
Chapter 1
Structure and Properties of Lignin

Abstract Lignin is a phenolic natural polymer, second only to cellulose. It can be
extracted from lignocellulosic biomass through various chemical, physical,
mechanical, and enzymatic treatments. The chemical structure and properties of the
extracted lignin are mainly depended on the extraction method, vegetal species,
location, season, etc. Based on the separation method, several types of lignin, also
called technical lignin, could be obtained, including alkali lignin/kraft lignin, lig-
nosulfonate, organosolv lignin, milled wood lignin (MWL), klason lignin, and
hydrolytic lignin. The separation conditions can influence the cross-linked structure
and molecular weight distributions of the technical lignin products. By far, lignin is
mainly regarded waste or by-product streams from paper pulping mills and cellulosic
ethanol plants with a limited application for heat and power generation. However,
the abundant availability and unique structure of lignin make it a potential feedstock
for the synthesis of biochemicals and biopolymers such as surfactants/dispersants,
carbon fibers, phenolic resins, epoxy resins, and polyurethane resins, etc.
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1.1 Lignin

Wood, a heterogeneous, hygroscopic, cellular and anisotropic material, consists of
cells, and the cell walls consist mainly of three organic components including
cellulose (40–60 wt%), hemicelluloses (25–35 wt%), and lignin (15–30 wt%)
(Fig. 1.1) [1]. Lignin can be extracted from lignocellulosic biomass (such as woody
biomass and other plants) by various treatments such as chemical, biochemical, and
physical processes. The properties of extracted lignin (so called technical lignin),
and its chemical structure and purity are strongly dependent on the treatment
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method [2–4]. The industrial processes for lignin extraction can be classified into
two different categories: sulfur processes and sulfur-free processes. Figure 1.2
shows various extraction processes and their corresponding products [2, 5].
Currently, the majority of technical lignin is generated in kraft pulping processes,
and the annual kraft lignin (KL) generation is estimated to be 50 million tons,
present in the form of “black liquor” that is used mainly in the recovery boilers for
heat and power generation in the kraft pulping mills.

Lignin is the second most abundant natural renewable polymer after cellulose
[7, 8] and accounts for between 15 and 30 wt% of lignocellulosic biomass as
mentioned previously, contributing to the rigidity and strength of plant cell walls.
Table 1.1 shows the contents of cellulose, hemicellulose, and lignin in common
lignocellulosic biomass [9]. Unlike cellulose that has unique well-defined structure,
lignin has a three-dimensional network structure and the structure depends on the
vegetal species, location, season, etc. [3]. Elucidation of lignin structure plays an
important role in its utilization for chemicals and materials. Different analytical
methods such as FTIR [10], NMR [11–13] and GPC [14] have been widely used in
exploring the structure of lignin.

Lignin is a phenolic polymer formed by radical coupling polymerization of
three monolignols (Figs. 1.3 and 1.4) [14], and it has amorphous macromolecular
structure comprising three types of phenyl-propanols, i.e., p-hydroxyl-phenyl pro-
panol, guaiacyl-propanol and syringyl-propanol, linked mainly by ether linkages

Fig. 1.1 Schematic structure of wood cells, reprinted with permission from Ref. [6] with
modifications. Copyright (2006) American Chemical Society
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(e.g., a-O-4, 5-O-4 and b-O-4) and condensed linkages (e.g., 5-5, b-b, b-5 and b-1
linkages) [15–17] (Fig. 1.3). Around 40–60% of total intermolecular linkages in the
structure of lignin are ether bonds and the b-O-4 bond is a predominant ether linkage
[14, 18]. The dominant monomer in softwood lignins is Guaiacyl (G) monomer,
while hardwood lignins consist of both Syringyl (S) and Guaiacyl (G) units [19]. The
reactivity of lignin depends on the form and composition of reactive functional
groups within monomer units, in particular, its three types of functional groups:
p-hydroxy-phenyl, aliphatic hydroxyl, and carboxylic acid groups [19].

Extraction processes

Sulfur Processes
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Lignosulfonate Lignin

Kraft 
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Fig. 1.2 Various lignin extraction processes and their dominant products (modified from Ref. [2])

Table 1.1 Contents of cellulose, hemicellulose, and lignin in common lignocellulosic biomass
(reprinted with permission from Ref. [9])

Lignocellulosic materials Cellulose (%) Hemicellulose (%) Lignin (%)

Hardwoods stems 40–55 24–40 18–25

Softwood stems 45–50 25–35 25–35

Nut shells 25–30 25–30 30–40

Corn cobs 45 35 15

Grasses 25–40 35–50 10–30

Paper 85–99 0 0–15

Wheat straw 30 50 15

Sorted refuse 60 20 20

Leaves 15–20 80–85 0

Cotton seed hairs 80–95 5–20 0

Newspaper 40–55 25–40 18–30

Waste papers from chemical pulps 60–70 10–20 5–10

Primary wastewater solids 8–15 NA 24–29

Swine waste 6.0 28 NAa

Solid cattle manure 1.6–4.7 1.4–3.3 2.7–5.7

Coastal Bermuda grass 25 35.7 6.4

Switch grass 45 31.4 12.0

Copyright (2002) Elsevier
aNot available
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1.2 Types of Lignin

Technical lignin is conventionally named after the separation (extraction) method,
e.g., lignosulfonate lignin, kraft lignin, organosolv lignin, and soda lignin
(Fig. 1.2). The lignin separation methods can also be categorized into two classes:
(1) dissolving lignin into a solution, and (2) hydrolyzing cellulose and hemicellu-
lose in acidic media and separating lignin as an insoluble residue [21, 22]. The

Fig. 1.3 A fraction of lignin model structure, reprinted with permission from Ref. [20]. Copyright
(2013) Royal Society of Chemistry

OH

6

5
4

2
1

3

OH

C H3 O
OH

OH

CH3OC H3 O
OH

OH

Monolignols

P-Coumaryl Alcohol      Coniferyl alcohol         Sinapyl alcohol

α β

γ

Fig. 1.4 Structure of three lignin monomers
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soluble lignin has an amorphous structure, and the insoluble one has the virginal
morphological structure of the raw material fibers [22]. The presence of some
functional groups such as phenolic hydroxyl and carboxyl on the structure of lignin
facilitates its solubility in alkaline solutions. Organosolv lignin is soluble in various
solvents such as dioxane, DMSO, methanol, ethanol, acetone, and pyridine. The
common solvents for alkali lignin and lignosulfonate are dilute alkali, water, and
salt solution. Acidic/enzymatic hydrolyzed lignin cannot be dissolved in any sol-
vents [22]. The molecular weight and polydispersity of lignin are affected by the
separation methods too due to the partial degradation of lignin during the extraction
process [22]. In addition, the separation conditions including mechanical action,
enzymes, or chemical reagents can influence the crosslinked structure of lignin and
formed lignin fragments with different molecular weight distributions.

Some important types of technical lignin are described as follows:

• Alkali Lignin/Kraft Lignin
Alkali lignin is isolated from biomass in the presence of NaOH solution at high
temperature and pressure. The linkages to polysaccharides are broken and lignin
fragments are dissolved in the solvent, forming black liquor. The resulted lignin
separated from black liquor with Na2CO3 is called soda lignin. The lignin
separated in the presence of Na2SO4 is named kraft lignin [21, 23].

• Lignosulfonate
Lignosulfonates or sulfonated lignins are water-soluble anionic polyelectrolyte
polymers, recovered from the sulfite pulping of wood (brown liquor) [24]. In the
pulping process, an aqueous solution containing sulfur dioxide and a sulfurous
acid salt are used to break down the linkages to polysaccharides [21].
Depending on the type of bases in pulping process, various lignosulfonates such
as calcium [25, 26], sodium [27, 28], magnesium [29], and ammonium ligno-
sulfonates [30] can be formed. Finally, lignosulfonates can be isolated from
spent pulping liquors by various methods including precipitation in alcohol,
dialysis, electrodialysis, ion exclusion, ultrafiltration, supported liquid mem-
brane (SLM), and extraction with amines [24, 31, 32].

• Organosolv Lignin
Organosolv pulping is conducted in the presence of an aqueous organic solvent
at the temperature ranging from 140 to 220 °C. In this process, the alpha
aryl-ether linkages of lignin are broken down by hydrolytic cleavage and the
obtained fragments dissolve in the solvent [21, 33]. One of the suitable catalysts
for organosolv pulping is HCl in the presence of water with different solvents
including acetone, methanol, ethanol, butanol, ethylene glycol, formic acid or
acetic acid, or their mixtures etc. [34, 35]. The concentration of solvent in water
varies in the range of 40–80%. Dozens of organosolv methods have been
reported in the literature and the obtained lignin was commonly named as
organosolv lignin [34], among which four main organosolv pulping processes
are Organocell process [34, 36, 37], Alcell process [34, 38], alkaline
sulfite-antraquinone-methanol (ASAM) process [34, 39–41], and acetosolv
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process [34, 42–44]. It was reported that the organosolv process with
ethanol-water mixed solvent produces a higher pulp yield than that of kraft
process, and the tensile and tear strength of softwood organosolv pulps fall
between the corresponding values of kraft pulp and sulphite pulp [45].

• Milled Wood Lignin (MWL)
The milled wood lignin is obtained from milling wood in a ball-mill for tens of
hours and the linkages to polysaccharides are broken mechanically. The frag-
mented lignin is dissolved in solvents such as 0.2 mol/L NaOH solution fol-
lowed by extraction with dioxane-water mixture [21, 46, 47]. Crestini et al. [48]
investigated the chemical structure of different softwood and hardwood milled
wood lignins by combining quantitative data arising from 31P NMR and
QQ-HSQC analyses. It was suggested that the milled wood lignin is a linear
oligomer rather than a network polymer. The yield of isolated lignin from MWL
is often low and many studies have been conducted to improve this process. Lin
and Dence [49] proposed a novel process called milled wood enzyme lignin

Fig. 1.5 SEL process for
isolation of lignin, reprinted
with permission from Ref.
[50]. Copyright (1995)
Springer
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(MWEL) process with higher yield of lignin by treating the milled wood with
enzymes to solubilize the carbohydrate components. However, this process
requires ten or more days to accomplish due to the high crystalline structure of
cellulose. To overcome this challenge, swelled enzyme lignin (SEL) was tested
by Chen et al. [50]. The procedure of SEL is displayed in Fig. 1.5. Lignin yields
were as high as 24–67% based on the total amount of lignin present.

Some typical types of lignin isolated by insoluble methods are listed below:

• Klason Lignin
Klason method is a standard method for determination the lignin content in
wood [51]. In this process, all polysaccharide linkages are hydrolyzed with 72%
sulfuric acid and leaving the solid lignin residue [21, 52].

• Hydrolytic Lignin
In a dilute acid, most of the polysaccharides linkages are hydrolyzed into fer-
mentable sugar and the resulted residue is hydrolytic lignin [9, 21]. The
hydrolytic lignin, extracted from the residues of the cellulosic ethanol produc-
tion, is commonly known as “enzymatic hydrolysis lignin (EHL)”. As enzy-
matic hydrolysis processes of biomass normally operates under relatively mild
conditions, the most active functional groups such as phenolic hydroxyl and
alcoholic hydroxyl can be preserved [53]. As a consequence, the resulting EHL
is expected to be more reactive in comparison with lignosulfonate or kraft lignin
[53, 54]. However, in practice, the hydrolytic lignin has a very large molecular
structure with strong steric hindrance and normally contains sugar impurities, so
it is not as reactive as organosolv or kraft lignin in chemical applications. As
such, enzymatic hydrolysis lignin is usually used as a fuel in combustion or
gasification processes to generate steam or electricity [53].

1.3 Utilization of Lignin

Until recently, lignin has been considered as a waste by-product of paper pulping
mills and cellulosic ethanol plants. It is mainly consumed in the mills/plants in
recovery boilers for heat and power generation [55], and a small quantity of lignin
(<1%) is used as fillers such as ink varnishes, paints, and elastomeric matrices or
surfactants/dispersants [3]. While in recent decades, there is a growing interest in
utilization of lignin as a feedstock for the synthesis of bioaromatic chemicals (such
as vanillin and phenols) and bio-based polymeric materials (resins and polymers)
due to the following driving forces [56]:

(1) The material is sustainable and renewable,
(2) There is immense generation of lignin as a by-product in pulp/paper industry

and cellulosic ethanol industry,
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(3) There are various functional groups present in lignin structure which enable a
variety range of chemical reactions,

(4) Lignin has intrinsic biodegradability and it is believed that the incorporated
polymers with lignin would be more biodegradable than the petroleum based
polymers.

Normally, lignin can be used as a filler or can substitute <20–30 wt% of some
reactive components in polymers (such as phenols for phenolic resins and polyols
for polyurethane, or bisphenol-A for epoxy resins, etc.) [3, 16, 57]. Limited by
lignin’s detrimental properties (large Mw with steric hindrance effects, poor solu-
bility in organic solvent and low reactivity), a greater substation ratio of lignin in
polymer materials is challenging, but can be achieved by modifications on its
structure. Different lignin modification technologies have been explored, which
include chemical [58, 59], biological [60], photochemical [61, 62], and electro-
chemical [61, 63] methods. Among these methods, chemical modification processes
have attracted significant interest. It is well known that lignin is a polydisperse
natural phenolic polymer, as shown in Figs. 1.3 and 1.4. Lignin contains both polar
(hydroxyl) groups and nonpolar hydrocarbon and benzene rings, it is thus expected
to act as a compatibilizer between hydrophilic natural fibers and a hydrophobic
matrix polymer [7, 64–66]. The presence of the phenolic hydroxyl groups in lignin
has also enabled its utilization in the synthesis of various polymers such as phenolic
resins [67], epoxy resins [68, 69], polyurethanes [56, 57, 70], and polyesters
[70, 71]. These lignin-based polymers will be introduced in details in the subse-
quent chapters.

1.4 Summary

Lignin is the second most abundant natural renewable polymer after cellulose.
Natural lignin is a phenolic polymer formed by radical coupling polymerization of
three monolignols, and it has amorphous macromolecular structure comprising three
types of phenyl-propanols, i.e., p-hydroxyl-phenyl propanol, guaiacyl-propanol and
syringyl-propanol, linked mainly by ether linkages (e.g., a-O-4, 5-O-4 and b-O-4)
and condensed linkages (e.g., 5-5, b-b, b-5 and b-1 linkages). Technical lignin can
be extracted from lignocellulosic biomass by various separation methods. The
chemical structure and the properties of technical lignin are mainly affected by the
delignification process. The typical types of technical lignin are kraft lignin,
organosolv lignin, lignosulfonate, milled wood lignin, and hydrolysis lignin.
Currently, the annual kraft lignin generation is estimated to be 50 million tons,
present in the form of “black liquor” that is used mainly in the recovery boilers for
heat and power generation in the kraft pulping mills. However, the availability and
the presence of various functional groups (aromatic and hydroxyl) on lignin make it
as a potential candidate for the synthesis of bioaromatic chemicals (such as vanillin
and phenols) and bio-based polymeric materials (resins and polymers).
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