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15. Audio Source Separation in a Musical Context

Bryan Pardo, Zafar Rafii, Zhiyao Duan

When musical instruments are recorded in iso-
lation, modern editing and mixing tools allow
correction of small errors without requiring a group
to re-record an entire passage. Isolated recording
also allows rebalancing of levels between mu-
sicians without re-recording and application of
audio effects to individual instruments. Many of
these techniques require (nearly) isolated instru-
mental recordings to work. Unfortunately, there
are many recording situations (e.g., a stereo
recording of a 10-piece ensemble) where there
are many more instruments than there are micro-
phones, making many editing or remixing tasks
difficult or impossible.

Audio source separation is the process of ex-
tracting individual sound sources (e.g., a single
flute) from a mixture of sounds (e.g., a record-
ing of a concert band using a single microphone).
Effective source separation would allow applica-
tion of editing and remixing techniques to existing
recordings with multiple instruments on a single
track.

In this chapter we will focus on a pair of source
separation approaches designed to work with mu-
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sic audio. The first seeks the repeated elements
in the musical scene and separates the repeat-
ing from the nonrepeating. The second looks for
melodic elements, pitch tracking and streaming
the audio into separate elements. Finally, we con-
sider informing source separation with information
from the musical score.

One of the great advances of the 20th and 21st cen-
turies has been the introduction and refinement of audio
recording and the audio editing techniques recording al-
lows. Remixing, editing, and remastering in the studio
has enabled the creation of new genres of music (e.g.,
musique concrete, modern hip hop). When instruments
are recorded in isolation, modern editing and mixing
tools allow correction of small errors in music record-
ings without requiring a group to re-record an entire
passage (e.g., a single missed note in the flute part).
This also allows rebalancing of levels between musi-
cians without re-recording (e.g., increasing the volume
of the flute compared to the trumpet) and application
of audio effects to individual instruments (e.g., adding
reverberation to the vocals, but not the bass).

Many of these editing techniques require (nearly)
isolated instrumental recordings. One cannot edit out
a missed note in the flute, if that note is also recorded on
the adjacent microphone for the violin. Unfortunately,
there are many recording situations (e.g., a stereo
recording of a 10-piece ensemble) where there are many
more instruments than there are microphones. Thus,
instruments are not recorded in isolation. Also, many
legacy recordings are only available in the final stereo
(two-channel) or mono (one-channel) mixture and the
original premixed tracks are not available. All of these
situations make many editing or remixing tasks difficult
or impossible.

Audio source separation is the process of extract-
ing individual sound sources (e.g., a single flute) from
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a mixture of sounds (e.g., a recording of a concert band
using a single microphone). Effective source separation
would allow application of editing and remixing tech-
niques to existing recordings with multiple instruments
on a single track.

There have been many source separation ap-
proaches developed for general audio signals. Examples
of general source separation algorithms include inde-
pendent component analysis (ICA) [15.1], nonnegative
matrix factorization (NMF) [15.2], nonnegative tensor
factorization (NTF) [15.3], probabilistic latent com-
ponent analysis (PLCA) [15.4], and robust principal
component analysis (RPCA) [15.5]. While all of these
have been applied to music, most do not leverage any
particular features of music to aid in the separation pro-
cess.

One element of a music scene which is highly
salient is the repeating structure found in the music.
Schenker asserted that repetition is what gives rise to
the concept of the motive [15.6]. Ruwet used repetition
as a criterion for dividing music into small parts, reveal-
ing the syntax of the musical piece [15.7]. Ockelford
argued that repetition and imitation is what brings order
to music [15.8].

Computational audio researchers have found repet-
itive elements in music audio useful for many pur-
poses. Common applications include music sum-
marization, e.g., see Bartsch [15.9], Cooper and
Foote [15.10] and Peeters [15.11], audio segmenta-
tion [15.12], beat estimation [15.13], finding drum
patterns in the audio [15.14], and structural analy-
sis [15.15]. For a thorough review on music struc-

ture analysis, the reader is referred to [15.11, 16,
17].

The idea that repetition can be used for source
separation is supported by recent findings in psycho-
acoustics. McDermott et al. established that the human
auditory system is able to segregate individual sources
by identifying them as repeating patterns embedded in
the acoustic input, without requiring prior knowledge
of the source properties [15.18]. Given this, could rep-
etition in music be used as a basis for automatically
separating the audio into a repeating background (e.g.,
a salsa montuno) and a varied foreground (the lead
salsero sala singer)?

Another salient feature of a musical scene is
melody. Bregman [15.19] shows that humans often link
together distinct sound elements (e.g., notes) in time
to produce perceptually salient entities called auditory
streams. These streams often correlate strongly with
melodies. Many trained musicians are able to segregate
several melodies into independent elements they can at-
tend to. Can a machine do the same? Often, a musical
score can aid the trained musician to perform this task
better. Can a score provide similar aid to an auditory
streaming algorithm?

In this chapter we will focus on a pair of source
separation approaches designed to work with music
audio. The first seeks the repeated elements in the
musical scene and separates the repeating from the non-
repeating. The second looks for melodic elements, pitch
tracking and streaming the audio into separate elements.
This second approach is then informed by a musical
score to improve performance.

15.1 REPET

In this work, we begin with the observation that pas-
sages in many kinds of folk and pop music can be
understood as a background component that is gener-
ally repeating in time, with a superimposed foreground
component that is generally variable in time (e.g.,
a repeating accompaniment superimposed with varying
vocals or a solo instrument). On this basis the repeating
pattern extraction technique (REPET) was proposed.
REPET is an intuitive approach for separating the re-
peating background from the nonrepeating foreground
in an audio mixture. The basic idea is to identify repeat-
ing elements in the mixture by measuring self-similarity
along time, derive repeating models by averaging the
repeating elements over their repetition rates, and ex-
tract the repeating structure by comparing the repeating
models to the mixture.

A number of experiments have shown that REPET
can be effectively applied to separate pop songs into
their music accompaniment and singing voice. Unlike
other approaches for source separation, REPET does
not depend on special parametrizations, does not rely on
complex frameworks, and does not require external in-
formation. Because it is only based on repetition, it has
the advantage of being simple, fast, blind, and therefore
completely and easily automatable. More information
about REPET, including source code, audio examples,
and related publications can be found at [15.20].

15.1.1 Original REPET

The original REPET algorithm was designed to sepa-
rate the repeating background from the nonrepeating
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foreground in an audio mixture (e.g., the music ac-
companiment from the singing voice in a pop song) by
identifying a period and modeling a segment for the pe-
riodically repeating patterns [15.21, 22].

The method can be summarized in three stages
(Fig. 15.1):

� Identification of a repeating period� Modeling of a repeating segment� Extraction of the repeating structure.

Repeating Period Identification
In the first stage, the time-domain signal (top left of
Fig. 15.1) is transformed into a time–frequency rep-
resentation known as the spectrogram by using the
short-time Fourier transform (STFT). A spectrogram
represents sound as a two-dimensional structure, where
the vertical axis shows frequency from low (at the bot-
tom) to high. The horizontal axis shows time, from left
to right. The spectrograms in Fig. 15.1 use red to indi-
cate high energy and blue to show low energy.

The autocorrelation of each frequency channel is
then computed. An autocorrelation measures the sim-
ilarity of a signal with a delayed version of itself
given different delays. The peak of the autocorrelation
function indicates the period at which the sound re-
peats. To identify periodicity in the mixture, the beat
spectrum [15.13] is derived from the spectrogram by

Mixture

Spectrogram

Spectrogram
Repeating spectrogram

Spectrogram
Time–frequency mask

Median
Repeating segment

Beat spectrum

Repeating background

Spectrogram

Fig. 15.1
Overview of
the original
REPET: (1) com-
putation of the
beat spectrum
and identification
of a repeating
period (top row);
(2) filtering of the
spectrogram and
modeling of a re-
peating segment
(middle row);
(3) derivation
of the time–
frequency mask
and extraction
of the repeat-
ing background
(bottom row)

computing the autocorrelation over time for every fre-
quency channel and averaging the autocorrelations over
the frequency channels. This is shown in the upper right
of Fig. 15.1. Here, a peak is a candidate period at which
the audio may repeat.

If periodically repeating patterns are present in the
mixture, the beat spectrum forms peaks that are period-
ically repeating at different period rates, unveiling the
underlying periodically repeating structure of the mix-
ture, as shown in Fig. 15.1. A best-fit repeating period
can then be identified from the beat spectrum, man-
ually or by using an automatic period finder [15.21,
22].

Repeating Segment Modeling
In the second stage, the repeating period is used to find
the period of the underlying repeating structure in the
recording. This typically correlates to a pattern a few
seconds long, such as a 4-chord repeating riff in a folk
song. A model of what is repeating in the music is built
by segmenting the audio at the points where the pattern
repeats (middle panel of Fig. 15.1). The median value
of the sound across all repetitions is then used to model
the canonical repeating sound, as shown in Fig. 15.1.

This approach assumes the nonrepeating fore-
ground (e.g., vocals or an instrumental soloist) has
a sparse and varied time–frequency representation com-
pared with the time–frequency representation of the
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repeating background. Therefore, time–frequency bins
with small deviations at their repetition rate would most
likely represent repeating elements and would be cap-
tured by the medianmodel. Conversely, time–frequency
bins with large deviations at their repetition rate would
most likely be nonrepeating elements (i. e., the nonre-
peating musical foreground) and would be removed by
the median model.

Repeating Structure Extraction
In the third stage, the repeating segment is used to
derive a repeating spectrogram by taking, for every
time–frequency bin, the minimum between the repeat-
ing model and the mixture spectrogram at period rate.
This assumes the mixture spectrogram is the sum of
a nonnegative repeating spectrogram and a nonnega-
tive nonrepeating spectrogram. Thus, the mixture at any
given time and frequency is assumed to always be as
loud or louder than the individual mixture components
(i. e., the repeating components are assumed not to can-
cel out the nonrepeating components).

The repeating spectrogram is then used to derive
a time–frequency mask by dividing, for every time–
frequency bin, the repeating spectrogram by the mixture
spectrogram, as shown in Fig. 15.1. The rationale is
that time–frequency bins that are likely to repeat at
their repetition rate in the mixture spectrogram would
have values near one in the time–frequency mask and
would be weighted toward the repeating background.
Conversely, time–frequency bins that are not likely to
repeat at their repetition rate in the mixture spectrogram
would have values near zero in the time–frequency
mask and would be weighted toward the nonrepeating
foreground.

The repeating background can then be obtained by
multiplying, for every time–frequency bin, the time–
frequency mask with the mixture. The nonrepeating
foreground can be obtained by simply subtracting the
repeating background from the mixture.

Experiments showed that REPET can be effec-
tively applied to separate pop/rock song clips into their
accompaniment music and singing voice [15.21, 22].
They also showed that REPET can be combined with
other methods to improve background–foreground sep-
aration; for example, it can be used as a preprocessor to
pitch detection algorithms to improve melody extrac-
tion [15.22], or as a postprocessor to a singing voice
separation algorithm to improve music–voice separa-
tion [15.23]. Experiments further showed that REPET
can be effectively applied to [separate the] accompa-
niment music and singing voice of separate full-track
real-world songs, by simply applying the method along
time via a sliding window [15.22]. There is, however,
a trade-off for the window size in REPET: if the win-

dow is too long, the repetitions will not be sufficiently
stable; if the window is too short, there will not be suf-
ficient repetitions [15.22].

15.1.2 Adaptive REPET

Adaptive REPET is an extension of the original REPET
and is designed to handle a varying periodic back-
ground, i. e., when the repeating period and/or the
repeating patterns change over time (e.g., the succes-
sion of two homogenous sections in a song, such as
a verse followed by the chorus), without the need for
segmenting or windowing the audio [15.24].

As with the original REPET, the method can be
summarized in three stages (Fig. 15.2):

� Identification of the repeating periods� Modeling of a repeating spectrogram� Extraction of the repeating structure.

Identification of Repeating Periods
In the first stage, the signal is transformed into a spec-
trogram. To identify local periodicities in the mixture,
the beat spectrogram [15.13] is derived from the spec-
trogram by computing a beat spectrum for every time
frame by sliding a window along time. In other words,
each column in the beat spectrogram represents a beat
spectrum at a given time.

If periodically repeating patterns are present in the
mixture, the beat spectrogram forms horizontal lines
that are periodically repeating vertically, correspond-
ing to the succession of peaks in the concatenated beat
spectra, unveiling the underlying periodically repeating
structure of the mixture, as shown in Fig. 15.2. If varia-
tions of periodicity happen over time in the mixture, the
horizontal lines in the beat spectrogramwill show varia-
tions in their vertical periodicity. The repeating periods
can then be identified from the beat spectrogram, for all
the time frames in the mixture spectrogram, manually
or by using an automatic period finder [15.24].

Repeating Spectrogram Modeling
In the second stage, the repeating periods are used to
model an initial repeating spectrogram by taking, for
every time frame in the mixture spectrogram, the me-
dian of the time–frequency bins at their period rate, as
shown in Fig. 15.2.

The original REPET assumes that there is a single
large period (e.g., the length of a measure) for all the
repeating elements in the audio. The adaptive REPET
considers each time frame individually (a single frame
lasts roughly 20�40ms) and tries to find similar frames
separated from the current frame by some period (e.g.,
2 s). If similar frames are found at this period (e.g.,
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Spectrogram Fig. 15.2 Overview
of adaptive REPET:
(1) computation of the
beat spectrogram and
identification of the
repeating periods (top
row); (2) filtering of
the spectrogram and
modeling of a repeating
spectrogram (middle
row); (3) derivation of the
time–frequency mask and
extraction of the repeating
background (bottom row)

similar frames at �4 s, �2 s, C2 s), the repeating spec-
trogram model for the current frame is built from those
frames. Once this is done, it moves forward to the next
time frame and tries to find a period at which the content
of the new frame repeats. This period may or may not
be the same as the previous time frame (e.g., a period of
1:9 s instead of 2 s). This lets it handle periodically re-
peating structures that vary slowly over time and also
structures that are composed of interleaved repeating
patterns of different periods (e.g., minimalist music).

Repeating Structure Extraction
In the third stage, the initial repeating spectrogram
is used to derive a refined repeating spectrogram by
taking, for every time–frequency bin, the minimum be-
tween the initial repeating spectrogram and the mixture
spectrogram. The repeating spectrogram is then used to
derive a time–frequency mask by dividing, for every
time–frequency bin, the repeating spectrogram by the
mixture spectrogram, as shown in Fig. 15.2.

The repeating background can then be obtained by
multiplying, for every time–frequency bin, the time–
frequency mask with the STFT of the mixture and
transforming the result back to the time-domain. The
nonrepeating foreground can be obtained by simply
subtracting the repeating background from the mixture.

Experiments showed that adaptive REPET can be
effectively applied to separate full-track real-world
songs (e.g., a whole studio recording) into their accom-

paniment music and singing voice, unlike the original
REPET which would only be meaningful for short ex-
cerpts [15.24].

15.1.3 REPET-SIM

REPET-SIM is a generalization of the REPET approach
that was designed to handle nonperiodically repeating
structures, i. e., when the repeating patterns happen in-
termittently or without a clear periodicity (e.g., repeated
piano stabs in a jazz combo that use the same chord
voicing, but whose rhythm varies). This is done by
using a similarity matrix to identify the repeating ele-
ments [15.25].

As with the previous two methods, the method can
be summarized in three stages (Fig. 15.3):

� Identification of the repeating elements� Modeling of a repeating spectrogram� Extraction of the repeating structure.

Repeating Element Identification
In the first stage, the signal is transformed into a spec-
trogram. To identify similarities in the mixture, the
similarity matrix [15.26] is derived from the spectro-
gram by computing the cosine similarity between any
two pairs of time frames.

If repeating elements are present in the mixture, the
similarity matrix would form regions of high and low
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Fig. 15.3
Overview of
REPET-SIM: (1)
computation of
the similarity
matrix and iden-
tification of the
repeating ele-
ments (top row);
(2) filtering of
the spectrogram
and modeling
of a repeating
spectrogram
(middle row); (3)
derivation of the
time–frequency
mask and ex-
traction of the
repeating back-
ground (bottom
row)

similarity at different time indices, unveiling the under-
lying repeating structure of the mixture, as shown in
Fig. 15.3. The repeating elements can then be identi-
fied from the similarity matrix, for all the time frames
in the mixture spectrogram, manually or by using an
automatic peak finder [15.25].

Repeating Spectrogram Modeling
In the second stage, the repeating elements are used to
model an initial repeating spectrogram by taking, for
every time frame in the mixture spectrogram, the me-
dian of the time–frequency elements at their repetition
rate, as shown in Fig. 15.3.

Compared with the other REPET methods (original
and adaptive) that look for periodic similarity between
events in the audio scene, REPET-SIM looks only for
similarity, so that it can handle nonperiodically repeat-
ing structures, i. e., when the repeating patterns happen
intermittently or without a clear periodicity.

Repeating Structure Extraction
In the third stage, the initial repeating spectrogram
is used to derive a refined repeating spectrogram by
taking, for every time–frequency bin, the minimum be-

tween the initial repeating spectrogram and the mixture
spectrogram.

The repeating spectrogram is then used to derive
a time–frequency mask by dividing, for every time–
frequency bin, the repeating spectrogram by the mixture
spectrogram, as shown in Fig. 15.3.

The repeating background can then be obtained by
multiplying, for every time–frequency bin, the time–
frequency mask with the STFT of the mixture and
transforming the result back to the time-domain. The
nonrepeating foreground can be obtained by simply
subtracting the repeating background from the mix-
ture.

Experiments showed that REPET-SIM can be ef-
fectively applied to separate full-track real-world songs
into their accompaniment music and singing voice, also
compared with the adaptive REPET [15.25]. Experi-
ments also showed that REPET-SIM can be effectively
applied to separate two-channel mixtures of one speech
source and real-world background noise into their back-
ground noise and clean speech, by applying the method
online for real-time computing [15.27].

Note that FitzGerald proposed a method very simi-
lar to REPET-SIM for music–voice separation [15.28].
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15.2 Pitch-Based Source Separation

The previous sections focused on performing source
separation using cues related to the repetitive, rhyth-
mic structure of the music audio. Another fruitful ap-
proach is to use the melodic content as embodied by
the pitches present in the audio. We now turn to this
approach.

Pitched musical instruments (e.g., brass, wood-
winds, strings, and keyboard instruments) are harmonic
sound sources. Most of the energy in a harmonic sound
is located at frequencies that are integer multiples of
the fundamental frequency (F0). For example, if a piano
plays a single note at AD 440Hz, most of the energy
in the sound will be concentrated at 440Hz, 880Hz,
1320Hz, and so on. While F0 is a physical attribute
and pitch is a perceptual attribute of a sound, for a har-
monic sound, its pitch can be reliably matched to the
F0. Therefore, we do not differentiate F0 from pitch in
our discussions here.

Pitch information helps to separate harmonic
sources from a mixture of sounds. In this section, we
present our work on pitch-based source separation of
audio mixtures composed of harmonic sound sources.
Typically, this means separation of instruments from
a music recording containing multiple concurrent in-
struments.

The first step is to estimate the pitches of these
harmonic sources from the mixture [15.29]. This is
called multipitch estimation (MPE). A frame is typ-
ically a 20�40ms time window. MPE is typically
performed in each individual time frame of the audio
mixture. The second step is to connect the pitch es-
timates in different frames to form pitch trajectories,
each of which corresponds to a source [15.30]. This is
called multipitch streaming. The last step is to extract
the harmonics from the pitch estimates of each source
and reconstruct the source signal. In the following, we
describe the three steps separately.

15.2.1 Multipitch Estimation

Multipitch estimation is the task of estimating pitches
and the number of pitches in each frame of a har-
monic sound mixture. In music information retrieval,
the number of pitches is also called polyphony. Many
methods have been proposed in the literature. Some
do not employ any preprocessing of the signal and
work with the full time domain or frequency domain
signal [15.31–40]; others reduce the signal to a more
compact representation such as employing an auditory
filterbank as the front end [15.41–44] or representing
the spectrum only with significant peaks [15.45–47].
Our method falls within the second category. More

specifically, we represent the power spectrum of the au-
dio mixture with both significant peaks and nonpeak
regions and propose a maximum likelihood method to
estimate the pitches and the polyphony from the peak–
nonpeak-region representation [15.29].

Peak Detection
For harmonic sounds, significant spectral peaks ideally
correspond to harmonics of the pitches. Therefore, de-
tection of these peaks would help us infer the pitches.
Taking one frame of the audio signal, we first perform a
Fourier transform [15.48] to turn the audio into a spec-
tral representation. The middle top panel of Fig. 15.1
shows a spectrogram. Here, each column of the image
is the spectral representation of a single time step (typ-
ically a 20�40ms window).

Spectral peaks at each time slice are detected by the
peak detector described in [15.49]. Basically, there are
two criteria that determine whether a local maximum
in the spectrum should be labeled as a peak. The first
criterion is global: the local maximum should not be
less than some threshold (e.g., 50 dB) lower than the
maximum of the spectrum across all frequencies in that
time step. The second criterion is local: the local maxi-
mum should be locally higher than a smoothed version
of the spectrum by at least some threshold (e.g., 4 dB).
Finally, the peak amplitudes and frequencies are refined
by quadratic interpolation [15.50].

We define the nonpeak region as those frequencies
that are further than a quarter tone from any of the
detected spectral peaks. Although the nonpeak region
cannot tell us where the pitches should be, it can tell us
where the pitches should not be. Pitches are not likely
to be located at frequencies whose harmonics are in the
nonpeak region.

Likelihood Function
We propose a maximum likelihood method to estimate
the set of pitches from the peak–nonpeak representa-
tion of the mixture spectrum. The likelihood function
is defined as the multiplication of the peak-region like-
lihood and the nonpeak-region likelihood, assuming
conditional independence of peaks and the nonpeak re-
gion given the pitches. The peak region likelihood is
defined as the probability of occurrence of the peaks,
given an assumed set of pitches. The nonpeak region
likelihood is defined as the probability of not observ-
ing peaks in the nonpeak region, given an assumed set
of F0s. The peak region likelihood and the nonpeak re-
gion likelihood act as a complementary pair. The former
helps find F0s that have harmonics that explain peaks,
while the latter helps avoid F0s that would predict har-
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monics where none are observed (i. e., in the nonpeak
region).

To define the peak-region likelihood, we charac-
terize each peak by its frequency and amplitude. We
further consider the probability that each detected peak
is a normal peak or a spurious peak. By normal we
mean the peak is generated by some harmonic of the
underlying pitches; and by spurious we mean the peak
is due to other factors such as side-lobes, peak detection
errors, etc.

We train the parameters of the likelihood functions
using training data with ground-truth pitches and de-
tected peaks and nonpeak regions. Two kinds of training
data are used. The first kind is a set of isolated notes
from the University of Iowa Musical Instrument Sam-
ples (MIS) dataset [15.51]. They are used to train the
parameters of the nonpeak region likelihoodmodel. The
second kind is a set of randomly mixed chords using
these isolated notes. They are used to train the parame-
ters of the peak-region likelihood model. Ground-truth
pitches are detected using the YIN [15.52] pitch track-
ing algorithm on isolated notes before mixing the iso-
lated notes together. Peaks and the nonpeak region are
detected using the proposed method.

Pitch and Polyphony Estimation
Given the set of detected peaks, frequencies within one
semitone around each peak are considered as possible
pitches (i. e., possible F0s). The underlying pitches in
this frame are thus assumed to compose a subset of
these frequencies. This helps to constrain the set of pos-
sible hypotheses to reasonable ones, given the data. The
task of the maximum likelihood estimation is thus to
find the subset of potential F0s that gives the highest
likelihood to having generated the observed peaks in
the spectrum.

It is, however, intractable to enumerate all these sub-
sets. A typical scene may have 50�100 peaks. The set
of all subsets of 100 peaks has 2100 elements and is
not tractable to fully search. We therefore propose an
iterative greedy search strategy [15.29]. We start from
an empty subset to represent the estimated pitches. At
each iteration, we add the one pitch estimate that most
increases the likelihood of the subset. This strategy
only enumerates a very small amount of subsets, as the
choice of latter pitches depends on the choice of ear-
lier pitches. However, the computational complexity is
significantly reduced from exponential to linear with re-
spect to the number of peaks.

An important question for this iterative greedy
search process isWhen should we stop? In other words,
how many pitches should we estimate in each time
frame. Ideally, we hope that the likelihood function can
take care of this problem and stop the process when the

likelihood no longer increases on adding a new pitch.
However, similar to many other maximum likelihood
estimation problems, there is an overfitting problem.
The likelihood typically increases with the number of
pitches, although the increase becomes slower. We use
a simple thresholding method to address this problem.
We do not stop the iterative process until the number
of pitches in the subset reaches a predefined maximally
possible polyphony (e.g., 9). We then calculate the like-
lihood increase from 1 pitch to the maximally possible
polyphony as the maximally possible likelihood in-
crease. We then estimate the polyphony as the number
of pitches that first surpasses 88% of the maximally
possible increase. The threshold was tuned on a train-
ing set of musical chords with polyphony from 1�6.
This simple polyphony estimation method is shown
to work well on both musical chords and real music
pieces.

Pitch Refinement
Pitches and polyphony estimated in individual frames
may contain errors that make the pitch contours non-
smooth over time. By utilizing contextual information,
it is possible to fix these errors and improve the pitch
estimation accuracy.

We use a moving average to calculate the refined
polyphony estimate with a triangular moving window
with size of 19 frames. We also build a pitch histogram
with a granularity of a semitone by counting the pitch
estimates within the window and rank the pitches by
their weighted counts according to the window. The top
several pitches are returned as the refined pitches with
equal weights, where the number is equal to the refined
polyphony estimate. In experiments we show that this
refinement step removes many insertion and deletion
pitch estimation errors and significantly increases the
estimation accuracy [15.29].

15.2.2 Multipitch Streaming

The pitches estimated in the previous section can help
us separate harmonic sources in each individual frame.
However, to separate the source signal over multiple
frames, we need to connect these pitches into streams,
each of which corresponds to a source. This is the
multipitch streaming problem. Researchers have pro-
posed using frequency–amplitude continuity to stream
pitches [15.31, 36, 53, 54], but this approach only works
within a note where the pitch does not change abruptly.
For streaming pitches into noncontinuous pitch con-
tours, we proposed the first method [15.30]. The basic
idea is to use the timbre information. Notes performed
by the same instrument have similar timbre compared
to those performed by different instruments. Therefore,



Audio Source Separation in a Musical Context 15.2 Pitch-Based Source Separation 293
Part

B
|15.2

we associate each pitch estimate with a timbre fea-
ture vector and perform clustering on the timbre feature
vectors. Ideally, each cluster will correspond to one
source and their pitches form the pitch stream of that
source.

Timbre Features
We need to calculate a timbre feature vector for each
pitch estimate in each frame and this feature should be
calculated from the mixture signal directly. In our work
we use two kinds of features. The first is called har-
monic structure and is described in [15.49]. It is defined
as a vector of relative logarithmic amplitudes of the har-
monics of a pitch estimate. The harmonics are at integer
multiples of the pitch. We use the first 50 harmonics to
create a 50-dimensional timbre vector. We choose this
dimensionality because most instruments have less than
50 prominent harmonics. For each harmonic, we use the
peak-finder from [15.49] to see if there is a significant
peak within a musical quarter-tone. If no peak is as-
sociated, the magnitude of the harmonic is set to 0 dB,
otherwise it is set to the value of the nearest peak. Then,
the representation is normalized. This feature has been
shown to be similar for notes played by the same instru-
ment within a narrow pitch range, while it is different
for different instruments.

Another feature is called the uniform discrete cep-
strum (UDC) [15.30]. It is calculated by taking the
discrete cosine transform of a sparse log-amplitude
magnitude spectrum where the nonzero elements are
the harmonics of the pitch. This feature lies in the
cepstral feature category and represents the spectral en-
velope of the harmonics of the target pitch. However,
unlike other cepstral features such as the ordinary cep-
strum or mel-frequency cepstral coefficients (MFCC),
UDC can be calculated from the mixture spectrum di-
rectly for the target source, without resorting to source
separation. UDC has been shown to outperform other
cepstral representations and the harmonic structure
feature in an instrument recognition task of musical
chords [15.55].

Constrained Clustering
Given the feature vector of each pitch estimate, we per-
form K-means clustering on the pitches, to minimize
the timbre inconsistency within each cluster. However,
results show that there are two kinds of common errors.
In Fig. 15.4b, a number of pitches are clustered into
the wrong trajectory. For example, the pitches around
Musical Instrument Digital Interface (MIDI) number
55 from 14:8 to 15:8 s form a continuous contour and
are all played by the bassoon. However, in the clus-
tering, some of them are assigned to the saxophone.
In another example, from 16:8 to 17:6 s, the K-means

14 15 16 17 18 19

a) Pitch (MIDI number)
62

60

58

56

54

14 15 16 17 18 19

b) Pitch (MIDI number)
62

60

58

56

54

14 15 16 17 18 19

c) Pitch (MIDI number)

Time (s)

62

60

58

56

54

Fig. 15.4a–c Comparison of the ground-truth pitch
streams (a), K-means clustering (K D 2) results (i. e., only
minimizing the objective function) (b) and the proposed
method’s results (i. e., considering both objective and
constraints) (c). Both the K-means and the proposed
method take the ground-truth pitches as inputs, use 50 d
harmonic structure as the timbre feature and randomly
initialize their clusterings. Each point in these figures is
a pitch. Different instruments are marked with different
markers (circles for saxophone and dots for bassoon)

clustering places two simultaneous pitches into the sax-
ophone stream. This is not reasonable as the saxophone
is a monophonic instrument.

If we know that different sources do not often per-
form the same pitch at the same time and all sources are
monophonic,we can impose two kinds of constraints on
some pairs of the pitches to improve clustering: Amust-
link constraint is imposed between two pitches that
differ less than�t in time and�f in frequency. It speci-
fies that two pitches close in both time and frequency
should be assigned to the same cluster. A cannot-
link constraint is imposed between two pitches in the
same frame. It specifies that two simultaneous pitches
should be assigned to different clusters. These must-
links and cannot-links form the set of all constraints.
Figure 15.4c shows the result obtained from our pro-
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posed algorithm, considering both the objective and
constraints.

Iterative Algorithm
The formulated constrained clustering problem has two
properties that mean existing constrained clustering al-
gorithms [15.56–58] cannot be applied: 1) constraints
are inconsistent with each other as they are imposed on
pitch estimates that contain errors; 2) almost every pitch
estimate is involved in some constraint. We therefore
propose a new algorithm. It starts from an initial parti-
tion that satisfies a subset of all the constraints. Then it
iteratively minimizes the objective function while incre-
mentally satisfying more constraints. While the details
of the algorithm can be found in [15.30], here we state
its two important properties: 1) it always converges;
2) the timbre inconsistency objective function mono-
tonically strictly decreases while the number of satisfied
constraints monotonically increases.

15.2.3 Constructing Harmonic Masks

Given the estimated pitch stream for each harmonic
source, we build a soft frequency mask around its har-
monics to separate its magnitude spectrum from the
mixture spectrum [15.59]. We then combine the sep-
arated magnitude spectrum with the phase spectrum of
the mixture signal and perform an inverse Fourier trans-
form to calculate the time-domain signal. Finally, the
overlap-add technique [15.48] is applied to concatenate
the current frame to previously separated frames.

To calculate the frequency masks for sources, we
first identify their harmonics and overlapping situations
from the estimated pitches. Each frequency bin is then
classified into three kinds according to the number of
harmonics that involve this frequency bin:

� Nonharmonic bin� Nonoverlapping harmonic bin� Overlapping harmonic bin.

For a nonharmonic bin, the masks are designed
to evenly distribute the mixture energy to all active
sources. For a nonoverlapping harmonic bin, the mix-
ture energy is solely distributed to the source whose
harmonic involves the bin.

The mask design for overlapping harmonic bins
is the most difficult. One can calculate an average
harmonic structure template for each source from the
harmonic structures of its estimated pitches and then
use the template to design the mask value at different
harmonics [15.49]. This method considers the timbre
model of the sources. A simpler method is to distribute
the mixture energy to overlapping harmonics, in the in-
verse proportion to the square of the harmonic indices.
This method does not model the timbre of sources, in-
stead, it makes a general assumption that the harmonic
amplitude decays at the same rate with respect to the
harmonic index, regardless of pitch and instrument that
produced the note. This is a very coarse assumption but
it provides a simple and relatively effective way to re-
solve overlapping harmonics.

15.3 Leveraging the Musical Score

Previous sections described source separation algo-
rithms that depend on repeating (rhythmic) content and
pitch-based (melodic) content to perform separation.
We now consider the case where one can improve
a source separation algorithm by using information
in addition to the audio recording. For many mu-
sic pieces, music scores are widely available. In this
scenario, score information can be leveraged to help
analyze and separate the audio signal. More specifi-
cally, if the audio performance is faithful to the score
and the audio and the score are aligned (i. e., synchro-
nized), the score can tell us what pitches are likely
being played at a time of the audio. This can greatly
improve the accuracy of melodic, pitch-based source
separation. We can use the score-provided pitch infor-
mation to separate the harmonic sources in the audio.
Such a system is called a score-informed source sepa-
ration system.

In this chapter, we describe our work on an online
score-informed source separation system called Sound-
prism [15.59]. Soundprism first aligns the audio with
the score, then estimates the precise pitches based on
the score-provided pitches in each frame and finally
separates audio sources in the frame. All of these op-
erations are performed in an online fashion, i. e., it
processes the audio frame-by-frame in a serial fashion,
without having the entire audio available. Figure 15.5
illustrates the system overview of Soundprism.

15.3.1 Audio-Score Alignment

The first stage of Soundprism is online audio-score
alignment, also called score following. The score fol-
lower takes a piece of polyphonic music audio and its
electronic score (e.g., MIDI) as input. It then outputs
a score position for each time frame in a sequence. We
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Fig. 15.5 System overview of
Soundprism

propose a hidden Markov process model to do so, as il-
lustrated in Fig. 15.6. The n-th time frame of the audio
is associated with a 2-dimensional hidden state vector
sn D .xn; vn/>, where xn is its score position (in beats)
and vn is its tempo (in beats per minute [BPM]). Each
audio frame is also associated with an observation vari-
able yn, which represents the magnitude spectrum of the
time frame. Our aim is to infer the current score position
xn from current and previous observations y1; : : : ; yn. To
do so, we need to define a process model to describe
how the states transition, an observation model to eval-
uate hypothesized score positions for the current audio
frame, and to find a way to do the inference in an online
fashion.

Process Model
A process model defines the transition probability from
the previous state to the current state, i. e., p.snjsn�1/.
This tells us how the score position and tempo changes

Musical score

y1 yn–1

υ1

x1

s1
υn–1
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yn
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xn
sn

Spectrogram of audio

SpectrumO
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. . . . . .
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Fig. 15.6 Illustration of the state space model for online
audio-score alignment

from one frame to another and the probability of the
change. We use two dynamic equations to define this
transition. While the detailed equations are ignored
here, the basic idea is that the change of score posi-
tion is determined by the tempo and the time interval
between two adjacent frames. Also the tempo changes
randomly around the previous tempo assuming a Gaus-
sian distribution if the score position just passed a note
onset or offset and does not change otherwise.

Note that we do not introduce randomness directly
in score position. This is to avoid disruptive changes
of score position estimates. In addition, randomness is
only introduced when the score position has just passed
a note onset or offset. This is because it is rather rare
that the performer changes tempo within a note. Sec-
ond, on the listener’s side, it is impossible to detect the
tempo change before hearing an onset or offset, even if
the performer does make a change within a note. There-
fore, changing the tempo state in the middle of a note is
not in accordance with music performance, nor does it
have evidence to estimate this change.

Observation Model
The observation model evaluates how well a hypoth-
esized state (score position and tempo) can explain the
observation, i. e., p.ynjsn/. In this work, we use the mul-
tipitch likelihood model as described in Sect. 15.2.1.
The basic idea is that if the score pitches at the hypoth-
esized score position fit well to the magnitude spectrum
of the current frame yn, then the hypothesis is good.
To calculate the multipitch likelihood, we just plug the
score pitches into the likelihood function described in
Sect. 15.2.1.

Clearly the observationmodel itself is not enough to
estimate the hidden state (e.g., the score position), as the
score may show the same pitches at different positions.
In addition, the tempo dimension of the state does not
play in the observation model. These problems, how-
ever, are addressed when the observation model and
process model work together. The process model, con-
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sidering the tempo dimension and the continuity of state
changes, would only favor hypothesized states whose
score position is close to the previous score position.
This is the key idea of the hidden Markov process
model.

Our observation model only considers informa-
tion from the current frame and could be improved if
considering information from multiple frames. Ewert
et al. [15.60] incorporate interframe features to utilize
note onset information and improve the alignment accu-
racy. Joder et al. [15.61] propose an observation model
which uses observations from multiple frames for their
conditional random field-based method. In the future
we want to explore these directions to improve our
score follower.

Inference
Given the process model and the observation model, we
want to infer the state of the current frame from current
and past observations. From a Bayesian point of view,
this means we first estimate the posterior probability
p.snjy1; : : : ; yn/, then decide its value using some cri-
terion like maximum a posteriori (MAP) or minimum
mean square error (MMSE). For hidden Markov pro-
cesses, this posterior probability at the current frame
can be updated from the previous frame. Therefore, we
can estimate the posterior probability and the hidden
states in an online fashion.

Here we use a bootstrap filter, one variant of par-
ticle filters [15.62, 63] to do the online update of the
posterior probability. The process starts from an initial-
ization ofM particles. Their score positions are all set to
the beginning of the score and their tempi are uniformly
distributed between half and twice of the score-notated
tempo. These particles represent an initialization of the
posterior probability. To update the posterior probabil-
ity when a new audio frame comes in, the particles are
first moved using the process model, i. e., the score po-
sitions and tempi of the particles are changed. Then the
observation likelihood of each particle is calculated us-
ing the observationmodel, which indicates the fitness of
the particle to the current audio frame. The likelihood is
set as the weight of the particle. These particles are then
resampled with replacement according to their weights
to generate a new set of M particles. Particles that do
not fit to the current frame are less likely to remain in

the new particle set, while particles that are a better fit to
the current frame may retain multiple copies in the new
particle set. A small random perturbation is imposed
on these copies to prevent degeneracy of the particles.
Now the new set of particles represent the new poste-
rior probability. The average value of these particles is
output as the estimate of the hidden state in the current
frame.

The set of particles is not able to represent the dis-
tribution if there are too few and is time-consuming to
update if there are too many. In our work we tried to use
100, 1000, and 10 000 particles. We find that with 100
particles, the score follower is often lost after a number
of frames. But with 1000 particles, this rarely happens
and the update is still fast enough. Therefore, 1000 par-
ticles are used in this chapter.

15.3.2 Pitch Refinement
and Source Separation

Given the aligned score position for each audio frame,
we know what instrument is playing what pitch in this
frame from the score. This is important information for
separating harmonic sources. However, the pitches pro-
vided by the score are integer MIDI pitch numbers.
MIDI pitch numbers indicate keys on the piano key-
board. Typically, MIDI 69 indicates the A aboveMiddle
C. Assuming A440-based equal temperament allows
translation from MIDI pitch to frequency in Hz. The re-
sulting frequencies are rarely equal to the real pitches
played in an audio performance. In order to extract
the harmonics of each source in the audio mixture, we
need to refine them to get accurate estimates of pitches
played in the audio.

We refine the pitches using the multipitch esti-
mation algorithm as described in Sect. 15.2.1, but
restricting the search space within a semitone of the
score-notated pitches. We also assume polyphony is
given by the score.

Given the refined pitches in each audio frame, we
use the same method as described in Sect. 15.2.3 to
construct a harmonic mask for each pitch to separate
the magnitude spectrum. Finally, we apply the inverse
Fourier transform with the phase spectrum of the mix-
ture signal and the overlap-add technique to reconstruct
the separated source signals.

15.4 Conclusions

In this chapter we have outlined how to perform au-
dio source separation on music using the cues of re-
peating musical structure and pitch content. We then

showed how one can augment the pitch-based sep-
aration algorithm by leveraging the information in
a musical score, where available. Moving forward,
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we envision a combination of the score-informed
pitch-based separation with separation based on rhyth-
mic structure. Combining these should allow separa-

tion of musical instruments from an audio mixture
in a large variety of contexts that are currently in-
tractable.
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