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Abstract. This paper concerns blind signature schemes. We focus on
two moves constructions, which imply concurrent security. There are
known efficient blind signature schemes based on the random oracle
model and on the common reference string model. However, construct-
ing two move blind signatures in the standard model is a challenging
task, as shown by the impossibility results of Fischlin et al. The recent
construction by Garg et al. (Eurocrypt’14) bypasses this result by using
complexity leveraging, but it is impractical due to the signature size
(≈ 100 kB). Fuchsbauer et al. (Crypto’15) presented a more practical
construction, but with a security argument based on interactive assump-
tions. We present a blind signature scheme that is two-move, setup-free
and comparable in terms of efficiency with the results of Fuchsbauer et al.
Its security is based on a knowledge assumption.

Keywords: Blind signature · Okamoto-Uchiyama cryptosystem ·
Knowledge assumption

1 Introduction

A blind signature scheme is a cryptographic primitive that allows a user to
receive a signature under a message in such a way, that the signer does not learn
anything about the signed message (blindness). In addition, if the user receives
a number of signatures, he should not be able to create a signature under a
different message (unforgeability).

The idea of blind signatures was first introduced by David Chaum in the
paper [6]. He used blind signatures for protecting privacy of users in his e-cash
system. Thanks to blind signatures the bank cannot trace the usage of a signed e-
cash as the structure of a note is not known. From this point on, blind signatures
have been used as building blocks in numerous cryptographic schemes, e.g. in
e-voting and anonymous credential systems.

Solutions that are provably secure in the random oracle model are frequently
accepted by researchers and the industry, and are of great value due to their effi-
ciency. However, the random oracle model does not always yield a secure real world
instantiation. In order to bypass the random oracle model, authors in [7,11,12]
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used the common reference string model in their constructions of blind signatures.
This model requires that the users perform a setup phase in which they receive the
common reference string (CRS) that must be computed by a trusted third party
in order to be useful and to ensure the security of the scheme.

Fischlin et al. have shown in [8] a negative result on the existence of three-
move blind signature schemes with a black-box reduction in the standard model.
Surprisingly, recent results [10,11] present constructions which circumvent the
limitation from [8]. To be more specific, the authors present two-move blind
signature schemes which are provably secure without ROM or CRS, however use
a non-block-box technique called complexity leveraging. Both solutions are not
really practical with signature size of hundreds of kB. A more practical solution
was proposed by Fuchsbauer et al. in [9] at CRYPTO’15. The signature size of
their construction is not greater than 1 kB. The security of the scheme is based
on interactive assumptions. However, the interactive assumption is required so
that blindness holds in the stronger malicious-signer model (where the signer’s
public key can be chosen in a malicious way). Blindness in the weaker honest-
signer model (where the signer’s public key is honestly generated), holds under
the standard Decisional Diffie-Hellman assumption.

Our Contribution. We propose a different approach to bypass the impossibil-
ity results from [8]. We combine the partially homomorphic Okamoto-Uchiyama
cryptosystem, Pedersen commitments and BB signatures in order to get an effi-
cient two-move, setup-free blind signature scheme.

Blindness of our solution is based on the semantic security of the encryption
scheme and unforgeability follows from the knowledge of factor assumption [1].
Under this assumption the Okamoto-Uchiyama cryptosystem is secret key aware.
Note that this strong extraction assumption implies non-black-box reductions.
Blindness of our scheme holds in the weaker honest-signer model. The proposed
construction is comparable, in terms of signature size and communication size,
with the one from [9]. However, since the security of our scheme is based on a
different type of assumption, we feel that it is an interesting alternative.

2 Preliminaries

Definition 1 (Bilinear Groups). Let us consider cyclic groups (G1,+),
(G2,+), (GT , ·) of prime order q. Let P1, P2 be generators of respectively G1

and G2. A mapping e : G1 ×G2 → GT is called a bilinear map (pairing), if it is
efficiently computable and the following conditions hold:

bilinearity: ∀(S, T ) ∈ G1 × G2, ∀a, b ∈ Zq, we have e(aS, bT ) = e(S, T )a·b,
non-degeneracy: e(P1, P2) �= 1 is a generator of group GT .

Definition 2 (Bilinear-group generator). A bilinear-group generator is a
polynomial-time algorithm BGGen that on input a security parameter λ returns
a bilinear group BG = (q,G1,G2,GT , e, P1, P2) such that G1 = 〈P1〉, G2 = 〈P2〉



A Short Paper on Blind Signatures from Knowledge Assumptions 537

and GT are groups of order q with log2 q = λ and e : G1 × G2 → GT is a bilin-
ear map. Similar to the authors of [9], we assume that BGGen is deterministic
(which is the case for BN-curves [2]).

2.1 Okamoto-Uchiyama Cryptosystem

In our construction we use the Okamoto-Uchiyama cryptosystem [13].

Key Generation: Choose two large primes p, q (|p| = |q| = k), and let n = p2q.
Choose g ∈ Z

∗
n randomly such that the order of gp = gp−1 mod p2 is p. Let

h = gn mod n. The public key is the tuple pkEnc = (n, g, h). The secret key
is the tuple skEnc = (p, q).

Encryption: Let m ∈ Zp be a plaintext. Select r ←$
Zn and output C = gmhr

mod n. We will simply use Enc(m) to denote a ciphertext of message m, and
Enc(m, r) to additionally identify the randomness r used.

Decryption: Compute Cp = Cp−1 mod p2, output message m = L(Cp)
L(gp)

mod p, where L(x) = x−1
p .

The Okamoto-Uchiyama cryptosystem is semantically secure. In other words,
indistinguishability under chosen plaintext attack (IND-CPA) holds for this
scheme. It is partially homomorphic:

Enc(m1, r1) · Enc(m2, r2)m3 mod n = Enc(m1 + m2 · m3, r1 + r2 · m3).

Barbosa and Farshim [1] introduced a so-called knowledge of factor assump-
tion. It is similar to the well-known knowledge of exponent assumptions [3].
However, it states that one can output an integer of the form n = p2 · q only
if one knows the primes p and q. It was shown by Barbosa and Farshim that
under the knowledge of factor assumption the Okamoto-Uchiyama cryptosystem
is secret-key-aware, i.e. it is possible to extract the secret key from an adversary
that has generated the public key for such a cryptosystem.

2.2 BB Signatures

We now recall the short signature scheme proposed by Boneh and Boyen [4].
Their signature scheme consists of the following PPT algorithms:

KeyGenBB(1λ): Select random generators P1 ∈ G1 and P2 ∈ G2, random integers
x, y ∈ Z

∗
p. Compute u = [x]P2 and v = [y]P2. The public key is the tuple

pkBB = (P1, P2, u, v). The secret key is the triple skBB = (P1, x, y).
SignBB(m, skBB): given the secret key skBB = (P1, x, y) and a message m ∈ Zp,

pick r ∈ Zp\{−x+m
y } at random and compute s = [ 1

m+x+yr ]P1. Then σ =
(s, r) is a signature of m.

VerifyBB(m,σ, pkBB): given the public key pkBB = (P1, P2, u, v), a message m,
and a signature σ = (s, r), check whether e(s, u · [m]P2 · [r]v) = e(P1, P2). If
the equality holds, then output 1 and 0 otherwise.

Under the q-SDH assumption the above signature scheme is secure against
strong existential forgery and an adaptive chosen message attack.
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2.3 Pedersen Commitments

In contrary to the standard approach, where commitments are elements of
groups, we require that the commitments are elements of a subset of Zq. In
particular, one can easily transform Pedersen commitments defined over elliptic
curves to have this property. Below we give a formal definition of this commit-
ment scheme.

Definition 3 (Pedersen Commitment with Commitments in Zq).
Pedersen commitments consist of the following algorithms:

SetupP(1λ, q):
Compute, using the security parameter 1λ, an ordinary elliptic curve
G = E(Fp) (where p < q) of a prime order qP. Let P be the generator
of G. Choose z ←$

Zq, compute Q = [z]P and output the commitment key
cpp = (G, P,Q, qP) (which is an implicit parameter to the below algorithms).

CommitP(m, r):
On input a message m ∈ ZqP and randomness r ∈ ZqP , compute Co =
(Cox, Coy) = [m]P + [r]Q, output commitment Cox and opening O = r.

OpenP(Cox,m,O):
On input a commitment Cox ∈ Fp, message m and opening O, compute
(Co∗

x, Co∗
y) = [m]P + [r]Q and if Cox = Co∗

x output m, else output ⊥.

This modified Pedersen commitment scheme is still perfectly hiding and com-
putationally binding under the DLP assumption in G. Note that it may happen
that an adversary breaks the binding property by returning (m0, r0) and (m1, r1)
such that (Cox, Coy) = [m0]P + [r0]Q and (Cox,−Coy) = [m1]P + [r1]Q. How-
ever, in such a case we can still compute the DLP of Q to base P because
m0 + z · r0 = −(m1 + z · r1), which yields z = −(m0 + m1)/(r0 + r1).

3 Blind Signatures

In this section we recall the syntax and security of blind signature schemes.

Definition 4. A blind signature scheme consists of the following PPT algo-
rithms BS = (KeyGenBS,UBS,SBS,VerifyBS) defined as follows:

KeyGenBS(1λ): on input a security parameter, this algorithm outputs a pair of
public/secret key (pkBS, skBS) of the signer.

〈UBS(m, pkBS),SBS(skBS)〉: are executed by a user and a signer. On input the
signer’s secret key skBS algorithm SBS interacts with algorithm UBS. On input
a message m, from message space M, and the signer public key pkBS, algo-
rithm UBS outputs a signature σ on m, or ⊥, if the interaction was not
successful.

VerifyBS(m,σ, pkBS): on input a message m, signature σ and the signer’s public
key pkBS, this algorithm outputs 1, if σ is a valid signature and 0 otherwise.
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Correctness. A blind signature scheme BS is correct, if for all λ ∈ N, all (pkBS,
skBS) ← KeyGenBS(1λ), all messages m ∈ M and σ ← 〈UBS(m, pkBS),SBS(skBS)〉
it holds that VerifyBS(m,σ, pkBS) = 1.

Unforgeability. A blind signature scheme BS is strongly unforgeable, if for all
PPT algorithms A having access to a signer oracle, we have:

Pr
[
(pkBS, skBS) ← KeyGenBS(1λ), (m∗

i , σ
∗
i )k+1

i=1 ← A(pkBS)〈· ,SBS(skBS)〉 :

(m∗
i , σ

∗
i ) �= (m∗

j , σ
∗
j ) for i, j ∈ {1, . . . , k + 1}, i �= j and

VerifyBS(m∗
i , σ

∗
i , pkBS) = 1 for i ∈ {1, . . . , k + 1}

]
≤ ε(λ),

where k is the number of oracle queries.

Blindness. A blind signature scheme BS is blind in the honest-signer model, if
for all PPT algorithms A with one-time access to two user oracles, we have:

Pr
[
b ←$ {0, 1}, (pkBS, skBS) ← KeyGenBS(1λ), (St1,m0,m1) ← A(pkBS, skBS),

(St2) ← A(St1)〈UBS(mb,pkBS), ·〉(1),〈UBS(m1−b,pkBS), ·〉(1) ,
Let σb and σ1−b be the resp. outputs of UBS,

If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1) = (⊥,⊥),

b∗ ← A(St2, σ0, σ1) : b = b∗
]

− 1
2 ≤ ε(λ).

4 Construction

The core idea of our construction is to use the partially homomorphic properties
of the Okamoto-Uchiyama cryptosystem to perform certain parts of the signing
algorithm of BB signatures. However, for correctness the message space of the
encryption scheme must be large, so that the computations are performed in
Z. To ensure blindness the signed value is not the actual message m, but a
perfectly-hiding commitment (Definition 3) to m. Thus, the message space of
the scheme is the same as for the commitment scheme, i.e. M = ZqP . Finally,
the signed commitment and the opening information are given as part of the
blind signature. The details of our construction are given in Scheme 1.

Theorem 1 (Correctness). Scheme 1 is correct.

Proof. Let m be the message requested by the user, Co the commitment to it and
pkEnc = (n, gn, hn) the public key of the Okamoto-Uchiyama cryptosystem. In
order to answer the request of the user, the signer chooses random b, rS ←$

Zq and
uses the homomorphic property of the cryptosystem to compute the ciphertext
cσ = (cm · cy

r · Enc((x + (rS · y)) mod q))b mod n. The ciphertext cσ, rS and
[b]P1 are send to the user. The user deciphers cσ and receives: t = b · (Co +
rS · y +((x+(rS · y)) mod q)) mod pn. However, since the Okamoto-Uchiyama



540 L. Hanzlik and K. Kluczniak

KeyGenBS(1λ): Generate bilinear group parameters BG = (q,G1,G2,GT ,
e,Q1, Q2) ← BGGen(1λ) and the commitment key cpp = (G, P,Q, qP) ←
SetupP(1λ, q). Use parameters BG to compute random elements P1 ←$

G1,
P2 ←$

G2, x ←$
Zq y ←$

Zq, the secret key skBB = (P1, x, y) and the public
key pkBB = (P1, P2, u = [x]P2, v = [y]P2) for the BB signature scheme.
Return pkBS = (1λ, cpp, pkBB) and skBS = (skBB).

U (1)
BS (m, pkBS): generate the parameters BG ← BGGen(1λ). Compute the com-
mitment (Co, oCo) = CommitP(m, rCo) for a random rCo ∈ ZqP . Generate
the Okamoto-Uchiyama cryptosystem with public key pkEnc = (n, gn, hn)
and secret key skEnc = (pn, qn) (where pn > 3 ·q2). Compute cm = Enc(Co),
choose random rU ←$

Zq and compute cr = Enc(rU ). Set ρ = (pkEnc, cm, cr)
and StBS = (ρ, (Co, oCo, rU ), skEnc). Send ρ to the signer.

SBS(ρ, skBS): Compute b ←$
Zq, cσ = (cm · cy

r · Enc((x + (rS · y)) mod q))b

mod n, for random rS ←$
Zq and send β = (cσ, rS , [b]P1) to the user.

U (2)
BS (β,StBS, pkBS): Decrypt ciphertext cσ receiving integer t = b · (Co + rS ·
y + ((x + (rS · y)) mod q)), compute s = ([t−1]([b]P1) (so s =
[ 1
Co+x+(rS+rU )·y ]P1), r = rS + rU and set σBB = (s, r). Return ⊥ if
VerifyBB(Co, σBB, pkBB) = 0 ; otherwise return σ = (Co, oCo, σBB).

VerifyBS(m,σ, pkBS): return 1 iff VerifyBB(Co, σBB, pkBB) = 1 and m =
OpenP(Co,m, oCo).

Scheme 1: Our Blind Signature Scheme

cryptosystem was generated in such a way that pn > 3 · q2, we have that t =
b·(Co+rS ·y+((x+(rS ·y)) mod q)) over Z and t = b·(Co+rS ·y+((x+(rS ·y)) in
Zq. Thus, by computing ([t−1]([b]P1), the user receives s = [ 1

Co+x+(rS+rU )·y ]P1).
It follows, that σBB = (s, r) (where r = rS+rU ) is a valid BB signature on Co and
VerifyBB(Co, σBB, pkBB) = 1. It remains to show that m = OpenP(Co,m, oCo) but
this follows from the correctness of Pedersen commitments.

Theorem 2 (Unforgeability). If BB signatures are secure against strong exis-
tential forgery under an adaptive chosen message attack, Pedersen commit-
ments from Definition 3 are computationally binding and the knowledge of factor
assumption holds, then Scheme 1 is strongly unforgeable.

Proof (Sketch). Let A be a PPT adversary that breaks the strong unforgeability
of Scheme 1. We now show that we can construct a reduction R that, using
A as a procedure, either breaks the strong existential unforgeability of the
BB signature scheme or computational binding of the Pedersen commitment
scheme. To break strong unforgeability the adversary A will return k + 1 pairs
(m∗

i , σ
∗
i )k+1

i=1 = (m∗
i , (Co∗

i , o
∗
Coi

, σ∗
BB,i))

k+1
i=1 , where k is the number of queries made
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to the signing oracle. We now distinguish two cases leading to two different
strategies followed by R and a different target of the attack:

Case 1: all commitments Co∗
1, . . . , Co∗

k+1 are distinct,
Case 2: there exist i, j ∈ {1, . . . , k + 1}, i �= j for which Co∗

i = Co∗
j .

In the first option R aims to break the unforgeability of the BB signature
scheme hoping that all commitments created by A will be different (if it turns to
be false, then the attack fails). R interacts with A simulating the environment
for the blind signature scheme; at the same time R uses a BB signing oracle.
First, R computes the commitment key cpp ← SetupP(1λ, q) but uses the public
key pkBB = (P1, P2, u = [x]P2, v = [y]P2) from the unforgeability game. It
outputs pkBS = (1λ, cpp, pkBB) as its public key for the blind signature scheme.
To perfectly simulate the signing queries for this public key, R extracts Co and
rU from the queries of A. Note that under the knowledge of factor assumption R
can extract the secret key and decrypt those values from cm and cr, respectively.
Then R queries Co to its signing oracle, receiving a BB signature (s, r) on
Co, where s = [ 1

Co+x+r·y ]P1. The reduction computes rS = r − rU , chooses
t ←$

Z3·q2 , computes s′ = [t]s and cσ = Enc(t). R answers the query by returning
(cσ, rS , s′). Note that A will receive a valid signature under Co. Finally, R returns
(Co∗

i , σ
∗
BB,i)

k+1
i=1 and breaks the strong existential unforgeability of BB signatures.

On the other hand, in order to perform an attack in Case 2, R breaks the
binding property of the Pedersen commitment scheme. The reduction uses the
commitment key cpp = (G, P,Q, qP) from the binding game but computes the
BB signature public key pkBB according to the protocol. Note that this time
the signing key is known to R and all signing queries of A can be answered
according to the protocol. However, at the end A outputs the above k + 1 pairs.
If Case 2 occurs, then there exist i, j ∈ {1, . . . , k+1}, i �= j for which Co∗

i = Co∗
j .

It follows, that by returning (m∗
i , o

∗
Coi

), (m∗
j , o

∗
Coj

) the reduction R breaks the
computational binding of the Pedersen commitment scheme.

Theorem 3 (Blindness). If the Okamoto-Uchiyama cryptosystem is indis-
tinguishable under chosen plaintext attack and the Pedersen commitment is
perfectly-hiding, then Scheme 1 is blind in the honest-signer model.

Proof (Sketch). We commence with the observation that if the adversary receives
(⊥,⊥), then due to perfect hiding property of Pedersen commitments the adver-
saries advantage in the blindness experiment is 0. To have a non-negligible advan-
tage, the adversary must receive valid signatures (σ0, σ1). Thus, we assume that
the adversary always receives valid signatures in the blindness experiment. We
will show that advantage of adversary A in winning the blindness experiment
cannot be greater than the advantage of any adversary against CPA security of
the Okamoto-Uchiyama cryptosystem. The idea is that we construct a reduc-
tion R that plays the semantic security experiment and wins it with the same
probability as A wins the blindness experiment. The steps of R are the follow-
ing. First, it returns the bits 0 and 1 as the messages to be encrypted in the
CPA experiment. As a result, R receives the public key pkEnc = (n, gn, hn) and a
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ciphertext Cb = Enc(b), for an unknown bit b. The adversary A returns m0,m1.
Using those values, the reduction computes two commitments (Co0, oCo0) =
CommitP(m0, rCo0), (Co1, oCo1) = CommitP(m1, rCo1) and two ciphertexts:
C0 = Enc(Co0 · (1− b)+Co1 · b) and C1 = Enc(Co0 · b+Co1 · (1− b)). Note that
using the partially homomorphic property of the cryptosystem, R can compute
both values. Now depending on the bit b we have C0 = Enc(Co0), C1 = Enc(Co1)
if b = 0 and C0 = Enc(Co1), C1 = Enc(Co0) if b = 1. The reduction then uses C0

as a ciphertext of the message cm in the first and C1 in the second interaction.
However, instead of using the values ρ0 and ρ1 returned by A, the reduction
computes the signatures (on Co0 and Co1) itself as it knows the signing key.
Finally, R returns the bit outputted by A.

Remark 1. Note that if we would sign the actual message m, instead of a com-
mitment to it, then there exists an adversary that can win the blindness game
with non-negligible advantage. The adversary guesses the correct bit b and com-
putes (β0, β1) in such a way that procedure U (2)

BS aborts (with the adversary
receiving (⊥,⊥)) if the b is guessed wrong and returns a valid signature if bit b
was correct. Due to space reasons we omit the details of this oracle attack and
describe it in more detail in the full version of this article.

On the other hand, Scheme 1 prevents such an attack using perfectly-hiding
commitments. In particular, if the adversary does not receive the openings to
the commitments, then its advantage cannot be greater then 0 (as both events
are equally probable). This idea is used in the first paragraph of the sketch of
the proof. Note that this idea also applies in case of blindness with selective-
failure attacks [5], where the adversary is given (ε,⊥) (or (⊥, ε)) in case one of
the execution succeeded and the second one failed.

5 Conclusions

We have proposed a fairly practical two-move blind signature without random
oracles and a common reference string. It is efficient in terms of signature size
and communication complexity. For a future work we plan to extend blindness to
the malicious-signer model, where the adversary generates the signing key. One
promising approach is to use the knowledge of exponent assumption to extract
the signer’s secret key as it only consists of one public value P1 and two discrete
logarithms of the public values X and Y to the base P2. Moreover, we plan
to extend our construction to partially blind signatures, where the signer and
the user share some information (e.g. expiration date of the document) and this
information is included in the signature.
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