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9. Percussion Musical Instruments

Andrew C. Morrison, Thomas D. Rossing

Percussion instruments are an important part of
every musical culture. Although they are probably
our oldest musical instruments (with the exception
of the human voice), there has been less research
on the acoustics of percussion instruments, as
compared to wind or string instruments. Quite
a number of scientists, however, continue to study
these instruments.

Over the years we have written several review
articles on the acoustics of percussion instru-
ments [9.1, 2] as well as a book [9.3]. They are also
the subject of chapters in most books on musical
acoustics and on musical instruments [9.4–8].
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9.1 Drums

Drums generally have membranes of animal skin or
synthetic material stretched over some type of air en-
closure. Nowadays synthetic materials, such as Mylar
(polyethylene terephthalate), are more common, al-
though some percussionists still prefer animal skin
(leather). Some type of tensioning device is nearly al-
ways included. The speed of waves on the membrane
(and thus the frequency of the various modes) depends
upon the tension, the thickness, and the density of the
membrane. Some drums (e.g., timpani, tabla, boobams)
sound a definite pitch; others convey almost no sense

of pitch at all. Some drums have a single membrane
(drumhead), while others include two membranes cou-
pled together by vibrations of the drum shell and the
enclosed air. The first 12 modes of vibration of a circu-
lar membrane are shown in Fig. 9.1. Above each sketch
are given the values of m (the number of nodal diam-
eters) and n (the number of nodal circles), and below
it the frequency of vibration for that mode divided by
the frequency of the lowest (01) mode. Mathematically,
the mode frequencies of an ideal membrane are propor-
tional to those of the mn Bessel function.
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Fig. 9.1 Modes of vibration of
a circular membrane

9.1.1 Timpani

The timpani or kettledrums are the most important
drums in the orchestra, with one member of the percus-
sion section usually devoting attention exclusively to
them. Most modern timpani have a pedal-operated ten-
sioningmechanism in addition to six or eight tensioning
screws around the rim of the kettle. Although the modes
of vibration of an ideal membrane are not harmonic,
a carefully tuned kettledrum will sound a strong princi-
pal note plus two or more nearly harmonic overtones.
Rayleigh [9.9] recognized the principal note as com-
ing from the (11) mode and identified overtones about
a perfect fifth (f W f1 D 3 W 2), a major seventh (15 W 8),
and an octave (2 W 1) above the principal tone. The in-
harmonic modes of an ideal membrane are shifted into
a nearly harmonic series mainly by the effect of air
loading [9.10]. Mode frequencies of a kettledrum, with
and without the kettle, are given in Table 9.1.

Normal striking technique produces prominent par-
tials with frequencies in the ratios 0:85 W 1 W 1:5 W 1:99 W
2:44 W 2:89. If we ignore the heavily damped fundamen-

Table 9.1 Mode frequencies and ratios of kettledrum membranes with and without the kettle

Mode Kettledrum Drumhead alone Ideal membrane

f (Hz) f=f11 f (Hz) f=f11 f=f11
01 127 0.85 82 0.53 0.63
11 150 1.00 155 1.00 1.00
21 227 1.51 229 1.48 1.34
02 252 1.68 241 1.55 1.44
31 298 1.99 297 1.92 1.66
12 314 2.09 323 2.08 1.83
41 366 2.44 366 2.36 1.98
22 401 2.67 402 2.59 2.20
03 418 2.79 407 2.63 2.26
51 434 2.89 431 2.78 2.29
32 448 2.99 479 3.09 2.55
61 462 3.08 484 3.12 2.61
13 478 3.19 497 3.21 2.66
42 515 3.32 2.89

tal, the others are nearly in the ratios 1 W 1:5 W 2 W 2:5,
a harmonic series built on an octave below the princi-
pal note. Measurements on timpani of other sizes give
similar results [9.11].

9.1.2 Snare Drums

The snare drum is a two-headed instrument about
33�38 cm in diameter and 13�20 cm deep. The shell
is made from wood, metal, or Mylar. Strands of wire or
gut are stretched across the lower (snare) head. When
the upper (batter) head is struck, the snare head vibrates
against the snares. The coupling between the snares and
the snare head depends upon the mass and the tension
of the snares. At a sufficiently large amplitude of the
snare head, properly adjusted snares will leave the head
at some point during the vibration cycle and then return
to strike it, thus giving the snare drum its characteristic
sound. The greater the tension on the snares, the larger
the amplitude needed for this to take place [9.12]. Vi-
brational modes of a snare drum shell, with and without
the drumheads, are shown in [9.12].
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9.1.3 Bass Drums

The bass drum is capable of radiating up to 20W of
peak acoustical power, probably the most of any in-
strument in the orchestra. A concert bass drum usually
has a diameter of 80�100 cm, although smaller drums
(50�75 cm) are popular in marching bands. Most bass
drums have two heads, set at different tensions, al-
though single-headed gong drums are used when a more
defined pitch is desired. Mylar heads with a thick-
ness of 0:25mm are widely used, although calfskin
heads are preferred by some drummers for large con-
cert bass drums. Generally the batter or beating head is
tuned to a greater tension than the carry or resonating
head.

9.1.4 Tom-Toms

Tom-toms range from 20 to 45 cm in diameter, and
they may have either one or two heads. Although often
characterized as untuned drums, tom-toms do convey
an identifiable pitch, especially the single-headed type.
When a tom-tom is struck a hard blow, the deflection
of the drumhead may be great enough to cause a signif-
icant change in the tension, which momentarily raises
the frequencies of all modes of vibration and thus the
apparent pitch. The fundamental frequency in a 33 cm
tom-tom, for example, was found to rise about eight
percent (slightly more than a semitone) during the first
0:2 s after the strike [9.13], resulting in a perceptible
pitch glide. The pitch glide can be enhanced by load-
ing the outer portion of the drumhead with a Mylar
ring.

9.1.5 Indian Drums

Foremost among the drums of India are the tabla (north
India) and mrdanga (south India). The overtones of
both these drums are tuned harmonically by loading
the drumhead with a paste of starch, gum, iron oxide,
charcoal, or other materials. The tabla has a rather thick
head made from three layers of animal skin (calf, sheep,
goat, or buffalo skins are apparently used in different
regions). The innermost and outermost layers are an-
nular, and the layers are braided together at their outer
edge and fastened to a leather hoop. Tension is ap-
plied to the head by means of a long leather thong
that weaves back and forth between the top and bottom
of the drum. The tabla is usually played together with
a larger drum, called the banya or left-handed tabla. The
head of the larger drum is also loaded, but slightly off
center. The mrdanga is a two-headed drum that func-
tions, in many respects, as a tabla and banya combined

into one. The smaller head, like that of the tabla, is
loaded with a patch of dried paste, while the larger
head is normally loaded with a paste of wheat and wa-
ter shortly before playing. A tabla and a mrdanga are
shown in Fig. 9.2.

The acoustical properties of these drums have been
studied by a succession of Indian scientists, including
Nobel laureate C.V. Raman. Raman and his colleagues
recognized that the first four overtones of the tabla
are harmonics of the fundamental, and they identi-
fied these five harmonics as coming from nine normal
modes [9.14]. For example, Fig. 9.3 shows how combi-
nations of the (0,2) and (2,1) modes produce the third
harmonic partial.

9.1.6 Japanese Drums

Drums have been used for centuries in Japanese tem-
ples. In Buddhist temples, it has been said that the
sound of the drum is the voice of Buddha. In Shinto
temples it is said that drums have a spirit (kumi) and
that with a drum one can talk to the spirits of ani-
mals, water, and fire. Drums were often used to motivate
warriors into battle and to entertain in town festi-
vals and weddings [9.15]. The Japanese taiko (drum)
has broken out of its traditional setting, and today’s
taiko bands have given new life to this old tradi-
tion. Japan’s famous taiko band, the Kodo drummers,
have performed in many countries of the world. Taiko
bands exist in many Western countries. The o-daiko is
a large drum consisting of two cowhide membranes
stretched tightly across the ends of a wooden cylin-
der 50�100 cm in diameter and about 1m in length.
The drum, which hangs in a wooden frame, is struck
with large felt-padded beaters. It is often used in reli-
gious functions at shrines, where its deep sound adds
solemnity to the occasion. Obata and Tesima [9.15]
found modes of vibration in the o-daiko to be some-
what similar to those in the bass drum. The tsudzumi

a) b)

Fig. 9.2a,b The tabla (a) and mrdanga (b)
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a) b)a) b) c)

d) e) f)

Fig. 9.3a–f Modes of vibration of
the tabla (after [9.14]). (a) The (0,2)
normal mode. (b–e) Combination of
(0,2) and (2,1) normal modes. (f) The
(2,1) normal mode

(or tsuzumi) is a braced drum whose body has cup-
shaped ends and leather heads on both ends. A few
sheets of paper wet with saliva cover an area of about

1 cm2 at the center of the bottom head, which tunes
the modes of this head into a nearly harmonic relation-
ship [9.16].

9.2 Mallet Percussion Instruments

9.2.1 Vibrating Bars

Bars or rods can vibrate either longitudinally or trans-
versely. The most important vibrations in percussion
instruments are the transverse bending vibrations in
which internal elastic forces supply the necessary
restoring force. When a bar is bent, the outer part is
stretched and the inner part is compressed. Somewhere
in between is a neutral axis whose length remains un-
changed, as shown in Fig. 9.4.

A filament located at a distance z below the neu-
tral axis is compressed by an amount zd�. The strain
is zd�=dx, and the amount of force required to produce
the strain is EdSzd�=dx, where dS is the cross-sectional
area of the filament and E is Young’s modulus. This

Neutral axis
dF

a) b)
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dx

M (x)

F (x)

F (x + dx)
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–M (x + dx)

z

x

dφ

Fig. 9.4 (a) Bending strains in a bar. (b) Bending moments and shear forces in a bar

leads to a fourth-order differential equation whose so-
lution can be found in [9.4, Sect. 2.15]. The solution
leads to different modal frequencies, depending upon
whether the ends of the bar or rod are free, clamped, or
simply supported (hinged). The most commonly used
bars in percussion instruments are bars that are free at
both ends, whose relative frequencies are given by

fn D  K

8L2

s
E

�


3:0112; 52; 72; :::; .2nC 1/2

�
:

The frequencies and nodal positions for the first four
bending vibrational modes in a thin bar with free ends
are given in Table 9.2.
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Table 9.2 Properties of transverse vibrations in a bar free at both ends

Frequency
(Hz)

Wavelength
(m)

Nodal positions
(m from end of 1�m bar)

f1 D 3:5607K
L

q
E



1:330 L 0.224, 0.776

2:756 f1 0:800 L 0.132, 0.500, 0.868
5:404 f1 0:572 L 0.094, 0.356, 0.644, 0.906
8:933 f1 0:445 L 0.073, 0.277, 0.500, 0.723, 0.927

9.2.2 Marimbas

In most of the world, the term marimba denotes a deep-
toned instrument with tuned bars and resonator tubes
that evolved from the early Latin American instrument.
The marimba typically includes three to four-and-a-half
octaves of tuned bars of rosewood or synthetic material
with a deep arch cut to tune the overtones. The first over-
tone, which is radiated by the second bending mode,
is normally tuned to the fourth harmonic of the funda-
mental in the first two to three-and-a-half octaves, af-
ter which the interval decreases [9.17]. Details of bar
shapes for harmonic tuning are given by Bork [9.18].
Below each marimba bar is a cylindrical resonator pipe
tuned to the fundamental mode of the bar. A pipe with
one closed end and one open end resonates when its
acoustical length is one-fourth of a wavelength of the
sound. The tubular resonators emphasize the fundamen-
tal and also increase the loudness, which is done at the
expense of shortening the decay time of the sound. The
statement is sometimesmade that the resonator prolongs
the sound but that is incorrect. That impression may be
conveyed when it is played with other instruments in an
ensemble since the sound decay curve begins higher and
may cross the background sound at a slightly later time.
Some companies now make large five-octave concert
marimbas that cover the range C2 to C7. In such instru-
ments, generally the second bending mode is accurately
tuned to the fourth harmonic in the first three-and-a-half
octaves. The third bending mode is tuned to the tenth
harmonic in the first two octaves, after which the inter-
val decreases. The fourth mode varies from the 20th har-
monic in the lowest bars to about the sixth harmonic in
the highest bars [9.19]. Relative frequencies of the first
four bending modes in a Malletech marimba are shown
in Fig. 9.5a, while those of several torsional modes in
the same marimba are shown in Fig. 9.5b. The first tor-
sional mode frequency ranges from about 1.9 times the
nominal frequency (largest bars) to about 1.2 times the
nominal frequency (smallest bars).

In normal playing, the bars are struck near their cen-
ters, where the torsional (twisting) modes have nodes,
and thus they will not be excited to any great extent.
On the other hand, if the bars are struck away from
the center, deliberately or not, the torsional modes may

contribute to the timbre. Applying finite element meth-
ods to marimba and xylophone bars showed that a small
curvature in the bars has very little effect on the rela-
tive frequencies of the vibrational modes. Henrique and
Antunes have used finite element methods both to op-
timize the shape of marimba and xylophone bars and
to model the sound. They employ a physical model-
ing approach that addresses the spatial aspects of the
problem and is suitable for both dispersive and nondis-
persive systems [9.20]. The sound field radiated by
a simulated marimba bar has been calculated by as-
suming the vibrating bar to be equivalent to a linear
array of oscillating spheres. This sound pressure excites
a monodimensional lossy tube of finite length termi-
nated by a radiation impedance at its open end, which
represents the tubular resonator. The amount of fre-
quency decrease as the resonator is moved closer to the
bar is then calculated [9.21].

9.2.3 Xylophones

Xylophones also use bars of wood or synthetic mate-
rial, but the arch is not cut as deep as that of a marimba.
The first overtone is tuned to the third rather than the
fourth harmonic of the fundamental. The closed-tube
resonators placed below the bars reinforce the third
harmonic as well as the fundamental, thus producing
a brighter sound than the marimba. This is further en-
hanced by using hard mallets.

9.2.4 Vibes

Vibraphones or vibraharps, as they are called by differ-
ent manufacturers, have aluminum bars deeply arched
(as in marimbas) so that the first overtone has a fre-
quency four times that of the fundamental. The alu-
minum bars in vibes have much longer decay times
than the wood or synthetic bars of the marimba, and so
vibes are equipped with pedal-operated dampers. The
most distinctive feature of vibes, however, is the vibrato
introduced by motor-driven discs at the top of the res-
onators, which alternately open and close the tubes. The
vibrato produced by these rotating discs of pulsators
produces a vibrato (hence the name). The speed of ro-
tation of the discs may be adjusted to produce a slow
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Fig. 9.5a,b Torsional modes (a) and
bending modes (b) in a Malletech
five-octave marimba

Fig. 9.6 Holographic interferogram
showing vibrational modes of a jade
chime stone

vibe or a fast vibe. Sometimes vibes are played without
vibrato by switching off the motor. Vibes are generally
played with soft mallets that produce a mellow tone.

9.2.5 Glockenspiel

The glockenspiel, or orchestra bells, uses rectangular
steel bars 2:5�3:2 cm wide and 8�9 cm thick. Its range

is customarily from G5 to C8, although it is scored two
octaves lower than it sounds. The glockenspiel is usu-
ally played with brass or hard plastic mallets. The bell
lyra is a portable version, popular in marching bands,
that uses aluminum bars. Because the high overtones
die out quickly, no effort is made to tune the over-
tones harmonically, as in the marimba, xylophone, and
vibes.
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Fig. 9.7 Set of 16 pyeon-gyoung (stone chimes) from the
Chosun Dynasty in Korea

9.2.6 Chimes

Chimes or tubular bells are generally fabricated from
lengths of brass tubing 32�38mm in diameter. The up-
per end of each tube is partially or completely closed
by a brass plug with a protruding rim. The rim forms
a convenient and durable striking point. The modes
of transverse vibration in a pipe are essentially those
of a thin bar. One of the most interesting character-
istics of chimes is that there is no mode of vibration
with a frequency at the pitch of the strike tone one

Ratio to note frequency
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2

0 pg1 pg2 pg3 pg4 pg5 pg6 pg7 pg8 pg9 pg10 pg11 pg12 pg13 pg14 pg15 pg16 Fig. 9.9 Relative frequencies of the
pyeon-gyoung stone

Fig. 9.8 Interferograms showing vibrational modes of
a Korean pyeon-gyoung stone

hears. Modes four, five and six, which are near the ra-
tios 2 W 3 W 4 in a beam or tube, appear to determine the
strike tone, which is heard one octave below the fourth
mode [9.1].

9.2.7 Lithophones

Lithophones are stones that vibrate and produce sound.
The ancient Chinese were fond of stone chimes, many
of which have been found in ancient Chinese tombs.
A typical stone chime was shaped to have arms
of different lengths joined at an obtuse angle. The
stones were generally struck on their longer arm with
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a wooden mallet. Sometimes the stones were richly
ornamented. A lithophone of 32 stone chimes found
in the tomb of the Marquis Yi (which also contained
a magnificent set of 65 bells) was scaled in size, al-
though the dimensions of the chimes do not appear to
follow a strict scaling law [9.22]. In later times, the
Chinese made stone chimes of jade. Holographic inter-
ferograms showing some of the modes of vibration of
a small jade chime are shown in Fig. 9.6. Korean chime
stones, called pyeon-gyoung, were originally brought
from China to Korea in the 12th century.

A set of 16 stone chimes from the Chosun Dy-
nasty is shown in Fig. 9.7. Unlike the Chinese stone

chimes, these stones all have the same size but differ
from each other only in thickness. The fundamental
frequency is essentially proportional to the thickness,
just as in a rectangular bar such as a marimba bar.
The second mode in each stone is approximately 1.5
times the fundamental, while the third mode is about
2.3 times the nominal frequency. The fourth mode is
about three times the nominal frequency up to the 12th
stone, after which the ratio drops to about 2.7 [9.23].
Holographic interferograms of several modes of vibra-
tion in a pyeon-gyoung stone tuned to D]6 are shown
in Fig. 9.8. Relative frequencies of the modes in the
pyeon-gyoung are shown in Fig. 9.9.

9.3 Cymbals, Gongs, and Plates

The vibrations of plates have fascinated scientists, as
well as musicians, for many years. Nearly 200 years
ago, E.F.F. Chladni published a book describing his
well-known method of sprinkling sand on vibrating
plates to made the nodal lines visible [9.24]. Chladni’s
lectures throughout Europe attracted any famous per-
sons, including Napoleon. The nodal lines in the vi-
brational modes of a circular plate are not too different
from those in a circular membrane, shown in Fig. 9.1.
The modal frequencies are very different, however, be-
cause the stiffness of the plate contributes a substantial
amount of elastic restoring force. In fact, a plate will vi-
brate without externally applied tension. The modes of
a circular plate are often given the labels m and n, like
those of a membrane, to designate the numbers of nodal
diameters and nodal circles. Chladni observed that the
frequencies of the various modes of a circular plate are
nearly proportional to .mC2n/2, a relationship that has
been called Chladni’s law [9.25].

9.3.1 Cymbals

Cymbals are very old instruments and have had both
religious and military use in a number of cultures. The
Turkish cymbals generally used in orchestras and bands
are saucer-shaped with a small dome in the center,
in contrast to Chinese cymbals, which have a turned-
up edge. Orchestral cymbals are often designated as
French, Viennese, and Germanic in order of increasing
thickness. Jazz drummers use cymbals designated by
such onomatopoeic terms as crash, ride, swish, splash,
ping, and pang. Cymbals range from 20 to 75 cm in di-
ameter. The strong aftersound that gives cymbal sound
its characteristic shimmer is known to involve nonlinear
processes [9.17]. There is considerable evidence that
the vibrations exhibit chaotic behavior. A mathemati-

cal analysis of cymbal vibrations using nonlinear signal
processing methods reveals that there are between three
and seven active degrees of freedom, and that physical
modeling will require a like number of equations [9.26].
One procedure is to calculate Lyapunov exponents from
experimental time series, so that the complete spectrum
of exponents can be obtained. The chaotic regime can
be quantified in terms of the largest Lyapunov expo-
nent [9.27].

9.3.2 Gongs

Gongs of many different sizes and shapes are popular
in both Eastern and Western music. They are usually
cast of bronze with a deep rim and a protruding dome.
Tamtams are similar to gongs and are often confused
with them. The main differences between the two are
that tamtams do not have the dome of the gong, their
rim is not as deep, and the metal is thinner. Tamtams
generally sound a less definite pitch than do gongs. In
fact, the sound of a tamtam may be described as some-
where between the sounds of a gong and a cymbal.
The sound of a large tamtam develops slowly, chang-
ing from a sound of low pitch at strike to a collection
of high-frequency vibrations, which are described as
shimmer. These high-frequency modes fail to develop
if the tamtam is not hit hard enough, indicating that the
conversion of energy takes place through a nonlinear
process [9.28].

9.3.3 Chinese Gongs

Among the many gongs in Chinese music are a pair
of gongs used in Chinese opera orchestras, shown in
Fig. 9.10. These gongs show a pronounced nonlinear
behavior. The pitch of the larger gong glides downward
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Fig. 9.10 Examples of gongs used in
Chinese opera

as much as three semitones after striking, whereas that
of the smaller gong glides upward by about two semi-
tones [9.28]. Several vibrational modes of the larger
gong are shown in Fig. 9.11.

In some of the modes, vibrations are confined pretty
much to the flat inner portion of the gong, some
to the sloping shoulders, and some involve consid-
erable motion in both parts. When the gong is hit
near the center, the central modes (178, 362, 504,
546Hz) dominate the sound. When the gong is hit
lightly on the shoulder, the lowest mode at 118Hz is
heard. The vibrations of a large tamtam were stud-
ied by Chaigne et al. [9.29]. They found that the
nonlinear phenomena have the character of quadratic
nonlinearity. Forced excitation at sufficiently large am-
plitude at a frequency close to one mode leads to

Fig. 9.11 Holographic interferograms of the modes of vi-
bration of the larger gong shown in Fig. 9.10

a bifurcation with the appearance of lower frequencies
corresponding to other modes. Varying the excitation
frequency at constant force yielded subharmonics that
were not observed at constant excitation frequency.
This is quite similar to the nonlinear behavior of cym-
bals [9.17] [9.26].

9.3.4 The Caribbean Steelpan

The Caribbean steelpan is one of the most widely
used acoustical instruments developed in the last 70
years. The instrument was developed on the islands of
Trinidad and Tobago when local craftsman discovered
methods of transforming surplus 50-gallon oil barrels
into tuned drums. The Caribbean steelpan is an ob-
ject of considerable acoustical study, both in its home
country of Trinidad and Tobago and in the United
States. Modern steel bands include a variety of in-
struments, such as tenor, double second, double tenor,
guitar, cello, quadraphonic, and bass. Our earlier re-
view paper [9.17] included holographic interferograms
of several instruments showing how individual notes vi-
brate, how the entire instrument vibrates, and how the
skirts of the instruments vibrate. Another piece of the
puzzle, so to speak, is to understand how the vibrating
components radiate sound. An effective aid to under-
standing sound radiation is to map the sound intensity
field around the instrument. Since sound intensity is
the product of sound pressure (a scalar quantity) and
the acoustic fluid velocity (a vector), a two-microphone
system is used. The acoustic fluid velocity can be read-
ily calculated from the difference in sound pressure
at the two accurately spaced microphones. Both the
active intensity and the reactive intensity can be ob-
tained at the desired points in the sound field. The
active intensity represents the outward flow of energy,
while the reactive intensity represents energy that is
stored in the sound field near the instrument. While the
active intensity is the most significant field in a con-
cert hall, both active and reactive intensity fields have
to be considered in recording a steelpan. Figure 9.12
shows a map of active and reactive sound intensity
in a plane that bisects a double second steelpan when
a single note (F]3) is excited at its fundamental fre-
quency [9.30].
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Fig. 9.12a–d Active intensity (AI) (a) and reactive inten-
sity (RI) (b) of a Caribbean steelpan. (c) Sound pressure
level (SPL), (d) color reference

9.3.5 The Hang

The Hang is a new steel percussion instrument, con-
sisting of two spherical shells of steel, suitable for
playing with the hands. Seven to nine notes are har-
monically tuned around a central deep note, which is
formed by the Helmholtz (cavity) resonance of the
instrument body. The Hang shown in Fig. 9.13 has
eight notes that can be tuned in any tonal systems
between A3 and G5, including 30 tonal systems sug-
gested by the tuners. The central note is usually tuned
a fifth or fourth below the lowest note of the scale. Al-
though it is a new instrument, many units have been
shipped all over the world by PanArt, its creators. Holo-
graphic interferograms in Fig. 9.14 show the first five
vibrational modes in the G3 note area of the Hang.
The second and third modes are tuned to the second

Fig. 9.13 The Hang (image credit: Michael Paschko)

Fig. 9.14 The first five modes of vibration of the G3 note
of the Hang

and third harmonics of the fundamental mode respec-
tively [9.31].

Figure 9.15 shows the active sound intensity in
a plane 8 cm above the E4 note. The arrowheads show
the direction of the sound intensity at each point in the
plane, while the gray scale shows the sound pressure
level. Note the sound level is greatest at the fundamental
frequency, and the sound intensity is strongly upward
from the note, while at the frequency of the second
and third modes, considerable sound is radiated later-
ally.
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a) b) c) Fig. 9.15a–c Active intensity of the
Hang when the E4 note is excited
in (a) its fundamental mode (b) its
second harmonic mode (c) its third
mode

9.3.6 Bells

Bells have been a part of nearly every culture in his-
tory. Bells existed in the Near East before 1000BCE,
and a number of Chinese bells from the time of the
Shang dynasty (1600�1100BCE) can be found in mu-
seums around the world. In 1978 set of tuned bells from
the fifth century BCE was discovered in the Chinese
province of Hubei [9.32]. Bells developed as Western
musical instruments in the seventeenth century when
bell founders discovered how to tune their partials
harmonically. The founders in the Low Countries, es-
pecially the Hemony brothers (François and Pieter) and
Jacob van Eyck, took the lead in tuning bells, and many
of their fine bells are found in carillons today. When
struck by its clapper, a bell vibrates in a complex way.
In principle, its vibrational motion can be described
in terms of a linear combination of the normal modes
of vibration whose initial amplitudes are determined
by the distortion of the bell when struck. In practice,
such a description becomes quite complex because of
the large number of normal modes of diverse charac-
ter that contribute to the motion. The first five modes
of a church bell or carillon bell are shown in Fig. 9.16.
Lines show the locations of the nodal lines. The num-
bers at the top denote the numbers of complete nodal
meridians extending over the top of the bell and the
number of nodal circles respectively. Note that there are
two modes with mD 3 and nD 1, one with a circular
node at the waist and one with a node near the sound
bow. Thus we denote the one as (3,1]) in Fig. 9.16. The
ratio of each modal frequency to that of the prime is
given at the bottom of each diagram.

When a large church bell or carillon bell is struck
by its clapper, one first hears the sharp sound of metal
on metal. This sound quickly gives way to a strike

(2,0)

hum
0.5

(2,1#)

prime
1.0

(3,1)

minor third
1.2

(3,1#)

fifth
1.5

(4,1)

octave
2.0

Waist
Sound bow

Mouth

Fig. 9.16 The first five modes of
a church or carillon bell

note that is dominated by the prominent partials of the
bell. Most observers identify the metallic strike note
as having a pitch at or near the frequency of the sec-
ond partial. Finally, as the sound of the bell ebbs, the
slowly decaying hum tone (an octave below the prime)
lingers on. A new type of carillon bell, that has the
dominating minor-third partial (Fig. 9.16) replaced by
a partial tuned a major-third above the prime, has been
developed at the Royal Eijsbouts bell foundry in The
Netherlands [9.32]. The new bell design evolved partly
from the use of a technique for structural optimization
using finite element methods [9.33]. This technique al-
lows a designer to make changes in the profile of an
existing structure, and then to compute the resulting
changes in the vibrational modes. Based on the results
of the structural optimization procedure, André Lehr
and his colleagues have designed two different bells,
each having a major-third partial [9.34].

9.3.7 Handbells

Although handbells date back to at least several mil-
lennia BCE, handbells developed as Western musical
instruments in the 18th century. One early use was to
provide tower bell-ringers with a convenient means to
practice change ringing. In more recent years, handbell
choirs have become popular in schools and churches;
some 40 000 choirs are reported in the United States
alone. Handbells have modes of vibration somewhat
similar to those of church bells or carillon bells. Holo-
gram interferograms of a number of modes in a C5
handbell are shown in Fig. 9.17. Nodes show as bright
lines, and the bullseyes locate the antinodes. In a well-
tuned handbell, the (3,0) mode with three nodal merid-
ians is tuned to a frequency three times that of the
fundamental (2,0) mode.
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Fig. 9.17 Holographic interferograms
of the vibrational modes of a C5
handbell

9.4 Methods for Studying the Acoustics of Percussion Instruments

Recent studies of the acoustics of percussion instru-
ments have included:

1. Theoretical studies of modes of vibration
2. Experimental studies of modes of vibration
3. Sound radiation studies
4. Physical modeling
5. Studies of nonlinear behavior.

9.4.1 Finite Element and Boundary Element
Methods

For all but the simplest vibrator shapes, it is difficult
to calculate vibrational modes analytically. Fortunately,
there are powerful numerical methods that can be car-
ried out quite nicely by use of digital computers. These
are generally described as finite element methods or
boundary element methods.

9.4.2 Experimental Studies of Modes
of Vibration

When a percussion instrument is excited by striking
(or bowing or plucking), it vibrates in a rather compli-
cated way. The motion can be conveniently described
in terms of normal modes of vibration. A normal mode
of vibration represents the motion of a linear system at
a normal frequency (eigenfrequency). It should be pos-
sible to excite a normal mode of vibration at any point
in a structure that is not a node and to observe motion
at any other point that is not a node. It is a characteris-

tic only of the structure itself, independent of the way
it is excited or observed. In practice, however, it is dif-
ficult to avoid small distortions of the normal modes
due to interaction with the exciter, the sensor, and espe-
cially the supports. Normal modes shapes are unique for
a structure, whereas the deflection of a structure at a par-
ticular frequency, called its operating deflection shape
(ODS), may result from the excitation of more than one
normal mode [9.35].

Normal mode testing has traditionally been done
using sinusoidal excitation, either mechanical or acous-
tical. Detection of motion may be accomplished by
attaching small accelerometers, although optical and
acoustical methods are less obtrusive. Modal testing
with impact excitation, which became popular in the
1970s, offers a fast, convenient way to determine the
normal modes of a structure. In this technique, an ac-
celerometer is generally attached to one point on the
structure, and a hammer with a load cell is used to
impact the structure at carefully determined positions.
Estimates of modal parameters are obtained by apply-
ing some type of curve-fitting program. Experimentally,
all modal testing is done by measuring operating de-
flection shapes and then interpreting them in a specific
manner to define mode shapes [9.35]. Strictly speaking,
some type of curve-fitting program should be used to
determine the normal modes from the observed ODSs,
even when an instrument is excited at a single fre-
quency. In practice, however, if the mode overlap is
small, the single-frequency ODSs provide a pretty good
approximation to the normal modes.
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9.4.3 Scanning with a Microphone
or an Accelerometer

Probably the simplest method for determining ODSs
(and hence normal modes) is to excite the structure at
single frequency with either a sinusoidal force or a si-
nusoidal sound field, and to scan the structure with an
accelerometer or else to scan the near-field sound with
a small microphone [9.36]. With practice, it is possi-
ble to determine mode shapes rather accurately by this
method.

9.4.4 Holographic Interferometry

Holographic interferometry offers by far the best spa-
tial resolution of operating deflection shapes (and hence
of normal modes). Whereas experimental modal test-
ing and various procedures for mechanical, acoustical,
or optical scanning may look at the motion at hun-
dreds (or even thousands) of points, optical holography
looks at an almost unlimited number of points. Record-
ing holograms on photographic plates or film (as in the
holographic interferograms shown in Fig. 9.17) tends to
be rather time consuming since each mode of vibration
must be recorded and viewed separately. TV hologra-
phy, on the other hand, is a fast, convenient way to
record ODSs and to determine the normal modes. An
optical system for TV holography is shown in Fig. 9.18.

A beam splitter (BS) divides the laser light to
produce a reference beam and an object beam. The ref-
erence beam reaches the charge-coupled device (CCD)
camera via an optical fiber, while the object beam is
reflected by phase modulated (PM) mirror so that it il-
luminates the object to be studied. Reflected light from
the object reaches the CCD camera, where it interferes
with the reference beam to produce the holographic
image. The speckle-averaging mechanism (SAM) al-
ters the illumination angle in small steps in order to
reduce laser speckle noise in the interferograms. Gen-
erally holographic interferograms show only variations
in amplitude. It is possible, however, to recover phase

Laser

Reference
beam

Optical
fibre

SAM Video lens

Object beam

z

Illumination

PM

PS

BS

BS
CCD

R

Fig. 9.18 Optical layout for a TV holography system

information by modulating the phase of the reference
beam by moving PM mirror at the driving frequency.
This is a useful technique for observing motion of very
small amplitude or resolving normal modes of vibration
that are very close in frequency.

9.4.5 Experimental Modal Testing

Modal testing may be done with sinusoidal, random,
pseudorandom, or impulsive excitation. In the case
of sinusoidal excitation, the force may be applied at
a single point or at several locations. The response
may be measured mechanically (with accelerometers
or velocity sensors), optically, or indirectly by observ-
ing the radiated sound field. In modal testing with
impact excitation, an accelerometer is typically at-
tached to a force transducer (load cell). Each force
and acceleration waveform is Fourier transformed and
a transfer functionHij is calculated. Several different al-
gorithms may be used to extract the mode shape and
modal parameters from the measured transfer func-
tions [9.35].

9.4.6 Radiated Sound Field

The best way to describe sound radiation from complex
sources such as percussion instruments is by mapping
the sound intensity field. Sound intensity is the rate at
which sound energy flows outward from various points
on the instrument. The sound intensity field represents
the direction and the magnitude of the sound intensity
at every point in the space around the source. A single
microphone measures the sound pressure at a point, but
not the direction of the sound energy flow. In order to
determine the sound intensity it is necessary to com-
pare the signals from two identical microphones spaced
a small distance apart. The resulting pressure gradient
can be used to determine sound intensity. When this is
done at a large number of locations, a map of the sound
intensity field results [9.30, 37, 38].

9.4.7 Physical Modeling

Synthesizing sounds by physical modeling has attracted
a great deal of interest in recent years. The basic notion
of physical modeling is to write equations that describe
how particular sets of physical objects vibrate and then
to solve those equations in order to synthesize the
resulting sound. Percussion instruments have proven
particularly difficult to model completely enough to be
able to synthesize their sounds entirely based on a phys-
ical model. Physical modeling is complicated by their
nonlinear behavior and by the strong role that transients
play in their sound.
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