
Chapter 2
Fundamental Theories and Analytical
Methods for Vibrations of Simply-Supported
Beams Under Moving Loads

In this chapter, some fundamental theories and methods for vibration analysis of
simply-supported beams under moving loads are presented. The analytical solutions
of vibrations induced by a moving concentrated load, a moving harmonic load, and
a moving wheel-spring-mass (WSM) load with varying speed are deduced,
respectively, and the vibration characteristics of them are investigated in several
case studies. In addition, as one of the important phenomena related to the
train-bridge coupling vibration, the mechanisms of vibration resonance, suppres-
sion, and cancellation happened in the moving load and beam system are analyzed.

2.1 Vibrations of Simply-Supported Beam Under Moving
Loads

2.1.1 Analysis Model

For a simply-supported beam subjected to a moving load, if the mass of the load is
much smaller than that of the beam, the inertial force caused by the mass of the load
can be neglected, and the load becomes a moving concentrated force varying with
time, denoted as P(t). In this case, a simplified analysis model is established, as
shown in Fig. 2.1.

Assuming the simply-supported beam has a uniform cross section with constant
bending stiffness EI, a uniformly distributed mass �m per unit length, a viscous
damping with the damping force proportional to the vibration velocity, and the
small and elastic deformation during its vibration excited by a moving concentrated
load P(t) with the constant speed V, as shown in the coordinates shown in Fig. 2.1,
the motion equation for the beam subjected to the moving concentrated load can be
expressed as
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where c is the damping coefficient of the beam; d is the Dirac function, a useful
function for this analysis, which has the following characteristics

dðx� gÞ ¼ 1; ðx ¼ gÞ
0; ðx 6¼ gÞ

�
ð2:2aÞ
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Z b
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dðx� gÞf ðxÞdx ¼

0; ðg\a\bÞ
f ðgÞ; ða� g� bÞ
0; ða\b\gÞ

8<
: ð2:2cÞ

Equation (2.1) is a partial differential equation. It can be solved by the modal
decomposition method, namely the separation of variables in mathematics. In this
method, the geometric coordinates of the structure are transformed into the modal
coordinates or the generalized coordinates. Accordingly, the motion of the structure
can be represented by the superposition of modal movements (Clough and Penzien
2003). For a one-dimensional continuous structure, the transformation can be
described by

yðx; tÞ ¼
X1
i¼1

/iðxÞ � qiðtÞ ð2:3Þ

where qi(t) is the generalized coordinate varying with time t, and /i(x) is the modal
function. Equation (2.3) shows that any rational displacement of the structure can
be expressed by superposition of the corresponding amplitudes of all the modes.
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Fig. 2.1 Simply-supported beam under a moving concentrated load
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The modal component of any deformation of the structure can be acquired by
using the orthogonality of the modes. For a beam with uniform section, the con-
tribution of the nth mode to the displacement y(x, t) can be obtained by multiplying
/n(x) on both sides of Eq. (2.3) and integrating them along the axle of the beam as

Z L

0
/nðxÞyðx; tÞdx ¼

X1
i¼1

qiðtÞ
Z L

0
/nðxÞ/iðxÞdx ð2:4Þ

Due to the orthogonality of modes, the right-hand side of Eq. (2.3) equals to zero
when i 6¼ n, and only one term of the infinite series is left. Consequently, the
generalized coordinates of the nth mode can be expressed as

qnðtÞ ¼
R L
0 /nðxÞyðx; tÞdxR L

0 /2
nðxÞdx

ð2:5Þ

By decomposing the motion equation of the simply-supported beam based on
the above principle, and substituting Eq. (2.3) into Eq. (2.1), we obtain

EI
X1
i¼1

qiðtÞ d
4/iðxÞ
dx4

þ �m
X1
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/iðxÞ
d2qiðtÞ
dt2

þ c
X1
i¼1

/iðxÞ
dqiðtÞ
dt

¼ dðx� VtÞPðtÞ

ð2:6Þ

By multiplying each term of Eq. (2.6) with the nth modal function /n(x), con-
ducting integration along the length of the beam, and considering the orthogonality
of modes, the motion equation in generalized coordinate corresponding to the nth
mode is given by

EIqnðtÞ
Z L

0
/nðxÞ

d4/nðxÞ
dx4

dxþ �m
d2qnðtÞ
dt2

Z L

0
/2
nðxÞdxþ c

dqnðtÞ
dt

Z L

0
/2
nðxÞdx

¼
Z L

0
dðx� VtÞPðtÞ/nðxÞdx

ð2:7Þ

For the simply-supported beam with uniform section, the modal function can be
assumed as a trigonometric function

/nðxÞ ¼ sin
npx
L

ð2:8Þ
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Substituting it into Eq. (2.7), and noting the following formulas

Z L

0
sin2

npx
L

dx¼ L
2Z L

0
dðx� VtÞPðtÞ sin npx

L
dx ¼ PðtÞ sin npVt

L

The following motion equation can be obtained

L
2
�m
d2qnðtÞ
dt2

þ L
2
c
dqnðtÞ
dt

þ L
2
n4p4

L4
EIqnðtÞ ¼ PðtÞ sin npVt

L
ð2:9Þ

For the simply-supported beam with uniform section, the nth circular frequency

and the nth damping coefficient are xn ¼ n2p2
L2

ffiffiffiffi
EI
�m

q
and cn ¼ 2nn �mxn, respectively.

Dividing both sides of Eq. (2.9) by �mL
2 and introducing _q ¼ dq

dt
and €q ¼ d2q

dt2
, the

standard form of the nth modal equation for the simply-supported beam under
moving load can be written as

€qnðtÞþ 2nnxn _qnðtÞþx2
nqnðtÞ ¼

2
�mL

PðtÞ sin npVt
L

ð2:10Þ

For convenience of discussion, two parameters are introduced herein, the criti-
cally damped circular frequency xb ¼ c=2�m¼nnxn (Frýba 1999) and the circular
frequency �x ¼ pV=L of excitation (Xia et al. 2006). Accordingly, Eq. (2.10) can
be rewritten as

€qnðtÞþ 2xb _qnðtÞþx2
nqnðtÞ ¼

2
�mL

PðtÞ sin n�xt ð2:11Þ

Equation (2.11) is a linear differential equation with constant coefficients, and
obviously, the equations for different modes are independent. By using the
Duhamel integral, the particular solution can be obtained as

qnðtÞ ¼ 2
�mLxn

D

Z t

0
PðsÞ sin n�xse�xbðt�sÞ sinxn

Dðt � sÞds ð2:12Þ

where xn
D ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2n

q
is the nth natural frequency of the damped structure.

Equation (2.12) is suited for structures in undercritically damped and critically
damped cases.

For a simple load, such as a moving constant load P(t) = P or a moving harmonic
load P(t) = Psinxt, the closed-form solution of Eq. (2.12) can be obtained by inte-
gration. In the following sections, the analytical solutions for the simply-supported
beam under the above two types of simple loads are deduced, with emphasis on the
discussion of several special cases related to the moving constant load.
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2.1.2 Vibration of Simply-Supported Beam Under a Moving
Concentrated Load

In the case of a moving constant load, i.e., PðsÞ ¼ P, Eq. (2.12) can be expressed as

qnðtÞ ¼ 2P
�mLxn

D

Z t

0
sin n�xs sinxn

Dðt � sÞe�xbðt�sÞds ð2:13Þ

By using the following triangular transformation formula (Rade and Westergren
2010)

sin n�xs sinxn
Dðt � sÞ ¼ 1

2
cos½xn

Dt � ðxn
D þ n�xÞs� � cos½xn

Dt � ðxn
D � n�xÞs�� �

ð2:14Þ

and the exact solutions of the following two integrations

Z t

0
sinðaþ bsÞeðcþ dsÞds ¼ 1

b2 þ d2
d sinðaþ bsÞ � b cosðaþ bsÞ½ �eðcþ dsÞ

n o���t
0

ð2:15aÞ
Z t

0
cosðaþ bsÞeðcþ dsÞds ¼ 1

b2 þ d2
b sinðaþ bsÞþ d cosðaþ bsÞ½ �eðcþ dsÞ

n o���t
0

ð2:15bÞ

and substituting Eq. (2.14) into Eq. (2.13), and by utilizing Eq. (2.15a, 2.15b), the
solution of Eq. (2.13) can be obtained as

qnðtÞ ¼ P
�mLxn

D

Z t

0
cos½xn

Dt � ðxn
D þ n�xÞs�e�xbðt�sÞds

�

�
Z t

0
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�
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D

1

ðxn
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b

(
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�

þ ½ðxn
D þ n�xÞ sinxn

Dt � xb cosxn
Dt�e�xbt

�
� 1

ðxn
D � n�xÞ2 þx2

b

½�ðxn
D � n�xÞ sin nxtþxb cos n�xt�

�
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ð2:16Þ
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Note that xn2
D ¼ x2

n � x2
b and xn2

D ¼ 0 are, respectively, valid in the undercrit-
ically damped case and the critically damped case, and Eq. (2.16) is rewritten
separately for the two cases as

qnðtÞ ¼ 2P
�mL

1

ðx2
n � n2 �x2Þ2 þ 4x2

bn
2 �x2

ðx2
n � n2 �x2Þ sin n�xt�

� nx½ðx2
n � n2 �x2Þ � 2x2

b�
ðx2

n � x2
bÞ1=2

e�xbt sinxn
Dt � 2xbn�xðcos n�xt � e�xbt cosxn

DtÞ
)

ð2:17aÞ

qnðtÞ ¼ 2P
�mL

1

ðx2
n þ n2 �x2Þ2 ðx2

n � n2 �x2Þ sin nxt � 2xnn�x cos n�xt
�

þ e�xbt½ðx2
n þ n2 �x2Þn�xtþ 2xnn�x�

� ð2:17bÞ

For convenience of discussing the influences of load moving speed and struc-
tural damping on the vibration responses of the bridge, two dimensionless
parameters, i.e., speed parameter a and damping parameter l, are introduced, which
are defined by

a ¼ �x
x1

¼ VL
p

�m
EI

� 	1=2

¼ V
Vcr

ð2:18aÞ

l ¼ xb

x1
¼ xbL2

p
�m
EI

� 	1=2

ð2:18bÞ

where Vcr ¼ 2fnL
n2 ¼ p

L
EI
�m


 �1=2 (n = 1, 2, 3, …) means the critical speed, fn is the nth
natural frequency of the beam, and EI is the bending stiffness of the bridge. When
the load moving speed is n times of the critical speed, the resonance of the nth mode
will be induced. More details can be found in Sect. 2.3.

By introducing Eq. (2.18a, 2.18b), Eq. (2.17a, 2.17b) becomes

qnðtÞ ¼ y0
1

n2½n2ðn2 � a2Þ2 þ 4a2l2� n2ðn2 � a2Þ sin n�xt�

� na½n2ðn2 � a2Þ � 2l2�
ðn4 � l2Þ1=2

e�xbt sinxn
Dt�2nalðcos n�xt � e�xbt cosxn

DtÞ
�

ð2:19aÞ

qnðtÞ ¼ y0
1

n2ðn2 þ a2Þ2 ðn2 � a2Þ�
sin n�xt

� 2na cos n�xtþ e�xnt½ðn2 þ a2Þn�xtþ 2na�� ð2:19bÞ
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where y0 ¼ PL3
48EI � 2PL3

p4EI ¼ 2P
�mLx2

1
, indicating the displacement of the bridge at

mid-span where a concentrated force P is applied.
By the modal decomposition method, the particular solution to the displacement

response of the simply-supported beam in undercritically damped case can be
expressed as

yðx; tÞ ¼ y0
X1
n¼1

1

n2½n2ðn2 � a2Þ2 þ 4a2l2� n2ðn2 � a2Þ sin n�xt�

� na½n2ðn2 � a2Þ � 2l2�
ðn4 � l2Þ1=2

e�xbt sinxn
Dt�2nalðcos n�xt � e�xbt cosxn

DtÞ
�
sin

npx
L

ð2:20Þ

in which qn(t) is the generalized coordinate of the nth mode given by Eq. (2.19a,
2.19b).

Based on Eq. (2.20), several special cases are discussed hereinbelow.

2.1.2.1 Static Load Case (a = 0)

When the speed parameter a = 0, Eq. (2.20) becomes

yðx; tÞ ¼ y0
X1
n¼1

1
n4

sin
npx
L

sin n�xt ¼ y0
X1
n¼1

1
n4

sin
npx
L

sin
npVt
L

ð2:21Þ

In this case, the problem becomes the solution of the bridge displacement at
position x when a static load P acts at position Vt. Herein, Vt indicates the moving
distance of the load on the bridge. Equation (2.21) can be regarded as the Fourier
expansion of the influence line of bridge displacement at position x, or the Fourier
expansion of the bridge deflection curve when a concentrated load P acts at the
position Vt.

2.1.2.2 Undamped Case (l = 0)

(1) a 6¼ k, l = 0

As will be demonstrated later, when the speed parameter of the load meets a = k,
the resonance with the nth mode can be caused. Hence, the load speed corre-
sponding to a = k is called as the resonant speed.

First, consider the case where the load moves on the bridge at non-resonance
speed, i.e., a 6¼ k.
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In the undamped case l = 0, Eq. (2.20) becomes

yðx; tÞ ¼ y0
X1
n¼1

sin
npx
L

1
n2ðn2 � a2Þ sin n�xt � a

n
sinxnt

� 
ð2:22Þ

According to this equation, the first-order mode contributes most to the dis-
placement, which means high precision can be reached by using the first-order
vibration mode when solving the bridge displacement under dynamic loads.

Considering the terms within the parentheses of Eq. (2.22), and letting them
equal to zero at the time when the load is about to leave the bridge, namely at t = L/
V, the following equation is obtained

sin n�xt � a
n
sinxnt

� ���
t¼L

V

¼ sin np� a
n
sin

n2p
a

¼ 0 ð2:23Þ

It is easy to see when a = n2/k (k = 1, 2, 3,…, k 6¼ n), Eq. (2.23) is valid.
Assuming a = n2/k corresponds to a speed Vcan, we have

a ¼ Vcan

Vcr
) Vcan ¼ aVcr ð2:24Þ

By substituting Eq. (2.18a) into Eq. (2.24), and using the theoretical frequency
of the simply-supported beam f1 = fn/n

2, Vcan can be expressed as

Vcan ¼ aVcr¼ n2

k
� 2fnL
n2

¼ 2n2f1L=k ð2:25Þ

Equations (2.22) and (2.23) show that when a = n2/k, the bridge displacement
component of the nth vibration mode becomes null at the time t = L/V, and thus,
Vcan is called the cancellation speed corresponding to the nth vibration mode of the
beam.

When the load moves out of the bridge, i.e., when t > L/V, the beam is in free
vibration. The displacement solution of the bridge will be

yðx; tÞ ¼
X1
n¼1

_ynðx; L=VÞ
xn

sinxntþ ynðx; L=VÞ cosxnt
� �

ð2:26Þ

where ynðx; L=VÞ and _ynðx; L=VÞ are, respectively, displacement and velocity of the
bridge at t = L/V, which can be expressed as

ynðx; L=VÞ ¼ y0
n2ðn2 � a2Þ sin

n�xL
V

� a
n
sin

xnL
V

� 	
sin

npx
L

ð2:27aÞ
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_ynðx; L=VÞ ¼ n�xy0
n2ðn2 � a2Þ cos

n�xL
V

� cos
xnL
V

� 	
sin

npx
L

ð2:27bÞ

At the moment when the load moves out of the bridge at the cancellation speed
Vcan, the vibration velocity of the bridge is not necessarily equal to zero, while it can
be expressed as

_yðx; tÞjt¼L
V
¼ V

@yðx; tÞ
@x

þ @yðx; tÞ
@t

� 	����
t¼L=V

¼ y0
X1
n¼1

sin
npx
L

n�x
n2ðn2 � a2Þ cos np� cos kpð Þ

ð2:28Þ

It can be observed from Eq. (2.28) that when n and k have the same parity,
Eq. (2.26) equals zero, indicating no displacement and velocity exist on the bridge
after the load leaves the bridge, namely the bridge becomes motionless. When n and
k are with different parity, only the displacement is zero, while the velocity is not,
which makes the bridge continue to vibrate, namely as a residual vibration.
Correspondingly, Vcan given in Eq. (2.25) is defined as full cancellation speed in the
case with same parity and as the displacement cancellation speed with different
parity.

When a series of loads travels at full cancellation speed, the vibration of the
bridge will totally disappear after all the loads leave the bridge, due to the linear
superposition of all null displacements induced by the loads.

(2) a = k, l = 0

In the case of a = k and l = 0, Eq. (2.20) becomes an indeterminate form due to
0/0, and its extreme value can be evaluated by applying the L’Hospital’s rule. Thus,
the particular solution of the bridge displacement can be expressed as

yðx; tÞ ¼ y0
1
2k4

ðsin k�xt � k�xt cos k�xtÞ sin kpx
L

þ y0
X1

n¼1;n 6¼k

sin
npx
L

1
n2ðn2 � a2Þ sin n�xt � a

n
sinxnt

�  ð2:29Þ

It is found that when a = k and l = 0, the bridge displacement at any position
x increases with the time t and reaches to the maximum value at t = L/V, but not to
infinity.

This situation is equivalent to the occurrence of resonance between the bridge
and the moving load P. When k = n, i.e., sinðnpVt=LÞ ¼ sin n�xt, the loading fre-
quency of the moving load coincides with the natural frequency of the nth bridge
mode. Moreover, in the case of k = 1, the dynamic amplification factor of resonant
displacements reaches the maximum, which again indicates that the first mode
contributes most to the displacement.
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Shown in Fig. 2.2a is the spatial distribution of bridge mid-span displacement
subjected to a single moving load, herein expressed with the relative displacement y
(L/2, t)/y0 versus time parameter Vt/L and speed parameter a, and in Fig. 2.2b is its
plane view. In Fig. 2.2a, the intersecting lines of the curved surfaces with the planar
a are the displacement time histories of the bridge, respectively, related to various
load speeds of a = 0, 0.3, 0.5, 1, 2, as shown in Fig. 2.2c. It is found that at low
speed, the maximum mid-span displacement appears when the load is near the
bridge center. With the increase of speed, the load position producing the maximum
mid-span displacement shifts toward the beam-end, and at certain speed, the
mid-span displacement reaches the maximum just at the moment when the load is
leaving the bridge.

Shown in Fig. 2.3 is the variation of maximum relative displacement ymax(L/2,
t)/y0 of the bridge at mid-span versus load speed parameter a. It is found that the
maximum displacement does not increase monotonously with the load speed, while
some peaks appear at certain speeds, fluctuating in a pattern similar to half sine
wave series.
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Fig. 2.2 Distributions of mid-span displacement y(L/2, t)/y0 versus time Vt/L and load speed a
(l = 0)
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2.1.2.3 Undercritically Damped Case

(1) a 6¼ k, l � 1

When the bridge is undercritically damped, l and l2 in Eq. (2.20) can be
neglected, and the following formula similar to Eq. (2.22) can be obtained

yðx; tÞ � y0
X1
n¼1

sin
npx
L

1
n2ðn2 � a2Þ sin n�xt � a

n
e�xbt sinxnt

� 
ð2:30Þ

Equation (2.30) is very practical in engineering, because the damping of bridges
is usually very small, and the driving speed of actual vehicles can never achieve the
case of a = k (V = kVcr). For example, for the bridge with the span of L = 32 m, the
first natural frequency f1 = 4.5 Hz, and k = 1, the critical speed is calculated as
Vcr = 2f1L = 288 m/s (1036.8 km/h), which is much higher than the current train
speed.

When the train speed is low, there is a � 1. If the vehicle mass is small
compared to the bridge mass, the vehicle can be modeled as a series of moving
concentrated loads by ignoring its mass. In this case, the bridge displacement under
train loads can be solved by considering only the first-order mode. Thus, the
simplified solution of bridge displacement under a single moving load is expressed
as

yðx; tÞ � y0 sin
px
L
sin n�xt ð2:31Þ

(2) a = k, l � 1

The derivation in this case is similar to that when a = k, l = 0, and the bridge
displacement is directly given by
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Fig. 2.3 Relation of
maximum mid-span
displacements with load speed
a (l = 0 and l = 0.05)
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yðx; tÞ � y0
1
2k4

e�xbt sin k�xt � k2

l
ð1� e�xbtÞ cos k�xt

� �
sin

kpx
L

þ y0
X1

n¼1;n6¼k

1
n2ðn2 � a2Þ sin n�xt � a

n
e�xbt sinxnt

� 
sin

npx
L

ð2:32Þ

Shown in Fig. 2.4a is the plane view of mid-span displacement distribution of
the undercritically damped bridge (l = 0.05) varying with time Vt/L and load speed
a, and in Fig. 2.4b are the time history curves of y(L/2, t)/y0 versus Vt/L in various
speed parameters. The variation of maximum displacement ymax(L/2, t)/y0 versus
load speed a is demonstrated in Fig. 2.3. By comparing the curves in the two
damping cases, it can be found that the damping effect decreases the bridge dis-
placement, but does not obviously change the variation trend of maximum dis-
placement with speed parameter.

2.1.2.4 Critically Damped Case (l = lcr = k2)

When the damping ratio nk is equal to 1, the kth mode of the bridge is critically
damped, and thus, the critical damping parameter becomes

lcr ¼
xb

x1
¼ nkxk

x1
¼ k2 ð2:33Þ

In this case, the generalized coordinate qk(t) of the kth mode of the
simply-supported beam can be described by Eq. (2.19b), and the contribution of the
kth mode to the displacement is
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Fig. 2.4 Distribution of mid-span displacement y(L/2, t)/y0 versus time Vt/L and velocity a
(l = 0.05)
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ykðx; tÞ ¼ qkðtÞ sin kpxL ¼ y0
1

k2ðk2 þ a2Þ2 ðk2 � a2Þ�
sin k�xt

� 2ka cos k�xtþ e�xk t ðk2 þ a2Þk�xtþ 2ka
� ��

sin
kpx
L

ð2:34Þ

When the bridge is critically damped, there is l = lcr = k2, which is not the
critical damping for all the modes. When n > k, the nth mode is undercritically
damped, and the corresponding generalized coordinate qn(t) can be solved by
Eq. (2.17a). When n < k, the nth mode is overcritically damped, and the corre-
sponding generalized coordinate qn(t) will be discussed in the next section.

Shown in Fig. 2.5a is the critically damped case, the spatial distribution of
mid-span displacements of the bridge versus time parameter Vt/L, and load speed
parameter a, in Fig. 2.5b is its plane view, and in Fig. 2.5c are the displacement
time histories of the bridge related to various load speeds of a = 0, 0.3, 0.5, 1, 2.

2.1.2.5 Overcritically Damped Case (l > lcr = k2)

According to the previous discussion, if the kth mode of the bridge is critically
damped, the nth mode (n < k) will be overcritically damped, namely
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Fig. 2.5 Distributions of mid-span displacement y(L/2, t)/y0 versus time Vt/L and load speed a
(l = 1)
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nn ¼
nkxk

xn
¼ xk

xn
[ 1; n\k ð2:35Þ

In the overcritically damped case, Eq. (2.12) is no longer valid, so the Duhamel
integral solution to Eq. (2.11) becomes

qnðtÞ ¼ 2
�mLxn

D

Z t

0
PðsÞ sin n�xs � e�xbðt�sÞ � sinhxn

Dðt � sÞds ð2:36Þ

where xn
D ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2n � 1

q
is the damped natural frequency of the nth mode, and

sinhxn
Dðt � sÞ ¼ ½exn

Dðt�sÞ � e�xn
Dðt�sÞ�=2.

The solution to the nth general coordinate is given by

qnðtÞ ¼ y0
1

n2½n2ðn2 � a2Þ2 þ 4a2l2� n2ðn2 � a2Þ�
sin n�xt � 2nal cos n�xt

þ nae�xbt

2ðl2 � n4Þ1=2
2l2 � n2ðn2 � a2Þþ 2lðl2 � n4Þ1=2
h i

ex
n
Dt

n

� 2l2 � n2ðn2 � a2Þ � 2lðl2 � n4Þ1=2
h i

e�xn
Dt
oo

ð2:37Þ

and the displacement component of the simply-supported beam related to the nth
(n < k) mode can be expressed as

ynðx; tÞ ¼ y0
1

n2½n2ðn2 � a2Þ2 þ 4a2l2� n2ðn2 � a2Þ�
sin n�xt � 2nal cos n�xt

þ nae�xbt

2ðl2 � n4Þ1=2
2l2 � n2ðn2 � a2Þþ 2lðl2 � n4Þ1=2
h in

ex
n
Dt

� 2l2 � n2ðn2 � a2Þ � 2lðl2 � n4Þ1=2
h i

e�xn
Dt
oo

sin
npx
L

ð2:38Þ

Demonstrated in Fig. 2.6 is, in the overcritically damped (l = 2) case, the
relationship between the relative displacement at the mid-span and the time
parameter Vt/L and load speed parameter a.

2.1.3 Displacement of Bridge Subjected to a Moving Load
Series

The analytical solutions above are valid for the bridge displacements induced by a
single constant moving load. When performing dynamic analysis of the train-bridge
system, the train load can be modeled as a moving load series composed of N loads
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with identical intervals equal to the vehicle length lv, as shown in Fig. 2.7. By
assuming small deformation for the beam, the displacement of the bridge under the
load series can be directly written as the superposition of all responses induced by
individual moving loads

yðx; tÞ ¼
XN�1

i¼0

yi x; ðt � i � lv
V

Þ
� �

ð2:39Þ
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where yi(x, t) is the bridge displacement induced by the ith load of the moving load
series.

Assuming the initial status of the bridge is still, the response of the bridge
induced by each force of the moving load series can be analyzed in three phases.
Before the force enters, the bridge does not vibrate, and yi(x, t) is zero. During the
force moves on the beam, the bridge is in forced vibration, and yi(x, t) can be
obtained by Eq. (2.19a, 2.19b). After the force leaves, the bridge is in free vibra-
tion, and yi(x, t) can be solved by Eq. (2.26).

Using the above method, the mid-span displacements of a simply-supported
bridge under moving load series are calculated. The span of the bridge is L = 32 m,
the fundamental frequency is f1 = 4.5 Hz, and two damping ratios are considered as
n = 0, 0.05, namely l = 0, 0.05. The moving load series consists of 32 concen-
trated forces, which are arranged according to the axle loads and wheelbases of the
German ICE3 high-speed train composed of (3 motor-cars +1 trailer car) � 2, and
each car has four wheel-sets, as shown in Fig. 2.8. The calculated displacement
time histories of the bridge at mid-span are shown in Fig. 2.9.
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Fig. 2.8 Wheelbases of a
German ICE3 car (Unit: m)
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Fig. 2.9 Mid-span displacement time histories of the bridge
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Shown in Fig. 2.10 are the variations of maximum relative displacement ymax(L/
2, t)/y0 of the bridge at mid-span versus load speed parameter a. It can be found that
the periodic excitations by successive action of the concentrated force series induce
several displacement peaks at certain speeds, indicating the resonant responses of
the bridge, which are quite different from the regularity by a single moving load.
The damping effect can reduce the maximum displacement and obviously depress
the resonant response of the bridge. Detailed derivation of bridge resonance induced
by moving load series can be found in Sect. 2.3.

2.1.4 Analytical Solution for Vibration of Simply-Supported
Beam Under a Moving Harmonic Load

In this case, PðtÞ ¼ P sin ht, and thus, Eq. (2.12) can be expressed as

qnðtÞ ¼ 2P
�mLxn

D

Z t

0
sin hs sin n�xs sinxn

Dðt � sÞe�xbðt�sÞds ð2:40Þ

The following triangle transformation formula is utilized for the above integral

sin hs sin n�xs sinxn
Dðt � sÞ ¼ 1

4
sin xn

Dtþ r2 � xn
D


 �
s

� �� þ sin xn
Dt � r2 þxn

D


 �
s

� �
� sin xn

Dtþ r1 � xn
D


 �
s

� �� sin xn
Dt � r1 þxn

D


 �
s

� ��
ð2:41Þ

where r1 ¼ hþ n�x, and r2 ¼ h� n�x.
Substituting Eq. (2.41) into Eq. (2.40), and using Eq. (2.15a, 2.15b), the precise

integral solution of Eq. (2.40) can be deduced as
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qnðtÞ ¼ P
2�mLxn

D

Z t

0
sin xn

Dtþ r2 � xn
D


 �
s

� �
e�xbðt�sÞds

�
þ

Z t

0
sin xn

Dt � r2þxn
D


 �
s

� �
e�xbðt�sÞds

�
Z t

0
sin xn
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D


 �
s

� �
e�xbðt�sÞds�

Z t

0
sin xn

Dt � r1þxn
D


 �
s

� �
e�xbðt�sÞds

�

¼ P
2�mLxn

D

1

r2 � xn
Dð Þ2 þx2

b

(
xb sin r2t � r2 � xn

D


 �
cos r2t

� �� xb sinxn
Dt � r2 � xn

D


 �
cosxn

Dt
� �

e�xbt
� �

þ 1

r2 þxn
Dð Þ2þx2

b

�xb sin r2tþ r2 þxn
D


 �
cos r2t

� �� xb sinxn
Dtþ r2þxn

D


 �
cosxn

Dt
� �

e�xbt
� �

� 1

r1 � xn
Dð Þ2 þx2

b

xb sin r1t � r1 � xn
D


 �
cos r1t

� �� xb sinxn
Dt � r1 � xn

D


 �
cosxn

Dt
� �

e�xbt
� �

� 1

r1 þxn
Dð Þ2þx2

b

�xb sin r1tþ r1 þxn
D


 �
cos r1t

� �� xb sinxn
Dtþ r1þxn

D


 �
cosxn

Dt
� �

e�xbt
� �)

ð2:42Þ

In the undercritically damped case, xn2
D ¼ x2

n � x2
b, Eq. (2.42) can be rear-

ranged as

qnðtÞ ¼ P
�mL

1

ðx2
n � r22Þ2 þ 4x2

br
2
2

ðx2
n � r22Þ cos r2t � e�xbt cosxn

Dt

 ��

þ 2xbr2 sin r2t � xb

xn
D
ðx2

n þ r22Þe�xbt sinxn
Dt

�

� 1

ðx2
n � r21Þ2 þ 4x2

br
2
1

ðx2
n � r21Þ

�
cos r1t � e�xbt cosxn

Dt

 �

þ 2xbr1 sin r1t � xb

xn
D
ðx2

n þ r21Þe�xbt sinxn
Dt

�
ð2:43Þ

Based on the generalized coordinates obtained from Eq. (2.43), the particular
solution for the displacement of the simply-supported beam under a moving har-
monic load can be written as

yðx; tÞ ¼ y0
2

X1
n¼1

x2
1

ðx2
n � r22Þ2 þ 4x2

br
2
2

(
ðx2

n � r22Þ
�

cos r2t � e�xbt cosxn
Dt


 �
þ 2xbr2 sin r2t � xb

xn
D
ðx2

n þ r22Þe�xbt sinxn
Dt
�

� x2
1

ðx2
n � r21Þ2 þ 4x2

br
2
1

ðx2
n � r21Þ cos r1t � e�xbt cosxn

Dt

 ��

þ 2xbr1 sin r1t � xb

xn
D
ðx2

n þ r21Þe�xbt sinxn
Dt
��

sin
npx
L

ð2:44Þ

in which qn(t) is the generalized coordinate of the nth mode.
According to engineering practice, some additional conditions are herein

introduced to simplify Eq. (2.44). For example, for solution of bridge displacement,
sufficiently precise can be obtained by considering the first-order mode, so only
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n = 1 is taken. For a real bridge, the dimensionless parameters a and l are usually
very small, i.e., a � 1 and l � 1. Accordingly, Eq. (2.44) can be rewritten as

yðx; tÞ ¼ y0
x2

1

h2
1

x2
1

h2
� 1

� 2
þ 4 �x2

h2
þ x2

b

h2

�  x2
1

h2
� 1

� 	2

þ 4
x2

b

h2

" #1=2

sinðhtþuÞ
8<
: sin �xt

þ 2
�x
h

cos ht cos �xt � e�xbt cosx1tð Þ
�
sin

px
L

ð2:45Þ

where u ¼ tan�1 � 2xb=h
x2

1=h
2�1

� 
.

To better describe the frequency effect of the harmonic load, a dimensionless
parameter, frequency ratio, is introduced, expressed as

c ¼ h
x1

ð2:46Þ

where h is the frequency of the harmonic load, and l1 is the fundamental frequency
of the bridge.

Under l = 0.05 and various frequency ratios, the distributions of mid-span
displacement y(L/2, t)/y0 of the bridge versus time parameter Vt/L and load speed
parameter a are shown in Fig. 2.11.

According to Eq. (2.46), when the loading frequency h is close or equal to the
first-order frequency x1 of the bridge, the maximum bridge dynamic response can
be observed. In this case, Eq. (2.45) can be rewritten as

yðx; tÞ ¼ y0
x1

2
cosx1t
�x2 þx2

b
xðcos �xt � e�xbtÞ � xb sin �xt½ � sin px

L
ð2:47Þ

Dynamic amplification factor
Herein, the dynamic amplification factor (DAF) is defined as the ratio of the
maximum mid-span deflection of the bridge caused by the moving harmonic load
PðtÞ ¼ P sin ht to the deflection induced by the static load P, denoted as

D1=2 ¼
max½yðL=2; tÞ�

y0
ð2:48Þ

To investigate the variations of the bridge DAF versus loading frequency ratio c
and load speed parameter a, the maximum mid-span displacements of the bridge are
calculated, considering different loading frequencies and load speeds in the
undercritically damped case (l = 0.05), and the results are shown in Fig. 2.12.
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Fig. 2.11 Distributions of mid-span displacement y(L/2, t)/y0 of the bridge versus Vt/L and a
under a harmonic load with various frequencies (l = 0.05)
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It can be found that when the load speed is small, the loading frequency has little
influence, and thus, the displacement response is similar to that under static load
and reaches the maximum at c = 1. With the increase of load speed, the influence of
loading frequency on bridge displacement enlarges, the bridge DAF at c = 1
gradually decreases, and the loading frequency corresponding to the maximum
DAF changes, no longer at c = 1.

An interesting phenomenon associated with the bridge displacement response
can be observed in Fig. 2.12b. Considering the two axis planes as a mirror, the line
connecting the maximum displacement points is equivalent to a ray with 45°
incident, producing a peak displacement at the intersection position (a = 0, c = 1)
with the mirror. This phenomenon is called the ray reflection effect of the maximum
displacement response. In the figure, D1/2 is nearly zero when c is around null (i.e.,
h � 0Þ, since PðtÞ ¼ P sin ht � 0. Hence, the displacement induced by a moving
constant load cannot be directly obtained from Eq. (2.44) for the moving harmonic
load by setting c = 0.

D1/2

α

D1/2

α
(a) α = 0 ~ 0.3 (b) α = 0 ~ 3

Fig. 2.12 Variations of bridge DAF versus loading frequency ratio c and speed parameter a
(l = 0.05)
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2.2 Vibration of Simply-Supported Beam Under Moving
Loads with Variable Speed

In the previous sections, the analysis method and the dynamic response charac-
teristics of a simply-supported beam under moving concentrated load and harmonic
load were introduced, and in Xia and Zhang (2005) and Xia et al. (2012), the cases
considering moving uniformly distributed mass and the moving vehicle with
sprung-mass were discussed. All the above-mentioned loads are moving at constant
speed, while in fact, moving vehicles are usually subjected to acceleration and
deceleration. In this section, the investigation is extended to a more general case,
i.e., the vibration of a simply-supported beam subjected to a moving
wheel-spring-mass (WSM) load with variable speed.

2.2.1 Calculation Model

The calculation model of the simply-supported beam under a moving WSM load
with variable speed is shown in Fig. 2.13. The moving WSM load is composed of a
wheel (unsprung-mass) M1, a sprung-mass M2, a spring k1, and a dashpot c1.

In the analysis, the initial speed of the load is V0, the acceleration is a(t), the
speed at time t is V(t), the moved distance is s(t), the dynamic deflection of the beam
is y(x, t), and the movement of the sprung-mass M2 is Z(t). By assuming the wheel
M1 moves along the beam without detachment, the deflection of the wheel M1 is
consistent with that of the beam at the position of the wheel.

The sprung-mass M2 is subjected to the inertial force PI2 ¼ M2€ZðtÞ, the elastic
force PS ¼ k1½ZðtÞ � yðx; tÞ�jx¼sðtÞ due to the relative displacement between M2 and

M1, and the damping force P
0
D ¼ c1½ _ZðtÞ � dyðx; tÞ

dt
�jx¼sðtÞ due to the relative velocity

between M2 and M1. By considering the equilibrium of forces on M2 shown in
Fig. 2.13, the motion equation for the sprung-mass M2 can be derived as

y(x, t )

x

s(t)

y

L

M1

' '

Beam

M2

c1k1

V(t)

M2

PI1

PI2

PS+PD

PS+PD+PG

Z(t)

EI, m

Fig. 2.13 Model of simply-supported bridge with a speed-varying WSM load
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M2€ZðtÞþ k1 ZðtÞ � yðx; tÞjx¼sðtÞ
h i

þ c1 _ZðtÞ � dyðx; tÞ
dt

����
x¼sðtÞ

" #
¼ 0 ð2:49Þ

where
dy
dt

¼ @yðx; tÞ
@t

þ @yðx; tÞ
@x

VðtÞ. Since the load speed is not constant, both

terms should be considered. The motion equation of the mass M2 becomes

M2€ZðtÞþ k1½ZðtÞ � yðx; tÞjx¼sðtÞ� þ c1 _ZðtÞ � @yðx; tÞ
@t

þ @yðx; tÞ
@x

VðtÞ
� �����

x¼sðtÞ

( )

¼ 0

ð2:50Þ

When the WSM load moves on the beam at the speed of V(t), the beam is

subjected to the inertial force PI1 ¼ M1
d2yðtÞ
dt2

jx¼sðtÞ from the mass M1, the gravity

PG ¼ ðM1 þM2Þg of the masses, the elastic force P
0
S ¼ PS, and the damping force

P
0
D ¼ PD. Thus, the force applied on the beam can be expressed as

Pðx; tÞ ¼ d x� sðtÞ½ �½PG � PI þPS þPD�

¼ d x� sðtÞ½ � ðM1 þM2Þg�M1
d2yðx; tÞ

dt2

�
þ k1 ZðtÞ � yðx; tÞ½ � þ c1 _ZðtÞ � dyðx; tÞ

dt

� ��

ð2:51Þ

Note that
d2y
dt2

¼ @2y
@t2

þ 2
@2y
@x@t

VðtÞþ @y
@x

aðtÞþ @2y
@x2

V2ðtÞ; dy
dt

¼ @yðx; tÞ
@t

þ @yðx; tÞ
@x

VðtÞ,
and aðtÞ ¼ dVðtÞ

dt is the moving acceleration of the load, and Eq. (2.51) can be
rewritten as

Pðx; tÞ ¼ d x� sðtÞ½ � ðM1 þM2Þg�M1
@2yðx; tÞ
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@2yðx; tÞ
@x@t

VðtÞþ @yðx; tÞ
@x

aðtÞ
��

þ @2yðx; tÞ
@x2

V2ðtÞ
�
þ k1 ZðtÞ � yðx; tÞ½ � þ c1 _ZðtÞ � @yðx; tÞ

@t
þ @yðx; tÞ

@x
VðtÞ

� �� ��

ð2:52Þ

The motion equation of the simply-supported beam under loads with variable
speed can be expressed as

EI
@4yðx; tÞ
@x4

þ �m
@2yðx; tÞ

@t2
þ c

@yðx; tÞ
@t

¼ Pðx; tÞ ð2:53Þ
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When Eq. (2.53) is solved with the modal decomposition method, by substi-

tuting yðx; tÞ ¼ P1
i¼1

qiðtÞ � /iðxÞ into the equation, multiplying each term by the

mode shape function /nðxÞ ¼ sin npx
L , integrating along the beam, and considering

the orthogonality of modes, Eq. (2.53) becomes

€qnðtÞþ 2nnxn _qnðtÞþx2
nqnðtÞ ¼

2
�mL

PnðtÞ n ¼ 1; 2; . . .. . .ð Þ ð2:54Þ

in which PnðtÞ is the generalized force of the nth mode, expressed as

PnðtÞ ¼ Pn1ðtÞþPn2ðtÞ ð2:55Þ

where

Pn1ðtÞ ¼
Z L

0
d x� sðtÞ½ � ðM1 þM2Þg�M1

X1
i¼1

€qiðtÞ
"

/iðxÞ
(

þ 2
X1
i¼1

_qiðtÞ/0
iðxÞVðtÞ

þ
X1
i¼1

qiðtÞ/0
iðxÞaðtÞþ

X1
i¼1

qiðtÞ/00
i ðxÞV2ðtÞ

#)
/nðtÞdx

¼ ðM1 þM2Þg sin
npsðtÞ
L

�M1

X1
i¼1

€qiðtÞ ip
L
aðtÞ cos ipsðtÞ

L
� ip

L

� 	2

V2ðtÞ sin ipsðtÞ
L

" #

� sin
npsðtÞ
L
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X1
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_qiðtÞ ipL VðtÞ cos ipsðtÞ
L

sin
npsðtÞ
L

�M1

X1
i¼1

€qiðtÞ sin ipsðtÞL
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npsðtÞ
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ð2:56aÞ

Pn2ðtÞ ¼
Z L

0
d x� sðtÞ½ � k1ZðtÞþ c1 _ZðtÞ

�

�
X1
i¼1

k1qiðtÞ/iðxÞþ c1 _qiðtÞ/iðxÞþ qiðtÞ/0
iðxÞVðtÞ

� �� �)
/nðxÞdx

¼ k1zðtÞþ c1 _ZðtÞ
� �
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npsðtÞ
L

�
X1
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L

�
X1
i¼1

qiðtÞ k1 sin
ipsðtÞ
L

þ c1VðtÞ cos ipsðtÞL

� �
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npsðtÞ
L

ð2:56bÞ

By moving the unknown displacement, velocity, and acceleration terms from the
right-hand side of Eq. (2.52) to the left, the following equation can be obtained
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ð2:57Þ

When the bridge displacement at the load position is expressed with the modal
decomposition method, the motion equation of the sprung-mass M2 becomes

M2€ZðtÞþ c1 _ZðtÞþ k1ZðtÞ � c1
X1
i¼1

_qiðtÞ sin ipsðtÞL

� c1
X1
i¼1

qiðtÞ ipL VðtÞ cos ipsðtÞ
L

� k1
X1
i¼1

qiðtÞ sin ipsðtÞL
¼ 0

ð2:58Þ

The motion equation of the system can be obtained by combining Eqs. (2.57)
and (2.58). For a simply-supported beam, if N terms of displacement series are
used, and the sprung-mass M2 has one DOF Z(t), the motion equations of the
system can be expressed in terms of matrices with (N + 1) orders as

Mf€XgþCf _XgþKfXg ¼ fFg ð2:59Þ

where {X} is the generalized displacement vector; M, C, and K are the generalized
mass, damping, and stiffness matrices, respectively; and {F} is the generalized load
vector. They are expressed as follows

fXg ¼ ½q1ðtÞ; q2ðtÞ; � � � ; qNðtÞ; ZðtÞ�T ð2:60Þ

M ¼

1þ qMU11 qMU12 � � � qMU1N 0
qMU21 1þ qMU22 � � � qMU2N 0

� � � � � � . .
. � � � 0

qMUN1 qMUN2 � � � 1þ qMUNN 0
0 0 0 0 M2

2
666664

3
777775 ð2:61Þ
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C ¼

2n1x1 þu11 þ qCU11 u12 þ qCU12 � � � u1N þ qCU1N �qC/1
u21 þ qCU21 2n2x2 þu22 þqCU22 � � � u2N þ qCU2N �qC/2

� � � � � � . .
. � � � � � �

uN1þ qCUN1 uN2þ qCUN2 � � � 2nNxN þuNN þqCUNN �qC/N
�c1/1 �c1/2 � � � �c1/N c1

2
666664

3
777775

ð2:62Þ

K ¼

x2
1 þw11 þ qKU11 w12 þ qKU12 � � � w1N þ qKU1N �qK/1
w21 þ qKU21 x2

2 þw22 þ qKU22 � � � w2N þ qKU2N �qK/2

� � � � � � . .
. � � � � � �

wN1 þ qKUN1 wN2 þ qKUN2 � � � x2
N þwNN þ qKUNN �qK/N

C1 � k1/1 C2 � k1/2 � � � CN � k1/N k1

2
666664

3
777775

ð2:63Þ

fFg ¼ ½qF/1; qF/2; � � � ; qF/N ; 0�T ð2:64Þ

where:

qM ¼ 2M1
�mL ; qC ¼ 2c1

�mL ; qK ¼ 2k1
�mL ; qF ¼ 2ðM1 þM2Þ

�mL g;/n ¼ sin npsðtÞ
L ;Unm ¼ /n/m,

bn ¼ cos npsðtÞL ;unm ¼ 2mp
L qM/nbmVðtÞ;Cn¼� cnVðtÞ npL bn, and

wnm ¼ qM
mp
L /nbmaðtÞ � m2p2

L2 V2ðtÞUnm

h i
þ mp

L qCVðtÞ/nbm.

The multiplier unm in the damping matrix and wnm and Cn in the stiffness matrix
represent the influence of variable speed of the moving load.

The results show that for the simply-supported beam subjected to a moving
WSM load, the generalized mass matrix M is non-diagonal, but the coupling terms
with M2 are zeros. Both K and C are non-diagonal full matrices, through which the
equations for the beam and the moving load are coupled. Although the equations
for the whole system cannot be completely decoupled by modal decomposition, the
order of the equations can be reduced by adopting an appropriate order number N.

Since the WSM load is moving on the beam, the coefficients Unm, unm, wnm, and
Cn in the generalized mass matrix M, stiffness matrix K, and damping matrix C are
time-varying. Therefore, Eq. (2.59) is a second-order linear differential equations
with time-varying coefficients, which is usually solved by the step-by-step
numerical integration method.

2.2.2 Case Study

Based on the above theory and analysis method, a computation program is
developed to analyze the dynamic response of a three-span simply-supported bridge
subjected to a moving WSM load with constant acceleration.

The bridge consists of 3�32 m PC box-beams. The beam is made of C50
concrete with elastic modulus of 34.5 MPa and mass density of 2500 kg/m3.
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The cross section of the beam has an area of 8.97 m2 and an inertia moment of
11.1 m4. In the WSM model, the wheel mass M1 is 10.68 t, the sprung-mass M2 is
73.32 t, the spring coefficient k1 is 7.48 MN/m, and the damping coefficient c1 is
240 kNs/m.

In the calculation, the first five vibration modes are considered for the bridge, the
damping ratio is 0.05, the Newmark parameters are k = 0.5 and b = 0.25, and the
integration time step is 0.0005 s.

Shown in Fig. 2.14 are the dynamic displacement histories of the bridge at the
central mid-span, when the WSM load enters the bridge at initial speed of 40 m/s
and then moves on the bridge at a constant speed, variable speeds with accelerations
of 10 m/s2, 20 m/s2, and −10 m/s2, respectively. It can be observed that when the
load moves on the bridge with different accelerations, the displacement time history
curves are quite similar, but the maximum displacements are slightly different.

To further investigate the influence of load moving acceleration, some repre-
sentative points on the maximum displacement curve of the bridge versus load
moving speed are discussed in detail. The load speeds are divided into four cate-
gories according to the variation feature of the curve, as shown in Fig. 2.15, which
are represented by speed points 1–6. Listed in Table 2.1 are the initial speeds, the
accelerations of the load, and the maximum mid-span displacements of the bridge
adopted in the calculation.

Based on Fig. 2.15 and the calculated results in Table 2.1, the influences of
speed variations at these points on bridge maximum displacements are analyzed
from the view of load-bridge resonance.

(1) Category I. Points 1 and 4 belong to this category, which are the load speeds
yielding peak displacement responses. Corresponding to these points, when the
load arrives at the mid-span, the speeds do not equal those yielding the max-
imum displacements; thus, in both the acceleration and deceleration cases, the
maximum displacements become smaller.
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histories of the bridge under
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(2) Category II. Points 2 and 6 belong to this category, which are the load speeds
yielding valley displacement responses. Corresponding to these points, when
the load arrives at the mid-span, the speeds do not equal those yielding the
minimum displacements; thus, in both the acceleration and deceleration cases,
the maximum displacements become larger.

(3) Category III. Point 3 belongs to this category, which is the load speed located in
the upward segment of the displacement curve. Corresponding to this point, the
load acceleration yields larger maximum displacement, while the deceleration
yields smaller.

(4) Category IV. Point 5 belongs to this category, which is the load speed located
in the downward segment of the displacement curve. Corresponding to this
point, the load acceleration yields smaller maximum displacement, while the
deceleration yields larger.

Table 2.1 Maximum displacements of bridge under speed-varying WSM load

Item Maximum displacement (mm)

Point number 1 2 3 4 5 6

Category I II III I IV II

Initial speed V0 (m/s) 37.8 44.6 50.0 61.5 72.0 80.0

Acceleration
a (m/s2)

0 1.532 1.482 1.552 1.611 1.566 1.476

5 1.530 1.492 1.558 1.610 1.560 1.479

10 1.526 1.502 1.564 1.609 1.554 1.484

15 1.519 1.502 1.570 1.608 1.548 1.488

Deceleration
a (m/s2)

0 1.532 1.482 1.552 1.611 1.566 1.476

−5 1.531 1.496 1.545 1.612 1.572 1.484

−10 1.528 1.508 1.534 1.612 1.577 1.493

−15 1.522 1.518 1.529 1.611 1.582 1.501
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The change of maximum displacement should increase with acceleration vari-
ation. Most of the data in Table 2.1 comply with this law, indicating the load-bridge
resonance theory is valid for load with variable speed, while a few data in bold do
not. These exceptions can be explained as follows.

(1) Due to the influence of speed incremental step, the calculated representative
speeds yielding the peaks and valleys are not precise enough, so they are only
the approximations of the real ones.

(2) When the load moves at variable speeds, the load position on the bridge
yielding the maximum mid-span displacement is slightly different from that at
constant speeds, and thus, the maximum displacement will be different.

It can be concluded that the maximum displacement of the bridge is associated
with the initial speed and acceleration of the load, as well as the speed and position
of the load corresponding to the maximum displacement. The conclusions above
are confirmed by the analysis of the 3�32 m simply-supported bridge subjected to
the moving WSM load, showing that

(1) When the load moves with different accelerations, the displacement time his-
tory curves of the bridge are almost the same, with difference less than 3%
among their peak values. Therefore, the assumption of constant load speed is
sufficient for usual analysis.

(2) When the load moves at a variable speed, the maximum mid-span displacement
of the bridge is associated with the speed and position of the load arriving near
the mid-span. The variation characteristics of maximum displacement versus
load speed are in accordance with that when the load moves at a constant speed.

2.3 Resonance Analysis of a Simply-Supported Beam
Subjected to Moving Loads

According to the fundamental theorems of structural dynamics, when a row of train
vehicles travels over a railway bridge, the loading frequency (dependent on the train
speed, bridge span, and composition of train vehicles) will change with the train
speed and a resonant vibration will occur when the loading frequency coincides
with the natural frequency of the bridge. The strong vibration induced by the
resonance not only directly affects the working state and serviceability of the
bridge, but also reduces the running safety of the train, diminishes the riding
comfort of the passengers, and sometimes even destabilizes the ballasted track on
the bridge. Therefore, it is necessary to develop methods to predict the resonant
speeds of the running train and to assess the dynamic behavior of the bridge under
resonance conditions.

In the past decades, researchers offered a lot of efforts to study the resonance
problem of bridges under moving loads, such as by Matsuura (1976), Xia and Chen
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(1992), Frýba (1999, 2001), Diana and Cheli (1989), Yang et al. (1997, 2004a, b),
Yau and Yang (1999), Cheung et al. (1999), Li and Su (1999), Yau (2001), Savin
(2001), Pesterev et al. (2003), Kwark et al. (2004), Xia et al. (2006, 2012), Ju and
Lin (2003), Garinei and Risitano (2008), Hamidi and Danshjoo (2010), Michaltsos
and Raftoyiannis (2010), Zambrano (2011), Rocha et al. (2012), Lee et al. (2012),
Luu et al. (2012), and Lavado et al. (2014), and many of these models have been
validated by field experiments (Liu et al. 2009; Xia and Zhang 2005; and Xia et al.
2012).

There are various factors associated with the resonance of the train-bridge sys-
tem under moving loads, such as the periodic loading on the bridge by the regularly
arranged wheel-axle loads due to vehicle gravity or centrifugal force, the periodic
impact on the bridge caused by wheel scars, the periodic excitations induced by
local track irregularities, the lateral periodic loading by hunting movement and
centrifugal forces of train vehicles, the lateral moving load series caused by winds
on car-bodies, and the periodical actions on moving vehicles by deflections of long
bridge with identical multi-spans. The excitation frequencies by all the above
factors are associated with the train speed. Consequently, investigation on the
train-bridge resonance is significant in theory as well as in engineering practice.

2.3.1 Bridge Resonance Induced by a Moving Load Series

The resonance of train-bridge system is affected by the span, total length, lateral
stiffness and vertical stiffness of the bridge, the compositions of the train, and the
axle arrangements and natural frequencies of the vehicles. The general mechanism
of bridge resonance induced by moving load series can be described as follows.

2.3.1.1 Fundamental Analysis Model

A simply-supported beam subjected to a train load is analyzed herein. The beam has
a span L, a uniform mass �m, a bending stiffness EI, and a zero damping. The train
consists of several identical cars with the full length lv of each car, the rated distance
lc between the two bogies of the car, and the fixed wheelbase lw between the two
wheel-axles of the bogie, as shown in Fig. 2.16a. To explain the general principles
and to facilitate the derivation, the train axle loads are simplified as N moving
concentrated constant loads with identical interval dv, as shown in Fig. 2.16b.

Suppose the load series travels on the beam from left to right at a uniform speed
V, and the traveled distance of the first force is x = Vt. For the load series with
identical intervals, there exists a time delay Dt = dv/V between any two successive
forces. The motion equation for the beam acted on by such moving load series can
be written as

114 2 Fundamental Theories and Analytical Methods for Vibrations …



EI
@4yðx; tÞ
@x4

þ �m
@2yðx; tÞ

@t2
¼

XN�1

k¼0

d x� Vðt � k � dv
V

Þ
� �

P ð2:65Þ

It can be expressed in terms of the generalized coordinates as

€qnðtÞþx2
nqnðtÞ ¼

2
�mL

P
XN�1

k¼0

sin
npV
L

t � k � dv
V

� 	
ð2:66Þ

Equation (2.66) is the motion equation of a SDOF system subjected to harmonic
load series. The particular solution of Eq. (2.66) is

qðtÞ ¼ 2PL3b
EIp4

1

1� b2
XN�1

k¼0

sin �x t � k � dv
V

� 	
� b sinx1 t � k � dv

V

� 	� �
ð2:67Þ

where �x ¼ pV=L is the exciting circular frequency of the moving load, and x1 ¼
p2

L2

ffiffiffiffi
EI
�m

q
is the fundamental circular frequency of the beam. The displacement

response of the beam where only the first mode is considered can thus be expressed
as

yðx; tÞ ¼ 2PL3b
EIp4

1

1� b2
sin

px
L
�

XN�1

k¼0

sin �x t � k � dv
V

� 	
� b

XN�1

k¼0

sinx1 t � k � dv
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� 	" #

ð2:68Þ
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Fig. 2.16 Moving load series of a train on the bridge
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where b ¼ �x=x1 is the ratio of exciting frequency to the fundamental frequency of
the beam, and 1=ð1� b2Þ is the dynamic magnification factor.

The first term of the right-hand side of Eq. (2.68) represents the forced response
of the beam due to the moving loads, while the second term represents the transient
response due to its free vibration. According to their different mechanisms, the
resonant responses of a simply-supported beam subjected to moving load series can
be divided into two types.

2.3.1.2 Bridge Resonance Induced by Periodically Loading
of Moving Load Series

First, the discussion is made for the second progression term of Eq. (2.68), to explain
how the transient response in common sense may induce the resonance of the beam.

Before considering the second progression series, it is instructive to introduce
the necessary transformation of triangular progression. For the sum of a finite
triangular progression sinða� ixÞ, (i = 1, 2, …, m), it can be expressed as

Xm
i¼1

sinða� ixÞ ¼
Xm
i¼1

½sin a cos ix� cos a sin ix� ð2:69Þ

The two terms of Eq. (2.69) can be further expressed as (Rade and Westergren
2010)

Pm
i¼1

sin ix ¼ sin 0:5mx � sin 0:5ðmþ 1Þx � csc 0:5x
Pm
i¼1

cos ix ¼ sin 0:5mx � cos 0:5ðmþ 1Þx � csc 0:5x

8>><
>>: ð2:70Þ

Introducing them into Eq. (2.69) leads to

Xm
i¼1

sinða� ixÞ ¼ sin 0:5mx � sin a� 0:5ðmþ 1Þx½ �
sin 0:5x

ð2:71Þ

Now, let i ¼ k;m ¼ N � 1; x ¼ x1dv=V , and a ¼ x1 t; the progression term of
the transient response in Eq. (2.68) becomes as the form

XN�1

k¼0

sinx1 t � k � dv
V

� 	
¼ sinx1tþ

XN�1

k¼1

sinx1 t � k � dv
V

� 	

¼ sinx1tþ
sin ðN � 1Þ � x1dv

2V

� � � sin x1t � N � x1dv
2V

� �
sin x1dv

2V

ð2:72Þ
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For x1dv
2V ¼ 	ip, the second term of Eq. (2.72) becomes an indeterminate form

0/0, but when the L’Hospital’s rule is applied, the limit solution is found to be

lim
x1dv
2V !	ip

sin ðN � 1Þ � x1dv
2V

� � � sin x1t � N � x1dv
2V

� �
sin x1dv

2V

¼ ðN � 1Þ sinx1 t � N � dv
2V

� �

ð2:73Þ

Obviously, the extreme condition with physical significance for Eq. (2.73) is

x1dv
2V

¼ ip i ¼ 1; 2; 3; � � �ð Þ ð2:74Þ

Substituting this condition into Eq. (2.71), the limit value of the transient
response term in Eq. (2.67) is obtained as

XN�1

k¼0

sinx1 t � k � dv
V

� 	
x1dv
2V ¼ip

��� ¼ N sinx1t ð2:75Þ

It can be seen that each force in the moving load series may induce the transient
response of the structure, and the successive forces form a series of periodical
excitations. The response of the structure will be successively amplified with the
increase of N, the number of forces traveling through the beam, resulting in the
structural resonance.

Similar results can be obtained for higher modes of the bridge. Considering all of
these modes and letting xn ¼ 2pfbn, the resonant condition of the bridge under a
moving load series can be derived from Eq. (2.72) as

Vbr ¼ 3:6 � fbn � dv
i

ðn ¼ 1; 2; 3; � � �Þði ¼ 1; 2; 3; � � �Þ ð2:76Þ

where Vbr is the resonant train speed (km/h); fbn is the nth vertical or lateral natural
frequency of the bridge (Hz); dv is the intervals of the moving loads (m); and the
multiplicator i = 1, 2, 3 is determined by the extreme condition Eq. (2.74).

Equation (2.76) indicates that when a train moves on the bridge at speed V, the
regularly arranged wheel-axle loads may produce periodical dynamic actions on the
bridge with the loading period dv/V. The bridge resonance occurs when the loading
period is close to the nth natural vibration period of the bridge or its i times. A series
of resonant responses related to different bridge natural frequencies may occur
corresponding to different train speeds. The appearance of this phenomenon is
determined by the time of the load traveling through the distance dv.
Equation (2.76) is called as the first resonant condition of simply-supported
bridge. Detailed illustration on the physical meaning of the bridge resonance
induced by the moving load series will be presented in Sect. 2.4.3.
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During the dynamic analysis of the bridges on the Beijing-Shanghai HSR, the
dynamic interaction model of train-bridge system was used to study the resonant
responses induced by various high-speed trains, such as Germany ICE3,
France TGV, Japan E500, and China CHT. Shown in Fig. 2.17 are the simulated
distribution curves of dynamic factors versus train speed for the PC box-beams with
20 and 32 m spans, where the dynamic factor is defined as the ratio of the maxi-
mum dynamic to the maximum static deflection of the beam under the same
loading.

It is given that the natural frequencies of the 20 m and 32 m PC box-beams are
7.73 Hz and 4.23 Hz, respectively. By using Eq. (2.76), the corresponding resonant
train speeds can be estimated as 520 km/h and 284.8 km/h for TGV whose average
car length is lv = 18.7 m, and 285 km/h and 400 km/h for ICE3, E500, and CHT
whose average car lengths are all lv � 26 m. In this example, the calculation is
based on dv = lv; namely, the full length of vehicle is taken as the load interval,
where the four axle loads of the rear bogie at the previous car and the front bogie at
the following car are combined as one concentrated load. The resonant train speeds
estimated by Eq. (2.76) are in good accordance with the critical train speeds from
the simulated results, as compared in Fig. 2.17.

Equation (2.76) can also be used to analyze the lateral response of bridge under
the first resonant condition. The lateral resonance analysis has special significance
for bridges with high piers under a moving load series induced by centrifugal forces
or lateral wind pressures. Since the lateral frequency of the bridge system is usually
smaller than the vertical frequency, the critical train speed for lateral resonance is
also lower.

A simply-supported steel truss with the span of 48 m is analyzed as an example.
The moving load series are the lateral axle loads induced by wind pressures acting
on car-bodies.
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The lateral natural frequency of the truss is 1.86 Hz. The train concerned is
composed of one locomotive followed by 18 passenger cars. The full length of each
car is 26.57 m. The resonant train speed for the first resonant condition estimated by
Eq. (2.76) is

i ¼ 1 : Vbr1 ¼ 1:86� 26:57
1

� 3:6 � 178 km=h

i ¼ 2 : Vbr2 ¼ 1:86� 26:57
2

� 3:6 � 89 km=h

i ¼ 3 : Vbr3 ¼ 1:86� 26:57
3

� 3:6 � 60 km=h

According to the predicted results, the dynamic responses of the truss under
various train speeds are analyzed by the whole history simulations of train-bridge
system, with the calculation train speeds in the range of 5–220 km/h. Figure 2.18
shows the distribution curve of lateral mid-span displacements of the truss versus
train speed.

It can be found that during the train passage, an obvious peak appears at the
speed of 160 km/h, and two small peaks appear at the speeds of 80 and 40 km/h,
showing significant harmonic resonances of the first order. Considering that the
natural frequency of the bridge will decrease when loaded by the train, the esti-
mated results obtained from Eq. (2.76) are in accordance with those from the whole
history simulations of train-bridge system.

2.3.1.3 Bridge Resonance Induced by Loading Rate of a Moving Load
Series

As for the first progression term of Eq. (2.68) which represents the forced response
of the bridge, the solution is almost the same as the second term except that it
misses the multiplicator b and uses �x instead of x1; thus, an extreme condition
similar to Eq. (2.74) can be directly written as
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�xdv
2V

¼ ip i ¼ 1; 2; 3; . . .ð Þ ð2:77Þ

Substituting �x ¼ pV=L into Eq. (2.77), the train speed V in the numerator is
counteracted with that in the denominator and thus results in the extreme condition

dv ¼ 2iL i ¼ 1; 2; 3; . . .ð Þ ð2:78Þ

The limit value of the steady-state response progression can be obtained by using
this extreme condition

XN�1

k¼0

sin �x t � k � dv
V

� 	
�xdv
2V ¼ip

��� ¼ N sin �xt ð2:79Þ

There is no train speed V expressed in Eq. (2.78); namely, no resonant train
speed exists. Equations (2.78) and (2.79) show that when the interval of loads
equals to 2i times of the bridge span, i.e., the half-wavelength formed by the beam
deflection, the successive increase of the number of passing wheel-axles may
gradually enlarge the bridge response. However, since the minimum axle intervals
of real vehicles are much smaller than two times of the bridge span length, and the
actual arrangement of train wheel-axles is never identical, this solution is only of
mathematical significance. Therefore, the resonant train speed cannot be derived in
this way.

In fact, the second resonance of the simply-supported beam under moving train
loads can be directly determined from Eq. (2.68) by the dynamic magnification
factor 1=ð1� b2Þ. For the nth bridge modes, �xn ¼ npV=L is the nth exciting
frequency. Obviously, when the frequency ratio bn is equal to 1, i.e., xn ¼ �xn, the
dynamic magnification factor 1=ð1� b2nÞ will become infinitive. At this time, the
nth resonant vibration of the bridge is excited. For the simply-supported beam
under moving loads, the nth natural frequency of the beam xn ¼ 2pfbn, and thus,
the resonant train speed Vbr can be described as

Vbr ¼ 7:2 � fbn � L
n

ðn ¼ 1; 2; 3; . . .Þ ð2:80Þ

where Vbr is the resonant train speed (km/h); fbn is the nth vertical or lateral natural
frequency of the bridge (Hz); and Lb is the span of the bridge (m).

Equation (2.80) indicates that bridge resonance occurs when the traveling time
of the train through the bridge equals to 0.5n times the nth vibration period of the
bridge. The appearance of this phenomenon is determined by the loading rate of
moving loads related to the bridge span. Equation (2.80) is called as the second
resonant condition of simply-supported bridge, in which Vbr is nothing less than
the resonant speed derived at a = k in Sect. 2.1.
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The resonant train speed calculated from Eq. (2.80) is rather high. For instance,
the lowest natural frequencies for the simply-supported beams with moderate or
small spans are 80/L and 120/L, respectively, given in the Chinese codes Interim
Provisions on Design of New 200 km/h Passenger-cum-freight Railways (TJS
2005-285 2005a, b) and the Interim Provisions on Design of Beijing-Shanghai HSR
(TJS 2003-13 2003), by which the resonant train speeds can be estimated by
Eq. (2.80) as 576 and 864 km/h. These values are far higher than the current train
speeds in operation. Thus, currently, the vertical resonance of a simply-supported
beam is analyzed mainly based on the first resonant condition, while for trains with
higher speed, e.g., a maglev train, the second resonant condition is of certain
significance in resonance analysis.

When the train is running on the bridge, the centrifugal forces or the lateral wind
pressures on the car-bodies will be transferred via wheel-sets to the bridge structure.
These actions can be represented by a series of lateral moving loads. When the
excitation frequency of the moving load series is equal or close to the bridge natural
frequency, the second resonant response will occur. The corresponding critical train
speed Vbr can be estimated through Eq. (2.80). The relationship between the bridge
lateral resonant response induced by a moving load series due to mean wind pressure
on the vehicle and critical train speeds is illustrated through a realistic example.

For bridges with high piers often encountered in engineering, owing to their low
natural frequencies, the analysis on both the first and the second lateral resonances
is of significance. Since a pier cannot directly support train loads, a bridge com-
posed of two 32 m simply-supported beams and a 56 m high pier is analyzed as an
example. The moving load series are formed by the same lateral wind loads as in
the previous example. Modal analysis shows that the first three modes of the bridge
are dominated by the lateral vibrations of the pier. With respect to the bridge lateral
frequencies 0.95, 2.52, and 5.02 Hz, the resonant train speeds estimated by the first
resonant condition Eq. (2.74) include

fb1 ¼ 0:95Hz : Vbr1 ¼ 91 km=h; Vbr2 ¼ 46 km=h; Vbr3 ¼ 31 km=h

fb2 ¼ 2:52Hz : Vbr1 ¼ 240 km=h; Vbr2 ¼ 120 km=h; Vbr3 ¼ 81 km=h

fb3 ¼ 5:02Hz : Vbr1 ¼ 481 km=h; Vbr2 ¼ 240 km=h; Vbr3 ¼ 161 km=h

For the 2�32 m bridge, the lateral loading length to the pier is L = 64 m, so the
possible resonant train speeds estimated from the second resonant condition
Eq. (2.80) include

n ¼ 1 : Vbr1 ¼ 7:2� 0:95� 64
1

� 438 km=h

n ¼ 2 : Vbr2 ¼ 7:2� 2:52� 64
2

� 581 km=h

n ¼ 3 : Vbr3 ¼ 7:2� 5:02� 64
3

� 771 km=h
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The dynamic responses of the bridge under various train speeds are analyzed by
the whole history simulations of train-bridge system, with the calculation train
speeds in the range of 10–900 km/h. Figure 2.19 shows the distribution curves of
lateral displacements of the pier-top versus train speed.

The curves show that the lateral resonance of the pier is obvious: The peak
values of lateral displacement are found in the positions slightly lower than the
estimated critical velocities by the first resonant condition, and also the peak dis-
placements at 380 and 740 km/h, which are close to the corresponding resonant
train speeds estimated by the second resonant condition. Considering the natural
frequency of bridge will decrease when loaded by the train, the estimated results by
Eqs. (2.76) and (2.80) are in accordance with those from the whole history simu-
lations of train-bridge system.

Furthermore, one can estimate the responses of the bridge under vehicle cen-
trifugal forces. As moving load series, the vehicle centrifugal forces have the same
mechanism to induce the lateral vibration of the bridge as the mean wind pressures
acting on the car-bodies. Thus, the calculated curves in Fig. 2.19 can also be used
for estimating centrifugal forces. According to the Chinese code Fundamental Code
for Design on Railway Bridge and Culvert (TB10002.1-2005 2005), �m force can be
15% of the static load of vehicles, which is about 2.5 times of the vehicle design
wind load. Therefore, when considering the vehicle centrifugal forces, much greater
pier-top displacements will be excited than those shown in Fig. 2.19.

2.3.1.4 Bridge Resonance Owing to the Sway Forces of Train Vehicles

The third bridge resonance is induced by the periodical actions of lateral moving
load series on the bridge owing to the sway forces of train vehicles. The sway forces
of vehicles may be excited by track irregularities and wheel hunting movements.
The resonant train speed in this case can be determined by
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Vbr ¼ 3:6 � fbn � Ls
i

ðn ¼ 1; 2; 3; � � � ; i ¼ 1; 2; 3; � � �Þ ð2:81Þ

where fbn is the nth vertical or lateral natural frequency of the bridge (Hz); Ls is the
dominant wavelength of track irregularities or wheel hunting movement. The
multiplicators i = 1, 2, 3,… show that when the dominant frequency of track
irregularities or wheel hunting movement equals to the nth natural frequency or
higher harmonic frequencies, the resonance of the bridge occurs. This is called the
third resonant condition of bridge.

Although both track irregularities and wheel hunting movement are of random
properties, Eq. (2.81) can still be used to estimate the lateral resonance of bridge
induced by their dominant wavelengths. A good example is presented in Fig. 2.20,
the distributions of the lateral displacements of two high piers versus train speed.
The data in the figure were measured in the field experiments at two real bridges on
the Chengdu-Kunming Railway in China. One can find peak values appearing at
certain train speeds, which are in good accordance with the estimated resonant train
speeds of 33 km/h and 51.1 km/h, respectively. The estimated resonant train speeds
are calculated by Eq. (2.81), using the hunting wavelength Ls = 8.5 m for wheels
with worn threads, the given pier heights H = 55 m and 32 m, and the corre-
sponding bridge frequencies f = 1.08 Hz and 1.67 Hz, respectively.

2.3.1.5 Application Scopes of Resonance Conditions

Based on the analysis above, the resonant vibrations of bridges induced by moving
trains have been classified into three mechanisms. The first is related to the intervals
of the moving load series, which form the periodically loading on the bridge. The
second is induced by the loading rate, i.e., the relative moving speed of the load
series to the bridge. The third is owing to the swing forces of the train vehicles
excited by track irregularities and wheel hunting movement.
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In the above resonant conditions, the axle loads of the train vehicles are assumed
to be in equidistance. While in reality, there exist several axle intervals in a train:
the full length lv of a car, the rated center-to-center distance lc between two bogies
of a car, the fixed wheelbase lw between two wheel-sets of a bogie, and the different
compositions of these distances. According to the relative lengths between the beam
span or the bridge length and the above loading intervals, when Eq. (2.76) is used
to analyze the first resonance induced by moving trains, the application scopes can
be further discussed as follows (ref. Figs. 2.16 and 2.21):

(1) L\lw: When the bridge length L is shorter than the fixed wheelbase lw of a
bogie, there can be only one wheel-set at any moment on the bridge, with the
shortest excitation period lw = V and some other longer periods as ðlv � lcÞ=V
and lv=V . However, it is only an extreme situation in theory, for there exists no
such short bridge in reality.

(2) lw\L\lv � lc: When the bridge length L is longer than the fixed wheelbase lw
of a bogie but shorter than the distance lv � lc between the rear bogie of the
previous car and the front bogie of the following car, there can still be only one
wheel-set at any moment on the bridge, with the main excitation period ðlv �
lcÞ=V and some longer periods as lv=V , while the shorter period lw=V is not
obvious. This situation may occur for the bridges with very short spans.

(3) lv � lc\L\lv: When the bridge length L is longer than the distance lv � lc
between the rear bogie of the previous car and the front bogie of the following
car, but shorter than the full length lv of the car, there can be two wheel-sets
simultaneously on the bridge, with the main excitation period lv=V , while the
shorter periods as lw=V and ðlv � lcÞ=V are not obvious. Since the full lengths
are about 25 m for passenger car and 15 m for freight car, this situation may
occur for common bridges with small spans.

(4) lv\L\lT: When the bridge length L is longer than the full length lv of a car but
shorter than the total length lT of the whole train, there can be more than one
cars and two wheel-sets simultaneously on the bridge, neither of the above
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excitation periods as lw=V , ðlv � lcÞ=V nor lv=V is obvious. This situation may
occur for common bridges with moderate spans or for lateral resonance analysis
of the bridge as a whole.

(5) lT\L: When the bridge length L is longer than the total length lT of a train,
there can be several cars with many wheel-sets simultaneously on the bridge;
thus, the load series cannot form periodical loading to the bridge system. This
situation may occur for long-span bridges, or for lateral resonance analysis of
the bridge as a whole. However, the resonant conditions proposed in this
section cannot be directly used to analyze the resonant conditions for long-span
bridges, because the whole course of a train traveling over the bridge longer
than the total length of the train is equivalent to a half-loading period, and thus,
no harmonic load forms. Therefore, Eqs. (2.76) and (2.80) cannot be directly
used to estimate the resonant train speeds. As for the third resonant condition
where the bridge resonance is excited by track irregularities or wheel hunting,
no obvious resonance can be observed for long-span bridges because of the
counteractions between the forces from the wheel-sets moving with different
phases.

Thus, it can be seen that when using the above equations to analyze the
train-induced resonance of the bridge, the loading intervals can be the full length lv
of a car, the rated center-to-center distance lc between two bogies of a car, the fixed
wheelbase lw of a bogie, and the various compositions of these distances. While for
a row of train vehicles, the arrangement of the axle loads is not in equidistance, and
neither equal are the values of all axle forces which are affected by the bridge
damping, track irregularities, and other complicated factors. Accordingly, a series
of resonant vibrations may be excited with different response levels when the train
moving at various speeds on the bridge, and a series of corresponding resonant train
speeds could be found. Therefore, the precise resonance analysis usually depends
on the simulation calculations of the train-bridge dynamic interaction system
according to the real conditions of train composition, wheel arrangement, and
vehicle loads.

2.3.2 Resonance Analysis of Train Vehicles

As a train runs on a long bridge at the speed V, the periodical actions on the vehicle
can be excited by successive deflections of the bridge that consists of a series of
identical spans (see Fig. 2.22), which can be considered as periodic track irregu-
larities with frequency V/Lb. Resonance occurs to the vehicle when this loading
frequency coincides with the natural frequency of the vehicle, and the dynamic
responses of the vehicle will be greatly amplified. The critical train speed in this
case can be written as
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Vvr ¼ 3:6 � fv � L ð2:82Þ

where Vvr is the critical train speed (km/h); fv is the natural vertical frequency of
vehicle (Hz); and Lb is the span length of bridge (m).

The excitation of bridge deflections on the vehicle is equivalent to a
wheel-spring-mass system on the ground in harmonic motions. The transmissibility
between the amplitudes of the mass and the deflection of the beam can be estimated
as (Clough and Penzien 2003)

TR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð2nbÞ2
ð1� b2Þ2 þð2nbÞ2

s
ð2:83Þ

For a half-vehicle model with sprung-mass M = 24 t, equivalent spring stiffness
k = 800 kN/m, and damping ratio n = 0.2, the natural frequency is calculated as
0.92 Hz. At the critical train speed, i.e., b = 1, the transmissibility can be calculated
as TR = 2.69. It means when the deflection of the bridge is 2 mm, the amplitude of
the vehicle will be as large as 5.38 mm. Moreover, the resonance of vehicles will in
turn enlarge the dynamic impact on the bridge.

The fundamental vertical natural frequencies of train vehicles are usually between
0.8 and 1.5 Hz. For the railway bridges with 20 m * 40 m spans, the corresponding
critical train speeds could thus be estimated as Vvr = 57 km/h * 216 km/h. To
prevent or to suppress vehicle resonance due to bridge deflections, therefore, atten-
tions should be paid in design to avoid long series of identical spans, or to reduce the
deflection by strengthening structural stiffness.

2.4 Vibration Suppression and Cancellation Analysis
of Train-Bridge System

In studying the train-bridge resonance, Yang et al. (1997) found that resonance of
the bridge may not occur at certain ratios between span length and characteristic
load distance. Savin (2001) discovered that when a single load passing a
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Fig. 2.22 Vehicle vibration induced by bridge deflections
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simply-supported bridge at different speeds, the amplitude of free vibration changes
and declines to null at some speeds. This interesting finding interprets the vibration
cancellation effect; namely, when a single load passes the bridge at a cancellation
speed, the residual free vibration of the bridge will be null after the load leaves it.

Unlike the resonance effect that enlarges the bridge response, the cancellation
effect may suppress the vibration of the bridge, which is favorable for train running
safety and bridge service. Therefore, an insight investigation into the cancellation
effect is of important significance, and some further investigations have been done,
such as those by Yau et al. (2001), Pesterev et al. (2003), Yang et al. (2004a, b),
Museros et al. (2013), and Xia et al. (2014).

In this section, vibrations of the simply-supported beam under a moving single
force, equidistant load series, and train loads are theoretically analyzed, in terms of
bridge free vibration after each load leaving the bridge. By analysis of the vibration
responses, the occurrence conditions of resonance and two types of vibration
cancellation effects on the simply-supported beam are derived for any mode.
Additionally, the influence of vibration cancellation on resonance is investigated,
and conditions for resonance disappearance are obtained. The resonance and can-
cellation mechanisms and characteristics of bridge response are illustrated through
numerical case study.

2.4.1 Resonance and Cancellation of Simply-Supported
Beam Under Moving Equidistant Load Series

2.4.1.1 Analysis Model

A simply-supported beam bridge subjected to a train load is analyzed herein, using
the same model as shown in Fig. 2.16. The train is simplified as a series of moving
loads with identical interval, each force P represents a concentrated constant car
load, and the interval lv denotes the full length of a car. Thus, a train composed of
Nv cars can be considered as Nv moving forces, numbered as Pk (k = 1, 2, 3,… Nv).
If the initial time is defined as the moment when the first load gets onto the bridge,
the time of the kth load entering the bridge can be expressed as

tk ¼ ðk � 1Þlv=V ð2:84Þ

where V is the moving speed of the train.

2.4.1.2 Analytical Solution for Bridge Vibration Response

Ignoring the damping effect, the motion equation of the bridge under moving
equidistant loads can be expressed as

2.4 Vibration Suppression and Cancellation Analysis of Train-Bridge System 127



�m
@2yðx; tÞ

@t2
þEI

@4yðx; tÞ
@x4

¼
XNv

k¼1

Pd x� Vðt � tkÞ½ � ð2:85Þ

where �m and EI are, respectively, the mass per unit length and the bending stiffness
of the bridge; y(x, t) is the displacement of the bridge at position x and time t; and d
is the Dirac delta function.

Equation (2.85) is a partial differential equation, whose initial and boundary
conditions can be expressed as

yðx; 0Þ ¼ _yðx; 0Þ ¼ 0
yð0; tÞ ¼ yðL; tÞ ¼ 0
EIy00ð0; tÞ ¼ EIy00ðL; tÞ ¼ 0

8<
: ð2:86Þ

For a simply-supported beam, Eq. (2.85) can be solved through the modal
decomposition method. The displacement of the beam can be expressed by

yðx; tÞ ¼ P1
n¼1

qnðtÞ sin npx
L , namely the product of generalized coordinates q(t) and

mode shapes. Thus, Eq. (2.85) can be rewritten in terms of generalized coordinates
as

€qnðtÞþx2
nqnðtÞ ¼

2P
�mL

XNv

k¼1

sin
npVðt � tkÞ

L

� 	
ð2:87Þ

where xn ¼ np
L


 �2 ffiffiffiffi
EI
�m

q
is the nth circular frequency of the bridge.

Equation (2.87) is the motion equation of the simply-supported beam under a
moving load series. Its particular solution is (bn 6¼ 1)

yðx; tÞ ¼ 2P
�mL

X1
n¼1

sin
npx
L

�  1

x2
nð1� b2nÞ

( XNv

k¼1

sin �xn t � tkð Þ�½ bn sinxn t � tkð Þ�
)

ð2:88Þ

where �xn = npV/L is the exciting frequency; bn = �xn=xn is the ratio of the exciting
frequency of moving loads to the natural frequency of bridge, which can be
expressed in terms of speed parameter a as bn = a/n. The case bn = 1 corresponds
to the second resonant condition, which has been discussed in Sects. 2.1 and 2.3,
and is not described again herein.

Considering the case when the first (N−1) (N = 1, 2, 3, …, Nv) forces have left,
and the Nth force is on the bridge, the displacement response of the bridge can be
expressed by the following equation
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yðx; tÞ ¼ 2P
�mL

X1
n¼1

sin
npx
L

�  1

x2
nð1� b2nÞ

QNðV ; tÞ ð2:89Þ

where

QNðV ; tÞ ¼ sin �xnðt � tNÞ � bn sinxnðt � tNÞ½ �

� bn
XN�1

k¼1

sinxn t � tkð Þþ ð�1Þn�1 sinxn t � tk � L
V

� 	� �
ð2:90Þ

The first term of QN(V, t) represents steady and transient responses induced by
the Nth force moving on the bridge. The second term is associated with the total
residual responses (free vibration) induced by the first (N−1) forces that have left
the bridge, which is derived from Eq. (2.88) as follows:

During tk � t� tk þ L=V , the kth force is on the bridge, and the forced vibration
response of the bridge induced by it can be written as

ykðx; tÞ ¼ 2P
�mL

X1
n¼1

sin
npx
L

�  1

x2
nð1� b2nÞ

sin �xn t � tkð Þ � bn sinxn t � tkð Þ½ � ð2:91Þ

During t[ tk þ L=V , the kth load has left the bridge, and the free vibration
response of the bridge induced by it can be expressed as

ykðx; tÞ ¼
X1
n¼1

ynk x; tk þ L=Vð Þ cosxn t � tk � L=Vð Þ

þ
X1
n¼1

_ynk x; tk þ L=Vð Þ
xn

sinxn t � tk � L=Vð Þ
ð2:92Þ

where ynk x; tk þ L=Vð Þ and _ynk x; tk þ L=Vð Þ are, respectively, displacement and
velocity of the nth mode at t = tk + L/V, which are the initial conditions of the free
vibration and can be derived from Eq. (2.91).

Substituting ynk x; tk þ L=Vð Þ and _ynk x; tk þ L=Vð Þ into Eq. (2.92), the total residual
response of the bridge induced by the first N−1 forces can be expressed as

ykðx; tÞ ¼ � 2P
�mL

X1
n¼1

sin
npx
L

�  1

x2
nð1� b2nÞ

bn
XN�1

k¼1

sinxn t � tkð Þþ ð�1Þn�1 sinxn t � tk � L=Vð Þ
h i

ð2:93Þ

From Eq. (2.93), the second term in the QN(V, t) can be extracted. By applying
the trigonometric transformation, Eq. (2.90) can be expressed as
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QNðV ; tÞ ¼ sin �xnðt � tNÞ � bn sinxnðt � tNÞ½ �

� 2bn
XN�1

k¼1

cos
xnL
2V

sinxn t � tk � L
2V

� 	� �
n ¼ 1; 3; 5; . . .ð Þ

ð2:94aÞ

QNðV ; tÞ ¼ sin �xnðt � tNÞ � bn sinxnðt � tNÞ½ �

� 2bn
XN�1

k¼1

sin
xnL
2V

cosxn t � tk � L
2V

� 	� �
n ¼ 2; 4; 6; . . .ð Þ

ð2:94bÞ

It is not easy to observe the significant physical meanings of this equation.
Therefore, by introducing Eqs. (2.84) and (2.70) into Eq. (2.94a, 2.94b), a more
interesting expression for QN(V,t) can be obtained as

QNðV ; tÞ ¼ sin �xnðt � tNÞ � bn sinxnðt � tNÞ½ �

� 2bn cos
xnL
2V

sinxn t � L
2V

� tN�1

2

� 	
sin N � 1ð Þ xnLv

2V

sin xnLv
2V

( )
n ¼ 1; 3; 5; . . .ð Þ

ð2:95aÞ

QNðV ; tÞ ¼ sin �xnðt � tNÞ � bn sinxnðt � tNÞ½ �

� 2bn sin
xnL
2V

cosxn t � L
2V

� tN�1

2

� 	
sin N � 1ð Þ xnLv

2V

sin xnLv
2V

( )
n ¼ 2; 4; 6; . . .ð Þ

ð2:95bÞ

2.4.1.3 Resonance and Cancellation

It is observed from Eq. (2.95a, 2.95b) that the residual free vibration in terms of
generalized coordinates for the bridge induced by the first (N−1) forces can be
expressed by a sinusoidal function (for odd-order modes) or a cosine function (for
even-order modes).

For sin xnLv=2Vð Þ ¼ ip, Eq. (2.95a, 2.95b) becomes an indeterminate form 0/0;
however, when the L’Hospital’s rule is applied, the limit solution is found to be

QNðV ; tÞ ¼ sin �xnðt � tNÞ � bn sinxnðt � tNÞ½ �
� 2 N � 1ð Þbn cos

xnL
2V

� 	
sinxn t � L

2V

� 	
n ¼ 1; 3; 5; . . .ð Þ

ð2:96aÞ
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QNðV ; tÞ ¼ sin �xnðt � tNÞ � bn sinxnðt � tNÞ½ �
� 2 N � 1ð Þbn sin

xnL
2V

� 	
cosxn t � L

2V

� 	
n ¼ 2; 4; 6; . . .ð Þ

ð2:96bÞ

It can be seen from Eq. (2.96a, 2.96b) that the displacement of bridge will be
successively amplified with the increase of the number N of forces traveling on the
bridge. Therefore, by using the extreme condition xnLv=2V ¼ ip, the resonant
speed Vres (km/h) for the bridge under the moving load series can be expressed as

Vres ¼ 3:6fnLv
i

ði ¼ 1; 2; 3; � � �Þ ð2:97Þ

where fn is the nth-order natural frequency of the bridge (Hz). Equation (2.97) has
been defined as the first resonant condition in Sect. 2.3, where more details on the
bridge resonance induced by the moving load series can be found.

When cos xnL=2Vð Þ ¼ 0 or sin xnL=2Vð Þ ¼ 0, the second term of QN(V, t) in
Eq. (2.94a, 2.94b) becomes zero and only the first term is left

QNðV ; tÞ ¼ sin �xnðt � tNÞ � bn sinxnðt � tNÞ½ � ð2:98Þ

In this case, the total residual response (free vibration) of the bridge excited by
the first (N−1) forces is equal to null, while the vibration is determined only by the
Nth force acting on the bridge. This phenomenon is herein defined as the first
cancellation effect of vibration with the following conditions

xnL
2V

¼ ip� p
2

ðn ¼ 1; 3; 5; . . .; i ¼ 1; 2; 3; . . .Þ ð2:99aÞ

xnL
2V

¼ ip ðn ¼ 2; 4; 6; � � � ; i ¼ 1; 2; 3; . . .Þ ð2:99bÞ

It can be observed from Eq. (2.90) that when Eq. (2.99a, 2.99b) is satisfied,
there is a (2i-1)p or a 2ip phase difference between the two sinusoidal terms within
the second part of QN(V, t). This means that the two parts of the residual free
vibration induced by a single moving load are canceled out.

The conditions in terms of load speed VcanI(km/h) for the first type of cancel-
lation can be further derived from Eq. (2.99a, 2.99b) as

VcanI ¼ 7:2fnL
2i� 1

; ðn ¼ 1; 3; 5; � � � ; i ¼ 1; 2; 3; � � � ; and n 6¼ 2i� 1Þ ð2:100aÞ

VcanI ¼ 7:2fnL
2i

; ðn ¼ 2; 4; 6; � � � ; i ¼ 1; 2; 3; . . .; and n 6¼ 2iÞ ð2:100bÞ
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Note that the restriction conditions n 6¼ 2i−1, (n = 1, 3, 5,…) and n 6¼ 2i (n = 2,
4, 6,…) are given in Eq. (2.100a, 2.100b), because under these values bn becomes 1
and the second resonance condition is satisfied, which is beyond the assumption of
Eq. (2.88). The speed from Eq. (2.100a, 2.100b) coincides with the cancellation
speed a = n2/k in Sect. 2.1.

It can be found from Eq. (2.100a, 2.100b) that the cancellation effect takes place
when the force travels on the bridge at a certain speed. This type of cancellation is
induced by each individual load and is independent of the number and composition
of load series. The cancellation speed is related to the order of vibration mode.
Because the fundamental mode provides the largest contribution to the mid-span
displacement of a simply-supported bridge, it seems feasible to use Eq. (2.100a)
with n = 1 to predict the cancellation speed. This is also assumed in the subsequent
section.

2.4.2 Resonance and Cancellation of Simply-Supported
Beam Under a Series of Train Loads

2.4.2.1 Analysis Model Considering Train Load Series

For a real train composed of several cars, as mentioned previously, there exist
different geometric intervals: the full length lv of the car, the rated axle distance lc
between bogie centers of a car, and the wheelbase lw between the two wheel-sets of
a bogie. Thus, an analysis model shown in Fig. 2.23 is adopted to study the
influence of these intervals on the resonance and cancellation effects of a
simply-supported bridge.

In this model, the loads of a train composed of Nv cars with four axles are
represented by 4Nv moving concentrated forces expressed as Pkj (k = 1, 2, 3,…,Nv;
j = 1, 2, 3, 4), where subscript k indicates the car number of the train and j indicates
the axle number of each car. Thus, the train is modeled as groups of four moving

lc

lw

lv

L

P12P11P14P13P22P21P24P23P32P31P34P33P42P41P44P43

lw

V

Fig. 2.23 Analysis model of train load series
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concentrated forces Pk1, Pk2, Pk3, and Pk4 with an identical interval lv between
similar forces of each group.

Owing to the time delays between load groups Pk2, Pk3, Pk4, and Pk1, the time for
the kth force in group j traveling on the bridge can be defined as

tk1¼tk
tk2¼tk þ lw=V
tk3¼tk þ lc=V
tk4¼tk þðlc þ lwÞ=V

8>><
>>: ð2:101Þ

Note that tk = (k−1)lv/V is still valid herein.
In this case, the motion equation for the bridge can be written as

�m
@2yðx; tÞ

@t2
þEI

@4yðx; tÞ
@x4

¼
XNv

k¼1

X4
j¼1

Pd x� Vðt � tkjÞ
� � ð2:102Þ

Considering the case when the first (N−1) cars have left the bridge and only the
Nth car is traveling on the bridge, the solution of Eq. (2.102) can be given directly
referring to the previous analysis in Sect. 2.4.1 as

yðx; tÞ ¼ 2P
�mL

X1
n¼1

sin
npx
L

�  1

x2
nð1� b2nÞ

X4
j¼1

QNjðV ; tÞ ð2:103Þ

where

X4
j¼1

QNjðV ; tÞ ¼
X4
j¼1

sin �xnðt � tNjÞ � bn sinxnðt � tNjÞ
� �

� 2bn
XN�1

k¼1

X4
j¼1

cos
xnL
2V

sinxn t � tkj � L
2V

� 	� �
n ¼ 1; 3; 5; . . .ð Þ

ð2:104aÞ

X4
j¼1

QNjðV ; tÞ ¼
X4
j¼1

sin �xnðt � tNjÞ � bn sinxnðt � tNjÞ
� �

� 2bn
XN�1

k¼1

X4
j¼1

sin
xnL
2V

cosxn t � tkj � L
2V

� 	� �
n ¼ 2; 4; 6; . . .ð Þ

ð2:104bÞ

By applying trigonometric transformation formulas sinAþ sinB ¼
2 cos AþB

2 sin A�B
2 and cosAþ cosB ¼ 2 cos AþB

2 cos A�B
2 to the second term of the
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right side of Eq. (2.104a, 2.104b), the following expressions can be obtained after
rearrangement as

X4
j¼1

QNjðV ; tÞ ¼
X4
j¼1

sin �xnðt � tNjÞ � bn sinxnðt � tNjÞ
� �� 8bn cos

xnL
2V
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xnlw
2V

cos
xnlc
2V

�
XN�1

k¼1

sinxn t � tk1 � L
2V

� lw
2V

� lc
2V

� 	� �
n ¼ 1; 3; 5; . . .ð Þ

ð2:105aÞ
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2V
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2V
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xnlc
2V

�
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2V

� lw
2V

� lc
2V

� 	� �
n ¼ 2; 4; 6; . . .ð Þ

ð2:105bÞ

By again introducing Eq. (2.70), the above equations can be further rewritten as

X4
j¼1
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X4
j¼1

sin �xnðt � tNjÞ � bn sinxnðt � tNjÞ
� �� 8bn cos

xnL
2V
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2V
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ð2:106aÞ
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sin �xnðt � tNjÞ � bn sinxnðt � tNjÞ
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2.4.2.2 Resonance and Cancellation Induced by a Train Load Series

The resonant conditions derived from Eq. (2.106a, 2.106b) are not different from
Eq. (2.97) in Sect. 2.3. Obviously, two more cancellation conditions can be
extracted from Eq. (2.106a, 2.106b) as

cos xnlw=2Vð Þ ¼ 0 ð2:107aÞ

cos xnlc=2Vð Þ ¼ 0 ð2:107bÞ
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The corresponding cancellation train speeds VcanII(km/h) can be expressed as

VcanII ¼ 7:2fnlw
2i� 1

; ði ¼ 1; 2; 3; � � �Þ ð2:108aÞ

VcanII ¼ 7:2fnlc
2i� 1

; ði ¼ 1; 2; 3; � � �Þ ð2:108bÞ

The cancellation effect will be expected if conditions associated with the
wheelbase lw and the axle distance lc between the bogie centers in Eq. (2.108a,
2.108b) are met. However, the mechanism herein is different from that described in
previous section, because in this case, the cancellation occurs due to the offset of
free vibrations of the bridge induced by the moving loads of different groups.
Equation (2.107a) indicates that the free vibrations induced by the two axle loads of
one bogie cancel each other out, while Eq. (2.107b) indicates that the free vibra-
tions induced by the two axle loads spaced lv apart cancel each other out. As a
result, the residual free vibrations of the bridge become null after the first car leaves
the bridge. This type of cancellation is determined by load intervals.

A more general formula can be obtained through extension of the cancellation
conditions of Eq. (2.107a, 2.107b), and the corresponding cancellation train speed
can be expressed as

VcanII ¼ 7:2fnLch
2i� 1

; ði ¼ 1; 2; 3; � � �Þ: ð2:109Þ

where Lch is the characteristic interval of the load series.
This cancellation effect is herein defined as the second cancellation effect of

vibration. For a railway train with two bogies and four axles, the characteristic
interval may be lc or lw. In fact, Lch can be any regular interval between the axle
loads in the load series; hence, lv is included as well, as shown in Fig. 2.23.

Thus far, two types of cancellation effects and their conditions have been pro-
posed, as expressed in Eqs. (2.100a, 2.100b) and (2.109), respectively. When only
the fundamental mode of the bridge is concerned, the cancellation speed equation
can be written in a unified form as function of the bridge span L

Vcan ¼ 7:2af1L
2i� 1

; ði ¼ 1; 2; 3; � � �Þ ð2:110Þ

where f1 is the fundamental frequency of the bridge; a is the dimensionless length
parameter, which may take the value of 1 or Lch/L, indicating the first or second
type of cancellation, respectively.
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2.4.2.3 Resonance Disappearance

The second term of Eq. (2.106a, 2.106b) will be null once cancellation conditions
are satisfied even with the resonant condition synchronously met. Therefore, can-
cellation plays a more dominant role, and resonance disappearance may be expected
when a train speed coincides simultaneously with the conditions of resonance and
cancellation. When Vcan = Vres, namely combining Eqs. (2.97) and (2.110), a new
mathematical expression is obtained as

lv
L
¼ 2ak

2j� 1
; ðj; k ¼ 1; 2; 3; � � �Þ ð2:111Þ

where j and k are, respectively, the resonance and cancellation order for the first
bending mode of the bridge. In theory, when the ratio of car length lv to span
L meets the conditions of Eq. (2.111), both the cancellation and resonance condi-
tions may simultaneously appear at certain train speeds, and the resonance of the
bridge at its fundamental mode will be avoided. Therefore, this interesting phe-
nomenon is named as resonance disappearance.

2.4.3 Numerical Verification

To verify the theoretical expressions, by using the FEM, a computation program is
developed to analyze the vibration response of a single span simply-supported
bridge under moving train loads.

The bridge has a span of 31.1 m, a uniform mass density of 19.1 Mg/m, and a
uniform cross-sectional bending stiffness of EI = 1.66 � 108 kN�m2, and the first

natural frequency is calculated by f1 ¼ p
2L2

ffiffiffiffi
EI
�m

q
as 4.79 Hz.

A high-speed train composed of four cars is adopted for analysis, simplified as
16 concentrated forces. The forces take the axle loads of the ICE3 high-speed train,
which are 160 kN for the first and the last motor-cars (P1 * P4, P13 * P16) and
146 kN for the intermediate trailer cars (P5 * P8, P9 * P12), respectively, as
shown in Fig. 2.24.

According to the train axle intervals and the bridge span shown in Fig. 2.24, the
characteristic interval Lch of the load series can be lv = 24.775 m, lc = 17.375 m,
and lw = 2.5 m, and thus, the dimensionless length parameter a in Eq. (2.110) can
be identified as 1.0 for the first cancellation condition, and as lw/L = 0.08,
lc/L = 0.56, and lv/L = 0.79 for the second cancellation condition. On the basis of
these parameters, the resonance and cancellation speeds Vres and Vcan corresponding
to the fundamental mode of the bridge are calculated by Eqs. (2.97) and (2.110),
and the results of the first eight orders are listed in Table 2.2.
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2.4.3.1 Time History Analyses of the Bridge Under Resonance
and Cancellation Conditions

Resonance effect
It is known that a resonance may appear when a certain relationship is satisfied
among the load moving speed, load interval, and bridge natural frequency. Herein,
the first-order resonance speed 427 km/h is taken as an example to illustrate how
the ICE3 train load series induces the resonance of the bridge.

Because the ICE3 load series is composed of several different intervals, the
analysis is conducted in two stages, as shown in Fig. 2.25.

In the first stage, a group of loads composed of the first axle loads (P11, P21, P31,
and P41) of the four cars is considered. The time delay between any two successive
loads is determined by load interval lv and resonant speed Vres, which can be
calculated as

tres ¼ lv
Vres

¼ ilv
fnlv

¼ iTbn; ði ¼ 1; 2; 3; � � �Þ ð2:112Þ

When only the first mode of the bridge is considered, and for the resonant speed
related to i = 1, the time delay is equal to the bridge natural period Tb, thus pro-
ducing a 2p phase difference between the free vibrations of the bridge induced by
any two successive loads in this group. In this case, the amplitudes of the bridge in

L=31.1m

Car 1Car 2Car 3Car 4

lc=17.375m

lw=2.5m

lv=24.775m

P12 P11P14 P13P22 P21P24 P23P32P31P34P33P42P41P44P43

Fig. 2.24 Simply-supported bridge subjected to a moving train load series

Table 2.2 Resonance and cancellation train speeds for the 31.1 m span simply-supported bridge

Order i 1 2 3 4 5 6 7 8

Resonance train speed Vres (km/h) 427 214 142 107 85 71 61 –

Cancellation train
speed Vcan (km/h)

a = 1.00 N/A 358 215 153 119 98 83 72

a = 0.08 86 – – – – – – –

a = 0.56 601 200 120 86 67 – – –

a = 0.79 847 282 169 121 94 77 65 –

Note “–” indicates the speeds lower than 60 km/h, which are not listed in this table
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the free vibration stage will be directly superposed to form a resonant displacement
curve G1, as shown in Fig. 2.25a.

Similarly, the resonant displacement curve G2 induced by the load series com-
posed of the second axle loads (P12, P22, P32, and P42) of the four cars can be
obtained and so for G3 and G4.

In the second stage, the four resonant displacement curves (G1 * G4) induced
by the four groups of load series are superposed together according to the time
delays determined by their intervals lw, lc, and lw + lc. Thus, the bridge displace-
ment induced by the whole train can be obtained, as shown in Fig. 2.25b.

It is easy to see that under the resonant speed, the displacement of the bridge will
be successively amplified with an increasing number of loads, which explains the
physical meaning of Eq. (2.96a, 2.96b).

The first cancellation effect
Parameter a = 1 corresponds to the first type of cancellation. The third-order
(a = 1, i = 3) cancellation speed 215 km/h in Table 2.2 is selected as an example to
illustrate how the first cancellation effect appears. Shown in Fig. 2.26 are the cal-
culated displacement histories of the bridge induced by the train (four cars), the first
car, and its four individual axle loads P11 * P14.

The mechanism for the first type of cancellation can be observed clearly in these
displacement histories. It is found that each moving load induces a forced vibration
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Fig. 2.25 Displacement histories of the bridge at mid-span under Vres = 427 km/h
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of the bridge, but when it leaves, the free vibration of the bridge is null. As a result,
the free vibration of the bridge remains zero when the first car as well as the train
leaves the bridge. This numerical example explains the physical meaning of
Eq. (2.100a, 2.100b).

The second cancellation effect
In Table 2.2, a = 0.08 and a = 0.56 correspond to the second type of cancellation
speeds, which are derived from wheelbase lw of a bogie and axle distance lc
between the bogie centers of a car, respectively.

Obviously, VcanII = 86 km/h is the most opportune cancellation speed for
comparison, for it appears twice in the table at a = 0.08 (i = 1) and a = 0.56
(i = 4), respectively, so it is selected as an example to illustrate the effect of the
second cancellation. The mechanism of this type of cancellation is clearly illustrated
in Fig. 2.27, which gives the displacement histories of the bridge at mid-span
induced by the train and the first car only.

It is seen that at this cancellation speed no free vibration of the bridge appears
when the first car as well as the train leaves the bridge, because the cancellation
speed VcanII = 86 km/h is the first-order cancellation speed (a = 0.08) related to lw
and also the fourth-order cancellation speed (a = 0.56) related to Lc. When a = 0.08
and i = 1, the free vibrations induced by P11 and P12 cancel each other out, same for
P13 and P14. When a = 0.56 and i = 4, the free vibrations induced by P11 and P13

cancel each other out and also P12 and P14. As a result, no free vibration remains
when each car leaves the bridge, and the displacement of the bridge is determined
only by the loads still on it.

The mechanism of the second type of vibration cancellation is further explained
in Fig. 2.28. At Vcan = 86 km/h, the cancellation effect appears between the two
axle loads separated by lw or lc.

Figure 2.28a illustrates the mechanism of the second cancellation effect corre-
sponding to P11 and P12 with a wheelbase lw. It can be found that the displacement
of the bridge induced by P12 has a time delay of Tb/2 related to P11, producing a
phase difference p between them and causing the free vibrations by P11 and P12

having the same amplitudes but opposite phases. The result is null vibration when
this pair of loads leaves the bridge.
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Figure 2.28b shows the mechanism of the second cancellation effect corre-
sponding to P11 and P13 with an interval lc. In this case, the time delay between P13

and P11 becomes 7 Tb/2, and the phase difference becomes 7p; thus, the free
vibrations induced by the two loads cancel each other out. Similar cancellation
effects exist between the other pairs of loads (P12 + P14).

The time delay between the two loads can be calculated by the interdistance and
cancellation speed of the loads as follows:

tcan ¼ Lch
Vcan

¼ ð2i� 1ÞLch
2fnLch

¼ ð2i� 1Þ
2

Tbn ; ði ¼ 1; 2; 3; . . .Þ ð2:113Þ

When only the first mode of the bridge is considered, it is calculated from
Eq. (2.113) that at VcanII = 86 km/h, the time delays for the two pairs of loads are
Tb/2 (i = 1) and 7 Tb/2 (i = 4), respectively, as marked in Fig. 2.28, and thus, the
displacements of the bridge induced by them completely cancel out.

2.4.3.2 Relationship Between Resonance and Cancellation Effects

It was mentioned previously that the condition of cancellation is more dominant
over that of resonance. Therefore, cancellation plays a more dominant role and
resonance disappearance may be expected when the train speeds coincide with both
conditions of resonance and cancellation. In the subsequent section, the relationship
between resonance and cancellation effects is discussed.

Suppression of resonance by the first cancellation effect
It is interesting to notice from Table 2.2 that the cancellation speed
VcanI = 215 km/h is very close to the resonance speed Vres = 214 km/h (i = 2),
which means this resonant speed approximately meets the cancellation condition.
To better describe what will happen, the time histories of bridge mid-span dis-
placements induced by a single load P11, the first car, and the whole train under
Vres = 214 km/h are calculated, as shown in Fig. 2.29a.
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140 2 Fundamental Theories and Analytical Methods for Vibrations …



The resonant speed determined by Eq. (2.97) corresponds to the resonance effect
that is provoked by the successive amplification of the bridge displacement with an
increasing number of loads on the bridge. As shown in Fig. 2.29a, because the
speed 214 km/h is very close to the first type of cancellation speed
VcanI = 215 km/h, the free vibration of the bridge induced by each individual load
is approximately equal to zero, and thus, the bridge displacement induced by a
series of loads after superposition of all effects of them is also very small.
Therefore, when the resonant speed is close to the cancellation speed, the resonance
effect is suppressed by the cancellation effect, resulting in small bridge vibrations.

For comparison, the time histories of the bridge displacement at the train speed
of 250 km/h, which is neither a resonance speed nor a cancellation one, are shown
in Fig. 2.29b. It is clear that neither the free vibrations induced by the first axle load
nor by the car 1 is zero. Hence, after the whole train leaves the bridge, there remains
a high residual response (free vibration) on the bridge.

Suppression of resonance by the second cancellation effect
According to Table 2.2, the cancellation speed VcanII = 86 km/h is very close to the
resonance speed Vres = 85 km/h (i = 5). To better describe what will happen in this
situation, the time histories of bridge displacements induced by two loads, P11 and
P21, are calculated, as shown in Fig. 2.30a.
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Using Eq. (2.112), it is calculated that under 85 km/h, the time delay between
the two loads P11 and P21 is 5 Tb (i = 5). In this case, the phase gap between free
vibrations induced by P11 and P21 is 10p, which indicates five vibration periods,
and thus, the free vibrations induced by the two loads superpose each other.

However, in this special case, because the resonant speed 85 km/h is very close
to the cancellation speed 86 km/h, the resonance will be suppressed. The mecha-
nism of resonance suppression is shown in Fig. 2.30b, where P11 and P21 reflect the
resonance effect of P11+21, and P12 and P22 reflect the resonance effect of P12+22.
Because the time delay between P11+21 and P12+22 at 85 km/h is quite close to Tb/2,
the resultant free vibrations of the bridge subjected to these two pairs of loads
almost cancel each other out. When the whole train leaves the bridge, the free
vibration remains very small.

Influence of cancellation effect on resonance
To further investigate the relationship between the derived theoretical resonance
and cancellation conditions, a numerical analysis is carried out for the dynamic
responses of the bridge subjected to the train load series shown in Fig. 2.24, within
the speed range of 70 * 500 km/h.

Shown in Fig. 2.31 is the distribution of the calculated DAF (Dynamic
Amplification Factor) of the bridge mid-span deflection versus train speed.

It is observed that the DAF does not increase monotonously with the train speed,
while there appear several peaks at particular train speeds. When the resonance and
cancellation speeds listed in Table 2.2 are marked on the DAF curve, the influence
of resonance and cancellation conditions can be clearly observed.
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Obvious peaks on the DAF curves appear at the resonance train speeds 427, 142,
and 107 km/h, indicating the resonance phenomena indeed happen at these speeds.

At the resonance speeds of 214, 85, and 71 km/h, however, similar cancellation
speeds of 215, 86, and 72 km/h exist, resulting in relatively small DAF values. This
numerically proves that when a load series speed simultaneously meets both the
resonance and cancellation conditions, the cancellation effect plays a dominant role
and the resonance effect will be suppressed; namely, a resonance disappearance
occurs. Hence, when the ratio of car length lv to bridge span L meets the conditions
of Eq. (2.111), there will be Vres = Vcan at certain speeds, which provides the
possibility of eliminating the resonance. For the considered 31.1 m span
simply-supported bridge and the ICE3 train, if the resonance at speed 214 km/h is
counteracted, the dynamic responses of the bridge will remain at a low level in the
whole speed range of 150 * 350 km/h, which is of practical significance in bridge
design and the running safety of high-speed trains.

2.4.3.3 Influence of Damping on the Cancellation Effect

In the previous theoretical and numerical analyses, the influence of damping was
ignored. In reality, the free vibration of a bridge will attenuate gradually because of
the existence of damping. Thus, in the second cancellation effect, the free vibrations
induced by a pair of loads will not completely cancel each other out, even if they
have the same amplitude and opposite phases. To illustrate the influence of
damping on the second type of cancellation, the cancellation speed of 86 km/h is
taken again as an example, which corresponds to a = 0.08 (i = 1) and a = 0.56
(i = 4). A damping ratio of 0.05 is used to calculate the displacement of the bridge
subjected to two loads, as shown in Fig. 2.32.

It can be found that the existence of damping only changes the amplitudes of the
free vibration of the bridge, while it affects little the vibration period because the
difference between damped and undamped periods is very small. Thus, under the
cancellation speed of 86 km/h, the time delay between P11 and P12 is Tb/2 (i = 1)
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and that between P11 and P13 is 7Tb/2 (i = 4), which are approximately equal to
those in the undamped case. However, the displacements of free vibration induced
by the two loads cannot perfectly cancel each other out despite their opposite
phases. This is because they have different absolute values as a result of the unequal
time of damping attenuations. It can be concluded that the time delay between the
two loads affects the canceling extent of the bridge free vibration, and obviously,
the longer the time delay, the less the free vibration can be canceled, thus lowering
the cancellation effect.

Of course, the value of damping has a direct influence on the cancellation effect.
Figure 2.33 illustrates the distribution of the cancellation efficiency η (defined as
the ratio of the maximum free vibration displacement of the bridge that has been
canceled out to the one without cancellation) with respect to the cancellation order
under several different damping ratios. It can be found that the higher the damping,
and the longer the delay time (reflected by the cancellation order) between the two
loads, the lower is the cancellation efficiency. Despite this, the cancellation effi-
ciency η is greater than 0.5 for the first two cancellation orders with the bridge
damping ratio in the range of 0 * 0.05.

2.4.3.4 Conclusions

The mechanisms of vibration resonance and cancellation for a simply-supported
bridge subjected to a moving load series are investigated theoretically and are
verified through finite-element numerical simulations. The following conclusions
can be drawn:

(1) A resonant vibration may occur because of the superposition of vibrations
induced by a series of moving loads passing over a simply-supported bridge
when the time interval between two adjacent loads equals the natural period of
the bridge or its ith (i = 1, 2, 3,…) multiples.
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(2) The free vibration of the bridge induced by a single moving load may be
canceled out to null by itself when the load speed satisfies a certain relationship
with the span length and the natural frequencies of the bridge. This is defined as
the first cancellation effect. The first cancellation condition is related to a single
load behavior, while it is independent of the numbers and arrangement of loads.
The critical cancellation speed expression is associated with the order n of the
vibration mode.

(3) The free vibrations of the bridge induced by a series of moving loads may
cancel each other out when the load speed satisfies a certain relationship with
the load interval and the natural frequencies of the bridge. This is defined as the
second cancellation effect, which is related to the interval between any two
loads, namely the arrangement of the load series. The second cancellation
condition is related to the characteristic interval of loads.

(4) The damping of the bridge has an influence on the efficiency of the second type
of cancellation: The higher the damping and the longer the delay time between
two loads, the lower is the cancellation efficiency.

(5) In some cases, a certain train speed may simultaneously satisfy both resonance
and cancellation conditions. If this occurs, the cancellation plays a dominant
role and a resonance disappearance can be expected. This provides the possi-
bility of avoiding bridge resonance via proper design, which is of theoretical as
well as practical significance in the dynamic design of high-speed railway
bridges.

References

Cheung YK, Au FTK, Zheng DY, Cheng YS (1999) Vibration of multi-span bridges under
moving vehicles and trains by using modified beam vibration functions [J]. J Sound Vib 228
(3):611–628

Clough RW, Penzien J (2003) Dynamics of structures [M]. McGraw Hill Inc, New York
Diana G, Cheli F (1989) Dynamic interaction of railway systems with large bridges [J]. Veh Sys

Dyn 18:71–106
Frýba L (1999) Vibration of solids and structures under moving loads [M]. Thomas Telford,

London
Frýba L (2001) A rough assessment of railway bridges for high speed trains [J]. Eng Struct 23

(5):548–556
Garinei A, Risitano G (2008) Vibrations of railway bridges for high-speed trains under moving

loads varying in time [J]. Eng Struct 30(3):724–732
Hamidi SA, Danshjoo F (2010) Determination of impact factor for steel railway bridges

considering simultaneous effects of vehicle speed and axle distance to span length ratio [J]. Eng
Struct 32(5):1369–1376

Ju SH, Lin HT (2003) Resonance characteristics of high-speed trains passing simply-supported
bridges [J]. J Sound Vib 267(5):1127–1141

Kwark JW, Choi ES, Kim YJ et al (2004) Dynamic behavior of two-span continuous concrete
bridges under moving high-speed train [J]. Comput Struct 82(4–5):463–474

Lee HH, Jeon JC, Kyung KS (2012) Determination of a reasonable impact factor for fatigue
investigation of simple steel plate girder railway bridges [J]. Eng Struct 36:316–324

2.4 Vibration Suppression and Cancellation Analysis of Train-Bridge System 145



Li JZ, Su MB (1999) The resonant vibration for a simply-supported girder bridge under high speed
trains [J]. J Sound Vib 224(5):897–915

Liu K, Reynders E, De Roeck G, Lombaert G (2009) Experimental and numerical analysis of a
composite bridge for high-speed trains. J Sound Vib 320(1–2):201–220

Luu M, Zabel V, Könke C (2012) An optimization method of multi-resonant response of
high-speed train bridges using TMDs [J]. Finite Elem Anal Des 53:13–23

Lavado J, Doménech A, Martínez-Rodrigo MD (2014) Dynamic performance of existing
high-speed railway bridges under resonant conditions following a retrofit with fluid viscous
dampers supported on clamped auxiliary beams [J]. Eng Struct 59:355–374

Matsuura A (1976) A study of dynamic behavior of bridge girder for high speed railway [J]. Proc
Jpn Civil Eng Soc 256:35–47 (in Japanese)

Michaltsos GT, Raftoyiannis IG (2010) The influence of a train’s critical speed and rail
discontinuity on the dynamic behavior of single-span steel bridges [J]. Eng Struct 32(2):570–
579

Museros P, Moliner E, Martínez-Rodrigo MD (2013) Free vibrations of simply-supported beam
bridges under moving loads: maximum resonance, cancellation and resonant vertical
acceleration [J]. J Sound Vib 332(2):326–345

Pesterev AV, Yang B, Bergman LA, Tan CA (2003) Revisiting the moving force problem.
J Sound Vib 261(1):75–91

Rade L, Westergren B (2010) Mathematics handbook for science and engineering. Springer
Rocha JM, Henriques AA, Calçada R (2012) Safety assessment of a short span railway bridge for

high-speed traffic using simulation techniques [J]. Eng Struct 40:141–154
Savin E (2001) Dynamic amplification factor and response spectrum for the evaluation of

vibrations of beams under successive moving loads [J]. J Sound Vib 248(2):267–288
TB10002.1-2005 (2005) Fundamental code for design on railway bridge and culvert [S]. China

Railway Publishing House, Beijing
TJS 2003-13 (2003) Interim provisions on design of Beijing-Shanghai HSR [S]. China Railway

Publishing House, Beijing (in Chinese)
TJS 2005-285 (2005a) Interim provisions on design of 200 km/h new railways for passenger and

freight trains [S]. China Railway Publishing House, Beijing (in Chinese)
TJS 2005-285 (2005b) Commentary on interim provisions on design of 200 km/h new railways for

passenger and freight trains [S]. China Railway Publishing House, Beijing (in Chinese)
Xia H, Chen YJ (1992) Dynamic interaction analysis of train-beam-pier system [J]. China Civil

Eng J 25(2):3–12 (in Chinese)
Xia H, Zhang N (2005) Dynamic interaction of vehicles and structures [M]. Beijing Science Press

(in Chinese)
Xia H, Zhang N, Guo WW (2006) Analysis of resonance mechanism and conditions of

train-bridge system [J]. J Sound Vib 297(3–5):810–822
Xia H, De Roeck G, Goicolea JM (2012) Bridge vibration and controls: new research [M]. Nova

Science Publishers Inc, New York
Xia H, Li HL, Guo WW, De Roeck G (2014) Vibration resonance and cancellation of

simply-supported bridges under moving train loads [J]. J Eng Mech ASCE 140
(5):04014015-1-11

Yang YB, Yau JD, Hsu LC (1997) Vibration of simple beams due to trains moving at high speeds
[J]. Eng Struct 19(11):936–944

Yang YB, Yau JD, Wu YS (2004a) Vehicle-bridge interaction dynamics [M]. World Scientific
Publishing, Singapore

Yang YB, Lin CL, Yau JD, Chang DW (2004b) Mechanism of resonance and cancellation for
train-induced vibrations on bridges with elastic bearings [J]. J Sound Vib 269(1–2):345–360

Yau JD (2001) Resonance of continuous bridges due to high speed trains [J]. J Mar Sci Technol 9
(1):14–20

Yau JD, Wu YS, Yang YB (2001) Impact response of bridges with elastic bearings to moving
loads [J]. J Sound Vib 248(1):9–30

146 2 Fundamental Theories and Analytical Methods for Vibrations …



Yau JD, Yang YB (1999) Theory of vehicle-bridge interaction for high-speed railway [M]. DNE
Press, Taipei

Zambrano A (2011) Determination of the critical loading conditions for bridges under crossing
trains [J]. Eng Struct 33(2):320–329

References 147


	2 Fundamental Theories and Analytical Methods for Vibrations of Simply-Supported Beams Under Moving Loads
	2.1 Vibrations of Simply-Supported Beam Under Moving Loads
	2.1.1 Analysis Model
	2.1.2 Vibration of Simply-Supported Beam Under a Moving Concentrated Load
	2.1.2.1 Static Load Case (α = 0)
	2.1.2.2 Undamped Case (\mu = 0)
	2.1.2.3 Undercritically Damped Case
	2.1.2.4 Critically Damped Case (μ = μcr = k2)
	2.1.2.5 Overcritically Damped Case (μ  greaterthan  μcr = k2)

	2.1.3 Displacement of Bridge Subjected to a Moving Load Series
	2.1.4 Analytical Solution for Vibration of Simply-Supported Beam Under a Moving Harmonic Load

	2.2 Vibration of Simply-Supported Beam Under Moving Loads with Variable Speed
	2.2.1 Calculation Model
	2.2.2 Case Study

	2.3 Resonance Analysis of a Simply-Supported Beam Subjected to Moving Loads
	2.3.1 Bridge Resonance Induced by a Moving Load Series
	2.3.1.1 Fundamental Analysis Model
	2.3.1.2 Bridge Resonance Induced by Periodically Loading of Moving Load Series
	2.3.1.3 Bridge Resonance Induced by Loading Rate of a Moving Load Series
	2.3.1.4 Bridge Resonance Owing to the Sway Forces of Train Vehicles
	2.3.1.5 Application Scopes of Resonance Conditions

	2.3.2 Resonance Analysis of Train Vehicles

	2.4 Vibration Suppression and Cancellation Analysis of Train-Bridge System
	2.4.1 Resonance and Cancellation of Simply-Supported Beam Under Moving Equidistant Load Series
	2.4.1.1 Analysis Model
	2.4.1.2 Analytical Solution for Bridge Vibration Response
	2.4.1.3 Resonance and Cancellation

	2.4.2 Resonance and Cancellation of Simply-Supported Beam Under a Series of Train Loads
	2.4.2.1 Analysis Model Considering Train Load Series
	2.4.2.2 Resonance and Cancellation Induced by a Train Load Series
	2.4.2.3 Resonance Disappearance

	2.4.3 Numerical Verification
	2.4.3.1 Time History Analyses of the Bridge Under Resonance and Cancellation Conditions
	2.4.3.2 Relationship Between Resonance and Cancellation Effects
	2.4.3.3 Influence of Damping on the Cancellation Effect
	2.4.3.4 Conclusions


	References


