
Long-Run Rewards for Markov Automata

Yuliya Butkova1(B), Ralf Wimmer2, and Holger Hermanns1

1 Saarland University, Saarbrücken, Germany
{butkova,hermanns}@depend.uni-saarland.de

2 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
wimmer@informatik.uni-freiburg.de

Abstract. Markov automata are a powerful formalism for modelling
systems which exhibit nondeterminism, probabilistic choices and contin-
uous stochastic timing. We consider the computation of long-run average
rewards, the most classical problem in continuous-time Markov model
analysis. We propose an algorithm based on value iteration. It improves
the state of the art by orders of magnitude. The contribution is rooted
in a fresh look on Markov automata, namely by treating them as an
efficient encoding of CTMDPs with – in the worst case – exponentially
more transitions.

1 Introduction

The need for automated verification is becoming more and more pertinent with
the complexity of systems growing day by day. Estimating the expected cost
of system maintenance, maximising the expected profit, evaluating the avail-
ability of the system in the long run – all these questions can be answered by
quantitative model checking.

Quantitative model checking of models such as continuous-time Markov
chains (CTMCs) and continuous-time Markov decision processes (CTMDPs) has
been studied extensively. Unfortunately, modelling complex systems requires a
formalism that admits compositionality, which neither CTMCs nor CTMDPs
can offer. The most general compositional formalism available to date are
Markov automata [5]. Markov automata can model controllable (via nondeter-
ministic choices) systems running in continuous time that are prone to random
phenomena.

Enriching Markov automata with rewards enables the assessment of system
performance, dependability and more generally quality of service (QoS) [10].
State rewards represent costs that are accumulated over time, for instance,
related to energy consumption. Costs associated with executing a certain step
or policy, e.g. a deliberate violation of QoS, are modelled by means of action
rewards.

This work is partly supported by the ERC Advanced Grant 695614 (POWVER),
by the German Research Council (DFG) as part of the Cluster of Excellence Brain-
Links/BrainTools (EXC 1086) and by the Sino-German Center for Research Promo-
tion as part of the project CAP (GZ 1023).

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 188–203, 2017.
DOI: 10.1007/978-3-662-54580-5 11

Long-Run Rewards for Markov Automata 189

The long-run behaviour of a model is by far the most prominent and most
often studied property in the general context of continuous-time Markov mod-
els [13,14]. We discuss the corresponding problem for Markov automata with
rewards, namely the computation of long-run average reward properties. Thus
far, this problem is solved by reducing it to linear programming (LP) [10]. LP
solvers, despite the abundance of options as well as numerous techniques improv-
ing their efficiency, tend to scale poorly with the size of the model.

In this paper we develop the Bellman equation [1] for long-run average reward
properties. This characterisation enables the use of value or policy iteration
approaches, which on other Markov models are known to scale considerably bet-
ter than algorithms based on linear programming. This characterisation is made
possible by considering a Markov automaton as a compact representation of a
CTMDP with – in the worst case – exponentially more transitions. To arrive
there, we do not consider probabilistic states as first-class objects, but rather
as auxiliary states that encode the CTMDP’s transitions compactly. From this
new perspective, the analysis of Markov automata does not require designing new
techniques, but lets us adopt those used for CTMDPs. However, a trivial adap-
tation of CTMDP algorithms to an exponentially larger model obtained from
a Markov automaton would obviously induce exponential runtime. We manage
to avoid this issue by a dedicated treatment of exponentiality via dynamic pro-
gramming. As a result, considering the problem from a different angle enables us
to design a simple, yet very efficient algorithm. Its building blocks are algorithms
that have been known for a long time – relative value iteration for CTMDPs and
dynamic programming for classical finite horizon problems.

The original LP-based algorithm is available in the IMCA tool [10]. We have
implemented our algorithm in IMCA as well and evaluated both approaches on
a number of benchmarks. The runtime of our algorithm for long-run average
reward is several orders of magnitude better than the LP-based approach. The
latter can outperform our algorithm on small models, but it scales far worse,
which makes our algorithm the clearly preferred solution for real-world models.

2 Foundations

Given a finite or countable set S, a probability distribution over S is a function
μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. We denote the set of all probability

distributions over S by Dist(S). We set μ(S′) :=
∑

s∈S′ μ(s) for S′ ⊆ S.

Definition 1. A (closed) Markov reward automaton (MRA) M is a tuple M =
(S, s0,Act , ↪→,�, r, ρ) such that

– S is a finite set of states;
– s0 ∈ S is the initial state;
– Act is a finite set of actions;
– ↪→ ⊆ S × Act × Dist(S) is a finite probabilistic transition relation;
– � ⊆ S × R

≥0 × S is a finite Markovian transition relation;
– r : S × Act → R�0 is a transient reward function;
– ρ : S → R�0 is a state reward function.

190 Y. Butkova et al.

no jobs

s10.5 has a job

s2

λ

process

d
is
c
a
rd

1

0
.2

μ

0.8

α,101

Fig. 1. An example
MRA.

We often abbreviate (s, α, μ) ∈ ↪→ by s
α
↪→ μ and

write s
λ� s′ instead of (s, λ, s′) ∈ �. Act(s) = {α ∈

Act | ∃μ ∈ Dist(S) : s
α
↪→ μ} denotes the set of actions

that are enabled in state s ∈ S. A state s is probabilistic
(Markovian), if it has at least one probabilistic transition
s

α
↪→ μ (Markovian transition s

λ� s′, resp.). States can
be both probabilistic and Markovian. We denote the set
of probabilistic states by PSM and the Markovian states
by MSM. To simplify notation, we assume w. l. o. g. that
actions of probabilistic transitions of a state are pairwise different (this can be
achieved by renaming them).

Example 1. Figure 1 shows an example MRA of a lazy server. Grey and white
coloring of states indicate the sets MSM, respectively PSM (their intersection
being disjoint here). Transitions labelled as discard, process or α are actions
enabled in a state. Dashed transitions associated with an action represent the
distribution assigned to the action. Purely solid transitions are Markovian. The
server has to process jobs, which arrive at rate λ; this is modelled by a Markovian
transition with a corresponding rate. Whenever there is a job to process, the
server chooses either to process or to discard it. These decisions are modelled by
probabilistic transitions with corresponding actions. A job is processed by the
server with rate μ and requires energy. We model energy consumption as a state
reward 0.5 for state s1. Discarding a job doesn’t cost any energy, but with a 20%
chance leads to a complaint and associated costs. These costs are modelled as
an action reward 10 of state s2 and action α.

For a Markovian state s ∈ MSM, the value R(s, s′) :=
∑

(s,λ,s′)∈� λ is
called the transition rate from s to s′. The exit rate of a Markovian state s is
E(s) :=

∑
s′∈S R(s, s′). We require E(s) < ∞ for all s ∈ MSM.

For a probabilistic state s, s.t. s
α
↪→ μ for some α, the value P[s, α, s′] := μ(s′).

For a Markovian state s with E(s) > 0, the branching probability distribution
when leaving the state through a Markovian transition is denoted by P[s, ·] ∈
Dist(S) and defined by P[s, s′] := R(s, s′)/E(s).

The Markovian transitions are governed by an exponential distributions,
i. e. the probability of leaving s ∈ MSM within t ≥ 0 time units is given by
1 − e−E(s)·t, after which the next state is chosen according to P[s, ·].

In this paper we consider closed MRA, i. e. probabilistic transitions cannot
be delayed by further compositions. Therefore we can make the usual urgency
assumption that probabilistic transitions happen instantaneously. Whenever the
system is in state s with Act(s) �= ∅ and an action α ∈ Act(s) is chosen, the
successor s′ is selected according to the distribution P[s, α, ·] and the system
moves instantaneously from s to s′. The residence time in probabilistic states is
therefore always 0. As the execution of a probabilistic transition is instantaneous
and because the probability that a Markovian transition is triggered immediately
is 0, we can assume that the probabilistic transitions take precedence over the
Markovian transitions. We therefore assume PSM ∩ MSM = ∅.

Long-Run Rewards for Markov Automata 191

Additionally, we make the following non-Zenoness assumption, as in [9]. An
MRA is non-Zeno iff no maximal end component [9] of only probabilistic states is
reachable with probability > 0. This excludes models in which there is a chance
to get trapped in an infinite number of transitions occurring in finite time.

Paths, Rewards and Schedulers. A (timed) path in M is a finite or infinite

sequence π = s0
α0,t0−→ s1

α1,t1−→ · · · αk,tk−→ sk+1
αk+1,tk+1−→ · · · . Here si

αi,0−→ si+1 s.t.

αi ∈ Act(si) is a probabilistic transition via action αi, and si
⊥,ti−→ si+1, s.t. ti > 0

and si
λ� si+1, denotes a Markovian transition with sojourn time ti in state si.

The set of all finite (infinite) paths of M is denoted by Paths∗
M (PathsM). An

untimed path π = s0
α0−→ s1

α1−→ · · · αk−→ sk+1
αk+1−→ · · · is a path containing

no timing information. We use prefix(π, t) to denote the prefix of path π until
time t, i. e. prefix(π, t) = s0

α0,t0−→ s1
α1,t1−→ · · · αk,tk−→ sk+1, s.t.

∑k
i=0 ti � t and

∑k+1
i=0 ti > t. If π = s0

α0,t0−→ s1
α1,t1−→ · · · αk−1,tk−1−→ sk is finite, we define |π| := k

and π↓ := sk.
Let π be a finite path, we define the accumulated reward of π as follows:

rew(π) :=
∑|π|−1

i=0
ρ(si) · ti + r(si, αi).

For an infinite path π, rew(π, t) := rew
(
prefix(π, t)

)
denotes the reward collected

until time t. The following two assumptions can be made without restricting
reward expressiveness: (i) the state reward of probabilistic states is always 0
(since residence time in probabilistic states is 0); (ii) if s ∈ MSM then r(s, ·) = 0
(due to the absence of outgoing probabilistic transitions in Markovian states).

In order to resolve the nondeterminism in probabilistic states of an MRA we
need the notion of a scheduler. A scheduler (or policy) D : Paths∗

M → Dist(↪→) is
a measurable function, s.t. D(π) assigns positive probability only to transitions
(π↓, α, μ) ∈ ↪→, for some α, μ. The set of all measurable schedulers is denoted
by GM M. A (deterministic) stationary scheduler is a function D : PSM → ↪→,
s.t. D(s) chooses only from transitions (s, α, μ) ∈ ↪→, for some α, μ.

An initial state s0 and a fixed scheduler D induce a stochastic process on
M. For a stationary scheduler this process is a continuous-time Markov chain
(CTMC). A CTMC is called a unichain (multichain) if it has only 1 (>1) recur-
rence class [3] plus possibly some transient states. We say that an MRA M is
a unichain if all stationary schedulers induce a unichain CTMC on M, and a
multichain otherwise.

3 Long-Run Average Reward Property

In this section, we introduce the long-run average reward property on Markov
reward automata and discuss the only available algorithm for this problem.

Let M = (S, s0,Act , ↪→,�, r, ρ) be a Markov reward automaton and π an
infinite path in M. The random variable LM : PathsM → R�0 such that

LM(π) := lim
t→∞

1
t
rew(π, t)

192 Y. Butkova et al.

denotes the long-run average reward over a path π in M. We now define the
optimal expected long-run average reward on M with initial state s as follows:

aRopt
M (s) := opt

D∈GMM
Es,D[LM] = opt

D∈GMM

∫

PathsM

LM(π)Prs,D[dπ],

where opt ∈ {sup, inf}. In the following, we use aRopt
M instead of aRopt

M (s), when-
ever the value does not depend on the initial state. Furthermore, aRD

M(s) denotes
the long-run average reward gathered when following the policy D.

Guck et al. [10] show that under the assumptions mentioned in Sect. 2 there
is always an optimal scheduler for the aRopt problem that is stationary. From
now on we therefore consider only stationary schedulers.

Quantification. We will present now the only available solution for the quan-
tification of aRopt [10]. The computation is split into three steps:

1. Find all maximal end components of M. A maximal end component (MEC)
of a MRA can be seen as a maximal sub-MRA whose underlying graph is
strongly connected. An MRA may have multiple MECs. The problem of find-
ing all MECs of an MRA is equivalent to decomposing a graph into strongly
connected components. This problem admits efficient solutions [4].

2. Compute aRopt
M for each maximal end component. An optimal scheduler for

aRopt on an MEC induces a unichain on this MEC [10]. A solution for unichain
MRA is therefore needed for this step. The solution provided by Guck
et al. [10] is based on a reduction of the aRopt computation to the solu-
tion of a linear optimisation problem. The latter in turn can be solved by any
of the available linear programming solvers.

3. Compute a stochastic shortest path (SSP) problem. Having the optimal values
aRopt

Mj
for maximal end components Mj , the following holds [9,10]:

aRopt
M (s) = sup

D∈GM

k∑

j=1

Prs,D[♦�Sj] · aRopt
Mj

,

where Prs,D[♦�Sj] denotes the probability to eventually reach and then stay
in the MEC Mj starting from state s and using the scheduler D. Sj is the
state space of Mj . The authors reduce this problem to a well-established SSP
problem on Markov decision processes [13], that admits efficient solutions,
such as value or policy iteration [2].

One can see that steps 1 and 3 of this algorithm admit efficient solutions, while
the algorithm for step 2 is based on linear programming. The algorithms for
linear programming are, unfortunately, known to not scale well with the size of
the problem in the context of Markov decision processes, relative to iterative
algorithms based on value or policy iteration. So far, however, no iterative algo-
rithm is known for long-run average rewards on Markov automata. In this work
we fill this gap and design an iterative algorithm for the computation of long-run
average rewards on MRA.

Long-Run Rewards for Markov Automata 193

4 An Iterative Approach to Long-Run Average Rewards

In this section, we present our approach for quantifying the long-run aver-
age reward on Markov reward automata. Recall that the original algorithm,
described in the previous section, is efficient in all the steps except for step 2 –
the computation of the long-run average reward for unichain MRA. We therefore
target this specific sub-problem and present our algorithm for unichain MRA.
Having an arbitrary MRA M, one can quantify aRopt by applying steps 1 and
3 of the original algorithm and using our solution for unichain MRA for step 2.

Effective Analysis of Unichain MRA. The core of our approach lies in the
following observation: a Markov reward automaton can be considered as a com-
pact representation of a possibly exponentially larger continuous-time Markov
decision process (CTMDP). This observation enables us to use efficient algo-
rithms available for CTMDPs [13] to compute long-run average rewards. But
since that CTMDP, in the worst case, has exponentially more transitions, this
näıve approach does not seem promising. We circumvent this problem by means
of classical dynamic programming, and thereby arrive at an efficient solution
that avoids the construction of the large CTMDP.

For the rest of this section, M = (S, s0,Act , ↪→,�, r, ρ) denotes a unichain
Markov reward automaton. Guck et al. [10] show that aRopt for a unichain MRA
does not depend on the initial state, i.e. ∀s, s′ : aRopt

M (s) = aRopt
M (s′). We will

therefore refer to this value as aRopt
M .

4.1 CTMDP Preserving aRopt

We will now present a transformation from a unichain MRA to a CTMDP that
preserves the long-run average reward property.

Definition 2. A continuous-time Markov decision process (CTMDP) is a tuple
C = (S,Act ,R), where S is a finite set of states, Act is a finite set of actions,
and R : S × Act × S → R≥0 is a rate function.

The set Act(s) = {α ∈ Act | ∃s′ ∈ S : R(s, α, s′) > 0} is the set of enabled
actions in state s. A path in a CTMDP is a finite or infinite sequence π = s0

α0,t0−→
s1

α1,t1−→ · · · αk−1,tk−1−→ sk · · · , where αi ∈ Act(si) and ti denotes the residence time
of the system in state si. E(s, α) :=

∑
s′∈S R(s, α, s′) and PC [s, α, s′] := R(s,α,s′)

E(s,α) .
The notions of Paths∗

C , PathsC , prefix(π, t), |π|, π↓, schedulers and unichain
CTMDP are defined analogously to corresponding definitions for an MRA (see
Sect. 2).

A reward structure on a CTMDP C is a tuple (ρC , rC), where ρC : S → R�0

and rC : S × Act → R�0. The reward of a finite path π is defined as follows:

rewC(π) :=
∑|π|−1

i=0
ρC(si) · ti + rC(si, αi)

194 Y. Butkova et al.

The optimal expected long-run average reward aRopt
C of a CTMDP C is defined

analogously to aRopt
M on MRA (see Sect. 2). As shown in [13], for a unichain

CTMDP C we have ∀s, s′ ∈ S : aRopt
C (s) = aRopt

C (s′). In the future we will refer
to this value as aRopt

C .

Transformation to Continuous-Time MDP. Let M be a unichain MRA.
We construct the CTMDP CM = (SC ,ActC ,RC) with reward structure (ρC , rC)
as follows:

– SC := MSM;
– The set ActC is obtained as follows. Let s ∈ MSM, then we denote as PS s

the set of all probabilistic states s′ ∈ PSM reachable from s via the transition
relation ↪→. Let As be a function As : PS s → Act , s.t. As(s′) ∈ Act(s′). Then
the set of all enabled actions ActC(s) for state s in CM is the set of all possible
functions As, and ActC =

⋃
s∈MSM ActC(s).

– Next, we define the transition matrix RC . Let s, s′ ∈ MSM, and ΠPS (s,As, s
′)

be the set of all untimed paths in M from s to s′ via only probabilistic states
and choosing those actions in the probabilistic states that are defined by As.
Then RC(s,As, s

′) := E(s) · ∑
π∈ΠPS (s,As,s′) PrM[π], where π = s

⊥−→ s1
α1−→

· · · αk−→ s′ and PrM[π] = P[s, s1] · P[s1, α1, s2] · · ·P[sk, αk, s′].
– ρC(s) := ρ(s);
– rC(s,As) :=

∑
s′∈SC

∑
π∈ΠPS (s,As,s′) PrM[π] · rM(π), where π = s

⊥−→ s1
α1−→

· · · sk
αk−→ s′ and rM(π) =

∑k
i=1 r(si, As(si)). The action reward for state s

and action As in C is therefore the expected accumulated action reward over
all successors s′(in C) of state s and over all paths from s to s′.

An example of this transformation is depicted in Fig. 2. One can already see that
even in small examples the amount of transitions of the CTMDP corresponding
to a MRA can grow extremely fast. If every probabilistic successor s′ ∈ PS s of
a state s in M has 2 enabled actions, the set of enabled actions ActC(s) of s
in CM is 2|PSs|. This growth is therefore exponential in the worst-case, and the
worst case occurs frequently, due to cascades of probabilistic states.

Remark. It is obvious that this transformation if applied to a unichain MRA
yields a unichain CTMDP. Moreover, at each state s of the resulting CTMDP
the exit rate is the same across all actions enabled. We therefore refer to this
exit rate as E(s).

Theorem 1. aRopt
CM = aRopt

M

4.2 Dealing with Exponentiality

In this section, we will develop a simple yet efficient solution to cope with expo-
nentiality, harvesting the Bellman equation for CTMDPs [13] together with the
structure of M. A näıve direct application to CM yields:

Long-Run Rewards for Markov Automata 195

s0

p0

p1

p2

p3

s1

s2

λ1

λ2

μ1

μ2

α0

β0

α1

β1

γ2

ω2

γ3

ω3

s0

· · ·

s1

s2

α
0

,
γ 2

α
1

,
γ 3

α0, ω2

β1, γ3

β
0 ,

ω
2

β
1 ,

ω
3

μ1

μ2

Fig. 2. An example of M → CM transformation. The MRA M is depicted on the left
and the resulting CTMDP CM on the right. In this picture we omitted the probabilities
of the probabilistic transitions. If distributions P[p0, α0, ·] and P[p0, α1, ·] are uniform,

then RC(s0,
α0,γ2
α1,γ3

, s1) = (λ1+λ2)·
[

λ1
λ1+λ2

(0.5 · 1 + 0.5 · 0) + λ2
λ1+λ2

(1 · 1)
]

= 0.5·λ1+λ2.

Theorem 2 (Bellman equation. Inefficient way). Let CM = (SC ,ActC ,
RC) and (ρC , rC) be a CTMDP and a reward structure obtained through the above
transformation. Let opt ∈ {sup, inf}, then there exists a vector h ∈ R

|SC| and a
unique value aRopt

M ∈ R�0 that are a solution to the Bellman equation:
∀s ∈ MSM :

aRopt
M

E(s)
+ h(s) = opt

α∈Act(s)

{

rC(s, α) +
ρC(s)
E(s)

+
∑

s′∈SC

PC [s, α, s′] · h(s′)

}

(1)

It is easy to see that the only source of inefficiency in this case is the optimisation
operation on the right-hand side, performed over possibly exponentially many
actions. Left untreated, this operation in essence is a brute force check of opti-
mality of each action. We will now show how to avoid this problem by working
with M itself and not with CM. Informally, we will show that the right-hand
side optimisation problem on CM is nothing more than a total expected reward
problem on a discrete-time Markov decision process. Knowing this, we can apply
well-known dynamic programming techniques to solve this problem.

MDPs and Total Expected Reward. We will first need to briefly introduce
Markov decision processes and the total expected reward problem.

Definition 3. A Markov decision process (MDP) is a tuple D = (SD, s0,ActD,
PD) where SD is a finite set of states, s0 is the initial state, ActD is a finite set
of actions, and PD : SD ×ActD → Dist(SD) is a probabilistic transition matrix.

The definitions of paths, schedulers and other related notions are analogous
to those of CTMDP. In contrast to CTMDPs and MRA, MDPs run in discrete
time. A reward structure on an MDP is a function rD : SD × ActD → R�0.

196 Y. Butkova et al.

Let Xs
i , Y s

i be random variables denoting the state occupied by D and the
action chosen at step i starting from state s. Then the value

tRopt
D,rD (s) := opt

D∈GMD
Es,D

[

lim
N→∞

N−1∑

i=0

rD(Xs
i , Y s

i)

]

,

where opt ∈ {sup, inf}, denotes the optimal total expected reward on D with
reward structure rD, starting from state s [2].

The total expected reward problem on MDPs is a well-established problem
that admits policy-iteration and LP-based algorithms [13]. Moreover, for acyclic
MDPs it can be computed by the classical finite horizon dynamic programming
approach [2], in which each state has to be visited only once. We will present
now the iterative scheme that can be used to compute tRopt on an acyclic MDP.

A state of an MDP is a terminal state if all its outgoing transitions are self-
loops with probability 1 and reward 0. We call an MDP acyclic if the self-loops
of terminal states are its only loops. We say that a non-terminal state s has
maximal depth i, or d(s) = i, if the longest path π from s until a terminal state
has length |π| = i. We define d(t) := 0. The following is the iterative scheme to
compute the value tRopt on D:

vd(s)(s) =

⎧
⎨

⎩

0 d(s) = 0

opt
α∈Act

{
rewD(s, α) +

∑

s′∈S

P[s, α, s′]vd(s′)(s′)
}

d(s) > 0 (2)

Theorem 3. tRopt(s) = vd(s)(s)

Transformation to Discrete-Time MDP. Let Emax
M be the maximal exit

rate among all the Markovian states of M and λ > Emax
M . We will present now

a linear transformation from M to the terminal MDP Dλ
M:

1. At first we obtain the MDP Dλ = (S, s0,Act ′,Pλ) with Act ′ = Act ∪̇{⊥}. This
MDP contains all probabilistic states of M and their actions. Additionally, we
add the Markovian states by making them probabilistic. In each Markovian
state only action ⊥ is enabled. The probability distribution for this action
is obtained by uniformising the states. Uniformisation with rate λ fixes the
means of the residence times (which are discrete quantities, as opposed to the
CTMDP formulation) in all Markovian states s to 1

λ instead of 1
E(s) . This is

achieved by introducing self-loops [13].

Pλ[s, α, s′] :=

⎧
⎨

⎩

P[s, α, s′] for s ∈ PSM, α ∈ Act ′(s)
R(s,s′)

λ for s ∈ MSM, α = ⊥, s′ �= s

1 − E(s)−R(s,s)
λ for s ∈ MSM, α = ⊥, s′ = s

Long-Run Rewards for Markov Automata 197

no jobs

s1 has a job

s2

λ

process
d
is
c
a
rd

1

0
.2

μ

0.8

α1

(a)

no jobs

s1 has a job

s2
⊥

λ
η

1 − λ
η

process

dr
a

csi
d

1

0
. 2

⊥

μ
η

1 − μ
η

0.8

α1

(b) Step 1.

no jobs

s1 has a job

s2 no jobscp

s1cp

t

⊥

λ
η

1 − λ
η

process

d
is
c
a
rd

1

0
.2

⊥

μ
η

1 − μ
η

0.8

α 1

⊥, 1

⊥, 1

⊥, 1

(c) Step 2.

Fig. 3. Transformation to terminal MDP with uniformisation rate η. Figure (a) depicts
the original MRA from Fig. 1. The result of the first step of the transformation is shown
in figure (b), and the second step is depicted in (c).

2. Next, for each Markovian state, we introduce a copy state and redirect all the
transitions leading to Markovian states to these new copy states. Additionally,
we introduce a terminal state t, that has only self-loop transitions. Let Dλ =
(S, s0,Act ′,Pλ) be the MDP obtained in the previous step, then we build
Dλ

M = (SD, s0,Act ′,PD), where Scp = {scp | s ∈ MSM}, SD = S ∪̇ Scp ∪̇ {t}
and

P
′
D[s, α, s′] =

⎧
⎪⎪⎨

⎪⎪⎩

Pλ[s, α, p] for s′ = pcp ∈ Scp

Pλ[s, α, s′] for s′ ∈ PSM
1 for s ∈ Scp, s

′ = t, α = ⊥
1 for s, s′ = t, α = ⊥

Figure 3 depicts both steps of the transformation. The resulting MDP is the one
that we will use to compute the total expected reward sub-problem.

Efficient Characterisation. We can now present an efficient characterisation
of the long-run average reward on unichain MRA.

Let Dλ
M = (SD, s0,Act ′,PD) be the terminal MDP for M and v : SD → R.

We define the reward structure rewD,v for Dλ
M as follows:

rewD,v(s, α) :=

⎧
⎪⎪⎨

⎪⎪⎩

r(s, α) for s ∈ PSM, α ∈ Act ′(s)
ρ(s)

λ for s ∈ MSM, α = ⊥
v(s) for s ∈ Scp, α = ⊥
0 for s = t, α = ⊥

Theorem 4 (Bellman equation. Efficient way). There exists a vector h ∈
R|MSM| and a unique value aRopt

M ∈ R�0 that are a solution to the system:

∀s ∈ MSM :
aRopt

M
λ

+ h(s) = tRopt

Dλ
M,rewD,h

(s)

198 Y. Butkova et al.

The difference between this characterisation and the one derived in Theo-
rem 2 is the right-hand side of the equations. The brute force traversal of expo-
nentially many actions of the former is changed to a total expected reward
computed over a linear-sized MDP in the latter.

The correctness of the approach is rooted in two facts. First of all, as a con-
sequence of Theorems 1 and 2 the computation of the long-run average reward of
an MRA can be reduced to the same problem on a continuous-time MDP. By the
results of [13] the latter in turn can be reduced to the long-run average reward
problem on its uniformised discrete-time MDP. This explains the uniformisation
of Markovian states in step 1 of the above transformation, and it explains the
reward value ρ(s)

λ of the Markovian states. The second observation is more tech-
nical. For a Markovian state s the right-hand side of Eq. (1) (Theorem 2) is the
total expected reward collected when starting from s in the MDP from step 1,
and finishing upon encountering a Markovian state for the second time (the first
one being s itself). This explains the addition of copy states in step 2 that lead
to a terminal state.

The above equation can be solved with many available techniques, e. g. by
policy iteration [13]. This will naturally cover cases where the MDP Dλ

M has
inherited from M cycles visiting only probabilistic states (without a chance of
getting trapped there, since non-Zenoness is assumed). Such a cycle of proba-
bilistic transitions almost never happens in real-world applications and is usually
considered a modelling mistake. In fact, we are not aware of any practical exam-
ple where that case occurs. We therefore treat separately the class of models
that have no cycles of this type and call such MRA PS-acyclic.

Theorem 5 (Bellman equation for PS-acyclic M). Let M be a PS-acyclic
unichain MRA. Then there exists a vector h ∈ R|MSM| and a unique value
aRopt

M ∈ R�0 that are a solution to the Bellman equation:

∀s ∈ MSM :
aRopt

M
λ

+ h(s) = ρ(s)
λ +

∑

s′∈PSM

R(s,s′)
λ · vd(s′)(s′)

+
∑

s′∈MSM
s′
=s

R(s,s′)
λ · h(s′) +

(
1 − E(s)−R(s,s)

λ

)
· h(s)

∀s ∈ PSM : vd(s)(s) = opt
α∈Act

{

r(s, α) +
∑

s′∈MSM

P[s, α, s′] · h(s′)

+
∑

s′∈PSM

P[s, α, s′] · vd(s′)(s′)

}

,

where λ is the uniformisation rate used to construct Dλ
M and d(s) denotes the

depth of state s in Dλ
M.

Long-Run Rewards for Markov Automata 199

Algorithm 1. RelativeValueIteration
input : Unichain MRA M = (S, s0,Act , ↪→, �, r, ρ), opt ∈ {sup, inf},

approximation error ε > 0
output : aRε

M such that ‖aRε
M − aRopt

M ‖ � ε

1 λ ←− Emax
M + 1;

2 Dλ
M ←− terminal MDP obtained as described above;

3 s∗ ←− any Markovian state of M;

4 v0 = 0, v1 = 1;

5 w0 = 0;

6 for (n = 0; sp(vn+1 − vn) < ε
λ
; n + +) do

7 vn+1 = TotalExpectedReward(Dλ
M, rewDλ

M,wn
, opt);

8 wn+1 = vn+1 − vn+1(s
∗) · e; /∗ e is the vector of ones ∗/

9 return vn+1(s
∗) · λ;

4.3 Algorithmic Solution

In order to solve the efficient variant of the Bellman equation, standard value or
policy iteration approaches are applicable. In this section, we present the relative
value iteration algorithm1 for this problem (Algorithm 1). This algorithm has two
levels of computations: the standard MDP value iteration as an outer loop on
Markovian states, and during each iteration of the value iteration we compute
the total expected reward on the terminal MDP.

Here sp(v) :=
∣
∣ max
s∈MSM

{v(s)} − min
s∈MSM

{v(s)}∣∣ and TotalExpectedReward

denotes the function that computes the total expected reward on an MDP.

Theorem 6. Algorithm1 computes for all ε > 0 the value aRε
M, such that

‖aRε
M − aRopt

M ‖ � ε.

Remark. Notice that in order to obtain the ε-optimal policy that achieves the
value aRε

M, one only needs to store the optimising actions, computed during the
TotalExpectedReward phase.

In case M is PS -acyclic, Theorem 5 applies, and instead of the general algo-
rithm computing the total expected reward (Algorithm1, line 7), one can resort
to its optimised version, that computes the values (2) as defined in Sect. 4.2.

Remark. Needless to say, the CTMDP for a MRA does not necessarily grow
exponentially large. So, an alternative approach would be to first build the
CTMDP as described in Sect. 4.1 and then, provided that model is small enough,
analyse it with standard algorithms for long-run average reward [13]. Since our
approach can directly work on the MRA we did not explore this alternative
route.

1 Classical value iteration is also possible, but is known to be numerically unstable.

200 Y. Butkova et al.

FTWC-res
p-5

0-4
0

FTWC-for
g-4

0-6
0

PS-6
4-2

-7

PS-2
56-

3-4

QS-2
56-

256
GFS-5

0

0

2,000

4,000

6,000

8,000
> 2 hrs > 2 hrs

ru
nn

in
g

ti
m

e
(s

ec
)

LP
RVI10−10

|S| |PSM| |MSM| |π |M M

FTWC-resp-50-40 92,819 20,806 72,013 1 5

FTWC-forg-40-60 185,634 20,807 164,827 1 6

PS-64-2-7 454,667 324,616 130,051 2 2

PS-256-3-4 131,529 87,605 43,924 2 3

QS-256-256 465,177 398,096 67,081 4 2

GFS-50 44,916 14,955 29,961 1 2

Fig. 4. Running time comparison of the LP and RVI. The table on the right presents
the general data of the models used.

5 Experiments

In this section, we will present the empirical evaluation of the discussed
algorithms.

Benchmarks. Our primary interest is to evaluate our approach on real-world
examples. We therefore do not consider synthetic benchmarks but rather assess
the algorithm on published ones. For this reason the model parameters we
can vary is limited. Additionally the degree of variation of some parameters
is restricted by the runtime/space requirements of the tool SCOOP [15], used to
generate those models. The following is the collection of published benchmark
models used to perform the experiments:

PS-S-J-K. The Polling System case study [8,16] consists of S servers that
process requests of J types, stored in two queues of size K. We enriched this
benchmark with rewards denoting maintenance costs. Maintaining a queue
yields state reward proportional to its occupancy and processing a request of
type j has an action reward dependent on the request type.

QS-K1-K2. The Queuing System [11] stores requests into two queues of size K1

and K2, that are later processed by a server attached to the queue. This model
has only state-rewards proportional, which are to the size of the queue.

GFS-N . The Google File System [6,7] splits files into chunks, which are main-
tained by N chunk servers. The system is functioning if it is backed up and
for each chunk at least one copy is available. We assign state reward 1 to all
the functioning states thus computing the long-run availability of the system.

FTWC-B-N1-N2. The Fault Tolerant Workstation Cluster [12] models two net-
works of N1 and N2 workstations, interconnected by a switch. The two
switches communicate via a backbone. The system is managed by a repair-
man, his behaviour (B) can be either responsible, forgetful or lazy. Rewards
assigned to states and actions denote the cost of repairs, energy consumption
and QoS violation.

Long-Run Rewards for Markov Automata 201

1 2 3 4 5
·104

0

20

40

60

|S|

ru
nn

in
g
ti
m
e
(s
ec
)

LP
RVI10−10

(a) GFS-X

0 1 2 3 4 5
·105

0

1,000

2,000

3,000

4,000

|S|

ru
nn

in
g

ti
m

e
(s

ec
)

LP
RVI10−10

(b) QS-X-X

0.5 1 1.5 2
·105

0

1,000

2,000

3,000

4,000

|S|

ru
nn

in
g

ti
m

e
(s

ec
)

LP
RVI10−10

(c) FTWC-forg-X-X

2 4 6 8 10

0

1,000

2,000

3,000

4,000

> 1 hr

�
ru

nn
in

g
ti

m
e

(s
ec

)

LP
RVI10−10

2 4 6 8 10

0

2

4

6

8

(d) PS-64-X-2

Fig. 5. Runtime complexity of LP and RVI w.r.t. the increase of the model size.

Implementation/Hardware Aspects. We have implemented our approach
as a part of the IMCA/MAMA toolset [8], the only toolset providing quantifi-
cation of long-run average rewards on MRA. IMCA 1.6 contains the implemen-
tation of the aRopt algorithm from [10] that we have discussed in Sect. 3. It uses
the SoPlex LP-solver [17] for the solution of linear optimisation problems with
the primal and dual feasibility tolerance parameters set to 10−6. All experiments
were run on a single core of Intel Core i7-4790 with 8 GB of RAM.

10−1010−910−810−710−610−5
50

100

150

200

250

ru
nn

in
g
ti
m
e
(s
ec
)

FTWC-50-40-resp
QS-256-256

Fig. 6. Observed dependency
of RVI on the precision para-
meter ε in reversed logarith-
mic x-axis.

Empirical Evaluation. The space complexity of
both the algorithms is polynomial. Therefore, we
have used two measures to evaluate the algorithms:
running time w.r.t. the increase of precision and
model size.

All the models we tested have only one MEC.
We will denote the size of this MEC as |M|, and
PSM (MSM) represents the number of probabilis-
tic (Markovian) states of this MEC. We use the
symbol |π↪→|M to denote the length of the longest
path π (in M) that contains only probabilistic
states, and �M stands for the maximal number of
enabled actions in probabilistic states of M. RVIε
denotes that Algorithm 1 ran with precision ε and LP the LP-based algorithm
from [9]. We use the symbol “X” whenever the varying parameter of the exper-
iment is a part of the model name, e.g. PS-2-X.

202 Y. Butkova et al.

Long-Run Average Reward

Efficiency. Figure 4 depicts the comparison of running times of RVI (with pre-
cision 10−10) and LP. The running time of RVI on performed experiments is
several orders of magnitude better than the running time of LP.

Precision. Figure 6 shows the dependency of the computation time of our app-
roach on the precision parameter ε. We observed in all the experiments sig-
nificant growth of the computation time with the decrease of ε.

Model size. Figure 5 shows the running time comparison of the two algorithms
w.r.t. the increase of the model size. In the experiments shown in Fig. 5a–c,
both algorithms show a more or less linear dependency on the state space
size. The general observation here is that RVI scales much better with the
increase of model size than LP. Figure 5a shows that the LP can be better
on smaller models, but on larger models RVI takes over. Figure 5d shows the
dependency not only on the state space size but also on the maximal number
of enabled actions. In this case both algorithms exhibit quadratic dependency
with RVI scaling much better than LP.

Remark. All the models we considered (and all case studies we know of) are PS -
acyclic (which is stronger than our base non-Zenoness assumption). Therefore,
Theorem 5 applies that computes the aRopt value for PS -acyclic MRA. The orig-
inal LP approach we compare with is, however, not optimised for PS -acyclicity.

6 Conclusion

We have presented a novel algorithm for long-run expected rewards for Markov
automata. It considers the automaton as a compact representation of a possibly
exponentially larger CTMDP. We circumvent exponentiality by applying avail-
able algorithms for dynamic programming and for total expected rewards on
discrete-time MDPs, derived from the Markov automaton using uniformisation.
Experiments on a series of case studies have demonstrated that our algorithm
outperforms the available LP-based algorithm by several orders of magnitude.
We consider this a genuine breakthrough in Markov automata applicability, in
light of the importance of long-run evaluations in performance, dependability
and quality-of-service analysis, together with the fact that MAs provide the
semantic foundation for engineering frameworks such as (dynamic) fault trees,
generalised stochastic Petri nets, and the Architecture Analysis & Design Lan-
guage (AADL). The general approach we developed is particularly efficient if
restricted to Markov automata free of cycles of probabilistic states, which are
the only models occurring in practice. Whether or not one should consider all
models with such loops as instances of Zeno behaviour is an open question. In
fact, a profound understanding of all aspects of Zenoness in Markov automata
is not yet developed. It is on our research agenda.

Long-Run Rewards for Markov Automata 203

References

1. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton
(1957)

2. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 2nd edn. Athena
Scientific, Belmont (2000)

3. Bhattacharya, R.N., Waymire, E.C.: Stochastic Processes with Applications.
SIAM, Philadelphia (2009)

4. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: Proceedings of SODA, pp. 1318–1336, January 2011

5. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of LICS, pp. 342–351. IEEE CS (2010)

6. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: Scott, M.L.,
Peterson, L.L. (eds.) Proceedings of SOSP, Bolton Landing, NY, USA, pp. 29–43.
ACM, October 2003

7. Guck, D.: Quantitative Analysis of Markov Automata. Master’s thesis, RWTH
Aachen University, June 2012

8. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduc-
tion and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-40196-1 5

9. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. Log. Methods Comput. Sci. 10(3)
(2014)

10. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and
analysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 168–184. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11936-6 13

11. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. ECE
ASST 53 (2012). http://journal.ub.tu-berlin.de/eceasst/article/view/783

12. Haverkort, B.R., Hermanns, H., Katoen, J.: On the use of model checking tech-
niques for dependability evaluation. In: Proceedings of SRDS, Nürnberg, Germany,
pp. 228–237. IEEE CS, October 2000

13. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

14. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press, Princeton (1994)

15. Timmer, M.: SCOOP: a tool for symbolic optimisations of probabilistic processes.
In: Proceedings of QEST, Aachen, Germany, pp. 149–150. IEEE CS, September
2011

16. Timmer, M., Pol, J., Stoelinga, M.I.A.: Confluence reduction for Markov automata.
In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 243–
257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40229-6 17

17. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. the-
sis, Berlin Institute of Technology (1996). http://d-nb.info/950219444

http://dx.doi.org/10.1007/978-3-642-40196-1_5
http://dx.doi.org/10.1007/978-3-319-11936-6_13
http://dx.doi.org/10.1007/978-3-319-11936-6_13
http://journal.ub.tu-berlin.de/eceasst/article/view/783
http://dx.doi.org/10.1007/978-3-642-40229-6_17
http://d-nb.info/950219444

	Long-Run Rewards for Markov Automata
	1 Introduction
	2 Foundations
	3 Long-Run Average Reward Property
	4 An Iterative Approach to Long-Run Average Rewards
	4.1 CTMDP Preserving aRopt
	4.2 Dealing with Exponentiality
	4.3 Algorithmic Solution

	5 Experiments
	6 Conclusion
	References

