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Abstract. Secure two-party computation cannot be fair against mali-
cious adversaries, unless a trusted third party (TTP) or a gradual-release
type super-constant round protocol is employed. Existing optimistic fair
two-party computation protocols with constant rounds are either too
costly to arbitrate (e.g., the TTP may need to re-do almost the whole
computation), or require the use of electronic payments. Furthermore,
most of the existing solutions were proven secure and fair via a partial
simulation, which, we show, may lead to insecurity overall. We propose
a new framework for fair and secure two-party computation that can
be applied on top of any secure two party computation protocol based
on Yao’s garbled circuits and zero-knowledge proofs. We show that our
fairness overhead is minimal, compared to all known existing work. Fur-
thermore, our protocol is fair even in terms of the work performed by
Alice and Bob. We also prove our protocol is fair and secure simultane-
ously, through one simulator, which guarantees that our fairness exten-
sions do not leak any private information. Lastly, we ensure that the
TTP never learns the inputs or outputs of the computation. Therefore,
even if the TTP becomes malicious and causes unfairness by colluding
with one party, the security of the underlying protocol is still preserved.

1 Introduction

In two-party computation (2PC), Alice and Bob intend to evaluate a shared
function with their private inputs. The computation is called secure when the
parties do not learn anything beyond what is revealed by the output of the
computation. Yao [38] introduced the concept of secure 2PC and gave an efficient
protocol; but this protocol is not secure against malicious parties who try to
learn extra information from the computation by deviating from the protocol.
Many solutions [19,26,31,37] are suggested to strengthen Yao’s protocol against
malicious adversaries.

When one considers malicious adversaries, fairness is an important problem.
A fair computation should guarantee that Alice learns the output of the function
if and only if Bob learns. This problem occurs since in the protocol one party
learns the output earlier than the other party; therefore (s)he can abort the
protocol after learning the output, before the other party learns it.
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There are two main methods of achieving fairness in 2PC: using gradual
release [23,33,34] or a trusted third party (TTP) [6,25]. The gradual release
based protocols [2,5,12] let the parties gradually (bit by bit, or piece by piece)
and verifiably reveal the result. Malicious party will have one bit (or piece)
advantage if the honest party starts to reveal the result first. Yet, if the malicious
party has more computational power, he can abort the protocol earlier and learn
the result via brute force, while the honest party cannot. In this case, fairness is
not achieved. Another drawback is the necessity of many rounds.

The TTP approach employs a third party that is trusted by both Alice and
Bob. A simple solution would be to give the inputs to the TTP, who computes
the outputs and distributes fairly. In terms of efficiency and feasibility though,
the TTP should be used in the optimistic model [1], where he gets involved
in the protocol only when there is a dispute between Alice and Bob. It is very
important to give the TTP the minimum possible workload because otherwise
the system will have a bottleneck. Another important concern is privacy . In
an optimistic solution, if there is no dispute, the TTP should not even know a
computation took place, and even with a dispute, the TTP should never learn
the inputs or outputs, or even identities. We achieve all these efficiency and
privacy requirements on the TTP.

Another problem regarding fairness in secure two-party computation is the
proof methodology. In previous works [6,23,34], fairness and security (with
abort) were proven separately, only partially simulating the protocol (partial
simulation). However, it is important to simulate everything together to ensure
that the fairness solution does not leak any information beyond the original
secure two-party computation requirement. Therefore, as in the security of the
secure two-party computation, there should be ideal/real world simulation (see
Sect. 2) that covers both fairness and security (full simulation). In other
words, the simulator should learn the output in the real world only
after it is guaranteed that both parties can learn the output in the
real world to achieve ideal and real world indistinguishability of the outputs.

Our Contributions: The main achievement of this work is an efficient
framework for making secure 2PC protocols fair, such that it guarantees fair-
ness and security together, and can work on top of secure two party compu-
tation protocols extending Yao’s garbled circuits to the malicious setting via
zero-knowledge proofs (e.g., [6,15,19]). Note that the state-of-the-art optimistic
fairness solution [6] is also based on zero-knowledge proofs.

– We use a simple-to-understand ideal world definition to achieve fairness and
security together, and prove our protocol’s security and fairness with
full simulation which means proving security and fairness together.

– We show that proving security and fairness separately via only partial simu-
lation is not necessarily secure (see Sect. 5).

– Our framework employs a trusted third party (TTP) for fairness, in the opti-
mistic model. The TTP’s load is very light: verification of signatures and
commitments, and decryption only. If there is no dispute, the TTP does not
even know a computation took place, and even with a dispute, the TTP never
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learns the inputs, outputs, or even identities of Alice and Bob. So, a semi-
honest TTP is enough in our construction to achieve fairness.

– If the TTP becomes malicious (e.g., colludes with one of the parties), it
does not violate the security of the underlying 2PC protocol; only the
fairness property of the protocol is contravened.

– Our framework is also fair about the work done by Alice and Bob, since both
of them perform the same steps in the protocol.

– The principles for fairness in our framework can be adopted by any 2PC
protocol based on Yao’s garbled circuits, employing zero knowledge proofs for
the malicious setting, thereby achieving fairness with little overhead.

– We compare our framework with related fair secure two-party computation
work and show that we achieve better efficiency and security.

Related Works: Cachin and Camenisch [6] present a state-of-the-art fair two-
party computation protocol in the optimistic model. The protocol consists of
two intertwined verifiable secure function evaluations. In the case of an unfair
situation, the honest party interacts with the TTP. The job of the TTP can
be as bad as almost repeating the whole computation, linear in the circuit
size, creating a bottleneck in the system. Lindell [25] constructs a framework
that can be adopted by any two-party functionality with the property that either
both parties receive the output, or one party receives the output while the other
receives a digitally-signed check (i.e., monetary compensation). However, one
may argue that one party obtaining the output and the other obtaining the
money may not always be considered fair, since we do not necessarily know how
valuable the output would be before the evaluation. Kılınç and Küpçü [20] con-
struct a fair multi-party computation (MPC) protocol in the optimistic model.
While 2PC can be a special case of MPC, our solutions are optimized for the
two-party case and hence are more efficient compared to applying their work to
the two-party setting (e.g., they increase input and output sizes).

A detailed analysis of more related works is in the full version of the
paper [21].

2 Definitions and Preliminaries

Yao’s Two-Party Computation Protocol: We informally review Yao’s con-
struction [38], which is secure in the presence of semi-honest adversaries. Such
adversaries follow the instructions of the protocol, but try to learn more informa-
tion. The main idea in Yao’s protocol is to compute a circuit without revealing
any information about the value of the wires, except the output wires.

The protocol starts by agreeing on a circuit that computes the desired func-
tionality. One party, called the constructor, generates two keys for every wire
except the output wires. One key represents the value 0, and the other rep-
resents the value 1. Next, the constructor prepares a table for each gate that
includes four double-encryptions with the four possible input key pairs (i.e., rep-
resenting 00, 01, 10, 11). The encrypted value is another key that represents these
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two input keys’ output (e.g., for an AND gate, if keys ka,0 and kb,1 representing
0 and 1 are used as inputs of Alice and Bob, respectively, the gate’s output key
k′, which is encrypted under ka,0 and kb,1, represents the value 0 = 0 AND 1.).
Output gates contain double-encryptions of the actual output bits (no more keys
are necessary, since the output will be learned anyway). All tables together are
called the garbled circuit.

The other party is the evaluator. The constructor and the evaluator perform
oblivious transfer (OT), where the constructor is the sender and the evaluator is
the receiver, who learns the keys that represent his own input bits. Afterward,
the constructor sends his input keys to the evaluator. The evaluator evaluates
the garbled circuit by decrypting the garbled tables in topological order, and
learns the output bits. The evaluator can decrypt one row of each gate’s table,
since he just knows one key for each wire. Since all he learns for the intermediary
values are random keys and only the constructor knows which values these keys
represent, the evaluator learns nothing more than what he can infer from the
output. The evaluator finally sends the output to the constructor, who also learns
nothing more than the output, since the evaluator did not send any intermediary
values and they used OT for the evaluator’s input keys.

Secure Two-Party Computation (2PC): Alice and Bob want to compute a
function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗. Alice has her private input x, and
Bob has his private input y. In the end of computation of f(x, y), Alice obtains
the output fa(x, y) and Bob obtains the output fb(x, y). The computation is
secure if the privacy, correctness, independence of inputs, guaranteed output
delivery, fairness [27] are achieved by the computation.

Because of the impossibility result on the fairness property without honest
majority [8], fairness in a secure computation is not considered in the 2PC liter-
ature. Security is formalized with the ideal/real simulation paradigm. For every
real world adversary, there must exist an adversary in the ideal world such that
the execution in the ideal and real worlds are indistinguishable (e.g., [14]).

Definition 1 (Ideal World). It consists of the corrupted party C, the honest
party H, and the universal trusted party U (not the TTP). The ideal protocol is:

1. U receives input x or the message abort from C, and y from H. If the
inputs are invalid or C sends the message abort, then U sends ⊥ to both of
the parties and halts.

2. Otherwise U computes f(x, y) = (fc(x, y), fh(x, y)). Then, he sends fc(x, y)
to C and fh(x, y) to H.

The outputs of the parties in an ideal execution between the honest party
H and an adversary A controlling C, where U computes f , is denoted
IDEALf,A(w)(x, y, s) where x, y are the respective inputs of C and H, w is an
auxiliary input of A, and s is the security parameter.

The standard secure two-party ideal world definition [16,27] lets the adver-
sary A to abort after learning his output but before the honest party learns her
output. Thus, proving protocols secure using the old definition would not meet
the fairness requirements.
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Definition 2 (Real World). The real world consists of, besides the parties, an
adversary A that controls one of the parties, and the TTP who is involved in the
protocol when there is unfair behavior. The pair of outputs of the honest party
and the adversary A in the real execution of the protocol π, possibly employing
the TTP, is denoted REALπ,TTP,A(w)(x, y, s), where x, y, w and s are like above.

Note that U and TTP are not related to each other. TTP is part of the real
protocol to solve the fairness problem when it is necessary, but U is not real.

Definition 3 (Fair and Secure Two-Party Computation). Let π be a prob-
abilistic polynomial time (PPT) protocol and let f be a PPT two-party function-
ality. We say that π computes f fairly and securely if for every non-uniform
PPT real world adversary A attacking π, there exists a non-uniform PPT ideal
world adversary S so that for every x, y, w ∈ {0, 1}∗, the ideal and real world
outputs are computationally indistinguishable:

{IDEALf,S(w)(x, y, s)}
s∈N

≡c {REALπ,TTP,A(w)(x, y, s)}s∈N

For optimistic protocols, to simulate the complete view of the adversary,
the simulator also needs to simulate the behavior of the TTP for the
adversary. This simulation also needs to be indistinguishable.

The closest such definition was given by Cachin and Camenisch [6]. Their
definition’s advantage is that it also considers misbehaving TTP, but their ideal
world contacts the real world TTP, mixing both worlds. Thus, it does not fit
the optimistic usage of TTP. We prefer to use the Definition 3, which is more
intuitive and general (it can even include gradual release since it is not specific to
only the protocols with TTP), to prove our proposed protocol in Sect. 4 because
we use the TTP in the optimistic model and we assume that the TTP is semi-
honest while proving the protocol.

Note that in our ideal world, the moment the adversary sends his input, U
computes the outputs and performs fair distribution. Thus, the adversary can
either abort the protocol before any party learns anything useful, or cannot
prevent fairness. This is represented in our proof with a simulator who learns
the output only when it is guaranteed that both parties can learn the
output. Also observe that, under this ideal world definition, if the simulator
learns the output in the ideal world but the adversary aborts in the
real world, that simulation would be distinguishable .

Suppose that Alice is malicious and S simulates the behavior of honest Bob
in the real world and the behavior of malicious Alice in the ideal world. Assume
S learns the output of Alice from U in order to simulate the real protocol before
it is guaranteed that in a real protocol both of the parties could receive their
outputs. Further suppose that the adversarial Alice then aborts the protocol so
that S does not receive his output in the real world. Thus, in the real world the
real Bob would have aborted, whereas the ideal Bob outputs the result of the
computation. Clearly, the ideal and real worlds are distinguishable in this case.
The proofs in [6,23,34] unfortunately fall into this pitfall.
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Definition 4 (Verifiable Escrow). An escrow is a ciphertext under the public
key of the TTP. A verifiable escrow [1,7] enables the recipient to verify, using
only the public key of TTP, that the plaintext satisfies some relation. A public
non-malleable label can be attached to a verifiable escrow [36].

Communication Model: We do not need private and authenticated channels
between the TTP and the parties. When there is dispute between the two parties,
the TTP resolves the conflict atomically, which means the TTP interacts with
either Alice or Bob at a given time, until that resolution is complete. We assume
that the adversary cannot prevent the honest party from reaching the TTP
eventually. We do not assume anything else about the communication model;
our protocol’s needs are minimal.

3 Our Solution

Failed Approaches and Major Issues: It looks like adding fairness to a 2PC
protocol based on gabled circuits and zero knowledge using TTP does not need
a lot of work. However, if we care efficiency of the protocol and resolution pro-
tocols with the TTP, it is challenging. Consider a very simple solution regarding
constructor C, evaluator E, and the TTP. Assume that C constructs the circuit
such that the output is not revealed directly, but instead the output of the cir-
cuit is an encrypted version of the real output, and C knows the key. Thus, after
evaluation, E will learn this encrypted output, and C and E need to perform a
fair exchange of this encrypted output and the key. This approach increases the
circuit size, obviously. Besides, when a dispute occurs and E goes to the TTP
for resolution, she cannot efficiently prove to the TTP that she evaluated C’s
garbled circuit correctly. Indeed, in the solution of Cachin and Camenisch [6],
the resolution may require work proportional to the circuit size.

Alternatively, instead of encrypting the output, C constructs a garbled circuit
where the outputs are encoded with some random values (like an encryption but
without increasing the circuit size) in a secret table. So, in the end of the circuit
evaluation, E learns some random values such that their corresponding bits are
only known by C. Then, they can fairly exchange the table and the output.
However, it can be hard to ensure that E sends the correct table and construct
proper resolution protocols with TTP.

Because of these issues, we employ the dual-constructor methodology [29,30],
where both C and E construct circuits that output random numbers.

Our Solution: We show how to efficiently add fairness to any zero knowledge
based secure 2PC protocol Γ using our framework. The key points are:

– Alice and Bob employ dual garbling technique [29], where Alice and Bob
both act as the constructor and the evaluator, with almost equal responsibil-
ities. The circuit constructed by Alice only outputs Alice’s output
and the circuit constructed by Bob outputs Bob’s output.
The garbled circuit is prepared as the underlying protocol Γ with minor differ-
ences in the construction of the input and output gates. The modification on
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the input gates allow us to check input equality between the two circuits.
Modifications on the output gates are to hide the actual output.

– Alice and Bob exchange the garbled circuits and evaluate each others’ circuits.
In the end of evaluation, Alice learns the output labels of Bob and Bob
learns the output labels of Alice, both in a hidden way. Therefore,
they need to exchange the outputs fairly after this point.

– Before fair exchange, they execute input equality test protocol to see if
both of them used the same inputs for the both circuits. It is ok to abort if
the test fails, because they test for input equality, not output.

– If the equality test is successful, they verifiably escrow the other party’s
output labels. This is essentially a guarantee for the other party that if this
party does not send the output labels later on, (s)he can contact the TTP to
get them.

– Now, they exchange output labels so that each party can individually translate
them back to the actual outputs, since they come from circuits that they
themselves created. If there is a dispute about the fairness, they go to the
TTP for the resolution.

Overview of the resolution protocols is the following:

Alice/Bob Resolve: We describe the resolution for Bob, though it is com-
pletely symmetric for Alice. Remember that Bob is equipped with a verifiable
escrow. But, for the TTP to decrypt it for him, Bob must prove that he acted
properly. He provides output labels of Alice, and proves that they are evaluated
from Alice’s garbled circuit. If so, the TTP provides the decryption for Bob, who
can use it to translate back to his output bits.

Alice Abort: Alice may try to abort the protocol and block resolution attempts
with the TTP, should she not receive Bob’s verifiable escrow. When she contacts
the TTP, if Bob has resolved before, she obtains her output labels from the
TTP. Otherwise, the TTP marks the protocol as aborted, and would deny any
resolution attempt by Alice or Bob.

Note that the TTP only sees random output labels, but not their trans-
lation tables. Furthermore, since each circuit only evaluates to one party’s out-
put, even if the TTP colludes with the malicious party and provides the other
party’s output labels, those are still meaningless without the corresponding bits.
Thus, a malicious TTP may only break fairness, but not security.

Why Target Zero-Knowledge Proof based Garbled Circuit Pro-
tocols? We claimed that our framework can be applied on top of any zero-
knowledge proof based garbled circuit protocols. There are two reasons for this:

1. As explained above, parties commit to output labels, for enabling efficient
resolutions with the TTP (one of the major problems in previous work). They
must prove to each other that they committed to the correct labels as in the
garbled circuits. If the underlying protocol, for example, encrypts the garbled
tables using AES, then such a proof cannot be efficiently done (without cut-
and-choose), whereas if the underlying encryption scheme is number-theoretic
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(such as simplified Camenisch-Shoup [7,19]), then using sigma protocols [10],
the correctness proofs may be done very efficiently.

2. Item 1 above leaves out the cut-and-choose way of proving. The problem is
that, if cut-and-choose is employed, then there will be multiple circuits, rather
than one. In our solution, parties create verifiable escrows, and the TTP may
need to decrypt them. Verifiable escrow is a primitive that inherently uses
zero-knowledge proofs. It is unclear how to combine the verifiable escrow
idea with cut-and-choose, where multiple circuits exist, especially when the
TTP needs to be able to verify and decrypt them.

In essence, one may think of our solution as a framework that can be applied
on top of 2PC schemes that employ a single circuit, and use number-theoretic
constructions (of encryption) for efficiency.

4 Making Secure 2PC Fair (Full Protocol)

Notation: Alice and Bob will evaluate a function f(x, y) = (fa(x, y), fb(x, y)),
where Alice has an input x and gets an output fa(x, y), and Bob has an input y
and gets an output fb(x, y), f : {0, 1}� × {0, 1}� → {0, 1}� × {0, 1}�, where � is a
positive integer. For simplicity, we assume Alice and Bob have �-bit inputs and
outputs each. Alice’s input bits are x = {x1, x2, ..., x�} and Bob’s input bits are
y = {y1, y2, ..., y�}. They use a 2PC protocol Γ for the secure computation.

We use C to represent circuit. Ca outputs the Alice’s output and Cb outputs
Bob’s output. Similarly, the garbled circuit that is generated by Alice is GCa

and the one generated by Bob is GCb. We use apostrophe (′) for the values that
are generated by Bob. When we say Alice’s input wires, it means that Alice
provides the input for these wires. Similarly, Alice’s output wires correspond to
Alice’s output. Bob’s input and output wires have the matching meaning. An
Input Gate is a gate that has an input wire of Alice or Bob. Similarly, an Output
Gate is a gate that has a wire of Alice’s or Bob’s output.

Ek shows an encryption with the key k. Therefore, Ek1Ek2(m1,m2) means
that m1 and m2 are both encrypted by the two keys k1 and k2.

Any commitments that have efficient zero knowledge proofs can be used in
this framework. To exemplify the protocol we notate commitments as in Fujisaki-
Okamoto commitments [11,13] and Pedersen commitments [32].

We give a review of the random numbers that are used for fairness in Table 1.
The protocol steps are described in detail below (and in Fig. 1).

The TTP generates the group G1 that is used in Γ and picks generators
g, h ∈ G1, secret and public key pair skTTP , pkTTP for the verifiable escrow
scheme. Additionally, he chooses a cyclic group G2 whose order is a large prime
q and randomly selects its generators g0, g1, g2 (for the equality test). He also
picks a one-way function φ(). Then, he announces his public key PKTTP =
[pkTTP , (G1, g, h), (G2, q, g0, g1, g2), φ()].

Both Alice and Bob know PKTTP and agree on a circuit C that computes
f(x, y) and the protocol identifier id before the protocol begins.
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Fig. 1. Our framework to make a S2PC protocol fair. GenGC generates garbled circuit.
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Table 1. The review of the random numbers used for fairness in our framework.

Name Form Relation

Equality-test constants e = gρ There are four kinds of them, where each
represents 0 or 1 and right or left.

Input-gate randoms u Each input gate has them. They are private; just
known by the constructors.

Equality-test numbers m = eu For each input-gate random u, there are four
kinds of them, where each represents 0 or 1 and
right or left according to e.

Output labels (δ, ε) They are randomly chosen pairs, each
representing a row of the garbled output gates

Preparation Phase:

1. Alice and Bob generate private-public key pairs (ska, vka) and (skb, vkb),
respectively, for an unforgeable signature scheme. They exchange the signa-
ture verification keys vka and vkb.
They jointly generate four equality-test constants ea,0, ea,1, eb,0 and eb,1 as
described [21]. Equality test constants represent 0 and 1 for the left (a) and
the right (b) wires of the input gates.

2. Alice and Bob separately generate the random numbers and commitments
for the input and the output gates as shown in Fig. 1.
The computations of Alice and Bob for each input gate i are the following:
input-gate numbers (ui resp. u′

i), the equality-test numbers ({t ∈ {0, 1}, z ∈
{a, b} : mzi,t = eui

z,t} resp. {t ∈ {0, 1}, z ∈ {a, b} : m′
zi,t = e

u′
i

z,t}), and the
commitments ({t ∈ {0, 1} : Dbi,t = mbi,th

ri,t} resp. {t ∈ {0, 1} : D′
ai,t =

m′
ai,th

r′
i,t}). They are used in the input equality test to show the same inputs

are used for both garbled circuits.
They generate output labels ((δj , εj) resp. (δ′

j , ε
′
j)) for each row of garbled-

output gate j and their commitments (Sj resp.S′
j) for the output gates. The

sets of the commitments are Sa = {Sj} resp. Sb = {S′
j}. The output labels are

as unique identifiers for the rows of the constructor’s garbled-output gates.
Only the constructor knows which row they represent, which means only the
constructor knows which output bit they correspond to. This makes sure that
the evaluator cannot learn the output directly.

S2PC Phase:

1. [Garbled Circuits:] Alice and Bob construct their garbled circuits by fol-
lowing the rules of the underlying Γ protocol with little differences on the
garbled tables of the input and the output gates.
Input Gates: The difference is that each garbled-table row of an input gate
i includes one more encryption besides the encryption of the output key. It is
the encryption of either r′

i,0 or r′
i,1 representing the input of 0 and 1 for the
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wire of Alice in GCb and either ri,0, or ri,1 representing the input of 0 and 1
for the wire of the Bob in GCa. See Table 2 for the details.
Remark: Alice and Bob just encrypt the partial decommitments of Dbi,0,Dbi,1

and D′
ai,tD

′
ai,1, respectively because they only need to learn equality-test num-

bers (m values) that represent their input bits. They do not want to reveal
input-gate numbers (u values) since it causes the evaluator to learn the con-
structor’s input.
Remark: Note that there can be just one input wire of a gate (e.g., NOT
gate for negation). In this case, there will be two equality-test numbers which
represent 0 and 1 for this gate. Alternatively, they can agree to construct a
circuit using only NAND gates [6].
Output Gates: Each row of the garbled output gate includes the encryption
of corresponding output labels instead of encryption of real output bits (see
Table 2). This is to hide the actual output from the evaluator.

2. [Exchange:] They exchange the constructed garbled tables along with
the commitments, the signature of all commitments of the output labels
(signSa

resp. signSb
) and equality-test numbers that represents their input bits

as in Fig. 1.
3. [Check Correctness:] They prove to each other that they performed the

input and the output gates’ construction honestly, via efficient zero-knowledge
proofs (see the full version of the paper [21]):
– Proof of Input Gates to prove that the garbled input gates contain the

correct decommitment values. This is basically done in three steps:
Firstly, prover proves that (s)he knows the decommitmets of all commit-
ments denoted by D [7]. Secondly, prover proves that each commitment
pair Dz,0 and Dz,1 commits the same value under the different bases ez,0

and ez,1 respectively. If the prover is Alice then z = bi, if the prover is
Bob then z = ai. Lastly, the prover proves that each input-garbled table
includes the double-encryption of partial decommitment of Dz,0 and Dz,1.

– Proof of Output Gates to prove that the garbled output gates encrypt the
committed output labels.

If there is a problem in the proofs, they abort. Otherwise, they continue.
4. [S2PC:] Alice and Bob execute Γ , and evaluate the garbled circuit they were

given. While executing Γ , Alice and Bob prove that they correctly construct
their garbled circuits that evaluate f by zero-knowledge proofs described in
the protocol Γ . If all zero-knowledge proofs are verified, at the end of the
evaluation, Alice learns the set Ob representing fb, Bob learns the set Oa

representing fa, each including � output labels. Besides, each party learns the
set that includes equality-test numbers that represents her/his input (from
the decryption of input-garbled gates). Otherwise, they abort.

Equality Phase: This phase is necessary to test whether or not Alice and Bob
used the same input bits for both circuit evaluations. We use unfair version of
equality test by Boudot et al. [3]; the unfair version is sufficient for our purpose.

Alice and Bob want to check, if x∗
i = xi and y∗

i = yi for the encryptions
Ek′

ai,xi
(Ek′

bi,yi
(k′)) and Ekai,x

∗
i
(Ekbi,y

∗
i
(k)) in each garbled input gate i, such
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Table 2. The garbled Input and Output Gate for an OR gate constructed by Alice.
Encryption scheme is same as the underlying protocol Γ .

Row Garbled input gate Garbled output gate

00 Ekai,0
Ekbi,0

(ri,0, k0) Eka,0Ekb,0(δj , εj)

01 Ekai,0
Ekbi,1

(ri,1, k1) Eka,0Ekb,1(δj+1, εj+1)

10 Ekai,1
Ekbi,0

(ri,0, k1) Eka,1Ekb,0(δj+2, εj+2)

11 Ekai,1
Ekbi,1

(ri,1, k1) Eka,1Ekb,1(δj+3, εj+3)

that the first one was decrypted by Alice and the second one was decrypted
by Bob. For this purpose, Alice and Bob will use the equality-test numbers
{mzi,t,m

′
zi,t}z∈{a,b},t∈{0,1}.

Assume Alice decrypted a row for an input gate i and learned equality-test
numbers m′

ai,xi
and she knows m′

bi,yi
since Bob sent his equality-test numbers

that represents his input in the exchange step of the S2PC phase. Also assume
Bob decrypted the corresponding garbled gate and similarly learned mbi,y∗

i
and

he knows mai,x∗
i

since Alice sent it in the exchange step of the S2PC phase. If
they both used consistent input bits for both GCa and GCb, then we expect to
see that the following equation is satisfied:

(m′
ai,xi

m′
bi,yi

)ui = (maix∗
i
mbi,y∗

i
)u′

i (1)

The left hand side of the Eq. (1) is composed of values Alice knows since she
learned m′ values and generated ui herself. Similarly, the right hand side values
are known by Bob since he learned m values and generated u′

i himself. This
equality should hold if x∗

i = xi and y∗
i = yi since m′

ai,x∗
i

= e
u′
i

a,x∗
i
, m′

bi,y∗
i

= e
u′
i

b,y∗
i

and mai,xi
= eui

a,xi
, mbi,yi

= eui

b,yi
.

After computing their side locally in Eq. (1) for each input gate, they con-
catenate the results in order to hash them, where the output range of the hash
function is Zq. Then Alice and Bob execute Proof of Equality protocol in [3]
with the hashes.

If the equality test succeeds, they continue with the next phase.
Remark: Remember that the constructor did not prove that (s)he added equality-
test numbers to the correct row of the encryption table. Suppose that the con-
structor encrypted the equality-test number that represents 0 where the eval-
uator’s encryption key represents 1. In this case, it is sure that the equality
test will fail, but the important point is that the constructor cannot understand
which row is decrypted by the evaluator, and thus does not learn any informa-
tion because he cannot cheat just in one row. If he cheats in one row, he has to
change one of the other rows as well, as otherwise he fails the “Proof of Input
Gates”. Thus, even if the equality test fails, the evaluator might have decrypted
any one of the four possibilities for the gate, and thus might have used any input
bit. This also means that the equality test can be simulated, and hence reveals
nothing about the input.
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Note that there are some techniques to check input equality in the literature
as in [23,26,28–30,35] but they are based on cut-and-choose. Since the underlying
protocol Γ does not use cut-and-choose to guarantee the security, the equality
test we used is more suitable here.

Fair Exchange Phase: In this phase, Alice and Bob exchange the outputs.
Remember that the outputs are indeed randomized, and only the constructor
knows their meaning. Thus, if they do not perform this fair exchange, no party
learns any information about the real output (unless they resolve with the TTP,
in which case they both learn their outputs).

1. Alice first picks a value ω from the domain of the one way-function φ and
computes φ(ω). Next, she creates a verifiable escrow Va including Ob with
non-malleable label (�||vka||φ(ε)||id) as in Fig. 1. Finally, she signs Va with
ska and sends the signature signVa

and Va.

With the verifiable escrow, she proves that there are � different decommit-
ments in the escrow that correspond to � of the commitments in Sb [4,9,18].
Since Alice can just decrypt one row for every gate and so she only has one
pair of keys for each gate, this proof shows that Alice decrypted Bob’s garbled
output tables correctly, and the verifiable escrow has the evaluation result of
GCb. If Va or signVa

fails to verify, or if the label is not correct, then Bob
aborts. Otherwise, Bob continues with the next step.

Remark: ω is used in the Alice Abort protocol with the TTP to prevent Bob
from claiming to be Alice and aborting after Bob Resolve. Since only Alice
knows ε that is a pre-image of φ(ε), Bob cannot convince the TTP.

2. Bob creates a verifiable escrow Vb including Oa with non-malleable label the
same as Alice created. He signs Vb with skb and sends the signature signVb

and Vb.

With the verifiable escrow, he proves that there are � different decommitments
in the escrow that correspond to � of the commitments in Sa [4,9,18]. If Va

or signVa
fails to verify, or if the label is not correct, then Alice runs “Alice

Abort” protocol with the TTP. Otherwise, Alice continues with the next step.
3. Alice sends Ob to Bob.
4. Bob checks if the output labels in Ob are correct. The output labels are correct

if � of them are the pairs that are generated by Bob. If they are correct, then
he sends Oa. If at least one of the output labels is not correct, then he does
“Bob Resolve” with the TTP.

5. Alice checks if the output labels in Oa are correct. If they are not correct,
then she does “Alice Resolve” with the TTP. Otherwise the protocol ends.

Alice and Bob Resolve (See Fig. 2): We explain Bob Resolve below. Alice
Resolve is the same where the verifiable escrow, the signatures and O are Bob’s
values.

Bob contacts with the TTP and sends the values Va, signVa
,Sa, signSa

,Oa.
He sends signSa

to prove that Sa is generated by the same party who generates
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Va. The TTP checks if all signatures are correct and the decommitments in
Oa correspond to � of the commitments in Sa. If there is no problem, then the
TTP decrypts Va with skTTP and sends the values inside Va to Bob. Since Bob
knows the meaning of the output labels of the garbled circuit he constructed, he
effectively learns his output. The TTP remembers Alice’s output Oa, given and
proven by Bob, in his database.

Alice Abort (See Fig. 3): When Alice contacts the TTP for abort, she sends
Va and signa, together with ε. The TTP checks that the signature is valid and
φ(ε) matches the label of Va. If Bob did resolve before, the TTP sends Oa as in
Fig. 3 so that Alice can also learn her output. Otherwise, the protocol is aborted
and the TTP will not honor resolution requests for this exchange.

Remark that Alice and Bob do not re-do the zero-knowledge proofs in the
S2PC phase to the TTP because signVa

and signVb
show that both Alice and

Bob execute everything correctly until the end of Equality Phase.

Fig. 2. X resolve where X ∈ {Alice,
Bob}. If X is Alice, x̄ is b, otherwise
x̄ is a.

Fig. 3. Alice Abort

Theorem 1 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be any probabilistic
polynomial time (PPT) two-party functionality. The protocol above for comput-
ing f is secure and fair according to Definition 3, assuming that the TTP is
semi-honest, the subprotocols that are stated in the protocol are all secure (sound
and zero-knowledge), all commitments are hiding and binding [11,13], the signa-
ture scheme used is unforgeable [17], and the Γ is a 2PC protocol secure against
malicious adversaries based on Yao’s garbled circuits and zero knowledge proofs.

Proof Sketch. A full proof exists in the full version of the paper [21]. The
important point in our proof is that after learning the input of the adversary in
the real world, the simulator does not learn the output of the adversary from
the ideal world universal party U until it is guaranteed that both parties can
obtain their outputs.

Malicious Alice: Simulator SB creates a key pair on behalf of the TTP and
shares the public key with Alice. SB prepares the circuit as the simulator of Γ
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with a random input y′ and simulates all the proofs, including the equality test.
SB extracts the input x of Alice as in the simulation of Γ . Here, he does not
send the input of Alice directly to the ideal world trusted party U. He waits
until it is guaranteed that Bob can also obtain his input. If, before Va is received
properly, the values Alice sends are not correct or equality test is not successful,
he sends abort to U. If SB receives the correct Va, he sends Alice’s input to
U and receives Alice’s output. At this point, he sends Vb to Alice. Afterward, if
he does not receive his correct output from Alice, he simulates Bob Resolve by
decrypting Va. If Alice performs “Alice Abort”, then there are two options: if
SB already obtained the output from U, SB sends output labels of Alice so that
she resolves her output; otherwise, SB sends abort to U.

Malicious Bob: Simulator SA behaves almost the same as SB . Since SA does
not know the actual output of Bob, she puts random values in V′

a and sends it
to Bob, simulating the proof. Then SA waits for Vb: If Bob does not send valid
values but performs “Bob Resolve”, then SA gives Bob’s input that she extracted
to U and learns Bob’s output so that SA is able to simulate “Bob Resolve”. If
Bob does not send valid values and does not perform “Bob Resolve”, then SA

sends abort to U (simulating “Alice Abort”). If Bob sends Vb, then SA gives
Bob’s input to U and U sends back Bob’s output, and finally SA sends to Bob
the correct output labels accordingly.

TTP Analysis: As we claim, a semi-honest TTP is sufficient in our protocol
because the TTP only learns output labels where their meaning is only known
by the circuit constructors (Alice or Bob), and a signature. In addition, (s)he
does not receive anything else related to the input of Alice or Bob. Therefore,
if the TTP follows the protocol but also tries to learn extra information about
the parties (input or output), (s)he cannot succeed.

Even if the TTP is malicious, (s)he can only break the fairness property of the
protocol. A malicious TTP can collude with Alice or Bob. As seen in Theorem
1, the protocol preserves the privacy if the TTP is malicious since the TTP does
not have more power than Alice or Bob. He only knows his secret key which is
only used in the Fair Exchange phase.

Malicious TTP also cannot break the correctness property. In the honest Bob
case (same in honest Alice case), he cannot receive wrong output since Alice can
only learn one output label per gate, so (s)he can use only them. It means TTP
cannot give different ones (because (s)he only knows those that Alice provides)
to Bob. Thus, the TTP cannot break the correctness property.

5 Proving Security and Fairness Together

In this section we show the importance of proving with full simulation according
to Definition 3. First, we define what we mean by partial simulation more for-
mally and then we give contrived versions of several protocols ([6,22,34]) includ-
ing ours that are obviously insecure, but can be proven fair and secure with
partial simulation while it cannot be proven fair and secure with full simulation.
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Definition 5 (Partial Simulation). Let f, h, g be the PPT functionalities
where f = g ◦ h, h(x, y) = (hb, ha) and g(hb, ha) = (fa, fb) and let πf , πh, πg

be the PPT protocols to compute f, h, g, respectively where the first input and
output of a functionality correspond to one party (Alice) and the second input
and output of a functionality correspond to other party (Bob). The partial sim-
ulation paradigm says that πf computes f fairly and securely if there exists a
PPT protocol πh that is secure under simulation with abort [14] and there exists
a PPT protocol πg which achieves fairness [1,24].

Almost all previous works (See Table 3) prove their fairness and security
with partial simulation: prove security with the unfair simulation paradigm (with
abort) (corresponding to proving πh to be a secure 2PC protocol with abort), and
argue fairness (of the πg part, either using TTP or gradual release) separately.
This is risky. Consider the following three contrived protocols where Alice and
Bob want to compute functionality f = (fa, fb) fairly and securely:

– A modification on our protocol is that the TTP gives Alice’s output along
with the input of Bob whenever Alice contacts for resolution or abort, if Bob
have done “Bob Resolve” before (honest Bob is required to provide his input
to the TTP in “Bob Resolve”). Here, h = (ha, hb) is a functionality where
ha = Oa and hb = Ob (πh is our protocol until the fair exchange phase,
where parties only obtain random output labels), and g is a functionality
where g(Oa,Ob) = (fx, fy) (πg is the fair exchange phase of our protocol with
new “Alice Abort” and “Alice Resolve”.). It is very easy to simulate πh with
abort, since parties essentially learn nothing. Also, it is easy to argue about
fairness of this πg without simulation, since at the end of resolutions, either
both parties obtain their outputs or no one learns anything useful.

– The protocol which is the same as Cachin and Camenisch’s protocol [6] where
the only difference is that the TTP gives the other parties’ inputs to the party
in the resolution protocols (with similar reasoning as above).

– The modified versions of Kiraz and Schoenmakers [23] or Ruan et. al [34]
protocols where the only difference is Alice sends her input to Bob and vice
versa at the end of the gradual release.

In [23,34] partial simulation is provided only until the beginning of the grad-
ual release phase, then fairness is argued via the fairness of the gradual release.
Similarly, in [6] the partial simulation is provided for a functionality computa-
tion, then the fairness is discussed based on the parties’ and TTP’s behaviors.
Using the same type of reasoning, their and our contrived versions can be proven
fair and secure via partial simulation, and fairness can be argued since at the
end of the gradual release or TTP resolutions, either both parties obtain their
outputs or no one does. But, it is clear that the contrived protocols leak the
inputs to the other party, becoming insecure. Observe that they can never be
fully simulated, because the simulator will not have access to the honest party’s
input and so it cannot provide indistinguishability of ideal and real worlds.

Consequently, it is risky to argue fairness separate from the ideal/real world
simulation. We do not claim that previous protocols [6,23,34] have security prob-
lems, but we want to emphasize that the partial simulation technique does not
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cover all security aspects of a protocol and should not be preferred anymore.
Therefore, they should be proven with the full simulation technique.

Importance of the Timing of the Simulator contacting the Universal
Trusted Party: The proofs of the protocols [6,23,34] are also problematic since
the simulator learns the output of the computation from U before it is guaranteed
that the other party can also obtain the output. This behavior of the simulator
violates the indistinguishibility of the ideal and real worlds because if the simu-
lator does not receive his/her output in the real world while the parties already
obtained the outputs in the ideal world, then the outputs in ideal and real worlds
are distinguishable, and the simulation fails. Therefore, the simulator must
obtain the output from the universal trusted party in the ideal world,
only after it is guaranteed that both parties can obtain the output in
the real world.

6 Conclusion

Table 3 presents a comparison with the most related works.

Table 3. Comparison of our protocol with previous works. CC denotes cut-and-choose,
ZK denotes efficient zero-knowledge proofs of knowledge, GR denotes gradual release,
OFE denotes efficient optimistic fair exchange, superscript I denotes inefficient TTP,
superscript P denotes necessity of using a payment system, NS denotes no ideal-real
simulation proof given, PS indicates partial simulation proof, and finally FS indicates
full simulation proof including fairness. A check mark � is put for easily identifying
better techniques.

[33] [34] [23] [25] [6] Ours

Malicious behavior CC CC CC CC/ZK ZK ZK

Fairness GR GR GR OFEP OFEI OFE �
Proof technique NS PS PS FS � PS FS �

� All our overhead (TTP, Alice, Bob) are dependent only on the input and
output size, and independent of the circuit size, in contrast to [6].

� We require a constant number of rounds for fairness, contrary to gradual
release based solutions [23,33,34].

� We do not necessitate a payment framework. Our fairness definition is that
either both parties obtain the output, or no one does, as opposed to [25].

� Even if the TTP becomes malicious and colludes with one participant, he
cannot violate the security of the protocol. On the other hand, in [25],
while the Bank cannot violate 2PC security, it can maliciously deal with the
balances, possibly causing a lot of headache.
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� Finally, our protocol is proven secure in the ideal/real simulation paradigm
(not in [33]) with output indistinguishability (not in [6,23,34]), and by
proving fairness and security simultaneously via a full simulation proof
(none except [25]).
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3. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the social-
ist millionaires’ problem. Discrete Appl. Math. 1–2, 23–36 (2001)

4. Bresson, E., Stern, J.: Proofs of knowledge for non-monotone discrete-log formulae
and applications. In: Chan, A.H., Gligor, V. (eds.) ISC 2002. LNCS, vol. 2433, pp.
272–288. Springer, Heidelberg (2002). doi:10.1007/3-540-45811-5 21

5. Brickell, E.F., Chaum, D., Damg̊ard, I.B., Graaf, J.: Gradual and verifiable release
of a secret (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, pp. 156–166. Springer, Heidelberg (1988). doi:10.1007/3-540-48184-2 11

6. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000). doi:10.
1007/3-540-44598-6 6

7. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 8

8. R. Cleve: Limits on the security of coin flips when half the processors are faulty.
In: STOC (1986)

9. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). doi:10.1007/
3-540-48658-5 19

10. Damg̊ard, I.: On Sigma protocols. http://www.daimi.au.dk/∼ivan/Sigma.pdf
11. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based

on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 8

12. Damg̊ard, I.B.: Practical and provably secure release of a secret and exchange of
signatures. J. Cryptology 8, 201–222 (1995)

13. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). doi:10.1007/BFb0052225

14. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York (2004)

15. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38, 728 (1991)

http://dx.doi.org/10.1007/3-540-44598-6_15
http://dx.doi.org/10.1007/3-540-44598-6_15
http://dx.doi.org/10.1007/3-540-45811-5_21
http://dx.doi.org/10.1007/3-540-48184-2_11
http://dx.doi.org/10.1007/3-540-44598-6_6
http://dx.doi.org/10.1007/3-540-44598-6_6
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-48658-5_19
http://www.daimi.au.dk/~ivan/Sigma.pdf
http://dx.doi.org/10.1007/3-540-36178-2_8
http://dx.doi.org/10.1007/BFb0052225


206 H. Kılınç and A. Küpçü
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