
Jens Grossklags · Bart Preneel (Eds.)

 123

LN
CS

 9
60

3

20th International Conference, FC 2016
Christ Church, Barbados, February 22–26, 2016
Revised Selected Papers

Financial Cryptography
and Data Security

Lecture Notes in Computer Science 9603

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Jens Grossklags • Bart Preneel (Eds.)

Financial Cryptography
and Data Security
20th International Conference, FC 2016
Christ Church, Barbados, February 22–26, 2016
Revised Selected Papers

123

Editors
Jens Grossklags
Department of Informatics
Technical University Munich
Garching
Germany

Bart Preneel
Department of Electrical Engineering-ESAT
KU Leuven
Leuven
Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-54969-8 ISBN 978-3-662-54970-4 (eBook)
DOI 10.1007/978-3-662-54970-4

Library of Congress Control Number: 2017940629

LNCS Sublibrary: SL4 – Security and Cryptology

© International Financial Cryptography Association 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

FC 2016, the 20th International Conference on Financial Cryptography and Data
Security, was held during February 22–26, 2016, at the Accra Beach Hotel and Spa
Barbados. This edition was a special 20th anniversary edition featuring some extra
items in the program.

We received 137 paper submissions, out of which 36 were accepted, nine as short
papers and 27 as full papers, resulting in an acceptance rate of 26%. These proceedings
contain revised versions of all the papers. The 20th anniversary keynotes were deliv-
ered by privacy pioneer David Chaum, who spoke on “Privategrity” and Turing award
winner Adi Shamir who shared with the audience his perspective on “The Past, Present
and Future of Financial Cryptography.” The program was complemented by a special
anniversary panel entitled “The Promises and Pitfalls of Distributed Consensus Sys-
tems: From Contract Signing to Cryptocurrencies.”

The Program Committee consisted of 49 members with diverse backgrounds and
broad research interests. The review process was double-blind. Each paper received at
least three reviews; for submissions by Program Committee members this was
increased to four. During the discussion phase, additional reviews were solicited when
necessary. An intensive discussion was held to clarify issues and to converge towards
decisions. The selection of the program was challenging; in the end some high-quality
papers had to be rejected due to lack of space.

We would like to sincerely thank the authors of all submissions for contributing
high-quality submissions and giving us the opportunity to compile a strong and diverse
program.

Special thanks go to the Program Committee members; we value their hard work
and dedication to write careful and detailed reviews and to engage in interesting
discussions. A few Program Committee members, whom we asked to serve as shep-
herds, spent additional time in order to help the authors improve their works. More than
60 external reviewers contributed to the review process; we would like to thank them
for their efforts.

We are greatly indebted to Rafael Hirschfeld, the conference general chair, for his
tireless efforts to make the conference a success. We also would like to thank the
anniversary chairs, Sven Dietrich and Ahmad Sadeghi. Special thanks go the board of
directors of the International Financial Cryptography Association for their support and
advice.

Finally, we would like to thank the Office of Naval Research Global (ONR Global),
bitt, the CROSSING project at TU Darmstadt, Rohde & Schwartz, AtenCoin, Gemini,
Google, the Journal of Cybersecurity, KOBIL, SAP, KPMG, Worldpay, and the NSF
for their generous support of the conference.

We hope that the papers in this volume prove valuable for your research and
professional activities and that Financial Cryptography and Data Security will continue
to play its unique role in bringing together researchers and practitioners in the area of
secure digital commerce.

February 2017 Jens Grossklags
Bart Preneel

VI Preface

FC 2016

Financial Cryptography and Data Security 2016
Accra Beach Hotel and Spa, Barbados

February 22–26, 2016

Organized by the
International Financial Cryptography Association

In cooperation with the
International Association for Cryptologic Research

General Chair

Rafael Hirschfeld Unipay, The Netherlands

Anniversary Chairs

Sven Dietrich City University of New York, USA
Ahmad Sadeghi TU Darmstadt, Germany

Program Chairs

Jens Grossklags TU Munich, Germany
Bart Preneel KU Leuven, Belgium

Program Committee

Masayuki Abe NTT Laboratories, Japan
Alessandro Acquisti Carnegie Mellon University, USA
Ross Anderson Cambridge University, UK
Elli Androulaki IBM Research Zurich, Switzerland
N. Asokan Aalto University, Finland
Paulo Barreto University of Sao Paulo, Brazil
Steven Bellovin Columbia University, USA
Daniel Bernstein University of Illinois at Chicago, USA
Rainer Böhme University of Innsbruck, Austria
Alvaro Cardenas University of Texas at Dallas, USA
Jeremy Clark Concordia University, USA
Nicolas Courtois University College London, UK
George Danezis University College London, UK
Serge Egelman UC Berkeley, USA

Seda Gürses NYU, USA
Feng Hao Newcastle University, UK
Thorsten Holz Ruhr University Bochum, Germany
Trent Jaeger The Pennsylvania State University, USA
Markus Jakobsson Qualcomm, USA
Benjamin Johnson Carnegie Mellon University, USA
Aniket Kate Purdue University, USA
Florian Kerschbaum SAP, Germany
Aggelos Kiayias National and Kapodistrian University of Athens, Greece
Bart Knijnenburg Clemson University, USA
Markulf Kohlweiss Microsoft Research, UK
Aron Laszka UC Berkeley, USA
Anja Lehmann IBM Research Zurich, Switzerland
Arjen Lenstra EPFL, Switzerland
Patrick Loiseau EURECOM, France
Travis Mayberry US Naval Academy, USA
Catherine Meadows Naval Research Laboratory, USA
Sarah Meiklejohn University College London, UK
Tyler Moore University of Tulsa, USA
Steven Murdoch University College London, UK
Tatsuaki Okamoto NTT Laboratories, Japan
Kenneth Paterson Royal Holloway, University of London, UK
Roberto Perdisci University of Georgia, USA
Avi Rubin Johns Hopkins University, USA
Ahmad Sadeghi TU Darmstadt, Germany
Rei Safavi-Naini University of Calgary, Canada
Nigel Smart University of Bristol, UK
Jessica Staddon Google, USA
Carmela Troncoso Gradiant, Spain
Damien Vergnaud École Normale Supérieure, France
Nicholas Weaver International Computer Science Institute, USA
Xinyu Xing The Pennsylvania State University, USA
Moti Yung Google and Columbia University, USA

Additional Reviewers

Svetlana Abramova
Enrique Argones
Ero Balsa
Erik-Oliver Blass
Matthias Carnein
Joseph Carrigan
Alex Davidson
Angelo De Caro

Zekeriya Erkin
Sadegh Farhang
Ben Fisch
Oana Goga
Steven Goldfeder
Marian Harbach
Heqing Huang
Brittany Johnson

Vijay Kamble
Gabe Kaptchuk
Carmen Kempka
Sheharbano Khattak
Ryo Kikuchi
Markus Krause
Junichiro Kume
Stefan Laube

VIII FC 2016

Sebastian Luhn
Caitlin Lustig
Samuel Marchal
Paul Martin
Patrick Mccorry
Maryam Mehrnezhad
Aastha Mehta
Tarik Moataz
Malte Möser
Thomas Nyman
Miyako Ohkubo
Olga Ohrimenko
Melek Önen
Cristina Onete
Simon Oya

Giorgos Panagiotakos
Goutam Paul
Andrew Paverd
Yu Pu
Elizabeth Anne Quaglia
Markus Riek
Michael Rushanan
Katerina Samari
Daniel Sanchez
Luiza Sayfullina
Pascal Schoettle
Siamak F. Shahandashti
Kumar Sharad
Karthik Sheshadri
Brian Sniffen

Koutarou Suzuki
Syed Taha
Sandeep Tamrakar
Qiang Tang
Yiannis Tselekounis
Marie Vasek
David Wagner
Brecht Wyseur
Yi Xu
Thomas Zacharias
Greg Zaverucna
Bingsheng Zhang
Dionysis Zindros

FC 2016 IX

Contents

Fraud and Deception

Understanding Craigslist Rental Scams . 3
Youngsam Park, Damon McCoy, and Elaine Shi

Graph Analytics for Real-Time Scoring of Cross-Channel
Transactional Fraud . 22

Ian Molloy, Suresh Chari, Ulrich Finkler, Mark Wiggerman,
Coen Jonker, Ted Habeck, Youngja Park, Frank Jordens,
and Ron van Schaik

Android UI Deception Revisited: Attacks and Defenses 41
Earlence Fernandes, Qi Alfred Chen, Justin Paupore, Georg Essl,
J. Alex Halderman, Z. Morley Mao, and Atul Prakash

Introducing Reputation Systems to the Economics
of Outsourcing Computations to Rational Workers 60

Jassim Aljuraidan, Lujo Bauer, Michael K. Reiter,
and Matthias Beckerle

Payments, Auctions, and e-Voting

Accountable Privacy for Decentralized Anonymous Payments. 81
Christina Garman, Matthew Green, and Ian Miers

Private eCash in Practice (Short Paper) . 99
Amira Barki, Solenn Brunet, Nicolas Desmoulins, Sébastien Gambs,
Saïd Gharout, and Jacques Traoré

Practically Efficient Secure Single-Commodity Multi-market Auctions 110
Abdelrahaman Aly and Mathieu Van Vyve

How to Challenge and Cast Your e-Vote . 130
Sandra Guasch and Paz Morillo

Multiparty Computation

VD-PSI: Verifiable Delegated Private Set Intersection on Outsourced
Private Datasets . 149

Aydin Abadi, Sotirios Terzis, and Changyu Dong

http://dx.doi.org/10.1007/978-3-662-54970-4_1
http://dx.doi.org/10.1007/978-3-662-54970-4_2
http://dx.doi.org/10.1007/978-3-662-54970-4_2
http://dx.doi.org/10.1007/978-3-662-54970-4_3
http://dx.doi.org/10.1007/978-3-662-54970-4_4
http://dx.doi.org/10.1007/978-3-662-54970-4_4
http://dx.doi.org/10.1007/978-3-662-54970-4_5
http://dx.doi.org/10.1007/978-3-662-54970-4_6
http://dx.doi.org/10.1007/978-3-662-54970-4_7
http://dx.doi.org/10.1007/978-3-662-54970-4_8
http://dx.doi.org/10.1007/978-3-662-54970-4_9
http://dx.doi.org/10.1007/978-3-662-54970-4_9

Confidential Benchmarking Based on Multiparty Computation 169
Ivan Damgård, Kasper Damgård, Kurt Nielsen,
Peter Sebastian Nordholt, and Tomas Toft

Efficiently Making Secure Two-Party Computation Fair. 188
Handan Kılınç and Alptekin Küpçü

Fast Optimistically Fair Cut-and-Choose 2PC . 208
Alptekin Küpçü and Payman Mohassel

Mobile Malware

CuriousDroid: Automated User Interface Interaction for Android
Application Analysis Sandboxes . 231

Patrick Carter, Collin Mulliner, Martina Lindorfer, William Robertson,
and Engin Kirda

DroydSeuss: A Mobile Banking Trojan Tracker (Short Paper) 250
Alberto Coletta, Victor van der Veen, and Federico Maggi

DroidAuditor: Forensic Analysis of Application-Layer Privilege
Escalation Attacks on Android (Short Paper) . 260

Stephan Heuser, Marco Negro, Praveen Kumar Pendyala,
and Ahmad-Reza Sadeghi

Social Interaction and Policy

Discrete Choice, Social Interaction, and Policy in Encryption
Technology Adoption (Short Paper). 271

Tristan Caulfield, Christos Ioannidis, and David Pym

Cryptanalysis

Failures of Security APIs: A New Case . 283
Abdalnaser Algwil and Jeff Yan

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 299
Berry Schoenmakers

Factoring as a Service . 321
Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried,
Satya Bodduluri, and Nadia Heninger

The Self-blindable U-Prove Scheme from FC’14 Is Forgeable
(Short Paper) . 339

Eric Verheul, Sietse Ringers, and Jaap-Henk Hoepman

XII Contents

http://dx.doi.org/10.1007/978-3-662-54970-4_10
http://dx.doi.org/10.1007/978-3-662-54970-4_11
http://dx.doi.org/10.1007/978-3-662-54970-4_12
http://dx.doi.org/10.1007/978-3-662-54970-4_13
http://dx.doi.org/10.1007/978-3-662-54970-4_13
http://dx.doi.org/10.1007/978-3-662-54970-4_14
http://dx.doi.org/10.1007/978-3-662-54970-4_15
http://dx.doi.org/10.1007/978-3-662-54970-4_15
http://dx.doi.org/10.1007/978-3-662-54970-4_16
http://dx.doi.org/10.1007/978-3-662-54970-4_16
http://dx.doi.org/10.1007/978-3-662-54970-4_17
http://dx.doi.org/10.1007/978-3-662-54970-4_18
http://dx.doi.org/10.1007/978-3-662-54970-4_19
http://dx.doi.org/10.1007/978-3-662-54970-4_20
http://dx.doi.org/10.1007/978-3-662-54970-4_20

A Sound for a Sound: Mitigating Acoustic Side Channel Attacks
on Password Keystrokes with Active Sounds . 346

S. Abhishek Anand and Nitesh Saxena

Surveillance and Anonymity

Leaky Birds: Exploiting Mobile Application Traffic for Surveillance 367
Eline Vanrykel, Gunes Acar, Michael Herrmann, and Claudia Diaz

Footprint Scheduling for Dining-Cryptographer Networks 385
Anna Krasnova, Moritz Neikes, and Peter Schwabe

Web Security and Data Privacy

How Anywhere Computing Just Killed Your Phone-Based
Two-Factor Authentication . 405

Radhesh Krishnan Konoth, Victor van der Veen, and Herbert Bos

Security Keys: Practical Cryptographic Second Factors
for the Modern Web . 422

Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder,
and Sampath Srinivas

Include Me Out: In-Browser Detection of Malicious Third-Party
Content Inclusions. 441

Sajjad Arshad, Amin Kharraz, and William Robertson

A Sensitivity-Adaptive q-Uncertainty Model for Set-Valued Data 460
Liuhua Chen, Shenghai Zhong, Li-e Wang, and Xianxian Li

Bitcoin Mining

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 477
Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden

When Cryptocurrencies Mine Their Own Business 499
Jason Teutsch, Sanjay Jain, and Prateek Saxena

Optimal Selfish Mining Strategies in Bitcoin . 515
Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar

Cryptographic Protocols

A Short Paper on Blind Signatures from Knowledge Assumptions 535
Lucjan Hanzlik and Kamil Kluczniak

Contents XIII

http://dx.doi.org/10.1007/978-3-662-54970-4_21
http://dx.doi.org/10.1007/978-3-662-54970-4_21
http://dx.doi.org/10.1007/978-3-662-54970-4_22
http://dx.doi.org/10.1007/978-3-662-54970-4_23
http://dx.doi.org/10.1007/978-3-662-54970-4_24
http://dx.doi.org/10.1007/978-3-662-54970-4_24
http://dx.doi.org/10.1007/978-3-662-54970-4_25
http://dx.doi.org/10.1007/978-3-662-54970-4_25
http://dx.doi.org/10.1007/978-3-662-54970-4_26
http://dx.doi.org/10.1007/978-3-662-54970-4_26
http://dx.doi.org/10.1007/978-3-662-54970-4_27
http://dx.doi.org/10.1007/978-3-662-54970-4_27
http://dx.doi.org/10.1007/978-3-662-54970-4_28
http://dx.doi.org/10.1007/978-3-662-54970-4_29
http://dx.doi.org/10.1007/978-3-662-54970-4_30
http://dx.doi.org/10.1007/978-3-662-54970-4_31

KBID: Kerberos Bracelet Identification (Short Paper) 544
Joseph Carrigan, Paul Martin, and Michael Rushanan

Payment Use and Abuse

The Other Side of the Coin: User Experiences with Bitcoin Security
and Privacy . 555

Katharina Krombholz, Aljosha Judmayer, Matthias Gusenbauer,
and Edgar Weippl

Refund Attacks on Bitcoin’s Payment Protocol . 581
Patrick McCorry, Siamak F. Shahandashti, and Feng Hao

Are Payment Card Contracts Unfair? (Short Paper) 600
Steven J. Murdoch, Ingolf Becker, Ruba Abu-Salma, Ross Anderson,
Nicholas Bohm, Alice Hutchings, M. Angela Sasse,
and Gianluca Stringhini

The Bitcoin Brain Drain: Examining the Use and Abuse of Bitcoin
Brain Wallets . 609

Marie Vasek, Joseph Bonneau, Ryan Castellucci, Cameron Keith,
and Tyler Moore

Author Index . 619

XIV Contents

http://dx.doi.org/10.1007/978-3-662-54970-4_32
http://dx.doi.org/10.1007/978-3-662-54970-4_33
http://dx.doi.org/10.1007/978-3-662-54970-4_33
http://dx.doi.org/10.1007/978-3-662-54970-4_34
http://dx.doi.org/10.1007/978-3-662-54970-4_35
http://dx.doi.org/10.1007/978-3-662-54970-4_36
http://dx.doi.org/10.1007/978-3-662-54970-4_36

Fraud and Deception

Understanding Craigslist Rental Scams

Youngsam Park1(B), Damon McCoy2, and Elaine Shi3

1 University of Maryland, College Park, USA
yspark@cs.umd.edu

2 New York University, New York, USA
3 Cornell University, Ithaca, USA

Abstract. Fraudulently posted online rental listings, rental scams, have
been frequently reported by users. However, our understanding of the
structure of rental scams is limited. In this paper, we conduct the first
systematic empirical study of online rental scams on Craigslist. This
study is enabled by a suite of techniques that allowed us to identify
scam campaigns and our automated system that is able to collect addi-
tional information by conversing with scammers. Our measurement study
sheds new light on the broad range of strategies different scam campaigns
employ and the infrastructure they depend on to profit. We find that
many of these strategies, such as credit report scams, are structurally
different from the traditional advanced fee fraud found in previous stud-
ies. In addition, we find that Craigslist remove less than half of the suspi-
cious listings we detected. Finally, we find that many of the larger-scale
campaigns we detected depend on credit card payments, suggesting that
a payment level intervention might effectively demonetize them.

1 Introduction

Today, many people use the Internet for at least part of their housing search [6].
This inevitably has led to profit-driven scammers posting fake rental listings,
commonly known as “rental scams”. Despite the ubiquitous presence of online
rental scams, we currently lack a solid understanding of the online rental scam
ecosystem and the different techniques rental scammers use to deceive and profit
off their victims. While most efforts to mitigate this problem focus on filtering the
posts, this is only the visible part of a well-honed set of scams and infrastructure
established to extract money from their marks. An end-to-end understanding of a
scam and its structural dependencies (message posting, email accounts, location
of scammers, support companies, automated tools and payment methods) is
often a crucial first step towards identifying potential weaknesses along the chain
that can serve as effective choke-points for the defender [8,27]. In particular, this
“understand, and then deter” trajectory has resulted in suggesting weak points
for disrupting other domain-specific threats, such as payment processing in the
counterfeit software and pharmacy spam domain [8,18,19].

In this paper, we conduct the first systematic empirical study of the online
rental scams ecosystem as viewed through the lens of the Craigslist rental section.

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 3–21, 2017.
DOI: 10.1007/978-3-662-54970-4 1

4 Y. Park et al.

Our in-depth analysis of these rental scam campaigns allows us to address ques-
tions geared at improving our understanding of the supporting infrastructure
with the goal of exploring alternate points to undermine this ecosystem, such
as: “What are the common underlying scams?”, “Where are these scammers
located and what tools do they use?”, “How effective are current defences?”,
“What payment methods do they use?”. We summarize our contributions and
findings below.

By developing several effective detection techniques, we are able to identify
several major rental scam campaigns on Craigslist. In addition, we extend Scam-
baiter automated conversation engine [21] to automatically contact suspected
rental scammers, which enabled us to understand what support infrastructure
they used and how they were monetizing their postings. In total we detected
about 29 K scam listings over the 20 cities we monitored, within a period of
141 days.

We find a diverse set of methods utilized for monetizing the rental scam
campaigns we identified. These include attempts to trick people into paying
for credit reports and “bait-and-switch” rental listings. When we explored the
payment method used, five of the seven major scam campaigns identified used
credit cards. Many campaigns also depended on businesses registered in the USA
to collect payments. We also find that Craigslist’s filtering methods are currently
removing less than half of the rental scam ads we detected.

Our results highlight the fact that scammers are highly customizing their
monetization methods to the United States rental market. They also expose new
scams and infrastructure that were not encountered in previous studies [7,15,21].
This difference highlights the need to understand a wider range of scam domain
and suggests potential bottlenecks for many rental scam monetizing strategies
at the regulatory and payment layers. For instance, United States regulatory
agencies, such as the Federal Trade Commission (FTC) could investigate these
companies and levy fines for their deceptive advertising practices. Another poten-
tial method of demonetizing these companies might be to alert credit card holder
associations, such as Visa or MasterCard, to these merchants’ deceptive billing
and refund policies.

2 Data Sets

This paper focuses solely on scams and we consider spam, such as off-topic and
aggressive repostings, as outside the scope of this paper. In this paper, we define
a rental listing as a scam if (i) it is fraudulently advertising a property that is not
available or not lawfully owned by the advertiser and (ii) it attempts to extract
money from replies using either advanced fee fraud or “bait-and-switch” tactics.

The basis of our study relies upon repeated crawls of the rental section on
Craigslist in different geographic locations to collect all listings posted in these
regions and detect listings that are subsequently flagged. We then use a com-
bination of manual searching for reported rental scams and human-generated
regular expressions to map fraudulent listings into scam campaigns. For a small

Understanding Craigslist Rental Scams 5

subset of listings that are difficult to identify as scams or legitimate, we build an
automated conversation engine that contacts the poster to determine the valid-
ity of the listing. Finally, we crawl five other popular rental listing sites to detect
cloned listings that have been re-posted to Craigslist potentially by scammers.

2.1 Rental Listing Crawling

Our primary data set is based on listings collected from daily crawls of rental
sections on Craigslist across 20 different cities and areas in the United States
with the largest population [5]: New York, Los Angeles, Chicago, Houston,
Philadelphia, San Antonio, San Diego, Dallas, San Francisco (Bay area), Austin,
Jacksonville, Indianapolis, Columbus, Charlotte, Detroit, El Paso, Memphis,
Boston and Seattle. Our crawler revisited each crawled ad three days after the
first visit to detect if they have been flagged by Craigslist. The crawler performed
a final recrawl of any unflagged listings 7 days after the first visit to determine
if they have been flagged or expired. We also collected rental ads from five addi-
tional major rental listing websites, Zillow, Trulia, Realtor.com, Yahoo! Homes
and Homes.com.

Our crawler tracked all rental section ads on 20 cities/areas on Craigslist,
for a total duration of 141 days, from 2/24/2014 to 7/15/2014. Table 1 shows
the overall summary of this dataset. In whole, we collected over two million ads,
among which 126, 898 have been flagged by Craigslist.

Table 1. Dataset summary. About 6% of rental ads are flagged for removal by
Craigslist. Rental ads are considered to be expired 7 days after being posted.

Overview Duration 141 days (2/24/14-7/15/14)

Cities/areas 20

Rental ads Total posted 2, 085, 663

Flagged for removal 126, 898 (6.1%)

Deleted (by user) 338, 362 (16.2%)

Expired* 1, 620, 403 (77.7%)

2.2 Campaign Identification

Our crawling of Craigslist produced a large set of flagged and non-flagged ads
that are potentially scam listings. We know that some of these ads are scams and
that many of these are linked to a smaller number of distinct scam campaigns.

Due to the large number of ads in our data set a brute-force approach of
manually analyzing a large set of ads would not be effective and would require
a domain specific understanding of how scam ads differ from legitimate ads. In
order to overcome these challenges, we bootstrap our knowledge of scam post-
ings by finding a small number of suspicious ads in a semi-automated manner.

6 Y. Park et al.

To this end, we manually surveyed a broad range of user submitted scam reports
online [1,3,4] to gain some initial insights about rental scams. Based on these
insights, we constructed the following heuristics to identify an initial set of sus-
picious rental listings:

– Detect suspicious cloned listings by correlating listings posted to Craigslist
with other rental listing websites, in particular, cloned ads from other sites
that exhibit a substantial price difference.

– Detect posts with similar contents across multiple cities, e.g., posts with the
same phone number or email addresses.

– Focus on ads flagged by Craigslist, and manually identify suspicious scam
listings. As we will report in detail later, not all flagged posts are scam listings;
and conversely, not all scam posts were flagged by Craigslist

– Identify ads that are similar to user-reported scams.

2.3 Campaign Expansion Phase: Latitudinal

For some of the campaigns we identified and hand labelled a small number of
initial scam posts. Based on these we would like to identify other similar list-
ings that are part of the same campaigns using automated and semi-automated
methods. To this end, we used an approach that uses human-generated scam
signatures.

Human-Generated Scam Signatures. Our first approach is to manually
inspect the handful of ads that we identified to be in the same campaign, and
summarize a unique signature to identify this campaign. For example, one of
the credit report scam campaigns have the following unique signatures: email
accounts corresponding to the regular expression “[a–z]+[]@[]yahoo[](dot)[]
com” and no other contact information is included.

We then applied our signatures to all of our crawled ads, to identify additional
ads that belong to the same campaign. As detailed in later sections, we will rely
on a combination of human and automated verification techniques to confirm
that scam ads identified by these signatures are indeed scams.

2.4 Campaign Expansion Phase: Longitudinal

For the initial scam postings we identified above, and the suspicious listings we
identified in the latitudinal campaign expansion phase (Sect. 2.3), we wanted
to confirm whether these are indeed scam messages. To this end, we built an
automated conversation engine to converse with the suspected scammer, to see
if the conversation would lead to a phase where the scammer requested payment
from us.

Understanding Craigslist Rental Scams 7

Automated Conversation Engine. We manually inspected the suspicious
ads and found that some of them were clearly scams, e.g., the ads with a specific
phone numbers that were reported as scams by many users. For others, while
the ads appear highly suspicious, we were not sure whether they were scams as
opposed to the more harmless spam posting from aggressive realtors or other
service providers advertising their service/rentals.

We therefore relied on an automated conversation engine to (i) verify whether
a suspicious ad is a scam and (ii) collect additional data. More specifically,
we first selected a few suspicious ads and performed the email conversations
manually. Then it was fairly straightforward to distinguish between legitimate
users and malicious scammers during the email conversation. For example, clone
ads scammers usually wanted to proceed with the rental process online since they
were not in town for good purposes (e.g., serving in mission trip to Africa). From
the preliminary conversations, we were able to generate a set of linguistic features
(e.g., keywords such as “serving in mission” or rent application templates) and
other types of features (e.g., embedded links to certain redirection servers) that
distinguish rental scammers from other legitimate users.

We ran the automated conversation engine only for the emails selected based
on a predefined set of features. During the email conversations, we were able
to collect additional data such as email accounts, IP addresses, phone numbers,
links and payment information from the scammers. As in [21], the automated
conversation engine embedded an external image link into the emails. Once a
scammer clicks or loads the link in any way, the link leads the scammer to our
private web server that logs the visitor’s IP address. In this way, we were able
to collect the IP addresses of the scammers from two sources: email headers and
access logs to the web server.

Ethics. The longitudinal automation phase is the only part of the data col-
lection that involved human subjects. We took care to design our experiments
to respect common ethical guidelines and received approval from our institu-
tion’s IRB for this study. As mentioned above, sometimes we rely on automated
conversations to confirm (or disconfirm) whether scams we identify are truly
scams. To minimize the inconvenience brought on legitimate users, we abided
by the following guidelines. First, we only sent automated emails to ads that
we suspected to be scams. Detailed methods are explained in Sects. 3.1 and 3.2.
Second, we kept the automated conversations to a low volume. In the entire data
collection, we sent out 2,855 emails, from which we received 204 responses that
were confirmed to be from scammers out of a total of 367 responses. From these
initial results, we were able to improve our methods for detecting suspicious
ads, which would further reduce the number of legitimate posters contacted.
Finally, in some cases we called the phone number provided by the poster in
order to collect additional information. These phone calls where all manually
placed, restricted to low volumes and we only contacted suspected scam posters.

8 Y. Park et al.

2.5 Campaign Summaries

We present a high-level summary of the major scam categories and campaigns we
identified in Table 2. For each campaign we assign it a name based on either the
name of the company that is monetizing the scam when known or a feature used
to identify the listings in the campaign. Applying our campaign identification
methods from Sect. 3, we find seven distinct scam campaigns that account for
32 K individual ads. For each campaign the table lists the monetization category
of the scam, the raw number of listings associated with that campaign, the
percentage of ads that were flagged, the number of cities we found listings in out
of the 20 total cities we monitored and the payment method used.

Table 2. Major rental scam campaigns. Rental scam campaigns of relatively large size
in various rental scam types.

Scam category Campaign # Ads % Flagged City Payment

Credit report CreditReport Yahoo 15,184 33.0% 20 Credit card

CreditReport Gmail 5,472 59.3% 9 Credit card

Rent Clone scam campaigns 85 87.1% 17 Wire transfer

Realtor service American Standard Online 3,240 62.4% 19 Credit card

New Line Equity 3,230 43.3% 12 Credit card

Search Rent To Own 1,664 77.5% 17 Credit card

Total 28,875 45.2%

3 Analysis of Scam Campaigns

In this section, we will present our detailed findings for each campaign, including
our insights on how the scams are organized, where they are geographically
located and the degree of automation used by each campaign.

3.1 Credit Report Scams

In a typical credit report scam, a scammer posts a false rental ad for a property
not owned by the scammer. When a victim user replies to the rental ad, the
scammer asks the victim to obtain their credit score by clicking on a link included
in the email. When the victim clicks the link, a scammer-operated redirection
server redirects the victim to a credit score company and includes a referral ID.
If the victim pays for the credit score service which accepts credit card payments,
the scammer will be paid a commission by the credit score company through its
affiliate program.1

1 According to the affiliate program of Rental Verified, which is used by one of
the credit report campaigns we found, it pays up to $18 per customer. https://
rentalverified.com/affiliates.

https://rentalverified.com/affiliates
https://rentalverified.com/affiliates

Understanding Craigslist Rental Scams 9

Data Collection. We identified initial postings for each campaign by manually
examining the Craigslist-flagged ads, and correlating contact information and
unique substrings included in the postings with user reports found on scam report
sites [1,3,4]. In this manner, we identified two major campaigns, henceforth
referred to as CreditReport Yahoo and CreditReport Gmail respectively, due to
their usage of signature Yahoo and Gmail email addresses.

From the few examples that we found manually, we latitudinally expanded
the campaign dataset through human-generated signatures. Using the human
generated signatures, we were able to identify additional scam ads from the same
campaigns. Craigslist had failed to flag many of the scam ads we identified.
Specifically, for CreditReport Yahoo campaign, we found 15,184 scam ads of
which 33.01% were flagged for removal by Craigslist. We also found 5,471 scam
ads posted by CreditReport Gmail of which 59.27% were flagged. More details
are provided in Table 2.

Dataset Sanity Check. We verified the suspicious ads identified by the sig-
natures are indeed scams in two ways. First, we performed a sanity check by
manually investigating 400 randomly selected suspicious ads, 200 from each
campaign. We considered a suspicious ad as a scam if (1) an ad contained no
additional contact information such as name, phone number, street address or
URL and (2) there existed same or similar ads with different email addresses
in the same campaign. Through the manual inspection, we found only one false
positive ad in CreditReport Yahoo campaign and two in CreditReport Gmail.
The email addresses used in the false positive ads were also found in other sus-
picious ads, and we could also find out actual realtors who used those email
addresses. Second, among a total number of 20,256 credit report scam ads we
identified, we randomly selected 227 and 89 credit report scam ads from the
CreditReport Yahoo and CreditReport Gmail campaigns respectively, and sent
emails in response to the selected ads. Among the emails sent, we received 41
and 78 email responses and all of them were verified to be credit report scams.

In-depth Analysis. We present further analysis results of the two credit report
scam campaigns. Both credit report scam campaigns appear to be located in
the United States. In particular, the CreditReport Gmail campaign appears to
be located in New York city; while evidence described later (e.g., diverse IP
addresses and short inter-arrival times within bursts) suggests that the Cred-
itReport Yahoo campaign appears to rely on a botnet for their operation. We
now provide an in-depth analysis of the IP addresses and email accounts of both
campaigns. Table 3 lists the overview of two credit report scam campaigns we
found during the experimental period.

IP address analysis. For both campaigns, all the IP addresses observed are
located in USA. However, two campaigns show completely different IP address
usage patterns as shown in Table 3.

10 Y. Park et al.

Table 3. Credit report scam campaigns.

CreditReport Yahoo CreditReport Gmail

Email account found 14,545 from 15,187
ads

1,133 from 5,472 ads

Affiliated websites rentalverified.com,
matchverification.com

freecreditnation.com,
efreescore.com

IP addresses 69 30

IP addresses used once 65 (94.2%) 10 (33.3%)

Country USA (100%) USA (100%)

State 28 states New York (100%)

ISP Various Verizon (100%)

For CreditReport Yahoo, 69 IP addresses were found from 41 email conversa-
tions. The number of observed IP addresses are much larger than the number of
corresponding email conversations since CreditReport Yahoo uses mostly differ-
ent IP addresses for each round of conversations. In addition, they rarely reuse
any IP addresses across different email conversations. 94.64% are used only in a
single email conversation, and every IP address is used in at most two email con-
versations. The IP addresses are distributed over 24 states in USA and mapped
back to residential ISPs. These observations, combined with others described
later (e.g., level of automation), suggest that this campaign is potentially using
a botnet for operation.

In the case of the CreditReport Gmail campaign, 30 IP addresses were found
from 78 email conversations. Of the 30 IP addresses, about 66.7% were reused in
more than one email conversations and the maximum number of email threads
that share the same IP address is 7. All the observed IP addresses of the Cred-
itReport Gmail campaign are located in New York City, and map back to a
single ISP, Verizon Online LLC.

Level of automation. We observed many signs of scam process automation,
including extremely short inter-arrival time in a burst of emails and duplicate or
templated email messages. Table 4 lists example email bursts received from Cred-
itReport Yahoo campaign. Many email bursts consisting of up to 7 emails were
observed and an average inter-arrival time between two emails ranges between
4.5 s and 24.7 s. Within each burst, emails were always sent from different IP
addresses and therefore, usually sent from different cities. This observation also
supports the use of the widely-deployed botnet. We also observed many duplicate
or templated emails from both campaigns, which are also strong signs of automa-
tion. Example email message frequently observed during the whole experiment
is shown in Fig. 4 in Appendix B.

On the other hand, we also observed signs of manual labor. One example is a
distribution of time of day that we received email messages from scammers. In the
case of CreditReport Yahoo, we never received any email response between 7 PM

Understanding Craigslist Rental Scams 11

Table 4. Example inter-arrival time for burst email responses of CreditReport Yahoo.
Emails in the same burst have different content, although they contain a similar embed-
ded link to a direction server.

Emails
in burst

Burst
duration
(sec)

Mean inter-arrival
time (sec)

Cities # IP
locations

7 62 10.3 5 7

4 67 22.3 3 4

4 74 24.7 3 4

3 9 4.5 3 3

3 11 5.5 3 3

and 9 AM EST (Eastern Standard Time) and in case of CreditReport Gmail,
there was no response between 8 PM and 7 AM EST.

3.2 Clone Scam

In clone scams, typically a scammer copies another legitimate rental ad from a
different rental website, e.g., realtor.com. The cloned ad typically has the same
street address and sometimes has the same description as the original ad. How-
ever, often the scammer lowers the rental price. This scam is typically mone-
tized by the scammer requesting a money wire transfer or bank transfer for first
months rent and a deposit.

Data Collection. To detect clone scams, our crawler tracked rental posts on
Craigslist and 5 other major rental websites. We compared these ads and iden-
tified Craigslist rental ads cloned from other websites.

Overall, we identified 22,852 cloned ads spanning all 20 cities on Craigslist –
however, not all of these are necessarily scam ads. The majority of these appear
to be legitimate users advertising their rentals on multiple websites. We then
focused on the subset of 2,675 cloned ads with a price difference of at least $300.
These ads are deemed to be suspicious, but we still cannot be sure whether they
are truly scam ads. To verify whether the identified suspicious ads are truly
scams, we sent 2, 517 emails to suspicious ads using our automated conversation
engines. From the emails we sent, we received 237 responses among which 85 are
verified to be scams.

In-depth Analysis of Confirmed Scams. We now report statistics on the 85
confirmed clone scams. Our major insight is that most of these scams originate
from Nigeria, and are likely operated by a small number of scam factories. To
reach this conclusion, we performed a detailed analysis of the IP addresses, email
addresses, wire transfer requests and bank account information contained in the
scam attempts. We then performed a clustering algorithm based on identifying
information.

12 Y. Park et al.

IP address analysis. Excluding IPs from well-known web mail provider, such
as Gmail and Microsoft, we observed a total of 89 unique IP addresses located
in 7 countries. We used DB-IP database [2] to geolocate each IP address offline
in order to prevent the leakage of the scammer’s IP address information that
would result from using an online service. 66.29% of the collected IP addresses
are from Nigeria and 15.73% were from the U.S. The result shows fairly similar
trend compared to the result of the previous study by Park et al. [21] which shows
50.3% and 37.6% of IP addresses of Nigerian sales scammers were from Nigeria
and the U.S. Even though we consider the possibility of proxies or anonymous
networks, the consistent results from two studies strongly imply that the major
number of the scammers were actually located in Nigeria.

Payment Request Analysis. From our conversations with clone ad posters,
we collected a total of 12 unique payment requests and 8 duplicated requests
for the same name or bank account. Interestingly, the proportion of payment
request geolocation is significantly different from that of IP geolocation. 41.67%
of requests are located in the US while 25% are located in Nigeria. For a
money transfer via Western Union or MoneyGram, a sender needs to specify
the receiver’s location information including street address, city and country.
However, due to the small sample size of payment requests it is unclear if there
is any bias in the subset of conversations that resulted in a payment request
versus those for which we were able to collect an IP address.

Phone number analysis. We collected a total of 22 distinct phone numbers
from 24 email threads. 64% of the phone numbers are registered in the USA,
but half of these are identified as VoIP numbers. The rest (36%) were registered
in Nigeria.

Clustering. In order to better understand how scammers are organized, we clus-
tered the emails messages into groups based on similarities of their attributes.
We used a conservative clustering strategy. Any two email threads are classified
into a same group only if they shared one of the following: exactly the same email
accounts, phone numbers, bank accounts, IP addresses or rent application tem-
plates. Since those attributes provide us with fairly explicit clues for clustering,
we are highly confident of our clustering result. The result suggests that these
clone scammers are likely to originate from a small number of scam factories.

Table 5. Top 3 clone scam groups.

Group Ads (%) Email accounts Bank accounts Phone numbers

1 31 (36%) 21 4 9

2 16 (19%) 16 2 3

3 6 (7%) 6 0 2

Others 32 (38%) 29 5 8

Total 85 70 11 22

Understanding Craigslist Rental Scams 13

Through the clustering, we found a total of 15 scammer groups. Among them
the top 3 groups account for 72% of all observed email threads. More detailed
information of the top 3 groups are illustrated in Table 5. While IP addresses
of the second and third groups are largely located in Nigeria, those of the first
group are spread over Nigeria, the US, Malaysia and Egypt.

3.3 Realtor Service Scam

Realtor service scams involve a special type of realtor service, such as pre-
foreclosure rental or rent-to-own rental. This type of rental is attractive to
renters, since they may be able to own the property while paying monthly rent
similar to the usual monthly rent of the same area. Realtor service scam cam-
paigns usually request a victim to sign up for a private realtor service to get a
list of rent-to-own rentals or pre-foreclosure rentals. To sign up for the service,
the victim needs to pay up to $200 initial fee and/or $40 monthly fee.

While these businesses actually provide their customers with a list of homes,
their rental ads are still considered scams since the ads are typically fake with
unreasonably low rent prices, and/or for properties they do not own. Moreover,
many user scam reports claim that in most cases, the properties in the provided list
are not even for rent or sale at all. In addition, the refund process is extremely diffi-
cult but this is not explained clearly before the customer signs up for their services.

Data Collection. As listed in Table 2, we found a total of 8,134 realtor service
scam ads over all 20 cities of Craigslist, and about 57% of the ads were flagged by
Craigslist. Through the manual inspection on the crawled Craigslist rental ads,
we found several phone numbers and URLs observed frequently across multiple
cities on Craigslist. We then extended the initial sets of phone numbers and
URLs by correlating them with various user scam reports [1,3,4]. Based on the
human generated signatures of phone numbers and URLs, we identified three
large realtor services with advance fee campaigns: American Standard Online,
New Line Equity and Search Rent To Own.

Among the three campaigns we found, two were identified by sets of phone
numbers and the other campaign was identified by a set of URLs. For the sound-
ness of the collected phone numbers, we manually called each number and con-
firmed a set of numbers actually belong to a same campaign. We confirmed
that all phone numbers of a single campaign leaded us to the same automatic
response system. Then we conversed with a representative over the phone and
confirmed the business name of each campaign. Table 6 lists three large realtor
services scam campaigns.

American Standard Online. American Standard Online (ASO) was identified
based on a total of 20 phone numbers. We gathered the set of phone numbers
from our suspicious phone number detection method and many other sources
such as 800notes.com. Using the set of phone numbers, we found 3,240 rental
ads posted by ASO over 19 cities on Craigslist. Among them, 62.34% were flagged

14 Y. Park et al.

Table 6. Realtor service with advance fee campaigns.*: BBB rating of the sibling
websites.

American
Standard Online

New Line Equity Search Rent To Own

Scam signatures 20 phone
numbers

22 phone
numbers

5 URLs

Payment Initial fee ($199) Initial fee ($9.95),
Monthly fee
($40.95)

Initial fee ($109.95),
Monthly fee ($39.95)

BBB rating F Not found Not found (C/F*)

for removal. Their ads offer rentals with much lower rent prices than other ads in
the same area. However, a user is not able to get the information of the property
from ASO representatives on the phone.

Because ASO is a registered company in the USA, we could find their record
from Better Business Bureau (BBB). BBB website shows that the company ASO
has a total of 302 customer complaints and its rating is at the lowest ‘F’. The
record obviously tells us that doing business with ASO could be highly risky.
This also means that the Federal Trade Commission (FTC) could potentially
investigate this company and enforce fines or criminal penalties that would de-
monetize this campaign.

According to many user scam reports, the scam process of ASO is as follows.
If a victim calls the number to ask about the rental ad, ASO never answers the
questions about the rental ads. Instead, ASO requests a payment of $199 for an
initial fee to get an access to their pre-foreclosure (or rent-to-own) property data-
base. Once the victim signs up for the service, ASO provides the victim with a
property list. Due to the nature of the term “pre-foreclosure”, it is usually uncer-
tain that the properties in the list are actually in the status of pre-foreclosure,
and most of them turns out to be not for rent or sale.

At the time of contract, ASO lures victims by guaranteeing 100% refund after
90 days from the contract in case ASO does not satisfy their customers. However,
their actual refund policy requires a wait of at least 90 days from the contract
and at least 3 denial letters from the owners of the properties in the provided
list. It is obvious that getting the multiple denial letters is extremely difficult.

New Line Equity. New Line Equity (NLE) is another campaign which provides
a special type of realtor service. We identified NLE based on 22 phone numbers
observed over 12 cities. Based on the set of phone numbers, a total of 3,230 NLE
rental scam ads were identified, and 43.34% of them were flagged.

Many user reports claim that the scam process of NLE is quite similar to
that of ASO. A victim calls the number found in a Craigslist rental ads, and
NLE requests an initial fee $9.95 and monthly fee $40.95. Once the victim makes
a payment, NLE provides him with a list of pre-foreclosure properties. In many

Understanding Craigslist Rental Scams 15

cases, however, it turns out that most of the listed properties are not for rent
or sale. We could not find a record of NLE from BBB, but there exists a record
with a similar business name, New Line of Equity which has a BBB rating of ‘D’.
Many user reports complain about the difficulties in terminating the monthly
fee payment.

Search Rent To Own. We identified Search Rent To Own (SRO) based on
five URLs frequently observed over 17 cities on Craigslist. Among the five URLs,
one was used as the main URL and the rest were redirection links to the main
URL. Based on the set of URLs, we identified 1,664 SRO rental scam ads of
which 77.46% of them were flagged. Similarly to the other two campaigns, SRO
posts false rental ads on Craigslist and ask the victims to sign up their services
with initial and monthly fees. The BBB record of this campaign did not exist
but we found the records of two sibling websites listed in SRO website. BBB
rating of those two sibling websites were ‘F’ and ‘C’, which are poor ratings for
legitimate businesses.

According to the user reports, SRO first lures a customer by offering 3-day
free trial service. However, SRO does not fully explain that a $39.95 monthly
fee will be charged automatically after the free trial. We found many customer
complains indicating that they were not notified upfront about the fact that
monthly fee would be charged automatically after the free trial.

4 Flagged Ads Analysis

Currently, Craigslist relies on a flagging mechanism to filter out scam and spam
ads. Our measurement study reveals that Craigslist currently flags only about
47% of all the scam ads that we identified. Further, for a subset of the scams
(specifically, clone scams) that we closely monitored, the median time till flagging
(for the ads that do get flagged) is about 13 h – see Fig. 1. The figure also shows
that roughly 60% of clone scam ads remain active for more than 10 h and 40%
remain active for more than 20 h.

For other scam categories, our data collection method did not allow us to
obtain the time of flagging due to limitations of our measurement study: First,
monitoring all ads on a per-hour basis would generate too much traffic, and
our experiments were designed to keep our crawler’s traffic volume low. Second,
detecting these unknown scams required some manual effort. Hence, for some
scam categories, we did not identify the scam ads soon enough to allow us to
monitor them on a per-hour basis.

Even though revisiting all ads on a per-hour basis is too aggressive, we were
able to revisit all ads we crawled twice after three and seven days to determine
whether they have been flagged. Table 7 presents a summary of the composition
of the Craigslist-flagged ads. Of 126,898 Craigslist-flagged ads, we found about
10.2% are Scams where we found concrete proof of scams via automated email
conversation. On the other hand, about 70.3% are classified as Spams which
consists of local ads that are found usually within a single cities and a few renown

16 Y. Park et al.

Fig. 1. Time taken to flag scam
clone ads. Our system monitored
85 clone scam ads and found that
among the flagged ads, only 40%
were flagged within 10 h from ad
posting time. In addition, about
60% were flagged within a day.

Table 7. Flagged ads categorization. 10.17% of
flagged ads are identified as scams while 70.30%
are identified as spams.

Category Campaigns # Ads (%)

Scams Credit report scam 8, 255 (6.51%)

Clone scam 74 (0.06%)

Realtor service scam 4, 572 (3.60%)

Spams Local ads 76, 752 (60.48%)

Credit repair ads 2, 234 (1.76%)

Legitimate rental ads 10, 224 (8.06%)

Unidentified 24, 787 (19.53%)

Total 126, 898 (−%)

legitimate real estate companies. This leaves 24,787 (19.5%) ads as Unidentified
where we were not able to ascertain if the ads were benign or malicious. Some of
these could be clone ads or other lower volume Rent scams, but they are unlikely
to be part of a higher volume template-based campaign based on the diversity
of their content.

5 Discussion

This section will serve to provide a higher level view of our analysis to put into
context the value of this study and potential limitations.

Potential Detection and Conversation Limitations. The heuristics we
used to detect and validate scam posting were highly accurate based on our
analysis. However, it still leaves the question of how many scam listings we did
not detect. Without ground truth we cannot provide an estimate for this ques-
tion. A fair set of assumptions is that our heuristics performed well at detecting
the majority of listings associated with larger templated campaigns and worse
on the cloned and manually generated rent scam listings, due to the fact that it
is difficult to detect these based on the contents of the listing. In spite of this, we
do detect some cloned ads and are able to gain an understanding of the structure
of their scams from our conversations with these scammers.

Similarities and Differences with Other Study. Park et al. [21] focused
on understanding the structure of scammers posing as buyers on Craigslist. The
study found that 70% of scammers provided physical shipping addresses located
in Nigeria. Furthermore, the study found evidence of a largely manual work force
that would respond to scams within 1–2 days during peak work hours in Nigeria.

Understanding Craigslist Rental Scams 17

In this study, we find a diversity of scams that depend on different sets of
infrastructure as well as rent scammers that are structured similarly to those
that were encountered in their study. The credit report scams depend on credit
report companies in the United States that operate affiliate programs and payout
commissions for generating sales. The “bait-and-switch” campaigns depend on
rental service businesses that are often incorporated in the United States and
accept credit card payments with deceptive refund and re-billing policies.

6 Related Works

Advanced Fee Fraud. There have been a number of previous studies that have
looked at the structure by Smith [23], Buchanan and Grant [7] and estimated
losses from advance fee fraud by Dyrud [9]. Whitty and Buchaman [29] and Rege
[22] have investigated the dynamics of online dating scams. More closely related
to our domain, Johnson [15] explored the offline methods of real estate scammers.
More broadly, Stajano and Wilson [24] created a taxonomy of the different types of
psychology motivations used by scammers. Garg and Nilizadeh [11] investigated
whether economic, structural and cultural characteristics of a community affects
the scams on Craigslist. Tive [28] introduced in his study various techniques of
advance fee fraud. Herley [12] has argued that Nigerian scammers deliberately
craft their messages to be unbelievable as a method of reducing the number of
replies from people that are unlikely to fall victim to these scams. In contrast, our
study aimed to be more focused on collecting empirical data to enable a data-
driven analysis of rental scams that does not rely on self reported statistics.

Goa et al. [10] investigates the use of ontology-based knowledge engineer-
ing for Nigerian scam email text mining. Isacenkova et al. [14] analyzed pub-
lic scam email datasets mostly aggregated from numerous user reports. They
identified over 1,000 different scam campaigns largely based on phone numbers.
Huang et al. [13] measured romance scammer techniques on dating websites.
Most recently, Park et al. [21] created Scambaiter, a measurement infrastruc-
ture that can automatically converse with scammers that reply to sales listings
and performed an analysis of the methods and structure of these groups of
scammers. Our work builds on this, but focuses on scammers that are posting
fraudulent rental lists targeting people seeking housing on Craigslist. Unlike pre-
vious studies, our investigation we have focused on (1) understanding in-depth
the modi operandi and infrastructure leveraged by rental scammers operating
on Craigslist, and (2) identifying methods to detect larger-scale scam campaigns
and scammers that are engaged in posting fraudulent rental lists.

Underground Studies. Another large body of recent work has set about
conducting empirical measurements to understand the dynamics and economic
underpinnings of different types of cybercrime. Much of this work has been
focused on spam email [16,25], illicit online pharmacies [20], and mapping out
scam hosting infrastructure [17,26]. Our work builds on this, but focuses deeply
on fraudulent rental lists in particular. We have conducted, to our knowledge,

18 Y. Park et al.

the first large scale empirical measurement study of fraudulent rental lists. It
provides us with insights into how these scams are monetized and how they
might be better detected in the future.

7 Conclusion and Future Work

Rental scams on Craigslist are a real threat encountered by many people search-
ing for housing online; we found about 29 K rental scam postings on Craigslist
across 20 major cities in 141 days. These fraudulent postings are designed to
attract people interested in locating housing and target them with scams tai-
lored to the rental domain. Based on our analysis of these scams we have identi-
fied a few potential chokepoints in rental scams that merit further investigation.
We also note that analysis of online rental markets in other countries would be
beneficial to improving our understanding of rental scams in other locations.

Craigslist’s Detection Methods. Based on our analysis Craigslist removed
87% of the cloned ad postings we detected, after an average delay of around 10 h.
Their flagging rate for the larger templated campaign postings was far lower at
50%. As future work, we plan to investigate automated detection approaches to
improve filtering.

Regulatory and Payment Follow Up. As future work, we plan to contact
the Federal Trade Commission (FTC) and card holder associations, such as Visa
and MasterCard to inform them of our findings. We also, plan to perform test
purchases from merchants to understand which banks they are contracting with
to process credit card transactions.

Expanding to Other Countries. Many of these scams were specific to the
United States. We plan to expand our studies to other countries in order to
understand how scammers adapt their methods to other regions.

Conclusion. In this paper, we presented a systematic empirical measurement
study of rental scams observed on Craigslist. As part of this study we present tech-
niques that are effective at identifying rental scam postings and classifying them
into larger scam campaigns. In parallel, we contacted a subset of these scammers to
gain detailed information about the infrastructure required for them to profit. In
total we identify seven major rental scam campaigns of which five depend on credit
card payments for deceptively advertised services and businesses that are often
registered in the United States. Finally, we find that filtering efforts by Craigslist
remove less than half of the listings we detected. We believe that our techniques
for identifying scam campaigns and understanding of their infrastructure could
provide more effective methods for disrupting rental scams.

Understanding Craigslist Rental Scams 19

Acknowledgements. We thank Markus Jakobsson and the anonymous reviewers for
their valuable feedback. This work was supported by the National Science Foundation
grant CNS-1619620. This work was funded in part by NSF grants CNS-1314857, CNS-
1453634, CNS-1518765, CNS-1514261, a Packard Fellowship, a Sloan Fellowship, two
Google Faculty Research Awards, a VMWare Research Award, and an NSA Lablet
grant.

A Example Scam Ads

(See Figs. 2 and 3)

Come See this stunning 2 bedroom 2.5 bathroom home

Come See this quiet 3 bedroom 2 bathroom rental property 2014 Deal

Come See this lovely 1 bed / 1.5 bath rental Discount for 2014

Come Lay your eyes upon this wonderful 2 bedroom 1.5 bathroom property

Come Lay your eyes upon this gorgeous 1 bed 1 bath place

Come Lay your eyes upon this gorgeous 1 bed / 1.5 bath rental

Fig. 2. Example ad titles with sophisticated templates used by CreditReport Yahoo
campaign.

B Example Scam Emails

Thanks for emailing me regarding the house is still available, but

presently I’m on business trip to Kuala Lumpur,Malaysia.

...

PLEASE TELL US ABOUT YOURSELF

Full Name__________________________

Home Phone ()________________________

Cell Phone () ___________________

Date of Birth___________________

Current Address___________________

City____________State______ Zip______

Reasons for Leaving________________Rent $________

Are you married_______________________

How many people will be living in the house___________

Do you smoke____________

Do you have a pet____________

Do you have a car____________

Move In Date____________

Fig. 3. Example rent application template. Clone scam campaigns usually request
a victim to fill out their rent application form.

20 Y. Park et al.

Hello,

I hope you are having a wonderful day. Here’s some good news: the

apartment’s still available!

...

When you’re ready for a personal appointment, then please go to the link

below and grab your free credit score. We recommend this site because

all of our tenants used it and never had any problems. Just fill out the

form and indicate that you want the score. What is in the report isn’t

important to us, it’s more of a formality to have it on file, to make

sure there are no previous property related issues. You can get your

free credit score at CLICK HERE

Remember, we only need to see the page about the rental history. That’s

all we need to see at the showing. We typically waive the security

deposit with a score of 560+.

...

Fig. 4. Credit report scam email.

References

1. 800notes. http://800notes.com/
2. DB-IP. http://db-ip.com/
3. Report craigslist Scams. http://reportcraigslistscams.com/
4. Ripoff Report. http://www.ripoffreport.com/
5. United States Census Bureau. http://www.census.gov/
6. National association of realtors - field guide to quick real estate statistics. http://

www.realtor.org/field-guides/field-guide-to-quick-real-estate-statistics (2013)
7. Buchanan, J., Grant, A.J.: Investigating and prosecuting Nigerian fraud. U. S.

Attorneys’ Bull. 49(6), 39–47 (2001)
8. Clayton, R., Moore, T., Christin, N.: Concentrating correctly on cybercrime con-

centration. In: Proceedings of the Fourteenth Workshop on the Economics of Infor-
mation Security (WEIS), Delft, Netherlands, June 2015

9. Dyrud, M.A.: I brought you a good news: an analysis of Nigerian 419 letters. In:
Proceedings of the 2005 Association for Business Communication Annual Conven-
tion (2005)

10. Gao, Y., Zhao, G.: Knowledge-based information extraction: a case study of recog-
nizing emails of Nigerian frauds. In: Montoyo, A., Muńoz, R., Métais, E. (eds.)
NLDB 2005. LNCS, vol. 3513, pp. 161–172. Springer, Heidelberg (2005). doi:10.
1007/11428817 15

11. Garg, V., Nilizadeh, S.: Craigslist scams and community composition: investigat-
ing online fraud victimization. In: International Workshop on Cyber Crime, IEEE
(2013)

12. Herley, C.: Why do Nigerian Scammers say they are from Nigeria? In: WEIS (2012)
13. Huang, J.M., Stringhini, G., Yong, P.: Quit playing games with my heart: under-

standing online dating scams. In: Almgren, M., Gulisano, V., Maggi, F. (eds.)
DIMVA 2015. LNCS, vol. 9148, pp. 216–236. Springer, Cham (2015). doi:10.1007/
978-3-319-20550-2 12

http://800notes.com/
http://db-ip.com/
http://reportcraigslistscams.com/
http://www.ripoffreport.com/
http://www.census.gov/
http://www.realtor.org/field-guides/field-guide-to-quick-real-estate-statistics
http://www.realtor.org/field-guides/field-guide-to-quick-real-estate-statistics
http://dx.doi.org/10.1007/11428817_15
http://dx.doi.org/10.1007/11428817_15
http://dx.doi.org/10.1007/978-3-319-20550-2_12
http://dx.doi.org/10.1007/978-3-319-20550-2_12

Understanding Craigslist Rental Scams 21

14. Isacenkova, J., Thonnard, O., Costin, A., Balzarotti, D., Francillon, A.: Inside the
scam jungle: a closer look at 419 scam email operations. In: Security and Privacy
Workshops (SPW), 2013 IEEE, pp. 143–150. IEEE (2013)

15. Johnson, C.: Fakers, breachers, slackers, and deceivers: Opportunistic actors during
the foreclosure crisis deserve criminal sanctions. Cap. Univ. Law Rev. 40(4), 853
(2012)

16. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson, V.,
Savage, S.: Spamalytics: an empirical analysis of spam marketing conversion. In:
Proceedings of the 15th ACM Conference on CCS. ACM (2008)

17. Konte, M., Feamster, N., Jung, J.: Dynamics of online scam hosting infrastructure.
In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448, pp. 219–
228. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00975-4 22

18. Levchenko, K., Pitsillidis, A., Chachra, N., Enright, B., Félegyházi, M., Grier, C.,
Halvorson, T., Kanich, C., Kreibich, C., Liu, H., McCoy, D., Weaver, N., Paxson,
V., Voelker, G.M., Savage, S.: Click trajectories: end-to-end analysis of the spam
value chain. In: IEEE Symposium on Security and Privacy (2011)

19. McCoy, D., Dharmdasani, H., Kreibich, C., Voelker, G.M., Savage, S.: Priceless:
the role of payments in abuse-advertised goods. In: Proceedings of the 2012 ACM
Conference on CCS, CCS 2012 (2012)

20. McCoy, D., Pitsillidis, A., Jordan, G., Weaver, N., Kreibich, C., Krebs, B., Voelker,
G.M., Savage, S., Levchenko, K.: Pharmaleaks: Understanding the business of
online pharmaceutical affiliate programs. In: USENIX Security Symposium (2012)

21. Park, Y., Jones, J., McCoy, D., Shi, E., Jakobsson, M.: Scambaiter: understanding
targeted nigerian scams on craigslist. In: NDSS (2014)

22. Rege, A.: What’s love got to do with it? Exploring online dating scams and identity
fraud. Int. J. Cyber Criminol. 3(2), 494–512 (2009)

23. Smith, A.: Nigerian scam e-mails and the charms of capital. Cult. Stud. 23(1),
27–47 (2009)

24. Stajano, F., Wilson, P.: Understanding scam victims: seven principles for systems
security. Commun. ACM 54, 70–75 (2011)

25. Stone-Gross, B., Holz, T., Stringhini, G., Vigna, G.: The underground economy of
spam: a botmaster’s perspective of coordinating large-scale spam campaigns. In:
Proceedings of the 4th USENIX Conference on Large-Scale Exploits and Emergent
Threats, LEET 2011, p. 4. USENIX Association, Berkeley (2011)

26. Stone-Gross, B., Moser, A., Kruegel, C., Kirda, E., Almeroth, K.: FIRE: FInding
Rogue nEtworks. In: Proceedings of the Annual Computer Security Applications
Conference (ACSAC), Honolulu, HI, December 2009

27. Thomas, K., Huang, D., Wang, D., Bursztein, E., Grier, C., Holt, T., Kruegel,
C., McCoy, D., Savage, S., Vigna, G.: Framing dependencies introduced by under-
ground commoditization. In: Proceedings of the Fourteenth Workshop on the Eco-
nomics of Information Security (WEIS), Delft, Netherlands, June 2015

28. Tive, C.: 419 scam: Exploits of the Nigerian con man. iUniverse (2006)
29. Whitty, M.T., Buchanan, T.: The online romance scam: a serious cybercrime.

CyberPsychol. Behav. Soc. Netw. 15(3), 181–183 (2012)

http://dx.doi.org/10.1007/978-3-642-00975-4_22

Graph Analytics for Real-Time Scoring
of Cross-Channel Transactional Fraud

Ian Molloy1(B), Suresh Chari1, Ulrich Finkler1, Mark Wiggerman2,
Coen Jonker2, Ted Habeck1, Youngja Park1, Frank Jordens2,

and Ron van Schaik2

1 IBM Thomas J. Watson Research Center, Yorktown Heights, USA
{molloyim,schari,ufinkler,habeck,young park}@us.ibm.com

2 ABN AMRO Bank N.V., Amsterdam, The Netherlands
{mark.wiggerman,frank.jordens,ron.van.schaik}@nl.abnamro.com

Abstract. We present a new approach to cross channel fraud detection:
build graphs representing transactions from all channels and use analyt-
ics on features extracted from these graphs. Our underlying hypothesis
is community based fraud detection: an account (holder) performs nor-
mal or trusted transactions within a community that is “local” to the
account. We explore several notions of community based on graph prop-
erties. Our results show that properties such as shortest distance between
transaction endpoints, whether they are in the same strongly connected
component, whether the destination has high page rank, etc., provide
excellent discriminators of fraudulent and normal transactions whereas
traditional social network analysis yields poor results. Evaluation on a
large dataset from a European bank shows that such methods can sub-
stantially reduce false positives in traditional fraud scoring. We show that
classifiers built purely out of graph properties are very promising, with
high AUC, and can complement existing fraud detection approaches.

1 Introduction

Fraud in payment transactions is a large problem for consumers: card fraud alone
is estimated to result in losses of AC1.33B in the EU in 2013 [7]. The reasons for the
continued prevalence of transactional fraud are varied: reliance on outdated tech-
nologies (e.g., magnetic stripes), new banking models (e.g., online banking, P2P
payments), man-in-the-browser malware, phishing, etc. Banks have turned to
preventive technologies, such as EMV (chip-and-pin/signature) for card-present
transactions. Mitigations for card-not-present transactions (e.g., online) include:
CVV2 numbers, multifactor transactional authentication numbers (TANs), etc.
Despite their partial success, fraud is still a big problem: Criminals devise mal-
ware specifically crafted to a particular bank’s web pages and mobile apps that
modify transactions prior to any additional user authorizations. Preventive mea-
sures introduce friction by requiring additional equipment or steps that cus-
tomers need to perform. Thus, fraud detection algorithms and analytics based
on transactional information is a fundamental technique all banks rely on. Most
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 22–40, 2017.
DOI: 10.1007/978-3-662-54970-4 2

Graph Analytics for Real-Time Scoring of Cross-Channel 23

fraud detection solutions work on specific channels and use two key methods:
rule based systems and statistical analytics. Rule based systems flag known
fraudulent patterns, e.g., multiple transactions at petrol stations in quick suc-
cession. Channel specific rules e.g., blacklisting malicious IPs or Tor exit nodes
or incorrect billing/shipping addresses are common. Statistical methods attempt
to build profiles of customers based on frequency and amount of normal transac-
tions, changes in geography, or merchant types. Real-world constraints require
fraud detection to finish in a few milliseconds, limiting the scope and sophisti-
cation of analytics, resulting in higher error rates, and even small false positive
rates can be extremely costly e.g., irate customers, investigation costs.

This paper describes a completely new approach to cross-channel fraud detec-
tion based on graph analytics. Our primary objective is reducing false positives of
current methods. Our hypothesis is that payment patterns define communities,
and fraud manifests as deviations from these communities. We discover commu-
nities by building transaction graphs irrespective of the channel, and analyzing
the structure of such graphs. These notions of community become stronger as
financial institutions open up new means for person-to-person payments, such as
popmoney and QuickPay. Our work is closely related to social network analysis
(SNA) that attempts to identify communities and relationships, like friendship
and followers. Our analysis shows that semantic differences between social and
financial anomalies limit applicability of existing SNA work to this domain.

This work represents the first step in evaluating graph-based anomaly detec-
tion for fraud detection: we seek to determine which graph features, if any,
provide measurable benefit in identifying fraudulent transactions. Our experi-
ments with cross-channel transaction data from a European bank (ABN AMRO)
show that several graph features provide discrimination between fraudulent and
benign transactions. In a graph model where a node represents an account and
an edge is a completed transaction we show that the following features can be
used to substantially reduce false positives (upwards of 30%):

– the shortest distance between the endpoints of the target transaction
– if the endpoints are in the same strongly connected component
– the page rank of the destination and the reverse page rank of the source
– which clusters (defined by different methods) do the endpoints belong to and

the likelihood of a transaction between these clusters.

These features, their variants and other path-based features provide excellent
discrimination. We find that SNA features, such as node properties and features
derived from the egonet of an account, do not perform well. Our solution is
orthogonal and complementary to existing techniques, and is not intended to
replace existing customer and channel profiling, but rather to improve accuracy
by reducing false positives. Scalability of graph algorithms are a major hurdle
in their adoption for real-time scorin g (a cache miss takes around 100 ns [24],
limiting processing to around 1000 vertices in 100 ms): our features can be pre-
computed, accelerated using time-storage tradeoffs, approximations, and heuris-
tics to meet performance targets. Finally, we illustrate how to build classifiers,
based solely on graph features and independent of traditional statistical features

24 I. Molloy et al.

for fraud detection, and evaluate their performance on a small subset of the
transactional data showing excellent promise.

There are clear benefits to graph based methods: they are channel indepen-
dent and applicable to new channels, are more adaptive than rule based systems
and more expressive than statistical methods. They define fraud based directly
on the accounts involved in a transaction, not on indirect indicators e.g. statis-
tical measures (how much the account has spent in a day) or channel-specific
measures (indications of malware on the endpoint). Note that a transaction
where the destination account has been modified, just prior to user authoriza-
tion, cannot be detected by statistical source-account profiling. Our work is, to
our knowledge, the first to show a completely new scientific approach to fraud
detection in transaction networks that is channel independent. Our results are
highly promising with great false positive reduction, and through clever pre-
processing and algorithmic selection we can perform scoring in real-time on a
commodity x86 machine without specialized hardware.

2 Related Work

Fraud detection is a mature area with almost every bank and card issuer deploy-
ing some solution using rules, analytics, and predictive models. They use existing
products (e.g., [10,11,22]), proprietary risk engines, or combinations of these
components. Both SAS and FICO Falcon rely on neural networks for their
scoring engine for speed and efficiency. Existing solutions focus on statistical
anomalies (min, max, average, etc.) on hand-picked features of accounts to build
customer profiles, such as recency, frequency, and monetary value of transac-
tions (RMF) [9] etc., and must be tuned for specific companies. Typically, “cross
channel” means combining such properties from multiple channels into one.

There are many works describing applications of machine learning to fraud
detection. Most work focuses on feature selection and building supervised classi-
fiers. Many products [10] and published works [3,5,18,26,27] use neural networks
to score transactions from statistical features. Other techniques include Bayesian
learning [18], decision trees [26], association rules [25], and genetic algorithms [8].

There is a large body of work on social network analysis [2,13,19], often
focused on identifying anomalous nodes [2], fake accounts [12], or spam [14,17].
As discussed in Sect. 5.5 while these methods identify anomalous nodes they are
somewhat unconnected with fraud. One can view SNA as focused on identifying
anomalous/special nodes while fraud detection finds anomalous edges.

APATE [29] combines traditional features (RMF) with graph-based features
connecting credit cards and merchants through transactions. They use influence
propagation [17] to measure the propagation of fraud labels through the network.
Such analysis identifies “hot spots” where merchants have been compromised
and cards used in subsequent fraudulent transactions, such as CNP transactions
without a second factor for authorization, which ABN AMRO currently uses.

Graph Analytics for Real-Time Scoring of Cross-Channel 25

3 Problem Definition: Data Sets and Real-Time
Constraints

This section briefly introduces the types of transactions used in the evaluation,
the types of fraud addressed, and domain specific constraints that need to be
considered. We provide some details on the private dataset used to evaluate our
methodology and the possible public datasources. Our test data comes from a
European bank that fully deployed EMV in both card-present and card-not-
present transactions using chipTANs (Chip Authentication Program). This is
very different from the fraud problem in the USA where cards mostly rely on
magnetic stripe for card-present transactions and CVV2 for card-not-present
transactions. While EMV has some security issues [4,20] both EMV and TANs
substantially reduce vectors for committing fraud and necessitates increasingly
sophisticated attacks. Known since 2005 is man-in-the-browser malware which
replaces destination account numbers with account numbers the adversary con-
trols, called a mule account. When the customer verifies the transaction, using
chipTAN or mTAN, they authorize illegitimate transactions. Mobile malware
can intercept mTANs, and customers may still fall victim to phishing attacks,
e.g. the Boleto scams in Brazil [23].

This work complements existing fraud monitoring solutions by analyzing the
utility in graph-based features that are orthogonal to traditional approaches.
There are several key requirements: First, it is desirable to be able to score
all transactions, and not simply subsample. Second, it is preferable to score
transactions in real-time and block fraudulent transactions. Some transactions
are non-reversible, such as wire transfers, saving both the customer and the bank
time and money if the transaction can be blocked rather than discovered through
forensics. Thus we expect our analytics to run in the order of milliseconds to
support the real-time blocking of suspected transactions.

3.1 Data Sets

The data set that we use is proprietary to ABN AMRO and combines incom-
ing and outgoing transactions from different channels: online banking, point of
sale, ATM, mobile banking, and person-to-person payments during the period
June 1, 2012 through Aug. 30, 2012. For this period we also had labels: false
positive (transactions flagged as fraudulent by the current system, later deter-
mined to be benign), transactions correctly flagged as fraudulent, and fraudulent
transactions not flagged. There were hundreds of millions of transactions in this
period. Other details of the data set including specific properties are described
with the results.

The only large public data set is the Bitcoin [21] blockchain, currently having
420 million transactions and about 85 million Bitcoin addresses which can be
seen as accounts. Unlike traditional banks, Bitcoin allows (and encourages) a
distinct account number for each transaction. We expect that account profiling
mechanisms to be unsuccessful on this data and use it only to test scalability of
our feature evaluation.

26 I. Molloy et al.

4 Graph Analytic Approach

This section outlines the graph analytic approach, the underlying motivation
and how we use transaction graphs to score fraud. We view financial transactions
transferring money from one account to another as (temporal) edges connecting
accounts. Using this we can build powerful analytics leveraging recent advances
in scalable analytics and anomaly detection in graphs. A successful payment can
be seen as establishing a trust relationship relying only on the entities in the
transaction and not on the channel or any other parameters. An account trusts
the accounts/entities that it pays directly the most. The “web of trust” model
can be used to transitively infer trust relationship—we then trust accounts that
are paid by the accounts we pay and so on—and these relationships naturally
define communities of normal transactions. If we can find graph features which
are indicative of fraud then this approach achieves two big goals:

– Establishes a channel independent mechanism of detecting fraud.
– Graph feature based fraud detection uses a completely new set of features and

would complement the accuracy of the traditional fraud detection.

4.1 Formal Definition

While banking systems record numerous attributes about transactions, we
restrict ourselves to four attributes: source account, destination account,
timestamp, and amount (in a common currency). From the many timestamps
associated with a transaction (time initiated, processed, cleared, etc.), we assume
there is one authoritative timestamp which we use. Using this data, there are
several graph models one can define. First, we can model transactions as a quiver.

Definition 1. A quiver (or multidigraph) Γ = (V,E, s, t) where V is a set of
vertices of Γ , E is a set of edges, and s and t are mappings s : E → V and t :
E → V that returns the source and destination vertices for an edge, respectively.

Each edge has two properties: the timestamp and the value of the transaction.
Alternatively, we can define a vertex type to represent transactions as follows:

Definition 2. A heterogeneous information network (HIN) is a digraph G =
(V,E, γ, τ) where γ and τ are functions mapping vertices and edges to types:
γ : V → A, and τ : E → R for vertex types A and edge types R.

We assume two vertex types: accounts and transactions. Only one edge type, pays
is necessary, however more expressive HINs are possible. Transaction vertices can
be annotated with the timestamp and amount. Collapsing multiple transactions
between the same endpoints into one representative transaction yields a digraph.

Definition 3. A digraph is a graph G = (V,E) where V is a set of vertices
(accounts), and E ⊆ V 2 is a set of edges (transactions). The edges may be
weighted (by the total value or the number of transactions etc.).

These representations can be enhanced by additional information such as account
owners, types (savings, chequing, credit card) etc. leading to enhanced insights.
We use the quiver representation but process digraphs for scalability (Fig. 1).

Graph Analytics for Real-Time Scoring of Cross-Channel 27

(a) Quiver (b) HIN (c) Digraph

Fig. 1. Transaction data with three different graph representations. In the HIN, shaded
triangles represent transaction vertices.

4.2 Graph Construction and Scoring

Figure 2(a) depicts the overall process of graph construction for fraud scoring.
Only transactions that occur strictly prior to the one being evaluated are used to
construct the graph (1). Given a transaction T = X

v−→ Y (from account X to Y
for amount v) to be scored, the accounts are identified in the graph (2). Features
from the graph are then extracted (3), and scored using a trained classifier (4).

The strategy to select past transactions to construct graphs has tradeoffs
in accuracy, speed of construction and maintenance, and scalability of graph
algorithms. We can score a transaction against many different graphs taken
from (possibly overlapping) time windows as shown in Fig. 2(b). Some choices
for defining such a prior window for a transaction occurring at time t are: a fixed
number of recent transactions (e.g., one million); real-time scoring with a time
window of size δ, i.e., [t − δ, t); or rounding time to a unit of granularity n, such
as one day, i.e.,

[
n ∗ (⌊

t
n

⌋ − i
)
, n ∗ (⌊

t
n

⌋ − j
)]

, where i > j ≥ 1, which we call
discrete time. This work uses discrete time with a granularity of one week, and
score transactions against one, two, four, and ten week windows.

Given a graph G, we extract two basic types of features: features about the
vertices, FG(X), such as the page rank or size of the egonet; and features about
the pair of vertices, FG(X,Y), such as the shortest distance from X to Y . We
assume any feature extractor F returns a special value ⊥ when the input account,
or either account for the pair, is not in the graph G, and we can assign a prior
fraudulent probability derived from all transactions not seen in a graph.

We can define ensemble scoring variants with this framework using multiple
features from the same graph or features from multiple graphs. The classifier we
construct for evaluation uses three different features from the same graph for
scoring. Standard machine learning techniques on feature selection and training
can be used given features from multiple graphs and labelled transactions.

4.3 Community Based Fraud Detection

Our notion of fraud detection is based on notions of community: any transactions
done outside a normal community are considered suspicious. We explore various
notions of community in Sect. 5 such as: trusted accounts within a small degree

28 I. Molloy et al.

Time

Transaction Account

Transaction
Scoring

Suspicion
Score

Legend

1
2

3 4

T

X Y

(a) Graphs of past transactions.

Time Window 1 Time Window 2 Time Window 3 Time Window n

(b) Discrete time windows.

Fig. 2. How individual transactions relate to graphs to be scored.

of separation (shortest-path metric in Sect. 5.1), accounts which have a bidi-
rectional flow of money (strongly connected components in Sect. 5.2), accounts
which are “reputed” (PageRank in Sect. 5.3), and accounts belonging to the
same cluster (Sect. 5.4). Some natural notions of community such as accounts
to which there is a sufficient flow of money (maximum-flow) are not feasible to
compute in real-time. A longer version of the paper will discuss related notions
e.g. connectivity, centrality, clustering, link prediction, etc.

5 Binary Features for Fraud Detection

This section provides results of the experiments on the transaction data. We dis-
cuss the analytics evaluated, details of the evaluation, observations and finally, if
the feature can distinguish between classes of transactions: random benign, false
positives (generated by the current system), and fraud. The transaction data
and labels used were extracted from 2 June 2012 to September 2012. From this
we construct graph models over different windows of time and use these to score
subsequent transactions. We experimented with different window sizes to deter-
mine the appropriate size: choosing a small window can cause instability in the
graph features while choosing a large windows results in graphs computationally
expensive graphs without recency. We constructed graphs from the transaction
data of lengths 1–4 weeks. Before we discuss the specific features and how we
will evaluate their utility, we must consider how the features may be used in
practice. There are several ways in which graph features can be integrated into
existing fraud detection and management system depending on the particular
use case or type of fraud. For example, if false positive reduction is the primary
goal then only transactions the existing fraud detection system flags need to be
scored. Specifically, when the existing fraud detection system flags a transaction
as potentially fraudulent, graph features are extracted and scored. If the graph-
based analytics indicate the transaction is not fraud, then it may be dropped
without further processing. The reduction in false positives can either yield sig-
nificant savings for the bank (e.g., fewer incidents to investigate). Alternatively,
the savings can be spent in other ways. For example, investigating the same num-
ber of transactions, decreasing the false negatives and catching more fraud, or by

Graph Analytics for Real-Time Scoring of Cross-Channel 29

decreasing customer friction by increasing the allowed risks. In other use cases,
transactions can also be scored using graph-based features (see Sect. 7). This
can be performed independently (as we demonstrate), or in combination with
existing analytics and channel-specific features, such as geolocation, transaction
amount, and other channel specific features.

Our experiments are designed to evaluate two of these use cases. First, we
evaluate how well they reduce false positives produced by existing analytics. We
also indicate how well the individual features perform at identifying fraudulent
transactions if they were to be used alone (note that typical fraud detection sys-
tems score using tens-to-hundreds of features). Finally, we will build a classifier
using several features and score held-out transactions.

5.1 Shortest Path

This analytic is easiest to understand: Viewing a transaction as a trust rela-
tionship, a path between two accounts is a series of trust relationships. The
central hypothesis we investigate is: trust in financial networks is transitive i.e.
if account x pays y and y pays z then can we view this a trust relationship between
x and z. This model is especially relevant for person-to-person payments. We
test whether this transitive notion of trust can be used to identify fraudulent
transactions. Specifically, we measure the length of the shortest chain of trans-
actions between the source and destination accounts and evaluate its ability to
discriminate between normal and fraudulent transaction. In effect the analytic
is the existence of a short path is indicative of a non-fraudulent transaction.

For directed transaction graphs, where each edge has a weight (value), there
are two possible notions of closeness: shortest path and shortest distance. Short-
est path treats all edges equally, and counts the length of the path that connect
two accounts. Shortest distance could weight this path with the transaction
value or any other metric. For any pair of transactions, we compute three short-
est paths: the direct shortest path from the source account to the destination;
the reverse directed shortest path, i.e., the path from the destination account to
the source and the undirected shortest path. An undirected shortest path may
exist even if there are no paths from the source to the destination or vice-versa.

Experimental Results. We evaluate shortest path metrics using a graph built
from four weeks of transactions and scoring transactions in the subsequent week
with it. The null hypothesis is: the shortest path feature does not statistically dis-
tinguish normal from fraudulent transactions. Over all periods, the null hypoth-
esis is rejected: the distribution of shortest paths for fraudulent transactions
compared to that of a sample of normal transactions differs significantly (χ2 for
p � 0.05). For each shortest path variant, we evaluate the intrinsic value of a
one-dimensional binary classifier at distinguishing between normal and fraud-
ulent transactions, producing a receiver operating characteristic (ROC) curve
illustrating the false positive and false negative tradeoffs. Figure 3 shows the dis-
tribution of the shortest path (in the graph constructed from the prior 4 weeks)

30 I. Molloy et al.

1 2 3 4 5 6 7 8 Inf
Distance from Source to Destination Account

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

 F
re

qu
en

cy

``Closeness'' Between Accounts
Random
False Positives
Fraud

(a) Shortest Path Distribution

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

89.32%

63.38%

ROC Curve

Random (0.95)
False Positives (0.82)

(b) Shortest Path ROC Curve

1 2 3 4 5 6 7 8 9 Inf
Distance from Source to Destination Account

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 F
re

qu
en

cy

``Closeness'' Between Accounts

Random
False Positives
Fraud

(c) Reverse Shortest Path Distribution

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

13.94%

32.34%

ROC Curve

Random (0.52)
False Positives (0.63)

(d) Reverse Path ROC Curve

Fig. 3. Distribution of shortest path for transactions during 2012-06-29 through 2012-
07-05 in graph constructed from the previous four weeks of transactions.

for transactions in the period of 2012-06-29 through 2012-07-05. The histograms
are scaled for the different populations. Normal and false positive transactions
show a clearly distinct statistical distribution compared to fraudulent transac-
tions. In this case, the shortest path binary feature is able to reduce false positive
rates by 63%!

The results for the reverse shortest path, a closeness measure for “repay-
ment”, is shown in Fig. 3. Reverse shortest path is the poorest performing of
the three illustrative measures, but still yields an almost 14% reduction in false
positives. Other time periods yielded equally impressive, or better, reductions
for shortest path.

Similar results are obtained for other time periods validating shortest path
as a good feature for fraud detection. In these periods, with the exception of
a fraudulent transaction where a prior relationship existed, a minimum of 39%
false positive reduction was obtained; the smallest improvement was 13.9% false
positive reduction using the reverse shortest path (and an AUC of only 0.52).
We have explored many variants such as building graph models from transac-
tions over a larger time period. In the 4-week graph models in Fig. 3 there is
a small percentage (about 5%) of normal transactions whose endpoints don’t
appear in the 4 week graph i.e. the accounts were inactive for the previous four
weeks. This impacts the accuracy of classifiers we can build with this feature.
Building models with larger windows of transactions will reduce the number of
inactive accounts: building a graph model from 10 weeks of transactions from
June 1, 2012 through Aug 16, 2012 reduces the number of inactive accounts to

Graph Analytics for Real-Time Scoring of Cross-Channel 31

1 2 3 4 5 6 7 184 Inf
Distance from Source to Destination Account

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
N

o
rm

al
iz

ed
 F

re
q

u
en

cy
``Closeness'' Between Accounts

Random

False Positives

Fraud

(a) Shortest Path Distribution

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
u

e
P

o
si

ti
ve

 R
at

e

ROC Curve

Random (0.92)

False Positives (0.80)

(b) Shortest Path ROC Curve

Fig. 4. Distribution of shortest path for transaction in the period 2012-08-17 through
2012-08-23 using a ten-week graph model

about 1.8%. As Fig. 4 shows, scoring two weeks of subsequent transactions with
this graph model displays the same statistical discrimination. Note however that
there is a fraudulent transaction where the endpoints conducted a valid trans-
action before. A longer version of this paper will report on discrimination using
shortest distance weighting by the value of the edge. These results show that
shortest path and distance and their variants provide excellent discrimination
between normal and fraudulent transactions.

5.2 Strongly Connected Components

A strongly connected component (SCC) is a subgraph such that all pairs of
vertices are connected. We use SCC as a notion of bi-directional transitive trust:
when account x pays account y, if x and y are in the same strongly connected
component, then, in theory, money already flows from x to y, and money flows
from y back to x. When there exists a path from x to y, yet there is no return
path, we can view y as a sink account. Paying money into sink accounts could be
risky and we suspect such sink account (or entire subgraphs) to be suspicious.
However, these may be external accounts for which we do not have visibility.

We evaluate the following aspects of strongly connected components: size and
distribution of SCCs, impact of window size on SCCs, whether the two accounts
involved in a transaction are members of the same SCC.

The sizes of strongly connected components naturally follow a powerlaw and
the size of the largest components increases with the length of the time window.
Unlike other clustering methods, adding a new transaction can only merge two
SCCs into one, making it easily adapted to real-time applications and SCC num-
bers can be stored and later looked up. This is important because the smaller the
component, the less likely the two randomly selected accounts will be members
of the same SCC.

Transactions and Strongly Connected Components. We use strongly
connected component for identifying fraudulent transactions and reducing false
positives based on the hypothesis that transactions within an SCC are less likely

32 I. Molloy et al.

to be fraudulent than transactions than span two strongly connected compo-
nents. Such edges (transactions) in graph theory are known as bridges.

To evaluate, we build graphs for one- two- and four-week windows that
advance one week at a time. Next, transactions for a target period are scored
against the strongly connected components and placed into one of four cate-
gories: the source and destination accounts are in the same SCC; source end
destination accounts are in different strongly connected components, but a prior
transaction exists; source and destination accounts are in different strongly con-
nected components and a prior transactions does not exist; either the source or
destination accounts was inactive and is not a member of any strongly connected
component.

The results from our ten week experiment are shown in Fig. 5, clearly illus-
trating that two accounts are more likely to be in the same SCC, or have a
prior transaction, for the benign transactions than the fraudulent transactions
(the null hypothesis is rejected). We also measure the increase in conditional
probability given which of the four classes the transaction falls into. We summa-
rize these results using the conditional probability gain by grouping all graphs
(one, two, four, and ten week windows) based on their duration in Table 1. We
can clearly see that the majority of fraudulent transactions occur where one of
the endpoints was previously inactive or the accounts are members of different
strongly connected components.

Different

Prior

Same

Inactive

Random

Different

Prior

Same Inactive

False Positives

Diffe rent
Prior

Same

Inactive

True Fraud

Fig. 5. SCC results for transactions 2012-08-
17 through 2012-08-30 on graph from prior ten
weeks.

Table 1. Conditional
probability gain from SCCs.

Window size Gain

1 0.58
2 1.02
3 2.68
4 2.13

10 4.88

5.3 Page Rank

PageRank [6] is an algorithm for measuring the importance and trust in accounts,
originally developed to model the importance of web pages. In our graphs PageR-
ank measures the reputation of an account in terms of the payments made to
it. Our hypothesis is that accounts with a high PageRank are less likely to be
fraudulent. In the PageRank algorithm, an account evenly distributes its own
PageRank to the accounts it pays, and the algorithm iterates until convergence:
PR(u) = 1−d

N + d
∑

v∈P (u)
PR(v)
|P (v)| , where P (u) is the set of accounts u pays and

d is a damping factor. Originally, the damping factor modeled the probability a
random web surfer stops on a page. In financial transactions, the damping fac-
tor can be used to model an account saving. We use a default constant damping
factor of 0.85; future work will explore using a per-account damping factor based
on past spending behavior.

Graph Analytics for Real-Time Scoring of Cross-Channel 33

22 20 18 16 14 12 10 8 6 4
Log of Page Rank of Destination Account

10
-2

10
-1

10
0

N
or

m
al

iz
ed

 F
re

qu
en

cy

Random
False Positives
Fraud

Fig. 6. Distribution of PageRank for transactions during 2012-06-29 through 2012-07-
05 in graph constructed from the previous four weeks of transactions.

PageRank can be used either unweighted or weighted. In the weighted form,
the distribution of an account’s PageRank to its neighbors can be made pro-
portional to the transaction amount. Alternatively, we could weight edges based
on the number or frequency of the transactions. This may not be accurate as
it is possible to send messages and hence use mobile payments as a chat ser-
vice with AC0.01 transactions. However, since frequent payments can indicate a
level of trust, future work will investigate this method of weighting edges. We
experiment with four different versions of PageRank: Forward unweighted, For-
ward weighted, Reverse unweighted, Reverse weighted. In the reverse forms, we
reverse the directions of the transactions with the intuition that accounts per-
forming many transactions are less likely to be in fraudulent transactions. We
evaluate all four forms of PageRank against the same sample graphs used to
evaluate shortest path: compute PageRank on a four-week graph and use that
to score transactions from the subsequent week. In each case, we use PageR-
ank of the source and destination accounts and evaluate the following question:
does the PageRank for victims or destination account of fraud follow a different
distribution than randomly selected accounts?

Figure 6 shows an example of how PageRank of the destination discriminates
between normal and fraudulent transactions which is also seen in other periods
evaluated. Table 2 shows the average performance of using the variants of the
PageRank algorithm The unweighted PageRank of the destination produces a
respectably average 39.3% reduction in false positives (ranging from 22–48%).
Using the weighted version improves the reduction to 44.54% on average. The
reverse PageRank of the source produces less impressive but useful reduction of
16.98% on average and 17.70% for the weighted version.

5.4 Clustering

We use clustering techniques to discover accounts which have similar profiles
e.g. connectedness and transactional patterns, and score transactions based on
whether they are consistent with the cluster. In particular, we use prior models
of inter-cluster transaction likelihoods to score the transaction risk. We explore
different features for clustering, each providing a different perspective on the
data: basic features of vertices such as the number of outgoing edges, distinct

34 I. Molloy et al.

Table 2. PageRank Results

Feature evaluated Average ZER Average AUC

PageRank of destination 39.575% 0.760

Weighted PageRank of destination 44.54% 0.788

Reverse PageRank of source 16.98% 0.625

Weighted reverse PageRank of source 17.70% 0.652

destinations, incoming edges and accounts, types of edges (external, foreign,
etc.); egonet features are extracted from the egonet of a vertex including weight
and number of all transactions, number of distinct transactions of each type,
number of nodes of each type etc.; connectivity features represent transactional
information. We build an undirected graph where vertices denote accounts, and
edges represent transactions. The edges are weighted by a function of the number
of transactions and the total transaction amount between the two accounts.

Clustering algorithms: We use the BIRCH (Balanced Iterative Reducing and
Clustering using Hierarchies) [30] algorithm to cluster basic and egonet features
since they represent accounts as vectors in a multi-dimensional space. BIRCH is
an algorithm which performs hierarchical clustering over a very large data-set,
and is known to handle well very large and noisy data sets. We use the Markov
Cluster (MCL) algorithm [28] to cluster nodes connected to endpoints similarly
based on the connectivity features. MCL is a fast and scalable cluster algorithm
for graphs based on simulation of random flow in graphs.

Cluster evaluation: Since known class membership labels are not available, we
measure the results by cluster quality: how homogenous the clusters are and how
well clusters are separated. Another measure is cluster stability across different
time periods. We evaluated these strategies against the 1-week and 4-week trans-
action graphs. The produced clusters have excellent homogeneity, separation and
stability for both egonet and basic features. We defer the detailed cluster eval-
uation figures to a longer version of the paper.

Using Clusters for Scoring: We hypothesize that accounts in the same cluster
will have similar spending habits, i.e., pay similar accounts. We test this by
investigating the inter-cluster transitions i.e. for all transactions from source
accounts in the same cluster, we measure the distribution of the destination
account clusters. We evaluate whether cluster-to-cluster distribution for fraudu-
lent transactions deviates from that obtained by the false positives and random
transactions. We show a single result leaving the rest to a longer version of the
paper. We observed such spikes across multiple time periods for the clusters
produced using the basic features. However, almost all fraudulent transactions
are inter-cluster with egonet features, limiting its ability to score transactons
(Fig. 7).

Graph Analytics for Real-Time Scoring of Cross-Channel 35

0 50 100 150 200 250 300 350 400 450
Destination Account Cluster

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
re

qu
en

cy

Cluster Transition Give Source Account in Cluster 0

Random
False Positive
Fraud

(a) Cluster 0

0 50 100 150 200 250 300 350 400 450
Destination Account Cluster

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
re

qu
en

cy

Cluster Transition Give Source Account in Cluster 1

Random
False Positive
Fraud

(b) Cluster 1

Fig. 7. Outgoing cluster transitions illustrating anomalous spikes for fraudulent
transactions.

5.5 Egonet Features

Egonets, or subgraphs of radius two centered around a single account (the ego
node) yield features similar to those obtained from the basic analysis. The egonet
includes any transaction between the neighbors of the ego node, making concepts
such as “incoming” and “outgoing” transactions and accounts, as used in the
basic features, less meaningful. However transactions may be classified as those
including the ego node, and those strictly between the neighbors of the ego node.
Egonets have been studied extensively for anomaly detection in social network
graphs and corporate graphs. For example, egonets have been used to analyze
the Enron email corpus [16], political donations, and blogs. We investigate the
use of a suite of egonet based anomaly detection features called OddBall [2].
OddBall explores powerlaws that exist between properties of an egonet: For
example, in an undirected graph, the number of edges in an egonet of n vertices,
is bound between n − 1 and n ∗ (n − 1), giving a powerlaw between 1 and 2
approximately. OddBall analyzes such relationships for common properties of an
egonet, computes powerlaws, and identifies anomalies that deviate significantly
(are far from a regression line) or are in areas of low density (are not near other
accounts when plotted by egonet properties). Several properties of egonets are of
interest, mainly the number of nodes, the number of edges (total and distinct),
the total weight of the edges, and the principal eigenvalue.

We evaluated how well OddBall performs at identifying accounts involved in
fraudulent transactions, either the victim or the fraudster. The results indicate
egonets are a poor indicator of malicious activity in financial networks, however
they were successful in identifying several anomalous accounts. Figure 8 presents
a scatter plot of two properties of an egonet, egonode was involved in fraud
(green squares and red triangles), and the anomalies (yellow triangles). These
anomalous accounts are actually vostro accounts, accounts for other banks held
for accounting purposes, and should not be considered malicious.

36 I. Molloy et al.

Vostro Accounts

To
ta

l E
go

ne
t W

ei
gh

t

Number of Accounts in Egonet

Fig. 8. OddBall anomalies identifying vostro accounts. (Color figure online)

6 Scalability

This section briefly discusses the scalability of the graph analytics discussed.
To be effective in practice, a fraud detection algorithm must be able to score
all transactions, in real-time (under 100 ms). Any property that depends on a
single account, such as which SCC the account belong to, or the PageRank, can
be precomputed. Properties that require the pair of accounts, such as the shortest
path, are prohibitive to precompute and store, and must be computed in real-
time. For large graphs, however, a single shortest path query can be costly; in
some of our experiments exceeding 30 s. To handle throughput, we seek solutions
which don’t require massive parallelism or special hardware.

Architectural differences, such as faster processors and memory, typically
yield a 2–8x performance increase, falling short of our goals. By bounding the
maximum length of the paths, we can ensure that most queries are returned in
sufficient time, however graphs and accounts with high branching factors still
yield queries that are exhaustive and search the entire graph. Instead, we use
approximation algorithms that store minimum spanning trees for a select sub-
set of vertices, in an approach similar to other approximate algorithms [1,15].
Unlike [1], we store a small number (100) of spanning trees, reducing pre-
computation time from hours to minutes, and drastically reducing storage costs.
To improve approximations that aren’t the result of intersections between two
spanning trees, we perform a breadth first search that caps the number of edges
evaluated to ensure termination in a few ms. Our experiments used Neo4J, a
graph database for storing and processing some of the data, but the performance
was inadequate. We store computed features in MongoDB, and use graph-tool,
a Python Boost graph library package, for some algorithms, such as PageR-
ank. Our shortest path approximation was implemented in C++. All tests were
performed on an AMD Opteron 8439 with 256 GB RAM.

Graph Analytics for Real-Time Scoring of Cross-Channel 37

7 Classifiers

While our primary objective was to reduce the number of false positives, we
experimented with building classifiers, using only graph features evaluated and
computable in real-time. We restricted our classifiers to features derived from
SCC, PageRank, and shortest path (forward, reverse, and undirected). We divide
transactions into one month graphs and train a support vector machine (SVM)
classifier with a radial bias function (RBF) kernel on the first month and test on
the remaining data. All features are extracted from the graph pertaining to the
prior month and zero-mean unit-variance normalization is performed (relative to
the first month’s features). The results are shown in Fig. 9, which also indicates
how currently deployed analytics perform. Because the deployed analytics make
use of rules and blacklists, they cannot be parameterized and we can only rep-
resent them as a point on the ROC curve. These rules may reject transactions
due to failed PIN or TAN, known mule accounts, or phishing campaigns. Note
that the task here is different than previous sections, where the task was false
positive reduction (the positive class is benign) while here it is fraud detection
(positive class is fraudulent).

The results are clearly encouraging for the use graph features for fraud scor-
ing. Our highest performing classifier reached an AUC score of 0.93; higher than
the optimistic binary evaluations shown in the previous section. Importantly,
this implies the features some of the features are independent, and combining
them may yield better results. It is only built on three types of features: shortest
path, SCC, and PageRank, but identifies many fraudulent transactions missed
by the deployed analytics. The classifiers here built on graph feature alone cur-
rently yield too many false positives to be deployed in practice. However, graph
models contribute a new set of features and we expect that ensemble classifiers
built from these and traditional features to be substantially more accurate.

Fig. 9. Classifier performance using only graph features: Shortest path and SCC (blue),
adding BFS query properties (green), and adding PageRank (red). (Color figure online)

38 I. Molloy et al.

Further work is needed on selecting the optimal time window, or windows, for
producing graphs. The same one-month graph is used to score a month’s worth
of transactions, and not one week as we used previously. Here we observed a drop
in AUC scores for the shortest path features, from 0.95 to 0.67 for example, but
by combining all shortest path computations we were able to improve to an AUC
of 0.888. Of course, best results are expected with ensembles of graph features
and current fraud scoring mechanisms.

8 Conclusion

We have described a new approach to cross channel fraud detection based on
graph analytics. Our results show that graph features can provide excellent
discrimination between fraudulent and normal transactions. This strengthens
our belief that graphs of financial transactions form accurate representations of
actual social communities and relations. We expect that improvements in the
scalability of graph analytics, this new approach can be a feasible solution to
enhance the accuracy of fraud detection. Further, they offer a default fraud model
for all new transaction channels. We expect that graph models will also be ben-
eficial to applications such as commercial banking and anti-money laundering.

References

1. Agarwal, R., Caesar, M., Godfrey, B., Zhao, B.Y.: Shortest paths in microseconds.
CoRR, abs/1309.0874 (2013)

2. Akoglu, L., McGlohon, M., Faloutsos, C.: Anomaly Detection in Large Graphs.
Technical Report CMU-CS-09-173, Carnegie Mellon University, November 2009

3. Aleskerov, E., Freisleben, B., Rao, B.: CARDWATCH: a neural network based
database mining system for credit card fraud detection. In: IEEE/IAFE 1997 Com-
putational Intelligence for Financial Engineering (CIFEr) (1997)

4. Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S., Anderson, R., Chip,
S.: Cloning EMV cards with the pre-play attack. In: 2014 IEEE Symposium on
Security and Privacy (SP), pp. 49–64 (2014)

5. Brause, R., Langsdorf, T., Hepp, M.: Neural data mining for credit card fraud
detection. In: 11th International Conference on Tools with Artificial Intelligence,
TAI 1999, pp. 103–106 (1999)

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998). Proceedings of the Seventh
International World Wide Web Conference

7. Brown, A., Divitt, D., Rolfe, A.: Card fraud report 2015. Technical report, Alaric,
March 2015

8. Duman, E., Elikucuk, I.: Solving credit card fraud detection problem by the new
metaheuristics migrating birds optimization. In: Rojas, I., Joya, G., Cabestany,
J. (eds.) IWANN 2013. LNCS, vol. 7903, pp. 62–71. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38682-4 8

9. Fader, P.S., Hardie, B., Lee, K.L.: RFM and CLV: using iso-value curves for cus-
tomer base analysis. J. Mark. Res. 42(4), 415–430 (2005)

http://dx.doi.org/10.1007/978-3-642-38682-4_8

Graph Analytics for Real-Time Scoring of Cross-Channel 39

10. FICO: FICO Falcon Fraud Manager for Debit and Credit Card. Technical report,
FICO (2012)

11. fiserv: fiserv: Compliance & fraud management (2015). https://www.fiserv.com/
risk-compliance/financial-crime-risk-management.aspx

12. Gong, N.Z., Frank, M., Mittal, P.: SybilBelief: a semi-supervised learning approach
for structure-based sybil detection. IEEE Trans. Inf. Forensics Secur. 9, 976–987
(2014)

13. Gong, N.Z., Xu, W., Huang, L., Mittal, P., Stefanov, E., Sekar, V., Song, D.:
Evolution of social-attribute networks: measurements, modeling, and implications
using Google+. In: The 2012 ACM Conference, pp. 131–144. ACM, New York,
November 2012

14. Grier, C., Thomas, K., Paxson, V., Zhang, M.: @spam: the Underground on 140
Characters or Less. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security, pp. 27–37 (2010)

15. Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estimation
of shortest paths in large graphs. In: CIKM 2010: Proceedings of the 19th ACM
International Conference on Information and Knowledge Management, pp. 499–508
(2010)

16. Klimt, B., Yang, Y.: The enron corpus. In: ECML, pp. 217–226 (2004)
17. Chandy, R., Faloutsos, C., Akoglu, L.: Opinion fraud detection in online reviews by

network effects. In: International AAAI Conference on Weblogs and Social Media,
pp. 1–10, April 2013

18. Maes, S., Tuyls, K., Vanschoenwinkel, B.: Credit card fraud detection using
Bayesian and neural networks. In: Proceedings of the 1st International NAISO
Congress on Neuro Fuzzy Technologies (2002)

19. Mislove, A., Marcon, M., Gummadi, P.K., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Internet Measurement Com-
ference, pp. 29–42 (2007)

20. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is broken. In:
2010 IEEE Symposium on Security and Privacy, pp. 433–446. IEEE (2010)

21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://
bitcoin.org/bitcoin.pdf

22. NICE: Nice actimize: Fraud detection & prevention (2015). http://www.
niceactimize.com/fraud-detection-and-prevention

23. RSA: RSA Discovers Massive Boleto Fraud Ring in Brazil. Technical report, EMC,
July 2014

24. Saini, S., Chang, J., Jin, H.: Performance evaluation of the intel sandy bridge
based NASA pleiades using scientific and engineering applications. In: Jarvis, S.A.,
Wright, S.A., Hammond, S.D. (eds.) PMBS 2013. LNCS, vol. 8551, pp. 25–51.
Springer, Cham (2014). doi:10.1007/978-3-319-10214-6 2

25. Sánchez, D., Vila, M.A., Cerda, L., Serrano, J.M.: Association rules applied to
credit card fraud detection. Expert Syst. Appl. Int. J. 36(2), 3630–3640 (2009)

26. Shen, A., Tong, R., Deng, Y.: Application of classification models on credit card
fraud detection. In: 2007 International Conference on Service Systems and Service
Management, pp. 1–4. IEEE (2007)

27. Syeda, M., Zhang, Y.-Q., Pan, Y.: Parallel granular neural networks for fast credit
card fraud detection. In: 2002 IEEE World Congress on Computational Intelligence,
2002 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2002, pp. 572–
577. IEEE (2002)

28. van Dongen, S.: Graph Clustering by Flow Simulation. Ph.D. thesis, University of
Utrecht (2000)

https://www.fiserv.com/risk-compliance/financial-crime-risk-management.aspx
https://www.fiserv.com/risk-compliance/financial-crime-risk-management.aspx
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.niceactimize.com/fraud-detection-and-prevention
http://www.niceactimize.com/fraud-detection-and-prevention
http://dx.doi.org/10.1007/978-3-319-10214-6_2

40 I. Molloy et al.

29. Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akoglu, L., Snoeck, M.,
Baesens, B.: APATE: a novel approach for automated credit card transaction fraud
detection using network-based extensions. Decis. Support Syst. 75, 38–48 (2015)

30. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering
method for very large databases. ACM SIGMOD 25(2), 103–111 (1996)

Android UI Deception Revisited:
Attacks and Defenses

Earlence Fernandes(B), Qi Alfred Chen, Justin Paupore,
Georg Essl, J. Alex Halderman, Z. Morley Mao, and Atul Prakash

University of Michigan, Ann Arbor, USA
{earlence,alfchen,jpaupore,gessl,jhalderm,zmao,aprakash}@umich.edu

Abstract. App-based deception attacks are increasingly a problem on
mobile devices and they are used to steal passwords, credit card num-
bers, text messages, etc. Current versions of Android are susceptible to
these attacks. Recently, Bianchi et al. proposed a novel solution “What
the App is That” that included a host-based system to identify apps to
users via a security indicator and help assure them that their input goes
to the identified apps [7]. Unfortunately, we found that the solution has
a significant side channel vulnerability as well as susceptibility to click-
jacking that allow non-privileged malware to completely compromise the
defenses, and successfully steal passwords or other keyboard input. We
discuss the vulnerabilities found, propose possible defenses, and then
evaluate the defenses against different types of UI deception attacks.

1 Introduction

App-based user-interface (UI) attacks pose an increasing threat to smartphone
users [9,29,30]. In such attacks, a malicious app tricks the user into entering
sensitive input into a window the malware controls or providing incorrect input
into a window the malware does not control. UI attacks are particularly serious
since they collect or control information at the end point closest to the user.
Once a malicious app gets a foothold on a mobile device, it is possible for it
to steal credentials and cause the user to grant additional privileges, totally
compromising the device.

One class of such attacks is app-based phishing. For example, svpeng is a
malicious mobile app that deceives the user into providing sensitive informa-
tion, including bank credentials and credit card numbers, to a window that the
attacker controls (see Fig. 1). This deception can be stealthy and convincing due
to the rich ways in which modern mobile apps share the screen. We discuss other
types of attacks in Sect. 2.

UI deception attacks are possible due to two primary reasons: (a) The smart-
phone GUI environment is complex and allows for intricate interactions between
GUIs to support a multitude of use cases, and (b) Users cannot verify the prove-
nance of an app (or window) they are interacting with. A few approaches have
been attempted to defend against these attacks, for example DECAF [23] uses

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 41–59, 2017.
DOI: 10.1007/978-3-662-54970-4 3

42 E. Fernandes et al.

dynamic app exploration to detect ad UI fraud, and Liu et al. [24] use OCR tech-
niques to automatically detect spoofed keyboards. However, these techniques are
limited to specific types of UI attacks, and are usually based on heuristics and
not foolproof.

A more general defense approach against UI deception was recently proposed
by Bianchi et al. and involves a two-layered defense consisting of a static analysis
and a runtime security indicator modeled after the well-known HTTPS lock icon
and EV infrastructure [7]. Bianchi et al. conducted a user study that established
that the security indicator helped 76% of users correctly identify UI deception
under a particular attack setting.

Since Bianchi et al. strike directly at the root cause of the problem—lack
of attribution, we believe this is the right approach to tackling UI deception.
Therefore, our aim is to investigate the security properties of this defense in
further detail.

The first part of our work finds that the state-of-the-art defense is still vul-
nerable to a subtle form of clickjacking attack that we built. Our clickjacking
attack exploits a race condition and uses a newly discovered IPC side-channel to
precisely time the display of attack windows to steal user input without causing
any change in the visualization of the security indicator.

The second part of our work discusses challenges in achieving a secure defense
against UI deception. The primary challenge is ensuring temporal integrity of
the security indicator in a seamless and correct way. To that end, we introduce
the concept of an Overlay Mutex, whose purpose is to give the user a guarantee
that no other windows may interfere with the current GUI the user is interacting
with. The following are our contributions:

1. New Attacks: We analyze the security of a state-of-the-art defense against
UI deception and discover a subtle class of clickjacking attacks. Furthermore,
we introduce a new IPC-based side-channel on Android and use it to elude
security checks proposed in prior defenses. To the best of our knowledge, this
is the first known exploitation of Android Binder IPC statistics to enhance
UI deception (Sects. 3 and 4). We have uploaded demo videos [13], and proof-
of-concept code [1] of our work.

2. New Defenses: We introduce the Overlay Mutex as a UI stack modification
and discuss how it achieves temporal integrity for the security indicator, even
in the presence of sophisticated, side-channel based clickjacking attacks. Our
design is intended as an addition to the work of Bianchi et al., thereby extend-
ing the state of the art in UI deception defense (Sect. 5).

3. Evaluation: We evaluate our defense against known UI deception and against
our new side-channel based clickjacking attack and find that the overlay
mutex successfully ensures temporal integrity of the security indicator, help-
ing to block clickjacking attacks.

2 Threat Model and Example UI Attacks

Our threat model assumes that the Android OS is not compromised via root
exploits. Malicious apps are assumed to be unprivileged, which is the norm

Android UI Deception Revisited: Attacks and Defenses 43

Fig. 1. The svpeng malware overlays
Google Play with a phishing window
soliciting credit card details.

Activity 1

Activity 2

Activity 1

Activity 2

Bank Login

Fake Login

Activity 1

Activity 2

Bank Login

Topmost Activity
=>
Foreground Activity

t1 t2 t3 t4

Bank Login

Foreground Activity

User launches
genuine bank
app

Fig. 2. An attack scenario to steal banking
passwords. Alice launches the genuine bank
app at t1. Mallory, the attacker, detects a
change in the activity stack at time t2 and
immediately injects the fake login activ-
ity at t3. After Alice provides the pass-
word, Mallory’s fake login activity removes
itself simulating a failed login attempt and
reveals the real login activity. Ideally, Mal-
lory wants (t2–t1) and (t3–t2) to be small.
Real attacks achieve this in approximately
45 ms.

on Android. Prior work showed that even unprivileged apps on Android can spoof
other apps to steal input, overlay windows of other apps, and perform activity
hijacking attacks to inject overlay windows when passwords are entered [7,11,17].
We also note that Trojan apps have been successfully distributed on the Play
Store [22,33]. We assume that soft-keyboards are not compromised or malicious.
Recent research has made strides in achieving this goal [10]. We now discuss exam-
ples of powerful attacks that are possible under our threat model.

Direct Phishing. This type of attack pops up a window soliciting sensitive
information, such as passwords, by presenting a malicious window (only associ-
ated with a background service) that looks exactly like a trusted app window. A
sophisticated example of this attack is mentioned by Felt et al. [8], where a mali-
cious app embeds a Facebook Like button. When the user clicks on this button,
the attacker presents a malicious Facebook login window copy and steals login
information. Other variants involve displaying attack windows out of context to
the user and mimicking trustworthy screens.

Activity hijacking. A recently discovered malware strain—Trojan-Banker.
AndroidOS.Svpeng.A [21], a member of the well-known svpeng family performs
context-sensitive phishing. Figure 1 is a screenshot of the attack in action. Once
on the device, it waits until the screen displays the AssetBrowserActivity of
the genuine Play Store and then pre-empts the UI to display its fake version of
the authentic credit card dialog.

The general structure of such attacks is shown in Fig. 2. The crucial parts
involve detecting a state-change in the UI and precisely timing the launch of
a spoofed activity soliciting credentials. This kind of attack is context-sensitive

44 E. Fernandes et al.

because users are lulled into a false sense of security since they are within a
genuine app. However, the attacker deceives users through a quick and well-
timed overlay [3,4,12]. Unprivileged malware can also use a recently discovered
side-channel that leaks UI state transitions to build precisely timed UI deception
attacks [11].

Clickjacking. In a classic clickjack attack, an attack UI element is displayed
just in time to steal a portion of user input without alerting the user [5,20].
On Android, different kinds of clickjacking is possible. Attackers can use Toast
windows (transient windows) to steal input and let that input passthrough to the
underlying window. Attackers can also randomly display transparent windows
that grab input and do not let it go to the underlying window, thus stealing
portion of the input and simulating a random failure that explains why an input
did not appear on the underlying window. This attack is interesting because
even in the presence of security indicator-like defenses, users might miss changes
because the attack relies on quickness of UI transitions and the inability of the
human motor system to easily cancel actions once issued [5].

3 What the App Is That?

Recently, Bianchi et al. introduced a defense against UI deception [7] (What the
App is That—WhatTheApp for short in this paper). This system consists of two
portions: (1) a static analysis portion that is used to flag apps that may perform
UI deception attacks for execution at an App Store and (2) a security-indicator
based Android system in which apps are EV-certified and the security indicator
provides a visual indicator of any UI deception attempts by background apps.
Bianchi et al. note that while the static analysis may catch some instances of UI
deception, the analysis is intended as a market-level tool and not as a complete
defense against UI deception. In fact, the XCodeGhost attack on the Apple
vetting process is clear evidence that on-device solutions are necessary [2].

Bianchi et al. address that need by including an on-device defense mech-
anism, partly based on the security indicator design of the HTTPS lock icon
and EV bar in browsers. They propose a clever security bar for mobile devices
that uses a reserved portion of the screen to identify the top activity to users
as well as indicate via a lock icon whether the display is tampered with (Fig. 3).
They conducted a human subjects study where 76% of participants correctly
determined when UI deception attacks took place under an attack setting.
Based on a security indicator design in [17], the security bar consists of a security
image only known to the OS to further prove the authenticity of the indicator.
Based on the HTTPS lock icon, they included a lock icon which could be green
(no tampering of display contents), yellow (display possibly tampered with), or
red (non-certified app executing).

Listing 1.1 shows the core logic for managing the contents of the bar, based
on the code that they have publicly released for their system. This core logic
executes once per second and determines the color of the lock icon and the
identity of the app the user is interacting with. The logic works as follows:

Android UI Deception Revisited: Attacks and Defenses 45

Fig. 3. WhatTheApp visualization for various screen states. The first image is for
system apps, the second for a verified app, the third is shown when a window is over-
layed on a verified app and the last visualization is when an unverified app is opened.
(Color figure online)

1 //execute every second
2 LockStatus getVerificationStatus() {

3 if (topActivity identity is SYSTEM)
4 return GREEN_LOCK_ICON
5 else

6 {

7 if(topActivity identity is not VERIFIED)
8 return RED_LOCK_ICON
9 else if(topActivity identity is VERIFIED)

10 {

11 if(current WindowStack only contains windows of topActivity and SYSTEM)
12 return GREEN_LOCK_ICON
13 else

14 return YELLOW_LOCK_ICON
15 }

16 }

17 }

Listing 1.1. Logic of UI defense proposed
in [7].

Table 1. Effect of a transient window
when the user is in a verified app.

Condition Visualization

Verified app Green Lock Icon,

Verified App Identity

Malware window

appears

Yellow Lock Icon,

Verified App Identity

Malware window

hidden

Green Lock Icon,

Verified App Identity

(a) if the top activity is owned by SYSTEM, it displays a green lock and an
indicator displaying “ANDROID.” Thus, the user should be able to trust that
the input provided will go to a system application. (b) Otherwise, it verifies
whether the app for top-level activity is EV-certified. If not, a red lock icon is
displayed (i.e., an unverified app is the top activity). Otherwise, the name of
the app from the EV certificate is displayed. An additional check is made to
ensure that all the windows in window stack are owned by the verified app. If
not, a yellow lock is displayed. Otherwise, a green lock is displayed. Green lock is
meant to convey to the user that the entered input will go to the app identified
in the security indicator. We found the prototype code to be consistent with the
paper.

46 E. Fernandes et al.

4 WhatTheApp Vulnerabilities—Timing Attacks
and Side Channels

Design choices that lead to attacks. The WhatTheApp design choice to
verify the screen contents at a particular frequency embodies the time-of-check-
time-of-use design flaw, because the screen contents can change just after a
check is complete, forcing the indicator to display stale information for the user.
Furthermore, the design choice to allow arbitrary window pre-emptions requires
the user to always be cognizant of indicator contents—prior research discusses
that users do not constantly pay attention to security indicators [15]. Ideally, a
user should only check an indicator once before commencing a security sensitive
operation.

Clickjack attacks. We found that a malware app can bypass the periodic check
in WhatTheApp by quickly rendering a rogue window on top of an app’s UI and
then hiding that window. Often, one tap on the soft keyboard is successfully
stolen. To the end user, this appears as a random fluctuation in input and the
user may not even notice the absence of a single character—missing input can be
auto-corrected or, for passwords, the user may simply retype the password on an
error. For passwords, as a result of malware stealing some characters, bruteforce
attacks become easier due to entropy reduction.

We tested all our attacks on an Android emulator running Android 4.4 with
WhatTheApp modifications, the same version as published by Bianchi et al.
To make the malware inject the rogue window only when password windows
were displayed, we used a previously known side channel on Android that is
described in [11] that allows monitoring the window transitions of other apps by
unprivileged malware.

In practice, we found the attack to be only partly effective since, at times,
the lock icon would turn yellow if the check logic of Listing 1.1 happens to trig-
ger while the rogue window is displayed (hand caught in the cookie jar, so to
speak). Our attack used the WindowManager.addView API to quickly create
attack windows whenever an app we wished to attack became a foreground app
and displayed the password window1. The detailed effect of showing and hiding
a malware deception window while a user is interacting with a verified app is
shown in Table 1.

Leveraging new side-channels. We discovered a new side-channel that makes
the previous attack very effective—in most cases, it was missed entirely by
WhatTheApp defenses. The side channel enables a background malware app to
discover whenever a security check occurs, enabling it to predict the approximate
time of the next check and thus precisely time the display of a phishing window
to occur during an interval prior to the next check. The end effect was that
malware could steal user’s input without causing any changes in their security
bar (the lock icon stayed green during our tests).

1 We chose to attack Facebook in our examples, though it could equally well have
been a banking app.

Android UI Deception Revisited: Attacks and Defenses 47

Our side channel exploits the publicly available information on the timing
of the binder IPC calls. Binder is the de facto Android IPC mechanism. The
security bar in WhatTheApp runs as its own process and makes a binder IPC
call to verify screen contents every second using a timer. A test malware app
monitored the timing of the binder IPC calls and inferred the ones that came
from the WhatTheApp security indicator. To the best of our knowledge, this is
the first exploitation of binder calls on Android for a side channel.

In particular, binder IPC calls are referred to as binder transactions. In a
single call-return IPC, there is one transaction for the outgoing call and one
transaction for the incoming reply. The binder kernel driver publishes debugging
statistics to /sys/kernel/debug/binder. There are several publicly accessible
logging files under this directory. These files are present on factory images of real
devices. Of particular interest is the transaction log2 file that lists a history of
transactions occurring between processes on the system. Sample transaction logs
are shown in Listing 1.2. For every transaction, there is a line containing a debug
identifier, transaction type (call, reply, async), source process and thread id, des-
tination process and thread id, and other bookkeeping information. Therefore,
our test malware app can determine that a transaction occurred between two
processes, but it does not know the name of the called remote method. The sys-
tem server on Android hosts multiple important services, including the window
manager. Any process hosting UI makes several calls a second to the window
manager portion of the system server. Thus the attack app has to disambiguate
and locate the security check call by WhatTheApp from other events in the log.
1 587398: call from 1323:1455 to 1141:0 node 585 handle 34 size 72:0
2 587399: reply from 1141:1389 to 1323:1455 node 0 handle -1 size 212:4
3 587400: async from 1323:1323 to 928:0 node 1341 handle 22 size 80:0
4 587401: call from 1323:1323 to 928:0 node 2428 handle 38 size 100:0

Listing 1.2. Sample binder transaction logs. Each line corresponds to a single
transaction. Each line is of the form (debug id), (txn type), (source Pid/Tid), (dest.
Pid/Tid), (bookkeeping data). The first 2 lines contain relevant transaction logs from
the security bar to the security check service.

To do that, our test malware measured the sizes of the transaction data
and discovered that the call-reply transaction pair corresponding to the security
check had unique values for the sizes at approximately one second intervals. This
allowed the test malware to determine the transactions of the security indicator
(nav bar) display process and the security check service. The test malware then
measured the time intervals between transactions for these two processes by
sampling the log file at an interval of 50 ms. We determined that the interval
between consecutive events was approximately 1 s ± 600 ms. In some cases, the
error was upto 3 s. This error is due to scheduling policies, context switches, and
memory pressure. Thus, the side channel we discovered was relatively noisy.

2 At the time of writing, this file was publicly accessible to any app. Recently, the
current version of Android (Marshmallow) tightened its SELinux policy to prevent
arbitrary apps from accessing the file.

48 E. Fernandes et al.

1 void sideChannelAttack() {

2 while(shouldAttack()) {

3 TempTxnLog = getTxnLog("/sys/kernel/debug/binder/transaction_log")
4 (srcPid, destPid) = getPids("EVBar", "VerifierService")
5 TxnLog = filterLogs(srcPid, destPid)
6 if(TxnLog contains new transaction from srcPid to destPid)
7 {

8 delta = NOW - prev_txn_timestamp
9 if(delta >= 800 AND delta <= 1200)

10 show_attack_window(400)
11

12 prev_txn_timestamp = NOW
13 }

14

15 sleep(50)
16 }

17 }

18

19 boolean shouldAttack() {

20 TopOfStackActivity = readTopOfStack()
21 if(TopOfStackActivity == "com.facebook")
22 return true
23 else

24 return false
25 }

Listing 1.3. Control algorithm exploiting
Binder side channel.

Table 2. Effect of using a side channel to
predict attack times. Tests were run for 6
hours.

Condition Successful

attacks/total

attacks

%Success

No side channel (random) 5475/11199 48.8%

Side channel 9923/10783 92%

Experimentally, we found that the malware could overcome the noise in the
side channel by only performing attacks when the channel indicated relatively
stable time intervals between the checks (Listing 1.3). Our test malware com-
puted the time interval between the previously observed security check and the
latest observed security check. Ideally, we expect this delta to be close to 1 s
(based on public code for WhatTheApp). If the delta value was between 800 ms
and 1200 ms, then the malware assumed that side channel information was rel-
atively stable and it launched an attack window; otherwise, it waited for the
next stable interval. Thus, this algorithm is conservative and does not utilize all
possible intervals, only those that it deemed stable for attack. Experimentally,
we found this algorithm to be effective, as detailed below.

Quantifying the efficacy of the side channel. We conducted an experiment
to quantify how much the side channel helps improve the stealthiness of the click-
jack attack. On an Android device running WhatTheApp defenses, we deployed
a Facebook App and a background malware app (unprivileged). We launched
Facebook automatically and brought it to the login screen for 20 s, then exited
Facebook, slept a random amount of time (3 to 5 s) and repeated the process
(this was done automatically). The background app launched its attack when
Facebook’s login screen was up. It then overlayed an attack window fashioned
like a keyboard for 400 ms ten times during the 20 s interval. The aim was to
realistically simulate user login and a malware’s attempt to capture parts of the
password during the login without getting detected by WhatTheApp’s defenses,

Android UI Deception Revisited: Attacks and Defenses 49

which were executing all the time. This process was repeated for 6 h to give us
substantial amount of data for statistically valid results.

We compared two attack strategies (Table 2): (1) with no side channel infor-
mation on the security checks; and (2) with exploiting the new side channel
to predict the time till the next security check. The first strategy waited for
Facebook to start and then began an attack sequence where a clickjacking win-
dow is shown for 400 ms followed by a pause of 600 ms where no window a shown,
ten times with each 20-s duration when the Facebook’s login window was up.
Since the security check of WhatTheApp is 1 s apart, our random strategy aimed
to randomly synchronize with the security checks so that it could elude the check
for 10 consecutive clickjack events per login window display. We found that out
of a total of 11199 attack events, 5724 attack events were caught and marked as
yellow. This was generally consistent with our intuition in that if the first click-
jacking event evaded the check (60% odds, since the attack window was 400 ms
in each second), others were likely to evade as well in that attack window.

The side-channel strategy used the binder transaction statistics as an addi-
tional signal to help time the 400 ms long attacks. The process was same as the
above in other respects, except that the 400 ms attack was only launched when
dictated by the side channel. We again ran the experiment over 6 h with Face-
book configured identically. There were a total of 10783 attacks out of which,
only 860 were caught (i.e., security indicator’s lock turned yellow)3.

In summary, the random strategy, without side channel information, was found
to be successful approximately 48.8% of the time compared to 92% of the time for
the strategy using the binder log side-channel. Statistically, this is a significant
increase in stealthiness. Our attack demonstrations are available here [13]4.

Overlay attacks on a system window. Based on the code of the WhatTheApp
prototype (Listing 1.1, lines 3–4), we noticed that if the top activity was SYSTEM,
the green lock icon stays on all the time. This was the case even if a malware
window was layered on top of the system window. This enabled our test malware
to freely display attack windows over sensitive system apps such as the default
EMail client and WiFi password boxes and capture the input. We also tried this
attack using random show/hide durations and the lock icon visualization always
remained green. We believe this attack is possible due to an implementation flaw
in WhatTheApp—the defense does not inspect the identities of all windows on
the stack when the foreground window is of type SYSTEM.

3 There are slightly fewer attacks than the random strategy since the channel strategy
is conservative and chooses to let some intervals go without attack attempts rather
than to risk detection.

4 Our attack demonstrations in the video use a window type that captures input
without passing the input to the underlying window. We subsequently verified that
our attacks are feasible using toast windows, that allow input to be both captured
and passed to the underlying window; in this case the user will not notice missing
characters.

50 E. Fernandes et al.

5 Proposed Design

Addressing the problem we illustrated with the WhatTheApp UI defense turns
out to be tricky with some tradeoffs. We thus describe two solutions to the prob-
lem, with the first solution a variant of Bianchi’s solution to make it harder to
evade check logic and the second solution introducing an additional mechanism
to render window overlay attempts by background apps harmless. The second
solution is more robust from a security perspective, and thus more appropri-
ate for high-assurance environments, but it also limits some aspects of the way
Android apps are allowed to interact with users.

Before we describe the two designs, we note that this paper is not about the
design of security indicators. We assume that both designs that we are presenting
use security indicators in the style of WhatTheApp since end-users found them
to be effective according to a systematic user study conducted by Bianchi et al.
Instead, the goal of this paper is to provide systematic defenses against the newly
discovered vulnerabilities that are discussed in Sects. 3 and 4.

5.1 Design 1: Improving Attack Detection with Existing UI
Defenses

An obvious first step towards defense is to plug the newly discovered side
channel by preventing access to information in /sys/kernel/debug/binder to
apps. However, other side channels cannot be ruled out. There are other shared
resources (e.g., lock on the window manager) that could potentially leak tim-
ing data. A more robust strategy could be to randomize the security check time
intervals in WhatTheApp. Unfortunately, even that would not rule out successful
attacks. Some characters could still be stolen via clickjacking as intervals where
no checks take place would still exist.

Furthermore, transient windows like Toasts or Chat heads or Now-on-Tap-
style widgets occur in Android normally. Those would turn the lock yellow,
perhaps desensitizing a user to occasional occurrences of a yellow lock.

WhatTheApp has a potential implementation error where SYSTEM-owned win-
dows can be pre-empted without a change in indicator visualization because the
code assumes the system is safe if the top level activity is system-owned. A sim-
ple fix is to use the same logic for system windows that is used for other apps,
namely, checking that all activites in the stack are from the SYSTEM when the
top-level activity is SYSTEM. We confirmed that this fix helps, however, clickjack
attacks remain feasible.

Thus, overall, interceptions of user input by malware via clickjacking becomes
harder, but remains feasible, despite the additional defenses. The fundamental
problem is that short-duration clickjacking attacks can go undetected if they fall
between security checks.

5.2 Design 2: Secure Entry Mode Using an Overlay Mutex

Design 2 blocks clickjacking attacks while the soft keyboard is being used. In the
current proof-of-concept prototype, we focused on deploying the defenses of design

Android UI Deception Revisited: Attacks and Defenses 51

2 whenever the soft keyboard is used since that is a typical method for entering
passwords and sensitive input, leaving generalizations to other inputs as future
work. Note that our overlay mutex algorithms, however, are independent of the
specific mechanism used for activation. As in WhatTheApp, design 2 requires the
user to verify the green lock and app name in the security bar once, after a soft
keyboard comes up, but before entering any sensitive text input (e.g., a password).
UnlikeWhatTheApp, Design 2 guarantees that any keyboard input entered goes to
the identified app only, even if background malware attempts to perform clickjack
attacks to intercept input secretly by exploiting the binder side channel.

Overlay Mutex. To provide the guarantee, design 2 uses a novel security mech-
anism that we term overlay mutex designed as an addition to Android’s UI stack.
Overlay mutex utilizes an inter-process synchronization lock, as opposed to the
visual green/yellow lock in Bianchi et al. The overlay mutex is acquired and
released on behalf the foreground app, whenever the soft keyboard is shown and
hidden respectively. It provides the following invariant during the period that
an overlay mutex is held:

A background non-system app cannot overlay a window on top
of the foreground app’s window(s). Instead, an attempt to do so is
converted to a safe user notification.

On Android, the invariant has a significant implication with respect to the
ability of a background app to surreptitiously become the foreground app and
hijack input (see the Activity Hijacking attack discussion in Sect. 2). The net
result of the above is that a background app cannot tamper with the screen
in arbitrary ways, cannot become the foreground app unless the user explicitly
chooses to switch, and it cannot therefore intercept the input intended for the
foreground app. We elaborate on that below.

Background apps have three options to pre-empt foreground apps. Toasts are
customizable transient windows and Activities are full screen windows that can
be created by malicious apps. Also, arbitrary sized windows can be created and
added to the window hierarchy by directly invoking WindowManager.addView.

The overlay mutex mechanism prevents all pre-emption attack vectors. When
the overlay mutex is active, a background app’s request to display a window
is blocked. The active overlay mutex converts the pre-emption window into a
system-generated, fixed-size textual notification with the interrupting app’s iden-
tity. Our system displays the notification on the Android status bar at the top
of the screen. Since malware has no control over the size and placement of these
notifications, the ability of the background app to involuntarily cause a switch
or overlay a window in unexpected ways is taken away. Furthermore, the precise
timing of the switch is no longer under the control of the attacker. Upon seeing a
notification, users can voluntarily resume the pre-empting window by tapping on
the notification, after they have inspected the identity information—interrupts
are not lost, merely delayed. We do not think this is particularly limiting for
practical use in high assurance apps since other cues exist. Audio and haptic
alerts can serve to draw the user’s attention to the notification.

Overlay Mutex Algorithm. We discuss the logic of the Overlay Mutex in
the case of the Android operating system. The Overlay Mutex is two functions

52 E. Fernandes et al.

in the ActivityManager—EnterSecureMode and ExitSecureMode. Whenever
policy dictates that secure input should be available (such as when a key-
board is displayed), the EnterSecureMode function executes (Listing 1.6). First,
EnterSecureMode attempts to gain a synchronization lock maintained centrally
by the activity management service. The second step is to verify the identity of
the foreground app and update the visualization of the security indicator appro-
priately. The third step is to store a state variable CurrentVerifApp that is used
for checks during pre-emption attempts and finally release the activity manager
lock. ExitSecureMode simply resets the value of CurrentVerifApp.

If secure mode is disabled (CurrentVerifApp is null), windows can show up
at any point in time and the security indicator updates itself once a second to
reflect the current state of the display—no change from WhatTheApp.

Consider the case where secure mode is enabled (CurrentVerifApp is set
to an app’s package name) and a background process tries to display an activ-
ity, pre-empting the user’s current secure mode. If the background process is
the system, as a matter of policy, we let this pre-emption attempt succeed and
update our CurrentVerifApp state variable appropriately. The security indica-
tor updates itself in the usual way.

However, if the background service does not have the same package name
as the current verified app, then we hold that pre-emption attempt and instead
show a safe notification to the user (Lines 9–10, Listing 1.4). This provides the
Overlay Mutex security guarantee that windows of unrelated provenance will
not appear on the display.

Listing 1.4. StartActivity

1 void ActivityMgr.startActivity() {

2 ActivityMgr.lock()
3 if(CurrentVerifApp == NULL or
4 callerUID == SYSTEM or
5 callerUID == CurrentVerifApp.UID) {

6 newAct = showActivity()
7 updateTopStackActivity(newAct)
8 } else {

9 ConvertActivityToNotification()
10 ShowSafeNotification()
11 }

12 ActivityMgr.unlock()
13 }

Listing 1.5. Adding a window to the
display
1 status_code WindowMgr.AddView() {

2 retval = ERROR
3 ActivityMgr.lock() //IPC
4 if(CurrentVerifApp == NULL or
5 callerUID == SYSTEM or
6 callerUID == CurrentVerifApp.UID) {

7 showWindow()
8 retval = SUCCESS
9 }

10 ActivityMgr.unlock() //IPC
11 return retval
12 }

Listing 1.6. Entering and exiting
secure mode

1 void ActivityMgr.lock() {

2 lock(ActivityLock)
3 }

4

5 void ActivityMgr.unlock() {

6 unlock(ActivityLock)
7 }

8

9 void ActivityMgr.EnterSecureMode() {

10 ActivityMgr.lock()
11 CurrentVerifApp = getTopActivityId(’EV’)
12 updateSecurityBar(CurrentVerifApp)
13 ActivityMgr.unlock()
14 }

15

16 void ActivityMgr.ExitSecureMode() {

17 ActivityMgr.lock()
18 CurrentVerifApp = NULL
19 ActivityMgr.unlock()
20 }

Android UI Deception Revisited: Attacks and Defenses 53

Implementation Details. We prototyped the Overlay Mutex algorithms
on top of the released source code of WhatTheApp. We modified the
ActivityManagerService to create a synchronization lock and modified func-
tions related to creating windows on the screen—startActivity, Toast.show,
and addView. A noteworthy point with addView is that it directly adds windows
to the screen without an associated activity. If an addView call fails with error
(like in Listing 1.5), Android will not try again. We modified the Android in-
process helper library to retry adding a window upon receipt of an error from
the WindowManager. This ensures that addView will succeed at a later point once
the user exits secure mode.

6 Defense Evaluation

We analyzed existing UI attacks found in the wild. These attacks are repre-
sentative of the general set of techniques attackers use to launch UI attacks
and cover all classes discussed in Sect. 2. We tested and compared Design 2
with WhatTheApp against these attacks. Design 1 has similar limitations as
WhatTheApp, since it does not eliminate clickjacking attacks; it only makes
them less likely. We summarize the findings in Table 3 and discuss below.

Direct Phishing. Neither defense can prevent direct phishing where the top
activity itself engages in phishing. However, both will provide a security indicator
to alert users to the EV-certified identity of the app (if available) or indicate a
red lock. The behavior of the two solutions is identical. The user is expected
to verify the identity of the app and the lock status before entering input. We
tested this with the following attack on the Google Wallet SDK (AliPay SDK).
Alipay allows apps to fire an unrestricted intent to the Play Store to request
its use. Unfortunately, any app can intercept this intent with a high priority
receiver and instead become the foreground activity, as opposed to the Google
PlayStore, and solicit sensitive banking information. This is similar to Felt’s
intent hijacking example of direct phishing [8]. For defense, the users will need
to verify the security indicator in the security bar and realize that the activity
soliciting the information is not Google Play Store.

Activity Hijacking. The behavior of the Overlay Mutex with this attack
depends on the policy in use. In the most popular keyboard policy that we
discussed, if the hijacking is attempted while the user is performing input, then
the hijacking attempt is converted to a safe notification. We verified this with
Trojan-Banker.AndroidOS.Svpeng.A [21]. However, if the hijacking attempt
occurs during a time where the user does not have the keyboard up then, just
like WhatTheApp, the security indicator turns yellow and the attack becomes
user-detectable provided the user checks the indicator before a subsequent input
attempt. At this point, the user must not enter any input and should try again,
as is the case with WhatTheApp.

Clickjacking. Whenever the user is performing input using the soft keyboard,
the overlay mutex is active and catches pre-emption attempts converting them to

54 E. Fernandes et al.

safe notifications thus preventing clickjacking. In contrast, WhatTheApp allows
the pre-emption and updates the security bar visualization to a yellow unlocked
icon. Since the transition of the attack window is very fast, chances are high
that a user misses the change in the security indicator. Therefore, we mark
WhatTheApp in Table 3 as unreliably detected. In the case of the clickjacking
attack using our newly discovered side channel, as shown earlier (Sect. 4), the
security indicator does not change to yellow 92% of the time.

Table 3. Summary of findings from UI deception attacks tested on Android v4.4 using
our Overlay Mutex and WhatTheApp.

Malware behavior Overlay Mutex Bianchi et al. (verified
on prototype)

Direct phishing of another app’s data User-detectable User-detectable

Activity hijacking(e.g.,
Trojan-Banker.AndroidOS.Svpeng.A)

User-detectable User-detectable

Clickjacking without side channel Prevented Unreliably detected

Clickjacking with side channel info Prevented Not detected or only
rarely detected

Malware overlaying active system app
while user performing input

Prevented Not detected

Malware overlaying system app during user input. In a similar vein, if an
overlay mutex is active during user input into a system app, the pre-emption is
converted to a safe notification. However, WhatTheApp does not recognize any
overlays on top of system apps and the security indicator is green. Therefore,
WhatTheApp does not detect such attacks. A fix that we made to WhatTheApp
in this special case is to check the window stack just like it does for non-system
apps. If this attack were applied to the patched-WhatTheApp, then the security
indicator would display yellow and the attack will be user-detectable.

Microbenchmark Performance. Our overlay mutex solution changes window
creation to make two IPC calls and one lock/unlock sequence. We quantified the
overhead of these extra operations to determine the impact on interactivity using
a UI bench that created and removed a 200× 200 pixel window, 300 times. We
ran our benchmark on a Nexus 4 running stock Android 4.4 and Android 4.4 with
the overlay mutex’s secure mode active. We observed that, on average, it took
17.7upmus for a window to display on stock Android compared to 35.3upmus
on Android with our defense—a modest increase in window display time. For
comparison, launching an Android activity takes several hundred milliseconds.

App Compatibility. We manually tested popular apps by exercising common
functionality associated with each app on our overlay mutex prototype, and
observed whether any functionality failed. We used the following set and did not

Android UI Deception Revisited: Attacks and Defenses 55

observe any issues: standard (Messaging, Browser, Email, Search, Contacts),
social networking (Facebook, Twitter), communication and business (Skype,
TaxACT), banking (Chase, Bank of America), and top 2 free games (Angry
Birds, Trivia Crack). For instance, we brought up the keyboard in Facebook
(thereby gaining the Overlay Mutex), and initiated a Skype call from another
device. The overlay mutex caught the Skype-initiated pre-emption for an incom-
ing call, and later, when we clicked on the notification, the incoming call window
pre-empted Facebook. The caller side experienced a delayed call answer.

7 Discussion

The attacks in this paper concerned stealing key input, such as passwords, credit
card numbers, etc. However, clickjacking has a broader meaning—an attacker
could display malicious windows strategically placed over UI elements to confuse
the user. For example, a window placed over a permission listing screen can serve
misinformation to the user about the permissions a particular app requests, or
windows placed over “OK” and “Cancel” buttons can reverse their meaning.
Such attacks are possible in limited situations on WhatTheApp. In the case of
overlaying a system window, such attacks will go unnoticed. In the general case of
overlaying any window, a flickering effect will occur since the attacker has to add
and remove the attack window so that the security check does not turn yellow.
In the case of our overlay mutex, such attacks will be blocked, and converted to
notifications.

The iOS platform too has been a victim of recent UI deception attacks
[6,34]. These attacks exploit the lack of UI provenance. For instance, the common
iCloud popup password boxes are indistinguishable from fake ones. The recent
Android Marshmallow update does not offer any UI provenance or overlay mutex
mechanisms—UI deception attacks are still possible.

A limitation of our work is the lack of a usability study to assess effectiveness
of the defenses in practice and to determine whether users require training to
make effective use of the defenses. Another limitation is that the overlay mutex
mechanism could cause side-effects on functionality of existing apps or certain
use cases. While we did test a small set of apps manually, as future work, we
plan systematic testing of the mechanism with a larger set of apps [19].

8 Related Work

UI deception, or phishing, has a long history of attacks and defenses, initially
occurring in the context of browsers [14,15,26,31,32]. The fundamental issue
that attackers exploit is lack of provenance. Even when provenance exists, prac-
tice has shown that users’ lack of understanding of security indicators, visually
similar UIs, and lack of user attention conspire to make phishing attacks very
successful [15]. UI deception attacks also use other attack vectors as enhance-
ments, e.g., phishing emails are a common way to get users to visit phishing
pages [18].

56 E. Fernandes et al.

A large body of previous work has focused on various forms of UI attacks
on smartphone operating systems. Niemietz et al. introduced UI redress-
ing attacks [25], Felt et al. discuss phishing on mobile devices [16] and
Chen et al. [11] introduce a memory-statistics side channel that is used to
enhance classic activity hijacking attacks [3,4,12]. svpeng demonstrates that
UI deception occurs in the wild and uses the activity hijacking technique [21].
All these serve to motivate the necessity for a technical solution to UI deception.

Tong and Evans introduced GuarDroid, a trusted path for password entry
that uses a trusted keyboard to encrypt sensitive information before deliver-
ing to apps and then automatically decrypts the data upon network commu-
nication [28]. However, endpoints of this system are still vulnerable to overlay
attacks. Therefore, Bianchi et al. propose a two-layered defense comprising a
market-level static analysis tool to catch particularly malicious patterns of UI
deception. This tool is augmented with a runtime defense modeled after the well-
known HTTPS lock icon and EV infrastructure [7]. We regard this work as the
state-of-the-art and presented its detailed analysis in Sect. 3, along with a click-
jacking vulnerability and a newly discovered side channel that makes clickjacking
very effective.

Recently, Android 5.0 introduced the screen-pinning feature that locks the
user into a single app and prevents navigation away from that app unless the
owner explicitly exits screen-pinning using an unlock code [27]. However, screen-
pinning is fundamentally different from overlay mutexes as they are not intended
as a UI deception defense mechanism. We verified that direct phishing attacks
and clickjacking attacks are possible on screen-pinned apps.

Huang et al. proposed InContext, a suite of defenses targetting visual and
temporal integrity of browser UI elements [20]. Their solution requires intro-
ducing a delay of 250 ms or higher between the time the user issues an input
command and the time the command is delivered to the browser UI element.
Besides the potential impact on interactivity, subsequent work has demonstrated
that defenses relying on time delays are still vulnerable to clickjacking [5]. Our
work does not rely on delays and instead locks out window transitions while the
user is performing secure input, converting attempted overlays to notifications.

9 Conclusion

Android is vulnerable to a wide range of UI attacks. The standard solution
to handling UI attacks is to use security indicators to assist users in identify-
ing the attacks and recent solutions have proposed security indicators inspired
by HTTPS lock icons for Android [7]. We studied the security properties of
a recent system by Bianchi et al. and determined that it remains vulnerable
to side-channel-enhanced clickjacking attacks. Our work introduced the Binder
statistics channel and demonstrated how to leverage it to elude security checks.
We proposed the overlay mutex mechanism that guarantees temporal integrity
of security indicators by converting window pre-emption attempts to safe noti-
fications. We evaluated our defense against known UI deception as well as the

Android UI Deception Revisited: Attacks and Defenses 57

new side channel attack introduced in this paper and found that the defense is
effective against these attacks.

Acknowledgements. We thank the reviewers for their insightful feedback. This
material is based upon work supported by the National Science Foundation under Grant
No. 1318722. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

1. Android UI Deception PoC Code. https://github.com/earlence/AndroidUI
DeceptionRevisitedFC16. Accessed Oct 2015

2. Apple XCodeGhost Attack. http://www.apple.com/cn/xcodeghost/#english.
Accessed Oct 2015

3. Activity hijacking pattern for Android. http://capec.mitre.org/data/definitions/
501.html. Accessed Oct 2015

4. Android Touch-Event Hijacking. https://blog.lookout.com/blog/2010/12/09/
android-touch-event-hijacking/. Accessed Oct 2015

5. Akhawe, D., He, W., Li, Z., Moazzezi, R., Song, D.: Clickjacking revisited: a per-
ceptual view of UI security. In: Proceedings of the 8th USENIX Conference on
Offensive Technologies, WOOT 2014, pp. 1–1. USENIX Association, Berkeley, CA,
USA (2014). http://dl.acm.org/citation.cfm?id=2671293.2671294

6. Lovejoy, B.: Beware authentication popups in iOS Mail: bug allows
convincing-looking phishing attacks. http://9to5mac.com/2015/06/10/ios-mail-
phishing-popup/. Accessed Dec 2015

7. Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna,
G.: What the app. is that? deception and countermeasures in the android user
interface. In: Proceedings of the IEEE Symposium on Security and Privacy (SP),
San Jose, CA, May 2015

8. Castillo, C.: McAfee Labs. Phishing attack replaces banking app. with mal-
ware. Published. http://blogs.mcafee.com/mcafee-labs/phishing-attack-replaces-
android-banking-apps-with-malware. Accessed Oct 2015

9. Chebyshev, V., Unuchek, R.: Mobile malware evolution in 2013. http://secure
list.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-
2013/. Accessed Oct 2015

10. Chen, J., Chen, H., Bauman, E., Lin, Z., Zang, B., Guan, H.: You shouldn’t col-
lect my secrets: thwarting sensitive keystroke leakage in mobile ime apps. In: 24th
USENIX Security Symposium (USENIX Security 15), pp. 657–690. USENIX Asso-
ciation, Washington, D.C. https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/chen-jin

11. Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into your app. without actually seeing it:
ui state inference and novel android attacks. In: Proceedings of the 23rd USENIX
Security Symposium (2014)

12. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys 2011, pp. 239–252, NY, USA
(2011). http://doi.acm.org/10.1145/1999995.2000018

https://github.com/earlence/AndroidUIDeceptionRevisitedFC16
https://github.com/earlence/AndroidUIDeceptionRevisitedFC16
http://www.apple.com/cn/xcodeghost/#english
http://capec.mitre.org/data/definitions/501.html
http://capec.mitre.org/data/definitions/501.html
https://blog.lookout.com/blog/2010/12/09/android-touch-event-hijacking/
https://blog.lookout.com/blog/2010/12/09/android-touch-event-hijacking/
http://dl.acm.org/citation.cfm?id=2671293.2671294
http://9to5mac.com/2015/06/10/ios-mail-phishing-popup/
http://9to5mac.com/2015/06/10/ios-mail-phishing-popup/
http://blogs.mcafee.com/mcafee-labs/phishing-attack-replaces-android-banking-apps-with-malware
http://blogs.mcafee.com/mcafee-labs/phishing-attack-replaces-android-banking-apps-with-malware
http://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/
http://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/
http://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/chen-jin
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/chen-jin
http://doi.acm.org/10.1145/1999995.2000018

58 E. Fernandes et al.

13. Clickjacking SideChannel Demonstration videos. https://sites.google.com/site/
clickjackingsidechannels/. Accessed Oct 2015

14. Dhamija, R., Tygar, J.D.: The battle against phishing: dynamic security skins. In:
Proceedings of the 2005 Symposium on Usable Privacy and Security, SOUPS 2005,
pp. 77–88, NY, USA (2005). http://doi.acm.org/10.1145/1073001.1073009

15. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006,
pp. 581–590, NY, USA (2006). http://doi.acm.org/10.1145/1124772.1124861

16. Felt, A.P., Wagner, D.: Phishing on mobile devices. In: W2SP (2011)
17. Fernandes, E., Chen, Q., Essl, G., Halderman, J.A., Mao, Z.M., Prakash, A.:

TIVOs: trusted visual I/O paths for android. Technical report CSE-TR-586-14,
CSE Department, University of Michigan, Ann Arbor (2014)

18. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Pro-
ceedings of the 16th International Conference on World Wide Web, WWW 2007,
pp. 649–656, NY, USA (2007). http://doi.acm.org/10.1145/1242572.1242660

19. Hao, S., Liu, B., Nath, S., Halfond, W.G., Govindan, R.: PUMA: programmable
UI-automation for large-scale dynamic analysis of mobile apps. In: Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys 2014, pp. 204–217, NY, USA (2014). http://doi.acm.org/
10.1145/2594368.2594390

20. Huang, L.S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking:
attacks and defenses. In: Proceedings of the 21st USENIX Conference on Security
Symposium, Security 2012, pp. 22–22. USENIX Association, Berkeley, CA, USA
(2012). http://dl.acm.org/citation.cfm?id=2362793.2362815

21. Kaspersky: svpeng android malware targets banking apps. http://www.kas
persky.com/about/news/virus/2014/Kaspersky-Lab-detects-mobile-Trojan-
Svpeng-Financial-malware-with-ransomware-capabilities-now-targeting-US-users.
Accessed Oct 2015

22. Kelly, M.: Badlepricon: bitcoin gets the mobile malware treatment in Google
Play. https://blog.lookout.com/blog/2014/04/24/badlepricon-bitcoin/. Accessed
Oct 2015

23. Liu, B., Nath, S., Govindan, R., Liu, J.: DECAF: detecting and characterizing ad
fraud in mobile apps. In: NSDI (2014)

24. Liu, D., Cuervo, E., Pistol, V., Scudellari, R., Cox, L.P.: ScreenPass: secure pass-
word entry on touchscreen devices. In: Proceeding of the 11th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys 2013,
pp. 291–304, NY, USA (2013). http://doi.acm.org/10.1145/2462456.2465425

25. Niemietz, M., Schwenk, J.: UI redressing attacks on android devices. In: Proceed-
ings of BlackHat Abu Dhabi (2012)

26. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security
indicators. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy,
SP 2007, pp. 51–65 (2007). http://dx.doi.org/10.1109/SP.2007.35

27. Android 5.0 Screen Pinning. https://support.google.com/nexus/answer/6118421?
hl=en. Accessed Oct 2015

28. Tong, T., Evans, D.: GuarDroid: a trusted path for password entry. In: Proceedings
of Mobile Security Technologies (MoST) (2013)

29. TrendMicro: mobile phishing attacks ask for government ids. http://blog.
trendmicro.com/trendlabs-security-intelligence/mobile-phishing-attack-asks-for-
users-government-ids/. Accessed Oct 2015

https://sites.google.com/site/clickjackingsidechannels/
https://sites.google.com/site/clickjackingsidechannels/
http://doi.acm.org/10.1145/1073001.1073009
http://doi.acm.org/10.1145/1124772.1124861
http://doi.acm.org/10.1145/1242572.1242660
http://doi.acm.org/10.1145/2594368.2594390
http://doi.acm.org/10.1145/2594368.2594390
http://dl.acm.org/citation.cfm?id=2362793.2362815
http://www.kaspersky.com/about/news/virus/2014/Kaspersky-Lab-detects-mobile-Trojan-Svpeng-Financial-malware-with-ransomware-capabilities-now-targeting-US-users
http://www.kaspersky.com/about/news/virus/2014/Kaspersky-Lab-detects-mobile-Trojan-Svpeng-Financial-malware-with-ransomware-capabilities-now-targeting-US-users
http://www.kaspersky.com/about/news/virus/2014/Kaspersky-Lab-detects-mobile-Trojan-Svpeng-Financial-malware-with-ransomware-capabilities-now-targeting-US-users
https://blog.lookout.com/blog/2014/04/24/badlepricon-bitcoin/
http://doi.acm.org/10.1145/2462456.2465425
http://dx.doi.org/10.1109/SP.2007.35
https://support.google.com/nexus/answer/6118421?hl=en
https://support.google.com/nexus/answer/6118421?hl=en
http://blog.trendmicro.com/trendlabs-security-intelligence/mobile-phishing-attack-asks-for-users-government-ids/
http://blog.trendmicro.com/trendlabs-security-intelligence/mobile-phishing-attack-asks-for-users-government-ids/
http://blog.trendmicro.com/trendlabs-security-intelligence/mobile-phishing-attack-asks-for-users-government-ids/

Android UI Deception Revisited: Attacks and Defenses 59

30. Unuchek, R.: Svpeng android malware targets Google Play with fake
credit card window. http://securelist.com/blog/incidents/63746/latest-version-
of-svpeng-targets-users-in-us/. Accessed Oct 2015

31. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-
ing pages. In: NDSS (2010)

32. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phish-
ing attacks? In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI 2006, pp. 601–610, NY, USA (2006). http://doi.acm.org/10.
1145/1124772.1124863

33. Zhang, Y., Xue, H., Wei, T.: Occupy your icons silently on android. http://www.
fireeye.com/blog/technical/2014/04/occupy your icons silently on android.html.
Accessed Oct 2015

34. Chen, Z., Wei, T., Xue, H., Zhang, Y.: Three new masque attacks
against iOS: demolishing, breaking and hijacking. https://www.fireeye.com/blog/
threat-research/2015/06/three new masqueatt.html. Accessed Dec 2015

http://securelist.com/blog/incidents/63746/latest-version-of-svpeng-targets-users-in-us/
http://securelist.com/blog/incidents/63746/latest-version-of-svpeng-targets-users-in-us/
http://doi.acm.org/10.1145/1124772.1124863
http://doi.acm.org/10.1145/1124772.1124863
http://www.fireeye.com/blog/technical/2014/04/occupy_your_icons_silently_on_android.html
http://www.fireeye.com/blog/technical/2014/04/occupy_your_icons_silently_on_android.html
https://www.fireeye.com/blog/threat-research/2015/06/three_new_masqueatt.html
https://www.fireeye.com/blog/threat-research/2015/06/three_new_masqueatt.html

Introducing Reputation Systems
to the Economics of Outsourcing Computations

to Rational Workers

Jassim Aljuraidan1(B), Lujo Bauer1, Michael K. Reiter2,
and Matthias Beckerle1

1 Carnegie Mellon University, Pittsburgh, PA, USA
jaljurai@andrew.cmu.edu

2 University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract. Outsourcing computation to remote parties (“workers”) is
an increasingly common practice, owing in part to the growth of cloud
computing. However, outsourcing raises concerns that outsourced tasks
may be completed incorrectly, whether by accident or because workers
cheat to minimize their cost and optimize their gain. The goal of this
paper is to explore, using game theory, the conditions under which the
incentives for all parties can be configured to efficiently disincentivize
worker misbehavior, either inadvertent or deliberate. By formalizing mul-
tiple scenarios with game theory, we establish conditions to discourage
worker cheating that take into account the dynamics of multiple workers,
workers with limited capacity, and changing levels of trust. A key novelty
of our work is modeling the use of a reputation system to decide how
computation tasks are allocated to workers based on their reliability, and
we provide insights on strategies for using a reputation system to increase
the expected quality of results. Overall, our results contribute to make
outsourcing computation more reliable, consistent, and predictable.

1 Introduction

A powerful recent trend in computing has been the outsourcing of computation
tasks to other parties. This trend has spanned the government and commercial
sectors, with examples of outsourcing ranging from scientific computation (e.g.,
CERN’s grid computing1, and the Folding@home distributed computing project
for disease research2) to commercial web and content delivery services (e.g.,
Netflix’s use of Amazon’s EC23) and sensitive government computing tasks (e.g.,
the U.S. Central Intelligence Agency’s use of Amazon’s cloud4 and the U.S.

1 http://home.web.cern.ch/about/computing/worldwide-lhc-computing-grid.
2 https://folding.stanford.edu/.
3 http://www.theatlantic.com/technology/archive/2014/07/the-details-about-the-

cias-deal-with-amazon/374632/.
4 https://aws.amazon.com/cloudfront/.

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 60–77, 2017.
DOI: 10.1007/978-3-662-54970-4 4

http://home.web.cern.ch/about/computing/worldwide-lhc-computing-grid
https://folding.stanford.edu/
http://www.theatlantic.com/technology/archive/2014/07/the-details-about-the-cias-deal-with-amazon/374632/
http://www.theatlantic.com/technology/archive/2014/07/the-details-about-the-cias-deal-with-amazon/374632/
https://aws.amazon.com/cloudfront/

Reputation Systems and the Economics of Outsourcing Computations 61

Department of State’s use of Datamaxx5). The use of cloud infrastructure brings
many advantages, including a high degree of flexibility and cost savings.

At the same time, outsourcing computation carries inherent risks for the
party doing the outsourcing (which we call the outsourcer). Since the compute
infrastructure is not under control of the outsourcing party, the correctness of
these computations cannot necessarily be trusted. In particular, the parties to
whom tasks have been outsourced (workers) may have an economic incentive
to perform sub-standard work (e.g., to guess at answers, saving computational
effort; or to use sub-standard hardware, increasing chance of data loss). To reas-
sure customers, service level agreements (SLAs) and increasingly precise and
complex certification requirements for cloud providers (e.g., the FBI’s CJIS secu-
rity policy requirements6) are often devised.

In parallel with such steps, crucial to increasing the trustworthiness of out-
sourcing is to understand how to leverage technical mechanisms for verifying
that outsourced tasks are being performed correctly and to appropriately reward
correct and penalize incorrect behavior. To that end, researchers have used game-
theoretic models of outsourcing to determine the optimal strategies and para-
meters to be used by the party interested in outsourcing (e.g., [4,18]). More
specifically, recent work in the context of single-round games has shown how
to wield incentives such as fines, budgets, and auditing rates to design optimal
outsourcing contracts with one or two workers [18].

In this paper we extend this line of work on game-theoretic analysis of eco-
nomic incentives to encompass richer, more realistic scenarios. In particular, our
models consider two additional important factors. First, we use infinite-round
(rather than single- or limited-round) games to model the realistic long-term
interaction between the outsourcer and the workers. Second, we explore the use
of two forms of simple reputation systems as a mechanism for outsourcers to
choose how to direct future outsourcing tasks based on past performance and to
model the realistic incentive of the outsourcing of future tasks depending on the
successful completion of earlier ones. Using these models, we show which values
of the game parameters (e.g., job cost, how much workers value future transac-
tions as opposed to current ones) ensure that the workers have no incentive to
cheat, i.e., that an equilibrium exists only when all workers play honestly. We
calculate these values for five games representing different scenarios. In addition,
we demonstrate the practical implications of our results.

This paper proceeds as follows. We describe related work in Sect. 2 and pro-
vide a more detailed problem description in Sect. 3. Section 4 presents our main
results. Section 5 summarizes our findings and concludes the paper.

2 Background and Related Work

The problem of outsourcing computations to untrusted workers is an active area
of research, with multiple general approaches being advanced simultaneously.
5 https://www.datamaxx.com/.
6 https://www.fbi.gov/about-us/cjis/cjis-security-policy-resource-center.

https://www.datamaxx.com/
https://www.fbi.gov/about-us/cjis/cjis-security-policy-resource-center

62 J. Aljuraidan et al.

One direction, surveyed by Walfish and Blumberg [24], uses advances in prob-
abilistically checkable proofs (e.g., [10]) and/or interactive proofs (e.g., [8]) to
enable an outsourcer to determine that a worker probably performed an out-
sourced task correctly, at a cost less than that of performing the task itself. This
approach to verification is largely complementary to the incentive frameworks
that we propose here, in the sense that an outsourcer could use this approach
to verify a worker’s computation when it chooses to do so in the context of our
framework. However, since this approach requires changes to the worker software
that can increase the worker’s computational cost by orders of magnitude (e.g.,
see [24, Fig. 5]), we do not consider its use here.

An alternative approach is to leverage trusted computing technologies to
improve the trustworthiness of workers. For example, Trusted Platform Mod-
ules [23] permit a worker machine to attest to the software it runs; provided
that the outsourcer trusts the worker’s hardware, it can have confidence that
the worker will execute the attested software to perform the outsourcer’s task.
The emergence of Intel’s SGX [2,9,14] should make this approach more prac-
tical (e.g., [20]). Again, however, these approaches are complementary to ours;
rather than leverage trusted hardware primitives to gain confidence in workers,
we apply incentives, instead.

Use of game theory to reason about allocation of jobs to distributed enti-
ties has been considered previously, such as in the context of grid computing
(e.g., [3,17,26]). The work that is most related to ours, however, is on incentive-
based approaches that utilize rewards and fines to ensure the honesty of workers
when outsourcing computations. Belenkiy et al. first analyzed the idea of using
rewards, fines, and bounties (given to workers who catch other workers cheat-
ing) to incentivize (rational) workers to behave honestly [4]. In their work on
computation-outsourcing contracts, Pham et al. explore the best options when
making such contracts to ensure workers’ honesty while minimizing the cost to
the outsourcer [18]. While these works [4,18] do cover scenarios with more than
two workers, neither models multi-round interactions or the use of reputation
systems as a mechanism to incentivize workers to be honest.

More recent work by Nojoumian et al. [16] uses a specific reputation sys-
tem [15] to incentivize players in a secret-sharing scheme to cooperate. However,
the mechanics of the secret-sharing game are different than the computation
outsourcing game we are considering here. For example, the concept of testing
or verifying results at a certain frequency and its effect on detecting cheaters
in computation outsourcing does not have an equivalent in the secret-sharing
game. In addition, the reputation system used in that work would be a poor
fit in our scenario. That reputation system gives significant leeway to cheaters,
which does not interfere with assuring honesty in the secret-sharing game but
would make it significantly harder to guarantee honesty in our setting.

The implementation of a reputation system as used in our game of out-
sourcing has similarities to, but also important differences from, those of game
triggers [7,13]. Game triggers are strategies that make non-optimal choices for
a fixed period after a trigger event (e.g., prices falling below some threshold or

Reputation Systems and the Economics of Outsourcing Computations 63

another player choosing to not cooperate) as a punishment, and are used by
the players themselves to influence the behavior of other players in repeated
noncooperative games. For example, they are often used in games that model
cartels [5,19], where cartel members use these strategies, e.g., by selling goods at
lower prices for a period of time to maintain higher prices overall. In our setting,
reputation systems are (and are modeled as) an integral part of an infinite-round
game and are imposed by the outsourcer, not the players (i.e., workers). With
game triggers, punishments usually affect all players, while in our setting punish-
ment affects only the offending player. Another difference between game triggers
and our work is that with game trigger strategies each player in the game can
choose whether to use them, while in our setting the outsourcer enforces the rep-
utation system on all players. Finally, while game triggers are used in repeated
games, the games in our setting are single games with multiple rounds with
explicit state (i.e., player reputations) that influence the game at each round.

3 Problem Description and Notation

In this section we describe the aspects of our models and the assumptions we
make, common to all the games that we explore. We also provide a brief expla-
nation of our formal notation, which is summarized in Table 1.

All the games described in the paper share two main concepts. First, we
include a simple reputation system, which assigns (dynamic) ratings to the work-
ers and analyze how such systems can deter workers from cheating. Second, all

Table 1. Summary of notation. We assume that cost (C), markup (m), the discount
factor (α), and detection probability (p) are the same for all workers.

Wi The worker i

IRi The initial reputation of Wi

Ni The capacity of Wi, i.e., how many jobs Wi can handle per round

C The cost for a worker to calculate the results for one job correctly (C > 0)

m The markup or profit for each worker (m > 0)

α The discount factor that reduces the utility of each round; the effective
utility of round i, assuming the first round is round 0, is the round’s utility
multiplied by αi (0 < α < 1, except in Game 2.2, where α = 1)

qi The probability, per job, that Wi will cheat (0 < qi ≤ 1)

ti The probability that the outsourcer will verify a job done by Wi

p The probability that a worker who cheated on a job will be detected, given
that the outsourcer verify the job

n Number of workers in group one (when there are two groups of workers)

G Total number of workers

N Number of jobs available in each round

64 J. Aljuraidan et al.

the games in this paper have an infinite number of rounds; considering multiple
rounds is an essential requirement for a reputation system to be beneficial.

3.1 Basic Game Structure

We have two classes of entities in our games. The first is the outsourcer. The
outsourcer provides jobs in the form of computations. The second class of entities
are the workers that perform the computations and send the results back to the
outsourcer. All our games have at least two workers. Moreover, in all these
games the outsourcer is not an active player; that is, all the outsourcer’s moves
are based on a pre-specified algorithm, which we describe below, that decides
how to distribute jobs to workers in each round of the game based on the game
state (worker ratings).

The goal of all workers in the described games is to optimize their utility
(i.e., benefits or gain). All parties are considered perfectly rational and all the
games are noncooperative. That is, the workers are only interested in maximizing
their own expected utility and are not cooperating with other players. Moreover,
they are capable of performing any complex reasoning in order to achieve the
maximum utility. The players only act maliciously (i.e., cheat) if it improves
their expected utility. In addition, we don’t take into account the risk-awareness
of the workers, and we assume that all workers are risk neutral. This implies that
they only care about the expected utility, and won’t prefer one outcome over the
other if both result in the same utility.

In order to make the total expected utility for each player finite, we employ a
discount factor α (0 < α < 1; except for Game 2.2 where α = 1) per round, as is
common. That is, the effective utility at round i is the round’s utility multiplied
by αi. This discount factor is applied not only to calculate the utility but also
to model the fact that in real life, people tend to value immediate gains more
than gains in the future.

In each game we analyze, the goal will be to find the sufficient conditions
to ensure that the only equilibrium that is possible is the one where all workers
are honest. More specifically, the equilibrium we are considering is the Nash
equilibrium, which requires that no single player be able to increase her utility
by only changing her strategy, with strategies of all other players being the same.

We next provide a general description how the games in this paper are played
out. The concrete games in Sects. 4.1 and 4.2 provide additional details like the
number and grouping of workers, the initial setup, and the specific strategies of
the players.

– At the beginning of each round the outsourcer offers N jobs to all or some
of the G available workers and expects correct results in return. Performing
the computation for a single job costs each worker C (C > 0). For each job
offered, a worker can either play honest or decide to cheat. If a worker cheats
on a job, e.g., by guessing at the result instead of computing it, the cost of
that job to the worker is considered to be 0. On returning a job’s result, except

Reputation Systems and the Economics of Outsourcing Computations 65

as discussed below, each worker is paid C + m by the outsourcer; we call m
the markup or profit (m > 0).
All strategies are mixed strategies; i.e., each choice is assigned a probability.
For example, the probability of a worker to cheat on any given job might be
0.6. Each worker decides on a probability to cheat qi (0 ≤ qi ≤ 1).

– The outsourcer will (randomly) verify some of the results returned by workers;
the probability that the outsourcer will verify a particular job’s result from
worker Wi is ti. If a worker cheats and the outsourcer verifies the result,
then the outsourcer detects the cheating with probability p. If the outsourcer
detects that a returned result is wrong, i.e., the worker cheated, the worker gets
penalized through a loss of reputation (see Sect. 3.2). If the outsourcer does
not detect that a worker cheated in a round, either because it did not verify
any of that worker’s responses or because its verification attempts for that
worker failed to detect misbehavior, then (and only then) does the outsourcer
pay the worker for all the jobs it completed in that round. That is, a worker
is given only post-payments and, in particular, does not receive any payment
in a round where its cheating is detected.

The decisions to verify a result or to cheat are made randomly (Bernoulli
distributions with parameters ti and qi, respectively) and each decision is inde-
pendent from the others. Also, in the remainder of this paper, when we refer
to a worker being honest, we mean that qi = 0 for the entire game, as opposed
to deciding not to cheat on a single job. Similarly, when refering to a worker
cheating or being dishonest, we specifically mean that 0 < qi ≤ 1 for an entire
game. Moreover, we don’t distinguish between a worker being honest because
cheating will decrease her utility and her being honest because other external
(e.g., moral) incentives. In both cases, we will refer to her as an honest worker.

A key aspect that we examine in this paper is penalizing workers through
the loss of future work. For this approach a reputation system is needed.

3.2 Reputation Systems

Reputations systems, especially those for on-line markets, are usually designed
with one goal in mind: to share and compare results of former interactions with
different entities. That gives customers or buyers a way to compare the quality
of, e.g., products, service providers, or sellers [6,11].

Reputation systems differ in the assumptions made about service providers
(or workers), with some assuming that all workers are inherently good or inher-
ently bad [22], or that workers have a certain quality to be estimated [21,25].
Kerr et al. showed that many reputation systems will fail in the presence of
cheaters who may offer good service on some occasions but cheat on others [12].
In our work we only assume that all workers are (infinitely) rational players, and
as such will cheat if that increases their utility, but not otherwise. We believe
that this threat model is more suitable for our setting of outsourcing poten-
tially security sensitive computations to external workers whose incentives are
not usually aligned a priori with the outsourcer.

66 J. Aljuraidan et al.

One potential weakness of some reputation systems, particularly in the pres-
ence of opportunistic cheaters, is that they are not very reactive regarding recent
rating changes, since they often only calculate a mean score over all interactions.
In such systems, a long-time seller with excellent reputation might not care about
a single bad rating since it might have negligible impact on his total score. Hence,
even if sellers try to maintain a good overall reputation they might still cheat
from time to time.

In this work, we employ a reputation system with variants that we call Zero-
Reset and Knock-Out. If the Zero-Reset penalty is applied, the reputation of
the cheating worker is reset to zero. The reputation then increases by 1, as for
workers who had not been penalized, each time the worker completes a round
without being caught cheating. Jobs are assigned to the worker Wi with the
highest reputation first, up to its capacity Ni. If more jobs are available than
the workers with the highest reputation have capacity to handle, the workers with
the next highest reputation will be assigned jobs, until all jobs are assigned. In
case of a tie in reputation, the jobs are allocated randomly among the workers
with the same reputation. If the Knock-Out penalty is applied, the cheating
worker will no longer get jobs assigned by the outsourcer in any future round.

Both variants of the reputation system we study here are too strict for actual
implementations. In reality, reputation systems should incorporate some leeway
for accidental failures, such as user errors or network failures. Otherwise, workers
will be discouraged from participating in the system. However, care must be
taken to not give too much leeway as this will render systems susceptible to abuse
by determined cheaters [12]. It is outside the scope of this paper to specify how
much leeway should be given or what is the best reputation system to choose
for actual implementations (which, we suspect, is application-dependent). For
the purpose of this paper, we will assume that the actual implementation will
be strict enough such that the conditions we derive for the various games we
propose can serve as guidelines to narrow the space within which the incentives
to all parties are aligned.

4 Improving Outsourcing with Reputation Systems

In this section, we show how a reputation system can be used to induce workers
to maintain a high level of quality. All calculations are based on rational acting
players that make optimal decisions regarding their own expected utility.

Table 2 shows the main differences between the games we explore. In general,
we try to vary only one factor at a time between games, so as to make it possible
to attribute different outcomes to specific variations in factors or assumptions.

In Sect. 4.1 we introduce the first set of games, which focuses on two workers
that have, potentially different, initial reputations and play for an infinite number
of rounds. The first game uses the Zero-Reset reputation system. The second
game assumes that one worker has higher initial reputation, while the third game
explores the effect of changing the reputation system to Knock-Out instead. After
that, we investigate games with more than two workers in Sect. 4.2. We analyse

Reputation Systems and the Economics of Outsourcing Computations 67

Table 2. Summary of games examined in this paper and their main assumptions.

Game Num.
workers

Unlim.
capacity

Rep. system α Notable assumptions

G1.1 2 Yes Zero-Reset < 1 IR1 = IR2; N1 ≥ N ; N2 ≥ N

G1.2 Worker 2 Zero-Reset < 1 Same as G1.1 but: IR1 > IR2;
N ≥ N1; q2 = 0

G1.3 Yes Knock-Out < 1 Same as G1.2 but with Knock-Out

G2.1 any No Zero-Reset < 1 2 groups of workers; workers in the
same group have the same q; N = 1

G2.2 Zero-Reset n/a Same as G2.1 but each worker has
individual qi; N = 1

two games, one with the workers split into two groups with a common choice for
the cheating probability, and another game where workers are not grouped but
no discount factor is considered (i.e., α = 1).

Proofs for all the propositions can be found in our technical report [1].

4.1 First Set of Games: Two-Worker Games

We start our analysis with three games in which we consider scenarios with
exactly two workers. We vary the capacity of the workers (we consider the case
when both workers have more capacity than there is work available, as well as
when one worker has insufficient capacity to perform all available work) and the
reputation system we try.

Game 1.1: Symmetric Initial Reputation. In this first game we test our
reputation system by using a simple scenario with only two workers. Both work-
ers have the capacity to handle all the available jobs in each round (N1 ≥ N ;
N2 ≥ N), both workers start with the same initial reputation (IR1 = IR2), and
both have the option to cheat (q1 ≥ 0; q2 ≥ 0).

Proposition 1. For Game 1.1, with parameters N , m, C, α, p, t1, and t2,
if one worker (W2) is always honest and one of the following conditions holds,
then the only possible Nash equilibrium in the game will be the one where both
workers are honest.

– N = 1, and
m

C
> (1 − α)

1 − p · t1
p · t1

(1)

– Or, N = 2k, for some positive integer k, and

m

C
> (1 − α)(1 − p · t1)

(1 − p · t1)N/2−1

1 − (1 − p · t1)N/2
(2)

68 J. Aljuraidan et al.

– Or, N = 2k + 1, for some positive integer k, and

m

C
> (1 − α)(1 − p · t1)

(1 − p · t1)k−1(1 − 1
2p · t1)

1 − (1 − p · t1)k(1 − 1
2p · t1)

(3)

Discussion. The introduction of a reputation system leads to a clear benefit:
as long as one worker (W2) is honest and one of the conditions in Proposition 1
holds, the other worker (W1) is forced to be honest too. Only the case where both
workers decide to cheat stays unresolved for this game. In this case a repeating
cycle of two stages takes place. Each cycle begins with both workers having equal
reputations, and thus the jobs will be distributed equally (50%/50%). The first
stage ends when one of the workers is detected cheating. In the second stage of
a cycle the other worker will get all the jobs (100%/0% or 0%/100%); this stage
lasts until this worker is detected cheating, which leads to an equal reputation
of zero for both workers. The cycle repeats. This case results in a noncentral
hypergeometric distribution for the job assignments, for which we have not yet
found a closed-form solution. However, we will discuss the solution for the special
case when N = 1 within the discussion of Game 1.3.

(a) Discount factor (α) set to 0.95. (b) Markup-to-cost ratio (m
C

) set to 0.1.

Fig. 1. The safe region for the case of N = 1 in Game 1.1.

In Fig. 1a we plot the safe region, i.e., where not cheating is the only equilib-
rium, in terms of detection probability when cheating (p · t1) and the markup-
to-cost ratio (m/C), with the discount factor set to 0.95. We do the same in
Fig. 1b, but this time we fix the value of the markup-to-cost ratio to m/C = 0.1.

From the figures we can see that if the detection probability, i.e., the product
of p·t1, is very small, then condition in Proposition 1 will be invalid for reasonable
values of the markup-to-cost ratio and the discount factor. For example, if p·t1 =
0.005, then even the slightly extreme values of 0.99 and 1 for the discount factor
and the markup, respectively, will not result in a safe outsourcing. In addition,
it seems that discount factor α should be high enough, i.e., well above 0.90, for
the valid range of p · t1 to be reasonable.

Reputation Systems and the Economics of Outsourcing Computations 69

Let’s imagine a company (outsourcer) wants to outsource scanning of incom-
ing email attachments to a third party (worker). The results of this game show
that, unless there is a large penalty or a high markup-to-cost ratio, a worker will
have no incentive to be honest, because the probability of detection is very low
in this case; an arbitrary email attachment has a very low chance of being mali-
cious7. However, actively increasing p, for example by sending known malicious
files to the third party, can significantly improve the chances that a worker will
have no incentive to cheat.

In the next game we investigate asymmetric initial reputation combined with
limited capacity of a worker.

Game 1.2: One Worker with Higher Initial Reputation but Limited
Capacity. The assumption in game 1.1 that workers have equal initial repu-
tation and unlimited capacity is a limitation that we remove in this game. We
already considered the case when the initial reputations are equal, so we will
assume that they are strictly different here.

Without loss of generality, we give W1 a higher initial reputation compared
to W2. In addition, W1’s capacity is limited, i.e., W1’s capacity can always be
saturated (N > N1). We also tested the setup where both workers have limited
capacity but since the interesting parts of the results were similar to Game 1.1,
we only describe the former case here. As in game 1.1, both workers have the
option to cheat (q1 ≥ 0; q2 ≥ 0).

Proposition 2. For Game 1.2, with parameters m, C, α, p, t1, and N1, if
worker 2 is always honest and one of the following conditions holds, then the
only possible Nash equilibrium in the game will be the one where worker 1 is also
honest.

– N1 = 1, and
m

C
> (1 − α)

1 − p · t1
p · t1

(4)

– N1 > 1, and
m

C
> (1 − α)(1 − p · t1)

(1 − p · t1)N1−1

1 − (1 − p · t1)N1
(5)

Discussion. This game shows that even with initially asymmetric ratings, the
workers can still deter each other from cheating, if one of them is honest. Again
the case where both workers decide to cheat was not resolved for the same reason
as in Game 1.1. In fact, after both workers are detected cheating for the first time,
they both will have a reputation of zero, which is almost exactly the situation
in game 1.1. The only difference will be that W2 will always have a number
of jobs assigned to her (N − N1), regardless of what happens in game because

7 2.3% and 3.9% in the second and third quarters of 2013, respectively, according to
a Kaspersky Lab study (http://www.kaspersky.ca/internet-security-center/threats/
spam-statistics-report-q2-2013).

http://www.kaspersky.ca/internet-security-center/threats/spam-statistics-report-q2-2013
http://www.kaspersky.ca/internet-security-center/threats/spam-statistics-report-q2-2013

70 J. Aljuraidan et al.

of the limited capacity of W1. However, these job assignments won’t affect the
equilibrium, because they are fixed and won’t change during the entire game,
and won’t affect the rest of the assignments.

In the next game we investigate how changing our reputation system to the
second variant (Knock-Out) influences the results.

Game 1.3: A Knock-Out Reputation System. In the third game we want
to test the Knock-Out variant of our reputation system (see Sect. 3 for more
details). The intuition is that the Knock-Out variant is more effective in deterring
workers from cheating in comparison to the Zero-Reset variant tested in former
games. This game is exactly like Game 1.1, except for the reputation system. In
Game 1.1, we showed the result for both even and odd number of jobs. In this
game we will only show the result for an even number of jobs, in adition to the
case where there is only one job. As we saw in Game 1.1, the result for an odd
number of jobs will be only slightly different.

Proposition 3. For Game 1.3, with parameters m, C, p, t1, t2 and N , if the
following condition holds, then the only possible Nash equilibrium in the game
will be the one where both workers are honest.

Either N = 1 or N = 2k, for some positive integer k, and for both workers,
and for all possible values of q1 and q2, the following holds (i = 1, 2)8

dfi

dqi
· hi <

dhi

dqi
· fi (6)

where

fi = ui(1 − βi)
[
βi(1 − βj)[1 − α(1 − β̂i)] + βj [1 + α − α(2B + β̂i − 2β̂i · B)]

]

hi = (1 − B)(1 − α · B)[1 − α(1 − β̂i)]
B = (1 − β1)(1 − β2)

βi =

{
qi · p · ti N = 1
1 − (1 − q · p · ti)N/2 N is even

β̂i =

{
βi N = 1
1 − (1 − qi · p · ti)N N is even

ui = N(m + C · q̂i)
j = 3 − i

Discussion. The switch to the second variant of the reputation system did not
change the general results from Game 1.1 for the case where at least one of the
workers is honest. In essence, the fact that one worker is honest makes the effect
of both reputations systems the same from the point of view of the other worker.

8 dy
dqi

is the derivative of y with respect to qi.

Reputation Systems and the Economics of Outsourcing Computations 71

(a) Knock-Out (Game 1.3). (b) Zero-Reset (Game 1.1).

Fig. 2. The minimum discount factor vs p · ti (when N = 1 and t1 = t2). For example,
at a markup-to-cost ratio of 0.2 and a detection probability (given cheating) of 0.8, the
minimum discount factor needed in order to deter cheaters is 0.2 with the Knock-Out
strategy and 0.7 with Zero-Reset.

Unfortunately, since we were not able to get a result for the case where both
workers are dishonest and N > 1 in Game 1.1 (and 1.2), we cannot compare it
with the result of this game. However, we can compare the results for the case
when N = 1.

Regarding the condition for the case of two dishonest workers, in Fig. 2a
we plot the minimum required discount factor (α) versus the probability of
detection given a cheating worker for several values of the markup-to-cost ratio.
We obtained the minimum values for α using numerical minimization. Notice
that the required values for a discount factor are still quite high. Although we
did not have a general solution for the same case in the Zero-Reset setting, we
did find the solution for the special case of N = 1. Figure 2b shows the results for
that case. Comparing the two figures confirms the intuition that smaller values
of α are needed with the stricter Knock-Out system than with Zero-Reset.

4.2 Second Set of Games: Many-Worker Games

The previous games considered only two workers. In this section, we investigate
games with more workers. To derive a closed form expression for the expected
utility for each worker, we had to limit the number of available jobs per round
to one, i.e., N = 1. In the first game, we consider a special case, where the
workers are split into two groups with a common cheating probability. In the
second game, we relax this condition and allow every worker to chose her own
cheating probability, but to retain our ability to calculate the expected utility,
we will assume that the discount factor is not applied, i.e., α = 1.

Game 2.1. This is the first game where we test the reputation system where
we allow more than two workers. The workers are divided into two groups.

72 J. Aljuraidan et al.

Each group will chose a cheating probability at the beginning, and adhere to
it through out the game. The members of groups 1 and 2 will cheat with proba-
bilities q1 and q2, and their sizes are n and G − n, respectively. Where G is the
total number of workers. In addition, we assume that N = 1 and α < 1. The
reputation system will be Zero-Reset in this game.

Proposition 4. In Game 2.1, with the parameters G, m, C, α, p, and t (t1 =
t2 = t), and one of the following conditions hold, then the only possible Nash
equilibrium in the game will be the one where both group of workers are honest.
Also let e = m

C , γ = 1−α
α , and ω = −e · p · t + 1 − p · t.

– One group of workers (of size G−n) is honest and the following holds for the
other group (of size n):

n

G
< 1 − γ

e
(1 − p · t) + p · t (7)

– Either ω ≤ 0 or the following holds:

ω · p · t + ω · γ

e · p · t + ω · p · t
<

n

G
<

e · p · t − ω · γ

e · p · t + ω · p · t
(8)

Fig. 3. The safe, unsafe, and possibly unsafe regions, w.r.t. group 1 size and the
markup-to-cost ratio, when group 2 is always honest. (G = 100 and α = 0.95)

Discussion. The following equations are the precursor for condition (8) (refer to
the proof in [1] for details).

q2 < F (n) =
e

ω
·
(

G − n

n

)
− γ

p · t
· G

n
(9)

Reputation Systems and the Economics of Outsourcing Computations 73

q1 < F (G − n) =
e

ω
·
(

n

G − n

)
− γ

p · t
· G

G − n
(10)

To understand the behavior of F (n) we will use the plot in Fig. 3. The value
of the discount factor (α) is chosen to be 0.9, because, as we saw earlier, values
below 0.9 for α will render the game too biased toward cheating in games with
many (or infinite) number of rounds. In addition, we will choose the detection
probability to be 0.2, i.e., p · q = 0.2, which will result in ω = 0 at e = 4.

There are three regions in this plot (Fig. 3). The first region, colored in dark
grey, covers the range of values of n and e where F (n) < 0. This is the unsafe
region; since F (n) < 0, then there is no valid nonzero value for q2 (0 < q2 ≤ 1)
that will cause (9) to be always true, i.e., dE[u1]

dq1
> 0. In other words, group 1

workers will have the incentive to always cheat, since more cheating will result
in an increased utility. In this case, equilibrium is only possible when group 1
always cheats.

The second region, colored in white, represent the range of values where
F (n) > 1. This is the safe region where, regardless of the value of q2, the utility
of group 1 workers will decrease when q1 is increased, which will incentivize
them not to cheat. In the safe region, equilibrium is only possible when group 1
is honest. In the grey region (0 ≤ F (n) ≤ 1) whether group 1’s incentive is to
cheat or not depends on q2, which makes it possibly unsafe.

Ideally we want to control the parameters of the game to be always in the safe
region to guarantee that the (untrusted) workers in group 1 have no incentive to
cheat. However, this does not say anything about group 2 workers. This is fine if
we either think that group 1 is trustworthy enough, or somehow can ensure their
honesty. It can be seen in Fig. 3 that even at the relatively high markup-to-cost
ratio of 1, we need the untrusted group size to be less than 50%.

An interesting scenario to consider is when we do not have any guarantees of
honesty about both groups. Can we still achieve similar results that guarantee
that they have no incentive to cheat? For such guarantees we need both (9) and
(10) to hold, i.e., we need to be in the safe region of both F (n) and F (G −
n). Figure 4 shows the intersection of both regions. Note that the conditions
in Proposition 4 correspond to this intersection. It can be seen from the plot
that a very high markup-to-cost ratio is needed to have reasonable guarantees
that there is no incentive to cheat for both groups (at α = 0.95 and p · t = 1
nonetheless). Intuitively, this means that the outsourcer needs to promise to pay
the workers enough to ensure that they value their future transactions more than
the potential gains of cheating. Moreover, in order to have these guarantees, the
relative sizes of the two groups need to be balanced. In this case, if the size of
one of the groups is less than one fourth the size of the other group (< 20% of
the total), then the guarantees cannot hold. In addition, the lower the markup-
to-cost ratio, the more balanced these groups need to be. The same applies to
α: with lower values for α, more balanced groups are required in order for them
to deter each other from cheating.

74 J. Aljuraidan et al.

Fig. 4. The safe region, w.r.t. group size and markup-to-cost ratio, when both groups
are not assumed to be honest. (G = 100 and α = 0.95)

Game 2.2. In the previous games we divided the workers into two groups, where
each group shares a common cheating probability. In this game, each worker is
allowed to chose her own cheating probability. In addition, we consider the case
were there is no discount factor (i.e., α = 1). Since in this case it is not possible to
find a Nash equilibrium considering the total utility, due to the infinite number
of rounds, we analyze the expected utility per round. In addition to having no
discount factor, we also restrict the number of jobs per round to one, otherwise
finding an equilibrium will be too complex of a problem, probably without a
closed form solution for the expected utility.

Proposition 5. In Game 2.2, with parameters G, m, C, p, and ti, for i =
1, .., G, if the condition below holds for at least one worker then the only equilib-
rium (as defined above) will be the one where every player is honest.

C

m
· 1 − p · ti

p · ti
− 1 <

1
p

·
∑

j∈[1,G],j �=i

1
tj

(11)

Discussion. Due to the lack of discounting (α = 1) we cannot directly compare
the result here with the conditions in previous games. However, the same basic
observations are true here. That is, we need a high enough markup-to-cost ratio
and a reasonably high detection probability, i.e., p · ti. Of note here is that the
sum

∑
j∈[1,G],j �=i

1
tj

has a minimum value of G − 1, which means that the more
workers we have available, the easier it is to incentivize the workers to be honest.
Another observation, which might not be obvious, is that because we only need
to incentivize one worker to be honest to force the others to also be honest,
it actually makes sense to test those other workers less frequently. This is true
because the more frequently we test the other workers, the more utility they will
gain (from cheating) at the expense of the cheating utility of this one worker we
are trying to incentivize.

Reputation Systems and the Economics of Outsourcing Computations 75

5 Conclusion

In this paper we explored several games that model the outsourcing of computa-
tion and the long-term interaction between the outsourcer and the workers using
models with infinite number of rounds. Instead of using penalties to deter workers
from cheating, we used a reputation system and the potential loss of future work
as way to incentivize workers to not cheat. Such a reputation system could not
have been modeled with a one- or two-round game, or even (stateless) repeated
games. While we have not utilized penalties in our games, a natural direction
of future work is to formulate and analyze games where penalties are used in
conjuction with reputations to ensure worker honesty.

We demonstrated that if specified conditions are met, then workers are com-
pelled to behave honestly in our models. Moreover, these conditions enable us to
calculate parameter settings that suffice to compel worker honesty. For example,
these conditions enable us to calculate the outsourcer’s detection probability
(p · ti) that suffices to compel workers, from which we can then adjust p and/or
ti to ensure that this detection probability is met. Doing so is important for sce-
narios where the a priori probability p of detecting the worker cheating (when
checked) is low, e.g., because the distribution over honest worker responses is so
biased that a cheating worker can guess the correct response with high probabil-
ity without performing the computation (e.g., guessing that an email attachment
is benign, without actually checking it). In such cases, our conditions provide
guidelines for increasing the testing rate ti or the detection probability p when
response are checked (e.g., by sending a larger fraction of malicious attachments
for checking) to ensure worker honesty.

Acknowledgments. This work was supported in part by NSF grant 1330599 and
by the Army Research Laboratory under Cooperative Agreement Number W911NF-
13-2-0045 (ARL Cyber Security CRA). The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation here on.

References

1. Aljuraidan, J., Bauer, L., Reiter, M.K., Beckerle, M.: Introducing reputation sys-
tems to the economics of outsourcing computations to rational workers. Technical
report CMU-CyLab-16-001, Carnegie Mellon University, January 2016

2. Anati, I., Gueron, S., Johnson, S., Scarlat, V.: Innovative technology for CPU based
attestation and sealing. In: Workshop on Hardware and Architectural Support for
Security and Privacy (2013)

3. Awerbuch, B., Kutten, S., Peleg, D.: Competitive distributed job schedul-
ing (extended abstract). In: 24th ACM Symposium on Theory of Computing,
pp. 571–580 (1992)

4. Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya, A.:
Incentivizing outsourced computation. In: Proceedings of the 3rd International
Workshop on Economics of Networked Systems, NetEcon 2008 (2008)

76 J. Aljuraidan et al.

5. Briggs, H.: Optimal cartel trigger strategies and the number of firms. Rev. Ind.
Organ. 11(4), 551–561 (1996)

6. Commerce, B.E., Jsang, A., Ismail, R.: The beta reputation system. In: 15th Bled
Electronic Commerce Conference (2002)

7. Friedman, J.W.: A non-cooperative equilibrium for supergames. Rev. Econ. Stud.
38(1), 1–12 (1971)

8. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: 40th ACM Symposium on Theory of Computing, May 2008

9. Hoekstra, M., Lal, R., Pappachan, P., Rozas, C., Phegade, V., del Cuvillo, J.: Using
innovative instructions to create trustworthy software solutions. In: Workshop on
Hardware and Architectural Support for Security and Privacy (2013)

10. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.
In: 22nd IEEE Conference on Computational Complexity, June 2007

11. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

12. Kerr, R., Cohen, R.: Smart cheaters do prosper: defeating trust and reputation
systems. In: AAMAS 2009, pp. 993–1000 (2009)

13. Krugman, P.R.: Trigger strategies and price dynamics in equity and foreign
exchange markets. Technical report 2459, National Bureau of Economic Research
(1987)

14. Mckeen, F., Alexandrovich, I., Berenzon, A., Rozas, C., Shafi, H., Shanbhogue, V.,
Savagaonkar, U.: Innovative instructions and software model for isolated execution.
In: Workshop on Hardware and Architectural Support for Security and Privacy
(2013)

15. Nojoumian, M., Lethbridge, T.C.: A new approach for the trust calculation
in social networks. In: Filipe, J., Obaidat, M.S. (eds.) ICETE 2006. CCIS, vol.
9, pp. 64–77. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70760-8 6

16. Nojoumian, M., Stinson, D.R.: Socio-rational secret sharing as a new direction in
rational cryptography. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS,
vol. 7638, pp. 18–37. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34266-0 2

17. Penmatsa, S.: Game theory based job allocation/load balancing in distributed
systems with applications to grid computing. Ph.D. thesis, The University of Texas
at San Antonio (2007)

18. Pham, V., Khouzani, M.H.R., Cid, C.: Optimal contracts for outsourced compu-
tation. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp.
79–98. Springer, Cham (2014). doi:10.1007/978-3-319-12601-2 5

19. Porter, R.H.: Optimal cartel trigger price strategies. J. Econ. Theor. 29(2),
313–338 (1983)

20. Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., Russinovich, M.: VC3: trustworthy data analytics in the cloud using SGX. In:
36th IEEE Symposium on Security and Privacy, May 2015

21. Teacy, W., Patel, J., Jennings, N., Luck, M.: Travos: trust and reputation in the
context of inaccurate information sources. Auton. Agent. Multi-Agent Syst. 12(2),
183–198 (2006)

22. Tran, T., Cohen, R.: Improving user satisfaction in agent-based electronic market-
places by reputation modelling and adjustable product quality. In: AAMAS 2004,
pp. 828–835 (2004)

23. Trusted Computing Group: Trusted platform module main specification, version
1.2, revision 103 (2007)

24. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015)

http://dx.doi.org/10.1007/978-3-540-70760-8_6
http://dx.doi.org/10.1007/978-3-642-34266-0_2
http://dx.doi.org/10.1007/978-3-319-12601-2_5

Reputation Systems and the Economics of Outsourcing Computations 77

25. Whitby, A., Jøsang, A., Indulska, J.: Filtering out unfair ratings in Bayesian rep-
utation systems. In: Proceedings of 7th International Workshop on Trust in Agent
Societies, vol. 6, pp. 106–117 (2004)

26. Yagoubi, B., Medebber, M.: A load balancing model for grid environment. In: 22nd
International Symposium on Computer and Information Sciences, pp. 1–7 (2007)

Payments, Auctions, and e-Voting

Accountable Privacy for Decentralized
Anonymous Payments

Christina Garman(B), Matthew Green, and Ian Miers

Johns Hopkins University, Baltimore, USA
{cgarman,mgreen,imiers}@cs.jhu.edu

Abstract. Decentralized ledger-based currencies such as Bitcoin pro-
vide a means to construct payment systems without requiring a trusted
bank. Removing this trust assumption comes at the significant cost of
transaction privacy. A number of academic works have sought to improve
the privacy offered by ledger-based currencies using anonymous elec-
tronic cash (e-cash) techniques. Unfortunately, this strong degree of pri-
vacy creates new regulatory concerns, since the new private transactions
cannot be subject to the same controls used to prevent individuals from
conducting illegal transactions such as money laundering. We propose
an initial approach to addressing this issue by adding privacy preserving
policy-enforcement mechanisms that guarantee regulatory compliance,
allow selective user tracing, and admit tracing of tainted coins (e.g., ran-
som payments). To accomplish this new functionality we also provide
improved definitions for Zerocash and, of independent interest, an effi-
cient construction for simulation sound zk-SNARKs.

1 Introduction

The success of decentralized currencies like Bitcoin has led to renewed interest in
anonymous electronic cash both in academia [2,9,20] and in practice (including
Coinjoin, CryptoNote, and DarkWallet). It has also highlighted new problems
related to trust, privacy and regulatory compliance. In modern electronic pay-
ment systems, users must trust that their bank is not tampering with the system
(e.g., by “forging” extra currency), that no party is abusing the privacy of users’
transactions, and simultaneously, that other users are not using the system to
engage in money laundering or extortion. Unfortunately, these goals seem fun-
damentally at odds.

Decentralized payment systems such as Bitcoin address the first issue by
replacing the central bank with a distributed ledger and consensus system. Unfor-
tunately, this benefit comes at a significant cost to privacy [1,5,22], since any
user can now view the transaction graph and potentially trace payments made
by another user. Proposals such as Zerocoin and Zerocash [2,20] attempt to
resolve the privacy problem by employing sophisticated zero knowledge proofs
of transaction correctness. While such constructions address privacy concerns,
they do not offer any additional protections against money laundering and other
activity. From an investigative standpoint, Zerocash is no different than cash.
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 81–98, 2017.
DOI: 10.1007/978-3-662-54970-4 5

82 C. Garman et al.

The problem of preventing money laundering in decentralized currencies is
not theoretical. In May 2015 the decentralized payment network Ripple was
ordered to pay a $700,000 fine by the U.S. Financial Crimes Enforcement Net-
work (FINCEN) due to inadequate monitoring of transactions on their network.
This raises questions for the deployment of privacy-preserving payment networks,
where individual network operators and currency exchanges may be held crim-
inally liable for facilitating laundering. In general, the difficulty of preventing
abuse may prove a barrier to the deployment of private currency systems. In
particular, it seems likely that the application of existing reporting requirements
will force exchanges/online wallets, even when dealing with anonymous curren-
cies, to hold vast amounts of information about their users, their transactions,
and the amounts. If, as in Bitcoin, most consumers use online wallets, then they
gain little privacy.

In this paper we aim for a middle ground. Specifically, we design new Decen-
tralized Anonymous Payment (DAP) systems [2] that are capable of enforcing
compliance with specific transaction policies, while protecting the privacy of net-
work participants. Our approach builds on the techniques of Ben-Sasson et al.’s
Zerocash system [2], using efficient zero knowledge Arguments of Knowledge (zk-
SNARKs) [3,4,6,11,13,18,19,21] to both prove the validity of transactions and
to enforce transaction policies. These policies allow network participants to ver-
ifiably prove compliance with global transaction policies, such as tax payments,
deposit limits, and verifiable coin tracing, all while protecting the privacy of each
transaction. Interestingly, a side effect of our mechanisms is that even centralized
banks or exchanges participating in our scheme are prevented from evading anti-
money laundering controls, as these controls are enforced by cryptographically
sound proofs.

Improving security definitions for DAP schemes. A necessary starting point for
our exploration is to find a formal security definition for DAP schemes that can
be readily extended to incorporate our policies. Previous security definitions for
DAP schemes involve a series of distinct games, each of which addresses one
aspect of the security requirements for the DAP scheme. Not only are these
games complex, they fail to simultaneously ensure both correctness and privacy
of the DAP scheme. In particular, we note that the Zerocash scheme [2] admits a
practical attack due to a limitation of the correctness definition. In this paper we
explore a more promising route: we define an ideal-world functionality to describe
the security properties of a DAP scheme, which captures both the correctness
and privacy of the scheme in a single intuitive definition. Moreover, as we show
in later sections, this simulation-based definition can easily be augmented to
incorporate policies.

Augmenting existing constructions with simulation-sound zkSNARKs. Given an
improved simulation-based definition for DAP schemes, we encounter a technical
problem that prevents us from proving security of the scheme: we require zero-
knowledge proofs which are sound and extractable in the presence of simulated
proofs, i.e., we need simulation sound proofs. However, the zk-SNARK used in

Accountable Privacy for Decentralized Anonymous Payments 83

Zerocash provides no such guarantees. To address this we build the first instan-
tiation of simulation sound zk-SNARKs.

While this seems like a small step and uses folklore techniques, it is necessary
and must be done carefully to ensure security and efficiency. Our approach pre-
serves succinctness and through clever choice of primitives, has almost no effect
on Zerocash performance. For space reasons, we defer further description to the
full paper [10].

Anti-money laundering policies for DAP schemes. Given a stronger formal foun-
dation, we can now explore and reason about a wide range of anti-money laun-
dering policies that still preserve user privacy. In fact we are able to go substan-
tially beyond this and provide policies that simultaneously allow the authorities
to both trace coins as they go from individual to individual and retrieve all of
a particular user’s transactions and provide an accountable record of when and
why those powers were used. We provide examples of several concrete compliance
policies that leverage our new techniques. These include policies to enforce reg-
ulatory closure, enforced tax payments, spending limits, coin tracing, and user
tracing. We also provide the first schemes in the decentralized e-cash setting that
allow for coin and user tracing while maintaining an accountable record to limit
abuse of those powers.

Paper outline. The remainder of this paper proceeds as follows. In Sect. 2 we
provide definitions for secure DAP schemes and propose our modified security
definition. In Sect. 3 we introduce the Zerocash construction and propose modi-
fications to achieve our new definitions. In Sect. 4 we show how to modify a DAP
scheme to enforce various policies. In Sects. 5 and 6 we detail specific policies for
coin tracing and accountable user tracing.

2 Decentralized Anonymous Payments

Decentralized Anonymous Payment (DAP) systems were introduced by
Ben-Sasson et al. [2]. A complete formal definition can be found in [2]. A DAP
system consists of an append-only ledger and a tuple of polynomial time algo-
rithms (Setup,CreateAddress,Mint,Pour,VerifyTransaction,Receive) with the fol-
lowing (informal) semantics:

Setup(1λ) → params generates global parameters for the system.
CreateAddress(params) → (addrpk, addrsk) outputs an individual address (key

pair) for each user.
Mint(params, addrpk, v) → (cm, π, trap) creates a new transaction embedding a

coin of value v, a proof π, and outputs a trapdoor trap for spending the coin.
Pour(params, cm1, cm2, trap1, trap2, addrpk,1, addrpk,2, v1, v2, vpub) → (cm1, cm2,

π) takes as input two coin commitments and the corresponding trapdoors,
as well as a public value output and two new coin values and destination
addresses, and outputs a new transaction embedding the new coins.

84 C. Garman et al.

VerifyTransaction validates any of the above transactions.
Receive scans the transactions on the ledger, using the user’s corresponding secret

key to identify transactions addressed to the user.

Informally, a DAP scheme uses these transactions along with a trusted
append-only ledger to transact funds between different users. By issuing “coins”
in exchange for work, or for non-anonymous currencies, users can split, merge
and combine coins of arbitrary value. Additionally, senders can transmit funds
to another user without revealing the contents of the transfer to any third party.

2.1 Existing Definitions and Limitations

The DAP security definitions provided by Ben-Sasson et al. [2] are game
based. As a result, these definitions are complex, spanning three games: one
for anonymity, one for non-malleability (needed to ensure correct integration
into Bitcoin), and one for balance. While non-malleability is simple, both the
game for anonymity (“ledger indistinguishability”) and the one preventing coin
forgery (“balance”) are quite complex. More importantly, these definitions are
also incomplete: they do not fully enforce correctness. Unfortunately, malicious
users can exploit these weaknesses to break other properties in cryptographic
systems.

Specifically, in Zerocash, each Pour transaction contains one or more serial
numbers related to the coins spent. These are designed to prevent double spend-
ing, and are formed as a combination of the coin recipient’s private key and
randomness chosen by the sender. Since the private key is fixed, if the sender
uses the same randomness in two different transactions, then the serial numbers
will be identical. As a result, the recipient will be unable to spend both transac-
tions, since the duplicate serial numbers will appear to indicate a double spend.
This would allow an attacker to send two payments of e.g. $500 and $1,000,
and then ask for a refund on the “accidental” $1,000 dollar payment. While this
attack costs the attacker $500, since both payments go through and she only gets
one back, it also costs the victim $500, since the “accidental” payment can never
be spent. This attack is easily fixed by having the recipient check for duplicate
serial number randomness over all previous transactions they received.

Nonetheless, this attack shows that the “balance” definition does not fully
capture what we assume about a currency system. Clearly, some part of the
security definitions in a DAP scheme should prevent this, yet the definitions for
Zerocash do not.

2.2 Simulation-Based Definition for DAP Schemes

An alternative to using game-based definitions like those of [2] is to use a
simulation-based definition. In this approach, we define our system in terms of
an ideal functionality implemented by a trusted party TP that plays the role that
our cryptographic constructions play in the real system [12]. In the ideal-world
experiment, a collection of parties interact with the trusted party according to

Accountable Privacy for Decentralized Anonymous Payments 85

a specific interface. In the real-world experiment, the parties interact with each
other using cryptography. We now define the experiments:

Ideal-world execution IDEALTP ,S,Σ. The ideal world attacker, S, selects some
subset of the P1, . . . , Pn parties to corrupt and informs the TP . The attacker
controlled parties behave arbitrarily, the honest ones follow a set of strategies Σ.
All parties then interact via messages passed to and from the TP implementing
an ideal functionality outlined in Fig. 1.

We initialize two tables, one for addresses, and one for coins.

– RegisterID(addrpk). When called by party U , registers a new address addrpk
• The input is an address addrpk.
• If addrpk is not already in the address table, the trusted party TP stores

(U, addrpk) in the address table. Else, reject.
– c ← Mint(v, addrpk). Creates a coin for party U

• The input is a value v and a destination address addrpk.
• The trusted party TP checks to make sure that addrpk has been registered to

user U . If not, reject.
• Else, TP generates a unique random transaction id c, stores (c, v, addrpk) in the

coin table, and notifies all parties of Mint(v).
• TP returns c to the user.

– [cnew
1 , . . . , cnew

n] ← Pour([c1, . . . , cm], [(addrpk,1, v1), . . . , (addrpk,n, vn)], vpub). Gener-
ates n new coins. Party U pours coins to new addresses

• The input is a list of previous transaction id’s ci, tuples of (destination address
addrpk,i, transaction value vi), and a public value vpub.

• For each input ci, TP retrieves each transaction, its associated value voldi , and
address from the coin table and checks the address belongs to U in the address
table. If not, reject.

• TP checks
∑m

i=1 v
old
i =

∑n
i=1 vi + vpub. If not, reject.

• The trusted party then creates n new random transaction id’s cnew
i each with

value vi and for each stores (cnew
i , vi, addrpk,i) in the coin table.

• TP deletes the input transaction(s) from the coin table.
• For each addrpk,i that is not in the address table, TP notifies the corrupted

parties of Pour(cnew
i , vi, addrpk,i).

• For all addrpk,i in address table, TP notifies the party associated with addrpk,i
of Pour(cnew

i , vi, addrpk,i).
• The trusted party TP notifies all parties of Pour(vpub).
• TP returns [cnew

1 , . . . , cnew
n] to the user.

Fig. 1. Ideal functionality. Security of a basic DAP scheme.

Real world functionality REALDAP,A,Σ. The real world attacker A controls
a subset of the parties P1, . . . , Pn interacting with the real DAP scheme. The
honest parties execute the commands output by the strategy Σ using the DAP
scheme while the attacker controlled parties can behave arbitrarily. We assume
that all parties can interact with a trusted append only ledger.

86 C. Garman et al.

For generality we present our ideal functionality definitions, as well as sub-
sequent transaction policies, as operations on n coins in and n coins out. As we
do not wish to re-present all of Zerocash, however, for brevity we deal concretely
with the existing Zerocash construction which was defined for the 2-in-2-out
case.

Definition 1. We say that DAP securely emulates the ideal functionality pro-
vided by TP if for all probabilistic polynomial-time real-world adversaries A and
all honest party strategies Σ, there exists a simulator S such that for any ppt
distinguishers d:

P [d(IDEALTP ,S,Σ(λ)) = 1] − P [d(REALDAP,A,Σ)(λ) = 1] ≤ negl(λ)

Theorem 1. The basic DAP scheme described in [2] and the full version of this
paper satisfies Definition 2.1 given the existence of simulation-sound zkSNARKs,
collision resistant hash functions, PRFs, statistically hiding and computationally
binding commitments, one-time strongly-unforgeable digital signatures, and key-
private public key encryption.

See the full version for a proof of Theorem 1 [10].

3 Modifying and Extending Zerocash

We use the same notation for addresses, Merkle tree, ledger, and other com-
ponents as Zerocash [2]. However, to meet the new definitions we must lightly
modify the existing construction. In particular, we need a mechanism to allow
us to extract who a Mint transaction was authored by, and we need to extend
the definitions to allow for policies to be applied that validate transactions.

We modify the Zerocash construction in two ways. First, by adding a proof
to the Mint algorithm that cm := COMMs(v‖COMMr(apk‖ρ)) and a verification
of this proof to VerifyTransaction. This is to support our new definition. Second,
we modify Receive to fix the attack described in Sect. 2 and check if the serial
number randomness is distinct from any previously received coins, not just the
ones already spent on the ledger. We refer the curious reader to the full version
of the paper [2,10] for the complete details.

4 Policies

Given an extensible security model for Zerocash-like systems we can now con-
sider more complex policies governing the transfer of funds than those originally
embedded in Zerocash. Zerocash only enforced one restriction on funds transfer:
the sum of the values in the list of output commitments must not exceed the
sum of the input ones. Although that is the most basic policy governing any
monetary system, far more complex ones govern our modern banking system.
These include policies limiting money laundering, enforcing tax payments, and
facilitating international funds transfers, among other examples. In this section,

Accountable Privacy for Decentralized Anonymous Payments 87

we explore several analogous policies for decentralized e-cash that still mostly
preserve user privacy.

Formally, we define a policy as an algorithm that is executed each time a coin
is spent (“poured”). The algorithm is parameterized by some constants (e.g., all
transaction tax policies are the same except for the tax rate parameter) and takes
public inputs, private inputs, and returns true or false. Policies are realized by
a zero-knowledge proof, so we are essentially giving a procedural description of
the standard efficiently decidable binary relation used in zero-knowledge proofs.
We note that no fresh computation takes place in a policy, only validation of
precomputed data.

4.1 Building Blocks

To construct our policies, we use a few basic techniques detailed here.

Adding Information to Coins. In order to accomplish various policies, we
need to store more than a numeric value inside a coin (indeed, as shown later,
we will need to use coins for other things).

We do this by replacing the 192 bit zero padding in the commitment with a
special tag used to mark what kind of counter it is. To do this we can alter the
creation of a coin from

cm := COMMs(v‖k) as H(k‖0192‖v)

to
cm := COMMs(v‖type‖data‖k) as H(k‖type‖data‖v).

Policies will use the type information to ensure that an adversary cannot
cause them to operate over the wrong data. Careful care must be taken so that
one policy does not output data of a type used by a different policy for a different
purpose. This also means that each new type requires a special Mint.

Counters. A recurring problem we will encounter in these policies is the prob-
lem of how to count, e.g., how do you count how much money a user has sent,
how much they need to pay taxes on, etc? Many policies depend on counting
funds or transactions and as such, we treat it as a basic building block.

The approach we take is to replace the content of a coin with a counter.
Upon each transaction the policy governing it requires the user to input their
current counter state and output the new counter with the appropriate incre-
ment. Counters are a new type of “coin” and we define MintCTR analogously to
Mint but have it reveal the tag in addition to v which is now called ctr. In order
to maintain anonymity, these counters need to be input via the same mechanism
that coin commitments are (i.e., by proving they are in a Merkle tree). In the
policies below, we denote them as special inputs solely for clarity.

The particular mechanism for restricted mint depends on deployment. For
certain scenarios, it may be enough to ensure that there is only one counter per

88 C. Garman et al.

address. For most scenarios where counters are tightly coupled with real world
identity, we assume such mints must tied to some trusted party, probably via
signature. There is thus an implicit policy on which MintCTRs will be accepted.

We also define a utility function for verifying a counter in Algorithm1.

input : CTROld,CTRNew, delta, tag
output: True if counter is valid

if not tag = CTROld.tag = CTRNew.tag then
return False;

end
return CTRNew = CTROld.value + delta;

Algorithm 1. VerifyCounter

Identity. An important aspect of any regulatory system is user identity. Legal
concepts of identity are decidedly centralized. Since most policies are a result
of legal and regulatory requirements, most of them require some notion of legal
identity. In the case of counters bound to an identity, a trusted third party can
issue the counters. More practically, given any trusted party who issues identity
certificates, we can require a signature under its certificate chain.

Another possibility is to simply bind counters or other objects to Bit-
coin/Zerocash addresses and enforce real world identity enforcement at
exchanges and online wallets. In this case then, a user would be associated with a
set of addresses and would later have to tie these addresses to a real-world iden-
tity. This is analogous to the current approach used in Bitcoin, where exchanges
and online wallets track user identities. We believe this is the most promising
avenue for real deployment.

Signatures and Encryption. The final building block some of our policies
use are public key encryption and signature schemes. Because Zerocash uses
zk-SNARKs which are proofs over arithmetic circuits, the naive approach to
instantiating these schemes would be extremely costly: first build a circuit for
modular exponentiation operations in some group and then build the encryption
scheme on top of that. However, it is possible instead to directly calculate the
signature verification operations in an extension field [9] of the arithmetic circuit,
vastly increasing efficiency.

4.2 Regulatory Closure

This policy allows multiple regulatory environments to coexist in the same sys-
tem but the units of currency under each scheme do not mix. In practice, this pol-
icy ensures that transactions do not bridge between regulatory schemes, except
through an outside mechanism such as an exchange (where legal requirements
can be enforced). To implement this policy, coins, instead of just including a
numeric value v, now include a regulatory type. These are created on Mint. The
policy ensures that either:

Accountable Privacy for Decentralized Anonymous Payments 89

1. the regulatory type of all input coins and all output coins is the same
2. or the type of all output coins is marked as ⊥.

The point of this policy is to ensure continuity of some other regulatory
scheme which may or may not be enforced by zero-knowledge. For example, such
a policy could ensure that coins only came from exchanges or hosted wallets in
a particular jurisdiction. In the algorithm described in Algorithm2, we allow
coins to have an arbitrary regulator marking if the output coins are signed by
a valid authority. This could be a bank, an exchange, or the government itself.
This allows the transfer of coins from one scheme to the other.

PrivateInput: CoinsIn,CoinsOut, CA, sig
Constants : inRegType,CA
output : True if transaction is valid

if sig �= ⊥ then // if tx signed by authorized party, skip policy

return VerifySig(CA,CoinsOut, sig);
end
outRegType ← inRegType;
for e ∈ CoinsIn do

if e.regType �= inRegType then
outRegType ← ⊥; // if any regType is wrong, outRegType is ⊥

end

end
for e ∈ CoinsOut do // check each new coin has the correct regtype

if e.regType �= outRegType then
return False;

end

end
return True;

Algorithm 2. Regulatory closure

4.3 Spending Limits

In the US one common form of anti-money laundering control is a Suspicious
Activity Report. This report is generated by a bank when any single transaction
over $10,000 USD is reported. This can be easily implemented.

The mechanism is simple: no transaction over the limit is valid unless signed
by an authority. This allows the authority to force reporting for transactions
over the limit. Note, we explicitly require the signature to be public. The reason
is to prevent fraud on the part of the authority. Were the signature private, a
bank enforcing this could undetectably allow anyone to circumvent the reporting
mechanism by issuing more signatures. On the other hand, when signatures are
public, we can require that the authority log (privately) all transaction details
along with the transaction itself (and perhaps a proof the details are valid). See
Algorithm 3. Since the signature is used once and only known to the authority,
revealing it does not impact privacy.

90 C. Garman et al.

PrivateInput: CoinsIn,CoinsOut
PublicInput : sig
Constants : limit
output : True if transaction is valid

sent ← 0;
if sig �= ⊥ then // if tx signed by authorized party, skip policy

return VerifySig(CA,CoinsOut, sig);
end
for e ∈ CoinsOut do

// if we are paying to an input address, it is ‘‘change’’ back

to the user and not counted against the limit

if e.addr /∈ {c.addr|c ∈ CoinsIn} then
sent ← sent + e.value;

end

end
return sent ≤ limit;

Algorithm 3. Transaction limit

A more sophisticated policy would place spending limit over all transactions
instead of a limit on a single transaction. For this we require counters. See
Algorithm 4.

Modified ideal functionality and proof sketch. We now detail, infor-
mally, the modifications to the ideal functionality necessary to capture counter
based spending limits and the changes necessary to the proof. The ideal func-
tionality changes are small: we add a per user counter maintained by the ideal
functionality and modify pour to increment the counter as appropriate and reject
the transaction if the counter is over a given limit. The resulting proof change
is similarly tiny: the simulator aborts if the attacker submits a real world trans-
action violating their counting limit or if they try and issue a new counter. The
probability of the former event is negligible if the proof system is simulation
sound and the second event is not allowed in either the real or ideal protocol
since the attacker cannot make new counters.

4.4 Tax

Our policies also allow us to enforce taxes, such as income taxes, sales taxes,
and Value Added Tax (VAT). We accomplish this by requiring a percentage
payment to a tax account with each Zerocash transaction. Because Zerocash is
payment based, in practice we charge taxes on the sending side of the transaction.
Obviously, this cost can be passed on to the recipient.

Accountable Privacy for Decentralized Anonymous Payments 91

PrivateInput: CoinsIn,CoinsOut,CTRcmold,CTRcmnew

PublicInput : epoch,sig
Constants : limit
output : True if transaction is valid

spent ← 0;
if sig �= ⊥ then // if tx signed by authorized party, skip policy

return VerifySig(CA,CoinsOut, sig);
end
if CTRcmnew.value ≥ limit then // if counter over limit, reject

return False;
end
for e ∈ CoinsOut do

// if we are paying to an input address, it is ‘‘change’’ back

to the user and not counted against the limit

if e.addr /∈ {c.addr|c ∈ CoinsIn} then
spent ← spent + e.value;

end

end

return VerifyCounter(CTRcmold,CTRcmnew,
spent,“limit”);

Algorithm 4. Spending limit

PrivateInput: CoinsIn,CoinsOut,CTRcmold,CTRcmnew

Constants : taxrate, tag
output : True if transaction is valid

spent ← 0;
for e ∈ CoinsOut do

if e.addr /∈ CoinsIn then
spent ← spent + e.value;

end

end

return VerifyCounter(CTRcmold,CTRcmnew,
�spent · taxrate	,tag);

Algorithm 5. Tax

The tax algorithm is straight forward. All outputs being sent to other parties
are summed and a percentage of that amount is added to a user’s tax counter.
We reveal the tag to support multiple tax authorities.1

Actually forcing users pay taxes is a problem left to the authority. Since they
know who they issued tax counters to, they can force those people to report their

1 We note that this tax policy is ill defined if users collude to generate a transaction
using MPC where the input identities are different. This can be fixed by ensuring
that there is only one identity used for all input coins. However, the same MPC
mechanism could be used to share one identity and never pay taxes.

92 C. Garman et al.

income. An alternate policy would be to directly pay taxes off each transaction.
This would, however, leak transaction amounts to the authority, rather than just
total income.

4.5 Identity Escrow

The identity escrow policy allows governments to selectively revoke the
anonymity of individual transactions, using a master key held securely by some
tracing authority. The implementation of this function is simple: a copy of the
transaction details is encrypted under the public key of some authority. The
policy validates that the encryption is correct. We note it may be possible to
forgo public key encryption if every user has a pre-shared key with the tracing
authority (since it is likely this would be a bank or government which users
already had to register with, this is possible) and we can authenticate the key
with a signature scheme if this proves more efficient.

PrivateInput: CoinsIn.CoinsOut, r
PublicInput : escrowct
Constants : CA
output : True if transaction is valid

return escrowct = Pkenc(CA,CoinsIn‖CoinsOut; r);

Algorithm 6. Identity escrow

5 Coin Tracing

We now detail how to trace individual coins.

5.1 Construction

In a coin tracing scheme, individual coins can be marked for tracing. All subse-
quent coins resulting from transactions on those initial coins will themselves be
traceable. To implement this in Algorithm 7, each coin commitment contains a
fresh key for a public key encryption scheme. The idea is that all of the infor-
mation needed to trace the output coins (including the new private keys) is
encrypted under the existing key for the input coin commitments. Thus, if the
inputs are traced, then the outputs are traceable. If we did only this, however,
the sender would be able to trace the coins because he generated the fresh keys
for the outputs. Thus, we encrypt all of this output under the authority’s pub-
lic key. For space efficiency, instead of encrypting everything under each input
key, we encrypt the same symmetric key under each public key and encrypt
everything under that key.

Our tracing scheme has two major limitations: first unless someone removes
the tracing key for a coin and replaces it with a dummy key, eventually all
coins in the network will be traced. This is an inherent limitation of a tracing
mechanism that marks all coins involved in a transaction as tainted. Of course,

Accountable Privacy for Decentralized Anonymous Payments 93

PrivateInput: CoinsIn,CoinsOut, r, pkCTs, rEnc, k, ct, rKeyGen, pk, sk
PublicInput : escrowct
Constants : G
Constants : CA
output : True if transaction is valid

if sig �= ⊥ then // tx is from e.g. a bank, skip tracing
return VerifySig(CA,CoinsOut, sig)

end
i, j ← 0;
for e ∈ CoinsOut do // check new coins’ tracing keys are correct

if (pk[i], sk[i]) �= PKgen(G; rKeyGen[i]) or e.key �= pk[i] then
return False; // key was not generated honestly

end
i ← i + 1;

end
for e ∈ CoinsIn do // ensure k is encrypted under each tracing key

if pkCTs[j] �= PKEnc(e.key, k; rEnc[j]) then
return False ; // symmetric key k is not encrypted under input

coin j’s tracing key

end
j ← j + 1;

end
if ct �= enc(k,CoinsIn‖CoinsOut‖sk; rEnc) then

return False; // new tracing private keys not encrypted under k
end
// ensure ct is encrypted under authority key

return escrowct = PkEnc(CA, ct‖pkCTs);
Algorithm 7. Coin tracing

we could have more limited versions where we map the taint bits from input
coins to output coins directly (e.g., the largest input’s taint bit maps to the
largest output) but these lead to circumvention issues.

The second issue is that the user and the authority can collude to trace
coins even if the input coins were not marked as traced. This is not an inherent
limitation but rather arises from the fact that the authority always knows the
decryption keys for the outer layer of encryption and the user always knows the
inner layer keys.

Because of these limitations we anticipate that in a real system, coins will
frequently return to exchanges and online wallets and at these locations tracing
can be removed or added. To facilitate this we allow exchanges who have an
authorized signing key to either add or remove tracing by changing the key
associated with a coin. We note that when an exchange removes tracing this can
be done in a verifiable manner by using a known dummy key as the coin key.
Looking forward, we can use similar techniques to accountable user tracing in
the next section to allow the exchange to accountably add or remove tracing

94 C. Garman et al.

by providing a randomized tracing key that is either the authority’s key or a
dummy key.

Given the above policy, the algorithm to actually do tracing is detailed in
Algorithm 8.

input : The list of trace ciphertexts TraceCTs, the authority’s decryption key
sk, the initial coin tracing private key ck for the coin we want to trace

output: The trace for a particular coin Trace

for e ∈ TraceCTs do // decrypt the outer layer of all transactions

TraceRecords.append(PKDec(sk,TraceCTs));
end
KeysToTrace.append(ck);
for ck ∈ KeysToTrace do

// For every public key ciphertext in every pour, we attempt to

decrypt with the target key. On success, we get back the

symmetric ciphertext associated with the pour, and the

decrypted symmetric key.

encrec, k ← FindTxByTrialDecryption(TraceRecords, ck);
if encrec �= ⊥ then

rec ← SymDec(k, encrec); // now decrypt the record

Trace.append(rec); // add the decrypted record to the trace

for i ∈ {0, 1, . . . , rec.CoinsIn.Size() − 1} do
KeysToTrace.append(rec.sk[i]); // enqueue the new tracing keys

end

end

end
return Trace;

Algorithm 8. TraceCoin

The algorithm to trace coins takes an initial target coin commitment, the
initial public key for that coin commitment, and the key to decrypt all tracing
records. It simply searches for all coin commitments output by that transaction,
maps the new keys to those coin, decrypts the record with the existing keys, and
adds those coin commitments to the list of ones to search for.

5.2 Security

Modified Ideal Functionality. To allow tracing, we need to modify the
Ideal Functionality to (1) have a special party designated the tracing author-
ity, (2) allow coins to be marked as traced by that authority, (3) mark all output
coins as traced if any of the inputs are traced and (4) allow a report on all traced
coins to be made to that authority. Of course, since we allow static corruption,
the tracing authority may be the adversary. We detail the modifications in Fig. 2.

Accountable Privacy for Decentralized Anonymous Payments 95

– [cnew
1 , . . . , cnew

n] ← Pour([c1, . . . , cm], [(addrpk,1, v1), . . . , (addrpk,n, vn)], vpub, aux).
• Perform steps one through eight of Pour in Fig. 1, adding an additional stored

field (initially set to false) to denote whether a coin is being traced or not.
• If any coin ci is marked as traced, mark all output coins as traced.
• TP returns [cnew

1 , . . . , cnew
n] to the user.

– Trace(c, U)
• The input is a coin c and a requesting party U .
• If the requesting party U is the tracing authority, update the stored value for c

and mark it as traced. Else, reject.
– [c0, . . . , cm] ← Report(U)

• The TP returns all entries [c0, . . . , cm] for coins marked as traced if the request-
ing party U is the tracing authority, otherwise return ⊥.

Fig. 2. Modified ideal functionality for coin tracing.

Proof Sketch. If the tracing authority is not corrupted, then the simulator can
always use random values for the escrow ciphertext and the probability of abort
is bounded by the security of the outer encryption scheme.

We now deal with the more complex case: a corrupted tracing authority who
the simulator must generate notifications for. There are two subcases: traced
coins and non-traced coins. For traced coins, the probability that the simulator
fails in decrypting both layers of the tracing ciphertext (and hence cannot mark
the coins appropriately in the ideal functionality) is bounded by the soundness
of the proof system. For non-traced coins in the ideal model, the simulator can
use a random ciphertext for the inner symmetric ciphertext ct and the associated
encryptions of its key. For untraced coins, since the real world tracing authority
does not have the keys for non-traced coins, the probability of abort is bounded
by the security of the public key encryption scheme.

6 Accountable User Tracing

The problem with the original escrow above is that it provides no privacy from
the tracing authority: all users’ data is encrypted under a single key the authority
holds. The only privacy guarantees users have are based on trust. And even those
are limited: in order to find the coins used by a specified user, the authority needs
to decrypt all coins. Ideally, we would have a system that not only allows the
authority to only open coins of traced users, it creates an accountable record
that they did so.

To do so, we borrow an idea from Accountable Tracing Signatures [14]: each
user encrypts their data under a unique key they are given by the authority. If
they are being traced, this key is a randomized version of the authority’s public
key. If, as is the common case, users are not being traced, the key is a randomized
version of a null key (e.g. a random group element). Crucially, without knowledge
of the randomness, users cannot distinguish which key they are getting at the

96 C. Garman et al.

PrivateInput: CoinsIn,CoinsOut, pk, sig, r
PublicInput : usertracect
Constants : CA
output : True if transaction is valid

if VerifySig(CA, pk, sig) then
return usertracect = Pkenc(pk,CoinsIn‖CoinsOut; r);

else
return False;

end

Algorithm 9. Accountable user tracing

time, but if the authority later reveals the randomness they can provably tell
they were or were not traced. Thus we term this system accountable user tracing.

This requires one small change to the standard identity escrow policy: we
have to allow an arbitrary key and ensure that it is signed by the authority and
for the current epoch.

The larger question is key management. If we simply require the authority to
reveal who they were monitoring at some later point, this policy becomes simple
to implement: each user receives a key at each time period (e.g. daily) and by the
disclosure deadline for searches, the authority reveals the random coins used to
make the key. Unfortunately, this approach is unlikely to be compatible with real-
world requirements. Given the existence of National Security Letters and similar
warrants containing “gag orders”, it is likely there are cases where the authority
will prefer not to reveal which users were monitored. The standard solution in
practice is to produce a transparency report that details which fraction of users
were searched, and/or offers a loose bound on the number of searches.

However, building a cryptographically binding transparency report over mil-
lions of users efficiently is challenging given that this would involve processing
millions of records. There are various ways this might be accomplished (e.g. tech-
niques for batched proofs). In this work we propose a simple one: use a separate
instance of Zerocash to create tokens that allow search. Each user gets their
key along with a proof that their key is either randomized from the null key
or randomized from the authority’s key and a zerocoin is spent. At the end of
each time period, the authority can spend all unused coins, thus revealing what
fraction of people they searched.

7 Related Work

7.1 Anti-money Laundering for Centralized e-cash

Many, if not all of the policies in this paper have been implemented in centralized
e-cash schemes, be it spending limits [7] or user and coin tracing. Somewhat sur-
prisingly accountable user and coin tracing exists for centralized schemes [16,17].
However none of these have been done in the decentralized setting. Moreover,

Accountable Privacy for Decentralized Anonymous Payments 97

the known techniques for coin and user tracing [16,17] require coins to be with-
drawn from the authority and then deposited back and have only one transfer,
whereas our techniques allow continual transactions with the need to interact
with the authority only dictated by the allowable delay in starting a trace.

7.2 Hawk

In concurrent work Kosba et al. [15] present Hawk, a system for privacy preserv-
ing smart contracts with an ideal functionality based definition. Hawk’s security
is set in the UC model [8], which is a stronger setting than we explore here.
Achieving UC security requires all proofs to include an encrypted copy of their
witness and a proof of its validity. This entails two costs: first, the increase in
proving cost due to circuits handling encryption and second, the loss of succinct-
ness. In the case of Zerocash, this results in a dramatic increase in the size of the
proof due to the need to encrypt all witnesses.2 This trade off between security
and performance does not appear to affect our actual constructions here: if built
using a UC security proof scheme, they can achieve UC security.

Acknowledgements. This work was supported by: The National Science Foundation
under awards EFRI-1441209 and CNS-1414023; Google ATAP; The Mozilla Founda-
tion; and the Office of Naval Research under contract N00014-14-1-0333.

References

1. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32946-3 29

2. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from Bitcoin. In: 2014 IEEE
Symposium on Security and Privacy (SP), pp. 459–474. IEEE (2014)

3. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for
C: verifying program executions succinctly and in zero knowledge. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40084-1 6

4. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Proceedings of the 23rd USENIX
Security Symposium, Security 2014 (2014). http://eprint.iacr.org/2013/879

5. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in Bit-
coin P2P network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 15–29. ACM (2014)

6. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 315–33. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36594-2 18

2 It may be possible to reduce the cost of these proofs by introducing zero-knowledge
proofs that are only partially extractable, although this technique is not described
by the Hawk authors. For example, the exact Merkle tree path need not be extracted
from the zkSNARK proof.

http://dx.doi.org/10.1007/978-3-642-32946-3_29
http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://eprint.iacr.org/2013/879
http://dx.doi.org/10.1007/978-3-642-36594-2_18
http://dx.doi.org/10.1007/978-3-642-36594-2_18

98 C. Garman et al.

7. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and
privacy using e-cash (extended abstract). In: Prisco, R., Yung, M. (eds.) SCN 2006.
LNCS, vol. 4116, pp. 141–55. Springer, Heidelberg (2006). doi:10.1007/11832072 10

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, p. 136. IEEE Computer Society (2001). http://eprint.
iacr.org/2000/067

9. Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio coin: building Zero-
coin from a succinct pairing-based proof system. In: Proceedings of the First ACM
Workshop on Language Support for Privacy-enhancing Technologies, pp. 27–30.
ACM (2013)

10. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. Cryptology ePrint Archive, Report 2016/061 (2016). http://eprint.
iacr.org

11. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–45. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38348-9 37

12. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

13. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–40. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 19

14. Kohlweiss, M., Miers, I.: Accountable tracing signatures. Cryptology ePrint
Archive, Report 2014/824 (2014). http://eprint.iacr.org/

15. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts (2015)

16. Kügler, D., Vogt, H.: Auditable tracing with unconditional anonymity. In: Interna-
tional Workshop on Information Security Application - WISA 2001, pp. 151–163
(2001)

17. Kügler, D., Vogt, H.: Offline payments with auditable tracing. In: Blaze, M. (ed.)
FC 2002. LNCS, vol. 2357, pp. 269–81. Springer, Heidelberg (2003). doi:10.1007/
3-540-36504-4 19

18. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive
zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
169–189. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 10

19. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-42033-7 3

20. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP),
pp. 397–411. IEEE (2013)

21. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Proceedings of the 34th IEEE Symposium on Security and
Privacy, Oakland, pp. 238–252 (2013)

22. Reid, F., Martin, H.: An analysis of anonymity in the Bitcoin system. In: Proceed-
ings of the 3rd IEEE International Conference on Privacy, Security, Risk and Trust
and on Social Computing, SocialCom/PASSAT 2011, pp. 1318–1326 (2011)

http://dx.doi.org/10.1007/11832072_10
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://eprint.iacr.org
http://eprint.iacr.org
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-17373-8_19
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-36504-4_19
http://dx.doi.org/10.1007/3-540-36504-4_19
http://dx.doi.org/10.1007/978-3-642-28914-9_10
http://dx.doi.org/10.1007/978-3-642-42033-7_3
http://dx.doi.org/10.1007/978-3-642-42033-7_3

Private eCash in Practice (Short Paper)

Amira Barki1,2, Solenn Brunet1,3, Nicolas Desmoulins1, Sébastien Gambs4,
Säıd Gharout1, and Jacques Traoré1(B)

1 Orange Labs, Caen, France
{amira.barki,jacques.traore}@orange.com

2 Sorbonne universités, Université de technologie de Compiègne (UTC), CNRS,
UMR 7253 Heudiasyc, Compiègne, France
3 Université de Rennes 1, Rennes, France

4 Université du Québec à Montréal (UQAM), Montréal, Canada

Abstract. Most electronic payment systems for applications, such as
eTicketing and eToll, involve a single entity acting as both merchant
and bank. In this paper, we propose an efficient privacy-preserving post-
payment eCash system suitable for this particular use case that we refer
to, afterwards, as private eCash. To this end, we introduce a new partially
blind signature scheme based on a recent Algebraic MAC scheme due to
Chase et al. Unlike previous constructions, it allows multiple presenta-
tions of the same signature in an unlinkable way. Using it, our system is
the first versatile private eCash system where users must only hold a sole
reusable token (i.e. a reusable coin spendable to a unique merchant). It
also enables identity and token revocations as well as flexible payments.
Indeed, our payment tokens are updated in a partially blinded way to
collect refunds without invading user’s privacy. By implementing it on a
Global Platform compliant SIM card, we show its efficiency and suitabil-
ity for real-world use cases, even for delay-sensitive applications and on
constrained devices as a transaction can be performed in only 205ms.

Keywords: eCash · Post-payment · Refunds · Partially blind signa-
ture · Anonymity · eToll · eTicketing · EVC

1 Introduction

Electronic Cash (eCash), introduced by Chaum [6], is the digital analogue of
hard currency in which users withdraw electronic coins from a bank and spend
them to merchants. Later, each merchant deposits the collected coins to the
bank.

Using eCash, user’s anonymity is protected both from the bank and mer-
chants. To ensure this, it should be impossible to link the following pair of
events: either a withdrawal and a spending or two spendings. However, owing
to its digital nature, eCash has to be protected from duplication. Thus, eCash
protocols must enable the detection of double-spending and the identification of
defrauders.
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 99–109, 2017.
DOI: 10.1007/978-3-662-54970-4 6

100 A. Barki et al.

To be as attractive as possible, the user’s side of an eCash system is sometimes
implemented on a mobile device or even a smart card. Therefore, protocols have
to comply with both the limited resources of such environments as well as the
stringent delay constraint arising from transactions requirements.

Public transport [2], electronic Toll (eToll) [7] and Electric Vehicle Charging
(EVC) [3] are the main emerging uses cases of private eCash (i.e. involving a sin-
gle merchant managed by the same entity acting as the bank) that significantly
invade user’s privacy. Indeed, transactions records may disclose user’s location
at a given time and reveal personal information such as work, home or habits.

Related work. Recently, several proposals have addressed this issue. However,
finding a good tradeoff between necessary security properties and performance
has not always been completely successful. In the sequel, we only focus on
schemes related to eCash although other approaches exist in the literature
[4,10,13].

Public transport users’ privacy was tackled in [2,11,14]. In the first two pro-
posals, users pay for their trips through the use of payment tokens that are
worth the highest possible fare. As fares have different values, a refund process
is set up to guarantee the accurate charging of users. However, to ensure user’s
anonymity with respect to the transport company, the scheme of Rupp et al. [14]
entails heavy verifications that constrained devices cannot handle [2]. The pro-
posal of Milutinovic et al. [11] is also computationally expensive and less efficient
than [14] as refunds are separately collected on distinct refund tokens. Arfaoui
et al. [2] protocol meets the stringent delay requirement and is efficient even
when implemented in constrained environment. It is also the only one allow-
ing anonymity revocation under exceptional circumstances. Nevertheless, this
scheme does not enable flexible prices. As regards to EVC user’s privacy, it was
addressed by Au et al. [3]. However, their scheme requires costly zero-knowledge
proofs of knowledge and is not suitable for time-sensitive applications.

Finally, Day et al. [7] proposed two privacy-preserving payment systems for
eToll. However, the first one is only partially private as it relies on spot checks
that record some of the user’s spatio-temporal information to detect and identify
defrauders. Furthermore, through an exhaustive search on tokens, it is possible
to trace all user’s trips. In contrast, the second proposal provides full anonymity
and enables double spending detection. Unfortunately, to be efficient, users have
to hold a large number of tokens where each one can only be used at a specific
time. Besides, similarly to eCoupons, both proposals do not allow flexible prices,
which we believe to be an important issue.

Contributions. In this paper, we propose an efficient post-payment private eCash
system designed for scenarios in which the same entity acts as both merchant
and bank like public transport, eToll and EVC. Indeed, we leverage this feature
to strike a balance between efficiency and privacy. Our system relies on a new
partially blind signature scheme built based on the recent Chase et al. Algebraic
MAC scheme [5]. Unlike ordinary eCash systems, users must only hold a single
token that can be reused a specified number of times without allowing anyone

Private eCash in Practice 101

to trace users or link their transactions. Through a refund process1, our eCash
system supports both post-payments (i.e. users are charged after the use of
the service) and flexible prices while removing the need to withdraw several
tokens of different values. Our proposal is proven secure in the random oracle
model (ROM) and its implementation on a SIM card shows that it complies
with the limited computational power of constrained devices and stringent time
constraints.

The paper is organized as follows. Section 2 introduces our main notation
and building blocks and details our partially blind signature scheme. Based on
this first contribution, Sect. 3 explains our eCash system through the eToll use
case. As an electronic payment system dedicated to toll roads, it illustrates the
challenging requirements we have to face both in terms of privacy and perfor-
mance. Finally, implementation results in Sect. 4 show that our system is truly
efficient.

2 Preliminaries

2.1 Notation

To state that x is chosen uniformly at random from the set X, we use one of
the two following notations x

R←− X or x ∈R X. In addition,
→
x and {gi}l

i=1

respectively denote the vector (x0, x1, . . . , xn) and the set {g1, g2, . . . , gl}.
Zero-Knowledge Proofs of Knowledge (ZKPK) allow a prover P to con-

vince a verifier V that he knows some secrets verifying a given statement with-
out revealing anything else about them. They are denoted by the usual nota-
tion in which Greek letters correspond to P’s knowledge: π := PoK{α, β :
statements about α, β}.

2.2 Computational Hardness Assumptions

The security of our proposals relies on the following computational hardness
assumptions. Let G be a cyclic group of prime order q.

Discrete Logarithm (DL) Assumption. The Discrete Logarithm assumption states
that, given a generator g ∈R G and an element y ∈R G, it is hard to find the
integer x ∈ Zq such that gx = y.

Decisional Diffie-Hellman (DDH) Assumption. The Decisional Diffie-Hellman
assumption states that, given a generator g ∈R G, two elements ga, gb ∈ G and
a candidate X ∈ G, it is hard to decide whether X = gab or not.

Decisional Composite Residuosity (DCR) Assumption. The Decisional Composite
Residuosity assumption states that it is hard to distinguish Z

n
n2 from Z

∗
n2 where

Z
n
n2 = {z ∈ Z

∗
n2 : ∃y ∈ Z

∗
n2 such that z = yn mod n2} is the set of nth residues.

1 As shown in [14], an aggregate refund amount should not enable to deduce the
different toll fares and hence, the details of the individual trips the user has taken.

102 A. Barki et al.

LRSW Assumption. For a generator g ∈R G, X0 = gx0 and X1 = gx1 , let O be
an oracle that takes on input m ∈ Zq and outputs A = (a, ax1 , ax0+mx0x1) where
a ∈R G. The LRSW assumption states that, given (X0,X1) and unlimited access
to O, it is hard to generate a triplet for a new m′ that has not been queried
to O.

Pointcheval and Sanders [12] introduced the following variant of the LRSW
assumption in type-3 bilinear groups in order to prove the security of their
signatures schemes.

Assumption 1. Let (G1,G2,GT , q, e) be a bilinear group setting of type 3 and
h, h̃ be two generators of G1 and G2 respectively. For X1 = hx1 , X̃0 = h̃x0 and
X̃1 = h̃x1 such that x0, x1 ∈R Z

∗
q , let O1 be an oracle that takes on input m ∈ Zq

and outputs the pair P = (u, ux0+mx1) for u ∈R G1. The Assumption 1 states
that, given (h,X1, h̃, X̃0, X̃1) and unlimited access to O1, it is hard to efficiently
generate a valid pair for a new m′ that has not been queried to O1, with u �= 1G1 .

2.3 Building Blocks

Algebraic MAC in Prime-Order Group. Chase et al. introduce in [5] two MAC
schemes constructed using a cyclic group of prime order. An interesting feature
of their schemes is that the issuer and the verifier are actually the same entity
and consequently share a set of keys. To build our private eCash scheme, we focus
on their MACGGM construction, that can be seen as a digital signature scheme,
proven unforgeable under chosen message and verification attack (UF-CMVA)
in the generic group model. In the following, we briefly review their construction
by explaining how to sign n distinct messages (m1, . . . ,mn):

1. Setup(1k) creates the system public parameters denoted pp := (G, q, g, h)
where G is a cyclic group of prime order q, a k-bit prime, and g, h are two
random generators such that logg h is unknown.

2. KeyGen(pp) generates a secret key sk :=
→
x ∈R F

n+1
q and a value x̃0 ∈R Fq

to build a commitment Cx0 := gx0hx̃0 to the secret value x0. Denoted by
iparams, (Cx0 ,X1 := hx1 , . . . , Xn := hxn) corresponds to the issuer’s public
parameters.

3. MAC(sk,
→
m) produces an authenticated token (u, u′) on

→
m := (m1, . . . ,mn)

where u ∈R G\{1} and u′ := ux0+x1m1+···+xnmn .
4. Verify(sk,

→
m, (u, u′)) checks the validity of the token with respect to the

message
→
m. The token is accepted only if u �= 1 and u′ = ux0+x1m1+···+xnmn .

Based on MACGGM, Chase et al. proposed a keyed-verification anonymous
credentials scheme allowing the blind issuance of credentials. However, it requires
ZKPK for each hidden attribute and does not provide perfect unlinkability as the
credential attributes are sent to the issuer encrypted, using ElGamal encryption
scheme, before being signed. Thus, it is not suitable for eCash systems.

Partially blind signatures. A variation of basic digital signatures, called blind
signature, allows a receiver R to get a signature on a message without revealing

Private eCash in Practice 103

any information about it to the signer S. However, in use cases like eCash, S
may want to add some information to the blind signature such as a date, a
validity period or an amount. To address this issue, Abe et al. [1] proposed an
extension known as partially blind signature. It allows R and S to agree on a
common information info to be added in the blind signature of a message

→
m.

A partially blind signature scheme should be (1) one-more unforgeable (i.e. it
should be impossible to obtain L+1 signatures with at most L signing requests)
and (2) unlinkable (i.e. it should be impossible to link two signatures or identify
for whom the signature was issued).

Through the interactive protocol BlindIssue(R(
→
m),S(sk)) described below,

we detail our partially blind signature scheme based on MACGGM and which is
executed between R holding

→
m and S who acts as the issuer holding sk:

1. R sends the common value info, a commitment C→
m

:= hrXm1
1 . . . Xmn

n to
the message

→
m where r ∈R Z

∗
q as well as the ZKPK π1 defined as follows:

π1 := PoK{α1, α2, . . . , αn, β : C→
m

= hβXα1
1 . . . Xαn

n }.
2. If π1 is valid, S computes u′′ := ux0(C→

m
(Xn)info)b s.t. b ∈R Z

∗
q and u := hb.

Then, he provides R with the partially blind signature ((u, u′′), info) as well
as a ZKPK π2 proving that u′′ := ux0+x1m1+...+xn−1mn−1+xn(mn+info)hbr

and π2 := PoK{α, β, γ : u′′ = uα(C→
m

(Xn)info)β ∧ Cx0 = gαhγ ∧ u = hβ}.
3. If π2 is valid, R unblinds (u, u′′) to obtain the signature (u, u′ := u′′

ur).

To show the obtained signature in an anonymous way, the receiver has just
to randomize it by computing (ul, (u′)l) where l ∈R Z

∗
q .

In our eCash system, info will correspond to the refund amount and will be
used with mn to aggregate refunds. Usually, mn may be set to zero and info
would be the validity period, thus enabling a convenient update of signatures.

Theorem 1. Our partially blind signature scheme is perfectly unlinkable, and
one-more unforgeable under the Assumption 1 in the ROM.2

3 Our Private eCash System: The eToll Use Case

3.1 System Framework

Stakeholders. Our private eToll system involves three main entities: a user U , a
toll company T C and a set of revocation authorities RAs that must collaborate
to revoke user’s anonymity or tokens.

Overview. To benefit from the eToll service, a user must first register to obtain a
badge that will perform all computations on his behalf. At the beginning of each
billing period, registered users receive a unique reusable token generated using
our partially blind signature scheme detailed in Sect. 2.3. This token is worth
the highest possible fare and can be reused at most Nmax times. To be granted
2 Owing to the lack of space, we defer the proofs of Theorem 1 and Theorem 2 to an

extended version.

104 A. Barki et al.

access while preserving his anonymity, the user shows a randomized version of
his token. Concurrently, as toll fares are generally different, the user’s token is
updated in a blinded way, using our partially blind signature scheme, to add the
refund amount associated to the transaction. At the end of the billing period,
users are charged according to their token value. Such a post-payment approach
prevent them from refilling a prepaid account with a large amount of money.
However, if a user does not return his token, he will pay the maximal allowed
amount corresponding to Nmax trips with the highest fare.

Security and performance requirements. None of the entities can be fully trusted
since all of them have some incentives to cheat. Only the user’s badge is subject
to the limited trust assumption that all the computations it performs are correct.
Nevertheless, any attempt to cheat by tampering it must be detected. To this
end, in addition to the usual correctness property, some security properties must
be satisfied. Our private eCash system should provide (1) unlinkability (i.e. it
should be impossible to link together two events such as two transactions or a
transaction and a given token) which implies the regular anonymity property,
(2) revocability (i.e. RAs can always revoke user’s anonymity and tokens), (3)
non-frameability (i.e. nobody should be able to falsely accuse another user of
performing a given transaction) and, (4) unforgeability (i.e. it should be impos-
sible for users to cheat by paying less charges than what they have to). To be
effective and suitable for most use cases, a transaction must be performed in at
most 300 ms [2].

3.2 Description of the Protocols

Our private eCash system consists of six phases. (1) The public parameters and
required keys are initialized during setup. (2) The Registration phase enables a
user to register to the system and to obtain his badge. (3) The Token Issuance
phase provides legitimate users with a unique reusable token. (4) During Access
Control, a user uses his token to be granted access at tollbooths. (5) The Toll
Computation phase allows the computation of the user’s bill based on his token
value. Finally, (6) the Revocation phase enables user’s anonymity and token
revocations. Below, we explain these phases and detail the main protocols in
Fig. 1. Owing to space limitations, the ZKPKs are not detailed. Except other-
wise specified, they are quite standard and many values in these proofs can be
precomputed.

Setup. Let pp = (G, g, h, q, gR, Nmax, {gi}Nmax

i=1) denote the public parameters
where G is a cyclic group of prime order q and (g, h, gR, {gi}Nmax

i=1) a set of random
generators. Nmax indicates the allowed number of reuses of a token and could be
set according to user’s needs. Each user U is also provided with a pair of keys
(sku, pku) that identifies him.

The toll company shares the secret key
→
x := (x0, x1, x2) with tollbooths that

are denoted by T C as well. The associated public parameters are Cx0 := gx0hx̃0 ,

Private eCash in Practice 105

a commitment to x0 where x̃0 ∈R Z
∗
q , and X1 := hx1 , X2 := hx2 . They are also

provided with a pair of keys (sktc, pktc) used to sign transaction data.
The revocation authorities jointly generate two pairs of keys: (skra, pkra) of

the threshold ElGamal and (skrp, pkrp) of the threshold Paillier cryptosystems.
Paillier encryption scheme is used as an extractable commitment (see [9]) to
satisfy the unforgeability requirement, even in a concurrent setting, where an
adversary is allowed to interact with T C in an arbitrarily interleaving (concur-
rent) manner. Let gE and gP be two generators of G. ElGamal keys are defined
as skra := xT ∈ Z

∗
q and pkra := (gE ,XT := gxT

E). Paillier pair of keys consists of
skrp := (a, b) and pkrp := (gP , n := ab) where a and b are two different random
primes such that |a| = |b| and gcd(ab, (a − 1)(b − 1)) = 1. The private keys are
shared among RAs [8] and at least t of them should cooperate to identify the
user or revoke a token.

Registration. To use the service, U must provide T C with his public key pku

and a ZKPK proving the knowledge of the secret key sku. If the proof is valid, U
receives a personal badge Bu including a SIM card. It allows U to anonymously
use the service. Moreover, pku is saved in a dedicated database denoted by DBREG.

Token Issuance. The token issuance phase occurs at the beginning of each
billing period upon a signed request of a registered user. During this phase,
T C provides U with a permission token T := (u, u′ := ux0+x1su+x2m). It is a
partially blind signature on the unknown message su = s + s′ and the common
information m corresponding to the refund amount, initially set to 0. In fact, su

is a secret value only known by U : it involves a secret s ∈R Z
∗
q chosen by U and

hidden from T C and s′ ∈R Z
∗
q chosen by T C and provided to U . The token is

worth the highest possible toll fare and can be reused Nmax times. Two ZKPKs
π1 and π2 ensure that exchanged values are well-formed (see Fig. 1). Besides,
(gs, s′,D) is saved in DBREG where D is a Paillier encryption of s necessary for
token revocation.

Access Control. To be granted access at tollbooths, U provides a randomized
version of his token T and an ElGamal encryption E of gsu along with a ZKPK
π3 proving that these values are well-formed. Upon receipt, T C checks the token
both for the allowed number of uses and validity. Indeed, whenever reaching a
tollbooth, Bu randomly chooses a gi among the set F of unused ones. The selected
gi is then removed from F to prevent over-spending of a token. If checks succeed,
U receives an updated T with a new m aggregating all the refunds collected so
far. This new token is computed using our partially blind signature scheme with
a common value equal to the current refund amount. Due to delay constraint,
the associated ZKPK π4 cannot be instantly verified. Thus, U is also provided
with S, an RSA signature with a short public verification exponent, of all the
received values. S can be quickly verified upon receipt while π4 is rather checked
during the idle time of the SIM card. Concurrently, (E, Ti := gsu

i) is saved in the

106 A. Barki et al.

User U Toll Company T C
Public Input: pp, X1, X2, Cx0 , pktc, pkra, pkrp and pku

(1) Token Issuance Protocol
Private Input: sku Private Input: (x0, x1, x2), DBREG

Choose r, r1, s
R← Z

∗
q

Compute C ← hrXs
1 , W = gs, D = gs

P rn
1

Build π1 = PoK[α, β, γ : C = hαXβ
1

C,π1,W,D−−−−−−−−−−→ Check π1 and Choose s′, b
R← Z

∗
q

∧ W = gβ ∧ D = gβ
P γn]

Sign(C,π1,W,D)←−−−−−−−−−−−− Compute u ← hb

Compute u′′ ← ux0 (CXs′
1)b

Check π2
s′,(u,u′′),π2←−−−−−−−−−− Build π2 = PoK[α, β, γ : u = hα

Compute su ← s + s′ and u′ ← u′′
ur ∧u′′ = uβ(CXs′

1)α ∧ Cx0 = gβhγ]

T ← (u, u′), m ← 0, F ← {gi}Nmax
i=1 Save (W , D, s′) in DBREG

(2) Access Control Protocol
Public Input: m′

Private Input: T := (u, u′), m, su, F Private Input: (x0, x1, x2), DBAC

Choose l, r, z1, z2, t and b
R←− Z

∗
q , gi

R←− F

Compute w ← ul; w′ ← (u′)l; c′ ← w′gr

c1 ← wsu hz1 ; c2 ← wmhz2 ; F ← F\{gi}
V ← g−rX

z1
1 X

z2
2 ; A ← htXsu

1 Xm
2

E ← (e1 = gb
E , e2 = gsu Xb

T); Ti ← gsu
i

Build π3 = PoK[α, β, γ, δ, σ, μ, η : Ti = gσ
i

w,c′,c1,c2,V−−−−−−−−−→ Check if V
?
=

wx0 c
x1
1 c

x2
2

c′

∧ c2 = wμhγ ∧ V = g−αXβ
1 Xγ

2 ∧ e1 = gη Ti,A,gi,π3,E
−−−−−−−−−→ Check π3 and Ti /∈ DBAC

c1 = wσhβ ∧ A = hδXσ
1 Xμ

2 ∧ e2 = gσXη
T] Choose d

R← Z
∗
q ; Compute y ← hd

Compute y′′ ← yx0 (AXm′
2)d

S = SignRSA(m′, y, y′′, π4)

Check π4 and S
m′,y,y′′,π4,S←−−−−−−−−−− Build π4 = PoK[α, β, γ : y = hα

Compute y′ ← y′′
yt , m ← m + m′ ∧y′′ = yβ(AXm′

2)α ∧ Cx0 = gβhγ]

and T ← (y, y′) Save (E, Ti) in DBAC
(3) Toll Computation Protocol

Private Input: T := (u, u′), m, su Private Input: (x0, x1, x2), DBREG

Choose l, r, z1
R←− Z

∗
q

Compute R ← ul; R′ ← (u′)l; c′ ← R′gr

c1 ← Rsu hz1 ; V ← g−rX
z1
1 ; Tg ← gsu

R

Build π5 = PoK[α, β, γ : Tg = gα
R

m,R,c′,c1−−−−−−−−−→ Check if V
?
=

Rx0+mx2 c
x1
1

c′

∧ c1 = Rαhβ ∧ V = g−γXβ
1]

V, Tg,π5−−−−−−→ Check π5 and Tg /∈ DBREG
Save Tg in DBREG

Fig. 1. Our private eCash system: the eToll use case

database of transactions DBAC. Note that, to provide full unlinkability, one may
add randomness in Ti using a pseudo-random function as in [2].

Toll Computation. At the end of the billing period, U shows his randomized
token T and a tag Tg := gsu

R to be charged for all his trips. The tag ensures that
U has not already asked for a refund during that period. Based on the refund
amount m, T C computes the user’s charges and saves Tg in DBREG. If a user’s
token has been used less than Nmax times, a specific process emulates their use
with no associated charges to ensure that U will only pay for the trips he took.

Private eCash in Practice 107

Revocation. Two different revocations may be triggered in exceptional circum-
stances: the revocation of user’s anonymity or tokens. In the former, the goal
is to identify the user who performed a given access control (e.g. for national
security reasons). To do so, T C sends to RAs the ElGamal encryption E of
gsu . At least t of them should collaborate to recover gsu . Using the information
stored in DBREG, T C identifies the corresponding user. In the latter, the aim is
to revoke a token following, for example, the loss or theft of the badge. To this
end, RAs are provided with the Paillier encryption D of the secret s that they
jointly decrypt. Thereby, T C can compute su = s+ s′ and thus blacklists all the
{Ti := gsu

i }Nmax

i=1 .

Theorem 2. Our private eCash system is unlinkable under the Decisional
Composite Residuosity (DCR) and the Decisional Diffie-Hellman (DDH) assump-
tions, unforgeable and revocable under the assumption that MACGGM is UF-
CMVA secure and non-frameable under the Discrete Logarithm (DL) assump-
tion, in the ROM.

4 Performance Assessment

Table 1 gives timing results of the implementation of the Access Control protocol
on a Javacard 2.2.2 SIM card, Global Platform 2.2 compliant, embedded in
a Samsung galaxy S3 NFC smartphone. The only particularity of our card,
compared to the javacard specifications, is some additional API provided by the
card manufacturer enabling modular and elliptic curve operations. Although the
used SIM card is more powerful than most cards, as it requires a cryptoprocessor
to be able to handle asymmetric cryptography, it is worth emphasizing that such
powerful SIM cards with cryptoprocessors are already widely deployed by some
mobile phone carriers, such as Orange in France, to provide NFC-based services.

Table 1. Timings ((min-max) average in ms) of the Access Control Protocol. The
off-line computations (steps 1 and 5) are launched from the smartphone (battery-on).
On-line computations concern steps 2, 3 and 4, and can be done battery-off.

Card Get Data T C Send Data Card Total
Precomputation from card computation to card Verification On-line part

(1) (2) (3) (4) (5)
Battery-On:

(1672-1688) 1678
(66-68) 67

(9-34) 22
(96-115) 102

(501-522) 511
(186-224) 205

281)481-571(58:ffO-yrettaB (298-322) 315

The implementation uses a 256-bit prime elliptic curve. To have the fastest
possible verification on card, T C uses an RSA signature scheme with a short
public verification exponent. Since our private eCash system is not only intended
for eToll but also for public transport, communications between the SIM card
in the smartphone and the PC (Intel Xeon CPU 3.70 GHz) acting as T C was
done in NFC using a standard PC/SC reader (an Omnikey 5321). “Battery-Off”

108 A. Barki et al.

denotes a powered-off mobile phone either by the user or because its battery is
flat. In this case, as stated by NFC standards, NFC-access to the SIM card is
still possible, but with degraded performances. On average, the on-line part of
the Access Control protocol is very fast even with a powered-off phone. In fact,
data exchange is the most time-consuming task.

5 Conclusion

In this paper, our contribution is twofold. First, we proposed a perfectly unlink-
able partially blind signature scheme that relies on Chase et al. Algebraic MAC
scheme. Then, based on it, we designed a private eCash system that only requires
users to hold a unique reusable token while preserving their privacy. Through a
refund process, it also enables flexible prices as well as post-payments. Finally,
implementation results show its efficiency even when implemented on a SIM
card.

References

1. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto,
T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg
(1996). doi:10.1007/BFb0034851

2. Arfaoui, G., Lalande, J., Traoré, J., Desmoulins, N., Berthomé, P., Gharout, S.:
A practical set-membership proof for privacy-preserving NFC mobile ticketing. In:
Proceedings on Privacy Enhancing Technologies abs/1505.03048 (2015)

3. Au, M.H., Liu, J., Fang, J., Jiang, Z., Susilo, W., Zhou, J.: A new payment system
for enhancing location privacy of electric vehicles. IEEE Trans. Veh. Technol. 63(1),
3–18 (2014)

4. Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I., Geuens, C.:
PrETP: privacy-preserving electronic toll pricing. In: Proceedings of the 19th
USENIX Conference on Security, USENIX Security 2010, p. 5 (2010)

5. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: Proceedings of the 2014 ACM SIGSAC CCS, CCS 2014,
pp. 1205–1216. ACM, New York (2014)

6. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R., Sherman, A. (eds.) Advances in Cryptology, pp. 199–203. Springer, New York
(1983)

7. Day, J., Huang, Y., Knapp, E., Goldberg, I.: SPEcTRe: spot-checked private ecash
tolling at roadside. In: WPES, pp. 61–68. ACM (2011)

8. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001). doi:10.1007/3-540-45472-1 7

9. Hufschmitt, E., Traoré, J.: Fair blind signatures revisited. In: Takagi, T., Okamoto,
E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 268–292.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-73489-5 14

10. Meiklejohn, S., Mowery, K., Checkoway, S., Shacham, H.: The phantom tollbooth:
privacy-preserving electronic toll collection in the presence of driver collusion. In:
Proceedings of the 20th USENIX Conference on Security, SEC 2011, p. 32 (2011)

http://dx.doi.org/10.1007/BFb0034851
http://dx.doi.org/10.1007/3-540-45472-1_7
http://dx.doi.org/10.1007/978-3-540-73489-5_14

Private eCash in Practice 109

11. Milutinovic, M., Decroix, K., Naessens, V., De Decker, B.: Privacy-preserving pub-
lic transport ticketing system. In: Samarati, P. (ed.) DBSec 2015. LNCS, vol. 9149,
pp. 135–150. Springer, Cham (2015). doi:10.1007/978-3-319-20810-7 9

12. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). doi:10.1007/
978-3-319-29485-8 7

13. Popa, R.A., Balakrishnan, H., Blumberg, A.J.: VPriv: protecting privacy in
location-based vehicular services. In: Proceedings of the 18th Conference on
USENIX Security Symposium, SSYM 2009, pp. 335–350 (2009)

14. Rupp, A., Hinterwälder, G., Baldimtsi, F., Paar, C.: P4R: privacy-preserving pre-
payments with refunds for transportation systems. In: Sadeghi, A.-R. (ed.) FC
2013. LNCS, vol. 7859, pp. 205–212. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39884-1 17

http://dx.doi.org/10.1007/978-3-319-20810-7_9
http://dx.doi.org/10.1007/978-3-319-29485-8_7
http://dx.doi.org/10.1007/978-3-319-29485-8_7
http://dx.doi.org/10.1007/978-3-642-39884-1_17
http://dx.doi.org/10.1007/978-3-642-39884-1_17

Practically Efficient Secure Single-Commodity
Multi-market Auctions

Abdelrahaman Aly1,2(B) and Mathieu Van Vyve1

1 CORE, Université catholique de Louvain,
Voie du Roman Pays 34, 1348 Louvain-la-Neuve, Belgium

mathieu.vanvyve@uclouvain.be
2 imec-COSIC KU Leuven, Kasteelpark Arenberg 10,

3001 Leuven-Heverlee, Belgium
abdelrahaman.aly@esat.kuleuven.be

Abstract. We study the problem of securely building single-commodity
multi-markets auction mechanisms. We introduce a novel greedy algo-
rithm and its corresponding privacy preserving implementation using
secure multi-party computation. More specifically, we determine the
quantity of supply and demand bids maximizing welfare. Each bid is
attached to a specific market, but exchanges between different markets
are allowed up to some upper limit. The general goal is for the players
to bid their intended valuations without concerns about what the other
players can learn. This problem is inspired by day-ahead electricity mar-
kets where there are substantial transmission capacity between the differ-
ent markets, but applies to other commodity markets like gas. Further-
more, we provide computational results with a specific C++ implemen-
tation of our algorithm and the necessary MPC primitives. We can solve
problems of 1945 bids and 4 markets in 1280 s when online/offline phases
are considered. Finally, we report on possible set-ups, workload distribu-
tions and possible trade-offs for real-life applications of our results based
on this experimentation and prototyping.

1 Introduction

Auctions have been proved to be economically efficient under many settings [1].
In recent years, with the advent of larger scale markets e.g. online commerce
and commodities, factors like secrecy, integrity and fairness have become more
important. Parties need adequate incentives to bid truthfully, without the risk
of loosing competitive advantages in future interactions. Our aim is to solve the
problem where a commodity is to be transported between the different markets
up to a given capacity limit. In our setting, buyers, sellers, markets and control
agencies may have to interact in a competitive environment where information
about prices and volume can reveal much more than what any party is will-
ing to disclose. In the day-ahead electricity markets in Europe, this reluctance
delayed by several years the integration of the national markets, until it was
actually imposed by the European authorities (Directives 2005/89 and 2003/54
and Regulation 1228/2003).
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 110–129, 2017.
DOI: 10.1007/978-3-662-54970-4 7

Secure Multi-market Auctions 111

Traditional solutions include a neutral third party in charge of all computa-
tions and responsible to exert secrecy, integrity an fairness in his own processes.
However, such a third party is in general hard to find, and would concentrate
all attacks making it a single vulnerable failure point.

We report on a mechanism where this third party can be replaced. Indeed,
our virtual third party uses Secure Multi-Party Computation (MPC) and can
be composed of any subset of players. MPC is a secure mechanism that allows
several players to compute a function in a distributed environment. From Yao’s
original result in 1982 [2], to the current state of the art, secure multi-party
computation has evolved from a theoretical object of study, to a field that is
used in real life applications. MPC offers a variety of techniques, primitives and
applications that provide security under diverse models, and in a distributed
environment.

1.1 Our Contribution

We introduce a novel greedy algorithm and its secure formulation, for auctions
with several geographical markets where exchange between them is possible. We
analyze and introduce variations and trade-offs of these building blocks to obtain
efficient running times, addressing the privacy-preserving protocol implementa-
tion and its security and performance constraints. Additionally, we report on
computational experimentation using historical data from electricity markets.
To the best of our knowledge, this is the first time the problem of secure sin-
gle commodities multi-market auctions with transmission constraints has been
addressed in detail. We focus our attention on the following aspects:

Algorithm Design. Although this is a standard problem, we describe a
novel greedy algorithm to compute its solution. This algorithm is better suited
for its adaptation to secure multi-party computation. We give proofs of its
correctness and that its MPC version is secure. Also since in practice the
number of markets is limited (e.g. a few) but the number of bids can be
large (e.g. a few thousands) we have aimed at keeping the complexity of the
algorithm (close to) linear in the number of bids.
Complexity and Efficiency. As similar works in the field, we use com-
munication rounds (exchange of messages between parties involved in the
computation) as the complexity measurement unit in our secure protocol.
This is in line with our interest in practical use. Moreover, our general aim of
minimizing the use of comparisons because of the constants associated to their
computation. To facilitate reading, we abstract from our complexity analysis
the cost associated to message exchange. Indeed, as in related works, this
allow us to decouple our algorithm analysis from the sharing mechanism and
the different implications linked to changes in the number of computational
players.
Implementation. We have implemented our algorithm in C++, building
from scratch our own modular MPC framework. Indeed, we could not find an
open and efficient implementation suited to our need. We use NTL (Number

112 A. Aly and M. Van Vyve

Theory Library) [3] and GMP (GNU Multiple Precision Library) as external
libraries. This implementation enables us to show that the algorithm we pro-
pose is capable of treating close to 2000 bids from 4 markets in a time that
is practically relevant for our motivating application (20 min).

1.2 Related Work

Secure Auctions have been studied from different perspectives, both in terms of
security, computational and economic efficiency. In all cases questions on topics
like performance, fairness and integrity have been raised. In this section we cover
some of the works with similar characteristics and explore their differences with
our contributions.

Auctions with Secure Multi-party Computation. Bogetoft et al. [4] consider the
problem of a real-life auction with secure multi-party computation. In their set-
ting, Danisco, the only sugar beet processor of the danish market, and several
thousand farmers settled clearance market prices in a secret and distributed
fashion using MPC. They provide a secure MPC protocol for this single market
application. In this paper, we explore a different setting, where there are several
markets and each pair can exchange the commodity up to a given capacity. This
setting is realistic for other types of commodities e.g. power and gas markets.
Additionally, they built their protocols using VIFF [5], which proved to be reli-
able for the size of their problem. However, previous results for similar problems
[6] suggest that this does not scale up very well. We describe the behavior of a
dedicated implementation, using the flexibility of C++ and OOP, that uses a
compact set of secure MPC primitives to provide security and efficiency.

Secure Auction Mechanisms with Secret Sharing. Several authors have studied
the properties of secure auctions with secret sharing e.g. [7–10]. These works
explore several different auction mechanisms in various environments. Recently,
Nojoumian and Stinson [11] introduced algorithms for second-price and combi-
natorial auctions. Their protocols offer security against active and passive adver-
saries, using amongst others, Shamir secret sharing [12] and a verifiable secret
sharing schemes (VSS). They model their auction problems as graph problems,
and devise theoretically efficient algorithms, but no computational experimen-
tation is reported.

Second Price Auctions. Some authors have considered cryptographic alterna-
tives to guarantee security in second price auctions. Catane and Herzerg [13]
propose trusting a supervising entity to perform the computations and using
randomization. Their goal is to keep the bids secret from other players. Our
privacy-preserving protocol provides security and fairness without relying on
any third party. Also, their approach does not take into account the transmis-
sion exchanges that are essential for our model. Similar to [4], this solution would
work for one market but needs to be adapted for a multi-market scenario.

Secure Multi-market Auctions 113

1.3 Overview of the Paper

The paper is organized as follows: Sect. 2 introduces the problem and some nec-
essary concepts. Section 3 provides its network flow formulation and describes
a novel polynomial-time algorithm for it that can be easily adapted to provide
properties like data obliviousness. In Sect. 4, we describe the security model,
building blocks and technical tools for later use in our secure protocol in the
context of our secure algorithm. Section 5 describes our main protocol to solve
the problem. We analyze complexity, security and correctness. Experimentation
and prototyping are described in Sect. 6.

2 Problem Overview

2.1 Auction Mechanism

The process we consider here is a reverse auction with several sellers or bidders.
Markets or auctioneers adjudicate orders to supply and demand bids that maxi-
mize social welfare, while respecting the capacities of the transmission network.
A control agency may be part of the process, to supervise and guarantee the
integrity of the result. The security follows from the use of secure multi-party
computation. Individual interests and involvement level are the following:

Markets and Transmission Network: The set of markets and the capac-
ity of the transmission network are assumed to be public. The transmission
network is represented by a capacitated network flow, i.e. pairs of markets
are binded by bidirectional transmission lines. Each transmission line has an
upper limit (i.e. capacity). Notice that in this case, markets are geographically
separated.
Sellers/Buyers or Bidders: The set of players interested in acquiring or
selling the commodity submit bids. Each bid is attached to a specific market.
Each bidder can submit more than one bid, and to different markets. Bids are
composed by a certain quantity Q (positive for buying and negative for selling)
and a limit price P . All bids are enclosed and final i.e. no re-bidding is allowed.
The bid placed by the player can be partially or totally adjudicated to the
bidder depending on what maximizes social welfare. One of their interests is
the secrecy of the information contained on each bid towards any other player
e.g. other bidders and markets, for as long as the auction takes place. Their
concerns are also correctness (the result of the auction is correct) and fairness
(all players receive the same information at the same time, and are treated
equally).
Automated Auctioneer: Is the proxy entity in charge of managing the
auction. Our work proposes that the role of the auctioneer is to be taken by
the computational parties representing markets, bidders and control agencies,
in a distributed and secure fashion. This creates a virtual ideal functionality
capable of determining the set of accepted supply and demand bids, guaran-
teeing correctness, without disclosing sensitive data.

114 A. Aly and M. Van Vyve

Control Agency: Is a regulatory entity or any institution trusted by the
Markets operators and Bidders. By the parties choosing, or environmental
enforcement, it participates to add confidence to the process. Because of the
nature of MPC, our secure protocol allows active participation of the Control
Agency as a computational party, so that their presence would be necessary
for the correct and secure operation of the protocols in conjunction with the
model. The presence of a Control Agency remains optional.

On Computational parties. It is possible to have as many computational par-
ties as considered necessary by the algorithm designer to guaranty security and
bring confidence to the process. Although many of the building blocks require a
minimum of three parties, the algorithm itself can be adapted to be used with
two-party computation. As stated many auctions require the presence of an
external supervisor. A basic configuration would include a computational party
representing the bidders, another the markets, and a third one for the super-
visor or control agency. Another logical set-up would is to have one party for
each geographical market. A larger number of computational parties can increase
security and trust, but will negatively influence the performance.

2.2 Problem Definition

Formally, participants in the auction submit bids of the form (pi, qi,mi) where pi
is the limit price, qi is the quantity (positive for demand bid, negative for supply
bid) and mi is the market where the bid is submitted. Bids can be adjudicated
partially, completely or not at all. The network operator also provides a capacity
matrix C, where entry Ci,j is the maximum amount that can be shipped from
market i to market j. Note that this is similar to [14,15]. The goal is to adjudicate
bids so that (i) social welfare is maximized, (ii) the exchanges implied can be
executed on the network, (iii) the information contained in all bids is to be
kept secret from other players until the end of the auction process. The network
(its topology and the capacities) is assumed to be public. Another practical
requirement is that the computations should not take more than, for instance,
30 min. Note that we do not associate costs to the transmission network.

Input Data. Data is provided as integer values over a finite field Z� where input
values are much smaller than q such that no overflow occurs. Its size is tied to
the application in hand. Note that when they are secretly shared we can not
differentiate between a demand bid and a supply bid.

2.3 Problem Formulation

Let us denote by N = {1, . . . , n} the set of all bids, and K ∪ D = B the
partition into supply and demand bids respectively, M = {1, . . . ,m} the set of
markets, Kj ∈ K and Dj ∈ D the set of supply and demand bids respectively at
market j. We define the nonnegative decision variable x̄i ∀i ∈ N as the accepted
quantity of bid i and variables fi,j as the flow on the line (i, j) ∈ L = M × M

Secure Multi-market Auctions 115

with capacity Ci,j . The problem can then be formulated as the following linear
optimization problem:

max
∑

i∈D

pix̄i −
∑

i∈K

pix̄i (1)

s.t.
∑

i∈Kj

x̄i +
∑

i:(i,j)∈L

fi,j =
∑

i∈Dm

x̄i +
∑

i:(j,i)∈L

fj,i ∀j ∈ M (2)

0 ≤ fi,j ≤ Ci,j ∀(i, j) ∈ L (3)
0 ≤ x̄i ≤ |qi| ∀i ∈ B . (4)

Note that by complementing demand bids (xi = qi−x̄i for i ∈ D) and keeping
supply bids as is (xi = x̄i for i ∈ K), one obtains an equivalent formulation
involving supply bids only (dropping the constant in the objective):

min
∑

i∈N

pixi (5)

s.t.
∑

i∈Kj∪Dj

xi +
∑

i:(i,j)∈L

fi,j −
∑

i:(j,i)∈L

fj,i =
∑

i∈Dj

qi ∀j ∈ M (6)

0 ≤ fi,j ≤ Ci,j ∀(i, j) ∈ L (7)
0 ≤ xi ≤ |qi| ∀i ∈ B . (8)

Note that in this version, there is an external demand of Tj =
∑

i∈Dj
qi to be

met at each market j. The goal is to find the cheapest set of supply bids to satisfy
these demands. Having supply bids only makes the description of the algorithm
simpler. The is therefore the form that we will use in the rest of the text.

3 Network Flow Formulation

The problem (5)–(8) can actually be seen as a minimum cost capacitated network
flow problem (MCF) on the graph G = (V,A) as shown at Fig. 1.

s t
M1

M2

M3

M..

Mi(|qi|, pi) (
∑

i∈dm
Qi, 0)

∞
∑

j Tj

Fig. 1. The auction problem as a Minimum Cost Network Flow problem

Formally, the set of vertices is V = M ∪ {s, t} where s and t are artificial
source and sink vertices. For each bid (supply and demand) i ∈ K ∪ D, there is
an arc (s,mi) where mi is the market of the bid i, with capacity |qi| and cost pi.

116 A. Aly and M. Van Vyve

For simplicity, let S be the set of all arcs originated in s. For each pair of markets
(i, j) ∈ L there is an edge between the respective vertices with capacity Ci,j and
no cost. For each market j, there is an edge (j, t) with capacity Tj =

∑
i∈dj

qi
and zero cost. Finally there is (given) external flow arriving at vertex s and a
given external flow leaving vertex t, both of magnitude

∑
j Tj . The associated

minimum cost flow problem is obviously equivalent to the linear program (5)–(8).
Secure protocols to solve the MCF problem have been described by Aly and

Van Vyve [6]. They provide secure polynomial-time algorithms. Although the
protocol is theoretically efficient, in practice, its applicability seems to be limited
by the high degree (|V |10) of the polynomial in the complexity bound. Their
computational experiments, using an implementation over VIFF [5], indicates
that it would take around a year to solve the problem with perfect security in a
10 vertex complete graph. But to recast our problem in their context, we would
need to introduce one vertex for every bid, and with ≈2000 bids in the instances
we aim at solving, making that approach grossly impractical.

3.1 Greedy Algorithm

We describe now a more efficient greedy algorithm than just solving the problem
as a general minimum cost flow problem. This greedy algorithm makes use of the
special structure of the MCF we want to solve and can be easily generalized into
an MPC environment. Intuitively the algorithm proceeds as follows. It considers
each order in turn, starting with the cheapest (i.e. best from the objective func-
tion point of view) one. At each iteration, a max-flow problem is solved to try
to use as much as possible of the quantity offered by the bid. The incremental
value obtained is the quantity adjudicated to that bid. The following is a formal
description of this greedy procedure:

1. ν ← 0
2. B ← sort-price:B

3. xi ← 0 ∀i ∈ S
4. for all: i ∈ B :
5. xi ← |qi|
6. ν′ ← maxflow: G(V,A)

7. xi ← ν′ − ν
8. ν = ν′

9. End

Algorithm 1. Iterative Greedy Algorithm for Multi-Market Auctions

First, we sort the set of all bids B in function of their price and set the capac-
ities of edges in S to 0. Second, we restore the capacity of the edge associated
to bid i to its original value |qi| and calculate then max-flow on G. We then
set the capacity of such edge to the flow variation with respect to the max-flow

Secure Multi-market Auctions 117

calculated in the previous iteration. We repeat this process for all bids in the
order of prices. Once this process is completed, the volume provided by demand
bids is then automatically rejected and accepted for the supply bids.

3.2 Correctness

We now prove that the greedy algorithm described above is correct. To do this
let us disaggregate each bid as a collection of bids of capacity 1, each with the
same price as the original bid. This obviously does not modify the problem. So
from now on in this section, we can safely assume that all bids have quantity 1,
and that all bids will be completely accepted or rejected. For a given set of bids
I, let r(I) be the maximum amount of demand that can be satisfied using the
bids of I only. This can be seen as a max-flow problem on the graph G.

Proposition 1. The set function r : 2S → R
+ is the rank function of a matroid.

Proof. We use a characterization of Whitney [16] for a function to be the rank
function of a matroid:

(a) r(∅) = 0.
(b) r(I) ≤ r(I + i) ≤ r(I) + 1 for I ∈ S and i ∈ S \ I,
(c) for all I ⊆ S, i, j ∈ S\I, if r(I+i) = r(I+j) = r(I), then r(I+i+j) = r(I).

The set of arcs associated to the bids themselves is a cut separating the
source from the sink in the associated max-flow problem so r(J) ≤ |J | for any
J , proving (a). Moreover (b) comes from the fact that adding one bid i to I
amounts to increase the capacity of one arc by one unit in the associated max-
flow problem. Therefore the capacity of any cut increases by at most 1, and the
size of the minimum cut will certainly increase, but by one unit at most.

We now prove (c). Let SI denote the set of vertices containing the source
s defining a minimum cut associated with the max-flow problem of computing
r(I). In other words, r(I) = c(δ+(I)).

Note first that since r(I+i) = r(I), there exists SI+i such that the associated
cut does not contain (s, i) the arc associated to the bid i. Similarly there exists
SI+j such that the associated cut does not contain (s, j) the arc associated to
the bid j. This implies also that δ+(SI+i ∪SI+j) does not contain the arcs (s, i)
and (s, j).

By submodularity of cut functions in directed graphs, we obtain that r(I+i)+
r(I +j) = c(δ+(SI+i))+c(δ+(SI+j)) ≥ c(δ+(SI+i∪SI+j))+c(δ+(SI+i∩SI+j)).

Since δ+(SI+i ∪ SI+j) is an s − t cut that does not contain (s, i) and (s, j),
if c(δ+(SI+i ∪ SI+j)) ≤ r(I), statement (c) holds (the strict inequality case is
ruled out by (b)). If c(δ+(SI+i ∪ SI+j)) > r(I) then c(δ+(SI+i ∩ SI+j)) < r(I).
But this would contradict the minimality of SI since δ+(SI+i ∩ SI+j) is an
s − t cut. �

By classical properties of matroid structures, the last proposition directly
implies that we can solve the auction problem greedily: it suffices to use the
cheapest supply bids first, as long as the transmission network allows the use
the bid to satisfy some demand. This is exactly what Algorithm 1 does.

118 A. Aly and M. Van Vyve

4 Cryptographic Preliminaries

4.1 Security Model

Ben-Or et al. [17] showed, amongst other things, how (with Shamir’s secrete
sharing for passive adversaries or Verifiable Secret Sharing (VSS) [18] for active
adversaries) every functionality can be computed under the information the-
oretic model. However, that does not necessarily imply efficiency in terms of
performance. In our secure algorithms, variations can be included, to accelerate
some functionality, at the price of providing statistical security and/or some leak-
age. Moreover, changes in the communication or adversarial models would yield
different security levels as well. Our protocols follow the same line of thought.
Our privacy-preserving protocols can achieve the same level of security, than the
underlying primitives (our algorithms have no leakage). A careful sub-routine
selection can yield statistical security, with a significantly improvement in terms
of performance. We study both aspects of the implementation of our secure
protocols.

4.2 Basic Building Blocks

On Secret Sharing and other Primitives. Our algorithm is compatible
with secret sharing methods and homomorphic encryption mechanisms that
support MPC (e.g. Shamir Secret Sharing, Paillier Encryption). Our secure
prototype uses secret-sharing to allow n parties to share information amongst
each other, to later be reconstructed by a subset of the players. This is also
true for more elaborated primitives like multiplications, that in the case of [17,
19] can be executed with a single communication round guaranteeing perfect
security. For an extended review on sharing mechanism we refer the reader
to [20].
Comparisons. Which are an essential part of our algorithms. There have
been several methods for secure comparisons proposed during the last decade
that provide perfect security (e.g. [21,22]). Here we use the constant rounds
method of Catrina and Hoogh [23]. It is built upon a secure modulo operation.
As for the equality test, we use the protocol of Limpaa and Toft [24] based
on the hamming distance, that provides sub-linear complexity for the on-
line phase. Although, these methods achieve constant complexity bounds,
in practice, due to the high constants, they are typically much slower than
multiplications.

4.3 Complex Building Blocks

Our privacy-preserving protocol requires to solve a series of more complex prob-
lems, combinatorial in nature. The methods used to solve these problems have to
guarantee correctness and security while at the same time minimize their impact
over the performance. This includes a practically efficient vector shuffling proto-
col, sorting and max-flow mechanisms. We succinctly review them in the context
of the needs of the application at hand.

Secure Multi-market Auctions 119

- Vector Permutation Mechanism. Our protocols require to securely per-
mute a vector. This implies that for any vector of size n, the resulting configu-
ration is uniformly distributed in the space of all permutations n!. Indeed, the
state of the art describes several mechanisms for vector permutation that are
compatible with our algorithms. We could mention, for instance, the work of
Leur et al. [25] or Keller and Scholl [26] who introduced several permutation
mechanisms that work with secret sharing (e.g. permutation matrix multi-
plication with O(n2) and perfect security). They also offer other alternatives
(e.g. sorting methods) to improve complexity with O(n× log(n)) and further.
Additionally, Czumaj et al. [27] have shown how to build a permutation net-
work using exchange gates with 1

2 probability. The result is a permutation
with (almost) uniform probability in the space of all possible permutations.
Note that we could also build such networks using AKS or the randomized
shell sort network introduced by [28] among others sorting networks to achieve
better complexity times e.g. O(n × log(n)). This is also compatible with our
protocols. A more realistic approach, uses sorting networks and being sub-
ject to the distribution it provides for its solutions e.g. Batcher’s odd-even
merge. Note that, in the same spirit, we could uniformly choose a random
permutation amongst a sub-set of all possible permutations using the network
generated by the Merge step of such algorithms. Indeed, these last 2 are later
used for experimentation.
- Sorting Mechanisms. Our scheme needs to sort the bids in ascending
order or price. Since the Sorting protocols are necessary building blocks of
various complex solutions. Efficient secure sorting algorithms have been stud-
ied for several years, yielding interesting results (e.g. [28–30]). More interest-
ingly for us, is the approach proposed by Hamada et al. [31]. Their idea is to
first randomly and securely shuffle the vector to be sorted. Once this is done,
any traditional sorting algorithm can be executed, revealing the results of the
comparison, while keeping secret the values to be sorted.
- Max Flow Mechanisms. Max-Flow problems with perfect security have
been recently studied by [32,33] amongst others. For the max-flow prob-
lem, Blanton et al. [33] introduced a mechanism to solve the problem using
as building block the Bread First-Search algorithm with a complexity of
O(n5log(n)). The work by Aly et al. [32] provides 2 different data-oblivious
protocols with perfect security as well. The most efficient method is O(n4)
and is based on the push-relabel algorithm. It also suggests the use of stop-
ping conditions (with some leakage) to accelerate performance. This is what
we have implemented here.

5 Secure Auction Mechanism

We extend the results of Sect. 3 and introduce a secure variant of Algorithm 1.
We assume the configuration of the transmission network to be public, and all
inputs to be integer.

120 A. Aly and M. Van Vyve

5.1 Notation

Our protocol uses the traditional square brackets notation employed by sev-
eral secure applications in distributed environments e.g. [21,32]. For instance, a
secure assignment and secure addition are denoted by the use of the infix notation
and the corresponding square brackets e.g. [z] ← [x] + [y]. The same treatment
is extended to any other operation. Vectors are denoted by capital letters e.g. E
where |E| denotes the number of elements in E and Ei is the i-th element. To
represent negative numbers we use the typical approach of using the lower half of
the field for positive values and the upper half of the field for negative values. It
has to be noticed that in shared form a negative value is indistinguishable from
a positive one. And that in our approach all information related to the bids is
kept secret including whether or not it is a supply or demand bid.

Each bid is represented by a tuple ([bi], [mi], [pi], [qi]) where bi is the bid
identifier, mi is the market where the bid is made, pi its limit price and qi its
quantity. The transmission network is represented by the capacity matrix N . We
will make repeated use of the following two subroutines.

- conditional assignment: This functionality serves as a replacement of
a flow control instruction for branching. Although branching on encrypted
data is not possible, the functionality can be emulated for assignments. Fol-
lowing [6] we represent the operator by: [z] ←[c] [x] : [y]. Where much
like in previous works e.g. [6,32,34] [z] would take the value [x] if [c] is
1 and [y] otherwise. This can be achieved simply by doing the following
[z] ← ([x] − [y]) × [c] + [y].
- market identification: Part of the data that composes a bid is the iden-
tification of the market it belongs to. Users are required to input a single
identification tag. During our algorithm, we transform this to a unary expan-
sion defined as Zi,m = 1 if m = mi and 0 otherwise. This enables us to reduce
the number of equality tests when performing the market identification for a
bid. This transformation can be achieved following protocol:

Protocol 1. unary expansion for market identification
Input: vector of all markets M , bid [i] ∈ B.
Output: zero-one matrix [Z] of size n × m

1 for i ← 1 to m do
2 [Z]i,j ← j == [m]i;
3 end
4 return [Z];

5.2 Secure Auction with Transmission Constraints

The protocol is defined as follows:

Prerequisites. The number of bids or at least an upper bound on the size
of the vector is assumed to be public. We assume the topology and capacities
of the transmission network to be public.

Secure Multi-market Auctions 121

1. Bids are sorted in ascending order of price.
2. The structure of the graph G = (V,A) is public. The capacity of each
edge is initialized with the following value. The capacities between market
vertices are set to the capacity matrix C. The capacity of each edge (s, j) is
set to 0. The capacity of each edge (j, t) is set to the sum of the quantities of
all demand bids submitted to market j. This is simply done by exploring all
the bids and using the market identification protocol 1.
3. Evaluate the viability of each of the bids from the recently sorted vector
[B] in ascending order. For a given bid, we do this by increasing the capacity
of edge (s, j) where j is the market of the bid by its quantity |qbi |. We then
compute the maximum (s, t)-flow in the graph G to determine whether the
bid can improve the solution. The increment of the maxflow compared to the
previous iteration is the amount adjudicated to the bid. Finally, the capacity
of edge (s, j) is increased by the same increment. Protocol 2 shows a detailed
description of this procedure.
4. Finally the bids then are permuted randomly, to hide their order. This is
necessary to avoid leaking the result of the initial sorting from step 1.

On the prerequisites, several parties constantly submit bids in shared form,
we believe it is safe to assume this will not occur simultaneously. Precomputed
permutation matrices can be generated. A simple vector multiplication of the
corresponding row of the matrix would suffice in this case to place the incoming
data in their corresponding permuted position in the vector. Once all data is
received, the existing vectors can be easily combined, the result is a single per-
muted vector. In case this approach is not feasible, the algorithm designer could
make use of one of the suggested permutation mechanisms instead. Permuted
bids would allow us to make use of Hamada et al. [35] technique of shuffling
before sorting. This improves considerably the performance of sorting proto-
cols and allows them to achieve O(n × log n) complexity.

Furthermore, we introduce step 3 to serve as an evaluation and allocation
mechanism. It can be seen as some heuristic tool that allows us to identify
the impact of the bid on the result. Protocol 2 let us explore the inner works
of Step 3 in detail. Line 2 allows us to explore all previously sorted bids in
order. Lines 3 to 5 augment the corresponding edge capacity from the source
to the corresponding market with the volume of the bid. On Line 6, ν stores
the maximum amount of flow that can be allocated with the new volume. On
the final section of the protocol (Lines 7 to 13) the difference between previous
and present flow gap is calculated. Moreover, the flow added to the graph at the
beginning of the iteration is replaced by the gap variation. This value has to be
stored as well as the amount of capacity assigned to the bid and the value of the
maximum flow for future iterations.

Moreover, at the last and 4 step, data can be edited at will by the algorithm
designer. What information is taken to later be presented depends solely on
the application’s nature. The permutation, although capable to hide the sorting
should be ignored in case the final answer also contemplates to open the prices of
the bids as well. This is because any party could later sort the bids accordingly.

122 A. Aly and M. Van Vyve

Please note that our protocol complexity grows linearly with respect of the
number of bids n and polynomially by the number of markets m.

Protocol 2. Implementation of secure auction.
Input: Capacity matrix [C]ij . Vector of n bid tuples ([b], [m], [p], [q]). Matrix of

market identification [Z]ij ∀i ∈ N and ∀j ∈ M
Output: Flow Matrix F , the list of bids and their accepted quantities [x]

1 [ν] ← [0]
2 for i ← 1 to n do
3 for j ← 1 to m do
4 [C]sj ←[Z]ij [C]sj + |[qbi]| : [C]sj ;

5 end
6 [ν′] ← maxflow([G]);
7 [φ] ← ([ν′] − [ν]);
8 [xbi] ← [φ];
9 for j ← 1 to m do

10 [C]sj ←[Z]ij [C]sj − |[qbi]| + [φ] : [C]sj ;

11 end
12 [ν] ← [ν′];
13 end

Finally, note that at the end of the protocol, the adjudicated quantities xi

together with the bid identifier will be disclosed.

Complexity. Oblivious shuffling can be achieved (theoretically) in O(n log n),
and sorting the bids is then O(n log n). At step 3, a max flow problem on m + 2
vertices has to be executed n times. Using the O(m4) max-flow algorithm by
Aly et al. [32], this gives an overall bound of O(nm4) for Step 3. So in total this
yields an overall complexity (communication rounds) of O(n(m4 + log n)).

Since the number of markets is usually small (e.g. 1 to 5) for the application
at hand, the quartic exponent is not too much of an issue in practice. The fact
that the complexity is close to linear in the number of bids is on the other hand
vital.

5.3 Security and Correctness

In principle, all steps of the algorithm could be implemented with perfect
(i.e. information theoretic) security against passive and active adversaries when
implemented with no leakage. This follows from the fact that there exists such
protocols for sorting [28,29,31], max-flow [32,33] and oblivious shuffling [25–27]
that provide this level of security under the information theoretic model. This is
also true for multiplications and comparisons. Moreover, the data-obliviousness
nature of the protocols implies that for the protocol simulation, the correspond-
ing simulators of all other protocols and their atomic operations (e.g. secure addi-
tions multiplications) could be invoked in a predefined execution order, hence,
modeling it as an arithmetic circuit.

Secure Multi-market Auctions 123

However, to improve performance, we have decided to weaken the security
requirement in the following sense. Firstly, the security of the sorting scheme
we use directly depends on the security of the random shuffling implemented.
Secondly, for the max-flow problems, instead of running the algorithm for the
maximum theoretical number of iterations, we stop the algorithm as soon as
optimality is reached. This leaks the number of iterations. Finally, correctness
follows from the fact the scheme is a secure implementation of Algorithm 1.

6 Computational Experimentation

We have tested our protocol with our custom-made MPC Toolkit library imple-
mented in C++. It implements all the primitives and building blocks described
above, but also the underlying MPC crypto-primitives. It also provide our own
communication support and use NTL and GMP libraries for the underlying
modulo arithmetic. We report below on the most relevant aspects of the imple-
mentation. A more thorough and detailed description can be found in [36].

6.1 Prototype Capabilities and Technical Characteristics

Table 1 give the implemented protocols for the usual basic operations. The more
complex procedures described in the previous sections are built upon these.

Table 1. List of primitives used by the Secure Auction protocol implementation

Building block Algorithm

Sharing Shamir secret sharing [12]

Multiplication Gennaro et al. [19]

Equality test (Statistical) Limpaa and Toft [24]

Inequality test (Statistical) Catrina and Hoogh [34]

Random bit gen. Damg̊ard et al. [21]

These are considered core functionalities. The architecture from the library
is to provide a basic and decoupled processing unit similar to a small engine.
This small engine implements the functionalities from Table 1. Furthermore, it
separates computational and cryptographic tasks from communicational tasks.
Each engine runs these two sets of tasks in different threads that communicate
with each other to coordinate. Basic requirements to obtain the best performance
from the engine include 2 CPU threads and ≈500 KB in RAM for the basic use
of the primitives. Our configuration gives each computational party 2 similar
CPU threads with unlimited access to a memory pool of up 42 GB with each
player having a single engine’s instance.

On Security. The library and prototype were built under the private chan-
nel model. Depending on the functionality used, the library provides statistical

124 A. Aly and M. Van Vyve

and perfect security against semi-honest adversaries with minority coalition. For
instance, the inequality tests used in our tests brings statistical security mean-
while addition and multiplication perfect security. As mentioned before, statis-
tical security for such method is given as a function of parameters k and the
bit-size of the input by parameter l. The prototype was pre-configured to use
k = 29 and l = 32. However, because of technical issues, shares themselves can
only use up to 63 bits. This means in practice that under the scenario where only
primitives with perfect security are used, the size of l could grow up to 63 bits.

6.2 Numerical Results

The computational experiments were done using historical data from the Belgian
day-ahead market. The data set is composed of a total of 1945 bids (demand
and supply). The origin of the data is one hour of a day trade from the Belpex
market (12 pm). We have created two data sets by randomly partitioning this
set of bids into 2 and 4 markets. Additionally, we would like to note that in our
experimentation we consider a 3 computational parties case.

We ran our instances on an Intel Xeon CPUs X5550 (2.67 GHz) and 42 GB of
memory, running Mac OS X 10.10. All processes have the same computational
power at their disposal (memory and CPU power). Table 2 shows number of
communication rounds, comparisons and CPU time (10 executions average).

From these tests, ≈21 × 106 communicational rounds were dedicated to
randomization processes for the comparison mechanisms e.g. random bit gen-
erations. The use of well studied results like PRSS [37] would limit the use of
these communicational rounds and in general terms would allow us to achieve
even better computational times. Furthermore, Catrina and Hoogh comparison
method depends on the computation of l random bits for its calculations. An
offline phase can be considered where this random numbers are pre-computed
before the bids arrive to the server, and then distributed to the computational
parties for its use. In this case the Secure Auction Mechanism would be executed
in an online phase that no longer has to care about random number generation
improving the performance for comparisons. Table 2 shows our numerical results
and estimated the impact of the use of online/offline phases.

Table 2. Overall results

Markets and perm. method Com. rounds Comparisons CPU time Online phase

2 Markets Batcher ≈31.4 · 106 226021 2056 s 613 s

Merge ≈31.4 · 106 226021 2049 s 606 s

4 Markets Batcher ≈71.9 · 106 537627 4702 s 1276 s

Merge ≈71.9 · 106 537627 4694 s 1268 s

When the number of markets increases from 2 to 4, we observe an increase
of more than twice the number of rounds and comparisons. The same follows on
computational time, taking in average (10 execution rounds) around 4700 s to
complete execution.

Secure Multi-market Auctions 125

On memory, the application did not surpass the 2.5 MB per execution. Dur-
ing its life-cycle, some increment in memory consumption levels was registered
during data generation phases. The phenomenon is especially evident in the
data preprocessing phase. This is of course, because some data is generated and
stored for later use. Less significantly changes are also present. This is explained
by the continuous fragmentation of the memory throughout the repeated max-
flow problems, where objects of different sizes are continuously created and then
destroyed. Nonetheless, the increase of memory usage remains very modest.
Figure 2 shows the typical memory usage of the application during its execution.

0 500 1,000 1,500 2,000
0

1,000

2,000

3,000

Time in Seconds

M
em

o
ry

in
K

B

Sorting

Graph Initialization

Iterative Max-Flow

Final Permutation

Fig. 2. Secure auction protocol life cycle

Finally, we found that the bottleneck of the application are the communica-
tions. Data transmission and related tasks are responsible of the 1705 s (83%)
of the total computational time. Only a fraction of the time, 351 s (17%), was
dedicated to other tasks e.g. share generation, basic arithmetic operations and
other algorithmic tasks.

From these results we can conclude the following: (i) Realistic computational
times were indeed achieved for the data in question, with limited computational
power. With the online/offline case, an hour of trade was solved in less than
an hour of computations for both market configurations. Given that many of
the processes of our protocol are sequential in nature, a computer with a better
benchmarked CPU under the same basic configuration would yield better results.
(ii) Memory is not a decisive factor in this case. Memory increases monotonically
but modestly during the execution because of noise. (iii) The process can be
further accelerated by pre-computing the random values that are needed by the
protocol. In our case 3

4 of communicational rounds that are used for comparisons
are dedicated to randomization processes. Even with the use of PRSS, these
operations would represent an important proportion of the workload. This is why

126 A. Aly and M. Van Vyve

an offline phase where these values are preprocessed could prove more useful. For
instance, to have dedicated servers calculating in shared form random bits and
numbers and store them, such that they can just be fetched when any online
process needs them. This would imply a reduction in the 2 markets case of
≈1450 s. This would allow us to solve the problem in ≈610 s, a little more than
10 min. When 4 markets are consider instead, the times are reduced to ≈1270
which is little more than 20 min. (iv) Moreover, even though we have put in place
a light and dedicated communications setting, the performance of the prototype
is largely dependent on the performance of the communications implemented. It
was 4.8 times more expensive (in terms of running time) to transmit the data
than to generate, reorganize and calculate it.

7 Conclusions

Our computational experiments show that secure auctions in realistic settings
(≈2000 bids, 4 markets linked by capacitated transportation links, 30 min time
limit) are indeed possible. This required the development of a specific algorithm
to solve the problem (more amendable to MPC), a careful management of the
trade-off between security and performance (perfect vs. statistical security, leak-
age of the number of iteration when solving the max-flow problems), and a
dedicated low-level implementation of MPC primitives.

Since, in our current implementation, the bulk of the running time is in
communications, we feel that this is where lies the best opportunities to improve
performance. This could be achieved either in improving the communication effi-
ciency, or by reducing the need for communication between the players. Moreover
future practical implementations could make use of dishonest majority or active
security protocols for usability.

Acknowledgements. This research was supported by the WIST Walloon Region
project CAMUS and the Belgian IAP Program P7/36 initiated by the Belgian State,
Prime Minister’s Office, Science Policy Programming. Both authors were also sup-
ported by the Marie Curie ITN “MINO” from the European Commission. The authors
are grateful to Olivier Pereira and Ignacio Aravena for their feedback. The scientific
responsibility is assumed by the authors.

References

1. Klemperer, P.: What really matters in auction design, from auctions: theory and
practice. In: Auctions: Theory and Practice. Introductory Chapters. Princeton Uni-
versity Press (2004)

2. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE
(1982)

3. Shoup, V.: NTL: a library for doing number theory. http://www.shoup.net/ntl/
4. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,

Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03549-4 20

http://www.shoup.net/ntl/
http://dx.doi.org/10.1007/978-3-642-03549-4_20

Secure Multi-market Auctions 127

5. Geisler, M.: Cryptographic protocols: theory and implementation. Ph.D. thesis,
Aarhus University Denmark, Department of Computer Science (2010)

6. Aly, A., Van Vyve, M.: Securely solving classical network flow problems. In: Lee, J.,
Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 205–221. Springer, Cham (2015).
doi:10.1007/978-3-319-15943-0 13

7. Franklin, M.K., Reiter, M.K.: The design and implementation of a secure auction
service. IEEE Trans. Softw. Eng. 22, 302–312 (1996)

8. Harkavy, M., Tygar, J.D., Kikuchi, H.: Electronic auctions with private bids. In:
Proceedings of the 3rd Conference on USENIX Workshop on Electronic Commerce,
WOEC 1998, vol. 3, p. 6. USENIX Association, Berkeley (1998)

9. Kikuchi, H., Hotta, S., Abe, K., Nakanishi, S.: Distributed auction servers resolving
winner and winning bid without revealing privacy of bids. In: Seventh International
Conference on Parallel and Distributed Systems: Workshops, pp. 307–312 (2000)

10. Peng, K., Boyd, C., Dawson, E.: Optimization of electronic first-bid sealed-bid
auction based on homomorphic secret sharing. In: Dawson, E., Vaudenay, S. (eds.)
Mycrypt 2005. LNCS, vol. 3715, pp. 84–98. Springer, Heidelberg (2005). doi:10.
1007/11554868 7

11. Nojoumian, M., Stinson, D.R.: Efficient sealed-bid auction protocols using verifi-
able secret sharing. In: Huang, X., Zhou, J. (eds.) ISPEC 2014. LNCS, vol. 8434,
pp. 302–317. Springer, Cham (2014). doi:10.1007/978-3-319-06320-1 23

12. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979). ACM, New
York

13. Catane, B., Herzberg, A.: Secure second price auctions with a rational auctioneer.
In: The 10-th SECRYPT International Conference on Security and Cryptography
(2013)

14. Madani, M., Van Vyve, M.: A new formulation of the European day-ahead elec-
tricity market problem and its algorithmic consequences. CORE Discussion Papers
2013074, Université catholique de Louvain, Center for Operations Research and
Econometrics (CORE) (2013)

15. Madani, M., Van Vyve, M.: Computationally efficient MIP formulation and algo-
rithms for European day-ahead electricity market auctions. Eur. J. Oper. Res. 242,
580–593 (2015)

16. Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 57,
509–533 (1935)

17. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp.
1–10. ACM, New York (1988)

18. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: 26th Annual Symposium on
Foundations of Computer Science, pp. 383–395, October 1985

19. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 1998, pp. 101–111. ACM, New York (1998)

20. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20901-7 2

http://dx.doi.org/10.1007/978-3-319-15943-0_13
http://dx.doi.org/10.1007/11554868_7
http://dx.doi.org/10.1007/11554868_7
http://dx.doi.org/10.1007/978-3-319-06320-1_23
http://dx.doi.org/10.1007/978-3-642-20901-7_2

128 A. Aly and M. Van Vyve

21. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). doi:10.1007/11681878 15

22. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-71677-8 23

23. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer com-
putation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
182–199. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4 13

24. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39212-2 56

25. Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipula-
tion. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-24861-0 18

26. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 506–525.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 27

27. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Delayed path coupling and
generating random permutations via distributed stochastic processes. In: Proceed-
ings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
1999, pp. 271–280. Society for Industrial and Applied Mathematics, Philadelphia
(1999)

28. Goodrich, M.T.: Randomized shellsort: a simple data-oblivious sorting algorithm.
J. ACM (JACM) 58, 27:1–27:26 (2011). ACM, New York

29. Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications.
In: IACR Cryptology ePrint Archive, vol. 2011, p. 122 (2011)

30. Goodrich, M.T.: Zig-zag sort: a simple deterministic data-oblivious sorting algo-
rithm running in o(n log n) time. In: Proceedings of the 46th Annual ACM Sympo-
sium on Theory of Computing, STOC 2014, pp. 684–693. ACM, New York (2014)

31. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an effi-
cient sorting algorithm for practical secure multi-party computation. In: IACR
Cryptology ePrint Archive, vol. 2014, p. 121 (2014)

32. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple
combinatorial graph problems. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 239–257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1 21

33. Blanton, M., Steele, A., Alisagari, M.: Data-oblivious graph algorithms for secure
computation and outsourcing. In: Proceedings of the 8th ACM SIGSAC Sympo-
sium on Information, Computer and Communications Security, ASIA CCS 2013,
pp. 207–218. ACM, New York (2013)

34. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-
point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15497-3 9

35. Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically effi-
cient multi-party sorting protocols from comparison sort algorithms. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 202–216. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37682-5 15

http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/978-3-540-71677-8_23
http://dx.doi.org/10.1007/978-3-540-71677-8_23
http://dx.doi.org/10.1007/978-3-642-15317-4_13
http://dx.doi.org/10.1007/978-3-642-39212-2_56
http://dx.doi.org/10.1007/978-3-642-24861-0_18
http://dx.doi.org/10.1007/978-3-662-45608-8_27
http://dx.doi.org/10.1007/978-3-642-39884-1_21
http://dx.doi.org/10.1007/978-3-642-15497-3_9
http://dx.doi.org/10.1007/978-3-642-15497-3_9
http://dx.doi.org/10.1007/978-3-642-37682-5_15

Secure Multi-market Auctions 129

36. Aly, A.: Network flow problems with secure multiparty computation. Ph.D. thesis,
Universté catholique de Louvain, IMMAQ (2015)

37. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol.
3378, pp. 342–362. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30576-7 19

http://dx.doi.org/10.1007/978-3-540-30576-7_19

How to Challenge and Cast Your e-Vote

Sandra Guasch1(B) and Paz Morillo2

1 Scytl Secure Electronic Voting, Barcelona, Spain
sandra.guasch@scytl.com

2 Universitat Politecnica de Catalunya, Barcelona, Spain
paz@ma4.upc.com

Abstract. An electronic voting protocol provides cast-as-intended ver-
ifiability if the voter can verify that her encrypted vote contains the
voting options that she selected. There are some proposals of protocols
with cast-as-intended verifiability in the literature, but all of them have
drawbacks either in terms of usability or in terms of security. In this
paper, we propose a new voting scheme with cast-as-intended verifiabil-
ity which allows to audit the vote to be cast, while providing measures
for avoiding coercion by allowing the voter to create fake proofs of the
content of her vote. We provide an efficient implementation and formally
analize its security properties.

1 Introduction

In remote e-voting schemes the vote is encrypted at the same voter device used
to choose the selections and cast the vote. This way voter choices remain secret
during their transmission and storage in the remote voting server. Encrypted
voting options cast by the voters are anonymized prior to decryption at the
counting phase, in order to maintain voter privacy.

This introduces new concerns on e-voting systems: how can voters be sure
that (i) the vote that their device encrypted contains their selections, (ii) the
vote which was stored in the remote voting server is the same that their device
encrypted and (iii) the anonymization and decryption processes were done cor-
rectly? To provide assurance to the voters that the vote casting, vote storage and
vote counting processes were done following the specified protocol, the notions
of cast-as-intended verifiability, recorded-as-cast verifiability and counted-as-
recorded verifiability have been introduced in the literature.

There are some satisfying solutions for both recorded-as-cast verifiability and
counted-as-recorded verifiability. Recorded-as-cast verifiability can be achieved
by publishing all encrypted votes received at the remote voting server in a
Bulletin Board [17], where voters can check for their cast votes, and making sure
that only the votes which are in the Bulletin Board are tallied. For examples
of protocols providing counted-as-recorded verifiability, see [27] or [12], where
verifiable mix-nets and verifiably homomorphic tally schemes are introduced,
respectively.

However, proposed schemes achieving cast-as-intended verifiability still have
some drawbacks, either in usability or security terms. For example, some of these
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 130–145, 2017.
DOI: 10.1007/978-3-662-54970-4 8

How to Challenge and Cast Your e-Vote 131

systems, known as challenge-or-cast, do not allow to audit the same vote to be
cast. In case such systems allowed to verify the same ballot to be cast, they would
fail on fulfilling other security requirements for electronic voting systems such as
protection against voter coercion and vote selling, given that their verification
involves providing the randomness of the encrypted vote.

In this paper, we propose a new voting scheme which provides cast-as-
intended verifiability. In our scheme, the voter can audit the same encrypted
vote that she will later cast, what we think is an improvement from the point
of view of soundness of the verification and of the usability of the system: it
represents a more straightforward process for average voters to audit the vote
that is going to be cast. Still, measures are applied in order to ensure that this
verification does not provide the voter with a receipt that can be used to sell her
vote. We call this variant challenge-and-cast.

Related Work. There have been several proposals of cast-as-intended verifica-
tion schemes during the last two decades. In Helios [2], the voter’s device encrypts
a vote and the voter is allowed to challenge the encryption and obtain the ran-
domness used for encrypting the voting options, to check that the encrypted
vote was constructed correctly. However, in order to prevent vote selling, the
vote has to be encrypted again with new randomness, after auditing. In particu-
lar, this means that the voter’s device has a small probability of cheating, which
decreases with the number of challenged encryptions.

Other methods to provide cast-as-intended verification are those based in
return codes, such as [18]. In these schemes, a secondary channel is used to deliver
reference codes assigned to voting options to each voter before the voting phase.
During voting, the remote voting server, computes return codes from received
votes and sends them back to the voters, who verify that they match the expected
reference codes. These solutions are more usable than previous proposals, but
they require a secondary channel, which may not always be available.

Some code voting schemes (Surevote [8], Pretty Good Democracy [26]) or
verifiable DRE-based schemes (MarkPledge [24], Moran-Naor’s receipt-free vot-
ing system [23]) also provide cast-as-intended verifiability. However, they present
their own limitations: while the first category relies on the voter having to enter
one randomized code for each voting option she selects, with the correspond-
ing drawbacks on usability, the second one requires specific hardware (such as
printers with protected output trays) which cannot be assumed to be available
in remote voting scenarios.

Finally, there are systems such as [10] which use trapdoor commitments,
as our solution, in order to provide receipt-freeness in blind signature voting
schemes. However they struggle on the way of providing the voter with the
trapdoor key. Although we also use trapdoor commitments in our scheme, we
have naturally associated the trapdoor key to a voting credential needed to cast
a ballot, in order to improve the usability and understandability of the scheme.
Moreover, the protocol we present here does not aim to solve the problem of
receipt-freeness. Getting a receipt of your vote is a possibility inherent to most

132 S. Guasch and P. Morillo

the electronic voting systems where the vote is encrypted at the voting device,
such as Helios [2]. Instead, our motivation is to provide a method for cast-as-
intended verification which does not involve providing a receipt to the voter (or
that at least allows to fake it for a possible coercer). A future work will consist
on analyzing how this cast-as-intended verification method can be combined
with other systems providing receipt-freeness or even coercion-resistance, such
as JCJ [21].

Overview. The solution is the following: the voting device encrypts the vote
and shows the resulting ballot to the voter, together with a zero-knowledge
proof of knowledge (ZKPK) of the encryption randomness instead of revealing
the plain value, as in the challenge-or-cast mechanisms. After the voter agrees
on the proof, the ballot is cast and published on the bulletin board, so that the
voter can check that her ballot has been correctly received at the voting platform.
The voter agreement of the proof is represented with an authentication of the
ballot, and only authenticated ballots are accepted in the system (posted on the
bulletin board).

The cast-as-intended verification is still sound compared to prior systems,
thanks to the properties of the proofs of knowledge: the verification of the proof
will succeed only in case the voter’s device is honest (i.e., the device is encrypting
the voting options selected by the voter). In case of a dishonest device, the
probability of the proof being successfully verified (and thus, the voter being
cheated without notice) is negligible. At the same time, the scheme provides
protection in front of vote selling/voter coercion scenarios thanks to the fact
that it generates a ZKPK instead of providing the value itself. With the proof
itself, the voter can be easily coerced or she can sell her vote. However, we take
advantage of the fact that ZKPKs can be simulated to give a chance to the voter
to cheat the coercers/vote buyers: In our scheme, the voter is allowed to generate
fake proofs that will look like good proofs to anyone else.

This paper is organized as follows: Sect. 2 gives an introduction to the tech-
niques used for the simulation of the proofs of the ballot content; Sect. 3 presents
the syntax and description of the protocol, as well as the trust assumptions;
Sect. 4 provides an efficient instantiation; a discussion about the voter experi-
ence using this protocol is provided in Sect. 5. Finally, an extension for multiple
voting is provided in Sect. 6. The annexes contain some security definitions of
the scheme and the result of the security analysis.

2 Proof Simulation

The scheme uses Designated Verifier Proofs [20], which allow a designated proof
verifier to get convinced of a statement, while she is able to simulate proofs
for other statements (which are not true) to other verifiers. In our scheme, the
prover is the voting device, who proves knowledge of the encryption randomness,
and the designated verifier is the voter. Other verifiers such as possible coercers
or vote buyers cannot be convinced by the proof. Designated Verifier Proofs use

How to Challenge and Cast Your e-Vote 133

trapdoor commitments, also known as chameleon commitments [7]. The trap-
door information is only available to the designated verifier of the proof, who
can use it to generate simulated proofs for other verifiers. In non-interactive set-
tings, such as in non-interactive zero-knowledge proofs of knowledge (NIZKPKs),
Chameleon hashes [22] are used rather than chameleon commitments.

Chameleon Hashes. A chameleon hash function is a trapdoor collision-
resistant hash function. Without knowledge of the trapdoor, the chameleon hash
behaves as an ordinary collision-resistant hash function. However, using the trap-
door, collisions can be found efficiently.

A chameleon hash function is composed by three p.p.t. algorithms: Gench
takes as input a security parameter 1k, outputs an evaluation key ekch and a
trapdoor key tkch, and defines a message space Mch, a randomness space Rch

and a hash space Ych; Hch takes as input an evaluation key ekch, a message
m ∈ Mch and a random value rch ∈ Rch and outputs a hash value cch ∈
Ych; H−1

ch takes as input the trapdoor tkch, two messages m,m′ ∈ Mch and a
random rch ∈ Rch, and returns a value rch′ ∈ Rch such that Hch(ekch,m, rch) =
Hch(ekch,m

′, rch′).
Chameleon hashes have the following properties:

Collision resistance. Provides that, given only the evaluation key ekch,
the probability of finding (m, rch) �= (m′, rch′) such that Hch(ekch,m, rch) =
Hch(ekch,m

′, rch′) is negligible in polynomial time.

Trapdoor collision. Provides that there is an efficient algorithm H−1
ch

which finds two pairs (m, rch) �= (m′, rch′) for which Hch(ekch,m, rch) =
Hch(ekch,m

′, rch′), using the trapdoor key tkch.

Uniformity. For any message m ∈ Mch, and any rch uniformly distributed in
Rch, the hash value cch is uniformly distributed in Ych. Therefore the probability
of an adversary of distinguishing between the hash value of m and m′, both in
Mch is negligible in polynomial time.

2.1 A Simulatable NIZK Proof Using Chameleon Hashes

Although examples of simulatable NIZKPK proofs are given by the authors
in [20], here we provide a formal description of the algorithms that will be used
in further sections, in order to prove their properties and those of the scheme
where they are used.

In a Σ-protocol, in order to prove that a statement x belongs to LR, a
prover P and a verifier V engage in an interactive protocol where first, P sends
a commitment message a to V ; then V replies with a random challenge e; finally,
P sends an answer z to V . Interactive zero-knowledge protocols such as Σ proofs
can be turned into non-interactive using the Fiat-Shamir [16] transformation,
where a hash function is used to compute the random challenge e.

The transformation into a (trapdoor) simulatable NIZKPK works by sub-
stituting the challenge e with the result of a chameleon hash: P chooses a

134 S. Guasch and P. Morillo

random value rch and evaluates the chameleon hash function Hch on the mes-
sage m = H(x, a) using the randomness rch, where H is a regular collision-
resistant hash function. The challenge of the Σ-protocol is then defined as
e = Hch(H(x, a); rch). In addition, P also sends the randomness rch which he
used in the computation of the chameleon hash.

This non-interactive protocol allows to simulate valid proofs by means of
the trapdoor key of the chameleon hash scheme: indeed, given a trapdoor tkch

for the chameleon hash, the simulator can compute the triplet (a∗, e∗, z∗) as
the simulator of the Σ-protocol would do. Then, by using the trapdoor of the
chameleon hash, the simulator will be able to find a random value rch∗ such
that e∗ = Hch(H(x∗, a∗); rch∗). The uniformity property of the chameleon hash
scheme guarantees that simulated proofs have the same distribution than honest
proofs.

Concretely, the trapdoor-simulatable NIZKPK scheme to be used in our pro-
tocol uses a Σ-protocol, a chameleon hash scheme (Gench, Hch, H−1

ch) and two
hash functions H1 : {0, 1}∗ → Mch and H2 : {0, 1}∗ → CH (the challenge space).
Then, the NIZK proof is given by the following algorithms:

– GenCRS: on input a security parameter, it runs Gench and outputs crs = ekch

and tk = tkch.
– NIZKProve: on input the common reference string crs, a statement x and a

witness w, it follows the next steps:
1. Run the first phase of the prover P of the Σ-protocol, which outputs a

commitment a.
2. Sample a random rch ∈ Rch and compute e = H2(Hch(H1(x, a), rch)).
3. Run the second phase of the prover P of the Σ-protocol, obtaining an

answer z.
4. Define the proof π = (a, e, rch, z).

– NIZKVerify: on input a proof π and a statement x, return 1 if e =
H2(Hch(H1(x, a), rch) and the verification checks of the Σ-protocol pass on
(a, e, z), 0 otherwise.

– NIZKSimulate: on input a statement x and a trapdoor tk, the simulator runs
the following steps:
1. Run the simulator S of the Σ-protocol to obtain a triplet (a∗, e∗, z∗).
2. Use the trapdoor tkch to obtain a value rch∗ s.t. e∗ =

H2(Hch(H1(x, a∗), rch∗))
3. Output a simulated proof π∗ = (a∗, e∗, rch∗, z∗)

A NIZKPK satisfies the properties of completeness, knowledge soundness and
zero-knowledge [13,28].

3 Protocol Syntax

In this section we define a syntax for the proposed voting protocol. We use as
a basis the syntax defined in [11,31] for analyzing the properties of the Helios
voting protocol [2], and add an auditing phase for the cast as intended verification
functionality.

How to Challenge and Cast Your e-Vote 135

The following are the participants of the voting protocol: the Election Author-
ities configure the election and tally the votes to produce the election result; the
Registrars registers the voters and provide them with information for participat-
ing in the election; Voters participate in the election by providing their choices;
the Voting Device generates and casts a vote given the voting options selected
by the voter; an Audit Device is used by the voter to verify cryptographic evi-
dences; the Bulletin Board Manager receives and publishes the votes cast by the
voters in the bulletin board BB; finally the Auditors are responsible of verifying
the integrity of the procedures run in the counting phase.

Consider that the list of voting options V = {v1, . . . , vn} in the election is
defined in advance. The counting function ρ : (V ∪{⊥})∗ → R, where ⊥ denotes
an invalid vote and R is the set of results, is a multiset function which provides
the set of cleartext votes cast by the voters in a random order [5].

The voting protocol uses an encryption scheme with algorithms (Gene,Enc,
Dec,EncVerify), a signature scheme (Gens,Sign,SignVerify) and a mix- net with
algorithms Mix and MixVerify. It additionally uses a trapdoor-simulatable NIZ-
KPK scheme denoted by the algorithms (GenCRS,NIZKProve,NIZKVerify,
NIZKSimulate).

– Setup(1λ) chooses p and q for the ElGamal encryption scheme and runs Gene.
Then it sets the election public key pk = (pke,G) and the election private
key sk = (ske, pke). Finally it generates the empty list of credentials ID.

– Register(1λ, id) takes the public parameters defined by pk, runs GenCRS from
the NIZKPK scheme and Gens from the signature scheme, and sets pkid =
(crs, pks) and skid = (tk, sks).

– CreateVote(vi, pkid) runs Enc from the encryption scheme with inputs pk and
vi and obtains the ciphertext cs. Then it parses cs as (c1, c2, h, z) and pkid as
(crs, pks), and runs NIZKProve from the NIZKPK scheme, using as input crs,
the statement (c1, c2/vi) and the witness r, where r is the random element in
Zq used during encryption. The result is set to be σ, while the ballot b takes
the value of cs.

– AuditVote(vi, b, σ, pkid) parses b as (c1, c2, h, z) and pkid as (crs, pks), then
runs NIZKVerify from the NIZKPK scheme with inputs the proof σ, the com-
mon reference string crs and the statement (c1, c2/vi). It outputs the result
of the proof verification.

– CastVote(b, skid, id) runs Sign with inputs the voter’s signing private key sks
and the ballot b to be signed together with the voter identity id. The output
is the authenticated ballot ba = (id, b, ψ).

– FakeProof(b, skid, pkid, vj) parses b as (c1, c2, h, z), pkid as (crs, pks) and skid
as (tk, sks). Then it runs NIZKSimulate from the NIZKPK scheme for the
statement (c1, c2/vj). Then the simulated encryption proof data σ′ is the
simulated proof π∗.

– ProcessBallot(BB, ba) parses ba as (id, b, ψ) and b as (c1, c2, h, z). Then it
proceeds to perform some validations: It checks that there is not already an
entry in the bulletin board for the same id and that this id is present in the
list ID, or with the same ciphertext (c1, c2). It also runs EncVerify to verify the

136 S. Guasch and P. Morillo

proof (h, z) and the voter’s signature running SignVerify (for which it picks
the corresponding public key pkid from the list ID). If any of these validations
fail, the process stops and outputs 0. Otherwise it outputs 1.

– VerifyVote(BB, b, id) checks that there is an entry in the bulletin board for
the identity id. In the affirmative case, it parses the authenticated ballot b′

a

as (id, b′, ψ′) and checks that all the fields in b′ are equal to all the fields in b.
– Tally(BB, sk) runs ProcessBallot over the individual entries of the ballot box.

For those who passed the verifications, it parses each one as (id, (c1, c2,
h, z), ψ), it takes the pairs (c1, c2) and runs Mix((c11, c

1
2), . . . , (c

n
1 , cn

2)), which
denotes a verifiable mixnet such as [3] or [32]. Then the ciphertexts are
decrypted running the Dec algorithm and a proof of correct decryption is
produced. The outputs are the list of decrypted votes r and the proofs of
correct mixing and decryption, Π.

– VerifyTally(BB, r,Π) in the first place performs the same validations than the
ProcessBallot algorithm over the ballots in BB: for each one, it checks that
there is only one entry in the ballot box per id and per (c1, c2). In case it
founds any coincidence, it halts and outputs ⊥. Otherwise, it continues with
the validations and discards all the ballot box entries for which EncVerify or
SignVerify output 0. Finally it verifies the proofs Π of correct mixing and
decryption, using the ciphertexts of the entries which have passed the valida-
tion and the result r.

The voting protocol algorithms are organised in the following phases:

Configuration phase: In this phase, the election authorities set up the public
parameters of the election such as the list of voting options {vi} ∈ V and the
result function ρ. They also run the Setup algorithm and publish the resulting
election public key pk and the empty credential list ID in the bulletin board.
The private key sk is kept in secret by the electoral authorities.

Registration phase: In this phase the registrars register the voters to vote in the
election. For each voter with identity id, the registrars run Register and update
the credential list ID in the bulletin board with the pair (id, pkid). The key pair
(pkid, skid) is provided to the voter.

Voting phase: In this phase the voter chooses a voting option vi ∈ V and
interacts in the following way with the voting device, in order to cast a vote:

1. The voter provides her identity id and the voting option vi to the voting
device, which gathers the corresponding public key pkid from the bulletin
board and runs the CreateVote algorithm. The outputs b and σ are provided
to the voter.

2. The voter uses an audit device to run AuditVote using b and σ provided by
the voting device. The voter may enter pkid herself, or her identity id so that
the audit device picks the corresponding public key pkid from the list ID.
A positive result means that b is encrypting the voter’s selection vi and the
voter can continue the process. Otherwise, the voter is instructed to abort
the process and choose another voting device to cast her vote, since the one
she is using is corrupted and did not encrypt what the she selected.

How to Challenge and Cast Your e-Vote 137

3. As a sign of approval of the generated ballot, the voter provides her private
key skid to the voting device, which proceeds to run CastVote. The resulting
authenticated ballot is sent to the bulletin board manager.

4. Then the voting device runs FakeProof using a voting option vj ∈ V as input
(supposedly the one requested by the coercer/vote buyer, otherwise it may
be a random value from the set V), and provides the simulated encryption
data σ′ to the voter.

The bulletin board manager runs the ProcessBallot algorithm. If the result is
positive, the authenticated ballot ba is posted in the bulletin board. Otherwise,
the bulletin board is left unchanged, and the voter receives a negative response.
From that point, the voter can run VerifyVote to check that her vote has been
posted in the bulletin board.

From this point, the voter can provide the ballot b and the simulated encryp-
tion data σ′ to a coercer, who might want to check that a ballot for the requested
voting option vj is present in the bulletin board by running the AuditVote and
VerifyVote algorithms.

Counting phase: in this phase, the election authorities provide the election
private key sk and run the Tally algorithm on the contents of the bulletin board.
The obtained result r and the proof Π are posted in the bulletin board. The
auditors then run the VerifyTally algorithm. In case the verification is satisfactory,
the election result is considered to be correct. Otherwise, an investigation is
opened in order to detect any manipulation that could lead to a corrupted result.

3.1 Trust Model

Security definitions and analysis results are provided in the Annex, while com-
plete demonstrations are included in the full version [19]. However, here we
informally introduce the trust assumptions we make on the scheme regarding
privacy and integrity:

We assume that voters follow the protocol in the correct way. We also assume
the voter to follow the audit processes indicated and complain in case of any
irregularity.

In order to simplify the analysis, we consider that the election authorities,
and the registrars as well, behave properly in the sense that they generate correct
and valid key pairs, and that they do not divulge the secret keys to unintended
recipients. Multiparty computation techniques such as [25] or [14] can be used
in order to distributely generate secrets among a set of trustees, ensuring their
privacy and a correct generation in case a subset of them is honest.

From the point of view of privacy, the voting device is trusted not to leak the
randomness used for the encryption of the voter’s choices. While this assumption
may seem too strong, it is in fact needed in any voting scheme where the voting
options are encrypted at the voting device (no pre-encrypted ballots are used)
and the vote is not cast in an anonymous way. However, for the point of view of
integrity, we consider that a malicious voting device may ignore the selections
made by the voter and put another content in the ballot to be cast.

138 S. Guasch and P. Morillo

As in similar schemes such as Helios [2] or Wombat [1], the audit device is
trusted both from the point of view of privacy (it is assumed not to divulge
the voter’s selections) and from the point of view of integrity (it is assumed to
honestly transmit the result of the proofs verification to the voter).

The bulletin board manager is trusted to accept and post on the bulletin
board all the correct votes. No assumptions are done in the topic of privacy.
Finally, auditors are assumed to honestly transmit the result of their verification.
However, we assume them to be curious and try to find out the content of voter’s
votes from the information they get.

4 Concrete Instantiation

In this section, we provide a concrete instantiation based on ElGamal over a
finite field.

Encryption Scheme. The Signed ElGamal encryption scheme [30] is used in
our instantiation of the protocol. It is a combination of the ElGamal encryption
scheme [15] and a proof of knowledge of the encryption randomness, which is
based in the Schnorr signature scheme [29] (sometimes we will refer to this proof
of knowledge as the Schnorr proof). In our notation, (c1, c2) represent the single
ElGamal ciphertext, while (h, z) represent the Schnorr signature.

According to the work in [6], this variant of ElGamal is NM-CPA secure.

Chameleon Hash. The following instantiation of a chameleon hash (Gench,
Hch,H−1

ch) based on the discrete logarithm problem [22] is used: Gench receives
a group G of prime order q of elements in Z

∗
p with generator g. An element x

is sampled uniformly from Zq and h = gx is computed. Then, the evaluation
key ekch is defined as ekch = (G, g, h) and the trapdoor key tkch is defined as
tkch = (ekch, x). The message space and the randomness space are Zq and the
hash space is G. The algorithm Hch is defined for (m, rch) ∈ Zq × Zq to output
cch = gm · hrch . Finally, H−1

ch (m, rch,m′) outputs rch′ = (m − m′) · x−1 + rch.

Σ-proof. We use a simulatable NIZKPK based on a Σ-proof which proves that
a specific plaintext corresponds to a given ciphertext. The Σ-proof computed
over an ElGamal ciphertext of the form (c1, c2) = (gr, pkr

e · m) is as follows:

1. Prover computes (a1, a2) = (gs, pks
e), where s is a random element ∈Zq, and

provides them to the verifier.
2. Verifier provides a challenge e.
3. Prover provides to the verifier z = s+ re. The verifier checks that gz = a1 · ce

1

and that hz = a2 · (c2/m)e.

This Σ-proof can be simulated in the following way: the simulator samples
a random z∗ ∈ G, a random e∗ ∈ Zq and computes a∗

1 = gz∗ · c−e∗
1 and a∗

2 =
hz∗ · (c2/m)−e∗

. The resulting (a∗, e∗, z∗) values have the same distribution than
the original ones.

How to Challenge and Cast Your e-Vote 139

Simulatable NIZKPK. The algorithms of the NIZKPK scheme are then
defined by using the discrete log-based chameleon hash scheme and the Σ-proof
defined above, as well as two hash functions H1,H2 mapping inputs to Zq, as
follows:

– GenCRS runs Gench and outputs crs = (G, g, h) and tk = (crs, x);
– NIZKProve receives crs, the statement x = (c1, c2/m) and the witness r, and

computes: (1) the commitment (a1, a2) = (gs, pks
e), (2) the non-interactive

challenge e = H2(g(H1(x,a)) ·hrch), where rch is picked at random from Zq, (3)
the answer z = s + re, and (4) provides the proof π = (a, e, rch, z);

– NIZKVerify checks that gz = a1 · ce
1, hz = a2 · (c2/m)e, and that e =

H2(g(H1(x,a)) · hrch);
– NIZKSimulate receives as input a statement x∗ = (c1, c2/m∗) and the trapdoor

tk, and does the following: takes at random z∗ ∈ G and random pair (α, β) ∈
Zq, and sets e∗ = H2(gα · hβ). Then it computes a∗

1 = gz∗ · c−e∗
1 and a∗

2 =
hz∗ · (c2/m∗)−e∗

, and finally it obtains rch∗ = (α − H1(x∗, a∗)) · x−1 + β. The
simulated proof is then π∗ = (a∗, e∗, rch∗, z∗).

The full version of this paper [19] provides a proof that the described simu-
latable NIZK proof fulfills the properties of completeness, knowledge soundness
and zero-knowledge of NIZKPKs.

Additionally, we use the RSA Full Domain Hash (RSA-FDH) [4] algorithm
for the signature scheme (Gens,Sign,SignVerify), and a proof of correct decryp-
tion based on the Chaum-Pedersen protocol [9], as described in [12].

4.1 Performance

This instantiation is simple and efficient. For a k-out-of-n voting scheme, where
k options can be encrypted into one ElGamal ciphertext, the encryption of the
voter selections using the Signed ElGamal encryption scheme requires 3 expo-
nentiations. The computation of the NIZKPK requires 6 additional exponenti-
ations (2 of them for the computation of the chameleon hash), and 6 more for
verification. Each proof simulation costs 6 exponentiations.

An important detail is that, for efficiency purposes, the prime group and the
generator of such group used in all these primitives must be the same.

5 Voting Experience

It is important to recall the criticity of the voter’s trapdoor key. A voter who
has not access to it will not be able to simulate a proof. Thus, the cast-as-
intended verification mechanism will no longer protect the privacy of the voter.
On the other hand, the voter device has to learn the trapdoor key only after it
has already generated a honest proof for the voter. Otherwise, the device could
simulate a proof the voter expects to be honest, and the scheme would no longer
be cast-as-intended verifiable.

140 S. Guasch and P. Morillo

In order to present an easy and intuitive voting process for the voter, we have
related the private information she uses to authenticate her vote (for example,
her private signing key) with the trapdoor key which is used to generate false
proofs. We think that it is meaningful that the voter provides both secrets at
the same time, as a confirmation that she agrees to cast that vote (which she is
expected to do only after verifying the honest proof). Before the voter provides
these secrets, the voting device can neither cast a valid vote, nor cheat the voter
by generating a fake proof.

Therefore, at the voter registration stage each voter may be issued both
key pairs (the signing key pair to authenticate their vote, and the evalua-
tion/trapdoor key pair for the NIZKPK scheme), where the private keys are
password-protected. Later on, during the voting stage, the voter’s selections are
encrypted by the voting device, and the resulting ciphertext and the proof of con-
tent are shown to the voter, who then can use an audit device to check that the
ciphertext contents match her selections (for example, her smartphone). After a
positive audit, the voter enters her password into the voting device, which recov-
ers both private keys, using the private signing key part to digitally sign the vote
to be cast, and the NIZKPK trapdoor key part to generate one or several fake
proofs for alternative voting options which may be defined by the voter. The
fake proofs have to be presented in the same way than the honest one, so that
they cannot be distinguished by a potential coercer. Finally, the vote is sent to
the bulletin board manager which publishes it the bulletin board, so that the
voter can check that her audited vote has been correctly received.

6 Protocol Extension for Multiple Voting

The possibility of multiple voting may be interesting in case something goes
wrong or for anti-coercion measures. However, it has to be taken into account
that in this case the voting device learns the trapdoor key after the first vote,
and could cheat the voter in further ballot generations.

An approach for allowing multiple voting consists on delegating the gener-
ation of simulated proofs to the bulletin board manager, who keeps the voters’
trapdoor keys and provides simulated proofs to the voting devices only when
receiving confirmed ballots (which means that voters already verified their con-
tents and agreed with them). Although this does not endanger the voter’s pri-
vacy, a collusion of the bulletin board manager and the voting device may defeat
the property of cast-as-intended verifiability by simulating proofs in advance or
refuse to generate them. A distributed setting, where multiple bulletin board
managers hold shares of the voters’ trapdoor keys generated with a threshold
scheme can be used to enforce this property, even if a subset of the bulletin
board managers are malicious.

How to Challenge and Cast Your e-Vote 141

A Security Definitions and Analysis Results

A.1 Definitions

In this section we define the notions of ballot privacy, and cast as intended
verifiability for an electronic voting scheme such as that described in Sect. 3. We
take as basis the definitions from [5] and then adapt them to the particularities
of our scheme. Other definitions such as strong consistency or strong correctness
are available in the full version [19].

Ballot Privacy. It is defined by means of an experiment where an adversary
is presented with two experiments and has to be able to distinguish between
them. In each experiment the adversary has indirect access to a ballot box
which receives the ballots created by honest voters, as well as ballots cast by
the adversary itself on behalf of corrupted voters. In the case of honest voters,
we let the adversary choose two possible votes which they will use to create their
ballots. Which vote is used to cast a voter’s ballot that goes to a specific ballot
box depends on the experiment that is taking place.

At the end of the experiment, the adversary is presented with the result
of tallying the ballot box, which is the same regardless of the experiment. As
noted in [5], revealing the true tally in each experiment would easily allow the
adversary to distinguish between both ballot boxes. Additionally, for the votes
cast by honest voters, we provide the resulting encryption proof data to the
adversary in order to model a coercer which uses it to learn something about
the vote. We will use a simulation functionality to generate fake proofs when
required.

Exppriv,βA,V :

1. Setup phase: The challenger C sets up two empty bulletin boards BB0 and
BB1 and runs the Setup(1λ) algorithm to obtain the election key pair (pk, sk)
and the empty list of credentials ID. A is given access to BB0 when β = 0
and to BB1 when β = 1.

2. Registration phase: The adversary may make the following query:
– ORegister(id): A provides an identity id �∈ ID. C runs Register(1λ, id),

provides the voter key pair (pkid, skid) to A, and adds (id, pkid) to ID.
3. Voting phase: The adversary may make the following types of queries:

– OVoteLR(id, v0, v1): this query models the votes cast by honest voters.
A provides an identity id ∈ ID and two possible votes v0, v1 ∈ V . The
challenger C does the following:

• It picks the corresponding pkid from ID and executes CreateVote
(v0, pkid) and CreateVote(v1, pkid) which produce the ballots b0 and
b1 respectively and their encryption proof data σ0 and σ1.

• Then it executes CastVote(b0, skid, id), CastVote(b1, skid, id) to
obtain the authenticated ballots b0a and b1a, and ProcessBallot(BB0, b

0
a)

and ProcessBallot(BB1, b
1
a). If both processes return 1, the ballot

boxes BB0 and BB1 are updated with b0a and b1a respectively. Oth-
erwise, C stops and returns ⊥.

142 S. Guasch and P. Morillo

• Finally, C executes FakeProof(bβ , skid, pkid, vβ) and provides σβ and
the simulated encryption proof data σ∗

β to A.
– OCast(ba): this query models the votes cast by corrupted voters. A pro-

vides an authenticated ballot ba, and then C executes ProcessBallot with
ba and each ballot box. If both algorithms return 1, both ballot boxes
are updated with ba. Otherwise, C halts and none of the ballot boxes are
updated.

4. Counting phase: The challenger runs Tally(BB0, sk) and obtains the result
r and the tally proof Π, which are provided to A in case β = 0. In case β = 1,
C runs SimProof(BB1, r) to obtain Π∗, and provides (r,Π∗) to A.

5. Output: The output of the experiment is the guess of the adversary for the
bit β.

We say that a voting protocol as defined in Sect. 3 has ballot privacy if
there exists an algorithm SimProof such that for any probabilistic polynomial
time (p.p.t.) adversary A, the following advantage is negligible in the security
parameter λ:

AdvprivA = |Pr[Exppriv,0A,V = 1] − Pr[Exppriv,1A,V = 1] |

Cast-as-Intended Verifiability. A voting system is defined to be cast-as-
intended verifiable if a corrupt voting device is unable to cast a vote on behalf of
a voter, with a voting option different than the one chosen by the voter, without
being detected. In our definition, we consider an adversary who posts ballots
in the bulletin board on behalf of honest and corrupt voters. In case of honest
voters, they follow the protocol and perform some validations before approving
the ballot to be cast. Corrupt voters provide their approval without doing any
prior verification.

ExpCaIA,V :

1. Setup phase: The challenger C runs the Setup(1λ) algorithm and provides
the election key pair (pk, sk) to A. Then it publishes the empty lists of voter
credentials IDh and IDc such that ID = (IDh ∪ IDc). Finally A is given read
access to BB.

2. Registration phase: The adversary may make the following queries:
– ORegisterHonest(id): A provides an identity id �∈ ID. The challenger

C runs Register(1λ, id), and adds (id, pkid) to IDh.
– ORegisterCorrupt(id): A provides an identity id �∈ ID. The challenger

C runs Register(1λ, id), and adds (id, pkid) to IDc.
3. Voting phase: The adversary may make the following types of queries:

– OVoteHonest(id, vi, b, σ): this query models the votes cast by hon-
est voters. A provides an identity id ∈ IDh, a ballot b, an encryp-
tion proof data σ and the voting option vi. The challenger C runs
AuditVote(vi, b, σ, pkid), and only if the result is 1 it provides skid to A.

How to Challenge and Cast Your e-Vote 143

– OVoteCorrupt(b, id): this query models the votes cast by corrupted
voters. A provides a ballot b and an identity id ∈ IDc. C answers with
skid.

4. Output: The adversary submits an authenticated ballot b′
a = (id′, b′, ψ′).

The output of the experiment is 1 if the following conditions hold:
– id′ ∈ IDh

– ProcessBallot(BB, b′
a) = 1

– VerifyVote(BB, b′, id′) = 1
– Extract(b′

a; sk) �= v′
i, where v′

i is the voting option submitted by the adver-
sary in the OVoteHonest query.

We say that a voting protocol as defined in Sect. 3 has cast-as-intended ver-
ifiability if, given an Extract algorithm for which the protocol is consistent with
respect to ρ, the following advantage is negligible in the security parameter λ
for any probabilistic polynomial time (p.p.t.) adversary A:

AdvCaIA = |Pr[ExpCaI,0A,V = 1] |

A.2 Security Analysis Results

In this section we provide the results of our security analysis, which is available
in the full version of this paper [19].

Theorem 1. Let (Gene,Enc,Dec) be an NM-CPA secure encryption scheme
and (GenCRS,NIZKProve,NIZKVerify,NIZKSimulate) a NIZKPK which provides
zero-knowledge. Then the protocol presented in Sect. 3 satisfies the ballot privacy
property.

Theorem 2. Let (Gene,Enc,Dec,EncVerify) be a probabilistic encryption
scheme, (GenCRS,NIZKProve,NIZKVerify,NIZKSimulate) a NIZKPK which is
sound and (Gens,Sign,SignVerify) an unforgeable signature scheme. Then the
protocol presented in Sect. 3 satisfies the cast-as-intended verifiability property.

References

1. Wombat voting system (2015). http://www.wombat-voting.com/
2. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)

USENIX Security Symposium, pp. 335–348. USENIX Association (2008)
3. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.

In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 17

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of CCS 1993, NY, USA, pp. 62–73 (1993)

5. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: A comprehensive
analysis of game-based ballot privacy definitions. IACR Cryptology ePrint Archive
2015, 255 (2015)

http://www.wombat-voting.com/
http://dx.doi.org/10.1007/978-3-642-29011-4_17

144 S. Guasch and P. Morillo

6. Bernhard, D., Pereira, O., Warinschi, B.: On necessary and sufficient conditions
for private ballot submission. IACR Cryptology ePrint Archive 2012, 236 (2012)

7. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

8. Chaum, D.: Surevote: Technical report (2001). http://www.iavoss.org/mirror/
wote01/pdfs/surevote.pdf

9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
doi:10.1007/3-540-48071-4 7

10. Chen, X., Wu, Q., Zhang, F., Tian, H., Wei, B., Lee, B., Lee, H., Kim, K.: New
receipt-free voting scheme using double-trapdoor commitment. Inf. Sci. 181(8),
1493–1502 (2011)

11. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for
helios under weaker trust assumptions. In: Kuty�lowski, M., Vaidya, J. (eds.)
ESORICS 2014. LNCS, vol. 8713, pp. 327–344. Springer, Cham (2014). doi:10.
1007/978-3-319-11212-1 19

12. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 9

13. Damg̊ard, I.: Commitment schemes and zero-knowledge protocols. In: Damg̊ard,
I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg
(1999). doi:10.1007/3-540-48969-X 3

14. Damg̊ard, I., Mikkelsen, G.L.: Efficient, robust and constant-round distributed
RSA key generation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
183–200. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 12

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

17. Gharadaghy, R., Volkamer, M.: Verifiability in electronic voting - explanations for
non security experts. In: Proceedings of EVOTE 2010. LNI, vol. 167, pp. 151–162.
GI (2010)

18. Gjøsteen, K.: Analysis of an internet voting protocol. IACR Cryptology ePrint
Archive 2010, 380 (2010)

19. Guasch, S., Morillo, P.: How to challenge and cast your e-vote. IACR Cryptology
ePrint Archive (2016). To be published

20. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9 13

21. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of WPES 2005, pp. 61–70. ACM (2005)

22. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. IACR Cryptology
ePrint Archive 1998, 010 (1998)

23. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). doi:10.1007/11818175 22

24. Neff, C.A.: Practical high certainty intent verification for encrypted votes (2004)

http://www.iavoss.org/mirror/wote01/pdfs/surevote.pdf
http://www.iavoss.org/mirror/wote01/pdfs/surevote.pdf
http://dx.doi.org/10.1007/3-540-48071-4_7
http://dx.doi.org/10.1007/978-3-319-11212-1_19
http://dx.doi.org/10.1007/978-3-319-11212-1_19
http://dx.doi.org/10.1007/3-540-69053-0_9
http://dx.doi.org/10.1007/3-540-48969-X_3
http://dx.doi.org/10.1007/978-3-642-11799-2_12
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-68339-9_13
http://dx.doi.org/10.1007/11818175_22

How to Challenge and Cast Your e-Vote 145

25. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991). doi:10.1007/3-540-46416-6 47

26. Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B., Malcolm,
J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp.
111–130. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36213-2 15

27. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995). doi:10.1007/3-540-49264-X 32

28. Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without interaction
(extended abstract). In: FOCS, pp. 427–436. IEEE Computer Society (1992)

29. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
doi:10.1007/0-387-34805-0 22

30. Schnorr, C.P., Jakobsson, M.: Security of signed ElGamal encryption. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer, Heidelberg
(2000). doi:10.1007/3-540-44448-3 7

31. Smyth, B., Frink, S., Clarkson, M.R.: Computational election verifiability: defin-
itions and an analysis of helios and JCJ. IACR Cryptology ePrint Archive 2015,
233 (2015)

32. Wikström, D.: A commitment-consistent proof of a shuffle. IACR Cryptology
ePrint Archive 2011, 168 (2011)

http://dx.doi.org/10.1007/3-540-46416-6_47
http://dx.doi.org/10.1007/978-3-642-36213-2_15
http://dx.doi.org/10.1007/3-540-49264-X_32
http://dx.doi.org/10.1007/0-387-34805-0_22
http://dx.doi.org/10.1007/3-540-44448-3_7

Multiparty Computation

VD-PSI: Verifiable Delegated Private Set
Intersection on Outsourced Private Datasets

Aydin Abadi(B), Sotirios Terzis, and Changyu Dong

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, UK

{aydin.abadi,sotirios.terzis,changyu.dong}@strath.ac.uk

Abstract. Private set intersection (PSI) protocols have many real world
applications. With the emergence of cloud computing the need arises to
carry out PSI on outsourced datasets where the computation is delegated
to the cloud. However, due to the possibility of cloud misbehavior, it is
essential to verify the integrity of any outsourced datasets, and results of
any delegated computation. Verifiable Computation on private datasets
that does not leak any information about the data is very challenging,
especially when the datasets are outsourced independently by different
clients. In this paper we present VD-PSI, a protocol that allows multiple
clients to outsource their private datasets and delegate computation of
set intersection to the cloud, while being able to verify the correctness of
the result. Clients can independently prepare and upload their datasets,
and with their agreement can verifiably delegate the computation of set
intersection an unlimited number of times, without the need to download
or maintain a local copy of their data. The protocol ensures that the
cloud learns nothing about the datasets and the intersection. VD-PSI is
efficient as its verification cost is linear to the intersection cardinality,
and its computation and communication costs are linear to the (upper
bound of) dataset cardinality. Also, we provide a formal security analysis
in the standard model.

1 Introduction

Private set intersection (PSI) allows parties to compute the intersection of their
datasets without revealing anything about the data beyond the intersection [12].
PSI has a variety of real world applications like privacy preserving data mining
[2], homeland security [8], etc. Over the years, due to its importance researchers
have designed a number of PSI protocols [10,19,21–24,29,31]. However, these
typically require parties to jointly compute the intersection with locally avail-
able datasets. With the growing impact of cloud computing on businesses, due
to its economic benefits [26], the need arises to delegate PSI computation on
outsourced datasets to the cloud [1,19].

Cloud computing offers flexible and cost effective storage and computa-
tion resources to clients. Nevertheless, past real-world incidents [5] and recent
research (see [4,18] for surveys) have shown that the cloud cannot be fully trusted

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 149–168, 2017.
DOI: 10.1007/978-3-662-54970-4 9

150 A. Abadi et al.

and it may misbehave by exposing or tampering with clients’ sensitive data, or
fiddling with computation results. These misbehaviors can have a serious impact
on businesses. So, it is essential for clients not only to protect the confidentiality
of their outsourced data, but also to verify the integrity of the data and the result
of the computation delegated to the cloud. In other words, there is a pressing
need for verifiable delegated PSI on outsourced private datasets.

Verifying the integrity of computation while preserving the confidentiality of
the data is particularly challenging. This is even more the case when the data
are outsourced independently by different owners, and the data integrity is also
a concern. Beyond protecting the confidentiality, and verifying the integrity of
any outsourced data and delegated computation, there is a need for a mechanism
that ensures outsourced data cannot be used without the owner’s permission.
But, this mechanism should not restrict the particular clients that may come
together to compute the intersection of their datasets, by requiring that they
are specified in advance; also it should not constraint the number of clients that
come together or the number of intersections that may be performed.

In this paper we present VD-PSI, a protocol that supports efficient verifiable
delegated PSI on outsourced private datasets and satisfies the above require-
ments. VD-PSI allows the result recipient to check whether the computation
was performed correctly on the requested intact datasets, without having to
keep a local copy of the data, or having any knowledge of the other clients’ data.
The protocol imposes minimal computational overheads to the verifier (i.e. at
most linear to the intersection cardinality). It allows clients to independently
prepare and upload their private datasets. It ensures that outsourced datasets
can only be used with the owner’s permission. It supports multiple clients who
can verifiably delegate PSI computation an unlimited number of times with no
need to download or re-encode their outsourced data. Moreover, it achieves all
that while ensuring that the result recipient learns nothing beyond the inter-
section about the other clients’ datasets, and the cloud learns nothing about
the datasets and the intersection. The computation and communication costs of
VD-PSI are linear to the (upper bound of) set cardinality.

The rest of the paper starts with a survey of related work in Sect. 2, while
Sect. 3 defines our security model and key concepts we rely on. Section 4 presents
the design of our protocol and its extensions, while Sect. 5 proves its security.
Section 6 presents an analysis of the protocol’s overheads and a comparison to
work closest to it. Finally, Sect. 7 concludes the paper and identifies directions
for future work.

2 Related Work

Verifiable delegated PSI can be built either on top of generic verifiable computa-
tion protocols or as a standalone operation specific verifiable protocol. Verifiable
computation (VC) protocols allow a computationally weak client to securely
delegate computation of a function to a powerful but untrusted server. In this
setting, the client can detect if the server provides an incorrect result.

Verifiable Delegated Private Set Intersection on Outsourced Private Datasets 151

We first consider generic VC protocols. A number of protocols such as [15,16]
are designed to address the VC problem, where [16] is based on the concept
of ringers, and [15] uses the argument system and relies on private information
retrieval. However, they do not preserve the privacy of client data. As a result, the
server may misbehave and expose sensitive client data, i.e. the input and output
of the computation. Other protocols like [13] which uses fully homomorphic
encryption (FHE) and Yao’s garbled circuits, and [11] based on FHE and a
homomorphic hashing technique, preserve the privacy of client data; but, they
have been designed for single-client scenarios.

There are practical scenarios in which multiple clients, who mutually distrust
each other, want to verifiably delegate computation to a server. In this case, the
computation should be verifiable and a client’s data should be protected from the
other clients who receive the result. These requirements integrate secure multi-
party computation (MPC) with VC. In secure MPC protocols, clients (jointly)
perform some computation without revealing to each other their private inputs.
There are two protocols for such scenarios, [7] based on Yao’s garbled circuits,
FHE and non-interactive proxy oblivious transfer, and [17] based on the same
building blocks plus multi-sender attribute-based encryption. These protocols
do not require clients to directly interact with each other at setup. Nonetheless,
they do not support outsourced data as they require each client to know the
public keys of all other clients when preparing its private data. Consequently,
changing the participating clients requires outsourced data to be downloaded
and re-prepared.

The protocol in [25] also supports verifiable multi-client delegated generic
computation, and allows clients to independently outsource their private data.
In this protocol, clients do not need to interact during setup, but they have to
interactively decrypt the result when receiving it. Although this protocol satisfies
all the requirements set out in Sect. 1, it is not computationally efficient as it is
based on (multi-key) fully homomorphic encryption and expensive generic zero-
knowledge proofs. Moreover, the protocol is not suitable when the number of
inputs is large, as in order to verify the result correctness a client needs to access
all the (hash values of) encrypted inputs.

We now turn our attention to protocols designed specifically for PSI. PSI
was first introduced in [12] based on additive homomorphic encryption and
polynomial representation of sets. Over the years, some efficient protocols, like
[10,28,29], have been proposed. However, they are interactive in the sense that
the clients jointly compute the intersection of their sets. Thus, they need to have
a local copy of their sets to compute the set intersection. A number of protocols
that support delegation of PSI to a server are proposed in [1,19,21,22,24,31].
Among them only [1], which is mainly based on point-value polynomial repre-
sentation of sets and additive homomorphic encryption, supports delegation of
both storage and the computation to the cloud, and is fully private. However,
it only considers a semi-honest adversary. As a result, the clients cannot verify
the correctness of the computation. The only protocols that support verifiable
delegated PSI are in [19,31]. In the former, a client encrypts his data and uses

152 A. Abadi et al.

tags based on bilinear maps for verification. However, as it is shown in [1], it is
not fully private and leaks information about the intersection to the server. The
latter is based on a pseudo-random function, whose key is generated jointly by
the clients prior to encoding the data and detects server misbehavior at the cost
of replicating a number of times all elements of the sets. Although the protocol
is efficient, it does not support outsourced data.

From the above discussion, it should be clear that neither PSI protocols nor
most of generic computation protocols can meet all our requirements. Only [25]
meets all the requirements, but it is not efficient. So, the quest for efficient
verifiable delegated PSI on outsourced private datasets remains open.

3 Preliminaries

3.1 Security Model

We consider a static adversary who controls one of the parties at a time. The
definition and model are according to [14]. Without loss of generality we consider
the three party case where a cloud C, and two clients, A and B are involved. We
allow an adversary who corrupts C to be malicious. So, it may arbitrarily deviate
from the prescribed protocol, but it does not collude with the clients. This is a
reasonable assumption as it is usually a well-established company and does not
want to jeopardize its reputation by colluding with others. The non-colluding
assumption is well-accepted and widely used in the literature [17,19]. Moreover,
we allow an adversary who corrupts a client to be semi-honest.

We define a three-party protocol π computing function F where F : Λ×2U ×
2U → Λ×Λ×f∩. Here, Λ denotes the empty string, 2U denotes the powerset of the
set universe and f∩ denotes the set intersection function. For every tuple of inputs
Λ, SA and SB belonging to C,A and B respectively, the function outputs nothing
to C and A, and outputs f∩(SA, SB) = SA ∩ SB to B. To show the protocol is
secure, we define an ideal model, which satisfies all the security needs. In the
ideal model, there is an incorruptible trusted third party (TTP) which helps
with the functionality. The protocol is said to be secure if for every adversary
in the real model there is an adversary in the ideal model that can simulate the
real adversary.

Real Model: Here, protocol π is executed between parties A, B, C and an
adversary denoted by R that is allowed to corrupt one party. In the beginning of
the protocol, each party I ∈ {A,B} receives its private input SI , the protocol’s
public parameters, random coins r, and an auxiliary input z, while the cloud C
receives the public parameters, a set of random coins r, and an auxiliary input
z. At the end of the execution, an honest party outputs whatever is prescribed
by the protocol and the adversary outputs its view. The joint output of the real
model execution of π between the parties in the presence of the adversary R is
defined as REALπ,R(z)(Λ, SA, SB).

Ideal Model: The ideal model takes place between parties A, B, C and
a simulator SIM that is allowed to corrupt at most one party at a time.

Verifiable Delegated Private Set Intersection on Outsourced Private Datasets 153

Each party receives the same input as the corresponding party in the real model.
An honest party always sends its input to the TTP . The corrupted party may
abort or send arbitrary input. The cloud, C, receives d (i.e. d ≥ |SI |, I ∈ {A,B})
from the TTP . The TTP computes the set intersection and sends the result to
B. If the TTP receives an abort message as an input, it sends B the special
symbol ⊥. The joint output of the parties in the ideal model in the presence of
SIM is defined as IDEALF,SIM(z)(Λ, SA, SB).

Definition 1. Let π be a protocol and F a deterministic function defined as
above. Protocol π is said to securely compute F in the presence of static adver-
saries if for every probabilistic polynomial time (PPT) adversary R in the
real model, there exists a PPT adversary SIM in the ideal model such that
∀I, I ∈ {A,B,C} :

IDEALF,SIMI (z)(Λ, SA, SB)
c≡ REALπ,RI (z)(Λ, SA, SB)

3.2 Additively Homomorphic Encryption

A semantically secure additively homomorphic encryption has the following
properties:

(a) Given two ciphertexts Epk(a), Epk(b), Epk(a) · Epk(b) = Epk(a + b).
(b) Given a ciphertext Epk(a) and a constant b, Epk(a)b = Epk(a · b).

One such scheme is the Paillier public key cryptosystem [27]. It works as follows:

Key Generation: Choose two random large primes q1 and q2 according to a
given security parameter, and set N = q1 · q2. Let u be the Carmichael value of
N , i.e. u = lcm(q1 − 1, q2 − 1) where lcm stands for the least common multiple.
Choose a random g ∈ Z

∗
N2 , and ensure that s = (L(gu mod N 2))−1 mod N

exists where L(x) = (x−1)
N . The public key is pk = (N, g) and the secret key is

sk = (u, s).

Encryption: To encrypt a plaintext m ∈ ZN , pick a random value r ∈ Z
∗
N , and

compute the ciphertext: C = Epk(m) = gm · rN mod N 2.

Decryption:To decrypt a ciphertext C, Dsk(C) = L(Cumod N 2)·s mod N = m.

3.3 Representing Sets by Polynomials

Polynomial representation of sets was introduced in [12] and is widely used
[1,9,23]. For the universe of set elements, U , we can define a public finite field R =
Fp that is big enough to encode all elements in U . Also, the field is big enough
that when an element is picked uniformly at random from it, the probability that
the value belongs to the universe is negligible. Then, we can define a polynomial
ring R[x], which consists of all polynomials with coefficients from R. We can
represent a set, S, by polynomial ρ(x) =

∏d
i=1(x − si), where si ∈ S, |S| = d

and ρ(x) ∈ R[x]. The polynomial has the property that every element si ∈ S is

154 A. Abadi et al.

a root of it. Furthermore, we can always encode every si as s′
i = si||h(si), where

h is a cryptographic hash function, so that given s′
j = a||b and h’s output size,

one can parse s′
j into a and b, and check b

?= h(a).
For two sets SA and SB represented by polynomials ρA and ρB respectively,

polynomial ρA · ρB represents the set union, SA ∪ SB, and gcd(ρA, ρB) represents
the set intersection, SA ∩ SB, where gcd stands for the greatest common divisor.
For two degree d polynomials ρA and ρB, and two degree d polynomials γA and γB

picked uniformly at random from R[x], it is proven in [23] that γA ·ρA +γB ·ρB =
μ · gcd(ρA, ρB) where μ is a uniformly random polynomial. This means that if
ρA and ρB are polynomials representing sets SA and SB, then the polynomial
ρC = γA ·ρA+γB ·ρB contains only information about SA∩SB and no information
about other elements in SA or SB. Given polynomial ρC , to find the intersection,
one can extract the polynomial’s roots1 and consider the roots that have the
above structure (si||h(si)) as the intersection.

Based on the theorem of the interpolating polynomial, for a set
{(x1, y1), ..., (xn, yn)} with xi distinct, there exists a unique polynomial ρ(x) of
degree at most n − 1 such that ∀i, 1 ≤ i ≤ n : yi = ρ(xi). Therefore, ρ(x) can be
represented by the n pairs (xi, yi). If the xi values are fixed and public, we can
represent the polynomial as a vector of y-coordinates, #»y = [y1, ..., yn].

Polynomial arithmetic in point-value representation can be done by adding or
multiplying the corresponding y-coordinates. The key benefit of point-value rep-
resentation is that multiplication complexity is O(d); whereas, multiplying poly-
nomials in coefficient form has O(d2) complexity. We can convert a polynomial in
point-value form to regular coefficient form, using polynomial interpolation [3].

4 The Proposed Scheme: VD-PSI

4.1 An Overview of VD-PSI

We give an overview of the protocol and depict the interaction between parties
in Fig. 1. Without loss of generality, we consider two clients A and B. At setup,
each client independently encodes, blinds, and stores his dataset in the cloud.
Later on, when client B becomes interested in the intersection of his dataset
and client A’s, he obtains her permission by sending a message to her. Client A
authorizes the computation by using the message sent by client B to compute
a new message that she sends to the cloud. The cloud uses the message and the
clients’ outsourced datasets to compute the intersection, and sends the result to
client B. Client B, decodes the cloud’s response, retrieves the intersection and
checks its correctness. If the result was correct the client accepts it.

The main novelty of VD-PSI is a lightweight verification mechanism that
allows a client to efficiently verify the correctness of the result without having
access to his own outsourced dataset and having any knowledge of the other
1 To find the roots of a polynomial over a finite field, we can first factorize it to

get a set of monic polynomials (see [20] for some algorithms), then find the monic
polynomials’ roots.

Verifiable Delegated Private Set Intersection on Outsourced Private Datasets 155

Fig. 1. The left-hand side figure: party interaction at data outsourcing phase; the
right-hand side figure: party interaction at computation delegation phase.

client’s dataset. To achieve this, when the clients decide to delegate the compu-
tation of the set intersection, they agree on a secret value β and encode β in a
way that reveals nothing to the cloud, then send the encoded β to the cloud.
When computing the intersection, the cloud uses the clients’ outsourced datasets
and the encoded β. If the cloud computes honestly, value β will be inserted into
the intersection. Since the outsourced data is blinded, when client B receives
the result from the cloud, he needs to unblind it to get the intersection. If the
cloud misbehaves or tampers with the result, then after unblinding client B gets
a random set, which will not contain β. Thus, by checking whether β is included
in the result set, client B knows whether the result set is correct. The verification
is very lightweight because the only overhead is to check whether β is included
in the result set.

4.2 VD-PSI Protocol

Without loss of generality, first we consider the two-client case, where client
A, client B and a cloud engage in the protocol. We denote the multiplicative
inverse and additive inverse of value hi, by (hi)−1and (−hi), respectively. We use
EpkI

(hi) and DskI
(hi) to say that value hi is encrypted using client I’s public

key, and decrypted using his secret key, respectively.

1. Cloud-Side Setup. The cloud picks a public parameter d that is an upper
bound of the set cardinality. It constructs a finite field Fp, where p is a large
prime number. It also constructs a vector #»x containing n = 2d + 3 distinct
non-zero xi values randomly picked from Fp. It picks a pseudo-random func-
tion f : {0, 1}m × {0, 1}l → Fp, which takes an l-bit key (i.e. where l is the
security parameter) and an m-bit message, and maps the message to an ele-
ment in the field pseudo-randomly. The cloud publishes the description of the
field, the value n, the vector #»x along with the pseudo-random function f .

156 A. Abadi et al.

2. Client-Side Setup and Data Outsourcing. Let client I ∈ {A,B} have a
set SI , where SI ⊂ U and |SI | ≤ d. Both clients do the following tasks:
(a) Compute a key pair (pkI , skI) for Paillier encryption and publish the

public key pkI . Pick two random private keys, k(I)
r and k(I)

z for the pseudo-
random function f . All keys are generated according to given security
parameters.

(b) Generate a polynomial representation of the set. ∀s(I)
i ∈ SI :

τI(x) =
∏|SI |

i=1 (x − s(I)
i).

(c) Convert the polynomial into point-value form by evaluating τI(x) at every
element xi in vector #»x . This yields values τI(xi), where 1 ≤ i ≤ n.

(d) Blind every τI(xi) by first computing pseudo-random values r(I)
i =

f(k(I)
r , i) and z(I)

i = f(k(I)
z , i), and then computing o(I)

i = r(I)
i · (τI(xi) +

z(I)
i).

(e) Send the blinded dataset #»o (I) = [o(I)
1 , ..., o(I)

n] to the cloud.
3. Set Intersection: Computation Delegation. In this phase, client B is

interested in the intersection of his set and client A’s.
(a) Client B picks a uniformly random value β

R← F
∗
p that will be inserted

into the two datasets and chooses three fresh keys k(B)
a , k(B)

b and k(B)

r′ that
are used to blind the messages sent by client A to the cloud.

(b) Client B constructs a vector #»e (B) that will be used by client A to ask the
cloud to insert β to her dataset and switch her blinding factors. ∀i, 1 ≤
i ≤ n: e(B)

i = EpkB
(σ(xi) · r′(B)

i · r(B)
i), where σ(xi) = (xi − β), values r(B)

i

are the blinding factors used by client B in step 2d and r′(B)
i = f(k(B)

r′ , i).
(c) Client B sends to client A: #»e (B), β, k(B)

a , k(B)
b , k(B)

r′ , k(B)
z , and his ID, ID(B).

(d) Client A generates #»v (A) and #»v (B) that allow the cloud to multiply each
client dataset by a random polynomial and insert β to it. Also, #»v (A) allows
the cloud to switch the blinding factors of client A’s dataset. ∀i, 1 ≤ i ≤ n:

v(A)
i = (e(B)

i)ωA(xi)·(r(A)
i)−1

= EpkB
(r(B)

i · r′(B)
i · ωA(xi) · σ(xi) · (r(A)

i)−1)
v(B)
i = ωB(xi) · σ(xi) · r′(B)

i

where r′(B)
i = f(k(B)

r′ , i), key k(B)

r′ was sent by client B in step 3c, r(A)
i are

the blinding values used by client A in step 2d, ωA(x) and ωB(x) are two
random polynomials of degree d + 1 and σ(x) = (x − β).

(e) Client A generates #»v ′(A) and #»v ′(B) to allow the cloud to preserve the
correctness of the result. ∀i, 1 ≤ i ≤ n:

v′(A)
i = (e(B)

i)ωA(xi)·(−z
(A)
i)+ai

= EpkB
((−z(A)

i) · r(B)
i · r′(B)

i · ωA(xi) · σ(xi) + ci)

v′(B)
i = (e(B)

i)ωB(xi)·(−z
(B)
i)+bi

= EpkB
((−z(B)

i) · r(B)
i · r′(B)

i · ωB(xi) · σ(xi) + di)

where ci = ai · r(B)
i · r′(B)

i · σ(xi), di = bi · r(B)
i · r′(B)

i · σ(xi), ai = f(k(B)
a , i),

bi = f(k(B)
b , i), the keys k(B)

a and k(B)
b sent by client B in step 3c, and z(I)

i

are the values used by client I ∈ {A,B} in step 2d.

Verifiable Delegated Private Set Intersection on Outsourced Private Datasets 157

(f) Client A sends to the cloud: #»v (A), #»v ′(A), #»v (B), #»v ′(B), ID(B), ID(A), and a
request message Compute.

4. Set Intersection: Cloud-Side Computation
(a) When the cloud receives client A’s message, it uses #»v (A), #»v ′(A) and client

A’s outsourced dataset #»o (A) to switch the dataset blinding factors, insert
β to the dataset, and multiply it by a random polynomial; this results
#»
t (C1).
∀i, 1 ≤ i ≤ n : t(C1)

i = (v(A)
i)o

(A)
i · v′(A)

i =
EpkB

(r(B)
i · r′(B)

i · ωA(xi) · σ(xi) · τA(xi) + ci).
(b) The cloud uses #»o (B), #»v (B), #»v ′(B) to insert β into client B’s dataset, and

multiply it by a random polynomial. This yields #»
t (C2).

∀i, 1 ≤ i ≤ n : t(C2)
i = v′(B)

i · EpkB
(v(B)

i · o(B)
i) =

EpkB
(r(B)

i · r′(B)
i · ωB(xi) · σ(xi) · τB(xi) + di).

(c) The cloud combines the values computed in steps 4b and 4a to produce
the final result #»

t (C3).
∀i, 1 ≤ i ≤ n : t(C3)

i = t(C1)
i · t(C2)

i =
EpkB

(r(B)
i · r′(B)

i · (ωB(xi) · σ(xi) · τB(xi) + ωA(xi) · σ(xi) · τA(xi)) + ci + di).
(d) The cloud sends to client B vector #»

t (C3).

5. Set Intersection: Client-Side Result Verification and Retrieval
(a) Client B obtains #»g by decrypting the cloud’s response #»

t (C3), and unblind-
ing the decrypted values using his knowledge of (−ci), (−di), (r(B)

i)−1 and
(r′(B)

i)−1. ∀i, 1 ≤ i ≤ n:

gi = (DskB
(t(C3)

i) + (−ci) + (−di)) · (r(B)
i)−1 · (r′(B)

i)−1

= ωB(xi) · σ(xi) · τB(xi) + ωA(xi) · σ(xi) · τA(xi).

(b) Client B interpolates a polynomial, φ(x), using the n point-value pairs
(xi, gi), extracts its roots, and checks whether β is among them. If it is, he
considers the rest of the roots as elements of the intersection; otherwise,
he aborts.

Remark 1. In step 2d, client I ∈ {A,B} blinds his private data τI(xi) as
o(I)
i = r(I)

i · (τI(xi) + z(I)
i) to preserve their privacy and to detect unauthorized

modifications. If the client does not blind τI(xi), the cloud can interpolate the
polynomial τI(x) and find the client’s set elements. After blinding, every o(I)

i is a
uniformly random value and does not leak any information about τI(xi). If the
cloud changes a subset of elements in #»o (I), in step 5b the corresponding values
in #»g become uniformly random. As a result, the polynomial interpolated using
the n pairs of (xi, gi) will not have root β (with a high probability), and the
client will detect the misbehavior. The same also occurs if the cloud deviates
from the protocol.

Remark 2. We set n = 2d + 3, because in step 5b, polynomial φ(x) is of degree
2d+2 and at least 2d+3 pairs of (xi, yi) are required to interpolate it. Therefore,
given n pairs of (xi, yi), computed correctly, client B can always interpolate φ(x).

158 A. Abadi et al.

Remark 3. In Sect. 3.3, we saw that the set of all roots of polynomial ωB(x) ·
τB(x) + ωA(x) · τA(x) is SA ∩ SB. Note that β is also a root of the polynomial
φ(x) = σ(x) · (ωB(x) · τB(x) + ωA(x) · τA(x)), where σ(x) = x − β. Hence, in the
protocol, a correctly computed result always contains value β.

Remark 4. Since for each computation, the fresh random polynomials ωA(x)
and ωB(x) are used, the result recipient cannot find out anything beyond the
intersection about the other client’s set. Also, the cloud cannot learn the exact
number of elements in the set; it only knows the upper bound of the set cardi-
nality (i.e. d).

Remark 5. Every client I, after outsourcing his private dataset needs to keep
locally only two secret keys, k(I)

r and k(I)
z . Moreover, client B who is interested

in the result generates keys k(B)
a , k(B)

b , k(B)

r′ and value β on the fly for each run
of the protocol and he can discard them after it ends. Furthermore, given p
each client I can always generate his own public key NI independently, such
that NI > p + 2p2 + p3 to preserve the computation correctness (i.e. to prevent
any overflow during homomorphic operations). To determine the lower bound of
NI , we can calculate the maximal value that message mi in E(mi) may have as
a result of homomorphic operations in the protocol (here, by E(mi) we mean
encryption of message mi). To do so, we start from step 3b and calculate the
upper bound of value mi in each step (note that o(I)

i ∈ Fp). We continue this
up to step 4d and then we set the lower bound of NI to the maximal upper
bound of mi, that is p + 2p2 + p3.

Remark 6. We stress that the clients’ outsourced datasets remain unchanged.
Also, at the end of protocol all parties can discard all intermediate messages
received.

4.3 Multiple Clients

With minor modifications two-client VD-PSI can be turned into q-client VD-
PSI, where q > 2. Below we outline how this can be done. We denote the result
recipient by client B and the other clients by Aj (∀j, 1 ≤ j ≤ m), where m = q−1.

More specifically, in step 3c, client B sends to every client Aj the same
message. Each client Aj takes the same steps described above, except step 3d,
where she replaces #»v (B) with #»v (B)

j , v(B)
j,i = EpkB

(ωj
B(xi) · σ(xi) · r′(B)

i), where
ωj

B(x) is the random polynomial picked by client Aj.
In step 4b, the cloud computes #»

t (C2), by selecting one of the clients, say client
Ak, and only using her vectors #»v (B)

k , #»v ′(B)
k , discarding #»v (B)

j , #»v ′(B)
j generated by

the other clients Aj,∀j, 1 ≤ j ≤ m, j �= k. As a result ∀i, 1 ≤ i ≤ n: t(C2)
i =

v′(B)
k,i · (v(B)

k,i)o
(B)
i = EpkB

(r(B)
i · r′(B)

i · ωk
B(xi) · σ(xi) · τB(xi) + di).

In step 4c, the cloud computes #»
t (C3) = #»

t (C2) · ∏

1≤j≤m

#»
t (C1)

j , ∀i, 1 ≤ i ≤ n:

t(C3)
i = EpkB

(m · ci+di+(r(B)
i ·r′(B)

i · (ωk
B(xi) ·σ(xi) · τB(xi)+

∑

1≤j≤m

ωj
A(xi) ·σ(xi) ·

τ j
A(xi))) and sends it to client B.

Verifiable Delegated Private Set Intersection on Outsourced Private Datasets 159

Finally, in step 5a, client B computes #»g as follows. ∀i, 1 ≤ i ≤ n:

gi = (DskB
(t(C3)

i) + m · (−ci) + (−di)) · (r(B)
i)−1 · (r′(B)

i)−1

The rest of the steps remain unchanged.

Remark 1: In the multi-client case, each client encrypts elements of vector #»v (B)
j ;

whereas, in the two client case it does not need to do that. Nonetheless, regardless
of the number of clients, every client’s computation complexity is linear to the
set cardinality.

Remark 2: Verification complexity at the verifier side is independent of the
number of clients. Also, the number of messages every client, except the client
who is interested in result, sends and receives is independent of the number of
clients, too. The client who is interested in the result sends the same message to
all other clients.

Remark 3: The security model we consider in this paper can be easily extended
to the multi-client case, security analysis of the multi-client case remains the
same as the two client case and we do not include it for the sake of brevity.

4.4 Reducing Authorizer’s Required Storage Space

In VD-PSI, we can leverage a hash table to reduce the storage space that client
A needs to authorize the computation. In the following, we briefly outline how
this can be done. For the sake of simplicity we consider the two-client case, but
the adjustments can also be directly applied to the multi-client setting.

Hash tables have been utilized in the literature to improve the performance
of PSI protocols, e.g. [12,28]. In general, in order for clients to use a hash table,
its parameters including a random hash function, the number of bins in the hash
table and the bin’s maximum size are picked. The number of bins in the hash
table should be set such that given the maximum set cardinality, d, with a high
probability each bin receives at most a specific number of elements, d′. Given
the maximum number of elements d and the bin’s maximum size d′, we can
calculate the number of bins by analyzing hash tables under the balls into bins
model [6,30].

In the following, we outline how a hash table can be used in our protocol.
In the beginning, hash table parameters are picked and made public by the
cloud. In the client-side setup phase, each client first maps its set elements to
the hash table bins, pads each bin up to d′ elements with random values (if a
bin receives less than d′ elements) and then encodes the elements of each bin in
the same way as they do in VD-PSI. In this case, the clients (when they delegate
the computation) insert a random βj in each outsourced bin HTj, to ensure the
operation on each bin is performed correctly. In order for the clients to generate
βj, they can use a shared key, βk, where βj = f(βk, j). Client B keeps the key
that allows it to regenerate βj in the verification phase. When it receives the
result from the cloud, it checks whether each bin HTj contains βj. This setting
enables client B, in step 3c, to send only one bin at a time to client A who

160 A. Abadi et al.

operates on the bin and forwards it to the cloud who similarly operates on each
bin and sends the result to client B. As a result, the storage space client A needs
to authorize the computation reduces from O(d) to O(d′), where d′ < d.

5 Proof of Security

In this section we sketch the security proof of the protocol. To this end, first we
show that the cloud’s misbehavior can be detected with high probability, then
we provide the main theorem.

Recall, the client encodes his set as blinded y-coordinates having the following
form: oi = ri · (τ(xi) + zi), where oi �= 0, ri = f(kr, i) and zi = f(kz, i). If oi = 0
the client replaces kr and kz with new random keys and encodes τ(xi) again
until ∀i, 1 ≤ i ≤ n : oi �= 0. Note, oi is uniformly distributed in F

∗
p. We can

show that if the cloud applies any change to oi, this will make the y-coordinate
a uniformly random value.

Lemma 1. Given oi = ri · (τ(xi) + zi), where ri and zi are two independent
pseudo-random values that are unknown to the cloud, if the cloud changes oi to
o′
i, then τ ′(xi) = r−1

i · o′
i − zi becomes a uniformly random value.

Proof. When oi �= o′
i, τ ′(xi) is a uniformly random value in Fp, because ri and

zi are picked uniformly at random and independently of each other. �

In step 5a of the protocol, client B after decrypting the server’s response obtains
blinded values of the form pi = ei · gi + zi, where ei and zi are pseudo-random
values. If the cloud misbehaves (e.g. deviates from the protocol, modifies the out-
sourced client datasets, etc.), some pi are changed to p′

i, and Lemma 1 implies
that g′

i = e−1
i · (p′

i − zi) will be a uniformly random value. So, any cloud misbe-
havior turns some of the values gi into uniformly random values.

Now, we show that given a set of y-coordinates some of which are uniformly
random values, the polynomial that client B interpolates from them (see step 5b
in the protocol), will not contain the specific root β with a high probability.

Lemma 2. Let polynomial τ(x) be interpolated from S = {(x1, y1), ..., (xn, yn)},
and have a root β such that ∀j, 1 ≤ j ≤ n : β �= xj. Let S′ =
{(x1, y

′
1), ..., (xn, y′

n)}, where at least one of y′
j is a uniformly random value and

the rest of them are equal to the y-coordinates in S (i.e. y′
i = yi). Let polyno-

mial τ ′(x) be interpolated from S′. The probability that τ ′(x) has the root β is
negligible.

Proof. Given S′, we interpolate a unique polynomial τ ′(x) of degree at most
n − 1. According to the Lagrange interpolation, the polynomial is

τ ′(x) =
∑

1≤j≤n

y′
j ·

∏

1≤k≤n
j �=k

x − xk

xj − xk

We evaluate τ ′(x) at β:

Verifiable Delegated Private Set Intersection on Outsourced Private Datasets 161

τ ′(β) =
∑

1≤j≤n

y′
j ·

∏

1≤k≤n
j �=k

β − xk

xj − xk

As ∀j, 1 ≤ j ≤ n : β �= xj, we would have
∏

1≤k≤n
j �=k

β−xk

xj−xk
�= 0. Since, at least one

of y′
j is uniformly random, value y′

j · ∏

1≤k≤n
j �=k

β−xk

xj−xk
is uniformly random. Therefore,

τ ′(β) is uniformly random. Thus, Pr[τ ′(β) = 0] = 1
p which is negligible. �

Now we are ready to prove that the client can detect cloud misbehavior with
high probability.

Theorem 1. Let clients A and B have sets S(A) and S(B) respectively; also let
S∩ = S(A) ∩ S(B). In the protocol if the cloud sends S′ (where S′ �= S∩) to the
client, the client can detect it with high probability.

Proof. Due to Lemma 1, server misbehavior turns some of the y-coordinates
(representing S∩) into uniformly random values. Also, in the protocol, β is chosen
uniformly at random from F

∗
p, so the probability that β = xk for some k, 1 ≤

k ≤ n, is negligible; due to Lemma 2, if the client interpolates a polynomial by
using a set of y-coordinates where at least one of them is a uniformly random
value, the probability that the polynomial would have β as a root is negligible.
Thus, if the server computes an incorrect intersection the client can detect this
with high probability through the absence of β from the intersection. �
Finally, we prove our main theorem.

Theorem 2. If the homomorphic encryption scheme is semantically secure,
then the protocol is secure in the presence of (1) a malicious cloud and hon-
est clients, (2) a semi-honest client and honest cloud.

Proof. We consider three cases where each party is corrupted at a time.

Case 1: Cloud is corrupted. We construct a simulator SIMC in the ideal
model that uses the adversary RC as a subroutine. Simulator SIMC executes
the following tasks.

(a) Picks two random sets SE and SD and chooses the keys k(E)
r , k(E)

z , k(D)
r ,

k(D)
z , k(E)

b , k(E)
a , k(E)

r′ .
(b) Generates polynomials τE(x) and τD(x) representing the sets. Then, eval-

uates the polynomials at every element in #»x and blinds the evaluated
values. This results in two vectors, #»o (E) and #»o (D). ∀o(I)

i ∈ #»o (I), o(I)
i =

r(I)
i · (τI(xi) + z(I)

i), r(I)
i = f(k(I)

r , i), z(I)
i = f(k(I)

z , i), where I ∈ {D,E}.
(c) Picks a random value β′, and constructs polynomial σ′(x) = (x−β′). Then,

picks two random polynomials, ωE and ωD, of degree d+1. Then, computes
#»v (E) and #»v (D) as follows. ∀i, 1 ≤ i ≤ n:

v(D)
i = EpkE

(r(E)
i · r′(E)

i · ωD(xi) · σ′(xi) · (r(D)
i)−1)

v(E)
i = ωE(xi) · r′(E)

i · σ′(xi)

162 A. Abadi et al.

where r′(E)
i = f(k(E)

r′ , i).
(d) Computes #»v ′(E) and #»v ′(D); ∀i, 1 ≤ i ≤ n, a(E)

i = f(k(E)
a , i), b(E)

i = f(k(E)
b , i):

v′(D)
i = EpkE

((−z(D)
i) · r(E)

i · r′(E)
i · ωD(xi) · σ′(xi) + c(E)

i)
v′(E)
i = EpkE

((−z(E)
i) · r(E)

i · r′(E)
i · ωE(xi) · σ′(xi) + d(E)

i)

where I ∈ {D,E}, z(I)
i = f(k(I)

z , i), c(E)
i = a(E)

i · r(E)
i · r′(E)

i · σ′(xi), d(E)
i =

b(E)
i · r(E)

i · r′(E)
i · σ′(xi).

(e) Invokes RC and feeds it with #»o (D), #»o (E), #»v (D), #»v (E), #»v ′(D), #»v ′(E),
ID(D), ID(E), and message Compute. Then, receives #»

t (C) from RC and
decrypts the elements. Next, removes the blinding factors. This yields #»g ′;
1 ≤ i ≤ n, g′

i ∈ #»g ′: g′
i = τE(xi) · σ′(xi) · ωE(xi) + τD(xi) · σ′(xi) · ωD(xi).

(f) Interpolates a polynomial using the n point-value pairs (xi, g
′
i). Extracts

the roots of the polynomial. Checks whether β′ is among the roots. If it is
not, aborts and instructs the TTP to send abort message ⊥ to client B.
Otherwise, asks TTP to send the result to the client.

(g) Outputs whatever the adversary outputs and terminates.

First, we consider the adversary’s output. In the real model the elements in
#»o (A), #»o (B), #»v (B) are blinded by the outputs of a pseudo-random function using
random secret keys of length l. The same is true in the ideal model for the
elements in #»o (E), #»o (D), #»v (E). Since the outputs of the pseudo-random function
are computationally indistinguishable, the distributions of #»o (A), #»o (B), #»v (B) and
#»o (E), #»o (D), #»v (E) are computationally indistinguishable, too. If the homomorphic
encryption is semantically secure then #»v (A), #»v ′(A), #»v ′(B) and #»v (D), #»v ′(D), #»v ′(E) are
computationally indistinguishable. Moreover, in both models, the protocol out-
puts Λ (i.e. empty) to the adversary. Therefore, we conclude that the adversary’s
outputs in both models are computationally indistinguishable.

Now we consider client B’s output. We show the honest client B aborts with
the same probability in both models. In the ideal model, if the cloud misbehaves,
SIMC would detect it with a high probability according to Theorem 1. In this
case it will send ⊥ to the client and accordingly the client will abort. Note that
in this case SIMC has not found the value β′ in the intersection. In the real
model, since the client knows the value β he can do the same checks that SIMC

does. So, in both models the client aborts with the same probability if the cloud
misbehaves. Finally, since client A has no output, her output is identical in both
models.

From the above we conclude that:

IDEALF,SIMC(z)(Λ, SA, SB)
c≡ REALπ,RC(z)(Λ, SA, SB).

Case 2: Client B is corrupted. In this case we consider a semi-honest adver-
sary that controls client B. In the real execution, the joint outputs of the parties
include only client B’s view containing vector #»

t (C3), where the vector comprises
the set intersection. Now we construct a simulator, SIMB in the ideal model.
The simulator executes the following tasks.

Verifiable Delegated Private Set Intersection on Outsourced Private Datasets 163

(a) Invokes adversary RB, and receives #»e (B), SB, β, k(B)
a , k(B)

b ,k(B)

r′ , k(B)
z from it.

(b) Sends SB to TTP and receives the result f∩(SA, SB). Picks two random sets
SE and SD, where SE ∩SD = f∩(SA, SB). Constructs two polynomials τE(x)
and τD(x) representing set SE and SD, respectively.

(c) Picks two uniformly random polynomials, ωE(x) and ωD(x) of degree d + 1.
(d) Generates #»

t containing ti such that
ti = (e(B)

i)ωE(xi)·τE(xi)+ωD(xi)·τD(xi)+a
(B)
i +b

(B)
i where a(B)

i = f(k(B)
a , i), b(B)

i =
f(k(B)

b , i).
(e) Feeds #»

t to RB. Outputs whatever the adversary outputs.

Since the other parties have output Λ (i.e. no output), we only need to
consider the adversary’s view. Given the output vector, the adversary decrypts
and unblinds the elements. Next it interpolates a polynomial which is of the form
ωE ·τE +ωD ·τD = μ ·gcd(τE, τD), where μ is a uniformly random polynomial, and
gcd(τE, τD) represents the intersection of the sets (see Sect. 3.3). Therefore, the
result polynomial only contains the information of the set intersection and has
the same distribution in both models, as the uniformly random polynomials ωA

and ωB are chosen by an honest party. Also, the value β has the same distribution
in both models.

From the above argument we conclude that:

IDEALF,SIMB(z)(Λ, SA, SB)
c≡ REALπ,RB(z)(Λ, SA, SB).

Case 3: Client A is corrupted. This is a trivial case, because client A has

no output, and she receives a set of uniformly random values and a vector of
encrypted values using semantically secure encryption scheme. A simulator can
always be constructed. �

6 Evaluation

We evaluate VD-PSI by comparing its properties to those protocols that support
verifiable delegated PSI and preserve the privacy of the intersection in the cloud
[19,25]. We also compare the protocols in terms of communication, computation
and verification complexity. Table 1 summarises the results.

Properties. All the three protocols support multiple clients. In [25] the clients
can securely delegate an arbitrary computation to the cloud an unlimited num-
ber of times. Nevertheless, every client needs to receive all the (hash values of
encrypted) inputs of the computation to verify the result. Therefore, the proto-
col is not suitable for cases where the number of clients or the size of datasets
is large. In [19] the clients need to interact with each other in order to jointly
generate a key for the pseudo-random function used to encode the datasets.
Also, the clients need to re-encode their datasets each time they compute the
intersection. So, the protocol does not support outsourcing of the datasets.

In VD-PSI, the clients can independently prepare and outsource the datasets
to the cloud. Furthermore, once the clients upload their datasets, they can

164 A. Abadi et al.

Table 1. Comparison of the properties of verifiable delegated PSI protocols. We denote
the upper bound of set cardinality by d, set intersection cardinality by k, sum of the
cardinality of all sets by m, and the security parameter by λ.

Property VD-PSI [19] [25]

Computation integrity verification � � �
Multiple clients � � �
Non-interactive setup � × �
Many set intersections without re-preparation � × �
Supporting arbitrary computation × × �
Using expensive generic proof systems (e.g. Zero
Knowledge)

× × �

Overall communication complexity O(d) O(d) O(m)
Overall computation complexity O(d) O(d) O(m)
Verification computation complexity O(k) O(λk) O(m)

securely delegate PSI to the cloud an unlimited number of times. As a result,
they do not need to download and re-encode the outsourced datasets every time
they delegate the computation.

Thus, VD-PSI and [25] support verifiable delegated PSI over outsourced pri-
vate datasets; whereas, [19] does not, as it lacks some of the properties.

Communication Complexity. In VD-PSI the communication complexity for
client B who receives the result is O(d), where d is the set cardinality upper
bound; as client B sends to client A vector #»e (B) containing n = 2d+3 encrypted
values (see step 3c). The communication complexity for client A who grants the
computation is O(d), because the client sends to the cloud #»v (A), #»v ′(A), #»v ′(B), #»v (B)

where each of the first three vectors contains n encrypted elements and the last
one contains n random elements of the field (see step 3f). The communication
complexity for the cloud is O(d), as it sends to client B vector #»

t (C3) that contains
n encrypted elements (see step 4d). Hence, the overall communication complexity
of our protocol is 6n, which is O(d).

The protocol in [19] has also O(d) communication complexity. In [25], two
protocols dealing with a malicious adversary are proposed. The overall commu-
nication complexity of each protocol is linear to the total number of computa-
tion inputs m, i.e. O(m). In one of the protocols, the cloud broadcasts all the
encrypted inputs to the clients; while in the other, the cloud broadcasts the hash
value of the encrypted inputs.

Although all the three protocols have overall communication complexity lin-
ear to the dataset size, most messages in VD-PSI are ciphertexts of Paillier
encryption, in [25] ciphertexts of fully homomorphic encryption, and in [19]
ciphertexts of symmetric key encryption.

Verifiable Delegated Private Set Intersection on Outsourced Private Datasets 165

Computation Complexity. Since computation complexity of VD-PSI is dom-
inated by the exponentiation operations, we evaluate its computational cost by
counting the number of such operations. Client B in step 3b carries out n expo-
nentiations to encrypt the elements of #»e (B). Furthermore, in step 5a he performs
n exponentiations to decrypt the elements of #»

t (C3). Client A carries out n expo-
nentiations in steps 3d and 2n exponentiations in step 3e. The cloud carries out
2n exponentiations in step 4a, 2n exponentiations in step 4b, and n exponen-
tiations in step 4c. In total, 10n exponentiation operations are carried out, so
the overall computation complexity is O(d). In VD-PSI a verifier only checks
whether β is among the elements of the intersection. Therefore, the verifica-
tion computation complexity is at most linear to the intersection cardinality,
i.e. O(k).

The computation complexity of the two protocols dealing with a malicious
adversary in [25] is dominated by fully homomorphic encryption operations. In
each protocol, the overall number of such operations is linear to the size of the
inputs m. So, the overall computation complexity for each protocol is O(m).
Moreover, in order for each client to verify the computation correctness, he
needs to access all the (encrypted) inputs and perform generic proof system
operations linear to the number of inputs. Therefore, the verification complexity
at the verifier side is O(m), too. While, in [19] each participant has overall
computation complexity O(d). In order for the client to verify the integrity of
the result, he checks whether λ copies of all intersection elements exist in the
result. So, its verification complexity is O(λk) where λ and k are the security
parameter and intersection cardinality, respectively.

Thus, all the schemes have overall linear computation complexity; while, VD-
PSI uses Paillier encryption, [25] uses fully homomorphic, and [19] uses symmet-
ric key encryption. The verification mechanisms in [25] is based on expensive
generic proof systems, while [19] and VD-PSI use lightweight mechanisms.

Remark. In VD-PSI after the client outsources its dataset, it has to keep locally
only two secret keys. During the computation, the client who is interested in the
result generates four values that he needs to keep until he retrieves the result.
At the end of the protocol he can discard the four values. In contrast, a variant
of the protocol in [25] requires the client to have the hash value of his encrypted
inputs for verification. This introduces a storage overhead linear to the number
of his outsourced inputs. Similar to VD-PSI, the clients in [19] need to locally
store only the secret keys for a pseudo-random function in order to verify the
computation result.

In conclusion, although [19] is faster than VD-PSI (and [25]), VD-PSI enjoys
two properties that [19] lacks. First, VD-PSI supports non-interactive setup at
client-side. Second, it allows clients to upload their datasets once but verifiably
delegate the computation to the cloud an unlimited number of times. These
properties are vital, because in the real world individuals and businesses can
upload their datasets to the cloud at different points in time without necessarily
knowing the other cloud users. Also, the users can fully benefit from the cloud’s
storage and computation capabilities. Compared to [25], VD-PSI offers the same

166 A. Abadi et al.

security properties much more efficiently. Thus, VD-PSI allows businesses to get
the full benefits of the cloud in a more cost-effective way.

7 Conclusions and Future Work

Integrity and privacy of data and computation results are major concerns for
clients using the cloud. In this work we proposed VD-PSI, an efficient protocol
that allows a client to delegate both storage and computation of private set
intersection to the cloud who may misbehave. VD-PSI allows a result recipient
to efficiently detect if the cloud tampers with the datasets, or deviates from the
protocol, even though the client does not know its own outsourced dataset and
the other clients’ datasets. The protocol allows clients to independently prepare
and store their private datasets in the cloud, and later on ask the cloud to
compute the intersection of their outsourced datasets. It ensures that the cloud
can compute the intersection only when all the clients agree. Clients can delegate
PSI computation over their outsourced datasets an unlimited number of times
with no need to download and re-prepare the datasets. We have shown that our
protocol is secure in the presence of a malicious cloud and semi-honest clients.
Its communication and computation complexity is linear to set cardinality upper
bound, and its verification mechanism is lightweight. Overall, VD-PSI is a clear
step forward towards efficient verifiable delegated PSI on outsourced private
datasets.

In the future we would like to investigate how to further improve the effi-
ciency of the protocol and how to support other privacy preserving delegated set
operations on outsourced private datasets such as set difference, set union and
subset.

Acknowledgments. We would like to thank the anonymous reviewers. This work
was partially supported by an EPSRC Doctoral Training Grant studentship and an
EPSRC research grant (EP/M013561/1).

References

1. Abadi, A., Terzis, S., Dong, C.: O-PSI: delegated private set intersection on out-
sourced datasets. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol.
455, pp. 3–17. Springer, Cham (2015). doi:10.1007/978-3-319-18467-8 1

2. Aggarwal, C.C., Yu, P.S. (eds.): Privacy-Preserving Data Mining - Models and
Algorithms, Advances in Database Systems, vol. 34. Springer, New York (2008)

3. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms, 1st
edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1974)

4. Ardagna, C.A., Asal, R., Damiani, E., Vu, Q.H.: From security to assurance in the
cloud: a survey. ACM Comput. Surv. 48(1), 2:1–2:50 (2015)

5. BBC-NEW: The interview: a guide to the cyber attack on Hollywood. http://www.
bbc.co.uk/news/entertainment-arts-30512032

6. Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: the
heavily loaded case. In: Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, Portland, OR, USA, 21–23 May 2000, pp. 745–754 (2000)

http://dx.doi.org/10.1007/978-3-319-18467-8_1
http://www.bbc.co.uk/news/entertainment-arts-30512032
http://www.bbc.co.uk/news/entertainment-arts-30512032

Verifiable Delegated Private Set Intersection on Outsourced Private Datasets 167

7. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 28

8. Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection pro-
tocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 213–231. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8 13

9. Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with
a semi-trusted arbiter. In: Data and Applications Security and Privacy XXVII -
27th Annual IFIP WG 11.3 Conference, DBSec 2013, USA, pp. 128–144 (2013)

10. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: Proceedings of the 20th ACM Conference on
Computer and Communications Security, pp. 789–800 (2013)

11. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: Proceedings of the 21st ACM Conference on Computer and Communica-
tions Security, Scottsdale, AZ, USA, pp. 844–855 (2014)

12. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 1

13. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 25

14. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, New York (2004)

15. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Canada, pp. 113–122 (2008)

16. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001).
doi:10.1007/3-540-45353-9 31

17. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable
computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46497-7 6

18. Huang, W., Ganjali, A., Kim, B.H., Oh, S., Lie, D.: The state of public
infrastructure-as-a-service cloud security. ACM Comput. Surv. 47(4), 68:1–68:31
(2015)

19. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set intersec-
tion to billion-element sets. In: Proceedings of the 18th International Conference
on Financial Cryptography and Data Security, pp. 863–874 (2014)

20. Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition.
SIAM J. Comput. 40(6), 1767–1802 (2011)

21. Kerschbaum, F.: Collusion-resistant outsourcing of private set intersection. In: Pro-
ceedings of the 27th ACM Symposium on Applied Computing, Riva, Trento, Italy,
pp. 1451–1456 (2012)

22. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-
tion. In: Computer and Communications Security, ASIACCS 2012, pp. 85–86
(2012)

23. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.
1007/11535218 15

http://dx.doi.org/10.1007/978-3-642-36594-2_28
http://dx.doi.org/10.1007/978-3-642-17373-8_13
http://dx.doi.org/10.1007/978-3-540-24676-3_1
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/3-540-45353-9_31
http://dx.doi.org/10.1007/978-3-662-46497-7_6
http://dx.doi.org/10.1007/978-3-662-46497-7_6
http://dx.doi.org/10.1007/11535218_15
http://dx.doi.org/10.1007/11535218_15

168 A. Abadi et al.

24. Liu, F., Ng, W.K., Zhang, W., Giang, D.H., Han, S.: Encrypted set intersection
protocol for outsourced datasets. In: IEEE International Conference on Cloud Engi-
neering, IC2E 2014, pp. 135–140. IEEE Computer Society, Washington, DC (2014)

25. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Symposium on Theory
of Computing Conference, USA, pp. 1219–1234 (2012)

26. Marston, S., Li, Z., Bandyopadhyay, S., Ghalsasi, A.: Cloud computing - the busi-
ness perspective. In: Proceedings of the 44th Hawaii International International
Conference on Systems Science (HICSS-44 2011), USA, pp. 1–11 (2011)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

28. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: Proceedings of the 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, 12–14 August 2015,
pp. 515–530 (2015)

29. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, USA. USENIX (2014)

30. Raab, M., Steger, A.: “Balls into Bins” — a simple and tight analysis. In: Luby,
M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998). doi:10.1007/3-540-49543-6 13

31. Zheng, Q., Xu, S.: Verifiable delegated set intersection operations on outsourced
encrypted data. IACR Cryptology ePrint Archive, p. 178 (2014)

http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/3-540-49543-6_13

Confidential Benchmarking
Based on Multiparty Computation

Ivan Damg̊ard1, Kasper Damg̊ard2(B), Kurt Nielsen3,
Peter Sebastian Nordholt2, and Tomas Toft4

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
2 The Alexandra Institute, Aarhus, Denmark

kasper.damgaard@alexandra.dk
3 Department of Food and Resource Economics,
University of Copenhagen, Copenhagen, Denmark

4 Partisia, Aarhus, Denmark

Abstract. We report on the design and implementation of a system
that uses multiparty computation to enable banks to benchmark their
customers’ confidential performance data against a large representative
set of confidential performance data from a consultancy house. The sys-
tem ensures that both the banks’ and the consultancy house’s data stays
confidential, the banks as clients learn nothing but the computed bench-
marking score. In the concrete business application, the developed pro-
totype helps Danish banks to find the most efficient customers among
a large and challenging group of agricultural customers with too much
debt. We propose a model based on linear programming for doing the
benchmarking and implement it using the SPDZ protocol by Damg̊ard
et al., which we modify using a new idea that allows clients to supply
data and get output without having to participate in the preprocessing
phase and without keeping state during the computation. We ran the
system with two servers doing the secure computation using a database
with information on about 2500 users. Answers arrived in about 25 s.

1 Introduction

This paper presents a system and a business case based on advanced cryptogra-
phy for improved credit rating in Danish banks. The system collects data from
different sources and compute performance scores of a given banks own cus-
tomers relative to a larger number of similar customers outside of the bank. The
system maintains the confidentiality of all of the customers’ data by the use
of secure multiparty computation that allows the merged raw data to remain
encrypted at all time.

We gratefully acknowledge financial support from the Center for research in the
Foundations of Electronic Markets (CFEM) funded by the Danish Council for Strate-
gic Research, the FP7 EU-project PRACTICE, the MPCPRO project supported by
ERC and the CTIC center, supported by the Danish National Research Foundation.

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 169–187, 2017.
DOI: 10.1007/978-3-662-54970-4 10

170 I. Damg̊ard et al.

The business case focuses on farmers as a business segment that is partic-
ularly challenging for Danish banks. The basic problem is that a large number
of farmers have had too high debt ratios and too low earnings for years and
the banks have been reluctant to realise the losses1. One would like to avoid
a chain reaction that may affect the individual bank’s own credit rating and
hereby it’s ability to lend money on the interbank market. So on the one hand, a
number of banks have too many farmers with potential losses as customers and
on the other hand, status quo worsens the situation for this group of customers
that need to invest to stay competitive. To control the situation and to avoid
an escalation, the banks are forced to pick the right farmers among this group
of risk-prone customers. This requires more analysis than the traditional credit
scores. The banks need to look beyond the debt and find the better performing
farmers that are more likely to pay back the loans. To do this one needs account-
ing and production data from a large range of peer farmers. Since farmers are
not required to publish accounting data, a number of banks in particular the
small and medium sized banks, lack the basic data for sound in-house analysis
of their own customers relative performance.

However, there is a consultancy house in the market that possesses accounting
data from a large number of farmers. This creates an opportunity to score the
bank’s customers relative to the sector as a whole and not just the banks own
portfolio which may not be representative for the business segment.

Hereby, the business case has a characteristic property that it shares with
many similar cases: the inputs we need to solve the problem are held by differ-
ent parties and privacy issues prevent them from pooling the information. In our
case, the consultancy house that has the farmers accounting data is of course
required to keeps its database confidential. On the other hand, banks are not
allowed to give away data on their customers including the identity of its cus-
tomers. In fact, even ignoring regulations, it would be particularly problematic
in our case if the bank were to send data on a customer C in the clear to the
consultancy house. If C’s data are already in the database, it is very likely that
the consultancy house could find out which customer the bank wants to evaluate,
and this is of course a breach of confidentiality.

Agreeing on a trusted third party who can perform the computation may be
both difficult and expensive, hence a different solution is desirable. Secure multi-
party computation (MPC) provides a solution – two or more parties can compute
any function on private inputs such that the only new information leaked is the
intended output of the function [Yao82,GMW87,BOGW88,CCD88]. However,
though any function is computable in theory, specialized protocols for concrete
problems are typically proposed to achieve acceptable efficiency. This is also
the case here, where we implement a secure Linear Program (LP)-solver and
demonstrate its applicability.

Conceptually, MPC can be seen as an implementation of a Trusted Third
Party (TTP) that receives the input and confidentially computes the result (in
this case the result of the benchmarking), while not revealing anything else about

1 The banks are typically the lenders with the utmost priority in case of default.

Confidential Benchmarking Based on Multiparty Computation 171

the inputs. As such, the MPC approach is analogous to paying a consultancy
house to act as a TTP. However, the economic argument for using MPC is that
while a consultancy house is likely to charge the parties substantial fees for every
analysis, the cost of developing software for MPC only has to be paid once and
can be amortised over many applications of the system.

Linear programming (LP) is one of the basic and most useful optimization
problems known. The goal is to find an assignment to variables, x = (x1, . . . , xn),
subject to m linear constraints

C · x ≤ b

maximizing (or minimizing) a linear function, f(x). LP is widely used in Opera-
tional Research and applied Micro Economics to solve real life problems such as
resource allocation, supply chain management or benchmarking as in this paper.

We note that similar business cases for confidential benchmarking have been
considered before [KT06,Ker08a,Ker08b], as well as the idea of using LP to solve
the problem [KSZ+11].

The remainder of this paper is structured as follows. Section 2 describes
the application scenario and the linear program to be solved. Sections 3 and 4
describe the applied protocol and implementation respectively and concluding
remarks are given in Sect. 5.

2 Application Scenario and Benchmarking Model

Credit rating of a firm is all about estimating the ability that the firm can ful-
fill its financial commitments based on historical data. Traditional credit rating
models such as the original Altman’s Z-score aim at predicting the probabil-
ity that a firm will go into bankruptcy. Using various statistical methods the
most relevant explanatory variables are selected and the credit rating model is
estimated, see e.g. [Mes97] for a general introduction.

The traditional credit scoring divides customers into groups depending on
their overall credit worthiness. While new customers may simply be rejected
based on a bad credit score, existing customers that end up with a bad credit
score, cannot be rejected without a risk of losses. When larger groups of cus-
tomers experience a drop in their credit worthiness the banks itself may get
exposed by a drop in credit rating. This was indeed the case with the global
financial crisis that was created over a number of years and ignited by Lehman
Brothers’ bankruptcy in 2008. The present problem where a large group of Dan-
ish farmers have low credit worthiness, goes back to excessive lending prior
to 2008.

In general, farming requires large investments to generate profit. The Danish
farmers have historically been highly efficient and to a large extent adapted to the
relatively high operational costs, not least the high wages (see e.g. [ANB12]). The
otherwise successful substitution away from increasing labor costs has resulted

172 I. Damg̊ard et al.

in high debt/equity ratios. This challenges the Danish banks with many farmers
as customers that on the one hand require large investments to become com-
petitive and on the other hand suffer from high debt/equity ratios. According
to BankResearch.dk that continuously evaluate the Danish banks, 7 of the 8
worst scoring banks are among the 30 Danish banks that are most exposed in
the agricultural sector in 2014. These 30 banks are all small and medium sized
banks and have from 10 to 35% of total loans and guarantees in agriculture
or fishery. This development emphasises the fact that when selecting the right
farmers for future loans, one needs an analysis that is based on a larger number
of comparable farms than what is found in the individual banks’ own portfolios.

In close collaboration with the consultancy house that represents the majority
of the farmers and selected small and medium sized banks, a prototype software
has been developed. The consultancy house has detailed account and production
data that are not publicly available. The added security allows us to create a
richer data foundation by merging the confidential data from the accounting firm
with additional confidential data from the individual banks. The secure LP solver
allows us to conduct state-of-the-art relative performance analysis directly on the
richer, though secret data set. The resulting benchmarks is used to evaluate new
individual customers as well as the banks’ portfolios - in either case the analysis
reflects performance relative to the agricultural sector as a whole.

In general terms, benchmarking is the process of comparing the perfor-
mance/activities of one unit against that of best practice. We apply Data Envel-
opment Analysis (DEA), which is a so-called frontier-evaluation technique that
supports best practice comparisons (or efficiency analysis) in a realistic multiple-
inputs multiple-outputs framework. Instead of benchmarking against engineer-
ing standards or statistical average performances, DEA invokes a minimum of a
priori assumptions and evaluates the performance against that of specific peer
units. For these reasons, DEA has become a popular benchmarking approach.

DEA was originally proposed by [CcR78,CcR79], and has subsequently been
refined and applied in a large number of research papers and by consultants in a
broad sense. A 2008 bibliography lists more than 4000 DEA references, and more
than 1600 of these are published in good quality scientific journals [EPT08].

Most often, DEA is used to get general insight, e.g. about the variation in
performance or the productive development in a given sector. However, DEA
have also proven useful in incentive provision, e.g. for regulation or as part of an
auction market cf. [ABT05,BN08,NT07]. Finally, DEA has also been applied as
a direct alternative to traditional credit rating models in predicting the risk of
failures [CPV04,PAS04,PBS09]. DEA can be formulated as an LP-problem and
therefore in general be solved by the Secure LP-solver described in this paper.

To formally define the DEA methodology used for this analysis, consider the
set of n observed farms. All farms are using r inputs to produce s outputs, where
the input-output vector for farm i is defined as: (xi, yi) ∈ R

r+s
+ . We let xk

i denote
farm i’s consumption of the k’th input and yl

i its production of the l’th output.

Confidential Benchmarking Based on Multiparty Computation 173

The DEA input efficiency score under variable returns to scale (cf. [BCc84])
for farm i is called θ∗

i and is defined as:

θ∗
i = max θi

s.t.
n∑

j=1

λjx
k
j ≤ xk

i , k = 1, . . . , r (1)

n∑

j=1

λjy
l
j ≥ θiy

l
i, l = 1, . . . , s

n∑

j=1

λj = 1, λj ≥ 0, j = 1, . . . , n.

The interpretation is that the efficiency score of farm i is the largest possible
factor by which farm i can expand all outputs while still maintaining present
input consumption. We use the reverse output efficiency score 1/θ∗

i to fix the
score between 0 and 1. As an example, the interpretation of a reverse output
score of 80% is that the farm uses only 80% of its potential as estimated by
comparing to the other farms (the estimated best practice benchmark). Apart
from evaluating individual farmers we use distribution plots to evaluate the
individual bank’s portfolio of farmers. For further details on the use of DEA, the
reader is referred to the textbooks by e.g. [BO11,CST07].

The software described below is in the process of being tested by the end-
users i.e. selected banks2. The system is able to do several different types of
analyses and these have been designed in collaboration with the consultancy
house and tested by consultants that are familiar with the evaluated farmers.
Here we concentrate on one of the benchmarking analyses that is used on all
of the 4 major group of farmers (milk, pig, plant and fur production). The
initial data provided by the consultancy house consists of approx. 7500 accounts
across the four types of farms in total and provide a representative and sound
foundation for the analysis.

The applied benchmarking model reported on in this paper focuses on the
farms abilities to transform the basic inputs labour, capital (divided into three
sub-groups) and variable inputs into gross output, i.e., profit. The model has
been developed, discussed and tested together with the involved consultancy
house.

– x1
i : Labour (wages for paid labor + 450000 DKK to the owner)

– x2
i : Value of land

– x3
i : Liquid capital

– x4
i : Other capital assets

– x5
i : All variable costs (excluding internal transfer)

– y1
i : Gross output (including EU subsidies and other income)

2 An early stage demo version of the software has been tested and resulted in valuable
feedback for the development of the prototype.

174 I. Damg̊ard et al.

The resulting benchmarking scores from the 7500 farmers, supports the basic
argument, that additional analyses are required in selecting the best performing
farmers among the many with too much debt. Table 1 shows how the benchmark-
ing scores are distributed within segments of the farmers’ debt/equity ratios.
The result shows that the vast majority have a debt/equity ratio larger than
50% and that farmers with similar debt/equity ratio have widely spread bench-
marking scores. However, there is a tendency to a higher benchmarking score
for farmers with higher debt/equity scores i.e. among the most risky customers
seen from the banks’ perspective. Although traditional credit ratings involve
other elements than what is captured by the debt/equity ratio, the results do
indicate that the suggested benchmarking analysis is able to identify the better
performing farmers among many risky customers with too much debt.

Table 1. Debt/equity ratio and distribution of benchmark scores

Debt/equity ratio Number of farmers Average score Standard deviation (score)

50%–60% 632 41.6% 20.6%

60%–70% 1363 40.0% 18.6%

70%–80% 2014 43.0% 17.2%

80%–90% 1807 47.8% 15.6%

90%–100% 1234 48.3% 15.1%

We have described how the confidential benchmarking system can be used
by banks to evaluate potential new customers, as well as all farmers in their
existing portfolios. In addition, the situation allows us to provide a different
type of analysis, namely a quick stress test of a bank’s portfolio: for all the
banks that participate, it holds that the 7500 accounts in the database include
a significant share of the bank’s agricultural customers. So we can give the bank
an idea of how well its customers are doing by comparing those that are in the
database with the total population. We do this by first having the database
locally compute the benchmark score for all farmers in the database. This does
not require MPC and can be done quite efficiently. Now, only the bank knows the
identity of its customers and this is considered to be confidential information.
Therefore the bank uploads a list of id numbers that are secret shared across
the two servers, and then, inside a secure computation, we can select the bank’s
portfolio of farmers and return a summary based on their precomputed scores.
Hereby, the initial stress test of the portfolios can be done without delays from
the otherwise time intensive LP solving. Note also that since this computation
touches every entry in the database, no information is released on which entries
belong to customers of the bank in question.

Confidential Benchmarking Based on Multiparty Computation 175

3 Using the SPDZ Protocol for Benchmarking

The scenario in which we want to implement Multiparty Computation (MPC)
is composed of the following players: clients, who supply input and get outputs
and servers who execute the actual computation. We assume that any number
of clients and up to n − 1 of the n servers may be maliciously corrupted.

In relation to the case outlined in the previous section, a client would typically
be a bank who wants to get the score for a certain customer. One special client
(who only supplies input) would be the consultancy house who has the database.
The servers would be run by different parties with an interest in the system. For
the deployment of the present prototype, the two organisations involved in the
development of the system (the Alexandra Institute and Partisia), each control
one of the two servers involved in the secure computations. Based on discussion
with the involved business partners, we expect that the consultancy house and
the Danish Bankers Association will control the two servers in a commercial
setup.

We use the SPDZ protocol from [DPSZ12] to do the computation. This pro-
tocol is indeed capable of general secure computation and can tolerate that all
but one of the servers doing the computation are corrupt. Tolerating a dishonest
majority actually requires the use of heavy public-key crypto machinery. How-
ever, one of the main ideas in SPDZ is to push the use of this into a preprocessing
phase that can be done ahead of time (without knowing the inputs), and then
use preprocessed material to do the actual computation very efficiently.

However, it is not clear how to integrate the clients. In SPDZ, it is assumed
that each player plays both the role of a server and of a client who can supply
input and get output. To do this, SPDZ requires that all players take part in the
preprocessing stage. But in our scenario, we want to separate the client and server
roles and we definitely do not want to demand from our clients that they do the
preprocessing: in our application, it may not even be known who the clients are
at preprocessing time. We would also like that the clients do not need to keep
state while the computation is running as this simplifies the implementation
of client software3. We explain our solution below after we explain some more
details of the SPDZ protocol:

SPDZ can securely evaluate any arithmetic circuit over a finite field F, and
we will assume F is the field with p elements for a prime p is the following. Each
value a that occurs in the computation (as input, output or intermediate result)
is represented in a certain format denoted by 〈a〉. The idea is that each server
holds part of the data that represents a. More specifically, each server Si holds
a share ai of a, such that a = a1 + · · · + an and the ai’s are randomly chosen
such that even given n − 1 of them, a remains unknown. The servers also hold

3 In [JNO14], a generic client solution was proposed that works for any MPC proto-
col, but it requires the client to keep state. In principle, one can always store client
state info on the servers, but since our servers are malicious it needs to be authen-
ticated and secret shared or encrypted, and this adds further complications to the
implementation.

176 I. Damg̊ard et al.

data that can be used to authenticate the value of a if we want to retrieve it in
the clear, but the details of this are not important here.

SPDZ includes protocols for operating securely on these representations of
field values, i.e., from 〈a〉, 〈b〉, the servers can compute 〈a + b〉 or 〈ab〉 without
revealing anything about a or b. Similarly we add or multiply by a publicly known
constant. The main role of the preprocessing is to supply shared randomness that
facilitates secure multiplication, but it can also easily be configured to supply any
number of representations 〈r〉, where r ∈ F is a random value that is unknown
to all players, this will be very important in the following.

The overall idea of the computation phase in SPDZ is then to first construct
representations in the right form of the input values, do the required arithmetic
operations to come up with representations of the desired outputs, and then
open these to reveal the results to the players who are to receive output.

3.1 Allowing Clients to Give Input and Get Output

Let us first discuss how to give output to a client C, assuming that the servers
have managed to compute a representation of an output value 〈y〉. As mentioned,
this means that each server Si holds yi where y =

∑
i yi.

So this may seem easy: each Si sends yi privately to C, who adds all values
received to get y. However, this will of course not work, even a single malicious
server could lie about its value and make C obtain an incorrect result. In the
original SPDZ protocol, this type of problem is solved by having the servers col-
laborate to authenticate the sum of the values supplied. But C cannot take part
in and be convinced by such a procedure unless he took part in the preprocessing
stage, and we want to avoid this.

So instead we propose to encode the output value in such a way that any mod-
ification by malicious servers can be detected by the client4. As a first attempt,
suppose the servers retrieve a random representation 〈r〉 from the preprocess-
ing, then they compute securely 〈w〉 = 〈yr〉 and finally send all shares to y, r
and w privately to C. He can now reconstruct and check that indeed yr = w
and will reject the output if not. Recall that if we want to tolerate a dishonest
majority of servers, we cannot guarantee that players will always terminate with
correct output, as servers may for instance just stop playing. So simply aborting
if something is wrong is the best we can do.

One can think of w as an authentication tag and r as a key, so this is an
authentication scheme similar to the one already used in SPDZ. As we show
below, this will indeed ensure that any attempt to change y will be detected
except with probability 1/p, where we assume that p is large enough that this is
negligible. However, there is still a subtle problem: y is supposed to be private,
known only to the client. Now, a malicious server could (for instance) change
r and leave the other values alone. It is easy to see that then the client will

4 This is actually the notion of a strong AMD code [CDF+08], the construction we
give here is slightly different from previous ones, though, and fits better into our
protocol.

Confidential Benchmarking Based on Multiparty Computation 177

abort if y �= 0 but will accept if y = 0. The adversary can observe this and get
information on y5. A way to solve this problem is to also authenticate the key
r in exactly the same way as we authenticated y. It may seem that we are just
pushing the problem in front of us, but note that r is guaranteed to be random
(contrary to y). So while the adversary can still make a guess at r and get to
see if his guess was correct, the probability of guessing correctly is negligible, so
we can ignore this possibility.

The protocol is specified in detail in Fig. 1 and we have the following result
on its security:

Protocol Output Delivery.

Given 〈y〉 where we want to reveal y to C and only to C.

1. The servers do the following: Retrieve unused random 〈r〉, 〈v〉 from the preprocessed
material and compute 〈w〉 = 〈yr〉, 〈u〉 = 〈vr〉.
Each server Si sends its shares yi, ri, wi, vi, ui privately to C.

2. C does the following: compute y =
∑

i yi, r =
∑

i ri, w =
∑

i wi, u =
∑

i ui, v =∑
i vi. Check that w = yr and u = vr. If not, abort, else output y.

Fig. 1. Protocol for giving output to C

Lemma 1. The protocol in Fig. 1 satisfies the following. Privacy: if C is hon-
est, the adversary’s view of the protocol can be simulated with statistically close
distribution without knowing y. Correctness: an honest C will accept a value
different from y with probability at most 1/p.

Proof. As for correctness, assume for contradiction that C accepts y′ �= y. Let
w′, r′, v′, u′ be the other values reconstructed by C. Since C accepts we have
w′ = y′r′. Also, by correctness of the original SPDZ protocol, we know that
w = yr. We can write y′ = y + α,w′ = w + β, r′ = r + γ where α, β, γ are
errors introduced by the adversary sending incorrect shares. Inserting this into
w′ = y′r′, we get w +β = (y +α)(r +γ). Using w = yr, this can be simplified to

β = yγ + αr + αγ

But since y �= y′ implies α �= 0, this equation determines r uniquely, so the
adversary must effectively guess r to make C accept an incorrect value. This
happens with probability at most 1/p since r is unknown a priori.

As for privacy, note that the adversary’s view includes the correct shares for
corrupt servers of y, r, w, u and v and the share they send to C. The only new
information the adversary learns is whether the protocol aborts. We show that

5 This problem does not occur in the original SPDZ protocol, since there the values
that are opened are public.

178 I. Damg̊ard et al.

from shares and messages sent by corrupt servers, one can predict whether the
protocol aborts, except with negligible probability, and hence the adversary’s
view can be simulated without knowing y. To see this, we reuse the notation
from the proof of correctness, and also define u′ = u+ δ, v′ = v + ε. We can then
see in the same way as above that C will find that u′ = v′r′ if and only if

δ = vγ + εr + εγ.

Of course, the error terms α, β, γ, ε, δ can be computed from the adversaries
view and we claim that if they are not all 0, C will abort except with negligible
probability. So this gives the prediction we were after (note that, of course, if all
error terms are 0, C will accept).

Note first that r plays the role as the authenticated message in the equation
u = vr, and we already argued that C will abort almost always if the message
is changed. It follows that if α �= 0 or γ �= 0, C aborts almost always. So assume
therefore that α = γ = 0. Our equations simplify to β = 0 and δ = εr. Clearly,
C aborts if β �= 0. Further, if ε �= 0, we can only get C to accept if r = δ/ε which
happens with negligible probability since r is random. So we can assume that
ε = 0 and then it follows that δ = 0 as well, since otherwise C always aborts.

Before we consider supplying inputs, note that a client can easily broadcast
a message to the servers, by simply sending the same message to them all. Then
the servers can compare what they received and abort if there is a disagreement.
Again, we cannot avoid the possibility of aborting if the client and a majority
of servers are malicious.

Now suppose C wants to contribute input value x. For this, we use a pre-
processed random 〈s〉. We now use the previous protocol to reveal s to (only)
C, who can then broadcast x − s. The servers can now use a SPDZ subprotocol
to add the publicly known value x − s into 〈s〉 to obtain 〈x〉. The protocol is
specified in detail in Fig. 2.

Protocol Input Supply.

C holds value x that he wants to supply as input top the servers.

1. The servers do the following: Retrieve an unused random 〈s〉 from the preprocessed
material and use the Output delivery protocol to give s to C.

2. C broadcasts x − s to the servers, and the servers compute (x − s) + 〈s〉 = 〈x〉.

Fig. 2. Protocol for C to supply input

For the security of the input protocol, note that if C is honest, then the
adversary learns nothing about x because s is uniformly random and hence x−s
is uniform as well. By the security of the SPDZ protocol the representation
produced by the servers will contain the value x intended by C. If C is corrupt,
the representation produced will contain a well defined value namely one that is
determined by s and the value C broadcasts.

Confidential Benchmarking Based on Multiparty Computation 179

3.2 Using SPDZ for Linear Programming

In order to use the SPDZ protocol for Linear Programming as required in the
application, we apply the well known Simplex algorithm. For this we need to do
integer arithmetic and comparison on sufficiently large integers. To do this we
choose the modulus p large enough compared to the actual data, then we can
do additions and multiplications by doing them mod p but avoid overflow.

For divisions, two approaches have been proposed in the literature: Toft
[Tof09b] suggests using a variant of the Simplex algorithm, where it is ensured
that whenever we need to compute a/b, it will always be the case that b divides
a. This means we can do the division by multiplying by b−1 mod p which is much
easier than a standard division. The downside of this idea is that the involved
numbers (and hence the required modulus size) grows with the size of the Linear
Programming problem we solve. Catrina and de Hoogh [Cd10] suggest to use
instead fixed point rational numbers throughout. This means we can make do
with smaller integers and division is now relatively easy. The catch is that we
have to live with rounding errors in the result (where Toft’s approach is exact),
and that the other arithmetic operations become somewhat more complicated.

In our case we found that the problem size we were dealing with could be
made small enough to allow us to use Toft’s approach, which is simpler to
implement. More specifically, we exploit the fact that one of the parties (the
consultancy house) possesses the database with data on all the farmers we are
comparing bank customers to. Therefore, prior to the secure computation, we
can do a computation locally on the data base, that selects the most efficient
farmers. More precisely, if we see the farmers as points in a multidimensional
space, we identify those farmers that define the convex hull of all the points.
Now, we only need to enter these farmers into the secure computation, since the
answer to the linear programming problem will be the same. As a result, we had
problems with 8 constraints and between 45 and 70 variables. To avoid overflow,
we had to use a modulus p with 512 bits.

We also note that there are several different flavours of Simplex to choose
from. In particular, Simplex works by initially setting up a Pivot table contain-
ing the input values. This table is then iteratively updated until it contains the
solution. There are several different rules for how this update can be done, in
particular, we considered Bland’s rule and Danzig’s rule. To explain the differ-
ence in geometric terms, the current state of the computation defines a corner
of a polytope in a multidimensional space. The update corresponds to selecting
an edge on the polytope, and walk along this edge to obtain a better solution
than the one defined by the current position. Bland’s rule selects the first edge
that will improve the current solution, while Danzig’s rule considers all edges
and selects the one that will give the largest improvement of the current solu-
tion. Clearly Danzig’s rule requires more computation per iteration and is less
“MPC-friendly” because we need several comparisons which are quite heavy.
Nevertheless, in our experience, the number of iterations you get is so much

180 I. Damg̊ard et al.

smaller that Danzig’s rule gives us better performance6. More details on this
can be found in Sect. 4.2.

Finally, the comparisons are done using ideas from [DFK+06,Tof09a].
Our implementation leaks the number of iterations done in Simplex. This

can be partially solved by doing dummy iterations, but this will of course slow
down the system. We chose to put priority on getting answers as fast as possible.

4 Prototype and Performance

To demonstrate the potential of doing secure benchmarking a demo application
was implemented which was tested by selected Danish banks. After initial posi-
tive feedback on the demo from the banks an extended prototype has now been
built and a second round of testing at Danish banks is scheduled for the end
of October 2015. In this section we will give an overview of the prototype and
report on the observed performance.

4.1 Prototype

In the prototype secure computation is done between two servers. For conve-
nience, in the prototype setup the two servers are controlled by the authors,
however, in a real world setup the servers are assumed to be controlled by two
distinct non-colluding parties. Namely, the consultancy house owning the data-
base with the farmers’ accounting information and a representative of the banks
using the system (e.g., the Danish Bankers Association). The individual banks
using the system are regarded as clients, i.e., they simply interact with the sys-
tem to supply input and read output, but do not directly control the server
representing them in the secure computation7.

To initialise the system the consultancy house uploads its database to its
secure computation server, which computes the reduced version of the dataset
including only the relevant efficient accounts and adds this to the database. As
discussed in Sect. 3 this corresponds to computing the convex hull of the points
defined by the individual farmers. The two servers then run a protocol to secret
share the database in the SPDZ internal format, and store the resulting secret
shared database. Once the database is uploaded the consultancy house no longer
needs to interact with the system and can go offline. This initialisation process
is illustrated in Fig. 3.

6 In theory, Danzig’s rule can lead to a cycle, so that the algorithm will not terminate,
but this is rare in practice, and never occurred in our testing.

7 Alternatively, one could let each bank control their own secure computation server
communicating directly with the consultancy house controlled server. This setup
up was used for the initial demo system, but the current setup was deemed more
scalable as it only requires two secure computation servers.

Confidential Benchmarking Based on Multiparty Computation 181

(a) The consultancy house uploading database (b) Servers sharing database

Fig. 3. Initialising the secure benchmarking system

Once the system is initialized, the banks can login and start submitting
analyses to be performed on the system, using a simple web-interface executed
in the browser. Since banks are simply clients, once they have submitted an
analysis to be performed, they no longer need to interact with the system and
can go offline. The secure computation servers will then perform the requested
analysis and store the resulting output in the secret shared database. Later the
bank can login and request the output of the analysis that has been run. The
interactions of a bank with the system are illustrated in Fig. 4.

The web-interface used by the banks is connected directly to the two secure
computation servers (over https) and runs the input/output protocols described
above locally. This means that each server only ever sees the input and output of
an analysis in secret shared form. In other words, as long as the bank can trust
the two servers to not collude and at least one server to be honest the privacy
and correctness of his inputs and outputs are guaranteed.

4.2 Performance

The MPC computation needed for the benchmarking analysis (i.e., the Simplex
algorithm as described above) was implemented using the FRESCO8 framework,
a Java framework for secure computation applications which contains an imple-
mentation of of the on-line phase of the SPDZ protocol. Below, we first give
times for the on-line phase and then consider the preprocessing in Sect. 4.3.

Each server is deployed in the cloud on a separate Amazon EC2 instance.
Each instance is a standard general purpose m4.large instance, with 8 GB RAM
and 2 cores, running on a 2.4 GHz Intel Xeon processor. The servers are deployed
in the same Amazon availability zone and region, essentially meaning they run
in the same datacenter. This is a benefit for performance as it means there is
rather low network latency between the servers. This is significant for protocols
such as SPDZ with high round-complexity.

8 https://github.com/aicis/fresco.

https://github.com/aicis/fresco

182 I. Damg̊ard et al.

It is not entirely clear whether such a set-up would be acceptable in a real
business application of the system: One can argue that having the server of each
organization hosted by at the same cloud provider (Amazon in this case) places
too much trust in the cloud provider. Namely, since the cloud provider has access
to both servers including the secret shared database, a malicious cloud provider
could potentially reconstruct all private data.

One can reduce these risks by using different clouds for different servers and
an organisation could even share its data across 2 servers to reduce the trust
in the cloud provider (by requiring the cloud provider collaborates with other
cloud providers to break security). The main effect on performance by going to
such a solution comes from increased latency of communication. We ran a small
number of experiments to see how increased latency affected our prototype, and
found that a 10-fold increase in latency gave a 3 fold increase in overall run time.
So we estimate that while using different clouds would slow down the system
significantly, it would not render it useless.

The prototype allows banks to benchmark a potential costumer’s financial
data against farmers in four different segments of agriculture: pigs, plants, milk
and fur. For these segments the database we benchmark against holds 1786,
2645, 2258 and 358 accounts respectively. After we crop the datasets to only
include the relevant efficient accounts, this is reduced to databases of 70, 63,

Fig. 4. Interactions with the benchmarking system

Confidential Benchmarking Based on Multiparty Computation 183

47 and 45 accounts respectively. In Table 2 we give the average running time in
seconds for the analysis on each of the different segments. We see the running
time in all segments is around 22–26 s even when running on this rather modest
hardware, which should be tolerable for a real world system.

Table 2. Time to do analysis for different agricultural segments

Segment Accounts (reduced) Av. time (sec) Std. dev. (sec)

Pigs 70 23 4

Plants 63 22 4

Milk 47 26 8

Fur 45 22 6

Surprisingly we see that we get the longest running times when benchmark-
ing against the relatively small dataset of the milk segment. We also see a rather
large standard deviation in the running time of 4–8 s (i.e., up to 30% in the
milk segment). This variation is not due to secure computation it self but rather
a property of the Simplex algorithm used to do the benchmarking analysis.
Namely, the fact that the Simplex algorithm depending on the data we analyse
may use a varying number of iterations to find an optimal value. Thus for eval-
uating the efficiency of the underlying Simplex implementation the time pr.
iteration is really more relevant. We show these times in Table 3, which shows,
as expected, that running times pr. iteration goes up the larger the dataset and
datasets of similar size have about the same running time.

Table 3. Time for the a single Simplex iteration on different agricultural segments

Segment Accounts
(reduced)

Av. num of
iterations

Av. time pr.
iteration (sec)

Std. dev. (sec)

Pigs 70 13 1.80 0.02

Plants 63 12 1.78 0.02

Milk 47 18 1.47 0.03

Fur 45 15 1.46 0.01

The numbers in Tables 2 and 3 are for our implementation of Simplex using
Danzig’s rule. As mentioned above we also considered the variation of the Sim-
plex algorithm using Bland’s rule. In Table 4 we give times for this variation. As
explained above we see that using Bland’s results in considerably faster iteration
times, roughly around 20% faster than iterations using Danzig’s rule. However,
for our analysis the increased speed of iterations is cancelled out by having to do
many more iterations to finish the analysis. Specifically, using Bland’s instead

184 I. Damg̊ard et al.

of Danzig’s rule increases the average amount of iterations by 33% in the milk
segment and more than 150% in the plant segment. While this discourages us
from using Bland’s rule in our prototype, it may still be worth considering in
other applications were if it would cause a less dramatic increase in the number
of required iterations. Also, since there is a number of alternative heuristics for
the Simplex updating rule it may be interesting to investigate their performance,
to see if we could achieve both fast and few iterations.

Table 4. Time for Simplex iterations using Bland’s rule

Segment Accounts
(reduced)

Av. num of
iterations

Av. time pr.
iteration (sec)

Std dev. (sec)

Pigs 70 23 1.43 0.01

Plants 63 31 1.35 0.01

Milk 47 24 1.19 0.05

Fur 45 23 1.14 0.01

One may wonder how the performance scales as datasets grow beyond those
naturally occuring in the context of this prototype. We did not experiment with
this.

However, recall that the dataset we compute on is reduced to only include the
efficient accounts. We conjecture that with the applied benchmarking approach
(DEA) the number of efficient accounts is, for all practical applications, signif-
icantly smaller than the total number of accounts, as is the case in this paper.
Thus, even for much larger datasets the reduced dataset including only efficient
accounts, will not be much larger than those used in this prototype (given the
same LP-problem, i.e., the benchmarking model). The basic arguments for this
conjecture are (1) that only the farmers that represent best practice is relevant
in the LP-problem and (2) that the number of observations that represent best
practice is driven by the dimensionality of the LP-problem (number of inputs
and outputs in the analysis), the total number of observations (in this case
accounts) and the basic assumption about the technology (restrictions on the λ
in the LP-problem). The more dimensions the more efficient observations (the
model simply allows for more diversity) and the more observations the better
representation of the diversity of the observations.

4.3 Preprocessing

For the prototype, we do not actually run the preprocessing that is required
for the SPDZ protocol, but work with a fixed set of preprocessed data the we
reuse (while this is of course not secure, it gives reliable performance data for
the on-line phase). But we can compute how much time the preprocessing would
take: first, we have counted the number of multiplications we do while executing

Confidential Benchmarking Based on Multiparty Computation 185

a Simplex iteration, which is about 4000 multiplications. Then, from the perfor-
mance numbers in [DKL+13], we can extrapolate and estimate the actual time
their implementation would take for our case. For covert security and probability
1/5 to cheat successfully we get about 20 s per iteration and about 2 min for full
active security.

4.4 Future Directions

The next step we consider for this prototype, is to bring in multiple data-
providers. I.e., make also the consultancy house be a client among several clients
contributing to the database against which we do our benchmarks. The data
providers may add rows (more observations e.g. farms) or columns (more vari-
ables). More rows may come directly from the banks as well as other consultancy
houses and accounting firms. More columns may e.g. be details about the debt
(e.g. from the banks) or additional background information from Danish Statis-
tics to give a few examples.

A more representative dataset (more rows) will improve the quality of the
benchmarks and more importantly make the service more user friendly as less
additional information is required. A more rich dataset (more columns) will allow
for more analysis that better describe best practice and the performance of the
farmers in this case.

This general approach with data from multiple sources merged into a larger
database using MPC, is computationally more challenging. One challenge is to
reduce the joint dataset to only the efficient observations which can no longer
be done in the clear, but must be done in MPC.

More work on optimizing performance is also an obvious future direction.
More experiments are needed to find the right levels of, e.g., parallelisation and
hardware to be used.

5 Conclusion

We have presented a practical implementation of a system for confidentially
benchmarking farmers against a large representative population of other farmers,
using MPC and linear programming. The prototype has been developed and
tested in collaboration with Danish banks and a consultancy house specialised
in the agricultural sector. The system creates new information that helps Danish
banks selecting the better performing farmers among the many with bad credit
rating.

We have presented some add-ons to the SPDZ protocol making it more useful
in a client-server scenario. The results obtained demonstrate that MPC can be
useful in providing data that are useful and could not have been obtained in
other ways without violating requirements for confidentiality.

186 I. Damg̊ard et al.

References

[ABT05] Agrell, P.J., Bogetoft, P., Tind, J.: DEA and dynamic yardstick competi-
tion in Scandinavian electricity distribution. J. Prod. Anal. 23(2), 173–201
(2005)

[ANB12] Asmild, M., Nielsen, K., Bogetoft, P.: Are high labour costs destroying the
competitiveness of Danish dairy farmers? Evidence from an international
benchmarking analysis. MSAP Working Paper Series (2012)

[BCc84] Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating
technical and scale inefficiencies in data envelopment analysis. Manage.
Sci. 30, 1078–1092 (1984)

[BN08] Bogetoft, P., Nielsen, K.: DEA based auctions. Eur. J. Oper. Res. 184,
685–700 (2008)

[BO11] Bogetoft, P., Otto, L.: Benchmarking with DEA, SFA, and R. Springer,
New York (2011)

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.:. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: Proceedings of the 20th ACM STOC, Chicago, Illinois, USA,
2–4 May, pp. 1–10. ACM Press (1988)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: Proceedings of the 20th ACM STOC,
Chicago, Illinois, USA, 2–4 May, pp. 11–19. ACM Press (1988)

[CcR78] Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of deci-
sion making units. Eur. J. Oper. Res. 2, 429–444 (1978)

[CcR79] Charnes, A., Cooper, W.W., Rhodes, E.: Short communication: measuring
the efficiency of decision making units. Eur. J. Oper. Res. 3, 339 (1979)

[Cd10] Catrina, O., de Hoogh, S.: Secure multiparty linear programming using
fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M.
(eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15497-3 9

[CDF+08] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of alge-
braic manipulation with applications to robust secret sharing and fuzzy
extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
471–488. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 27

[CPV04] Cielen, A., Peeters, L., Vanhoof, K.: Bankruptcy prediction using a data
envelopment analysis. Eur. J. Oper. Res. 154(2), 526–532 (2004)

[CST07] Cooper, W.W., Seiford, L.M., Tone, K.: Data Envelopment Analysis: A
Comprehensive Text with Models, Applications, References and DEA-
Solver Software, 2nd edn. Springer, New York (2007)

[DFK+06] Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Uncondition-
ally secure constant-rounds multi-party computation for equality, compar-
ison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). doi:10.1007/
11681878 15

[DKL+13] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority – or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40203-6 1

http://dx.doi.org/10.1007/978-3-642-15497-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_27
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-40203-6_1

Confidential Benchmarking Based on Multiparty Computation 187

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32009-5 38

[EPT08] Emrouznejad, A., Parker, B.R., Tavares, G.: Evaluation of research in effi-
ciency and productivity: a survey and analysis of the first 30 years of
scholarly literature in DEA. Socio-Econ. Plann. Sci. 42, 151–157 (2008)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: Aho, A.,
(ed.) Proceedings of the 19th ACM STOC, New York City, New York,
USA, 25–27 May, pp. 218–229. ACM Press (1987)

[JNO14] Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing
of secure computation. In: Proceedings of the 6th edition of the ACM
Workshop on Cloud Computing Security, pp. 81–92. ACM (2014)

[Ker08a] Kerschbaum, F.: Building a privacy-preserving benchmarking enterprise
system. Enterp. IS 2(4), 421–441 (2008)

[Ker08b] Kerschbaum, F.: Practical privacy-preserving benchmarking. In: Jajodia,
S., Samarati, P., Cimato, S. (eds.) SEC 2008. ITIFIP, vol. 278, pp. 17–31.
Springer, Boston, MA (2008). doi:10.1007/978-0-387-09699-5 2

[KSZ+11] Kerschbaum, F., Schröpfer, A., Zilli, A., Pibernik, R., Catrina, O., de
Hoogh, S., Schoenmakers, B., Cimato, S., Damiani, E.: Secure collabora-
tive supply-chain management. IEEE Comput. 44(9), 38–43 (2011)

[KT06] Kerschbaum, F., Terzidis, O.: Filtering for private collaborative bench-
marking. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 409–422.
Springer, Heidelberg (2006). doi:10.1007/11766155 29

[Mes97] Mester, L.J.: What’s the point of credit scoring? Bus. Rev. 3, 3–16 (1997)
[NT07] Nielsen, K., Toft, T.: Secure relative performance scheme. In: Deng, X.,

Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 396–403. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-77105-0 44

[PAS04] Paradi, J.C., Asmild, M., Simak, P.C.: Using DEA and worst practice DEA
in credit risk evaluation. J. Prod. Anal. 21(2), 153–165 (2004)

[PBS09] Premachandra, I.M., Bhabra, G.S., Sueyoshi, T.: DEA as a tool for bank-
ruptcy assessment: a comparative study with logistic regression technique.
Eur. J. Oper. Res. 193(2), 412–424 (2009)

[Tof09a] Toft, T.: Constant-rounds, almost-linear bit-decomposition of secret shared
values. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357–371.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00862-7 24

[Tof09b] Toft, T.: Solving linear programs using multiparty computation. In:
Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03549-4 6

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract).
In: Proceedings of the 23rd FOCS, Chicago, Illinois, 3–5 November,
pp. 160–164. IEEE Computer Society Press (1982)

http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-0-387-09699-5_2
http://dx.doi.org/10.1007/11766155_29
http://dx.doi.org/10.1007/978-3-540-77105-0_44
http://dx.doi.org/10.1007/978-3-642-00862-7_24
http://dx.doi.org/10.1007/978-3-642-03549-4_6

Efficiently Making Secure Two-Party
Computation Fair

Handan Kılınç1,2(B) and Alptekin Küpçü2

1 EPFL, Lausanne, Switzerland
handan.kilinc@epfl.ch

2 Koç University, İstanbul, Turkey
akupcu@ku.edu.tr

Abstract. Secure two-party computation cannot be fair against mali-
cious adversaries, unless a trusted third party (TTP) or a gradual-release
type super-constant round protocol is employed. Existing optimistic fair
two-party computation protocols with constant rounds are either too
costly to arbitrate (e.g., the TTP may need to re-do almost the whole
computation), or require the use of electronic payments. Furthermore,
most of the existing solutions were proven secure and fair via a partial
simulation, which, we show, may lead to insecurity overall. We propose
a new framework for fair and secure two-party computation that can
be applied on top of any secure two party computation protocol based
on Yao’s garbled circuits and zero-knowledge proofs. We show that our
fairness overhead is minimal, compared to all known existing work. Fur-
thermore, our protocol is fair even in terms of the work performed by
Alice and Bob. We also prove our protocol is fair and secure simultane-
ously, through one simulator, which guarantees that our fairness exten-
sions do not leak any private information. Lastly, we ensure that the
TTP never learns the inputs or outputs of the computation. Therefore,
even if the TTP becomes malicious and causes unfairness by colluding
with one party, the security of the underlying protocol is still preserved.

1 Introduction

In two-party computation (2PC), Alice and Bob intend to evaluate a shared
function with their private inputs. The computation is called secure when the
parties do not learn anything beyond what is revealed by the output of the
computation. Yao [38] introduced the concept of secure 2PC and gave an efficient
protocol; but this protocol is not secure against malicious parties who try to
learn extra information from the computation by deviating from the protocol.
Many solutions [19,26,31,37] are suggested to strengthen Yao’s protocol against
malicious adversaries.

When one considers malicious adversaries, fairness is an important problem.
A fair computation should guarantee that Alice learns the output of the function
if and only if Bob learns. This problem occurs since in the protocol one party
learns the output earlier than the other party; therefore (s)he can abort the
protocol after learning the output, before the other party learns it.
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 188–207, 2017.
DOI: 10.1007/978-3-662-54970-4 11

Efficiently Making Secure Two-Party Computation Fair 189

There are two main methods of achieving fairness in 2PC: using gradual
release [23,33,34] or a trusted third party (TTP) [6,25]. The gradual release
based protocols [2,5,12] let the parties gradually (bit by bit, or piece by piece)
and verifiably reveal the result. Malicious party will have one bit (or piece)
advantage if the honest party starts to reveal the result first. Yet, if the malicious
party has more computational power, he can abort the protocol earlier and learn
the result via brute force, while the honest party cannot. In this case, fairness is
not achieved. Another drawback is the necessity of many rounds.

The TTP approach employs a third party that is trusted by both Alice and
Bob. A simple solution would be to give the inputs to the TTP, who computes
the outputs and distributes fairly. In terms of efficiency and feasibility though,
the TTP should be used in the optimistic model [1], where he gets involved
in the protocol only when there is a dispute between Alice and Bob. It is very
important to give the TTP the minimum possible workload because otherwise
the system will have a bottleneck. Another important concern is privacy . In
an optimistic solution, if there is no dispute, the TTP should not even know a
computation took place, and even with a dispute, the TTP should never learn
the inputs or outputs, or even identities. We achieve all these efficiency and
privacy requirements on the TTP.

Another problem regarding fairness in secure two-party computation is the
proof methodology. In previous works [6,23,34], fairness and security (with
abort) were proven separately, only partially simulating the protocol (partial
simulation). However, it is important to simulate everything together to ensure
that the fairness solution does not leak any information beyond the original
secure two-party computation requirement. Therefore, as in the security of the
secure two-party computation, there should be ideal/real world simulation (see
Sect. 2) that covers both fairness and security (full simulation). In other
words, the simulator should learn the output in the real world only
after it is guaranteed that both parties can learn the output in the
real world to achieve ideal and real world indistinguishability of the outputs.

Our Contributions: The main achievement of this work is an efficient
framework for making secure 2PC protocols fair, such that it guarantees fair-
ness and security together, and can work on top of secure two party compu-
tation protocols extending Yao’s garbled circuits to the malicious setting via
zero-knowledge proofs (e.g., [6,15,19]). Note that the state-of-the-art optimistic
fairness solution [6] is also based on zero-knowledge proofs.

– We use a simple-to-understand ideal world definition to achieve fairness and
security together, and prove our protocol’s security and fairness with
full simulation which means proving security and fairness together.

– We show that proving security and fairness separately via only partial simu-
lation is not necessarily secure (see Sect. 5).

– Our framework employs a trusted third party (TTP) for fairness, in the opti-
mistic model. The TTP’s load is very light: verification of signatures and
commitments, and decryption only. If there is no dispute, the TTP does not
even know a computation took place, and even with a dispute, the TTP never

190 H. Kılınç and A. Küpçü

learns the inputs, outputs, or even identities of Alice and Bob. So, a semi-
honest TTP is enough in our construction to achieve fairness.

– If the TTP becomes malicious (e.g., colludes with one of the parties), it
does not violate the security of the underlying 2PC protocol; only the
fairness property of the protocol is contravened.

– Our framework is also fair about the work done by Alice and Bob, since both
of them perform the same steps in the protocol.

– The principles for fairness in our framework can be adopted by any 2PC
protocol based on Yao’s garbled circuits, employing zero knowledge proofs for
the malicious setting, thereby achieving fairness with little overhead.

– We compare our framework with related fair secure two-party computation
work and show that we achieve better efficiency and security.

Related Works: Cachin and Camenisch [6] present a state-of-the-art fair two-
party computation protocol in the optimistic model. The protocol consists of
two intertwined verifiable secure function evaluations. In the case of an unfair
situation, the honest party interacts with the TTP. The job of the TTP can
be as bad as almost repeating the whole computation, linear in the circuit
size, creating a bottleneck in the system. Lindell [25] constructs a framework
that can be adopted by any two-party functionality with the property that either
both parties receive the output, or one party receives the output while the other
receives a digitally-signed check (i.e., monetary compensation). However, one
may argue that one party obtaining the output and the other obtaining the
money may not always be considered fair, since we do not necessarily know how
valuable the output would be before the evaluation. Kılınç and Küpçü [20] con-
struct a fair multi-party computation (MPC) protocol in the optimistic model.
While 2PC can be a special case of MPC, our solutions are optimized for the
two-party case and hence are more efficient compared to applying their work to
the two-party setting (e.g., they increase input and output sizes).

A detailed analysis of more related works is in the full version of the
paper [21].

2 Definitions and Preliminaries

Yao’s Two-Party Computation Protocol: We informally review Yao’s con-
struction [38], which is secure in the presence of semi-honest adversaries. Such
adversaries follow the instructions of the protocol, but try to learn more informa-
tion. The main idea in Yao’s protocol is to compute a circuit without revealing
any information about the value of the wires, except the output wires.

The protocol starts by agreeing on a circuit that computes the desired func-
tionality. One party, called the constructor, generates two keys for every wire
except the output wires. One key represents the value 0, and the other rep-
resents the value 1. Next, the constructor prepares a table for each gate that
includes four double-encryptions with the four possible input key pairs (i.e., rep-
resenting 00, 01, 10, 11). The encrypted value is another key that represents these

Efficiently Making Secure Two-Party Computation Fair 191

two input keys’ output (e.g., for an AND gate, if keys ka,0 and kb,1 representing
0 and 1 are used as inputs of Alice and Bob, respectively, the gate’s output key
k′, which is encrypted under ka,0 and kb,1, represents the value 0 = 0 AND 1.).
Output gates contain double-encryptions of the actual output bits (no more keys
are necessary, since the output will be learned anyway). All tables together are
called the garbled circuit.

The other party is the evaluator. The constructor and the evaluator perform
oblivious transfer (OT), where the constructor is the sender and the evaluator is
the receiver, who learns the keys that represent his own input bits. Afterward,
the constructor sends his input keys to the evaluator. The evaluator evaluates
the garbled circuit by decrypting the garbled tables in topological order, and
learns the output bits. The evaluator can decrypt one row of each gate’s table,
since he just knows one key for each wire. Since all he learns for the intermediary
values are random keys and only the constructor knows which values these keys
represent, the evaluator learns nothing more than what he can infer from the
output. The evaluator finally sends the output to the constructor, who also learns
nothing more than the output, since the evaluator did not send any intermediary
values and they used OT for the evaluator’s input keys.

Secure Two-Party Computation (2PC): Alice and Bob want to compute a
function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗. Alice has her private input x, and
Bob has his private input y. In the end of computation of f(x, y), Alice obtains
the output fa(x, y) and Bob obtains the output fb(x, y). The computation is
secure if the privacy, correctness, independence of inputs, guaranteed output
delivery, fairness [27] are achieved by the computation.

Because of the impossibility result on the fairness property without honest
majority [8], fairness in a secure computation is not considered in the 2PC liter-
ature. Security is formalized with the ideal/real simulation paradigm. For every
real world adversary, there must exist an adversary in the ideal world such that
the execution in the ideal and real worlds are indistinguishable (e.g., [14]).

Definition 1 (Ideal World). It consists of the corrupted party C, the honest
party H, and the universal trusted party U (not the TTP). The ideal protocol is:

1. U receives input x or the message abort from C, and y from H. If the
inputs are invalid or C sends the message abort, then U sends ⊥ to both of
the parties and halts.

2. Otherwise U computes f(x, y) = (fc(x, y), fh(x, y)). Then, he sends fc(x, y)
to C and fh(x, y) to H.

The outputs of the parties in an ideal execution between the honest party
H and an adversary A controlling C, where U computes f , is denoted
IDEALf,A(w)(x, y, s) where x, y are the respective inputs of C and H, w is an
auxiliary input of A, and s is the security parameter.

The standard secure two-party ideal world definition [16,27] lets the adver-
sary A to abort after learning his output but before the honest party learns her
output. Thus, proving protocols secure using the old definition would not meet
the fairness requirements.

192 H. Kılınç and A. Küpçü

Definition 2 (Real World). The real world consists of, besides the parties, an
adversary A that controls one of the parties, and the TTP who is involved in the
protocol when there is unfair behavior. The pair of outputs of the honest party
and the adversary A in the real execution of the protocol π, possibly employing
the TTP, is denoted REALπ,TTP,A(w)(x, y, s), where x, y, w and s are like above.

Note that U and TTP are not related to each other. TTP is part of the real
protocol to solve the fairness problem when it is necessary, but U is not real.

Definition 3 (Fair and Secure Two-Party Computation). Let π be a prob-
abilistic polynomial time (PPT) protocol and let f be a PPT two-party function-
ality. We say that π computes f fairly and securely if for every non-uniform
PPT real world adversary A attacking π, there exists a non-uniform PPT ideal
world adversary S so that for every x, y, w ∈ {0, 1}∗, the ideal and real world
outputs are computationally indistinguishable:

{IDEALf,S(w)(x, y, s)}
s∈N

≡c {REALπ,TTP,A(w)(x, y, s)}s∈N

For optimistic protocols, to simulate the complete view of the adversary,
the simulator also needs to simulate the behavior of the TTP for the
adversary. This simulation also needs to be indistinguishable.

The closest such definition was given by Cachin and Camenisch [6]. Their
definition’s advantage is that it also considers misbehaving TTP, but their ideal
world contacts the real world TTP, mixing both worlds. Thus, it does not fit
the optimistic usage of TTP. We prefer to use the Definition 3, which is more
intuitive and general (it can even include gradual release since it is not specific to
only the protocols with TTP), to prove our proposed protocol in Sect. 4 because
we use the TTP in the optimistic model and we assume that the TTP is semi-
honest while proving the protocol.

Note that in our ideal world, the moment the adversary sends his input, U
computes the outputs and performs fair distribution. Thus, the adversary can
either abort the protocol before any party learns anything useful, or cannot
prevent fairness. This is represented in our proof with a simulator who learns
the output only when it is guaranteed that both parties can learn the
output. Also observe that, under this ideal world definition, if the simulator
learns the output in the ideal world but the adversary aborts in the
real world, that simulation would be distinguishable .

Suppose that Alice is malicious and S simulates the behavior of honest Bob
in the real world and the behavior of malicious Alice in the ideal world. Assume
S learns the output of Alice from U in order to simulate the real protocol before
it is guaranteed that in a real protocol both of the parties could receive their
outputs. Further suppose that the adversarial Alice then aborts the protocol so
that S does not receive his output in the real world. Thus, in the real world the
real Bob would have aborted, whereas the ideal Bob outputs the result of the
computation. Clearly, the ideal and real worlds are distinguishable in this case.
The proofs in [6,23,34] unfortunately fall into this pitfall.

Efficiently Making Secure Two-Party Computation Fair 193

Definition 4 (Verifiable Escrow). An escrow is a ciphertext under the public
key of the TTP. A verifiable escrow [1,7] enables the recipient to verify, using
only the public key of TTP, that the plaintext satisfies some relation. A public
non-malleable label can be attached to a verifiable escrow [36].

Communication Model: We do not need private and authenticated channels
between the TTP and the parties. When there is dispute between the two parties,
the TTP resolves the conflict atomically, which means the TTP interacts with
either Alice or Bob at a given time, until that resolution is complete. We assume
that the adversary cannot prevent the honest party from reaching the TTP
eventually. We do not assume anything else about the communication model;
our protocol’s needs are minimal.

3 Our Solution

Failed Approaches and Major Issues: It looks like adding fairness to a 2PC
protocol based on gabled circuits and zero knowledge using TTP does not need
a lot of work. However, if we care efficiency of the protocol and resolution pro-
tocols with the TTP, it is challenging. Consider a very simple solution regarding
constructor C, evaluator E, and the TTP. Assume that C constructs the circuit
such that the output is not revealed directly, but instead the output of the cir-
cuit is an encrypted version of the real output, and C knows the key. Thus, after
evaluation, E will learn this encrypted output, and C and E need to perform a
fair exchange of this encrypted output and the key. This approach increases the
circuit size, obviously. Besides, when a dispute occurs and E goes to the TTP
for resolution, she cannot efficiently prove to the TTP that she evaluated C’s
garbled circuit correctly. Indeed, in the solution of Cachin and Camenisch [6],
the resolution may require work proportional to the circuit size.

Alternatively, instead of encrypting the output, C constructs a garbled circuit
where the outputs are encoded with some random values (like an encryption but
without increasing the circuit size) in a secret table. So, in the end of the circuit
evaluation, E learns some random values such that their corresponding bits are
only known by C. Then, they can fairly exchange the table and the output.
However, it can be hard to ensure that E sends the correct table and construct
proper resolution protocols with TTP.

Because of these issues, we employ the dual-constructor methodology [29,30],
where both C and E construct circuits that output random numbers.

Our Solution: We show how to efficiently add fairness to any zero knowledge
based secure 2PC protocol Γ using our framework. The key points are:

– Alice and Bob employ dual garbling technique [29], where Alice and Bob
both act as the constructor and the evaluator, with almost equal responsibil-
ities. The circuit constructed by Alice only outputs Alice’s output
and the circuit constructed by Bob outputs Bob’s output.
The garbled circuit is prepared as the underlying protocol Γ with minor differ-
ences in the construction of the input and output gates. The modification on

194 H. Kılınç and A. Küpçü

the input gates allow us to check input equality between the two circuits.
Modifications on the output gates are to hide the actual output.

– Alice and Bob exchange the garbled circuits and evaluate each others’ circuits.
In the end of evaluation, Alice learns the output labels of Bob and Bob
learns the output labels of Alice, both in a hidden way. Therefore,
they need to exchange the outputs fairly after this point.

– Before fair exchange, they execute input equality test protocol to see if
both of them used the same inputs for the both circuits. It is ok to abort if
the test fails, because they test for input equality, not output.

– If the equality test is successful, they verifiably escrow the other party’s
output labels. This is essentially a guarantee for the other party that if this
party does not send the output labels later on, (s)he can contact the TTP to
get them.

– Now, they exchange output labels so that each party can individually translate
them back to the actual outputs, since they come from circuits that they
themselves created. If there is a dispute about the fairness, they go to the
TTP for the resolution.

Overview of the resolution protocols is the following:

Alice/Bob Resolve: We describe the resolution for Bob, though it is com-
pletely symmetric for Alice. Remember that Bob is equipped with a verifiable
escrow. But, for the TTP to decrypt it for him, Bob must prove that he acted
properly. He provides output labels of Alice, and proves that they are evaluated
from Alice’s garbled circuit. If so, the TTP provides the decryption for Bob, who
can use it to translate back to his output bits.

Alice Abort: Alice may try to abort the protocol and block resolution attempts
with the TTP, should she not receive Bob’s verifiable escrow. When she contacts
the TTP, if Bob has resolved before, she obtains her output labels from the
TTP. Otherwise, the TTP marks the protocol as aborted, and would deny any
resolution attempt by Alice or Bob.

Note that the TTP only sees random output labels, but not their trans-
lation tables. Furthermore, since each circuit only evaluates to one party’s out-
put, even if the TTP colludes with the malicious party and provides the other
party’s output labels, those are still meaningless without the corresponding bits.
Thus, a malicious TTP may only break fairness, but not security.

Why Target Zero-Knowledge Proof based Garbled Circuit Pro-
tocols? We claimed that our framework can be applied on top of any zero-
knowledge proof based garbled circuit protocols. There are two reasons for this:

1. As explained above, parties commit to output labels, for enabling efficient
resolutions with the TTP (one of the major problems in previous work). They
must prove to each other that they committed to the correct labels as in the
garbled circuits. If the underlying protocol, for example, encrypts the garbled
tables using AES, then such a proof cannot be efficiently done (without cut-
and-choose), whereas if the underlying encryption scheme is number-theoretic

Efficiently Making Secure Two-Party Computation Fair 195

(such as simplified Camenisch-Shoup [7,19]), then using sigma protocols [10],
the correctness proofs may be done very efficiently.

2. Item 1 above leaves out the cut-and-choose way of proving. The problem is
that, if cut-and-choose is employed, then there will be multiple circuits, rather
than one. In our solution, parties create verifiable escrows, and the TTP may
need to decrypt them. Verifiable escrow is a primitive that inherently uses
zero-knowledge proofs. It is unclear how to combine the verifiable escrow
idea with cut-and-choose, where multiple circuits exist, especially when the
TTP needs to be able to verify and decrypt them.

In essence, one may think of our solution as a framework that can be applied
on top of 2PC schemes that employ a single circuit, and use number-theoretic
constructions (of encryption) for efficiency.

4 Making Secure 2PC Fair (Full Protocol)

Notation: Alice and Bob will evaluate a function f(x, y) = (fa(x, y), fb(x, y)),
where Alice has an input x and gets an output fa(x, y), and Bob has an input y
and gets an output fb(x, y), f : {0, 1}� × {0, 1}� → {0, 1}� × {0, 1}�, where � is a
positive integer. For simplicity, we assume Alice and Bob have �-bit inputs and
outputs each. Alice’s input bits are x = {x1, x2, ..., x�} and Bob’s input bits are
y = {y1, y2, ..., y�}. They use a 2PC protocol Γ for the secure computation.

We use C to represent circuit. Ca outputs the Alice’s output and Cb outputs
Bob’s output. Similarly, the garbled circuit that is generated by Alice is GCa

and the one generated by Bob is GCb. We use apostrophe (′) for the values that
are generated by Bob. When we say Alice’s input wires, it means that Alice
provides the input for these wires. Similarly, Alice’s output wires correspond to
Alice’s output. Bob’s input and output wires have the matching meaning. An
Input Gate is a gate that has an input wire of Alice or Bob. Similarly, an Output
Gate is a gate that has a wire of Alice’s or Bob’s output.

Ek shows an encryption with the key k. Therefore, Ek1Ek2(m1,m2) means
that m1 and m2 are both encrypted by the two keys k1 and k2.

Any commitments that have efficient zero knowledge proofs can be used in
this framework. To exemplify the protocol we notate commitments as in Fujisaki-
Okamoto commitments [11,13] and Pedersen commitments [32].

We give a review of the random numbers that are used for fairness in Table 1.
The protocol steps are described in detail below (and in Fig. 1).

The TTP generates the group G1 that is used in Γ and picks generators
g, h ∈ G1, secret and public key pair skTTP , pkTTP for the verifiable escrow
scheme. Additionally, he chooses a cyclic group G2 whose order is a large prime
q and randomly selects its generators g0, g1, g2 (for the equality test). He also
picks a one-way function φ(). Then, he announces his public key PKTTP =
[pkTTP , (G1, g, h), (G2, q, g0, g1, g2), φ()].

Both Alice and Bob know PKTTP and agree on a circuit C that computes
f(x, y) and the protocol identifier id before the protocol begins.

196 H. Kılınç and A. Küpçü

Fig. 1. Our framework to make a S2PC protocol fair. GenGC generates garbled circuit.

Efficiently Making Secure Two-Party Computation Fair 197

Table 1. The review of the random numbers used for fairness in our framework.

Name Form Relation

Equality-test constants e = gρ There are four kinds of them, where each
represents 0 or 1 and right or left.

Input-gate randoms u Each input gate has them. They are private; just
known by the constructors.

Equality-test numbers m = eu For each input-gate random u, there are four
kinds of them, where each represents 0 or 1 and
right or left according to e.

Output labels (δ, ε) They are randomly chosen pairs, each
representing a row of the garbled output gates

Preparation Phase:

1. Alice and Bob generate private-public key pairs (ska, vka) and (skb, vkb),
respectively, for an unforgeable signature scheme. They exchange the signa-
ture verification keys vka and vkb.
They jointly generate four equality-test constants ea,0, ea,1, eb,0 and eb,1 as
described [21]. Equality test constants represent 0 and 1 for the left (a) and
the right (b) wires of the input gates.

2. Alice and Bob separately generate the random numbers and commitments
for the input and the output gates as shown in Fig. 1.
The computations of Alice and Bob for each input gate i are the following:
input-gate numbers (ui resp. u′

i), the equality-test numbers ({t ∈ {0, 1}, z ∈
{a, b} : mzi,t = eui

z,t} resp. {t ∈ {0, 1}, z ∈ {a, b} : m′
zi,t = e

u′
i

z,t}), and the
commitments ({t ∈ {0, 1} : Dbi,t = mbi,th

ri,t} resp. {t ∈ {0, 1} : D′
ai,t =

m′
ai,th

r′
i,t}). They are used in the input equality test to show the same inputs

are used for both garbled circuits.
They generate output labels ((δj , εj) resp. (δ′

j , ε
′
j)) for each row of garbled-

output gate j and their commitments (Sj resp.S′
j) for the output gates. The

sets of the commitments are Sa = {Sj} resp. Sb = {S′
j}. The output labels are

as unique identifiers for the rows of the constructor’s garbled-output gates.
Only the constructor knows which row they represent, which means only the
constructor knows which output bit they correspond to. This makes sure that
the evaluator cannot learn the output directly.

S2PC Phase:

1. [Garbled Circuits:] Alice and Bob construct their garbled circuits by fol-
lowing the rules of the underlying Γ protocol with little differences on the
garbled tables of the input and the output gates.
Input Gates: The difference is that each garbled-table row of an input gate
i includes one more encryption besides the encryption of the output key. It is
the encryption of either r′

i,0 or r′
i,1 representing the input of 0 and 1 for the

198 H. Kılınç and A. Küpçü

wire of Alice in GCb and either ri,0, or ri,1 representing the input of 0 and 1
for the wire of the Bob in GCa. See Table 2 for the details.
Remark: Alice and Bob just encrypt the partial decommitments of Dbi,0,Dbi,1

and D′
ai,tD

′
ai,1, respectively because they only need to learn equality-test num-

bers (m values) that represent their input bits. They do not want to reveal
input-gate numbers (u values) since it causes the evaluator to learn the con-
structor’s input.
Remark: Note that there can be just one input wire of a gate (e.g., NOT
gate for negation). In this case, there will be two equality-test numbers which
represent 0 and 1 for this gate. Alternatively, they can agree to construct a
circuit using only NAND gates [6].
Output Gates: Each row of the garbled output gate includes the encryption
of corresponding output labels instead of encryption of real output bits (see
Table 2). This is to hide the actual output from the evaluator.

2. [Exchange:] They exchange the constructed garbled tables along with
the commitments, the signature of all commitments of the output labels
(signSa

resp. signSb
) and equality-test numbers that represents their input bits

as in Fig. 1.
3. [Check Correctness:] They prove to each other that they performed the

input and the output gates’ construction honestly, via efficient zero-knowledge
proofs (see the full version of the paper [21]):
– Proof of Input Gates to prove that the garbled input gates contain the

correct decommitment values. This is basically done in three steps:
Firstly, prover proves that (s)he knows the decommitmets of all commit-
ments denoted by D [7]. Secondly, prover proves that each commitment
pair Dz,0 and Dz,1 commits the same value under the different bases ez,0

and ez,1 respectively. If the prover is Alice then z = bi, if the prover is
Bob then z = ai. Lastly, the prover proves that each input-garbled table
includes the double-encryption of partial decommitment of Dz,0 and Dz,1.

– Proof of Output Gates to prove that the garbled output gates encrypt the
committed output labels.

If there is a problem in the proofs, they abort. Otherwise, they continue.
4. [S2PC:] Alice and Bob execute Γ , and evaluate the garbled circuit they were

given. While executing Γ , Alice and Bob prove that they correctly construct
their garbled circuits that evaluate f by zero-knowledge proofs described in
the protocol Γ . If all zero-knowledge proofs are verified, at the end of the
evaluation, Alice learns the set Ob representing fb, Bob learns the set Oa

representing fa, each including � output labels. Besides, each party learns the
set that includes equality-test numbers that represents her/his input (from
the decryption of input-garbled gates). Otherwise, they abort.

Equality Phase: This phase is necessary to test whether or not Alice and Bob
used the same input bits for both circuit evaluations. We use unfair version of
equality test by Boudot et al. [3]; the unfair version is sufficient for our purpose.

Alice and Bob want to check, if x∗
i = xi and y∗

i = yi for the encryptions
Ek′

ai,xi
(Ek′

bi,yi
(k′)) and Ekai,x

∗
i
(Ekbi,y

∗
i
(k)) in each garbled input gate i, such

Efficiently Making Secure Two-Party Computation Fair 199

Table 2. The garbled Input and Output Gate for an OR gate constructed by Alice.
Encryption scheme is same as the underlying protocol Γ .

Row Garbled input gate Garbled output gate

00 Ekai,0
Ekbi,0

(ri,0, k0) Eka,0Ekb,0(δj , εj)

01 Ekai,0
Ekbi,1

(ri,1, k1) Eka,0Ekb,1(δj+1, εj+1)

10 Ekai,1
Ekbi,0

(ri,0, k1) Eka,1Ekb,0(δj+2, εj+2)

11 Ekai,1
Ekbi,1

(ri,1, k1) Eka,1Ekb,1(δj+3, εj+3)

that the first one was decrypted by Alice and the second one was decrypted
by Bob. For this purpose, Alice and Bob will use the equality-test numbers
{mzi,t,m

′
zi,t}z∈{a,b},t∈{0,1}.

Assume Alice decrypted a row for an input gate i and learned equality-test
numbers m′

ai,xi
and she knows m′

bi,yi
since Bob sent his equality-test numbers

that represents his input in the exchange step of the S2PC phase. Also assume
Bob decrypted the corresponding garbled gate and similarly learned mbi,y∗

i
and

he knows mai,x∗
i

since Alice sent it in the exchange step of the S2PC phase. If
they both used consistent input bits for both GCa and GCb, then we expect to
see that the following equation is satisfied:

(m′
ai,xi

m′
bi,yi

)ui = (maix∗
i
mbi,y∗

i
)u′

i (1)

The left hand side of the Eq. (1) is composed of values Alice knows since she
learned m′ values and generated ui herself. Similarly, the right hand side values
are known by Bob since he learned m values and generated u′

i himself. This
equality should hold if x∗

i = xi and y∗
i = yi since m′

ai,x∗
i

= e
u′
i

a,x∗
i
, m′

bi,y∗
i

= e
u′
i

b,y∗
i

and mai,xi
= eui

a,xi
, mbi,yi

= eui

b,yi
.

After computing their side locally in Eq. (1) for each input gate, they con-
catenate the results in order to hash them, where the output range of the hash
function is Zq. Then Alice and Bob execute Proof of Equality protocol in [3]
with the hashes.

If the equality test succeeds, they continue with the next phase.
Remark: Remember that the constructor did not prove that (s)he added equality-
test numbers to the correct row of the encryption table. Suppose that the con-
structor encrypted the equality-test number that represents 0 where the eval-
uator’s encryption key represents 1. In this case, it is sure that the equality
test will fail, but the important point is that the constructor cannot understand
which row is decrypted by the evaluator, and thus does not learn any informa-
tion because he cannot cheat just in one row. If he cheats in one row, he has to
change one of the other rows as well, as otherwise he fails the “Proof of Input
Gates”. Thus, even if the equality test fails, the evaluator might have decrypted
any one of the four possibilities for the gate, and thus might have used any input
bit. This also means that the equality test can be simulated, and hence reveals
nothing about the input.

200 H. Kılınç and A. Küpçü

Note that there are some techniques to check input equality in the literature
as in [23,26,28–30,35] but they are based on cut-and-choose. Since the underlying
protocol Γ does not use cut-and-choose to guarantee the security, the equality
test we used is more suitable here.

Fair Exchange Phase: In this phase, Alice and Bob exchange the outputs.
Remember that the outputs are indeed randomized, and only the constructor
knows their meaning. Thus, if they do not perform this fair exchange, no party
learns any information about the real output (unless they resolve with the TTP,
in which case they both learn their outputs).

1. Alice first picks a value ω from the domain of the one way-function φ and
computes φ(ω). Next, she creates a verifiable escrow Va including Ob with
non-malleable label (�||vka||φ(ε)||id) as in Fig. 1. Finally, she signs Va with
ska and sends the signature signVa

and Va.

With the verifiable escrow, she proves that there are � different decommit-
ments in the escrow that correspond to � of the commitments in Sb [4,9,18].
Since Alice can just decrypt one row for every gate and so she only has one
pair of keys for each gate, this proof shows that Alice decrypted Bob’s garbled
output tables correctly, and the verifiable escrow has the evaluation result of
GCb. If Va or signVa

fails to verify, or if the label is not correct, then Bob
aborts. Otherwise, Bob continues with the next step.

Remark: ω is used in the Alice Abort protocol with the TTP to prevent Bob
from claiming to be Alice and aborting after Bob Resolve. Since only Alice
knows ε that is a pre-image of φ(ε), Bob cannot convince the TTP.

2. Bob creates a verifiable escrow Vb including Oa with non-malleable label the
same as Alice created. He signs Vb with skb and sends the signature signVb

and Vb.

With the verifiable escrow, he proves that there are � different decommitments
in the escrow that correspond to � of the commitments in Sa [4,9,18]. If Va

or signVa
fails to verify, or if the label is not correct, then Alice runs “Alice

Abort” protocol with the TTP. Otherwise, Alice continues with the next step.
3. Alice sends Ob to Bob.
4. Bob checks if the output labels in Ob are correct. The output labels are correct

if � of them are the pairs that are generated by Bob. If they are correct, then
he sends Oa. If at least one of the output labels is not correct, then he does
“Bob Resolve” with the TTP.

5. Alice checks if the output labels in Oa are correct. If they are not correct,
then she does “Alice Resolve” with the TTP. Otherwise the protocol ends.

Alice and Bob Resolve (See Fig. 2): We explain Bob Resolve below. Alice
Resolve is the same where the verifiable escrow, the signatures and O are Bob’s
values.

Bob contacts with the TTP and sends the values Va, signVa
,Sa, signSa

,Oa.
He sends signSa

to prove that Sa is generated by the same party who generates

Efficiently Making Secure Two-Party Computation Fair 201

Va. The TTP checks if all signatures are correct and the decommitments in
Oa correspond to � of the commitments in Sa. If there is no problem, then the
TTP decrypts Va with skTTP and sends the values inside Va to Bob. Since Bob
knows the meaning of the output labels of the garbled circuit he constructed, he
effectively learns his output. The TTP remembers Alice’s output Oa, given and
proven by Bob, in his database.

Alice Abort (See Fig. 3): When Alice contacts the TTP for abort, she sends
Va and signa, together with ε. The TTP checks that the signature is valid and
φ(ε) matches the label of Va. If Bob did resolve before, the TTP sends Oa as in
Fig. 3 so that Alice can also learn her output. Otherwise, the protocol is aborted
and the TTP will not honor resolution requests for this exchange.

Remark that Alice and Bob do not re-do the zero-knowledge proofs in the
S2PC phase to the TTP because signVa

and signVb
show that both Alice and

Bob execute everything correctly until the end of Equality Phase.

Fig. 2. X resolve where X ∈ {Alice,
Bob}. If X is Alice, x̄ is b, otherwise
x̄ is a.

Fig. 3. Alice Abort

Theorem 1 Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be any probabilistic
polynomial time (PPT) two-party functionality. The protocol above for comput-
ing f is secure and fair according to Definition 3, assuming that the TTP is
semi-honest, the subprotocols that are stated in the protocol are all secure (sound
and zero-knowledge), all commitments are hiding and binding [11,13], the signa-
ture scheme used is unforgeable [17], and the Γ is a 2PC protocol secure against
malicious adversaries based on Yao’s garbled circuits and zero knowledge proofs.

Proof Sketch. A full proof exists in the full version of the paper [21]. The
important point in our proof is that after learning the input of the adversary in
the real world, the simulator does not learn the output of the adversary from
the ideal world universal party U until it is guaranteed that both parties can
obtain their outputs.

Malicious Alice: Simulator SB creates a key pair on behalf of the TTP and
shares the public key with Alice. SB prepares the circuit as the simulator of Γ

202 H. Kılınç and A. Küpçü

with a random input y′ and simulates all the proofs, including the equality test.
SB extracts the input x of Alice as in the simulation of Γ . Here, he does not
send the input of Alice directly to the ideal world trusted party U. He waits
until it is guaranteed that Bob can also obtain his input. If, before Va is received
properly, the values Alice sends are not correct or equality test is not successful,
he sends abort to U. If SB receives the correct Va, he sends Alice’s input to
U and receives Alice’s output. At this point, he sends Vb to Alice. Afterward, if
he does not receive his correct output from Alice, he simulates Bob Resolve by
decrypting Va. If Alice performs “Alice Abort”, then there are two options: if
SB already obtained the output from U, SB sends output labels of Alice so that
she resolves her output; otherwise, SB sends abort to U.

Malicious Bob: Simulator SA behaves almost the same as SB . Since SA does
not know the actual output of Bob, she puts random values in V′

a and sends it
to Bob, simulating the proof. Then SA waits for Vb: If Bob does not send valid
values but performs “Bob Resolve”, then SA gives Bob’s input that she extracted
to U and learns Bob’s output so that SA is able to simulate “Bob Resolve”. If
Bob does not send valid values and does not perform “Bob Resolve”, then SA

sends abort to U (simulating “Alice Abort”). If Bob sends Vb, then SA gives
Bob’s input to U and U sends back Bob’s output, and finally SA sends to Bob
the correct output labels accordingly.

TTP Analysis: As we claim, a semi-honest TTP is sufficient in our protocol
because the TTP only learns output labels where their meaning is only known
by the circuit constructors (Alice or Bob), and a signature. In addition, (s)he
does not receive anything else related to the input of Alice or Bob. Therefore,
if the TTP follows the protocol but also tries to learn extra information about
the parties (input or output), (s)he cannot succeed.

Even if the TTP is malicious, (s)he can only break the fairness property of the
protocol. A malicious TTP can collude with Alice or Bob. As seen in Theorem
1, the protocol preserves the privacy if the TTP is malicious since the TTP does
not have more power than Alice or Bob. He only knows his secret key which is
only used in the Fair Exchange phase.

Malicious TTP also cannot break the correctness property. In the honest Bob
case (same in honest Alice case), he cannot receive wrong output since Alice can
only learn one output label per gate, so (s)he can use only them. It means TTP
cannot give different ones (because (s)he only knows those that Alice provides)
to Bob. Thus, the TTP cannot break the correctness property.

5 Proving Security and Fairness Together

In this section we show the importance of proving with full simulation according
to Definition 3. First, we define what we mean by partial simulation more for-
mally and then we give contrived versions of several protocols ([6,22,34]) includ-
ing ours that are obviously insecure, but can be proven fair and secure with
partial simulation while it cannot be proven fair and secure with full simulation.

Efficiently Making Secure Two-Party Computation Fair 203

Definition 5 (Partial Simulation). Let f, h, g be the PPT functionalities
where f = g ◦ h, h(x, y) = (hb, ha) and g(hb, ha) = (fa, fb) and let πf , πh, πg

be the PPT protocols to compute f, h, g, respectively where the first input and
output of a functionality correspond to one party (Alice) and the second input
and output of a functionality correspond to other party (Bob). The partial sim-
ulation paradigm says that πf computes f fairly and securely if there exists a
PPT protocol πh that is secure under simulation with abort [14] and there exists
a PPT protocol πg which achieves fairness [1,24].

Almost all previous works (See Table 3) prove their fairness and security
with partial simulation: prove security with the unfair simulation paradigm (with
abort) (corresponding to proving πh to be a secure 2PC protocol with abort), and
argue fairness (of the πg part, either using TTP or gradual release) separately.
This is risky. Consider the following three contrived protocols where Alice and
Bob want to compute functionality f = (fa, fb) fairly and securely:

– A modification on our protocol is that the TTP gives Alice’s output along
with the input of Bob whenever Alice contacts for resolution or abort, if Bob
have done “Bob Resolve” before (honest Bob is required to provide his input
to the TTP in “Bob Resolve”). Here, h = (ha, hb) is a functionality where
ha = Oa and hb = Ob (πh is our protocol until the fair exchange phase,
where parties only obtain random output labels), and g is a functionality
where g(Oa,Ob) = (fx, fy) (πg is the fair exchange phase of our protocol with
new “Alice Abort” and “Alice Resolve”.). It is very easy to simulate πh with
abort, since parties essentially learn nothing. Also, it is easy to argue about
fairness of this πg without simulation, since at the end of resolutions, either
both parties obtain their outputs or no one learns anything useful.

– The protocol which is the same as Cachin and Camenisch’s protocol [6] where
the only difference is that the TTP gives the other parties’ inputs to the party
in the resolution protocols (with similar reasoning as above).

– The modified versions of Kiraz and Schoenmakers [23] or Ruan et. al [34]
protocols where the only difference is Alice sends her input to Bob and vice
versa at the end of the gradual release.

In [23,34] partial simulation is provided only until the beginning of the grad-
ual release phase, then fairness is argued via the fairness of the gradual release.
Similarly, in [6] the partial simulation is provided for a functionality computa-
tion, then the fairness is discussed based on the parties’ and TTP’s behaviors.
Using the same type of reasoning, their and our contrived versions can be proven
fair and secure via partial simulation, and fairness can be argued since at the
end of the gradual release or TTP resolutions, either both parties obtain their
outputs or no one does. But, it is clear that the contrived protocols leak the
inputs to the other party, becoming insecure. Observe that they can never be
fully simulated, because the simulator will not have access to the honest party’s
input and so it cannot provide indistinguishability of ideal and real worlds.

Consequently, it is risky to argue fairness separate from the ideal/real world
simulation. We do not claim that previous protocols [6,23,34] have security prob-
lems, but we want to emphasize that the partial simulation technique does not

204 H. Kılınç and A. Küpçü

cover all security aspects of a protocol and should not be preferred anymore.
Therefore, they should be proven with the full simulation technique.

Importance of the Timing of the Simulator contacting the Universal
Trusted Party: The proofs of the protocols [6,23,34] are also problematic since
the simulator learns the output of the computation from U before it is guaranteed
that the other party can also obtain the output. This behavior of the simulator
violates the indistinguishibility of the ideal and real worlds because if the simu-
lator does not receive his/her output in the real world while the parties already
obtained the outputs in the ideal world, then the outputs in ideal and real worlds
are distinguishable, and the simulation fails. Therefore, the simulator must
obtain the output from the universal trusted party in the ideal world,
only after it is guaranteed that both parties can obtain the output in
the real world.

6 Conclusion

Table 3 presents a comparison with the most related works.

Table 3. Comparison of our protocol with previous works. CC denotes cut-and-choose,
ZK denotes efficient zero-knowledge proofs of knowledge, GR denotes gradual release,
OFE denotes efficient optimistic fair exchange, superscript I denotes inefficient TTP,
superscript P denotes necessity of using a payment system, NS denotes no ideal-real
simulation proof given, PS indicates partial simulation proof, and finally FS indicates
full simulation proof including fairness. A check mark � is put for easily identifying
better techniques.

[33] [34] [23] [25] [6] Ours

Malicious behavior CC CC CC CC/ZK ZK ZK

Fairness GR GR GR OFEP OFEI OFE �
Proof technique NS PS PS FS � PS FS �

� All our overhead (TTP, Alice, Bob) are dependent only on the input and
output size, and independent of the circuit size, in contrast to [6].

� We require a constant number of rounds for fairness, contrary to gradual
release based solutions [23,33,34].

� We do not necessitate a payment framework. Our fairness definition is that
either both parties obtain the output, or no one does, as opposed to [25].

� Even if the TTP becomes malicious and colludes with one participant, he
cannot violate the security of the protocol. On the other hand, in [25],
while the Bank cannot violate 2PC security, it can maliciously deal with the
balances, possibly causing a lot of headache.

Efficiently Making Secure Two-Party Computation Fair 205

� Finally, our protocol is proven secure in the ideal/real simulation paradigm
(not in [33]) with output indistinguishability (not in [6,23,34]), and by
proving fairness and security simultaneously via a full simulation proof
(none except [25]).

Acknowledgements. The authors acknowledge the support of TÜBİTAK, the Sci-
entific and Technological Research Council of Turkey, under project number 111E019,
and European Union COST Action IC1306.

References

1. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE J. Sel. Areas Commun. 18, 591–610 (2000)

2. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). doi:10.1007/
3-540-44598-6 15

3. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the social-
ist millionaires’ problem. Discrete Appl. Math. 1–2, 23–36 (2001)

4. Bresson, E., Stern, J.: Proofs of knowledge for non-monotone discrete-log formulae
and applications. In: Chan, A.H., Gligor, V. (eds.) ISC 2002. LNCS, vol. 2433, pp.
272–288. Springer, Heidelberg (2002). doi:10.1007/3-540-45811-5 21

5. Brickell, E.F., Chaum, D., Damg̊ard, I.B., Graaf, J.: Gradual and verifiable release
of a secret (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, pp. 156–166. Springer, Heidelberg (1988). doi:10.1007/3-540-48184-2 11

6. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000). doi:10.
1007/3-540-44598-6 6

7. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 8

8. R. Cleve: Limits on the security of coin flips when half the processors are faulty.
In: STOC (1986)

9. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). doi:10.1007/
3-540-48658-5 19

10. Damg̊ard, I.: On Sigma protocols. http://www.daimi.au.dk/∼ivan/Sigma.pdf
11. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based

on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 8

12. Damg̊ard, I.B.: Practical and provably secure release of a secret and exchange of
signatures. J. Cryptology 8, 201–222 (1995)

13. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). doi:10.1007/BFb0052225

14. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York (2004)

15. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38, 728 (1991)

http://dx.doi.org/10.1007/3-540-44598-6_15
http://dx.doi.org/10.1007/3-540-44598-6_15
http://dx.doi.org/10.1007/3-540-45811-5_21
http://dx.doi.org/10.1007/3-540-48184-2_11
http://dx.doi.org/10.1007/3-540-44598-6_6
http://dx.doi.org/10.1007/3-540-44598-6_6
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/3-540-48658-5_19
http://www.daimi.au.dk/~ivan/Sigma.pdf
http://dx.doi.org/10.1007/3-540-36178-2_8
http://dx.doi.org/10.1007/BFb0052225

206 H. Kılınç and A. Küpçü

16. Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Malkhi, D.
(ed.) DISC 2002. LNCS, vol. 2508, pp. 17–32. Springer, Heidelberg (2002). doi:10.
1007/3-540-36108-1 2

17. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17, 281–308 (1988)

18. Henry, R., Goldberg, I.: Batch proofs of partial knowledge. In: Jacobson, M.,
Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954,
pp. 502–517. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38980-1 32

19. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on commit-
ted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 6

20. Kılınç, H., Küpçü, A.: Optimally efficient multi-party fair exchange and fair secure
multi-party computation. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048,
pp. 330–349. Springer, Cham (2015). doi:10.1007/978-3-319-16715-2 18

21. Kılınç, H., Küpçü, A.: Efficiently making secure two-party computation fair. Cryp-
tology ePrint Archive, Report 2014/896

22. Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s
garbled circuit construction. In: Proceedings of 27th Symposium on Information
Theory in the Benelux (2006)

23. Kiraz, M.S., Schoenmakers, B.: An efficient protocol for fair secure two-party
computation. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 88–105.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-79263-5 6

24. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. Comput. Netw. 56,
50–63 (2012)

25. Lindell, A.Y.: Legally-enforceable fairness in secure two-party computation. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-79263-5 8

26. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72540-4 4

27. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. J. Privacy Confidentiality 1, 59–98 (2009)

28. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. J. Cryptology 25, 680–722 (2012)

29. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party computa-
tion. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol.
3958, pp. 458–473. Springer, Heidelberg (2006). doi:10.1007/11745853 30

30. Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: more efficient
and secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 36–53. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 3

31. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00457-5 22

32. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 9

33. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003). doi:10.1007/
3-540-39200-9 6

http://dx.doi.org/10.1007/3-540-36108-1_2
http://dx.doi.org/10.1007/3-540-36108-1_2
http://dx.doi.org/10.1007/978-3-642-38980-1_32
http://dx.doi.org/10.1007/978-3-540-72540-4_6
http://dx.doi.org/10.1007/978-3-319-16715-2_18
http://dx.doi.org/10.1007/978-3-540-79263-5_6
http://dx.doi.org/10.1007/978-3-540-79263-5_8
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/11745853_30
http://dx.doi.org/10.1007/978-3-642-40084-1_3
http://dx.doi.org/10.1007/978-3-642-40084-1_3
http://dx.doi.org/10.1007/978-3-642-00457-5_22
http://dx.doi.org/10.1007/3-540-46766-1_9
http://dx.doi.org/10.1007/3-540-39200-9_6
http://dx.doi.org/10.1007/3-540-39200-9_6

Efficiently Making Secure Two-Party Computation Fair 207

34. Ruan, O., Chen, J., Zhou, J., Cui, Y., Zhang, M.: An efficient fair UC-secure
protocol for two-party computation. Secur. Commun. Netw. 7, 1253–1263 (2013)

35. shelat, A., Shen, C.: Two-output secure computation with malicious adversaries. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-20465-4 22

36. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998). doi:10.1007/BFb0054113

37. Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-72540-4 5

38. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)

http://dx.doi.org/10.1007/978-3-642-20465-4_22
http://dx.doi.org/10.1007/BFb0054113
http://dx.doi.org/10.1007/978-3-540-72540-4_5

Fast Optimistically Fair Cut-and-Choose 2PC

Alptekin Küpçü1 and Payman Mohassel2(B)

1 Koç University, İstanbul, Turkey
akupcu@ku.edu.tr

2 Yahoo Labs, Sunnyvale, USA
payman.mohassel@gmail.com

Abstract. Secure two party computation (2PC) is a well-studied prob-
lem with many real world applications. Due to Cleve’s result on general
impossibility of fairness, however, the state-of-the-art solutions only pro-
vide security with abort. We investigate fairness for 2PC in presence of a
trusted Arbiter, in an optimistic setting where the Arbiter is not involved
if the parties act fairly. Existing fair solutions in this setting are by far
less efficient than the fastest unfair 2PC.

We close this efficiency gap by designing protocols for fair 2PC with
covert and malicious security that have competitive performance with
the state-of-the-art unfair constructions. In particular, our protocols only
requires the exchange of a few extra messages with sizes that only depend
on the output length; the Arbiter’s load is independent of the compu-
tation size; and a malicious Arbiter can only break fairness, but not
covert/malicious security even if he colludes with a party. Finally, our
solutions are designed to work with the state-of-the-art optimizations
applicable to garbled circuits and cut-and-choose 2PC such as free-XOR,
half-gates, and the cheating-recovery paradigm.

Keywords: Secure two-party computation · Covert adversaries · Cut-
and-choose · Garbled circuits · Fair secure computation · Optimistic fair
exchange

1 Introduction

In electronic commerce, privacy and fairness are two sought-after properties as
depicted in work related to contract signing and fair exchange [5,6,8,9,14,21,49].
Fair exchange is used in electronic payments to buy or barter items [12,43] and
contract signing is often used to ensure fairness: either all parties sign and agree
on the contract, or the contract is invalid.

Fair secure two-party computation (2PC), a fundamental problem in cryp-
tography, can be used to address both the privacy and fairness concerns, simul-
taneously. Alice and Bob would like to jointly compute a function of their private
inputs, such that nothing other than the output leaks, and either both parties

A. Küpçü—We thank TÜBİTAK, the Scientific and Technological Research Council
of Turkey, project 111E019, and European Union COST Action IC1306.

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 208–228, 2017.
DOI: 10.1007/978-3-662-54970-4 12

Fast Optimistically Fair Cut-and-Choose 2PC 209

learn the output or either do (e.g. two banks trying to calculate a joint credit
score for a customer, without giving away critical private information). Unfor-
tunately, however, there is a significant efficiency gap between secure 2PC that
achieve fairness and their unfair counterparts that have been the subject of many
recent implementations and optimizations.
2PC Without Fairness: Yao [61] introduced the first 2PC with security against
honest-but-curious adversaries [46] and a large body of recent work has focused
on making 2PC practical in presence of stronger (covert and malicious) adver-
saries [7,23,45,47,50,54].

The cut-and-choose paradigm is a popular method for enhancing the security
of Yao’s garbled circuit protocol to the case of malicious (or covert) adversaries
where the players can deviate arbitrarily. In a nutshell, in this paradigm, one
player (Alice) garbles many circuits while the other player (Bob) checks a ran-
domly chosen subset (to ensure that the garbling was done correctly) and eval-
uates the rest. Until recently, many existing solutions (e.g. [47,48,51,52,59,60])
required garbling at least 3s circuits to detect cheating with probability 1−2−s.
The high number of garbled circuits is due to the fact that all these construc-
tions ask that the evaluator computes a “majority output” and, for it to be valid,
require that more than half of the evaluated circuits are correct. For the majority
output to be valid, parties also need to enforce equality of the garbler’s input
to the majority of the circuits evaluated. This is often handled via a procedure
called input-consistency check.

The recent work of Lindell [45] shows how to reduce the number of gar-
bled circuits by a factor of 3.1 In this approach, the second player evaluates
the unchecked circuits, but is content with computing only one correct output
(instead of a majority output) due to a cheating-detection component. This
allows one to reduce the number of circuits to s and still achieve 1−2−s security.

A more modest security guarantee for 2PC is covert security, proposed
by Aumann and Lindell [7], which provides a practical alternative to the mali-
cious setting. In this setting, the adversary can cheat with some small but non-
negligible probability. The rationale is that a reputable real-world entity will not
risk getting caught with non-negligible probability due to loss of reputation or
the legal/economical costs. The protocols in the covert setting are more efficient
than their malicious counterparts. For instance, in the cut-and-choose paradigm,
one can settle for only garbling s = 5 circuits if 1−1/s = 4/5 probability of get-
ting caught is prohibitive enough. Back to our two banks computing a customer’s
credit score scenario, the financial losses when a bank gets caught cheating can
be seen as prohibitive as a negligible probability of cheating.
2PC with Fairness: All the above-mentioned work focus on security with
abort, where the malicious party is allowed to abort the protocol after he learns
the output of the computation, but before the honest party obtains the out-
put, because it is known that achieving general fairness is impossible [20]. This
limits the real world applicability of the most efficient solutions. An interested

1 An alternative approach for reducing the number of circuits by a factor of 1.5 was
introduced by [27].

210 A. Küpçü and P. Mohassel

corporation is less likely to adopt 2PC solutions if it has to risk being at a compet-
itive disadvantage by revealing the outcome of the computation to a competitor
without learning it itself.

There are two main approaches for achieving fairness in general-purpose
2PC.2 (i) Gradual release-based approaches let Alice and Bob reveal each
other’s output piece by piece, using super-constant rounds [33,55,57,58]. (ii)
Arbiter-based approaches achieve constant round complexity by assuming
that a trusted third party is available when needed [18,31,32,44]. Optimistic
approaches employ the Arbiter only if there is a dispute among the parties [5].

The most relevant work to ours is that of Cachin and Camenisch [18], and
the follow up work of [31], in the same optimistic Arbiter-based setting. Both
constructions utilize zero-knowledge proofs that require public-key operations,
and hence have a high computational cost compared to the state-of-the-art cut-
and-choose 2PC. Furthermore, in [18], the Arbiter may need to redo almost the
whole computation in case of a malicious behavior, which creates a bottleneck
in the system.

Lindell’s optimistic framework [44], on the other hand, necessitates an elec-
tronic payment system. It is possible that one party obtains the output of
the computation, whereas the other obtains a payment. [1,2,15,30,37,43] also
employ such penalty-based fairness models. These constructions are incompara-
ble to ours as they work in a different setting and make different assumptions.
See Table 1 for a list of the main differences between these work and ours.

Table 1. Comparison to the most related previous work.

[18] [44] [31]

Resolutions with
Arbiter take time
proportional to the
circuit size

Requires a payment
system and employs
penalty-based fairness

Efficiently adds
fairness, but to
zero-knowledge based
2PC protocols only

Our Contribution: In this paper we investigate fairness for 2PC in presence of
a trusted Arbiter in an optimistic setting, where the Arbiter is not involved if the
parties act fairly. We design efficient protocols for fair 2PC with security against
covert and malicious adversaries. Our constructions follow the cut-and-choose
paradigm, and for the first time, close the efficiency gap between fair 2PC and
the state-of-the-art unfair solutions, in this setting. In particular:

� The overhead of our protocols against state-of-the-art unfair solutions is
small; only a constant number of extra rounds and a few messages with sizes
that only depend on the output length.
� The Arbiter’s load is minimal, and independent of the size of computation.

2 A different line of work focuses on achieving fairness not in general but for specific
applications [3,16,17,22,25].

Fast Optimistically Fair Cut-and-Choose 2PC 211

� A malicious Arbiter can only break fairness, but not covert/malicious secu-
rity even if he colludes with a party. We prove this via a simulator for the
usual security with abort definition, when the adversary is also controlling
the Arbiter.
� Our protocols are compatible with optimizations applicable to cut-and-
choose 2PC such as free-XOR [36], FleXor [35], and half-gates [62]. It also
utilizes the cheating-recovery paradigm, and hence uses a reduced number
of garbled circuits. These render our protocols the most efficient fair secure
computation protocols to date.
� Our work is the first to consider fairness in the covert adversary model.

2 Overview of Our Constructions

We review the high level ideas behind our covert and malicious 2PC construc-
tions next, emphasizing the non-trivial parts. Our starting point in each case
is the state-of-the-art protocol with security with abort (in the cut-and-choose
paradigm). We then show how to enhance and modify each at very low cost in
order to obtain fairness in the presence of an Arbiter.

Some of our techniques are similar to that of Kılınç and Küpçü [31] who also
provide an efficient solution for fair 2PC in the same setting. Similar to ours,
their solution employs commitments to output labels, and verifiable escrows.
But they instantiate these using zero-knowledge proofs of knowledge. In fact,
verifiable escrow inherently employs zero-knowledge proofs. When one switches
to the cut-and-choose setting, it is unclear how to deal with the multitude of such
commitments and verifiable escrows, and still preserve correctness and efficiency.
Our solutions are the first to combine optimistic Arbiter-based fairness and the
cut-and-choose paradigm efficiently.

2.1 Fair Covert 2PC

There are various ways of combining fairness and covert security in a simulation-
based definition. In this paper we consider the natural notion where both fairness
and correctness/privacy are guaranteed with a reasonable (not all-but-negligible)
probability 1 − ε but both fairness and correctness/privacy are lost with proba-
bility ε against active cheating. A related notion to fairness in the covert setting
is 1/p security [24,28]. In that line of work [10,11,26,53], the ideal world provides
complete fairness (as in our case for malicious adversaries), but the simulation
only needs to achieve 1/p indistinguishability between the ideal and real worlds.
Our approach is slightly different: we directly take the covert adversary model
[4,7], and modify it to preserve fairness unless the adversary cheats and remains
undetected. Note that the 1/p security does not explicitly model detection of the
adversary’s misbehavior. It is an interesting question to understand the relation
between the two notions. Next, we review the main technical difficulties in our
covert construction.

212 A. Küpçü and P. Mohassel

Security with Abort. Recall the covert 2PC protocol of Aumann and Lin-
dell [7]. Alice generates s garbled circuits GC1, . . . ,GCs. Then, the parties per-
form � (number of input bits) oblivious transfers (OTs) for Bob to learn his
garbled inputs (this is intentionally done for all s circuits and before the open-
ing). Alice sends the s garbled circuits to Bob. Parties then perform a coin-toss
to choose a random index e ∈ {1, . . . , s}. Alice opens the secrets for all garbled
circuits and OTs except for the eth one. Bob checks correctness of the opened
circuits and the corresponding OTs, and aborts if cheating is detected. Else,
Alice sends her garbled inputs for the eth circuit. Bob evaluates the circuit and
learns his own output. He also obtains the garbled values for Alice’s output,
which he sends to her for translation.

It is easy to see that the above construction is not fair. We now highlight the
main changes we make to this protocol to achieve fairness.

Delay Evaluator’s Output Translation. Note that Bob can abort the proto-
col immediately after learning his output and without forwarding Alice’s output
to her. Therefore, we modify the protocol so that Alice does not send to Bob the
translation table for his output (mapping output labels to actual bits) until he
sends Alice’s garbled output to her. But note that this trivial change fails since
now Alice can abort before sending the translation table to Bob.

Hence, we need to ensure that if Alice aborts at this stage, Bob has enough
information to invoke an output resolution protocol with the Arbiter and show
evidence that he has been following the steps of the protocol and hence deserves
to know the output. After checking Bob’s claim, the Arbiter should be able to
provide him with sufficient information to decode his output.

Prove Bob’s Honesty to the Arbiter. Notice that efficiently proving this is
a non-trivial task. For example, in [18], the Arbiter and the resolving party re-
perform almost the whole computation for this purpose. In our case, Bob’s proof
of following through with the protocol will be the garbled output he computes for
Alice’s output. Note that due to the output-authenticity property of the garbling
scheme, Bob cannot forge this value except if he honestly computes the output.
In order to enable the Arbiter to check the validity of Bob’s claimed output label,
Alice will send hashes of her output labels (in permuted order) to Bob along with
the garbled circuits, and a signature for the eth one. Bob verifies validity of these
hashes for the opened circuits. Now when he goes to the Arbiter, he shows both
the output labels he obtained for Alice’s output, and the signed hashes for the
eth circuit. The Arbiter can verify that the two are consistent, by ensuring that
there is one output label provided per pair.

Equip the Arbiter with the Translation Table for Bob’s Output. Fur-
thermore, the Arbiter should have sufficient information to pass along to Bob
for decoding his output. Hence, Alice encrypts the translation table for Bob’s
output under the Arbiter’s public key and sends it to Bob along with the garbled
circuits, and a signature for the eth one. Bob checks validity of these encryptions
for the opened circuits. Once Bob’s claim of behaving honestly is verified, the
Arbiter can decrypt the translation table, and send it to Bob for him to decode

Fast Optimistically Fair Cut-and-Choose 2PC 213

his output. The signature is needed to make sure that Bob is sending a legitimate
decoding table for decryption. Since Bob verified the opened ones, he is ensured,
with good probability, that the eth decoding table is proper.

Simulation-Based Proof with Fairness. One important difference between
our proof and those of standard 2PC is that in our case the ideal trusted party
must only be contacted by the simulator once it is certain that both parties can
obtain the output, as first observed by Kılınç and Küpçü [31] for indistinguisha-
bility of the ideal and real world outputs. Therefore, to overcome this difficulty,
Alice also commits to Bob’s output translation tables as cB

i using a trapdoor
commitment, and opens them for the opened circuits. Bob ensures that the com-
mitted and encrypted translation tables are the same (in fact, we encrypt the
commitment openings). For the eth circuit, she opens cB

e at the last step of the
protocol. The reason we need these commitments is that, unlike standard covert
2PC, the Alice simulator in the proof for the case of corrupted Bob does not have
fB(xA, x′

B) when sending the garbled circuits (since in the fair protocol neither
party may learn the output at this stage), and hence cannot embed the output
in the eth one at that stage. With trapdoor commitments, at a later stage, she is
able to open the translation to something different in order to ensure the “fake”
evaluation circuit evaluates to the correct output fB(xA, x′

B). The hiding prop-
erty of the commitment scheme ensures indistinguishability of the simulator’s
actions.

Handle Premature Resolutions. The parties have the right to contact the
Arbiter. But they may choose to do so at a stage other than the prescribed one.
For example, Bob may invoke the output resolution before he sends Alice’s out-
put labels to her. This behavior is mitigated by requiring that Bob provides the
Arbiter with Alice’s output labels that match the signed decoding table. Due to
output authenticity of the garbling scheme and unforgeability of the signature
scheme, Bob cannot cheat against the Arbiter and must provide correct labels.
Later on, Alice can recover her output through her own output resolution pro-
tocol. A timeout mechanism ensures that Bob must contact the Arbiter during
a predefined time3, and immediately after that Alice can contact the Arbiter,
without waiting indefinitely.

A Note on Synchronicity. Observe that we employ a timeout for resolutions
with the Arbiter. Katz et al. [29] define a very nice framework for integrating syn-
chronicity in the Universal Composability [19] framework. They provide a clock
functionality which allows all honest parties to proceed further once a particular
clock signal is reached, allowing for synchronous protocols. In that setting, they
show input completeness and guaranteed termination can be achieved together
(though not necessarily fairness). In our protocols, the only place we employ
loosely synchronized clocks is for resolutions with the Arbiter. The remaining
(optimistic) part of the protocol employs no synchronicity assumptions (just
local network timeouts). There are two main reasons we choose to proceed this
3 Such timeout mechanisms are easy to implement and standard in the optimistic fair

exchange literature (see e.g. [5,43]).

214 A. Küpçü and P. Mohassel

way: (1) Due to a result by Küpçü and Lysyanskaya [41] (see also [40]), if one
would like to employ multiple autonomous (independent) entities to replace a
single trusted Arbiter, we are forced to employ timing models. (2) Optimistic fair
exchange literature shows that the timeout-based resolutions can be exchanged
with slightly more expensive protocols (with one more round) that provide fair-
ness without requiring timeouts (see e.g. [5,43]). We believe a similar methodol-
ogy may be employed here to replace the timeouts, and leave such an extension
to our protocols as future work.

Proof overview. We obtain security against malicious Bob as follows: The
simulator acts as Alice, except that she commits to and encrypts random val-
ues instead of actual output decoding table in cB

e , dB
e . Towards the end, if the

simulator obtains proper output labels for Alice’s output from the adversar-
ial Bob, then she contacts the ideal trusted party to learn Bob’s output and
simulate opening of cB

e to the actual values. Hiding commitments ensure indis-
tinguishability of Alice’s behavior. If, instead of sending them directly to Alice,
Bob contacts the Arbiter and performs a proper resolution, the simulator simu-
lates the Arbiter, and upon receiving proper output labels for Alice, contacts the
ideal trusted party for obtaining Bob’s output. She then sends the correspond-
ing decoding table as if it was the decryption of dB

e . Semantic security ensures
indistinguishability of Alice’s and Arbiter’s behavior.

For security against covert Alice, different from the unfair scenario, the sim-
ulator contacts the ideal trusted party if Alice acts properly, and obtains Alice’s
output. He sends the corresponding labels back to Alice. He simulates by him-
self Bob’s Arbiter resolution should Alice not respond back with Bob’s output
labels’ openings. If Alice later contacts the Arbiter for resolution, he returns
back Alice’s output labels again.

2.2 Fair Malicious 2PC

Security with Abort. Our starting point is the cut-and-choose 2PC of Lindell
[45], which contains a cheating-detection component to remove the requirement
that majority of the circuits are correct, and hence reduce the number of circuits
by a factor of 3.

In this protocol, Alice garbles s circuits GC1, . . . ,GCs with the exception that
she uses the same output labels for all circuits. Parties also perform � OTs for Bob
to learn his input labels. Bob then chooses a random subset of these circuits to be
evaluated, and the rest are to be opened and checked for correctness later. Bob
evaluates the evaluation circuits. Since output labels are reused for all circuits,
Bob expects to retrieve the same labels from all evaluations. If this is indeed the
case, he only needs to ensure that one of the evaluations was correct in order to
make sure he has the correct output. If Bob obtains different labels for at least
a single output wire, he uses the two distinct labels W0 and W1 corresponding
to values 0 and 1, as his proof of Alice’s cheating.

At this stage, parties engage in a cheating-detection phase, which itself is a
malicious cut-and-choose 2PC for evaluating a cheating-detection (CD) circuit.
This cut-and-choose is performed using 3s circuits (and a majority output),

Fast Optimistically Fair Cut-and-Choose 2PC 215

but since the CD circuit is significantly smaller, this will be a small overhead,
independent of the actual circuit’s size. The CD circuit takes W0 and W1 as Bob’s
input (his evidence of Alice’s cheating), and takes Alice’s input xA to the original
computation as her input. If Bob’s two labels are valid proofs (Alice embeds the
output labels in the CD circuits, and the CD circuit checks whether Bob’s two
labels are among them), he learns Alice’s input xA and can compute f(xA, xB)
on his own. Otherwise he learns a random value. It is important that Alice does
not know whether Bob learned the output by evaluating the computation circuits
or the cheating-detection circuits. Alice then opens the check circuits and Bob
aborts if any of the checks fail. Else, he sends Alice’s output labels to her.

Handle Alice’s Input Consistency. Deviating from [45], we handle the con-
sistency of Alice’s inputs using the technique of [60], as it seems more suitable
for the tweaks we need to make to input-consistency. In this approach a univer-
sal hash function (UH) is evaluated on her input inside the circuits, and Bob
verifies that the output of this function is the same in all circuits. Alice’s input
is padded with a short random string rx in order to increase its entropy and
reduce the amount of information that can be learned about the input from the
output of the UH. Let � be the input length and s′ be a security parameter. [60]
shows that a random matrix of dimensions s′ × (� + 2s′ + log s′) over GF (2) can
be used as a UH, where the evaluation consists of multiplying this matrix with
the input vector (and getting a vector of length s′).

Delay Bob’s Output via a One-time Pad. Similar to the covert 2PC, it
is easy to see that the above construction is not fair. In particular, Bob can
abort the protocol immediately after learning his output and without forwarding
Alice’s output to her. But unlike our fair covert 2PC, delaying the transmission
of the output translation table is not sufficient for preventing Bob from learning
his output early. Since the same output labels are used for all circuits and a
fraction of them are opened, Bob can reconstruct the translation table on his
own after the opening phase, and learn his output.

To overcome this issue, we encrypt Bob’s output using a one-time pad padB

that is Alice’s additional input to the computation circuit. In particular, the
circuit returns fB(xA, xB) ⊕ padB as Bob’s output, and the padB itself is only
revealed in the final step of the protocol. Alice’s output in the circuit is also
encrypted using a separate pad padA of her choice, to prevent Bob from learning
her output even after the opening.

Commit to the Consistent Pad. Note that simply revealing the padB to Bob
does not provide Bob with sufficient guarantee that it is the same padB Alice used
in the computation. Hence, for each circuit Alice sends a trapdoor commitment
cB
i to the translation table PadDeci for the input wires associated with padB .

She also encrypts the opening of this commitment as dB
i using the Arbiter’s

public key, and signs it for resolution purposes. For the opened circuits, cB
i and

dB
i are opened and checked. In the final stage, in order to reveal padB , Alice

opens cB
i for the evaluated circuits. But, we are not done yet. Bob learns one or

more pad values used in the evaluation circuits, and needs to determine which is

216 A. Küpçü and P. Mohassel

the correct one for decrypting his output. To facilitate this, we apply a separate
UH to padB (i.e. Mp · (padB‖rp) for a random matrix Mp) in the computation
circuits, which Bob uses in the final stage to determine the “correct” pad among
those retrieved. Without this, we could not have guaranteed correctness.

Simulate with Fairness. For simulation purposes, similar to the fair covert
2PC, the fact that the simulator can open cB

i to an arbitrary pad in the final
stage allows the simulation to go through by postponing the query to the ideal
trusted party for obtaining the output, until we are sure both parties can learn
the output. Remember that such a simulation is a necessity for simulating fair
secure computation protocols properly [31].

Commit to Alice’s Output Early. Similar to the fair covert 2PC, we also need
to ensure that if Alice aborts before revealing padB , Bob has enough information
to invoke an output resolution protocol with the Arbiter and show evidence that
he has been following the steps of the protocol. In the covert protocol, we used
the output-authenticity property of the garbling scheme for this purpose, but in
the current protocol, output-authenticity is lost after the opening stage, since
all circuits use the same output labels. To circumvent this issue, we have Bob
commit to the output labels for Alice’s output before the opening stage, and
have Alice sign the commitment. In case of a resolution, Bob opens the signed
commitment for the Arbiter, who checks its correctness and consistency with a
signed translation table provided by Alice, and only then decrypts dB

i escrows
for Bob to learn the pads and obtain his output.

Fix Cheating-Detection. Note that in regular cheating-detection, Bob only
learns xA and hence the plaintext version of Alice’s output fA(xA, xB). But, Bob
needs to commit to the output labels for Alice’s output, and because the output
translation table of Alice corresponds to a padded output, knowing fA(xA, xB)
is not sufficient for simulation. Therefore, we need to modify the CD circuit
as well. We fix this by having the CD circuit also output padA. Bob can now
compute fA(xA, xB) ⊕ padA, and use Alice’s output translation table GDecA to
determine which evaluated circuit returned the correct output (we know there
is at least one such circuit with all but negligible probability). He commits to
those labels as Alice’s output labels.

Proof overview. Our proofs are very similar in essence to the above malicious
Bob case. Simulator Alice would commit to and encrypt random values, and
later when she obtains the actual output from the ideal trusted party, she would
simulate opening them to the correct values. For malicious Alice case, simula-
tor Bob also commits to random labels for Alice’s outputs, and later simulates
opening them to proper labels.

3 Preliminaries

Bellare et al. [13] introduce the notion of a garbling scheme Garble as a cryp-
tographic primitive. Besides the standard privacy guarantees, we heavily take
advantage of the output-authenticity of a garbling scheme, which intuitively

Fast Optimistically Fair Cut-and-Choose 2PC 217

guarantees that the evaluator cannot forge valid output labels except by honestly
evaluating the garbled circuit.

In a standard oblivious transfer (OT) protocol [56], the receiver has a selec-
tion bit σ, and the sender has two messages a0, a1. At the end of the protocol,
the receiver learns aσ while the sender does not learn anything. In a commit-
ting oblivious transfer [34,59], at the end of the interaction, the receiver also
receives a commitment to the sender’s input messages, and the sender obtains
the opening to those commitments. As a result, the receiver can ask the sender
to open his messages at a later stage. Efficient constructions for committing OT
were proposed in [52,59].

The optimistic fair exchange literature includes many implementation
details we skip here for the sake of clarity (see e.g. [5,41,42]). If Alice already
registered her signature verification key with the Arbiter, our protocol can be
employed as is. But, if we want anonymity, then the Arbiter must have a way
of obtaining this verification key. The standard mechanism is to put it into the
label of a labeled encryption scheme. In our case, Alice can generate a new key
pair for each computation (or even circuit) and put the verification key into the
label of dB

i encryptions, and Bob can verify the signatures using this verification
key. The Arbiter can then also use this key for verification. Details such as these
and how to handle timeouts without tight synchronization are well-discussed in
the previous work [5,38,39,43], and hence we do not repeat for the sake of space.

4 Protocols

Due to the page limitations, we defer the security definitions of ideal and real
worlds for fair secure two party computation, as well as full security proofs via
simulation to the full version [63]. Both protocols remain secure in the unfair
sense even if the Arbiter actively cheats and colludes with one of the parties.

In Figs. 1 and 2 we provide a full description of our fair covert 2PC, and Figs. 8
and 9 show the resolutions with the Arbiter for Bob and Alice, respectively.
Figures 3, 4, 5, 6 and 7 describe the full protocol fairly secure against malicious
parties, and Figs. 10 and 11 show the resolutions with the Arbiter for Bob and

Table 2. Overhead for fairness (Covert). Round is a single message. s is the statistical
security parameter, m is Bob’s output length.

Extra rounds Extra messages’ size Operation type

1 O(sm) Public Key

Table 3. Overhead for fairness (Malicious). Round is a single message. s is the sta-
tistical security parameter, m is the output length, t is a security parameter for input
consistency.

Extra rounds Extra input length Extra messages’ size Operation type

3 O(m + t) O(s(m + t)) Public Key

218 A. Küpçü and P. Mohassel

Alice’s input: xA ∈ {0, 1}�. Bob’s input: xB ∈ {0, 1}�.
Common input: Alice and Bob agree on the description of a circuit C, where
C(xA, xB) = f(xA, xB) = (fA(xA, xB), fB(xA, xB)), and a second-preimage resis-
tant hash function H : {0, 1}∗ → {0, 1}�.
s is a statistical security parameter that is inversely proportional to the bound on
the cheating probability. L is a computational security parameter, so, for example,
each key label is L-bits long. Let TCommit(·) be a trapdoor commitment scheme.
Setup: Let (PKT , SKT) be the Arbiter’s key pair for a public key encryption, and
(SKA, V KA) be the signing-verification key-pair for a digital signature scheme for
Alice. At the beginning of the protocol, both parties obtain the Arbiter’s public
key from the Arbiter. Alice sends her verification key to Bob and the Arbiter.
Output: Alice learns an m-bit string fA(xA, xB) and Bob learns an m-bit string
fB(xA, xB).

Alice Prepares the Garbled Circuits.
1. For 1 ≤ i ≤ s, Alice computes GCi ← Garble(C).
2. Let inA,i,j

b denote the key for bit b for Alice’s jth input wire in the ith garbled
circuit for b ∈ {0, 1}, 1 ≤ i ≤ s, and 1 ≤ j ≤ �. inB,i,j

b is defined similarly for
Bob’s input labels.

3. Let outA,i,j
b denote the key for bit b for Alice’s jth output wire in the ith

garbled circuit. outB,i,j
b is used for Bob’s output labels.

4. Alice lets GDecB
i =

{
outB,i,j

0 , outB,i,j
1

}m

j=1
be the decoding table for Bob’s

output.
5. Alice computes GDecA

i =
{
H(outA,i,j

bi,j
), H(outA,i,j

¬bi,j
)
}m

j=1
for random bits bi,j

as the output validity-checking table for her output. [This table is randomly
permuted based on the bits bi,j such that in case of output resolution, the
Arbiter can check validity of output labels without learning their actual value.]

6. She computes cB
i = TCommit(GDecB

i) as the commitment to Bob’s output
decoding table. Let GDecOpenB

i be the opening of this commitment. She en-
crypts this opening as dB

i = EPKT (GDecOpenB
i) using the Arbiter’s public

key. [GDecA
i and dB

i will be used by the Arbiter to verify Bob’s honesty, and
give back Bob’s output decoding table, respectively. cB

i will be employed by
Bob to ensure that Alice behaves honestly at the last step. Note that GDecA

i

is computed using a second-preimage resistant hash function, whereas cB
i is

computed via trapdoor commitments.]

7. Alice signs those as σi = Sign(SKA, (sid,GDecA
i , dB

i)). [This signature will tie
the two decryption tables to the same circuit, and be checked by the Arbiter.
sid is the unique session identifier.]

Oblivious Transfer for Bob’s Input.
1. Alice and Bob engage in � committed OTs, where in the jth OT, Bob’s input is

xB,j and Alice input is a pair where the first component is [inB,1,j
0 , . . . , inB,s,j

0]
and the second component is [inB,1,j

1 , . . . , inB,s,j
1]. As a result, Bob learns inB,i,j

xB,j

for 1 ≤ i ≤ s, 1 ≤ j ≤ �.

Alice Sends the Circuits.
1. Alice sends

{
GCi,GDec

A
i , cB

i , dB
i

}s

i=1
to Bob.

Fig. 1. Optimistic fair Covert 2PC

Fast Optimistically Fair Cut-and-Choose 2PC 219

Alice, respectively. The vertical lines in the figures represent parts that would not
have existed in the unfair counterpart. Tables 2 and 3 summarize the overhead
of adding fairness in covert and malicious protocols, respectively.

OT-based Challenge Generation.
1. Bob picks a random challenge index e, lets be = 0, and bi = 1 for all i �= e.
2. Alice and Bob run s OTs where Bob’s input (as the receiver) in the ith OT

is bi while Alice (as the sender) inputs a pair where the first component is
her garbled inputs {inA,i,j

XA,j
}�

j=1 along with σi, and the second component is

the openings for GCi,GDec
A
i , cB

i , dB
i and the input and randomness she used

in the ith committed OT above. In other words, for i �= e Bob learns openings
for everything about the circuits, and for i = e he learns Alice’s input labels
and her signature.

Bob Verifies Check Circuits.
1. For i �= e, Bob uses the openings he obtained in the challenge generation phase

to check the correctness of GCi. He verifies the consistency of cB
i with dB

i both
of which he has openings for. He checks that GDecB

i is consistent with GCi.
2. For i = e, he verifies the signature σe.

Bob Evaluates.
1. Note that Bob has Alice’s input labels for the eth circuit via the OT-based

challenge generation and his own input labels via the committed OT. He eval-
uates GCe.

Output Exchange.
1. Bob tells Alice that he is done with the evaluation.
2. Alice responds by sending σt = Sign(SKA, (sid, deadline)). Bob checks the

timeout and the session identifier are consistent with the agreed upon values,
and aborts otherwise.

3. Denote the labels for Alice’s output by
{
outA,e,j

outA,j

}m

j=1
. Bob sends these to

Alice, along with σe so that Alice will learn the evaluated circuit identifier e,
and then she translates them to her actual output on her own. If Alice does
not receive the correct labels in time, she contacts the Arbiter for resolution.

4. Alice opens cB
e to the decoding table GDecB

e , which Bob uses to decode his
actual output. If Bob does not receive the correct decoding table in time, he
contacts the Arbiter for resolution.

Fig. 2. Optimistic fair Covert 2PC (cnt’d)

Alice’s input: xA ∈ {0, 1}�. Bob’s input: xB ∈ {0, 1}�.
Common input: Alice and Bob agree on the description of a circuit C, where
C(xA, xB) = f(xA, xB) = (fA(xA, xB), fB(xA, xB)), and a second-preimage resis-
tant hash function H : {0, 1}∗ → {0, 1}�.
s is a statistical security parameter that represents the bound on the cheating
probability. L is a computational security parameter, so, for example, each key
label is L-bits long. s′ is a statistical security parameter associated with the input-
consistency matrix. Let t = 2s′ + log s′, and �′ = 2m + � + 2t.
Let TCommit(·) be a trapdoor commitment scheme, and Commit(·) be a regular
commitment scheme.

Fig. 3. Optimistic fair Malicious 2PC inputs

220 A. Küpçü and P. Mohassel

Setup: Let (PKT , SKT) be the Arbiter’s key pair for a public key encryption, and
(SKA, V KA) be the signing-verification key-pair for a digital signature scheme for
Alice. At the beginning of the protocol, both parties obtain the commitment pa-
rameters, and the Arbiter’s public key from the Arbiter. Alice sends her verification
key to Bob and the Arbiter.
Output: Alice learns an m-bit string outA = fA(xA, xB) and Bob learns an m-bit
string outB = fB(xA, xB).

Alice Prepares Input/Output Labels.
1. Alice chooses s PRF seeds sdA

1 , . . . , sdA
s , and commits to them using

Commit(sdA
1), . . . ,Commit(sdA

s). All the randomness Alice will use for gen-
erating the ith garbled computation circuit and its input labels will be derived
from sdA

i . Similarly, she chooses 3s PRF seeds sd′A
1 , . . . , sd′A

3s , and commits to
them, where the randomness she uses for generating the ith garbled cheating-
detection (CD) circuit and its input labels will be derived from sd′A

i .
2. Alice chooses rx, rp ∈R {0, 1}t, padA, padB ∈R {0, 1}m and sets xC

A =
padB‖rp‖xA‖padA‖rx. She will be using xC

A as her input to the computation
circuits instead of xA. We denote the jth bit of xC

A by xC
A,j .

3. Alice chooses inA,i,j
b ∈R {0, 1}L for b ∈ {0, 1}, 1 ≤ i ≤ s and 1 ≤ j ≤ �′ . inA,i,j

b

would be the b-key for Alice’s jth input wire in the ith computation garbled
circuit.

4. Alice sends Commit(H(inA,i,1

xC
A,1

‖ · · · ‖inA,i,�′
xC

A,�′
)) for 1 ≤ i ≤ s, i.e. commitments to

encoding of her inputs. This is intended to commit Alice to her inputs before
the matrices associated with input-consistency are chosen.

5. Alice lets her input to the CD circuit be xCD
A = xA‖padA‖rx. She chooses

random labels for the associated input wires in the CD circuits and commits
to the encoding of her inputs as she did for the computation circuits.

6. Alice chooses W A,j
b ∈R {0, 1}L for j ∈ {1, . . . , m} and b ∈ {0, 1}. Similarly,

she chooses W B,j
b ∈ {0, 1}L. These correspond to labels for output wires corre-

sponding to Alice’s and Bob’s output (padded with Alice’s pads), respectively,
and unlike the covert protocol, will be the same across all s circuits.

7. Alice lets GDecB =
{
H(W B,j

0), H(W B,j
1)

}m

j=1
be the decoding table for Bob’s

output. She also lets GDecA =
{
H(W A,j

0), H(W A,j
1)

}m

j=1
. The translation table

for other outputs of the circuit (i.e. outputs of the UH functions) will be created
in the standard way and with different labels for each circuit.

8. Alice lets PadDeci =
{
inA,i,j

0 , inA,i,j
1

}m+t

j=1
for the ith circuit (note that the first

m+t input wires are associated with Alice’s padB and rp). This is essentially a
decoding table for input wires for Alice’s padB and rp. Alice then commits to
this table cB

i = TCommit(PadDeci) using the trapdoor commitment scheme,
and encrypts its opening as dB

i = EPKT (PadDecOpeni) using the Arbiter’s
public key.

Fig. 4. Optimistic fair Malicious 2PC

Fast Optimistically Fair Cut-and-Choose 2PC 221

Alice Prepares the Garbled Circuits.
1. Alice and Bob jointly choose random binary matrices Mx ∈R

{0, 1}s′×�+m+t, Mp ∈R {0, 1}s′×m+t. Let C′(xC
A, xB) = (fA(xA, xB) ⊕

padA, (fB(xA, xB) ⊕ padB , Mx · (xA‖padA‖rx), Mp · (padB ||rp))). In other
words, the circuit pads Alice and Bob’s output with separate pads generated
by Alice, and also outputs the result of applying the Mx and Mp to xA and
padB for input-consistency checks.

2. For 1 ≤ i ≤ s, Alice computes GCi ← Garble(C′) with the consideration that
she uses the input and output labels she generated above for the garbling.

3. Denote by CD the cheating detection circuit. Alice’s input to this circuit is
xCD

A = xA‖padA‖rx. Bob’s input is an L-bit string pc, his (potential) proof
of Alice’s cheating. CD’s computation is as outlined in Lindell [45] with the
exception that in case of detected cheating xA and padA are both revealed to
Bob. In particular, CD has the labels

{
W B,j

0 , W B,j
1

}m

j=1
and

{
W A,j

0 , W A,j
1

}m

j=1

embedded in it and checks whether pc is the XOR of the 0-key and the 1-key
for any of the wires. If so, it outputs to Bob xA‖padA . Otherwise, it outputs
a random string. CD also outputs Mx · (xA‖padA‖rx) to Bob. Alice has no
output.

4. For 1 ≤ i ≤ 3s, Alice computes GCDi ← Garble(CD) with the consideration
that she uses the input labels she generated above for garbling. The translation
tables for GCDi are generated in the standard way.

Oblivious Transfer for Bob’s Input to Computation Circuits. Alice and
Bob engage in � committed OTs, where in the jth OT, Bob’s input is xB,j and
Alice’s input is a pair where the first component is [inB,1,j

0 , . . . , inB,s,j
0] and the

second component is [inB,1,j
1 , . . . , inB,s,j

1]. As a result, Bob learns inB,i,j
xB,j

for 1 ≤ i ≤
s, 1 ≤ j ≤ �.

Alice Sends the Garbled Circuits. Alice sends
{
GCi, c

B
i , dB

i }s
i=1 and GDecA,

GDecB , and σoutA = Sign(SKA, (sid,GDecA)) to Bob (where sid is the unique
session identifier). She also sends

{
GCDi}3s

i=1 and the associated output translation
tables.

Challenge Generation. Alice and Bob jointly run a simulatable coin-toss to
generate a uniformly random s-bit string b and a uniformly random 3s-bit string
b′. Define the evaluation set E where i ∈ E if and only if bi = 0, and the evaluation
set E

′ similarly with respect to b′. Both parties learn E and E
′. Circuits are not

opened immediately, though.

Fig. 5. Optimistic fair Malicious 2PC (cnt’d)

222 A. Küpçü and P. Mohassel

Bob Evaluates Computation Circuits in E.
1. Alice sends her garbled input labels for xC

A for all GCi, i ∈ E, by open-
ing the commitments she made to them earlier. Alice also sends σi,pad =
Sign(SKA, (sid, dB

i)) for i ∈ E. Bob uses these input labels and those of his
own from the committed OTs to evaluate all GCi where i ∈ E.

2. If there is at least one circuit with a valid output, and all circuits
with a valid output return the same output labels W A,1

oA,1 , . . . , W A,m
oA,m

and

W B,1
oB,1 , . . . , W B,m

oB,m
, Bob lets CA = TCommit(W A,1

oA,1 , . . . , W A,m
oA,m

). Note that
through these, Bob can learn oA = outA ⊕ padA and oB = outB ⊕ padB , but
since he does not know the pads, these are useless. Bob lets pc be a random
L-bit string.

3. If there are at least two circuits with valid but different outputs, Bob chooses
the first output wire with different labels and denotes the two labels by W
and W ′. pc = W ⊕ W ′ will constitute Bob’s input to the cheating detection
circuits.

4. If all circuits are evaluated to invalid output labels (i.e. the obtained labels
are not consistent with GDecA and GDecB) or if the output of the UHs in any
two circuits are different Bob does not abort (until after the opening stage)
but instead commits to a random string of appropriate length in CA.

Evaluating Cheating-Detection Circuits in E
′.

1. Alice and Bob engage in L committed OTs, where in the jth OT, Bob’s input is
pcj and Alice’s input is a pair where the first component is the 3s input labels
corresponding to 0 and the second component is the 3s labels corresponding
to 1.

2. Alice sends her garbled input labels for xCD
A for GCDi where i ∈ E

′, by opening
the commitments she made to them earlier.

3. Bob uses the input labels to evaluate all GCDi with i ∈ E
′, and uses the

translation tables to translate to plaintext outputs. If any two UH outputs are
different or if they are different from those output in the computation circuits
Bob postpones aborting until the opening stage, commits to a random string
of appropriate length for CA.

4. Else, he considers the majority output as the correct output. If Bob had a valid
proof of cheating pc, he learns xA‖padA. He computes oA = fA(xA, xB)⊕padA

on his own. He then chooses a
{
W A,j

oA,j

}m

j=1
from the evaluation circuits that is

consistent with GDecA and oA, and lets CA = TCommit(W A,1
oA,1 , . . . , W A,m

oA,m
)

(with high probability there is at least one). [Note that in case Alice’s opening
of the check circuits are problematic, Bob will never decommit anyways.]

Bob Commits to Alice’s Garbled Output.
1. Bob sends CA as his commitment to Alice’s output labels.
2. Alice sends back σoA = Sign(SKA, (sid, deadline, CA)). Bob can use this in

case of resolution to prove to the Arbiter that he computed Alice’s output
honestly.

Fig. 6. Optimistic fair Malicious 2PC (cnt’d)

Fast Optimistically Fair Cut-and-Choose 2PC 223

Alice Opens Everything for Check Circuits.
1. For i /∈ E, Alice opens sdA

i to open all secrets of GCi. She also opens cB
i , dB

i ,
and the randomness used in committed OTs for Bob’s input. Bob checks cor-
rectness of opened circuits and their consistency with GDecA,GDecB . He also
verifies correctness cB

i , dB
i and the opened PadDeci. He aborts if any of the

checks fail.
2. For i /∈ E

′, Alice opens sd′A
i to open all secrets of GCDi. He also reveals the ran-

domness used in committed OTs for Bob’s input. Bob checks the correctness
of the opened circuits and the OTs, and aborts in case of a fail.

Output Exchange.
1. Bob opens CA to Alice’s output labels. Alice translates these to her actual

output outA using padA and the translation table, on her own. In case of a
problem, Alice resolves with the Arbiter.

2. Alice opens cB
i for i ∈ E. This allows Bob to learn the values Alice used

for padB , rp in all evaluated circuits. For each such value he computes Mp ·
(padB‖rp) and checks if the result is equal to the unique UH output he obtained
when evaluating the circuits. He chooses a pad meeting this requirement and
uses it to decode his final output outB . In case of a problem, Bob resolves with
the Arbiter.

Fig. 7. Optimistic fair Malicious 2PC (cnt’d)

1. Bob sends GDecA
e , dB

e , σe, σt to the Arbiter. He also sends labels for Alice’s
output i.e.

{
outA,e,j

outA,j

}m

j=1
.

2. The Arbiter verifies the signatures, checks that the time is earlier than the
deadline in σt and the session identifiers are matching. He also makes sure
outA,e,j

outA,j
values are consistent with GDecA

e . Essentially, one output label per
pair must be provided. He aborts if any of the checks fail.

3. In case of no fails, the Arbiter decrypts dB
e and sends GDecOpenB

e to Bob. He
stores

{
outA,e,j

outA,j

}m

j=1
for Alice.

4. Bob checks that GDecOpenB
e is the correct opening for cB

e ,a and uses GDecB
e in

the opening to translate his output labels to actual outputs.

aThis check is necessary against potentially malicious Arbiter to preserve cor-
rectness.

Fig. 8. Resolution for Bob (for optimistic fair Covert 2PC)

1. If Alice contacts the Arbiter before the timeout and Bob has not contacted the
Arbiter yet, the Arbiter tells Alice to come after the timeout.

2. If Alice contacts the Arbiter after the timeout and Bob has not contacted the
Arbiter yet, the protocol is aborted and no party obtains the actual output.

3. Else (Bob already contacted the Arbiter and resolved), the Arbiter sends{
outA,e,j

outA,j

}m

j=1
obtained via Bob’s resolution to Alice (after making sure she

is the same Alice, e.g. by asking for the input to a one way function whose
output was in the associated signature given by Bob, see e.g. [5]).

4. Alice translates
{
outA,e,j

outA,j

}m

j=1
to actual outputs on her own.

Fig. 9. Resolution for Alice (for optimistic fair Covert 2PC)

224 A. Küpçü and P. Mohassel

1. Bob sends GDecA, σGDecA , CA, σoA to the Arbiter. He also sends dB
i , σi,pad for

all i ∈ E to the Arbiter. He also opens CA to W A,j
oA,1 , . . . , W A,j

oA,m
.

2. The Arbiter verifies the signature, checks that the time is earlier than the dead-
line in the signature and the session identifiers match. He also makes sure the
opened values W A,j

oA,1 , . . . , W A,j
oA,m

are consistent with CA and GDecA. Essentially,
one output label per pair must be provided. He aborts if any of the checks fail.

3. In case of no fails, the Arbiter decrypts dB
i for i ∈ E and sends PadDecOpeni

to Bob. He stores W A,1
oA,1 , . . . , W A,m

oA,m
for Alice.

4. Bob checks that PadDecOpenB
i is the correct opening for cB

i , for i ∈ E, and then
uses PadDeci values to obtain his actual output outB as in the last step of the
main protocol.

Fig. 10. Resolution for Bob (for optimistic fair Malicious 2PC)

1. If Alice contacts the Arbiter before the timeout and Bob has not contacted the
Arbiter yet, the Arbiter tells Alice to come after the timeout.

2. If Alice contacts the Arbiter after the timeout and Bob has not contacted the
Arbiter yet, the protocol is aborted and no party obtains the actual output.

3. Else (Bob already contacted the Arbiter and resolved), the Arbiter sends
W A,1

oA,1 , . . . , W A,m
oA,m

obtained via Bob’s resolution to Alice.

4. Alice translates W A,1
oA,1 , . . . , W A,m

oA,m
to her actual outputs on her own.

Fig. 11. Resolution for Alice (for optimistic fair Malicious 2PC)

Acknowledgements. We thank TÜBİTAK, the Scientific and Technological
Research Council of Turkey, project 111E019, and European Union COST Action
IC1306.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party
computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44774-1 8

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE Security and Privacy (2014)

3. Asharov, G.: Towards characterizing complete fairness in secure two-party compu-
tation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 291–316. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54242-8 13

4. Asharov, G., Orlandi, C.: Calling out cheaters: covert security with public veri-
fiability. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
681–698. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 41

5. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Sel. Areas Commun. 18, 591–610 (2000)

6. Ateniese, G.: Efficient verifiable encryption (and fair exchange) of digital signa-
tures. In: ACM CCS (1999)

http://dx.doi.org/10.1007/978-3-662-44774-1_8
http://dx.doi.org/10.1007/978-3-642-54242-8_13
http://dx.doi.org/10.1007/978-3-642-34961-4_41

Fast Optimistically Fair Cut-and-Choose 2PC 225

7. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptol. 23, 281–343 (2010)

8. Avoine, G., Vaudenay, S.: Optimistic fair exchange based on publicly verifi-
able secret sharing. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 74–85. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27800-9 7

9. Bao, F., Deng, R., Mao, W.: Efficient and practical fair exchange protocols with
off-line TTP. In: IEEE Security and Privacy (1998)

10. Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-Secure multiparty computation
without honest majority and the best of both worlds. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 277–296. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22792-9 16

11. Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with dishon-
est majority. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 538–557.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 29

12. Belenkiy, M., Chase, M., Erway, C., Jannotti, J., Küpçü, A., Lysyanskaya, A.,
Rachlin, E.: Making p2p accountable without losing privacy. In: WPES (2007)

13. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM
CCS (2012)

14. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing
contracts. IEEE Trans. Inf. Theor. 36, 40–46 (1990)

15. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 24

16. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the social-
ist millionaires’ problem. Discret. Appl. Math. 111(1–2), 23–36 (2001)

17. Brandão, L.T.A.N.: Secure two-party computation with reusable bit-commitments,
via a cut-and-choose with forge-and-lose technique. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 441–463. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42045-0 23

18. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000). doi:10.
1007/3-540-44598-6 6

19. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

20. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: STOC (1986)

21. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-71677-8 9

22. Dong, C., Chen, L., Camenisch, J., Russello, G.: Fair private set intersection with
a semi-trusted arbiter. In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol.
7964, pp. 128–144. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39256-6 9

23. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.:
MiniLEGO: efficient secure two-party computation from general assumptions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
537–556. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 32

24. Gordon, S., Katz, J.: Partial fairness in secure two-party computation. J. Cryptol.
25(1), 14–40 (2012)

25. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM 58, 24 (2011)

http://dx.doi.org/10.1007/978-3-540-27800-9_7
http://dx.doi.org/10.1007/978-3-540-27800-9_7
http://dx.doi.org/10.1007/978-3-642-22792-9_16
http://dx.doi.org/10.1007/978-3-642-22792-9_16
http://dx.doi.org/10.1007/978-3-642-14623-7_29
http://dx.doi.org/10.1007/978-3-662-44381-1_24
http://dx.doi.org/10.1007/978-3-642-42045-0_23
http://dx.doi.org/10.1007/3-540-44598-6_6
http://dx.doi.org/10.1007/3-540-44598-6_6
http://dx.doi.org/10.1007/978-3-540-71677-8_9
http://dx.doi.org/10.1007/978-3-642-39256-6_9
http://dx.doi.org/10.1007/978-3-642-38348-9_32

226 A. Küpçü and P. Mohassel

26. Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13190-5 8

27. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8043, pp. 18–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 2

28. Katz, J.: On achieving the best of both worlds in secure multiparty computation.
In: STOC (2007)

29. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchro-
nous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 27

30. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using
a global transaction ledger. Cryptology ePrint Archive, Report 2015/574 (2015)

31. Kılınç, H., Küpçü, A.: Efficiently making secure two-party computation fair. In:
FC (2016)

32. Kılınç, H., Küpçü, A.: Optimally efficient multi-party fair exchange and fair secure
multi-party computation. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048,
pp. 330–349. Springer, Cham (2015). doi:10.1007/978-3-319-16715-2 18

33. Kiraz, M.S., Schoenmakers, B.: An efficient protocol for fair secure two-party
computation. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 88–105.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-79263-5 6

34. Kiraz, M.S., Schoenmakers, B., Villegas, J.: Efficient committed oblivious transfer
of bit strings. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC
2007. LNCS, vol. 4779, pp. 130–144. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75496-1 9

35. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR
gates that beats Free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44381-1 25

36. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 40

37. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. Cryptology ePrint
Archive, Report 2015/675 (2015)

38. Küpçü, A.: Efficient cryptography for the next generation secure cloud. Ph.D.
thesis, Brown University (2010)

39. Küpçü, A.: Efficient Cryptography for the Next Generation Secure Cloud: Pro-
tocols, Proofs, and Implementation. Lambert Academic Publishing, Saarbrücken
(2010)

40. Küpçü, A.: Distributing trusted third parties. ACM SIGACT News Distrib. Com-
put. Column 44, 92–112 (2013)

41. Küpçü, A., Lysyanskaya, A.: Optimistic fair exchange with multiple arbiters. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345,
pp. 488–507. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15497-3 30

42. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 252–267. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-11925-5 18

43. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. Comput. Netw. 56,
50–63 (2012)

http://dx.doi.org/10.1007/978-3-642-13190-5_8
http://dx.doi.org/10.1007/978-3-642-40084-1_2
http://dx.doi.org/10.1007/978-3-642-36594-2_27
http://dx.doi.org/10.1007/978-3-319-16715-2_18
http://dx.doi.org/10.1007/978-3-540-79263-5_6
http://dx.doi.org/10.1007/978-3-540-75496-1_9
http://dx.doi.org/10.1007/978-3-540-75496-1_9
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/978-3-540-70583-3_40
http://dx.doi.org/10.1007/978-3-642-15497-3_30
http://dx.doi.org/10.1007/978-3-642-11925-5_18
http://dx.doi.org/10.1007/978-3-642-11925-5_18

Fast Optimistically Fair Cut-and-Choose 2PC 227

44. Lindell, A.Y.: Legally-enforceable fairness in secure two-party computation. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-79263-5 8

45. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 1

46. Lindell, Y., Pinkas, B.: A proof of yaos protocol for secure two-party computation.
In: ECCC (2004)

47. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72540-4 4

48. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19571-6 20

49. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
PODC (2003)

50. Mohassel, P., Franklin, M.: Efficient polynomial operations in the shared-
coefficients setting. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC
2006. LNCS, vol. 3958, pp. 44–57. Springer, Heidelberg (2006). doi:10.1007/
11745853 4

51. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party computa-
tion. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol.
3958, pp. 458–473. Springer, Heidelberg (2006). doi:10.1007/11745853 30

52. Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: more efficient
and secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 36–53. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 3

53. Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00457-5 1

54. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 40

55. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003). doi:10.1007/
3-540-39200-9 6

56. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187 (2005)

57. Ruan, O., Chen, J., Zhou, J., Cui, Y., Zhang, M.: An efficient fair UC-secure
protocol for two-party computation. Secur. Commun. Netw. 7, 1253–1263 (2013)

58. Ruan, O., Zhou, J., Zheng, M., Cui, G.: Efficient fair secure two-party computation.
In: IEEE APSCC (2012)

59. Shelat, A., Shen, C.: Two-output secure computation with malicious adversaries.
In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 22

60. Shelat, A., Shen, C.-H.: Fast two-party secure computation with minimal assump-
tions. In: ACM CCS (2013)

61. Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS (1986)

http://dx.doi.org/10.1007/978-3-540-79263-5_8
http://dx.doi.org/10.1007/978-3-642-40084-1_1
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-642-19571-6_20
http://dx.doi.org/10.1007/11745853_4
http://dx.doi.org/10.1007/11745853_4
http://dx.doi.org/10.1007/11745853_30
http://dx.doi.org/10.1007/978-3-642-40084-1_3
http://dx.doi.org/10.1007/978-3-642-40084-1_3
http://dx.doi.org/10.1007/978-3-642-00457-5_1
http://dx.doi.org/10.1007/978-3-642-00457-5_1
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/978-3-642-32009-5_40
http://dx.doi.org/10.1007/3-540-39200-9_6
http://dx.doi.org/10.1007/3-540-39200-9_6
http://dx.doi.org/10.1007/978-3-642-20465-4_22

228 A. Küpçü and P. Mohassel

62. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 8

63. Alptekin, K., Mohassel, P.: Fast optimistically fair cut-and-choose 2PC. Cryptology
ePrint Archive, Report 2015/1209 (2015)

http://dx.doi.org/10.1007/978-3-662-46803-6_8

Mobile Malware

CuriousDroid: Automated User Interface
Interaction for Android Application

Analysis Sandboxes

Patrick Carter1(B), Collin Mulliner1, Martina Lindorfer2, William Robertson1,
and Engin Kirda1

1 Northeastern University, Boston, MA, USA
{pdc,crm,wkr,ek}@ccs.neu.edu
2 SBA Research, Vienna, Austria

mlindorfer@iseclab.org

Abstract. Mobile computing has experienced enormous growth in mar-
ket share and computational power in recent years. As a result, mobile
malware is becoming more sophisticated and more prevalent, leading to
research into dynamic sandboxes as a widespread approach for detect-
ing malicious applications. However, the event-driven nature of Android
applications renders critical the capability to automatically generate
deterministic and intelligent user interactions to drive analysis subjects
and improve code coverage. In this paper, we present CuriousDroid, an
automated system for exercising Android application user interfaces in
an intelligent, user-like manner. CuriousDroid operates by decomposing
application user interfaces on-the-fly and creating a context-based model
for interactions that is tailored to the current user layout. We integrated
CuriousDroid with Andrubis, a well-known Android sandbox, and con-
ducted a large-scale evaluation of 38,872 applications taken from dif-
ferent data sets. Our evaluation demonstrates significant improvements
in both end-to-end sample classification as well as increases in the raw
number of elicited behaviors at runtime.

Keywords: User Interface Analysis · Android · Dynamic analysis

1 Introduction

Mobile computing has experienced enormous growth since the introduction of
Apple’s iPhone in 2007. A 2011 poll conducted by the Pew Research Center
showed that 85% of Americans owned a cell phone, of which more than 50%
were smartphones [22]. The Android operating system was released in 2008 and
has since gained a significant share of the market, comprising 85% of smart-
phone shipments in the second quarter of 2014, up from 75% just over a year
before [24]. With the growing number of mobile users worldwide, the increasing
power of these devices, and the corresponding growth of the mobile economy,
mobile malware has similarly grown in both sophistication and prevalence [11].
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 231–249, 2017.
DOI: 10.1007/978-3-662-54970-4 13

232 P. Carter et al.

In response, considerable research has focused on dynamic analysis sandboxes
as a general approach for detecting malicious applications [21,23,26]. In contrast
to static approaches [8–10], dynamic analysis is able to precisely characterize the
runtime behavior of an application under test, or AUT, over concrete inputs, as
well as deal with several techniques that pose significant difficulty for static
analysis such as static code obfuscation, dynamic code loading, and the use of
native code.

Despite its advantages, dynamic analysis can fail to provide useful insight into
test subject behavior due to incomplete coverage. One feature of the Android
platform that exacerbates this problem is the event-driven nature of its applica-
tions, where security-relevant code is often only executed in response to external
stimuli such as interactions with the user interface. Current standard practice,
therefore, is to use standard off-the-shelf tools such as the Monkey [4] or Mon-
keyRunner [3], which provide random sequences of user inputs and execute pre-
scripted UI tests, respectively. Both of these tools are problematic in the context
of large-scale dynamic analysis for different reasons: pre-scripting user interac-
tions simply does not scale, and on the other hand random inputs lead to low
code coverage.

In this paper, we introduce CuriousDroid, an automated system for driving
Android application user interfaces in an intelligent, user-like manner. Curious-
Droid operates by decomposing application user interfaces on-the-fly and creating
a context-based model for interactions with an application. Unlike the Monkey,
it is designed to deliver user interactions based upon actual application lay-
outs discovered at draw-time. It significantly improves upon the capabilities of
the MonkeyRunner since it can determine a set of natural, user-like interactions
without prior knowledge of the application. Using structural decomposition of
on-screen layouts and automated identification and classification of interactive
views, CuriousDroid is able to generate a series of interactions that emulate typ-
ical human interaction.

In this paper, we show that CuriousDroid would be highly useful in a malware
triage role, greatly reducing the burden on manual analysts in terms of numbers
of new malicious samples to analyze. In particular, one of our evaluation data
sets contained 8,827 applications that could not be classified as either benign or
malicious. Using CuriousDroid to reclassify the data set resulted in 2,246 likely
malicious applications, a significant reduction.

While prior work has examined more sophisticated user input generation
[5,6,15,16,20,27], we distance ourselves from these efforts by precisely quantify-
ing the effects of human-like user interactions for large-scale dynamic analysis, as
well as requiring no modifications to the operating system nor any static analysis
component.

To summarize, this paper makes the following contributions.

– We introduce CuriousDroid, a system for automatically generating user-like UI
interactions for Android applications. CuriousDroid uses dynamic instrumen-
tation, application layout decomposition, and heuristic input generation to
explore Android applications in an intelligent, user-like manner.

CuriousDroid: Automated User Interface Interaction 233

– We integrated CuriousDroid with the well-known Andrubis malware analysis
sandbox, replacing the Monkey with CuriousDroid to drive the UI of analysis
subjects.

– We conducted a large-scale evaluation of CuriousDroid using 38,872 applica-
tions from different data sets. Our evaluation demonstrates that our system
improves the analysis results of Andrubis, eliciting behaviors that were not
observed when relying upon random UI interactions.

2 Background and Motivation

Android is an open source mobile operating system that has enjoyed enormous
success in recent years. The backbone of the OS is a modified Linux kernel
targeted towards embedded devices with limited power, memory, and storage.
Applications are written primarily in Java with the option of utilizing the Java
Native Interface (JNI) via Android’s Native Development Kit (NDK) to leverage
existing libraries and optimize for performance.

Android applications can consist of four basic component types: Activity,
Service, BroadcastReceiver, and ContentProvider. Activities provide the
basic UI structure of an application, where each screen displayed to the user
corresponds to an Activity. Services are meant to run in the background, sepa-
rate from the main UI thread and are useful for operations that should not affect
the UI thread, e.g., downloading content. Broadcast receivers are used to listen
for system-wide events such as incoming SMS, phone calls, or emails. Content
providers allow applications to make data available for use by other applications.
Activities. Activities are the most important component of the system in terms
of the UI. An application consists of one or more activities, only one of which can
be visible to the user at any given time. Normally, applications specify the UI
design for each activity using resource files. Whenever the Android framework
wants to display a given activity, the resource file is loaded and displayed to
the user. Additionally, an application can create and add UI elements program-
matically during runtime. These UI elements are not part of the resource files
contained in an Android application package (APK).

To cover both statically- and dynamically-generated UI elements, Curious-
Droid analyzes an application’s UI at runtime. Our runtime analysis is based on
dynamic instrumentation of the target application. Using dynamic instrumenta-
tion, we hook the functionality that is responsible for managing the application’s
UI. Dynamic instrumentation has the further benefit that we do not have to
modify the Android framework, source code, or the application binary.
Dynamic Analysis and UI Exploration. Because Android applications are
event-driven and many important events occur through UI interactions, perform-
ing a dynamic analysis of Android applications using the Monkey as a driver –
which simply generates random event sequences – is problematic. Consider an
activity that requires a user to enter an email address and password to register
an account before using the application. If the application performs any kind of
input validation on those fields, as is often the case, it is highly unlikely that the

234 P. Carter et al.

Monkey would be able to provide a value that satisfies the validity check, if it is
able to enter any input into the required fields at all.

CuriousDroid is intended to remedy this problem by driving Android appli-
cations using intelligent, user-like interactions in order to increase the likelihood
that any malicious behavior contained therein will be identified by the analysis
as a whole.

3 System Overview

Since Android applications are mostly UI-driven, applications only execute the
majority of their code after receiving external input, such as from a human
user. Without realistic inputs tailored to the current application UI context,
dynamic analyses might not explore interesting, security-relevant code, leading
to inaccurate classification results. CuriousDroid aims to solve this problem by
interacting with applications as normal users would, with the goal of increasing
application coverage and eliciting more runtime behaviors in order to improve
the results of the entire analysis.

To that end, CuriousDroid iterates over Android activities in three phases:
user interface decomposition, input inference, and input generation. For each
activity discovered by the system, the hierarchy of views contained in the activ-
ity is extracted using dynamic instrumentation. Then, the system uses a number
of heuristics to infer the types of user inputs, or interactions, the views expect
(if any). Finally, suitable inputs are generated. Any observed transitions to sub-
sequent activities are added to a work queue for later processing. Activities that
have previously been explored are recorded and, if encountered again, Curious-
Droid attempts to explore a different path from that point in the UI. Curious-
Droid intercepts events that might lead to early termination of the exploration,
for instance when the Back button is pressed and the current activity is at the
top of the activity stack. An overview of this process is shown in Fig. 1a.

Supporting this process are two components: the UIAnalyzer and InputDriver.
The UIAnalyzer uses dynamic instrumentation to inject itself into the target
application, and is responsible for analyzing the UI, inferring context, and track-
ing visited activities. The InputDriver is executed as a separate process, and is
responsible for sending user inputs to AUT.

We designed CuriousDroid to be agnostic of its environment – that is, it
is intended to run on any device or emulator with minimal effort. As one of
the goals of CuriousDroid is to provide a generic automated UI interaction tool
that can be deployed on any kind of Android application or malware analysis
platform, our system does not require modification of the Android platform or
the application that is tested (aside from automated dynamic instrumentation).
The only requirement is that a device be rooted.

4 User Interface Decomposition

User interface decomposition is the first phase of CuriousDroid for a given activity,
where the goal is to recover the hierarchy of user interface views contained in

CuriousDroid: Automated User Interface Interaction 235

Fig. 1. CuriousDroid overview and components.

an activity. As stated in Sect. 3, CuriousDroid uses dynamic instrumentation to
interpose on event callback invocations in order to extract this information. In
the following, we describe the instrumentation framework used to accomplish
this, and then outline how view hierarchies are recovered.

4.1 Dynamic Dalvik Instrumentation

CuriousDroid leverages the Dynamic Dalvik Instrumentation (DDI) frame-
work [18] to instrument Android applications. This framework allows for in-
memory injection of arbitrary code into application processes, enabling dynamic
hooking and interposition on both managed and native code, including transi-
tions between application and Android framework code.

In particular, DDI is used to inject the aforementioned UIAnalyzer component
into the process corresponding to the AUT. The UIAnalyzer consists of a native
library that in turn executes the AUT within the process. Once the application’s
code has been loaded into memory, the DVM API is used to instrument specific
application methods concerned with UI-related events. Figure 1b depicts this
process.

4.2 User Interface Analysis

For each activity, the UIAnalyzer decomposes the current view hierarchy. Starting
from the root view (PhoneWindowDecorView) below which all other views in the
activity are attached, all of its descendants are recursively explored using class
introspection for identification and attribute extraction. Typically, the direct

236 P. Carter et al.

descendants of the root view are instances of one or more container views such
as LinearLayout, GridLayout, or RelativeLayout. Each of these containers
holds either further nested layouts or concrete views.

As the view hierarchy is explored, the UIAnalyzer records any interactive
views that it discovers, such as editable text fields, buttons, spinners, radio but-
tons, and checkboxes, which we refer to as widgets. These widgets often contain
attributes that indicate the expected types of inputs, and are recorded for later
use as described in the next section.

5 Input Inference

The second phase of CuriousDroid’s user interface exploration is input inference,
where the goal is to determine the type of interaction a widget expects. The
point of input inference is to ensure that CuriousDroid drives the execution of
the application in a way similar to how the developers would expect a human to
do so. The underlying assumption is that blindly exercising an application’s UI,
while perhaps useful for simple or widget-less activities, will not cover as much of
the UI – and, therefore, application code. Likewise, attempting to exhaustively
explore all possible targeted interactions within an activity can quickly become
intractable for complicated activities.

To that end, one concrete aim of input inference is to not only identify the
set of widgets that require input in order to trigger behavior or launch further
activities, but also to tailor meaningful input for each identified widget. For
example, instead of simply providing random text to a text field, CuriousDroid
attempts to identify the class of input a field requires, such as an email address
or phone number, and generates a realistic input drawn from the inferred class.

However, inferring expected classes of input for each widget is not sufficient
to properly explore an activity. Indeed, the ordering of inputs is also important
because a basic requirement of many widgets is that they are populated with
a (well-formed) value before performing an action or launching a new activity.
Therefore, CuriousDroid also needs to infer this partial ordering on all widgets in
the current UI layout so that such constraints are satisfied.

5.1 Widget Orderings

The UIAnalyzer considers four widget attributes when determining an ordering
of widgets to exercise in a UI layout: widget type, the nextFocus property (if
present), widget screen position, and widget text labels. These attributes, taken
together, allow the UIAnalyzer to construct a simple, yet accurate, model of how
a user might interact with any given UI. Figure 2 presents an overview of the
ordering inference process for an example activity UI layout.

The incorporation of widget type information into the ordering inference
process is motivated by the fact that exercising certain widgets implies a tran-
sition to another activity. The most straightforward concrete example of this
is an OK or Cancel button that submits or dismisses a form, respectively.

CuriousDroid: Automated User Interface Interaction 237

Activity

(A) (B)

(C) (D)

(E)

(G) OK

(F)Checkbox

(H) Cancel

(A) (B)

(C) (D)

(E)

(G) OK

(F)Checkbox

(H) Cancel

(A) (B)

(C) (D)

(E)

(G) OK

(F)Checkbox

(H) Cancel

(A) (B)

(C) (D)

(E)

(G) OK

(F)Checkbox

(H) Cancel

(A) (B)

(C) (D)

(E)

(G) OK

(F)Checkbox

(H) Cancel

Fig. 2. Inference of an ordering on user inputs for an example activity UI layout.

Since most or all of the other widgets must generally be populated prior to
successful submission of a form (or to trigger behavior that changes the state of
the current activity), it follows that this class of widget – in particular, OK but-
tons – must be exercised last. Therefore, the first step in the ordering inference
is to group widgets into two classes: buttons, and everything else (Fig. 2b).

The optional widget nextFocus property provides developers with a mecha-
nism for encoding within UI layouts exactly the ordering that users are intended
to follow when interacting with an activity. This manifests in the user experience
as an automatic shift of focus from one widget to another when the Next button
on the keyboard is pressed. The UIAnalyzer considers the presence of this prop-
erty as ground truth of the intended interaction with an activity, and so the next
step of the inference process is to incorporate this ordering information (Fig. 2c).

The UIAnalyzer assumes that widgets are exercised in a top-to-bottom, left-to-
right order, and uses screen coordinates of the remaining, unordered non-button
widgets to heuristically include them into the current ordering (Fig. 2d).

Finally, the terminal user input is selected from the button class of widgets.
Here, the UIAnalyzer uses each button’s label as an indicator of whether it is
likely to produce some update to the activity’s state and, potentially, produce a
transition to another activity (Fig. 2e).

5.2 Expected Input Classes

Given an inferred ordering of widgets to exercise, the next step is to decide what
inputs the UIAnalyzer should provide. For this, three attributes are taken into
account: widget hints, labels, and contextual information. Most developers add

238 P. Carter et al.

hints to editable text fields that indicate the type of input that is expected, such
as an email address, phone number, postal code, or name.

In the absence of such information, label text is extracted from either the
widget directly – e.g., placeholder text – or from label widgets directly adjacent
to the widget in question. In our observations, these labels are almost as accu-
rate as explicit hint properties. The labels are then matched against manually-
compiled keyword lists to map them to a canonical class identifier. For instance, a
Register label on a button would map to the OK class, and a Mobile label on a
text field would map to the Phone class. The text contained in these keyword-lists
is translated to several languages, including English, Russian, Korean, Japanese,
and Chinese.

For those widgets that the UIAnalyzer is successfully able to identify a cor-
responding input class, an appropriate input is generated. The text is drawn
from lists corresponding to a specific class of input – for example, in the case
of editable text fields, the UIAnalyzer contains lists for names, addresses, phone
numbers, passwords, and many more.

If the input inference process is unable to determine an input class for a
widget, a random interaction will be supplied. In the case of one or more image
buttons lacking any descriptive text, a single button is randomly chosen.

6 Input Generation

Given an inferred widget ordering and expected input classes for each widget, the
next stage of the UI exploration for each activity is to actually drive the current
UI. To that end, the UIAnalyzer communicates with the InputDriver, providing
it with ordering and input class information. The InputDriver translates this
information into concrete user input events, which it then injects directly to the
Android event drivers. An overview of this is shown in Fig. 1b.

6.1 Input Translation

Translating an interaction to a set of input commands first requires determining
the type of interaction that is expected. Currently, CuriousDroid can generate
both taps and swipes. To click a button, it is only necessary to inject one tap
at the button’s on-screen position. To enter text into a widget, the InputDriver
takes the desired text as input and maps the location of each character to a
position – or positions – on the virtual keyboard. Multiple positions could be
required for characters that require multiple taps, such as capitals, numbers, and
special characters.

The InputDriver defines a function called genericPress that takes as para-
meters the desired (x, y) coordinates of the tap, and the amount of time in
microseconds to wait before initiating the tap, and returns each of the values
needed to populate an event structure for the touchscreen event driver.

In addition to the function described above, the InputDriver also provides
functions for the menu button, the back button, and a function that returns

CuriousDroid: Automated User Interface Interaction 239

random events for fuzzing. After the formatted command string for all interac-
tions has been completely generated, the command string is ready for injection
into the AUT.

6.2 Input Injection

Input injection is achieved via two approaches: event injection and random
event generation. Event injection writes the commands from the UIAnalyzer to
the Android touchscreen event driver, while the random event generation func-
tion creates random taps and swipes to write to the event drivers. Similar to
RERAN [12], the InputDriver can speed up or slow down the execution of an
application; however, we choose to execute at a speed resembling human usage.

In the case that an activity does not contain (known) widgets in its layout,
our interactions will not induce the execution of a new activity. It is therefore
necessary to have a fallback mechanism that attempts to get an application out
of a “stalled” execution state. We have implemented that system from within
the InputDriver module.

In particular, if a preset period of time has elapsed and no observable action
has occurred in response to an input sequence, the InputDriver initiates the ran-
dom event generation process. The process assumes the application is in a stalled
state and attempts to perturb it by sending random events to the system driver.
If this fails to advance the execution of the application, it presses the Back
button, reverting the state of the application to the previous activity.

7 Evaluation

In this section, we evaluate the efficacy of CuriousDroid as a driver for dynamic
analysis. In particular, we compare the results of standard Andrubis [1,14], a
well-known dynamic analysis sandbox for Android applications, to the results of
composing Andrubis with CuriousDroid, and show significant improvements in
the analysis results.

7.1 Andrubis

Andrubis is a large-scale public malware analysis system for Android applica-
tions. It provides a comprehensive analysis report that includes results from
static code analysis as well as runtime behavior using dynamic analysis in the
QEMU emulator, on both the Dalvik VM and system level.

Static analysis of the application’s manifest and certificate yields meta infor-
mation such as requested permissions, services, broadcast receivers, activities,
package name, SDK version, and information about the author. Furthermore,
static code analysis extracts APIs calls and identifies the permissions actually
used in the application’s bytecode in contrast to the permissions required in the
manifest.

240 P. Carter et al.

<10% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

1000

2000

3000

4000

5000

6000

7000

8000

Activity Coverage

of

 A
pp

lic
at

io
ns

Activity Coverage

Fig. 3. Activity coverage by Curious-
Droid for all applications.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

of Activites

C
um

m
ul

at
iv

e
P

er
ce

nt
ag

e
of

 A
pp

lic
at

io
ns

Cummulative Distribution Function of Activity Count

Fig. 4. Cumulative distribution func-
tion for application activity counts.
The steep curve indicates the major-
ity of applications contain fewer than
10 activities.

During dynamic analysis, Andrubis monitors applications through an instru-
mented Dalvik VM. It records data leaks, filesystem activity, phone activity
such as sending SMS and making phone calls, network activity, and the dynamic
loading of DEX code as well as native code through JNI. In order to drive pro-
gram execution, by default Andrubis utilizes the pseudorandom user interaction
sequences generated by the Monkey.

In addition to the analysis report, Andrubis provides a malice score for each
application [13]. Based on static and dynamic features learned from a set of
known benign and malicious applications, Andrubis leverages an SVM-based
classifier to assign scores on a scale from 0 to 10, with 0 being benign and 10
being malicious.

7.2 Experimental Setup

Our evaluation was performed over a data set of 51,571 randomly selected
Android applications from five categories: applications that received a border-
line classification from standard Andrubis, those that contain SMS-related code,
those that perform dynamic code loading, those that perform native library load-
ing, and those that interact with the network. Except for the first category, each
of these represents a specific behavior that is potentially (and often) indicative
of malware [28].

We found that out of the 51,571 applications tested, 12,699 drew no activities.
In this case, CuriousDroid was not invoked and we were unable to collect results
for those runs. Therefore, only the 38,872 remaining applications were considered
in our evaluation.

7.3 Activity Coverage

A natural measure of CuriousDroid’s effectiveness in exploring application user
interfaces is in terms of activity coverage, as activities are the main container for

CuriousDroid: Automated User Interface Interaction 241

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10

Application

S
co

re

CuriousDroid

Monkey

Fig. 5. Effect of CuriousDroid on borderline Andrubis scores. Scores from modified
Andrubis are in black, and standard Andrubis in gray. Note the significantly greater
spread of scores due to incorporating CuriousDroid during UI exploration.

UI layouts on Android. The list of activities for an application is extracted from
its manifest by Andrubis during static analysis. In addition, CuriousDroid logs
each activity it visits during its exploration. We compare these lists of activities
to calculate our total activity coverage.

Figure 3 shows the activity coverage for all applications in the data set. In
this figure, coverage is binned in 10-percent increments. We note, in Fig. 4, that
the majority of applications contain fewer than 10 activities, but as many as 284
have been found in a single application. Applications with such a large number
of activities are guaranteed to produce low coverage numbers primarily due to
the analysis time limit enforced by CuriousDroid.

7.4 Borderline Classification

To measure the impact of CuriousDroid on Andrubis’ application classifier, we
analyzed 8,827 applications from the data set that received a score on the inter-
val [4,5] – i.e., a borderline score that is neither definitively benign nor malicious.
As described above, Andrubis’ classifier constructs a feature vector from a mix
of static and dynamic features. CuriousDroid has no impact on the static analysis
performed by Andrubis, so the static features used in our analysis are the same
as in the original Andrubis analysis. Therefore, any change in an application’s
score can be attributed to a change in dynamic features observed during UI
exploration. Figure 5 plots both the original scores assigned by standard Andru-
bis as well as the scores generated when incorporating CuriousDroid for this
test set.

We note that CuriousDroid produces a significant increase in the quality of
Andrubis’ classifier as measured by score spread. There is an observable density
of scores around 1.0, which demonstrates that the additional runtime behavior
elicited by CuriousDroid was able to allow a relabeling from unknown to benign
for many applications. Also observable are three smaller bands around 8.5, 8.75,

242 P. Carter et al.

and 10, which demonstrates that a (relatively) smaller group of applications
could be reclassified from unknown to malicious due to CuriousDroid.

We plot the number of dynamic features used by Andrubis during classifi-
cation in Fig. 6. On average, more than nine additional dynamic features were
used when incorporating CuriousDroid. The average number of dynamic features
used by CuriousDroid increased to 30.8 from 21.6 with the Monkey. Additionally,
the total number of features generated increased by an average of more than 27
features per application, all of which we can assume are dynamic. The average
total number of features used increased from 58.6 with the Monkey to 68.4 with
CuriousDroid, in line with the increase in the number of dynamic features used.

7.5 Observed Dynamic Behaviors

The remaining four application categories described in the experimental setup
refer to a specific behavior that static analysis indicated the application had the
capability to perform. However, the applications we consider in each of these cat-
egories did not exhibit these behaviors during dynamic analysis using standard
Andrubis. An overview of the results of composing Andrubis with CuriousDroid
in this respect is shown in Table 1. In the following, we discuss each of the cate-
gories separately.
SMS. The SMS category is a set of applications chosen because they were sta-
tically determined to possess the capability to send or receive SMS messages.
Not only do they request the SEND SMS permission, but they are also found to
have actual method calls that send or receive SMS messages. We chose this as a
search parameter because it is possible for an application to request a permission
that the developer never intends to use, especially in the case of code re-use. We
found that CuriousDroid was able to trigger the sending of SMS messages in 440
of the 6,871 applications analyzed. Furthermore, many of the numbers to which
messages were sent were short numbers, indicating a higher likelihood that these
messages were sent to premium numbers. Such behavior is often indicative of
malware.
Dynamic Code Loading. There are times when utilizing dynamic code loading
is useful or necessary – e.g., when the primary application DEX file has more
than 64 K method references [7]. Andrubis is able to detect dynamic code loading
during static analysis. The resulting test set consisted of 8,371 applications, in
which CuriousDroid were able to trigger the loading of dynamic code in 358,
representing a total of 4.28% of the set.
Native Library Loading. Android provides developers with an API for loading
and running native code using JNI. This functionality is particularly important
to developers who need direct access to the GPU or CPU for performance or
power-saving purposes. However, malware can exploit the JNI interfaces to hide
certain behaviors, such as communicating with remote servers, installation of
rootkits, or general obfuscation [28].

Therefore, we analyzed a set of 7,669 applications containing native libraries
that were not loaded during dynamic analysis using standard Andrubis.

CuriousDroid: Automated User Interface Interaction 243

Table 1. Dynamic application behavior elicited due to CuriousDroid. By comparison,
Andrubis used with the Monkey produced no behavior in each category.

Category # Apps # Triggered % Triggered

SMS 6871 440 6.40%

Dynamic code 8371 358 4.28%

Native code 7669 1945 25.36%

Networking 7134 2650 37.15%

CuriousDroid triggered the loading of these libraries in 1,945 applications, con-
stituting 25.36% of the applications in the set.
Networking. The last test set was composed of applications that requested the
INTERNET permission, commonly used in both benign and malicious applications.
Network connectivity allows applications to access resources over the Internet.
This could be as benign as checking account credentials or downloading legiti-
mate content or advertisements. This permission, however, is also often used for
nefarious behavior such as downloading dynamic code, drive-by downloads, or
connecting to a command-and-control server for mobile bots.

Of the original 10,000 applications tested, 2,866 were found to have drawn
zero activities. Therefore, we limited our analysis to the remaining 7,134.
CuriousDroid triggered network traffic in 2,650 applications, representing an
improvement of 37.15% of the total set.

7.6 Case Study

In the final experiment, we specifically investigated the 440 samples that only
send SMS messages when executed by CuriousDroid. Using their MD5, we
searched sites such as AndroTotal [17] to determine if a sample is known, deter-
mining that 20 samples were not previously known. 15 samples sent SMS mes-
sages to premium numbers, while five samples sent messages to regular phone
numbers.

We further investigated one of the SMS samples in more detail. We selected
the sample based on its change in malice score from 0.8743 to 8.6093 when
driven using CuriousDroid. The application asks the user to accept an update
of the program’s database. If the user accepts, the application starts a larger
download. During the download, the application sends five SMS messages to
different short codes. CuriousDroid was able to trigger sending the SMS messages
because it intelligently drove the UI by pressing the correct button. If the user
does not accept the update download, the application immediately terminates
without sending the SMS messages.

244 P. Carter et al.

8 Discussion

Upon inspection of our initial test set, we discovered 12,699 applications where
zero activities were drawn. We randomly chose a subset of applications to man-
ually inspect in an emulator and found several reasons for this phenomenon.

The most obvious cause for zero-activity coverage is that some applications
simply crash upon startup. Of these, many applications received a score of 9.0
or higher by Andrubis. We postulate that many malicious applications run their
payload at startup, and have no intention of ever displaying this bootstrapping
activity to the user. In one instance, we observed an application that crashed
on startup, but on a second execution opened a dialog box requesting the user
download and install an update from a third-party website.

On the other end of the spectrum, we noticed that most applications that
achieved 100% coverage had very few activities. Malware is very likely pack-
aged with simple applications, perhaps containing just one or two activities,
although we see evidence that simply running an application containing malware
is not necessarily enough to trigger the payload. We can infer from Sect. 7.5 that
stimulating a UI with intelligent interactions is more likely to trigger malicious
behavior.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

100

120

140

Application

of

 D
yn

am
ic

 F
ea

tu
re

s
U

se
d

CuriousDroid
Monkey

Fig. 6. Number of observed dynamic features for each application in the test set. Again,
CuriousDroid elicits significantly more behavior than the Monkey.

When an application transitions from one activity to another, it calls the
startActivityForResult family of methods which takes an intent as an argu-
ment. Applications are not limited to starting activities contained within their
own application, and can additionally open activities belonging to other applica-
tions such as a browser or email application. CuriousDroid examines the intents
passed to startActivityForResult and determines whether or not the target
activity belongs to the current application. If it does not, it blocks the method
call to ensure that the AUT retains focus. Doing so can have unforeseen con-
sequences, sometimes resulting in an application crash. However, in most cases

CuriousDroid: Automated User Interface Interaction 245

the application remains in the current activity until perturbed by the random
event generator.

In a similar situation, when the Back button is pressed, the current activity’s
finish method is invoked. If the current activity is not the root of the activity
stack, this is not a problem. However, in the event that the current activity is the
root activity of the application, making a call to finish causes the application to
exit. In an effort to keep the AUT in focus, we block all finish calls originating
from the root activity. This can cause an application crash – which occurs more
often in applications written for older SDK versions – when the root activity
changes from one activity to another. When this happens, we have observed on
occasion that the call to the current root activity’s finish method occurs before
the new root activity has been created. If the new root activity has not yet been
set, we block the call to the previous root activity’s finish call, causing an
application crash.

9 Related Work

Recent work in Android dynamic analysis has taken numerous, diverse
approaches. A recent study [19] performed a comprehensive analysis of 16
dynamic analysis platforms. Some systems rely on a blend of static and dynamic
analysis, while others only provide a mechanism for examining dynamic prop-
erties and do not include a way to execute applications. Some only rely on fuzz
testing, or random interactions, to drive execution, while others attempt to exer-
cise the UI in a more deterministic fashion. We consider several systems that
employ these techniques and show how CuriousDroid distinguishes itself from
these systems.

To avoid detection, malware can implement sandbox evasion. A recent effort
studied the characteristics of different Android sandboxes and how these can
be evaded [25]. Since CuriousDroid can be also deployed on a real device, it
can be used to analyze evasive malware that attempts to fingerprint emulated
environments.

Dynodroid [16] provides a system for interacting with UI widgets dynami-
cally. The authors implement a mechanism that attempts to generate a sequence
of intelligent UI interactions and system events by observing the UI’s layout,
composing and selecting a set of interactions, and executing those actions. Dyn-
odroid leverages the Hierarchy Viewer [2], a tool packaged with the Android
platform to infer a UI model during execution, to determine an activity’s layout.
We note that it was necessary to make changes to the SDK source code to enable
this capability. Finally, and perhaps most importantly, Dynodroid requires that
a tester has access to the source code of an application, as use of the Android
instrumentation framework is necessary. In contrast, CuriousDroid can be used
to test any APK file without source code since it dynamically instruments the
application bytecode.

SmartDroid [27] uses a hybrid approach, leveraging both static and
dynamic analysis, to discover and exercise UI trigger conditions. Using static

246 P. Carter et al.

analysis, SmartDroid constructs a desired activity switch path that leads to the
sensitive API calls it wishes to exercise. During dynamic analysis, SmartDroid
traverses the view tree of an activity and triggers the event listeners for each
UI element. If the event listener invokes the start of a new activity, SmartDroid
determines if that activity is on the activity switch path. If not, it blocks the call
to that activity and continues to traverse the current activity’s view tree until
the correct element is stimulated. SmartDroid requires not only modifications to
the SDK, but a modified emulator as well. In addition, relying on static analysis
to reveal sensitive behaviors will exclude calls to dynamically loaded code or
native libraries.

Swifthand [6] is an automated GUI testing tool for Android that lever-
ages machine learning techniques to create a model of an application which it
can leverage to generate user inputs in an attempt to visit unexplored areas of
the application. Swifthand requires modifications of applications through static
instrumentation of the binary and it is unclear to us whether or not this process
is entirely automated. It makes no attempt to derive context from an application
based on the UI, as a human would. The average runtime required by Swifthand
tests was three hours per application, making it unsuited for large-scale testing.
Finally, only 10 applications were included in the test set. Such as small set does
not provide adequate insight into the efficacy of the tool at scale.

A3E [5] provides another system for UI exploration of Android applications
with two separate approaches: “Targeted Exploration” which uses a CFG gen-
erated during static analysis to develop a strategy for exploration by targeting
specific activities, and “Depth-first Exploration” which attempts to mimic user
interactions to drive execution in a more systematic, albeit slower, way. A3E
is not suitable for large-scale testing due to the long testing time required for
each application. A3E was tested on only 25 applications, and has an average
runtime of 87 min per application for targeted exploration method and 104 min
per application for the depth-first exploration.

AppsPlayground [20], in addition to acting as a malware detection system,
employs a technique for automatically executing Android applications. Similar
to CuriousDroid, AppsPlayground attempts to determine context from the UI
in order to more intelligently direct an applications execution. This includes
inserting relevant text into text boxes, as well as clicking the most appropriate
buttons. We employ a similar technique to AppsPlayground, using hints and
keywords from UI elements to determine context.

We note that AppsPlayground requires modification of the SDK and OS and
can only be used with an emulator. CuriousDroid has been tested on physical
devices as low as API level 4, up to API level 16, and requires no modifications
to the OS or SDK. We leverage the techniques used in RERAN [12] to pass
interactions to the device, such as taps, swipes, and hardware button pushes.
This means that when text is entered into a field, it is passed in as a series of
actual taps to keys on the virtual keyboard. In contrast, AppsPlayground uses
a modified version of the MonkeyRunner to pass interactions to the application.

CuriousDroid: Automated User Interface Interaction 247

AppsPlayground was tested on just under 4,000 applications, only three of
which were known malware samples. Finally, the authors of AppsPlayground
provided no measurements of the end-to-end time required to test an application.
Therefore we are unable to determine the suitability of AppsPlayground as a
system for large-scale measurement.

10 Conclusion

In this paper, we introduced CuriousDroid, an automated system to drive Android
applications in an intelligent, user-like manner. Our system is generic and can
be deployed in any Android sandbox and even on real Android devices. To
evaluate our system, we integrated it into the well-known Andrubis sandbox.
We evaluated CuriousDroid using 38,872 applications that we randomly selected
from different categories. The results of our evaluation demonstrate that our
system was able to elicit significantly more runtime behavior over the standard
combination of Andrubis and random input generated by the Monkey, improving
Andrubis’ ability to categorize previously borderline applications as either defin-
itively benign or malicious. This capability in particular suggests that Curious-
Droid would prove very helpful for malware triage, greatly reducing the numbers
of applications that would require manual analysis to classify.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1409738. The research leading to these
results has received funding from the FFG – Austrian Research Promotion under
grant COMET K1 and has been carried out within the scope of u’smile, the Josef
Ressel Center for User-Friendly Secure Mobile Environments.

References

1. Andrubis. http://anubis.iseclab.org/
2. Hierarchy Viewer. http://developer.android.com/tools/help/hierarchy-viewer.

html
3. MonkeyRunner. http://developer.android.com/tools/help/monkeyrunner concepts.

html
4. UI/Application Exerciser Monkey. http://developer.android.com/tools/help/mon

key.html
5. Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing

of Android apps. In: International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA) (2013)

6. Choi, W., Necula, G., Sen, K.: Guided GUI testing of Android apps with minimal
restart and approximate learning. In: International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA) (2013)

7. Chung, F.: Android Developers Blog (2011). http://android-developers.blogspot.
com/2011/07/custom-class-loading-in-dalvik.html. Accessed 5 May 2014

8. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of cryp-
tographic misuse in Android applications. In: ACM Conference on Computer and
Communications Security (CCS) (2013)

http://anubis.iseclab.org/
http://developer.android.com/tools/help/hierarchy-viewer.html
http://developer.android.com/tools/help/hierarchy-viewer.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://android-developers.blogspot.com/2011/07/custom-class-loading-in-dalvik.html
http://android-developers.blogspot.com/2011/07/custom-class-loading-in-dalvik.html

248 P. Carter et al.

9. Enck, W., Ongtang, M., McDaniel, P.D., et al.: Understanding Android security.
IEEE Secur. Priv. (Oakland) 7, 50–57 (2009)

10. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: ACM Conference on Computer and Communications Security (CCS)
(2011)

11. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM) (2011)

12. Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: RERAN: timing- and touch-
sensitive record and replay for Android. In: International Conference on Software
Engineering (ICSE) (2013)

13. Lindorfer, M., Neugschwandtner, M., Platzer, C.: MARVIN: efficient and com-
prehensive mobile app. Classification through static and dynamic analysis. In:
Annual International Computers, Software & Applications Conference (COMP-
SAC) (2015)

14. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., van der
Veen, V., Platzer, C.: ANDRUBIS - 1,000,000 apps later: a view on current Android
malware behaviors. In: Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS) (2014)

15. Liu, B., Nath, S., Govindan, R., Liu, J.: DECAF: detecting and characterizing ad
fraud in mobile apps. In: USENIX Conference on Networked Systems Design and
Implementation (NSDI) (2014)

16. MacHiry, A., Tahiliani, R., Naik, M.: Dynodroid: an input generation system for
Android apps. In: Foundations of Software Engineering (2013)

17. Maggi, F., Valdi, A., Zanero, S.: AndroTotal: a flexible, scalable toolbox and service
for testing mobile malware detectors. In: ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices (SPSM) (2013)

18. Mulliner, C.: Dynamic Dalvik Intrumentation (DDI). https://github.com/
crmulliner/ddi

19. Neuner, S., Van der Veen, V., Lindorfer, M., Huber, M., Merzdovnik, G., Mulaz-
zani, M., Weippl, E.R.: Enter sandbox: Android sandbox comparison. In: IEEE
Mobile Security Technologies Workshop (MoST) (2014)

20. Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis of
smartphone applications. In: Conference on Data and Application Security and
Privacy (CODASPY) (2013)

21. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation
technique to automatically reconstruct Android malware. In: European Workshop
on Systems Security (EuroSec) (2013)

22. Smith, A.: Americans and mobile computing: key trends and consumer
research (2011). http://www.slideshare.net/PewInternet/americans-and-mobile-
computing-key-trends-in-consumer-research. Accessed 7 May 2014

23. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-
sandbox: having a deeper look into Android applications. In: Symposium on
Applied Computing (SAC) (2013)

24. Strategy Analytics: Android captures record 85 percent share of global smart-
phone shipments in Q2 2014 (2014). http://www.prnewswire.com/news-releases/
strategy-analytics-android-captures-record-85-percent-share-of-global-smart
phone-shipments-in-q2-2014-269301171.html

25. Vidas, T., Christin, N.: Evading Android runtime analysis via sandbox detection.
In: ACM Symposium on Information, Computer and Communications Security
(ASIACCS) (2014)

https://github.com/crmulliner/ddi
https://github.com/crmulliner/ddi
http://www.slideshare.net/PewInternet/americans-and-mobile-computing-key-trends-in-consumer-research
http://www.slideshare.net/PewInternet/americans-and-mobile-computing-key-trends-in-consumer-research
http://www.prnewswire.com/news-releases/strategy-analytics-android-captures-record-85-percent-share-of-global-smartphone-shipments-in-q2-2014-269301171.html
http://www.prnewswire.com/news-releases/strategy-analytics-android-captures-record-85-percent-share-of-global-smartphone-shipments-in-q2-2014-269301171.html
http://www.prnewswire.com/news-releases/strategy-analytics-android-captures-record-85-percent-share-of-global-smartphone-shipments-in-q2-2014-269301171.html

CuriousDroid: Automated User Interface Interaction 249

26. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis. In: USENIX Security Sym-
posium (2012)

27. Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., Zou, W.: SmartDroid: an
automatic system for revealing UI-based trigger conditions in Android applications.
In: ACM Workshop on Security and Privacy in Smartphones and Mobile Devices
(SPSM) (2012)

28. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution.
In: IEEE Symposium on Security and Privacy, Oakland (2012)

DroydSeuss: A Mobile Banking Trojan Tracker
(Short Paper)

Alberto Coletta1(B), Victor van der Veen2, and Federico Maggi1

1 Politecnico di Milano, Milan, Italy
alberto.coletta@mail.polimi.it, federico.maggi@polimi.it

2 Vrije Universiteit, Amsterdam, The Netherlands
vvdveen@cs.vu.nl

Abstract. After analyzing several Android mobile banking trojans, we
observed the presence of repetitive artifacts that describe valuable infor-
mation about the distribution of this class of malicious apps. Motivated
by the high threat level posed by mobile banking trojans and by the
lack of publicly available analysis and intelligence tools, we automated
the extraction of such artifacts and created a malware tracker named
DroydSeuss. DroydSeuss first processes applications both statically and
dynamically, extracting relevant strings that contain traces of commu-
nication endpoints. Second, it prioritizes the extracted strings based on
the APIs that manipulate them. Finally, DroydSeuss correlates the end-
points with descriptive metadata from the samples, providing aggregated
statistics, raw data, and cross-sample information that allow researchers
to pinpoint relevant groups of applications.

We connected DroydSeuss to the VirusTotal daily feed, consuming
Android samples that perform banking-trojan activity. We manually
analyzed its output and found supporting evidence to confirm its cor-
rectness. Remarkably, the most frequent itemset unveiled a campaign
currently spreading against Chinese and Korean bank customers.

Although motivated by mobile banking trojans, DroydSeuss can
be used to analyze the communication behavior of any suspicious
application.

1 Introduction

With the widespread use of mobile devices as a second factor of authentication,
malware authors equipped their banking trojans (e.g., ZeuS, SpyEye, Carberp,
and derivatives), to leverage dedicated companion mobile malware trojan apps.
With apps known in the underground as ZitMo, SpitMo, and CitMo, attack-
ers create a man-in-the-middle between the banking website and the victim,
effectively bypassing two factor authentication.

Cyber criminals strive to streamline the generation and distribution of mobile
bankers as much as possible, using so-called crimeware kits, in order to reach large
pools of victims. However, the more a cyber gang needs to automate their opera-
tions, the more likely their “dev ops” will leave traces that allow to identify groups
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 250–259, 2017.
DOI: 10.1007/978-3-662-54970-4 14

DroydSeuss: A Mobile Banking Trojan Tracker 251

of related apps. To our knowledge, however, most of the analysts’ work is still done
manually. Moreover, there is no mobile equivalent of the ZeuS Tracker [1], which
turns out to be extremely useful to security and malware researchers. Motivated
by this, we created the DroydSeuss mobile malware tracker.

Our work is inspired by observations made during manual reverse engineer-
ing efforts. First, traces of C&C endpoints (e.g., phone number, domain name,
URL) are typically visible in (byte)code, at runtime, or both, depending on the
sophistication of the sample. Generally, finding both static and dynamic evidence
of the same endpoint is a good indicator that the sample supports some config-
uration mechanism, which may reveal that it was generated semi-automatically
(e.g., by a crimeware kit). Second, certain static features of the malicious app
(e.g., prefixes of package name) that recur frequently, together with the same
C&C endpoints is a further indicator that the malicious sample may be part of
a campaign.

DroydSeuss runs each malware sample in an instrumented environment to
track statically and dynamically allocated strings that are likely to be C&C
endpoints. DroydSeuss has prioritization heuristics that assign an increasing level
of importance to the candidate endpoints. In addition, DroydSeuss analyzes the
itemsets containing (1) the extracted endpoints and (2) descriptive metadata
from the samples (e.g., prefix of the package name). The outcome is a rank of
itemsets that provide succinct insights such as package name X is almost always
related to phone-based C&C endpoints in country Y.

We manually inspected the top 10 most frequent itemsets of each endpoint
type (i.e., web and phone-based) and in all cases except one, we found contextual
evidence from online resources that backed our findings. Interestingly, the left-
out case led us to a very active, mobile-only banking trojan campaign targeting
Korean and Chinese customers, of which no public evidence was available so far.

In summary, our work makes the following contributions:

– We propose a simple but effective pattern-elicitation technique based on fre-
quent itemset mining which unveils growing campaigns and allows researchers
to pin-point relevant groups of samples.

– We design and implement the first mobile malware tracker that leverages fre-
quent itemset mining, along with classic static- and dynamic-data extraction
techniques, to track phone- and web-based C&C endpoints.

– We release our tracker to the public at http://droydseuss.necst.it where it has
been running since October 2014; during this time frame, it correctly brought
to our attention groups of trojans that would otherwise have required manual
analysis in order to understand their importance.

2 DroydSeuss’ Approach

The rationale behind DroydSeuss is twofold. First, evidence of interesting C&C
endpoints can appear statically, dynamically, or both, depending on the sophis-
tication of the sample. Second, metadata that recur frequently together with the
same C&C endpoint indicates that there may be a crimeware kit or a campaign
involved.

http://droydseuss.necst.it

252 A. Coletta et al.

Package

Endpoint Ranking
and EnrichmentData Extraction

Frequent Itemset
Mining

Static data

Dynamic data

URLs&IPs Numbers GCM

Endpoint
Number country
Autonomous System

Feed of malicious
samples

C&C server

Database

Fig. 1. Data processing pipeline of DroydSeuss.

The remainder of this section describes how we implemented the aforemen-
tioned rationale in order to elicit relevant information that helps the analyst
finding interesting groups of samples and, possibly, campaigns, starting from a
feed of malicious apps. Figure 1 summarizes how Phase 1 and Phase 2 imple-
ment the first rationale, whereas Phase 3 implements the second rationale.

2.1 Phase 1: Data Extraction

We are interested in capturing two categories of C&C endpoints: web based ones
(e.g., IPs, URLs) and phone based ones. In addition, we also track recent trojans
that take advantage of the Google Cloud Messaging (GCM) system [8] for push
communication. While regular expressions for domain names, URLs and IPs are
rather easy to write, parsing phone numbers is not straightforward. For this, we
used the Python port of the libphonenumber library.

Static Data. As a preliminary step, we use apktool to unpack the APK
archives, disassemble the Dalvik bytecode into an ASCII representation of the
Smali assembly code and extract the manifest and resource files. Starting from
static resources and Smali assembly files, this sub-phase is implemented as a set
of regular expressions and post-processing scripts.

The following snippet, obtained from a real-world malicious APK, exemplifies
how phone numbers and URL paths are saved in resource files.

XML resource file found in an iBanking sample.

<resources>
<string name="def_tel_number">+43676800XXXX</string>
<string name="urlPostData">/iBanking/sms/index.php</string>
<string name="urlPostSms">/iBanking/sms/saveSMS.php</string>
<string name="urlCommand">/iBanking/sms/sync.php</string>
<string name="urlSmsList">/iBanking/getList.php</string>
<string name="urlSendFile">/iBanking/sendFile.php</string>
<string name="urlPing">/iBanking/sms/ping.php</string>

</resources>

DroydSeuss: A Mobile Banking Trojan Tracker 253

Additionally, we parse Smali string constants denoted by the const-string
instruction and check whether the manifest declares the GCM permission. An
example of such string constant is shown in the following snippet.

C&C phone number declared in a malicious APK.

const-string v4, "+43676800XXXX"

Dynamic Data. In this sub-phase, we run the APK file in an instrumented
sandbox. For our proof-of-concept implementation of DroydSeuss we leverage
TraceDroid [20], which produces detailed, readable and easily parsable traces
with deserialized arguments and return values.

We are particularly interested in stimulating the typical behaviours involved
in botnet communication. To this end, TraceDroid triggers a number of special
events (e.g., device reboot, phone call, network disconnect, etcetera). Further-
more, the sandbox launches all the activities and starts all the services declared
in the app manifest. Finally, it runs the Android UI Exerciser Monkey that gen-
erates pseudo-random streams of user events such as clicks, touches and gestures.

The following listing shows an excerpt output resulting from the analysis of a
real banker. The sub-phase continues by applying a set of regular expressions on
the (string-typed) input arguments and return values of every API invocation
to capture potential endpoints.

TraceDroid output file

public java.lang.StringBuilder
java.lang.StringBuilder("http://dubleautoriza.net").append((java.lang.String)
"/iBanking/sms/ping.php")

return (java.lang.StringBuilder) "http://dubleautoriza.net/iBanking/sms/ping.php"
public java.lang.String

java.lang.StringBuilder("http://dubleautoriza.net/iBanking/sms/ping.php").toString()
return (java.lang.String) "http://dubleautoriza.net/iBanking/sms/ping.php"
new org.apache.http.client.methods.HttpPost((java.lang.String)

"http://dubleautoriza.net/iBanking/sms/ping.php")

The following APIs are processed in a special way because they are directly
connected with endpoint activity (see Sect. 2.2):

– SmsManager’s functions are interesting because they can be used to send text
messages to a specified number.

– URL.openConnection is interesting because it specifies an URL to connect
to. Also apache.* methods are tracked for the same purpose.

– GoogleCloudMessaging.register (and deprecated versions) are used for
GCM-related operations. We are interested in extracting the sender ID, which
uniquely identifies the server-side message sender.

2.2 Phase 2: Endpoint Ranking and Enrichment

In this phase, DroydSeuss ranks endpoints according to various heuristics. We
define three rank levels, in order from the least to the most important:

1. Suspicious, if an endpoint is matched only during static analysis.

254 A. Coletta et al.

2. Significant, if a web endpoint is matched during dynamic analysis, yet in
ancillary functions (e.g., string manipulation). This specific rank level allows
to reveal cases such as the concatenation of a domain name with the paths.

3. Important, if the endpoint is matched during dynamic analysis in an API
function which indicates that the malware has actually used the endpoint.

Additionally, we enrich extracted endpoints with the following details:

– Geolocalization. We use a free service [3] for IPs and the pycountry library
for phone numbers.

– Autonomous System. We associate the IPs to their respective autonomous
system using the Cymru service [4], which exposes a DNS-based API.

– Phone number type. Using libphonenumber, we determine whether the
phone number is a fixed line, mobile, fixed line or mobile, toll free, premium
rate, shared cost, VOIP, personal number, pager, UAN or voicemail.

2.3 Phase 3: Frequent Itemset Mining

In this phase, DroydSeuss implements our second rationale to elicit recurrent
relations between the endpoints ranked as C&C (highest rank level) and the
APK metadata. In principle, any metadata can be used but, based on the results
of previous work [13] and on our results, we concentrate on the package name.

We leverage a fast, simple but effective frequent itemset mining technique.
In essence, we count the occurrences of 〈endpoint feature,package name prefix〉
tuples, where endpoint feature ∈ {country,ASN,domain, IP} and package name
prefix is the shortest prefix with at least two elements (e.g., com.ann88.*) (from
hereinafter, for brevity, we use the terms package name and package name prefix
as synonyms). Finally, we count occurrences of each itemset in our dataset of
APKs, that is #〈e, p〉 ∀e, p, where e and p are the actual values of the endpoint
feature and package name. To obtain the frequency [11] φ of each itemset we
calculate:

φ〈e, p〉 = 2 · #〈e, p〉
#(p) + maxp #(p)

, (1)

where #(p) is the number of APKs with that package name—we do not count
multiple occurrences of a package within the same APK. We normalize φ ∈ [0, 1]
by multiplying by a factor 2. Moreover, summing the count of the most frequent
package name maxp φ(p) gives more weight to really frequent packages and, on
the other hand, avoids assigning high frequencies to itemsets generated by only
few packages.

3 Experimental Results

Although providing a complete evaluation for an intelligence system that can
potentially produce novel knowledge is a difficult task, we want to obtain quan-
titative and qualitative indicators about its performance, correctness and use-
fulness for the analyst.

DroydSeuss: A Mobile Banking Trojan Tracker 255

3.1 Dataset and Setup

For the purpose of this evaluation we used 4,293 samples of banking trojans,
downloaded nightly through the VirusTotal Intelligence API, that match the
following malware families: ZitMo, SpitMo, CitMo, iBanking and FakeBank.

As Fig. 2 shows, DroydSeuss has been running for almost 12 months since its
release in late October 2014. Since January 10, we started monitoring web-based
endpoints by sending an HTTP HEAD request and keeping track of whether they
responded. On average, a little over 10% of the contacted endpoints responded.

06/10 25/11 14/01 05/03 24/04 13/06 02/08 21/09

0

25

50

75

100

C
o
u
n
t

Fig. 2. Daily number of downloaded/processed samples (blue) and number of respond-
ing web-based endpoints (red). (Color figure online)

3.2 Experiment 1: False Positives

As the feed of samples includes only known malicious APKs, we expect a low
fraction of benign domains. This is important because the assumption behind
any malware tracker is that the activity performed by the sample is malicious
or otherwise interesting for the malware analyst.

As of October 9, 2015, the fraction of benign domains in the feed of samples
tracked by DroydSeuss is minuscule, summarized in Table 1. We obtained these
numbers by using the Alexa Top 1M domain list [2] as a whitelist.

We manually analyzed the benign domains and found that the ones classified
as important were baidu.com and cl.ly. The sample contacting baidu.com was
using the following URL templates:

http://www.baidu.com/index.php?m=Api&a=SMSReceiver&imsi=CENSORED&
number=CENSORED&from=86279&content=CENSORED

Table 1. Rate of benign (Alexa Top 1M) domain names found in the samples.

Important Significant Suspicious

Distinct 2/410 (0.48%) 8/597 (1.34%) 57/571 (9.98%)

Overall
(distinct per
sample)

2/1453 (0.13%) 109/3052 (3.57%) 277/12636 (2.19%)

http://www.baidu.com/index.php?m=Api&a=SMSReceiver&imsi=CENSORED&number=CENSORED&from=86279&content=CENSORED
http://www.baidu.com/index.php?m=Api&a=SMSReceiver&imsi=CENSORED&number=CENSORED&from=86279&content=CENSORED

256 A. Coletta et al.

Manual inspection of the sample confirmed that it was a data-stealing trojan that
sent stolen data encoded as baidu.com URLs. In a similar vein, cl.ly URLs
point to a legitimate file-hosting service, which is being used by the miscreants
to host malicious APKs. This may appear strange, but using existing, popular
services as the backend of a (mobile) botnet essentially creates a covert channel,
making it hard for the analysts to separate between legitimate and non-legitimate
traffic. In fact, although not prevalent, botnets that follow this approach have
recently appeared in the wild [7]. In conclusion, although whitelisting the known
benign domains is tempting, we believe that they should be reported to the
analyst, possibly marked in some way.

3.3 Experiment 2: Reality Check

Quantitatively evaluating the correctness of DroydSeuss with respect to known
benign endpoints is feasible, as discussed in the previous section. However, a
quantitative evaluation of the recall is an ill-defined question, simply because a
complete ground truth does not exist. If we had this ground truth, then there
would be no reason for DroydSeuss to exist.

We opted for a qualitative evaluation that we carried out by manually
Googling for endpoints which DroydSeuss assigned high rankings to and inspect-
ing the search results. In addition, we used threat investigation channels such as
private mailing lists, CERTs, and other sources of contextual information that
corroborate the correctness of our findings.

Endpoints from Most Frequent Itemsets. We took the domain names of
the C&C appearing in the highest ranked itemsets (top 10) and searched for
evidence to support their relevance. Over the past year, *.vicp.co (78.96%),
smsgrabber.url.ph, y30icv.com and 124ffsaf.com are the most relevant ones.

The latter search key lead us to a Trusteer report [10] that confirmed that it
was indeed used to collect data stolen from SpyEye bots. smsgrabber.url.ph
was part of the C&C infrastructure used by the iBanking Malware in late 2014,
as confirmed by a technical report by F5 [16]. Interestingly, according to Google
Safe Browsing, *.y30icv.com is not engaged in any malicious activity, although
according to our analysis it is clearly pointing to C&C and APK-hosting server.

As we found no public reports about *.vicp.co, we extended our search
using PassiveTotal [5] and a private mailing list used by experts to exchange
fresh, threat-related information. It was found that we spotted an actively
spreading trojan campaign started in December 2014, targeting Korean and
Chinese customers. According to the intelligence information at our disposal
and to ZeuS Tracker, none of these subdomains were used for non-mobile mali-
cious purposes. In conclusion, the campaign that was brought to our attention,
thanks to the frequent itemset mining system of DroydSeuss, is a very relevant
one and seems to be exclusively targeting mobile customers. Our findings were
later confirmed by the NASK/CERT Polska.

DroydSeuss: A Mobile Banking Trojan Tracker 257

Phone Numbers from Most Frequent Itemsets. Among the most frequent
itemsets we found numbers such as +467694XXXX, used as C&C in ZitMo cam-
paigns [19], +79252XXXX, included in a spyware kit [14] or +447781XXXX, used by
an iBanking campaign [12] and further confirmed by the NASK/CERT Polska.
A curious case is +49157061XXXX, a German number used as a C&C endpoint
by 20 samples. According to a (cached) WHOIS record, this phone number was
of the admin contact the kundencenter-accountservice.com domain name. A fur-
ther search revealed that the number was used in the past to host a PayPal
phishing campaign [18].

GCM Endpoints. Among the samples that used GCM endpoints (i.e., sender
ID 738965552XXXX, a C&C server address 94.75.**.** and the respective
domain name), we found one blog post [6] and a project deliverable [9]. The
blog post was written by the AndroTotal group and required to manually reverse
engineer the samples and extract the concise relevant information extracted auto-
matically by DroydSeuss. Similarly, the project deliverable described the results
of an analysis of the sample carried out manually in order to recognize whether
the APK was malicious or not.

To summarize, the evidence reported by DroydSeuss led us to finding either
(1) automatically generated analysis reports that confirmed their correctness,
or (2) manually written technical reports that certainly required human effort.
Therefore, we can argue that DroydSeuss extracts data that is correct and useful
for analysts. Of course, this manual effort was required only once to confirm our
findings.

3.4 Experiment 3: Runtime Performance

From analyzing 100 apps, we conclude that DroydSeuss completes the analysis
of one APK in about 5 min on average. The heaviest part is dynamic analysis
with an average of 4’40”. Static data extraction and ranking are negligible.

4 Limitations and Future Work

The itemset mining process may be subject to specific evasion attempts. By ran-
domizing the entire package name an attacker could make DroydSeuss generate
one low-frequency itemset per distinct APK. However, this would be against the
attacker’s goals who wants to mimic the official apps. Indeed, recent work [13]
showed that, according to the cyber criminals’ modus operandi, the package
name is suitable as a lightweight identifier. As a mitigation, other features could
be used together with the package name to better characterize a sample.

Since Android malware’s sophistication is relatively low compared to PC-
based malware, DroydSeuss does not trace native code. Future work should
focus on whether this is necessary and, if it is, how this can be implemented
efficiently.

http://www.kundencenter-accountservice.com/

258 A. Coletta et al.

DroydSeuss inherits the limitations of dynamic analysis. A sample may not
show its (malicious) behavior because some code paths are not reached, it recog-
nizes that it is running in an emulator [17,21] or it employs advanced timing
attacks. Our experience indicates that samples need to contact the C&C at least
once, which is enough for our purposes. Notwithstanding, as a mitigation, our
sandbox strives to stimulate the execution by injecting various events and we
also used a patched emulator that resembles a smartphone-like hardware profile.

In addition to addressing the first two limitations, we foresee another research
direction. While searching for qualitative evidence to support our findings, we
understood that infection campaigns against desktop computers could be used as
an early-warning indicator of upcoming mobile infection campaigns. Indeed, we
foresee an approach that tracks the HTML content injected by ZeuS (desktop)
and checks whether it contains signs of URLs or QR-codes pointing the user to
download an APK. Moving from this observation, more advanced pre-infection
indicators could be derived in order to alert mobile customers.

5 Conclusions

The community of malware researchers relies on publicly available feeds. Droyd-
Seuss is a first step towards a public tracker of mobile botnets in the spirit of
ZeuS Tracker. The Android Malware Trckr appeared some months [15] after
DroydSeuss, showing once again the importance of such data feeds.

With this work, we showed that the simple yet effective ranking mechanisms
that DroydSeuss conveys, can correctly pinpoint relevant active campaigns, con-
cluding that our approach works.

Acknowledgments. The authors are thankful to the reviewers and to MIUR FACE
Project No. RBFR13AJFT and Reply CV for supporting this work.

References

1. Zeus tracker. https://zeustracker.abuse.ch/
2. Alexa top 1M (2015). http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
3. HostIP (2015). www.hostip.info
4. IP to ASN mapping (2015). http://www.team-cymru.org/IP-ASN-mapping.html
5. PassiveTotal (2015). https://www.passivetotal.org
6. Andrototal.org: (Another) Android trojan scheme using Google Cloud Messag-

ing (2015). http://blog.andrototal.org/post/89637972097/another-android-trojan-
scheme-using-google-cloud

7. Lehtiö, A.: C&C-as-a-service: abusing third-party web services as C&C channels
(2015). https://www.virusbtn.com/conference/vb2015/abstracts/R-Lehtio.xml

8. Chebyshev, V., Unuchek, R.: Mobile malware evolution: 2013 (2014). http://
securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-
evolution-2013

https://zeustracker.abuse.ch/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
www.hostip.info
http://www.team-cymru.org/IP-ASN-mapping.html
https://www.passivetotal.org
http://blog.andrototal.org/post/89637972097/another-android-trojan-scheme-using-google-cloud
http://blog.andrototal.org/post/89637972097/another-android-trojan-scheme-using-google-cloud
https://www.virusbtn.com/conference/vb2015/abstracts/R-Lehtio.xml
http://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013
http://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013
http://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013

DroydSeuss: A Mobile Banking Trojan Tracker 259

9. Delosières, L., Baltatu, M.: D2.3 lightweight malware detector. Technical
report, Enhanced Network Security for Seamless Service Provisioning in the
Smart Mobile Ecosystem (2012). http://www.nemesys-project.eu/nemesys/files/
document/deliverables/NEMESYS Deliverable D2.3.pdf

10. Heyman, A.: First SpyEye attack on Android mobile platform now in the wild
(2011). http://www.trusteer.com/cn/node/360

11. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining -
a general survey and comparison. SIGKDD Explor. Newsl. 2(1), 58–64 (2000).
http://doi.acm.org/10.1145/360402.360421

12. Kafeine: Nitmo? no!dotsjust “iBanking” used by a (the?) neverquest/vawtrak team
(2013). http://malware.dontneedcoffee.com/2013/12/nitmo-no-just-ibanking-
used-by-the.html

13. Lindorfer, M., et al.: AndRadar: fast discovery of Android applications in alter-
native markets. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 51–71.
Springer, Cham (2014). doi:10.1007/978-3-319-08509-8 4

14. Loetprasoetsit, A.: Csd 2013 sso session 2 14112013 (2013). http://www.
slideshare.net/nozumutee/csd-2013-ssosession214112013

15. Siewierski, �L.: Tweet by maldr0id (2015). https://twitter.com/maldr0id/status/
595953612032991232

16. Meller, I.: F5SOC iBanking malware analysis report. Technical report. https://
devcentral.f5.com/d/f5soc-ibanking-malware-analysis-report

17. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of Android malware. In:
Proceedings of the Seventh European Workshop on System Security, EuroSec 2014,
pp. 5:1–5:6. ACM, New York (2014). http://doi.acm.org/10.1145/2592791.2592796

18. PhishReported: Submission #1531388 - http://kundencenter-accountservice.com
(2015). http://www.phishtank.com/phish detail.php?phish id=1531388

19. Spasojevic, B.: Android.zeusmitmo (2012). http://www.symantec.com/security
response/writeup.jsp?docid=2012-080818-0448-99&tabid=2

20. Van Der Veen, V.: Dynamic analysis of Android malware. Ph.D. thesis (2013).
http://tracedroid.few.vu.nl/thesis.pdf

21. Vidas, T., Christin, N.: Evading Android runtime analysis via sandbox detec-
tion. In: Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS 2014, pp. 447–458. ACM, New York (2014).
http://doi.acm.org/10.1145/2590296.2590325

http://www.nemesys-project.eu/nemesys/files/document/deliverables/NEMESYS_Deliverable_D2.3.pdf
http://www.nemesys-project.eu/nemesys/files/document/deliverables/NEMESYS_Deliverable_D2.3.pdf
http://www.trusteer.com/cn/node/360
http://doi.acm.org/10.1145/360402.360421
http://malware.dontneedcoffee.com/2013/12/nitmo-no-just-ibanking-used-by-the.html
http://malware.dontneedcoffee.com/2013/12/nitmo-no-just-ibanking-used-by-the.html
http://dx.doi.org/10.1007/978-3-319-08509-8_4
http://www.slideshare.net/nozumutee/csd-2013-ssosession214112013
http://www.slideshare.net/nozumutee/csd-2013-ssosession214112013
https://twitter.com/maldr0id/status/595953612032991232
https://twitter.com/maldr0id/status/595953612032991232
https://devcentral.f5.com/d/f5soc-ibanking-malware-analysis-report
https://devcentral.f5.com/d/f5soc-ibanking-malware-analysis-report
http://doi.acm.org/10.1145/2592791.2592796
http://kundencenter-accountservice.com
http://www.phishtank.com/phish_detail.php?phish_id=1531388
http://www.symantec.com/security_response/writeup.jsp?docid=2012-080818-0448-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2012-080818-0448-99&tabid=2
http://tracedroid.few.vu.nl/thesis.pdf
http://doi.acm.org/10.1145/2590296.2590325

DroidAuditor: Forensic Analysis
of Application-Layer Privilege Escalation

Attacks on Android (Short Paper)

Stephan Heuser1(B), Marco Negro2, Praveen Kumar Pendyala1,
and Ahmad-Reza Sadeghi1

1 Intel CRI-SC, TU Darmstadt, Darmstadt, Germany
{stephan.heuser,praveen.pendyala,ahmad.sadeghi}@trust.cased.de

2 University of Padua, Padua, Italy
mnegro@studenti.math.unipd.it

Abstract. Smart mobile devices process and store a vast amount of
security- and privacy-sensitive data. To protect this data from mali-
cious applications mobile operating systems, such as Android, adopt fine-
grained access control architectures. However, related work has shown
that these access control architectures are susceptible to application-layer
privilege escalation attacks. Both automated static and dynamic program
analysis promise to proactively detect such attacks. Though while state-
of-the-art static analysis frameworks cannot adequately address native
and highly obfuscated code, dynamic analysis is vulnerable to malicious
applications using logic bombs to avoid early detection.

In contrast, the long-term observation of application behavior could
help users and security analysts better understand malicious apps. In
this paper we present the design and implementation of DroidAuditor,
which observes application behavior on real Android devices and gener-
ates a graph-based representation. It visualizes this behavior graph, which
enables users to develop an intuitive understanding of application inter-
nals. Our solution further allows security analysts to query the behavior
graph for malicious patterns. We present the design of the DroidAudi-
tor framework and instantiate it using the Android Security Modules
(ASM) access control architecture. We evaluate its capability to detect
application-layer privilege escalation attacks, such as confused deputy
and collusion attacks. In addition, we demonstrate how our architecture
can be used to analyze malicious spyware applications.

1 Introduction

Smart mobile devices, such as smartphones and tablets, host a vast number of
third-party applications of varying quality and trustworthiness. These applica-
tions access, store and process security- and privacy-sensitive data, ranging from
personal contacts, location information to high-profile enterprise assets, which
makes these devices valuable targets for attacks. Unsurprisingly, the number of
newly discovered malware families targeting these devices is rising [11].
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 260–268, 2017.
DOI: 10.1007/978-3-662-54970-4 15

DroidAuditor: Forensic Analysis of Privilege Escalation Attacks on Android 261

To mitigate such attacks operating systems for smart mobile devices use
fine-grained access control architectures. For example, Android uses permissions
to restrict access to privacy- and security-sensitive data. However, related work
has shown that Android’s access control model is susceptible to application-
layer privilege escalation attacks, ranging from insufficiently protected system
settings [7] to accessing the Internet [10] or sending SMS [4] without holding
corresponding permissions.

The systematic detection, analysis and mitigation of such attacks is an active
area of research today: On one hand, system-centric access control architectures
[3,8] attempt to mitigate these attacks using carefully designed use-case specific
policies. On the other hand, both static and dynamic program analysis promise
to proactively detect such attacks, but either do not adequately address native
and highly obfuscated code, or are susceptible to malware using logic bombs [12]
to avoid early detection.

This inability to proactively and reliably detect application-layer privilege
escalation attacks mandates tools for long-term observation and analysis of appli-
cation behavior. In this paper, we present DroidAuditor, a forensic application
behavior analysis toolkit targeting application-layer privilege escalation attacks.
DroidAuditor adopts the Android Security Modules (ASM) [8] access control
architecture to observe application behavior at all layers of the Android operat-
ing system. Our solution organizes these observations in a behavior graph and
generates an interactive visualization. It further allows forensic analysts to query
this graph for suspicious patterns using a graph query language.

Our main contributions are as follows:

– We present the design and implementation of DroidAuditor, a solution for
application behavior analysis using interactive behavior graphs.

– We evaluate DroidAuditor’s capabilities by analyzing application-layer privi-
lege escalation attacks as well as malicious spyware apps.

– We show that sophisticated access control frameworks, such as the ASM frame-
work, are a valid basis for application behavior analysis.

DroidAuditor differs from related work on application behavior analysis in
two major aspects: First, to the best of our knowledge, it is the first solution that
adopts a modular access control framework for application behavior analysis.
Second, the behavior graph generated by DroidAuditor serves as an important
building block for further research on application behavior analysis, which we
describe in more detail in our technical report [9] due to space constraints.

2 Background

Android is a Linux-based operating system for smart mobile devices. It hosts
system and third-party applications, which consist of the following main compo-
nents: Activities (GUI elements), Services (background tasks without any user
interface), ContentProviders (data stores with SQL semantics) and Broadcast-
Receivers (mailboxes for messages (Intents) from other components). Applica-
tions are executed in isolated least-privilege sandboxes, and they share data and

262 S. Heuser et al.

functionality via inter-process communication (IPC). Standard operating system
components located on the middleware and application layer provide access to
security- and privacy-sensitive resources, such as location information or contacts
data. To control access to these components Android uses permissions granted
by the user to applications.

However, this permission-based access control model is prone to applica-
tion-layer privilege escalation attacks, such as confused deputy and collusion
attacks [4]. In a confused deputy attack, an adversary abuses non-malicious but
vulnerable software components via IPC to perform privileged security- and
privacy-sensitive operations: On Android, for example, only apps holding the
INTERNET permission are able to open network sockets. However, any app can
contact arbitrary web servers by deputizing the web browser via IPC [10]. In
contrast, in a collusion attack multiple seemingly benign applications operate in
concert to share their permissions towards a common goal. Colluding applica-
tions coordinate their attack via overt (e.g., Android’s Binder IPC mechanism)
or covert communication channels, such as shared system settings or files.

3 Adversary Model and Objectives

The main goals of DroidAuditor are the systematic monitoring of application
behavior and the detection as well as forensic analysis of potential application-
layer privilege escalation attacks. The adversary is capable of deploying one or
more malicious applications on a target device, for example via social engineering
or by gaining temporary physical access to the device. We place no restrictions
on the type of code the adversary executes and thus allow managed bytecode as
well as native and self-modifying code. Since DroidAuditor is a system-centric
application behavior analysis framework, we have to assume that malicious appli-
cations do not gain administrative device management privileges, and that the
trusted computing base of the Android device (bootloader, operating system
kernel, middleware layer and system applications) remains intact. Otherwise, no
correct app behavior analysis can be guaranteed. Finally, we assume that all
DroidAuditor software components are trusted.

4 DroidAuditor

The high-level idea of DroidAuditor is to observe application behavior using the
system-centric Android Security Modules (ASM) access control framework [8].
DroidAuditor stores these observations in a behavior graph, where vertices rep-
resent applications and resources, and edges represent data- or control flows.

Consider the following confused deputy attack: A malicious Android appli-
cation holds the READ CONTACTS permission and abuses the web browser to
exfiltrate sensitive contacts information to a remote server without holding the
INTERNET permission. Figure 1 shows this attack as a behavior graph: Upon
start (Step 1) the malicious app reads sensitive data from the contacts database
(Step 2). It then starts the web browser via an Intent (Step 3) and instructs it to

DroidAuditor: Forensic Analysis of Privilege Escalation Attacks on Android 263

(2) READ

(4) WRITE

Launcher App

Malicious App

Web Browser App

(1) EXECUTE

(3) EXECUTE

Contacts

www.malicious.com

Fig. 1. Example confused deputy attack, where a malicious app deputizes the web
browser to exfiltrate sensitive contacts information.

exfiltrate contacts data on its behalf. The web browser opens a network socket
to a remote server and uploads the collected contacts information (Step 4).

DroidAuditor generates such behavior graphs using three main components
(see Fig. 2). On the mobile device, the ASM for DroidAuditor is notified by
the ASM framework whenever Android applications access security- or privacy-
critical resources (Steps 1 – 4). The DroidAuditor ASM forwards these events to
the DroidAuditor Database via an authenticated and encrypted channel (Step
B), where they are stored in the behavior graph. Finally, security analysts can
interact with the behavior graph using the DroidAuditor Client (Step C).

DroidAuditor ASM

Event Cache

ASM Callback Service

Event Uploader

Contacts

H
oo

k

Network

H
oo

k

App Lifecycle

H
oo

k

DroidAuditor Client

Visualization

Analysis

(B) Protection Event

DroidAuditor Database

Event Parser

Behaviour Graph
(C) Interaction

Launcher

Web Browser

(A) Protection Event

Malicious App

(1)

(3)

(2)

(4)

Fig. 2. DroidAuditor high-level architecture.

4.1 DroidAuditor ASM

The Android Security Modules framework places hooks in all security- and
privacy-sensitive kernel- and middleware-layer operating-system components.
These hooks generate aforementioned protection events, which the ASM frame-
work forwards to all installed security modules. Each module can then decide
whether to allow or deny the corresponding operations. Our DroidAuditor
Android Security Module however does not enforce any access control rules, but
collects protection events to obtain a global view of all privacy- and security-
critical operations performed by all applications. Accordingly, it allows every

264 S. Heuser et al.

access control query and periodically uploads protection events to the DroidAu-
ditor Database, where they are stored for analysis.

4.2 DroidAuditor Database

The DroidAuditor Database stores security- and privacy-sensitive protection
events for offline analysis. It parses events uploaded by the DroidAuditor ASM
and generates the behavior graph G = 〈V,E〉: The vertex set V = A ∪ R is
composed of two subsets A and R, which represent applications A and resources
R. For each application vertex a ∈ A the DroidAuditor Database stores an
identifier as well as additional metadata, for instance the permissions the appli-
cation holds. Each resource vertex r ∈ R models a security- or privacy-sensitive
operating system resource. Important examples are Android’s ContactsProvider,
LocationManagerService or CameraService, as well as files and network sockets.

Every edge e ∈ E is directional and describes a data- or control flow between
two vertices vi, vj ∈ V . Each edge contains descriptive metadata, such as the time
and date a flow was observed. Edges are grouped into categories, which model
Android component interaction as well as file system and network operations
(CREATE, READ, WRITE, UPDATE, DELETE, EXECUTE).

4.3 DroidAuditor Client

The DroidAuditor Client is a desktop application that interacts in real-time with
the DroidAuditor Database. Its purpose is twofold:

First, the DroidAuditor Client generates an interactive visual representation
of the behavior graph, which allows forensic analysts to intuitively understand
an application’s runtime behavior. Analysts can inspect the type and metadata
for each vertex and edge as well as observe changes in the graph over time.

Second, the DroidAuditor Client allows analysts to query the behavior graph
for specific patterns using the Cypher query language.1 Listing 1 demonstrates
how to query the behavior graph for signs of the previously described confused
deputy attack, where a malicious app deputizes the web browser to exfiltrate
sensitive contacts information. The depicted query identifies subgraphs starting
with apps reading the Contacts resource (Lines 1–2). We only consider applica-
tions which then execute the Android web browser (Line 3) and do not hold the
INTERNET permission (Line 5). Finally, this query expects the web browser
to write data to a network socket (Line 4). Matching subgraphs are highlighted
using the visualization plugin.
1 MATCH confuseddeputy = (contacts:Resource {type:’contacts ’})
2 - [event1:READ] -> (app1:App { systemApp:false})
3 - [event2:EXECUTE] -> (app2:App {package:’com.android.browser ’})
4 - [event3:WRITE] -> (socket:Resource {type:’socket’})
5 WHERE NOT ’internet ’ IN app1.permissions

Listing 1. Cypher query to detect the confused deputy attack.

1 http://neo4j.com/developer/cypher-query-language/.

http://neo4j.com/developer/cypher-query-language/

DroidAuditor: Forensic Analysis of Privilege Escalation Attacks on Android 265

5 Evaluation

DroidAuditor inherits the performance and energy consumption overhead of the
underlying Android Security Modules framework, which has been scrutinized
in [8]. In this work we primarily focused on DroidAuditor’s effectiveness to ana-
lyze malicious application behavior. To this end, we implemented the DroidAudi-
tor architecture using the Java programing language. We place the DroidAuditor
ASM on a Nexus 4 smartphone running the ASM architecture version 4.4.4 r2.
The Neo4J-based DroidAuditor graph database2 and the DroidAuditor client
communicate opportunistically when Wifi connectivity is available using the
Kryonet3 network communication stack. Real-world DroidAuditor deployments
however should consider more firewall-friendly communication channels, such
as HTTPS. The behavior graph is visualized using the GraphStream4 library.
We then deployed applications which implement confused deputy and collusion
attacks as well as malicious spyware applications on the device and analyzed
their behavior.

5.1 Application-Layer Privilege Escalation Attacks

Confused Deputy Attacks. We implemented the confused deputy attack
described in Sect. 4, where a malicious app not holding the INTERNET permis-
sion deputizes the web browser to exfiltrate sensitive contacts data to a remote
server. We then verified that the query described previously in Listing 1 indeed
correctly identifies this confused deputy attack.

Collusion Attacks. We further implemented two variants of a collusion attack,
where two malicious apps coordinate their actions towards a common goal, which
in our example is to exfiltrate the SMS database over the Internet. The first
malicious application only possesses the READ SMS permission, and the second
application only the INTERNET permission.

Collusion via Binder IPC. In a simple collusion attack two malicious apps com-
municate using overt channels, such as Android’s Binder IPC mechanism. List-
ing 2 shows a Cypher query which targets this behavior. We query the behavior
graph for non-system apps (Line 3), which do not hold the INTERNET permis-
sion (Line 5) and read from the SMS database (Line 1 and 2). We search for
paths leading to another non-system app, which writes data to a remote server
(Line 3 and 4). The corresponding subgraph is highlighted in Fig. 3(a).
1 MATCH collusion1 = (sms:Resource {type:’sms ’})
2 - [event1:READ] -> (app1:App { systemApp:false})
3 - [event2:EXECUTE] -> (app2:App {systemApp:false})
4 - [event3:WRITE] -> (socket:Resource {type:’socket ’})
5 WHERE NOT ’internet ’ IN app1.permissions

Listing 2. Cypher Query to detect the collusion attack depicted in Fig. 3(a).

2 http://www.neo4j.com.
3 https://github.com/EsotericSoftware/kryonet.
4 http://graphstream-project.org/.

http://www.neo4j.com
https://github.com/EsotericSoftware/kryonet
http://graphstream-project.org/

266 S. Heuser et al.

WRITE

READ

Launcher App

EXECUTE

EXECUTE

Malicious App 1

Malicious App 2

SMS

www.malicious.com

(a) Collusion using Binder IPC

READ

WRITE

Launcher App

EXECUTE

WRITE

READ

Malicious App 2

Malicious App 1

File

SMS

www.malicious.com

(b) Collusion using the file system

Fig. 3. Example collusion attacks where two malicious apps coordinate their behavior
to exfiltrate the SMS database.

Collusion via File-based Communication. In this obfuscated collusion attack two
applications share a file on the file system to exchange sensitive data. Note that
no direct inter-process communication between both apps occurs in this scenario.
Starting from the previous query in Listing 2, we add a file resource node to the
query which matches files written to and read from the two colluding applica-
tions. Listing 3 shows the resulting query, and Fig. 3(b) depicts a visualization
of the discovered subgraph.
1 MATCH collusion2 = (sms:Resource {type:’sms ’})
2 - [event1:READ] -> (app1:App { systemApp:false})
3 - [event2:WRITE] -> (file:Resource {type:’file ’})
4 - [event3:READ] -> (app2:App { systemApp:false})
5 - [event4:WRITE] -> (socket:Resource {type:’socket ’})
6 WHERE NOT ’internet ’ IN app1.permissions

Listing 3. Cypher Query to detect the collusion attack depicted in Fig. 3(b).

DroidAuditor can similarly be used to detect signs of collusion attacks via
other operating-system resources, such as domain or network sockets, Content-
Providers or Services. However, it should be noted that DroidAuditor is limited
by the granularity of the underlying ASM framework, which is unable to observe
app collusion via hardware side channels, such as the CPU cache.

5.2 Identifying Spyware Applications

To demonstrate that DroidAuditor is a valid basis for generic application behav-
ior analysis beyond application-layer privilege escalation attacks we installed two
popular spyware applications, namely “TheTruthSpy”5 and “LetMeSpy”6, on a
DroidAuditor device. By analyzing the behavior graph we found that these apps
silently access privacy-sensitive resources, such as the CallLog and SMS/MMS
ContentProviders as well as location data, and upload this data to a remote
server. We further noticed that these apps only have very limited user interfaces
(Activities), which are exclusively used for initial configuration.

5 http://thetruthspy.com/.
6 http://www.letmespy.com/.

http://thetruthspy.com/
http://www.letmespy.com/

DroidAuditor: Forensic Analysis of Privilege Escalation Attacks on Android 267

To detect such behavior, we first labeled all privacy-sensitive resources in the
behavior graph. In Listing 4, we query the graph for non-system apps accessing
these resources (Lines 1 and 2) and writing data to a remote server (Line 3). The
WHERE clause (Line 4) limits our query to apps which silently access privacy-
sensitive resources. A visualization of the behavior graph and corresponding
DroidAuditor client screenshots can be found in our technical report [9].
1 MATCH spyware1 = (res:Resource { privacySensitive:true})
2 - [event1:READ] -> (app:App {systemApp:false})
3 - [event2:WRITE] -> (socket:Resource {type:’socket ’, addr : ’69.64.81.49 ’})
4 WHERE NOT event1.foregroundApp = app.package

Listing 4. Cypher query to detect the behavior of the TheTruthSpy app.

6 Related Work

Our DroidAuditor architecture shares functionality with dynamic program
analysis solutions [2,6,13–16], which observe app behavior in instrumented
Android environments. Common techniques adopted by these frameworks are
system call tracing, dynamic taint analysis and virtual machine introspection.
While taint analysis can provide fine-grained tracing of privacy sensitive data
while it is processed on a device, current designs do not adequately handle native
code. Further, all approaches adopting dynamic program analysis are prone to
logic bombs, where apps delay their malicious behavior to avoid detection [12].
DroidAuditor avoids these limitations by observing application behavior on real
Android devices without imposing restrictions on the analyzed applications.

Some work has proposed the use of IPC call chain verification [1,5,7] to
mitigate application-layer privilege escalation attacks. Other work more related
to DroidAuditor [3] records app interaction in a graph structure and enforces
access control policies targeting confused deputy and collusion attacks. Since
DroidAuditor is based on the system-centric ASM access control framework, it
is conceivable to implement this functionality by generating the behavior graph
on the mobile device itself and applying a corresponding access control policy.

7 Conclusion

In this paper, we presented DroidAuditor, a toolkit for forensic long-term appli-
cation behavior analysis. DroidAuditor uses the system-centric ASM manda-
tory access control framework to generate a graph-based model of application
behavior. The preliminary evaluation of our proof-of-concept implementation
demonstrates that modular access control frameworks are a valid building block
for application behavior analysis and motivate us to extend our work in multi-
ple directions: First, we plan to conduct a usability study to better understand
how users interact with DroidAuditor. Second, we are implementing a policy
enforcement architecture based on DroidAuditor’s behavior graph by storing
and evaluating the behavior graph on the mobile device. Finally, we aim to inte-
grate dynamic taint analysis into DroidAuditor, which would allow us to support
more precise data flow analysis for applications which do not contain native code.

268 S. Heuser et al.

References

1. Backes, M., Bugiel, S., Gerling, S.: Scippa: system-centric IPC provenance on
android. In: 30th Annual Computer Security Applications Conference, pp. 36–45.
ACM (2014)

2. Blsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: 5th International
Conference on Malicious and Unwanted Software, pp. 55–62 (2010)

3. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.:
Towards taming privilege-escalation attacks on android. In: 19th Annual Net-
work & Distributed System Security Symposium (2012)

4. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8 30

5. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: lightweight
provenance for smart phone operating systems. In: 20th USENIX Security Sym-
posium, USENIX (2011)

6. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information flow tracking system for real-time privacy monitoring
on smartphones. Commun. ACM 57(3), 99–106 (2014)

7. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. In: 20th USENIX Security Symposium, USENIX
(2011)

8. Heuser, S., Nadkarni, A., Enck, W., Sadeghi, A.-R.: ASM: a programmable
interface for extending android security. In: 23rd USENIX Security Symposium,
USENIX (2014)

9. Heuser, S., Negro, M., Pendyala, P.K., Sadeghi, A.-R.: DroidAuditor: Forensic
Analysis of Application-Layer Privilege Escalation Attacks on Android. Technical
report, TU Darmstadt (2016)

10. Lineberry, A., Richardson, D.L., Wyatt, T.: These Aren’t the Permissions You’re
Looking For. DefCon 18 (2010)

11. McAfee. Threats report May 2015. http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q1-2015.pdf, May 2015

12. Rasthofer, S., Asrar, I., Huber, S., Bodden, E.: How current android malware
seeks to evade automated code analysis. In: Akram, R.N., Jajodia, S. (eds.)
WISTP 2015. LNCS, vol. 9311, pp. 187–202. Springer, Cham (2015). doi:10.1007/
978-3-319-24018-3 12

13. Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis
of smartphone applications. In: Third ACM Conference on Data and Application
Security and Privacy, pp. 209–220. ACM (2013)

14. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-
sandbox: having a deeper look into android applications. In: 28th Annual ACM
Symposium on Applied Computing, pp. 1808–1815. ACM (2013)

15. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic recon-
struction of android malware behaviors. In: 22nd Annual Network & Distributed
System Security Symposium (2015)

16. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and dalvik
semantic views for dynamic android malware analysis. In: 21st USENIX Security
Symposium, USENIX (2012)

http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf
http://dx.doi.org/10.1007/978-3-319-24018-3_12
http://dx.doi.org/10.1007/978-3-319-24018-3_12

Social Interaction and Policy

Discrete Choice, Social Interaction, and Policy in
Encryption Technology Adoption (Short Paper)

Tristan Caulfield1(B), Christos Ioannidis2, and David Pym1

1 University College London, London, UK
{t.caulfield,d.pym}@ucl.ac.uk

2 Aston Business School, Birmingham, UK
c.ioannidis@aston.ac.uk

Abstract. We introduce a model for examining the factors that lead
to the adoption of new encryption technologies. Building on the work
of Brock and Durlauf, the model describes how agents make choices,
in the presence of social interaction, between competing technologies
given their relative cost, functionality, and usability. We apply the model
to examples about the adoption of encryption in communication (email
and messaging) and storage technologies (self-encrypting drives) and also
consider our model’s predictions for the evolution of technology adoption
over time.

1 Introduction

In recent years, especially in the light of Edward Snowden’s revelations, aware-
ness of the need for enhanced privacy and confidentiality for both communi-
cations and devices has increased. In response to this, many new technologies,
including various forms of encryption, have been introduced. However, the adop-
tion of these new technologies is not guaranteed: their use depends on a number
of factors, including how effective they are, how much they cost, how easy they
are to use, and the social and policy contexts within which they are introduced.

The use of encryption for electronic communications and data storage is
accelerating and people are increasingly shifting to new technologies for interper-
sonal communications. Such behavioural changes are indicative of the existence
of agents revising their choices between technological alternatives to achieve their
communications goals. The aim of the paper is to provide a theoretical frame-
work which can capture such changes in the choice of technologies in the presence
of external impulses emanating from either policy or other external events.

We introduce a model, based on work by Brock and Durlauf [1], that incorpo-
rates these factors into a utility-theoretic framework that describes how agents
make choices between competing technologies. We use this model to analyse the
adoption of encryption in a range of communication and storage technologies.
We consider three examples: first, email, where we look at the use of PGP/GPG
encryption; second, messaging applications, where we examine the adoption of

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 271–279, 2017.
DOI: 10.1007/978-3-662-54970-4 16

272 T. Caulfield et al.

WhatsApp compared to traditional SMS messaging; and, finally, the adoption
of self-encrypting drives over standard, non-encrypted drives.

The Brock and Durlauf model captures social interactions between non-
cooperative decision-making agents. This reflects the reality of decisions about
the use of encryption: agents—either individuals or organizations—make deci-
sions independently and without coordination and yet their decisions can have
an effect on the utility of other agents. For example, the utility of encrypted
communications technology to a user changes with the number of other users; it
is low if there is nobody to communicate with, and higher if it can be used to
communicate with a larger number of others.

Besides the social interactions, the Brock and Durlauf model uses the rel-
ative profitability of technologies as the main factor that determines adoption.
This single factor would not give great insight into the adoption of encryption
technologies. To this end, we introduce some modifications to the model that
allow us to examine the influence on utility—and hence, adoption—of different
technology attributes: functionality, monetary cost, and usability. These are suf-
ficient to demonstrate the model; other attributes may also be of interest for
different applications. These are multiple attributes in the sense of [4].

Other work has also looked at the adoption of security technologies. Rosasco
and Larochelle [14] look at the adoption of SSH over telnet, and considers the cost
and functionality of the technologies. Ozment and Schechter [13] use a model,
which includes a social component, to suggest strategies to promote the adoption
of DNSSEC.

In conclusion, our model is a tool for thinking about the different factors that
determine adoption, such as attributes of the technologies themselves, techno-
logical innovation, or policy. Understanding how these factors affect adoption is
important for decision-makers—those designing a technology, deciding whether
to adopt it, or seeking to promote or inhibit adoption through policy.

2 Technology Adoption Model

We start with the discrete choice model of Brock and Durlauf [1], which, in this
context, describes a system where M technologies are competing in a market
for adoption by N agents. The model assigns a share of the market to each
technology, based on its profitability. This profitability also includes a social
component: a technology can be more profitable if more agents are using it. There
can also be additional factors, such as taxes, policy, or technological innovation,
but we start with the simple model and introduce the other factors below, before
continuing with our extensions to apply the model to encryption technology.

The utility an agent receives from technology c in time period t is

uc,t = λc + ρcxc,t, (1)

where the profitability of technology c is given by λc and the number of agents
choosing c at time t is xc,t. The value ρc (where ρc > 0) defines the intensity
of the social component, the term ρcxc,t. The greater the value of ρc, the more

Social Interaction, Policy, and Encryption Technology Adoption 273

agents’ utilities and subsequently choices are influenced by the choices of others.
Each agent i experiences a random utility ũi,t = ui,t + εi,t, where the noise, εi,t,
is independently identically distributed across agents, and known to the agent
at decision time. As the number of agents tends to infinity and when the noise
has a double exponential distribution, the probability of adoption of technology
c converges to

xc,t =
eβuc,t−1

∑M
j=1 eβuj,t−1

. (2)

Here, the parameter β is the intensity of choice, and is inversely related to the
variance of the noise εi,t. When β → ∞, there is no noise and all agents choose
their optimal technology. When β → 0, agents pick technologies randomly, and
the share of each technology tends towards 1/M . Essentially, with higher values
of β, the equilibria points in the model become more extreme; that is, they tend
towards ‘corner solutions’ with only one surviving technology.

In this model, agents know only the social term ρcxc,t in (1), which represents
the decisions of other agents and benefits associated with them. Agents are
making a choice between tech options with different profitability to themselves,
using knowledge about market penetration in the last period.

Now let’s consider a model with two competing technologies, c, a new tech-
nology, and d, an existing technology. Because there are just two, we need only
one variable, x, which is the share of agents using technology c, to keep track of
the state: xc = x and xd = 1 − x. For simplicity, we also assume that the tech-
nologies experience equal increasing return on adoption; that is, ρc = ρd = ρ.
From (2), the probability of adoption (and market share) of technology c in time
t is then

xt =
eβ(λc+ρxt−1)

eβ(λc+ρxt−1) + eβ(λd+ρ(1−xt−1))
=

1
1 + eβ(λ+ρ(1−2xt−1)

= f(xt−1). (3)

The model is driven by the difference of utilities between the two technologies,
ud,t − uc,t = λ + ρ(1 − 2xt), where λ = λd − λc. If the difference is positive,
agents will prefer technology d; if it is negative, they will prefer technology c.
More pronounced differences will result in ever-increasing shares for the preferred
technology.

Policy. We can extend the above model with an additional component that
represents a policy about the choice between the two technologies. The policy is
imposed by some external source, and takes the form of a penalty or incentive
on one of the technologies.

As an example, assume that technology d is currently more profitable (and
hence more popular) than technology c. A policy-maker, such as a government
or industry-regulator, wishes to encourage the adoption of c and may introduce
a tax on d or impose some regulatory restriction on its use. We represent this
by adding a factor, τ , to the model: ud,t − uc,t = λ0 + ρ(1 − 2xt) − τ(1 − x).

274 T. Caulfield et al.

As the adoption of c grows, although the taxation decreases (and vice versa)
the social reinforcement from the increased adoption will still lead to an increased
market share for c.

Technological Progress. In the previous sections, the values λc and λd have
been static, meaning that the cost difference between the two technologies
remains constant over time. We can model a change in this difference over time
by considering how past investment in each of the technologies affects its cur-
rent profitability. We consider the impact of the cumulative investment on each
technology and postulate that such impact follows the time-dependent learning
curve stated as follows:

λc,t = λc0 + ψc

⎛

⎝
t∑

j=1

xj

⎞

⎠

ζc

and λd,t = λd0 + ψd

⎛

⎝
t∑

j=1

(1 − xj)

⎞

⎠

ζd

. (4)

Here, ψd and ψc are values that determine how effective investment is in making
technological progress, and ζd and ζc ∈ [0, 1] determine the shapes of the learning
curves for each of the technologies.

Now the difference in profitability depends on time,

λt = λd,t − λc,t = λ0 + ψd

⎛

⎝
t∑

j=1

(1 − xj)

⎞

⎠

ζd

− ψc

⎛

⎝
t∑

j=1

xj

⎞

⎠

ζc

, (5)

as does the difference in utility, ud,t − uc,t = λt + ρ(1 − 2xt), and the share of
technology c, xt = 1

1+eβ[λt−1+ρ(1−2xt−1)] = ft−1(xt−1).
As an example, in the first, simple model without policy or technological

progress, a new technology that starts with little market share is unlikely ever
to gain very much. However, if we model the technological change, and the new
technology has higher values of ψ and ζ than the existing technology, it can
eventually become more profitable over time, acquiring increasing market share
as a progressively increasing number of agents adopt it because of increases in
their personal profitability.

Switching Costs. In the models so far, every agent makes a decision about
which technology to use in every time period. In reality, this is not the case
because there are costs associated with switching. We can model this by assuming
that a proportion, α, of agents do not switch technologies in each time period:

fτ,α(x) = αx + (1 − α)
1

1 + eβ[λ0+ρ(1−2x)−τ(1−x)]
.

The Cryptographic Utility Function. Improvement in utility in the basic
model is based on a single value, λ, which is the difference in profitabilities

Social Interaction, Policy, and Encryption Technology Adoption 275

between the two technologies. This value, along with social externalities, policy,
and technological progress then determines the adoption of the technologies.

We introduce to the model a richer concept of utility so as to be able
to express the differences between encryption technologies in greater detail.
Instead of a single attribute determining the utility—its profitability, in the basic
model—we use a set of different attributes, A (see [3] for this multi-attribute
utility-theoretic [4] set-up in the context of security). Thus, λ becomes the dif-
ference between the values, va, of the attributes, a ∈ A, for the two technologies
c and d: λ =

∑
a∈A(va,d − va,c).

We also wish to be able to express policies about each of the different
attributes, so we change τ to be a function which describes the policy for each
attribute. The difference in utilities is then given by ud,t − uc,t = λ0 + ρ(1 −
2xt) +

∑
a∈A τa(x).

Finally, we describe the development of each attribute individually as invest-
ment could affect each of the attributes in different ways. The updated model
allowing for technological progress is

λt = λd,t −λc,t = λ0 +
∑

a∈A

⎡

⎢
⎣ψa,d

⎛

⎝
t∑

j=1

(1 − xj)

⎞

⎠

ζa,d

− ψa,c

⎛

⎝
t∑

j=1

xj

⎞

⎠

ζa,c
⎤

⎥
⎦ . (6)

Attributes for Encryption Technologies. We use a set of three attributes
that capture the aspects of the technologies that we wish to discuss. These
attributes are appropriate to demonstrate the model with the examples we use;
other technologies and applications of the model might use different attributes.

First, monetary cost: this is different from the notion of profitability in the
basic model, as this (profitability) acts as an aggregate term which includes all of
the other attributes; here, we just want to consider how expensive a technology
is. Second, usability: there has been a lot of research into the usability of various
encryption technologies and how the ease of their use has a large role in deter-
mining whether or not people choose to use them. Finally, functionality: this
expresses the range of functions that a technology or product covers that benefit
the user, not just in terms of encryption. For example, consider two competing
products: one has a great number of features that are useful to the user, but
offers no encryption, and one that has encryption, but lacks some of the other
features. The latter product, although it has increased functionality by offering
encryption, may have a lower total functionality.

3 Three Examples

In this section, we briefly introduce three examples of encryption technologies
that we use to demonstrate different aspects of the model. Here, we only look
at static situations; in Sect. 4, next, we explore the dynamics of these examples.
Models are implemented in the julia language [10].

276 T. Caulfield et al.

x

0.0 0.5 1.0

Email (1)
WhatsApp (2)
SED (3)

Example

1

2

3

0.0

0.5

1.0

f(
x)

Technology Adoption

Fig. 1. Adoption: all three examples.

Table 1. Model parameters

ρ Cost Usability Funct.

Default tech – 1.0 1.0 1.0

GPG/PGP 1.0 1.0 0.6 1.1

WhatsApp 1.0 1.05 1.0 1.1

SED 0.1 0.85 0.9 1.1

The models depend critically on choices of values for a number of parameters.
Where possible, our choices have been informed by available data; where not, we
have estimated sensible values based on our modelling experience and knowledge
of the situations. Clearly, further systematic exploration of the parameter spaces
and their sensitivity would be valuable.

In each of the examples, a new technology is compared to a default, incum-
bent technology. The attribute values for the default technology are all 1. The
values for each example are shown in Table 1. Values above 1 are better than
the incumbent technology; values below are worse. We use a value of β = 3.4 in
all examples.

The first two examples look at email encryption, comparing standard email
to email encrypted with PGP/GPG [6], and messaging apps, comparing normal
SMS messaging to the WhatsApp messenger. Both of these examples have a high
social component, ρ: the utility of the technology increases as more people use
it, and suffers when there are few other users. This is contrasted with the third
example, which compares standard hard drives to self-encrypting drives. Here,
ρ is low, as whether or not others are using the technology does not have a large
influence on its utility.

Now looking at costs, encryption software is available for free, so we give
it the same value as normal email. WhatsApp is potentially less costly than
traditional SMS messaging, which can charge for every message sent, well above
the equivalent cost of the data [7], and self-encrypting drives are more expensive
than normal drives.

Usability for encrypted email is much lower than standard email. As studies
have shown [12], it can be quite difficult for people to correctly encrypt their
messages; more recently, Edward Snowden described GPG as ‘damn near unus-
able’ [9]. We assume that usability for WhatsApp is similar to regular messaging,
and that self-encrypting drives, with the overhead of key management, are less
usable than standard drives.

Finally, the functionality of all of the new technologies is greater than the
incumbents. Encrypted email is encrypted, as are self-encrypting drives, and
WhatsApp has additional features such as sending pictures and video messages.

Each of these examples have different equilibria, based on (5), which are
shown in Fig. 1. For email (1), there is only one equilibrium point, where the

Social Interaction, Policy, and Encryption Technology Adoption 277

share of encrypted email is close to zero. For WhatsApp (2), there are three
equilibria: two stable equilibria, one high and one low, and a third, unstable
equilibrium at x ≈ 0.3.

If WhatsApp starts from a small market share, it will grow until it reaches
the lower adoption share stable equilibrium. If there is some change or shock—a
sudden increase in profitability or usage, for example—that increases its market
share beyond the unstable equilibrium point, then its share will continue to grow
until it reaches the higher point and will dominate the market. This is not the
case for encrypted email where the low usability means that, although its value
increases with the number of people using it, without some ‘external impulse’
that changes the utility, the level of adoption will always return to the single,
low equilibrium point.

Finally, Fig. 1 (3) shows the equilibrium of the self-encrypting drive example.
There is only one equilibrium (at x ≈ 0.35) and, because of the low ρ, the value
of the technology does not change a great amount based on the level of adoption,
which is mainly driven by the characteristics of the technology.

4 Dynamics of the Model and Discussion

So far, the models have been deployed to display the equilibria which can be used
for the comparative statics of technology adoption. We proceed by extending
the email encryption example to study the evolution of technology adoption
over time, in the presence of both exogenous policy influences and endogenous
technology changes.

The policy influences take the form of functions that influence the behav-
iour of agents by changing the value of the utility of the different technolo-
gies. Technology changes are modelled within the existing model structure as
either changes in the returns on investment over time, or instantaneous shocks
to utility-attribute parameters.

We analyse two dynamic aspects of the email encryption example. First, the
effect of events such as the Snowden revelations on its use, and, second, how
increases in the usability of the encryption software can increase its adoption.

On 5 June 2013, the first of the newspaper articles containing information
disclosed by Edward Snowden was published. The documents he released shed
light on the expansive electronic surveillance programs being run by the Amer-
ican and British governments. These revelations led to an increased desire to
protect the privacy of electronic communications. This can be seen directly in
Fig. 2, which shows the total number of PGP/GPG keys registered on public
keyservers daily over several years [8]. The vertical line indicates the date of the
first Snowden article, immediately after which the rate at which keys were added
markedly increased.

While this doesn’t determine the exact number of people using encrypted
email—people can have multiple keys, some keys may be abandoned, etc.—it
clearly demonstrates that the revelations had an impact. We can model this
as a revelation of government policy: it adds additional costs to using regu-
lar email. We can implement this as a function for the functionality attribute

278 T. Caulfield et al.

Date

2011 2012 2013 2014 2015 2016

2.5×106

3.0×106

3.5×106

4.0×106

To
ta

l

Number of Keys

Fig. 2. Daily number of PGP keys on
keyservers. The vertical line indicates
the first Snowden news article.

x

0.0 0.5 1.0

1

2

0.0

0.5

1.0

f(
x)

Email Adoption

Fig. 3. Email adoption (1) with and
(2) without government surveillance
policy.

τfunctionality(x) = −0.2, which returns a constant value, rather than being
dependent on the share of adoption: insecure email is less useful, no matter
how many people are using it.

Figure 3 shows the effects of the policy compared to the previous case without
such policy (essentially, τfunctionality(x) = 0). There are now two stable equilib-
ria, instead of just one. Unlike before, if, somehow, there was now a sudden large
increase in encrypted email use—to over 62 percent adoption, the location of the
unstable equilibrium—the system would change to the higher stable equilibrium
and encrypted email use would be dominant. However, a sudden increase of such
size is not likely, and the probable result is that the system stays at the lower
equilibrium, which has shifted slightly higher (from x ≈ 0.013 to x ≈ 0.028),
showing a small increase in the adoption of encrypted email.

These developments are assuming that there is no innovation around
encrypted email and the technology and user experience stay constant. In reality,
the usability of encryption software is being improved. For example, Google and
Yahoo are working on a web browser plugin that provides end-to-end encryption
for their respective webmail services [2,11]. This plugin also manages key distri-
bution, aiming to make things easier for users than PGP/GPG’s Web of Trust
model. Other services, such as Keybase [5], which uses social network identities
as a means of verifying the identity of a key’s owner, are also attempting to
improve key distribution. How much efforts such as these will increase the use
of email encryption largely depends on how much they improve usability.

We can use the technological progress model to look at how investment
in improving usability will affect adoption. Figure 4 shows the adoption over
time for four different scenarios. The first two have a low rate of return
for investment in usability, one with the government policy and one with-
out (ψusability,c = 0.05, ζusability,c = 0.1). The second two have a very high
rate of return on investment, again with and without policy (ψusability,c =
0.2, ζusability,c = 0.3). In all cases, the values for non-encryption are the same:
ψusability,d = 0.01, ζusability,d = 0.01. We use α = 0.99 for the switching rate.

In the high-return cases, the investment causes the system to switch to an
equilibrium with high adoption of email encryption. The transition happens

Social Interaction, Policy, and Encryption Technology Adoption 279

time

0 500 1000 1500

Low: Policy (1)
Low: No Policy (2)
High: Policy (3)
High: No Policy (4)

Scenario

1
2

3 4

0.0

0.5

1.0

x
(e

nc
ry

pt
io

n
ad

op
tio

n)

Adoption over time

Fig. 4. Email adoption over time

much sooner with the government policy than without. In both of the low-return
cases, encryption never gets a large market share.

References

1. Brock, W.A., Durlauf, S.N.: Discrete choice with social interactions. Rev. Econ.
Stud. 68(2), 235–260 (2001)

2. Google Online Security Blog: Making End-to-End Encryption Easier to Use
(2014). http://googleonlinesecurity.blogspot.co.uk/2014/06/making-end-to-end-
encryption-easier-to.html. Visited 20 Sep 2015

3. Ioannidis, C., Pym, D., Williams, J.: Investments and trade-offs in the economics
of information security. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol.
5628, pp. 148–166. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03549-4 9

4. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value
Trade-offs. Wiley, Hoboken (1976)

5. Keybase (2015). https://keybase.io/. Visited 20 Sep 2015
6. OpenPGP.org (2015). http://www.openpgp.org. Visited 30 Sep 2015
7. Shambare, R.: The adoption of WhatsApp: breaking the vicious cycle of techno-

logical poverty in South Africa. J. Econ. Behav. Stud. 6(7), 542–550 (2014)
8. SKS Keyservers: History of Number of OpenPGP Keys (2015). https://

sks-keyservers.net/status/key development.php. Visited 30 Sep 2015
9. The Guardian: Snowden Implores Hackers to Focus on Protecting Users’ Rights

(2014). http://www.theguardian.com/technology/2014/jul/21/edward-snowden-
hackers-encryption-patriot. Visited 7 Oct 2015

10. The julia language (2015). http://julialang.org/. Visited 30 Sep 2015
11. User-Focused Security: End-to-End Encryption Extension for Yahoo Mail (2015).

http://yahoo.tumblr.com/post/113708033335/user-focused-security-end-to-end-
encryption. Visited 30 Sep 2015

12. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of
PGP 5.0. In: Proceedings 8th Conference on USENIX Security Symposium, vol. 8,
SSYM 1999, pp. 14–14. USENIX Association, Berkeley (1999)

13. Ozment, A., Schechter, S.E.: Bootstrapping the adoption of internet security pro-
tocols. In: WEIS (2006). http://www.econinfosec.org/archive/weis2006/docs/46.
pdf. Visited 02 Jan 2016

14. Rosasco, N., Larochelle, D.: How and why more secure technologies succeed in
legacy markets: lessons from the success of SSH. In: Jean Camp, L., Lewis, S.
(eds.) Economics of Information Security, pp. 247–254. Kluwer, Boston (2004)

http://googleonlinesecurity.blogspot.co.uk/2014/06/making-end-to-end-encryption-easier-to.html
http://googleonlinesecurity.blogspot.co.uk/2014/06/making-end-to-end-encryption-easier-to.html
http://dx.doi.org/10.1007/978-3-642-03549-4_9
https://keybase.io/
http://www.openpgp.org
https://sks-keyservers.net/status/key_development.php
https://sks-keyservers.net/status/key_development.php
http://www.theguardian.com/technology/2014/jul/21/edward-snowden-hackers-encryption-patriot
http://www.theguardian.com/technology/2014/jul/21/edward-snowden-hackers-encryption-patriot
http://julialang.org/
http://yahoo.tumblr.com/post/113708033335/user-focused-security-end-to-end-encryption
http://yahoo.tumblr.com/post/113708033335/user-focused-security-end-to-end-encryption
http://www.econinfosec.org/archive/weis2006/docs/46.pdf
http://www.econinfosec.org/archive/weis2006/docs/46.pdf

Cryptanalysis

Failures of Security APIs: A New Case

Abdalnaser Algwil and Jeff Yan(B)

School of Computing and Communications, Lancaster University, Lancaster, UK
{a.algwil,jeff.yan}@lancaster.ac.uk

Abstract. We report novel API attacks on a Captcha web service, and
discuss lessons that we have learned. In so doing, we expand the horizon
of security APIs research by extending it to a new setting. We also show
that system architecture analysis is useful both for identifying vulnera-
bilities in security APIs and for fixing them.

Keywords: API attacks · Architecture analysis for security · Captcha ·
Web security

1 Introduction

A security API is an Application Programming Interface that facilitates less
trusted or even untrusted code to interact with a trusted computer. A classic
example of security APIs are those that enable interactions between a banking
computer (less trusted) and a cryptographic Hardware Security Module (trusted)
attached to it. Security APIs differ from general programming APIs in that the
former enforces a security policy, and typically the policy is about preventing
some information flow while allowing tight and dynamic interactions between the
untrusted computer and the trusted one. Even if the less trusted or untrusted
code is malicious, ideally it should not be able to break the security of the trusted
computer.

Security APIs started to get going as a research subject in 2000 with Ross
Anderson’s seminal paper [1]. A research community has formed, and interesting
results emerged. However, most security API attacks published to date are about
HSMs and cryptographic key management APIs, e.g. [2–4,8,9]. An exception is
Robert Watson’s work [12] that exploited concurrency vulnerabilities in system
call wrappers to launch API attacks on operating systems.

In this paper, we report novel API attacks on CCaptcha (http://crecaptcha.
org), an Internet service that is created to generate Captchas for any websites.
A CCaptcha server (trusted) generates automated Turing tests using sensitive
materials, and verifies each test result for the websites in the wild. The websites
(untrusted) interact with the CCaptcha server via a set of APIs defined by the
service provider. This gives us an opportunity for studying security APIs in a
new setting, which expands the horizon of security APIs research.

We will show a number of API attacks. For example, one allows us to down-
load all sensitive materials that the service uses for constructing Captchas; one
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 283–298, 2017.
DOI: 10.1007/978-3-662-54970-4 17

http://crecaptcha.org
http://crecaptcha.org

284 A. Algwil and J. Yan

allows us to launch an effective dictionary attack on the service; and the third
allows us to bypass this Captcha entirely. Two of the attacks defeat entirely or
nearly so the purpose of deploying this service.

Our attacks work on both versions of the CCaptcha service, one released in
2010 and the other in the summer of 2014 (i.e. the latest version). It is clear
that the service provider has invested some serious efforts in its design and
implementation. But we argue that the designers did not seem to consider system
architecture issues carefully, and this is a main reason that their security APIs
fail. We discover our attacks by analysing the service’s architecture, interactions
among individual system components, as well as a limited amount of dynamic
code available to a client.

This work also contributes to Captcha research. On the one hand, prior art
did not examine Captcha security from the angle of security APIs, as conven-
tional Captcha designs rarely provide the possibility to articulate or enforce a
security policy.

On the other hand, text Captchas have been widely deployed, but many
designs have been broken [5,10,11,13,14]. It is intellectually interesting and
practically relevant to explore alternative designs, which are currently an active
research topic. Initially disclosed in a USA patent application [7], CCaptcha is
an interesting alternative scheme. The design is based on Chinese language, but
due to its clever idea, it is universally usable, even to those who are illiterate
in Chinese, which is quite counterintuitive. In a user study run by the inven-
tors, foreigners without Chinese language knowledge achieved a high accuracy
in solving this Captcha as native speakers did [6]. Our work is the first security
analysis of CCaptcha.

2 CCaptcha

Concept. As shown in Fig. 1, a CCaptcha challenge (or puzzle) is composed of
10 images. The bigger image at the top-left corner is a target Chinese character
that can be decomposed into multiple elementary radicals. The nine smaller
images on the right are candidate radicals. Some of them are real radicals from

Fig. 1. CCaptcha: an example

Failures of Security APIs: A New Case 285

the target character, but others are faux ones. Thin lines and small dots in the
background are not part of the character or radicals, but clutters. To pass a test,
a user has to click typically three real radicals on the right panel. Selecting any
faux radical will fail the test.

Each time when a character or radical is used in a puzzle, it will undergo
random distortions such as rotation, scaling and warping, and then random back-
ground clutters will be added. The inventors applied OCR software to recognize
such distorted characters and radicals, but to no avail. Whether their recognition
experiment is rigorous or not is beyond the scope of our paper. However, human
users can easily solve such tests via pattern recognition, and they do not have
to be literate in Chinese.

Random guess attacks. With random guessing, an attacker has about 1.19%
chance (i.e., 1/C9

3) to break this scheme. If necessary, a user can be asked to solve
2 challenges or more in a row, and this will reduce the random guess success to
∼ 0.014% = (1.19%)2, or less. Alternatively, if the number of real radicals used,
the number of all candidate radicals, or both, is slightly increased, it will reduce
the random guess success, too. It will further decrease the success probability of
random guess attacks by applying all these countermeasures together. Therefore,
random guess attacks are not a serious issue for this Captcha.

System architecture. CCaptcha is implemented as a web service, and it
provides both Captcha creation and validation services to web sites, where a
CCaptcha challenge (or puzzle) can be easily embedded in each web page by
installing a PHP library.

The service provider does not explicitly describe the system architecture
for CCaptcha. By studying the limited amount of documents available online
and by experimenting with the service, we reconstruct its system architecture
diagram. Figure 2 attempts to capture the workflow envisaged by the designers.

End User

Web Server
CCAPTCHA

Server

Fig. 2. CCaptcha web service: a reconstructed system architecture

286 A. Algwil and J. Yan

Interactions among an end user, a web server and the CCaptcha service can be
summarized as follows:

1. A user requests to fetch a page from the web server, and the server sends her
the page in which a CCaptcha script is embedded;

2. Driven by the script, her browser retrieves a puzzle from the CCaptcha server;
3. The user submits her puzzle solution to the web server;
4. The web server forwards this solution to the CCaptcha Server, and the

CCaptcha Server verifies it and sends back a verification result;
5. Following the result, the web server accepts or denies the user’s request.

3 API Attacks on CCaptcha

Here we present API attacks that we have uncovered. They include information
leakages, a dictionary attack and several oracle attacks. Some of the attacks are
built upon each other, but some are standalone attacks on their own.

3.1 Information Leakage

The CCaptcha service provides a PHP library labcrecaptcha.php, which wraps
its APIs and provides a simple mechanism to embed a Ccaptcha puzzle on any
web page. Our analysis starts with this library and follows up with leads exposed.

Paths. At the beginning of the library, as shown in Fig. 3, we find the location
and path where the CCaptcha APIs are served:

https://crecaptcha.org/crecaptcha/api/

define("CRECAPTCHA_API_SERVER", "https://crecaptcha.org");
define("CRECAPTCHA_API_PATH", "/crecaptcha/api");
define("CRECAPTCHA_VERIFY_SERVER", "crecaptcha.org");
define("CRECAPTCHA_VERIFY_PATH", "/crecaptcha/api");

Fig. 3. Server and path information for the CCaptcha service

Puzzle generation. The library also reveals that a script puzzle.php is the
interface responsible for Captcha generation. We note that once this script is
called, a puzzle is created as an array of 10 integers (see Fig. 4).

Hidden field. When integrating the library with our test web page, we discover
a hidden field crecaptcha puzzle. This field can be obtained by using a PHP
super-global method such as GET and POST during the Captcha verification
process.

https://crecaptcha.org/crecaptcha/api/

Failures of Security APIs: A New Case 287

var CrecaptchaConfiguration = {
server : ' https://www.crecaptcha.org/crecaptcha/api' ,
ishint : 3,
hardlevel : 1,
skin : 1,
puzzle : new Array(' 10089' ,' 18429' ,' 253' ,' 136' ,' 18591' ,

' 20469' ,' 19901' ,' 17288' ,' 271' ,' 20461')};
document.write(' <s' + ' cript type="text/javascript" src="' +
CrecaptchaConfiguration.server+' /crecaptcha.js"></s' +' cript>');

Fig. 4. Captcha generation

We note that this hidden field stores 10 integers separated by comma, for
example,

crecaptcha_puzzle = "10089, 18429, 253, 136, 18591, 20469,
19901, 17288, 271, 20461"

We also note that these numbers are the same as those stored in the puzzle
array.

It turns out that these numbers are distinct IDs of the images used to compose
a CCaptcha puzzle, with the first number identifying the target character and the
others identifying nine candidate radicals respectively. As illustrated in Fig. 5, a
puzzle is generated by fetching 10 images via their IDs, and then composing the
images accordingly.

10089.png

(Character)

18429.png 253.png
136.png

19901.png

20461.png

271.png 17288.png

18591.png
20469.png

Fig. 5. Images used in a puzzle (1 character + 9 radicals) and their numeric IDs

Each time when a character or radical is used to compose a puzzle, it will
undergo different distortions and be rendered as a different image. That is, the
generator will not reuse any image, but create a different image for the same

288 A. Algwil and J. Yan

character or radical each time. However, the numeric ID always remains the same
for all the different image versions rendered for the same character or radical.
That is to say, there is a fixed one-to-one relationship between a character/radical
and its image ID. This means that with the knowledge of an image’s ID, we
will know the image’s content without applying any computer vision or pattern
recognition algorithms.

Database leakage. A further analysis of puzzle.php source code (Fig. 4)
reveals a JavaScript file crecaptcha.js. By examining this JS script (see Fig. 6),
we discover that a PHP script image.php is responsible for retrieving image files
from the CCaptcha server.

_create_image_tag: function (i, c, width, height) {
output = ' <img src="' + CrecaptchaConfiguration.server +

' /image.php?c=' + c + ' " alt="" style="width:' +
width + ' ;height:' + height + ' ;border: 0px;" />' ;

if (i > 0 && i < 10){
output = ' <a href="javascript:Crecaptcha.click_option('

+ i.toString() + ');">' + output + ' ' ;
}
return output;

},

Fig. 6. Source code snippet from crecaptcha.js: image.php fetches images from the
CCaptcha server

The script image.php enables us to fetch any radical and character by send-
ing their numeric ID to the server. For example, as shown in Fig. 7, https://
crecaptcha.org/crecaptcha/api/image.php?c=1 returns us the character/radical
of ID 1.

By sending a sequence of numbers starting from 1 to 72154, we manage to
fetch 66,111 unique characters/radicals from the server – all the components
used for CCaptcha generation. Note that a majority of numbers between 13060
and 19783 are not assigned to any images.

Note: all the scripts that we have analysed are available on the client side, and
they are readily accessible merely via a browser.

3.2 A Dictionary Attack

The information leakages discussed above can be exploited to launch two attacks:
(1) a machine learning attack that trains an automatic Captcha solving algo-
rithm with the leaked database, and (2) an effective dictionary attack that solves
the CCaptcha tests with a high success rate.

https://crecaptcha.org/crecaptcha/api/image.php?c=1
https://crecaptcha.org/crecaptcha/api/image.php?c=1

Failures of Security APIs: A New Case 289

Fig. 7. Retrieving an image from the CCaptcha database

The first attack is beyond the scope of this paper, and we discuss only the
dictionary attack here. The idea is as follows. We build a dictionary with entries
being each character along with its valid radicals, and we store their image IDs
in the dictionary. To solve a new puzzle, we simply pick up its target character’s
ID from the traffic, use that ID to look up the dictionary, and then identify valid
radicals among nine candidates in the puzzle.

We have a simple but effective method for dictionary construction. By
exploiting the ID leakage vulnerability, we know which character/radical is
which, with the knowledge of their ID alone. If we analyse multiple puzzles
generated for the same target character, we will know that if a radical occurs
every time or most of the time in the puzzles, it will be a valid one with a high
probability.

A general description of our dictionary construction is given as follows. First
we launch a large number of requests to the server to collect θ different puzzles
for each character. For a certain character, we can sort all candidate radicals by
their occurrence frequency in the θ puzzles. If a radical occurs at least k times,
we keep it in the dictionary as a real radical for the character. This process will
be applied to all characters until our dictionary is stabilized. More details are
given in Algorithm 1.

Next we discuss how to determine θ (the number of tables) and k (occurrence
threshold) with the following analysis.

Parameter configurations. We know that a puzzle typically has 3 real radicals
and 6 fake ones. It is reasonable to assume that they are randomly selected by
the system from the real radical set (of a certain character) and the fake radical
set, respectively. Also assume that a certain character has m real radicals (e.g.
m = 4 for character 42328 and m = 3 for character 30646 in Fig. 10). Therefore,
for θ trails, the probability that a real radical has been selected k times, denoted
by P1, follows the binomial distribution:

P1 = Cn
r ρk

1(1 − ρ1)
θ−k

,

290 A. Algwil and J. Yan

where ρ1 = 3/m is the probability of a certain real radical having been selected
in a trial. Then the probability that a real radical has been selected less than k
times is:

PR = P (#real < k) =
k−1∑

i=0

Cθ
i ρ

i
1(1 − ρ1)

θ−i
. (1)

Algorithm 1. Dictionary Construction

input : Puzzles from Chinese Characters Database in CCaptcha Server
output: Dictionary contains each Chinese character along with its correct

radicals

DBCCs : Chinese Characters Database in CCaptcha Server ;
P: Puzzle (1 character + 9 radicals{3real+6faux});
P[char] : Target Character ID (i.e. Big image);
P[Rj] : Radical ID (i.e. small Image), where j = 1, 2, 3, . . . , 9;
Tn : Table to store puzzles (P), where n = 1, 2, 3, . . . , θ;
θ : Number of tables (e.g. 5);
k : Threshold of a radical occurrence;
NoR : Number of table Records;
PTn : Stored Puzzle in table n (Tn);
CTn : Target Character ID in stored puzzle in table n (Tn);
RTn : Radical IDs in stored puzzle in table n (Tn);
All Radicals : PT1 [R] + PT2 [R] + PT3 [R] + · · · + PTθ [R];
candidate radicals : IDs of correct radicals that compose the Target character ;

do
P ← send a request to CCaptcha Server and fetch a new puzzle;
for n ← 1 to θ do

if (IsFound(P[char], Tn) �= true) then
insert P into Tn ;
break; // for

end

end

while (NoR(Tθ) < NoR(DBCCs));

Dictionary ← { };

for all records in T1 do
CT1 ← PT1 [char];
All Radicals ← PT1 [R];
for n ← 2 to θ do

RTn ← GetRadicals (Tn , CT1);
Merge RTn with All Radicals;

end
count all of the matching values in All Radicals;
candidate radicals ← All Radicals[R] where their frequency > k;
insert(CT1 , candidate radicals) into Dictionary ;

end

Failures of Security APIs: A New Case 291

Similarly, we can model the probably distribution of the fake radicals. Assume
that there are M fake radicals that can be chosen from, where M = z − m, and
z = 1366 (the total number of radicals used in the system). After θ trials, the
probability that a fake radical has been selected at least k times is

PF = P (#fake ≥ k) = 1 −
k−1∑

i=0

Cθ
i ρ

i
2(1 − ρ2)

θ−i
, (2)

where ρ2 = 6/M .

In building our dictionary, we repeat the random selecting process θ times,
and then select radicals occurred at least k times as the real ones. Note that PR

and PF are two important metrics determining the effectiveness of the dictionary.
By definition, it is preferable to set parameters that yield small PR and PF .

We have empirical evidence that ρ2 is relatively small but ρ1 relatively large:
by sending millions of requests to grab puzzles from the CCaptcha server, we
establish that not all 66111 characters, but only 50313 of them, are used as a
target character in a puzzle, where there are at least 3 valid radicals. We also
establish that for all the 50313 characters, m ∈ {3, 4, 5, 6, 7}.

Therefore, according to Eq. 2, and Eq. 1, PR and PF can be very small if we
choose a large θ and an appropriate k. However, a large θ would result in a high
computational cost. To balance the trade-off between accuracy and efficiency,
we decide to set θ = 5 and k = 3, which as shown later will yield a reasonable
accuracy with a low computational cost.

Given the distribution of character number with respect to m, we can also
calculate POverall

R and POverall
F , defined as follows:

POverall
R =

m=7∑

m=3

character(m)
N

PR(m)

POverall
F =

m=7∑

m=3

character(m)
N

PF (m),

where N =
∑7

3 # character(m) = 50313.

Table 1 shows various probabilities as calculated, and it clearly indicates that
with θ = 5 and k = 3, an effective dictionary can be built, since POverall

R and
POverall

F are low, which suggests that real radicals tend to occur more than k
times while fake radicals tend to occur less than k times.

An example of dictionary building is given in Fig. 8, where we use the
character 11148 and θ = 5. Each puzzle is stored in a different table that contains
the character alongside with 9 candidate radicals. We put together the 5 puzzles
and count the occurrences of each candidate radical. Radical 136 occurs 5 times,
18461 occurs 4 times, and both 18445 and 63470 occur 3 times, and therefore
all of them are determined as real radicals for the character. Figure 9 shows all
the corresponding images identified by their IDs, confirming the correctness of
our algorithm.

292 A. Algwil and J. Yan

Table 1. The probabilities of PR & PF (θ = 5; k = 3)

– # character(m) PR(m) PF (m)

m = 3 25088 0.0 % 0.00008474 %

m = 4 18780 10.35 % 0.00008493 %

m = 5 5907 31.74 % 0.00008511 %

m = 6 525 50.00 % 0.00008530 %

m = 7 13 63.21 % 0.00008549 %

P Overall
RorF 8.13 % 0.00008486 %

Table2
Char R1 R2 R3 R4 R5 R6 R7 R8 R9
11148 136 17908 23 63470 18461 19796 18576 17788 18673

Dictionary (1 Character + candidate radicals) (T = times; R = radical)

Char R1 T1 R2 T2 R3 T3 R4 T4 R5 T5 R6 T6 …… R15 T15
11148 136 5 18461 4 18445 3 63470 3 ……

Table3
Char R1 R2 R3 R4 R5 R6 R7 R8 R9
11148 18461 20472 17964 17989 120 63473 136 18445 75

Table4
Char R1 R2 R3 R4 R5 R6 R7 R8 R9
11148 63470 18461 17973 27606 17975 17972 136 17899 149

Char R1 R2 R3 R4 R5 R6 R7 R8 R9
11148 17901 63470 21424 395 18043 18445 136 41 23409

Table5
Char R1 R2 R3 R4 R5 R6 R7 R8 R9
11148 18445 71 20461 18089 18461 30776 136 28653 439

Fig. 8. The dictionary construction process for a character

Experiment results. We spent about two weeks building a dictionary with
θ = 5 tables, i.e. 5 different puzzles for each character. Figure 10 visualizes a
small part of the dictionary. With this dictionary, we tested on 2000 new puzzles
that were randomly generated by the service, and completely solved 1833 of

Failures of Security APIs: A New Case 293

11148 (character) 136 (5 times) 18461 (4 times) 18445 (3 times) 63470 (3 times)

Fig. 9. An example on a character with the classified real radicals

Fig. 10. Dictionary visualization

them, achieving a success rate of 91.65%. For 152 failed cases, 2 out of the 3 real
radicals were successfully identified by our dictionary attack. It takes on average
about 0.093 seconds to solve a puzzle on a standard desktop computer.

To increase the success of our dictionary attack, we can further suppress
POverall

R and POverall
F by increasing θ (the number of tables) and choosing

an appropriate threshold k. For example, when we set θ = 10 and k = 5,
POverall

R becomes 3.10% and POverall
F becomes 0.000000041%, which are both

much lower than the previous configurations. The dictionary attack’s success
will be improved accordingly.

3.3 Verification Abuse

Further investigation into the CCaptcha library “labcrecaptcha.php” reveals that
a script named “verify.php” is responsible for Captcha verification. The key API
is defined as follows:

294 A. Algwil and J. Yan

function check_crecaptcha_answer($remoteaddr, $puzzle, $answer,
$useragent, $userlanguage, $setting)

It returns ‘Success’ if the user’s answer is correct, and ‘Failure’ otherwise.
Two parameters of the API are defined but not really used in the verification
process, and they are remote address and user agent. We find that adversaries
can abuse this API for the following oracle attacks.

Bypass the service. For any puzzle generated by the service, an attacker can
ask the server to do a brute force search for the correct answer, and then the
attacker uses the answer to pass the test. The pseudocode in Algorithm 2 shows
our attack. We enumerate each combination of 3 candidate radicals, and then
send it to the service one by one. It takes at most 84 trials (i.e., C9

3) to know
which combination is correct. In our experiment, our success rate is 100% and
it takes less than 30 seconds on average to get the correct answer. This attack
enables adversaries to entirely bypass the CCaptcha test.

Algorithm 2. Brute Force Search

input : Puzzle (1 character + 9 radicals{3 real+6 faux})
output: Correct solution (IDs of correct radicals that compose the Target

character)

P: Puzzle (1 character + 9 radicals{3real+6faux});
P[char] : Target Character ID (i.e. Big image);
P[Rn] : Radical ID (i.e. small Image), where n = 1, 2, 3, . . . , 9;

P ← grab a new puzzle needed to solve;
for i ← 1 to 7 do

for j ← i + 1 to 8 do
for k ← j + 1 to 9 do

Possible Solution = {P[Ri], P[Rj], P[Rk]} ;
Result = check crecaptcha answer (P, Possible Solution,. . .);
if (Result = success) then

Correct Solution = Possible Solution;
Exit;

end

end

end

end

Improve dictionary quality. We can also improve our dictionary (constructed
in Sect. 3.2) by abusing the API to ensure the correctness of dictionary entries,
e.g. by filtering out fake radicals.

We first run Algorithm 1 to build our dictionary, which mainly keeps track
of radicals appearing more than 3 times in five puzzles. Since only 5 tables
are used for dictionary construction, we also keep track of each radical that

Failures of Security APIs: A New Case 295

appears only twice. Next, for each dictionary entry, we sent a series of requests
to the verification script, each request including a character together with three
candidate radicals, and the check crecaptcha answer API will tell us whether
they are the right combination.

This way, we have successfully eliminated each radical that accidentally
repeats at least 3 times but is not part of the correct combination. On the
other hand, we have also found that some radicals appear only twice, but are
real roots from target characters.

However, this enhancement method hardly produces a perfect dictionary for
a simple reason: when we choose small numbers for k and θ, some real radicals
will never be observed in the say 5 tables.

Build an optimal dictionary. We can also build an attack dictionary by
abusing the verification API alone. To do so, we ask the service to perform a brute
force search for each character. That is, at most 84 requests will identify 3 real
radicals for a character, creating a dictionary entry. The dictionary constructed
this way will be optimal, but it will take a long time, much longer than required
for building the improved dictionary described earlier.

4 Countermeasures

The vulnerabilities we have discussed are mostly due to architecture flaws in the
system design, and they can be addressed by carefully thinking about architec-
ture issues.

All the information leakage vulnerabilities can be prevented by significantly
restructuring the division of labour between the CCaptcha server and the code
executed on an end user’s computer (i.e. the client). Specifically, generating
Captchas can be entirely done by the server without interacting with the client.
The server randomly picks a target character, and assembles it with nine can-
didate radicals into a big image like the one shown in Fig. 1. Then, the image is
sent to the client, which will display the image to the end user, collect her inputs
in the form of a series of coordinate pairs describing where she has clicked on
the image, and then send the inputs to the server. Next, the server interprets
which candidate radicals the user has clicked, and determines whether the clicked
radicals are real ones or not.

The one-to-one relationship between a character (or a radical) and its image
ID is a devastating vulnerability. It could be fixed by hashing the ID with a ran-
dom number to give each image a completely different name each time. However,
this quick hack solution is not needed anymore if the new architecture discussed
above is in place.

Our dictionary attack was built on both the leaked database and the one-to-
one mapping between characters (or radicals) and their IDs. With both of the
problems being fixed, the dictionary attack will no longer work.

Verification abuse has not only contributed to improve our dictionary attack,
but it can be used as a standalone attack by itself. The root causes of verification
abuse are two serious flaws in the architecture design:

296 A. Algwil and J. Yan

1. No mechanism is in place to identity a web server that interacts with the
CCaptcha server, and thus any third party can request the CCaptcha server
for Captcha generation and verification.

2. No mechanism is in place to vouch and verify the authenticity of each Captcha
puzzle, and the CCaptcha server fails to tell whether a puzzle is issued by
itself or not.

Such critical flaws have allowed us to launch various oracle attacks. Even
when we sent millions of requests to the server, we have experienced little
obstruction.

To fix these problems, we recommend an improved system architecture, which
is shown in Fig. 11.

First, the CCaptcha service should provide each website a unique pair of API
keys: one is a site key that uniquely identifies a website, the other a secret key
that is known only to the website and the CCaptcha server. An end user will get
the site key from the web server (step 1 in Fig. 11), and use the key to retrieve
a Captcha from the CCaptcha server (step 2-A). The secret key is used for
authenticated communication between the web server and the CCaptcha server
in the verification stage (step 4-A) to prevent the verification abuse.

The CCaptcha service can introduce an enrolment process, in which the pair
of API keys is generated upon a website’s registration with the service. Second,
a unique ID (token) should accompany each new puzzle issued by the Captcha
generator (step 2-B). Each token should be used only once. This token should
also accompany the solution when the latter is sent from the web server to
the CCaptcha server in the verification process (step 4-A). Using this token, the
CCaptcha server can determine whether a puzzle is authentic or issued by a party
impersonating the Captcha generator. Additionally, the end of the puzzle’s life
should be associated with the end of the token’s life in the verification process.

Fig. 11. A revised system architecture

Failures of Security APIs: A New Case 297

When adversaries have a website and an end user both under their control,
they will have legitimate access to the API keys and can misuse them. For
example, the adversaries can act first as a legitimate web server and register
for free access to an API key pair, and they can act thereafter as a legitimate
end-user. A simple, cheap but imperfect solution we suggest is for the CCaptcha
server to monitor the number of requests from each website, and to apply rate
control when traffic anomalies are detected.

5 Lessons

It is notoriously hard to design security APIs. With nearly thirty years of research
in cryptographic protocols, it is still a challenge to get a novel design right. Secu-
rity APIs are much harder to design than cryptographic protocols. Therefore, it
is crucial to understand failures of security APIs, and learn from them.

We conclude this paper by summarising lessons that we have learned
both from identifying the API attacks on CCaptcha, and from fixing the
vulnerabilities.

Lesson 1: Security policies were not articulated by the designers. Otherwise,
entirely bypassing the service should probably have never happened in the first
place.

In this specific context, at least three security policies are relevant:

1. Do not trust client;
2. No leakage of sensitive materials;
3. No bypass of the service without solving an automated Turing test.

Lesson 2: System architecture is highly relevant to security APIs, but it was not
carefully considered, and not articulated either.

Probably the most important lesson we have learned is the following. A care-
ful analysis of system architecture is useful and effective for identifying vulner-
abilities in security APIs and for figuring out suitable countermeasures. To the
best of our knowledge, this insight was never spelled out in the literature.

To extrapolate it a little further, we believe that for any complex system
(including a system of systems) where multiple components interact with each
other, an architecture analysis will prove an effective method both for identifying
security vulnerabilities in the system and for fixing them. This analysis can be
applied in many stages of the system’s life circle such as design, implementation
and testing.

This method of ‘architecture analysis for security’ deserves further study and
is our ongoing research.

Acknowledgement. We thank Butler Lampson for inspiring conversations, Yu Guan
for assistances, and anonymous reviewers for helpful comments.

298 A. Algwil and J. Yan

References

1. Anderson, R.: The correctness of crypto transaction sets. In: Christianson, B.,
Malcolm, J.A., Crispo, B., Roe, M. (eds.) Security Protocols 2000. LNCS, vol.
2133, pp. 128–141. Springer, Heidelberg (2001). doi:10.1007/3-540-44810-1 18

2. Berkman, O., Ostrovsky, O.M.: The unbearable lightness of PIN cracking.
In: Dietrich, S., Dhamija, R. (eds.) FC 2007. LNCS, vol. 4886, pp. 224–238.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-77366-5 20

3. Bond, M.: Understanding Security APIs. Ph.D. thesis, University of Cambridge
(2004)

4. Bond, M., Anderson, R.: API level attacks on embedded systems. IEEE Comput.
Mag. 34, 67–75 (2001)

5. Bursztein, E., Martin, M., Mitchell, J.C.: Text-based CAPTCHA strengths and
weaknesses. In: Proceedings of the 18th ACM Conference on Computer and Com-
munications Security. ACM (2011)

6. Chen, L.: Personal Communications (2014)
7. Chen, L., Juang, D., Zhu, W., Yu, H., Chen, F.: CAPTCHA AND reCAPTCHA

WITH SINOGRAPHS. Patent US20120023549 A1 (2012)
8. Clulow, J.: On the security of PKCS #11. In: Walter, C.D., Koç, Ç.K., Paar, C.

(eds.) CHES 2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45238-6 32

9. Cortier, V., Steel, G.: A generic security API for symmetric key management on
cryptographic devices. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol.
5789, pp. 605–620. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04444-1 37

10. Gao, H., Wang, W., Qi, J., Wang, X., Liu, X., Yan, J.: The robustness of hollow
CAPTCHAs. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security - CCS 2013, New York, USA, pp. 1075–1086 (2013)

11. Gao, H., Yan, J., et al.: A simple generic attack on text Captchas. In: Proceedings
Network and Distributed System Security Symposium (NDSS), San Diego, USA
(2016)

12. Watson, R.N.M.: Exploiting concurrency vulnerabilities in system call wrappers.
In: First USENIX Workshop on Offensive Technologies (WOOT 07) (2007)

13. Yan, J., El Ahmad, A.S.: Breaking visual CAPTCHAs with näıve pattern recog-
nition algorithms. In: 23rd Annual Computer Security Applications Conference -
ACSAC 2007, USA (2007)

14. Yan, J., El Ahmad, A.S.: A low-cost attack on a Microsoft Captcha. In: Proceedings
of the 15th ACM Conference on Computer and Communications Security - CCS
2008, New York, USA, pp. 543–554 (2008)

http://dx.doi.org/10.1007/3-540-44810-1_18
http://dx.doi.org/10.1007/978-3-540-77366-5_20
http://dx.doi.org/10.1007/978-3-540-45238-6_32
http://dx.doi.org/10.1007/978-3-642-04444-1_37

Explicit Optimal Binary Pebbling for One-Way
Hash Chain Reversal

Berry Schoenmakers(B)

TU Eindhoven, Eindhoven, The Netherlands
berry@win.tue.nl

Abstract. We present explicit optimal binary pebbling algorithms for
reversing one-way hash chains. For a hash chain of length 2k, the num-
ber of hashes performed in each output round does not exceed �k/2�,
whereas the number of hash values stored (pebbles) throughout is at
most k. This is optimal for binary pebbling algorithms characterized by
the property that the midpoint of the hash chain is computed just once
and stored until it is output, and that this property applies recursively
to both halves of the hash chain.

We introduce a framework for rigorous comparison of explicit binary
pebbling algorithms, including simple speed-1 binary pebbling, Jakob-
sson’s speed-2 binary pebbling, and our optimal binary pebbling algo-
rithm. Explicit schedules describe for each pebble exactly how many
hashes need to be performed in each round. The optimal schedule turns
out to be essentially unique and exhibits a nice recursive structure, which
allows for fully optimized implementations that can readily be deployed.
In particular, we develop the first in-place implementations with min-
imal storage overhead (essentially, storing only hash values), and fast
implementations with minimal computational overhead. Moreover, we
show that our approach is not limited to hash chains of length n = 2k,
but accommodates hash chains of arbitrary length n ≥ 1, without incur-
ring any overhead. Finally, we show how to run a cascade of pebbling
algorithms along with a bootstrapping technique, facilitating sequential
reversal of an unlimited number of hash chains growing in length up to
a given bound.

1 Introduction

Originally introduced by Lamport to construct an identification scheme resist-
ing eavesdropping attacks [Lam81,Hal94], one-way hash chains have become a
truly fundamental primitive in cryptography.1 The idea of Lamport’s asymmet-
ric identification scheme is to let the prover generate a hash chain as a sequence
of successive iterates of a one-way hash function applied to a random seed value,
revealing only the last element of the hash chain to the verifier upon registra-
tion. Later, during successive runs of the identification protocol, the remaining
1 Bitcoin’s block chain [Nak08] is probably the best-known example of a hash chain

nowadays. Unlike in our setting, however, block chains are costly to generate due to
the “proof of work” requirement for the hash values linking the successive blocks.

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 299–320, 2017.
DOI: 10.1007/978-3-662-54970-4 18

300 B. Schoenmakers

elements of the hash chain are output by the prover in reverse order, one element
on each run.

Due to the one-way property of the hash function, efficient reversal of a hash
chain is non-trivial for long chains. Jakobsson introduced a simple and efficient
pebbling algorithm for reversal of one-way hash chains [Jak02], inspired by the
pebbling algorithm of [IR01] for efficient key updates in a forward-secure digital
signature scheme. Pebbling algorithms for one-way hash chain reversal strike a
balance between storage requirements (measured as the number of hash values
stored) and computational requirements (measured as the maximum number of
hashes performed in any round). The performance constraint is that each next
element of the reversed hash chain should be produced within a limited amount
of time after producing the preceding element—without this performance con-
straint, the problem would indeed be easy, see AppendixA. For a hash chain of
length n = 2k, Jakobsson’s algorithm stores O(log n) hash values only and the
number of hashes performed in each round is limited to O(log n) as well.

The problem of efficient hash chain reversal was extensively studied by Cop-
persmith and Jakobsson [CJ02]. They proved nearly optimal complexity for a
binary pebbling algorithm storing at most k+�log2(k+1)� hash values and per-
forming at most �k

2 � hashes per round. Later, it was observed by Yum et al. that a
greedy implementation of Jakobsson’s original algorithm actually stores no more
than k hash values, requiring no more than �k

2 � hashes per round [YSEL09].
In this paper we consider the class of binary pebbling algorithms, covering

the best algorithms of [Jak02,CJ02,YSEL09] among others. A binary pebbling
algorithm is characterized by the property that the midpoint of the hash chain is
computed just once and stored until it is output; moreover, this property applies
recursively to both halves of the hash chain. In particular, this means that after
producing the last element of the hash chain as the first output, a binary pebbling
algorithm stores the k elements at distances 2i −1, for 1 ≤ i ≤ k, from the end of
the hash chain. Optimal binary pebbling achieves the lowest space-time product
of 1

2k2 among all published results,2 but see Sect. 8.
We introduce a simple yet general framework for rigorous analysis of efficient

binary pebbling algorithms for hash chain reversal, and we completely resolve
the case of binary pebbling by constructing an explicit optimal algorithm. The
storage required by our optimal algorithm does not exceed the storage of k
hash values and the number of hashes performed in any output round does not
exceed �k

2 �. This matches the performance of the greedy algorithm of [YSEL09],
which is an optimal binary pebbling algorithm as well. However, we give an
exact schedule for all hashes performed by the algorithm (rather than performing
these hashes in a greedy fashion). We also believe that our approach is much
more accessible than previous ones, leading to high quality algorithms that can
readily be deployed.

Our optimal schedule is defined explicitly, both as a recursive definition and
as a closed formula, specifying exactly how many hashes should be performed

2 E.g., using the space-time trade-offs of [Sel03] and [Kim03], one cannot go below
minb>1 b/(log2 b)

2k2 ≈ 0.89k2 and minb>1(b − 1)/(log2 b)
2k2 ≈ 0.74k2, respectively.

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 301

in a given round for each pebble. Furthermore, we will argue that the optimal
schedule is essentially unique. Apart from the insightful mathematical structure
thus uncovered, the explicit optimal schedule enables the development of fully
optimized solutions for one-way hash chain reversal. We construct the first in-
place (or, in situ) hash chain reversal algorithms which require essentially no
storage beyond the hash values stored for the pebbles; at the same time, the
computational overhead for each round is limited to a few basic operations only
beyond the evaluation of the hash function. Finally, as another extreme type of
solution, we show how to minimize the computational overhead to an almost
negligible amount of work, at the expense of increased storage requirements.

Concretely, for hash chains of length 232 using a 128-bit one-way hash, our
in-place algorithm only stores 516 bytes (32 hash values and one 32-bit counter)
and performs, at most 16 hashes per round. Our results are therefore of partic-
ular importance in the context of lightweight cryptography. See, e.g., the refer-
ences in [PCTS02,YSEL09,MSS13] for a glimpse of the extensive literature on
hash chains, covering an extensive range of lightweight devices such as wireless
sensors, RFID tags, and smart cards. Moreover, we note that our results are
also interesting in the context of post-quantum cryptography, as the security of
one-way hash chains is not affected dramatically by the potential of quantum
computers.

2 One-Way Hash Chains

Throughout, we will use the following notation for (finite) sequences. We write
A = {ai}n

i=1 = {a1, . . . , an} for a sequence A of length n, n ≥ 0, with {}
denoting the empty sequence. We use |A| = n to denote the length of A, and
#A =

∑n
i=1 ai to denote the weight of A. We write A ‖ B for the concatenation

of sequences A and B, and A + B for element-wise addition of sequences A and
B of equal length, where + takes precedence over ‖. Constant sequences are
denoted by c = c∗n = {c}n

i=1, suppressing the length n when it is understood
from context; e.g., A+c denotes the sequence obtained by adding c to all elements
of A. We will use similar notation for arrays; specifically, for an array a of length
n, we write a[j, k) for the segment {a[i]}k−1

i=j , 0 ≤ j ≤ k ≤ n, and so on.
Let f be a cryptographic hash function. The length-2k (one-way) hash

chain f∗
k(x) for a given seed value x is defined as the following sequence:

f∗
k(x) = {f i(x)}2k−1

i=0 .

For authentication mechanisms based on hash chains, we need an efficient algo-
rithm for producing the sequence f∗

k(x) in reverse. The problem arises from the
fact that computation of f in the forward direction is easy, while it is intractable
in the reverse direction. So, given x it is easy to compute y = f(x), but given y
it is hard to compute any x at all such that y = f(x). For long hash chains the
straightforward solutions of either (i) storing f∗

k(x) and reading it out in reverse
or (ii) computing each element of f∗

k(x) from scratch starting from x are clearly
too inefficient.

302 B. Schoenmakers

3 Binary Pebbling

We introduce a framework that captures the essence of binary pebbling algo-
rithms as follows. We will define a pebbler as an algorithm proceeding in a
certain number of rounds, where the initial rounds are used to compute the hash
chain in the forward direction given the seed value x, and the hash chain is
output in reverse in the remaining rounds, one element at a time.

For k ≥ 0, we define pebbler Pk(x) below as an algorithm that runs for
2k+1 − 1 rounds in total, and outputs f∗

k(x) in reverse in its last 2k rounds.
It is essential that we include the initial 2k − 1 rounds in which no outputs
are produced as an integral part of pebbler Pk(x), as this allows us to define
and analyze binary pebbling in a fully recursive manner. In fact, in terms of a
given schedule Tk = {tr}2

k−1
r=1 with #Tk = 2k − 1, a binary pebbler Pk(x) is

completely specified by the following recursive definition, see also Figs. 1 and 2:

Rounds [1, 2k): set yi = f2k−2i(x) for i = k, . . . , 0 using tr hashes in round r.
Round 2k: output y0.
Rounds (2k, 2k+1): run Pi−1(yi) in parallel for i = 1, . . . , k.

We will refer to rounds [1, 2k) as the initial stage of Pk and to rounds
[2k, 2k+1) as its output stage. Running pebblers in parallel means that pebblers
take turns to execute for one round each, where the order in which this happens
within a round is irrelevant.

The behavior of P0 and P1 is fixed since T0 = {} and T1 = {1}, respectively.
Pebbler P0(x) runs for one round only, in which y0 = x is output, using no
hashes at all. Similarly, P1(x) runs for three rounds, performing one hash in its
first round to compute y1 = x and y0 = f(x), outputting f(x) in its second
round, and then running P0(y1) in the third round, which will output x. More
generally, the following theorem shows that correct behavior follows for any Pk

independent of the particular schedule Tk, and furthermore that the total number
of hashes performed by Pk is fixed as well.

Theorem 1. Any Pk(x) produces f∗
k(x) in reverse in its output stage, perform-

ing k2k−1 hashes (2k−1 in its initial stage and (k−2)2k−1+1 in its output stage).

Proof. The proof is by induction on k. For k = 0, we have that P0(x) outputs
f∗
0(x) = x in its one and only round, using 0 hashes.

For k ≥ 1, we see that Pk(x) first outputs y0 = f2k−1(x) in round 2k, which
is the last element of f∗

k(x). Next, Pi−1(yi) run in parallel for i = 1, . . . , k.
The induction hypothesis yields that each Pi−1(yi) produces f∗

i−1(f
2k−2i(x)) in

reverse in its last 2i−1 out of 2i−1 rounds. Hence, in round 2k+1, P0(y1) outputs
{y1} = f∗

0(f
2k−2(x)). In the next two rounds, P1(y2) outputs f∗

1(f
2k−4(x)) in

reverse. And so on until finally Pk−1(yk) outputs f∗
k−1(f

2k−1
(x)) in reverse in

the last 2k−1 rounds of Pk(x). The total number of hashes performed by Pk is
2k − 1 +

∑k
i=1(i − 1)2i−2 = k2k−1, using that Pi−1 performs (i − 1)2i−2 hashes

per the induction hypothesis. 	

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 303

Fig. 1. Binary pebbler Pk(x), where yi = f2k−2i(x) for i = k, . . . , 0.

Schedule Tk specifies the number of hashes for the initial stage of Pk. To
analyze the work done by Pk in its output stage, we introduce sequence Wk of
length 2k − 1 to denote the number of hashes performed by Pk in each of its
last 2k − 1 rounds—noting that by definition no hashes are performed by Pk in
round 2k. The following recurrence relation for Wk will be used throughout our
analysis.

Lemma 1. W0 = {}, Wk = Tk−1 + Wk−1 ‖ 0 ‖ Wk−1.

304 B. Schoenmakers

Proof. Pebbler P0 runs for 1 round only, so W0 = {}. For k ≥ 1, we see that
in the last 2k − 1 rounds of Pk, a pebbler Pk−1 runs in parallel to pebblers Pi

for i = 0, . . . , k − 2. In these rounds, Pk−1 performs Tk−1 ‖ 0 ‖ Wk−1 hashes
by definition, whereas Pi for i = 0, . . . , k − 2 perform Wk−1 ‖ 0∗2k−1

hashes
in total, as this matches the number of hashes for Pk−1 in its last 2k−1 − 1
rounds (consider the output stage of Pk−1, see also Fig. 1). Hence, in total Wk =
Tk−1 + Wk−1 ‖ 0 ‖ Wk−1 hashes. 	

We have the following lower bound for max(Wk), the maximum number of
hashes performed by Pk in any round of its output stage. Interestingly, this lower
bound holds for any schedule Tk. In Sect. 5 we will present an optimal schedule
achieving the lower bound.

Theorem 2. max(Wk) ≥ �k/2�, for k ≥ 2.

Proof. Let k ≥ 2 and consider the average number of hashes per round during the
first half of the output stage. From Theorem1, Lemma 1, and |Tk−1| = |Wk−1| =
2k−1 − 1, we have

max(Wk) ≥ #Tk−1 + #Wk−1

|Tk−1 + Wk−1| =
(k − 1)2k−2

2k−1 − 1
>

k − 1
2

.

Hence, max(Wk) ≥ �k/2�. 	

To analyze the storage needed by Pk we will count the number of hash values

stored by Pk at the start of each round. We introduce sequence Sk = {sr}2
k+1−1

r=1

to denote the total storage used by Pk in each round. For instance, s1 = 1 as Pk

only stores x at the start, and s2k = k + 1 as Pk stores y0, . . . , yk at the start of
round 2k independent of schedule Tk.

4 Speed-1 and Speed-2 Binary Pebbling

In this section we analyze the performance of speed-1 pebblers and speed-2
pebblers. We use speed-1 pebblers to demonstrate our framework, whereas the
analysis of speed-2 pebblers, which correspond to Jakobsson’s original algo-
rithm [Jak02], will be used in the analysis of our optimal pebblers in the next
section.

We define speed-1 pebblers by setting Tk = 1∗2k−1, hence one hash evalua-
tion in each initial round of Pk. To define speed-2 pebblers we set T0 = {} and
Tk = 0∗2k−1−1 ‖ 2∗2k−1−1 ‖ 1 for k ≥ 1, hence a speed-2 pebbler is idle in the
first part of the initial stage and then hashes twice in each round until the end of
the initial stage. As can be seen from Theorem 4 below, the storage requirements
are reduced by a factor of 2 for speed-2 pebblers over speed-1 pebblers.

Theorem 3. Both speed-1 and speed-2 pebblers Pk use up to max(Wk) = k − 1
hashes in any output round, for k ≥ 1.

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 305

Proof. For a speed-1 pebbler, Lemma 1 implies max(Wk) = k − 1 for k ≥ 1, as
all elements of Tk−1 are equal to 1.

For a speed-2 pebbler we prove by induction on k that max(Wk) = k − 1.
This clearly holds for k = 1, 2. For k ≥ 3, we have, using Lemma 1,

Tk−1 = 0∗2k−2−1 ‖ 2∗2k−2−1 ‖ 1
Wk−1 = 0 ‖ Tk−2 + Wk−2 ‖ 0 ‖ Wk−2.

Therefore,

max(Wk) = max(Tk−1 + Wk−1) = max(Wk−1, 2 + Wk−2),

noting that the last element of Wk−2 = 0. Applying the induction hypothesis
twice, we conclude max(Wk) = max(k − 2, k − 1) = k − 1. 	

Lemma 2

S0 = {1},

Sk = (1∗2k ‖ Sk−1) + (0 ‖ 1∗2k−1−1 ‖ Sk−1 ‖ 0∗2k−1
), for a speed-1 Pk,

Sk = (1∗2k ‖ Sk−1) + (0∗2k−1 ‖ Sk−1 ‖ 0∗2k−1
), for a speed-2 Pk.

Proof. P0(x) only needs to store x during its one and only round, therefore
S0 = {1}. For k ≥ 1, any Pk(x) also needs to store x throughout all of its
rounds, where Pk−1(yk) = Pk−1(x) takes over the storage of x during the output
stage. This accounts for the term 1∗2k ‖ Sk−1.

In addition, a speed-1 pebbler needs to store a hash value from round 2
until it reaches yk−1 in round 2k−1. From thereon, the total additional storage
corresponds to running a speed-1 pebbler Pk−1(yk−1). This accounts for the term
0 ‖ 1∗2k−1−1 ‖ Sk−1 ‖ 0∗2k−1

.
A speed-2 pebbler needs no additional storage during its first 2k−1 rounds.

Then it needs to store an additional hash value from round 2k−1+1 on. By taking
0∗2k−1 ‖ Sk−1 ‖ 0∗2k−1

as additional term, we account for both the additional
hash value stored by a speed-2 pebbler during rounds (2k−1, 2k−1 + 2k−2] and
the storage corresponding to a speed-2 pebbler Pk−1(yk−1), running from round
2k−1 + 1. 	

Theorem 4. A speed-1 pebbler Pk uses up to max(Sk) = max(k + 1, 2k − 2)
storage, and a speed-2 pebbler Pk uses up to max(Sk) = k + 1 storage.

Proof. Using that s2k = k + 1, we write Sk = Ak ‖ k+1 ‖ Bk, where |Ak| =
|Bk| = 2k − 1.

For a speed-1 pebbler Pk, it can easily be checked that max(Sk) = max(k +
1, 2k − 2) holds for k = 0, 1. To prove this for k ≥ 2, we note that it suffices to
show max(Ak, Bk) = 2k−2, as max(Sk) = max(Ak, k+1, Bk). Lemma 2 implies

Ak = 1 ‖ 2∗2k−1−1 ‖ 1 + Ak−1

Bk = Ak−1 + Bk−1 ‖ k ‖ Bk−1,

306 B. Schoenmakers

so we have that max(Ak, Bk) = max(Ak−1 +Bk−1, k) = max(2k −2, k) = 2k −2
follows if we can show max(Ak + Bk) = 2k, for k ≥ 1. We prove the latter by
induction on k. For k = 1, it is clearly true as A1 = B1 = {1}. For k ≥ 2, we see
that max(Ak +Bk) = max(2+Ak−1+Bk−1, k+2) = max(2k, k+2) = 2k follows
from the induction hypothesis, also using that the first element of Ak−1 + Bk−1

is equal to k.
For a speed-2 pebbler Pk, we note that max(Sk) = k + 1 follows from the

fact that Ak + Bk = k + 1, which we show by induction on k. For k = 0,
Ak + Bk = k + 1 is vacuously true, as A0, B0 are empty sequences. For k ≥ 1,
we see from Lemma 2 that

Ak = 1∗2k−1 ‖ 1 + Ak−1

Bk = Ak−1 + Bk−1 ‖ k ‖ Bk−1.

From the induction hypothesis we have Ak−1 + Bk−1 = k, hence it follows that
Ak + Bk = k + 1. 	

5 Optimal Binary Pebbling

In this section, we will reduce the maximum number of hashes per round from
k − 1 for a speed-2 pebbler Pk to �k/2� for an optimal pebbler Pk, without
increasing the storage requirements. We do so by letting our optimal pebblers
Pk be idle for the first 2k−1 − 1 rounds, just as speed-2 pebblers do. During
rounds [2k−1, 2k), an optimal pebbler will work at varying speeds, roughly as
follows: the average speeds in each quarter are 2, 1, 2, and 3 hashes per round,
respectively. To streamline the presentation, we will at first allow “1

2 hashes” in
the definition of our optimal schedule. At the end of this section, we will show
how to round the schedule to integer values without affecting optimality.

We define the optimal schedule Tk as follows:

T0 = {}, Tk = 0∗2k−1−1 ‖ Uk ‖ Vk,

where
U1 = {1}, Uk = 1

2 + Uk−1 ‖ 1∗�2k−3�,
V1 = {}, Vk = 1

2 + Uk−1 ‖ 1
2 + Vk−1.

For example, T1 = {1}, T2 = {0, 3
2 , 3

2}, and T3 = {0, 0, 0, 2, 1, 2, 2}.
Optimality is proved in the next two theorems. Subsequently, we will argue

that optimal schedule Tk is essentially unique.

Theorem 5. An optimal pebbler Pk uses up to max(Wk) = k/2 hashes in any
output round, for k ≥ 2.

Proof. We use Lemma 1 without explicitly referring to it.
Since max(Wk) = max(Tk−1+Wk−1), we obtain max(Wk) = k/2, if we prove

by induction on k that

Tk + Wk = Tk−1 + Wk−1 ‖ k+1
2

∗2k−1

.

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 307

This property clearly holds for k = 1, 2. For k ≥ 3, the definition of Tk implies
that the property is in fact equivalent to

(Uk ‖ Vk) + (0 ‖ Wk−1) = k+1
2

∗2k−1

. (1)

From the definition of Uk, Vk and the induction hypothesis for Tk−2 + Wk−2 we
obtain

Uk ‖ Vk = 1
2 + Uk−1 ‖ 1∗2k−3 ‖ 1

2 + (Uk−1 ‖ Vk−1),

0 ‖ Wk−1 = 0 ‖ Tk−3 + Wk−3 ‖ k−1
2

∗2k−3

‖ 0 ‖ Wk−2.

Since 0 ‖ Tk−3 + Wk−3 is equal to the first half of 0 ‖ Wk−2, we get from the
induction hypothesis that indeed all elements of (Uk ‖ Vk) + (0 ‖ Wk−1) are
equal to k+1

2 . 	

Let len(x) = �log2(x + 1)� denote the bit length of nonnegative integer x. The
next two lemmas give closed formulas for the optimal schedule Tk and its partial
sums. Lemma 4 will be used to prove Theorem 6, but these formulas also provide
the basis for our efficient in-place implementation of optimal binary pebbling.

Lemma 3. For optimal schedule Tk = {tr}2
k−1

r=1 , we have for 2k−1 ≤ r < 2k:

tr = 1
2

(
k + 1 − len

(
(2r) mod 2len(2

k−r)
))

.

Proof. The proof is by induction on k. For 0 ≤ k ≤ 2, the formula is easily
checked. For k ≥ 3, we distinguish two cases.

Case 2k−1 ≤ r < 2k−1+2k−2. We first note that (2r) mod 2len(2
k−r) = 2r−2k.

If r ≥ 2k−1 + 2k−3, we have tr = 1 by definition and we see the formula for tr
yields 1 as well as len(2r − 2k) = k − 1. Otherwise r < 2k−1 + 2k−3, hence we
have tr = tr+2k−2 . So, this case reduces to the case below by noting that also
(2(r + 2k−2)) mod 2len(2

k−(r+2k−2)) = 2r − 2k.
Case 2k−1 + 2k−2 ≤ r < 2k. From the definition of the optimal schedule

we see that in this case tr = 1
2 + t′r−2k−1 , where Tk−1 = {t′z}2

k−1−1
z=1 . From the

induction hypothesis we get:

t′r−2k−1 = 1
2

(
k − len((2(r − 2k−1)) mod 2len(2

k−1−(r−2k−1)))
)

.

Rewriting this formula for t′r−2k−1 we obtain

tr = 1
2 + 1

2

(
k − len((2r − 2k) mod 2len(2

k−r))
)

.

Noting that len(2k − r) ≤ k, we see that the formula holds for tr as well. 	

Lemma 4. For optimal schedule Tk = {tr}2

k−1
r=1 , we have for 0 ≤ j ≤ 2k−1:

2k−1∑

r=2k−j

tr = 1
2

(
j(k − m) + (m + 3 − l)2l − 2m

) − 1,

where l = len(j) and m = len(2l − j).

308 B. Schoenmakers

Proof. The proof is by induction on j. For j = 0, both sides are equal to 0.
For 1 ≤ j ≤ 2k−1, Lemma 3 implies that

t2k−j = 1
2

(
k + 1 − len((−2j) mod 2l)

)
.

Combined with the induction hypothesis for j − 1 we obtain

2k−1∑

r=2k−j

tr = 1
2

(
j(k−m′) + m′+1 − len((−2j) mod 2l) + (m′+3−l′)2l′ − 2m′)−1,

where l′ = len(j − 1) and m′ = len(2l′ − j + 1). We distinguish two cases.
Case l′ = l − 1. This means that j = 2l−1, and hence m = l and m′ = 1. We

are done as both sides are equal to 1
2j(k + 4 − l) − 1.

Case l′ = l. This means that 2l−1 < j < 2l, hence 0 < 2l+1 − 2j < 2l.
This implies len((−2j) mod 2l) = m + 1, so we see that both sides are equal if
m = m′. If m′ = m + 1, we see that 2l − j = 2m − 1 and that therefore both
sides are equal as well. 	

Theorem 6. An optimal pebbler Pk uses up to max(Sk) = k + 1 storage.

Proof. We prove that the storage requirements of an optimal pebbler do not
exceed the storage requirements of a speed-2 pebbler, hence that max(Sk) = k+1
for an optimal pebbler as well.

Consider the rounds in which a speed-2 pebbler and an optimal pebbler store
the values yi = f2k−2i(x) for i = k, . . . , 1. We claim that an optimal pebbler will
never store yi before a speed-2 pebbler does. Clearly, a speed-2 pebbler stores
yi in round 2k − 2i−1 for i = k, . . . , 1. However, in round 2k − 2i−1 an optimal
pebbler still has to compute at least as many hashes as a speed-2 pebbler needs
to reach y0:

2k−1∑

r=2k−2i−1

tr = 2i−2(k + 4 − i) − 1 ≥ 2i − 1,

using Lemma 4 for j = 2i−1. 	

The above analysis implies that the optimal schedule Tk is essentially unique.
That is, if we require that the bounds stated in Theorems 5 and 6 must be
met, optimal schedule Tk is basically the only solution within our framework
for binary pebbling. Clearly, like for any schedule in our framework, we have
T0 = {} and T1 = {1}. For k ≥ 2, we first note that optimal schedule Tk

must start with 2k−1 − 1 zeros in order to meet the bound of Theorem 6. More
precisely, by writing Sk = Ak ‖ k+1 ‖ Bk with |Ak| = |Bk| = 2k − 1, as we
also did in the proof of Theorem4, and noting that max(Bk) = k, we observe
that this bound for Bk is met only if optimal pebbler Pk does not perform any
hashes in its first 2k−1 − 1 rounds. Next, by inspecting the proof of Theorem5
we actually see that the number of hashes performed by an optimal pebbler
Pk in each of the last 2k−1 rounds of its initial stage is determined uniquely as

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 309

well. A simple calculation shows that Eq. (1) necessarily holds for any optimal
schedule: #Uk + #Vk + #Wk−1 = (k + 1)2k−2 hashes to be performed in 2k−1

rounds requires exactly (k+1)/2 hashes to be performed in each of these rounds.
Hence, using induction on k, we see that Uk and Vk are determined uniquely by
Eq. (1).

As a final step we will round the optimal schedule Tk to integer values,
without affecting optimality. For example, we round T2 = {0, 3

2 , 3
2} to {0, 1, 2}

or to {0, 2, 1}. In general, we make sure that if an element is rounded up then
its neighbors are rounded down, and vice versa. The rounding also depends on
the parity of k to alternate between rounding up and rounding down. Hence, we
define the rounded optimal schedule by:

tr =
⌊
1
2

(
(k + r) mod 2 + k + 1 − len((2r) mod 2len(2

k−r))
)⌋

, (2)

for 2k−1 ≤ r < 2k. Accordingly, we see that optimal pebbler Pk will use up to
max(Wk) = �k/2� hashes in any output round, matching the lower bound of
Theorem 2.

6 Optimized Implementations

A hash chain is deployed as follows as part of an authentication mechanism like
Lamport’s asymmetric identification scheme. Given a random seed value x, the
initial stage of any type of binary pebbler Pk(x) is simply performed by iterating
the hash function f and storing the values yi = f2k−2i(x) for i = k, . . . , 0. The
value of y0 is then output, e.g., as part of the registration protocol for Lamport’s
scheme. The other hash values y1, . . . , yk are stored for the remainder of the
output stage, e.g., for use in later runs of Lamport’s identification protocol.

The initial stage is preferably executed inside the secure device that will
later use the hash chain for identification. However, for lightweight devices such
as smart cards, RFID tags, sensors, etc., the initial stage will typically be run on
a more powerful device, after which the hash values y1, . . . , yk will be inserted
in the lightweight device and the hash value y0 can be used for registration.

To implement the output stage of pebbler Pk one needs to handle potentially
many pebblers all running in parallel. The pseudocode in [Jak02,CJ02,YSEL09]
suggests rather elaborate techniques for keeping track of the (state of) pebbles.
On the contrary, we will show how to minimize storage and computational over-
head by exploiting specific properties of Jakobsson’s speed-2 pebbling and our
optimal pebbling algorithm. In particular, we present in-place hash chain rever-
sal algorithms, where the entire state of these algorithms (apart from the hash
values) is represented between rounds by a single k-bit counter only.

We introduce the following terminology to describe the state of a pebbler
Pk. This terminology applies to both speed-2 pebblers and optimal pebblers.
Pebbler Pk is said to be idle if it is in rounds [1, 2k−1), hashing if it is in
rounds [2k−1, 2k], and redundant if it is in rounds (2k, 2k+1). An idle pebbler
performs no hashes at all, while a hashing pebbler will perform at least one hash

310 B. Schoenmakers

per round, except for round 2k in which Pk outputs its y0 value. The work for
a redundant pebbler Pk is taken over by its child pebblers P0, . . . , Pk−1 during
its last 2k − 1 output rounds.

The following theorem provides the basis for our in-place algorithms by show-
ing precisely how the state of all pebblers running in parallel during the output
stage of Pk can be determined from the round number. Let xi ∈ {0, 1} denote
the ith bit of nonnegative integer x, 0 ≤ i < len(x).

Theorem 7. For a speed-2 or optimal pebbler Pk in output round 2k+1 − c,
1 ≤ c ≤ 2k, we have for every i, 0 ≤ i ≤ k, exactly one non-redundant pebbler Pi

present if and only if bit ci = 1, and if present, Pi is in round 2i − (c mod 2i).

Proof. The proof is by induction on c. For c = 2k, only ck = 1, which corresponds
to Pk being the only pebbler around. Also, Pk is in its 2kth round.

For 1 ≤ c < 2k, write c′ = c + 1 and let i′ ≥ 0 be maximal such that
c′ mod 2i′

= 0. Hence c′
i′ = 1. By the induction hypothesis for c′, pebbler Pi′ is

in its first output round 2i′
. So, in the next round Pi′ becomes redundant, and

is replaced by child pebblers Pi′−1, . . . , P0 which will all be in their first round.
As c = c′ − 1, this corresponds to the fact that ci′ = 0 and ci′−1 = · · · = c0 = 1,
also noting that 2i − (c mod 2i) = 1 for i = i′ − 1, . . . , 0.

For i > i′, we have ci = c′
i. All non-redundant pebblers in round 2k+1 − c′

remain so in round 2k+1 − c, and for these pebblers the round number becomes
2i − (c′ mod 2i) + 1 = 2i − (c mod 2i), as required. 	

As a corollary, we see that a non-redundant pebbler Pi is hashing precisely when
ci−1 = 0, and Pi is idle otherwise, since for ci = 1 we have that ci−1 = 0 if and
only if 2i − (c mod 2i) ≥ 2i−1. This holds also for i = 0 if we put c−1 = 0.

6.1 In-place Speed-2 Binary Pebbling

We present an in-place implementation of a speed-2 pebbler Pk for which the
overall storage is limited to the space for k hash values and one k-bit counter
c. As explained above, we will assume that hash values y1, . . . , yk are given as
input and that y0 has been output already. Thus, Pk has exactly 2k − 1 output
rounds remaining. We use c to count down the output rounds.

The basis for our in-place algorithm is given by the next theorem.

Theorem 8. For a speed-2 pebbler Pk in output round 2k+1−c, 1 ≤ c ≤ 2k, each
non-redundant pebbler Pi present stores e + 1 hash values, where e is maximal
such that ci−1 = . . . = ci−e = 0 with 0 ≤ e ≤ i.

Proof. From Theorem 7 it follows that non-redundant pebbler Pi is in round
r = 2i − (c mod 2i). Since 0 ≤ e ≤ i is maximal such that ci−1 = . . . = ci−e = 0,
we have that 2i − 2i−e < r ≤ 2i − 2i−e−1. This implies that Pi stores e + 1 hash
values in round r, as Lemma 2 says that for a speed-2 pebbler Pi the storage
requirements throughout its first 2i rounds are given by sequence Di, where
D0 = {1} and Di = 1∗2i−1 ‖ 1 + Di−1. 	

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 311

Algorithm 1. In-place speed-2 binary pebbler Pk(x).

Initially: array z[0, k) where z[i−1] = f2k−2i(x) for i = 1, . . . , k.
Round r, 2k < r < 2k+1:
1: output z[0]
2: c ← 2k+1 − r
3: i ← pop0(c)
4: z[0, i) ← z[1, i]
5: i ← i + 1; c ← �c/2�
6: q ← i − 1
7: while c 	= 0 do
8: z[q] ← f(z[i])
9: if q 	= 0 then z[q] ← f(z[q])

10: i ← i + pop0(c) + pop1(c)
11: q ← i

Theorem 8 suggests an elegant approach to store the hash values of a speed-2
pebbler Pk throughout its output stage. We use a single array z of length k to
store all hash values as follows. Initially, z[0] = y1, . . . , z[k−1] = yk, and counter
c = 2k − 1. This corresponds to Pk being at the start of its output stage, where
it starts to run Pi(yi+1) in parallel, for i = 0, . . . , k − 1, each of these (non-
redundant) pebblers Pi storing exactly one hash value in array z. In general, in
output round 2k+1 − c of Pk, we let each non-redundant Pi store its hash values
in segment z[i − e, i] (corresponding to ci−e = 0, . . . , ci−1 = 0 and ci = 1). As a
result, the non-redundant pebblers jointly occupy consecutive segments of array
z, storing exactly len(c) hash values in total.

Algorithm 1 describes precisely what Pk does in round r, 2k < r < 2k+1.
Note that we set c = 2k+1 − r at the start of round r. Based on Theorem 7, we
process the bits of c as follows, using operations pop0(c) and pop1(c) to count
and remove all trailing 0s and 1s from c, respectively.

Let i′ ≥ 0 be maximal such that c mod 2i′
= 0. Hence ci′ = 1. From Theo-

rem 7, we see that Pi′ is in its first output round 2i′
, hence Pi′ becomes redundant

in the next round, and each of its children will take over one hash value. The hash
values y0, . . . , yi′ computed by Pi′ in its initial stage are stored in z[0], . . . , z[i′].
So, we output z[0] = y0 for Pi′ and move y1, . . . , yi′ to entries z[0], . . . , z[i′ − 1].
This makes entry z[i′] available. We distinguish two cases.

Case len(c − 1) = len(c) − 1. In this case no new hash values need to be
stored, and z[i′] will be unused from this round on.

Case len(c−1) = len(c). Let i′′ ≥ i′+1 be maximal such that c mod 2i′′
= 2i′

.
Hence ci′′ = 1. We claim that Pi′′ is the unique pebbler that needs to store an
additional hash value. Pebbler Pi′′ is in round 2i′′ − (c mod 2i′′

) = 2i′′ −2i′
, so it

is 2i′
rounds from the end of its initial stage. We store its additional hash value

in z[i′].
This explains Algorithm 1. In the first iteration of the loop in lines 7–11, we

have that q = i′ holds at line 8. Each hashing pebbler performs two hashes,
except when a pebbler is at the end of its initial stage (corresponding to q = 0).

312 B. Schoenmakers

Algorithm 2. In-place optimal binary pebbler Pk(x).

Initially: array z[0, k) where z[i−1] = f2k−2i(x) for i = 1, . . . , k.
Round r, 2k < r < 2k+1:
1: output z[0]
2: c ← 2k+1 − r
3: i ← pop0(c)
4: z[0, i) ← z[1, i]
5: i ← i + 1; c ← �c/2�
6: m ← i; s ← 0
7: while c 	= 0 do
8: l ← i
9: i ← i + pop0(c)

10: j ← (−r) mod 2i

11: p ← (i + j) mod 2
12: h ← �(p + j(i − m) + (m + 3 − l)2l − 2m)/2�
13: q ← len(h) − 1
14: for d ← 1 to �(p + i + 1 − s)/2� do
15: y ← z[q]
16: if h = 2q then q ← q − 1
17: z[q] ← f(y)
18: h ← h − 1
19: m ← i; s ← m + 1
20: i ← i + pop1(c)

Essentially no processing is done for idle pebblers, due to the use of operation
pop1(c) in line 10.

6.2 In-place Optimal Binary Pebbling

In this section we turn the algorithm for speed-2 pebbling into one for optimal
pebbling by making three major changes. See Algorithm 2.

First, we make sure that the number of hashes performed by each hashing
pebbler Pi is in accordance with Eq. (2). The actual hashing by Pi is done in
the loop in lines 14–18. Theorem7 states that the round number for Pi is given
by 2i − (c mod 2i), hence by 2i − j if we set j = (−r) mod 2i in line 10. By
ensuring that l = len(j) and m = len(2l − j) holds as well, we have that the
number of hashes as specified by Eq. (2) can be computed as �(p+ i+1− s)/2�,
where p = (i + j) mod 2 and s = (m + 1) mod (l + 1) (actually using that
len((2l − 2j) mod 2l) = len(2l+1 − 2j) mod (l + 1) holds for j ≥ 1).

Second, we make sure that each hashing pebbler Pi will store the correct
hash values for yi, . . . , y0. To this end, note that Lemma 4 tells precisely how
many hashes Pi still needs to compute at the start of round j. Thus we set h to
this value (plus one) in line 12, and test in line 16 if the current hash value must
be stored (that is, whether h is an integral power of 2).

Finally, we make sure that hashing pebbler Pi will use the correct entries of
array z. Since h records the number of hashes that Pi still needs to compute

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 313

Algorithm 3. Fast optimal binary pebbler Pk(x).

Initially: array z[0, k) where z[i−1] = f2k−2i(x) for i = 1, . . . , k;
array a[0, �k/2�), v = 0.

Round r, 2k < r < 2k+1:
1: output z[0]
2: c ← 2k+1 − r
3: i ← pop0(c)
4: z[0, i) ← z[1, i]
5: i ← i + 1; c ← �c/2�
6: if c odd then a[v] ← (i, 0); v ← v + 1
7: u ← v
8: w ← (r mod 2) + i + 1
9: while c 	= 0 do

10: w ← w + pop0(c)
11: u ← u − 1; (q, g) ← a[u]
12: for d ← 1 to �w/2� do
13: y ← z[q]
14: if g = 0 then q ← q − 1; g = 2q

15: z[q] ← f(y)
16: g ← g − 1
17: if q 	= 0 then a[u] ← (q, g) else v ← v − 1
18: w ← (w mod 2) + pop1(c)

(plus one), it follows that the current hash value for Pi is stored in entry z[q],
where q = len(h) − 1. Hence, we set q to this value in line 13.

This explains the design of Algorithm2. Note that only one bit length com-
putation is used per hashing pebbler (cf. line 13).

6.3 Optimal Binary Pebbling with Minimal Computational
Overhead

Even though the computational overhead for our in-place implementation is
small, it may still be relatively large if hash evaluations themselves take very lit-
tle time. For instance, if the hash function is (partly) implemented in hardware.
Using Intel’s AES-NI instruction set one can implement a 128-bit hash function
that takes a few cycles only (e.g., see [BÖS11], noting that for one-way hash
chains no collision-resistance is needed such that one can use Matyas-Meyer-
Oseas for which the key is fixed). Therefore, we also provide an implementa-
tion minimizing the computational overhead at the expense of some additional
storage.

We will keep some state for each pebbler, or rather for each hashing pebbler
only. Although an optimal pebbler Pk will store up to k hash values at any time,
we observe that no more than �k/2� hashing pebblers will be present at any time.
As in our in-place algorithms we will thus avoid any storage (and processing)
for idle pebblers, as can be seen from Algorithm3.

314 B. Schoenmakers

A segment a[0, v) of an array a of length �k/2� suffices to store the states
of all hashing pebblers, where initially v = 0. In each round, at most one idle
pebbler Pi will become hashing, and if this happens pebbler Pi is added to array
a, cf. line 6. Later, once pebbler Pi is done hashing, it will be removed again
from array a, cf. line 17.

For each hashing pebbler we store two values called q and g such that q
matches the value of variable q in Algorithm 2 and g matches the value of h−2q in
Algorithm 2. Hence, we use g to count down to zero starting from the appropriate
powers of 2, cf. line 14. Finally, variable w is introduced such that its value
matches the value of p + i + 1 − s in Algorithm 2. As a result, Algorithm 3 limits
the computations for each hashing pebbler to a few elementary operations only.

Note that Algorithm 3 is actually quite intuitive and remarkable at the same
time. E.g., by focusing on variable w, one can easily see that the total number
of hashes performed by Pk in any output round does not exceed �k/2�.

7 Extensions

In this section we briefly discuss three extensions, omitting details.
First, we show how to accommodate hash chains of arbitrary length n by

generalizing the initialization of Algorithms 1, 2, and 3 from n = 2k to any
n ≥ 1, without incurring any overhead. That is, given a seed value x, we will
iterate the hash function f for exactly n − 1 times and output fn−1(x) (e.g., as
part of the registration protocol for Lamport’s scheme). At the same time, we
will store precisely those intermediate hash values in array z such that the state
becomes equivalent to the state of binary pebbler Pk at round 2k+1 − (n − 1),
where 2k−1 < n ≤ 2k.

We demonstrate this for in-place speed-2 pebbling, by extending Theorem 8
to the following theorem, which exactly describes the state of speed-2 pebbler
Pk(x) at round c = n − 1.

Theorem 9. For a speed-2 pebbler Pk(x) in output round 2k+1 − c, 1 ≤ c ≤ 2k,
each idle Pi stores the hash value fc−(c mod 2i)−2i(x) and each hashing Pi stores
the following e + 1 hash values:

fc−(c mod 2i)−2i(x), . . . , fc−(c mod 2i)−2i−e+1
(x), fc−max(1,3(c mod 2i))(x),

where e is maximal such that ci−1 = . . . = ci−e = 0 with 0 ≤ e ≤ i.

Based on this theorem array z can be initialized simply by inspecting the bits
of c (most-significant to least-significant) while iterating f . The remaining n− 1
output rounds are then executed exactly as in Algorithm 1. A slightly more
complicated approach applies to our optimal pebbling algorithm, for which we
omit the details.

Next, we show how to construct a cascade of pebblers Pk(x), Pk(x′), Pk(x′′),
and so on, for seed values x, x′, x′′, . . ., such that the initial stage of Pk(x′) is

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 315

run in parallel to the output stage of Pk(x) (more precisely, in parallel to rounds
(2k, 2k+1) of Pk(x)), and so on. Hence, as soon as Pk(x) is done, Pk(x′) will con-
tinue with producing hash chain f∗

k (x′) in reverse. In general, this combination
corresponds exactly to running the output stage of a Pk+1 pebbler over and over
again. Therefore, the maximum number of hashes in any round will be limited
to max(Wk+1). Using our optimal pebbler, we thus get no more than �(k+1)/2�
hashes per round. Moreover, we only need to store a maximum of k + 1 hash
values at any time (conceptually, the value yk+1 that a Pk+1 pebbler would store
is not present), hence essentially for free; this can even be reduced to �k/2� per
round at the expense of increasing the maximum storage to k + 2 hash values.

To make such a cascade useful, the hash values f2k−1(x′), f2k−1(x′′), . . . need
to be authenticated. A straightforward way is to run the registration protocol
once f2k−1(x′) is output, and so on. A more refined way is to apply known
techniques for “re-initializing” hash chains [Goy04,ZL05], hence using a one-time
signature to authenticate f2k−1(x′), for which the public key is incorporated in
the previous seed value x.

In fact, this approach can be extended to eliminate initialization altogether,
basically by starting with a Pk+1 pebbler in its first output round, where
each yi is assigned a seed value incorporating a one-time public key. Setting
yi = f2k

′ −2i(x) for i = k′, . . . , 0 for some small k′, and using such seed values
for the remaining yi’s, this bootstrapping technique can be tuned for optimal
performance.

Finally, we show how to eliminate the shifting done in line 4 of Algo-
rithms 1, 2, and 3, which forms a potential bottleneck as naively copying up to
k − 1 hash values may be relatively expensive. A standard technique to avoid
such excessive copying is to use an auxiliary array of “pointers” d[0, k) such that
d[i] points to the entry in z[0, k) that should actually be used, but this would
break the in-place property. Fortunately, it turns out that permutation d can
be characterized nicely as a function of the round number, thus allowing us to
efficiently restore the in-place property, without copying even a single hash value
throughout our algorithms.

8 Concluding Remarks

We have completely resolved the case of binary pebbling of hash chains by con-
structing an explicit optimal schedule. A major advantage of our optimal sched-
ule is that it allows for very efficient in-place pebbling algorithms. This compares
favorably with the greedy pebbling algorithms of [YSEL09], which require a sub-
stantial amount of storage beyond the hash values themselves. The pseudocode of
Algorithms 1, 2, and 3 is readily translated into efficient program code, applying
further optimizations depending on the target platform. 3

The security of one-way hash chains for use in authentication mechanisms
such as Lamport’s asymmetric identification scheme does not depend on the col-
lision resistance of the hash function. Therefore, it suffices to use 128-bit hash
3 Sample code (in Python, Java, C) available at www.win.tue.nl/˜berry/pebbling/.

http://www.win.tue.nl/~berry/pebbling/

316 B. Schoenmakers

values—rather than 256-bit hash values, say. Using, for instance, the above men-
tioned Matyas-Meyer-Oseas construction one obtains a fast and simple one-way
function f : {0, 1}128 → {0, 1}128 defined as f(x) = AESIV(x)⊕x, where IV is a
128-bit string used as fixed “key” for the AES block cipher.4 Consequently, even
for very long hash chains of length 232, our in-place optimal pebbling algorithm
will just store 516 bytes (32 hash values and one 32-bit counter) and perform
at most 16 hashes per identification round. Similarly, long hash chains of length
216 would allow devices capable only of lightweight cryptography to run 65535
rounds of identification (e.g., more than twice per hour over a period of three
years), requiring only 258 bytes of storage and using at most 8 hashes per round.

Reversal of a length-n hash chain using optimal binary pebbling requires
log2 n storage and 1

2 log2 n time per round, yielding 1
2 log22 n as space-time prod-

uct. Coppersmith and Jakobsson [CJ02] derived a lower bound of approximately
1
4 log22 n for the space-time product.5 Whether this lower bound is achievable
is doubtful, because the lower bound is derived without taking into account
that the maximum number of hashes during any round needs to be minimized.
We like to mention, however, that by means of “Fibonacci” pebbling we can
actually achieve 1

2
√
5

log2φ n ≈ 0.46 log22 n as space-time product, where φ is the
golden ratio. Omitting details, we consider hash chains of length n = Fk, the kth
Fibonacci number, e.g., for even k, storing k/2 elements at distances F2i −1, for
1 ≤ i ≤ k/2, from the end of the hash chain, and using k/

√
5 time per round.

As another direction for further research we suggest to revisit the problem
of efficient Merkle tree traversal studied in [Szy04], which plays a central role in
hash-based signature schemes [Mer87,Mer89]; in particular, it would be inter-
esting to see whether algorithms for generating successive authentication paths
can be done in-place. More generally, research into optimal (in-place) algorithms
for hash-based signatures is of major interest both in the context of lightweight
cryptography (e.g., see [PCTS02,MSS13]; more references in [YSEL09]) and in
the context of post-quantum cryptography (e.g., see [BDE+13]).

Acknowledgments. It is my pleasure to thank both Niels de Vreede and Thijs
Laarhoven for many discussions on variants of the problem, and to thank Niels espe-
cially for suggesting the bootstrapping approach (see Sect. 7). Moreover, the anonymous
reviewers are gratefully acknowledged for their comments.

4 More precisely, function f should be one-way on its iterates [Lev85,Ped96].
5 Incidentally, this lower bound had been found already in a completely different con-

text [GPRS96]; see Appendix A.

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 317

A Rushing Binary Pebbling

The problem studied in the area of algorithmic (or, automatic, computational)
differentiation [GW08] is similar to the task for our pebbler Pk(x) of comput-
ing the hash chain f∗

k(x) and outputting this sequence in reverse. The critical
difference, however, is that in the context of algorithmic differentiation the goal
is basically to minimize the total time for performing this task (or, equivalently,
to minimize the amortized time per output round). This contrasts sharply with
the goal in the cryptographic context, where we want to minimize the worst case
time per output round while performing this task.

Below we show that it is easy to achieve logarithmic space and logarithmic
amortized time per output round for binary pebbling algorithms. This result
is comparable to what is achieved by means of checkpointing for the reverse
(or, adjoint, backward) mode of algorithmic differentiation in [Gri92]; in fact,
without the performance constraint unique for the cryptographic setting, as ini-
tiated by Jakobsson [Jak02,CJ02], it is even possible to attain the lower bound
of [GPRS96]. Therefore, the solutions achieved in the area of algorithmic dif-
ferentiation (and in related areas such as reversible computing [Per13], for that
matter) do not carry over to the cryptographic setting.

In fact, logarithmic amortized time per output round is achieved by any
binary pebbler Pk as follows directly from Theorem 1: any Pk performs #Wk =
(k − 2)2k−1 + 1 hashes in total during its output stage consisting of 2k rounds,
hence the amortized number of hashes per output round is equal to #Wk/2k ≈
k/2 − 1. This holds for any schedule Tk satisfying #Tk = 2k − 1.

To achieve logarithmic space as well, we choose Tk such that the storage
requirements for Pk are minimized. This can simply be done by postponing the
evaluation of all hashes to the last round of the initial stage of Pk. Concretely,
we define a rushing pebbler Pk by setting T0 = {} and Tk = 0∗2k−2 ‖ 2k − 1 for
k ≥ 1. Hence, a rushing pebble performs all 2k − 1 hashes in the last round of
its initial stage; see also Fig. 2.

As a consequence, a rushing pebbler minimizes its storage requirements at
the cost of some computationally very expensive rounds, as follows.

Theorem 10. A rushing pebbler Pk uses up to max(Wk) = 2k−1 − 1 hashes in
any output round, for k ≥ 1.

Lemma 5. For a rushing pebbler Pk, we have:

S0 = {1}, Sk = (0∗2k−1 ‖ 1 ‖ Sk−1) + (1∗2k−1 ‖ Sk−1 ‖ 0∗2k−1
).

Theorem 11. A rushing pebbler Pk uses up to max(Sk) = k + 1 storage.

318 B. Schoenmakers

Fig. 2. Schedule T4, work W4, storage S4 for binary pebblers P4 in rounds 1–31. Bullets
represent stored values, arrows represent hashing, vertical lines represent copying.

Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal 319

References

[BDE+13] Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the
security of the Winternitz one-time signature scheme. Int. J. Appl. Crypt.
3(1), 84–96 (2013)

[BÖS11] Bos, J.W., Özen, O., Stam, M.: Efficient hashing using the AES instruction
set. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
507–522. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9 33

[CJ02] Coppersmith, D., Jakobsson, M.: Almost optimal hash sequence traver-
sal. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 102–119. Springer,
Heidelberg (2003). doi:10.1007/3-540-36504-4 8

[Goy04] Goyal, V.: How to re-initialize a hash chain. eprint.iacr.org/2004/097
[GPRS96] Grimm, J., Potter, L., Rostaing-Schmidt, N.: Optimal time and minimum

space-time product for reversing a certain class of programs. In: Berz, M.,
Bischof, C.H., Corliss, G., Griewank, A. (eds.) Computational Differentia-
tion Techniques. Applications, and Tools, pp. 95–106. SIAM, Philadelphia
(1996)

[Gri92] Griewank, A.: Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation. Optim. Methods Softw. 1(1),
35–54 (1992)

[GW08] Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation, 2nd edn. SIAM, Reading (2008)

[Hal94] Haller, N.: The S/KEY one-time password system. In: Proceedings of the
Symposium on Network and Distributed System Security (NDSS), pp. 151–
157. Internet Society, February 1994. en.wikipedia.org/wiki/S/KEY

[IR01] Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and
verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354.
Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 20

[Jak02] Jakobsson, M.: Fractal hash sequence representation and traversal. In: Pro-
ceedings of IEEE International Symposium on Information Theory (ISIT
2002), p. 437. IEEE Press (2002). Full version eprint.iacr.org/2002/001

[Kim03] Kim, S.-R.: Improved scalable hash chain traversal. In: Zhou, J., Yung,
M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 86–95. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45203-4 7

[Lam81] Lamport, L.: Password authentication with insecure communication. Com-
mun. ACM 24(11), 770–772 (1981)

[Lev85] Levin, L.: One-way function and pseudorandom generators. In: Proceedings
of the 17th Symposium on Theory of Computing (STOC 1985), pp. 363–
365 (1985)

[Mer87] Merkle, R.C.: A digital signature based on a conventional encryption func-
tion. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378.
Springer, Heidelberg (1988). doi:10.1007/3-540-48184-2 32

[Mer89] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). doi:10.
1007/0-387-34805-0 21

[MSS13] Mourier, N., Stampp, R., Strenzke, F.: An implementation of the hash-
chain signature scheme for wireless sensor networks. In: Avoine, G., Kara,
O. (eds.) LightSec 2013. LNCS, vol. 8162, pp. 68–80. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40392-7 6

http://dx.doi.org/10.1007/978-3-642-23951-9_33
http://dx.doi.org/10.1007/3-540-36504-4_8
http://eprint.iacr.org/2004/097
http://en.wikipedia.org/wiki/S/KEY
http://dx.doi.org/10.1007/3-540-44647-8_20
http://eprint.iacr.org/2002/001
http://dx.doi.org/10.1007/978-3-540-45203-4_7
http://dx.doi.org/10.1007/3-540-48184-2_32
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/978-3-642-40392-7_6

320 B. Schoenmakers

[Nak08] Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, 31 October
2008. bitcoin.org/bitcoin.pdf

[PCTS02] Perrig, A., Canetti, R., Tygar, J.D., Song, D.: The TESLA broadcast
authentication protocol. RSA CryptoBytes 5(2), 2–13 (2002)

[Ped96] Pedersen, T.P.: Electronic payments of small amounts. In: Lomas, M. (ed.)
Security Protocols 1996. LNCS, vol. 1189, pp. 59–68. Springer, Heidelberg
(1997). doi:10.1007/3-540-62494-5 5

[Per13] Perumalla, K.: Introduction to Reversible Computing. Chapman and
Hall/CRC, Boca Raton (2013)

[Sel03] Sella, Y.: On the computation-storage trade-offs of hash chain traversal.
In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 270–285. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45126-6 20

[Szy04] Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 32

[YSEL09] Yum, D.H., Seo, J.W., Eom, S., Lee, P.J.: Single-layer fractal hash chain
traversal with almost optimal complexity. In: Fischlin, M. (ed.) CT-RSA
2009. LNCS, vol. 5473, pp. 325–339. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00862-7 22

[ZL05] Zhao, Y., Li, D.: An improved elegant method to re-initialize hash chains,
January 2005. eprint.iacr.org/2005/011

https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1007/3-540-62494-5_5
http://dx.doi.org/10.1007/978-3-540-45126-6_20
http://dx.doi.org/10.1007/978-3-540-24676-3_32
http://dx.doi.org/10.1007/978-3-642-00862-7_22
http://dx.doi.org/10.1007/978-3-642-00862-7_22
http://eprint.iacr.org/2005/011

Factoring as a Service

Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried, Satya Bodduluri,
and Nadia Heninger(B)

University of Pennsylvania, Philadelphia, USA
nadiah@cis.upenn.edu

Abstract. The difficulty of integer factorization is fundamental to
modern cryptographic security using RSA encryption and signatures.
Although a 512-bit RSA modulus was first factored in 1999, 512-bit RSA
remains surprisingly common in practice across many cryptographic pro-
tocols. Popular understanding of the difficulty of 512-bit factorization
does not seem to have kept pace with developments in computing power.
In this paper, we optimize the CADO-NFS and Msieve implementations
of the number field sieve for use on the Amazon Elastic Compute Cloud
platform, allowing a non-expert to factor 512-bit RSA public keys in under
four hours for $75. We go on to survey the RSA key sizes used in popular
protocols, finding hundreds or thousands of deployed 512-bit RSA keys in
DNSSEC, HTTPS, IMAP, POP3, SMTP, DKIM, SSH, and PGP.

1 Introduction

A 512-bit RSA modulus was first factored by Cavallar et al. in 1999, which took
about seven calendar months in a distributed computation using hundreds of
computers and at least one supercomputer [8]. The current public factorization
record, a 768-bit RSA modulus, was reported in 2009 by Kleinjung et al. and
took about 2.5 calendar years and a large academic effort [22].

Despite these successes, 512-bit RSA keys are still regularly found in use.
Several implementations of the number field sieve have been published, including
CADO-NFS [34], Msieve [28], and ggnfs [26], allowing even enthusiastic amateurs
to factor 512-bit or larger RSA moduli. In 2009, Benjamin Moody factored a
512-bit RSA code signing key used on the TI-83+ graphing calculator using 2.5
calendar months of time on a single computer, and a distributed effort then
factored several more 512-bit TI-68k and TI-Z80 calculator signing keys [33].
The NFS@Home project has organized several large distributed factorizations
since 2009 [9]. In 2012, Zachary Harris factored the 512-bit DKIM RSA keys used
by Google and several other major companies in 72 h per key using CADO-NFS
and Amazon’s Elastic Compute Cloud (EC2) service [37].

The persistence of 512-bit RSA is likely due in part to the legacy of United
States policies regarding cryptography. In the 1990s, international versions of
cryptographic software designed to comply with United States export control
regulations shipped with 40-bit symmetric keys and 512-bit asymmetric keys,
and export-grade cipher suites with these key sizes were built into protocols like
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 321–338, 2017.
DOI: 10.1007/978-3-662-54970-4 19

322 L. Valenta et al.

SSL. Restrictions were later raised or lifted on open-source and mass-market
software with cryptographic capabilities, but as of 2015, the United States Com-
merce Control List still includes systems “designed or modified to use ‘cryptogra-
phy’ employing digital techniques performing any cryptographic function other
than authentication, digital signature, or execution of copy-protected ‘software’
and having . . . an ‘asymmetric algorithm’ where the security of the algorithm is
based on . . . factorization of integers in excess of 512 bits (e.g., RSA)” [7].

Factoring a 512-bit RSA key using the number field sieve is still perceived by
many as a significant undertaking. In 2015, Beurdouche et al. [6] discovered the
FREAK attack, a flaw in many TLS implementations that allows man-in-the-
middle attacks to downgrade connections to 512-bit export-grade RSA cipher
suites. In evaluating the prospect of a fully exploitable vulnerability, the paper
states “we observe that 512-bit factorization is currently solvable at most in
weeks.” Subsequently, Bhargavan, Green, and Heninger developed a FREAK
attack proof-of-concept in part by configuring CADO-NFS to run more effi-
ciently on Amazon EC2. This setup was reported to factor a 512-bit key in
approximately 7 h on EC2, with a few additional hours for startup and shut-
down [5].

In this paper, we present an improved implementation which is able to factor
a 512-bit RSA key on Amazon EC2 in as little as four hours for $75. Our code
is available at https://github.com/eniac/faas.

We gain these improvements by optimizing existing implementations for the
case of factoring in the cloud. In particular, we rewrote the distributed portion
of the number field sieve to use the Slurm job scheduler [35], allowing us to more
effectively scale to greater amounts of computational resources. We describe
our implementation and parallelizations in Sect. 3. We then performed extensive
experiments on both CADO-NFS and Msieve to determine optimal parameter
settings for the network interconnect speeds and resource limits achievable on
Amazon EC2. Our experiments are detailed in Sect. 4.

21 22 23 24 25 26
40

80

120
160 256,64

256,16
128,64 128,64

64,64

128,16
128,4

64,4
32,16

32,4
16,4

16,4
16,1 8,1

4,1 2,1 1,1

Time (hrs)

C
os

t
(U

SD
) lbp 28; td 120

lbp 29; td 120
lbp 29; td 70

Fig. 1. A time/cost curve for 512-bit factorization. Each point above is anno-
tated with the instances used for sieving and linear algebra, respectively, and represents
an experimental estimate. There are diminishing returns from imperfect parallelization
in linear algebra. The dotted line shows the fastest time we were able to achieve; larger
experiments usually encountered node instability.

https://github.com/eniac/faas

Factoring as a Service 323

Figure 1 summarizes the time and cost to factor a 512-bit RSA key using
current optimal parameters with varying amounts of resources, and the average
cost we paid between May and September 2015 for EC2 resources. By tuning the
parameters for factoring, one can achieve different points in the trade-off between
overall clock time and overall cost. Using more machines gives a faster overall
factoring time, but has diminishing returns because of imperfect parallelism.
Linear algebra time was measured empirically and sieving was measured once
for each parameter set and extrapolated to different numbers of instances.

The order of magnitude of the costs we give lines up with previous reports
and estimates of factoring on EC2, and we achieve a significant speedup in overall
running time. Performing a computation of this magnitude reliably remains a
challenging endeavor. Our paper can also be viewed as a case study on the
successes and challenges in trying to replicate a high-performance computing
environment in the Amazon EC2 cloud.

In order to measure the impact of fast 512-bit factorization, in Sect. 5 we
analyze existing datasets and perform our own surveys to quantify 512-bit RSA
key usage in modern cryptographic public key infrastructures. We find thou-
sands of DNSSEC records signed with 512-bit keys, millions of HTTPS, SMTP,
IMAPS, and POP3S servers still supporting RSA EXPORT cipher suites for TLS,
and a long tail of 768-bit, 512-bit, and shorter RSA keys in use across DKIM,
SSH, IPsec VPNs, and PGP.

2 Background

In this paper, we focus on the impact of factoring on the security of RSA public
keys [32], though integer factorization has many applications across mathemat-
ics. Factoring the modulus of an RSA public key allows an attacker to compute
the corresponding private key, and thus to decrypt any messages encrypted to
that key, or forge cryptographic signatures using the private key.

2.1 Number Field Sieve

The general number field sieve is the fastest known algorithm for factoring
generic integers larger than a few hundred bits [25]. Its running time is described
using L-notation as LN [1/3, 1.923] = exp

(
1.923(logN)1/3(log logN)2/3

)
–sub-

exponential, but super-polynomial [21] in the size of N , the integer to be factored.
A gentle introduction to the big ideas behind sieving algorithms for integer fac-
torization and can be found in Pomerance’s 1996 survey [30], and more in-depth
information on the number field sieve can be found in the books by Lenstra,
Lenstra, Manasse, and Pollard [25] and Crandall and Pomerance [12].

In this section, we give a brief overview of the structure of the algorithm, in
order to identify potential implementation optimizations and barriers to paral-
lelization. The number field sieve has four main computational stages: polynomial
selection, sieving, linear algebra, and square root (Fig. 2).

324 L. Valenta et al.

Fig. 2. The number field sieve. The number field sieve factoring algorithm con-
sists of several main stages. Sieving and linear algebra are the most computationally
intensive stages. Sieving is embarrassingly parallel, while parallelizing linear algebra
can encounter communication bottlenecks.

The first stage of the algorithm, polynomial selection, searches for a poly-
nomial f(x) and integer m satisfying f(m) ≡ 0 mod N , where N is the integer
to factor. f(x) defines the number field Q(x)/f(x) to be used in the rest of the
algorithm. A good choice of polynomial in this stage can significantly speed up
the rest of the computation, by generating smaller elements in the sieving phase.
Several techniques exist for choosing the polynomial, but in general many dif-
ferent polynomials are tested and the best one is passed on to the next stage.
The polynomial selection stage is embarrassingly parallel.

The next stage of the algorithm, sieving, factors ranges of integers and num-
ber field elements to find many relations of elements and saves those whose
prime factors have size less than some size bound B, called the smoothness
bound. CADO-NFS uses the large prime variant of sieving, and the large prime
bound parameters lbp control the log of the smoothness bounds. Decreasing
these bounds increases the difficulty of sieving, since relations are less likely
to factor completely into smaller factors. The sieving stage is also embarrass-
ingly parallel, since candidate relations can be evaluated independently in small
batches.

In the third stage, linear algebra, the coefficient vectors of the relations are
used to construct a large sparse matrix with entries over F2. Before beginning
this stage, some preprocessing on the relations is used to decrease the dimension
of the resulting matrix. In general, more relations collected during sieving will
produce a smaller matrix and reduce the runtime for linear algebra. The goal of
the linear algebra stage is to discover a linear dependency among the rows. This
is accomplished via the Block Wiedemann [10] or Block Lanczos [27] algorithms,
which are specialized for sparse linear algebra. This step can be parallelized, but
the parallelization requires much more communication and synchronization.

The final stage involves computing the square root of a number field element
corresponding to a dependency in the matrix. In practice, many dependencies
will be tested since not all of them will lead to a nontrivial factor; the square
roots can be computed and tested in parallel. This step takes only a few minutes.

Discrete log. There is also a number field sieve algorithm for discrete logarithms
with a nearly identical structure. Many of the implementation improvements that

Factoring as a Service 325

we describe here also apply to discrete log. However a 512-bit prime-field discrete
log is significantly more burdensome than a 512-bit factorization, in large part
because the linear algebra stage involves arithmetic over a large-characteristic
finite field. Adrian et al. [1] describe 512-bit discrete log computations in prac-
tice; we estimate that a single equivalent discrete log computation performed on
Amazon EC2 would cost approximately $1400 and take 132 h.

2.2 Amazon EC2

Amazon Elastic Compute Cloud (EC2) is a service that provides virtualized
computing resources that can be rented by the hour. Several competitors exist,
including Google Compute Engine. We specialize our results to Amazon largely
out of convenience and because when we began this project some tools were
specialized to Amazon’s infrastructure.

Amazon EC2 bills for computing resources by the instance-hour. An instance
is a single virtualized machine associated with resources including processing
cores, memory, and disk storage. Amazon offers many different instance types.
We chose the largest type of compute-optimized instance available as of August
2015, the c4.8xlarge instance. This instance type has two Intel Xeon E5-2666 v3
processor chips, with 36 vCPUs in a NUMA configuration with 60 GB of RAM.

There are multiple pricing structures available to purchase instance-hours.
For our purposes, one can purchase fixed-rate on-demand instances, or bid a
variable rate for spot instances which may be terminated depending on demand.
The difference can be significant: for a c4.8xlarge instance, the on-demand price
as of September 2015 is $1.763, while the average spot price we paid between
May and September 2015 was $0.52. We used spot instances for our experiments.
Amazon raised our account limit to allow us to launch up to 200 instances.

The c4.8xlarge instance type supports Enhanced Networking with 10 GbE
interconnect between instances. Machines can be rented in different availability
zones located around the world, and within an availability zone one can request
machines to be co-located in a single placement group to minimize latency. We
measured the interconnect bandwidth of instances in the same availability zone
and placement group at 9.46 Gbit/s, and between instances not in the same
placement group at 4–5 Gbit/s. We enabled enhanced networking and launched
instances used for linear algebra in one placement group.

The networking environment of Amazon EC2 is distinct from a traditional
HPC cluster. The connection was not saturated during our linear algebra opti-
mization tests in Sect. 4 below. However, our measured interconnect latency, at
151µs, is significantly greater than most HPC standards. For reference, Infini-
Band FDR has latency requirements of 7µs at 10 Gbit speeds.

Kleinjung, Lenstra, Page, and Smart [23] estimated in 2012 that factoring
512-bit RSA on Amazon EC2 would cost $107 for sieving and $30 for linear
algebra. Their estimates were obtained from experiments on truncated sieving
jobs and simplified linear algebra. In comparison, we focused on building a system
to reliably perform full 512-bit factorizations as quickly as possible given the
current state of the EC2 platform. Paterson, Poettering, and Schuldt [29] used
EC2 to perform large-scale cryptanalytic experiments for the RC4 stream cipher.

326 L. Valenta et al.

3 Implementation

In order to speed up factoring, we wanted to maximize parallelism. In the polyno-
mial selection and sieving stages, parallelization is straightforward, because the
tasks can be split into arbitrarily small pieces to be executed independently, with
only a relatively small amount of sequential work to process the results together
at the end. Our improvements in these stages come from reliably distributing
these tasks across cluster resources in a scalable way. Scaling the linear algebra
stage is more complex, because the communication overhead results in dimin-
ishing returns from additional resources. We performed extensive experiments
to characterize the trade-offs and guide parameter selection.

3.1 Managing Amazon EC2 Resources with Ansible

We used Ansible [13], a cluster management tool, to set up and configure an EC2
cluster and to scale the cluster appropriately at each stage of factorization. After
the sieving stage, we terminate nodes not required for linear algebra. Ansible can
launch and configure a cluster of 50 on-demand instances in under 5 min, and
50 spot instances in 10–15 min.

3.2 Parallelizing Polynomial Selection and Sieving with Slurm

The polynomial selection and sieving stages generate thousands of individual
tasks to be distributed to cluster compute nodes. This requires a job distrib-
ution framework that is fast and scalable to many machines. The CADO-NFS
implementation is distributed with a Python script to coordinate each stage,
including a job distribution system over HTTP designed to require minimal
setup from participating computers. Unfortunately this implementation did not
scale well to simultaneously tracking thousands of tasks. We experimented with
Apache Spark [36] to manage data flow, but Spark was not flexible enough for
our needs, and our initial tests suggested that a Spark-based job distribution
system was more than twice as slow as the system we were aiming to replace.

Ultimately we chose Slurm (Simple Linux Utility for Resource Manage-
ment) [35] for job distribution and management during polynomial selection
and sieving. Slurm can resubmit failed or timed-out tasks, monitors for and deals
with failed nodes, has low startup overhead, and scales well to large clusters.

Our implementation uses a management thread to submit polynomial selec-
tion and sieving tasks asynchronously in batches to the Slurm controller, which
then handles distribution and execution. This thread rate limits batch sizes in
order to get around Slurm’s job submission rate of a thousand jobs per second [4].
We found that scheduling two jobs per vCPU yielded faster sieving times than
one job per vCPU, since the latter did not always fully saturate CPU usage.

3.3 Parallelizing Linear Algebra with MPI

After sieving has completed, the relations that have been produced are processed
to generate a large, sparse matrix. The runtime of this linear algebra phase

Factoring as a Service 327

depends on the dimension of the matrix and the number of nonzero entries per
matrix row, called the density, so the preprocessing stage attempts to produce
a matrix that is as small as possible by filtering and combining relations. The
parameters that control the effectiveness of the dimension reduction are the
number of relations collected and the allowed density of the matrix.

The parallelization of the linear algebra stage is more complex than sieving
or polynomial selection. In general, the matrix is divided up into an n× n grid.
In each iteration, each worker operates on its own grid element, gathers results
from each of the other workers using the Message Passing Interface (MPI), and
combines the results into its own grid element. We used OpenMPI 1.8.6 [18].

Comparing CADO-NFS and Msieve linear algebra. We compared the linear alge-
bra implementations of CADO-NFS, which implements the Block Wiedemann
algorithm, and Msieve, which implements the Block Lanczos algorithm for lin-
ear algebra. Although Block Wiedemann is designed to parallelize well on inde-
pendent resources, Msieve was significantly faster on our EC2 configuration.
Both implementations support MPI out of the box. For a 512-bit factorization
with an identical set of 53 million relations, we found that CADO-NFS with-
out MPI completed the linear algebra stage in 350 min, while Msieve without
MPI completed linear algebra in 140 min. When parallelized across multiple EC2
instances, CADO-NFS’s runtime did not decrease significantly, whereas Msieve’s
did. We decided to use Msieve’s implementation for linear algebra.

Unfortunately, the input and output formats used by CADO-NFS and Msieve
are not compatible, so using Msieve’s linear algebra meant we also needed to
use Msieve’s matrix preprocessing and final square root phases or rewrite these
stages ourselves. We compromised by parallelizing Msieve’s square root imple-
mentation to test multiple dependencies simultaneously, so that the square root
phase finishes in approximately 10 min.

4 Experiments

We performed several experiments to explore the effects of different parameter
settings on running time. All of the experiments in this section were carried
out on the same arbitrarily chosen 512-bit RSA modulus. There will be some
variation in running time across different moduli. In order to understand this
variation, we measured the CPU time required to sieve 54.5 million relations for
five different randomly generated RSA moduli with the parameters lbp 29 and
target density 70 on a cluster with 432 CPUs. We observed a median of 2770
CPU hours with a standard deviation of 227 CPU hours in the sample set.

4.1 Large Prime Bounds

The large prime bounds lbp specify the log of the smoothness bound for relations
collected in the sieving stage. Decreasing the large prime bound will decrease the
dimension of the matrix and therefore decrease the linear algebra running time,

328 L. Valenta et al.

Table 1. Large prime bounds. Decreasing the large prime bound parameter
increases the amount of work required for sieving, but decreases the work required
for linear algebra. This is an advantageous choice when large amounts of resources can
be devoted to sieving.

lbp Relations Matrix rows Matrix size Sieve CPU-hours Linalg
instance-hours

28 28.2M 4.96M 1.48 GB 3271.1 5.4

29 44.8M 5.68M 1.71 GB 2369.2 8.5

but will increase sieving time because relations with smaller prime factors are
less common. The lbp parameter provides the first step for tuning the trade-off
between sieving and linear algebra time to optimize for different-sized clusters.

We experimented with lbp values 28 and 29. At lbp 27, CADO-NFS was
unable to gather enough relations even after increasing the sieving area. At lbp
30, linear algebra will dominate the computation time even for small clusters.

Table 1 shows the effect of the changing the large prime bound for one exper-
imental setup. Both of the runs used the minimum number of relations required
to build a full matrix with target density 70 (see Sect. 4.2), and linear algebra
was completed on a single machine with 36 vCPUs. Decreasing lbp from 29 to
28 causes the sieving CPU time to increase by 38% even though fewer relations
are collected, but the linear algebra time decreases by 36%.

4.2 Target Density

The target density parameter specifies the average number of sparse nonzero
entries per matrix row that Msieve will aim for in matrix construction. Linear
algebra time is dependent on the product of the density and dimension, and
can be decreased by raising the target density to lower the dimension. Figure 3a
shows how increasing the target density decreases linear algebra time for a fixed
set of input relations on a cluster of 16 instances.

For a 512 bit number with 53 million relations (more than 20 million relations
over the minimum), a matrix with target density 70 took 15 min to construct
and 68 min for the linear algebra computation. For the same set of relations, a
matrix with target density of 120 took 17 min to construct and 55 min for linear
algebra, a 19% reduction in linear algebra time. However, there were diminishing
returns to increases in target density: increasing the target density from 120 to
170 reduced the overall time by only 4%.

The drawback to increasing target density is that more relations are needed
from the sieving stage to construct the matrix. Figure 3b shows how the minimum
number of relations required increases sharply as target density is increased
beyond a particular threshold. When large amounts of resources are available
for sieving, the increased work required to collect additional relations can be
compensated for by a larger decrease in linear algebra time. For a given cluster
size, there is an optimal target density that takes into account these trade-offs.

Factoring as a Service 329

Fig. 3. Target density and oversieving. Increasing the target density parameter
decreases linear algebra time, but requires more relations to construct the matrix.
Collecting additional relations beyond the minimum also produces a better matrix and
decreases linear algebra time. This trade-off can be advantageous if more resources can
be devoted to sieving, as sieving parallelizes well.

4.3 Oversieving

Oversieving means generating excess relations during the sieving phase. This
can help to produce an easier matrix for the linear algebra phase, reducing lin-
ear algebra runtime. We ran experiments varying cluster configurations, target
densities, and large prime bounds to determine an oversieving curve for each.
Figure 3c shows two representative oversieving curves for a 16-node linear alge-
bra cluster with lbp 28 and target densities 70 and 120, respectively. For the
target density 70 curve, the linear algebra time for the minimum number of rela-
tions required to construct the matrix, 30 million, was 112 min. At 32 million
relations, the linear algebra time was reduced to 101 min, an 11% improvement.
However, as Fig. 3c shows, there are diminishing returns to oversieving, while the
work required to produce additional relations scales close to linearly. Optimal
oversieving amounts are dependent on the cluster configuration.

4.4 MPI Grid Size

The grid size parameter directly controls the number of work units that MPI
can assign to cluster resources. We experimented with both fine-grained grids
matching the number of work units to the total number of vCPUs, and coarse-
grained grids matching work units to instances. The optimum turned out to
be somewhere in the middle: a single multithreaded work unit was not able to
occupy all of the 36 vCPUs on a single instance, while the other extreme is
likely to become limited by communication overhead since the Block Lanczos
algorithm requires each node to gather results from every other node at each
iteration.

In order to determine the optimal grid size, we tested a range of grid sizes
for cluster sizes of 1, 4, 16, and 64 instances. The best performance for clusters

330 L. Valenta et al.

with 1 and 4 instances was 4× 4 and 8× 8, respectively, where each cluster had
16 work units in total. For the clusters with 16 and 64 instances, the optimal
grid size was 8 × 8 and 16× 16, where each cluster had 4 work units in total. The
differences as cluster size grows are likely due to communication bottlenecks.

4.5 Processor Affinity

The default parameters of OpenMPI dictate that each of the work units is bound
to a specific machine, but when multiple work units are assigned to the same
instance they compete for the same processor and memory resources, creating
processor scheduling overhead and increased variance in the work unit iteration
times. Each work unit must iterate together, so the time per iteration is dictated
by the slowest work unit. Since the c4.8xlarge EC2 instances have two processor
sockets and a NUMA memory layout, the distribution of the threads of a work
unit across two processors means longer intra-process communication times and
slower memory access times. We used the rankfile/process affinity parameter in
OpenMPI to bind each of the work units on a single instance to its own subset
of processor cores and saw an improvement of 1–2% in linear algebra time.

We also tested binding each thread of each of the work units to individual
cores, but this did not improve running times.

4.6 Block Size

The default block size in Msieve is 8192 bytes. Theoretically, matching the block
size used in Msieve with the size of the L1 cache of the processor should yield
better performance by decreasing cache and memory access times. However, for
the parameters lbp 28 and target density 70, increasing the block size from 8K
to 16K increased computation time from 67 min to 69 min, and increasing the
block size from 8K to 32K increased computation time from 67 min to 73 min.
We decided to leave the block size unchanged.

4.7 Putting It All Together

To generate the data points in Fig. 1, we individually timed each sieving job
together with system overhead. For each set of parameters, we combined the
linear algebra running time from the experiments in this section with the total
measured running time to complete enough sieving jobs to generate the required
number of relations. We then added a measured estimate of costs for the remain-
ing steps of factoring to get our total running time estimates. We were able to
reliably achieve running times under four hours for factoring, but in several
attempts to verify lower overall times, we encountered issues where some EC2
instances in our cluster ran more slowly than others or became unresponsive.
These issues become more pronounced with larger cluster sizes. Our sieving
setup can deal gracefully with slow nodes, but linear algebra is more fragile and
is currently limited by the slowest node.

Factoring as a Service 331

5 512-Bit Keys Still in Use

In this section, we survey RSA key lengths across public key infrastructures for
a variety of protocols, finding that 512-bit RSA keys are surprisingly persistent.

5.1 DNSSEC

DNSSEC [3] is a DNS protocol extension that allows clients to cryptographically
authenticate DNS records. DNS records protected by DNSSEC include a public
key record (usually RSA) and a signature that can be chained up to a trusted root
key. DNSKEY records can contain either a zone-signing key (ZSK), used to sign
DNS records, or a key-signing key (KSK), used to sign DNSKEY records. RFC
4033 [3] specifies that zone-signing keys may have shorter validity periods, and
key-signing keys should have longer validity periods. RFC 6781 [24], published by
the IETF in 2012 on DNSSEC Operational Practices, states that “it is estimated
that most zones can safely use 1024-bit keys for at least the next ten years.”

An attacker who knows the private key to a zone-signing key or key-signing
key could mount an active attack to forge DNS responses for any descendants
below that location in the chain.

We analyzed several DNSSEC datasets. The most comprehensive is a collec-
tion of DNS records collected by Rapid7 which we downloaded from Scans.io.
They performed biweekly DNS lookups on approximately 529 million domains
starting in June 2014 and continuing to present. The number of lookups varies
by as much as 61 million domains across scans, and the number of domains
with valid DNSSEC records fluctuated between 3.7 million and 1.1 million and
decreased over time compared to total domains. The relative fraction of DNSSEC
key sizes did not change much over time. The distribution is shown in Fig. 4a.

Fig. 4. DNSSEC key sizes and duration. The ratios of RSA key lengths has
remained relatively stable over time, although the total number of DNSSEC keys col-
lected fluctuated across scans. The number of 512-bit keys remained around 10,000, or
0.35% of the total. Many DNSSEC keys are rotated infrequently, and 512-bit keys are
rotated less frequently than longer keys.

332 L. Valenta et al.

In order to measure the completeness of the Rapid7 dataset, we compared
to a second dataset of anonymized 512-bit DNSSEC keys for all .com, .net,
and .org domains between February 22, 2015 and September 3, 2015 from the
SURFnet DNS measurement infrastructure of van Rijswijk-Deij, Jonker, Sper-
otto, and Pras [31] which was provided to us by the researchers. The SURFnet
data contained 2,116 distinct public keys of which 1,839 (86%) were present in
the Rapid7 scans from the same time period. To measure how many 512-bit keys
are in active use, SURFnet provided a set of all 512-bit DNSkey records collected
using their passive DNS monitoring system for a one-month period between Sep-
tember 12, 2015 and October 13, 2015. The set included 1,239 records covering
613 distinct domains and contained 705 distinct keys.

Finally, we performed DNS lookups on eleven thousand zones not contained
in the Rapid7 dataset that were required for signature validation. 56% of domains
with 512-bit keys failed signature verification, most commonly because the TLD
signature was not present in the chain of trust.

Many keys were never rotated at all over the 431-day period spanned by
the Rapid7 dataset, and signatures were renewed more frequently than keys
were updated. Figure 4b illustrates signature validity periods and key lifetimes.
Signature validity periods are clustered around a few common ranges: 33% of
keys were signed for six months, 34% for one month, 25% for three weeks, and 6%
for 14 days. 512-bit zone-signing keys and key-signing keys were less frequently
rotated than other key sizes.

5.2 HTTPS

RSA public keys are used for both encryption and authentication in the TLS pro-
tocol. If the client and server negotiate an RSA cipher suite, the client encrypts
the premaster secret used to derive the session keys to the RSA public key in the
server’s certificate. An adversary who compromises the private key can passively
decrypt session traffic from the past or future. However, since no 512-bit certifi-
cates have currently valid signatures from certificate authorities, these servers
are also vulnerable to an active man-in-the-middle attack from an adversary who
simply replaces the certificate.

If the client and server negotiate a Diffie-Hellman or elliptic curve Diffie-
Hellman cipher suite, the server uses the public key in its certificate to sign its
key exchange parameters. An adversary who knows the private key could carry
out a man-in-the-middle attack by forging a correct signature on their desired
parameters. Since again no 512-bit certificates are currently signed or trusted,
such an active adversary could also merely replace the server certificate in the
exchange along with the chosen Diffie-Hellman parameters.

Finally, connections to servers supporting RSA EXPORT cipher suites may be
vulnerable to an active downgrade attack if the clients have not been patched
against the FREAK attack [6]. Successfully carrying out this attack requires the
attacker to factor the server’s ephemeral RSA key, which is typically generated
when the server application launches and is reused as long as the server is up.
“Ephemeral” RSA keys can persist for weeks and are almost always 512 bits.

Factoring as a Service 333

Table 2. HTTPS RSA common key lengths and export RSA support.

Length All certificates Distinct keys Trusted certificates Trusted and valid

512 303,199 (0.9%) 32,870 0 (0.0%) 0 (0.0%)

768 26,582 (0.1%) 14,581 0 (0.0%) 0 (0.0%)

1024 12,541,661 (36.8%) 3,196,169 4,016 (0.0%) 4,012 (0.0%)

1536 2,537 (0.0%) 2,108 0 (0.0%) 0 (0.0%)

2048 20,782,686 (60.9%) 6,891,678 14,413,589 (42.2%) 14,411,618 (42.2%)

2432 2,685 (0.0%) 1,191 128 (0.0%) 128 (0.0%)

3072 65,765 (0.2%) 58,432 1,787 (0.0%) 1,787 (0.0%)

4096 391,123 (1.1%) 218,334 259,898 (0.8%) 259,830 (0.8%)

8192 2,172 (0.0%) 971 481 (0.0%) 481 (0.0%)

RSA export 2,630,789 (7.7%)

Total 34,121,474 (100.0%) 14,680,782 (43.0%) 14,678,739 (43.0%)

We examined IPv4 scan results for HTTPS on port 443 performed using
Zmap [17] by the University of Michigan which we accessed via Scans.io and the
Censys scan data search interface developed by Durumeric et al. [14]. Table 2
summarizes scans from August 23 and September 1, 2015.

Durumeric, Kasten, Bailey, and Halderman [16] examined the HTTPS cer-
tificate infrastructure in 2013 using full IPv4 surveys and found 2,631 browser-
trusted certificates with key lengths of 512 bits or smaller, of which 16 were valid.
Heninger, Durumeric, Wustrow, and Halderman [20] performed a full IPv4 scan
of HTTPS in October 2011 with responses from 12.8 million hosts, and found
123,038 certificates (trusted and non-trusted) containing 512-bit RSA keys. Sim-
ilar to [20], we observe many repeated public keys.

5.3 Mail

Table 3 summarizes several Internet-wide scans targeting SMTP, IMAPS, and
POP3S. The scans were performed by the University of Michigan using Zmap
between August 23, 2015, and September 3, 2015.

Table 3. Mail protocol key lengths.

Port Handshake RSA EXPORT 512-bit certificate key

SMTP 25 4,821,615 1,483,955 (30.8%) 64 (0%)

IMAPS 993 4,468,577 561,201 (12.6%) 102 (0%)

POP3S 995 4,281,494 558,012 (13.0%) 115 (0%)

We used the Censys scan database interface provided by [14] to analyze
the data. While only a few hundred few mail servers served TLS certificates
containing 512-bit RSA public keys, 13% of IMAPS and POP3S servers and 30%

334 L. Valenta et al.

of SMTP servers supported RSA EXPORT cipher suites with 512-bit ephemeral
RSA, meaning that unpatched clients are vulnerable to the FREAK downgrade
attack by an adversary with the ability to quickly factor a 512-bit RSA key.

We also examined DKIM public keys. DomainKeys Identified Mail [2] is
a public key infrastructure intended to prevent email spoofing. Mail providers
attach digital signatures to outgoing mail, which recipients can verify using pub-
lic keys published in a DNS text record.

Table 4. DKIM key sizes.

Length Keys
4096 5 (0.0%)
2048 64 (0.5%)
1028 1 (0.0%)
1024 10,726 (92.2%)
768 126 (1.1%)
512 103 (0.9%)
384 20 (0.2%)
128 1 (0.0%)
Parse error 591 (5.1%)
Total 11,637

We gathered DKIM public keys from the
Rapid7 DNS dataset. However, the published
dataset had lowercased the base64-encoded key
entries, so we performed DNS lookups on the
11,600 domains containing DKIM records our-
selves on September 4, 2015. We made a best-
effort attempt to parse the records, but 5% of the
responses contained a key that was malformed or
truncated and could not be parsed. Of the remain-
der, 124 domains used 512-bit keys or smaller,
including one that used a 128-bit RSA public key.
We were able to factor this key in less than a sec-
ond on a laptop and verify that it is, in fact, a
very short RSA public key. Table 4 summarizes the
distribution.

Durumeric et al. [15] surveyed cryptographic failures in email protocols using
Internet-wide scans and data from Google. They examine DKIM use in April
2015 and discovered that 83% of mail received by Gmail contained a DKIM
signature, but of these, 6% failed to validate. Of these failures, 15% were due to
a key size of less than 1024 bits, and 63% were due to other errors.

5.4 IPsec

Table 5. IPsec VPN certifi-
cate keys

Length Keys
4096 37 (0.8%)
3072 1 (0.0%)
2048 2,257 (51.3%)
1024 1,804 (41.0%)
768 1 (0.0%)
512 69 (1.6%)
Parse error 234 (5.3%)
Total 4,403 (100%)

We conducted two Zmap scans of the full IPv4
space to survey key sizes in use by IPsec VPN
implementations that use RSA signatures for iden-
tity validation during server-client handshakes. An
adversary who compromised the private keys for
one of these certificates could mount a man-in-the-
middle attack (Table 5).

Our Zmap scans targeted IKEv1 aggressive
mode [19], which allows the server to send a cer-
tificate after a only a single message is received.
The messages we sent contained proposals for
DES, 3DES, AES-128, and AES-256 each with
both SHA1 and MD5. Our first scan offered a key

exchange using Oakley group 2 (a 1024-bit Diffie-Hellman group) and elicited
certificates from 4% of the servers that accepted our message. Our second scan
offered Oakley group 1 (a 768-bit Diffie-Hellman group) and received responses

Factoring as a Service 335

from 0.2% of hosts. Of the non-responses from both scans, 71% of the servers
responded indicating that they did not support our combination of aggressive
mode with our chosen parameters, 16% rejected our connection for being unau-
thorized (not on a whitelist), and the remaining 11% returned other errors.

5.5 SSH

Table 6. SSH host key lengths.

RSA size Hosts Distinct
512 508 (0.0%) 316
768 2,972 (0.0%) 2,419
784 3,119 (0.0%) 223
1020 774 (0.0%) 572
1024 296,229 (4.4%) 91,788
1040 2,786,574 (41.3%) 1,407,922
1536 639 (0.0%) 536
2048 3,632,865 (53.9%) 1,752,406
2064 1,612 (0.0%) 957
4096 15,235 (0.2%) 1,269
RSA Total 6,741,352 3,258,742
DSA 692,011 421,944
ECDSA 2,192 2,192

SSH hosts authenticate themselves
to the client by signing the proto-
col handshake with their public host
key. Clients match the host key to a
stored trusted fingerprint. An adver-
sary who is able to compromise the
private key for an SSH host key can
perform an active man-in-the-middle
attack.

Table 6 summarizes host key sizes
collected by a Zmap scan of SSH
hosts on port 22 mimicking OpenSSH
6.6.1p1. The data was collected in
April 2015 by Adrian et al. [1], who
provided it to us. A very large num-
ber of hosts used 1040-bit keys; these
hosts had banners identifying them
as using Dropbear, a lightweight SSH implementation aimed at embedded
devices. Heninger, Durumeric, Wustrow, and Halderman [20] performed a full
IPv4 scan of SSH public keys in February 2012 offering only Diffie-Hellman
Group 1 key exchange. Of 10 million responses, they reported that 8,459 used
512-bit RSA host keys and observed many repeated host keys.

Clients can also use public keys to authenticate themselves to a server. An
adversary who is able to compromise the private key for a client SSH authentica-
tion key can access the server by logging in as the client. Ben Cox [11] collected
1,376,262 SSH public keys that had been uploaded to GitHub by users to authen-
ticate themselves to the service between December 2014 and January 2015 by
using GitHub’s public API. He collected 1,205,330 RSA public keys, 27,683 DSA
public keys, and 1,060 ECDSA public keys. Of the RSA public keys, 2 had 256-bit
length, 3 had 512-bit length, and 28 had 768-bit length.

5.6 PGP

PGP implements encryption and digital signatures on email or files. RSA public
keys can be used for both encryption and signatures. PGP uses a public “web
of trust” model: users can distribute their public keys along with signatures
attesting trust relationships via a public network of keyservers. An adversary
who compromises a PGP public key could use it to impersonate a user with a
digital signature or decrypt content encrypted to that user.

336 L. Valenta et al.

Fig. 5. PGP RSA public key lengths by reported creation date.

We downloaded a PGP keyserver bootstrap dataset from keyserver.borgnet.
us on October 4, 2015. It contained 4.9 million public keys from 3 million users.
Of these, 1.6 million were RSA, 1.7 million were DSA, 1.7 million were ElGamal,
398 were ECDH, 158 were EdDSA, and 513 were ECDSA. 4,688 512-bit RSA
keys were present in the dataset; 123 of them listed a creation date in 2015.
Figure 5 shows the shift to longer RSA key lengths over time.

6 Conclusions

512-bit RSA has been known to be insecure for at least fifteen years, but common
knowledge of precisely how insecure has perhaps not kept pace with modern
technology. We build a system capable of factoring a 512-bit RSA key in under
four hours. We then measure the impact of such a system by surveying the
incidence of 512-bit RSA in modern cryptographic infrastructure, and find a
long tail of too-short public keys and export-grade cipher suites still in use in
the wild. These numbers illustrate the challenges of keeping an aging Internet
infrastructure up to date with even decades-old advances in cryptanalysis.

Acknowledgements. We thank Daniel Bernstein, Tanja Lange, Pierrick Gaudry,
Emmanuel Thomé, and Paul Zimmermann for helpful comments and discussion. Nicole
Limtiaco, Toma Pigli, Zachary Ives, and Sudarshan Muralidhar contributed to early
versions of this project. We thank Osman Surkatty for help with Amazon services.
We are grateful to Zakir Durumeric, Roland van Rijswijk-Deij, and Ryan Castellucci
for providing data. We thank Ian Goldberg for suggesting additional references [21]
and Lionel Debroux for a correction. This work is based upon work supported by the
National Science Foundation under grant no. CNS-1408734, a gift from Cisco, and an
AWS Research Education grant.

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman,
J.A., Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wus-
trow, E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: how
Diffie-Hellman fails in practice. In: 22nd ACM Conference on Computer and Com-
munications Security (CCS 2015) (2015)

http://keyserver.borgnet.us
http://keyserver.borgnet.us

Factoring as a Service 337

2. Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J., Thomas, M.:
DomainKeys identified mail (DKIM) signatures (2007). http://www.ietf.org/rfc/
rfc6376.txt

3. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS security introduc-
tion and requirements. RFC 4033, Internet Society, March 2005. http://www.ietf.
org/rfc/rfc4033.txt

4. Auble, D., Jette, M., et al.: Slurm documentation. http://slurm.schedmd.com/.
Accessed 19 Sept 2015

5. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: FREAK: Factoring RSA export keys
(2015). https://www.smacktls.com/#freak

6. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.Y., Zinzindohoue, J.K.: A messy state of the union: taming the
composite state machines of TLS. In: IEEE Symposium on Security and Privacy
(2015)

7. Bureau of Industry and Security: Export administration regulations (2015). http://
www.bis.doc.gov/index.php/regulations/export-administration-regulations-ear

8. Cavallar, S., et al.: Factorization of a 512-Bit RSA modulus. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 1–18. Springer, Heidelberg (2000).
doi:10.1007/3-540-45539-6 1

9. Childers, G.: NFS@home. http://escatter11.fullerton.edu/nfs/
10. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block

Wiedemann algorithm. Math. Comput. 62(205), 333–350 (1994)
11. Cox, B.: Auditing GitHub users SSH key quality. https://blog.benjojo.co.uk/post/

auditing-github-users-keyscollected
12. Crandall, R., Pomerance, C.B.: Prime Numbers: A Computational Perspective,

vol. 182. Springer Science & Business Media, New York (2006)
13. DeHaan, M.: Ansible. http://www.ansible.com
14. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A search

engine backed by Internet-wide scanning. In: Proceedings of the 22nd ACM Con-
ference on Computer and Communications Security, October 2015

15. Durumeric, Z., Adrian, D., Mirian, A., Kasten, J., Bursztein, E., Lidzborski, N.,
Thomas, K., Eranti, V., Bailey, M., Halderman, J.A.: Neither snow nor rain nor
MITM... an empirical analysis of email delivery security. In: Proceedings of Internet
Measurement Conference (IMC 2015) (2015)

16. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the HTTPS
certificate ecosystem. In: Proceedings of the 13th Internet Measurement Confer-
ence, October 2013

17. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast Internet-wide scanning
and its security applications. In: Proceedings of the 22nd USENIX Security Sym-
posium, August 2013

18. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-30218-6 19

19. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). RFC 2409, RFC Editor,
November 1998. http://www.rfc-editor.org/rfc/rfc2409.txt

20. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: Proceedings of the
21st USENIX Security Symposium, August 2012

http://www.ietf.org/rfc/rfc6376.txt
http://www.ietf.org/rfc/rfc6376.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4033.txt
http://slurm.schedmd.com/
https://www.smacktls.com/#freak
http://www.bis.doc.gov/index.php/regulations/export-administration-regulations-ear
http://www.bis.doc.gov/index.php/regulations/export-administration-regulations-ear
http://dx.doi.org/10.1007/3-540-45539-6_1
http://escatter11.fullerton.edu/nfs/
https://blog.benjojo.co.uk/post/auditing-github-users-keyscollected
https://blog.benjojo.co.uk/post/auditing-github-users-keyscollected
http://www.ansible.com
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://www.rfc-editor.org/rfc/rfc2409.txt

338 L. Valenta et al.

21. Hughes, E.: How to give a math lecture at a party (2000). https://web.archive.
org/web/20010222192642/http://www.xent.com/FoRK-archive/oct00/0429.html

22. Kleinjung, T., et al.: Factorization of a 768-Bit RSA modulus. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 18

23. Kleinjung, T., Lenstra, A.K., Page, D., Smart, N.P.: Using the cloud to determine
key strengths. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol.
7668, pp. 17–39. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34931-7 3

24. Kolkman, O.M., Mekking, W.M., Gieben, R.M.: DNSSEC operational practices,
Version 2. RFC 6781, Internet Society, December 2012. http://www.ietf.org/rfc/
rfc6781.txt

25. Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The number field
sieve. In: Lenstra, A.K., Lenstra, H.W. (eds.) The development of the number
field sieve. LNM, vol. 1554, pp. 11–42. Springer, Heidelberg (1993). doi:10.1007/
BFb0091537

26. Monico, C.: GGNFS. http://www.math.ttu.edu/∼cmonico/software/ggnfs/
27. Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2).

In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp.
106–120. Springer, Heidelberg (1995). doi:10.1007/3-540-49264-X 9

28. Papadopoulos, J.: Msieve. http://www.boo.net/∼jasonp/qs.html
29. Paterson, K.G., Poettering, B., Schuldt, J.C.N.: Big bias hunting in Amazonia:

large-scale computation and exploitation of RC4 biases (invited paper). In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 398–419. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 21

30. Pomerance, C.: A tale of two sieves. Not. Am. Math. Soc. (1996). http://www.
ams.org/notices/199612/pomerance.pdf

31. van Rijswijk-Deij, R., Jonker, M., Sperotto, A., Pras, A.: The Internet of names:
a DNS big dataset. SIGCOMM Comput. Commun. Rev. 45(5), 91–92 (2015)

32. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

33. Smith, D.: All TI signing keys factored, September 2009. http://www.ticalc.org/
archives/news/articles/14/145/145273.html

34. Team, T.C.D.: CADO-NFS, an implementation of the number field sieve algorithm
(2015). http://cado-nfs.gforge.inria.fr/

35. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: Simple Linux Utility for Resource
Management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). doi:10.1007/10968987 3

36. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, vol. 10, p. 10 (2010)

37. Zetter, K.: How a Google headhunter’s e-mail unraveled a massive net security
hole. http://www.wired.com/2012/10/dkim-vulnerability-widespread/

https://web.archive.org/web/20010222192642/http://www.xent.com/FoRK-archive/oct00/0429.html
https://web.archive.org/web/20010222192642/http://www.xent.com/FoRK-archive/oct00/0429.html
http://dx.doi.org/10.1007/978-3-642-14623-7_18
http://dx.doi.org/10.1007/978-3-642-14623-7_18
http://dx.doi.org/10.1007/978-3-642-34931-7_3
http://www.ietf.org/rfc/rfc6781.txt
http://www.ietf.org/rfc/rfc6781.txt
http://dx.doi.org/10.1007/BFb0091537
http://dx.doi.org/10.1007/BFb0091537
http://www.math.ttu.edu/~cmonico/software/ggnfs/
http://dx.doi.org/10.1007/3-540-49264-X_9
http://www.boo.net/~jasonp/qs.html
http://dx.doi.org/10.1007/978-3-662-45611-8_21
http://www.ams.org/notices/199612/pomerance.pdf
http://www.ams.org/notices/199612/pomerance.pdf
http://www.ticalc.org/archives/news/articles/14/145/145273.html
http://www.ticalc.org/archives/news/articles/14/145/145273.html
http://cado-nfs.gforge.inria.fr/
http://dx.doi.org/10.1007/10968987_3
http://www.wired.com/2012/10/dkim-vulnerability-widespread/

The Self-blindable U-Prove Scheme from FC’14
Is Forgeable (Short Paper)

Eric Verheul1, Sietse Ringers2(B), and Jaap-Henk Hoepman1

1 Radboud University, Nijmegen, The Netherlands
{e.verheul,jhh}@cs.ru.nl

2 Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, Groningen, The Netherlands

s.ringers@rug.nl

Abstract. Recently an unlinkable version of the U-Prove attribute-
based credential scheme was proposed at Financial Crypto’14 [9]. Unfor-
tunately, the new scheme is forgeable: if sufficiently many users work
together then they can construct new credentials, containing any set of
attributes of their choice, without any involvement of the issuer. In this
note we show how they can achieve this and we point out the error in
the unforgeability proof.

1 Introduction

Attribute-based credential schemes [1,3] provide a very secure and privacy-
friendly form of identity management. In these schemes, users are granted by
an issuer a credential that contains several attributes (generally elements of
Zq := Z/qZ for some number q), and when the user shows his credential to a
verifier using a ShowCredential protocol, he can choose to reveal some of these
while keeping the other ones hidden from the verifier. Some of these schemes
offer anonymity in the form of multi-show unlinkability : that is, when a verifier
runs the ShowCredential protocol twice and both times the same attributes with
the same values were disclosed to it, then it cannot tell whether it was shown
one credential twice, or two different credentials that happened to disclose the
same attributes.

A well-known and very efficient attribute-based credential scheme is U-Prove
[6,10]. However, this scheme offers no multi-show unlinkability. In an attempt to
fix this, L. Hanzlik and K. Kluczniak proposed in [9], and presented at Financial
Crypto 2014, a new scheme that is based on U-Prove but uses a different signa-
ture scheme. This signature scheme is based on the self-blindable construction
by Verheul [11], and allows a credential to be blinded; i.e., modified into a new
valid credential over the same attributes. Although [9] does contain an argument
for the unforgeability of their scheme, we show here that this argument contains
an error, and that the proposed construction is forgeable, in the sense that if suf-
ficiently many users collude then they can construct new credentials containing
arbitrary attributes of their choice, without involvement of the issuer.
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 339–345, 2017.
DOI: 10.1007/978-3-662-54970-4 20

340 E. Verheul et al.

2 The Credential Scheme

Hanzlik and Kluczniak [9] present their blindable U-Prove scheme as an extension
of the original U-Prove scheme, in the following sense: a self-blindable signature
(based on [11]) is added to a U-Prove credential. When showing a credential,
the user can then choose to either show his credential using the original linkable
U-Prove ShowCredential protocol, or using a new protocol that uses the new
self-blindable signature and should offer unlinkability. Since we are concerned
only with the forgeability of the self-blindable construction, our description of
the credential scheme will omit details that are relevant only to the original
construction.

The setup is as follows. q is a prime number of length k, and e : G1×G2 → GT

is a bilinear pairing of Type 2 (see [8], [5, Ch. I, X]), where q is the order of G1,
G2 and GT . The issuer’s public key is

(q, e, g0, . . . , gn, p, p′, p0, p1) ,

where

– g0, . . . , gn are random generators of G1,
– p and p′ are random generators of G2,
– p0 = (p′)z,
– p1 = pf .

The tuple (f, z) ∈ Z
2
q is the issuer’s secret key.

A credential consists of the tuple

((x1, . . . , xn), (h, h2, h3, h4, α, b1, b2)) ,

where

– x1, . . . , xn ∈ Zq are the attributes,
– α, b0, b1 ∈ Zq, chosen by the user during issuing of the credential,
– h = (g0gx1

1 · · · gxn
n)α,

– h2 = hf ,
– h3 = hb1hb2

2 ,
– h4 = hz

3 = (hb1hb2
2)z.

The validity of the credential can be checked by

e(h, p1)
?= e(h2, p) and e(h3, p0)

?= e(h4, p
′) .

Such a credential can be blinded into a new one as follows. Take random k, � ∈ Z
∗
q ,

and set (h, h2, h3, h4) = (hk, hk
2 , h

k�
3 , hk�

4). Then

((x1, . . . , xn), (h, h2, h3, h4, αk, b1�, b2�))

is a new, valid credential over the same attributes. In [9] a ShowCredential proto-
col for these credential is provided, in which the credentials are blinded as above.
The protocol should offer unlinkability but it is not proven that it does (and we
have not checked this).

The Self-blindable U-Prove Scheme from FC’14 Is Forgeable 341

3 Forging New Credentials

3.1 Constructing Signatures on the Elements gi

We first show that if sufficiently many users work together, then for each i they
can compute a tuple gf

i , gz
i , gfz

i , even though f and z are private to the issuer.
Using these tuples they can easily create new valid credentials over any set of
attributes of their choice. Since this will involve many credentials, we will write
the elements from the credential of user j with an extra subscript j:

((x1,j , . . . , xn,j), (hj , h2,j , h3,j , h4,j , αj , b1,j , b2,j)) .

The element hj is of the form

hj = (g0g
x1,j
1 · · · gxn,j

n)αj .

By blinding the credential with k = α−1
j , � = 1 (i.e., we raise all group elements of

the credential to the power α−1
j ; note that these numbers are known to the users),

we can remove the number α from our considerations, so we will henceforth
simply write

hj = g0g
x1,j
1 · · · gxn,j

n .

Let us write g̃i = gf
i . Then we can write h3,j as

h3,j = h
b1,j
j h

b2,j
2,j = g

b1,j
0 g̃

b2,j
0 g

b1,jx1,j
1 g̃

b2,jx1,j
1 · · · gb1,jxn,j

n g̃b2,jxn,j
n .

Setting x0,j = 1 and writing yi,j = b1,jxi,j and ỹi,j = b2,jxi,j , we get

h3,j = g
y0,j
0 g̃

ỹ0,j
0 g

y1,j
1 g̃

ỹ1,j
1 · · · gyn,j

n g̃ỹn,j
n , (1)

where all numbers yi,j and ỹi,j are known to the user.
We know that h4,j = hz

3,j , i.e., the discrete log of h4,j with respect to h3,j is
z. If we raise h3,j to some power and we simultaneously raise h4,j to the same
power, then the resulting two elements will still have z as discrete log. The same
holds if we multiply two elements h3,j and h3,j′ together. In the remainder of
this section we will take a number of powers and products of the elements h3,j ;
whenever we write such a power or product, the same power or product for h4,j

is implied.
Observe that when raising h3,1 to the power 1/ỹn,1 we obtain a product of

the generators gi to certain exponents, where g̃n now has exponent 1. Thus two
users 1 and 2 can work together to form the element h

1/ỹn,1
3,1

/

h
1/ỹn,2
3,2 , which is of

the form

h
1/ỹn,1
3,1

h
1/ỹn,2
3,2

= gv0
0 g̃ṽ0

0 gv1
1 g̃ṽ1

1 · · · gvn
n ,

342 E. Verheul et al.

with vi = yi,1/yn,1 − yi,2/yn,2, and similar for ṽi. Note that the right hand
side no longer contains g̃n. If two more users do the same and obtain a sim-
ilar expression, then the four users can collectively remove gn in exactly the
same fashion, resulting in an expression as above containing only the elements
g0, g̃0, . . . , gn−1, g̃n−1.

Continuing in this fashion, 22n+1 users can find an element in G1 that is
just g0 raised to some power which is known and can easily be removed. If they
apply all powers and products in parallel to the corresponding h4,j , then they
also obtain gz

0 . Similarly, they can obtain g̃0 = gf
0 , and g̃z

0 = gfz
0 . In fact, they

can do this for all elements gi, g̃i, resulting finally in expressions for gf
i , gz

i and
gfz

i for all i. Using these elements, anyone can calculate a valid credential over
any set of attributes as explained below. The amount of users that need to work
together to achieve this (22n+1) is exponential in n (the amount of attributes of
the system) but not in the security parameter. Therefore, this can be done in
polynomial time.

Remark 1. An alternative explanation for why this is possible is as follows. Sup-
pose we are given m valid credentials, with h3,j of credential j given by (1).
Notice that the operations we apply to the elements h3,j and h4,j above corre-
spond exactly to taking linear combinations of the h3,j and h4,j (although linear
combinations are usually written additively instead of multiplicatively). So if we
consider the elements gi, g̃i occurring in h3,j as unknowns, then we can inter-
pret Eq. (1) as one equation in 2n + 2 unknowns. Thus if we have m := 2n + 2
credentials, then we obtain 2n + 2 equations in as many unknowns.

Using linear algebra over the field Zq = GF(q), then, we can solve this system
of linear equations to the gi, g̃i, g

fz
i = g̃z

i , as long as the square matrix of the
coefficients,

M :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

y0,1 · · · y0,2n+2

ỹ0,1 · · · ỹ0,2n+2

...
. . .

...
yn,1 · · · yn,2n+2

ỹn,1 · · · ỹn,2n+2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

is invertible (i.e., its determinant detM is unequal to 0). Since the numbers
yi,j , ỹi,j are under our control in a chosen-message attack, this should be easy
to achieve. If we write mi,j for the j-th entry of the i-th row of the inverse M−1

of M , we obtain

gi =
2n+2
∏

j=1

h
m2i+1,j
3,j , g̃i =

2n+2
∏

j=1

h
m2i+2,j
3,j ,

gz
i =

2n+2
∏

j=1

h
m2i+1,j
4,j , g̃z

i =
2n+2
∏

j=1

h
m2i+2,j
4,j .

The Self-blindable U-Prove Scheme from FC’14 Is Forgeable 343

This also shows that the scheme is already completely forgeable (in the sense
that new credentials with arbitrary attributes can be computed) with just 2n+2
collaborating users, instead of 22n+1.

3.2 Constructing a Forged Credential

Using the elements gi, g
f
i , gz

i , gfz
i constructed above, a new credential with

attributes x1, . . . , xn may be constructed as follows. Choose b1, b2 ∈R Zq ran-
domly, and set

h = g0g
x1
1 · · · gxn

n ,

h2 = gf
0 (gf

1)x1 · · · (gf
n)xn ,

h3 = gb1
0 (gf

0)b2gb1x1
1 (gf

1)b2x1 · · · gb1xn
n (gf

n)b2xn ,

h4 = (gz
0)

b1(gfz
0)b2(gz

1)
b1x1(gfz

1)b2x1 · · · (gz
n)b1xn(gfz

n)b2xn .

Then

h2 = hf , h3 = hb1hb2
2 , h4 = (hb1hb2

2)z

as required.

4 The Problem in the Unforgeability Argument

An argument for unforgeability is given in [9] in Sect. 4, “Security Analysis”.
The argument is based on the appendix from [11], in which it is argued that
credentials of the form

h, h2 = hf , h4 = (hb1hb2
2)z (2)

are unforgeable. Here, as above, f and z are the issuer’s secret key, and the
numbers b1, b2 are part of the credential (i.e., known to the user). However, the
difference with Verheul’s system is that there h is randomly chosen from G1,
and in particular, no participant of the system knows the discrete log of h with
respect to any other element from G1, or any DL-representation of h (i.e., an
expression of h in terms of powers of g0, . . . , gn, such as (3)). By contrast, in
Hanzlik and Kluczniak’s U-Prove scheme the user knows numbers α, x1, . . . , xn

such that

h = (g0gx1
1 · · · gxn

n)α , (3)

where the elements g0, . . . , gn are the same for all users. In this case, the argu-
ment from [11] does not apply, so that no argument can be based on it.

In addition, we wish to point out that the argument from the appendix in [11]
was meant as a sketch, and in particular, there is the following subtlety. It is

344 E. Verheul et al.

argued in the appendix that if an adversary A manages to forge credentials of
the form (2), i.e.

(h, h2, h4, b1, b2) = A
(

(hj , h2,j , h4,j , b1,j , b2,j)j=1,...,m

)

,

where the output (h, h2, h4, b1, b2) is valid (i.e., satisfying (2)), then either there
must exist a j and numbers k, � ∈ Zq such that

(h, h2, h4, b1, b2) = (hk
j , hk

2,j , h
k�
4,j , b1,j�, b2,j�)

or the adversary A can be used to solve discrete logarithms in G1. However,
the argument mentions certain “transformation factors” which are numbers like
k, � from Zq, and the algorithm sketched by [11] that uses the adversary A to
compute discrete logarithms would need to know these numbers in order to be
able to work. However, it is not clear how to obtain these transformation factors
from the adversary A, or even if A is aware of them. We believe, however,
that they can be extracted from the adversary by an extension of the Known
Exponent Assumption (see [7], where this assumption was introduced, and for
example [2,4]).

References

1. Alpár, G., Hoepman, J., Siljee, J.: The identity crisis. security, privacy and usability
issues in identity management. CoRR abs/1101.0427 (2011). http://arxiv.org/abs/
1101.0427

2. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 17

3. Bichsel, P., Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Krenn, S., Krontiris,
I., Lehmann, A., Neven, G., Nielsen, J.D., Paquin, C., Preiss, F.S., Rannenberg,
K., Sabouri, A., Stausholm, M.: D2.2 architecture for attribute-based credential
technologies. Technical report, final version, ABC4Trust (2014). https://abc4trust.
eu/download/Deliverable D2.2.pdf

4. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. IACR Cryptology ePrint Archive 2014
(2014). https://eprint.iacr.org/2014/580

5. Blake, I.F., Seroussi, G., Smart, N.P. (eds.): Advances in Elliptic Curve Cryptog-
raphy. Cambridge University Press, Cambridge (2005)

6. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge (2000)

7. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 36

8. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

9. Hanzlik, L., Kluczniak, K.: A short paper on how to improve U-Prove using self-
blindable certificates. In: Christin, N., Safavi-Naini, R. (eds.) Financial Cryptog-
raphy and Data Security. LNCS, pp. 273–282. Springer, Heidelberg (2014)

http://arxiv.org/abs/1101.0427
http://arxiv.org/abs/1101.0427
http://dx.doi.org/10.1007/978-3-540-28628-8_17
https://abc4trust.eu/download/Deliverable_D2.2.pdf
https://abc4trust.eu/download/Deliverable_D2.2.pdf
https://eprint.iacr.org/2014/580
http://dx.doi.org/10.1007/3-540-46766-1_36

The Self-blindable U-Prove Scheme from FC’14 Is Forgeable 345

10. Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1.1 (revi-
sion 3), December 2013. http://research.microsoft.com/apps/pubs/default.aspx?
id=166969, released under the Open Specification Promise

11. Verheul, E.R.: Self-blindable credential certificates from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg
(2001). doi:10.1007/3-540-45682-1 31

http://research.microsoft.com/apps/pubs/default.aspx?id=166969
http://research.microsoft.com/apps/pubs/default.aspx?id=166969
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://dx.doi.org/10.1007/3-540-45682-1_31

A Sound for a Sound: Mitigating Acoustic
Side Channel Attacks on Password Keystrokes

with Active Sounds

S. Abhishek Anand(B) and Nitesh Saxena

University of Alabama at Birmingham, Birmingham, AL 35294, USA
{anandab,saxena}@cis.uab.edu

Abstract. Keyboard acoustic side channel attacks have been shown to
utilize the audio leakage from typing on the keyboard to infer the typed
words up to a certain degree of accuracy. Researchers have continued to
improve upon the accuracy of such attacks by employing different tech-
niques and attack vectors such as feature extraction and classification,
keyboard geometry and triangulation.

While research is still ongoing towards further improving acoustic
side channel attacks, much work has been lacking in building a working
defense mechanism against such class of attacks. In this paper, we set
out to propose a practical defense mechanism against keyboard acoustic
attacks specifically on password typing and test its performance against
several attack vectors. Our defense involves the use of various background
sounds to mask the audio leakage from the keyboard thereby preventing
the side channel attacks from gaining usable information about the typed
password. The background sounds are generated by the device that is
used to input the passwords. We also evaluate the usability of our app-
roach and show that the addition of background sounds does not hamper
users’ capability to input passwords.

1 Introduction

Passwords constitute the primary means of user authentication for accessing
various online services currently. They are used as a protective measure to limit
access to user sensitive data that may include personal details, banking cre-
dentials, and restricted work data. They are also used for logging into personal
computing systems and website accounts. Given the extensive use of passwords,
it is important to pay attention to different strategies attackers may exploit to
compromise passwords. Indeed, the security of passwords has often been ques-
tioned [1,11,14], and shown to be weak against a variety of attacks such as brute
force attacks and keyloggers, as well as side channel attacks like timing attacks
[13], acoustic side channel attacks [2–4,6,8,16], vibrational side channel attacks
[10] and electromagnetic radiations [7].

In this paper, we focus on the vulnerability of the password entry mechanism
on keyboards against acoustic side channel attacks, and propose a viable defense
mechanism to mitigate it. Keyboard acoustic side channel attacks belong to a
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 346–364, 2017.
DOI: 10.1007/978-3-662-54970-4 21

Mitigating Acoustic Side Channel Attacks on Password Keystrokes 347

class of attacks known as side channel attacks that exploit the physical imple-
mentation of the deployed security measure rather than using brute force method
to overcome it or an underlying theoretical weakness in the system that makes
it vulnerable. A traditional brute force attack would try to guess the password
by trying all possible permutations of alphabets, numbers and allowed special
characters for varying lengths. This attack may require extensive computational
power yet can be very easy to perform because people often tend to use bits
of personal information in the password and make an effort to keep it short
that makes it easy to memorize. A key logging attack tracks the keys being
pressed without the user knowing they are being monitored. They can be bun-
dled either as a malware like a trojan horse or can be a hardware artifact inside
the keyboard.

Side channel attacks, on the other hand, make it harder to defend against
as they utilize the implementation of the security algorithm rather than the
algorithm itself. For example, a timing attack [13] monitors the IP packets being
sent on the network and uses the time duration between successive keystrokes
during a user’s typing to infer the keys being pressed. A power monitoring attack
measures and profiles the power consumed during specific computations to derive
the secret information. An electromagnetic attack [7] depend upon the leaked
electromagnetic radiation from the system to deduce the password information.

Acoustic side channel attacks [2–4,6,8,16] record the sounds emanating from
the keyboard using microphones covertly while the user types the password.
Each key press emits a unique sound that makes it possible for the adversary to
identify it using its frequency features.1 While an acoustic side channel attack
may not fully recover the keystroke information, various statistical methods make
it possible to reconstruct the keystroke information from the partially recovered
information. Hidden Markov Models (HMM) and language based models have
been used extensively to reconstruct text from identified keystrokes.

Given the ubiquity of low-cost microphones and potential for almost invisible
audio monitoring, keyboard acoustic emanations attacks can now be considered a
realistic threat. While research is still ongoing towards further improving acoustic
side channel attacks, much work has been lacking in building a working defense
mechanism against such class of attacks.

Our Contributions: In this paper, we set out to propose a practical defense
mechanism against keyboard acoustic side channel attacks specifically on pass-
word typing and evaluate its performance against several attack vectors as well
its usability factors. The main contributions of this paper are summarized below.

1. Recreation of Prior Attacks: Before presenting our defense model, we first
recreated the keyboard acoustic side channel attack that serves to validate
the need for the defense. This also serves to reproduce the prior research
results in independent settings.

1 A similar concept is used in a vibrational side channel attack that measures the
surface vibrations using accelerometers when the key is pressed.

348 S.A. Anand and N. Saxena

2. Design and Implementation of the Defense: We build a viable defense sys-
tem that utilizes masking signals to mitigate keyboard acoustic side channel
attacks. The defense system is designed to be a part of the device that is the
source of acoustic leakage, which would be the keyboard in our case study.
The intuition behind our defense model is to actively cloak the acoustic leak-
age emanating from the keyboard with other sounds that would be playing
in the background.

3. Evaluation of Security: We evaluate the security of our defense system by
testing its ability to reduce the accuracy of the keyboard acoustic side channel
attack that we recreated in the initial step of our research by preventing the
adversary from gaining usable information about the typed password. Our
results show that a masking signal that combines white noise with sounds of
previously recorded keystrokes can effectively cloak the acoustic side channel.

4. Evaluation of Usability: While designing the defense model duly serves our
purpose of defeating keyboard acoustic side channel attacks, we also study
the usability of the proposed defense system. We show that the addition of
background sounds does not hamper users’ capability to input passwords
while mitigating the keyboard acoustic side channel attack.

2 Related Work

Acoustic side channel attacks have been a long studied topic in the field of secu-
rity research. Asonov and Agrawal [2] were the first researchers to demonstrate
the threat of side channel attacks using acoustic leakage from the keyboard. They
used the Fast Fourier Transform (FFT) features of the extracted keystroke as
an identifier and use a neural network to classify and recognize the keystrokes.
This process involved a training phase that used labeled data pair consisting of
a key and its corresponding feature, and a testing phase that took a feature as
an input and the output consisted of the closest matching key.

Zhuang et al. [16] extended the work of Asonov and Agrawal by using cep-
strum features, in particular Mel-Frequency Cepstrum Coefficients (MFCC) as
identifiers for the keystrokes and used unlabeled data in the training phase for
the neural network unlike Asonov and Agrawal. Berger et al. [4] used cross cor-
relation between the recorded keystroke signals and Euclidean distance between
frequency based features to classify and recognize the keystrokes. They then used
dictionary based attack to reconstruct the text from the recovered keystrokes.
Halevi and Saxena [8] combined the cross correlation information between the
two keystrokes signals and the frequency distance measure from the work done
by Berger et al. to create a new feature called time-frequency classification.
This new feature was used for identifying different keystrokes and then used for
password detection. They also studied the effect of various typing styles (hunt
and peck, and touch typing) on keystroke signal similarities and found out that
the signal similarity decreases with change in the typing style. These findings
showed that the effectiveness of a keyboard eavesdropping attack depends upon
the input data, the typing style and the detection technique used for the purpose.

Mitigating Acoustic Side Channel Attacks on Password Keystrokes 349

Fiona [6] presented a distance-time based triangulation attack that is able
to identify a keystroke by recording the keystroke with multiple microphones.
Due to fixed location of each key on the keyboard, the sound recorded by each
microphone arrives at a different time and the time delay for each keystroke can
be used to distinguish between the keystrokes.

3 Attack Background and Recreation

Keyboard acoustic emanations represent a class of attacks that exploit the audio
leakage from the system (keyboard) to gain useful information (typed input). In
this section, we first review the attack threat model and attack principles. We
then go on to recreate the attacks present in the literature, which serves as a
means to evaluate our defense mechanism. At last, we review the triangulation
attack.

3.1 Threat Model

The threat model is similar to the attack models studied in previous work [2–
4,6,8,16]. We assume that the adversary has access to the victim’s location
and implants a covert listening device on or near the victim’s keyboard. The
adversary can record the keystrokes entered by the victim, retrieve the recording
from the covert listening device and process it for information extraction at a
later time.

In this threat model, we assume that the user only employs lowercase let-
ters while typing on the keyboard. Also, we assume that attacker already has
possession of labeled audio samples for each of the alphabetical keys in a sim-
ilar typing style as the victim. We will expand on the influence of typing style
on the attack’s accuracy in the later sections. The attacker can also obtain the
samples by gaining access to the keyboard for a short duration and typing on
the keyboard to get the samples while recording them.

We only study random passwords as HMM and language-based models and
dictionary-based attacks have been shown effective against passwords containing
words from the dictionary. Also, random passwords are now gaining momentum
in everyday use. We keep the password length to 6 characters.

The final assumption in our threat model is that the attacker has access to
the user device and can try out the possible candidates for the passwords at
will. The attacker can try to check as many candidate passwords in a single time
duration or he may try it over multiple time duration as most authentication
systems place a limit over number of attempts.

3.2 Attack Foundations and Principles

In this paper, we focus on audio leakage from keyboards that occurs due to the
keys being pressed while typing. The audio signal from a key when pressed is
shown in Fig. 1. It has a characteristic press region and a release region that

350 S.A. Anand and N. Saxena

corresponds to the key being pushed and released by the finger. The observed
duration for a keystroke including the key press and release time is 100 ms that
is inline with previous works [2,16]. The key press region consists of two peaks:
touch peak and push peak. The touch peak refers to the finger touching the key
and the push peak occurs when the key hits the rubber pad beneath it, when
pressed by the finger. The release region contains only the release peak.

The key press and release regions can be used to extract features that would
be useful in keystroke recognition. Asonov and Agrawal [2] used the FFT features
from the touch peak and used a neural network to classify and recognize them.
Zhuang et al. [16] used the cepstrum features from the push peak and used HMM
based on English language.

Fig. 1. A single keystroke
signal

However, this method may not work well with
passwords that consist of random characters and
not dictionary words. Halevi and Saxena [8] time-
frequency classifier combined cross correlation value
of two signals and the distance between their FFT
features as a point in Euclidean plane and used the
distance from origin as the classification parameter.

3.3 Attack Modeling and Recreation

In order to showcase the effectiveness of our defense, we proceeded to construct
a potent acoustic side channel attack based upon the research described above.
The first step involved collecting keystroke samples involving straw man typing
and compare it against the samples acquired with hunt and peck typing style.

Keystroke Sample Collection: We recorded the keystroke sound for each
alphabetical key[A–Z] using both typing styles for a total of twenty samples
per key with a sampling frequency of 44.1 kHz. Straw man typing style involves
hitting the key at the same angle multiple times using the same finger. In hunt
and peck style, we use the same finger for key press but the angle at which the
finger hits the key is different for each hit.

Key Detection: To detect a keystroke, we calculate the FFT coefficient of the
signal with a window size of 441 samples and sum up the coefficient between the
frequency range 0.4–22 kHz. A threshold is used to determine a peak in key press
region and the area around the peak (around 20 ms) is taken out as key press
region. For determining the key release region, we repeat the procedure with a
smaller window size of 88 samples and a smaller area of 10 ms is extracted a key
release region.

Recognition Technique: Asonov and Agrawal [2] used FFT features along
with neural network for keystroke recognition. Zhuang et al. [16] used cepstrum
features (MFCC) in place of FFT to improve upon previous work. Berger et al.

Mitigating Acoustic Side Channel Attacks on Password Keystrokes 351

used cross correlation between signals for identifying keystrokes. Halevi and Sax-
ena [8] introduced time-frequency classification method that performed better
than other detection techniques when tested with different typing styles and
hence we decided to use this method for keystroke recognition.

Evaluation of the Dataset: We compared the hunt and peck dataset against
straw man dataset using both the push and release region for classifying the
keystrokes, and using only the push region. We found out that using only the
push region provided a better accuracy rate (17%) against using both the push
and release region (12%) for single character detection rate hence we used only
the push region of the keystroke for feature extraction in subsequent further
experiments.

After we chose the best possible technique that would form the basis our
attack, we started with collecting samples of password typing and test them
against our attack. The strength of a password depends upon its randomness
and its length. Since passwords based upon English language are susceptible to
language model based attacks, we only consider passwords containing random
letters. The length of the password was chosen to be six as it is the minimum
required size of passwords on most of the authentication systems. Due to ran-
domness in the password structure, the length of the password bears no relation
to the accuracy of the attack.

Zhuang et al. [16] discussed password stealing using MFCC and a keystroke
classifier but they did not include the effect of typing style in their experiments.
Halvei and Saxena [8] used hunt and peck style to type random passwords 6
characters long and tested them against the straw man type dataset using time-
frequency classification. They got a detection rate of 65% per character. In order
to improve their detection rate, they employed the best guesses search method
that creates a list of candidate keys as replacement for the detected keys. A
candidate key is defined as the key having the closest matching feature (minimum
time-frequency distance) with the given key. A list of best 5 candidate keys was
built for every key and was used to create a list of possible passwords by replacing
the key in question with a candidate key. This method increased the probability
of password detection to 88%.

3.4 Attack Against Password Typing

We used a different approach for password detection that only depends upon
number of collected samples of audio recordings. We collected some samples of
the audio recordings of a random password being typed and noted down the most
frequently occurring letter for each of the six positions. For example, in the first
column of Table 2 (included in the Appendix), none of the detected passwords are
a complete match to the original password “gkbxym” that was typed. However,
we noticed that for a sample size of 20 recordings of the same password being
typed, letter ‘g’ appears 6 times in our samples at the first position and hence
a very strong candidate to be the actual typed letter in that position. The final

352 S.A. Anand and N. Saxena

password after applying this technique on every position is “gkbcyw” and it is
incorrect in only two letters when compared to the original password “gkbxym”.

We tested 3 random passwords of 6-character length with a sample size of 20
and found out that the average accuracy rate for detecting the correct letter at
each position in the password was 66%. We find this detection rate to be high
enough to be deemed as a viable attack. The attack is computationally light as
it does not require a replacement list for each character and then producing an
exhaustive list of all possible passwords by replacing each letter in the detected
password. We also believe that given a big enough sample size, the attack may
even be able to fully decode the password.

3.5 Triangulation Attack

Triangulation attack [6] is an attack mechanism that uses multiple microphones
to record the keystrokes and computes the time of arrival at each microphone
for each keystroke. The time delay for the arrival of the keystroke signal at each
microphone is distinct for each keystroke due to the fixed location of the keys
on the keyboard. This leads to a unique constant distance of each key from each
microphone that can be used as an identifying feature for that key. However, this
method is not much accurate at detecting keys that are located in close proximity
to each other on the keyboard, hence other techniques like cross-correlation are
applied to overcome this shortcoming.

4 Overview of Our Defense

As shown in the earlier section, the acoustic emanations from keyboards present
a valid threat to user security and privacy. In order to mitigate this attack,
several measures have been conceptualized. Asonov et al. [2] proposed a sound-
free (lacking mechanical components) keyboard that would be an obvious choice
against such class of attacks. However, this solution is not feasible as it is not
inexpensive to design such keyboards and the users must get familiar with using
such keyboards. Another proposed solution was to use a homophonic mechanical
keyboard that produces similar sounds clicks for each key press. Yet, it is not
known if it is possible to construct such keyboards and how they will perform over
time given wear and tear. Another potential defense would be to sound-proof
the surroundings of the user to prevent acoustic leakage from the keyboard.
However, there exists many powerful microphones, such as parabolic and laser
microphones, that can overcome the sound proofing. A similar defense system
used by military, intelligence and security services is Sensitive Compartmented
Information Facility where sensitive information is confined to a secure facility
with limited access.

An alternative approach is to reduce the quality of the information that can
be extracted from the acoustic signal as suggested by Zhuang et al. [16] rather
than cutting off the acoustic leakage itself. The idea is to add some masking
noises that will distort the leaking signal enough so that it is almost impractical

Mitigating Acoustic Side Channel Attacks on Password Keystrokes 353

Fig. 2. In absence of masking signal

Fig. 3. In presence of masking signal

to extract any useful information from the distorted signal. As it can be seen, the
idea for using masking signal to mitigate keyboard acoustic side channel attacks
has been briefly touched upon in existing literature, but no prior work has been
done upon their feasibility (security and usability) in a real-world scenario to
the best of our knowledge. Hence, in this work, we will focus on the feasibility
of masking signals as a viable defense against keyboard acoustic emanations
especially when the typed input is passwords. The defense idea is portrayed
in Fig. 3.

Adding masking signal to the acoustic leakage signal poses a two-fold design
requirement: (1) the masking signal should be similar to the signal being masked
so that it is difficult to separate them out, and (2) the masking signal should
not have any degrading effect on the usability of the system (password typing)
as a whole.

5 Defense Design

The concept of using a masking signal to hide the intended signal is similar to
using jamming signal or interference in radio communication though the objec-
tive may be different in both scenarios. The purpose of using a jamming signal in
radio communication is to block the reception of the transmitted signal, in order
to prevent the receiving operator from decoding the signal. The jamming signal,
if set to same frequency, modulation and with same or more power than the
transmitted signal can override the original signal to the effect that it becomes
difficult to separate the two signals. An interference signal causes unintentional
distortion to the transmitted signal thereby degrading the quality of the trans-
mitted signal at the receiving operator.

Both of the above observations happen due to the phenomenon called wave
interference. Two waves when they meet in the same medium superpose to form

354 S.A. Anand and N. Saxena

a resultant wave. If the resultant wave has an amplitude higher than both the
parent waves, it is called constructive interference. If the amplitude is lower than
both the parents, it is referred to as destructive interference. At the meeting
point of the two waves, the total displacement equals the point-wise sum of the
displacement of individual waves.

In our defense design, we build a mechanism that emits the masking signal
while the victim is typing the password on the keyboard. By emanating the
masking signal at the same time as the keystroke sounds, we hope to interfere
with the keystroke sound and distort it to an extent that it becomes unfeasi-
ble for the attacker to gain any useful information about the typed data. As
explained above, any type of wave interference that takes place due to overlap-
ping of the masking signal with the emitted keystroke signal produces a new
wave pattern that has different frequency features than either of the original
signals. We incorporate this mechanism into the device of the victim’s system
since it will make it easier to detect the key press event on the keyboard thereby
triggering the defense mechanism. It also gives the victim, the control of the
defense mechanism so that it can be enabled or disabled as per victim’s choice.

As mentioned earlier, the choice of the masking signal is affected by two
factors: the similarity of the masking signal to the acoustic leakage signal and
the usability of such a signal in a real-world scenario. We discuss both the factors
below (and evaluate them in the following two sections):

Similarity of the Signals: The masking signal should be closely similar to
the signal it is trying to hide. The reason behind this requirement is to make it
harder for the adversary to separate the two signals as the signals are too close
to each other. In Fig. 2, the acoustic leakage signal is in clear and is picked up
by the adversary for signal processing that yields the keystroke features (F).
The set of obtained features are classified and recognized that yields the text
being typed. In the presence of the masking signal, in contrast, the adversary
receives the combined distorted signal (Z), instead of just the acoustic leakage
signal, which is the sum of the acoustic leakage signal and the masking signal.
When this signal is picked up for processing by the adversary, the set of features
obtained (F ′), are not the same as the features from the acoustic signal (F).
This is due to overlapping between the acoustic leakage signal and the masking
signal that produces the wave interference phenomenon as explained previously.

For separation of two signals (A and B) from the combined signal (S), an
adversary can filter out one of the signals if the signal is characteristically differ-
ing from the other in the frequency spectrum. Suppose signal A is in frequency
range 4–6 kHz and signal B is in the range 5–12 kHz. Signal A can be filtered
out from the combined signal C (= A + B), if the adversary only considers the
frequencies in the range 6–12 kHz. The loss of frequency range (5–6 kHz) will not
affect the adversary’s goal as the adversary can still use the remaining frequency
range (6–12 kHz) for the purpose of training, classification and recognition. Sim-
ilar argument can be made for retaining signal A and discarding signal B.

Mitigating Acoustic Side Channel Attacks on Password Keystrokes 355

Another method for separating the signals from each other is to use signal
inversion. Suppose the adversary records a signal S that is the sum of two sep-
arate signals A and B. If the adversary has the knowledge of signal B, it can
invert signal B and add it back to signal S. The addition of the inverted signal
of B cancels out the original signal B leaving us with only signal A.

As demonstrated above, signal inversion is the main principle behind modern
noise cancellation technology. However, it requires a prior knowledge of the signal
to be removed. If the signal has a recognizable pattern, modern techniques exist
in audio processing tools (e.g., Audacity) that can perform noise reduction using
the provided pattern on the input signal. However, in our defense, the masking
signal is a random signal picked by the device subject to the attack, which will
be unpredictable to the attacker.

Usability of the Masking Signal: While there exist myriads of choices that
can be used as masking signals, their usability should also be evaluated before
adopting them in our defense. Any signal that lies in the same frequency range
as the one we are trying to hide, can be used as a masking signal. However, such
a signal should not be annoying or distracting to the user. The power of the
signal also plays a role in usability as more the power of the signal, the better it
will be able to override the keyboard acoustic leakage yet it can also affect the
usability to the extent that the user may find the masking signal distracting or
unbearable.

6 Evaluating the Security of the Defense

This section details the experiments carried to explore the feasibility of masking
signals against keyboard acoustic side channel attacks. We test three types of
masking signals: (1) white noise, (2) fake keystrokes, and (3) combined signal
(one combining white noise and fake keystrokes). The masking signal is designed
to play in the background while the user types on the keyboard. This ensures
that the keystrokes sounds and the masking signal are emitted in the same time
frame and any recording done by the adversary includes a combination of both
sounds.

Similar to the attack setting, we provide adversary with the most capability.
This means that the adversary already possesses a system trained on the same
typing style as the victim’s typing style. We also allow the adversary to implant
a covert listening device to record the victim’s keystrokes as they are being typed
and provide the adversary access to victim’s system to test the possible candi-
dates for the typed passwords. If our proposed defense mechanism is successful in
thwarting the attacker with the most capabilities, it would be successful against
attacks in real world scenarios where attacker may have to capture the keystroke
sound from a greater distance, or the user may be using a different typing style
than hunt and peck like touch typing.

In our experiments, the victim entered the password in hunt and peck typing
style. The typed password was six characters long and consisted of a random

356 S.A. Anand and N. Saxena

sequence of alphabets only, in line with the attack scenarios. A microphone
placed at a distance of 1 ft (about 30 cm) from the keyboard, acts as an adversary
by recording the emitted audio. For password entry by the user, a java swing
application was designed.

White Noise: White noise is a random signal having a uniform frequency
spectrum. It has been used extensively as a concentration and relaxation aid. It
is also been used for sound masking in office settings due to its ability to hide
out annoying or distracting background noises. We proceeded with the white
noise as the first choice for our defense model due to its widespread usage and
tested its ability to withstand keyboard acoustic side channel attacks.

A sample of white noise was chosen and played in the background while
the password was being entered. The audio recording from the adversary was
processed and evaluated against the attack mechanism. The attack mechanism
was able to detect on an average 2 characters from the possible 6 characters of
the password. The results of the experiment are listed under column 2 of Table 2.
Since white noise has a distinct pattern, it is possible to separate it from the
recorded audio signal. To test the effect of noise removal from the signal, we used
the noise reduction option from Audacity on the recorded audio signal. After
applying noise reduction, our results showed that there was no increase in the
detection rate. A possible explanation for this result is that the removal of noise
from the recorded audio signal also affects the keystroke signals embedded in it.
It occurs due to degradation in the keystroke features because of imperfection
in the noise removal algorithms as the noise profile is not the same throughout
the recorded audio signal.

Fake Keystrokes: The next obvious choice for a masking signal that could
cloak the keyboard acoustic leakage would be an audio consisting of keystrokes.
We would hereby refer to the recording of keystrokes as fake keystrokes as they
are not a part of the current keystrokes emitted during the user’s password
entry. The fake keystrokes are an excellent candidate for a masking signal to
be used against keyboard acoustic side channel attacks as they consists of same
keystroke features that would be emitted during password entry. This would
make it difficult for the attacker to distinguish between the fake keystrokes and
the actual keystrokes.

In order to use the fake keystrokes, the user system needs to possess an audio
recording of the keystrokes. This audio recording is obtained from the user by
prompting the user to randomly type some text while recording the audio using
a microphone. This exercise needs to be performed only once though it would be
useful to refresh this audio recording consisting of random keystrokes at some
predetermined intervals. This action would take in account the normal wearing
down of keys due to regular usage that can affect the emitted keystroke sound.
It would also prevent the attacker from building a noise profile by sampling
the keystrokes over a period of time and figuring out the frequently occurring
keystrokes.

Mitigating Acoustic Side Channel Attacks on Password Keystrokes 357

For our experiment, we recorded single instance of a keystroke for each of the
alphabetical keys thereby creating a pool of keystroke recordings. The user was
asked to enter the password and a key-press event was bound to the password
entry box. As soon as the user typed the first letter of the password, the system
generated a random number between 1 to 26 and played the keystroke audio
file corresponding to the generated random number. A TimerTask thread was
created to perform the above task at a regular interval of 100 ms. Since an aver-
age keystroke duration is 100 ms and the average interval between keystrokes is
more than 100 ms [2,16], we chose 100 ms as the interval between subsequent
keystrokes. This would allow the fake keystrokes to overlap with the actual key-
stroke thereby producing a distinct keystroke audio signal that would not map
to either of the two keystrokes. The interval between the fake keystrokes can also
be randomized but should not exceed 100 ms.

Figure 4(a) shows a recording of actual keystrokes while the fake keystrokes
played in the background according to the approach described above and
Fig. 4(b) details the spectrogram of the same signal. From Fig. 4(a), we can
clearly see the first keystroke which is isolated as the system can not predict its
occurrence. However, once the first keystroke was detected, the system started
playing the fake keystrokes in the background hiding the actual keystrokes in
the process.

Fig. 4. Fake Keystrokes as a Masking Signal

Figure 4(b) also shows that the fake keystrokes and the actual keystrokes
have same power spectral density, which may make it hard to separate the fake
keystrokes from the actual keystrokes. All the keyboard acoustic side channel
attacks depend upon frequency range and a threshold to detect a key press, and
having similar energy and frequency range makes it very difficult for the adver-
sary to separate the two signals. Our results confirm this observation. Column
3 of Table 2 shows the recovered passwords over 20 samples of recording as per
the attack scenario with the fake keystrokes playing in the background and using
the attack technique as detailed in Sect. 3.

358 S.A. Anand and N. Saxena

Combined Signal: While fake keystrokes are efficient in masking the keyboard
acoustic leakage, a layered approach can improve the efficiency of the defense
mechanism by burying the keystroke sound beneath a layer involving multiple
masking signals, each of which adds an additional defensive layer above the
keystroke sound. We use a combination of white noise and fake keystrokes to
act as two layers that shield the keyboard acoustic leakage. Since fake keystrokes
are enough to shield the actual keystrokes, the addition of white noise can serve
to either bolster the existing background noise or increase the usability of the
masking signal by making it pleasant for the user to hear. Hence, our combined
signal consists of fake keystrokes and the white noise mixed together.

Figures 5 and 6 (included in the appendix) refer to the recorded audio signal
and the resulting spectrogram when combined signal is used. Column 4 of Table 2
shows the recovered passwords over 20 samples of recording as per the attack
scenario with combined signal playing in the background and using the attack
technique as detailed in Sect. 3.

Evaluation Against Triangulation Attack: The triangulation attack
exploits the differences in arrival times of a sound wave at each microphone
to identify the keystrokes. Since, the defense model uses the speakers to produce
the fake keystrokes that are stationary, it is possible that it would be vulnerable
to this type of attack.

The initial step in triangulation attack is to detect keystrokes and note the
time of arrival at each microphone. The distance approach is used to classify and
recognize each detected keystroke. As the fake keystrokes have similar acoustic
signature to actual key press sound hence they are treated as legitimate key-
strokes by the triangulation attack and are processed accordingly. A meticulous
attacker may have the ability to detect fake keystrokes by looking for similar
time of arrival for the keystrokes as all fake keystrokes are generated at the same
distance from the microphone.

A drawback to the triangulation attack is that it works well for far sepa-
rated keys but for keys in close proximity, it has to add an additional signal
correlation factor for keystroke classification. It was demonstrated in earlier sec-
tions that the cross correlation (which was one of the classifying features in
time-frequency classification) can not differentiate between fake keystrokes and
actual keystrokes. Thus, we believe that the triangulation attack will have low
accuracy against our defense model.

7 Evaluating the Usability of the Defense

Our user study was designed to test the proposed defense mechanism for its
usability among the people while they are engaged in typing passwords. We
recruited 10 users (ages 20–35; 8 males and 2 females) by word of mouth. All the
recruited users were graduate students from our university. Since our primary
goal was to gain qualitative feedback from the users regarding the defense mech-
anism, and not statistical significance, a small sample size was appropriate for

Mitigating Acoustic Side Channel Attacks on Password Keystrokes 359

our study. The study was approved by our university’s IRB. The participation
was consensual and voluntary for the users. No audio was recorded during the
study.

We developed four authentication systems that required the user to input
a password of their own choosing. The first system was developed without any
defense mechanism in place to protect against acoustic eavesdropping. The sec-
ond system played white noise in the background while the user entered the
password. The system began playing the white noise as soon as the user began
typing in the password field and stopped when the password was verified. The
third system used fake keystrokes to play in the background while the fourth
system used a combination of white noise with water flowing and fake keystrokes
as the masking signal.

We used five trials per user and each trial presented the above four systems
in a random order. This was done to prevent the user from getting familiar with
the pattern of masking signals and hence psychologically ignoring the masking
signal. We also noted the number of times the user failed in entering the password
which could indicate the distracting effect of the masking signal. At the end of
the study, each user was asked to fill a survey form based on System Usability
Scale (SUS) [5] questionnaire and a usability score (out of 100) was derived
from the submitted response. We also asked an additional question to each user
if the masking signal was distracting while typing the password. The response
was graded on a scale from “strongly disagree” (score = 1) to “strongly agree”
(score = 5).

Table 1. Usability study results

No masking signal White noise Fake keystroke Combined signal

SUS score 91.88 (7.65) 76.25 (15.70) 69.38 (19.40) 69.06 (17.92)

Distraction score 1.00 (0.00) 2.75 (1.03) 3.62 (1.19) 3.5 (1.19)

The SUS scores (mean and standard deviations) from the usability study
are listed in Table 1. The scores suggest that the usability drops in the presence
of a masking signal. This is a reasonable conclusion as background noises may
affect the usability compared to plain password input (without masking signal).
Although the usability level drops in comparison to plain password input, the
SUS scores are still high enough (around 70 on an average) for the system to be
considered usable [9].

When we compared the SUS scores among the different types of masking
signals, we found that white noise had the highest mean usability score followed
by the combined masking signal. The fake keystrokes had the lowest usability
score. All previous observations were also confirmed by the distraction score. The
standard deviation for distraction score for no masking signal case was 0 as all
users “strongly disagreed” that the absence of any masking signal was annoying.
One complaint in the study was from a user who was surprised by the sudden

360 S.A. Anand and N. Saxena

injection of the noise in the background when he started typing the password. We
attribute this effect to the unfamiliarity of the user with the system and believe
that the users will become more comfortable as they adapt to the system.

We therefore conclude that the combined signal is the best candidate for
masking signal from the users’ perspective. Since the amount of time required
for password entry is short, we believe that an active noise generation does not
have a major effect on the users’ ability to perform the password entry task.

8 Discussion and Future Directions

Summary of Results: We studied the effect of acoustic side channel attacks on
keyboards during password entry. We chose time-frequency classification tech-
nique [8] to extract keystroke features from the acoustic leakage. We also con-
sidered the typing style of the user as an important criteria for initializing our
dataset. We showed that more than half of the password (66.67 %) can be recov-
ered by the adversary over 20 trials by noting down the most frequently occurring
character for each letter position in the typed password.

We introduced a defense mechanism to counteract such attacks thereby pre-
serving the privacy of the user. We used active background sounds to cloak the
acoustic leakage from the keyboard. We explored three classes of backgrounds
sounds that could be used as masking signals: white noise, fake keystrokes and
combined signal (a mix of white noise and fake keystrokes). We found out that
the fake keystrokes performed better than white noise at masking the acoustic
leakage against our side channel attack.

We also explored the usability of our attack and our user study indicated that
white noise was the most preferred background noise that could be played while
the password typing was in progress followed by the combined signal and the
fake keystrokes in the same order. This observation suggests that the combined
signal can serve as a middle ground between security and usability of the masking
signal since it is at least as secure as fake keystrokes but more user friendly.

Real-World Defense Implementation: The design of our proposed defense
mechanism requires the masking signal generator to be in-built within the users’
system. This approach was used to allow the detection of the first key press for
the password entry that will act as a trigger for the defense mechanism to start
emitting the masking signal. However, in scenarios such as password entry on
websites, the trigger can also be bound to the URL of the website, in particular
to the login webpage. In our experiments, a Java swing based user interface was
constructed to test the defense mechanism. However, the defense mechanism can
also be deployed as a browser plugin that can generate the masking signals based
on the visited URL. It may also hand over the control to the user who can enable
or disable the defense mechanism at will (e.g., by typing in a special character
sequence such as “@@” as in an existing password manager application [12].

Mitigating Acoustic Side Channel Attacks on Password Keystrokes 361

Active Sound Generation by Mobile Devices: Furthering the utilization
of the defense mechanism, it can also be deployed as an application on mobile
devices like smartphones. The user can place the smartphone near the input
device (e.g., a keyboard, or an ATM keypad) and launch the defense application
that will start emitting the masking signal while the user can proceed towards
password/PIN entry. Thus, we can have a transportable defense mechanism, easy
enough to be carried in pockets and can be triggered at will by the users.

Other Keyboard Input: While the focus of this paper was oriented towards
password typing, any input containing sensitive data can be protected by this
defense mechanism. An example is payment information required on various
online merchant websites where the user has to enter banking or credit card
information. Since the time taken to enter this information is relatively short,
the defense mechanism can be used without disturbing surrounding environment.
This could also be applicable to general text (email or other conversations, for
example). However, given these tasks are longer in time duration, further usabil-
ity studies need to performed to analyze the effect of background noise generation
on arbitrary text input.

Context-Free Attacks: Our defense model was evaluated against the cate-
gory of attack that rely upon the similarity of features among keystroke signals
[2–4,6,8,16]. It may not be effective against the context-free attack [15] as this
attack identifies each keystroke in an independent manner and does not depend
upon similarity of keystroke signals. Instead, it locates the most probable origin
of the signal and maps it on the keyboard. A signal originating outside the key-
board (e.g., a separate speaker) may fail to map on the reconstructed keyboard.
Although context-free attacks may be less practical since they require multi-
ple audio recording devices close to the keyboard, further work can reveal the
extent to which our defense mechanism can degrade the accuracy of this attack.
A possible modification to strengthen our design against context-free attack may
include varying the emanating signal among a number of speakers that surround
the device (or embed the speakers within the keyboard itself).

Other Side Channel Attacks: The idea of actively generating noise to shield
the acoustic leakage from keyboards can also be extended to defending against
other side channel attacks. Adding a vibrating element/device to the surface on
which the keyboard is placed may be able to lower the accuracy of the vibra-
tional side channel attacks [10]. Similarly, we may inject CPU emanations or
printer emanations actively using the speakers to shield against CPU or printer
emanation based attacks [3,7]. Further studies should be conducted to validate
the defense in the context of these side channel attacks.

362 S.A. Anand and N. Saxena

9 Conclusion

In this paper, we proposed a feasible defense mechanism against acoustic side
channel attacks directed towards keyboards and password entry. We showed
that it is possible to extract more than half of the password just by using time-
frequency features and observing the most frequently occurring characters over
a large sample of audio samples captured from the keyboard during password
entry. We proceeded to build a defense mechanism based on the notion of bolster-
ing the background noises that can cloak the acoustic leakage from the keyboard
making it extremely difficult for the adversary to obtain any useful information
about the typed password. We tested different types of signals that could be
used a masking signal and evaluated them based on security and usability. The
proposed defense mechanism is easy to use and requires minimal user input. It
is lightweight and only requires the availability of a speaker that can be used for
sound generation.

Appendix

Fig. 5. Audio for combined signal (x axis represents the time and y axis represents the
normalized amplitude of the signal)

Mitigating Acoustic Side Channel Attacks on Password Keystrokes 363

Table 2. Password detection samples for the password “gkbxym”

No masking signal White noise Fake keystroke Combined masking signal

xmbuuu mvvxhv utyixf oifdtv

ukcecd sxlxyz mfufxf dfkhjd

rlnuzl vqzbgu hmysyf ifdfkd

ikkbuc qjbyfi vdjfff sjsifd

gkbuys klvoyv mfwfff sjsdfd

gknamw ikubtt ifffff vjdkii

bvxxtk ilkvlj bgfffd ojsddd

ukbvkw duyeyy gfvfff hdsddd

bqvzyw havlyy gbfiff ojsddd

hkbiui vtiyir dfdipi sjvidd

gbmqlp ngbkym dddfip ojsddd

vmbqlp kkckyj dvdivo ffbqki

asbzyf sbzuhv dfvpvs hdhisd

gxbczf gvxhyi iiigfd sdhddd

qsbcyi nivkyj vfiddv divvik

xsbnfz kokykt ddvhdd iddisd

gkmcxg havkvz dixpfv dovdfi

jkvcmk zkpqvk gfbiff ojsddi

dmszvb ggyuul fvdvvi ifddid

ggbvtv igbiyy vdmsfd dafdgk

gkbcyw kkvkyj dfdff ojsddd

Fig. 6. Spectrogram for combined signal

364 S.A. Anand and N. Saxena

References

1. Adams, A., Sasse, M.A.: Users are not the enemy. Commun. ACM 42, 12 (1999)
2. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE Symposium on

Security and Privacy (2004)
3. Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., Sporleder, C.: Acoustic side-

channel attacks on printers. In: USENIX Security Symposium (2005)
4. Berger, Y., Wool, A., Yeredor, A.: Dictionary attacks using keyboard acoustic ema-

nations. In: ACM Conference on Computer and Communications Security (2006)
5. Brooke, J.: Sus - a quick and dirty usability scale. In: Jordan, P., Thomas, B.,

Weerdmeester, B., McClelland, I.L. (eds.) Usability Evaluation in Industry. Taylor
and Francis, London (1996)

6. Fiona, A.: Keyboard acoustic triangulation attack (2006). http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.100.3156&rep=rep.1&type=pdf. (Final Year
Project)

7. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth
acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 25

8. Halevi, T., Saxena, N.: A closer look at keyboard acoustic emanations: random
passwords, typing styles and decoding techniques. In: ACM Symposium on Infor-
mation, Computer and Communications Security (2012)

9. Lewis, J.R., Sauro, J.: The factor structure of the system usability scale. In: Kurosu,
M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 94–103. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02806-9 12

10. Marquardt, P., Verma, A., Carter, H., Traynor, P.: (sp)iphone: decoding vibrations
from nearby keyboards using mobile phone accelerometers. In: ACM Conference
on Computer and Communications Security (2011)

11. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM 22,
11 (1979)

12. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger password
authentication using browser extensions. In: USENIX Security Symposium (2005)

13. Song, D., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks
on ssh. In: USENIX Security Symposium (2001)

14. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: empirical results. IEEE Secur. Priv. 2, 5 (2004)

15. Zhu, T., Ma, Q., Zhang, S., Liu, Y.: Context-free attacks using keyboard acoustic
emanations. In: ACM SIGSAC Conference on Computer and Communications
Security, pp. 453–464 (2014)

16. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. ACM
Trans. Inf. Syst. Secur. 13, 1 (2009)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.3156&rep=rep.1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.3156&rep=rep.1&type=pdf
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-642-02806-9_12

Surveillance and Anonymity

Leaky Birds: Exploiting Mobile
Application Traffic for Surveillance

Eline Vanrykel1, Gunes Acar2(B), Michael Herrmann2, and Claudia Diaz2

1 KU Leuven, Leuven, Belgium
eline.vanrykel@gmail.com

2 imec-COSIC KU Leuven, Leuven, Belgium
{gunes.acar,michael.herrmann,claudia.diaz}@esat.kuleuven.be

Abstract. Over the last decade, mobile devices and mobile applications
have become pervasive in their usage. Although many privacy risks asso-
ciated with mobile applications have been investigated, prior work mainly
focuses on the collection of user information by application developers
and advertisers. Inspired by the Snowden revelations, we study the ways
mobile applications enable mass surveillance by sending unique identifiers
over unencrypted connections. Applying passive network fingerprinting,
we show how a passive network adversary can improve his ability to tar-
get mobile users’ traffic.

Our results are based on a large-scale automated study of mobile
application network traffic. The framework we developed for this study
downloads and runs mobile applications, captures their network traffic
and automatically detects identifiers that are sent in the clear. Our find-
ings show that a global adversary can link 57% of a user’s unencrypted
mobile traffic. Evaluating two countermeasures available to privacy aware
mobile users, we find their effectiveness to be very limited against iden-
tifier leakage.

1 Introduction

Documents that have been revealed by the former NSA contractor Edward Snow-
den shed light on the massive surveillance capabilities of the USA and UK intel-
ligence agencies. One particular document released by the German newspaper
Der Spiegel describes the ways in which traffic of mobile applications (apps)
is exploited for surveillance [16]. The document, which reads “Exploring and
Exploiting Leaky Mobile Apps With BADASS,” provides a unique opportunity
to understand the capabilities of powerful network adversaries. Furthermore, the
document reveals that identifiers sent over unencrypted channels are being used
to distinguish the traffic of individual mobile users with the help of so-called
selectors. Similar revelations about the use of Google cookies to target individ-
uals imply that BADASS is not an isolated incident [12,34].

While it is known that a substantial amount of mobile app traffic is unen-
crypted and contains sensitive information such as users’ location or real identi-
ties [24,35,43], the opportunities that mobile traffic offers to surveillance agencies
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 367–384, 2017.
DOI: 10.1007/978-3-662-54970-4 22

368 E. Vanrykel et al.

may still be greatly underestimated. Identifiers that are being sent in the clear,
may allow the adversary to link app sessions of users and thus to learn more
information about the surveilled users than he could without. The purpose of
this study is to evaluate this risk and to quantify the extent to that it is possible
to track mobile app users based on unencrypted app traffic.

To this end we present a novel framework to quantify the threat that a
surveillance adversary poses to smartphone users. The framework automates the
collection and analysis of mobile app traffic: it downloads and installs Android
apps, runs them using Android’s The Monkey [18] tool, captures the network
traffic on cloud-based VPN servers, and finally analyzes the traffic to detect
unique and persistent identifiers. Our framework allows large-scale evaluation of
mobile apps in an automated fashion, which is demonstrated by the evaluation
of 1260 apps. We choose the apps among all possible categories of the Google
Play store and of different popularity levels.

Our study is inspired by a recent work by Englehardt et al. [26]. They studied
the surveillance implications of cookie-based tracking by combining web and
network measurements. The evaluation method they use boils down to measuring
the success of the adversary by the ratio of user traffic he can cluster together.
We take a similar approach for automated identifier detection but we extend
their work to capture non-cookie-based tracking methods that are suitable for
user tracking. Moreover, we show how TCP timestamp-based passive network
fingerprinting can be used to improve the clustering of the traffic and may allow
to detect the boot time of Android devices.

1.1 Contributions

Large-scale, automated study on surveillance implications of mobile
apps. We present an automated analysis of 1260 Android apps from 42 app
categories and show how mobile apps enable third party surveillance by sending
unique identifiers over unencrypted connections.

Applying passive network fingerprinting for mobile app traffic
exploitation. We show how a passive network adversary can use TCP
timestamps to significantly improve the amount of traffic he can cluster. This
allows us to present a more realistic assessment of the threat imposed by a pas-
sive adversary. Further, we show how an adversary can guess the boot time of
an Android device and link users’ traffic even if they switch from WiFi to 3G or
vice versa.

Evaluation of the available defenses for privacy aware users. We analyze
the efficacy of two mobile ad-blocking tools: Adblock Plus for Android [13] and
Disconnect Malvertising [14]. Our analysis shows that these tools have a limited
effect preventing mobile apps from leaking identifiers.

Leaky Birds: Exploiting Mobile Application Traffic for Surveillance 369

2 Background and Related Work

Android apps and identifiers. Android apps and third-parties can access
common identifiers present on the smartphone, such as MAC address, Google
Advertising ID or IMEI number. We call these identifiers smartphone IDs. An
overview of the Android smartphone IDs can be found in Table 1. Developers
may also choose to assign IDs to users (instead of using smartphone IDs), for
identifying individual app installations or simply to avoid asking for additional
permissions [11]. We refer to such identifiers as app assigned IDs.

Table 1. Unique smartphone identifiers present on Android, an overview.

Name Persistence Permission

Android ID Until a factory reset None

MAC Address Lifetime of the device ACCESS WIFI STATE

IMEI Lifetime of the device READ PHONE STATE

IMSI Lifetime of the SIM card READ PHONE STATE

Serial number Lifetime of the device None [41]

SIM serial number Lifetime of the SIM card READ PHONE STATE

Phone number Lifetime of the SIM card READ PHONE STATE

Google Advertising ID Until reset by the user ACCESS NETWORK STATE, INTERNET

Privacy implications of mobile apps. Although privacy implications of
Android apps have been extensively studied in the literature [25,28,29], prior
work has mainly focused on the sensitive information that is collected and trans-
mitted to remote servers. Xia et al. showed that up to 50% of the traffic can be
attributed to the real names of users [43]. Enck et al. developed TaintDroid [25],
a system-wide taint analysis system that allows runtime analysis and tracking
of sensitive information flows. While it would be possible to use TaintDroid in
our study, we opted to keep the phone modifications minimal and collect data
at external VPN servers. This allows us to have a more realistic assessment of
application behavior and adversary capabilities.

Our work differs from these studies, by quantifying the threat posed by a pas-
sive network adversary who exploits mobile app traffic for surveillance purposes.
We also show how the adversary can automatically discover user identifiers and
use passive network fingerprinting techniques to improve his attack.

Passive network monitoring and surveillance. Englehardt et al. [26] show
how third-party cookies sent over unencrypted connections can be used to cluster
the traffic of individual users for surveillance. They found that reconstructing
62–73% of the user browsing history is possible by passively observing network
traffic.

In addition to using identifiers to track smartphones, an eavesdropping adver-
sary can use passive network fingerprinting techniques to distinguish traffic from

370 E. Vanrykel et al.

different physical devices. Prior work showed that clock skew [31,33,44], TCP
timestamps [23,42] and IP ID fields [21] can be used to remotely identify hosts
or count hosts behind a NAT. In this study, we use TCP timestamps to improve
the linking of users’ mobile traffic in short time intervals. We assume the adver-
sary to exploit TCP timestamps to distinguish traffic of users who are behind a
NAT. Moreover, we demonstrate how an adversary can discover the boot time
of an Android device by exploiting TCP timestamps.

3 Threat Model

In this paper we consider passive network adversaries whose goal is to link app
traffic of smartphone users. The adversaries observe unique identifiers that are
being transmitted from mobile apps in the clear and apply network fingerprint-
ing techniques. We consider that the adversaries cannot break cryptography or
launch MITM attacks such as SSLstrip [32].

We distinguish between two types of passive adversaries: A global passive
adversary, who can intercept all Internet traffic at all time; and a restricted
passive adversary who can only observe a limited part of the network traffic.
Both adversaries have the capability to collect bulk data. This may be achieved
in various ways, such as tapping into undersea fiber-optic cables; hacking routers
or switches; intercepting traffic at major Internet Service Providers (ISP) or
Internet Exchange Points (IXP)1.

There can be several models in which an adversary may have limited access
to the user’s traffic. In this study we evaluate adversaries whose limitation is
either host-based or packet-based. The host-based adversary is only able to see
traffic bound to certain hosts; for example, because the adversary is only able to
obtain warrants for intercepting traffic within its own jurisdiction. The packet-
based adversary may only have access to a certain point in the Internet backbone
and thus miss traffic that is being sent along other routes. For both adversaries,
we evaluate the success based on different levels of network coverage (Sect. 7.2).
We simulate partial network coverage by randomly selecting hosts or packets to
be analyzed depending on the model. For instance, for the host-based model with
0.25 network coverage, we randomly pick one-fourth of the hosts and exclude the
traffic bound to remaining hosts from the analysis.

4 Data Collection Methodology

4.1 Experimental Setup

We present the experimental setup2 that is used for this paper in Fig. 1. It
includes a controller PC, two smartphones and two VPN servers for traffic cap-
ture. The main building blocks of our framework are as follows:
1 All these methods are feasible, as illustrated by the Snowden revelations [6,8].
2 The source code of the framework, as well as the collected data will be made available

to researchers upon request.

Leaky Birds: Exploiting Mobile Application Traffic for Surveillance 371

Fig. 1. Our setup in this study consists of a Controller PC that manages the exper-
iments, two Android phones that run apps, and two VPN servers that capture the
network traffic.

Controller PC. The Controller PC runs the software that orchestrates the
experiments and the analysis. It has three main tasks: (1) installing apps on the
smartphones and ensuring that the experiment runs smoothly, e.g. checking the
phone’s WiFi and VPN connections, (2) sending SSH commands to the remote
VPN servers to start, stop and download the traffic capture, (3) analyzing the
collected data.

Smartphones. We conducted our experiments with two Samsung Galaxy SIII
Mini smartphones running Android version 4.1.2. We rooted the phones to
address issues such as storage and uninstallation problems. Although we consid-
ered using the Android emulator as in other works [24,36,38], our preliminary
tests [39] showed that the number of transmitted identifiers is significantly less
in the emulator compared to the same setting with a real smartphone and the
emulator lacks certain identifiers, such as the WiFi MAC address. We also chose
not to intercept system API calls or instrument the operating system, such as
in [25,27], since we preferred a simpler and more portable solution.

The Monkey. We use The Monkey [18] tool to automate the experiments and
simulate the user interaction at large scale. The Monkey generates a pseudo-
random event stream that includes touch, motion and keyboard events.

Traffic Capture. The network traffic is captured by two remote VPN servers,
using the dumpcap [5] command line tool. Using VPN servers, we could capture
all the network traffic and not only HTTP traffic, which would be the case with
an HTTP proxy. Also, since we record the traffic on remote machines, we ensure
that there is no packet drop due to lack of buffer space on resource constrained
devices [15]. However, we captured traffic locally on the phone during the eval-
uation of ad-blockers for Android. These tools use a proxy or VPN themselves

372 E. Vanrykel et al.

to block ads. Since Android does not allow simultaneous VPN connections, we
captured the traffic locally by running tcpdump on the smartphones. To ensure
comparability, we exclude all the captures where we observed packet drops from
the analysis (20% of the cases, 171 apps in two experiments).

Traffic parser. For parsing the captured network traffic, we developed a Python
script based on the dpkt [3] packet parsing library. The script allows us to decode
IPv4 and IPv6 datagrams, reassemble TCP streams, decompress compressed
HTTP bodies and to parse GRE and PPTP encapsulation used by the VPN.
We extract HTTP headers and bodies, packet timestamps, IP addresses and port
numbers from the packets for later use. Since it is outside of the scope of this
study, we did not decrypt SSL/TLS records. However, for the TCP timestamp
analysis described in Sect. 6 it is beneficial, yet not necessary, to extract TCP
timestamps from all TCP packets, including the ones from encrypted HTTPS
traffic. Note that this is within our adversary model, because TCP headers are
sent in the clear and thus available to a passive adversary.

Having described the main building blocks of the experimental setup, now
we outline the different modes and steps of the experiments:

Experiment modes. We run experiments in two different modes to evaluate
the difference in identifier transmission; (i) if the app is simply opened and (ii)
if the user actually interacts with the app. We refer to the former as startscreen
experiment and to the latter as interactive experiment. The Monkey is used to
simulate user interaction in the interactive experiments.

Evaluation of ad-blocker apps. We evaluate the effect of apps that block ads
and trackers. While those apps are not specifically designed to prevent identifier
leakage, they may still reduce the number of identifiers being sent in the clear.
Specifically, we repeated the experiment of the top-popularity apps after we
installed and activated the ad-blocker apps Adblock Plus for Android [13] and
Disconnect Malvertising [14].

Steps of the experiment. Our framework executes the steps of the experi-
ments in an entirely automated fashion. The Controller PC connects the smart-
phone to the VPN server by running a Python based AndroidViewClient [4]
script that emulates the touch events necessary to start the VPN connection
on the smartphone. Since installing all the apps at once is not possible due to
storage constraints, our framework conducts the experiment in cycles. In each
cycle we install 20 apps and then run them sequentially3. The apps for each
cycle are randomly chosen from the entire set of apps, with the condition that
each app is only picked once. Before running an app, the Controller PC kills the
process of the previous app. This way we are able to prevent the traffic of the
previously tested app mistakenly being recorded for the subsequent app. After
finished running the 20 apps, the Controller PC runs all 20 apps a second time
in the same order. Running each app twice enables the automated detection of

3 We chose 20 since this was the maximum number of apps that can be installed on
an Android emulator at once, which we used in the preliminary stages of the study.

Leaky Birds: Exploiting Mobile Application Traffic for Surveillance 373

identifiers outlined in Sect. 5.1. Finally, the Controller PC completes the current
cycle by uninstalling all 20 apps.

4.2 Obtaining Android Applications

To obtain the Android apps, we developed scripts for crawling the Google Play
store and, subsequently, to download APK files. Our scripts are based on the
Python Selenium [17] library, the APK downloader browser extension and web-
pages [1]. Using this software, we crawled the entire Play Store and obtained
information on 1, 003, 701 different Android apps. For every app we collected
information such as number of downloads, rating scores and app category. This
allows us to rank the apps of every category according to their popularity.

For every app category we choose 10 apps from three different popularity
levels: top-popularity, mid-popularity and low-popularity. While we use the most
popular apps for the top-popularity category, we sample the mid-popularity and
low-popularity apps from the 25th and 50th percentiles from each category. At
the time we conducted the crawl, there were 42 different app categories and
we therefore obtained a total of 1260 (42 × 10 × 3) apps. The average time for
evaluating one app is 64 seconds.

5 Analysis Methodology

In the following we show how an adversary is able to extract identifiers from
network traffic and then use these identifiers to cluster data streams, i.e. linking
data streams as belonging to the same user. This is the same that an adversary
with the goal of surveilling Internet traffic would do, i.e. extracting and applying
a set of selectors that match unique and persistent mobile app identifiers.

5.1 Identifier Detection

Suitable identifiers for tracking need to be persistent and unique, i.e. the same
ID cannot appear on different phones and IDs need to be observable over mul-
tiple sessions. Our framework automatically detects such unique identifiers in
unencrypted mobile app traffic. While the overall approach is similar to the
one in [19,26] we extend the cookie-based identifier detection technique to cover
mobile app traffic. We assume that the smartphone IDs (such as Android ID
or MAC address) are not known a priori to the adversary. The adversary has
to extract IDs based on the traffic traces only. Yet, we use smartphone IDs as
the ground truth to improve our automated ID detection method by tuning its
parameters.

For finding identifiers, we process HTTP request headers, bodies and URL
parameters. Specifically, the steps of the unique identifier detection are as follows:

– Split URLs, headers, cookie contents and message bodies using common delim-
iters, such as “=”, “&”, “:”, to extract key-value pairs. Decode JSON encoded
strings in HTTP message bodies.

374 E. Vanrykel et al.

– Filter out cookies with expiry times shorter than three months. A tracking
cookie is expected to have a longer expiry period [26].

– For each key-value pair, we construct an identifying rule set and add it to
the potential identifier list. This is the tuple (host, position, key), where host
is extracted from the HTTP message and position indicates whether the key
was extracted from a cookie, header or URL.

– Compare values of the same key between runs of two smartphones.
• Eliminate values if they are not the same length.
• Eliminate values that are not observed in two runs of the same app on

the same smartphone.
• Eliminate values that are shorter than 10 or longer than 100 characters.
• Eliminate values that are more than 70% similar according to the Ratcliff-

Obershelp similarity measure [22].
– Add (host, position, key) to the rule set.

We tuned similarity (70%) and length limits (10, 100) according to two cri-
teria: minimizing false positives and detecting all the smartphone identifiers
(Table 1) with the extracted rule set. We experimented with different limit val-
ues and picked the values that gave us the best results based on these criteria. A
more thorough evaluation of these limits is omitted due to space constraints, but
interested readers can refer to [19,26] for the main principles of the methodology.

5.2 Clustering of App Traffic

While the ultimate goal of the adversary is to link different app sessions of
the same user by exploiting unique identifiers transmitted in app traffic, the
first challenge of the adversary is to identify the traffic of one app. An app may
open multiple TCP connections to different servers and linking these connections
can be challenging. The user’s public IP address is not a good identifier: several
users may share the same public IP via a NAT. Moreover, IP addresses of mobile
phones are known to change frequently [20].

In this work we consider two different clustering strategies. In the TCP stream
based linking, the attacker can only link IP packets based on their TCP stream.
The adversary can simply monitor creation and tear down of TCP streams and
ensure that the packets being sent within one stream are originating from the
same phone. The second, more sophisticated strategy employs passive network
fingerprinting techniques to link IP packets of the same app session. We will
refer this technique as app session based linking and outline it in Sect. 6.

Following Englehardt et al. [26] we present linking of the user traffic as a
graph building process. We use the term node to refer to a list of packets that
the adversary is certain that they belong to the same user. As explained above,
this is either a TCP stream or an app session. For every node the adversary
extracts the identifying rule set (host, position, key) as described in Sect. 5.1.
Starting from these nodes, the adversary inspects the content of the traffic and
then tries to link nodes together to so-called components.

Leaky Birds: Exploiting Mobile Application Traffic for Surveillance 375

Therefore, the attacker will try to match a node’s identifiers to the identifiers
of the existing components. We account for the fact that some developers do not
use the smartphone ID right away as identifier, but derive an identifier from it
by hashing or encoding. Thus the clustering algorithm will also try to match the
SHA-1, SHA-256, MD5 and murmur3 hashes and base64 encoded form of the
identifiers. For every node, there exist three possibilities when comparing the
node’s identifiers to a existing component’s identifiers:

1. The node’s value (or its derivative) matches the identifiers of an
existing component: The node will be added to the component and the
respective identifiers are being merged, i.e. the newly added node may include
identifiers not yet included in the component.

2. None of the node’s identifiers or their derivatives can be matched
to an existing component: The node creates its own component which is
disconnected from all other components.

3. The node shares identifiers with multiple components: These compo-
nents are merged together and the node is added to this component.

For the remainder of this paper, we refer to the component that contains the
highest number of nodes as the Giant Connected Component (GCC). Further-
more, we define the ratio of number of nodes in GCC to the number of nodes
in the whole graph as the GCC ratio. The GCC ratio serves as a metric for
measuring the adversary’s success for linking users’ traffic based on the amount
of traffic he observes.

5.3 Background Traffic Detection

The Android operating system itself also generates network traffic, for example
to check updates or sync user accounts. Although we find in our experiments
that the Android OS does not send any identifiers in the clear, we still take
measures to avoid that this traffic pollutes our experiment data. Particularly,
we captured the network traffic of two smartphones for several hours multiple
times without running any app. A complete overview of all HTTP queries made
during such captures can be found in [40]. We excluded all the HTTP requests
to these domains during the analysis stage. Although we excluded background
traffic from our analysis, the adversary may try to exploit the background traffic
in a real-world attack.

6 Linking Mobile App Traffic with TCP Timestamps

In this section we elaborate on the adversary’s ability to employ passive fin-
gerprinting techniques to link different IP packets originating from the same
smartphone. As mentioned in Sect. 5.2, this gives a significant advantage to the
adversary when clustering the user traffic. In particular, the adversary is able
to analyze TCP timestamps for this task as they are commonly allowed by the
firewalls [33].

376 E. Vanrykel et al.

TCP timestamps are an optional field in TCP packets that include a 32-
bit monotonically increasing counter. They are used to improve the protocol
performance and protect against old segments that may corrupt TCP connec-
tions [30]. While the exact usage of TCP timestamps is platform dependent, our
inspection of the Android source code and capture files from our experiments
revealed that Android initializes the TCP timestamp to a fixed value after boot
and uses 100 Hz as the timestamp increment frequency [2]. Thus, at any time
t, TCP timestamp of a previously observed device can be estimated as follows:
TSt = TSprev+100×(t−tprev), where TSprev is the timestamp observed at tprev
and (t−tprev) is the elapsed time. The adversary can therefore link different visits
from the same device by comparing the observed TCP timestamps to his esti-
mate. Prior studies have shown that distinguishing devices behind a NAT using
TCP timestamps can be done in an efficient and scalable manner [23,37,42].

Fig. 2. TCP timestamp vs. capture time plot of Angry Birds Space app follows a line
with a slope of 100, which is the timestamp resolution used by Android. Different TCP
sessions, indicated by different colors, can be linked together by exploiting the linearity
of the TCP timestamp values.

Figure 2 demonstrates the linear increase of the TCP timestamps of a phone
running the “Angry Bird Space” app. To demonstrate the linkability of TCP
streams, every point in Fig. 2 is colored based on its TCP source and destination
port. The straight line shows that the adversary can easily link different TCP
streams of the same device by exploiting the linearity of the timestamps. The
adversary is also able to consider TCP timestamps of encrypted communications,
because TCP timestamps are sent unencrypted in the packet headers. This allows
adversaries within our threat model to further increase the success of the linking.
Furthermore, TCP timestamps can be used to link traffic even if the user switches
from WiFi to mobile data connection or vice versa [40]. Finally, the linking is still
feasible even if the adversary misses some packets, for instance, due to partial
coverage of the network.

Leaky Birds: Exploiting Mobile Application Traffic for Surveillance 377

Limitations. During the background traffic detection experiments, we observed
cases in which TCP timestamps are not incremented linearly. Consulting the
Android System Clock Documentation, we determined that the CPU and certain
system timers stop when the device enters the deep sleep state [10]. This power
saving mechanism is triggered only when the screen is off and the device is not
connected to the power outlet or USB port. Therefore, the phone will never go
into deep sleep when a user is interacting with an app and the TCP timestamps
will be incremented in a predictable way, allowing the linking of the traffic by
app sessions.

Implications for traffic linking. We will assume the adversary can use TCP
timestamps to cluster packets generated during the use of an app (app session),
as the phone never enters deep sleep mode when it is in active use. As mentioned
in Sect. 5.2, we will refer to this as app session based linking.

Android boot time detection. In addition to linking packets from different
TCP streams, TCP timestamps can also be used to guess the boot time of remote
devices [7]. Among other things, boot time can be used to determine if the device
is patched with critical updates that require a reboot. Since it is not directly
related to traffic linking attack considered in the study, we explain the boot time
detection methodology in the unabridged version of this paper [40].

7 Results

7.1 Identifier Detection Rules

We present in Table 2 an overview of the identifying rule set that we detected by
the methodology explained in Sect. 5.1. Recall that identifying rules correspond
to “selectors” in the surveillance jargon, which allow an adversary to target a
user’s network traffic. In total we found 1597 rules with our method, of which
1127 (71%) correspond to a smartphone ID or its derivative. Our results show
that the Android ID and Google Advertising ID are the most frequently trans-
mitted smartphone IDs, accounting for 72% (812/1127) of the total. We group
the least commonly transmitted smartphone IDs under the Other Smartphone
IDs column, which include the following: device serial number, IMSI, SIM serial
number and registered Google account email. Furthermore, we found 29% of the
extracted rules to be app-assigned IDs.

Analyzing the extracted rules for the top-popularity, interactive experiments,
we found that 50% of the identifiers are sent in the URI of the HTTP requests
(291 rules). In 39% (225) of the rules, the IDs are sent in the HTTP request
body, using the POST method. Only 3% (18) of the cases, the identifier was
sent in a cookie. The average identifier length in our rule set is 26.4 characters.
A sample of identifying rules is given in Table 3.

After extracting identifier detection rules, we apply them to the traffic cap-
tured during the experiments. Due to space constraints we present the detailed
results on the transmitted IDs in the unabridged version of this paper [40].

378 E. Vanrykel et al.

Table 2. The extracted ID detection rules and corresponding smartphone IDs. SID :
Smartphone ID, AAID : App Assigned ID.

Exp. mode App popularity Android ID Google Ad ID IMEI MAC Other SIDs AAIDs Total ID rules

Interactive Top 165 111 63 29 16 193 577

Startscreen Top 115 56 45 19 11 91 337

Interactive Mid 56 28 20 6 5 60 175

Startscreen Mid 48 28 16 5 4 40 141

Interactive Low 73 61 22 15 8 53 232

Startscreen Low 47 24 16 7 8 33 135

Total 504 308 182 81 52 470 1597

Table 3. Examples rules found in the constructed identifying rule set. The values are
modified to prevent the disclosure of real identifiers of the phones used in the study.

Host Position Key ID Value

data.flurry.com Body offset60 Android ID AND9f20d23388...

apps.ad-x.co.uk URI custom data/meta udid Unknown 19E5B4CEE6F5...

apps.ad-x.co.uk URI macAddress WiFi MAC D0:C4:F7:58:6C:12

alog.umeng.com Body header/device id IMEI 354917158514924

d.applovin.com Body device info/idfa Google Ad ID 0e5f5a7d-a3e4-..

Moreover, analyzing the traffic captures of the top-popularity apps, we found
that certain apps send precise location information (29 apps), email address (7
apps) and phone number (2 apps) in the clear. Together with the linking attack
presented in this paper, this allows an adversary to link significantly more traffic
to real-life identities.

We found that 1076 different hosts were contacted over unencrypted connec-
tions during the experiments for the top-popularity apps in the interactive mode.
The data.flurry.com domain is the most popular third-party domain collecting
Android ID from 43 different apps (Table 4). Note that data.flurry.com received
a notable mention in the slides of the BADASS program [16] for its identifier
leakage.

Table 4. The most common third-party hosts found to collect at least an identifier
over unencrypted connections. The listed hosts are contacted by the highest number
of apps (based on 420 top-popularity apps, interactive experiment).

Host # Apps Collected IDs

data.flurry.com 43 Android ID

ads.mopub.com 32 Google advertising ID

apps.ad-x.co.uk 22 Google advertising ID, IMEI, Serial number, Android ID

alog.umeng.com 16 IMEI

a.applovin.com 16 Google advertising ID

http://data.flurry.com
http://apps.ad-x.co.uk
http://apps.ad-x.co.uk
http://alog.umeng.com
http://d.applovin.com
http://data.flurry.com
http://ads.mopub.com
http://apps.ad-x.co.uk
http://alog.umeng.com
http://a.applovin.com

Leaky Birds: Exploiting Mobile Application Traffic for Surveillance 379

7.2 Traffic Clustering

Here we evaluate the adversary’s success in terms of unencrypted app traffic
ratio (GCC ratio) that he can link together in different settings. We follow the
analysis methodology explained in Sect. 5.2 and present clustering results for
100 randomly selected combinations of 27 apps. We pick 27 apps since it is the
average number of apps used per month according to a recent survey [9]. Running
100 iterations with a different combination of (27) apps allowed us to reduce the
variance between different runs and account for all the studied apps. We only
consider apps that send at least one HTTP request and calculate the GCC ratio
based on the unencrypted traffic. For the top-popular apps in interactive mode,
these account for 69% of the apps. For simplicity, we will present the clustering
results for only one phone and a single run of each app. The results from two
phones did not have any significant difference.

Effect of using TCP timestamps for traffic linking. The left boxplot in
Fig. 3(a), shows that when the adversary does not take TCP timestamps into
account (TCP stream based linking), he can cluster 25% of users’ unencrypted
traffic. However, by exploiting TCP timestamps he can increase the GCC ratio
to 57%.

Effect of app popularity. Figure 3(b) shows that popularity has a significant
impact on the linking success of the adversary. The most popular apps allow
the adversary to cluster 57% of the unencrypted traffic, while the apps from
the mid-popular and low-popular level result in a GCC ratio of 32% and 28%,
respectively.

Due to space constraints, we will only present results for the apps from the
top-popularity level in the rest of this section.

Effect of user interaction. Figure 3(c) shows the GCC ratio for two different
experiment modes, interaction and startscreen. Although, the number of identi-
fiers sent in two modes are significantly different (577 vs. 337), the graph shows
a similar GCC ratio around 53% for two modes. A possible explanation is that
the identifiers that enable linking are already sent as soon as the app is started.

Effect of countermeasures. Figure 3(d) shows that both ad-blocking apps
provide a limited protection against linking of the app traffic. Using Adblock
Plus leads to an average linking of 50%. Disconnect Malvertising performs better,
with a GCC rate of 38%, reduced from 57%.

Restricted adversary. Figure 3(e) shows that an adversary that can only inter-
cept traffic to 50% of the hosts can link up to 38% of the unencrypted mobile
app sessions. For the packet based restricted adversary model, we observe that
an adversary with a limited coverage of 25% of the user’s packets can still link
37% of all app sessions together (Fig. 3(f)). In both models restricted adversary’s
success grows almost linear with his network coverage. Note that packet based
restricted adversary can link significantly more traffic than the host-based model

380 E. Vanrykel et al.

Fig. 3. The success of the adversary under different experimental settings and adver-
sary models. The GCC ratio is the proportion of the unencrypted app traffic that the
adversary can link together. The results are shown for 100 different randomly selected
combinations of 27 apps.

Leaky Birds: Exploiting Mobile Application Traffic for Surveillance 381

for the same network coverage ratio. This may be due to being able to observe
packets from more hosts which will allow to link apps across sessions.

8 Limitations

Some apps may not be fully discovered by The Monkey, leading to an incom-
plete view of the network traffic. Also, apps that require user logins may not
be sufficiently analyzed by our automated methodology. For those reasons, our
results should be taken as lower bounds.

While we assume that the smartphones can be distinguished by their TCP
timestamps, some middleboxes may interfere with user traffic. Firewalls, proxies
or cache servers may terminate outgoing HTTP or TCP connections and open a
new connection to the outside servers. Furthermore, end-user NAT devices may
have various configurations and hence behave differently compared to enterprise
NATs. In such cases, the adversary’s ability to link traffic by TCP timestamps
may be reduced.

We used rooted Android phones in our experiments. Although rooting the
phones may introduce changes in the observed traffic, we assumed the changes
to be minimal.

9 Conclusion

The revealed slides of the BADASS program have shown that unencrypted
mobile app traffic is exploited for mass surveillance. Identifiers sent in the clear
by the mobile applications allow targeting mobile users, linking of their traffic
and building a database of their online activities.

In this study, we evaluated the surveillance threat posed by a passive network
adversary who exploits mobile app traffic for surveillance purposes. We presented
a novel framework that automates the analysis of mobile app network traffic. Our
framework and methodology is designed to be flexible and can be used in other
mobile privacy studies with slight modifications.

Our results show that using TCP timestamps and unique identifiers sent
in the unencrypted HTTP traffic, a global adversary can cluster 57% of users’
unencrypted mobile app sessions. We demonstrated that a passive adversary can
automatically build a rule set that extracts unique identifiers in the observed
traffic, which serves as a “selector” list for targeting users.

Our results suggest that popular apps leak significantly more identifiers than
the less popular apps. Furthermore, while interacting with the app increases the
number of leaked identifiers, solely starting an app amounts to the same attack
effectiveness.

We evaluated two countermeasures designed to block mobile ads and found
that they provide a limited protection against linking of the user traffic. Encrypt-
ing mobile app traffic can effectively protect against passive network adversaries.
Moreover, a countermeasure similar to HTTPS Everywhere browser extension
can be developed to replace insecure HTTP connections of mobile apps with
secure HTTPS connections on the fly.

382 E. Vanrykel et al.

Acknowledgment. We would like to thank Steve Englehardt, Yves Tavernier and
anonymous reviewers for their helpful and constructive feedback. This work was
supported by the Flemish Government FWO G.0360.11N Location Privacy, FWO
G.068611N Data mining and by the European Commission through H2020-DS-2014-
653497 PANORAMIX and H2020-ICT-2014-644371 WITDOM.

References

1. APK Downloader [Latest] Download Directly — Chrome Extension v3 (Evozi Offi-
cial). http://apps.evozi.com/apk-downloader/

2. Cross Reference: /external/kernel-headers/original/asm-arm/param.h. http://
androidxref.com/4.1.2/xref/external/kernel-headers/original/asm-arm/param.h#
18

3. dpkt 1.8.6.2: Python Package Index. https://pypi.python.org/pypi/dpkt
4. dtmilano/AndroidViewClient. https://github.com/dtmilano/AndroidViewClient/
5. dumpcap - The Wireshark Network Analyzer 1.12.2. https://www.wireshark.org/

docs/man-pages/dumpcap.html
6. GCHQ taps fibre-optic cables for secret access to world’s communications. http://

www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-
communications-nsa

7. Nmap Network Scanning - Remote OS Detection - Usage and Examples. http://
nmap.org/book/osdetect-usage.html

8. NSA Prism program taps in to user data of Apple, Google and others. http://
www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data

9. Smartphones: So many apps, so much time. http://www.nielsen.com/us/en/
insights/news/2014/smartphones-so-many-apps-so-much-time.html

10. SystemClock — Android Developers. http://developer.android.com/reference/
android/os/SystemClock.html

11. Identifying App Installations — Android Developers Blog (2011). http://
android-developers.blogspot.be/2011/03/identifying-app-installations.html

12. ‘Tor Stinks’ presentation (2013). http://www.theguardian.com/world/interactive/
2013/oct/04/tor-stinks-nsa-presentation-document

13. About Adblock Plus for Android (2015). https://adblockplus.org/android-about
14. Disconnect Malvertising for Android (2015). https://disconnect.me/mobile/

disconnect-malvertising/sideload
15. Manpage of TCPDUMP (2015). http://www.tcpdump.org/tcpdump man.html
16. Mobile apps doubleheader: BADASS Angry Birds (2015). http://www.spiegel.de/

media/media-35670.pdf
17. Selenium - Web Browser Automation (2015). http://docs.seleniumhq.org/
18. UI/Application Exerciser Monkey — Android Developers (2015). http://developer.

android.com/tools/help/monkey.html
19. Acar, G., Eubank, C., Englehardt, S.: The web never forgets: persistent tracking

mechanisms in the wild. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (2014)

20. Balakrishnan, M.: Where’s that phone? Geolocating IP addresses on 3G networks.
In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement
Conference, pp. 294–300 (2009)

21. Bellovin, S.M.: A technique for counting NATted hosts. In: Proceedings of the
second ACM SIGCOMM Workshop on Internet Measurement - IMW 2002, p. 267
(2002)

http://apps.evozi.com/apk-downloader/
http://androidxref.com/4.1.2/xref/external/kernel-headers/original/asm-arm/param.h#18
http://androidxref.com/4.1.2/xref/external/kernel-headers/original/asm-arm/param.h#18
http://androidxref.com/4.1.2/xref/external/kernel-headers/original/asm-arm/param.h#18
https://pypi.python.org/pypi/dpkt
https://github.com/dtmilano/AndroidViewClient/
https://www.wireshark.org/docs/man-pages/dumpcap.html
https://www.wireshark.org/docs/man-pages/dumpcap.html
http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
http://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
http://nmap.org/book/osdetect-usage.html
http://nmap.org/book/osdetect-usage.html
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps-so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps-so-much-time.html
http://developer.android.com/reference/android/os/SystemClock.html
http://developer.android.com/reference/android/os/SystemClock.html
http://android-developers.blogspot.be/2011/03/identifying-app-installations.html
http://android-developers.blogspot.be/2011/03/identifying-app-installations.html
http://www.theguardian.com/world/interactive/2013/oct/04/tor-stinks-nsa-presentation-document
http://www.theguardian.com/world/interactive/2013/oct/04/tor-stinks-nsa-presentation-document
https://adblockplus.org/android-about
https://disconnect.me/mobile/disconnect-malvertising/sideload
https://disconnect.me/mobile/disconnect-malvertising/sideload
http://www.tcpdump.org/tcpdump_man.html
http://www.spiegel.de/media/media-35670.pdf
http://www.spiegel.de/media/media-35670.pdf
http://docs.seleniumhq.org/
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

Leaky Birds: Exploiting Mobile Application Traffic for Surveillance 383

22. Black, P.E.: Ratcliff/Obershelp pattern recognition, December 2004. https://
xlinux.nist.gov/dads//HTML/ratcliffObershelp.html

23. Bursztein, E.: Time has something to tell us about network address translation.
In: Proceedings of NordSec (2007)

24. Dai, S., Tongaonkar, A., Wang, X., Nucci, A., Song, D.: NetworkProfiler: towards
automatic fingerprinting of Android apps. In: 2013 Proceedings IEEE INFOCOM,
pp. 809–817, April 2013

25. Enck, W., Cox, L.P., Gilbert, P., Mcdaniel, P.: TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smartphones. In: OSDI 2010
Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation (2010)

26. Englehardt, S., Reisman, D., Eubank, C., Zimmerman, P., Mayer, J., Narayanan,
A., Felten, E.W.: Cookies that give you away: the surveillance implications of web
tracking. In: Proceedings of the 24th International Conference on World Wide Web,
pp. 289–299 (2015)

27. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, p. 627 (2011)

28. Grace, M., Zhou, W., Jiang, X., Sadeghi, A.: Unsafe exposure analysis of mobile
in-app advertisements. In: Proceedings of the fifth ACM Conference on Security
and Privacy in Wireless and Mobile Networks 067(Section 2) (2012)

29. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the
droids you’re looking for: Retrofitting Android to protect data from imperious
applications. In: Proceedings of the 18th ACM Conference on Computer and Com-
munications Security, pp. 639–652. ACM (2011)

30. Jacobson, V., Braden, R., Borman, D., Satyanarayanan, M., Kistler, J., Mummert,
L., Ebling, M.: RFC 1323: TCP extensions for high performance (1992)

31. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. IEEE
Trans. Dependable Secure Comput. 2(2), 93–108 (2005)

32. Marlinspike, M.: New tricks for defeating SSL in practice. BlackHat DC, February
2009

33. Murdoch, S.J.: Hot or not: revealing hidden services by their clock skew. In: Pro-
ceedings of the 13th ACM Conference on Computer and Communications Security,
pp. 27–36. ACM (2006)

34. Soltani, A., Peterson, A., Gellman, B.: NSA uses Google cookies to pinpoint targets
for hacking (2013). https://www.washingtonpost.com/news/the-switch/wp/2013/
12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/

35. Stevens, R., Gibler, C., Crussell, J.: Investigating user privacy in android ad
libraries. In: IEEE Mobile Security Technologies (MoST) (2012)

36. Suarez-Tangil, G., Conti, M., Tapiador, J.E., Peris-Lopez, P.: Detecting targeted
smartphone malware with behavior-triggering stochastic models. In: Kuty�lowski,
M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 183–201. Springer,
Cham (2014). doi:10.1007/978-3-319-11203-9 11

37. Tekeoglu, A., Altiparmak, N., Tosun, A.: Approximating the number of active
nodes behind a NAT device. In: 2011 Proceedings of 20th International Conference
on Computer Communications and Networks (ICCCN), pp. 1–7. IEEE (2011)

38. Tongaonkar, A., Dai, S., Nucci, A., Song, D.: Understanding mobile app usage
patterns using in-app advertisements. In: Roughan, M., Chang, R. (eds.) PAM
2013. LNCS, vol. 7799, pp. 63–72. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36516-4 7

https://xlinux.nist.gov/dads//HTML/ratcliffObershelp.html
https://xlinux.nist.gov/dads//HTML/ratcliffObershelp.html
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
http://dx.doi.org/10.1007/978-3-319-11203-9_11
http://dx.doi.org/10.1007/978-3-642-36516-4_7
http://dx.doi.org/10.1007/978-3-642-36516-4_7

384 E. Vanrykel et al.

39. Vanrykel, E.: Passive network attacks on mobile applications. Master’s thesis,
Katholieke Universiteit Leuven (2015)

40. Vanrykel, E., Acar, G., Herrmann, M., Diaz, C.: Exploiting Unencrypted Mobile
Application Traffic for Surveillance (Technical report) (2016). https://securewww.
esat.kuleuven.be/cosic/publications/article-2602.pdf

41. Weinstein, D.: Leaking Android hardware serial number to unprivileged apps
(2013). http://insitusec.blogspot.be/2013/01/leaking-android-hardware-serial-
number.html

42. Wicherski, G., Weingarten, F., Meyer, U.: IP agnostic real-time traffic filtering
and host identification using TCP timestamps. In: 2013 IEEE 38th Conference on
Local Computer Networks (LCN), pp. 647–654. IEEE (2013)

43. Xia, N., Song, H.H., Liao, Y., Iliofotou, M.: Mosaic: quantifying privacy leakage in
mobile networks. In: SIGCOMM 2013, Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM (ii), pp. 279–290 (2013)

44. Zander, S., Murdoch, S.J.: An improved clock-skew measurement technique for
revealing hidden services. In: USENIX Security Symposium, pp. 211–226 (2008)

https://securewww.esat.kuleuven.be/cosic/publications/article-2602.pdf
https://securewww.esat.kuleuven.be/cosic/publications/article-2602.pdf
http://insitusec.blogspot.be/2013/01/leaking-android-hardware-serial-number.html
http://insitusec.blogspot.be/2013/01/leaking-android-hardware-serial-number.html

Footprint Scheduling
for Dining-Cryptographer Networks

Anna Krasnova(B), Moritz Neikes(B), and Peter Schwabe(B)

Digital Security Group, Radboud University,
Toernooiveld 212, 6525 EC Nijmegen, The Netherlands

anna@mechanical-mind.org, m.neikes@student.ru.nl, peter@cryptojedi.org

Abstract. In many communication scenarios it is not sufficient to pro-
tect only the content of the communication, it is necessary to also protect
the identity of communicating parties. Various protocols and technolo-
gies have been proposed to offer such protection, for example, anonymous
proxies, mix-networks, or onion routing. The protocol that offers the
strongest anonymity guarantees, namely unconditional sender and recip-
ient untraceability, is the Dining Cryptographer (DC) protocol proposed
by Chaum in 1988. Unfortunately the strong anonymity guarantees come
at the price of limited performance and scalability and multiple issues
that make deployment complicated in practice.

In this paper we address one of those issues, namely slot reservation.
We propose footprint scheduling as a new technique for participants to
negotiate communication slots without losing anonymity and at the same
time hiding the number of actively sending users. Footprint scheduling is
at the same time simple, efficient and yields excellent results, in particular
in very dynamic networks with a frequently changing set of participants
and frequently changing activity rate.

Keywords: DC-net · Scheduling · Anonymity · Slot-reservation

1 Introduction

“We kill people based on metadata” – this statement by former CIA and NSA
director Michael Hayden demonstrates more than clearly that cryptographically
protecting only the content of communication is insufficient; secure communi-
cation also has to protect the identities of the communicating parties. Various
protocols and techniques have been proposed to enable anonymous communica-
tion. All of these techniques have to choose a trade-off between efficiency in terms
of throughput, latency, and scalability on the one hand and security guarantees

This research was conducted within the Privacy and Identity Lab (PI.lab, http://
www.pilab.nl) and funded by SIDN.nl (http://www.sidn.nl/) and by Netherlands
Organisation for Scientific Research (NWO) through Veni 2013 project 13114. Per-
manent ID of this document: 215ad4d1ccbd4ee7a6c763de5d2a8537. Date: October
19, 2015.

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 385–402, 2017.
DOI: 10.1007/978-3-662-54970-4 23

http://www.pilab.nl
http://www.pilab.nl
http://www.sidn.nl/

386 A. Krasnova et al.

on the other hand. For example, anonymous proxies provide low latency and
potentially very good throughput and scalability, but all participants’ identities
are compromised if one trusted node, the proxy, is compromised. Stronger guar-
antees are offered by a cascade of proxies in onion-routing networks like Tor [17],
which were originally proposed by Syverson, Goldschlag, and Reed in [16]. How-
ever, onion-routing networks are possibly susceptible to attacks that correlate
traffic entering and leaving the network. See, for example, [11]. Mix-nets, pro-
posed already in 1981 by Chaum in [4] do not have this problem; however, they
suffer from increased latency.

The anonymity protocol that offers the strongest guarantees is the Dining-
Cryptographers protocol, also known as Dining-Cryptographers network or short
DC-net, which was introduced by Chaum in [3]. The protocol provides uncondi-
tional communication anonymity for senders and recipients, however, at the cost of
low throughput and high latency, in particular when scaling to many participants.

Dining Cryptographers. To explain how DC-net works, consider an example
with 3 participants exchanging 6-bit messages. Figure 1 depicts the example. Each
participant has a shared symmetric key with each other participant. Assume that
participant A wants to send a message. To do so, she xors her message with all the
keys she shares with the other participants. The result is an output that A sends
out to every participant of the DC-net. The other participants perform the same
procedure, but use a zero message instead of a meaningful one. All outputs of all
participants are xored together to reveal the meaningful message of the participant
A, because keys are canceling out (since each symmetric key is used twice). This
completes a single round of the DC-net, during which one participant can trans-
fer (broadcast) one message; in the next round another participant transmits a
message until all participants are done transmitting.

Collisions and Scheduling. If two participants send in the same round, their
messages collide and become unusable. This can happen accidentally or also

Fig. 1. DC-net with tree participants and 6-bit messages

Footprint Scheduling for Dining-Cryptographer Networks 387

intentionally from a malicious participant who is disrupting communication.
This raises the central question addressed in this paper: How does each par-
ticipant know when it is his or her turn to send? Note that many standard slot-
reservation protocols as used, for example, in dynamic time-division multiple-
access (TDMA) networks are not applicable, because they would compromise
anonymity. The task of slot-reservation in DC-net is to agree on a sending sched-
ule in a way that each participant knows when to send, but does not learn who
is sending in the other slots.

Generally there are three different approaches to solve this problem. The first
approach comprises so-called reservation-map methods. These methods employ
a scheduling vector consisting of slots; each slot represents a future round with
a corresponding index number. To reserve a round, a participant marks the
corresponding slot in the scheduling vector as occupied. The second approach
is to use collision-resolution algorithms. The third approach is to use secure
multi-party computation to obtain a secret permutation that assigns rounds to
participants.

Contributions of this Paper. This paper presents a novel approach that
belongs to the class of reservation-map methods. The general problem of this
class of methods is that they essentially defer the problem of undetected collisions
from the communication phase to a slot-reservation phase. One way to solve this
problem is to use many more slots than participants, to keep the probability of
collisions low. However, this leaves many communication slots unused and dras-
tically reduces the throughput of the DC-net. We present footprint scheduling
as a simple and efficient way to implement the slot-reservation phase without
the loss of throughput. Footprint scheduling is the first scheduling algorithm
to combine reasonable communication overhead that scales logarithmic in the
number of participants, absence of computation overhead, and naturally han-
dling participants joining and leaving the network.

Full Version of this Paper. The full version of this paper can be found at
http://eprint.iacr.org/2015/1213.

Availability of Results. To maximize re-usability of our results, we made the
software used to produce simulation results publicly available at https://github.
com/25A0/DCnet-simulator.

Notation. We write 0B for the string that consists of B zeros. All logarithms
in this paper are to the base 2.

Organization of this Paper. Section 2 reviews the state of the art in schedul-
ing for DC-net. Section 3 introduces footprint scheduling and Sect. 4 describes
how to tune the parameters of footprint scheduling and compares its performance
to previous approaches. Section 5 describes a protection mechanism against dis-
ruption. Section 6 summarizes the key strengths of footprint scheduling.

http://eprint.iacr.org/2015/1213
https://github.com/25A0/DCnet-simulator
https://github.com/25A0/DCnet-simulator

388 A. Krasnova et al.

2 Existing Scheduling Methods

In this section we describe the previous approaches to scheduling in DC-net. As
listed in the previous section, we group the algorithms into three categories: reser-
vation maps, collision resolution, and secure multi-party computation (MPC).

Reservation Maps. Reservation maps were already introduced as one possible
way to handle scheduling in the original DC-net paper by Chaum [3]. The idea
is to perform a separate scheduling phase to assign rounds to particular par-
ticipants to avoid collisions. During this phase participants can reserve a round
of DC-net by setting a bit of a scheduling message at the position correspond-
ing to the round number. Note that also scheduling messages are sent through
the anonymous DC-net channel; i.e., they are xored with all the shared keys of
the other participants. Disruptions of the scheduling message can be detected
with a certain probability by checking if the Hamming weight of the message is
smaller or equal than the number of participants. The downside of this approach
is that, because of the birthday paradox, the number of bits in the scheduling
message must be quadratic in the number of participants to avoid collisions with
high probability. Reservation maps are used by Herbivore, an implementation of
DC-net presented by Goel, Robson, Polte, and Sirer in [9]. Herbivore optimizes
the size of the scheduling message by allowing some collisions during message
cycle depending on the message size (collisions for smaller messages are more
likely). For performance comparison in Sect. 4 we also performed such optimiza-
tion, however we decided for optimization that does not depend on the size of
the message (See Appendix A in the full version of this paper for details).

The length of the scheduling message can be reduced if instead of bits repre-
senting rounds, one would use elements of the additive group of integers modulo
m [12]. After all the scheduling messages of participants are added up, elements
of value 0 indicate an unreserved round, elements of value 1 indicate a reserved
round, all other values indicate collisions.

Collision Resolution. The second approach proposed by Chaum in [3] is to
use a contention algorithm with discrete time slots and resolve collisions by
retransmitting the messages. A common example of such an algorithm is slotted
ALOHA [14]. In Slotted ALOHA participants pick a time slot for transmission
at will. Whenever a collision happens, participants wait for a random amount
of time before they pick a new time slot for retransmission. The simplicity of
the protocol is countered by the limitation of the transmission capacity of the
network due to collisions.

One way to improve transmission capacity in collision resolution is through
a technique called superposed receiving. The idea is to derive the retransmission
schedule for collided messages from the result of a collision. New transmissions
have to wait until a collision has been resolved. In [13, Sect. 3.1.2.3.2], A. Pfitz-
mann presents such an algorithm, which is an improvement of the tree algorithm
that was independently proposed by Capetanakis in [2] and by Tsybakov and

Footprint Scheduling for Dining-Cryptographer Networks 389

Mikhailov in [18]. Pfitzmann calls this algorithm tree-like collision resolution with
superposed receiving ; in the following, we refer to this algorithm as Pfitzmann’s
algorithm. Let the number of messages that collided be s, then the protocol
guarantees that the collision will be resolved in exactly s retransmission steps.
Additionally, this protocol guarantees fair usage of the channel for all sending
participants. Note that this algorithm requires DC-net to be modified to work
on integers modulo m > 2 instead of simple xors. This makes it possible to com-
pute the “average” of the collided messages (treated as an integer). Participants
that sent a message smaller than the average retransmit; participants that sent
a larger message wait. As soon as only two messages collided, only one par-
ticipant retransmits; the other message is recomputed locally. A more detailed
description of the algorithm can be found in [19] and [7, Sect. 3.2.2].

Another algorithm, using a similar approach, was presented in [1] by Bos
and Boer. It also computes a retransmission schedule for collided messages and
requires s retransmissions after s messages collided. However, it has a larger
overhead in header messages and is computationally more expensive than Pfitz-
mann’s algorithm.

Note that these superposed-receiving techniques can also be applied to slot
reservation as proposed by Waidner in [19]. Pfitzmann’s algorithm is then used to
resolve collisions of reservation messages. Each reservation message contains the
number of the round in which a participant wants to send. With this approach the
traffic load does not depend on the length of the messages transmitted through
DC-net as in the original Pfitzmann’s algorithm.

The first protective measure against disruption during the scheduling phase
was presented by Waidner and B. Pfitzmann in [20,21]. The idea is to investigate
the reservation phase in case of impossible results of the specific scheduling
algorithm used. For example, in Pfitzmann’s algorithm, the number of initially
collided messages should be not more than the predefined maximum. To enable
investigation, all the outputs during the scheduling phase are protected by output
commitments. In the special phase called palaver phase any participant can start
an investigation of the scheduling phase in order to detect disrupters.

Secure Multi-party Computation. In [10], Golle and Juels propose two new
versions of DC-net that allow detection and identification of disrupters with high
probability by using zero-knowledge proofs. They do not consider the problem
of collisions (and thus reservation of rounds) in their solution; they comment
that “the problem can be avoided through techniques like secure multi-party
computation of a secretly distributed permutation of slots among players, but
this is impractical”.

Studholme and Blake propose in [15] a way to implement such a multi-party
computation called secret shuffle by organizing a Mix-net with participants of
DC-net serving as nodes. Encrypted round-reservation requests are transmit-
ted through this Mix-net to obtain a secretly permuted vector of re-encrypted
requests. Re-encryption is performed such that a participant can recognize his
own request only after the permutation is completed. His reserved round number
can be derived from the position of the request in the vector.

390 A. Krasnova et al.

This idea is used in the Master’s thesis of Franck [7], in which he derives a
fully verifiable variant of DC-net. Later, verifiable DC-net was rediscovered in [6]
and implemented under the name Verdict. The advantage of Verdict is that it
allows switching between traditional DC-net and verifiable DC-net, depending
on the presence of disruption. For scheduling, Verdict uses a similar approach
as [7,15] and the same as in another implementation of DC-net by the same
group, Dissent [5,22].

In [8], Franck proposes a scheduling for DC-net based on the collision-
resolution protocol SICTA. This scheduling protocol is very similar to Pfitz-
mann’s collision resolution algorithm, the only difference being that it operates
with multiplication of ciphertexts instead of addition. The author proposes to use
this algorithm to produce a secret shuffle of public keys of participants to estab-
lish a schedule. The protocol is non-deterministic; it achieves a maximum stable
throughput (MST) of 0.924 messages per round. Disruption in the scheduling
phase in this protocol is prevented by using zero-knowledge proofs.

3 Footprint Scheduling

In this section, we introduce footprint scheduling. Footprint scheduling is similar
to the map-reservation algorithm described by Chaum [3]; however, it requires
significantly shorter reservation vectors and drastically decreases the likelihood
of (undetected) collisions in these vectors.

In the map-reservation algorithm, the A active participants (i.e., participants
who want to send a message in the next round) of a DC-net with a total of N
users can reserve one out of S slots by inverting the corresponding bit in a
reservation vector of S bits. The reservation vector is then transmitted through
DC-net, and the resulting reservation vector, i.e., the xor of all the individual
reservations, is broadcast to all participants. See also Sect. 2. An undetected
collision occurs in this vector as soon as an odd number of participants attempts
to reserve the same slot. This event is obviously undesirable, since it leads to
collisions of messages during the sending phase. To decrease the probability
of such an event, the original paper [3] suggests to choose the length of the
reservation vector to be quadratic in the number of participants.

Footprints Instead of Bits. The first idea of footprint scheduling is to use
B > 1 bits in the reservation vector to represent each slot of the schedule.
The reservation vector is thus extended to a length of B · S bits. A partici-
pant attempts to reserve a specific slot by changing the corresponding B bits
of the reservation vector to a random value f ∈ {0, 1}B \ {0}B . This value is
called his footprint . Figure 2a demonstrates an example of a reservation vector
with 3-bit footprints. DC-net will broadcast the xor of all individual reservation
vectors to the participants, just as for plain map reservation. If the reservation
vector contains the footprint of a participant, it is likely that no other partici-
pant tried to reserve that slot. If instead the participant finds a different value,
this indicates that at least one other participant tried to reserve the same slot.

Footprint Scheduling for Dining-Cryptographer Networks 391

Fig. 2. The result of two scheduling rounds in footprint scheduling

In Fig. 2a one can see that participants C, D and F try to reserve the same slot.
All three of them can recognize the collision since their original footprint s are
not in the result of this round.

Scheduling Cycles and Message Cycles. Using B bits per slot in the reser-
vation vector alone would simply blow up the reservation vector by a factor of B.
This is where footprint scheduling applies a second modification to reservation
maps, which allows to drastically reduce the size of S (for example, to S = 32
for up to 10, 000 participants). The idea is to iterate slot reservation through a
scheduling cycle consisting of R scheduling rounds. In the first round, each par-
ticipant just attempts to reserve a slot as described above. In each subsequent
round, the behavior depends on whether the participant detected a collision in
“his” slot in the previous round. If not, he will reserve the same slot again with
a fresh random footprint. If the participant detected a collision, he flips a coin to
choose between two possible actions. If the coin is 1, the participant backs off
and does not continue to attempt to reserve any slot during this scheduling cycle.
If the coin is 0, he tosses another coin1. If that second coin is 1, he stays in his
slot and reserves it again with a fresh random footprint. Otherwise he randomly
picks one of the slots that were left empty in the previous round (i.e., the ones
that produced a zero xor of all footprints) and places a fresh random footprint
in the corresponding slot. If no such empty slot exists, he backs off for the rest
of the scheduling cycle.

In the last round of a cycle, all participants that detected a collision in their
slot in the second but last round, back off and do not attempt to reserve a slot in
the last round. This leaves the corresponding slots empty in the very last round.
When the schedule is then executed, all empty slots can be skipped as in plain
reservation maps.

Let us return to the example. After the first round, participants A, B and E
have successfully reserved slots 7, 4 and 5, respectively. Participants C, D and F

1 Note that tweaking the bias of these coin tosses is necessary to reach peak perfor-
mance in large networks. The pseudocode description of the algorithm in Appendix A
shows optimal probabilities for cases where users are allowed to reserve multiple slots.

392 A. Krasnova et al.

know that their reservation collided with reservation attempts by other partici-
pants. Slots 1, 3, 5 and 8 appear empty after the first round. Figure 2b demon-
strates the reservation vector after the second round. Participants D and F have
moved away from slot 2 to one of the empty slots, while participant C stayed
in the first slot. Note that participants A, B and E placed a fresh footprint in
the slots they successfully reserved during the first round. They will continue to
generate new footprints each round to reveal undetected collisions in case they
occurred in the previous rounds.

By the end of the scheduling cycle several users hold reservations of slots
in the following message cycle. The actual transfer of user messages in DC-net
happens during this cycle. A message cycle has a maximum of S rounds, the
maximum amount of slots users could reserve during the scheduling cycle.

Combining Scheduling Cycles and Message Cycles. The short length of
a scheduling vector is advantageous since scheduling cycles and message cycles
can now be combined to reduce latency in DC-net. For this, one has to have
the number of scheduling rounds R be equal to (or smaller than) the number
of slots S in the scheduling vector. Then the scheduling vector can be attached
as a header to a message in the message cycle to agree on the schedule of the
upcoming message cycle.

Multiple Reservations. The activity rate of the network participants (i.e. the
percentage of users who want to send data) will depend on the application for
which a DC-net is used; for an anonymous file sharing application, the activity
rate might hit 100% regularly, while a chat application might have a much lower
activity rate on average. The algorithm that we described up to this point is
not well-suited for networks with a very low activity rate. If there are less than
S active participants, and each of them is allowed to reserve exactly one slot,
then the remaining slots will be unused. This has two disadvantages: On the one
hand, it limits the potential throughput of small, inactive networks. On the other
hand, this leaks information about the number of actively sending participants
in the network. If only 4 out of 16 slots are reserved at the end of a scheduling
cycle, then it is very likely that there are exactly 4 actively sending participants.

Both disadvantages can be solved by allowing all participants to reserve up to
S slots. Thus, at the beginning of a scheduling cycle, each participant picks
up to S slots at random, and tries to individually reserve each of them, just as
described above. It is important to note that different footprints have to be used
for each slot.

A pseudocode description of footprint scheduling is given in Appendix A. It
also shows the additional steps that have to be taken in order to allow partici-
pants to reserve multiple slots.

Footprint Scheduling for Dining-Cryptographer Networks 393

4 Benchmarks and Comparison

This section shows how to optimize the configuration of footprint scheduling, and
compares its performance to the performance of other scheduling algorithms. In
the first part of this section, we will very briefly inspect the performance of foot-
print scheduling for different configurations in order to find optimal parameters.
After that, we will compare its performance to the performance of Pfitzmann’s
scheduling algorithm and to Chaum’s map-reservation scheduling algorithm.

Choice of Parameters. There are three parameters that can be tweaked to
minimize scheduling overhead: B, the number of bits per slot, S, the number
of slots, and R, the number of scheduling rounds per scheduling cycle. The
scheduling overhead is measured in terms of the amount of scheduling data that
each participant has to send for each successful reservation that the network
achieves. During one scheduling cycle, each participant will send B ·S ·R bits of
scheduling data. At the end of the cycle, there will be Ŝ successful reservations.
Ideally, all S slots were successfully reserved, so that Ŝ = S. But Ŝ might also
be smaller than S if there were undiscovered collisions or unused slots in the
schedule. Thus, the overhead O can be measured by

O =
S · R · B

Ŝ
. (1)

Our optimization is mostly based on this formula, and we use simulations to
test how different configurations perform. Schedule convergence is an important
metric for this optimization. A messaging slot has converged if there is at most
one participant who tries to reserve this slot. A schedule has converged if all
S slots have converged. If a slot did not converge by the end of a scheduling
cycle, then no participant can successfully send a message in that slot once the
schedule is executed. It is thus crucial for the throughput of the algorithm that
most of the slots converge.

We will start by minimizing R · B. Figure 3 shows how many scheduling
rounds are necessary to reach schedule convergence2 for different values of B.
Increasing B leads to a decrease in R, but it is easy to see that B ·R is minimal
for B = 2, regardless of the choice of S. Changing the network size does not
affect this outcome.

In the previous simulation, the number of participants was fixed. But in order
to determine an optimal value for R in general, we will now look at networks of
various sizes. Figure 4 shows the number of scheduling rounds that are necessary
to resolve all collisions for B = 2 bits and various values of S. The number of
required rounds is clearly influenced by both, the network size and the number of
slots. Although schedules converge faster on average when the number of slots is
small, it is not recommended to choose S < R: Similar to Pfitzmann’s scheduling

2 Note that, while it is easy to detect in a simulation whether all collisions have been
resolved, it is not trivial to detect this in practice.

394 A. Krasnova et al.

Fig. 3. The number of rounds that are necessary to resolve all collisions, for 5000 par-
ticipants and different values of B and S.

algorithm, each message in footprint scheduling depends on the content of the
previous message. Therefore, the scheduling data needs to be sent in individual
packages. For B = 2, S = 16, these packages will only hold 32 bits of data. When
this data is sent over the Internet, then the TCP-IP header of at least 32 Byte
will add a massive overhead. But if S ≥ R, then the current message cycle and
the scheduling cycle for the following schedule can be interleaved as described
in Sect. 3. This will decrease the relative overhead of the TCP-IP header and
network delay. For this reason, we choose S = 32, which requires far less than
32 scheduling rounds, so that scheduling and message data can be interleaved.

Next, we will inspect the relation between the network size and the number of
scheduling rounds. The dashed blue line in Fig. 4 shows log(N), with N being the
number of participants in the network. For S = 32, no more than log(N) rounds
are necessary on average for the schedule to converge. Thus, rather than having
one fixed value for R, we can dynamically determine R based on the current size
of the network.

Performance Comparison. With this configuration, S = 32, R = log(N),
B = 2, we will now show how footprint scheduling performs compared to other
scheduling algorithms. For this, we will show benchmark results for three sce-
narios: One with a very high activity rate, as it may occur for torrent downloads
and video streaming, one with a very low activity rate, which could simulate
instant-messaging, as well as two scenarios with intermediate activity rates.

We will compare the performance of footprint scheduling to the performance
of Chaum’s reservation map, as well as to the performance of Pfitzmann’s
collision resolution algorithm. We optimized the ratio between the number of
participants and the number of slots for both algorithms using a series of

Footprint Scheduling for Dining-Cryptographer Networks 395

Fig. 4. The number of rounds that are necessary to resolve all collisions for various
numbers of slots and networks of different sizes. These results were produced with 2 bit
footprints.

simulations. We should note that the scheduling overhead of Chaum’s reser-
vation map depends heavily on the presence or absence of an estimation of the
current activity rate. An abstract description of an algorithm that can be used
to predict the activity rate is given in [9, pp. 10–11]. But especially in large
networks where message cycles can take multiple minutes, the number of users
might change drastically between two subsequent rounds. This makes it partic-
ularly difficult to predict the activity rate of the following cycle correctly. In
our simulation, we measure the performance of Chaum’s algorithm for the case
that there is no estimation of the activity rate. Note that footprint scheduling is
only configured based on the size of the network; it does not require an estimate
of the number of active users. More details on the optimization process can be
found in Appendix A in the full version of this paper.

Performance is measured in terms of scheduling overhead, as defined in the
beginning of this section. Note that the size of the message itself is not taken into
account in our simulations because the absolute overhead to reserve a slot is not
affected by the message size. Also, while Pfitzmann’s algorithm could be used to
resolve collisions between actual messages, we implement it for the scheduling
purposes, which is in general more efficient for reasonable message sizes.

Before presenting results of simulation, we demonstrate in Table 1 theoretical
estimations of scheduling overhead according to the formulas given in Table 2 in
Appendix C in the full version of this paper. These formulas are valid in case of no
collisions, which means that after completion of the scheduling protocol all slots
are reserved successfully. In such conditions footprint scheduling is advantageous
in all considered network sizes. However, results of simulations show somewhat
different picture, which we discuss below.

In our simulations we do not consider the number of participants in the
network to be larger than 10, 000. Significantly larger networks are almost always
impractical because the amount of message data that is produced by the entire
network grows quadratically with the number of participants.

396 A. Krasnova et al.

Fig. 5. The overhead of all three scheduling algorithm in networks with different activ-
ity rates.

Figure 5 shows the performance of the three scheduling algorithms in networks
with different activity rates. The scheduling overhead of both, Pfitzmann’s algo-
rithm and footprint scheduling, scale with the activity rate of the network. The
overhead of Chaum’s reservation maps increases with a decrease in the network’s
activity rate, since the available slots cannot be used as efficiently. Chaum’s algo-
rithm does, however, offer the lowest scheduling overhead for large networks. In
theory, Pfitzmann’s algorithm offers a scheduling overhead in large, active net-
works that is similar to what Chaum’s reservation maps achieves, but we will
address in Sect. 6 why Pfitzmann’s algorithm is not practical in large networks.

In a network where the activity rate and the network size do not change dras-
tically, the scheduling overhead can be minimized by choosing either Chaum’s
reservation maps or Pfitzmann’s algorithm, depending on the exact characteris-
tics of the network.

However, in a dynamic network where network size and activity rate change
over time, footprint scheduling gives a better overall performance: While the
activity rate is low, the network can benefit from the reduced scheduling over-
head that footprint scheduling offers. In large networks and in networks with a
very high activity rate, footprint scheduling still adds a slight increase in the
scheduling overhead, compared to Chaum’s reservation maps.

Footprint Scheduling for Dining-Cryptographer Networks 397

Table 1. Average scheduling overhead in Bytes (based on the formulas given in Table 2
in Appendix C in the full version of this paper).

Algorithm Participants

100 200 500 1000 2000 5000 10,000

Footprint (B = 2) 13.29 15.29 17.93 19.93 21.93 24.58 26.58

Pfitzmann 24.93 27.93 31.9 34.9 37.9 41.86 44.86

Herbivore/Chaum (A = 1%) 3200 3200 3200 3200 3200 3200 3200

Herbivore/Chaum (A = 10%) 320 320 320 320 320 320 320

Herbivore/Chaum (A = 50%) 64 64 64 64 64 64 64

Herbivore/Chaum (A = 100%) 32 32 32 32 32 32 32

5 Disruptions and footprint Scheduling

Recall that disruptions are collisions that are intentionally induced by a denial-
of-service attacker or a participant who attempts to increase his transmission
bandwidth on the cost of the bandwidth of other participants. In this section
we briefly describe a possible protection against an attacker who attempts to
disrupt the scheduling phase of footprint scheduling.

The literature describes two approaches to cope with disruption in DC-net.
The first approach is to open up special meaningless (trap) messages of par-
ticipants after (suspected) disruption [1,3,21] and thus reveal which partici-
pants did not behave according to the protocol. The second approach is to use
zero-knowledge proofs [5,6,8,10]. Our technique follows the first approach since
it does not require any of the two computationally-secure variants of DC-net
introduced in [10]. Additionally, scheduling messages can be opened without
compromising anonymity of participants. This holds if the opened schedule is
afterwards discarded and if the sending rates are constant, so sending wishes of
a particular participant cannot be learned. One of the ways to achieve constant
sending rates is to let users regularly reserve slots for dummy messages. Dummy
messages in turn can be used as traps to protect message phase from disruption.

The idea is to use a PRNG with a secret seed for all randomness that is
required for footprint scheduling (i.e., slot positions, footprints and random
choice to stay in a slot or back off). To prevent cheating, users are obliged
to commit to the seed. Note that this is an obvious choice also for efficiency
reasons. To protect against disrupters, each participant uses a new random seed
for every scheduling cycle and commits to this seed before scheduling.

Whenever the decision is made to open a scheduling cycle, each participant
publishes the seed used for this cycle. These seeds are checked against the com-
mitments and then the scheduling vectors of each round are recomputed and
compared with the scheduling vectors that were previously obtained from the
DC-net output. Note, keys and messages output by each individual participant
are not opened and verified at this stage. If these recomputed scheduling vectors
match, all participants followed the rules. If not, at least one of the participants
did not follow the protocol. In order to find the disrupter, all participants reveal

398 A. Krasnova et al.

their keys used in the scheduling phase. To prevent disrupters from wrongly
accusing honest participants by revealing an incorrect key, one can enforce that
participants also commit to those shared keys in advance.

Such a technique provides performance improvements when the scheduling
algorithm has a certain chance of undetected collisions (Footprint, Herbivore)
for the following reason. Undetected collisions during the scheduling cycle lead
to collisions during the message cycle. How can one efficiently distinguish an
honest collision of messages due to such a problem and a disruption? Traps
(non-meaningful messages that can be opened with no harm to anonymity) will
not be helpful to answer this question for every single case of messages colliding.
Opening of keys and rounds is too costly for such a check, ideally one would want
to apply heavy methods only if it is known that there is a disrupter. Our method
allows to perform a quick and efficient check if there was a disruption or not by
opening only seeds used for generating footprints, and only after that decide if
to open the scheduling cycle, which involves opening keys shared between users
and verifying if individual outputs were made correctly.

6 Advantages of footprint Scheduling

In this section, we provide a detailed description of the main advantages of the
footprint algorithm.

As mentioned earlier, footprint scheduling inherits from the reservation-map
algorithm. In particular, footprint scheduling involves no computational overhead
forparticipants.Thealgorithm improves on reservationmapsby reducing theprob-
ability of undetected collisions in the reservation vector. In networks with very high
activity rate the cost for this improvement can be a very slight increase in schedul-
ing overhead, depending on how many undetected collisions the reservation-map
algorithm accepts. If message collisions are prohibitive or if the network does not
have a very high activity rate, footprint scheduling noticeably reduces the schedul-
ing overhead compared to reservation maps. For details see Sect. 4.

Further, unlike superposed receiving and MPC-based scheduling protocols,
footprint scheduling naturally handles events of participants joining or leaving
the DC-net during the schedule negotiation. When a participant disconnects, his
reservation slot will appear free in the next round. Any participant that is in
the process of resolving a collision can now move to this slot. Thus, footprint
scheduling re-allocates slots that become available, even in the middle of a sched-
ule cycle. At the same time footprint keeps scheduling and message cycles short,
which permits fast joining to the network. That in turn improves anonymity,
allowing potentially a bigger anonymity set in the new cycle.

When using Chaum’s reservation map, a good estimate of the network’s activ-
ity rate is necessary in order to optimize the scheduling overhead (for details, see
Sect. 4). With footprint scheduling, the success chance of a reservation attempt
automatically increases if fewer participants bid for a slot in the next message
cycle. Senders will be able to reserve a slot in fewer attempts if the activity of
other participants goes down, and it will take more attempts if other participants
become more active. This makes it unnecessary to estimate the activity rate.

Footprint Scheduling for Dining-Cryptographer Networks 399

Just like Pfitzmann’s scheduling algorithm, footprint scheduling is an inter-
active protocol, in the sense that each message in the protocol depends on the
content of the previous one. For Pfitzmann’s algorithm, the protocol is com-
pleted after A successive messages, where A is the number of active network
participants. In the case of footprint scheduling, the protocol is completed after
S successive messages, where S � A for large networks, as we showed in Sect. 4.
In practice, network latency alone can be a major obstacle to complete a proto-
col of A messages in a large network. The following example shows a best-case
scenario for a network with 10, 000 active participants: Assume that all partic-
ipants live in major US cities. In this case, the average latency between them
will be about 33 ms on average at the time of this writing3. Thus, there will be a
delay of at least 66 ms between each message. With 10, 000 active participants,
this means that the protocol is completed after 10, 000 · 66ms = 660 s = 11min.

Recall that Pfitzmann’s scheduling protocol cannot be completed if a partic-
ipant leaves before the protocol is completed. It is impractical to demand that
not a single participant must leave the network over a period of 11 min, espe-
cially when some participants are connected via personal mobile devices like a
phone or a laptop. Footprint scheduling does not suffer from this problem since
each protocol run is completed much faster, but also since the protocol can be
completed even if users disconnect from the network.

Footprint scheduling is also advantageous due to the fact that it hides the num-
ber of actively sending users in the network from an eavesdropping adversary. Such
information can serve as a marker of upcoming social events; for example, the Tor
network showed largely increased activity just before the Arab Spring4.

One of the advantages of DC-net over Mix-nets (and onion routing) is that
it hides the number of actively sending users due to the fact that all the users
have to contribute to the network in order to facilitate anonymous sending.
Unfortunately, previous efficient scheduling protocols either allow to estimate the
number of active users by counting the number of empty slots in the scheduling
messages, or they require to know the number of active users to operate.

Footprint scheduling disguises the number of active users as long as each
user is allowed to reserve multiple slots. Even very small networks, the number
of free slots does not give away the number of active users. An internal observer
can gain a rough estimate of the number of active users over a longer period,
based on the number of collisions that they experience. However, for an external
observer, it is impossible to determine reliably whether there is a collision in any
of the slots, since footprints change with every round. Further, for an external
observer it is impossible to estimate if there were collisions in any of the slots
since footprints change from round to round even if there were no collisions. In
footprint scheduling the number of slots as well as discussion rounds does not
change with the number of active users. Altogether, this prevents estimation of
actively sending participants if footprint scheduling is used.

3 http://ipnetwork.bgtmo.ip.att.net/pws/network delay.html.
4 http://www.monitor.upeace.org/innerpg.cfm?id article=816.

http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
http://www.monitor.upeace.org/innerpg.cfm?id_article=816

400 A. Krasnova et al.

Last but not least, footprint scheduling has an advantage over other map
reservation protocols due to fast and efficient method of verifying if a collision
in message cycle was caused by an undetected collision in scheduling cycle or by
a disruption. For details, see Sect. 5.

A Pseudocode Description of footprint Scheduling

Algorithm 1. Footprint scheduling from the perspective of one participant A
Parameters: Number of footprint bits B, number of participants N , number of slots S per

message cycle
Output: A vector D ∈ {0, 1}S , indicating for each slot whether it can be used for sending.

R ← log(N)
D ← {1}S � Vector indicating which slots can be used for sending
f ← {0, 1}B \ {0}B � Set of possible footprints
F ←R fS � Vector holding footprints for each slot
V ← SlotReserve(D, F) � First round of the scheduling cycle
for i from 1 to R − 2 do � Rounds 1 to R − 2

for j from 0 to s − 1 do
if D[j] = 0 then

continue
end if
if V [j] �= F [j] then � Reservation attempt failed

c1 ←R [0, 1) � Biased coin toss
if c1 < 0.7 then

D[j] ← 0 � Back off
else

c2 ←R {0, 1}
if c2 = 1 then � Try same slot again
else � Empty slot available?

I ← {s′|D[s′] = 0 and V [s′] = 0}
D[j] ← 0
if I �= ∅ then � Pick empty slot

s′ ←R I
D[s′] ← 1

end if
end if

end if
end if

end for � Generate new footprints
F ←R fS

V ← SlotReserve(D, F)
end for
for j from 0 to s − 1 do � Last round

if V [j] �= F [j] then
D[j] ← 0

end if
end for
F ←R fS

SlotReserve(D, F)
return D

Footprint Scheduling for Dining-Cryptographer Networks 401

Algorithm 2. Procedure for a slot-reservation attempt in footprint scheduling
procedure SlotReserve(D,F)

VA ← {{0}B}s

for i from 0 to s − 1 do
if D[i] = 1 then VA[i] ← F [i]
end if

end for
Broadcast VA through DC-net
Receive V (xor of all individual scheduling vectors) from DC-net
return V

end procedure

References

1. Bos, J., Boer, B.: Detection of disrupters in the DC protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 320–327. Springer,
Heidelberg (1990). doi:10.1007/3-540-46885-4 33

2. Capetanakis, J.I.: Tree algorithms for packet broadcast channels. IEEE Trans. Inf.
Theory IT–25(5), 505–515 (1979)

3. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988). http://www.cs.ucsb.edu/˜ravenben/
classes/595n-s07/papers/dcnet-jcrypt88.pdf

4. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981). www.freehaven.net/anonbib/
cache/chaum-mix.pdf

5. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security, pp. 340–350. ACM (2010). http://dedis.cs.yale.edu/dissent/papers/
ccs10/dissent.pdf

6. Corrigan-Gibbs, H., Wolinsky, D.I., Ford, B.: Proactively accountable anonymous
messaging in verdict. In: Proceedings of the 22nd USENIX Conference on Secu-
rity, pp. 147–162. USENIX Association (2013). http://dedis.cs.yale.edu/dissent/
papers/verdict.pdf

7. Franck, C.: New directions for dining cryptographers. Master’s thesis, University
of Luxembourg (2008). http://secan-lab.uni.lu/images/stories/christian franck/
FRANCK Christian Master Thesis.pdf

8. Franck, C.: Dining cryptographers with 0.924 verifiable collision resolution (2014).
http://arxiv.org/abs/1402.1732

9. Goel, S., Robson, M., Polte, M., Sirer, E.G.: Herbivore: a scalable and efficient
protocol for anonymous communication. Technical report 2003-1890, Cornell Uni-
versity (2003). http://www.cs.cornell.edu/People/egs/papers/herbivore-tr.pdf

10. Golle, P., Juels, A.: Dining cryptographers revisited. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24676-3 27

11. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: 2005 IEEE Sym-
posium on Security and Privacy, pp. 183–195. IEEE (2005). https://www.cl.cam.
ac.uk/∼sjm217/papers/oakland05torta.pdf

http://dx.doi.org/10.1007/3-540-46885-4_33
http://www.cs.ucsb.edu/~{}ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf
http://www.cs.ucsb.edu/~{}ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf
http://www.freehaven.net/anonbib/cache/chaum-mix.pdf
http://www.freehaven.net/anonbib/cache/chaum-mix.pdf
http://dedis.cs.yale.edu/dissent/papers/ccs10/dissent.pdf
http://dedis.cs.yale.edu/dissent/papers/ccs10/dissent.pdf
http://dedis.cs.yale.edu/dissent/papers/verdict.pdf
http://dedis.cs.yale.edu/dissent/papers/verdict.pdf
http://secan-lab.uni.lu/images/stories/christian_franck/FRANCK_Christian_Master_Thesis.pdf
http://secan-lab.uni.lu/images/stories/christian_franck/FRANCK_Christian_Master_Thesis.pdf
http://arxiv.org/abs/1402.1732
http://www.cs.cornell.edu/People/egs/papers/herbivore-tr.pdf
http://dx.doi.org/10.1007/978-3-540-24676-3_27
https://www.cl.cam.ac.uk/~sjm217/papers/oakland05torta.pdf
https://www.cl.cam.ac.uk/~sjm217/papers/oakland05torta.pdf

402 A. Krasnova et al.

12. Pfitzmann, A.: How to implement ISDNs without user observability - Some
remarks. Technical report, Department of Computer Science, University of Karl-
sruhe. Internal report 14/85 (1985)

13. Pfitzmann, A.: Diensteintegrierende Kommunikationsnetze mit teil-
nehmerüberprüfbarem Datenschutz. Ph.D. thesis, Fakultät für Informatik,
Universität Karlsruhe (1990). http://dud.inf.tu-dresden.de/sirene/publ/Pfit
88 0.pdf, http://dud.inf.tu-dresden.de/sirene/publ/Pfit 88 1.pdf, http://dud.
inf.tu-dresden.de/sirene/publ/Pfit 88 2.pdf, http://dud.inf.tu-dresden.de/
sirene/publ/Pfit 88 3.pdf, http://dud.inf.tu-dresden.de/sirene/publ/Pfit 88
4.pdf, http://dud.inf.tu-dresden.de/sirene/publ/Pfit 88 5.pdf, http://dud.inf.
tu-dresden.de/sirene/publ/Pfit 88 6.pdf

14. Roberts, L.G.: Aloha packet system with and without slots and
capture. SIGCOMM Comput. Commun. Rev. 5(2), 28–42 (1975).
www.freehaven.net/anonbib/cache/chaum-mix.pdf

15. Studholme, C., Blake, I.: Multiparty computation to generate secret permutations.
IACR Cryptology ePrint Archive: Report 2007/353 (2007). http://eprint.iacr.org/
2007/353

16. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: 1997 IEEE Symposium on Security and Privacy, pp. 44–54. IEEE
(1997). www.onion-router.net/Publications/SSP-1997.pdf

17. Tor project: Anonymity online. https://www.torproject.org/. Accessed 17 Mar
2015

18. Tsybakov, B.S., Mikhailov, V.A.: Free synchronous packet access in a
broadcast channel with feedback. Probl. Peredachi Informatsii 14(4), 32–
59 (1978). http://www.mathnet.ru/php/getFT.phtml?jrnid=ppi&paperid=1558&
what=fullt&option lang=eng. (in Russian)

19. Waidner, M.: Unconditional sender and recipient untraceability in spite of active
attacks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, pp. 302–319. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4 32

20. Waidner, M., Pfitzmann, B.: The dining cryptographers in the disco: unconditional
sender and recipient untraceability with computationally secure serviceability. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
690–690. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4 69

21. Waidner, M., Pfitzmann, B.: The dining cryptographers in the disco: uncondi-
tional sender and recipient untraceability with computationally secure serviceabil-
ity. Technical report, Universität Karlsruhe (1998). See also abstract [20]. http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.218&rep=rep1&type=pdf

22. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in numbers:
making strong anonymity scale. In: Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, pp. 179–192. USENIX Association
(2012). http://dedis.cs.yale.edu/dissent/papers/osdi12.pdf

http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_0.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_0.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_1.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_2.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_2.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_3.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_3.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_4.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_4.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_5.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_6.pdf
http://dud.inf.tu-dresden.de/sirene/publ/Pfit_88_6.pdf
http://www.freehaven.net/anonbib/cache/chaum-mix.pdf
http://eprint.iacr.org/2007/353
http://eprint.iacr.org/2007/353
http://www.onion-router.net/Publications/SSP-1997.pdf
https://www.torproject.org/
http://www.mathnet.ru/php/getFT.phtml?jrnid=ppi&paperid=1558&what=fullt&option_lang=eng
http://www.mathnet.ru/php/getFT.phtml?jrnid=ppi&paperid=1558&what=fullt&option_lang=eng
http://dx.doi.org/10.1007/3-540-46885-4_32
http://dx.doi.org/10.1007/3-540-46885-4_69
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.218&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.218&rep=rep1&type=pdf
http://dedis.cs.yale.edu/dissent/papers/osdi12.pdf

Web Security and Data Privacy

How Anywhere Computing Just Killed Your
Phone-Based Two-Factor Authentication

Radhesh Krishnan Konoth(B), Victor van der Veen, and Herbert Bos

Vrije Universiteit, Amsterdam, The Netherlands
r.k.konoth@vu.nl, {vvdveen,herbertb}@cs.vu.nl

Abstract. Exponential growth in smartphone usage combined with
recent advances in mobile technology is causing a shift in (mobile) app
behavior: application vendors no longer restrict their apps to a single
platform, but rather add synchronization options that allow users to
conveniently switch from mobile to PC or vice versa in order to access
their services. This process of integrating apps among multiple platforms
essentially removes the gap between them. Current, state of the art,
mobile phone-based two-factor authentication (2FA) mechanisms, how-
ever, heavily rely on the existence of such separation. They are used
in a variety of segments (such as consumer online banking services or
enterprise secure remote access) to protect against malware. For exam-
ple, with 2FA in place, attackers should no longer be able to use their
PC-based malware to instantiate fraudulent banking transactions.

In this paper, we analyze the security implications of diminishing gaps
between platforms and show that the ongoing integration and desire for
increased usability results in violation of key principles for mobile phone
2FA. As a result, we identify a new class of vulnerabilities dubbed 2FA
synchronization vulnerabilities. To support our findings, we present prac-
tical attacks against Android and iOS that illustrate how a Man-in-the-
Browser attack can be elevated to intercept One-Time Passwords sent to
the mobile phone and thus bypass the chain of 2FA mechanisms as used
by many financial services.

Keywords: Two-Factor Authentication · Smartphone security · Finan-
cial trojans · Synchronization · Anywhere computing

1 Introduction

Approaching an impressive 1.25 billion sales in 2014 with an expected audience
of over 1.75 billion, smartphones have become an important factor in many peo-
ple’s day-to-day life [17,35]. Daily activities performed on these mobile devices
include those that can be done on PC as well: accessing e-mail, searching the web,
social networking, or listening to music [19]. To enhance usability, both appli-
cation developers and platform vendors are making an effort to blur boundaries

R.K. Konoth and V. van der Veen—Equal contribution joint first authors.

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 405–421, 2017.
DOI: 10.1007/978-3-662-54970-4 24

406 R.K. Konoth et al.

between the two platforms. This is reflected in synchronization features like Fire-
fox Sync and Samsung SideSync or sophisticated market places like Google Play
and Microsoft’s Windows Store that allow users to manage their mobile phone
remotely.

A second important trend in web computing is the increasing number of
applications that provide the possibility to harden user accounts by enabling 2
Factor Authentication (2FA) for them. 2FA is a form of multi-factor authenti-
cation and provides unambiguous identification of users by means of the combi-
nation of two different components, i.e., something the user knows (PIN code,
password) and something the user possesses (bank card, USB stick token). With
2FA enabled, if attackers steal a user’s password, they still require access to the
second component before they can impersonate the victim.

Not surprisingly, software vendors often embody the second component of
2FA in the form of a mobile phone. To authenticate, the web application sends
a one-time-valid, dynamic passcode to the user’s mobile phone (for instance via
SMS, e-mail, or a dedicated application), which must then be entered along
with the user’s credentials in order to complete the authentication. Since users
usually carry their phone all the time, Mobile Phone 2FA does not introduce
additional costs and can be implemented relatively easy. Examples of well-known
companies that provide mobile phone 2FA include Amazon, Apple, Dropbox,
Google, Microsoft, Twitter, Yahoo, and many more, including a large number of
financial institutions1. The latter is represented by many of the biggest financial
organisations in the world such as Bank of America, Wells Fargo, JP Morgan
Chan, ICBC in China, and ING in The Netherlands.

In this paper, we analyze the security implications of Anywhere Computing
and show that seamless platform integration comes at the cost of weakening the
(commonly perceived) strong mobile phone 2FA mechanism. We define a new
class of vulnerabilities dubbed 2FA synchronization vulnerabilities and show how
these can be exploited by an attacker. In particular, we present reliable attacks
against both Android and iOS, two platforms that represent a combined market
share of over 90% [6]. Our threat model is the same as that of 2FA: we assume
that a victim’s PC has been compromised, allowing an attacker to perform Man-
in-the-Browser (MitB) attacks. In this scenario, mobile phone 2FA should guar-
antee that the attacker cannot perform authorized operations without having
also access to the user’s phone. By exploiting certain 2FA synchronization vul-
nerabilities, however, we show that mobile phone 2FA as used by many online
services for secure authentication, including financial institutions, can be easily
bypassed.

In more detail, our first attack utilizes Google Play’s remote app installation
feature to install a specifically crafted vulnerable app onto registered Android
devices of the victim which is then silently activated and used to hijack One-
Time Passwords (OTPs). Our iOS attack, on the other hand, exploits a new
OS X feature that enables the synchronization of SMS messages between iPhone
and Mac.

1 http://twofactorauth.org.

http://twofactorauth.org

Anywhere Computing Killed Phone-Based Two-Factor Authentication 407

Although the security of 2FA implementations has been subject of prior
work [16], we believe that our work is the first to address weaknesses relating to
ongoing synchronization and usability enhancement efforts.

Contributions. In summary, our contributions are the following:

1. We identify a new class of vulnerabilities, 2FA synchronization vulnerabilities,
that weaken the security guarantees of mobile phone 2FA.

2. We present practical attacks against Android and iOS that exploit multi-
ple 2FA synchronization vulnerabilities and show how these can be used to
successfully bypass mobile phone 2FA.

3. We discuss the security implications of our findings and provide recommen-
dations for various stakeholders. Based on our findings, we conclude that
SMS-based 2FA should be considered unsafe.

The remainder of this paper is organized as follows. In Sect. 2, we outline
current efforts deployed by vendors that ease platform integration and provide
a definition of 2FA synchronization vulnerabilities. Section 3 details our attacks
against Android and iOS which can be used to bypass mobile phone 2FA. We dis-
cuss security implications and recommendations in Sect. 4, followed by a related
work study on the evolution of Man-in-the-Browser attacks and 2FA in Sect. 5.
We conclude in Sect. 6.

2 Synchronization

To maximize connectivity and to ensure that users never miss another status
update, vendors continuously come up with ways to close the gap between PC
and mobile devices. In this section, we separate these integration techniques
into two categories: (i) remote services as provided by mobile operating system
vendors and (ii) integration of applications across the different platforms using
synchronization features. Finally, we define 2FA synchronization vulnerabilities
in detail and show example vulnerabilities that we later use to break mobile
phone 2FA.

2.1 Remote Services

Mobile operating system market leader Google provides a remote install service
in its Play Store that allows users to install Android applications on any of their
phones or tablets, from a desktop computer. The process is painless and straight-
forward: a user (i) logs into the Google Play store, (ii) picks an app of his interest,
(iii) hits the install button, (iv) accepts the app’s permissions, (v) chooses the
device on which this app should be installed, and (vi) confirms installation. The
app is now automatically pushed and installed onto the selected phone—as soon
as it has connectivity. Since all the app’s permissions are requested and con-
firmed in the browser already, the only trace left on the phone is a <app name>

408 R.K. Konoth et al.

successfully installed notification message. Similar features have been deployed
in app stores of both Microsoft (Windows Phone) and Apple (iOS).

Naturally, platform vendors have adopted security policies to prevent
exploitation of this feature. Focussing on Android, for example, Google, deployed
two: (i) silent remote install only works for apps on Google Play, which is
actively monitored for malware by Google Bouncer; and (ii) newly installed
apps default to a deactivated state which means that even if the app defines
specific event receivers (e.g., on BOOT COMPLETED to start a service at boot-time,
or SMS RECEIVED to listen for incoming SMS text messages), it cannot use these
until the app is explicitly activated by the user. Activation is triggered by starting
the app for a first time, either by selecting it from the launcher or by sending it
an intent from another app (e.g., by opening a link from the mobile browser) [1].

In addition to remote install, platform vendors also provide features that help
users in locating or wiping a lost device [2,5,7].

2.2 App Synchronization

Besides remote services, developers try to increase usability even further by
incorporating cross-platform synchronization features in their applications. This
is best illustrated by looking at recent changes in browsers. Browsers once were
self-contained software pieces that ran on a single device. Popular browsers like
Google Chrome or Mozilla Firefox, however, nowadays offer integrated syn-
chronization services. By using these features, users no longer have to con-
figure browsers individually, but can automatically synchronize all their saved
passwords, bookmarks, open tabs, browser history and settings across multiple
devices [4,8]. It is expected that Microsoft’s Edge introduces similar functionality
soon [32].

Another example of application synchronization is Apple’s Continuity which
features, among others, synchronization of SMS text messages between iOS (8.1
and up) and Mac OS X (10.10 Yosemite and later): “with Continuity, all the
SMS and MMS text messages you send and receive on your iPhone also appear
on your Mac, iPad, and iPod touch” [9].

2.3 2FA Synchronization Vulnerabilities

Given the ongoing efforts by both platform vendors and application developers to
bridge the gap between the end-user’s desktop and his or her mobile devices, we
identify a new class of vulnerabilities that, while increasing usability, jeopardize
2FA security guarantees.

Definition. A 2FA synchronization vulnerability is a usability feature that delib-
erately blurs the boundaries between devices, but, potentially combined with other
vulnerabilities, inadvertently weakens the security guarantees of 2FA.

As an example, consider the previously discussed remote app installation fea-
ture: a clear product of a design decision aiming to enhance usability. Although

Anywhere Computing Killed Phone-Based Two-Factor Authentication 409

such option successfully improves usability indeed—users can conveniently man-
age their mobile device from their browser—it comes with an obvious security
risk: if attackers manage to get control over a user’s browser, they can extend
control to the user’s mobile devices as well by pushing arbitrary apps to them. We
thus identify the remote install feature as a 2FA synchronization vulnerability.

Focussing again on Android, Google’s deployed security measures make that
without additional vulnerabilities, attackers cannot abuse this synchronization
vulnerability alone to bypass mobile phone 2FA. Finding such vulnerabilities is
easy though. First, fundamental weaknesses in Google Bouncer expose multi-
ple ways to bypass malware detection, giving attackers a sufficient time window
to push malicious apps to Google Play and thus to mobile devices. Second, we
identify numerous ways to activate apps after installation, either by exploiting
end-users’ curiosity (hey, what is this app?) or by relying on additional synchro-
nization vulnerabilities, for example in browser apps: previously discussed fea-
tures can be used by an attacker to synchronize malicious bookmarks or browser
tabs that, when opened on the mobile device, can activate deactive apps.

A second attack exploits the clear 2FA synchronization vulnerability intro-
duced in recent Mac OS X releases. If Continuity is enabled, there is no need
for attackers to control a victim’s phone: they can read SMS messages from an
infected Mac directly.

It is important to realize that 2FA synchronization vulnerabilities are not
necessarily caused by bad developer habits or configuration mistakes. More often,
they will be the result of a design decision-making process. This means that it
is much harder to convince vendors of their mistakes: a 2FA synchronization
vulnerability does not leak data or enable code execution, but must be considered
within the mobile phone 2FA threat model before it becomes a threat.

3 Exploiting 2FA Synchronization Vulnerabilities

By exploiting the synchronization vulnerabilities discussed in Sect. 2, we can
construct attacks that break mobile phone 2FA. In this section, we present prac-
tical implementations of such attacks against the two major mobile operating
systems: Google Android and Apple iOS. Additionally, we show that synchro-
nization vulnerabilities also imperil mobile phone 2FA implementations that use
a dedicated app to transfer the OTP.

Our attacks operate on the basic threat model of 2FA: we assume that the
attacker already has control over the victim’s PC, possibly including a MitB,
and is specifically interested in bypassing mobile phone 2FA.

3.1 Android

The intention of our Android attack is to exploit the remote install feature of
Google Play to push a malicious app onto the user’s mobile device. This app
can then intercept and forward OTPs sent as SMS messages to a server that is

410 R.K. Konoth et al.

controlled by the attacker. Given that the attackers have control over the user
credentials (stolen by the MitB), this gives them sufficient means to bypass 2FA.

Google’s deployed mitigation techniques slightly complicate our scenario. In
order to successfully break 2FA, we need to address two defenses: (i) we need to
bypass Google Bouncer before we can publish our SMS stealing app in Google
Play, and (ii) we need the user to activate the app before it can intercept and
forward SMS messages.

Bypassing Google Bouncer. Since Google’s remote install feature only allows
app installation from trusted sources, attackers first need to get an SMS stealing
app published in Google Play. For this, they need to bypass Bouncer, Google’s
automated malware analysis tool that uses both static and dynamic analysis to
identify malicious behavior [26]. Once an application is uploaded to Google Play,
Bouncer starts analyzing it for known malware, spyware and trojans.

Although the inner workings of Bouncer are kept confidential, prior work has
shown that it is easily circumvented [29,30]. This is confirmed by a recent case
study where Avast identified a number of popular Play Store apps that had over
a million downloads to be in fact malware [15].

Orthogonal to recent work, our approach to trick Bouncer into accepting
rogue apps is publishing a vulnerable application [36]. By pushing a poorly coded
WebView application, for example, attackers no longer have to hide malicious code
from Bouncer, but can simply move it to a web server that will be contacted
by the app to display regular data [28]. An alternative, even harder to detect
scheme, involves exposing a backdoor in native code via a memory corruption
vulnerability [11].

To show the practicality of our attack, we successfully published an SMS
‘backup’ app in Google Play. Upon SMS reception, our app first writes the mes-
sage content to a file, followed by loading a remote webpage inside a hidden
webview component. The prepared webview component, however, is made vul-
nerable by exposing a ProcessBuilder class via the addJavascriptInterface
API. This allows the remote webpage to execute arbitrary commands within the
app’s context using JavaScript.

Removing malicious code from the app makes it undetectable for Google
Bouncer’s static analysis. To also hide from dynamic analysis, we construct the
remote webpage in such a way that it does not serve malicious commands when
the incoming connection is made from a Google machine. In practice, to avoid
accidental misuse, we instructed the webpage to only serve malicious code if
accessed from an IP address that is under our control.

App Activation. Once installed, Android puts new apps in a deactivated state.
While deactivated, an app will not run for any reason, except after (i) a manual
launch of its main activity via the launcher, or (ii) an explicit intent from another
app (e.g., a clicked link from the mobile browser) [22]. Attackers must thus
somehow steer their victim into starting the app manually. We identify two
reliable approaches to achieve this.

Anywhere Computing Killed Phone-Based Two-Factor Authentication 411

Fig. 1. Malicious app installation process. Attackers (i) use their deployed MitB to
request the installation of a vulnerable app, stored in Google Play, and replace all the
browser’s bookmarks with malicious variants. Google then (ii) pushes the app onto the
mobile phone of the victim. Finally (iii) the user is steered into activating the app.
Activation is achieved by exploiting browser synchronization features to synchronize
the malicious bookmarks to the phone, or by exploiting the user’s curiosity (a click on
the app is installed notification message).

1. The most naive method is to hide the malicious activity inside an attractive
container. By using a challenging or even provocative app name or icon, a
user may be tempted into opening the app manually, simply out of curiosity.

2. Armed with both synchronization vulnerabilities and the victim’s Google cre-
dentials obtained by the MitB, an attacker can manipulate saved bookmarks,
recent tabs, or URLs used in e-mail, cloud documents, social media, etcetera,
in such a way that, when clicked, they redirect to a malicious webpage. This
page, controlled by the attacker, can then send the aforementioned intent to
activate the malicious app.

To prevent a user from detecting the rogue app after it has been activated, we
complement it with stealth features. Strictly abiding to the Android developers
guidelines, we constructed our app in such a way that, once activated, it removes
it’s main icon from the launcher. Additionally, we use a name masquerading
technique to maximize discretion: (i) the app name shown in the notification
bar is different from (ii) the name of the app as found in the launcher, which
in its turn differs from (iii) the official app name as shown in the app overview
(accessible from the settings view). This works because (i) during app submis-
sion, the Google Developers Console does not check whether the provided app
name matches the official app name as found in the uploaded .apk, and (ii) the
<activity-alias> tag inside the app’s manifest allows us to declare additional
activity names.

The process of installing a vulnerable app and activating it is shown in Fig. 1.
The stealthy installation via bookmarks (or recent tabs or some other object of
synchronization) combined with name obfuscation makes it hard to tell that an
app is malicious, even for experienced users.

412 R.K. Konoth et al.

Breaking 2FA. With the malicious/vulnerable app and activation methods in
place, attackers can start their attack from the hijacked browser by requesting
remote installation for the rogue app. We implemented a MitB trojan for the
Google Chrome browser that can do this. Once installed, our extension can
use Google session cookies to start remote app installation and prepare app
activation. The plugin basically consists of three phases:

1. Hijack a Google session. Our plugin waits for a Google authentication
cookie to become available. This happens when the user logs into a Google
component (e.g., Gmail, YouTube, Drive, etcetera). Optionally, it forwards
the typed credentials or cookies over the network to the attacker.

2. Remote install. Using the hijacked Google session, the trojan sends a
request to Google Play to retrieve a list of Device IDs of all Android devices
linked to this particular Google account. Next, for each device, the plugin
requests remote installation of the vulnerable app. Since app permissions are
approved from within the PC-based browser only, the app will be silently
installed, leaving only a <app name> successfully installed installation noti-
fication on the device.

3. Activation. In order to allow app activation, our extension rewrites
all stored bookmarks and recent tabs so that they point to an
attacker-controlled page while the original URL is provided as parame-
ter: http://mal.icio.us/proxy.php?url=<original url>. When opened
using the mobile Chrome browser, this page performs a redirect to
rogueapp://<original url> which triggers activation of the rogue app. The
app then immediately fires another intent that redirects the mobile browser
to <orignal url>, leaving practically no footprint.

Once activated, the malicious app can be used in conjunction with the PC-
based trojan to successfully bypass mobile phone 2FA. Fraudulent financial

Fig. 2. Completing fraudulent transactions while bypassing 2FA. After our app
processes the TAN code, it loads a remote webpage into a WebView component that
allows the attacker to perform Remote Code Execution (RCE). This way, attackers
can hide their malicious activity from Google Play.

Anywhere Computing Killed Phone-Based Two-Factor Authentication 413

transactions, for example, can be initiated by attackers once their PC-based
trojan has captured banking credentials of their victims. To confirm such trans-
action, the mobile component intercepts the OTP sent via SMS, and forwards
it to the attacker. This attack scenario is depicted in Fig. 2.

3.2 iOS

Similar to our Android attack, mobile phone 2FA on the iOS platform can
be bypassed by publishing a rogue app to Apple’s App Store and installing it
from an infected PC via the iTunes remote-install feature. Wang et. al., already
demonstrated how a vulnerable app could slip through Apple’s strict review
process and how such app can be used to access private APIs reserved for sys-
tem apps to read SMS messages [3,36]. Additionally, Bosman and Bos showed
how a vulnerable app and sigreturn oriented programming allow to execute any
set of system calls needed to pull of any attack [11].

As of iOS 8.3, released in April 2015, however, it is no longer possible to
receive a so-called kCTMessageReceivedNotification to let an app act on
incoming text messages without using a specific entitlement (similar to the
Android RECEIVE SMS permission). Since this functionality stems from a so-called
private API, requesting such permission violates the App Store Review Guide-
lines and will result in an app rejection, effectively breaking this type of attack.
The recent release of Mac Os X 10.10 Yosemite, however, opens up a new attack
scenario.

As outlined in Sect. 2, Mac OS X Continuity features options to synchronize
SMS and MMS text messages between multiple Apple devices. When enabled,
SMS messages that are received on a linked iPhone, are forwarded and stored in
plain-text in the ~/Library/Messages/chat.db file on the Mac.

Breaking 2FA. With Continuity enabled, attackers can break 2FA by instruct-
ing their MitB to monitor the chat.db database for changes and forward new
messages to a remote server immediately after receipt. To show the practicality
of this attack, we implemented a Firefox extension that uses the FileUtils.jsm
API to read contents of synchronized SMS messages as soon as they are delivered
to the iPhone.

The Continuity attack is illustrated in Fig. 3.

3.3 Dedicated 2FA Apps

Many online and offline applications are in the process of complementing
their authentication mechanism with an optional 2FA step, often dubbed Two-
Step Verification (2SV). Open source implementations are provided by Google
(Google Authenticator) and Microsoft (Azure Authenticator) and can already
be enabled for dozens of popular services, including Google, Microsoft Online,
Amazon Web Services, Dropbox, Facebook, WordPress, Joomla, and KeePass.

414 R.K. Konoth et al.

Fig. 3. Breaking 2FA on apple continuity. If enabled, Mac OS X 10.10 automati-
cally synchronizes SMS messages between different Apple devices, breaking the second
factor.

Fig. 4. Bypassing dedicated 2FA apps. The screenshot on the left shows Google 2SV
requesting a verification code from the Google Authenticator. Note the Try another
way to sign in option near the bottom of the window. When clicked, the right-hand
figure shows the fallback option to get a text message with an OTP sent over SMS. An
attacker in control of the PC-browser is therefore able to dicate what 2FA technique is
used.

Due to sandboxing techniques, our previously described attacks cannot access
OTPs that are generated by 2SV authenticator apps. During the process of set-
ting up an authenticator app, however, users are advised to provide the underly-
ing system a backup phone number. The rationale behind this is that if, for some
reason, users fail to access the authenticator app, they can fallback to requesting
an OTP sent over SMS.

Assuming that many users provide a backup phone number that is used by
the same smartphone that runs the authenticator app, an attacker can easily

Anywhere Computing Killed Phone-Based Two-Factor Authentication 415

bypass these dedicated 2FA apps: (i) having access to stolen credentials har-
vested by the MitB, an attacker initiates the login procedure; (ii) for logins via
the Google Authenticator, for example, when prompted to enter a verification
code, the attacker instructs the login page to try another way to sign in, followed
by selecting the Send a text message to your phone option. From here, our pre-
viously described attacks can be used to completely bypass the 2FA mechanism.

Figure 4 illustrates how an attacker can fallback to SMS based OTPs when
using Google Authenticator.

4 Discussion

In the previous sections, we showed how an attacker can bypass a variety of
mobile phone 2FA mechanisms by exploiting synchronization vulnerabilities. We
now study feasibility and practicalities of our attacks in more detail. Addition-
ally, we discuss our efforts regarding responsible disclosure, as well as recom-
mendations for involved parties.

4.1 Feasibility

Reviewing our Android attack described in Sect. 3.1, we conclude that exploit-
ing synchronization vulnerabilities to bypass 2FA can be done in a reliable and
stealthy way on Google’s mobile operating system. Attackers can reduce their
footprint to a bare minimum by breaking the attack down in different steps:
(i) a preparation phase wherein attackers acquire access to infected PCs, pos-
sibly via a Malware as a Service-provider [14]; (ii) an app-installation phase
wherein attackers push a vulnerable app to Google Play and instruct their vic-
tims to remotely install it. Depending on the target audience of the attacker,
this can be done within a time window of only a couple of hours, after which the
rogue app can again be removed from Google’s servers; (iii) an app-activation
phase wherein attackers gracefully wait until victims activate the malicious
app. Our app-hiding tricks make that attackers can safely wait days so that a
large group of victims get to activate the rogue app; and (iv) an attack phase
wherein attackers perform an automated attack that requires access to OTPs
sent over SMS. One typical example of such attack is transferring funds from
saving accounts to an account that is controlled by the attackers.

Although more prerequisites must be met for our iOS attacks described in
Sect. 3.2, they complement each other nicely: the vulnerable app approach does
not work on iPhones running the latest iOS version, while our Continuity attack
requires that victims do use more up to date versions of iOS and Mac OS X. The
latter, however, also requires that (i) victims have enabled message synchroniza-
tion (which setup process requires interaction with both Mac and iPhone), and
(ii) both devices are connected to the same wireless network. Although this does
not necessarily make the attack less feasible, it may slightly reduce its scalabil-
ity given that synchronization is off by default and increase the detection rate
by attentive users (the content of received SMS messages will pop up on both
devices).

416 R.K. Konoth et al.

Finally, although the remote-install 2FA synchronization vulnerability is also
prevalent on the Windows Phone (WP) platform, Microsoft does not (yet) pro-
vide an API for reading received SMS messages programmatically. Additionally,
to the best of our knowledge, WP does not provide SMS synchronization fea-
tures like Apple’s Continuity. It is because of this that we were unable to break
mobile phone 2FA on WP.

4.2 Recommendations and Future Work

An important step towards preventing the presented sophisticated MitB-based
attacks against mobile phone 2FA, is to raise awareness among the various stake-
holders. Mobile platform vendors should be aware that the release of new syn-
chronization features may introduce security risks for their end-users. As such,
vendors should be extremely careful when enabling new features by default
instead of making them optional. It is their obligation to inform end-users
that enabling or using certain synchronization features might jeopardize secu-
rity guarantees of mobile phone 2FA. Only then can the user make a considered
decision to give up security in favor of usability.

Reviewing our proposed attacks, this means that Apple, for example, should
warn users about potential security risks when they set up Continuity. Moreover,
if the user decides to enable this feature, synchronizing only messages sent by
trusted phone numbers — those that are found in the user’s contact list — would
eliminate our attack scenario, assuming that TAN codes are sent by an unknown
sender or SMS gateway. Additionally, we recognize a major task for platform ven-
dors to safeguard their remote-install features. In our view, users should always
be forced to explicitly approve new app installations on their mobile device.
This way, attackers can no longer silently push apps, but always require manual
user-interaction. Ignorant users may still be phished into approving unknown
install requests, of course, but such change would eradicate our completely auto-
mated attack scenario. We believe that the current app-activation security policy
alone as deployed by vendors is too weak, given that additional synchronization
vulnerabilities can be used to achieve activation.

Startled users who do not want to wait for a fix from their vendor, can protect
themselves from exploitation by using a separate account for each device. This
way, remote-install features have zero knowledge about which devices an app
can be pushed to. Naturally, the downside of such approach is losing the ability
to use synchronization features at all. Authenticator users, in addition, should
update their settings so that their backup is a phone number that is attached
to a dumb phone. These phones are remarkably harder to get infected.

Besides raising user-awareness, future work should focus on the detection of
SMS stealing apps at runtime, given that existing mobile Anti-Virus apps are
useless to this respect—they are confined to their own filesystem sandbox and
thus cannot access directories of other apps, monitor the phone’s file system, or
analyze dynamic behavior of installed applications [31]. Instead, system mod-
ifications that can monitor the global smartphone state are required. To this,
the redesigned permission model of Android Marshmallow in which apps are

Anywhere Computing Killed Phone-Based Two-Factor Authentication 417

no longer automatically granted all of their specified permissions at install time,
but rather prompt users to grant individual permissions at runtime, is promising.
Unfortunately, this model will only be used by applications that are specifically
compiled for Marshmallow and can thus still be bypassed.

As an ultimate resort, we recommend that financial institutions consider the
removal of mobile 2FA from their business processes and switch to token based
2FA instead—such token must of course be able to show transaction details, so
that Man-in-the-Middle attacks can be detected by the user during transaction
processing. Naturally, such switch will cause large expenses; each institution will
have to consider whether moving away from mobile 2FA is feasible by comparing
costs, gained security, and risk analysis results. Even so, given the attack sce-
narios we conclude that 2FA on smartphones is currently entirely compromised
and no safer than single factor authentication.

4.3 Responsible Disclosure

To show the practicality of bypassing Google Bouncer, we uploaded a first version
of our SMS stealing app to Google Play on July 8, 2015, where it has been
publicly available for over two months. The app got removed on September 10,
2015, only a few hours after we had shared its name and a video demonstration
of our attack with the head of Android Platform Security, while we already
reported our attack scenario and recommendations to the Android security team
months before the initial publication. Responses so far, unfortunately, indicate
that Google believes that our proposed attack is not feasible in practice, despite
all evidence to the contrary (including actual demos2).

We notified Apple about our findings on November 30, 2015, but we did not
receive a technical response.

5 Background and Related Work

In this section, we provide a brief historical overview and related work discussion
of the two fundamental components covered in this paper: Man-in-the-Browser
attacks and Two-Factor Authentication. Additionally, we discuss current, state-
of-the-art attacks against mobile-phone 2FA which rely on cross-platform infec-
tion. We focus on online banking schemes in particular, as this always was, and
still is, one of the services subject to a vast amount of criminal activity.

5.1 Man-in-the-Browser

At first, online financial services depended completely on single-factor authen-
tication (e.g., by using a secret key). For attackers, keyloggers were enough to
steal credentials of associated users. However, they also generated vast amount
of useless data, forcing the attacker to parse a huge amount of log output in

2 https://youtu.be/k1v rQgS0d8.

https://youtu.be/k1v_rQgS0d8

418 R.K. Konoth et al.

order to retrieve meaningful credentials. Parsing keylog data was considered a
challenging and time consuming task for an attacker, as it is hard to automate.
As an alternative, cyber criminals deployed phishing campaigns, followed quickly
by form grabbing attacks. The latter proved to be an effective and robust mech-
anism to steal useful information.

Well known banking trojans like Zeus and SpyEye were the first to implement
form grabbing by hooking web browser APIs [24,38]. The fundamental idea
behind form grabbing is to intercept all form information before it is sent to
the network via HTTP requests. Form grabbing can be implemented in different
ways: (i) sniffing all outgoing requests using a PCAP-based library—something
that has the disadvantage of only working for unencrypted data [34]; (ii) API
hooking the browser’s dynamic library to steal all the requests and responses
made by the user before they get encrypted [34]; and (iii) using a malicious
plugin to easily register callbacks within the browser for events like page load or
file download in order to intercept any request or response.

Malicious plugins and API hooking techniques can be used to do more than
just form grabbing. Using a plugin, an attacker can modify HTTP responses
received by the browser or covertly perform illegitimate operations on behalf of
the user. This is commonly known as a Man-in-the-Browser (MitB) attack [21].

Guhring has identified various ways of which a trojan can perform a MitB
attack and discusses pros and cons of various countermeasures that could be
taken [21]. Boutin studies how webinjects are used by a trojan in the browser
and discusses the underground economy behind selling webinjects [12]. Buescher
et al., analyzed different types of hooking methods as used by financial tro-
jans [13]. They propose an approach for detecting and classifying trojans by
looking at the manipulations they perform on a browser. However, their app-
roach is mainly based on detecting API hooks. As a consequence, MitB attacks
that are implemented using plugins cannot be detected using this technique.

5.2 Two-Factor Authentication

Most account fraud and identity theft relate to accounts that use only single-
factor authentication [20]. To defend against MitB attacks, financial services
started using different types of multi-factor authentication mechanisms. The
most elementary mechanism is that of a list of Transaction Authorization Num-
bers (TAN codes) as provided by the online service, from which the user can
choose one to perform a secure transaction. A more convenient method that has
been adopted by a majority of financial services is generating a new TAN code
for each transaction and sending this via an out-of-band channel to the user.
Naturally, SMS is a cheap and efficient candidate channel: almost everybody
owns a mobile phone.

To defend against MitB attacks that hijack an ongoing transaction by modi-
fying its details (receiver’s bank account number or the amount of money trans-
ferred), financial services are starting to include transaction details along with
the TAN code in the out-of-band SMS message. Users can then verify the trans-
action by inspecting these details in the SMS and only confirm if these match
their expectation.

Anywhere Computing Killed Phone-Based Two-Factor Authentication 419

On August 8, 2001, the Federal Financial Institutions Examination Council
agencies (FFIEC) issued guidance entitled Authentication in an Electronic Bank-
ing Environment [20]. FFIEC encourages financial institutions to use mobile
phone-based 2FA as described above to secure their user’s transactions.

Aloul et al., show how an app on a trusted mobile device can be used for
generating one-time passwords, or how a mobile device itself can be used as a
medium for out-of-band communication to financial services [10]. This is what
most current deployed 2FA implementations use today. Mulliner analyzes attacks
that target SMS interception in general and shows how a smartphone trojan can
steal OTPs received via SMS. He proposes to use a dedicated channel which
cannot be controlled by normal applications for receiving the OTP [27]. This is
based on the assumption that mobile trojans do not have root privileges. Schart-
ner et al., describe an attack against SMS based OTPs in the scenario where
a transaction is made from the mobile device itself [33]. Since the transaction
involves a single device (smartphone), a malware in the device can sniff both
credentials and OTPs received via SMS.

Konoth et al., describe how Google’s 2FA implementation can be bypassed
using a MitB attack on an untrusted device [25]. Dmitrienko et al., analysed
2FA implementations of major online service providers such as Google, Twitter,
Dropbox and Facebook [16]. Their work identifies various weaknesses in existing
implementations that allow an attacker to bypass 2FA and also illustrates a
general attack against 2FA. However, unlike ours, their attack relies on complex
cross-platform infection.

5.3 Cross-Platform Infection

Cardtrap.A is the first discovered malware that features a cross-platform infec-
tion implementation. The trojan first infects a symbian smartphone. When the
user inserts the memory card of the mobile phone into a Windows PC, it attempts
to infect the PC [23]. In 2006, researchers found that it is possible for PC malware
to infect a smartphone by exploiting Microsoft’s ActiveSync synchronization
software [18]. Furthermore, Wang et al., explain how a sophisticated adversary
can spread malware to another device through a USB connection [37]. Finally,
Dmitrienko et al., demonstrated via prototypes the feasibility of both PC-to-
mobile and mobile-to-PC cross platform attacks [16].

6 Conclusion

With the ongoing integration of platforms—the result of a strong desire for
enhanced usability—keeping our web accounts safe has become increasingly
challenging. In this paper, we showed how synchronization features and cross-
platform services can be used to elevate a regular PC-based Man-in-the-Browser
to an accompanying Man-in-the-Mobile threat which can be used to successfully
bypass mobile phone 2FA. The root cause is that imprudent synchronization
functionality has obliterated the security boundaries on which 2FA solutions
depend.

420 R.K. Konoth et al.

Due to the large number of financial institutions that rely on mobile phone
2FA for secure transaction processing, we expect that cyber criminals extend
their activities by implementing attacks similar to ours, putting those institu-
tions and their customers at risk. We hope that this paper helps in identifying
issues with respect to cross-platform integration and that both software and
platform vendors adopt our recommendations in order to prevent these types of
attacks from becoming a major threat in the near future.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments and input to improve the paper. This work was supported by the
MALPAY project and by the Netherlands Organisation for Scientific Research through
grants NWO 639.023.309 VICI “Dowsing” and NWO CSI-DHS 628.001.021.

References

1. Android intents with Chrome. https://developer.chrome.com/multidevice/
android/intents

2. Find a lost phone. http://www.windowsphone.com/en-us/how-to/wp8/settings-
and-personalization/find-a-lost-phone

3. Get SMS broadcast with text body without Jailbreak BUT private frameworks
in IOS. http://stackoverflow.com/questions/26642770/get-sms-broadcast-with-
text-body-without-jailbreak-but-private-frameworks-in-ios

4. How do I set up Sync on my computer? http://support.mozilla.org/kb/how-do-
i-set-sync-my-computer

5. iCloud: Erase your device. https://support.apple.com/kb/PH2701
6. Mobile/tablet operating system market share. https://www.netmarketshare.com/

operating-system-market-share.aspx?qprid=8&qpcustomd=1
7. Remotely ring, lock or erase a lost device. https://support.google.com/accounts/

answer/6160500
8. Sync tabs across devices. http://support.google.com/chrome/answer/2591582
9. Use Continuity to connect your iPhone, iPad, iPod touch, and Mac. http://support.

apple.com/HT204681
10. Aloul, F., Zahidi, S., Hajj, W.E.: Two factor authentication using mobile phones.

In: Proceedings on the International Conference on Computer Systems and Appli-
cations (AICCA) (2009)

11. Bosman, E., Bos, H.: Framing signals - a return to portable shellcode. In: Proceed-
ings of the Symposium on Security and Privacy (S&P) (2014)

12. Boutin, J.I.: The evolution of webinjects, September 2014
13. Buescher, A., Leder, F., Siebert, T.: Banksafe information stealer detection inside

the web browser. In: Proceedings on the International Conference on Recent
Advances in Intrusion Detection (RAID) (2011)

14. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the
commoditization of malware distribution. In: Proceedings of the USENIX Security
Symposium (USENIX Sec) (2011)

15. Chytry, F.: Apps on Google Play Pose As Games and Infect Millions of Users with
Adware, February 2015

16. Dmitrienko, A., Liebchen, C., Rossow, C., Sadeghi, A.-R.: On the (In)security
of mobile two-factor authentication. In: Christin, N., Safavi-Naini, R. (eds.) FC
2014. LNCS, vol. 8437, pp. 365–383. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45472-5 24

https://developer.chrome.com/multidevice/android/intents
https://developer.chrome.com/multidevice/android/intents
http://www.windowsphone.com/en-us/how-to/wp8/settings-and-personalization/find-a-lost-phone
http://www.windowsphone.com/en-us/how-to/wp8/settings-and-personalization/find-a-lost-phone
http://stackoverflow.com/questions/26642770/get-sms-broadcast-with-text-body-without-jailbreak-but-private-frameworks-in-ios
http://stackoverflow.com/questions/26642770/get-sms-broadcast-with-text-body-without-jailbreak-but-private-frameworks-in-ios
http://support.mozilla.org/kb/how-do-i-set-sync-my-computer
http://support.mozilla.org/kb/how-do-i-set-sync-my-computer
https://support.apple.com/kb/PH2701
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=8&qpcustomd=1
https://support.google.com/accounts/answer/6160500
https://support.google.com/accounts/answer/6160500
http://support.google.com/chrome/answer/2591582
http://support.apple.com/HT204681
http://support.apple.com/HT204681
http://dx.doi.org/10.1007/978-3-662-45472-5_24
http://dx.doi.org/10.1007/978-3-662-45472-5_24

Anywhere Computing Killed Phone-Based Two-Factor Authentication 421

17. eMarketer: Smartphone Users Worldwide Will Total 1.75 Billion in 2014, January
2014

18. Evers, J.: Virus makes leap from PC to PDA, Feburary 2006
19. Target, E.: 2014 Mobile Behavior Report, February 2014
20. Federal Financial Institutions Examination Council: Authentication in an Internet

Banking Environment (2005)
21. Gühring, P.: Concepts against Man-in-the-Browser Attacks, September 2006
22. inazaruk: “Activating” Android applications, December 2011
23. Kawamoto, D.: Cell phone virus tries leaping to PCs, September 2005
24. Kharouni, L.: Automating Online Banking Fraud (2012)
25. Krishnan, R., Kumar, R.: Securing user input as a defense against MitB. In: Pro-

ceedings of the International Conference on Interdisciplinary Advances in Applied
Computing (ICONIAAC) (2014)

26. Lockheimer, H.: Android and Security, February 2012
27. Mulliner, C., Borgaonkar, R., Stewin, P., Seifert, J.-P.: SMS-based one-time pass-

words: attacks and defense. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA
2013. LNCS, vol. 7967, pp. 150–159. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39235-1 9

28. Neugschwandtner, M., Lindorfer, M., Platzer, C.: A view to a kill: webview
exploitation. In: Proceedings of the USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET) (2013)

29. Oberheide, J., Miller, C.: Dissecting the Android Bouncer, June 2012
30. Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., Vigna, G.: Execute this!

Analyzing unsafe and malicious dynamic code loading in android applications. In:
Proceedings of the Network and Distributed System Security Symposium (NDSS)
(2014)

31. Rafael Fedler, M.K., Schutte, J.: An antivirus API for android malware recogni-
tion. In: Proceedings of Malicious and Unwanted Software: “The Americas” (MAL-
WARE), 2013 8th International Conference (2013)

32. Sams, B.: Microsoft confirms Edge will sync passwords, bookmarks, tabs,
and more. http://www.neowin.net/news/microsoft-confirms-edge-will-sync-
passwords-bookmarks-tabs-and-more

33. Schartner, P., Bürger, S.: Attacking mTAN-Applications like e-Banking and mobile
Signatures. Technical report, Univeristy of Klagenfurt (2011)

34. Sood, A.K., Enbody, R.J., Bansal, R.: The art of stealing banking information –
form grabbing on fire, November 2011

35. Statista: Global smartphone sales to end users 2007–2014 (2015)
36. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on iOS: when benign apps

become evil. In: Proceedings of the USENIX Security Symposium (USENIX Sec)
(2013)

37. Wang, Z., Stavrou, A.: Exploiting smart-phone USB connectivity for fun and profit.
In: Proceedings of the Computer Security Applications Conference (ACSAC)
(2010)

38. Wyke, J.: What is Zeus? Sophos, May 2011

http://dx.doi.org/10.1007/978-3-642-39235-1_9
http://dx.doi.org/10.1007/978-3-642-39235-1_9
http://www.neowin.net/news/microsoft-confirms-edge-will-sync-passwords-bookmarks-tabs-and-more
http://www.neowin.net/news/microsoft-confirms-edge-will-sync-passwords-bookmarks-tabs-and-more

Security Keys: Practical Cryptographic Second
Factors for the Modern Web

Juan Lang(B), Alexei Czeskis, Dirk Balfanz, Marius Schilder,
and Sampath Srinivas

Google, Inc., Mountain View, CA, USA
juanlang@google.com

Abstract. “Security Keys” are second-factor devices that protect users
against phishing and man-in-the-middle attacks. Users carry a single
device and can self-register it with any online service that supports the
protocol. The devices are simple to implement and deploy, simple to use,
privacy preserving, and secure against strong attackers. We have shipped
support for Security Keys in the Chrome web browser and in Google’s
online services. We show that Security Keys lead to both an increased
level of security and user satisfaction by analyzing a two year deploy-
ment which began within Google and has extended to our consumer-
facing web applications. The Security Key design has been standard-
ized by the FIDO Alliance, an organization with more than 250 member
companies spanning the industry. Currently, Security Keys have been
deployed by Google, Dropbox, and GitHub. An updated and extended
tech report is available at https://github.com/google/u2f-ref-code/docs/
SecurityKeys TechReport.pdf.

1 Introduction

Recent account takeovers [1–3] have once again highlighted the challenge of
securing user data online: accounts are often protected by no more than a
weak password [4] and whatever implicit signals (if any) that the online service
provider has collected to distinguish legitimate users from account hijackers.

Academic research has produced numerous proposals to move away from
passwords, but in practice such efforts have largely been unsuccessful [5,6].
Instead, many service providers augment password-based authentication with
a second factor in the form of a one-time passcode (OTP), e.g., [7,8]. Unfortu-
nately, OTPs as a second factor are still vulnerable to relatively common attacks
such as phishing [9]. In addition, OTPs have a number of usability drawbacks
(see Sect. 2). These factors limit the success and deployment of OTPs as a reliable
and secure second factor.

Meanwhile, secure authentication factors, which use challenge/response-
based cryptographic protocols, have their own barriers to deployment. National
ID cards [10,11] and smart cards require custom reader hardware and/or driver

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 422–440, 2017.
DOI: 10.1007/978-3-662-54970-4 25

https://github.com/google/u2f-ref-code/docs/SecurityKeys_TechReport.pdf
https://github.com/google/u2f-ref-code/docs/SecurityKeys_TechReport.pdf

Security Keys: Practical Cryptographic Second Factors for the Modern Web 423

software to be installed prior to use. Depending on the implementation, these
systems also make it challenging for users to protect their privacy (see Sect. 2).

In this work, we present Security Keys: second factor devices that improve
the state of the art for practical authentication for real consumers in terms of
privacy, security, and usability. This is evidenced by the fact that Security Keys
have been publicly deployed by Google [12], Dropbox [13], and GitHub [14]. Secu-
rity Keys were designed from the ground up to be practical: simple to implement
and deploy, straightforward to use, privacy preserving, and secure against strong
attackers. We have shipped support for Security Keys in the Chrome browser,
have deployed it within Google’s internal sign-in system, and have enabled Secu-
rity Keys as an available second factor in Google’s web services. In this work,
we demonstrate that Security Keys lead to both an increased level of security and
user satisfaction as well as cheaper support cost. The Security Key design has
been standardized within an industry alliance, the FIDO Alliance [15] as the
Universal Second Factor (U2F) protocol.

2 Related Work

We now give an overview of the most relevant related work. For detailed back-
ground of the field, please consult a variety of excellent survey works [5,6,16,17].

One-Time Passcodes. OTPs are short (typically 6 to 8 digit) codes that are
one time use and are sent to the user via SMS or are generated by a separate
physical dongle. Though they provide more security than passwords, OTPs have
a number of downsides. First, they are vulnerable to phishing and man-in-the-
middle attacks [9]. Second, OTPs that are delivered by phones are subject to
data and phone availability, while those that are generated by dongles cause
the user to have one dongle per web site. Finally, OTPs provide a sub-optimal
user experience as they often require the user to manually copy codes from
one device to another. Security Keys are resistant to phishing and man-in-the-
middle by design; our preliminary study also shows that they provide a better
user experience.

Smartphone as Second Factor. A number of efforts have attempted to lever-
age the user’s phone as a cryptographic second factor, both within academia
(e.g., [18]) and in industry (e.g., [19]). While promising, they face a number of
challenges: for example, protecting application logic from malware is difficult
on a general purpose computing platform. Moreover, a user’s phone may not
always be reachable: the phone may not have a data connection or the battery
may have run out. Security keys require no batteries and usually have a dedicated
tamper-proof secure element.

Smart Cards. Security Keys fit into the “what you have” category of authen-
tication schemes and have a close relationship to smart cards. While Security

424 J. Lang et al.

Keys can be (and have been) implemented on top of a smart card platform such
as JavaCard [20], Security Keys express a particular protocol for which smart
cards are just one possible implementation platform.

TLS Client Certificates. TLS Client Certificates [21] traditionally bear the
user’s identity and can be used for on-line authentication. When users navi-
gate to a web service that requires TLS client authentication, their browser will
prompt the user for their client certificate. Unfortunately, current implementa-
tions of TLS client certificates have a poor user experience. Typically, when web
servers request that browsers generate a TLS client certificate, browsers display
a dialog where the user must choose the certificate cipher and key length—a
cryptographic detail that is unfamiliar and confusing to most users.

When web servers request that the browser provide a certificate, the user is
prompted to select the client certificate to use; accidentally choosing the wrong
certificate will cause the user’s identity to leak across sites. In addition, because
client certificates are transmitted in the clear, the user’s identity is revealed
during TLS client certificate transfer to any network adversary. TLS client cer-
tificates also suffer from a lack of portability: they are tough to move from one
client platform to another. Security Keys have none of these issues: as we will
describe, they are designed to be fool-proof: with users’ privacy in mind, to be
simple to use, and to be portable.

Electronic National Identification Cards. Some countries have deployed
national electronic identification cards. In Estonia, for example, electronic ID
cards “are used in health care, electronic banking and shopping, to sign contracts
and encrypt e-mail, as tram tickets, and much more besides—even to vote” [11].
Despite their rich capabilities, national identity cards have not become a popular
global online authentication mechanism [10]. One possible reason is that current
national identity cards require special hardware (a card reader) and thus are hard
to deploy. Another possible reason is that national identity cards are by definition
controlled by one government, which may not be acceptable to businesses in
another country. Security Keys have no such downsides: they work with pre-
installed drivers over commonly available physical media (USB, NFC, Bluetooth)
and are not controlled or distributed by any single entity.

Finally, some approaches can combine multiple elements, e.g., some elec-
tronic ID cards combine smart card, TLS client certificate, and government
identification.

3 Threat Model

We briefly outline major attackers and attacks that we consider in our design.

Security Keys: Practical Cryptographic Second Factors for the Modern Web 425

3.1 Attackers

Web Attackers. Entities who control malicious websites (e.g., bad.com1) are
called web attackers. We believe that virtually all users might accidentally visit
such a malicious site. The attacker may design bad.com to visually mimic a
user’s bank or e-mail website in an attempt to get (i.e., phish) the user’s login
credentials. As the attackers are quite skilled, and may occupy clever URLs
(such as bamk.com2), we assume that most users will fall for this trick. That is,
they will enter credentials such as their password into the attacker-controlled
bad.com.

Related-Site Attackers. Some attackers will compromise sites having weak
security practices in order to steal the site’s user credentials. As users often reuse
credentials across sites [22], related-site attackers will reuse the stolen credentials
on more secure sites in hopes of accessing the user’s accounts [23].

Network Attackers. Adversaries may be able to observe and modify network
traffic between the user and the legitimate site. We call such adversaries network
attackers. For example, a network attacker might sniff wireless traffic in a coffee
shop [24,25]) or a nation-state may interpose on all traffic that traverses their
physical borders [26,27]. A man-in-the-middle attacker can defeat the security
properties offered by TLS [21], e.g., by forging rogue server TLS certificates [28].
Other network attackers may record traffic and subsequently exploit the TLS
cryptographic layer [29,30] to extract authentication data.

Malware Attackers. In some cases, attackers may be able to silently install
and run arbitrary software on users’ computers; such attackers are malware
attackers. We assume that such software can run with arbitrary privileges
and can freely help itself to cookies, passwords, and any other authentication
material.

3.2 Attack Consequences

We highlight two of the most concerning attack consequences below.

Session Duplication. In some cases, an attacker may be able to steal creden-
tials that allow him/her to access the user’s account from any computer and at
any time. For example, if an attacker is able to steal cookies or passwords, then
he/she may be able to log into the victim’s account at virtually any subsequent
date (assuming the password isn’t changed, and the cookie doesn’t expire).

1 This is just an example, the real bad.com may not be malicious.
2 This is just an example, the real bamk.com may not be malicious.

426 J. Lang et al.

Session Riding. If an attacker can only access or modify the user’s account
when the user is actively using his/her computer, we call this attack session
riding. For example, if the website always requires the user to begin a new session
by providing proof of a hardware device that the attacker does not control, the
attacker is only able to ride the user’s active sessions.

Security Keys make session duplication and riding much more difficult.

4 System Design

We now give a system overview; for details please consult the official specification
on the FIDO Alliance website [15]. In juggling the various requirements, we
settled on the following design goals:

– Easy for Users: Using Security Keys should be fast, easy, and “brainless”. It
must be difficult to use Security Keys incorrectly or insecurely.

– Easy for Developers: Security Keys must be easy for developers to integrate
into their website through simple APIs.

– Privacy : Security Keys should not allow tracking of any kind. In addition, if
a Security Key is lost, it should be difficult for an attacker to get any useful
information from a Security Key.

– Security : Security Keys should protect users against password reuse, phishing,
and man-in-the-middle attacks.

4.1 System Overview

Security Keys are intended to be used in the context of a web application in
which the server wishes to verify the user’s identity. At a high level, Security Keys
support the following commands which are provided to web pages as browser
APIs (see Sect. 5).

– Register : Given this command, the Security Key generates a fresh asymmetric
key pair and returns the public key. The server associates this public key with
a user account.

– Authenticate: Given this command, the Security Key tests for user presence
and exercises its private key to provide a response. The server can verify that
the response is valid, and thus authenticate the user.

Figure 1 shows two different Security Keys manufactured by Yubico—one of
the several vendors who produce Security Keys. Each devices communicates over
a USB interface and has a capacitive touch sensor which must be touched by the
user in order to authorize any operation (register or authenticate). Both devices
contain a tamper-proof secure element.

4.2 Detailed Design

We now focus on the details of both registration and authentication. Full speci-
fications can be found on the FIDO Alliance website [15].

Security Keys: Practical Cryptographic Second Factors for the Modern Web 427

Fig. 1. Two Security Keys. Both have a USB interface and a capacitive touch sensor.
One also has an NFC interface.

Registration. During registration (see Fig. 2), the relying party—the server—
produces a random challenge. The user’s browser binds the server’s challenge into
a Client Data structure, to be covered shortly. The browser sends the server’s
web origin and a hash of the Client Data to the Security Key. In response, the
Security Key generates a new key pair along with a key handle, which will also be
covered later. The Security Key associates the key pair with the relying party’s
web origin and then returns the generated public key, key handle, an attestation
certificate, and a signature over: 1. the web origin, 2. hash of the client data, 3.
public key, and 4. key handle. The web browser then forwards this data, along
with the client data, back to the website. The website verifies the signature and
associates the public key and key handle with the user’s account.

Fig. 2. Security Key registration.

Fig. 3. Security Key authentication.

428 J. Lang et al.

Authentication. During authentication (see Fig. 3), the relying party requests
that the Security Key exercise a particular key which has previously been reg-
istered for a user account. Specifically, the relying party sends the desired key’s
handle and a challenge to the web browser. The browser generates the client
data (see above) and sends the hash of the client data along with the key handle
and the web origin to the Security Key. If the Security Key does not recognize
the key handle, or doesn’t agree that it is associated with the web origin that
requested the signature, it rejects the request. Otherwise, it produces a signature
of the client data. The Security Key signs two additional attributes: whether a
Test of User Presence (TUP) succeeded, and a counter value. The Test of User
Presence is described in more detail below. The counter value is a 32-bit counter
that is incremented with every signature the Security Key performs; its presence
allows the server to detect potential cloning of a Security Key, e.g., when the
counter value appears to decrease from one signature to the next. The counter
is described in more detail in Sect. 7.2.

The browser passes the signature, along with the TUP and the counter value,
to the server. The server then checks the signature against the public key it has
registered and authenticates the user if the signature matches.

Device Attestation. Each Security Key must provide an attestation certificate
during registration. This allows servers to gate the use of a particular security
key (for example, if servers trust only certain Security Key suppliers). A related
desire is revocability: if a device or model is known to have flaws or have been
compromised, a server might wish to not accept it.

Individually identifying devices would reveal a unique identifier for a device
across unrelated origins, violating the user’s privacy. To achieve both security
and privacy, we recommended that devices implement batch attestation: a batch
of devices shares a single attestation key (and certificate), such that all devices
with a known flaw can be revoked together, and users’ privacy is still respected:
at worst, a device can be identified as a member of a batch. Alternatives for
device attestation are explored further in Sect. 7.1.

Client Data. The client data binds the server-provided challenge to the
browser’s view of its connection to the server. Specifically, the client data includes
the type of the request (register or authenticate), the challenge, and, when pos-
sible, the TLS channel ID [31,32] of the connection. Binding the TLS channel
ID allows the server to detect the presence of a TLS Man in the Middle. When a
server receives a signed TLS channel ID, it can compare it with the TLS channel
ID it observes in the TLS layer. If they differ, the server will be aware of the
presence of a TLS Man in the Middle, and can abort the connection.

Test of User Presence. The Test of User Presence (TUP) allows the caller
to test whether a human is present during command execution. This serves two
purposes: first, it provides a mechanism for human confirmation of commands.

Security Keys: Practical Cryptographic Second Factors for the Modern Web 429

Second, it allows web applications to implement a policy based on that check, e.g.
“Transactions for a dollar amount greater than $1,000 require confirmation,”or
“Credentials must be re-presented by a human being after 90 days.”

TUP implementation is left up to the device manufacturer. One vendor uses
a capacitive touch sensor, others employ a mechanical button, while another
makes a device that stays powered up only a short time after insertion into a
USB port, requiring the user to reinsert the device for every operation.

Cryptographic Primitives. For all signing operations, we chose ECDSA over
the NIST P-256 curve. For all hashing operations, we chose SHA-256. The choice
of the curve and hash algorithm was made because of their wide availability on
embedded platforms. At this time we believe these primitives, which offer 128
bit security, to be sufficiently secure.

5 Implementation

We have implemented end-to-end support for Security Keys. This involved build-
ing a large number of components; we describe some of them below (others
were omitted because of space). Note that all of the components have been
open-sourced, are actively maintained, and can be found at https://github.com/
google/u2f-ref-code.

5.1 Browser Support

We have implemented and shipped support for Security Keys as part of the
Chrome web browser (available since version 41.) The browser support consists
of JavaScript APIs that can be called by any web application. In total, the
support consists of roughly 8,000 lines of code.

Register Method. A web server requests a new Security Key registration by
making use of a new browser API:

u2f.register()

This API accepts a challenge and a list of already-registered key handles. The list
of already-registered key handles allows the browser to avoid double registration
of the same Security Key. If the browser finds an eligible Security Key, the client
sends a register command to the Security Key, described in more detail in the
next section. Upon successful completion of the register command, the browser
sends the Security Key’s Registration Message output, along with the client
data described in Sect. 4.2, to the server. The server verifies the registration
signature and that the client data matches its own view of the request. Finally,
the server can check the attestation certificate to verify that it meets the server’s
requirements. Assuming all parameters match and are found acceptable, the
server stores the key handle Hk and the public key kpub for the user’s account.

https://github.com/google/u2f-ref-code
https://github.com/google/u2f-ref-code

430 J. Lang et al.

Sign Method. A web server requests a signature from a Security Key by making
use of a new browser API:

u2f.sign()

The parameters to the sign API are a challenge, and any registered key handles
for the user. The browser then searches for available Security Keys. For each
device found, the browser sends a sign command, described in more detail in
the next section. Upon successful completion of a sign command, the browser
provides the signature to the server, along with the client data (Sect. 4.2) and the
key handle Hk that produced the signature. The server checks that the signature
verifies with the public key kpub it has stored for Hk, and that the counter value
has increased. The server also verifies the client data against its own view of the
request. If all the checks succeed, the user is authenticated.

5.2 Security Key Token Implementation

We developed a JavaCard-based implementation of a Security Key. The under-
lying applet consists of approximately 1,500 lines of Java code. In addition, as
we describe shortly, we use traditional cryptographic techniques to support an
arbitrary number of keys and origins given the limited storage capabilities of
embedded platforms.

Security Keys support two basic operations: register, to create a new key
pair, and sign, to produce a cryptographic signature.

Register Operation. The register operation takes two parameters, an applica-
tion parameter—the web origin provided by the browser—and a challenge. The
Security Key generates a new key pair (kpub, kpriv) for the application parame-
ter. It then performs a store operation to store both the application parameter
and the private key kpriv. The store operation yields a key handle Hk and is
discussed more fully shortly. The public key kpub and the key handle Hk, along
with the challenge parameter and application parameter, are then signed with
the device’s attestation private key, Privattest. The Security Key provides as
output a Registration Message (see Fig. 4), which includes the public key kpub
and the key handle Hk, as well as the device attestation certificate.

Sign Operation. The sign operation takes three parameters, an application
parameter, a key handle, and a challenge. During authentication, the Security
Key first performs a retrieve operation to retrieve the stored application parame-
ter and the private key for the key handle. If the Security Key does not recognize
the key handle, it rejects the operation. Similarly, if it recognizes the key handle
but the retrieved application parameter does not match the application parame-
ter to the sign operation, it rejects the operation with the same error value as
if it did not recognize the key handle. In this way, a web site that tries to make
use of a key handle that was registered on a different origin cannot learn that

Security Keys: Practical Cryptographic Second Factors for the Modern Web 431

Fig. 4. Security Key registration message. Fig. 5. Security Key authenti-
cation message.

the key handle is valid for the other origin. The retrieve operation is discussed
further shortly.

Once the Security Key has retrieved a valid private key kpriv for the key
handle, and verified that it was generated for the supplied application parameter,
it increments the counter value and signs a concatenation of the Test of User
Presence indication, the new counter value, and the challenge parameter. It
provides the signature s to the browser, along with the Test of User Presence
indication and the new counter value. The result of the sign operation is the
Authentication Message shown in Fig. 5.

5.3 Store and Retrieve Operations

Store and retrieve can be thought of database operations: storing a private
key yields an index into a table, and this index is returned as the key handle.
Retrieving a key handle looks up the value in the table at the given index.

However, a database-like implementation reduces privacy and usability: a
predictable index for key handles reveals the number of accounts a Security
Key is being used with. Additionally, the users need to be aware of the storage
capacity of Security Keys to ensure she doesn’t run out of space in the key
database.

In our reference implementation, store is instead implemented as a key wrap-
ping operation: the private key kpriv and the application parameter are encrypted
using a secret key Kwrap known only to a single Security Key. By implementing
store and retrieve as key wrap/unwrap operations, the Security Key reference
implementations can store an unlimited number of key handles: the storage is
implemented by the server.

In order to avoid known plaintext attacks, our reference implementations
obscure the application parameter with a second secret key, Kapp, also known
only to a single Security Key. The obscured application parameter and the pri-
vate key are then interleaved together, prior to encrypting with the wrapping key.
In the reference implementation, two-key 3DES was chosen as the cipher, due
to the quality of the implementation on the hardware we used. Algorithmically,
our key wrapping implementation is:

432 J. Lang et al.

function store(kpriv, app)
app′ ← Encrypt(app)Kapp

plaintext ← Interleave(kpriv, app′)
HK ← Encrypt(plaintext)Kwrap

return HK

end function

function retrieve(HK , app)

app′ ← Encrypt(app)Kapp

plaintext ← Decrypt(HK)Kwrap

(kpriv , app
′′) ← Deinterleave(plaintext)

constant-time check(app′ == app′′)
return kpriv

end function

It should be noted that key wrapping is an optional optimization vendors may
employ, and that our implementation is one approach. The FIDO U2F specifica-
tions allow device manufacturers to choose any approach for key wrapping. For
example, one vendor’s approach is described in [33].

5.4 Server Implementation

We implemented, open-sourced, and actively maintain a reference Security Key
server. It runs on the Google App Engine platform and consists of approximately
2,000 lines of Java code.

6 Evaluation

We evaluate Security Keys using a number of metrics. We begin by comparing
the usability, deployability, and security of Security Keys to existing and prior
technologies. Next, we discuss the performance of various Security Key hard-
ware devices. Finally, we give an in-depth analysis of our deployment experience
including effect on users, support cost, and other relevant variables.

6.1 Comparative

We use the rating criteria defined in Bonneau et al. [5] to compare Security
Keys to passwords alone, as well as to other second factor authentication meth-
ods in common use in online accounts today. A summary of the comparison can
be seen in Table 1. We use the ratings Bonneau et al. assign, with the exception of
the phishing protection existing second factor schemes provide. We discuss this
more shortly. In short, Security Keys offer similar usability to just passwords
while being much more secure. In addition, Security Keys can be deployed for
supported browsers with a relatively small server-side change.

Usability. Security Keys partially offer the memorywise-effortless and scalable-
for-users benefits because they dramatically reduce the risk of password reuse.
They are not physically-effortless because they still require a password entry,
but the additional burden—a button push—is low. They are both easy-to-learn
and efficient-to-use, and they perform with infrequent-errors. These assertions
are further supported in Sect. 6.3.

Security Keys: Practical Cryptographic Second Factors for the Modern Web 433

Table 1. Comparative evaluation of Security Keys to similar schemes

Usability Deployability Security

Category Scheme M
em

or
yw

is
e-

E
ff
or

tle
ss

Sc
al

ab
le

-f
or

-U
se

rs
N

ot
hi

ng
-t
o-

C
ar

ry
P
hy

si
ca

lly
-E

ff
or

tle
ss

E
as

y-
to

-L
ea

rn
E
ffi

ci
en

t-
to

-U
se

In
fr
eq

ue
nt

-E
rr

or
s

E
as

y-
R
ec

ov
er

y-
fr
om

-L
os

s
A
cc

es
si

bl
e

N
eg

lig
ib

le
-C

os
t-
pe

r-
U

se
r

Se
rv

er
-C

om
pa

ti
bl

e
B
ro

w
se

r-
C

om
pa

ti
bl

e
M

at
ur

e
N

on
-P

ro
pr

ie
ta

ry

R
es

ili
en

t-
to

-P
hy

si
ca

l-
O

bs
er

va
ti
on

R
es

ili
en

t-
to

-T
ar

ge
te

d-
Im

pe
rs

on
at

io
n

R
es

ili
en

t-
to

-T
hr

ot
tle

d-
G

ue
ss

in
g

R
es

ili
en

t-
to

-U
nt

hr
ot

tle
d-

G
ue

ss
in

g
R
es

ili
en

t-
to

-I
nt

er
na

l-
O

bs
er

va
ti
on

R
es

ili
en

t-
to

-L
ea

ks
-f
ro

m
-O

th
er

-V
er

ifi
er

s
R
es

ili
en

t-
to

-P
hi

sh
in

g
R
es

ili
en

t-
to

-T
he

ft
N

o-
T
ru

st
ed

-T
hi

rd
-P

ar
ty

R
eq

ui
ri

ng
-E

xp
lic

it
-C

on
se

nt

U
nl

in
ka

bl
e

(incumbent) Web passwords • • • ◦ • • • • • • • ◦ • • • •

Hardware tokens
Security Keys ◦ ◦ • • • • ◦ ◦ • • • • • • • • • • • • •
RSA SecurID • ◦ ◦ • • • • • • • • • • •

YubiKey • ◦ ◦ • • • • • • • • • • • •
Phone-based

OTP over SMS • • ◦ • ◦ ◦ ◦ • • • • • • • • • ◦ • •
Google 2-Step ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ • • • • • • •

• = offers the benefit; ◦ = almost offers the benefit; no circle = does not offer the benefit.

Deployability. Security Keys are accessible—the physical burden of tapping a
button is minimal; visually impaired users within Google successfully use Secu-
rity Keys. Security Keys nearly offer a negligible-cost-per-user : the user only
needs one for any number of websites, and they are available from multiple
vendors at varying prices. Bonneau et al. do not offer guidance to what price is
considered “negligible,” so we give Security Keys partial credit. Security Keys are
partially browser-compatible: one major browser has built-in support for them,
and we are working toward standardizing support for them.

Security Keys are mature: they have been implemented and deployed on
several large web properties, discussed further in Sect. 6.3. Finally, they are non-
proprietary : There are open standards and source for them. They are available
from multiple vendors. Support for them is deployed in one major browser [12],
with support from another major browser announced [34]. Multiple servers have
implemented support for them.

Security. Security Keys generate assertions that protect users against phishing
and website attackers. While Bonneau et al. claim existing second factor schemes
provide protection against phishing, they do so under the assumption that relay-
based or realtime phishing attacks are hard to mount. We disagree given recent
evidence of successful phishing campaigns against accounts protected by OTP
credentials [9], hence we downgrade the protection for OTP-based second factors.

434 J. Lang et al.

Security Keys generate unique key pairs per account and restrict key use to a
single origin, protecting users against tracking across websites/linkability. Unlike
other hardware 2nd factor solutions such as RSA SecurID, there is no trusted
third party involved. Security Keys, when used with TLS Channel ID, also pro-
vide resistance against man-in-the-middle attacks by letting servers recognize
the presence of two different TLS connections. Finally, Security Keys limit the
user’s exposure to session riding by requiring that a TUP is performed. Note that
Security Keys do not allow transaction confirmation via a trusted display, there-
fore clever attacker may still alter transaction details (e.g., transfer amounts)—
though not without a TUP.

6.2 Hardware Performance

The performance of an operation involving a Security Key involves many vari-
ables. Nevertheless, our aim was to create a protocol that seems “fast enough”
during ordinary use. Our informal guideline was that a sign operation should
complete in well under a second, while registration should complete in around a
second. Measured times for both operations for commercially available hardware
are shown in Table 2. These times show the “raw” performance time—the time
it takes for hardware devices to execute each operation.

With these speeds, we believe we achieved an experience whereby users do
not find the additional step (beyond a password) onerous. We will expand upon
our experience further in the next section.

Table 2. Security Key performance. Raw time needed to complete an operation.

Device Operation time (ms)

Enroll Sign

Happlink FIDO U2F 1210 660

Yubico FIDO U2F 394 192

Yubico YubiKey NEO 398 192

6.3 Deployment Experience

Because of the usability and security benefits Security Keys provide over OTPs,
we have deployed them to more than 50,000 employees, and made them an
available option for consumer accounts. Our users have been very happy with
the switch: we received many instances of unsolicited positive feedback.

The benefits of Security Keys are difficult to quantify. The first benefit is
increased security: users are now protected against phishing, including from
well-known campaigns. Unfortunately, the impact of this benefit can only be
measured in terms of what did not happen, hence it is hard to quantify. Other
impacts include increased productivity due to decreased time spent authenticat-
ing, and decreased support cost; we quantify these below.

Security Keys: Practical Cryptographic Second Factors for the Modern Web 435

Time Spent Authenticating. We compared the time it takes to authenticate
using Security Keys versus other two-factor methods, using two user populations:
Google employees and consumers using our web products.

Figure 6 shows the average time spent authenticating, per user, for Google’s
employees during an arbitrary two-day period. All authentication steps are mea-
sured, i.e., a user is entering a password and providing a second factor. In the
measurements, Security Keys are compared with OTPs, where the OTP may be
provided by one of several sources, the most prevalent being a USB device that
acts as a keyboard. The data originated from authentication events in a two-day
period and thus could be biased toward those who reauthenticate frequently,
and therefore are best trained in the use of their second factor. Because Security
Keys were considered equivalent to OTPs during the period of study, Security
Key users were not prompted more or less frequently than OTP users, and we
do not expect a bias between the two populations as a result.

Total authentication time decreased markedly when using Security Keys; this
may account for the overwhelmingly positive reaction. Previously, the dominant
OTP mechanism in the company was a USB-based device very similar to a
Security Key, but Security Keys are still faster. One possible reason is that most
employees received a tiny Security Key that is meant to never be removed from
the USB port. Thus, when the user is prompted for a second factor, she need
only touch the Security Key’s button, rather than having first to find and insert
the device. A second reason is that the USB OTP devices act like a keyboard,
and require the user to (1) navigate to a form field before touching the device to
release the OTP, then (2) press Enter or click a button to a submit a web form.
With Security Keys, on the other hand, the JavaScript API returns the result
of the Security Key request directly to the page, and the form submission can
happen automatically as a result without additional user action.

Figure 6 also shows the average time required to collect a second factor from
consumers over several days in 2016. Again, Security Keys were faster for con-
sumers to use than OTPs, whether they were delivered by SMS or via a smart-
phone app. Earlier in this work, we gave several reasons why this could be: SMS
delivery can suffer delays, while OTPs in a smartphone app must be manually
typed by users.

Authentication Failure Rate. Authentication failures result in increased
authentication time and user frustration. In our examination of the time period
studied, 3% of OTP-based authentications resulted in failure, while Security
Keys did not present any authentication failures.

Support Cost. Figure 7 shows the number of support incidents we received for
two kinds of authentication second factors for the period in which we transitioned
from using OTPs to Security Keys, normalized by the total number of employees,
on a linear scale. The number of authentication events per user did not depend
on whether the users had Security Keys or OTPs for a second factor, so the
number of support events is believed to be representative. There is a gap in data

436 J. Lang et al.

Fig. 6. Time spent authenticating

collection, when support data were transitioned for one system to another, and
Security Key support incidents were not collected. The approximate percentage
of the company actively using Security Keys is also shown.

The number of support incidents per user rose slightly as the rollout of Secu-
rity Keys expanded, before decreasing again. It’s worth noting that the support
load was higher for OTP than for Security Keys for all time periods. By end of
the period studied, the vast majority of the company had switched from OTP to
Security Keys, and new employees were no longer given OTP devices. Our sup-
port organization estimates that we save thousands of hours per year in support
cost by switching from OTP to Security Key.

Fig. 7. 2nd factor support incidents per employee per month (gaps where data are
unavailable)

Security Keys: Practical Cryptographic Second Factors for the Modern Web 437

Hardware Cost. For the corporate-wide deployment we studied, the devices
purchased had similar per-unit cost to the USB-based OTP devices they
replaced. For this deployment, one Security Key was allotted per computer per
employee. Roughly, this equated to giving each employee 2 Security Keys, on
average. This implies that more was spent on hardware Security Key tokens
than for hardware OTP tokens. For the deployment, we found the increased
user productivity, and decreased support cost, were worth the increased hard-
ware cost.

For consumers, multiple vendors provide Security Keys at different price
points, some as low as $6 USD3. Since users only need one device, rather than
one device per account or site, the resulting cost in our opinion approaches the
“negligible cost per user” suggested by Bonneau et al. [5].

7 Discussion

7.1 Attestation

We chose batch attestation in order to allow servers to assess the trustworthi-
ness of a device, while still affording privacy for the user. There are two other
alternatives that offer attestation while protecting users’ privacy: employing a
trusted third party, and using advanced cryptographic techniques.

In a trusted third party scheme, a device makes an individually identifiable
attestation statement to a privacy CA, first proposed by the Trusted Computing
Group in their Trusted Platform Module (TPM) 1.1 specifications. A privacy CA
provides its own anonymous attestation of the device’s trustworthiness to the
interested party. However, one challenge is that the privacy CA must always be
available and reachable. Another is the distributed trust it requires: Who will run
the privacy CA? Can different entities pick a privacy CA that suits them? What
happens if each party doesn’t trust the same privacy CA? Finally, a privacy CA
would learn the identity of many individuals, presenting a single point of failure
for compromising user privacy.

Advanced cryptographic techniques such as Direct Anonymous Attesta-
tion [35] and Enhanced Privacy ID [36] address many of the shortcomings of
a privacy CA scheme, by allowing revocation without involving a trusted third
party. We did not choose these approaches because they have not yet been
demonstrated to be fast enough on low-cost hardware. For example, Bichsel
et al. [37] evaluated an implementation of an RSA-based scheme running on
JavaCard devices, which runs in roughly 16.5 s. This is well beyond the “around
a second” guideline we had for registration operations.

7.2 Signature Counter

Our design includes a 32-bit signature counter, but leaves some decisions up to
implementers: (1) wrapping behavior and (2) increment amount. Since a TUP is
3 http://smile.amazon.com/s/ref=sr kk 1?rh=k:u2f.

http://smile.amazon.com/s/ref=sr_kk_1?rh=k:u2f

438 J. Lang et al.

performed with every signature, a 32-bit counter provides the ability to perform
a signature per second for more than 100 years before wrapping, and it seems
reasonable that this is outside the lifetime of a Security Key. For the increment
amount, an implementer could have a per-key handle counter, or could use a
single global counter on a particular device. The latter choice is cheaper and
easier to implement, although it presents a minor privacy leak if the counter
update amount is predictable. Implementers could choose to increment a global
counter by a randomly varying amount, though they would have to take care to
avoid early counter wrapping as a result.

8 Conclusion

We have presented Security Key, a special-purpose device for improved second
factor authentication on the web. Security Keys protect users against password
reuse, phishing, and man-in-the-middle attacks by binding cryptographic asser-
tions to website origin and properties of the TLS connection.

Security Keys also score favorably in the usability framework established by
Bonneau et al. [5]. This is further substantiated by our preliminary data analysis
which quantifies the benefits of Security Keys in a two-year deployment study
by measuring reduction in sign-in times experienced by users and reduction in
burden on a support organization.

The Security Key protocol has been standardized within the FIDO Alliance
organization as the Universal Second Factor (U2F) open standard. We have
open-sourced a reference implementation of the standard. Security Keys are
supported by the Chrome browser and by the login system of major web service
providers such as Google, GitHub, and DropBox. We hope this paper serves
as an academic foundation to study and improve Security Keys going forward.
Note, an updated and extended tech report is available at https://github.com/
google/u2f-ref-code/docs/SecurityKeys TechReport.pdf.

Acknowledgements. Listing all of the people who have contributed to the design,
implementation, and evaluation of Security Keys is virtually impossible. We would
like to thank the anonymous reviewers, along with the following individuals: Arnar
Birgisson, Frank Cusack, Jakob Ehrensvärd, Kenny Franks, Iulia Ion, Benjamin
Kalman, Kyle Levy, Brett McDowell, Dan Montgomery, Ratan Nalumasu, Rodrigo
Paiva, Nishit Shah, Matt Spear, Jayini Trivedi, Mike Tsao, Mayank Upadhyay, and
many Google teams (UX, QA, Legal).

References

1. Fallows, J.: Hacked! The Atlantic. November 2011
2. Honan, M.: How Apple and Amazon Security Flaws Led to My Epic Hacking.

http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/all/, Acces-
sed 31 Dec 2014

3. Wikipedia: 2014 celebrity photo hack – wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=2014 celebrity photo hack&oldid=640287871,
Accessed 31 Dec 2014

https://github.com/google/u2f-ref-code/docs/SecurityKeys_TechReport.pdf
https://github.com/google/u2f-ref-code/docs/SecurityKeys_TechReport.pdf
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/all/
http://en.wikipedia.org/w/index.php?title=2014_celebrity_photo_hack&oldid=640287871
http://en.wikipedia.org/w/index.php?title=2014_celebrity_photo_hack&oldid=640287871

Security Keys: Practical Cryptographic Second Factors for the Modern Web 439

4. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy. May 2012

5. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The quest to replace
passwords: a framework for comparative evaluation of web authentication schemes.
In: 2012 IEEE Symposium on Security and Privacy. May 2012

6. Herley, C., Oorschot, P.C., Patrick, A.S.: Passwords: if we’re so smart, why are we
still using them? In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp.
230–237. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03549-4 14

7. Google Inc: Google 2-Step Verification (2015). https://support.google.com/
accounts/answer/180744

8. Bank of America: SafePass Online Banking Security Enhancements (2015).
https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/
safepass.go

9. Railton, J.S., Kleemola, K.: London Calling: Two-Factor Authentication Phishing
From Iran (2015). https://citizenlab.org/2015/08/iran two factor phishing/

10. Harbach, M., Fahl, S., Rieger, M., Smith, M.: On the acceptance of privacy-
preserving authentication technology: the curious case of national identity cards.
In: Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 245–264.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39077-7 13

11. Unknown: Estonia takes the plunge: A national identity scheme goes
global (2014). http://www.economist.com/news/international/21605923-national-
identity-scheme-goes-global-estonia-takes-plunge

12. Shah, N.: Strengthening 2-Step Verification with Security Key (2014). https://
googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-
with.html

13. Heim, P., Patel, J.: Introducing U2F support for secure authentication (2015).
https://blogs.dropbox.com/dropbox/2015/08/u2f-security-keys/

14. Toews, B.: GitHub supports Universal 2nd Factor authentication (2015). https://
github.com/blog/2071-github-supports-universal-2nd-factor-authentication

15. Fast IDentity Online (FIDO): (2015). https://fidoalliance.org/
16. Biddle, R., Chiasson, S., Van Oorschot, P.: Graphical passwords: learning from the

first twelve years. ACM Comput. Surv. 44(4), 19:1–19:41 (2012)
17. Jain, A.K., Flynn, P., Ross, A.A.: Handbook of Biometrics, 1st edn. Springer, New

York (2010)
18. Parno, B., Kuo, C., Perrig, A.: Phoolproof phishing prevention. In: Crescenzo, G.,

Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 1–19. Springer, Heidelberg (2006).
doi:10.1007/11889663 1

19. Toopher Inc.: Toopher - 2 Factor Authentication (2012). http://toopher.com
20. Oracle: Java Card Technology (2014). http://www.oracle.com/technetwork/java/

embedded/javacard/overview/index.html
21. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol, Version

1.2. http://tools.ietf.org/html/rfc5246, August 2008
22. Gaw, S., Felten, E.W.: Password management strategies for online accounts. In:

Proceedings SOUPS 2006, pp. 44–55. ACM Press (2006)
23. Fontana, J.: Stolen passwords re-used to attack Best Buy accounts

(2012). http://www.zdnet.com/stolen-passwords-re-used-to-attack-best-buy-
accounts-7000000741/

24. Aircrack: Aircrack-ng Homepage (2015). http://www.aircrack-ng.org/doku.php
25. Butler, E.: Firesheep (2010). http://codebutler.com/firesheep
26. Ewen, M.: The NSA Files (2015). http://www.theguardian.com/us-news/

the-nsa-files

http://dx.doi.org/10.1007/978-3-642-03549-4_14
https://support.google.com/accounts/answer/180744
https://support.google.com/accounts/answer/180744
https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/safepass.go
https://www.bankofamerica.com/privacy/online-mobile-banking-privacy/safepass.go
https://citizenlab.org/2015/08/iran_two_factor_phishing/
http://dx.doi.org/10.1007/978-3-642-39077-7_13
http://www.economist.com/news/international/21605923-national-identity-scheme-goes-global-estonia-takes-plunge
http://www.economist.com/news/international/21605923-national-identity-scheme-goes-global-estonia-takes-plunge
https://googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-with.html
https://googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-with.html
https://googleonlinesecurity.blogspot.com/2014/10/strengthening-2-step-verification-with.html
https://blogs.dropbox.com/dropbox/2015/08/u2f-security-keys/
https://github.com/blog/2071-github-supports-universal-2nd-factor-authentication
https://github.com/blog/2071-github-supports-universal-2nd-factor-authentication
https://fidoalliance.org/
http://dx.doi.org/10.1007/11889663_1
http://toopher.com
http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
http://www.oracle.com/technetwork/java/embedded/javacard/overview/index.html
http://tools.ietf.org/html/rfc5246
http://www.zdnet.com/stolen-passwords-re-used-to-attack-best-buy-accounts-7000000741/
http://www.zdnet.com/stolen-passwords-re-used-to-attack-best-buy-accounts-7000000741/
http://www.aircrack-ng.org/doku.php
http://codebutler.com/firesheep
http://www.theguardian.com/us-news/the-nsa-files
http://www.theguardian.com/us-news/the-nsa-files

440 J. Lang et al.

27. The Register: Microsoft Outlook PENETRATED by Chinese ‘man-in-the-
middle’ (2015). http://www.theregister.co.uk/2015/01/19/microsoft outlook hit
by mitm attack says china great fire org/

28. Adkins, H.: An update on attempted man-in-the-middle attacks. http://
googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.
html, August 2011

29. Rizzo, J., Duong, T.: BEAST. http://vnhacker.blogspot.com/2011/09/beast.html,
September 2011

30. AlFardan, N.J., Paterson, K.G.: Lucky Thirteen: Breaking the TLS and DTLS
Record Protocols (2013). http://www.isg.rhul.ac.uk/tls/TLStiming.pdf

31. Dietz, M., Czeskis, A., Balfanz, D., Wallach, D.S.: Origin-bound certificates: a fresh
approach to strong client authentication for the web. In: Proceedings of the 21st
USENIX Conference on Security Symposium. Security 2012, Berkeley, CA, USA,
USENIX Association (2012). 16–16

32. Popov, A., Balfanz, D., Nystroem, M., Langley, A.: The Token Binding Protocol
Version 1.0 (2015). https://tools.ietf.org/html/draft-ietf-tokbind-protocol

33. Nilsson, D.: Yubico’s Take On U2F Key Wrapping. https://www.yubico.com/
2014/11/yubicos-u2f-key-wrapping/. Accessed 6 Jan 2016

34. Barnes, R.: Intent to implement and ship: FIDO U2F API (2015). https://
groups.google.com/forum/#!msg/mozilla.dev.platform/IVGEJnQW3Uo/
Eu5tvyLmCgAJ

35. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security,
CCS 2004, pp. 132–145. ACM, New York (2004)

36. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. In: Proceedings of the 2007 ACM Workshop
on Privacy in Electronic Society, WPES 2007, pp. 21–30. ACM, New York (2007)

37. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stan-
dard Java Card. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 600–610. ACM (2009)

http://www.theregister.co.uk/2015/01/19/microsoft_outlook_hit_by_mitm_attack_says_china_great_fire_org/
http://www.theregister.co.uk/2015/01/19/microsoft_outlook_hit_by_mitm_attack_says_china_great_fire_org/
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://vnhacker.blogspot.com/2011/09/beast.html
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf
https://tools.ietf.org/html/draft-ietf-tokbind-protocol
https://www.yubico.com/2014/11/yubicos-u2f-key-wrapping/
https://www.yubico.com/2014/11/yubicos-u2f-key-wrapping/
https://groups.google.com/forum/#!msg/mozilla.dev.platform/IVGEJnQW3Uo/Eu5tvyLmCgAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/IVGEJnQW3Uo/Eu5tvyLmCgAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/IVGEJnQW3Uo/Eu5tvyLmCgAJ

Include Me Out: In-Browser Detection
of Malicious Third-Party Content Inclusions

Sajjad Arshad(B), Amin Kharraz, and William Robertson

Northeastern University, Boston, USA
{arshad,mkharraz,wkr}@ccs.neu.edu

Abstract. Modern websites include various types of third-party con-
tent such as JavaScript, images, stylesheets, and Flash objects in order
to create interactive user interfaces. In addition to explicit inclusion of
third-party content by website publishers, ISPs and browser extensions
are hijacking web browsing sessions with increasing frequency to inject
third-party content (e.g., ads). However, third-party content can also
introduce security risks to users of these websites, unbeknownst to both
website operators and users. Because of the often highly dynamic nature
of these inclusions as well as the use of advanced cloaking techniques in
contemporary malware, it is exceedingly difficult to preemptively recog-
nize and block inclusions of malicious third-party content before it has
the chance to attack the user’s system.

In this paper, we propose a novel approach to achieving the goal of
preemptive blocking of malicious third-party content inclusion through
an analysis of inclusion sequences on the Web. We implemented our
approach, called Excision, as a set of modifications to the Chromium
browser that protects users from malicious inclusions while web pages
load. Our analysis suggests that by adopting our in-browser approach,
users can avoid a significant portion of malicious third-party content on
the Web. Our evaluation shows that Excision effectively identifies mali-
cious content while introducing a low false positive rate. Our experiments
also demonstrate that our approach does not negatively impact a user’s
browsing experience when browsing popular websites drawn from the
Alexa Top 500.

Keywords: Web security · Malvertising · Machine learning

1 Introduction

Linking to third-party content has been one of the defining features of the World
Wide Web since its inception, and this feature remains strongly evident today.
For instance, recent research [28] reveals that more than 93% of the most popular
websites include JavaScript from external sources. Developers typically include
third-party content for convenience and performance – e.g., many JavaScript
libraries are hosted on fast content delivery networks (CDNs) and are likely to
already be cached by users – or to integrate with advertising networks, analytics
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 441–459, 2017.
DOI: 10.1007/978-3-662-54970-4 26

442 S. Arshad et al.

frameworks, and social media. Third-party content inclusion has also been used
by entities other than the website publishers themselves. For example, ad injec-
tion has been adopted by ISPs and browser extension authors as a prominent
technique for monetization [25].

However, the inherent feature of content-sharing on the Web is also an
Achilles heel when it comes to security. Advertising networks, as one example,
have emerged as an important vector for adversaries to distribute attacks to a
wide audience [21,22,29,36,43]. Moreover, users are more susceptible to malver-
tising in the presence of ad injection [17,38,42]. In general, linking to third-party
content is essentially an assertion of trust that the content is benign. This asser-
tion can be violated in several ways, however, due to the dynamic nature of
the Web. Since website operators cannot control external content, they cannot
know a priori what links will resolve to in the future. The compromise of linked
content or pure malfeasance on the part of third parties can easily violate these
trust assumptions. This is only exacerbated by the transitive nature of trust on
the Web, where requests for content can be forwarded beyond the first, directly
observable origin to unknown parties.

While the same origin policy (SOP) enforces a modicum of origin-based sep-
aration between code and data from different principals, developers have clam-
ored for more flexible sharing models provided by, e.g., Content Security Policy
(CSP) [7], Cross-Origin Resource Sharing (CORS) [6], and postMessage-based
cross-frame communication. These newer standards permit greater flexibility in
performing cross-origin inclusions, and each come with associated mechanisms
for restricting communication to trusted origins. However, recent work has shown
that these standards are difficult to apply securely in practice [34,40], and do not
necessarily address the challenges of trusting remote inclusions on the dynamic
Web. In addition to the inapplicability of some approaches such as CSP, third
parties can leverage their power to bypass these security mechanisms. For exam-
ple, ISPs and browser extensions are able to tamper with HTTP traffic to modify
or remove CSP rules in HTTP responses [17,38].

In this paper, we propose an in-browser approach called Excision to auto-
matically detect and block malicious third-party content inclusions as web pages
are loaded into the user’s browser or during the execution of browser extensions.
Our approach does not rely on examination of the content of the resources;
rather, it relies on analyzing the sequence of inclusions that leads to the resolu-
tion and loading of a terminal remote resource. Unlike prior work [22], Excision
resolves inclusion sequences through instrumentation of the browser itself, an
approach that provides a high-fidelity view of the third-party inclusion process as
well as the ability to interdict content loading in real-time. This precise view also
renders ineffective common obfuscation techniques used by attackers to evade
detection. Obfuscation causes the detection rate of these approaches to degrade
significantly since obfuscated third-party inclusions cannot be traced using exist-
ing techniques [22]. Furthermore, the in-browser property of our system allows
users to browse websites with a higher confidence since malicious third-party
content is prevented from being included while the web page is loading.

In-Browser Detection of Malicious Third-Party Content Inclusions 443

We implemented Excision as a set of modifications to the Chromium
browser, and evaluated its effectiveness by analyzing the Alexa Top 200 K over
a period of 11 months. Our evaluation demonstrates that Excision achieves
a 93.39% detection rate, a false positive rate of 0.59%, and low performance
overhead. We also performed a usability test of our research prototype, which
shows that Excision does not detract from the user’s browsing experience while
automatically protecting the user from the vast majority of malicious content
on the Web. The detection results suggest that Excision could be used as a
complementary system to other techniques such as CSP.

The main contributions of this paper are as follows:

– We present a novel in-browser approach called Excision that automatically
detects and blocks malicious third-party content before it can attack the
user’s browser. The approach leverages a high-fidelity in-browser vantage point
that allows it to construct a precise inclusion sequence for every third-party
resource.

– We describe a prototype of Excision for the Chromium browser that can
effectively prevent inclusions of malicious content.

– We evaluate the effectiveness and performance of our prototype, and show
that it is able to automatically detect and block malicious third-party content
inclusions in the wild – including malicious resources not previously identi-
fied by popular malware blacklists – without a significant impact on browser
performance.

– We evaluate the usability of our prototype and show that most users did not
notice any significant quality impact on their browsing experience.

2 Problem Statement

In the following, we first discuss the threats posed by third-party content and
then motivate our work.

2.1 Threats

While the inclusion of third-party content provides convenience for web develop-
ers and allows for integration into advertising distribution, analytics, and social
media networks, it can potentially introduce a set of serious security threats for
users. For instance, advertising networks and social media have been and con-
tinue to be abused as a vector for injection of malware. Website operators, or
publishers, have little control over this content aside from blind trust or security
through isolation. Attacks distributed through these vectors – in the absence of
isolation – execute with the same privileges as all other JavaScript within the
security context of the enclosing DOM. In general, malicious code could launch
drive-by downloads [10], redirect visitors to phishing sites, generate fraudulent
clicks on advertisements [22], or steal user information [16].

Moreover, ad injection has become a new source of income for ISPs and
browser extension authors [25]. ISPs inject advertisements into web pages by

444 S. Arshad et al.

tampering with their users’ HTTP traffic [9], and browser extension authors have
recently started to inject or replace ads in web pages to monetize their work.
Ad injection negatively impacts both website publishers and users by diverting
revenue from publishers and exposing users to malvertising [38,42]. In addition
to ad injection, malicious browser extensions can also pose significant risks to
users due to the special privileges they have [19].

2.2 Motivation

Publishers can try to isolate untrusted third-party content using iframes (per-
haps enhanced with HTML5 sandboxing features), language-based sandboxing,
or policy enforcement [1,12,15,23,24]. However, these approaches are not com-
monly used in practice; some degrade the quality of ads (from the advertiser’s
perspective), while others are non-trivial to deploy. Publishers could attempt to
use Content Security Policy (CSP) [7] to define and enforce access control lists
for remote inclusions in the browser. However, due to the dynamic nature of
the web, this approach (and similar access control policy-based techniques) has
problems. Recent studies [34,40] indicate that CSP is difficult to apply in prac-
tice. A major reason for this is the unpredictability of the origins of inclusions
for third-party resources, which complicates the construction of a correct, yet
tight, policy.

For example, when websites integrate third-party advertisements, multiple
origins can be contacted in order to deliver an ad to the user’s browser. This is
often due to the practice of re-selling ad space (a process known as ad syndi-
cation) or through real-time ad auctions. Either of these approaches can result
in ads being delivered through a series of JavaScript code inclusions [35]. Addi-
tionally, the growing number of browser extensions makes it a non-trivial task
for website operators to enumerate the set of benign origins from which browser
extensions might include a resource. As an example, for theverge.com website,
the number of unique included domains over a period of 11 months increases
roughly linearly; clearly, constructing an explicit whitelist of domains is a chal-
lenging task.

Even if website publishers can keep pace with origin diversity over time with
a comprehensive list of CSP rules, ISPs and browser extensions are able to
tamper with in-transit HTTP traffic and modify CSP rules sent by the websites.
In addition, in browsers such as Chrome, the web page’s CSP does not apply to
extension scripts executed in the page’s context [2]; hence, extensions are able
to include arbitrary third-party resources into the web page.

Given the challenges described above, we believe that existing techniques such
as CSP can be evaded and, hence, there is a need for an automatic approach to
protect users from malicious third-party content. We do not necessarily advocate
such an approach in isolation, however. Instead, we envision this approach as a
complementary defense that can be layered with other techniques in order to
improve the safety of the Web.

http://www.theverge.com/

In-Browser Detection of Malicious Third-Party Content Inclusions 445

3 EXCISION

In this section, we describe Excision, our approach for detecting and blocking
the inclusion of malicious third-party content in real-time. An overview of our
system is shown in Fig. 1. Excision operates by extracting resource inclusion
trees from within the browser. The inclusion tree precisely records the inclu-
sion relationships between different resources in a web page. When the user
requests a web page, the browser retrieves the corresponding HTML document
and passes it to the rendering engine. The rendering engine incrementally con-
structs an inclusion tree for the DOM and begins extracting external resources
such as scripts and frames as it reaches new HTML tags. For inclusion of a
new resource, the rendering engine consults the CSP engine and the inclusion
sequence classifier in order to decide whether to include the resource. If the
resource’s origin and type are whitelisted in the CSP rules, the rendering engine
includes the resource without consulting the inclusion sequence classifier and
continues parsing the rest of the HTML document. Otherwise, it extracts the
inclusion sequence (path through the page’s inclusion tree) for the resource and
forwards this to the inclusion sequence classifier. Using pre-learned models, the
classifier returns a decision about the malice of the resource to the rendering
engine. Finally, the rendering engine discards the resource if it was identified as
malicious. The same process occurs for resources that are included dynamically
during the execution of extension scripts after they are injected into the page.

Fig. 1. An overview of Excision.

3.1 Inclusion Trees and Sequences

A website can include resources in an HTML document from any origin so long as
the inclusion respects the same origin policy, its standard exceptions, or any addi-
tional policies due to the use of CSP, CORS, or other access control framework.
A first approximation to understanding the inclusions of third-party content for
a given web page is to process its DOM tree [41] while the page loads. However,
direct use of a web page’s DOM tree is unsatisfactory because the DOM does not

446 S. Arshad et al.

Fig. 2. (a) DOM tree, and (b) Inclusion tree

in fact reliably record the inclusion relationships between resources referenced
by a page. This follows from the ability for JavaScript to manipulate the DOM
at run-time using the DOM API.

Instead, in this work we define an inclusion tree abstraction extracted directly
from the browser’s resource loading code. Unlike a DOM tree, the inclusion tree
represents how different resources are included in a web page that is invariant
with respect to run-time DOM updates. It also discards irrelevant portions of
the DOM tree that do not reference remote content. For each resource in the
inclusion tree, there is an inclusion sequence that begins with the root resource
(i.e., the URL of the web page) and terminates with the corresponding resource.
Furthermore, browser extensions can also manipulate the web page by inject-
ing and executing JavaScript code in the page’s context. Hence, the injected
JavaScript is considered a direct child of the root node in the inclusion tree.
An example of a DOM tree and its corresponding inclusion tree is shown in
Fig. 2. As shown in Fig. 2b, f.org/flash.swf has been dynamically added by
an inline script to the DOM tree, and its corresponding inclusion sequence
has a length of 4 since we remove the inline resources from inclusion sequence.
Moreover, ext-id/script.js is injected by an extension as the direct child of
the root resource. This script then included g.com/script.js, which in turn
included h.org/img.jpg.

3.2 Inclusion Sequence Classification

Given an inclusion sequence, Excision must classify it as benign or malicious
based on features extracted from the sequence. The task of the inclusion sequence
classifier is to assign a class label from the set {benign,malicious} to a given
sequence based on previously learned models from a labeled data set. In our
definition, a malicious sequence is one that starts from the root URL of a web

In-Browser Detection of Malicious Third-Party Content Inclusions 447

page and terminates in a URL that delivers malicious content. For classification,
we used hidden Markov models (HMM) [31]. Models are comprised of states, each
of which holds transitions to other states based on a probability distribution.
Each state can probabilistically emit a symbol from an alphabet. There are
other sequence classification techniques such as Näıve Bayes [20], but we used
an HMM for our classifier because we also want to model the inter-dependencies
between the resources that compose an inclusion sequence.

In the training phase, the system learns two HMMs from a training set of
labeled sequences, one for the benign class and one for the malicious class. We
estimated the HMM parameters by employing the Baum-Welch algorithm which
finds the maximum likelihood estimate of these parameters based on the set of
observed sequences. In our system, we empirically selected 20 for the number of
states that are fully connected to each other. In the subsequent detection phase,
we compute the likelihood of a new sequence given the trained models using
the forward-backward algorithm and assign the sequence to the class with the
highest likelihood. Training hidden Markov models is computationally expensive.
However, computing the likelihood of a sequence is instead very efficient, which
makes it a suitable method for real-time classification [31].

4 Classification Features

Let r0 → r1 → · · · → rn be an inclusion sequence as described above. Feature
extraction begins by converting the inclusion sequence into sequences of feature
vectors. After analyzing the inclusion trees of several thousand benign and mali-
cious websites for a period of 11 months, we identified 12 feature types from three
categories. For each feature type, we compute two different features: individual
and relative features. An individual feature value is only dependent on the cur-
rent resource, but a relative feature value is dependent on the current resource
and its preceding (or parent) resources. Consequently, we have 24 features for
each resource in an inclusion sequence. Individual features can have categorical
or continuous values. All continuous feature values are normalized on [0, 1] and
their values are discretized. In the case of continuous individual features, the
relative feature values are computed by comparing the individual value of the
resource to its parent’s individual value. The result of the comparison is less,
equal, or more. We use the value none for the root resource. To capture the high-
level relationships between different inclusions, we only consider the host part
of the URL for feature calculation.

4.1 DNS-Based Features

The first feature category that we consider is based on DNS properties of the
resource host.

Top-Level Domain. For this feature, we measure the types of TLDs from which
a resource is included and how it changes along the inclusion sequence. For every
resource in an inclusion sequence, we assign one of the values in Table 1 as an

448 S. Arshad et al.

Table 1. Individual TLD values

Value Example

none IPs, Extensions

gen *.com, *.org

gen-subdomain *.us.com

cc *.us, *.de, *.cn

cc-subdomain *.co.uk, *.com.cn

cc-int *.xn−−p1ai (ru)

other *.biz, *.info

Table 2. Relative TLD values.

Value Example

none root resource

{got,lost}-tld Ext. → *.de, *.us → IP

gen-to-{cc,other} *.org → {*.de, *.info}
cc-to-{gen,other} *.uk → {*.com, *.biz}
other-to-{gen,cc} *.info → {*.net, *.uk}
same-{gen,cc,other} *.com → *.com

diff-{gen,cc,other} *.info → *.biz

Table 3. Individual type values

Value Example

ipv6 2607:f0d0::::4

ipv4-private 192.168.0.1

ipv4-public 4.2.2.4

extension Ext. Scripts

dns-sld google.com

dns-sld-sub www.google.com

dns-non-sld abc.dyndns.org

dns-non-sld-sub a.b.dyndns.org

Table 4. Relative type values.

Value Example

none root resource

same-site w.google.com → ad.google.com

same-sld 1.dyndns.org → 2.dyndns.org

same-company ad.google.com → www.google.de

same-eff-tld bbc.co.uk → london.co.uk

same-tld bbc.co.uk → london.uk

different google.com → facebook.net

individual feature. For the relative feature, we consider the changes that occur
between the top-level domain of the preceding resource and the resource itself.
Table 2 shows 15 different values of the relative TLD feature.

Type. This feature identifies the types of resource hosts and their changes along
the inclusion sequence. Possible values of individual and relative features are
shown in Tables 3 and 4 respectively.

Level. A domain name consists of a set of labels separated by dots. We say a
domain name with n labels is in level n− 1. For example, www.google.com is in
level 2. For IP addresses and extension scripts, we consider their level to be 1.
For a given host, we compute the individual feature by dividing the level by a
maximum value of 126.

Alexa Ranking. We also consider the ranking of a resource’s domain in the
Alexa Top 1M websites. To compute the normalized ranking as an individual
feature, we divide the ranking of the domain by one million. For IP addresses,
extensions, and domains that are not in the top 1M, we use the value none.

4.2 String-Based Features

We observed that malicious domain names often make liberal use of digits and
hyphens in combination with alphabetical characters. So, in this feature category,

www.google.com

In-Browser Detection of Malicious Third-Party Content Inclusions 449

we characterize the string properties of resource hosts. For IP addresses and
extension scripts, we assign the value 1 for individual features.

Non-alphabetic Characters. For this feature, we compute the individual fea-
ture value by dividing the number of non-alphabetical characters over the length
of domain.

Unique Characters. We also measure the number of unique characters that
are used in a domain. The individual feature is the number of unique characters
in the domain divided by the maximum number of unique characters in the
domain name, which is 38 (26 alphabetics, 10 digits, hyphen, and dot).

Character Frequency. For this feature, we simply measure how often a single
character is seen in a domain. To compute an individual feature value, we calcu-
late the frequency of each character in the domain and then divide the average
of these frequencies by the length of the domain to normalize the value.

Length. In this feature, we measure the length of the domain divided by the
maximum length of a domain, which is 253.

Entropy. In practice, benign domains are typically intended to be memorable
to users. This is often not a concern for attackers, as evidenced by the use of
domain generation algorithms [8]. Consequently, we employ Shannon entropy
to measure the randomness of domains in the inclusion sequence. We calculate
normalized entropy as the absolute Shannon entropy divided by the maximum
entropy for the domain name.

4.3 Role-Based Features

We observed that identifying the role of resources in the inclusion sequences
can be helpful in detecting malicious resources. For example, recent work [29]
reveals that attackers misuse ad networks as well as URL shortening services for
malicious intent. So far, we consider three roles for a resource: (i) ad-network,
(ii) content delivery network (CDN), and (iii) URL shortening service.

In total, we have three features in this category, as each host can simul-
taneously perform multiple roles. Both individual and relative features in this
category have binary values. For the individual feature, the value is Yes if the
host has the role, and No otherwise. For the relative feature, we assign a value
Yes if at least one of the preceding hosts have the corresponding role, and No
otherwise. For extension scripts, we assign the value No for all of the features.
To assign the roles, we compiled a list of common hosts related to these roles
that contains 5,767 ad-networks, 48 CDNs, and 461 URL shortening services.

5 Implementation

In this section, we discuss our prototype implementation of Excision for detect-
ing and blocking malicious third-party content inclusions. We implemented

450 S. Arshad et al.

Excision as a set of modifications to the Chromium browser1. In order to
implement our system, we needed to modify Blink and the Chromium extension
engine to enable Excision to detect and block inclusions of malicious content
in an online and automatic fashion while the web page is loading. The entire
set of modifications consists of less than 1,000 lines of C++ and several lines of
JavaScript.

5.1 Enhancements to Blink

Blink is primarily responsible for parsing HTML documents, managing script
execution, and fetching resources from the network. Consequently, it is ideally
suited for constructing the inclusion tree for a web page, as well as blocking the
inclusion of malicious content.

Tracking Resource Inclusion. Static resource inclusions that are hard-coded
by publishers inside the page’s HTML are added to the inclusion tree as the
direct children of the root node. For dynamic inclusions (e.g., via the createEle-
ment() and write() DOM API functions), the system must find the script resource
responsible for the resource inclusion. To monitor dynamic resource inclusions,
the system tracks the start and termination of script execution. Any resources
that are included in this interval will be considered as the children of that script
resource in the inclusion tree.

Handling Events and Timers. Events and timers are widely used by web
developers to respond to user interactions (e.g., clicking on an element) or sched-
ule execution of code after some time has elapsed. To capture the creation and
firing of events and timers, the system tracks the registration of callback func-
tions for the corresponding APIs.

5.2 Enhancements to the Chromium Extension Engine

The Chromium extension engine handles the loading, management, and execu-
tion of extensions. To access the page’s DOM, the extension injects and executes
content scripts in the page’s context which are regular JavaScript programs.

Tracking Content Scripts Injection and Execution. Content scripts are
usually injected into web pages either via the extension’s manifest file using
the content scripts field or at runtime via the executeScript API. Either way,
content scripts are considered direct children of the root node in the inclusion
tree. Therefore, in order to track the inclusion of resources as a result of content
script execution, the extension engine was modified to track the injection and
execution of content scripts.

1 While our implementation could be adopted as-is by any browser vendors that use
WebKit-derived engines, the design presented here is highly likely to be portable to
other browsers.

In-Browser Detection of Malicious Third-Party Content Inclusions 451

Handling Callback Functions. Like any other JavaScript program, content
scripts rely heavily on callback functions. For instance, onMessage and sendMes-
sage are used by content scripts to exchange messages with their background
pages. To track the execution of callback functions, two JavaScript files were
modified in the extension engine which are responsible for invocation and man-
agement of callback functions.

6 Evaluation

In this section, we evaluate the security benefits, performance, and usability of
the Excision prototype. We describe the data sets we used to train and evaluate
the system, and then present the results of the experiments.

6.1 Data Collection

To collect inclusion sequences, we performed two separate crawls for websites
and extensions. The summary of crawling statistics are presented in Table 5.

Website Crawl. We built a crawler based on an instrumented version of Phan-
tomJS [3], a scriptable open source browser based on WebKit, and crawled the

Table 5. Summary of crawling statistics.

Item Website crawl Extension crawl

Websites crawled 234,529 20

Unavailable websites 7,412 0

Unique inclusion trees 47,789,268 35,004

Unique inclusion sequences 27,261,945 61,489

Unique URLs 546,649,590 72,064

Unique hosts 1,368,021 1,144

Unique sites 459,615 749

Unique SLDs 419,119 723

Unique companies 384,820 719

Unique effective TLDs 1,115 21

Unique TLDs 404 21

Unique IPs 9,755 3

Table 6. Data sets used in the evaluation.

Dataset No. of inclusion sequences No. of terminal hosts

Web. crawl Ext. crawl Web. crawl Ext. crawl

Benign 3,706,451 7,372 35,044 250

Malicious 25,153 19 1,226 2

452 S. Arshad et al.

home pages of the Alexa Top 200K. We performed our data collection from
June 20th, 2014 to May 11th, 2015. The crawl was parallelized by deploying 50
crawler instances on five virtual machines, each of which crawled a fixed sub-
set of the Alexa Top 200 K websites. To ensure that visited websites did not
store any data on the clients, the crawler ran a fresh instance of PhantomJS for
each visit. Once all crawlers finished crawling the list of websites, the process
was restarted from the beginning. To thwart cloaking techniques [18] utilized
by attackers, the crawlers presented a user agent for IE 6.0 on Windows and
employed Tor to send HTTP requests from different source IP addresses. We also
address JavaScript-based browser fingerprinting by modifying the internal imple-
mentation of the navigator object to return a fake value for the appCodeName,
appName, appVersion, platform, product, userAgent, and vendor attributes.

Extension Crawl. To collect inclusion sequences related to extensions, we
used 292 Chrome extensions reported in prior work [42] that injected ads into
web pages. Since ad-injecting extensions mostly target shopping websites (e.g.,
Amazon), we chose the Alexa Top 20 shopping websites for crawling to trig-
ger ad injection by those 292 extensions. We built a crawler by instrumenting
Chromium 43 and collected data for a period of one week from June 16th to
June 22nd, 2015. The system loaded every extension and then visited the home
pages of the Alexa Top 20 shopping websites using Selenium WebDriver [4]. This
process was repeated after crawling the entire set of extensions. In addition, our
crawler triggered all the events and timers registered by content scripts.

6.2 Building Labeled Datasets

To classify a given inclusion sequence as benign or malicious, we trained two hid-
den Markov models for benign and malicious inclusion sequences from our data
set. We labeled collected inclusion sequences as either benign or malicious using
VirusTotal [5]. VirusTotal’s URL scanning service aggregates reports of malicious
URLs from most prominent URL scanners such as Google Safe Browsing [13]
and the Malware Domain List. The malicious data set contains all inclusion
sequences where the last included resource’s host is reported malicious by at least
three out of the 62 URL scanners in VirusTotal. On the other hand, the benign
data set only contains inclusion sequences that do not contain any host in the
entire sequence that is reported as malicious by any URL scanner in VirusTotal.
To build benign data set, we considered reputable domains such as well-known
search engines and advertising networks as benign regardless of whether they are
reported as malicious by any URL scanner in VirusTotal. Table 6 summarizes
the data sets. The unique number of inclusion sequences and terminal hosts are
shown separately for the website and extension data sets. The terminal hosts
column is the number of unique hosts that terminate inclusion sequences.

6.3 Detection Results

To evaluate the accuracy of our classifier, we used 10-fold cross-validation, in
which we first partitioned each data set into 10 equal-sized folds, trained the

In-Browser Detection of Malicious Third-Party Content Inclusions 453

models on nine folds, and then validated the resulting models with the remaining
fold. The process was repeated for each fold and, at the end, we calculated
the average false positive rate and false negative rate. When splitting the data
set into training and testing sets, we made sure that inclusion sequences with
different lengths were present in both. We also ensured that both sets contained
extension-related inclusion sequences.

The results show that our classifier achieved a false positive rate of 0.59% and
false negative rate of 6.61% (detection rate of 93.39%). Most of the false positives
are due to inclusion sequences that do not appear too often in the training sets.
Hence, users are unlikely to experience many false positives in a real browsing
environment (as will be shown in our usability analysis in Sect. 6.6).

To quantify the contribution of different feature categories to the classifi-
cation, we trained classifiers using different combinations of feature categories
and compared the results. Figure 3a shows the false positive rate and false neg-
ative rate of every combination with a 10-fold cross-validation training scheme.
According to Fig. 3a, the best false positive and false negative rates were obtained
using a combination of all feature categories.

Fig. 3. Feature category contributions and early detection results.

6.4 Comparison with URL Scanners

To evaluate the ability of our system in detecting unreported suspicious hosts,
we ran our classifier on inclusion sequences collected from June 1st until July
14th, 2015. We compared our detection results with reports from URL scanners
in VirusTotal and detected 89 new suspicious hosts. We believe that these hosts
are in fact dedicated malicious hosts that play the role of redirectors and manage
malicious traffic flows as described in prior work [21]. These hosts did not deliver
malicious resources themselves, but they consistently included resources from

454 S. Arshad et al.

other hosts that were flagged as malicious by URL scanners. Out of 89 suspicious
domains, nearly 44% were recently registered in 2015, and more than 23% no
longer resolve to an IP address.

Furthermore, we detected 177 hosts that were later reported by URL scanners
after some delay. Figure 3b shows the early detection results of our system. A
significant number of these hosts were not reported until some time had passed
after Excision initially identified them. For instance, nearly 78% of the malicious
hosts were not reported by any URL scanner during the first week.

6.5 Performance

To assess the performance of Excision, we used Selenium WebDriver to auto-
matically visit the Alexa Top 1 K with both original and modified Chromium
browsers. In order to measure our prototype performance with a realistic set
of extensions, we installed five of the most popular extensions in the Chrome
Web Store: Adblock Plus, Google Translate, Google Dictionary, Evernote Web
Clipper, and Tampermonkey.

For each browser, we visited the home pages of the entire list of websites
and recorded the total elapsed time. Due to the dynamic nature of ads and
their influence on page load time, we repeated the experiment 10 times and
measured the average elapsed time. On average, the elapsed times were 3,065 and
3,438 s for the original and modified browsers respectively. Therefore, Excision
incurred a 12.2% overhead on browsing time on average, which corresponds
to a noticeable overhead that is nevertheless acceptable for many users (see
Sect. 6.6). To measure the overhead incurred by Excision on browser startup
time, we launched the modified browser 10 times and measured the average
browser launch time. Excision caused a 3.2 s delay on browser startup time,
which is ameliorated by the fact that this is a one-time performance hit.

6.6 Usability

We conducted an experiment to evaluate the impact of Excision on the user’s
browsing experience. We conducted the study on 10 students that self-reported
as expert Internet users. We provided each participant with a list of 50 websites
that were selected randomly from the Alexa Top 500 and then asked them to
visit at least three levels down in each website. Participants were asked to report
the number of visited pages and the list of domains reported as malicious by our
system. In addition, participants were asked to record the number of errors they
encountered while they browsed the websites. Errors were considered to occur
when the browser crashed, the appearance of a web page was corrupted, or page
load times were abnormally long. Furthermore, in order to ensure that benign
extensions were not prevented from executing as expected in the presence of our
system, the browser was configured to load the five popular extensions listed
in Sect. 6.5 and participants were asked to report any problem while using the
extensions.

In-Browser Detection of Malicious Third-Party Content Inclusions 455

The results of the study show that out of 5,129 web pages visited by the
participants, only 83 errors were encountered and the majority of web pages
loaded correctly. Most of these errors happened due to relatively high load times.
In addition, none of the participants reported any broken extensions. Further-
more, 31 malicious inclusions were reported by our tool that were automatically
processed (without manual examination, for privacy reasons) using VirusTotal.
Based on the results, we believe that our proof-of-concept prototype is compati-
ble with frequently used websites and extensions, and can be improved through
further engineering to work completely free of errors.

Ethics. In designing the usability experiment, we made a conscious effort to
avoid collecting personal or sensitive information. In particular, we restricted
the kinds of information we asked users to report to incidence counts for each of
the categories of information, except for malicious URLs that were reported by
our tool. Malicious URLs were automatically submitted to VirusTotal to obtain
a malice classification before being discarded, and were not viewed by us or
manually inspected. In addition, the participants were asked to avoid browsing
websites requiring a login or involving sensitive subject matter.

7 Related Work

Third-party Content Isolation. Several recent research projects [14,37,39]
attempted to improve the security of browsers by isolating browser compo-
nents in order to minimize data sharing among software components. The
main issue with these approaches is that they do not perform any isolation
between JavaScript loaded from different domains and web applications, letting
untrusted scripts access the main web application’s code and data. Efforts such
as AdJail [23] attempt to protect privacy by isolating ads into an iframe-based
sandbox. However, this approach restricts contextual targeting advertisement in
which ad scripts need to have access to host page content.

Detecting Malicious Domains. There are multiple approaches to automat-
ically detecting malicious web domains. Madtracer [22] has been proposed to
automatically capture malvertising cases. But, this system is not as precise as
our approach in identifying the causal relationships among different domains.
EXPOSURE [8] employs passive DNS analysis techniques to detect malicious
domains. SpiderWeb [36] is also a system that is able to detect malicious web
pages by crowd-sourcing redirection chains. Segugio [32] tracks new malware-
control domain names in very large ISP networks. WebWitness [27] automati-
cally traces back malware download paths to understand attack trends. While
these techniques can be used to automatically detect malicious websites and
update blacklists, they are not online systems and may not be effectively used
to detect malicious third-party inclusions since users expect a certain level of
performance while browsing the Web.

Another effective detection approach is to produce blacklists of malicious
sites by scanning the Internet that can be efficiently checked by the browser

456 S. Arshad et al.

(e.g., Google Safe Browsing [13]). Blacklist construction requires extensive
infrastructure to continuously scan the Internet and bypass cloaking and general
malware evasion attempts in order to reliably identify malware distribution sites,
phishing pages, and other Web malice. As our evaluation in Sect. 6 demonstrates,
these blacklists sometimes lag the introduction of malicious sites on the Internet,
or fail to find these malicious sites. However, they are nevertheless effective, and
we view the approach we propose as a complementary technique to established
blacklist generation and enforcement techniques.

Policy Enforcement. Another approach is to search and restrict third-party
code included in web applications [12,15,24]. For example, ADsafe [1] removes
dangerous JavaScript features (e.g., eval), enforcing a whitelist of allowed
JavaScript functionality considered safe. It is also possible to protect against
malicious JavaScript ads by enforcing policies at runtime [30,33]. For example,
Meyerovich et al. [26] introduce a client-side framework that allows web applica-
tions to enforce fine-grained security policies for DOM elements. AdSentry [11]
provides a shadow JavaScript engine that runs untrusted ad scripts in a sand-
boxed environment.

8 Conclusion

In this paper, we presented Excision, an in-browser system to automatically
detect and block malicious third-party content inclusions before they can attack
the user’s browser. Our system is complementary to other defensive approaches
such as CSP and Google Safe Browsing, and is implemented as a set of modifica-
tions to the Chromium browser. Excision does not perform any blacklisting to
detect malicious third-party inclusions. Rather, it incrementally constructs an
inclusion tree for a given web page and automatically prevents loading malicious
resources by classifying their inclusion sequences using a set of pre-built models.

Our evaluation over an 11 month crawl of the Alexa Top 200 K demonstrates
that the prototype implementation of Excision detects a significant number of
malicious third-party content in the wild. In particular, the system achieved a
93.39% detection rate with a false positive rate of 0.59%. Excision was also
able to detect previously unknown malicious inclusions. We also evaluated the
performance and usability of Excision when browsing popular websites, and
show that the approach is capable of improving the security of users on the Web
by detecting 31 malicious inclusions during a user study without significantly
degrading the user experience.

Acknowledgement. This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1409738.

In-Browser Detection of Malicious Third-Party Content Inclusions 457

References

1. ADsafe. http://www.adsafe.org/
2. CSP in Content Scripts. https://developer.chrome.com/extensions/contentSecurity

Policy#interactions
3. PhantomJS. http://phantomjs.org/
4. Selenium: Web Browser Automation. http://www.seleniumhq.org/
5. VirtusTotal. https://www.virustotal.com/
6. Cross-Origin Resource Sharing (CORS) (2014). http://www.w3.org/TR/cors/
7. Content Security Policy 1.1 (2015). https://dvcs.w3.org/hg/content-security-

policy/raw-file/tip/csp-specification.dev.html
8. Bilge, L., Kirda, E., Kruegel, C., Marco Balduzzi, E.: Finding malicious domains

using passive DNS analysis. In: Network and Distributed System Security Sympo-
sium (NDSS) (2011)

9. Coldewey, D.: Marriott puts an end to shady ad injection service (2012). http://
techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-
service/

10. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious javascript code. In: International World Wide Web Confer-
ence (WWW) (2010)

11. Dong, X., Tran, M., Liang, Z., Jiang, X.: AdSentry: Comprehensive and flexible
confinement of JavaScript-based advertisements. In: Annual Computer Security
Applications Conference (ACSAC) (2011)

12. Finifter, M., Weinberger, J., Barth, A.: Preventing capability leaks in secure
JavaScript subsets. In: Network and Distributed System Security Symposium
(NDSS) (2010)

13. Google, Inc., Google Safe Browsing API (2015). https://developers.google.com/
safe-browsing/

14. Grier, C., Tang, S., King, S.T.: Secure web browsing with the OP web browser. In:
IEEE Symposium on Security and Privacy (Oakland) (2008)

15. Guarnieri, S., Benjamin Livshits, G.: Mostly static enforcement of security and
reliability policies for JavaScript code. In: USENIX Security Symposium (2009)

16. Huang, L.-S., Weinberg, Z., Evans, C., Jackson, C.: Protecting browsers from cross-
origin CSS attacks. In: Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2010)

17. Jagpal, N., Dingle, E., Gravel, J.-P., Mavrommatis, P., Provos, N., Rajab, M.A.,
Thomas, K.: Trends and lessons from three years fighting malicious extensions. In:
USENIX Security Symposium (2015)

18. John, J.P., Yu, F., Xie, Y., Krishnamurthy, A., Abadi, M.: deSEO: Combating
search-result poisoning. In: USENIX Security Symposium (2011)

19. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk:
eliciting malicious behavior in browser extensions. In: USENIX Security Sympo-
sium (2014)

20. Lewis, D.D.: Naive (Bayes) at forty: the independence assumption in information
retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp.
4–15. Springer, Heidelberg (1998). doi:10.1007/BFb0026666

21. Li, Z., Alrwais, S., Xie, Y., Yu, F., Wang, X.: Finding the linchpins of the dark
web: a study on topologically dedicated hosts on malicious web infrastructures. In:
IEEE Symposium on Security and Privacy (Oakland) (2013)

http://www.adsafe.org/
https://developer.chrome.com/extensions/contentSecurityPolicy#interactions
https://developer.chrome.com/extensions/contentSecurityPolicy#interactions
http://phantomjs.org/
http://www.seleniumhq.org/
https://www.virustotal.com/
http://www.w3.org/TR/cors/
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-service/
http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-service/
http://techcrunch.com/2012/04/09/marriott-puts-an-end-to-shady-ad-injection-service/
https://developers.google.com/safe-browsing/
https://developers.google.com/safe-browsing/
http://dx.doi.org/10.1007/BFb0026666

458 S. Arshad et al.

22. Li, Z., Zhang, K., Xie, Y., Yu, F., Wang, X.: Knowing your enemy: understanding
and detecting malicious web advertising. In: ACM Conference on Computer and
Communications Security (CCS) (2012)

23. Ter Louw, M., Ganesh, K.T., Venkatakrishnan, V.N.: AdJail: practical enforce-
ment of confidentiality and integrity policies on web advertisements. In: USENIX
Security Symposium (2010)

24. Maffeis, S., Taly, A.: Language-based isolation of untrusted JavaScript. In: IEEE
Computer Security Foundations Symposium (CSF) (2009)

25. Marvin, G.: Google study exposes “tangled web” of companies profiting from ad
injection (2015). http://marketingland.com/ad-injector-study-google-127738

26. Meyerovich, L.A., Livshits, B.: ConScript: specifying and enforcing fine-grained
security policies for JavaScript in the browser. In: IEEE Symposium on Security
and Privacy (Oakland) (2010)

27. Nelms, T., Perdisci, R., Antonakakis, M., Ahamad, M.: WebWitness: investigat-
ing, categorizing, and mitigating malware download paths. In: USENIX Security
Symposium (2015)

28. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,
C., Piessens, F., Vigna, G.: You are what You include: large-scale evaluation of
remote JavaScript inclusions. In: ACM Conference on Computer and Communica-
tions Security (CCS) (2012)

29. Nikiforakis, N., Maggi, F., Stringhini, G., Rafique, M., Joosen, W., Kruegel, C.,
Piessens, F., Vigna, G., Zanero, S.: Stranger danger: exploring the ecosystem of
ad-based URL shortening services. In: International World Wide Web Conference
(WWW) (2014)

30. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting JavaScript. In:
ACM Symposium on Information, Computer, and Communications Security (ASI-
ACCS) (2009)

31. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–285 (1989)

32. Rahbarinia, B., Perdisci, R., Antonakakis, M.: Segugio: efficient behavior-based
tracking of new malware-control domains in large ISP networks. In: IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN) (2015)

33. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: BrowserShield:
vulnerability-driven filtering of dynamic HTML. In: USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI) (2006)

34. Son, S., Shmatikov, V.: The postman always rings twice: attacking and defending
postMessage in HTML5 websites. In: Network and Distributed System Security
Symposium (NDSS) (2013)

35. Stone-Gross, B., Stevens, R., Kemmerer, R., Kruegel, C., Vigna, G., Zarras, A.:
Understanding fraudulent activities in online ad exchanges. In: Internet Measure-
ment Conference (IMC) (2011)

36. Stringhini, G., Kruegel, C., Vigna, G.: Shady paths: leveraging surfing crowds to
detect malicious web pages. In: ACM Conference on Computer and Communica-
tions Security (CCS) (2013)

37. Tang, S., Mai, H., King, S.T.: Trust and protection in the Illinois browser operating
system. In: USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI) (2010)

38. Thomas, K., Bursztein, E., Grier, C., Ho, G., Jagpal, N., Kapravelos, A., McCoy,
D., Nappa, A., Paxson, V., Pearce, P., Provos, N., Rajab, M.A.: Ad injection at
scale: assessing deceptive advertisement modifications. In: IEEE Symposium on
Security and Privacy (Oakland) (2015)

http://marketingland.com/ad-injector-study-google-127738

In-Browser Detection of Malicious Third-Party Content Inclusions 459

39. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The
multi-principal OS construction of the Gazelle web browser. In: USENIX Security
Symposium (2009)

40. Weissbacher, M., Lauinger, T., Robertson, W.: Why is CSP failing? Trends and
challenges in CSP adoption. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.)
RAID 2014. LNCS, vol. 8688, pp. 212–233. Springer, Cham (2014). doi:10.1007/
978-3-319-11379-1 11

41. World Wide Web Consortium (W3C). What is the document object model? http://
www.w3.org/TR/DOM-Level-2-Core/introduction.html

42. Xing, X., Meng, W., Weinsberg, U., Sheth, A., Lee, B., Perdisci, R., Lee, W.:
Unraveling the relationship between ad-injecting browser extensions and malver-
tising. In: International World Wide Web Conference (WWW) (2015)

43. Zarras, A., Kapravelos, A., Stringhini, G., Holz, T., Kruegel, C., Vigna, G.: The
dark alleys of madison avenue: understanding malicious advertisements. In: Pro-
ceedings of the Internet Measurement Conference (IMC) (2014)

http://dx.doi.org/10.1007/978-3-319-11379-1_11
http://dx.doi.org/10.1007/978-3-319-11379-1_11
http://www.w3.org/TR/DOM-Level-2-Core/introduction.html
http://www.w3.org/TR/DOM-Level-2-Core/introduction.html

A Sensitivity-Adaptive ρ-Uncertainty Model
for Set-Valued Data

Liuhua Chen, Shenghai Zhong, Li-e Wang, and Xianxian Li(B)

Guangxi Key Lab of Multi-source Information Mining and Security,
Guangxi Normal University, Guilin 541004, China

liuhuachengxnu@sina.com, wuhanzsh@gmail.com, {wanglie,lixx}@gxnu.edu.cn

Abstract. Set-valued data brings enormous opportunities to data min-
ing tasks for various purposes. Many anonymous methods for set-valued
data have been proposed to effectively protect an individual’s privacy
against identify linkable attacks and item linkage attacks. In these meth-
ods, sensitive items are protected by a privacy threshold to limit the re-
identification probability of sensitive items. However, lots of set-valued
data have diverse sensitivity on data items. This leads to the over-
protection problem when these existing privacy-preserving methods are
applied to process the data items with diverse sensitivity, and it reduces
the utility of data. In this paper, we propose a sensitivity-adaptive ρ-
uncertainty model to prevent over-generalization and over-suppression
by using adaptive privacy thresholds. Thresholds, which accurately cap-
ture the hidden privacy features of the set-valued dataset, are defined
by uneven distribution of different sensitive items. Under the model, we
develop a fine-grained privacy preserving technique through Local Gen-
eralization and Partial Suppression, which optimizes a balance between
privacy protection and data utility. Experiments show that our method
effectively improves the utility of anonymous data.

Keywords: Set-valued data · Anonymization · Privacy preserving ·
Generalization · Suppression

1 Introduction

With the rapid development of information technology, the Internet produced
a sea of data, such as web search query logs [1], electronic health records [2]
and set-valued data [3–5], which can service for behavior prediction, commodity
recommendation and information retrieval.

Set-valued data, where a set of sensitive and non-sensitive items are relevant
to an individual, contains detailed individual information. For example, a trans-
action dataset is shown in Table 1, where items a, b, c and d are non-sensitive
and α, β are sensitive. Adversary Hebe knows his neighbor Alice bought item b
and c, so that it is easy for him to infer that Alice has purchased sensitive items
α and β. In a word, publishing a non-masked dataset will reveal private data of

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 460–473, 2017.
DOI: 10.1007/978-3-662-54970-4 27

A Sensitivity-Adaptive ρ-Uncertainty Model for Set-Valued Data 461

individuals. Thus, we have to sanitize the data before publishing it in order to
guarantee privacy.

In order to resist item linkage attack, the ρ-uncertainty model has been pro-
posed in [6]. When an adversary knows any non-sensitive or sensitive item, this
model protects private information by ensuring that the probability of sensitive
items inferred by a known item set q is less than ρ.

The traditional approaches [6,7] of ρ-uncertainty have a few drawbacks as
follows:

1. The “one size fits all” approach ignores the reality that different items have
different data distributions.

2. Global suppression completely removes some items directly and incurs the
loss of sensitive rules. Therefore, those removed items cannot be used by
researchers.

3. Global generalization [8] brings a huge number of pseudo-association rules,
so that the utility for data mining has severe distortion.

In this work, we propose a sensitivity-adaptive ρ-uncertainty model to
address an important limitation of original ρ-uncertainty—that it provides only
a uniform level of privacy protection for all items in a dataset. We propose a
solution, LGPS, integrating local generation and partial suppression, to mask
items varying in frequency and sensitivity.

In our LGPS solution, if the frequency of occurrence of a sensitive item is
low, the sensitivity of the item is high and vice versa. LGPS divides records
into separate groups and guarantees that each sub-group satisfies the proposed
model.

Table 1. Original Data

Name Id Items

Chris t1 a,d,α, β

Bob t2 a,b,d

Alice t3 b,c,α, β

Mary t4 a,c,α

Dan t5 a,b,α

Lucy t6 a,α

Example 1. Anonymization on set-valued datasets
For original data as in Table 1, anonymous datasets, shown in Table 2(a), (b)
and (c), are masked by using original approach of TDControl (ρ=0.5) and our
solution. In Table 2(b), the uniform threshold is 0.5. And in Table 2(c), according
to the data distribution of the original dataset and formula (2) and (3) the
thresholds ρα and ρβ for privacy preservation are 0.7 and 0.3 when ρ, defined by
users, is 0.3. In uneven datasets, flexible thresholds provide personal protection
and retain more data utility. Comparing Table 2(a) with (b), the information
loss of Table 2(b) is less than that of Table 2(a).

462 L. Chen et al.

Table 2. Anonymization dataset

For each sensitive rule, such as a→α or β→α, TDControl uses global sup-
pression and global generalization to hide sensitive rules. In the suppression
process, the chosen item, which information loss of being suppressed is minimal,
is removed in all records. Finally, all sensitive items α and β are suppressed in
Table 2(a). Anonymous dataset masked by TDControl loses a lot of information
and does not preserve enough utility for secondary analysis.

Differing from prior works [6,7,9,10], our contributions can be summarized
as follows:

1. We focus on diverse sensitivity on items and propose a sensitivity-adaptive
ρ-uncertainty model for improving data utility.

2. Under the proposed model, we use the frequency of sensitive items to define
flexible privacy thresholds and propose a sensitivity-adaptive ρ-uncertainty
approach decreasing information loss. A flexible privacy threshold is non-
trivial because it is adaptive to the distribution of data and it addresses the
over-protection problem incurred by the unified threshold in the TDControl
model.

3. Furthermore, we devise an effective algorithm called LGPS by using local
generation and partial suppression to achieve anonymization. Not only does
LGPS reserve some useful characteristics of those sensitive items, but it also
introduces fewer pseudo-rules. Experiments running on real datasets show
that our approach is effective and information loss is lower than for the pre-
vious methods.

The rest of this paper is organized as follows. Section 2 describes related
work on anonymization of set-valued dataset. The privacy model is introduced
in Sect. 3. The algorithm is shown in Sect. 4. The result of experiments is demon-
strated in Sect. 5. Section 6 concludes this paper.

2 Related Work

Sweeney [11] raised the k-anonymous model in 2002, which aims to make each
QID (quasi-identifier) including at least k matched records in a sanitized dataset,

A Sensitivity-Adaptive ρ-Uncertainty Model for Set-Valued Data 463

so this model can effectively prevent identity linkage attacks. Yet, k-anonymity
is insufficient to protect the privacy of set-valued data which is high-dimensional
and sparse. So km-anonymity model, which makes an adversary at most know
m items, was proposed in [12]. Unfortunately, k-anonymity and km-anonymity
are not able to prevent item linkage attacks. In 2007, Machanavajjhala [13]
et al. proposed the l-diversity model based on k -anonymity, which makes every
sensitive attributes in each equivalence having at least l different attribute val-
ues, to prevent attribute linkage attacks.

Based on the k-anonymous model, Sinhong [14] et al. proposed a new solution
to anonymize set-valued data. This anonymous solution constructs a pseudo
taxonomy tree based on utility metrics to replace the presetting taxonomy tree,
so it can upgrade the data utility and protect an individual’s information. Yet,
this solution is inadequate to prevent item linkage attacks.

Wang [15] et al. described high-dimensional sparse data using bipartite
graphs with the individual’s attributes, where the original graph is turned into
an anonymous graph by clustering attributes in each node. Chen et al. [16]
and Xiao et al. [17] propose two approaches, each of which satisfies differen-
tial privacy model, to protect high-dimensional datasets. The aim of the two
approaches is mainly protecting the individual’s privacy information by adding
noise. But these approaches will disclose privacy under item linkage attacks, if
a small amount of noise is added.

(h, k, p)-coherence ensures that any combination, in which at most h per-
cent of records contain some sensitive items, has at least k records including p
items. The work in [18] shows that the optimal solution of (h, k, p)-coherence
is an NP-hard problem and gives a local optimization algorithm. However, the
(h, k, p)-coherence criterion is insufficient to protect against an attacker who
knows sensitive items of individuals.

The PS-rule model proposed in [19], where P is a set of non-sensitive items
and S is a set of sensitive items in dataset D, can simultaneously prevent identify
linkable attacks and item linkage attacks. Given two item sets I ∈ P and J ∈ S,
the rule I → J is a PS-rule when sup(I) is k or more and conf(I → J) is no
more than c.

The ρ-uncertainty, a more sophisticated model to preserve sensitive informa-
tion in set-valued data, was demonstrated in [6]. This criterion ensures that the
probability of sensitive items inferred by an attacker is less than ρ and does not
restrict background knowledge of attackers.

The ρ-uncertainty approach based on partial suppression, presented in [7],
can be adapted to either statistical analysis or association rules mining. How-
ever, this method does not take into account the difference of the sensitivity
between sensitive items, in that overprotection of some low sensitivity items
increases information loss. The first research result, published in [20], concerns
the difference of sensitivity and proposes a solution to rank sensitive items by
the difference of the item’s sensitivity.

464 L. Chen et al.

3 Privacy Model

3.1 Privacy Concept

In a successful item linkage attack an adversary can infer with high probability
which sensitive item is associated to an individual. For example, an adversary
knows an individual in Table 1 has bought non-sensitive commodities, b and c
(b, c ∈ q), and he/she can also infer that sensitive items α and β were purchased
by the person. Therefore, user’s privacy would b undermined if the data would
be released without masking (Table 3).

Table 3. Definition of symbols

Symbol Definition

D The original dataset

D
′

Anonymous dataset

q QID, a sub-group of items

sup(q) Support of set q

e A sensitive item

F (e) Frequency of e

ρe Privacy threshold of sensitive item e

conf(q → e) Confidence of the rule q → e

Definition 1 (Sensitive association rule). Given a sensitive item e, the
association rule q → e is a sensitive association rule.

Definition 2 (Confidence of a rule [21]). If a rule q → e, where e is sensitive
and q is non sensitive, the confidence of this rule is a conditional probability:

conf(q → e) =
sup(q ∪ e)

sup(q)
, (1)

where sup(q ∪ e) is the number of records including q and e and sup(q) is the
number of records including item set q.

Definition 3 (ρ-uncertainty). If the confidence of any sensitive association
rule in a released dataset is less than ρ, the dataset achieves ρ-uncertainty
(ρ > 0).

A unique threshold, for preventing item linkage attacks, is inappropriate
since the distribution of different sensitive items is uneven. Furthermore, it is
natural to assume that a sensitive item involved in most of the records has a
low sensitivity. On the other hand, an item has a high sensitivity when it only
appears in a handful of records. So we use diverse thresholds correlated with the
item’s sensitivity to mask data.

A Sensitivity-Adaptive ρ-Uncertainty Model for Set-Valued Data 465

Definition 4 (Adaptive parameter δe). δe is an adaptive parameter to adjust
the threshold ρ and is defined as follows:

F(e) = sup(e)/ |N | (2)
δe = εe · F(e), (3)

where e denotes a sensitive item, sup(e) is the number of records including item
e, and |N | is the number of all records in dataset. εe(εe > 0) is called a sensitive
factor of e; it is used to tune the value of δe combining with F (e). If F (e) is
higher, a larger εe is chosen to prevent privacy disclosure. εe is adjusted by the
sensitivity of item e and the user’s requirement of the protection strength.

Definition 5 (sensitivity-adaptive ρ-uncertainty). Let δe be an adaptive
parameter as defined above and ρe = ρ + δe(1 > ρe > 0). If the confidence of any
sensitive association rule in an anonymous dataset is less than ρe, then the
dataset achieves sensitivity-adaptive ρ-uncertainty. Here ρ is the minimum pri-
vacy threshold, and ρe is the flexible threshold depended on the sensitivity of e
and the distribution of e in the dataset.

Example 2. Definition of flexible privacy thresholds
Assuming that a dataset has 10 records, ρ=0.3, where 8 records contain item

α, 6 records contain item β, and 2 records contain item Ω, the flexible threshold
of ρα, ρβ , ρΩ was defined as 0.7, 0.5, 0.3 by the frequency of occurrence as defined
in (2) and (3).

3.2 Information Loss Metric

Evaluation of the effectiveness is important for any anonymous algorithm. In
this paper, the Normalized Certainty Penalty [13,22], an information loss metric
for items in a generalization hierarchy, is used to evaluate the effectiveness of
our algorithm. As shown in Fig. 1, a and b can be masked by A while c and
d can be replaced with B. The root node, ALL, can represent each item in the
dataset.

NCP, a popular measurement of information loss for item generalization, is
defined in [22]. In our sensitivity-adaptive ρ-uncertainty model, NCP is redefined
as below:

Fig. 1. Item generalization hierarchy H

466 L. Chen et al.

NCP(a) =

{
1 if a is suppressed
|um|
|I| if a is generalized to node m ∈ H,

(4)

where a represents a child node of m, |um| is the total number of leaf nodes
connected with m, and |I| is the total number of non-sensitive items.

Example 3. Information loss of items generalization
When item a is generalized to A and c is replaced with B, the information loss
is described as IL(a) = |uA|

|I| = 2
4 = 1

2 , IL(c) = |uB |
|I| = 2

4 = 1
2 .

If an item is suppressed such as in [6,7], then the information loss is 1.
For a record t in dataset D and an item m in t, let Ct be the number of

records in dataset. Then the information loss for the dataset is defined as

NCP(D) =
∑

t∈D

∑
m∈t NCP(m)∑
t∈D Ct

. (5)

4 Anonymous Algorithm

Usually, there are many anonymous methods applied to mask datasets, such
as kd-trees, SRT and AT [6], R-tree [23,24]. In each top-down recursion, items
are specialized in the hierarchy tree and records are assigned to different sub-
groups. If the sub-group does not meet the sensitivity-adaptive ρ-uncertainty
model, partial suppression was used to mask the group. Our anonymous method
applies two algorithms in the whole anonymization process, so that information
loss of the anonymous data set is minimized.

LGPS: The LGPS first define the privacy constraints of sensitive items by cal-
culating the frequency of sensitive items. Then, all non-sensitive items are initial-
ized to ALL and information loss of the generalized item is 1. In next step, the
algorithm checks the validity of the generalized dataset. While the generalized
dataset does not achieve sensitivity-adaptive ρ-uncertainty, partial suppression
is used to mask this dataset. The algorithm terminates until every sub-group of
records has been processed.

Algorithm 1. LGPS(D)
1: PrivacyThreshold(D);
2: for each t ∈ D do
3: Initialized all no-sensitive item to ALL;
4: end for
5: PartialSuppressor(D,(ρ1, ρ2, . . . , ρh));
6: resultParts←Flexible ρ Uncertainty(D,H,(ρ1, ρ2, . . . , ρh));
7: for each subParts in resultParts do
8: specialData(subparts,(ρ1, ρ2, . . . , ρh);
9: end for

A Sensitivity-Adaptive ρ-Uncertainty Model for Set-Valued Data 467

Algorithm 2. PrivacyThreshold(D)
1: initialize the sup of all sensitive item to 0;
2: for each t ∈ D do
3: update the sup of sensitive item;
4: n = n + 1;
5: end for
6: let F (e) be a set of sensitive item frequency;
7: for each sensitive item e do
8: F (e) = sup(e)

n
;

9: according ρe = ρ + εe · F (e) define compute value ρe;
10: end for

The Privacy Constraints define privacy thresholds of various sensitive items.
In this part, the algorithm first calculates the support of sensitive items by
traversing the entire dataset. In the traversing process, the support of the item
is constantly updated while an item occurs again. Finally, the different ρs are
defined according to (2) and (3).

Flexible ρ Uncertainty Anonymity: The FUA, which masks, in every top-
down recursion, set-valued data by local generalization and partial suppression,
is described as follows:

Line(1): The generalized item is added to the set G.
Line(2–3): If G is empty and D is impossible to split down further, then D
is released.
Line(5–8): As in [22], the splitNode is replaced by its child node in the gen-
eralized hierarchy tree. Then, according to different values of the splitNode’s
child node, D is divided and various records are registered to disjoint subsets.
Line(9–12): For each subset, some items are partially suppressed to hide sen-
sitive rules by a flexible threshold ρe, and some generalized items are replaced
in top-down recursion until G is empty or itself is impossible to further split
down.

Partial Suppressor method [7]: In each subset, any rule whose confidence is
more than its threshold ρY , such as conf(X → Y) > ρY , is added to SR. Getting
SR by flexible threshold is more suitable and effective for hiding sensitive rules.
Until SR is empty, some item is masked by partial suppression. For selecting
sensitive rule X → Y , if any item appears in X ∪ Y , until the confidence of this
rule is less than the threshold, each of them will be suppressed in records that
have this rule. After hiding the selected sensitive rules, SR has to be updated
for the next suppression processing.

Example 4. A top-down partitioning using LGPS
First, the uniform privacy threshold ρ is set to 0.3. In Table 1, items α and β are
sensitive, while all others are non-sensitive. In the process of finding the flexible
thresholds, ρα and ρβ are defined as 0.7 respectively 0.3, while the generalization
hierarchy tree for non-sensitive items is constructed as in Fig. 1. According to

468 L. Chen et al.

Algorithm 3. Flexible ρ Uncertainty(D,H,(ρ1, ρ2, . . . , ρh))
1: add generalized item in D to a set G;
2: if no further split down possible for D then
3: Return and push D;
4: else
5: splitNode←PickNode(D,G);
6: for each data in D do
7: add subParts in D

′ ← divideData(D,splitNode);
8: end for
9: for each subParts in D

′
do

10: PartialSuppressor(subParts,(ρ1, ρ2, . . . , ρh));
11: Flexible ρ Uncertainty(subParts,H,(ρ1, ρ2, . . . , ρh));
12: end for
13: end if

Table 4. A transaction dataset

the generalization hierarchy tree, all non-sensitive items are initialized to the top
value ALL. And the dataset is masked as in Table 4(a). Based on the flexible
thresholds and the confidence of the sensitive rules, the SR is set as {ALL →
α,ALL → β, (ALL,α) → β, (ALL, β) → α}. While the rules in SR disclose
information to adversaries, the α in t1 and the β in t3 are removed to achieve
sensitivity-adaptive ρ-uncertainty model. After this suppression, the anonymous
data set is described as {(ALL, β), ALL, (ALL,α),(ALL,α), (ALL,α), (ALL,α)}
and the NCP(D) is 14.

Anonymous data, in this example, is an over-generalization, and the data
utility is insufficient for some users. In addition, the candidate set of splitNode
such as A and B is not empty. Therefore, item ALL is substituted with {A}, {B},
{A,B} and all records are divided into different subgroups. While each subgroup
is valid for the procession of dividing groups, partial suppression is used to mask
each subgroup. As a result subgroup {A} does not meet sensitivity-adaptive
ρ-uncertainty, hence item α in t5 is removed. In contrast, any item in group
{A,B} does not have to be removed. The NCP (D

′
) in Table 4(b), the sum of

each subgroups’ NCP, is equal to 9. Because NCP(D) is larger than NCP (D
′
),

this step satisfies the dividing condition.

A Sensitivity-Adaptive ρ-Uncertainty Model for Set-Valued Data 469

For Group1, the item A in every record is instead by {a}, {b}, {a, b}. Record t5
is assigned to group{a, b}, and another is added into the group{a}. The number of
records is less than 1/ρα, so group {A} is not valid. As a result the information
loss NCP (Group1

′
) is less than NCP(Group1). This specialization process is

valid. In addition, records in Group1
′

have no generalized item and achieve
sensitivity-adaptive ρ-uncertainty, so Group1

′
is released as {(a, b), (a, α)}.

In Group2, generalized items, A and B, appear. According to A or B, the
divided subgroups for all records is not valid. So item A and B are specialized by
their child, and the record in this subgroup is described as Group21 and Group22.
Because NCP(Group21) is less than NCP(Group22), the best specialization A →
(a, b) is chosen to specialize records in Group2. Then records in this subgroup
are released for users.

When this specialization is legal and NCP(Group21) is less than NCP
(Group2), this subgroup is described as {(a,B, α), (a, b,B), (a,B, α), (a,B, α)}.
But a generalized item B exists in G, hence the specialization B → (c, d) is exe-
cuted. Then four sensitive rules, {d → β, (a, d) → β, c → α and (a, c) → α},
are added to SR. For anonymizing this group, items d in t1 and α in t3
are suppressed. But NCP(Group211) is greater than NCP(Group21). There-
fore, the specialization for item B is illegal and this group is released as
{(a,B, α), (a, b,B), (a,B, α), (a,B, α)}. All records in the original dataset are
published as Table 4(c).

5 Experimental Study

5.1 Dataset and Parameters

Our experiments run on three real-world datasets introduced in [6,7], BMS-POS,
BMS-WebView-1 and BMS-WebView-2. BMS-POS is a transaction log from
several years of sales at an electronics retailer. And BMS-WebView-1 and BMS-
WebView-2 are click-stream data from two e-commerce web sites. All of those
are widely used as benchmark datasets in the knowledge discovery community.
Information about the three datasets is listed in Table 5.

Table 5. Characteristics of the three datasets

Datasets #Trans #Distinct items # Max. trans. size # Avg. trans. size

BMS-WV1 59,602 497 267 2.5

BMS-WV2 77,512 3340 161 5.0

BMS-POS 551,597 1657 164 6.5

Specifically, we measure execution time and data utility to compare our LGPS
algorithms, with TDControl [6] and Dist [7]. All algorithms were implemented in
C++ and ran on an Intel(R) Core(TM) i3-2100 cpu machine with 4 GB RAM
running the Linux operating system.

470 L. Chen et al.

5.2 Data Utility

We evaluate our algorithms with three performance factors: (a) information loss
(KL-divergence [7]), (b) the difference of the number of mined rules, (c) the size
of datasets.

Kullback-Leibler divergence measures the distance between two probability
distributions and determines the similarity between the original data and the
anonymous data. When D is original data and D

′
is anonymous data, the KL-

divergence is defined as follows:

KL(D
′ ‖ D) =

∑
i

D(i) log
D(i)
D′(i)

, (6)

where D(i) and D
′
(i) are the occurrence probability of item i in the original

dataset D and in the anonymized dataset D
′
.

Fig. 2. Varying datasets

Due to the limitation of hardware, we have to make length less than or
equal to 5 when we find sensitive association rules. In Fig. 2, TDControl and
Dist are basic approaches to mask data by the ρ-uncertainty model while ρ is
the mean of all flexible ρe in our approach. Although for the dataset WV1,
the information loss of LGPS is larger than the information loss of the prior
approaches, LGPS provides a stronger protection and gets an anonymous dataset
whose data distribution is more similar to the original dataset.

The smaller the difference of the number of mined rules between the anony-
mous dataset and the original dataset is, the higher the data utility is. So the
number of the hidden rules and the pseudo-rules is used to evaluate data utility.
In Fig. 3(a) and (b), LGPS hides fewer rules and introduces fewer pseudo-rules
than TDControl when the proportion of sensitive items in the original dataset
is increasing.

Figure 4(a) shows the experimental results of KL-divergence and execution
time. LGPS is less efficient than TDControl and Dist when the size of dataset
is small. With the increased size of the dataset, LGPS becomes more effective.

A Sensitivity-Adaptive ρ-Uncertainty Model for Set-Valued Data 471

Fig. 3. The difference of the number of mined rules

Fig. 4. Varying the size of dataset

When we do experiments on the whole BMS-POS, as shown in Fig. 4(b), our
approach may take more time than TDControl. However, mostly anonymous
processes applied in data publication are offline, so it is reasonable that we
spend more time and get more utility of anonymous data.

6 Conclusion

We proposed a sensitivity-adaptive ρ-uncertainty model to mask dataset when
the distribution of sensitive items varies widely.r A flexible threshold for different
sensitive items is defined by their frequency of occurrence. In order to reduce the
information loss and increase the utility of anonymous data, partial suppression
and local generalization are used in a top-down recursion. Compared to previous
methods [6,7], this approach deletes or generalizes fewer items to satisfy the
advanced privacy model.

In future work, we will focus on impact on privacy when the adversary infers
information on an individual by the semantic of a combination of different items.
We will also pay more attention to the influence of background known by adver-
sary. For example, when the adversary knows an item is not contained in the

472 L. Chen et al.

record, most of implemented models are inadequate for protecting an individual’s
information. Encountering various backgrounds known by adversary, we should
find new models and construct new algorithms to conceal sensitive information.

Acknowledgments. The research is supported by the National Science Foundation
of China (Nos. 61272535, 61363009, 61365009, 61502111), Guangxi Bagui Scholar
Teams for Innovation and Research Project, Guangxi Collaborative Innovation Cen-
ter of Multi-source Information Integration and Intelligent Processing, Guangxi
Natural Science Foundation (Nos. 2015GXNSFBA139246, 2013GXNSFBA019263,
2014GXNSFBA118288), Science and Technology Research Projects of Guangxi Higher
Education (Nos. 2013YB029, 2015YB032), the Guangxi Science Research and Technol-
ogy Development Project (No. 14124004-4-11) ,Youth Scientific Research Foundation
of Guangxi Normal University and Innovation Project of Guangxi Graduate Education
(No. YCSZ2015104).

References

1. Saygin, Y., Verykios, V.S., Elmagarmid, A.K.: Privacy preserving association rule
mining. In: 2002 Proceedings of the Twelfth International Workshop on Research
Issues in Data Engineering: Engineering E-Commerce/E-Business Systems, RIDE-
2EC 2002, pp. 151–158. IEEE (2002)

2. Han, J., Luo, F., Lu, J., Peng, H.: Sloms: A privacy preserving data publishing
method for multiple sensitive attributes microdata. J. Softw. 8(12), 3096–3104
(2013)

3. Xiao, X., Tao, Y.: M-invariance: Towards privacy preserving re-publication of
dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Con-
ference on Management of Data, pp. 689–700. ACM (2007)

4. Ghinita, G., Tao, Y., Kalnis, P.: On the anonymization of sparse high-dimensional
data. In: 2008 IEEE 24th International Conference on Data Engineering, ICDE
2008, pp. 715–724. IEEE (2008)

5. Liu, J.Q.: Publishing set-valued data against realistic adversaries. J. Comput. Sci.
Technol. 27(1), 24–36 (2012)

6. Cao, J., Karras, P., Räıssi, C., Tan, K.L.: ρ-uncertainty: Inference-proof transaction
anonymization. Proc. VLDB Endow. 3(1–2), 1033–1044 (2010)

7. Jia, X., Pan, C., Xu, X., Zhu, K.Q., Lo, E.: ρ–uncertainty anonymization by
partial suppression. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L.,
Muliantara, A., Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 188–202.
Springer, Cham (2014). doi:10.1007/978-3-319-05813-9 13

8. Tripathy, B., Reddy, A.J., Manusha, G., Mohisin, G.: Improved algorithms for
anonymization of set-valued data. In: Meghanathan, N., Nagamalai, D., Chaki, N.
(eds.) Advances in Computing and Information Technology. Advances in Intelligent
Systems and Computing, vol. 177, pp. 581–594. Springer, Heidelberg (2013)

9. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. In: Proceedings of the Eighth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 639–644. ACM (2002)

10. Fung, B., Wang, K., Yu, P.S.: Top-down specialization for information and pri-
vacy preservation. In: 2005 Proceedings. 21st International Conference on Data
Engineering, ICDE 2005, pp. 205–216. IEEE (2005)

http://dx.doi.org/10.1007/978-3-319-05813-9_13

A Sensitivity-Adaptive ρ-Uncertainty Model for Set-Valued Data 473

11. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. Uncertainty
Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

12. Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-
valued data. Proc. VLDB Endow. 1(1), 115–125 (2008)

13. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
Privacy beyond k-anonymity. ACM Trans. Knowl. Discovery Data (TKDD) 1(1),
3 (2007)

14. Lin, S., Liao, M.: Towards publishing set-valued data with high utility (2014)
15. Wang, L., Li, X.: A clustering-based bipartite graph privacy-preserving approach

for sharing high-dimensional data. Int. J. Softw. Eng. Knowl. Eng. 24(07), 1091–
1111 (2014)

16. Chen, R., Mohammed, N., Fung, B.C., Desai, B.C., Xiong, L.: Publishing set-valued
data via differential privacy. Proc. VLDB Endow. 4(11), 1087–1098 (2011)

17. Xiao, X.: Differentially private data release: Improving utility with wavelets
and bayesian networks. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds.)
APWeb 2014. LNCS, vol. 8709, pp. 25–35. Springer, Cham (2014). doi:10.1007/
978-3-319-11116-2 3

18. Xu, Y., Wang, K., Fu, A.W.C., Yu, P.S.: Anonymizing transaction databases for
publication. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 767–775. ACM (2008)

19. Loukides, G., Gkoulalas-Divanis, A., Shao, J.: Anonymizing transaction data to
eliminate sensitive inferences. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G.
(eds.) DEXA 2010. LNCS, vol. 6261, pp. 400–415. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-15364-8 34

20. Ye, Y., Liu, Y., Wang, C., Lv, D., Feng, J.: Decomposition: Privacy preservation
for multiple sensitive attributes. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.)
DASFAA 2009. LNCS, vol. 5463, pp. 486–490. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00887-0 42

21. Verykios, V.S., Elmagarmid, A.K., Bertino, E., Saygin, Y., Dasseni, E.: Association
rule hiding. IEEE Trans. Knowl. Data Eng. 16(4), 434–447 (2004)

22. He, Y., Naughton, J.F.: Anonymization of set-valued data via top-down, local
generalization. Proc. VLDB Endow. 2(1), 934–945 (2009)

23. Wang, S.L., Tsai, Y.C., Kao, H.Y., Hong, T.P.: On anonymizing transactions with
sensitive items. Appl. Intell. 41(4), 1043–1058 (2014)

24. Gkoulalas-Divanis, A., Loukides, G.: PCTA: Privacy-constrained clustering-based
transaction data anonymization. In: Proceedings of the 4th International Workshop
on Privacy and Anonymity in the Information Society, vol. 5. ACM (2011)

http://dx.doi.org/10.1007/978-3-319-11116-2_3
http://dx.doi.org/10.1007/978-3-319-11116-2_3
http://dx.doi.org/10.1007/978-3-642-15364-8_34
http://dx.doi.org/10.1007/978-3-642-00887-0_42
http://dx.doi.org/10.1007/978-3-642-00887-0_42

Bitcoin Mining

Incentive Compatibility of Bitcoin Mining Pool
Reward Functions

Okke Schrijvers(B), Joseph Bonneau, Dan Boneh, and Tim Roughgarden

Stanford University, Stanford, USA
okkes@cs.stanford.edu

Abstract. In this paper we introduce a game-theoretic model for
reward functions in Bitcoin mining pools. Our model consists only of
an unordered history of reported shares and gives participating miners
the strategy choices of either reporting or delaying when they discover a
share or full solution. We defined a precise condition for incentive com-
patibility to ensure miners strategy choices optimize the welfare of the
pool as a whole. With this definition we show that proportional mining
rewards are not incentive compatible in this model. We introduce and
analyze a novel reward function which is incentive compatible in this
model. Finally we show that the popular reward function pay-per-last-
N-shares is also incentive compatible in a more general model.

1 Introduction

By almost any measure, Bitcoin [1] has become the most successful cryptocur-
rency in history. While Bitcoin has evolved into a very complex sociotechnical
system which we will not describe in detail here,1 at its core lies a decentralized
consensus protocol allowing all participants to agree on a common global ledger
of transactions to prevent double-spends and other disallowed behavior. The key
to Bitcoin’s consensus protocol (sometimes more broadly called Nakamoto con-
sensus after its founder) is a group of entities called miners who race to solve a
challenging cryptographic puzzle for the right to append a new block of transac-
tions to Bitcoin’s ledger, the blockchain. A system of incentives encourages these
miners to follow the protocol faithfully in exchange for the ability to earn newly-
minted coins and transaction fees in proportion to the amount of computational
effort they have expended (also called hashing power or mining power).

Finding a single Bitcoin block is very rewarding (today worth at least B25,
over US$6,000), yet it is also very difficult for smaller miners who might find a
block on expectation only every few months or even every few years. As a result,
the majority of mining power now consists of miners participate in mining pools
in which they agree to divide rewards from blocks found by any member of the
pool and thus receive a steadier stream of income. Choosing the exact algorithm
used to divide up mining pool rewards (the reward function) however, turns out
to be a challenging incentive design problem.
1 For an academic overview of Bitcoin we refer the reader to [2].

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 477–498, 2017.
DOI: 10.1007/978-3-662-54970-4 28

478 O. Schrijvers et al.

Pools are sometimes controversial in the Bitcoin community as they rep-
resent a form of centralization. Miller et al. proposed a future cryptocurrency
which attempts to prevent their formation [3]. As of today though they are
an indispensable part of Bitcoin as well as many related cryptocurrencies (to
which our work will also apply). Despite this, relatively little work has focused
on the reward functions underlying pools since Rosenfeld’s initial overview of
the space [4]. Several papers have studied the interaction between pools and
found that in some plausible circumstances pools will be incentivized to attack
each other [5–7]. Yet the incentives underlying reward functions have not been
rigorously studied.

In this paper we introduce a formal game-theoretical framework to study
these reward functions. We are motivated by a very natural question: if individ-
ual miners are interested in maximizing their expected utility, is their behavior
optimal for the pool as a group? For example, if miners are incentivized to delay
reporting full solutions to the pool, this may lower the pool’s overall rewards and
even make it more vulnerable to external sabotage [5]. We introduce a simplified
model with only a single mining pool and define basic properties that a good
reward function should exhibit. Although our model is deliberately simplified,
we still show somewhat surprisingly that some reward functions used in practice
such as simple proportional payments are not incentive compatible.

We introduce a novel reward function which is incentive compatible within
our model while still maintaining other desirable properties. Our reward function
will remain incentive compatible even in a more complex informational model
(although it may need to be extended if the definition of incentive compatibility
is extended to include more complicated attacks).

While our model cannot capture all reward functions used in practice, we
consider it an important milestone in analyzing mining pools in Bitcoin and
related systems. We further take the first step to analyzing reward functions in
more general informational models by carefully examining the popular pay-per-
last-N-shares reward function, and show that it is incentive compatible. This
indicates that our approach is not limited to the informational assumptions, but
can be more generally applied.

2 Preliminaries

In this paper we look at a simple model in which miners are bound to working
for a particular pool and where their strategic choice is the following: if a miner
finds a solution to the cryptographic puzzle, when does it report this to the pool.
The pool is run by a pool operator and contains a fixed number n of miners. Each
miner i has a fraction αi of the total mining power. For most of this paper we
will assume that

∑n
i=1 αi = 1, meaning that the pool has all the available mining

power; there are no other pools or solo miners. In AppendixC we look at the
case where the pools total hashing power αP =

∑n
i=1 αi < 1 and show that

while this makes a quantitative difference, qualitatively our results carry over.

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 479

The time it takes for a miner to find a share is an exponentially distributed
random variable with parameter αi; hence in expectation it takes time 1/αi to
find a share. Each share is also a full solution with probability 1/D.

2.1 Reward Functions and History Transcripts

Miners report their shares and solutions to the pool operator. When a solution
is reported, the operator who collects the block reward from the Bitcoin network
and subsequently divides the reward among the n miners according to a reward
function R. The game then restarts. For the mathematical model we assume no
variability in the block reward or the transaction fees, although the work can be
extended to include this.

The reward function is the only way in which the miners receive any payout
and therefore the reward function completely drives the behavior of miners. A
perfectly equitable reward function would simply give each miner i a fraction
αi

αP
of the reward in proportion to the fraction of the pool’s total mining power

to which that miner contributed.
However, the pool operator does not know the actual αi of each miner. The

challenge in designing a reward function R stems from the necessity of estimating
this based on reported shares and solutions. The operator’s ability to estimate αi

depends on the precise information it has access to. We model this as a history
transcript H. A reward function R : H → [0, 1]n is a function from a history
transcript to an allocation {ai}n

i=1 with
∑

i ai = 1. We use Ri : H → [0, 1] to
denote the function that yields the ith component of R.

In most of this paper we analyze the case of an unordered history transcript:2

H contains for each miner i the total number of shares bi ∈ N that have been
reported in that round.3 Thus, the history transcript is given by a vector b ∈ N

n

that contains for each of the n players the total number of shares that she found
during the round (where the full solution is also counted as a share). We use
vector notation for b, so b1 + b2 means the component-wise addition of b1 and
b2, and ||b||1 =

∑n
i=1 bi is the sum of the components of b.

This model is perhaps the simplest possible4 which enables a mining pool to
function, yet it captures several basic reward function schemes used in practice.
There are also reward functions which require additional information, such as
the order in which shares were reported or reports from previous rounds of
the game. In Sect. 8 we briefly discuss how to generalize this model and the
challenges with characterizing incentive compatibility for them. However, we
stress that positive results demonstrated incentive compatibility in our simple
model extend to any more complicated model, as the pool operator can always
decline to use additional information in its reward function.

2 In Sect. 6 we consider a strictly more general informational model, which will be
described there.

3 We adopt the convention that N includes the number 0.
4 A simpler format such as only receiving information about which miner reported a

full solution would only allow a replication of solo mining.

480 O. Schrijvers et al.

2.2 Miner Strategy

Now that we defined a model and the reward function R, let’s look at how the
choice of R impacts the behavior of miners. The goal of any mining pool is to
earn as many rewards as possible for its members.5 If miners delay in reporting
blocks to the pool, this imposes a risk that an external pool may find the block
first, undermining the pool’s potential rewards.6 Note that while we are only
modeling a single pool, we build in the assumption that this pool wants to report
solutions as fast as possible to the wider network to avoid getting scooped by
the competition. Thus we will want our reward function to ensure solutions to
be reported and processed as soon as they are found.7

In response to a reward rule R, miners choose a strategy σ(R) which dictates
what a miner does when it finds a share or full solution. Ideally the strategy
σ(R) is to report any share or solution immediately. However, the pool operator
cannot directly tell miners what to do; rather they should choose an R such that
the miners corresponding strategy σ(R) is to immediately report. Formally, let
t be the time since miner i started mining, let T be the number of rounds that
have been completed at time t, and let bj be the number of shares per player in
round j. Miner i is interested in maximizing their throughput:

σ(R) := max
σ

lim
t→∞

∑T
j=1 Ri(bj)

t
. (1)

Here σ impacts the number T of rounds that were completed, as well as the
number of reported shares bj in each round.

2.3 Reward Function Desiderata

We define three properties which are important for a reward function. The first
is a formalization of the intuition above:

Property 1 (Incentive Compatibility). A reward function R is incentive com-
patible when every miner’s best response strategy σ(R) reports full solutions
immediately.

In Sect. 3 we give a mathematical condition that characterizes Property 1, and
that can easily be verified for reward functions.

Next, we require that the pool pays miners in proportion to the amount of
work they have performed. Miners form pools to reduce the variance in revenue.
5 In this work we are only considering a pool which follows the default mining strategy

and does not attempt to implement an deviant strategies to earn disproportionately
more rewards than competing pools, such as temporary block withholding [8].

6 Another way of saying this is that a reward function which does not compel partic-
ipants to report solutions immediately is not welfare maximizing, since the selfish
behavior of individuals can hurt the total reward of the group.

7 While we do not consider fees in this paper, note that a pool operator would also
want to optimize throughput if collects a fraction of the reward.

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 481

In practice they might accept losing a small fraction f of their expected value
in fees, but we would like miner performing an αi fraction of the work to receive
an αi fraction of the reward.

Property 2 (Proportional Payments). A reward function R provides proportional
payments whenever for each miner i

Eb[Ri(b)] = αi .

Finally, we would like the pool operator to never incur a deficit. That is, the
reward function R should precisely divide the reward among the n miners at the
end of a round. If this is not the case, then either miners may leave some value on
the table, or the pool operator may be liable for more then she received herself.
This latter condition is particularly dangerous, as it leaves the pool exposed to
sabotage attacks [5] in which competing miners purposely withhold full solutions
to damage the pool.

Property 3 (Budget Balanced). A reward function R is (γ, δ)-budget balanced
when for all b:

γ ≤
n∑

i=1

Ri(b) ≤ δ .

In particular, an (γ, 1)-budget balanced reward function will never pay more
to the miners than the pool operator received. Our goal will be (1, 1)-budget
balanced reward functions which share the reward exactly among the n miners.

2.4 Common Examples

Perhaps the most obvious reward function is the proportional reward function:
Ri(b) = bi/K, where K = ||b||1 =

∑n
i=1 bi. That is, the reward is shared

proportional to the number of shares each miner reported. We show that the
proportional rule is not incentive compatible in Sect. 4.1.

Another reward function is the pay-per-share reward function: Ri(b, s) =
bi/D, where participants are rewarded a fixed amount per share. In Sect. 4.2 we
show that while this method is incentive compatible, it is not budget balanced
(defined in Sect. 2.3), which means that the pool operator may be liable to pay
out more to miners than she collects from the Bitcoin protocol.

2.5 Ensuring Steady Rewards

Miners are interested in maximizing the total reward they receive per time unit,
but they join pools primarily to achieve a more consistent stream of revenue.
Our goal will be to build a reward function which is as consistent as possible
which satisfies the three properties above. It is tempting to isolate one metric,
such as the variance or standard deviation of the distribution of rewards, but
we will discuss in Sect. 7 why these metrics are probably not the best measures
of consistency in practice and provide different simulation results to compare
reward functions.

482 O. Schrijvers et al.

3 Incentive Compatibility

We stated that for a reward function R to be incentive compatible, it needs to
incentivize miners to report full solutions immediately. In this section we express
that as a condition that can easily be checked for any given reward function.

We do this by looking at the strategic choice that a miner faces when she
finds a full solution. Either she reports the full solution immediately, or she
decides to delay reporting the solution until d more shares have been found. In
this section we do not take into account the possibility of another miner finding
and reporting a solution during this delay. In AppendixB we show that this is
virtually without loss of generality.

Consider the situation when at time t, miner i finds a full solution. At this
point bt shares have been reported to the pool operator (for notational simplicity
we assume that the full solution is already included in bt). The action space of
miner i is d ∈ N (including 0) where the miner waits for d additional shares to
be reported before reporting the full solution. If miner i decides to wait for d
shares before reporting, her expected reward at the end of the delay is:

E(b s.t. ||b||1=d)[Ri(bt + b)] =
∑

b s.t. ||b||1=d

Pr(seeing b) · Ri(bt + b).

On the other hand, if she decides to report the full solution immediately, she
will receive the reward she was entitled to at that moment and a new round will
start. So she will additionally get d times the expected reward per share. That
is, delaying her report imposes an opportunity cost by not beginning the next
round. So her expected reward in this situation after d more shares is:

Ri(bt) + d · Eb [Ri(b)]
Eb[||b||1] = Ri(b) + d · Eb [Ri(b)]

∑∞
k=1 k

(
1 − 1

D

)k−1 1
D

= Ri(bt) +
d

D
· Eb [Ri(b)] .

Reporting the solution immediately will be more profitable than delaying for
d shares if and only if:

∑

b s.t. ||b||1=d

Pr(seeing b) · (Ri(bt + b) − Ri(bt)) ≤ d

D
· Eb [Ri(b)] . (2)

The miner’s best strategy is to report immediately if this condition holds
for all d ∈ N\{0}. The following lemma states that there exists a d ∈ N\{0} for
which this condition holds if and only if it holds for d = 1. This is a very powerful
statement: to determine the incentive compatibility of a reward function, we only
need to see if it is profitable to delay reporting for a single additional share. In
the following, let ej be the jth standard basis vector that is 0 everywhere except
for the jth component which is 1. Due to space limitations the proofs for all
lemmas appear in AppendixA.

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 483

Lemma 1. For a reward function R, a player i has an incentive to report full
solutions immediately, iff the following condition holds for all {αi}n

i=1,bt,D, i:

n∑

j=1

αj · (Ri(bt + ej) − Ri(bt)) ≤ Eb [Ri(b)]
D

. (3)

So to show that a reward function is incentive compatible, we need to show
that condition (3) holds, and conversely when we show that for a reward function
condition (3) is not guaranteed to hold, it cannot be incentive compatible.8

While for incentive compatibility we do not care about miners reporting
shares immediately, this is important in ensuring proportional payments.

Lemma 2. Miners report shares immediately if and only if the reward function
R is monotonically increasing each component. That is: for all i, and b:

Ri(b + ei) > Ri(b).

4 Incentive Compatibility of Existing Methods

Now we will apply our characterization of incentive compatibility to reward
functions which are in use today. In this section we restrict ourselves to reward
functions that can be modeled by our definition of history transcript as described
in Sect. 2.

4.1 Proportional Reward Function R(prop)

One of the earliest reward functions that is still in use is the proportional reward
function. The idea is to divide the reward according to the proportion of shares
of a miner compared to all shares that were reported to the pool:

R
(prop)
i (b) =

bi

||b||1 .

In expectation, the reward per share for each player is αi/D. This approach is
clearly proportional and budget-balanced. Previous work [4] has shown that in
the presence of multiple pools, miners can be incentivized to change pools after
a certain number of shares has been found. In this section we present a new
problem that exists even in the absence of other mining pools and means that
the proportional reward function is not incentive compatible.

Lemma 3. The proportional rule R
(prop)
i (b) = bi

||b||1 is not incentive compatible.

8 In Appendix B we show that the possibility of another miner reporting a solution
does not materially change the characterization here and in Appendix C we extend
this to include the possibility of another pool reporting a full solution.

484 O. Schrijvers et al.

This result shows that the proportional reward function is not incentive com-
patible for a fundamental reason distinct from previous criticism. Even in the
absence of other pools, it does not always compel miners to report solutions
immediately. The intuition behind Lemma 3 is that if a player discovers a full
solution early but has been unlucky and reported a lower number of shares than
they would expect based on their mining power, it is in their incentive to delay
reporting their solution since on expectation their fraction of all reported shares
will go up. We can draw a number of corollaries immediately from Lemma3:

– If the current ratio of blocks exceeds the expected ratio, then a player i would
report any full solution immediately.

– If the current ratio of blocks is lower than a player’s expected ratio, then she
might hold off to make up for this discrepancy.

– With fewer shares found, it’s easier for a player to catch up, hence she is more
willing to hold off reporting.

– After D shares have been found, any player will always report a full solution
immediately, even if she has not found a single share herself.

4.2 Per-Per-Share Reward Function R(pps)

The pay-per-share reward function pays a fixed amount for every share that
is reported. Recall that each share is a full solution with probability 1/D, in
expectation the pool operator sees D shares for every full solution. Therefore
the payout per share is 1/D leading to the following reward function:

R(pps)(b) =
bi

D
.

It’s easy to see that pay-per-share is incentive compatible.

Lemma 4. The pay-per-share rule R
(pps)
i (b) = bi

D is incentive compatible.

Proof. The left hand side of (3) evaluates to

n∑

j=1

αj ·
(
R

(pps)
i (bt + ej) − R

(pps)
i (bt)

)

= αi ·
(

bi + 1 − bi

D

)

+ (1 − αi) ·
(

bi − bi

D

)

=
αi

D

and the right hand side evaluates to

Eb

[
R

(pps)
i (b)

]

D
=

αi

D
.

��

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 485

This result comes at no surprise: with pay-per-share there is no benefit to
delay reporting a full solution as you receive a constant payment for every
reported share (or full solution). As discussed before though, it is not budget
balanced.

Proposition 1. The pay-per-share rule R
(pps)
i (b) = bi

D is no better than
(1/D,∞)-budget balanced.

Proof. On one extreme, if a full solution is reported before any other shares
have been reported, then R(pps) pays out

∑n
i=1 R

(pps)
i (b) = 1/D. On the other

extreme there is no bound on how many shares can be found before a full solution
must be obtained. Hence R(pps) cannot be (1/D,C)-budget balanced for any
finite C. Therefore it is (1/D,∞)-budget balanced. ��

In the absence of sabotage attacks, with the pay-per-share rule the pool oper-
ator pays out no more than it takes on on expectation, but keeping the probability
of bankruptcy low requires large reserves for the pool operator [4]. There are sev-
eral variations that ameliorate the budget balance problem [4, Sect. 4], none of
them quite satisfactorily.

5 A New Incentive Compatible Reward Function

In the last section we saw that two common existing methods which are pos-
sible in our model both lack one of the desiderata for reward functions. The
proportional reward function may incentivize miners to delay reporting of solu-
tions, whereas the pay-per-share function may make the pool operator liable
for more than she receives from the protocol. In this section we demonstrate a
reward function that satisfies all three desiderata of reward functions, while still
guaranteeing a steady stream of rewards for all participants.

To satisfy the proportional payments property, it is necessary to estimate
the proportion of work that each miner has done. The only information the
pool operator receives within our informational model is the total number of
shares per miner in the round. When only a few shares have been found in
the round, every additional share may change this estimation quite significantly.
When satisfying the budget-balanced property, this must translate into a large
change in the payout. When there is the possibility of a large payout for an extra
share, this may lead to incentive compatibility issues. Note that in practice pay-
per-share reward schemes usually avoid this problem by lowering the payment
amount in these cases. So to give a scheme that meets all three desiderata, we
need to take an additional estimator for αi into account. In the next subsection
we show that we can use the identity of the discoverer of the full solution as this
estimator.

5.1 The IC Reward Function

We propose the reward function R
(ic)
i : Nn × {1, ..., n} → [0, 1], that in addition

to a count of the shares per miner also includes the identity of the discoverer of

486 O. Schrijvers et al.

the full solution. In the following let 1{c} be the indicator function that is 1 if
c is true, and 0 otherwise.

R
(ic)
i (b, s) =

bi

max{||b||1,D} + 1{i = s} ·
(

1 − ||b||1
max{||b||1,D}

)

.

There are two cases to consider for the reward function. The easiest is when
the total number of reported shares ||b||1 ≥ D. In that case

(
1 − ||b||1

max{||b||1,D}
)

=
0, hence the reward function is identical to the proportional function. When
||b||1 < D each share receives a fixed reward of 1/D, like in the pay-per-share
function. However, this would leave some money on the table as the total payout
would be ||b||1/D and ||b||1 < D. So the remainder of the reward is given to
the discoverer of the full solution.

Lemma 5. The reward function R(ic) provides proportional payments.

Proof. We first split the expression into the two relevant cases.

Eb

[
R

(ic)
i (b, s)

]
= Pr(||b||1 < D) · Eb

[
R

(ic)
i (b, s) | ||b||1 < D

]

+ Pr(||b||1 ≥ D) · Eb

[
R

(ic)
i (b, s) | ||b||1 ≥ D

]
.

We now show that in both cases the expected reward for miner i is αi. When
||b||1 ≥ D the IC rule is no different than the proportional rule, hence

Eb

[
R

(ic)
i (b, s) | ||b||1 ≥ D

]
= αi.

Now for the case where ||b||1 < D:

Eb

[
R

(ic)
i (b, s) | ||b||1 < D

]

=
D−1∑

k=1

Pr(||b||1 = k|||b||1 < D) ·
(
E[bi|||b||1 = k]

D
+ Pr(i = s) ·

(

1 − k

D

))

=
D−1∑

k=1

Pr(||b||1 = k|||b||1 < D) ·
(

αi · k

D
+ αi ·

(

1 − k

D

))

=
D−1∑

k=1

Pr(||b||1 = k|||b||1 < D) · αi

= αi.

Here we used the fact that when a full solution is found, the probability that it
was discovered by miner j is exactly its power αj . ��
Theorem 1. The reward function R(ic) is incentive compatible.

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 487

Proof. By Lemma 5, the right-hand side of condition (3) is αi/D. Now for the
left-hand side; if ||b||1 ≥ D the rule is identical to R(prop), so the left-hand side
is at most αi/D, hence condition (3) holds in this case. So the only case left to
prove is when ||b||1 < D.

n∑

j=1

αj ·
(
R

(ic)
i (bt + ej , i) − R

(ic)
i (bt, i)

)

= αi ·
(

bi + 1 − bi

D

)

+ (1 − αi) ·
(

bi − bi

D

)

+
(

1 − ||b||1 + 1
D

)

−
(

1 − ||b||1
D

)

=
αi

D
−

(||b||1 + 1
D

− ||b||1
D

)

=
αi − 1

D
≤ 0 .

So when ||b||1 < D the miner is expected to lose utility by delaying, and certainly
condition (3) holds. So in all cases condition (3) holds, hence by Lemma 1 R(ic)

is incentive compatible. ��
So R(ic) satisfies proportional payments and incentive compatibility. Finally,

it is also a (1, 1)-budget balance reward function.

Proposition 2. R(ic) is a (1, 1)-budget balanced reward function.

Proof. When ||b||1 < D the total payout is
∑

i=1
bi
D +

∑
i=1

bi
D +D−||b||1

D = ||b||1
D +

D−||b||1
D = 1. When ||b||1 ≥ D the total payout is

∑
i=1

bi
||b||1 = ||b||1

||b||1 = 1. ��

5.2 Providing a Steady Payment Stream

While R(ic) satisfies all three desiderata for reward functions, it might be a con-
cern that the reward function pays out a potentially large fraction of the reward
to a single miner. Miners join a pool because they prefer a steady stream of small
payments over periodic large payments. We show here that the majority of the
reward is paid out for shares and not full solutions, and hence that the majority
of the pool’s rewards are redistributed in a steady stream. This ameliorates a
large part of the problem of mining alone, while guaranteeing incentive compat-
ibility. In Sect. 7 we give simulation results suggesting that this payment stream
is sufficiently steady in practice.

Lemma 6. In expectation, a fraction 1 − e−1 ≈ 0.63 of the rewards are given
based on shares under R(ic).

488 O. Schrijvers et al.

Proof. The fraction of the reward given to the discoverer of the full solution is

D−1∑

k=1

Pr(||b||1 = k) ·
(

1 − k

D

)

=
D−1∑

k=1

1
D

·
(

1 − 1
D

)k−1

·
(

1 − k

D

)

=
(

1 − 1
D

)D

≤ e−1 .

The remainder of the reward is split among the reported shares, hence the
payout to shares in expectation is 1 − e−1 ≈ 0.63. ��

6 Incentive Compatibility of Pay-Per-Last-N-Shares

In previous sections we have given an overview of incentive compatibility for any
reward function based on access to a history transcript H consisting of a count
of all reported shares. By deriving incentive compatibility at this high level of
abstraction allowed us to easily prove incentive compatibility for any function
within this informational model.

In this section we look at incentive compatibility of a particular reward
function that require a more general informational model: the Pay-Per-Last-
N -Shares (PPLNS) reward function, that is widely used in practice. We first
discuss the required changes in the informational model, and how the PPLNS
function works, and then we show that the function is incentive compatible.

6.1 The PPLNS Reward Function

The PPLNS reward function R(pplns) differs from the reward functions seen so
far in two important ways. Firstly, it maintains a history of reported shares that
spans multiple rounds. So what happens in round T is no longer isolated from
what happens in round T + 1. Secondly, the method takes the order of reported
shares into account in a specific way: it maintains a sliding window of length
N and divides the reward proportionally over these N shares. So the history
transcript H that R(pplns) uses is s = [st−N , st+1−N , ..., st] (an ordered list of N
elements) and the reward function is:

R(pplns)(s) =
#{sj : sj ∈ s ∧ sj = i}

N
.

Since the order of reports matter, we say that shares fall into slots. Each slot
states if the report contains either a full solution or a share, and who the miner
was that reported it.

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 489

6.2 Incentive Compatibility of PPLNS

We do not have a general condition under which reward functions in this
informational model are incentive compatible, so we argue incentive compati-
bility directly. In this section we consider both reporting of shares as well as
full solutions. For each, we consider a binary strategy space: either report the
share/solution immediately, or delay reporting until one more share is found.9

Lemma 7. For the reward function R(pplns); a miner i reports shares immedi-
ately when her mining power αi < 1 − D

N .

In the previous section there were potential benefits, and harms to delaying
the report of a share, but there was no opportunity cost. Since miner i did not
have a full solution, her delay did not cause unnecessary work for all miners in
the pool. For full solutions we have to take the opportunity cost of letting all
miners work on a block for which a full solution is already found into account.
This will guarantee incentive compatibility whenever N > D.

Lemma 8. For the reward function R(pplns); a miner i reports full solutions
immediately when N ≥ D.

7 Simulations

The typical way to compare different reward function is to look at the variance
of payout for a single share [4], with a lower variance considered better. However,
the raw variance can be quite misleading for a reward function like R(ic) which
allocates some revenue in a steady stream and some in a lumpy stream, assigning
a variance almost as high as solo mining.

Fig. 1. Simulation results for our new incentive-compatible reward function.

9 This makes our results slightly less general in this setting than for the reduced
information setting, where the miner could delay for any delay d.

490 O. Schrijvers et al.

In Fig. 1a we plot the time it takes for a miner to gain a given number of
bitcoins with 99% certainty. We run a simulation for a miner i with αi = 0.001,
D = 1, 000, 000. A unit of time corresponds to the expected time it takes for
all miners combined to find a full solution (in reality this is about 10 minutes)
and we normalize the reward for finding a full solution to be B 1 (in reality this
currently about B 25, although it changes over time). The lines indicate for each
of three reward functions how long one has to wait to gain a given amount of B
with 99% probability. First of all, observe that for solo mining the time is about
4500 rounds and it does not increase with time. This is because whether a miner
wants to obtain B 0.001, or B 0.9, they have to find a full solution to reach this
target. So the blue line really indicates the time it takes to find a full solution.
Even though in expectation this takes 1000 rounds (for αi = 0.001), in 1% of
cases a miner has to wait in excess of 4500 rounds.

It can be seen that the incentive compatible scheme requires somewhat longer
to reach the same target than the proportional scheme. This is because not all
reward is shared according to the reported shares, but is partly distributed over
the discoverers of full solutions. However, no matter what the target is, the
difference in time required differs no more than a small multiplicative factor.
Finally, note that since it takes longer to reach targets with high probability, the
expected payouts between all three functions is the same.

In Fig. 1b we plot the CDF of the time needed to earn B 0.1. With overwhelm-
ing probability R(prop) pays out at least B 0.1 within 150 rounds, and R(ic) pays
out at least B 0.1 within 200 rounds. Solo mining does not fit on this scale and it
wouldn’t be until around round 7,000 before a miner makes at least B 0.1 with
overwhelming probability.

Fig. 2. Comparison of the new incentive compatible scheme to PPLNS.

We compare the new incentive compatible scheme to the PPLNS scheme in
Fig. 2. Here we can see that the new incentive compatible scheme performs worse
by a small multiplicative factor, the PPLNS scheme performs worse by a small
additive factor. This means that for small Bitcoin targets it would be faster to

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 491

use the IC reward function, whereas for larger target the PPLNS reward function
performs better.

From these simulations we can conclude that the trade-off for using the incen-
tive compatible or PPLNS reward function compared to the proportional reward
function is a modest delay in the time it would take miners to reach a minimal
amount of bitcoin with high probability. In return we get a scheme in which it
is obvious for miners what the most profitable strategy for them is.

8 Conclusions and Open Problems

We set out with a simple question: as a mining pool operator, in the absence of
other mining pools or outside options, which reward functions will incentivize
miners to report full solutions immediately? In this simple model it would be rea-
sonable to assume that miners always have an incentive to report immediately.
However, we show that for proportional rewards, there are situations in which
miners prefer to hold on to a full solution temporarily in order to improve their
payout, harming the entire pool in the process. We also defined a novel reward
function that is incentive compatible in this model (and remains so even in more
powerful models). While this new scheme is not quite as efficient as proportional
rewards in terms of smoothing the miners’ revenue streams, it comes reason-
ably close in practice. We have also showed that the PPLNS reward function is
incentive compatible. For a pool operator there are some tradeoffs in deciding to
use our new incentive compatible scheme versus the PPLNS scheme. The latter
requires a certain lead-up time, where the rewards to miners are below their
fraction of the mining power. It also requires pool operators to maintain a more
complex state and the payouts are arguably somewhat less transparent. On the
other hand, our new incentive compatible method sometimes pays out a rather
large amount to the discoverer of the full solution.

We have given a first informational model for which we can characterize
incentive compatibility for all reward functions that fall in the model. We’ve also
looked at a particular reward function that falls outside this model, and proved
incentive compatibility from first principles. The next enticing question is to see
if we can characterize incentive compatibility in this larger informational model
at a high level, so that we can quickly identify which other reward functions
would be incentive compatible. There are many reward functions in use today
[4] that are not covered by any of our results. For example, the Geometric Method
weights shares differently according to the order of shares in a round and Slush’s
Method takes the time of reported shares in a round into account. Defining
a common informational model, characterizing incentive compatibility in this
model, and classifying these methods remains an interesting open problem.

We stress that our incentive-compatible reward function will remain so even
in a model with more extensive history transcripts. Our goal was to introduce
the first rigorous, although simplified by omitting notions of time or order of
share reporting, model of Bitcoin mining pools and demonstrate that even this
simple model can lead to non-intuitive results.

492 O. Schrijvers et al.

A Proofs

A.1 Proof of Lemma 1

For a reward function R, a player i has an incentive to report full solutions
immediately, iff the following condition holds for all {αi}n

i=1,bt,D, i:

n∑

j=1

αj · (Ri(bt + ej) − Ri(bt)) ≤ Eb [Ri(b)]
D

. (4)

Proof. (⇒) This direction is straightforward: when it is beneficial to delay until
1 more share is reported, then there exists a profitable delay (namely d = 1).

(⇐) We need to prove that for all d, the following inequality holds:

∑

b s.t. ||b||1=d

Pr(seeing b) · (Ri(bt + b) − Ri(bt)) ≤ d

D
Eb [Ri(b)] .

We prove this by induction on d, where the induction hypothesis is Eq. (2). For
the base case d = 1 the statement follows directly from condition (3). So consider
the case d > 1:

∑

b s.t. ||b||1=d

Pr(seeing b) · (Ri(bt + b) − Ri(bt))

=
∑

ej

Pr(seeing ej)

⎛

⎝Ri(bt + ej) − Ri(bt)

+
∑

b s.t. ||b||1=d−1

Pr(seeing b) · (Ri(bt + ej + b) − Ri(bt + ej))

⎞

⎠

≤ 1
D
Eb [Ri(b)]

+
∑

ej

Pr(seeing ej)
∑

b s.t. ||b||1=d−1

Pr(seeing b) · (Ri(bt + ej + b) − Ri(bt + ej))

≤ 1
D
Eb [Ri(b)] +

∑

ej

Pr(seeing ej)
d − 1

D
Eb [Ri(b)]

=
d

D
Eb [Ri(b)] .

where the first inequality follows from condition (3), and the second from the
induction hypothesis. ��

A.2 Proof of Lemma 2

Miners report shares immediately if and only if the reward function R is
monotonically increasing each component. That is: for all i, and b:

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 493

Ri(b + ei) > Ri(b) .

Proof. Since the order or timing of shares does not matter, for analysis purposes
we can assume the following scheme: as soon as a full solution is reported the pool
operator asks all miners for the shares that they found. If the reward function R
is monotonically increasing then each additional share that i reports increases
her share, hence she will report all shares. Conversely, if R is not monotonically
increasing at some b, then if miner i has bi +1 shares, and all other miners have
reported shares according to b, then she will not report her last share.

Now consider the original problem: when a miner finds a share, will she report
it immediately? If she finds a share and the reward function is monotonically
increasing, then reporting it immediately can only increase her reward, whereas
delaying it may mean that someone else reports the full solution before she
reports her share, in which case she loses the opportunity to report. Thus she
will report immediately. ��

A.3 Proof of Lemma 3

The proportional rule R
(prop)
i (b) = bi

||b||1 is not incentive compatible.

Proof. Instantiate (3) for the proportional rule. For the right hand side we have:

Eb

[
R

(prop)
i (b, s)

]
/D =

1
D

∞∑

k=1

Pr[full solution is found at kth block]
E[bi|k]

k

=
1
D

∞∑

k=1

(

1 − 1
D

)k−1 1
D

k · αi

k

=
αi

D

∞∑

k=1

(

1 − 1
D

)k−1 1
D

=
αi

D
.

Now for the left hand side. In the following let k = ||bt||1:
n∑

j=1

αj ·
(
R

(prop)
i (bt + ej) − R

(prop)
i (bt)

)

= αi ·
(

bi + 1
k + 1

)

+ (1 − αi) ·
(

bi

k + 1

)

− bi

k

=
αibi + αi + bi − αibi

k + 1
− bi

k

=
αi + bi

k + 1
− bi

k

494 O. Schrijvers et al.

=
αi

k + 1
+ bi

(
1

k + 1
− 1

k

)

=
αi

k + 1
− bi

k(k + 1)

=
αi − bi

k

k + 1
.

Recall that for an incentive compatible scheme we need:

αi − bi
k

k + 1
≤ αi

D

αi − bi

k
≤ αi

k + 1
D

bi

k
≥ αi

(

1 − k + 1
D

)

.

This condition is not guaranteed to be satisfied. In particular, for every αi > 0
there exist positive values bi, k,D such that the condition is violated. ��

A.4 Proof of Lemma 7

For the reward function R(pplns); a miner i reports shares immediately when her
mining power αi < 1 − D

N .

Proof. We directly calculate the expected revenue for delay versus reporting.
When the miner decides to delay reporting a share until one more share/solution
is found, she aims to move the sliding window of slots for which the share is
eligible to receive reward one further into the future. This means that –as long
as no other miner finds a full solution and reports it– the share is active for N −1
of the same slots, so any reward she receives from full solutions in those slots
she will get regardless of her choice to report immediately versus delaying. On
the upshot, it could be the case that the one additional slot she’s eligible for in
the future yields a full solution. This will happen with probability 1/D (since a
share constitutes a full solution with probability 1/D) and in that case the share
gets an extra payout of 1/N for the delayed share, yielding an expected benefit
for delaying of 1/ND.

However, there is also a risk associated with delaying. With probability 1−αi

a share will be found by a different miner, and with probability 1/D it will
constitute a full solution. When this happens, miner i will no longer be able to
report the share as it was discovered for a previous round. The expected value
per share is 1/D (as it’s active for N rounds, in which in expectation N/D full
solutions will be reported for a value of 1/N each) hence the expected harm for
delaying the report is (1 − αi) 1

D2 .
So the miner will report the share immediately iff 1

ND < (1−αi)· 1
D2 . Plugging

in αi < D
N leads to (1 − αi) · 1

D2 ≥ D
N · 1

D2 = 1
ND so the condition holds, and

miners report shares immediately. ��

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 495

A.5 Proof of Lemma 8

For the reward function R(pplns); a miner i reports full solutions immediately
when N ≥ D.

Proof. In delaying a full solution, the hope is to get another share to report before
the miner reports the full solution. This happens with probability α1 · D−1

D (we
need the share to not be a full solution) and the additional value to this share
would be 1

N compared to it being reported after the full solution. However, while
waiting for a share, with probability 1

D the next share will be a full solution,
either found by miner i, or one of the other miners. Regardless of who finds
the solution, the previous full solution that miner i was sitting on has become
worthless: either a different miner reported the full solution ending the round
and thus making the delayed full solution worthless, or miner i now has 2 full
solutions of which she can report only one. When this happens, she loses the
solution whose expected value is 1/D (as this is counted as a share for future).
So the expected upshot for delaying the solution is α1

D−1
D

1
N and the expected

harm is 1
D2 .

In addition to this, when the miner chooses to delay until one more share
is found, she lets all miners in the pool work on a block for which she already
has a solution. If everyone were to spend that effort on a new block, that work
would in expectation constitute 1/D of the work for a new block, of which in
expectation miner i would receive αi of the reward. Thus, the opportunity cost is
αi

D . Therefore, a miner will report a full solution immediately iff αi
D−1

D
1
N − 1

D2 ≤
αi

D which holds whenever N ≥ D.

B Incentive Compatibility When Other Miners Can Find
a Block Before You Report

In Sect. 3 we showed that there is a simple condition that precisely characterizes
when a reward function R is incentive compatible, under the assumption that
no other miner finds and reports a full solution during this delay. In reality a
miner does have to take this possibility into account, so in this section we show
exactly how the IC condition changes when we drop this assumption.

If we decide to delay reporting the full solution until one additional share is
found, then with probability 1/D that share will actually be a full solution itself.
Without loss of generality we may assume that this solution will be reported
immediately (otherwise we could simply ignore its effect). Recall that bt is the
number of reported shares per miner including the unreported full solution that
miner i has, and that ej is the vector that has zeros everywhere except its jth

component, where it is 1. So the expected payout for delaying for one round
becomes:

1
D

∑

j

αjRi(bt − ei + ej) +
D − 1

D

∑

j

αjRi(bt + ej) .

496 O. Schrijvers et al.

Thus the condition of incentive compatibility is:

1
D

∑

j

αj (Ri(bt − ei + ej) − Ri(bt))

+
D − 1

D

∑

j

αj (Ri(bt + ej) − Ri(bt)) ≤ Eb[Ri(b)]
D

.

For the reward functions that are monotonic increasing in each component
(which by Lemma 2 are precisely the reward functions where miners always
report all shares) this additional term is negative. Therefore, the IC condition
is only easier to satisfy. This means that reward functions that are proven to be
incentive compatible using Lemma 1 are still incentive compatible. However, one
might worry that our proof that the proportional reward function is not incen-
tive compatible might break. We show next that the thread of being scooped
actually does not impact the result qualitatively.

B.1 Proportional

For the proportional reward function we can instantiate the left-hand side as
(taking ||bt||1 = k):

1
D

(

αi

(
bi

k
− bi

k

)

+ (1 − αi)
(

bi − 1
k

− bi

k

))

+
D − 1

D

(

αi

(
bi + 1
k + 1

− bi

k

)

+ (1 − αi)
(

bi

k + 1
− bi

k

))

=
1
D

1 − αi

k
+

D − 1
D

αi − bi
k

k + 1
.

So the proportional reward function is IC if and only if

1
D

1 − αi

k
+

D − 1
D

αi − bi
k

k + 1
≤ αi

D
.

Again this is not guaranteed to be satisfied, in fact the same parameters as last
time, i.e. bi = 2, k = 10, αi = 1/2 and D = 20. So including the possibility of
another miner finding a full solution does not qualitatively change the incentive
compatibility results, although quantitatively there may be situations where a
miner would choose to delay if she does not fear being scooped, but choose to
report if she does include this possibility.

C Multiple Pools

In the main text we’ve assumed that there are no other pools that compete
for finding solutions to the cryptographic puzzle. This is reasonable from the

Incentive Compatibility of Bitcoin Mining Pool Reward Functions 497

perspective of proving positive results: any incentive compatible scheme should
be incentive compatible regardless of how much mining power other pools have.

However, to convincingly reject the proportional rule as not incentive com-
patible, we should take the effect of other pools into account. In the following
let

∑n
i=1 αi = αP < 1 be the total mining power of the pool, so all other mining

power —of both other pools and solo miners— is 1 − αP . For notational sim-
plicity we do not consider being scooped by a different miner in our own pool;
it’s obvious how this can be included by comparing the results to the one in
Appendix B. When we consider to delay reporting a full solution until one more
share is found —either inside or outside the pool— then our expected utility for
doing so is

∑

j

αjRi(bt + ej) + (1 − αP)
(

1
D

· 0 +
D − 1

D
Ri(bt)

)

.

We don’t really care if some other pool finds another share. This does not affect
us. But if another pool finds a full solution and reports it, then our mining pool
misses out on a complete payment that it could have received. So the condition
for incentive compatibility becomes

n∑

j=1

αj · (Ri(bt + ej) − Ri(bt)) − (1 − αP)
Ri(b)

D
≤ αP

Eb [Ri(bt)]
D

.

Under the assumption that the pool in expectation will collect αP of the
total reward among pools, and that miner i collects αi

αP
of the pool she is in,

the right-hand side will remain αi

D . The new term on the left-hand side is simply
(1 − αP) bi

kD . The other term on the left-hand side changes slightly:

n∑

j=1

αj ·
(
R

(prop)
i (bt + ej) − R

(prop)
i (bt)

)

= αi ·
(

bi + 1
k + 1

)

+ (αP − αi) ·
(

bi

k + 1

)

− bi

k

=
αibi + αi + αP bi − αibi

k + 1
− bi

k

=
αi + αP bi

k + 1
− bi

k
.

This cannot be simplified to the same convenient expression we had in Sect. 3.
Combining these terms the condition for incentive compatibility of the propor-
tional reward function becomes:

αi + αP bi

k + 1
− bi

k
− (1 − αP)

bi

kD
≤ αi

D

and after rewriting this:

498 O. Schrijvers et al.

αi

k + 1
+ αP bi

(
1

kD
+

1
k + 1

)

− bi

k

(

1 +
1
D

)

≤ αi

D
.

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted 1(2012),
28 (2008)

2. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Research
perspectives and challenges for bitcoin and cryptocurrencies. In: 2015 IEEE Sym-
posium on Security and Privacy, May 2015

3. Miller, A., Shi, E., Kosba, A., Katz, J.: Nonoutsourceable Scratch-Off Puzzles to
Discourage Bitcoin Mining Coalitions (2014). (preprint)

4. Rosenfeld, M.: Analysis of Bitcoin pooled mining reward systems (2011). arXiv
preprint arXiv:1112.4980

5. Eyal, I.: The miner’s dilemma. In: IEEE Symposium on Security and Privacy (2015)
6. Laszka, A., Johnson, B., Grossklags, J.: When bitcoin mining pools run dry. In:

Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol.
8976, pp. 63–77. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48051-9 5

7. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic
analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner,
M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 72–86. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44774-1 6

8. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Finan-
cial Cryptography (2014)

http://arxiv.org/abs/1112.4980
http://dx.doi.org/10.1007/978-3-662-48051-9_5
http://dx.doi.org/10.1007/978-3-662-44774-1_6

When Cryptocurrencies Mine
Their Own Business

Jason Teutsch(B), Sanjay Jain, and Prateek Saxena

School of Computing, National University of Singapore, Singapore 117543, Singapore
{teutsch,sanjay,prateeks}@comp.nus.edu.sg

Abstract. Bitcoin and hundreds of other cryptocurrencies employ a
consensus protocol called Nakamoto consensus which rewards miners for
maintaining a public blockchain. In this paper, we study the security
of this protocol with respect to rational miners and show how a minor-
ity of the computation power can incentivize the rest of the network
to accept a blockchain of the minority’s choice. By deviating from the
mining protocol, a mining pool which controls at least 38.2% of the
network’s total computational power can, with modest financial capac-
ity, gain mining advantage over honest mining. Such an attack cre-
ates a longer valid blockchain by forking the honest blockchain, and
the attacker’s blockchain need not disrupt any “legitimate” non-mining
transactions present on the honest blockchain. By subverting the consen-
sus protocol, the attacking pool can double-spend money or simply create
a blockchain that pays mining rewards to the attacker’s pool. We show
that our attacks are easy to encode in any Nakamoto-consensus-based
cryptocurrency which supports a scripting language that is sufficiently
expressive to encode its own mining puzzles.

1 Introduction

Hundreds of cryptocurrencies are in use today, and investments in cryptocur-
rencies continue to increase steadily [1]. Some cryptocurrencies, such as Bitcoin
and Ethereum, aim to serve as underlying substrates for financial applications
beyond simple distributed ledgers and payment services. Nearly all cryptocur-
rencies share a protocol known as the Nakamoto consensus protocol as their
backbone. The security of the Nakamoto consensus protocol has recently been
rigorously analyzed, under the assumption that a majority of the miners follow
the protocol honestly [10]. Does this backbone remain secure when miners purely
try to maximize their financial payoffs? In this paper, we study this question from
the lens of cryptocurrencies which permit expressive transaction semantics.

Cryptocurrencies often allow applications and users to encode semantic oper-
ations in blockchain transactions. For example, Bitcoin and Ethereum both per-
mit transaction scripts which allow users to specify conditions, or contracts,

J. Teutsch and P. Saxena’s research is supported by Singapore Ministry of Education
Grant No. R-252-000-560-112. S. Jain is supported in part by NUS grant Nos. R252-
000-534-112, R146-000-181-112 and C252-000-087-001.

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 499–514, 2017.
DOI: 10.1007/978-3-662-54970-4 29

500 J. Teutsch et al.

which corresponding transactions must satisfy prior to acceptance. Transaction
scripts can encode many useful functions, such as validating that a payer owns
a coin he is spending or enforcing rules for multi-party transactions.

Scriptable cryptocurrencies allow clients to outsource computational tasks or
puzzles [12]. For instance, assuming a sufficiently expressive scripting language,
a client might post a computational puzzle and a transaction that together con-
tractually commit him to pay prize money to the first party that conveys a
correct solution. Let us call a computational puzzle encoded via a cryptocur-
rency transaction script a script puzzle. Script puzzles are one way for clients to
trade computation power directly with coins. We now ask: what are the secu-
rity implications of allowing script puzzles in a cryptocurrency? When analyzing
this question, we will assume that miners in such cryptocurrencies always try to
optimize their expected financial gains. This assumption differs from the folklore
assumption that the majority of miners always honestly follow the mining pro-
tocol, irrespective of whether it gives them a financial advantage. If we assume
that miners are rational instead, then is Nakamoto-consesus based crytocurrency
secure against a minority of miners deviating from the protocol for financial gain?
Given the financial investments in cryptocurrencies today, it is reasonable to ask
whether the core protocol is open to manipulation by rational minorities.

In particular, this paper investigates the consequences of casting proof-of-
work mining problems as script puzzles. Miners often have dedicated hardware
for solving proof-of-work problems, and so they can easily reuse their hardware
for solving such script puzzles. In short, miners engage in a game which incen-
tivizes them to split their computation resources between solving script puzzles
and mining. We analyze this game and find that, even when the language does
not support script puzzles, an attacker with 38.2% of the computation capacity
can not only subvert the consensus protocol — effectively reducing the classic
51% attack to a 38.2% attack — but can also increase his share of mining reward
per block without double-spending. The expected minimum financial capacity for
such an attacker, beyond its cost invested in mining power, is less than a dozen
times the reward for mining a new block when the attacker’s power exceeds
39.1% of the network. Several mining pools have enjoyed such large share of
computation power in the Bitcoin network recently.

2 Background

Bitcoin and several other cryptocurrencies use similar mechanism for maintain-
ing consensus about a distributed ledger of transactions. The distributed ledger
is maintained as a hash-chain of transaction blocks known as the blockchain
ledger. The consensus protocol used in nearly all blockchain-based cryptocurren-
cies, known as Nakamoto consensus, achieves eventual consistency assuming an
honest majority1. Miners in a cryptocurrency network solve “mining puzzles” —
a cryptographic proof-of-work puzzle (e.g. “inverting” a SHA2 hash [9]) — in

1 It further assumes a favorable broadcast network between miners.

When Cryptocurrencies Mine Their Own Business 501

exchange for cryptocurrency mining rewards. When a miner successfully broad-
casts the solution of a proof-of-work puzzle, he proves that he has spent the
necessary computation power to merit appending his new set of transactions
to the distributed ledger. This step awards the miner a set of newly minted
coins. Miners solve the next proof-of-work puzzle using the longest blockchain,
which implicitly embodies the majority of the network’s computational effort
with overwhelming probability.

In a blockchain-based cryptocurrency, the cryptographic hash-chain guaran-
tees integrity of accepted transactions. Thus anyone can query the blockchain
for the presence of a transaction. Miners on the network race to extend the
blockchain in each time epoch (e.g. 10 min in the Bitcoin protocol), and this
race effectively generates randomized lottery to elect a leader in each epoch.

2.1 The 51% Attack

In principle, the blockchain mechanism only ensures consensus with overwhelm-
ing probability. A transaction that appears in the longest, current blockchain can
be omitted in a future blockchain which is longer — however, creating such a
“forked” blockchain that omits a transaction requires an adversary with compu-
tation power larger than half the computation power of the entire network. The
backtracking mechanism which permits this kind of double-spending is known as
a 51% attack [15]. Satoshi Nakamoto [2] was aware of this attack when he intro-
duced Bitcoin in 2009. His proof-of-work mechanism ensures correct blockchain
consensus under the assumption that the majority of miners are honest. If, for
example, the powerful miner spent some money in another fork of the blockchain
at the time when that fork appeared to be longest, he would not necessarily have
to carry that transaction over to his own fork and could thereby double-spend
the money.

2.2 Smart Contracts

Bitcoin and several cryptocurrencies allow transactions to specify conditions as
scripts. A transaction is deemed valid only if the linked condition holds. Bitcoin’s
scripts have limited expressiveness, however emerging cryptocurrencies support
expressive scripts that enable development of a variety of powerful decentralized
applications. The Ethereum cryptocurrency [8] introduced smart contracts in
which versatile scripts specify whether or not the network should accept given
transactions. Ethereum is Turing-complete in the sense that one can encode any
algorithm in its scripting language.

One can encode a smart contract which pays a reward for solution to a hash
inversion puzzle in many different ways. Figure 1 provides an example of how one
might realize such a contract in Ethereum. The protocol in this figure permits
a puzzle giver to post a blockchain transaction containing a public puzzle such
that any prover who notices the puzzle can post a solution on the blockchain. If
the miners on the network deem the prover’s solution to be correct, the prover
may receive the puzzle giver’s advertised reward in exchange for the solution.

502 J. Teutsch et al.

Fig. 1. Code snippet of a contract which asks users to solve a hashing puzzle. The
contract will verify the correctness of the result before sending out the reward.

Luu, Teutsch, Kulkarni, and Saxena [12, Sect. 5.2] showed how one can modify
a puzzle script, such as the one in Fig. 1, so as to achieve fairness via a com-
mitment scheme. Their protocol rewards the first solution posted and resolves
ties as follows. Every potential prover posts a hash of his solution to the puzzle
so as both to notify the network that his solution is ready and to prevent him
from later changing his answer. The first solutions to appear effectively enter a
lottery. Once the network has confirmed the winner of this lottery, the prover
publicly reveals his solution. If the network finds that his solution is correct,
then he receives the puzzle’s reward for his solution. If the solution is incorrect,
another prover’s solution may be considered.

Any transaction puzzle with suitable computational complexity and mone-
tary reward which incentivizes miners to repurpose their hardware suffices for
the attacks in this paper. Ethereum miners use GPU hardware, so in practice
one would need to fine tune the puzzle in Fig. 1 into a GPU-friendly form in
order to achieve the desired effect.

2.3 Assumptions

Our theoretical attack will suppose the following specific conditions about min-
ers’ behavior, the attacker’s capability, and the underlying cryptocurrency.

1. Miners always mine on the longest chain. This is a fundamental and standard
assumption for Nakamoto consensus.

2. Expected time between new blocks is constant. The network calibrates the dif-
ficulty of mining blocks so as to maintain a fixed expected time between new
blocks. Both the Ethereum and Bitcoin protocols include periodic adjust-
ments based on the cumulative computational power of active miners.

When Cryptocurrencies Mine Their Own Business 503

3. Miners are rational. Non-attacking miners on the network distribute their
computational resources between mining and puzzle solving in order to max-
imize expected profits. They do not withhold blocks.

4. Attacker has limited resources. The attacker has a fixed amount of capital
and computational power at his disposal with which to execute his attack.
Section 5 discusses the sufficient capital and computational power needed as
well as the tradeoffs between these two parameters for the attack to succeed.

We will elaborate on and further discuss the details of these assumptions in
subsequent sections. Empirical testing may shed light on the practical validity
of the above assumptions and remains as valuable future work. Finally, for ease of
presentation, our analysis will focus on expected values rather than probabilities
for various possible outcomes.

Fig. 2. Expected initial capital required to execute a double-spend attack with p frac-
tion of the network power (for k = 1 block advantage).

3 The Double-Spend Attack

An attacker with sufficient capital, regardless of computational power can
double-spend in any cryptocurrency with sufficiently expressive scripting lan-
guage via a modification of the backtracking 51% attack discussed in Sect. 2. We
expect that block-sized hash inversion script puzzles can distribute rewards fairly
because the time required to verify the correctness of a solution is small [12].2

2 Since the time required to solve these script puzzles is modest, Ethereum’s gaslimit
function does not hinder their execution.

504 J. Teutsch et al.

Attack 1. Let M be a miner with p fraction of the network’s computation
power3. Let b be the fixed reward for mining a new block. Starting from the
current block, M begins, using his full power p, privately mining new blocks on
a fork which is unknown to other miners. Meanwhile the following is repeated
until M ’s private blockchain is longer than the public one:

Once per (public) block, M posts a transaction with a hash-inversion
puzzle4 whose solution requires exactly the same amount of work as mining
a new block5. M offers a prize for its solution exceeding

1 − 2p + ε

p − ε
· b (3.1)

for some fixed value 0 < ε < p.

Since M is free to add or not add transactions from the public blockchain into
his private blockchain, he may double-spend when the loop finally terminates by
revealing his private blockchain.

Each time the miner M from Attack 1 posts a puzzle transaction, the other
processors on the network have two options: work on the transaction puzzle or
try to mine a new block. Each processor will work on the puzzle with some
probability a and hence will mine with probability 1 − a.6 We can view this
process as a game in which each processor tries to select the value a which
optimizes his expected profits. The processors’ set of strategies for choosing a
are said to form a Nash equilibrium when no individual processor has financial
incentive to deviate from his current strategy given that the other strategies are
fixed. By definition, rational processors choose the value a which satisfies the
Nash equilibrium.

Lemma 2. Let t > 0 and let 0 < a < 1. If the miner in Attack 1 offers a reward
of a · t to solve his puzzle and the reward for mining a new block is (1−a)t, then
rational processors on the network will puzzle-solve with probability a and mine
with probability 1 − a.

Proof. Suppose a given processor R has 0 < q < 1 fraction of the total computa-
tional power of the network. When every processor on the network works on the
3 In the following discussions, we assume that the total number of processors on the

network is fixed.
4 The puzzle M chooses may be identical to the nonce he needs to solve in order to

extend his private blockchain, and this choice may help M to mine faster on his
private chain. We do not attempt to quantify the advantage of implementing this
strategy, however, as latency from network broadcasts and puzzle reward commit-
ment schemes make the benefit difficult to estimate.

5 For simplicity of calculation, we assume that the hardness of the puzzle that M posts
in a given block is equally hard compared to the mining problem in the current block.

6 For the purposes of our calculations, it is equivalent to assume that the miner
devotes a fraction of his computational resources to puzzle solving and 1−a fraction
to mining.

When Cryptocurrencies Mine Their Own Business 505

Fig. 3. Expected initial capital required to break even on a 38.2% attack relative to
honest mining without double-spending and with p fraction of the network power.

puzzle with probability a and mines with probability 1 − a, R’s expected gain
is the sum of his expected fraction of total work on the puzzle times the puzzle
prize plus his expected fraction of total work on mining times the mining prize:

aq

aq + a(1 − q)
· at +

(1 − a)q
(1 − a)q + (1 − a)(1 − q)

· (1 − a)t = qt .

By symmetry, no processor can expect to obtain more than his share of the
reward, so an expected reward of qt is optimal on a purely rational network.
Suppose that R were to deviate from this strategy by puzzle-solving with prob-
ability a + δ where 0 < δ < 1 − a. Then his expected reward would be

(a + δ)q
(a + δ)q + a(1 − q)

· at +
(1 − a − δ)q

(1 − a − δ)q + (1 − a)(1 − q)
· (1 − a)t

=
aq + δq

a + δq
· at +

q − aq − δq

1 − a − δq
· (1 − a)t =

a − a2 − 2δaq + δq − δ2q

(a + δq)(1 − a − δq)
· qt , (3.2)

which is less than qt whenever 0 < δq < 1 − a, and in particular this inequality
holds for our choice of δ < 1 − a. Indeed for such δ, the denominator of the
rightmost fraction of (3.2) is positive and exceeds its numerator by δ2q − δ2q2.
By symmetry, R gains no advantage by biasing himself towards mining, either.
Hence the given strategy yields a Nash equilibrium. ��

We now show that Attack 1 succeeds when the other processors on the net-
work are rational.

506 J. Teutsch et al.

Theorem 3. If a miner M has sufficient initial capital, possesses p fraction
of the network’s computing power and the other processors on the network are
rational, then the loop in Attack 1 eventually terminates. Hence M can double-
spend any money spent since the beginning of the attack.

Proof. Let x = (1−2p+ ε)/(p− ε) as in (3.1) so that the reward for solving M ’s
puzzle is xb. Then the sum of the rewards between mining in a given block and
solving the puzzle is (1 + x)b. Thus the fraction of reward devoted to mining is
at most:

b

(1 + x)b
=

1
1 + 1−2p+ε

p−ε

=
p − ε

p − ε + 1 − 2p + ε
=

p − ε

1 − p
.

It follows that a rational processor on the network will mine with probability less
than (p − ε)/(1 − p) and puzzle-solve with probability greater than 1 − [(p − ε)/
(1 − p)] as the Nash equilibrium is achieved with these parameters (Lemma 2).
Since at most (1 − p) · (p − ε)/(1 − p) = p − ε fraction of the network power is
devoted to extending the public blockchain and p fraction of the network power
is devoted to extending M ’s private chain, M ’s private chain will eventually
become longer than the public one. ��

4 Mining Advantage Without Double-Spending

We now observe that if a miner controls more than (3 − √
5)/2 ≈ 38.2% of the

network’s computational power, then he can execute Attack 1 without double-
spending and still achieve an overall mining advantage. In the short run, such a
miner obtains a per-block advantage over honest mining which, as we discuss at
the end of Sect. 5, translates into a gain per unit time after consecutive repeti-
tions of the attack. Unlike our double-spend attack, in this scenario the attacker
can offer his puzzle rewards on an external website or system known to the cryp-
tocurrency miners; the puzzles need not be posted as transactions within the
cryptocurrency itself. Thus our analysis establishes the insecurity of Nakamoto
consensus against a rational-but-dishonest minority of miners without assuming
any scriptability properties for transactions.

Theorem 4. A miner M with p fraction of the network’s power where
(3 − √

5)/2 < p ≤ 1/2 who executes Attack 1 with appropriately chosen ε > 0 so
that the reward for each of his puzzles, xb, satisfies the additional constraint

x < 1 − p (4.1)

expects to gain a mining reward advantage of at least [1 − (x + p)]b per block
when other processors on the network are rational. Thus M can benefit from the
Attack 1 without double-spending or otherwise manipulating public transactions
in his private blockchain.

When Cryptocurrencies Mine Their Own Business 507

Fig. 4. Expected net gain over honest mining for a 38.2% attack without double-
spending with infinite budget for puzzle prizes. In general, the puzzle prize investment
may be small compared to the attacker’s financial investment in mining hardware.

Proof. Since M ’s reward satisfies the lower bound from Attack 1, the argument
in Theorem 3 shows that the length of M ’s private blockchain will eventually
exceed the length of the public one. In particular, we can assume that by the
end of the attack M ’s private blockchain has at least as many blocks in it as
the public blockchain. Note that the reward that M would have expected to
receive from mining a block without posting the puzzle transaction is pb, and
the reward he receives per block on his private blockchain is b, so the attack is
only profitable if the cost of each puzzle is less than b−pb, that is, when x < 1−p.
Since M can win all the mining rewards from the network when p > 1/2 using
the 51% attack, the miner receives no additional advantage in posting puzzle
transactions when p > 1/2.

Finally, let us consider when an x satisfying both (3.1) and (4.1) actually
exists. For ε < p, this happens when:7

1 − 2p + ε

p − ε
< 1 − p ,

or equivalently 1 − 2p + ε < p − ε − p2 + εp, which simplifies to

p2 − (3 − ε)p + (1 + 2ε) < 0 . (4.2)
7 A slightly weaker inequality holds here. At the end of Attack 1, the attacker’s private

chain is a block longer than the public chain, and so the attacker’s expected net gain per
block actually exceeds (1−p) ·b by some positive quantity, namely [(1−p)ε/(p− ε)] ·b,
which tends to zero as ε → 0. In this argument we ultimately care only about what
happens as ε approaches 0, and so for nowwe ignore this quantity.We revisit the present
calculation in more detail in Lemma 7.

508 J. Teutsch et al.

Applying the quadratic formula, using the fact that the leading coefficient in the
left-hand side of (4.2) is positive, and using that the larger root of this expression
is greater that 1/2, we find that p ≤ 1/2 is a solution to the inequality (4.2) if
and only if

p >
(3 − ε) − √

(9 − 6ε + ε2) − 4 − 8ε

2
=

3 − ε − √
5 + ε2 − 14ε

2
.

Taking the limit of this expression as ε → 0, we obtain p > (3 − √
5)/2, which

means the advantage exists for any such p whenever the attacker offers a reward
in (3.1) with sufficiently small parameter ε > 0. ��

Between 38.2% and 50% the attacker gains an increasing mining advantage
from executing the simple attack in Theorem 4. At 51% power, the miner need
not award any prize for solving his puzzle because he can outright win all the
mining rewards by extending his private blockchain quickly.

Can one repeat Attack 1 with double-spending more than once? Miners who
lose their rewards from solving puzzles may find themselves once bitten, twice
shy. Unlike the double-spend attack described in Theorem3, the 38.2% attack
in Theorem 4 permits miners to keep their rewards for solving puzzles. Thus the
deterrent of “once bitten, twice shy” disappears in the latter form of this attack.

Theorem 4 highlights a tragedy of the commons for rational miners. By work-
ing on the puzzle posed in Attack 1, miners place the integrity of the network at
risk, yet none of them are individually motivated to switch back to mining. The
assumption that miners optimize their personal profit ensures that they work on
puzzles even while “honest” miners lose all of their mining rewards.

5 How Much Does It Cost?

Both Theorems 3 and 4 assume that the perpetrator M has “sufficient initial
capital” to successfully generate the long private fork described in Attack 1. We
now estimate how much initial capital is “sufficient.” Following the notation of
Attack 1, let p denote the fraction of the network’s computational power that
belongs to the attacker, let ε represent the difference in mining effort during the
attack between the attacker and the rest of the network, and let b be the prize
offered by the cryptocurrency for mining a new block.

Lemma 5. A miner who executes Attack 1 using

– p fraction of the network’s computing power,
– with 0 < ε < p difference in mining effort between the attacker and the rest of

the network, and
– with prize b for mining a new block

expects to spend
1 − 2p + ε

ε
· bk (5.1)

on mining puzzles before his private blockchain becomes k blocks longer than the
public one when other processors on the network are rational.

When Cryptocurrencies Mine Their Own Business 509

Proof. Let t(p, ε, k) denote the expected number of public blocks which are mined
before the length of M ’s private blockchain exceeds the public blockchain’s length
by at least k blocks, and let c(p, ε, b) denote the cost per block of the puzzle
reward given in (3.1). The expected initial capital required to execute Attack 1
for given parameters p, ε, k, and b is then t(p, ε, k) · c(p, ε, b).

Let us assume that the network generates on average one new block per
unit time. Then after s units of time, the attacker expects to have generated ps
blocks on his private chain, and the rest of the network expects to have generated
(p− ε)s blocks on the public chain (see the proof of Theorem3 for calculation of
these estimates). We are interested in the time s at which the difference between
these blockchain lengths reaches k, that is k = ps−(p−ε)s, or equivalently when
s = k/ε. Thus

t(p, ε, k) = s · (p − ε) =
p − ε

ε
· k .

For a fixed ε, we may now estimate the total expected cost of the attack as

t(p, ε, k) · c(p, ε, b) =
p − ε

ε
· 1 − 2p + ε

p − ε
· bk

when 0 < ε < p, as required in Attack 1 in order to ensure the puzzle prize value
is positive. The above quantity simplifies to (5.1). ��

We now compute the ε which minimizes the cost of a successful double-
spending attack.

Theorem 6. A miner with p fraction of the network can double-spend using
Attack 1 with approximately b/p − b initial capital, where b is the reward for
mining a new block, when other processors on the network are rational.

Proof. The attack cost in (5.1) is minimized when ε is as large as possible, that
is, as ε approaches p. Thus the expected cost of the double-spend attack in
Theorem 3 can be made arbitrarily close to (1/p − 1) · bk. In the notation of
Lemma 5, we may assume k = 1 because the attacker’s private chain need only
be longer than the public chain momentarily in order for the double-spend attack
to succeed.8 ��

If an attacker were to double-spend only the puzzle prize money, then he
would gain approximately (1 − p)b more capital per block from executing the
double-spend attack compared to honest mining.

Lemma 7. A miner M with p fraction of the network’s power where (3 −√
5)/2 < p < 1/2 who successfully executes a 38.2% attack (that is, Attack 1

8 Since many Bitcoin users do not consider a transaction confirmed until the trans-
action is at least 6 places deep in the blockchain, one might wish to wait until the
private chain extension is at least 6 blocks long before revealing it. This can be done
be choosing an ε satisfying, in the notation of Lemma 5, t(p, ε, 1) ≥ 6 · (p − ε)/p, or
equivalently ε ≤ p/6.

510 J. Teutsch et al.

without double-spending), using 0 < ε < p difference in mining effort from the
rest of the network, expects to gain per (private blockchain) block of the attack

3p − p2 − 1 − ε

p
· b (5.2)

more than he would from honest mining, where b is the reward for mining a new
block, when other processors on the network are rational.

Proof. Applying Lemma 5 with k = 1, we obtain that M ’s total expected expen-
ditures on puzzle prizes during the attack is [(1 − 2p + ε)/ε] · b, and he earns
(p/ε) · b from his length p/ε extension of the private blockchain when it becomes
public. His expected reward for mining honestly over these p/ε blocks would
have been p · (p/ε) · b, and therefore his expected net gain over honest mining
throughout the course of the attack is

[
(1 − p) · p

ε
− 1 − 2p + ε

ε

]
· b =

3p − p2 − 1 − ε

ε
· b .

It follows that M ’s per block expected gain over honest mining is

3p − p2 − 1 − ε

ε
· b ÷ p

ε
,

or equivalently, the quantity in (5.2). ��
The per block net gain over mining that one can expect to achieve with a

38.2% attack depends on how much initial capital one has available. In order to
make the expected gain per block in (5.2) positive, ε must be less than 3p−p2−1,
and substituting this value for ε into the estimated puzzle prize total puzzle (5.1),
we obtain the expected break-even cost given in (5.3) below.

Theorem 8. Let b be the block mining reward. A miner with p fraction of the
network’s power where (3 − √

5)/2 < p < 1/2 expects to spend in total

p − p2

3p − p2 − 1
· b (5.3)

on puzzle prizes during a 38.2% attack (without double-spending) in order to
break even on the rewards he would have earned from honest mining over the
same number of blocks. Moreover, if the miner

– chooses a target puzzle prize budget for Attack 1 of xb (by setting ε = (1 −
2p)/(x − 1)), and

– xb exceeds the quantity in (5.3),

then his expected net gain per block (of private mining9) over honestly mining
will be:

3p − p2 − 1 − 1−2p
x−1

p
· b (5.4)

when other processors on the network are rational.
9 In the long run, the private blockchain becomes the main chain.

When Cryptocurrencies Mine Their Own Business 511

Proof. Suppose (3 − √
5)/2 < p < 1/2, x > (p − p2)/(3p − p2 − 1) and let

ε = (1−2p)/(x−1). We wish to show 0 < ε < p so that we may apply Lemma 7.
Now

ε <
1 − 2p

p−p2

3p−p2−1 − 1
=

(1 − 2p)(3p − p2 − 1)
1 − 2p

= 3p − p2 − 1 ≤ p

as p < 1/2.
Since p < 1/2, we have 1 − 2p > 0, which implies p − p2 > 3p − p2 − 1, and

therefore x > (p−p2)/(3p−p2 −1) > 1 as both the numerator and denominator
of this fraction are positive whenever (3 − √

5)/2 < p ≤ 1/2. Since ε is the
quotient of two positive reals, we have ε > 0.

By Lemma 7, the attacker gains per block [(3p − p2 − 1 − ε)/p] · b, which
immediately establishes (5.4) as his total net gain over honest mining through
the entire course of the attack. Note that by setting (5.4) equal to 0 and solving
for x, we obtain the break-even point (5.3) modulo a factor of b. ��

Since most cryptocurrencies periodically adjust the hardness of their mining
problems so that the expected number of blocks mined per unit time remains
constant, we can expect that if one repeats the 38.2% attack several times in
row, then the expected gain per block eventually becomes equal to the expected
gain per unit clock time for mining one block. Thus, in the long run, one can
use the same figures to estimate the profit of performing a 38.2% attack relative
to honest mining over clock time as well. Since the attacker’s private blockchain
becomes the main blockchain in the long run, clock time per block eventually
corresponds to per block time on the private chain.

Fig. 5. Expected net gain over honest mining for a 38.2% attack without double-
spending and with p = 40% and p = 45% of the network power. The dollar estimates
assume 1 block reward = 25 BTC = $6000 (Sept. 2015).

512 J. Teutsch et al.

At the market rate in September 2015 of approximately b = $6000 reward per
block in Bitcoin, Theorems 6 and 8 show that a miner with 40% of the network
power can execute a 38.2% attack for $36,000. This cost is significantly lower
than the amount one would have to spend to purchase the hardware needed to
execute a 51% attack, and moreover the attacker gets his initial capital back
after a successful attack. Figures 2 and 3 give the the initial capital required
based on the power p for the double spend and 38.2% attacks. Figure 4 gives the
gain per block for the 38.2% attack for different power p of the attacker with
deep pockets, and Fig. 5 gives the gain per block for the 38.2% attack based on
the total capital for the power p = 40% and p = 45%.

6 Rationality and Nakamoto Consensus

When analyzing the ultimate success of Attack 1, we tacitly assumed that miners
always mine on the longest available blockchain. Will rational miners actually
choose this strategy? We cannot answer this question decisively since many dis-
tinct sets of mining strategies achieve Nash equilibrium. The collective strategy
which says “everyone mine on the longest chain” is a Nash equilibrium, but so
is the collective strategy which says “everyone mine on the same chain as Fred
Flintstone.” Under the usual convention that the majority of computing power
selects valid transactions and blocks, the optimal strategy for an individual miner
is always to mine on the chain where most processors are mining.

While one can imagine individuals deciding to mine on chains which are
adversarial against Attack 1 or chains which maximize personal capital, miners
do have compelling reasons to choose the canonical honest strategy of mining
on the longest chain. As an official default strategy, we may view the situation
where everyone mines on the longest chain as a de facto initial condition. As this
initial condition happens to both be a Nash equilibrium and satisfies the desired
objective that individuals follow the majority, miners will persist in mining on
the longest chain unless some particular influence drives them to change their
behavior. Thus, under reasonable assumptions, rational miners will mine on the
longest chain.

As established in Sect. 4, puzzle prizes in a 38.2% attack need not be encoded
into transactions but rather may appear anywhere in the network ecosystem.
This means that the 38.2% attack is not strike against expressiveness of script-
ing languages but rather Nakamoto consensus itself. Every cryptocurrency based
on Nakamoto consensus, including Bitcoin, is vulnerable to a 38.2% attack. Con-
sequently if miners are rational rather than majority-honest, then Bitcoin may
be not only insecure when an adversary controls more than half of the network’s
computation power, as Nakamoto pointed out in his original paper [13], but
even when the adversary controls merely 38.2% of the network’s power. Can we
achieve secure consensus beyond 38.2% under the assumption of rational miners?

When Cryptocurrencies Mine Their Own Business 513

7 Related Work

Cryptocurrency incentive structure flaws, such as the ones we pointed out in
Ethereum and Bitcoin, can be difficult to detect. Other Bitcoin attacks which
also rely on misplaced incentives include selfish mining [7] and mining pool block
withholding [6,11]. We outline these attacks below. Although all three of these
types of attack appeal to parties’ rational behavior, the execution mechanisms
vary considerably.

Unlike the 38.2% attack, neither selfish mining nor mining pool block with-
holding attacks use puzzle transactions. The 38.2% attack creates a distraction
whereas the other two attacks focus purely on withholding blocks. Consequently,
the 38.2% attack motivates other miners to deviate from protocol, while only the
attacker deviates in the other two attacks. In other words, the victims miners
in a 38.2% attack are rational rather than honest. In contrast to selfish mining,
in which the attacker obtains in the short run only a relative per block advan-
tage, the successful attacker in a 38.2% attack achieves an absolute per block
advantage. Here “relative” advantage means that selfish mining hurts the mining
rewards of all miners, but the attacker’s actions penalize himself less than they
penalize other victim miners.

Finally, unlike a mining pool block withholding attack, the 38.2% attack has
no inherent need for mining pools. If the attacker does happen to have a mining
pool, however, rational miners in a 38.2% attack might have incentive to join
the attacker’s pool. Cortois, Bahack, and Rosenfeld analyzed Bitcoin block with-
holding attacks [4,5,14]. Bonneau, Felten, Goldfeder, Kroll, and Narayanan [3]
investigated a variation of our double-spend attack in which one offers monetary
bribes, rather than puzzle rewards, to gain control of the network. We remark
that the relative profit margins for a 38.2% attack or double-spend attack exceed
those of selfish mining and mining pool block withholding.

Selfish mining. Due to sheer luck, a miner who controls a significant portion of
the network’s computing power will occasionally find himself successfully mining
two or three blocks in rapid succession. When this happens, the miner might not
immediately announce his blocks but rather continue to mine privately on a
private blockchain. At this point, the miner’s private blockchain is longer than
the public one. Right before the public chain catches up to the private one,
the miner reveals his longer chain which the consensus protocol dictates is, in
fact, the valid chain. Thus the miner may double-spend any money spent on the
public blockchain during the fork. Eyal and Sirer introduced this attack in [7].

Mining pool block withholding. In order to obtain a nontrivial chance of winning
the race to mine the next block, miners arrange themselves into “pools” which
split both the mining work and rewards among members. According to the pool
protocol, a miner who solves the nonce should announce it, and then everyone
in the pool shares the reward for mining a new block. However, Luu, Saha,
Parameshwaran, Saxena, and Hobor [11] and Eyal [6] demonstrated that miners
have financial incentive not to reveal their solution. A miner can join multiple

514 J. Teutsch et al.

pools simultaneously, and by not reporting a block in one he increases his chances
of obtaining a reward in the other.

Acknowledgements. We thank Frank Stephan, Loi Luu, and Gregory J. Duck for
useful discussions and helpful feedback.

References

1. http://coinmarketcap.com/
2. http://www.mail-archive.com/cryptography@metzdowd.com/msg09959.html
3. Bonneau, J.: Why buy when you can rent? bribery attacks on Bitcoin. In: Clark,

J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 19–26. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53357-4 2

4. Courtois, N.T.: On the longest chain rule and programmed self-destruction of
crypto currencies. CoRR, abs/1405.0534 (2014)

5. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding
attack in Bitcoin digital currency. CoRR, abs/1402.1718 (2014)

6. Eyal, I.: The miner’s dilemma. In: IEEE Symposium on Security and Privacy (SP
2015), pp. 89–103, May 2015

7. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45472-5 28

8. Ethereum Foundation. Ethereum’s white paper (2014). https://github.com/
ethereum/wiki/wiki/White-Paper

9. Franco, P.: Understanding Bitcoin: Cryptography, Engineering and Economics.
Wiley, New York (2014)

10. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 10

11. Luu, L., Saha, R., Parameshwaran,I., Saxena, P., Hobor, A.: On power splitting
games in distributed computation: the case of Bitcoin pooled mining. http://eprint.
iacr.org/2015/155

12. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS 2015), pp. 706–719. ACM, New York
(2015)

13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. http://bitcoin.org/
bitcoin.pdf

14. Rosenfeld, M.: Analysis of Bitcoin pooled mining reward systems. CoRR,
abs/1112.4980 (2011)

15. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. http://eprint.iacr.org/2015/464

http://coinmarketcap.com/
http://www.mail-archive.com/cryptography@metzdowd.com/msg09959.html
http://dx.doi.org/10.1007/978-3-662-53357-4_2
http://dx.doi.org/10.1007/978-3-662-53357-4_2
http://dx.doi.org/10.1007/978-3-662-45472-5_28
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2015/155
http://eprint.iacr.org/2015/155
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2015/464

Optimal Selfish Mining Strategies in Bitcoin

Ayelet Sapirshtein1, Yonatan Sompolinsky1(B), and Aviv Zohar1,2

1 School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Jerusalem, Israel

{ayeletsa,yoni sompo,avivz}@cs.huji.ac.il
2 Microsoft Research, Herzliya, Israel

Abstract. The Bitcoin protocol requires nodes to quickly distribute
newly created blocks. Strong nodes can, however, gain higher payoffs
by withholding blocks they create and selectively postponing their pub-
lication. The existence of such selfish mining attacks was first reported
by Eyal and Sirer, who have demonstrated a specific deviation from the
standard protocol (a strategy that we name SM1).

In this paper we investigate the profit threshold – the minimal frac-
tion of resources required for a profitable attack. Our analysis provides
a bound under which the system can be considered secure against such
attacks. Our techniques can be adapted to protocol modifications to
assess their susceptibility to selfish mining, by computing the optimal
attack under different variants. We find that the profit threshold is
strictly lower than the one induced by the SM1 scheme. The policies given
by our algorithm dominate SM1 by better regulating attack-withdrawals.
We further evaluate the impact of some previously suggested countermea-
sures, and show that they are less effective than previously conjectured.

We then gain insight into selfish mining in the presence of communi-
cation delays, and show that, under a model that accounts for delays,
the profit threshold vanishes, and even small attackers have incentive to
occasionally deviate from the protocol. We conclude with observations
regarding the combined power of selfish mining and double spending
attacks.

1 Introduction

In a seminal paper, Eyal and Sirer [9] have highlighted a flaw in the incentive
scheme in Bitcoin. Given that most of the network follows the “standard” Bit-
coin protocol, a single node (or a pool) which possesses enough computational
resources or is extremely well connected to the rest of the network can increase
its expected rewards by deviating from the protocol. While the standard Bit-
coin protocol requires nodes to immediately publish any block that they find
to the rest of the network, Eyal and Sirer have shown that participants can
selfishly increase their revenue by selectively withholding blocks. Their strategy,
which we denote SM1, thus shows that Bitcoin as currently formulated is not
incentive compatible. On the positive side, SM1 (under the model of Eyal and
Sirer) becomes profitable only when employed by nodes that possess a large
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 515–532, 2017.
DOI: 10.1007/978-3-662-54970-4 30

516 A. Sapirshtein et al.

enough share of the computational resources, and are sufficiently well connected
to the rest of the network. It is important to note, however, that SM1 is not the
optimal best-response to honest behaviour, and situations in which SM1 is not
profitable may yet have other strategies that are better than strict adherence to
the protocol.

Our goal in this paper is to better understand the conditions under which
Bitcoin is resilient to selfish mining attacks. We begin with performing this analy-
sis with respect to the standard Bitcoin protocol. Additionally, several protocol
modifications have been put forth, some with the explicit goal of alleviating self-
ish mining, and we suggest our techniques as a tool to provably analyze their
resilience to such attacks. To this end, we consider other possible deviations from
the classic Bitcoin protocol, and establish bounds on their profitability. We later
demonstrate how to apply the same techniques to some of its variants.

The role of incentives in Bitcoin should not be underestimated: Bitcoin trans-
actions are confirmed in batches, called blocks whose creation requires generating
the solution to computationally expensive proof-of-work “puzzles”. The security
of Bitcoin against the reversal of payments (so-called double spending attacks)
relies on having more computational power held by honest nodes than by mis-
behaving nodes. Block creation (which is also known as mining), is rewarded in
bitcoins that are given to the block’s creator. These rewards incentivize more
honest participants to invest additional computational resources in mining, and
thus support the security of Bitcoin.

When all miners follow the Bitcoin protocol, a single miner’s share of the
payoffs is equal to the fraction of computational power that it controls (out
of the computational resources of the entire network). However, Selfish mining
schemes allow a strong attacker to increase its revenue at the expense of other
nodes. This is done by exploiting the conflict-resolution rule of the protocol,
according to which only one chain of blocks can be considered valid, and only
blocks on the valid chain receive rewards; the attacker creates a deliberate fork,
and (sometimes) manages to force the honest network to abandon and discard
some of its blocks.

The consequences of selfish mining attacks are potentially destructive to the
Bitcoin system. A successful attacker becomes more profitable than honest nodes,
and is able to grow steadily.1 It may thus eventually drive other nodes out of the
system. Profits from selfish mining increase as more computational power is held
by the attacker, making its attack increasingly more effective. Eventually, the
attacker is able to collect all block rewards, to mount successful double spending
attacks at will, and to prevent any transaction from being processed (this is
known as the 50% attack, which requires 50% of the computational resources).

We summarize the contributions of this paper as follows:

1. We provide an efficient algorithm that computes an optimal selfish mining
policy, for any parametrization of the model in [9] (i.e., one that maximizes the

1 Growth is achieved either by buying more hardware, in the case of a single attacker,
or by attracting more miners, in the case of a pool.

Optimal Selfish Mining Strategies in Bitcoin 517

revenue of the attacker, given that all other nodes are following the standard
Bitcoin protocol). We prove the correctness of our algorithm, and verify our
results using simulations.

2. Using our algorithm we show that, indeed, there are selfish mining strategies
that earn more money and are profitable for smaller miners compared to
SM1. The gains are relatively small (see Fig. 1 below). This can be seen as a
positive result, lower bounding the amount of resources needed for a profitable
attacker.

3. We evaluate different protocol modifications that were suggested as coun-
termeasures for selfish mining. For the solution suggested by Eyal and Sirer
(in which miners randomly break ties between equal chains), we show that
attackers with strictly less than 25% of the computational resources can still
gain from selfish mining, unlike previously conjectured.

4. We show that in a model that accounts for the delay of block propagation in
the network, attackers of any size can profit from selfish mining.

5. We discuss the interaction between selfish mining attacks and double spend-
ing attacks. We demonstrate how any attacker for which selfish mining is
profitable can execute double spending attacks bearing no costs. This sheds
light on the security analysis of Satoshi Nakamoto [15], and specifically, on
the reason that it cannot be used to show high attack costs, and must instead
only bound the probability of a successful attack.

Below we provide a preview of some of our final results, namely, the rev-
enue achieved by optimal policies compared to that of SM1 as well as the profit
threshold of the protocol. In the following, α stands for the attacker’s relative
hashrate, and γ is a parameter representing the communication capabilities of the
attacker—the fraction of nodes to which it manages to send blocks first in case
of a block race (see Sect. 2 for more details). Figure 1 depicts the revenue of an
attacker under three strategies: Honest mining, which adheres to the Bitcoin pro-
tocol, SM1, and the optimal policies obtained by our algorithm. The three graphs
correspond to γ = 0, 0.5, 1. We additionally illustrate the curve of α/(1 − α),
which is an upper bound on the attacker’s revenue, achievable only when γ = 1
(see Sect. 3). Figure 2 depicts the profit threshold for each γ: If the attacker’s
hashrate α is below the threshold then honest mining is the most profitable strat-
egy. For comparison, we depict the thresholds induced by SM1 as well.

2 Model

We follow and extend the model of [9], to explicitly consider all actions available
to the attacker at any given point in time. We assume that the attacker controls
a fraction α of the computational power in the network, and that the honest
network thus has a (1 − α) fraction. Communication of newly created blocks is

518 A. Sapirshtein et al.

Fig. 1. The ε-optimal revenue and the computed upper bound, as a function of the
attacker’s hashrate α, compared to SM1, honest mining, and to the hypothetical bound
provided in Sect. 3. The graphs differ in the attacker’s communication capability, γ,
valued 0, 0.5, and 1. The gains of the ε-optimal policies are very close to the computed
upper bound, except when α is close to 0.5, in case which the truncation-imposed loss
is apparent. See also Table 2.

modeled to be much faster than block creation, so no blocks are generated while
others are being transmitted.2

Blocks are created in the network according to a Poisson process with rate
λ. A new block belongs to the attacker w.p. α or to the honest network w.p.
(1 − α). The honest network follows the Bitcoin protocol, and always builds its
newest block on top of the longest known chain. Once an honest node adopts a
block, it will discard it only if a strictly longer competing chain exists. Ties are
thus handled by each node according to the order of arrival of blocks. Honest
nodes immediately broadcast blocks that they create.

Blocks generally form a tree structure, as each block references a single pre-
decessor (save the genesis block). Since honest nodes adopt the longest chain,

2 This is justified by Bitcoin’s 10min block creation interval which is far greater than
the propagation time of blocks in the network. This assumption is later removed
when we consider networks with delay.

Optimal Selfish Mining Strategies in Bitcoin 519

Fig. 2. The profit thresholds induced by optimal policies, and by SM1, as a function
of γ. Thresholds at higher γ values match those of SM1 (but still, optimal strategies
for these values earn more than SM1, once above the threshold).

blocks generate rewards for their creator only if they are eventually part of the
longest chain in the block tree (all blocks can be considered revealed eventually).

Following the communication model of Eyal and Sirer, we assume that when-
ever the attacker learns that a block has been released by the network it is able
to transmit an alternative block (which it created beforehand) that will arrive
first at nodes that possess a fraction γ of the computational power of the honest
network. Thus, if the network is currently propagating a block of height h, and
the attacker has a competing block of the same height, it is able to get γ · (1−α)
of the computational power (owned by honest nodes) to adopt this block.

The attacker does not necessarily follow the Bitcoin protocol. Rather, at any
given time t, it may choose to invest computational power in creating blocks that
extend any existing block in history, and may withhold blocks it has created
for any amount of time. A general selfish mining strategy dictates, therefore,
two key behaviours: which block the attacker attempts to extend at any time
t, and which blocks are released at any given time. However, given that all
block creation events are driven by memoryless processes and that broadcast
is modeled as instantaneous, any rational decision made by the attacker may
only change upon the creation of a new block. The mere passage of time without
block creation does not otherwise alter the expected gains from future outcomes.3

Accordingly, we model the entire decision problem faced by an attacker using a
discrete-time process in which each time step corresponds to the creation of a
block. The attacker is thus asked to decide on a course of action right after the
creation of each block, and this action is pursued until the next event occurs.

3 See Sect. 6 for the implication of delayed broadcasting.

520 A. Sapirshtein et al.

Instead of directly modeling the primitive actions of block extension and
publication on general block trees, we can limit our focus to “reasonable” strate-
gies where the attacker maintains a single secret branch of blocks that diverged
from the network’s chain at some point. (We show that this limitation is war-
ranted and that this limited strategy space still generates optimal attacks in
the full version). Blocks before that point are agreed upon by all participants.
Accordingly, we must only keep track of blocks involved in the fork, and of the
accumulated reward up to the fork. We denote by la and lh the number of blocks
built after the latest fork, by the attacker and by honest nodes, respectively.

Formally, if all other participants are following the standard protocol, the
attacker faces a single-player decision problem of the form M := 〈S,A, P,R〉,
where S is the state space, A the action space, P the stochastic transition matrix,
and R the reward matrix. Though similar in structure, we do not regard M as an
MDP, since the objective function is nonlinear: The player aims to maximize its
share of the accepted blocks, rather than the absolute number of its own accepted
ones; its goal is to have a greater return-on-investment than its counterparts.4

Actions. We begin with the description of the action space A, which will moti-
vate the nontrivial construction of the state space.

• Adopt. This action represents the attacker’s acceptance of the honest net-
work’s chain. This action is always feasible, and following it the la blocks in
the attacker’s current chain are discarded.

• Override. This action represents the publication of lh + 1 of the attacker’s
blocks. It is feasible whenever la > lh.

• Match. Here the attacker responds to a freshly mined block of the honest
network with the publication of its block of the same height. The attacker
must have a block prepared in advance to execute such a race. The state-
space explicitly encodes the feasibility status of this action (see below).

• Wait. This is the null action, under which the attacker does not publish new
blocks, but keeps working on its branch until a new block is built.

State Space. The state space, denoted S, is defined by 3-tuples of the form
(la, lh, fork). The first two entries represent the lengths of the attacker’s chain
and the honest network’s chain, built after the latest fork (that is, above the
most recent block accepted by all). The field fork obtains three possible val-
ues, dubbed irrelevant, relevant and active. State of the form (la, lh, relevant)
means that the previous state was of the form (la, lh − 1, ·); this implies that
if la ≥ lh, the match action is feasible. Conversely, (la, lh, irrelevant) denotes
the case where the previous state was (la − 1, lh, ·), and the attacker has built
the most recent block; in this situation, the attacker is unable to match the hth
block of the honest network, which already propagated through the network.
The third label, active, represents the case where the honest network is already

4 Another possible motivation for this is the re-targeting mechanism in Bitcoin. When
the block creation rate in the network is constant, the adaptive re-targeting implies
that the attacker will also increase its absolute payoff, in the long run.

Optimal Selfish Mining Strategies in Bitcoin 521

split, due to a previous match action; this information affects the transition to
the next state, as described below. We will refer to states as (la, lh) or (la, lh, ·),
in contexts where the fork label plays no effective role.

Transition and Reward Matrices. In order to keep the time averaging of
rewards in scale, every state transition corresponds to the creation of a new
block. The initial state X0 is (1, 0, irrelevant) w.p. α or (0, 1, irrelevant) w.p.
(1 − α). Rewards are given as elements in N

2, where the first entry represents
blocks of the attacker that have been accepted by all parties, and the second
one, similarly, for those of the honest network.

The transition matrix P and reward matrix R are succinctly described in
Table 1. Largely, an adopt action “resets” the game, hence the state following it
has the same distribution as X0; its immediate reward is lh in the coordinate
corresponding to the honest network. An override reduces the attacker’s secret
chain by lh +1 blocks, which it publishes, and which the honest network accepts.
This bestows a reward of lh + 1 blocks to the attacker. The state following a
match action depends on whether the next block is created by the attacker (α),
by honest nodes working on their branch of the chain ((1 − γ) · (1 − α)), or
by an honest node which accepted the sub-chain that the attacker published
(γ · (1−α)). In the latter case, the attacker has effectively overridden the honest
network’s previous chain, and is awarded lh accordingly.

Table 1. A description of the transition and reward matrices P and R in the decision
problem M . The third column contains the probability of transiting from the state
specified in the left-most column, under the action specified therein, to the state on
the second one. The corresponding two-dimensional reward (that of the attacker and
that of the honest nodes) is specified on the right-most column.

State × Action State Probability Reward

(la, lh, ·), adopt (1, 0, irrelevant) α (0, lh)

(0, 1, irrelevant) 1 − α

(la, lh, ·), overridea (la − lh, 0, irrelevant) α (lh + 1, 0)

(la − lh − 1, 1, relevant) 1 − α

(la, lh, irrelevant), wait(la,
lh, relevant), wait

(la + 1, lh, irrelevant) α (0,0)

(la, lh + 1, relevant) 1 − α (0,0)

(la, lh, active), wait(la, lh,
relevant), matchb

(la + 1, lh, active) α (0,0)

(la − lh, 1, relevant) γ · (1 − α) (lh, 0)

(la, lh + 1, relevant) (1 − γ) · (1 − α) (0,0)
a feasible only when la > lh
b feasible only when la ≥ lh

Objective Function. As explained in the introduction, the attacker aims to
maximize its relative revenue, rather than its absolute one as usual in MDPs.

522 A. Sapirshtein et al.

Let π be a policy of the player; we will write π(la, lh, fork) for the action that π
dictates be taken at state (la, lh, fork). The immediate reward from transiting
from state x to state y, under the action dictated by π, is denoted r(x, y, π) =
(r1(x, y, π(x)), r2(x, y, π(x))). Xπ

t will denote the t’th state that was visited. We
will abbreviate rt(Xπ

t ,Xπ
t+1, π) and write simply rt(π) or even rt, when context

is clear. The objective function of the player is its relative payoff, defined by

REV := E

[
lim inf
T→∞

∑T
t=1 r1t (π)∑T

t=1 (r1t (π) + r2t (π))

]
. (1)

We will specify the parameters of REV depending on the context (e.g.,
REV (π, α, γ), REV (π), REV (α)), and will occasionally denote the value of
REV by ρ. In addition, for full definiteness of REV , we rule out pathological
behaviours in which the attacker waits forever—formally, the expected time for
the next non-null action of the attacker must be finite.

Honest Mining and SM1. We now define two policies of prime interest that
will serve as a baseline for future comparisons. Honest mining is the unique
policy which adheres to the protocol at every state. It is defined by

honest mining (la, lh, ·) =
{

adopt lh > la
override la > lh

}
, (2)

and wait otherwise. Notice that under our model, REV (honest mining, α, γ) = α
for all γ.5 Eyal and Sirer’s selfish mining strategy, SM1, can be defined as

SM1 (la, lh, ·) :=

⎧⎪⎪⎨
⎪⎪⎩

adopt lh > la
match lh = la = 1

override lh = la − 1 ≥ 1
wait otherwise

⎫⎪⎪⎬
⎪⎪⎭. (3)

Profit threshold. Keeping the attacker’s connectivity capabilities (γ) fixed, we
are interested in the minimal α for which employing dishonest mining strategies
becomes profitable. We define the profit threshold by:

α̂(γ) := inf
α

{∃π ∈ A : REV (π, α, γ) > REV (honest mining, α, γ)}. (4)

3 A Simple Upper Bound

The mechanism implied by the longest-chain rule leads to an immediate bound
on the attacker’s relative revenue. Intuitively, we observe that the attacker cannot
do better than utilizing every block it creates to override one block of the honest
network. The implied bound is provided here merely for general insight—it is
usually far from the actual maximal revenue.
5 Indeed, in networks without delays, honest mining is equivalent to the policy{

adopt if (la, lh) = (0, 1) ; override if (la, lh) = (1, 0)
}
, as these are the only reach-

able states.

Optimal Selfish Mining Strategies in Bitcoin 523

Proposition 1. For any π, REV (π, α, γ) ≤ α
1−α . Moreover, this bound is tight,

and achieved when γ = 1.

Proof. We can map every block of the honest network which was overridden, to
a block of the attacker; this is because override requires the attacker to publish
a chain longer than that of the honest network’s.

Let kT be the number of blocks that the attacker has built up to time T .
The honest network thus built lT := T − kT by this time. The argument above
shows that lT −∑T

t=1 r2t ≤ kT . Also, Pr(lT > kT) → 1, when T → ∞. Therefore,
the relative revenue satisfies:

REV (π) = lim
T→∞

∑T
t=1 r1t∑T

t=1 r1t +
∑T

t=1 r2t
≤ lim

T→∞

∑T
t=1 r1t∑T

t=1 r1t + lT − kT

= (5)

lim
T→∞

1

1 + (lT − kT) /
(∑T

t=1 r1t

) ≤ lim
T→∞

1
1 + (lT − kT) /kT

= lim
T→∞

kT

lT
. (6)

The SLLN applies naturally to kT and lT , implying that the above equals
α·T

(1−α)·T = α
1−α (a.s.).

We claim that when γ = 1 the bound is achieved by the following policy:

π (la, lh, ·) :=

⎧⎨
⎩

adopt lh = 1, la = 0
match lh = la
wait otherwise

⎫⎬
⎭. (7)

Indeed, under π the attacker only publishes its current number of blocks la when
the honest network has the same amount, hence every block of the attacker over-
rides one block of the honest network. In addition, none of the attacker’s blocks
are overridden, since the policy never reaches a state where it needs to adopt
except when la = 0. This turns both inequalities in (5)–(6) into equalities.
�

4 Computing the Optimal Policy

Finding an optimal policy is not a trivial task, as the objective function (1)
is nonlinear, and depends on the entire history of the game. To overcome this
we introduce the following method. Suppose we are given some value ρ as a
candidate for the optimal value of the objective function. We show that one can
construct a related MDP, Mρ, which has one important characteristic: If the
average reward of its optimal policy is negative, then ρ is above the optimal
value, and if it is positive, then ρ is below it. When the optimal average reward
is exactly 0, ρ is optimal in the original problem, and the policy that obtains
this value in Mρ, obtains a value of ρ in the original problem.

Formally, for any ρ ∈ [0, 1], define the transformation wρ : N
2 → Z by

wρ(x, y) := (1 − ρ) · x − ρ · y. Define the MDP Mρ := 〈S,A, P,wρ(R)〉; it shares
the same state space, actions, and transition matrix as M , while M ’s imme-
diate rewards matrix is transformed according to wρ. The value of a policy

524 A. Sapirshtein et al.

π is defined by vπ
ρ = E

[
lim inf
T→∞

1
T

∑T
t=1 wρ(rt(π))

]
, and the optimal value by

v∗
ρ = maxπ∈A

{
vπ

ρ

}
.6 Our solution method is based on the following proposition:

Proposition 2. If for some ρ ∈ [0, 1], v∗
ρ = 0, then any policy π∗ obtaining this

value (thus maximizing vπ
ρ) also maximizes REV , and ρ = REV (π∗

ρ). Addition-
ally, v∗

ρ is monotonically decreasing in ρ.

Following these observations we can utilize the family Mρ to obtain an opti-
mal policy: We simply perform a search for ρ ∈ [0, 1] such that the optimal
solution of Mρ has a value v∗

ρ = 0. Since v∗
ρ is monotonically decreasing, this

can be done efficiently, using binary search.
In practice, this method needs some refinement before it is applied, due to

several limitations: First, the search domain [0, 1] is continuous, and we must
account for some precision error. Second, standard MDP solvers can only deal
with finite-state spaces, and even then, only to a limited degree of accuracy. The
need to deal with finite state-spaces forces us to work with truncated versions
of Mρ whose optimal values serve as lower bounds to the real optimal one. To
circumvent this we have constructed another family of (finite) MDPs which serve
as upper bounds. Both bounds are tight, that is, they converge to the optimal
value as the truncation increases. A full description of this construction, an
algorithm to obtain these tight bounds, and a proof of the algorithm’s correctness
appear in the full version available online. Proposition 2 follows from the analysis
therein.

5 Results

5.1 Optimal Values

We ran our algorithm for γ in {0, 0.5, 1}, with various values of α, using an MDP
solver for MATLAB (an implementation of the relative value iteration algorithm
developed by Chadés et al. [5]).7 The values of ρ returned by the algorithm are
depicted in Fig. 1 above; additionally, the values for γ = 0 appear in Table 2. The
graphs demonstrate a rather mild gap between the attacker’s optimal revenue
and the revenue of SM1. In addition, the graphs depict the upper bound on
the revenue provided in Sect. 3; as we stated there, the bound is obtained when
γ = 1, which is observed clearly in the corresponding graph.

5.2 Optimal Policies

We now present the ε-optimal policies returned by our algorithm, in two particu-
lar setups. Table 3 above describes the policy for an attacker with α = 1/3, γ = 0

6 The equivalence of this formalization of the value function and alternatives in which
the order of expectation and limit is reversed is discussed in [3].

7 The error parameter ε was set to be 10−5 and the truncation was set to T = 75. See
full version.

Optimal Selfish Mining Strategies in Bitcoin 525

Table 2. The revenue of the attacker
under SM1 and under ε-OPT poli-
cies, compared to the computed upper
bound, for various α and γ = 0.

α SM1 ε-OPT Upper-bound

1/3 1/3 0.33705 0.33707

0.35 0.36650 0.37077 0.37080

0.375 0.42118 0.42600 0.42614

0.4 0.48372 0.48863 0.48976

0.425 0.55801 0.56788 0.57672

0.45 0.65177 0.66809 0.72203

0.475 0.78254 0.7987 0.90476

Table 3. Optimal actions for an
attacker with α = 0.35, γ = 0, in states
(la, lh) with la, lh ≤ 7. See legend in the
text (Sect. 5.2).

la lh

0 1 2 3 4 5 6 7

0 ∗ a ∗ ∗ ∗ ∗ ∗ ∗
1 w w w a ∗ ∗ ∗ ∗
2 w o w w a ∗ ∗ ∗
3 w w o w w a ∗ ∗
4 w w w o w w w a

5 w w w w o w w w

6 w w w w w o w w

7 w w w w w w o w

(here match is of no consequence, and no forks form). The row indices corre-
spond to la and the columns to lh. Table 4 corresponds to α = 0.45, γ = 0.5.
Each entry in it contains a string of three characters, corresponding to the possi-
ble status of fork: irrelevant, relevant, active. Actions are abbreviated to their
initials: adopt,override,match,wait, while ‘∗’ represents an unreachable state.

Looking into these optimal policies we see they differ from SM1 in two ways:
First, they defer using adopt in the upper triangle of the table, if the gap between

Table 4. Optimal actions (abbreviated to their initials) for an attacker with
α = 0.45, γ = 0.5, for states (la, lh, ·) with la, lh ≤ 7. See legend in Sect. 5.2.

la lh

0 1 2 3 4 5 6 7

0 ∗∗∗ ∗a∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
1 w∗∗ ∗m∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
2 w∗∗ ∗mw ∗m∗ w∗∗ a∗∗ ∗∗∗ ∗∗∗ ∗∗∗
3 w∗∗ ∗mw ∗mw wm∗ w∗∗ a∗∗ ∗∗∗ ∗∗∗
4 w∗∗ ∗mw ∗mw omw wm∗ w∗∗ w∗∗ a∗∗
5 w∗∗ ∗mw ∗mw ∗mw omw wm∗ w∗∗ w∗∗
6 w∗∗ ∗mw ∗mw ∗mw ∗mw omw wm∗ w∗∗
7 w∗∗ ∗mw ∗mw ∗mw ∗mw ∗mw ooo w∗∗

For instance, the string “wm∗” in entry (la, lh) = (3, 3)
reads: “in case a fork is irrelevant (i.e., the previous
state was (2, 3)), wait; in case it is relevant (the pre-
vious state was (3, 2)), match; the case where a fork is
already active is not reachable”.

526 A. Sapirshtein et al.

lh and la is not too large, allowing the attacker to “catch up from behind”. Thus,
apart from block withholding, an optimal attack may also contain another fea-
ture: attempting to catch up with the longer public chain from a disadvantage.
This implies that the attacker violates the longest-chain rule, a result which coun-
ters the claim that the longest-chain rule forms a Nash equilibrium (see [12], and
discussion in Sect. 8). Secondly, they utilize match more extensively, effectively
overriding the honest network’s chain (w.p. γ) using one block less.

5.3 Thresholds

Using the bounds provided by our algorithm, we are able to introduce lower
bounds on the profit thresholds, i.e., on the minimal fraction of computational
resources needed for a profitable attack. The exact methodology is described
in the full version. Fig. 2 depicts the thresholds induced by optimal policies,
compared to that induced by SM1. The results demonstrate some cutback of the
thresholds when considering policies other than SM1.

5.4 Evaluation of Protocol Modifications

Several modifications to the Bitcoin protocol have been suggested. It is important
to provably verify the resilience of such protocols to selfish mining, especially if
their explicit goal is to counter this attack. This can be done by adapting our
algorithm to the MDPs induced by these modifications. We demonstrate this
below for three protocols.

GHOST. First, we make a short note regarding the GHOST protocol, an alter-
native to the longest-chain rule [18]. We point out that our entire analysis in
this paper applies to the GHOST protocol as well, since GHOST coincides with
the longest-chain rule when the network suffers no delays.

Freshness Preferred. The tie breaking rule in Bitcoin instructs a node to adopt
the chain whose tip was received by it first, in case of ties. Freshness Preferred
is an alternative suggested in [11]. It uses unforgeable timestamps, and dictates
that if less than w seconds passed between the receiving of the two tips, the
node adopts the chain which contains the most recent time-stamp. Freshness
Preferred disincentivizes block withholding, and in particular counters the SM1
scheme. Unfortunately, when also considering deviations from the longest-chain
rule, it can be seen that an attacker of any size can benefit from this protocol by
waiting in state (la, lh) = (0, 1), rather than adopting, for a certain period. Such
a consideration is also the basis for our following analysis of Eyal and Sirer’s
suggested tie breaking rule.

Uniform Tie Breaking. In case of ties, Eyal and Sirer suggest to instruct
nodes to choose between the chains uniformly at random. The immediate effect
of this modification is that it restricts the efficiency of the match action to 1/2,
even when the attacker’s communication capabilities correspond to γ > 1/2.
Admittedly, this limits the power of strongly communicating attackers, and thus
guarantees a positive lower bound on the threshold for profitability of SM1.

Optimal Selfish Mining Strategies in Bitcoin 527

On the other hand, it has the apparent downside of enhancing the power of
poorly communicating attackers—it allows an attacker to match with a success-
probability 1/2 even if its “real” γ is smaller than 1/2.

Unfortunately, there is an additional drawback. An attacker is able to match
even if it did not have a block prepared in advance, thereby granting it addi-
tional chances to catch up from behind. Deviation from the longest-chain rule
thus becomes even more tempting. Indeed, by applying our algorithm to the
setup induced by uniform tie breaking, we found that the profit threshold α̂(0.5)
deteriorates from 0.25 to 0.2321.

Figure 3 demonstrates this by comparing the attacker’s optimal revenue
under the uniform tie breaking protocol with the optimal revenue under the
original protocol. The optimal policy is described in the online full version of
this paper.

Fig. 3. The attacker’s optimal revenue under uniform tie breaking, compared to that
under the original protocol (with γ = 1/2) and to honest mining.

5.5 Simulations

In order to verify the results above we built a selfish mining simulator which we
implemented in Java. We ran the simulator for various values of α and γ (as
in the figures above), with the attacker following the policies generated by the
algorithm. Each run was performed for 107 rounds (block creation events). The
relative revenue of the attacker matched the revenues returned by the algorithm,
up to an error of at most ±10−6.

6 A Model that Considers Delays

So far our model assumed that no new block is created during the propagation
of blocks released earlier. In reality, there are communication delays between

528 A. Sapirshtein et al.

nodes in the network, including between the attacker and others. Thus, instead
of modeling the attacker’s communication capabilities via the parameter γ, it
is better to consider the effect of network latency directly. Delays are especially
noticeable when the system’s throughput is increased by allowing larger blocks
to form or by increasing block creation rates.

We now adjust our model to incorporate communication delays. For simplic-
ity, and to demonstrate how the profit threshold breaks down even when a delay
on a single link is introduced, we assume that only messages from the attacker
to the honest network suffer delays. We denote this delay by da,h. Messages
between honest nodes and from them to the attacker are assumed to be deliv-
ered instantaneously, as in the original model. Apart from la and lh, the process
now encodes also information about the timings of recent messages that are cur-
rently propagating on the link from the attacker’s node to the honest network’s
node. Our following result states that under delays the profit threshold is 0. A
node of any size can benefit from occasional deviation from the longest-chain
rule:

Proposition 3. Under communication delays (as modeled above), the attacker
has a strict better-response strategy to honest mining, for any α > 0.

Proof. Part I: Fix k ∈ N and let T > k + 1. Below we describe a policy which
instructs the attacker whether to adopt the honest network’s chain (adopt) or
not (wait). Our policy involves no block withholding at all; it thus deviates from
the longest-chain rule, but adheres to immediate-publication. Consequently, the
honest network adopts the attacker’s chain if and only if the latter is longer by
the time it arrived at the honest node. Our policy uses only (la, lh) to decide
between wait and adopt (although the state embeds additional information, e.g.,
timing of recent messages). When state (la, lh) = (k−1, k) is reached, our policy
deviates from the honest protocol: In (k − 1, k) it waits, instead of adopting,
until the (k+1) block of the attacker or of the honest network is created; it then
terminates the attack, and continues mining on the honest network’s updated
chain. Upon termination, the honest network’s chain contains the (k +1) blocks
of the attacker only if they have propagated to the honest node in time. This
possibility will be incorporated into the immediate reward function below.

Policies as the one described are technically not considered stationary, and
a common circumvent is applied in such cases. We add a third bit to our rep-
resentation of states, which denotes whether (k − 1, k) has been reached during
this epoch. Thus, for any state with (la, lh) we write (la, lh, 0), corresponding to
the original states. Then, we add four new states that are only reachable from
(k−1, k, 0) under the wait action: (k, k, 1), (k+1, k, 1), (k, k+1, 1), (k−1, k+1, 1).
The original copies of these four states, with the third bit set to 0, are still
reachable via (k, k −1, 0). The states with the bit set to 1 are unreachable under
honest mining, hence honest mining can still be seen as living inside this modi-
fied state-space.

When the process arrives at either of the states (·, k + 1, 1) or (k + 1, k, 1)
it renews (i.e., it transits to (1, 0, 0) or (0, 1, 0)). Importantly, the immediate

Optimal Selfish Mining Strategies in Bitcoin 529

reward in MT
ρ gained by arriving at (·, k + 1, 1) is (−ρ · (k + 1)), and by arriving

at (k+1, k, 1) is q · (1−ρ) · (k+1)− (1−q) ·ρ · (k+1), where q = e−(1−α)·2·da,h·λ.
This will be justified shortly. Our policy acts as follows:

πk(la, lh,m) :=

⎧⎨
⎩

wait k − 1 ≤ la ≤ k, lh = k,m = 1
adopt lh = k + 1,m = 1

honest mining(la, lh) m = 0

⎫⎬
⎭.

Since (·, k + 1, 1) and (k + 1, k, 1) are terminating states, there are two possi-
bilities: (a) The attacker managed to create the next two blocks in the network
(corresponding to (k+1, k, 1)) and to propagate them in time to the honest net-
work. Thence the honest network adopts the attacker’s longer chain, and it gains
an immediate reward of (1 − ρ) · (k + 1). In reality this happens w.p. ≥ q, since
q is the probability that the honest network created no conflicting blocks during
2 · da,h seconds.8 (b) State (·, k + 1, 1) was reached, or (k + 1, k, 1) was reached
but the attacker’s blocks didn’t make it in time to the honest node before the
latter created its next one. The immediate reward described above assumes the
worst case for the attacker, i.e., that it suffers a loss of (−ρ · (k + 1)) (in (b)).

Part II: Let ρ = ρh := REV (honest mining) represent the revenue of the
attacker under honest mining. In the full version it is shown that it is sufficient
to prove that the expected sum of all immediate rewards accumulated in MT

ρh
, in

a single epoch, is greater with πk than with honest mining. Now, the two policies
differ only after reaching state (k − 1, k, 0), and this state is reached under both
policies with positive probability (as will be shown later). It thus suffices to
prove this assertion w.r.t the rewards that result from reaching this state. The
attacker’s expected immediate reward, under πk, upon reaching (k − 1, k, 0), is
α2 · q · (1 − ρh) · (k + 1) − (1 − α2 · q) · ρh · (k + 1); this stems from combining
the rewards in scenarios (a) and (b). In contrast, under honest mining it gains
(−ρh · k), since it adopts immediately. In conclusion, it suffices to show that
q · α2 (1 − ρh) · (k + 1) − (1 − q · α2) · ρh · (k + 1) − (−ρh · k) > 0. It is easy
to see that this is satisfied by any k > ρh

q·α2 − 1. In particular, there exists a
policy under which the expected immediate rewards of an attacker exceed those
it would have gained mining honestly. As this holds for any α > 0, we conclude
that an attacker of any size can benefit from deviating from honest mining.

Part III: To complete the proof we show that after each renewal of the
process, state (k − 1, k, 0) is reached with positive probability, under both
policies. Indeed, there is a probability of αk−1 to arrive at (k − 1, 0, 0), with
the attacker creating the first (k − 1) blocks. There is then a probability of
(1 − α)k · (1 − e−(1−α)·λ·da,h

)k−1
to transit to (k − 1, k, 0), with the honest net-

work creating the next k blocks before learning of any of the attacker’s blocks.
�
To gain further understanding of selfish mining under delays it would be impor-
tant to quantify the optimal gains from such deviations. We leave this as an

8 After 2 ·da,h we are guaranteed that the link from the attacker to the honest network
is empty.

530 A. Sapirshtein et al.

open question for future research. Still, it is clear that Bitcoin will be more vul-
nerable to selfish mining if delays become more prominent, e.g., in the case of
larger blocks (block-size increases are currently being debated within the Bitcoin
developers community).

7 Effect on Double Spending Attacks

In this section we discuss the qualitative effect selfish mining has on the secu-
rity of payments. The regular operation of bitcoin transactions is as follows: A
payment maker signs a transaction and pushes it to the Bitcoin network, then
nodes add it to the blocks they are attempting to create. Once a node succeeds
it publishes the block with its content. Although the payee can now see this
update to the public chain of blocks, it still waits for it to be further extended
before releasing the good or service paid for. This deferment of acceptance guar-
antees that a conflicting secret chain of blocks (if one exists) will not be able to
bypass and override the public one observed by the payee, thereby discard the
transaction. Building a secret chain in an attempt to reverse payments is called
a double spending attack.

Success-probability. Satoshi Nakamoto, in his original white paper, provides
an analysis regarding double spending in probabilistic terms: Given that the
block containing the transaction is followed by n subsequent blocks, what is the
probability that an attacker with computational power α will be able to override
this chain, now or in the future? Nakamoto showed that the success-probability
of double spending attacks decays exponentially with n. Alternative and perhaps
more accurate analyses, e.g., [17,18], reach similar conclusions.

Cost. While a single double spending attack succeeds with negligible probability
(as long as the payee waits long enough), regrettably, an attacker which contin-
uously executes double spending attempts will eventually succeed (a.s.). We
should therefore be more interested in the cost of an attack than in its success-
probability. Indeed, every failed double spending attack costs the attacker the
potential award it could have gotten had it avoided the fork and published its
blocks right away.

Observe, however, that a smart strategy for an attacker would be to con-
tinuously employ selfish mining attacks, and upon success combine them with
a double spending attack. Technically, this can be done by regularly engaging
in public transactions, while always hiding a conflicting one in the attacker’s
secret blocks.9 There is always some probability that by the time a successful
selfish mining attack has ended, the payment receiver has already accepted the
payment, which additionally results in a successful double spending.

To summarize, the existence of a miner for which selfish mining is at least as
profitable as honest mining fundamentally undermines the security of payments,
as this attacker bears no cost for continuously attempting to double spend, and
9 In the worst case, the attacker is frequently engaged in “real” transactions anyways,

hence suffers no loss from them being occasionally confirmed, when attacks fail.

Optimal Selfish Mining Strategies in Bitcoin 531

it eventually must succeed. Similarly, an attacker that cannot profit from selfish
mining alone, might be profitable in the long run if it combines it with double
spending, which potentially has grave implications on the profit threshold.

8 Related Work

The Bitcoin protocol was introduced in a white paper published in 2008 by
Satoshi Nakamoto [15]. In the paper, Nakamoto shows that the blockchain is
secure as long as a majority of the nodes in the Bitcoin network follow the
protocol. Kroll et al. [12] show that, indeed, always extending the latest block
in the blockchain forms a (weak, non-unique) Nash equilibrium, albeit under a
simpler model that does not account for block withholding.

On the other hand, it has been suggested by various people in the Bitcoin
forum that strong nodes might be incentivized to violate the protocol by with-
holding their blocks [1]. Eyal and Sirer proved this by formalizing a block with-
holding strategy SM1 and analyzing its performance [9]. Their strategy thus
violates the protocol’s instruction to immediately publish one’s blocks, but still
sticks to the longest-chain rule (save a selective tie breaking). SM1 still abandons
its chain if the honest nodes create a longer chain. One result of our paper is
that even adhering to the longest-chain rule is not a best response. We also prove
what the optimal policies are, and compute the threshold under which honest
mining is a (strict, unique) Nash equilibrium.

A recent paper by Göbel et al. has evaluated SM1 in the presence of
delays [10]. They show that SM1 is not profitable under a model of delays that
greatly differs from our own (in particular, they assume that block transmission
occurs as a memoryless process). While SM1 may indeed be unprofitable when
delay is modeled, we show that other profitable selfish mining attacks exist.
Additional analysis of block creation in the presence of delays and its effects on
throughput and double spending appears in [7,14,18].

A recent work by Nayak et al. [16], which was independently conducted in
parallel to our own, discusses specific selfish mining strategies which outperform
SM1 (that are not necessarily optimal), and analyzes the combination of selfish
mining and a network-level attack. Our own work provides provably optimal
strategies, which allows us to compute the profit thresholds, and to evaluate the
worst attack given various protocol modifications (which can only be done with
optimal strategies).

Additional work on selfish mining via block withholding appears in [6].
Another approach to mitigate selfish mining appears in [11]. Transaction prop-
agation in Bitcoin has also been analyzed from the perspective of incentives.
Results in [2] show that nodes have an incentive not to propagate transactions,
and suggests a mechanism to correct this. Additional analysis from a game the-
oretic perspective has also been conducted with regards to interactions pools,
either from a cooperative game theory perspective [13], or when considering
attacks between pools [8]. Further discussion on Bitcoin’s stability can be found
in a recent survey by Bonneau et al. [4].

532 A. Sapirshtein et al.

References

1. https://bitcointalk.org/index.php?topic=2227 (2008). Accessed 07 July 2015
2. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On Bitcoin and red balloons.

In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 56–73.
ACM (2012)

3. Bierth, K.-J.: An expected average reward criterion. Stochas. Processes Their Appl.
26, 123–140 (1987)

4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.:
Research perspectives and challenges for Bitcoin and cryptocurrencies, SoK (2015)

5. Chadès, I., Chapron, G., Cros, M.-J., Garcia, F., Sabbadin, R.: MDPtoolbox: a
multi-platform toolbox to solve stochastic dynamic programming problems. Ecog-
raphy 37(9), 916–920 (2014)

6. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding
attack in Bitcoin digital currency. arXiv preprint: arXiv:1402.1718 (2014)

7. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P),
pp. 1–10. IEEE (2013)

8. Eyal, I.: The miner’s dilemma. arXiv preprint: arXiv:1411.7099 (2014)
9. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:

Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45472-5 28

10. Göbel, J., Keeler, P., Krzesinski, A.E., Taylor, P.G.: Bitcoin blockchain dynam-
ics: the selfish-mine strategy in the presence of propagation delay. arXiv preprint:
arXiv:1505.05343 (2015)

11. Heilman, E.: One weird trick to stop selfish miners: fresh bitcoins, a solution for
the honest miner (poster abstract). In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 161–162. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44774-1 12

12. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: Proceedings of WEIS, vol. 2013 (2013)

13. Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S.: Bit-
coin mining pools: a cooperative game theoretic analysis. In: Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems,
pp. 919–927. International Foundation for Autonomous Agents and Multiagent
Systems (2015)

14. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 528–547. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47854-7 33

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012),
28 (2008)

16. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack

17. Rosenfeld, M.: Analysis of hashrate-based double spending. arXiv preprint:
arXiv:1402.2009 (2014)

18. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47854-7 32

https://bitcointalk.org/index.php?topic=2227
http://arxiv.org/abs/1402.1718
http://arxiv.org/abs/1411.7099
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://arxiv.org/abs/1505.05343
http://dx.doi.org/10.1007/978-3-662-44774-1_12
http://dx.doi.org/10.1007/978-3-662-47854-7_33
http://arxiv.org/abs/1402.2009
http://dx.doi.org/10.1007/978-3-662-47854-7_32

Cryptographic Protocols

A Short Paper on Blind Signatures
from Knowledge Assumptions

Lucjan Hanzlik(B) and Kamil Kluczniak

Faculty of Fundamental Problems of Technology,
Wroc�law University of Technology, Wroc�law, Poland
{lucjan.hanzlik,kamil.kluczniak}@pwr.edu.pl

Abstract. This paper concerns blind signature schemes. We focus on
two moves constructions, which imply concurrent security. There are
known efficient blind signature schemes based on the random oracle
model and on the common reference string model. However, construct-
ing two move blind signatures in the standard model is a challenging
task, as shown by the impossibility results of Fischlin et al. The recent
construction by Garg et al. (Eurocrypt’14) bypasses this result by using
complexity leveraging, but it is impractical due to the signature size
(≈ 100 kB). Fuchsbauer et al. (Crypto’15) presented a more practical
construction, but with a security argument based on interactive assump-
tions. We present a blind signature scheme that is two-move, setup-free
and comparable in terms of efficiency with the results of Fuchsbauer et al.
Its security is based on a knowledge assumption.

Keywords: Blind signature · Okamoto-Uchiyama cryptosystem ·
Knowledge assumption

1 Introduction

A blind signature scheme is a cryptographic primitive that allows a user to
receive a signature under a message in such a way, that the signer does not learn
anything about the signed message (blindness). In addition, if the user receives
a number of signatures, he should not be able to create a signature under a
different message (unforgeability).

The idea of blind signatures was first introduced by David Chaum in the
paper [6]. He used blind signatures for protecting privacy of users in his e-cash
system. Thanks to blind signatures the bank cannot trace the usage of a signed e-
cash as the structure of a note is not known. From this point on, blind signatures
have been used as building blocks in numerous cryptographic schemes, e.g. in
e-voting and anonymous credential systems.

Solutions that are provably secure in the random oracle model are frequently
accepted by researchers and the industry, and are of great value due to their effi-
ciency. However, the random oracle model does not always yield a secure real world
instantiation. In order to bypass the random oracle model, authors in [7,11,12]
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 535–543, 2017.
DOI: 10.1007/978-3-662-54970-4 31

536 L. Hanzlik and K. Kluczniak

used the common reference string model in their constructions of blind signatures.
This model requires that the users perform a setup phase in which they receive the
common reference string (CRS) that must be computed by a trusted third party
in order to be useful and to ensure the security of the scheme.

Fischlin et al. have shown in [8] a negative result on the existence of three-
move blind signature schemes with a black-box reduction in the standard model.
Surprisingly, recent results [10,11] present constructions which circumvent the
limitation from [8]. To be more specific, the authors present two-move blind
signature schemes which are provably secure without ROM or CRS, however use
a non-block-box technique called complexity leveraging. Both solutions are not
really practical with signature size of hundreds of kB. A more practical solution
was proposed by Fuchsbauer et al. in [9] at CRYPTO’15. The signature size of
their construction is not greater than 1 kB. The security of the scheme is based
on interactive assumptions. However, the interactive assumption is required so
that blindness holds in the stronger malicious-signer model (where the signer’s
public key can be chosen in a malicious way). Blindness in the weaker honest-
signer model (where the signer’s public key is honestly generated), holds under
the standard Decisional Diffie-Hellman assumption.

Our Contribution. We propose a different approach to bypass the impossibil-
ity results from [8]. We combine the partially homomorphic Okamoto-Uchiyama
cryptosystem, Pedersen commitments and BB signatures in order to get an effi-
cient two-move, setup-free blind signature scheme.

Blindness of our solution is based on the semantic security of the encryption
scheme and unforgeability follows from the knowledge of factor assumption [1].
Under this assumption the Okamoto-Uchiyama cryptosystem is secret key aware.
Note that this strong extraction assumption implies non-black-box reductions.
Blindness of our scheme holds in the weaker honest-signer model. The proposed
construction is comparable, in terms of signature size and communication size,
with the one from [9]. However, since the security of our scheme is based on a
different type of assumption, we feel that it is an interesting alternative.

2 Preliminaries

Definition 1 (Bilinear Groups). Let us consider cyclic groups (G1,+),
(G2,+), (GT , ·) of prime order q. Let P1, P2 be generators of respectively G1

and G2. A mapping e : G1 ×G2 → GT is called a bilinear map (pairing), if it is
efficiently computable and the following conditions hold:

bilinearity: ∀(S, T) ∈ G1 × G2, ∀a, b ∈ Zq, we have e(aS, bT) = e(S, T)a·b,
non-degeneracy: e(P1, P2) �= 1 is a generator of group GT .

Definition 2 (Bilinear-group generator). A bilinear-group generator is a
polynomial-time algorithm BGGen that on input a security parameter λ returns
a bilinear group BG = (q,G1,G2,GT , e, P1, P2) such that G1 = 〈P1〉, G2 = 〈P2〉

A Short Paper on Blind Signatures from Knowledge Assumptions 537

and GT are groups of order q with log2 q = λ and e : G1 × G2 → GT is a bilin-
ear map. Similar to the authors of [9], we assume that BGGen is deterministic
(which is the case for BN-curves [2]).

2.1 Okamoto-Uchiyama Cryptosystem

In our construction we use the Okamoto-Uchiyama cryptosystem [13].

Key Generation: Choose two large primes p, q (|p| = |q| = k), and let n = p2q.
Choose g ∈ Z

∗
n randomly such that the order of gp = gp−1 mod p2 is p. Let

h = gn mod n. The public key is the tuple pkEnc = (n, g, h). The secret key
is the tuple skEnc = (p, q).

Encryption: Let m ∈ Zp be a plaintext. Select r ←$
Zn and output C = gmhr

mod n. We will simply use Enc(m) to denote a ciphertext of message m, and
Enc(m, r) to additionally identify the randomness r used.

Decryption: Compute Cp = Cp−1 mod p2, output message m = L(Cp)
L(gp)

mod p, where L(x) = x−1
p .

The Okamoto-Uchiyama cryptosystem is semantically secure. In other words,
indistinguishability under chosen plaintext attack (IND-CPA) holds for this
scheme. It is partially homomorphic:

Enc(m1, r1) · Enc(m2, r2)m3 mod n = Enc(m1 + m2 · m3, r1 + r2 · m3).

Barbosa and Farshim [1] introduced a so-called knowledge of factor assump-
tion. It is similar to the well-known knowledge of exponent assumptions [3].
However, it states that one can output an integer of the form n = p2 · q only
if one knows the primes p and q. It was shown by Barbosa and Farshim that
under the knowledge of factor assumption the Okamoto-Uchiyama cryptosystem
is secret-key-aware, i.e. it is possible to extract the secret key from an adversary
that has generated the public key for such a cryptosystem.

2.2 BB Signatures

We now recall the short signature scheme proposed by Boneh and Boyen [4].
Their signature scheme consists of the following PPT algorithms:

KeyGenBB(1λ): Select random generators P1 ∈ G1 and P2 ∈ G2, random integers
x, y ∈ Z

∗
p. Compute u = [x]P2 and v = [y]P2. The public key is the tuple

pkBB = (P1, P2, u, v). The secret key is the triple skBB = (P1, x, y).
SignBB(m, skBB): given the secret key skBB = (P1, x, y) and a message m ∈ Zp,

pick r ∈ Zp\{−x+m
y } at random and compute s = [1

m+x+yr]P1. Then σ =
(s, r) is a signature of m.

VerifyBB(m,σ, pkBB): given the public key pkBB = (P1, P2, u, v), a message m,
and a signature σ = (s, r), check whether e(s, u · [m]P2 · [r]v) = e(P1, P2). If
the equality holds, then output 1 and 0 otherwise.

Under the q-SDH assumption the above signature scheme is secure against
strong existential forgery and an adaptive chosen message attack.

538 L. Hanzlik and K. Kluczniak

2.3 Pedersen Commitments

In contrary to the standard approach, where commitments are elements of
groups, we require that the commitments are elements of a subset of Zq. In
particular, one can easily transform Pedersen commitments defined over elliptic
curves to have this property. Below we give a formal definition of this commit-
ment scheme.

Definition 3 (Pedersen Commitment with Commitments in Zq).
Pedersen commitments consist of the following algorithms:

SetupP(1λ, q):
Compute, using the security parameter 1λ, an ordinary elliptic curve
G = E(Fp) (where p < q) of a prime order qP. Let P be the generator
of G. Choose z ←$

Zq, compute Q = [z]P and output the commitment key
cpp = (G, P,Q, qP) (which is an implicit parameter to the below algorithms).

CommitP(m, r):
On input a message m ∈ ZqP and randomness r ∈ ZqP , compute Co =
(Cox, Coy) = [m]P + [r]Q, output commitment Cox and opening O = r.

OpenP(Cox,m,O):
On input a commitment Cox ∈ Fp, message m and opening O, compute
(Co∗

x, Co∗
y) = [m]P + [r]Q and if Cox = Co∗

x output m, else output ⊥.

This modified Pedersen commitment scheme is still perfectly hiding and com-
putationally binding under the DLP assumption in G. Note that it may happen
that an adversary breaks the binding property by returning (m0, r0) and (m1, r1)
such that (Cox, Coy) = [m0]P + [r0]Q and (Cox,−Coy) = [m1]P + [r1]Q. How-
ever, in such a case we can still compute the DLP of Q to base P because
m0 + z · r0 = −(m1 + z · r1), which yields z = −(m0 + m1)/(r0 + r1).

3 Blind Signatures

In this section we recall the syntax and security of blind signature schemes.

Definition 4. A blind signature scheme consists of the following PPT algo-
rithms BS = (KeyGenBS,UBS,SBS,VerifyBS) defined as follows:

KeyGenBS(1λ): on input a security parameter, this algorithm outputs a pair of
public/secret key (pkBS, skBS) of the signer.

〈UBS(m, pkBS),SBS(skBS)〉: are executed by a user and a signer. On input the
signer’s secret key skBS algorithm SBS interacts with algorithm UBS. On input
a message m, from message space M, and the signer public key pkBS, algo-
rithm UBS outputs a signature σ on m, or ⊥, if the interaction was not
successful.

VerifyBS(m,σ, pkBS): on input a message m, signature σ and the signer’s public
key pkBS, this algorithm outputs 1, if σ is a valid signature and 0 otherwise.

A Short Paper on Blind Signatures from Knowledge Assumptions 539

Correctness. A blind signature scheme BS is correct, if for all λ ∈ N, all (pkBS,
skBS) ← KeyGenBS(1λ), all messages m ∈ M and σ ← 〈UBS(m, pkBS),SBS(skBS)〉
it holds that VerifyBS(m,σ, pkBS) = 1.

Unforgeability. A blind signature scheme BS is strongly unforgeable, if for all
PPT algorithms A having access to a signer oracle, we have:

Pr
[
(pkBS, skBS) ← KeyGenBS(1λ), (m∗

i , σ
∗
i)k+1

i=1 ← A(pkBS)〈· ,SBS(skBS)〉 :

(m∗
i , σ

∗
i) �= (m∗

j , σ
∗
j) for i, j ∈ {1, . . . , k + 1}, i �= j and

VerifyBS(m∗
i , σ

∗
i , pkBS) = 1 for i ∈ {1, . . . , k + 1}

]
≤ ε(λ),

where k is the number of oracle queries.

Blindness. A blind signature scheme BS is blind in the honest-signer model, if
for all PPT algorithms A with one-time access to two user oracles, we have:

Pr
[
b ←$ {0, 1}, (pkBS, skBS) ← KeyGenBS(1λ), (St1,m0,m1) ← A(pkBS, skBS),

(St2) ← A(St1)〈UBS(mb,pkBS), ·〉(1),〈UBS(m1−b,pkBS), ·〉(1) ,
Let σb and σ1−b be the resp. outputs of UBS,

If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1) = (⊥,⊥),

b∗ ← A(St2, σ0, σ1) : b = b∗
]

− 1
2 ≤ ε(λ).

4 Construction

The core idea of our construction is to use the partially homomorphic properties
of the Okamoto-Uchiyama cryptosystem to perform certain parts of the signing
algorithm of BB signatures. However, for correctness the message space of the
encryption scheme must be large, so that the computations are performed in
Z. To ensure blindness the signed value is not the actual message m, but a
perfectly-hiding commitment (Definition 3) to m. Thus, the message space of
the scheme is the same as for the commitment scheme, i.e. M = ZqP . Finally,
the signed commitment and the opening information are given as part of the
blind signature. The details of our construction are given in Scheme 1.

Theorem 1 (Correctness). Scheme 1 is correct.

Proof. Let m be the message requested by the user, Co the commitment to it and
pkEnc = (n, gn, hn) the public key of the Okamoto-Uchiyama cryptosystem. In
order to answer the request of the user, the signer chooses random b, rS ←$

Zq and
uses the homomorphic property of the cryptosystem to compute the ciphertext
cσ = (cm · cy

r · Enc((x + (rS · y)) mod q))b mod n. The ciphertext cσ, rS and
[b]P1 are send to the user. The user deciphers cσ and receives: t = b · (Co +
rS · y +((x+(rS · y)) mod q)) mod pn. However, since the Okamoto-Uchiyama

540 L. Hanzlik and K. Kluczniak

KeyGenBS(1λ): Generate bilinear group parameters BG = (q,G1,G2,GT ,
e,Q1, Q2) ← BGGen(1λ) and the commitment key cpp = (G, P,Q, qP) ←
SetupP(1λ, q). Use parameters BG to compute random elements P1 ←$

G1,
P2 ←$

G2, x ←$
Zq y ←$

Zq, the secret key skBB = (P1, x, y) and the public
key pkBB = (P1, P2, u = [x]P2, v = [y]P2) for the BB signature scheme.
Return pkBS = (1λ, cpp, pkBB) and skBS = (skBB).

U (1)
BS (m, pkBS): generate the parameters BG ← BGGen(1λ). Compute the com-
mitment (Co, oCo) = CommitP(m, rCo) for a random rCo ∈ ZqP . Generate
the Okamoto-Uchiyama cryptosystem with public key pkEnc = (n, gn, hn)
and secret key skEnc = (pn, qn) (where pn > 3 ·q2). Compute cm = Enc(Co),
choose random rU ←$

Zq and compute cr = Enc(rU). Set ρ = (pkEnc, cm, cr)
and StBS = (ρ, (Co, oCo, rU), skEnc). Send ρ to the signer.

SBS(ρ, skBS): Compute b ←$
Zq, cσ = (cm · cy

r · Enc((x + (rS · y)) mod q))b

mod n, for random rS ←$
Zq and send β = (cσ, rS , [b]P1) to the user.

U (2)
BS (β,StBS, pkBS): Decrypt ciphertext cσ receiving integer t = b · (Co + rS ·
y + ((x + (rS · y)) mod q)), compute s = ([t−1]([b]P1) (so s =
[1
Co+x+(rS+rU)·y]P1), r = rS + rU and set σBB = (s, r). Return ⊥ if
VerifyBB(Co, σBB, pkBB) = 0 ; otherwise return σ = (Co, oCo, σBB).

VerifyBS(m,σ, pkBS): return 1 iff VerifyBB(Co, σBB, pkBB) = 1 and m =
OpenP(Co,m, oCo).

Scheme 1: Our Blind Signature Scheme

cryptosystem was generated in such a way that pn > 3 · q2, we have that t =
b·(Co+rS ·y+((x+(rS ·y)) mod q)) over Z and t = b·(Co+rS ·y+((x+(rS ·y)) in
Zq. Thus, by computing ([t−1]([b]P1), the user receives s = [1

Co+x+(rS+rU)·y]P1).
It follows, that σBB = (s, r) (where r = rS+rU) is a valid BB signature on Co and
VerifyBB(Co, σBB, pkBB) = 1. It remains to show that m = OpenP(Co,m, oCo) but
this follows from the correctness of Pedersen commitments.

Theorem 2 (Unforgeability). If BB signatures are secure against strong exis-
tential forgery under an adaptive chosen message attack, Pedersen commit-
ments from Definition 3 are computationally binding and the knowledge of factor
assumption holds, then Scheme 1 is strongly unforgeable.

Proof (Sketch). Let A be a PPT adversary that breaks the strong unforgeability
of Scheme 1. We now show that we can construct a reduction R that, using
A as a procedure, either breaks the strong existential unforgeability of the
BB signature scheme or computational binding of the Pedersen commitment
scheme. To break strong unforgeability the adversary A will return k + 1 pairs
(m∗

i , σ
∗
i)k+1

i=1 = (m∗
i , (Co∗

i , o
∗
Coi

, σ∗
BB,i))

k+1
i=1 , where k is the number of queries made

A Short Paper on Blind Signatures from Knowledge Assumptions 541

to the signing oracle. We now distinguish two cases leading to two different
strategies followed by R and a different target of the attack:

Case 1: all commitments Co∗
1, . . . , Co∗

k+1 are distinct,
Case 2: there exist i, j ∈ {1, . . . , k + 1}, i �= j for which Co∗

i = Co∗
j .

In the first option R aims to break the unforgeability of the BB signature
scheme hoping that all commitments created by A will be different (if it turns to
be false, then the attack fails). R interacts with A simulating the environment
for the blind signature scheme; at the same time R uses a BB signing oracle.
First, R computes the commitment key cpp ← SetupP(1λ, q) but uses the public
key pkBB = (P1, P2, u = [x]P2, v = [y]P2) from the unforgeability game. It
outputs pkBS = (1λ, cpp, pkBB) as its public key for the blind signature scheme.
To perfectly simulate the signing queries for this public key, R extracts Co and
rU from the queries of A. Note that under the knowledge of factor assumption R
can extract the secret key and decrypt those values from cm and cr, respectively.
Then R queries Co to its signing oracle, receiving a BB signature (s, r) on
Co, where s = [1

Co+x+r·y]P1. The reduction computes rS = r − rU , chooses
t ←$

Z3·q2 , computes s′ = [t]s and cσ = Enc(t). R answers the query by returning
(cσ, rS , s′). Note that A will receive a valid signature under Co. Finally, R returns
(Co∗

i , σ
∗
BB,i)

k+1
i=1 and breaks the strong existential unforgeability of BB signatures.

On the other hand, in order to perform an attack in Case 2, R breaks the
binding property of the Pedersen commitment scheme. The reduction uses the
commitment key cpp = (G, P,Q, qP) from the binding game but computes the
BB signature public key pkBB according to the protocol. Note that this time
the signing key is known to R and all signing queries of A can be answered
according to the protocol. However, at the end A outputs the above k + 1 pairs.
If Case 2 occurs, then there exist i, j ∈ {1, . . . , k+1}, i �= j for which Co∗

i = Co∗
j .

It follows, that by returning (m∗
i , o

∗
Coi

), (m∗
j , o

∗
Coj

) the reduction R breaks the
computational binding of the Pedersen commitment scheme.

Theorem 3 (Blindness). If the Okamoto-Uchiyama cryptosystem is indis-
tinguishable under chosen plaintext attack and the Pedersen commitment is
perfectly-hiding, then Scheme 1 is blind in the honest-signer model.

Proof (Sketch). We commence with the observation that if the adversary receives
(⊥,⊥), then due to perfect hiding property of Pedersen commitments the adver-
saries advantage in the blindness experiment is 0. To have a non-negligible advan-
tage, the adversary must receive valid signatures (σ0, σ1). Thus, we assume that
the adversary always receives valid signatures in the blindness experiment. We
will show that advantage of adversary A in winning the blindness experiment
cannot be greater than the advantage of any adversary against CPA security of
the Okamoto-Uchiyama cryptosystem. The idea is that we construct a reduc-
tion R that plays the semantic security experiment and wins it with the same
probability as A wins the blindness experiment. The steps of R are the follow-
ing. First, it returns the bits 0 and 1 as the messages to be encrypted in the
CPA experiment. As a result, R receives the public key pkEnc = (n, gn, hn) and a

542 L. Hanzlik and K. Kluczniak

ciphertext Cb = Enc(b), for an unknown bit b. The adversary A returns m0,m1.
Using those values, the reduction computes two commitments (Co0, oCo0) =
CommitP(m0, rCo0), (Co1, oCo1) = CommitP(m1, rCo1) and two ciphertexts:
C0 = Enc(Co0 · (1− b)+Co1 · b) and C1 = Enc(Co0 · b+Co1 · (1− b)). Note that
using the partially homomorphic property of the cryptosystem, R can compute
both values. Now depending on the bit b we have C0 = Enc(Co0), C1 = Enc(Co1)
if b = 0 and C0 = Enc(Co1), C1 = Enc(Co0) if b = 1. The reduction then uses C0

as a ciphertext of the message cm in the first and C1 in the second interaction.
However, instead of using the values ρ0 and ρ1 returned by A, the reduction
computes the signatures (on Co0 and Co1) itself as it knows the signing key.
Finally, R returns the bit outputted by A.

Remark 1. Note that if we would sign the actual message m, instead of a com-
mitment to it, then there exists an adversary that can win the blindness game
with non-negligible advantage. The adversary guesses the correct bit b and com-
putes (β0, β1) in such a way that procedure U (2)

BS aborts (with the adversary
receiving (⊥,⊥)) if the b is guessed wrong and returns a valid signature if bit b
was correct. Due to space reasons we omit the details of this oracle attack and
describe it in more detail in the full version of this article.

On the other hand, Scheme 1 prevents such an attack using perfectly-hiding
commitments. In particular, if the adversary does not receive the openings to
the commitments, then its advantage cannot be greater then 0 (as both events
are equally probable). This idea is used in the first paragraph of the sketch of
the proof. Note that this idea also applies in case of blindness with selective-
failure attacks [5], where the adversary is given (ε,⊥) (or (⊥, ε)) in case one of
the execution succeeded and the second one failed.

5 Conclusions

We have proposed a fairly practical two-move blind signature without random
oracles and a common reference string. It is efficient in terms of signature size
and communication complexity. For a future work we plan to extend blindness to
the malicious-signer model, where the adversary generates the signing key. One
promising approach is to use the knowledge of exponent assumption to extract
the signer’s secret key as it only consists of one public value P1 and two discrete
logarithms of the public values X and Y to the base P2. Moreover, we plan
to extend our construction to partially blind signatures, where the signer and
the user share some information (e.g. expiration date of the document) and this
information is included in the signature.

Acknowledgments. We would like to thank prof. Miros�law Kuty�lowski and the
anonymous reviewers of FC for their valuable comments on this short paper. This
research was supported by the National Science Centre (Poland) based on decision
no. 2014/15/N/ST6/04577.

A Short Paper on Blind Signatures from Knowledge Assumptions 543

References

1. Barbosa, M., Farshim, P.: Strong knowledge extractors for public-key encryp-
tion schemes. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol.
6168, pp. 164–181. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14081-5 11.
http://dblp.uni-trier.de/db/conf/acisp/acisp2010.html#BarbosaF10a

2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). doi:10.1007/11693383 22. http://dblp.uni-trier.de/db/conf/
sacrypt/sacrypt2005.html#BarretoN05

3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 273–289. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 17.
http://www.iacr.org/cryptodb/archive/2004/CRYPTO/961/961.pdf

4. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). http://dblp.uni-
trier.de/db/journals/joc/joc21.html#BonehB08

5. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72540-4 33

6. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Springer, Heidelberg
(1982)

7. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). doi:10.1007/11818175 4

8. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 10

9. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. Cryptology ePrint Archive, Report 2015/626 (2015). http://
eprint.iacr.org/

10. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-55220-5 27

11. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 36

12. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from
composite-order to prime-order groups: the case of round-optimal blind signatures.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17373-8 30

13. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998). doi:10.1007/BFb0054135

http://dx.doi.org/10.1007/978-3-642-14081-5_11
http://dblp.uni-trier.de/db/conf/acisp/acisp2010.html#BarbosaF10a
http://dx.doi.org/10.1007/11693383_22
http://dblp.uni-trier.de/db/conf/sacrypt/sacrypt2005.html#BarretoN05
http://dblp.uni-trier.de/db/conf/sacrypt/sacrypt2005.html#BarretoN05
http://dx.doi.org/10.1007/978-3-540-28628-8_17
http://www.iacr.org/cryptodb/archive/2004/CRYPTO/961/961.pdf
http://dblp.uni-trier.de/db/journals/joc/joc21.html#BonehB08
http://dblp.uni-trier.de/db/journals/joc/joc21.html#BonehB08
http://dx.doi.org/10.1007/978-3-540-72540-4_33
http://dx.doi.org/10.1007/11818175_4
http://dx.doi.org/10.1007/978-3-642-13190-5_10
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-55220-5_27
http://dx.doi.org/10.1007/978-3-642-22792-9_36
http://dx.doi.org/10.1007/978-3-642-17373-8_30
http://dx.doi.org/10.1007/BFb0054135

KBID: Kerberos Bracelet Identification
(Short Paper)

Joseph Carrigan(B), Paul Martin, and Michael Rushanan

Johns Hopkins University, Baltimore, USA
{joseph.carrigan,pmartin,mrushan1}@jhu.edu

Abstract. The most common method for a user to gain access to a sys-
tem, service, or resource is to provide a secret, often a password, that
verifies her identity and thus authenticates her. Password-based authen-
tication is considered strong only when the password meets certain length
and complexity requirements, or when it is combined with other meth-
ods in multi-factor authentication. Unfortunately, many authentication
systems do not enforce strong passwords due to a number of limitations;
for example, the time taken to enter complex passwords. We present an
authentication system that addresses these limitations by prompting a
user for credentials once and then storing an authentication ticket in a
wearable device that we call Kerberos Bracelet Identification (KBID).

Keywords: Authentication · Kerberos · Wearables · Passwords

1 Introduction

The use of modern computer systems almost always requires that a user prove
their identity through some process of authentication. Specifically, a user can
authenticate using methods such as public key authentication, biometrics, and
passwords; something you have, are, or know, respectively. Password-based
authentication remains the most widely used option for authentication because
of its ease of use and simple design.

However, passwords have a human factor weakness as users often choose
passwords that are too simplistic and easily guessed [9]. Administrators and
systems require users to select more complex passwords as a consequence; thus,
decreasing user satisfaction as password selection becomes seemingly difficult.
Worst yet, complex passwords interfere in critical workflow such as clinical care
where a patient’s need is most urgent.

In this paper we describe an authentication system that requires the user to
enter a password as infrequently as once a day. Specifically, authentication infor-
mation is stored on a wearable device, a bracelet in our case, and is transmitted
to devices to which the user wishes to authenticate. The transmission between
the bracelet and device is achieved via using the user’s body as a communication
medium [1,2]. Our goal is to reduce the impact on user satisfaction and workflow
by removing most of the difficulty of using a complex password.
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 544–551, 2017.
DOI: 10.1007/978-3-662-54970-4 32

KBID: Kerberos Bracelet Identification 545

While we focus on authentication in the medical community use case, we
anticipate that other areas such as the financial sector may benefit from our
system. In addition, it is important to note that this system is not a two-factor
authentication solution. The bracelet is not a biometric component and does
not provide any additional information outside of what it stores. It is meant
to enhance the user experience and encourage the use of complex passwords.
Finally, KBID is a work in progress.

2 Background

KBID originates from the idea of integrating a wearable device to achieve some
additional property in an authentication system (e.g., de-authentication). In par-
ticular, we are inspired by the design of zero-effort bilateral recurring authentica-
tion (ZEBRA) by Mare et al. [7]. In ZEBRA, a user wears a bracelet that encap-
sulates a wireless radio, accelerometer, and gyroscope; these components record
and transmit wrist movements to a computer system that is currently being used.
The computer system continually compares received movement measurements to
input it receives from it’s keyboard and mouse. If these two measurements are
not correlated, the current session is de-authenticated.

At the time, ZEBRA was only envisioned as a method to de-authenticate a
user from a computer system and did not include a way to initially authenticate
the user to the system. Assuming that the user has already accepted wearing a
device that will effectively de-authenticate them, adding functionality to rapidly
authenticate them only increases the usefulness of the system.

We avoided using radio frequency (RF) emissions for two reasons. First, RF
by it’s nature emits information into the environment. That information, once
emitted, can be received by various means. Second, RF relies on the underlying
communication being secure. If a security flaw is discovered in an RF commu-
nication framework, e.g. Bluetooth low energy (BLE) [8], then the systems as it
exists could be vulnerable to the flaw. Specifically, there is no need to alter or
even monitor the information that is exchanged between the computer system
and a wearable device. An attacker would only need to extend the range of the
wireless communication in order to gain access to the computer system.

We instead use body-coupled communication (BCC), or transmission of infor-
mation over the human body as a medium. We are not the first to use BCC to
transmit a secret. For example, Chang et al. introduce a system for key exchange
over a body area network [2]. By applying a very small voltage to the tissue of
a dead mouse, they were able to communicate at a rate of 5 Hz or 5 bits per
second. However, this data rate is not acceptable for our work as we would need
to communicate authentication data of at least 256 bits, and this would take
nearly a minute to transmit.

We designed our authenticated bracelet to be non-transferrable (i.e., authen-
ticating and then giving the bracelet to someone else). To support this feature,
we zero all authentication information upon bracelet removal.

546 J. Carrigan et al.

3 Related Work

In addition to the ZEBRA, which we have described previously, there have
been several previous attempts at developing wearable-authentication technol-
ogy. Two of note include the Bionym Nymi [5] and the Intel Authentication
Bracelet [6]. The Bionym Nymi is an authentication wristband that broadcasts
a digitally signed authentication signal derived from a user’s heartbeat to nearby
devices using BLE [4]. The Intel Authentication Bracelet requires a user to log
in to a system with a standard password. A credential is then transmitted to the
bracelet using BLE. This credential is then broadcast to nearby bracelet-enabled
devices in order to allow password-less login.

Limitations of Existing Work. Existing authentication wearables use wire-
less communication technology (typically BLE) to broadcast their authentication
credentials. Thus the devices are likely vulnerable to ghost-and-leech attacks [3].
Ghost-and-leech attacks occur when an attacker uses a more powerful radio
transmitter than the transmitter found on a wireless device in order to capture
and rebroadcast the wireless signal in order to fool a target into believing that
the wireless device is in closer proximity to the target than it actually is.

4 Threat Model

As a hardware and software solution, the threat model for KBID includes many
subjects that apply to any such system. These include attack types (denial of ser-
vice, message forging or tampering, hardware tampering, and others) as well as
a study of potential adversaries and other topics. Here we focus on two threats
that are unique to KBID. These threats require an active adversary that has
the ability to get close to where KBID is used. It is possible to impersonate an
authentication module. An attacker could use a counterfeit authentication mod-
ule that issues Get Status commands when a user touches something connected
to it, e.g. a door knob. We discuss mitigating this vector below. Second, while
we are using body coupled communication to transmit data without emitting
RF, it could be the case that the user’s body acts as a broadcast antenna and
emits the data into the environment where it could conceivably be intercepted.
We plan on assessing the reality of this treat during the development of the next
prototype.

5 Design

Here we describe in detail the design and implementation of the KBID system.
First we discuss the high level design where we explain the four major compo-
nents of the system. Next, we discuss the interface designs and the communi-
cation protocols between the major components. Finally, we discuss the system
workflow.

KBID: Kerberos Bracelet Identification 547

Fig. 1. KBID prototype bracelet

5.1 High Level Design

The system is composed of four main parts: a bracelet (Fig. 1), an authentication
module (Fig. 2) an authentication client, and a Kerberos authentication server.
The bracelet is a wearable device that fastened to the user’s wrist. The bracelet
makes contact with the user’s skin and applies a signal directly to the user’s skin.
The authentication module has a sensor with a button under it. When the user
touches the sensor and depresses the button, the authentication module initiates
communication with the bracelet. The authentication module is attached via
RS-232 serial to the computer system to which the user wants to authenticate.
A workstation hosts the authentication client. The client monitors the serial
connection for data and when necessary, opens a connection to the Kerberos
server for authentication. Finally, the Kerberos server is a default installation
and uses the default implementation of the authentication protocol.

5.2 Interfaces and Communication

The KBID system includes three interfaces. The interface between the bracelet
and the authentication module takes place over the user’s skin. The interface
between the authentication module and the authentication client takes place
over RS-232 serial. Finally, the interface between the authentication client and
the Kerberos server uses the network. Since the communication between a client
and a Kerberos server is well documented, we will not discuss it in this paper.

Bracelet to Authentication Module. The communication protocol between
the bracelet and the authentication module is a very lightweight protocol.
The messages that the bracelet sends to the authentication modules are
called statuses. The messages that the authentication module sends to the

548 J. Carrigan et al.

Fig. 2. KBID prototype authentication module

bracelet are called commands. Each message sent over this interface is a
length delimited series of bytes. A status message had the following structure:
[Status ID] [Device ID] [Data Size (in bytes)] [Data]. The bracelet will send one
of two statuses, authenticated or un-authenticated. If the status is authenticated,
the authentication data will be transmitted in the data field.

A command message has the following structure: [Command ID] [Device ID]
[Payload Size (in bytes)] [Payload]. The authentication module will send three
commands: Get Status, Set Token, and De-authenticate. A Get Status command
causes the bracelet to respond with a status message. A Set Token command
causes the bracelet to store the payload in memory as authentication data and
set its status to authenticated. A De-authenticate command causes the bracelet
to clear any token it has and set its status to un-authenticated.

Authentication Module to Authentication Client. The authentication
module and the authentication client communicate status and command mes-
sages as well. The authentication module can send three statuses to the authen-
tication client. First is the Un-authenticated Bracelet message. This message is
sent to the authentication client when the authentication module receives an
un-authenticated status from a bracelet.

Next the authentication module can send an Authenticated Bracelet status
to the authentication client. It will send this status when the bracelet sends
a status of authenticated. The Authenticated Bracelet status will contain the
ticket information that was in the token section of the bracelet’s message.

Finally, the authentication module can send a Ticket Written status to the
authentication client. This is a message that lets the client know that the ticket
information has been successfully written to the bracelet.

KBID: Kerberos Bracelet Identification 549

Message Exchange with an Un-Authenticated Bracelet

ServerClientModuleBraceletT
im

e

Get Status

Un-Authenticated

Send Credentials

Prompt User for
Username and

Password

Un authenticated
Bracelet

Send Ticket

Write Ticket

Write Token

Store Token In RAM

Verify Credentials

Messages

Internal Activity

Unlock Workstation

Ticket Writen

Verify Ticket
Correctly stored

Authenticated

Get Status

Fig. 3. Un-authenticated message exchange

The authentication client sends two commands to the authentication mod-
ule. First the Write Ticket command. This instructs the authentication module
to pass the ticket included in the command to the bracelet with a Set Token
command. The authentication client can also send a De-authenticate Bracelet
command. This instructs the authentication module to issue a De-Authenticate
command to the bracelet.

5.3 System Workflow

The system workflow can be described in two use cases. For the sake of brevity we
do not include any error handling. In the first use case (Fig. 3) the user is wearing
a bracelet but the bracelet is not yet authenticated. The users touches the sensor
on the authentication module, the authentication module sees that the user’s
bracelet is not authenticated and relays this information to the authentication
client. The client prompts the user for their username and password. The client
verifies this information with the Kerberos server, then instructs the user to
touch the sensor on the authentication module again. The client then instructs
the authentication module to write the ticket to the bracelet. Once the ticket
has been written, the client unlocks the workstation.

In the second use case (Fig. 4) the user has an authenticated bracelet. The
user touches the sensor on the authentication module. The module asks for a
status, and the bracelet provides it with the token it has stored. The module
passes this information along to the client which interprets the token as a Ker-
beros ticket. The client verifies the ticket with the Kerberos server and unlocks
the workstation. Our goal is to perform this use case in less than one second.

550 J. Carrigan et al.

Message Exchange with an Authenticated Bracelet

ServerClientModuleBraceletT
im

e
Get Status

Authenticated

Send Ticket

Authenticated
Bracelet

Send Valid Status

Verify Ticket

Messages

Internal Activity

Unlock Workstation

Fig. 4. Authenticated message exchange

6 Experiments and Results

6.1 Prototype

The hardware prototypes for the bracelet and the authentication module are
based on the Atmel ATMega328 microcontroller operating at 20 MHz and an
LM358AN Amplifier. Both the bracelet and the authentication module have
copper pads that make contact with the user’s skin. The signal from the skin
is fed into the amplifier and the signal to the skin is driven by setting a pin on
the microcontroller. We also built a resistive analogue to represent the resistance
from a user’s wrist to their finger tip. The prototype for the authentication client
has been written in Python.

6.2 Results

Initial results are encouraging. We are able to send commands from the authen-
tication module to the bracelet. The bracelet can correctly interpret those com-
mands and it responds when issued a Get Status command. The time elapsed for
a Get Status command and a status message with a 256 byte token is approxi-
mately 500 milliseconds. We also implemented the functionality that clears the
authentication information when the bracelet is removed. This was accomplished
by using one of the hardware interrupts on the microcontroller.

6.3 Hurdles

We encountered two major hurdles during the development of the first prototype.
First, in order to successfully send a signal the bracelet and the authentication
module must have a common reference for voltage. Second, while we have been
able to get the signal to transmit from the authentication module to the bracelet,
we have not been able to get the signal to travel in the opposite direction and
arrive in a way that the signal can be interpreted by the authentication module.
To solve these issues, we plan to either improve the performance of the amplifier
or change the method by which the signal is transmitted over the user’s skin to
capacitive coupling.

KBID: Kerberos Bracelet Identification 551

7 Future Work

Future work will focus on improving the system. We plan to implement the sys-
tem using a microcontroller that can store larger keys. The Atmel ATMega328
only has 2 kilobytes of RAM. Since the systems needs some RAM to perform
operations, the key that is stored in RAM is limited in size to about 1 kilobyte.
This is not sufficient space to store authentication information in real world envi-
ronments. We also plan on hardening the system by adding pre-shared message
authentication codes (MACs) to protect against replay and device impersonation
attacks.

References

1. Barth, A.T., Hanson, M.A., Powell, H.C., Unluer, D., Wilson, S.G., Lach, J.: Body-
coupled communication for body sensor networks. In: Proceedings of the ICST
3rd International Conference on Body Area Networks (2008). http://dl.acm.org/
citation.cfm?id=1460257.1460273

2. Chang, S., Hu, Y., Anderson, H., Fu, T., Huang, E.Y.L.: Body area network
security: robust key establishment using human body channel. In: Proceed-
ings of 3rd USENIX Workshop on Health Security and Privacy (HealthSec),
August 2013. https://www.usenix.org/conference/healthsec12/workshop-program/
presentation/Chang

3. Czeskis, A., Koscher, K., Smith, J.R., Kohno, T.: RFIDS and secret handshakes:
defending against ghost-and-leech attacks and unauthorized reads with context-
aware communications. In: Proceedings of the 15th ACM conference on Computer
and communications security, pp. 479–490. ACM (2008)

4. Gomez, C., Oller, J., Paradells, J.: Overview and evaluation of bluetooth low
energy: an emerging low-power wireless technology. Sensors 12(9), 11734 (2012).
http://www.mdpi.com/1424-8220/12/9/11734

5. Goode, A.: Bring your own finger-how mobile is bringing biometrics to consumers.
Biom. Technol. Today 2014(5), 5–9 (2014)

6. Krzanich, B.: Intel developer forum san francisco opening keynote. Intel Corpora-
tion, Technical report (2015)

7. Mare, S., Markham, A., Cornelius, C., Peterson, R., Kotz, D.: Zebra: zero-effort
bilateral recurring authentication. In: 2014 IEEE Symposium on Security and Pri-
vacy (SP), May 2014

8. Ryan, M.: Bluetooth: with low energy comes low security. In: Proceedings of the
7th USENIX Conference on Offensive Technologies. USENIX Association (2013).
http://dl.acm.org/citation.cfm?id=2534748.2534754

9. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: empirical results. IEEE Secur. Priv. (2004). http://dx.doi.org/10.1109/MSP.
2004.81

http://dl.acm.org/citation.cfm?id=1460257.1460273
http://dl.acm.org/citation.cfm?id=1460257.1460273
https://www.usenix.org/conference/healthsec12/workshop-program/presentation/Chang
https://www.usenix.org/conference/healthsec12/workshop-program/presentation/Chang
http://www.mdpi.com/1424-8220/12/9/11734
http://dl.acm.org/citation.cfm?id=2534748.2534754
http://dx.doi.org/10.1109/MSP.2004.81
http://dx.doi.org/10.1109/MSP.2004.81

Payment Use and Abuse

The Other Side of the Coin: User Experiences
with Bitcoin Security and Privacy

Katharina Krombholz(B), Aljosha Judmayer,
Matthias Gusenbauer, and Edgar Weippl

SBA Research, Vienna, Austria
{kkrombholz,ajudmayer,mgusenbauer,eweippl}@sba-research.org

Abstract. We present the first large-scale survey to investigate how
users experience the Bitcoin ecosystem in terms of security, privacy and
anonymity. We surveyed 990 Bitcoin users to determine Bitcoin man-
agement strategies and identified how users deploy security measures to
protect their keys and bitcoins. We found that about 46% of our partici-
pants use web-hosted solutions to manage at least some of their bitcoins,
and about half of them use exclusively such solutions. We also found that
many users do not use all security capabilities of their selected Bitcoin
management tool and have significant misconceptions on how to remain
anonymous and protect their privacy in the Bitcoin network. Also, 22%
of our participants have already lost money due to security breaches or
self-induced errors. To get a deeper understanding, we conducted quali-
tative interviews to explain some of the observed phenomena.

1 Introduction

With a current market capitalization of more than 3.5 billion USD, Bitcoin
is the most successful cryptographic currency at this time. Bitcoin is utilized
for roughly 130.000 transactions per day [6] and has gained significant news
coverage. With the success of Bitcoin, several other cryptographic currencies
were developed either based on Bitcoin or from scratch.

Although the popularity of cryptographic currencies is increasing, they are
not yet a mass phenomenon. One of the reasons is that Bitcoin forces its users
to deal with public key cryptography. Furthermore, Bitcoin shifts the respon-
sibilities for most security measures to the end user compared to centralized
monetary systems. Even though there is a great variety of software available for
managing bitcoins, user-experience is still not obviating the need to deal with
the technical fundamentals and to perform backups to recover their virtual mon-
etary assets in case of a loss. Hence, these systems are not resilient to human
errors. Reports from online forums and mailing-lists show that many Bitcoin
users already lost money due to poor usability of key management and security
breaches such as malicious exchanges and wallets. This motivates our research
on human interactions with the Bitcoin ecosystem.

Bitcoin users have a huge variety of tools available to manage their virtual
assets. These tools are commonly referred to as wallets. A wallet was originally
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 555–580, 2017.
DOI: 10.1007/978-3-662-54970-4 33

556 K. Krombholz et al.

defined as a collection of private keys [8]. Hence, a piece of paper with a private
key on it or even a mental representation can be considered a wallet. However,
most of these tools provide functionality beyond storing keys, such as perform-
ing transactions. In contrary to other public key crypto-systems, e.g. PGP/GPG,
Bitcoin is not fully communication channel agnostic. In case of Bitcoin the inter-
action with the Bitcoin network is an integral part to operate in the distributed
system. In contrast to other signing systems, Bitcoin tools need to keep state
information on performed transactions and account balances respectively.

As a first step to accommodate these misconceptions on Bitcoin wallets, we
introduce the term Coin Management Tool (CMT) as an extension to the cur-
rent narrow definition of a wallet. We define a CMT as a tool or a collection of
tools which allows users to manage one or more core tasks of cryptocurrencies.
Throughout this paper we are therefore referring to Bitcoin management, as it
better describes user activities when interacting with the Bitcoin ecosystem. Bit-
coin security and privacy aspects have already been studied in the research liter-
ature [7,10,14–16]. A first look on the usability of Bitcoin key management has
been presented in [8]. However, we are the first to conduct a comprehensive user
study to collect evidence on user experiences with Bitcoin security and privacy.

In this paper, we present a comprehensive user study (n = 990) to cover
human-computer interaction aspects of the Bitcoin ecosystem. The goal was to
understand how users interact with Bitcoin and how they manage their virtual
assets. We furthermore studied experiences and perceptions related to security,
privacy and anonymity in the Bitcoin network. To collect user-reported data, we
conducted a comprehensive online survey with 990 participants and qualitative
interviews with a subset of 10 participants. Additionally, we extended the eval-
uation criteria from [8] and provide a method to categorize CMTs depending on
the level of control and verifiability a user can exercise with the respective client.

We gathered interesting insights on how users interact with the Bitcoin net-
work and what privacy and security measures they deploy to protect their keys
and coins. We found that the first- and third-most used CMTs (Coinbase, Xapo)
are web-hosted tools where users shift security responsibilities to a third party.
We also found that about a third of their users are not aware whether their CMT
data is encrypted or backed-up. Among the participants who use a web-hosted
solution, 50% indicated to use it exclusively while the other half used additional
local clients to manage their coins. Regarding risk scenarios and their likelihood
to occur, the second-highest risk was attributed to vulnerabilities in web-hosted
CMTs (after value fluctuation and followed by theft via malware).

We also found that many users have misconceptions about how to remain
anonymous. About 25% of our participants reported to use Bitcoin over Tor which
has already shown to be disadvantageous in certain cases [1,3]. 22.5% of the partic-
ipants reported to have lost their bitcoins due to security breaches. About half of
them consider this loss as their own fault and the majority of them was not able to
recover their bitcoins and lost money permanently. Our work contributes research
on user-centric concerns of Bitcoin management, as according to Bonneau [7] Bit-
coin is one of the cases where practice is ahead of theory.

User Experiences with Bitcoin Security and Privacy 557

The main contributions of this paper are (1) a user study consisting
of an online survey and qualitative interviews, and (2) a method for
categorizing Bitcoin CMTs.

2 Bitcoin Background

The Bitcoin currency is based on a distributed P2P system which synchronizes
a public ledger of all transactions among all Bitcoin clients. As a consequence,
every full client in the Bitcoin network is able to see the entire history containing
all prior transactions. Thereby it is possible to determine the current balance
of every account. The account information in Bitcoin basically consists of a
hash over a public key which can be compared to an account number, the so-
called Bitcoin address. The protocol does not require a link between account
information and personal data. An individual can have more than one account,
hence Bitcoin provides a certain degree of pseudonymity [1,9].

To transfer n bitcoins from account A, which is under control of Alice, to
another account B, which is under control of Bob, a new transaction is created by
Alice. Thereby, Alice creates a transaction message with the amount of bitcoins
she wants to send to Bob and includes the hash of the public key of Bobs account
B as a destination before signing it with her secret key skA. Alice publishes this
transaction in the Bitcoin network so that every participant knows that Alice
now has n bitcoins less on her account A and Bob has received the difference on
his account B. When this transaction is successfully propagated in the network,
Bob can create new transactions from his account B to another account and
spend the previously received bitcoins. This chaining mechanism works fine for
passing over arbitrary amounts of bitcoins from one account to another, except
in the special case of the first transaction in a chain, because this is where new
bitcoins come into existence [20].

Bitcoins are created during the so-called mining process. In this procedure
every miner collects transactions which have recently been propagated in the P2P
network. Then they try to successfully create a new block out of all unconfirmed
transactions that have not yet been included in a block of the block chain. A
block essentially consists of a collection of valid transactions1, a nonce value, and
a proof of work. The proof of work is a partial pre-image attack on SHA-256 over
the whole block as input. For the attack to succeed, the hash has to be a value
smaller than the current difficulty in the Bitcoin network. In other words, the
SHA-256 hash has to start with a certain number of zero bits. The number of zero
bits is referred to as difficulty. Since SHA-256 is categorized as a cryptographic
hash function [21], it is easy to verify a previously calculated SHA-256 sum of a
block, but it is considered infeasible to generate a specific block that produces
a given hash value. To achieve this, the nonce field is constantly incremented
to search for a hash value that fulfils the described property. This brute-force
process of searching is called mining. If one client in the Bitcoin network finds
1 More precisely a Merkle-Tree Hash over those transactions, for details see the spec-
ifications [4,5,17].

558 K. Krombholz et al.

such a combination of valid transactions and nonce that yields a desired result,
he/she publishes this new block in the Bitcoin network and gets rewarded with
newly created bitcoins.

The reward comes in form of a new transaction of (currently) 25 bitcoins that
has no predecessor and is included as a special so-called coinbase transaction by
the creator of the respective block. This coinbase transaction also includes the
public key/bitcoin address of the creator and marks the first transaction of a
new chain of Bitcoin transactions [4,5,17,20].

3 Related Work

We build upon already existing work by contributing the first user study with
Bitcoin users. Eskandari et al. [8] presented a first look at the key management
of Bitcoin by providing a set of evaluation criteria for Bitcoin wallets and a
cognitive walkthrough [23] of selected wallets. The work by Eskandari et al. [8]
can be considered a first look at the usability of Bitcoin.

Moore and Christin [19] conducted an empirical analysis of Bitcoin exchange
risks. They examined the track record of 40 Bitcoin exchanges and found that
18 had been closed, with customer account balances often wiped out. They also
found that popularity is a strong indicator to predict the lifetime of an exchange,
i.e. popular exchanges have a longer lifespan.

Baur et al. [2] conducted exploratory interviews with individuals of distinct
groups and found that most stakeholders perceived the ease of use still as rather
low. They also found that the experienced usefulness varies according to the user
group.

However, no empirical study has been performed to examine user perceptions
of Bitcoin security, privacy and anonymity. For a cryptographic currency like
Bitcoin, public key cryptography is required. Regarding the usability of key
management and encryption in the context of e-mail various studies have shown
that there are numerous usability issues regarding the successful usage of public
key cryptography [11,12,22,24]. At this time, for neither domain a fully usable
concept has been successful. Human aspects of key management have already
been studied in other domains [11–13,22,24]. For the Bitcoin ecosystem however,
secure key management alone is not sufficient, as communication is not channel-
independent but an integral part of the security concept.

4 User Study Methodology

The goal of this study is to empirically investigate end user perceptions and
behavior in the Bitcoin ecosystem with an emphasis on security practices as
well as coin and key management with the involved security risks. We designed
an online questionnaire and additionally conducted qualitative interviews. We
derived specific research questions from already existing literature on Bitcoin (as
discussed in Sect. 3) as well as from a qualitative content analysis of threads from
online forums and mailing lists. Furthermore, we revised the available Bitcoin

User Experiences with Bitcoin Security and Privacy 559

wallets2 and their capabilities and used them as inspiration for our questions
and the design of the security and privacy risk scenarios. We focus on Bitcoin as
it was by far the most popular cryptographic currency at the time we conducted
this study (July 2015). While the online survey was intended to broadly measure
self-reported Bitcoin management behavior and risk perception, the interviews
were conducted to get a deeper understanding on key usability issues, causes of
common security incidents and if and how they managed to recover their keys.

4.1 Research Questions

We sought answers to the following questions regarding users’ perceptions of
Bitcoin management and Bitcoin-associated security risks:

– Q1: What are the main usage scenarios of Bitcoin?
– Q2: How do participants manage their Bitcoins? What are participants’ cur-

rent practices and how do they deal with security, privacy and anonymity?
– Q3: How do participants perceive Bitcoin-associated security risks?
– Q4: What security breaches have affected users and how did they recover their

Bitcoin keys and bitcoins?
– Q5: What are the main usability challenges that users have to deal with when

using Bitcoin?

We were also interested in categorizing CMTs in a way that users can quickly
make an informed decision based on the level of security, privacy and control
they prefer? Our categorization can be found in AppendixA.

5 Online Survey

We conducted our online survey over July 8–15, 2015. Our survey consisted
of both closed- and open-ended questions and covered the following topics:
(1) Bitcoin usage and management, (2) CMT choice and usage, (3) security, pri-
vacy, anonymity and backup behavior, (4) risk perception, and (5) demographics.
The full set of questions is presented in AppendixB. The open-ended questions
were coded independently by two researchers independently. After agreeing on
a final set of codes, we coded all answer segments for the final analysis. Coding
refers to categorizing qualitative data to facilitate analysis [18] and is a common
practice in human-computer interaction research.

5.1 Recruitment

We hosted our survey at soscisurvey.de3. To restrict our participants to Bit-
coin users only, we deliberately designed our study to exclude all non-Bitcoin
users. As it is difficult to construct such a restricted sample on platforms like
2 bitcoin.org.
3 https://www.soscisurvey.de/.

http://bitcoin.org
https://www.soscisurvey.de/

560 K. Krombholz et al.

Amazon Mechanical Turk, we decided to use Bitcoin mailing lists and forums for
recruiting. Furthermore, we compensated participants in Bitcoin. The reward for
a completed questionnaire was 4.2 mB(= 0.0042 B ≈ 1.22 USD at that time)
After completing the survey, the participants were instructed to enter a valid
Bitcoin address to receive the payment. This ensured that everyone who wanted
to receive bitcoins as a reward is a Bitcoin user and hence exactly our target
audience. Even participants who had not used Bitcoin before had to create a
Bitcoin address to receive the compensation.

To motivate participants to spread the word and thus recruit further partici-
pants, we displayed a link for re-distribution at the end of the survey. All partic-
ipants that recruited others received an additional 1 mB (≈ 0.29 USD). Table 1
shows that this additional incentive scheme was successful since we received a
high number of participants this way. As Table 1 shows, the top 5 re-distributors
of the link recruited about one quarter of the overall sample. Initially we distrib-
uted the link to our survey over the following channels: bitcointalk.org forum4,
bitcoin-list mailing list5, twitter.com6 and an Austrian bitcoin mailing list7. We
aimed for maximum transparency to avoid that our call for participation would
be misinterpreted as scam. Therefore, we proved on the initial page of our sur-
vey that we indeed hold a respectable amount of bitcoins8, by providing our
Bitcoin address9 together with a signature with the according private key (see
AppendixC for the signature).

We recruited 1,265 participants over July 8–15, 2015 via these channels.
The total sample size after filtering out 275 participants due to incomplete or
duplicated submission, or invalid entries, was 990. Of these, 85.2% claimed to
be male (m), 10.5% claimed to be female (f). 4.3% of our participants preferred
not to provide their gender. Ages ranged from 15 to 72 (median = 28.56). About
half of our participants reported to have an IT-related background. According
to the collected IP addresses, most of our participants filled out the survey in
the US, followed by the UK and Germany. 7.6% accessed the survey site over
Tor (Fig. 1). These numbers can of course be biased by VPN usage.

5.2 Validity of Our Dataset

Since the survey was designed to be anonymous and we only required a valid Bit-
coin address, we had to take special care to avoid abuse. We semi-automatically
verified the authenticity of our dataset and were able to exclude 116 submis-
sions we suspected to be fraudulent, and 160 incomplete submissions. Never-
theless, there is still a chance that we missed some manual double submissions.
However, due to our deployed countermeasures and the high quality of sub-
mitted data (e.g., the open-text questions) we suspect that the overall number
4 https://bitcointalk.org/index.php?topic=1114149.0.
5 http://sourceforge.net/p/bitcoin/mailman/bitcoin-list/?viewmonth=201507.
6 https://twitter.com/bit use.
7 http://bitcoin-austria.at/.
8 We purchased our 6.3965 BTC at https://coinfinity.co/.
9 https://blockchain.info/address/12yeU5ymM67SL5UWVSwErAgwVwwaTd1Nma.

https://bitcointalk.org/index.php?topic=1114149.0
http://sourceforge.net/p/bitcoin/mailman/bitcoin-list/?viewmonth=201507
https://twitter.com/bit_use
http://bitcoin-austria.at/
https://coinfinity.co/
https://blockchain.info/address/12yeU5ymM67SL5UWVSwErAgwVwwaTd1Nma

User Experiences with Bitcoin Security and Privacy 561

Tor

Russian Federation

Canada

Indonesia

Germany

United Kingdom

United States

0 50 10
0

15
0

20
0

Fig. 1. Countries from which our participants accessed the survey site.

Table 1. Most refereed links.

Reference Occurrences Reward in BTC/EUR/USD

455975 91 0.0952/24.78/27.18

1295 58 0.0622/16.19/17.76

699324 51 0.0552/14.37/15.76

932181 28 0.0322/8.38/9.19

637623 21 0.0252/6.56/7.19

is negligible. Among other, we deployed the following countermeasure to make
automation harder: reCAPTCHA: The last page of our survey contained a
text box to enter a Bitcoin address for receiving the compensation and a Google
reCAPTCHA. This together with the relatively low overall amount of compensa-
tions helped to mitigate fully automated submissions. Since reCAPTCHA adapts
the difficulty depending on the source IP address, some Tor users complained
about hard-to-solve CAPTCHAs. Meta data: The meta data like source IP
address and information on the user’s browser was used to pinpoint simple dou-
ble submission attempts. Time: We considered submissions below a certain
threshold fraudulent since it is impossible to provide reasonable answers under a
certain lower bound. Open-text questions: In suspicious and borderline cases
we manually checked the open-text questions to see if the user had meaningful
contributions to the survey. Reference links: The reference links also provided
a good insight when users attempted to submit multiple surveys and always
referenced their initial survey. Bitcoin address: The uniqueness of a Bitcoin
address was also an indicator for double submissions.

In case we detected double submissions, we accepted only the first submis-
sion for our dataset as well as for our compensation scheme. All subsequent
submissions were excluded. In conclusion, we did not encounter fully automated
submissions and that most fraudulent attempts can be attributed to simple
manual double submissions. Moreover, the Bitcoin community has proven to be
very forthcoming. There have been cases in which participants deliberately did
not include Bitcoin addresses, and commenting that they would like to help by
saving the reward in order to recruit more participants.

562 K. Krombholz et al.

The demographics of our sample correspond with data on the general Bitcoin
population10.

6 Qualitative Interviews

To get a deeper understanding of the findings from our online survey, we con-
ducted an additional field session with qualitative interviews.

6.1 Design and Recruitment

We recruited participants via a local Bitcoin mailing list and conducted a two-
hour field session at a local bar that accepts bitcoins. All interviewees are regu-
larly using Bitcoin and had previously completed our online questionnaire. Two
researchers were present during the field session, one conducted the interview
and the other one took notes. As all participants were very particular about
preserving their privacy, we chose not to audio-record the interviews.

For the evaluation of our qualitative data, we focused on the exploration
of ideas and insights of the participants. Some of the numbers gathered from
the interviews will be used as rough indicators to discuss and complement the
results from our quantitative survey. We interviewed 10 participants in total. All
participants were male and frequent users of Bitcoin and other crypto-currencies.
All of them reported to have an IT-related background. The purpose of the
qualitative interviews was mainly to complement our quantitative results and to
explain phenomena and trends from our online survey. After 10 participants, we
reached saturation and little to no further insights were gained, so we concluded
the study.

6.2 Coding

After the interviews, we went through the collected data and produced an initial
set of codes. We traversed the data segments collected from each participant for
each question and also included statements that did not directly evolve from
a question. Two researchers performed the initial coding independently of each
other to minimize the susceptibility of biased interpretation. After the initial
coding process, we revised the retrieved codes and discussed recurring themes,
patterns and interconnections. After agreeing on a final set of codes, we coded
the entire interview data. We coded all data segments, regardless if they emerged
directly from a question or a continuative discussion.

7 Results

In this section, we present an analysis of the participants’ responses addressing
our research questions defined in Sect. 4.1. At the beginning of each section
we analyse the results from our online survey, whereas at the end we compare
these results with our qualitative interviews and try to correlate and explain our
findings.
10 http://www.coindesk.com/new-coindesk-report-reveals-who-really-uses-bitcoin/.

http://www.coindesk.com/new-coindesk-report-reveals-who-really-uses-bitcoin/

User Experiences with Bitcoin Security and Privacy 563

7.1 General Bitcoin Usage (Q1)

Most participants reported to use Bitcoins for tips and donations (38.0%),
followed by virtual goods, such as web hosting, online newspapers (33.3%),
online shopping (27.5%), altcoins (26.5%), gambling (26.5%) and Bitcoin gift
cards (19.9%). About 5% self-reported to buy or have bought drugs with bit-
coins. 30.2% of our sample reported to use Bitcoin at least once a week, 25%
stated that they use Bitcoin at least once a month and 19% at least once a day.
The remainder of the participants indicated to use Bitcoin at least once a year or
even less. These results suggest that the majority within our survey frequently
uses Bitcoin.

We also asked our participants about the amount of bitcoins they are cur-
rently holding. About half of the participants did not want to specify. According
to their reports, our sample holds approximately 8000 B in total. The major-
ity of users (70%) started to use Bitcoin between 2013 and 2015. 17% started
between 2011 and 2012. 58.0% reported to use other crypto currencies in addi-
tion to Bitcoin, most frequently Dogecoin and Litecoin. The most popular Bit-
coin exchanges in our sample are BTCE (20.9%), Bittrex (14.0%) and Bitstamp
(13.0%). 11.4% of our participants are currently mining bitcoins. Most of them
started mining after 2014. Many of those who started earlier have stopped min-
ing as they currently consider it infeasible. 195 (19.7%) participants claimed to
be running a full Bitcoin server that is reachable from the Internet. The top-
mentioned reason for running a Bitcoin server was to support the Bitcoin net-
work (60.5%), followed by fast transaction propagation (46.6%), network analysis
(30.3%) and double-spending detection (26.1%).

All participants from our qualitative interviews are frequent Bitcoin users,
and some of them are active in the local Bitcoin association. Most interviewees
mentioned that the decentralized nature of Bitcoin was among the main reasons
to start using Bitcoin. The second-most mentioned reason was simply curiosity.
One participant who used to live in Crimea at the time the Ukrainian-Russian
conflict started mentioned socio-political reasons. He used to work for a US
company at that time and needed a safe and cheap option to receive his salary
in Crimea. He furthermore wanted to make sure to not lose any money due to
the annexation to the Russian Federation. In his opinion, Bitcoin was the best
option and according to him, many people started using Bitcoin at that time in
Crimea. Some participants also mined Bitcoins some years ago when it was still
profitable to mine at small scale.

7.2 Practices of Bitcoin Management (Q2)

Bitcoin Wallets and Backup Behavior. Table 3 shows the most widely used
Bitcoin wallets. The participants could mention multiple wallets as it is a com-
mon scenario that users use more than one wallet. The table also shows the
number of participants from our sample who use a certain wallet as well as the
percentage. Furthermore, Table 4 shows whether the users protect their wallets
with a password and if these wallets are encrypted. Our findings show that the

564 K. Krombholz et al.

majority of users protect their wallets with a password. In case of web clients, we
observed a lack of background knowledge. For example, 47.7% of Coinbase users
in our sample say that their wallet is encrypted and 34% claim that they do not
know if it is encrypted. We observed a similar trend for Xapo which is the third-
most used wallet in our sample. Just like Coinbase, it is also a web-hosted tool
and, similarly to Coinbase, only about half of the users say it is encrypted and
about a third does not know if it is encrypted. Regarding backups, only a third
of Coinbase users and 43% of Xapo users backup their wallets. 33.9% of Coinbase
and 28.5% of Xapo users do not know whether their wallet is backed up. We
also found that Bitcoin users with more than 0.42B (100 USD) do not backup
their CMT more often than users with less bitcoins. This effect is statistically
significant in our sample (χ2(1) = 5.1, p = 0.02).

We also asked our participants whether they create additional backups in
case their primary backup gets lost or stolen. In our sample, Bitcoin Core users
have the highest rate of additional backups. 64% of them indicated to make a
secondary backup of their wallet. Table 2 shows self-reported properties of wallet
backups. According to our data, none of our participants stores a backup on an
air-gapped computer. The most reported backup properties were encryption and
password protection. According to our sample, 197 backups are stored in a cloud.

59.7% of our participants only use one wallet to manage their bitcoins. 22.7%
use two, and 10.6% use three wallets. The remaining 7% use four or more wallets.
The maximum number of wallets a participant reported to use was 14. This
participant justified this high number by reporting that he wanted to try out the
wallets before choosing those that met his requirements best. About half of our
participants who used a web client did this exclusively to manage their bitcoins.
The other half used a web client in addition to a local client. To our surprise
our results show that most coins of our participants are stored in Armory11. The
Armory users in our sample have about 3818 B in their Armorys, where the
top five users reported to have 2,000 B, 885 B, 300 B, 230 B and 150 B.
The highest reported number of bitcoins stored in a participant’s web client
was 100 B. The reported sum of all coins stored in Coinbase is 238 B, in Xapo
it is 157 B. Figure 2 illustrates the accumulated bitcoins per wallet as reported
by our participants.

Anonymity. We found that 32.3% of our participants think that Bitcoin is per-
se anonymous while it is in fact only pseudonymous. 47% thinks that Bitcoin is
not per-se anonymous but can be used anonymously. However, about 80% think
that it is possible to follow their transactions. 25% reported to have used Bitcoin
over Tor to preserve their anonymity.

We also asked participants if they take any additional steps to stay anony-
mous. 18% reported to frequently apply methods to stay anonymous on the
Bitcoin network. Most of them reported to use Bitcoin over Tor followed by mul-
tiple addresses, mixing services, multiple wallets and VPN services. As shown

11 https://bitcoinarmory.com/.

https://bitcoinarmory.com/

User Experiences with Bitcoin Security and Privacy 565

Fig. 2. Self-reported wallet usage and accumulated hosted bitcoins per wallet.

Table 2. Backup properties in absolute mentions in descending order; a user can have
multiple wallets and multiple backups.

Backup properties Mentions

My backup is encrypted 662

My backup is password protected 629

My backup is stored on external storage (e.g. USB drive) 430

My backup is stored on paper 334

My backup is stored in the cloud (e.g. Dropbox) 197

My backup is stored on an air-gapped device 0

Table 3. Properties of the most frequently used wallets mentioned by our participants.

CMT Number Percent B

Coinbase 314 31.7 238

Bitcoin core 236 23.8 752

Xapo 179 18.1 157

Electrum 125 12.6 226

MyCelium 97 9.8 62

by Biryukov et al. [1,3] using Bitcoin over Tor creates an attack vector for deter-
ministic and stealthy man-in-the-middle attacks and fingerprinting.

7.3 Risk Perception (Q3)

We were also interested in user perceptions of risks associated with Bitcoin. We
provided the participants with 11 risk scenarios. We selected the risk scenarios
based on findings from scientific literature and evidence from online resources.

566 K. Krombholz et al.

Table 4. Properties of the most mentioned CMTs. The three blocked columns contain
information on whether the CMT is encrypted, if it is backed up, whether there exists
an additional backup and the mentions in percent (Yes, No and I don’t know (IDK)).
The rightmost column contains the sum of bitcoins stored in a respective CMT by our
participants.

Encrypted? Backup? Additional backup?

CMT Yes No IDK Yes No IDK Yes No IDK

Coinbase 47.5 18.5 34.0 35.5 30.6 33.9 30.3 66.9 2.8

Bitcoin core 72.8 16.1 11.1 76.3 14.0 9.7 64.0 32.2 3.8

Xapo 51.4 19.0 29.9 43.0 28.5 28.5 41.3 57.5 1.2

Electrum 72.8 15.2 22.0 77.6 16.0 6.4 55.2 44.0 0.8

MyCelium 61.9 21.6 16.5 83.5 12.4 4.1 52.6 47.2 0.2

For each risk scenario, we provided an easy-to-understand description and asked
the participants whether they think the risk is likely or unlikely to occur. Figure 3
shows the participants’ risk estimation. Our results show that the participants
consider value fluctuation as the highest risk, followed by vulnerabilities in hosted
wallets and Bitcoin theft via malware. Our participants estimated the risk for
cryptographic flaws as the lowest, followed by double-spending attacks and DoS
attacks on the Bitcoin network.

Fig. 3. User perceptions of risk scenarios in percentage of participants (N = 990).

User Experiences with Bitcoin Security and Privacy 567

7.4 Security Breaches (Q4)

About 22.5% indicated to have lost bitcoins or Bitcoin keys at least once. Of
those, 43.2% mentioned that it was their own fault (e.g., formatted hard drive or
lost a physical device with Bitcoin keys). 26.5% reported that their loss stemmed
from a hardware failure (e.g., a broken hard drive), followed by software fail-
ure (24.4%; e.g. keyfile corruption) and security breaches (18% e.g., malware,
hacker).

The majority (77.6%) among those who lost bitcoins did not want to indicate
whether they were able to recover their keys. Of those who provided an answer,
65% were not able to recover their keys. Overall, our participants reported to
have lost about 660.6873 bitcoins. However, it must be taken into account that
we did not ask when the coins were lost. Hence, interpreting this result we must
take into consideration that the Bitcoin exchange rate is highly volatile and it
is therefore hard to provide an overall estimation in USD. About 40% of our
participants reported to have lost money due to a self-classified major security
breach. 13.1% of our overall sample reported to have lost bitcoins in HYIPS
(high-yield investment programs) and pyramid schemes. 7.9% lost money at Mt.
Gox.

We also gave our participants the opportunity to describe how they dealt with
the incident. Most participants stated that they did not do anything to recover
their keys and simply accepted the loss. Some argued that the financial loss was
not worth the effort to take further steps or that they felt helpless as they didn’t
know what to do. Those who actually took action most frequently mentioned
that they filed claims and contacted the exchange or online wallet provider.
Those who lost money to a malicious online wallet reported to have moved to
other types of wallets instead of hosted/online wallets. The participants who lost
money in HYIPS mostly stated that they started to use less risky investments
and learned from their previous mistakes. Irrespective of the security breach,
many participants reported to have spread the word over forums on the Internet
and shared their experiences with other affected users.

Participant Statements

– “I follow the ‘do not invest more than you’re ready to lose’ rule.” (P3848)
– “I just had to accept that my money was stolen ... and that I learned my

lesson to never use exchanges as wallets. Keep everything in your own hand.”
(P3763)

– “Just learned from it. It was exceedingly stupid on my part.” (P853)

Eight participants from our qualitative interviews reported that they have
already experienced an intentional or accidental key and/or Bitcoin loss. Three
participants were affected from the Mt. Gox security breach and two of them
reported to have filed a claim on Kraken12. One participant reported to have
lost a physical Casascius13 Bitcoin but then stopped searching for it as it was
12 https://www.kraken.com/.
13 https://www.casascius.com/.

https://www.kraken.com/
https://www.casascius.com/

568 K. Krombholz et al.

only worth about 9 USD at that time. Others also mentioned to have lost their
keys due to device failure, corrupted HDDs, or software failure.

7.5 Perceptions of Usability (Q5)

Even though most participants of our qualitative interviews were very much
concerned about security and privacy aspects of Bitcoin management, eight of
them said that they would recommend web wallets and deterministic wallets to
non-tech-savvy Bitcoin users. Convenience and easiness of use were highlighted
as the main benefits. One participant said that he would definitely recommend
a wallet where the private key is stored on a central server to make key recov-
ery easier and to obviate the need for comprehensive backups as well as that
mnemonics would help. Six participants also said that they would recommend
MyCelium14 as the most usable wallet. Those who had already used MyCelium
consider the paper backup procedure as the most usable and secure way. To
create a paper backup with MyCelium, the user has to print out a template that
contains some parts of the key and then lets the user fill out the empty spots
manually. Some participants expressed initial discomfort when they used paper
wallets.

Most interviewees also highlighted the need for fundamental education in
early years of childhood. P2 said that Bitcoin is inherently complex, that the
fundamental idea of public key cryptography should be taught in school and
monetary systems are a matter of culture.

Two participants also highlighted that user interfaces should be simplified
and minimalized. Many participants stated that for a fast proliferation of Bitcoin,
simple and intuitive UIs are more important than security. They argued that
computers proliferated even though most people do not know how computers
work and that security is not necessarily an argument for large-scale adoption.
They provided examples such as cars in the 1940s, computers, credit cards and
WhatsApp. They also said that the amount of money that is circulating in the
Bitcoin network is low enough to take the risk of loosing it and compared this
scenario to the risk of loosing cash. Some participants also proposed a dedicated
device with an intuitive UI for key management and think that such an artifact
would be the most secure and usable option.

Participant Statements

– “It somehow didn’t feel right for me to go out of the digital realm.” (P6 on
paper wallets)

– “Children learn about our monetary system in their very early days in primary
school. This is why society knows how to use cash and credit cards. I’m sure
it could be the same thing with a decentralized crypto-currency.” (P7)

14 https://mycelium.com/.

https://mycelium.com/

User Experiences with Bitcoin Security and Privacy 569

8 Discussion

The goal of this paper was to answer the research questions provided in Sect. 4.1
in order to understand how users interact with the Bitcoin ecosystem. As this is
the first-ever user study focused on user experiences with Bitcoin security and
privacy, we gathered useful insights. In the following we discuss our results in
the context of already existing works in the field.

Regarding Bitcoin management tools and practices (Q2), we found that two
of the most widely used CMTs were web-hosted solutions that obviate the
need for users to deal with key management and backups. Our results show
that our participants had clear preferences regarding their choice of CMT. In
contrary, this is not the case for Bitcoin exchanges. Our data shows that the
Bitcoin exchanges chosen by our participants were almost evenly distributed.
Even though our data reveals a clear tendency towards web-hosted solutions,
these CMTs do not host the majority of our participants’ bitcoins. According to
our participants’ self-reported data, the highest amount of accumulated bitcoins
is hosted in Armory. At the time of writing, if used correctly, Armory is one of
the most secure solutions.

For the two most widely used web-hosted CMTs, about a third of our par-
ticipants are unaware of whether their wallet is encrypted or backed up. In such
a scenario, users shift responsibilities to a third party. Even though this seems
to be a convenient and usable solution for non-expert users, it implies that the
user trusts these third parties to take care of their security. About 50% of web
client users indicated to use an additional local client to store their virtual assets.
According to our results, users that have a higher number of bitcoins do not nec-
essarily back up their wallets more often. Also, MyCelium users back up their
wallets more often than others. Hence we conclude that backup motivation and
respectively fatigue depend highly on usability and not on the number of coins.

As the answer to Q4 indicates, participants have already lost money to mali-
cious hosted-wallet providers. Also, our participants perceived vulnerabilities
in hosted wallets as the second highest among our risk scenarios (Q5). Some
participants from our qualitative interviews said that they would recommend
inexperienced users to start with a hosted wallet due to the usability benefits as
for most other solutions users are required to have at least a basic understanding
of the underlying basics of Bitcoin and the blockchain.

Bitcoin is a pseudonymous system, whereas a wide-spread myth says that it
is per-se anonymous. More than a third of our participants still believe in this
myth and reported that they think that Bitcoin is fully anonymous. About half
of our participants are aware that Bitcoin is not per-se anonymous, but that it
can be used anonymously. Regarding anonymity measures, many users reported
to use Bitcoin over Tor, which in fact creates an attack vector for deterministic
and stealthy MITM attacks, as shown in [3].

Our results also suggest that our participants trust the cryptography behind
Bitcoin and are aware of risks according to value fluctuation and software vul-
nerabilities. Poor usability and the lack of knowledge are major contributors to
security failures. Almost a fourth of our participants indicated that they had

570 K. Krombholz et al.

already lost bitcoins or Bitcoin keys at least once (Q5). To our surprise, almost
half of those who lost bitcoins due to a self-induced error which indicates that
state of the art CMTs are sometimes still difficult to use or require users to man-
ually take care of security tasks, such as backups and encryption. Our results
also indicate that the Bitcoin ecosystem is mostly utilized for tipping and dona-
tions as well as acquiring digital goods, but to some extend also for criminal
activity and adventurous gambling.

9 Conclusion

In this work we presented the first user study to examine how users interact
with the Bitcoin ecosystem in terms of security and privacy. We conducted an
online survey with 990 Bitcoin users and qualitative interviews with a subset of
10 participants. Furthermore, we introduced the term Coin Management Tools
(CMTs) to describe tools that let users manage their virtual assets (keys) and
interact with the Bitcoin network. Additionally, we proposed a method for cat-
egorizing CMTs according to the degree of control and verifiability a user can
exercise with this client.

We found that managing bitcoins is still a major challenge for many users,
as many of them do not apply sufficient security measures such as encryption
and backups. We found that many participants were not even aware of security
features provided by their used CMT. Two of the most widely used CMTs among
our participants were web-hosted solutions. About half of their users reported
to use such solutions exclusively, while the other half also used local clients.
Even though web clients ought to be a usable and convenient solution, they
require a certain level of trust and shift the responsibilities of encryption and
managing backups to a third party. We also found that 22.5% of our participants
have already experienced security breaches and lost bitcoins. About half of them
mentioned a self-induced error as the reason, which highlights that users find it
still difficult to manage their bitcoins in a secure way.

We believe that our insights and suggestions are an important first step
towards improving the usability of Bitcoin security. In order to guarantee secure
interactions with the Bitcoin ecosystem to both expert and non-expert users,
we must re-think the concept of Bitcoin management, since it is more than just
the secure handling of secret keys. Bitcoin is a decentralized system where the
interactions between peers and the propagation and verification of messages and
data is important. If this aspect is ignored, Bitcoin would just consist of signed
numbers without value.

Acknowledgements. This research was funded by COMET K1, FFG – Austrian
Research Promotion Agency and by FFG Bridge Early Stage 846573 A2Bit. We would
also like to thank Martin Mulazzani, Artemios G. Voyiatzis and Matthew Smith for
their useful comments and feedback. Furthermore, we would like to thank Elizabeth
Stobert for her valuable feedback and for her help in recruiting participants.

User Experiences with Bitcoin Security and Privacy 571

A CMT Categorization

In this section we discuss the term Coin Management Tool and provide a method-
ology to categorize CMTs according to the degree of control and verifiability a
user can exercise with his respective client. The proposed scheme is tailored to
Bitcoin-like cryptocurrencies, but explicitly designed in an utmost generic way
so that it can be applied to other derived cryptocurrencies as long as they are
not fundamentally different in their design. Our approach used the evaluation
framework from [8] as a starting point. A categorization according to our scheme
allows users to quickly distinguish clients according to their underlying security
model and hence allows users to make an informed decision on the level of con-
fidence and trust they can put into an individual client.

A.1 Definitions

When Bitcoin was in its infancy bitcoind was the only available Bitcoin client
which performed all required tasks: mining management, P2P network communi-
cation and blockchain management, key management and virtual asset manage-
ment. With the increased popularity of Bitcoin and cryptocurrencies in general,
more and more software was developed which focused on a subset of individual
tasks of the original implementation. Moreover, the design of Bitcoin allows users
to use it even if they do not run mining software or a full P2P client (full node).
As a result there exists software with varying feature sets where the handling of
public-private key pairs is the most sensitive and hence the most common core
feature. A Bitcoin wallet was originally defined as a collection of private keys15.
Since this definition is very narrow, we introduced the broader definition of a
Coin Management Tool (CMT) to account for the other areas without whom
most cryptocurrencies would not work. Especially the network and blockchain
layer of Bitcoin and other cryptocurrencies is not only important for the integrity
of the system as a whole, but has a significant impact on the security and privacy
of each and every end user.

A.2 Categorization

To categorize CMTs, we first identified critical CMT tasks which are directly
related to security and privacy issues. This covers aspects regarding key man-
agement like generating keys/addresses and signing transactions, as well as P2P
network communication and blockchain management like handling connections
as well as verifying and storing the blockchain. These core tasks can be used
to divide CMTs into five different categories. A client can be in more than one
category depending on its configuration.

– cat. 0: A client which runs on a user-controlled device and is able to per-
form key management operations, but cannot perform any P2P network

15 https://en.bitcoin.it/wiki/Wallet.

https://en.bitcoin.it/wiki/Wallet

572 K. Krombholz et al.

communication. Therefore, it is not a stand-alone solution. This includes some
dedicated hardware clients/wallets and cold-storage clients which require a
second online device for transaction processing.

– cat. I: A client which runs on a user-controlled device and performs all P2P
network communication and blockchain verification related tasks, keeps a
copy of the full blockchain, is able to perform all key management related
operations and executes the mining algorithm. In other words, this is a client
which can perform all required tasks to operate a cryptographic currency
(e.g., the Bitcoin core implementation bitcoind when the option setgenerate
true is set).

– cat. II: A client which runs on a user-controlled device and performs all P2P
tasks related to network communication and blockchain verification, keeps a
copy of the full blockchain and is able to perform all key management related
operations. This type of client is sometimes referred to as thick-client or full-
node.

– cat. III: A client which runs on a user-controlled device and performs cer-
tain P2P tasks related to network communication and blockchain verification
but does not keep a copy of the full blockchain, although, it is able to per-
form all key- management-related operations. This type of client is sometimes
referred to as thin-client or mobile-client/wallet and includes so-called SPV-
clients/wallets (Simplified Payment Verification) e.g., Electrum.

– cat. IV: A client which does not run on a user-controlled device and where
all tasks are performed by a trusted third party on behalf of the user. This
type of client is sometimes referred to as hosted- or web-client/wallet. Thereby
it is not relevant if the key management is handled in the browser (e.g., via
JavaScript) since this would require the user to download (and verify) the
script code from the website of the third party every time he/she wants to
use it.

B Interview Questions

Questions with answer options as “()” are multiple choice checkboxes whereas
answer possibilities marked alphabetical e.g. “a)” are single selections.

B.1 BTC Demographics

Q1 Please input which year you started using Bitcoin:
a) 2009 b) 2010 c) 2011 d) 2012 e) 2013 f) 2014 g) 2015

Q2 Select which main features are responsible for you using Bitcoin (multiple
selections possible):
() The opportunity of financial gain
() Curiosity
() Anonymous nature
() Decentralized nature
() A friend/colleague suggested to me to start using Bitcoin

User Experiences with Bitcoin Security and Privacy 573

() The possibility to internationally transfer money with relatively low fee
() The possibility to accept bitcoins for my services or for my products
() Other:

Q3 What is the estimated sum of bitcoins you are holding?
a) I hold approximately b) I do not want to specify

Q4 Please provide what services or products you pay for with bitcoins (multiple
selections possible):
() Bars, restaurants
() Bitcoin gift cards
() Donations, tipping
() Drugs
() Gambling sites
() Hotels, travel
() Online marketplaces and auctions
() Online shopping (Newegg, ...)
() Altcoin (e.g. Litecoin, ...)
() Physical stores that accept bitcoins
() Underground marketplaces
() Virtual goods (webhosting, online newspapers, ...)
() Medium for currency exchange
() Other:

Q5 What do you think are the most likely risks associated with Bitcoin?
Q6 Please select the crypto currencies you are holding or using besides Bitcoin

(multiple selections possible):
() I do not use other crypto currencies
() BanxShares
() BitShares
() BlackCoin
() Bytecoin
() Counterparty
() Dash
() Dogecoin
() Litecoin
() MaidSafeCoin
() MonaCoin
() Monero
() Namecoin
() Nxt
() Peercoin
() Primecoin
() Ripple
() Startcoin
() Stellar
() SuperNET

574 K. Krombholz et al.

() Vertcoin
() YbCoin
() Other

Q7 Select the Bitcoin exchanges you have used in the past or you are using on
regularly (multiple selections possible):
() None
() BanxIO
() Bitcoin Exchange Thailand
() Bittrex
() Bitcoin Indonesia
() bitcoin.de
() Bitfinex
() Bitstamp
() BitX South Africa
() BTC-e
() BTC38
() BTCChina
() CCEDK
() Cryptsy
() Gatecoin
() hibtc
() Kraken
() Mt. Gox
() OKCoin
() Poloniex
() QuadrigaCX
() The Rock Trading
() VirWox
() Other:

Q8 What do you think are the greatest benefits of Bitcoin?
Q9 How often do you perform Bitcoin transactions?

a) At least once a day b) At least once a week c) At least once a month
d) At least once every six months e) At least once a year f) Less than once
a year

B.2 BTC Wallets

Q10 Please tick which wallets you are currently using (multiple selec-
tions possible):
() Airbitz
() Armory
() Bitcoin Core
() Bitcoin Wallet (Schildbach Wallet)
() BitGo

User Experiences with Bitcoin Security and Privacy 575

() Bither
() breadwallet
() Circle
() Coinapult
() Coinbase
() Coinkite
() Coinomi
() Electrum
() Green Address
() Hive
() Ledger Nano
() mSIGNA
() MultiBit
() Mycelium
() Ninki
() TREZOR
() Xapo
() Not in list

Q11 Why did you choose to use multiple wallets to manage your bitcoins?

B.3 Wallet Usage

For every selected wallet in Q10 we asked the following questions.

Q12 Why did you choose 〈wallet-name〉 to manage your Bitcoins?
Q13 How many bitcoins do you have approximately in this wallet?

a) I hold approximately 〈textfield〉 bitcoins. b) I do not want to specify
Q14 Is this wallet password protected?

a) Yes b) No c) I do not care d) I do not know
Q15 Is this wallet encrypted?

a) Yes b) No c) I do not care d) I do not know
Q16 Is this wallet backed up?

a) Yes b) No c) I do not know

B.4 BTC Mining

Q17 Are you currently mining bitcoins?
a) Yes, since b) No, but I have mined from-to c) No, I have never mined
bitcoins

Q18 How many bitcoins have you mined in total?
a) I mined approximately b) I do not want to specify

Q19 Do you or have you participated in mining pools?
a) Yes b) No

576 K. Krombholz et al.

Q20 Please tick the names of the mining pools you have or are participating in
(multiple mentions possible):
() 21 Inc.
() AntPool
() Bitcoin Affiliate Network
() BitFury
() BitMinter
() Bitsolo
() BTCChina Pool
() BTC Guild
() BTC Nuggets
() BW.COM
() EclipseMC
() Eligius
() F2Pool
() GHash.IO
() Kano CKPool
() KnCMiner
() MegaBigPower
() P2Pool
() Slush
() Telco 214
() Other:

B.5 BTC Server

Q21 Do you run a full Bitcoin server that is reachable for others from the
Internet?
a) Yes b) No

Q22 Please provide some reasons on why you operate a full Bitcoin server (mul-
tiple selections possible):
() Fast transaction propagation
() Double-spending detection
() Network analysis
() Support the Bitcoin network
() Other

B.6 BTC Security Risks

Q23 How would you estimate the risk of monetary loss for Bitcoin compared to
credit cards?
(7 Point Likert-Scale from “High” to “Low”)

Q24 How high do you think is the risk of becoming a victim of a successful
double spending attack?
(7 Point Likert-Scale from “High” to “Low”)

User Experiences with Bitcoin Security and Privacy 577

Q25 How high or low would you estimate the risk for malware that steals your
Bitcoins?
(7 Point Likert-Scale from “High” to “Low”)

Q26 How would you estimate the risk of monetary theft in case the device with
your wallet gets lost or stolen?
(7 Point Likert-Scale from “High” to “Low”)

Q27 How would you estimate the risk of de-anonymization?
(7 Point Likert-Scale from “High” to “Low”)

Q28 How high do you think the risk of cryptographic flaws is?
(7 Point Likert-Scale from “High” to “Low”)

Q29 How high do you think is the risk of security vulnerabilities in hosted/web
wallets or Exchange services?
(7 Point Likert-Scale from “High” to “Low”)

Q30 How high do you think is the risk of key loss due to a device failure?
(7 Point Likert-Scale from “High” to “Low”)

Q31 How high do you think is the risk that the Bitcoin network is temporarily
not available?
(7 Point Likert-Scale from “High” to “Low”)

Q32 How high do you think is the risk of a centralization of mining?
(7 Point Likert-Scale from “High” to “Low”)

Q33 How high do you think is the risk of a strong fluctuation in the Bitcoin
exchange rate (e.g. BTC to USD and vice versa)?
(7 Point Likert-Scale from “High” to “Low”)

B.7 BTC Anonymity

Q34 Do you think that Bitcoin usage is anonymous?
a) Yes, Bitcoin is fully anonymous b) No, Bitcoin is not anonymous c) Not
per se, but it can be used in an anonymous manner

Q35 Do you think it is possible to follow your transactions?
a) Yes b) No

Q36 Have you ever used Bitcoin over Tor<b title = “Tor is free software and
an open network that helps you defend against traffic analysis, a form of
network surveillance that threatens personal freedom and privacy, confidential
business activities and relationships, and state security. More info at www.
torproject.org”?
a) Yes b) No

Q37 Do you take additional steps to ensure your privacy using Bitcoin?
a) Yes b) No

www.torproject.org
www.torproject.org

578 K. Krombholz et al.

B.8 BTC Security Breaches

Q38 Have you ever lost your bitcoins or Bitcoin keys?
a) Yes b) No

Q39 Please select the reason for your key/Bitcoin loss (multiple selections pos-
sible):
() Hardware failure (e.g. hard drive broke, etc.)
() Software failure (e.g. keyfile corruption, etc.)
() Self induced event (e.g. hard drive formatted, physical device lost, etc.)
() Malicious event (e.g. malware, hacker, etc.)
() Other

Q40 Have you been able to recover your keys?
a) Yes, b) No,

Q41 How many bitcoins did you loose due to this incident?
a) bitcoins b) I do not want to specify

Q42 Please select the security incidents you have been affected by (multiple
selections possible):
() None
() Mt. Gox incident
() Silk Road bust
() inputs.io hack
() Pony botnet malware
() Pyramid schemes/HYIPS (High yield investment programs)
() Mining hardware scams (Labcoin, Active Mining Corporation, Ice Drill,

AsicMiningEquipment.com Dragon-Miner.com, ...)
() Mining pool scams
() Scam wallets
() Bitcoin exchange scam
() Other:

Q43 How did you deal with the incident?
Q44 What was the approximate value of your lost bitcoins in USD?

a) USD b) I do not want to specify c) I do not know

B.9 Demographics

Q45 Please provide your age:
Q45 Please provide your gender:

a) Female b) Male c) Do not want to specify
Q46 Please select your highest completed level of education:

a) Did Not Complete High School b) High School/GED c) Some College d)
Bachelor’s Degree e) Master’s Degree f) Advanced Graduate work or Ph.D.
g) Not Sure

Q47 Do you work or study in a computer science related field?
a) Yes b) No

User Experiences with Bitcoin Security and Privacy 579

Q48 How would you describe yourself in terms of privacy behaviour?
A continouos slider between “I am not concerned about my privacy” and “I
would describe myself as a privacy fundamentalist”

B.10 End

Q49 You can enter your Bitcoin address in the textfield below. Please make
sure that your address is correct in order to receive your incentive.

Q49 This is the place where you can provide suggestions, complaints or any
other information we may have forgotten to ask in the questionnaire.

C Address Signature

./bitcoin-cli signmessage 12yeU5ymM67SL5UWVSwErAgwVwwaTd1Nma\
‘‘https://www.soscisurvey.de/BTC_study/"
HzzNxFmeRhbhAwVZ4DsraBkXkW7JYjO0tAlIPAnHB2z5P12eddFilWXJmwGm\
PkgS/v8W0DNr0Z1qLwroPbWWMoE=

D Reference link issue

We had a problem in our implementation of this last page of the survey which
also showed the link to the survey containing a random reference which should
identify this particular participant in our rewarding scheme. If the CAPTCHA
was not solved successfully the side reloads itself and would also calculate and
show a different reference link. The references link will only be stored and linked
to this particular participant if the CAPTCHA is entered correctly. Therefore,
all users which just copied the first link and then entered a wrong CAPTCHA
distributed a link we where not able to attribute correctly at the end of the
survey.

References

1. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in Bit-
coin P2P network. CoRR, abs/1405.7418 (2014)

2. Baur, A.W., Bühler, J., Bick, M., Bonorden, C.S.: Cryptocurrencies as a disrup-
tion? Empirical findings on user adoption and future potential of bitcoin and co. In:
Janssen, M., Mäntymäki, M., Hidders, J., Klievink, B., Lamersdorf, W., Loenen,
B., Zuiderwijk, A. (eds.) I3E 2015. LNCS, vol. 9373, pp. 63–80. Springer, Cham
(2015). doi:10.1007/978-3-319-25013-7 6

3. Biryukov, A., Pustogarov, I.: Bitcoin over Tor isn’t a good idea. arXiv preprint
arXiv:1410.6079 (2014)

4. Bitcoin Community: Bitcoin developer guide, October 2014. Accessed 14 Oct 2014
5. Bitcoin Community: Bitcoin protocol specification, October 2014. Accessed 14 Oct

2014
6. Blockchain.info: Bitcoin currency statistics, April 2014. Accessed 05 Apr 2014

http://dx.doi.org/10.1007/978-3-319-25013-7_6
http://arxiv.org/abs/1410.6079

580 K. Krombholz et al.

7. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for Bitcoin and cryptocurrencies (2015)

8. Eskandari, S., Barrera, D., Stobert, E., Clark, J.: A first look at the usability of
Bitcoin key management. In: Workshop on Usable Security (USEC) (2015)

9. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: 2011
IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE
International Conference on Social Computing (2011)

10. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 10

11. Garfinkel, S.L., Margrave, D., Schiller, J.I., Nordlander, E., Miller, R.C.: How to
make secure email easier to use. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 701–710. ACM (2005)

12. Garfinkel, S.L., Miller, R.C.: Johnny 2: a user test of key continuity management
with S/MIME and outlook express. In: Proceedings of the 2005 Symposium on
Usable Privacy and Security, pp. 13–24. ACM (2005)

13. Gaw, S., Felten, E.W., Fernandez-Kelly, P.: Secrecy, flagging, and paranoia: adop-
tion criteria in encrypted email. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 591–600. ACM (2006)

14. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery
of blocks and transactions in Bitcoin. Technical report, Cryptology ePrint Archive,
Report 2015/578 (2015). http://eprint.iacr.org

15. Goldfeder, S., Gennaro, R., Kalodner, H., Bonneau, J., Kroll, J., Felten, E.W.,
Narayanan, A.: Securing Bitcoin wallets via a new DSA/ECDSA threshold signa-
ture scheme. Accessed 09 June 2015

16. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s
peer-to-peer network. In: 24th USENIX Security Symposium (USENIX Security
15), Washington, D.C., pp. 129–144. USENIX Association, August 2015

17. Okupski, K.: Bitcoin protocol specification, October 2014. Accessed 14 Oct 2014
18. Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer Inter-

action. Wiley, Hoboken (2010)
19. Moore, T., Christin, N.: Beware the middleman: empirical analysis of Bitcoin-

exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1 3

20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, December 2008
21. NIST: FIPS 180–4: Secure Hash Standard (SHS), March 2012
22. Sheng, S., Broderick, L., Koranda, C.A., Hyland, J.J.: Why Johnny still can’t

encrypt: evaluating the usability of email encryption software. In: Symposium on
Usable Privacy and Security (2006)

23. Wharton, C., Rieman, J., Lewis, C., Polson, P.: The cognitive walkthrough method:
a practitioner’s guide. In: Usability Inspection Methods, pp. 105–140. Wiley (1994)

24. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of
PGP 5.0. In: Usenix Security, vol. 1999 (1999)

http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org
http://dx.doi.org/10.1007/978-3-642-39884-1_3

Refund Attacks on Bitcoin’s Payment Protocol

Patrick McCorry(B), Siamak F. Shahandashti, and Feng Hao

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{patrick.mccorry,siamak.shahandashti,feng.hao}@ncl.ac.uk

Abstract. BIP70 is a community-accepted Payment Protocol standard
that governs how merchants and customers perform payments in Bitcoin.
This standard is supported by most major wallets and the two dominant
Payment Processors: Coinbase and BitPay, who collectively provide the
infrastructure for accepting Bitcoin as a form of payment to more than
100,000 merchants. In this paper, we present new attacks on the Payment
Protocol, which affect all BIP70 merchants. The Silkroad Trader attack
highlights an authentication vulnerability in the Payment Protocol while
the Marketplace Trader attack exploits the refund policies of existing
Payment Processors. Both attacks have been experimentally verified on
real-life merchants using a modified Bitcoin wallet. The attacks have been
acknowledged by both Coinbase and Bitpay with temporary mitigation
measures put in place. However, to fully address the identified issues will
require revising the BIP70 standard. We present a concrete proposal to
revise BIP70 by providing the merchant with publicly verifiable evidence
to prevent both attacks.

1 Introduction

Bitcoin [20], the world’s first successful crypto-currency, is increasingly becom-
ing a popular method of payment for e-commerce due to low transaction fees
and the ease of use supplied by third party Payment Processors. BitPay and
Coinbase are currently the two dominant Payment Processors that handle Bit-
coin payments for more than 100,000 merchants. Their customers include Dell,
Microsoft, Overstock, Shopify, Paypal and CeX. This demonstrates that large
organisations are placing trust in Bitcoin as a viable form of payment. In fact,
Overstock claimed to have made $3 million worth of Bitcoin sales in 2014 [12].
These Payment Processors are attractive due to their ability to convert bitcoins
into fiat currency instantly which removes the risk involved in Bitcoin’s price
volatility on behalf of the merchant.

Both Payment Processors and all merchants are recommended to follow the
community accepted BIP70: Payment Protocol standard that was proposed by
Andresen and Hearn [5] to be used with Bitcoin. The motivation for this proto-
col is to reduce the complexity of Bitcoin payments as customers are no longer
required to handle Bitcoin addresses1. Instead, the customer can verify the mer-
chant’s identity using a human-readable name before authorising a payment.
1 A form of identity (26–35 alphanumeric characters) that is related to a public-private

key pair and is used to send/receive bitcoins.

c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 581–599, 2017.
DOI: 10.1007/978-3-662-54970-4 34

582 P. McCorry et al.

At the time of a payment authorisation, the customer’s wallet will also send a
refund Bitcoin address to the merchant that should be used in the event of a
future refund.

The Payment Protocol provides two pieces of evidence that can be used in
case of a dispute with an arbitrator. The customer has evidence that they were
requested to authorise a payment if they keep a copy of the signed Payment
Request message. This can be considered evidence as the customer could not
have produced the signature without the co-operation of the merchant. The sec-
ond piece of evidence for both the customer and the merchant is the payment
transaction as the payment is signed by the customer and time-stamped on Bit-
coin’s Blockchain, that is stored by most users of the network. In this paper, we
argue that a third piece of evidence is required to authenticate the refund address
sent from the customer as the protocol recommends the customer’s payment and
refund addresses not be the same. This flexibility leads to the following attacks:

– The Silkroad Trader attack relies on a vulnerability in the Payment Protocol
as the customer can authenticate that messages originate from the merchant,
but not vice-versa. This allows a customer to route payments to an illicit
trader via a merchant and then plausibly deny their own involvement.

– The Marketplace Trader attack focuses on the current refund policies of Coin-
base and BitPay who both accept the refund address over e-mail [9,26]. This
allows a rogue trader to use the reputation of a trusted merchant to entice
customers to fall victim to a phishing-style attack.

Without the knowledge of our attacks, Schildbach asked the Bitcoin-
Development mailing list why the refund address in the Payment Protocol was
currently unprotected [24] and one of the original authors responded:

We talked about signing it with one of the keys that’s signing the Bitcoin
transaction as well. But it seems like a bit overkill. Usually it’ll be submit-
ted over HTTPS or a (secured!) Bluetooth channel though so tampering
with it should not be possible. - Mike Hearn [13]

As seen above, a solution may involve the customer endorsing a refund
address using one of the public keys that authorised the transaction. However,
the author stated this solution was an overkill as the refund address is cur-
rently protected in an HTTPS communication channel. We demonstrate that
the HTTPS communication channel cannot protect the refund address as it
only provides one-way authentication, the customer can authenticate messages
originated from the merchant, but not vice-versa. At first glance, the ‘overkill’
solution suggested by Hearn could provide the evidence required for the mer-
chant. Unfortunately, this solution opens the door to another attack which allows
a malicious co-signer the sole authority to endorse the refund address used by
the merchant and thus steal the bitcoins of other co-signers. We will discuss this
in detail in Sect. 5.

Refund Attacks on Bitcoin’s Payment Protocol 583

Fig. 1. Information stored in the inputs and outputs of Bitcoin transactions

Contributions. Our contributions in this paper are summarised below:

– We present new attacks on Bitcoin’s Payment Protocol and the current prac-
tice of both the Payment Processors,

– We present real-world experiments that demonstrate how merchants today
are vulnerable to both attacks using a modified Bitcoin wallet.

– We propose a solution that removes the incentive to perform both attacks as
the merchant is provided with publicly verifiable evidence whose origin can
be verified by an arbitrator.

2 Background

We discuss background information about Bitcoin before presenting the commu-
nity accepted Payment Protocol standard.

2.1 Bitcoin

We discuss three concepts that are needed to understand Bitcoin’s Payment
Protocol. These include Bitcoin addresses that act as a form of identification,
Transactions that are used to send/receive bitcoins and the Blockchain that
stores all transactions on the network.

A Bitcoin address is a form of identification in the Bitcoin community that
is used to receive bitcoins and authorise payments. An address can be described
as the hash of an EC (Elliptic Curve) public key and the accompanying private
key is used to produce ECDSA (Elliptic Curve Digital Signature Algorithm)
signatures to authorise payments.

A Transaction consists of one or more inputs and one or more outputs as
seen in Fig. 1. Briefly, an input specifies the source of bitcoins being spent (the
previous transaction’s identification hash and an index to one of its output) and
is accompanied with signature(s) and public key(s) of the sender to authorise

584 P. McCorry et al.

the payment. An output specifies the new owner’s Bitcoin address and the num-
ber of bitcoins being sent. Strictly, these inputs and outputs are controlled using
a Forth-like scripting language to dictate the conditions required to claim the
bitcoins. The dominant script today is the ‘pay-to-pubkey-hash’ which requires
a single signature from a Bitcoin address to authorise the payment. On the
other hand, the ‘pay-to-script-hash’ approach enables a variety of transaction
types and was introduced as a soft-fork in BIP16 [4]. In practice, this ‘pay-to-
script-hash’ script is widely used2 to enable escrow services and multi-signature
authorisation (k of n keys required to claim bitcoins).

The Blockchain is responsible for storing the entire network’s transaction
history with a relatively secure time-stamp [20]. This ledger is an append-only
data structure and is stored by most users of the network. To append new
transactions to this ledger requires a computationally difficult proof of work
puzzle to be solved. ‘Miners’ are responsible for computing this proof of work
and are rewarded in bitcoins for appending a new ‘block’ of transactions to the
ledger.

2.2 Payment Protocol

Andresen and Hearn proposed the Payment Protocol which has been accepted
as a standard in BIP70 [5] and is supported by several prominent wallets. The
goal of this protocol is described in the standard as the following:

“This BIP describes a protocol for communication between a merchant
and their customer, enabling both a better customer experience and better
security against man-in-the-middle attacks on the payment process.”

Communication between the customer and merchant is sent over HTTPS3

and importantly, the customer is also responsible for broadcasting the payment
transaction to the Bitcoin network. In this HTTPS setting, the merchant must
have an X.509 certificate issued by a trusted Certificate Authority. This is nec-
essary to let the customer authenticate messages from the merchant.

Figure 2 outlines the messages exchanged and actions performed for the pro-
tocol. To initiate, the customer clicks the ‘Pay Now’ button on the merchant’s
website to generate a Bitcoin URI. This URI opens the customer’s Bitcoin wallet
and downloads the Payment Request message from the merchant’s website. The
wallet verifies the digital signature for the message using the public key found
in the merchant’s X.509 certificate (and checks the merchant’s certificate for
authenticity using the operating system’s list of root certificate authorities). A
human-readable name for the merchant4 and the number of requested bitcoins is
displayed on-screen and the customer must check this information before clicking
‘Send’. Upon authorisation, the wallet performs two actions:
2 Currently 8.9% of all bitcoins are stored using the ‘pay-to-script-hash’ approach [1].
3 The protocol specification allows messages to be sent over HTTP and for the mer-

chant not to have an X.509 certificate, but this is not considered secure.
4 URL from the X.509 certificate’s ‘common name’ field.

Refund Attacks on Bitcoin’s Payment Protocol 585

Fig. 2. Overview of the Payment Protocol [5]

1. The customer’s wallet sends one or more payment transactions to the Bitcoin
network.

2. The Payment message which includes the payment transactions and refund
addresses is sent to the merchant’s website.

The merchant responds to the customer’s Payment message with a Payment
Acknowledgement message which notifies the customer’s wallet to display a con-
firmatory ‘Thank you’ message. Furthermore, once the merchant has detected
the payment transaction on the Bitcoin network, the customer’s web browser is
refreshed to display a confirmation page. For the rest of this paper, we focus on
messages sent over the HTTPS communication channel as seen in Fig. 2 and for
simplicity we assume the customer only sends a single payment transaction. The
content for each message is the following:

– The Payment Request message contains a unique payment address M,
requested number of bitcoins B, creation time for request t1, expiry time for
request t2, a memo message mM, a payment URL uM and some merchant-
specific data to link any future payments zM. The contents of this message is
signed using the private key xskM that corresponds to the merchant’s X.509
certificate public key such that σM = SxskM(M,B, t1, t2,mM, uM, zM) where
S is the signature algorithm.

– The Payment message contains a repeat of the merchant-specific data zM,
a payment transactions τC

5, a list of refund addresses (RC1 , ..., RCn
) and

the number of bitcoins B that should be refunded to each address such that
((RC1 ,B1), ..., (RCn

,Bn)) and a memo from the customer mC. There is no

5 A single payment transaction τC is considered for simplicity. The protocol supports
one or more payment transactions, and our results still apply in this case.

586 P. McCorry et al.

tnahcreMremotsuC
Click ‘Pay Now’

Send Payment Request
M,B, t1, t2, mM, uM, zM, σM←−−−−−−−−−−−−−−−−−−−−−

Authorise?
Send Payment

zM, τC, ((RC1 ,BC1), ..., (RCn ,BCn)), mC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Broadcast τC

Send Payment
Acknowledgement

Payment, m′
M←−−−−−−−−−−

Notified

Fig. 3. Message contents for the Payment Protocol

restriction to the number of refund addresses sent to the merchant and the
customer is responsible for deciding how the bitcoins are refunded amongst
the refund addresses provided. Merchants expect one or more Payment mes-
sages until all requested bitcoins have been received (Fig. 3).

– The Payment Acknowledgement message is a repeat of the customer’s
Payment message and includes an optional memo m′

M from the merchant.

The refund address sent in the Payment message is not digitally signed by
the customer and its integrity relies on the HTTPS communication channel
established between the customer and the merchant to prevent man-in-the mid-
dle attacks. This lack of mutual authentication in the Payment Protocol and the
refund policy of both Payment Processors to accept refund addresses over e-mail
enables the attacks outlined in the next section.

3 Attacking the Payment Protocol

In this section, we outline attacks which are feasible due to an authentication
vulnerability in the Payment Protocol and the refund policy of both Payment
Processors. Fundamentally, our attacks rely on the merchant’s inability to dis-
tinguish if the refund address originated from the same pseudonymous customer
that authorised the payment. As well, these attacks are successful even when all
messages are sent over an HTTPS communication channel.

3.1 Silkroad Trader Attack

This attack allows a customer to route payments to an illicit trader via an
honest merchant and then plausibly deny their own involvement in the refund
transaction. The main idea behind this attack relies on the customer’s ability to
swap the refund address in their Payment message with a Bitcoin address under

Refund Attacks on Bitcoin’s Payment Protocol 587

Messages sent over an HTTPS communication channel
tnahcreMremotsuCredarTdaorkliS

Send Payment
Request

T,B, t1T, t2T,
mT, uT, zT, σT−−−−−−−−−−−→

Find Merchant
Click: Pay Now−−−−−−−−−−−→

Send Payment
Request

M,B, t1M, t2M,
mM, uM, zM, σM←−−−−−−−−−−−−

Authorise?
Broadcast τC
Send Payment

zM, τC, (T,B), mC−−−−−−−−−−−−−→
Detect τC

Send Payment
Acknowledgement

Payment, m′
M←−−−−−−−−−−

Cancel order
Refund request−−−−−−−−−−−→

Broadcast τM
Detect τM Detect τM
Ships item

Fig. 4. Silkroad Trader attack allows a customer to route bitcoins to an illicit trader
via an honest merchant and then plausibly deny their involvement.

the control of an illicit trader. Most importantly, the customer is not required
to endorse the illicit trader’s Bitcoin address with a digital signature.

Figure 4 is an outline of the Silkroad Trader attack. It begins with the cus-
tomer visiting the website of an illicit trader. The customer downloads a Pay-
ment Request message for the desired ‘illicit goods’ they wish to purchase before
searching for a merchant who supports the Payment Protocol and is selling an
item approximately equal (or greater) in price. Once a merchant and item has
been found, the customer clicks ‘Pay now’ to start the payment process and
downloads a Payment Request message from the merchant’s website. To com-
mence the attack, the customer’s wallet authorises the payment transaction τC
and inserts the illicit trader’s payment address T in the Payment message as the
refund address (instead of their own refund address) and then sends the message
to the merchant.

The customer must request a refund to finish the attack once their Bitcoin
wallet has received the Payment Acknowledgement message alongside a confir-
mation e-mail from the merchant. Assuming the merchant follows the Payment
Protocol faithfully, the refunded bitcoins in τM are sent to the illicit trader’s

588 P. McCorry et al.

payment address T. Also, the customer can detect the refund transaction (mer-
chant sending bitcoins to the illicit trader) τM on the Bitcoin network before
contacting the illicit trader for an acknowledgement that the ‘illicit goods’ have
been dispatched.

Ideally, if this attack happened in practice, the merchant could provide the
Payment message as publicly verifiable evidence that the bitcoins were sent to
the refund address provided by the pseudonymous customer. Unfortunately, the
customer may plausibly deny having supplied the illicit trader’s payment address
due to their lack of endorsement, and hence claim that the merchant has forged
the message single-handedly.

3.2 Marketplace Trader Attack

In practice, the policy of Coinbase and BitPay encourages customers to provide
refund addresses using an external method of communication such as e-mail
[9,26] which ignores the refund address sent in the Payment Protocol. This
deviation from the protocol is the basis of a new phishing style attack as a ‘rogue
trader’ can use the reputation of a ‘trusted’ merchant to encourage potential
customers to purchase an item from their website.

Figure 5 outlines this attack. It begins with the rogue trader establishing
a website that sells the latest products well below the market rate to attract
customers to their store. Most customers may be suspicious that the rogue trader
can offer these prices and may wisely think it is a scam. To encourage customers
to proceed with a purchase, the rogue trader can advertise that all payments are
sent to a trusted merchant such as CeX and there is little reason not to trust
them. When a customer proceeds to checkout on the rogue trader’s website and
clicks ‘Pay now’, the rogue trader’s website can automatically fetch a Payment
Request message from the trusted merchant’s website and forward this to the
customer. The customer’s wallet opens the genuine Payment Request message
and displays a human-readable name for the trusted merchant alongside the
number of requested bitcoins. This can boost the customer’s confidence that the
rogue trader is legitimate as the payment is sent to the ‘trusted’ merchant.

Unfortunately, the customer falls victim to the attack upon authorising the
payment as they are unwittingly paying for a purchase on behalf of the rogue
trader to the trusted merchant. The rogue trader detects the payment6 transac-
tion on the Bitcoin network and refreshes the victim’s web browser to display a
fake confirmation page (remember, the customer’s web browser is connected to
the rogue trader’s website). The rogue trader can proceed to cancel the order
and send a new refund address over e-mail to the trusted merchant. As the mer-
chant’s policy is to use an external method of communication to authenticate
customers and deviate from the Payment Protocol standard - then the refund
address sent by the rogue trader over e-mail should receive the bitcoins.

Furthermore, the customer cannot be aware this attack has occurred as they
lack enough information to identify the refund transaction on the Bitcoin network.

6 Currently 50% of nodes on the network receive a new transaction within 5 s [2].

Refund Attacks on Bitcoin’s Payment Protocol 589

Messages sent over an HTTPS communication channel
remotsuCredarTeugoRtnahcreM

Send Payment
Request

M,B, t1M, t2M,
mM, uM, zM, σM−−−−−−−−−−−−→

Forward
Payment Request

M,B, t1M, t2M,
mM, uM, zM, σM−−−−−−−−−−−−→

Authorise?
Send Payment

zM, τC, ((RC1 ,BC1), ..., (RCn ,BCn)), mC←−−−
Broadcast τC

Detect τC Detect τC and
refresh customer’s

web browser
Fake

Confirmation Page−−−−−−−−−−−−−−→
Send Payment

Acknowledgement
Payment, m′

M−−−→
Cancel order

(T,B) sent
over e-mail←−−−−−−−−

Send Refund
τM refund to T−−−−−−−−−−−→

Fig. 5. Marketplace Trader attack involves a rogue trader using the reputation of a
‘trusted’ merchant to encourage customers to fall victim to a phishing-style attack.

More importantly, this attack is deployable single-handedly by a rogue trader and
does not require the co-operation of a ‘trusted’ merchant. In fact, the trusted
merchant may only become aware of this scam if contacted in the future by the
customer.

4 Real-World Experiments

Our experiments aim to verify the current practice of processing refunds by
merchants, and assess the feasibility of the attacks. We purchased items from
real-life merchants using a modified Bitcoin wallet before requesting for the order
to be cancelled and a refund processed. The attack is considered successful if the
refunded bitcoins are received by the adversary’s wallet. The merchants used
during these experiments are based in the UK and are supported by BitPay
or Coinbase. The bitcoins used for the experiments are owned by the authors

590 P. McCorry et al.

and no money is sent to any illicit trader. All experiments have been ethnically
approved by Newcastle University’s ethical committee.

4.1 Proof of Concept Wallet

We have developed a wallet which supports the Payment Protocol and automates
the Silkroad Trader attack. We explain how our wallet works step-by-step:

1. The customer inserts the illicit trader’s Payment Request URI into the wallet
which stores both the request and Bitcoin address for later use.

2. The customer finds an item equal (or greater) in value as the ‘illicit goods’
and inserts the merchant’s Payment Request URI into their wallet.

3. The wallet provides a list of refund addresses that can be chosen for the
Payment message that is sent to the merchant and the customer can choose
the illicit trader’s Bitcoin address.

4. Assuming a refund has been authorised by the merchant, the wallet can detect
the merchant’s refund transaction on the network and include it in a Payment
message that is sent to the illicit trader.

5. The wallet is notified by a Payment Acknowledgement message from the illicit
trader that the payment has been received.

4.2 Simulation of Attacks

We discuss our experience carrying out a simulation of both attacks against real
world merchants using arbitrary identities (i.e., random name, e-mail address,
telephone number, delivery/billing addresses created for experiments only). Only
e-mail is used to communicate with each merchant. Our results for the Silkroad
Trader attack are as follows:

Cex refunded the bitcoins within 3 h of cancelling the order and used the
refund address from the Payment Protocol.

Pimoroni Ltd refunded the bitcoins within a single business day and used
the refund address from the Payment Protocol.

Scan refunded the bitcoins after 26 days and used the refund address from
the Payment Protocol. The delay was due to Scan initially requesting us to
provide a refund address over e-mail, but we insisted using the one specified in
the original payment message.

Dell were unable to process the refund due to ‘technical difficulties’ and
requested our bank details. We informed them that we did not own a bank
account and Dell suggested sending the refund as a cheque. While not the exper-
iment’s aim, this potentially opens Dell as an exchange for laundering tainted
bitcoins.

To simulate the Marketplace Trader attacks we sent the refund address in an
e-mail to the merchants. Assuming the merchants accepted e-mail as a good form
of authentication and ignored the refund address sent in the Payment Protocol,
then the phishing-style attack we described earlier could happen in practice. Our
results were the following:

Refund Attacks on Bitcoin’s Payment Protocol 591

Fig. 6. The malicious co-signer attack allows a co-signer the sole authority to endorse
the refund address used by the merchant and thus steal the bitcoins of other co-signers

Something Geeky refunded the bitcoins within a single business day to a
refund address sent over e-mail.

Girl meets dress refunded the bitcoins within 11 business days to a refund
address sent over e-mail. The delay was due to the merchant initially thinking
we paid using a bank transfer.

BitRoad refunded the bitcoins within a single business day to a refund
address sent over e-mail. In this experiment, we registered using a non-existing
e-mail address and requested for the order to be cancelled using a variant of
the e-mail address. This demonstrates that even the registered e-mail address to
initiate the purchase is not being used to authenticate the customer.

5 Solution

We propose providing the merchant with publicly verifiable evidence that can
cryptographically prove the refund address received during the protocol was
endorsed by the same pseudonymous customer who authorised the payment.

A solution proposed by Hearn [13] assumes the payment transaction is autho-
rised by a single customer and recommends endorsing the refund address using
any key which authorised the transaction. However, it is not valid to assume
that a transaction has been authorised by a single customer due to the nature
of a Bitcoin transaction. If the adversary is responsible for sending the Payment
message to the merchant, then they have the sole authority to endorse the refund
address used by the merchant as seen in Fig. 6.

Our proposed solution prevents this attack by requiring each key that autho-
rised the transaction to also endorse its own refund address. In the event of a
refund the merchant sends the same (or less) number of bitcoins received7 from
each transaction input to an associated refund address.

7 A transaction input does not record the number of bitcoins ‘sent’ and instead refer-
ences an output from a previous transaction which specifies the bitcoins.

592 P. McCorry et al.

5.1 Proposed Solution

To achieve a signature solution requires changes to each message sent as part
of the protocol. We outline these changes in Fig. 7 and explain each message
separately before discussing their implications.

The Payment Request message considers the memo mM as a mandatory
parameter and should contain enough information for the customer(s) to be
aware that this payment request is only for them, e.g. the registered e-mail
address, delivery address, product information, etc. This memo field should also
include customer-specified instructions to provide evidence that the merchant
followed any instructions provided by the customer. The payment address M
should be unique for each Payment Request and like before, there should be no
restriction on the number of times a customer can download the same Payment
Request to support paying from multiple devices or sharing with others.

The Payment message aims to associate each transaction input πCi
with a

refund address RCi
by endorsing the refund address using the same keys that

authorised the transaction input. We assume the customer is no longer responsi-
ble for broadcasting the payment transaction τC to the Bitcoin network; instead,
the responsibility of broadcasting the payment transaction should fall on the mer-
chant (as recommended by one of the original authors of the Payment Protocol8).
For simplicity, we describe our solution using a single Payment message and pay-
ment transaction τC

9.

Fig. 7. A single customer sends a payment to the merchant

Each refund address endorsement signature is σCi
= SskCi

(πCi
, RCi

,BCi
,mCi

Payment Request), where S is the signature algorithm, skCi
is the private key

8 https://groups.google.com/forum/#!msg/bitcoinj/ymFRupTSRJQ/
zANj2RpslCcJ.

9 Our solution continues to allow customers to send one or more Payment messages
to the merchant until all requested bitcoins have been received. Furthermore, these
messages can contain a list payment transactions.

https://groups.google.com/forum/#!msg/bitcoinj/ymFRupTSRJQ/zANj2RpslCcJ
https://groups.google.com/forum/#!msg/bitcoinj/ymFRupTSRJQ/zANj2RpslCcJ

Refund Attacks on Bitcoin’s Payment Protocol 593

which corresponds to the key that authorised the transaction input, πCi
is a

concatenation of the elements that constitute the signed transaction input, RCi

is the refund address, BCi
is the number of bitcoins to refund, mCi

is an addi-
tional memo from the customer and Payment Request is the signed message from
the merchant. These parameters were chosen to clarify which transaction input
is associated with the endorsed refund address and to ensure this endorsement
is only valid for this Payment Request message. The concatenated information
πCi

is the data stored inside the transaction input and includes: the previous
transaction identification hash, an index for the output in the referenced trans-
action and the script which contains a signature to authorise the payment and
its corresponding public key.

A new refund policy for the merchant is required as each transaction input is
responsible for endorsing a refund address. We propose the bitcoins associated
with each refund address must be equal to (or less than) the number of bitcoins
sent in the respective transaction input. The merchant must also check that the
total number of bitcoins associated with all refund addresses in this message
is equal to (or less than) the number of bitcoins he received in the payment
transaction. These checks are necessary as the payment transaction can have
additional outputs for change and the merchant needs to ensure he does not
refund more bitcoins than he received from each transaction input. For example,
if the transaction has a single input of B5 (from the customer) and two outputs:
B4 (to the merchant) and B1 (to the customer as change), then the merchant
must ensure the customer is only refunded B4 (and not B5).

The message content sent to the merchant is outlined in Fig. 7 and includes:
the merchant-specific data zM, the complete transaction τC and a list of refund
addresses alongside their associated endorsement signatures and the number of
bitcoins to refund ((RC1 ,BC1 ,mC1 , σC1), ..., (RCn

,BCn
,mCn

, σCn
)).

The Payment Acknowledgement message is signed using the merchant’s
X.509 private key and repeats the customer’s Payment message alongside an
additional memo m′

M. The signature is σ′
M = SxskM(Payment,m′

M) where S
is the signature algorithm and xskM is the private key that corresponds to the
merchant’s public key in their X.509 certificate.

We simplified the notation for σCi
to only show the case when the customer

endorses the ith refund address using a single signing key. However, if the multi-
signature approach is used to authorise the transaction input, then a threshold
of k signing keys should be used to endorse the respective refund address. Each
customer with control of 1 of k keys can independently authorise the transaction
input and the corresponding refund address. Both signatures which endorse the
refund address and authorise transaction input are sent to the other co-signers
to be included in the Payment message.

5.2 Discussion

Our solution provides a proof of endorsement as the refund address received
by the merchant is signed using the same set of keys used to authorise the
transaction. This evidence removes the customer’s plausible deniability for their

594 P. McCorry et al.

involvement in the Silkroad Trader attack and provides an incentive for the
merchant to use the refund address sent during the Payment Protocol which
prevents the Marketplace Trader attack. The merchant does not need to distin-
guish whether or not the payment has been split which preserves the customers
privacy and prevents the malicious co-signer attack as co-signers cannot endorse
the refund addresses of others. These additional signatures are handled by the
wallet on behalf of the user. Also, no connection to the peer to peer net-
work is required for the customer as the merchant is responsible for broadcasting
the payment transaction τC and this prepares the Payment Protocol to support
off-chain transactions such as the Lightning Network [21].

Furthermore, we explored other potential solutions such as requesting the
customer to provide a signature from the refund address at the time of payment
(instead of using the same keys that authorised the transaction) or including
secret data inside the merchant-specific data field zM. The former is not sat-
isfactory as proving ownership of the refund address does not necessarily link
the refund address to the same keys that authorised the transaction and the
latter remains vulnerable to the Marketplace Trader attack as the rogue trader
has access to the Payment Request message. As well, the attacks introduced in
this paper also stem from the fact that merchants have no community-accepted
refund protocol today. While researchers have proposed secure post-payment
communication protocols [15] in the past which could conceivably be used to
support arranging refund in a private and authenticated manner, this remains a
subject for further investigation in future work.

Payment Processors are expected to perform anti-money-laundering policies
on behalf of their merchants [10]. The state of New York recently released Bitli-
cense [25] to outline regulation for Bitcoin businesses. Our solution enhances the
book-keeping required for this license as the signed Payment message is crypto-
graphic evidence that the pseudonymous customer has endorsed the transaction-
related information required for auditing by investigators. We improve the
mandatory customer receipt which is currently a static web-page or an e-mail
by using the Payment Acknowledgement message as a cryptographic receipt as
it is signed by the merchant’s X.509 private key. Similar cryptographic evidence
has been explored in the Bitcoin research community and two examples include:
providing a warrant to hold a mixer accountable in the event of any wrongdo-
ing with Mixcoin/Blindcoin [8,27], and to compute a proof of solvency [11] that
demonstrates the business is financially in good standing to customers.

Clustering techniques have been demonstrated to link a group of Bitcoin
addresses to a single pseudonymous user [6]. Meiklejohn et al. [17] identified
that 374.49 BTC stolen from Betcoin in April 2012 and 4,588 BTC from the Bit-
coinica theft in May 2012 were sold at Bitcoin-24, Mt Gox, BTC-e, CampBX and
Bitstamp. Also, Reid et al. [22] tracked 25k stolen bitcoins and deduced LulSec’s
involvement in the theft. These analysis techniques using the Blockchain are cur-
rently supporting criminal charges in the Silkroad Trial [3]. However, privacy-
enhancing protocols [14,16,23] and altcoins [18,19] are actively reducing the
effectiveness of these analysis techniques. Nevertheless, these techniques provide

Refund Attacks on Bitcoin’s Payment Protocol 595

a platform for the Silkroad Trader attack as independent observers may discover
merchants sending bitcoins to an illicit trader and then publicly release the ‘evi-
dence’. Our solution provides the merchant with publicly verifiable evidence to
demonstrate a customer’s deception.

5.3 Inherent Issues Due to Bitcoin

We outline four issues that are inherent due to Bitcoin that need to be considered
for our solution:

First, the proof of endorsement evidence can only authenticate pseudony-
mous customers as the Payment Protocol lacks the type of real-life identity
endorsement that comes with banks. While protecting an honest merchant, our
solution cannot prevent a malicious merchant simulating both attacks and insist-
ing they were tricked.

Second, in a similar way to the original protocol, an observer of the
Blockchain may be able to link the payment and refund transactions using the
denominations of bitcoins sent and received.

Third, customers can re-sign the transaction to change the identification
hash and broadcast it to the network. We recommend the merchant keeps a
copy of the payment transaction received in the Payment message as a re-signed
transaction cannot be used to verify the endorsement in the future.

Fourth, we assume merchants maintain the UTXO (Unspent Transaction
Output) set to participate in the Payment Protocol. Without this list of spend-
able outputs, the merchant cannot independently verify transactions or calculate
the number of bitcoins to refund for each transaction input. On the other hand,
customers do not require the UTXO set and can continue to use SPV (Simplified
Payment Verification) wallets for the Payment Protocol.

5.4 Solution Performance

All tests are carried out on a MacBook Pro mid-2012 running OS X 10.9.1 with
2.3 GHz Intel Core i7 and 16 GB DDR3 RAM. Time performance in Table 1
represents both the current Payment Protocol implementation and our pro-
posed modifications for the Bitcoin Core Client while utilising 1 core. Further-
more, both signing operations in steps 3 and 8, and the verification operation in
step 9, are performed using the Secp256k1 implementation which has recently
replaced OpenSSL in Bitcoin Core [28]. Each step was executed 100 times and
the reported times represent the average.

Steps 1–5 represent the customer’s perspective in the current Payment Proto-
col’s implementation. The wallet verifies the merchant’s certificate authenticity
using the chain of certificates that lead to a trusted root authority and verifies
the merchant’s signature on the Payment Request message before authorising at
least one transaction input to authorise the payment. Then, the wallet fetches a
list of pre-generated refund addresses and Step 4b only occurs if this list is empty
as a new refund address must be generated. This refund address is associated

596 P. McCorry et al.

Table 1. Time performance for proposed changes to the Payment Protocol

Step Description Time

Customer in the current protocol

1 Verify merchant’s certificate and chain of certificates authenticity 0.83 ms

2 Verify merchant’s signature on the Payment Request message 0.08 ms

3 Sign a single transaction input 0.08 ms

4a Fetch a list of previously generated refund addresses RC1 , ..., RCk 0.72 ms

4b Generate a new refund address RC from the wallet’s key pool 110.55 ms

5 Update wallet’s address book with the refund address RC 72.68 ms

Total without 4b: 74.39 ms

Total with 4b: 184.94 ms

Merchant in the current protocol

6 Verify the customer’s payment transaction 0.29 ms

Total: 0.29 ms

Additional changes proposed for the customer

7 Produce endorsement signature σC using the private key skC 0.11 ms

New total without 4b: 74.49 ms

New total with 4b: 185.04 ms

Additional changes proposed for the merchant

8 Fetch the transaction input’s referenced transaction output 0.01 ms

9 Verify the transaction input’s endorsement signature σC 0.13 ms

New total: 0.43 ms

with the payment for future reference. These steps require 74.39 ms if the list
of pre-generated refund addresses is not empty, otherwise 184.94 ms is required.
Our proposed change in Step 7 takes 0.11 ms and requires the customer’s wallet
to sign an endorsement message for the refund address, obtaining the signature
σC. In total, the time required for the customer is 185.04 ms with Step 4b, and
74.49 ms without Step 4b.

Step 6 represents the merchant’s perspective in the current Payment Proto-
col’s implementation and requires 0.29 ms to check if the payment transaction
with a single input is valid. We propose in Steps 8–9 that the merchant fetches the
transaction output referenced in the payment transaction’s input to let the mer-
chant check the number of bitcoins associated with each refund address. Then,
the transaction input’s public key C is used to verify the endorsement signature.
These proposed changes require 0.14 ms, and in total the time required for the
merchant is 0.43 ms.

Refund Attacks on Bitcoin’s Payment Protocol 597

6 Payment Processors Response

We privately disclosed our attacks to the Payment Processors and received the
following response:

BitPay acknowledged “the researchers have done their homework” and that
“refunds are definitely a significant money laundering attack vector”. They are
now actively monitoring for refund activity on behalf of their merchants. Fur-
thermore, after we disclosed our results, BitPay released a new refund flow [7]
that recommends using the refund address provided in the Payment Protocol
rather than the one supplied by email.

Coinbase acknowledged the ‘Silkroad Trader’ attack as a good example of
an authentication vulnerability in the Payment Protocol. To prevent the Market-
place Trader attack, Coinbase no longer provides merchants the API to change
the refund address if it has been supplied by the Payment Protocol. Also, they
have updated their user documentation to discourage merchants sending the
refund using their own bitcoins to bypass the API changes.

Bitt is preparing to launch merchant services for the Caribbean and acknowl-
edged both attacks. They believe the endorsement evidence may support Pay-
ment Processors become more ‘airtight’ for future regulation.

These temporary mitigation measures help to address the Marketplace Trader
attack, but not the Silkroad Trader attack. To fully address the latter, the BIP70
standard would need to be revised, as we have discussed in Sect. 5.

7 Conclusion

This paper presented two attacks that leverage an authentication vulnerability
in Bitcoin’s Payment Protocol and the refund policies of the two largest Pay-
ment Processors: Coinbase and BitPay. We experimentally demonstrated both
attacks on real-life merchants using a proof of concept wallet before proposing a
solution that provides the merchant with cryptographic evidence that the refund
address received during the Payment Protocol has been endorsed from the same
pseudonymous customer who authorised the transaction. Both Payment Proces-
sors have acknowledged our attacks and have implemented mitigation measures.

Acknowledgements. The second and third authors are supported by the European
Research Council (ERC) Starting Grant (No. 306994). We would like to thank the
original authors of the Payment Protocol; Mike Hearn for his constructive feedback on
our proposed solution and recommendation to include customer-specified instructions
and Gavin Andresen for reviewing this paper and giving feedback. Also, we thank the
anonymous reviewers for their very good feedback.

598 P. McCorry et al.

References

1. Alcio: Monitor pay to script hash adoption, May 2015. http://p2sh.info/. Accessed
21 May 2015

2. Ali, S.T., McCorry, P., Lee, P.H.-J., Hao, F.: ZombieCoin: powering next-
generation botnets with Bitcoin. In: Brenner, M., Christin, N., Johnson, B.,
Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 34–48. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48051-9 3

3. Allison, I.: Silk road prosecutors talk about Bitcoin, ripple and money laun-
dering. International Business Times, August 2015. http://www.ibtimes.co.uk/
silk-road-prosecutors-talk-about-bitcoin-ripple-money-laundering-1517414

4. Andresen, G.: Pay to script hash. Bitcoin Improvement Process (2012). https://
github.com/bitcoin/bips/blob/master/bip-0016.mediawiki. Accessed 07 Dec 2015

5. Andresen, G., Hearn, M.: BIP 70: payment protocol. Bitcoin Improvement Process,
July 2013. https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki.
Accessed 15 Jan 2015

6. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in Bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1 4

7. BitPay: New invoice adjustment and refund flow, August 2015. https://blog.bitpay.
com/new-refund-flow/. Accessed 20 Sept 2015

8. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: anonymity for Bitcoin with accountable mixes. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45472-5 31

9. Coinbase: How do i do a customer refund with the API? May 2015.
https://support.coinbase.com/customer/portal/articles/1521752-how-do-i-do-a-
customer-refund-with-the-api-. Accessed 15 May 2015

10. Fincen: Request for administrative ruling on the application of FinCENs regula-
tions to a virtual currency payment system (2015). http://www.fincen.gov/news
room/rp/rulings/pdf/FIN-2014-R012.pdf. Accessed 07 Sept 2015

11. Dagher, G., Bunz, B., Bonneau, J., Clarke, J., Boneah, D.: Provisions: privacy-
preserving proofs of solvency for Bitcoin exchanges. In: The 22nd ACM Conference
on Computer and Communications Security (2015)

12. Geiger, B.: Overstock.com offers its staff the option of being paid in Bitcoin (2015).
http://fortune.com/2015/01/09/overstock-com-offers-its-staff-the-option-of-
being-paid-in-bitcoin/. Accessed 26 Feb 2015

13. Hearn, M.: Re: [Bitcoin-development] BIP 70 refund field. Bitcoin-Development,
March 2014. http://sourceforge.net/p/bitcoin/mailman/message/32157661/.
Accessed 01 Feb 2015

14. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world (2013). https://
bitcointalk.org/index.php?topic=279249. Accessed 20 May 2015

15. McCorry, P., Shahandashti, S.F., Clarke, D., Hao, F.: Authenticated key exchange
over Bitcoin. In: Chen, L., Matsuo, S. (eds.) SSR 2015. LNCS, vol. 9497, pp. 3–20.
Springer, Cham (2015). doi:10.1007/978-3-319-27152-1 1

16. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in Bitcoin. In: Brenner,
M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp.
127–141. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48051-9 10

http://p2sh.info/
http://dx.doi.org/10.1007/978-3-662-48051-9_3
http://www.ibtimes.co.uk/silk-road-prosecutors-talk-about-bitcoin-ripple-money-laundering-1517414
http://www.ibtimes.co.uk/silk-road-prosecutors-talk-about-bitcoin-ripple-money-laundering-1517414
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
http://dx.doi.org/10.1007/978-3-642-39884-1_4
https://blog.bitpay.com/new-refund-flow/
https://blog.bitpay.com/new-refund-flow/
http://dx.doi.org/10.1007/978-3-662-45472-5_31
https://support.coinbase.com/customer/portal/articles/1521752-how-do-i-do-a-customer-refund-with-the-api-
https://support.coinbase.com/customer/portal/articles/1521752-how-do-i-do-a-customer-refund-with-the-api-
http://www.fincen.gov/news_room/rp/rulings/pdf/FIN-2014-R012.pdf
http://www.fincen.gov/news_room/rp/rulings/pdf/FIN-2014-R012.pdf
http://fortune.com/2015/01/09/overstock-com-offers-its-staff-the-option-of-being-paid-in-bitcoin/
http://fortune.com/2015/01/09/overstock-com-offers-its-staff-the-option-of-being-paid-in-bitcoin/
http://sourceforge.net/p/bitcoin/mailman/message/32157661/
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249
http://dx.doi.org/10.1007/978-3-319-27152-1_1
http://dx.doi.org/10.1007/978-3-662-48051-9_10

Refund Attacks on Bitcoin’s Payment Protocol 599

17. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of Bitcoins: characterizing payments among men with
no names. In: Proceedings of the 2013 Conference on Internet Measurement Con-
ference, pp. 127–140. ACM (2013)

18. Miers, I., Garman, C., Green, M., Rubin, A.: Zerocoin: anonymous distributed e-
cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP), pp.
397–411. IEEE (2013)

19. Monero: Monero is a secure, private, untraceable currency. It is open-source and
freely available to all (2015). https://getmonero.org/home. Accessed 08 Dec 2015

20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, November 2008.
https://bitcoin.org/bitcoin.pdf. Accessed 01 Jan 2015

21. Perez, Y.: Could the Bitcoin lightning network solve blockchain scalability? (2015).
http://www.coindesk.com/could-the-bitcoin-lightning-network-solve-blockchain-
scalability/. Accessed 15 May 2015

22. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Privacy,
Security, Risk and Trust (PASSAT), 2011 IEEE Third International Conference on
and 2011 IEEE Third International Conference on Social Computing, pp. 1318–
1326, October 2011

23. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin
mixing for Bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS,
vol. 8713, pp. 345–364. Springer, Cham (2014). doi:10.1007/978-3-319-11212-1 20

24. Schildbach, A.: Re: [Bitcoin-development] BIP 70 refund field. Bitcoin-
Development, March 2014. http://sourceforge.net/p/bitcoin/mailman/message/
32157651/. Accessed 1 Feb 2015

25. State, N.Y.: Chapter i regulations of the superintendent of financial services, part
200. Virtual currencies. Department of Finance Services, February 2015

26. Tur, M.: Can BitPay refund my order? (2015). https://support.bitpay.com/hc/
en-us/articles/203411523-Can-BitPay-refund-my-order-. Accessed 07 Apr 2015

27. Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for Bitcoin. In: Bren-
ner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976,
pp. 112–126. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48051-9 9

28. Wuille, P.: Switch to libsecp256k1-based ECDSA validation. Bitcoin Github Repos-
itory, November 2015. https://github.com/bitcoin/bitcoin/pull/6954. Accessed 31
Dec 2015

https://getmonero.org/home
https://bitcoin.org/bitcoin.pdf
http://www.coindesk.com/could-the-bitcoin-lightning-network-solve-blockchain-scalability/
http://www.coindesk.com/could-the-bitcoin-lightning-network-solve-blockchain-scalability/
http://dx.doi.org/10.1007/978-3-319-11212-1_20
http://sourceforge.net/p/bitcoin/mailman/message/32157651/
http://sourceforge.net/p/bitcoin/mailman/message/32157651/
https://support.bitpay.com/hc/en-us/articles/203411523-Can-BitPay-refund-my-order-
https://support.bitpay.com/hc/en-us/articles/203411523-Can-BitPay-refund-my-order-
http://dx.doi.org/10.1007/978-3-662-48051-9_9
https://github.com/bitcoin/bitcoin/pull/6954

Are Payment Card Contracts Unfair?
(Short Paper)

Steven J. Murdoch1(B), Ingolf Becker1, Ruba Abu-Salma1, Ross Anderson2,
Nicholas Bohm3, Alice Hutchings2, M. Angela Sasse1, and Gianluca Stringhini1

1 University College London (UCL), London, UK
s.murdoch@ucl.ac.uk

2 Computer Laboratory, University of Cambridge, Cambridge, UK
3 Foundation for Information Policy Research, Takeley, UK

Abstract. Fraud victims are often refused a refund by their bank on the
grounds that they failed to comply with their bank’s terms and conditions
about PIN safety. We, therefore, conducted a survey of how many PINs
people have, and how they manage them. We found that while only a
third of PINs are ever changed, almost half of bank customers write at
least one PIN down. We also found bank conditions that are too vague
to test, or even contradictory on whether PINs could be shared across
cards. Yet, some hazardous practices are not forbidden by many banks: of
the 22.9% who re-use PINs across devices, half also use their bank PINs
on their mobile phones. We conclude that many bank contracts fail a
simple test of reasonableness, and ‘strong authentication’, as required by
the Payment Services Directive II, should include usability testing.

1 Introduction

Many research papers on payment security focus on the technical mechanisms
used to prevent fraud. Yet, these often fail, and consumer confidence in payment
systems depends on whether fraudulent transactions can be reversed, or the
victim reimbursed. If a customer disputes a transaction, and there is no evidence
that the merchant colluded, the question may be simply whether the bank gives
the customer a refund. Will the bank be able to hide behind its contract terms
in theory, and will it do so in practice?

Fifteen years ago, Bohm, Brown and Gladman surveyed the terms and condi-
tions that banks were imposing on customers in the rush to put banking services
on-line [2]. They found some bank contracts said that a customer who accepted
a password for on-line banking would be liable for any transaction the bank
claimed was made with that password, regardless of whether she had actually
made it. This was a huge change from the law on cheques, where a forged signa-
ture is null and void, so banks cannot make customers liable for forged cheques by
their terms and conditions. The new electronic banking contracts subtly shifted
the burden of proof to the customer.

So, where are we fifteen years later? In the US, regulations require that
disputed consumer transactions be refunded, unless the bank can show that the
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 600–608, 2017.
DOI: 10.1007/978-3-662-54970-4 35

Are Payment Card Contracts Unfair? 601

customer actually performed the transaction, or authorised someone else to do
so. In the EU, the 2007 Payment Services Directive ruled that customers are
entitled to a refund unless they have been “grossly negligent” in complying with
the security procedures set out in the contract with their bank. Thus, banks may
be permitted to refuse a refund if the customer fails to follow security guidelines
correctly; and even in the USA, a bank might claim that a customer who had let
a thief get hold of their card and PIN had authorised them to debit the account.

This might be a reasonable line to take, but only if the bank’s contract terms
are fair. So, have banks been able to cheat by setting unreasonable rules (e. g.,
‘choose a password you can’t remember and don’t write it down’)? Or, are their
security rules so vague that in the case of dispute, they can always claim that
the customer is in breach? In this project, we try to find out.

We examine UK banking terms and conditions in the context of national
and EU legislation. We focus on card-present payments and ATM withdrawals
because the fraud risk of these transactions falls on the banks, maximising the
incentive for customers to be refused a refund. The most reported cases involve
a card being stolen (resulting in £59.7 m fraud in the UK in 2014 [11]), coun-
terfeited (£47.8m), or intercepted in the post (£10.1m). We exclude card-not-
present (e. g., Internet) transactions (£331.5m), as their fraud risk falls on the
merchant.

The vast majority of card-present transactions in the EU now require a PIN.
In these cases, the bank may claim that the customer must have been grossly
negligent in protecting it. Hence, we study how people actually use cards and
PINs. We are interested in whether customers can practicably comply with typ-
ical bank contract terms, and whether they actually do in reality.

2 Legal and Regulatory Context

Banking contract terms are regulated everywhere. In the US, Federal Reserve
regulations E and Z limit consumer liability for fraudulent debit and credit
transactions at $50 (unless for debit transactions the customer did not promptly
notify the bank of a lost or stolen card, in which case the limit is $500). Liability
does not depend on whether the customer was negligent, and the only way to
refuse a refund is to argue that the customer actually authorised the transaction
or authorised someone else to perform it. In practice, fraud victims are generally
refunded unless the bank suspects they are in cahoots with the merchant.

Practice in the EU was harmonised in 2007 by the Payment Services Directive
(PSD), which states that customers are not liable for unauthorised transactions
when their card is not stolen, and liability would be capped at e150 if it was.
However, these limitations do not apply if the customers “failed with intent
or gross negligence to fulfil one or more of his obligations under Article 56”,
which requires that customers comply with banking terms and conditions and, in
particular, to “take all reasonable steps to keep its personalised security features
safe”. So, what counts as ‘reasonable’?

European banks typically use the “gross negligence” exception when they
choose to deny a refund, but its definition is left to national rules and practices.

602 S.J. Murdoch et al.

As an example, banks commonly state that it is gross negligence to write down
a PIN and keep it with the card. However, in practice, for a customer to be held
liable, it is only necessary for the adjudicator to believe that gross negligence is,
on the balance of probabilities, the most likely explanation.

The PSD requires that there be a means of adjudicating disputes without
going to court. This was considered necessary because many European countries
practice ‘costs shifting’, whereby the loser of a civil case pays the winner’s costs,
which could far exceed the sums in dispute.

The UK adjudicator is the Financial Ombudsman Service, from whose deci-
sions we can see what they consider to be gross negligence. For example, in one
case [5], a stolen debit card was used, and while the customer denied writing
down the PIN, the bank records showed that the correct card and PIN had been
used. The adjudicator observed that the customer had not used the card on the
day (reducing the likelihood of shoulder-surfing), and concluded that the most
likely explanation for the transactions was that the PIN was kept with the card.
The customer was, therefore, held liable.

In one of the few UK cases to get to court [7], the judge also found that
the most likely explanation for disputed ATM transactions was that either the
customer had made the transactions, or the customer allowed them through
intent or negligence. This decision was based on expert witness testimony from
the bank, stating that there had never been a breach of the Chip and PIN system
at an ATM, the disputed transactions were near the customer’s home, and the
total disputed amount did not exceed the available balance of the account. The
customer was refused a refund and ordered to pay £15,000 of the bank’s costs.

Of course, there are other explanations for how the PIN could have been
obtained in both of these cases; the same PIN could have been used on another
card or on the customer’s mobile phone, or the PIN check could have been
bypassed technically [8]. The outcome may turn on whether the adjudicator
believes the bank or the complainant, which in turn may depend on their access
to independent expertise.

The facts that people tend to choose PINs that are easy to guess, and that
they tend to set the same PIN on multiple cards, mean that guessing a PIN is
possible for about 1 in 11 stolen wallets [3], but a bank could argue that this is
only a result of poor PIN choice and still amounts to gross negligence. Therefore,
we examine guidance given to customers, to see if customers are set sufficiently
clear and consistent rules with which they can reasonably be expected to comply.

3 Review of Banking Terms and Conditions

We surveyed the terms and conditions of a number of banks. We looked for
instructions or advice on how users should handle the PINs associated with
their cards. As an example, we consider HSBC [6], one of the big British banks.

PIN Memo Clauses. Banks’ terms of service often provide guidance on writ-
ing down and recording PINs. HSBC forbids its users from writing PINs down

Are Payment Card Contracts Unfair? 603

anywhere, except in an “obfuscated” fashion that others cannot easily recon-
struct. It stipulates: “Never writing down or otherwise recording your PINs and
other security details in a way that can be understood by someone else”. It is not
specified whether it is the PIN that should not be understood, or the connection
between the PIN and the card.

PIN Change Clauses. Some banks tell customers whether they can change
their PINs, and how to choose a PIN. HSBC’s rules are concise, but general:
“These precautions include . . . not choose security details that may be easy to
guess”.

PIN Re-use Clauses. Many banks have rules on whether a customer can re-
use a PIN for multiple cards. HSBC states that customer precautions include
“keeping your security details unique to your accounts with us . . .”. This is actu-
ally in conflict with the advice given earlier by the UK banks’ trade association,
which recommends customers to change all their PINs to the PIN issued for one
of their cards. The UK banks have also taken the necessary technical measures
to ensure that cardholders from any bank can change their PIN at any ATM.

PIN Advice Clauses. Common conditions include not telling the PIN to any
third party. HSBC stipulates that the PIN advice letter must be destroyed imme-
diately after receipt: “Safely destroying any Card PIN advice we send you imme-
diately after receipt, e. g., by shredding it . . .”.

4 Survey of Payment Card PIN Usage

We conducted an on-line questionnaire study of how people use payment cards,
and, in particular, how many PINs they have, and how they are remembered. We
also investigated their behaviour towards storing, resetting and sharing PINs.

4.1 Questionnaire Setup

The questionnaire was set up using LimeSurvey1, and the participants were
recruited using Prolific Academic2. We restricted submissions to British residents
aged 18 or over. Participants were paid £1.50 for successfully completing the
questionnaire. The questionnaire took five minutes on average to complete. We
received 241 (out of 250) valid responses, and verified that the IP address used
was from the UK in all but 5 cases3.

Questions that required categorical responses by the participants had a set
of predefined choices as well as a free text response field. The predefined choices
were sourced from a small qualitative preliminary study. In nearly all cases the
participants did not make use of the free text response field.

1 www.limesurvey.org.
2 www.prolific.ac.
3 IP address geo-location has a non-trivial error rate, but this still confirms that our
sample is predominantly from the UK, as intended.

www.limesurvey.org
www.prolific.ac

604 S.J. Murdoch et al.

4.2 Results

Of the participants, 61% are female and 39% are male. The age of the partic-
ipants spans 18 to 71 years, with a mean of 31.2. Our participants are better
educated than average bank customers: 38% have at least an undergraduate
degree (BSc, BA or similar), while a further 17% have postgraduate education.
30% did not attend higher education, and a third of these (10%) have a Gen-
eral Certificate of Secondary Education (GCSE) as their highest qualification.
49% of the participants are employed; a further 13% are self-employed; 24% of
participants are students; only 13% are unemployed.

Table 1. Distribution of participants’ PINs

0 1 2 3 4 5 6 7 8 9 Mean

4 digits 1 88 65 41 31 8 5 1 1 0 2.28

5 digits 233 5 3 0 0 0 0 0 0 0 0.05

6 digits 228 8 4 1 0 0 0 0 0 0 0.08

The participants report having 1 to 9 payment cards (mean = 2.53). This
contrasts with the number of 4-digit, 5-digit, and 6-digit PINs each participant
has in Table 1. The vast majority of customers have only 4-digit PINs, but the
mean number of PINs is 2.28 – statistically significantly lower than the mean
number of cards per customer (dependent t-test, t = −4.38, p < 0.0001).

Table 2 analyzes how often participants use their PINs. No participant had
more than eight 4-digit PINs, or more than two 5-digit ones or three 6-digit
ones. We see at once that as the number of PINs increases, their usage drops.
Only one participant uses more than one unique PIN on a daily basis. About
half (48%) of the PINs are used at most once a month, and PIN #4 is used on
average around twice a year. This supports the bank industry ‘folk wisdom’ that
if you want customers to use cards other than their main card you must let them
change their PINs.

Table 2. Frequency of usage of participants’ PINs

4-digit PINs 5-digit PINs 6-digit PINs

#1 #2 #3 #4 #5 #6 #7 #8 Sum #1 #2 Sum #1 #2 #3 Sum

Every day 34 0 0 1 0 0 0 0 35 0 0 0 1 1 0 2

Several times aweek 117 30 3 3 0 0 0 1 154 1 0 1 5 2 1 8

Once per week 59 35 12 3 0 0 0 0 109 2 1 3 0 0 0 0

Once per month 21 37 24 8 3 0 0 0 93 4 2 6 3 2 0 5

Several times a year 6 24 24 12 2 2 1 0 71 1 0 1 3 0 0 3

Once a year or less 1 14 10 10 4 1 0 0 40 0 0 0 1 0 0 1

Never 2 12 14 9 6 4 1 0 48 0 0 0 0 0 0 0

Are Payment Card Contracts Unfair? 605

Table 3. Source of 4-digit participants’ PINs

#1 #2 #3 #4 #5 #6 #7 #8 Sum

I chose it myself 75 56 28 15 3 3 1 0 181

Assigned to me, I decided not to change it 161 94 56 31 11 3 1 0 357

Assigned it to me, I am not allowed to change it 4 2 3 0 1 1 0 1 12

Table 3 documents PIN change, and we see that two-thirds of PINs are left
as their default. Interestingly, there is no correlation between frequency of PIN
use (Table 2) and PIN origin (Table 3). Virtually all participants are allowed to
change their PINs in the UK. The details for 5- and 6-digit PINs have been
omitted here for brevity. We also investigated the reasons for PIN change. Of
the participants that set their own PIN, 61% reported changing their PIN on
first receipt, a further 23% stated they changed their PIN because they felt it
was compromised, but only 6% claimed to change their PIN on a regular basis.

Our participants keep their PINs for a long time: Only 13% of PINs were
changed in the last year, with over 39% having been in use for over 5 years.

Remembering PINs. A quarter of the participants reported forgetting a 4-
digit PIN at least once. Of these, 48% remembered or retrieved their PIN them-
selves, 24% were issued with a new PIN, and 15% used the bank’s services to
retrieve their PIN. Finally, 10% did not bother retrieving the forgotten PIN; half
of these said they transferred their money to a different account.

Table 4. Location of written down PINs by participants. 79 (32.9%), 4 (50.0%), and
0 (0.0%) wrote down their 4-, 5-, and 6-digit PINs, respectively.

4-digit 5-digit 6-digit Sum

On the card 1% 0% 0% 1%

I kept the original PIN slip 0% 0% 0% 0%

On paper – kept in desk 16% 25% 0% 17%

On paper – kept in wallet 10% 0% 0% 10%

In a notebook/diary/planner, etc. 41% 25% 0% 40%

File on computer 10% 25% 0% 11%

File on phone 42% 25% 0% 41%

As many banks insist that PINs must not be written down, we decided to
investigate this in reality. Table 4 describes our participants’ strategies towards
writing down PINs. Not a single participant kept the original PIN mailer. The
prevailing method of PIN storage is on mobile phones – typically disguised as
a phone number. 13% of the participants use a mnemonic for 4-digit PINs, the
most common technique being the derivation of the PIN from a specific date.
(This was also reported by Bonneau et al. [3].)

606 S.J. Murdoch et al.

Table 5. A variety of locations where participants’ PINs are re-used. 55 (22.9%),
0 (0.0%), and 1 (7.7%) re-used their 4-, 5-, and 6-digit PINs, respectively.

4-digit 5-digit 6-digit Sum

Unlocking mobile phone 49% 0% 0% 48%

Burglar alarm 2% 0% 0% 2%

Voicemail 15% 0% 0% 14%

SIM card unlock 7% 0% 0% 7%

Unlocking computer 5% 0% 100% 7%

On-line Banking 25% 0% 0% 24%

PIN Re-use. 16% of our participants stated they use the same PIN on many
payment cards; when a PIN was re-used, it was used on 2.8 payment cards on
average, with the maximum being 9 cards! PINs were also used in a variety of
other locations (Table 5): 22.9% of participants are re-using their 4-digit payment
card PINs, half of whom use a payment card PIN to unlock their mobile phone.

Table 6. Sharing of PINs by participants. 102 (42.5%), 2 (25.0%), and 1 (7.7%) shared
their 4-, 5-, and 6-digit PINs, respectively.

4-digit 5-digit 6-digit Sum

Stranger 0% 0% 0% 0%

Family member 37% 0% 100% 37%

Flatmate (if accommodation shared) 3% 0% 0% 3%

Spouse/partner 75% 100% 0% 74%

Casual acquaintance 1% 0% 0% 1%

Close friend 14% 0% 0% 13%

PIN Sharing. Finally, an impressive 42.5% of our participants share their
PINs, in many cases with more than one person (Table 6). Sharing predomi-
nantly occurs with a spouse or partner (32% of participants) or other family
members (16%), but also, in some cases, close friends (6%).

5 Conclusion

In general, it is difficult for customers to be certain whether they are complying
with bank rules, as these rules lack detail and can even be contradicted. For
example, HSBC prohibits PIN re-use, whereas the UK bank trade body rec-
ommends this [4]. Vague and contradictory guidance puts customers in a weak
position should a bank claim that a disputed transaction must have been caused
by a failure to comply with its rules.

Are Payment Card Contracts Unfair? 607

Our survey of PIN use confirms the practical difficulty of remembering PINs.
Customers are commonly asked to remember four or more PINs, some of which
they only use every month at most. The combined effect of forgetting over
time [10], as well as interference between the different PINs remembered [1],
makes unaided recall of these PINs a difficult task. In one study after 3 weeks,
the majority of participants were unable to remember a PIN, and even after 1
week 45% had forgotten it [9]. In current usage scenarios, customers can only
cope by re-using PINs or writing them down.

The 4-digit PIN system worked adequately in the environment for which
it was originally designed: a single regularly-used ATM card. Today’s usage
scenarios are different, but the mechanism, and terms and conditions, remain
unchanged. Not considering the usability implications pushes customers towards
insecure PIN practices banned by the banks’ contracts. Each PIN re-use allows
a thief another 6 guesses, and mobile phone touchscreens can give away PIN
digits directly. Not all customers can be expected to disguise PINs securely,
but remembering an infrequently-used PIN is impractical without some kind of
assistance. Customers who do not comply with their banking contract are then
blamed for security failures that are actually caused by a system that is not fit
for purpose.

The successor to the PSD – PSD II – adds a requirement that banks must
use strong authentication for payments. This is defined as “authentication based
on the use of two or more elements categorised as knowledge (something only
the user knows), possession (something only the user possesses) and inherence
(something the user is) that are independent”. The European Banking Authority
is responsible for evaluating proposed solutions. Our study shows that an authen-
tication technique must be evaluated in the context of normal use (e. g., multiple
payment instruments, some used infrequently) and only considered strong if real
people can use it in the course of their normal life. Otherwise, it risks becoming
just another excuse for some banks to shift fraud liability to their customers.

Banks want customers to use multiple cards, so they can earn more fees.
Regulators want people to use multiple cards to enhance competition. Secure
methods for using a single PIN (or two-factor authentication technique) over
all devices would remove the need for the ad-hoc coping mechanisms we see in
the survey. Alternatively, to take the US approach, enshrine strong consumer
protection in law; expect banks to use fraud detection to manage risks and
absorb the residual fraud; and by increasing trust, increase transaction volumes
and, thus, increase revenues and profits overall.

Data Availability. The survey data used in this paper can be downloaded from
http://dx.doi.org/10.14324/000.ds.1473489.

Acknowledgements. We are grateful to Adam Beautement, Brian Glass, Boris
Hemkemeier and Kat Krol for helpful discussions. Steven J. Murdoch is supported
by The Royal Society [grant number UF110392]; Ingolf Becker is supported by the
Engineering and Physical Sciences Research Council [grant number EP/G037264/1].

http://dx.doi.org/10.14324/000.ds.1473489

608 S.J. Murdoch et al.

References

1. Anderson, M.C., Neely, J.H.: Interference and inhibition in memory retrieval. In:
Memory. Handbook of Perception and Cognition, 2 edn., pp. 237–313. Academic
Press (1996)

2. Bohm, N., Brown, I., Gladman, B.: Electronic commerce: who carries the risk of
fraud. J. Inf. Law Technol. 2003(3) (2000)

3. Bonneau, J., Preibusch, S., Anderson, R.: A birthday present every eleven wal-
lets? The security of customer-chosen banking PINs. In: Keromytis, A.D. (ed.)
FC 2012. LNCS, vol. 7397, pp. 25–40. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32946-3 3

4. Bowerman, M.: Radio interview with APACS spokesperson. BBC Radio
Merseyside, 19 February 2007

5. Financial Ombudsman Service: Ombudsman news (March/April 2014), case
116/2. http://www.financial-ombudsman.org.uk/publications/ombudsman-news/
116/116-disputed-transactions.html

6. HSBC, UK: General, current accounts and savings accounts terms and conditions.
Accessed 1 Sept 2015

7. Kelman, A.: Job v Halifax PLC (not reported) case number 7BQ00307. In: Digital
Evidence and Electronic Signature Law Review, vol. 6 (2009)

8. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is broken. In:
IEEE Symposium on Security and Privacy, pp. 433–446, May 2010

9. Renaud, K., Ramsay, J.: How helpful is colour-cueing of PIN entry? July 2014.
arXiv:1407.8007 [cs]

10. Squire, L.R.: On the course of forgetting in very long-term memory. J. Exp. Psy-
chol. Learn. Mem. Cogn. 15(2), 241–245 (1989)

11. UK Cards Association: Plastic fraud figures (2015). http://www.theukcardsas
sociation.org.uk/plastic fraud figures/index.asp

http://dx.doi.org/10.1007/978-3-642-32946-3_3
http://dx.doi.org/10.1007/978-3-642-32946-3_3
http://www.financial-ombudsman.org.uk/publications/ombudsman-news/116/116-disputed-transactions.html
http://www.financial-ombudsman.org.uk/publications/ombudsman-news/116/116-disputed-transactions.html
http://arxiv.org/abs/1407.8007
http://www.theukcardsassociation.org.uk/plastic_fraud_figures/index.asp
http://www.theukcardsassociation.org.uk/plastic_fraud_figures/index.asp

The Bitcoin Brain Drain: Examining the Use
and Abuse of Bitcoin Brain Wallets

Marie Vasek1(B), Joseph Bonneau2, Ryan Castellucci3, Cameron Keith4,
and Tyler Moore1

1 Tandy School of Computer Science, The University of Tulsa, Tulsa, USA
{marie-vasek,tyler-moore}@utulsa.edu

2 Applied Crypto Group, Stanford University, Stanford, USA
jbonneau@cs.stanford.edu

3 White Ops, New York, USA
pubs@ryanc.org

4 Computer Science and Engineering Department,
Southern Methodist University, Dallas, USA

ckeith@smu.edu

Abstract. In the cryptocurrency Bitcoin, users can deterministically
derive the private keys used for transmitting money from a password.
Such “brain wallets” are appealing because they free users from stor-
ing their private keys on untrusted computers. Unfortunately, they also
enable attackers to conduct unlimited offline password guessing. In this
paper, we report on the first large-scale measurement of the use of
brain wallets in Bitcoin. Using a wide range of word lists, we evaluated
around 300 billion passwords. Surprisingly, after excluding activities by
researchers, we identified just 884 brain wallets worth around $100K in
use from September 2011 to August 2015. We find that all but 21 wallets
were drained, usually within 24 h but often within minutes. We find that
around a dozen “drainers” are competing to liquidate brain wallets as
soon as they are funded. We find no evidence that users of brain wallets
loaded with more bitcoin select stronger passwords, but we do find that
brain wallets with weaker passwords are cracked more quickly.

Keywords: Bitcoin · Brain wallets · Passwords · Cybercrime
measurement

1 Introduction

Bitcoin, launched in 2009, is the most successful cryptographic currency to date
and has recently attracted considerable research [2,5]. Similar to many other
designs for cryptographic currencies, transactions which transfer control of bit-
coins are authorized by ECDSA digital signatures. The popularity of Bitcoin,
particularly with populations who had not previously used cryptographic soft-
ware [7], has resulted in a large number of users attempting to manage private
keys for the first time.
c© International Financial Cryptography Association 2017
J. Grossklags and B. Preneel (Eds.): FC 2016, LNCS 9603, pp. 609–618, 2017.
DOI: 10.1007/978-3-662-54970-4 36

610 M. Vasek et al.

In this paper we study the use of brain wallets, or private keys which are deter-
ministically derived from passwords. Compared to other paradigms for manag-
ing Bitcoin keys, such as storing them on a personal computer or a dedicated
hardware device, this approach is convenient as the user can spend their bitcoins
simply by typing their password. Because their private keys are not permanently
stored on devices, brain wallets cannot be exfiltrated by malware [1].

However, there is a big downside: anyone who guesses a user’s password can
immediately steal their funds. Worse, attackers can perform unthrottled (offline)
guessing to test candidate passwords. Attackers guessing a password can quickly
test whether it matches any user’s brain wallet by scanning for use of the derived
public key on the Bitcoin block chain, a public ledger of all transactions. We
replicate this password-guessing attack in a research setting by non-invasively
testing candidate passwords for historical use as a Bitcoin brain wallet address.

Others have investigated brain wallets. Eskandari et al. studied bitcoin wal-
let software and found that while brain wallets are supported across platforms
and require little trust in devices, the threat of weak passwords eclipses those
benefits [10]. BIP 38 [6] specifies a format for password-protected private key
encryption as a second factor. Our work also builds upon work on passwords
for financial systems. While there is little evidence that users choose signifi-
cantly stronger passwords to protect financial online accounts [4], Herley argues
that users rationally choose weak passwords for online accounts [13] as they are
protected by anti-fraud systems.

In this work we report on the first large-scale attempt to measure brain wallet
use and abuse in the wild. Surprisingly, we identified a relatively small number of
brain wallets in use: fewer than 1 000 total. This is despite a significant amount
of interest in the concept and the existence of several software tools for creating
and using brain wallets.

Our results are necessarily incomplete in that password-derived public
keys are indistinguishable from pseudorandomly-generated public keys without
knowledge of the password. Put another way, we do not know how many brain
wallets are in use for which we were not able to guess the password. Nonetheless,
given that we tried over 300 billion passwords from over twenty customized word
lists, we are confident that the use of brain wallets remains quite rare.

Our results reveal the existence of an active attacker community that rapidly
steals funds from vulnerable brain wallets in nearly all cases we identify. In total,
approximately $100K worth of bitcoin has been loaded into brain wallets, with
the ten most valuable wallets accounting for over three quarters of the total
value. Many brain wallets are drained within minutes, and while those storing
larger values are emptied faster, nearly all wallets are drained within 24 h.

2 Data Collection Methodology

We first review how the candidate passwords1 were constructed and then explain
how we checked for their usage in brain wallets.
1 Technically these are passwords and passphrases. We use password for simplicity of

presentation.

The Bitcoin Brain Drain 611

Password Corpora. We have constructed an extensive set of passwords derived
from publicly available sources. This includes prior password leaks (e.g., Rock-
you, Yahoo!, LinkedIn) word and derived phrase lists (e.g., English Wikipedia,
Wikiquote), and information gleaned from Bitcoin discussion forums. In total,
we tested approximately 300 billion passwords for usage in brain wallets. Testing
was carried out using the open-source project Brainflayer2.

Word lists were tried directly unless otherwise specified. The following word
lists were used:
1. English: English word list packaged with Ubuntu 12.04.
2. Urban Dictionary: Terms and phrases from the crowd-sourced slang dic-

tionary3. The “combinator” tool was used to check all pairs of terms [12].
3. Two Words: English pairs of words using the combinator tool.
4. English/Slang Urban Dictionary: Single word entries from Urban Dic-

tionary are combined with English words. Additionally, the results are run
through the combinator tool for all phrases up to 20 characters long.

5. English Wikipedia.
6. WikiQuotes: English, Spanish, Russian and German quotes from 3/2013.
7. Phrases: Permutations of WikiQuote, wikipedia and Naxxatoe phrases.
8. xkcd: Lists obtained on July 10th, 2014 from three sources4. Combinations

up to three words with and without spaces. All words used for 2 word
combinations; words common to all three lists used for 3 word combinations.

9. Lyrics: lyrics and song titles purchased from https://andymoore.info/
mysql-lyrics-database/.

10. Blockchain.info tags: All public bitcoin address tags obtained from
https://blockchain.info/tags.

11. Password dumps LinkedIn, MySpace, RockYou, Rootkit.com
12. Leet MRL: De-duplicated merge of MySpace, Rockyou and LinkedIn

(hence MRL) dumps, with leet-speak substitutions.
13. Prince MRL: MRL list applying the Prince attack [14].
14. Security industry lists: CrackStation, Naxxatoe, Uniqpass (combination

of 2012-01-01 and 2012-04-01 lists), Skull Security5 (RockYou list excluded).

In addition to the aforementioned word lists, we tested the following:
1. Reddit User Challenge: Post about a brain wallet password on Reddit6.
2. Brute Force: All numbers up to 9 digits and printable ASCII up to 5 char-

acters.
3. Modified BW Passwords: Appended and prepended one and two ASCII

characters to passwords of previously cracked brain wallets using combinator.

Table 1 in Sect. 3 details the number of brain wallet passwords obtained from
each source, along with the total amount drained.
2 https://github.com/ryancdotorg/brainflayer.
3 List was sourced from https://github.com/inieves/urban-dictionary-scraper/blob/

4a86fd9ef4c2f8812dc78f5862c327912213436a/dict/UrbanDictionary.txt.
4 https://xkpasswd.net/s/, http://correcthorsebatterystaple.net/, and http://

preshing.com/20110811/xkcd-password-generator/.
5 https://wiki.skullsecurity.org/Passwords.
6 https://www.reddit.com/r/Bitcoin/comments/3gycp1/-/cu3316a.

https://andymoore.info/mysql-lyrics-database/
https://andymoore.info/mysql-lyrics-database/
https://blockchain.info/tags
https://github.com/ryancdotorg/brainflayer
https://github.com/inieves/urban-dictionary-scraper/blob/4a86fd9ef4c2f8812dc78f5862c327912213436a/dict/UrbanDictionary.txt
https://github.com/inieves/urban-dictionary-scraper/blob/4a86fd9ef4c2f8812dc78f5862c327912213436a/dict/UrbanDictionary.txt
https://xkpasswd.net/s/
http://correcthorsebatterystaple.net/
http://preshing.com/20110811/xkcd-password-generator/
http://preshing.com/20110811/xkcd-password-generator/
https://wiki.skullsecurity.org/Passwords
https://www.reddit.com/r/Bitcoin/comments/3gycp1/-/cu3316a

612 M. Vasek et al.

Observing Bitcoin Brain Wallet Usage. We use the SHA256 hash of the password
as the private key. We then generate the corresponding public key using a few
speedups to the secp256k1 curve library7 [8]. We download the Bitcoin blockchain
using Bitcoin core software8 and extract all the unique Bitcoin addresses using
znort987’s block parser9. We then add all the addresses to a bloom filter for
quick lookup and a sorted list for false positive detection. We compare all the
addresses generated from candidate passwords against the bloom filter and con-
firm positive results against the sorted list. After we find all of the used brain
wallet addresses, we supplement this information by querying all our brain wal-
let addresses against the blockchain.info API to obtain precise timestamps for
all transactions. Transactions with brain wallets as recipients are incoming pay-
ments and transactions with brain wallets as sources are outgoing payments.

3 Results

We investigate brain wallet usage by examining all block chain transactions
through 8/2015.10 We report on their prevalence, draining, and password
strength.

How Prevalent are Brain Wallets? We have found 884 distinct brain wallets
using 845 different passwords. The slight difference is from to the small number
of instances where compressed and uncompressed wallets were used for the same
password. In total, these brain wallets received 1 806 BTC (approx. $103K11).

Table 1 reports the brain wallets identified, broken down according to the
password sources. The single most popular source is the security word list Crack-
Station, which included 640 of the 884 brain wallet passwords identified. Notably,
37 of these passwords were only found by CrackStation, also the highest figure for
any list. By contrast, the list with the second highest number of matches, Uniq-
pass, only reported passwords that were also found by at least one other source.
Notably, the second-largest source of unique brain wallets, the combinations of
English and slang words, only identified 63 wallet passwords.

The password sources used for our study can of course also be used by attack-
ers. One way to estimate the popularity of password sources among attackers is
to compare how often repeated drains occur. The fifth column shows the 90th

percentile for number of drains observed on passwords identified by each source.

7 https://github.com/bitcoin-core/secp256k1.
8 https://github.com/bitcoin/bitcoin.
9 https://github.com/znort987/blockparser.

10 We excluded 17 784 brain wallets that were suddenly assigned a tiny amount of
bitcoin from 36 linked input addresses within a few hours on August 31, 2013. We
strongly suspect these brain wallets were set up by a researcher. We also excluded
15 brain wallets used in over 20 000 transactions between June and August 2015 as
part of a network “stress test”.

11 All USD calculations presented here are normalized by the corresponding day’s
exchange rate on Bitstamp, as reported by bitcoincharts.com.

http://blockchain.info
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin/bitcoin
https://github.com/znort987/blockparser
http://bitcoincharts.com

The Bitcoin Brain Drain 613

Table 1. Brain wallets and values associated with different password sources.

Source # Wallets (Non-empty) Unique 90% # drains Total BTC Total USD

Word lists

Urban dictionary 296 3 2 3.00 561.95 43 120.77

Two words 13 3 0 4.00 0.79 92.65

Eng/slang urban dict. 63 14 28 2.00 0.90 124.96

Eng. Wikipedia 250 0 0 2.00 505.77 38 833.16

WikiQuotes 35 0 0 12.00 60.96 17 620.50

Phrases 283 0 0 3.00 578.69 57 376.80

xkcd 90 3 3 13.00 97.66 29 140.44

Lyrics 329 4 16 3.00 230.45 26 788.97

Blockchain.info tags 112 0 10 7.00 577.93 31 683.29

Rootkit 123 2 0 6.00 4.50 570.78

MySpace 59 0 0 3.00 1.14 210.44

RockYou 415 3 2 3.00 113.82 33 807.17

LinkedIn 213 0 0 2.00 10.11 738.52

LEET MRL 3 0 0 1.00 0.01 1.49

Prince MRL 295 4 7 3.00 88.93 21 028.02

CrackStation 640 3 37 2.00 396.09 41 326.80

Naxxatoe 388 0 2 2.00 41.56 3 389.31

Skull security 414 3 3 2.00 71.73 20 756.32

Uniqpass 490 3 0 2.00 134.95 35 266.27

Non-word lists

Reddit user challenge 1 0 1 1.00 0.01 2.62

Brute force 200 3 3 3.00 22.47 3 895.99

Modified BW passwords 74 1 9 2.00 2.25 209.98

Overall 884 21 139 2.00 1 806.22 103 472.13

Larger numbers indicate that more attackers are using the source. Perhaps unsur-
prisingly, passwords derived from xkcd are drained repeatedly the most.

The last two columns provide an alternative way to value the passwords
obtained from different sources. Each represents the total value put into brain
wallets whose passwords are identified by these sources (in BTC and USD,
respectively). By this measure, the Phrases word list is the most valuable at
$57K, followed by English Wikipedia, CrackStation, and Urban Dictionary. By
contrast, the relatively unique English and slang combination passwords are not
worth much – all 63 collectively stored just 0.90 BTC.

Figure 1 plots when wallets were first used over time, beginning with the first
brain wallet established in September 2011. Monthly totals of new wallets are
reported, and the bar chart breaks down the use of compressed and uncompressed
brain wallets. We can see that the number of new brain wallets has increased
since Bitcoin’s early days, though the total remains small.

Relatively speaking, uncompressed wallets are more prevalent. We found 798
uncompressed wallets compared to 71 compressed. Note that the brain wallet
service bitaddress.org offers only uncompressed brain wallets whereas the

http://bitaddress.org

614 M. Vasek et al.

20
11

−
09

20
11

−
11

20
12

−
01

20
12

−
03

20
12

−
05

20
12

−
07

20
12

−
09

20
12

−
11

20
13

−
01

20
13

−
03

20
13

−
05

20
13

−
07

20
13

−
09

20
13

−
11

20
14

−
01

20
14

−
03

20
14

−
05

20
14

−
07

20
14

−
09

20
14

−
11

20
15

−
01

20
15

−
03

20
15

−
05

20
15

−
07

uncompressed
compressed

w

al
le

ts

0

20

40

60

80

0
50

00
10

00
0

20
00

0
30

00
0

40
00

0

U
S

D

New wallet value (USD)

0.0000001 0.1000000 100000.0000000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF: Wallet Value (USD)

Total USD in Wallet

P
(t

ot
al

 U
S

D
)

<
=

 x

1 5 50 500

0
20

40
60

80
10

0

Rank−Order: Total Value (USD)

Largest Wallets

%
 T

ot
al

 U
S

D

Fig. 1. New brain wallet usage per month (compressed and uncompressed, left); CDF
and rank-order plot of total value stored in brain wallets (right).

(defunct) brainwallet.org defaulted to uncompressed brain wallets (though it
supported both). Compressed keys are only supported in versions of Bitcoin
clients released after March 30, 2012; we observed 20 brain wallets before then,
the first being “one two three four five six seven” seen in September 2011.

Also plotted in Fig. 1 is the USD value of the brain wallets each month. We
can see that this is quite volatile. Most months, the total value hovers around a
few thousand dollars, but frequently the amount stored spikes greatly, including
to a peak of over $40K in March 2013. Notably, there is no discernible relation-
ship between the number of new wallets created and the value stored.

The top plot in Fig. 1 (right) gives the CDF of brain wallet value in USD.
While most brain wallets store little money (just 6% of the brain wallets received
the equivalent of $100 or more), the bulk of the total value in brain wallets is
associated with a small number of addresses. The bottom plot of Fig. 1 (right)
presents a rank-order plot, which reveals that just 10 wallets account for approx-
imately 85% of the total dollar value placed into all brain wallets.

Draining Brain Wallets. As explained in Sect. 1, because the addresses used by
brain wallets are deterministically computed from passwords, there is a risk that
attackers might guess the password and drain the wallet’s value. Many users
select brain wallets with the intention of keeping their bitcoin there for a long
time, analogous to hiding cash under a mattress. Therefore, when bitcoins are
drained from these addresses (i.e., the account balance falls to zero), it strongly
suggests that an attack may have taken place.

Perhaps the best way to quantify brain wallet insecurity is to examine the
time required to drain wallets. Figure 2 (left) plots a CDF of the observed time-
to-drain. The solid black line shows the distribution for all wallets. Half of the
wallets are drained in 21 min or less. Subsequently, the rate of draining slows,

http://brainwallet.org

The Bitcoin Brain Drain 615

0 5 10 15 20

0.
2

0.
4

0.
6

0.
8

1.
0

CDF: Time−to−Drain by Wallet Value

Hours to Drain

P
(T

T
D

)
<

=
 x

 h
ou

rs

Overall
>$100
<$0.10

20
11

−
09

20
11

−
11

20
12

−
01

20
12

−
03

20
12

−
05

20
12

−
07

20
12

−
09

20
12

−
11

20
13

−
01

20
13

−
03

20
13

−
05

20
13

−
07

20
13

−
09

20
13

−
11

20
14

−
01

20
14

−
03

20
14

−
05

20
14

−
07

20
14

−
09

20
14

−
11

20
15

−
01

20
15

−
03

20
15

−
05

20
15

−
07

m
ed

ia
n

ho

ur
s

to
 d

ra
in

0

5

10

15

20

0
50

10
0

15
0

20
0

25
0

30
0

dr

ai
ne

rs
 p

er
 m

on
th

Fig. 2. CDF of the # of hours to drain brain wallets for wallets by value stored (left);
how time-to-drain changes over time (median time-to-drain reported per month, right).

but nearly all brain wallets are drained within 24 h. While some of these drains
are initiated by the brain wallet owners, it is likely that most are not.

We can also see the difference in draining speed when wallets are loaded
with large or small amounts of money. The red dashed line plots the cumulative
distribution for wallets loaded with at least $100. These wallets are consistently
drained faster than other wallets, while those loaded with 10 cents or less (indi-
cated by the dotted blue line) are drained more slowly. From this, we can con-
clude that time-to-drain is influenced by the stored value, but that in any case
the wallet will almost certainly be drained within one day of funding.

How often are brain wallets drained? 98% of the brain wallets have been
drained at least once. We observed 1 895 distinct draining events on 884 brain
wallets. 69% of wallets are drained exactly once, while 19% are drained twice, and
1.9% are drained more than ten times. Figure 2 (right) plots the median time-
to-drain by month. While this is always brief (less than one day), by September
2013 it becomes measured in minutes and seconds rather than hours.

How can these drains occur so fast? Many bots monitor for new transactions
depositing into known brain wallets. These drainers quickly send the money to
their own addresses, often with a sizable fee to encourage miners to pick up the
transaction quickly. In contrast to many criminals who take steps to cover their
tracks (e.g., by funneling transactions through many addresses), drainers are
proud of their achievements. Consequently, they make it easy for all to see that
they have done the draining, such as by using the same address for all drains.
This makes it easier for researchers to document their activities.

How many drainers did we find? The graph in Fig. 2 (right) also plots in
red the number of drainers actively receiving money from brain wallets. Overall,
their numbers are increasing – unsurprising given the reduction in time-to-drain.

Digging deeper, we manually inspected all 48 addresses that received at least
100 USD from brain wallets, as well as the 13 addresses receiving payment from
at least 20 distinct brain wallets. The top results are presented in Table 2, sorted
by the total amount drained in USD. The table indicates how many distinct brain

616 M. Vasek et al.

Table 2. Top 10 drain addresses from brain wallets, sorted by amount drained in USD.

Rank

(USD)

Drained

pwd

Drained

(USD)

Drained

(BTC)

Drains Description

1 1 22 466 250.01 1 Woodchuck drain (unintentionally done

by researcher Castellucci, https://rya.

nc/dc23)

2 1 15 267 250.00 1 Woodchuck drain (done by owner)

3 10 14 554 50.02 19 Drainer https://bitcointalk.org/index.

php?topic=878639.460

4 2 11 528 18.25 2 Drainer https://redd.it/2c5jot

5 29 6 784 12.15 49 Drainer https://bitcointalk.org/index.

php?topic=347828.0

6 1 5 800 500.00 1 “bitcoin is awesome” drain

7 100 3 219 9.96 155 Drainer https://bitcointalk.org/index.

php?topic=817294.10

8 1 1 863 38.69 1 Owner of

1N8gLjZEhRxLRRjg8ymS6Zez8KVegEKtb1

9 1 1 429 14.29 1 “deadsheep” drain

10 1 1 322 97.66 59 “thequickbrownfoxjumpedoverthelazydog”

drain

wallets were drained, the associated value in BTC and USD, and the number of
drain events that occurred. 34 addresses were associated with a single password
drain, suggesting these could be the owner. In a few cases, this is explicitly
confirmed by online postings. Nonetheless, we confirmed at least 14 drainers
targeting multiple brain wallets, corroborated by reports on discussion forums.

A few drainers are very successful while the rest do not make very much. The
top 4 drainers have netted the equivalent of $35 000 between them. The drainer
who has emptied the most brain wallets – 100 in all – has earned $3 219 for the
effort. But other drainers have stolen very little money. For example, one drainer
stole from 78 different brain wallets but netted only $62 worth of bitcoin. Why
is this? Looking back at Fig. 2 at the money flowing into brain wallets indicates
this amount has diminished as Bitcoin’s overall popularity has risen.

We also investigated the behavior of successful drainers. Some have claimed
that drainers purposely avoid emptying brain wallets with small stores of
value [11]:

Another example is brainwallets, we have clear evidence that people who
crack brainwallets intentionally avoid sweeping small amounts (And even
coordinate among each other) in order to avoid alerting users prematurely.

We did not find any evidence for this practice among the most successful drainers.
The median value of a drained brain wallet among each of the most successful
drainers was under $1 (typically a few cents).

Impact of Password Strength. Measuring the “strength” (or resistance to guess-
ing) of an individual password is a hard problem. Many standard metrics, such

https://rya.nc/dc23
https://rya.nc/dc23
https://bitcointalk.org/index.php?topic=878639.460
https://bitcointalk.org/index.php?topic=878639.460
https://redd.it/2c5jot
https://bitcointalk.org/index.php?topic=347828.0
https://bitcointalk.org/index.php?topic=347828.0
https://bitcointalk.org/index.php?topic=817294.10
https://bitcointalk.org/index.php?topic=817294.10

The Bitcoin Brain Drain 617

as the NIST “entropy” formula, have been shown to be poor predictors of actual
cracking time [16]. In practice, many websites use inconsistent and poorly spec-
ified methods for giving users feedback on password strength [9]. The gold-
standard of non-parametric statistics requires very large sample sizes and is
hence impractical in our setting [3]. Instead, we use the wheelerzxcvbn formula
as a rough measure of password strength. While it produces an integer value for
the estimated cracking time of any string, we conservatively use the value only
to induce an ordinal ranking on the strength of our cracked passwords.

Using this metric, we are able to test several hypotheses about the impact of
factors such as the time a brain wallet was created or the total amount stored on
the strength of the passwords chosen. For each hypothesis we computed the (non-
parametric) Spearman’s rank-correlation coefficient (ρ) against a null hypothesis
of no correlation. We did not observe statistically significant correlations (p > 0.1
in all cases) between the estimated password strength and the date the brain
wallet address was initially used or the total amount ever sent to the address. We
did observe a positive correlation of ρ = 0.54 (p = 0.013) between the estimated
strength and the time it took for the wallet to initially be drained of funds.
This result suggests we can reject the null hypothesis with over 95% confidence
(applying a Holm-Bonferonni correction for m = 3 hypotheses tested).

This suggests that, consistent with previous password research, we find no
evidence that users are able to pick stronger passwords when protecting a larger
quantity of money. But we do see that addresses protected by weaker passwords
are generally attacked quicker than stronger passwords. The cause of this corre-
lation is that attacks have improved over time, so stronger passwords may have
survived earlier cracking efforts but fall to later cracking efforts, giving a longer
overall survival time. This could partially be due to the rise of ASIC mining [15],
leaving Bitcoin enthusiasts with idle GPUs ripe for brain wallet cracking.

4 Conclusion

The idea behind brain wallets is elegant and alluring: remembering a password
is surely easier than a private key. Unfortunately, as this paper makes clear,
it is also an extremely insecure way to store bitcoin. Drainers lurk over the
blockchain, ready to pounce as soon as new brain wallets are established.

By examining 300 billion candidate passwords, we found 884 brain wallets
that were active at some point in time. Unfortunately, we also found that nearly
all were drained – usually quickly. While our findings are necessarily incomplete,
they certainly suggest that brain wallets are not a secure method for using
bitcoin. Perhaps the most surprising result of our analysis is the relative scarcity
of brain wallets in use today. This is actually quite encouraging, because it means
that fewer users are at risk to these attacks than has previously been supposed.

Acknowledgements. We thank the anonymous reviewers and paper shepherd Sarah
Meiklejohn for their helpful feedback. Some authors are funded by the Department
of Homeland Security (DHS) Science and Technology Directorate, Cyber Security

618 M. Vasek et al.

Division (DHSS&T/CSD) Broad Agency Announcement 11.02, the Government of
Australia and SPAWAR Systems Center Pacific via contract number N66001-13-C-
0131. Support from the Oak Ridge Associated Universities Ralph Powe Junior Faculty
Enhancement Award is also gratefully acknowledged. This paper represents the posi-
tion of the authors and not that of the aforementioned agencies.

References

1. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32946-3 29

2. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technology,
and governance. J. Econ. Perspect. 29(2), 213–238 (2015)

3. Bonneau, J.: Statistical metrics for individual password strength (transcript of
discussion). In: Christianson, B., Malcolm, J., Stajano, F., Anderson, J. (eds.)
Security Protocols 2012. LNCS, vol. 7622, pp. 87–95. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-35694-0 11

4. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy, May 2012

5. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy, May 2015

6. Caldwell, M., Voisine, A.: BIP 38: passphrase-protected private key, November
2012

7. Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous
online marketplace. In: Proceedings of the 22nd International World Wide Web
Conference, pp. 213–224 (2013)

8. Courtois, N., Song, G., Castellucci, R.: Speed optimizations in Bitcoin key recovery
attacks. http://eprint.iacr.org/2016/103.pdf

9. de Carnavalet, X.C., Mannan, M.: From very weak to very strong: analyzing
password-strength meters. In: Network and Distributed System Security Sympo-
sium (NDSS 2014). Internet Society (2014)

10. Eskandari, S., Barrera, D., Stobert, E., Clark, J.: A first look at the usability
of Bitcoin key management. In: Proceedings of the NDSS Workshop on Usable
Security (USEC) (2015)

11. gmaxwell: #bitcoin-wizards (2015). https://botbot.me/freenode/bitcoin-wizards/
2015-09-22/

12. hashcat: Combinator attack (2015). https://hashcat.net/wiki/doku.php?
id=combinator attack

13. Herley, C.: So long, and no thanks for the externalities: the rational rejection of
security advice by users. In: Proceedings of the 2009 Workshop on New Security
Paradigms, pp. 133–144. ACM (2009)

14. Steube, J.: PRINCE: modern password guessing algorithm. https://hashcat.net/
events/p14-trondheim/prince-attack.pdf

15. Taylor, M.B.: Bitcoin and the age of bespoke silicon. In: Proceedings of the 2013
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems, p. 16. IEEE (2013)

16. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, pp. 162–175.
ACM (2010)

http://dx.doi.org/10.1007/978-3-642-32946-3_29
http://dx.doi.org/10.1007/978-3-642-35694-0_11
http://eprint.iacr.org/2016/103.pdf
https://botbot.me/freenode/bitcoin-wizards/2015-09-22/
https://botbot.me/freenode/bitcoin-wizards/2015-09-22/
https://hashcat.net/wiki/doku.php?id=combinator_attack
https://hashcat.net/wiki/doku.php?id=combinator_attack
https://hashcat.net/events/p14-trondheim/prince-attack.pdf
https://hashcat.net/events/p14-trondheim/prince-attack.pdf

Author Index

Abadi, Aydin 149
Abu-Salma, Ruba 600
Acar, Gunes 367
Algwil, Abdalnaser 283
Aljuraidan, Jassim 60
Aly, Abdelrahaman 110
Anand, S. Abhishek 346
Anderson, Ross 600
Arshad, Sajjad 441

Balfanz, Dirk 422
Barki, Amira 99
Bauer, Lujo 60
Becker, Ingolf 600
Beckerle, Matthias 60
Bodduluri, Satya 321
Bohm, Nicholas 600
Boneh, Dan 477
Bonneau, Joseph 477, 609
Bos, Herbert 405
Brunet, Solenn 99

Carrigan, Joseph 544
Carter, Patrick 231
Castellucci, Ryan 609
Caulfield, Tristan 271
Chari, Suresh 22
Chen, Liuhua 460
Chen, Qi Alfred 41
Cohney, Shaanan 321
Coletta, Alberto 250
Czeskis, Alexei 422

Damgård, Ivan 169
Damgård, Kasper 169
Desmoulins, Nicolas 99
Diaz, Claudia 367
Dong, Changyu 149

Essl, Georg 41

Fernandes, Earlence 41
Finkler, Ulrich 22
Fried, Joshua 321

Gambs, Sébastien 99
Garman, Christina 81
Gharout, Saïd 99
Green, Matthew 81
Guasch, Sandra 130
Gusenbauer, Matthias 555

Habeck, Ted 22
Halderman, J. Alex 41
Hanzlik, Lucjan 535
Hao, Feng 581
Heninger, Nadia 321
Herrmann, Michael 367
Heuser, Stephan 260
Hoepman, Jaap-Henk 339
Hutchings, Alice 600

Ioannidis, Christos 271

Jain, Sanjay 499
Jonker, Coen 22
Jordens, Frank 22
Judmayer, Aljosha 555

Keith, Cameron 609
Kharraz, Amin 441
Kılınç, Handan 188
Kirda, Engin 231
Kluczniak, Kamil 535
Konoth, Radhesh Krishnan 405
Krasnova, Anna 385
Krombholz, Katharina 555
Küpçü, Alptekin 188, 208

Lang, Juan 422
Li, Xianxian 460
Liao, Alex 321
Lindorfer, Martina 231

Maggi, Federico 250
Mao, Z. Morley 41
Martin, Paul 544
McCorry, Patrick 581
McCoy, Damon 3

Miers, Ian 81
Mohassel, Payman 208
Molloy, Ian 22
Moore, Tyler 609
Morillo, Paz 130
Mulliner, Collin 231
Murdoch, Steven J. 600

Negro, Marco 260
Neikes, Moritz 385
Nielsen, Kurt 169
Nordholt, Peter Sebastian 169

Park, Youngja 22
Park, Youngsam 3
Paupore, Justin 41
Pendyala, Praveen Kumar 260
Prakash, Atul 41
Pym, David 271

Reiter, Michael K. 60
Ringers, Sietse 339
Robertson, William 231, 441
Roughgarden, Tim 477
Rushanan, Michael 544

Sadeghi, Ahmad-Reza 260
Sapirshtein, Ayelet 515
Sasse, M. Angela 600
Saxena, Nitesh 346
Saxena, Prateek 499
Schilder, Marius 422

Schoenmakers, Berry 299
Schrijvers, Okke 477
Schwabe, Peter 385
Shahandashti, Siamak F. 581
Shi, Elaine 3
Sompolinsky, Yonatan 515
Srinivas, Sampath 422
Stringhini, Gianluca 600

Terzis, Sotirios 149
Teutsch, Jason 499
Toft, Tomas 169
Traoré, Jacques 99

Valenta, Luke 321
van der Veen, Victor 250, 405
van Schaik, Ron 22
Van Vyve, Mathieu 110
Vanrykel, Eline 367
Vasek, Marie 609
Verheul, Eric 339

Wang, Li-e 460
Weippl, Edgar 555
Wiggerman, Mark 22

Yan, Jeff 283

Zhong, Shenghai 460
Zohar, Aviv 515

620 Author Index

	Preface
	FC 2016 Financial Cryptography and Data Security 2016 Accra Beach Hotel and Spa, Barbados February 22–26, 2016
	Contents
	Fraud and Deception
	Understanding Craigslist Rental Scams
	1 Introduction
	2 Data Sets
	2.1 Rental Listing Crawling
	2.2 Campaign Identification
	2.3 Campaign Expansion Phase: Latitudinal
	2.4 Campaign Expansion Phase: Longitudinal
	2.5 Campaign Summaries

	3 Analysis of Scam Campaigns
	3.1 Credit Report Scams
	3.2 Clone Scam
	3.3 Realtor Service Scam

	4 Flagged Ads Analysis
	5 Discussion
	6 Related Works
	7 Conclusion and Future Work
	A Example Scam Ads
	B Example Scam Emails
	References

	Graph Analytics for Real-Time Scoring of Cross-Channel Transactional Fraud
	1 Introduction
	2 Related Work
	3 Problem Definition: Data Sets and Real-Time Constraints
	3.1 Data Sets

	4 Graph Analytic Approach
	4.1 Formal Definition
	4.2 Graph Construction and Scoring
	4.3 Community Based Fraud Detection

	5 Binary Features for Fraud Detection
	5.1 Shortest Path
	5.2 Strongly Connected Components
	5.3 Page Rank
	5.4 Clustering
	5.5 Egonet Features

	6 Scalability
	7 Classifiers
	8 Conclusion
	References

	Android UI Deception Revisited: Attacks and Defenses
	1 Introduction
	2 Threat Model and Example UI Attacks
	3 What the App Is That?
	4 WhatTheApp Vulnerabilities---Timing Attacks and Side Channels
	5 Proposed Design
	5.1 Design 1: Improving Attack Detection with Existing UI Defenses
	5.2 Design 2: Secure Entry Mode Using an Overlay Mutex

	6 Defense Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Introducing Reputation Systems to the Economics of Outsourcing Computations to Rational Workers
	1 Introduction
	2 Background and Related Work
	3 Problem Description and Notation
	3.1 Basic Game Structure
	3.2 Reputation Systems

	4 Improving Outsourcing with Reputation Systems
	4.1 First Set of Games: Two-Worker Games
	4.2 Second Set of Games: Many-Worker Games

	5 Conclusion
	References

	Payments, Auctions, and e-Voting
	Accountable Privacy for Decentralized Anonymous Payments
	1 Introduction
	2 Decentralized Anonymous Payments
	2.1 Existing Definitions and Limitations
	2.2 Simulation-Based Definition for DAP Schemes

	3 Modifying and Extending Zerocash
	4 Policies
	4.1 Building Blocks
	4.2 Regulatory Closure
	4.3 Spending Limits
	4.4 Tax
	4.5 Identity Escrow

	5 Coin Tracing
	5.1 Construction
	5.2 Security

	6 Accountable User Tracing
	7 Related Work
	7.1 Anti-money Laundering for Centralized e-cash
	7.2 Hawk

	References

	Private eCash in Practice (Short Paper)
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Computational Hardness Assumptions
	2.3 Building Blocks

	3 Our Private eCash System: The eToll Use Case
	3.1 System Framework
	3.2 Description of the Protocols

	4 Performance Assessment
	5 Conclusion
	References

	Practically Efficient Secure Single-Commodity Multi-market Auctions
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Overview of the Paper

	2 Problem Overview
	2.1 Auction Mechanism
	2.2 Problem Definition
	2.3 Problem Formulation

	3 Network Flow Formulation
	3.1 Greedy Algorithm
	3.2 Correctness

	4 Cryptographic Preliminaries
	4.1 Security Model
	4.2 Basic Building Blocks
	4.3 Complex Building Blocks

	5 Secure Auction Mechanism
	5.1 Notation
	5.2 Secure Auction with Transmission Constraints
	5.3 Security and Correctness

	6 Computational Experimentation
	6.1 Prototype Capabilities and Technical Characteristics
	6.2 Numerical Results

	7 Conclusions
	References

	How to Challenge and Cast Your e-Vote
	1 Introduction
	2 Proof Simulation
	2.1 A Simulatable NIZK Proof Using Chameleon Hashes

	3 Protocol Syntax
	3.1 Trust Model

	4 Concrete Instantiation
	4.1 Performance

	5 Voting Experience
	6 Protocol Extension for Multiple Voting
	A Security Definitions and Analysis Results
	A.1 Definitions
	A.2 Security Analysis Results

	References

	Multiparty Computation
	VD-PSI: Verifiable Delegated Private Set Intersection on Outsourced Private Datasets
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Security Model
	3.2 Additively Homomorphic Encryption
	3.3 Representing Sets by Polynomials

	4 The Proposed Scheme: VD-PSI
	4.1 An Overview of VD-PSI
	4.2 VD-PSI Protocol
	4.3 Multiple Clients
	4.4 Reducing Authorizer's Required Storage Space

	5 Proof of Security
	6 Evaluation
	7 Conclusions and Future Work
	References

	Confidential Benchmarking Based on Multiparty Computation
	1 Introduction
	2 Application Scenario and Benchmarking Model
	3 Using the SPDZ Protocol for Benchmarking
	3.1 Allowing Clients to Give Input and Get Output
	3.2 Using SPDZ for Linear Programming

	4 Prototype and Performance
	4.1 Prototype
	4.2 Performance
	4.3 Preprocessing
	4.4 Future Directions

	5 Conclusion
	References

	Efficiently Making Secure Two-Party Computation Fair
	1 Introduction
	2 Definitions and Preliminaries
	3 Our Solution
	4 Making Secure 2PC Fair (Full Protocol)
	5 Proving Security and Fairness Together
	6 Conclusion
	References

	Fast Optimistically Fair Cut-and-Choose 2PC
	1 Introduction
	2 Overview of Our Constructions
	2.1 Fair Covert 2PC
	2.2 Fair Malicious 2PC

	3 Preliminaries
	4 Protocols
	References

	Mobile Malware
	CuriousDroid: Automated User Interface Interaction for Android Application Analysis Sandboxes
	1 Introduction
	2 Background and Motivation
	3 System Overview
	4 User Interface Decomposition
	4.1 Dynamic Dalvik Instrumentation
	4.2 User Interface Analysis

	5 Input Inference
	5.1 Widget Orderings
	5.2 Expected Input Classes

	6 Input Generation
	6.1 Input Translation
	6.2 Input Injection

	7 Evaluation
	7.1 Andrubis
	7.2 Experimental Setup
	7.3 Activity Coverage
	7.4 Borderline Classification
	7.5 Observed Dynamic Behaviors
	7.6 Case Study

	8 Discussion
	9 Related Work
	10 Conclusion
	References

	DroydSeuss: A Mobile Banking Trojan Tracker (Short Paper)
	1 Introduction
	2 DroydSeuss' Approach
	2.1 Phase 1: Data Extraction
	2.2 Phase 2: Endpoint Ranking and Enrichment
	2.3 Phase 3: Frequent Itemset Mining

	3 Experimental Results
	3.1 Dataset and Setup
	3.2 Experiment 1: False Positives
	3.3 Experiment 2: Reality Check
	3.4 Experiment 3: Runtime Performance

	4 Limitations and Future Work
	5 Conclusions
	References

	DroidAuditor: Forensic Analysis of Application-Layer Privilege Escalation Attacks on Android (Short Paper)
	1 Introduction
	2 Background
	3 Adversary Model and Objectives
	4 DroidAuditor
	4.1 DroidAuditor ASM
	4.2 DroidAuditor Database
	4.3 DroidAuditor Client

	5 Evaluation
	5.1 Application-Layer Privilege Escalation Attacks
	5.2 Identifying Spyware Applications

	6 Related Work
	7 Conclusion
	References

	Social Interaction and Policy
	Discrete Choice, Social Interaction, and Policy in Encryption Technology Adoption (Short Paper)
	1 Introduction
	2 Technology Adoption Model
	3 Three Examples
	4 Dynamics of the Model and Discussion
	References

	Cryptanalysis
	Failures of Security APIs: A New Case
	1 Introduction
	2 CCaptcha
	3 API Attacks on CCaptcha
	3.1 Information Leakage
	3.2 A Dictionary Attack
	3.3 Verification Abuse

	4 Countermeasures
	5 Lessons
	References

	Explicit Optimal Binary Pebbling for One-Way Hash Chain Reversal
	1 Introduction
	2 One-Way Hash Chains
	3 Binary Pebbling
	4 Speed-1 and Speed-2 Binary Pebbling
	5 Optimal Binary Pebbling
	6 Optimized Implementations
	6.1 In-place Speed-2 Binary Pebbling
	6.2 In-place Optimal Binary Pebbling
	6.3 Optimal Binary Pebbling with Minimal Computational Overhead

	7 Extensions
	8 Concluding Remarks
	A Rushing Binary Pebbling
	References

	Factoring as a Service
	1 Introduction
	2 Background
	2.1 Number Field Sieve
	2.2 Amazon EC2

	3 Implementation
	3.1 Managing Amazon EC2 Resources with Ansible
	3.2 Parallelizing Polynomial Selection and Sieving with Slurm
	3.3 Parallelizing Linear Algebra with MPI

	4 Experiments
	4.1 Large Prime Bounds
	4.2 Target Density
	4.3 Oversieving
	4.4 MPI Grid Size
	4.5 Processor Affinity
	4.6 Block Size
	4.7 Putting It All Together

	5 512-Bit Keys Still in Use
	5.1 DNSSEC
	5.2 HTTPS
	5.3 Mail
	5.4 IPsec
	5.5 SSH
	5.6 PGP

	6 Conclusions
	References

	The Self-blindable U-Prove Scheme from FC'14 Is Forgeable (Short Paper)
	1 Introduction
	2 The Credential Scheme
	3 Forging New Credentials
	3.1 Constructing Signatures on the Elements g_i
	3.2 Constructing a Forged Credential

	4 The Problem in the Unforgeability Argument
	References

	A Sound for a Sound: Mitigating Acoustic Side Channel Attacks on Password Keystrokes with Active Sounds
	1 Introduction
	2 Related Work
	3 Attack Background and Recreation
	3.1 Threat Model
	3.2 Attack Foundations and Principles
	3.3 Attack Modeling and Recreation
	3.4 Attack Against Password Typing
	3.5 Triangulation Attack

	4 Overview of Our Defense
	5 Defense Design
	6 Evaluating the Security of the Defense
	7 Evaluating the Usability of the Defense
	8 Discussion and Future Directions
	9 Conclusion
	References

	Surveillance and Anonymity
	Leaky Birds: Exploiting Mobile Application Traffic for Surveillance
	1 Introduction
	1.1 Contributions

	2 Background and Related Work
	3 Threat Model
	4 Data Collection Methodology
	4.1 Experimental Setup
	4.2 Obtaining Android Applications

	5 Analysis Methodology
	5.1 Identifier Detection
	5.2 Clustering of App Traffic
	5.3 Background Traffic Detection

	6 Linking Mobile App Traffic with TCP Timestamps
	7 Results
	7.1 Identifier Detection Rules
	7.2 Traffic Clustering

	8 Limitations
	9 Conclusion
	References

	Footprint Scheduling for Dining-Cryptographer Networks
	1 Introduction
	2 Existing Scheduling Methods
	3 Footprint Scheduling
	4 Benchmarks and Comparison
	5 Disruptions and footprint Scheduling
	6 Advantages of footprint Scheduling
	A Pseudocode Description of footprint Scheduling
	References

	Web Security and Data Privacy
	How Anywhere Computing Just Killed Your Phone-Based Two-Factor Authentication
	1 Introduction
	2 Synchronization
	2.1 Remote Services
	2.2 App Synchronization
	2.3 2FA Synchronization Vulnerabilities

	3 Exploiting 2FA Synchronization Vulnerabilities
	3.1 Android
	3.2 iOS
	3.3 Dedicated 2FA Apps

	4 Discussion
	4.1 Feasibility
	4.2 Recommendations and Future Work
	4.3 Responsible Disclosure

	5 Background and Related Work
	5.1 Man-in-the-Browser
	5.2 Two-Factor Authentication
	5.3 Cross-Platform Infection

	6 Conclusion
	References

	Security Keys: Practical Cryptographic Second Factors for the Modern Web
	1 Introduction
	2 Related Work
	3 Threat Model
	3.1 Attackers
	3.2 Attack Consequences

	4 System Design
	4.1 System Overview
	4.2 Detailed Design

	5 Implementation
	5.1 Browser Support
	5.2 Security Key Token Implementation
	5.3 Store and Retrieve Operations
	5.4 Server Implementation

	6 Evaluation
	6.1 Comparative
	6.2 Hardware Performance
	6.3 Deployment Experience

	7 Discussion
	7.1 Attestation
	7.2 Signature Counter

	8 Conclusion
	References

	Include Me Out: In-Browser Detection of Malicious Third-Party Content Inclusions
	1 Introduction
	2 Problem Statement
	2.1 Threats
	2.2 Motivation

	3 EXCISION
	3.1 Inclusion Trees and Sequences
	3.2 Inclusion Sequence Classification

	4 Classification Features
	4.1 DNS-Based Features
	4.2 String-Based Features
	4.3 Role-Based Features

	5 Implementation
	5.1 Enhancements to Blink
	5.2 Enhancements to the Chromium Extension Engine

	6 Evaluation
	6.1 Data Collection
	6.2 Building Labeled Datasets
	6.3 Detection Results
	6.4 Comparison with URL Scanners
	6.5 Performance
	6.6 Usability

	7 Related Work
	8 Conclusion
	References

	A Sensitivity-Adaptive -Uncertainty Model for Set-Valued Data
	1 Introduction
	2 Related Work
	3 Privacy Model
	3.1 Privacy Concept
	3.2 Information Loss Metric

	4 Anonymous Algorithm
	5 Experimental Study
	5.1 Dataset and Parameters
	5.2 Data Utility

	6 Conclusion
	References

	Bitcoin Mining
	Incentive Compatibility of Bitcoin Mining Pool Reward Functions
	1 Introduction
	2 Preliminaries
	2.1 Reward Functions and History Transcripts
	2.2 Miner Strategy
	2.3 Reward Function Desiderata
	2.4 Common Examples
	2.5 Ensuring Steady Rewards

	3 Incentive Compatibility
	4 Incentive Compatibility of Existing Methods
	4.1 Proportional Reward Function R(prop)
	4.2 Per-Per-Share Reward Function R(pps)

	5 A New Incentive Compatible Reward Function
	5.1 The IC Reward Function
	5.2 Providing a Steady Payment Stream

	6 Incentive Compatibility of Pay-Per-Last-N-Shares
	6.1 The PPLNS Reward Function
	6.2 Incentive Compatibility of PPLNS

	7 Simulations
	8 Conclusions and Open Problems
	A Proofs
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Lemma 3
	A.4 Proof of Lemma 7
	A.5 Proof of Lemma 8

	B Incentive Compatibility When Other Miners Can Find a Block Before You Report
	B.1 Proportional

	C Multiple Pools
	References

	When Cryptocurrencies Mine Their Own Business
	1 Introduction
	2 Background
	2.1 The 51% Attack
	2.2 Smart Contracts
	2.3 Assumptions

	3 The Double-Spend Attack
	4 Mining Advantage Without Double-Spending
	5 How Much Does It Cost?
	6 Rationality and Nakamoto Consensus
	7 Related Work
	References

	Optimal Selfish Mining Strategies in Bitcoin
	1 Introduction
	2 Model
	3 A Simple Upper Bound
	4 Computing the Optimal Policy
	5 Results
	5.1 Optimal Values
	5.2 Optimal Policies
	5.3 Thresholds
	5.4 Evaluation of Protocol Modifications
	5.5 Simulations

	6 A Model that Considers Delays
	7 Effect on Double Spending Attacks
	8 Related Work
	References

	Cryptographic Protocols
	A Short Paper on Blind Signatures from Knowledge Assumptions
	1 Introduction
	2 Preliminaries
	2.1 Okamoto-Uchiyama Cryptosystem
	2.2 BB Signatures
	2.3 Pedersen Commitments

	3 Blind Signatures
	4 Construction
	5 Conclusions
	References

	KBID: Kerberos Bracelet Identification (Short Paper)
	1 Introduction
	2 Background
	3 Related Work
	4 Threat Model
	5 Design
	5.1 High Level Design
	5.2 Interfaces and Communication
	5.3 System Workflow

	6 Experiments and Results
	6.1 Prototype
	6.2 Results
	6.3 Hurdles

	7 Future Work
	References

	Payment Use and Abuse
	The Other Side of the Coin: User Experiences with Bitcoin Security and Privacy
	1 Introduction
	2 Bitcoin Background
	3 Related Work
	4 User Study Methodology
	4.1 Research Questions

	5 Online Survey
	5.1 Recruitment
	5.2 Validity of Our Dataset

	6 Qualitative Interviews
	6.1 Design and Recruitment
	6.2 Coding

	7 Results
	7.1 General Bitcoin Usage (Q1)
	7.2 Practices of Bitcoin Management (Q2)
	7.3 Risk Perception (Q3)
	7.4 Security Breaches (Q4)
	7.5 Perceptions of Usability (Q5)

	8 Discussion
	9 Conclusion
	A CMT Categorization
	A.1 Definitions
	A.2 Categorization

	B Interview Questions
	B.1 BTC Demographics
	B.2 BTC Wallets
	B.3 Wallet Usage
	B.4 BTC Mining
	B.5 BTC Server
	B.6 BTC Security Risks
	B.7 BTC Anonymity
	B.8 BTC Security Breaches
	B.9 Demographics
	B.10 End

	C Address Signature
	D Reference link issue
	References

	Refund Attacks on Bitcoin's Payment Protocol
	1 Introduction
	2 Background
	2.1 Bitcoin
	2.2 Payment Protocol

	3 Attacking the Payment Protocol
	3.1 Silkroad Trader Attack
	3.2 Marketplace Trader Attack

	4 Real-World Experiments
	4.1 Proof of Concept Wallet
	4.2 Simulation of Attacks

	5 Solution
	5.1 Proposed Solution
	5.2 Discussion
	5.3 Inherent Issues Due to Bitcoin
	5.4 Solution Performance

	6 Payment Processors Response
	7 Conclusion
	References

	Are Payment Card Contracts Unfair? (Short Paper)
	1 Introduction
	2 Legal and Regulatory Context
	3 Review of Banking Terms and Conditions
	4 Survey of Payment Card PIN Usage
	4.1 Questionnaire Setup
	4.2 Results

	5 Conclusion
	References

	The Bitcoin Brain Drain: Examining the Use and Abuse of Bitcoin Brain Wallets
	1 Introduction
	2 Data Collection Methodology
	3 Results
	4 Conclusion
	References

	Author Index

