
Optimizing and Caching SMT Queries
in SymDIVINE

(Competition Contribution)

Jan Mrázek(B), Martin Jonáš, Vladimı́r Štill, Henrich Lauko, and Jǐŕı Barnat

Faculty of Informatics, Masaryk University, Brno, Czech Republic
jan.mrazek@mail.muni.cz

Abstract. This paper presents a new version of the tool SymDIVINE,
a model-checker for concurrent C/C++ programs. SymDIVINE uses a
control-explicit data-symbolic approach to model checking, which allows
for the bit-precise verification of programs with inputs, by representing
data part of a program state by a first-order bit-vector formula. The
new version of the tool employs a refined representation of symbolic
states, which allows for efficient caching of smt queries. Moreover, the
new version employs additional simplifications of first-order bit-vector
formulas, such as elimination of unconstrained variables from quantified
formulas. All changes are documented in detail in the paper.

1 Verification Approach and Software Architecture

SymDIVINE is a model checker that primarily aims for verification of parallel
C and C++ programs. In contrast to explicit-state model checker [2], SymDI-
VINE represents data values symbolically and can therefore handle programs
with inputs, which would otherwise cause state-space explosion due to the num-
ber of possible input values. In particular, SymDIVINE uses the control-explicit
data-symbolic (ceds) approach to model checking in which control-flow of the
program is represented explicitly and values of data structures are represented
symbolically [1,7].

We now describe the approach in more detail. In a ceds model checker,
each generated state is a triple that contains a control part (program counter
for each thread), explicit data storage, and symbolic data storage. The explicit
data storage keeps values of constants and of variables whose values are uniquely
determined. The symbolic data storage represents a set of possible values of pro-
gram variables by a first-order formula in the theory of bit-vectors. To generate
the state space, SymDIVINE explores all possible evaluations of the program and
tracks the effect of program instructions on the explicit values and on the for-
mula representing the symbolic values. To avoid exploring infeasible paths, an
smt solver is used to check satisfiability of the formula representing the data

This work has been partially supported by Czech Science Foundation grant No.
15-08772S.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 390–393, 2017.
DOI: 10.1007/978-3-662-54580-5 29



Optimizing and Caching SMT Queries in SymDIVINE 391

values. The current version of SymDIVINE relies on the smt solver Z3 [6]. For
purposes of the competition we used version 4.4.1. Additionally, in order to avoid
generating unnecessary thread interleavings, SymDIVINE collapses steps invisible
to other threads into a single transition using the τ -reduction algorithm [3].

In addition to verification of safety properties, SymDIVINE also supports
verification of properties specified in ltl. To check such properties, SymDIVINE
uses standard ltl model checking algorithms based on detection of accepting
cycles in the product of the program with the Büchi automaton. However, in
order to detect accepting cycles, SymDIVINE has to be able to test states for
equality. The equality of states is represented as a quantified bit-vector formula,
which is handed to an smt solver [1]. Use of the state equality test can also
reduce the state space, as the same state is represented and explored only once.
On the other hand, the equality test requires potentially expensive quantified
smt reasoning.

To increase performance of SymDIVINE, we added several optimizations in
the latest version. The first one, state slicing, is a new method of state represen-
tation. In this representation, the symbolic part of the state is represented by
multiple independent formulas that describe sets of variables that do not affect
each other. This allows for more efficient emptiness and equality tests as query
results can be cached and smaller queries (related only to the changed program
variables) can be issued. Moreover, the issued queries are usually smaller and
can, in many cases, be handled by internal SymDIVINE optimizations, like check-
ing for the syntactic equality of formulas, without the need to query the smt
solver. The motivation for state slicing comes from the observation regarding
the verified llvm bitcode. As the llvm bitcode is in the single static assignment
(ssa) form, individual instructions usually affect only a few variables. These local
changes are often independent of the rest of the state. This is not just the case
for concurrent programs, but also for sequential programs containing repeated
function calls or non-trivial loops. We have also implemented caching, which can
leverage the decomposition of the issued smt queries to independent parts.

The second optimization is the integration of formula simplifications based
on elimination of unconstrained variables [4,5] (i.e. variables that occur only
once in the formula) from quantified bit-vector formulas. The effectivity of such
simplifications also follows from the ssa form of llvm: the formulas generated
by SymDIVINE often contain many unconstrained variables. Although the elimi-
nation of unconstrained variables in quantifier-free formulas is provided by stan-
dard smt solvers, we have extended the approach to quantified formulas, which
is necessary for equality queries generated by SymDIVINE. Therefore, we have
implemented our own elimination of unconstrained variables from quantified bit-
vector formulas in SymDIVINE.

From the implementation point of view, SymDIVINE can be seen as three
components – an llvm interpreter, a state representation and an exploration
algorithm. The algorithm uses the interpreter to produce successors of each
state and uses emptiness and equality tests provided by the state representa-
tion to detect empty (unreachable) or already visited states. An overview of
this architecture can be seen in Fig. 1. In the picture, the smt store refers to



392 J. Mrázek et al.

llvm interpreter

ltl Reachability

Algorithms

State representation

Partial store smt store

Formula simplifications and cache

smt solver

llvm bitcode

ltl formula

SymDIVINE

Fig. 1. High-level overview of the SymDIVINE architecture. Nested boxes correspond
to interfaces and their concrete implementations.

the original storage of states and the partial store refers to the newly imple-
mented storage using state slicing. Both storages are available and users can
use whichever they prefer. The entire tool is written in C++ and leverages the
llvm framework. Thanks to the well-defined interface, each of the three main
components is easily interchangeable.

2 Strengths and Weaknesses

The main strength of the approach is its universality: although it is aimed at
parallel programs, SymDIVINE is applicable to all competition categories except
termination, heap manipulation and overflows. SymDIVINE can also verify pro-
grams in multiple programming languages, as it uses the llvm bitcode as the
input format.

SymDIVINE is also precise: it can find every race condition in the program
regardless of the necessary number of context switches, and thanks to the sym-
bolic representation in the bit-vector theory, the verification is also bit-precise.
Moreover, unlike symbolic execution or bounded model checkers, SymDIVINE
also handles programs with infinite behaviour provided that their state space is
finite. The usage of the llvm infrastructure allows to precisely capture compiler
optimizations and architecture-specific issues such as the bit width of variables.

On the other hand, the approach does not deal well with loops with num-
ber of iterations dependent on an input. In the worst-case scenario, SymDIVINE
unrolls the cycle completely, resulting in an enormous state space. SymDIVINE
also cannot handle programs that spawn an infinite number of threads or allo-
cate memory from the heap. Support for other smt solvers is not currently
implemented in SymDIVINE.



Optimizing and Caching SMT Queries in SymDIVINE 393

3 Tool Setup and Configuration

In order to run SymDIVINE, libboost-graph, Z3 and clang-3.5 have to be
installed. If ltl model checking is requested, ltl2tgba is also required.

A prebuilt package of the tool (version 0.5) can be downloaded from a GitHub
release1. The archive contains binaries for SymDIVINE and also a run script that
eases the process of verification by automatically compiling C/C++ files to the
llvm bitcode. To verify a C program, run run symdivine <symdivine dir>
[options] <benchmark>, where <symdivine dir> is a directory in which the
SymDIVINE executable is located. All available options can be listed by using
the switch --help. We decided to opt-out from categories Arrays, BitVec-
tors, Heap Data Structures and Floats. The tool should be run with options
--fix volatile --fix inline --silent -Os.

4 Software Project and Contributors

SymDIVINE source code can be found on GitHub2 under the MIT License. The
tool is developed at the Faculty of Informatics, Masaryk University, and includes
contributions by the authors of this paper, Petr Bauch, and Vojtěch Havel.

References

1. Barnat, J., Bauch, P., Havel, V.: Model checking parallel programs with inputs. In:
PDP, pp. 756–759 (2014)

2. Barnat, J., Brim, L., Havel, V., Havĺıček, J., Kriho, J., Lenčo, M., Ročkai, P., Štill, V.,
Weiser, J.: DiVinE 3.0 - an explicit-state model checker for multithreaded C & C++
programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 863–
868. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 60

3. Barnat, J., Brim, L., Ročkai, P.: Towards LTL model checking of unmodified
thread-based C & C++ programs. In: Goodloe, A.E., Person, S. (eds.) NFM
2012. LNCS, vol. 7226, pp. 252–266. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28891-3 25

4. Brummayer, R.: Efficient SMT solving for bit vectors and the extensional theory of
arrays. Ph.D. thesis, Johannes Kepler University of Linz (2010)

5. Bruttomesso, R.: RTL verification: from SAT to SMT(BV). Ph.D. thesis, University
of Trento (2008)

6. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

7. Mrázek, J., Bauch, P., Lauko, H., Barnat, J.: SymDIVINE: tool for control-
explicit data-symbolic state space exploration. In: Bošnački, D., Wijs, A. (eds.)
SPIN 2016. LNCS, vol. 9641, pp. 208–213. Springer, Cham (2016). doi:10.1007/
978-3-319-32582-8 14

1 https://github.com/yaqwsx/SymDIVINE/releases/download/v0.5/symdivine.zip.
2 https://github.com/yaqwsx/SymDIVINE.

http://dx.doi.org/10.1007/978-3-642-39799-8_60
http://dx.doi.org/10.1007/978-3-642-28891-3_25
http://dx.doi.org/10.1007/978-3-642-28891-3_25
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-32582-8_14
http://dx.doi.org/10.1007/978-3-319-32582-8_14
https://github.com/yaqwsx/SymDIVINE/releases/download/v0.5/symdivine.zip
https://github.com/yaqwsx/SymDIVINE

	Optimizing and Caching SMT Queries in SymDIVINE
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project and Contributors
	References


