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39. Content-Based Methods
for Knowledge Discovery in Music

Juan Pablo Bello, Peter Grosche, Meinard Müller, Ron Weiss

This chapter presents several computational
approaches aimed at supporting knowledge dis-
covery in music. Our work combines data mining,
signal processing and data visualization tech-
niques for the automatic analysis of digital music
collections, with a focus on retrieving and under-
standing musical structure.

We discuss the extraction of midlevel feature
representations that convey musically meaningful
information from audio signals, and show how
such representations can be used to synchronize
different instances of a musical work and enable
new modes of music content browsing and navi-
gation. Moreover, we utilize these representations
to identify repetitive structures and representative
patterns in the signal, via self-similarity analysis
and matrix decomposition techniques that can be
made invariant to changes of local tempo and key.
We discuss how structural information can serve to
highlight relationships within music collections,
and explore the use of information visualization
tools to characterize the patterns of similarity and
dissimilarity that underpin such relationships.

With the help of illustrative examples com-
puted on a collection of recordings of Frédéric
Chopin’s Mazurkas, we aim to show how these
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content-based methods can facilitate the devel-
opment of novel modes of access, analysis and
interaction with digital content that can empower
the study and appreciation of music.

The rapid and sustained growth of digital music sharing
and distribution is nothing less than astounding. A mul-
titude of digital music services provide access to tens
of millions of tracks, both legally and illegally. Such
abundance of content, coupled with the relative ease
of access and storage afforded by recent technologies,
means that music is shared and listened to more than
ever before in history.

Using computational methods to help users find
and organize music information is a widely researched
topic in industry and academia. Existing approaches
can be coarsely divided into two types: in content-
based methods the information is obtained directly

from the analysis of audio signals, scores and other
representations of the music, whereas context-based
methods are based on information surrounding the mu-
sic content, such as usage patterns, tags and structured
metadata. While a significant amount of research has
been devoted to the former strategy – see [39.1] for an
early review – the latter has been historically favored
in industrial applications such as music recommenda-
tion and playlist generation. Content-based analysis is
sometimes seen as providing too little bang for the buck,
with some observers going as far as wondering whether
it is at all necessary for the retrieval of music informa-
tion [39.2].
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Yet, we argue that there are numerous data-mining
problems for which context-based analysis is insuffi-
cient, as it tends to be low in specifics and unevenly
distributed across artists and styles. Consider for ex-
ample the issue of tracing back the original sources of
samples used in electronic or hip-hop recordings; or
of identifying the many derivations of George Gersh-
win’s I Got Rhythm in the jazz catalog; or of finding
quotations of a given Wagner motif in 20th century
modernist music; or of quantifying which movements,
artists and compositions are cited most often and are
therefore the most influential. These problems are mo-
tivated by the needs of sophisticated users such as
media producers, Foley artists, sound designers, film
and game composers, copyright lawyers, musicologists,
and professional and amateur musicians, for whommu-
sic search necessarily goes beyond the passive act of
music recommendation. We believe that the develop-
ment of robust and scalable solutions to these problems,
and many others that could be listed instead, passes
through the automated analysis of the musical con-
tent.

This chapter aims to introduce the reader to com-
putational approaches to content-based analysis of dig-
ital music recordings. More specifically, we give an
overview of a number of techniques for music struc-
ture analysis, i. e., the identification of the patterns and
relationships that govern the organization of sounds in

music, and discuss how the outcomes of this analy-
sis can facilitate data mining in music. This review is
intended for an audience interested in music search,
organization and discovery, that is not steeped in the
field of music information retrieval (MIR). Therefore
the emphasis is not on technical details, which are
published elsewhere in the literature, but on the pre-
sentation of examples and qualitative results that il-
lustrate the operation and potential of the presented
approaches.

The chapter is organized as follows: Section 39.1 fa-
miliarizes the reader with the basics of music structure
analysis, discusses the fundamental role that repeti-
tion plays in it, and introduces the corpus of music
that will be used throughout this chapter. Section 39.2
presents standard methods for music signals analysis.
Section 39.3 introduces methods for temporal align-
ment of different representations of a given musical
piece and shows how such alignments can be used to
create novel user interfaces. Section 39.4 demonstrates
how to characterize the patterns of repetition in mu-
sic via self-similarity analysis, which has numerous
applications in segmenting, organizing and visualizing
music recordings. Section 39.5 introduces a powerful
technique for structure analysis using matrix factoriza-
tion with applications in identifying representative pat-
terns and segmenting music signals. Finally, Sect. 39.6
presents our conclusions and outlook on the field.

39.1 Music Structure Analysis

The architectural structure of a musical piece, its form,
can be described in terms of a concatenation of sec-
tional units. The amount of repetition amongst these
units defines the spectrum of possible forms, ranging
from strophic pieces, where a single section is con-
tinuously repeated (as is the case for most lullabies),
to through-composed pieces, where no section ever re-
curs. While repetition is not a precondition to music, it
undeniably plays a central role (the basis of music as
an art form according to [39.3]), and is closely related
to notions of coherence, intelligibility and enjoyment
in its perception [39.4]. Indeed, some observers esti-
mate that more than 99% of music listening involves
repetition, both internal to the work and of familiar pas-
sages [39.5].

However, the notion of repetition in structural anal-
ysis is not rigid and, depending on the composition,
might include significant variations in the musical con-
tent of the repeated parts. This is even more true for
recordings featuring changes in instrumentation, or-
namentation and expressive variations of tempo and

dynamics. In other words, an exact recapitulation of the
content is not required in order for a part to be consid-
ered to be repeated. As a consequence, the analysis and
annotation of musical structure is, to a certain degree,
ambiguous [39.6, 7].

Take for example Frédéric Chopin’s Mazurka in
F major, Opus 68, No. 3, a piano work to which
we will refer throughout this chapter as M68-3. One
way to describe the structure of this piece is as:
A1A2B1B2A3T C1C2A4A5. In this description, each
letter denotes a pattern and each subscript the instance
number of a pattern’s repetition. T is a special symbol
denoting a transitional section. The four patterns are de-
picted, in score format, in Fig. 39.1.

Note that this annotation is by no means unique
and implies a number of choices. First, grouping the
music into a relatively small number of parts requires
tolerating slight variations across repetitions. For exam-
ple, pattern A presents with two alternative endings,
with the last bar of segments A1 and A4 differing
harmonically from the last bar of segments A2, A3
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b) Pattern
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Fig. 39.1a–d Mazurka Op. 68, No. 3 (M68-3) in F major

and A5. We could have chosen to break these occur-
rences into two groups, but that would ignore the high
degree of overlap that otherwise exists between them.
Second, the description avoids patterns consisting of
a small number of repeating subpatterns. For exam-
ple, T and C are considered to be two different parts
despite their strong harmonic similarities. The alterna-
tive would be to merge T C1C2 into a single pattern of
highly repetitive subpatterns. In the following sections
we will illustrate how these decisions relate to the infor-
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Fig. 39.2a–e Illustration of manually
generated structural descriptions for
five different Mazurkas

mation within the music signals, and their implications
for the proposed analyses.

Throughout this chapter we draw examples from the
Mazurka dataset, compiled by the Center for the His-
tory and Analysis of Recorded Music in London [39.8].
The set includes 2919 recorded performances of the 49
Frédéric Chopin’s Mazurkas, resulting in an average of
58 renditions per Mazurka. These recordings, featur-
ing 135 different pianists, cover a range of more than
100 years beginning in 1902 and ending in 2008. This
makes the dataset a rich and unique resource for the
analysis of style changes and expressivity in piano per-
formance, and of the evolution of recording techniques
and practices [39.9].

Our analysis is mainly focused on a subset of 298
recordings that correspond to five Mazurkas. In addi-
tion to M68-3, mentioned above, these include: Opus
17, No. 4 in A minor (M17-4); Op. 24, No. 2 in C ma-
jor (M24-2); Op. 30, No. 2 in B minor (M30-2); and
Op. 63, No. 3 in C] minor (M63-3). These recordings
are chosen because they have been the subject of exten-
sive musicological studies that resulted, amongst other
things, in manually annotated beat positions [39.10].
Additionally, the musical structures of these Mazurkas
are comparatively well defined, a fact that we have ex-
ploited to manually annotate their forms, as depicted
in Fig. 39.2. Please note that the annotations were per-
formed only once on the score representation, and then
propagated to all recordings using the beat annotations
mentioned above.



Part
F
|39.2

826 Part F Music and Media

39.2 Feature Representation

All content-based music analysis begins with the ex-
traction of a meaningful feature representation from the
audio signal. This representation typically encodes in-
formation about one or more musical characteristics,
e.g., harmony, melody, rhythm, or timbre as required
by the specific task. There are numerous signal pro-
cessing techniques that can be used to this end, such
as the ubiquitous Mel-frequency Cepstral coefficients
(MFCC), which are used for the analysis of timbre and
texture (e.g., by [39.11, 12]). For a comprehensive list
of audio features and their implementation, the reader
is referred to [39.13].

In our work we use chroma features, introduced in
Sect. 39.2.1, which can be used to derive information
about chords. As shown in Sect. 39.2.2, these features
are a powerful tool for music structure analysis, because
repeating segments are often characterized by common
chord progressions.

39.2.1 Chroma Features

Most musical parts are characterized by a particular
melody and harmony. In order to identify repeating
patterns in music recordings it is therefore useful to
convert the audio signal into a feature representation
that reliably captures these elements of the signal,
but is not sensitive to other components of the sig-
nal such as instrumentation or timbre. In this context,
chroma features, also referred to as pitch class profiles
(PCPs), have turned out to be a powerful midlevel rep-
resentation for describing harmonic content. They are
widely used for various music signal analysis tasks,
such as chord recognition [39.14], cover song identi-
fication [39.15, 16], and many others [39.17–19].

It is well known that human perception of pitch is
cyclical in the sense that two pitches an integer num-
ber of octaves apart are perceived to be of the same
type or class. This is the basis for the helical model of
pitch perception, where pitch is separated into two di-
mensions: tone height and chroma [39.20]. Assuming
the equal-tempered scale, and enharmonic equivalence,
the chroma dimension corresponds to the twelve pitch
classes used in Western music notation, denoted by
fC;C];D; : : : ;Bg, where different pitch spellings such
as C] and D[ refer to the same chroma. A pitch class is
defined to be the set of all pitches that share the same
chroma. For example, the pitch class corresponding to
the chroma C is the set f: : : ;C0, C1,C2, C3, : : :g.

There are several methods available for the compu-
tation of chroma features from audio, usually involving
the warping of the signal’s short-time spectrum or its

decomposition into log-spaced subbands. This is fol-
lowed by a weighted summation of energy across spec-
tral bins corresponding to the same pitch class [39.15,
17, 19, 21]. Each chroma vector characterizes the dis-
tribution of the signal’s local energy across the twelve
pitch classes. Just as with the short-time Fourier trans-
form (STFT), chroma vectors can be calculated se-
quentially on partially overlapped blocks of signal data,
resulting in a so-called chromagram. The literature also
proposes a number of ways in which the standard
chroma feature representation can be improved bymini-
mizing the effects of harmonic noise [39.22], by timbre
and dynamic changes [39.19, 23], or by tempo varia-
tions via beat synchronization [39.15].

Figure 39.3a depicts the waveform of a 1976 record-
ing of M68-3 performed by Sviatoslav Richter. Pattern
labels are shown on the horizontal axis with boundaries
marked as vertical red lines. Figure 39.3b shows the
corresponding sequence of normalized chroma feature
vectors, at a resolution of ten vectors per second, with
the pitch classes of the chromatic scale starting in A,
and ordered from bottom to top. As expected, most of
the signal energy is concentrated on the classes corre-
sponding to the F major key: F, G, A, B[/A], C, D and
E. Additionally, careful inspection of the chromagram
shows that the different patterns of this piece can be
associated with distinct subsequences of chroma vec-
tors.

39.2.2 Feature Trajectories

To make the latter point more evident we can use an al-
ternative visualization of the chromagram in Fig. 39.3b.
The values in a single chroma feature vector can be in-
terpreted as a set of coordinates describing a point in
the 12-dimensional space of pitch classes. Connecting
those points over time results in a trajectory in feature
space. Since this trajectory cannot be directly visualized
in 12 dimensions, we use principal component anal-
ysis [39.24] to project this information onto its two
principal components, resulting in the black line shown
in Fig. 39.4. Since time is not explicitly encoded in this
visualization, Fig. 39.4 also shows the two-dimensional
(2-D) histograms of trajectory values, color-coded such
that points contained within instances of patterns A,
B, C and T are in blue, red, orange and gray respec-
tively.

The projection clearly characterizes the main repeti-
tions in the feature sequence as similar subtrajectories,
i. e., segments of the main trajectory that are in close
proximity to each other. Note that repetitions do not
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Fig. 39.3a,b
Feature repre-
sentations for
a performance
by Richter
(1976) of M68-3.
(a) Waveform.
(b) Correspond-
ing chromagram.
Pattern bound-
aries are marked
with vertical red
lines and pattern
labels are shown
on the time axis

form fully overlapping subtrajectories due to expressive
changes in tempo, timbre and dynamics. Despite this
variability the histograms clearly show how each pat-
tern results in distinct trajectory shapes. For example,
pattern A has a multimodal distribution resulting from
the six different chord types that are part of its progres-
sion: F major, C major, B[ major and Gmajor as well as
D minor and A minor. In contrast, pattern B, which is
strongly dominated by A major chords (while also fea-
turing some D minor and E major chords) has a much
more narrow distribution. This is even more extreme for
patterns C and T , which are highly overlapping and
almost exclusively dominated by a B[-F dyad played
ostinato, as can be seen in the score representation of
Fig. 39.1.

This example illustrates how chromagrams success-
fully capture harmonic information in the signal. In the
following sections we show how these features can be
used to synchronize different instances of a musical
work and enable new modes of music content brows-
ing and navigation.

–4 –3 –2 –1 0 1 2 3 4 5 6

Principal component 2

Principal component 1
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2
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0

–1

–2
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–4

Fig. 39.4 Trajectory of 12-dimensional chroma features
projected onto two dimensions using the chromagram
shown in Fig. 39.3b

39.3 Music Synchronization and Navigation

Musical works can be represented in many different
domains, e.g., in different audio recordings, MIDI (Mu-
sical Instrument Digital Interface) files, or as digitized
sheet music. The general goal of music synchronization
is to automatically align multiple information sources
related to the same musical work. Here, music synchro-

nization denotes a procedure which, for a given position
in one representation of a piece of music, determines
the corresponding position within another representa-
tion [39.19, 25]. The linking information produced by
the synchronization process can be used to propagate
information across these representations.
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Fig. 39.5a,b Illustration of the score-audio synchronization pipeline used to transfer structure annotations from the
score to the audio domain. (a) Score and audio representation with the corresponding chromagrams. The red arrows
indicate the score-audio synchronization result. (b) The score-based annotations are transferred to the audio domain
using the linking information supplied by the synchronization procedure

Consider the example in Fig. 39.5. The left col-
umn demonstrates the synchronization process between
a musical score (top) and a recording of the same piece
(bottom). Both the score and audio are converted to
a common midlevel representation: the chromagram.
While one would naturally expect the audio chroma-
gram to be much noisier than the chromagram derived
from the score, both representations are expected to
contain energy in the pitch classes corresponding to
the played notes, and to be organized according to
the sequence of notes in the score. Therefore, standard
alignment procedures based on dynamic time warping
can be used to synchronize the two feature sequences.
See [39.19, 25, 26] for details.

There are many potential applications of the syn-
chronization process. For example, if the musical form
of the piece has been manually annotated using the
score representation – as shown in the right-hand side
of Fig. 39.5 – the synchronization result can be used
to transfer this, or any other annotation, to a recording
of the same piece, regardless of variations of local or
global tempo. This alleviates the need for the laborious
process of manually annotating multiple performances
of a given work. The same techniques can be applied to
score following for automatic page turning or to adding

subtitles to a video recording of an opera performance,
to name only some further applications.

Another application is the creation of novel user
interfaces for inter- and intradocument navigation in
music collections. Figure 39.6 shows an interface
(from [39.27–29]) that allows the user to interact with
several recordings of the same piece of music, which
have been previously synchronized. The timeline of
each recording is represented by a slider bar, whose
indicator (a small down arrow) points to the current
playback position. Note that these positions are syn-
chronized across performances. A user may listen to
a specific recording by activating the corresponding
slider bars and then, at any time during playback, seam-
lessly switch to another recording. Additionally, the
slider bars can be segmented and color coded to visu-
alize symbolic annotations common to all recordings,
such as a chord transcription or a structure segmenta-
tion as shown in the figure. Furthermore, users can jump
directly to the beginning of any annotated element sim-
ply by clicking on the corresponding block, thus greatly
facilitating intradocument navigation. A similar func-
tionality was introduced in [39.30].

The interface offers three different timeline modes.
In absolute mode, shown in the top of Fig. 39.6, the
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a)

b)

Fig. 39.6a,b User interface for
intra- and interdocument navigation
of music collections. The slider
bars correspond to four different
performances of M68-3. They
are segmented and color-coded
according to the structural annotations
in Fig. 39.2. The down arrows
point to the current playback time,
synchronized across performances.
The absolute (a) and relative (b)
timeline modes are shown

length of a particular slider bar is proportional to the
duration of the respective recording. In relative mode,
shown in the bottom of the figure, all timelines are
linearly stretched to the same length. The third and fi-
nal mode, referred to as reference mode, uses a single
recording as a reference. All other timelines are then

temporally warped to run synchronous to the reference.
In all cases, the annotations are adjusted according to
the selected mode. Such functionalities open up new
possibilities for viewing, comparing, interacting, and
evaluating analysis results within a multiversion, and
multimode, framework [39.29].

39.4 Self-Similarity in Music Recordings

Since their introduction to the music information com-
munity in [39.31], self-similarity matrices (SSM) have
become one of the most widely used tools for music
structure analysis. Their appeal resides in their ability
to characterize patterns of recurrence in a feature se-
quence, which are closely related to the structure of
musical pieces.

39.4.1 Self-Similarity Revisited

Given a sequence of N feature vectors, and a function
to measure the pairwise similarity between them, the

self-similarity matrix S is defined to be the N �N ma-
trix of pairwise similarities between all feature vectors
in the sequence. For the examples in this section we use
the chroma features as introduced in Sect. 39.2.1 and
the cosine similarity function, i. e., the inner product be-
tween the normalized chroma vectors.

Figure 39.7a shows the matrix S for the chroma-
gram in Fig. 39.3. Both the horizontal and vertical axes
represent time, beginning at the bottom-left corner of
the plot. Hand-annotated pattern boundaries are marked
by vertical and horizontal red lines. Note that if the
similarity function is symmetric, the matrix S is also
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Fig. 39.7a–d
Self-similarity
matrices for
M68-3 performed
by Richter,
1976: (a) SSM,
(b) thresh-
olded SSM,
(c) smoothed
SSM, (d) thresh-
olded smoothed
SSM. Both verti-
cal and horizontal
axes represent
time

symmetric with respect to the main diagonal, and that
larger/smaller similarity values are represented respec-
tively by darker/lighter colors in the plot. It can be
readily observed that similar feature subsequences re-
sult in dark diagonal lines or stripes of high similarity.
For example, all submatrices corresponding to the two
instances of the A part contain a dark diagonal stripe.
The segments corresponding to the C and T parts are
rather homogeneouswith respect to their harmonic con-
tent. As a result, entire blocks of high similarity are
formed, indicating that each feature vector is similar to
every other feature vector within these segments.

This example clearly illustrates how SSMs capture
the repetitive structure of music recordings and reveal
the location of repeating patterns in the form of di-
agonal stripes of high similarity. It follows that this
information can be exploited for automatic segmenta-
tion [39.32], the extraction of musical form [39.19,
33], the detection of chorus sections [39.34], or mu-
sic thumbnailing [39.35]. For a comprehensive review
the reader is referred to [39.36]. However, the reli-
able extraction of such information from the SSM is

problematic in the presence of distortions caused by
variations in dynamics, timbre, note ornaments (e.g.,
grace notes, trills, arpeggios), modulation, articulation,
or tempo. The following section describes how SSMs
can be processed to minimize their sensitivity to such
distortions.

39.4.2 Enhancing Self-Similarity Matrices

A number of strategies have been proposed to empha-
size the diagonal structure information in SSMs. These
strategies commonly include a combination of some
form of filtering along the diagonals, and the thresh-
olding of spurious, off-diagonal values. While many
alternative approaches have been proposed in the litera-
ture (e.g., [39.33–35]), here we briefly discuss methods
based on time-delay embedding, contextual similarity
and transposition invariance.

The process of filtering SSMs along the diago-
nals can be framed in terms of time-delay embedding,
a process that has been widely used for the analysis of
dynamical systems [39.37]. In this process, the feature
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Fig. 39.8a–f SSM smoothing
and thresholding in the pres-
ence of tempo variations for
M30-2 performed by Jonas, 1947:
(a,b) SSM, (c,d) smoothed SSM, and
(e,f) smoothed SSM with contextual
similarity

sequence is converted into a series of feature m-grams,
each of which is composed of a stack of m feature
vectors. These vectors can be taken from a contiguous
window, or spaced by a fixed sample delay � . In the
context of the example in Sect. 39.2.2, setting m> 1
implies that pairwise similarities in the SSM compu-
tation are computed between subtrajectories instead of
between individual feature vectors. Subtrajectories that
are parallel to each other result in large self-similarity,
and the effect of random crossings is minimized, gen-
erally resulting in a smoothed matrix. For � D 1, the
time-delay embedding process is similar to textural
windows [39.38] and audio shingles [39.39].

Figure 39.7a,b shows the traditional SSM (i. e.,
mD � D 1) computed from M68-3 before and af-
ter thresholding, respectively. Similarly, Fig. 39.7c,d
shows the corresponding similarity matrices computed
using mD 15 and � D 1. It is immediately apparent
how the time-delay embedding emphasizes the diagonal
line structure of the matrix and significantly minimizes
the amount of off-diagonal noise that obscures the
structure in the nonembedded matrix. It is worth not-
ing that different methods can be used for thresholding,
e.g., by simply ignoring distances larger than a prede-
fined threshold (as was done in this example), by fixing
the number of nearest neighbors per sequence element,
or by enforcing a rate of recurrence in the thresholded
SSM [39.37]. Recent studies show that the latter strate-
gies can improve the applicability of SSMs to a variety
of music analysis tasks [39.40, 41].

This form of filtering only works well if the
tempo is (close to) constant across the music record-
ing, i. e., where repeating segments have roughly the
same length. Stripes corresponding to repeated patterns
at the same tempo run diagonally with a slope of 1.

Music structure analysis research has most commonly
operated on popular music, in which this constant-
tempo assumption is often reasonable. However, in
other genres such as romantic piano music, expressive
performances often result in significant tempo varia-
tions. Take for example Jonas’ performance of M30-2,
shown in Fig. 39.8, where B3 is played at nearly half
the tempo of B1. This results in a diagonal stripe in the
SSMwith slope close to 2. Applying time-delay embed-
ding to this data can result in broken stripes, as shown
in Fig. 39.8c,d. One way to avoid this loss of informa-
tion is to use a contextual similarity measure that filters
the SSM along various slopes around 1 [39.42]. The re-
sulting SSM, illustrated in Fig. 39.8e,f, has filtered out
the off-diagonal noise present in the unprocessed SSM
shown in Fig. 39.8a while successfully preserving diag-
onal structure in the presence of local tempo variations.

It is further possible to make the SSM transposition-
invariant by computing the similarity between the orig-
inal chromagram and its 12 cyclically shifted versions,
corresponding to all possible transpositions. The in-
variant SSM is calculated by taking the point-wise
minimum over the 12 resulting matrices [39.34, 43].
An example of the process from an excerpt of M7-5
is shown in Fig. 39.9. The excerpt contains repeti-
tions of two patterns, A and B, which are actually
transpositions of each other, as shown in Fig. 39.9a,b.
The standard SSM, shown in Fig. 39.9c,d, differenti-
ates between the repetitions of A and B, while the
transposition-invariant SSM shown in Fig. 39.9e,f, suc-
cessfully identifies the relationship between the two
patterns.

The enhancement procedures described in this sec-
tion are aimed at emphasizing the diagonal stripe
structure of the SSM. In music structure analysis, the
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a) b) e)

d)b) f)

Fig. 39.9a–f
Transposition
invariance for
M7-5 performed
by Cohen, 1997:
(a,b) Scores of
patterns A and
B, (c,d) SSM
before and after
thresholding, and
(e,f) transposition-
invariant SSM
before and after
thresholding

computation of the self-similarity matrix is usually fol-
lowed by a grouping step, where clustering techniques
and heuristic rules are used to identify the global repeti-
tive structure from the matrix, or to select representative
segments for e.g., music thumbnailing. This is a large
topic that we do not aim to fully review in this chapter.
For a detailed review of these solutions and discussions
of their advantages and disadvantages, the reader is re-
ferred to, e.g., [39.36, 44].

39.4.3 Structure-Based Similarity

In the previous sections, we discussed the computation
of SSMs as an intermediate step towards the extraction
of a piece’s musical form or identification of represen-
tative excerpts. In this section, we use SSMs directly
as a midlevel representation of a recording’s structure.
Distances measured in this domain can therefore be
used to characterize the structural similarity between
different music recordings [39.45, 46].

A similar problem in bioinformatics is concerned
with measuring the similarity between protein struc-
tures on the basis of SSM-like representations known
as contact maps [39.47]. One solution to this prob-
lem makes use of the normalized compression dis-
tance (NCD), an approximation of the joint Kol-
mogorov complexity between binary objects, to mea-
sure the amount of information overlap between con-
tact maps [39.48]. The NCD is versatile, easy to im-
plement using standard compression algorithms, and
does not require alignment between the representations.
In [39.46, 49], these ideas are transferred and applied to
music information retrieval. Experimental results show
that these measures successfully characterize global
structural similarity for large and small music collec-
tions.

Figure 39.10 depicts the entire Mazurka dataset or-
ganized by structural similarity. The plot shows a two-

Mazurka
68-3
63-3
30-2
24-1
17-4

Fig. 39.10 The Mazurka dataset (gray) organized accord-
ing to the NCD-based similarity of SSMs. Colored points
correspond to recordings of the five Mazurkas considered
in this chapter

dimensional projection, obtained using multidimen-
sional scaling [39.50], of the matrix of pairwise NCDs
between the SSMs of all 2919 recordings. Each record-
ing is shown as a gray circle, except for those corre-
sponding to performances of M17-4 (depicted in red),
M24-1 (blue), M30-2 (green), M63-3 (orange) and
M68-3 (olive green).

An informal inspection of this plot shows that
most performances of a given work, which feature lit-
tle or no variation in global structure, naturally form
strongly knit clusters in this space. Note that the pro-
jection is deceptive in that it makes some of the
clusters, e.g., the olive green and orange groups, ap-
pear closer to each other than they actually are. As
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Fig. 39.11a,b Arthur Rubinstein’s
1939 performance of M30-2:
(a) thresholded SSM, and
(b) radial convergence diagram

a result, works can be easily grouped by means of
a simple nearest-neighbor search. However, the NCD
is, predictably, sensitive to structural changes. This is
typified by the M24-1 performance that appears the
furthest from the blue cluster. This recording is part
of a 1957 release of a master class by Alfred Cor-
tot, where the pianist’s spoken commentary alternates
(and at times overlaps) with a partial performance
of the piece including errors, nonscored pauses and
repetitions. This results in a structure that diverges con-
siderably from those of other performances. Likewise,
the M30-2 (green) outlier corresponds to a 1945 per-
formance by Vladimir Horowitz, in which the famous
pianist repeats the entire second half of the piece, re-
sulting in a unique A1A2B1B2C1C2B3B4C3C4B5B6

structure, see Fig. 39.2c. There are other such exam-
ples in this collection, whereby the performer took
the liberty to deviate from the notated musical score
by playing additional repetitions or leaving out certain
parts. A structure-based similarity metric is a natural
way to identify these variations.

39.4.4 Visualizing Structure

Self-similarity matrices have been used for visualiz-
ing structure in music [39.31, 51] and other domains
such as programming [39.52] and computational biol-
ogy [39.53]. However, SSMs are rarely used for data
visualization outside of scientific research, possibly
due to the nonintuitive presence of two temporal axes,
which results in a complex and redundant representa-
tion.

Radial convergence diagrams [39.54] (RCDs) are
an alternate vehicle for visualizing structural informa-
tion derived from SSMs. These diagrams consist of
a network of data points arranged on a circle. Groups
of related points in the sequence are emphasized by
connecting them via links or ribbons. We use the cir-

cos toolbox [39.55], a powerful and popular tool for
information visualization based on circular graphs, to
generate the RCDs shown in this section [39.54].

An example RCD and the associated SSM com-
puted from a recording ofM30-2 is shown in Fig. 39.11.
To generate the RCD, the matrix is postprocessed as
follows: the lower triangular part as well as the main
diagonal and all points within a prespecified distance
from it are ignored. The remaining repetitions (ones in
the matrix) are stored as a list of links connecting pairs
of elements in the feature sequence. Nearby links in
time (i. e., those that form diagonal strips in the SSM)
are grouped together. Small groups, either in temporal
scope or in membership, are filtered out.

The remaining groups are used to construct the
radial convergence diagramwhere time increases clock-
wise along the perimeter of the circle, beginning and
ending at the topmost point. The outer ring shows the
sequence of annotated sections as blocks, colored ac-
cording to the schema in Fig. 39.2. Time markers are
drawn as white lines and are placed at ten-second inter-
vals along the ring, and section boundaries are drawn in
black. Groups are represented using translucent ribbons
connecting two time segments such that each ribbon
edge connects the beginning of the first segment to the
end of the second. If they link two instances of the same
pattern, these ribbons assume the color of that pattern.
Otherwise they are depicted in gray, which is also used
to denote special sections such as introductions, inter-
ludes, transitions and codas.

As is shown in Fig. 39.11b, the RCD seamlessly
combines information from the SSM with the piece’s
structural annotation, resulting in a rich and appeal-
ing visualization. The annotation in this example was
manually generated on the basis of a musical score
and propagated to audio recordings using the synchro-
nization approach described in Sect. 39.3. Alterna-
tively, the annotations can be automatically generated
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Fig. 39.12a–h Radial convergence diagrams for various Mazurka performances

by, e.g., analyzing the SSM (Sect. 39.4.2), or using
the factorization approach that will be introduced in
Sect. 39.5.

To illustrate the RCD’s potential for qualitative
analysis, Fig. 39.12 shows diagrams for two record-
ings of each of the following four Mazurkas: M17-4
in Fig. 39.12a,b, M24-2 in Fig. 39.12c,d, M30-2 in
Fig. 39.12e,f, and M68-3 in Fig. 39.12g,h. The pres-
ence or absence of repetitive patterns results in dis-
tinctive shapes inside the diagrams that complement
the information in the block-based structural annota-
tions. These shapes highlight, for instance, the unique
(nonrepetitive) character of the interlude (bottom-right
gray segment) in M17-4, the significant overlap be-
tween introduction, transition and coda (gray sections)
in M24-2, and the strong predominance of pattern A in
the structure of M68-3.

Note that the gray ribbons linking different patterns
depict relationships that are absent from the structural
annotations. For example, they highlight the high simi-
larity between instances of pattern C and the transition
section in M68-3, both of which are dominated by a B[

major chord as described previously in Sects. 39.1 and
39.2. The gray ribbons also connect the C and T sec-
tions with instances of the same chord in pattern A,
a link that results from the piece’s only key modulation,
in the transition, from F major to B[ major.

The RCD representation can also be used to qualify
stylistic differences in performance practice. Take for
example one of the outliers identified in the analysis in
Sect. 39.4.3. Figure 39.12f shows the unique structure
of Vladimir Horowitz’s performance of M30-2 when
compared to performances that more closely follow
the original score in Figs. 39.12e or 39.11b. Like-
wise, the varying-length gaps at the end of section
C2 (the final red segment) in M68-3, indicate a ritar-
dando and an expressive pause in Rubinstein’s perfor-
mance (Fig. 39.12g), which is not present in Richter’s
(Fig. 39.12h).

Please note that an in-depth musicological analy-
sis based on these diagrams is beyond the scope of this
chapter. These simple observations are only intended to
illustrate some of the capabilities of the RCD represen-
tation.
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39.5 Automated Extraction of Repetitive Structures

Section 39.4.2 describes some general strategies for
identifying repetitive structure within music recordings
using self-similarity matrices. Example approaches in-
clude the clustering of diagonal elements in the SSM
representation into sets of disjoint segments, and se-
lecting the first of the most similar pair of segments, or
choosing an arbitrary occurrence of the most frequent
segment as a representative pattern. In this section we
present an alternative approach based on matrix factor-
ization, which jointly identifies repetitive patterns and
derives a global structure segmentation from audio fea-
tures.

39.5.1 Structure Analysis
Using Matrix Factorization

In [39.56, 57] we propose a novel approach for the lo-
calization and extraction of repeating patterns in music
audio. The idea underlying this method is that a song
can be represented through repetitions of a small num-
ber of patterns in feature space. For example, recall
that M68-3 has the formA1A2B1B2A3T C1C2A4A5,
i. e., the piece exhibits repetitions of three parts (A, B,
and C) as well as a transition T that occurs only once.
The only information needed to represent this piece are
the feature sequences corresponding to each of the four
patterns and the points in time of their occurrences.

This observation can be exploited to identify the
main parts of a music recording and its overall tempo-
ral structure using an approach known as shift-invariant
probabilistic latent component analysis (SI-PLCA).
The process is illustrated in Fig. 39.13 for a perfor-
mance ofM68-3 by Gábor Csalog from 1996. The chro-
magram in Fig. 39.13a is approximated as the weighted
sum of K (K D 4 in this example) components, each of
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100 150
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Fig. 39.13a–c Illustration of the SI-PLCA decomposition. (a) Chromagram. (b) Set of four basis patterns. (c) Respective
activations in time

which corresponds to a different part. Each component
is further decomposed into a short chroma basis pat-
tern (shown in Fig. 39.13b) and an activation function
defining the location of each repetition of that pattern in
the chromagram (shown in Fig. 39.13c). The peak po-
sitions in the activation function denote occurrences of
the corresponding basis pattern in the feature sequence.
Given a chromagram, this decomposition into basis pat-
terns and activations can be computed iteratively using
well-known optimization techniques [39.57].

There are many advantages to this model. First, it
operates in a purely data-driven, unsupervised fashion:
outside of a few functional parameters, the only prior
information it requires is the length of the patterns L
and the number of patterns K to extract. Second, the
probabilistic formulation makes it straightforward to
impose sparse priors on the distribution of basis pat-
terns and mixing weights, enabling the model to learn
optimal values for L and K. In addition, the framework
can be easily extended to be invariant to key transpo-
sitions using a technique similar to that described in
Sect. 39.4.2. Finally, the method jointly estimates the
set of patterns and their activations, thus avoiding the
need for heuristics for pattern extraction, grouping and
selection. The versatility of the model is demonstrated
in [39.57], where it is successfully applied to riff find-
ing, meter identification, and segmentation of popular
music.

39.5.2 Representative Patterns

The SI-PLCA model can be easily extended to ex-
tract patterns jointly from all available recordings of
a piece by sharing the bases across recordings but us-
ing different activation functions for each one. This
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Fig. 39.14a–h Extracted patterns
Wk; k 2 Œ1 W 4� for M68-3 and the
corresponding MIDI-generated
ground-truth patterns for the different
parts. To facilitate comparison, (f) and
(h) show both instances of the parts C
and B respectively. The vertical axis
shows time information given in beats.
For the ideal patterns, the absolute
beat numbers indicate the position of
the pattern in the piece, see Fig. 39.2e

allows the model to identify the patterns of the piece
rather than capture the idiosyncrasies of a single per-
formance. In order to facilitate this cross-recording
analysis we use beat-synchronous chromagrams, where
features are averaged within beat segments [39.15].
This leads to a representation containing one feature
vector per beat. We employ the manually annotated beat
positions available for the Mazurka dataset to generate
the chromagrams shown in this section.

Figure 39.14 shows patterns extracted for M68-3.
The number of patterns in the decomposition is set to
K D 4 and the pattern length is set to LD 24 beats, the
length ofA, the longest part in the piece. The extracted
patterns, denoted Wk, are shown in the left column
of Fig. 39.14. The right column shows ideal chroma-
grams for the parts of M68-3, extracted from a symbolic
(MIDI) representation. These sequences are paired with
the basis that is most similar.

Upon close examination, it can be seen that W1

matches every chord inA1, aside from some ambiguity
in beats 21, 23 and 24. This is due to the alternation of
endings of different instances of the A pattern:A1 and
A4 finish with Gmaj-Cmaj-Cmaj-Cmaj chords at beats

21–24; while A2, A3 and A5 end with a Gmin-Cmaj-
Fmaj-Fmaj sequence. Correspondingly, beat 21 shows
energy in pitch classes G, B, B[/A] and D; while beats
23 and 24 show activity for classes A, C, E and F. Like-
wise, W4 matches B1B2 almost perfectly, aside from
a slight shift:W4 starts in beat 2 ofB1 and finishes in the
first beat of A3, which contains a transitional C major
seventh chord.

The melodic components of W2 are also shifted by
a couple of beats, although the transitional C dominant
seventh chord at the end is well aligned. However, most
of the energy of the matrix is concentrated in the B[ fifth
chord that dominates the C and T patterns. As a re-
sult, W2 matches activations of both these patterns, as
can be seen in the corresponding activation vectors in
Fig. 39.13c. The unintended consequence of this is that
the remaining pattern W3, which must be assigned to
some portion of the signal, absorbs a small amount of
the energy from the last instance of pattern A, mostly
from the long F major chord at the end. W3 is largely
redundant with W1, and could therefore be easily dis-
carded. This is also indicated by the low value of the
corresponding activation in Fig. 39.13c.
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39.5.3 Segmentation Analysis

The work in [39.56] also describes a method for seg-
menting an audio signal based on the contribution of
each basis to the chromagram. This is done by com-
puting a temporal localization function `k from the ex-
tracted bases and activations that represents the energy
contribution of each component to the overall chroma-
gram at each point in time. Figure 39.15 shows the
localization functions for the fiveMazurkas in Fig. 39.2.
These results are obtained for LD 24 beats and the op-
timal setting of K for each piece.

Figure 39.15e shows `k for M68-3, our running ex-
ample. Given the similarity between patterns C and
T , discussed in previous sections, we have chosen to
set K D 3, which removes the spurious component de-
picted in Fig. 39.14c. The resulting analysis shows
a strong correspondence between the localization func-
tion and the annotated parts. The annotations for all A
and B parts align perfectly with `2 and `1 respectively.
`3 corresponds primarily to the C and T parts, and also
makes a small contribution to A3.

As shown in Fig. 39.15c, the localization functions
for M30-2 correlate closely with the manual annotation,
given an optimal choice of K D 3. Similarly for M17-4
in Fig. 39.15a, there is high correlation between `k and
the annotated parts. However, there is a constant shift in
the segmentation that is mainly caused by the 12-beat
long introduction. Additionally, the choice of K D 3 re-
sults in the grouping of the introduction and interlude
sections (and some of the coda) with the A pattern.

The segmentation is less straightforward for M24-2
and M63-3, shown in Fig. 39.15b,d. In the case of
M24-2, the choice of K D 7 closely matches the num-
ber of distinct parts in this piece, also visualized in
the diagrams in Fig. 39.12c,d. As a result, C, D, E,
the introduction and coda are slightly shifted but well
segregated. However, the decomposition combines the
contributions of A and B, which always occur in se-
quence, into `2. Similarly, the ending of B and the
transition are merged together in `4. For M63-3, the
choice of K D 6 is larger than the number of parts in
the annotation. This is a consequence of strong varia-
tions between the annotated A parts, where only the
first 12 beats are common to all instances. These vari-
ations lead to a separation of the A parts into different
components.

To further alleviate possible errors, we apply tem-
poral smoothing to the localization functions, and select
the maximal contributing pattern for each time position.
This results in segmentation results comparable to state-
of-the-art methods [39.56]. It is important to note that,
while the results discussed in this section reveal a sen-
sitivity to the setting of K, our research shows that it is

a) M17-4, K = 3

e) M68-3, K = 3

c) M30-2, K = 3

b) M24-2, K = 7

d) M63-3, K = 6

Coda

Coda

Coda

Fig. 39.15a–e Contribution `k of the basis patterns Wk to
the different parts using LD 24 and the optimal setting
of K for each of the five Mazurkas

possible to decrease this sensitivity by imposing addi-
tional sparsity constraints on the model parameters.

It is also important to observe that the above anal-
ysis assumes that all patterns are of the same length.
This is of course unrealistic for most music. When
analyzing popular music this is partly alleviated via
beat-synchronous analysis. However, extending this
strategy to the analysis of piano music of the classical
and romantic canon is problematic, because the vari-
ability introduced by expressive tempo changes nega-
tively affects the performance of beat tracking systems.
See [39.58] for an in-depth discussion of this problem
in the context of the Mazurka dataset. The examples in
this section have avoided such complications by making
use of beat-synchronous chromagrams based on manu-
ally annotated beat positions. In order to analyze music
for which such annotations are not available, we could,
in the future, extend the SI-PLCA model to be invariant
to tempo changes by allowing the basis patterns to be
stretched in time.
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39.6 Conclusions
In this chapter, we have reviewed the general prin-
ciples behind several computational approaches to
content-based analysis of recorded music and dis-
cussed their application to knowledge discovery. For
example, we demonstrated how chroma-based audio
features can be used as a robust midlevel repre-
sentation for capturing harmonic information, and to
compute similarity matrices that reveal recurrent pat-
terns. By including temporal contextual information,
we showed how these matrices can be enhanced to
reveal repetitions in the presence of local tempo vari-
ations as occurring in expressive music recordings.
Furthermore, we discussed how these techniques can
be applied to music synchronization, to automate au-
dio annotation and to realize novel user interfaces for
inter- and intradocument music navigation. Finally, we
demonstrated how structure-based similarity measures
can be used to classify music collections based on
their global structural form, and how matrix factor-
ization techniques can be used to identify the most
representative building blocks of a recorded perfor-
mance.

Our aim was to highlight the implications of the var-
ious approaches for the analysis and understanding of
recorded music, and to demonstrate how they can em-
power the work of music professionals and scholars.
In addition we showed how these tools facilitate novel
modes of interaction with digital content that could be
integrated with music distribution services as ways to
enhance the listeners’ understanding and appreciation
of music. Throughout the text, we illustrated the po-
tential of content-based analysis via many concrete and
intuitive examples taken from a collection of recorded
piano performances of Chopin’s Mazurkas. However,
the presented techniques and underlying principles are
applicable to the analysis of a wide range of tonal mu-
sic and, with appropriate modifications of the feature

representation, to percussive music or other types of
time-dependent structured multimedia data.

Of course, this chapter has only covered a small
part of the breadth of techniques and problems in the
area of automated music processing. There are numer-
ous challenges and open issues for future research. For
instance, many of the examples shown here rely, to
some extent, on the use of manually generated expert
data such as beat positions or structural annotations.
Despite significant research efforts, the automated gen-
eration of such annotations using purely content-based
analysis techniques still poses challenging and open
research problems for large parts of the existing dig-
ital music catalog. State-of-the-art algorithms often
lack the robustness, accuracy and reliability needed for
many music analysis applications. This is especially
true for highly expressive music recordings such as the
Mazurka performances described in this chapter, which
exhibit subtle differences and variations in tempo, artic-
ulation, and note execution.

As the amount of digitally available music-related
data grows, so does the need for efficient approaches
that can scale up to the processing of millions of tracks.
As automated procedures become more and more pow-
erful they tend to gain computational complexity, mak-
ing scalability an increasingly important issue. In addi-
tion to improvements in robustness and accuracy, issues
related to time and memory efficiency will progres-
sively come into the focus of future research.
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