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Abstract. A crucial step in model checking Markov Decision Processes
(MDP) is to translate the LTL specification into automata. Efforts have
been made in improving deterministic automata construction for LTL
but such translations are double exponential in the worst case. For model
checking MDPs though limit deterministic automata suffice. Recently it
was shown how to translate the fragment LTL\GU to exponential sized
limit deterministic automata which speeds up the model checking prob-
lem by an exponential factor for that fragment. In this paper we show
how to construct limit deterministic automata for full LTL. This trans-
lation is not only efficient for LTL\GU but for a larger fragment LTLD

which is provably more expressive. We show experimental results demon-
strating that our construction yields smaller automata when compared
to state of the art techniques that translate LTL to deterministic and
limit deterministic automata.

1 Introduction

Markov Decision Processes (MDPs) [4,19,23] are the canonical model used to
define the semantics of systems like concurrently running probabilistic programs
that exhibit both stochastic and nondeterministic behavior. MDPs are inter-
preted with respect to a scheduler that resolves the nondeterminism. Such a
scheduler chooses a probabilistic transition from a state based on the past
sequence of states visited during the computation. When undesirable system
behaviors are described by a formula ϕ in linear temporal logic (LTL), qualita-
tive verification involves checking if there is some (adversarial) scheduler with
respect to which the measure of paths satisfying ϕ is non-zero. Model checking
algorithms [4] in this context proceed by translating the LTL requirement ϕ into
an automaton A, taking the synchronous cross-product of the MDP model M
and the automaton A to construct a new MDP M ′, and finally, analyzing the
MDP M ′ to check the desired property. The complexity of this procedure is
polynomial in the size of the final MDP M ′, and hence critically depends on the
size of automaton A that results from translating the LTL specification.
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MDP model checking algorithms based on the above idea require the trans-
lated automaton to be of a special form as general non-deterministic automata
are not sufficient. The Büchi automaton has to be either deterministic or deter-
ministic in the limit — a Büchi automaton is deterministic in the limit if every
state reachable from an accepting state has deterministic transitions1. Limit-
determinism is also sometimes referred to as semi-determinism. Deterministic or
limit deterministic automata for LTL formulae can be constructed by first trans-
lating the formula into a nondeterministic Büchi automaton, and then either
determinizing or “limit-determinizing” the machine. This results in an automa-
ton that is doubly exponential in the size of the LTL formula, which gives a
2EXPTIME algorithm for model checking MDPs.

Direct translations of LTL (and fragments of LTL) to deterministic Rabin
automata have been proposed [3,5,10,13,16,17]. However, any such translation,
in the worst case, results in automata that are doubly exponential in size [2];
this holds for any fragment of LTL that contains the operators ∨, ∧, and F.
Recently [8] a fragment of LTL called LTL\GU [14] was translated into limit
deterministic Büchi automata. LTL\GU is a fragment of LTL where formulae are
built from propositions and their negations using conjunction, disjunction, and
the temporal operators X (next), F (eventually/finally), G (always/globally),
and U (until), with the restriction that no U operator appears within the scope
of a G operator. The most important feature of this translation from LTL\GU
to limit deterministic automata is the fact that the resulting automaton is only
exponential in the size of the formula. Thus, this automata construction can
be used to obtain an EXPTIME algorithm for model checking MDP against
LTL\GU formulas, as opposed to 2EXPTIME.

Recently, a translation from full LTL logic to limit deterministic automata
has been proposed [20]. This translation is very similar to the translation to
deterministic automata proposed in [5], with the use of nondeterminism being
limited to simplifying the acceptance condition. Therefore, like the determinis-
tic translations of LTL, it can be shown to construct doubly exponential sized
automata even for very simple LTL fragments like those that contain ∨, ∧, and
F. Thus, it does not achieve the optimal bounds for LTL\GU shown in [8].
However, one advantage of the construction in [20] is that it can be used in
quantitative verification as well as qualitative verification of MDPs and has been
implemented in [21]. Quantitative verification of MDPs can also be performed
using nondeterministic automata that have the good-for-games (GFG) property
[7,11], but translating a general NBA into a GFG automaton is known to result
in an exponential blow-up. An alternate approach to quantitative verification
using subset/breakpoint construction on a NBA is proposed in [6] but it also
suffers from an exponential blow up.

1 Limit deterministic automata are not the same as unambiguous automata. Unam-
biguous automata have at most one accepting run for any input. It is well known
that every LTL formula can be translated into an unambiguous automaton of expo-
nential size [22]. This has been shown to be not true for limit deterministic automata
in [20].
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In this paper we continue the line of work started in [8,20], and present a new
translation of the full LTL logic to limit deterministic Büchi automata. The new
translation can be shown to be a generalization of the construction in [8] in that
it constructs exponential sized automata for LTL\GU . In fact, we show that this
new translation yields exponential sized automata for a richer fragment of LTL
that we call LTLD (see Sect. 5 for a comparison between the expressive powers of
LTLD and LTL\GU). This improves the complexity of qualitative MDP model
checking against LTLD to EXPTIME from 2EXPTIME.

Our automaton construction uses two main ideas. The first is an idea dis-
covered in [8]. To achieve limit determinism, for certain subformulae ψ of ϕ, the
automaton of ϕ tracks how often Fψ and Gψ formulae are true; this is in addi-
tion to tracking the truth (implicitly) of all subformulae ψ, as all translations
from LTL to automata do. Second, for untils within the scope of G, we do a
form of subset construction that ensures that the state explores all the possible
ways in which such formulae can be satisfied in the future, and for untils outside
the scope of G we use non-determinism to check its truth.

We have implemented our translation from LTL to limit deterministic
automata in a tool called Büchifier. We show experimental results demon-
strating that in most cases our construction yields smaller automata when com-
pared to state of the art techniques that translate LTL to deterministic and limit
deterministic automata.

2 Preliminaries

First we introduce the notation we use throughout the paper. We use P to denote
the set of propositions. We use w to denote infinite words over a finite alphabet.
We use wi to denote the ith (index starting at 0) symbol in the sequence w,
and use w[i] to denote the suffix wiwi+1 . . . of w starting at i. We use w[i, j] to
denote the substring wi . . . wj−1. We use [n] to denote all non-negative integers
less than n that is {0, 1, . . . , n−1}. We begin by recalling the syntax of LTL:

Definition 1 (LTL Syntax). Formulae in LTL are given by the following
syntax:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕ U ϕ p ∈ P

Next, we look at the semantics of the various operators:

Definition 2 (Semantics). LTL formulae over a set P are interpreted over
words w in (2P )ω. The semantics of the logic is given by the following rules

w � p (¬p) ⇐⇒ p ∈ w0 (p /∈ w0) w � Xϕ ⇐⇒ w[1] � ϕ

w � ϕ ∨ ψ ⇐⇒ w � ϕ or w � ψ w � Fϕ ⇐⇒ ∃ i : w[i] � ϕ

w � ϕ ∧ ψ ⇐⇒ w � ϕ and w � ψ w � Gϕ ⇐⇒ ∀ i : w[i] � ϕ

w � ϕ U ψ ⇐⇒ ∃ i : w[i] � ψ, and
∀ j < i : w[j] � ϕ

The semantics of ϕ, denoted by �ϕ�, is defined as the set {w ∈ (2P )ω | w � ϕ}.
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(Note that the release operator R, the dual of U, can be expressed using U and
G, i.e. ψ1 R ψ2 ≡ (ψ2 U (ψ1 ∧ ψ2)) ∨ Gψ2. Hence we omit it from any of the
logics we consider.)

In this paper the terminology subformula of ϕ is used to denote a node
within the parse tree of ϕ. When we refer to the subformula as an LTL formula
we will be referring to the formula at that node. Two subformulae that have the
same formulae at their nodes need not be the same owing to the possibility of
them being in different contexts. This distinction will be important as we treat
formulae differently depending on their contexts. For the purposes of describ-
ing different subfragments we qualify subformulae as being either internal or
external.

Definition 3. A subformula ψ of ϕ is said to be internal if ψ is in the scope of
some G-subformula of ϕ, otherwise it is said to be external.

Many syntactic restrictions of LTL have been considered for the sake of
obtaining smaller automata translations. LTL(F ,G) (read “LTL F G”) and
LTL\GU (read “LTL set minus G U”) are two such fragments which we recall
in the next two definitions.

Definition 4 (LTL(F,G) Syntax). The fragment LTL(F ,G) over propositions
P is described by the following syntax

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ p ∈ P

Definition 5 (LTL\GU Syntax). The fragment LTL\GU is given by the
syntax

ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψ U ψ ϕ ∈ LTL(F ,G)

LTL(F ,G) allows for G and F as the only temporal operators. The fragment
LTL\GU additionally allows for external U but not internal ones. Also, we
choose to represent an external F using U. In other words every F will be
internal. Next, we introduce the fragment LTLD (read “LTL D”)

Definition 6 (LTLD Syntax). The formulae in the fragment LTLD are given
by the syntax for ϑ:

ψ ::= ϕ | ψ ∨ ϕ | ϕ ∨ ψ | ψ ∧ ψ | ψ U ϕ | Gψ | Xψ ϕ ∈ LTL(F ,G)
ϑ ::= ψ | ϑ ∨ ϑ | ϑ ∧ ϑ | ϑ U ϑ | Xϑ

Unlike LTL\GU , LTLD allows for internal U but it is restricted. The following
restrictions apply on LTLD:

1. The second argument of every internal U formula is in LTL(F ,G)
2. At least one argument of every internal ∨ is in LTL(F ,G)

Note that LTLD is strictly larger than LTL\GU in the syntactic sense, as every
LTL\GU formula is also an LTLD formula. We shall show in Sect. 5 that it is
strictly richer in the semantic sense as well.
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Next we define depth and height. A subformula ψ of ϕ is said to be at depth
k if the number of X operators in ϕ within which ψ appears is exactly k. The
height of a formula is the maximum depth of any of its subformulae.

Definition 7 (Büchi Automata). A nondeterministic Büchi automaton
(NBA) over input alphabet Σ is a tuple (Q, δ, I, F ) where Q is a finite set of
states; δ ⊆ Q×Σ×Q is a set of transitions; I ⊆ Q is a set of initial states and
F ⊆ Q is a set of final states.

A run of a word w ∈ Σω over a NBA is an infinite sequence of states
q0q1q2 . . . such that q0 ∈ I and ∀ i ≥ 0 (qi, wi, qi+1) ∈ δ. A run is accepting
if qi ∈ F for infinitely many i.

The language accepted by an NBA A, denoted by L(A) is the set of all words
w ∈ Σω which have an accepting run on A.

Definition 8 (Limit Determinism). A NBA (Q, δ, I, F ) over input alphabet
Σ is said to be limit deterministic if for every state q reachable from a final
state, it is the case that |δ(q, σ)| ≤ 1 for every σ ∈ Σ.

3 Construction

In this section we show our construction of limit deterministic automata for full
LTL. First, let us look at an example that shows that the standard construction
(Fischer-Ladner and its variants) is not limit deterministic. The standard con-
struction involves guessing the set of subformulae that are true at each step and
ensuring the guess is correct. For ϕ = G(a ∨ Fb) this gives us the automaton
(after pruning unreachable states and merging bisimilar ones. Here all 3 states
are initial) in Fig. 1a which is not limit deterministic as the final state q1 has
non-deterministic choices enabled.

q0 : {ϕ,Fb} q1 : {ϕ,Fb, b}

q2 : {ϕ}

¬b b

¬b

b

b

a

(a) Standard Construction

q0 : 〈 ϕ | Fb | - 〉, 0

q1 : 〈 ϕ,Fb | - | - 〉, 0

q2 : 〈 ϕ | - | Fb 〉, 0

q3 : 〈 ϕ | - | Fb 〉, 1

true

b

a

trueb

¬b

(b) Tripartition Construction

Fig. 1. Automata for G(a ∨ Fb)

Our construction builds upon the idea introduced in [8] of keeping track of
how often F,G-subformulae are true. Therefore, we will incrementally describe
the features of our automaton: first by revisiting the technique required for
LTL(F ,G) without Xs, later by introducing the new ideas required to handle
the untils and nexts.

Given an LTL(F ,G) formula, for each of its G-subformula we are going to
predict whether it is: always true (α), true at some point but not always (β),
never true (γ). Note that for any formula if we predict α/γ then the prediction



118 D. Kini and M. Viswanathan

should remain the same going forward. For a G-subformula, Gψ, if we predict
β it means we are asserting FGψ ∧ ¬Gψ and therefore the prediction should
remain β until a certain point and then change to α. This prediction entails
two kinds of non-deterministic choices: (i) the initial choice of assigning one of
α, β, γ (ii) if assigned β initially then the choice of the time point at which to
change it to α. The first choice needs to be made once at the beginning and
the second choice has to be made eventually in a finite time. They together only
constitute finitely many choices which is the source of the limit determinism. We
similarly define predictions for F-subformulae as: never true (α), true at some
point but not always (β), always true (γ). We flip the meaning of α and γ to
ensure β becomes α eventually as for G-subformulae. An FG-prediction for a
formula ϕ ∈ LTL(F ,G), denoted by π, is a tri-partition 〈α(π), β(π), γ(π)〉 of its
F,G-subformulae. We drop π when it is clear from the context. The prediction
for a subformula ψ made by π is said to be α/β/γ depending upon the partition
of π in which ψ is present. The space of all FG-predictions for ϕ is denoted
by Π(ϕ).

Example 1. Consider the formula ϕ = G(a ∨ Fb), and an FG-prediction π =
〈α, β, γ〉 for ϕ where α = {ϕ}, β = {Fb} and γ = ∅. For the formula ϕ the
prediction made is α. Since it is a G-formula this prediction says that ϕ is
always true or simply ϕ is true. For the subformula Fb the prediction made is β.
This prediction says that Fb is true at some point but not always which implies
Fb is true but not GFb.

The automaton for LTL(F ,G) essentially makes a non-deterministic choice
for π initially and at each step makes a choice of whether to move some formula(e)
from β to α. The correctness of predictions made by π is monitored inductively.
Suppose our prediction for a formula Gψ is α at some instant: this implies we
need to check that ψ is true at every time point there onwards (or equivalently
check that ψ is true whenever α is predicted for Gψ since the prediction α never
changes). If we are able to monitor the truth of ψ at every instant then it is
clear how this can be used to monitor the prediction α for Gψ. The crucial
observation here is that the correct prediction for G/F formula gives us their
truth: a G/F formula is true/false (respectively) at a time point if and only if
its correct prediction is α at that time. Now the prediction α for Gψ can be
checked by using the truths (derived from the predictions) of the subformulae of
ψ (inductive step). If ψ is propositional then its truth is readily available from
the input symbol being seen (base case of the induction). This inductive idea
shall be used for all predictions. Note that since our formulae are in negation
normal form we only need to verify a prediction is correct if it asserts the truth
rather than falsehood of a subformula. Therefore the predictions β, γ for Gψ
need not be checked. In case of Fψ the prediction α need not be checked (as it
entails falsehood of Fψ) but β, γ do need to be checked. If our prediction for Fψ
is β then we are asserting ψ is true until a certain point in the future at which
the prediction becomes α. Therefore we only need to check that ψ is true when
the prediction for Fψ changes to α. Once again we can inductively obtain the
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truth of ψ at that instant from the predictions for the subformulae of ψ and from
the next input. For checking a prediction γ about Fψ we need to check ψ is true
infinitely often. For this purpose we use the Büchi acceptance where the final
states are those where ψ is evaluated to be true, again inductively. When we are
monitoring multiple Fψ for γ we will need a counter to cycle through all the Fψ
in γ. Let m be the number of Fψ in γ. Observe that the set of formulae predicted
to be γ never changes once fixed at the beginning and hence m is well defined.
When the counter has value n, it is incremented cyclically to n + 1(mod m)
whenever the ψ corresponding to the nth Fψ ∈ γ evaluates to true. The initial
states are those in which the top formula evaluates to true given the predictions
in that state. The final states are those where no formula is assigned β and the
counter is 0. Summarizing, a state in our automata has two components: (a) an
FG-prediction π = 〈α, β, γ〉 (a tri-partition of the F,G-subformulae) and (b) a
cyclic integer counter n. The transitions are determined by how the predictions
and counters are allowed to change as described. We illustrate the construction
using once again the formula ϕ = G(a∨Fb) for which the automaton is presented
in Fig. 1b and its details are completely described in the technical report [9].

3.1 Handling Untils and Nexts

Next we observe that the above technique does not lend itself to the U/X oper-
ators. The crucial property used above about F,G-formulae is that they cannot
be simultaneously infinitely often true and infinitely often false unlike U/X
formulae. So if we tried the above technique for U/X we would not get limit
determinism since the truth of the U/X formulae would have to be guessed
infinitely often.

The key idea we use in handling U/Xs is to propagate their obligation along
the states. Let us say the automaton needs to check if a formula ϕ holds for an
input w, and it begins by making an FG-prediction π about w. The obligation
when no input has been seen is ϕ. When the first symbol w0 is seen it needs
to update the obligation to reflect what “remains to be checked” for the rest
of the input w[1], in order for w � ϕ to hold, assuming π is correct for w. The
automaton can keep updating the obligation as it sees each input symbol. The
claim will be that the obligation is never falsified iff w � ϕ, given that π is
correct. This brings up some questions:

1. How are we exploiting opportunities for non-determinism?
2. How is the obligation computed at each step?
3. How is π checked to be correct in the presence of U/Xs?

Exploiting Non-determinism. Being able to exploit non-determinism helps
in reducing the size of the automaton we construct. So the question is: how are
we exploiting any opportunities for non-determinism (albeit for finite time)? The
answer is to update the obligation non-deterministically. Checking the formula
ψ1Uψ2 presents us with two alternatives: either ψ2 is true now or ψ1∧X(ψ1Uψ2)
is true now. Similarly ψ1∨ψ2 brings up two alternatives. We can pick between the
obligations of these two choices non-deterministically. But we should somehow
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q0 : {ϕ} q1 : {Gb, b}a
a

b

Fig. 2. Standard NBA construction for ϕ = aU(Gb).

ensure that we are only allowed to use this non-determinism finitely often. This is
where we treat internal and external (Definition 3) U/∨ subformulae differently.
The observation is that external U/∨ need to be checked for only a finite amount
of time. Hence the disjunctive choice presented by them can be dispatched non-
deterministically each time without worrying about violating limit determinism.
To illustrate this point we show the standard NBA for the formula ϕ = aU(Gb)
in Fig. 2 which turns out to be limit deterministic owing to the fact that the U
is external. In Fig. 1a we saw that the standard construction for ϕ = G(a ∨ Fb)
resulted in a NBA that was not limit-deterministic, and one of the reasons is
that the F, which is a special form of U, is internal. An internal U/∨ may need
to be checked infinitely many times and hence the choice should not be resolved
non-deterministically, but carried forward as a disjunction of the obligations of
the choices. Passing the choice forward without resolving it comes at a cost of a
bigger state space, this is akin to the subset construction where all the choices
are being kept track of.

Now we begin to formalize the ideas. To exploit the non-determinism allowed
by the external U/∨ we introduce the concept of ex-choice. We use Λϕ to denote
the set of all external U/∨ subformulae. Any subset of it λ ⊆ Λϕ is called an
ex-choice. An ex-choice dictates how each external U/∨ should be satisfied if
it needs to be satisfied. The interpretation associated with λ is the following:
if ψ1Uψ2 ∈ λ then ψ2 has to hold or if ψ1Uψ2 ∈ Λϕ−λ then ψ1 ∧ X(ψ1Uψ2)
has to hold. Similarly if ψ1∨ψ2 ∈ λ then ψ1 has to hold and if ψ1∨ψ2 ∈ Λϕ − λ
then ψ2 has to hold. The automaton we are going to construct is going to non-
deterministically pick an ex-choice at each step and use it resolve the choices on
external U/∨. After a finite time the ex-choice will not matter as the obligations
will not consist of any external U/∨ that need to be checked (which will be
enforced as a part of the acceptance condition), and hence limit determinism is
ensured. The ex-choice picked along a transition is going to determine the obliga-
tion computed. Which leads us to the question of how the obligation is computed.

Computing Obligation. We define the derivative of a formula μ w.r.t an input
symbol σ, FG-prediction π and ex-choice λ. The derivative should capture the
obligation/requirement on any word ρ such that those obligations are able to
imply that σρ satisfies μ. This enables us to keep passing on the obligation
forward as we see each symbol of the input by taking the derivative of the
obligation so far. First, we need to ensure that the ex-choice λ picked when we
are taking the transition dictates how a formula in Λϕ should be satisfied if it
needs to be. With that in mind we define f(λ) as follows:

f(λ) = (∧(φUψ∈λ)φ U ψ ⇒ ψ) ∧ (∧(φUψ∈(Λϕ−λ))φ U ψ ⇒ (φ ∧ X(φ U ψ)))

∧ (∧(φ∨ψ∈λ)φ ∨ ψ ⇒ φ) ∧ (∧(φ∨ψ∈Λϕ−λ)φ ∨ ψ ⇒ ψ)
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Since predictions made by π already tell us the truth of some of the subformu-
lae, they need to be taken into account. Towards that we define the substitution
of a formula φ w.r.t π, denoted by [φ ]π as the formula obtained from φ by sub-
stituting occurrences Gψ with tt if Gψ ∈ α and ff otherwise, and similarly for
Fψ with ff if Fψ ∈ α and tt otherwise. The substitutions are done only for the
maximal formulae in π that appear in φ, i.e., if ψ1, ψ2 are formulae in π such
that ψ1 is a subformula of ψ2 then the substitution is not performed for ψ1. Now
we are ready to give a declarative definition of the derivative:

Definition 9. Given an LTL formula μ over P , and a triple ε = (σ, π, λ) where
σ ∈ 2P , π ∈ Π(ϕ) and λ ⊆ Λϕ: an LTL formula ψ is said to be a derivative of
μ w.r.t to ε if

∀ ρ ∈ (
2P

)ω
ρ � ψ =⇒ σρ � [μ ∧ f(λ) ]π

The weakest derivative of μ w.r.t ε, denoted by ∇(μ, ε), is a derivative
such that ψ =⇒ ∇(μ, ε) for any other derivative ψ.

Since we will only be interested in the weakest derivative (as opposed to any
other derivative) we shall refer to it as the derivative. The above definition is
only declarative in the sense that it does not give us an explicit way to compute
the derivative. We present this definition here for the sake of simplicity and ease
of understanding for the reader. In the companion technical report [9] we provide
a syntactic definition and all the necessary machinery that allows us to compute
such a formula. The syntactic definition also restricts the representation of the
obligations to B+(ϕ) which is the set of all positive Boolean combinations of
subformulae of ϕ.

The automaton now will have an extra component μ corresponding to the
obligation along with (π, n) from before. In the initial state μ will be the given
formula ϕ that needs to be checked. At each step, the automaton sees an input
symbol σ and makes a non-deterministic ex-choice λ ⊆ Λϕ. The obligation at the
next state will then become ∇(μ, ε) where ε = (σ, π, λ). The process continues
as long as the obligation is never falsified. In order to ensure that every external
until is dispatched in finite time, we impose that the obligation μ in the final
states is ex-free, i.e. free of any formulae in Λϕ. When the obligation is ex-free
the ex-choice does not play a role in determining its derivative and we shall drop
λ whenever that is the case, and this eliminates any non-determinism once a
final state is visited. In order to ensure that an internal until, say φ U ψ is not
delayed forever, we involve Fψ in the FG-prediction and enhance the definition
of substitution to say that φ U ψ is replaced with ff if Fψ ∈ α. This way the
derivative will impose that Fψ is true whenever φ U ψ is claimed to be true.
With this in mind we define the closure of ϕ, denoted by C(ϕ), to be set of all
F,G-subformulae of ϕ, along with all Fψ for every internal φUψ subformula of
ϕ. We re-define an FG-prediction π to be any tri-partition of C(ϕ). Note that
for every Fψ or Gψ in C(ϕ), ψ is internal.

Example 2. Let ϕ = G(Fa ∨ (b U c)). Here C(ϕ) = {ϕ,Fa,Fc}.
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Example 3. Let ϕ = aU(b∧Gc) be an internal subformula of some given formula.
∇(ϕ, ε) can take different values depending upon ε = (σ, π). Here ex-choice λ
does not play a role because the only U is internal. Note that ϕ′ = F(b ∧ Gc)
is in the closure. If ϕ′ ∈ α, then ∇(ϕ, ε) = ff because [ ϕ ]π would be ff owing
to ϕ being substituted with ff . Let ϕ′ /∈ α. Now if Gc ∈ α then substituting
tt in place of Gc gives us aUb whose satisfaction depends upon the truth of a
and b as given by σ. So if σ(b) = tt then the U is immediately satisfied and
so ∇(ϕ, ε) = tt. If σ(b) = ff then the U is delayed and hence ∇(ϕ, ε) is either
aUb or ff depending on σ(a) = tt/ff respectively. If Gc /∈ α then truth of b
does not matter (as replacing Gc with ff makes b∧Gc = ff) and once again the
derivative is ϕ/ff depending upon σ(a).

Checking FG-Predictions in the Presence of Untils and Nexts. The
main idea in being able to check an FG-prediction π was that a correct prediction
about an F,G-subformula also tells us its truth. When we have U/Xs in the
mix, we no longer have a prediction available for them, and hence no immediate
way to check if some subformula is true. For example when Gψ ∈ α we needed to
check ψ is true and we did so inductively using the predictions for subformulae
in ψ. Now, since ψ can have U/X within them it is not clear how we are going to
check truth of ψ. In this case we pass ψ to the obligation μ. Similarly when the
prediction of Fψ is changed from β to α we need to check ψ is true so once again
we pass ψ to the obligation. So given consecutive FG-predictions π, π′ define Ψ
as the set

Ψ = {ψ | Fψ ∈ β(π) ∩ α(π′) or Gψ ∈ α(π)} (1)

and update the obligation along a transition (μ, π, n) σ−→ (μ′, π′, n′) as: μ′ =
∇(μ ∧ (∧ψ∈Ψψ), ε) where ε = (σ, π, λ). Now consider the case when the counter
is n > 0 and need to verify that the nth Fψ formula in γ is true. In this case we
cannot pass on ψ to the obligation because Fψ may be true because ψ is true at
a later point and not now. Since we cannot predict when ψ is going to be true we
carry the disjunction of all the derivatives of ψ since the counter was incremented
to n. We keep doing it until this “carry” becomes true indicating that ψ became
true at some point since we started checking for it. We also increment the counter
at that point. This “carry” becomes yet another component ν in the automaton’s
state. We use F(S) to denote all Fψ in set S. Now we are ready to put the pieces
together to formally describe the entire construction.

Definition 10 (Construction). Given a formula ϕ ∈ LTL over propositions
P , let D(ϕ) be the NBA (Q, δ, I, F ) over the alphabet 2P defined as follows:

� Q is the set B+(ϕ) × B+(ϕ) × Π(ϕ) × [n] where n = |F(C(ϕ))| + 1
� δ is the set of all transitions (μ, ν, π,m) σ−→ (μ′, ν′, π′,m′) such that

(a) α(π) ⊆ α(π′) and γ(π) = γ(π′)
(b) μ′ = ∇(μ ∧ θ, ε) for some λ ⊆ Λϕ

where θ = (∧ψ∈Ψψ), Ψ as defined in (1) and ε = (σ, π, λ)
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(c) m′ =

{
(m + 1) (mod |F(γ)| + 1) ν = tt
m otherwise

(d) ν′ =

{
ψm′ ν = tt
∇(ν, ε) ∨ ψm otherwise

where {Fψ1, . . ,Fψk} is an enumeration of F(γ), ψ0 = tt and ε = (σ, π)
� I is all states of the form (ϕ, tt, π, 0)
� F is all states of the form (μ, tt, π, 0) where β(π) = ∅, μ �= ff , μ is ex-free

We state the correctness result here and include the proofs in the technical
report [9].

Theorem 1. For ϕ ∈ LTL, D(ϕ) is a limit deterministic automaton such that
L(D(ϕ)) = �ϕ� and D(ϕ) is of size at most double exponential in ϕ.

The number of different formulae in B+(ϕ), is at most double exponential
in the size of ϕ, since each can be represented as a collection of subsets of
subformulae of ϕ. Π(ϕ) is simply tripartition of C(ϕ) which is bounded above
by 3|ϕ|. And the counter can take |F(C(ϕ))| + 1 different values which is ≤ |ϕ|.
The entire state space B+(ϕ) × B+(ϕ) × Π(ϕ) × [n] is upper bounded by the
product of these which is clearly doubly exponential.

q0 : (ϕ, tt, π, 0)

q1 : (tt, b, π, 1)

q2 : (aUb, b, π, 1)

q3 : (tt, tt, π, 0)

b

a.b

a.b

b

b

b

a.b

a.b

Fig. 3. Our construction for ϕ = G(aUb).

We illustrate our construction using ϕ = G(aUb) which is a formula outside
LTL\GU . The automaton for ϕ is shown in Fig. 3. First note that the C(ϕ) =
{ϕ,Fb}. Next, observe that the only interesting FG-prediction is π in which
α = {ϕ}, β = ∅ and γ = {Fb}. This is because any initial state will have μ = ϕ
which forces ϕ ∈ α, and since predictions in α don’t change, every reachable
state will have ϕ ∈ α as well. As for Fb note that the corresponding internal
until aUb will become ff if Fb is in α and thus making the derivative ff (aUb
is added to the obligation at each step since ϕ ∈ α and rule (b)). Therefore Fb
cannot be in α, and it cannot be in β because then it would be eventually in α.
So Fb has to be in γ. Now that π is fixed, and given input σ, the obligation μ
changes according to rule (b) as μ′ = ∇(μ ∧ (aUb), (σ, π)). Similarly the carry
ν changes to b if ν = tt (as in q3 to q1/q2) and becomes ν′ = ∇(ν, (σ, π)) ∨ b
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otherwise in accordance with rule (d). The initial state is q0 with μ = ϕ, ν = tt
and counter = 0. The counter is incremented whenever ν becomes tt. It is easy
to see that the automaton indeed accepts G(a U b) and is limit deterministic.

4 Efficiency

In this section we state the results regarding the efficiency of our construction
for LTLD. We prove that there are only exponentially many reachable states
in D(ϕ). A state q = (μ, ν, π, n) of D(ϕ) is called reachable if there exists a
valid finite run of the automaton that ends in q. A μ is said to be reachable if
(μ, ν, π, n) is reachable for some choice of ν, π and n. Similarly for ν. We show
that the space of reachable μ and ν is only exponentially large in the size of ϕ.
Our approach will be to show that every reachable μ (or ν) can be expressed in a
certain way, and we will count the number of different such expressions to obtain
an upper bound. The expression for μ and ν relies on them being represented
in DNF form and uses the syntactic definition of the derivative given in the
technical report [9]. Therefore we state only the main result and its consequence
on the model checking complexity here and present the proofs in [9].

Theorem 2. For ϕ ∈ LTLD the number of reachable states in the D(ϕ) is at
most exponential in |ϕ|.
Theorem 3. The model checking problem for MDPs against specification in
LTLD is EXPTIME-complete

Proof. The upper bound follows from our construction being of exponential size
and the fact that the model checking of MDPs can be done by performing a
linear time analysis of the synchronous product of the MDP and the automaton
[4]. The EXPTIME hardness lower bound is from the fact that the problem is
EXPTIME hard for the subfragment LTL\GU as proved in [8].

5 Expressive Power of LTLD

In this section we show that LTLD is semantically more expressive than
LTL\GU . We demonstrate that the formula ϕ0 = G(p∨(qUr)) which is express-
ible in LTLD, cannot be expressed by any formula in LTL\GU .

Let us fix integers �, k ∈ N. We will use LTL�(F,G) to denote the subfragment
of LTL(F ,G) where formulae have maximum height �. Since X distributes over all
other operators we assume that all the Xs are pushed inside. We use LTL�,k\GU
to denote the fragment where formulae are built out of U, ∧, ∨ and LTL�(F,G)
formulae such that the number of Us used is at most k.

Next, consider the following strings over 2P where P = {p, q, r}:

u = {p}{p, q}�{p} v = {q}{p, q}�{r} w = {q}{p, q}�{p}
sk = (uv)k+1u σ = (uv)ω ηk = skwvσ

The observation we make is that σ satisfies ϕ0 but ηk does not. We state the
main theorem and the corollary here and leave the details in the tech report [9].
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Theorem 4. ∀ϕ ∈ LTL�,k\GU σ � ϕ =⇒ ηk � ϕ

Corollary 1. ϕ0 is not expressible in LTL�,k\GU . Also since � and k are arbi-
trary, ϕ0 is not expressible in LTL\GU .

6 Experimental Results

We present our tool Büchifier (available at [1]) that implements the techniques
described in this paper. Büchifier is the first tool to generate LDBA with prov-
able exponential upper bounds for a large class of LTL formulae. The states
(μ, ν, π, n) in our automaton described in Definition 10, involve μ, ν ∈ B+(ϕ)
which are essentially sets of sets of subformulae. We view each subformula as a
different proposition. We then interpret the formulae in B+(ϕ) as a Boolean func-
tion on these propositions. In Büchifier we represent these Boolean functions
symbolically using Binary Decision Diagrams (BDD). Our overall construction
follows a standard approach where we begin with an initial set of states and
keep adding successors to discover the entire reachable set of states. We report
the number of states, number of transitions and the number of final states for
the limit deterministic automata we construct.

MDP model checkers like PRISM [15], for a long time have used the trans-
lation from LTL to deterministic Rabin automata and only recently [20] have
started using limit deterministic Büchi automata. As a consequence we compare
the performance of our method against Rabinizer 3 [12] (the best known tool
for translating LTL to deterministic automata) and ltl2ldba [20] (the only other
known tool for translating LTL to LDBA). Rabinizer 3 constructs determin-
istic Rabin automata with generalized Rabin pairs (DGRA). The experimental
results in [5,12] report the size of DGRA using the number of states and number
of acceptance pairs of the automata; the size of each Rabin pair is, unfortu-
nately, not reported. Since the size of Rabin pairs influences the efficiency of
MDP model checking, we report it here to make a meaningful comparison. We
take the size of a Rabin pair to be simply the number of transitions in it. The
tool ltl2ldba generates transition-based generalized Büchi automata (TGBA).
The experimental results in [20] report the size of the TGBA using number of
states and number of acceptance sets, and once again the size of each of these
sets is not reported. Since their sizes also effect the model checking procedure
we report them here. We take the size of an acceptance set to be simply the
number of transitions in it. In Table 1 we report a head to head to comparison
of Büchifier, Rabinizer 3 and ltl2ldba on various LTL formulae.

1. The first 5 formulae are those considered in [5]; they are from the GR(1)
fragment [18] of LTL. These formulae capture Boolean combination of fairness
conditions for which generalized Rabin acceptance is particularly well suited.
Rabinizer 3 does well on these examples, but Büchifier is not far behind
its competitors. The formulae are instantiations of the following templates:
g0(j) = ∧j

i=1(GFai ⇒ GFbi), g1(j) = ∧j
i=1(GFai ⇒ GFai+1).
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Table 1. A Comparison between the sizes of automata produced by Büchifier,
Rabinizer 3 and ltl2ldba on various formulae. Column St denotes the number of
states, column Tr denotes the number of transitions and column AC denotes the size
of the acceptance condition. Entries marked as “–” indicate that the tool failed to con-
struct the automaton and/or the acceptance condition due to the memory limit (1 GB)
being exceeded.

Büchifier Rabinizer 3 ltl2ldba

St Tr AC St Tr AC St Tr AC

g0(1) 4 7 2 1 1 3 3 6 2 (1)

g0(2) 12 23 5 1 1 8 5 14 12 (2)

g0(3) 32 63 8 1 1 20 9 36 54 (3)

g1(2) 12 21 5 1 1 8 5 13 11 (2)

g1(3) 31 54 13 1 1 18 9 30 44 (3)

ϕ1 5 7 3 5 13 40 7 23 12 (4)

ϕ2 26 83 8 12 48 233 36 101 75 (2)

ϕ3 13 25 3 16 128 64 21 140 129 (2)

ϕ4 17 47 7 2 4 35 9 29 31 (2)

ϕ5 36 111 11 12 48 330 41 133 94 (2)

f0(1) 4 7 2 2 4 2 2 4 2 (1)

f0(2) 14 29 5 16 74 26 4 16 16 (2)

f0(3) 44 105 13 – – – 8 64 96 (3)

f0(4) 130 369 33 – – – 16 256 512 (4)

f1(1) 14 29 5 6 24 10 8 32 12 (1)

f1(2) 130 369 33 – – – 64 1024 768 (2)

f1(3) 1050 4801 193 – – – 512 32768 36K (3)

f2(1) 1 1 1 2 3 2 1 1 2 (2)

f2(2) 5 7 3 5 13 45 6 21 9 (3)

f2(3) 19 37 7 19 109 847 19 218 28 (4)

f2(4) 65 175 15 167 2529 – 93 6301 75 (5)

f3(1) 2 4 1 3 7 4 1 2 3 (2)

f3(2) 10 20 4 17 91 53 14 62 28 (1)

f3(3) 36 78 12 – – – 212 2359 953 (1)

f3(4) 114 288 32 – – – 17352 598330 167K (1)

h(2, 1) 26 54 9 15 49 49 14 44 1 (1)

h(2, 2) 60 138 21 65 469 469 64 434 1 (1)

h(2, 3) 182 468 57 315 5119 5119 314 4892 1 (1)

h(4, 1) 80 146 36 76 250 250 75 229 1 (1)

h(4, 2) 230 464 96 990 8068 8068 989 7465 1 (1)

h(4, 3) 908 1994 348 – – – – – –

ψ1 35 62 9 3 6 12 3 6 8 (3)

ψ2 7 15 3 8 39 53 2 5 18 (3)

ψ3 29 62 8 29 116 74 62 293 27 (2)

ψ4 26 92 6 4 11 7 3 8 3 (1)

ψ5 9 58 1 5 17 9 3 9 3 (1)
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2. The next 5 formulae are also from [5] to show how Rabinizer 3 can effectively
handle Xs. Büchifier has a comparable number of states and much smaller
acceptance condition when compared to Rabinizer 3 and ltl2ldba in all
these cases. ϕ1 = G(q ∨XGp)∧G(r ∨XG¬p), ϕ2 = (GF(a∧X2b)∨FGb)∧
FG(c ∨ (Xa ∧ X2b)), ϕ3 = GF(X3a ∧ X4b) ∧ GF(b ∨ Xc) ∧ GF(c ∧ X2a),
ϕ4 = (GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨ Xe)), ϕ5 = (GF(a ∧ X2c) ∨ FGb) ∧
(GFc ∨ FG(d ∨ (Xa ∧ X2b))).

3. The next 15 formulae (4 groups) express a variety of natural properties, such
as G(req ⇒ Fack) which says that every request that is received is eventually
acknowledged. As shown in the table in many of the cases Rabinizer 3 runs
out of memory (1 GB) and fails to produce an automaton, and ltl2ldba fails
to scale in comparison with Büchifier. The formulae in the table are instanti-
ations of the following templates: f0(j)=G(∧j

i=1(ai ⇒ Fbi)), f1(j)=G(∧j
i=1

(ai ⇒ (Fbi ∧ Fci))), f2(j) = G(∨j
i=1(ai ∧ Gbi)), f3(j) = G(∨j

i=1(ai ∧ Fbi)).
4. The next 6 formulae expressible in LTL\GU , contain multiple Xs and external

Us. Büchifier constructs smaller automata and is able to scale better than
ltl2ldba in these cases as well. The formulae are instantiations of: h(m,n) =
(Xmp) U (q ∨ (∧n

i=1(ai U Xmbi))).
5. The last few examples are from outside of LTL\GU . The first three are in

LTLD while the rest are outside LTLD. We found that Büchifier did better
only in a few cases (like ψ3), this is due to the multiplicative effect that
the internal untils have on the size of the automaton. So there is scope for
improvement and we believe there are several optimizations that can be done
to reduce the size in such cases and leave it for future work. ψ1 = FG((a ∧
X2b∧GFb)U(G(X2¬c∨X2(a∧b)))), ψ2 = G(F¬a∧F(b∧Xc)∧GF(aUd)),
ψ3 = G((X3a)U(b∨Gc)), ψ4 = G((aUb)∨(cUd)), ψ5 = G(aU(bU(cUd))).

7 Conclusion

In this paper we presented a translation of formulas in LTL to limit deterministic
automata, generalizing the construction from [8]. While the automata resulting
from the translation can, in general, be doubly exponential in the size of the
original formula, we observe that for formulas in the subfragment LTLD, the
automaton is guaranteed to be only exponential in size. The logic LTLD is a more
expressive fragment than LTL\GU , and thus our results enlarge the fragment
of LTL for which small limit deterministic automata can be constructed. One
consequence of our results here is a new EXPTIME algorithm for model checking
MDPs against LTLD formulas, improving the previously known upper bound of
2EXPTIME.

Our results in this paper, however, have not fully settled the question of
when exponential sized limit deterministic automata can be constructed. We do
not believe LTLD to be the largest class. For example, our construction yields
small automata for ϕ = G(∨i(pi U qi)), where pi, qi are propositions. ϕ is not
expressible in LTLD. Of course we cannot have an exponential sized construction
for full LTL as demonstrated by the double exponential lower bound in [20].



128 D. Kini and M. Viswanathan

References
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