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Preface

Localization and tracking are key functionalities in ubiquitous computing systems
and techniques. Most applications in pervasive computing inherently rely on
location information, e.g. to make the gathered measurements geographically
meaningful. Also, location information can be used to support fundamental network
layer services such as clustering, topology control and routing, among others.

In the past few years, the integration of miniaturized GPS receivers in ubiquitous
computing devices has greatly improved localization and tracking in outdoor
environments providing sufficient accuracy for many applications. Despite these
advances, reducing GPS shadows and improving accuracy still require intense
R&D effort. However, today the most relevant research topics in localization and
tracking focus on indoor and GPS-denied environments. A very high variety of
localization approaches, sensors and techniques have been developed. However,
none of the proposed schemes is ideal—all have pros and cons—and the selection
of the method for a given problem highly depends on the specific requirements and
constraints of the application and scenario.

This book briefly summarizes the current state of the art in localization and
tracking in ubiquitous computing systems. It is focused on cluster-based schemes,
which is probably the most widely adopted architecture. This book analyzes the
existing techniques for measurement integration, node inclusion/exclusion in/from
the cluster and cluster head selection.

Although significant advances have been performed in the past, many issues still
remain open for current and future research. We hope that this book may be helpful
to contribute to provide a broader perspective of the localization and tracking
problems and may spark new innovative ideas.

Sevilla, Spain José Ramiro Martínez-de Dios
January 2017 Alberto de San Bernabé-Clemente

Arturo Torres-González
Anibal Ollero

vii



Acknowledgements

The authors thank all members of the Robotics, Vision and Control Group at the
University of Seville for their contribution and support in the preparation of this
book. The authors are grateful to Ph.D. Adrian Jiménez and Mr. José Manuel
Sánchez-Matamoros for their support in the experimentation of the techniques and
schemes described in the UBILOC testbed.

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Localization and Tracking of Cooperating Objects. . . . . . . . . . . . . . 1
1.2 Assumptions and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Book Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Architectures for Target Localization and Tracking . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hierarchical Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Tree-Based Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Cluster-Based Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Hybrid Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Peer-to-Peer Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 A General Cluster-Based Scheme for Localization and Tracking . . . 9

2.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 UBILOC: Ubiquitous Localization Testbed . . . . . . . . . . . . . . . . . . . 12
2.5.1 Main Characteristics of the Hardware Components . . . . . . . 14

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Measurement Integration for Localization and Tracking . . . . . . . . . . 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Classification Attending to the Type of Measurements . . . . . . . . . . 18

3.2.1 Distance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Angle Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Area Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Hop Count Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Neighborhood Size Measurements . . . . . . . . . . . . . . . . . . . . 23
3.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xi



3.3 Localization and Tracking Using RSSI . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Multilateration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 MinMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 ROCRSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.5 Weighted Centroid Localization . . . . . . . . . . . . . . . . . . . . . . 29
3.3.6 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.7 Recursive Bayesian Filtering . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.8 RSSI Map-Based Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Localization and Tracking Using Camera Measurements . . . . . . . . . 35
3.4.1 Integrating Only Camera Measurements . . . . . . . . . . . . . . . . 36
3.4.2 Integrating Cameras and Other Sensors . . . . . . . . . . . . . . . . 38
3.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Decentralized Bayesian Multi-sensor Measurement Integration . . . . 40
3.5.1 Extended Information Filter . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Distributed Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.3 Evaluation and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Node Inclusion/Exclusion in Cluster-Based Tracking. . . . . . . . . . . . . . 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 The Sensor Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Single and Multiple Mission Schemes . . . . . . . . . . . . . . . . . 52
4.2.2 Coverage Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Sensor Selection for Target Localization and Tracking . . . . . . . . . . 53
4.3.1 Schemes Based on the Mean Square Error . . . . . . . . . . . . . . 54
4.3.2 Information-Driven Schemes . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Entropy-Based Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Sensor Selection Using Uncertainty-Based Decision Making . . . . . . 56
4.4.1 Reward-Cost Analysis for Sensor Activation . . . . . . . . . . . . 56
4.4.2 Cost Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.3 Reward Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.4 Node/Sensor Activation for Target Tracking . . . . . . . . . . . . 62

4.5 Evaluation and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.1 Evaluation of Camera-Only Activation . . . . . . . . . . . . . . . . . 66
4.5.2 Evaluation of RSSI-Only Activation. . . . . . . . . . . . . . . . . . . 68
4.5.3 Evaluation of Joint Camera-RSSI Activation . . . . . . . . . . . . 69
4.5.4 Evaluation of Gradual Camera-RSSI Activation . . . . . . . . . . 70

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xii Contents



5 Cluster Head Selection for Target Tracking . . . . . . . . . . . . . . . . . . . . . 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 The Cluster Head Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Cluster Head Selection Based on Information Gain . . . . . . . . . . . . . 75
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Contents xiii



Acronyms

AoA Angle of Arrival
CH Cluster Head
CMOS Complementary Metal Oxide Semiconductor
COTS Commercial Off-The-Shelf
EIF Extended Information Filter
EKF Extended Kalman Filter
GPS Global Positioning System
IF Information Filter
IMU Inertial Measurement Unit
KF Kalman Filter
LIDAR Light Detection and Ranging
LQI Link Quality Indicator
LS Least Squares
ML Maximum Likelihood
MSE Mean Square Error
PDA Personal Digital Assistant
PF Particle Filter
PRR Packet Reception Rate
RBF Recursive Bayesian Filter
RFID Radio-Frequency Identification
RGB Red, Green, Blue
RSSI Received Signal Strength Indicator
SNR Signal to Noise Ratio
ToF Time of Flight
TDoA Time Difference of Arrival
USB Universal Serial Bus
UWB Ultra-Wideband
WCN Wireless Camera Network

xv



WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network

xvi Acronyms



Chapter 1
Introduction

1.1 Localization and Tracking of Cooperating Objects

In the last years a variety of technological fields have emerged in the context of
ubiquitous computing systems. Technologies such as smartphones, personal mobile
computing devices, camera networks, wearable computers, radio frequency identifi-
cation (RFID) and Wireless Sensor Networks (WSN) are revolutionizing our world
into a ubiquitous environment in which all devices are fully networked.

Ubiquitous computing systems are intended to gather information about the char-
acteristics of the physical world. Tomake the gatheredmeasurements geographically
meaningful it is necessary to associate measurements to locations. Most applications
in ubiquitous computing technologies explicitly or implicitly rely on location infor-
mation. Moreover, location information can be also used to support fundamental
network layer services such as clustering, topology control and routing, amongmany
others.

The wide adoption of the Global Positioning System (GPS) has greatly improved
localization in outdoors. Miniaturized low-cost GPS receivers integrated in ubiqui-
tous computing devices provide accuracies around 3–5m, sufficient for many appli-
cations. Despite these advances, reducing GPS shadows and improving accuracy
in low-cost receivers still require intense R&D effort. However, the most relevant
research topics in localization and tracking take place in indoors and GPS-denied
environments. A very high variety of sensors, technologies and techniques have been
developed for localization in GPS-denied environments in the recent years. However,
none of the proposed sensors or techniques is ideal—all have pros and cons—and
the selection of sensors and methods for a particular problem highly depends on the
specific requirements and constraints of the application and scenario.

This book briefly summarizes the current state of the art in cluster-based localiza-
tion and tracking in ubiquitous computing systems. This book deals with architec-
tures, schemes and techniques inwhich a target is localized and tracked by ubiquitous
computing systems deployed in the environment. Dead reckoning, odometry-based

© The Author(s) 2017
J.R. Martínez-de Dios et al., Cluster-based Localization and Tracking
in Ubiquitous Computing Systems, SpringerBriefs in Cooperating Objects,
DOI 10.1007/978-3-662-54761-8_1
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2 1 Introduction

techniques or methods based on sensors carried by the target such as Inertial Mea-
surement Units (IMUs), cameras or LIDARs are out of the scope of this book.

Cluster-based schemes are the most widely employed and researched approaches
in target localization and tracking in ubiquitous computing systems. Clustering nat-
urally improves scalability and simplifies communications. Besides, it is efficient in
the resources consumed since only the nodes that participate in target localization
and tracking are kept active while the rest are left inactive not consuming resources.

Cluster-based tracking requires methods to integrate the measurements gathered
by the cluster nodes.Most existing techniques rely exclusively on one type of sensors.
Link quality and radio signal strength measurements are by far the most widely used
since they are measured naturally by most radio modules in Commercial Off-the-
Shelf (COTS) ubiquitous computing devices without incurring in extra hardware or
energy consumption costs. However, in indoors these measurements are affected by
significant perturbations originated by reflections and other interactions of the radio
signals with the environment.

The cluster should track the target as it moves. Cluster-based schemes should
deal with the task of deciding which nodes should be included or excluded from the
cluster. Nodes are activated when they are invited to participate in the cluster and,
they are deactivated when they are excluded. Node inclusion/exclusion methods aim
at keeping within the cluster only the nodes that provide useful information trying
to reduce the active sensors to the minimum.

The performance of cluster-based target tracking highly depends on which node
acts as cluster head. Cluster-based tracking schemes should also deal with the
dynamic selection of the most suitable cluster head at each time. The objective is to
select which among the cluster nodes is the most suitable one to perform the cluster
head role.

This book summarizes the main existing techniques in cluster-based target track-
ing that deal with the aforementioned three issues: measurement integration, node
inclusion/exclusion and cluster head selection.

1.2 Assumptions and Requirements

The techniques, schemes and architectures described in this book are suitable for
ubiquitous computing systems comprised of embedded nodes with sensing, process-
ing and communication capabilities that organize autonomously into clusters in order
to accomplish target localization and tracking missions. Nodes are designed to be
low cost, i.e. engineered to have low energy consumption, endowed with low sens-
ing/actuating resources and low computational capability. It is assumed that nodes
and transmissions can fail. Measurements from sensors are assumed also subject to
noise.

Each node is assumed endowed with low-energy consumption modes. Each node
can enter and get out of its low-energy mode by its own. Besides, each node can
put another node in the low-energy node and can wake it up. Most COTS nodes
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are endowed with these capabilities and these assumptions do not involve practical
constraints.

Nodes are assumed equipped with sensors suitable for tracking such as small
cameras. Nodes radio circuitry allows measuring the strength of the radio signal of
the received messages (RSSI) and other link quality estimators. Sensor nodes are
intrinsically static, although mobile nodes may exist if carried by people, vehicles,
robots or even animals. Besides, each anchor node is assumed to know its own
location and the parameters of its sensors, such as the orientation of its camera and
its RSSI-range model.

In this context technologies such as personal computing devices, smartphones
and PDAs or camera networks are also considered as ubiquitous computing systems.
The popularization of smartphones and the improvement in their performance and
connectivity has boosted research in many applications. Networks of distributed
static cameras are widely employed for ubiquitous perception in ambient intelligence
systems.

Below the main requirements in our problem are briefly discussed:

• Efficiency. Low energy consumption, low computational capability and low com-
munication ranges are inherent to ubiquitous computing nodes. The architecture
and techniques involved should consume as low resources as possible including
energy, computational resources and communication bandwidth, among others.

• Accuracy. The target location and tracking estimation should be as accurate as
possible. Improving accuracy often requires higher resource consumption.

• Modularity. The architecture and the techniques developed should have a clear
modular approach that enables scalability and expandability.

• Robustness. Nodes are designed to be low cost. However, in contrast to the indi-
vidual fragility of each node, the strength of the architecture should originate from
the cooperation between nodes. The architecture and methods should be robust to
failures of individual nodes and transmission errors.

• Scalability. Ubiquitous computing systems exploit the complementarity between
nodes in order to improve the global performance and operation robustness. The
complexity of the architecture and the techniques should scale with the number of
nodes and with the size of the scenario. Also, the system should be able to locate
and track simultaneously a high number of targets.

• Heterogeneity. (Widely understood) heterogeneity is a crucial point in cooperating
nodes. Heterogeneity may affect all levels from physical characteristics to sensing,
computing and communication capabilities.

1.3 Book Structure

This book describes architectures, schemes and techniques for cluster-based localiza-
tion and tracking using measurements of the target taken by heterogeneous sensors
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mounted on anchored nodes deployed in the environment, which location and orien-
tation is assumed known.

This book addresses localization and tracking in ubiquitous computing systems
from different perspectives. Besides the introductory and concluding chapters, this
book is structured in the following five chapters.

Chapter 2 presents themain existing architectures for target localization and track-
ing in ubiquitous computing systems. This chapter presents a general cluster-based
architecture that is used as the main conductor of this book. This architecture com-
prises modules that deal with the aforementioned issues in cluster-based tracking,
namely: measurement integration, inclusion/exclusion of nodes in/from the cluster
and selection of the cluster head. This chapter also presents UBILOC (Ubiquitous
Localization Testbed), a testbed designed for target localization and tracking in ubiq-
uitous computing systems, where the schemes and techniques described in this book
were experimented.

Chapter 3 deals withmeasurement integration for cluster-based target localization
and tracking. First, existing techniques are classified according to the type of physi-
cal measurement used. The main existing localization and tracking techniques based
on RSSI are briefly described. Cameras are also widely employed, they are more
accurate than RSSI-based methods but they involve significantly higher consump-
tion of energy and computational resources. This chapter finally presents efficient
probabilistic techniques for the integration of multi-sensor measurements for target
localization and tracking based on Extended Information Filters (EIFs).

Chapter 4 deals with node inclusion/exclusion in cluster-based tracking. The
objective of these techniques is to reduce the number of active sensors to the min-
imum by keeping in the cluster only the nodes that provide useful information.
This chapter presents the sensor selection problem and summarizes the main sensor
selection techniques reported for target localization and tracking. A sensor selection
technique based on cost-reward optimization suitable for the general architecture
described in Chap.2 is also presented.

Chapter 5 deals with techniques for cluster head selection. This chapter reviews
the main existing techniques. Most of them rely on criteria such as proximity or
homogeneity in energy consumption. This chapter also presents a cluster selection
technique based on tracking uncertainty minimization that suitable for the architec-
ture described in Chap.2.



Chapter 2
Architectures for Target Localization
and Tracking

2.1 Introduction

This chapter summarizes themain architectures used for target localization and track-
ing in ubiquitous computing systems. Existing approaches can be coarsely classified
into peer-to-peer and hierarchical schemes. In peer-to-peer architectures each node
exchanges sensing information with its neighbors in order to reach a consensus
on the target status. In hierarchical architectures nodes organize following some
hierarchy. Three main hierarchical schemes have been adopted: tree-based, cluster-
based and hybrid schemes. Cluster-based schemes are the most widely employed
and researched approaches. Clustering naturally solves scalability and efficiency
since the measurement flow and the packet interchange are kept within the cluster,
simplifying computations and transmissions.

This chapter also presents a general architecture for cluster-based tracking that
is used as the main conductor of this book. This architecture comprises three main
modules that deal with typical problems in cluster-based tracking. The first one is
responsible for measurement integration and target estimation. The cluster evolves as
the target moves and it is necessary to dynamically decide the nodes that are included
in or excluded from the cluster. Nodes included in the cluster are activated, while
nodes excluded from the cluster are deactivated, saving energy. The second module
is responsible for deciding which nodes should be included or excluded from the
cluster. Clustering-based tracking schemes rely on a cluster head (CH) that acts as
the main scheduler of the cluster. The third module of the architecture is responsible
for dynamically deciding which node acts as CH.

The experimentation of the schemes and modules shown in this book was
performed in UBILOC (Ubiquitous Localization Testbed), a testbed specifically
designed for multi-sensor target localization and tracking in ubiquitous computing
systems. This chapter briefly presents its main characteristics and components.

© The Author(s) 2017
J.R. Martínez-de Dios et al., Cluster-based Localization and Tracking
in Ubiquitous Computing Systems, SpringerBriefs in Cooperating Objects,
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6 2 Architectures for Target Localization and Tracking

This chapter is structured as follows. The main hierarchical architectures devel-
oped for target tracking are presented in Sect. 2.2. Themain peer-to-peer architectures
are described in Sect. 2.3. The general cluster-based architecture is summarized in
Sect. 2.4. UBILOC is briefly described in Sect. 2.5.

2.2 Hierarchical Networks

In the simplest tracking scheme each node in the network is ready for tracking all the
time.When a node gathers a measurement of the target, it transmits the measurement
to the sink node or to base station, which estimates the target location using the
received measurements. This centralized scheme has clear drawbacks. First, it is not
efficient in terms of energy because all the nodes in the network are required to be
always in a mode ready to track the target. Also, it involves heavy communicational
burden at the surroundings of the sink node. Furthermore, robustness is compromised
in case of channel congestion or failure of the sink node.

Different schemes have been developed to mitigate the drawbacks of this baseline
method. This section briefly summarizes the main hierarchy-based architectures:
tree-based, cluster-based and hybrid schemes.

2.2.1 Tree-Based Architectures

The nodes of the network are organized in a hierarchical tree that can be represented
as a graph. The nodes that sense the target communicate with each other in order to
select a specific node that acts as the root of the tree and collects the information. The
root can dynamically change to adapt to the target motion. Although more robust
than the aforementioned baseline approach, tree-based schemes still result in high
energy consumptions and heavy communications.

One example is STUN (Scalable Tracking Using Networked Sensors) [1]. In
STUN each link between two anchor nodes in the tree is assigned with a cost that
is proportional to the Euclidean distance between the two nodes. The leaf nodes
track the target and send the collected data to the root through intermediate nodes
of the tree. The intermediate nodes register the detected targets and send updated
information to the root when there is a change.

In DCTC (Dynamic Convoy Tree-Based Collaboration) [2] the tree is rooted at
the anchor node that is the closest to the target. The target position is estimated
by the location of the root node. In DAT (Deviation Avoidance Tree) [3] tracking is
performed in two steps: update and query.Updates are initiatedwhen the targetmoves
to a new location. Update cost is reduced by the deviation avoidance tree algorithm
and query cost is reduced by the query cost reduction algorithm in a second step.

DOT (DynamicObject Tracking) [4] is a scheme that reports the tracking informa-
tion of moving targets to a moving source. The first stage is to identify the neighbors.
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In the second stage, called target discovery, the source sends requests to sensor nodes
and the nodes that are close to the target reply. Finally, in the target tracking step, the
source sends a query to the beacon node (the node keeping track of the information),
which replies with the target next location. Then, the source moves towards the next
beacon node.

2.2.2 Cluster-Based Schemes

In these schemes anchor nodes sensing the same target organize into clusters. Each
cluster has one node acting as cluster head (CH). Clustering techniques are energet-
ically efficient: nodes not sensing the target are kept in sleep mode, saving energy,
during most of the time. Clustering allows several targets to be tracked simultane-
ously, with a cluster for each target. Cluster-based tracking is particularly interesting
in applications that require scalability. There are two main approaches depending on
how clusters are created: static and dynamic clustering.

2.2.2.1 Static Clustering

Clusters are formed during the deployment of the network. Nodes are assumed static
and for each cluster their members and coverage areas never change [5]. Static
clustering is very simple and convenient in many cases but has several problems. It
is not robust to failures in cluster head (CH) nodes. Also, different clusters cannot
share information or collaborate in measurement integration and processing.

2.2.2.2 Dynamic Clustering

Dynamic clustering offers many interesting features for target localization and track-
ing. The formation of clusters can be triggered by external events, e.g. the detection
of a target. If a node with sufficient battery and computational resources detects the
target, it volunteers as cluster head. Other nodes near the CH are invited to become
members of the cluster and to report their measurements to the CH.

One example is the so-called information-driven sensor querying technique IDSQ
[6] in which the most suitable node to perform the sensing task is determined. This
approach assumes that each node can locally estimate the cost of sensing, processing
and communicating data with other nodes. It is energy efficient because only a few
nodes are active simultaneously at any time.

DELTA [7] is an algorithm for tracking a person moving at constant speed that
dynamically organizes a cluster and selects the cluster head,whichwill be responsible
for monitoring the target and for collaborating with the rest of the sensor nodes.

RARE [8] is an energy efficient tracking protocol based on two algorithms,
RARE-Area (ReducedArea Reporting) and RARE-Node (Reduction of Active Node
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Redundancy). RARE-Area inhibits nodes that are far from the target reducing the
number of nodes participating in tracking. RARE-Node identifies overlapping sen-
sors in order to reduce the redundant information. The cluster is created dynamically
using predictions computed during target tracking.

In DTSC [9] clusters are created by interchanging packets between the nodes
that have detected the target. If a node has received packets from at least 4 nodes it
declares itself as CH. DSTC can fail if the density is too low or if the cluster size is
too large.

2.2.3 Hybrid Architectures

Hybrid schemes have characteristics from the two aforementioned approaches.
One example is DPT (Distributed Predictive Tracking) [10], which adopts a clus-

tering approach and a prediction-based tracking technique. DPT is robust against
prediction failures and target losses.

DCAT (Dynamic Clustering for Acoustic Tracking) [11] forms clusters using
Voronoi diagrams. The CH asks its neighbors to join the cluster by broadcasting
invitation packets. Nodes decide if they should reply to the CH after analyzing the
distance to the target, which is estimated probabilistically. The CH determines the
location using their replies and transmits the results to the sink.

In HPS (Hierarchical Prediction Strategy) [12] clusters are also created using
Voronoi diagrams and the next location of the target is predicted using a technique
based on Least Squares.

2.3 Peer-to-Peer Networks

In hierarchical networks many nodes are involved in sensing at the same time but
only one acts as scheduler. The scheduler takes the greater part of the communication
and computational burden resulting in inhomogeneous consumption of resources. In
contrast, in peer-to-peer architectures all nodes have the same role and target tracking
estimation is performed using consensus techniques in which each node interchanges
its measurements with its neighbors [13].

Tracking in peer-to-peer networks is often based on average consensus algorithms.
These algorithms perform successive refinements of local estimates maintained by
individual nodes. The main objective of consensus filters is to estimate the global
information contribution using only local and neighboring information [14]. Each
iteration in the consensus filter has two main steps. In the first one, called commu-
nication step, each node interchanges information with its neighbors. In the second,
called update step, each node uses the information gathered in the communication
step in order to refine its previous estimate. Consensus filters are completely distrib-
uted and can be applied in large-scale sensor networks.
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A scalable distributed target location and routing architecture for wide-area peer-
to-peer applications is presented in [15].Work [16] proposes a target tracking system
based on the auto regressive moving average model in a distributed peer-to-peer
signal processing framework. Sensor nodes act as peers that perform target detection,
feature extraction, classification and tracking. It also includes a distributed peer-
to-peer signal processing framework that considers the trade-off between tracking
accuracy and energy consumption.

In general Recursive Bayesian Filters (RBFs), which are widely-applied in
hierarchical-based tracking, are not applied to peer-to-peer networks due to their
implementation complexity. However, a number of schemes that combine Kalman
Filters and consensus filters have been developed, see e.g. [17, 18].

2.4 A General Cluster-Based Scheme for Localization
and Tracking

This chapter presents a general architecture for cluster-based tracking that is used as
the main conductor of this book.

Cluster-based schemes is by far the most widely employed and researched
approach in target localization and tracking in ubiquitous computing systems. All the
nodes that sense the same target organize into a cluster with a cluster head (CH) that
schedules its operation. The tracking measurement flow and packet interchange are
kept within the cluster, simplifying packet transmission. Each target being tracked
has its own cluster and a number of targets can be tracked simultaneously. Of course,
only the nodes that participate in target tracking are active: the rest are inactive—in
low-energy mode—not consuming resources.

Cluster-based tracking requires methods to integrate the measurements gathered
by the cluster nodes. Using different types of sensors for target tracking originates
synergies of interest in many applications. The estimation and measurement fusion
techniques adopted should allow flexible integration of measurements from sensors
of different types. Measurement fusion is usually resource demanding, hence the
method adopted should be efficient and prevent inhomogeneous consumption of
computational, energy or bandwidth resources between the cluster nodes. Scalabil-
ity, robustness to sensor failures and packet loss are other properties of interest in
measurement integration methods.

Of course, the cluster should track the target as it moves. Then, methods should
deal also with the task of deciding the inclusion/exclusion of nodes from the clus-
ter. The objective is to keep within the cluster only the nodes that provide useful
information for target tracking trying to reduce the active sensors to the minimum.
Nodes are activated when they are invited to participate in the cluster and, they are
deactivated when they are excluded from the cluster.
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TrackingCH TrackingCM Inactive

Sensor Selection
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CH Selection

measurements

measurements

Integration

Alert

Fig. 2.1 General cluster-based architecture for target tracking

The performance of cluster-based target tracking highly depends on which node
acts as cluster head. Cluster-based tracking schemes should also deal with the
dynamic selection of the most suitable cluster head.

2.4.1 Architecture

A general cluster-based architecture for target localization and tracking is shown in
Fig. 2.1. The nodes can be at different modes depending on the level of involvement
in tracking. At time t any node is at one of the following tracking modes:

• TrackingCH, the node acts as cluster head—represented by a triangle in Fig. 2.1;
• TrackingCM, represented as a black circle, the node participates in the cluster
gathering measurement but not as head;

• Alert, represented as a gray circle, the node is not currently participating in the
cluster but it is at single-hop distance from the head and could be included in the
cluster at that time if necessary;

• Inactive, it is not involved in tracking and cannot be included in the cluster at that
time.

Nodes in modes trackingCH and trackingCM participate in the cluster and alto-
gether perform the target location and tracking estimation.Nodes in alert and inactive
are not currently participating in tracking but those in alert could be invited to enter
the cluster at that time t .

This architecture is composed of the following main modules:

• Module1: multi-sensor measurement integration. It integrates the measurements
of the target gathered by the different cluster nodes. It should allow distributed
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implementation. The main existing measurement integration techniques for target
localization and tracking are presented in Chap. 3.

• Module2: sensor node activation/deactivation. Its objective is to keep active only
the nodes that provide useful information for tracking trying to reduce to the
minimum the number of active sensors. Themain existing techniques are presented
in Chap.4.

• Module3: cluster head selection. The objective is to dynamically select which of
the nodes within the cluster is the most suitable to perform the cluster head role.
The main existing techniques are presented in Chap. 5.

Below, themain requirements of the architecture and its modules are summarized:

• Computational distribution. Each nodewithin the cluster should actively partici-
pate in tracking. All nodes should gather measurements and perform computations
that are used for measurement integration, node inclusion/exclusion and cluster
head selection.

• Efficiency. The nodes should employ efficient techniques and exploit computation
reuse resulting in low computational burden and energy consumption.

• Scalability. The consumption of resources from each cluster node should be con-
stant or almost constant regardless of the cluster size.

• Flexibility. Each module of the architecture is responsible for addressing a main
issue in the cluster-based scheme. Each module can be implemented with different
techniques without affecting the rest of the modules. The architecture is flexible
also in the sensors used for tracking.

• Extensibility. The architecture can be extended with other modules such as sensor
calibration methods, which benefit from the synergies between measurements in
order to supervise if sensors are calibrated and recalibrate them if necessary.

2.4.2 Schemes

The general architecture depicted in Fig. 2.1 can be adapted to different tracking
schemes that use different types of sensors:

• Scheme1: Efficient tracking using only camera measurements,
• Scheme2: Efficient tracking using only RSSI measurements,
• Scheme3: Efficient tracking using camera and RSSI measurements.

Themain difference between them is the sensors employed. In Scheme1 each node
is assumed equipped with a camera and tracking uses only camera measurements.
Each camera node is assumed with sufficient computational capacity to execute
simple image processing methods and measure the coordinates of the target center
in its image plane.

Scheme2 performs tracking employing only RSSI measurements. It assumes that
the target is tagged with a mobile node and that each anchor node is capable of
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Fig. 2.2 Picture of the
UBILOC testbed during an
experiment

collecting RSSI measurements from the target node.Module1 integrates RSSI mea-
surements andModule2 decides which nodes should gather and integrate RSSI mea-
surement for localization and tracking.

Scheme3 is an extension of Scheme1 that also integrates RSSI measurements.
Scheme3 naturally employs the RSSI measurements that can be measured from the
packets actually interchanged in Scheme1, without requiring anymore transmissions.
Scheme3 assumes that the target is tagged. Nodes sensing the same target—either
using the camera or with RSSI– organize autonomously into clusters. In Scheme3,
Module1 integrates camera and RSSI measurements and Module2 decides which
camera nodes are included/excluded in/from the cluster and with which measure-
ments these camera nodes contribute to target tracking.

2.5 UBILOC: Ubiquitous Localization Testbed

The experimentation of the aforementioned schemes and modules was performed
in UBILOC (Ubiquitous Localization Testbed), a testbed specifically designed for
localization and tracking in ubiquitous computing systems, see Fig. 2.2. UBILOC
was developed on top of the CONET Integrated Testbed [19],1 a testbed designed
for remote experiments with Cooperating Objects [20], and inherits from it its main
characteristics.

UBILOC emulates a typical office smart environment scenario and includes sen-
sors widely used for localization in smart environments: a network of cameras for
camera-based localization, a Wireless Sensor Network for radio-based localization
and a network of Time-of-Flight (ToF) sensors. These heterogeneous devices are
integrated using a modular and flexible architecture. It also includes a set of mobile

1http://conet.us.es.

http://conet.us.es


2.5 UBILOC: Ubiquitous Localization Testbed 13

Fig. 2.3 Nodes of the WCN:
each node is composed of a
CMUcam3 module and a
WSN node

robots that are used as targets to be localized and tracked in the experiments. UBILOC
is set in a room of more than 500m2 (22m×24m) in the basement of the School of
Engineering of Seville.

Among others, UBILOC includes aWireless CameraNetwork (WCN). Each node
of theWCN is composed by a CMUcam3 camera module [21] connected to a TelosB
WSN node, see Fig. 2.3. CMUcam3 camera modules are endowed with embedded
programmable imageprocessing capabilities. EachCMUcam3module capturesRGB
images of 352× 288 pixels and applies simple image processingmethods. The results
of the local image processing methods executed at each camera are transmitted to
the TelosB node using a simple bidirectional protocol.

In UBILOC robots are used as targets to be localized and tracked. The advantages
of using robots as targets instead of humans are: (a) they allow fully unattended
experiments; (b) higher repeatability of experiments; and (c) robots include tools
to determine their ground truth location, which is necessary to measure the errors
provided by the localization techniques tested. A total of 5 Pioneer 3-AT robots are
used. Each robot is equippedwith one 2D laser range finder and oneMicrosoft Kinect
and an IEEE 802.11 Wireless bridge. Each robot is capable of accurately computing
its own location and orientation using the Adaptative Monte Carlo Localization
algorithm (AMCL) [22]. These estimates are taken as the ground truth for indoor
experiments. In outdoors the ground truth pose is obtained using GPS receivers and
Inertial Measurement Unit (IMU).

UBILOC inherits its architecture based onPlayer [23] from theCONET Integrated
Testbed. Player makes available user-transparent inter-module communication using
standard interfaces. It is based on a modular client/server architecture. The Player
Server interacts with the hardware elements and uses abstract interfaces to communi-
cate with the Player Client, which provides access to all the system elements through
device-independent APIs.

UBILOCprovides infrastructure for experimentation support including high-level
abstract interfaces to hardware and also the communication between processors.
Users only have to program the modules they want to test. This architecture allows



14 2 Architectures for Target Localization and Tracking

a high range of localization experiments following centralized and decentralized
schemes.

The experiments of Scheme1 and Scheme3 were performed with the WCN. The
experiments of Scheme2 were performed using the WSN.

2.5.1 Main Characteristics of the Hardware Components

CMUcam3 uses an ARM7TDMI based fully programmable embedded computer
vision sensor. The main processor is a Philips LPC2106 connected to an Omnivision
CMOS camera sensor module. Custom C codes can be developed using GNU tool-
chain along with a set of open source libraries. Executables can be flashed onto the
board using the serial port with no external hardware required. Their main energy
consumption characteristics are summarized in Table2.1.

TelosB is a well-known ultra low-power WSN module. TelosB uses industry
standards like USB and IEEE 802.15.4 to interoperate with other devices. It inte-
grates humidity, temperature and light sensors; provides flexible interconnection
with peripherals; and enables a wide range of applications. TelosB Revision B is
a replacement for Moteivs Revision A design. The main operating conditions and
energy consumptions of TelosB are summarized in Table2.2.

Table 2.1 Energy consumption of several components of the CMUcam3 module

Power state Active current (mA) Idle current Voltage (V)

All active 130 25 5

CPU (60MHz) 30 10µA 1.8

CMOS camera 25 10µA 5

Table 2.2 Typical operating conditions and energy consumptions of TelosB nodes

Min Nominal Max Unit

Supply voltage 2.1 3.6 V

Current consumption: MCU on, Radio RX 21.8 23 mA

Current consumption: MCU on, Radio TX 19.5 21 mA

Current consumption: MCU on, Radio off 1800 2400 µA

Current consumption: MCU idle, Radio off 54.5 1200 µA

Current consumption: MCU standby 5.1 21.0 µA
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2.6 Conclusions

This chapter presented the main architectures for target localization and tracking
in ubiquitous computing systems. They can be coarsely classified into hierarchical-
based and peer-to-peer based. Clustering-based architecture is the most widely used
scheme for localization and tracking.

This chapter also presented a general cluster-based architecture that will be used
as the main conductor of the book. This architecture comprises three basic modules
that dealwith three issues of cluster-based localization and tracking: (1)measurement
integration and estimation, (2) dynamic inclusion/exclusion of nodes from the cluster
and (3) dynamic selection of the cluster head. These three modules are presented
respectively in Chaps. 3, 4 and 5.

The presented architecture is instantiated in three different schemes for tar-
get localization and tracking using: only camera measurements (Scheme1), only
RSSI measurements (Scheme2) and integrating camera and RSSI measurements
(Scheme3).

This section also briefly presented UBILOC, a testbed designed for localization
in ubiquitous computing systems, where the experiments described in this book were
performed.
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Chapter 3
Measurement Integration for Localization
and Tracking

3.1 Introduction

This chapter describes existingmeasurement integration techniques for cluster-based
target localization and tracking in ubiquitous computing systems.

The chapter is divided into four parts. In Sect. 3.2 existing techniques are clas-
sified according to the type of the physical measurement used. There are schemes
based on distance, angle, area or geometric relationships, hop count and neighbor-
hood relationships. Most of them are considered active because they require direct
collaboration with the target being tracked, e.g. interchanging packets. In contrast,
passive techniques are those that do not require any collaboration from the target.

Most localization and tracking schemes in ubiquitous computing systems inte-
grate measurements of the signal strength of incoming packets, the Received Signal
Strength Indicator (RSSI). A wide variety of RSSI-based methods have been devel-
oped adopting different measurement integration techniques. The main methods are
briefly surveyed in Sect. 3.3.

Cameras are also widely employed for target tracking in ubiquitous computing
systems. Camera-basedmethods are usuallymore accurate thanRSSI-basedmethods
but they involve significantly higher computational burden and energy consumption.
Besides, some few schemes integrate RSSI and camera measurements mainly adopt-
ing approaches that switch between the two types of measurements depending on
their availability in order to reduce energy consumption. Section3.4 is devoted to
camera-based tracking methods.

Finally, efficient probabilistic techniques for the distributed integration of multi-
sensor measurements for target localization and tracking are described in Sect. 3.5.

© The Author(s) 2017
J.R. Martínez-de Dios et al., Cluster-based Localization and Tracking
in Ubiquitous Computing Systems, SpringerBriefs in Cooperating Objects,
DOI 10.1007/978-3-662-54761-8_3
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3.2 Classification Attending to the Type of Measurements

Most existing techniques are active in the sense that the targets are assumed tagged
and there is some kind of cooperation between the target and the static—anchor—
nodes. The location of the target is inferred from the measurements of the target
gathered by the anchor nodes, which location is assumed known. According to the
type of physical measurement, tracking techniques can be classified into: distance,
angle, area, hop count and neighborhood relations.

3.2.1 Distance Measurements

A tagged target can be localized and tracked using measurements of the distance it
has to a number of anchor nodes which location is assumed known. Below the main
sensors used in ubiquitous computing systems are summarized.

3.2.1.1 Radio Signal and Link Quality

These techniques rely on the fact that radio signals attenuate as they propagate.
Different radio signal metrics can be used to estimate range. Some of them can be
directly obtained from the hardware of radio modules, requiring negligible compu-
tation overhead, delay or energy consumption. Received Signal Strength Indicator
(RSSI), Link Quality Indicator (LQI) and Signal-to-Noise Ratio (SNR) are some
examples. A survey of link quality estimators can be found in [1, 2].

The radio signal measurement most widely-used in localization and tracking in
ubiquitous systems is RSSI. RSSI relies on the fact that the strength of the radio
signals attenuates with distance. A node receiving a packet can measure its signal
strength (RSSI) and use it to estimate the distance to the emitter. Equation (3.1) shows
a widely used model that relates the received power strength P(d) in dBm based on
the distance to the transmitter [3]:

Pr(d) = P0(d0) − 10np log10

(
d

d0

)
+ Xσ, (3.1)

where P0(d0) is the strength of the transmitter, np is the path loss exponent, that esti-
mates the rate at which the radio strength decreases with distance. Xσ is a Gaussian
random variable with zeromean and standard deviation σ, that represents the random
effect originated by fading. Both np and σ depend on the environment surrounding
the emitter and the receiver. Interactions of the radio signal with the environment
such as reflections, multi-path, shadowing and path-loss effects affect RSSI mea-
surements. Hence, the accuracy of this model depends of the particular conditions
of the environment.
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It is also possible to obtain the RSSI-range model experimentally by fitting using
regression the RSSI and range measurements. In these cases the above model is
simplified, as in [4], which adopts the following expression:

rssi(d) = A log d + B, (3.2)

where A and B are the parameters of the model obtained by regression.
RSSI-based localization and tracking has been extensively researched over the

years. These techniques are energetically and economically inexpensive. However,
interactions of the radio signal with the environment particularly in indoor settings
originate inaccuracies in the model, disturbing the accuracy of RSSI-based localiza-
tion techniques.

Some of the main RSSI-based localization techniques are analyzed in Sect. 3.3.
Two main groups of techniques are discussed: range-based methods, which rely
on RSSI-range models to obtain distance measurements that are integrated using
different approaches; and range-free techniques, which use RSSI measurements to
establish geometric or connectivity relationships.

3.2.1.2 Time of Flight

Time-of-Flight (ToF) sensors compute the range between the target and anchor nodes
using the propagation delay between a transmitter and a receiver, assuming that the
propagation speed is known. They can be further classified between one-way rang-
ing and two-ways ranging methods. The former require synchronization between the
transmitter and the receiver, while the latter measure the delay between the transmis-
sion of a signal and the reception of the response and do not require synchronization
[5]. Besides radio signals, lasers and ultrasounds are very commonly used in ToF-
based localization techniques.

3.2.1.3 Time Difference of Arrival

Time Difference of Arrival (TDoA) techniques take advantage of the combination
of ultrasound/acoustic and radio signals in order to estimate distance by measuring
the time difference between the arrival of these signals. Each node must be equipped
with a speaker and a microphone but synchronization is not required.

The idea of TDoA ranging is simple, see Fig. 3.1. An emitter node transmits a
radio signal, waits a fixed time tdelay and sends an acoustic or ultrasound signal pattern
with its speaker. If a node receives the radio signal, then it registers the current time,
tradio and turns on its microphone. When the receiver detects the acoustic signal, it
registers the current time, tsound . The distance between the transmitter and the receiver
can be computed as:
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Fig. 3.1 TDoA ranging
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Radio Ultrasound/Acoustic

tdelay

tradio tsound

}
d = νradioνsound

νradio − νsound
(tsound − tradio − tdelay), (3.3)

where νradio and νsound are respectively the speed of propagation of radio and sound
signals.

Radio propagation is much faster than sound propagation. Thus, Eq. (3.3) is often
simplified as d = νsound(tsound − tradio − tdelay).

Techniques based on TDoA can achieve high accuracies. For example, works such
as [6] and the cricket system [7] claim accuracies of few centimeters over ranges of
several meters. TDoA techniques require line-of-sight communication between the
transmitter and receiver, which is not always possible in many environments. Also,
each node should be equipped with a speaker and a microphone.

3.2.2 Angle Measurements

Target localization can be inferred from angle measurements using geometry and
trigonometry considerations. Below the main approaches researched in ubiquitous
computing systems are summarized.

3.2.2.1 Angle of Arrival

In Angle of Arrival (AoA) techniques each node gathers the measurement using
radio or microphone arrays, which allows a receiver to determine the direction of
the emitter. The target usually transmits signals that are received by the microphones
of anchor nodes. The angle of arrival is obtained by each node analyzing the phase
between the signal’s arrival in each microphone. AoA techniques, such as [8, 9], can
obtain accuracies of few degrees.

Each node must be equipped with an array of several microphones. Thus, AoA-
based techniques are more difficult to implement in small devices than RSSI-based
techniques. AoA techniques are usually more accurate than RSSI techniques but
have similar accuracies to TDoA techniques.
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3.2.2.2 Camera-Based Techniques

Each node is equipped with a camera. By applying image processing algorithms each
node can measure the angle at which it sees the target in the image.

Sensor network nodes have significant constraints in bandwidth and computa-
tional capabilities. Thus, the cameras connected to the nodes are usually capable of
executing simple image processing techniques so that they can obtain the coordinates
of the target in their image plane. From the node perspective, the camera performs
just as another sensor that provides the angle where the target is observed.

Camera measurements provide passive tracking with accuracies of few
centimeters. Each node should be equipped with a camera. Having a camera active
and processing their images requires significant energy consumption and computa-
tional burden. Efficiency is critical in these techniques. Themain existing localization
and tracking schemes with camera measurements are analyzed in Sect. 3.4.

3.2.3 Area Measurements

These techniques frequently use geometric shapes to represent the links or bounds
between the anchor nodes and the target and, estimate the target location by con-
straining the area where the target can be. The intersection of all overlapping areas
is computed and, its centroid is chosen as the estimate of the target location, see
Fig. 3.2. Depending on how the area is determined, these techniques can be divided
into single-reference area estimation and multi-reference area estimation.

3.2.3.1 Single-Reference Area Estimation

They estimate the target location by overlapping regions computed using the RSSI
measurements interchanged between the target and anchor nodes. These regions can

Fig. 3.2 Localization using intersection of circular (left) and square (right) areas
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have different shapes depending on the type of measurement. In range measurements
these regions are usually circles of radiusRmax or annuliwithminimumandmaximum
radii Rmin and Rmax, respectively. In angle—bearing—measurements, they usually
employ cones within an angular sector (θmin, θmax) and range Rmax. The location of
the target is computed as the centroid of the overlapping regions.

One example of a simple implementation of this approach is the bounding box
algorithm [6]. The bounding box of an anchor node located at (xi, yi) is a square
of edge size di that is centered at (xi, yi). The intersection of bounding boxes can
be easily computed, being suitable for nodes with low computational capabilities.
This algorithm can be implemented in a distributed way but it is highly sensitive to
measurement noise.

3.2.3.2 Multi-reference Area Estimation

One example of this approach is APIT [10], which defines each region by the tri-
angle formed by three anchor nodes. APIT consists of two processes: the triangle
intersection and the PIT test. The target originates a number of triangles created by
three arbitrary anchor nodes. The target decides if it is inside every triangle by the
PIT test. Then, the centroid of the intersection of the triangles that contain the target
is selected as the target location, see Fig. 3.3.

The PIT test is based on a geometric property of triangles: if a triangle is formed
by points A, B and C, one point D is outside triangle ABC if there is a point adjacent
to D that is simultaneously further or closer to points A, B and C. Otherwise, it is
inside the triangle.

3.2.4 Hop Count Measurements

These techniques are based on the fact that if two nodes can communicate, their
distance is lower than R, the maximum radio range. The connectivity information

Fig. 3.3 Localization using
APIT
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defines a graph, in which the vertices are anchor nodes and the edges represent links
between nodes. The length of the shortest path between anchor nodes i and j is the
hop count hi,j. The distance di,j between i and j must be lower than R hi,j.

A better estimate of di,j can be obtained if the expected number of neighbors per
node nlocal is known. Then, instead of using R, the distance of one radio hop can be
estimated as:

dhop = R

(
1 + e−nlocal −

∫ 1

−1
e−(nlocal/π) arccos t−t

√
1−t2dt

)
(3.4)

Thus, the distance between anchor nodes i and j can be estimated as di,j = hi,j dhop.
As demonstrated in [11], Eq. (3.4) is accurate if nlocal is higher than 5 but loses
accuracy if nlocal is higher than 15.

Hop count can be an effective alternative if there are hardware and energy lim-
itations in the nodes but it requires high node density to be accurate. Furthermore,
techniques based on hop count would fail if nodes are not deployed uniformly or in
networks with coverage holes.

3.2.5 Neighborhood Size Measurements

These schemes use simple connectivitymeasurements to obtain the target localization
estimates. The following three methods are summarized: single neighbor proximity,
k-neighbor proximity and ID-CODE.

3.2.5.1 Single Neighbor Proximity

In this basic approach anchor nodes are deployed to avoid or reduce overlapping of
their radio coverage areas. Anchor nodes periodically transmit beacon packets that
contain their identifier and their locations. Then, the target estimates its location using
the locations of the anchor nodes from which it received beacons. Alternatively, if
the target emits beacons, the anchor nodes that receive the beacon locate the target
using its own location.

3.2.5.2 K-Neighbor Proximity

In this case the coverage areas of different anchor nodes overlap. Several anchor
nodes can receive the beacon transmitted by the target. Thus, the target can self-
localize with more accuracy than in the single neighbor approach. If there are k
anchor nodes detected within the range of the target, the target location (x0, y0) can
be computed as:
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Fig. 3.4 Localization based
on k-neighbor proximity.
The red dot represents the
estimated position of the
target, which is computed as
the centroid of the polygon
formed by the anchor nodes

x0 = 1

k

k∑
i=1

xi, y0 = 1

k

k∑
i=1

yi, (3.5)

where (xi, yi) is the location of anchor node i.
The estimated location of the target is the centroid of the polygon formed by the

anchor nodes, as shown in Fig. 3.4.
This approach provides higher accuracy than the simple neighbor approach and

it is also computational efficient. However, taking the centroid of the polygon as the
target estimate can lead to large errors in sparse networks.

3.2.5.3 ID-CODE

ID-CODE [12] also uses the overlapping regions to locate the target but in this case
the deployment of anchor nodes is planned to ensure that each location is covered by
a unique set of anchor nodes. However, as ubiquitous computing systems are usually
composedby a large number of nodes, the planneddeployment is not usually possible,
and the computational burden can be very high.

3.2.6 Discussion

The different types of physical measurements used in localization and tracking in
ubiquitous computing technologies are compared in Table3.1. Some approaches
achieve high accuracy but also involve high cost in terms of hardware, energy con-
sumption or computational burden. Also, some techniques are not very accurate but
they do not require any additional hardware and can be efficiently implemented. Each
approach can be suitable for different cases and applications.

There is not a perfect type of measurement for target tracking. Inexpensive mea-
surements do not provide sufficient accuracy and measurements that provide accu-
racy require expensive additional hardware devices. The combination of different
measurements seems necessary to exploit their synergies.
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Table 3.1 Performance comparison of the approaches using different types of physical measure-
ments

Measurement Hardware cost Comput. burden Accuracy

RSSI Low Low Medium

ToF High Low High

TDoA High Low High

AoA High Low High

Camera-based High High High

Single reference area Medium Medium Medium

Multi reference area Medium High Medium

Hop count Low Medium Medium

Single neighbor Low Low Low

Multi-neighbor Low Low Low

ID-CODE Low High Low

3.3 Localization and Tracking Using RSSI

RSSI is by far the most widely researched and applied measurement in localiza-
tion and tracking in sensor networks. RSSI-based techniques have been traditionally
classified into range-based and range-free methods. In range-based techniques RSSI
measurements are converted to distance and can be integrated to obtain a location
estimate usingmultilateration, least squares, maximum likelihood or usingRecursive
Bayesian Filters (RBFs), among others. Range-freemethods useRSSImeasurements
to establish geometry relations. In contrast to range-based techniques, they do not
need RSSI-rangemodels and hence are not affected by errors or uncertainties in these
models being in general more robust to the influence of the environment. However,
range-free methods have lower intrinsic resolution and in general do not perform as
well as range-based methods.

Most RSSI-based techniques require communication between the target and the
anchor nodes. There are few passive techniques, which in general rely on the distur-
bances in RSSI originated by the presence of the target. For example, [13] presents
a technique to detect the presence of humans using the disturbances in the RSSI
measurements between nodes.

Most RSSI localization measurements can be obtained using different wireless
communication technologies like Bluetooth [14], RFID (Radio-frequency Identifica-
tion) [15], ZigBee [16], UWB (Ultra-Wideband) [17],Wi-Fi [18] orWiMAX (World-
wide Interoperability for Microwave Access) [19]. In general, Bluetooth, UWB and
RFID are intended for WPAN (Wireless Personal Area Network) communications
and for localization in ranges of about 10m, while Wi-Fi and WiMAX are oriented
to WLAN (Wireless Local Area Network) involving localization ranges of about
100m [20].

Below themain RSSI-based localization and tracking techniques are summarized.
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Fig. 3.5 Multilateration in
one example

3.3.1 Multilateration

Multilateration [21, 22] is one of the simplest techniques to estimate the target loca-
tion assuming that range measurements between the target and several anchor nodes
are available. The target measures the RSSI of the packets emitted by anchor nodes.
The target computes its location by the intersection of the circles centered at the
anchors with radii equal to the estimated distances, as shown in Fig. 3.5.

The result of multilateration is a unique position as long as the distance mea-
surements are perfect (noiseless). There are implementations for non perfect RSSI
measurements that analyze target location solutions obtained using pairs of anchor
nodes. Each pair provides two intersections: one correct and one incorrect. All the
pairs will create a set of intersections. The correct solutions distribute in a cluster
that can be easily identified. The final estimation is the mean of the coordinates of
the intersections in the identified cluster.

3.3.2 Least Squares

TheLeast Squares (LS)method iswidely employed to find an approximate solution in
overdetermined systems of equations. LS can be applied to RSSI-based localization
as follows. LetX = [x y]T be the target 2Dposition to be determined andXl = [xl yl]T
the known coordinates of the l-th anchor node l = 1, 2, . . . ,L, where L is the number
of anchor nodes gathering RSSImeasurements from the target. The distance between
the target and anchor node l, denoted by dl, is:

dl =
√

(x − xl)2 + (y − yl)2 (3.6)

Using a new variable, range R, R = x2 + y2 and squaring both sides of Eq. (3.6),
it results:

− 2xlx − 2yly + R = d2l − x2l − y2l (3.7)
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Equation (3.7) can be represented as Aθ = b, where:

A =

⎡
⎢⎢⎢⎣

−2x1 −2y1 1
−2x2 −2y2 1

...
...

...

−2xL −2yL 1

⎤
⎥⎥⎥⎦ , θ = [

x y R
]T

, b =

⎡
⎢⎢⎢⎣
d21 − x21 − y21
d22 − x22 − y22

...

d2L − x2L − y2L

⎤
⎥⎥⎥⎦ (3.8)

Thus, the Least Squares method computes θ̂ as follows:

θ̂ = (ATA)−1ATb (3.9)

The estimated location of the target X̂ = [x̂ ŷ]T can be easily obtained from θ̂. Least
Squares is optimum in case of measurements with Gaussian noise. However, RSSI
noise is not Gaussian [23] and other techniques obtain higher accuracies. Besides,
this technique involves significant burden and can be hardly distributed, constraining
scalability.

3.3.3 MinMax

MinMax [24] is a popular localization algorithm due to its simple implementation.
Anchor nodes measure the RSSI of the packets emitted by the target and estimate
their distance to the target. A pair of horizontal lines and a pair of vertical lines are
drawn around each anchor node at the estimated distance to the target. The estimated
localization of the target is the center of the overlapping area of all the squares,
see Fig. 3.6.

Intuitively, the accuracy is better if the area of the intersection is smaller. Thus, a
certain error is unavoidable even if ranging is perfectly noiseless.

Fig. 3.6 Example of the
operation of the MinMax
algorithm
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3.3.4 ROCRSSI

ROCRSSI [25] is a range-free localization method that relies on the assumption that
RSSI decreases with the distance between transmitter and receiver. Consider a set
of anchor nodes with known locations. Each anchor node receives packets from the
target and from the other anchor nodes. Then, the measurements coming from the
anchor nodes are divided into two sets: the first one, with RSSI values lower than
the RSSI received from the target; and the second, with RSSI values greater than the
RSSI of the target.

The maximum RSSI value in the first set and the minimum RSSI value in the
second one are assumed to be close to the target, defining an inner ring of radius
R1 and an outer ring of radius R2. Other ring pairs are created when other anchor
nodes are considered. The estimated location of the target is the centroid of these
overlapping rings.

An example is shown in Fig. 3.7. Anchor node A reads RSSI values from B, C
and from the target T, as RSSIAB, RSSIAC and RSSIAT . They are ordered as RSSIAB <

RSSIAT < RSSIAC . B is in a first set of anchor nodes and C is in the second set. The
maximum value in the first set is RSSIAB and the distance between A and B is R1.
Similarly, the minimum value in the second set is RSSIAC and the distance between A
and C is R2. The target is estimated to lie between the two circles defined by R1 and
R2. Repeating this process for anchor nodes B and C, the estimated target location
lies in the centroid of the intersection of the rings.

This algorithm is range free. It does not need to estimate the distances among
nodes, but just to compare between different RSSI measurements.

Fig. 3.7 Example of the operation of the ROCRSSI algorithm
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3.3.5 Weighted Centroid Localization

Weighted Centroid Localization (WCL) [26] exhibits high robustness against noise
in RSSI measurements. Although other techniques such as Least Squares (LS) are
optimal in case of measurements with Gaussian noise, the performance of WCL is
better with realistic RSSI measurements.

The target measures the RSSI value of the packets it receives from anchor nodes
j located at known positions Lj. In this method the location of the target node i is
computed using the expression:

Li =
∑n

j=1(ωijLj)∑n
j=1 ωij

, (3.10)

where n is the size of the set of RSSI measurements received by the target and ωij are
weighting factors that depend on the distance between the target i and each anchor j
as follows:

ωij = 1

(Dij)p
, (3.11)

where p is an exponent thatmodifies the influence of distance in theweights. Higher p
gives more relevance to measurements from nearby static anchor nodes. RSSI-range
models become flat—i.e. insensitive—as range increases. The measurements from
distant anchor nodes provide less useful information and are more affected by noise.

In [27] experimental tests to determine the best values of p were performed.
The number of anchor nodes, m, used in the localization technique was also ana-
lyzed. Figure3.8 shows the mean localization errors obtained. A minimum of three
anchor nodes were necessary to obtain reasonable localization errors. The results
also revealed that taking into account distant anchor nodes frequently deteriorates
accuracy. Measurements from distant anchor nodes are often less informative (flatter
RSSI-range curve) and have higher noise level.

3.3.6 Maximum Likelihood

Target localization and tracking are probabilistic problems. The position and veloci-
ties of the target can not be measured directly. The objective of the Maximum Like-
lihood method (ML) [28] is to infer localization adopting a probabilistic approach.
Given the vector of RSSI measurements r = [r1 r2 . . . rn] that the target received
from n anchor nodes with coordinates X = [x1 x2 . . . xn] and Y = [y1 y2 . . . yn], the
ML algorithm computes the a priori probability of receiving ri for each potential
position [xi yi] of the target. ML estimates the target location as the position that
maximizes that probability.
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Fig. 3.8 Evaluation of the effect of p and the number of anchor nodes in WCL

Implementing ML is more complex than other techniques such as WCL or
MinMax, but it minimizes the variance of the estimation error as the number of
measurements grows. However, in most realistic cases the numbers of anchor nodes
are limited and its performance can be unsatisfactory.

3.3.7 Recursive Bayesian Filtering

These techniques require defining a state vector with the target characteristics to be
estimated, typically the target current location and velocity. The objective of Recur-
sive Bayesian Filtering (RBF) techniques is to obtain beliefs of the state that reflect
the knowledge about the state of the target. Probabilistic techniques represent beliefs
through conditional probability distributions. A belief distribution assigns a proba-
bility (or density value) to each possible hypothesis of the state. Belief distributions
are posterior probabilities over state variables conditioned on the available data. We
will denote belief over a state variable xt by bel(xt), which is an abbreviation for:

bel(xt) = p(xt|z1:t, u1:t) (3.12)

Thus, bel(xt) is the probability distribution over the state xt at time t, conditioned
on all past measurements z1:t and all the past control actions u1:t . It is also useful to
calculate a posterior incorporating zt:

bel(xt) = p(xt|z1:t−1, u1:t) (3.13)
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This probability distribution is often referred to as prediction in the context of
probabilistic filtering. bel(xt) predicts the state at time t based on the previous state
before integrating zt , the measurement at time t.

The most general algorithm for calculating beliefs is given by the Recursive
Bayesian Filter (RBF), see Algorithm 1. The RBF is recursive: bel(xt) at time t
is calculated from bel(xt−1) at time t− 1. Its inputs are bel(xt−1) and the most recent
measurement zt . Its output is bel(xt) at time t. Algorithm 1 depicts the step at time t
of the RBF algorithm.

Algorithm 1 The general RBF algorithm.
1: Recursive Bayesian Filter(bel(xt−1), ut, zt)
2: for all xt do
3: bel(xt) = ∫

p(xt |ut, xt−1)bel(xt−1)δx
4: bel(xt) = ηp(zt |xt)bel(xt)
5: end for
6: return bel(xt)

The RBF algorithm has two main stages. In Line 3, bel(xt) is predicted based
on the prior belief over state xt−1 and the control action ut . This step is called the
prediction stage. In localization and tracking the target is not controlled and the
update stage is based only on the previous state xt−1. The second stage is called
the measurement update. In Line 4, the RBF algorithm multiplies bel(xt) by the
probability that themeasurement zt may have been observed. The result is normalized
by η, the normalization constant. The updated belief bel(xt) is returned in Line 6 of
the algorithm.

There are two basic families of tractable approximations of the RBF: Gaussian
techniques, including theKalmanFilters and its derivatives,which assumeaGaussian
probabilistic distribution of the belief; and non-parametric filters, including Particle
Filters, which approximate the belief by a finite number of samples.

3.3.7.1 Kalman Filter

Since its development in the early sixties, KalmanFilters (KFs) have been extensively
researched and applied in different problems. Their success is originated by their
simplicity and robustness. KFs have become one of the most common techniques
used for localization and tracking in ubiquitous computing systems.

KFs are parametric RBFs that implement an optimal estimator that minimizes
the covariance of the estimated error [29]. They represent the Gaussian distribu-
tion of bel(xt) at time t by its mean μt and covariance Σt . These distributions are
Gaussian if the three following properties, in addition to the Markov hypothesis, are
satisfied:
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1. The probability of the next state p(xt|ut, xt−1) is a linear function with additive
Gaussian noise. This is represented as:

xt = Atxt−1 + Btut + εt, (3.14)

where At and Bt are matrices that represent the linear model of the system evolu-
tion. ε is a Gaussian noise with zero mean and covariance Qt .

2. The probability of themeasurement p(zt |xt) is linearwith additiveGaussian noise:

zt = Htxt + δt, (3.15)

where Ht is the matrix that represents the observation model of the sensor. δ is a
Gaussian noise with zero mean and covariance Rt .

3. The initial distribution should be a normal distribution.

In a systemmodeled by Eqs. (3.14) and (3.15) the operation ofKFs is based on two
stages: the prediction stage and the update stage. In the prediction stage an estimate
of the system state for the next instant is obtained. The update stage integrates the
newmeasurements in order to improve the estimation of the state vector. TheKalman
Filter estimates not only the state but also the covariance matrix of the estimation
error, i.e. it provides an estimate of how good the estimation is.

However, the assumptions of linear prediction andmeasurement models and addi-
tive Gaussian noise are not met in many cases. For example, RSSI-range model is
non-linear. The Extended Kalman Filter (EKF) overcomes the assumption of linear-
ity and can be applied in cases where the prediction or the measurement models are
governed by nonlinear functions f and h:

xt = f (ut, xt−1) + εt, (3.16)

zt = h(xt) + δt (3.17)

Function f replaces matrices At and Bt in Eq. (3.14) and h replaces matrix Ht in
Eq. (3.15). However, as f and h are non linear, the estimation is not Gaussian. The
EKF computes an approximation to the estimation assuming that it is Gaussian. The
EKF can behave similarly to the Kalman Filter except that the estimation distribution
is not exact but approximate.

The key idea in the EKF is linearization. Given the non-linear functions f and h,
the linearization of the functions is obtained by Taylor expansion, and the Jacobian
matrices of f and h take the role of A and C:

A = ∂f

∂x
, C = ∂h

∂x
(3.18)
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Fig. 3.9 Operation of the EKF algorithm

Figure3.9 shows the operation of the EKF algorithm. Q is the covariance of the
Gaussian noise of the prediction model and R is the covariance of the measurement
noise. P is the covariance of the error of the state. K is the so-called Kalman gain.

KFs are suitable only for single-hypothesis estimation and Gaussian noise. For
non Gaussian noise or multi-hypothesis problems it is recommended to use non-
parametric RBFs, such as Particle Filters.

3.3.7.2 Non Parametric Bayesian Filters

Particle Filters (PFs) are non-parametric implementations of theRBFs: they represent
bel(xt) by a set of random state samples. Instead of representing the distribution by a
parametric form, PFs represent the distribution by a set of samples drawn from this
distribution. That representation is approximate, but can be suitable for virtually any
probability distribution.

The samples of a posterior distribution are called particles: Xt := x[1]
t , x[2]

t , . . . ,

x[M]
t . Each particle x[m]

t is an instantiation of the state at time t, i.e. a hypothesis of the
state at time t.M is the number of particles in the particle setXt . Ideally, the likelihood
for a state hypothesis xt to be included in the particle set Xt will be proportional to
bel(xt). Thus, the denser a region of the state space is populated by particles, themore
likely it is that the true state falls in this region. This property holds in case of having
an infinite number of particles. With a finite number of particles, the particles are
drawn from a slightly different distribution. In practice, this difference is negligible
if the number of particles is not too small.

The PF algorithm also maintains bel(xt) recursively from bel(xt−1), i.e. PFs con-
struct the particle set Xt recursively from the set Xt−1. PFs are computationally
demanding and their execution can be hardly distributed.
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3.3.8 RSSI Map-Based Algorithms

RSSI map-based algorithms compute the location of the target by comparing the
RSSI measurements they gather with a previously obtained RSSI map. The RSSI
map is built off-line with the RSSI measurements received at certain locations. The
characteristics of the signal propagation in the environment are captured in the RSSI
map. These techniques avoid creating complex signal propagation models. However,
the building of RSSI maps is rather laborious and is not robust to changes in the
environment. There are two main approaches: active and passive.

3.3.8.1 Active

Active RSSI map-based localization and tracking is often called fingerprinting [30].
In fingerprinting a target receives signals from anchor nodes or vice versa, the RSSI
of the signals is measured and compared to a RSSI map in order to estimate its
location.

The building of the RSSI map begins by dividing the area of interest into cells.
The ith element in the RSSI map is:

Mi = (
Bi,

{
aij | j ∈ Ni

})
, i = 1, . . . ,M, (3.19)

where Bi is the ith cell, which center is pi. Vector aij holds the RSSI values measured
from anchor node j and Ni is the set of anchor nodes which signals can be received
in cell i.

The RSSI map can be modified or preprocessed before using it in the location
estimation phase. The objective can be the reduction of the memory requirements of
the RSSI map or the reduction of the computational burden.

Given the RSSI map, the objective of the location estimation phase is to infer
the location of the target from the RSSI received from the target received by several
anchors. In some cases several RSSI samples from the same anchor are collected and
the mean value is used to reduce sensitivity to noise.

In [31] the estimation of the state is performed in a deterministic way, through
the weighted K-nearest neighbor technique. If state x is assumed to be a random
variable, it can also be estimated using a probabilistic technique such as KFs or PFs.

3.3.8.2 Passive

Passive RSSI map-based localization and tracking [32] relies on the fact that radio
signals are affected by changes in the environment. By continuously recording and
analyzing the received RSSI this technique can detect the changes in the environment
and correlate them in order to infer the presence of people and their locations. It has
been used to detect the presence of people in a room and to locate them. The radio
frequency used by the nodes is 2.4GHz. The human body contains more than 70%
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Table 3.2 Comparison of the main RSSI-based localization and tracking techniques

Range based/free Active/passive Burden Accuracy

Multilateration Based Active Low Low

MinMax Based Active Low Low

ROCRSSI Free Active Medium Medium

WCL Free Active Low Low

Maximum
Likelihood

Based Active Medium Medium

Kalman Filter Based Active High Medium

Particle Filter Based Active Very high High

Fingerprinting Free Active High High

Passive RSSI Free Passive High Medium

of water and it is known that the resonance frequency of water is 2.4GHz. Thus, the
human body acts as an absorber attenuating the radio signals.

The basic setting of these methods consists of several pairs of nodes, acting as
transmitters and receivers, deployed in the environment. To build the radio map a
person stands at different points and the signal strength characteristics are recorded.
For every point the signal strength histogram of each pair of nodes is obtained. Based
on the built radio map, a Bayesian inversion-based inference algorithm is used to
compare the radio map with the RSSI measurement vector.

3.3.9 Discussion

In this section some of the main RSSI-based localization and tracking techniques
have been described. Their main characteristics are shown in Table3.2.

The Kalman Filter is one of the most complete techniques because it considers
separately measurement noise and model uncertainties. In fact, it is one of the most
widely used and researched approach. However, Kalman Filters (particularly the
update stage) can not be distributed and all the computational burden has to be
performed by one node.

Even with an efficient implementation the precision of the most accurate RSSI-
based localization technique is not high due to path loss, reflections and other inter-
actions of the radio signals with the environment.

3.4 Localization and Tracking Using
Camera Measurements

Camera networks have been widely used for localization and tracking since
decades. In the last years the integration of low energy CMOS vision chips with pro-
grammable image processing capabilities in ubiquitous computing systems
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originated the so-called Wireless Camera Networks (WCNs). WCNs have the sens-
ing power of traditional camera networks with the flexibility, reconfigurability and
ease of deployment of Wireless Sensor Networks.

Much effort has been devoted to tracking with camera networks that use only
camera measurements [33–38] and combining camera measurements with other
measurements typical in ubiquitous sensor networks such as RSSI [39–42] or TDoA
measurements [43]. Below the main camera measurement integration techniques are
summarized.

3.4.1 Integrating Only Camera Measurements

Different schemes for WCNs have been developed depending on how the camera
measurements are integrated. The most widely-used ones are based on Maximum
Likelihood, Kalman Filters and Particle Filters.

3.4.1.1 Maximum Likelihood

Maximum Likelihood (ML) techniques estimate the state S maximizing a statistical
likelihood function, by computing the state that best matches with the observations:

Ŝ = argmax
S

p(m|S), (3.20)

where m represents the location of the target measured by the cameras in a common
reference frame.

Let pi = [xn,i yn,i] be the location of a point viewed from camera node i. Assuming
a pin-hole model, from pi it is easy to compute mi, the location of the target on the
scenario measured by camera i expressed in the reference frame local of camera i.
Using the transformation matrix of camera i, mi can be transformed to mc

i , which
represents the location of the target measured by camera i in a common reference
frame.

Assume thatmc
i contains errors that can be modeled as Gaussians with zero mean

noise and covariance matrix Covi. Assume that the measurements from different
cameras can be considered statistically independent. In this case the ML technique
estimates the state S fusing the measures mc

i using the expression [44]:

S =
N∑
i=1

Cov−1
i

N∑
i=1

(mc
i Cov

−1
i ) (3.21)

Covi can be decomposed in an eigenvector matrix and an eigenvalue matrix,
Covi = PΛP−1. Matrix Λ can be constructed taking into account that the
eigenvalues, at the diagonal of Λ, are the values of variance of each axis of the
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Fig. 3.10 Simple example of the ML technique

camera local reference frame. The eigenvectors form the columns of the eigenvalue
matrix P. The eigenvectors are orthonormal vectors that represent the axes of the
camera local reference. P and Λ, and thus Covi, can be easily built with the orienta-
tion of camera i and the measurement noise level.

Figure3.10 shows an illustration of ML integrating measurements from two cam-
eras. The probability density distributions of the target location computed individu-
ally by Camera1 and Camera2 are shown in blue color. The resulting probability of
the fused estimation, in red, shows the uncertainty improvement.

InML lack of camerameasurements hampers the intersection in Eq. (3.21), poten-
tially involving high localization errors. These errors can be mitigated by RBFs such
as Kalman Filters.

3.4.1.2 Kalman Filters

Kalman Filters are one of themost commonly-adopted approaches for the integration
of camera node measurements.

In [33] the authors used a Extended Kalman Filter (EKF) that integrates in a
centralized way all the measurements it receives from the camera nodes. In [45] a
centralized EIF for WCN was reported.

A Kalman-Consensus filter for target localization in peer-to-peer networks is
presented in [37]. Its objective is to find a consensus on the state of multiple targets
in a dynamic camera network with possibly overlapping fields of view.

The above schemes are centralized and the whole computational burden is
assumed by the central node (root or CH) preventing scalability and robustness.
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3.4.1.3 Particle Filters

Sequential Monte Carlo techniques, such as the Particle Filters presented in
Sect. 3.3.7, are non parametric filters and can deal with non Gaussian noise and
multi-hypothesis estimation problems. This flexibility is at the cost of significant
computational complexity.

Most tracking algorithms using Particle Filters in sensor networks adopt a
centralized approach, which results in nodes with inhomogeneous resource con-
sumption. Distributed algorithms, such as the Distributed Particle Filter (DPF) algo-
rithm described in [46], address the aforementioned problems by decentralizing the
computation and communication so that a single fusion center is not required. DPF
maintains a local Particle Filter at selected nodes throughout the network. Each local
filter is used both to perform estimation and to implement extensive compression of
localmeasurements for transmission to other nodes. DPFmitigates some of the inher-
ent problems of centralization but requires higher computational and communication
complexity than centralized PFs.

In [35] the authors describe a sensor network scheme for tracking a target in the
presence of static and moving occluders using a network of cameras. The locations
of the static occluders are assumed known, but only prior statistics on the positions
of the moving occluders are available. An auxiliary Particle Filter that incorporates
the information from the occluder is used to track the target.

3.4.2 Integrating Cameras and Other Sensors

Some works combine cameras with other sensors widely used in WSN. RSSI or
TDoA provide range measurements. They naturally complement bearing camera
measurements and have been widely used in WSN localization. Below, some works
integrating both types of measurements are summarized.

In [43] the authors present a system for indoor surveillance that uses WSN nodes
deployed on the ceiling and a pan and tilt camera. Each target carries a WSN node.
The anchor nodes have an in-built ultrasound transceiver set. The anchors commu-
nicate with the listeners using radio and ultrasound signals. The distance between
each anchor and the target is estimated using TDoA. The localization is performed
combining three different steps: Least Squares minimization, Kalman filtering and
outlier rejection. The coordinates of the obtained location are transformed into the
camera coordinate system in order to orientate the pan and tilt unit and track the
target.

In [41] an architecture for cooperation of networked robots in urban areas is
described.The architecture allows the trackingof persons usingWSNnodes and static
cameras. Each target is taggedwith amobile node. A network of static nodesmeasure
the RSSI of the packets they receive from the mobile nodes. The camera network
also tracks the targets. The system uses a decentralized sensor fusion architecture
in which each node employs local information (RSSI measurements and camera
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measurements) to obtain an estimate of the location of the person. Thus, these nodes
share their local estimates to obtain a consistent global estimation.

In [39] a framework based on PFs for tracking employing visual and radio mea-
surements is presented. This approach aims at exploiting the synergies resulting from
the use of both types of measurements. In fact, visual tracking commonly outper-
forms radio localization in terms of accuracy but inefficacy arises in case of occlu-
sions or when the scenario is too large. On the other hand, radio measurements are
unambiguously associated to each target using their identification number. Besides,
the sensing range is larger and the measurements are available in larger areas. This
system enables target localization even where/when either video or radio observa-
tions are missed or not satisfactory. The PF operates using visual measurements or
RSSI depending on their availability. When the target is not visible, an observation
model for RSSI of the target is used to update the prediction of the target position.

In [40] a pedestrian tracking system is presented. The system uses RSSI loca-
tion estimation and conventional visual surveillance. The target tracking algorithm
consists of two parts: a video-based Particle Filtering and a RSSI-based location
estimation. PFs using video can accurately detect and track the targets with the same
or higher accuracy than GPS, but cannot cover the areas outside the scene. On the
other hand, RSSI location estimation has lower coverage constraints, but the location
estimation is not always stable and the accuracy is affected by the environment. This
system combines these characteristics by switching between the two algorithms.
In the area covered by cameras, the system gives priority to tracking using cameras
in order to improve accuracy. In the area not covered by the cameras, RSSI tracking
is given higher priority. Switching occurs at the boundary between both areas.

3.4.3 Discussion

In this section some of the main WCN localization and tracking schemes have been
described. The Table 3.3 summarizes their main characteristics.

Table 3.3 Comparison of the main camera-based tracking schemes in ubiquitous computing
systems

Centralization Burden Accuracy

MLE [44] Centralized Medium Low

EKF [33] Centralized High Medium

EIF [45] Centralized High Medium

Consensus KF [47] Distributed Medium Medium

PF [35] Centralized Very high High

DPF [46] Distributed High High
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Table 3.4 Comparison of the different schemes for localization and tracking that consider camera
and RSSI measurements.

Work Sensors Technique Sensor integration

[43] Cameras/TDoA KF TDoA calibrates
cameras

[41] Cameras/RSSI EIF Fuses all data

[39] Cameras/RSSI PF Switching scheme

[40] Cameras/RSSI PF Switching scheme

The schemes based on Kalman Filters seem to be the most complete. KF-based
schemes require low computational burden and are more accurate than those based
on ML. They also consider separately measurement noise and model uncertainties.
However, KFs are often applied in a centralized way, where all the computation
burden is performed by a single node. Furthermore, with the exception of [45], none
of these schemes employ techniques to improve energy efficiency.

Table3.4 shows the characteristics of the described schemes that consider cameras
and other sensors for localization and tracking in ubiquitous networks.

Work [43] does not integrate both types of measurements. It uses RSSI measure-
ments to help the cameras. Other two, [39, 40], adopt switching schemes that use
one type of measurement or the other depending on their availability but do not take
advantage of the benefits of the joint use of both types of measurements. Only work
[41] integrates both types of measurements.

3.5 Decentralized Bayesian Multi-sensor
Measurement Integration

Recursive Bayesian Filters (RBFs) provide a well-founded statistical framework that
naturally assumes that measurements and models are subject to uncertainty. They
can be used to integrate indistinguishably RSSI and/or camera measurements. They
only need a suitable observation model and the sensor uncertainty for every type of
measurement, see Fig. 3.11.

RBFs include Kalman Filters (KFs) and also Information Filters (IFs), which
present a number of advantages over KFs in localization and tracking in ubiquitous
computing systems.

3.5.1 Extended Information Filter

Information Filters (IFs) implement a parametric RBF that employs the so-called
canonical representation, which is composed of the information vector ξ = Σ−1μ
and the information matrix Ω = Σ−1, where μ and Σ are respectively the mean and
variance of the state. IFs are duals to Kalman Filters (KFs). The prediction stage of
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Fig. 3.11 Top Uncertainty in camera (left) and RSSI (right) measurements. Bottom Overlapping
of uncertainty regions between the measurements from two different cameras (left), between two
RSSI measurements (center) and between RSSI and camera measurements from the same node
(right)

KFs is more efficient than that of IFs but the update stage of IFs are more efficient
than that of KFs [29]. Thus, IFs are significantly more efficient than KFs in case
of using a simple prediction model and high number of measurements. That is the
case in ubiquitous computing systems, where a high number of nodes can be used in
target tracking. Besides, IFs are numerically more stable and are more suitable for
representing lack of information, Ω = 0.

The typical state vector in target tracking considers the current target location and
its local velocities. xt is the system state vector at time t:

xt = [xt, yt, zt, vxt, vyt, vzt]T , (3.22)

where (xt, yt, zt) is the target 3D location at time t and (vxt, vyt, vzt) is the target 3D
velocity.

zi,t is themeasurement vector containing themeasurements taken by anchor sensor
i at time t. If that sensor is a camera, then zci,t is the measurement vector containing
the camera measurements:

zci,t = [xci,t, yci,t, xci,t−1, y
c
i,t−1]T , (3.23)

where xci,t, y
c
i,t are the coordinates of the target in the image plane of camera i at

time t.
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On the other hand, zri,t is the measurement vector containing the RSSI measure-
ments taken by anchor node i at time t:

zri,t = [rssii,t, rssii,t−1]T , (3.24)

where rssii,t is the RSSI measured by anchor node i of the packets it receives from
the target (assumed tagged with a node) at time t. As can be noticed in Eqs. (3.23)
and (3.24), zci,t and zri,t contain also the past measurements at time t-1 in order to
improve the observation of the target velocity.

Like all RBFs, IFs require a prediction model and a observation model. Both
are assumed to be under White Gaussian Noise parameterized by their means and
covariances Rt andQt . For the prediction model we employed a simple linear motion
model to represent local targetmotions.More complexmodels require a priori knowl-
edge of the target motion, which are often unavailable in localization ans tracking
applications:

xt = Axt−1 + εt, A =
[
I T · I
0 I

]
, (3.25)

where εt is a Gaussian noise with zero mean and covariance Rt , I is the 3× 3 identity
matrix and T is the time between two consecutive tracking intervals.

One observation model is required for each type of measurement. The camera
observation model is derived from the pin-hole model, see Fig. 3.12. Assume that Pt

is the location of the target in the global reference frame G at time t. Assume that
pi,t is the projection of the target on the image plane of camera node i expressed in
the local reference frame of camera, Fi, related to G by transformation matrix Ti.

The following observation model for camera i holds:

pi,t = hci,t(Pt) =
[
ti,1

[
Pt 1

]T
/ti,3

[
Pt 1

]T
ti,2

[
Pt 1

]T
/ti,3

[
Pt 1

]T
]

+ δct , (3.26)
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Fig. 3.12 Reference frames used for camera measurements integration
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Fig. 3.13 RSSI-range model obtained using measurements between each pair of anchor WSN
nodes in the UBILOC testbed

where ti,j is the j-th row of Ti. δct is a Gaussian noise with zero mean and covariance
Qc

t . This observation model is nonlinear. The need for its linearization leads to the
use of an Extended Information Filter (EIF), which uses its Jacobian Hc

i,t computed
as follows:

Hc
i,t = ∂hci,t

∂xt
(3.27)

To integrate RSSI measurements the widely accepted RSSI-range model [4] is
adopted:

rssii,t = hri,t(Pt) = a log di,t + b + δrt , (3.28)

where di,t is the distance between the target and node i at time t and a and b are
model parameters. δrt is a Gaussian noise with zero mean and covariance Qr

t .
The default RSSI-rangemodel is assumed known, taken fromworks such as [4] or

measured experimentally. Figure3.13 shows the RSSI-range model obtained using
RSSI measurements between each pair of anchor nodes in the UBILOC testbed.

RSSI-range models are also nonlinear and the EIF uses its JacobianHr
i,t computed

as follows:

Hr
i,t = ∂hri,t

∂di,t

∂di,t
∂xt

(3.29)

3.5.2 Distributed Implementation

Another advantage of IFs over KFs is their natural fit for integrating measure-
ments collected in a decentralized way. Measurement integration in RBFs is per-
formed through the Bayes rule. When represented in logarithmic form, the Bayes
rule becomes an addition. This is the case of IFs, which canonical parameters
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represent probability in logarithmic form. Thus, the measurement update stage in
IFs is achieved by summing up the contributions from different sensors. As a result,
IFs can integrate measurements in arbitrary order and in a fully distributed manner.

This method exploits this property and adopts a distributed implementation. The
cluster head broadcasts the predicted state in the cluster. When a cluster member
receives the packet it takes ameasurement, integrates it by computing its contribution
to the EIF update and transmits the contribution to the cluster head, which only has
to add all the contributions it received in order to recover the updated state.

Algorithms 2 and 3 summarize the distributed EIF at time t assuming that node
i is the cluster head. The EIF prediction for time t + 1 is the last step performed at
time t. It performs first EIFUpdate, and second EIFPrediction.

Algorithm 2 Operations of cluster head i in the distributed EIF.

Require: Ω t , ξt and μt
1: Create UpdateReq with μ̄t
2: Broadcast UpdateReq within the cluster
3: Receive UpdateResp
4: Extract Ω̄j,t from packets
5: Compute Ωt , ξt and μt as in (3.32)-(3.34)
6: Compute Ω t+1, ξt+1 and μt+1 as in (3.35)-(3.37)

Algorithm 3 Operations of cluster member j in the distributed EIF.
1: Receive UpdateReq from the cluster head
2: Extract μ̄t from packet
3: Take measurement zj,t
4: Compute EIF update contribution as in (3.30) and (3.31)
5: Create UpdateResp with Ω̄j,t and ξ̄j,t
6: Transmit UpdateResp

The operation of the distributed EIF is as follows. The predicted state for time t—
Ω t , ξt andμt—is assumed available. It was computed in the last step of the iteration at
time t−1. At time t the cluster head first broadcasts anUpdateReq packet containing
μt . Each cluster member j receiving the packet takes a measurement zj,t from its
sensor and integrates it computing its local information matrix Ωj,t and information
vector ξj,t—its contribution to the EIF update stage:

Ωj,t = HT
j,tQ

−1
j,t Hj,t, (3.30)

ξj,t = HT
j,tQ

−1
j,t [zj,t − hj(μt) + Hj,tμt] (3.31)
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The cluster head—node i—can also sense the target with its sensors. It also takes
a measurement and computes Ωi,t and ξi,t . Next, each node in the cluster mode
transmits an UpdateResp packet to the cluster head with the resulting Ωj,t and ξj,t .

The cluster head receivesUpdateResp packets. The update stage of EIF is additive.
When a timeout expires the cluster head reconstructs the updated state (ξt and Ωt)
by adding the predicted ξt and Ω t to the contributions it received from all cluster
members—and also ξi,t and Ωi,t computed by the cluster head:

Ωt = Ω t + Ωi,t +
∑
j

Ωj,t, (3.32)

ξt = ξt + ξi,t +
∑
j

ξj,t (3.33)

With them the cluster head computes μt :

μt = Ω−1
t ξt (3.34)

Finally, the cluster head computes the predicted state for time t+1 as follows:

Ω t+1 = (AΩ−1
t AT + Rt+1)

−1, (3.35)

μt+1 = Aμt, (3.36)

ξt+1 = Ω t+1μt+1 (3.37)

This method distributes the EIF computational burden among all the cluster mem-
bers. Apart from gathering and integrating its own measurements, the cluster head
only has to add the contributions from all nodes—(3.32) and (3.33)—and to com-
pute the EIF prediction stage, which requires low burden due to the simple prediction
model assumed. As a result, the EIF can be executed almost in constant time regard-
less of the number of cluster nodes, overtaking traditional schemes based on KFs
both in absolute computational burden and in scalability. Besides, each node only
requires information of itself.

3.5.3 Evaluation and Comparison

The general architecture devised in Chap.2 requires a tool to integrate multi-sensor
measurements. The main existing techniques for integration of measurements of
different type in cluster-based schemes are EIFs, EKFs and Particle Filters. The
comparison between the two latter was performed in Sects. 3.3 and 3.4. This section
compares the performance of EKF and of the EIF presented in Sect. 3.5.1.

http://dx.doi.org/10.1007/978-3-662-54761-8_2
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ThedistributedEIFbenefits from the additive nature ofmeasurement integration in
EIFs. The EIF prediction stage, which is independent of the cluster size, is computed
by the cluster head. In the EIF update stage each node computes the integration of its
own measurements: burden is shared among all active nodes. The cluster head is the
node with the highest burden: it computes the EIF prediction and its contribution to
the EIF update. Both are independent of the cluster size and are executed in constant
time.

EKFs cannot be easily implemented in a distributed manner. In centralized
schemes the cluster head receives all the measurements of the cluster nodes and
computes both the EKF prediction and EKF update stages. As pointed out above,
centralized EIFs are more efficient than EKFs in case of using simple prediction
models and high number of measurements. Assuming that the sizes of the state vec-
tor and of the measurement vector are known, it is simple to estimate the number
of operations (float multiplications) needed to complete a full cycle of the filter.
Equations (3.38)–(3.40) show the burden expressed in number of operations (NO)
of the cluster head to implement EKF, centralized EIF and the distributed EIF in
clusters with n nodes:

NOEKF = 468 + 808n (3.38)

NOCEIF = 892 + 392n (3.39)

NODEIF = 892 + 392 (3.40)

The prediction stage requires 468 operations in the EKF and 892 operations either
in the centralized and decentralized EIF. The update stage requires 808 operations
per measurement in the EKF while, in the centralized EIF it requires 392 operations
per measurement. In the decentralized EIF it only requires 392 operations regardless
of the number of measurements. The computational efficiency of the decentralized
EIF and its scalability with the number of cluster nodes is illustrated in Fig. 3.14.

In each iteration in EKF and the decentralized EIF each anchor node gathers one
measurement and transmits it to the cluster head: its computational burden is negligi-
ble. In the decentralized EIF every anchor node has to compute its contribution to the
update EIF stage, which requires 392 operations in each cycle. This computational
burden is constant regardless of the number of cluster nodes.

In the decentralized EIF, the cluster head broadcasts the predicted state μ after
performing the EIF prediction. The predicted state μ is used by each node to inte-
grate its measurement in the distributed EIF update stage. In centralized schemes
cluster members do not need anything from the cluster head. Thus, in every iteration
the decentralized EIF requires the transmission of only one packet more than the
centralized EIF.
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Fig. 3.14 Number of operations performed in the cluster head versus number of cluster nodes

3.6 Conclusions

This chapter summarized the main existing measurement integration techniques for
cluster-based target localization and tracking in ubiquitous computing systems. The
techniques have been classified according to the type of the physical measurement
used.

The main techniques based only on RSSI and only on cameras have been
described. Also, the main techniques that combine RSSI and camera measurements
have been summarized. Most of them rely on using one or the other type of mea-
surement depending on their availability, and in general take only partial advantage
of the synergies between both types of measurements.

This chapter also described the employment ofEIFs for flexibly integrating camera
and RSSI measurements. EIFs provide efficient implementations of RBFs. Dual to
KF, EIFs are computationally more efficient than KFs when dealing with cases that
integrate a high number of measurements and use simple target motion models, as in
localization and tracking problems. Besides EIFs can be easily distributed in schemes
where each node computes its contribution to the EIF update stage. Distributed EIFs
can be executed in almost constant time regardless of the cluster size.

This chapter described the algorithm of the distributed EIF and analyzed its com-
putational burden comparing with KFs and centralized EIFs.
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Chapter 4
Node Inclusion/Exclusion in Cluster-Based
Tracking

4.1 Introduction

Cluster-based target tracking schemes require methods for dynamically
including/excluding nodes in/from the cluster. As the target moves, new nodes are
invited to participate in the cluster so that the target keeps being tracked with the
sufficient accuracy. Also, the measurements from other nodes become useless for
tracking and these nodes should be excluded from the cluster and turned off in order
to reduce energy consumption. In most schemes nodes are active only while they
are within the cluster. Hence, node inclusion/exclusion has critical impact on energy
consumption and also on computational burden and bandwidth.

A significant variety of node selection methods have been reported. Most of them
employ policies that estimate the usefulness of the measurements gathered by the
nodes with the intention of keeping them active only when their measurements are
necessary for tracking. The objective is to reduce the number of active nodes to the
minimum by keeping in the cluster only the nodes that provide useful information
for localization and tracking. This chapter describes the main existing methods and
presents a sensor activation/deactivation technique devised for the general architec-
ture presented in Chap.2.

This chapter is structured as follows. Section4.2 presents the sensor selection
problem and Sect. 4.3 summarizes the main node and sensor selection methods
reported for target tracking. Section4.4 describes the sensor activation/deactivation
technique devised for the architecture presented in Chap. 2. Section4.5 evaluates and
compares the described techniques. Conclusions is the final section.

4.2 The Sensor Selection Problem

The problem of node inclusion/exclusion from clusters is very similar to the well-
known sensor selection problem in case that each node is equipped with only
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one sensor. In this section we adopt this assumption. In the following sections this
hypothesis will be relaxed and multi-sensor nodes will be considered.

Given a set of n sensors S = {S1, ..., Sn}, the objective of the sensor selection
problem is to determine the best subset S′ of k sensors that satisfies the requirements
of one or multiple goals. The best subset is that which achieves the required sensing
accuracy while meeting the resource consumption constraints. Thus, in the sensor
selection problem there is a trade-off between two objectives: (1) to collect as much
information as possible in order to improve sensing and reduce uncertainty and
(2) to reduce the consumption of resources. In sensor nodes most sensor selection
techniques have considered energy as one of the main resources.

The notions of reward and cost are commonly used to model this trade-off. The
reward is the increment in accuracy originated by the measurements gathered by
the selected sensors. The cost is usually taken as the energy expended during the
operation of the sensor nodes. Hence, the cost is often proportional to the number of
active sensors. The objective of a sensor selection technique is to choose a subset S′
of k sensors such that the total utility is maximized while the overall cost is lower
than a certain budget.

Many different criteria have been considered in sensor selection schemes. The
most widely employed are: the residual energy, the required coverage and the type
of information required. Sensors can be selected to perform one specific goal or
multiple goals. These goals can be related to the operation of the network, such
as monitoring by ensuring complete coverage, or can also be more specific and
application-oriented, such as target tracking. In [1] the main existing sensor selection
schemes are classified.

4.2.1 Single and Multiple Mission Schemes

In single-mission schemes a sensor network performs a specific mission repeatedly
over time. The goal is to select the set of sensors such that themission is accomplished
in the most efficient manner.

In [2] the objectives are defined using utility functions and cost models based on
energy consumption. The utility function of a set of sensors depends on the number
of sensors and their location. In [3] a generic framework in which the utility values
of the sensors can be specified is proposed. The goal is to select the sequence of
sensors in order to maximize the total utility function without exceeding the energy
consumption constraint.

In multiple-mission schemes sensor network is considered as a multi-objective
optimization problem. In [4] the goal is to cover the maximum number of targets
with the minimum number of active directional sensors. Covering each target can be
viewed as a different mission. The objective is to dynamically change the orientation
of the sensors in order to cover as many targets as possible, while activating as few
sensors as possible. It is shown that this problem can be formulated as an Integer
Programming problem.
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In [5] the advantages of applying manager-consumer concepts to sensor man-
agement is analyzed. The mission manager allocates budgets to the application. The
consumer places bids to the sensor manager. The sensor manager allocates sensors to
themissions based on these bids. The complexity of themodel hampers its distributed
implementation in ubiquitous computing systems.

4.2.2 Coverage Schemes

The goal is to select the sensors in order to ensure complete coverage of the envi-
ronment. Complete coverage is achieved if every point in the scenario is within the
sensing range of one or more sensors. If there is coverage redundancy, full coverage
can be achieved using only a subset of active sensors while the rest can enter their
sleep mode. This enlarges the network lifetime saving energy. Selection schemes are
used to decide which sensors are to be turned on and for how long. The selection
scheme typically operates in a dynamic manner, for example, if during the operation
a node fails, the selection can be re-executed to restore full coverage.

In [6] the sensor nodes are divided into sets, such that each set is capable of
providing complete coverage of the environment. The objective is to optimally select
which set is active such that the lifetime of the application is maximized and certain
levels of bandwidth and coverage constraints are met. In [6] it was proven that an
optimal solution to this problem can be found using linear programming. If sensors
are mobile (e.g. mounted on robots) a sensor node can move to a new location in
order to fill a coverage hole. Even if a random deployment results in incomplete
coverage, the nodes can relocate in order to ensure full coverage. Similarly, if a node
fails, the network can be dynamically reconfigured to cover the new hole. However,
its main drawback is the difficulty to implement this scheme in a distributed manner.

In [7] a bidding protocol is used for deciding which sensors should move to
cover the holes. Static sensors discover coverage holes in the scenario using Voronoi
diagrams. Each mobile sensor has a cost for serving one hole. The cost is related to
the size of the new hole generated by its movement. The static sensors estimate the
size of the coverage holes and place bids for the mobile sensors accordingly. Mobile
sensors choose the highest bids and move to heal the largest coverage holes.

4.3 Sensor Selection for Target Localization and Tracking

In this case sensors are selected specifically to deal with target localization and
tracking problems. The objective is to activate/deactivate nodes in order to improve
sensing while reducing resource consumption. These schemes can be further classi-
fied according to the approach used in the sensor selection algorithm: (1) schemes
based on the Mean Square Error (MSE), where the aim is to minimize the MSE of
the estimation; (2) dynamic information-driven schemes, where the objective is to
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maximize the information gained after the integration of the newmeasurements; and
(3) entropy-based schemes, where the selection aims at minimizing the entropy of
the estimation. Below the three categories are briefly presented.

4.3.1 Schemes Based on the Mean Square Error

Their goal is to minimize the Mean Square Error (MSE) of the localization and
tracking estimations.

In [8] a node is kept active while its distance to the target is below a certain
threshold. However, proximity does not imply that the sensor is capable of acquiring
information about the target. In Wireless Camera Networks some schemes activate
a camera when the target is estimated to enter its field of view and deactivate it
when it is expected to come out of it [9]. This criterion keeps active many cameras
unnecessarily unless the deployment has been optimized [10].

In [11, 12] several schemes that consider the acoustic properties of the target
in order to estimate the direction of arrival are discussed. They use a global node
selection scheme in order to determine which set of sensors should be active in order
to locate the target. Initially, two sensors not collinear with the target are selected as
the active set. After selecting the initial active set, other sensors are added adopting a
step-by-step approach thatminimizes theMSEof the estimation of the target location.

In [11] the active set is improved by continuously checking if replacing an active
nodewith an inactive onewill result in an improvement in localization accuracy. This
solution requires global knowledge of the sensors location and thus cannot be easily
distributed. The applicability of the scheme is limited to small networks because
it incurs in high computational burden, especially when performing the exhaustive
search to determine the initial set of active sensors. It also requires the interchange of
a large number of packets to obtain a solution, which again constrains its scalability.

4.3.2 Information-Driven Schemes

Information-driven schemes select the nodes that provide the greatest improvement in
the estimate of the target location at the lowest cost. In [13] this is solved considering
an optimization problem defined in terms of the information gain and cost. The goal
is to improve: tracking quality, scalability and resource consumption efficiency.

The scheme selects a node (cluster leader), which becomes active. The initial
selection is performed by considering the predicted location of the target. After
collecting the requiredmeasurements about the target, the leader node selects the next
node that it believes it will be the most informative and transmits its measurements
to it. The new node becomes the leader and this process continues as long as needed
to track the target.
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In order to decide which node is going to be the next leader, the current leader
analyzes the information utility value of different candidate sensors. This value must
be based only on available information such as a sensor’s location, its modality and
the current belief state. The authors adopt a definition of information utility based
on distance. One of the drawbacks of this scheme takes place if the first leader is
not close to the target location, due to an error in prediction. In this case the overall
tracking quality will degrade and the whole process might fail.

A similar scheme is proposed in [14] for target tracking using video-based sensor
networks.Themaindifference from themethoddescribed in [13] is that thiswork con-
siders the initialization cost that nodes encounter when performingmotion segmenta-
tion for target tracking. A set of nodes is selected in each time step such that their total
information utility is maximized while the average energy is constrained by a certain
bound. However, this scheme imposes a high computational burden on the nodes.

4.3.3 Entropy-Based Schemes

Entropy is a widely-used measurement of the uncertainty in a probability distribu-
tion. Several sensor selection techniques use entropy. In [15] the mutual information
about the future state and the current node measurement is used to determine the
information gain of activating different sensors. A greedy approach is used to solve
the sensor selection problem. At each time an unused sensor with an observation that
is expected to yield the maximum entropy reduction of the target location distribu-
tion is selected. This added observation is then used to determine the target location
distribution. Sensor selection is performed until the entropy of the target location
distribution becomes lower than a predefined value that reflects the required target
location uncertainty.

In [16] activation/deactivation is formulated as a decision problem. Several sensor
activation/deactivation actions are possible. The method selects the action that opti-
mizes a greedy cost-reward utility function. Themain problemof this scheme is that it
requires a way to effectively evaluate the expected entropy reduction for the different
candidate sensors. This is difficult to determine without actually retrieving the mea-
surements from the different sensors. Also, this scheme is centralized in the sense that
sensor selection decisions are made by a single node. This is not scalable and incurs
in a high communication overhead which makes it unsuitable in many cases.

Work [17] deals with sensor selection using a heuristic-based technique that effi-
ciently provides a sub-optimal solution instead of finding the optimal solution using
mutual information, which is computationally intensive. Given a prior probability
distribution of the target location and the locations and sensing models of a set of
sensors, this technique selects an informative sensor such that the integration of the
observation of the selected sensors with the prior target location distribution results
in the greatest reduction in uncertainty. This heuristic adds one sensor at a time in
order to reduce the entropy of the target location distribution. Although this solution
is more efficient than [15], it is still centralized which constrains its scalability.
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Table 4.1 Main existing cluster inclusion/exclusion techniques for localization and tracking in
ubiquitous computing systems

Node inclusion/exclusion Criterion Burden Energetic efficiency

[8] Distance Low Low

[9] Field of view Low Low

[11] Estimation MSE High Medium

[13, 14] Information-driven High Medium

[15, 17] Entropy High High

4.3.4 Discussion

The main existing sensor selection schemes are shown in Table4.1. Only activa-
tion/deactivation schemes based on entropy achieve high energetic efficiency reduc-
ing the number of nodes needed in the cluster to track the target. However, these
techniques involve high computational burden and have bad scalability.

4.4 Sensor Selection Using Uncertainty-Based
Decision Making

As concluded in Table4.1 the sensor selection methods that adopt uncertainty-based
decision making approaches achieve the best performance. These methods assume
that in general not all sensors contribute equally to sensing and, in heterogeneous
networks, not all types of sensors consume the same resources. These techniques
activate/deactivate a sensor analyzing the usefulness of its measurements and the
resources it consumes adopting a decision making approach that maximizes the
trade-off between sensing gain and the cost in terms of resource consumption.

This section is divided in four parts. The first one presents a general reward-cost
approach commonly adopted in these techniques. The following two describe cost
and reward models commonly adopted. The final one describes the sensor selection
techniques for different tracking problems: (1) using only camera measurements,
(2) using only RSSI and (3) using both camera and RSSI measurements.

4.4.1 Reward-Cost Analysis for Sensor Activation

Let At be the universe of possible sensor activation/deactivation actions that can be
performed by all the nodes within the cluster at time t . At includes actions in which
one node is commanded to activate/deactivate its sensor. Each action at impacts on
how well the target is sensed at cluster level. This sensing gain is interpreted as a
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reward r(at ), which can be positive if the action reduces the uncertainty of the target
state. The reward can also be negative. For instance deactivating a sensor can increase
the uncertainty about the target state. Also, each action at is associated to a cost c(at )
that reflects the increase in resource consumption originated by the action. c(at ) can
be positive if the action requires higher energy consumption (e.g. activation of one
sensor) or negative, for instance when deactivating a sensor.

These methods select the action at ∈ At that maximizes an utility function
expressed as the difference between the reward and the cost:

J (at ) = r(at ) − αc(at ), (4.1)

where α is a weighting factor.
The objective of the sensor selection technique is to choose the action that max-

imizes J (at ). Long-term optimization allows high flexibility but, on the other hand
its implementation in ubiquitous computing systems involves significant compu-
tational burden. Also, long-term optimization scales badly with the problem size.
Instead, greedy approaches that decide at time t the action that optimizes J (at ) in a
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Fig. 4.1 Top Setting of 5 camera nodes tracking a target in a simulation.Down-left ON/OFF status
of the cameras in case of using a low value of α. Down-right ON/OFF status of the cameras in case
of using a high value of α
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step-by-step basis are easily tractable. They require much lower burden and can be
applied in COTS nodes.

In these techniques each node selects at each time t the action ât that maximizes
J (at ):

ât = argmax
a∈At

(J (at )) (4.2)

ât is performed if J (ât ) > H , where H is an hysteresis devised to avoid ping-pong
effects in sensor activation/deactivation. In cases with H = 0 the action is performed
simply if its reward overtakes its cost. The value ofα establishes the trade-off between
tracking accuracy and energy consumption.

As an example, Fig. 4.1-top depicts an scenariowhere aWireless CameraNetwork
with 5 camera nodes is tracking a target. Figure4.1-down-left shows the resulting
(ON/OFF) status of all the cameras at every time during the simulation when a low
value of α is employed. Figure4.1-down-right shows the results when a high value
of α is used. As expected, low values of the weighting factor α tend to activate many
cameras while high values tend to keep a low number of cameras active. For instance,
with low values of α, Camera2 is active 60% of the experiment but with high values,
it is kept active only 20% of the time. Also, it is easy to notice that some cameras are
more informative than others. For instance, Camera4 is kept active for longer with
both values of α.

4.4.2 Cost Model

c(at ) reflects the resource consumption required to perform action at . Assume that
action at involves only one node, e.g. at =“Activate node j”. The cost for activating
a node should consider: (1) the resources consumed by the node that performed the
action and (2) the currently existing resources in the node that performed the action.
Thus, c(at ) can be expressed as follows:

c(at ) = ccr (at )car (at ) (4.3)

ccr (at ) is the cost of the resources consumed by node j when performing at .
Energy consumption has been considered one of the main resources in ubiquitous
computing technologies. ccr (at ) is often taken as the energy consumed by node j .

car (at ) is the cost of the resources currently available at node j . The goal of
using car (at ) is to distribute resource consumption among the nodes with the highest
remaining resources. The following model has been adopted for car (at ):

car (at ) = 1 + 1

E j,t − Emin
, (4.4)
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where E j,t is the currently available energy at node j and Emin is the minimum
energy for node operation.

It is easy to notice that car (at ) � 1 if the node has high available energy but
car (at ) increases asymptotically as E j,t approaches Emin . Thus, the nodeswith higher
available energy are more likely to be activated.

The cost in case of deactivation actions, e.g. at =“Deactivate node j”, reflects
the saving in resource consumption: c(at ) = ccr (at )car (at ). In this case ccr (at ) and
car (at ) play the same role. The goal of car (at ) is also to distribute energy consump-
tion: the nodes with lower available energy are more likely to be deactivated.

4.4.3 Reward Model

r(at ) reflects the change in sensing after changing the measurements that are inte-
grated for tracking. In general this change will be positive (sensing improvement) for
actions that activate nodes. The reward can also be negative. For instance deactivating
a sensor can increase the uncertainty about the target state.

Sensing improvement can be expressed in terms of the uncertainty reduction about
the target state. In the following the reward of performing actionat =“Activate sensor
m” is evaluated. r(at ) is the expected uncertainty reduction about the target state after
performing at .

Shannon entropy has been considered one of the best and more widely applied
metrics to measure uncertainty [18]. The entropy of an Gaussian statistical distribu-
tion xt can be expressed as:

H(xt ) = 1

2
log |Σt |, (4.5)

where Σt the covariance matrix of the distribution xt at time t .
Using entropy, the reward of action at can be expressed as the reduction in uncer-

tainty resulting from the new measurements, which can be expressed as follows:

r(at ) = H(xnat+1) − H(xatt+1), (4.6)

where H(xatt+1) is the expected entropy at time t + 1 if action at has been performed
and H(xnat+1) is the expected entropy at time t + 1 if no action has been performed.
Using Eq. (4.5) and applying logarithm properties r(at ) can be computed as follows:

r(at ) = 1

2
log

|Σna
t+1|

|Σat
t+1|

(4.7)

The information matrix is the inverse of the covariance matrix. Thus, Eq. (4.7)
can be rewritten as:

r(at ) = 1

2
log

|Ωat
t+1|

|Ωna
t+1|

, (4.8)
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where Ωna
t+1 is the expected information matrix at time t + 1 if no action has been

performed and Ω
at
t+1 is the expected information matrix at time t + 1 if action at has

been performed.
Ω

at
t+1 andΩna

t+1 are computed as follows. Assume that at time t node i is the cluster
head and that T St is the set of non-cluster head nodes that are currently participating
in the cluster.Ωt is the updated informationmatrix.Ω t+1 is the predicted information
matrix computed at time t . We want to estimate at time t the expected reduction in
uncertainty that at will cause at t + 1.

If no action is performed, the updated information matrix for t + 1 can be esti-
mated at time t by adding to Ω t+1, the contributions of the cluster head Ωi,t+1 and
the contributions of the active non-cluster nodes:

Ωna
t+1 = Ω t+1 + Ωi,t+1 +

∑

j∈T St

Ω j,t+1, (4.9)

where Ω j,t+1 is the predicted contribution of node j to the EIF update computed as
follows:

Ω j,t+1 = HT
j,t+1Q

−1
j,t+1Hj,t+1, (4.10)

where Hj,t+1 is the predicted Jacobian for node j computed using μt+1.
Similarly, if action at =“Activate sensor m” is performed, the updated informa-

tion matrix for t + 1 can be estimated as:

Ω
at
t+1 = Ω t+1 + Ωi,t+1 + Ωm,t+1 +

∑

j∈T St

Ω j,t+1, (4.11)

which can be expressed as:

Ω
at
t+1 = Ωna

t+1 + Ωm,t+1 (4.12)

On the other hand, if at is the deactivation of a currently active node (e.g.
at =“Deactivate sensor m” the updated information matrix for t + 1 can be esti-
mated as:

Ω
at
t+1 = Ωna

t+1 − Ωm,t+1 (4.13)

Then, the reward r(at ) can be computed as follows:

⎧
⎨

⎩
r(at ) = 1

2 log
( |Ωna

t+1+Ωm,t+1|
|Ωna

t+1|
)

if at = “Activate sensor m”

r(at ) = 1
2 log

( |Ωna
t+1−Ωm,t+1|

|Ωna
t+1|

)
if at = “Deactivate sensor m”

(4.14)

For computing r(at ) the cluster head has to sum all the contributions and compute
both determinants and the logarithm. All that should be performed for every possible
action in At . An implementation based on entropy could be cumbersome andhave bad
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scalability and involve unsuitable burden for ubiquitous computing systems endowed
with limited computational resources.

Awide variety of metrics have been used tomeasure the uncertainty in a statistical
distribution. Some are based on the covariance matrix and others, on the information
matrix. In [19] a number of metrics based on the determinant, maximum eigenvalues
and trace of the covariance matrix were compared concluding that they all perform
similarly. In the followingwe compute r(at ) using the trace of the informationmatrix,
which provides interesting advantages for cluster-based schemes.

The reward r(at ) from performing action at is the reduction in uncertainty result-
ing from the new measurements. Using the trace of the information matrix as uncer-
tainty metric, Eq. (4.6) can be rewritten as:

r(at ) = tr(Ωat
t+1) − tr(Ωna

t+1), (4.15)

where Ω
at
t+1 and Ωna

t+1 are computed as Eqs. (4.11) and (4.9), respectively. Since
tr(A + B) = tr(A) + tr(B), it is simple to notice that the following expressions
hold: {

r(at ) = tr(Ωm,t+1) if at = “Activate sensor m”

r(at ) = −tr(Ωm,t+1) if at = “Deactivate sensor m”
(4.16)

This method is very interesting in cluster-based schemes. First, it is computational
efficient and suitable for distributed implementation. Each node can efficiently com-
pute the reward of the actions in which it is involved using Eq. (4.16). Each node
transmits to the cluster head the reward and the cost of the actions in which it is
involved. The cluster head only has to select the action at ∈ At that maximizes
J (at ). Besides, the head does not require having any knowledge from any of the
cluster nodes.

Below is an example that illustrates the validity of the trace of the information
matrix as uncertainty metric. Figure4.2 shows three different distributions and their
respective values for both metrics. The first row in Fig. 4.2 shows 3σ plots of the
uncertainty in three different Gaussian distributions. The second row, their respective
information matrices. The bottom row shows the value of both metrics.

Assume that action a12 transforms Distribution1 (shown in Fig. 4.2-left) into
Distribution2 (shown in Fig. 4.2-center). The uncertainty improvement in case
of using entropy as uncertainty metric is r(a12) = 1

2 (log|Ω2| − log|Ω1|) = 2.29.
With the trace of the information matrix, the uncertainty improvement is r(a12) =
tr(Ω2) − tr(Ω1) = 1.9439. Assume that action a13 transforms Distribution1 into
Distribution3 (shown in Fig. 4.2-left). The uncertainty improvement in both cases
are r(a13) = 1

2 (log|Ω3| − log|Ω1|) = 1.4446 using entropy and r(a13) = tr(Ω3) −
tr(Ω1) = 1.0436 using the trace of the information matrix. As expected, the infor-
mation gain in both cases for both metrics is positive. Also, with both metrics
r(a12) > r(a13). Besides, the values of the trace of the informationmatrix and entropy
are consistent.
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Fig. 4.2 Comparison between entropy and the trace of the information matrix as uncertainty metric
in three Gaussian distributions

The reward resulting from action a23, which transforms fromDistribution2 toDis-
tribution3 are r(a23) = 1

2 (log|Ω3| − log|Ω2|) = −0.8095 and r(a23]) = tr(Ω3) −
tr(Ω2) = −0.9003. As expected the information gain for both metrics is negative.

4.4.4 Node/Sensor Activation for Target Tracking

Below four different node/sensor activation/deactivation techniques for cluster-based
target tracking are presented. We assume that at time t any node is at one of the
following tracking modes:

• trackingCH, the node acts as cluster head;
• trackingCM, the node participates in the cluster but not as head;
• alert, the node is not currently participating in the cluster but it is at single-hop
distance from the head and could be included in the cluster at that time if necessary;

• inactive, it is not involved in tracking and cannot be included in the cluster at that
time. Nodes in inactive mode are in a low-power listening state.

All nodes in the cluster that are in modes trackingCH, trackingCM and alert
participate in the computation of costs and rewards of actions in the activation/de-
activation method and transmit their contributions to the cluster head which selects
the action that obtains the highest J (at ).

Any node in the inactive mode changes to alert when it receives a packet trans-
mitted by the cluster head. The transitions between alert and trackingCM are
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Fig. 4.3 Transition model
and action costs in
camera-only activation

Fig. 4.4 Transition model
and action costs in
RSSI-only activation

determined by the activation/deactivation method. The transitions between track-
ingCM and trackingCH are determined by the cluster head selection method that is
presented in Chap.5.

Camera-only activation

Target tracking is performed using only camera measurements. Each node in modes
trackingCH or trackingCM produces camera measurements that are integrated for
target tracking. Nodes in modes alert or inactive do not produce any measurement.
Only one action is possible for each node, see Fig. 4.3-left: to deactivate the camera
if the node is in modes trackingCM and trackingCH; and to activate the camera if
the node is in mode alert.

The reward when activating a node is the information gain obtained by the new
camera measurement. The cost of the resources consumed is ccr (at ) = c2, which is
proportional to the energy consumed by the camera module when it is active.

RSSI-only activation

Target tracking is performed using only RSSI measurements. Only the RSSI mea-
surements from the nodes inmodes trackingCH or trackingCM are integrated. Nodes
in modes alert or inactive do not produce any RSSI measurement. Only one action
is possible for each node, see Fig. 4.4: (1) nodes currently in modes trackingCM or
trackingCH can be put in the alert mode; and nodes currently in alert can be put in
modes trackingCM or trackingCH.

The cost of the resources consumed is ccr (at ) = c1, which is proportional to the
energy consumed by the radio module when it is gathering a RSSI measurement. c1
is often very low and can be considered negligible when compared to c2.

Joint camera-RSSI activation

Target tracking is performed integrating camera and RSSI measurements. Each cam-
era node in modes trackingCH or trackingCM gathers both camera and RSSI mea-
surements. Nodes in modes alert or inactive do not gather any measurements. Only
one action is possible for each node, see Fig. 4.5. Nodes in the alert mode can be
activated and nodes in modes trackingCM and trackingCH can be deactivated.
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Fig. 4.5 Transition model
and action costs in joint
camera-RSSI activation

Fig. 4.6 Transition model
and action costs in gradual
camera-RSSI activation

The reward when changing from alert to trackingCM is the information gain
obtained by the new camera and RSSI measurements. The cost of the energy con-
sumed is the energy consumed by the newly activated camera and radio module:
ccr (at ) = c1 + c2.

Gradual camera-RSSI activation

Target tracking is performed integrating camera and RSSI measurements. This
scheme is motivated by the high differences in energy consumption of cameras
and nodes. This scheme allows higher flexibility than joint camera-RSSI activation.
Nodes in the TrackingCM mode can be in modes: Active, in which the node gathers
camera and RSSI measurements; or CameraOff, in which the camera is off and then-
ode takes only RSSI measurements. Besides, nodes can be also in alert and inactive
modes. In the alert mode, the node does not take any measurement but it is active.
In the inactive mode the node is in low-energy mode.

Figure4.6-left depicts the mode transition model adopted in this scheme. A node
at mode CameraOff can be commanded to activate its camera (Action2) or can
be fully deactivated (Action3). Each action involves different rewards and costs,
see Fig. 4.6-right. c2 is the energy consumption of the camera module. The energy
consumption incrementwhen changing fromalert toCameraOff is c1.Negative costs
mean energy savings when stopping gathering camera and RSSI measurements.

4.5 Evaluation and Comparison

This section evaluates and compares different node inclusion/exclusionmethods. The
objective is to evaluate the node activation/deactivation module of the architecture
in Chap.2.

The impact of the node activation/deactivation module can be better analyzed
when the module is integrated in the full schemes presented in Chap. 2. All the
experiments shown in this section were performed adopting the distributed EIF
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Fig. 4.7 Setting and result of the camera-only tracking in an experiment: ground truth is the solid
blue line and the resulting estimated location is the red line. The optical axis Z of every camera is
represented in the XY plane

presented in Sect. 3.5 as themeasurement integration (Module1). In all these schemes
the cluster head was selected as the closest node to the target estimated location.

The experiments were performed in the Ubiquitous Localization Testbed
(UBILOC) presented in Chap. 2. A total of 21 camera-nodes with different orienta-
tions have been deployed on the ground (35cm height), see Fig. 4.7.

Each camera node is composed of a TelosB WSN node and a CMUcam3 mod-
ule. TelosB and CMUcam3 can be configured in different modes. Table4.2 shows
the energy consumptions for each mode reported by datasheets [20, 21]. Nodes in
trackingCH always have the camera and TelosB on. Those in trackingCM have the
camera on but the TelosB radio module is off when not necessary. Nodes in alert
have the camera off. Nodes in inactive are in standby but they randomly wake up,
take an image and process it to detect targets, which requires having the camera and
TelosB active 4% of the time.
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Table 4.2 Energy consumption of TelosB and CMUcam3 in different modes

Devices operation Current (mA) Voltage (V)

CMUcam3 ON (all modules) 130 5

CMUcam3 OFF 0 5

TelosB MCU ON/radio RX 23 3

TelosB MCU ON/radio OFF 2.4 3

TelosB MCU
standby/radioOFF

0.021 3
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Fig. 4.8 Average tracking error and energy consumption for α = [500 − 4500]. For each value of
α the figure represents average values of 100 different tracking scenarios

4.5.1 Evaluation of Camera-Only Activation

The camera-only activation technique selects at each time t the action that achieves
the highest value of the gain-cost utility function. α is used to weigh gain and cost
in J (at ). Figure4.8 analyses the influence of α on tracking performance. For each
value of α the figure shows the average tracking error and the energy consumption in
100 different simulations with randomly deployed cameras. As expected, α balances
between the tracking error and the energy consumption. α = 1500 showed a good
balance and it was used in all simulations and experiments.

The objective of this section is to compare the described activationmethod against
other methods. Hence, all of them use the same measurement integration method
(distributed EIF) and the same cluster selection method, which assigns as cluster
head the node that is located closest to the target estimated location.

The following compares two versions of the described camera activation mech-
anism. V1 considers actions that affect only one node. V2 includes also compound
actions that involve two nodes at the same time. Figure4.9 compares the average
tracking error and energy consumption in 300 random simulations, only 100 are
shown for clarity.
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Fig. 4.9 Comparison betweenV1 andV2: top average error and bottom average energy consumption

Method V2 achieved an average tracking error 8% lower than V1 and both con-
sumed almost the same energy. Figure4.9 is zoomed for better visualization. The
universe of actions in method V2 includes that in V1. Thus, the actions selected in
V2 will be at least as good as those selected in V1. However, V1 and V2 have high
burden differences. In a cluster with N nodes in modes trackingCH, trackingCM and
alert, the size of the action universe for A1 is N − 1, whereas the action universe for
V2 is N (N − 1)/2. Their burden is proportional to the action universe size. Thus, V2
requires N/2 timesmore burden thanV1. Hence,V1 is preferred due to its scalability.

Next, the described camera-only activation technique (V1) is compared to other
reported camera activation techniques. In V3, each camera node is kept active while
it senses the target—as e.g. in [9]. In V4 a camera is kept active if it senses the target
and if its distance to the target is below a value. Figure4.10 compares the tracking
error and the energy consumed in V1, V3 and V4 in 100 scenarios.

V3 and V4 integrate a higher number of measurements. They achieve the lowest
mean error but the highest mean energy consumption. The average error for V1 was
21.53cm, higher than V3, but still suitable for most applications, and its energy
consumption was 252.12 J, 65.47% lower than V3 and 42.41% lower than V4. V1
activates only the nodes that contribute more to sensing, leaving the rest inactive.
The balance between tracking error and energy consumption can be set modifying
α as shown in Fig. 4.8.
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4.5.2 Evaluation of RSSI-Only Activation

In this scheme only the RSSI measurements from the nodes in modes trackingCH
or trackingCM are integrated in the distributed EIF. Nodes in alert mode also inter-
change packets within the cluster but their RSSI measurements are not integrated in
the EIF. Only one action is possible for each node. Nodes in mode trackingCM can
be put in mode alert and nodes in mode alert can be put in mode trackingCM. In
this case deactivating a node does not turn off its radio module, it only implies that
its RSSI measurements are not integrated in the EIF. Due to the high noise levels
of RSSI measurements, the lowest localization uncertainty is not always obtained
integrating as many measurements as possible. Using measurements from the most
informative nodes usually obtains significantly lower uncertainty, as it will be shown
in the following.

Next the described RSSI-only activation technique (called V5) is compared to
V6, a technique in which the measurements of all the nodes that sense the target are
integrated in the EIF. The experiment is similar to that in the previous subsection. It
uses the same settings and includes simulations with 100 random settings. Also, both
use as cluster head the node that is located closest to the target estimated location.

Figure4.11 compares the performance of V5 and V6. The energy consumption
is very similar in both, as expected. However, they differ in the average number of
active nodes and in the average tracking error. V6 activates almost all the nodes in
this setting, its average number of active nodes is 18.56. On the other hand, V5 only
needs to keep active an average of 9.72 nodes, 50% less than V6. The mean tracking
error in V6 is 211.7cm while in V5 is 181.8cm, 14.1% lower, but in some cases the
use of the activation/deactivation method improves tracking accuracy in 25%.
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Fig. 4.11 Mean tracking error in V5 and V6. Energy consumption is the same in both cases and it
is not shown

Table 4.3 Evaluation and comparison of technique V1, V7 and V8

V1 V7 V8

Mean error (cm) 21.53 21.82 22.22

Average number of active cameras 4.59 3.11 2.56

Average number of RSSI measurements – 3.11 3.38

Average energy (J) 252.5 172.9 147.9

V5 integrates measurements from fewer nodes but achieves lower tracking error
than V6. RSSI measurements have high noise levels and this noise is not Gaussian.
The integration of measurements gathered by distant nodes can degrade tracking
accuracy. V5 overcomes this problem because distant nodes do not usually achieve
enough information gain to be activated.

4.5.3 Evaluation of Joint Camera-RSSI Activation

Theadopted camera-RSSI activation technique is evaluated in the context ofScheme3,
presented in Chap.2. These experiments assume that the measurement integration
adopted (Module1) is the EIF and that the cluster head selection method used
(Module3) chooses as cluster head the closest node to the target estimated location.

Only one action is possible for each camera node: activate the full node, which
involves gathering camera and RSSI measurements, or deactivate the node. The
method with joint camera-RSSI activation is called V7. It is also compared against
the gradual camera-RSSI activation, calledV8, which is described in the next section.
Table4.3 and Fig. 4.12 compare the performance of V7 against V1, which integrates
camera-only measurements. A total of 100 experiments in random settings were
performed.

The mean tracking error is similar in both (difference is lower than 1%), but they
differ in the average number of active nodes and in the average energy consumed.
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Fig. 4.12 Mean energy consumption in techniques V1, V7 and V8. Tracking error is very similar
(difference lower than 1%) and is not shown

The joint use of cameras and RSSI measurements in V7 achieves similar tracking
error to V1 but consumes 32% less energy and requires activating 33% less nodes.

4.5.4 Evaluation of Gradual Camera-RSSI Activation

The scheme with gradual camera-RSSI activation technique will be called V8.
Table4.3 and Fig. 4.12 compare the performance of V8 against V1, the camera-

only activation technique, and V7, the joint RSSI-camera activation technique. The
mean localization error is similar in both techniques (difference is lower than 1%)
but they differ in the average number of active nodes and in the average energy
consumed. V8 achieves similar tracking error to V7 and V1 activating less cameras.
V8 uses the same number of RSSImeasurements but 18% less camerameasurements.
Since the consumption of nodes in CameraOff mode is significantly lower than the
consumption of nodes in Active, V8 consumes 15% less energy than V7 and 42%
less than V1.

In V8 it is possible to integrate independently RSSI measurements and/or camera
measurements from the same node. This enables flexible behaviors in which the
camera of some nodes are turned off since camera measurements are energetically
expensive while their RSSI measurements are integrated in the distributed EIF. This
flexibility enables significant energy consumption savings.

4.6 Conclusions

This chapter deals with node inclusion/exclusion techniques that determine actua-
tions in order to optimize the trade-off between performance and energy consump-
tion in cluster-based tracking. Nodes are kept turned on only while they are within
the cluster. Hence, these techniques have significant impact on energy consumption
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enlarging network lifetime by keeping active only the sensors with positive sensing-
consumption balance.

This section describes the main approaches used to address the sensor selec-
tion problem. The techniques used by existing works to activate/deactivate nodes
in cluster-based tracking have been briefly analyzed. A number of techniques for
these schemes have been developed. However, they were designed for traditional
camera networks and for WSNs but not for WCNs characteristics, capabilities and
constraints.

This chapter also presented a sensor activation/deactivationmethod that addresses
the sensor selection problem by choosing the action that optimizes a greedy crite-
rion based on the sensing-consumption trade-off. Four different techniques of the
activation/deactivation method have been presented depending on the type of mea-
surements gathered by the sensors and integrated for target tracking: (1) camera-only
activation, (2) RSSI-only activation tracking, (3) joint camera-RSSI activation and
(4) gradual camera-RSSI activation.

The presented methods adopt an optimal probabilistic approach. They use the
trace of the information matrix as uncertainty metric, enabling efficient distributed
implementation and integration with the EIF adopted for measurement fusion, see
Chap.3. In the experiments and simulations performed these methods significantly
reduced computational burden, energy consumption and improved scalability.
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Chapter 5
Cluster Head Selection for Target Tracking

5.1 Introduction

The performance of cluster-based target tracking highly depends on which node acts
as cluster head. This chapter deals with cluster head selection. The objective is to
improve tracking performance selecting which of the nodes in the cluster is the most
suitable to perform the cluster head role.

Various cluster head selection techniques have been developed. Some of them
employ criteria based on the proximity to the target estimated location. However, the
node that collects more information about the target is not necessarily the closest to
the target. Others use information-driven criteria trying to optimize the improvement
in the estimation of a target location at the lowest cost. Others intend to homogenize
energy consumption and rely on criteria based on energy since cluster head nodes
consume significantly more resources than non-head nodes. However, these criteria
do not reduce the overall energy consumption of the network.

This chapter summarizes the main existing cluster head selection techniques and
presents a cluster selection technique for the architecture described in Chap. 2.

The outline of this chapter is as follows. The cluster head selection problem is
described in Sect. 5.2. A method based on information gain is presented in Sect. 5.3.
The described method is briefly evaluated in Sect. 5.4.

5.2 The Cluster Head Selection Problem

Tracking performance strongly depends on which node acts as cluster head.
Figure5.1 shows a simple example. Nodes A, B and C actively participate in a
cluster, tracking a target. Node D is in alert mode. The rest are inactive. Assume
that links A − B and A − C have high Packet Reception Rate (PRR). If node A is
selected as the cluster head, it will receive—and integrate—with high probability

© The Author(s) 2017
J.R. Martínez-de Dios et al., Cluster-based Localization and Tracking
in Ubiquitous Computing Systems, SpringerBriefs in Cooperating Objects,
DOI 10.1007/978-3-662-54761-8_5
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Fig. 5.1 Cluster head
selection example

the measurements from B and C , or EIF update contributions in case of using the
distributed EIF presented in Sect. 3.5. Assume that link B −C has low PRR. If node
B is the cluster head, it will receive with high probability the contributions from
A but not those from C . Thus, if node A is the cluster head, it will integrate more
measurements than if B is head, resulting in general in a more accurate estimation.
Also, when combined with a node activation/deactivation mechanism, if node B is
head it will naturally tend to reduce uncertainty by activating other nodes, such as D.
Bad cluster head selection involves higher estimation uncertainty and higher resource
consumption.

Various cluster head selection techniques have been developed. Below the main
existing methods are summarized.

Cluster-head selection can be interpreted similarly to the node activation/
deactivation problem. In the latter the problem is to select the modes of the nodes
between active and inactive. Now, the problem is to decide on the role of the node—
cluster head or not.

Some techniques address cluster head rotation using simple criteria that can be
easily obtained by the network. For instance, a number of techniques assign the
cluster head role to the node that is the closest to the target estimated location, see
[1]. These methods assume that the closest nodes will gather more information about
the target than distant nodes. However, the node that collects more information about
the target is not necessarily the closest to the target.

Other approaches employ dynamic information-driven methods, where the objec-
tive is to maximize the information gain. In [2] an information-driven cluster head
selection technique for target tracking is proposed. They consider the problem of
selecting the node that provides the greatest improvement in the estimate of the tar-
get location at the lowest cost. This is solved as an optimization problem defined in
terms of information gain and cost. The goal is to improve: detection and tracking
quality, scalability and resource usage. The initial selection is performed by consid-
ering the predicted location of the target. After collecting the measurements of the



5.2 The Cluster Head Selection Problem 75

target, the cluster selects the next node that it believes is the most informative and
transmits its measurements to it. One of the drawbacks of this technique is that if the
first cluster head is not close to the target location, due to an error in prediction, the
overall tracking quality will degrade and the whole process might fail.

Some techniques intend to homogenize energy consumption and rely on criteria
based on energy [3] since cluster head nodes consume significantly more energy than
non-head nodes. However, this criterion is not useful to improve sensing or to reduce
the overall energy consumption.

5.3 Cluster Head Selection Based on Information Gain

This section describes an efficient method that selects as cluster head the node that
can obtain the lowest uncertainty integrating the measurements of the nodes already
participating in the cluster. It can be implemented in distributed schemes in constant
time since the burden of the method is shared among all cluster nodes. It is suitable
to be integrated in the architecture presented in Chap.2.

This method estimates how well each node within the cluster will perform if it
is selected as cluster head. The goodness of node i as cluster head can be measured
using EUi : the estimated effective uncertainty about the target at time t + 1 if node
i is selected as cluster head. Assume that at time t , St is the set of active nodes
in the cluster. If node i is selected as the new head, at time t + 1 it will receive
measurements—or EIF update contributions—from nodes j ∈ St and the updated
information matrix will be as follows:

Ωt+1 = Ω t+1 +
∑

j∈St
Ω j,t+1 (5.1)

This expression assumes that the contributions of each node reaches the clus-
ter head. Transmission errors in ubiquitous computing technologies cannot be
disregarded. Recalling the distributed measurement integration implementation in
Chap.3, the contribution from node j reaches the cluster head (i.e. node i) if node
j receives the UpdateReq packet and if the response from node j in a UpdateResp
packet reaches the cluster head. Assuming both events are statistically independent
and assuming symmetric Packet Reception Rate (PRR) the probability that the con-
tribution from node j reaches the cluster head is p2j,i , where p j,i is the PRR between
node i and j .

For cluster head selection we also adopt the trace of the information matrix as
uncertainty metric, as we did in Chap.4. In this case EUi is computed as follows:

EUi = tr(Ω t+1) +
∑

j∈St
p2j,i tr(Ω j,t+1), (5.2)

where p j,i is the PRR between node j and node i .
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Recalling from Chap.3, Ω t+1 is known by the cluster head. Hence, it is not
transmitted and not affected by p2j,i . The cluster head also provides its contribution
Ωi,t+1 but of course pi,i = 1. The best head is the node that maximizes EUi :

CL = argmax
i∈St

(EUi ) (5.3)

Ω t+1 is independent of i and hence Eq. (5.3) is rewritten as:

CL = argmax
i∈St

⎛

⎝
∑

j∈St
p2j,i tr(Ω j,t+1)

⎞

⎠ (5.4)

If EUCL > 0 and CL is not the current cluster head, it is advantageous to change
the head. In this case the old head transmits to the new one Ωt and μt , all it needs to
keep with the cluster head role.

The algorithm of the method is shown in Algorithm4. This method prioritizes
nodes that are well communicated with the cluster members. Badly communicated
nodes are not likely to be selected as clusters. If all the nodes have similar PRR, it
favors the nodes that contribute more to the target estimation. This method is efficient
and suitable for distributed implementation. Each node j computes individually p j,i

and tr(Ω j,t+1) and transmits them to the cluster head, which efficiently selects CL
using Algorithm4. The cluster head does not require to have any knowledge from
any node: nodes transmit to the cluster head everything it needs to determine the new
cluster head.

Algorithm 4 Cluster head selection
Require: p j,i , tr(Ω j,t+1) ∀ j, i ∈ St
1: for i = 1 → St do
2: ugi = ∑

j∈St p
2
j,i tr(Ω j,t+1)

3: end for
4: CL = argmax

i∈St
(ugi )

5: if (EUCL > 0) then
6: Assign CL as the new cluster head
7: end if

5.4 Evaluation

This section evaluates and compares the presented cluster head selectionmethod. The
impact of the method can be better analyzed when integrated in the full cluster-based
target tracking schemes presented in Chap.2. These experiments were performed
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Fig. 5.2 Result of Scheme1 in a real experiment in the X − Y plane (top) and in axes X and Y
(bottom)

taking the distributed EIF presented in Sect. 3.5 as the measurement integration
in Module1 and the sensor activation/deactivation method presented in Chap.4 as
Module2.

The experiments were performed in UBILOC, the localization testbed presented
in Chap.2. Figure5.2-top shows the result of Scheme1 in one experiment. The ground
truth is in solid line and the estimated locations, in dashed. The average error was
21.91cm. The average tracking error in axes X and Y was 15.85cm and 19.42cm,
respectively. Figure5.2-bottom shows the results obtained for axes X and Y between
t = 150 s to t = 250 s.

This section analyzes and compares the adopted cluster head selection method.
C1 is the presented method. C2 is a method that selects as cluster head the closest
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Fig. 5.3 Performance of C1 and C2 in 100 experiments in random scenarios: top average tracking
error and bottom average energy consumption

active node to the target estimated location. The performance of C1 and C2 in 100
experiments in random scenarios and many different target trajectories is shown in
Fig. 5.3.

C1 achieved a tracking error 8.06% lower than C2: 20.18cm against 21.95cm.
The average energy consumptions differed in less than 0.2%. Also, the fluctuations
of the performance ofC1with the scenario are lower withC1 than withC2. Although
the advantages of C1 over C2 are not high, performing C1 requires very low effort.
There is not need to compute p2j,i and tr(Ω j,t+1), since they were computed for the
sensor activation/deactivation module.

5.5 Conclusions

This chapter deals with cluster head selection techniques. The tracking performance
highly depends on which node performs the cluster head role. The objective of these
techniques is to select which of the nodes in the cluster is the most suitable to take
the cluster head role.

Existing techniques performcluster head selection using criteria such as proximity
based on the idea that the cluster head should be well connected to all the cluster
members. Others use criteria based on energy consumption homogenization since
cluster head nodes consume significantly more resources than non-head nodes.

This chapter also presented a method that selects as cluster head the active node
that can expectedly obtain the lowest tracking uncertainty integrating the measure-
ments from the currently active nodes. This method takes into account the Packet
Reception Rates between the nodes and use uncertainty metrics based on the trace
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of the information matrix to analyze all the active nodes and select the most suitable
as cluster head.
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Chapter 6
Conclusions

Target localization and tracking are critical in ubiquitous computing systems and
technologies. Although localization and tracking in outdoors have been significantly
improved in the last years due to thewide adoption of GPS, in indoors they still attract
significant R&D interest. A very high variety of localization and tracking approaches,
techniques and technologies have been developed in the recent years. However, none
of the proposed sensors, techniques or systems is ideal for all the problems and the
selection of the method highly depends on the specific requirements and constraints
of the application and of the environment.

Clustering is the most widely employed and researched approach in target local-
ization and tracking in ubiquitous computing systems. Clustering naturally solves
scalability and simplifies computation and communications. Besides, it is resource-
efficient since only the nodes that participate in target localization and tracking are
kept active and the rest are left inactive in lowenergymode.Cluster-based localization
and tracking systems should deal with three main tasks: measurement integration,
node inclusion/exclusion in the cluster and selection of the cluster head.

This book summarized the current state of the art in cluster-based localization and
tracking in ubiquitous computing systems. It presented the main architectures, tech-
niques and technologies. This book also summarized the main existing techniques
that deal with these three issues: measurement integration, node inclusion/exclusion
and cluster head selection.

This book also presented a general architecture for cluster-based tracking. The
architecture comprises modules that deal specifically with the three aforementioned
issues. The book also briefly presented different distributed information-driven tech-
niques suitable for each of these issues. All these techniques are fully distributed
and require the active cooperation of all the nodes within the cluster. They use
distribution-friendly tools and metrics, are efficient in the consumption of energy
and computational resources and can be executed in almost constant time regardless
of the cluster size.

© The Author(s) 2017
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The techniques and schemes described in this book should be interpreted as a step
in a longer-term research effort. The developed techniques and schemes and their
operation in real applications open new questions and new research lines that still
have not been sufficiently covered.

Cluster-based schemes naturally fit multi-target tracking since each target has its
own cluster. However, the presence of several targets requires methods and schemes
that specifically address target cross-tracking, cluster collisions and cluster merging,
among others. Although some techniques have been proposed, they are too specifi-
cally suited to specific problems. The development of flexible, general and efficient
techniques to solve these issues opens wide fields for research.

Multi-target multi-sensor localization and tracking requires techniques to solve
the association of measurements. Association of RSSI and camera measurements
can be addressed for instance using face recognition techniques to identify people or
tagging the targets with visual markers that can be detected using computer vision.
Also, some measurement association techniques based on voting and establishing
local associations using different distance metrics have been developed. However,
these solutions are usually very suited to the particular problem and the general data
association problem is still far to be solved.

A real-world application has to be reliable and secure. Most of the developed
techniques do not consider techniques or protocols to ensure packet delivery or to
encrypt the data exchanged. For instance, the loss of packets that notify the decisions
taken by the node inclusion/exclusion or cluster head selection methods can involve
severe degradation in tracking performance. Lightweight protocols that ensure and
confirm the reception of these packets should be implemented. On the other hand,
the deployment of sensor nodes in an unattended environment makes the networks
vulnerable to a high variety of potential threats. It is of high relevance to protect the
network and ensure data integrity and confidentiality. Of course, the integration of
such techniques can affect the performance of the system, increasing the computa-
tional burden and the number of interchanged packets. Therefore, a suitable trade-off
between security and performance must be sought.
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