) is
a tuple of variables, we use the shorthand notation s(x) for (s(x1), . . . , s(xn)).

Game-Theoretical Semantics. The syntax of IF logic is a restriction of the
usual first-order syntax, to which we add quantifiers of the forms (∃v/V ) and
(∀v/V ), where V is a finite set of variables, called the slash set of the quantifier.
When V = ∅, we use the abbreviation Qx := (Qx/V ). The syntax is restricted,
with regards to usual first-order languages, in that

– we only allow the connectives ∧,∨ and ¬, and
– for simplicity, we only allow ¬ to occur in front of atomic formulae.

The set Free(ϕ) of free variables of a formula ϕ is defined as usual, with the
proviso that also variables from slash sets can be either free or bound. For
example, in ∀x(∃y/{x, y, z})ψ, the occurrence of x in the slash set is bound,
while the occurrences of y, z are free.

A further restriction on the syntax of IF logic that is often assumed in the
literature (see, e.g., [3,15]) is that variables are not requantified:

– A sentence is regular if no quantifier (Qv/V ) occurs in the scope of another
quantifier (Q′v/W ) over the same variable v.

We denote IF logic with this regularity restriction by IFr. We will mostly restrict
our studies to IFr, but in Sect. 5 we will also consider irregular sentences.

Game-Theoretical Semantics (GTS) associates to each triple (ϕ,M, s), where
ϕ is an IF formula, M is a structure, and s ∈ As(V,M) for a set V of variables
such that Free(ϕ) ⊆ V , a 2-player win-lose extensive game of imperfect infor-
mation G(ϕ,M, s). In case ϕ is a sentence and s = ∅, we simply write G(ϕ,M).
The two players, usually called Eloise and Abelard, can be thought of as trying
to verify, respectively falsify, the sentence ϕ on the structure M . Their moves
are triggered by the most external logical operator of ϕ:

– in G(ψ1 ∨ ψ2,M, s), Eloise chooses a disjunct ψi and then G(ψi,M, s) is
played;

– in G(ψ1 ∧ ψ2,M, s), the same kind of move is performed by Abelard;
– in G((∃v/V )ψ,M, s), Eloise picks an element a ∈ M and then the game

G(ψ,M, s(a/v)) is played;
– in G((∀v/V )ψ,M, s) the same kind of move is performed by Abelard;
– in G(α,M, s), with α a literal (i.e., an atomic formula or the negation of an

atomic formula), the winner is decided: it is Eloise in case M, s |= α (in the
usual first-order sense), and Abelard otherwise.

Imperfect information manifests itself in that some histories of the game are
considered indistinguishable for the player who has the turn to move at the
end of them. If two histories h and h′ both end with the choice of a subgame
associated with the same occurrence of a subformula (Qv/V )ψ with assignments
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sh, sh′ ∈ As(W,M) such that sh(w) = sh′(w) for every w ∈ W \V , then h and h′

are indistinguishable for the player associated to (Qv/V ), and we write h ∼V h′.
A strategy for Eloise in game G(ϕ,M, s) is a function associating, to each

history ending in a subgame G((∃v/V )ψ,M, s′), an element a ∈ M ; and, to
every history ending in a subgame G(ψ1 ∨ ψ2,M, s′), either ψ1 or ψ2. Strategies
for Abelard can be similarly defined.

A strategy of Eloise is winning if, playing according to it, Eloise wins, what-
ever moves Abelard makes. Winning strategies for Abelard are defined dually.

A strategy σ is uniform if, whenever two histories h, h′ are in its domain and
h ∼V h′ (for the only appropriate V ), then σ(h) = σ(h′).

With this game-theoretical apparatus, it is possible to define the notions of
truth and falsity for IF sentences as the existence of appropriate strategies:

M |= ϕ if Eloise has a uniform winning strategy in G(ϕ,M)
M |=− ϕ if Abelard has a uniform winning strategy in G(ϕ,M).

There is also a third possibility: it may happen that neither player has a uniform
winning strategy (consider, e.g., the sentence ∀x(∃y/{x})x=y). In that case, the
game and the truth value of the sentence on M are said to be undetermined. In
this paper, we only focus on the truth/nontruth distinction. Accordingly, we say
that a class K of structures is definable in IF, if there is an IF sentence ϕ such
that for all structures M , we have M ∈ K ⇔ M |= ϕ. As was already shown
in [10], IF logic has the same expressive power as existential second-order logic
ESO: a class of structures is definable in IF if and only if it is definable in ESO.

Signalling and Henkin Patterns. We have been talking informally of Henkin
and signalling patterns of quantifiers. Exact definitions were given in [17]; We
extend these definitions for irregular sentences.

– Let (Qv/V ) and (Q′u/U) be quantifiers occurring in a prefix or in a sentence.
We use the following terminology:

• (Qv/V ) is in the effective scope of (Q′u/U), if (Qv/V ) is in the scope of
(Q′u/U) and there is no quantifier (Q′′u/W ) in the scope of (Q′u/U) such
that (Qv/V ) in the scope of (Q′′u/W ). We write (Qv/V ) ∈ Es(Q′u/U)
if this is the case.

• (Qv/V ) depends on (Q′u/U) if (Qv/V ) ∈ Es(Q′u/U) and u /∈ V .
– A signalling pattern in a sentence consists of three quantifiers (∀x/X),

(∃y/Y ), (∃z/Z) such that x, y and z are distinct, (∃z/Z) ∈ Es(∃y/Y ) ∩
Es(∀x/X), (∃y/Y ) ∈ Es(∀x/X) and

• (∃y/Y ) depends on (∀x/X);
• (∃z/Z) depends on (∃y/Y ), but not on (∀x/X).

– A Henkin pattern in a sentence consists of four quantifiers (∀x/X), (∃y/Y ),
(∀z/Z), (∃w/W ) s.t. x, y, z, w are distinct, (∃w/W ) ∈ Es(∃y/Y ) ∩ Es(∀z/Z),
(∃w/W ), (∀z/Z),(∃y/Y ) ∈ Es(∀x/X), and

• (∃y/Y ) depends on (∀x/X), but not on (∀z/Z);
• (∃w/W ) depends on (∀z/Z), but not on (∀x/X) or (∃y/Y ).
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Note that the last condition holds only if the existentially quantified variable y
is in the slash set W . Also note that in the case of regular sentences, we may
simply talk about scopes instead of effective scopes in the definitions above.

Action Recall Fragment of IF Logic. Even though many different games
are associated to each single sentence (one game for each sentence-structure
pair), some interesting properties of the games are characterized by synctactical
properties of the associated sentences; they are invariants of the sentence alone.
As a consequence, such game-theoretical properties define associated fragments
of IF logic. In particular, in the literature ([13,15,16] sect. 6.4, [1]) there has been
some interest in properties that limit the ability of players to forget. Considering
for example the role of Eloise:

– Eloise has action recall if she cannot forget her own moves.
– Eloise has knowledge memory if she cannot forget what she knew at earlier

stages of the game.
– Eloise has perfect recall if she has both action recall and knowledge memory.

Under the assumption of regularity, each of these properties has been given
a syntactical characterization in the literature (see e.g., [15], [1]). For action
recall the characterization is as follows: Assume that ϕ is a regular IF sentence.
Then Eloise has action recall in the game G(ϕ,M, s) if and only if ϕ satisfies the
following restriction on slash sets:

(RS) If an existential quantifier (∃v/V ) occurs in the scope of another existential
quantifier (∃u/U), then u /∈ V .

It should be noted that the condition (RS) does not guarantee action recall for
Eloise on irregular sentences. For example, the formula ∃x∃x∃y(x = y) violates
action recall: in her third move, Eloise forgets the value chosen in the first move,
because it has been overwritten by the second move.

We denote the fragment of IF consisting of all regular formulae that satisfy
(RS) by IFr

AR(∃) (here AR(∃) stands for Action Recall for ∃loise). Note that it is
impossible to write a Henkin quantifier in IFr

AR(∃); for this reason, the fragment
IFr

AR(∃) will be one of the main objects of study in this paper. We will also be
interested in the set IFp,r

AR(∃) of prenex sentences of IFr
AR(∃).

The fragments of perfect recall and knowledge memory are relatively well-
understood; truth, in both of them, can only capture first-order concepts (for the
former fragment, the result was anticipated in [13,16] and adequately proved in
[15]; the latter fragment was addressed in [1]). The regular action recall fragment
IFr

AR(∃) is by far less understood; some examples in the literature show that it
is capable of expressing higher-order concepts, such as infinity over the empty
signature, and some NP-complete problems (see Sect. 3). But a general under-
standing of its expressive power is lacking, and will be addressed in the present
paper.
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3 Examples

The main result that will be proved in Sect. 4 implies that any ESO concept
can be expressed by some regular, prenex action recall formula (therefore, by
means of signalling). However, the defining sentences provided by the theorem
are often unnecessarily complicated. We give here some examples of NP-complete
problems that can be expressed by relatively simple sentences of IFp,r

AR(∃).

Example 1. In [17], it was shown that the EXACT COVER BY 3-SETS problem
can be defined by an IFp,r

AR(∃) sentence. This problem consists in deciding, given
a set U of 3k elements and a family C of 3-element subsets of U , whether there
is a subfamily of C which is a partition of U . It is defined by the sentence

∀x∃y(∃z/{x})(U(x) → (K(y) ∧ E(x, z)))

on finite structures M of domain U ∪ C (where U ∩ C = ∅), such that UM = U ,
Card(KM ) = k and EM = {〈a,B〉 | a ∈ U,B ∈ C, a ∈ B}. We wish to point out
that, if we restrict, w.l.o.g., the class of structures by the additional constraint
that KM ⊆ M \ UM , then the condition above can be shown (see Appendix) to
be equivalent to an ESO sentence of prefix ∃f∀x:

ϕ∗ = ∃f∀x(U(x) → (K(f(x)) ∧ E(x, f(f(x))))).

∃f∀x is the simplest non-trivial prefix of functional ESO. The fact that it can
capture NP-complete problems was shown by Grandjean [8]; he applied this
prefix to a conjunction of twenty-one clauses to define the HAMILTON PATH
problem.

Example 2. We consider another NP-complete problem, DOMINATING SET:
the problem of deciding, given an integer k and a graph G = (V,EG) as input,
whether there is a set D ⊆ V of vertices of size at most k, such that, for every
vertex x ∈ V , either x ∈ D or (y, x) ∈ EG for some y ∈ D. Assuming that the
intended structures encode k by an interpreted unary predicate PG of cardinality
k, the problem is described (see Appendix) by the IFp,r

AR(∃) sentence

∀x∃z(∃y/{x})((E(y, x) ∨ y = x) ∧ P (z)).

This description is based on an analogous result for Dependence logic [19].

Example 3. Also the problem SAT is expressible by means of signalling. SAT is
stated as follows: given a propositional formula π in conjunctive normal form,
is π satisfiable? The problem can be modeled over structures M of signature
P,N,C, 0, 1, with 0M , 1M distinct constants; CM ⊆ M representing the set of
clauses; PM , NM ⊆ (M\CM )×CM , representing the fact that the first argument
(thought of as a propositional variable) occurs positively, respectively negatively,
in the second argument (thought of as a clause). In this class of structures, SAT
is described (see Appendix) by the following IFp,r

AR(∃) sentence:

∀x∃y(∃z/{x})(C(x) → ((P (y, x) ∧ z = 1) ∨ (N(y, x) ∧ z = 0))).
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Since this specific form of SAT is known to be NP-complete under quantifier-
free reductions ([6]), we could give an argument based on standard tools to
show that IFp,r

AR(∃) captures NP. In principle, we could extend this argument to
show that an “infinite” version of SAT is complete for ESO under quantifier-free
reductions, and thus IFp,r

AR(∃) captures ESO. However, we will prove this result in
the next section with a more direct argument.

4 Explicit Definition of Henkin Quantifiers by Signalling

In this section we show that the prenex action recall fragment IFp,r
AR(∃) has the

same expressive power as the full IF logic. In the proof of this result we exploit
the fact that ESO is captured by Henkin quantifiers with two rows:

Theorem 1 [14]. For any ESO sentence there is an equivalent sentence of the
form (∀x1 . . . ∀xn ∃u

∀y1 . . . ∀yn ∃v

)
ψ

for some n ∈ N, and some quantifier-free formula ψ.

By this result, it suffices to prove that, for any n, any sentence that is obtained
by applying the Henkin quantifier Hn

2 to a quantifier-free formula, is expressible
in IFp,r

AR(∃). Since IFp,r
AR(∃) is a fragment of IF, and IF is expressively equivalent to

ESO, it follows then that the expressive powers of all the three logics IFp,r
AR(∃), IF

and ESO coincide.
Thus, we consider a sentence starting with the Henkin quantifier Hn

2 ; let

ϕ :=
(∀x1 . . . ∀xn ∃u

∀y1 . . . ∀yn ∃v

)
ψ(x1, . . . , xn, u, y1, . . . , yn, v),

where ψ is a quantifier-free formula. In order to make the argument below more
transparent, we formulate the truth condition of ϕ in a slightly non-standard
way: M |= ϕ if and only if there are relations Fa, Fb ⊆ Mn+1 such that

(a) (M,Fa) |= ∀z ∃w Fa(z, w),
(b) (M,Fb) |= ∀z ∃w Fb(z, w),
(c) (M,Fa, Fb) |= ∀x∀u∀y ∀v(¬Fa(x, u) ∨ ¬Fb(y, v) ∨ ψ(x, u, y, v)).

Here, and in the sequel, z denotes a tuple (z1, . . . , zn) of distinct variables; sim-
ilarly, x = (x1, . . . , xn) and y = (y1, . . . , yn).

We will now build a sentence θ of IFp,r
AR(∃) that expresses the three conditions

above. The idea is to use the variables z and w for expressing conditions (a)
and (b), and the variables x, u, y and v for expressing (c). In addition we use
an “index variable” i that Abelard will use in the game G(θ,M) to separate
the conditions (a), (b) and (c) from each other, and another “index variable”
j that Eloise uses either to signal the value of i, or to choose a disjunct of the
quantifier-free part in (c).
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To simplify the presentation, we assume first that the signature contains three
constants, a, b and c, and consider only structures in which they are interpreted
by distinct elements. In this case, the sentence θ is defined as follows:

θ := ∀x∀u∀y ∀v∀z ∀i (∃j/Z)(∃w/X) η,

where Z is the set {z1, . . . , zn}, X is the set {x1, . . . , xn, u, y1, . . . , yn, v, i} and
η is the following quantifier-free formula

(i = a → j = a) (1)
∧ (i = b → j = b) (2)
∧ (i = c ∧ z = x ∧ j = a → w �= u) (3)
∧ (i = c ∧ z = y ∧ j = b → w �= v) (4)
∧ (i = c ∧ j = c → ψ(x, u, y, v)) (5)
∧ (i = c → (j = a ∨ j = b ∨ j = c)) (6)

Lemma 1. Let M be a structure such that a �= b �= c �= a, where a = aM ,
b = bM and c = cM . Then M |= ϕ if and only if M |= θ.

Proof. Assume first that M |= ϕ. Let Fa and Fb be relations satisfying the
conditions (a), (b) and (c). Without loss of generality, we can assume that Fa

and Fb are actually functions. We describe a winning strategy σ for Eloise in
the semantic game G(θ,M). In the first six moves of the game, Abelard chooses
interpretations for the variables x, u, y, v, z and i; let s be the assignment formed
during these moves. Then Eloise answers by choosing a value ds for the variable
j as follows:

– If s(i) = a, then Eloise sets ds = a,
– If s(i) = b, then Eloise sets ds = b,
– Assume then that s(i) = c. By condition (c), one of the following holds:

(i) s(u) �= Fa(s(x)), (ii) s(v) �= Fb(s(y)), or (iii) M, s |= ψ.
In case (i), Eloise sets ds = a; in case (ii), Eloise sets ds = b; in case (iii),
Eloise sets ds = c.

In the next move, Eloise chooses a value es for the variable w. If ds ∈ {a, b}, she
sets es = Fds

(s(z)); in case ds = c, she chooses an arbitrary es ∈ M .
Note that the choice of ds above does not depend on s(zl) for any l. Similarly,

the choice of es is independent of s(x1), . . . , s(xn), s(u), s(y1), . . . , s(yn), s(v) and
s(i). Thus, the strategy of Eloise described above is uniform. Furthermore, it is
straightforward to verify that Eloise has a winning strategy in G(η,M, s′), where
s′ = s(ds/j, es/w). Thus, we see that M |= θ.

Assume then for the other direction that M |= θ. Then, given any assign-
ment s ∈ As(X ∪ Z,M), Eloise can choose values ds and es for the vari-
ables j and w such that ds does not depend on s(z), es does not depend on
s(xuyvi) (but may depend on ds), and Eloise has a winning strategy in the
game G(η,M, s(ds/j, es/w)).

We define now relations Fa, Fb ⊆ Mn+1 as follows:
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– Fa := {(s(z), es) | s ∈ As(X ∪ Z,M), ds = a},
– Fb := {(s(z), es) | s ∈ As(X ∪ Z,M), ds = b}.

It suffices to show that conditions (a), (b) and (c) hold for these relations. In
order to prove (a), let m = (m1, . . . ,mn) ∈ Mn, and consider an assignment
s ∈ As(X ∪ Z,M) such that s(z) = m and s(i) = a. Then, ds is necessarily
a, since otherwise Eloise would lose the game G(η,M, s(ds/j, es/w)) if Abelard
chooses the first conjunct i = a → j = a of η. Thus, by the definition above,
(m, es) ∈ Fa. Condition (b) is proved symmetrically by using conjunct (2) of η.

Note that since the choice of es depends only on s(z) and ds, we can assume
that the relations Fa and Fb are actually functions Mn → M .

To prove (c), let s0 be an assignment with domain X \ {i}. We need to show
that Fa(s0(x)) �= s0(u), Fb(s0(y)) �= s0(v) or M, s0 |= ψ. Let s be an extension
of s0 to domain X ∪ Z such that s(i) = c. Then necessarily ds ∈ {a, b, c}, since
otherwise Eloise would lose the game G(η,M, s(ds/j, es/w)) if Abelard chooses
the last conjunct (6) of η.

Assume first that ds = a. Since the choice of ds does not depend on s(z),
we have ds′ = ds = a, where s′ = s(s(x)/z). Then by the definition of Fa,
we have es′ = Fa(s′(z)) = Fa(s0(x)). On the other hand, it must be the
case that es′ �= s′(u) = s0(u), since otherwise Eloise would lose the game
G(η,M, s′(ds′/j, es′/w)) if Abelard chooses conjunct (3) of η. Thus, we see that
Fa(s0(x)) �= s0(u). In the case ds = b, we can prove in the same way that
Fb(s0(y)) �= s0(v), by using conjunct (4) of η.

Assume finally, that ds = c. Then it follows immediately that M, s0 |= ψ.
This is because otherwise Eloise would lose the game G(η,M, s(ds/j, es/w)) if
Abelard chooses conjunct (5) of η. ��

We will next eliminate the assumption of three constants with distinct inter-
pretations. On structures with at least two different elements, this is done by
replacing the quantifiers ∀i and (∃j/Z) in θ by the sequences ∀i∀i′∀i′′ and
(∃j/Z)(∃j′/Z)(∃j′′/Z), respectively. Furthermore, the subformulae i = a, i = b
and i = c of η are replaced by i = i′ ∧ i �= i′′, i = i′′ ∧ i �= i′ and i′ = i′′ ∧ i �= i′,
and similarly for the subformulae j = a, j = b and j = c. Let θ′ be the formula
obtained from θ by performing these changes. By a straightforward modifica-
tion of the proof of Lemma1, we see that M |= ϕ ⇔ M |= θ′ holds for all
structures M with at least two elements.

If M has only one element, then clearly M |= ϕ ⇔ M |= ∀x∀u∀y ∀v ψ.
Furthermore, the implication M |= ∀x∀u∀y ∀v ψ ⇒ M |= ϕ holds for all
structures. Thus, we see that ϕ is equivalent to θ∗ on all structures, where θ∗ is
obtained from θ′ by adding (in the end of the prefix) the sequence ∀x′ ∀u′∀y′ ∀v′

of universal quantifiers and the disjunct ψ(x′, u′, y′, v′) to the quantifier-free
part, for some fresh variables x′ = (x′

1, . . . , x
′
n), y′ = (y′

1, . . . , y
′
n), u′ and v′. This

completes the proof of the main result in this section:

Theorem 2. IFp,r
AR(∃) has the same expressive power as ESO. In particular, any

class definable in IF is already definable in IFp,r
AR(∃).
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Note that the length of the IFr
AR(∃) translation θ∗ given in the proof of

Theorem 2 is only linear with respect to the length of the original Hn
2 formula

ϕ. Another interesting observation that follows from the proof is that there is
no hierarchy of expressive power based on the number or length of signalling
patterns: the signalling pattern in θ∗ is independent of n.

5 No-Henkin, No-Signalling Irregular IF Logic

In Sect. 4, we showed that all ESO properties can be defined by regular, prenex
IF sentences of action recall. Such sentences are of the signalling, but not of the
Henkin kind. We show now that, if the restrictions of regularity and prenex form
are abandoned, then all ESO properties can be expressed by IF sentences which
contain neither Henkin nor signalling patterns.

Eliminating Henkin and Signalling Sequences by Requantification

In order to create a Henkin or a signalling pattern, we need to have two existential
quantifiers that have certain dependencies to each other. In order to eliminate
these patterns, we now attempt to replace existential quantifiers with universal
quantifiers that have essentially the same role in the semantic game. This can
be done by a simple trick if we allow requantification of variables.

Let ϕ be a regular IF formula and let y be a fresh variable. Suppose that
ϕ has a subformula of the form (∃x/V )ψ. Now (∃x/V )ψ is equivalent to the
irregular IF formula (∃y/V )∀x(x �=y ∨ ∀y ψ). The truth of this equivalence can
be seen by the following game-theoretical reasoning: After the quantification for
(∃y/V ), Abelard has to choose the same value for x as Eloise chose for y, since
else he loses the game (when Eloise chooses the left disjunct). Hence we see that
Eloise can indirectly “force” Abelard to choose a value for x in any (V -uniform)
way she wishes. And since Abelard may then choose a new value for y, Eloise
cannot use its value for signalling later in the game.

By replacing (∃x/V )ψ with (∃y/V )∀x(x �= y ∨ ∀y ψ) in the sentence ϕ, we
obtain an equivalent sentence ϕ∗. If the existential quantifier (∃x/V ) created
Henkin or signalling patterns in ϕ with some other quantifiers, these patterns
are broken, since x is not existentially quantified anymore in ϕ∗. The new exis-
tential quantifier (∃y/V ), that was introduced, cannot create any new Henkin
patterns since the fresh variable y is not in any slash set of ϕ∗ and (∃y/V ) has
no existential quantifiers in its effective scope.

By iterating this translation process to every existential quantifier in ϕ, we
obtain an equivalent formula ϕ′ which has no Henkin patterns. But ϕ′ has no
signalling patterns either, since no existential quantifier in ϕ′ is in the effective
scope of any other existential quantifier.

Theorem 3. Every IF sentence ϕ is equivalent to an irregular IF sentence ϕ′

that has neither Henkin nor signalling patterns.
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Proof. Let ϕ be any IF-sentence. Let {x1, . . . , xk} be the set of (distinct) vari-
ables that are existentially quantified in ϕ. Let {y1, . . . , yk} be a set of distinct
variables that do not occur in ϕ. We define ϕ′ recursively as follows:

ϕ′ = ϕ, ifϕ is a literal
(ψ ∨ θ)′ = ψ′ ∨ θ′, (ψ ∧ θ)′ = ψ′ ∧ θ′

((∀x/V )ψ)′ = (∀x/V )ψ′

((∃xi/V )ψ)′ = (∃yi/V )∀xi(xi �=yi ∨ ∀yiψ
′).

By the observations that we made above, ϕ′ has neither Henkin nor signalling
patterns. Thus it suffices to show that M |= ϕ if and only if M |= ϕ′. This is
quite easy to see by the game-theoretical intuition that we gave above. We give
a formal proof for this equivalence in the appendix. ��

Note that our translation above can be applied for any IF formula – including
non-prenex and irregular formulae. Furthermore, the translation increases the
length of a given formula only by a small constant for each existential quantifier
in it. If a sentence ϕ in a prenex form is translated to ϕ′ as above, the prenex form
is lost. However, ϕ′ is still “almost prenex” since only disjunctions with a literal
as the left disjunct are created within the quantifier prefix. See the following
example for explicitly expressing Henkin prefix H1

2 without using Henkin or
signalling patterns.

Example 4. Consider the IF sentence ∀x∃y∀z(∃w/{x, y})ψ, where ψ is quantifier
free, and suppose that y′ does not occur in ψ. By applying our translation
procedure to the most external occurrence of an existential quantifier, ∃y, we
obtain the formula ξ := ∀x∃y′∀y(y �= y′ ∨ ∀y′∀z(∃w/{x, y})ψ). Note here that
there is no need to apply the translation procedure to the innermost existential
quantifier (∃w/{x, y}). What happens to the flow of information in ξ? In the
right disjunct, the variables y and y′ carry the same value; as a signal, y is
blocked by the slash set of ∃w and, as a signal, y′ is blocked by ∀y′; but the
value of y (equal to the old value of y′) can still be used within ψ.

Action Recall for Irregular Formulae

As we discussed after defining the restriction (RS), there are irregular formu-
lae which satisfy it, but for which Eloise does not have action recall in the
corresponding semantic game. We analyse here what would be the proper char-
acterization of the syntactical fragment of action recall for irregular formulae.

Let ϕ be an irregular IF sentence in which a variable x is quantified twice.
If x is first universally quantified, this requantification does not violate action
recall for Eloise, since the first value for x is chosen by Abelard. But if x is first
existentially quantified, then there is a play of the semantic game for ϕ in which
Eloise chooses the value for x and then forgets that value when x is requantified,
and thus she does not have action recall, supposing that Eloise has at least one
action to perform in the game after x has been requantified.
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By the observation above, the action recall fragment for Eloise for all (includ-
ing irregular) formulae, denoted by IFAR(∃), is obtained simply by requiring the
following condition in addition to (RS):

– No quantifier (Qx/V ) is in the scope of a quantifier (∃x/W ) such that a
formula of the form ψ ∨ θ or (∃y/U)ψ is in the scope of (Qx/V ).

6 Conclusions

We have shown that full IF (i.e., ESO) expressive power can be achieved, without
the use of Henkin prefixes, already within each of the two following fragments
of IF logic: (1) prenex, regular IF logic with action recall (IFr

AR(∃)), and (2) non-
prenex, irregular IF logic without Henkin and signalling patterns. The proof of
the first result shows that the Hn

2 Henkin prefixes are explicitly definable by
means of signalling prefixes with a constant number of signalling variables. Con-
sequently, there are no hierarchies based on the number or length of signalling
patterns in IFr

AR(∃).
These results extend the analysis of the expressive resources of IF logic which

was initiated in [2,17], and they raise a number of questions to be further inves-
tigated:

– Is it possible to capture ESO within IFr
AR(∃) without the use of signalling?

Note that this is not possible for IFp,r
AR(∃), since prenex, regular IF logic without

Henkin and signalling patterns collapses to first-order logic [17].
– When considering irregular prenex sentences, are there other sources of

second-order expressive power, besides Henkin and signalling patterns?
– Are there interesting hierarchies of signalling prefixes, e.g. based on the num-

ber of universal or existential quantifiers?

7 Appendix

Example 1, and the Prefix ∃f∀x

By applying so-called Skolemization, we can translate any IF sentence ϕ to an
equivalent ESO sentence of the form ∃f1 . . . ∃fnψ, where ψ is a first order formula
that contains no existential quantifiers. (The functions fi here correspond to
Eloise’s “choice functions” for choosing values for the existentially quantified
variables in ϕ.) For more details on Skolemization, see [15].

By applying Skolemization to ∀x∃y(∃z/{x})(U(x) → (K(y) ∧ E(x, z))), we
obtain an equivalent ESO sentence ϕ := ∃h∃gψ, where

ψ := ∀x(U(x) → (K(h(x)) ∧ E(x, g(h(x))))).

A proof that this ESO sentence defines the problem EXACT COVER BY 3-
SETS on appropriate structures can be found in [17]. Instead, we prove here that,
if we restrict the class of adequate structures for the problem EXACT COVER
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BY 3-SETS by the additional constraint KM ⊆ M \ UM , then ϕ captures the
same class of structures as

ϕ∗ := ∃f∀x(U(x) → (K(f(x)) ∧ E(x, f(f(x))))).

This, together with the arguments in [17], gives a new proof that the NP-
complete problem EXACT COVER BY 3-SETS is expressible by ϕ∗, that is, by
the quantifier prefix ∃f∀x. (Note that the additional constraint KM ⊆ M \ UM

does not decrease the generality of the problem.)
In one direction, it is apparent that ϕ∗ logically implies ϕ. Suppose instead

that ϕ holds in an appropriate structure M . Let g, h : M → M be two functions
that satisfy ψ. Define

f(x) =
{

h(x) if x ∈ UM

g(x) if x ∈ M \ UM

Then, for all a ∈ UM , we have f(a) = h(a) and so from h(a) ∈ KM we obtain
f(a) ∈ KM ; from our assumption that KM ⊆ M \ UM we get f(a) ∈ M \ UM ;
so, g(h(a)) = g(f(a)) = f(f(a)); then, from the fact that (a, g(h(a))) ∈ EM we
deduce (a, f(f(a))) ∈ EM . Therefore M |= ϕ∗.

Example 2, DOMINATING SET

We need to prove that the DOMINATING SET problem is captured by the
sentence ∀x∃z(∃y/{x})((E(y, x) ∨ y = x) ∧ P (z)). By using Skolemization, it
suffices to prove this claim for the ESO sentence

ζ := ∃f∃g∀x((E(g(f(x)), x) ∨ g(f(x)) = x) ∧ P (f(x))).

Fix an integer k. Let G = (V,EG, PG) be any structure such that (V,EG)
is a graph, and such that PG = {d1, . . . , dk} is a subset of V of cardinality k.
Suppose first that G has a dominating set D of cardinality k. Enumerate D
as {c1, . . . , ck}. Since D is a dominating set, to each a ∈ V we can associate a
ba ∈ D such that either (ba, a) ∈ EG or ba = a. Now, define f : V → PG as
follows: if ba = ci, then set f(a) := di. Define g : V → V as follows: g(di) = ci; for
a ∈ V \PG, g(a) takes an arbitrary value. Note then that, by the definitions, for
every a ∈ V , g(f(a)) = ba. Therefore, (G, f, g) |= E(g(f(x)), x) ∨ g(f(x)) = x.
And the definition of f implies that (G, f, g) |= P (f(x)).

Suppose instead that G |= ζ. Then, there are functions f : V → PG and
g : V → V such that, for every a ∈ V , either (g(f(a)), a) ∈ EG or g(f(a)) = a.
Define D := g[PG] = {g(a) | a ∈ PG}. Clearly Card(D) ≤ Card(PG) = k, and
since g(f(a)) ∈ D for every a ∈ V , D is a dominating set.

Example 3, SAT by Signalling

For proving that ∀x∃y(∃z/{x})(C(x) → ((P (y, x) ∧ z = 1) ∨ (N(y, x) ∧ z = 0)))
captures SAT, we apply Skolemization again and prove the claim for the ESO
sentence ξ := ∃f∃gψ, where

ψ := ∀x(C(x) → ((P (f(x), x) ∧ g(f(x)) = 1) ∨ (N(f(x), x) ∧ g(f(x)) = 0))).
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Let M be an appropriate structure, and π the propositional formula encoded
by it. Suppose first that M is a “yes” instance of SAT; then there is a truth
assignment T such that each clause c of π contains a literal αc for which we have
T (αc) = 1. A literal αc can either be of the form pc or ¬pc, with pc a proposition
symbol. In the first case, we then have T (pc) = 1, while in the second T (pc) = 0.
Let f : M → M be the function that maps c to pc (define it arbitrarily on
elements that are not clauses); let g : M → M be defined by g(p) := T (p) if p is
a proposition symbol, and an arbitrary constant otherwise. With these f and g,
(M,f, g) |= ψ.

Vice versa, suppose M |= ξ. Let f, g be two functions that satisfy ψ. Let T
be a truth assignment such that T (p) = g(p) for all the proposition symbols in π.
Now for any c ∈ CM , either (f(c), c) ∈ PM and g(f(c)) = 1, or (f(c), c) ∈ NM

and g(f(c)) = 0. In the former case f(c) is a proposition symbol occurring
positively in c, to which T assigns truth value 1. Similarly, in the second case
f(c) is a proposition symbol which occurs negatively in c, to which T assigns
truth value 0. These remarks show that T satisfies π.

Theorem 3, a Proof of the Equivalence

We argue by using the so-called team semantics for IF logic. For the definition
of this semantics – and the notation and terminology that we use here – refer to
[15]. In the proof we also use the downwards closure property of IF logic. That
is, if M,X |= ϕ and Y ⊆ X, then M,Y |= ϕ.

Let μ be a subformula of ϕ and let X be a team for which dom(X) = Free(μ).
We show by the structural induction on ϕ that the following equivalence holds
for any team Y for which dom(Y ) = {y1, . . . , yk}:

M,X |= μ iff M,X × Y |= μ′, (�)

where X×Y := {s ∪ s′ | s ∈ X and s′ ∈ Y }. (Note that dom(X)∩dom(Y ) = ∅.)

– The case when μ is a literal holds trivially since then μ = μ′ and the values
of the variables yi in the team do not affect the truth of μ.

– The cases μ = ψ ∧ θ and μ = (∀xj/V )ψ are proven easily by just applying
the inductive hypothesis.

– Let μ = ψ ∨ θ. Suppose first that M,X |= ψ ∨ θ and let Y be a team. Now
there are X1,X2 ⊆ X s.t. X1 ∪X2 = X, M,X1 |= ψ and M,X2 |= θ. By the
inductive hypothesis we have M,X1 × Y |= ψ′ and M,X2 × Y |= θ′. Since
X1 ×Y ∪X2 ×Y = X ×Y , we have M,X ×Y |= ψ′ ∨θ′, i.e. M,X ×Y |= μ′.
Suppose then that M,X ×Y |= μ′ for any Y . In particular M,X ×{r} |= μ′

for some singleton {r}. Now there are X1,X2 ⊆ X s.t. X1∪X2 = X, such that
M,X1 × {r} |= ψ′ and M,X1 × {r} |= θ′. By the inductive hypothesis we
have M,X1 |= ψ and M,X2 |= θ. Therefore M,X |= ψ ∨ θ, i.e. M,X |= μ.

– Let μ = (∃xj/V )ψ for some j ≤ k. Suppose first that M,X |= ϕ and let Y
be a team. Hence there is a V -uniform f : X → M s.t. M,X[f/xj ] |= ψ.
Let g : X × Y → M s.t. g(s) = f(s � dom(X)) for every s ∈ X × Y . We
define the teams X ′ := (X × Y )[g/yj ,M/xj ], X1 := {s ∈ X ′ | xj �= yj} and
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X2 := {s ∈ X ′ | xj = yj}. Now clearly X1 ∪ X2 = X ′ and M,X1 |= xj �= yj .
Since M,X2 |= xj =yj , by the definition of g it is quite easy to see that

X2[M/yj ] = (X[f/xj ]) × (Y [M/yj ])

By the inductive hypothesis we have M, (X[f/xj ]) × (Y [M/yj ]) |= ψ′ and
therefore M,X2[M/yj ] |= ψ′. Furthermore we have M,X2 |= ∀yjψ

′ and thus
M,X ′ |= xj �= yj ∨ ∀yjψ

′. Since f was V -uniform also g is V -uniform and
thus M,X × Y |= (∃yj/V )∀xj(xj �=yj ∨ ∀yjψ

′), i.e. M,X × Y |= μ′.
Suppose then that M,X ×Y |= μ′ for any Y . In particular M,X ×{r} |= μ′

for some singleton {r}. Now there is a V -uniform function g : X × {r} → M
s.t. M,X ′ |= xj �= yj ∨ ∀yjψ

′, where X ′ = (X × {r})[g/yj ,M/xj ]. Hence
there are X1,X2 ⊆ X ′ such that M,X1 |= xj �=yj and M,X2 |= ∀yjψ

′. Let
Z := {s ∈ X ′ | s(xj) = s(yj)}. Since M,X1 |= xj �=yj we must have Z ⊆ X2.
Thus by downwards closure M,Z |= ∀yjψ

′, i.e. M,Z[M/yj ] |= ψ′.
Let f : X → M be such that f(s) = g(s ∪ r). Since M,Z |= xj =yj , by the
definition of f it is quite easy to see that

(X[f/xj ]) × {r} ⊆ Z[M/yj ].

Therefore, again by downwards closure, M, (X[f/xj ]) × {r} |= ψ′. By the
inductive hypothesis M,X[f/xj ] |= ψ. Since g was V -uniform also f is V -
uniform and thus we have M,X |= (∃xj/V )ψ, i.e. M,X |= μ.

By Theorem 5.2 of [3] the values of variables in a team cannot affect the truth
of an IF sentence. Therefore, when μ = ϕ and X = {∅}, the equivalence in the
proof of Theorem3 follows from (�). This concludes the proof. ��
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Abstract. We define a new class of total search problems as a subclass
of Megiddo and Papadimitriou’s class of total NP search problems, in
which solutions are verifiable in AC0. We denote this class ∀∃AC0. We
show that all total NP search problems are equivalent, w.r.t. AC0-many-
one reductions, to search problems in ∀∃AC0. Furthermore, we show that
∀∃AC0 contains well-known problems such as the Stable Marriage and
the Maximal Independent Set problems. We introduce the class of Infla-
tionary Iteration problems in ∀∃AC0, and show that it characterizes the
provably total NP search problems of the bounded arithmetic theory cor-
responding to polynomial-time. Cook and Nguyen introduced a generic
way of defining a bounded arithmetic theory VC for complexity classes
C which can be obtained using a complete problem. For such C we will
define a new class KPT[C] of ∀∃AC0 search problems based on Student-
Teacher games in which the student has computing power limited to AC0.
We prove that KPT[C] characterizes the provably total NP search prob-
lems of the bounded arithmetic theory corresponding to C. All our char-
acterizations are obtained via “new-style” witnessing theorems, where
reductions are provable in a theory corresponding to AC0.

1 Introduction

The two-sorted bounded arithmetic theories VC [8] are well-known for their proof
theoretic strength corresponding to complexity classes C, for many C between
AC0 and PH. It is a fundamental open question in computer science whether any
two complexity classes within the following sequence

AC0(6) ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC ⊆ P ⊆ NP ⊆ PH,

are equal or not, a question which is a weaker version of the P versus NP ques-
tion. Likewise, it is a fundamental open problem whether any of the correspond-
ing bounded arithmetic theories are distinct. The difference in working with
bounded arithmetic theories instead directly with computational classes is that
the theories may possibly be shown to be distinct by combining logical con-
siderations of provability along with computational complexity considerations.
Another motivation for studying bounded arithmetic theories lies in their rela-
tion to propositional proof complexity, in that proving in bounded arithmetic
c© Springer-Verlag GmbH Germany 2017
J. Kennedy and R.J.G.B. de Queiroz (Eds.): WoLLIC 2017, LNCS 10388, pp. 31–47, 2017.
DOI: 10.1007/978-3-662-55386-2 3
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theories corresponds to uniform provability in corresponding propositional proof
systems [8]. In this paper, we give characterizations of the total search problems
with AC0 graphs which are definable in bounded arithmetic theories VC for many
C between AC0 and P, where necessary reductions are proven in the weakest the-
ory of bounded arithmetic V0 related to AC0 reasoning. In particular, we give
improved “new-style” witnessing theorems for such theories.

A classical way to associate a theory T with a complexity class C is to show
that the provably total functions in T are precisely the functions in the function
class FC associated with C. This assertion splits into two parts: the first, usually
easier part shows that all function in FC can be suitably defined and proven total
in T (and thus are called provably total); the second, usually more involved part
often employs a witnessing theorem. Witnessing theorems in their original form
were introduced by Buss [5] to show that existential statements with parameters
provable in a bounded arithmetic theory T can be witnessed by functions from
a corresponding function class, and that this witnessing property is provable
in T . For example, one result of Buss [5], adapted to the two-sorted bounded
arithmetic theory V1, shows that given a ∀ΣB

1 -consequence of V1 we can find a
polynomial time computable function witnessing the existential quantifier, where
the correctness of the witnessing function is provable in V1. ΣB

1 formulas have
a certain syntactic form starting with a bounded existential quantifier—such
formulas express exactly NP properties over the domain of natural numbers. We
will denote the set of ∀ΣB

1 -consequences of a theory T by ∀ΣB
1 (T ).

Cook and Nguyen [8] have a generic way of defining a bounded arithmetic
theory VC for those complexity classes C which can be obtained using a complete
problem. They show that the set of provably total functions in VC corresponds
to FC. Their approach is to construct a universal conservative extension VC
of VC, where the terms of VC represent precisely functions in FC. They then apply
Herbrand’s theorem to obtain their desired correspondence. The correctness of
witnessing functions is proved in VC.

Recently the focus has turned to “new-style” witnessing theorems, in which
the correctness of the witnessing function is proved in a weaker theory than the
one proving the ∀ΣB

1 -statement [2–4,15,24]. Furthermore, the focus has shifted
to search problems, i.e. multifunctions, instead of functions. The class TFNP [20]
of total NP search problems, whose solutions are verifiable in polynomial-time,
has been extensively studied from the point of view of complexity theory and
contains a host of important problems like the Polynomial Local Search prob-
lems PLS [13]. For the theories Vi corresponding to the i-th level of the poly-
nomial time hierarchy PH, a host of characterizations of ∀ΣB

1 (Vi) have been
given in terms of subclasses of TFNP, using V1-provability for correctness of wit-
nessing functions. For instance, Buss and Kraj́ıček [6] characterized ∀ΣB

1 (V2)
in terms of PLS; Kraj́ıček et al. [17] characterized ∀ΣB

1 (V3) in terms of col-
ored PLS (denoted CPLS), and, for 0 < i, Beckmann and Buss [2,3] character-
ized ∀ΣB

1 (Vi+1) in terms of some relativized notion of PLS called Πp
i -PLS with

Πp
0 -goals, which we denote Πp

i -PLS for the purpose of this introduction.
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The aim of this paper is to provide characterizations of ∀ΣB
1 (VC), for C

below P, and ∀ΣB
1 (V1) in terms of subclasses of TFNP, using new-style wit-

nessing theorems in which the correctness of witnessing functions is provable in
V0—these new-style witnessing theorems are similar to the ones in [2–4,15,24],
except for the correctness of witnessing functions that is now proved over a
weaker theory. To achieve our aim, we define the class of total N-AC0 search
problem as those total NP search problems for which solutions are verifiable in
AC0 rather than in P. We denote this class as ∀∃AC0. From the point of view
of bounded arithmetic, ∀∃AC0 can be identified with the set of all true ∀ΣB

1 -
sentences. We will show that ∀∃AC0 is equivalent to TFNP under AC0-many-one
reductions, and that it contains many well-known problems like the problem
of finding an inverse of a square matrix, the Stable Marriage problem, or the
Maximal Independent Set problem.

Each known characterization of ∀ΣB
1 (Vi) as a subclass S of TFNP, which

can be found in the literature, is given in the form of a generic search principle
S ′(F1, . . . , Fn) such that S is obtained by instantiating F1, . . . , Fn in S ′ with
all possible choices of functions from FP. It is then natural to consider AC0-S
obtained by instantiating S ′ with functions from FAC0, and study the question
whether AC0-S still characterizes ∀ΣB

1 (Vi) under AC0-many-one reducibility,
provable in V0. For many characterisations, it is the case: Cook and Nguyen [8]
showed that AC0-PLS characterizes ∀ΣB

1 (V2) under AC0-many-one reducibility,
provable in V0. Furthermore, it is shown in [23] that AC0-(Πp

i -PLS) characterizes
∀ΣB

1 (Vi+1) under AC0-many-one reducibility, provable in V0. From that latter
result and the fact that CPLS characterizes ∀ΣB

1 (V3), it follows directly that
AC0-CPLS is AC0-many-one reducible to AC0-(Πp

1 -PLS). However, it is an open
problem whether the other direction holds. We conjecture that AC0-CPLS, based
on CPLS in its literal form as defined in [17], is not AC0-many-one reducible to
AC0-(Πp

1 -PLS)—we note here that proving this conjecture implies P �= NP.
The outline of the paper is as follows: The next section is a preliminary section

providing the necessary background. In Sect. 3, we introduce the class ∀∃AC0 as
a subclass of TFNP, and show that it is equivalent to TFNP w.r.t. AC0-many-one
reducibility, and that it contains a variety of well-known problems.

In Sect. 4, we define a class of total N-AC0 search problems which we call
KPT[C]. The class KPT[C] is a class of total search problems motivated by the
KPT witnessing theorem [16], where the process of finding a solution to an
instance of a problem in KPT[C] is carried out cooperatively between a student
S and a teacher T: the student computes a potential solution, that either T
accepts or rejects, and in the case that T rejects, then T must come up with
a counterexample that S can then use in order to compute the next candidate
solution. We use KPT[C] in order to characterize ∀ΣB

1 (VC), where the reduction
is provable in V0, using a new-style witnessing theorem for VC.

For ∀ΣB
1 (V1), we introduce, in Sect. 5, a class of total N-AC0 search prob-

lems that we call Inflationary Polynomial Local Search (IPLS). The class IPLS is
AC0-PLS, but with some restriction on its neighborhood function in that this
function must be inflationary. We show that IPLS has a complete problem class
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that we call Inflationary Iteration (IITER), which is based on the iteration princi-
ple [7] (which can be viewed as the problem of finding a sink in an exponentially
large directed acyclic graph). We show that IITER characterizes ∀ΣB

1 (V1), where
the reduction is provable in V0, using a new-style witnessing theorem for V1.

2 Preliminaries

We assume familiarity with bounded arithmetic in either its one-sorted [5] or
two-sorted [8] setting, but we will quickly review all necessary notation and
results used in this paper. We assume a basic understanding of complexity classes
between AC0 and P. For circuit complexity classes covered here, the uniformity
we implicitly use is first-order uniformity [12,21]. Overall, our exposition fol-
lows [8].

The Language of Two-Sorted Bounded Arithmetic. In the two-sorted setting,
there are two kinds of variables: number variables x, y, z, . . . of the first sort,
intended to range over N, and string variables X,Y,Z, . . . of the second sort,
intended to range over finite subsets of N. We interpret finite subsets of N as
bit strings. The base language L2

A consists of the usual symbols 0, 1,+, ·,≤ of
arithmetic on N, the function |X| (whose intended meaning is 0 if X is empty,
and 1 plus the maximal element in X, otherwise), the set membership relation ∈,
and the relations =1 and =2, which are intended to be the equality on numbers
and strings respectively. Since there will be no confusion, the subscripts in =i

will often be omitted. We will usually write X(i) for i ∈ X and this is understood
to denote the i-th bit in X.

Terms over L2
A are built in the usual way. Note that the only string terms are

string variables. If L2
A is extended with additional string function symbols, then

other string terms are built as usual. Formulae over L2
A are built using ∧,∨,¬,

number quantifiers (i.e., ∃x and ∀x) and string quantifiers (i.e., ∃X and ∀X).
Bounded number quantifiers are defined as usual, whereas the bounded string
quantifier (∃X ≤ t)ϕ stands for ∃X(|X| ≤ t ∧ ϕ) and (∀X ≤ t)ϕ stands for
∀X(|X| ≤ t ⊃ ϕ), where ϕ ⊃ ψ stands for ¬ϕ∨ψ, and where X does not appear
in t.

The class ΣB
0 (or ΠB

0 ) consists of those L2
A-formulae with no string quanti-

fiers and only bounded number quantifiers. Inductively, ΣB
i+1 consists of those

formulae of the form (∃X1 ≤ t1) . . . (∃Xk ≤ tk)ϕ, where ϕ ∈ ΠB
i , and ΠB

i+1 con-
sists of those formulae of the form (∀X1 ≤ t1) . . . (∀Xk ≤ tk)ϕ, where ϕ ∈ ΣB

i .
In general, we write ΣB

i (L) to denote the class ΣB
i that allows function and

predicate symbols from L ∪ L2
A. Finally, a formula is in Σ1

1 if it is of the form
(∃X1) . . . (∃Xk)ϕ, where ϕ ∈ ΣB

0 .

Two-Sorted Complexity Classes. Two-sorted complexity classes consist of rela-
tions R(x,X) that are taking arguments of both sorts, where the string argu-
ments X are the main inputs and x only play an auxiliary role. However, for our
purpose, it is convenient to assume that R only takes a single string argument,
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as we can always pair x,X into one single string X. The following fact will be
frequently used:

Theorem 1 (ΣB
0 Representation Theorem [25]). A relation is in AC0 if,

and only if, it is represented by some ΣB
0 -formula.

For each two-sorted complexity C of interest, there is a corresponding function
class FC. For a string function F (X) to be in FC, F (X) needs to be p-bounded
(i.e., |F (X)| is bounded by some polynomial in |X|) and its bit graph (i.e., the
relation BF (i,X) that holds if, and only if, the i-th bit of F (X) is 1) is in C.

Two-Sorted Bounded Arithmetic Theories. The theory BASIC consists of some
finite set of axioms defining the non-logical symbols in L2

A. Then, for i = 0, 1,
the theory Vi is BASIC plus the ΣB

i -comprehension axiom scheme, denoted
ΣB

i -COMP, which is (∃X ≤ y)(∀z < y)[X(z) ↔ ϕ(z)], where ϕ ∈ ΣB
i and

X does not occur free in ϕ. For Φ = ΣB
i , the following axiom schemes are

provable in Vi:

Φ-IND: [ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(x + 1))] ⊃ ∀xϕ(x),
Φ-MAX: ϕ(0) ⊃ (∃x ≤ y)(ϕ(x) ∧ (∀z ≤ y)(x < z ⊃ ¬ϕ(z))).

We will usually be working with a universal conservative extension V
0

of V0,
whose language L

V
0 has a symbol for each function in FAC0.

A string function F (X) is provably total in a theory T if its graph Y = F (X)
is represented by a ΣB

1 -formula ϕ(X,Y ) and T proves ∀X∃!Y ϕ(X,Y ).
For certain complexity classes C within P, Cook and Nguyen [8] showed how

to construct a theory VC corresponding to FC (i.e., the provably total functions
in VC are precisely those in FC). Before we give the definition of VC, let us first
review the notion of AC0-reduction.

A relation R is AC0-reducible to a collection L of functions if there is a
sequence of string functions G1, . . . , Gn such that each Gi is p-bounded and its
bit graph is represented by a ΣB

0 (L ∪ {G1, . . . , Gi−1})-formula and R is repre-
sented by a ΣB

0 (L ∪ {G1, . . . , Gn})-formula.
For a two-sorted complexity class C of interest, fix a function F so that C is

the class of all relations that are AC0-reducible to {F} (we keep F fixed in what
follows) and so that there is a ΣB

0 -formula δF (X,Y ) and some L2
A-term t(X)

such that the graph Y = F (X) of F is represented by |Y | ≤ t(X) ∧ δF (X,Y ).
Furthermore, assume that V0 proves the uniqueness of the value of F . Let the
aggregate function F ∗(b,X) of F (X) be the function that gathers the values of
F for a polynomially long sequence of arguments. Thus, F ∗ is defined so that

∀i<b, F ∗(b,X)[i] = F (X [i]),

where X [i](j) holds if and only if j < |X| ∧ X(i, j) holds—we obtain arrays of
more than one dimension by using a suitable pairing function 〈x, y〉 on num-
bers x, y, e.g. X(i, j) stands for X(〈i, j〉). Let GF (b,X, Y ) be a ΣB

0 -formula
that represents the graph of F ∗(b,X). The theory VC is then V0 plus the
ΣB

1 -statement (∃Y ≤ 〈b, t〉)GF (b,X, Y ).
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Two-Sorted Search Problems. A total search problem (or simply a search prob-
lem) is a binary relation R(X,Y ) such that ∀X∃Y R(X,Y ) holds (we also call
R the graph of the search problem). The search task associated with R is the
following: given an instance X of R, find a solution Y such that R(X,Y ) holds.

The class TFNP [20] consists of those search problems R(X,Y ) such that R
is polynomial-time computable and |Y | is bounded by a polynomial in |X|.

Let R be a search problem. R is provably total in a theory T if the graph of
R is represented by a ΣB

1 -formula ϕ(X,Y ) and T proves ∀X∃Y ϕ(X,Y ).
Let C be a complexity class. Then a search problem R is C-many-one reducible

to a search problem Q, denoted R ≤C
m Q, if there are functions F,G ∈ FC such

that Q(F (X), Y ) implies R(X,G(X,Y )), for all X,Y . For two classes Γ and Δ of
search problems, we say that Γ is C-many-one reducible to Δ, denoted Γ ≤C

m Δ,
if for all R ∈ Γ , there is some Q ∈ Δ such that R ≤C

m Q. We say that Γ and Δ
are C-equivalent if Γ ≤C

m Δ and Δ ≤C
m Γ . Finally, we say that Γ is C-many-one

complete for Δ if Γ ⊆ Δ and Δ ≤C
m Γ .

3 The Class ∀∃AC0

Definition 2. A search problem R is said to be in ∀∃AC0 if R can be expressed
as a TFNP problem with AC0 graph.

We observe that ∀∃AC0 is AC0-many-one equivalent to TFNP. To see this,
note that the statement “string W is a valid encoding of the full computation
of a fixed polynomial-time Turing machine on a given input” can be expressed
by a ΣB

0 -formula. From that, and the ΣB
0 representation theorem, we can turn

R into a ∀∃AC0 problem Q, whose solution can then be mapped into a solution
for R.

Another motivation for studying ∀∃AC0 is the fact that it contains a host of
well-known problems. As already noted in the introduction, Cook and Nguyen
[8] show that PLS is equivalent to AC0-PLS. Another example [8] stems from
linear algebra: (
) given an n×n matrix A over some field, find an n×n matrix
B �= 0 such that AB = I ∨ AB = 0. Observe that the provability of (
) in VNC1

is still an open problem.
In what follows, we demonstrate that the Stable Marriage problem and the

Maximal Independent Set problem are ∀∃AC0 problems.

The Stable Marriage Problem. The Stable Marriage problem (SM) was first
introduced by Gale and Shapley [11]. Besides having practical applications, SM
is of importance for the NC vs P question: It has been shown that SM is complete
for Subramanian’s complexity class CC [19], a subclass of P based on comparator
circuits. Furthermore, Cook et al. [9] gave strong evidence that CC and NC, which
is also a subclass of P, are incomparable.

An instance of size n of SM involves two sets of n men and n women. Asso-
ciated with each person p is a strictly ordered preference list l = q1, . . . , qn
containing all the members of the opposite sex: person p prefers person q to r
if, and only if, there is a qi and a qj in l such that qi = q and qj = r and i < j.
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Given an instance of SM, a matching M is a bijection between the sets of
men and women. A man m and a woman w are called partners in M if, and
only if, they are matched in M ; we write pM (m) to denote the partner of m in
M (similarly for pM (w)). A matching M is called unstable if there is a man m
and a woman w such that m and w are not partners in M , but m prefers w to
pM (m) and w prefers m to pM (w); otherwise, M is called stable.

The search task associated with SM is as follows: given an instance of SM,
find a matching that is stable. Gale and Shapley showed that such a stable
matching always exists. Hence, SM is a total search problem.

We argue that the SM search problem is in ∀∃AC0. Let {0, 1, . . . , n − 1}
corresponds to the set of men and {n, n + 1, . . . , 2n − 1} to the set of women.
Then a preference list for a person p can be encoded in bounded arithmetic as
a three-dimensional array L(p, j, qj), which holds if and only if qj sits at j-th
position in person p’s preference list. A matching can be encoded as a two-
dimensional array M(p, q) with size bounded by 〈n, n〉. It is easy to see that the
statement “M is a stable matching for (n,L)” can be expressed as a ΣB

0 -formula.
Thus, by the representation theorem for ΣB

0 , SM is a ∀∃AC0 search problem.

The Maximal Independent Set Problem. Another example for a problem in
∀∃AC0 is the Maximal Independent Set problem (MIS), which is a funda-
mental problem in Graph Theory since several important problems can be
reduced to it. For instance, Karp and Widgerson [14] show that the maximal
set packing and the maximal matching problems are NC1-reducible to MIS, and
that the 2-satisfiability problem is NC2-reducible to MIS. In terms of its com-
plexity, Luby [18] and, independently, Alon et al. [1] proved the existence of
NC2-algorithms that solve MIS. However, it is still open whether MIS can be
solved by an NC1-algorithm.

Let G be a graph. An independent set in G is a set of vertices such that no
two of them are adjacent. A maximal independent set I in G is an independent
set such that for every vertex v in G, either v belongs to I or v has at least one
neighbor vertex that belongs to I.

The MIS problem is the following computational problem: given a graph G,
find a maximal independent set in G. MIS is a total search problem, since for a
given graph G, a maximal independent set I is always guaranteed to exist.

The MIS problem is in ∀∃AC0. For that, we specify a graph G by a pair
(n,E), where 0, 1, . . . , n − 1 are the vertices in G and E(u, v) holds if, and only
if, there is an edge between vertex u and v in G. Then the statement “U is a
maximal independent set in G” can be written as a ΣB

0 -formula. Note that the
size of U is bounded by n.

4 The Class KPT[C] and VC

For this section, we fix a function F (X) in FC so that C is the AC0-closure
of F . Let GF (b,X, Y ) be a ΣB

0 -formula that states that Y is the value for the
aggregate function F ∗(b,X) of F (X). In the following we will identify F with
F ∗—it will be clear from the context which of the two is meant.
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The following lemma is an application of the KPT witnessing theorem [16].
It says that if the theory VC proves ∀X∃Y ϕ(X,Y ), where ϕ is a ΣB

0 -formula,
then for a given X, we can construct a witness for ∃Y ϕ(X,Y ) in a collaborative
fashion by using F and some AC0-functions F1(X), . . . , Fk(X,Z1, . . . , Fk−1).

Lemma 3. Let ϕ(X,Y ) be a ΣB
0 -formula and θ(X,Y,Z) denote

GF (|Y [1]|, Y [2], Z) ⊃ ϕ(X,Y [0]).

Suppose that the theory VC proves ∀X∃Y ϕ(X,Y ). Then there exist some
AC0-functions F1(X), . . . , Fk(X,Z1, . . . , Zk−1) such that V

0
proves

k∨

i=1

θ(X,Fi(X,Z1, . . . , Zi−1), Zi). (1)

Proof. The theory VC is defined as V0 plus a ∀ΣB
1 sentence expressing the exis-

tence of a solution of a complete problem in C. Applying the deduction theorem
of first-order logic to a VC proof of ∀X∃Y ϕ(X,Y ) and working in a conserva-
tive extension V

0
of V0, we obtain a V

0
proof of a statement to which the KPT

witnessing theorem is applicable. �

We can think of Lemma 3 as a game about the formula

∃Y ∀Zθ(X,Y,Z) (2)

between a student E and a teacher U, where E’s role is to find a witness Y
to the existential quantifier in (2), but has computing power limited to FAC0,
whereas U’s role is to find a counterexample Z to the universal quantifier in (2),
if it exists. More precisely, the game starts with E producing a potential witness
Y1 = F1(X), which U either approves or rejects – U approves Y1 if ∀Zθ(X,Y1, Z)
is true, otherwise U rejects Y1 and has to provide a counterexample Z1 such
that ¬θ(X,Y1, Z1) holds, that is to say, Z1 = F (|Y [1]

1 |, Y [2]
1 ) and ¬ϕ(X,Y

[0]
1 )

is true. If U rejects Y1 by producing a counterexample Z1, then E can use Z1

in order to compute the next potential witness Y2 = F2(X,Z1). Again, either
U approves or rejects Y2. As before, if U rejects Y2, then he has to provide E
with a counterexample Z2. This process will continue for at most k steps, after
which E finds a witness to the existential quantifier in (2). Note that E cannot
compute F , since F is beyond E’s computing power.

In the student-teacher game interpretation of Lemma 3, the student is always
guaranteed to find a value Y such that ∀Zθ(X,Y,Z) holds after at most k
steps. However, if ϕ(X,Y ) and F1(X), . . . , Fk(X,Z1, . . . , Fk) were to be picked
arbitrarily, then there is no guarantee that the student would still win, that
is to say that he would find a value Y that satisfies ∀Zθ(X,Y,Z). This is
because, for an arbitrary X, it is not always the case that there is a Y such
that ϕ(X,Y ) is true. Also, even if ∀X∃Y ϕ(X,Y ) happened to be true, nothing
tells us that ∀Zθ(X,Fj(X,Z1, . . . , Zj−1), Z) will hold, for some Fj in F1, . . . , Fk.
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The class KPT[C] will be defined with the student-teacher game interpretation
of Lemma 3 in mind, but where ϕ and F1, . . . , Fk are given arbitrarily. There-
fore, some care needs to be taken when defining KPT[C] in order to ensure
its totality. More precisely, if in case there is no Fj in F1, . . . , Fk such that
∀Zθ(X,Fj(X,Z1, . . . , Zj−1), Z) holds, then we will just force part of the formula
that defines the graph of a KPT[C] search problem to be trivially true.

In the following, we write F̂i(X,W ) for Fi(X,W [1], . . . , W [i−1]).

Definition 4. A KPT[C] search problem Q(X,W ) is specified by a k ∈ N, a ΣB
0 -

formula ϕ(X,Y ) and AC0-functions F1(X), . . . , Fk(X,Z1, . . . , Zk−1). A string
W is a solution to an instance X of Q if, and only if, the following hold:

1. For all i from 1 to k,

GF (|F̂i(X,W )[1]|, F̂i(X,W )[2],W [i]). (3)

2. There exists an i between 1 and k such that the following holds:

[W [0] = F̂i(X,W )[0] ∧ [i < k ⊃ ϕ(X,W [0])] ∧
∧

j<i

¬ϕ(X, F̂j(X,W )[0]). (4)

We will call ϕ and F1, . . . , Fk the components of Q.

We will explain (3) and (4) here. The formula in (3) says that W [i] stores the
counterexample F (|F̂i(X,W )[1]|, F̂i(X,W )[2]) given by the teacher to the student
– in fact, note that even if ϕ(X, F̂i(X,W )[0]) is true, then W [i] always stores
F (|F̂i(X,W )[1]|, F̂i(X,W )[2]). Next, the formula in (4) guarantees the totality
of Q. If there is no Fj in F1, . . . , Fk such that ϕ(X, F̂j(X,W )[0]) is true, then
the above formula trivially holds by taking i = k and W [0] to be equal to
F̂i(X,W )[0], and in case there is an Fi in F1, . . . , Fk such that ϕ(X, F̂i(X,W )[0])
is true, then the formula in (4) tells us that i is the least value in {1, . . . , k} such
that ϕ(X, F̂i(X,W )[0]) is true. Finally, using the ΣB

0 representation theorem, it
is easy to see that the graph of a KPT[C] search problem is in AC0.

Lemma 5. Let Q be a KPT[C] search problem. Then VC proves that Q is total.

Proof. The proof is a straightforward case analysis. �

The next theorem is a converse of Lemma 5.

Theorem 6 (New-style Witnessing Theorem for VC). Let ϕ(X,Y ) be a
Σ1

1 -formula such that VC proves ∀X∃Y ϕ(X,Y ). Then there is a KPT[C] search
problem Q and an AC0-function H such that V

0
proves

Q(X,W ) ⊃ ϕ(X,H(X,W )). (5)

Proof. W.l.o.g. we can assume that ϕ ∈ ΣB
0 . By Lemma 3, we obtain some AC0-

functions F1(X), . . . , Fk(X,Z1, . . . , Zk) such that V
0

proves

∀X∀Z1 . . . ∀Zk

k∨

i=1

θ(X,Fi(X,Z1, . . . , Zi−1), Zi), (6)
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where θ(X,Y,Z) is the formula GF (|Y [1]|, Y [2], Z) ⊃ ϕ(X,Y [0]). Define a KPT[C]
search problem Q using ϕ and F1, . . . , Fk.

Arguing in V
0
, we want to show (5). Suppose that Q(X,W ) holds. Then (4)

is true for some i ≤ k. If i < k, then ϕ(X,W [0]) follows directly. Otherwise,
i = k, and we have that

∧

j<k

¬ϕ(X,Fj(X,W [1,...,j−1])[0])

holds. Combining this with (6), it is easy to see that ϕ(X,Fk(X,W [1,...,k−1])[0])
and W [0] = Fk(X,W [1,...,k−1])[0]. By letting H(X,W ) = W [0] the assertion
follows. �

Combining Lemma 5, Theorem 6 and the fact that V
0

is a universal conserv-
ative extension of V0, we obtain the following theorem:

Theorem 7. KPT[C] is AC0-many-one complete for the provably total NP search
problems in VC. Furthermore, the reduction is provable in the theory V0.

5 The Class of Inflationary Iteration Problems and V1

Finite subsets of N can be viewed as finite binary strings with no leading zeros
by letting an element in the set indicate whether the corresponding bit in the
string is set to one. Using this identification of strings with finite sets, we define
the notion of an “inflationary” string function:

Definition 8. A string function F (X,Z) is said to be inflationary if, and only
if, for all X,Z, we have that Z ⊆ F (X,Z).

The complexity class PLS [13] is based on the principle that every finite
directed acyclic graph has a sink. Additionally, if the local search function is
given by an inflationary FAC0-function, then we obtain the class IPLS:

Definition 9. An IPLS problem Q(X,Y ) is specified by the following:

1. An AC0-relation FQ(X,Y ) and an L2
A-term t(X) such that the following

conditions hold:

FQ(X, ∅),
FQ(X,Z) ⊃ |Z| ≤ t(X).

The set of all Y with FQ(X,Y ) is the set of all candidate solutions for Q on
instance X.

2. An FAC0-function PQ(X,Y ), which computes the profit of Y , and an infla-
tionary FAC0-function NQ(X,Y ), which computes the neighbor of Y , such
that for any Y that satisfies FQ(X,Y ), the following holds:

[NQ(X,Y ) = Y ] ∨ [FQ(X,NQ(X,Y )) ∧ PQ(X,Y ) < PQ(X,NQ(X,Y ))].
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where X < Y is the less than relation on strings. A solution to an instance X
of Q is any string Y such that

FQ(X,Y ) ∧ NQ(X,Y ) = Y

holds. We will usually refer to FQ, PQ, NQ and t as the components of Q.

Any IPLS problem is a total search problem. Moreover, checking if a string
is a solution to an instance of an IPLS problem is an AC0-property. Thus every
IPLS problem is a ∀∃AC0 search problem.

We will next introduce the class IITER, which is based on the iteration princi-
ple [7]. The iteration principle is also based on the fact that every finite directed
acyclic graph G = (V, E) has a sink. In an exponential sized graph G, it may take
exponentially many steps to find a sink following a path through the graph. How-
ever, if the edge relation is given by an inflationary function, paths are bound
to be of polynomial length.

Definition 10. An IITER QF (X,Y ) is specified by an inflationary FAC0-
function F (X,Y ) and an L2

A-term t(X). A solution to an instance X of QF

is a string Y satisfying the formula ψF (X,Y ), which is (omitting the parameter
X) given as follows:

[Y = ∅ ∧ F (Y ) = Y ] ∨
[|Y | ≤ t ∧ Y < F (Y ) ∧ [t < |F (Y )| ∨ F (F (Y )) ≤ F (Y )]]. (7)

We will usually refer to F and t as the components of QF . We say that a string Y
is a candidate solution to QF on instance X if Y satisfies the following condition:

|Y | ≤ t ∧ (Y = ∅ ∨ Y < F (X,Y )). (8)

It is known that the iteration principle is AC0-many-one complete for PLS
[8,22]. In what follows, we show that IITER is AC0-many-one complete for IPLS.

Lemma 11. Every IITER problem is an IPLS problem.

Proof. The proof is a direct adaptation of the one for [8, Lemma VIII.5.7]. �

Lemma 12. Every IPLS problem is AC0-many-one reducible to an IITER prob-
lem.

Proof. The proof is easier than the one for [8, Theorem VIII.5.8]. Observe that
X ⊆ Y implies X ≤ Y . Given a IPLS problem Q with components FQ, NQ, PQ

and t, we can define an IITER problem QF using NQ on FQ and t. Given an
instance X, it is easy to see that a solution Y to QF is one step beyond a
solution to Q, the latter being given by NQ(X,Y ). �

From Lemmas 11 and 12, we immediately obtain the following corollary:

Corollary 13. IITER is AC0-many-one complete for IPLS. �
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Theorem 14. Let Q be an IITER problem. Then Q is provably total in V1.

Proof. Let Q be an IITER problem with components F and t. Let numones(y, Y )
be the function that computes the total number of elements in Y that are strictly
less than y. The function numones is a polytime function definable in V1. Con-
sider η(X,Z) to be the formula Z = ∅ ∨ Z < F (X,Z) and η̄(X, z) to be

∃Z ≤ t(X)[z = numones(Z) ∧ η(X,Z)].

Then η is in ΣB
0 , and η̄ equivalent to a formula in ΣB

1 . Using maximisation
on z, which is available in V1, we obtain a Z with maximal number of elements
amongst those satisfying η. It is easy to see that this Z is a solution to Q. �

The converse of Theorem 14 is the new-style witnessing theorem for V1.

Theorem 15 (New-style Witnessing Theorem for V1). Suppose that
ϕ(X,Y ) is a Σ1

1 -formula such that

V1 � ∀X∃Y ϕ(X,Y ).

Then there is an IITER problem QF with graph ψF (X,Y ) (as in (7)), and an
FAC0-function G(X,Y ), such that

V
0 � ψF (X,Y ) ⊃ ϕ(X,G(X,Y )). (9)

Proof (Proof Idea). The idea of this proof is to construct the required search
problem by induction on an appropriate sequent calculus derivation of the orig-
inal statement. For this we will have to redefine V1 in terms of an appropriate
induction scheme, and use a corresponding inference rule in the definition of the
sequent calculus. The main step in the construction is to deal with applications
of this induction rule. From an IITER problem given for the premise of the induc-
tion rule, we obtain one for the conclusion by iterating the former polynomially
many times, creating in each step an additional entry in a polynomially long
board in order to guarantee the result to be inflationary.

Further details can be found in AppendixA. �

Combining Theorems 14 and 15 and the fact that V
0

is a universal conserv-
ative extension of V0, we obtain the following corollary:

Corollary 16. IITER is AC0-many-one complete for the provably total NPsearch
problems in V1. Furthermore, the reduction is provable in the theory V0. �
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∀ΣB

1 (V1) using inflationary iteration grew out of discussions with him on his attempt
to capture P via a two-sorted theory using axioms on inductive definitions [10].
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Appendix A: Proof of Theorem15

In what follows, when we say that a theory T proves a sequent

ϕ1, . . . , ϕk −→ ψ1, . . . ψl,

we mean that T proves

k∧

i=1

ϕi ⊃
l∨

j=1

ψj .

Buss [5] originally proved his witnessing theorem for V1 via a witnessing
lemma. Here, we do the same; that is to say, we use a new-style witnessing
lemma in order to prove Theorem 15.

Lemma 17 (New-style Witnessing Lemma for V1). Suppose that the the-
ory V1 proves a sequent Γ (A) −→ Δ(A) of the form

. . . ,∃Xiφ
′
i(Xi), . . . , Λ −→ Π, . . . ,∃Yjψ

′
j(Yj), . . . (10)

where φ′
i, ψ

′
j , Λ and Π are ΣB

0 -formulae. Then there is an IITER problem QF

with graph ψF and FAC0-functions G such that V
0
proves the sequent Γ ′ −→ Δ′,

which is

. . . , φ′
i(βi), . . . , Λ, ψF (A,β, γ) −→ Π, . . . , ψ′

j(Gj(A,β, γ)), . . . (11)

We will use a version of the sequent calculus to prove this lemma. Given a
sequent calculus proof π of (10) we try to show the conclusion of Lemma 17 by
structural induction on the depth of a sequent S in π. If we use directly a sequent
calculus for V1, we have the issue that the ΣB

1 -COMP axiom is in general not
equivalent to a ΣB

1 -formula. As a result, the proof π may contain formulae that
are not Σ1

1 . To circumvent this obstacle, we need to work with a slightly different
theory Ṽ1 equivalent to V1. For that, first consider the following definition:

Definition 18 (Cook and Nguyen [8]). Let ψ(X) be an L2
A-formula. Then ψ

is a single-Σ1
1 -formula if ψ is of the form ∃Y ϕ(X,Y ), where ϕ is a ΣB

0 -formula.
If ψ is of the form (∃Y ≤ t)ϕ(X,Y ), where ϕ is a ΣB

0 -formula and t is an
L2
A-term not involving Y , then ψ is a single-ΣB

1 -formula.

Definition 19 (Cook and Nguyen [8]). The theory Ṽ 1 is axiomatized by the
axioms of V0 plus the single-ΣB

1 -IND axiom scheme.

Below, we merely state that Ṽ1 = V1 without proof. A full proof of it can be
found in [8, Theorem VI.4.8].

Theorem 20 (Cook and Nguyen [8]). The theories Ṽ 1 and V1 are the same.
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The sequent calculus LK-Ṽ 1 for Ṽ 1 is essentially the sequent calculus LK-V0

for V0 (c.f. [8]) augmented with the single-ΣB
1 -IND rule, which is

χ(b), Γ −→ Δ,χ(b + 1)
χ(0), Γ −→ Δ,χ(t)

,

where χ ∈ ΣB
1 , and b is an eigenvariable and cannot appear in the lower sequent.

The sequent calculus LK-Ṽ 1 satisfies the following property, whose proof can
be found in [8]:

Theorem 21 (Cook and Nguyen [8]). Suppose that Ṽ1 proves a sequent
Γ −→ Δ consisting only of single-Σ1

1 -formulae. Then there is an LK-Ṽ1 proof π
of Γ −→ Δ such that every formula in π is a single-Σ1

1 -formula.

We are now ready to prove Lemma 17. The proof technique we use to prove
Lemma 17 is similar to the one used for Theorem VI.4.1 in [8, p. 154] (which
is a witnessing theorem for V1), which adopts the same proof technique as
Buss (cf. [5, Theorem 5]).

Proof (of the New-style Witnessing Lemma for V1, Lemma 17). Since Ṽ1 and V1

are the same, it follows that Ṽ1 proves (10). By Theorem 21, let π be an LK-Ṽ1

proof of (10) such that every formula in π is a single-Σ1
1 -formula. We show that

V
0

proves the conclusion of Lemma 17 by induction on the depth of a sequent S
in π. The inductive proof splits into cases, depending on whether S is an initial
sequent or generated by the use of an inference rule. The most crucial case is
the case of the single-ΣB

1 -IND rule.
Suppose that S is obtained by the application of the single-ΣB

1 -IND rule.
Then S is the bottom sequent of

ψ(b), Λ −→ Π,ψ(b + 1)
ψ(0), Λ −→ Π,ψ(t)

where (omitting the parameters A) ψ(b) is of the form (∃X ≤ r(b))ψ0(b,X) and

Π = Π ′,∃Y1ψ
′
1(Y1), . . . ,∃Ylψ

′
l(Yl).

Here Π ′, ψ′
1, . . . , ψ

′
l is a sequence of ΣB

0 -formulae. Let η(b, β) denote the formula
|β| ≤ r(b) ∧ ψ0(b, β). By the induction hypothesis, let QF1 be an IITER problem
specified by F1 and t1, with graph ψF1 , and G1

1, . . . , G
1
l and G1

l+1 be the witness-

ing functions for the formulae in Π,ψ(b + 1) such that V
0

proves the following
(omitting the parameters A, λ, where λ are witnesses for the formulae in Λ):

η(b, β), Λ′, ψF1(b, β, γ) −→ Π ′′(G1
j (b, β, γ)), η(b + 1, G1

l+1(b, β, γ)) (12)

where Λ′ is the result of witnessing Σ1
1 -formulae in Λ and leaving the rest

unchanged and Π ′′(G1
j (b, β, γ)) = Π ′, ψ′

1(G
1
1(b, β, γ)), . . . , ψ′

l(G
1
l (b, β, γ)). Our
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goal is to construct an IITER problem QF (with graph ψF ) and FAC0-functions
G1, . . . , Gl and Gl+1 such that V

0
proves the following:

η(0, β0), Λ′, ψF (β0, γ) −→ Π ′′(Gj(β0, γ)), η(t,Gl+1(β0, γ)). (13)

The intuitive idea behind the definition of QF is that, assuming that η(0, β0)
is true, we will repeatedly use QF1 and G1

l+1 in order to generate witnesses
β1, . . . , βn for ψ(1), . . . , ψ(n), respectively, for n ≤ t. If n < t, then QF1 failed to
generate a witness to ψ(n+1). Therefore, assuming that the hypothesis for (13)
is true and using (12), we obtain our desired goal.

In what follows, the string concatenation function X ∗z Y is an FAC0 string
function that concatenates the first z bits of X with Y and can be recursively
extended in the natural way. Omitting the subscripts to ∗, we write Y0 ∗ . . . ∗ y ∗
. . . ∗ Yk for Y0 ∗ . . . ∗ Y ∗ . . . ∗ Yk, where Y is the string representing the unary
notation of the number value y.

We assume that the search variable for QF is of the form

γ = 〈A, β0,λ〉 ∗s S0 ∗2s S1 ∗3s . . . ∗(m+1)s Sm,

where s (s is obtained from t and the bounding term r, in the induction-
formula ψ, and the bounding term t1 for QF1) is a suitable L2

A-term that bounds
|〈A, β0,λ〉|, |S0|, . . . , |Sm|; the symbol Si denotes i ∗ βi ∗ γi ∗ 1 and m ≤ t. Note
here that, even though we omitted the subscripts to ∗ in Si, they are somehow
implicit. Let us now define the transition function F for QF . In the following,
we again omit the parameters A,λ for F . As usual, we will drop the subscripts
to ∗ in F (β0, γ). If γ = ∅, then

F (β0, γ) = 〈A, β0,λ〉 ∗ 0 ∗ β0 ∗ ∅ ∗ 1. (14)

Assume now that γ �= ∅ and suppose that m < t and η(m,βm) is true. Then
there are two cases to consider. First, if |γm| ≤ t1 ∧ γm < F1(m,βm, γm) ∧
¬ψF1(m,βm, γm) is true, then

F (β0, γ) = 〈A, β0,λ〉 ∗ S0 ∗ . . . ∗ Sm−1 ∗ m ∗ βm ∗ F1(m,βm, γm) ∗ 1. (15)

Second, if |γm| ≤ t1 ∧ γm < F1(m,βm, γm) ∧ ψF1(m,βm, γm), then

F (β0, γ) = 〈A, β0,λ〉 ∗ S0 ∗ . . . ∗ Sm ∗ (m + 1) ∗ G1
l+1(m,βm, γm) ∗ ∅ ∗ 1. (16)

In all other cases, F (β0, γ) = γ. Let tQF
be (t + 2) · s and QF be specified by

F and tQF
. Finally, we define the FAC0-functions Gi, for i = 1, . . . , l + 1, as

follows:

Gj(β0, γ) =

{
β0 if t = 0
G1

j (m,βm, γm) otherwise,

The fact that V
0

proves (13) follows from (13)’s assumptions, from the fol-
lowing claim, the induction hypothesis and the definition of Gj above. As a side
remark, note that if t = 0, then V

0
proves (13) trivially.
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Claim. We reason in V
0
. Suppose that t �= 0, η(0, β0) is true and γ = 〈A, β0,λ〉∗

S0 ∗ . . . ∗ Sm is a solution to QF (β0), where Si is again of the form i ∗ βi ∗ γi ∗ 1.
Then η(m,βm) is true; γm is a solution to QF1(m,βm); and either ¬η(m +
1, G1

l+1(m,βm, γm)) or η(t,Gl+1(β0, γ)) is true.

Proof of Claim. Since γ is a solution to QF (β0), then we have two possibilities:
either γ = ∅ and F (β0, γ) = γ, or

|γ| ≤ tQF
∧ γ < F (β0, γ) ∧ [|F (β0, γ)| > tQF

∨ F (β0, F (β0, γ)) = F (β0, γ)].

Note that, by the definition of F , ∅ cannot be a solution to QF (β0) and
|F (β0, γ)| ≤ tQF

. Therefore, we have that

γ �= ∅ ∧ γ < F (β0, γ) = F (β0, F (β0, γ)). (17)

The only way for (17) to hold is if (16) is true. This implies that η(m,βm) holds
and ψF1(m,βm, γm) is true; that is to say, γm is a solution QF1(m,βm). Hence,
we are left with proving the following:

¬η(m + 1, G1
l+1(m,βm, γm)) ∨ η(t,Gl+1(β0, γ)).

If m + 1 = t, then we are done. So, assume that m + 1 < t. For the sake of
contradiction, assume that η(m + 1, G1

l+1(m,βm, γm)) holds. This means that
F (β0, γ) < F (β0, F (β0, γ)), which is a contradiction. Thus, we are done with the
proof of the claim. �

This finishes the proof of Lemma 17.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

2. Beckmann, A., Buss, S.R.: Polynomial local search in the polynomial hierarchy
and witnessing in fragments of bounded arithmetic. J. Math. Log. 9(1), 103–138
(2009). doi:10.1142/S0219061309000847

3. Beckmann, A., Buss, S.R.: Characterising definable search problems in bounded
arithmetic via proof notations. In: Ways of Proof Theory. Ontos Series on Mathe-
matical Logic, vol. 2, pp. 65–133. Ontos Verlag, Heusenstamm (2010)

4. Beckmann, A., Buss, S.R.: Improved witnessing and local improvement principles
for second-order bounded arithmetic. ACM Trans. Comput. Log. 15(1), 35 (2014).
doi:10.1145/2559950. (Art. 2)

5. Buss, S.R.: Bounded Arithmetic. Studies in Proof Theory. Lecture Notes, vol. 3.
Bibliopolis, Naples (1986)
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Abstract. Strictly positive logics recently attracted attention both in
the description logic and in the provability logic communities for their
combination of efficiency and sufficient expressivity. The language of
Reflection Calculus RC consists of implications between formulas built
up from propositional variables and the constant ‘true’ using only con-
junction and the diamond modalities which are interpreted in Peano
arithmetic as restricted uniform reflection principles.

We extend the language of RC by another series of modalities rep-
resenting the operators associating with a given arithmetical theory T
its fragment axiomatized by all theorems of T of arithmetical complexity
Π0

n, for all n > 0. We note that such operators, in a precise sense, cannot
be represented in the full language of modal logic.

We formulate a formal system extending RC that is sound and, as
we conjecture, complete under this interpretation. We show that in this
system one is able to express iterations of reflection principles up to
any ordinal < ε0. On the other hand, we provide normal forms for its
variable-free fragment. Thereby, the variable-free fragment is shown to
be algorithmically decidable and complete w.r.t. its natural arithmetical
semantics.

Keywords: Strictly positive logics · Reflection principle · Provability ·
GLP

1 Introduction

A system, called Reflection Calculus and denoted RC, was introduced in [8]
and, in a slightly different format, in [13]. From the point of view of modal logic,
RC can be seen as a fragment of Japaridze’s polymodal provability logic GLP
[12,18,24] consisting of the implications of the form A → B, where A and B
are formulas built-up from � and propositional variables using just ∧ and the
diamond modalities. We call such formulas A and B strictly positive.

Strictly positive modal logics independently and earlier appeared in the work
on description logic, see [21] for some results and further references. In particular,
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the strictly positive language corresponds to the OWL2EL profile of the OWL
web ontology language.

Reflection calculus RC is much simpler than its modal companion GLP yet
expressive enough to retain its main proof-theoretic applications. It has been
outlined in [8] that RC allows one to define a natural system of ordinal notations
up to ε0 and serves as a convenient basis for a proof-theoretic analysis of Peano
Arithmetic in the style of [5,6]. This includes a consistency proof for Peano
arithmetic based on transfinite induction up to ε0, a characterization of its Π0

n-
consequences in terms of iterated reflection principles, a slowly terminating term
rewriting system [2] and a combinatorial independence result [7].

An axiomatization of RC (as an equational calculus) has been found by
Evgeny Dashkov in his paper [13] which initiated the study of strictly posi-
tive fragments of provability logics. Dashkov proved two important further facts
about RC which sharply contrast with the corresponding properties of GLP.
Firstly, RC is complete with respect to a natural class of finite Kripke frames.
Secondly, RC is decidable in polynomial time, whereas most of the standard
modal logics are PSpace-complete and the same holds for the variable-free frag-
ment of GLP [22].

Another advantage of going to a strictly positive language is exploited in
the present paper. Strictly positive modal formulas allow for more general arith-
metical interpretations than those of the standard modal logic language. In par-
ticular, propositional formulas can now be interpreted as arithmetical theories
rather than individual sentences. (Notice that the ‘negation’ of a theory would
not be well-defined.)

Any monotone operator acting on the semilattice of arithmetical theories can
be considered as a modality in strictly positive logic. One such operation is par-
ticularly attractive from the point of view of proof-theoretic applications, namely
the map associating with a theory T its fragment Πn+1(T ) axiomatized by all
theorems of T of arithmetical complexity Π0

n+1. Since the Π0
n+1-conservativity

relation of T over S can be expressed by S � Πn+1(T ), we call such operators
Π0

n+1-conservativity operators.
This relates our study to the fruitful tradition of research on conservativity

and interpretability logics, see e.g. [14,16,27]. Our framework happens to be
both weaker and stronger than the traditional one: in our system we are able to
express the conservativity relations for each class Π0

n+1 and are able to relate
not only sentences but theories. However, in this framework negation is lacking
and the conservativity is not a binary modality and cannot be iterated. Yet, we
believe that the strictly positive language is both simpler and better tuned to
the needs of proof-theoretic analysis of formal systems of arithmetic.

We introduce the system RC∇ with modalities �n representing uniform
reflection principles of arithmetical complexity Σ0

n, and ∇n representing Π0
n+1-

conservativity operators. We provide an adequate semantics of RC∇ in terms
of the semilattice GEA of (numerated) arithmetical r.e. theories extending
elementary arithmetic EA. Further, we introduce transfinite iterations of
monotone semi-idempotent operators along elementary well-orderings, somewhat
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generalizing the notion of a Turing–Feferman recursive progression of axiomatic
systems but mainly following the same development as in [4]. Our first result
shows that RC∇ can express α-iterations of modalities �n, for each n < ω
and ordinals α < ε0. This result requires some arithmetical prerequisites and is
postponed until the Appendix. A variable-free strictly positive logic where such
iterations are explicitly present in the language has been introduced by Joosten
and Reyes [19] which is, thereby, contained in RC∇.

Then we turn to a purely syntactic study of the variable-free fragment of the
system RC∇ and provide unique normal forms for its formulas. A corollary is
that the variable-free fragment of RC∇ is decidable and arithmetically complete.

Whereas the normal forms for the variable-free formulas of RC correspond in
a unique way to ordinals below ε0, the normal forms of RC∇ are more general.
It turns out that they are related in a canonical way to the collections of proof-
theoretic ordinals of (bounded) arithmetical theories for each complexity level
Π0

n+1, as defined in [4].
Studying the collections of proof-theoretic ordinals corresponding to several

levels of logical complexity as single objects seems to be a rather recent and
interesting develpoment. Such collections appeared for the first time in the work
of Joosten [20]. He established a one-to-one correspondence between such col-
lections (for a certain class of theories) and the points of the universal model
for the variable-free fragment of GLP due to Ignatiev [17]. We call such collec-
tions conservativity spectra of arithmetical theories. Our results show that RC∇

provides a way to syntactically represent and conveniently handle such conserva-
tivity spectra. The study of the universal model for the variable-free fragment of
RC∇ [3] highlights the underlying algebraic and order structures.1 The work of
Pakhomov [23] shows that the elementary theory of the system of ordinal nota-
tion for ε0 viewed as a lower semilattice with operations �n, for each n < ω, is
undecidable.

Thanks are due to Albert Visser for suggesting many improvements including
Lemma 1.

2 The Lattice of Arithmetical Theories

We define the intended arithmetical interpretation of the strictly positive modal
language. Propositional variables (and strictly positive formulas) will now denote
possibly infinite theories rather than individual sentences. We deal with r.e. the-
ories formulated in the language of elementary arithmetic EA and containing the
axioms of EA. To avoid well-known problems with the representation of theories
in arithmetic, we assume that each theory S comes equipped with an elementary
recursive numeration, that is, a bounded formula σ(x) in the language of EA
defining the set of axioms of S in the standard model of arithmetic N.

Given such a σ, we have a standard arithmetical Σ0
1 -formula �σ(x) express-

ing the provability of x in S (see [15]). We often write �σϕ for �σ(�ϕ�). The
1 The paper [3] is a longer version of the present one containing additional material

and more detailed proofs of some results.
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expression n̄ denotes the numeral 0′...′ (n times). If ϕ(v) contains a parameter v,
then �σϕ(x̄) denotes a formula (with a parameter x) expressing the provability
of the sentence ϕ(x̄/v) in S.

Given two numerations σ and τ , we write σ �EA τ if

EA � ∀x (�τ (x) → �σ(x)).

We will only consider the numerations σ such that σ �EA σEA, where σEA is
some standard numeration of EA. We call such numerated theories Gödelian
extensions of EA.

The relation �EA defines a natural preorder on the set GEA of Gödelian
extensions of EA. Let GEA denote the quotient by the associated equivalence
relation =EA, where by definition σ =EA τ iff both σ �EA τ and τ �EA σ.
GEA is a lattice with ∧EA corresponding to the union of theories and ∨EA to
their intersection. These operations are defined on elementary numerations as
follows:

σ ∧EA τ := σ(x) ∨ τ(x),
σ ∨EA τ := ∃x1, x2 � x (σ(x1) ∧ τ(x2) ∧ x = disj(x1, x2)),

where disj(x1, x2) is an elementary term computing the Gödel number of the
disjunction of formulas given by Gödel numbers x1 and x2.

We will only be concerned with the operation ∧EA, that is, with the structure
of lower semilattice (GEA,∧EA). Notice that the top element 1EA corresponds
to (the equivalence class of) EA, whereas 0EA is the class of all inconsistent
extensions of EA.

An operator R : GEA → GEA is called extensional if σ =EA τ implies
R(σ) =EA R(τ). Similarly, R is called monotone if σ �EA τ implies R(σ) �EA

R(τ). Clearly, each monotone operator is extensional and each extensional oper-
ator correctly acts on the quotient lattice GEA. An operator R is called semi-
idempotent if R(R(σ)) �EA R(σ). R is a closure operator if it is monotone,
semi-idempotent and, in addition, σ �EA R(σ). Operators considered in this
paper will usually be at least monotone and semi-idempotent.

Meaningful monotone operators abound in arithmetic. Typical examples are
the uniform Σn-reflection principles Rn(σ) associating with σ the extension of
EA by the schema {∀x (�σϕ(x̄) → ϕ(x)) : ϕ ∈ Σn} taken with its natural
elementary numeration that we denote x ∈ Rn(σ). It is known that the the-
ory Rn(σ) is finitely axiomatizable. Moreover, R0(σ) is equivalent to Gödel’s
consistency assertion Con(σ) for σ.

In this paper we will study another series of monotone operators. Given a
theory S numerated by σ, let Πn(S) denote the extension of EA by all theorems
of S of complexity Π0

n. The set Πn(S) is r.e. but in general not elementary
recursive. In order to comply with our definitions we apply a form of Craig’s
trick that yields an elementary axiomatization of Πn(S).2 Let Πn(σ) denote the

2 Over EA + BΣ1 one can work with a natural r.e. axiomatization of Πn(S).
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elementary formula

∃y, p � x (Prfσ(y, p) ∧ y ∈ Π0
n ∧ x = disj(y, �p̄ �= p̄�))

and the theory numerated by this formula over EA. Here, Prfσ(y, p) is an ele-
mentary formula expressing that p is the Gödel number of a proof of y, so that
∃p Prfσ(y, p) is �σ(y); and x ∈ Π0

n is an elementary formula expressing that x
is the Gödel number of a Π0

n-sentence. Then it is easy to see that the theory
Πn(σ) is (externally) deductively equivalent to Πn(S).

We will implicitly rely on the following characterization.

Lemma 1. It is provable in EA that

∀x (�Πn(σ)(x) ↔ ∃π ∈ Π0
n (�σ(x) ∧ �EA(π → x)).

Proof. The implication from right to left is easy, we sketch a proof of (→).
Reason within EA. Suppose p is a Πn(σ)-proof of x. It is a EA-proof of x from
some assumptions π′

1, π
′
2, . . . , π

′
k such that each π′

i has the form πi ∨ pi �= pi

where πi ∈ Π0
n and Prfσ(πi, pi). Since p contains witnesses for all the proofs pi,

from p one can construct in an elementary way a sentence π ∈ Π0
n equivalent

to π1 ∧ · · · ∧ πk together with its σ-proof and an EA-proof of π → x, using a
formalization of the deduction theorem in EA. A verification that it is, indeed,
the required proof goes by an elementary induction on the length of p.

Using Lemma 1 one can naturally infer that all the operators Rn and Πn are
monotone and semi-idempotent, moreover Πn is a closure. Moreover, EA can be
replaced in all the previous considerations by any of its Gödelian extensions T .

The main source of interest for us in this paper will be the structure of
semilattice with operators

(GT ,∧T , {Rn,Πn+1 : n < ω}).

We call it the RC∇-algebra of Gödelian extensions of T . The term RC∇-algebra
will be explained below.

3 Strictly Positive Logics and Reflection Calculi

We refer the reader to a note [1] for a short introduction to strictly positive logic
and to [21] for more information from the description logic perspective.

3.1 Normal Strictly Positive Logics

Consider a modal language LΣ with propositional variables p, q,. . . , a constant
�, conjunction ∧, and a possibly infinite set of symbols Σ = {ai : i ∈ J}
understood as diamond modalities. The family Σ is called the signature of the
language LΣ . Strictly positive formulas (or simply formulas) are built up by the
grammar:

A:: = p | � | (A ∧ A) | aA, where a ∈ Σ.
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Sequents are expressions of the form A � B where A,B are strictly positive
formulas.

Basic sequent-style system, denoted K+, is given by the following axioms and
rules:

1. A � A; A � �; if A � B and B � C then A � C;
2. A ∧ B � A; A ∧ B � B; if A � B and A � C then A � B ∧ C;
3. if A � B then aA � aB, for each a ∈ Σ.

It is well-known that K+ axiomatizes the strictly positive fragment of a poly-
modal version of basic modal logic K. All our systems will also contain the
following principle corresponding to the transitivity axiom in modal logic:

4. aaA � aA.

The extension of K+ by this axiom will be denoted K4+.
Let C[A/p] denote the result of replacing in C all occurrences of a variable p

by A. A set of sequents L is called a normal strictly positive logic if it contains the
axioms and is closed under the rules of K+ and under the following substitution
rule: if (A � B) ∈ L then (A[C/p] � B[C/p]) ∈ L. We will only consider normal
strictly positive logics below. We write A �L B for the statement that A � B is
provable in L (or belongs to L). A =L B means A �L B and B �L A.

Any normal strictly positive logic L satisfies the following simple positive
replacement lemma that we leave without proof.

Lemma 2. Suppose A �L B, then C[A/p] �L C[B/p], for any formula C.

3.2 The System RC

Reflection calculus RC is a normal strictly positive logic formulated in the sig-
nature {�n : n ∈ ω}. It is obtained by adjoining to the axioms and rules of K4+

(stated for each �n) the following principles:

5. �nA � �mA, for all n > m;
6. �nA ∧ �mB � �n(A ∧ �mB), for all n > m.

We notice that RC proves the following polytransitivity principles:

�n�mA � �mA, �m�nA � �mA, for each m � n.

Also, the converse of Axiom 6 is provable in RC, so that in fact we have

�n(A ∧ �mB) =RC �nA ∧ �mB. (1)

The system RC was introduced in an equational logic format by Dashkov
[13], the present formulation is from [8]. Dashkov showed that RC axiomatizes
the set of all sequents A � B such that the implication A → B is provable in
the polymodal logic GLP. Moreover, unlike GLP itself, RC is polytime decidable
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(whereas GLP is PSpace-complete [25]) and enjoys the finite model property
(whereas GLP is Kripke incomplete).

We recall a correspondence between variable-free RC-formulas and ordinals
[5]. Let F denote the set of all variable-free RC-formulas, and let Fn denote its
restriction to the signature {�i : i � n}, so that F = F0. For each n ∈ ω we
define binary relations <n on F by

A <n B
def⇐⇒ B �RC �nA.

Obviously, <n is a transitive relation invariantly defined on the equivalence
classes w.r.t. provable equivalence in RC (denoted =RC). Since RC is polytime
decidable, so are both =RC and all of <n.

An RC-formula without variables and ∧ is called a word. In fact, any such
formula syntactically is a finite sequence of letters �i (followed by �). If A,B
are words then AB will denote A[�/B], that is, the word corresponding to
the concatenation of these sequences. A � B denotes the graphical identity of
formulas (words).

The set of all words will be denoted W, and Wn will denote its restriction to
the signature {�i : i � n}. The following facts are from [5,8]:

– Every A ∈ Fn is RC-equivalent to a word in Wn;
– (Wn/=RC, <n) is isomorphic to (ε0, <).

Here, ε0 is the first ordinal α such that ωα = α. Thus, the set Wn/=RC is
well-ordered by the relation <n. The isomorphism can be established by an onto
and order preserving function on : Wn → ε0 such that, for all A,B ∈ Wn,

A =RC B ⇐⇒ on(A) = on(B).

Then on(A) is the order type of {B ∈ Wn : B <n A}/=RC.
The function o(A) := o0(A) can be inductively calculated as follows: If A �

�k
0� then o(A) = k. If A � A1�0A2�0 · · · �0An, where all Ai ∈ W1 and not all

of them are empty, then

o(A) = ωo(A−
n ) + · · · + ωo(A−

1 ).

Here, B− is obtained from B ∈ W1 replacing every �m+1 by �m. For n > 0 and
A ∈ Wn we let on(A) = on−1(A−).

3.3 The System RC∇

Definition 1. The signature of RC∇ consists of modalities �n and ∇n, for each
n < ω. The system RC∇ is a normal strictly positive logic given by the following
axioms and rules, for all m,n < ω:

1. RC for �n; RC for ∇n;
2. A � ∇nA;
3. �nA � ∇nA;
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4. �m∇nA � �mA; ∇n�mA � �mA if m � n.

As a basic syntactic fact about RC∇ we mention the following useful lemma.
We often write = for =RC∇ and � for �RC.

Lemma 3. The following are theorems of RC∇, for all m < n:

(i) �n(A ∧ ∇mB) = �nA ∧ �mB;
(ii) ∇n(A ∧ �mB) = ∇nA ∧ �mB.

Proof.

(i) Part (� ) follows from �n∇mB � �mB. Part (� ) follows from �nA∧�mB �
�n(A ∧ �mB) � �n(A ∧ ∇mB) using positive replacement.

(ii) Part (� ) follows from ∇n�mB � �mB. Part (� ) follows from ∇nA∧�mB �
∇nA ∧ ∇m�mB � ∇n(A ∧ ∇m�mB) � ∇n(A ∧ �mB) using Axiom 3.6 for
∇ modalities, the fact that �mB = ∇m�mB and positive replacement.

A formula A is called ordered if no modality with a smaller index (be it �i

or ∇i) occurs in A within the scope of a modality with a larger index.

Lemma 4. Every formula A of RC∇ is equivalent to an ordered one.

Proof. Apply Eq. (1) of RC for � and for ∇ modalities, and the identities of
Lemma 3 from left to right, until the rules are not applicable to any of the
subformulas of A.

The intended arithmetical interpretation of RC∇ maps strictly positive for-
mulas to Gödelian theories in GT in such a way that � corresponds to T , ∧
corresponds to the union of theories, �n corresponds to Rn and ∇n corresponds
to Πn+1, for each n ∈ ω.

Definition 2. An arithmetical interpretation in GT is a map ∗ from strictly
positive modal formulas to GT satisfying the following conditions for all n ∈ ω:

– �∗ = 1T ; (A ∧ B)∗ = (A∗ ∧T B∗);
– (�nA)∗ = Rn(A∗); (∇nA)∗ = Πn+1(A∗).

The following result shows, as expected, that every theorem of RC∇ repre-
sents an identity of the structure (GT ,∧T , {Rn,Πn+1 : n < ω}).

Theorem 1. For any formulas A,B of RC∇, if A �RC∇ B then A∗ �T B∗, for
all arithmetical interpretations ∗ in GT .

Proof. A proof of Theorem1 is routine. For the axioms and rules of RC for the
�-fragment it has been carefully verified in [9]. Of the remaining axioms and
rules we only treat Axiom 3.6 for the ∇-fragment, that is, the principle

∇nA ∧ ∇mB � ∇n(A ∧ ∇mB). (2)
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Consider any arithmetical interpretation ∗, and let S = A∗ and U = B∗ be
the corresponding Gödelian theories (with the associated numerations σ and τ ,
respectively). We rely on Lemma 1. The principle (2) is the formalization in EA
of the following assertion: For any sentence π ∈ Π0

n+1, if S ∪Πm+1(U) � π then
Πn+1(S) ∪ Πm+1(U) � π. Reasoning in EA, consider a sentence ϕ ∈ Πm+1(U)
such that S, ϕ � π. Then S � ϕ → π and, since ϕ → π is logically equivalent to
a Π0

n+1-sentence, conclude Πn+1(S) � ϕ → π. Thus, Πn+1(S) ∪ Πm+1(U) � π.

Theorem 1, together with Gödel’s second incompleteness theorem, has as its
corollary the following property of the logic RC∇.

Corollary 1. For all RC∇ formulas A, A �RC∇ �nA.

A similar fact is known for GLP and can also be proved by purely modal
logic means [11]. A simpler argument for RC is given in [3]. We will make use of
the latter in the normal form theorems below.

Conjecture 1. RC∇ is arithmetically complete, that is, the converse of Theorem 1
also holds, provided T is arihmetically sound.

Finally, we remark that RC∇ is not Kripke complete. In fact, the sequent

�1A ∧ ∇0B � �1(A ∧ ∇0B)

is valid in every Kripke frame satisfying RC∇. However, it is unprovable in RC∇

and even arithmetically invalid. This can be established by standard arguments,
see [3] for some details. By Theorem 3 of [1] this has a noteworthy corollary that
RC∇ is not a strictly positive fragment of any normal polymodal logic. In this
strong sense, the conservativity operators are not representable in a standard
modal logic context.

4 The Variable-Free Fragment of RC∇

Let F
∇
n denote the set of all variable-free strictly positive formulas in the language

of RC∇ with the modalities {�i,∇i : i � n} only. We abbreviate F �RC∇ ∇nG
by F �n G and ∇nF =RC∇ ∇nG by F ≡n G.

Lemma 5.

(i) If A �n B and m < n, then A ∧ �mC �n B ∧ �mC;
(ii) If A �n B and B � ∇nC, then A � ∇nC;
(iii) If A �n B and B � �nC, then A � �nC.

Proof.

(i) A ∧ �mC � ∇nB ∧ �mC � ∇n(B ∧ �mC).
(ii) A � ∇nB � ∇n∇nC � ∇nC;
(iii) A � ∇nB � ∇n�nC � �nC.
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Lemma 6.

(i) �iA ∧ B = ∇i(�iA ∧ B) ∧ B;
(ii) ∇iA ∧ B = ∇i(∇iA ∧ B) ∧ B.

Proof. In both (i) and (ii) the implication (�) follows from the axiom C �
∇iC. For (�) we obtain ∇i(�iA ∧ B) � ∇i�iA = �iA for (i) and simlarly
∇i(∇iA ∧ B) � ∇i∇iA = ∇iA for (ii).

Lemma 7. The set of all formulas {�nF,∇nG : F,G ∈ Wn} is linearly ordered
by �RC∇.

Proof. For any F,G ∈ Wn we know that either F �RC �nG or G �RC �nF or
F =RC G. In the first case we obtain provably in RC∇: �nF � ∇nF � �nG �
∇nG. The second case is symmetrical. In the third case we obtain �nF = �nG �
∇nF = ∇nG.

Theorem 2. For each A ∈ F
∇
n there is a word W ∈ Wn such that A ≡n W .

Proof. By Lemma 4 it is sufficient to prove the theorem for ordered formulas A.
The proof goes by induction on the length of ordered A. We can also assume
that the minimal modality occurring in A is �n or ∇n. (Otherwise, prove it for
the minimum m > n and infer A ≡n W from A ≡m W .) The basis of induction
is trivial, consider the induction step.

Assume that the induction hypothesis holds for all formulas shorter than A.
Since A is ordered, A can be written in the form

A = �nA1 ∧ · · · ∧ �nAk ∧ ∇nB1 ∧ . . . ∇nBl ∧ D,

where D ∈ F
∇
n+1 and Ai, Bj ∈ F

∇
n . Since �n or ∇n must occur in A, we know

that D and each Ai, Bj are strictly shorter than A. By the induction hypothesis
and Lemma 7 we can delete from the conjunction all but one members of the
form �nAi, ∇nBj . Thus, A = D ∧ �nA′ or A = D ∧ ∇nB′, for some words
A′, B′ ∈ Wn.

Now we apply the induction hypothesis to D and obtain a word V ∈ Wn+1

such that V ≡n+1 D. It follows that D ∧ �nA′ ≡n+1 V ∧ �nA′ and D ∧
∇nB′ ≡n+1 V ∧∇nB′, by Lemma 5. Hence, it is sufficient to prove that, for some
W ∈ Wn, V ∧ �nA′ ≡n W and similarly, for some W ∈ Wn, V ∧ ∇nB′ ≡n W .

In the first case we actually have V ∧�nA′ =RC W , for some word W , which
immediately yields the claim.

In the second case we write B′ = B1�nB2 where B1 ∈ Wn+1. There are
three cases to consider: (a) B1 � �n+1V , (b) V � �n+1B1, (c) V = B1.

In case (c) by Lemma 6 we obtain:

V ∧ ∇nB1�nB2 = V ∧ ∇n(V ∧ �nB2) = V ∧ �nB2 = V �nB2.

In case (a) we show ∇n(V ∧ ∇nB′) = ∇nB′. Firstly,

B′ � �n+1V ∧ ∇nB′ � ∇n+1V ∧ ∇nB′ = ∇n+1(V ∧ ∇nB′).
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Hence, ∇nB′ � ∇n∇n+1(V ∧ ∇nB′) = ∇n(V ∧ ∇nB′). On the other hand,

∇n(V ∧ ∇nB′) � ∇n∇nB′ � ∇nB′.

In case (b) we show ∇n(V ∧ ∇nB′) = ∇n(V ∧ �nB2) so that one can infer
∇n(V ∧ ∇nB′) = ∇nV �nB2. On the one hand, we have

∇nB′ = ∇n(B1 ∧ �nB2) � ∇n�nB2 = �nB2,

which implies ∇n(V ∧ ∇nB′) � ∇n(V ∧ �nB2). On the other hand,

V ∧�nB2 = V ∧�n+1B1 ∧�nB2 = V ∧�n+1(B1 ∧�nB2) = V ∧�n+1B
′ � V ∧∇nB′.

Hence, ∇n(V ∧ �nB2) � ∇n(V ∧ ∇nB′).

From Theorem 2 we obtain the following strengthening of Lemma7.

Corollary 2. The set of all formulas {�nF,∇nG : F,G ∈ F
∇
n } is linearly

ordered by �RC∇.

Corollary 3. For all formulas A,B ∈ F
∇
n , either A � �nB, or B � �nA, or

A ≡n B.

Proof. Consider the words A1 ≡n A and B1 ≡n B. By the linearity property
for words either A1 � �nB1 or B1 � �nA1 or A1 = B1. In the first case we
obtain A � ∇nA1 � ∇n�nB1 � �nB1 � �n∇nB � �nB. The second case is
symmetrical, the third one implies A ≡n B immediately.

Corollary 4. For all A,B ∈ F
∇
n , �nA � �nB iff A � ∇nB.

Proof. Assume �nA � �nB. By Corollary 3, either A � �nB, or B � �nA, or
A ≡n B. In the first and the third cases we immediately have A � ∇nB. In the
second case we obtain �nA � �nB � �n�nA contradicting Corollary 1.

In the opposite direction, if A � ∇nB then �nA � �n∇nB � �nB.

Theorem 3 (weak normal forms). Every formula A ∈ F
∇
n is equivalent in

RC∇ to a formula of the form

∇nAn ∧ ∇n+1An+1 ∧ · · · ∧ ∇n+kAn+k,

for some k, where Ai ∈ Wi for all i = n, . . . , n + k.

Proof. Induction on the build-up of A ∈ F
∇
n . We consider the following cases.

(1) A = B ∧ C. The induction hypothesis is applicable to B and C, so it is
sufficient to prove: for any Bi, Ci ∈ Wi there is a word Ai ∈ Wi such that

∇iBi ∧ ∇iCi = ∇iAi.

By Lemma 7 we can take one of Bi, Ci as Ai.
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(2) A = ∇iB, for some i � n. Then we obtain

∇iB =∇i(∇nBn ∧ ∇n+1Bn+1 ∧ · · · ∧ ∇n+kBn+k) =
= ∇nBn ∧ · · · ∧ ∇i−1Bi−1 ∧ ∇i(∇iBi ∧ · · · ∧ ∇n+kBn+k) =

= ∇nBn ∧ · · · ∧ ∇i−1Bi−1 ∧ ∇iB
′
i,

for some B′
i ∈ Wi, by Theorem 2.

(3) A = �iB, for some i � n. Then we obtain, using Lemma 3,

�iB =�i(∇nBn ∧ ∇n+1Bn+1 ∧ · · · ∧ ∇n+kBn+k) =
= �nBn ∧ · · · ∧ �i−1Bi−1 ∧ �i(∇iBi ∧ · · · ∧ ∇n+kBn+k) =

= ∇n�nBn ∧ · · · ∧ ∇i−1�i−1Bi−1 ∧ ∇i�iB
′
i,

for some B′
i ∈ Wi, by Theorem 2.

Weak normal forms are, in general, not unique. However, the following lemma
shows that the “tails” of the weak normal forms are invariant (up to equivalence
in RC∇).

Lemma 8. Let A � ∇nAn ∧ ∇n+1An+1 ∧ · · · ∧ ∇kAk and B � ∇nBn ∧
∇n+1Bn+1 ∧ · · · ∧ ∇mBm be weak normal forms and A � B. Then k � m
and for all i such that n � i � k there holds

(i) ∇iAi ∧ · · · ∧ ∇kAk �i ∇iBi ∧ · · · ∧ ∇mBm;
(ii) ∇iAi ∧ · · · ∧ ∇kAk � ∇iBi ∧ · · · ∧ ∇mBm.

Proof. Obviously, Claim (ii) implies Claim (i). We first prove (i) and then
strengthen it to (ii). For i = n both claims are vacuous, so we assume i > n.

Denote Ai := ∇iAi ∧ · · · ∧∇kAk and Bi := ∇iBi ∧ · · · ∧∇mBm. By Lemma 3
we have either Ai � �iBi or Bi � �iAi or Ai ≡i Bi. In the first and in the third
case we obviously have Ai �i Bi as required.

Assume Bi � �iAi. Consider the formula

C := �nAn ∧ · · · ∧ �i−1Ai−1 ∧ Bi.

We show that C � �iC contradicting Corollary 1.
Using our assumption and Lemma 3 (i) we obtain

C � �nAn ∧ · · · ∧ �i−1Ai−1 ∧ �iAi

� �i(∇nAn ∧ · · · ∧ ∇i−1Ai−1 ∧ Ai)
� �nAn ∧ · · · ∧ �i−1Ai−1 ∧ �iA

� �nAn ∧ · · · ∧ �i−1Ai−1 ∧ �iB

� �i(�nAn ∧ · · · ∧ �i−1Ai−1 ∧ B)
� �iC.

This proves Claim (i).
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To prove (ii) assume the contrary and consider the maximal number i such
that Ai � Bi. Such an i exists, since both A and B have finitely many terms.
Thus, we have Ai+1 � Bi+1 and

∇iAi ∧ Ai+1 � ∇iBi ∧ Bi+1.

It follows that ∇iAi ∧ Ai+1 � ∇iBi = ∇i∇iBi, hence Ai �i ∇iBi. Since Bi �
∇iBi, we obtain Ai �i Bi contradicting Claim (i).

A corollary of Lemma 8 is that in every weak normal form of a given formula
each tail ∇iAi ∧ · · · ∧ ∇kAk is defined uniquely up to equivalence in RC∇.

There are two formats for graphically unique normal forms. We call them
‘fat’ and ‘thin’, because the former consist of larger expressions, whereas the
latter are obtained by pruning certain parts of a given formula. Fat normal
forms, presented below, have a natural proof-theoretic meaning and are tightly
related to collections of proof-theoretic ordinals called conservativity spectra or
Turing-Taylor expansions [20].

Definition 3. A formula A ∈ F
∇
n is in the fat normal form if either A � � or it

has the form ∇nAn ∧∇n+1An+1 ∧· · ·∧∇n+kAn+k, where for all i = n, . . . , n+k,
Ai ∈ Wi, An+k �� � and

∇iAi � ∇i(∇iAi ∧ · · · ∧ ∇n+kAn+k). (∗)

Theorem 4.

(i) Every A ∈ F
∇
n is equivalent to a formula in the fat normal form.

(ii) For any A, the words Ai in the fat normal form of A are unique modulo
equivalence in RC.

Proof. (i) First, we apply Theorem2. Then, by induction on k we show that any
formula ∇nAn ∧ · · · ∧ ∇n+kAn+k can be transformed into one satisfying (∗).

For k = 0 the claim is trivial. Otherwise, by the induction hypothesis we can
assume that (∗) holds for i = n + 1, . . . , n + k. Then we argue using Lemma 6 as
follows:

∇nAn ∧ ∇n+1An+1 ∧ · · · ∧ ∇n+kAn+k =
=∇n(∇nAn ∧ ∇n+1An+1 ∧ · · · ∧ ∇n+kAn+k) ∧ ∇n+1An+1 ∧ · · · ∧ ∇n+kAn+k =

= ∇nA′
n ∧ ∇n+1An+1 ∧ · · · ∧ ∇n+kAn+k,

where A′ ∈ Wn is obtained from Theorem 2. Notice that

∇nA′
n � ∇n(∇nAn ∧ ∇n+1An+1 ∧ · · · ∧ ∇n+kAn+k) �

� ∇n(∇nA′
n ∧ ∇n+1An+1 ∧ · · · ∧ ∇n+kAn+k),

hence (∗) holds for i = n. This proves Claim (i).
To prove Claim (ii) we apply Lemma 8. Assume A � B, A = ∇nAn ∧ · · · ∧

∇n+kAn+k is in the fat normal form and B = ∇nBn ∧ · · · ∧ ∇n+mBn+m is in a
weak normal form. Then k � m and, for all i = n, . . . , n + m, ∇iAi � ∇iBi.
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It follows that, if A,B ∈ F
∇
n are both in the fat normal form and A = B in

RC∇, then m = k and ∇iAi = ∇iBi, for i = n, . . . , n + k. Since Wi is linearly
preordered by <i in RC, the latter is only possible if Ai =RC Bi.

Corollary 5. The set of variable-free sequents A � B provable in RC∇ is
decidable.

Corollary 6. Suppose A,B are variable-free and T is a sound Gödelian exten-
sion of EA. Then A �RC∇ B iff A∗ �T B∗, for any arithmetical interpretation
∗ in GT .

A Iterating Monotone Operators on GEA

Transfinite iterations of reflection principles play an important role in proof
theory starting from the work of A. Turing on recursive progressions [26]. Here
we present a general result on defining iterations of monotone semi-idempotent
operators in GEA.

An operator R : GEA → GEA is called computable if so is the function �σ� �→
�R(σ)�. By extension of terminology we also call computable any operator R′

such that ∀σ ∈ GEA R′(σ) =EA R(σ), for some computable R.
An operator R : GEA → GEA is called uniformly definable if there is an

elementary formula AxR(x, y) such that

(i) For each σ ∈ GEA one has R(σ) =EA AxR(x, �σ�),
(ii) EA � ∀x, y (AxR(x, y) → x � y).

The operators Rn and Πn+1 are uniformly definable in a very special way.
For example, the formula Rn(σ) is obtained by substituting σ(x) for X(x) into
a fixed elementary formula containing a single positive occurrence of a predicate
variable X. In fact, the following more general proposition holds that we leave
here without proof. (Nothing below depends on it.)

Proposition 1. An operator R : GEA → GEA is uniformly definable iff R is
computable.

Definition 4. A uniformly definable R is called

– provably monotone if EA � ∀σ, τ (“τ �EA σ” → “R(τ) �EA R(σ)”),
– reflexively monotone if EA � ∀σ, τ (“τ �EA σ” → “R(τ) � R(σ)”).

Here, σ, τ range over Gödel numbers of elementary formulas in one free vari-
able, “τ �EA σ” abbreviates �EA∀x (�σ(x) → �τ (x)) and “R(τ) � R(σ)”
stands for ∀x (�AxR(·,σ̄)(x) → �AxR(·,τ̄)(x)). Reflexivity here refers to the fact
that “R(τ) � R(σ)” is the statement of inclusion of theories rather than prov-
able inclusion. Since the formula “τ �EA σ” implies its own provability in EA,
reflexively monotone operators are (provably) monotone but not necessarily vice
versa.
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It is also easy to see that the operators Rn (along with all the usual reflection
principles) are reflexively monotone.

An elementary well-ordering is a pair of bounded formulas D(x) and x ≺ y
and a constant 0 such that in the standard model the relation ≺ well-orders
the domain D and is provably linear in EA with the least element 0. Given an
elementary well-ordering (D,≺, 0), we will denote its elements by Greek letters
and will identify them with an initial segment of the ordinals.

Let R be an uniformly definable monotone operator. The α-th iterate of R
along (D,≺) is a map associating with any numeration σ the Gödelian extension
of EA numerated by an elementary formula ρ(α, x) such that provably in EA:

ρ(α, x) ↔ ((α = 0 ∧ σ(x)) ∨ ∃β ≺ α AxR(x, �ρ(β̄, x)�)). (3)

We notice that the natural Gödel numbering of formulas and terms should satisfy
the inequalities �ρ(β̄, x)� � �β̄� � β. Hence, the quantifier on β in Eq. (3) can be
bounded by x. Thus, some elementary formula ρ(α, x) satisfying (3) can always
be constructed by the fixed point lemma.

The parametrized family of theories numerated by ρ(α, x) will be denoted
Rα(σ) and the formula ρ(α, x) will be more suggestively written as x ∈ Rα(σ).
Then, Eq. (3) can be interpreted as saying that R0(σ) =EA σ and, if α � 0,

Rα(σ) =EA

⋃{R(Rβ(σ)) : β ≺ α}.

Lemma 9. Suppose R is uniformly definable.

(i) If 0 ≺ α � β then Rβ(σ) �EA Rα(σ);
(ii) EA � ∀α, β (0 ≺ α ≺ β → “Rβ(σ) � Rα(σ)”).

Proof. Obviously, Claim (i) follows from Claim (ii). For the latter we unwind
the definition of ρ(α, x) and prove within EA

∀α, β (0 ≺ α ≺ β → ∀x (ρ(α, x) → ρ(β, x)).

This is sufficient to obtain from the same premise ∀x (�ρ(α,·)(x) → �ρ(β,·)(x)).
Reason within EA: If ρ(α, x) and α �= 0 then there is a γ ≺ α such that

AxR(x, �ρ(γ, x)�). By the provable transitivity of ≺ from α ≺ β we obtain
γ ≺ β, hence ρ(β, x).

Lemma 10. Suppose R is reflexively monotone. If τ �EA σ then Rα(τ) �EA

Rα(σ) and, moreover, EA � ∀α “Rα(τ) � Rα(σ)”.

Proof. We argue by reflexive induction similarly to [4], that is, we prove in EA
that

∀β ≺ α �EA∀x (�Rβ(σ)(x) → �Rβ(τ)(x)) → ∀x (�Rα(σ)(x) → �Rα(τ)(x))

and then apply Löb’s theorem in EA. Assume τ �EA σ.
Reason within EA: If �Rα(σ)(x) then either α = 0 ∧ �σ(x), or there is a

β ≺ α such that �R(Rβ(σ))(x). In the first case we obtain �τ (x) by the external
assumption τ �EA σ and are done. In the second case, by the premise and the
reflexive monotonicity of R we obtain �R(Rβ(τ))(x) which yields �Rα(τ)(x).
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Corollary 7. The iteration of R along (D,≺) is uniquely defined, that is, equa-
tion (3) has a unique solution modulo =EA.

The following corollary is most naturally stated for elementary well-orderings
equipped with an elementary successor function α �→ α + 1 such that provably
in EA

∀α (α ≺ α + 1 ∧ ∀β ≺ α + 1 (α ≺ β ∨ α = β)).

Corollary 8. Suppose R is provably monotone and semi-idempotent. Then

(i) R0(σ) =EA σ,
(ii) Rα+1(σ) =EA R(Rα(σ)),
(iii) Rλ(σ) =EA

⋃{Rα(σ) : α < λ} if λ ∈ Lim.

Proof. For Claim (ii), the implication Rα+1(σ) �EA R(Rα(σ)) is easy, since
provably α ≺ α + 1. For the opposite implication it is sufficient to prove

EA � ∀x (x ∈ Rα+1(σ) → �R(Rα(σ))(x)).

Then one will be able to conclude (within EA + BΣ1) that ∀x (�Rα+1(σ)(x) →
�R(Rα(σ))(x)) and then appeal to the Π0

2 -conservativity of BΣ1 over EA.
Reason in EA: Assume x ∈ Rα+1(σ) then (since α + 1 �= 0) there is a

β ≺ α + 1 such that x ∈ R(Rβ(σ)). If β = α then x ∈ R(Rα(σ)) and we are
done. Otherwise, β ≺ α and we consider two cases.

If β � 0 then we have Rα(σ) �EA Rβ(σ) by Lemma 9 (ii). By the provable
monotonicity of R we obtain R(Rα(σ)) �EA R(Rβ(σ)), whence �R(Rα(σ))(x).

If β = 0 then x ∈ R(σ). We have Rα(σ) �EA R(σ), since α � 0. Hence,
R(Rα(σ)) �EA R(R(σ)) �EA R(σ) by the semi-idempotence of R. So, from
x ∈ R(σ) we infer �R(Rα(σ))(x).

B Expressibility of Iterated Reflection

In this section we confuse the arithmetical and reflection calculus notation. We
write �n for Rn and ∇n for Πn+1. Our goal is to show that iterated operators
�α

n, for natural ordinal notations α < ε0, are expressible in the language of RC∇.
We will rely on the so-called reduction property (cf. [5], the present version is
somewhat more general and follows from [4, Theorem 2], see also [10]).

We write �n,σ(τ) for �n(σ ∧ τ), hence �n,σ is a monotone semi-idempotent
operator, for each σ. Let EA+ denote the theory R1(EA) which is known to be
equivalent to EA + Supexp.

Theorem 5 (reduction property). For all σ ∈ GEA, n ∈ ω,

�ω
n,σ(1) =EA+ ∇n�n+1(σ).

We also remark that the theory �ω
n,σ(1) is equivalent to the one axiomatized

over EA by the set
⋃{Qk

n(σ) : k < ω}, where Q0
n(σ) := �nσ and Qk+1

n (σ) :=
�n(σ ∧ Qk

n(σ)) are formulas in one variable expressible in RC.
Concerning these formulas we note three well-known facts.
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Lemma 11. Provably in EA,

1. ∀B ∈ Wn ∀k Qk+1
n (B) �RC Qk

n(B) ∧ �nQk
n(B);

2. ∀B ∈ Wn ∀k Qk
n(B) <n �n+1B;

3. ∀B ∈ Wn ∀k ∃A ∈ Wn Qk
n(B) =RC A.

The first two of these claims are proved by an easy induction on k. The third
one is a consequence of a more general theorem that any variable-free formula
of RC is equivalent to a word. An explicit rule for calculating such an A is also
well-known and related to the so-called Worm sequence, see [6, Lemma 5.9].

We consider the set of words (Wn, <n) modulo equivalence in RC, together
with its natural representation in EA, as an elementary well-ordering. For each
A ∈ Wn, let on(A) denote the order type of {B <n A : B ∈ Wn} modulo =RC.
In a formalized context, the ordinal on(A) is represented by its notation, the
word A, however we still write on(A), as it reminds us that A must be viewed
as an ordinal.

From the reduction property we obtain the following theorem that was stated
in [5] in a somewhat more restricted way.

Theorem 6. For all words A ∈ Wn, in GEA+ there holds

∇nA∗
σ =EA+ �on(A)

n,σ (1).

Theorem 6 of [5] used extensions of σ rather than extensions of EA+ by
iterated reflection principles and as a result involved unnecessary restrictions of
the complexity of σ. However, the idea of the present proof is the same.

Proof. We argue by reflexive induction in EA+ and prove that, for all σ ∈ GEA+

and all n < ω,

EA+ � ∀B <n A “∇nB∗
σ =EA+ �on(B)

n,σ (1)” → “∇nA∗
σ = �on(A)

n,σ (1)”.

Arguing inside EA+, we will omit the quotation marks and read the expres-
sions τ � ν as ∀x (�ν(x) ↔ �τ (x)) and τ = ν as ∀x (�τ (x) ↔ �ν(x)).

If A � � the claim amounts to ∇n1 = 1.
If A � �nB then on(A) = on(B)+1, hence by the reflexive induction hypoth-

esis ∇nB∗
σ =EA+ �

on(B)
n,σ (1). It follows that �n,σ(�on(B)

n,σ (1)) = �n,σ∇nB∗
σ =

�n,σB∗
σ. Therefore, we obtain

�on(A)
n,σ (1) = �n,σ(�on(B)

n,σ (1)) = �n,σB∗
σ = A∗

σ = ∇nA∗
σ.

If A � �m+1B with m � n then ∇nA∗
σ = ∇n∇m�m+1,σB∗

σ. By the reduc-
tion property ∇m�m+1,σB∗

σ =
⋃

k<ω(Qk
m(B))∗

σ. Moreover, by Lemma11 (i), if
a sentence is provable in

⋃
k<ω(Qk

m(B))∗
σ, it must be provable in (Qk

m(B))∗
σ, for

some k < ω. Hence, we can infer

∇nA∗
σ = ∇n

⋃
k<ω(Qk

m(B))∗
σ =

⋃
k<ω ∇n(Qk

m(B))∗
σ =

⋃
k<ω �n,σ(Qk

m(B))∗
σ.
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By Lemma 11(ii) and (iii), each of Qk
m(B) is <n-below A � �m+1B and is

equivalent to a word in Wn. Hence,
⋃

C<nA �n,σC∗
σ �

⋃
k<ω �n,σ(Qk

m(B))∗
σ.

By the reflexive induction hypothesis, for each C <n A we have

�n,σC∗
σ = �n,σ∇nC∗

σ = �n,σ�on(C)
n,σ (1).

It follows that

�
on(A)
n,σ (1) =

⋃
C<nA �n,σ�

on(C)
n,σ (1) =

⋃
C<nA�n,σC∗

σ �
�

⋃
k<ω �n,σ(Qk

m(B))∗
σ = ∇nA∗

σ.

On the other hand, if C <n A then A∗
σ � �n,σC∗

σ and ∇nA∗
σ � ∇n�n,σC∗

σ �
�n,σC∗

σ. Hence,
∇nA∗

σ �
⋃

C<nA �n,σC∗
σ = �

on(A)
n,σ (1).

Thus, we have proved ∇nA∗
σ = �

on(A)
n,σ (1), as required.

For ordinals α < ε0, let An
α ∈ Wn denote a canonical notation for α in the

system (Wn, <n). Thus, on(An
α) = α. We are going to show that the operations

�α
n are expressible in RC∇ in the following sense.

Theorem 7. For each n < ω and 0 < α < ε0 there is an RC-formula A(p) such
that ∀σ ∈ GEA+ �α

n(σ) =EA+ ∇nA(σ).

Note that A(σ) denote the interpretation of the formula A[p/�] in GEA+

sending p to σ. The theorem follows from the following main lemma.

Lemma 12. For all n < ω and α < ε0, for all σ ∈ GEA+ ,

�α
n�n(σ) =EA+ ∇nAn

α�n(σ).

The proof relies on a few observations.

Lemma 13. Suppose �nσ �EA+ σ. Then, for all A ∈ Wn,

(i) A(σ) �EA+ σ;
(ii) A∗

σ =EA+ A(σ);
(iii) ∀m � n ∀α < ε0 �α

m,σ1 =EA+ �α
m(σ).

Proof. Claim (i) is proved by induction on the build-up of A. Claim (ii) follows
from (i), since �m,στ = �m(σ ∧ τ) = �mτ , if τ � σ. Claim (iii) is proved by
reflexive induction using the same observation as in (i) and (ii).

Proof of Theorem 7. We observe that the formula �nσ satisfies the assumption
of Lemma 13. Let B := An

α, then by Theorem6

∇nB(�nσ) = ∇nB∗
�nσ(1) = �

on(B)
n,�nσ(1) = �on(B)

n �nσ.

However, on(B) = α and the claim follows.
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Abstract. Switch and medial are two inference rules that play a central
role in many deep inference proof systems. In specific proof systems, the
mix rule may also be present. In this paper we show that the maximal
length of a derivation using only the inference rules for switch, medial,
and mix, modulo associativity and commutativity of the two binary con-
nectives involved, is quadratic in the size of the formula at the conclusion
of the derivation. This shows, at the same time, the termination of the
rewrite system.

1 Introduction

Deep inference is a well established methodology in proof theory; it generalises
the more traditional proof theoretical methods, while simultaneously improving
our ability in studying proofs from the point of view of normalisation and com-
plexity, addressing therefore the problem of proof identity. For the interested
reader, the web site http://alessio.guglielmi.name/res/cos/ provides a detailed
overview of the collective developments in deep inference, spanning almost two
decades of activities by several research groups and individuals.

For the purposes of this paper, however, we will limit ourselves to recall
the essential feature that distinguishes deep inference from the traditional proof
formalisms, when describing inference rules of some logical proof system. Deep
inference applies logical inference in contexts, i.e. it allows to manipulate for-
mulas at arbitrary depth in any context. In contrast, in the more traditional
formalisms, including sequent calculus or natural deduction, the decomposition
of a formula around its main connective strictly determines the shape of the
inference rules of the proof system, and ultimately the shape of its proofs.

Therefore, on a technical level, deep inference lends itself to be studied also
from the perspective of modern term rewriting, and in an easier way than tra-
ditional formalisms. This will not come at the expenses of our ability in observ-
ing and studying the fundamental proof theoretical properties, including cut-
elimination, in a conservative way.

In this paper, we show some upper bounds on the length of deep inference
derivations in a (sub)system for classical logic, by taking advantage of both
worlds, proof theory and rewriting.
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In the standard deep inference proof system KS for classical logic [3], we can
find the following two rules

F{([A ∨ B] ∧ C)}
s
F{[A ∨ (B ∧ C)]}

F{[(A ∧ B) ∨ (C ∧ D)]}
m

F{([A ∨ C] ∧ [B ∨ D])} (1)

called switch and medial, respectively, where F{ } stands for an arbitrary (pos-
itive) formula context and A, B, C, and D are formula variables. In the system
KS, the two rules switch and medial are applied modulo associativity and com-
mutativity of conjunction and disjunction. The switch rule has been well inves-
tigated from the proof-theoretic as well as from the category-theoretic point of
view because of its important role in linear logic [2]. The properties of the medial
rule have originally been investigated in [20].

Switch and medial in combination have been studied in [18,21] from the
perspective of semantics of proofs in deep inference. Moreover, the development
of atomic flows in [13], centred on proof normalisation, provides a more abstract
view of classical proofs by hiding switch-medial steps. A preliminary account
from perspective of proof complexity can be found in [5].

In this paper we look at the two rules of switch and medial as rewriting
system. Often these two rules may operate in presence of the mix rule, i.e.

F{[A ∨ B]}
mix

F{(A ∧ B)} (2)

that may be induced by the interplay of the units under specific conditions in
the proof system, or just be made explicitly available in the system. For classical
logic, for example, it is a consequence of weakening.

Our main result, in terms of complexity, is that the length of a derivation
using only switch, medial, and mix is bounded by a quadratic function in the
size of the conclusion of the derivation. Clearly, any such bound for a system
with mix also holds for the system without mix. We will however also include the
presentation of a more immediate cubic bound that has independent interest.

2 Rewriting with Switch and Medial (and Mix)

Formulas are generated from a countable set A = {a, b, c, . . .} of atoms via the
binary connectives ∧ and ∨, called and and or, respectively. To ease readability
of large formulas we will use [ ] for parentheses around disjunctions and ( ) for
parentheses around conjunctions.

To simplify the presentation, we do not use the units � (truth) and ⊥ (falsum)
in this paper. It follows from the work by Das [9] that our results would also
hold under the presence of the units.

The size of a formula A, denoted by σA, is the number of atom occurrences
in A:

σa = 1
σ[A ∨ B] = σA + σB

σ(A ∧ B) = σA + σB
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Example: σ([a ∨ b] ∧ [[a ∨ c] ∨ b]) = 5.
The tree-or-number of a formula A, denoted by θA, is the number of occurrences
of the symbol ∨ in A:

θa = 0
θ[A ∨ B] = θA + θB + 1
θ(A ∧ B) = θA + θB

Example: θ([a ∨ b] ∧ [[a ∨ c] ∨ b]) = 3.
The relweb-or-number of a formula A, denoted by �A, is the number of ∨-edges
in the relation web 1 of A:

�a = 0
�[A ∨ B] = �A + �B + σA · σB

�(A ∧ B) = �A + �B

Example: �([a ∨ b] ∧ [[a ∨ c] ∨ b]) = 4.
These values are stable under context application, as shown below.

Lemma 2.1. Let P and Q be formulas with σP = σQ, and let F{ } be a
formula context.

1. If θP = θQ, then θF{P} = θF{Q}.
2. If θP > θQ, then θF{P} > θF{Q}.
3. If �P = �Q, then �F{P} = �F{Q}.
4. If �P > �Q, then �F{P} > �F{Q}.
Proof. By induction on the structure of F{ }. ��

Consider the following rewrite rules on formulas:

[(A ∧ B) ∨ (C ∧ D)]
m

([A ∨ C] ∧ [B ∨ D])

([A ∨ B] ∧ C)
s
[A ∨ (B ∧ C)]

(A ∧ B)
mix

[A ∨ B]
(3)

The rules in (3) are written in the style of inference rules in proof theory
(premiss on top implies the conclusion at the bottom), but they behave as rewrite
rules in term rewriting, i.e., they can be applied inside any formula context F{ }.

The rewriting rules in (3) are applied modulo associativity and commuta-
tivity for ∧ and ∨. More precisely, we will do rewriting modulo the equational
theory generated by

(A ∧ (B ∧ C)) = ((A ∧ B) ∧ C) (A ∧ B) = (B ∧ A)
[A ∨ [B ∨ C]] = [[A ∨ B] ∨ C] [A ∨ B] = [B ∨ A]

(4)

1 The relation web of a formula provides a graph-based representation of a formula
in deep inference contextual rewriting, as in [12]. An equivalent definition of the
relweb-or-number is the number of edges in the cograph for ∨.
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Lemma 2.2. If P = Q, then θP = θQ and �P = �Q.

Proof. Consider the equation of associativity of disjunction. We have

θ[A ∨ [B ∨ C]] = θA + θB + θC + 2
= θ[[A ∨ B] ∨ C]

and

�[A ∨ [B ∨ C]] = �A + (�B + �C + σB · σC) + σA · (σB + σC)
= �A + �B + �C + σA · σB + σA · σC + σB · σC

= �[[A ∨ B] ∨ C]

Now apply Lemma 2.1. The other cases are similar (and simpler). ��

Lemma 2.3. Let the rule
Q

ρ
P

be given.

1. If ρ is m, then θQ < θP .
2. If ρ is s, then θQ = θP and �Q < �P .
3. If ρ is mix, then θQ < θP and �Q < �P .

Proof. 1. Case of medial:

θ[(A ∧ B) ∨ (C ∧ D)] = θA + θB + 1 + θC + θD + 1
< θA + θB + θC + θD + 1
= θ([A ∨ C] ∧ [B ∨ D])

2. Case of switch:

θ([A ∨ B] ∧ C) = θA + θB + 1 + θC

= θ[A ∨ (B ∧ C)]

and

�([A ∨ B] ∧ C) = �A + �B + σA · σB + �C

< �A + �B + �C + σA · σB + σA · σC

= �[A ∨ (B ∧ C)]

3. Case of mix:

θ(A ∧ B) = θA + θB
< θA + θB + 1
= θ[A ∨ B]

and
�(A ∧ B) = �A + �B

< �A + �B + σA · σB
= �[A ∨ B]

Now apply Lemma 2.1. ��
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3 The Cubic Bound

Before showing the quadratic bound, we present a cubic bound that we con-
sider of independent interest for the following reasons. First, the proof of the
cubic bound is rather simple and flexible, so it might be of interest for other
logics (not just classical logic) especially in relation to aspects of system imple-
mentations [17]. Second, the cubic bound on medial-switch-mix derivations has
been generalised to arbitrary (sound) linear systems for classical logic [10,11], in
the sense that any derivation of super-cubic length must derive a (semantically)
trivial inference.

Separating out the different proofs for the cubic and quadratic bound might
help to answer the open question whether the quadratic bound can also be
generalized, or whether it is truly specific to medial-switch-mix derivations.

For a formula P , define its MSM-measure, denoted by msmP , as the pair

msmP = 〈θP ,�P 〉.
We use the lexicographic ordering for this measure on formulae:

msmQ < msmP iff θQ < θP or ( θQ = θP and �Q < �P ).

In the sequel, we assume the common notions and terminology on derivations
and proof construction, given a (finite) set of inference rules.

The notation
Q

S
‖
‖ Δ

P

stands for a derivation Δ, with premiss Q and con-

clusion P , obtained with the rules in S ; by length(Δ) we intend the number of
instances of rules of S that have been applied in Δ.

Proposition 3.1. Let Δ be the following derivation
Q

{m,s,mix} ‖
‖ Δ

P

, where σP = n.

Then, length(Δ) < n3.

Proof. By Lemma 2.2 we have that msm is stable under the equivalence of for-
mulas, and from Lemma 2.3 we can conclude that msm strictly decreases at each
step when going bottom-up in the derivation. We also have that θP < n and�P ≤ n2. Hence, length(Δ) < n · n2. ��

4 The Quadratic Bound

The analysis that delivers a quadratic bound is performed by treating separately,
in a given derivation, those sub-derivations that use only switch rule from those
that use both mix and medial. We will keep the presentation slightly more infor-
mal to help the intuition.
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Lemma 4.1. Let Δ be the following derivation
Q

{m,mix} ‖
‖ Δ

P

, where σP = n.

Then length(Δ) < n.

Proof. As observed in the proof of Proposition 3.1, we have that θP < n, and
this value strictly decreases with each application of medial and mix. ��
Moreover, let γP be the number of ∧-occurrences in a formula P ; then, it is
trivial to show that

σP = θP + γP + 1.

In the following, we identify a formula P with its formula-tree, and every node
of that tree is identified with the subformula occurrence rooted at that node.

Let P = S{R}, where R is an ∧-node in P , i.e., R = (A ∧ B) for some A
and B. We define the following notions:

• the switch-potential of R in P is the number of ∨-nodes in the context S{ };
• the switch-potential of P , denoted by spP is the sum of the switch-potentials

of all ∧-nodes in P .

Example:
The formula ([a ∨ b] ∧ [[a ∨ c] ∨ b]) contains only one ∧-node, and its switch-
potential is 0. But the formula A = [(a ∧ b) ∨ ((a ∧ c) ∧ b)] has 3 ∧-nodes, each
of which has switch-potential 1. Hence spA = 3.

The switch-potential of formulae is preserved through associativity and com-
mutativity of the two operators and under context closure.

Lemma 4.2. If P and Q are formulas and P = Q then spP = spQ.

Proof. First note, that whenever P = Q and spP = spQ, then for all contexts
S{ } we have spS{P} = spS{Q}. This can be shown by a straightforward induc-
tion on S{ }. Hence, it suffices to show that for each equation in (4), the switch-
potential of the left-hand side is equal to the switch-potential of the right-hand
side. This is straightforward. ��

We then consider the switch-potential of premiss and conclusion of the rules
switch, medial and mix.

Lemma 4.3. If
Q

s
P

is a correct application of the switch rule, then spQ < spP .

Proof. We have that P = S{A ∨ (B ∧ C)} and Q = S{[A ∨ B] ∧ C} for some
context S{ } and some formulas A,B and C. The ∧-nodes in S{ }, in A, and
in B do not change their switch-potentials. The switch-potentials of the ∧-nodes
in C (if present) are reduced by 1. However, note that the ∧-node ([A ∨ B] ∧ C)
in Q has strictly smaller switch-potential than the ∧-node (B ∧ C) in P . Hence
spQ < spP . ��
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Corollary 4.4. Let
Q

{s} ‖
‖ Δ

P

be given. Then length(Δ) ≤ γP · θP < 1
4n2.

Proof. By Lemma 4.3, we immediately get length(Δ) ≤ spP . By definition we
have spP ≤ γP · θP . Since γP + θP = n − 1, we have 1

4n2 as upper bound. ��
Observation 4.5. Note that in the derivation Δ in Corollary 4.4 we have θQ =
θP and γQ = γP .

Lemma 4.6. If
Q

mix
P

is a correct application of the mix rule, then spQ <

spP + θP .

Proof. We have that P = S{A ∨ B} and Q = S{A ∧ B} for some context S{ }
and some formulas A and B. The switch-potentials of the ∧-nodes in S{ }, in
A, and in B either remains unchanged by the inference step or is smaller in Q
than in P , because one ∨-node is removed. However, Q has one ∧-node more
than P . Hence, its switch-potential can be increased by the switch-potential of
that ∧-node, which is at most θQ. Hence, spQ ≤ spP + θQ. Since θP = θQ + 1,
we get spQ < spP + θP . ��

Lemma 4.7. If
Q

m
P

is a correct application of the medial rule, then spQ ≤
spP + θP .

Proof. We have that P = S{[A ∨ C] ∧ [B ∨ D]} and Q = S{(A ∧ B) ∨ (C ∧ D)}
for some context S{ } and some formulas A,B,C and D. The switch-potentials
of the ∧-nodes in S{ }, and in A,B,C,D could be smaller in Q than in P ,
because one ∨-node is removed. However, one ∧-node in P is replaced by two ∧-
nodes in Q, which have both a bigger switch-potential because of the new ∨-node
as parent. This can be counted as follows: the first new ∧-node in Q increases its
switch-potential by 1, compared to the ∧-node in P , whereas the second ∧-node in
Q has a switch-potential of at most θQ. Hence spQ ≤ spP +1+θQ = spP +θP .��

We can now combine these results.

Proposition 4.8. Let Δ be a given derivation
Q

{m,s,mix} ‖
‖ Δ

P

where σP = n.

Then length(Δ) < 1
2 (n2 + n).
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Proof. Without loss of generality, we can assume that Δ has shape

Qm

{s} ‖
‖ Δm

Pm
ρm

Qm−1

{s} ‖
‖ Δm−1

...
{s} ‖

‖ Δ2

P2
ρ2

Q1

{s} ‖
‖ Δ1

P1
ρ1

Q0

{s} ‖
‖ Δ0

P0

where P = P0, Q = Qm, and where ρi is an instance of m or mix, for every i ∈
{1, . . . , m}. Let us consider, for every i ∈ {0, . . . , m}, the numbers of disjunctions
and conjunctions in Pi, respectively denoted by di and ci, as follows:

di = θPi = θQi and ci = γPi = γQi.

Observe that di+ci = n−1. By the same argument as in the proof of Lemma 4.1,
we have that m = cm − c0 = d0 − dm. In particular, we have that

m < d0 < n, (5)

and for all i ∈ {0, . . . , m − 1} we have that

di+1 = di − 1 and ci+1 = ci + 1. (6)

We define, for every i ∈ {0, . . . , m}, the switch-potentials as

pi = spPi and qi = spQi,

and we have that pi ≤ dici. If we let li = length(Δi), then we obtain

li ≤ pi − qi. (7)

By Lemmas 4.6 and 4.7 we also have

pi+1 ≤ qi + di. (8)
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The remainder of the proof is a simple calculation:

length(Δ) = m + l0 + l1 + · · · + lm−1 + lm

≤ m + (p0 − q0) + (p1 − q1) + · · · + (pm−1 − qm−1) + (pm − qm)
≤ m + (d0c0 − q0) + (q0 + d0 − q1) + · · ·

+(qm−2 + dm−2 − qm−1) + (qm−1 + dm−1 − qm)
≤ m + d0c0 + d0 + d1 + · · · + dm−2 + dm−1

= m + d0(n − 1 − d0) + d0 + (d0 − 1) + · · ·
+(d0 − (m − 2)) + (d0 − (m − 1))

= m + d0(n − 1 − d0) + md0 −
m−1∑

i=1

i

= m + d0n − d0 − d20 + md0 − m(m − 1)
2

=
1
2
(2nd0 + 2md0 − 2d20 − m2 + 3m − 2d0)

<
1
2
(n2 + n),

where the last inequality follows by observing that

0 < (n − m) + (d0 − m) + (d0 − m)
= n + 2d0 − 3m

= n − (3m − 2d0)

and

0 < (n − d0)2 + (d0 − m)2

= n2 − 2nd0 + d20 + d20 − 2d0m + m2

= n2 − (2nd0 + 2d0m − 2d20 − m2),

completing, thus, the proof. ��
Some remarks are in order, to comment on the bounds that we have obtained

in this study.

Remark 4.9. The linear bound given by Lemma4.1 cannot be reduced. For
derivations containing mix, this is obvious, but even when only medial is allowed,
we can form the following derivation

[(a11 ∧ a21 ∧ · · · ∧ am1) ∨ · · · ∨ (a1k ∧ a2k ∧ · · · ∧ amk)]
{m} ‖

‖ Δ

([a11 ∨ a12 ∨ · · · ∨ a1k] ∧ · · · ∧ [am1 ∨ am2 ∨ · · · ∨ amk])
(9)

that contains (k − 1)(m − 1) instances of medial. The size of the formulas in Δ
is n = km. Hence length(Δ) = km − k − m + 1. If k = m, then length(Δ) =
n − 2

√
n + 1. Lamarche proposes in [18] a matrix notation for denoting the

derivation Δ in (9).
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Remark 4.10. For derivations that use only the switch rule, the following
example shows that the quadratic bound of Lemma4.4 cannot be pushed further
down, and also that the constant factor of 1

4 is already optimal. Consider the
following derivation where only switch is applied:

((· · · (([a1 ∨ [a2 ∨ [a3 ∨ · · · ∨ [am ∨ b] · · ·]]] ∧ c1) ∧ c2) · · · ∧ ck−1) ∧ ck)
{s} ‖

‖ Δ1

((· · · ([a1 ∨ [a2 ∨ [a3 ∨ · · · ∨ [am ∨ (b ∧ c1)] · · ·]]] ∧ c2) · · · ∧ ck−1) ∧ ck)
{s} ‖

‖ Δ2

...
{s} ‖

‖ Δk−1

([a1 ∨ [a2 ∨ [a3 ∨ · · · ∨ [am ∨ (· · · ((b ∧ c1) ∧ c2) · · · ∧ ck−1)] · · ·]]] ∧ ck)
{s} ‖

‖ Δk

[a1 ∨ [a2 ∨ [a3 ∨ · · · ∨ [am ∨ ((· · · ((b ∧ c1) ∧ c2) · · · ∧ ck−1) ∧ ck)] · · ·]]]

(10)

For every i ∈ {1, . . . , k}, we have that each Δi consists of m switches. Hence
length(Δ) = mk. If we let m = k, we have n = 2k + 1 and length(Δ) = k2 =
1
4n2 − 1

2n + 1
4 .

Remark 4.11. The previous remark also shows that the quadratic bound of
Proposition 4.8 cannot be improved. However, it is not known whether the con-
stant factor 1

2 can be improved (although we know that it must be ≥ 1
4 .)

5 Conclusions

Earlier versions of this paper exist since 2008, for research primarily motivated by
the need of better understanding the role and shape of the medial rule, especially
from the perspective of normalisation. The medial rule is in fact needed in deep
inference systems for classical logic to obtain an atomic contraction rule, which,
in turns, contributes a form of atomic sharing that influences both normalisation
and complexity.

Over time, we noted that variants of the medial rule appear, possibly in
disguise, in several different logics of the linear kind, including those with non-
commutative operators. It is therefore appropriate studying switch-medial-mix
derivations independently from the specific units of the logic and their associated
equations. In this sense, the approach based on term rewriting adds an element
of generality that could result useful also for aspects of implementations.

The switch-medial-mix fragment is at the core of several investigations from
different perspectives, including also the development of atomic flows [13,14]
and of the atomic lambda calculus [16]. In particular, atomic flows provide an
abstract view of classical derivations by making switch and medial unobservable
(hence indirectly related to this topic of study) and enabling the discovery of
interesting transformations from the complexity perspective, such as [6–8].
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The results of this paper have supported well also the study of the length
of derivations consisting only of linear inferences, as developed in [9], and more
recently in [10,11]. The two last works show that our cubic bound also holds for
non-trivial derivations made of arbitrary sound linear inferences, not just switch
and medial. It still remains an open question whether the general case also has
a quadratic bound.

As a remark, our medial-switch-mix system differs from the system studied
in [1], which contains a rule that is the “inverse” of our medial rule, with premiss
and conclusion swapped around.

As a matter of fact, an interesting line of enquiry is what happens when we
combine various forms of switch and medial for various connectives. Examples of
such a combination is the local system for linear logic [19], and the systems that
extend the basic BV that contains a sequential operator inspired by process alge-
bras [4,15]. More recently, a very exciting development that generalises switch
and medial through the use of subatomic logic is in [22].

For the central role that switch and medial rules have in all deep inference
systems, and for the richness of results collected from different perspectives that
confirm also our bounds, we hope that this paper proves useful also in relation
to implementations as well as further studies in complexity.
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Abstract. Ordering theorems, characterizing when partial orders of a
group extend to total orders, are used to generate hypersequent calculi for
varieties of lattice-ordered groups (�-groups). These calculi are then used
to provide new proofs of theorems arising in the theory of ordered groups.
More precisely: an analytic calculus for abelian �-groups is generated
using an ordering theorem for abelian groups; a calculus is generated
for �-groups and new decidability proofs are obtained for the equational
theory of this variety and extending finite subsets of free groups to right
orders; and a calculus for representable �-groups is generated and a new
proof is obtained that free groups are orderable.

1 Introduction

Considerable success has been enjoyed recently in obtaining uniform algebraic
completeness proofs for analytic sequent and hypersequent calculi with respect
to varieties of residuated lattices [3,4,20]. These methods do not encompass,
however, “ordered group-like” structures: algebras with a group reduct such as
lattice-ordered groups (�-groups) [1,14] and others admitting representations
via ordered groups such as MV-algebras [5], GBL-algebras [13], and varieties
of cancellative residuated lattices [17]. Hypersequent calculi have indeed been
defined for abelian �-groups, MV-algebras, and related classes in [15,16] and for
�-groups in [9], but the completeness proofs in these papers are largely syntactic,
proceeding using cut elimination or restricted quantifier elimination.

The first aim of the work reported here is to use ordering theorems for groups,
characterizing when a partial (right) order of a group extends to a total (right)
order, to generate hypersequent calculi for varieties of lattice-ordered groups,
thereby taking a first step towards a general algebraic proof theory for ordered
group-like structures. A second aim is to then use these calculi to provide new
syntactic proofs of various theorems arising in the theory of ordered groups.

More concretely, this paper makes the following contributions:

(i) A theorem of Fuchs [8] for extending partial orders of abelian groups to
total orders is used to generate an analytic (cut-free) hypersequent calculus
for the variety of abelian �-groups. This system can be viewed as a one-sided
version of the two-sided hypersequent calculus introduced in [15].
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(ii) A theorem of Kopytov and Medvedev [14] for extending partial right orders
of groups to total right orders is used to generate a hypersequent calculus
for the variety of �-groups, a variant of a calculus appearing in [9]. The
method also provides a correspondence between validity of equations in
�-groups and the extension of finite subsets of free groups to total right
orders, giving new proofs of decidability for these problems.

(iii) A theorem of Fuchs [8] for extending partial orders of groups to total
orders is used to generate a calculus for representable �-groups (equiva-
lently, ordered groups) and to provide a new proof that free groups are
orderable.

2 Ordered Groups

In this section, we recall some pertinent definitions and basic facts about ordered
groups, referring to [1,14] for further details. Consider a group G = 〈G, ·, −1, e〉.
A partial order ≤ of G is called a partial right order of G if for all a, b, c ∈ G,

a ≤ b =⇒ ac ≤ bc.

Its positive cone P≤ = {a ∈ G : e < a} is a subsemigroup of G that omits e.
Conversely, if P is a subsemigroup of G omitting e, then

a ≤P b ⇐⇒ ba−1 ∈ P ∪ {e}

is a partial right order of G satisfying P≤P = P . Hence partial right orders of G
can be identified with subsemigroups of G omitting e. Note also that for S ⊆ G,
the subsemigroup of G generated by S, denoted by 〈S〉, is a partial right order
of G if and only if e 
∈ 〈S〉. Partial left orders of G are defined analogously.

A partial left and right order ≤ of G is called a partial order of G. In this
case, the positive cone P≤ is a normal subsemigroup of G omitting e; that is,
whenever a ∈ P≤ and b ∈ G, also bab−1 ∈ P≤. Conversely, if a subset P ⊆ G has
these properties, then ≤P is a partial order of G; hence, partial orders of G can
be identified with normal subsemigroups of G omitting e. Also, for S ⊆ G, the
normal subsemigroup of G generated by S, denoted by 〈〈S〉〉, is a partial order
of G if and only if e 
∈ 〈〈S〉〉.

A partial order or partial right order ≤ of G is called, respectively, a (total)
order or (total) right order of G if G = P≤ ∪ P≤−1 ∪ {e}. Note also that if ≤ is
an order or a right order of G, then the same holds for the inverse order defined
by a ≤δ b if and only if b ≤ a. In this paper we focus mostly on (right) orders of
a finitely generated free (abelian) group F and address the following problem.

Problem 1. Does a given finite S ⊆ F extend to an order or a right order of F?

We also consider a purely algebraic perspective on ordered groups. That is,
a lattice-ordered group (or �-group) may be defined as an algebraic structure
L = 〈L,∧,∨, ·, −1, e〉 satisfying
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(i) 〈L, ·, −1, e〉 is a group;
(ii) 〈L,∧,∨〉 is a lattice (with a ≤ b ⇔ a ∧ b = a, for all a, b ∈ L);
(iii) a ≤ b =⇒ cad ≤ cbd, for all a, b, c, d ∈ L.

It follows also that 〈L,∧,∨〉 must be a distributive lattice and that L satisfies
e ≤ a ∨ a−1 for all a ∈ L (see [1]). If ≤ is a total order of the group 〈L, ·, −1, e〉,
then L is called an ordered group (or o-group), observing that L can also be
obtained by adding to the group operations the meet and join operations for ≤.
An �-group whose group operation is commutative is called an abelian �-group.

Example 1. Standard examples of abelian �-groups are subgroups of the additive
group over the real numbers equipped with the usual order, e.g.,

Z = 〈Z,min,max,+,−, 0〉.
Indeed this algebra generates the variety A of all abelian �-groups [21], which
means in particular that an equation is valid in A if and only if is valid in Z.

Example 2. Fundamental examples of (non-abelian) �-groups are provided by
considering the order-preserving bijections of some totally-ordered set 〈Ω,≤〉.
These form an �-group Aut(〈Ω,≤〉) under coordinate-wise lattice operations,
functional composition, and functional inverse. Indeed, it has been shown by
Holland that every �-group embeds into an �-group Aut(〈Ω,≤〉) for some totally-
ordered set 〈Ω,≤〉 [10], and that the variety LG of �-groups is generated by
Aut(〈R,≤〉), where ≤ is the usual order on R [11]. This means in particular
that an �-group equation is valid in LG if and only if is valid in Aut(〈R,≤〉).

Let us turn our attention now to the syntax of �-groups. We call a variable
x and its inverse x−1 literals, and consider terms s, t, . . . built from literals over
variables x1, x2, . . ., operation symbols e, ∧, ∨, and ·, defining also inductively

x = x−1 x−1 = x e = e
s ∧ t = s ∨ t s ∨ t = s ∧ t s · t = t · s.

Using the strong distributivity properties of the �-group operations, it follows
that every �-group term is equivalent in LG to a term of the form ∧i∈I ∨j∈Ji

tiji
where each tiji is a group term. Hence to check the validity of equations in some
class K of �-groups, it suffices to address the following problem.

Problem 2. Given group terms t1, . . . , tn, does it hold that

K |= e ≤ t1 ∨ . . . ∨ tn?

Let us therefore define a sequent Γ as a finite sequence of literals �1, . . . , �n with
inverse Γ = �n, . . . , �1, and a hypersequent G as a finite set of sequents, written

Γ1 | . . . | Γn.

In what follows, we identify a sequent �1, . . . , �n with the group term �1 · . . . · �n

for n > 0 and e for n = 0, and a non-empty hypersequent Γ1 | . . . | Γn with the
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�-group term Γ1 ∨ . . .∨Γn. We will say that a non-empty hypersequent G is valid
in a class of �-groups K and write K |=G, if K |= e ≤ G. We will also say that a
sequent Γ is group valid if Γ ≈ e is valid in all groups.

A hypersequent rule is a set of instances, each instance consisting of a finite set
of hypersequents called the premises and a hypersequent called the conclusion.
Such rules are typically written schematically using Γ,Π,Σ,Δ and G,H to denote
arbitrary sequents and hypersequents, respectively. A hypersequent calculus GL
is a set of hypersequent rules, and a GL-derivation of a hypersequent G is a finite
tree of hypersequents with root G such that each node and its parents form an
instance of a rule of GL. In this case, we write �GL G. A hypersequent rule is
said to be GL-admissible if for each of its instances, whenever the premises are
GL-derivable, the conclusion is GL-derivable.

Remark 1. Sequents are often defined (see, e.g., [3,4,15,16]) as ordered pairs
of finite sequences (or sets or multisets) of terms, and hypersequents as finite
multisets of sequents. Here we exploit the strong duality properties of �-groups to
restrict to one-sided sequents and define hypersequents as finite sets of sequents
to emphasize the connection with finite sets of group terms.

3 A Hypersequent Calculus for Abelian �-Groups

We use the following ordering theorem for abelian groups to rediscover a single-
sided version of the hypersequent calculus for abelian �-groups defined in [15].

Theorem 1 (Fuchs 1963 [8]). Every partial order of a torsion-free abelian
group G extends to an order of G.

Let Ab be the variety of abelian groups and let T(k) be the algebra of group
terms on k ∈ N generators. We may identify the free abelian group FAb(k) on k
generators with the quotient T(k)/ΘAb, where ΘAb is the congruence on T(k)
defined by sΘAbt ⇔ Ab |= s ≈ t (see [2] for further details). For convenience,
we will use t ∈ T (k) to denote also t/ΘAb in FAb(k), noting that Ab |= s ≈ t if
and only if s = t in FAb(k). It follows easily that FAb(k) is torsion-free.

Theorem 2. The following are equivalent for t1, . . . , tn ∈ T (k):

(1) A |= e ≤ t1 ∨ . . . ∨ tn.
(2) {t1, . . . , tn} does not extend to an order of FAb(k).
(3) e ∈ 〈{t1, . . . , tn}〉.
(4) Ab |= e ≈ tλ1

1 · · · tλn
n for some λ1, . . . , λn ∈ N not all 0.

Proof. (1) ⇒ (2). By contraposition. If {t1, . . . , tn} extends to an order of
FAb(k), then, taking the inverse order, we obtain an ordered abelian group where
t1, . . . , tn are negative. But this ordered abelian group may also be viewed as an
abelian �-group and taking the evaluation mapping t ∈ T (k) to t ∈ FAb(k), we
obtain A 
|= e ≤ t1 ∨ . . . ∨ tn.
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G | Δ,Δ
(id)

G | Π,Δ,Γ

G | Π,Γ,Δ
(ex)

G | Γ,Δ

G | Γ | Δ
(split)

Fig. 1. The hypersequent calculus GA

(2) ⇒ (3). Suppose that {t1, . . . , tn} does not extend to an order of FAb(k).
Then, since FAb(k) is torsion-free, by Theorem 1, the subsemigroup 〈{t1, . . . , tn}〉
is not a partial order of FAb(k). That is, e ∈ 〈{t1, . . . , tn}〉.

(3) ⇒ (4). Suppose that e ∈ 〈{t1, . . . , tn}〉. Then e = tλ1
1 · · · tλn

n in FAb(k) for
some λ1, . . . , λn ∈ N not all 0, and hence Ab |= e ≈ tλ1

1 · · · tλn
n .

(4) ⇒ (1). Suppose that Ab |= e ≈ tλ1
1 · · · tλn

n for some λ1, . . . , λn ∈ N not
all 0. Then also A |= e ≤ tλ1

1 · · · tλn
n . It is easily proved that A |= e ≤ uv∨t implies

A |= e ≤ u ∨ v ∨ t (see, e.g. [9]). Hence, applying this implication repeatedly, we
obtain A |= e ≤ t1 ∨ . . . ∨ tn. ��
Remark 2. Theorem 2 may be interpreted geometrically as a variant of Gordan’s
theorem of the alternative (with integers swapped for real numbers) and close
relative of Farkas’ lemma (see, e.g., [7]). Namely, given an m × n integer matrix
A = (aij), exactly one of the following systems has a solution:

(a) yT A < 0 for some y ∈ Z
m.

(b) Az = 0 for some z ∈ N
n \ {0}.

To prove this, define ti = xa1i
1 · . . . · xami

m for i = 1, . . . , n. Then (a) is equivalent
to Z 
|= e ≤ t1 ∨ . . . ∨ tn, which is in turn equivalent to A 
|= e ≤ t1 ∨ . . . ∨ tn
(see Example 1). So, by Theorem 2, (a) fails if and only if Ab |= e ≈ tλ1

1 · · · tλn
n

for some λ1, . . . , λn ∈ N not all 0, which is in turn equivalent to (b).

Theorem 2 can be used to establish soundness and completeness for the
hypersequent calculus GA presented in Fig. 1.

Theorem 3. For any non-empty hypersequent G, A |= G if and only if �GA G.
Proof. By Theorem 2, A |= Γ1 | . . . | Γn if and only if Ab |= e ≈ Γλ1

1 · · · Γλn
n

for some λ1, . . . , λn ∈ N not all 0. But if this latter condition holds, then the
number of occurrences of a variable x in Γλ1

1 · · · Γλn
n must equal the number of

occurrences of x−1, and, using (ex) and (id), we obtain �GA Γλ1
1 · · · Γλn

n . Hence
also, using (split) repeatedly, �GA Γ1 | . . . | Γn. Conversely, we can prove by
induction on the height of a derivation that whenever �GA Γ1 | . . . | Γn, there
exist λ1, . . . , λn ∈ N not all 0 such that Ab |= e ≈ Γλ1

1 · · · Γλn
n . The cases for

(id) and (ex) are immediate, and the case of (split) follows directly by an
application of the induction hypothesis. ��

Remark 3. The calculus for abelian �-groups presented in [15] uses hypersequents
defined as finite multisets of two-sided sequents, each consisting of an ordered
pair of finite multisets of �-group terms, and therefore requires a quite different
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set of rules. In particular, this calculus contains rules for operation symbols and
external contraction and weakening structural rules, but not the exchange rule
(ex). These differences are of an essentially cosmetic nature, however. We can
easily add sound and invertible rules for the operation symbols ·, e, ∧, and ∨
to the calculus GA that serve to rewrite hypersequents of arbitrary terms into
hypersequents built only from literals, and it remains then simply to translate
two-sided sequents Γ ⇒ Δ into one-sided sequents Γ,Δ.

4 Right Orders on Free Groups and Validity in �-Groups

Let G be the variety of groups and F(k) the free group over k generators, which,
as before, we may identify with T(k)/ΘG , where ΘG is the congruence on T(k)
defined by sΘGt ⇔ G |= s ≈ t. An element of F (k) can again be represented
by a term from T (k): in particular, by a reduced term obtained by cancelling
all occurrences of xx−1 and x−1x. Our first aim in this section will be to show
that checking validity of equations in �-groups is equivalent to checking whether
finite subsets of F (k) extend to right orders on F(k).

Theorem 4. The following are equivalent for t1, . . . , tn ∈ T (k):

(1) LG |= e ≤ t1 ∨ . . . ∨ tn.
(2) {t1, . . . , tn} does not extend to a right order of F(k).
(3) There exist s1, . . . , sm ∈ F (k) \{e} such that

e ∈ 〈{t1, . . . , tn, sδ1
1 , . . . , sδm

m }〉 for all δ1, . . . , δm ∈ {−1, 1}.

Observe that the equivalence of (2) and (3) is an immediate consequence of
the following ordering theorem for groups.

Theorem 5 (Kopytov and Medvedev 1994 [14]). A subset S of a group
G extends to a right order of G if and only if for all a1, . . . , am ∈ G \{e}, there
exist δ1, . . . , δm ∈ {−1, 1} such that e 
∈ 〈S ∪ {aδ1

1 , . . . , aδm
m }〉.

Condition (3) corresponds directly to derivability in the hypersequent calculus
GLG∗ presented in Fig. 2. It is not so easy, however, to show directly that the cal-
culus GLG∗ is sound with respect to �-groups (i.e., to show that �GLG∗ G implies
LG |= G), since the rule (∗) is not valid as an implication between premises and
conclusion in all �-groups. We therefore consider also a further hypersequent cal-
culus GLG, displayed in Fig. 3, and establish the following relationship between
the calculi.

Lemma 1. For any non-empty hypersequent G, if �GLG∗ G, then �GLG G.
Proof. It suffices to show that the rules (split) and (∗) of GLG∗ are GLG-
admissible. First, it is easily shown, by an induction on the height of a derivation,
that the following rule is GLG-admissible:

G
G | H (ew)
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G | Γ
(gv)

G | Γ,Δ

G | Γ | Δ
(split)

G | Δ G | Δ

G (∗)

Γ group valid Δ not group valid.

Fig. 2. The hypersequent calculus GLG∗

G | Γ
(gv) G | Δ | Δ

(em)
G | Γ,Δ G | Δ,Σ

G | Γ,Σ
(cut)

Γ group valid

Fig. 3. The hypersequent calculus GLG

Now for (split), if �GLG G | Γ,Δ, then, by (ew), we obtain �GLG G | Γ,Δ | Δ.
But also, by (em), �GLG G | Δ | Δ, so, by (cut), we obtain �GLG G | Γ | Δ.

To show that (∗) is admissible in GLG, we consider a restricted version
of the calculus where (cut) is never applied to some particular sequent. For
a hypersequent G and a sequent Π, we call the ordered pair 〈Π,G〉 a pointed
hypersequent (just a hypersequent with one sequent marked) and transfer the
usual definitions for hypersequent calculi to pointed hypersequent calculi. We
let the pointed hypersequent calculus GLGp consist of all pointed hypersequents
〈Π,G〉 such that either some Γ ∈ G ∪ {Π} is group valid or there exist Δ and Δ
in G ∪ {Π}, together with the restricted cut rule

〈Π, (G | Γ,Δ)〉 〈Π, (G | Δ,Σ)〉
〈Π, (G | Γ,Σ)〉 (cut)

Claim. �GLG G | Π if and only if �GLGp 〈Π,G〉.
Proof of Claim. The right-to-left direction is a simple induction on the height of
a derivation of 〈Π,G〉 in GLGp. For the left-to-right direction, we first note that
(by a straightforward induction) whenever �GLGp 〈Π,G〉, also �GLGp 〈Π,G |H〉
and �GLGp 〈Δ,G |Π〉. It suffices now to prove that

�GLGp 〈(Γ,Δ),G〉 and �GLGp 〈(Δ,Σ),H〉 =⇒ �GLGp 〈(Γ,Σ),G |H〉.

We proceed by induction on the sum of heights of derivations for �GLGp

〈(Γ,Δ),G〉 and �GLGp 〈(Δ,Σ),H〉.
For the base case, there are several possibilities. If G or H contains a group

valid sequent or both Π and Π, then the conclusion follows trivially. If Γ,Δ and
Δ,Σ are both group valid, then Γ,Σ is group valid and so �GLGp 〈(Γ,Σ),G |H〉.
Suppose then that G = G′ |Δ,Γ, that is, �GLGp 〈(Γ,Δ),G′ |Δ,Γ〉. Observe that

�GLGp 〈(Γ,Σ),G′ |H|Δ,Σ〉 and �GLGp 〈(Γ,Σ),G′ |H|Σ,Γ〉.

Hence, by (cut), we get �GLGp 〈(Γ,Σ),G′ |H|Δ,Γ〉; that is, �GLGp 〈(Γ,Σ),G |H〉
as required. The case where H = H′ |Σ,Δ is symmetrical.
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For the induction step, we apply the induction hypothesis twice to the
premises of an application of (cut), and the result follows by applying
(cut). ��

Now to prove that (∗) is admissible in GLGp, it suffices by the claim to show
that for Δ not group valid,

�GLGp 〈Δ,G〉 and �GLGp 〈Δ,H〉 =⇒ �GLG G | H.

We proceed by induction on the height of a GLGp-derivation of 〈Δ,G〉. For the
base case, there are several possibilities. If G contains a group valid sequent or
both Π and Π, then the conclusion follows trivially. Suppose that 〈Δ,G〉 has the
form 〈Δ,G′ |Δ〉. Since �GLGp 〈Δ,H〉, also �GLG H | Δ | G′, i.e., �GLG G | H. For
the induction step, suppose that G = G′ | Γ,Σ and that 〈Δ,G〉 is the conclusion
of an application of (cut) with premises 〈Δ,G′ |Γ,Π〉 and 〈Δ,G′ |Π,Σ〉. By the
induction hypothesis twice, �GLG G′ | Γ,Π | H and �GLG G′ | Π,Σ | H. Hence,
by (cut), we obtain �GLG G′ | Γ,Σ | H; that is, �GLG G | H. ��

We now have all the ingredients required to complete the proof of Theorem 4.
Proof of Theorem 4.
(1) ⇒ (2). Suppose contrapositively that {t1, . . . , tn} extends to a right order
of F(k). Then the inverse order is a right order ≤ of F(k) where t1, . . . , tn are
negative. Consider the �-group Aut(〈F (k),≤〉) and evaluate each variable x by
the map s �→ sx. Then each group term t is evaluated by the map s �→ st. In
particular, each ti maps e to ti < e, and hence t1∨ . . .∨tn maps e to some tj < e,
where j ∈ {1, . . . , n}. That is, e 
≤ t1 ∨ . . . ∨ tn in Aut(〈F (k),≤〉) and we obtain
LG 
|= e ≤ t1 ∨ . . . ∨ tn.
(2) ⇒ (3). Immediate from Theorem 5.
(3) ⇒ (1). Consider s1, . . . , sm ∈ F (k) \{e} where e ∈ 〈{t1, . . . , tn, sδ1

1 , . . . , sδm
m }〉

for all δ1, . . . , δm ∈ {−1, 1}. We prove first that �GLG∗ t1 | . . . | tn. For each
particular choice of δ1, . . . , δm ∈ {−1, 1}, there exist λ1, . . . , λn, μ1, . . . , μm ∈ N

not all 0 such that e = tλ1
1 · . . . · tλn

n · (sδ1
1 )μ1 · . . . · (sδm

m )μm in F(k). Hence
G |= e ≈ tλ1

1 ·· · ··tλn
n ·(sδ1

1 )μ1 ·· · ··(sδm
m )μm and, by (gv), �GLG∗ tλ1

1 ·· · ··tλn
n ·(sδ1

1 )μ1 ·
· · · · (sδm

m )μm . But using (split) repeatedly, �GLG∗ t1 | . . . | tn | sδ1
1 | . . . | sδm

m .
So, by applying (∗) iteratively, �GLG∗ t1 | . . . | tn. It follows now by Lemma 1
that �GLG t1 | . . . | tn. But then a simple induction on the height of a derivation
in GLG, shows that LG |= e ≤ t1 ∨ . . . ∨ tn as required. ��

Soundness and completeness results for GLG∗ and GLG follow directly.

Corollary 1. The following are equivalent for any hypersequent G:
(1) LG |= G; (2) �GLG G; (3) �GLG∗ G.

In the last part of this section, we use Theorem 4 to derive new decision
procedures for Problems 1 and 2 (see Sect. 2). Let us denote the length of a
reduced term t in F (k) by |t|, and for N ∈ N, let FN (k) denote the set of
all elements of F(k) of length ≤ N . Given a subset S of F(k) which omits e,
we call S an N -truncated right order on F(k) if S = 〈S〉 ∩ FN (k) and, for all
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t ∈ FN−1(k) \ {e}, either t ∈ S or t−1 ∈ S. It has been shown that this notion
precisely characterizes the finite subsets of F (k) that extend to a right order.

Theorem 6. (Clay and Smith [6,19]). A finite subset S of F (k) extends to
a right order of F(k) if and only if S extends to an N -truncated right order of
F(k) for some N ∈ N.

The condition described in this theorem can be decided as follows. Let N be the
maximal length of an element in S. Extend S to the finite set S∗ by adding st
whenever s, t occur in the set constructed so far and |st| ≤ N . This ensures that
S∗ = 〈S∗〉 ∩ FN (k). If e ∈ S∗, then stop. Otherwise, for every t ∈ FN−1(k) \ {e}
such that t 
∈ S∗ and t−1 
∈ S∗, add t to S∗ to obtain S1 and t−1 to S∗ to obtain
S2, and repeat the process with these sets. This procedure terminates because
FN (k) is finite. Hence we obtain a decision procedure for Problem 1.

Corollary 2. The problem of checking whether a given finite set of elements of
a finitely generated free group extends to a right order is decidable.

Moreover, using Theorem 4, we obtain also a decision procedure for Problem 2.

Corollary 3. The problem of checking whether an equation is valid in all
�-groups is decidable.

Example 3. Consider S = {xx, yy, x−1y−1} ⊆ F (2). By adding all products in
F2(2) of members of S, we obtain

S∗ = {xx, yy, x−1y−1, xy−1, x−1y, xy}.

We then consider all possible signs δ for x, y ∈ F1(2). If we add x−1 or y−1 to
S∗ and take products, then clearly, using xx or yy, we obtain e. Similarly, if we
add x and y to S∗, then, taking products, using x−1y−1, we obtain e. Hence we
may conclude that S does not extend to a right order of F(2) and obtain

LG |= e ≤ xx ∨ yy ∨ x y.

Consider now T = {xx, xy, yx−1} ⊆ F (2). By adding all products in F2(2) of
members of T , we obtain

T ∗ = {xx, xy, yx−1, yx, yy}.

We choose x, y ∈ F1(2) to be positive and obtain {xx, xy, yx−1, yx, yy, x, y}, a
2-truncated right order of F(2). Hence T extends to a right order of F(2) and

LG 
|= e ≤ xx ∨ xy ∨ yx.

The decidability result stated in Corollary 3 was first established by Holland
and McCleary in [12] using a quite different decision procedure. Let S be a finite
set of reduced terms from F(k). We denote by is(S) the set of initial subterms
of elements of S, and define cis(S) to consist of all reduced non-identity terms
s−1t, where s, t ∈ is(S). The following equivalence (expressed quite differently
using “diagrams”) is proved in [12].
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Theorem 7 (Holland and McCleary [12]). The following are equivalent for
t1, . . . , tn ∈ T (k):

(1) LG |= e ≤ t1 ∨ . . . ∨ tn.
(2) There exist s1, . . . , sm ∈ cis({t1, . . . , tn}) such that

e ∈ 〈{t1, . . . , tn, sδ1
1 , . . . , sδm

m }〉 forall δ1, . . . , δm ∈ {−1, 1}.

Since the set cis({t1, . . . , tn}) is finite and checking e ∈ 〈S〉 for a finite subset S
of F (k) is decidable, we obtain a decision procedure for Problem 2. Moreover,
again using Theorem 4, we obtain also a decision procedure for Problem 1.

Remark 4. Variants of the hypersequent calculi GLG∗ and GLG were defined
already in [9], but without the connection to right orders on free groups. They
were used to give an alternative proof of Holland’s theorem (see [11]) that the
algebra Aut(〈R,≤〉) generates the variety LG of �-groups and also to prove
that the equational theory of �-groups is co-NP complete. Let us note here that
it follows from the results above that the problem of checking whether a finite
subset of F(k) extends to a right order must also be in co-NP; hardness, however,
is still an open problem. Let us also remark that in [9], the following analytic (i.e.,
having the subformula property) hypersequent calculus is shown to be sound and
complete for �-groups:

G | Γ
(gv)

G | Γ G | Δ
G | Γ,Δ

(mix)
G | Γ,Σ G | Π,Δ

G | Γ,Δ | Π,Σ
(com)

Γ group valid

The proof, however, relies on a rather complicated cut elimination procedure and
it is not yet clear how this calculus might relate to right orders on free groups.

5 Ordering Free Groups and Validity in Ordered Groups

In this section, we consider the variety RG of representable �-groups generated by
the class of o-groups. Similarly to the previous section, we establish the following
theorem relating validity of equations in this variety (equivalently, the class of
o-groups) to extending finite subsets of free groups to (total) orders.

Theorem 8. The following are equivalent for t1, . . . , tn ∈ T (k):

(1) RG |= e ≤ t1 ∨ . . . ∨ tn.
(2) {t1, . . . , tn} does not extend to an order of F(k).
(3) There exist s1, . . . , sm ∈ F (k) \{e} such that

e ∈ 〈〈{t1, . . . , tn, sδ1
1 , . . . , sδm

m }〉〉 for all δ1, . . . , δm ∈ {−1, 1}.

In this case, we will not be able to obtain any decision procedure for checking
these equivalent conditions. However, we do obtain a new syntactic proof of the
orderability of finitely generated free groups [18].
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Corollary 4. Every finitely generated free group is orderable.

Proof. The equation e ≤ x is not valid in the o-group Z, so RG 
|= e ≤ x. But
then, by Theorem 8, there must exist an order of F(k) where x is positive. ��

The proof of Theorem 8 makes use of the following ordering theorem for
groups.

Theorem 9 (Fuchs 1963 [8]). A subset S of a group G extends to an order
of G if and only if for all a1, . . . , am ∈ G \{e}, there exist δ1, . . . , δm ∈ {−1, 1}
such that e 
∈ 〈〈S ∪ {aδ1

1 , . . . , aδm
m }〉〉.

Similarly to the previous section, we introduce hypersequent calculi GRG∗

and GRG as extensions of, respectively, GLG∗ and GLG with the rule

G | Δ,Γ
G | Γ,Δ

(cycle)

and establish the following relationship between these calculi.

Lemma 2. For any non-empty hypersequent G, if �GRG∗ G, then �GRG G.
Proof. The proof is almost exactly the same as that of Lemma 1 except that we
must take account also of the extra rule (cycle). That is, we define the pointed
hypersequent calculus GRGp as the extension of GLGp with the restricted rule

〈Π, (G |Δ,Γ)〉
〈Π, (G |Γ,Δ)〉 (cycle)

and prove that �GRG G | Π if and only if �GRGp 〈Π,G〉. In this case, we also
prove by a straightforward induction on the height of a derivation in GRGp that

�GRGp 〈(Γ,Δ),G〉 =⇒ �GRGp 〈(Δ,Γ),G〉.
Finally, the proof that (∗) is admissible in GRGp proceeds in exactly the same
way as in the proof of Lemma 1. ��
Proof of Theorem 8.
(1) ⇒ (2). Suppose contrapositively that {t1, . . . , tn} extends to an order of F(k).
Then the inverse order is an order ≤ of F(k) where t1, . . . , tn are negative. But
this ordered group may also be viewed as a representable �-group and taking the
evaluation mapping t ∈ T (k) to t ∈ F (k), we obtain RG 
|= e ≤ t1 ∨ . . . ∨ tn.
(2) ⇒ (3). Immediate from Theorem 9.
(3) ⇒ (1). Consider s1, . . . , sm ∈ F (k) \{e} where e ∈ 〈〈{t1, . . . , tn, sδ1

1 , . . . ,
sδm

m }〉〉 for all δ1, . . . , δm ∈ {−1, 1}. We prove first that �GRG∗ t1 | . . . | tn. For
each choice of δ1, . . . , δm ∈ {−1, 1}, there exist l > 0 and conjugates r1, . . . , rl of
t1, . . . , tn, sδ1

1 , . . . , sδm
m such that e = r1 · . . . · rl in F(k). So G |= e ≈ r1 · . . . · rl

and, by (gv), �GRG∗ r1 · . . . · rl. But then, by (split) and (cycle), also �GRG∗

t1 | . . . | tn | sδ1
1 | . . . | sδm

m . Hence, by repeated applications of (∗), we get
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�GRG∗ t1 | . . . | tn. It follows now also by Lemma 2 that �GRG t1 | . . . | tn.
Finally, a simple induction on the height of a derivation in GLG shows that
RG |= e ≤ t1 ∨ . . . ∨ tn as required. ��

Soundness and completeness for GRG∗ and GRG follow directly.

Corollary 5. The following are equivalent for any hypersequent G:
(1) RG |= G; (2) �GRG G; (3) �GRG∗ G.
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Abstract. In the present paper, we prove canonicity results for lattice-based
fixed point logics in a constructive meta-theory. Specifically, we prove two types
of canonicity results, depending on how the fixed-point binders are interpreted.
These results smoothly unify the constructive canonicity results for inductive
inequalities, proved in a general lattice setting, with the canonicity results for
fixed point logics on a bi-intuitionistic base, proven in a non-constructive setting.

Keywords: Canonicity · Lattice-based fixed point logics · Logics for categoriza-
tion · Unified correspondence

1 Introduction

Recently, lattice- and distributive lattice-based fixed point logics have received increas-
ing attention. In [4], substructural based epistemic logics are studied, in which the
knowledge is interpreted as the information confirmed by a reliable source, formally
defined as a backward-looking diamond operation; an ongoing direction studies multi-
agent interaction in this framework, especially adding the common knowledge operator
to the language, which is defined in terms of fixed point operators. In [2,20], fixed point
operators are added to linear logic, making it possible to study and define processes that
are characterized by infinite and iterative behavior. In [9], an epistemic interpretation of
lattice-based modal logics is given in terms of categorization systems; in this context,
fixed points can be used to model several forms of group knowledge, common grounds
or social agreement shared among agents, and are a promising tool towards a proper
mathematical formalization of the notion of default categories.

Canonicity is an important notion in logic, since it is closely related to the complete-
ness of logical systems. We say that a formula is canonical if its validity is preserved
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under taking canonical extensions (cf. Definition 2). Sahlqvist [28] identified a class of
modal formulas (which are nowadays called Sahlqvist formulas) such that these for-
mulas have first-order correspondents and they are canonical. Recently, in unified cor-
respondence theory [11,15], the algebraic and order-theoretic principles of Sahlqvist
correspondence and canonicity are identified, which makes it possible to uniformly
extend the state-of-the-art in Sahlqvist correspondence and canonicity to large fami-
lies of nonclassical logics which include lattice-based (modal) logics [13,14], regular
modal logics [27], monotone modal logic [19], hybrid logics [17], and very recently,
many-valued logics [5].

The present paper contributes to the mathematical background of lattice-based fixed
point logics by proving the canonicity (cf. Sect. 3) of two classes of μ-inequalities in a
constructive meta-theory of normal lattice expansions (cf. Definition 1) in an algorith-
mic way. The results of the present paper simultaneously generalize and unify extant
canonicity results for fixed-point languages based on a bi-intuitionistic bi-modal logic
[6], and constructive canonicity results for inductive inequalities [12] (restricted to nor-
mal lattice expansions). Besides the greater generality, the unification of these strands
refines and simplifies the existing proofs for the canonicity of μ-formulas and inequal-
ities. Indeed, remarkably, the two canonicity results1 of [6] are fully generalized to the
constructive setting and to normal lattice expansions (LEs, see Definition 1), but the
rules of the algorithm ALBA used for this result have a simpler formulation than the
rules of [6], and are analogous to those of [12], with no additional rules added specifi-
cally to handle the fixed point binders. Rather, fixed points are accounted for by certain
restrictions on the application of the rules, concerning the order-theoretic properties of
the term functions associated with the formulas to which the rules are applied.

Further research directions are opened up by the results of the present paper, in con-
nection with the recent applications of unified correspondence to the algebraic methods
for structural proof theory. Specifically, in [23], a methodology is introduced which uses
perfect algebras as the semantic environment of proper display calculi, and provides a
general and uniform semantic argument for proving that a given calculus is conserva-
tive with respect to the Hilbert-style axiomatization it intends to capture.2 This semantic
argument crucially uses the algebraic canonicity of the axioms and rules of the given
Hilbert-style axiomatization. In the light of this connection, the canonicity results estab-
lished in the present paper pave the way to designing analytic (proper display) calculi
(i.e. calculi in which rules are such that formulas in the premises are subformulas of
formulas in the conclusion) for large classes of axiomatic extensions of lattice-based
fixed point logics.

Structure of the Paper. In Sect. 2, we collect preliminaries on the syntax and algebraic
semantics of lattice-based mu-calculi. In Sect. 3, we expand on two notions of canonic-
ity based on different interpretations of the fixed point operators. In Sect. 4, we define
the classes of mu-inequalities to which the canonicity results apply. In Sects. 5 and 7,
we outline the adapted version of the algorithm ALBA, the main tool for the canonicity
results of the present paper. In Sect. 6, we state our main results. Due to space con-

1 Namely, the tame and proper canonicity, cf. Sect. 3.
2 The same methodology can be used also to define Gentzen calculi, as is witnessed by [25] in
the setting of strict implication logics.
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straints we do not include proofs, but these may be found online in an expanded version
of the present paper [7].

2 Preliminaries

In the present section, we collect preliminaries on the language and algebraic seman-
tics of fixed point expansions of LE-logics (cf. [6,14] for more details). We keep our
notation as uniform as possible and intersperse comments to highlight the adaptations
needed for the specific setting of the present paper.

2.1 Lattice-Based Logics and Their Semantics

In the present subsection, we introduce the propositional fragments of the lattice-based
mu-languages we consider in this paper, as well as their semantics.

Before introducing the language, we will introduce some auxiliary definitions. an
order-type over n ∈ N is a tuple ε ∈ {1, ∂}n, and its opposite order-type ε∂ is defined
such that ε∂i = 1 iff εi = ∂ for every 1 ≤ i ≤ n.

The LE-language L(F ,G) (we omit the parameters when they are clear from the
context) consists of a set of propositional variables PROP and disjoint sets of connec-
tives F and G. Each f ∈ F (resp. g ∈ G) has arity nf ∈ N (resp. ng ∈ N), and has
order-type ε f over n f (resp. εg over ng). The formulas of L are defined as follows:

ϕ ::= p | ⊥ | � | ϕ ∧ ϕ | ϕ ∨ ϕ | f (ϕ) | g(ϕ)
where p ∈ PROP, f ∈ F , g ∈ G.

The algebras interpreting LE-logics are defined as follows:

Definition 1. For any LE-language L = L(F ,G), a normal lattice expansion (LE, or
L-algebra) is a tuple A = (A,F A,GA) such that A is a bounded lattice, F A = { fA | f ∈
F } and GA = {gA | g ∈ G}, such that every fA ∈ F A (resp. gA ∈ GA) is an n f -ary (resp.
ng-ary) operation on A and preserves finite joins (resp. meets) in the i-th coordinate
with ε f (i) = 1 (resp. εg(i) = 1) and reverses finite meets (resp. joins) in j-th coordinate
with ε f ( j) = ∂ (resp. εg( j) = ∂).

For any lattice A, we let A1 := A and A∂ be the dual lattice. For any order-type ε,
we let Aε := Πn

i=1A
εi .

Example 1. For a given set Ag of agents, consider the language L(F ,G) where F = ∅,
and G = {�a | a ∈ Ag} with n�a = 1 and ε�a = 1 for every a ∈ Ag. This language is
used in [9] as an epistemic logic of categories (or formal concepts). For each formal
context, categories are completely specified by their extension (the set of members of
the category), and their intension (the set of properties shared by the members of the
category). Terms ϕ in this language denote categories, and inequalities such as ϕ ≤ ψ
encode that category ϕ is a subcategory of category ψ. In this context, �aϕ denotes
category ϕ as perceived/known/believed to be by agent a.
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2.2 The Expanded Language Lt

Any LE-language L = L(F ,G) can be associated with the expanded language Lt =

L(F t,Gt), where F t ⊇ F and Gt ⊇ G are obtained by adding:

1. for f ∈ F and 1 ≤ i ≤ nf , the n f -ary connective f �i , the intended interpretation of
which is the right residual of f in its i-th coordinate3 if ε f (i) = 1 (resp. its Galois-
adjoint4 if ε f (i) = ∂);

2. for g ∈ G and 1 ≤ i ≤ ng, the ng-ary connective g�i , the intended interpretation of
which is the left residual of g in its i-th coordinate if εg(i) = 1 (resp. its Galois-
adjoint if εg(i) = ∂).

We stipulate that f �i ∈ Gt if ε f (i) = 1, and f �i ∈ F t if ε f (i) = ∂. Dually, g�i ∈ F t if
εg(i) = 1, and g�i ∈ Gt if εg(i) = ∂. Regarding order-type, for any f ∈ F and g ∈ G,
1. if ε f (i) = 1, then ε f �i

(i) = 1 and ε f �i
( j) = (ε f ( j))∂ for any j � i.

2. if ε f (i) = ∂, then ε f �i
= ε f .

3. if εg(i) = 1, then εg�i (i) = 1 and εg�i ( j) = (εg( j))∂ for any j � i.
4. if εg(i) = ∂, then εg�i = εg.

The expanded language will be used in the execution of the algorithm ALBA defined
later in this paper.

Example 2. IfL(F ,G) is the language of Example 1, the expanded languageLt(F t,Gt)
is given by F t = {�a | a ∈ Ag}, with n�a = 1 and ε�a = 1 for every a ∈ Ag, and
Gt = {�a | a ∈ Ag}. The term �aϕ denotes a different (e.g. lax, where �a is strict)
epistemic approximation of the category ϕ according to the agent a.

2.3 Constructive Canonical Extensions

Canonical extensions provide a purely algebraic encoding of Stone-type dualities. How-
ever, purely algebraic constructions are also available, such as those of [18,21], which
do not rely on principles equivalent to some forms of the axiom of choice.

Definition 2. Let A be a (bounded) sublattice of a complete lattice A′.

1. A is dense in A′ if every element of A′ can be expressed both as a join of meets and
as a meet of joins of elements from A.

2. A is compact in A′ if, for all S ,T ⊆ A′, if ∨ S ≤ ∧ T then
∨

S ′ ≤ ∧ T ′ for some
finite S ′ ⊆ S and T ′ ⊆ T.

3 We say that g : An → A is the right residual of f : An → A in its i-th coordinate if for any
a1, . . . , an, b ∈ A, f (a1, . . . , ai, . . . , an) ≤ b iff ai ≤ g(a1, . . . , b, . . . , an). We also say that f is
the left residual of g in its j-th coordinate.

4 We say that g : An → A is the left Galois adjoint of f : An → A in its i-th coordinate if for any
a1, . . . , an, b ∈ A, f (a1, . . . , ai, . . . , an) ≤ b iff g(a1, . . . , b, . . . , an) ≤ ai. We say that g is the right
Galois adjoint of f in its i-th coordinate if for any a1, . . . , an, b ∈ A, b ≤ f (a1, . . . , ai, . . . , an)
iff ai ≤ g(a1, . . . , b, . . . , an).
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3. The canonical extension of a lattice A is a complete lattice Aδ containing A as a
dense and compact sublattice.

It can be shown that the canonical extension of a bounded lattice is unique up to iso-
morphism (for a proof, see e.g. Proposition 2.7 in [21]). In meta-theoretic settings in
which Zorn’s lemma is available, the canonical extension of a lattice A is a perfect lat-
tice, which is complete, completely join-generated by the set J∞(A) of the completely
join-irreducible elements of A, and completely meet-generated by the set M∞(A) of
the completely meet-irreducible elements of A. In the constructive setting, canonical
extensions might not be perfect.

Let K(Aδ) and O(Aδ) denote the meet-closure and the join-closure of A in Aδ, i.e.
the collection of elements in Aδ which are meets/joins of elements in A, respectively.
The elements of K(Aδ) are referred to as closed elements, and elements of O(Aδ) as
open elements.

The canonical extension of an LE A will be defined as a suitable expansion of the
canonical extension of the underlying lattice of A.

Definition 3. For every unary, order-preserving operation f : A → B, the σ- and
π-extension of f are defined as follows:

f σ(u) =
∨{∧{ f (a) : k ≤ a ∈ A} : u ≥ k ∈ K(Aδ)}

f π(u) =
∧{∨{ f (a) : o ≥ a ∈ A} : u ≤ o ∈ O(Aδ)}.

Definition 4. The canonical extension of an L-algebra A = (L,F A,GA) is the L-
algebra Aδ := (Lδ,F Aδ ,GAδ ) such that fA

δ

and gA
δ

are defined as the σ-extension
of fA and as the π-extension of gA respectively, for all f ∈ F and g ∈ G.

2.4 Adding the Fixed Point Operators

In this subsection, we extend LE-languages by adding two kinds of fixed point opera-
tors. Let FVAR be the set of fixed point variables.

For any LE-language L, let L1 be the set of terms which extends L by allowing
terms μX.t(X) and νX.t(X) where t ∈ L1, X ∈ FVAR and t(X) is positive in X. Terms in
L are interpreted in LEs as described above. If t(X1, X2, . . . , Xn) ∈ L1 and a1, . . . , an−1 ∈
A, then

μX.t(X, a1, . . . , an−1) :=
∧
{ a ∈ A | t(a, a1, . . . , an−1) ≤ a }

if this meet exists, otherwise μX.t(X, a1, . . . , an−1) is undefined. Similarly,

νX.t(X, a1, . . . , an−1) :=
∨
{ a ∈ A | a ≤ t(a, a1, . . . , an−1) }

if this join exists, otherwise νX.t(X, a1, . . . , an−1) is undefined.
The second extension is denoted L2 and extends L by allowing construction of

the terms μ2X.t(X) and ν2X.t(X) where t ∈ L2, X ∈ FVAR and t(X) is positive in X.
The interpretation of terms from L2 is defined below. For each ordinal α we define
tα(⊥, a1, . . . , an−1) as follows:
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t0(⊥, a1, . . . , an−1) = ⊥, tα+1(⊥, a1, . . . , an−1) = t
(
tα(⊥, a1, . . . , an−1), a1, . . . , an−1),

tλ(⊥, a1, . . . , an−1) = ∨α<λ tα(⊥, a1, . . . , an−1) for limit ordinals λ;
t0(�, a1, . . . , an−1) = �, tα+1(�, a1, . . . , an−1) = t

(
tα(�, a1, . . . , an−1), a1, . . . , an−1),

tλ(�, a1, . . . , an−1) = ∧α<λ tα(�, a1, . . . , an−1) for limit ordinals λ

If t(X1, . . . , Xn) ∈ L2, then we let

μ2X.t(X, a1, . . . , an−1) :=
∨

α≥0t
α(⊥, a1, . . . , an−1)

ν2X.t(X, a1, . . . , an−1) :=
∧

α≥0tα(�, a1, . . . , an−1)

if this join and meet exist, otherwise are undefined.
A lattice expansionA is of the first (resp. second) kind if tA(a1, . . . , an) is defined for

all a1, . . . , an ∈ A and all t ∈ L1 (t ∈ L2). Henceforth we will refer to these algebras as
T1-algebras (resp. T2-algebras). When restricted to the Boolean case, our T1-algebras
are essentially the modal mu-algebras defined in [3, Definition 2.2] and [1, Defini-
tion 5.1]. Every T2-algebra is a T1-algebra. (cf. [1, Proposition 2.4] and [6, Lemma
2.2]. These proofs straightforwardly extend to the setting of general LEs). Hence, the
interpretation of the two types of fixed point binders on T2-algebras will agree, i.e.
μX.ϕ(X) = μ2X.ϕ(X) and νX.ψ(X) = ν2X.ψ(X) in T2-algebras.

The final sets of terms, L∗ (resp. Lt∗), are obtained as extensions of L (resp.
Lt) by allowing μ∗X.s(X) and ν∗X.s(X) whenever s ∈ L∗ (resp. s ∈ Lt∗) and is
positive in X. Terms in L∗ and Lt∗ are only interpreted in the constructive canon-
ical extensions Aδ of lattice expansions A. If s(X1, X2, . . . , Xn) ∈ L∗ ∪ Lt∗ and
a1, . . . , an−1 ∈ Aδ, then μ∗X1.s(X1, a1, . . . , an−1) :=

∧{ a ∈ A | s(a, a1, . . . , an−1) ≤ a }
and ν∗X1.s(X1, a1, . . . , an−1) :=

∨{ a ∈ A | a ≤ s(a, a1, . . . , an−1) }. As the canonical
extension Aδ is a complete lattice, the interpretation of μ∗X.t(X) or ν∗X.t(X) is always
defined. For any term ϕ ∈ Lt

1 we let ϕ
∗ denote theLt∗ term obtained from ϕ by replacing

all occurrences of μ and ν with μ∗ and ν∗, respectively. The main feature of the μ∗ and
ν∗ binders is that their interpretation does not change from A to Aδ.

Example 3. Consider the inequality p ≤ νX.(p∧ (�1X∧�2X)) in the fixed-point expan-
sion of the language L of Example 1. It can be easily verified that the unfolding of the
term νX.(p∧�1X ∧�2X) coincides with the common knowledge-type connective C(p)
introduced in [9, Sect. 4]. As discussed in [10, Sect. 4.2], C(p) can be understood as
the category identified by the objects that a given group of agents (in this case a group
of two agents) consider typical members of p. In this context, the inequality above
expresses that (relative to this group of agents) all members of p are considered typical
members of p, i.e. p has maximal contrast.

Example 4. The inequality p ≤ μX.�(X∨p), where� is an F -operator with n� = 1 and
ε� = 1, is well known from the Boolean setting (cf. [3, Example 6.7]). As observed in
[8, Sect. 4.2]5, this inequality is equivalent to νX.�(X ∧ p) ≤ p. In the setting of [9,10],
the intuitive content of the latter inequality is that every object that the agent regards as
a typical member of p is an actual member of p.

5 Although that argument is given in the distributive setting, it can be easily verified that it does
not make use of any specific feature of that setting.
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2.5 The Language of Constructive ALBA for LEs

The expanded language used in the algorithm μ∗-ALBA contains, in addition to the
connectives in Lt, a set of special variables NOM called nominals, a set of special vari-
ables CO-NOM, called co-nominals, and fixed point binders. In the constructive setting,
there are not enough completely join-irreducible and the completely meet-irreducible
elements, therefore nominals and co-nominals are interpreted as elements of K(Aδ) and
O(Aδ), respectively.

Formulas in the extended language L+1 are defined by the following recursion:

ϕ ::= ⊥ | � | p | X | j | m | ϕ ∧ ψ | ϕ ∨ ψ | f (ϕ) | g(ϕ) | μX.ϕ(X) | νX.ϕ(X)
where p ∈ PROP, X ∈ FVAR, j ∈ NOM, m ∈ CNOM, f ∈ F t, g ∈ Gt, and ϕ is positive
in X in μX.ϕ(X) and νX.ϕ(X). Formulas in L+∗ are defined by replacing the fixed point
operators μ, ν with μ∗, ν∗.

A formula is pure if it contains no ordinary propositional variables but only nom-
inals and co-nominals, and is a sentence if it contains no free fixed point variables. A
quasi-inequality is an expression of the form ϕ1 ≤ ψ1& · · ·&ϕn ≤ ψn ⇒ ϕ ≤ ψ where
the ϕi, ψi, ϕ and ψ are formulas of the corresponding languages.

Semantics. Constructive canonical extensions of L-algebras provide natural semantics
for the languageL+. For anyL-algebraA, an assignment onA sends propositional vari-
ables to elements ofA. An assignment onAδ is a map V : PROP∪NOM∪CO-NOM→
A
δ sending propositional variables to elements of Aδ, nominals to K(Aδ)6 and co-

nominals to O(Aδ). An admissible assignment on Aδ is an assignment which sends
propositional variables to elements of A. An L-inequality α ≤ β is valid on A, denoted
A |= α ≤ β, if it holds under all assignments. An L+-inequality α ≤ β is admissibly
valid on A, denoted Aδ |=A α ≤ β, if it holds under all admissible assignments. A quasi-
inequality ϕ1 ≤ ψ1& · · ·&ϕn ≤ ψn ⇒ ϕ ≤ ψ is satisfied under an assignment V in an
algebra A, written A,V |= ϕ1 ≤ ψ1& · · ·&ϕn ≤ ψn ⇒ ϕ ≤ ψ if A,V |= ϕi ≤ ψi for all
1 ≤ i ≤ n imply A, v |= ϕ ≤ ψ. A quasi-inequality is (admissibly) valid in an algebra if
it is satisfied by every (admissible) assignment.

3 Two Kinds of Canonicity, Constructively

In this section we give a brief conceptual and methodological overview of the main
results of this paper. Generally, algorithmic canonicity proofs go in the “U-shaped”
argument7 described in Fig. 1 (see [11] for a more detailed discussion):

6 In other settings, nominals are interpreted as completely join-irreducible elements in Aδ, while
in the constructive setting, the constructive canonical extensions might not be perfect, there-
fore there might not be enough completely join-irreducible elements, therefore nominals are
interpreted as closed elements instead in the constructive setting.

7 Indeed, the U-shaped argument is the algorithmic version of the Sambin–Vaccaro canonicity
proof [29]. In [26], this method has been unified with Jónsson’s canonicity proof [24]; in [12],
it has been unified with constructive canonicity introduced in Ghilardi andMeloni [22]; in [16],
the canonicity via pseudo-correspondence has been presented as an instance of this method.
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Fig. 1. The U-shaped argument

The U-shaped argument starts from the validity of the inequality α ≤ β in the alge-
bra A. This validity is equivalent to the admissible validity in Aδ, i.e. the validity of
α ≤ β in Aδ while restricting the assignments of propositional variables to A. Then by
the algorithm ALBA, the inequality α ≤ β can be equivalently transformed into a set
of pure quasi-inequalities ALBA(α ≤ β). Then by the fact that admissible validity and
validity are the same for pure quasi-inequalities, the bottom line of the argument goes
through. Then by the soundness of the rules with respect to the constructive canonical
extension Aδ, we proceed up the right-hand arm of the U-shaped argument.

However, the argument stated above need to be adapted in the fixed point setting.
Indeed, for the step from A |= α ≤ β to Aδ |=A α ≤ β, it depends on the property
that αA

δ

and αA agree on arguments from A. However, for formulas with fixed point
operators, this property fails, since (α(X))A

δ

can have more pre-fixed points in Aδ than
(α(X))A has in A, and so (μX.α(X))A

δ

would generally be smaller than (μX.α(X))A,
which creates additional difficulties for the argument.

To overcome this difficulty, one solution is to restrict the pre-fixed points used in
calculating (μX.ϕ(X))A

δ

to be in A, which is indeed (μ∗X.ϕ(X))Aδ .
Thus, in [6], two different notions of canonicity for the mu-calculus were consid-

ered, and their two ensuing canonicity results were shown for certain classes of mu-
inequalities. We prove that the counterparts of these results hold in a constructive gen-
eral lattice environment. Specifically, following [6], we call an inequality ϕ ≤ ψ tame
canonical when A |= ϕ ≤ ψ if and only if Aδ |= ϕ∗ ≤ ψ∗ for all mu-algebras A. We
generalize the tame inductive mu-inequalities of [6] to the LE-setting, and prove that
they are tame canonical in a constructive meta-theory.

Of course, the usual notion of canonicity may also be applied to formulas with
fixed-point binders, i.e., that A |= ϕ ≤ ψ implies Aδ |= ϕ ≤ ψ, where fixed points are
interpreted in the standard way, e.g. least fixed points inAδ are calculated as the meet of
all pre-fixed points in Aδ. A canonicity result of this kind can be proved by generalizing
the class of restricted inductive mu-inequalities of [6] to the LE-setting, and showing
that they are preserved under constructive canonical extensions of T2-algebras. When-
ever a tame run (cf. Sect. 7, p. 17) of μ∗-ALBA succeeds on a mu-inequality ϕ ≤ ψ,
we have that ϕ ≤ ψ is tame canonical. Moreover, whenever a proper run succeeds on
a mu-inequality α ≤ β, then α ≤ β will be canonical. Finally, for every tame inductive
mu-inequality (respectively, a restricted inductive mu-inequality), there exists a tame
(respectively, proper) run of μ∗-ALBA which succeeds on that inequality.



100 W. Conradie et al.

4 Recursive, Restricted Inductive, and Tame-Inductive
Inequalities

In this section, we introduce three syntactically defined classes of mu-inequalities: the
‘general lattice’ counterpart of the recursive mu-inequalities introduced in [8], and two
subclasses of it, for which the two canonicity results hold. Our presentation follows the
usual notational conventions of unified correspondence (cf. [23] for discussion).

Signed Generation Trees. For any formula/term ϕ in L+1 and L+∗ , we assign two signed
generation trees +ϕ and −ϕ. Each node is signed as follows:

– the root node of +ϕ is signed + and the root node of −ϕ is signed −;
– if a node is ∨,∧ assign the same sign to its children nodes;
– if a node is h ∈ F t ∪ Gt, assign the same (resp. the opposite) sign to every node
corresponding to a coordinate i such that εh(i) = 1 (resp. εh(i) = ∂);

– if a node is μX.ϕ(X), μ∗X.ϕ(X), νX.ϕ(X) or ν∗X.ϕ(X) then assign the same sign to the
child node.

A node in a signed generation tree is positive (resp. negative) if it is signed “+” (resp.
“−”).8 For any L1-sentence ϕ(p1, . . . pn), order-type ε over n, and 1 ≤ i ≤ n, an ε-
critical node in a signed generation tree of ϕ is a (leaf) node +pi with εi = 1, or −pi
with εi = ∂. An ε-critical branch is a branch terminating in an ε-critical node. Variable
occurrences corresponding to ε-critical nodes are those which ALBA will solve for.
A live branch is a branch ending in a propositional variable. All critical branches are
live. A branch is not live iff it ends in a propositional constant (� or ⊥) or in a fixed
point variable. For every L1-sentence ϕ(p1, . . . pn) and order-type ε, we say that +ϕ
(resp. −ϕ) agrees with ε, and write ε(+ϕ) (resp. ε(−ϕ)), if every leaf node in the signed
generation tree +ϕ (resp. −ϕ) which is labelled with a propositional variable is ε-critical.
We use the sub-tree relation γ ≺ ϕ, which extends to signed generation trees, and write
ε(γ) ≺ ∗ϕ to indicate that γ, regarded as a sub- (signed generation) tree of ∗ϕ, agrees
with ε.

The following definition generalizes the definition of recursive inequalities intro-
duced in [8] to the setting of general lattices. The key difference is in the order-theoretic
properties of ∨ and ∧, which is reflected in their syntactic classification in Table 1. See
[11,14] for further discussion on methodology and nomenclature.

Definition 5. Nodes in signed generation trees are classified as Skeleton nodes and
PIA nodes and further classified as Δ-adjoint, SLR, Binders, SLA, SRA or SRR, accord-
ing to the specification given in Table 1. Let ϕ(p1, . . . , pn) be a formula, and ε be an
order-type on {1, . . . , n}. A branch in a signed generation tree ∗ϕ, for ∗ ∈ {+,−}, ending
in a propositional variable is an ε-good branch if, apart from the leaf, it is the concate-
nation of three paths P1, P2, and P3, each of which may possibly be of length 0, such
that P1 is a path from the leaf consisting only of PIA-nodes, P2 consists only of inner
skeleton-nodes, and P3 consists only of outer skeleton-nodes and, moreover, it satisfies
conditions (GB1), (GB2) and (GB3) below.

8 A term ϕ is positive (negative) in a variable p if in the signed generation tree +ϕ all p-nodes
are signed + (−). An inequality ϕ ≤ ψ is positive (negative) in p if ϕ is negative (positive) in p
and ψ is positive (negative) in p.
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Table 1. Skeleton and PIA nodes.

(GB1). The formula corresponding to the uppermost node on P1 is a sentence.
(GB2). For every SRR-node in P1 of the form h(γ, β), where β is the coordinate where
the branch lies, every γ in γ is a mu-sentence and ε∂(γ) ≺ ∗ϕ (i.e., each γ contains no
ε-critical node).
(GB3). For every SLR-node in P2 of the form h(γ, β), where β is the coordinate where
the branch lies, every γ in γ is a mu-sentence and ε∂(γ) ≺ ∗ϕ.

The definition above and similar definitions (cf. [6,8,14]) are modular and independent
of the specific signature thanks to the fact that they adapt the same order-theoretic prin-
ciples in different semantic settings. Our main interest is in ε-good branches satisfying
some of the additional properties, reported in the following definition.

Definition 6. For a formula ϕ(p1, . . . , pn), order-type ε on {1, . . . , n}, and strict partial
order <Ω on p1, . . . pn, an ε-good branch may satisfy one or more of the following:

(NB-PIA). P1 contains no fixed point binders.
(NL). For every SLR-node in P2 of the form h(γ, β), where β is the coordinate where
the branch lies, the signed generation tree of each γ contains no live branches.
(Ω-CONF). For every SRR-node in P1 of the form h(γ, β), where β is the coordinate
where the branch lies, p j <Ω pi for every p j occurring in γ, where pi is the proposi-
tional variable labelling the leaf of the branch.

Definition 7. For any order-type ε and strict partial order <Ω on the variables
p1, . . . pn, the signed generation tree ∗ϕ, ∗ ∈ {−,+}, of a term ϕ(p1, . . . pn) is

1. ε-recursive if every ε-critical branch is ε-good.
2. (Ω, ε)-inductive if it is ε-recursive and every ε-critical branch satisfies (Ω-CONF).
3. restricted (Ω, ε)-inductive if it is (Ω, ε)-inductive and

(a) every ε-critical branch satisfies (NB-PIA) and (NL),
(b) every occurrence of a binder is on an ε-critical branch.

4. tame (Ω, ε)-inductive if it is (Ω, ε)-inductive and
(a) no binder occurs on any ε-critical branch,
(b) the only nodes involving binders which are allowed to occur are +ν and −μ.
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An inequality ϕ ≤ ψ is restricted ε-recursive (resp. tame (Ω, ε)-inductive) if +ϕ and
−ψ are both restricted ε-recursive (resp. tame (Ω, ε)-inductive). An inequality ϕ ≤ ψ is
restricted recursive (resp. tame inductive) if ϕ ≤ ψ is restricted (Ω, ε)-inductive (resp.
tame (Ω, ε)-inductive) for some strict partial order Ω and order-type ε.

Example 5. The inequality p ≤ νX.(p ∧ (�1X ∧ �2X)) from Example 3 is restricted
(Ω, ε)-inductive for the order-type ε(p) = ∂ (and Ω = ∅). Indeed, the only ε-critical
branch in the signed generation tree below is −νX,−∧,−p, where −νX,−∧ are Inner
Skeleton nodes, and P1 is empty. Thus, (GB1) and (NB-PIA) are vacuously satis-
fied. Since this branch does not contain SRR or SLR nodes, (GB2), (GB3), (NL), (Ω-
CONF) are also vacuously satisfied. With a symmetric argument, one shows that the
Lt-inequality μX.(p ∨ �1X ∨ �2X) ≤ p is restricted (Ω, ε)-inductive for the order-type
ε(p) = 1 (and Ω = ∅).

Example 6. The inequality p ≤ μX.�(X ∨ p) from Example 4 is tame (Ω, ε)-inductive
for ε(p) = 1 (and Ω = ∅). Indeed, the only critical branch in the signed generation tree
of p ≤ μX.�(X ∨ p) is +p, therefore (GB1), (GB2), (GB3), (Ω-CONF) are vacuously
satisfied. It is also easy to see that no binders occur on any ε-critical branch, and the
only fixed point binder node is −μ. By an analogous argument, it can be verified that
νX.�(X ∧ p) ≤ p is tame (Ω, ε)-inductive for ε(p) = ∂ (and Ω = ∅).

5 Constructive μ∗-ALBA

In this section, we introduce the fundamental tool to prove the constructive canonicity
results via the argument discussed in Sect. 3. Constructive μ∗-ALBA is a calculus for
eliminating propositional variables from lattice-based fixed point inequalities, while
maintaining admissible validity (cf. page 7) in a constructive metatheory. The purpose
of this is to make the transition from admissible validity to validity in the argument for
canonicity. Below, we outline its general strategy.

Constructive μ∗-ALBA, from now on abbreviated as ALBA, takes an inequality
ϕ ≤ ψ in L1 (cf. Sect. 2.4) as input, and executes in three stages.
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The first stage, the preprocessing stage, aims to eliminate all propositional vari-
ables occurring only positively or only negatively, applies distribution rules for f ∈ F
and g ∈ G and splitting rules exhaustively, and converts all occurrences of μX.ϕ(X)
to μ∗X.ϕ(X) and νX.ψ(X) to ν∗X.ψ(X). We emphasize that this step is required in both
tame and proper runs of ALBA (see Sect. 7). The preprocessing produces a finite set of
inequalities, {ϕ′i ≤ ψ′i}ni=1, on each of which it proceeds separately. Now ALBA forms

the initial quasi-inequalities& S i ⇒ Ineqi, compactly represented as tuples (S i, Ineqi)
referred to as systems, with each S i initialized to ∅ and Ineqi initialized to ϕ

′
i ≤ ψ′i .

The second stage, the reduction stage, transforms S i and Ineqi through the applica-
tion of transformation rules (see Sect. 7). This stage aims at eliminating propositional
variables and reach pure or purified systems, i.e. systems containing no propositional
variables but only nominals and co-nominals. The Ackermann rules (cf. Appendix)
are the ones which eliminate the propositional variables, and the other rules trans-
form a given system into one on which the Ackermann rules are applicable. Once all
propositional variables are eliminated, this phase terminates and returns the pure quasi-
inequalities & S i ⇒ Ineqi.

The third stage, the output stage, either reports failure if some system could not be
purified, or else returns the conjunction of the pure quasi-inequalities & S i ⇒ Ineqi,
which we denote by ALBA(ϕ ≤ ψ). A more complete outline of each of the three stages
will be given in Sect. 7.

6 Main Results

This section collects the main results of the paper: all restricted inductive inequali-
ties are constructively canonical, and all tame inductive inequalities are constructively
tame canonical. The proof strategy is the same in both cases, and has been discussed
in Sect. 3: one first proves, by means of a ‘U-shaped’ argument, that successful runs of
constructive ALBA satisfying certain conditions (cf. proper, pivotal, tame runs defined
on page 17) guarantee these types of canonicity. Then one shows that ALBA is suc-
cessful on all members of the two classes of inequalities, by means of runs respectively
satisfying these conditions. The main canonicity results follow as corollaries of these
facts. Due to space limitations we do not include the proofs, which can be found in [7].

Proposition 1

1. Let A be a T2-algebra (cf. Sect. 2.4) and ϕ ≤ ψ be an L1-inequality on which a
proper and pivotal run of ALBA succeeds. If A |= ϕ ≤ ψ then Aδ |= ϕ ≤ ψ.

2. Let A be a T1-algebra and ϕ ≤ ψ be an L1-inequality on which a tame and pivotal
run of ALBA succeeds. If A |= ϕ ≤ ψ then Aδ |= ϕ∗ ≤ ψ∗.

Proposition 2

1. ALBA succeeds on all restricted inductiveL1-inequalities (cf. Definition 7) by means
of proper and pivotal runs.

2. ALBA succeeds on all tame inductive L1-inequalities (cf. Definition 7) by means of
tame and pivotal runs.
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The canonicity of restricted inductiveL1-inequalities follows from Propositions 1.1 and
2.1; the tame canonicity of tame inductiveL1-inequalities follows from Propositions 1.2
and 2.2.

Theorem 1

1. All restricted inductive L1-inequalities are constructively canonical over T2-
algebras.

2. All tame inductive L1-inequalities are constructively canonical over T1-algebras.

7 Appendix: Stages and Rules of Constructive μ∗-ALBA

As remarked in the introduction, the version of ALBA presented below is a significant
simplification of the one given in [6], and is rather similar to that of [12]. In particular,
there are no rules specific to fixed points, which are accounted for by restrictions on the
shape of formulas.

Stage 1: Preprocessing and Initialization. ALBA receives an L1-inequality ϕ ≤ ψ as
input. It applies the following rules exhaustively:

Monotone and Antitone Variable-Elimination Rules.

α(p) ≤ β(p)
α(⊥) ≤ β(⊥)

γ(p) ≤ δ(p)
γ(�) ≤ δ(�)

for α(p) ≤ β(p) positive and γ(p) ≤ δ(p) negative in p, respectively.

Distribution Rules. Push down + f ∈ F (resp. −g ∈ G) by distributing them over
Skeleton nodes labelled +∨ (resp. −∧).

Splitting-Rules.

α ≤ β ∧ γ
α ≤ β α ≤ γ

α ∨ β ≤ γ
α ≤ γ β ≤ γ

This gives rise to a set of inequalities {ϕ′i ≤ ψ′i | 1 ≤ i ≤ n}. For each of them,
ALBA converts all occurrences of μX.ϕ(X) to μ∗X.ϕ(X) and all occurrences of νX.ψ(X)
to ν∗X.ψ(X), and forms the initial quasi-inequality & S i ⇒ Ineqi, compactly repre-
sented as a tuple (S i, Ineqi) referred as initial system, with each S i initialized to the
empty set and Ineqi initialized to ϕ

′
i ≤ ψ′i . Each initial system is processed separately in

stage 2, described below, where we will suppress indices i.

Stage 2: Reduction and Elimination. This stage aims at eliminating all propositional
variables from a given system (S , Ineq). To this effect, the following rules (collectively
called reduction rules) are applied: approximation rules, residuation rules, splitting
rules, and Ackermann rules. The terms and inequalities in this subsection are from L+∗ .
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Approximation Rules. There are four approximation rules, which simplify Ineq and
add an inequality to S . We write α(!x) to indicate that the placeholder variable x has a
unique occurrence in formula α.

Left-positive approximation rule.

(S , ϕ′(γ/!x) ≤ ψ)
(L+A)

(S ∪{j ≤ γ}, ϕ′(j/!x) ≤ ψ)
with +x ≺ +ϕ′(!x), the branch of +ϕ′(!x) starting at +x subject to the restrictions
detailed below, γ belonging to the smaller language L∗ and j being the first nominal
variable not occurring in S or ϕ′(γ/!x) ≤ ψ.
Left-negative approximation rule.

(S , ϕ′(γ/!x) ≤ ψ)
(L−A)

(S ∪{γ ≤ m}, ϕ′(m/!x) ≤ ψ)
with −x ≺ +ϕ′(!x), the branch of +ϕ′(!x) starting at −x subject to the restrictions
detailed below, γ belonging to the smaller languageL∗ andm being the first co-nominal
not occurring in S or ϕ′(γ/!x) ≤ ψ.
Right-positive approximation rule.

(S , ϕ ≤ ψ′(γ/!x))
(R+A)

(S ∪{j ≤ γ}, ϕ ≤ ψ′(j/!x))
with +x ≺ −ψ′(!x), the branch of −ψ′(!x) starting at +x subject to the restrictions
detailed below, γ belonging to the smaller language L∗ and j being the first nominal
not occurring in S or ϕ ≤ ψ′(γ/!x).
Right-negative approximation rule.

(S , ϕ ≤ ψ′(γ/!x))
(R−A)

(S ∪{γ ≤ m}, ϕ ≤ ψ′(m/!x))
with −x ≺ −ψ′(!x), the branch of −ψ′(!x) starting at −x subject to the restrictions
detailed below, γ belonging to the smaller languageL∗ andm being the first co-nominal
not occurring in S or ϕ ≤ ψ′(γ/!x)).
The restrictions on ϕ′ and ψ′ in the approximation rules above are formulated in terms
of the following:

Definition 8. For any mu-algebra C and order-type τ, a join
∨

S in (Cδ)τ is called Cτ-
targeted if

∨
S ∈ Cτ. A map f : (Cδ)τ → Cδ preserves Cτ-targeted joins if f (

∨
S ) =

∨
s∈S f (s) for every S ⊆ (Cδ)τ such that

∨
S is Cτ-targeted. Targeted meets and their

preservation are defined order-dually.

Let us now list the requirements on ϕ′ and ψ′:

1. ϕ′, ψ′ ∈ L∗;
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2. the branches of ϕ′ and ψ′ starting at x going up to the root consist only of Skeleton
nodes.9

3. for every node of the form +μ∗X.θ(x, X) or of the form −ν∗X.δ(x, X) in such
branches, which is not in the scope of another binder, all propositional variables and
free fixed point variables in θ(x, X) and δ(x, X) must be among x and X; moreover,
(a) the associated term function θ(x, X) : (Cδ)τ × Cδ → Cδ preserves (Cτ × C)-

targeted joins for all μ-algebras C; moreover θ(x, X) is required to be positive
(negative) in xi if τi = 1 (τi = ∂), i.e. θ(x, X) must be τ-positive in x;

(b) the associated term function δ(x, X) : (Cδ)τ × Cδ → Cδ preserves (Cτ × C)-
targeted meets for all μ-algebras C; moreover δ(x, X) is required to be positive
(negative) in xi if τi = 1 (τi = ∂), i.e. δ(x, X) must be τ-positive in x.

Remark 1

1. We will restrict the applications of approximation rules to nodes !x giving rise to
maximal skeleton branches in order to simplify the proof of canonicity. Such appli-
cations will be called pivotal. An execution of ALBA in which approximation rules
are applied only pivotally will be referred to as pivotal.

2. In [6], approximation rules were formulated specifically for formulas having a fixed
point binder as main connective. These rules had a substantially more cumbersome
formulation than the one given above, which, modulo the restrictions about the
preservation of targeted joins and meets, follows verbatim the approximation rules
of [14]. Moreover, the approximation rules [6] could give rise to the splitting of the
quasi-inequality into a set of quasi-inequalities, which is not the case of the present
setting. This is thanks to the fact that nominals and co-nominals are not interpreted
as completely join-primes (resp. meet-primes), but as closed and open elements.

Residuation Rules. The residuation rule rewrite a given inequality in S . For every f ∈ F
and g ∈ G, and any 1 ≤ i ≤ n f and 1 ≤ j ≤ ng, the following rules are defined:

f (ϕ1, . . . , ϕi, . . . , ϕn f ) ≤ ψ
ε f (i) = 1

ϕi ≤ f �i (ϕ1, . . . , ψ, . . . , ϕn f )

f (ϕ1, . . . , ϕi, . . . , ϕn f ) ≤ ψ
ε f (i) = ∂

f �i (ϕ1, . . . , ψ, . . . , ϕn f ) ≤ ϕi

ψ ≤ g(ϕ1, . . . , ϕi, . . . , ϕng )
εg(i) = 1

g�i (ϕ1, . . . , ψ, . . . , ϕng ) ≤ ϕi
ψ ≤ g(ϕ1, . . . , ϕi, . . . , ϕng )

εg(i) = ∂
ϕi ≤ g�i (ϕ1, . . . , ψ, . . . , ϕng )

9 The purpose of this restriction is to enforce preservation of non-empty joins by the term func-
tion ϕ′C. The soundness of the rule is founded upon this and approximation of the argument γ
as the join of all closed elements below it. In the non-constructive setting of [14] the same
strategy is followed, except that the approximation is done by means of completely join-
irreducibles. Since this can give rise to empty sets of approximants and hence empty joins,
+∨ is excluded in the analogous approximation rule in [14], as the join does not preserve
empty joins coordinate-wise. In the present setting, the set of closed approximants is never
empty, and hence this restriction may be dropped. Similar considerations apply to −∧.
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Ackermann Rules. The Ackermann rules operate on the whole system of inequalities
and aim at eliminating propositional variables.

Right Ackermann-Rule.

({αi ≤ p | 1 ≤ i ≤ n} ∪ {β j(p) ≤ γ j(p) | 1 ≤ j ≤ m}, Ineq)
(RAR)

({β j(∨n
i=1 αi) ≤ γ j(

∨n
i=1 αi) | 1 ≤ j ≤ m}, Ineq)

where the αi are p-free and syntactically closed, the β j are positive in p and syntactically
closed, while the γ j are negative in p and syntactically open (cf. Definition 9).

Left Ackermann-Rule.

({p ≤ αi | 1 ≤ i ≤ n} ∪ {γ j(p) ≤ β j(p) | 1 ≤ j ≤ m}, Ineq)
(LAR)

({γ j(∧n
i=1 αi) ≤ β j(

∧n
i=1 αi) | 1 ≤ j ≤ m}, Ineq)

where the αi are p-free and syntactically open, the β j are positive in p and syntactically
open, while the γ j are negative in p and syntactically closed.

Syntactically Open and Closed Formulas. In the following definition we will use
f ∈ F and g ∈ G to denote connectives of the original signature, and h ∈ F + \ F
and k ∈ G+ \ G to denote connectives of the expanded language. To simplify notation,
we will disregard the actual order of the coordinates, but keep track of their polarity.
So, for instance we will write f (ψ, ϕ) and k(ϕ, ψ), where in both cases the coordinates
are divided in two possibly empty arrays, the first (resp. second) of which contains the
positive (resp. negative) coordinates.

Definition 9. The syntactically open formulas ϕ and syntactically closed formulas ψ
are defined by simultaneous mutual recursion as follows:

ϕ ::= ⊥ | � | p | m | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | g(ϕ, ψ) | f (ϕ, ψ) | k(ϕ, ψ) | ν∗X.ϕ
ψ ::= ⊥ | � | p | i | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | f (ψ, ϕ) | g(ψ, ϕ) | h(ψ, ϕ) | μ∗X.ψ

where p ∈ PROP, i ∈ NOM, and m ∈ CNOM.

Stage 3: Success, Failure and Output. If stage 2 succeeded in eliminating all proposi-
tional variables from each system, the algorithm returns the conjunction of these puri-
fied quasi-inequalities, denoted by ALBA(ϕ ≤ ψ). Otherwise, the algorithm reports
failure and terminates.

Special Runs of ALBA. A tame run of ALBA is one during which the approximation
rules are applied only to formulas ϕ′(γ/!x) and ψ′(γ/!x) such that no fixed point binder
occurs in the branch from x to the root of ϕ′ and ψ′. By contrast, a proper run of ALBA
is one during which all occurrences of fixed point binders lie along some branch ending
with a subterm γ which the application of an approximation rule extracts. We say that a
run of the algorithm ALBA succeeds if all propositional variables are eliminated from
the input inequality, ϕ ≤ ψ, and denote the resulting set of pure quasi-inequalities by
ALBA(ϕ∗ ≤ ψ∗). An inequality on which some run of ALBA succeeds is called a μ∗-
ALBA inequality.
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Abstract. Distributional models of natural language use vectors to pro-
vide a contextual foundation for meaning representation. These models
rely on large quantities of real data, such as corpora of documents, and
have found applications in natural language tasks, such as word similar-
ity, disambiguation, indexing, and search. Compositional distributional
models extend the distributional ones from words to phrases and sen-
tences. Logical operators are usually treated as noise by these models
and no systematic treatment is provided so far. In this paper, we show
how skew lattices and their encoding in upper triangular matrices pro-
vide a logical foundation for compositional distributional models. In this
setting, one can model commutative as well as non-commutative logical
operations of conjunction and disjunction. We provide theoretical foun-
dations, a case study, and experimental results for an entailment task on
real data.
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1 Introduction

Distributional semantics is a model of natural language that works with vec-
tor representations of words embedded in a vector space of features. The vector
representations are formalisations of insights of Firth and Harris [8,10] that
words that occur in similar contexts have similar meanings. These models are
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contrasted with traditional approaches to formal semantics where words are
treated as indices in a dictionary or vocabulary list, a string of letters, or the
set of their denotations. The vector representations of words are built from
co-occurrence matrices [23], the columns of which are features of a text, the rows
of which are words, and the entries of which contain degrees of co-occurrences of
the two. Vector space models provide different ways of modelling similarity rela-
tions between words [21,24,25], a concept that has found applications in areas
such as question answering, summarisation and classification.

In [4] a mathematical framework for a unification of the distributional method
and a compositional theory of grammatical types was introduced. This unifica-
tion is important because the insights on which the distributional method is
built mostly make sense for words. In order to obtain vector representations for
phrases and sentences and to reason about their degrees of similarity, one needs
to extend the distributional method from words to phrases and sentences. The
unified model combines the formal grammar models of language [3,15,16] with
the distributional theories of meaning. The result is a vector space model where
the meaning of a sentence is represented by a vector computed from the vec-
tors corresponding to the meanings of the words therein and the grammatical
structure of the sentence. In [4], the two approaches are connected by the use
of compact closed categories, which admit purely diagrammatic computations.
These computations are related to the work by Abramsky and Coecke on the
flow of information in the context of quantum information protocols [1].

Several questions were posed in [4], including extending the fragment covered
there by adding their natural language coordination words to it and find proper
operators corresponding to the logical connectives “and”, “or”, “but”, “unless”.
This question turned out to be a challenge, since the category does not have
separate products and coproducts, neither do the usual vector product and sum
are fully distributive. Hence they will not correspond to logical conjunction and
disjunction and their variants.

In the present paper, we connect the vector model of words and sentences to
skew lattice theory. Skew lattices present a non-commutative generalization of
lattices, they were introduced in 1949 by Jordan [11], the author of the quantum
field theory. The idea to study algebras of non-commutative idempotents arised
from the realization that a pair of observables A, B corresponding to properties
studied in quantum mechanics is compatible (i.e. they can be simultaneously
observed) if and only if any projection corresponding to A commutes with any
projection corresponding to B. The theory of skew lattices was later developed
mostly by Leech, cf. [17,20]. The idea that the conjunction and disjunction in
the natural language are sometimes non-commutative is not new. For instance,
in [9] the authors argue that: “A candle was burning on the table and the room
was brightly lit is not the same as The room was brightly lit and the candle was
burning on the table” ([9], p. 76–77).

This paper is structured as follows. In Sect. 2, we briefly recall the case
of Boolean vectors when the connectives “and”, “or” are commutative. In
Sect. 3, we generalize this setting to the non-Boolean non-commutative case.
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We represent our data by vectors, or more generally by matrices, so that they
form a skew lattice. Then we use the skew lattice operations to represent the
non-commutative connectives “and”, “or”. We present a case study from real
data and show how entailment can be used to distinguish the non-commutative
conjunction from the commutative one. We use this case study as a pilot and
perform an experiment on real data. The experiment is an entailment task on a
dataset of verb-object conjuncts with the two types of conjunctions. The results
show that the non-commutative conjunction operator of skew lattices recognises
the non-commutative conjunctive entailments better than the commutative ones.

2 Commutative Connectives and, or

We assume that pieces of information are encoded as vectors. Let n be a natural
number and consider the vector space Z

n
2 . The connectives NOT, AND, OR are

encoded by the following operations:

NOT ¬(x1, x2, . . . xn) = (1 − x1, 1 − x2, . . . , 1 − xn),
AND : (x1, x2, . . . , xn) ∧ (y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn),
OR : (x1, x2, . . . , xn) ∧ (y1, y2, . . . , yn) = (x1 ◦ y1, x2 ◦ y2, . . . , xn ◦ yn),

where u ◦ v = u + v − uv.
It is an easy exercise to verify that (Zn

2 ;∧,∨) is a distributive lattice. In fact,
it is a bounded distributive lattice with bottom b = (0, 0, . . . , 0) and top t =
(1, 1, . . . , 1) in which every element is complemented (¬x being the complement
of x). Hence (Zn

2 ;∧,∨, b, t) is a Boolean algebra.

Example 1. Assume that we measure the properties “love” and “see”, like in
John loves Mary or John sees Mary. The information about the pair (John,
Mary) is encoded by a 4-dimensional vector (i, j, k, l), where each property is
encoded by a two-dimensional vector. More precisely, (i, j) = (1, 0) if John loves
Mary and (i, j) = (0, 1) if he hates her (which we consider to be the negation of
loving her), and (k, l) = (1, 0) if John can see Mary and (k, l) = (0, 1) otherwise.
Consider the statements:

s1 : John loves Mary and sees her. s2 : John doesn’t love Mary and he sees her.

What is the conjunction of statements s1, s2 with respect to the above definition?

s1 AND s2 : (1, 0, 1, 0) ∧ (0, 1, 1, 0) = (0, 0, 1, 0).

How are we to interpret this result? Denoting ⊥ = (0, 0) and likewise ⊥ =
(⊥, j, k) = (i, j,⊥) which is interpreted by false, we obtain that s1 AND s2 = ⊥
which sounds reasonable. Similarly, the disjunction of s1, s2 is obtained by:

s1 OR s2 : (1, 0, 1, 0) ∨ (0, 1, 1, 0) = (1, 1, 1, 0).

Denoting � = (1, 1) and (�, j, k) = (j, k), (i, j,�) = (i, j) we obtain s1 ∨ s2 =
(1, 0) which corresponds to the statement John sees Mary.
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3 Non-commutative Connectives and, or

There are examples in everyday life where the meaning of the connective and is
essentially non-commutative. Consider the following sentences:

Sentence 1: Alice found gold and ran away.
Sentence 2: Alice ran away and found gold.

Although the above two sentences are both composed from the same pair of
simple sentences, i.e. Alice found gold. and Alice ran away. which are connected
by the connective and, their meaning is not the same. In the case of Sentence 1,
Alice most probably found gold and then ran away in order not to get caught or
get the gold stolen from her, while in the case of Sentence 2, she first ran away
from something that we are not aware of and for the reason that we don’t know,
and then while running away she ran into gold and found it. In the above example
we saw that the connective AND as used in the natural language can have a time
component implicit in it. The first action might be implicitly assumed to come
before the second one, and that can effect the meaning of the sentence. There
are cases in the natural language where given two actions that are connected by
an AND it is natural to assume that the second one has a deeper impact. For
instance, consider the following sentences:

Sentence 1: I drank the wine and filled the glass.
Sentence 2: I filled the glass and drank the wine.

While I drank a glass of wine in both cases, when the action of sentence s1
was completed I still had a full glass, while I ended up with an empty glass
when the action of sentence s2 was completed. As we shall see below there are
other instances when it is natural to glue together pieces of information by a
non-commutative connective AND.

There are also situations where a non-commutative version of the connective
OR is used in the natural language. To see this, consider the connective unless in
the sentence: Buy a blue car unless you can get a red car. If we want to follow the
above instruction, we are going to end up with either a red or a blue car, however
if both colours are available, we are going to choose the red one. However, if the
instruction was: Buy a red car unless you can get a blue car, in the case that
cars of both colours were available, we would choose a blue car.

What is the right mathematical frame to encapture the above situations
where the connectives AND, OR can be non-commutative? We adopt the defin-
ition below from [17].

Definition 1. A skew lattice is an algebra (S;∧,∨) satisfying the following:

– associativity of ∧: (x ∧ y) ∧ z = x ∧ (y ∧ z),
– associativity of ∨: (x ∨ y) ∨ z = x ∨ (y ∨ z),
– idempotency of ∧: x ∧ x = x,
– idempotency of ∨: x ∨ x = x,
– absorptions: x ∨ (x ∧ y) = x = x ∧ (x ∨ y) and (x ∧ y) ∨ y = y = (x ∨ y) ∧ y.
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A skew lattice is called strongly distributive if it satisfies the identities

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z).

The following result is due to Leech [18,19].

Proposition 1. Let P(A,B) be the set of all partial functions from A to B, for
A and B non-empty sets. Given partial functions f, g ∈ P(A,B) we set:

Restriction: f ∧ g = g|domf∩domg, Override: f ∨ g = f ∪ g|domg\domf .

Then (P(A,B);∧,∨) is a strongly distributive skew lattice.

Notice that given f, g ∈ P(A,B) as above then if domf = dom then f∧g = g
and f ∨ g = f . The algebras with operations restriction and override were first
studied in [2], while their connection to skew lattices was established in [7].

One more example of non-commutative conjunction, this time between
adverbs: to paint the fence white and (then) brown vs. to paint the fence brown
and (then) white. In the first case we end up with a brown fence, while in the
second case the fence is white after we finish painting it. Again, the right one
won, just like in our definition of the operation restriction above.

Although the connective unless can be seen as a non-commutative OR it
is not consistent with the definition of the override operation above. That is
because unless prefers the second statement, while override prefers the first.
An interpretation of non-commutative OR that is consistent with our set-
ting was established in [6] where the override operation was interpreted as
x ∨ y = q(x, x, y), where q(x, y, z) is the Church algebra operation satisfying
the fundamental properties of the if-then-else connective: q(1, x, y) = x and
q(0, x, y) = y. Thus the override q(x, x, y) can be interpreted as if x then x else
y. In everyday language we may encounter an instance of override in a situation
like: Buy a blue car or else buy a red car. Our interpretation of this sentence is:
Buy a blue car if there is one; if not, then buy a red one. Hence, the first option
is preferred.

Example 2. Assume that we observe our information by measuring the colour
(or the wavelength) of an object and its size. We assign to each measurement a
pair (x, y), where x is either 3 (blue), 2 (red), 1 (green) or 0 (not seen); and y is
a positive real number (in meters, for example) or 0 (not seen). Applying AND
(restriction), OR (override) and interpreting 0 (not seen) as not-defined we get:

(3, 2) ∧ (0, 1) = (0, 1), (3, 2) ∨ (0, 1) = (3, 2)
(0, 1) ∧ (3, 2) = (0, 2), (0, 1) ∨ (3, 2) = (3, 1)

The first conjunction corresponds to (blue, 2 m) AND (not seen,
1 m) = (not seen, 1 m), others are similarly unfolded. Notice that “blue and two
meters high” is denoted by (blue, 2 m), while “blue and 2 m high, and not seen
and 1 m high” is denoted by (blue, 2 m) AND (not seen, 1 m). The connective
AND is used for the connection between vectors, i.e. pieces of full information
(although some of it might be partial in that it may contain “not seen”).
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Another way to encode the information of Example 2 is by use of upper-
triangular matrices (over the reals, for example) with 0–1 diagonals and possibly
non-zero elements in the last column (0 elsewhere). Each 1 on the diagonal
denotes that the property was observed (0: not observed), the element that lies
in the far right column and in the row of the particular 1 denotes the value of
the observed property. When we wish to encode more information we can also
allow non-zero elements in the first row of the matrices.

Given the matrix ring Mn(R) of all n×n real matrices, a subset S ⊆ Mn(R)
is called a band if it is closed under multiplication and A2 = A holds for all
A ∈ S. Let S be such a band and let A,B ∈ S. We denote:

A ◦ B = A + B − AB

A∇B = (A ◦ B)2 = A + B + BA − ABA − BAB.

Note that if S is closed under ◦ then A ◦ B = A∇B holds for all A,B ∈ S.

Proposition 2 [5]. Let S consist of all (k+2)×(k+2) real matrices of following
form, then (S; ·,∇) is a skew lattice.

⎡
⎢⎢⎢⎢⎢⎣

0 a1 ... ak c
0 e1 ... 0 b1
...

...
...

...
...

0 0 ... ek bk
0 0 ... 0 0

⎤
⎥⎥⎥⎥⎥⎦

where:

(i) each ei = 0 or 1,
(ii) bi = 0 for all i s.t. ei = 0,
(iii) ai = 0 for all i s.t. ei = 0,
(iv) c = a1b1 + · · · + akbk.

Corollary 1. Let S consist of all (k+1)× (k+1) real matrices of the following
form, then (S; ·, ◦) is a skew lattice.

⎡
⎢⎢⎢⎢⎢⎣

e1 0 ... 0 b1
0 e2 ... 0 b2
...

...
...

...
...

0 0 ... ek bk
0 0 ... 0 0

⎤
⎥⎥⎥⎥⎥⎦

where: (i) each ei = 0 or 1,
(ii) bi = 0 for all i s.t. ei = 0,

Fig. 1. Examples of commutative versus non-commutative conjunction and disjunction
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Example 3. We interpret the data from Example 2 in upper triangular 3 × 3
matrices from Corollary 1. The first row corresponds to colour, the second one to
height, and the third is zero (always, we need it so that the usual multiplication
of matrices works). We assign to the vectors (blue, 2 m) and (not seen, 1 m)
matrices from which we then obtain the correspondence between vectors and
matrices. These are shown in Fig. 1.

4 Boolean and Skew Semantics for Natural Language

For demonstration purposes, consider a simple fragment of English generated by
the context free grammar of Fig. 2.

Fig. 2. An exemplary context free grammar for a simple fragment of English

A model for the language generated by this grammar minus the logical rule
S → S and/or S, is a pair (U, [[ ]]), where U is universal reference set and [[ ]] is an
interpretation function defined by induction as follows. For terminals we have:

– The interpretation of a terminal y ∈ {np, adj, adv, vp} generated by either
NP → np, Adj → adj, VP → vp, Adv → adv, is [[y]] ⊆ U . That is, noun
phrases, adjectives, verb phrases, and adverbs are interpreted as unary pred-
icates over the reference set.

– The interpretation of a terminal y generated by V → y is [[y]] ⊆ U ×U ; verbs
are interpreted as binary predicates over the reference set.

For non-terminals, for all rules except for S → S and/or S, we have:

[[V NP]] = [[v]]([[np]]) [[NP VP]] = [[vp]]([[np]])
[[Adj NP]] = [[adj]]([[np]]) [[VP Adv]] = [[adv]]([[vp]])

Here, for R ⊆ U × U and A ⊆ U , by R(A) we mean the forward image of
R on A, that is R(A) = {y | (x, y) ∈ R, for x ∈ A}. To keep the notation
unified, for R a unary relation R ⊆ U , we use the same notation and define
R(A) = {y | y ∈ R, for x ∈ A}, i.e. R ∩ A.

In order to interpret the logical rule S → S and/or S, we have to move to a
lattice over U . If our connectives are Boolean, this lattice is P(U) and we have:

[[S and/or S]] = [[S]] ∧ / ∨ [[S]]

for ∧/∨ the Boolean lattice operations. In this case, we are working in a Boolean
model (P(U), [[ ]]). For non-Boolean non-commutative logical operations, we work
with a skew lattice over U .
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Definition 2. A skew lattice semantics for the language generated by the gram-
mar of Fig. 2 is (S(U);∧,∨; [[ ]]), where U is a universal reference set, S(U)
consists of the real matrices defined in Proposition 2 and [[ ]] is an interpretation
function defined by induction as follows. To terminals we assign:

– to each np, vp a skew matrix [[np]] := unp, [[vp]] := uvp satisfying e1 = · · · =
ek = 1 and all ai = bi = 0,

– to each v a diagonal matrix [[v]] := uv of the form (1) with at least one 1 on
the diagonal (and all other entries 0),

– to each adj a skew matrix [[adj]] := uadj of the form e1 = · · · = ek = 1,
a1 = · · · = ak = 0 and b1 = · · · = bk = 0,

– to each adv a skew matrix [[adv]] := uadv of the form e1 = · · · = ek = 1,
a1 = · · · = ak = 0 and b1 = · · · = bk = 0.

To non-terminals we assign:

– to each x → y z, the skew matrix [[x]] = ux := [[y]] × [[z]],
– to S → S and/or S, the skew matrix [[S]] := [[S]] ∧ / ∨ [[S]], for ∧,∨.

Note that each ei-position in the verb item corresponds to a particular verb.
We call an index i a defining index for a skew matrix A if aii = 0. The product
A ·B can only be nonzero if A and B have at least one common defining index.

Consider the set of terminals “John, loves, sees, Mary, sleeps, lucky, deeply”.
We encode our data by the 5 × 5 matrices, presented in Fig. 3. The ∗ element
in uMary equals 3m2 and the ∗ element in uJohn equals 3j2. All our matrices are
idempotent, i.e. they satisfy A2 = A. So we have [[Mary]] = uMary, [[John]] =
uJohn, [[loves]] = uloves, and [[John loves Mary]] := uJohn × uloves × uMary.

5 A Case Study from Real Data

In this section, we use real data to build our matrices and detail the computations
for one set of the example sentences of the paper. We perform a case study with
2 verbs, two nouns, and one adjective. We work with 5 × 5 matrices, where one
dimension of each verb matrix is reserved such that the two verbs of the example
have a common defining index.

Consider the lemmatised versions of the sentences“filled glass and drank
wine” and “drank wine and filled glass” of Sect. 3. We fill the matrices of words
of these sentences with real data and compute their conjunction, in the two pre-
sented orders. After the first conjunct, the glass will be full and after the second
conjunct, the glass will be empty. We verify if this fact indeed follows from real
data, by computing each entailment and observing which one of the conjuncts
entails “full glass” with a larger degree.

The terminals of our sentences are “filled, drank, glass, wine, full, empty”.
We build skew matrices for these. The ai, bi entries for nouns and adjective
matrices are obtained from the PPMI-normalised version (see Appendix for the
PPMI formula and its explanation) of the degree of co-occurrence of each word
with the two features of “full” and “empty”. The entries a2 = b2 correspond to



118 K. Cvetko-Vah et al.

Fig. 3. Example skew matrices for words

the feature “empty” and the entries a3 = b3 to the feature “full”. Dimension 4
records the common defining index. We copy the information corresponding to
the feature “full” in this dimension. The reason we are copying this dimension
and not dimension 2 is because we are verifying the degree of entailment with
the phrase “full glass” (and not with “empty glass”), thus entries a4 = b4 should
be the same as a3 = b3. This is important for matrices of the verbs, where cell
c33 records the common defining index of the “drank” and “filled” matrix.

Note that, in a Boolean setting the two properties of being full and being
empty are opposites of each other: if one of them is 1, the other will be 0. In
real scenarios, however, this is not necessarily the case. For instance, i the data
is presented in Fig. 4, in the matrix of “glass”, the PPMI-normalised versions

Fig. 4. A set of word matrices derived from data
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of the number of times “glass” occurred 5 words close to features “full” and
“empty” are 11 and 10.2, respectively. This is because a glass can be empty and
it can be full in different contexts.

We compose these word matrices an obtain matrices for phrases, we then
form their two possible conjunctions, resulting in matrices of Fig. 5. We see that
“drank wine and filled glass” is closer (although very slightly so) to “full glass”
than “filled glass and drank wine”. This is because the entry b3 of the first
conjunct is 11, this is closer to the same entry in “full glass” that is, 11, than
the b3 of the second conjunct, which is 10.9. All the other entries are of equal
distance of the entries of “full glass”. The difference is small due to the fact
that we took the features “full” and “empty” to be the same as the words “full”
and “empty” and that these words are examples of words that do often occur in
similar contexts, thus we get very similar numbers for them, i.e. 11 and 10.2. A
more refined analysis on features that are not similar will reflect better on data.

Fig. 5. The set of conjunctive phrase matrices built from word matrices Fig. 4.

6 Large Scale Entailment Experiment

In previous work [12,13], we developed theory for and experimented with
entailment in compositional distributional semantics. We built three entailment
datasets from real data by using linguistic resources such as WordNet. These
datasets consist of subject-verb and verb-object phrases and subject-verb-object
sentences. We worked with different degrees of feature inclusion on the vec-
tors and matrices of these phrases and sentences and measured the entailments
thereof based on these degrees. In this section, we repeat the experiment of the
previous section on a logical extension of the verb-object part of this dataset.

Our skew matrices are 300×300 and their entries are normalised using proba-
bilistic versions of raw co-occurrences and their non-negative logarithms, a mea-
sure known as Positive Pointwise Mutual Information (PPMI); the formulae and
explanations for these are given in the Appendix. The raw co-occurrence counts
(before normalisation) were collected in the context of a 5-word window around
the words. The verb-object dataset has 436 verb-object pairs, 218 of which stand
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in a positive entailment relationship with each other and 218 in a negative one. A
snapshot of the positive entailments is presented in Fig. 6. The negative entries
are the reverses of the positive ones. For an explanation on how these datasets
are built, please see [12].

We extended the above dataset with commutative and non-commutative con-
junctions in the following way. From each two entries of the dataset vo1 � vo2
and vo′

1 � vo′
2, we form two conjunctive entries, of the following forms

vo1 ∧ vo′
1 � vo2 ∧ vo′

2 and vo′
1 ∧ vo1 � vo2 ∧ vo′

2

We then compute a matrix for each of the vo’s (i.e. for vo1, vo2, vo
′
1, vo

′
2). We

compute their skew conjunctions, with the goal of verifying whether this non-
commutative conjunction does perform better on recognising the conjunctive
entailments of the first case above. In the first case, vo1 entails vo2 and vo′

1

entails vo′
2, hence vo1 ∧ vo′

1 should entail vo2 ∧ vo′
2. This entailment fails for

second case, because the conjunction is non-commutative, that is vo′
1 does entail

vo2, similarly, vo1 does not entail vo′
2, thus the entailment between their non-

commutative conjunctions fails.

Fig. 6. Examples from the verb-object entailment dataset and results of the non-
commutative conjunction experiment with the PPMI and probability ratio on the 1st
sample of dataset.

The results are evaluated by a binary classification of the existing entailment
measures: APinc, BAPinc, SAPinc, SBAPinc. These are from the distributional
literature on degrees of entailment between words and sentences, the formulae
for computing them and explanations thereof are presented in the Appendix.
As we are not working with Boolean models, we will have degrees of entailment
and report Area Under Curve; this returns an evaluation of the entailment at
every possible non-zero threshold. The baseline is labelled “Inclusion”: the binary
entailment between the features. Since our sample size is large (about 6000,
obtained by recasting all of the conjuncts against each other), we performed the
experiments on random subsets of the dataset, each with size 1000. The results
of the first sample are in right hand table of Fig. 6. The results of the second
sample are in the Appendix.
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With all of the measures and in both normalisation schemes, the non-
commutative conjunction comes out as a more appropriate operation for judging
the non-commutative entailments. These results are preliminary, they are based
on word-word matrices. A more appropriate empirical evaluation will be obtained
by working on word-feature matrices, where the columns are not just word, but a
set of words clustered together using feature induction techniques such as Single
Value Decomposition (SVD).

7 Conclusions and Future Work

We reviewed the theory of skew lattices, which formalise a logic with non-
commutative conjunction and disjunction. We motivated the existence of these
operations in natural language. We presented an account of compositional distri-
butional semantics where meanings of words, phrases, and sentences are vectors.
We then showed how the data represented by skew lattices is encoded in matrices
and developed a skew lattice semantics for compositional distributional models.
Treating logical operators has been a challenge to these models and this paper
provides a solution. We related our work to real data by first recasting one of
the examples of the paper against co-occurrence matrices and then performed an
experiment on a conjunctive entailment task. A similar experiment can be per-
formed for the non-commutative disjunction, this is left to future work. On the
theoretical side, with the current definitions, the matrices of verbs have to have
0–1 entries. We aim to generalise the setting, either by changing the matrices of
nouns and adjectives, or the definition of the non-commutative conjunction, so
we can populate all the matrices with real co-occurrence counts.

A Appendix

A.1 Normalisation Schemes

The raw co-occurrence counts are normalised using two measures:

– Probability Ratio

P (w, f)
P (w)P (f)

where P (w, c) is the probability that words w and feature f have occurred
together, and P (w) and P (f) are probabilities of occurrences of w and f . This
measure tells us how often w and f were observed together in comparison to
how often they would have occurred were they independent.

– Positive Pointwise Mutual Information (PPMI)

max(log(
P (w, f)

P (w)P (f)
), 0)

This is the positive version of the logarithm of probability ratio, where the
negative logarithmic values are sent to 0.
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A.2 Formulae for Computing Entailment

APinc is the average precision applied to feature inclusion. It measures a ranked
version of feature inclusion on vectors −→u and −→v , from highest to lowest:

APinc(u, v) =
∑

r

[
P (r) · rel′(fr)

]

|F (−→u )| (1)

In the above, fr is the feature in −→u , denoted by F (−→u ), with rank r; P (r) is the
precision at rank r, which measures how many of −→v ’s features are included at
rank r in the features of −→u , and rel′(fr) is a relevance measure reflecting how
important fr is in −→v . It is computed as follows:

rel′(f) =

{
1 − rank(f,F (−→v ))

|F (−→v )|+1
f ∈ F (−→v )

0 o.w.
(2)

BAPinc balances APinc with the LIN degree of similarity between the vectors.
BAPinc was developed in [14] after realising that APinc returns poor results
when the vectors had a radically different number of non-zero features; the LIN
measure was included to balance out the extra dimensions of the longer vector.

BAPinc(u, v) =
√

LIN(u, v) · APinc(u, v) (3)

LIN is a similarity measure between vectors and was defined in [22]. It can be
replaced with any other similarity measure, such as the cosine measure.

SAPinc is a measure developed in [12], based on BAPinc, but for dense
vectors. Whereas APinc and BAPinc were developed to compute the degree of
entailment between word vectors, which are usually sparse since word vectors live
in high dimensional spaces (e.g. 5000), SAPinc was developed to deal with phrase
and sentence vectors. These are obtained by composing the vectors of words in
lower dimension (e.g. 300), where the compositional operators accumulate the
information and return dense results.

SAPinc(u, v) =
∑

r

[
P (r) · rel′(fr)

]

|−→u | (4)

Here, P (r) and rel′(fr) are defined differently, as shown below:

P (r) =

∣
∣{f (u)

r |f (u)
r ≤ f

(v)
r , 0 < r ≤ |−→u |}∣

∣

r
(5)

rel′(fr) =
{

1 f
(u)
r ≤ f

(v)
r

0 o.w.
(6)

For more explanations on these measures please see [12,13].

A.3 Experimental Results for a Second Sample

The results of the experiment of Sect. 6, with PPMI and probability ratio matri-
ces on the second 1000 sample of the dataset are presented in Fig. 7.

Similar to the results presented in the paper, the non-commutative operation
performs better on recognising the non-commutative conjunctive entailments.
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Fig. 7. Results of the non-commutative conjunction experiment with the PPMI and
probability ratio on the 2nd sample of dataset.
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Abstract. We define new fragments of higher-order logics of order three
and above, and investigate their expressive power over finite models. The
key unifying property of these fragments is that they all admit inexpen-
sive algorithmic translations of their formulae to equivalent second-order
logic formulae. That is, within these fragments we can make use of third-
and higher-order quantification without paying the extremely high com-
plexity price associated with them. Although theoretical in nature, the
results reported here are more significant from a practical perspective.
It turns out that there are many examples of properties of finite mod-
els (queries from the perspective of relational databases) which can be
simply and elegantly defined by formulae of the higher-order fragments
studied in this work. For many of those properties, the equivalent second-
order formulae can be very complicated and unintuitive. In particular
when they concern properties of complex objects, such as hyper-graphs,
and the equivalent second-order expressions require the encoding of those
objects into plain relations.

1 Introduction

There are many examples of properties of finite models (queries from the perspec-
tive of relational databases) that can be defined by simple and elegant sentences
of higher-order logics of order three and above. Take for instance the property
of a graph of being an n-hypercube graph Qn, i.e., an undirected graph whose
vertices are binary n-tuples and such that two vertices are adjacent iff they differ
in exactly one bit. We can build an (n + 1)-hypercube Qn+1 by simply taking
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two isomorphic copies of an n-hypercube Qn and adding edges between the cor-
responding vertices. This strategy can be formally expressed by means of a clear
and elegant third-order logic sentence which expresses that G is an n-hypercube
graph for some n iff the following holds:

– There is a sequence S of graphs, i.e., a third-order linear digraph whose nodes
are undirected (second-order) graphs.

– The sequence S starts with a K2-graph and ends with G.
– For every graph Gsucc and its immediate predecessor Gpred in the sequence

S, there is a pair of injective functions f1, f2 from Gpred to Gsucc such that
• f1 and f2 induce in Gsucc two isomorphic copies of Gpred ,
• f1 and f2 define a partition in the vertex set of Gsucc , and
• for every edge (x, y) of Gsucc , f−1

1 (x) = f−1
2 (y) or either the edge

(f−1
1 (x), f−1

1 (y)) or (f−1
2 (x), f−1

2 (y)) belongs to Gpred .

Yet another example of a property that can be expressed by a simple and
elegant third-order sentence is given by the formula-value query, consisting on
determining whether a propositional formula ϕ with constants in {F, T} eval-
uates to true. We can express it in third-order logic by writing that there is
a sequence of propositional formulae (represented as finite structures) which
starts with ϕ, ends with the formula T , and such that every formula ϕsuc in
the sequence results from applying to exactly one sub-formula of its immediate
predecessor ϕpred an operations of conjunction, disjunction, or negation which is
“ready” to be evaluated (e.g., the conjunction in “(T ∧ F )”), or the elimination
of a pair of redundant parenthesis (e.g., the parenthesis in “(T )”).

The high expressive power of third-order logic is not really necessary to
characterize hypercube graphs, since they can be recognized in non-deterministic
polynomial time (NP) and by Fagin’s theorem [6] existential second-order logic
is then powerful enough to define this property. Nevertheless, to define the class
of hypercube graphs in second-order logic is certainly more challenging than to
define it in third-order logic (see the two strategies for hypercube graphs in [8]).
Likewise, we do not really need third-order logic to express the formula-value
query, since it is in DLOGSPACE [2].

It is then relevant to distinguish formulae of order three or higher which
do have a second-order equivalent formula, from those which (most likely) do
not. Beyond the significance of this questions to advance the theory of descrip-
tive complexity, such a development can clearly empower us to write simpler
and more intuitive queries, although still formal, by taking advantage of the
higher level of expressivity of higher-order logics. Provided that those queries
can be translated into formal languages with lower complexity of evaluation,
this can be done without paying the extremely high complexity price which is
associated to higher-order logics. Note that by the results in [6,13], existential
second-order logic captures NP while existential third-order logic already cap-
tures NTIME (2nO(1)

).

Outline of Contributions. We define new fragments of higher-order logics of
order three and above, and investigate their expressive power over finite models.
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The key unifying property of these fragments is that they all admit inexpen-
sive algorithmic translations of their formulae to equivalent second-order logic
formulae.

We start by defining in Sect. 3 a general schema of existential third-order
formulae. The schema generalizes the approach described in our previous exam-
ples for hypercube graph and formula-value query. It essentially allows us to
express an iteration of polynomial length. This iteration is represented by an
unfolded sequence of relational structures which can be seen as a computation
or derivation. Transitions are then specified by explicitly stating the operations
which can be involved in the construction of a given structure in the sequence,
when applied to the previous one. As further discussed in Sect. 3, this is a very
usual, intuitive, and convenient schema in the expression of properties.

In Sect. 4, we characterize a broader fragment of third-order logic which is no
longer restricted to formulae of a fixed schema as in the previous section. We call
this fragment TOP , for polynomial third-order, and give a constructive proof of
the fact that it collapses to second-order logic. Although the schema of existential
third-order formulae proposed in Sect. 3 turned out to be a special case of TOP ,
it is still relevant. The translation of the formulae of that schema yields second-
order formulae which are more intuitive and clearer than the general translation
of TOP formulae. Moreover, taking into consideration the examples in this paper,
the translation proposed in Sect. 3 always results in second-order formulae which
use relation variables of considerable smaller arity than the equivalent, but also
more general translation proposed in this section. Since the maximum arity of the
relation variables in the second-order formulae is relevant for the complexity of
their evaluation (see [13] among others), it makes sense to study specific schemas
of third-order formulae with the aim of finding more efficient translations.

In Sect. 5 we generalize the result in Sect. 4 by characterizing, for each order
i ≥ 4, a fragment HOi,P of the i-th order logic which collapses to second-order.
Again this result has interesting practical applications. As an example, consider a
multilevel PERT chart such as those commonly used in engineering for planning
and scheduling tasks of complex projects. The encoding of higher-order relations
of order ≥ 3 into second-order relations can be exploited as a normal form to
store such type of complex multilevel PERT charts into a standard relational
database. Under certain conditions, higher-order queries of order ≥ 3 could then
be synthesised into efficient SQL queries over such normalized relational data-
base. Notice that, a related approach with synthesisation to efficient algorithms
was already taken in [14].

We conclude the paper in Sect. 6 where we discuss in detail the expressive
power of different fragments of the HOi,P logics and their relationship with
known fragments of second-order logic. In particular, adapting Makowsky and
Pnueli [16] approach to prove hierarchies of arity and alternation of second-order
formulae, we are able to prove interesting strict hierarchies of HOi,P formulae.

Due to space limitations, in most cases we only present sketches of the proofs.
Nevertheless, a technical report with the omitted details in Sects. 3–5 is accessible
as a CoRR abstract in [9].
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2 Preliminaries

We assume familiarity with the basic concepts of finite model theory [5,15]. We
only consider signatures, or vocabularies, which are purely relational. We use the
classical Tarski’s semantics, except that in the context of finite model theory,
only finite structures or interpretations are considered. If A is a structure of
vocabulary σ, we denote its finite domain by dom(A) or A. By ϕ(x1, . . . , xr)
we denote a formula of some logic whose free variables are exactly {x1, . . . , xr}.
We write A |= ϕ(x1, . . . , xr)[ā] to denote that ϕ is satisfied by the structure A
under all valuations v such that v(xi) = ai for 1 ≤ i ≤ r.

With HOi we denote the i-th order logic which extends first-order logic
with quantifiers of any order 2 ≤ j ≤ i, which in turn bind j-th order rela-
tion variables. In particular, HO2 denotes second-order logic as usually stud-
ied in the context of finite model theory [5,15], and HO3 denotes third-order
logic. A third-order relation type of width w is a w-tuple τ = (r1, . . . , rw) where
w, r1, . . . , rw ≥ 1, and r1, . . . , rw are arities of (second-order) relations. For i ≥ 4,
an i-th order relation type of width w is a w-tuple τ = (ρ1, . . . , ρw) where w ≥ 1
and ρ1, . . . , ρw are (i − 1)-th order relation types. A second-order relation is a
relation in the usual sense. A third-order relation of type τ = (r1, . . . , rw) is
a set of tuples of (second-order) relations of arities r1, . . . , rw, respectively. For
i ≥ 4, an i-th order relation of type τ = (ρ1, . . . , ρw) is a set of tuples of (i−1)-th
order relations, of types ρ1, . . . , ρw, respectively. Aτ denotes the set of all higher-
order relations of type τ over the domain of individuals A. We use uppercase
calligraphic letters X i, Yi, Zi, . . . to denote i-th order variables of order i ≥ 3,
uppercase letters X,Y,Z, . . . to denote second-order variables, and lower case
letters x, y, z, . . . to denote first-order variables. With X i,τ we denote an i-th
order variable of type τ . If X i is a third-order variable, we tend to omit the
superscript. We sometimes use Xr to denote that X is a second-order variable
or arity r. Second-order variables of arity r are valuated with r-ary relations. For
i ≥ 3, i-th order relation variables are valuated with sets of tuples of (i − 1)-th
order relations according to their relation types. Thus, if v is a valuation, A
is a structure and X i,τ is a higher-order variable, then v(X i,τ ) is a i-th order-
relation of type τ in Aτ . Independently of the order and type of the variables,
we say that two valuations v and v′ are X -equivalent if v(Y) = v′(Y) for every
variable Y other than X . For any i ≥ 3, we define the notion of satisfaction in
HOi by extending the usual notion of satisfaction of second-order logic formula
as follows: A, v |= ∃X i,(ρ1,...,ρw)(ϕ(X )), where X is an i-th order relation vari-
able and ϕ is a well-formed formula, iff there is a i-th order relation R of type
τ = (ρ1, . . . , ρw) in Aτ , such that A, v′ |= ϕ(X ) whenever v′ is X -equivalent
to v and v′(X ) = R. Likewise, A, v |= ∀X i,(ρ1,...,ρw)(ϕ(X )) iff for all i-th order
relation R in Aτ , it holds that A, v′ |= ϕ(X ) whenever v′ is X -equivalent to v
and v′(X ) = R.



On Fragments of Higher Order Logics 129

3 A General Schema of Existential Third-Order Formulae

We define next a general schema of ∃TO formulae which consists of existentially
quantifying a third-order linear digraph of polynomial length (i.e., a sequence of
structures that represents a computation) by explicitly stating which operations
are the ones which can be involved in the construction of a given structure in
the sequence, when applied to the previous one. The schema is as follows:

∃C s̄Os̄s̄
(
TotalOrder(C,O)∧
∀G

(
First(G) → αFirst(G) ∧ Last(G) → αLast(G)

)∧
∀GpredGsucc

(C(Gpred ) ∧ C(Gsucc) ∧ Pred(Gpred , Gsucc)

→ ϕ(Gpred , Gsucc)
))

,

(1)

where
– C ranges over third-order relations of type s̄ = (i1, . . . , is), i.e., over sets of

s-tuples of relations of arities i1, . . . , is ≥ 1.
– TotalOrder(C,O), First(G), Last(G) and Pred(Gpred , Gsucc) denote fixed

second-order formulae which express that O is a total order over C, G is
the first relational structure in O, G is the last relational structure in O, and
Gpred is the immediate predecessor of Gsucc in O, respectively.

– αFirst(G) and αLast(G) denote arbitrary second-order formulae which define,
respectively, the properties that the first and last structure in O should satisfy.

– ϕ(Gpred , Gsucc) denotes an arbitrary second-order formula that expresses the
transition from Gpred to Gsucc , i.e., which operations can be used to obtain
Gsucc from Gpred .

This is a very usual, intuitive, and convenient schema in the expression of nat-
ural properties of finite models. For a start, it can clearly be used to express the
hypercube and formula-value query as described in the introduction. Significant
additional examples are provided by the different relationships between pairs of
undirected graphs (G,H) that can be defined as orderings of special sorts. Using
schema (1) these relationships can be expressed by defining a set of possible oper-
ations that can be applied repeatedly to H, until a graph which is isomorphic to
G is obtained. In particular, the following relationships fall into this category: (a)
G ≤immersion H: G is an immersion in H (see [1,4,12]); (b) G ≤top H: G is topo-
logically embedded or topologically contained in H (see [1,4,12]); (c) G ≤minor H:
G is a minor of H (see [4,11]); (d) G ≤induced−minor H: G is an induced minor of
H (see [4]). Interestingly, in all these cases the length of the sequence is at most
linear. The operations on graphs needed to define those orderings are: (E) delete
an edge, (V) delete a vertex, (C) contract an edge, (T) degree 2 contraction,
or subdivision removal, and (L) lift an edge. In particular the set of allowable
operations for each of those orderings are: {E, V, L} for ≤immersion , {E, V,C}
for ≤minor , {E, V, T} for ≤top , and {V,C} for ≤induced−minor (see [4]).

The classical Kuratowski definition of planarity, provides yet another example
of a property that can be defined using our schema (1) and also results in a
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polynomially bounded sequence of structures. By Wagner’s characterization [3]:
a graph is planar if and only if it contains neither K5 nor K3,3 as a minor.

Provided some simple conditions are met, every third-order formula of the
schema (1) can be translated into an equivalent second-order formula. Note that
the proof of this results directly implies that the translation can be done by
means of a simple and inexpensive algorithm.

Theorem 1. Every third-order formulae Ψ ≡ ∃C s̄Os̄s̄ψ(C,O) of the schema (1)
can be translated into an equivalent second-order formula Ψ ′ whenever the fol-
lowing conditions hold.

i. The sub formulae αFirst, αLast and ϕ of Ψ are second-order formulae.
ii. There is a d ≥ 0 such that for every valuation v with v(C) = R, if A, v |=

∃Os̄s̄ψ(C,O), then |R| ≤ |dom(A)|d.
Proof (Sketch). Let us first consider the case in which C is valuated with sets of
non-empty graphs. Let t be the degree of a polynomial bounding the size of those
graphs. Our strategy consists on encoding C as a pair of second-order variables
C and EC of arities d + t and 2(d + t), respectively. Notice that every formula
that complies with schema (1) stipulates that O is a linear order of the graphs
in C which represents the stages (or steps) of a computation. Consequently the
number of stages needed is bounded by nd, where n is the size of the structure.
Since in turn each stage has a bound on the number of elements it adds or
changes (at most nt), we have to consider a set of (d + t)-tuples.

The encoding into second-order is completed by a total relation R ⊆ ST ×C,
where C is the union of the domains of all the structures in the sequence. Every
node in ST represents one stage, and through the forest R defines a subset
of nodes, which is the vertex set of a sub graph (not necessarily connected)
of the whole graph (C,EC). We use C|R(x̄), EC |R(x̄) to denote the restriction
of C and EC , respectively, to R(x̄), i.e., C|R(x̄) = {ȳ | C(ȳ) ∧ R(x̄, ȳ)} and
EC |R(x̄) = {(v̄, w̄) ∈ EC | R(x̄, v̄) ∧ R(x̄, w̄)}. The sub graph of (C,EC) which
corresponds to the stage ST (x̄) is denoted as (C|R(x̄), EC |R(x̄)). In this way, Ψ
can then be translated into an equivalent second-order formula Ψ ′ as follows:

∃Cd+tE
2(d+t)
C ST dE2d

ST R2d+t
(
Linear(ST,EST ) ∧ R ⊆ ST × C ∧ Total(R)∧

∀x̄∀ȳ
(
(First(x̄) → α̂First) ∧ (Last(x̄) → α̂Last)∧
((ST (x̄) ∧ ST (ȳ) ∧ Pred(x̄, ȳ)) →

ϕ̂((C|R(x̄), EC |R(x̄)), (C|R(ȳ), EC |R(ȳ))))
))

,

(2)

where
– Linear(ST,EST ), First(x̄), Last(x̄) and Pred(x̄, ȳ)) denote second-order for-

mulae which express that (ST,EST ) is a linear digraph, x̄ is the first node in
(ST,EST ), x̄ is the last node in (ST,EST ), and x̄ is the immediate predecessor
of ȳ in (ST,EST ), respectively.

– R ⊆ ST ×C and Total(R) are shorthands for ∀x̄ȳ(R(x̄, ȳ) → (ST (x̄)∧C(ȳ)))
and ∀x̄(ST (x̄) → ∃ȳ(R(x̄, ȳ))), respectively.
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– α̂First and α̂Last are second-order formulae built from αFirst and αLast, respec-
tively, by modifying them to talk about the graph described by x̄ through
ST (x̄), EST and R.

– ϕ̂ is an second-order formula built from ϕ by modifying it to talk about the
graphs described by x̄ and ȳ through ST (x̄), ST (ȳ), EST and R.

For the case of relations of arbitrary arity, say S of arity r ≥ 1, we sim-
ply need to consider EC as an r-ary relation (denoted ES

C). Thus ES
C |R(x̄) =

{(v̄1, . . . , v̄r) ∈ ES
C : R(x̄, v̄1)∧ . . .∧R(x̄, v̄r)}. If we have a tuple of relations, say

l ≥ 1 relations of arities r1, . . . , rl ≥ 1, respectively, then we have to consider
similarly ES1

C1
,. . . ,ESl

Cl
. ��

Remark 1. Every property definable by a third-order formula of the schema (1),
where αFirst, αLast and ϕ are existential second-order formulae and condition (ii)
in Theorem 1 also holds, can be checked in NP exactly as it happens for every
property definable in existential second-order. It suffices to additionally guess
polynomial-sized valuations for the existentially quantified third-order variables.
Then, by Fagin’s theorem, we get that every property definable by such kind of
third-order formulae can also be defined in existential second-order. Our app-
roach however is fundamentally different. Instead of producing a non determin-
istic Turing machine, we produce a clear and intuitive second-order formula.

4 TOP : A Restricted Third Order Logic

We define the logic TOP as third-order logic restricted to third-order quantifica-
tion ranging over third-order relations of cardinality bounded by a polynomial in
the size of the structure. By contrast, the cardinality of an arbitrary third-order
relation R over a structure A is exponentially bounded by 2|dom(A)|O(1)

.
Beyond the usual symbols, the alphabet of TOP includes a third-order quan-

tifier ∃P,d and countably many third order variable symbols X d,r̄ for every d ≥ 0
and third-order type r̄. Whenever it is clear from the context, we avoid the
superscript d in the TOP variables. A valuation in a structure A assigns to each
variable X d,r̄ a third-order relation R in Ar̄, such that |R| ≤ |dom(A)|d. The
quantifier ∃P,d has the following semantics: A |= ∃P,dX d,r̄ϕ(X ) iff there is TO
relation Rr̄ of type r̄, such that A |= ϕ(X )[R] and |R| ≤ |dom(A)|d.

The following result shows that the expressive power of TOP collapses to
second-order logic. Same as in the previous section, the proof is constructive
and directly implies that the translation can be done algorithmically.

Theorem 2. Every TOP formula α can be translated into an equivalent second-
order formula α′.

Proof (Sketch). Let A be a structure and R(r1,...,rs) be a TOP relation of
type (r1, . . . , rs) in A(r1,...,rs) which is bounded by a polynomial of degree
d ≥ 0, i.e., such that |R| ≤ |dom(A)|d. Assuming that all relations which
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appear in the tuples of R are non-empty, we can use a second-order rela-
tion Rd+r1+...+rs

R of arity (d + r1 + . . . + rs) to encode R(r1,...,rs). More pre-
cisely, we can use d-tuples from dom(A)d as identifiers of tuples of second-
order relations in R, so that whenever a tuple (a1, . . . , ad, ad+1, . . . , ad+r1 , . . . ,
ad+r1+...+rs−1+1, . . . , ad+r1+...+rs

) ∈ RR, then there is a tuple in R which
can be identified by (a1, . . . , ad), which consists of s second-order relations
Sr1
1 , . . . , Srs

s , of arities r1, . . . , rs, respectively, such that (ad+1, . . . , ad+r1) ∈
S1, . . . , (ad+r1+...+rs−1+1, . . . , ad+r1+...+rs

) ∈ Ss.
The actual translation can be done by structural induction on the TOP -

formula α. We present next the two non-trivial cases.

Atomic Formulae. Let α be of the form X d,(r1,...,rs)(Xr1
1 , . . . , Xrs

s ), where
s, r1, . . . , rs ≥ 1 and X is a TOP variable.

Note that there are 2s possible patterns of empty and non-empty relations in
an s-tuple of second-order relations. We denote by ω = (i1, . . . , i|ω|) the pattern
of empty relations, with 1 ≤ i1 < i2 < . . . < i|ω| ≤ s being the indices of the
components which are empty. Correspondingly, we denote by ω̄ = (j1, . . . , j|ω̄|)
the pattern of non-empty relations. By abuse of notation, we denote as {ω} and
{ω̄} the sets of indices in ω and ω̄, respectively. In particular if {ω} = ∅ and
ω̄ = (1, . . . , s), then all the components of the s-tuple of second-order relations
are non-empty.

The idea for the translation is to replace X with 2s second-order variables,
one for each pattern ω of empty second-order relations. We use XX ,e,ω to denote
the second-order variable that encodes those tuples of second-order relations (in
the TOP relation that valuates X ) which follow ω. The arity of the second-order
relation XX ,e,ω is d + rj1 + · · · + rj|ω| where ω̄ = (j1, . . . , j|ω̄|). In what follows
we use f̄ω̄ = f̄j1 . . . f̄j|ω̄| to denote a tuple of first-order variables formed by the
concatenation of the tuples of first-order variables f̄j1 = (fj11, . . . , fj1rj1

),. . . ,
f̄j|ω̄| = (fj|ω̄|1, . . . , fj|ω̄|rj|ω̄|

).
Let Ω = {ω | ω = (i1, . . . , i|ω|) ; 1 ≤ i1 < i2 < . . . < i|ω| ≤ s ; 0 ≤ |ω| ≤

s ; ω̄ = (j1, . . . , j|ω̄|) ; {ω̄} ∪ {ω} = {1, . . . , s} ; {ω̄} ∩ {ω} = ∅}. The translation
to second-order of X d,(r1,...,rs)(Xr1

1 , . . . , Xrs
s ) is as follows:

∨

ω∈Ω

(
“(Xi1 = ∅ ∧ . . . ∧ Xi|ω| = ∅)” ∧ “(Xj1 �= ∅ ∧ . . . ∧ Xj|ω̄| �= ∅)”∧

∃v1 . . . vd

(
XX ,e,ω(v1, . . . , vd, f̄ω̄)∨
∀f̄ω̄

(
XX ,e,ω(v1, . . . , vd, f̄ω̄) ↔

∧

l∈{j1,...,j|ω̄|}
Xl(f ′

l1, . . . , f
′
lrl

)
)))

Existential Case. Let α be of the form ∃P,dX d,(r1,...,rs)(ϕ). In the translation
we simply replace the existentially quantified X by its corresponding 2s second-
order variables and state that no d-tuple can be in more than one of the different
second-order relations that encode the value of X . The formula is as follows:
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α̂ ≡{∃X
d+|f̄ω̄|
X ,e,ω }ω∈Ω

(∀z1 . . . zd

[ ∧

ω=(i1,...,i|ω|)
0≤i1<i2...<i|ω|≤s

1≤|ω|≤s

∀f̄ω̄[XX ,e,ω(z1, . . . , zd, f̄ω̄) →

(
∧

ω′=(i′
1,...,i′

|ω′|)
1≤i′

1<i′
2...<i′

|ω′|≤s

0≤|ω′|≤s; ω′ �=ω

∀f̄ ′
ω̄′(¬XX ,e,ω′(z1, . . . , zd, f̄

′
ω̄′)))]

]) ∧ ϕ̂,

where Ω is as before and ϕ′ is the second-order formula equivalent to the TOP

formula ϕ, obtained by applying inductively the described translations. ��

5 HOi,P: Restricted Higher Order Logics

We say that a third-order relation R is downward polynomially bounded by d in
a structure A if |R| ≤ |dom(A)|d. Likewise, we say that a relation R of order
i > 3 is downward polynomially bounded by d in A if |R| ≤ |dom(A)|d and
further every relation Rj

i of order 3 ≤ j < i which appears in a tuple of R is
downward polynomially bounded by d.

For i = 4, we define HO4,P as the extension of TOP with quantifiers that
range over downward polynomially bounded relations of order 4. More general,
for i ≥ 5 we define HOi,P as the extension of HOi−1,P with quantifiers that
range over downward polynomially bounded relations of order i.

Beyond the symbols in the alphabet of TOP , the alphabet of HOi,P includes
a j-th order quantifier ∃j,P,d for every i ≥ j ≥ 4, as well as countably many
variable symbols X j,d,τ for every j-th order type τ . We sometimes avoid the
superscripts d and τ for clarity.

A valuation in a structure A assigns to each variable X j,d,τ a j-th order
relation R in Aτ which is downward polynomially bounded by d. The quantifier
∃j,P,d has the following semantics: A |= ∃j,P,dX j,d,τϕ(X ) iff there is a j-th order
relation R of type τ , such that A |= ϕ(X )[R] and R is downward polynomially
bounded by d in A.

Same as with TOP , for every order i ≥ 4 the expressive power of HOi,P

collapses to second-order logic.

Theorem 3. For every order i ≥ 3, every HOi,P formula α can be translated
into an equivalent second-order formula α′.

The actual proof of this theorem is quite long and cumbersome. Due to space
limitations we omit it here. The details can nevertheless be consulted in the
technical report in [9]. To gain some intuition on how this translations works, let
us consider the case of HO4,P . The general idea is to represent the fourth-order
relations as a normalized relational database. Assume w.l.o.g. that the type of
every relations of order 3 and 4 has width s ≥ 1, and that every such relation is
downward polynomially bounded by d ≥ 1. In the case of a formula of the form
X 4,d,τ (Y3

1 , . . . ,Y3
s ) of HO4,P we can represent the fourth-order variable X 4,d,τ
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using 2s second-order variables XX 4,ω3,X of arities between d and d+(s · (d+s)),
depending on the pattern ω3,X of non-empty relations. Thus, each XX 4,ω3,X can
encode the tuples of (non-empty) third-order relations whose pattern is ω3,X . In
turns, each Y3

j can be represented by 2s second-order variables as explained in
Sect. 4 for the case of TOP .

6 Fragments of HOi,P Formulae

The aim of this section is to gain a better understanding of the syntactic restric-
tions relevant as to the expressive power of the HOi,P logics.

In [17] we showed that for any i ≥ 3 the deterministic inflationary fixed-
point quantifier (IFP ) in HOi (i.e., where the variable which is bound by the
IFP quantifier is an (i + 1)-th order variable) is expressible in ∃HOi+1. Let
IFP |P denote the restriction of IFP where there is a positive integer d such
that in every structure A, the number of stages of the fixed-point is bounded
by |dom(A)|d. And let (SO + IFP ) denote second-order logic extended with
the deterministic inflationary fixed-point quantifier, where the variable which is
bound by the IFP quantifier is a third order variable. Note that the addition
of such IFP quantifier to second-order means that we can express iterations of
length exponential in |dom(A)|, so that it is strongly conjectured that (SO +
IFP ) strictly includes second-order logic as to expressive power. However, as a
consequence of Theorem 2 this is not the case with IFP |P .

Corollary 1. For every formula in (SO+IFP |P ) there is an equivalent second-
order formula.

Let us define ΣTOP
n as the restriction of TOP to prenex formulae of the form

Q1V1 . . . QkVk(ϕ) such that:

– Q1, . . . , Qk ∈ {∀P,d,∃P,d,∀,∃}.
– Vi for 1 ≤ i ≤ k is either a second-order or TOP variable (depending on Qi).
– ϕ is a TOP formula free of TOP as well as second-order quantifiers (first-order

quantifiers as well as free TOP and second-order variables are allowed).
– The prefix Q1V1 . . . QkVk starts with an existential block of quantifiers and

has at most n alternating (between universal and existential) blocks.

By the well known Fagin-Stockmeyer characterization [18] of the polynomial-
time hierarchy, for every n ≥ 1 the prenex fragment Σn of second-order logic
captures the level Σpoly

n of the polynomial-time hierarchy. From the proof of
Theorem 2 is immediate that every formula in ΣTOP

n can be translated into an
equivalent second-order formula in Σn.

Corollary 2. ΣTOP
n captures Σpoly

n .

Consider the AA(r,m) classes of second-order logic formulae where all quantifiers
of whichever order are grouped together at the beginning of the formula, forming
up to m alternating blocks of consecutive existential and universal quantifiers,
and such that the arity of the second-order variables is bounded by r. Note that,
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the order of the quantifiers in the prefix may be mixed. As shown by Makowsky
and Pnueli [16], the AA(r,m) classes constitute a strict hierarchy of arity and
alternation. Their strategy to prove this result consisted in considering the set
AUTOSAT (AA(r,m)) of formulae of AA(r,m) which, encoded as finite struc-
tures, satisfy themselves. As the well known diagonalization argument applies, it
follows that AUTOSAT (AA(r,m)) is not definable by any formulae of AA(r,m),
but it is definable in a higher level of the same hierarchy. Similarly to Makowsky
and Pnueli arity and alternation hierarchy of second-order formulae, we can we
define hierarchies of HOi and HOi,P formulae as follows.

Definition 1 (AAi- and AAD i-hierarchies). The maximum-width of a type
τ = (ρ1, . . . , ρs) of order i ≥ 3 (denoted as max-width(τ)) is defined as follows:

– max-width(τ) = max({s, ρ1, . . . , ρs}) if i = 3.
– max-width(τ) = max({s,max-width(ρ1), . . . ,max-width(ρs)}) if i > 3.

For r,m, i ≥ 1, we define the level AAi(r,m) of the AAi-hierarchy as the
class of formulae ϕ ∈ HOi+1 of the form Q1V1 . . . QkVk(ψ) such that:

i ψ is a quantifier-free HOi-formula.
ii For j = 1, . . . , k, each Qj is either an existential or universal quantifier and

each Vj is a variable of order ≤ i + 1.
iii The prefix Q1V1 . . . QkVk has at most m alternating blocks of quantifiers.
iv If Vj is a second-order variable, then its arity is bounded by r.
v If Vj is of order ≥ 3, then the maximum-width of the type τ of Vj is ≤ r.

For r,m, i, d ≥ 1, the level AAD i(r,m, d) of the AAD i-hierarchy is obtained
by adding the following condition to the definition of AAi(r,m).

– If Vj is a variable of order ≥ 3, then the quantifier Qj has a superscript
dj ≤ d, which denotes the degree of the polynomial bounding the size of the
valuations of Vj (recall definition of HOi,P ).

Note that in the formulae of the AAi and AAD i hierarchies the quantifiers
of the highest order do not necessarily precede all the remaining quantifiers in
the prefix, as it is the case in the Σi

m hierarchies of higher-order logics.
As proven in [7,10], it is possible to gerenarlize Makowsky and Pnueli result

regarding the AA-hierarchy [16] to every higher-order logic of order i ≥ 2.

Theorem 4 (Theorem 4.28 in [7]). For every i, r,m ≥ 1, there are Boolean
queries not expressible in AAi(r,m) but expressible in AAi(r+c(r),m+6), where
c(r) = 1 for r > 1 and c(r) = 2 for r = 1.

The proof of the previous result in [7] also follows the strategy introduced
in [16]. That is, it uses the diagonalization argument to prove the lower bound
for the definability of AUTOSAT (AAi(r,m)), and shows a formula in AAi(r +
c(r),m + 6) that defines AUTOSAT (AAi(r,m)) to prove the upper bound.

Interestingly, the formula ψA ∈ AAi(r + c(r),m + 6) used in the proof of
Proposition 4.27 in [7] to define AUTOSAT (AAi(r,m)) can be straightforwadly
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translated to a formula ψd
A that defines AUTOSAT (AAD i(r,m, d)). We sim-

ply need to qualify with an appropriate superscript dj ≤ d the existential and
universal quantifiers associated to each higher-order variable Vj of order ≥ 3
which appears in ψA, so that Vj becomes restricted to range over higher-order
relations which are downward polynomially bounded by dj . Since d as well as
the order and the maximum-width of the higher-order types are bounded, a
finite set of variables is still sufficient to encode the valuations for the different
variables that might appear in any arbitrary sentence in AAD i(r,m, d). The
resulting ψd

A formula is clearly in AAD i(r + c(r),m + 6, d). It no longer defines
AUTOSAT (AAi(r,m)) when i ≥ 2, since the size of the higher-order relations
that interpret the higher-order variables of order ≥ 3 in ψd

A are downward poly-
nomially bounded by d and thus insufficient to encode every possible valuation
for variables of order ≥ 3. This is clearly not a problem if we only consider sen-
tences in AAD i(r,m, d). In fact, in this latter case we need higher-order variables
that encode only those valuations which are downward polynomially bounded
by some positive integer ≤ d.

The previous observation together with the fact that by using the same diag-
onalization argument we can prove that AUTOSAT (AAD i(r,m, d)) is not defin-
able in AAD i(r,m, d), gives us the following strict hierarchies of HOi,P formulae
for every order i.

Theorem 5. For every i ≥ 2 and r,m, d ≥ 1, there are Boolean queries not
expressible in AAD i(r,m, d) but expressible in AAD i(r + c(r),m + 6, d), where
c(r) = 1 for r > 1 and c(r) = 2 for r = 1.

Lemma 1 is a direct consequence of the translations in Theorems 2 and 3.

Lemma 1. Let r,m, d ≥ 1 and i ≥ 2. For every sentence ϕ in AAD i(r,m, d),
there is an equivalent sentence ϕ′ in AA1(ri + d · (i − 1),m + 2).

The following result suggest that the exact converse of the previous lemma is
unlikely to hold. It further shows the relationship between the levels of the arity
and alternation hierarchy of Makowsky and Pnueli and the AADi hierarchies.

Lemma 2. Let r,m ≥ 1. For every second-order sentence ϕ in AA1(r,m), there
are three sentences ϕ′, ϕ′′ and ϕ′′′, each of them equivalent to ϕ, such that:

i. ϕ′ ∈ AAD� r
2�+1(2,m, 2).

ii ϕ′′ ∈ AAD2(2,m, r).
iii ϕ′′′ ∈ AAD2(� 2

√
r� ,m, � 2

√
r� (� 2

√
r� − 1)).

A Sketch of the proof of Lemma2 is included in AppendixA.
Our final result gives a fine grained picture of the effect, as to expressive

power, of simultaneously bounding the arity, alternation and maximum degree
of the HOi,P -sentences.

Theorem 6. For every r,m, d ≥ 1, there are Boolean queries not expressible in
AAD2(r,m, d) but expressible in AADc(2,m + 8, 2) as well as in AAD2(2,m +
8, (r + 1)2 + d) and in AAD2(q,m + 8, q(q − 1)), where c =

⌈
((r+1)2+d

2

⌉
+ 1 and

q =
⌈

2
√

((r + 1)2 + d)
⌉
.
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Proof. By Lemma 1, we get that AAD2(r,m, d) ⊆ AA1(r2 + d,m + 2), i.e.,
the class of Boolean queries definable by TOP -sentences in AAD2(r,m, d) is
included in those definable by second-order sentences in AA1(r2 + d,m + 2). In
turns, by Makowsky and Pnueli [16] result (first level (i = 1) in Theorem 4),
we get that AA1(r2 + d,m + 2) ⊂ AA1(r2 + d + 1,m + 8). Finally, by Lemma2
we get that the class of Boolean queries definable in AA1(r2 + d + 1,m + 8) is
included in AADc(2,m + 8, 2) as well as in AAD2(2,m + 8, (r + 1)2 + d) and in
AAD2(q,m + 8, q(q − 1)). ��

Appendix A Proof Sketch of Lemma2

All three sentences ϕ′, ϕ′′ and ϕ′′′ can be defined by structural induction on ϕ.
We show only the non trivial cases.

If ϕ is an atomic formula of the form X(x1, . . . , xs) where s ≤ r. Then

– ϕ′ is X c(X c−1
1 ,X c−1

2 ) ∧ X c−1
1 (X c−2

1 ) ∧ X c−1
2 (X c−2

2 ,X c−2
3 ) ∧ · · · ∧

X 3
1 (X1) ∧ X 3

2 (X2) ∧ · · · ∧ X 3
c−2(Xc−2,Xc−1)∧

Xc−1(xs−1, xs) ∧ Xc−2(xs−3, xs−2) ∧ · · · ∧ X1(x̄),
where x̄ = (x1) or x̄ = (x1, x2) depending on whether s is odd or even,
respectively, and c =

⌈
r
2

⌉
+ 1.

– ϕ′′ is
∧

w̄∈W

(( ∧

1≤j<l≤s

αi,j

) → ψw̄

)
, where

• W = {(i1, i2, · · · , is) | 1 ≤ j ≤ s and 1 ≤ ij ≤ j}
• αi,j = {xi=xj if i=j

xi �=xj if i�=j

• ψw̄ is X1w̄
(x1, x1) if iu = iv for every iu, iv ∈ w̄.

Otherwise ψw̄ is
∧

(u,v)∈Aw̄

X1w̄
(xu, xv), where

Aw̄ = {(u, v) | 1 ≤ u < v ≤ s, iu, iv are the u-th and v-th elements of w̄,
respectively, iu = u, iv = v, and it < t for all v < t < u}.

– ϕ′′′ is X (X1, · · · ,Xt)
∧

1≤i≤t−1

Xi(xki+1, · · · , xki+u) ∧ Xt(xs−t, · · · , xs)

Where t = � 2
√

r�, ki = ((i − 1)t) + min((i − 1), (s − t) mod (t − 1)), u =
| s−t
t−1 | + c, and c = 1 if i ≤ (s − t) mod (t − 1), c = 0 otherwise.

If ϕ is a formula of the form ∃X(ψ) where X is a second-order variable of
arity s ≤ r. Then

– ϕ′ is ∃c,P,2X c∃c−1,P,2X c−1
1 X c−1

2 ∃c−2,P,2X c−2
1 X c−2

2 X c−2
3 · · ·

∃P,2X 3
1 X 3

2 · · · X 3
c−2∃X1X2 · · · Xc−1(ψ′),

where again c =
⌈

s
2

⌉
+ 1, and ψ′ is the formula in AADc(2,m, 2) equivalent

to ψ, obtained by applying the translation inductively.
– ϕ′′ is ∃P,sXw̄1Xw̄2 · · · Xw̄|W |∃X1w̄1

X2w̄1
X1w̄2

X2w̄2
· · · X1w̄|W |

X2w̄|W |
(ψ′′),

where w̄1, w̄2, · · · , w̄|W | is an arbitrary lexicographic order of W and ψ′′ is the
formula in AAD2(2,m, s) equivalent to ψ, obtained by applying the transla-
tion inductively.
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– ϕ′′′ is ∃P,hX∃X1X2 · · · Xt(ψ′′′) where t = � 2
√

s�, h = t(t − 1) and ψ′′′ is the
formula in AAD2(t,m, t(t − 1)) equivalent to ψ, obtained by applying the
translation inductively.

It is not difficult to show by structural induction that ϕ′, ϕ′′ and ϕ′′′ are
equivalent to ϕ. We only need to see that every second-order relation of arity
s ≤ r can be encoded as a higher-order relation of the type used in the translation
and with the required polynomial bound.
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Abstract. We prove various extensions of the Tennenbaum phenom-
enon to the case of computable quotient presentations of models of arith-
metic and set theory. Specifically, no nonstandard model of arithmetic
has a computable quotient presentation by a c.e. equivalence relation. No
Σ1-sound nonstandard model of arithmetic has a computable quotient
presentation by a co-c.e. equivalence relation. No nonstandard model
of arithmetic in the language {+, ·, ≤} has a computably enumerable
quotient presentation by any equivalence relation of any complexity. No
model of ZFC or even much weaker set theories has a computable quo-
tient presentation by any equivalence relation of any complexity. And
similarly no nonstandard model of finite set theory has a computable
quotient presentation.

A computable quotient presentation of a mathematical structure A consists of
a computable structure on the natural numbers 〈N, �, ∗, . . . 〉, meaning that the
operations and relations of the structure are computable, and an equivalence rela-
tion E on N, not necessarily computable but which is a congruence with respect
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to this structure, such that the quotient 〈N, �, ∗, . . . 〉 /E is isomorphic to the
given structure A. Thus, one may consider computable quotient presentations of
graphs, groups, orders, rings and so on, for any kind of mathematical structure.
In a language with relations, it is also natural to relax the concept somewhat by
considering the computably enumerable quotient presentations, which allow the
pre-quotient relations to be merely computably enumerable, rather than insisting
that they must be computable.

At the 2016 conference Mathematical Logic and its Applications at the
Research Institute for Mathematical Sciences (RIMS) in Kyoto, Khoussainov
[Kho16] outlined a sweeping vision for the use of computable quotient presen-
tations as a fruitful alternative approach to the subject of computable model
theory. In his talk, he outlined a program of guiding questions and results in
this emerging area. Part of this program concerns the investigation, for a fixed
equivalence relation E or type of equivalence relation, which kind of computable
quotient presentations are possible with respect to quotients modulo E.

In this article, we should like to engage specifically with two conjectures that
Khoussainov had made in Kyoto.

Conjecture (Khoussainov)

(1) No nonstandard model of arithmetic admits a computable quotient pre-
sentation by a computably enumerable equivalence relation on the natural
numbers.

(2) Some nonstandard model of arithmetic admits a computable quotient pre-
sentation by a co-c.e. equivalence relation.

We shall prove the first conjecture and refute several natural variations of
the second conjecture, although a further natural variation, perhaps the central
case, remains open. In addition, we consider and settle the natural analogues of
the conjectures for models of set theory.

Perhaps it will be helpful to mention as background the following observa-
tion, amounting to a version of the computable completeness theorem1, which
identifies a general method of producing computable quotient presentations.

Observation 1. Every consistent c.e. axiomatizable theory T in a functional
language admits a computable quotient presentation by an equivalence relation
E of low Turing degree.

Proof. Consider any computably enumerable theory T in a functional language
(no relation symbols). Let τ be the computable tree of attempts to build a com-
plete consistent Henkin theory extending T , in the style of the usual computable
completeness theorem. To form the tree τ , we first give ourselves sufficient Henkin
constants, and then add to T all the Henkin assertions ∃xϕ(x) → ϕ(cϕ). Next,
we enumerate all sentences in this expanded language, and then build the tree
τ by adding to T at successive nodes either the next sentence or its negation,

1 This analogy comes with the obvious difference that the computable completeness
theorem assumes the theory is decidable.
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provided that no contradiction has yet been realized from that theory by that
stage. This tree is computable, infinite and at most binary branching. And so
by the low basis theorem, it has a branch of low Turing complexity. Fix such a
branch. The assertions made on it provide a complete consistent Henkin theory
T+ extending T . Let A be the term algebra generated by the Henkin constants
in the language of T . Thus, the elements of A consist of formal terms in this
language with the Henkin constants, and we may code the elements of A with
natural numbers. The natural operations on this term algebra are computable:
to apply an operation to some terms is simply to produce another term. We may
define an equivalence relation E on A, by saying that two terms are equivalent
s E t, just in case the assertion s = t is in the Henkin theory T+, and this
will be a congruence with respect to the operations in the term algebra, pre-
cisely because T+ proves the equality axioms. Finally, the usual Henkin analysis
shows that the quotient A/E is a model of T+, and in particular, it provides a
computable quotient presentation of T 2. ��

The previous observation is closely connected with a fundamental fact of uni-
versal algebra, namely, the fact that every algebraic structure is a quotient of the
term algebra on a sufficient number of generators. Every countable group, for
example, is a quotient of the free group on countably many generators, and more
generally, every countable algebra (a structure in a language with no relations)
arises as the quotient of the term algebra on a countable number of generators.
Since the term algebra of a computable language is a computable structure, it
follows that every countable algebra in a computable language admits a com-
putable quotient presentation.

One of the guiding ideas of the theory of computable quotients is to take from
this observation the perspective that the complexity of an algebraic structure is
contained not in its atomic diagram, often studied in computable model theory,
but rather solely in its equality relation. The algebraic structure on the term
algebra, after all, is computable; what is difficult is knowing when two terms
represent the same object. Thus, the program is to investigate which equivalence
relations E or classes of equivalence relations can give rise to a domain N/E for
a given type of mathematical structure. There are many open questions and the
theory is just emerging.

We should like to call particular attention to the fact that the proof method
of Observation 1 and the related observation of universal algebra breaks down
when the language has relation symbols, because the corresponding relation for
the resulting Henkin model will not generally be computable on the term algebra
or even just on the constants. The complexity of the relation in the quotient
structure arises from the particular branch that was chosen through the Henkin
tree or equivalently from the Henkin theory itself. So it seems difficult to use the
Henkin theory idea to produce computable quotient presentations of relational
theories. We shall see later how this relational obstacle plays out in the case of
arithmetic, whose usual language {+, ·, 0, 1, <} includes a relation symbol, and
especially in the case of set theory, whose language {∈} is purely relational.
2 Obviously, a low degree does not have to be c.e. and cannot be in this construction.
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Let us now prove that Khoussainov’s first conjecture is true.

Theorem 2. No nonstandard model of arithmetic has a computable quotient
presentation by a c.e. equivalence relation. Indeed, this is true even in the
restricted (but fully expressive) language {+, ·} with only addition and multipli-
cation: there is no computable structure 〈N,⊕,�〉 and a c.e. equivalence relation
E, which is a congruence with respect to this structure, such that the quotient
〈N,⊕,�〉 /E is a nonstandard model of arithmetic.

Proof. Suppose toward contradiction that E is a computably enumerable equiv-
alence relation on the natural numbers, that 〈N,⊕,�〉 is a computable structure
with computable binary operations ⊕ and �, that E is a congruence with respect
to these operations and that the quotient structure 〈N,⊕,�〉 /E is a nonstandard
model of arithmetic. A very weak theory of arithmetic suffices for this argument.

Let 0̄ be a number representing zero in 〈N,⊕,�〉 /E and let 1̄ be a number
representing one. Since ⊕ is computable, we can computably find numbers n̄
representing the standard number n in 〈N,⊕,�〉 /E simply by computing n̄ =
1̄ ⊕ · · · ⊕ 1̄.

Let A and B be computably inseparable c.e. sets in the standard natural
numbers. So they are disjoint c.e. sets for which there is no computable set
containing A and disjoint from B. Fix Turing machine programs pA and pB

that enumerate A and B, respectively. We shall run these programs inside the
nonstandard model 〈N,⊕,�〉 /E. Although every actual element of A will be
enumerated by pA inside the model at some standard stage, and similarly for B
and pB , the programs pA will also enumerate nonstandard numbers into the sets,
and it is conceivable that at nonstandard stages of computation, the program
pA might place standard numbers into its set, even when those numbers are not
in A. In particular, there is no guarantee in general that the sets enumerated by
pA and pB in 〈N,⊕,�〉 /E will be disjoint.

Nevertheless, we proceed as follows. In the quotient structure, fix any non-
standard number c, and let Ã be the set of elements below c that in the quotient
structure 〈N,⊕,�〉 /E are thought to be enumerated by pA before they are
enumerated by pB . Since every actual element of A is enumerated by pA at a
standard stage, and not by pB by that stage, it follows that the elements of A
are all in Ã, in the sense that whenever n ∈ A, then n̄ is in Ã. Similarly, since
the actual elements of B are enumerated by pB at a standard stage and not by
pA by that stage, it follows that none of the actual elements of B will enter Ã.

n ∈ A → n̄ ∈ Ã

n ∈ B → n̄ /∈ Ã

Thus, the set C = {n | n̄ ∈ Ã } contains A and is disjoint from B. We shall prove
that C is computable.

Since Ã is definable inside 〈N,⊕,�〉 /E, it is coded by an element of this
structure. Let us use the prime-product coding method. Namely, inside the non-
standard model let pk be the kth prime number, and let a be the product of the
pk for which k < c and k ∈ Ã.
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Next, the key idea of the proof, we let b be the corresponding code for the
complement of Ã below c. That is, b is the product of the pk for which k < c
and k /∈ Ã. We shall use both a and b to decode the set.

Given any number n, we can compute p̄n and then search for a number x
for which (x � p̄n) E a. In other words, we are searching for a witness that
p̄n divides a, from which we could conclude that n̄ ∈ Ã and so n ∈ C. At the
same time, we search for a number y for which (y � p̄n) E b. Such a y would
witness that p̄n divides b and therefore that n̄ /∈ Ã and hence n /∈ C. The main
point is that one or the other of these things will happen, since a and b code
complementary sets, and so in this way we can compute whether n ∈ C or not.
So C is a computable separation of A and B, contrary to our assumption that
they were computably inseparable. ��

By replacing x � p̄n in the proof with x⊕x⊕· · ·⊕x, using pn many factors, we
may deduce the Tennenbaum-style result that if 〈N,⊕,�〉 /E is a nonstandard
model of arithmetic and E is c.e., then ⊕ is not computable. That is, we don’t
need both operations in the pre-quotient structure to be computable. Similar
remarks will apply to many of the other theorems in this article, and we shall
explore this one-operation-at-a-time issue more fully in our follow-up article.

An alternative proof of Theorem2 proceeds as follows. Consider the stan-
dard system of any nonstandard model of arithmetic, which is the collection of
traces on the standard N of the sets that are coded inside the model. Using
the prime-product coding, for example, these can be seen as sets of the form
{n | p̄n divides a }, where a is an arbitrary element of the model, pn means the
nth prime number and p̄n means the object inside the model that represents that
prime number. It is a theorem of Scott that the standard systems of the count-
able nonstandard models of PA are precisely the countable Scott sets, which are
sets of subsets of N that form a Boolean algebra, are closed downward under rel-
ative computability, and contain paths through any infinite binary tree coded in
them. Because there is a computable tree with no computable path, every stan-
dard system must have noncomputable sets and therefore non-c.e. sets, since it
is closed under complements.

For the alternative proof of Theorem2, the main point is that the assumptions
of the theorem ensure that every set in the standard system of the quotient model
〈N,⊕,�〉 /E is c.e., contradicting the fact we just mentioned. The reason is that
for any object a, the number n is in the set coded by a just in case p̄n divides a,
and this occurs just in case there is a number x for which (x � p̄n) E a, which is
a c.e. property since E is c.e. and � is computable. So every set in the standard
system would be c.e., contrary to the fact we mentioned earlier.

Another alternative proof of a version of Theorem2 handles the case of non-
standard models in the full language of arithmetic {+, ·, 0, 1, < }. Namely, if E is
c.e. and 〈N,⊕,�, 0̄, 1̄,�〉 is a computably enumerable structure whose quotient
by E is a nonstandard model of arithmetic, then it follows from the next lemma
that E must also be co-c.e., and hence computable. And once we know that
E is computable, we may construct a computable nonstandard model of arith-
metic, by using least representatives in each equivalence class, and this would
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contradict Tennenbaum’s theorem, which says that there is no computable non-
standard model of arithmetic.

Lemma 3. Suppose that E is an equivalence relation on the natural numbers.

(1) If E is a congruence with respect to a computable relation � and the quotient
〈N,�〉 /E is a strict linear order, then E is computable.

(2) If E is a congruence with respect to a c.e. relation � and the quotient
〈N,�〉 /E is a strict linear order, then E is co-c.e.

(3) If E is a congruence with respect to a computable relation � and the quotient
〈N,�〉 /E is a reflexive linear order or merely an anti-symmetric relation,
then E is computable.

(4) If E is a congruence with respect to a c.e. relation � and the quotient
〈N,�〉 /E is a reflexive linear order � or merely anti-symmetric, then E
is c.e.

Proof. For statement (1), suppose that E is a congruence with respect to a
computable relation � and the quotient is a strict linear order. Since the quotient
relation obeys

x �= y ↔ x < y or y < x,

it follows that
¬(x E y) ↔ x � y or y � x.

Since this latter property is computable, it follows that E is computable. For
statement (2), similarly, the latter property is c.e., and so E is co-c.e.

For statement (3), suppose that E is a congruence with respect to a com-
putable relation �, whose quotient is anti-symmetric. Since the quotient relation
satisfies

x = y ↔ x ≤ y and y ≤ x,

it follows that
x E y ↔ x � y and y � x.

If � is computable, as in statement (3), then E will be computable. And if � is
computably enumerable, as in statement (4), then E must be c.e. ��

In particular, including < or ≤ in the language of arithmetic and asking for
a computable or computably enumerable quotient presentation with respect to
E will impose certain complexity requirements on E, simply in order that E is
a congruence with respect to the order relation.

Using this idea, the following corollary to Theorem2 settles the version of
Khoussainov’s second conjecture for the language {+, ·,≤}. By referring to the
language of arithmetic with ≤, we intend the theory of arithmetic expressed in
terms of the natural reflexive order relation, rather than the usual strict order
relation <.
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Corollary 4. No nonstandard model of arithmetic in the language {+, ·,≤}
has a computably enumerable quotient presentation by any equivalence rela-
tion, of any complexity. That is, there is no computably enumerable structure
〈N,⊕,�,�〉, where ⊕ and � are computable binary operations and � is a com-
putably enumerable relation, and an equivalence relation E that is a congruence
with respect to that structure, such that the quotient 〈N,⊕,�,�〉 /E is a non-
standard model of arithmetic in the language {+, ·,≤}.
Proof. Suppose toward contradiction that E is an equivalence relation that is
a congruence with respect to computable functions ⊕ and � and c.e. relation
� for which the quotient structure 〈N,⊕,�,�〉 /E is a nonstandard model of
arithmetic. Because the quotient of � by E is a reflexive linear order, it follows
by Lemma 3 that E must be c.e., and so the corollary follows directly from
Theorem 2. ��

Let’s now consider another version of the second conjecture and the case of
co-c.e. equivalence relations. We shall refute the versions of the second conjecture
for which the quotient model is to exhibit a certain degree of soundness.

Let’s begin with an extreme version of this phenomenon, where we ask for
far too much: models of true arithmetic. A model of true arithmetic is a model
with the same theory as the standard model of arithmetic. Equivalently, it is
an elementary extension of the standard model inside it. After ruling out this
extreme case, we shall than sharpen the result to the case of Σ1-soundness and
much less. Recall that a theory T is Σ1-sound, if for any Σ1-sentence ϕ, if ϕ is
provable in T , then ϕ is true in the standard model N.

Theorem 5. There is no computable structure 〈N,⊕,�〉 and a co-c.e. equiva-
lence relation E, which is a congruence with respect to this structure, such that
the quotient 〈N,⊕,�〉 /E is a nonstandard model of true arithmetic.

Proof. Suppose that 〈N,⊕,�〉 is a computable structure and E is a co-c.e. equiv-
alence relation, a congruence with respect to this structure, whose quotient
〈N,⊕,�〉 /E is a nonstandard model of true arithmetic. As in the earlier proof,
let 1̄ be a representative of the number 1 inside this model and let n̄ be the result
of adding 1̄ to itself n times with ⊕ inside the model, so that n̄ is a representative
for what the quotient model thinks is the standard number n.

Since the quotient model satisfies true arithmetic, it follows that it is correct
about the halting problem on standard numbers. So there is a number h that
codes the halting problem up to some nonstandard length c of computations. In
particular, for standard n we shall have that n ∈ 0′ if and only if n̄ is in the set
coded by h. Another way to say this is that 0′ is in the standard system of the
quotient model, and this is all we actually require of true arithmetic here.

Let A and B be 0′-computably inseparable sets, that is, sets that are com-
putably enumerable relative to an oracle for the halting problem 0′, but there is
no 0′-decidable separating set. Let pA and pB be the programs that enumerate A
and B from an oracle for 0′. Inside the nonstandard model 〈N,⊕,�〉 /E, we may
run pA and pB with the oracle determined by h, which happens to agree with 0′
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on the standard numbers. In particular, on standard input n, the computation
with oracle h inside the model will agree at the standard stages of computation
with the actual computation using the real oracle 0′.

Let Ã be the elements k < c that are enumerated by ph
A before they are

enumerated by ph
B . As before, our assumptions ensure that every actual element

of A is in Ã, and no element of B is in Ã.

n ∈ A → n̄ ∈ Ã

n ∈ B → n̄ /∈ Ã

Thus, the set C of standard n for which n̄ ∈ Ã is a set that contains A and is
disjoint from B.

It remains for us to show for the contradiction that C is computable from 0′.
As before, inside the quotient model, let a be the product of pk for k in Ã, and
let b be the product of pk for k not in Ã. Given n, we want to determine whether
n ∈ C or not, which is equivalent to n̄ ∈ Ã. We can compute p̄n, and then we can
try to discover if p̄n divides a or p̄n divides b. Note that p̄n divides a just in case
∃x (x � p̄n) E a, which has complexity Σ2, since E is Π1. Similarly, the relation
p̄n divides b is also Σ2. But since these answers are opposite, it follows that
both of these relations are Δ2, and hence computable from 0′. So the relation
n ∈ C is computable from 0′, and we have therefore found a 0′-computable
separating set C, contradiction our assumption that A and B were 0′-computably
inseparable. ��

We could alternatively have argued as in the alternative proof of Theorem2
that every element of the standard system of the model is computable from 0′,
which is a contradiction if one knows that 0′ is in the standard system.

Of course, true arithmetic was clearly much too strong in this theorem, and
we could also have given a more direct alternative proof just by extracting higher-
order arithmetic truths from this model in a Σ2 or even Δ2-manner, since the
pre-quotient model is computable and the relation is co-c.e. So a better theorem
will eliminate or significantly weaken the true-arithmetic hypothesis, as we do
in the following sharper result.

Theorem 6. There is no computable structure 〈N,⊕,�〉 and a co-c.e. equiva-
lence relation E, which is a congruence with respect to this structure, such that
the quotient 〈N,⊕,�〉 /E is a Σ1-sound nonstandard model of arithmetic, or
even merely a nonstandard model of arithmetic with 0′ in the standard system
of the model.

Proof. If the model is Σ1-sound, then it computes the halting problem correctly,
and so 0′ will be in the standard system of the model, which means that it has
a code h as in the proof above. That was all that was required in the previous
argument, and so the same contradiction is achieved. ��
Corollary 7. No nonstandard model of arithmetic in the language
{+, ·, 0, 1, < } and with 0′ in its standard system has a computably enumerable
quotient presentation by any equivalence relation, of any complexity.
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Proof. If 〈N,⊕,�, 0̄, 1̄,�〉 /E is such a computably enumerable quotient presen-
tation, then Lemma3 shows that E must be co-c.e., and so the situation is ruled
out by Theorem 6. ��

Note that containing 0′ in the standard system is a strictly weaker property
than being Σ1-sound, since a simple compactness argument allows us to insert
any particular set into the standard system of an elementary extension of any
particular model of arithmetic.

Our results do not settle what might be considered the central case of the
second conjecture, which remains open. We are inclined to expect a negative
answer, whereas Khoussainov has conjectured a positive answer.

Question 8. Is there a nonstandard model of PA in the usual language of arith-
metic {+, ·, 0, 1, <} that has a computably enumerable quotient presentation by
some co-c.e. equivalence relation? Equivalently, is there a nonstandard model of
PA in that language with a computably enumerable quotient presentation by any
equivalence relation, of any complexity?

The two versions of the question are equivalent by Lemma 3, which shows
that in the language with the strict order, the equivalence relation must in any
case be co-c.e.

Let us now consider the analogous ideas for the models of set theory, rather
than for the models of arithmetic. We take this next theorem to indicate how
the program of computable quotient presentations has difficulties with purely
relational structures.

Theorem 9. No model of ZFC has a computable quotient presentation. That
is, there is no computable relation ε and equivalence relation E, a congruence
with respect to ε, for which the quotient 〈N, ε 〉 /E is a model of ZFC. Indeed,
no such computable quotient is a model of KP or even considerably weaker set
theories.

Just to emphasize, we do not assume anything about the complexity of the
equivalence relation E, which can be arbitrary, or about whether the quotient
model of set theory 〈N, ε 〉 /E is well-founded or ill-founded, standard or non-
standard. Note also the typographic distinction between the relation ε, which is
the computable relation of the pre-quotient structure 〈N, ε 〉, and the ordinary
set membership relation ∈ of set theory.

Proof. Suppose toward contradiction that ε is a computable relation on N and
that E is an equivalence relation, a congruence with respect to ε, for which the
quotient 〈N, ε 〉 /E is a model of set theory. We need very little strength in the
set theory, and even an extremely weak set theory suffices for the argument.
We shall use the Kuratowski definition of ordered pair in set theory, for which
〈x, y〉 = {{x} , {x, y}}.

Since set theory proves that the set of natural numbers exists, there is some
N ∈ N that the quotient model thinks represents the set of all natural numbers.
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Also, this model thinks that various kinds of sets involving natural numbers
exist, such as the set coding the successor relation

S = { 〈n, n + 1〉 | n ∈ N }.

To be clear, we mean that S is a number in N that the quotient model 〈N, ε 〉 /E
thinks is the set of the successor relation we identify above. So the ε-elements of
S will all be thought to be Kuratowski pairs of natural numbers in the model,
and this could include nonstandard numbers if there are any.

Similarly, we have sets consisting of the natural number singletons and
doubletons.

Sing = { {n} | n ∈ N },

Doub = { {n,m} | n �= m in N }.

To be clear, we mean that Sing and Doub are particular elements of N that
in the quotient model 〈N, ε 〉 /E are thought to be the sets defined by those
set-theoretic expressions. We assume that our set theory proves that these sets
exist.

Next, we claim that there is a computable function n �→ n̄, such that n̄
represents what the quotient model 〈N, ε 〉 /E thinks is the standard natural
number n.3 To see this, we may fix a number 0̄ that represents the number 0.
Next, given n̄, we search for an element d ε S that will represent the pair 〈n̄,m〉,
and when found, we set n + 1 = m. How shall we recognize this d and m using
only ε? Well, the d we want has the form { {n̄} , {n̄,m} } inside the model, and
so we search for an element d ε S that has an element x ε d with x ε Sing and
n̄ ε x. This x must represent the set {n̄}, since x is thought to have only one
element, since it is in Sing. Having found d, we search for y ε d with y ∈ Doub
and an element m with m ε y, but ¬(m ε x). In this case, it must be that y
represents {n̄,m}, and so we may let n + 1 = m and proceed. So the map n �→ n̄
is computable.

It follows that every set in the standard system of the model 〈N, ε 〉 /E is
computable. Specifically, if a is any element of the model, then the trace of
this object on the natural numbers is the set {n ∈ N | n̄ ε a }, which would be a
computable set, since both ε and the map n �→ n̄ is computable.

But we mentioned earlier that every model of set theory and indeed of
arithmetic must have non-computable sets in its standard system, so this is a
contradiction. ��

We could have argued a little differently in the proof. Namely, if ε is a com-
putable relation with a congruence E and 〈N, ε 〉 /E is a model of set theory,
then by the axiom of extensionality, we have

x �= y ↔ ∃z ¬(z ∈ x ↔ z ∈ y).

In the pre-quotient model, this amounts to:

¬(x E y) ↔ ∃z¬(z ε x ↔ z ε y).
3 Apparently, a similar argument appears in [Rab58].
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Thus, in the case that ε is computable, in analogy with Lemma 3 we may deduce
from this that E must be co-c.e., even though we had originally made no assump-
tion on the complexity of E. And in this case, the theorem follows from the next
result.

Theorem 9 shows that it is too much to ask for computable quotient presenta-
tions of models of set theory. So let us relax the computability requirement on the
pre-quotient membership relation ε by considering the case of computably enu-
merable quotient presentations, where ε is merely c.e. rather than computable.
In this case, we can still settle the second conjecture by ruling out quotient
presentations by co-c.e. equivalence relations.

Theorem 10. There is no c.e. relation ε with a co-c.e. equivalence relation E
respecting it for which 〈N, ε 〉 /E is a model of set theory.

Proof. In the proof of Theorem 9, we had used the computability of ε, as opposed
to the computable enumerability of ε, in the step where we needed to know
¬(m ε x). At that step of the proof, really what we needed to know was that m
and n̄ were not representing the same object. But if E is co-c.e., then we can
learn that n̄ �= m simply by waiting to see that n̄ E m fails, which if true will
happen at some finite stage since E is co-c.e. Indeed, it is precisely with the co-
c.e. equivalence relations E that one is entitled to know by some finite stage that
two numbers represent different objects in the quotient. Therefore, if E is co-c.e.,
we still get a computable map n �→ n̄. And then, in the latter part of the proof,
we would conclude that every set in the standard system is c.e., since the trace
of any object a in the model on the natural numbers is the set {n ∈ N | n̄ ε a },
which would be c.e. But every standard system must contain non-c.e. sets, by
the paths-through-trees argument, since it contains non-computable sets and it
is a closed under complements. So again we achieve a contradiction. ��

Let us now explore the analogues of the earlier theorems for nonstandard
models of finite set theory. Let ZF¬∞ denote the usual theory of finite set the-
ory, which includes all the usual axioms of ZFC, but without the axiom of infinity,
plus the negation of the axiom of infinity and plus the ∈-induction scheme for-
mulation of the foundation axiom. This theory is true in the structure 〈HF,∈〉
of hereditarily finite sets, and it is bi-interpretable with PA via the Ackermann
relation on natural numbers.4

Theorem 11. There is no computable relation ε and equivalence relation E, a
congruence with respect to ε, of any complexity, such that the quotient 〈N, ε 〉 /E
is a nonstandard model of finite set theory ZF¬∞.
4 Some researchers have also considered another strictly weaker version of this theory,

omitting the ∈-induction scheme. But it turns out that this version of the theory is
flawed for various reasons: it cannot prove that every set has a transitive closure; it
is not bi-interpretable with PA; it does not support the Tennenbaum phenomenon
(see [ESV11]). Meanwhile, since all these issues are addressed by the more attractive
and fruitful theory ZF¬∞, we prefer to take this theory as the meaning of ‘finite set
theory’.
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Proof. Assume that ε is a computable relation for which 〈N, ε 〉 /E is a nonstan-
dard model of ZF¬∞. The ordinals of this model with their usual arithmetic form
a nonstandard model of PA, which we may view as the natural numbers of the
model. Let N be a number representing a nonstandard such natural number in
〈N, ε 〉 /E. There is a set S representing the set { 〈n, n + 1〉 | n < N } as defined
inside the model, and similarly we have sets representing the natural number
singletons and doubletons up to N .

Sing = { {n} | n ∈ N, n < N },

Doub = { {n,m} | n �= m in N, n,m < N }.

So Sing and Doub are particular numbers in N that in the quotient 〈N, ε 〉 /E
represent the sets we have just defined by those expressions.

We may now run essentially the same argument as in the proof of Theorem 9.
Namely, we may define a computable function n �→ n̄, where n̄ represents the
natural number n in the model 〈N, ε 〉 /E, by using the parameters S, Sing and
Doub and decoding via the Kuratowski pair function as before. This argument
uses the computability of ε as before in order to produce n + 1 from n̄. Finally,
we use this function to show that every set in the standard system of the model
is computable, since for any object a, the trace of a on the natural numbers is
the set of n for which n̄ ε a, which is a computable property. This contradicts the
fact that the standard system of any nonstandard model of ZF¬∞ must include
non-computable sets. ��

Finally, we have the analogue of Theorem10 for the case of finite set theory.

Theorem 12. There is no c.e. relation ε with a co-c.e. equivalence relation E
respecting it for which 〈N, ε 〉 /E is a nonstandard model of finite set theory
ZF¬∞.

Proof. This theorem is related to Theorem 11 the same way that Theorem 10 is
related to Theorem 9. Namely, in the proof of Theorem11, we used the com-
putability of the membership relation ε in the step computing the function
n �→ n̄. If ε is merely computably enumerable, as here, then we can never-
theless still find a computable function n �→ n̄, provided that the equivalence
relation E is co-c.e., since in the details of the proof as explained in Theorem10,
we needed to know that we had found the right value for n + 1 by knowing that
a certain number m was actually representing a different number than n̄, and it
is precisely with a co-c.e. equivalence relation E that one can know such a thing
at some finite stage.

If n �→ n̄ is computable, then with a c.e. relation ε, we can deduce that every
set in the standard system is c.e., since a codes the set of n for which n̄ ε a,
a c.e. property, and this contradicts the fact that every standard system of a
nonstandard model of ZF¬∞ must contain non-c.e. sets. ��

We expect to follow up this article with a second article containing several
more refined results.
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Abstract. We introduce a proper display calculus for (non-distributive) Lattice
Logic which is sound, complete, conservative, and enjoys cut-elimination and
subformula property. Properness (i.e. closure under uniform substitution of all
parametric parts in rules) is the main interest and added value of the present pro-
posal, and allows for the smoothest Belnap-style proof of cut-elimination, and
for the most comprehensive account of axiomatic extensions and expansions of
Lattice Logic in a single overarching framework. Our proposal builds on an alge-
braic and order-theoretic analysis of the semantic environment of lattice logic,
and applies the guidelines of the multi-type methodology in the design of display
calculi.
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1 Introduction

Lattice logic (i.e. the restriction of classical propositional logic to the {∧,∨,�,⊥}-
fragment without distributivity) is the propositional base of many well known ‘lattice-
based’ logics (e.g. the full Lambek calculus [31], bilattice logic [1], orthologic [35],
linear logic [33]), and as such is hardly ever studied in isolation. An important question
in structural proof theory concerns how to smoothly account for the transition between
a given (lattice-based) logic and its axiomatic extensions and expansions [50, Chap.
1], [23, p. 352], [24,27]. In the present paper, we introduce a calculus for lattice logic
aimed at supporting this smooth transition for a class of lattice-based logics which is
the widest so far.

Toward this goal, research in structural proof theory [24,46,50] has identified two
general criteria: (a) all introduction rules for logical connectives are to have one and
the same form; (b) the information on the distinctive features of each logical connec-
tive and on the interaction between connectives is to be encoded in structural rules
satisfying certain requirements, captured by the notion of analiticity. These criteria are
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fulfilled, among others, by proper display calculi, a refinement of Belnap’s display cal-
culi [2] introduced by Wansing [50]. However, in most calculi for lattice-based logics
(cf. e.g. [47,48]), including display calculi [3], the introduction rules for conjunction
and disjunction have the so-called additive form, while those of the other connectives
typically are in multiplicative form (see Sect. 2.2). More fundamentally, conjunction
and disjunction do not have structural counterparts in these calculi. This non-standard
treatment can be explained, in the setting of display calculi, by the following trade-off:
introducing the structural counterparts of these connectives would require the addition
of the display postulates in order to enforce the display property, which is key to the
Belnap-style cut elimination metatheorem [2,50]; however, the addition of display pos-
tulates would make it possible for the resulting calculus to derive the unwanted distrib-
utivity axioms as theorems. So, the need to block the derivation of distributivity is at
the root of the non-standard design choice of having logical connectives without their
structural counterpart (cf. [4]).

In the present paper, we introduce the proper display calculus D.LL for lattice logic
which enjoys the full display property, and is such that all introduction rules have the
same form (namely the multiplicative form). We succeed in circumventing the trade-
off described above by introducing a richer language, with terms of different types.
This solution applies the principles of a design for proof calculi (the multi-type display
calculi) introduced in [25,26,28,36] with the aim of displaying dynamic epistemic logic
and propositional dynamic logic, then successfully applied to several other logics (such
as linear logic with exponentials [39], inquisitive logic [29], semi De Morgan logic
[34]) which are not properly displayable1 in their single-type formulation, and has also
served as a platform for the design of novel logics [5].

The main feature of D.LL is that it makes it possible to express the interactions
between conjunction and disjunction and between them and other connectives at the
structural level, by means of analytic structural rules. The remarkable property of these
rules is that adding them to a given proper multi-type calculus preserves the package
of basic properties of that calculus (soundness, completeness, conservativity, cut elimi-
nation and subformula property). This is all the more an advantage, because a uniform
theory of analytic extensions of proper multi-type calculi is being developed thanks to
the systematic connections established in [37] between proper display calculi and uni-
fied correspondence theory. These connections have made it possible to characterize
the syntactic shape of axioms (the so-called analytic inductive axioms) which can be
equivalently translated into analytic rules of a proper display calculus. Thus, the main
feature of this calculus paves the way to the creation of the most comprehensive and
modular proof theory of analytic extensions of lattice-based logics. The specific solu-
tion for lattice logic is justified semantically by Birkhoff’s representation theorem for
complete lattices.

1 Properly displayable logics (cf. [50]) are those amenable to be presented in the form of a
proper display calculus. The notion of properly displayable logic has been characterized in
a purely proof-theoretic way in [9]. In [37], an alternative characterization of properly dis-
playable logics has been proposed which builds on the algebraic theory of unified correspon-
dence [10,12,14,15,18–21,30,42–45]. The techniques and insights of unified correspondence
are also available for lattice-based logics, cf. [11,13,16,17]).
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Structure of the Paper. In Sect. 2, we briefly report on a Hilbert-style presentation of
lattice logic and its algebraic semantics, and discuss the issue of a modular account of
its axiomatic extensions and expansions. In Sect. 3, we report on well known order-
theoretic facts related with the representation of complete lattices, which help to intro-
duce an equivalent multi-type semantic environment for lattice logic. In Sect. 4, we
introduce the multi-type language naturally associated with the semantic environment
of the previous section. In Sect. 5, we introduce the multi-type calculus D.LL for lattice
logic which constitutes the core contribution of the present paper. In Sect. 6, we discuss
the basic properties of D.LL (soundness, completeness, cut-elimination, subformula
property, and conservativity). In Sect. B, we collect some derivations, and prove that
(the translation of) the distributivity axiom is not derivable in D.LL.

2 Lattice Logic and Its Single-Type Proof Theory

2.1 Hilbert-Style Presentation of Lattice Logic and Its Algebraic Semantics

The language L of lattice logic over a set AtProp of atomic propositions is so defined:

A ::= p | � | ⊥ | A∧A | A∨A.
Lattice logic has the following Hilbert-style presentation:

A � A, ⊥ � A, A � �, A � A∨B, B � A∨B, A∧B � A, A∧B � B

A � B B �C
A �C

A � B
A[C/p] � B[C/p]

A � B A �C
A � B∧C

A �C B �C
A∨B �C

where A[C/p] indicates that all occurrences of p ∈ AtProp in A are replaced by C.
The algebraic semantics of lattice logic is given by the class of bounded lattices (cf.

[6,8]), i.e. (2,2,0,0)-algebras A = (X,∧,∨,�,⊥) validating the following identities:

Commutative laws Associative laws
cC. a∧b = b∧a cA. a∧ (b∧ c) = (a∧b)∧ c
dC. a∨b = b∨a dA. a∨ (b∨ c) = (a∨b)∨ c

Identity laws Absorption laws
cI. a∧� = a cAb. a∧ (a∨b) = a
dI. a∨⊥ = a dAb. a∨ (a∧b) = a

A bounded lattice is distributive if it validates the distributivity laws below. A
bounded lattice is residuated (resp. dually residuated) if it validates the residuation
law cR (resp. dR). If a lattice is (dually) residuated then is distributive (cf. [22,31]).

Distributivity laws Residuation laws
cD. a∧ (b∨ c) = (a∧b)∨ (a∨ c) cR. a∧b ≤ c iff b ≤ a→ c
dD. a∨ (b∧ c) = (a∨b)∧ (a∨ c) dR. a ≤ b∨ c iff b> a ≤ c
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2.2 Towards a Modular Proof Theory for Lattice Logic

To motivate the calculus introduced in Sect. 5, it is useful to discuss preliminarily the
following Gentzen-style sequent calculus for lattice logic (cf. e.g. [49]):

– Identity and Cut rules

Idp � p
X � A A � Y

Cut
X � Y

– Operational rules (where i ∈ {1,2})
⊥ ⊥ � I

X � I ⊥
X � ⊥

Ai � X∧i
A1∧A2 � X

X � A X � B ∧
X � A∧B

I � X� � � X �
I � �

A � X B � X∨
A∨B � X

X � Ai ∨i
X � A1∨A2

The calculus above, which we refer to as L0, is sound w.r.t. the class of lattices, com-
plete w.r.t. the Hilbert-style presentation of lattice logic, and enjoys cut-elimination.
Hence, L0 is perfectly adequate as a calculus for lattice logic, when this logic is regarded
in isolation. However, as discussed in the introduction, the main interest of lattice logic
lays in its serving as a base for its axiomatic extensions (cf. e.g. [40]) and language-
expansions. Axiomatic extensions of lattice logic can be supported by L0 by adding
suitable axioms. For instance, modular and distributive lattice logic can be respectively
captured by adding the following axioms to L0:

((C∧B)∨A)∧B � (C∧B)∨ (A∧B) and A∧ (B∨C) � (A∧B)∨ (A∨C).

However, cut elimination for the resulting calculi needs to be proved from scratch. More
in general, we lack uniform principles or proof strategies aimed at identifying axioms
which can be added to L0 so that cut elimination transfers to the resulting calculus.
Another source of nonmodularity arises from the fact that L0 lacks structural rules.
Indeed, the additive formulation of the introduction rules of L0 encodes the informa-
tion which is stored in standard structural rules such as weakening, contraction, asso-
ciativity, and exchange. Hence, L0 cannot be used as a base to capture logics aimed
at ‘negotiating’ these rules, such as the Lambek calculus [41] and other substructural
logics [31]. To remedy this, one can move to the following calculus L1, which fulfills
the visibility property,2 isolated by Sambin et al. in [47] to formulate a general strat-
egy for cut elimination. Visibility generalizes Gentzen’s idea, realized in his calculus
LJ, that intuitionistic logic could be captured by restricting the shape of sequents and
admitting at most one formula in succedent position [32]. The calculus L1 has a struc-
tural language consisting of one structural constant ‘I’, interpreted as � (resp. ⊥) when
occurring in precedent (resp. succedent) position, and one binary connective ‘ ,’, inter-
preted as conjunction (resp. disjunction) in precedent (resp. succedent) position. The
rules Exchange, Associativity, Weakening and Contraction are the usual ones and are
not reported here.

2 A sequent calculus verifies the visibility property if both the auxiliary formulas and the prin-
cipal formula of each operational rule of the calculus occur in an empty context. Hence, by
design, L1 verifies the visibility property.
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– Identity and Cut rules

Idp � p
X � A (Y � Z)[A]pre

L-Cut
(X � Y)[Z/A]pre

(X � Y)[A]succ A � Z
R-Cut

(X � Y)[Z/A]suc

where (Y � Z)[A]pre (resp. (Y � Z)[A]succ) indicates that the A occurs in precedent
(resp. succedent) position in the sequent Y � Z.

– Operational rules

⊥ ⊥ � I
X � I ⊥
X � ⊥

A ,B � X∧
A∧B � X

X � A Y � B ∧
X ,Y � A∧B

I � X� � � X �
I � �

A � X B � Y∨
A∨B � X ,Y

X � A ,B ∨
X � A∨B

Unlike the operational rules of L0 which are additive, the operational rules of L1 are
multiplicative.3 The latter formulation is more general, and implies that weakening,
exchange, associativity, and contraction are not anymore subsumed by the introduction
rules.

The visibility of L1 blocks the derivation of the distributivity axiom. Hence, to be
able to derive distributivity, one option is to relax the visibility constraint both in prece-
dent and in succedent position. This solution is not entirely satisfactory, and suffers
from the same lack of modularity which prevents Gentzen’s move from LJ to LK to
capture intermediate logics. Specifically, relaxing visibility captures the logics of Sam-
bin’s cube, but many other logics are left out. Moreover, without visibility, we do not
have a uniform strategy for cut elimination.

To conclude, a proof theory for axiomatic extensions and expansions of general lat-
tice logic is comparably not as modular as that of the axiomatic extensions and expan-
sions of the logic of distributive lattices, which can rely on the theory of proper display
calculi [37,50]. The idea guiding the approach of the present paper, which we will elab-
orate upon in the next sections, is that, rather than trying to work our way up starting
from a calculus for lattice logic, we will obtain a calculus for lattice logic from the stan-
dard proper display calculus for the logic of distributive lattices, by endowing it with a
suitable mechanism to block the derivation of distributivity.

3 Multi-type Semantic Environment for Lattice Logic

In the present section, we introduce a class of heterogeneous algebras [7] which equiv-
alently encodes complete lattices, and which will be useful to motivate the design of the
calculus for lattice logic from a semantic viewpoint, as well as to establish its properties.
This presentation takes its move from very well known facts in the representation theory
of complete lattices, which can be found e.g. in [6,22], formulated—however—in terms
of covariant (rather than contravariant) adjunction. For every partial order Q = (Q,≤),

3 The multiplicative form of the introduction rules is the most important aspect in which L1
departs from the calculus of [47], which adopts the additive formulation for the introduction
rules for conjunction and disjunction.
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we letQop := (Q,≤op), where ≤op denotes the converse ordering. IfQ= (Q,∧,∨,⊥,�) is
a lattice, we let Qop := (Q,∧op,∨op,⊥op,�op) denote the lattice induced by ≤op. More-
over, for any b ∈ Q, we let b↑ := {c | c ∈ Q and b ≤ c} and b↓ := {a | a ∈ Q and a ≤ b}.

A polarity is a structure P = (X,Y,R) such that X and Y are sets and R ⊆ X×Y . Every
polarity induces a pair of maps ρ : P(Y)op → P(X), λ : P(X)→ P(Y)op, respectively
defined by Y′ �→ {x ∈ X | ∀y(y ∈ Y′ → xRy)} and X′ �→ {y ∈ Y | ∀x(x ∈ X′ → xRy)}. It is
well known (cf. [22]) and easy to verify that these maps form an adjunction pair, that
is, for any X′ ⊆ X and Y′ ⊆ Y ,

λ(X′) ⊆op Y′ iff X′ ⊆ ρ(Y′).
The map λ is the left adjoint, and ρ is the right adjoint of the pair. By general order-
theoretic facts, this implies that λ preserves arbitrary joins and ρ arbitrary meets: that
is, for any S ⊆ P(X) and any T ⊆ P(Y),

λ(
⋃

S ) =
op⋃

s∈S
λ(s) and ρ(

op⋂
T ) =

⋂

t∈T
ρ(t). (1)

Other well known facts about adjoint pairs are that ρλ : P(X)→P(X) is a closure oper-
ator and λρ : P(Y)op →P(Y)op an interior operator (cf. [22]). Moreover, λρλ = λ, and
ρλρ = ρ (cf. [22]). That is, λρ restricted to Range(λ) is the identity map, and like-
wise, ρλ restricted to Range(ρ) is the identity map. Hence, Range(ρ) = Range(ρλ),
Range(λ) = Range(λρ) and

P(X) ⊇ Range(ρ) � Range(λ) ⊆ P(X)op.

Furthermore, ρλ being a closure operator on P(X) implies that Range(ρ) = Range(ρλ)
is a complete sub

⋂
-semilattice of P(X) (cf. [22]), and hence L =Range(ρ) is endowed

with a structure of complete lattice, by setting for every S ⊆ L,
∧

L

S :=
⋂

S and
∨

L

S := ρλ(
⋃

S ) (2)

Likewise, λρ being an interior operator on P(Y)op implies that Range(λ) is a complete
sub
⋃

-semilattice of P(Y)op, and hence L = Range(λ) is endowed with a structure of
complete lattice, by setting

∨

L

T :=
op⋃

T and
∧

L

T := λρ(
op⋂

T ) (3)

for every T ⊆ L. Finally, for any S ⊆ Range(ρ),

λ(
∨
S ) = λ(ρλ(

⋃
S )) (2)

= λ(
⋃
S ) λρλ = λ

=
⋃op

s∈S λ(s) (1)
=
∨

s∈S λ(s), (3)
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and
∧

s∈S λ(s) = λρ(
⋂op

s∈S λ(s)) (3)
= λ(
⋂

s∈S ρλ(s)) (1)
= λ(
⋂
S ) S ⊆ Range(ρ) and ρλρ = ρ

= λ(
∧
S ), (2)

which shows that the restriction of λ to Range(ρ) is a complete lattice homomorphism.
Likewise, one can show that the restriction of ρ to Range(λ) is a complete lattice homo-
morphism, which completes the proof that the bijection

P(X) ⊇ Range(ρ) � Range(λ) ⊆ P(X)op

is an isomorphism of complete lattices, and justifies the abuse of notation which we
made by denoting both the lattice Range(ρ) and the lattice Range(λ) by L.

Conversely, for every complete lattice L, consider the polarity PL := (L,L,≤) where
L is the universe of L and ≤ is the lattice order. Then the maps λ : P(L)→P(L)op and
ρ :P(L)op→P(L) are respectively defined by the assignments S �→ {a ∈ L | ∀b(b ∈ S →
b ≤ a)} = (

∨
S )↑ and T �→ {a ∈ L | ∀b(b ∈ T → a ≤ b)} = (

∧
T )↓ for all S ,T ⊆ L. Since∧

((
∨
S )↑) =∨S and

∨
((
∧
T )↓) =∧T , the closure operator ρλ :P(L)→P(L) and the

interior operator λρ : P(L)op→P(L)op are respectively defined by

S �→ (
∨

S )↓ and T �→ (
∧

T )↑. (4)

The lattice L can be mapped injectively both into Range(ρ) = Range(ρλ) and into
Range(λ) =Range(λρ) by the assignments a �→ a↓ and a �→ a↑ respectively. Moreover,
since L is complete, the maps defined by these assignments are also onto Range(ρλ)
and Range(λρ). Finally, for any S ⊆ L,

∧
Range(ρ){a↓ | a ∈ S } = ⋂{a↓ | a ∈ S } (2)

= (
∧
S )↓

∨
Range(ρ){a↓ | a ∈ S } = ρλ(⋃{a↓ | a ∈ S }) (2)

= (
∨⋃{a↓ | a ∈ S })↓ (4)

= (
∨
S )↓,

which completes the verification that the map L→Range(ρ) defined by the assignment
a �→ a↓ is a complete lattice isomorphism. Similarly, one verifies that the map L→
Range(λ) defined by the assignment a �→ a↑ is a complete lattice isomorphism. The
discussion so far can be summarized by the following.

Proposition 1. Any complete lattice L can be identified both with the lattice of closed
sets of some closure operator c : D → D on a complete and completely distributive
lattice D = (D,∩,∪,℘,∅), and with the lattice of open sets of some interior operator
i : E→ E on a complete and completely distributive lattice E = (E,�,�,�,∅).
Hence, in what follows, L will be identified both with Range(c) endowed with its
structure of complete lattice defined as in (2) (replacing ρλ by c), and with Range(i)
endowed with its structure of complete lattice defined as in (3) (replacing λρ by i). Tak-
ing these identifications into account, general order-theoretic facts (cf. [22, Chap. 7])
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imply that c = e� ◦ γ, where γ : D� L is defined by α �→ c(α) and e� : L ↪→ D is the
natural embedding, and moreover, these maps form an adjunction pair as follows: for
any a ∈ L and any α ∈ D,

γ(α) ≤ a iff α ≤ e�(a),

with the additional property that γ ◦ e� = IdL. Likewise, i = er ◦ ι, where ι : E� L is
defined by ξ �→ i(ξ) and er : L ↪→ E is the natural embedding, and moreover, these maps
form an adjunction pair as follows: for any a ∈ L and any ξ ∈ E,

er(a) ≤ ξ iff a ≤ ι(ξ),
with the additional property that ι◦ er = IdL.

D L E

��

e� er

ιγ

Summing up, any complete lattice L can be associated with a heterogeneous LL-
algebra, i.e. a tuple (L,D,E,e�,γ,er, ι) such that:

H1. L = (L,≤) is a bounded poset;4

H2. D and E are complete and completely distributive lattices;
H3. γ : D→ L and e� : L→ D are such that γ � e� and γ ◦ e� = IdL;
H4. ι : E→ L and er : L→ E are such that er � ι and ι◦ er = IdL.

Conversely, for any heterogeneous LL-algebra as above, the poset L can be endowed
with the structure of a complete lattice inherited by being order-isomorphic both to
the poset of closed sets of the closure operator c := γ ◦ e� on D and to the poset of
open sets of the interior operator i := ι ◦ er on E. Finally, no algebraic information is
lost when presenting a complete lattice L as its associated heterogeneous LL-algebra.
Indeed, the identification of L with Range(c), endowed with the structure of complete
lattice defined as in (2), implies that for all a,b ∈ L,

a∨b = γ(e�(a)∪ e�(b)).

As discussed above, e� being a right adjoint and γ a left adjoint imply that e� is com-
pletely meet-preserving and γ completely join-preserving. Therefore, e�(�) = ℘ and
⊥= γ(∅). Moreover, γ being both surjective and order-preserving implies that�= γ(℘).
Furthermore, for all a,b ∈ L,

a∧b = γ ◦ e�(a∧b) = γ(e�(a)∩ e�(b)).

Thus, the whole algebraic structure of L can be captured in terms of the algebraic struc-
ture of D and the adjoint maps γ and e� as follows: for all a,b ∈ L,

⊥ = γ(∅) � = γ(℘) a∨b = γ(e�(a)∪ e�(b)) a∧b = γ(e�(a)∩ e�(b)). (5)

Reasoning analogously, one can also capture the algebraic structure of L in terms of the
algebraic structure of E and the adjoint maps ι and er as follows: for all a,b ∈ L,

� = ι(�) ⊥ = ι(∅) a∧b = ι(er(a)� er(b)) a∨b = ι(er(a)� er(b)). (6)
4 We overload the symbol L and use it both to denote the complete lattice and its underlying

poset.
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4 Multi-type Language for Lattice Logic

In Sect. 3, heterogeneous LL-algebras have been introduced and shown to be equivalent
presentations of complete lattices. The toggle between these mathematical structures is
reflected in the toggle between the logical languages which are naturally interpreted in
the two types of structures. Indeed, the heterogeneous LL-algebras of Sect. 3 provide a
natural interpretation for the following multi-type language LMT over a set AtProp of
Lattice-type atomic propositions:

Left � α ::= e�(A) | ℘ | ∅ | α∪α | α∩α
Right � ξ ::= er(A) | � | ∅ | ξ� ξ | ξ� ξ

Lattice � A ::= p | γ(α) | ι(ξ) | � | ⊥
where p ∈ AtProp. The interpretation of LMT-terms into heterogeneous LL-algebras
is defined as the straightforward generalization of the interpretation of propositional
languages in algebras of compatible signature. At the end of the previous section, we
observed that the algebraic structure of the complete lattice L can be captured in terms
of the algebraic structure of its associated heterogeneous LL-algebra. This observation
serves as a base for the definition of the translations (·)�, (·)r : L → LMT between the
original language L of lattice logic and LMT:

p� = γe�(p) pr = ιer(p)⊥
�� = γe�(�) �r = ιer(�)
⊥� = γe�(⊥) ⊥r = ιer(⊥)

(A∧B)� = γ(e�(A�)∩ e�(B�)) (A∧B)r = ι(er(Ar)� er(Br))
(A∨B)� = γ(e�(A�)∪ e�(B�)) (A∨B)r = ι(er(Ar)� er(Br))

For every complete lattice L, let L∗ denote its associated heterogeneous LL-algebra as
defined in Sect. 3. The proof of the following proposition relies on the observations
made at the end of Sect. 3.

Proposition 2. For all L-formulas A and B and every complete lattice L,

L |= A ≤ B iff L
∗ |= A� ≤ Br.

5 Proper Display Calculus for Lattice Logic

5.1 Language

The language of the calculus D.LL includes the types Lattice, Left, and Right, some-
times abbreviated as L, P, and Pop respectively.

L

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A ::= p | �α | �ξ

X ::= p | I | •Γ | •opΠ

P

⎧⎪⎪⎪⎨⎪⎪⎪⎩

α ::= �A

Γ ::= ◦X |� | Γ �Γ | Γ ⊃ Γ

Pop

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ ::= �opA

Π ::= ◦opX |�op | Π �opΠ | Π ⊃op Π
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Our notational conventions assign different variables to different types. This allows
us to drop the subscripts op, since the parsing of expressions such as •Γ and •Π is
inherently unambiguous, and the parsing of e.g. ◦X is contextually unambiguous.

– Structural and operational pure L-type connectives:5

L connectives
I

� ⊥
– Structural and operational pure P-type and Pop-type connectives:

P connectives
� � ⊃

(℘) (∅) ∩ ∪ (⊃ ) ( ⊃ )

Pop connectives
�op �op ⊃op

(℘op) (∅op) ∩op ∪op (⊃ op ) ( ⊃op )

– Structural and operational multi-type connectives:

L→ P L→ Pop P→ L Pop→ L

◦ ◦op • •
� �op � �op

The connectives �, �op, � and �op are interpreted in heterogeneous LL-algebras as the
maps e�, er, γ, and ι, respectively.

5.2 Rules

In what follows, structures of type L are denoted by the variables X,Y,Z, and W; struc-
tures of type P are denoted by the variables Γ,Δ,Θ, and Λ; structures of type Pop are
denoted by the variables Π,Σ,Ψ, and Ω. Given the semantic environment introduced in
Sect. 3, it will come as no surprise that there is a perfect match between the pure P-type
rules and the pure Pop-type rules. In order to achieve a more compact presentation of
the calculus, in what follows we will also reserve the variables S ,T,U, and V to denote
either P-type structures or Pop-type structures, and s, t,u and v to denote operational
terms of either P-type or Pop-type, with the proviso that they should be interpreted in
the same type in the same pure type-rule.

– Multi-type display rules

Γ � ◦X
DP-L•Γ � X

◦X � Π
DP-L

X � •Π
– Pure P-type and Pop-type display rules

S �T � U
DP

T � S ⊃ U
S � T �U

DP
T ⊃ S � U

5 We follow the notational conventions introduced in [36]: Each structural connective in the
upper row of the synoptic tables is interpreted as the logical connective in the left (resp. right)
slot in the lower row when occurring in precedent (resp. succedent) position.
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– Structural and operational pure P-type and Pop-type rules

S � s s � T
Cut

S � T
s � t � S∩
s∩ t � S

S � s T � t ∩
S �T � s∩ t

S � T
�

S �� � T
S � T

�
S � T ��

s � S t � T∪
s∪ t � S �T

S � s � t ∪
S � s∪ t

(S �T ) �U � V
A

S � (T �U) � V
S � (T �U) �V

A
S � T � (U �V)

S �T � U
E

T �S � U
S � T �U

E
S � U �T

S � T
W

S �U � T
S � T

W
S � T �U

S �S � T
C

S � T
S � T �T

C
S � T

– Structural and operational pure L-type rules

Id p � p
X � A A � Y

Cut
X � Y

I � X� � � X �
I � �

I � X
I-W

Y � X ⊥ ⊥ � I
X � I ⊥
X � ⊥

– Operational rules for multi-type connectives:

L→ Pop Pop→ L
◦A � Π�
�A � Π

X � A �◦X � �A
X � •ξ

�
X � �ξ

ξ � Π
�

�ξ � •Π
P→ L L→ P

•α � X�
�α � X

Γ � α �•Γ � �α
Γ � ◦A�
Γ � �A

A � X �
�A � ◦X

6 Properties

Soundness. First, structural symbols are interpreted as logical symbols according to
their (precedent or succedent) position, as indicated in the tables of Sect. 5.1. Then,
sequents are interpreted as inequalities, and rules as quasi-inequalities in heterogeneous
LL-algebras. Rules of D.LL are sound if their corresponding quasi-inequalities are valid
in heterogeneous LL-algebras. This verification is routine.

Conservativity. We need to show that, for all formulas A and B of the original lan-
guage of lattice logic, if Aτ � Bτ is a D.LL-derivable sequent, then A � B is a theorem
of the Hilbert-style presentation of lattice logic. The argument follows the standard
proof strategy discussed in [36,37], using the following facts: (a) the rules of D.LL
are sound w.r.t. heterogeneous LL-algebras (cf. Sect. 6); (b) lattice logic is strongly
complete w.r.t. the class of complete lattices, and (c) complete lattices are equivalently
presented as heterogeneous LL-algebras (cf. Sect. 3), so that Proposition 2 holds.
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Cut Elimination and Subformula Property. These can be inferred from the meta-
theorem, in [26]; in [39, Theorem A.2] a restricted version of it is stated which specif-
ically applies to proper multi-type display calculi (cf. [39, Definition A.1]). The verifi-
cation is straightforward, and is omitted.

Completeness. First, we translate L-sequents A � B into D.LL-sequents Aτ � Bτ, using
the following translations:

�τ ::= ��� �τ ::= �op�op�
⊥τ ::= ��⊥ ⊥τ ::= �op�op⊥
pτ ::= �� p pτ ::= �op�op p

(A∧B)τ ::= �(�Aτ∩�Bτ) (A∧B)τ ::= �op(�op Aτ∩op�op Bτ)
(A∨B)τ ::= �(�Aτ∪�Bτ) (A∨B)τ ::= �op(�op Aτ∪op�op Bτ)

Proposition 3. For every A ∈ L, the multi-type sequent Aτ � Aτ is derivable in D.LL.
Proof. By simultaneous induction on A ∈ L, α ∈ P, and ξ ∈ Pop.

In what follows, we collect all the translations of the axioms involving conjunction,6

and derive some of them in D.LL (cf. Sect. A). The full set of derivations can be found
in the extended version of the present paper [38]. All derivations are standard and make
use only of Weakening, Contraction and Exchange as structural rules.

Commutative laws translation
cC1 (A∧B)τ � (B∧A)τ � �(�Aτ∩�Bτ) � �(�Bτ∩�Aτ)
cC2 (B∧A)τ � (A∧B)τ � �(�Bτ∩�Aτ) � �(�Aτ∩�Bτ)

Associative laws translation
cA1 (A∧ (B∧C))τ � ((A∧B)∧C)τ � �(�Aτ∩��(�Bτ∩�Cτ)) � �(��(�Aτ∩�Bτ)∩�Cτ)
cA2 ((A∧B)∧C)τ � (A∧ (B∧C))τ � �(��(�Aτ∩�Bτ)∩�Cτ) � �(�Aτ∩��(�Bτ∩�Cτ))

Identity laws translation where A =C∧D
cI1 (A∧�)τ � Aτ � �(��(�Cτ∩�Dτ)∩����) � �(�Cτ∩�Dτ)
cI2 Aτ � (A∧�)τ � �(�Cτ∩�Dτ) � �(��(�Cτ∩�Dτ)∩����)

Absorption laws translation where A = ⊥
cAb1 (A∧ (A∨B))τ � Aτ � �(���⊥∩��(���⊥∪�Bτ)) � ��⊥
cAb2 Aτ � (A∧ (A∨B))τ � ��⊥ � �(���⊥∩��(���⊥∪�Bτ))

A Completeness

In the cases of the Identity and Absorption laws a formula occurs in isolation on one
side of the turnstile, therefore we need to proceed by cases according to the shape of A
(we just show A =C∧D and A = ⊥, respectively).

6 The translations of the axioms involving disjunction are perfectly symmetric, and are omitted.
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C � C
◦C � �C
C � •�C
�C � ◦•�C

W
�C � �D � ◦•�C
�C∩�D � ◦•�C
•�C∩�D � •�C
�(�C∩�D) � •�C
��(�C∩�D) � ◦•�C

W
��(�C∩�D) � ���� � ◦•�C
��(�C∩�D)∩���� � ◦•�C
•��(�C∩�D)∩���� � •�C
�(��(�C∩�D)∩����) � •�C
◦�(��(�C∩�D)∩����) � �C

D � D
◦D � �D
D � •�D
�D � ◦•�D

W
�D � �C � ◦•�D

E
�C � �D � ◦•�D
�C∩�D � ◦•�D
•�C∩�D � •�D
�(�C∩�D) � •�D
��(�C∩�D) � ◦•�D

W
��(�C∩�D) � ���� � ◦•�D
��(�C∩�D)∩���� � ◦•�D
•��(�C∩�D)∩���� � •�D
�(��(�C∩�D)∩����) � •�D
◦�(��(�C∩�D)∩����) � �D

◦�(��(�C∩�D)∩����) �◦�(��(�C∩�D)∩����) � �C∩�D
C ◦�(��(�C∩�D)∩����) � �C∩�D

�(��(�C∩�D)∩����) � •�C∩�D
�(��(�C∩�D)∩����) � �(�C∩�D)

⊥ � I
⊥ � ⊥
◦⊥ � �⊥
⊥ � •�⊥
⊥ � ��⊥
�⊥ � ◦��⊥
•�⊥ � ��⊥
��⊥ � ��⊥
���⊥ � ◦��⊥

W
���⊥ � ��(���⊥∪�B) � ◦��⊥
���⊥∩��(���⊥∪�B) � ◦��⊥
•���⊥∩��(���⊥∪�B) � ��⊥
�(���⊥∩��(���⊥∪�B)) � ��⊥

⊥ � ⊥
�⊥ � ◦⊥
•�⊥ � ⊥
��⊥ � ⊥
◦��⊥ � �⊥
��⊥ � •�⊥
��⊥ � ��⊥
◦��⊥ � ���⊥

⊥ � I
⊥ � ⊥
�⊥ � ◦⊥
•�⊥ � ⊥
��⊥ � ⊥
◦��⊥ � �⊥
��⊥ � •�⊥
��⊥ � ��⊥
◦��⊥ � ���⊥

W◦��⊥ � ���⊥ ��B
◦��⊥ � ���⊥∪�B
��⊥ � •���⊥∪�B
��⊥ � �(���⊥∪�B)

◦��⊥ � ��(���⊥∪�B)

◦��⊥ �◦��⊥ � ���p∩��(���⊥∪�B)
C ◦��⊥ � ���⊥∩��(���⊥∪�B)

��⊥ � •���⊥∩��(���⊥∪�B)

��⊥ � �(���⊥∩��(���⊥∪�B))

B Distributivity Fails

Distributivity law translation
cD1 (A∩ (B∪C))τ � ((A∩B)∪ (A∪C))τ�
�
(
�Aτ∩��(�Aτ∪�Bτ)

)
� �
(
��(�Aτ∩�Bτ)∪��(�Aτ∩�Cτ)

)

We will show that all the paths in the backward proof-search of the translation of
the distributivity axiom end in deadlocks. First, we apply exhaustively all invertible
operational rules (modulo display rules):
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???

•
(
�A � ��(�B∪�C)

)
� •
(
��(�A∩�B) ���(�A∩�C)

)

�A � ��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

�A∩��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

•
(
�A∩��(�B∪�C)

)
� •
(
��(�A∩�B) ���(�A∩�C)

)

◦•
(
�A∩��(�B∪�C)

)
� ��(�A∩�B) ���(�A∩�C)

◦•
(
�A∩��(�B∪�C)

)
� ��(�A∩�B)∪��(�A∩�C)

•
(
�A∩��(�B∪�C)

)
� •
(
��(�A∩�B)∪��(�A∩�C)

)

•
(
�A∩��(�B∪�C)

)
� �
(
��(�A∩�B)∪��(�A∩�C)

)

�
(
�A∩��(�B∪�C)

)
� �
(
��(�A∩�B)∪��(�A∩�C)

)

There are no rules in which • and � interact, hence we are reduced to either isolate

X = �A � ��(�B∪�C)

in precedent position by the backward application of a display rule, or isolate the fol-
lowing structure in succedent position:

Y = ��(�A∩�B) ���(�A∩�C)

We only treat the first case, the second being analogous. Once in isolation, we can act
on X only via Exchange, Weakening or Residuation. In each case we reach a dead end:

– Case 1: (Exchange or) Residuation.

As an intermediate step, we can isolate any of the substructures of X via Residuation,
or via Exchange and Residuation, as shown below. In each case we reach a dead end.

???

��(�B∪�C) � �A ⊃ ◦•
(
��(�A∩�B) ���(�A∩�C)

)

�A � ��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

???

�A � ��(�B∪�C) ⊃ ◦•
(
��(�A∩�B) ���(�A∩�C)

)

��(�B∪�C) � �A � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

�A � ��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

– Case 2: (Exchange or) Weakening.

As an intermediate step, we can try to isolate an immediate substructure of X by apply-
ing backward Weakening. By directly applying Weakening, we obtain

�A � ◦•
(
��(�A∩�B) ���(�A∩�C)

)
,

and by applying Exchange and Weakening, we obtain
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��(�B∪�C) � ◦•
(
��(�A∩�B) ���(�A∩�C)

)
.

Notice that the second subcase can be reduced to the first one as follows:

??

�B � ◦•
(
��(�A∩�B) ���(�A∩�C)

) ??

�C � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

�B∪�C � ◦•
(
��(�A∩�B) ���(�A∩�C)

)
�◦•
(
��(�A∩�B) ���(�A∩�C)

)

�B∪�C � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

•(�B∪�C)
)
� •
(
��(�A∩�B) ���(�A∩�C)

)

�(�B∪�C)
)
� •
(
��(�A∩�B) ���(�A∩�C)

)

��(�B∪�C)
)
� ◦•
(
��(�A∩�B) ���(�A∩�C)

)

As to the proof of the first subcase, let us preliminarily perform the following steps:

??
◦A � ��(�A∩�B) ���(�A∩�C)

A � •
(
��(�A∩�B) ���(�A∩�C)

)

�A � ◦•
(
��(�A∩�B) ���(�A∩�C)

)

Again, we are in a situation in which we can act on Y only via Exchange, Weakening
or Residuation, and also in this case any option leads to a dead end. Indeed:

– Case 2.1: Exchange or Weakening. We can delete one of the immediate substructures
of Y via Weakening or, respectively, Exchange and Weakening, obtaining

◦A � ��(�A∩�B) and ◦A � ��(�A∩�C).

In each case, we reach a dead end, as shown below:

?
◦A � �A∩�B
A � •(�A∩�B)
A � �(�A∩�B)
◦A � ��(�A∩�B)

?
◦A � �A∩�C
A � •(�A∩�C)
A � �(�A∩�C)
◦A � ��(�A∩�C)

– Case 2.2: Residuation. We can isolate any of the substructures of Y via Residuation,
or via Exchange and Residuation. In each case we reach a dead end:

?
��(�A∩�B) ⊃ ◦A � ��(�A∩�C)

◦A � ��(�A∩�B) ���(�A∩�C)

?
��(�A∩�C) ⊃ ◦A � ��(�A∩�B)

◦A � ��(�A∩�C) ���(�A∩�B)
◦A � ��(�A∩�B) ���(�A∩�C)
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analysis of dynamic epistemic logic. J. Log. Comput. 26(6), 1961–2015 (2016). doi:10.1093/
logcom/exu063

28. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: A multi-type display calcu-
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Abstract. Let x be an m-sequence, a maximal length sequence pro-
duced by a linear feedback shift register. We show that x has maximal
subword complexity function in the sense of Allouche and Shallit. We
show that this implies that the nondeterministic automatic complex-
ity AN (x) is close to maximal: n/2 − AN (x) = O(log2 n), where n is
the length of x. In contrast, Hyde has shown AN (y) ≤ n/2 + 1 for all
sequences y of length n.

1 Introduction

Linear feedback shift registers, invented by Golomb [2], may be “the most-used
mathematical algorithm idea in history”, used at least 1027 times in cell phones
and other devices [7]. They are particularly known as a simple way of producing
pseudorandom output sequences called m-sequences. However, thanks to the
Berlekamp–Massey algorithm [5], one can easily find the shortest LFSR that
can produce a given sequence x. The length of this LFSR, the linear complexity
of x, should then be large for a truly pseudorandom sequence, but is small for
m-sequences. In this article we show that using a different complexity measure,
automatic complexity, the pseudorandomness of m-sequences can be measured
and, indeed, verified.

While our computer results in Sect. 3 concern the linear case specifically,
our theoretical results in Sect. 2 concern the following natural abstraction of the
usual notion of feedback shift register [1].

Definition 1. Let [q] = {0, . . . , q − 1}. A q-ary k-stage combinatorial shift reg-
ister (CSR) is a mapping

Λ : [q]k → [q]k

such that there exists F : [q]k → [q] such that for all xi,

Λ(x0, . . . , xk−1) = (x1, x2, . . . , xk−1, F (x0, x1, . . . , xk−1)).

The function F is called the feedback function of Λ.

Definition 2. An infinite sequence x = x0x1 . . . is eventually periodic if there
exist integers M and N > 0 such that for all n > M , xn = xn−N . The least N
for which there exists such an M is the eventual period of x.

c© Springer-Verlag GmbH Germany 2017
J. Kennedy and R.J.G.B. de Queiroz (Eds.): WoLLIC 2017, LNCS 10388, pp. 170–181, 2017.
DOI: 10.1007/978-3-662-55386-2 12



Shift Registers Fool Finite Automata 171

Definition 3. For any k-stage CSR Λ and any word x of length ≥ k, the period
of Λ upon processing x is the eventual period of the sequence Λt(x0, . . . , xk−1),
0 ≤ t < ∞.

Lemma 4. Let k and q be positive integers. Let Λ be a q-ary k-stage CSR. Let
x = x0x1 . . . be an infinite sequence produced by Λ. Then x is eventually periodic,
and the period of Λ upon processing x exists and is finite.

Proof. The infinite sequence Λt(x0, . . . , xk−1) for 0 ≤ t < ∞ takes values in the
finite set [q]k. Thus, by the pigeonhole principle, there exist M and N > 0 with

ΛM (x0, . . . , xk−1) = ΛM−N (x0, . . . , xk−1).

Let n > M . Then

(xn, . . . , xn+k−1) = Λn(x0, . . . , xk−1)
= Λn−MΛM (x0, . . . , xk−1)
= Λn−MΛM−N (x0, . . . , xk−1)
= Λn−N (x0, . . . , xk−1)
= (xn−N , . . . , xn−N+k−1),

hence xn = xn−N .

We can now define LFSRs and m-sequences. As our computer results concern
binary sequences, we take q = 2. However, a higher level of generality would also
be possible.

Definition 5. Suppose a k-stage CSR Λ produces the infinite output x =
x0x1 . . . and its feedback function is a linear transformation of [q] when viewed as
the finite field Fq, where q = 2. Then Λ is a linear feedback shift register (LFSR).
Suppose the period P of Λ upon processing x is 2k −1. Then x0 . . . xP−1 is called
an m-sequence (or maximal length sequence, or PN (pseudo-noise) sequence).

If m-sequences are pseudo-random in some sense then they should have high,
or at least not unusually low, complexity according to some measure. In 2015,
Jason Castiglione (personal communication) suggested that automatic complex-
ity might be that measure.

Definition 6 ([3,6]). Let L(M) be the language recognized by the automaton
M . Let x be a finite sequence.

– The (deterministic) automatic complexity of x is the least number A(x) of
states of a deterministic finite automaton M such that

L(M) ∩ {0, 1}n = {x}.

– The nondeterministic automatic complexity AN (x) is the minimum number
of states of a nondeterministic finite automaton (NFA) M accepting x such
that there is only one accepting path in M of length |x|.

– The non-total deterministic automatic complexity A−(x) is defined like A(x)
but without requiring totality of the transition function.
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Fig. 1. A nondeterministic finite automaton that only accepts one sequence x =
x1x2x3x4 · · · xn of length n = 2m + 1.

As totality can always be achieved by adding at most one extra “dead” state,
we have

AN (x) ≤ A−(x) ≤ A(x) ≤ A−(x) + 1.

Theorem 7 (Hyde [3]). The nondeterministic automatic complexity AN (x) of
a sequence x of length n satisfies

AN (x) ≤ �n/2� + 1.

Figure 1 gives a hint to the proof of Theorem7 in the case where n is odd.
Theorem 7 is sharp [3], and experimentally we find that about 50% of all binary
sequences attain the bound. Thus, to “fool” finite automata this bound should
be attained or almost attained.

2 Main Result for FSRs

Our strategy will be to prove that if a sequence has low complexity, then it
contains repeated parts, forcing any shift register producing it to be in the same
state (including memory contents) at two distinct points in the sequence.

We first introduce some automata theoretic notions that may not have stan-
dard names in the literature.

Definition 8.

– A state sequence is a sequence of states visited upon processing of an input
sequence by a finite automaton.

– An abstract NFA is an NFA without edge labels.
– The abstract NFA M induced by a state sequence s = s0 . . . sn is defined as

follows. The states of M are the states appearing in s. The transitions of M
are si → si+1 for each 0 ≤ i < n.

– A state sequence s = s0 . . . sn is path-unique if the abstract NFA induced by
s has only one path of length |s| from s0 to sn, namely s.

We use the interval notation s[i,j] = sisi+1 . . . sj−1sj and we concatenate as
follows: s[i,j]

�s[j,k] = s[i,j]s[j,k] = s[i,k].

Lemma 9. Let s = s0 . . . sn be a path-unique state sequence. Suppose that i ≤
j ≤ k are positive integers such that si = sj = sk, and st 	= si for all t ∈
[i, k] \ {i, j, k}. Then s[i,j] = s[j,k].
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Proof. By uniqueness of path, s[i,k] = s[i,j]s[j,k] = s[j,k]s[i,j], so one of s[i,j]
and s[j,k] is a prefix of the other. But considering the position of the second
occurrence of si in s[i,k], we can conclude s[i,j] = s[j,k].

Definition 10. Let s = s0 . . . sn be a path-unique state sequence and let 0 ≤ i ≤
n. The period of si in s is defined to be min{k − j : sk = sj = si, j < k}, if si

occurs at least twice in s, and to be ∞, otherwise.

An illustration of periods is given in Fig. 2.

Lemma 11. Let s = s0 . . . sn be a path-unique state sequence. If i ≤ j and t > 0
are integers such that si = si+t and sj = sj+t, then sj ∈ {si, . . . , si+t}.
Proof. Let M be the abstract NFA induced by s. We proceed by induction on
the k = kj such that j − t ∈ [i + (k − 1)t, i + kt], which exists since t > 0. If
k ≤ 0 then j ≤ i + t and we are done. So suppose sj′ ∈ {si, . . . , si+t} for each j′

with kj′ < kj . Both of the following state sequences of length n+1 are accepting
for M :

ŝ = s[0,i]
� s[i+t,j]

�s[j,j+t]
�s[j,n],

s = s[0,i]
�s[i,i+t]

�s[i+t,j]
� s[j,n].

Since s is path-unique, s = ŝ, and so sj = ŝj = si+(j−(i+t)) = sj−t. Since
kj−t = kj −1 < kj , by induction sj−t ∈ {si, . . . , si+t}, giving sj ∈ {si, . . . , si+t},
as desired.

Lemma 12. For each path-unique state sequence s, each number t is the period
of at most t states in s.

Proof. We may of course assume t < ∞. Fix i and suppose t is the period of si.
Let us count how many states sj there can be such that t is the period of sj .
Since t < ∞, si appears at least twice in s. Thus, either

– i + t ≤ n and si = si+t, or
– 0 ≤ i − t and si = si−t.

By Lemma 11, either

– sj is among the states in s[i,i+t] and si = si+t, or
– sj is among the states in s[i−t,i] and si = si−t,

respectively. Either way, there are only at most t choices of such sj .

Lemma 13. Let Q be a positive integer. Let f : {1, . . . , Q} → N be a function
such that 1 ≤ f(1) and f(i) < f(i + 1) for each i. Then i ≤ f(i) for each i.

Proof.

f(i) − f(1) =
i−1∑

j=1

f(j + 1) − f(j) ≥
i−1∑

j=1

1 = i − 1,

so f(i) + 1 ≥ i + f(1) ≥ i + 1.
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Fig. 2. An optimal deterministic automaton, witness to
A−(0001010110100001100100111110111) = 18, and its times, states, and peri-
ods. There is only 1 state with period 1, and in general at most � states with period �.

Definition 14. Let α be a word of length n, and let αi be the ith letter of α for
1 ≤ i ≤ n. We define the uth power of α for certain values of u ∈ Q≥0 (the set
of nonnegative rational numbers) as follows.
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– If u = 0 then αu is the empty word.
– If u > 0 is an integer then the power αu is defined inductively by α αu−1,

where juxtaposition denotes concatenation.
– If u = v + k/n where 0 < k < n, and k is an integer, then αu denotes

αvα1 . . . αk.

As an example of Definition 14, we have ABBA1.5 = ABBAAB.

Lemma 15. Let f : N → N, n ≥ 0, and u ∈ Q≥0. Suppose that all uth powers
αu within a sequence x of length n satisfy u ≤ f(|α|), where f is non-increasing.
Let s be a path-unique state sequence. Let q1, . . . , qQ be a list of states of s ordered
by increasing period. Let ai be the number of occurrences of qi in s. Let Ms be
the abstract NFA induced by s.

Suppose moreover that x and s are related as follows: x is the input read
along the unique accepting path of length |x| of some NFA M which is obtained
from Ms by assigning one label to each edge.

Let

(b1, b2, . . . ) = (f(1) + 1, f(2) + 1, f(2) + 1, . . . ,
f(i) + 1, . . . , f(i) + 1︸ ︷︷ ︸

i times

, . . . ).

Then ai ≤ bi for each i.

Proof. For each 1 ≤ i ≤ Q, let �i be the period of qi. (For instance, we could have
(�1, �2, . . . ) = (3, 4, 4, 4, 4, 5, 6).) If qi occurs u+1 times then by Lemma 9 it occurs
during the processing of a uth power αu where |α| = �i. Thus q occurs at most
f(�i) + 1 times, i.e., ai ≤ f(�i) + 1. By Lemma 12, the sequence (�1, �2, �3, . . . ) is
a subsequence of the sequence (1, 2, 2, 3, 3, 3, . . . ) hence by Lemma 13, dominates
it pointwise. And so ai ≤ f(�i) + 1 ≤ bi.

In particular, Lemma15 tells us that if x is square-free then each state can
occur at most twice, which was observed by Shallit and Wang [6].

Lemma 16. Let s = s0 . . . sn be a state sequence. Let q1, . . . , qQ be the distinct
states appearing in s, in any order. Let ai ≥ 1 be the number of times qi occurs.
Let T = n + 1 = |s| =

∑Q
i=1 ai. Let Q0 ≤ Q and let g : Z≥0 → Z≥0. If ai ≤ g(i)

for all 1 ≤ i ≤ Q, and g(i) = 2 for all Q0 < i < ∞, with T0 :=
∑Q0

i=1 g(i) ≤ T,
then

Q ≥ Q0 +
⌈

T − T0

2

⌉
.

Proof. Let w be such that T −T0 ∈ {2w +1, 2w +2}, i.e., w = �(T − T0)/2�−1.
Then we want to show Q ≥ Q0 + w + 1. If Q < Q0 + w + 1 then Q ≤ Q0 + w
and then

T =
Q∑

i=1

ai ≤
Q0∑

i=1

g(i) +
Q0+w∑

i=Q0+1

2 = T0 + 2w,

so 2w + 1 ≤ T − T0 ≤ 2w, a contradiction.
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Lemma 17. Let k be a positive integer. Let Λ be a k-stage CSR. Let x =
x0x1 . . . be an infinite sequence produced by Λ. Let P be the period of Λ upon
processing x. Suppose a sequence α of length � < P is repeated u times consecu-
tively within x, i.e., αu is a contiguous subsequence of x.

Then u < k/� + 1, i.e., u ≤ ⌈
k
�

⌉
, i.e., u ≤ f(|α|) where f(a) = �k/a�.

Proof. Suppose to the contrary that x contains a block

xj . . . xj+�u−1 = z1 . . . z�u = y1 . . . y�y1 . . . y� . . .

with u many blocks of length �, where (u − 1)� ≥ k, i.e., � + k ≤ �u. Let q ≥ 0
and r ≥ 0 be such that k = q� + r. We have

Λj(x0, . . . , xk−1) = (xj . . . xj+k−1) = (z1, . . . , zk)

=

q times︷ ︸︸ ︷
(y1 . . . y�) . . . (y1 . . . y�) y1 . . . yr = (z�+1, . . . , z�+k)

= (xj+� . . . xj+�+k−1) = Λj+�(x0, . . . , xk−1).

So x is eventually periodic with period N ≤ a < P , a contradiction.

Theorem 18. Let x be an m-sequence and let n = |x|. Then n/2 − AN (x) =
O(log2(n)).

Proof. Note that if x is produced by a k-stage CSR Λ, then the period P of Λ
upon processing x is just P = n.

Let Q = AN (x). Thus Q is the number of states of an NFA M with only
one accepting path s of length n, accepting x along that path. Let q1, . . . , qQ be
the states of M ordered by increasing period within s. Let ai be the number of
occurrences of qi.

By Lemma 17, if x contains αu where 1 ≤ |α| ≤ k < P , then u ≤ f(|α|) where
f(a) = �k/a�, a non-increasing function. By Lemma15, each ai ≤ bi, where

(b1, b2, . . . ) = (f(1) + 1, f(2) + 1, f(2) + 1, . . . ,
f(i) + 1, . . . , f(i) + 1︸ ︷︷ ︸

i times

, . . . ).

Let T = n+1 = |s| =
∑Q

i=1 ai. Let g(i) = max{bi, 2}. Let Q0 be the least integer
such that bi ≤ 2 for all i > Q0. Then since f(k) + 1 =

⌈
k
k

⌉
+ 1 = 2 and since

2k(k − 1) ≤ n + 1,

T0 :=
Q0∑

i=1

g(i) =
Q0∑

i=1

bi ≤
k−1∑

i=1

i

(⌈
k

i

⌉
+ 1

)

≤
k−1∑

i=1

i

(
k

i
+ 2

)
= k(k − 1) + k(k − 1)

= 2k(k − 1) ≤ n + 1 = T,



Shift Registers Fool Finite Automata 177

and g(i) = 2 for all i > Q0. Hence by Lemma 16, Q ≥ Q0 + Q1, where Q1 =⌈
T−T0

2

⌉
. Note that Q1 is the minimum number of twos whose sum is at least

T − T0. (For instance, if T − T0 = 2w + 1, say, then Q1 = w + 1 =
⌈

T−T0
2

⌉
.)

Thus

Q0 many terms︷ ︸︸ ︷(⌈
k

1

⌉
+ 1

)
+ 2

(⌈
k

2

⌉
+ 1

)
+ · · · + (k − 1)

(⌈
k

k − 1

⌉
+ 1

)

+

Q1 many terms︷ ︸︸ ︷
2 + 2 + . . . ≥ n + 1.

Clearly Q0 =
∑k−1

i=1 i = k(k − 1)/2. Now T0 + (T − T0) = n + 1, T0 ≤ 2k(k − 1),
and 2Q1 ≥ T − T0, so

2k(k − 1) + 2Q1 ≥ n + 1, Q1 ≥ n + 1
2

− k(k − 1),

and

Q ≥ Q0 + Q1 ≥ k(k − 1)
2

+
n + 1

2
− k(k − 1)

=
n + 1

2
− k(k − 1)

2
.

Thus

AN (x) ≥ n + 1
2

− log2(n + 1)(log2(n + 1) − 1)
2

.

3 Computer Results

3.1 Linear FSRs

Theorem 19. Let x ∈ {0, 1}n be an m-sequence, where n = 2k −1, k ≤ 5. Then
AN (x) = �n/2� + 1.

Theorem 19 was verified in 36 h using a Python script.

Theorem 20. There exists a sequence x with A−(x)−AN (x) ≥ 2. In fact, there
is an m-sequence x with A−(x) − AN (x) = 2.

Proof. Let x = 0001010110100001100100111110111. A computer run showed
that A−(x) ≥ 18. The production of this sequence by an LFSR with 5 bits
is shown in detail in Fig. 3. Figure 2 can be used to verify that A−(x) ≤ 18.
According to Theorem 19, AN (x) = 16.

We also found another m-sequence y for k = 5 with A−(y) = 17. Thus not every
m-sequence has maximal A−-complexity:
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Fig. 3. The operation of a linear feedback shift register producing the sequence from
Theorem20.

Theorem 21. There is an m-sequence x and a sequence y with |x| = |y| such
that A−(x) < A−(y).

Conjecture 22. There is an m-sequence x and a sequence y with |x| = |y| such
that AN (x) < AN (y).

Using our current algorithm and implementation, the calculation of AN (x) for
m-sequences x of length 26 − 1 is unfortunately out of reach.
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3.2 Nonlinears FSRs

For k = 3 there are two possible feedback functions that give an injective function
with a single cycle,

F (p, q, r) = p + pq + r + 1 and F (p, q, r) = q + pq + r + 1 mod 2.

One of them gives the output 00011101, which has AN (00011101) = 4 and so is
not maximally AN -complex.

4 Complexity Function of a Language

Definition 23. A word w is a factor, or contiguous subsequence, of a word v
if v = awb for some words a, b. For a finite word x, x∞ is the infinite word
satisfying xx∞ = x∞. For a finite or infinite word u, pu(k) is the number of
distinct factors of u of length k. The cyclic subword complexity of x is

(px∞(1), . . . , px∞(|x|)).
The plain subword complexity of x is

(px(1), . . . , px(|x|)).
In general, neither of maximum subword complexity and maximum AN -
complexity implies the other.

Theorem 24. Maximum subword complexity can be characterized as follows.

1. The cyclic subword complexity of a b-ary word is pointwise bounded above by

(b1, b2, . . . , bt, n, n, . . . , n)

where t is maximal such that bt ≤ n.
2. This upper bound is realized by m-sequences when n = bk − 1, k ≥ 0, b = 2.

Proof. (1) is because both
(b1, b2, . . . , bn)

and
(n, n, . . . , n)

are upper bounds, and the pointwise minimum of two upper bounds is an upper
bound. To prove (2), we need to show that an m-sequence x has

(px∞(1), . . . , px∞(n))

= (b1, b2, . . . , bk−1, bk − 1, bk − 1, . . . , bk − 1),

that is,

px∞(i) =

{
bi if i ≤ k − 1,

bk − 1 if k ≤ i ≤ bk − 1.
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It suffices to show px∞(k) = bk − 1, since

(i) this gives p(i) = bi for i ≤ k−1 (only one string of length k is missing, so all
strings of shorter length must be present; since any missing string of shorter
length would give at least b > 1 missing strings of length k), and

(ii) p(i) is monotonically increasing with i (if two words have distinct prefixes
of a certain length, then the strings are distinct).

The statement p(k) = bk − 1 when b = 2 follows easily from a note labelled (4)
in [4], namely

“4. A sliding window of length k, passed along an m-sequence for 2k − 1
positions, will span every possible k-bit number, except all zeros, once and
only once. That is, every state of a k-bit state register will be encountered,
with the exception of all zeros.”

This statement (4) surely is already implicit in Golomb’s monograph. In any
case, it is almost immediate from the fact that m bits are saved in the state and
the sequence is maximum-length.

5 The No-Long-High-Powers Property

Definition 25. Let k ≥ 0 and u ∈ Q≥0. The no-long-high-power (NLHP or “no
LHP”) property of a sequence x of length 2k − 1 says that if a word α of length
s < 2k − 1 is such that αu is a factor of x∞, then u < k/s + 1.

By Lemma 17, m-sequences have the NLHP property.

Theorem 26. Let x be a word of length n = 2k−1. The following are equivalent:

(i) x has the NLHP property.
(ii) x has maximal cyclic subword complexity.

Proof. Recall that when n = 2k − 1 then the maximal subword complexity is
realized by m-sequences and is

(2, 4, 8, . . . , 2k−1, n, n, . . . , n). (1)

Let us prove that (ii) implies (i). Suppose that wu is contained cyclically (using
only a single trip through the cycle) in x. We need to show that |wu−1| < k
where n = 2k − 1. It’s just that if there is an LHP then there are two positions
giving the same subword, thereby reducing one of the n’s in (1) to n − 1.

Let us now prove that (i) implies (ii). We need to show that if, say, 01 is
not a factor of x∞ then there are so many occurrences of 00, 10, 11 as factors
as to make an LHP. If there is no 01 then there are many strings of length k
that are missing, and so some are repeated. Thus, if px∞(s) < 2s for s < t
then also px∞(t) < 2t. Thus, px∞(k − 1) < 2k−1. And then we can argue that
px∞(k) < 2k − 1, as well. So by the Pigeonhole Principle some word of length k
is repeated and hence there is an LHP.
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Corollary 27. Theorem18 applies to any word of maximal subword complexity
(when the length is 2k − 1).

Corollary 27 is of interest because of the following result.

Theorem 28. Words of maximal subword complexity do not in general have
maximum AN -complexity.

Proof. It is easily checked that already at length 6, we have a string of maximal
subword complexity but not maximal AN -complexity: namely 001100.

Thus, while experimentally our computer results suggest that m-sequences
always have maximal AN -complexity, our main theoretical result Theorem 18
show that m-sequences have fairly high AN -complexity also applies to some
sequences that demonstrably do not have maximal AN -complexity.
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Abstract. Formulae of the Lambek calculus are constructed using three
binary connectives, multiplication and two divisions. We extend it using
a unary connective, positive Kleene iteration. For this new operation, fol-
lowing its natural interpretation, we present two lines of calculi. The first
one is a fragment of infinitary action logic and includes an omega-rule
for introducing iteration to the antecedent. We also consider a version
with infinite (but finitely branching) derivations and prove equivalence of
these two versions. In Kleene algebras, this line of calculi corresponds to
the *-continuous case. For the second line, we restrict our infinite deriva-
tions to cyclic (regular) ones. We show that this system is equivalent to a
variant of action logic that corresponds to general residuated Kleene alge-
bras, not necessarily *-continuous. Finally, we show that, in contrast with
the case without division operations (considered by Kozen), the first sys-
tem is strictly stronger than the second one. To prove this, we use a com-
plexity argument. Namely, we show, using methods of Buszkowski and
Palka, that the first system is Π0

1 -hard, and therefore is not recursively
enumerable and cannot be described by a calculus with finite derivations.

Keywords: Lambek calculus · Positive iteration · Infinitary action
logic · Cyclic proofs

1 The Infinitary Lambek Calculus with Positive Iteration

The Lambek calculus L [12] deals with formulae that are built using three con-
nectives, · (product), \, and / (left and right divisions). These connectives enjoy
a natural interpretation as operations on formal languages (completeness shown
by Pentus [17]). There are, however, also other interesting and well-respected
operations on formal languages, and it is quite natural to try to extend L by
adding these operations as new connectives.

One of the most common of such operations is iteration, or Kleene star: for
a language M over an alphabet Σ its iteration is defined as follows:

M∗ = {u1 . . . un | n ≥ 0, ui ∈ M}.
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As one can notice, M∗ always includes the empty word, ε. The original Lam-
bek calculus, however, obeys so-called Lambek’s non-emptiness restriction, that
is, the empty sequence is never allowed in L (this restriction is motivated by
linguistic applications; from the algebraic point of view, this means that we’re
considering residuated semigroups instead of residuated monoids). Therefore,
throughout this paper we consider a modified version of Kleene star, called pos-
itive iteration:

M+ = {u1 . . . un | n ≥ 1, ui ∈ M} = M∗ − {ε}.

In this paper, we introduce several extensions of the Lambek calculus with
this new connective, establish connections between them, and prove some com-
plexity bounds.

Formulae of the Lambek calculus with positive iteration, usually called types,
are built from a countable set of variables (primitive types) Pr = {p1, p2, p3, . . . }
using three binary connectives, ·, \, and /, and one unary connective, + (written
in the postfix form, A+). The set of all types is denoted by Tp. Types are
denoted by capital Latin letters; capital Greek letters stand for finite linearly
ordered sequences of types.

Derivable objects are sequents of the form Π → A, where A ∈ Tp and Π is
a non-empty finite sequence of types.

Now let’s define the first calculus for positive iteration, L+ω. The axioms and
the rules for ·, \, and / are the same as in the original Lambek calculus L:

A → A
(ax)

A,Π → B

Π → A \ B
(→ \), where Π is non-empty

Π → A Γ,B,Δ → C

Γ,Π,A \ B,Δ → C
(\ →)

Π,A → B

Π → B/A
(→ /), where Π is non-empty

Π → A Γ,B,Δ → C

Γ,B/A,Π,Δ → C
(/ →)

Γ → A Δ → B
Γ,Δ → A · B

(→ ·) Γ,A,B,Δ → C

Γ,A · B,Δ → C
(· →)

For +, this calculus includes a countable set of right rules:

Π1 → A . . . Πn → A

Π1, . . . , Πn → A+
(→ +)n, for n ≥ 1

and one left rule
Γ,A,Δ → C Γ,A,A,Δ → C Γ,A,A,A,Δ → C . . .

Γ,A+,Δ → C
(+ →)ω

This rule is an ω-rule, or an infinitary rule. Application of such a rule makes the
proof tree infinite. This is somewhat unpleasant from the computational point
of view, but, as we show later on, it appears to be inevitable.

The rules (→ +)n and (+ →)ω come from the rules for iteration in infinitary
action logic, ACTω [4]. Our system L+ω differs from ACTω in the following two
points.
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1. L+ω enriches the “pure” (multiplicative) Lambek calculus L, while ACTω is
based on the full Lambek calculus FL, including also additive conjunction
(∧) and disjunction (∨). This means that complexity lower bounds for L+ω are
stronger results than lower bounds for ACTω.

2. In contrast to ACTω, in L+ω we have Lambek’s non-emptiness restriction,
and therefore use positive iteration instead of Kleene star.

The cut rule of the form

Π → A Γ,A,Δ → C

Γ,Π,Δ → C
(cut)

is admissible in L+ω. This fact is proved by the same transfinitary cut-elimination
procedure, as presented by Palka [14] for ACTω (for a restricted fragment of L+ω
cut elimination was independently shown by Ryzhkova [21]).

The admissibility of (cut) yields the fact that the rules (→ \), (→ /), (· →),
and, most interestingly, (+ →)ω are invertible.

The Lambek calculus L, defined by axioms (ax) and rules (→ \), (\ →),
(→ /), (/ →), (→ ·), and (· →), is a conservative fragment of L+ω. Cut elimination
for L was known already by Lambek [12].

The calculus L+ω defined in this section is sound with respect to the intended
interpretation on formal languages, where + is interpreted as positive iteration:

M+ = {u1 . . . un | n ≥ 1, ui ∈ M},

and the Lambek connectives are interpreted in the same way as for L:

M · N = {uv | u ∈ M,v ∈ N},

M \ N = {u ∈ Σ+ | (∀v ∈ M) vu ∈ N},

N/M = {u ∈ Σ+ | (∀v ∈ M)uv ∈ N}.

The arrow, →, is interpreted as the subset relation.
Completeness with respect to this interpretation is an open problem.

2 Π0
1 -completeness of L+ω

In this section we prove that derivability in L+ω is Π0
1 - (co-r.e.-) hard. Basically,

we follow the same strategy as Buszkowski [4], namely, encoding the totality
problem for context-free grammars. Our construction, however, is more involved:
instead of embedding context-free grammars into the Lambek environment as
Ajdukiewicz – Bar-Hillel basic categorial grammars, we use another transla-
tion by Safiullin [22] which yields a categorial grammar that assigns exactly one
type to each letter of the alphabet. This trick allows us to avoid using addi-
tive operations, and prove the complexity lower bound for the extension of the
original, purely multiplicative Lambek calculus L. For the purely multiplicative
fragment of ACTω, the lower complexity bound was left as an open problem by
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Buszkowski in [4]. Here we solve not that problem exactly, but its version with
Lambek’s restriction.

Throughout this paper, all languages do not contain the empty word. Accord-
ingly, all context-free grammars do not contain ε-rules. By total+ we denote
the set of all context-free grammars G such that the language generated by G is
the set of all non-empty words, Σ+. The problem total+ is Π0

1 -hard. Indeed,
as shown in [4], total, the totality problem for context-free grammars possibly
using the empty word, reduces to total+. In its turn, total itself is known to
be undecidable, and standard proofs of this fact actually yield more: they reduce
a well-known Σ0

1 - (r.e.-) complete problems, e.g., Post’s correspondence prob-
lem [7, Theorem 9.22] or halting problem for Turing machines [5, Example 5.43],
to the complement of total. This makes total and total+ themselves Π0

1 -
complete.

We can further restrict ourselves to context-free grammars over a two-letter
alphabet, {b, c}. Denote the ε-free totality problem over {b, c} by total+2 . The
original problem total+ is reduced to total+2 in the following way. Let G be
a context-free grammar that defines a language L(G) over Σ = {a0, a1, . . . , an}.
The homomorphism h : ai �→ bic is a one-to-one correspondence between Σ+

and {u ∈ {b, c}+ | u ends on c and doesn’t contain bn+1 as a subword}. Now
we can computably transform G into a new context-free grammar G′ for the
language h(L(G)) ∪ {u ∈ {b, c}+ | u ends on b or contains bn+1 as a subword}
over {b, c}. Clearly, G ∈ total+ ⇐⇒ G′ ∈ total+2 . This establishes the
necessary reduction and Π0

1 -hardness of total+2 .
Finally, we consider the alternation problem for context-free grammars over

{b, c}, denoted by alt2. A context-free grammar G belongs to alt2 if the lan-
guage it generates includes the language ({b}+{c}+)+ = {bm1ck1 . . . bmnckn |
n ≥ 1,mi ≥ 1, kj ≥ 1} (as a subset). Clearly, alt2 is also Π0

1 -hard by reduction
of total+2 , since M = {b, c}+ ⇐⇒ {b} · M · {c} ⊇ ({b}+{c}+)+.

Now we need an encoding of context-free grammars in the Lambek calculus.
A Lambek categorial grammar with unique type assignment over the alphabet
{a1, . . . , an} consists of (n + 1) types (without the + connective) A1, . . . , An,H
(H is called the target type), and a word w = ai1 . . . aim belongs to the language
generated by this grammar iff the sequent Ai1 , . . . , Aim → H is derivable in
L. These grammars have the same expressive power as context-free grammars
(without ε-rules).

Theorem 1 (A. Safiullin, 2007). For every context-free language there exists,
and can be effectively constructed from the original context-free grammar, a Lam-
bek categorial grammar with unique type assignment [22].

The inverse translation, from Lambek categorial grammars to context-free gram-
mars, is also available due to Pentus [15] (in this paper we don’t need it). In
order to make this paper logically self-contained, we revisit Theorem 1 and give
its full proof in the Appendix (in Safiullin’s paper [22], the proof is only briefly
sketched).

Now we’re ready to prove the main result of this section.
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Theorem 2. The derivability problem for L+ω is Π0
1 -complete.

Proof. The fact that this problem belongs to class Π0
1 (the upper bound) is

established by the same argument as for ACTω in [14].
To prove Π1

0 -hardness of the derivability problem in L+ω (the lower bound),
we encode alt2. For every context-free grammar G over {b, c} we algorithmically
construct an L+ω-sequent E → H such that

G ∈ alt2 ⇐⇒ E → H is derivable in L+ω.

First we apply Theorem 1 to G and obtain a Lambek categorial grammar with
unique type assignment. In this case, it consists of three types, B, C, and H.
Next, let E = (B+ · C+)+.

Now, since the (· →) and (+ →) rules are invertible, the sequent E → H
is derivable in L+ω iff for any positive natural numbers n, m1, . . . , mn, k1, . . . ,
kn the sequent Bm1 , Ck1 , . . . , Bmn , Ckn → H is derivable in L+ω, and, since it
doesn’t contain +, by conservativity also in the Lambek calculus L. By definition
of Lambek grammar, this is equivalent to bm1ck1 . . . bmnckn ∈ L(G). Therefore,
E → H is derivable iff the language generated by G includes all words of the
form bm1ck1 . . . bmnckn , i.e., G ∈ alt2.

3 The Calculus with Infinite Derivation Branches

In this section we define L+∞, another infinitary calculus that extends L with
positive iteration, in the spirit of sequent systems with non-well-founded deriva-
tions for other logics [2,13,24]. Compared to L+ω, L+∞ has a finite number of
rules and each rule has a finite number of premises. The tradeoff is that now
derivation trees are allowed to have infinite depth.

The Lambek part (rules for \, /, and ·) is taken from L. The rules for positive
iteration are as follows:

Π → A
Π → A+

(→ +)1
Π1 → A Π2 → A+

Π1,Π2 → A+
(→ +)L

Γ,A,Δ → C Γ,A,A+,Δ → C

Γ,A+,Δ → C
(+ →)L

As said before, we allow infinitely deep derivations. For the cut-free version,
any trees with possibly infinite paths are allowed, but for the calculus with (cut)
one has to be extremely cautious. Clearly, allowing arbitrary infinite proofs would
yield dead circles without actually using rules for +:

p → p
p → p

. .
.

p → q
(cut)

p → q
(cut)

p → q
(cut)
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Such “derivations” should be ruled out. There are, however, trickier cases like
the following:

p → p

p → p p+ → p+

p, p+ → p+
(→ +)L

. .
.

p+ → p
(+ →)L

p, p+ → p
(cut)

p+ → p
(+ →)L

Here in the only infinite path we can see an infinite number of (+ →) applications.
However, the resulting sequent, p+ → p, is not valid under the formal language
interpretation (e.g., {a}+ ⊆ {a}) and therefore should not be derivable.

For the calculus with (cut), we impose the following constraint on the infi-
nite derivation tree: in each infinite path there should be an infinite number of
applications of (+ →)L with the same active occurrence of A+ (the occurrence
is tracked by individuality from bottom to top), cf. [2, Definition 5.5].

In our example that “derives” p+ → p, the occurrence of p+ that is active
in the lower application of (+ →)L tracks to the left premise, and the p+ that
goes further to the infinite path is another occurrence generated by cut. For the
cut-free system, this constraint holds automatically.

Also notice that the rules in L+∞ are asymmetric: we don’t introduce the
rules where A appears to the right of A+. Yet, this calculus is equivalent to
the symmetric system L+ω (Proposition 1). A motivation for this asymmetry is
explained in the end of Sect. 4.

We generalize both L+∞ and L+ω by adding the additive disjunction, ∨, gov-
erned by the following rules:

Γ,A1,Δ → C Γ,A2,Δ → C

Γ,A1 ∨ A2,Δ → C
(∨ →)

Γ → Ai

Γ → A1 ∨ A2
(→ ∨)

and denote the extensions by L+∞(∨) and L+ω(∨) respectively.
The cut-free calculi L+ω(∨) and L+∞(∨) (and, therefore, their conservative

fragments L+ω and L+∞) are equivalent.

Proposition 1. A sequent is derivable in L+ω(∨) iff it is derivable in L+∞(∨).

Proof (sketch of). The “only if” part is trivial: the ω-rule is derivable in L+∞(∨)
and so are the (→ +)n rules. All other rules are the same.

For the “if” part, we make use of the ∗-elimination result by Palka [14]. We
consider the n-th negative mapping that replaces any negative occurrence of A+

(polarity is defined as usual) by A ∨ A2 ∨ . . . ∨ An and show that if a sequent
is derivable in L+∞(∨), than all its negative mappings are also derivable. In the
negative mapping, however, there are no negative occurrences of +, and therefore
its cut-free derivation doesn’t have infinite branches. Moreover, we replace each
(→ +)L rule application with the following subderivation:

Π1 → A Π2 → A+

Π1,Π2 → A · A+

A,A+ → A+

A · A+ → A+

Π1,Π2 → A+
(cut)
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The sequent A,A+ → A+ is derivable in L+ω(∨), using the ω-rule. Thus, the
negative mapping of the original is derivable in L+ω(∨) using cut, and, by cut
elimination, has a cut-free derivation. Then we go backwards and show, following
the argument of Palka [14], that the original sequent is derivable in L+ω(∨).

4 The Cyclic Calculus

Now let’s consider the following example:

p, p \ p → p

p → p

. .
.

p, (p \ p)+ → p

p, p \ p, (p \ p)+ → p
(\ →)

p, (p \ p)+ → p
(+ →)

(p \ p)+ → p \ p
(→ \)

We see that actually we don’t have to develop the derivation tree further, since
the sequent p, (p \ p)+ → p on top already appears lower in the derivation, and
now this tree can be built up to an infinite one in a regular way.

We define the notion of cyclic proof as done in [24,25] (for GL, the Gödel –
Löb logic) and call this system L+circ. In contrast to the situation with GL,
however, here L+circ is strictly weaker than L+ω (L+∞) due to complexity reasons.
Indeed, L+ω is Π0

1 -hard, while in L+circ derivations are finite and the derivability
problem is recursively enumerable (belongs to Σ0

1). This is true even in the
signature without ∨.

For the extension of L+circ with additive disjunction, we show that the cyclic
system L+circ(∨) is equivalent to the corresponding variant of action logic consid-
ered by Pratt [19], Kozen [10], and Jipsen [9]. The difference is due to Lambek’s
non-emptiness restriction and the use of positive iteration instead of Kleene star.

Formally, cyclic derivations are defined as follows. The system L+circ(∨) has
the same axioms and rules as L+∞(∨), but infinite derivations are not allowed.
Instead, for each application of the (+ →)L rule that yields Γ,A+,Δ → B we
trace the active occurrence of A+ upwards and are allowed to stop if we again
get the same sequent, Γ,A+,Δ → B with the same occurrence of A+. This
sequent is backlinked to the original one, forming a cycle. The cut rule is also
allowed. Note that in the bottom of each cycle we always have the (+ →)L
rule with the active occurrence of A+ which is traced through the cycle, thus
satisfying the constraint needed for infinite derivations with cut. Clearly, every
cyclic derivation can be expanded into an infinite one. On the other hand, the
cyclic system L+circ is not equivalent to L+∞ due to complexity reasons.

This system L+circ appears to have much in common with various coinductive
proof systems [1,8,11,18,20]. These connections are worth further investigation.

The cyclic system L+circ(∨) happens to be equivalent to a non-sequential cal-
culus ACT+ defined below, which is the positive iteration variant of the axioms
for action algebras by Pratt [19]:
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A → A (A · B) · C → A · (B · C) A · (B · C) → (A · B) · C

A → C/B

A · B → C
A · B → C
A → C/B

B → A \ C

A · B → C
A · B → C
B → A \ C

A → B B → C
A → C

A → Bi

A → B1 ∨ B2

A1 → B A2 → B

A1 ∨ A2 → B

A ∨ (A+ · A+) → A+

A ∨ (B · B) → B

A+ → B

The rules for \, /, and · correspond to the non-sequential formulation of the
Lambek calculus [12].

Lemma 1. The following rule is admissible in ACT+:

A → C C · A → C
A+ → C

This lemma is actually a modification of a well-known alternative formulation
of the calculus for action logic (connecting it to Kleene algebra). The difference,
again, is in using positive iteration instead of Kleene star.

Proof. The second premise yields A → C \ C, and since (C \ C)·(C \ C) → C \ C
is derivable, we get A ∨ ((C \ C) · (C \ C)) → C \ C, and therefore A+ → C \ C
and then C → C/A+. By transitivity with A → C this yields A → C/A+, and
therefore A · A+ → C. Combining this with A → C, we get A ∨ (A · A+) → C,
and it is sufficient to show A+ → A ∨ (A · A+). Denote A ∨ (A · A+) by B.
We have A → B and also B · B → B. Indeed, using distributivity conditions:
(E∨F )·G ↔ (E ·G)∨(E ·G) and G·(E∨F ) ↔ (G·E)∨(G·F ), that are derivable
in ACT+, we replace B ·B with (A·A)∨(A·A·A+)∨(A·A+ ·A)∨(A·A+ ·A·A+),
and applying the axiom for + and monotonicity, we see that all four disjuncts
here yield A ·A+, and therefore B. Hence, by the rule for +, we obtain A+ → B.

Lemma 2. The following rule is admissible in ACT+:

A → C A2 → C . . . Ak → C Ak · C → C
A+ → C

Lemma 2 is essential for emulating cyclic reasoning in the non-sequential
calculus ACT+. The k parameter corresponds to the number of (+ →)L appli-
cations in the cycle.

Proof. First we prove that

A+ → A ∨ A2 ∨ . . . ∨ Ak ∨ (Ak)+ ∨ (Ak)+ · A ∨ . . . ∨ (Ak)+ · Ak−1

is derivable in this calculus. We denote the right-hand side of this formula by B
and show A → B and B · A → B (this yields A+ → B by Lemma 1). The first
is trivial. For the second, using distributivity conditions, we replace B · A with

A2∨A3∨ . . .∨Ak ∨Ak+1∨(Ak)+ ·A∨(Ak)+ ·A2∨ . . .∨(Ak)+ ·Ak ∨(Ak)+ ·Ak+1.



190 S. Kuznetsov

All types in this long disjunction, except Ak+1 and (Ak)+ · Ak+1, belong to
the disjunction B (and therefore yield B). For the two exceptions we have the
following: Ak+1 → (Ak)+ · A and (Ak)+ · Ak+1 → (Ak)+ · A.

Now we prove the lemma itself by deriving B → C. To do this, we need to
show H → C for any disjunct H in B. For H = A, . . . , H = Ak this is stated
in the premises. Since that (C/C) · (C/C) → C/C is derivable and Ak → C/C
follows from the last premise, we get Ak ∨ ((C/C) · (C/C)) → (C/C), and
therefore (Ak)+ → C/C. Thus, (Ak)+ · C → C, then C → (Ak)+ \ C, and by
transitivity with Ai → C we get (Ak)+ · Ai → C for any i = 1, . . . , k − 1. It
remains to show (Ak)+ → C. We have (Ak)+ · Ak → C and also Ak → C as
a premise. One can easily prove (Ak)+ → Ak ∨ ((Ak)+ · Ak) and thus establish
(Ak)+ → C.

Finally, by transitivity from A+ → B and B → C we obtain A+ → C.

Theorem 3. A sequent (of the form E → F ) is derivable in L+circ(∨) iff it is
derivable in ACT+.

Proof. The “if” part is easier. The rules operating Lambek connectives (·, /, and
\) can be emulated in the sequential calculus due to Lambek [12]. The rules for
∨ in ACT+ directly correspond to the rules for ∨ in L+circ(∨).

The following cyclic derivation yields A+ → B from A → B and B,B → B,
thus establishing the rule for + from ACT+:

A → B

A → B

...
A+ → B B, B → B

B, A+ → B
(cut)

A, A+ → B
(cut)

A+ → B
(+ →)L

The track of A+ goes through the cycle, and the (+ →)L rule is applied to it at
every round.

Finally, for A+ · A+ → A+, we first derive A · A+ → A+ (using (→+)L and
(· →)), and then, following Pratt [19], transform it into A+ · A+ → A+:

A, A+ → A+

A → A+ \ A+ A+ \ A+, A+ \ A+ → A+ \ A+

A ∨ ((A+ \ A+) · (A+ \ A+)) → A+ \ A+

A+ → A+ \ A+

A+ · A+ → A+

In this derivation we’ve used other rules of ACT+, which were previously shown
to be valid in L+circ(∨). Together with A → A+ (derivable using (→ +)1), this
yields the last axiom of ACT+, A ∨ (A+ · A+) → A+.

For “only if” part, we first replace all cycles in the L+circ(∨) derivation by
applications of the rule from Lemma 2. We proceed by induction on the number
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of cycles. For the induction step, let the derivation end with an application of
(+ →)L, involved in a cycle. Let k be the number of applications of (+ →)L to
the active occurrence of A+ that is tracked along this cycle. Let the goal sequent
be Γ,A+,Δ → B; the same sequent appears on top of the cycle:

Γ, A, Δ → B

Γ, A+, Δ → B

...
Γ, A, A+, Δ → B

Γ,A+,Δ → B
(+ →)L

Let C = Γ \ B/Δ (if Γ or Δ contains more than one formula, we add ·’s between
them; if Γ or Δ is empty, we omit the corresponding division). The sequent
Γ,C,Δ → B is derivable in the Lambek calculus. Then we go down the cycle
path, replacing the active A+ with Ai, C. We start with i = 0 and increase i each
time we come across (+ →)L applied to the active A+. After this substitution,
this application becomes trivial: instead of

Γ ′, A, Δ′ → B′ Γ ′, A, A+, Δ′ → B′

Γ ′, A+, Δ′ → B′ (+ →)L

we get
Γ ′, A, Ai, C, Δ′ → B′

Γ ′, Ai+1, C,Δ′ → B′

and actually forget about the left premise of the rule. All other rules remain
valid. In the end, this gives us Γ,Ak, C,Δ → B, or Ak · C → C. Moreover,
the derivation of this sequent was obtained by substitution and cutting some
branches from the original derivation, and therefore contains less cycles. By
induction, we can suppose that Ak · C → C was derived without cycles, using
the rule from Lemma 2.

Next, for an arbitrary j from 1 to k, we go upwards along the trace of the
active A+ and find the j-th application of (+ →)L:

Γ ′, A, Δ′ → B′ Γ ′, A, A+, Δ′ → B′

Γ ′, A+, Δ′ → B′

Now we cut off the right (cyclic) derivation branch and replace A+ in the goal
with A. Next, we trace it down back to the original sequent, replacing A+ with
Ai. The index i starts from 1 and gets increased each time we pass through the
(+ →)L rule with the active A+. Again, these applications trivialize, all other
rules remain valid. In the end, we get Γ,Aj ,Δ → B derivable with a less number
of cycles. This yields Aj → C.

Finally, having A → C, A2 → C, . . . , Ak → C, and Ak · C → C, we apply
Lemma 2 and obtain A+ → C. Using cut, we invert (· →), (→ /), and (→ \),
decompose C and arrive at the original goal sequent Γ,A+,Δ → B.
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This finishes the non-trivial part of the proof: now we have a normal, non-
cyclic derivation, and it remains to show that other rules of L+circ(∨) used in
it are admissible in ACT+. (Formally speaking, the languages of L+circ(∨) and
ACT+ are different. In ACT+, instead of sequents of the form A1, . . . , An → B,
we consider A1 · . . . · An → B.)

The rules for Lambek connectives (\, /, and ·), and also the cut rule, are
admissible in ACT+ due to Lambek [12]. The rules for ∨ correspond directly.
Finally, the (→ +)1 and (→ +)L are validated as follows (here we use previously
validated Lambek rules):

Π → A

A → A
A → A ∨ (A+ · A+) A ∨ (A+ · A+) → A+

A → A+

Π → A+

Π1 → A

Π1 → A+ Π2 → A+

Π1,Π2 → A+ · A+

A+ · A+ → A+ · A+

A+ · A+ → A ∨ (A+ · A+) A ∨ (A+ · A+) → A+

A+ · A+ → A+

Π1,Π2 → A+

Note that, despite the fact that the calculus for ACT+ is symmetric, the
asymmetry in the rules of L+circ(∨) is essential for our reasoning, because if we
allow both left and right rules for +, the rule from Lemma 2, that is used to
emulate cyclic derivation, would transform into

A → C A2 → C . . . Ak → C A� · C · Ak−� → C
A+ → C

and for this rule we don’t know whether it is admissible in ACT+.

5 Further Work and Open Questions

In this section we summarize the questions that are still (to the author’s best
knowledge) unsolved.

1. Though we don’t claim cut elimination for L+∞ in this paper, it looks plausible
that it could be proven using continuous cut elimination (cf. [13,23]). For
L+circ, however, the problem looks harder, since if one unravels the cyclic
derivation into an infinite one and eliminates cut, the resulting derivation
could be not cyclic anymore.

2. In this paper we use complexity arguments to show that L+ω is strictly more
powerful than any its subsystem with finite derivations. This doesn’t yield
any examples of concrete sequents derivable in L+ω and not derivable, say, in
L+circ. Constructing such examples is yet an open problem.
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3. We don’t know whether the rule in the end of Sect. 4 is admissible if ACT+.
If yes, we could allow both left and right rules for + is cyclic derivations, and
this system would be still equivalent to ACT+.

4. Safiullin’s construction (see Appendix) essentially uses Lambek’s non-empti-
ness restriction. The question whether any context-free language can be gen-
erated by a categorial grammar with unique type assignment, based on the
variant of the Lambek calculus allowing empty left-hand sides of sequents, is
still open. From our perspective, a positive answer to this question (maybe, by
modification of Safiullin’s construction) would immediately yield Π0

1 -hardness
of the Lambek calculus allowing empty left-hand sides of sequents, enriched
with Kleene star (but without additive conjunction and disjunction), thus
solving a problem posed by Buszkowski [4].

5. An open (and, in the view of the sophisticatedness of Pentus’ completeness
proof [17], very hard) question is the completeness of L+ω w.r.t. language
interpretation (see Sect. 1). A partial completeness result, for the fragment
where + is allowed only in the denominators of \ and /, was obtained by
Ryzhkova [21], using Buszkowski’s canonical model construction [3].
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Appendix: Safiullin’s Construction Revisited

Theorem 1 by Safiullin is a crucial component of our Π0
1 -hardness proof for L+ω.

Unfortunately, Safiullin’s paper [22] is very brief and, moreover, includes this
theorem (which is probably the most interesting result of that paper) as a side-
effect of a more complicated construction. This makes it very hard to follow
Safiullin’s ideas and arrive at a complete proof. Therefore, in this Appendix we
present Safiullin’s proof clearly and in detail.

In this Appendix, the + connective is never used, and Tp stands for the set
of types constructed from primitive ones using ·, \, and /.

Define the top of a Lambek type in the following way: top(q) = q for q ∈ Pr;
top(A \ B) = top(B/A) = top(B). Note that the A ·B case is missing. Thus, not
every type has a top.

For types with tops, the (→ ·) rule is invertible (proof by induction):

Lemma 3. If all types of Π have tops and Π → A1 · . . . · An is derivable in L,
then Π = Π1, . . . , Πn and Πi → Ai is derivable for every i = 1, . . . , n.

If a sequent of the form Π → q, q ∈ Pr, has a cut-free derivation in L, trace
the occurrence of q back to the axiom of the form q → q, and then trace the left
q back to its occurrence in Π. This occurrence of q will be called the principal
occurrence (for different derivations, the principal occurrences could differ).
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Lemma 4. The principal occurrence has the following properties:

1. if all types in Π have tops, then the principal occurrence is one of them;
2. if in a derivation of Π, q, Φ → q the occurrence of q between Π and Φ is

principal, then Π and Φ are empty;
3. if in a derivation of Π, q/A,Φ → q the occurrence of q in q/A is principal,

then Π is empty;
4. if in a derivation of Π,A \ q, Φ → q the occurrence of q in A \ q is principal,

then Φ is empty.

Proof. For statement 1, proceed by induction on derivation. For statements 2–4,
suppose the contrary and also proceed by induction on derivation.

Lemma 5. If all types of Π have tops, and these tops are not q, then Π → q/q
is not derivable in L.

Proof. Since (→ /) is invertible, we get Π, q → q, and by Lemma 4 Π should be
empty. But → q/q is not derivable due to Lambek’s restriction.

Lemma 6. If in a derivation of q/A,Φ → q the leftmost occurrence of q is
principal or in a derivation of Φ,A \ q → q the rightmost occurrence of q is
principal, then Φ → A is derivable.

Proof. Induction on the derivation.

Lemma 7. If Π, q/q, Φ → q/q is derivable in L, all types from Π and Φ have
tops, and these tops are not q, then Π and Φ are empty.

Proof. Again, by inverting (→ /) we get Π, q/q, Φ, q → q. The rightmost q
cannot be principal, because otherwise Π, q/q, Φ is empty (Lemma 4). The second
possibility is the top of q/q. Then, again by Lemma 4, Π is empty, and by Lemma
6 Φ, q → q is derivable. Since tops of Φ are not q, the rightmost occurrence of q
is principal. By Lemma 4, Φ is empty.

By F we denote the free group generated by the set of primitive types Pr.
For every A ∈ Tp we define its interpretation in this free group, [[A]], as follows:
[[q]] = q for q ∈ Pr; [[A · B]] = [[A]][[B]]; [[A \ B]] = [[A]]−1[[B]]; [[B/A]] = [[B]][[A]]−1.
If [[A]] is the unit of F, A is called a zero-balance type.

The primitive type count, #q(A), for q ∈ Pr and A ∈ Tp, is defined as follows:
#q(q) = 1; #q(q′) = 0, if q′ ∈ Pr and q′ = q; #q(A · B) = #q(A) + #q(B);
#q(A \ B) = #q(B/A) = #q(B) − #q(A). Notice that if A is a zero-balance
type, then #q(A) = 0 for every q ∈ Pr.

If the sequent A1, . . . , An → B is derivable in L, then it is balanced, namely,
#q(B) = #q(A1) + . . . + #q(An) for every q ∈ Pr, and [[A1]] . . . [[An]] = [[B]].

Theorem 4 (M. Pentus, 1994). If [[A1]] = [[A2]] = . . . = [[An]], then there
exists such B ∈ Tp, that all sequents A1 → B, A2 → B, . . . , An → B are
derivable in L [16].
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For a set of zero-balance types U = {A1, . . . , An}, we construct an ersatz of
their additive disjunction, A1 ∨ . . . ∨ An, in the following way. In the notations
for types, we sometimes omit the multiplication sign, ·, if this doesn’t lead to
misunderstanding. Let u, t, and s be fresh primitive types, not occurring in Ai.
By Theorem 4, there exist such types F and G that the following sequents are
derivable for all i = 1, . . . , n:

(t/t)Ai(t/t) . . . (t/t)An(t/t) → F, (t/t)A1(t/t) . . . (t/t)Ai(t/t) → G.

Now let
E = (t/t)A1(t/t)A2(t/t) . . . (t/t)An(t/t),

B = E (((u/F ) \ u) \(t/t)), C = ((t/t) /(u/(G \ u)))E.

We omit the multiplication sign, ·, if this doesn’t lead to misunderstanding.
Finally, is(U) = ((s/E) · B) \ s/C.

Lemma 8. For each Ai ∈ U , the sequent Ai → is(U) is derivable in L.

Proof. The derivation is straightforward.

Lemma 9. If the sequent Π → is(U) is derivable in L, all types in Π have tops,
and these tops are not s or t, then for some Aj ∈ U the sequent B2,Π,C1 → Aj,
where B2 is either empty or is a type such that B = B2 or B = B1 ·B2 for some
B1, and C1 is either empty or is a type such that C = C1 or C = C1 · C2 for
some C2 (up to associativity of ·).
Using the invertibility of (· →), we replace ·’s in B2 and C1 by commas, and thus
consider them as sequences of types that have tops. Actually, we want them to
be empty, and it will be so in our final construction.

Proof. Let Π → is(U) be derivable. Then one can derive (s/E), B,Π,C → s,
and then by Lemma 6 we get B,Π,C → E (since the leftmost s is the only top
s, and it is the principal occurrence). Recall that E = (t/t)A1 . . . (t/t)An(t/t)
and apply Lemma 3. It is sufficient so show that, after decompositon, the whole
Π comes to one part of the left-hand side of the sequent. Suppose the contrary,
then locate the principal occurrence of t (it should be in B). Then proceed by
induction: finally we run out of t’s in B and get a contradiction.

Proof (of Theorem 1). Given a context-free grammar G without ε-rules, we need
to construct an equivalent Lambek grammar with unique type assignment. Let
Σ = {a1, . . . , aμ} be the alphabet, N = {N0, N1, N2, . . . , Nν} be the set of
non-terminal symbols of G, N0 is the starting symbol.

First we algorithmically transform G into Greibach normal form [6] with rules
of the following three forms: Ni ⇒ ajNkN�, Ni ⇒ ajNk, or Ni ⇒ aj .

Now we construct the Lambek grammar. Let Pr include distinct primitive
types p, p1, . . . , pν , r, u, t, and s. For each i = 0, . . . , ν let Hi = p/((pi/pi) · p)
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(this type corresponds to the non-terminal Ni). Next, for each j = 1, . . . , μ, we
form a set Uj in the following way:

add Ki,k,� = r/
(
(Hk · H� · (pi/pi)) \ r

)
for each rule Ni ⇒ ajNkN�,

add Ki,k = r/
(
(Hk · (pi/pi)) \ r

)
for each rule Ni ⇒ ajNk,

add Ki = r/
(
(pi/pi) \ r

)
for each rule Ni ⇒ aj .

Now let Dj = is(Uj) and Aj = p/(Dj · p) be the type corresponding to aj .
For the target type H we take H0. Our claim is that ai1 . . . ain ∈ L(G) iff the
sequent Ai1 , . . . , Ain → H0 is derivable in L.

For the easier “only if” part, we prove a more general statement: if γ ∈
(N ∪Σ)+ can be generated from Nm in G, then the sequent Γ → Hm is derivable
in L, where Γ is a sequence of types corresponding to letters of γ, Aj for aj ∈ Σ
and Hi for Ni ∈ N . To establish this, it is sufficient to prove that the following
sequents are derivable (each step of the context-free generation maps to a (cut)
with the corresponding sequent):

Aj ,Hk,H� → Hi for each rule Ni ⇒ ajNkN�,

Aj ,Hk → Hi for each rule Ni ⇒ ajNk,

Aj → Hi for each rule Ni ⇒ aj .

Consider sequents of the first type (the second and the third types are handled
similarly). Since Dj = is(Uj) and Ki,k,� = r/

(
(Hk · H� · (pi/pi)) \ r

) ∈ Uj , we
have Ki,k,� → Dj by Lemma 8. Then the derivation is as follows:

Hk,H�, pi/pi, (Hk · H� · (pi/pi)) \ r → r

Hk,H�, pi/pi → Ki,k,� Ki,k,� → Dj

Hk,H�, pi/pi → Dj
(cut)

p → p

Hk,H�, pi/pi, p → Dj · p p → p

p/(Dj · p),Hk,H�, pi/pi, p → p

p/(Dj · p),Hk,H� → p/((pi/pi) · p)

For the “if” part, let Ai1 , . . . , Ain → Hi be derivable and proceed by induc-
tion on the cut-free derivation (i is arbitrary here for induction; in the end i = 0).
Since Hi = p/((pi/pi)·p) and (→ /) and (· →) are invertible, we get Ai1 , . . . , Ain ,
pi/pi, p → p. Locate the principal occurrence of p. By Lemma 4, it is the p in
Ai1 = p/(Di1 · p), and by Lemma 6 the sequent Ai2 , . . . , Ain , pi/pi, p → Di1 · p
is derivable. Let j = i1. Since all our types have tops, apply Lemma 3.

Case 1 (good). The sequent decomposes into Ai2 , . . . , Ain , pi/pi → Dj and
p → p. Consider the former sequent. Tops on the left side are p and pi, we can
apply Lemma 9 and get B2, Ai2 , . . . , Ain , pi/pi, C1 → K for some K ∈ Uj .

Let’s prove that B2 and C1 in this case are empty. Suppose K = Ki′,k,� (the
cases of Ki′,k and Ki′ are handled similarly). Then, by invertibility of (→ /),
we get B2, Ai2 , . . . , Ain , pi/pi, C1, (Hk · H� · (pi′/pi′)) \ r → r. Now locate the
principal occurrence of r.
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Subcase 1.1. The principal occurrence of r is the rightmost one. By Lemma 6,
we get B2, Ai2 , . . . , Ain , pi/pi, C1 → Hk · H� · (pi′/pi′). Apply Lemma 3. First,
by Lemma 5, i = i′, otherwise there’s no pi in tops of the left-hand side. Next,
the part of the left-hand side that yields (pi/pi), by Lemma 7, contains only
(pi/pi). Therefore, C1 is empty. Now, for some part Π we have Π → Hk, and,
decomposing Hk, we get Π, pi/pi, p → p. By Lemma 4, the principal occurrence
of p is not the rightmost one. Since B2 doesn’t have p in tops, Π should include
also some of the Ai2 , . . . , and the principal p is the top of one of them. But,
since Am is of the form p/ . . . , by Lemma 4 the part to the left of this Am, and,
therefore, B2 should be empty.

Subcase 1.2. The principal occurrence of r is somewhere in B2 or C1, in a
type K ∈ Uj . By Lemma 4, it is then the leftmost occurrence of r, because K
has the form r / . . .. This rules out the possibility of it being in C1 (we defi-
nitely have pi/pi to the left of it). If it is in B2, again by Lemma 6, we get
B′

2, Ai2 , . . . , Ain , pi/pi, C1 → Hk′ · H�′ · (pi/pi) (Hk′ and H�′ are optional), and
we’re in the same situation, as Subcase 1.1. Thus, B′

2 and C1 should be empty.
However, B′

2 now should contain the last type of B, (((u/F ) \ u)/(t / t)). Con-
tradiction. Subcase 1.2 impossible.

Now we have Ai2 , . . . , Ain , pi/pi → Hk · H� · (pi/pi) (the only choice for the
principal r now is the rightmost one, and we’ve applied Lemma 6). By Lemma 3,
we get Ai2 , . . . , Aiz → Hk, Aiz+1 , . . . , Ain → H�, pi/pi → pi/pi (the last left side
is pi/pi alone by Lemma 7).

Apply induction hypothesis. In the context-free grammar, we now have
Nk ⇒∗ ai2 . . . aiz and N� ⇒∗ aiz+1 . . . ain . Since i′ = i, we also have the rule
Ni ⇒ ajNkN� (Nk and N� are optional) in the grammar (since the correspond-
ing K type was in Uj). Thus, Ni ⇒ ajai2 . . . aizaiz+1 . . . ain . Recall that j = i1.

Case 2 (bad). The sequent decomposes in another way, yielding
Ai2 , . . . , Aiz → Dj and . . . , pi/pi, p → p. Again, by Lemma 9, we get
B2, Ai2 , . . . , Aiz , C1 → K for some K ∈ Uj , and further B2, Ai2 , . . . , Aiz , C1, (Hk ·
H� · (pi′/pi′)) \ r → r. Now we locate the principal occurrence of r and proceed
as in Case 1. The only difference, however, is that now there is no pi/pi in the
left-hand side, and for that reason derivation fails by Lemma 5. Thus, Case 2 is
impossible.
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Abstract. We introduce a proper multi-type display calculus for semi De
Morgan logic which is sound, complete, conservative, and enjoys cut-elimination
and subformula property. Our proposal builds on an algebraic analysis of semi
De Morgan algebras and applies the guidelines of the multi-type methodology in
the design of display calculi.

1 Introduction

Semi De Morgan logic (SDM), introduced in an algebraic setting by Sankappanavar
[14], is a very well known example of a paraconsistent logic [19], and is designed to
capture the salient features of intuitionistic negation in a paraconsistent setting. Semi
De Morgan algebras form a variety of normal distributive lattice expansions (cf. [11,
Definition 9]), and are a common abstraction of De Morgan algebras and distributive
pseudocomplemented lattices. Semi De Morgan logic has been studied from a duality-
theoretic perspective (Hobby [15]), from the perspective of canonical extensions (Palma
[17]), and from a proof-theoretic perspective (Ma and Liang [16]). Related to the proof-
theoretic perspective, the G3-style sequent calculus introduced in [16] is shown to be
cut-free. However, the proof of cut elimination is quite involved, due to the fact that,
along with the standard introduction rules for conjunction and disjunction, this calculus
includes also introduction rules under the scope of structural connectives. These dif-
ficulties can be explained by the fact that the axiomatization of SDM is not analytic
inductive in the sense of [11, Definition 55]. The calculus introduced in the present
paper is motivated by the need to overcome these difficulties. We introduce a proper
multi-type display calculus (cf. [12, Definition A.1.]) for semi De Morgan logic which
is sound, complete, conservative, and enjoys cut-elimination and subformula property.
Our proposal builds on an algebraic analysis of semi De Morgan algebras, and applies
the guidelines of the multi-type methodology, introduced in [5,7] and further developed
in [1,6,8,12,13].

On the base of the calculus introduced in the present paper, an infinite class of
axiomatic extensions of semi De Morgan logic1 can be endowed with proper display
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1 Namely, all the axiomatic extensions of SDM defined by axioms the translation of which, given
as in Sect. 4, is analytic inductive (cf. [11, Definition 55]).
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calculi each of which is sound and complete w.r.t. its corresponding class of perfect
algebras, conservative, and enjoys cut-elimination and subformula property. Notice that
for each such axiomatic extension, the package of basic properties mentioned above
follow immediately from the general theory of proper multi-type calculi.2 Therefore,
this calculus provides a proof-theoretic environment which is suitable to complement,
from a proof-theoretic perspective, the investigations on the lattice of axiomatic exten-
sions of SDM, which have been mainly developed using the tools of universal algebra
(cf. [2,3]), as well as on the connections between the lattices of axiomatic extensions of
SDM and of De Morgan logic.

Structure of the Paper. In Sect. 2, we report on the Hilbert-style presentation of SDM,
and discuss why this axiomatization is not amenable to the standard treatment of display
calculi. In Sect. 3, we define the algebraic environment which motivates our multi-type
approach. Then we introduce the multi-type semantic environment and define transla-
tions between the single-type and the multi-type languages for SDM. In Sect. 4, we dis-
cuss how equivalent analytic (multi-type) reformulations can be given of non-analytic
(single-type) axioms of SDM. In Sect. 5, we introduce the display calculus for SDM,
and in Sect. 6, we discuss its soundness, completeness, conservativity, cut elimination
and subformula property.

2 Preliminaries

2.1 Hilbert Style Presentation of Semi De Morgan Logic

Fix a denumerable set Atprop of propositional variables, let p denote an element in
Atprop. The language L of SDM over Atprop is defined recursively as follows:

A ::= p | � | ⊥ | ¬A | A ∧ A | A ∨ A

Definition 1. The Hilbert style presentation of De Morgan logic, denoted H.DM, con-
sists of the following axioms

⊥ � A, A � �, A � A, A ∧ B � A, A ∧ B � B, A � A ∨ B, B � A ∨ B,

¬A ∧ ¬B � ¬(A ∨ B), ¬(A ∧ B) � ¬A ∨ ¬B, A ∧ (B ∨C) � (A ∧ B) ∨ (A ∧C)
and the following rules:

A � B B � C
A � C

A � B A � C
A � B ∧C

A � B C � B
A ∨C � B

A � ¬B
B � ¬A

¬A � B
¬B � A

Definition 2. The Hilbert style presentation of semi De Morgan logic, denotedH.SDM,
consists of the following axioms:

2 The calculus introduced in [16] does not perform as well with axiomatic extensions, both in the
sense that some which are captured by the multi-type environment introduced in the present
paper cannot be accounted for, and in the sense that, even when accounted for by means of
structural rules, cut elimination does not straightforwardly transfer to the resulting calculus.
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⊥ � A, A � �, ¬� � ⊥, � � ¬⊥, A � A, A∧ B � A, A∧ B � B, A � A∨ B,
B � A∨B, ¬A � ¬¬¬A, ¬¬¬A � ¬A, ¬A∧¬B � ¬(A∨B), ¬(A∨B) � ¬A∧¬B,
¬¬A∧¬¬B � ¬¬(A∧B), ¬¬(A∧B) � ¬¬A∧¬¬B, A∧ (B∨C) � (A∧B)∨ (A∧C)
and the following rules:

A � B B � C
A � C

A � B A � C
A � B ∧C

A � B C � B
A ∨C � B

A � B
¬B � ¬A

In [11], a characterization is given of the logics that can be properly displayed.
Namely, they are exactly those logics for which there exists a Hilbert-style presenta-
tion which only consists of axioms which are analytic inductive (cf. [11, Definition
55]). It is easy to verify that ¬A � ¬¬¬A, ¬¬¬A � ¬A, ¬¬A ∧ ¬¬B � ¬¬(A ∧ B), and
¬¬(A ∧ B) � ¬¬A ∧ ¬¬B in H.SDM are not analytic inductive. To our knowledge, no
equivalent axiomatization has been introduced for semi De Morgan logic using only
analytic inductive axioms. This provides the motivation for circumventing this diffi-
culty by introducing a proper multi-type display calculus for semi De Morgan logic.

2.2 De Morgan and Semi De Morgan Algebras

In the present subsection, we recall the definitions of the algebras from which the logics
of the previous subsection arise.

Definition 3. D = (D,∩,∪,∗ , 1, 0) is a De Morgan algebra (DM-algebra) if:

D1 (L,∩,∪, 1, 0) is a bounded distributive lattice;
D2 0∗ = 1, 1∗ = 0;
D3 (a ∪ b)∗ = a∗ ∩ b∗ for all a, b ∈ D;
D4 (a ∩ b)∗ = a∗ ∪ b∗ for all a, b ∈ D;
D5 a = a∗∗ for every a ∈ D.
Definition 4. A = (A,∧,∨,′ ,�,⊥) is a semi De Morgan algebra (SM-algebra) if:

S1 (A,∧,∨, 1, 0) is a bounded distributive lattice;
S2 ⊥′ = �,�′ = ⊥;
S3 (a ∨ b)′ = a′ ∧ b′ for all a, b ∈ A;
S4 (a ∧ b)′′ = a′′ ∧ b′′ for all a, b ∈ A;
S5 a′ = a′′′ for every a ∈ A.

An SM-algebra is a DM-algebra if

D. a ∨ b = (a′ ∧ b′)′ = (a ∨ b)′′ for all a, b ∈ A.
Theorem 1 (Completeness). H.SDM (resp. H.DM) is complete with respect to the
class of SM-algebras (resp. DM-algebras).

Definition 5. A distributive lattice A is perfect (c f . [9]) if A is complete, completely
distributive and completely join-generated by the set J∞(A) of its completely join-
irreducible elements (as well as completely meet-generated by the set M∞(A) of its
completely meet-irreducible elements).

A DM-algebra D is perfect if its lattice reduct is a perfect distributive lattice, and
the negation operator satisfies the following distributive laws:
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(
∨

X)∗ =
∧

X∗ (
∧

X)∗ =
∨

X∗

A lattice homomorphism h : L → L′ is complete if it satisfies the following proper-
ties for each X ⊆ L:

h(
∨

X) =
∨

h(X) h(
∧

X) =
∧

h(X).

3 Towards a Multi-type Presentation: Algebraic Analysis

In the present section, we introduce the algebraic environment which justifies seman-
tically the multi-type approach to semi De Morgan logic we present in Sect. 5. In the
next subsection, we define the kernel of a semi De Morgan algebra (or SM-algebra,
cf. Definition 4) and show that it can be endowed with a structure of De Morgan algebra
(or DM-algebra, cf. Definition 3). Then we define two maps between the kernel and
the lattice reduct of any semi De Morgan algebra. These are the main components of
the heterogeneous semi De Morgan algebras which we introduce in Subsect. 3.2, where
we also show that semi De Morgan algebras can be equivalently presented in terms of
heterogeneous semi De Morgan algebras. In Subsect. 3.3, we apply results pertaining to
the theory of canonical extensions to heterogenous semi De Morgan algebras.

3.1 The Kernel of SM-Algebra

Since the negation ′ of any SM-algebra L is order-reversing, the map ′′ : L → L is
order-preserving. Let K := {a′′ ∈ L | a ∈ L}. Define h : L � K and e : K ↪→ L by the
assignments a �→ a′′ and α �→ α, respectively.
Lemma 1. Let L,K, h, e be defined as above. Then for all α ∈ K and a ∈ L,

h(e(α)) = α and e(h(a)) = a′′.

Definition 6. For any SM-algebra L = (L,∧,∨,�,⊥,′ ), let the kernel of L be the
algebra KL = (K,∩,∪,∗ , 1, 0) defined as follows:

K1. K :=Range(h), where h : L� K is defined by letting h(a) = a′′ for any a ∈ L;
K2. α ∪ β := h((e(α) ∨ e(β))′′) for all α, β ∈ K;
K3. α ∩ β := h(e(α) ∧ e(β)) for all α, β ∈ K;
K4. 1 := h(�);
K5. 0 := h(⊥);
K6. α∗ := h(e(α)′).

Proposition 1. For any SM-algebra L,

1. the kernel KL, defined as above, is a DM-algebra.
2. h is a homomorphism from L onto K, and for all α, β ∈ K,

e(α) ∧ e(β) = e(α ∩ β) e(1) = � e(0) = ⊥.
In what follows, we will drop the subscript of the kernel whenever it does not cause
confusion.
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3.2 Heterogeneous SM-Algebras as Equivalent Presentations of SM-Algebras

Definition 7. A heterogeneous SDM-algebra (HSM-algebra) is a tuple (L,A, e, h) sat-
isfying the following conditions:

H1 L is a bounded distributive lattice;
H2 A is a De Morgan lattice;
H3 e : A ↪→ L is an order embedding, and for all α1, α2 ∈ A,

e(α1) ∧ e(α2) = e(α1 ∩ α2) and e(1) = � and e(0) = ⊥
H4 h : L� A is a lattice homomorphism;
H5 h(e(α)) = α for every α ∈ A.3

L A

∗
h

e

A HSM-algebra is perfect if:

1. both L and A are perfect (see Definition 5);
2. e is an order-embedding and is completely meet-preserving;
3. h is a complete homomorphism.

Proposition 2. For any SM-algebra A, the tuple (L,K, e, h) is a heterogeneous SM-
algebra, where L is the lattice reduct of A and K is the kernel of A (cf. Definition 6).

Proposition 3. If (L,D, e, h) is a heterogeneous SM-algebra, then L can be endowed
with the structure of SM-algebra defining ′ : L → L by a′ := e(h(a)∗) for every a ∈ L.
Moreover, D � K.

Definition 8. For any SM-algebra A, we let A+ = (L,K, h, e), where:

· L is the lattice reduct of A;
· K is the kernel of A;
· e : K ↪→ L is defined by e(α) = α for all α ∈ K;
· h : L� K is defined by h(a) = a′′ for all a ∈ L;
For any HSM-algebra H, we let H+ = (L, ′) where:

· L is the distributive lattice of H;
· ′ : L→ L is defined by the assignment a �→ e(h(a)∗) for all a ∈ L.
Proposition 4. For any SM-algebra A and any HSM-algebra H:

A � (A+)+ and H � (H+)
+.

3 Condition H5 implies that h is surjective and e is injective.
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3.3 Canonical Extensions of Heterogeneous SM-Algebras

Canonicity in the multi-type environment is used both to provide complete semantics
for a large class of axiomatic extensions of the basic logic (SDM in the present case),
and to prove the conservativity of its associated display calculus (cf. Sect. 6.3). In what
follows, we let Lδ and Dδ denote the canonical extensions of the distributive lattice L
and of the De Morgan algebra D, respectively, and eπ and hδ denote the π-extensions of
e and h4, respectively. We refer to [9] for the relevant definitions.

Lemma 2. If (L,D, e, h) is an HSM-algebra, then (Lδ,Dδ, eπ, hδ) is a perfect HSM-
algebra.

L

L
δ

A

A
δ

�
��

h

∗δ

∗

e′

h′

hδ

eπ

e

In perfect HSM-algebras, the adjoint(s) of each operation exist(s). This guarantees
the soundness of every display rule in the calculus D.SDM. Moreover, in Sect. 6.1, we
prove that perfect HSM-algebras are a sound semantics for D.SDM.

4 Multi-type Hilbert Style Presentation for Semi De Morgan Logic

The results of Sect. 3.2 show that HSM-algebras are equivalent presentations of semi
De Morgan algebras, and motivate from a semantic perspective the syntactic shift we
take in the present section, from single-type language to multi-type language. Indeed,
heterogeneous algebras provide a natural interpretation for the following multi-type
language LMT consisting of terms of types DL and DM.

DL � A ::= p | e(α) | � | ⊥ | A ∧ A | A ∨ A

DM � α ::= h1(A) | h2(A) | 1 | 0 | ∼α | ¬α | α ∪ α | α ∩ α

4 The order-theoretic properties of h guarantee that the σ-extension and the π-extension of h
coincide. This is why we use hδ to denote the resulting extension.
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The interpretation of LMT-terms into HSM-algebras is defined as the easy gener-
alization of the interpretation of propositional languages in universal algebra; namely,
DL-terms (resp. DM-terms) are interpreted in the distributive lattice (resp. De Morgan
algebra) component of HSM-algebras. For the sake of modularity, we choose to split the
lattice homomorphism h into its finitely join-preserving personality5 h1 and its finitely
meet-preserving personality h2. Similarly, ¬ is the join-reversing personality of ∗, and ∼
is its meet-reversing personality.

The toggle between SM-algebras and heterogeneous algebras (cf. Sect. 3.2) is
reflected syntactically by the translations (·)t, (·)t : L → LMT defined as follows:

pt = p pt = p
�t = � �t = �
⊥t = ⊥ ⊥t = ⊥

(A ∧ B)t = At ∧ Bt (A ∧ B)t = At ∧ Bt

(A ∨ B)t = At ∨ Bt (A ∨ B)t = At ∨ Bt

(¬A)t = e∼h2At (¬A)t = e¬h1At

The translations above are compatible with the toggle between SM-algebras and
their associated heterogeneous algebras. Indeed, recall that L+ denotes the heteroge-
neous algebra associated with the SM-algebra L (cf. Definition 8). The following propo-
sition is proved by a routine induction on L-formulas.

Proposition 5. For all L-formulas A and B and every SM-algebra L,

L |= A ≤ B iff L
+ |= At ≤ Bt.

We are now in a position to translate the axioms of SDM into LMT.

¬¬(p ∧ q) = ¬¬p ∧ ¬¬q �
⎧
⎪⎪⎨
⎪⎪⎩

e∼h1e¬h2(p ∧ q) ≤ e¬h1e∼h2(p) ∧ e¬h1e∼h2(q) (i)

e∼h1e¬h2(p) ∧ e∼h1e¬h2(q) ≤ e¬h1e∼h2(p ∧ q) (ii)

¬p = ¬¬¬p�
⎧
⎪⎪⎨
⎪⎪⎩

e∼h2(p) ≤ e¬h1e∼h2e¬h1(p) (iii)

e∼h2e¬h1e∼h2(p) ≤ e¬h1(p) (iv)

¬(p ∨ q) = ¬p ∧ ¬q �
⎧
⎪⎪⎨
⎪⎪⎩

e∼h2(p ∨ q) ≤ e¬h1(p) ∧ e¬h1(q) (v)

e∼h2(p) ∧ e∼h2(q) ≤ e¬h1(p ∨ q) (vi)

¬⊥ = ��
⎧
⎪⎪⎨
⎪⎪⎩

e∼h2⊥ ≤ � (vii)

� ≤ e¬h1⊥ (viii)

¬� = ⊥ �
⎧
⎪⎪⎨
⎪⎪⎩

e∼h2� ≤ ⊥ (viiii)

⊥ ≤ e¬h1� (x)

5 In what follows, when talking about the personalities of an operation, we mean that we con-
sider two copies of the same map, and attribute to each copy only part of the order theoretic
properties of the original map.
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Notice that the defining identities of HSM-algebras (cf. Definition 7) can be expressed
as analytic inductive LMT-inequalities (cf. Definition 11). Hence, these inequalities can
be used to generate the analytic rules of the calculus introduced in Sect. 5, with a
methodology analogous to the one introduced in [11]. As we will discuss in Sect. B,
the inequalities (i)–(x) are derivable in the calculus obtained in this way.

5 Proper Display Calculus for Semi De Morgan Logic

In the present section, we introduce a proper multi-type display calculus for semi
De Morgan logic. The language manipulated by this calculus has types DL and DM,
and is built up from structural and operational (aka logical) connectives. In the tables
of Sect. 5.1, each structural connective corresponding to a logical connective which
belongs only to the family F (resp. G) defined in Sect. A is denoted by decorating that
logical connective with ˆ (resp. ˇ). Each logical connective which belongs to both F
and G is split into two connectives, one capturing its F -personality and the other its
G-personality (cf. Footnote 5). The two personalities are assigned the same structural
connective, decorated with ˜. The interpretation of each structural connective decorated
with ˇ (resp. ˆ) coincides with that of the corresponding logical connective when occur-
ring in succedent (resp. precedent) position; structural connectives decorated with ˜
are interpreted as the F -personality (resp. G-personality) of their associated logical
connective when occurring in precedent (resp. succedent) position.6

5.1 Language

– Structural and operational terms:

DL

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A ::= p | � | ⊥ | �α | A ∧ A | A ∨ A

X ::= �̂ | ⊥̌ | •̃Γ | X ∧̂ X | X ∨̌ X | X >̂ X | X →̌ X

DM

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α ::= � A | �A | 1 | 0 | ∼α | ¬α | α ∩ α | α ∪ α

Γ ::= 1̂ | 0̌ | ∗̃Γ | ◦̃X | Γ ∩̂ Γ | Γ ∪̌ Γ | Γ ⊃̂ Γ | Γ ⊃̌Γ

6 For any sequent x � y, we define the signed generation trees +x and −y by labelling the root
of the generation tree of x (resp. y) with the sign + (resp. −), and then propagating the sign
to all nodes according to the polarity of the coordinate of the connective assigned to each
node. Positive (resp. negative) coordinates propagate the same (resp. opposite) sign to the
corresponding child node. Then, a substructure z in x � y is in precedent (resp. succedent)
position if the sign of its root node as a subtree of +x or −y is + (resp. −).
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– Interpretation of structural connectives as their logical counterparts7

DL DM DL→ DM DM→ DL DM→ DL DL→ DM

�̂ ∧̂ >̂ ⊥̌ ∨̌ →̌ 1̂ ∩̂ ⊃̂ 0̌ ∪̌ ⊃̌ ∗̃ ◦̃ •̃ �̌ �̂
� ∧ (> ) ⊥ ∨ (→) 1 ∩ (⊃ ) 0 ∪ ( ⊃ ) ∼ ¬ � � (♦) (�) � (�)

– Algebraic interpretation of logical connectives as operations in perfect HSM-
algebras (see Lemma 2; we let h′1 and h

′
2 denote the F -personality and G-personality

of h′, respectively.)
DL DM DL→ DM DM→ DL DM→ DL DL→ DM

� ∧ (> ) ⊥ ∨ (→) 1 ∩ (⊃ ) 0 ∪ ( ⊃ ) ∼ ¬ � � (♦) (�) � �
� ∧ > ⊥ ∨ → 1 ∩ ⊃ 0 ∪ ⊃ ∼ ¬ h1 h2 h′1 h′2 e e′

5.2 Rules

– Single-type display structural rules

DL DM

X ∧̂ Y � Z
res

Y � X →̌ Z

X � Y ∨̌ Z
res

Y >̂ X � Z
∗̃Γ � Δ

adj ∗̃Δ � Γ
Γ � ∗̃Δ

adj
Δ � ∗̃Γ

Γ ∩̂ Δ � Θ
res

Δ � Γ ⊃̌Θ
Γ � Δ ∪̌ Θ

res
Δ ⊃̂ Γ � Θ

– Single-type structural rules
DL DM

Id p � p
X � A A � Y

Cut
X � Y

Γ � α α � Δ
Cut

X � Δ
X � Y�̂

X ∧̂ �̂ � Y
X � Y ⊥̌
X � Y ∨̌ ⊥̌

Γ � Δ
1̂
Γ ∩̂ 1̂ � Δ

Γ � Δ
0̌

Γ � Δ ∪̌ 0̌

X ∧̂ Y � Z
E

Y ∧̂ X � Z
X � Y ∨̌ Z

E
X � Z ∨̌ Y

Γ ∩̂ Δ � Θ
E
Δ ∩̂ Γ � Θ

Γ � Δ ∪̌ Θ
E

Γ � Θ ∪̌ Δ
(X ∧̂ Y) ∧̂ Z �W

A
X ∧̂ (Y ∧̂ Z) � Z

X � (Y ∨̌ Z) ∨̌W
A

X � Y ∨̌ (Z ∨̌W)

(Γ ∩̂ Δ) ∩̂ Θ �W
A
Γ ∩̂ (Δ ∩̂ Θ) � Θ

Γ � (Δ ∪̌ Θ) ∪̌W
A

Γ � Δ ∪̌ (Θ ∪̌W)

X � Y
W

X ∧̂ Z � Y
X � Y

W
X � Y ∨̌ Z

Γ � Δ
W
Γ ∩̂ Θ � Δ

Γ � Δ
W

Γ � Δ ∪̌ Θ
X ∧̂ X � Y

C
X � Y

X � Y ∨̌ Y
C

X � Y
Γ ∩̂ Γ � Δ

C
Γ � Δ

Γ � Δ ∪̌ Δ
C

Γ � Δ
Γ � Δ

cont∗̃Δ � ∗̃Γ

7 In the synoptic table, the operational symbols which occur only at the structural level will
appear between round brackets.
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– Single-type operational rules

DL DM

�̂ � X� � � X ��̂ � �
1̂ � Γ

1
1 � Γ 1

1̂ � 1

⊥ ⊥ � ⊥̌
X � ⊥̌ ⊥
X � ⊥ 0

0 � 0̌
X � 0̌

0
Γ � 0

A ∧̂ B � X∧
A ∧ B � X

X � A Y � B ∧
X ∧̂ Y � A ∧ B

α ∩̂ β � Γ∩
α ∩ β � Γ

Γ � α Δ � β ∩
Γ ∩̂ Δ � α ∩ β

A � X B � Y∨
A ∨ B � X ∨̌ Y

X � A ∨̌ B ∨
X � A ∨ B

α � Γ β � Δ∪
α ∪ β � Γ ∪̌ Δ

Γ � α ∪̌ β ∪
Γ � α ∪ β

∗̃α � Γ∼ ∼α � Γ
α � Γ ∼∗̃Γ � ∼α

Γ � α¬ ¬α � ∗̃Γ
Γ � ∗̃α ¬
Γ � ¬α

– Multi-type display structural rules

X � �̌ Γ
adj

�̂X � Γ
◦̃X � Γ

adj

X � •̃Γ
– Multi-type structural rules

X � Y◦̃ ◦̃X � ◦̃Y
•̃Γ � •̃Δ•̃
Γ � Δ

Γ � ◦̃ �̌ Δ◦̃ �̌
Γ � Δ

1̂ � Γ
�̂1̂
�̂�̂ � Γ

X � �̌ 0̌
�̌ 0̌

X � ⊥̌
– Multi-type operational rules

◦̃A � Γ
�
�A � Γ

Γ � A
�◦̃X � �A

A � Γ
�
�A � ◦̃Γ

Γ � ◦̃A
�

Γ � �A
A � X

�
�A � �̌ Y

X � �̌ A �
X � �A

6 Properties

6.1 Soundness

In the present subsection, we outline the verification of the soundness of the rules of
D.SDM w.r.t. the semantics of perfect HSM-algebras (cf. Definition 7). The first step
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consists in interpreting structural symbols as logical symbols according to their (prece-
dent or succedent) position, as indicated at the beginning of Sect. 5. This makes it pos-
sible to interpret sequents as inequalities, and rules as quasi-inequalities. For example,
the rules on the left-hand side below are interpreted as the quasi-inequalities on the
right-hand side:

X � Y
◦̃X � ◦̃Y � ∀a∀b[a ≤ b⇒ �a ≤ �b]

Γ � ◦̃ �̌ Δ
Γ � Δ � ∀α∀β[α ≤ ��β⇔ α ≤ β]

The verification of the soundness of the rules of D.SDM then consists in verifying the
validity of their corresponding quasi-inequalities in perfect HDM-algebras. The verifi-
cation of the soundness of pure-type rules and of the introduction rules following this
procedure is routine, and is omitted. The validity of the quasi-inequalities correspond-
ing to multi-type structural rules follows straightforwardly from the observation that the
quasi-inequality corresponding to each rule is obtained by running the algorithm ALBA
(cf. Sect. 3.4 [11]) on one of the defining inequalities of HSM-algebras.8 For instance,
the soundness of the first rule above is due to h being order-preserving; the soundness
of the invertible rule is due to condition H5.

6.2 Completeness

Let us translate sequents A � B in the language of H.SDM into sequents Aτ � Bτ in the
language of D.SDM by means of the following translations:

pτ ::= p pτ ::= p
�τ ::= � �τ ::= �
⊥τ ::= ⊥ ⊥τ ::= ⊥

(A ∧ B)τ ::= Aτ ∧ Bτ (A ∧ B)τ ::= Aτ ∧ Bτ
(A ∨ B)τ ::= Aτ ∨ Bτ (A ∨ B)τ ::= Aτ ∨ Aτ

(¬A)τ ::= �∼ � Aτ (¬A)τ ::= �¬�Aτ

The translations of the axioms and rules of H.SDM are derivable in D.SDM.

Proposition 6. For every A ∈ H.SDM, the sequent Aτ � Aτ is derivable in D.SDM.

Proof. see Sect. B.

Proposition 7. For every A, B ∈ H.SDM, if A � B is derivable in H.SDM, then Aτ � Bτ
is derivable in D.SDM.

Proof. Sect. B.

8 Indeed, as discussed in [11], the soundness of the rewriting rules of ALBA only depends on
the order-theoretic properties of the interpretation of the logical connectives and their adjoints
and residuals. The fact that some of these maps are not internal operations but have different
domains and codomains does not make any substantial difference.
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6.3 Conservativity

To argue that the calculus introduced in Sect. 5 is conservative w.r.t. H.SDM
(cf. Sect. 2), we follow the standard proof strategy discussed in [10,11]. Let �H.SDM
denote the syntactic consequence relation arising from H.SDM, and |=HSM denote the
semantic consequence relation arising from (perfect) HSM-algebras. We need to show
that, for all formulas A and B of the original language of H.SDM, if Aτ � Bτ is a
D.SDM-derivable sequent, then A �H.SDM B. This claim can be proved using the follow-
ing facts: (a) the rules of D.SDM are sound w.r.t. perfect HSM-algebras (cf. Sect. 6.1);
(b) H.SDM is complete w.r.t. (perfect) SM-algebras (cf. Theorem 1); and (c) (perfect)
SM-algebras are equivalently presented as (perfect) HSM-algebras (cf. Sect. 3.2), so
that the semantic consequence relations arising from each type of structures preserve
and reflect the translation (cf. Proposition 5). Then, let A, B be formulas of the original
H.SDM-language. If Aτ � Bτ is a D.SDM-derivable sequent, then, by (a), Aτ |=HSM Bτ.
By (c), this implies that A |=SM B, where |=SM denotes the semantic consequence rela-
tion arising from SM-algebras. By (b), this implies that A �H.SDM B, as required.

6.4 Cut Elimination and Subformula Property

In the present section, we briefly sketch the proof of cut elimination and subformula
property for D.SDM. As discussed earlier on, proper display calculi have been designed
so that the cut elimination and subformula property can be inferred from a meta-
theorem, following the strategy introduced by Belnap for display calculi. The meta-
theorem to which we will appeal for D.SDM was proved in [6].

All conditions in [6, Theorem 4.1] except C′8 are readily satisfied by inspecting
the rules. Condition C′8 requires to check that reduction steps are available for every
application of the cut rule in which both cut-formulas are principal, which either remove
the original cut altogether or replace it by one or more cuts on formulas of strictly lower
complexity. In what follows, we only show C′8 for the unary connectives.

Pure DM-type connectives:

... π1

Γ � ∗̃α
Γ � ¬α

... π2

Δ � α
¬α � ∗̃Δ

Γ � ∗̃Δ �

... π1

Δ � α

... π2

Γ � ∗̃α
α � ∗̃Γ

Δ � ∗̃Γ
Γ � ∗̃Δ

The cases for ∼α is standard and similar to the one above.

Multi-type connectives:

... π1

X � �̌ α
X � �α

... π2

α � Δ
�α � �̌ Δ

X � �̌ Δ �

... π1

X � �̌ α
�̂X � α

... π2

α � Δ
�̂X � Δ
X � �̌ Δ
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... π1

Γ � ◦̃A
Γ � �A

... π2

A � X
�A � ◦̃X

Γ � ◦̃X �

... π1

Γ � ◦̃A
•̃Γ � A

... π2

A � X
•̃Γ � X
Γ � ◦̃X

The cases for �A is standard and similar to the one above.

A Analytic Inductive Inequalities

In the present section, we specialize the definition of analytic inductive inequalities (cf.
[11]) to the multi-type language LMT, in the types DL and DM, defined in Sect. 4 and
reported below for the reader’s convenience.

DL � A ::= p | e(α) | � | ⊥ | A ∧ A | A ∨ A

DM � α ::= h1(A) | h2(A) | 1 | 0 | ∼α | ¬α | α ∪ α | α ∩ α
We will make use of the following auxiliary definition: an order-type over n ∈ N is an
n-tuple ε ∈ {1, ∂}n. For every order type ε, we denote its opposite order type by ε∂, that
is, ε∂(i) = 1 iff ε(i) = ∂ for every 1 ≤ i ≤ n. The connectives of the language above are
grouped together into the families F := FDL ∪ FDM ∪ FMT and G := GDL ∪GDM ∪GMT

defined as follows:

FDL := ∅ GDL = ∅

FDM := {∼} GDM := {¬}
FMT := {h1} GMT := {e, h2}

For any f ∈ F (resp. g ∈ G), we let nf ∈ N (resp. ng ∈ N) denote the arity of f (resp. g),
and the order-type ε f (resp. εg) on n f (resp. ng) indicate whether the ith coordinate of
f (resp. g) is positive (ε f (i) = 1, εg(i) = 1) or negative (ε f (i) = ∂, εg(i) = ∂). The
order-theoretic motivation for this partition is that the algebraic interpretations of F -
connectives (resp. G-connectives), preserve finite joins (resp. meets) in each positive
coordinate and reverse finite meets (resp. joins) in each negative coordinate.

For any term s(p1, . . . pn), any order type ε over n, and any 1 ≤ i ≤ n, an ε-critical
node in a signed generation tree of s is a leaf node +pi with ε(i) = 1 or −pi with ε(i) = ∂.
An ε-critical branch in the tree is a branch ending in an ε-critical node. For any term
s(p1, . . . pn) and any order type ε over n, we say that +s (resp. −s) agrees with ε, and
write ε(+s) (resp. ε(−s)), if every leaf in the signed generation tree of +s (resp. −s) is
ε-critical. We will also write +s′ ≺ ∗s (resp. −s′ ≺ ∗s) to indicate that the subterm s′
inherits the positive (resp. negative) sign from the signed generation tree ∗s. Finally, we
will write ε(s′) ≺ ∗s (resp. ε∂(s′) ≺ ∗s) to indicate that the signed subtree s′, with the
sign inherited from ∗s, agrees with ε (resp. with ε∂).
Definition 9 (Signed Generation Tree). The positive (resp. negative) generation tree
of any LMT-term s is defined by labelling the root node of the generation tree of s with
the sign + (resp. −), and then propagating the labelling on each remaining node as
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follows: For any node labelled with � ∈ F ∪G of arity n�, and for any 1 ≤ i ≤ n�, assign
the same (resp. the opposite) sign to its ith child node if ε�(i) = 1 (resp. if ε�(i) = ∂).
Nodes in signed generation trees are positive (resp. negative) if are signed + (resp. −).
Definition 10 (Good branch). Nodes in signed generation trees will be called Δ-
adjoints, syntactically left residual (SLR), syntactically right residual (SRR), and syn-
tactically right adjoint (SRA), according to the specification given in Table 1. A branch
in a signed generation tree ∗s, with ∗ ∈ {+,−}, is called a good branch if it is the con-
catenation of two paths P1 and P2, one of which may possibly be of length 0, such that
P1 is a path from the leaf consisting (apart from variable nodes) only of PIA-nodes9,
and P2 consists (apart from variable nodes) only of Skeleton-nodes.

Table 1. Skeleton and PIA nodes.

Skeleton PIA

Δ-adjoints SRA

+ ∨ ∪ ∧ ∩ + ∧ ∩ h2 ¬ e

− ∧ ∩ ∨ ∪ − ∨ ∪ h1 ∼
SLR SRR

+ ∧ ∩ h1 ∼ + ∨ ∪
− ∨ ∪ h2 ¬ e − ∧ ∩

+

Skeleton

+p s1

PIA

≤ −

Skeleton

+p s2

PIA

Definition 11 (Analytic inductive inequalities). For any order type ε and any irreflex-
ive and transitive relation <Ω on p1, . . . pn, the signed generation tree ∗s (∗ ∈ {−,+}) of
an LMT term s(p1, . . . pn) is analytic (Ω, ε)-inductive if

9 For an expanded discussion on this definition, see [18, Remark 3.24] and [4, Remark 3.3].
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1. every branch of ∗s is good (cf. Definition 10);
2. for all 1 ≤ i ≤ n, every SRR-node occurring in any ε-critical branch with leaf pi is

of the form �(s, β) or �(β, s), where the critical branch goes through β and
(a) ε∂(s) ≺ ∗s (cf. discussion before Definition 10), and
(b) pk <Ω pi for every pk occurring in s and for every 1 ≤ k ≤ n.

We will refer to <Ω as the dependency order on the variables. An inequality s ≤ t
is analytic (Ω, ε)-inductive if the signed generation trees +s and −t are analytic (Ω, ε)-
inductive. An inequality s ≤ t is analytic inductive if is analytic (Ω, ε)-inductive for
some Ω and ε.

In each setting in which they are defined, analytic inductive inequalities are a sub-
class of inductive inequalities (cf. [11]). In their turn, inductive inequalities are canoni-
cal (that is, preserved under canonical extensions, as defined in each setting).

B Completeness

Proposition 8. For every A ∈ H.SDM, the sequent Aτ � Aτ is derivable in D.SDM.

Proof. By inducution on A ∈ L. The proof of base cases: A := �, A := ⊥ and A := p,
is straightforward, and is omitted.

Inductive cases: A := B∧C and A := B∨C can be proved by the induction hypoth-
esis and (w), (c), (∨) and (∧) rules. As to A := ¬B,

ind.hyp.
Bτ � Bτ◦̃ ◦̃Bτ � ◦̃Bτ
�Bτ � ◦̃Bτ
�Bτ � �Bτ

cont∗̃ � Bτ � ∗̃�Bτ
∗̃ � Bτ � ¬�Bτ
∼ � Bτ � ¬�Bτ
�∼ � Bτ � �̌ ¬�Bτ
�∼ � Bτ � �¬�Bτ

Proposition 9. For every A, B ∈ H.SDM, if A � B is derivable in H.SDM, then Aτ � Bτ
is derivable in D.SDM.

Proof. As page limited, we just show an example: ¬¬A ∧ ¬¬B � ¬¬(A ∧ B) �
�∼ � �¬�A ∧ �∼ � �¬�B � �¬��∼ � (A ∧ B).
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A � A ◦̃◦̃A � ◦̃A
�A � ◦̃A

cont∗̃ ◦̃A � ∗̃�A
∗̃ ◦̃A � ¬�A ◦̃ �̌∗̃ ◦̃A � ◦̃ �̌ ¬�A
•̃ ∗̃ ◦̃A � �̌ ¬�A
•̃ ∗̃ ◦̃A � �¬�A
∗̃ ◦̃A � ◦̃�¬�A
∗̃ ◦̃A � � �¬�A
∗̃ � �¬�A � ◦̃A
∼ � �¬�A � ◦̃A
�∼ � �¬�A � �̌ ◦̃A

W
�∼ � �¬�A ∧̂ �∼ � �¬�B � �̌ ◦̃A
�∼ � �¬�A ∧ �∼ � �¬�B � �̌ ◦̃A
�̂(�∼ � �¬�A ∧ �∼ � �¬�B) � ◦̃A
•̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B) � A

B � B ◦̃◦̃B � ◦̃B
�B � ◦̃B

cont∗̃ ◦̃B � ∗̃�B
∗̃ ◦̃B � ¬�B ◦̃ �̌∗̃ ◦̃B � ◦̃ �̌ ¬�B
•̃ ∗̃ ◦̃B � �̌ ¬�B
•̃ ∗̃ ◦̃B � �¬�B
∗̃ ◦̃B � ◦̃�¬�B
∗̃ ◦̃B � � �¬�B
∗̃ � �¬�B � ◦̃B
∼ � �¬�B � ◦̃B
�∼ � �¬�B � �̌ ◦̃B

W
�∼ � �¬�B ∧̂ �∼ � �¬�A � �̌ ◦̃B

E
�∼ � �¬�A ∧̂ �∼ � �¬�B � �̌ ◦̃B
�̂(�∼ � �¬�A ∧ �∼ � �¬�B) � ◦̃B
•̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B) � B

•̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B) ∧̂ •̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B) � A ∧ B
C •̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B) � A ∧ B

�̂(�∼ � �¬�A ∧ �∼ � �¬�B) � ◦̃(A ∧ B)

�̂(�∼ � �¬�A ∧ �∼ � �¬�B) � � (A ∧ B)
cont∗̃ � (A ∧ B) � ∗̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B)

∼ � (A ∧ B) � ∗̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B)
�∼ � (A ∧ B) � �̌ ∗̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B) ◦̃◦̃�∼ � (A ∧ B) � ◦̃ �̌ ∗̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B) ◦̃ �̌◦̃�∼ � (A ∧ B) � ∗̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B)
��∼ � (A ∧ B) � ∗̃ �̂(�∼ � �¬�A ∧ �∼ � �¬�B)
�̂(�∼ � �¬�A ∧ �∼ � �¬�B) � ∗̃��∼ � (A ∧ B)

�̂(�∼ � �¬�A ∧ �∼ � �¬�B) � ¬��∼ � (A ∧ B)

�∼ � �¬�A ∧ �∼ � �¬�B � �̌ ¬��∼ � (A ∧ B)

�∼ � �¬�A ∧ �∼ � �¬�B � �¬��∼ � (A ∧ B)
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Abstract. This paper studies how dependent types can be employed
for a refined treatment of event types, offering a nice improvement to
Davidson’s event semantics. We consider dependent event types indexed
by thematic roles and illustrate how, in the presence of refined event
types, subtyping plays an essential role in semantic interpretations. We
consider two extensions with dependent event types: first, the extension
of Church’s simple type theory as employed in Montague semantics that
is familiar with many linguistic semanticists and, secondly, the extension
of a modern type theory as employed in MTT-semantics. The former
uses subsumptive subtyping, while the latter uses coercive subtyping,
to capture the subtyping relationships between dependent event types.
Both of these extensions have nice meta-theoretic properties such as
normalisation and logical consistency; in particular, we shall show that
the former can be faithfully embedded into the latter and hence has
expected meta-theoretic properties. As an example of applications, it is
shown that dependent event types give a natural solution to the incom-
patibility problem (sometimes called the event quantification problem)
in combining event semantics with the traditional compositional seman-
tics, both in the Montagovian setting with the simple type theory and
in the setting of MTT-semantics.

1 Introduction

The event semantics, whose study was initiated by Davidson [6] and further
studied in its neo-Davidsonian turn (see [17] among others), has several notable
advantages including Davidson’s original motive to provide a satisfactory seman-
tics for adverbial modifications. Dependent types, as those found in Modern Type
Theories such as Martin-Löf’s type theory [15] and UTT [11], provide a useful
tool in formalising event types and a nice treatment of the event semantics.

In this paper, we shall study event types that may depend on thematic roles
such as agents and patients of the events. For example, we can consider the type
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EvtAP (a, p) of events whose agent and patient are a and p, respectively. We shall
investigate subtyping relations between event types which include dependent
types such as EvtAP (a, p) and the non-dependent type Event of all events (the
latter is found in the traditional setting). For example, it may be natural to have
EvtAP (a, p) ≤ EvtA(a), that is, the type of events with agent a and patient p
is a subtype of that with agent a. With such subtyping relations in place, the
semantics of verb phrases can now take the usual non-dependent types, as in the
traditional setting, although dependent event types are considered.

It is shown that such dependent event types give a natural solution to the
incompatibility problem in combining event semantics with the traditional Mon-
tague semantics [2,20] (sometimes called the event quantification problem [7]).
When introducing events into formal semantics, one faces a problem, which is
long-standing and has seemed intractable: it comes from the issue of scopes for
two kinds of quantifiers – the existential quantifier over an event variable and
the other quantifiers such as one that arises from a quantificational noun phrase
(see Sect. 5 for examples). It is in general expected that the correct semantics
is obtained when the event quantifier takes the lower scope, but the problem is
that, even when the event quantifier takes a wider scope, which would give an
incorrect semantics, the resulting semantic formula is still well-formed formally.
This has led to many proposals such as that considered by Champollion [2] or
the related Scope Domain Principle proposed by Landman [9], but all of them
are rather ad hoc. Dependent event types will solve this problem: they give a
solution where the correct semantics are accepted while the incorrect ones are
excluded by typing because they would be ill-typed and hence formally illegal.

Dependent event types (DETs) were first considered in an example in [1] to
study linguistic coercions in formal semantics, where types of events are indexed
by their agents: Evt(h) is the type of events conducted by h : Human. In this
paper, we shall study event types dependent on thematic roles in event semantics
both in the traditional Montague semantics [16] and in formal semantics in
modern type theories (MTT-semantics, for short) [4,13,18]. For the former, we
extend Church’s simple type theory [5], as employed in Montague semantics
that is familiar with many linguistic semanticists, by means of dependent event
types, resulting in the system Ce, where the subtyping relationships between
DETs are captured by subsumptive subtyping. For the latter, we extend an
MTT (in particular, the type theory UTT [11]) with DETs whose subtyping
relationships are reflected by coercive subtyping [12,14], resulting in the type
system UTT[E]. Both of these extensions have nice meta-theoretic properties
such as normalisation and logical consistency; in particular, we shall show that
Ce can be faithfully embedded into UTT[E] and hence has desirable properties.

The rest of the paper is organised as follows. In Sect. 2, we shall describe the
basics of DETs, introducing notations and examples. Subtyping between event
types is described in Sect. 3, where we show, for example, how VPs can take the
traditional non-dependent type, while we consider DETs. The formal systems Ce

and UTT [E] and the embedding of Ce in UTT[E] are studied in Sect. 4. Section 5
considers the solution of the event quantification problem by means of DETs:
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Sect. 5.1 shows examples in the Montagovian setting and Sect. 5.2 considers it in
MTT-semantics. The concluding section briefly discusses the future work.

2 Dependent Event Types

In the Davidsonian event semantics in the traditional Montagovian setting [6,17],
there is only one type Event of all events. For example, the sentence (1) is
interpreted as (2):

(1) John kissed Mary passionately.
(2) ∃e : Event. kiss(e) & agent(e, j) & patient(e,m) & passionate(e)

where in (2), Event is the type of all events, kiss, passionate : Event → t
are predicates over events, and agent, patient : Event → e → t are relations
between events and entities.1 Please note that, in the above neo-Davidson’s
semantics (2), adverbial modifications and thematic role relations are all propo-
sitional conjuncts in parallel with the verb description, an advantageous point
as compared with an interpretation without events.

We propose to consider refined types of events. Rather than a single type
Event of events, we introduce types of events that are dependent on some para-
meters. For instance, an event type can be dependent on agents and patients.
Let Agent and Patient be the types of agents and patients, respectively. Then,
for a : Agent and p : Patient, the dependent type

EvtAP (a, p)

is the type of events whose agents are a and whose patients are p. With such
dependent event types, the above sentence (1) can now be interpreted as:2

(3) ∃e : EvtAP (j,m). kiss(e) & passionate(e)

Note that, besides other things we are going to explain below, we do not need
to consider the relations agent and patient as found in (2) because they can
now be ‘recovered’ from typing. For example, for a : Agent and p : Patient, we

1 In logical formulas or lambda-expressions, people often omit the type
labels of events and entities: for example, (2) would just be written as
∃e. kiss(e) & agent(e, j) & patient(e, m) & passionate(e), since traditionally there
are only one type of events and one type of entities; we shall put in the type labels
explicitly. Another note on notations is: e and t in boldface stand for the type of
entities and the type of truth values, respectively, as in MG, while e and t not in
boldface stand for different things (for example, e would usually be used as a variable
of an event type).

2 Please note here that, for kiss(e) and passionate(e) to be well-typed, the type of
event e must be the same as the domain of kiss and passionate – see the next section
about subtyping, which allows them to be well-typed.
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can define functions agentAP [a, p] and patientAP [a, p] such that, for any event
e : EvtAP (a, p), agentAP [a, p](e) = a and patientAP [a, p](e) = p.3

The parameters of dependent event types are usually names of thematic roles
such as agents and patients. Formally, the dependent event types are parame-
terised by objects of types A1, . . . , An. Event types with n parameters are called
n-ary event types. In this paper, we shall only consider n-ary event types with
n = 0, 1, 2:

– When n = 0, the event type, usually written as Event, has no parameters.
Event corresponds to the type of all events in the traditional setting.

– When n = 1, we only consider EvtA(a) and EvtP (p), where a : Agent and
p : Patient; i.e., these are event types dependent on agents a and those depen-
dent on patients p. For example, if John is an agent with interpretation j,
EvtA(j) is the type of events whose agents are John.

– When n = 2, we only consider EvtAP (a, p) for a : Agent and p : Patient, i.e.,
the event type dependent on agent a and patients p. For example, if agent
John and patient Mary, EvtAP (j,m) is the type of events whose agents and
patients are John and Mary, respectively (cf., the example (3) above).

Introducing dependent event types has several advantages. In this paper, we
shall detail one of them, that is, it gives a natural solution to the event quantifi-
cation problem – see Sect. 5. Before doing that, we shall first consider in Sect. 3
the subtyping relationship between event types which, among other things, sim-
plifies the semantic interpretations of VPs in the semantics with dependent event
types, and then in Sect. 4 the formal systems that underlie the proposed semantic
treatments and their meta-theoretic properties.

3 Subtyping Between Event Types

Event types have natural subtyping relationships between them. For example, an
event whose agent is a and patient is p is an event with agent a. In other words,
for a : Agent and p : Patient, the type EvtAP (a, p) is a subtype of EvtA(a). If
we only consider the event types Event, EvtA(a), EvtP (p) and EvtAP (a, p) (cf.,
the last section), they have the following subtypnig relationships:

EvtAP (a, p) ≤ EvtA(a) ≤ Event

EvtAP (a, p) ≤ EvtP (p) ≤ Event

which can be depicted as Fig. 1.
Formally, the subtyping relationship obeys the following rule (called sub-

sumption rule):

(∗)
a : A A ≤ B

a : B

3 Formally, we have agentAP [a, p] = λe : EvtAP (a, p).a, of type EvtAP (a, p) →
Agent. Usually we simply write, for example, agentAP (e) for agentAP [a, p](e).
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EvtAP (a, p)

EvtA(a)

EvtP (p)

Event

≤

≤

≤

≤

Fig. 1. Subtyping between event types with a : Agent and p : Patient.

It is also reflexive and transitive. The underlying type theory for formal seman-
tics can be extended by dependent event types together with the subtyping
relations. The underlying type theory can either be the simple type theory [5] in
the Montagovian semantics or a Modern Type Theory such as UTT [11] in MTT-
semantics as considered in, for example, [13]. If the former, extending it with
dependent event types results in the formal system Ce with subsumptive sub-
typing, and if the latter, the resulting theory is UTT[E] with coercive subtyping
whose basic coercion relationships in E characterise the subtyping relationships
between event types (see Sect. 4 for more details).4

The incorporation of subtyping between event types is not only natural but
plays an essential role in semantic interpretations. This can best be explained
by considering how verb phrases are interpreted. In the neo-Davidson’s event
semantics (with only Event as the type of events), a verb phrase is interpreted
as a predicate over events, as the following example shows.

(4) talk : Event → t.
(5) John talked loudly.
(6) ∃e : Event. talk(e) & loud(e) & agent(e, j)

With dependent event types such as EvtA(j), how can we interpret talk and
(5)? In analogy, the desired semantics of (5) would be (7), where the agent of
the event e can be obtained as agentA(e) = j:

(7) ∃e : EvtA(j). talk(e) & loud(e)

However, if talk is of type Event → t, talk(e) would be ill-typed since e is of
type EvtA(j), not of type Event. Is (7) well-typed? The answer is, if we do
not have subtyping, it is not. But, if we have subtyping as described above,
it is! To elaborate, because e : EvtA(j) ≤ Event, talk(e) is well-typed by the
subsumption rule (∗). Similarly, we have loud : Event → t and, therefore, loud(e)
is well-typed for e : EvtA(j) ≤ Event as well.

To summarise, the subtyping relations have greatly simplified the event
semantics in the presence of refined dependent event types.
4 It may be worth mentioning that, in the setting of MTT-semantics, coercive sub-

typing [12,14] is used and, for uniformity, we may adopt coercive subtyping rather
than subsumptive subtyping, although in general subsumptive subtyping is simpler.
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Remark 1. The subtyping relations also facilitate a natural relationship between
the functions such as agentAP and agentA (see Sect. 2 and Footnote 3).
For example, because of the subtyping relations as depicted in Fig. 1, for
e : EvtAP (a, p) ≤ EvtA(a), we have, by definition: agentAP [a, p](e) =
agentA[a](e) = a.

4 The Underlying Systems Ce and UTT[E]

In this section, we describe the formal systems Ce and UTT[E]: Ce extends the
simple type theory [5] and UTT[E] extends the modern type theory UTT [11],
both with dependent event types and their subtyping relationships as informally
described in Sects. 2 and 3.5 Ce is the underlying type theory when we consider
formal semantics in the traditional Montagovian setting (as familiar by most of
the linguistic semanticists) and UTT[E] when we consider formal semantics in a
modern type theory (see, for example, [4,13]). We also outline the construction
of an embedding of Ce into UTT[E] that shows that, like UTT[E], Ce has nice
meta-theoretic properties such as normalisation and logical consistency.6

4.1 The Types System Ce

We shall first explain what a context is and what a judgement is in the system
Ce, and then describe the rules of Ce.

Contexts. A context is a sequence of entries either of the form x : A or of the
form P true. Informally, the former assumes that the variable x be of type A
and the latter that the proposition P be true. Only valid contexts are legal and
context validity is governed by the following rules:

〈〉 valid

Γ � A type x 	∈ FV (Γ )
Γ, x : A valid

Γ � P : t
Γ, P true valid

where 〈〉 is the empty sequence and FV (Γ ) is the set of free variables in Γ defined
as: (1) FV (〈〉) = ∅; (2) FV (Γ, x : A) = FV (Γ ) ∪ {x}; (3) FV (Γ, P true) =
FV (Γ ).

Judgements. Judgements are sentences in Ce, whose correctness are governed
by the inference rules below. In Ce, there are five forms of judgements:

– Γ valid, which means that Γ is a valid context (the rules of deriving context
validity are given above).

5 A notational remark: in Ce, C stands for ‘Church’ and e for ‘event’. The notation
UTT[E] comes from the work of coercive subtyping (see, for example, [14]) where
T[C] denotes type theory T extended by coercive subtyping whose basic subtyping
are given as the set C of subtyping judgements.

6 This section is rather formal and, for a reader less interested in formal matters, its
details might be safely skipped if one wishes so.
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Γ valid

Γ e type

Γ valid

Γ t type

Γ, x:A, Γ valid

Γ, x:A, Γ x : A

Γ, P true, Γ valid

Γ, P true, Γ P true

Γ A type Γ B type

Γ A → B type

Γ, x:A b : B x FV (B)

Γ λx:A.b : A → B

Γ f : A → B Γ a : A

Γ f(a) : B

Γ P : t Γ Q : t

Γ P ⊃ Q : t

Γ, P true Q true

Γ P ⊃ Q true

Γ P ⊃ Q true Γ P true

Γ Q true

Γ A type Γ, x:A P : t

Γ ∀(A, x.P ) : t

Γ, x:A P true

Γ ∀(A, x.P ) true

Γ (A, x.P [x]) true Γ a : A

Γ P [a] true

Fig. 2. Rules for Church’s STT.

– Γ � A type, which means that A is a type under context Γ .
– Γ � a : A, which means that a is an object of type A under context Γ .
– Γ � P true, which means that P is a true proposition under context Γ .
– Γ � A ≤ B, which means that A is a subtype of B under context Γ .

Inference Rules. The inference rules for Ce consist of:

1. Rules for context validity (the three rules above);
2. Figure 2: the rules for Church’s simple type theory including those for (1)

the basic types e and t of entities and truth values, (2) function types with
β-conversion ((λx : A.b[x])(a)  b[a]), and (3) logical formulas7; and

3. Figure 3: the rules for dependent event types including those for (1) dependent
event types and (2) their subtyping relations, and (3) general subtyping rules
including subsumption.

Some explanations of the rules are in order:
– In the λ-rule in Fig. 2, we have added a side condition x 	∈ FV (B), i.e.,

x does not occur free in B. This is necessary because we have dependent
event types like EvtA(a): for example, we need to forbid to derive Γ � (λx :
Agent.λe : EvtA(x).e) : Agent → EvtA(x) → EvtA(x) from Γ, x : Agent �
(λe : EvtA(x).e) : EvtA(x) → EvtA(x), where in the former judgement, x
in Agent → EvtA(x) → EvtA(x) would be a free variable that has not been
declared in Γ . Note that, in Church’s formulation [5], the side condition is not
needed because, there, there are no dependent types (and x does not occur
free in B for sure).

– In the rules in Fig. 3, since all of the judgements have the same contexts, we
have omitted the contexts. For example, the first rule in its third row should
have been, if written in full:

Γ � a : Agent Γ � p : Patient

Γ � EvtAP (a, p) ≤ EvtA(a)

7 We only consider the intuitionistic ⊃ and ∀ here, omitting other operators including,
in particular, those about, e.g. negation/classical logic in [5]. Also, we shall not
assume extensionality.
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Agent type Patient type

Event type

a : Agent

EvtA(a) type

p : Patient

EvtP (p) type

a : Agent p : Patient

EvtAP (a, p) type

a : Agent p : Patient

EvtAP (a, p) ≤ EvtA(a)

a : Agent p : Patient

EvtAP (a, p) ≤ EvtP (p)

a : Agent

EvtA(a) ≤ Event

p : Patient

EvtP (p) ≤ Event

A type

A ≤ A

A ≤ B B ≤ C

A ≤ C

A ≤ A B ≤ B

A → B ≤ A → B

A B

A ≤ B

a : A A ≤ B

a : B

Fig. 3. Rules for dependent event types.

4.2 The Type System UTT[E]

The type theory UTT (Chap. 9 of [11]) is a dependent type theory with induc-
tive types, type universes and higher-order logic. UTT is a typical Modern Type
Theory (MTT) as employed in MTT-semantics [4,13] (actually, it is the MTT
the first author and colleagues have employed in developing MTT-semantics).
Its meta-theory was studied in the Ph.D. thesis by Goguen [8]. Coercive subtyp-
ing [12,14] has been developed by the authors and colleagues for modern type
theories such as Martin-Löf’s type theory and UTT.

Besides the type constructors in UTT as described in [11], UTT[E] has the
following constant types and constant type families for dependent event types:

– Entity : Type
– Agent, Patient : Type.
– Event : Type,

EvtA : (Agent)Type,
EvtP : (Patient)Type, and
EvtAP : (Agent)(Patient)Type.

The coercive subtyping relations in UTT[E] are given by subtyping judge-
ments in E: they specify the subtyping relationships between dependent event
types by means of the following parameterised constant coercions ci (i = 1, . . . , 4)
in E, where a : Agent and p : Patient:

EvtAP (a, p) ≤c1[a,p] EvtA(a), EvtAP (a, p) ≤c2[a,p] EvtP (p),

EvtA(a) ≤c3[a] Event, EvtP (p) ≤c4[p] Event,

The coercions also satisfy the coherence condition c3[a]◦ c1[a, p] = c4[p]◦ c2[a, p].
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Based on the study in [14,21], it is straightforward to show that UTT[E] is
a well-behaved extension of UTT and hence preserves its nice meta-theoretic
properties, including Church-Rosser, subject reduction, strong normalisation,
and logical consistency.

Remark 2. As mentioned above, UTT[E] underlies the development of MTT-
semantics by the first author and colleagues [4,13]. In the recent trend of using
rich type theories in formal semantics (see, for example, some of the papers
in [3]), the development of MTT-semantics provides a full-blown alternative to
the traditional Montague semantics with many advantages and has its further
potentials to be developed in the future. It is worth remarking that UTT[E]
underlies the event semantics in dependent type theories (or MTT-semantics
with events) which contain, in particular, dependent event types.

4.3 Embedding of Ce into UTT[E]

In this subsection, we show that Ce can be faithfully embedded into UTT[E] and
hence has nice meta-theoretic properties. The embedding of Ce into UTT[E] is
defined as follows and it is faithful as the theorem below shows.

Definition 1 (embedding). The embedding [[ ]] from Ce to UTT[E] is induc-
tively defined as follows:8

1. Constant types and dependent event types:
– [[e]]Γ = Entity.
– [[t]]Γ = Prop.

For the other constant types and dependent event types, they are mapped to the
‘same’ types in UTT[E], since we have overloaded their names. For example,
– [[Agent]] = Agent
– [[EvtA(a)]] = EvtA([[a]])

2. Non-constant terms:
– [[x]]Γ = x
– [[A → B]]Γ = [[A]]Γ → [[B]]Γ
– [[λx : A.b]]Γ = λ([[A]]Γ , T, [x : [[A]]Γ ] [[b]]Γ,x:A), if [[Γ, x : A]] � [[b]]Γ,x:A : T
– [[f(a)]]Γ = app(S, T, [[f ]]Γ , [[a]]Γ ), if [[Γ ]] � [[f ]]Γ : S → T and [[Γ ]] �

[[a]]Γ : S0, where [[Γ ]] � S0 ≤ S
– [[P ⊃ Q]]Γ = [[P ]]Γ ⊃ [[Q]]Γ
– [[∀(A, x.P )]]Γ = ∀([[A]]Γ , [x : [[A]]Γ ]. [[P ]]Γ,x:A)

3. Contexts:
– [[〈〉]] = 〈〉 (the empty context in UTT[E])
– [[Γ, x : A]] = [[Γ ]], x : [[A]]Γ

8 Formally, this is a partial function – it is only defined when certain conditions hold.
The embedding theorem shows that the embedding is total for well-typed terms.
Also, a notional note: we shall use S and T to stand for types in UTT[E] where
function types are special cases of Π-types: for any types S and T , S → T = Π(S,
[ : S]T ).
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– [[Γ, P true]] = [[Γ ]], x : Prf([[P ]]Γ ), where x does not occur free in [[Γ ]].

The following theorem shows that the embedding is well-defined and faithful
(in the sense of the theorem) and hence Ce has nice meta-theoretic properties
(the corollary). Its proof is based on the embedding of Church’s simple type
theory into the calculus of constructions [10]. We omit the discussion of technical
details, for otherwise we would have to detail the syntax and rules of UTT and
coercive subtyping [11,14], except remarking that a key reason that the proof
goes through is because the coercions to model subtyping for dependent event
types are constants and coherent (see Sect. 4.2) and hence model subsumptive
subtyping in Ce faithfully.

Theorem 2 (faithfulness). The embedding in Definition 1 is defined for every
well-typed term in Ce and, furthermore, we have:

1. If Γ valid in Ce, then [[Γ ]] valid in UTT[E].
2. If Γ � A type in Ce, then [[Γ ]] � [[A]] : Type in UTT[E].
3. If Γ � a : A in Ce, then in UTT[E], [[Γ ]] � [[a]] : T for some T such that

[[Γ ]] � T ≤d [[A]] for some d.
4. If Γ � P true in Ce, then [[Γ ]] � p : Prf([[P ]]) for some p in UTT[E].
5. If Γ � A ≤ B in Ce, then [[Γ ]] � [[A]] ≤c [[B]] for some unique c in UTT[E].

Corollary 3. Ce inherits nice meta-theoretic properties from UTT[E], including
strong normalisation and logical consistency.

Remark 3. Instead of the embedding method we have described here, one may
consider a more direct approach to metatheory of Ce by directly showing that it
has nice properties such as Church-Rosser and strong normalisation (as suggested
by an anonymous reviewer). However, we think the above is simpler, which is
of course a subjective view, and also demonstrates a generic approach to such
meta-theoretic studies.

5 Event Quantification Problem

It is known that, when considering (neo-)Davidsonian event semantics where
existential quantifiers for event variables are introduced, there is a problem in
dealing with the scopes of the quantifiers when other quantificational phrases are
involved. It has been argued that there is some incompatibility between event
semantics and the traditional compositional semantics [2,20]. De Groote and
Winter [7] have called this as the event quantification problem (EQP for short).

Consider the following sentence (8) which, under the traditional event seman-
tics with bark : Event → t, could have two possible interpretations (9) and (10),
where (10) is incorrect.

(8) No dog barks.
(9) ¬∃x : e. dog(x) & ∃e : Event. bark(e) & agent(e, x)

(10) (#) ∃e : Event. ¬∃x : e. dog(x) & bark(e) & agent(e, x)
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Formally, the incorrect interpretation is acceptable just as the correct one: (10)
is a legal formula. In order to avoid such incorrect interpretations as (10), people
have made several proposals (see, for example, [2,20]) which involve, for instance,
consideration of quantification not over events but over sets of events [2], or some
informal (and somewhat ad hoc) principles whose adherence would disallow the
incorrect interpretations (see, for example, the related Scope Domain Principle
proposed by Landman [9]).

We shall study this with dependent event types as informally studied in
Sects. 2 and 3, both in the Montagovian setting (i.e., in Ce as described in
Sect. 4.1) and in the MTT-semantics (i.e., in UTT[E] as described in Sect. 4.2).
It is shown that, with dependent event types, the incorrect semantics are blocked
as illegal since they are ill-typed.

5.1 EQP in Montague Semantics with Dependent Event Types

In the Montagovian setting with dependent event types (formally, Ce in
Sect. 4.1), this problem is solved naturally and formally – the incorrect semantic
interpretations are excluded because they are ill-typed (in the empty context,
where semantic interpretations of whole sentences like (8) are considered).

For example, (8) will be interpreted as (11), while the ‘incorrect’ interpre-
tation (12) is not available (the formula (12) is ill-typed because x in EvtA(x),
outside the scope of second/bound x (although intuitively it refers to it), is a
free variable without being declared.)

(11) ¬∃x : e. (dog(x) & ∃e : EvtA(x). bark(e))
(12) (#) ∃e : EvtA(x). ¬∃x : e. dog(x) & bark(e)

This offers a natural solution to the event quantification problem. Compared
with existing solutions with informal ad hoc principles such as those mentioned
above, our solution comes naturally as a ‘side effect’ of introducing dependent
event types: it is formally disciplined and natural.

5.2 EQP in MTT-semantics with Dependent Event Types

In this paper, we have focussed on extending the traditional Montague semantics
with dependent event types (formally, Ce), since the simple type theory is what
the most semanticists are familiar with. One can also extend the MTT-semantics
[4,13] with dependent event types (formally, UTT[E], if we use UTT for MTT-
semantics) and hence consider such refined event semantics in the setting of
MTT-semantics. Here, we give an example to show how this is done.

Still consider the sentence (8): No dog barks. In the MTT-semantics, where
CNs are interpreted as types (rather than predicates), the verb bark is given a
dependent type as its semantics:

(13) bark : Πx : Dog. EvtA(x) → Prop
It is also the case that the correct semantics (14) for (8) is legal (well-typed),
while the incorrect one (15) is not:
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(14) ¬∃x : Dog. ∃e : EvtA(x). bark(x, e)
(15) (#) ∃e : EvtA(x). ¬∃x : Dog. bark(x, e)

Note that (15) is ill-typed for two reasons now: the first x is a variable not
assumed anywhere and the term bark(x, e) is ill-typed as well.

Employing dependent event types in the Montagovian semantics (i.e., in Ce

as described in Sect. 4.1), would still leave a small possibility of some formally
legal but incorrect semantics. For instance, one might consider the following
semantics for (8):

(16) (#) ∃e : Event. ¬∃x : e. dog(x) & bark(e)

Note that, although (16) is incorrect, it is still well-typed because e is just
an event, not an event with x as agent.9 This, however, would not happen in the
MTT-semantic setting where the type of the verb bark is the dependent type
(13) and the following semantic sentence is ill-typed:

(17) (#) ∃e : Event. ¬∃x : Dog. bark(x, e),

because bark(x, e) is not well-typed (it requires e to be of type EvtA(x), not just
of type Event).

6 Conclusion

In this paper, we have introduced dependent event types for formal semantics.
Subtyping is shown to play an essential role in this setting. We have also consid-
ered how dependent event types naturally solve the event quantification problem
in combining event semantics with the traditional compositional semantics.

The notion of event types as studied in this paper is intensional, rather than
extensional. For instance, when considering inverse verb pairs such as buy and
sell, one may think that the events in (18) and (19) are the same [19].

(18) John bought the book from Mary.
(19) Mary sold the book to John.

If one considers this from the angle of extensionality/intensionality, the buying
event and the selling event in the above situation are extensionally the same,
but intensionally different. More generally, this is related to how to understand
the sameness of events in the setting with dependent event types. Work need be
done to study event structures and relevant inference patterns.

Another interesting research topic is to study whether all thematic roles
should be considered as parameters of dependent event types. Unlike agents and
patients, some thematic roles considered in the literature may not be suitable
to play the role of indexing dependent event types. In such cases, we would still
propose that they should be formalised by means of logical predicates/relations.
In the other direction, event types may depend on other entities other than
thematic roles and further studies are called for to understand this better.
9 Of course, one can argue that this is not intended since the agent is known, but

formally, nothing prevents one from doing it.
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A Geometry of Interaction Machine
for Gödel’s System T

Ian Mackie(B)

Department of Informatics, University of Sussex, Brighton, UK

Abstract. Gödel’s System T is the simply typed lambda calculus
extended with numbers and an iterator. The higher-order nature of the
language gives it enormous expressive power—the language can repre-
sent all the primitive recursive functions and beyond, for instance Acker-
mann’s function. In this paper we use System T as a minimalistic func-
tional language. We give an interpretation using a data-flow model that
incorporates ideas from the geometry of interaction and game seman-
tics. The contribution is a reversible model of higher-order computation
which can also serve as a novel compilation technique.

1 Introduction

We present a data-flow model of functional computation, where a single token
(the run-time system) travels around a fixed network (the program). Computa-
tion begins with an empty token at the root of the network, and it ends when
the token returns back to the root with the result. The token is deterministic (at
any choice point in the network the token has enough information to proceed in
a unique way) and reversible (the token can turn back on itself, to re-trace its
steps exactly to undo the computation done).

Gödel’s System T (see e.g., [6]) is an applied typed λ-calculus. It is a func-
tional programming language supporting higher-order functions, pairs and pro-
jections, numbers and an iterator. It can express all the primitive recursive func-
tions, and up to the so-called ε0 functions. Ackermann’s function is included in
this set, so its expressive power is sufficiently large to make it interesting. We
present a simpler version of System T, called Linear System T [2] with the same
expressive power but with a syntax more suited to our needs.

The data-flow interpretation uses ideas developed for linear logic [4]. Specif-
ically, the geometry of interaction (GOI), which models the dynamics of the
logic using paths in networks. The GOI machine [9] was a concrete realisation
of this idea, originally given for PCF, where an ad-hoc solution was given for
base types. To make the data-flow idea work for System T, we need to provide
a general reversible interpretation of base types (numbers), which are the data
constructors, and also iterators. The need to provide a solution to these points
distinguishes the work from others that are related to this, for example [1] gives
a general theory of reversible computation through reversible combinators but
does not deal with base types in this way. Our approach is also quite different
c© Springer-Verlag GmbH Germany 2017
J. Kennedy and R.J.G.B. de Queiroz (Eds.): WoLLIC 2017, LNCS 10388, pp. 229–241, 2017.
DOI: 10.1007/978-3-662-55386-2 16
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from other reversible functional (which are often first-order), or higher-order,
languages, for instance the reversible SECD machine [8]. To summarise, the
main contributions are:

– A (reversible) GOI-style model of computation for Gödel’s System T.
– An implementation of the model that is a direct compilation into current

hardware (essentially directly to assembly language).
– An interesting side effect of this work is an implementation technique that

uses an exceptionally small (in terms of space) run-time system in some cases,
thus can open up applications to embedded systems, for instance.

Overview. In the next section we give some background material on System
T and the geometry of interaction. Section 3 gives the definitions of the token
and network structure needed to model System T and a compilation into these
networks. In Sect. 4 we briefly look at some properties, and in Sect. 5 we discuss
some implementation aspects. Finally, we conclude in Sect. 6.

2 Background

We use a specific version of System T, which is equivalent to the standard pre-
sentation (see e.g., [6]), but has a linear syntax. We assume familiarity with the
λ-calculus, and refer the reader to [3,7] for standard notations and concepts.
In [2] it was shown that System T can be presented using the linear λ-calculus
without losing any computational power. This linear System T was called Sys-
tem L. Essentially, that work illustrates that it is possible to duplicate and erase
in System T either using the λ-calculus or the iterator. We simplify the presen-
tation with a variant of System L, that includes numbers as primitives, and gives
a simple reversible model. The set of terms is given by the following grammar:

t, u ::= x | λx.t | tu | 〈t, u〉 | let 〈x, y〉 = t in u | n | St | iter tuv

where n ranges over natural numbers, and x ranges over a finite set of vari-
ables. The let construct is a way of splitting the pair so that we have access to
both components. Numbers are included, so that we can write n for Sn0. The
typing rules (Fig. 1) show the valid terms; note that the type system captures
the linearity constraints, for example x must occur in t in the abstraction rule.
We can now write simple functions, for example: add = λmn.iterm(λx.Sx)n,
mult = λmn.iterm(add n)0, two = λfx.iter 2fx and finally Ackermann’s func-
tion: ack = λmn.(iterm(λgu.iter (Su)g1)(λx.Sx))n.

For reference, we define the reduction rules, thus giving an operational seman-
tics to the language. This is also useful for a correctness result of the token
interpretation that we give later.
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(Axiom)
x : A � x : A

Γ, x : A � t : B
(→ Intro)

Γ � λx.t : A → B

Γ � t : A −◦ B Δ � u : A
(→ Elim)

Γ, Δ � tu : B

Γ � t : A Δ � u : B
(⊗Intro)

Γ, Δ � 〈t, u〉 : A ⊗ B

Γ � t : A ⊗ B x : A, y : B, Δ � u : C
(⊗Elim)

Γ, Δ � let 〈x, y〉 = t in u : C

(Num)
� n : N

Γ � t : N

(Succ)
Γ � S t : N

Γ � t : N Θ � u : A −◦ A Δ � v : A
(Rec)

Γ, Θ, Δ � iter t u v : A

Fig. 1. Type system

Definition 1 (Reduction). Reduction can take place in any context:

Name Reduction Condition
Succ Sn → n + 1
Beta (λx.t)v → t[v/x] fv(v) = ∅

Let let 〈x, y〉 = 〈t, u〉 in v → (v[t/x])[u/y] fv(t) = fv(u) = ∅

Rec1 iter (n + 1)vu → v(iter nvu) fv(v) = ∅

Rec2 iter 0vu → u fv(v) = ∅

For simplicity, we assume substitution t[v/x] is a meta-operation correspond-
ing to the explicit substitution defined in [2]. We only consider evaluation of
programs, that is closed terms of base type. In this way, all programs give a
number as a result. The following main properties that we need for this paper
(see [2] for the proofs) are:

Proposition 1.
– Adequacy: If � t : N, then t →∗ n, for some n.
– Subject Reduction. If Γ � t : A and t → u then Γ � u : A.
– Strong Normalisation: if Γ � t : A, then t is strongly normalisable.

Data-flow and the Geometry of Interaction. The starting point for the data-
flow model comes from the geometry of interaction, which was first set up as a
semantics for linear logic [5]. In [9] this is used as an implementation technique—
essentially mapping the model to assembly language. This idea was extended to
cover the language PCF. Here we use some similar ideas, but our focus is on
building a simple data-flow model based on the linear calculus.

We build networks out of nodes and edges. Each node is labelled and has a
fixed arity that specifies how many edges can be connected to it. The point of
connection between the edge and the node is called a port. The ports of a node
are ordered, and we use the label • to give the position of the first port to make
clear the orientation. Edges connect two ports together (potentially on the same
node) with the constraint that only one edge can be connected to each port.
Edges may also connect to one port only in which case we say that it is a free
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edge. The networks that we build for our programs always have one unique free
edge that we call the root of the network.

A token travelling on this network moves from port-to-port along the edges,
and is transformed and directed by the nodes: the nodes are routing devices.
Consider the following example network that uses two occurrences of a node m
of arity three, connected as shown. In this example, t0 is the starting token, and
it is moving to the right. The node m will transform the token to t1 and direct
it towards the second node. The second m node will transform the token to t2
and direct it along the edge as shown:

m m

t0
t1

t2

• •

Depending on the port of arrival, the token will be inspected by the node,
then modified and re-directed. In this example, t0 is directed along the edge
as shown, and it will be modified to remember where it came from: the right-
hand edge of the m node. Token t1 can now change direction and because it
has information about where it came from, it can return to t0 and forget the
information it had. Equally, t1 could continue moving to the right, and this
time the second m node will do exactly the same transformation and use the
information to direct it to t2. A simple stack of left (l) and right (r) labels can
be stored in the token to achieve this: when arriving from the left or right, push
l or r on the stack. When there is a choice, go in the direction indicated by the
top of the stack, and pop the stack. In the example above, if t0 is the empty
stack, t1 will hold r and the token t2 is again the empty stack. This travel is
deterministic, and reversible.

In the next section we define the structure of the token, and define the dif-
ferent nodes that we need to encode System T. Each node is defined by giving
the transformation and re-directions of the token.

3 Encoding

Here we define the nodes for the network together with the token interpretation.
We also give a compilation of terms into networks, and computation is then a
flow over the network with a token that stores the current state.

Definition 2 (Token). A token (m, i, s, d) is defined by the following
components:

– m is a stack that contains the elements l and r. This stack is used to navigate
the lambda, application and pairs.

– i is a stack which keeps information about the iterator. It can contain elements
that are either numbers or pairs of numbers.

– s is an array of stacks which keeps temporary information about the different
iterators. The size of the array is known at compile time, as it depends on
the number of iterators.
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– d is the data stack that contains numbers and an additional element ∗.
We write � for the empty stack/array, and use the notation n : s for an element
n pushed onto the stack s.

Each node has a flow associated with it, and operations that change the
token. We will make this explicit when we define the nodes. The token contains
information that is used to redirect it though the nodes of the graph in a deter-
ministic way. Information stored in the token is the only information that is used
for this. The data stack stores numbers, but also ∗ which can be thought of as a
place-holder for a number that will be found later. When the data stack has a ∗
at the top of the stack, then this is a question: the token is looking for an answer
to this question. When the token has a number at the top, then the token has an
answer for the last un-answered question. When the initial question is answered,
computation is complete. Some nodes will use the question/answer information
to direct the node.

For a program, starting with the token (�,�,�, ∗ : �), every run will end
with (�,�,�, n : �), where n is the result. Any part of the computation can be
reversed, and in particular, the whole computation can be reversed: a computa-
tion starting with (�,�,�, n : �), will end with (�,�,�, ∗ : �).

Definition 3 (Network). A network is a (not necessarily connected) graph
built from a set of nodes and edges. A node has a name, a fixed number of ports,
and in some cases also a value. The collection of nodes is fixed and defined below.

We next define the nodes and the transformations for our networks. For each
node α of arity n we label the ports l1, . . . , ln:

α
•
l1

l2 · · · ln

We then describe the transformation by the convention that arriving from li and
leaving from l̂j (i.e., the port that is connected to the other end of lj). For each
operation f , we have the reverse operation f∗. We write these two functions as
ft = t′f∗, which is just an abbreviation of ft = t′ and f∗t′ = t.

Value Nodes. A number n is represented as the following network:

n

l

•

The data-flow for this node is from l to l̂. There are two cases: if the token
is a question it collects the value n, otherwise, the token is an answer, and
it drops off the value n. We define operations n and n∗ which are defined as
n(m, i, s, ∗ : d) = (m, i, s, n : d)n∗ to do these transformations.
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Unary Functions. The successor node is represented as the net:

S

l1

l2

•

There are two data-flows for this node, and two cases for each depending on
whether the token is a question or an answer. We explain two flows, and the
other two are the reverses. If the token is a question and arrives at l2, then
we ask another question to find the argument of the function, thus we push
∗ onto the data stack and the token travels along the edge to l̂1. We define an
operation s1 to do this transformation. If the token is an answer and arrives at l1,
then we need to continue to l̂2, and apply the successor function. The operation
s2 does this transformation. These two operations, and inverses, are defined as:
s1(m, i, s, ∗ : d) = (m, i, s, ∗ : ∗ : d)s∗

1 and s2(m, i, s, n : ∗ : d) = (m, i, n+1 : d)s∗
2.

Multiplexing. We use a multiplexing node for abstraction, application, the pair
and the let constructs.

m
•

l2 l3

l1

There are four different data-flows for m, and all the operations only alter the
m component of the token. Arriving at l1, we need to decide which way to go.
If the top of the stack m stack is l, we apply the l∗ transformation and travel
along the edge to l̂2. Otherwise, the top of the stack is r, so we apply the r∗

transformation and travel along the edge to l̂3. Arriving at l2 or l3, the token
travels along the edge to l̂1, and we need to remember which side we came from.
The operations l and r do this transformation, respectively. These functions are
defined as: l(m, i, s, d) = (l : m, i, s, d)l∗ and r(m, i, s, d) = (r : m, i, s, d)r∗.

Iterator. We next need the nodes that will allow for the encoding of the iterator.
The first one will find the number of times we need to iterate.

I•

l2

l1 l3

There are four different data-flows for this node, and the operations alter
the d and i components of the token. Arriving at l1, there are two cases. If the
token is an answer, then the token travels along the edge to l̂3 and we apply an
operation called i2. Otherwise, the token is a question, and it travels along the
edge to l̂2 and we apply the i∗1 operation. Arriving at l2, the token travels along
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the edge to l̂1, and we apply the i1 operation. Finally, arriving at l3, the token
travels along the edge to l̂1, and we apply the i∗2 operation. These functions are
defined as i1(m, i, s, d) = (m, i, s, ∗ : d)i∗1 and i2(m, i, s, n : d) = (m,n : i, s, d)i∗2.

Counter. To model the iteration process in a reversible way, we need something
similar to the multiplexing node, but having the ability to count.

c
•

l2 l3

l1

There are four different data-flows for this node, and the operations only
alter the i component of the token. Arriving at l1, if the top of the i stack is 0,
we apply the z∗ transformation and travel along the edge to l̂2. Otherwise, the
top of the stack is non-zero, so we apply the s∗ transformation and travel along
the edge to l̂3. Arriving at l2 or l3 the token travels along the edge to l̂1, and
we apply the operation z or s, respectively. Counters will always come in pairs:
we call them c and c′, and the prime operations are essentially the same, but
operate on the other component of the pair. These functions are defined as:

z(m, c : i, s, d) = (m, (0, c) : i, s, d)z∗

z′(m, c : i, s, d) = (m, (c, 0) : i, s, d)z′∗

s(m, (c1, c2) : i, s, d) = (m, (c1 + 1, c2) : i, s, d)s∗

s′(m, (c1, c2) : i, s, d) = (m, (c1, c2 + 1) : i, s, d)s′∗

The final node that we need captures the scope of an iterator.

tj

l1

l2

•

There are two data-flows possible for this kind of node. Arriving at l1, the token
travels towards l̂2, and we apply the operation t∗. Arriving at l2, the token travels
along the edge to l̂1, and we apply the operation t. The collection of functions
are defined as tj(m, (c1, c2) : i, s, d) = (m, i, push(j, s, (c1, c2)), d)t∗j , where the
operation push updates the array of stacks at position j (1 ≤ j ≤ n):

push(j, [s1, . . . , sn], (c1, c2)) = [s1, . . . , (c1, c2) : sj , . . . , sn]

This completes the definition of the nodes that we need for our networks.
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Compilation. The compilation T (·) of terms into networks is given using the
nodes introduced above. A term t with fv(t) = {x1, . . . , xn} will be translated
as a network T (t) with the root edge at the top, and n free edges corresponding
to the free variables of the term.

T (t)
· · ·

x1 xn

The labelling of free edges is just for convenience, and is not part of the system.
We proceed by induction over the structure of the term being translated.

Numbers, Functions and Variables. When t is a number, say n, then T (n) is
given by the first network below. When t is the unary function S t′, then T (t) is
given by the middle diagram, where we use node S. Finally, when t is a variable,
say x, then T (t) is translated into a wire, as shown right-most below.

n
•

S

T (t′)
· · ·

•

Abstraction, Application, Pairs and Let. If t is an abstraction, say λx.t′, then
T (t) is translated into the network on the left below. We connect the (neces-
sarily unique) occurrence of the variable x to the binding λ (m node). We have
assumed, without loss of generality that x is the leftmost free variable of the term
t′. If t is uv, then T (t) is given by the second diagram below. If t is 〈u, v〉, then
T (t) is given by the third network below. Because of the linearity constraints,
there are no common free variables in u and v. Finally, if t is let 〈x, y〉 = u in v,
then T (t) is given by the network on the right—we have assumed that x and
y are the right-most two free variables in v. The other free variables of v are
represented as a line struck through.

m
•

T (t′)
· · ·x

T (u) T (v)

m

· · · · · ·

•

T (u) T (v)

m

· · · · · ·

•

T (u)

T (v)

/
m

· · ·

x y

•
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Recursor. If t is iteruvw, then T (t) is given by the following network.

I

T (u)

T (v)

ti•

· · ·

T (w)

ti

c′

c

m
•

· · ·

· · ·

•

•
•

•

The compilation of the iterator uses several different nodes. The two counter
nodes work together to maintain the iterations. The I node is responsible for
navigating the token to the number, then passing that value to the counters.
The ti nodes are used to record the state of the iterators if the token leaves the
scope of the iterator, where a new index i is associated to each iterator.

There are a number of ways that a network can be simplified at compile time,
but we leave the details for another occasion.

Examples. We show several examples to illustrate how this style of computation
works. The first one is the program (λx.Sx)3, thus the successor function applied
to 3. The network generated through the compilation of this term is given below,
where we have labelled the edges for reference. The initial token (which is the
same for any program of base type) is (�,�,�, ∗ : �), and the program counter
starts in the network at the root (labelled with a). The token then travels along
the sequence b, c, d, etc. We show the edge together with the token at that place.

S

3m

m

•
•

•

•

a

b

c

d

e
a (�,�,�, ∗ : �)
b (l : �,�,�, ∗ : �)
c (�,�,�, ∗ : �)
d (�,�,�, ∗ : ∗ : �)
b (r : �,�,�, ∗ : ∗ : �)
e (�,�,�, ∗ : ∗ : �)

e (�,�,�, 3 : ∗ : �)
b (r : �,�,�, 3 : ∗ : �)
d (�,�,�, 3 : ∗ : �)
c (�,�,�, 4 : �)
b (l : �,�,�, 4 : �)
a (�,�,�, 4 : �)

The token arrives back to the root with the answer 4. At any point during the
computation we can use the information in the token to turn back and re-trace
the computation—deterministically—to the start.
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The next example is iter 2(λx.S x)3, which computes the addition of 2 and 3.
(This results in a simplified version of add 2 3, without the need for abstraction
and application; it is the same term when the (linear) β-reductions have been
done). The resulting network is shown below. Looking at the structure of the
execution trace reveals a symmetry, reflecting that the computation is reversible.

2

I

3

S

c

c′

•

•
•

•

•

•

a

b c

d

e

f

g

a (�,�,�, ∗ : �)

b (�,�,�, ∗ : ∗ : �)

b (�,�,�, 2 : ∗ : �)

c (�, 2 : �,�, ∗ : �)

d (�, (0, 2) : �,�, ∗ : �)

e (�, (0, 1) : �,�, ∗ : �)

f (�, (0, 1) : �,�, ∗ : ∗ : �)

d (�, (1, 1) : �,�, ∗ : ∗ : �)

e (�, (1, 0) : �,�, ∗ : ∗ : �)

f (�, (1, 0) : �,�, ∗ : ∗ : ∗ : �)

d (�, (2, 0) : �,�, ∗ : ∗ : ∗ : �)

g (�, 2 : �,�, ∗ : ∗ : ∗ : �)

g (�, 2 : �,�, 3 : ∗ : ∗ : �)

d (�, (2, 0) : �,�, 3 : ∗ : ∗ : �)

f (�, (1, 0) : �,�, 3 : ∗ : ∗ : �)

e (�, (1, 0) : �,�, 4 : ∗ : �)

d (�, (1, 1) : �,�, 4 : ∗ : �)

f (�, (0, 1) : �,�, 4 : ∗ : �)

e (�, (0, 1) : �,�, 5 : �)

d (�, (0, 2) : �,�, 5 : �)

c (�, 2 : �,�, 5 : �)

b (�,�,�, 2 : 5 : �)

b (�,�,�, ∗ : 5 : �)

a (�,�,�, 5 : �)

m

I 3

c

c′
2

m m

I S

S c

c′

1

t1

m

Fig. 2. Ackermann’s function

The final example, shown in Fig. 2,
gives the compilation of Ackermann’s
function applied to two arguments:
ack 2 3. We have applied several optimisa-
tions to this example which remove some
of the nodes that are not needed, and we
have also performed a linear β-reduction.
We will not attempt a trace of this exam-
ple, as the number of operations is quite
large (see next section). The example is
just to show what a more elaborate pro-
gram looks like in this setting.

4 Properties

Here we show some important results
about this method of computing. Full
details will be included in a longer version
of this paper.

Lemma 1 (Determinism). For a closed term t : N, computation is bidirec-
tional and deterministic.

This result holds because each transformation has this property, and we are
able to show that the token will always have enough information to progress.
Computation is therefore reversible: at any point we can turn back and undo
the computation. For instance, the second example in the last section can be
started with the token (�,�,�, 4 : �), and the computation will be performed
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in a deterministic way to give the final result (�,�,�, ∗ : �) as required. To
show that this notion of computation is correct, then we need a way of relating
the token flow with an operational semantics.

Theorem 1 (Correctness). Let t : N be a closed term. t →∗ n iff there is a
run in the network T (t): (�,�,�, ∗ : �) →∗ (�,�,�, n : �).

Using this result we can give the main result about reduction:

Theorem 2. For each reduction rule t → u, the initial and final states of the
token are the same.

5 Discussion: Implementation

We give a few implementation details for our data-flow model on traditional
hardware by giving a compilation for System T directly to assembly language.
The data stack d can be separated out as a number stack and a question stack.
The question stack can then be implemented using a register, using 0 for question
and 1 for answer. To push and pop values on this stack, we can then use simple
register shifts. Knowing if the current operation is a question or an answer is
then just a bit test. We can also reduce the size of the question stack in some
cases. For instance, when we ask for the result of a successor applied to an
argument, then we can use the same question for the argument as the result.
The other stacks can be mapped onto memory in standard ways. Depending
on the number of iterators (known at compile time), we can map some of the
structure to registers or blocks of memory.

The compilation procedure is to build a network, then compile this network
to instructions. This is done by compiling each node as a block of code. We show
the example below for the case of the m nodes, which are the simplest case (we
refer the reader to the diagram of the m nodes with the labels to help understand
the labels, and we use a register R0 to hold the m stack). Edges are then just
linking information, instructing how to get to the next block of code.

l2 : lsl R0

br ̂l1

l3 : lsl R0
inc R0

br ̂l1

l1 : lsr R0

be ̂l2
br ̂l3

Thus for each node we need to generate instructions that will implement the
appropriate collection of functions associated to it. In some cases, this will mean
interrogating the question stack, and then doing an operation depending on that
value. All these functions however map quite directly to assembly level.

There are many improvements and optimisations that can be made to the
compilation. For example, if the number of times a function is being iterated is
known, then we do not need to push the value on the stack if we leave through
a t node when compiling the base value, as we know that this value will always
be the same—a single stack location is all that is needed. This can be identified
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statically. There are other little improvements that can be made also, but it is
not yet clear if any of these have a significant impact on performance.

We have implemented all the ideas in this paper, and it is worth mention-
ing that the execution times are long, but the run-time memory usage can be
surprisingly small. We give a couple of illustrative examples in the table below.

Program Result i d jumps

two two two two (λx.Sx) 0 65536 16 2 92M
ack 3 2 29 3 15 2.4M
ack 2 24 51 2 26 537M
ack 3 3 61 3 31 4.7M

We show the example program (using the terms given in Sect. 2) together with
the result, the maximum height of the iterator stacks, and the maximum height
of the data stack. Since two integers are needed for each element of the iterator
stack, and each data element just one, this means that 2i+d is the total number
of memory space used. The table also shows the (approximate) number of jumps
(units are millions) in the network. Computation can take a long time, but little
memory is used.

6 Conclusion

We have given a geometry of interaction style data-flow implementation of a
simple language built from the linear λ-calculus extended with a recursor opera-
tor. Depending on how we constrain the use of the recursor, this language is rich
enough to capture all primitive recursive functions or more generally Gödel’s Sys-
tem T. Current work in this area includes developing the ideas to richer languages
(in particular to include other data-structures), and developing new compilation
techniques. Various program transformations can be applied to change the kind
of runs in interesting ways, and computations can be significantly shortened by
jumping in the network. The work has been implemented, and benchmark tests
show that significant computations can be performed using very little run-time
memory, thus there is potential for application in embedded systems in addition
to giving a reversible implementation of a seemingly non-reversible language.
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Abstract. In this paper we give a first definitive step towards endow-
ing the general mechanism for combining logics known as fibring with
a meaningful and useful semantics given by non-deterministic logical
matrices (Nmatrices). We present and study the properties of two seman-
tical operations: a unary operation of ω-power of a given Nmatrix, and
a binary operation of strict product of Nmatrices with disjoint similarity
types (signatures). We show that, together, these operations can be used
to characterize the disjoint fibring of propositional logics, when each of
these logics is presented by a single Nmatrix. As an outcome, we also
provide a decidability and complexity result about the resulting fibred
logic. We illustrate the constructions with a few meaningful examples.

1 Introduction

Fibring is a general and powerful mechanism for combining logics. Given its
fundamental character, abstract formulation and compositional nature, fibring
is a key ingredient of the general theory of universal logic [4]. The ubiquity of
its underlying problems also justifies fibring as a valuable tool for the construc-
tion and analysis of complex logics, a subject of ever growing importance in
application fields like software engineering and artificial intelligence (see [14]).

As entailed by Dov Gabbay’s original formulation in [15,16], given two logics
L1 and L2, fibring should combine L1 and L2 into the smallest logical system
for the combined language that extends both L1 and L2 [8]. The semantics of
fibred logics has been the subject of much attention, but thus far we do not
know of a generally satisfactory semantic counterpart of fibring that naturally
relates models of the component logics with models of the combined logic. There
have been several approaches to this problem, even leading to some interesting
results, like sufficient conditions for conservativity, completeness preservation,
or the finite model property [9]. However, these attempts are not satisfactory
and, in particular, have reduced practical use. We can arguably divide these
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approaches into three categories: some are very specific and cover only particu-
lar cases, such as [12,20] for the fusion of modal logics; others are quite general,
but at the expense of losing any sensitivity regarding the particular semantics
given to the logics being combined [7,26,30] (this is due to the fact that, for
completeness sake, the semantics considered end up neglecting the given seman-
tics of the logics being combined, namely via fullness assumptions). Still other
approaches explicitly combine the models of the particular semantics of the com-
ponent logics, but involve semantical structures that are highly uncommon [27],
or constructions that cannot be iterated [25]. For these reasons, general fibred
semantics is still an open problem: how to combine, in the general case, two
classes of models M1 (adequate for logic L1) and M2 (adequate for logic L2)
into a class M1 �M2, whose elements are built from the models in M1 and M2,
providing an adequate semantics for L1 • L2?

We have known for some time that this question cannot be given a simple
answer when taking logical matrices as models, as is most common. For instance,
we know that fibring two logics, each given by a single finite matrix, can result
in a logic that cannot even be given by a single matrix [6,22]. Herein, for the
moment focusing only in the particular case of disjoint fibring, i.e. when the logic
being combined do not share any connectives, we will for the first time propose a
meaningful and useful semantics semantics for fibring by using non-deterministic
logical matrices (Nmatrices). Nmatrices generalize matrices, the long standing
reference for abstract logic semantics dating back to the beginning of 20th cen-
tury (see [29]), by allowing a (non-empty) set of possible values whenever apply-
ing a connective to known values. The algebraic structures underlying Nmatrices
are multi-algebras, a.k.a. hyper-algebras [10,18,23], and have been brought to
the attention of the logic community in [1–3,11].

We present and study the properties of two operations on Nmatrices: a unary
operation of ω-power of a given Nmatrix, and a binary operation of strict product
of (non-trivial) Nmatrices with disjoint similarity types (signatures). Together,
these operations can be used to characterize the disjoint fibring of propositional
logics, when each of the logics is presented by a single Nmatrix. We start by
identifying a fundamental property of a given Nmatrix, which we call satura-
tion, that holds when one is able to refute simultaneously all formulas lying
outside any given theory of the logic. Saturation guarantees that the Nmatrix
provides exact semantic witnesses (valuations) to all theories of the logic. Then,
we show that the strict product operation characterizes precisely the (disjoint)
fibring of the logics presented by two given Nmatrices, as long as both are sat-
urated. Finally, we show that the ω-power operation always yields a saturated
Nmatrix which defines the same logic as the original Nmatrix. Note that the
ω-power of a (deterministic) logical matrix is still deterministic. As an outcome,
we also recover from [21] a decidability and complexity result about the fibred
logic. Along the paper, we illustrate these constructions with a few meaningful
examples.

The paper is structured as follows. Section 2 is a brief introduction to some
necessary basic concepts. In Sect. 3 we recall the definition of Nmatrix semantics,
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and take advantage of its non-deterministic nature to define a natural strict prod-
uct operation that is the core ingredient to capturing the essentials of fibred
semantics, but which cannot be (finitely) mimicked by an operation on (deter-
ministic) matrices. Then, in Sect. 4, we introduce the notion of a saturated Nma-
trix, and show that the strict product of saturated Nmatrices precisely charac-
terizes (disjoint) fibring (Theorem1). We also show how to generally saturate
Nmatrices by means of a ω-power operation (Theorem 2), and as a consequence
we obtain the first recipe that captures the semantical side of (disjoint) fibring by
suitably combining the models of the given logics (Corollary 1). Further, by iden-
tifying some (finite) sub-models of the combined semantics, we also recover some
known decidability and complexity results about the fibred logic (Proposition 2).
We wrap up, in Sect. 5, with an overview of the results obtained and a discussion
of several future extensions.

2 Preliminaries

Logics. A logic is a tuple L = 〈Σ,�〉, where Σ = {Σ(n) : n ∈ N} is a
propositional signature (Σ(n) contains the n-ary connectives of Σ) and � ⊆
2LΣ(P ) × LΣ(P ) is a structural (Tarskian) consequence relation over the lan-
guage LΣ(P ) (the absolutely free Σ-algebra over a given set of propositional
variables P ). Given Σ′ ⊇ Σ, we consider LΣ′

= 〈Σ′,�Σ′〉 where Γ �Σ′
ϕ if and

only if there exist Δ ∪ {ψ} ⊆ LΣ(P ) and σ : P → LΣ′(P ) such that Δ � ψ,
Δσ = Γ and ψσ = ϕ. A set T ⊆ LΣ(P ) is called a L-theory whenever T is closed
for �, that is T� = {ϕ : T � ϕ} = T .

Example 1. Lcnj = 〈Σcnj,�cnj〉 where Σcnj contains a single binary connective ∧
and �cnj is the underlying consequence relation of the conjunction fragment of
classical logic. �

Hilbert Systems. A Hilbert calculus is a pair H = 〈Σ,R〉 where Σ is a
signature, and R ⊆ 2LΣ(P )×LΣ(P ) is a set of inference rules. Given 〈Δ,ψ〉 ∈ R,
we refer to Δ as the set of premises and to ψ as the conclusion of the rule. When
the set of premises is empty, ψ is dubbed an axiom. An inference rule 〈Δ,ψ〉 ∈ R
is often denoted by Δ

ψ , or simply by ψ1 ... ψn

ψ if Δ = {ψ1, . . . , ψn} is finite, or by

ψ if Δ = ∅.
Given Σ ⊆ Σ′ and P ⊆ P ′, a Hilbert calculus H = 〈Σ,R〉 induces a

consequence relation �H on LΣ′(P ′) such that, for each Γ ⊆ LΣ′(P ′), Γ �H

is the least set that contains Γ and is closed for all applications of instances
of the inference rules in R, that is, if Δ

ψ ∈ R and σ : P → LΣ′(P ′) is such
that Δσ ⊆ Γ �H then ψσ ∈ Γ �H . Of course, this definition induces a logic
LΣ′

= 〈Σ′,�H 〉 over P ′ for each Σ ⊆ Σ′.

Example 2. Lcnj = LHcnj where Hcnj = 〈Σcnj, {p∧q
p , p∧q

q , p q
p∧q }〉. �
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Given H = 〈Σ,R〉 and Σ′ ⊇ Σ, note that LΣ′
H = LH ′ where H ′ = 〈Σ′, R〉.

Fibring. Let L1 = 〈Σ1,�1〉 and L2 = 〈Σ2,�2〉 be two logics. The fibring of L1

and L2 is the smallest logic L1 • L2 over the joint signature Σ12 = Σ1 ∪ Σ2,
with Σ

(n)
12 = Σ

(n)
1 ∪ Σ

(n)
2 for all n ∈ N, that extends both L1 and L2. Given

Hilbert calculi H1 = 〈Σ1, R1〉 and H2 = 〈Σ2, R2〉 then L1 •L2 = LH1•H2 where
H1 • H2 = 〈Σ12, R1 ∪ R2〉. Clearly, besides joining the given signatures, which
allows building so-called mixed formulas, the fibring of the two calculi consists
in simply putting together their rules, thus allowing also mixed reasoning. When
there are no shared connectives, i.e. Σ1 ∩ Σ2 = ∅, or better Σ

(n)
1 ∩ Σ

(n)
2 = ∅ for

all n ∈ N, the fibring is usually said to be disjoint. In the remainder of the paper
we will focus our attention on disjoint fibring.

Example 3. Let Ldjn = 〈Σdjn,�djn〉 where Σdjn contains a single binary connec-
tive ∨, be the disjunction-only fragment of intuitionistic logic. It is known that
Ldjn = LHdjn

where Hdjn = 〈Σdjn, { p
p∨q , p∨p

p , p∨q
q∨p , p∨(q∨r)

(p∨q)∨r}〉, and that this coin-
cides with the disjunction fragment of classical logic, see [22,24]. The fibred logic
Lcnj • Ldjn = 〈Σcnj ∪ Σdjn,�〉 is strictly weaker than the conjunction-disjunction
fragment of classical logic. Namely, p ∨ (p ∧ p) �� p, as was also noted in [19]. �

3 Non-deterministic Matrices and Strict Products

The quest for an adequate semantical operation corresponding to the logical
operation of fibring has been long, as we discussed above. In this section we will
show how the additional freedom given by semantical non-determinism crucially
captures the essential behavior of the fibring mechanism. We start by recalling
non-deterministic matrices, as introduced in [1].

Non-deterministic Matrices (Nmatrices). A Nmatrix over a signature Σ
is a tuple M = 〈A, ·M,D〉 where1 A is a set (of truth-values), D ⊆ A is the
set of designated values and, for each c ∈ Σ(n), ·M gives the interpretation of
c in M, cM : An → 2A \ {∅}. We shall refer to the set of undesignated values
by U = A \ D. Henceforth, we will assume that we are working only with non-
trivial Nmatrices, in the sense that D �= ∅ and U �= ∅. Clearly, this will only
leave out some trivial uninteresting logics. A valuation over M is a function
v : LΣ(P ) → A such that for all for each c ∈ Σ(n) and ϕ1, . . . , ϕn ∈ LΣ(P ),
v(c(ϕ1, . . . , ϕn)) ∈ cM(v(ϕ1), . . . , v(ϕn)). We say that Γ |=M ϕ if, for every
valuation over M, v(Γ ) ⊆ D then v(ϕ) ∈ D. It is well known that LM = 〈Σ, |=M〉
is always a logic. Of course, the traditional notion of logical matrix is recovered
by considering Nmatrices for which the image of each cM is always a singleton
(deterministic), as in the Nmatrix in the next example. It is also important to
highlight that Nmatrices, as matrices, provide analytic semantics, in the sense
that any partial valuation defined over a set of formulas closed under subformulas
can be extended to a valuation. We say that M

′ = 〈A′, ·M′ ,D′〉 over signature

1 〈A, ·M〉 is a multi-algebra, see [10,18].



246 Marcelino and C. Caleiro

Σ′, is a sub-Nmatrix of M = 〈A, ·M,D〉 whenever Σ′ ⊆ Σ, A′ ⊆ A, D′ ⊆ D
and for every n-ary c ∈ Σ′ and a ∈ (A′)n we have cM′(a) ⊆ cM(a). Of course,
in this situation, we have that |=M′⊆|=M. Given X ⊆ A, we say that M

′ is the
sub-Nmatrix of M generated by X if it is the smallest sub-Nmatrix of M whose
carrier contains X.

(Finite) Nmatrices allow a natural tabular representation similar to the one
for matrices, with the difference that in the table appear sets of elements instead
of just elements.

Example 4. Let L@ = 〈Σ@,�〉 be the smallest logic over the signature Σ@ con-
taining a single connective @ of any given arity, that is, Γ � ϕ iff ϕ ∈ Γ , for every
Γ ∪{ϕ} ⊆ LΣ@(P ). It is easy to see that L@ = LH@ = LM@ where H@ = 〈Σ@, ∅〉
and M@ = 〈{0, 1}, ·̃, {1}〉, with @ interpreted freely. In case @ is binary, the table
is as follows

@̃ 0 1
0 {0, 1} {0, 1}
1 {0, 1} {0, 1}

This logic cannot be presented by a single finite matrix, nor even by any
finite set of finite matrices [6]. �

If an Nmatrix is deterministic we simply present it as a matrix.

Example 5. Lcnj = LMcnj where Mcnj = 〈{0, 1}, ·̃ , {1}〉, with

∧̃ 0 1
0 0 0
1 0 1 �

We can now give a hint on how the non-deterministic semantic environment
provided by Nmatrices allows us to capture very basic operations on logics in a
simple and intuitive way. Take, for example, the very particular case of fibring
consisting in adding an absolutely free new connective to a given logic L. We
know that the resulting logic cannot in general be presented by a single logical
matrix, even if L is. That is the case, for instance, when adding a free nullary con-
nective [6]. When we consider a non-nullary connective other problems emerge
and, as shown in [6], we might obtain a non-finitely valued logic. So, when we
try to add a new (free) connective @, of any arity, the resulting logic might only
be characterizable by an infinite logical matrix, or in alternative by an infinite
collection of finite matrices, even when L is given simply by a finite matrix. In
the non-deterministic setting, however, it is obvious that one can simply extend
any given (N)matrix M = 〈A, ·M,D〉 defining L by letting the new connective
range non-deterministically all over A, like in Example 4.

Proposition 1. Let M = 〈A, ·M,D〉 be an Nmatrix over signature Σ and con-
sider an n-ary connective @ /∈ Σ. Letting Σ′ = Σ ∪Σ@, we have that LΣ′

M
= LM′

where M
′ = 〈A, ·M′ ,D〉 and ·M′ extends ·M by @M′(a) = A for all a ∈ An.
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Proof. Given Γ, {ψ} ⊆ LΣ′(P ), by definition, we have that Γ � ψ if and only if
there exist Δ ∪ {ψ} ⊆ LΣ(P ) and σ : P → LΣ′(P ) such that Δ � ψ, Δσ = Γ
and ψσ = ϕ.

LΣ′
M

-soundness of M′ follows easily from the fact that Γ �Σ′
ϕ implies there is

Δ ∪ {ψ} ⊆ LΣ(P ) and σ : P → LΣ′(P ) such that Δ � ψ, Δσ = Γ and ψσ = ϕ.
Hence, given a valuation v over M

′ such that v(Γ ) ⊆ D, there is valuation
v′ over M, such that v(Γ ) = v(Δσ) = v′(Δ) where v = v′ ◦ σ. Therefore,
v′(ψ) = v(ψσ) = v(ϕ) ∈ D by LΣ′

M
-soundness of M.

For completeness, consider that Γ |=M′ ψ. Then, we know that v(Γ ) ⊆
D implies v(ψ) ∈ D for every valuation v. In particular, this means that the
implication holds regardless the value the formulas with @ as main connective.
Let Δ ∪ {ψ} ⊆ LΣ(P ) contain the most particular formulas such that there is
σ : P → LΣ′(P ) satisfying Δ � ψ, Δσ = Γ and ψσ = ϕ (in the sense that
every other such inference must be an instance of this one, which was rigorously
characterized in [21] using Σ-skeletons). As @ ranges all over A, this means that
Δ |=M ϕ, hence Δ � ϕ, and thus Γ �Σ′

ϕ. ��
As we shall see, this phenomenon is a particular case of a general advantage

offered by the non-deterministic character of Nmatrices. Let us close this section
by presenting an operation between Nmatrices, which we call strict product,
that generalizes the previous construction, and is also the basic ingredient of the
fibred semantics we present in the following section.

Strict Product of Nmatrices. Let Σ1 and Σ2 be signatures with Σ1∩Σ2 = ∅.
Given non-trivial Nmatrices M1 = 〈A1, ·1,D1〉 over Σ1 and M2 = 〈A2, ·2,D2〉
over Σ2, their strict product is the Nmatrix over Σ1 ∪ Σ2

M1 � M2 = 〈A12, ·12,D12〉

where A12 = (D1 × D2) ∪ (U1 × U2), D12 = D1 × D2 and

c12((a1, b1), . . . , (ak, bk)) =

{
{(a, ba) ∈ A12 : a ∈ c1(a1, . . . , ak)} if c ∈ Σ1

{(ab, b) ∈ A12 : b ∈ c2(b1 , . . . , bk )} if c ∈ Σ2

.

Note that the strict product operation only considers pairings between agree-
ing elements, either both designated or both undesignated. This dependency is
highlighted when we write ba and ab. Further, if some of the given Nmatrices
was trivial the operation could get ill-defined, as the sets of possible values for
c12 above could be empty. It is also clear that if both M1 and M2 are finite,
M1 � M2 is also finite.

It is not hard to see that the strict product subsumes the construction in
Proposition 1. Just observe that LΣ′

M
= LM • LM@ = LM �M@ .

Remark 1. Any valuation v over M1 � M2 corresponds to two valuations, π1 ◦ v
over MΣ12

1 and π2◦v over MΣ12
2 , where each πi is the usual projection of elements

of A12 in Ai. These two valuations are compatible, in the sense that, π1 ◦ v(ϕ) ∈
D1 if and only if π2 ◦ v(ϕ) ∈ D2, for every formula ϕ.
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It is important to note that not every product of valuations gives rise to
a valuation in this manner. Given valuations v1 and v2, over M

Σ12
1 and M

Σ12
2 ,

v1 × v2 is a valuation over M1 � M2 if and only if v1 and v2 are compatible.
This reasoning can be extended to partial valuations over M

Σ12
1 and M

Σ12
2 .

Given v1 and v2 partial valuations defined over a set of formulas Δ ⊆ LΣ12(P )
closed under subformulas, if v1 and v2 are compatible for the formulas in Δ then
there exists a valuation v over M1 � M2 such that v(ψ) = (v1(ψ), v2(ψ)) for all
ψ ∈ Δ. This is a consequence of the fact that the semantics over Nmatrices are
analytic, in the sense that every partial valuation defined over a set of formulas
closed under subformulas is extendable to a full valuation [1,2].

We close this section with two further examples.

Example 6. Consider the box-only fragment of modal logic K, that is, Lbox =
〈Σbox,�box〉 = LHbox

, where Σbox contains a single unary connective �, with
Hbox = 〈Σbox, { p

�p}〉. It is easy to see that Lbox = LMbox
with Mbox =

〈{0, 1}, ·̃ , {1}〉
�̃ 0 1

{0, 1} {1}
Let us see that Lcnj • Lbox = 〈Σcnj ∪ Σbox,�〉 = LMcnj�Mbox

.
Applying the strict product operation we obtain

Mcnj � Mbox = 〈{(0, 0), (1, 1)}, · , {(1, 1)}〉

where
∧ (0, 0) (1, 1)

(0, 0) (0, 0) (0, 0)
(1, 1) (0, 0) (1, 1)

and
� (0, 0) (1, 1)

{(0, 0), (1, 1)} {(1, 1)} .

It is not hard to see that Γ� is the closure under applications of ∧ and � of
the set Γ�cnj , and that the equality above holds. �
Example 7. Let us return to the fibring of classical conjunction with classical
disjunction already considered in Example 3. Clearly Ldjn is given by the dis-
junction reduct of the two-valued Boolean matrix, Mdjn = 〈{0, 1}, ·̃ , {1}〉, with

∨̃ 0 1
0 0 1
1 1 1

Let us see that Lcnj •Ldjn �= LMcnj�Mdjn
. Applying the strict product operation

to the respective matrices we obtain

Mcnj � Mdjn = 〈{(0, 0), (1, 1)}, · , {(1, 1)}〉
with ∧ as in Example 6 and with

∨ (0, 0) (1, 1)
(0, 0) (0, 0) (1, 1)
(1, 1) (1, 1) (1, 1)
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It is clear that Mcnj � Mdjn is (a renaming of) the ∧∨-reduct of the 2-valued
Boolean matrix. Hence, its logic is just the conjunction-disjunction of classical
logic and therefore the inequality above holds. �

In the next section we will solve this discrepancy, and characterize exactly
why strict products do not adequately capture disjoint fibring in all cases.

4 Saturation and the Semantics of Disjoint Fibring

In this section we will show how to use strict products to overcome the difficulties
observed earlier and capture disjoint fibring in all cases. For the purpose, we need
to be able to understand the differences underlying the two examples above. The
key ingredient is the following notion of saturation.

Saturated Nmatrices. An Nmatrix M = 〈A, ·M,D〉 over Σ is saturated if for
every non-trivial LM-theory T there is a valuation v over M such that v(ψ) ∈ D
if and only if ψ ∈ T .

In Example 7, where the strict product does not coincide with fibring, it
is easy to see that the two-valued classical matrix for disjunction Mdjn is not
saturated. In particular, p /∈ {p ∨ q}�djn and q /∈ {p ∨ q}�djn but it is clear that
there is no valuation v such that v(p ∨ q) = 1 and v(p) = v(q) = 0. On the other
hand, the (N)matrices of Example 6 are both saturated, which actually explains,
as shown by the following theorem, why the strict product captures the fibring
of the logics given by the two (N)matrices.

Theorem 1. Let Σ1 and Σ2 be signatures with Σ1 ∩ Σ2 = ∅. Given non-trivial
saturated Nmatrices M1 = 〈A1, ·1,D1〉 over Σ1 and M2 = 〈A2, ·2,D2〉 over Σ2,
we have that M1 � M2 is saturated and LM1 • LM2 = LM1�M2 .

Proof. L1 • L2-soundness of M1 � M2 follows easily from the fact that given v
valuation over M1�M2, we have that for i = 1, 2, πi ◦v are compatible valuations
over M

Σ12
i , mentioned in Remark 1. As, Γ �i ϕ and v(Γ ) ⊆ D12 imply that

πi(Γ ) ⊆ Di, and so, πi(ϕ) ∈ Di, and therefore v(ϕ) ∈ D12.
We now prove this combination mechanism preserves saturation which also

implies that L1 •L2 ⊆ LM1�M2 . Let T be a L1 •L2-theory, we will show there is a
valuation v over M1 �M2, such that v(ψ) ∈ D if and only if ψ ∈ T . We have that
for i ∈ {1, 2} is a LΣ12

i -theory. It is not hard to see that if Mi is saturated, then,
so it is MΣ12

i . Hence, we can pick, for i ∈ {1, 2}, valuations over MΣ12
i , such that

vi(ψ) ⊆ Di if and only if ψ ∈ T . Hence, these v1 and v2 are compatible, and by
Remark 1, we obtain that v : LΣ12(P ) → A defined as v(ϕ) = (v1(ϕ), v2(ϕ)) is a
valuation over M1 � M2 satisfying exactly the formulas in T . ��

Next, we will see what can be done when given Nmatrices that are not
saturated to start with.
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The ω-Power Operation on (N)matrices. Given a (N)matrix M = 〈A, ·M,D〉
over signature Σ, the ω-power of M is the (N)matrix M

ω = 〈Aω, ·ω,Dω〉, where
Aω = {α : 〈α(n) ∈ A〉n<ω}, Dω = {α : 〈α(n) ∈ D〉n<ω} and, for each c ∈ Σ,

cω(α1, . . . , αk) = {α ∈ Aω : α(n) ∈ cM(α1(n), . . . , αk(n)) for all n < ω}.

It is important to stress that the ω-power of a deterministic matrix is still
deterministic, which can be simply observed from the definition. The determin-
istic case has already been considered, namely in [13, Prop. 4.73], where it is
shown that powers of a deterministic matrix yield the same logic. We generalize
that result, and show that this simple operation actually does what we need. It
transforms any Nmatrix in an equivalent saturated Nmatrix.

Theorem 2. For every non-empty Nmatrix M, Mω is saturated and LM = LMω .

Proof. First we show that M
ω is LM-sound. Let Γ �M ϕ and v be a valuation

over M
ω such that v(Γ ) ⊆ Dω. Then, n < ω we have that v(Γ )(n) ⊆ D. Hence,

by LM-soundness of M, for all n < ω, v(ϕ)(n) ∈ D, hence v(ϕ) ∈ Dω.
To see that LM = LMω and M

ω is saturated, it is enough to show that,
for any consistent LM-theory T , there is v such that v(ψ) ∈ D if and only if
ψ ∈ T . Let e be an enumeration of the formulas not in T (a surjective function
e : ω → LΣ(P ) \ T ). We can pick for each ψ /∈ T , a valuation over M, vψ,
such that vψ(T ) ⊆ D and v(ψ) /∈ D. Let v be the valuation over M

ω defined as
v(ϕ) = {α : α(n) = ve(n)(ϕ)}. Of course, v(T )(n) ∈ D for every n < ω, and so
v(T ) ⊆ Dω. It is clear that for ψ /∈ T and for n such that e(n) = ψ, we have that
v(ψ)(n) /∈ D, hence, since e is an enumeration of Δ we have that v(ψ) /∈ Dω. ��

Unfortunately, the ω-power operation is not sensitive to whether the input
Nmatrix is itself saturated or not. In case the input Nmatrix is saturated, its
ω-power will nevertheless have a larger cardinality, and thus the operation is not
idempotent. We will further discuss this question in the concluding section.

At this point, it is worth illustrating the ω-power construction.

Example 8. We revisit the fibring of the conjunction and disjunction fragments
of classical logic from Example 7. As the matrix Mdjn = 〈{0, 1}, ·̃ , {1}〉 is not
saturated, we shall consider its ω-power, defined as the matrix

M
ω
djn = 〈{0, 1}ω, ·̂ , {1}ω〉 where α∨̂β = 〈α(n)∨̃β(n)〉n<ω.

Letting 1 = {1}ω, 0̂ = {0, 1}ω \ 1, allows us to present

Mcnj � M
ω
djn = 〈{0} × 0̂ ∪ {1} × 1, · , {1} × 1}〉

succinctly as follows

(a, α)∧ (b, β) = {(a∧̃b, η) : η ∈ 1 if a∧̃b = 1 and η ∈ 0̂ otherwise}
and

(a, α)∨ (b, β) = (c, α∨̂β) where c =

{
1 if α∨̂β = 1ω

0 otherwise
.
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Note that ∨̂ is deterministic, as ∨̃ is too. Moreover, as 1 is a singleton, the
non-determinism of Mcnj�M

ω
djn is concentrated only on conjunctions involving the

undesignated values in {0} × 0̂. By invoking Theorems 1 and 2, we can conclude
that Lcnj • Ldjn = LMcnj�M

ω
djn

. �
A wrap up of the previous results offers us a saturated semantics for disjoint

fibring of logics of single Nmatrices in all cases.

Corollary 1. Let Σ1 and Σ2 be signatures with Σ1 ∩ Σ2 = ∅. Given non-trivial
Nmatrices M1 = 〈A1, ·1,D1〉 over Σ1 and M2 = 〈A2, ·2,D2〉 over Σ2, we have
that LM1 • LM2 = LM

ω
1 �M

ω
2
. Furthermore, Mω

1 � M
ω
2 is saturated.

We conclude this section with another illustrating example: the combination
of the negation and disjunction fragments of intuitionistic logic.

Example 9. Let us consider the negation-only fragment of intuitionistic logic
Lineg. It is not hard see that Lineg = LHineg = LMineg where Σineg has a single unary
connective ¬, Hineg = 〈Σineg, {p ¬p

q , p
¬¬p , ¬¬¬p

¬p }〉, and Mineg = {{0, 1
2 , 1}, ·̃ , {1}}

is the reduct of the 3-valued Gödel algebra G3 (see [17]), defined by

¬̃ 0 1
2 1

1 0 0

Let also Ldjn = 〈Σdjn,�djn〉 be the disjunction fragment of intuitionistic logic
considered in Example 3.

We want to provide a semantics to Lineg • Ldjn = 〈Σ,�〉. We already know
that Mdjn is not saturated, and we have presented its ω-power in Example 8. It is
not difficult to see that Mineg also fails to be saturated. Clearly �� ¬p∨¬¬p since
Lineg •Ldjn is, by definition, not stronger than the negation-disjunction fragment
of intuitionistic logic. However, it is not possible to define a single valuation over
the matrix Mineg that gives undesignated elements to both ¬p and ¬¬p (which
would be crucial in order to have a strict product semantics that would not entail
¬p ∨ ¬¬p).

The ω-power of the matrix is M
ω
ineg = 〈0̌ ∪ 1, ·̌ , {1}ω〉, where 1 = {1}ω and

0̌ = {0, 1
2 , 1}ω \ 1, with

¬̌α = 〈¬̃ α(n)〉n<ω

According to Corollary 1, the fibred logic Lineg • Ldjn is characterized by the
Nmatrix M

ω
ineg � M

ω
djn = 〈0̌ × 0̂ ∪ 1 × 1, · ,1 × 1〉, where 0̂ = {0, 1}ω \ 1, and

which can be succintly presented as follows

¬((α, β)) = {(¬̌α, η) : η ∈ 1 if ¬̌α = 1ω and η ∈ 0̂ otherwise}
and

(α1, β1)∨ (α2, β2)) = {(η, α∨̂β) : η ∈ 1 if α∨̂β = 1ω and η ∈ 0̌ otherwise}.

Non-determinism is more spread out here than in the previous example. �
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4.1 Matryoshkas, Decidability and Complexity

Given an Nmatrix M = 〈A, ·̃,D〉, it is clear that its ω-power M
ω can be seen as

the limit of a succession of matryoshka-style finite powers M
n for n < ω. Each

M
n can be understood as the sub-Nmatrix of M

ω generated by the elements
α ∈ Aω such that α(m) = α(n) for all m > n. Clearly, Mn is finite whenever M

is. Moreover, this is indeed a matryoshka-style sequence in the sense that M
n is

a sub-Nmatrix M
k for n < k.

The next result takes advantage of these finite power matrices to provide
finite counterexamples in the fibred logic (a form of finite model property).

Lemma 1. Let Σ1 and Σ2 be signatures with Σ1 ∩ Σ2 = ∅. Given non-trivial
Nmatrices M1 = 〈A1, ·1,D1〉 over Σ1 and M2 = 〈A2, ·2,D2〉 over Σ2, for all
finite Γ ∪ {ϕ} ⊆ LΣ12(P ) we have that Γ �12 ϕ if and only if Γ |=M

n
1 �M

n
2

ϕ with
n = size(Γ ∪ {ϕ}).

Proof. Soundness is obvious since M
n
1 �Mn

2 is a generated sub-Nmatrix of Mω
1 �

M
ω
2 . Conversely, if Γ ��12 ϕ then we know that Γ ��i ϕ for both i = 1, 2. According

to Remark 1, we can guarantee the existence of a valuation over M
n
1 � M

n
2 by

providing compatible partial valuations v1 and v2 over (Mn
1 )Σ12 and (Mn

2 )Σ12

defined over sub(Γ ∪{ϕ}). The reasoning in Theorem 1 can be adapted to obtain
v1 and v2 in these conditions such that vi(ψ) ∈ Dn

i if and only Γ �12 ψ for every
ψ ∈ Γ ∪ {ϕ}. ��

It is well known that deciding finite inferences in the logic defined by a finite
Nmatrix is decidable, and in coNP as a byproduct of the analyticity of the
Nmatrix semantics.

Proposition 2. Let Σ1 and Σ2 be signatures with Σ1 ∩ Σ2 = ∅, and let
M1 = 〈A1, ·1,D1〉 over Σ1 and M2 = 〈A2, ·2,D2〉 over Σ2 be non-trivial (not
necessarily saturated) finite Nmatrices. If LM1 • LM2 = 〈Σ12,�12〉 then the prob-
lem of deciding whether Γ �12 ψ for finite Γ ∪ {ϕ} ⊆ LΣ12(P ) is in coNP.

Proof. Immediate from Lemma 1 and the observation above.

5 Concluding Remarks

We have provided the first meaningful and useful semantics for disjoint fibring
using non-deterministic logical matrices. The crucial operation of strict product
cannot, in general, be finitely mimicked using logical matrices. Our characteriza-
tion also takes advantage of the ω-power construction, which enables enriching
a (N)matrix with enough valuations to characterize exactly every theory of the
logic.

There is a wealth of directions in which this work can be further pursued.
First and foremost, we envisage a semantics for fibring in general, beyond the

disjoint case. This will be a landmark of a long line of research. Namely, we aim
at extending the strict product operation to so-called PNmatrices [3] (where the
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P stands for partiality). PNmatrices are a smooth generalization of Nmatrices
where the set of possible values yielded by applying a connective to other values
is allowed to be empty.

A rigorous categorial study of the strict product operation is also in hand,
in the spirit of our original perspective of characterizing fibring as a universal
construction. For the moment, just note that the operation was baptized here
already having in mind that the useful notion of homomorphism will have to
be strict (i.e., preserving both designated and undesignated values). A word is
due here with respect to the juxtaposition semantics for fibring proposed in [25].
Despite the various problems identified before, the idea underlying juxtaposition
is very naturally captured by our strict product operation.

The ω-power operation allows us to close for intersections the set of valuations
defined by a given Nmatrix. In a technical sense, this saturation mechanism can
be understood as a practical version of the fullness requirements from [30], and
others. It is worth taking a closer look at finite powers too, as they relate to
finitary forms of saturation. Finite saturation is in general not preserved by
fibring, but can be useful in practice as illustrated by our complexity result.

Our ω-power construction is by no means the unique way to achieve satura-
tion, and it is certainly worth exploring alternatives, namely taking advantage
of some possible trade-off between non-determinism (which it does not use) and
a more manageable cardinality. Overall, we also want to generalize these results
to logics defined by classes of Nmatrices, instead of a single Nmatrix. This will
require, in particular, a more sophisticated saturation process.

Saturation is interesting in itself, and deeply connected with the multiple-
conclusion approach to logic [28]. Indeed, the need for saturation and its preser-
vation by the strict product operation highlights the fact that fibring indeed
corresponds to combining the smallest multiple-conclusion logics associated to
the logics given. This analysis also paves the way for a study of the analogous
fibring operation for multiple-conclusion logics.

Finally, we expect that a thorough understanding of fibring, even beyond the
propositional case, shall be able to contribute to a modular semantics for Hilbert
calculi that may bring a better understanding of their proof-theory. Learning
from the many interesting results about the semantics of sequent calculi [1–3,5]
will certainly play an important role. Another fundamental corpus of knowledge
that needs to be well studied and brought to this effort is the long track of work
on multialgebras, e.g. on the quotient representation theorem by Grätzer [18].
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19. Humberstone, L.: Béziau on And and Or, pp. 283–307. Springer International Pub-
lishing, Cham (2015)

20. Kracht, M., Wolter, F.: Properties of independently axiomatizable bimodal logics.
J. Symbolic Logic 56(4), 1469–1485 (1991)

21. Marcelino, S., Caleiro, C.: Decidability and complexity of fibred logics without
shared connectives. Logic J. IGPL 24(5), 673–707 (2016)

22. Marcelino, S., Caleiro, C.: On the characterization of fibred logics, with applications
to conservativity and finite-valuedness. Journal of Logic and Computation (2016).
https://doi.org/10.1093/logcom/exw023

23. Marty, F.: Sur une generalization de la notion de group. In Proceedings of the 8th
Congres des Mathematiciens Scandinave, pp. 45–49 (1934)

24. Rautenberg, W.: 2-element matrices. Stud. Logica. 40(4), 315–353 (1981)
25. Schechter, J.: JUXTAPOSITION: a new way to combine logics. Rev. Symbolic

Logic 4, 560–606 (2011)

http://sqig.math.ist.utl.pt/pub/CaleiroC/17-CMR-finval.pdf
http://sqig.math.ist.utl.pt/pub/CaleiroC/17-CMR-finval.pdf
http://frocos.cs.uiowa.edu
http://frocos.cs.uiowa.edu
https://doi.org/10.1093/logcom/exw023


Disjoint Fibring of Non-deterministic Matrices 255

26. Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construc-
tion. J. Logic Comput. 9(2), 149–179 (1999)

27. Sernadas, A., Sernadas, C., Rasga, J., Coniglio, M.: On graph-theoretic fibring of
logics. J. Log. Comput. 19(6), 1321–1357 (2009)

28. Shoesmith, D., Smiley, T.: Multiple-Conclusion Logic. Cambridge University Press,
Cambridge (1978)
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Abstract. Categorical compositional models of natural language
exploit grammatical structure to calculate the meaning of sentences from
the meanings of individual words. This approach outperforms conven-
tional techniques for some standard NLP tasks. More recently, similar
compositional techniques have been applied to conceptual space models
of cognition.

Compact closed categories, particularly the category of finite dimen-
sional vector spaces, have been the most common setting for categorical
compositional models. When addressing a new problem domain, such as
conceptual space models of meaning, a key problem is finding a compact
closed category that captures the features of interest.

We propose categories of generalized relations as source of new, prac-
tical models for cognition and NLP. We demonstrate using detailed
examples that phenomena such as fuzziness, metrics, convexity, seman-
tic ambiguity and meaning that varies with context can all be described
by relational models. Crucially, by exploiting a technical framework
described in previous work of the authors, we also show how we can
combine multiple features into a single model, providing a flexible family
of new categories for categorical compositional modelling.

1 Introduction

Distributional models of language describe the meaning of a word using co-
occurrence statistics derived from corpus data. A central question with these mod-
els is how to combine meanings of individual words, in order to understand phrases
and sentences. Categorical compositional models of natural language [15] address
this problem, providing a principled approach to combining the meanings of words
to form the meanings of sentences, by exploiting their grammatical structure. They
also outperform conventional techniques for some standard NLP tasks [23,29].

Distributional models of language can be thought of as “process theories” [16]
A process theory consists of a graphical language for reasoning about compos-
ite systems of abstract processes, and a categorical semantics modelling the
application domain. A particularly important class of categorical models are the
compact closed categories, which come equipped with an elegant graphical cal-
culus. Process theoretic models built upon compact closed categories have been
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successfully exploited in many application areas, including quantum computa-
tion [1], signal flow graphs [11], control theory [2], Markov processes [4], electrical
circuits [3] and even linear algebra [43].

Recently [9], the categorical compositional approach to meaning has been
applied to the conceptual space models of human cognition introduced in [21,22].
When addressing a new application domain, it is necessary to identify a compact
closed category with mathematical structure compatible with the application
phenomena of interest.

Amongst the compact closed categories the hypergraph categories [20] are a
particularly well behaved class of practical interest. In [33] we presented a flexible
parameterized mathematical framework for constructing hypergraph categories.
We view this framework as a practical tool for building new models in a prin-
cipled manner, by varying the parameter choices according to the needs of the
application domain. These models are based upon generalizing the well under-
stood notion of a binary relation, providing a concrete and intuitive setting for
model development.

In the present work we demonstrate, via extensive examples, that categories
of generalized relations present an attractive setting for constructing new models
of language and cognition. We emphasize the intuitive interpretation of the mod-
els under construction, and their connections to concrete ideas in computation,
NLP and further afield. These examples are structured as follows:

– In Sect. 3 we introduce relations with generalized truth values, and exploit
them to model features such as distances, forces, connectivity and fuzziness.
Relations with generalized truth values are well known in the mathematical
community, but seem to have received little attention from the perspective of
compositional semantics, with the recent exception of [19].

– In Sect. 4 we generalize relations in another direction, considering relations
that respect algebraic structure. These relations can capture features such
as convexity, which is important in conceptual spaces models [21,22]. In this
case, we recover a model first used in [9], originally constructed in an ad-hoc
manner using techniques from monad theory and the theory of regular cate-
gories. Importantly, we then show that we can combine generalized truth val-
ues with relations respecting algebraic structure, providing conceptual space
models with access to distance measures.

– In Sect. 5 we view spans as generalized “proof aware” relations in which the
apex of the span contains witnesses to relatedness between the domain and
codomain. Spans can be extended to support generalized truth values, and
to respect algebraic structure. Exploiting a combination of these features,
we construct a new model of semantic ambiguity in conceptual space models
of natural language, in which different proof witnesses allow us to vary how
strongly different words are related, depending on how they are interpreted.

– The previous examples were essentially built upon the category of sets. Our
techniques can be applied with different choices of ambient topos. In Sect. 6,
as a practical example of this feature, we use presheaf toposes to build models
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in which meanings can vary with context, such as the progress of time or states
of the world.

All of our models are preorder enriched, providing a natural candidate for
modelling semantic entailment or hyponymy [5,6]. Preorder enrichment also
means we can consider internal monads within our various categories of relations.
We emphasize the importance of these internal monads throughout our discus-
sions. They provide access to important structured objects such as preorders,
generalized metric spaces and ultrametric spaces, and similar well behaved rela-
tionships when we combine various modelling features.

2 Compositional Models of Meaning

The grammatical structure of natural language can be modelled using Lambek’s
pregroup grammars [31].

Definition 1. A pregroup is a tuple (X, ·, 1, (−)l, (−)r,≤) where (X, ·, 1,≤)
is a partially ordered monoid, or pomonoid, and (−)r, (−)l are unary functions
of type X → X such that for all x ∈ X the following conditions hold,

1 ≤ x · xl xl · x ≤ 1 1 ≤ xr · x x · xr ≤ 1

We say that x reduces to x′ if x ≤ x′.

A grammar is typically described using the free pregroup over some set of basic
types. For example, we may consider the free pregroup of the set {n, s} where n
and s are basic types for nouns and sentences respectively. More complex terms
are then built up using the algebraic operations, for example the type of a
transitive verb is nrsnl. We can calculate the type of a phrase by composing the
types of the individual terms using the monoid multiplication. For example, the
phrase “mice eat cheese” has type n(nrsnl)n. A composite term is then a well
typed sentence if its type reduces to the sentence type. For example:

n(nrsnl)n = (nnr)s(nln) ≤ s(nln) ≤ s

and so “mice eat cheese” is a well typed sentence. In this way, pregroups give us
access to the compositional features of language.

On the other hand, distributional models [40] of the meaning of words in
natural language are built using vector space models automatically derived from
co-occurrence statistics in a large corpus of text. The key observation of the cat-
egorical compositional approach to natural language is that both pregroups and
the category of finite dimensional real vector spaces carry the same categorical
structure, that of an autonomous category.

Definition 2. A monoidal category V has left/right duals if every object has
an internal left/right adjoint when V is regarded as a one object bicategory.
An autonomous category is a monoidal category in which every object has
both left and right duals. A compact closed category is a symmetric monoidal
category in which every object has right duals.
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A straightforward application oriented introduction to monoidal categories and
compact closed categories can be found in [17].

This observation can be exploited to derive the meanings of sentences from
the meanings of words. We fix a strong monoidal functor from a pregroup describ-
ing grammatical structure to the category of finite dimensional vector spaces.
This functor maps type reductions to linear maps, allowing us to automatically
derive the meaning of a sentence from its constituent parts. Clearly, this app-
roach can be seen as an instance of functorial semantics. By varying the domain
and preserved structure we can consider different categorial grammars [14]. By
varying the codomain we can consider different models, as has been important in
recent work broadening the scope to mathematical models of cognition [9,10].
When varying the category of meanings, it is desirable to remain within the
domain of compact closed categories, in order to exploit connections with pre-
vious linguistic developments, and to retain access to their powerful graphical
calculus.

The question then becomes: How can we find or construct compact closed cat-
egories with desirable mathematical properties? This is the question we explore
in this paper. In fact, our constructions produce a subclass of compact closed
categories, referred to as hypergraph categories [20,30], and so this is where we
shall focus our attention.

Definition 3. A hypergraph category is a symmetric monoidal category in
which every object is equipped with a choice of special commutative Frobenius
algebra, coherently with the monoidal structure.

Details of the notion of a Frobenius algebra, and linguistic applications including
modelling relative pronouns can be found in [38,39]. If I is the monoidal unit, we
will occasionally refer to morphisms of types I → X and X → I as the states
and effects of X. Morphisms of type I → I are referred to as numbers.

Example 1. The category Rel of sets and binary relations between them can be
given the structure of a hypergraph category. The monoidal structure is given
by forming Cartesian products of sets. A state of a set X is a subset of X and
the numbers are the Boolean truth values. The Frobenius algebra is given by the
copying relation x ∼ (x, x) : X → X × X, the deletion relation x ∼ ∗ : X → I,
and their converses.

All the compact closed categories discussed in this paper will be hypergraph
categories, generalizing Example 1 along different axes of variation.

3 Generalized Truth Values

A binary relation R : A → B between sets can be identified with a characteristic
function of type A×B → {�,⊥} mapping the related pairs of elements to �. It
is fruitful to consider generalizing the codomain of such characteristic functions
to a set Q, thought of as a collection of truth values. We can then consider
functions of the form A × B → Q as generalized relations, with truth values
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in Q. In order for the corresponding binary relations to have satisfactory notions
of identities and composition, the set Q must carry the structure of a quantale.

Definition 4 (Quantale). A quantale is a join complete partial order Q
with a monoid structure (⊗, k) satisfying the following distributivity axioms, for
all a, b ∈ Q and A,B ⊆ Q:

a ⊗
[∨

B
]

=
∨

{a ⊗ b | b ∈ B}
[∨

A
]

⊗ b =
∨

{a ⊗ b | a ∈ A}

A quantale is said to be commutative if its monoid structure is commutative.

All the quantales encountered in this paper will be commutative. We introduce
some examples of importance in later developments.

Example 2. The Boolean quantale is given by the two element complete
Boolean algebra B = {�,⊥}, with the join and multiplication given by the
join and meet in the Boolean algebra.

Example 3. The Lawvere quantale L is given by the chain [0,∞] of extended
positive reals with the reverse ordering, hence minima in [0,∞] provide the joins
of the quantale, and the monoid structure is given by addition.

Example 4. The quantale F has again the extended positive reals with reverse
order as its partial order, but now with max as the monoid multiplication.

Example 5. The interval quantale I is given by the ordered interval [0, 1] with
minima as the monoid structure.

For a quantale Q, the Q-relations form a category Rel(Q) with composition and
identities1

(S ◦ R)(a, c) =
∨
b

R(a, b) ⊗ S(b, c) 1A(a, b) =
∨

{k|a = b}

If Q is a commutative quantale, Rel(Q) carries a symmetric monoidal structure,
with the tensor product of objects given by the cartesian product of sets, and
the action on relations given for R : A → C and S : B → D by

(R ⊗ S)(a, b, c, d) = R(a, c) ⊗ S(b, d)

The singleton set is the monoidal unit. A key observation from the perspective
of this paper is:

Theorem 1. Rel(Q) is compact closed with respect to this monoidal structure.

Now that we have described how Q-relations compose, we can consider com-
putational interpretations for our example choices of quantale.
1 The slightly unusual formulation of identities is to avoid definition by cases. This

means they can be interpreted in the internal language of an arbitrary topos.
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Example 6. The relations over the Lawvere quantale L can be thought of as
describing costs. The value R(a, b) describes the cost of converting a into b.
A cost of 0 means they are maximally related and can be freely inter-converted.
A cost of ∞ indicates completely unrelated values, that cannot be converted
between each other for finite cost. The value (S ◦R)(a, c) describes the cheapest
way of converting a into some b, and then converting that b into c, and adds the
associated costs. If we perform two conversions in parallel (R ⊗ R′)(a, a′, b, b′)
describes the sum of the two individual conversion costs.

In this setting, we can think of a state I → A as giving a table of costs for
acquiring the resources in A, and similarly an effect A → I is a table of costs for
disposing of resources in A.

Example 7. The quantale F has the same underlying set as the Lawvere quan-
tale, but its different algebraic structure leads to a very different interpretation.
We think of R(a, b) as the peak force required to move a to b. The value given
by the composite (S ◦R)(a, c) then describes optimum peak force we will require
to move a to c. For example if we can convert a to b with one unit of force,
and then move b to c for two units of force, then the peak force required is
two units. An alternative procedure converting a to b′ for zero units of cost,
and then converting b′ to c for 2.5 units of cost has a peak cost of 2.5 units, so
we would prefer the first procedure to minimize our peak effort. Similarly, the
truth value (R ⊗ R′)(a, a′, b, b′) gives the peak force required to complete both
conversions, assuming these costs are independently incurred.

As with Example 6, we can think of states and effects as tables of acquisition
and elimination forces.

Example 8. We can interpret ordinary relations over the Boolean quantale as
modelling connectivity. R(a, b) tells us that a is connected to b, composition
tells us that we can chain connections together, and the tensor product tells
us that we can connect pairs of elements together using a pair of connections
between their components. Generalizing to the interval quantale, we now think
of R(a, b) as a “connection strength” between a and b. The composite (S◦R)(a, c)
gives the best connection quality that we can achieve in two steps via B. Sim-
ilarly, the parallel composite (R ⊗ R′)(a, a′, b, b′) gives a conservative judgment
of the connection quality we can achieve simultaneously between both a and b
and a′ and b′ as the lower of the two individual connection strengths. States
describe the “transmission strength” with which signals enter the system from
the environment, and effects describe the “reception quality” when consuming
output signals.

Alternatively, we could view relations over I as fuzzy relations, with states
and effects sets with fuzzy membership, and fuzzy predicates. Graded member-
ship is widely used in cognitive science, for example in [8,18,24,25,37]. Concepts
such as ‘tall’ have no crisp boundary and are better modelled using grades of
membership. Although human concept use does not obey fuzzy logic [35], fuzzy
relations may prove useful.
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Rel(Q) is partial order-enriched if we order relations pointwise with respect
to the underlying quantale order. It therefore makes sense to consider internal
monads in Rel(Q) as interesting “structured objects”. An internal monad on an
object in a partially ordered category is an endomorphism R satisfying:

(R ◦ R) ⊆ R, 1A ⊆ R (1)

Example 9. If we specialize condition (1) to Rel(L), it is equivalent to:

R(a, b) + R(b, c) ≥ R(a, c), 0 = R(a, a)

We therefore consider these internal monads as describing generalized metric
spaces. This observation is important in the field of monoidal topology [26].

As before, we can also interpret our internal monad as giving a well behaved
collection of conversion costs between resources. Converting a resource to itself is
free, and converting a resource via an intermediate state is at least as expensive
as taking the direct route. Similarly, if we consider Rel(F) the conditions of (1)
become:

max(R(a, b), R(b, c)) ≥ R(a, c), 0 = R(a, a)

and we can therefore see such internal monads as generalized ultrametric spaces.
Again, the interpretation in terms of maximum force requirements extends to a
sensible interpretation of these axioms.

Example 10. Internal monads in the category of ordinary relations are preorders
on their underlying set. The generalization to the interval quantale then gives a
fuzzy generalization of the notion of preorder. We can also apply our intuition
in terms of connection strengths. Reflexivity tells us that every element can be
perfectly connected to itself. Transitivity tell us that the optimal connection
strength available is always at least as good as connecting via an intermediate
node.

4 Incorporating Convexity

Up to this point, the domain and codomain of our relations have been sets. If we
fix an algebraic structure (Σ,E) with set of operations Σ and equations between
terms E, we can define a notion of binary relation between these algebras.

Definition 5. An algebraic Q-relation of type A → B is an ordinary Q-
relation R between the underlying sets, such that for each operation σ ∈ Σ of
arity n the following inequation holds in the quantale order:

R(a1, b1) ⊗ ... ⊗ R(an, bn) ≤ R(σ(a1, ..., an), σ(b1, ..., bn))

As shown in [33], algebraic Q-relations form a hypergraph category:

Theorem 2. For commutative quantale Q and algebraic signature (Σ,E) there
is a hypergraph category Rel(Σ,E)(Q) with objects (Σ,E)-algebras and mor-
phisms algebraic Q-relations.



Generalized Relations in Linguistics and Cognition 263

In the conceptual spaces literature, convexity is conceptually important. In [9]
this convexity was captured using relations between convex algebras. We refer
to [9] and the extended paper [10] for explicit modelling of toy computations of
composed concepts in this category.

These convex algebras can be described as the Eilenberg-Moore algebras of
the finite distribution monad. They can in fact be presented by a family Σc of
binary operations

+p, p ∈ (0, 1)

satisfying suitable axioms. We can read x +p y as “choose x with probability p
and y with probability (1 − p)”. By considering algebraic B-relations over this
signature, we can construct a category isomorphic to the category ConvexRel
of convex relations from [9]. By changing our quantale of truth values, we can
go further than this.

Proposition 1. In the category of convex L-relations, the internal monads are
generalized metric spaces satisfying the additional axioms for p ∈ (0, 1):

R(a1, b1) + R(a2, b2) ≥ R(a1 +p b1, a2 +p b2)

So internal monads in the category of convex relations over the Lawvere quan-
tale are generalized metric spaces that interact well with formation of convex
mixtures. The usual distance on R

n is an example of such a metric.
As shown in [33], every quantale homomorphism h : Q1 → Q2 induces a

strict monoidal functor of type Rel(Σ,E)(Q1) → Rel(Σ,E)(Q2). If the quantale
morphism is injective, this functor is faithful. In particular, the mapping ⊥ �→
∞;� �→ 0 is an injective quantale homomorphism from the Boolean to the
Lawvere quantale. This means we can find the ordinary Boolean binary relations
as a monoidal subcategory of the category Rel(L). This presents some flexible
modelling possibilities. If U and V are two subsets of a set X, they induce two
states U, V : I → X in Rel(B). If we consider the number V ◦ ◦ U , where R◦

denotes relational converse, it evaluates to true if and only if U ∩ V �= ∅.

Proposition 2. If U, V ⊆ X and d is an internal monad in Rel(L), the com-
posite V ◦ ◦ d ◦ U is the infimum of the distances between elements in U and V .

This gives us the greatest lower bound on the distances between elements in U
and V , providing a finer grain measure of similarity than can conventionally be
achieved in relational models. We note that as distances are in general asymmet-
ric, the number U◦◦d◦V may give a different measure of similarity. Similarly, we
can find the ordinary Boolean convex relations within the category of L-valued
convex relations, presenting analogous opportunities for performing calculations
with discrete convex relations, and then measuring their separation on a contin-
uum of values.

Such asymmetric distance measures are of practical use in cognitive science
applications. A fundamental concept in psychology is that of similarity, which
can be used as the basis of concept formation. Similarity between objects or
concepts can be explained by locating objects in some sort of conceptual or
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feature space, and modelling similarity as a function of distance, for example
in [42]. However, judgements of similarity are not necessarily symmetric [45].
In one study examining the similarity between pairs of countries, participants
are asked to choose between statements ‘Country A is similar to country B’
or ‘Country B is similar to country A’. In all cases, a majority of participants
preferred the statement where the latter country was considered more prominent.

5 Proof Relevance

A span S of sets, between sets A and B, is a set X and a pair of functions
X

p1−→ A and X
p2−→ B. Paralleling the notation for relations, we will write

Sx(a, b) := x ∈ X ∧ p1(x) = a ∧ p2(x) = b

We can think of such a span as a proof relevant relation in which Sx(a, b) tells
us that x witnesses that a and b are related. In a computational linguistics or
cognition application where relations may have been derived automatically from
data in some way, we can exploit these proof witnesses to track evidence for our
beliefs that certain relationships hold.

Sets and spans between them form a hypergraph category Span with compo-
sition given by pullback, and tensor product induced by a choice of products2. In
fact, as we did for relations, we can extend these spans with algebraic structure
and a choice of truth values in a partially ordered monoid. We no longer require
full quantale structure on our truth values, as multiple proof witnesses mean
we don’t need to choose a single representative truth value when composing
relations.

Definition 6. For an algebraic signature (Σ,E) and pomonoid Q an algebraic
Q-span of type A → B between (Σ,E)-algebras is a span A

p1←− X
p2−→ B

between the underlying objects, with a characteristic morphism χ : X → Q.
We require that the algebraic structure is respected in that for all σ ∈ Σ, with
arity n:

∧
1≤i≤n

(p1(xi) = ai ∧ p2(xi) = bi) ⇒
⊗

1≤i≤n

χ(xi) ≤ χ(σ(x1, ..., xn))

Intuitively, these are intensional relations in which proof witnesses are weighted
by a truth value, and the relations respect the algebraic structure. As shown
in [33], algebraic Q-spans also form a hypergraph category:

Theorem 3. For commutative pomonoid Q and algebraic signature (Σ,E) there
is a hypergraph category Span(Σ,E)(Q) with objects (Σ,E)-algebras and mor-
phisms algebraic Q-spans.

2 In fact, in order for composition to be associative, it is necessary to work with
equivalence classes of spans. It is sufficient to consider representatives, and we do so
to avoid distracting technicalities.
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For algebraic Q span S we define

Sq
x(a, b) := x ∈ X ∧ p1(x) = a ∧ p2(x) = b ∧ χ(x) = q

We then read Sq
x(a, b) as telling us that x witnesses that a and b are related with

strength q. In fact, we can order algebraic Q-spans in a manner similar to that
for relations, but accounting for proof witnesses.

Definition 7. For pomonoid Q, we define a preorder on algebraic Q-spans by
setting (X1, f1, g1, χ1) ⊆ (X2, f2, g2, χ2) if there is a Set-monomorphism ϕ :
X1 → X2 such that f1 = f2 ◦ ϕ, g1 = g2 ◦ ϕ and ∀x . χ1(x) ≤ χ2(ϕ(x)).

The ordering accounts pointwise for strengths of relatedness in a natural way.
The requirement that the function ϕ in Definition 7 is a monomorphism ensures
that even if our truth values are trivial, we take account of the “number” of
proof witnesses available.

As internal monads provided interesting objects in the setting of relations,
we should consider them in the span setting as well.

Proposition 3. An internal monad on A in Span(L) is an L-span S : A → A
such that if Sp

x(a1, a2) and Sq
y(a2, a3) we can choose an element ϕ(x, y) of the

apex such that Sr
ϕ(x,y)(a1, a3) and p + q is greater than r in the usual order-

ing on the real numbers. Furthermore, we can do this in a way such that the
assignment ϕ is injective.

So internal L-span monads further generalize metric spaces to incorporate mul-
tiple possible distances, which we can think of as describing different paths
between points. We now outline a new practical application of spans in models of
language.

Example 11 (Semantic Ambiguity via Spans). In natural language, we often
encounter ambiguous situations. For example the word “bank” can refer to either
a “river bank” or a “financial bank”. A compositional account of semantic ambi-
guity was presented in [36], using mathematical models of incomplete informa-
tion from quantum theory. The techniques applied implicitly assume meanings
are built upon a vector space model, to which we apply Selinger’s CPM construc-
tion [41] to yield a new category of ambiguous meanings. The CPM construction
can also be applied to categories of relations, but in this case it does not provide
a satisfactory model of ambiguity [34].

An alternative approach to ambiguity in relational models is to use spans.
We consider how the ambiguous word “bank” is related to the word “water”

– In the “river bank” context, we would expect a strong relationship
– In the “financial bank” context, we would expect a weaker relationship

By using spans rather than relations, we can introduce two different proof wit-
nesses for the different contexts under consideration. By choosing our quantale
of truth values to be the Lawvere quantale L, we can attach a different choice
of distance to each of these choices. As we compose spans to describe the mean-
ings of phrases and sentences, the proof witnesses will keep track of the different
possible relationships in play.
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6 Variable Contexts

Our definitions of algebraic Q-relations and algebraic Q-spans are constructive.
This means that Theorems 2 and 3 continue to hold for any elementary topos,
as proved in [33]. Standard sources on topos theory are [12,27,28,32]. We will
write RelE(Σ,E)(Q) and SpanE

(Σ,E)(Q) for the categories of spans and relations, to
make the choice of topos E explicit. This generalization has practical implications
if we move to different choices of background topos.

Definition 8. Let C be a small category. A presheaf on C is a functor of
type Cop → Set. Presheaves and natural transformations between them form
a topos, denoted SetCop

. For presheaf X over a preorder, we will write Xi for
the set in the image under X of element i of the preorder, and Xi,j for the image
of j ≤ i under X.

Presheaves can be interpreted as sets varying with context. This is exactly the
perspective we shall adopt in our examples. To exploit our generalized span
construction, we need to describe internal pomonoids in presheaf categories.

Lemma 1. A commutative partially ordered monoid in a presheaf cate-
gory SetCop

is a presheaf Q such that for each C-object x and C-morphism f ,
Q(x) is a commutative pomonoid and Q(f) is a pomonoid morphism in Set.
See [28, D1.2.14].

Example 12 (Temporal dependence). In Example 11 we modelled ambiguity
using multiple proof witnesses to describe different interpretations of words.
We now investigate the description of time dependent ambiguous relationships,
by exploiting spans over presheaves. To do so, we consider presheaves over the
partial order N = 0 ← 1 ← 2... having objects natural numbers. We view these
presheaves as sets varying in time. We assume our notion of truth is fixed, and
so we will consider SpanSetN

op

(L), where L is the constant presheaf on the
pomonoid underlying the Lawvere quantale. An L-span between presheaves X
and Y then consists of natural transformations p1 : X ⇒ A and p2 : X ⇒ B,
and a characteristic natural transformation χ : X ⇒ L. We see naturality as a
consistency condition between the relationships described by proof witnesses, as
they move forward in time. As our pomonoid is constant, χi(x) = χj(Xi,j(x)),
so the truth value associated with a proof witness is preserved through time.
Intuitively, in this model, a steadily increasing collection of relationships hold
over time.

Example 13 (Perspective Dependence). In Example 12, the truth object was
fixed in all contexts. We now examine a brief example in which our notion of
truth is context dependent. Consider two agents. Agent 0 has a binary view of
the world, relationships either hold or they don’t. Agent 1 has a richer view incor-
porating different strengths of relation in the unit interval. Consider presheaves
on the category C with a single non-trivial arrow 0 ← 1. We define an internal
pomonoid Q with Q(0) = B, Q(1) = I and Q0,1 the canonical pomonoid mor-
phism between the Boolean and interval quantales. Now if we consider a Q-span
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between constant presheaves A and B with apex an arbitrary presheaf X, we can
think of it as follows. Each element of X0 relates two elements a ∈ A and b ∈ B
with strength 0 or 1. The structure of X then forces that X1 contains a witness
relating those two elements with the same strength. As X1 encodes the views
of the more powerful agent, it may describe additional relationships, now with
strengths weighted in the interval [0, 1].

If we wish to consider algebraic Q-relations over an arbitrary topos things are
more delicate since internal quantales cannot be defined pointwise. Nevertheless
there are standard sources of internal commutative quantales, for example:

– If C is a groupoid and Q is a commutative quantale in Set, then Q can be
lifted to an internal commutative quantale in SetCop

.
– The subobject classifier Ω of a topos is an internal locale, and therefore an

internal commutative quantale.

We conclude by establishing the relationship between our framework of general-
ized relations and the standard notion of the category of relations over a regular
category. This will involve the internal locale given by the subobject classifier.

Definition 9. A category C is regular if it is finitely complete, every kernel
pair has a coequalizer and regular epimorphisms are stable under pullback.

There is standard construction of a category of relations Rel(C) of a regular cate-
gory C, see for example [13]. For the category Set for example, this construction
recovers exactly the usual category of binary relations. As we have been con-
structing categories of relations in this paper, it would be interesting to know
how this relates to the relations of a regular category. Every topos is regular, and
in fact for any algebraic theory (Σ,E), the category of internal (Σ,E)-algebras
in a regular category [7], meaning we can consider the impact of algebraic struc-
ture. In fact, the resulting category of relations is equivalent to the one produced
by our construction with the subobject classifier as the object of truth values.

Theorem 4. Let E be a topos, Ω its subobject classifier and (Σ,E) an algebraic
signature. The category RelE(Σ,E)(Ω) resulting from the algebraic Q-relations
construction is equivalent to the category of internal relations over the regular
category of internal (Σ,E)-algebras in E.
In this way, we see that relations over suitable regular categories are a special
case of our construction.

7 Conclusion

We have demonstrated that categories of generalized relations present a flexible
modelling tool for categorical compositional models of natural language and cog-
nition. We presented various potential models worthy of further investigation,
capturing features such as fuzziness, distances, convexity, ambiguity and context
sensitivity, and showed how these features can be used in combination within
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a generic framework. One natural direction for further work would be empiri-
cal investigation of the compatibility of these theoretical models with concrete
applications. Another one would be to investigate whether the techniques in [44]
can be used to build models with either non-commutative or typed quantales,
known as quantaloids.

Acknowledgments. This work was funded by AFSOR grant “Algorithmic and Log-
ical Aspects when Composing Meanings” and FQXi grant “Categorical Compositional
Physics”.
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Abstract. We discuss the idea of concrete mathematics inspired by
Hilbert’s idea of finitistic mathematics as the part of mathematics not
engaged into actual infinity. We explicate it as the part of mathematics
based on Δ0

2 arithmetical concepts. The explication is justified by equiva-
lence of Δ0

2 definability with algorithmic learnability (an epistemic argu-
ment) and with FM–representability (representability in finite models,
an ontological argument).

We show that the essential part of classical mathematics can be inter-
preted in the concrete framework. We claim that current mathematics
is a social game of proving theorems on some axiomatic set theoretic
background. On the other hand, concrete mathematics is the reality on
which our mathematical experience is based. This is what makes the
game intersubjective. Nevertheless, this game is one of the most efficient
methods of building our mathematical knowledge.

Keywords: Concrete mathematics · FM–representability · Mathe-
matical truth · Potential infinity · Actual infinity · Foundations of
mathematics

1 Introduction

We discuss the idea of finitistic foundations of mathematics which is partially
motivated and inspired by Hilbert’s lecture On the infinite [13]. According to
Hilbert we have finitistic mathematics – the part of mathematics which does
not depend on actual infinity1 and which is well founded in our mathematical
experience2. The remaining part essentially employing actual infinity was called

This work was funded by the Polish National Science Centre grant number
2013/11/B/HS1/04168.

1 The distinction between potential and actual infinity is due to Aristotle, see [1].
2 Another source of inspiration would be Leopold Kronecker’s view on foundations of

mathematics, see [17] and a few famous remarks elsewhere. Unfortunately Kronecker
never gave any systematic presentation of his views on foundations. Nevertheless,
they are coherent, and probably they influenced Hilbert’s idea.
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by him ideal mathematics. The name ideal refers to the method used in algebra
in his times, called the method of ideal elements. The method consists in adding
entities to algebraic structures filling some gaps e.g. in a ring without sufficient
number of prime elements we can add them by some natural algebraic construc-
tion, for the sake of obtaining a version of fundamental theorem of arithmetic
for this extended ring. Actual infinity can be considered as a useful fiction which
smooths the mathematical universe making it more regular and as it appeared
later also essentially easier.

We share Hilbert’s view that the finitistic part of mathematics is well defined
and independent of any presentation e.g. in an axiomatic way. On the other hand
truth for the ideal part of mathematics depends on various assumptions, some
of them are contradictory with some others3.

The cited Hilbert’s lecture is one of the early formulations of so called the
Hilbert’s program – the research program of grounding the ideal part of math-
ematics by its reduction to the finitistic part. This is not the topic of our con-
siderations. However the Hilbert’s program was the most influential research
project in foundations of mathematics in the 20th century. Over time the vague
notions used by Hilbert have been explicated. In [30] Tait suggested to identify
the finitistic part of mathematics with the part of mathematics expressible in the
primitive recursive arithmetic (PRA). This explication became popular thanks
to Friedman and Simpson (see e.g. [28]) and their research program called reverse
mathematics. Although it is convenient to consider a theory as weak as PRA in
the context of reverse mathematics, we believe that Hilbert’s finitistic part of
mathematics, i.e. the part not involving actual infinity, exceeds PRA. How-
ever, in this paper we do not relate in any way to Tait’s work. We do
not consider proof theory at all. We rather present a suitable ontology
for mathematics without actual infinity. Therefore we use the term con-
crete mathematics which was introduced in [12] by Knuth et al. for describing
the part of mathematics based on computations, algorithms and constructions.

We claim that the concrete mathematics can be determined in terms of
computations. On the other hand ideal mathematics is based on axioms and
developed by proofs. Finding and verifying proofs is a social game. Axioms are
necessary for organizing proofs in a well founded way. Nevertheless axioms can
be chosen in many different ways. Currently, the most accepted axiomatic back-
ground is ZFC, Zermelo-Fraenkel set theory with the axiom of choice. Tradition-
ally various schools of philosophy of mathematics differentiate by choosing the
assumptions for the part of ideal mathematics which are allowed. However all the
possible metaphysics of mathematics have a common part which is determined
by our computational experience. We claim that it consists essentially with Δ0

2

notions. In the following section we justify this claim.

3 Contemporarily we know that the ideal part of mathematics is essentially undeter-
mined. However, in 1926 Hilbert was not aware of this fact.
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2 The Boundary of Concrete Mathematics

In this section we present two different approaches to setting the limit for our
computational experience. Such a limit can be understood as the boundary of
concrete mathematics. Notions that surpass this limit cannot be objects of direct
mathematical experience and therefore some external assumptions have to be
made about them. Such assumptions may vary between different metaphysics of
mathematics.

Both considered approaches are related to the Shoenfield limit lemma. Before
we can state it, recall the notion of computable approximation of a set.

Definition 1 (Computable approximation). Let A ⊆ N
r. We say that a

function f : Nr+1 −→ {0, 1} computably approximates A if f is total, computable
and for all a1, . . . , ar ∈ N it holds that:

– limt→∞ f(t, a1, . . . , ar) = 1 if and only if A(a1, . . . , ar),
– limt→∞ f(t, a1, . . . , ar) = 0 if and only if ¬A(a1, . . . , ar).

We say that A is computably approximable if there exists f : Nr+1 −→ {0, 1}
which computably approximates A.

The limit lemma establishes equivalence between notions which are com-
putable with recursively enumerable oracles i.e. those whose degrees of unsolv-
ability are �0′ and notions which are computably approximable.

Theorem 1 (Limit lemma, Shoenfield, [27]). Let A ⊆ N
r. The following

are equivalent:

– deg(A) � 0′,
– A is computably approximable.

The first discussed approach is epistemological. It originates from consider-
ations on how learning processes may look like and what does it mean to learn
e.g. a language. This was studied independently by Gold [11] and Putnam [25].
They point that learning processes are computable and that a learner can make
mistakes (proceeds by trial and error) until she or he finally fixes on the correct
answer. Therefore, the mathematization of algorithmic learnability is basically
the same as in the definition of computable approximability. The function f
is the computable learning procedure for the notion A. If a learner is learn-
ing according to f , then for every instance (a1, . . . , ar) she or he can change
mind whether A(a1, . . . , ar) holds or not, but only finitely many times. There
is some point in time t0 and a truth value e such that for all t � t0 it holds
that f(t, a1, . . . , ar) = f(t0, a1, . . . , ar) – this is the point when the learner has
learned that A(a1, . . . , ar) if e = 1, and ¬A(a1, . . . , ar) if e = 0.

The following theorem shows the limit for complexity of notions which can
be algorithmically learned.

Theorem 2 (Algorithmic learnability theorem, Gold [11], Putnam [25]).
Let A ⊆ N

r. The following are equivalent:
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– A is algorithmically learnable,
– A ∈ Δ0

2.

Therefore we can only learn Δ0
2 notions. Thus Δ0

2 notions seem to be the
limit of possible computational experience.

Another argument supporting this claim is due to Epstein. In [5], in his
survey on degrees of unsolvability, Epstein justifies why we should particularly
study notions with degrees of unsolvability �0′. These notions, by the limit
lemma, can be approximated by uniform computable constructions which are
truly constructions, not constructions “relative to”. Epstein claims that they
have the same flavor as arguments in other areas of finite mathematics, such as
number theory or graph theory. He also claims that the center of the subject is
the tension between the finite and the infinite. We think that this tension comes
from the possibility of representing these notions without actual infinity – by
means of potential infinity only. Gauss [6] describes infinity as a façon de parler
of talking about limits and this is the only infinity available: infinity without
real infinity.

We proceed to another approach of searching for the limit of our compu-
tational experience. This is an ontological approach by Mostowski, see [20–22]
for more detailed presentation. He studies meaningfulness of notions in a world
without actual infinity. Imagine that there are only finitely many objects in the
world, but their number is not bounded. Every time a new finite batch of objects
can be added. This is a potentially infinite world. It is finite in every moment in
time, but it also has no bounds. We may identify objects of such a world with
natural numbers – understood as a potentially infinite set.

The model of such a world is called an FM–domain. Here we present an
FM–domain of the standard model of arithmetic (in a relational vocabulary)
N = (N,R+,R×).

Definition 2 (Standard FM–domain). For k ∈ N let Nk be the finite initial
segment of N of size k with the greatest element distinguished i.e.

Nk = ({0, . . . , k − 1},R+�{0,...,k−1},R×�{0,...,k−1}, k − 1).

The standard FM–domain is FM(N) = {Nk : k = 1, 2, . . . }.

FM–domains serve for models of potentially infinite worlds. We would say
that a sentence is true in a potentially infinite world if it is true in all its approx-
imations which are big enough. Therefore, we allow it to be false in some finite
number of models – we concentrate on its asymptotic truth. Hence, we consider
sl–semantics (sl for sufficiently large) for FM–domains.

Definition 3 (sl–semantics). Let a1, . . . , ar ∈ N and let ϕ(x1, . . . , xr) be a
formula. We say that elements a1, . . . , ar sl–satisfy ϕ and we write

FM(N) |=sl ϕ[a1, . . . , ar],

if it holds that
∃k ∈ N∀n � kNn |= ϕ[a1, . . . , ar].
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The motivation for considering sl–semantics is that potentially infinite world
grows boundlessly. We do not care if some phenomena appear only on some
finitely many early stages. We are interested in the properties that fix at some
point. We want to characterize the notions that are meaningful in potentially
infinite world i.e. those which are representable with respect to sl–semantics for
FM–domain in positive and negative cases. Such notions are said to be FM–
representable.

Definition 4 (FM–representability). Let A ⊆ N
r. We say that A is FM–

represented by a formula ϕ(x1, . . . , xr) if for every a1, . . . , ar ∈ N:

– A(a1, . . . , ar) if and only if FM(N) |=sl ϕ[a1, . . . , ar],
– ¬A(a1, . . . , ar) if and only if FM(N) |=sl ¬ϕ[a1, . . . , ar].

We say that A is FM–representable if there exists a formula ϕ which FM–
represents A.

Theorem 3 (FM–representability theorem, Mostowski, [19]).
Let A ⊆ N

r. The following are equivalent:

– A is FM–representable,
– A ∈ Δ0

2.

By the FM–representability theorem notions which are meaningful in a world
without actual infinity are exactly those which are Δ0

2. Starting with another
essentially different approach we – again – get Δ0

2 notions as a distinguished
class.

What all of the approaches described here have in common is considering
limits. Algorithmic learning is basically learning in the limit and sl–semantics
are semantics in the limit. But these are the limits of potentially infinite processes
and therefore they belong to concrete mathematics.

3 What Can Be Done in Concrete Mathematics?

Currently mathematics works as a social game of proving and checking activities.
Nevertheless no real mathematician can accept her or his activity as a game with
arbitrarily defined rules. This is because she or he wishes to prove true theorems.
Therefore the rules of the game should conform with some mathematical expe-
rience. We claim that this common mathematical experience is exactly concrete
mathematics.

In this section we consider some examples of what can be done in the con-
crete framework. Firstly let us mention the paper by Jan Mycielski “Analysis
without actual infinity” [24]. He considers there an interpretation of basic con-
cepts of mathematical analysis by finite approximations. It conforms quite well
with what we really do in applications. It is surprising because currently we learn
these notions in an axiomatic framework and because the concrete interpretation
may seem impossible since mathematical analysis deals with real numbers – an
essentially actually infinite set.
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Another example of a concrete approach is in Gödel’s paper [7], where the
completeness theorem for first order logic is shown. The main part of his argu-
ment consists of the construction of a sequence of finite models4 A0,A1,A2, . . .
which approximates the truth of an irrefutable Π0

2–sentence ϕ = ∀x∃yψ(x, y),
where ψ is quantifier-free. These models form a chain and therefore can be
summed to obtain an infinite model

⋃
k∈N

Ak which satisfies ϕ. For every k ∈ N

and for every tuple a from the domain of Ak we can easily find n � k and a tuple
b from the domain of An such that An |= ψ[a, b]. Therefore, the construction
requires no actual infinity.

Later, in [16], Kleene shows that the completeness theorem is indeed a part
of concrete mathematics. We can restate Kleene’s version of the completeness
theorem in the following form.

Theorem 4 (Kleene, [16]). Every consistent countable axiomatic theory5 has
a concrete model.

Kleene’s theorem gives a background for the computable model theory. Later,
in [14], Jockusch and Soare prove the low basis theorem which is considered the
computability theoretical version of König’s lemma. We say that the set A is low
if the halting problem for computations with A as an oracle is recursive with
recursively enumerable oracle i.e. deg(A)′ � 0′.

Theorem 5 (Jockusch and Soare, [14]). Every computable infinite binary
tree has a low infinite branch.

For every consistent countable axiomatic theory the tree of its consistent
complete extensions is computable. Whereas from consistent complete extension
S of a theory T we easily obtain a computable in S model M of T 6. We get an
immediate corollary.

Corollary 1 (Jockusch and Soare, [14]). Every computable consistent theory
has a low model.

Corollary 1 enables7 to perform various model-theoretic constructions in con-
crete framework. In [4] Czarnecki discusses a few model-theoretic constructions
from the classical monograph by Chang and Keisler [3] e.g. preservation theo-
rems, Craig interpolation lemma and the Robinson joint consistency theorem.
The constructions of chains and towers of models can be easily put into concrete
framework. The sum of concrete elementary chain of concrete models is also a
concrete model. Therefore, preservation theorems hold for computable theories.
On the other hand the sum of an arbitrary concrete chain of concrete models
need not to be a concrete model8. Similarly the final step of the model-theoretic
4 The notion of a model was introduced later.
5 By axiomatic theory we mean a theory with a finite presentation i.e. recursively

axiomatizable theory.
6 Here we not only get that the structure of M i.e. the universe and the relations is

computable in S but the satisfaction relation in M is also computable in S.
7 We need a slightly stronger version: every low consistent theory has a low model.
8 Czarnecki requires concrete models to have both concrete structure and satisfaction

relation.
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construction in the proof of the Craig interpolation lemma fails in concrete frame-
work: the model obtained from two concrete models with the same universe by
taking all their relations altogether may be a non-concrete model.

4 Representation Theorems

In this section we consider concrete versions of so called representation theorems.
We concentrate on two most classical cases, the representation theorems for
groups and boolean algebras.

Intuitively concrete groups are groups of permutations, and concrete boolean
algebras are boolean algebras of sets. Between these two theorems mathematical
community started to change its view on foundations. The work of Cayley [2] on
groups was published in 1854, the Stone theorem on boolean algebras [29] was
published in 1936.

In the meantime a new way of thinking started to be more and more popular,
particularly in algebra. This new way of thinking was presented in the book
Moderne Algebra by van der Waerden [31]. It was probably the first presentation
of a crucial mathematical theory inside of set theory, which was comprehensible
and acceptable by larger mathematical community.9 Russell and Whitehead’s
Principia Mathematica [26] was a crucial work in this direction, but it was too far
from mathematical practice of their time for influencing mathematical standards
immediately.

In the axiomatic framework a statement that all groups have a property W
is expressed in the form

ZFC � ∀G(G satisfies axioms of groups ⇒ ϕW (G)),

where ϕW (G) is ZFC translation of W (G).
In the concrete framework the same statement says that all concrete groups

have the property W . Originally groups were the first mathematical notion with
many interpretations. Nevertheless they were interpreted as groups of permu-
tations. The Cayley theorem says that each abstract group, that is structure
G = (G, ◦, −1, e) satisfying the axioms of the group theory, is isomorphic with
some group of permutations. The construction is very simple. Let SG be the
group of all permutations of G. Then we define F : G −→ SG as (F (g))(x) = g◦x,
for all g, x ∈ G. So F is an isomorphism of G with some subgroup of SG.

In the concrete framework a permutation group can be represented by two
sets X, Y of elements and names of permutations of X respectively, the ternary
9 The book General Topology [15] published in 1955 by Kelley gives a presentation

of topological concepts in set theoretical framework. It gives explicitly axioms of
set theory assumed. Later on Chang and Keisler in their Model Theory [3] give an
equivalent set of axioms as the declared background of the theory. In both cases
it was so called Kelley–Morse set theory, shortly KM, which is essentially stronger
than ZFC. In many works published in these times and later it was clear that the
basic framework is ZFC or some stronger theory, e.g. KM, which was in this case
explicitly mentioned.
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relation Φ(x, y) = z describing actions of elements from Y on elements of X.
Then we obtain the following.

Theorem 6. Each concrete abstract group G is isomorphic with some concrete
group of permutations.

Another famous representation theorem was given by Stone in [29] for boolean
algebras. It says that each boolean algebra is isomorphic with some boolean
algebra of sets (field of sets). Its proof is a little bit more subtle than the one for
groups. We take all ultrafilters over a given boolean algebra as elements and we
identify an element of the algebra with the set of ultrafilters containing it.

The proof of the Stone theorem can be easily reconstructed in a proper
axiomatic framework, e.g. in ZFC. However it is not obvious how it can be
reconstructed in the concrete framework. We say that sets X, Y and a relation
R ⊆ X ×Y represent a class of sets C if C = {bR : b ∈ Y }, where bR = {x ∈ X :
R(x, b)}. Particularly X, Y , R represent a boolean algebra of sets C if it is of the
form C = (C,∩,∪,−X , ∅,X), where −X is the operation of complement to X.
Intuitively X represents the universe (the set of all elements), Y represents a set
of names for subsets of X, and finally R represents ∈–relation between elements
of X and Y .

Theorem 7. For each concrete boolean algebra B = (B,∧,∨,−, 0, 1) there are
recursive in B, sets X, Y and a relation R ⊆ X × Y representing a boolean
algebra of sets isomorphic to B.

Proof. Let a concrete boolean algebra B = (B,∧,∨,−, 0, 1) be given. We take
A = B − {0} and the natural enumeration of A:

a0, a1, a2, . . . .

The relation R(a, 0) is false, for each a ∈ A. For other b ∈ B we define F (an, b) =
an if (F (a0, b) ∧ F (a1, b) ∧ . . . ∧ F (an−1, b) ∧ b ∧ an) �= 0, otherwise we take
F (an, b) = −an.

Now we define R(an, b) if F (an, b) = an. By routine checking we see that the
boolean algebra B is isomorphic to the boolean algebra of sets C represented by
A, B and R.

From the construction it follows that F is recursive in B, therefore also A,
B and R are recursive in B.

From Sect. 2 and Theorem 4 we obtain the following.

Theorem 8. The first order theory of groups is complete with respect to concrete
groups of permutations, in the sense that it is the set statements true exactly in
all concrete groups of permutations.

Similarly the first order theory of boolean algebras is complete with respect to
concrete boolean algebras of sets.
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5 Final Remarks

In this paper we show that an essential part of classical mathematics is mean-
ingful in the concrete framework. We claim that concrete mathematics is our
main mathematical experience determining mathematical truth in a way inde-
pendent of our axiomatic assumptions. Nevertheless, we do not claim that our
mathematics have to be reduced to any better defined structures. Axiomatic
mathematics based on set theoretical assumptions give important and successful
tools of getting mathematical truths. Let us observe that investigating border-
lines of concrete mathematics cannot be done inside it.

Our mathematics in the current form is based on the idea of proof. It is one
of human epistemological inventions which surprisingly preserves value of its
results. Old mathematical proofs from ancient Greece are still valid. In the same
time other scientific results in majority disappeared. Nevertheless, we know that
this marvelous epistemic tool has its own restrictions. After Gödel’s discovery
[8] we know that proving technique is not sufficient. Therefore we know that
we need other techniques of obtaining mathematical truth. Algorithmic learning
seems to be a good candidate.

The great advantage of our axiomatic approach to mathematics is the exis-
tence of a complete procedure for first order logic. In [23] it is shown that in a
concrete framework we have a similar complete procedure for first order logic,
but based on learning of finiteness.
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Abstract. In this paper we present a new proof of Solovay’s theorem on
arithmetical completeness of Gödel-Löb provability logic GL. Originally,
completeness of GL with respect to interpretation of � as provability in
PA was proved by Solovay in 1976. The key part of Solovay’s proof was
his construction of an arithmetical evaluation for a given modal formula
that made the formula unprovable in PA if it were unprovable in GL. The
arithmetical sentences for the evaluations were constructed using certain
arithmetical fixed points. The method developed by Solovay have been
used for establishing similar semantics for many other logics. In our proof
we develop new more explicit construction of required evaluations that
doesn’t use any fixed points in their definitions. To our knowledge, it is
the first alternative proof of the theorem that is essentially different from
Solovay’s proof in this key part.

1 Introduction

The study of provability as a modality could be traced back to at least as early
as Gödel work [Gö33]. Löb [Lö55] have proved a generalization of Gödel’s Sec-
ond Incompleteness Theorem that is now known as Löb’s Theorem. In order
to formulate his theorem Löb have stated conditions on provability predicates
that are now known as Hilbert-Bernays-Löb derivability conditions. Despite Löb
haven’t mentioned the interpretation of a modality as a provability predicate
there, his conditions essentially corresponded to the standard axiomatization of
modal logic K4. Also note that arithmetical soundness of Gödel-Löb provability
logic GL immediately follows from Löb’s Theorem.

The axioms of modal system GL have first appeared in [Smi63]. Segerberg
have shown that GL is Kripke-complete and moreover that it is complete with
respect to the class of all finite transitive irreflexive trees [Seg71]. The arithmeti-
cal completeness of the system GL were established by Solovay [Sol76]. Solovay
have proved that a modal formula ϕ is a theorem of GL iff for every arithmetical
evaluation f(x) the arithmetical sentence f(ϕ) is provable in PA.

Latter modifications of Solovay’s method were used in order to prove a lot of
other similar results, we will mention just few of them. Japaridze have proved
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arithmetical completeness of polymodal provability logic GLP [Jap86]. Shavrukov
[Sha88] and Berarducci [Ber90] have determined the interpretability logic of PA.

The key part of Solovay’s proof was to show that in certain sense every finite
GL-model is “embeddable” in arithmetic. Using the construction of “embed-
dings”, it is easy to construct evaluations fϕ(x) such that PA � fϕ(ϕ), for
all GL-unprovable modal formulas ϕ. In order to construct the “embeddings”,
Solovay have used Diagonal Lemma to define certain primitive-recursive function
(Solovay function), for every finite GL Kripke model. Then, using the functions,
Solovay have defined the sentences that constituted the “embeddings”.

de Jongh, Jumelet, and Montagna have shown that GL is complete with
respect to Σ1-provability predicates for theories T ⊇ IΔ0 + Exp [dJJM91]. Their
proof have avoided the use of Solovay functions, however, their construction
still “emulated” Solovay’s approach using individual sentences constructed by
Diagonal Lemma.

In a discussion on FOM (Foundation of Mathematics mailing list) Shipman
have asked a question about important theorems that have “essentially” only one
proof [Shi09]. The example of Solovay’s theorem were provided by Sambin. To
the author knowledge, up to the date there were no proofs of Solovay’s theorem
that have avoided the central idea of Solovay’s proof—the Solovay’s method of
constructing required sentences in terms of certain fixed points.

We note that completeness of some extensions of GL with respect to interpre-
tations of � that are similar to formalized provability were proved by the com-
pletely different methods. Solovay in his paper [Sol76] have briefly mentioned a
method of determining modal logics of several natural interpretations of � in
set theory, namely for the interpretations of � as “to be true in all transitive
models” and as “to be true in all models Vκ, where κ is an inaccessible cardinal”
(there are more detailed proofs in Boolos book [Boo95, Chap. 13]). A modifica-
tion of the method also have been used to show completeness of wide variety
of extensions of GL with respect to artificially defined (not Σ1) provability-like
predicates [Pak16].

In the paper we present a new approach to the proof of arithmetical com-
pleteness theorem for GL. We introduce a different method of “embedding” of
finite GL Kripke models. As the result, the completeness of GL is achieved with
the use of evaluations given by more explicitly constructed and more “natural”
sentences (in particular, we do not rely on Diagonal Lemma in the construction).
In order to avoid potential misunderstanding, we note that despite the sentences
from evaluations are given explicitly, our proof rely on Gödel’s Second Incom-
pleteness Theorem and the results by Pudlák [Pud86] that were proved with the
use of Diagonal Lemma.

Now we will give an example of unprovable GL-formula ϕ and an evaluation
f(x) provided by our proof such that PA � f(ϕ). We consider the formula

ϕ � ♦v → (♦u → ♦(v ∧ u)).
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We use the following definitions for numerical functions in order to define the
evaluation f(x):

exp(x) = 2x, log(x) = max({y | exp(y) ≤ x} ∪ 0),

exp�(x) = exp(exp(. . . exp(
︸ ︷︷ ︸

x times

0) . . .)), log�(x) = max({y | exp�(y) ≤ x} ∪ 0)

(note that the functions exp�(x) and log�(x) are called super exponentiation
and super logarithmic functions, respectively). The evaluation f(x) is given as
following:

f(v) � ∃x(Prf(x, �0 = 1�) ∧ ∀y < x(¬Prf(y, �0 = 1�)) ∧ log�(x) ≡ 0 (mod 2)),

f(u) � ∃x(Prf(x, �0 = 1�) ∧ ∀y < x(¬Prf(y, �0 = 1�)) ∧ log�(x) ≡ 1 (mod 2)).

We note that somewhat similar approach based on the parity of log� were
used by Solovay in his letter to Nelson [Sol86]. Solovay proved that there are
sentences F and G such that IΔ0 + Ω1+F and IΔ0 + Ω1+G are cut-interpretable
in IΔ0 + Ω1, but IΔ0 + Ω1 + F ∧ G isn’t cut-interpretable in IΔ0 + Ω1. Also,
Kotlarski in [Kot96] have used an explicit parity-based construction of a pair of
sentences in order to give an alternative proof for Rosser’s Theorem.

2 Preliminaries

Let us first define Gödel-Löb provability logic GL. The language of GL extends
the language of propositional calculus with propositional constants 
 (truth) and
⊥ (false) by the unary modal connective �. GL have the following Hilbert-style
deductive system:

1. axiom schemes of classical propositional calculus PC;
2. �(ϕ → ψ) → (�ϕ → �ψ);
3. �(�ϕ → ϕ) → �ϕ;
4. ϕ ϕ→ψ

ψ ;
5. ϕ

�ϕ .

The expression ♦ϕ is an abbreviation for ¬�¬ϕ.
A set with a binary relation (W,≺) is called irreflexive transitive tree if

1. ≺ is a transitive irreflexive relation;
2. there is an element r ∈ W that is called the root of (W,≺) such that the

upward cone {a | r ≺ a} coincides with W ;
3. for any element w ∈ W the restriction of ≺ on the downward cone {a | a ≺ w}

is a strict well-ordering order.

Segerberg [Seg71] have shown that the logic GL is complete with respect to the
class of all finite irreflexive transitive trees.
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Our proof relies on the results by Verbrugge and Visser [VV94] and indirectly
on the results by Pudlák [Pud86]. This results are sensitive to details of formal-
ization of some metamathematical notions. Thus unlike some other papers, where
this kind of details could be safely be left unspecified, we will need to be more
careful here.

We identify syntactical expressions with binary strings. We encode binary
strings by positive integers numbers. A positive integer n of the form 1ak−1 . . . a0

in binary notation encodes the binary string ak−1 . . . a0. We note that the binary
logarithm log(n) of a number n coincides with the length of the binary string
that the number n encodes. For a formula F the number n that encodes F is
known as the Gödel number of F.

A proof of an arithmetical formula ϕ in an arithmetical theory T is a list
of arithmetical formulas such that it ends with ϕ and every formula in the list
is either an axiom of T, or is an axiom of predicate calculus, or is obtained by
inference rules from previous formulas.

We will be interested in formalization of provability in the theory PA and its
extensions by finitely many axioms. We take the standard axiomatization of PA
(by axioms of Robinson arithmetic Q and the induction schema). We consider
the natural axiomatization in arithmetic of the property of a number to be the
Gödel number of some axiom of PA. For all extensions T of PA by finitely many
axioms this gives us Δ0-predicates PrfT(x, y) that are natural formalizations of
“x is a proof of the formula with Gödel number y in the theory T” that is based
on the definition of the notion of proof given above. And we obtain Σ1-provability
predicates

PrvT(y) � ∃xPrfT(x, y).

We will use effective binary numerals. The n-th numeral is defined as follows:

1. 0 is the term 0;
2. 1 is the term 1;
3. 2n is the term (1 + 1) · n;
4. 2n + 1 is the term (1 + 1) · n + 1.

Clearly, the length of n is O(log(n)).
For an arithmetical formula F we denote by �F� the n-th numeral, where n

is the Gödel number of the formula F.
We denote by Prv(x) and Prf(x, y) the predicates PrvPA(x) and PrfPA(x, y).
An arithmetical evaluation is a function f(x) from GL formulas to the sen-

tences of the language of first-order arithmetic such that

1. f(ϕ ∧ ψ) � f(ϕ) ∧ f(ψ);
2. f(ϕ ∨ ψ) � f(ϕ) ∨ f(ψ);
3. f(¬ϕ) � ¬f(ϕ);
4. f(ϕ → ψ) � f(ϕ → ψ);
5. f(
) � 0 = 0;
6. f(⊥) � 0 = 1;
7. f(�ϕ) � Prv(�f(ϕ)�).
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Note that an arithmetical evaluation is uniquely determined by its values on
propositional variables u, v, . . ..

We will use 
, ⊥, �, and ♦ within arithmetical formulas: the expression 

is an abbreviation for 0 = 0, the expression ⊥ is an abbreviation for 0 = 1,
the expression �F is an abbreviation for Prv(�F�), and the expression ♦F is
an abbreviation for ¬Prv(�¬F�). The expressions of the form �nF and ♦nF are
abbreviations for �� . . . �

︸ ︷︷ ︸

n times

F and ♦♦ . . . ♦
︸ ︷︷ ︸

n times

F, respectively.

3 Proof of Solovay’s Theorem

In the section we will just give a proof of “completeness part” of Solovay’s
theorem. Soundness of the logic GL essentially is due to Löb [Lö55] and we refer
a reader to Boolos book [Boo95, Chap. 3] for a detailed proof.

Theorem 1. If a modal formula ϕ is not provable in GL then there exists an
arithmetical evaluation f(x) such that PA � f(ϕ).

Let us fix some modal formula ϕ that is not provable in GL. By Segerberg’s
result [Seg71], we can find a finite transitive irreflexive tree F = (W,≺) such that
r is the root of F and there is a model M on F with M, r � ϕ. For all the worlds
a of F we denote by h(a) their “height”:

h(a) = sup({0} ∪ {h(b) + 1 | a ≺ b}).

Let us assign arithmetical sentences Ca to all the worlds a of F. We put Cr

to be 0 = 0. We consider a non-leaf world a and assign sentences Cb to all its
immediate successors b. Suppose b0, . . . , bn are all the immediate successors of
a. We fix some enumeration b0, . . . , bn such that h(bn) = h(a) − 1. For i < n we
put Cbi to be the sentence

∃x(PrfPA+♦h(a)−1�(x, �0 = 1�) ∧ ∀y < x(¬PrfPA+♦h(a)−1�(y, �0 = 1�))
∧ log�(x) ≡ i (mod n + 1)
∧ ∃y < exp(exp(x))(PrfPA+♦h(bi)�(y, �0 = 1�))).

The sentence Cbn is
�h(a)⊥ ∧

∧

i<n

¬Cbi .

Note that PA � ¬(Cbi ∧ Cbj ), for i �= j and

PA � �h(a)⊥ ↔
∨

i≤n

Cbi .

We note that all Cbi are PA-equivalent to Σ1-sentences: it is obvious for i �= n
and Cbn is equivalent to Σ1-sentence since it states that there is a PA+♦h(a)−1
-
proof of 0 = 1 and in addition it states that the least PA + ♦h(a)−1
-proof of
0 = 1 satisfy certain Δ0(exp)-property.
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We assign sentences Fa to all the worlds a of F. The sentence Fa is
∧

b�a

Cb ∧ ♦h(a)
.

It is easy to see that the disjunction of all Fa’s is provable in PA and any
conjunction Fa ∧ Fb, for a �= b, is disprovable in PA.

Lemma 1. For any set of worlds A we have

PA + �h(r)+1⊥ � ♦
( ∨

a∈A

Fa

)

↔
∨

b,∃a∈A(b≺a)

Fb.

Let us first prove Theorem 1 using Lemma 1 and only then prove the lemma.

Proof. For a variable v we assign the evaluation f(v):
∨

M,a�v

Fa.

By induction on the length of modal formulas ψ we prove that

PA + �h(r)+1⊥ � f(ψ) ↔
∨

M,a�ψ

Fa.

The only non-trivial case for the induction step is when the topmost connective
of ψ is modality. Assume ψ is of the form �χ. From inductive assumption we
know that

PA � �h(r)+1⊥ → (f(χ) ↔
∨

M,a�χ

Fa).

We use Lemma 1:

PA + �h(r)+1⊥ � f(�χ) ↔ �(f(χ))

↔ �(�h(r)+1⊥ ∧ f(χ))

↔ �(�h(r)+1⊥ ∧
∨

M,a�χ

Fa)

↔ �(
∨

M,a�χ

Fa)

↔ �(¬
∨

M,a�¬χ

Fa)

↔ ¬♦(
∨

M,a�¬χ

Fa)

↔ ¬
∨

M,a�♦¬χ

Fa.

↔
∨

M,a��χ

Fa.
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Therefore,
PA + �h(r)+1⊥ � f(ϕ) ↔

∨

M,a�ϕ

Fa.

Since M, r � ϕ, we have PA + �h(r)+1⊥ + Fr � ¬f(ϕ). The sentence Fr is just
equivalent to ♦h(r)
. Hence, by Gödel’s Second Incompleteness Theorem for
PA + ♦h(r)
, the theory PA + �h(r)+1⊥ + Fr is consistent. Therefore, ¬f(ϕ) is
consistent with PA and thus PA � f(ϕ).

In order to prove Lemma 1, clearly, it will be enough to prove the following
two lemmas:

Lemma 2. For any world a from F, we have

PA + �h(r)+1⊥ � ♦Fa →
∨

b≺a

Fb.

Proof. Let us reason in PA + �h(r)+1⊥. Assume ♦Fa. We need to prove
∨

b≺a

Fb.

Let us denote by r = c0 ≺ c1 ≺ . . . ≺ cn = a the maximal chain from r to a. Let
us find the greatest k such that Cck holds.

Note that for any 1 ≤ i ≤ n the sentence �h(ci−1)⊥ implies Cci . Indeed,
�h(ci−1)⊥ implies that Cc for some immediate successor c of ci−1. But since Cc

is Σ1 and we assumed ♦Fa, we would have ♦(Fa ∧Cc), which is possible only for
c = ci.

By a simple check of cases k = 0 and k �= 0 we obtain �h(ck)+1⊥. Therefore,
for all i < k, we have �h(ci)⊥ and hence, for all i ≤ k, the sentence Cci holds.
From �(Fa → ♦h(a)
) and ♦Fa we derive ♦h(a)+1
. Thus, ¬Ca and hence k < n.
Since �h(ck)⊥ implies Cck+1 , we have ♦h(ck)
. Therefore the sentence Fck holds
and finally we derive

∨

b≺a

Fb.

Lemma 3. For any worlds a ≺ b, we have PA + �h(r)+1⊥ � Fa → ♦Fb.

We will use model-theoretic methods in our proof of Lemma 3. More precisely,
we will need to use within PA some facts that we will establish using model-
theoretic methods. There is an approach to formalization in arithmetic of results
obtained by model-theoretic methods that is based on the use of the systems of
the second-order arithmetic. In particular there is a well-known system ACA0

that is a conservative extension of PA. We will use the formalization of model-
theoretic notions in systems of second-order arithmetic that could be found in
Simpson book [Sim09, Sects. II.8 and IV.3].

The key model-theoretic result that we use is the Injecting Inconsistencies
Theorem. We will use the version of the theorem that is a corollary of the version
of the theorem that were proved by Visser and Verbrugge [VV94, Theorem 5.1].
Earlier similar results are due to Hájek, Solovay, Kraj́ıček, and Pudlák [Há84,
Sol89,KP89].



288 F. Pakhomov

Definition 1. Suppose M is a model of PA. We denote by M � a the structure
with the domain {e ∈ M | M |= e ≤ a} the constant 0 and partial functions S,
+, and · induced by M on the domain. For two structures A and B with the
constant 0 and (maybe) partial functions S, +, and · we write

1. A ⊆ B if the domain of A is a subset of the domain of B and for any
arithmetical term t(x1, . . . , xn) and elements q1, . . . , qn ∈ A:
(a) if p is the value of t(q1, . . . , qn) in B and p ∈ A then the value of

t(q1, . . . , qn) is defined in A and is equal to p,
(b) if p is the value of t(q1, . . . , qn) in A then the value of t(q1, . . . , qn) is

defined in B and is equal to p;
2. A = B if A ⊆ B and B ⊆ A.

We note that the definition actually could also be applied to models of IΔ0.

We will show in AppendixB that the following theorem is formalizable in
ACA0:

Theorem 2. Let T be an extension of PA by finitely many axioms. Let ConT(x)
denote the formula ∀y(log(y) ≤ x → ¬PrfT(y, �0 = 1�)). Let M be a non-
standard countable model of T. And let q, p be nonstandard elements of M such
that M |= q ≤ p and M |= ConT(pk), for all standard k. Then there exists a
countable model N of T such that p ∈ N and

1. M � p = N � p;
2. M � exp(pk) ⊆ N, for all standard k;
3. N |= ¬ConT(pq);
4. N |= ConT(pk), for all standard k.

Let us now prove Lemma 3 using the formalization of Theorem2.

Proof. It would be enough to prove the lemma for the case when b is an imme-
diate successor of a. Indeed, after that we will be able to derive ♦nFb for any b,
a ≺ b, where n is the length of the maximal chain from a to b; next we could
conclude that we have the required ♦Fb.

Now let us consider the case when b is an immediate successor of a and is bk

in our fixed order b0, . . . , bn of the immediate successors of a.
For the rest of the proof we reason in ACA0 + Fa + �h(r)+1⊥ in order to

show that we have ♦Fb; since ACA0 is a conservative extension of PA, this will
conclude the proof.

Since we have ♦h(a)
, we could construct a model M of PA + ♦h(a)−1
.
Suppose v ∈ M is the least PA + ♦h(a)−1
-proof of 0 = 1 in M, if there exists
one and an arbitrary nonstandard number, otherwise. Note that since we have
♦h(a)
, the element v couldn’t be standard. Next we find some nonstandard
u ∈ M such that

1. M |= exp(exp(u)) < v,
2. M |= log�(u + 1) ≡ k − 1 (mod n + 1),
3. M |= log�(u) ≡ k − 2 (mod n + 1).
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We can find u with this properties since we know that the functions exp(x)
and exp�(x) are total on standard natural numbers and hence we know that the
functions log(x) and log�(x) map nonstandard elements to nonstandard elements
in M.

Now we apply Theorem 2 to the model M with p = u and q = log(u)+1. We
obtain a model M′ of PA + ♦h(a)−1
 such that M � u = M′ � u and there is the
least PA + ♦h(a)−1
-proof d ∈ M′ of 0 = 1 such that

M′ |= u + 1 < u2 < log(d) ≤ ulog(u)+1 ≤ exp((log(u) + 1)2) < exp(u).

Thus,
M′ |= log�(d) ≡ k (mod n + 1).

If h(b) = h(a) − 1, then we have constructed a model of PA + Cb + ♦h(b)
.
Assume h(b) < h(a) − 1. Clearly, there are no PA + ♦h(b)
-proofs of 0 = 1

in M′. We apply Theorem 2 to M′ with p = dlog(d)+1 and q = log(d) + 1. We
obtain a model M′′ of PA + ♦h(b)
 such that

M′ � dlog(d)+1 = M′′ � dlog(d)+1,

there is a PA + ♦h(b)
-proof of 0 = 1 in M′′ and for the least PA + ♦h(b)
-proof
e ∈ M′′ of 0 = 1 we have

M′′ |= log(e) ≤ d(log(d)+1)2 ≤ exp((log(d) + 1)3) < exp(d).

Since M′ � dlog(d)+1 = M′′ � dlog(d)+1 and Prf(x, y) is a Δ0 predicate, we see
that d is the least PA + ♦h(a)−1
-proof of 0 = 1 in M′′. Hence M′′ is a model of
PA + Cb + ♦h(b)
.

Thus, under no additional assumptions, we have a model of PA+Cb +♦h(b)
.
Since all Cc, for c � a, are Σ1-sentences, actually we have a model of PA + Fb.
Therefore, ♦Fb.

4 Conclusions

In the present paper we have gave a new method of constructing arithmetical
evaluations of modal formulas from a given Kripke model and proved arithmeti-
cal completeness of GL with respect to provability in PA using the method. We
consider the evaluations that have been constructed in the paper to be more
“natural” than the evaluations provided by Solovay’s proof.

We proved the theorem specifically for the standard provability predicate for
PA. It is unclear to author, for what exact class of provability predicates our
methods are applicable. The most essential limitation for our technique seems
to be the fact that it relies on the formalized version of Theorem 2. It seems very
likely that for theories that are stronger than PA one could apply our method
with only minor adjustments. In particular, it seems that for a general result
one would need to modify Prf-predicates while preserving Prv-predicate (up to
provable equivalence) in order to ensure that [VV94, Theorem 5.1] is applicable.
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For theories that are weaker than PA, there are more significant problems with
adopting our technique. Namely, our technique essentially relies on formalized
version of the Injecting Inconsistencies Theorem. And the proofs of stronger
versions of this theorem [KP89,VV94] essentially rely on the Omitting Types
Theorem. We have provided a proof of the Omitting Types Theorem in ACA0 in
AppendixA, but it is not clear whether it could be done in weaker systems. The
author is not familiar with results that calibrate reverse mathematics strength
of the required version of the Omitting Types Theorem. We note that reverse
mathematics analysis of other version of Omitting Types Theorem have been
done by Hirschfeldt et al. [HSS09], in particular from their results it follows
that their version of the Omitting Types Theorem is not provable in WKL0 but
follows from RT2

2 (and thus couldn’t be equivalent to ACA0 over RCA0). But
nevertheless, we conjecture that the same kind of evaluations as we have gave in
Sect. 3 will provide completeness of GL for all finitely axiomatizable extensions
of IΔ0 + Exp.

Also, since the technique that were introduced in the paper is significantly
different from Solovay’s technique, it seems plausible that it may give some
advantage for some open problems, for which Solovay’s method have been the
“default approach” before (see [BV06] for open problems in provability logic).

Acknowledgments. I want to thank David Fernández-Duque and Albert Visser for
their questions that were an important part of the reason why I have started the
research on the subject. And I want to thank Paula Henk, Vladimir Yu. Shavrukov,
and Albert Visser for their useful comments on an early draft of the paper.

A Formalization of the Omitting Types Theorem

In order to formalize Theorem2 in ACA0 we will first show that the Omitting
Types Theorem is formalizable in ACA0. We will adopt the proof from [CK90].
We remind a reader that we use the approach to formalization of model theory
from Simpson book [Sim09].

Definition 2 (ACA0). Let T be a first-order theory and Σ = Σ(x1, . . . , xn) be
a set of formulas of the language of T that have no free variables other than
x1, . . . , xn. We say that T locally omits Σ if for every formula ϕ(x1, . . . , xn) at
least one of the following fails:

1. the theory T + ϕ is consistent;
2. for all ψ ∈ Σ we have T � ∀x1, . . . , xn(ϕ → ψ).

We say that a model M of T omits Σ if for any a1, . . . , an ∈ M there is a
formula ψ(x1, . . . , xn) ∈ Σ such that M �|= ψ(a1, . . . , an).

Theorem 3 (ACA0). Suppose T is a consistent theory that locally omits the set
of formulas Σ(x1, . . . , xn). Then there is a model M of T that omits the set Σ.
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Proof. We will follow the proof of [CK90, Theorem 2.2.9] but make sure that our
arguments could be carried out in ACA0.

We will prove the theorem for n = 1, i.e. Σ = Σ(x). The case n > 1 could be
proved essentially the same way, but the notations would be more complicated.

We extend the language of T by fresh constants c0, c1, . . .. We arrange all
sentences of the extended language in a sequence ϕ0, ϕ1, . . . (since we work in
ACA0 the formulas are encoded by Gödel numbers and we could arrange them
by their Gödel numbers). We will construct a sequence of finite sets of sentences

∅ = U0 ⊂ U1 ⊂ . . . ⊂ Um ⊂ . . .

such that for every m we have the following:

1. Um is consistent with T;
2. either ϕm ∈ Um+1 or ¬ϕm ∈ Um+1;
3. if ϕm is of the form ∃xψ(x) and ϕm ∈ Um+1 then ψ(cp) ∈ Um+1, where cp is

the first ci that doesn’t occur in Um or ϕm;
4. there is a formula χ(x) ∈ Σ such that ¬χ(cm) ∈ Um+1.

We will give the definition that will determine unique sequence U0,U1, . . .. We
want to make sure that for our definition of the sequence U0,U1, . . ., the property
of a number x to be the code of the sequence 〈U0,U1, . . . ,Uy〉 is expressible by a
formula without second-order quantifiers. If we will ensure this, then we will be
able to construct a set that encodes the sequence U0,U1, . . . ,Um, . . . using the
arithmetic comprehension.

Let us define Um+1 in terms of Um. If ϕm is consistent with T ∪ Um then we
put σm to be ϕm. Otherwise we put σm to be ¬ϕm. If σm is ϕm and is of the form
∃xψ(x) then we put ξm to be ψ(cp), where cp is the first ci that doesn’t occur in
Um or ϕm. Otherwise, we put ξm to be equal to σm. We choose the formula χ(x)
with the smallest Gödel number such that χ(x) ∈ Σ and T �

∧

Um → χ(cm).
We put Um+1 = Um ∪ {ξm, σm, χ(cm)}.

It is easy to see that for this definition, indeed, we could express by a formula
without second-order quantifiers the property of a number x to be the code of
the sequence 〈U0,U1, . . . ,Uy〉. By a trivial induction on y we could prove that
for every y the said sequence exists and unique. Thus, we have obtained the
sequence U0,U1, . . . ,Um, . . . encoded by a set.

Now, using the definition of the sequence, we could easily prove that the
sequence satisfy the conditions 1, 2, 3, and 4.

We consider the union T ∪ ⋃

i∈N

Ui = T′. By condition 1. the theory T′ is

consistent. By condition 2. the theory T′ is complete. By condition 3. the theory
T′ gives the truth definition with Tarski conditions for a model with the domain
{c0, c1, . . .}; this gives us a model M of T′ with the domain {c0, c1, . . .}. By
condition 4. The model M omits the set Σ.
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B Formalization of the Injecting Inconsistencies Theorem

Now we are going to check that Theorem 2 is provable in ACA0. Below we assume
that a reader is familiar with the paper [VV94] and we will use some notions
from the paper without giving the definitions here.

Theorem 4. Let R ⊂ IΔ0 + Ω1 be a finitely axiomatizable theory. Then ACA0

proves the following:
Let T ⊇ IΔ0 + Ω1 be a Σb

1-axiomatized theory for which the small reflection
principle is provable in R. Let ConT(x) denote the formula ∀y(log(y) ≤ x →
¬PrfT(y, �0 = 1�)). Let M be a non-standard model of T and let c, a be non-
standard elements of M such that M |= c ≤ a, exp(ac) ∈ M, and M |= ConT(ak),
for all standard k. Then there exists a model K of T such that a ∈ K and

1. M � a = K � a;
2. M � exp(ak) ⊆ K, for all standard k;
3. K |= ¬ConT(ac);
4. for all standard k we have K |= ConT(ak);
5. K |= exp(ac) ↓.
Proof. Essentially, we just need to formalize the proof of [VV94, Theorem 5.1]
in ACA0. The only difference between our formulation and the formulation by
Visser and Verbrugge is that we have replaced the requirement that the small
reflection principle is provable in IΔ0 + Ω1 with a stronger requirement that
states that the small reflection principle is provable in R. First, we show how to
formalize the proof itself and then explain why the results used in the proof are
formalizable in ACA0.

The only non-trivial part of the formalization of the proof itself is the issue
with the lack of truth definition for the cut

N = {u ∈ M | u < exp(ak), for some standard k}
of M. However, for the purposes of the proof, it would be enough for N to
be a weak model (i.e. poses truth definition only for axioms, [Sim09, Defini-
tion II.8.9]). Moreover, unlike the original proof of Visser and Verbrugge, we
just need N to be a weak model of R + BΣ1 rather than a model of BΣ1 + Ω1.
And since R is externally fixed finitely axiomatizable theory, we could create
the required truth definition straightforward using arithmetical comprehension.
Other parts of the proof could be formalized without any complications.

The proof of [VV94, Theorem 5.1] used Wilkie and Paris result
[WP89, Theorem 1], Pudlák results from [Pud86], and the Omitting Types The-
orem. We have already formalized the Omitting Types Theorem in AppendixA.
The proof of [WP89, Theorem 1] is trivial and could be easily formalized in ACA0.
The technique of [Pud86] is purely finitistic and thus could be easily formalized
in ACA0.

Now we want to derive the formalization of Theorem 2 from Theorem 4. In
order to do it, we first need to fix some finite fragment R ⊂ IΔ0 + Ω1. And next we
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need to show in ACA0 that all the extensions of PA by finitely many axioms are
Σb

1-axiomatizable extensions of IΔ0 + Ω1 for which R proves the small reflec-
tion principle. Obviously, extensions of PA by finitely many axioms are
Σb

1-axiomatizable (and it could be checked in ACA0).
In [VV94, Theorem 4.20] it were established that IΔ0 + Ω1 proves small reflec-

tion principle for IΔ0 + Ω1. By inspecting the proof, it is easy to see that it is
possible to use only finitely many axioms of IΔ0 + Ω1 in order to prove all the
instances of the small reflection principle. Now we will indicate how to mod-
ify the proof of [VV94, Theorem 4.20] in order to prove in a finite fragment of
IΔ0 + Ω1 all the instances of the small reflection principle for all the extensions
of PA by finitely many axioms. Actually, the only part of the proof that should
be changed is [VV94, Lemma 4.16] that were needed to deal with the schema of
Δ0-induction schema in the case of IΔ0 + Ω1-provability. For our adaptation we
need to replace it with the analogous lemma that will deal with schema of full
induction in the case of provability in PA. This analogous lemma could be proved
essentially in the same way as [VV94, Lemma 4.16] itself with the only differ-
ence that the last part of the proof that were reducing an instance of induction
schema to an instance of Δ0-induction schema will not be needed any longer.
This concludes the proof of Theorem 2 in ACA0.
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Calculus, Feferman, S, ed. Gödel Collected Works I publications, 1929–1936
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Abstract. Rationalizability, originally proposed by Bernheim and
Pearce, generalizes the notion of Nash equilibrium. Nash equilibrium
requires common knowledge of strategies. Rationalizability only requires
common knowledge of rationality. However, their original notion assumes
that the payoffs are common knowledge.

I.e. agents do know what world they are in, but may be ignorant of
what other agents are playing.

We generalize the original notion of rationalizability to consider situ-
ations where agents do not know what world they are in, or where some
know but others do not know. Agents who know something about the
world can take advantage of their superior knowledge. It may also hap-
pen that both Ann and Bob know about the world but Ann does not
know that Bob knows. How might they act?

We will show how a notion of rationalizability in the context of partial
knowledge, represented by a Kripke structure, can be developed.

1 Introduction

Agenthood has become an important subject of study in psychology, cognitive
science, artificial intelligence and of course in economics where the notion is
fundamental.

But what are agents? Do we impose a metaphysical requirement that an
agent have an inside, a self from which it looks at the world? Or do we go
the route of Dennett’s intentional stance where something is an agent if we can
usefully treat it as one.

Clearly we do not regard a shopbot as something which has an internal state
but something to which the BDI theory of Bratman and others applies. And if we
do treat a shopbot as an agent then we have already dropped the metaphysical
worries.

Anything that is usefully and voluminously predictable from the inten-
tional stance is, by definition, an intentional system. The intentional stance
is the strategy of interpreting the behavior of an entity (person, animal,
artifact, whatever) by treating it as if it were a rational agent who governed
its choice of action by a consideration of its beliefs and desires [1].

Some of the ideas in this paper were included in [7], but the discussion on Dennett,
and Theorem 4.1 are new.
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However Premack [11] imposes another requirement, of second order agent-
hood. A second order agent is one who is aware of other agents and has a theory
of mind. We shall go along with Premack, not because we have to but because it
is a much more interesting notion to think of. A second order agent is an agent
which is aware of other agents and before asking “What shall I do?” first asks
“What is she likely to do?”.

Even though it is not clear that animals are second order agents, they often
behave as if they were. Chimps and corvids both exhibit strategic behavior which
makes sense if they had a theory of other chimps or corvids. A female chimp
cheating on the big boss will refrain from uttering the noises of pleasure which
she would make if he was not around1. Out in the wild, jays and other corvids
will hide food in the ground. And if the birds were being watched when they hid
their food, they rushed to move it to another hiding place as soon as the other
watching birds were out of sight.

So it may be that the theory we propose has a wide field of application.
The actions of sophisticated agents take place in a world of desires, knowledge

(or beliefs) and abilities. And quite often not only their own beliefs and desires
are involved but also what they know about the desires and beliefs of others.

Savage [13] worked out a theory in which by observing an agent’s willingness
to accept or reject certain bets we can discover both his beliefs (subjective prob-
ability) and his desire (utility). This theory has been questioned and has some
difficulties pointed out by Ellsberg, Allais, and Kahneman and Tversky. But the
theory is much respected and still taught routinely.

But Savage did not have a theory of what we do when other agents are
involved and we know something about their desires and beliefs. In this paper
we will generalize this theory to consider agents who think about other agents
and consider their probable actions.

1.1 Monk

Here is a story about the TV detective Adrian Monk. A woman has fallen off a
fifteenth floor balcony and is lying on the pavement, dead of course. A policeman
arrives and a little later Adrian Monk arrives. “We don’t know yet if it was
murder or suicide” says the policeman.

“It was murder,” says Monk.
“But you just arrived! How can you know?”
“She was in the middle of painting her nails,” says Monk.

Now we all agree that a woman does not paint half her nails and then commit
suicide without painting the other half. Perhaps she was in despair because she
ran out of paint but that is not very likely. Murder is the far more plausible
explanation. Since Monk is unable to answer the question, “Why might she
commit suicide at that moment?” he concludes that it was murder.
1 She is separated from him by a big rock so he cannot see her but could hear her cries

of pleasure.
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This paper attempts connect beliefs and desires with actions. We offer some
examples from literature, from real life and offer a formal framework. But we
will be guided by the following intuition. If, given an agent’s desires and beliefs,
action s is definitely worse than action s’ then the agent will not do action s. If
the agent does do action s then we can conclude that we were wrong about the
beliefs or desires.

Of course the agent might be irrational. All of us have met irrational people.
But the scenarios we consider are so simple that irrationality is unlikely to be
an explanation. And even an irrational person is predictable to some extent.
Someone who claims to be Napoleon will most likely speak (bad) French but
will not pretend to speak Mandarin.

2 Animal Cognition

2.1 Inducing False Beliefs in the Tigers of the Sundarbans

The Sundarbans are an area at the border of India and Bangladesh where lush
forests grow and tiger attacks on humans have been common [14].

Fishermen and bushmen then created masks made to look like faces to wear
on the back of their heads because tigers always attack from behind. The payoff
matrix for the tiger is below.

face noface
attack −20 100

not attack 0 0

If the tiger sees a face then his dominant strategy is not to attack since there
might be resistance. Thus not attacking is dominant. If the tiger does not see a
face then attacking is the dominant strategy.

Thus the fishermen changed the dominant strategy of the tiger by changing
its beliefs.2 In 1987 no one wearing a mask was killed by a tiger, but 29 people
without masks were killed.

Unfortunately the tigers eventually realized it was a hoax, and the attacks
resumed.3

2.2 The Tiger in the Bathroom

Suppose I know T , that there is a tiger in your bathroom. I also know that you
need to go.

If ∼ Ky(T ) then you will proceed to the bathroom (The y stands for you).
If Ky(T ) then you will go the neighbor’s apartment and ask if you can use

his bathroom. Or perhaps you will call your mother for advice.
So I can infer what you know from what you do.

2 I am using the word belief in a weak sense in which we can use it for non-linguistic
creatures.

3 Something which puzzles me is how they passed the knowledge “it is a hoax” from
one tiger to another. Tigers are solitary beasts and do not have cellphones.
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There is one proposition, “a tiger is in the bathroom” which may be true or
false, and two possible actions for you.

tiger no tiger
use own bathroom −20000 10
neighbor bathroom −5 −5

The −5 in the second row has to do with the fact that going to the neighbor’s
bathroom has a social cost.

If you know about the tiger then the bottom row dominates the top row. If
you do not know about the tiger and “no tiger” is your default assumption, then
the top row dominates.

What about me? If I see you heading to your own bathroom then I conclude
you do not know about the tiger. Under most circumstances my own dominant
strategy is to tell you about the tiger. But perhaps I want you to be eaten by
the tiger. Then I will not tell you. So my own payoffs are also involved in what
I do.

For people not familiar with epistemic logic or Kripke structures, there is a
short appendix just before the bibliography.

3 A formal framework

We have n players and some propositions P about the world whose truth value
they may or may not know. T is all truth assignments on P .

We define an epistemic game with n players to be a map F from T (truth
assignments) and S (strategy profiles) to P (payoff profiles).

So (F (t, S))i is the payoff to player i when the truth values are according to
t and the strategy profile is S.

We let S−
i = S′′ to mean the strategy profile of all players other than i. We

will drop the subscript i when clear from the context.
Let s, s′ be strategies for i. we let s <i

t s′ to mean (∀S”)(F (t, (s, S′′)i <
F (t, (s′, S′′)i)).

(We will usually assume that payoffs for i are never the same (the game is
generic) so that we need not worry about < and ≤.) In other words s′ is better
than s no matter what the other players do. We will also drop i when clear from
the context.

If φ is a formula, we write s <φ s′ to mean that

for all t |= φ, s <i
t s′.

So if i knows φ and i is rational, i will not play s.

Theorem 3.1. If s <φ s′ and ψ |= φ then s <ψ s′

If s <φ s′ and s <ψ s′ then s <φ∨ψ s′.

Corollary 3.2. The set {φ|s <φ s′} is a filter in the boolean algebra.

Note that if a rational player knows φ and s <φ s′ then the agent will not
play s.
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Moreover if j knows that i knows φ and s <φ s′ then j knows that the agent
i will not play s, and j only needs to respond to strategies other than s.

Indeed what j knows about what other players know allows j to reduce the
strategy profiles that he needs to respond to.

Definition 3.3. An infon α for agent i is a pair (t, S) where t is a truth assign-
ment and S is an (n − 1)-tuple of the other players’ strategies.

In a generic game an infon α generates a unique strategy b(α) for agent i
which yields the highest value given the infon.

A state of knowledge for agent i is a set X of infons.
A strategy s is rational for agent i relative to a state of knowledge X if

s ∈ {b(α)|α ∈ X}.
If X ⊆ Y and s is rational relative to X then it is rational relative to Y .
The less you know, the more rational you are!
A strategy profile (s1, . . . , sn) is rational for the agents relative to a tuple of

knowledge (X1, . . . , Xn) if each si is rational relative to Xi.
However, not all n-tuples (X1, . . . , Xn) are possible. For instance if i knows

that j knows P then j cannot be playing a strategy t which is dominated when
P is true. And i herself cannot be playing a strategy which is dominated when
j is not playing t.

So there are connections among the Xi which we have yet to fully investigate.

4 Payoffs

As an agent comes to know more about the world and about the other players, her
rational strategies decrease. We show now that this has the effect of increasing
her minimum payoffs.4

Given an agent i and an infon α we can define p(s, α) where α = (t, S). Let
S+ be the strategy obtained by combining s with S, i.e. combining i’s strategy
with the strategy profile of the other players.

Then p(s, α) = F (t, S+)i, i.e. the payoff to i when the world is according to
t and the total strategy profile is S+.

We define g(s,X) the guaranteed payoff to i given that i plays s, and the
actual world is among the infons in X.

g(s,X) = min[p(s, α) : α ∈ X]

And finally we define the guaranteed payoff to i, G(i, x), if i acts rationally
to be

max[g(s,X) : s ∈ Si] where Si is all possible strategies for i

4 We have not yet defined ‘rational’ so we will temporarily rely on an intuitive meaning
of the word. A precise definition will be provided in the next section.
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It does not matter here if we count all strategies for i or only the ones which
are rational since the maximum will not be achieved by a strategy which is not
rational (or if it is, it will be achieved also by one which is rational).

Theorem 4.1. If X ⊆ Y then G(i, Y ) ≤ G(i,X).

Proof: clearly min[p(s, α) : α ∈ Y ] ≤ min[p(s, α) : α ∈ X].
And since G(i,X) = max[g(s,X) : s ∈ Si] and G(i, Y ) = max[g(s, Y ) : s ∈

Si], G(i, Y ) ≤ G(i,X).
What i can guarantee if she knows X is more than what she can guarantee

if she knows Y . �

Alas, the possible maximum can come down when i knows more. But she
should not worry about her dashed hopes because these were not real anyway.
But the important point we are making is that exchange of information leads
to a decrease in the various Xi, states of knowledge of different agents, and an
increase in the minimum possible payoff for each agent.

5 Rationalizability

The notion of rationalizability and dominated strategy have been much discussed
in the literature [12]. When there is common knowledge of rationality then player
i knows that player j will not play a dominated strategy. Given this some of
player i’s own strategies can become dominated and i will eliminate them in turn.
When this process of elimination of dominated strategies ends, the strategies
which remain are the rationalizable ones.

Let us give an example. Suppose player 1 has three strategies a, b, e. Player
2 also has three strategies c, d, f.

a is the best reply to c, f. c is the best reply to b, e. b is the best reply to d.
And d is the best reply to a.

So e and f are not best replies to anything and are not rationalizable.
The other four strategies a, b, c, d are rationalizable but there is no (pure)

Nash equilibrium.
For instance (a, c) is not a Nash equilibrium because while a is the best reply

to c, d is a better reply than c to a.
However, in this situation we have only one payoff matrix known to everyone.

But if the payoff matrix depends on the world and different players have different
knowledge about the world then the issue becomes complex. But we are confident
that the goal described below can be achieved.

Goal: To define the notion of rationalizability relative to a given Kripke structure
and an epistemic game.

Conjecture: Every strategy rationalizable relative to a Kripke structure is ratio-
nalizable in the usual sense. The reverse of course is not true.

Here is a rough argument. Every piece of knowledge you acquire in terms
of the world or in terms of what another agent does reduces the possibilities of
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strategy profiles you face. That means that the relation of dominance becomes
larger. So some strategies which might have been rational are so no longer. This
happens not only when you yourself learn about the world but also when you
learn that someone else has learned about the world, or even about the knowledge
of a third agent.

For instance, the strategy of using your own bathroom was rationalizable for
you before you knew about the tiger. But once you know about the tiger, that
strategy is not rationalizable. There are fewer rationalizable strategies when we
know more.

See [15] for some related work involving knowledge growth through asynchro-
nous messages.

Conjecture: Two non-bisimilar Kripke structures yield different sets of ratio-
nalizable strategies in at least one epistemic game.

The rationale here is that in order to find out what an agent believes, about
himself or about other agents, we set up an experiment. The conjecture is that
some experiment will tell us what we want to know.

6 Conclusion

This paper is work in progress. We have described an approach towards under-
standing the behavior of groups of agents, by inferring beliefs by watching
actions, and by affecting actions by affecting beliefs. Almost all we have said
is common sense and the only new thing is to suggest that a formal framework
is possible. We have in fact gone a long way towards defining such a framework
but some more is to come.

Readers of this paper might now enjoy watching episodes of Adrian Monk,
Columbo, or Sherlock Holmes with a new eye and see how the framework applies.

If I may be so daring, even the actions of Obama or Clinton or Trump, and
the way they differ from their statements become explainable.

7 Appendix on Epistemic Logic

We create a language to talk about various knowledge properties in the following
way.

• An atomic predicate P is a formula
• If A,B are formulas then so are ¬A and A ∧ B
• If A is a formula and i is an agent then Ki(A) is a formula
• there are no other formulas.

7.1 Intuition

Intuitively Ki(A) means that the agent i knows the fact expressed by the formula
A. KjKi(A) means that j knows that i knows A.
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7.2 Kripke Structures

Kripke structures are used to interpret the language above.
Kripke structure M for knowledge for n knowers consists of a space W of

states and for each knower i a relation Ri ⊆ W × W .5

There is a map π from W × A −→ {0, 1} which decides the truth value of
atomic formulas at each state.

We now define the truth values of formulas as follows:

1. M,w |= P iff π(w,P ) = 1
2. M,w |= ¬A iff M,w 	|= A
3. M,w |= A ∧ B iff M,w |= A and M,w |= B
4. M,w |= Ki(A) iff (∀t)(wRit → M, t |= A)

Ki(A) holds at w, (i knows A at w) iff A holds at all states t which are Ri

accessible from w.

7.3 Axiom System

1. All tautologies of the propositional calculus
2. Ki(A → B) → (Ki(A) → Ki(B))
3. Ki(A) → A
4. Ki(A) → KiKi(A)
5. ¬Ki(A) → Ki(¬Ki(A))

There are also two rules of inference. Modus Ponens, to infer B from A and
A → B. And the other is generalization, to infer Ki(A) from A.

The second rule does not say that if A is true than i knows it. Only that if
A is a logical truth then i knows it.

These rules are complete. All valid formulas are provable using the axioms
and rules. For a bit more detail, see [6].

7.4 Revising Kripke Structures When an Announcement is Made

Suppose we are given a Kripke structure M. Then some formula φ is announced
publicly.

The new Kripke structure is then obtained by deleting all states in M where
φ did not hold. See for instance [9].

Acknowledgement. Dov Samet very kindly showed me some related work of his [2]
which does talk about dominated strategies. This work was done independently of
ours and has some elegant ideas. But he and his co-author do not make use of Kripke
structures, or, for that matter, detectives and tigers! Thanks to David Makinson for
comments. This research was supported by grants from the CUNY Faculty research
assistance program.

5 The Ri are often assumed to be equivalence relations and we shall follow this
tradition.
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Abstract. In the standard epistemic logic, the knowledge operator is
represented as a box operator, a universal quantifier over a set of possible
worlds. There is an alternative approach to the semantics of knowledge,
according to which an agent a knows α iff a has a reliable (e.g. sensory)
evidence that supports α. In this interpretation, knowledge is viewed
rather as an existential, i.e. a diamond modality. In this paper, we will
propose a formal semantics for substructural logics that allows to model
knowledge on the basis of this intuition. The framework is strongly moti-
vated by a similar semantics introduced in [3]. However, as we will argue,
our framework overcomes some unintuitive features of the semantics from
[3]. Most importantly, knowledge does not distribute over disjunction in
our logic.

Keywords: Epistemic logic · Substructural logic · Knowledge

1 Introduction

In the standard epistemic logic, as is described for example in [5], the knowl-
edge operator is usually equipped with the following semantic clause: An agent
a knows that α iff α is true in every possible world accessible to the agent a. The
accessible worlds represent possibilities that are not excluded by the a’s infor-
mation state. So, in the terminology of modal logic, knowledge is standardly
modeled as a box operator, a universal quantifier that quantifies over a set of
possible worlds. However, there is also an alternative approach to the logic of
knowledge: The agent a knows that α iff a has a reliable (e.g. sensory) evidence
that supports α. In this interpretation, knowledge is viewed rather as an existen-
tial modality, similarly to the “diamond operator” of modal logic. In this paper,
we will propose a formal semantics for substructural logics that allows to model
knowledge on the basis of this intuition. The framework is strongly motivated
by a similar semantics introduced in [3], which in turn builds on [2,6]. This kind
of semantics was also discussed in [11]. We will provide a detailed comparison
of our framework with the semantics from [3] and we will argue that the former
overcomes some of the unintuitive features of the latter. Most importantly, our
logic does not validate the following problematic law:

V. Punčochář—The work on this paper was supported by grant no. 16-07954J of the
Czech Science Foundation.
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if a knows that α ∨ β, then a knows that α or a knows that β.

Distributivity over disjunction is characteristic of the diamond operators. How-
ever, this principle is not intuitively acceptable if the operator is intended to
represent knowledge.

The idea of regarding knowledge as an existential modality might be reminis-
cent of the recently developed evidence logic [12], in which �α is provided with
an existential semantic condition relative to neighbourhood structures, and the
formula is interpreted as “the agent has evidence for α”. One of the differences
between this and our approach is that evidence logic is based on classical logic,
which, however, suffers from the well-known paradoxes of material implication
and irrelevance.

We will adopt the strategy of [3,11] in that we will model knowledge over a
basic substructural logic λ0. There are several reasons for this strategy: The basic
logic is very weak, so the class of its extensions is large and it encompasses many
important non-classical logical systems including, for example, relevant logics,
fuzzy logics, and superintuitionistic logics. These systems can be obtained syn-
tactically by adding additional axioms and/or semantically by imposing further
constraints on the semantic models. So, rather than a unique intended logical
system, our general epistemic framework will provide a uniform basis from which
one can obtain, by further specifications, various epistemic logics based on vari-
ous non-classical systems.

The basic logic allows for avoiding the validity of the formulas that are usually
regarded as paradigmatic examples of the “paradoxes of material implication and
irrelevance”: e.g. p → (q → p), ¬p → (p → q), (p ∧ ¬p) → q, p → (q ∨ ¬q).

We will work with two languages. The first one will be a propositional lan-
guage that is used in substructural logics and is defined in the following way:

α ::= p | t | ⊥ | � | ¬ α | α → α | α ∧ α | α&α | α ∨ α.

We will call this language L an the formulas of this language L-formulas. Besides
the standard vocabulary of propositional logic (⊥, �, ¬, →, ∧, ∨) L has two
extra symbols: one additional propositional constant t that represents logical
truth (which will not be interpreted in the same way as the universal truth �);
and the so called intentional conjunction & that will differ from the standard
“extensional” conjunction ∧. The intentional conjunction & is a crucial part
of the language L. In substructural logics it is the residual of implication in
the sense that (α&β) → γ is equivalent to α → (β → γ). Interestingly, this
conjunction enables us to represent some form of non-monotonic reasoning. The
conjunction is not monotone in the following sense: in the basic logic λ0, the
formula p → q does not entail (p&r) → q.

We will work also with a language denoted as LK , which is obtained from L
by the addition of the knowledge operator K:

α ::= p | t | ⊥ | � | ¬ α | α → α | α ∧ α | α&α | α ∨ α | Kα.
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2 Two Semantics for Substructural Logics

In this section, we will provide a comparison of two alternative frameworks for
substructural logics. The first one is taken from [10] and it was used in [3] as a
basis for a non-standard epistemic logic. The second one was proposed and used
in [8] as a basis for a logic of questions. It can be viewed as an extension of the
framework that was originally introduced in [4]. This section will be concerned
only with the language L. We will present some results that show that with
respect to this language the two semantics are closely related, and in some sense
equivalent. In the next section, we will show that if we enrich the language with
the knowledge operator, the second framework is significantly richer than the
first one.

First, we will present the semantics for substructural logics that is used in [3].
The semantic structures will be called substructural models. These are structures
of the following kind:

M = 〈W,L,≤, R,C, V 〉,
satisfying the following: W is a nonempty set (of states), ≤ is a partial order on
W , R is a ternary relation on W satisfying the following two conditions:

– if Rxyz and x′ ≤ x, y′ ≤ y, and z ≤ z′, then Rx′y′z′,
– if Rxyz, then Ryxz.

The set of logical states L is a nonempty subset of W that is upward closed w.r.t.
≤, and it holds:

– x ≤ y iff there is z ∈ L such that Rzxy.

C is a binary compatibility relation on W satisfying:

– if xCy and x′ ≤ x, then x′Cy,
– if xCy, then yCx.

The valuation V assigns to every atomic formula an upward closed subset of W .
Given a substructural model, a relation � is defined between the elements of

W and L-formulas in the following way. For the atomic formulas and constants,
we define:

– x � p iff x ∈ V (p); x � t iff x ∈ L; x � ⊥; x � �.

For the complex formulas, we adopt the following semantic clauses:

– x � ¬α iff for any y, if xCy, then y � α,
– x � α → β iff for any y, z, if Rxyz and y � α, then z � β,
– x � α ∧ β iff x � α and x � β,
– x � α&β iff there are y, z such that y � α, z � β, and Ryzx,
– x � α ∨ β iff x � α or x � β.
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The relation � is called a satisfaction relation in [3]. We will denote it as a
support relation.

An L-formula α is valid in a substructural model M iff α is supported by
every logical state of M, i.e. for every x ∈ L, x � α. A consequence of this
definition is that a formula of the form α → β is valid in M iff for any state
x ∈ W , if x supports α, then x supports β. We will denote the set of formulas
that are valid in M as Log�(M).

An intuitive interpretation of this kind of semantics, and especially of the
ternary relation, was worked out for example in [1,7,9]. We will compare this
framework with an alternative semantics that can be interpreted in a similar
fashion and that is a version of the semantics used in [8]. We will call the semantic
structures of this alternative framework information models. These are structures
of this kind:

N = 〈 A,+,×, ·, 0, 1, C, V 〉,
where A is an arbitrary nonempty set (of states); +, × and · are binary operations
on A (join, meet, and fusion of states); 0 and 1 are two different elements of A
(trivially inconsistent and logical state); C is again a binary relation among
states that is interpreted as a compatibility relation; and V is a valuation. We
assume that 〈A,+,×〉 is a distributive lattice1 that determines an ordering ≤
on A defined in this way: a ≤ b iff a + b = b. Moreover, we assume that the
following hold generally:

– 0 + a = a; 0 · a = 0; 1 · a = a;
– a · b = b · a; a · (b + c) = (a · b) + (a · c);
– there is no a such that 0Ca; if aCb, then bCa; (a + b)Cc iff aCc or bCc;
– V (p) is an ideal, i.e. 0 ∈ V (p); a + b ∈ V (p) iff a ∈ V (p) and b ∈ V (p).

Note that 0 is the least element of the structure but 1 does not have to be the
top element. With respect to a given information model N a support relation
� between its states and L-formulas is defined in the following way. For atomic
formulas and the constants we have:

– a � p iff a ∈ V (p); a � t iff a ≤ 1; a � ⊥ iff a = 0; a � �.

For complex formulas, we define:

– a � ¬α iff for any b, if aCb, then b � α,
– a � α → β iff for any b, if b � α, then a · b � β,
– a � α ∧ β iff a � α and a � β,
– a � α&β iff there are b, c such that b � α, c � β, and a ≤ b · c,
– a � α ∨ β iff there are b, c such that b � α, c � β, and a ≤ b + c.

1 The operation × will not be directly used in the semantic conditions determining the
support relation. However, its presence and the requirement that the lattice 〈A, +, ×〉
is distributive results in the validity of the axiom (α ∧ (β ∨ γ)) → ((α ∧ β) ∨ (α ∧ γ))
that is a part of the system from [3] (the system is formulated below).
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An L-formula α is valid in an information model N iff α is supported by the
state 1 of N , i.e. 1 � α. Similarly to substructural models, a formula of the form
α → β is valid in N iff for any a ∈ A, if a supports α, then a supports β. We
will denote the set of formulas that are valid in N as Log�(N ).

Let M be a substructural model and N an information model. The set of
states of M that support α w.r.t. the relation � will be called the proposition
expressed by α in M and it will be denoted as ||α||M. Similarly, the set of states
of N that support α w.r.t. the relation � will be called the proposition expressed
by α in N and it will be denoted as ||α||N .

The following result shows an important difference between the two frame-
works. It says that propositions (meanings of formulas) in substructural models
are upward closed sets of states, while propositions in information models are
ideals.
Theorem 1. Let α be an L-formula and let M be a substructural model and N
an information model. Then it holds:
(a) ||α||M is an upward closed set in M,
(b) ||α||N is an ideal in N .

An important connection between the two frameworks is revealed in the
following construction. For any substructural model M = 〈W,L,≤, R,C, V 〉 we
can construct an “equivalent” information model Mi = 〈A,+,×, ·, 0, 1, Ci, V i〉
in the following way:
– A is the set of upward closed sets of states in M;
– u + v = u ∪ v; u × v = u ∩ v;
– u · v = {z ∈ W ; there are x ∈ u and y ∈ v such that Rxyz};
– 0 = ∅; 1 = L;
– uCiv iff there are x ∈ u and y ∈ v such that xCy;
– u ∈ V i(p) iff u ⊆ V (p).

Note that the ordering on Mi is inclusion ⊆.
Theorem 2. If M is a substructural model, then Mi is an information model.

Theorem 3. Let α be an L-formula, M a substructural model, and u an upward
closed set of its states. Then it holds:

u � α in Mi iff u ⊆ ||α||M.

Corollary 1. Let M be a substructural model. Then it holds: Log�(M) =
Log�(Mi).

The set of L-formulas that are valid in all substructural models is axiomatized
in [3] by a Hilbert axiomatic system consisting of the following axioms:

α → α (α ∧ (β ∨ γ)) → ((α ∧ β) ∨ (α ∧ γ))
(α ∧ β) → α (α ∧ β) → β
α → (α ∨ β) β → (α ∨ β)
α → � ⊥ → α

and the following one-sided (with /) and two-sided (with //) rules:2

2 A two-sided rule of the form ϕ//ψ means that ϕ and ψ are mutually inferable.
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α, α → β/β α → β, β → γ/α → γ
γ → α, γ → β/γ → (α ∧ β) α → γ, β → γ/(α ∨ β) → γ
α → (β → γ)//(α&β) → γ α → (β → γ)//β → (α → γ)
α → ¬β//β → ¬α t → α//α

The logic is a distributive, commutative and non-associative full Lambek calculus
with a paraconsistent negation.3 We will denote the axiomatic system, as well
as the logic determined by the system, as λ0. Completeness can be proved via
a canonical model construction. We will present the construction in a general
form that can be applied to any logic extending λ0.

Definition 1. An L-logic over λ0 is any set of L-formulas λ that satisfies the
following three conditions: (a) λ contains all the axioms of λ0, (b) λ is closed
under the rules of λ0, (c) λ is closed under uniform substitutions of L-formulas.

Definition 2. Let λ be an L-logic over λ0. A nonempty set of L-formulas Δ is
an λ-theory if it satisfies the following two conditions:

(a) if α ∈ Δ and β ∈ Δ, then α ∧ β ∈ Δ,
(b) if α ∈ Δ and α → β ∈ λ, then β ∈ Δ.

Let Δ be a λ-theory. We say that Δ is prime if Δ �= L and it holds:

(c) if α ∨ β ∈ Δ, then α ∈ Δ or β ∈ Δ.

In accordance with [10], we will introduce a general construction of a canonical
model for any L-logic over λ0.

Definition 3. Let λ be an L-logic over λ0. The canonical substructural model
of λ is the structure

– Mλ = 〈Wλ, Lλ,≤λ, Rλ, Cλ, V λ〉, where
– W is the set of all prime λ-theories,
– Δ ∈ Lλ iff t ∈ Δ,
– Δ ≤λ Γ iff Δ ⊆ Γ ,
– RλΔΓΩ iff for all L-formulas α, β, if α → β ∈ Δ and α ∈ Γ , then β ∈ Ω,
– ΔCλΓ iff for every L-formula α, if ¬α ∈ Δ, then α /∈ Γ ,
– Δ ∈ V (p) iff p ∈ Δ.

Now it can be verified that Mλ is indeed a substructural model. Moreover, it
holds for every prime λ-theory Δ and every L-formula α that

Δ � α in Mλ iff α ∈ Δ.

As a consequence, λ is exactly the set of formulas valid in Mλ. It follows that
the system λ0 is complete with respect to the class of all substructural models:
if α is not provable in λ0, then it is not valid in the substructural model Mλ0 .
Soundness can be verified in a mechanical way.
3 The logic is paraconsistent in the sense that (p ∧ ¬p) → q is not a derivable formula

in the system.
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The completeness of λ0 with respect to information models can be proved in
a similar fashion.4 The canonical model is not constructed from prime λ-theories
but from all λ-theories.

Definition 4. Let λ be an L-logic over λ0. The canonical information model of
λ is the structure

– Nλ = 〈Aλ,+λ,×λ, ·λ, 0λ, 1λ, Cλ, Vλ〉, where
– Aλ is the set of all λ-theories,
– Δ +λ Γ = Δ ∩ Γ ,
– Δ ×λ Γ = {α; for some δ ∈ Δ and γ ∈ Γ, (γ ∧ δ) → α ∈ λ},
– Δ ·λ Γ = {α; for some δ ∈ Δ and γ ∈ Γ, (γ&δ) → α ∈ λ},
– 0λ is the set of all L-formulas,
– 1λ = λ,
– ΔCλΓ iff for every L-formula α, if ¬α ∈ Δ, then α /∈ Γ ,
– Δ ∈ Vλ(p) iff p ∈ Δ.

Note that the induced ordering is the superset relation ⊇. Again, it can be
verified that Nλ is indeed an information model and that for every λ-theory Δ
and every L-formula α it holds that

Δ � α in Nλ iff α ∈ Δ.

As in the case of substructural models, completeness of λ0 w.r.t. the class of all
information models follows from this fact.

3 Knowledge as an Existential Modality

In this section, we will discuss extensions of the two frameworks that provide
semantics to the knowledge operator. The main contribution of the paper [3] is
an extension of substructural models by an additional binary relation S that is
interpreted as a relation of “being a reliable source”.

Definition 5. An epistemic substructural model is a pair 〈M, S〉, where M =
〈W,L,≤, R,C, V 〉, is a substructural model and S is a binary relation on W
satisfying:

(a) if xSy, then x ≤ y,
(b) if xSy, then xCy,
(c) if xSy, x′ ≤ x, and y ≤ y′, then x′Sy′.

“xSy” is read as “the state x is a reliable source of the state y”. The conditions
(a)-(c) express basic restrictions that are required for such a relation. The con-
dition (a) guarantees that every state incorporates all the information that is
contained in all of its reliable sources. The condition (b) says that every state
4 In [8] a slightly modified version of this result was proved. In that paper we do not

assume commutativity of fusion and distributivity of the lattice. Completeness of a
weaker system w.r.t. the resulting class of models was proved.
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is compatible with its reliable sources. And the condition (c) says that if x is a
reliable source of y, then every state that is informationally contained in x is a
reliable source for every state that extends y.

The relation � can now be defined for the language LK . The semantics for the
logical symbols of the language L are determined by the same clauses as in the
previous section. The semantics of the knowledge operator K is determined with
the help of the relation S. For a state x of a given epistemic substructural model,
let S(x) denote the set of reliable sources of x, that is S(x) = {y ∈ W ; ySx}.

x � Kα iff there is y ∈ S(x) such that y � α.

We will assume that the knowledge operator is relative to an agent. The semantic
clause says that the agent knows α in the state x iff α is supported by a reliable
source of x.

A basic feature of the semantics is that the support of all LK-formulas is
upward persistent, i.e. propositions expressed by LK-formulas are upward closed
sets of states, which extends Theorem 1-(a).

Let x be a state of an epistemic substructural model. Let |x| denote the set of
LK-formulas α that are supported by x. The set |x| can be very well inconsistent
in the sense that it can contain a formula as well as its negation. It follows from
the required conditions that the operator K selects a consistent part of x. That
is, if we define |x|K = {α ∈ LK ;Kα ∈ |x|}, then there is no LK-formula β such
that both β and ¬β would be in |x|K .

The semantics based on the class of epistemic substructural models deter-
mines a logic for the language LK . It can be axiomatized as an extension of the
system λ0 by the following three axioms and one rule:

R1 α → β/Kα → Kβ.
A1 Kα → α,
A2 (¬α ∧ Kα) → ⊥,
A3 K(α ∨ β) → (Kα ∨ Kβ),

Let us denote the system consisting of the axioms and rules of λ0 plus the rule
R1 as λK

0 . If one or more axioms from A1-A3 are added to λK
0 , this will be

indicated by the respective indexes. For example, the system consisting of the
axioms and rules of λK

0 plus the axioms A1 and A2 will be denoted as λK
12.

It was proved in [3] that the system λK
123 is sound and complete with respect

to the class of epistemic substructural models. Completeness was proved by an
extension of the canonical model construction.

Definition 6. An LK-logic over λK
0 is any set of LK-formulas λ that satisfies

the following three conditions: (a) λ contains all the axioms of λK
0 , (b) λ is

closed under the rules of λK
0 , (c) λ is closed under uniform substitutions of

LK-formulas.

For any LK-logic over λK
0 , denoted as λ, we define the notion of a λ-theory and

a prime λ-theory in the same way as in Definition 2.
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Definition 7. Let λ be an LK-logic over λK
0 that contains all instances of the

axioms A1-A3. The canonical epistemic substructural model of λ is the structure
Mλ

K = 〈Mλ, Sλ〉, where Mλ is constructed from the prime λ-theories in the
same way as in Definition 3, and Sλ is defined in the following way:

ΔSλΓ iff for every LK − formula α, if α ∈ Δ, then K α ∈ Γ.

Under the assumption that λ contains all instances of the axioms A1-A3, the
resulting structure is an epistemic substructural model and it holds for any prime
λ-theory Δ and any LK-formula α that

Δ � α in Mλ
K iff α ∈ Δ.

This gives us the completeness of the system λK
123 w.r.t. the class of all epistemic

substructural models.
Let us now informally discuss the principles A1–A3 and R1 as candidates for

the principles characterizing a logic of knowledge based on substructural logics.
The rule R1 can be criticized on the basis that it leads to a weak version of the
problem of omniscience. However, we will not concentrate on this problem in the
present paper and we will treat this rule as unproblematic. In other words, we
assume that some form of implicit knowledge counts also as knowledge, which
has to be the case if the validity of R1 is assumed (i.e. the claim that α logically
implies β entails the claim that knowing α logically implies knowing β).

A1 is usually regarded as a characteristic principle of the knowledge operator
which distinguishes it from belief. We do not regard this principle as controver-
sial. However, the axiom A1 is denoted as “truth principle” in [3], which is slightly
misleading in the context of the whole framework of (epistemic) substructural
models. It is reasonable to use the term “truth” if one uses the notion of a pos-
sible world. Truth can be understood as a relation between sentences (formulas)
and possible worlds. However, the (epistemic) substructural models consist of
information states, bodies of information that can be incomplete and/or incon-
sistent. Formulas are evaluated with respect to these bodies and there is no need
of a “reality” behind these bodies that would enter into the semantic picture.
Then the principle A1 should be read as “the information supporting the claim
that the agent knows α supports also α” rather than as “if it is true that the
agent knows α, then α has to be true as well”.

Before we discuss the plausibility of A2 let us reflect more carefully on the
role of the knowledge operator in the framework. What is the intended meaning
of the metaclaim “x � Kα”. This claim has two alternative readings. According
to the first reading “x � Kα” means that

r-a: if x is the agent’s information state, then the agent knows α.

The second reading is that

r-b: according to the information state x, the agent knows α.

It seems that r-a is the intended reading in [3]. However, we will prefer r-b (which
resembles the interpretation from [11]) for the following two reasons: first, if we
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adopt r-a, it is rather difficult to provide a coherent interpretation of iterated
knowledge operator (as in KKp); second, if r-b is adopted, support of Kα by a
state and support of the other types of complex formulas are interpreted along
the same lines. We will see that the two readings have different impacts on the
acceptability of some logical principles.

A2 would be equivalent to A1 if the background logic for the language L was
classical. However, the two formulas have “different meaning” over substructural
logics. In the framework of epistemic substructural models validity of the axiom
A2 amounts to saying that there cannot be a state that supports both ¬α and
Kα. However, this principle seems to be problematic in both readings r-a and
r-b. Consider r-a first. For example, let p represent the sentence “Peter is in
Prague”. Suppose that the agent has a strong evidence supporting this claim.
For example, she herself is in Prague and just has seen clearly Peter walking
on a street. This evidence serves as a reliable source of the agent’s state, so her
state supports Kp. But at the same time, someone told the agent yesterday that
Peter would not be in Prague. So, the agent’s state supports also ¬p. These two
pieces of information are incompatible but that is fine, since we do not exclude
states that support conflicting information.

A principle that would be a more plausible alternative to A2 with respect to
the reading r-a, is the following modification of A2:

A4 (K¬α ∧ Kα) → ⊥.

In the presence of A1 (but not without A1), A4 is weaker than A2. It amounts
to saying that there cannot be a state that would support both K¬α and Kα.
It is an acceptable idealizing assumption that reliable sources cannot give us
conflicting information. We obtain an adequate semantics for λK

134 if we define
epistemic substructural models in such a way that we replace the condition (b)
in Definition 5 by

(b’) if xSz and ySz, then xCy.

The system λK
134 is sound and complete with respect to this modified semantics.

However, if we adopt the reading r-b, even the weaker axiom A4 seems to be
problematic. If we do not exclude information states that support incompatible
information, it is also reasonable not to exclude states that support incompati-
ble information about the knowledge of the agent. As there can be some weak
evidence that α and at the same time some weak evidence that ¬α, there can
also be some weak evidence that the agent knows α and at the same time some
weak evidence that the agent knows ¬α.

But it is easy to avoid the validity of A2, or its modification A4, completely.
It suffices simply to require in Definition 5 neither the condition (b), nor its
modification (b’). λK

13 is sound and complete w.r.t. the resulting class of models.
Far the most problematic and the most controversial from the four principles,

if we interpret K as knowledge, is the axiom A3. It should be possible to have
information states according to which the agent knows a disjunction without
knowing any of its disjuncts. However, the axiom holds throughout the class of all
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substructural models. If a state x in a substructural model supports K(α∨β) this
means that there is a source that supports α∨β. But this means that the source
supports α or β, so x supports Kα∨Kβ. The standard condition for disjunction,
in the interaction with the existential modality, leads straightforwardly to the
validity of the axiom. So, it is not possible to avoid the validity of the axiom A3
as easily as the validity of A2.

If one wants to define knowledge by an existential clause and at the same
time not to validate A3, one needs an alternative semantic clause for disjunction,
as in the semantics based on information models. We would like to stress that
such a non-standard condition is natural, if the points in the semantic structures
are interpreted as bodies of information. A body of information may naturally
support a disjunction without supporting any of its disjuncts. The standard con-
dition for disjunction is natural in frameworks that are based on truth conditions
relative to possible worlds (a disjunction is true iff at least one of the disjuncts
is true) but not in frameworks that are based on support conditions relative to
bodies of information.

Definition 8. Let E be a pair 〈N , S〉, where N = 〈A,+,×, ·, 0, 1, C, V 〉 is an
information model, and S is a binary relation on A. Consider the following
conditions:

(a) 0S0,
(b) if aSb, a ≤ a′, and b′ ≤ b, then a′Sb′,
(c) if aSb and aSc, then aS(b + c),
(d) if aSb, then b ≤ a,
(e) if aSb and b �= 0, then aCb,
(f) if aSb, cSb, and b �= 0, then aCc.

We say that E is an epistemic information model if it satisfies the conditions
(a)–(c). E is an intended epistemic information model if it satisfies (a)–(d). E is
a strong epistemic information model if it satisfies (a)–(e). E is a full epistemic
information model if it satisfies (a)–(d) and (f).

Again, let us define for any state a of any epistemic information model the
set of its sources S(a) = {b ∈ A; bSa} and add to the semantics the following
clause:

a � Kα iff there is b ∈ S(a) such that b � α.

It holds for any epistemic information model that propositions expressed by LK-
formulas are ideals, which extends Theorem1-(b). We will show that there are
(even strong and full) epistemic information models where A3 fails. Consider the
following lattice:
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0

a

b c

1

We define an epistemic information model in the following way: A is the set
{0, a, b, c, 1}; + is the join of the lattice; × is identical with · and it is the meet
of the lattice; xCy iff x �= 0 and y �= 0; S = {〈d, 0〉; d ∈ A} ∪ {〈1, a〉}; V (p) is
the ideal generated by b, i.e. V (p) = {0, a, b}, and V (q) is the ideal generated
by q, i.e. V (q) = {0, a, c}. The resulted structure is a strong and full epistemic
information model and it holds: a supports K(p ∨ q) but a does not support
Kp ∨ Kq.

Definition 9. Let λ be an LK-logic over λK
0 . The canonical epistemic infor-

mation model of λ is the structure N K
λ = 〈Nλ, Sλ〉, where Nλ is constructed

from the λ-theories in the same way as in Definition 4, and Sλ is defined in the
following way:

ΔSλΓ iff for every LK−formula α, if α ∈ Δ, then K α ∈ Γ.

Theorem 4. Let λ be an LK-logic over λK
0 . The structure N K

λ is an epistemic
information model. Moreover, it holds for any λ-theory Δ and any LK-formula
α that

Δ � α in N K
λ iff α ∈ Δ.

Theorem 5. Let λ be an LK-logic over λK
0 . Then (a) λK

0 is sound and complete
w.r.t. the class of epistemic information models; (b) λK

1 is sound and complete
w.r.t. the class of intended epistemic information models; (c) λK

12 is sound and
complete w.r.t. the class of strong epistemic information models; (d) λK

14 is sound
and complete w.r.t. the class of full epistemic information models.

We have succeeded in avoiding the unwanted law A3. Now, we will characterize
the class of frames that validate the law.

Definition 10. An epistemic information frame is an epistemic information
model without the valuation. If an epistemic information frame F is obtained
from an epistemic information model E in this way, we say that E is a model on
F . An LK-formula α is valid in an epistemic information frame F if α is valid
in every model on F . A schema characterizes a class of frames C if it holds that
every instance of the schema is valid in F iff F ∈ C.

Definition 11. An epistemic information frame is called source-distributive if
its source relation S has the following property:

if (a + b)Sc then there are d, e such that aSd and bSe and c ≤ d + e.
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An epistemic information model on a source-distributive frame is also called
source-distributive.

Theorem 6. The schema A3 characterizes the class of source-distributive epis-
temic information frames.

Now we can extend the constructions from the previous section revealing
a relation between the framework of epistemic substructural models and frame-
work of source-distributive strong epistemic information models. Let D = 〈M, S〉
be an epistemic substructural model. We define Di as the pair 〈Mi, Si〉, where
Mi is defined as in the previous section from the upward closed sets in M and
Si is defined as follows. For any upward closed sets u, v in M:

uSiv iff for every y ∈ v there is x ∈ u such that xSy.

Theorem 7. If D is an epistemic substructural model, then Di is a source-
distributive strong epistemic information model.

Theorem 8. Let α be an LK-formula, D an epistemic substructural model, and
u an upward closed set of its states. Then it holds:

u � α in Di iff u ⊆ ||α||D.

Corollary 2. Let D be an epistemic substructural model. Then it holds:
Log�(D) = Log�(Di).

4 Conclusion

In this paper, we have compared two semantics for substructural logics, one of
them, based on substructural models, used in [3] as a basis for a non-standard
epistemic logic, and the second one, based on information models, used in [8]
as a basis for a logic of questions. We have presented results showing that the
two frameworks are intimately related and determine the same logic as regards
the language without modalities. However, if we add an existential modality
into these two frameworks, the framework of information models is richer and
especially suitable if we interpret the modality as knowledge, since in it, unlike in
the framework of substructural models, we are not forced to accept the principle
that the modality distributes over disjunction.

Appendix

In the Appendix, we will provide proofs of the results of the paper. For the proof
of Theorem 1-(a), see [10]. The proof of 1-(b) is contained in [8].

Proof of Theorem 2: We are proving that Mi = 〈A,+,×, ·, 0, 1, Ci, V i〉 is an
information model, so we have to verify that all conditions from the definition
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of information models are satisfied. Since + is union and × intersection, it is
immediate that 〈A,+,×〉 is a distributive lattice. Since 0 is the empty set, we
also immediately get 0+a = 0 and 0 ·a = 0. The definition of · leads also directly
to its distributivity over union. Moreover, · is commutative, since Rxyz implies
Ryxz.

We will verify that 1 · a = a. We have to show that for any upward closed
set u it holds that L · u = u. First, assume that z ∈ L · u. So, there is x ∈ L and
y ∈ u such that Rxyz. Then it holds that y ≤ z. Since u is upward closed, it
follows that z ∈ u. Second, assume z ∈ u. Since z ≤ z, there is some x ∈ L such
that Rxzz. It follows that z ∈ L · u.

The conditions related to the compatibility relation can be easily verified.
Moreover, since the ordering in Mi is inclusion, it holds for any atomic formula
p that V i(p) is the principal ideal generated by V (p).

Proof of Theorem 3: We are proving that for every upward closed set of states
u it holds that u � α in Mi iff for all x ∈ u, x � α in M. We can proceed by
induction on the complexity of α. The case of atomic formulas as well as the
constants ⊥,�, t is straightforward. As the induction hypothesis we assume that
the statement holds for some L-formulas α and β.

Negation: First, assume that u � ¬β. Then for some v, uCiv and v � β, i.e. for
all x ∈ v, x � β. Then for some v there are y ∈ u and z ∈ v such that yCz and
z � β. So for some y ∈ u, y � ¬β.

Second, assume that for some y ∈ u, y � ¬β, i.e. for some z, yCz and z � β.
Take v = {w ∈ W ; z ≤ w}. Then uCiv and for all x ∈ v, x � β, i.e. v � β. So
u � ¬β.

Implication: First, assume that u � α → β. This means that there is an upward
closed set v such that v � α but u · v � β. Then it follows from the induction
hypothesis that every state of v supports α in M and there is a state z ∈ u · v
such that z � β. So, there are x ∈ u and y ∈ v such that Rxyz. Since y � α and
z � β, it follows that x � α → β.

Second, assume that for some x ∈ u, x � α → β. That means that there are
y, z such that Rxyz, and y � α and z � β. Let v be the set {w ∈ W ; y ≤ w}.
Then z ∈ u · v and it follows that u · v � β. Moreover, v � α, so u � α → β.

Conjunctions: The step for the conjunction ∧ is straightforward. We will show
the step for the intentional conjunction &. First, assume that u � α&β. So, there
are v1, v2 such that v1 � α, v2 � β, and u ⊆ v1 · v2. Take an arbitrary state
x ∈ u. Then x ∈ v1 · v2, which means that there are y ∈ v1 (so y � α) and z ∈ v2
(so z � β) such that Ryzx. Therefore, x � α&β.

Second, assume that for every x ∈ u, x � α&β. So, for every x ∈ u, there are
y, z ∈ W such that y � α, z � β, and Ryzx. For every x ∈ u, let us select some
y, z with this property and denote them yx and zx. Now we define

v1 =
⋃

x∈u
{w ∈ W ; yx ≤ w},

v2 =
⋃

x∈u
{w ∈ W ; zx ≤ w}.

Then v1 � α and v2 � β. Moreover, u ⊆ v1 · v2. It follows that u � α&β.
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Disjunction: First, assume that u � α ∨ β. So, there are v1, v2 such that v1 � α,
v2 � β, and u ⊆ v1 ∪ v2. Take an arbitrary state x ∈ u. Then x ∈ v1 or x ∈ v2,
so x � α or x � β. Therefore, x � α ∨ β.

Second, assume that for every x ∈ u, x � α ∨ β. So, for every x ∈ u, x � α
or x � β. Take v1 = ||α||M and v2 = ||β||M. Then v1 � α and v2 � β. Moreover,
u ⊆ v1 ∪ v2. It follows that u � α ∨ β.

Proof of Theorem 4: To show that N K
λ is an epistemic information model we

have to verify the conditions (a)–(c) from Definition 8 which is straightforward.
We will show the inductive step for K in the proof of the claim that Δ � α iff
α ∈ Δ. Assume that the claim holds for some LK-formula β. We have to prove
that Kβ ∈ Δ iff there is a λ-theory Γ such that ΓSλΔ and β ∈ Γ .

First, assume that there is a λ-theory Γ such that ΓSλΔ and β ∈ Γ . Then
we have directly from the definition of Sλ that Kβ ∈ Δ.

Second, assume Kβ ∈ Δ. We define Γ = {γ;β → γ ∈ λ}. Γ is a λ-theory,
due to the application of the rules: β → γ, γ → δ/β → δ and β → δ, β → ε/β →
(δ ∧ ε). Moreover, due to the axiom β → β, β ∈ Γ . Now, it will suffice to prove
that ΓSλΔ. Assume that γ ∈ Γ , i.e. β → γ ∈ λ. Then Kβ → Kγ ∈ λ due to
R1. Since Kβ ∈ Δ, then also Kγ ∈ Δ, since Δ is a λ-theory.

Proof of Theorem 5: Proving soundness is a matter of a mechanical verification
of the respective axioms in the respective class of models. We will discuss only
completeness. (a) is a consequence of Theorem 4. To prove (b), we have to show
that the canonical model of λ = λK

1 is intended, i.e. it holds: if ΔSλΓ , then
Δ ⊆ Γ . Assume that ΔSλΓ and α ∈ Δ. Then Kα ∈ Γ and since we assume
that Kα → α ∈ λ, we have α ∈ Γ .

To prove (c), we have to show that the canonical model of λ = λK
12 is strong.

So we have to verify that in that case if ΔSλΓ and Γ �= LK , then ΔCΓ . Assume
ΔSλΓ and Γ �= LK . For the contradiction, assume that it does not hold that
ΔCΓ . Then it also does not hold that ΓCΔ, so there is an LK-formula α such
that ¬α ∈ Γ and α ∈ Δ. Then Kα ∈ Γ , and since we assume A2, it follows
⊥ ∈ Γ . Then Γ = LK , which is a contradiction. The proof of (d) is similar.

Proof of Theorem 6: Let a be a state of a model on a source-distributive epistemic
information frame and let α be any LK-formula. Assume that a � K(α ∨ β).
Then there is some b ∈ S(a) such that b � α ∨ β. So, there are c, d such that
c � α, d � β, and b ≤ c + d. It follows that (c + d)Sa. Since the model is on a
source-distributive frame, there are c′, d′ such that cSc′, dSd′, and a ≤ c′ + d′.
Then c′ � Kα and d′ � Kβ, and, as a consequence, a � Kα ∨ Kβ.

We have proved that A3 is valid in every model on any source-distributive
epistemic information frame. Now consider an arbitrary epistemic information
model on a frame that is not source-distributive. So, there are some states a, b, c
such that (a + b)Sc and there are no d, e such that aSd, bSe, and c ≤ d + e.
Define a valuation V on the model in such a way that V (p) = {d; d ≤ a} and
V (q) = {e; e ≤ b}. It holds that a + b � p ∨ q, so c � K(p ∨ q). We want to show
that c � Kp∨Kq. For the sake of contradiction, assume that c � Kp∨Kq. Then
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there are d, e such that d � Kp, e � Kq, and c ≤ d + e. But then there are
d′ ∈ S(d) and e′ ∈ S(e) such that d′ � p and e′ � q. It follows that aSd and bSe,
which is in contradiction with our assumption.

Proof of Theorem 7: This result is an extension of Theorem 2. We have to verify
that Di satisfies the conditions (a)–(e) from Definition 8 and the condition from
Definition 11. The conditions (a)–(c) are quite straightforward. To prove (e), we
have to show that if uSiv, then v ⊆ u. So, assume that uSiv and x ∈ v. Then
there is y ∈ u such that ySx. But then y ≤ x, and so x ∈ u, which is what
we wanted to show. Now we will show that Di is source distributive. Assume
(u ∪ v)Siw. Let us define

u′ = {y; there is x ∈ u such that xSy},

v′ = {y; there is x ∈ v such that xSy}.

Both u′ and v′ are upward closed. Moreover, uSiu′, vSiv′, and w ⊆ u′ ∪ v′.

Proof of Theorem 8: This result is an extension of Theorem 3. So, we are proving
that for every upward closed set of states u it holds that u � α in Di iff for all
x ∈ u, x � α in D, and we have to show the inductive step for K. Assume that
the statement holds for some LK-formula β. First, assume that u � Kβ in Di.
So, there is v ∈ Si(u) such that v � β. Then for every x ∈ u there is some y ∈ v
such that ySx, and for every y ∈ v, y � β. Therefore, for every x ∈ u there is y
such that ySx, and y � β, that is, for every x ∈ u, x � Kβ.

Second, suppose for every x ∈ u, x � Kβ, that is, for every x ∈ u there is
x′ such that x′Sx, and x′ � β. Define v = {z; there is x ∈ u such that x′ ≤ z}.
Obviously, v is upward closed, and for all z ∈ v, z � β. Moreover, for every x ∈ u
there is z ∈ v (namely x′) such that zSx. It follows that there is v such that
vSiu and v � β. Therefore, u � Kβ in Di.
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1 Introduction

The Grzegorczyk logic Grz is a well-known modal logic [3], which can be char-
acterized by reflexive partially ordered Kripke frames without infinite ascending
chains. This logic is complete w.r.t. the arithmetical semantics, where the modal
connective � corresponds to the strong provability operator “. . . is true and
provable” in Peano arithmetic.

Recently a new proof-theoretic description for the Gödel-Löb provability logic
GL in the form of a sequent calculus allowing so-called cyclic, or circular, proofs
was given in [6]. A feature of cyclic proofs is that the graph underlying a proof is
not a finite tree but is allowed to contain cycles. Since GL and Grz are closely con-
nected, we wonder whether cyclic and, more generally, non-well-founded proofs
can be fruitfully considered in the case of Grz.

In this paper, we present a sequent calculus for the modal Grzegorczyk logic
allowing non-well-founded proofs and obtain the cut-elimination theorem for it
by constructing a continuous cut-elimination mapping acting on these proofs.

In Sect. 2, we recall an ordinary sequent calculus for Grz. In Sect. 3 we intro-
duce the infinitary proof system Grz∞. In Sect. 4 we establish the cut elimination
result for Grz∞ syntactically. Then, in Sect. 5 we prove the equivalence of the
two systems. In Sect. 6 we discuss possible applications of the new system.
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2 Preliminaries

In this section we recall the modal Grzegorczyk logic Grz and define an ordinary
sequent calculus for it.

Formulas of Grz, denoted by A, B, C, are built up as follows:

A ::=⊥ | p | (A → A) | �A,

where p stands for atomic propositions. We treat other boolean connectives and
the modal operator ♦ as abbreviations:

¬A :=A → ⊥, � := ¬⊥, A ∧ B := ¬(A → ¬B),
A ∨ B := (¬A → B), ♦A := ¬�¬A.

The Hilbert-style axiomatization of Grz is given by the following axioms and
inference rules:

Axioms:
(i) Boolean tautologies;
(ii) �(A → B) → (�A → �B);
(iii) �A → ��A;
(iv) �A → A;
(v) �(�(A → �A) → A) → �A.

Rules: modus ponens, A/�A.
Now we define an ordinary sequent calculus for Grz. A sequent is an expression of
the form Γ ⇒ Δ, where Γ and Δ are finite multisets of formulas. For a multiset
of formulas Γ = A1, . . . , An, we set �Γ := �A1, . . . ,�An.

The system GrzSeq, which is a variant of the sequent calculus from [2], is
defined by the following initial sequents and inference rules:

Fig. 1. The system GrzSeq
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Lemma 2.1. The rule

weak :
Γ ⇒ Δ

Π,Γ ⇒ Δ,Σ

is admissible in GrzSeq.

Proof. Standard induction on the structure of a proof of the sequent Γ ⇒ Δ. �	
The cut rule has the form

cut :
Γ ⇒ A,Δ Γ,A ⇒ Δ

Γ ⇒ Δ
,

where A is called the cut formula of the given inference.

Lemma 2.2. GrzSeq + cut 
 Γ ⇒ Δ if and only if Grz 
 ∧
Γ → ∨

Δ.

Proof. Standard transformations of proofs. �	
Theorem 2.1. If GrzSeq + cut 
 Γ ⇒ Δ, then GrzSeq 
 Γ ⇒ Δ.

A syntactic cut-elimination proof for the logic Grz was obtained by Borga and
Gentilini in [2]. In this paper, we will give another proof of this cut-elimination
theorem.

3 Non-well-founded Proofs

Now we define a sequent calculus for the logic Grz allowing non-well-founded
proofs. The cut-elimination theorem for it will be proved in the next section.

Inference rules and initial sequents of the sequent calculus Grz∞ have the
following form:

Fig. 2. The system Grz∞

The system Grz∞+cut is defined by adding the rule (cut) to the system Grz∞.
An ∞–proof in Grz∞ (Grz∞ + cut) is a (possibly infinite) tree whose nodes are
marked by sequents and whose leaves are marked by initial sequents and that
is constructed according to the rules of the sequent calculus. In addition, every
infinite branch in an ∞–proof must pass through a right premise of the rule �
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infinitely many times. A sequent Γ ⇒ Δ is provable in Grz∞ (Grz∞ + cut) if
there is an ∞–proof in Grz∞ (Grz∞ + cut) with the root marked by Γ ⇒ Δ.

The main fragment of an ∞–proof is a finite tree obtained from the ∞–
proof by cutting every infinite branch at the nearest to the root right premise of
the rule (�). The local height |π| of an ∞–proof π is the length of the longest
branch in its main fragment. An ∞–proof only consisting of an initial sequent
has height 0.

For instance, consider an ∞–proof of the sequent �(�(p → �p) → p) ⇒ p:

Idp

F, p ⇒ p

Idp

F, p ⇒ �p, p→R
F ⇒ p → �p, p

Idp

p, F ⇒ p

...
F ⇒ p

�
p, F ⇒ �p→R

F ⇒ p → �p
�

F ⇒ �(p → �p), p→L �(p → �p) → p, F ⇒ p
refl ,

�(�(p → �p) → p) ⇒ p

where F = �(�(p → �p) → p). The local height of this ∞–proof equals to 4
and its main fragment has the form

Idp

F, p ⇒ p

Idp

F, p ⇒ �p, p→R
F ⇒ p → �p, p

�
F ⇒ �(p → �p), p→L �(p → �p) → p, F ⇒ p

refl .
F ⇒ p

By P we denote the set of all ∞-proofs in Grz∞ + cut. For n ∈ N, we define
binary relations ∼n on P by simultaneous induction:

1. π ∼0 τ for any π, τ ;
2. if |π| = 0, then π ∼n π;
3. if π and τ are obtained by the same instance of inference rules (→L), (cut)

from π′, π′′ and τ ′, τ ′′, where π′ ∼n τ ′ and π′′ ∼n τ ′′, then π ∼n τ ;
4. if π and τ are obtained by the same instance of inference rules (→R), (refl)

from π′ and τ ′, where π′ ∼n τ ′, then π ∼n τ ;
5. if π and τ are obtained by the same instance of an inference rule (�) from

π′, π′′ and τ ′, τ ′′, where π′, τ ′ are ∞-proofs for the left premises of (�), and
π′ ∼n+1 τ ′, π′′ ∼n τ ′′, then π ∼n+1 τ .

Notice that π ∼1 τ if and only if π and τ have the same main fragment.

Lemma 3.1. For any n ∈ N, we have that

1. the relation ∼n is an equivalence relation;
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2. the relation ∼n+1 is finer than the relation ∼n (i.e. π ∼n+1 τ implies π ∼n τ).

In addition, the intersection of all relations ∼n is exactly the equality relation
over P.

Now we define a sequence Pn of subsets of P by simultaneous induction:

1. π ∈ P0 for any π;
2. if |π| = 0, then π ∈ Pn;
3. if π is obtained by an instance of an inference rule (→L) from π′ and π′′,

where π′, π′′ ∈ Pn, then π ∈ Pn;
4. if π is obtained by an instance of inference rules (→R), (refl) from π′, where

π′ ∈ Pn, then π ∈ Pn;
5. if π is obtained by an instance of an inference rule (�) from π′ and π′′, where

π′ is an ∞-proof for the left premise of (�), and π′ ∈ Pn+1, π′′ ∈ Pn, then
π ∈ Pn+1.

Notice that P0 = P and P1 consists of the ∞-proofs that do not contain the cut
rule in their main fragment.

Lemma 3.2. We have that Pn+1 ⊂ Pn for any n ∈ N. In addition, the inter-
section of all sets Pn consists exactly of the ∞-proofs in Grz∞.

For π, τ ∈ P, we define d(π, τ) = 2− sup{n∈N | π∼nτ}, where by convention 2−∞ =
0. We see that an equivalence π ∼n τ holds if and only if d(π, τ) � 2−n.

Proposition 3.3. (P, d) is a complete metric space.

A mapping U : Pk → P is nonexpansive if for any n ∈ N

π1 ∼n τ1, . . . , πk ∼n τk ⇒ U(π1, . . . , πk) ∼n U(τ1, . . . , τk),

which is equivalent to the standard condition

d(U(π1, . . . , πk),U(τ1, . . . , τk)) � max{d(π1, τ1), . . . , d(πk, τk)}.

Trivially, any nonexpansive mapping is continuous.
A nonexpansive mapping U : P → P is called adequate if U(P1) ⊂ P1 and

|U(π)| � |π| for any π ∈ P.
Recall that an inference rule is called admissible (in a given proof system) if,

for any instance of the rule, the conclusion is provable whenever all premises are
provable. In Grz∞+cut, we call a single-premise inference rule strongly admissible
if there is an adequate mapping U : P → P that maps any ∞-proof of the premise
of the rule to an ∞-proof of the conclusion.

Lemma 3.4. For any finite multisets of formulas Π and Σ, the inference rule

wkΠ,Σ :
Γ ⇒ Δ

Π,Γ ⇒ Δ,Σ

is strongly admissible in Grz∞ + cut.
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Lemma 3.5. For any formulas A and B, the rules

Γ,A → B ⇒ Δ
liA→B :

Γ,B ⇒ Δ

Γ,A → B ⇒ Δ
riA→B :

Γ ⇒ A,Δ

Γ ⇒ A → B,Δ
iA→B :

Γ,A ⇒ B,Δ

Γ ⇒ ⊥,Δ
i⊥ :

Γ ⇒ Δ

Γ ⇒ �A,Δ
li� A :

Γ ⇒ A,Δ

are strongly admissible in Grz∞ + cut.

Lemma 3.6. For any atomic proposition p, the rules

aclp :
Γ, p, p ⇒ Δ

Γ, p ⇒ Δ
acrp :

Γ ⇒ p, p,Δ

Γ ⇒ p,Δ

are strongly admissible in Grz∞ + cut.

These lemmas can be obtained in a standard way, so we omit the proofs.

4 Cut Elimination

In this section we construct a continuous cut elimination mapping from P to P,
which eliminates all applications of the cut rule from any ∞-proof in Grz∞+cut.
In what follows, we use nonexpansive mappings wkΠ,Σ , liA→B , riA→B , iA→B ,
i⊥, li� A, aclp, acrp from Lemmas 3.4, 3.5 and 3.6.

For a modal formula A, a nonexpansive mapping R from P1 × P1 to P1 is
called A-reducing if R(π′, π′′) is an ∞-proof of Γ ⇒ Δ whenever π′ is an ∞-proof
of Γ ⇒ Δ,A and π′′ is an ∞-proof of A,Γ ⇒ Δ.

Lemma 4.1. For any atomic proposition p there is a p-reducing mapping Rp.

Lemma 4.2. Given a B-reducing mapping RB, there is a �B-reducing mapping
R�B.

The proof of these two lemmas can be found in the Appendix.

Lemma 4.3. For any formula A, there is an A-reducing mapping RA.

Proof. We define RA by induction on the structure of the formula A.

Case 1. The formula A has the form p. In this case, Rp is defined in Lemma4.1.

Case 2. The formula A has the form ⊥. Then we put R⊥(π′, π′′) := i⊥(π′),
where i⊥ is the nonexpansive mapping from Lemma3.5.

Case 3. The formula A has the form B → C. Then we put

RB→C(π′, π′′) := RC(RB(wk∅,C(riB→C(π′′)), iB→C(π′)), liB→C(π′′)) ,
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where riB→C , iB→C , liB→C are nonexpansive mappings from Lemma3.5 and
wk∅,C is a nonexpansive mapping from Lemma3.4.

Case 4. The formula A has the form �B. By the induction hypothesis, there
is a B-reducing mapping RB . By Lemma4.2 there is a �B-reducing mapping
R�B . �	

A mapping U : P → P is called root-preserving if it maps ∞-proofs to ∞-
proofs of the same sequents. The set of all root-preserving nonexpansive map-
pings from P to P is denoted by N . We consider N as a metric space with the
uniform metric:

ρ(U ,V) = sup
π∈P

d(U(π),V(π)) .

Lemma 4.4. (N , ρ) is a non-empty complete metric space.

Proof. By Proposition 3.3, P is a complete metric space. Consequently the set
C (P,P) of all continuous mappings from P to P with the uniform metric forms
a complete metric space. It can be easily shown that N is a closed subset of
C (P,P). In addition, the set N is non-empty, because the identity mapping
belongs to N . Thus (N , ρ) is a non-empty complete metric space. �	

We define Nn := {U ∈ N | U(P) ⊂ Pn}.
Lemma 4.5. There exists a mapping E∗ ∈ N1.

Proof. Assume we have an ∞-proof π. We define E∗(π) by induction on |π|.
If |π| = 0, then we put E∗(π) = π. Otherwise, consider the last application

of an inference rule in π and define E∗ as follows:

π1

Γ,B ⇒ Δ

π2

Γ ⇒ A,Δ→L
Γ,A → B ⇒ Δ

�−→
E∗(π1)

Γ,B ⇒ Δ

E∗(π2)
Γ ⇒ A,Δ→L ,

Γ,A → B ⇒ Δ

π0

Γ,A ⇒ B,Δ→R
Γ ⇒ A → B,Δ

�−→
E∗(π0)

Γ,A ⇒ B,Δ→R ,
Γ ⇒ A → B,Δ

π0

Γ,A,�A ⇒ Δ
refl

Γ,�A ⇒ Δ
�−→

E∗(π0)
Γ,A,�A ⇒ Δ

refl ,
Γ,�A ⇒ Δ

π1

Γ,�Π ⇒ A,Δ

π2

�Π ⇒ A
�

Γ,�Π ⇒ �A,Δ
�−→

E∗(π1)
Γ,�Π ⇒ A,Δ

π2

�Π ⇒ A
� ,

Γ,�Π ⇒ �A,Δ
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π1

Γ ⇒ Δ,A

π2

A,Γ ⇒ Δ
cut

Γ ⇒ Δ
�−→ RA(E∗(π1), E∗(π2)).

Clearly, the mapping E∗ is root-preserving, and E∗(P) ⊂ P1. We also see
that E∗ is nonexpansive, i.e. for any n ∈ N and any π, τ ∈ P

π ∼n τ ⇒ E∗(π) ∼n E∗(τ).

�	
Recall that a contraction mapping, or an operator, on a metric space (M,d)

is a function f from M to itself, with the property that there is some real number
0 � k < 1 such that for all x and y in M holds d(f(x), f(y)) � kd(x, y).

Now we define a contraction operator F : N → N . The required cut-
elimination mapping will be obtained as the fixed-point of F .

For a root-preserving nonexpansive mapping U and an ∞-proof π of a sequent
Γ ⇒ Δ, we define F(U)(π). In the case π ∈ P1, F(U)(π) is introduced by
induction on |π|. If |π| = 0, then we put F(U)(π) = π. Otherwise, consider the
last application of an inference rule in π and define F(U) as follows:

π1

Γ,B ⇒ Δ

π2

Γ ⇒ A,Δ→L
Γ,A → B ⇒ Δ

�−→
F(U)(π1)
Γ,B ⇒ Δ

F(U)(π2)
Γ ⇒ A,Δ→L ,

Γ,A → B ⇒ Δ

π0

Γ,A ⇒ B,Δ→R
Γ ⇒ A → B,Δ

�−→
F(U)(π0)

Γ,A ⇒ B,Δ→R ,
Γ ⇒ A → B,Δ

π0

Γ,A,�A ⇒ Δ
refl

Γ,�A ⇒ Δ
�−→

F(U)(π0)
Γ,A,�A ⇒ Δ

refl ,
Γ,�A ⇒ Δ

π1

Γ,�Π ⇒ A,Δ

π2

�Π ⇒ A
�

Γ,�Π ⇒ �A,Δ
�−→

F(U)(π1)
Γ,�Π ⇒ A,Δ

U(π2)
�Π ⇒ A

� .
Γ,�Π ⇒ �A,Δ

The mapping F(U) is well defined on the set P1. If π /∈ P1, then we put
F(U)(π) := F(U)(E∗(π)).

It can easily be checked that F(U) is a root-preserving nonexpansive map-
ping.

Lemma 4.6. For any mappings U ,V ∈ N we have that

ρ(F(U),F(V)) � 1
2

· ρ(U ,V).
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Proof. Let us write U ∼n V if U(π) ∼n V(π) for any π ∈ P. We claim that for
any n ∈ N the following holds:

U ∼n V ⇒ F(U) ∼n+1 F(V) .

Assume we have an ∞-proof π and U ∼n V. It can be easily proved by induction
on |π| that F(U)(π) ∼n+1 F(V)(π).

Further, we see that U ∼n V if and only if ρ(U ,V) � 2−n. Thus, the condition

∀n (U ∼n V ⇒ F(U) ∼n+1 F(V))
is equivalent to ρ(F(U),F(V)) � 1

2 · ρ(U ,V). �	
Lemma 4.7. If U ∈ Nn, then F(U) ∈ Nn+1.

Proof. Assume we have an ∞-proof π and U ∈ Nn. We claim F(U)(π) ∈ Pn+1.
If π ∈ P1, then it is not hard to prove by induction on |π| that

F(U)(π) ∈ Pn+1. If π /∈ P1, then E∗(π) ∈ P1 by Lemma4.5. Thus F(U)(π) =
F(U)(E∗(π)) ∈ Pn+1 by the previous case. �	
Lemma 4.8. There exists a mapping E such that E ∈ Nn for any n ∈ N.

Proof. The operator F : N → N is a contraction operator (by Lemma4.6) on a
complete metric space (Lemma 4.4). By the Banach fixed-point theorem, there
exists a root-preserving nonexpansive mapping E such that F(E) = E . Trivially,
E ∈ N0 = N . Hence E belongs to the intersection of all Nn for n ∈ N by
Lemma4.7. �	
Theorem 4.9. (cut-elimination). If Grz∞ + cut 
 Γ ⇒ Δ, then Grz∞ 

Γ ⇒ Δ.

Proof. Take an ∞-proof of the sequent Γ ⇒ Δ in the system Grz∞ + cut and
apply the mapping E from Lemma4.8 to it. You will get an ∞-proof of the same
sequent in the system Grz∞. �	

5 Ordinary and Non-well-founded Proofs

In this section we define two translations that connect ordinary and non-well-
founded sequent calculi for Grz.

Lemma 5.1. We have Grz∞ 
 Γ,A ⇒ A,Δ for any multisets Γ , Δ and any
formula A.

Proof. Standard induction on the structure of A. �	
Lemma 5.2. We have Grz∞ 
 �(�(A → �A) → A) ⇒ A for any formula A.

Proof. Consider an example of ∞–proof for the sequent �(�(p → �p) → p) ⇒ p
from Sect. 3. We transform this example into an ∞–proof for �(�(A → �A) →
A) ⇒ A by replacing p with A and adding required ∞–proofs instead of initial
sequents using Lemma 5.1. �	
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Theorem 5.3. If GrzSeq + cut 
 Γ ⇒ Δ, then Grz∞ + cut 
 Γ ⇒ Δ.

Proof. Assume π is a proof of Γ ⇒ Δ in GrzSeq + cut. By induction on the size
of π we prove Grz∞ + cut 
 Γ ⇒ Δ.

If Γ ⇒ Δ is an initial sequent of GrzSeq+cut, then it is provable in Grz∞+cut
by Lemma5.1. Otherwise, consider the last application of an inference rule in π.

The only non-trivial case is when the proof π has the form

π′

�Π,�(A → �A) ⇒ A�Grz
,

Σ,�Π ⇒ �A,Λ

where Σ,�Π = Γ and �A,Λ = Δ. By the induction hypothesis there is an
∞–proof ξ of �Π,�(A → �A) ⇒ A in Grz∞ + cut.

We have the following ∞–proof λ of �Π ⇒ A in Grz∞ + cut:

wk∅,A(ξ)

�Π, �(A → � A) ⇒ A, A→R �Π ⇒ G, A

ξ

�Π, �(A → � A) ⇒ A→R �Π ⇒ G
� �Π ⇒ �G, A

wk�Π ,∅(θ)

�Π, �G ⇒ A
cut ,

�Π ⇒ A

where G = �(A → �A) → A, wk−,− is a nonexpansive mapping from
Lemma3.4, and θ is an ∞–proof of �G ⇒ A, which exists by Lemma5.2. The
required ∞–proof for Σ,�Π ⇒ �A,Δ has the form

wkΣ,Λ(λ)

Σ, �Π ⇒ A, Λ

λ

�Π ⇒ A
� ,

Σ, �Π ⇒ � A, Λ

The cases of other inference rules being last in π are straightforward, so we
omit them. �	

For a sequent Γ ⇒ Δ, let Sub(Γ ⇒ Δ) be the set of all subformulas of the
formulas from Γ ∪ Δ. For a finite set of formulas Λ, set Λ∗ := {�(A → �A) |
A ∈ Λ}.
Lemma 5.4. If Grz∞ 
 Γ ⇒ Δ, then GrzSeq 
 Λ∗, Γ ⇒ Δ for any finite set of
formulas Λ.

Proof. Assume π is an ∞–proof of the sequent Γ ⇒ Δ in Grz∞ and Λ is a
finite set of formulas. By induction on the number of elements in the finite set
Sub(Γ ⇒ Δ)\Λ with a subinduction on |π|, we prove GrzSeq 
 Λ∗, Γ ⇒ Δ.

If |π| = 0, then Γ ⇒ Δ is an initial sequent. We see that the sequent Λ∗, Γ ⇒
Δ is an initial sequent and it is provable in GrzSeq. Otherwise, consider the last
application of an inference rule in π. Case 1. The ∞-proof π has the form

π′

Γ,A ⇒ B,Σ→R ,
Γ ⇒ A → B,Σ
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where A → B,Σ = Δ. Notice that |π′| < |π|. By the induction hypothesis for
π′ and Λ, the sequent Λ∗, Γ,A ⇒ B,Σ is provable in GrzSeq. Applying the rule
(→R) to it, we obtain the sequent Λ∗, Γ ⇒ Δ.Case 2. The ∞-proof π has the

form

π′

Σ,B ⇒ Δ
π′′

Σ ⇒ A,Δ→L ,
Σ,A → B ⇒ Δ

where Σ,A → B = Γ . We see that |π′| < |π|. By the induction hypothesis
for π′ and Λ, the sequent Λ∗, Σ,B ⇒ Δ is provable in GrzSeq. Also we have
GrzSeq 
 Λ∗, Σ ⇒ A,Δ. Applying the rule (→L) to these sequents, we obtain the
sequent Λ∗, Σ,A → B ⇒ Δ.Case 3. The ∞-proof π has the form

π′

Σ,A,�A ⇒ Δ
refl ,

Σ,�A ⇒ Δ

where Σ,�A = Γ . We see that |π′| < |π|. By the induction hypothesis for π′

and Λ, the sequent Λ∗, Σ,A,�A ⇒ Δ is provable in GrzSeq. Applying the rule
(refl), we obtain the sequent Λ∗, Σ,�A ⇒ Δ. Case 4. The ∞-proof π has the

form

π′

Φ,�Π ⇒ A,Σ
π′′

�Π ⇒ A
� ,

Φ,�Π ⇒ �A,Σ

where Φ,�Π = Γ and �A,Σ = Δ.

Subcase 4.1. The formula A belongs to the set Λ. We see that |π′| < |π|. By
the induction hypothesis for π′ and Λ, the sequent Λ∗, Φ,�Π ⇒ A,Σ is provable
in GrzSeq. Then we see

Id
Λ∗,�A,Φ,�Π ⇒ �A,Σ

Λ∗, Φ,�Π ⇒ A,Σ
weak

Λ∗, Φ,�Π ⇒ A,�A,Σ→L
(Λ\{A})∗, A → �A,�(A → �A), Φ,�Π ⇒ �A,Σ

refl ,
(Λ\{A})∗,�(A → �A), Φ,�Π ⇒ �A,Σ

where the rule (weak) is admissible by Lemma2.1.

Subcase 4.2. The formula A doesn’t belong to the set Λ. We have that the
number of elements in Sub(�Π ⇒ A)\(Λ∪{A}) is strictly less than the number
of elements in Sub(Φ,�Π ⇒ �A,Σ)\Λ. Therefore, by the induction hypothesis
for π′′ and Λ∪{A}, the sequent Λ∗,�(A → �A),�Π ⇒ A is provable in GrzSeq.
Then we have

�Grz
Λ∗,�(A → �A),�Π ⇒ A

Λ∗, Φ,�Π ⇒ �A,Σ
.

�	
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From Lemma5.4 we immediately obtain the following theorem.

Theorem 5.5. If Grz∞ 
 Γ ⇒ Δ, then GrzSeq 
 Γ ⇒ Δ.

Theorem2.1 is now established as a direct consequence of Theorems 5.3, 4.9,
and 5.5.

6 Conclusion and Future Work

Recall that the Craig interpolation property for a logic L says that if A implies
B, then there is an interpolant, that is, a formula I containing only common
variables of A and B such that A implies I and I implies B. The Lyndon inter-
polation property is a strengthening of the Craig one that also takes into consid-
eration negative and positive occurrences of the shared propositional variables;
that is, the variables occurring in I positively (negatively) must also occur both
in A and B positively (negatively).

Though the Grzegorczyk logic has the Lyndon interpolation property [4],
there were seemingly no syntactic proofs of this result. It is unclear how Lyndon
interpolation can be obtained from previously introduced sequent systems for Grz
[1,2,5] by direct proof-theoretic arguments because these systems contain infer-
ence rules in which a polarity change occurs under the passage from the principal
formula in the conclusion to its immediate ancestors in the premise. Using our
system Grz∞ we believe that we can obtain a syntactic proof of Lyndon interpo-
lation for the modal Grzegorczyk logic as an application of our cut-elimination
theorem.

We also believe that every provable Grz∞ sequent has a proof that is a regular
tree (has only finite amount of distinct subtrees). This gives a possibility of a
proof system for the logic Grz with cyclical proofs, like the system introduced
in [6].

Appendix

Proof of Lemma4.1

Let π′ be an ∞-proof of Γ ⇒ Δ, p and π′′ be an ∞-proof of p, Γ ⇒ Δ.
We define Rp(π′, π′′) by induction on |π′|.
If |π′| = 0, then Γ ⇒ Δ, p is an initial sequent. Suppose that Γ ⇒ Δ is also

an initial sequent. Then Rp(π′, π′′) is defined as the ∞-proof consisting only of
this initial sequent. Otherwise, Γ has the form p, Φ, and π′′ is an ∞-proof of
p, p, Φ ⇒ Δ. Applying the nonexpansive mapping aclp from Lemma3.6, we put
Rp(π′, π′′) := aclp(π′′).

Now suppose that |π′| > 0. We consider the last application of an inference
rule in π′.
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Case 1. The ∞-proof π′ has the form

π′
0

Γ,A ⇒ B,Σ, p→R ,
Γ ⇒ A → B,Σ, p

where A → B,Σ = Δ. Notice that |π′
0| < |π′|. In addition, π′′ is an ∞-proof of

p, Γ ⇒ A → B,Σ. We define Rp(π′, π′′) as

Rp(π′
0, iA→B(π′′))

Γ,A ⇒ B,Σ→R ,
Γ ⇒ A → B,Σ

where iA→B is a nonexpansive mapping from Lemma3.5.

Case 2. The ∞-proof π′ has the form

π′
0

Σ,B ⇒ Δ, p

π′′
1

Σ ⇒ A,Δ, p→L ,
Σ,A → B ⇒ Δ, p

where Σ,A → B = Γ . We see that |π′
0| < |π′| and |π′

1| < |π′|. Also, π′′ is an
∞-proof of p,Σ,A → B ⇒ Δ. We define Rp(π′, π′′) as

Rp(π′
0, liA→B(π′′))

Σ,B ⇒ Δ, p

Rp(π′
1, riA→B(π′′))

Σ ⇒ A,Δ, p→L ,
Σ,A → B ⇒ Δ, p

where liA→B and riA→B are nonexpansive mappings from Lemma3.5.

Case 3. The ∞-proof π′ has the form

π′
0

Σ,A,�A ⇒ Δ, p
refl ,

Σ,�A ⇒ Δ, p

where Σ,�A = Γ . We have that |π′| < |π|. Define Rp(π′, π′′) as

Rp(π′
0,wkA,∅(π′′)

Σ,A,�A ⇒ Δ
refl ,

Σ,�A ⇒ Δ

where wkA,∅ is the nonexpansive mapping from Lemma3.4.

Case 4. Now consider the final case when π′ has the form

π′
0

Φ,�Π ⇒ A,Σ, p

π′
1

�Π ⇒ A
� ,

Φ,�Π ⇒ �A,Σ, p
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where Φ,�Π = Γ and �A,Σ = Δ. Notice that |π′
0| < |π′|. In addition, π′′ is an

∞-proof of p, Φ,�Π ⇒ �A,Σ. We define Rp(π′, π′′) as

Rp(π′
0, li � A(π′′))

Φ,�Π ⇒ A,Σ

π′
1

�Π ⇒ A
� ,

Φ,�Π ⇒ �A,Σ

where li � A is a nonexpansive mapping from Lemma3.5.
The mapping Rp is well defined. It remains to check that Rp is nonexpansive,

i.e. for any n ∈ N and any π′, π′′, τ ′, τ ′′ from P0

(π′ ∼n τ ′ ∧ π′′ ∼n τ ′′) ⇒ Rp(π′, π′′) ∼n Rp(τ ′, τ ′′) .

This condition is checked by structural induction on the inductively defined
relation π′ ∼n τ ′ in a straightforward way. So we omit further details. �	

Proof of Lemma4.2

Let π′ be an ∞-proof of Γ ⇒ Δ,�B and π′′ be an ∞-proof of �B,Γ ⇒ Δ.
We define R�B(π′, π′′) by induction on |π′| + |π′′|.
If |π′| = 0 or |π′′| = 0, then Γ ⇒ Δ is an initial sequent. Then R�B(π′, π′′)

is defined as the ∞-proof consisting only of this initial sequent.
The only interesting cases are when the formula �B is the principal formula

in both π′ and π′′.
So the ∞-proof π′ has the form

π′
0

Φ,�Π ⇒ B,Σ

π′
1

�Π ⇒ B
� ,

Φ,�Π ⇒ �B,Σ

The cases for the ∞-proof π′′ are the following:

Case 1. The ∞-proof π′′ has the form

π′′
0

Γ,B,�B ⇒ Δ
refl .

Γ,�B ⇒ Δ

Since that |π′′
0 | < |π′′|, we can define R�B(π′, π′′) as

RB(π′
0,R�B(wkB,∅(π′), π′′

0 )).

where wk−,− is a nonexpansive mapping from Lemma3.4.

Case 2. The ∞-proof π′′ has the form

π′′
0

Φ′,�B,�Π ′ ⇒ C,Σ′
π′′
1

�B,�Π ′ ⇒ C
� ,

Φ′,�B,�Π ′ ⇒ �C,Σ′
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Since |π′′
0 | < |π′′| and the sequent Φ′,�Π ′ ⇒ �C,Σ′, the sequent Φ,�Π ⇒

Σ, and the sequent Γ ⇒ Δ are equal, we can define R�B(π′, π′′) as

R�B(li�C (π′), π′′
0 )

Φ′, �Π′ ⇒ C, Σ′

wk�Π ′\�Π ,C (π′
1)

�Π ∪ �Π′ ⇒ B, C

wk�Π ′\�Π ,∅(π′
1)

�Π ∪ �Π′ ⇒ B
�

�Π ∪ �Π′ ⇒ �B, C

wk�Π\�Π ′,∅(π′′
1 )

�Π ∪ �Π′, �B ⇒ C
cut

�Π ∪ �Π′ ⇒ C
�

Φ′, �Π′ ⇒ �C, Σ′

where wk−,− is a nonexpansive mapping from Lemma3.4 and li � A is a nonex-
pansive mapping from Lemma3.5. Since the instance of the rule cut is not in the
main fragment, this proof is in P1. �	
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Abstract. There exist two known concepts of ultrafilter extensions of
first-order models, both in a certain sense canonical. One of them [1]
comes from modal logic and universal algebra, and in fact goes back to [2].
Another one [3,4] comes from model theory and algebra of ultrafilters,
with ultrafilter extensions of semigroups [5] as its main precursor. By
a classical fact, the space of ultrafilters over a discrete space is its largest
compactification. The main result of [3,4], which confirms a canonicity
of this extension, generalizes this fact to discrete spaces endowed with
a first-order structure. An analogous result for the former type of ultra-
filter extensions was obtained in [6].

Here we offer a uniform approach to both types of extensions. It is
based on the idea to extend the extension procedure itself. We propose
a generalization of the standard concept of first-order models in which
functional and relational symbols are interpreted rather by ultrafilters
over sets of functions and relations than by functions and relations them-
selves. We provide two specific operations which turn generalized mod-
els into ordinary ones, and establish necessary and sufficient conditions
under which the latter are the two canonical ultrafilter extensions of
some models.

1. Fix a first-order language and consider an arbitrary model

A = (X,F, . . . , R, . . .)

with the universe X, operations F, . . . , and relations R, . . . . Let us define an
abstract ultrafilter extension of A as a model A′ (in the same language) of form

A′ = (βX,F ′, . . . , R′, . . .)

where βX is the set of ultrafilters over X (one lets X ⊆ βX by identifying
each x ∈ X with the principal ultrafilter given by x), and operations F ′, . . . and
relations R′, . . . on βX extend F, . . . and R, . . . resp. There are essentially two
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known ways to extend relations by ultrafilters, and one to extend maps. Partial
cases of these extensions were discovered by various authors in different time
and different areas, typically, without a knowledge of parallel studies in adjacent
areas.

Recall that βX carries a natural topology generated by basic open sets

˜A = {u ∈ βX : A ∈ u}

for all A ⊆ X. Easily, the sets are also closed, so the space βX is zero-
dimensional. In fact, βX is compact, Hausdorff, extremally disconnected (the
closure of any open set is open), and the largest compactification of the discrete
space X. This means that X is dense in βX and every (trivially continuous)
map h of X into any compact Hausdorff space Y uniquely extends to a contin-
uous map ˜h of βX into Y :

The largest compactification of Tychonoff spaces was discovered independently
by Čech [7] and Stone [8]; then Wallman [9] did the same for T1 spaces (by using
ultrafilters on lattices of closed sets); see [5,10,11] for more information.

The ultrafilter extensions of unary maps F and relations R are exactly ˜F
and ˜R (for F : X → X let Y = βX); thus in the unary case the procedure gives
classical objects known in 30s. As for mappings and relations of greater arities,
several instances of their ultrafilter extensions were discovered only in 60s.

Studying ultraproducts, Kochen [12] and Frayne et al. [13] considered a “mul-
tiplication” of ultrafilters, which actually is the ultrafilter extension of the n-ary
operation of taking n-tuples. They shown that the successive iteration of ultra-
powers by ultrafilters u1, . . . , un is isomorphic to a single ultrapower by their
“product”. This has leaded to the general construction of iterated ultrapowers,
invented by Gaifman and elaborated by Kunen, which has become common in
model theory and set theory (see [14,15]).

Ultrafilter extensions of semigroups appeared in 60s as subspaces of func-
tion spaces; the first explicit construction of the ultrafilter extension of a group
is due to Ellis [16]. In 70s Galvin and Glazer applied them to give an easy
proof of what now known as Hindman’s Finite Sums Theorem; the key idea
was to use idempotent ultrafilters. The method was developed then by Blass,
van Douwen, Hindman, Protasov, Strauss, and many others, and gave numerous
Ramsey-theoretic applications in number theory, algebra, topological dynamics,
and ergodic theory. The book [5] is a comprehensive treatise of this area, with an
historical information. This technique was applied also for obtaining analogous
results for certain non-associative algebras (see [17,18]).

Ultrafilter extensions of arbitrary n-ary maps have been introduced inde-
pendently by Goranko [1] and Saveliev [3,4]. For F : X1 × . . . × Xn → Y , the
extended map ˜F : βX1 × . . . × βXn → βY is defined by letting
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˜F (u1, . . . , un) =
{

A ⊆ Y : {x1 ∈ X1 : . . . {xn ∈ Xn : F (x1, . . . , xn) ∈ A} ∈ un . . .} ∈ u1
}

.

One can simplify this cumbersome notation by introducing ultrafilter quanti-
fiers: let (∀ ux)ϕ(x, . . .) means {x : ϕ(x, . . .)} ∈ u. In fact, this is a second-order
quantifier: (∀ ux) is equivalent to (∀A ∈ u)(∃x ∈ A), and also (since u is ultra)
to (∃A ∈ u)(∀x ∈ A). Such quantifiers are self-dual, i.e. ∀ u and ∃ u coincide, and
generally do not commute with each other, i.e. (∀ ux)(∀ vy) and (∀ vy)(∀ ux) are
not equivalent. Then the definition above is rewritten as follows:

˜F (u1, . . . , un) =
{

A ⊆ Y : (∀ u1x1) . . . (∀ unxn) F (x1, . . . , xn) ∈ A
}

.

The map ˜F can be also described as the composition of the ultrafilter exten-
sion of taking n-tuples, which maps βX1 × . . . × βXn into β(X1 × . . . × Xn),
and the continuous extension of F considered as a unary map, which maps
β(X1 × . . . × Xn) into βY .

One type of ultrafilter extensions of relations goes back to a seminal paper
by Jónsson and Tarski [2] where they have been appeared implicitly, in terms of
representations of Boolean algebras with operators. For binary relations, their
representation theory was rediscovered in modal logic by Lemmon [19] who cred-
ited much of this work to Scott, see footnote 6 on p. 204 (see also [20]). Goldblatt
and Thomason [21] used this to characterize modal definability (where Sect. 2
was entirely due to Goldblatt); the term “ultrafilter extension” has been intro-
duced probably in the subsequent work by van Benthem [22] (for modal defin-
ability see also [23,24]). Later Goldblatt [25] generalized the extension to n-ary
relations.

Let us give an equivalent formulation: for R ⊆ X1 × . . . × Xn, the extended
relation R∗ ⊆ βX1 × . . . × βXn is defined by letting

R∗(u1, . . . , un) iff
(∀A1 ∈ u1) . . . (∀An ∈ un)(∃x1 ∈ A1) . . . (∃xn ∈ An) R(x1, . . . , xn).

Another type of ultrafilter extensions of n-ary relations has been recently
discovered in [3,4]:

˜R(u1, . . . , un) iff
{

x1 ∈ X1 : . . . {xn ∈ Xn : R(x1, . . . , xn)} ∈ un . . .
} ∈ u1,

or rewritting this via ultrafilter quantifiers,

˜R(u1, . . . , un) iff (∀ u1x1) . . . (∀ unxn) R(x1, . . . , xn).

Or else, by decoding ultrafilter quantifiers, this can be rewritten by

˜R(u1, . . . , un) iff
(∀A1 ∈ u1)(∃x1 ∈ A1) . . . (∀An ∈ un)(∃xn ∈ An) R(x1, . . . , xn),
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whence it is clear that ˜R ⊆ R∗. For unary R both extensions coincide with the
basic open set given by R. If R is functional then R∗ (but not ˜R) coincides with
the above-defined extension of R as a map. An easy instance of ˜ -extensions
(where R are linear orders) is studied in [26].

A systematic comparative study of both extensions (for binary R) is under-
taken in [6]. In particular, there is shown that the ∗ - and the ˜ -extensions have
a dual character w.r.t. relation-algebraic operations: the former commutes with
composition and inversion but not Boolean operations except for union, while
the latter commutes with all Boolean operations but neither composition nor
inversion. Also [6] contains topological characterizations of ˜R and R∗ in terms of
appropriate closure operations and in terms of Vietoris-type topologies (regard-
ing R as multi-valued maps).

Ultrafilter extensions of arbitrary first-order models were considered for the
first time independently in [1] with ∗ -extensions of relations, and in [3] with
their ˜ -extensions. We shall denote them by A∗ and ˜A resp. Thus for a model
A = (X,F, . . . , R, . . .) we let

A∗ = (βX, ˜F , . . . , R∗, . . .) and ˜A = (βX, ˜F , . . . , ˜R, . . .).

The following is the main result of [1]:

Theorem 1. If h is a homomorphism between models A and B, then the con-
tinuous extension ˜h is a homomorphism between A∗ and B∗:

A full analog of Theorem1 for the ˜ -extensions has been appeared in [3]
(called the First Extension Theorem in [4]):

Theorem 2. If h is a homomorphism between models A and B, then the con-
tinuous extension ˜h is a homomorphism between ˜A and ˜B :

Moreover, both theorems remain true for embeddings and some other model-
theoretic interrelations (see [1,3,4]).

Theorem 2 is actually is a partial case of a much stronger result of [3] (called
the Second Extension Theorem in [4]). To formulate this, we need the following
concepts (introduced in [3]).

Let X1, . . . , Xn, Y be topological spaces, and let A1 ⊆ X1, . . . , An−1 ⊆ Xn−1.
An n-ary function F : X1× . . .×Xn → Y is right continuous w.r.t. A1, . . . , An−1
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iff for each i, 1 � i � n, and every a1 ∈ A1, . . . , ai−1 ∈ Ai−1 and xi+1 ∈
Xi+1, . . . , xn ∈ Xn, the map

x �→ F (a1, . . . , ai−1, x, xi+1, . . . , xn)

of Xi into Y is continuous. An n-ary relation R ⊆ X1 × . . . × Xn is right open
(right closed , etc.) w.r.t. A1, . . . , An−1 iff for each i, 1 � i � n, and every
a1 ∈ A1, . . . , ai−1 ∈ Ai−1 and xi+1 ∈ Xi+1, . . . , xn ∈ Xn, the set

{

x ∈ Xi : R(a1, . . . , ai−1, x, xi+1, . . . , xn)
}

is open (closed, etc.) in Xi.
Theorem 3 [3,4] characterizes topological properties of ˜ -extensions, it is

a base of Theorem 4 (the Second Extension Theorem of [4]).

Theorem 3. Let A be a model. In the extension ˜A , all operations are right
continuous and all relations right clopen w.r.t. the universe of A.

Theorem 4. Let A and C be two models, h a homomorphism of A into C, and let
C carry a compact Hausdorff topology in which all operations are right continuous
and all relations are right closed w.r.t. the image of the universe of A under h.
Then ˜h is a homomorphism of ˜A into C:

Theorem 2 (for homomorphisms) easily follows: take ˜B as C. The meaning
of Theorem 4 is that it generalizes the classical Čech–Stone result to the case
when the underlying discrete space X carries an arbitrary first-order structure.

A natural question is whether ∗ -extensions also canonical in a similar sense.
The answer is positive; two following theorems are counterparts of Theorems 3
and 4 resp. (essentially both have been proved in [6]).

Theorem 5. Let A be a model. In the extension A∗, all relations are closed (and
all operations are right continuous w.r.t. the universe of A).

Theorem 6. Let A and C be two models, h a homomorphism of A into C, and let
C carry a compact Hausdorff topology in which all operations are right continuous
w.r.t. the image of the universe of A under h, and all relations are closed. Then
˜h is a homomorphism of A∗ into C.

Similarly, Theorem1 (for homomorphisms) follows from Theorem 6. The lat-
ter also generalizes the Čech–Stone result for discrete spaces to discrete models
but with a narrow class of target models C: having relations rather closed than
right closed in Theorem 4.
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2. The immediate purpose of this section is to provide a uniform approach to
both types of extensions. This approach will lead us to certain structures, called
here generalized models, which generalize ultrafilter extensions of each of the
two types.

First we shall show that the ∗ -extension can be described in terms of the
basic (cl)open sets and the continuous extension of maps. For this, let us consider
the continuous extension of the continuous extension operation itself . To make
notation easier, denote by ext the operation of continuous extension of maps;
i.e. ext(f) is another notation for ˜f :

ext(f) = ˜f.

So if we consider maps of X into Y , then ext is a map of Y X into C(βX, βY ).
Since C(βX, βY ) with the standard (i.e. pointwise convergence) topology is
a compact Hausdorff space, ext continuously extends to the map ˜ext of β(Y X)
into this space:

The extended map ˜ext is surjective and non-injective.

Lemma 1. Let R ⊆ Y X . Then ˜ext maps the closure of R in the space β(Y X)
onto the closure of R in the space C(βX, βY ):

{

˜ext(f) : f ∈ cl β(Y X)R
}

= cl C(βX,βY )R.

For our purpose, let X = n. Then βX = n and C(βX, βY ) is (βY )n, which
can be identified with βY × . . .× βY (n times). Now the required description of
the ∗ -extension follows from Theorem 5:

Theorem 7. Let R ⊆ X × . . . × X. Then R∗ ⊆ βX × . . . × βX is (identified
with) the image of cl β(Xn)R under ˜ext.

Using ultrafilters over maps leads to the following concept. Given a language,
we define a generalized (or ultrafilter) interpretation (the term is ad hoc) as
a map ı that takes each n-ary functional symbol F to an ultrafilter over the set
of n-ary operations on X, and each n-ary predicate symbol R to an ultrafilter over
the set of n-ary relations on X; let also v be an ultrafilter valuation of variables,
i.e. a valuation which takes each variable x to an ultrafilter over a given set X:

v(x) ∈ βX, ı(F ) ∈ β(XX×...×X), ı(R) ∈ β P(X × . . . × X).

The set (βX, ı(F ), . . . , ı(R), . . .) is a generalized model . Now we are going to
define the satisfiability relation in generalized models, which will be denoted by
the symbol (.
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First, given an interpretation ı of non-logical symbols, we expand any
valuation v of variables to the map vı defined on all terms as follows. Let
app : X1 × . . . × Xn × Y X1×...×Xn → Y be the application operation:

app(a1, . . . , an, f) = f(a1, . . . , an).

Extend it to the map ãpp : βX1 × . . . × βXn × β(Y X1×...×Xn) → βY right
continuous w.r.t. the principal ultrafilters, in the usual way:

Let vı coincide with v on variables, and if vı has been already defined on
terms t1, . . . , tn, we let

vı(F (t1, . . . , tn)) = ãpp(vı(t1), . . . , vı(tn), ı(F )).

Further, given a generalized model A = (βX, ı(F ), . . . , ı(R), . . .), define the
satisfiability in A as follows. Let in ⊆ X1 × . . .×Xn ×P(X1 × . . .×Xn) be the
membership predicate:

in (a1, . . . , an, R) iff (a1, . . . , an) ∈ R.

Extend it to the relation ˜in ⊆ βX1× . . .×βXn×β P(X1× . . .×Xn) right clopen
w.r.t. principal ultrafilters. Let

A ( t1 = t2 [v] iff vı(t1) = vı(t2).

If R(t1, . . . , tn) is an atomic formula in which R is not the equality predicate,
we let

A ( R(t1, . . . , tn) [v] iff ˜in (vı(t1), . . . , vı(tn), ı(P )).

(Equivalently, we could define the satisfiability of atomic formulas by identify-
ing predicates with their characteristic functions and using the satisfiability of
equalities of the resulting terms.) Finally, if ϕ(t1, . . . , tn) is obtained by nega-
tion, conjunction, or quantification from formulas for which ( has been already
defined, we define A ( ϕ [v] in the standard way.

When needed, we shall use variants of notation commonly used for ordinary
models and satisfiability, for the generalized ones. E.g. for a generalized model A
with the universe βX, a formula ϕ(x1, . . . , xn), and elements u1, . . . , un of βX,
the notation A ( ϕ [u1, . . . , un] means that ϕ is satisfied in A under a valuation
taking the variables x1, . . . , xn to the ultrafilters u1, . . . , un.

Generalized models actually generalize not all ordinary models but those
that are ultrafilter extensions of some models. It is worth also pointing out that
whenever a generalized interpretation is principal, i.e. all non-logical symbols
are interpreted by principal ultrafilters, we naturally identify it with the obvious
ordinary interpretation with the same universe βX; however, not every ordinary
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interpretation with the universe βX is of this form. Precise relationships between
generalized models, ordinary models, and ultrafilter extensions will be described
in Theorems 9 and 10.

An ultrafilter valuation v is principal iff it takes any variable to a principal
ultrafilter.

Lemma 2. Let two generalized models A = (βX, ı(F ), . . . , ı(R), . . .) and B =
(βX, j(F ), . . . , j(R), . . .) have the same universe βX. If for all functional sym-
bols F , predicate symbols R, variables x1, . . . , xn, and principal valuations v,

ãpp(v(x1), . . . , v(xn), ı(F )) = ãpp(v(x1), . . . , v(xn), j(F )),
˜in (v(x1), . . . , v(xn), ı(R)) iff ˜in (v(x1), . . . , v(xn), j(R)),

then for all formulas ϕ, terms t1, . . . , tn, and valuations v,

A ( ϕ(t1, . . . , tn) [v] iff B ( ϕ(t1, . . . , tn) [v].

Corollary 1. Let A = (βX, ı(F ), . . . , ı(R), . . .) be a generalized model and
B = (βX, j(F ), . . . , j(R), . . .) the generalized model having the same universe
βX and such that j coincides with ı on functional symbols and for each predicate
symbol R, j(R) is the principal ultrafilter given by

{

(a1, . . . , an) ∈ Xn : ˜in (a1, . . . , an, ı(R))
}

.

Then for all valuations v, formulas ϕ, and terms t1, . . . , tn,

A ( ϕ(t1, . . . , tn) [v] iff B ( ϕ(t1, . . . , tn) [v].

Let us say that an ultrafilter f over functions is pseudo-principal iff ãpp
takes any tuple consisting of principal ultrafilters together with f to a principal
ultrafilter, i.e. for f ∈ β(Y X1×...×Xn),

a1 ∈ X1, . . . , an ∈ Xn implies ãpp(a1, . . . , an, f) ∈ Y.

Every principal f is pseudo-principal, and there exist pseudo-principal ultrafil-
ters that are not principal as well as ultrafilters that are not pseudo-principal.
A generalized interpretation ı is pseudo-principal on functional symbols iff ı(F ) is
a pseudo-principal ultrafilter for each functional symbol F (and then, for each
term t).

Corollary 2. Let A = (βX, ı(F ), . . . , ı(R), . . .) be a generalized model with ı
pseudo-principal on functional symbols. Let B = (βX, j(F ), . . . , j(R), . . .) be the
generalized model having the same universe βX and such that j coincides with ı
on predicate symbols and for each functional symbol F , j(F ) is the principal
ultrafilter given by f : Xn → X defined by letting

f(a1, . . . , an) = ãpp(a1, . . . , an, ı(F )).

Then for all valuations v, formulas ϕ, and terms t1, . . . , tn,

A ( ϕ(t1, . . . , tn) [v] iff B ( ϕ(t1, . . . , tn) [v].
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It follows that for any generalized model A whose interpretation is pseudo-
principal on functional symbols, by replacing its relations as in Corollary 1 and
its operations as in Corollary 2, one obtains an ordinary model B with the same
universe such that for all formulas ϕ and elements u1, . . . , un of the universe,
A ( ϕ [u1, . . . , un] iff B � ϕ [u1, . . . , un].

We do not formulate this fact as a separate theorem since we shall be able to
establish stronger facts soon. In Theorem 8, we shall establish that for any gen-
eralized model A, not only one with a pseudo-principal interpretation, one can
construct a certain ordinary model e(A) satisfying the same formulas; and then,
in Theorem 9, that whenever A has a pseudo-principal interpretation, e(A) is
nothing but the ˜-extension of some model. In fact, in the latter case, e(A) coin-
cides with B from the previous paragraph.

Now we provide two operations, e and E, which turn generalized models into
certain ordinary models that generalize ∗ - and ˜ -extensions. Both operations
are surjective and non-injective.

Define a map e on ultrafilters over functions to functions over ultrafilters,

e : β(Y X1×...×Xn) → βY βX1×...×βXn ,

by induction on n. For n = 1, let e coincide with ˜ext. Assume that e has been
already defined for n. First we identify Y X1×X2×...×Xn+1 with (Y X2×...×Xn+1)X1

(by the so-called evaluation map, or carrying). Under this identification, each
f ∈ β(Y X1×X2×...×Xn+1) corresponds to a certain f′ ∈ β((Y X2×...×Xn+1)X1). Now
we define e(f) by letting

e(f)(u1, u2, . . . , un+1) = e(e(f′)(u1))(u2, . . . , un+1)

(since e has been already defined on f′ and e(f′)(u1) by induction hypothesis).
Alternatively, we can define e as follows. Expand the domain of ext by letting

ext(f) = ˜f

for n-ary functions f with any n, not only unary ones. Thus, if we con-
sider functions of X1 × . . . × Xn into Y , then ext maps Y X1×...×Xn into
RCX1,...,Xn−1(βX1 × . . .× βXn, βY ), the set of all functions of βX1 × . . .× βXn

into βY that are right continuous w.r.t. X1, . . . , Xn−1. It can be shown that the
latter set forms a closed subspace in the compact Hausdorff space βY βX1×...×βXn

of all functions of βX1 × . . . × βXn into βY with the standard (i.e. pointwise
convergence) topology, and hence, is compact Hausdorff too. Therefore, ext con-
tinuously extends to the map ˜ext of β(Y X1×...×Xn) into it:

Now we can identify e with ˜ext in this expanded meaning.
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By identifying relations with their characteristic functions, we can also let
that e takes ultrafilters over relations to relations over ultrafilters:

e : β P(X1 × . . . × Xn) → P(βX1 × . . . × βXn).

In fact, e and ãpp (or ˜in ) are expressed via each other:

Lemma 3. For all f ∈ β(Y X1×...×Xn), r ∈ β P(X1 × . . . × Xn), and u1 ∈
βX1, . . . , un ∈ βXn,

e(f)(u1, . . . , un) = ãpp(u1, . . . , un, f),

e(r)(u1, . . . , un) iff ˜in (u1, . . . , un, r).

In other words,

e(f) =
{

(u1, . . . , un, v) ∈ βX1 × . . . × βXn × βY : ãpp(u1, . . . , un, f) = v
}

,

e(r) =
{

(u1, . . . , un) ∈ βX1 × . . . × βXn : ˜in (u1, . . . , un, r)
}

.

Corollary 3. For all generalized models A = (βX, ı(F ), . . . , ı(R), . . .) and val-
uations v,

vı(F (t1, . . . , tn)) = e(ı(F ))(vı(t1), . . . , vı(tn)),
A ( R(t1, . . . , tn) [v] iff e(ı(R))(vı(t1), . . . , vı(tn)).

For a generalized model B = (βX, f, . . . , r, . . .), let

e(B) = (βX, e(f), . . . , e(r), . . .).

Note that e(B) is an ordinary model.

Theorem 8. If A is a generalized model, then for all formulas ϕ and elements
u1, . . . , un of the universe of A,

A ( ϕ [u1, . . . , un] iff e(A) � ϕ [u1, . . . , un].

Define a map E, with the same domain and range that the map e has, as
follows: E and e coincide on β(Y X1×...×Xn), and if r ∈ β P(X1 × . . .×Xn) then

E(r) =
{

˜ext(q) : q ∈ ˜ext(r)
}

.

Here ˜ext(r) is a clopen subset of β(X1 × . . . × Xn), if q ∈ ˜ext(r) then ˜ext(q) is
identified with an element of the space βX1 × . . .× βXn (as in Theorem 7), and
the resulting E(r) is closed in the space.

Lemma 4. Let r ∈ β P(X1 × . . . × Xn). Then

e(r) = ˜R and E(r) = R∗

for R = e(r) ∩ (X1 × . . . × Xn) = E(r) ∩ (X1 × . . . × Xn) =
⋂

S∈r

⋃

S.
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One may write up this R more explicitly:

R =
{

(a1, . . . , an) ∈ X1 × . . . × Xn : (∀S ∈ r) (∃Q ∈ S) Q(a1, . . . , an)
}

.

For a generalized model B = (βX, f, . . . , r, . . .), let

E(B) = (βX,E(f), . . . , E(r), . . .).

Then E(B), like e(B), is an ordinary model.
By Lemma 4, relations of the model e(B) are ˜-extensions of some relations

on X, while relations of the model E(B) are ∗ -extensions of the same relations.
Whether the whole models e(B) and E(B) are ultrafilter extensions of some
models depends only on the (generalized) interpretation of functional symbols
in B:

Theorem 9. Let B be a generalized model with the universe βX. The following
are equivalent:

(i) e(B) = ˜A for a model A with the universe X,
(ii) E(B) = A∗ for a model A with the universe X,
(iii) The interpretation in B is pseudo-principal on functional symbols.

Moreover, the model A in (i) and (ii) is the same.

Finally, we point out that the fact whether an ordinary model with the
universe βX is of form e(B), and whether it is of form E(B), for some generalized
model B (clearly, with the same universe βX) depends only on its topological
properties:

Theorem 10. Let A be a model with the universe βX. Then:

(i) A = e(B) for a generalized model B iff in A all operations are right con-
tinuous and all relations right clopen w.r.t. X,

(ii) A = E(B) for a generalized model B iff in A all operations are right con-
tinuous w.r.t. X and all relations closed.

Since by Theorem 9, e and E applied to generalized models with pseudo-
principal interpretations give the ˜- and ∗-extensions of ordinary models,
Theorem 10 can be considered as a generalization of Theorems 3 and 5.

In conclusion, let us mention that various characterizations of both types of
ultrafilter extensions lead to a spectrum of similar extensions as proposed at the
end of [6]; so natural tasks are to study all of the spectrum as well as to isolate
special features of the two canonical extensions among others.

Acknowledgement. We are indebted to Professor Robert I. Goldblatt who provided
some useful historical information concerning the ∗-extension of relations.
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Abstract. Reflexive transitive closure modalities represent a number
of important notions, such as common knowledge in a group of agents
or non-deterministic iteration of actions. Normal modal logics with such
modalities are well-explored but weaker logics are not. We add a reflexive
transitive closure box modality to the modal non-associative commuta-
tive full Lambek calculus with a simple negation. Decidability and weak
completeness of the resulting system are established and extensions of the
results to stronger substructural logics are discussed. As a special case,
we obtain decidability and weak completeness for intuitionistic modal
logic with the reflexive transitive closure box.
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1 Introduction

Modalities semantically interpreted using a reflexive transitive closure of a modal
accessibility relation model a number of important notions. For instance, they
represent common knowledge in epistemic logic [4] and program iteration in
dynamic logic [6].

Normal modal logics with such modalities are well-explored but weaker log-
ics are not. This paper adds a reflexive transitive closure modality to a weak
modal substructural logic, namely, the modal non-associative commutative full
Lambek calculus with a simple negation. Decidability and weak completeness
of the resulting system are established utilising the notion of filtration used by
B́ılková et al. [1]. Extensions of our theorems to stronger substructural logics are
also discussed. It is shown that completeness and decidability proofs for intu-
itionistic logic with common knowlegde [7] follow as a corollary. Our results are
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expected to find applications in substructural epistemic logics [1,10] extended
with a common knowledge operator and non-classical versions of propositional
dynamic logic PDL [11].

The paper is organised as follows. Section 2 introduces our basic modal sub-
structural Lambek calculus and Sect. 3 adds to it a reflexive transitive closure
modality. Decidability and completeness of the resulting system are established
in Sect. 4. Extensions of the results to stronger substructural logics are briefly
discussed in Sect. 5.

2 A Modal Lambek Calculus

Our basic logic is a modal version of the non-associative commutative full Lam-
bek calculus DFNLe [2] extended with a simple negation.1 This logic is chosen
for the sake of syntactic simplicity (one implication and one negation), but also
because it is often taken as basic in the literature on substructural epistemic
logics [1,10,12].

Our results can be established for a non-commutative background logic with
a pair of negations as well. As noted in Sect. 5, however, non-associativity is an
important prerequisite of the applicability of the present technique.

The language L contains a countable set of atomic formulas Var and the set
of 0-ary connectives {t,�,⊥}, unary connectives {¬,�} and binary connectives
{∧,∨,→,⊗}. The set of formulas Frm(L) is defined in the usual manner. The
variable p ranges over Var ; α, β and ϕ,ψ, χ etc. range over Frm(L).

Definition 1. A L-model is a tuple M = 〈P,≤, L, C, S,R, �·�M 〉 such that P is
a non-empty set, ≤ is a partial order on P , L is a (upwardly) ≤-closed subset of
P (let the set of such subsets be denoted Up(P )), C and S are binary relations
on P , R is a ternary relation on P and �·�M is a mapping from Frm(L) to 2P

such that �p� ∈ Up(P ), for all p ∈ V ar. It is required that every model satisfies
the following conditions:

x′ ≤ x =⇒ (Cxy =⇒ Cx′y) (1)
x′ ≤ x =⇒ (Sxy =⇒ Sx′y) (2)
x′ ≤ x =⇒ (Rxyz =⇒ Rx′yz) (3)
x ≤ y ⇐⇒ (∃z)(z ∈ L & Rzxy) (4)
Rxyz =⇒ Ryxz (5)
Cxy =⇒ Cyx (6)

Moreover, the truth-set mapping �·�M (mapping each formula to the set of states
in which the formula is true) is required to satisfy the following conditions:

���M = P, �⊥�M = ∅ and �t�M = L (7)
�ϕ ∧ ψ�M = �ϕ�M ∩ �ψ�M and �ϕ ∨ ψ�M = �ϕ�M ∪ �ψ�M (8)

1 Due to space limitations, we do not provide an introduction to substructural logics
and their relational semantics. See [9], for example.
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�¬ϕ�M = {x | (∀y)(Cxy =⇒ y �∈ �ϕ�M )} (9)
��ϕ�M = {x | (∀y)(Sxy =⇒ y ∈ �ϕ�M )} (10)

�ϕ → ψ�M = {x | (∀yz)(Rxyz & y ∈ �ϕ�M =⇒ z ∈ �ψ�M )} (11)
�ϕ ⊗ ψ�M = {x | (∃yz)(Ryzx & y ∈ �ϕ�M & z ∈ �ψ�M )} (12)

A formula ϕ is valid in M (M � ϕ) iff L ⊆ �ϕ�M ; ϕ is L-valid (L � ϕ)
iff M � ϕ for all L-models M . A formula ϕ entails ψ in M (ϕ �M ψ) iff
�ϕ�M ⊆ �ψ�M .

The frame conditions (1)–(3) entail that �·�M is a mapping from Frm to
Up(P ). This, together with condition (4) implies that M � ϕ → ψ iff ϕ �M ψ.

We do not have space to provide a full informal interpretation of the seman-
tics,2 but it will perhaps be helpful to think of x ∈ P as “bodies of information”
in some general sense and ≤ as “informational containment” (x ≤ y means that
every piece of information supported by x is supported by y). We can then think
of L a set of “logical” bodies of information (i.e. those that support logically
valid formulas), C as a relation of compatibility and R as a relation associated
with combining bodies of information (Rxyz means, roughly, that the result of
combining x and y is at least as strong as z).

Theorem 1. L � ϕ iff ϕ is a theorem of the axiom system H, consisting of
axioms:

– ϕ → ϕ
– ϕ ∧ ψ → ϕ and ϕ ∧ ψ → ψ
– ϕ → ϕ ∨ ψ and ψ → ϕ ∨ ψ
– ϕ → � and ⊥ → ϕ

– ϕ ∧ (ψ ∨ χ) → (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
– �ϕ ∧ �ψ → �(ϕ ∧ ψ)
– � → ��

and inference rules (‘//’ indicates a two-way rule):

– ϕ,ϕ → ψ /ψ
– ϕ → ψ,ψ → χ/ϕ → χ
– χ → ϕ, χ → ψ /χ → (ϕ ∧ ψ)
– ϕ → χ, ψ → χ / (ϕ ∨ ψ) → χ
– ϕ → ψ /�ϕ → �ψ

– ϕ → (ψ → χ) // (ψ ⊗ ϕ) → χ
– ϕ → (ψ → χ) //ψ → (ϕ → χ)
– t → ϕ//ϕ
– ϕ → ¬ψ //ψ → ¬ϕ

Proof. This is a standard result [1,5].

Example 1. It is easily seen that the modal � distributes over ∧,∨ in the
expected way; both

�(ϕ ∧ ψ) ↔ (�ϕ ∧ �ψ) and �ϕ ∨ �ψ → �(ϕ ∨ ψ)

are valid in every M . However, the “K-axiom”

�(ϕ → ψ) → (�ϕ → �ψ)
2 See [8], for example.
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is not valid in every M (observe that the set {ϕ | x ∈ �ϕ�M} is closed under
Modus Ponens only if Rxxx). For a similar reason, � does not distribute over
⊗, i.e.

�(ϕ ⊗ ψ) → (�ϕ ⊗ �ψ)

is not valid in every M .3

3 Adding a Reflexive Transitive Closure Modality

The language L∗ extends L with a unary connective �∗. The set of formulas
Frm(L∗) of L∗ is defined in the usual manner and all the syntactic metavariables
are now taken to range over Frm(L∗). Γ,Δ etc. range over subsets of Frm(L∗).
Let Γ/U = {ϕ | Uϕ ∈ Γ} for all U ∈ {¬,�,�∗}.

Definition 2. A L∗-model is M = 〈P,≤, L, C, S, S∗, R, �·�M 〉 where everything
is as in Definition 1 and, in addition,

S∗ is the reflexive transitive closure of S (13)
��∗ϕ�M = {x | (∀y)(S∗xy =⇒ y ∈ �ϕ�M )} (14)

In general, if Γ ↓ is closed under subformulas, then a Γ ↓-model is a structure that
satisfies all the conditions required for L∗-models, but the truth-set conditions
(7)–(12) and (14) are required to hold only for Γ ↓.

Lemma 1. Let ϕ ∈ Γ ↓. If there is a Γ ↓-model M such that M �� ϕ, then there
is a L∗-model M ′ such that M ′ �� ϕ. If M is finite then so is M ′.

We note that ��∗ϕ�M ∈ Up(P ), so ϕ �M ψ iff M � ϕ → ψ for all Γ ↓-models
M where ϕ → ψ ∈ Γ ↓.

One immediate consequence of the truth condition for �∗ϕ is that our logic is
not compact. To see this, observe that every finite subset of {¬�∗p}∪{p}∪{�np |
n ∈ ω} is satisfiable, but the set itself is not.

4 Axiomatization and Decidability

Our main result is a weakly complete axiomatization of the set of L∗-valid formu-
las and a proof that this set is decidable. We use a generalisation of the standard
filtration technique [4,6]. In particular, we build on the notion of filtration used
in [1].

Definition 3. Let H∗ be the axiom system obtained from H by adding the axiom
and rule schemas shown in Fig. 1 (called stars).

3 Stated more precisely, counterexamples to the K-axiom can be constructed if the
frame property Syx =⇒ Rxxx fails. Similarly, counterexamples to distributivity of
� over ⊗ can be found if we have Swx and Ryzx but also Ry′z′w and Sy′u with
y �≤ u for some u. Counterexamples to the converse implication can be found if a
similar frame condition holds.
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(∗1) �∗ϕ ∧ �∗ψ → �∗(ϕ ∧ ψ)

(∗2) 	 → �∗	
(∗3) �∗ϕ ↔ (ϕ ∧ ��∗ϕ)

(∗4) ϕ → ψ / �∗ϕ → �∗ψ

(∗5) ϕ → �ϕ / ϕ → �∗ϕ

Fig. 1. The stars.

We note that axiomatizations of normal modal logics with a reflexive transi-
tive closure modality usually contain the induction axiom

(ϕ ∧ �∗(ϕ → �ϕ)) → �∗ϕ

inhstead of the loop invariance rule (∗5) (see [6], for example). These two are
equivalent in the classical setting (in the sense that the rule preserves validity iff
the axiom is valid), but not so in our framework. In fact, it can be shown that
the induction axiom is not valid in every model. The reason is closely related to
the failure of the K-axiom pointed out in Example 1.

We write � ϕ if ϕ is a theorem of H∗, ϕ � ψ if � ϕ → ψ and Γ � Δ if there
are finite Γ ′ ⊆ Γ and Δ′ ⊆ Δ such that

∧
Γ ′ � ∨

Δ′.
A set of formulas Γ is a proper prime theory iff Γ �= Frm(L∗) and Γ � ϕ∨ψ

only if ϕ ∈ Γ or ψ ∈ Γ . Note that, for all proper prime theories Γ , Γ � ϕ only
if ϕ ∈ Γ since Γ � ϕ implies Γ � ϕ ∨ ϕ. Note also that if Δ � ϕ, then Δ ⊆ Γ
only if ϕ ∈ Γ .

Theorem 2. If Γ �� Δ, then there is a proper prime theory Γ ′ ⊇ Γ disjoint
from Δ.

Proof. This is established by using a variant of the Pair Extension Theorem [9,
p. 94].

Definition 4. The canonical structure

Mc = 〈Pc,≤c, Lc, Sc, S
∗
c , Cc, Rc, �·�c〉

is defined as follows:

– Pc is the set of all proper prime theories;
– ≤c is set inclusion;
– Lc = {Γ | t ∈ Γ};
– Sc = {〈Γ,Δ〉 | Γ/� ⊆ Δ};
– S∗

c = {〈Γ,Δ〉 | Γ/�∗ ⊆ Δ};
– Cc = {〈Γ,Δ〉 | Γ/¬ ∩ Δ = ∅};
– Rc = {〈Γ,Δ,Θ〉 | (∀ϕψ)(ϕ → ψ ∈ Γ & ϕ ∈ Δ =⇒ ψ ∈ Θ)};
– �ϕ�c = {Γ | ϕ ∈ Γ}.
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It is a standard observation that the canonical structure is not a L∗-model,
for it fails to meet condition (13). In general, S∗

c contains the reflexive transitive
closure (Sc)∗ of Sc, but it is not identical to it.4 Nevertheless, the conditions
(1)–(12) and (14) are met [1,9]. (For instance, let us check condition (14). The
left-to-right inclusion is trivial. The right-to-left inclusion is established by a
variant of the Witness Lemma [9, p. 255]. If �∗ϕ �∈ Γ , then Γ/�∗ �� ϕ. Hence,
by the Pair Extension Theorem, there is Δ ∈ Pc such that S∗

c ΓΔ and Δ �∈ �ϕ�c.)

Definition 5. The closure of ϕ, cl(ϕ), is the smallest set of formulas such that

– {ϕ, t} ⊆ cl(ϕ);
– ψ ∈ cl(ϕ) for all subformulas ψ of ϕ;
– if �∗ψ ∈ cl(ϕ), then ��∗ψ ∈ cl(ϕ).

For every ϕ, let Γ �ϕ Δ iff (Γ ∩ cl(ϕ)) ⊆ Δ and Γ ∼ϕ Δ iff Γ �ϕ Δ and
Δ �ϕ Γ . Moreover, let [Γ ]ϕ = {Δ | Γ ∼ϕ Δ}.
It is plain that cl(ϕ) is finite for all ϕ.

Definition 6. Fix a formula ϕ. The ϕ-filtration of the canonical structure is a
structure Mϕ = 〈Pϕ,≤ϕ, Lϕ, Sϕ, S∗

ϕ, Cϕ, Rϕ, �·�ϕ〉 defined as follows:

– Pϕ = {[Γ ]ϕ | Γ ∈ Pc};
– [Γ ]ϕ ≤ϕ [Δ]ϕ iff Γ �ϕ Δ;
– Lϕ = {[Γ ]ϕ | (∃Γ ′ �ϕ Γ )(Γ ′ ∈ Lc)};
– Sϕ = {〈[Γ ]ϕ, [Δ]ϕ〉 | (∃Γ ′ �ϕ Γ )(ScΓ

′Δ)};
– S∗

ϕ = (Sϕ)∗;
– Cϕ = {〈[Γ ]ϕ, [Δ]ϕ〉 | (∃Γ ′ �ϕ Γ,∃Δ′ �ϕ Δ)(CcΓ

′Δ′)};
– Rϕ = {〈[Γ ]ϕ, [Δ]ϕ, [Θ]ϕ〉 | (∃Γ ′ �ϕ Γ,∃Δ′ �ϕ Δ)(RcΓ

′Δ′Θ)};
– for all α ∈ cl(ϕ), �α�ϕ = {[Γ ]ϕ | α ∈ Γ}; for α �∈ cl(ϕ), �α�ϕ = ∅.

The crucial difference between the canonical structure and its filtration (in
addition to the fact that the latter is finite) is the fact that, in a ϕ-filtration,
S∗

ϕ is defined to be the reflexive transitive closure of Sϕ. However, one needs to
check that the ϕ-filtration of the canonical structure is a cl(ϕ)-model. In what
follows, we drop the subscript ‘ϕ’ whenever possible.

Theorem 3. For all ϕ, the ϕ-filtration of the canonical structure is a cl(ϕ)-
model.

Proof. The relation ≤ϕ is obviously a partial order on Pϕ. The fact that Cϕ, Rϕ

and Lϕ satisfy the conditions (1), (6), (3), (5) and (4), respectively, and that
Lϕ is closed under ≤ϕ are established similarly as in [1]. (13) holds by definition
and (2) is established as follows. If S[Γ ][Δ] then ScΓ

′Δ for some Γ ′ � Γ . But if
[Θ] ≤ [Γ ] then Θ � Γ and, consequently, Θ � Γ ′. Hence, S[Θ][Δ].

4 The reason is that if �∗ϕ ∈ Γ , then ϕ, �nϕ ∈ Γ for all n ∈ ω by (∗3), but the
converse implication cannot be established (our axiomatization is finitary).
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It remains to be shown that �·�ϕ satisfies the conditions (7)–(12) and (14)
when applied to ψ ∈ cl(ϕ). The cases where the main connective of ψ is in
{�,⊥, t,¬,∧,∨,→,⊗} are established as in [1].

Next, assume that ψ = �α. We have to show that

�α ∈ Γ ⇐⇒ (∀[Δ])(S[Γ ][Δ] =⇒ α ∈ Δ)

(α ∈ Δ means [Δ] ∈ �α�) Assume first that �α ∈ Γ and S[Γ ][Δ]. It follows that
ScΓ

′Δ for some Γ ′ � Γ . But then �α ∈ Γ ′ and, by the definition of Sc, α ∈ Δ.
Conversely, if �α �∈ Γ , then the Witness Lemma [9, p. 255] entails that there is
Δ such that ScΓΔ and α �∈ Δ. But it is plain that ScΓΔ only if S[Γ ][Δ].

Finally, assume that ψ = �∗α. We have to show that

�∗α ∈ Γ ⇐⇒ (∀[Δ])(S∗[Γ ][Δ] =⇒ α ∈ Δ)

If �∗α �∈ Γ then, by a variation of the Witness Lemma, there is Δ such that
α �∈ Δ and S∗

c ΓΔ. It is sufficient to show that there is Θ such that S∗[Γ ][Θ] and
Θ � Δ.

Let
E = {Φ | (∃Θ)(S∗[Γ ][Θ] & Θ � Φ)}

(E is closed under ≤c, but E′ = {Φ | S∗[Γ ][Φ]} is not. Recall that (Sc)∗ ⊆ S∗
c ,

but not necessarily vice versa.) We have to show that Δ ∈ E. For all [Φ] ∈ P ,
define

ψ[Φ] =
∧

{α ∈ cl(ϕ) | α ∈ Φ}
and

ψE =
∨

{ψ[Φ] | S∗[Γ ][Φ]}.

Note that ψE is well-defined since Pϕ is finite. We establish two claims.

Claim 1. E is closed under Sc, i.e., if Φ ∈ E and ScΦΨ , then Ψ ∈ E. If Φ ∈ E,
then there is Θ such that S∗[Γ ][Θ] and Θ � Φ. It follows from ScΦΨ and Θ � Φ
that S[Θ][Ψ ]. But S∗ is the reflexive transitive closure of S, so it follows that
S∗[Γ ][Ψ ]. Hence, Ψ ∈ E.

Claim 2. E = �ψE�c. First, assume that Φ ∈ E, i.e., there is Ψ such that S∗[Γ ][Ψ ]
and Ψ � Φ. Now Ψ � Φ implies ψ[Ψ ] ∈ Φ (proper prime theories are closed under
forming conjunctions). But Ψ ∈ E, so ψ[Ψ ] � ψE . Consequently, ψE ∈ Φ, i.e.,
Φ ∈ �ψE�c. Conversely, assume that ψE ∈ Φ. Φ is a prime theory, so ψ[Θ] ∈ Φ
for some Θ such that S∗[Γ ][Θ]. It follows that Θ � Φ. Hence, Φ ∈ E.

The two claims imply that �ψE�c ⊆ ��ψE�c. (If ψE ∈ Δ, then Δ ∈ E by
Claim 2. But then, if ScΔΘ for some Θ, then Θ ∈ E by Claim 1. By Claim 2, if
ScΔΘ, then ψE ∈ Θ. Hence, �ψE ∈ Δ.) Consequently, ψE → �ψE ∈ ⋂{Φ|Φ ∈
Lc}. Now since ϕ → �ϕ/ϕ → �∗ϕ is an inference rule of H∗, ψE → �∗ψE ∈⋂{Φ|Φ ∈ Lc} and �ψE�c ⊆ ��∗ψE�c. Now we show that S∗

c ΓΔ implies that
there is Θ such that S∗[Γ ][Θ] and Θ � Δ. It is plain that Γ ∈ E. By Claim
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2, Γ ∈ �ψE�c and, consequently, Γ ∈ ��∗ψE�c. Now Δ ∈ �ψE�c since S∗
c ΓΔ.

In other words, Δ ∈ E. But this means that there is Θ such that S∗[Γ ][Θ] and
Θ � Δ.

The final thing to show is that if �∗α ∈ Γ and S∗[Γ ][Δ], then α ∈ Δ.
Our assumption S∗[Γ ][Δ] entails that either [Γ ] = [Δ] or there is n ≥ 1 such
that S[Γ ][Δ1] · · · [Δn] = [Δ]. If [Γ ] = [Δ], then Γ ∼ Δ and �∗α ∈ Δ. Since
� �∗α → α, α ∈ Δ and we are done. Assume that there is n ≥ 1 such that
S[Γ ][Δ1] · · · [Δn] = [Δ]. We show by induction that for all n ≥ 1, Δn contains α
and �∗α. �∗α ∈ Γ entails that ��∗α ∈ Γ (as � �∗α → ��∗α). By the clause
ψ = �β established above, S[Γ ][Δ1] entails that �∗α ∈ Δ1, so α ∈ Δ1 as well.
Let us now assume that the claim holds for k < n. We show that it holds for
k + 1 as well. Assume that α,�∗α ∈ Δk and S[Δk][Δk+1]. Again, ��∗α ∈ Δk

and �∗α ∈ Δk+1 by the clause ψ = �β and, consequently, α ∈ Δk+1.

Theorem 4. If �� ϕ, then there is a finite L∗-model M such that M �� ϕ.

Proof. If �� ϕ, then t �� ϕ. By the Pair Extension Theorem [9], there is a proper
prime theory Γ ∈ Lc such that ϕ �∈ Γ . The ϕ-filtration Mϕ of the canonical
structure is a finite cl(ϕ)-model by Theorem 3. Moreover, [Γ ] ∈ Lϕ and [Γ ] �∈
�ϕ�ϕ. So, Mϕ �� ϕ. By Lemma 1, there is a finite L∗-model M such that M �� ϕ.

Theorem 5. H∗ is a sound and weakly complete axiomatisation of the set of
formulas valid in every L∗-model. This set is decidable.

Proof. Soundness of H∗ is left to the reader. Weak completeness follows from
Theorem 4. Decidability follows from the fact that any ϕ-filtration of the canon-
ical structure is finite (and, in fact, bounded by the size of ϕ).

5 Extensions

It is easily seen that our results can be extended to stronger substructural logics.

Theorem 6. Let L be a substructural logic (in L) axiomatised by H(L) and
characterised by a class of models Mod(L). Assume that M ∈ Mod(L) iff M
satisfies a set of frame conditions Con(L) such that the H(L)-canonical struc-
ture and the ϕ-filtration (for arbitrary ϕ) of the canonical structure both satisfy
Con(L). Then the extension of L by a reflexive transitive closure modality is
decidable and axiomatised by H(L) plus the stars.

Proof. If it is assumed that the ϕ-filtration of the canonical structure satisfies
all the relevant frame conditions, then the fact that �·�ϕ satisfies the conditions
(7)–(12) and (14) when applied to ψ ∈ cl(ϕ) is established exactly as in the
proof of Theorem3 above. But this means that the ϕ-filtration of the canonical
structure is a finite cl(ϕ)-model. The rest of the argument is as before.

This observation also hints at potential limitations of the present technique.
In general, if a frame condition is not preserved under forming filtrations (i.e. if
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the canonical structure satisfies the condition, then its ϕ-filtration for arbitrary ϕ
does so as well) then the present technique cannot be applied to logics complete
with respect to models satisfying the frame condition. For instance, the frame
condition corresponding to associativity5

Rxyv & Rvzw =⇒ (∃u)(Rxuw & Ryzu)

is not preserved by standard notions of filtration such as the one we have used
in the present paper.

If one is interested in adding a reflexive transitive closure modality to modal
intuitionistic logic (as in [7]), however, the problem with associativity can be
avoided by interpreting → directly in terms of ≤:

�ϕ → ψ� = {x | (∀y)(x ≤ y =⇒ (y ∈ �ϕ� =⇒ y ∈ �ψ�))}
An inspection of our proof of Theorem3 reveals that, after adding the stars
to any axiomatization of intuitionistic logic with � [3], our argument can be
repeated without modification.
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Abstract. The Gödel-Löb provability logic GL is strongly neighbour-
hood complete in the case of the so-called local semantic consequence
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1 Introduction

The Gödel-Löb provability logic GL is a modal logic describing all universally
valid principles of the formal provability in Peano arithmetic [13]. This logic is
complete with respect to its Kripke semantics [9], yet it is not strongly complete.
In this paper, we study so-called neighbourhood semantics of the given logic.

Neighbourhood semantics is a generalization of Kripke semantics indepen-
dently developed by Montague and Scott in [7,8]. A neighbourhood frame can
be defined as a pair (X,�), where X is a set and � is an unary operation in
P(X). The logic GL is not compact with respect to Kripke semantics, but it is
neighbourhood compact, which immediately implies that GL is strongly neigh-
bourhood complete (see [1,11]). We stress that this strong completeness result
was obtained for the case of the so-called local semantic consequence relation.
Recall that, over neighbourhood GL-models, a formula A is a local semantic
consequent of Γ if for any neighbourhood GL-model M and any world x of M

(∀B ∈ Γ M, x � B) ⇒ M, x � A.

A formula A is a global semantic consequent of Γ if for any neighbourhood
GL-model M

(∀B ∈ Γ M � B) ⇒ M � A.

This paper studies the case of the global semantic consequence relation.
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Recently a proof-theoretic presentation of GL in the form of a sequent calculus
allowing non-well-founded proofs was given in [5,10]. In this paper, we consider
Hilbert-style non-well-founded derivations in GL and establish that GL with the
obtained derivability relation is strongly neighbourhood complete with respect
to the global semantic consequence relation.

At the same time we should emphasize that, in the case of GL, the ordinary
global syntactic consequence relation, which is a derivability relation standardly
defined without non-well-founded derivations, is not neighbourhood complete
(see Corollary 7.6 in [6]).

The plan of the paper is as follows. In Sect. 2, we recall the Gödel-Löb
provability logic GL and its neighbourhood semantics. Then we recall a con-
nection between scattered topological spaces and GL-frames in Sect. 3. In the
next section, we define global semantic consequence relations over GL-frames and
introduce corresponding derivability relations using non-well-founded derivation
trees. In Sect. 5, we obtain a form of neighbourhood compactness using the ultra-
bouquet construction from [11]. In Sect. 6, we present a sequent calculus for GL
allowing non-well-founded proof trees. The final section is devoted to establishing
global neighbourhood completeness of GL with non-well-founded proofs.

2 Preliminaries

In this section we recall the Gödel-Löb provability logic GL and its neighbourhood
semantics.

Formulas of GL (also called modal formulas) are built from the countable set
of variables PV = {p, q, . . . } and the constant ⊥ using propositional connectives
→ and �. We treat other boolean connectives and the modal connective ♦ as
abbreviations:

¬A := A → ⊥, � := ¬⊥, A ∧ B := ¬(A → ¬B),
A ∨ B := (¬A → B), ♦A := ¬�¬A.

In the sequel, the set of modal formulas is denoted by Fm.
The Gödel-Löb provability logic GL is defined via its Hilbert-style axiomati-

zation.

Axiom Schemes:

(i) the tautologies of classical propositional logic;
(ii) �(A → B) → (�A → �B);
(iii) �A → ��A;
(iv) �(�A → A) → �A.

Inference Rules:

mp
A A → B

B
, nec

A

�A
.
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A relation of derivability from assumptions in GL is inductively defined in
the following way. A formula A is derivable from the set of assumptions Γ (cf.
[4]), if A is in Γ , or A is one of the axioms of GL, or follows from derivable
formulas through applications of the inference rules (mp) and (nec) so that the
rule (nec) can be applied only to derivations without assumptions. We denote
this derivability relation by 
l, where l stands for ’local’.

Following [11], we define a neighbourhood frame X = (X,�) as a set X
together with an operator on its subsets � : P(X) → P(X). Elements of X
are called worlds of the frame X . A valuation (over X ) is a function θ : Fm →
P(X) such that θ(⊥) = ∅, θ(V1 → V2) = (X \ θ(V1)) ∪ θ(V2) and θ(�V ) =
�θ(V ). A neighbourhood model is defined as a pair M = (X , θ), where X is a
neighbourhood frame and θ is a valuation over it.

A formula A is true at a world x of a model M, written as M, x � A, if
x ∈ θ(A). A formula A is called true in M, written as M � A, if A is true at all
worlds of M. In addition, A is valid in a frame X if A is true at all worlds of
X under all valuations. A GL-frame is a frame in which all formulas provable in
GL are valid. A GL-model is a neighbourhood model over a GL-frame.

Now we define a local (pointwise) semantic consequence relation over GL-
frames. Given a set of modal formulas Γ and a formula A, we set Γ �l A if for
any GL-model M and any its world x

(∀B ∈ Γ M, x � B) ⇒ M, x � A .

The following strong completeness result was obtained by Shehtman using the
so-called ultrabouquet construction (see [11]).

Proposition 1. Γ 
l A ⇐⇒ Γ �l A.

3 Scattered Topological Spaces

In this section we briefly recall a connection between scattered topological spaces
and GL-frames (cf. [2]).

In a topological space, an open set U containing a point x is called a neigh-
bourhood of x. A set U is a punctured neighbourhood of x if and U ∪ {x}
is open. For a topological space (X, τ) and its subset V the derivative set dτ (V )
of V is the set of limit points of V :

x ∈ dτ (V ) ⇐⇒ ∀U ∈ τ (x ∈ U ⇒ ∃y �= x (y ∈ U ∩ V )) .

The co-derivative set cdτ (V ) of V is defined as X \ dτ (X \ V ). By definition,
x ∈ cdτ (V ) if and only if there is a punctured neighbourhood of x entirely
contained in V .

In a topological space, a point having an empty punctured neighbourhood is
called isolated. A topological space is scattered if each non-empty subset of X
(as a topological space with the inherited topology) has an isolated point.

Proposition 2 (Esakia [3]). If (X,�) is a GL-frame, then X bears a unique
topology τ for which � = cdτ . Moreover, the space (X, τ) is scattered.
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Proposition 3 (Simmons [12], Esakia [3]). If (X, τ) is a scattered topological
space, then (X, cdτ ) is a GL-frame.

In the sequel, we don’t distinguish GL-frames and corresponding topological
spaces so that we use the topological terminology referring to (X, τ) for the
frame (X, cdτ ). For example, we say that a subset U is open in (X,�) if it is
open in the corresponding topological space (which is equivalent to U ⊂ �U).

For a topological space (X, τ), we define transfinite iterations of the co-
derivative-set operator by

– cd0τ (V ) = V , cdα+1
τ (V ) = cdτ (cdα

τ (V )),
– cdα

τ (V ) =
⋃

β<α(cd
β
τ (V )) if α is a limit ordinal.

Proposition 4 (Cantor). A topological space (X, τ) is scattered if and only if
cdα

τ (∅) = X for some α.

For a scattered topological space (X, τ) and a point x ∈ X, the rank ρτ (x)
of x is the least ordinal α such that x ∈ cdα+1

τ (∅).

Lemma 1 (cf. Lemma 3.11 from [1]). In a scattered topological space (X, τ),
we have

– cdα
τ (∅) is an open set for any α,

– cdα
τ (∅) ⊂ cdβ

τ (∅) if α � β.

Lemma 2. For any scattered topological space (X, τ) and any x ∈ X, the set
{y ∈ X | ρτ (y) < ρτ (x)} is a punctured neighbourhood of x.

Proof. Let us check that {x} ∪ {y ∈ X | ρτ (y) < ρτ (x)} is an open set. We have

{y ∈ X | ρτ (y) < ρτ (x)} = cdρτ (x)
τ (∅), {x} ⊂ cdρτ (x)+1

τ (∅),

cdρτ (x)
τ (∅) ⊂ cdρτ (x)+1

τ (∅).

Hence

{x} ∪ {y ∈ X | ρτ (y) < ρτ (x)} ⊂ cdτ ({y ∈ X | ρτ (y) < ρτ (x)}) ⊂
⊂ cdτ ({x} ∪ {y ∈ X | ρτ (y) < ρτ (x)}).

Notice that, in any topological space, a set U is open if and only if U ⊂ cdτ (U).
Thus {x} ∪ {y ∈ X | ρτ (y) < ρτ (x)} is an open set.

4 Global Consequence Relations

In this section we define global semantic consequence relations over GL-
frames and introduce corresponding derivability relations using non-well-founded
derivation trees. We obtain completeness results for these derivability relations
in Sect. 7.
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Given a set of modal formulas Γ and a formula A, we set Γ �g A if for any
GL-model M

(∀B ∈ Γ M � B) ⇒ M � A .

We also set Σ;Γ � A if for any GL-model M and any its world x

((∀y �= x ∀B ∈ Σ M, y � B) ∧ (∀C ∈ Γ M, x � C)) ⇒ M, x � A.

Notice that the relation � is a generalization of �l and �g that is ∅;Γ � A ⇔
Γ �l A and Γ ;Γ � A ⇔ Γ �g A.

An ∞-derivation in GL is a (possibly infinite) tree whose nodes are marked
by modal formulas and that is constructed according to the rules (mp) and (nec).
In addition, any infinite branch in an ∞-derivation must contain infinitely many
applications of the rule (nec). An assumption leaf of an ∞-derivation is a leaf
that is not marked by an axiom of GL. An assumption leaf is boxed if there is an
application of the rule (nec) on the path from this leaf to the root of the tree.

The main fragment of an ∞-derivation is a finite tree obtained from the ∞-
derivation by cutting every infinite branch at the nearest to the root application
of the rule (nec). The local height |π| of an ∞-derivation π is the length of the
longest branch in its main fragment. An ∞-derivation only consisting of a single
formula has height 0.

For example, consider the following ∞-derivation

...
�p3 �p3 → p2mp

p2nec �p2 �p2 → p1mp
p1nec �p1 �p1 → p0mp ,

p0

where assumption leafs are marked by formulas of the form �pn+1 → pn. The
local height of this ∞-derivation equals to 1 and its main fragment has the form

�p1 �p1 → p0mp .
p0

We set Γ 
g A if there is an ∞-derivation with the root marked by A
in which all assumption leafs are marked by some elements of Γ . We also set
Σ;Γ 
 A if there is an ∞-derivation with the root marked by A in which all
boxed assumption leafs are marked by some elements of Σ and all non-boxed
assumption leafs are marked by some elements of Γ . Note that Γ ;Γ 
 A ⇔
Γ 
g A.

Now we introduce an auxiliary semantic consequence relation �∗, which will
be proved to be equivalent to �. We set Σ;Γ �∗ A if for any GL-model M, any
its world x and any punctured neighbourhood O of x

((∀y ∈ O ∀B ∈ Σ M, y � B) ∧ (∀C ∈ Γ M, x � C)) ⇒ M, x � A.
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Lemma 3. Σ;Γ 
 A ⇒ Σ;Γ �∗ A.

Proof. Assume π is an ∞-derivation with the root marked by A in which all
boxed assumption leafs are marked by some elements of Σ and all non-boxed
assumption leafs are marked by some elements of Γ . In addition, assume M =
(X , θ) is a GL-model, x is a world of M and O is a punctured neighbourhood of
x such that

∀y ∈ O ∀C ∈ Σ M, y � C and ∀D ∈ Γ M, x � D.

Let (X, τ) be the scattered topological space corresponding to the GL-frame X .
We prove M, x � A by transfinite induction on ρτ (x) and a subinduction on |π|.

If |π| = 0, then A is an axiom of GL or an element of Γ . We obtain M, x � A
immediately. Otherwise, consider the lowermost application of an inference rule
in π.

Case 1. Suppose that π has the form

π′

...
B

π′′

...
B → Amp .

A

By the induction hypotheses for π′ and π′′, we have M, x � B and M, x � B →
A. Consequently M, x � A.

Case 2. Suppose that π has the form

π′

...
Bnec ,

�B

where �B = A. We see that Σ;Σ 
 B. We also have

∀y ∈ O (ρτ (y) < ρτ (x) ⇒ ∀C ∈ Σ M, y � C).

Notice that

{y ∈ O | ρτ (y) < ρτ (x)} = O ∩ {y ∈ X | ρτ (y) < ρτ (x)} = O ∩ cdρτ (x)
τ (∅).

Hence, by Lemma1, the set {y ∈ O | ρτ (y) < ρτ (x)} is open as the intersection
of two open sets. By the induction hypothesis for any point of {y ∈ O | ρτ (y) <
ρτ (x)} we obtain

∀y ∈ O (ρτ (y) < ρτ (x) ⇒ M, y � B).

Thus we have
{y ∈ O | ρτ (y) < ρτ (x)} ⊂ θ(B).
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Now recall that for any world z of M
M, z � �B ⇔ z ∈ θ(�B) ⇔ z ∈ cdτ (θ(B)) .

By definition, the co-derivative set cdτ (θ(B)) contains a world z if and only if
there is a punctured neighbourhood of z entirely contained in θ(B). We have that
{y ∈ O | ρτ (y) < ρτ (x)} ⊂ θ(B) and {y ∈ O | ρτ (y) < ρτ (x)} is a punctured
neighbourhood of x by Lemma2. Thus x ∈ cdτ (θ(B)) and M, x � �B.

Lemma 4. Σ;Γ �∗ A ⇒ Σ;Γ � A.

Proof. Assume Σ;Γ �∗ A. In addition, assume M = (X , θ) is a GL-model and
x is a world of M such that

∀y �= x ∀C ∈ Σ M, y � C and ∀D ∈ Γ M, x � D.

Let (X, τ) be the scattered topological space corresponding to the GL-frame X .
We see that X \ {x} is a punctured neighbourhood of x. Hence M, x � A.

5 Neighbourhood Compactness

In this section we prove that if Σ;Γ � A, then there is a finite subset Γ0 of Γ such
that Σ;Γ0 � A. This neighbourhood compactness result is obtained applaying
the ultrabouquet construction from [11].

Notice that an open set in a scattered topological space is scattered (as a
topological space with the inherited topology). Hence an open set in a GL-frame
X defines the GL-frame, which is called an open subframe of X .

Lemma 5. If (X0,�0) is an open subframe of a GL-frame (X1,�1), then �0V =
X0 ∩ �1V for any V ⊂ X0.

Lemma 6 (see Lemma 6 from [11]). For GL-models (X0, θ0) and (X1, θ1),
where X0 is an open subframe of X1 and θ0(p) = X0 ∩ θ1(p) for p ∈ PV , we
have that θ0(A) = X0 ∩ θ1(A) for any formula A.

For any n ∈ N, let Xn = (Xn, τn) be a topological space and xn be a closed
point in it. Let U be a non-principal ultrafilter in N. The ultrabouquet

∨

U
(Xn, xn)

is a topological space obtained as a set from the disjoint union
⊔

n∈N

Xn by iden-

tifying all points xn. A set U is open in
∨

U
(Xn, xn) if and only if

– for any n ∈ N the set U ∩ (Xn \ {xn}) is open in Xn,
– {n ∈ N | U ∩ Xn is open in Xn} ∈ U whenever x∗ ∈ U ,

where x∗ is the point of
∨

U
(Xn, xn) obtained by identifying points xn.

Clearly, an ultrabouquet of scattered topological spaces is a scattered topo-
logical space. Hence we can construct a GL-frame as an ultrabouquet of a count-
able family of GL-frames.

For n ∈ N, let θn be a valuation over a GL-frame Xn = (Xn,�n). Let θ be a
valuation over

∨

U
(Xn, xn) defined on the set of propositional variables as follows:
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– the restriction of θ(p) to Xn \ {xn} is equal to θn(p);
– x∗ ∈ θ(p) if and only if {n ∈ N | xn ∈ θn(p)} ∈ U .

We denote this valuation θ by
∨

U
(θn, xn).

Lemma 7 (see Lemmas 22 and 27 from [11]). For any n ∈ N, let (Xn, θn)
be a GL-model and xn be a closet point in it. Let U be a non-principal ultrafilter
in N and θ =

∨

U
(θn, xn). Then for any formula A we have

– θ(A) ∩ (Xn \ {xn}) = θn(A) for any n ∈ N;
– x∗ ∈ θ(A) if and only if {n ∈ N | xn ∈ θn(A)} ∈ U .

A topological space is Td (local T1) if any point in it is closed in some of its
neighbourhoods.

Lemma 8 (see Corollary 1 from [2] or Lemma 61 from [11]). Any scat-
tered space is Td.

Theorem 1. If Σ;Γ � A, then there is a finite subset Γ0 of Γ such that Σ;Γ0 �
A.

Proof. Assume Σ;Γ � A. We prove that there exists the required finite subset
Γ0 of Γ by reductio ad absurdum.

Suppose that for any finite subset Γ0 of Γ we have Σ;Γ0 � A. Let Γ =

{Bn | n ∈ N} and Cn =
i=n∧

i=0

Bi. Then, for any n ∈ N, there exist a GL-frame

Xn = (Xn,�n), a valuation θn over it and a world xn such that

∀y �= xn ∀D ∈ Σ (Xn, θn), y � D, (Xn, θn), xn � Cn and (Xn, θn), xn � A.

Let Yn be an open subframe of Xn, in which xn is closed. We define a valuation
ψn over Yn obtained by restricting θn to Yn. By Lemma6, we have

∀y �= xn ∀D ∈ Σ (Yn, ψn), y � D, (Yn, ψn), xn � Cn and (Yn, ψn), xn � A.

We take an non-principal ultrafilter U in N and consider the ultrabouquet Y =∨

U
(Yn, xn) together with the valuation ψ =

∨

U
(ψn, xn) over Y. From Lemma7,

we have

∀y �= xn ∀D ∈ Σ (Y, ψ), y � D, ∀B ∈ Γ (Y, ψ), xn � B and (Y, ψ), xn � A.

We obtain a contradiction with the assumption Σ;Γ � A. Therefore there
exists a finite subset Γ0 of Γ such that Σ;Γ0 � A.
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6 Sequent Calculus

In this section we define a calculus corresponding to the global consequence
relation �.

A sequent is an expression of the form Σ;Γ ⇒ Δ, where Γ and Δ are finite
multisets of formulas, and Σ is an arbitrary set of formulas. For a multiset of
formulas Γ = A1, . . . , An, we set �Γ := �A1, . . . ,�An.

Initial sequents and inference rules of the sequent calculus S have the follow-
ing form:

Σ;Γ, p ⇒ p,Δ, Σ;Γ,⊥ ⇒ Δ,

Σ;Γ,B ⇒ Δ Σ;Γ ⇒ A,Δ→L ,
Σ;Γ,A → B ⇒ Δ

Σ;Γ,A ⇒ B,Δ→R ,
Σ;Γ ⇒ A → B,Δ

Σ;Σ0, Γ,�Γ ⇒ A
� (Σ0 is a finite subset of Σ).

Σ;Π,�Γ ⇒ �A,Δ

An ∞-proof in S is a (possibly infinite) tree whose nodes are marked by
sequents and whose leaves are marked by initial sequents and that is constructed
according to the rules of the sequent calculus. A sequent Σ;Γ ⇒ Δ is provable
in S if there is an ∞-proof π with the root marked by Σ;Γ ⇒ Δ. In this case π
is called an ∞-proof of Σ;Γ ⇒ Δ.

A sequent Σ;Γ ⇒ Δ is called valid if Σ; {∧ Γ} �
∨

Δ.

Lemma 9. If a sequent Σ;Γ,A → B ⇒ Δ is valid, then sequents Σ;Γ,B ⇒ Δ
and Σ;Γ ⇒ A,Δ are valid. If Σ;Γ ⇒ A → B,Δ is valid, then Σ;Γ,A ⇒ B,Δ
is also valid.

A sequent Σ;Γ ⇒ Δ is called saturated if Γ and Δ do not contain formulas
of the form A → B.

Lemma 10. If Σ;Π,�Γ ⇒ Δ is a valid non-initial saturated sequent, where Π
consists only of propositional variables, then there are a finite subset Σ0 of Σ
and a formula �A from Δ such that Σ;Σ0, Γ,�Γ ⇒ A is a valid sequent.

Proof. Assume Σ;Π,�Γ ⇒ Δ is a valid non-initial saturated sequent, where Π
consists only of propositional variables. We claim that there is a formula �A
from Δ such that Σ;Σ ∪ {∧ Γ ∧ ∧

�Γ} � A. We prove this claim by reductio
ad absurdum.

Let �A1, . . . ,�An be all elements from Δ of the form �A. Suppose that for
any i ∈ {1, . . . , n} there exist a GL-frame Xi = (Xi,�i), a valuation θi over it
and a world xi such that

∀y ∈ Xi ∀B ∈ Σ (Xi, θi), y � B, (Xi, θi), xi �
∧

Γ ∧
∧

�Γ and (Xi, θi), xi � Ai.

We consider a topological space X obtained from the disjoint union of Xi by
adding a new world x. A subset U of X is open if and only if the following
conditions hold:
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– the restriction of U to Xi is open for any i ∈ {1, . . . , n};
– if x ∈ U , then xi ∈ U for any i ∈ {1, . . . , n}.
Clearly, the topological space X is scattered. Hence we can consider it as a GL-
frame. Let θ be a valuation over X defined on the set of propositional variables
as follows:

– the restriction of θ(p) to Xi is equal to θi(p) for any i ∈ {1, . . . , n};
– x ∈ θ(p) if and only if p ∈ Π.

We shall show that

∀y �= x ∀B ∈ Σ (X , θ), y � B, (X , θ), x �
∧

Π ∧
∧

�Γ and (X , θ), x �

∨
Δ.

Every GL-frame Xi is an open subframe of X . Thus, by Lemma6, the condi-
tion ∀y �= x ∀B ∈ Σ (X , θ), y � B follows from ∀i ∈ {1, . . . , n} ∀y ∈ Xi ∀B ∈
Σ (Xi, θi), y � B. Further, we have (X , θ), x � p for p ∈ Π and (X , θ), x � p for
p ∈ Δ by definition of θ.

Let us check that (X , θ), x �
∧

�Γ . For any formula C from Γ and any
i ∈ {1, . . . , n} we have (X , θ), xi � C ∧�C by Lemma6. This yields that for any
i ∈ {1, . . . , n} there is a neighbourhood Ui of xi such that Ui ⊂ θ(C). We have
that

⋃
1�i�n Ui ⊂ θ(C), where

⋃
1�i�n Ui is a punctured neighbourhood of x.

Hence (X , θ), x � �C for any C ∈ Γ .
It remains to check that (X , θ), x � �Ai for i ∈ {1, . . . , n}. For any punctured

neighbourhood U of x, there is a world xi ∈ U such that (X , θ), xi � Ai. Hence
(X , θ), x � �Ai.

We obtain that the sequent Σ;Π,�Γ ⇒ Δ is not valid, which is a contradic-
tion. Therefore there is a formula �A from Δ such that Σ;Σ∪{∧ Γ∧∧

�Γ} � A.
In addition, by Theorem1, there is a finite subset Σ0 of Σ such that Σ;Σ0 ∪
{∧

Γ ∧∧
�Γ} � A. Hence we find the required valid sequent Σ;Σ0, Γ,�Γ ⇒ A.

Theorem 2. Any valid sequent is provable in S.

Proof. Let us consider a valid sequent Σ;Γ ⇒ Δ. If this sequent is not saturated,
then it can be obtained by an application of the rule (→R) or (→L) from other
valid sequents using Lemma9. If this sequent is saturated, then it is initial or can
be obtained by an application of the rule (�) from another valid sequent using
Lemma 10. Therefore any valid sequent is initial sequent of the sequent calculus
S or can be obtained by an application of an inference rule from other valid
sequents. Thus, for any valid sequent, its ∞-proof in S is immediately defined
travelling upwards from conclusions to premises by co-recursion.

Corollary 1. If Σ;Γ � A, then the sequent Σ;Γ ⇒ A is provable in S.

Proof. If Σ;Γ � A, then the sequent Σ;Γ ⇒ A is valid by definition. Hence this
sequent is provable in S by Theorem2.
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7 Global Completeness

Theorem 3. If a sequent Σ;Γ ⇒ Δ is provable in S, then Σ;∅ 
 ∧
Γ → ∨

Δ.

Proof. Assume π is an ∞-proof of Σ;Γ ⇒ Δ in S. We define the required
∞-derivation f(π) in GL travelling upwards from conclusions to premises by
co-recursion.

If Σ;Γ ⇒ Δ is an initial sequent of the sequent calculus S, then the formula∧
Γ → ∨

Δ is provable in GL by a finite proof. Let f(π) be such a proof.
Otherwise, consider the final application of an inference rule in π.
Case 1. If π has the form

π′

...
Σ;Γ,B ⇒ Δ

π′′

...
Σ;Γ,⇒ A,Δ→L ,

Σ;Γ,A → B ⇒ Δ

then we define f(π) as

f(π′)
...
G

f(π′′)
...
F

ξ

...
F → (G → H)

mp
G → Hmp ,

H

where F =
∧

Γ → ∨
({A} ∪ Δ), G =

∧
(Γ ∪ {B}) → ∨

Δ, H =
∧
(Γ ∪ {A →

B}) → ∨
Δ and ξ is a finite proof of the formula F → (G → H) in GL.

Case 2. If π has the form
π′

...
Σ;Γ,A ⇒ B,Δ→R ,

Σ;Γ ⇒ A → B,Δ

then we define f(π) as

f(π′)
...
F

ξ

...
F → Gmp ,

G

where F =
∧
(Γ ∪ {A}) → ∨

({B} ∪ Δ), G =
∧

Γ → ∨
({A → B} ∪ Δ) and ξ is

a finite proof of the formula F → G in GL.
Case 3. Now consider the final case when π has the form

π′

...
Σ;Σ0, Γ,�Γ ⇒ A

� (Σ0 is a finite subset of Σ).
Σ;Π,�Γ ⇒ �A,Δ
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We define f(π) as

η

...
∧

Σ0

f(π′)
...
F

ζ

...
F → (

∧
Σ0 → G)

mp ∧
Σ0 → G

mp
Gnec �G

ξ

...
�G → Hmp ,

H

where F =
∧
(Σ0 ∪ Γ ∪ �Γ ) → A, G =

∧
(Γ ∪ �Γ ) → A, H =

∧
(Π ∪ �Γ ) →∨

({�A}∪Δ) and η is a finite derivation of the formula
∧

Σ0 in GL from the set of
assumptions Σ0. In addition, ζ and ξ are finite proofs in GL of the corresponding
formulas F → (

∧
Σ0 → G) and �G → H.

It is not hard to prove that every infinite branch in f(π) contains infinitely
many applications of the rule (nec) and, in addition, any assumption leaf of
f(π) is boxed and is marked by an element of Σ0. Hence f(π) is the required
∞-derivation.

Corollary 2. Σ;Γ � A ⇔ Σ;Γ �∗ A ⇔ Σ;Γ 
 A.

Proof. The right-to-left implications follow from Lemmas 3 and 4. Assume
Σ;Γ � A. By Theorem1, there is a finite subset Γ0 of Γ such that Σ;Γ0 � A. By
Corollary 1, the sequent Σ;Γ0 ⇒ A is provable in S. From Theorem3, we have
Σ;∅ 
 ∧

Γ0 → A. Now it easily follows that Σ;Γ 
 A.

Corollary 3. Γ �g A ⇔ Γ 
g A.
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Coherent Diagrammatic Reasoning
in Compositional Distributional Semantics
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Abstract. The framework of Categorical Compositional Distributional
models of meaning [3], inspired by category theory, allows one to compute
the meaning of natural language phrases, given basic meaning entities
assigned to words. Composing word meanings is the result of a functorial
passage from syntax to semantics. To keep one from drowning in technical
details, diagrammatic reasoning is used to represent the information flow
of sentences that exists independently of the concrete instantiation of the
model. Not only does this serve the purpose of clarification, it moreover
offers computational benefits as complex diagrams can be transformed
into simpler ones, which under coherence can simplify computation on
the semantic side. Until now, diagrams for compact closed categories and
monoidal closed categories have been used (see [2,3]). These correspond
to the use of pregroup grammar [12] and the Lambek calculus [9] for
syntactic structure, respectively. Unfortunately, the diagrammatic lan-
guage of Baez and Stay [1] has not been proven coherent. In this paper,
we develop a graphical language for the (categorical formulation of) the
nonassociative Lambek calculus [10]. This has the benefit of modularity
where extension of the system are easily incorporated in the graphical
language. Moreover, we show the language is coherent with monoidal
closed categories without associativity, in the style of Selinger’s survey
paper [17].

Keywords: Diagrammatic reasoning · Coherence theorem · Proof nets ·
Compositional distributional semantics

1 Background, Motivation

Having a form of visual representation of information flow is pervasive in the nat-
ural sciences: in physics, graphical languages have been developed coming from
the ideas of Penrose [16], to formalise reasoning about matrix multiplication, for
instance. Computer science and electronic engineering makes extensive use of
diagrammatic representation of systems, circuits etc. In logic, there has been a
great interest in graphical notation since the development of natural deduction
and sequent calculi, but mostly after the introduction of proof nets [5]. Most of
these languages can be greatly generalised; for instance, within physics, graphical
c© Springer-Verlag GmbH Germany 2017
J. Kennedy and R.J.G.B. de Queiroz (Eds.): WoLLIC 2017, LNCS 10388, pp. 371–386, 2017.
DOI: 10.1007/978-3-662-55386-2 27
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notation usually is describing the structure of a monoidal category; a similar sit-
uation occurs with electronic circuits, which have a notion of serial and parallel
execution, categorically speaking a notion of composition and tensor, the basic
principles of a monoidal category. In logic, different deductive systems capture
different types of category, e.g. intuitionistic logic is captured by cartesian closed
categories [13], a special instance of monoidal categories. Hence, proof nets for
intuitionistic logic should bear a relation to a graphical language for cartesian
closed categories (though the latter, as far as the author knows, does not exist).

While graphical languages are visually appealing, they will not convince the
practicing scientist to be useful unless they are also precise. In other words, we
want a graphical language to be coherent (i.e. sound and complete) with respect
to the category it is describing. In recent work on categorical compositional
distributional semantics [2], the clasp language of [1] was assumed, in order to
describe the morphisms of a monoidal biclosed category. The reason is that the
authors relied on a functorial passage from the Lambek calculus (the logic of
monoidal biclosed categories) to finite dimensional vector spaces (an instance
of a compact closed category). Here, the diagrammatic notation does not only
describe the combination of those two systems, it has an additional functional
role in simplifying calculations: by rewriting a diagram as much as possible, one
will obtain the same results with smaller computational effort. Sadly, no attempt
at proving the coherence of the clasp language is known to the author; moreover,
one of the inventors of the language has stated to have no interest in doing so1.
Hence, there is a need to obtain either a coherence result for this language, or
to introduce another graphical language and show its coherence. In this paper,
we will take the latter option and motivate it by pointing out some potential
problems with the clasp language.

Originally out of interest in proof nets and their relation to categorical dia-
grammatic reasoning, we will introduce a graphical notation for morphisms in
a biclosed monoidal category without associativity/units (!) which will give a
fairly easy way of showing coherence. This comes from considerations on struc-
tural rules in the Lambek calculus, and the need for modularity in said systems.
We will then argue how the addition of associativity and units can be easily
incorporated graphically, so that we obtain a modular way of describing cat-
egories, moreover giving a coherent language for monoidal biclosed categories,
which would be first successful attempt.

The rest of this paper is organised as follows: in Sect. 2 we describe some
related work on graphical languages for monoidal categories and the clasp lan-
guage for monoidal closed categories. Then Sect. 3 discusses definitions and nota-
tion for a graphical language for non-associative non-unital monoidal closed cate-
gories. Section 4 contains our main result, and we give some extensions in Sect. 5,
after which we conclude in Sect. 6 with some avenues for future work.

1 John Baez, personal communication, 2014.
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2 Related Work: Visualising Monoidal Categories

There has been a fair body of research devoted to displaying several variants
of monoidal categories using a graphical language. For instance, diagrammatic
reasoning for compact closed categories was introduced and shown to be coherent
by Kelly and Laplaza [8], and the research of Joyal and Street has led to graphical
languages for, amongst others, planar monoidal and braided monoidal categories
(see [6,7]). For some cases of autonomous categories (monoidal categories with
dual objects) there are some results as well [4]. In this paper, however, we follow
the presentation style of the survey of Selinger [17], as it is uniform, and in our
opinion a gentle introduction to graphical languages. We will introduce the basic
constructs of a graphical language for monoidal categories and then review the
clasp language for the general case of monoidal closure, proposed by Baez and
Stay [1]. As we will consider monoidal categories without associativity too, which
for lack of a better name we will refer to as magmatic categories2, we split the
definition of a monoidal category:

Definition 1. We say that a category C with objects A,B and morphisms f :
A → B between objects has a magma structure if it has

1. An object A ⊗ B for all objects A,B and a morphims f ⊗ g : A ⊗ B → C ⊗ D
for any pair of morphisms f : A → C, g : B → D

And has a monoidal structure if for this magma structure it has

1. A natural isomorphism α : (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C),
2. A unit object I with natural isomorphisms λ : I ⊗ A ∼= A and ρ : A ⊗ I ∼= A.

In addition, a monoidal category also satisfies the so-called pentagon and triangle
identities, expressing the behavior of associativity and the interaction of λ, ρ with
associativity.

Representing any category visually is fairly straightforward, as is shown in the
following diagram:

Object Morphism Identity Composition
A

A

f : A → B

f

A

B

idA : A → A

A

g ◦ f

f

g

A

B

C

2 This terminology comes from the algebraic concept of a magma, a monoid
with no associativity or unit properties. We refer the reader to a blog post
that advocates the name magmatic: https://bartoszmilewski.com/2014/09/29/
how-to-get-enriched-over-magmas-and-monoids/.

https://bartoszmilewski.com/2014/09/29/how-to-get-enriched-over-magmas-and-monoids/
https://bartoszmilewski.com/2014/09/29/how-to-get-enriched-over-magmas-and-monoids/
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To obtain a graphical language for a monoidal category, one represents the tensor
of two objects by juxtaposing their arrows, and similar for the tensor product
of two morphisms. The unit is represented as an empty arrow, and in general a
morphism with a tensor of objects in its domain and codomain is represented
by allowing several wires to be input/output to the box of that morphism:

Tensor Unit Morphism Tensor
A ⊗ B

A B

I f : A1 ⊗ ... ⊗ An → B1 ⊗ ... ⊗ Bm

...

f

...

A1 An

B1 Bm

f ⊗ g

f g

A

C

B

D

Because we do not draw the unit explicitly, and there is no bracketing around the
wires, the associativity and unit equations get automatically satisfied. Bifunc-
toriality is satisfied by the fact that horizontal and vertical composition in any
order will result in the same diagram. A full coherence theorem for this language
can be found in [6].

We recall that a closed monoidal category is obtained by considering bifunc-
tors that form an adjunction with the tensor when one of the arguments of the
bifunctor is fixed. In this way we may obtain two right adjoints for the tensor.
Note that so far we have not considered symmetric monoidal categories (ones in
which A ⊗ B ∼= B ⊗ A), so that there is a difference between a left closed and a
right closed monoidal category.

Definition 2. If a monoidal category C has a contravariant-covariant bifunctor
\, that is, for f : A → C, g : B → D we get f\g : B\C → A\D, and when there is
additionally a natural isomorphism β : HomC(A ⊗ B,C) ∼= HomC(B,A\C) for
a fixed A, we say that C is left closed. In a similar fashion we can define a right
closed monoidal category by requiring a covariant-contravariant bifunctor / that
gives f/g : A/D → C/B for f : A → C, g : B → D and a natural isomorphism
γ : HomC(A ⊗ B,C) ∼= HomC(A,C/B) for a fixed B. Objects of the form A\B
and B/A are often referred to as the internal hom of the category.

To represent closure on monoidal categories, a language was introduced by Baez
and Stay in [1]. Their proposal amounts to representing internal homs with
upward pointing arrows that are attached with a “clasp” as in the table below
(we only include left closure here, as right closure is symmetric):

Closure Closure Currying Uncurrying

A\B

A B

f\g

f g

C B

DA

β(f)

f

C

B

A

β−1(g)

gA

B

C
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The reason to draw clasps and bend arrows around is that biclosed monoidal cat-
egories in general do not allow “dual behavior”. Hence, arrows pointing upwards
need to be attached to a downward pointing arrow, and arrow bending must be
containing within a box. Unfortunately, the clasp language has not been proved
to be coherent with respect to biclosed monoidal categories. We will point out
why we doubt whether the clasp language can be shown to be coherent.

Problem: Yanking is required. In order to satisfy the categorical equations
idA\idB = idA\B one has to allow yanking inside a box. However, one draws
boxes every time an arrow is bent around, which implies that yanking inside a
box means the same as having yanking everywhere, in turn rendering the clasp
language a graphical language for compact closed categories instead of monoidal
closed categories! The situation is similar when one wants to show isomorphicity
of β, i.e. β(β−1(g)) = g and β−1(β(f)) = f .

In the next sections, we define an alternative graphical language that does
not suffer from the issue described above. It is a language defined for magmatic
closed categories, following the type logical grammar philosophy. Starting out
with such a restricted system has the benefit of modularity; different categorical
concepts can be added by simply extending the diagrams. We will shed a light
on this in Sect. 5, after establishing the base language and showing its coherence.

3 A Graphical Language for Closed Magmatic Categories

As noted near the end of Selingers survey, once one goes beyond a single ten-
sor product in a category, simply juxtaposing arrows presents an ambiguity in
a graphical language. So it is the case when one takes out associativity from
monoidal categories. Within research on proof nets (see [5,15]) every bifunctor
will get its own representation by means of links. Usually proof nets are defined
restrictively: once the links are defined, correctness criteria decide whether a
graph built by said links is a proof net or not. We will follow the philosophy of
proof nets, but instead of defining proof nets by correctness criteria, we give an
inductive definition since it is equivalent to the restrictive definition ([18], p. 42)
and easier to work with.

For every bifunctor we define two labelled links that make the merging and
unmerging of objects explicit:

Definition 3 (Links). For every bifunctor we define constructor and destructor
links that respect the variance of the bifunctor:

⊗
A ⊗ B

A B

\
A\B

A B

/

B/A

B A

⊗
A B

A ⊗ B

\
A B

A\B

/
B A

B/A
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Because the list of correction criteria on these proof nets is quite extensive, we
will skip to the inductive definition of proof nets for reasons of space.

Definition 4 (Proof Nets). Any diagram from Fig. 1 (see appendix) is a proof
net, given that the boxes for N1, N2 are proof nets. N∗ refers to a proof net that
has been drawn upside down.

Besides having a definition for proof nets themselves, we also define equations on
proof nets to establish the categorical equations we want to capture. Interestingly
enough, these equations correspond to cut elimination in sequent calculi in logic!

Definition 5 (Proof Net Equations). All the equations from Fig. 2 hold on
proof nets. Note that N∗ is a proof net drawn upside down, which explains why
we have equations for “sliding” a net upside down.

4 Main Result

Following along the lines of [17], we prove coherence by means of a freeness
theorem. It works as follows: first, we define for any biclosed magmatic Σ the
associated proof net language PN(Σ) and show that it is in turn biclosed. Then,
we show coherence by proving that PN(Σ) is the free biclosed magmatic cate-
gory over Σ.

Definition 6. A biclosed magmatic signature Σ = (Σ0, Σ1, dom, cod) has:

1. a set Σ0 of object variables,
2. a set Σ1 of morphism variables,
3. two maps dom, cod : Σ1 → CT (Σ0).

where CT (Σ0) is the free (⊗, \, /)-algebra generated by Σ0.

Definition 7. Given a biclosed magmatic signature Σ and a biclosed magmatic
category C, an interpretation i : Σ → C consists of:

1. an object map i0 : Σ0 → Ob(C) such that

i0(A ⊗ B) = i0(A) ⊗ i0(B)
i0(A\B) = i0(A)\i0(B)
i0(B/A) = i0(B)/i0(A),

2. for every f ∈ Σ1 a morphism i1(f) : i0(dom(f)) → i0(cod(f)).

Definition 8. A biclosed magmatic category C is a free biclosed magmatic
category over a biclosed magmatic signature Σ if there is an interpretation
i : Σ → C such that for any biclosed magmatic category D and biclosed magmatic
interpretation j : Σ → D, there is a unique biclosed magmatic functor F : C →
D such that j = F ◦ i.
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Given the preceding definitions, we can define the category of proof nets over a
signature, and show that it is in fact the free category over that signature.

Definition 9. Given Σ = (Σ0, Σ1, dom, cod) a biclosed magmatic signature, the
proof net category PN(Σ) over Σ is defined as follows:

1. The objects of PN(Σ) are the elements of Σ0,
2. For every object A of PN(Σ), the identity net is defined as in Definition 4,
3. For every element f in Σ1 with dom(f) = A, cod(f) = B, we stipulate a

proof net

f

A

B

4. Composition of morphisms and applying bifunctors ⊗, \, / to morphisms are
given by composition and monotonicity in Definition 4,

5. Left closure β(N1) : B → A\C for a morphism N1 : A ⊗ B → C and its
inverse β−1(N2) : A ⊗ B → C for N2 : B → A\C are given by

⊗

N1

\

BA

A ⊗ B

A C

A\C

⊗

N2

\

A ⊗ B

A B

A\C

A C

Right closure is treated similarly, where γ(N1) : A → C/B for a morphism
N1 : A ⊗ B → C and its inverse γ−1(N2) : A ⊗ B → C for N2 : A → C/B
are given by

⊗

N1

/

A

A ⊗ B

B

C B

C/B

⊗

N1

/

A ⊗ B

A B

C/B B

D

6. All the proof net equations from Definition 5 hold.

Proposition 1. For any biclosed magmatic signature Σ, PN(Σ) is a biclosed
magmatic category.
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Proof. The basic categorical axioms are trivially satisfied: the associativity of
gluing gives associativity of composition, and for any morphism N1 : A → B we
have that idB ◦ N1 is the result of gluing an extra piece of wire on the bottom
and N1◦idA is the result of gluing an extra piece of wire on the top, which is just
the same as the original morphism. idA ⊗ idB = idA⊗B is also trivially satisfied
by the identy cut equation for ⊗ (similarly for \ and /. Bifunctioriality of ⊗, is
also satisfied because (k ⊗ h) ◦ (g ⊗ f) = (k ◦ g) ⊗ (h ◦ f) translates to

⊗

g f

⊗

E ⊗ B

⊗

k h

⊗

=

⊗

g f

k h

⊗

D ⊗ A

D A

E B

E B

F C

F ⊗ C

D ⊗ A

D A

E B

F C

F ⊗ C

which definitely is a valid equation by virtue of the general cut equation. Bifunc-
toriality of \ and / follows similarly. Isomorphicity of β and γ is easily veri-
fied using the snake equations. Finally, we need to show naturality of β and γ.
We show (half of) the naturality of β as naturality for γ follows similarly. For
(g\k) ◦ ((β(f)) ◦ h) we have

h

⊗

f

\

\

g∗ k

\

B

B′A′

A′ ⊗ B′

C

A′

A′ C

A′\C

CA′

C ′A

A\C ′

=

h

⊗

f

C

g∗ k

\

B

B′A′

A′ ⊗ B′
A′

A C ′

A\C ′
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and these nets are obviously equal, given that we can bend around g to g∗ and
vice versa.

In order to show freeness of the proof net category, we need a way to obtain
a categorical morphism from a diagram. In previous work we achieved such
a translation as a two step process: diagrams are translated to sequent proofs,
which then get translated to morphisms, which is the reason this process is called
sequentialisation. In this paper we simply give the composed translation to save
space. This translation is given in Fig. 3, where we use two extra notations,
defined below:

Definition 10. We write, in sequent calculus style, Γ [B] (Γ [Δ]) for a tensor of
objects Γ that “contains” the object B (Δ). Formally, we can define Γ [] as any
object of a biclosed category with a “hole” in it, that, is:

Γ [] := [] | Γ ′[] ⊗ Δ | Δ ⊗ Γ ′[]

Then, we say that Γ [B] (Γ [Δ]) is the object with its “hole” replace by B (Δ).
Given a morphism f : A → B, we construct op(f) : Γ [A] → Γ [B] for the
morphism that acts as the identity on Γ [] but applies f to A. Formally, we have

1. op(f) = f for Γ [] = [],
2. op(f) = op′(f) ⊗ idΔ for Γ [] = Γ ′[] ⊗ Δ,
3. op(f) = idΔ ⊗ op′(f) for Γ [] = Δ ⊗ Γ ′[].

Now that we have fully defined the translation from diagrams to categorical
morphisms, we can state the sequentialisation property:

Proposition 2. Every proof net sequentialises using the translation in Fig. 3
and all the equalities between diagrams are preserved under this sequentialisation.

Proof. This is shown for the two step translation by Wijnholds ([18], pp. 50–61).

Given that any diagram can be transformed back into a categorical morphism,
we are ready to prove freeness and thus coherence of the proof net category.

Theorem 1. For any biclosed magmatic signature Σ, the proof net category
PN(Σ) is the free biclosed category over Σ.

Proof. We need to give an interpretation i : Σ → PN(Σ) and for any biclosed
magmatic category D and biclosed magmatic interpretation j : Σ → D give a
unique biclosed magmatic functor F : PN(Σ) → D such that j = F ◦ i.

First, we define i = 〈i0, i1〉 with i0 the identity on Σ0 and i1 the map that sends
morphism variables f to

f

dom(f)

cod(f)



380 G.J. Wijnholds

Now let D be any biclosed magmatic category and let j : Σ → D be an inter-
pretation. We define F : PN(Σ) → D as follows:

1. On objects we define F (A) = j0(A),
2. On morphisms/nets we define F (N : A → B) = ĵ1 ◦ S where

– S is the sequentialization that turns a proof net into a categorical mor-
phism module morphism variables,

– ĵ1 sends all objects A to j0(A), and on morphisms ĵ1 sends morphism
variables f : A → B to j1(f) : j0(A) → j0(B) but otherwise preserves the
bifunctors ⊗, \, / and composition.

We need to show that F is well defined as a biclosed magmatic functor, that
j = F ◦ i and that F is unique.

1. F preserves the closed structure of PN(Σ) in D. This is easy to see since F
acts as j0 on objects and therefore strictly preserves the object structure of
PN(Σ). On morphisms, we first note that ĵ1 preserving morphism structure
and only maps morphism variables to their corresponding variables in D. We
then note that for β and β−1 in PN(Σ), the proof net β−1(β(N)) : A ⊗ B →
C is equal to N by the proof net equations, hence F will send it to the
morphism F (N) : F (A) → F (B). The case for the converse composition and
for γ with γ−1 is similar.

2. j = F ◦ i. We note that i0 is the identity and F on objects is j0, hence
j0 = F ◦ i0. On morphism variables f : A → B, we note that these simply are
encoded in PN(Σ) as a box labelled with f with one ingoing arrow labelled
with A and an outgoing arrow labelled with B by i. Then, F will send this
net to the morphism j1(f) : j0(A) → j0(B), and so we have that j1 = F ◦ i1.

3. F is unique. Let G : PN(Σ) → D be a biclosed magmatic functor such
that j = G ◦ i. As i0 is the identity, we must have that (on objects) G =
j0 = F . On morphism variables, note that S and i1 are inverse as i1 turns a
morphism variable f : A → B into its graphical version, whereas S recovers
the morphism itself. Hence, we can state that

F = F ◦ i1 ◦ S = G ◦ i1 ◦ S = G

By showing the freeness of the proof net category, we have shown that any
equation of a biclosed magmatic category will hold if and only if it holds in the
proof net category. In other words, this proof net category allows us to reason
about biclosed magmatic categories graphically in a coherent way. One may
consider the relevance of biclosed magmatic categories in particular and wonder
whether the proof net category is more general. In the next section we highlight
two extensions of the graphical language, one of which is shown to easily lead
to a coherent graphical language for biclosed monoidal categories, the kind of
categories that the above-mentioned clasp language was supposed to capture.
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5 Extensions

Associativity. The graphical language we have considered so far is inspired by
proof nets for the nonassociative Lambek calculus. Of course, a logical step is
to consider associativity as well, in order to coherently capture monoidal closed
categories, as the language of Baez and Stay tries to do. A simple solution is to
add the associators as two hardcoded diagrams:

⊗

C ⊗

⊗ C

⊗

A ⊗ (B ⊗ C)

B ⊗ C

B

C ⊗ B

(A ⊗ B) ⊗ C

⊗

⊗ C

A ⊗

⊗

(A ⊗ B) ⊗ C

A ⊗ B

B

B ⊗ C

A ⊗ (B ⊗ C)

If we define the proof nets using correctness criteria, the so-called operator bal-
ance criterium would fail. However, when we stick to the inductive proof net
definition, we can easily verify that the resulting proof net category is in fact
monoidal biclosed (soundness), which we leave as an exercise to the reader. The
completeness part requires a bit more thought, but basically amounts to adapt-
ing the sequentialisation such that every time a destructor link for ⊗ is rewritten,
one composes with the associator α when it happens that the domain of f is
not compatible with the domain that is obtained when A and B are conjoined
into A ⊗ B. Once we do this, one can show freeness and thus coherence of the
graphical language.

Modalities. So far we have argued for modularity in defining diagrammatic
calculi. Much in the spirit of Lambek’s deductive systems view [11], and the
development of proof nets for linguistic analysis [15], the language we developed
so far enjoys a modular approach by adding structural properties as diagrams
that satisfy coherence under the equations imposed on those diagrams. We wish
to go a bit further in this approach by arguing that modalities as used for
linguistic purposes [14] can also be incorporated in our proof net language. In a
nutshell, one adds two unary connectives to the nonassociative Lambek calculus
that exhibit residuating behavior. Categorically speaking, this corresponds to
covariant adjunction. Then, one adds structural rules governing special behavior
of the unary connectives. Again, these are added in the form of extra diagrams,
much like the case of associativity. In pictures, we define the links for ♦,� as
follows:

♦
♦A

A

♦
A

♦A

�
�A

A

�
A

�A
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Then, structural rules take the form

⊗

⊗

A

♦C

⊗

⊗

(A ⊗ B) ⊗ ♦C

(A ⊗ B)

B

B

B ⊗ ♦C

A ⊗ (B ⊗ ♦C)

⊗

⊗
B ♦C

♦C B

⊗

⊗

(A ⊗ B) ⊗ ♦C

A ⊗ B

A

A ⊗ ♦C

(A ⊗ ♦C) ⊗ B

6 Conclusion

In this paper, we argued for a modular approach to diagrammatic reasoning in
the context of categorical compositional distributional semantics. We developed
a graphical language for closed magmatic categories, inspired by proof nets for
Lambek calculi. We then showed coherence for this proof net category and argued
that associativity can be recovered by adding two diagrams to the language,
effectively obtaining a graphical language for monoidal closed categories. Finally,
we offered some thoughts on adding diagrams that in logical terminology are
called unary residuated connectives but categorically can be thought of as pairs
of adjoint functors. Working out coherence for these unary modalities, as well as
incorporating bialgebras and Frobenius algebras graphically, constitutes future
work.
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Identity Composition ⊗ Monotonicity

A

N1

N2

A

B

C

⊗

N1 N2

⊗

A ⊗ B

A B

C D

C ⊗ D

\ Monotonicity / Monotonicity Left application

\

N∗
1 N2

\

C\B

C B

A D

A\D

/

N1 N∗
2

/

A/D

A D

C B

C/B

⊗

N1 N2

\

A ⊗ B

A B

C C\D

D

Right application Left coapplication Right coapplication

⊗

N1 N2

/

A ⊗ B

A B

D/C C

D

⊗

N∗
1 N2

\

BA

A ⊗ B

C D

C\D

⊗

N1 N∗
2

/

A

A ⊗ B

B

C D

C/D

Left lifting Right lifting
A\B

\

N1 N∗
2

/

A

B

C D

C/D

A/B

/

N∗
1 N2

\

B

A

CD

D\C

Fig. 1. Inductive definition of proof nets
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⊗

⊗

A B =

A ⊗ B

A ⊗ B

A ⊗ B

⊗

A ⊗ B

⊗

=

A B

A B

A B

\

\

A B =

A\B

A\B

A\B

\

A\B

\

=

A B

A B

A B

/

/

B A =

B/A

B/A

B/A

/

B/A

/

=

B A

B A

B A

N∗ = N N = N∗

= =

Fig. 2. Equations on proof nets
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A � idA : A → A

A

A

⊗
A B

A ⊗ B

� idA ⊗ idB : A ⊗ B → A ⊗ B

A B

A ⊗ B

⊗

f : Γ [A ⊗ B] → C

A ⊗ B

A B

C

� f : Γ [A ⊗ B] → C

A ⊗ B

C

\
A\B

A B
�

β−1(idA\B) : A ⊗ A\B → BA

A A\B

B

f : A ⊗ Γ → B

\

A Γ

B

A\B

A

� β(f) : Γ → A\B

Γ

A\B

/

B/A

B A
�

γ−1(idB/A) : B/A ⊗ A → B

B/A A

B

A

f : Γ ⊗ A → B

/

Γ A

B

B/A

A

� γ(f) : Γ → B/A

Γ

B/A

f : Δ → B

g : Γ [B] → A

Δ

B

A

� g ◦ op(f) : Γ [Δ] → A

Δ

A

Fig. 3. Translating proof nets into categorical morphisms
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Abstract. In this paper, we use the algorithm ALBA to reformulate
the proof in [1,2] that over modal compact Hausdorff spaces, the validity
of Sahlqvist sequents are preserved from open assignments to arbitrary
assignments. In particular, we prove an adapted version of the topological
Ackermann lemma based on the Esakia-type lemmas proved in [1,2].

1 Introduction

Canonicity, i.e. the preservation of validity of formulas from descriptive gen-
eral frames to their underlying Kripke frames, is an important notion in modal
logic, since it provides a uniform strategy for proving the strong completeness of
axiomatic extensions of a basic (normal modal) logic. Thanks to its importance,
the notion of canonicity has been explored also for other non-classical logics.
In [26], Jónsson gave a purely algebraic reformulation of the frame-theoretic
notion of canonicity, which he defined as the preservation of validity under tak-
ing canonical extensions, and proved the canonicity of Sahlqvist identities in a
purely algebraic way. The construction of canonical extension was introduced by
Jónsson and Tarski [27] as a purely algebraic encoding of the Stone spaces dual
to Boolean algebras. In particular, the denseness requirement in the definition of
canonical extension directly relates to the zero-dimensionality of Stone spaces. A
natural question is then for which classes of formulas do canonicity-type preserva-
tion results hold in topological settings in which compactness is maintained and
zero-dimensionality is generalized to the Hausdorff separation condition. This
question has been addressed in [1,2]. Specifically, in [1], Bezhanishvili et al. gave
a canonicity-type preservation result for Sahlqvist formulas from modal compact
Hausdorff spaces to their underlying Kripke frames, and in [2], Bezhanishvili and
Sourabh generalized this result to modal fixed point formulas.

In the present paper, some preliminary results are collected which reformulate
the canonicity-type preservation results in [1,2] in an algebraic and algorithmic
way. These results link the preservation results of [1,2] with the theory of unified
correspondence, which aims at identifying the underlying principles of Sahlqvist-
type canonicity and correspondence for non-classical logics, which is useful in
the completeness proofs. As explained in [10,14], this theory is grounded on
the Stone-type dualities between the algebraic and the relational semantics of
non-classical logics, and explains the “Sahlqvist phenomenon” in terms of the
c© Springer-Verlag GmbH Germany 2017
J. Kennedy and R.J.G.B. de Queiroz (Eds.): WoLLIC 2017, LNCS 10388, pp. 387–400, 2017.
DOI: 10.1007/978-3-662-55386-2 28
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order-theoretic properties of the algebraic interpretations of the connectives of
a non-classical logic. The focus on these properties has been crucial to the pos-
sibility of generalizing the Sahlqvist-type results from modal logic to a wide
array of non-classical logics, including intuitionistic and distributive and gen-
eral (non-distributive) lattice-based (modal) logics [9,11,13], non-normal (reg-
ular) modal logics [31], monotone modal logic [19], hybrid logics [17], many
valued logics [5] and bi-intuitionistic and lattice-based modal mu-calculus [6–8].
In addition, unified correspondence has effectively provided overarching tech-
niques unifying different methods for proving both canonicity and correspon-
dence: in [30], the methodology pioneered by Jónsson [26] and the one pioneered
by Sambin-Vaccaro [32] were unified; in [12,15], constructive canonicity proposed
by Ghilardi and Meloni [21] was unified with the Sambin-Vaccaro methodology;
in [16], the Sambin-Vaccaro correspondence has been unified with the method-
ology of correspondence via translation introduced by Gehrke et al. in [20].
Recently, a very surprising connection has been established between the notions
and techniques developed in unified correspondence and structural proof theory,
which made it possible to solve a problem, opened by Kracht [28], concerning
the characterization of the axioms which can be transformed into analytic struc-
tural rules [23,29]. The main tools of unified correspondence are a purely order-
theoretic definition of inductive formulas/inequalities, and the algorithm ALBA
(Ackermann Lemma Based Algorithm, cf. [11]), which computes the first-order
correspondent of input formulas/inequalities (i.e. the first-order formula which
is valid on the same class of Kripke frames as the input formula/inequality) and
is guaranteed to succeed on the inductive class, which is a strictly larger class of
formulas/inequalities than the Sahlqvist class.

In the present paper, we adapt the algorithm ALBA to the setting of modal
compact Hausdorff spaces, show the soundness of the algorithm with respect
to the interpretation over modal compact Hausdorff spaces. In particular, an
adapted version of the topological Ackermann lemma (cf. [11, Lemma 9.3]) is
proved using the Esakia-type lemma for the modal language over modal compact
Hausdorff spaces. The results of the present paper pave the way to extend the
tools of unified correspondence to canonicity-type preservation results based on
different dualities than Stone duality.

This paper is organized as follows: Sect. 2 collects preliminaries on modal
compact Hausdorff spaces and the semantic interpretation for the modal lan-
guage. Section 3 discusses the main ideas for the preservation results. Section 4
provides the expanded modal language of the algorithm as well as its interpre-
tations, together with the syntactic definition of Sahlqvist sequents. The Acker-
mann Lemma Based Algorithm (ALBA) for modal compact Hausdorff space is
given in Sect. 5. Sections 6 and 8 respectively shows the soundness of the algo-
rithm with respect to modal compact Hausdorff spaces and the success of the
algorithm on Sahlqvist sequents.
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2 Preliminaries

2.1 Modal Compact Hausdorff Spaces

In the present subsection, we collect the preliminaries for modal compact Haus-
dorff spaces. For more details, the readers are referred to [1,2,25].

We will use the following notations: given a binary relation R on W , we denote
R[X] = {w ∈ W | (∃x ∈ X)Rxw} and R−1[X] = {w ∈ W | (∃x ∈ X)Rwx},
R[w] := R[{w}] and R−1[w] := R−1[{w}], respectively.

A topological space T = (W, τ) is

1. compact if for any collection {Xi}i∈I of open sets, if W =
⋃

i∈I Xi, then there
is a finite subset I0 ⊆ I such that W =

⋃
i∈I0

Xi;
2. Hausdorff if for any two distinct points x, y ∈ W , there exist X,Y ∈ τ such

that x ∈ X, y ∈ Y and X ∩ Y = ∅.

It is well-known that singletons are closed in Hausdorff spaces.

Definition 1 (cf. e.g. [1, Definition 2.14]). A modal compact Hausdorff space
is a triple T = (W,R, τ) such that (W, τ) is a compact Hausdorff space and R
is continuous, i.e.

1. R[w] is closed for any w ∈ W ;
2. R−1[X] is closed for any closed set X;
3. R−1[X] is open for any open set X.

We let FT = (W,R) denote the underlying Kripke frame1 of T .

As is well known, open sets of topological spaces are captured algebraically
by the notion of frame. A frame L is a complete lattice validating the following
identity: a ∧

∨
X =

∨
{a ∧ x | x ∈ X} for any X ⊆ L. A frame is compact

if for any X ⊆ L such that
∨

X = �, there is a finite subset Y ⊆ X such
that

∨
Y = �. For any frame L and any a ∈ L, the pseudocomplement of a is

¬a :=
∨

{b | b ∧ a = ⊥}. For a, b ∈ L, a is well inside b (notation: a ≺ b) if
¬a ∨ b = �. A frame L is regular if a =

∨
{b | b ≺ a} for all a ∈ L. For any

topological space T = (W, τ), its associated frame is defined as LT := (τ,∩,
⋃

).
If T is compact Hausdorff, then LT is compact regular.

Definition 2 (cf. e.g. [1, Definition 3.5]). A modal compact regular frame is
a triple L = (L,�,♦) where L is a compact regular frame, and �,♦ are unary
operations on L such that:2

1. �� = � and �(a ∧ b) = �a ∧ �b;
2. ♦⊥ = ⊥ and ♦(a ∨ b) = ♦a ∨ ♦b;
1 Notice that the name “frame” occurs in two different ways in the present paper, one

is in point-free topology, the other is in modal logic. Here we use the name “Kripke
frame” to refer to the notion in modal logic and “frame” to refer to the notion in
point-free topology.

2 The condition 3 is well-known in [18].
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3. �(a ∨ b) ≤ �a ∨ ♦b and �a ∧ ♦b ≤ ♦(a ∧ b);
4. for any upward directed X ⊆ L, ♦

∨
X =

∨
{♦x | x ∈ X} and �

∨
X =∨

{�x | x ∈ X}.

One can readily show (cf. [1, Proposition 3.10]) that if T = (W,R, τ) is a
modal compact Hausdorff space, then LT := (τ,�T ,♦T ) is a modal compact
regular frame where �T X = (R−1[Xc])c and ♦T X = R−1[X].

2.2 Language and Interpretation

Given a set Prop of propositional variables, the positive modal language L is
recursively defined as follows:

ϕ ::=p | ⊥ | � | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ,

where p ∈ Prop. We let Prop(α) denote the set of propositional variables occuring
in α.

In [18], the positive fragment of basic normal modal logic is completely axiom-
atized as follows.

ϕ � ϕ ϕ � ϕ ∨ ψ ψ � ϕ ∨ ψ ϕ ∧ ψ � ϕ ϕ ∧ ψ � ψ

ϕ ∧ (ψ ∨ χ) � (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

♦(ϕ ∨ ψ) � ♦ϕ ∨ ♦ψ �(ϕ ∧ ψ) � �ϕ ∧ �ψ

♦ϕ ∧ �ψ � ♦(ϕ ∧ ψ) �(ϕ ∨ ψ) � �ϕ ∨ ♦ψ

ϕ � ψ ψ � χ

ϕ � χ

ϕ � χ ψ � χ

ϕ ∨ ψ � χ

χ � ϕ χ � ψ

χ � ϕ ∧ ψ

ϕ � ψ

♦ϕ � ♦ψ

ϕ � ψ

�ϕ � �ψ

In the following sections we will typically work with inequalities ϕ ≤ ψ, and
quasi-inequalities ϕ1 ≤ ψ1 & . . . & ϕn ≤ ψn ⇒ ϕ ≤ ψ (cf. [11]), where & is the
meta-conjunction and ⇒ is the meta-implication.

Interpretation on Modal Compact Hausdorff Spaces. Modal compact
Hausdorff spaces play the role played by descriptive general frames in the Stone-
based setting. Accordingly, the counterparts of admissible valuations (i.e. valu-
ations such that propositional variables are interpreted in a restricted class of
subsets of the domain W , instead of arbitrary subsets) are the open valuations
defined below.

A modal compact Hausdorff model is a pair M = (T , V ) where T = (W,R, τ)
is a modal compact Hausdorff space, and V : Prop → τ is an open valuation on
T . The satisfaction relation on modal compact Hausdorff models is defined as
standard in modal logic. We let �ϕ�M = {w ∈ W | M, w � ϕ} denote the truth
set of ϕ in M.

An inequality ϕ ≤ ψ is valid on a modal compact Hausdorff space T if
�ϕ�M ⊆ �ψ�M for every model M based on T (i.e. for every open valuation into
τ). A quasi-inequality ϕ1 ≤ ψ1 & . . . & ϕn ≤ ψn ⇒ ϕ ≤ ψ is valid on T if, for
every model M based on T , if �ϕi�

M ⊆ �ψi�
M for all i then �ϕ�M ⊆ �ψ�M.
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Interpretation on Algebras. In what follows, we let B denote a Boolean
algebra with operator (BAO) (cf. [3, Definition 5.19]). We let θ : Prop → B

denote an assignment on B, and let ϕ(B,θ) or θ(ϕ) denote the value of ϕ in B

under θ. We write (B, θ) � ϕ ≤ ψ to indicate that ϕ ≤ ψ is true on B under θ,
and B � ϕ ≤ ψ to indicate that ϕ ≤ ψ is valid on B. Notations for truth and
validity for quasi-inequalities are similar.

Another useful way to look at a formula ϕ(p1, . . . , pn) is to interpret it as an
n-ary function ϕB : B

n → B such that ϕB(a1, . . . , an) = θ(ϕ) where θ : Prop → B

satisfies θ(pi) = ai, i = 1, . . . , n.
For any Kripke frame F = (W,R), we let BF = (P (W ), ∅,W,∩, ∪, (·)c,�BF

)
denote the dual BAO of F (i.e. the complex algebra of F), where �BF

X =
(R−1[Xc])c for any X ∈ P (W ). It it folklore that a Kripke frame F and
its dual BAO validate the same (quasi-)inequalities. In what follows, we let
At(BF) = {{w} | w ∈ W} and CoAt(BF) = {W − {w} | w ∈ W} denote the set
of atoms and coatoms of BF respectively.

Analogous notions and notations also apply to modal compact regular frames
(cf. Definition 2). In particular, the dual algebra of the modal compact Hausdorff
space T = (W,R, τ) is the modal compact regular frame LT = (τ,�T ,♦T ),
which provides a natural interpretation for the positive modal language. In addi-
tion, LT can be naturally embedded as a modal subframe3 into the complex
algebra BFT of the underlying Kripke frame FT of T . Hence, all connectives
in the positive modal language are interpreted in the same way when restrict-
ing the valuation of propositional variables to open subsets. Therefore, validity
in LT (denoted LT � ϕ ≤ ψ) coincides with validity in BFT relative to open
assignments (i.e. assignments into open subsets), denoted BFT �LT ϕ ≤ ψ.

3 Main Ideas

3.1 From Stone to Modal Compact Hausdorff

As is well-known [22,27], every Boolean algebra B is dually equivalent to a
descriptive general frame G (cf. [3, Definition 5.65]), and the underlying Kripke
frame FG of G is dually equivalent to the canonical extension B

δ (cf. [4, Chapter
6, Definition 104]) of B, as illustrated in the left diagram below. The canonicity
of an inequality (i.e., the preservation of its validity from any G to its FG) can be
equivalently rephrased as the preservation of its validity from any B to B

δ. This
picture can be analogously generalized to the setting of modal compact Hausdorff
spaces. In the right diagram, in the bottom line, every modal compact Hausdorff
space T is dually equivalent (inducated by the symbol ∼=∂) to its dual modal
compact regular frame LT (cf. [1, Theorem 3.14]), and the forgetful functor U
maps any T to its underlying Kripke frame FT . On the dual algebraic side, LT
is embedded into the dual BAO BFT of FT . The canonical embedding B ↪→ B

δ

encodes the Stone-type duality between BAOs and descriptive general frames in

3 That is, not only finite meets and complete joins are preserved, but also the modal
operators, i.e. �BF

X = �T X and (�BF
Xc)c = ♦T X for all X ∈ τ .
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a purely algebraic way. Likewise, the Isbell duality (cf. [24]) can be encoded in
the purely algebraic properties of the embedding e : L ↪→ B of a compact regular
frame L into a complete atomic Boolean algebra B, namely, that e be a frame
homomorphism such that the following conditions hold (where we suppress the
embedding):

(compactness) For any S ⊆ L, if
∨

S = �, then
∨

S′ = � for some finite
S′ ⊆ S;
(Hausdorff) For any x, y ∈ At(B), if x �= y, then x ≤ a, y ≤ b for some a, b ∈ L

such that a ∧ b = ⊥.

In particular, LT can be identified with the collection O(BFT ) of open subsets
in BFT , i.e. the open subsets in T . The collection K(BFT ) of closed subsets in
BFT can be then identified as the relative complements of elements in LT . We
omit the subscripts when they are clear from the context.

3.2 Basic Proof Strategy for Preservation

In the present section, we explain the basic proof structure we will implement in
Sect. 5. We will treat the preservation results as a generalized canonicity result
which, using the algorithmic canonicity strategy, are typically proved by a “U-
shaped” argument described in the figure below (see [10] for a more detailed
discussion): In the present setting, the U-shaped argument can be sketched as
follows:

LT � ϕ ≤ ψ BFT � ϕ ≤ ψ
�

BFT �LT ϕ ≤ ψ �
�

BFT �LT Pure(ϕ ≤ ψ) ⇔ BFT �Pure(ϕ ≤ ψ)

Assume that the inequality ϕ ≤ ψ is valid on the modal compact regular
frame LT . This is equivalent to the validity on the BAO BFT over all open
assignments. Then the algorithm ALBA can equivalently transform the input
inequality into a set of pure quasi-inequalities Pure(ϕ ≤ ψ), i.e. quasi-inequalities
that contain no propositional variables, therefore their validity is invariant under
replacing open assignments of propositional variables by arbitrary assignments
of propositional variables. Then by the soundness of ALBA on perfect BAOs,
the validity of Pure(ϕ ≤ ψ) is equivalent to the validity of ϕ ≤ ψ.

4 Language and Interpretation for ALBA

4.1 The Expanded Language for the Algorithm

In the present subsection, we will define the expanded modal language for the
algorithm. Our treatment is similar to [11].
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The expanded positive modal language L+ contains, in addition to the sym-
bols in the positive modal language, two sets of special variables Nom of nominals
and CoNom of conominals, and connective �. The nominals and conominals are
interpreted as atoms and coatoms in BFT respectively, and � is interpreted as
the left adjoint of the operation interpreting �.

The formulas in the expanded modal language L+ is given as follows:

ϕ ::=p | i | m | ⊥ | � | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | �ϕ,

where p ∈ Prop, i ∈ Nom and m ∈ CoNom.
For the expanded positive modal language L+, the valuation V and assign-

ment θ extend to the nominals and conominals, such that V (i), θ(i) ∈ At(B) and
V (m), θ(m) ∈ CoAt(B). The satisfaction relation for the additional symbols is
given as follows:

Definition 3 In any Kripke model M = (W,R, V ) or any modal compact Haus-
dorff models M = (W,R, τ, V ),

M, w � i iff w ∈ V (i) iff V (i) = {w};
M, w � m iff w ∈ V (m) iff V (m) �= W − {w};
M, w � �ϕ iff ∃v(Rvw and M, v � ϕ)

Algebraically, �BX = R[X].

4.2 1-Sahlqvist Inequalities

In the present section, we define the class of inequalities for which we prove the
preservation result in Sect. 6.

Definition 4 (1-Sahlqvist inequalities). The L-inequality ϕ ≤ ψ is 1-
Sahlqvist if ϕ = ϕ′(χ1/z1, . . . χn/zn) such that

1. ϕ′(z1, . . . , zn) is built out of ∧,∨,♦;
2. every χ is of the form �np, �n�, �n⊥ for n ≥ 0;
3. ψ is a formula in the positive modal language.

Remark 1. As its name suggests, the definition above is the restriction of the
general definition of ε-Sahlqvist inequalities of [11] to the order type ε which
assigns every variable to 1. In the general notation of unified correspondence,
the formula ϕ′ corresponds to the Skeleton of ϕ, and the χ-formulas correspond
to its PIA parts4. This definition is slightly more general than [1, Definition 7.12]
since ∨ is allowed to occur in ϕ′. The inequalities captured by [1, Definition 7.12]
correspond to those referred to as definite 1-Sahlqvist inequalities in [11].

4 For these terminologies, see [10].
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5 The Algorithm ALBA

In the present section, we will give the algorithm ALBA for modal compact
Hausdorff spaces, which is similar to the version in [11].

ALBA receives an inequality ϕ ≤ ψ as input. Then the algorithm proceeds
in three stages:

The first stage is the preprocessing stage, which eliminates all uniformly
occurring propositional variables (i.e. propositional variables occurring uniformly
positive or uniformly negative), and exhaustively applies the distribution and
splitting rules. This stage produces a finite number of inequalities, ϕi ≤ ψi,
1 ≤ i ≤ n. Then for each inequality, the first approximation rule is applied,
which produces a set of inequalities {i0 ≤ ϕi, ψi ≤ m0}.

The second stage is the reduction and elimination stage, which aims at rewrit-
ing the set {i0 ≤ ϕi, ψi ≤ m0} into a set of inequalities which has no occurrence
of propositional variables. In particular, the step which eliminates all proposi-
tional variables is called the Ackermann rule. After this stage, the algorithm
produces a set Si of inequalities.

The third stage is the output stage. If for some set {i0 ≤ ϕi, ψi ≤ m0},
the propositional variables cannot be eliminated, then the algorithm stops and
outputs failure. Otherwise, the algorithm outputs the conjunction of the pure
quasi-inequalities ∀i∀m(&Si ⇒ i0 ≤ m0).

1. Preprocessing and first approximation:
In the generation tree of ϕ,
(a) Apply the distribution rules: Push down ♦ and ∧, by distributing them

over nodes labelled with ∨;
(b) Apply the splitting rule 1:

α ∨ β ≤ γ

α ≤ γ β ≤ γ

(c) Apply the variable-elimination rules:

α ≤ β(p)
α ≤ β(⊥)

β(p) ≤ α

β(�) ≤ α

for β(p) containing p and α not containing p.
We denote by Preprocess (ϕ ≤ ψ) the finite set {ϕi ≤ ψi}i∈I of inequalities
obtained after the exhaustive application of the previous rules. Then we apply
the first approximation rule to each inequality in Preprocess (ϕ ≤ ψ):

ϕi ≤ ψi

i0 ≤ ϕi ψi ≤ m0

Here, i0 and m0 are special nominals and co-nominals. Now we get a set of
inequalities {i0 ≤ ϕi, ψi ≤ m0}i∈I .
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2. Reduction and elimination:
In this stage, for each {i0 ≤ ϕi, ψi ≤ m0}, we apply the following rules to
eliminate all the proposition variables in {i0 ≤ ϕi, ψi ≤ m0}:

Residuation rule Approximation rule Splitting rule 2
α ≤ �β

�α ≤ β

i ≤ ♦α

j ≤ α i ≤ ♦j
α ≤ β ∧ γ

α ≤ β α ≤ γ

The nominals introduced by the approximation rule must not occur in the
system before applying the rule.

The right-handed Ackermann rule. This is the core rule of ALBA, which
eliminates propositional variables. This rule operates on all inequalities in the
system, instead of on a single inequality.

S1 ∪ . . . ∪ Sk ∪ P ∪ {ψi(p1, . . . , pk) ≤ m0}
P ∪ {ψi(α(1,1) ∨ . . . ∨ α(1,n1), . . . , α(k,1) ∨ . . . ∨ α(k,nk)) ≤ m0}

where Sl = {α(l,j) ≤ pl | 1 ≤ j ≤ nl}, P = {βl ≤ γl | 1 ≤ l ≤ m}, and
α(1,1), . . . , α(k,nk), β1, . . . , βm, γ1, . . . , γm do not contain propositional vari-
ables.

3. Output: If in the previous stage, some proposition variables cannot be elim-
inated by the application of the reduction rules, then the algorithm halts
and outputs “failure”. Otherwise, each initial tuple {i0 ≤ ϕi, ψi ≤ m0}
of inequalities after the first approximation has been reduced to a set
Reduce(ϕi ≤ ψi) of pure inequalities, and then the output is a set of quasi-
inequalities {&Reduce(ϕi ≤ ψi) ⇒ i0 ≤ m0 : ϕi ≤ ψi ∈ Preprocess(ϕ ≤ ψ)},
which we denote as Pure(ϕ ≤ ψ).

6 Main Result

In the present section, we prove the preservation of the validity of 1-Sahlqvist
inequalities we are after. This result follows from the soundness and success
of ALBA. Specifically, we prove the soundness of ALBA with respect to the
dual BAOs of the Kripke frames, both for open assignments and for arbitrary
assignments. For the soundness with respect to arbitrary assignments and most
of the rules with respect to open assignments, the argument is similar to existing
settings [11], and hence omitted. We will focus on the right-handed Ackermann
rule with respect to open assignments.

Theorem 1 (Soundness with respect to arbitrary assignments). If
ALBA succeeds on an input inequality ϕ ≤ ψ and outputs Pure(ϕ ≤ ψ), then for
any modal compact Hausdorff space T ,

BFT � ϕ ≤ ψ iff BFT � Pure(ϕ ≤ ψ).

Proof The proof goes similarly to [11, Theorem 8.1]. Let ϕi ≤ ψi, 1 ≤ i ≤ n
denote the inequalities produced by preprocessing ϕ ≤ ψ after Stage 1, and
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(Si, Ineqi), 1 ≤ i ≤ n denote the corresponding quasi-inequalities produced by
ALBA after Stage 2. It suffices to show the equivalence from (1) to (4) given
below:

BFT � ϕ ≤ ψ (1)
BFT � ϕi ≤ ψi, for all 1 ≤ i ≤ n (2)
BFT � i0 ≤ ϕi & ψi ≤ m0 ⇒ i0 ≤ m0, for all 1 ≤ i ≤ n (3)

BFT � &Reduce(ϕi ≤ ψi) ⇒ i0 ≤ m0, for all 1 ≤ i ≤ n (4)

– for the equivalence of (1) and (2), it suffices to show the soundness of the
rules in Stage 1, which can be proved in the same way as in [11, Lemma 8.3];

– the equivalence between (2) and (3) follows from the soundness of the first-
approximation rule, which is similar to [11, Theorem 8.1];

– the equivalence between (3) and (4) follows from the soundness of rules in
Stage 2, i.e. the soundness of the approximation rule, the residuation rule,
the right-handed Ackermann rule and the splitting rule, which is similar to
[11, Lemma 8.4].

For the soundness with respect to open assignments, most of the arguments
are the same as the case for arbitrary assignments except for the right-handed
Ackermann rule. The soundness of the right-handed Ackermann rule with respect
to arbitrary assignments is justified by the following lemma:

Lemma 1 (Right-handed Ackermann lemma). Let ϕ1, . . . , ϕn be pure for-
mulas, ψ(p1, . . . , pn) be an L-formula, a ∈ B. Then for any arbitrary assignment
θ, the following are equivalent:

1. ψB(αB,h
1 , . . . , αB,h

n ) ≤ a;
2. There exist b1, . . . , bn ∈ B s.t. αB,h

i ≤ bi for 1 ≤ i ≤ n and ψB(b1, . . . , bn) ≤ a.

As is discussed in e.g. [11, Section 9], the lemma above cannot be applied
immediately to the setting of open assignments, since formulas in the expanded
modal language L+ might be interpreted as non-open elements, thus the ele-
ments b1, . . . , bn might not be in O(B). We are going to apply similar adaptation
strategies as in [11] in the current setting, namely adapt the Ackermann lemma
based on syntactic restrictions of the formulas.

Definition 5 (Syntactically closed and open formulas)

1. A formula in L+ is syntactically closed if it does not contain occurrences of
conominals;

2. A formula in L+ is syntactically open if it does not contain occurrences of
nominals or �.

Lemma 2 (cf. e.g. [1, Lemma 7.10]). For any modal compact Hausdorff space
T = (W,R, τ), if X is closed, then R[X] is also closed.

Lemma 3. If ϕ(i,p) and ψ(m,p) are syntactically closed and open respectively,
then
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1. ϕB(i, c) ∈ K(B) for any i ∈ At(B), c ∈ K(B).
2. ψB(m,o) ∈ O(B) for any m ∈ CoAt(B), o ∈ O(B).

Proof. By induction on the structure of the formulas. The basic case follows from
the fact that singletons are closed in Hausdorff spaces, and their complements
are open. The cases of ∧ and ∨ are easy. The cases of ♦ and � follow from
Definition 1. The case of � follows from Lemma 2.

Lemma 4 (cf. e.g. [1, Lemma 7.8]). For any modal compact Hausdorff space
T = (W,R, τ), any L-formula ϕ(p1, . . . , pn), any c1, . . . , cn ∈ K(B),

1. ϕ(c1, . . . , cn) =
∧

{ϕ(o1, . . . , on) | ci ≤ oi for 1 ≤ i ≤ n and oi ∈ O(B)};
2. ϕ(c1, . . . , cn) =

∧
{ϕ(cl(o1), . . . , cl(on)) | ci ≤ oi for 1 ≤ i ≤ n and oi ∈

O(B)}, where cl(a) denotes the least closed element ≥ a.

The lemma below justifies the soundness of right-handed Ackermann rule
with respect to open assignments:

Lemma 5 (Right-handed topological Ackermann lemma). Let ϕ1, . . . ,
ϕn be pure and syntactically closed formulas, ψ(p1, . . . , pn) be an L-formula,
o ∈ O(B). Then for any open assignment θ, the following are equivalent:

1. ψB(αB,θ
1 , . . . , αB,θ

n ) ≤ o;
2. There exist b1, . . . , bn ∈ O(B) such that αB,θ

i ≤ bi for 1 ≤ i ≤ n and
ψB(b1, . . . , bn) ≤ o.

Proof 1⇐ 2 : By the monotonicity of ψB(p1, . . . , pn) together with αB,θ
i ≤ bi for

1 ≤ i ≤ n, we have that ψB(αB,θ
1 , . . . , αB,θ

n ) ≤ ψB(b1, . . . , bn) ≤ mB.
2 ⇒ 1 : Suppose that ψB(αB,θ

1 , . . . , αB,θ
n ) ≤ o. By Lemma 3, αB,θ

1 , . . . , αB,θ
n ∈ K(B).

By Lemma 4, o ≥ ψB(αB,θ
1 , . . . , αB,θ

n ) =
∧

{ψB(cl(o1), . . . , cl(on)) | αB,θ
i ≤

oi and oi ∈ O(B) for 1 ≤ i ≤ n}. Since cl(o1), . . . , cl(on) ∈ K(B), by Lemma 3,
ψB(cl(o1), . . . , cl(on)) ∈ K(B). By compactness, there exist o1,j . . . , on,j , 1 ≤
j ≤ m such that o ≥

∧
j{ψB(cl(o1,j), . . . , cl(on,j)) | αB,θ

i ≤ oi,j and oi,j ∈
O(B) for 1 ≤ i ≤ n}. Then

o ≥
∧

j ψB(cl(o1,j), . . . , cl(on,j))
≥ ψB(

∧
j cl(o1,j), . . . ,

∧
j cl(on,j)) (Monotonicity of ψB)

≥ ψB(
∧

j o1,j , . . . ,
∧

j on,j), (Monotonicity of ψB and cl)

Take bi :=
∧

j oi,j , then bi is a finite meet of open elements, therefore bi ∈
O(B). Since αB,θ

i ≤ oi,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m, it follows that αB,θ
i ≤ bi.

The lemma above is formulated independently of the specific language. As to
the language treated by this paper, in any concrete application of the Ackermann
rule (see descriptions in Lemma 8), the inequalities α ≤ p have the shape �nj ≤ p,
with �nj syntactically closed by definition.
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Main Result. As is shown in Sect. 8, we have:

Theorem 2 (Success). ALBA succeeds on 1-Sahlqvist inequalities.

As discussed in Sect. 3.2, the preservation result follows from Theorem 2
above and the soundness of ALBA with respect to both open assignments and
arbitrary assignments:

Theorem 3. For any 1-Sahlqvist inequality ϕ ≤ ψ, if LT � ϕ ≤ ψ, then BFT �
ϕ ≤ ψ.

7 Conclusion

In this paper, we give an algorithmic account of the preservation results proved in
[1]. The preservation result in the present paper concerns a slight generalization
(cf. Remark 1) of the class of inequalities treated in [1] over the same language
of positive modal logic. The algorithmic approach adopted here emphasizes the
algebraic side of this preservation result and makes it more similar to the way
in which Sahlqvist canonicity has been presented in an algebraic way in [26]. In
particular, just in the same way in which the embedding map of algebras into
their canonical extensions encodes Stone-type dualities, the canonical embedding
of modal compact regular frames into the complex algebras of the underlying
Kripke frames of their dual spaces encodes Isbell-type dualities. How to opti-
mally characterize this embedding in a way which is aligned with the definition
of Jónsson and Tarski [27] is ongoing work. Building on this algebraic perspec-
tive, the ALBA approach has unified many different strategies for canonicity, e.g.
those of Jónsson [26], Sambin–Vaccaro [32], Ghilardi–Meloni [21], and Venema’s
pseudo-correspondence [33]. Having extended the algorithmic approach to the
Isbell-type dualities paves the way to several different generalizations and exten-
sions: to correspondence results over modal compact Hausdorff spaces, to richer
languages such as arbitrary distributive lattice expansions, fixed point expan-
sions of positive modal logics [2], but also to a non-distributive setting, to a con-
structive meta-theory, to more general syntactic shapes than 1-Sahlqvist (e.g.
inductive formulas), and so on.

8 ALBA Succeeds on 1-Sahlqvist Inequalities

In the present section, we sketch the proof of Theorem 2. In the following lemmas,
we will track the shape of term inequalities in each stage of execution of ALBA.
The proofs of the lemmas are similar to those given in [11, Section 10], therefore
we only report on the main line of argument and omit proofs.

Lemma 6. Let ϕ ≤ ψ be a 1-Sahlqvist inequality. After stage 1, it becomes
sets of inequalities {i0 ≤ ϕi, ψi ≤ m0}i∈I where ψi is a formula in the positive
language L, and every ϕi is built from �np, �n�, �n⊥ by applying ∧ and ♦.



Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff Spaces 399

Lemma 7. Let {i0 ≤ ϕi, ψi ≤ m0} as described in Lemma 6. By applying the
approximation rule and the splitting rule 2 exhaustively, the system is trans-
formed into one which contains the following types of inequalities:

– ψi ≤ m0,
– j ≤ ♦k where j,k are nominals,
– j ≤ �np,
– j ≤ β where β is pure, i.e. β contains no propositional variables.

Lemma 8. Given a system as described in Lemma 7, by applying the residuation
rule exhaustively, the system is transformed into one which contains the following
types of inequalities:

– ψi ≤ m0,
– j ≤ ♦k where j,k are nominals,
– �nj ≤ p,
– β ≤ γ where β, γ are pure.

The system described in Lemma 8 is in a shape in which the right-handed
Ackermann rule can be applied and all propositional variables can be eliminated.
Therefore the algorithm succeeds and we have proven Theorem 2.
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