
HiFrog: SMT-based Function Summarization
for Software Verification

Leonardo Alt1(B), Sepideh Asadi1(B), Hana Chockler2(B),
Karine Even Mendoza2(B), Grigory Fedyukovich3(B),
Antti E.J. Hyvärinen1(B), and Natasha Sharygina1(B)

1 Università della Svizzera italiana, Lugano, Switzerland
leonardoaltt@gmail.com, antti.hyvarinen@gmail.com,

{sepideh.asadi,natasha.sharygina}@usi.ch
2 King’s College London, London, UK

{hana.chockler,karine.even mendoza}@kcl.ac.uk
3 University of Washington, Seattle, USA

grigory.fedyukovich@gmail.com

Abstract. Function summarization can be used as a means of incre-
mental verification based on the structure of the program. HiFrog is
a fully featured function-summarization-based model checker that uses
SMT as the modeling and summarization language. The tool supports
three encoding precisions through SMT: uninterpreted functions, linear
real arithmetics, and propositional logic. In addition the tool allows opti-
mized traversal of reachability properties, counter-example-guided sum-
mary refinement, summary compression, and user-provided summaries.
We describe the use of the tool through the description of its architecture
and a rich set of features. The description is complemented by an exper-
imental evaluation on the practical impact the different SMT precisions
have on model-checking.

1 Introduction

Incremental verification addresses the unique opportunities and challenges that
arise when a verification task can be performed in an incremental way, as a
sequence of smaller closely related tasks. We present an implementation of
the incremental verification of software with assertions that uses the insights
obtained from a successful verification of earlier assertions. As a fundamental
building block in storing the insights we use function summaries known to pro-
vide speed-up through localizing and modularizing verification [12,13].

In this paper we describe the HiFrog verification tool that uses Craig inter-
polation [6] in the context of Bounded Model Checking (BMC) [4] for con-
structing function summaries. The novelty of the tool is in the unique way
it combines function summaries with the expressiveness of satisfiability mod-
ulo theories (SMT). The system currently supports verification based on the
quantifier-free theories of linear real arithmetics (QF LRA) and uninterpreted

This work was supported by the SNF projects 153402 and 163001.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 207–213, 2017.
DOI: 10.1007/978-3-662-54580-5 12



208 L. Alt et al.

functions (QF UF), in addition to propositional logic (QF BOOL). Compared
to our earlier propositional tool FunFrog [13], the SMT summaries are smaller
and more efficient in verification. They are also often significantly more human-
readable, enabling their easier reuse, as well as injection of summaries provided
directly by the user. The difference is due to the propositional summaries being
based on correctness proofs over circuit-level representation of arithmetic oper-
ations. Theory encoding uses instead directly arithmetic symbols in the sum-
maries. In addition, the tool offers a rich set of features such as verification of
recursive programs, different ways of optimizing the summaries with respect to
both size and strength, efficient heuristics for removing redundant safety proper-
ties, and easy-to-understand witnesses of property violations that can be directly
mapped to bugs in the source code.

The paper provides an architectural description of the tool, an introduction
to its use, and experimental evidence of its performance. The tool together with
a comprehensive demo is available at http://verify.inf.usi.ch/hifrog.

Related Work. Incremental verification is extensively researched in domains such
as hardware verification, deductive verification, and model checking. Due to
space constraints we provide only a brief review of recent related work. The
CPAchecker tool is able to migrate predicates across program versions [3].
Deductive verification tools such as Viper and Dafny offer modular verifica-
tion [11] and caching the intermediate verification results [9] respectively. CBMC
is a symbolic bounded model-checker for C that to a limited extent exploits incre-
mental capabilities of a SAT solver1, but does not use or output any reusable
information like function summaries. Similar to HiFrog, ESBMC also shares
the CProver infrastructure and is based on an SMT solver. To the best of our
knowledge, it does not support incremental verification [5].

2 Tool Overview

HiFrog consists of two main components SMT encoder and interpolating SMT
solver; and the function summaries (see Fig. 1). The components are initially con-
figured with the theory and the interpolation algorithms. The tool then processes
assertions sequentially using function summaries when possible. The results of
a successful assertion verification are stored as interpolated function summaries,
and failed verifications trigger a refinement phase or the printing of an error
trace. This section details the tool features.

Preprocessing. The source code is parsed and transformed into an intermediate
goto-program using the goto-cc symbolic compiler. The loops are unwound to
the pre-determined number of iterations. HiFrog identifies the set of assertions
from the source code, reads the user-defined function summaries (if any) in the
smtlib2-format, and makes them available for the subsequent analysis.

1 http://www.cprover.org.

http://verify.inf.usi.ch/hifrog
http://www.cprover.org


HiFrog: SMT-based Function Summarization for Software Verification 209

Fig. 1. HiFrog overview. Grey and black arrows connect different modules of the tool
(dashed - optional). Blue arrows represent the flow of the input/output data. (Color
figure online)

SMT Encoding and Function Summarization. For a given assertion, the goto-
program is symbolically executed function-per-function resulting in the “modu-
lar” Static Single Assignment (SSA) form of the unwound program, i.e., a form
where each function has its own isolated SSA-representation. To reduce the size
of the SSA form, HiFrog performs slicing that keeps only the variables in the
SSA form that are syntactically dependent on the variables in the assertion.

When the SSA form is pruned, HiFrog creates the SMT formula in the pre-
determined logic (QF BOOL, QF UF or QF LRA). The modularity of the SSA
form comes in handy when the function summaries of the chosen logic (either
user-defined, interpolation-based, or treated nondeterministically) are available.
If this is the case, the call to a function with the available summary is replaced
by the summary. The final SMT formula is pushed to an SMT solver to decide
its satisfiability.

Due to over-approximating nature of function summaries, the program
encoded with the summaries may contain spurious errors. The summary refiner
identifies and marks summaries directly involved in the detected error, and
HiFrog returns to the encoding stage to replace the marked summaries by the
precise (up to the pre-determined logic) function representations. Note that due
to refinement, HiFrog reveals nested function calls (including recursive ones)
which are again replaced by available summaries. For an unsatisfiable SMT for-
mula, HiFrog extracts function summaries using interpolation. The extracted
summaries are serialized in a persistent storage so that they are available for
other HiFrog runs. For a more detailed description we refer to [13].

Theories. HiFrog supports three different quantifier-free theories in which the
program can be modelled: bit-precise QF BOOL, QF UF and QF LRA. The use



210 L. Alt et al.

of theories beyond QF BOOL allows the system to scale to larger problems since
encoding in particular the arithmetic operations using bit-precision can be very
expensive. As the precise arithmetics often do not play a role in the correctness
of the program, substituting them with linear arithmetics, uninterpreted func-
tions, or even nondeterministic behavior might result in a significant reduction
in model-checking time (see Sect. 3). If a property is proved using one of the
light-weight theories QF UF and QF LRA, the proof holds also for the exact
BMC encoding of the program. However, the loss of precision can sometimes
produce spurious counterexamples due to the over-approximating encoding. The
light-weight theories therefore need to be refined (i.e., using theory refiner) to
QF BOOL if the provided counter-example does not correspond to a concrete
counterexample.

Obtaining Summaries by Interpolation. HiFrog relies on different interpola-
tion frameworks for the different theories it supports. As a result the genera-
tion of propositional, QF UF and QF LRA interpolants can be controlled with
respect to strength and size by specifying an interpolation algorithm for a theory.
For propositional logic we provide the Labeled Interpolation Systems [7] includ-
ing the Proof-Sensitive interpolation algorithms [1]. Interpolation for QF UF
is implemented with duality-based interpolation [2], and a similar extension is
applied to the interpolation algorithm for QF LRA based on [10]. HiFrog also
provides a range of techniques to reduce the size of the generated interpolants
through removing redundancies in propositional proofs [12]: the algorithms Recy-
clePivotsWithIntersection and LowerUnits, structural hashing, and a set of local
rewriting rules.

Assertion Optimizer. In addition to incremental verification of a set of assertions,
HiFrog supports the basic functionality of classical model checkers to verify all
assertions at once. For the cases when the set of assertions is too large, it can be
optimized by constructing an assertion implication relation and exploiting it to
remove redundant assertions [8]. In a nutshell, the assertion optimizer considers
pairs of spatially close assertions ai and aj and uses the SMT solver to check
if ai conjoined with the code between ai and aj implies aj (if there is any
other assertion between ai and aj then it is treated as assumption). If the check
succeeds then aj is proven redundant and its verification can be safely skipped.

3 HIFROG Usage

We provide a Linux binary of HiFrog reading as input a C-program, assertions
to be verified, a set of parameters and the interpolated or user-defined func-
tion summaries in the SMT-LIB2 format. HiFrog exploits the CProver frame-
work and inherits some of its options (e.g., --unwind for the loop unrolling,
--show-claims and --claim for managing the assertions checks); the abil-
ity for the user to declare and to use a nondet TYPE() function of a specific
numerical type (e.g., int, long, double, unsigned, in QF LRA only) or add a
CPROVER assume() statement to limit the domain to a specific range of values.



HiFrog: SMT-based Function Summarization for Software Verification 211

HiFrog uses QF LRA by default but can be switched to QF UF via the
--logic option.2 HiFrog uses a variety of interpolation and proof compression
algorithms to control the the precision (with --itp-uf-algorithm option for
QF UF, --itp-lra-algorithm option for QF LRA, and --itp-algorithm
option for propositional interpolation) and the size (with --reduce-proof) of
summaries. The summary storage is controlled using the --save-summaries
and --load-summaries options. In between verification runs, the summaries
contained in the corresponding files for QF UF and QF LRA might be edited
manually. Note that due to the SMT encoding constraints HiFrog does not
allow interchanging summaries between the theories. Finally, HiFrog supports
the identification and reporting of redundant assertions with --claims-opt, a
useful feature for some automatically generated assertions [8].

In the end of each verification run, HiFrog either reports VERIFICATION
SUCCESSFUL or VERIFICATION FAILED accompanied by an error trace. An error
trace presents a sequence of steps with a direct reference to the code and the
values of variables in these steps. In most cases when QF UF and QF LRA intro-
duce a spurious error, HiFrog outputs a warning, and thus the user is advised
to use HiFrog with a more precise theory. HiFrog also reports the statistics
on the running time and the number of the summary-refinements performed.

Experimental Results. We evaluated HiFrog on a large set of C programs coming
from both academic and industrial sources such as SV-COMP. All benchmarks
contained multiple assertions to be checked. To demonstrate the advantages of
the SMT-based summarization, here we provide data for analysis of benchmarks
containing 1086 assertions from which 474 were proven to hold using QF BOOL
(meaning that those properties satisfy the system specifications). Even despite
the over-approximating nature of QF UF and QF LRA, our experiments wit-
nessed a large amount of properties which were also proven to be correct by
employing the light-weight theories of HiFrog (namely, 50.65% and 69.2% of
validated properties out of 474 for QF UF and QF LRA respectively).

Furthermore, those experiments revealed that model checking using the
QF UF and QF LRA-based summarization was extremely efficient. Figure 2

10−2 10−1 100 101 102

10−2

10−1

100

101

102

QF BOOL(sec).

Q
F

U
F
(s

ec
).

10−2 10−1 100 101 102

10−2

10−1

100

101

102

QF BOOL(sec).

L
R

A
(s

ec
).

Fig. 2. Running time by QF BOOL against QF UF and QF LRA.

2 Currently the support for QF BOOL needs to be specified at compile time.



212 L. Alt et al.

presents two logarithmic plots for comparison of running times3 of HiFrog with
QF BOOL to respectively QF UF and QF LRA. Each point represents a pair
of verification runs of a holding assertion with the two corresponding theories
using the interpolation-based summaries. Note that for most of the assertions,
the verification with QF UF and QF LRA is an order of magnitude faster than
the verification with QF BOOL.

References

1. Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A proof-sensitive app-
roach for small propositional interpolants. In: Gurfinkel, A., Seshia, S.A. (eds.)
VSTTE 2015. LNCS, vol. 9593, pp. 1–18. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29613-5 1

2. Alt, L., Hyvärinen, A.E.J., Sharygina, N.: Duality-based interpolation for
quantifier-free equalities and uninterpreted functions (2016). http://www.inf.usi.
ch/postdoc/hyvarinen/euf-interpolation.pdf

3. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: ESEC/FSE, pp. 389–399. ACM (2013)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). doi:10.1007/3-540-49059-0 14

5. Cordeiro, L.C., de Lima Filho, E.B.: SMT-based context-bounded model checking
for embedded systems: challenges and future trends. ACM SIGSOFT Softw. Eng.
Notes 41(3), 1–6 (2016)

6. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log. 22(3), 269–285 (1957)

7. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–
145. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11319-2 12

8. Fedyukovich, G., D‘Iddio, A.C., Hyvärinen, A.E.J., Sharygina, N.: Symbolic detec-
tion of assertion dependencies for bounded model checking. In: Egyed, A., Schaefer,
I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 186–201. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46675-9 13

9. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 380–397.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 22

10. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

11. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure
for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 2

3 The timing results were obtained on an Ubuntu 14.04.1 LTS server running two
Intel(R) Xeon(R) E5620 CPUs @ 2.40 GHz and 16 GB RAM. We prepared a
pre-compiled Linux-binary available at the Virtual Machine at http://verify.inf.usi.
ch/hifrog/binary; our benchmarks set is available at http://verify.inf.usi.ch/hifrog/
bench and can facilitate the property verification for other researchers.

http://dx.doi.org/10.1007/978-3-319-29613-5_1
http://dx.doi.org/10.1007/978-3-319-29613-5_1
http://www.inf.usi.ch/postdoc/hyvarinen/euf-interpolation.pdf
http://www.inf.usi.ch/postdoc/hyvarinen/euf-interpolation.pdf
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-642-11319-2_12
http://dx.doi.org/10.1007/978-3-662-46675-9_13
http://dx.doi.org/10.1007/978-3-319-21690-4_22
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://verify.inf.usi.ch/hifrog/binary
http://verify.inf.usi.ch/hifrog/binary
http://verify.inf.usi.ch/hifrog/bench
http://verify.inf.usi.ch/hifrog/bench


HiFrog: SMT-based Function Summarization for Software Verification 213

12. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
a framework for producing effective interpolants in SAT-based software verification.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol.
8312, pp. 683–693. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5 45

13. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: bounded model checking with
interpolation-based function summarization. In: Chakraborty, S., Mukund, M.
(eds.) ATVA 2012. LNCS, vol. 7561, pp. 203–207. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33386-6 17

http://dx.doi.org/10.1007/978-3-642-45221-5_45
http://dx.doi.org/10.1007/978-3-642-33386-6_17

	HiFrog: SMT-based Function Summarization for Software Verification
	1 Introduction
	2 Tool Overview
	3 HIFROG Usage
	References


