
 123

23rd International Conference, TACAS 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017, Proceedings, Part II

Tools and Algorithms
for the Construction
and Analysis of SystemsLN

CS
 1

02
06

AR
Co

SS
Axel Legay
Tiziana Margaria (Eds.)

Lecture Notes in Computer Science 10206

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Axel Legay • Tiziana Margaria (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems
23rd International Conference, TACAS 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017
Proceedings, Part II

123

Editors
Axel Legay
Inria
Rennes Cedex
France

Tiziana Margaria
University of Limerick and Lero - The Irish
Software Research Center

Limerick
Ireland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-54579-9 ISBN 978-3-662-54580-5 (eBook)
DOI 10.1007/978-3-662-54580-5

Library of Congress Control Number: 2017935566

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

ETAPS Foreword

Welcome to the proceedings of ETAPS 2017, which was held in Uppsala! It was the
first time ever that ETAPS took place in Scandinavia.

ETAPS 2017 was the 20th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program enables
participation in an exciting event, offering the possibility to meet many researchers
working in different directions in the field and to easily attend talks of different con-
ferences. Before and after the main conference, numerous satellite workshops take
place and attract many researchers from all over the globe.

ETAPS 2017 received 531 submissions in total, 159 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all authors for their interest in
ETAPS, all reviewers for their peer reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2017 was enriched by the unifying invited speakers Kim G. Larsen (Aal-
borg University, Denmark) and Michael Ernst (University of Washington, USA), as
well as the conference-specific invited speakers (FoSSaCS) Joel Ouaknine (MPI-SWS,
Germany, and University of Oxford, UK) and (TACAS) Dino Distefano (Facebook and
Queen Mary University of London, UK). In addition, ETAPS 2017 featured a public
lecture by Serge Abiteboul (Inria and ENS Cachan, France). Invited tutorials were
offered by Véronique Cortier (CNRS research director at Loria, Nancy, France) on
security and Ken McMillan (Microsoft Research Redmond, USA) on compositional
testing. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2017 took place in Uppsala, Sweden, and was organized by the Department
of Information Technology of Uppsala University. It was further supported by the
following associations and societies: ETAPS e.V., EATCS (European Association for
Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). Facebook, Microsoft, Amazon, and the city of Uppsala financially sup-
ported ETAPS 2017. The local organization team consisted of Parosh Aziz Abdulla
(general chair), Wang Yi, Björn Victor, Konstantinos Sagonas, Mohamed Faouzi Atig,
Andreina Francisco, Kaj Lampka, Tjark Weber, Yunyun Zhu, and Philipp Rümmer.

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its executive board. The ETAPS Steering Committee

consists of an executive board, and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The executive board
consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Parosh Abdulla (Uppsala), Amal Ahmed (Boston),
Christel Baier (Dresden), David Basin (Zurich), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Giuseppe Castagna (Paris), Tom Crick (Cardiff), Javier Esparza (Munich),
Jan Friso Groote (Eindhoven), Jurriaan Hage (Utrecht), Reiko Heckel (Leicester),
Marieke Huisman (Twente), Panagotios Katsaros (Thessaloniki), Ralf Küsters (Trier),
Ugo del Lago (Bologna), Kim G. Larsen (Aalborg), Axel Legay (Rennes), Matteo
Maffei (Saarbrücken), Tiziana Margaria (Limerick), Andrzej Murawski (Warwick),
Catuscia Palamidessi (Palaiseau), Julia Rubin (Vancouver), Alessandra Russo
(London), Mark Ryan (Birmingham), Don Sannella (Edinburgh), Andy Schürr
(Darmstadt), Gabriele Taentzer (Marburg), Igor Walukiewicz (Bordeaux), and Hon-
gseok Yang (Oxford).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. Finally, a big thanks to
Parosh and his local organization team for all their enormous efforts enabling a fantastic
ETAPS in Uppsala!

April 2017 Joost-Pieter Katoen

VI ETAPS Foreword

Preface

TACAS 2017 was the 23rd edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. The conference took place
during April 2017, in the Uppsala Concert and Congress Hall as part of the 19th
European Joint Conferences on Theory and Practice of Software (ETAPS 2017).

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building systems.

As in former years, TACAS 2017 solicited four types of submissions:

– Research papers, identifying and justifying a principled advance to the theoretical
foundations for the construction and analysis of systems, where applicable sup-
ported by experimental validation

– Case-study papers, reporting on case studies and providing information about the
system being studied, the goals of the study, the challenges the system poses to
automated analysis, research methodologies and approaches used, the degree to
which goals were attained, and how the results can be generalized to other problems
and domains

– Regular tool papers, presenting a new tool, a new tool component, or novel
extensions to an existing tool, with an emphasis on design and implementation
concerns, including software architecture and core data structures, practical appli-
cability, and experimental evaluation

– Short tool-demonstration papers, focusing on the usage aspects of tools

This year, 181 papers were submitted to TACAS, among which 167 were research,
case study, or tool papers, and 14 were tool demonstration papers. After a rigorous review
process followed by an online discussion, the Program Committee accepted 48 full papers
and four tool demonstration papers. This volume also includes an invited paper by the
ETAPS unifying speaker Kim. G. Larsen titled “Validation, Synthesis, and Optimization
for Cyber-Physical Systems” and an invited paper by TACAS invited speaker Dino
Distefano titled “The Facebook Infer Static Analyzer.”

TACAS 2017 also hosted the 6th International Competition on Software Verification
(SV-COMP), chaired and organized by Dirk Beyer. The competition again had a high
participation: 32 verification tools from 12 countries were submitted for the systematic
comparative evaluation, including two submissions from industry. This volume includes
an overview of the competition results, and short papers describing 12 of the partici-
pating verification systems. These papers were reviewed by a separate Program Com-
mittee; each of the papers was assessed by four reviewers. One session in the TACAS
program was reserved for the presentation of the results: the summary by the SV-COMP
chair and the participating tools by the developer teams.

Many people worked hard and offered their valuable time generously to make
TACAS 2017 successful. First, the chairs would like to thank the authors for sub-
mitting their papers to TACAS 2017. We are grateful to the reviewers who contributed
to nearly 550 informed and detailed reports and discussions during the electronic
Program Committee meeting. We also sincerely thank the Steering Committee for their
advice. We also acknowledge the work of Parosh Aziz Abdulla and the local organizers
for ETAPS 2017. Furthermore, we would like to express a special thanks to
Joost-Pieter Katoen, who answered many of our questions during the preparation of
TACAS 2017. Finally, we thank EasyChair for providing us with the infrastructure to
manage the submissions, the reviewing process, the Program Committee discussion,
and the preparation of the proceedings.

April 2017 Dirk Beyer
Axel Legay

Tiziana Margaria
Dave Parker

VIII Preface

Organization

Program Committee

Gilles Barthe IMDEA Software Institute, Spain
Dirk Beyer LMU Munich, Germany
Armin Biere Johannes Kepler University Linz, Austria
Radu Calinescu University of York, UK
Franck Cassez Macquarie University, Australia
Swarat Chaudhuri Rice University, USA
Alessandro Cimatti FBK-irst, Italy
Rance Cleaveland University of Maryland, USA
Byron Cook University College London, UK
Leonardo de Moura Microsoft Research
Cezara Dragoi IST Austria
Cindy Eisner IBM Research, Haifa, Israel
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany
Sicun Gao MIT CSAIL, USA
Susanne Graf Universite Joseph Fourier, CNRS, VERIMAG, France
Orna Grumberg Technion, Israel Institute of Technology, Israel
Kim Guldstrand Larsen Aalborg University, Denmark
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Holger Hermanns Saarland University, Germany
Falk Howar TU Clausthal/IPSSE, Germany
Thomas Jensen Inria, France
Jan Kretinsky Masaryk University, Czech Republic
Salvatore La Torre Università degli studi di Salerno, Italy
Axel Legay IRISA/Inria, Rennes, France
P. Madhusudan University of Illinois at Urbana-Champaign, USA
Pasquale Malacaria Queen Mary University of London, UK
Tiziana Margaria Lero, Ireland
Darko Marinov University of Illinois at Urbana-Champaign, USA
Dejan Nickovic Austrian Institute of Technology AIT, Austria
David Parker University of Birmingham, UK
Charles Pecheur Université catholique de Louvain, Belgium
Kristin Yvonne Rozier University of Cincinnati, USA
Natasha Sharygina Università della Svizzera italiana (USI Lugano,

Switzerland), Switzerland
Bernhard Steffen University of Dortmund, Germany
Stavros Tripakis University of California, Berkeley, USA
Jaco van de Pol University of Twente, The Netherlands
Thomas Wies New York University, USA

Additional Reviewers

Adir, Allon
Aleksandrowicz, Gadi
Almagor, Shaull
Alt, Leonardo
Aniculaesei, Adina
Asadi, Sepideh
Ashok, Pranav
Bacci, Giorgio
Bacci, Giovanni
Bansal, Suguman
Barnat, Jiri
Barringer, Howard
Bartocci, Ezio
Bensalem, Saddek
Berthomieu, Bernard
Biewer, Sebastian
Bloemen, Vincent
Blom, Stefan
Bogomolov, Sergiy
Busard, Simon
Butkova, Yuliya
Ceska, Milan
Chadha, Rohit
Chothia, Tom
Clemente, Lorenzo
Courtieu, Pierre
Da Silva, Carlos Eduardo
Daca, Przemyslaw
Dang, Thao
Dangl, Matthias
Daniel, Jakub
Dantam, Neil
de Ruiter, Joeri
Della Monica, Dario
Delzanno, Giorgio
Demasi, Ramiro
Doyen, Laurent
Dräger, Klaus
Duedder, Boris
Dureja, Rohit
Echahed, Rachid
Ehlers, Rüdiger
Ellis, Kevin

Ellison, Martyn
Emmi, Michael
Faella, Marco
Fahrenberg, Uli
Falcone, Ylies
Fazekas, Katalin
Fedyukovich, Grigory
Ferrara, Anna Lisa
Finkbeiner, Bernd
Flores-Montoya, Antonio
Fogarty, Seth
Fontaine, Pascal
Fox, Gereon
Frehse, Goran
Freiberger, Felix
Frenkel, Hadar
Friedberger, Karlheinz
Frohme, Markus
Ganty, Pierre
Gao, Yang
Genet, Thomas
Gentilini, Raffaella
Gerasimou, Simos
Gerhold, Marcus
Gerwinn, Sebastian
Giacobbe, Mirco
Giantamidis, Georgios
Gillard, Xavier
Given-Wilson, Thomas
Gligoric, Milos
Graf-Brill, Alexander
Gregoire, Benjamin
Grigore, Radu
Gyori, Alex
Hadzi-Tanovic, Milica
Hahn, Ernst Moritz
Hartmanns, Arnd
Hashemi, Vahid
Hatefi, Hassan
Hyvärinen, Antti
Inverso, Omar
Islam, Md. Ariful
Ivrii, Alexander

X Organization

Jabbour, Fadi
Jaeger, Manfred
Jaksic, Stefan
Jasper, Marc
Jensen, Peter Gjøl
Johnson, Kenneth
Kaminski, Benjamin Lucien
Kang, Eunsuk
Kauffman, Sean
Keefe, Ken
Keidar-Barner, Sharon
Khouzani, Arman Mhr
Kikuchi, Shinji
King, Tim
Konnov, Igor
Koskinen, Eric
Koukoutos, Manos
Krenn, Willibald
Kumar, Rahul
Kupferman, Orna
Lacerda, Bruno
Laporte, Vincent
Le Guernic, Colas
Leroux, Jérôme
Leue, Stefan
Limbrée, Christophe
Lipskoch, Kinga
Lorber, Florian
Mahmood, Muhammad Suleman
Marescotti, Matteo
Marin, Paolo
Martinelli Tabajara, Lucas
Maudoux, Guillaume
Mauritz, Malte
Meel, Kuldeep
Meggendorfer, Tobias
Meijer, Jeroen
Meller, Yael
Meyer, Philipp J.
Micheli, Andrea
Mikučionis, Marius
Miner, Andrew
Mogavero, Fabio
Muniz, Marco
Nevo, Ziv
Nies, Gilles

Norman, Gethin
O’Kelly, Matthew
Oliva, Paulo
Oortwijn, Wytse
Orni, Avigail
Palmskog, Karl
Paoletti, Nicola
Paterson, Colin
Peled, Doron
Peters, Henrik
Phan, Quoc-Sang
Pinisetty, Srinivas
Preiner, Mathias
Preoteasa, Viorel
Pulina, Luca
Quilbeuf, Jean
Rajhans, Akshay
Rasin, Dan
Ravanbakhsh, Hadi
Reger, Giles
Reynolds, Andrew
Rezine, Ahmed
Rival, Xavier
Rothenberg, Bat-Chen
Roveri, Marco
Rozier, Eric
Ruijters, Enno
Rüthing, Oliver
Sangnier, Arnaud
Sankur, Ocan
Schivo, Stefano
Schwarzentruber, Francois
Schwoon, Stefan
Sebastiani, Roberto
Sergey, Ilya
Shi, August
Shmarov, Fedor
Shudrak, Maksim
Sighireanu, Mihaela
Sinn, Moritz
Sosnovich, Adi
Sproston, Jeremy
Srba, Jiri
Strub, Pierre-Yves
Taankvist, Jakob Haahr
Tarrach, Thorsten

Organization XI

Tautschnig, Michael
Théry, Laurent
Tonetta, Stefano
Traonouez, Louis-Marie
Trostanetski, Anna
Tzevelekos, Nikos
Urbain, Xavier
Valero, Pedro
van der Berg, Freark
van Dijk, Tom
Vizel, Yakir

Wendler, Philipp
Westphal, Bernd
Widder, Josef
Xue, Bai
Xue, Bingtian
Yorav, Karen
Zhai, Ennan
Zhang, Lingming
Ziv, Avi
Zuliani, Paolo

XII Organization

Abstracts of Invited Talks

Validation, Synthesis and Optimization
for Cyber-Physical Systems

Kim Guldstrand Larsen

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

kgl@cs.aau.dk

Abstract. The growing complexity of Cyber-Physical Systems increasingly
challenges existing methods and techniques. What is needed is a new generation
of scalable tools for model-based learning, analysis, synthesis and optimization
based on a mathematical sound foundation, that enables trade-offs between
functional safety and quantitative performance. In paper we illustrate how recent
branches of the UPPAAL tool suit are making an effort in this direction.

This work is partly funded by the ERC Advanced Grant LASSO: Learning, Analysis, SynthesiS
and Optimization of Cyber-Physical Systems as well as the Innovation Center DiCyPS: Data-Intensive
Cyber Physical Systems.

The Facebook Infer Static Analyser

Dino Distefano

Facebook Inc., Menlo Park, USA

Abstract. Infer is an open-source static analyser developed at Facebook [1].
Originally based on Separation Logic [2, 3], Infer has lately evolved from a
specific tool for heap-manipulating programs to a general framework which
facilitates the implementation of new static analyses.

In this talk, I will report on the Infer team’s experience of applying our tool
to Facebook mobile code, each day helping thousands of engineers to build
more reliable and secure software [4]. Moreover, I will discuss the team’s
current effort to turn Infer into a static analysis platform for research and
development useful both to academic researchers and industrial practitioners.

References

1. http://fbinfer.com
2. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by

means of bi-abduction. In: POPL, pp. 289–300. ACM (2009)
3. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety of C

programs. In: Bobaru, M., Havelund. K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS,
vol. 6617, pp. 459–465. Springer, Heidelberg (2011)

4. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn, P.W.,
Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving Fast with Software Verification. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11.
Springer, Switzerland (2015)

© Facebook.

http://fbinfer.com

Contents – Part II

Security

Static Detection of DoS Vulnerabilities in Programs that Use
Regular Expressions . 3

Valentin Wüstholz, Oswaldo Olivo, Marijn J.H. Heule, and Isil Dillig

Discriminating Traces with Time. 21
Saeid Tizpaz-Niari, Pavol Černý, Bor-Yuh Evan Chang,
Sriram Sankaranarayanan, and Ashutosh Trivedi

Directed Automated Memory Performance Testing 38
Sudipta Chattopadhyay

Context-Bounded Analysis for POWER . 56
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani,
and Tuan Phong Ngo

Run-Time Verification and Logic

Rewriting-Based Runtime Verification for Alternation-Free HyperLTL 77
Noel Brett, Umair Siddique, and Borzoo Bonakdarpour

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 94
David Basin, Bhargav Nagaraja Bhatt, and Dmitriy Traytel

Optimal Translation of LTL to Limit Deterministic Automata 113
Dileep Kini and Mahesh Viswanathan

Quantitative Systems I

Sequential Convex Programming for the Efficient Verification
of Parametric MDPs . 133

Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen,
Ivan Papusha, Hasan A. Poonawala, and Ufuk Topcu

JANI: Quantitative Model and Tool Interaction. 151
Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn,
Arnd Hartmanns, Sebastian Junges, and Andrea Turrini

Computing Scores of Forwarding Schemes in Switched Networks
with Probabilistic Faults. 169

Guy Avni, Shubham Goel, Thomas A. Henzinger,
and Guillermo Rodriguez-Navas

http://dx.doi.org/10.1007/978-3-662-54580-5_1
http://dx.doi.org/10.1007/978-3-662-54580-5_1
http://dx.doi.org/10.1007/978-3-662-54580-5_2
http://dx.doi.org/10.1007/978-3-662-54580-5_3
http://dx.doi.org/10.1007/978-3-662-54580-5_4
http://dx.doi.org/10.1007/978-3-662-54580-5_5
http://dx.doi.org/10.1007/978-3-662-54580-5_6
http://dx.doi.org/10.1007/978-3-662-54580-5_7
http://dx.doi.org/10.1007/978-3-662-54580-5_8
http://dx.doi.org/10.1007/978-3-662-54580-5_8
http://dx.doi.org/10.1007/978-3-662-54580-5_9
http://dx.doi.org/10.1007/978-3-662-54580-5_10
http://dx.doi.org/10.1007/978-3-662-54580-5_10

Long-Run Rewards for Markov Automata . 188
Yuliya Butkova, Ralf Wimmer, and Holger Hermanns

SAT and SMT

HiFrog: SMT-based Function Summarization for Software Verification 207
Leonardo Alt, Sepideh Asadi, Hana Chockler, Karine Even Mendoza,
Grigory Fedyukovich, Antti E.J. Hyvärinen, and Natasha Sharygina

Congruence Closure with Free Variables . 214
Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds

On Optimization Modulo Theories, MaxSMT and Sorting Networks 231
Roberto Sebastiani and Patrick Trentin

The Automatic Detection of Token Structures and Invariants
Using SAT Checking. 249

Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe

Quantitative Systems II

Maximizing the Conditional Expected Reward for Reaching the Goal 269
Christel Baier, Joachim Klein, Sascha Klüppelholz,
and Sascha Wunderlich

ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans 286
Anna Lukina, Lukas Esterle, Christian Hirsch, Ezio Bartocci,
Junxing Yang, Ashish Tiwari, Scott A. Smolka, and Radu Grosu

FlyFast: A Mean Field Model Checker . 303
Diego Latella, Michele Loreti, and Mieke Massink

ERODE: A Tool for the Evaluation and Reduction of Ordinary
Differential Equations . 310

Luca Cardelli, Mirco Tribastone, Max Tschaikowski,
and Andrea Vandin

SV COMP

Software Verification with Validation of Results
(Report on SV-COMP 2017) . 331

Dirk Beyer

AProVE: Proving and Disproving Termination of Memory-Manipulating
C Programs (Competition Contribution) . 350

Jera Hensel, Frank Emrich, Florian Frohn, Thomas Ströder,
and Jürgen Giesl

XVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-662-54580-5_11
http://dx.doi.org/10.1007/978-3-662-54580-5_12
http://dx.doi.org/10.1007/978-3-662-54580-5_13
http://dx.doi.org/10.1007/978-3-662-54580-5_14
http://dx.doi.org/10.1007/978-3-662-54580-5_15
http://dx.doi.org/10.1007/978-3-662-54580-5_15
http://dx.doi.org/10.1007/978-3-662-54580-5_16
http://dx.doi.org/10.1007/978-3-662-54580-5_17
http://dx.doi.org/10.1007/978-3-662-54580-5_18
http://dx.doi.org/10.1007/978-3-662-54580-5_19
http://dx.doi.org/10.1007/978-3-662-54580-5_19
http://dx.doi.org/10.1007/978-3-662-54580-5_20
http://dx.doi.org/10.1007/978-3-662-54580-5_20
http://dx.doi.org/10.1007/978-3-662-54580-5_21
http://dx.doi.org/10.1007/978-3-662-54580-5_21

CPA-BAM-BnB: Block-Abstraction Memoization and Region-Based
Memory Models for Predicate Abstractions (Competition Contribution) 355

Pavel Andrianov, Karlheinz Friedberger, Mikhail Mandrykin,
Vadim Mutilin, and Anton Volkov

DepthK: A k-Induction Verifier Based on Invariant Inference
for C Programs (Competition Contribution) . 360

Williame Rocha, Herbert Rocha, Hussama Ismail, Lucas Cordeiro,
and Bernd Fischer

FORESTER: From Heap Shapes to Automata Predicates
(Competition Contribution). 365

Lukáš Holík, Martin Hruška, Ondřej Lengál, Adam Rogalewicz,
Jiří Šimáček, and Tomáš Vojnar

HipTNT+: A Termination and Non-termination Analyzer by Second-Order
Abduction (Competition Contribution) . 370

Ton Chanh Le, Quang-Trung Ta, and Wei-Ngan Chin

Lazy-CSeq 2.0: Combining Lazy Sequentialization with Abstract
Interpretation (Competition Contribution) . 375

Truc L. Nguyen, Omar Inverso, Bernd Fischer, Salvatore La Torre,
and Gennaro Parlato

Skink: Static Analysis of Programs in LLVM Intermediate Representation
(Competition Contribution). 380

Franck Cassez, Anthony M. Sloane, Matthew Roberts, Matthew Pigram,
Pongsak Suvanpong, and Pablo Gonzalez de Aledo

Symbiotic 4: Beyond Reachability (Competition Contribution) 385
Marek Chalupa, Martina Vitovská, Martin Jonáš, Jiri Slaby,
and Jan Strejček

Optimizing and Caching SMT Queries in SymDIVINE
(Competition Contribution). 390

Jan Mrázek, Martin Jonáš, Vladimír Štill, Henrich Lauko,
and Jiří Barnat

Ultimate Automizer with an On-Demand Construction of Floyd-Hoare
Automata (Competition Contribution) . 394

Matthias Heizmann, Yu-Wen Chen, Daniel Dietsch, Marius Greitschus,
Alexander Nutz, Betim Musa, Claus Schätzle, Christian Schilling,
Frank Schüssele, and Andreas Podelski

Contents – Part II XIX

http://dx.doi.org/10.1007/978-3-662-54580-5_22
http://dx.doi.org/10.1007/978-3-662-54580-5_22
http://dx.doi.org/10.1007/978-3-662-54580-5_23
http://dx.doi.org/10.1007/978-3-662-54580-5_23
http://dx.doi.org/10.1007/978-3-662-54580-5_24
http://dx.doi.org/10.1007/978-3-662-54580-5_24
http://dx.doi.org/10.1007/978-3-662-54580-5_25
http://dx.doi.org/10.1007/978-3-662-54580-5_25
http://dx.doi.org/10.1007/978-3-662-54580-5_26
http://dx.doi.org/10.1007/978-3-662-54580-5_26
http://dx.doi.org/10.1007/978-3-662-54580-5_27
http://dx.doi.org/10.1007/978-3-662-54580-5_27
http://dx.doi.org/10.1007/978-3-662-54580-5_28
http://dx.doi.org/10.1007/978-3-662-54580-5_29
http://dx.doi.org/10.1007/978-3-662-54580-5_29
http://dx.doi.org/10.1007/978-3-662-54580-5_30
http://dx.doi.org/10.1007/978-3-662-54580-5_30

Ultimate Taipan: Trace Abstraction and Abstract Interpretation
(Competition Contribution). 399

Marius Greitschus, Daniel Dietsch, Matthias Heizmann, Alexander Nutz,
Claus Schätzle, Christian Schilling, Frank Schüssele,
and Andreas Podelski

VeriAbs: Verification by Abstraction (Competition Contribution) 404
Bharti Chimdyalwar, Priyanka Darke, Avriti Chauhan,
Punit Shah, Shrawan Kumar, and R. Venkatesh

Author Index . 409

XX Contents – Part II

http://dx.doi.org/10.1007/978-3-662-54580-5_31
http://dx.doi.org/10.1007/978-3-662-54580-5_31
http://dx.doi.org/10.1007/978-3-662-54580-5_32

Contents – Part I

Invited Talk

Validation, Synthesis and Optimization for Cyber-Physical Systems 3
Kim Guldstrand Larsen

Verification Techniques I

An Abstraction Technique for Parameterized Model Checking of Leader
Election Protocols: Application to FTSP . 23

Ocan Sankur and Jean-Pierre Talpin

Combining String Abstract Domains for JavaScript Analysis:
An Evaluation . 41

Roberto Amadini, Alexander Jordan, Graeme Gange,
François Gauthier, Peter Schachte, Harald Søndergaard,
Peter J. Stuckey, and Chenyi Zhang

Invariant Checking of NRA Transition Systems via Incremental Reduction
to LRA with EUF . 58

Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri,
and Roberto Sebastiani

Bounded Quantifier Instantiation for Checking Inductive Invariants 76
Yotam M.Y. Feldman, Oded Padon, Neil Immerman, Mooly Sagiv,
and Sharon Shoham

Verification Techniques II

Proving Termination Through Conditional Termination 99
Cristina Borralleras, Marc Brockschmidt, Daniel Larraz,
Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio

Efficient Certified Resolution Proof Checking. 118
Luís Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp

Precise Widening Operators for Proving Termination
by Abstract Interpretation . 136

Nathanaël Courant and Caterina Urban

http://dx.doi.org/10.1007/978-3-662-54577-5_1
http://dx.doi.org/10.1007/978-3-662-54577-5_2
http://dx.doi.org/10.1007/978-3-662-54577-5_2
http://dx.doi.org/10.1007/978-3-662-54577-5_3
http://dx.doi.org/10.1007/978-3-662-54577-5_3
http://dx.doi.org/10.1007/978-3-662-54577-5_4
http://dx.doi.org/10.1007/978-3-662-54577-5_4
http://dx.doi.org/10.1007/978-3-662-54577-5_5
http://dx.doi.org/10.1007/978-3-662-54577-5_6
http://dx.doi.org/10.1007/978-3-662-54577-5_7
http://dx.doi.org/10.1007/978-3-662-54577-5_8
http://dx.doi.org/10.1007/978-3-662-54577-5_8

Automatic Verification of Finite Precision Implementations
of Linear Controllers . 153

Junkil Park, Miroslav Pajic, Oleg Sokolsky, and Insup Lee

Learning

Learning Symbolic Automata . 173
Samuel Drews and Loris D’Antoni

ML for ML: Learning Cost Semantics by Experiment 190
Ankush Das and Jan Hoffmann

A Novel Learning Algorithm for Büchi Automata Based on Family
of DFAs and Classification Trees . 208

Yong Li, Yu-Fang Chen, Lijun Zhang, and Depeng Liu

Synthesis I

Hierarchical Network Formation Games . 229
Orna Kupferman and Tami Tamir

Synthesis of Recursive ADT Transformations from Reusable Templates 247
Jeevana Priya Inala, Nadia Polikarpova, Xiaokang Qiu,
Benjamin S. Lerner, and Armando Solar-Lezama

Counterexample-Guided Model Synthesis. 264
Mathias Preiner, Aina Niemetz, and Armin Biere

Interpolation-Based GR(1) Assumptions Refinement 281
Davide G. Cavezza and Dalal Alrajeh

Synthesis II

Connecting Program Synthesis and Reachability: Automatic Program
Repair Using Test-Input Generation. 301

ThanhVu Nguyen, Westley Weimer, Deepak Kapur,
and Stephanie Forrest

Scaling Enumerative Program Synthesis via Divide and Conquer 319
Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa

Towards Parallel Boolean Functional Synthesis. 337
S. Akshay, Supratik Chakraborty, Ajith K. John, and Shetal Shah

XXII Contents – Part I

http://dx.doi.org/10.1007/978-3-662-54577-5_9
http://dx.doi.org/10.1007/978-3-662-54577-5_9
http://dx.doi.org/10.1007/978-3-662-54577-5_10
http://dx.doi.org/10.1007/978-3-662-54577-5_11
http://dx.doi.org/10.1007/978-3-662-54577-5_12
http://dx.doi.org/10.1007/978-3-662-54577-5_12
http://dx.doi.org/10.1007/978-3-662-54577-5_13
http://dx.doi.org/10.1007/978-3-662-54577-5_14
http://dx.doi.org/10.1007/978-3-662-54577-5_15
http://dx.doi.org/10.1007/978-3-662-54577-5_16
http://dx.doi.org/10.1007/978-3-662-54577-5_17
http://dx.doi.org/10.1007/978-3-662-54577-5_17
http://dx.doi.org/10.1007/978-3-662-54577-5_18
http://dx.doi.org/10.1007/978-3-662-54577-5_19

Encodings of Bounded Synthesis . 354
Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe,
and Leander Tentrup

Tools

HQSpre – An Effective Preprocessor for QBF and DQBF 373
Ralf Wimmer, Sven Reimer, Paolo Marin, and Bernd Becker

RPP: Automatic Proof of Relational Properties by Self-composition 391
Lionel Blatter, Nikolai Kosmatov, Pascale Le Gall, and Virgile Prevosto

autoCode4: Structural Controller Synthesis . 398
Chih-Hong Cheng, Edward A. Lee, and Harald Ruess

Automata

Lazy Automata Techniques for WS1S . 407
Tomáš Fiedor, Lukáš Holík, Petr Janků, Ondřej Lengál,
and Tomáš Vojnar

From LTL and Limit-Deterministic Büchi Automata to Deterministic
Parity Automata . 426

Javier Esparza, Jan Křetínský, Jean-François Raskin,
and Salomon Sickert

Index Appearance Record for Transforming Rabin Automata
into Parity Automata . 443

Jan Křetínský, Tobias Meggendorfer, Clara Waldmann,
and Maximilian Weininger

Minimization of Visibly Pushdown Automata Using Partial Max-SAT. 461
Matthias Heizmann, Christian Schilling, and Daniel Tischner

Concurrency and Bisimulation

CSimpl: A Rely-Guarantee-Based Framework for Verifying
Concurrent Programs . 481

David Sanán, Yongwang Zhao, Zhe Hou, Fuyuan Zhang, Alwen Tiu,
and Yang Liu

Fair Termination for Parameterized Probabilistic Concurrent Systems 499
Ondřej Lengál, Anthony W. Lin, Rupak Majumdar, and Philipp Rümmer

Contents – Part I XXIII

http://dx.doi.org/10.1007/978-3-662-54577-5_20
http://dx.doi.org/10.1007/978-3-662-54577-5_21
http://dx.doi.org/10.1007/978-3-662-54577-5_22
http://dx.doi.org/10.1007/978-3-662-54577-5_23
http://dx.doi.org/10.1007/978-3-662-54577-5_24
http://dx.doi.org/10.1007/978-3-662-54577-5_25
http://dx.doi.org/10.1007/978-3-662-54577-5_25
http://dx.doi.org/10.1007/978-3-662-54577-5_26
http://dx.doi.org/10.1007/978-3-662-54577-5_26
http://dx.doi.org/10.1007/978-3-662-54577-5_27
http://dx.doi.org/10.1007/978-3-662-54577-5_28
http://dx.doi.org/10.1007/978-3-662-54577-5_28
http://dx.doi.org/10.1007/978-3-662-54577-5_29

Forward Bisimulations for Nondeterministic Symbolic Finite Automata 518
Loris D’Antoni and Margus Veanes

Up-To Techniques for Weighted Systems. 535
Filippo Bonchi, Barbara König, and Sebastian Küpper

Hybrid Systems

Rigorous Simulation-Based Analysis of Linear Hybrid Systems 555
Stanley Bak and Parasara Sridhar Duggirala

HARE: A Hybrid Abstraction Refinement Engine for Verifying Non-linear
Hybrid Automata . 573

Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan

Counterexample-Guided Refinement of Template Polyhedra 589
Sergiy Bogomolov, Goran Frehse, Mirco Giacobbe,
and Thomas A. Henzinger

Author Index . 607

XXIV Contents – Part I

http://dx.doi.org/10.1007/978-3-662-54577-5_30
http://dx.doi.org/10.1007/978-3-662-54577-5_31
http://dx.doi.org/10.1007/978-3-662-54577-5_32
http://dx.doi.org/10.1007/978-3-662-54577-5_33
http://dx.doi.org/10.1007/978-3-662-54577-5_33
http://dx.doi.org/10.1007/978-3-662-54577-5_34

Security

Static Detection of DoS Vulnerabilities
in Programs that Use Regular Expressions

Valentin Wüstholz(B), Oswaldo Olivo(B), Marijn J.H. Heule(B),
and Isil Dillig(B)

The University of Texas at Austin, Austin, USA
{valentin,olivo,marijn,isil}@cs.utexas.edu

Abstract. In an algorithmic complexity attack, a malicious party
takes advantage of the worst-case behavior of an algorithm to cause
denial-of-service. A prominent algorithmic complexity attack is regu-
lar expression denial-of-service (ReDoS), in which the attacker exploits
a vulnerable regular expression by providing a carefully-crafted input
string that triggers worst-case behavior of the matching algorithm. This
paper proposes a technique for automatically finding ReDoS vulnerabil-
ities in programs. Specifically, our approach automatically identifies vul-
nerable regular expressions in the program and determines whether an
“evil” input string can be matched against a vulnerable regular expres-
sion. We have implemented our proposed approach in a tool called Rex-
ploiter and found 41 exploitable security vulnerabilities in Java web
applications.

1 Introduction

Regular expressions provide a versatile mechanism for parsing and validating
input data. Due to their flexibility, many developers use regular expressions to
validate passwords or to extract substrings that match a given pattern. Hence,
many languages provide extensive support for regular expression matching.

While there are several algorithms for determining membership in a regular
language, a common technique is to construct a non-deterministic finite automa-
ton (NFA) and perform backtracking search over all possible runs of this NFA.
Although simple and flexible, this strategy has super-linear (in fact, exponential)
complexity and is prone to a class of algorithmic complexity attacks [14]. For some
regular expressions (e.g., (a|b)*(a|c)*), it is possible to craft input strings that
could cause the matching algorithm to take quadratic time (or worse) in the size
of the input. For some regular expressions (e.g., (a+)+), one can even generate
input strings that could cause the matching algorithm to take exponential time.
Hence, attackers exploit the presence of vulnerable regular expressions to launch
so-called regular expression denial-of-service (ReDoS) attacks.

ReDoS attacks have been shown to severely impact the responsiveness and
availability of applications. For example, the .NET framework was shown to be
vulnerable to a ReDoS attack that paralyzed applications using .NET’s default
validation mechanism [2]. Furthermore, unlike other DoS attacks that require
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 3–20, 2017.
DOI: 10.1007/978-3-662-54580-5 1

4 V. Wüstholz et al.

thousands of machines to bring down critical infrastructure, ReDoS attacks
can be triggered by a single malicious user input. Consequently, developers are
responsible for protecting their code against such attacks, either by avoiding the
use of vulnerable regular expressions or by sanitizing user input.

Unfortunately, protecting an application against ReDoS attacks can be non-
trivial in practice. Often, developers do not know which regular expressions are
vulnerable or how to rewrite them in a way that avoids super-linear complexity.
In addition, it is difficult to implement a suitable sanitizer without understanding
the class of input strings that trigger worst-case behavior. Even though some
libraries (e.g., the .Net framework) allow developers to set a time limit for
regular expression matching, existing solutions do not address the root cause of
the problem. As a result, ReDoS vulnerabilities are still being uncovered in many
important applications. For instance, according to the National Vulnerability
Database (NVD), there are over 150 acknowledged ReDoS vulnerabilities, some
of which are caused by exponential matching complexity (e.g., [2,3]) and some
of which are characterized by super-linear behavior (e.g., [1,4,5]).

In this paper, we propose a static technique for automatically uncovering
DoS vulnerabilities in programs that use regular expressions. There are two
main technical challenges that make this problem difficult: First, given a regu-
lar expression E , we need to statically determine the worst-case complexity of
matching E against an arbitrary input string. Second, given an application A
that contains a vulnerable regular expression E , we must statically determine
whether there can exist an execution of A in which E can be matched against
an input string that could cause super-linear behavior.

We solve these challenges by developing a two-tier algorithm that combines
(a) static analysis of regular expressions with (b) sanitization-aware taint analy-
sis at the source code level. Our technique can identify both vulnerable regular
expressions that have super-linear complexity (quadratic or worse), as well as
hyper-vulnerable ones that have exponential complexity. In addition and, most
importantly, our technique can also construct an attack automaton that cap-
tures all possible attack strings. The construction of attack automata is crucial
for reasoning about input sanitization at the source-code level.

To summarize, this paper makes the following contributions:

– We present algorithms for reasoning about worst-case complexity of NFAs.
Given an NFA A, our algorithm can identify whether A has linear, super-
linear, or exponential time complexity and can construct an attack automaton
that accepts input strings that could cause worst-case behavior for A.

– We describe a program analysis to automatically identify ReDoS vulnera-
bilities. Our technique uses the results of the regular expression analysis to
identify sinks and reason about input sanitization using attack automata.

– We use these ideas to build an end-to-end tool called Rexploiter for finding
vulnerabilities in Java. In our evaluation, we find 41 security vulnerabilities in
150 Java programs collected from Github with a 11% false positive rate.

Static Detection of DoS Vulnerabilities in Programs 5

Fig. 1. Motivating example containing ReDoS vulnerabilities

2 Overview

We illustrate our technique using the code snippet shown in Fig. 1, which shows
two relevant classes, namely RegExValidator, that is used to validate that
certain strings match a given regular expression, and CommentFormValidator,
that checks the validity of a comment form filled out by a user. In particular,
the comment form submitted by the user includes the user’s email address, the
URL of the product about which the user wishes to submit a comment1, and
the text containing the comment itself. We now explain how our technique can
determine whether this program contains a denial-of-service vulnerability.

Regular Expression Analysis. For each regular expression in the program, we
construct its corresponding NFA and statically analyze it to determine whether
its worst-case complexity is linear, super-linear, or exponential. For our running
example, the NFA complexity analysis finds instances of each category. In par-
ticular, the regular expression used at line 5 has linear matching complexity,
while the one from line 4 has exponential complexity. The regular expressions
from lines 2 and 7 have super-linear (but not exponential) complexity. Figure 2
plots input size against running time for the regular expressions from lines 2
and 4 respectively. For the super-linear and exponential regular expressions, our
technique also constructs an attack automaton that recognizes all strings that
cause worst-case behavior. In addition, for each regular expression, we determine
a lower bound on the length of any possible attack string using dynamic analysis.

Program Analysis. The presence of a vulnerable regular expression does not
necessarily mean that the program itself is vulnerable. For instance, the vulnerable
1 Due to the store’s organization, the URL is expected to be of the form
www.shoppers.com/Dept/Category/Subcategory/product-id/.

6 V. Wüstholz et al.

Fig. 2. Matching time against malicious string size for vulnerable (left) and hyper-
vulnerable (right) regular expressions from Fig. 1.

regular expression may not be matched against an attacker-controlled string, or
the program may take measures to prevent the user from supplying a string that
is an instance of the attack pattern. Hence, we also perform static analysis at the
source code level to determine if the program is actually vulnerable.

Going back to our example, the validate procedure (lines 11–22) calls
validEmail to check whether the website administrator’s email address is valid.
Even though validEmail contains a super-linear regular expression, line 15 does
not contain a vulnerability because the administrator’s email is not supplied by
the user. Since our analysis tracks taint information, it does not report line 15 as
being vulnerable. Now, consider the second call to validEmail at line 17, which
matches the vulnerable regular expression against user input. However, since the
program bounds the size of the input string to be at most 254 (which is smaller
than the lower bound identified by our analysis), line 17 is also not vulnerable.

Next, consider the call to validUrl at line 19, where productUrl is a user
input. At first glance, this appears to be a vulnerability because the matching
time of the regular expression from line 4 against a malicious input string grows
quite rapidly with input size (see Fig. 2). However, the check at line 18 actu-
ally prevents calling validUrl with an attack string: Specifically, our analysis
determines that attack strings must be of the form www.shoppers.com·/b·/+·x,
where x denotes any character and b is a constant inferred by our analysis (in
this case, much greater than 5). Since our program analysis also reasons about
input sanitization, it can establish that line 19 is safe.

Finally, consider the call to validComment at line 21, where comment is again
a user input and is matched against a regular expression with exponential com-
plexity. Now, the question is whether the condition at line 20 prevents comment
from conforming to the attack pattern \n\t\n\t(\t\n\t)ka. Since this is not
the case, line 21 actually contains a serious DoS vulnerability.

Summary of Challenges. This example illustrates several challenges we must
address: First, given a regular expression E , we must reason about the worst-
case time complexity of its corresponding NFA. Second, given vulnerable regular
expression E , we must determine whether the program allows E to be matched

Static Detection of DoS Vulnerabilities in Programs 7

against a string that is (a) controlled by the user, (b) is an instance of the attack
pattern for regular expression E , and (c) is large enough to cause the matching
algorithm to take significant time.

Our approach solves these challenges by combining complexity analysis of
NFAs with sanitization-aware taint analysis. The key idea that makes this
combination possible is to produce an attack automaton for each vulnerable
NFA. Without such an attack automaton, the program analyzer cannot effec-
tively determine whether an input string can correspond to an attack string.

Fig. 3. Overview of our approach

As shown in Fig. 3, the Rex-
ploiter toolchain incorporates
both static and dynamic reg-
ular expression analysis. The
static analysis creates attack
patterns s0 · sk · s1 and dynamic
analysis infers a lower bound b
on the number of occurrences
of s in order to exceed a min-
imum runtime threshold. The
program analysis uses both the
attack automaton and the lower
bound b to reason about input
sanitization.

3 Preliminaries

This section presents some useful background and terminology.

Definition 1. (NFA) An NFA A is a 5-tuple (Q,Σ,Δ, q0, F) where Q is a
finite set of states, Σ is a finite alphabet of symbols, and Δ : Q × Σ → 2Q is the
transition function. Here, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting states. We say that (q, l, q′) is a transition via label l if q′ ∈ Δ(q, l).

An NFA A accepts a string s = a0a1 . . . an iff there exists a sequence of
states q0, q1, ..., qn such that qn ∈ F and qi+1 ∈ Δ(qi, ai). The language of A,
denoted L(A), is the set of all strings that are accepted by A. Conversion from
a regular expression to an NFA is sometimes referred to as compilation and can
be achieved using well-known techniques, such as Thompson’s algorithm [25].

In this paper, we assume that membership in a regular language L(E) is
decided through a worst-case exponential algorithm that performs backtracking
search over possible runs of the NFA representing E . While there exist linear-time
matching algorithms (e.g., based on DFAs), many real-world libraries employ
backtracking search for two key reasons: First, the compilation of a regular
expression is much faster using NFAs and uses much less memory (DFA’s can be
exponentially larger). Second, the backtracking search approach can handle reg-
ular expressions containing extra features like backreferences and lookarounds.
Thus, many widely-used libraries (e.g., java.util.regex, Python’s standard
library) employ backtracking search for regular expression matching.

8 V. Wüstholz et al.

In the remainder of this paper, we will use the notation A∗ and A∅ to denote
the NFA that accepts Σ∗ and the empty language respectively. Given two NFAs
A1 and A2, we write A1 ∩ A2, A1 ∪ A2, and A1 · A2 to denote automata inter-
section, union, and concatenation. Finally, given an automaton A, we write A
to represent its complement, and we use the notation A+ to represent the NFA
that recognizes exactly the language {sk | k ≥ 1 ∧ s ∈ L(A)}.

Definition 2 (Path). Given an NFA A = (Q,Σ,Δ, q0, F), a path π of A is
a sequence of transitions (q1, �1, q2), . . . , (qm−1, �m−1, qm) where qi ∈ Q, �i ∈ Σ,
and qi+1 ∈ Δ(qi, �i). We say that π starts in qi and ends at qm, and we write
labels(π) to denote the sequence of labels (�1, . . . , �m−1).

4 Detecting Hyper-Vulnerable NFAs

In this section, we explain our technique for determining if an NFA is hyper-
vulnerable and show how to generate an attack automaton that recognizes exactly
the set of attack strings.

Definition 3 (Hyper-Vulnerable NFA). An NFA A = (Q,Σ,Δ, q0, F) is
hyper-vulnerable iff there exists a backtracking search algorithm Match over the
paths of A such that the worst-case complexity of Match is exponential in the
length of the input string.

We will demonstrate that an NFA A is hyper-vulnerable by showing that
there exists a string s such that the number of distinct matching paths πi from
state q0 to a rejecting state qr with labels(πi) = s is exponential in the length of
s. Clearly, if s is rejected by A, then Match will need to explore each of these
exponentially many paths. Furthermore, even if s is accepted by A, there exists a
backtracking search algorithm (namely, the one that explores all rejecting paths
first) that results in exponential worst-case behavior.

Theorem 1. An NFA A = (Q,Σ,Δ, q0, F) is hyper-vulnerable iff there exists
a pivot state q ∈ Q and two distinct paths π1, π2 such that (i) both π1, π2 start
and end at q, (ii) labels(π1) = labels(π2), and (iii) there is a path πp from initial
state q0 to q, and (iv) there is a path πs from q to a state qr 	∈ F .

Proof. The sufficiency argument is laid out below, and the necessity argument
can be found in the extended version of this paper [31].

q0 q qr

(π1)= (π2)

πp πs

π1

π2

Fig. 4. Hyper-vulnerable NFA pattern

To gain intuition about hyper-
vulnerable NFAs, consider Fig. 4
illustrating the conditions of
Theorem 1. First, a hyper-vulnerable
NFA must contain a pivot state q,
such that, starting at q, there are
two different ways (namely, π1, π2)
of getting back to q on the same

Static Detection of DoS Vulnerabilities in Programs 9

input string s (i.e., labels(π1)). Second, the pivot state q should be reachable
from the initial state q0, and there must be a way of reaching a rejecting state
qr from q.

To understand why these conditions cause exponential behavior, consider a
string of the form s0 ·sk ·s1, where s0 is the attack prefix given by labels(πp), s1 is
the attack suffix given by labels(πs), and s is the attack core given by labels(π1).
Clearly, there is an execution path of A in which the string s0 · sk · s1 will be
rejected. For example, πp · πk

1 · πs is exactly such a path.

Algorithm 1. Hyper-vulnerable NFA
1: function AttackAutomaton(A)
2: assume A = (Q, Σ, Δ, q0, F)
3: AÈ ← A∅

4: for qi ∈ Q do
5: AÈ

i ← AttackForPivot(A, qi)
6: AÈ ← AÈ ∪ AÈ

i

7: return AÈ

8: function AttackForPivot(A, q)
9: assume A = (Q, Σ, Δ, q0, F)

10: AÈ ← A∅

11: for (q, l, q1), (q, l, q2) ∈ Δ∧q1 �= q2 do
12: A1 ← LoopBack(A, q, l, q1)
13: A2 ← LoopBack(A, q, l, q2)
14: Ap ← (Q, Σ, Δ, q0, {q})
15: As ← (Q, Σ, Δ, q, F)
16: AÈ ← AÈ ∪ (Ap · (A1 ∩ A2)

+ · As)

17: return AÈ

18: function LoopBack(A, q, l, q′)
19: assume A = (Q, Σ, Δ, q0, F)
20: q� ← NewState(Q)
21: Q′ ← Q ∪ q�; Δ′ ← Δ ∪ (q�, l, q′)
22: return (Q′, Σ, Δ′, q�, {q})

Now, consider a string s0 ·
sk+1 · s1 that has an additional
instance of the attack core s in
the middle, and suppose that
there are n possible executions
of A on the prefix s0 · sk that
end in q. Now, for each of these n
executions, there are two ways to
get back to q after reading s: one
that takes path π1 and another
that takes path π2. Therefore,
there are 2n possible executions
of A that end in q. Furthermore,
the matching algorithm will (in
the worst case) end up exploring
all of these 2n executions since
there is a way to reach the reject-
ing state qr. Hence, we end up
doubling the running time of the
algorithm every time we add an
instance of the attack core s to
the middle of the input string.

Example 1. The NFA in Fig. 5 (left) is hyper-vulnerable because there exist two
different paths π1 = (q, a, q), (q, a, q) and π2 = (q, a, q0), (q0, a, q) that contain
the same labels and that start and end in q. Also, q is reachable from q0, and
the rejecting state qr is reachable from q. Attack strings for this NFA are of the
form a · (a · a)k · b, and the attack automaton is shown in Fig. 5 (right).

q0 q qr
a
a

b

b

a

q0 q1

q2

q3
a b

aa

Fig. 5. A hyper-vulnerable NFA (left) and an attack automaton (right).

10 V. Wüstholz et al.

We now use Theorem 1 to devise Algorithm 1 for constructing the attack
automaton AÈ for a given NFA. The key idea of our algorithm is to search for
all possible pivot states qi and construct the attack automaton AÈ

i for state qi.
The full attack automaton is then obtained as the union of all AÈ

i . Note that
Algorithm 1 can be used to determine if automaton A is vulnerable: A exhibits
worst-case exponential behavior iff the language accepted by AÈ is non-empty.

In Algorithm 1, most of the real work is done by the AttackForPivot
procedure, which constructs the attack automaton for a specific state q: Given
a pivot state q, we want to find two different paths π1, π2 that loop back to q
and that have the same set of labels. Towards this goal, line 11 of Algorithm 1
considers all pairs of transitions from q that have the same label (since we must
have labels(π1) = labels(π2)).

Now, let us consider a pair of transitions τ1 = (q, l, q1) and τ2 = (q, l, q2). For
each qi (i ∈ {1, 2}), we want to find all strings that start in q, take transition
τi, and then loop back to q. In order to find all such strings S, Algorithm 1
invokes the LoopBack function (lines 18–22), which constructs an automaton
A′ that recognizes exactly S. Specifically, the final state of A′ is q because we
want to loop back to state q. Furthermore, A′ contains a new initial state q∗

(where q∗ 	∈ Q) and a single outgoing transition (q∗, l, qi) out of q∗ because we
only want to consider paths that take the transition to qi first. Hence, each Ai

in lines 12–13 of the AttackForPivot procedure corresponds to a set of paths
that loop back to q through state qi. Observe that, if a string s is accepted by
A1 ∩ A2, then s is an attack core for pivot state q.

We now turn to the problem of computing the set of all attack prefixes and
suffixes for pivot state q: In line 14 of Algorithm1, Ap is the same as the original
NFA A except that its only accepting state is q. Hence, Ap accepts all attack
prefixes for pivot q. Similarly, As is the same as A except that its initial state is
q instead of q0; thus, As accepts all attack suffixes for q.

Finally, let us consider how to construct the full attack automaton AÈ for q.
As explained earlier, all attack strings are of the form s1 · sk · s2 where s1 is the
attack prefix, s is the attack core, and s2 is the attack suffix. Since Ap, A1 ∩A2,
and As recognize attack prefixes, cores, and suffixes respectively, any string that
is accepted by Ap · (A1 ∩ A2)+ · As is an attack string for the original NFA A.

Theorem 2 (Correctness of Algorithm1)2. Let AÈ be the result of calling
AttackAutomaton(A) for NFA A = (Q,Σ,Δ, q0, F). For every s ∈ L(AÈ),
there exists a rejecting state qr ∈ Q \ F s.t. the number of distinct paths πi from
q0 to qr with labels(πi) = s is exponential in the number of repetitions of the
attack core in s.

5 Detecting Vulnerable NFAs

So far, we only considered the problem of identifying NFAs whose worst-case
running time is exponential. However, in practice, even NFAs with super-linear
2 The proofs of Theorems 2 and 4 are given in the extended version of this paper [31].

Static Detection of DoS Vulnerabilities in Programs 11

complexity can cause catastrophic backtracking. In fact, many acknowledged
ReDoS vulnerabilities (e.g., [1,4,5]) involve regular expressions whose match-
ing complexity is “only” quadratic. Based on this observation, we extend the
techniques from the previous section to statically detect NFAs with super-linear
time complexity. Our solution builds on insights from Sect. 4 to construct an
attack automaton for this larger class of vulnerable regular expressions.

5.1 Understanding Super-Linear NFAs

Before we present the algorithm for detecting super-linear NFAs, we provide a
theorem that explains the correctness of our solution.

Definition 4 (Vulnerable NFA). An NFA A = (Q,Σ,Δ, q0, F) is vulnerable
iff there exists a backtracking search algorithm Match over the paths of A such
that the worst-case complexity of Match is at least quadratic in the length of
the input string.

Theorem 3. An NFA A = (Q,Σ,Δ, q0, F) is vulnerable iff there exist two
states q ∈ Q (the pivot), q′ ∈ Q, and three paths π1, π2, and π3 (where π1 	= π2)
such that (i) π1 starts and ends at q, (ii) π2 starts at q and ends at q′, (iii) π3

starts and ends at q′, (iv) labels(π1) = labels(π2) = labels(π3), and (v) there is
a path πp from q0 to q, (vi) there is a path πs from q′ to a state qr 	∈ F .

Proof. The sufficiency argument is laid out below, and the necessity argument
can be found in the extended version of this paper [31].

Figure 6 illustrates the intuition behind the conditions above. The distin-
guishing characteristic of a super-linear NFA is that it contains two states q, q′

such that q′ is reachable from q on input string s, and it is possible to loop back
from q and q′ to the same state on string s. In addition, just like in Theorem1,
the pivot state q needs to be reachable from the initial state, and a rejecting
state qr must be reachable from q′. Observe that any automaton that is hyper-
vulnerable according to Theorem1 is also vulnerable according to Theorem3.
Specifically, consider an automaton A with two distinct paths π1, π2 that loop
around q. In this case, if we take q′ to be q and π3 to be π1, we immediately see
that A also satisfies the conditions of Theorem 3.

To understand why the conditions of Theorem3 imply super-linear time com-
plexity, let us consider a string of the form s0 ·sk ·s1 where s0 is the attack prefix

q0 q q qr

(π1) = (π2)
= (π3)

πp π2 πs

π1 π3

Fig. 6. General pattern characterizing vulnerable NFAs

12 V. Wüstholz et al.

q0 q

q1

q2

q′

c a

ab ba
q0 q1 q2

c

a

b

Fig. 7. A vulnerable NFA (left) and its attack automaton (right).

given by labels(πp), s1 is the attack suffix given by labels(πs), and s is the attack
core given by labels(π1). Just like in the previous section, the path πp πk

1 πs

describes an execution for rejecting the string s0 · sk · s1 in automaton A. Now,
let Tq(k) represent the running time of rejecting the string sks1 starting from
q, and suppose that it takes 1 unit of time to read string s. We can write the
following recurrence relation for Tq(k):

Tq(k) = (1 + Tq(k − 1)) + (1 + Tq′(k − 1))

To understand where this recurrence is coming from, observe that there are two
ways to process the first occurence of s:

– Take path π1 and come back to q, consuming 1 unit of time to process string s.
Since we are back at q, we still have Tq(k − 1) units of work to perform.

– Take path π2 and proceed to q′, also consuming 1 unit of time to process
string s. Since we are now at q′, we have Tq′(k − 1) units of work to perform.

Now, observe that a lower bound on Tq′(k) is k since one way to reach qr is
πk
3πs, which requires us to read the entire input string. This observation allows

us to obtain the following recurrence relation:

Tq(k) ≥ Tq(k − 1) + k + 1

Thus, the running time of A on the input string s0 · sk · s1 is at least k2.

Example 2. The NFA shown in Fig. 7 (left) exhibits super-linear complexity
because we can get from q to q′ on input string ab, and for both q and q′,
we loop back to the same state when reading input string ab. Specifically, we
have:

π1 : (q, a, q1), (q1, b, q) π2 : (q, a, q2), (q2, b, q′) π3 : (q′, a, q2), (q2, b, q′)

Furthermore, q is reachable from q0, and there exists a rejecting state, namely
q′ itself, that is reachable from q′. The attack strings are of the form c(ab)k, and
Fig. 7 (right) shows the attack automaton.

5.2 Algorithm for Detecting Vulnerable NFAs

Based on the observations from the previous subsection, we can now formulate
an algorithm that constructs an attack automaton AÈ for a given automaton A.

Static Detection of DoS Vulnerabilities in Programs 13

Algorithm 2. Construct super-linear attack automaton AÈ for A and pivot q

1: function AnyLoopBack(A, q′)
2: assume A = (Q, Σ, Δ, q0, F)
3: q� ← NewState(Q); Q′ ← Q ∪ q�; Δ′ ← Δ
4: for (q′, l, qi) ∈ Δ do
5: Δ′ ← Δ′ ∪ (q�, l, qi)

6: A′ ← (Q′, Σ, Δ′, q�, {q′})
7: return A′

8: function AttackForPivot(A, q)
9: assume A = (Q, Σ, Δ, q0, F)

10: AÈ ← A∅

11: for (q, l, q1) ∈ Δ ∧ (q, l, q2) ∈ Δ ∧ q1 �= q2 do
12: A1 ← LoopBack(A, q, l, q1)
13: Ap ← (Q, Σ, Δ, q0, {q})
14: for q′ ∈ Q do
15: qi ← NewState(Q)
16: A2 ← (Q ∪ {qi}, Σ, Δ ∪ {(qi, l, q2)}, qi, {q′})
17: A3 ← AnyLoopBack(A, q′)
18: As ← (Q, Σ, Δ, q′, F)
19: AÈ ← AÈ ∪ (Ap · (A1 ∩ A2 ∩ A3)

+ · As)

20: return AÈ

Just like in Algorithm 1, we construct an attack automaton AÈ
i for each state in

A by invoking the AttackForPivot procedure. We then take the union of all
such AÈ

i ’s to obtain an automaton AÈ whose language consists of strings that
cause super-linear running time for A.

Algorithm 2 describes the AttackForPivot procedure for the super-linear
case. Just like in Algorithm 1, we consider all pairs of transitions from q with the
same label (line 11). Furthermore, as in Algorithm1, we construct an automaton
Ap that recognizes attack prefixes for q (line 13) as well as an automaton A1

that recognizes non-empty strings that start and end at q (line 12).
The key difference of Algorithm 2 is that we also need to consider all states

that could be instantiated as q′ from Fig. 6 (lines 15–19). For each of these
candidate q′’s, we construct automata A2,A3 that correspond to paths π2, π3

from Fig. 6 (lines 16–17). Specifically, we construct A2 by introducing a new
initial state qi with transition (qi, l, q2) and making its accepting state q′. Hence,
A2 accepts strings that start in q, transition to q2, and end in q′.

The construction of automaton A3, which should accept all non-empty words
that start and end in q′, is described in the AnyLoopBack procedure. First,
since we do not want A3 to accept empty strings, we introduce a new initial
state q� and add a transition from q� to all successor states qi of q′. Second, the
final state of A′ is q′ since we want to consider paths that loop back to q′.

The final missing piece of the algorithm is the construction of As (line 19),
whose complement accepts all attack suffixes for state q′. As expected, As is
the same as the original automaton A, except that its initial state is q′. Finally,

14 V. Wüstholz et al.

similar to Algorithm 1, the attack automaton for states q, q′ is obtained as Ap ·
(A1 ∩ A2 ∩ A3)+ · As.

Theorem 4 (Correctness of Algorithm2). Let NFA A = (Q,Σ,Δ, q0, F)
and AÈ be the result of calling AttackAutomaton(A). For every s ∈ L(AÈ),
there exists a rejecting state qr ∈ Q \ F s.t. the number of distinct paths πi from
q0 to qr with labels(πi) = s is super-linear in the number of repetitions of the
attack core in s.

6 Dynamic Regular Expression Analysis

Algorithms 1 and 2 allow us to determine whether a given NFA is vulnerable.
Even though our static analyses are sound and complete at the NFA level, differ-
ent regular expression matching algorithms construct NFAs in different ways and
use different backtracking search algorithms. Furthermore, some matching algo-
rithms may determinize the NFA (either lazily or eagerly) in order to guarantee
linear complexity. Since our analysis does not perform such partial determiniza-
tion of the NFA for a given regular expression, it can, in practice, generate false
positives. In addition, even if a regular expression is indeed vulnerable, the input
string must still exceed a certain minimum size to cause denial-of-service.

In order to overcome these challenges in practice, we also perform dynamic
analysis to (a) confirm that a regular expression E is indeed vulnerable for Java’s
matching algorithm, and (b) infer a minimum bound on the size of the input
string. Given the original regular expression E , a user-provided time limit t, and
the attack automaton AÈ (computed by static regular expression analysis), our
dynamic analysis produces a refined attack automaton as well as a number b
such that there exists an input string of length greater than b for which Java’s
matching algorithm takes more than t seconds. Note that, as usual, this dynamic
analysis trades soundness for completeness to avoid too many false positives.

In more detail, given an attack automaton AÈ of the form Ap · A+
c · As, the

dynamic analysis finds the smallest k where the shortest string s ∈ L(Ap ·Ak
c ·As)

exceeds the time limit t. In practice, this process does not require more than a
few iterations because we use the complexity of the NFA to predict the number
of repetitions that should be necessary based on previous runs. The minimum
required input length b is determined based on the length of the found string s.
In addition, the value k is used to refine the attack automaton: in particular,
given the original attack automaton Ap · A+

c · As, the dynamic analysis refines
it to be Ap · Ak

c · A∗
c · As.

7 Static Program Analysis

As explained in Sect. 2, the presence of a vulnerable regular expression does not
necessarily mean that the program is vulnerable. In particular, there are three
necessary conditions for the program to contain a ReDoS vulnerability: First, a
variable x that stores user input must be matched against a vulnerable regular

Static Detection of DoS Vulnerabilities in Programs 15

expression E . Second, it must be possible for x to store an attack string that
triggers worst-case behavior for E ; and, third, the length of the string stored in
x must exceed the minimum threshold determined using dynamic analysis.

To determine if the program actually contains a ReDoS vulnerability, our
approach also performs static analysis of source code. Specifically, our program
analysis employs the Cartesian product [7] of the following abstract domains:

– The taint abstract domain [6,26] tracks taint information for each variable. In
particular, a variable is considered tainted if it may store user input.

– The automaton abstract domain [12,33,34] overapproximates the contents of
string variables using finite automata. In particular, if string s is in the lan-
guage of automaton A representing x’s contents, then x may store string s.

– The interval domain [13] is used to reason about string lengths. Specifically,
we introduce a ghost variable lx representing the length of string x and use
the interval abstract domain to infer upper and lower bounds for each lx.

Since these abstract domains are fairly standard, we only explain how to
use this information to detect ReDoS vulnerabilities. Consider a statement
match(x, E) that checks if string variable x matches regular expression E , and
suppose that the attack automaton for E is AÈ. Now, our program analysis con-
siders the statement match(x, E) to be vulnerable if the following three conditions
hold:

1. E is vulnerable and variable x is tainted;
2. The intersection of AÈ and the automaton abstraction of x is non-empty;
3. The upper bound on ghost variable lx representing x’s length exceeds the min-

imum bound b computed using dynamic analysis for AÈ and a user-provided
time limit t.

The extended version of this paper [31] offers a more rigorous formalization
of the analysis.

8 Experimental Evaluation

To assess the usefulness of the techniques presented in this paper, we performed
an evaluation in which our goal is to answer the following questions:

Q1: Do real-world Java web applications use vulnerable regular expressions?
Q2: Can Rexploiter detect ReDoS vulnerabilities in web applications and

how serious are these vulnerabilities?

Results for Q1. In order to assess if real-world Java programs contain vulnera-
bilities, we scraped the top 150 Java web applications (by number of stars) that
contain at least one regular expression from GitHub repositories (all projects
have between 10 and 2, 000 stars and at least 50 commits) and collected a total
of 2, 864 regular expressions. In this pool of regular expressions, Rexploiter

16 V. Wüstholz et al.

found 37 that have worst-case exponential complexity and 522 that have super-
linear (but not exponential) complexity. Thus, we observe that approximately
20% of the regular expressions in the analyzed programs are vulnerable. We
believe this statistic highlights the need for more tools like Rexploiter that can
help programmers reason about the complexity of regular expression matching.

Results for Q2. To evaluate the effectiveness of Rexploiter in finding ReDoS
vulnerabilities, we used Rexploiter to statically analyze all Java applications
that contain at least one vulnerable regular expression. These programs include
both web applications and frameworks, and cover a broad range of application
domains. The average running time of Rexploiter is approximately 14 min per
program, including the time to dynamically analyze regular expressions. The
average size of analyzed programs is about 58, 000 lines of code.

Our main result is that Rexploiter found exploitable vulnerabilities in
27 applications (including from popular projects, such as the Google Web
Toolkit and Apache Wicket) and reported a total of 46 warnings. We manually
inspected each warning and confirmed that 41 out of the 46 vulnerabilities are
exploitable, with 5 of the exploitable vulnerabilities involving hyper-vulnerable
regular expressions and the rest being super-linear ones. Furthermore, for each
of these 41 vulnerabilities (including super-linear ones), we were able to come
up with a full, end-to-end exploit that causes the server to hang for more than
10min.

In Fig. 8, we explore a subset of the vulnerabilities uncovered by Rexploiter
in more detail. Specifically, Fig. 8 (left) plots input size against running time for
the exponential vulnerabilities, and Fig. 8 (right) shows the same information
for a subset of the super-linear vulnerabilities.

Possible Fixes. We now briefly discuss some possible ways to fix the vul-
nerabilities uncovered by Rexploiter. The most direct fix is to rewrite the
regular expression so that it no longer exhibits super-linear complexity. Alter-
natively, the problem can also be fixed by ensuring that the user input cannot
contain instances of the attack core. Since our technique provides the full attack
automaton, we believe Rexploiter can be helpful for implementing suitable

Fig. 8. Running times for exponential vulnerabilities (left) and super-linear vulnera-
bilities (right) for different input sizes.

Static Detection of DoS Vulnerabilities in Programs 17

sanitizers. Another possible fix (which typically only works for super-linear reg-
ular expressions) is to bound input size. However, for most vulnerabilities found
by Rexploiter, the input string can legitimately be very large (e.g., review).
Hence, there may not be an obvious upper bound, or the bound may still be
too large to prevent a ReDoS attack. For example, Amazon imposes an upper
bound of 5000 words (∼25,000 characters) on product reviews, but matching a
super-linear regular expression against a string of that size may still take signif-
icant time.

9 Related Work

To the best of our knowledge, we are the first to present an end-to-end solution
for detecting ReDoS vulnerabilities by combining regular expression and program
analysis. However, there is prior work on static analysis of regular expressions
and, separately, on program analysis for finding security vulnerabilities.

Static Analysis of Regular Expressions. Since vulnerable regular expres-
sions are known to be a significant problem, previous work has studied static
analysis techniques for identifying regular expressions with worst-case exponen-
tial complexity [9,18,22,24]. Recent work by Weideman et al. [30] has also pro-
posed an analysis for identifying super-linear regular expressions. However, no
previous technique can construct attack automata that capture all malicious
strings. Since attack automata are crucial for reasoning about sanitization, the
algorithms we propose in this paper are necessary for performing sanitization-
aware program analysis. Furthermore, we believe that the attack automata pro-
duced by our tool can help programmers write suitable sanitizers (especially in
cases where the regular expression is difficult to rewrite).

Program Analysis for Vulnerability Detection. There is a large body of
work on statically detecting security vulnerabilities in programs. Many of these
techniques focus on detecting cross-site scripting (XSS) or code injection vul-
nerabilities [8,11,12,15,17,19,20,23,27–29,32–35]. There has also been recent
work on static detection of specific classes of denial-of-service vulnerabilities.
For instance, Chang et al. [10] and Huang et al. [16] statically detect attacker-
controlled loop bounds, and Olivo et al. [21] detect so-called second-order DoS
vulnerabilities, in which the size of a database query result is controlled by the
attacker. However, as far as we know, there is no prior work that uses program
analysis for detecting DoS vulnerabilities due to regular expression matching.

Time-Outs to Prevent ReDoS. As mentioned earlier, some libraries (e.g.,
the .Net framework) allow developers to set a time-limit for regular expression
matching. While such libraries may help mitigate the problem through a band-
aid solution, they do not address the root cause of the problem. For instance,
they neither prevent against stack overflows nor do they prevent DoS attacks in
which the attacker triggers the regular expression matcher many times.

18 V. Wüstholz et al.

10 Conclusions and Future Work

We have presented an end-to-end solution for statically detecting regular expres-
sion denial-of-service vulnerabilities in programs. Our key idea is to combine
complexity analysis of regular expressions with safety analysis of programs.
Specifically, our regular expression analysis constructs an attack automaton that
recognizes all strings that trigger worst-case super-linear or exponential behavior.
The program analysis component takes this information as input and performs
a combination of taint and string analysis to determine whether an attack string
could be matched against a vulnerable regular expression.

We have used our tool to analyze thousands of regular expressions in the
wild and we show that 20% of regular expressions in the analyzed programs are
actually vulnerable. We also use Rexploiter to analyze Java web applications
collected from Github repositories and find 41 exploitable security vulnerabilities
in 27 applications. Each of these vulnerabilities can be exploited to make the
web server unresponsive for more than 10 min.

There are two main directions that we would like to explore in future work:
First, we are interested in the problem of automatically repairing vulnerable
regular expressions. Since it is often difficult for humans to reason about the
complexity of regular expression matching, we believe there is a real need for
techniques that can automatically synthesize equivalent regular expressions with
linear complexity. Second, we also plan to investigate the problem of automat-
ically generating sanitizers from the attack automata produced by our regular
expression analysis.

Acknowledgments. This work is supported by AFRL Award FA8750-15-2-0096.

References

1. CVE-2013-2009. cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2099
2. CVE-2015-2525. cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2526
3. CVE-2015-2525. cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3275
4. CVE-2016-2515. cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2515
5. CVE-2016-2537. cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2537
6. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,

Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In: PLDI, pp. 259–269. ACM
(2014)

7. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model
checking C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol.
2031, pp. 268–283. Springer, Heidelberg (2001). doi:10.1007/3-540-45319-9 19

8. Bandhakavi, S., Tiku, N., Pittman, W., King, S.T., Madhusudan, P., Winslett, M.:
Vetting browser extensions for security vulnerabilities with VEX. Commun. ACM
54(9), 91–99 (2011)

9. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtracking
behavior in practical regular expression matching. In: AFL. EPTCS, vol. 151, pp.
109–123 (2014)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2099
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2526
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3275
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2515
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2537
http://dx.doi.org/10.1007/3-540-45319-9_19

Static Detection of DoS Vulnerabilities in Programs 19

10. Chang, R.M., Jiang, G., Ivancic, F., Sankaranarayanan, S., Shmatikov, V.: Inputs
of coma: static detection of denial-of-service vulnerabilities. In: CSF, pp. 186–199.
IEEE Computer Society (2009)

11. Chaudhuri, A., Foster, J.S.: Symbolic security analysis of ruby-on-rails web appli-
cations. In: CCS, pp. 585–594. ACM (2010)

12. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-
sions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidel-
berg (2003). doi:10.1007/3-540-44898-5 1

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

14. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks.
In: USENIX Security Symposium. USENIX Association (2003)

15. Dahse, J., Holz, T.: Static detection of second-order vulnerabilities in web appli-
cations. In: USENIX Security Symposium, pp. 989–1003. USENIX Association
(2014)

16. Huang, H., Zhu, S., Chen, K., Liu, P.: From system services freezing to system
server shutdown in Android: all you need is a loop in an app. In: CCS, pp. 1236–
1247. ACM (2015)

17. Kiezun, A., Guo, P.J., Jayaraman, K., Ernst, M.D.: Automatic creation of SQL
injection and cross-site scripting attacks. In: ICSE, pp. 199–209. IEEE (2009)

18. Kirrage, J., Rathnayake, A., Thielecke, H.: Static analysis for regular expres-
sion denial-of-service attacks. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS
2013. LNCS, vol. 7873, pp. 135–148. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38631-2 11

19. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications with
static analysis. In: USENIX Security Symposium. USENIX Association (2005)

20. Martin, M.C., Livshits, V.B., Lam, M.S.: Finding application errors and security
flaws using PQL: a program query language. In: OOPSLA, pp. 365–383. ACM
(2005)

21. Olivo, O., Dillig, I., Lin, C.: Detecting and exploiting second order denial-of-service
vulnerabilities in web applications. In: CCS, pp. 616–628. ACM (2015)

22. Rathnayake, A., Thielecke, H.: Static analysis for regular expression exponential
runtime via substructural logics. CoRR abs/1405.7058 (2014)

23. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: POPL, pp. 372–382. ACM (2006)

24. Sugiyama, S., Minamide, Y.: Checking time linearity of regular expression match-
ing based on backtracking. IPSJ Online Trans. 7, 82–92 (2014)

25. Thompson, K.: Programming techniques: regular expression search algorithm.
Commun. ACM 11(6), 419–422 (1968)

26. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: TAJ: effective taint
analysis of web applications. In: PLDI, pp. 87–97. ACM (2009)

27. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: PLDI, pp. 32–41. ACM (2007)

28. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
ICSE, pp. 171–180. ACM (2008)

29. Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H., Su, Z.: Dynamic
test input generation for web applications. In: ISSTA, pp. 249–260. ACM (2008)

http://dx.doi.org/10.1007/3-540-44898-5_1
http://dx.doi.org/10.1007/978-3-642-38631-2_11
http://dx.doi.org/10.1007/978-3-642-38631-2_11

20 V. Wüstholz et al.

30. Weideman, N., Merwe, B., Berglund, M., Watson, B.: Analyzing matching time
behavior of backtracking regular expression matchers by using ambiguity of NFA.
In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 322–334.
Springer, Cham (2016). doi:10.1007/978-3-319-40946-7 27

31. Wüstholz, V., Olivo, O., Heule, M.J.H., Dillig, I.: Static detection of DoS vul-
nerabilities in programs that use regular expressions (extended version). CoRR
abs/1701.04045 (2017)

32. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages.
In: USENIX Security Symposium. USENIX Association (2006)

33. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 13

34. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. FMSD 44(1), 44–70 (2014)

35. Yu, F., Bultan, T., Hardekopf, B.: String abstractions for string verification. In:
Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp. 20–37. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22306-8 3

http://dx.doi.org/10.1007/978-3-319-40946-7_27
http://dx.doi.org/10.1007/978-3-642-12002-2_13
http://dx.doi.org/10.1007/978-3-642-22306-8_3

Discriminating Traces with Time

Saeid Tizpaz-Niari(B), Pavol Černý, Bor-Yuh Evan Chang,
Sriram Sankaranarayanan, and Ashutosh Trivedi

University of Colorado Boulder, Boulder, USA
{saeid.tizpazniari,pavol.cerny,evan.chang,srirams,

ashutosh.trivedi}@colorado.edu

Abstract. What properties about the internals of a program explain the
possible differences in its overall running time for different inputs? In this
paper, we propose a formal framework for considering this question we
dub trace-set discrimination. We show that even though the algorithmic
problem of computing maximum likelihood discriminants is NP-hard,
approaches based on integer linear programming (ILP) and decision tree
learning can be useful in zeroing-in on the program internals. On a set
of Java benchmarks, we find that compactly-represented decision trees
scalably discriminate with high accuracy—more scalably than maximum
likelihood discriminants and with comparable accuracy. We demonstrate
on three larger case studies how decision-tree discriminants produced by
our tool are useful for debugging timing side-channel vulnerabilities (i.e.,
where a malicious observer infers secrets simply from passively watching
execution times) and availability vulnerabilities.

1 Introduction

Different control-flow paths in a program can have varying execution times.
Such observable differences in execution times may be explainable by information
about the program internals, such as whether or not a given function or functions
were called. How can a software developer (or security analyst) determine what
internals may or may not explain the varying execution times of the program?
In this paper, we consider the problem of helping developers and analysts to
identify such explanations.

We identify a core problem for this task—the trace-set discrimination prob-
lem. Given a set of execution traces with observable execution times binned
(or clustered) into a finite set of labels, a discriminant (or classifier) is a map
relating each label to a property (i.e., a Boolean formula) satisfied by the traces
assigned to that label. Such a discriminant model can then be used, for example,
to predict a property satisfied by some trace given the timing label of that trace.

This problem is, while related, different than the profiling problem. In perfor-
mance profiling, the question is given an execution trace, how do the various parts
of the program contribute to the overall execution time? The trace-set discrim-
ination problem, in contrast, looks for distinguishing features among multiple
traces that result in varying execution times.

This research was supported by DARPA under agreement FA8750-15-2-0096.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 21–37, 2017.
DOI: 10.1007/978-3-662-54580-5 2

22 S. Tizpaz-Niari et al.

Crucially, once we can explain the timing differences in terms of properties of
traces (e.g., what functions are called only in traces with long execution time),
the analyst can use the explanation to diagnose the possible timing side-channel
and potentially find a fix for the vulnerability. Section 2 shows on an example
how a security analyst might use the tool for debugging information leaks.

In this paper, we consider the discriminating properties of traces to be
Boolean combinations of a given set of atomic predicates. These atomic predi-
cates correspond to actions that can be observed through instrumentation in a
training set of execution traces. Examples of such predicates are as follows: (1)
Does the trace have a call to the function f in the program? (2) Does the trace
have a call to the sort function with an array of more than a 1000 numbers? In
our case study, we consider atomic predicates corresponding to the number of
times each function is called.

Concretely, our overall approach is to first obtain a set of execution traces
with information recorded to determine the satisfiability of the given atomic
predicates along with corresponding execution times. Then, we cluster these
training traces based on their overall execution times to bin them into timing
labels. Finally, we learn a trace-set discriminant model from these traces (using
various techniques) to capture what is common amongst the traces with the
same timing labels and what is different between traces with different labels.

In particular, we make the following contributions:

– We formalize the problem of trace-set discrimination with timing differences
and show that the algorithmic problem of finding the maximum likelihood
conjunctive discriminant is NP-hard (Sect. 3).

– We describe two methods for learning trace-set discriminants: (1) a direct
method for inferring the maximum likelihood conjunctive discriminant using
an encoding into integer linear programming (ILP) and (2) by applying deci-
sion tree learning that each offer different trade-offs (Sect. 4). For instance,
decision tree algorithms are designed to tolerate noisy labels and work effec-
tively on large data sets but do not have formal guarantees. On a set of
microbenchmarks, we find that the methods have similar accuracy but deci-
sion tree learning appears more scalable.

– We present three case studies in identifying and debugging timing side-channel
and availability vulnerabilities, armed with a prototype tool Discriminer
that performs label clustering and decision tree-discriminant learning (Sect. 5).
These case studies were conducted on medium-sized Java applications, which
range in size from approximately 300 to 3,000 methods and were developed
by a third party vendor as challenge problems for identifying and debugging
such side-channel vulnerabilities. We show that the decision trees produced by
Discriminer are useful for explaining the timing differences amongst trace
sets and performing this debugging task.

In our approach, we need to execute both an instrumented and an uninstru-
mented version of the program of interest on the same inputs. This is because a
trace of the instrumented program is needed to determine the satisfiability of the
atomic predicates, while the execution time of interest is for the uninstrumented

Discriminating Traces with Time 23

program. Therefore we need to assume that the program is deterministic. Since
timing observations are noisy due to many sources of non-determinism, each
trace is associated with a distribution over the labels. For instance, a trace may
have a label �1 with probability 0.9 and label �2 with probability 0.1.

Like with profiling, we also assume the test inputs that drive the program of
interest to expose interesting behavior are given. It is a separate problem to get
such interesting inputs: whether the analyst has logged some suspicious inputs
from a deployment or whether the developer generates tests using random or
directed test-case generation.

2 Timing Side-Channel Debugging with DISCRIMINER

In this section, we demonstrate by example how Discriminer can be useful in
identifying timing side-channel vulnerabilities and suggesting ways to fix them.
We use an application called SnapBuddy1 as an example. SnapBuddy is a Java
application with 3,071 methods, implementing a mock social network in which
each user has their own page with a photograph.

Identifying a Timing Side-Channel with Clustering. The analyst inter-
acts with the application by issuing download requests to the pages of various
users to record execution times. Figure 1 shows a scatter plot of the running
times of various traces with each trace represented by a point in the figure. The
running times are clustered into 6 different clusters using a standard k-means
clustering algorithm and shown using different colors. We see that for some users,
the download times were roughly 15 s, whereas for some others they were roughly
7.5 s. This significant time differential suggests a potential timing side-channel
if the difference can be correlated with sensitive program state and thus this
differential should be investigated further with Discriminer.

To see how such a time differential could be a timing side-channel, let us
consider an attacker that (a) downloads the public profile pages of all users
and learns each download time, and (b) can observe timing between packets by
sniffing the network traffic between legitimate users. If the attacker observes user
Alice downloading the page of another user whose identity is supposed to be a
secret and sees that the download took approximately 7.5 s, the attacker can
infer that Alice downloaded the page of one of the six users corresponding to the
six squares (with time close to 7.5 s) in Fig. 1. The timing information leak thus
helped the attacker narrow down the possibilities from hundreds of users to six.

Debugging Timing Side-Channels with Decision Tree Learning. How
can the analyst go about debugging the SnapBuddy application to eliminate
this timing side-channel? We show how Discriminer can help. Recall that the
analyst downloaded pages of all the users. Now the same download queries are
executed over an instrumented version of the SnapBuddy server to record the

1 From DARPA STAC (www.darpa.mil/program/space-time-analysis-for-cybersecurity).

www.darpa.mil/program/space-time-analysis-for-cybersecurity

24 S. Tizpaz-Niari et al.

Fig. 1. Cluster running times from the
SnapBuddy to produce labels. The scat-
ter plot shows a differential corresponding
to a possible timing side-channel.

Fig. 2. Snippet of a decision-tree
discriminant learned from Snap-
Buddy traces using the timing
labels from Fig. 1.

number of times each method in the application is called by the trace. As a
result, we obtain a set of traces with their (uninstrumented) overall running
times and set of corresponding method calls.

Then Discriminer uses the standard CART decision tree learning algo-
rithm [5] to infer a decision tree that succinctly represents a discriminant
using atomic predicates that characterize whether or not the trace invoked
a particular method (shown in Fig. 2). For instance, the cluster represent-
ing the longest running time (around 15 s) is discriminated by the prop-
erty snapservice.model.Filter.filter ∧ image.OilFilter.filterPixels, indi-
cating that the two methods are both invoked by the trace. Likewise, the
cluster representing the running time around 7.5 s is discriminated by the
property snapservice.model.Filter.filter ∧ ¬image.OilFilter.filterPixels ∧
image.ChromeFilter.filter, indicating that image.OilFilter.filterPixels must
not be invoked while the other two must be.

The analyst might now suspect what is going on: the timing differences are
caused by the filters that each user chooses to apply to their picture. Note
that the analyst running Discriminer did not need to know that the filters
are important for causing this time differential, or even that they existed. The
tool discovers them simply because the trace contains all method calls, and the
decision tree learning algorithm produces a useful discriminant.

A possible fix now suggests itself: make sure that the execution of each type
of filter takes the same amount of time (though of course an implementation of
such a fix still requires development effort). Overall, the example demonstrates
how the decision tree produced by Discriminer can be used to debug (and
potentially fix) side-channel vulnerabilities.

3 Trace-Set Discrimination Problem

A discrete probability distribution, or just distribution, over a finite set L is a
function d : L→[0, 1] such that

∑
�∈L d(�) = 1. Let D(L) denote the set of all

discrete distributions over L.

Discriminating Traces with Time 25

Let p1, . . . , pm represent a set of atomic predicates over traces. Each predicate
evaluates to a Boolean value over a given trace. Therefore, for simplicity, we
represent a trace simply by the truth valuations of the predicates over the trace.
In addition to atomic predicates, traces are associated with a distribution over
labels. These distributions are generated by first measuring the execution time
t of the trace. The execution time is obtained as the average over some fixed
number of measurements M > 0. Therefore, the timing is taken to be a Gaussian
random variable with mean t and a standard deviation σt. Using this information,
we derive a discrete distribution d ∈ D(L) over the set of labels in L.

Definition 1 (Traces, Predicates and Label Distributions). An execution
trace T of the program is a tuple 〈τ, d〉 wherein τ = 〈ρ1, . . . , ρm〉 represents the
truth valuations to the predicates p1, . . . , pm, respectively and d ∈ D(L) is the
associated label distribution over the finite set of labels L.

We define a trace discriminant as a tuple of Boolean formulae that predict
the labels of the traces given the truth valuations in the following fashion.

Definition 2. Given a set of labels L = {�1, . . . , �K} and predicates P =
{p1, . . . , pm}, a discriminant Ψ is a tuple 〈ϕ1, . . . , ϕK〉 of Boolean formulae
where each formula ϕi is over the predicates in P and corresponds to a label �i.

A trace 〈τ, d〉 receives a label �k under trace discriminant Ψ = 〈ϕ1, . . . , ϕK〉, and
we write Label(〈τ, d〉 , Ψ) = �k, if k is the smallest index 1 ≤ i ≤ K such that
τ |= ϕi, i.e. ϕi evaluates to true for the truth valuation τ . Formally,

Label(〈τ, d〉 , Ψ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1 if τ |= ϕ1, else

�2 if τ |= ϕ2, else
...

...
�K if τ |= ϕK .

Definition 3. Given a set of predicates {p1, . . . , pm}, set of labels {�1, . . . , �K},
and a set of traces {〈τ1, d1〉 , . . . , 〈τN , dN 〉}, the trace set discriminant prob-
lem (TDLP) is to learn a trace discriminant Ψ = 〈ϕ1, . . . , ϕK〉.

In general, there are numerous possible discriminants that can be inferred for
a given instance of the tdlp. We consider two approaches in this paper: (a) a
formal maximum likelihood learning model over a structured set of discriminants
and (b) an informal decision tree learning approach to maximize accuracy while
minimizing the discriminant size.

3.1 Maximum Likelihood Learning

Given a discriminant and a set of traces, we define the likelihood of the
discriminant as the probability that each trace 〈τi, di〉 receives the label
Label(〈τi, di〉 , Ψ) dictated by the discriminant.

26 S. Tizpaz-Niari et al.

Definition 4. The likelihood λ(Ψ) of a discriminant Ψ over a set of traces
{〈τ1, d1〉 , . . . , 〈τN , dN 〉} is given by λ(Ψ) =

∏N
i=1 di (Label(〈τi, di〉 , Ψ)) .

The maximum likelihood discriminant Ψml is defined as the discriminant amongst
all possible Boolean formulae that maximizes λ(Ψ), i.e. Ψml = argmaxΨ (λ(Ψ)).
This maximization runs over the all possible tuples of K Boolean formulae over m

atomic predicates, i.e., a space of (K!)
(
22

m

K

)
possible discriminants! In particular,

Hyafil and Rivest [10] show that the problem of learning optimal decision trees is
NP-hard. Therefore, for our formal approach, we consider the following simpler
class of discriminants by restricting the form of the Boolean formulae ϕj that
make up the discriminants to monotone conjunctive formulae.

Definition 5 (Conjunctive Discriminants). A monotone conjunctive for-
mula over predicates P = {p1, . . . , pm} is a finite conjunction of the form∧r

j=1 pij such that 1 ≤ i1, . . . , ir ≤ m. A discriminant Ψ = 〈ϕ1, . . . , ϕK〉 is
a (monotone) conjunctive discriminant if each ϕi is a monotone conjunctive
formula for 1 ≤ i ≤ K. In order to make a traces discriminant exhaustive, we
assume ϕK to be the formula true.

The number of conjunctive discriminants is (K − 1)!
(

2m

K−1

)
. However, they can

be easily represented and learned using SAT or ILP solvers, as shown subse-
quently. Moreover, working with simpler monotone conjunctive discriminants is
preferable [7] in the presence of noisy data, as using formal maximum likelihood
model to learn arbitrary complex Boolean function would lead to over-fitting.
The problem of maximum likelihood conjunctive discriminant is then naturally
defined. We refine the result of [10] in our context to show that the problem of
learning (monotone) conjunctive discriminants is already NP-hard.

Theorem 1. Given an instance of tdlp, the problem of finding the maximum
likelihood conjunctive discriminant is NP-hard.

Proof. We prove the NP-hardness of the problem of finding maximum likeli-
hood conjunctive discriminant by giving a reduction from the minimum weight
monotone SAT problem that is already known to be NP-hard. Recall that a
monotone Boolean formula is propositional logic formula where all the literals
are positive. Given a monotone instance of SAT φ =

∧n
j=1 Cj over the set of

variable X = {x1, . . . , xm}, the minimum weight monotone SAT problem is to
find a truth assignment satisfying φ with as few variables set to true as possible.

Consider the trace-set discrimination problem Pφ where there is one predicate
pi per variable xi ∈ X of φ, two labels �1 and �2, and the set of traces such that

– there is one trace 〈τj , dj〉 per clause Cj of φ such that predicate pi evaluates
to true in the trace τj if variable xi does not occur in clause Cj , and the label
distribution dj is such that dj(�1) = 0 and dj(�2) = 1.

– there is one trace 〈τ i, di〉 per variable xi of φ such that only the predicate
pi evaluates to false in the trace τ i and the label distribution di is such that
di(�1) = 1 − ε and di(�2) = ε where 0 < ε < 1

2 .

Discriminating Traces with Time 27

Observe that for every truth assignment (x∗
1, . . . , x

∗
m) to variables in X, there is

a conjunctive discriminant ∧x∗
i =1pi such that if the clause Cj is satisfied then

the trace 〈τj , dj〉 receives the label �2. This implies that the likelihood of the
discriminant is non-zero only for the discriminant corresponding to satisfying
valuations of φ. Moreover, for every variable xi receiving a true assignment, the
trace 〈τ i, di〉 receives the label �2 with ε contributed to the likelihood term and
for every variable xi receiving false assignment, the trace 〈τ i, di〉 receives the
label �1 with 1−ε being contributed to the likelihood. This construction implies
that a maximum likelihood discriminant should give label �2 to all of the traces
〈τj , dj〉 and label �1 to as many traces in

{
τ i, di

}
as possible. It is easy to verify

that there exists a truth assignment of size k for φ if and only if there exists a
conjunctive discriminant in Pφ with likelihood

∏k
i=1 ε · ∏m−k

i=1 (1 − ε). �	

3.2 Decision Tree Learning

As noted earlier, the max likelihood approach over structured Boolean for-
mulae can be prohibitively expensive when the number of traces, predicates
and labels are large. An efficient alternative is to consider decision tree learn-
ing approaches that can efficiently produce accurate discriminants while keep-
ing the size of the discriminant as small as possible. The weighted accuracy
of a discriminant Ψ over traces 〈τi, di〉 , i = 1, . . . , N is defined additively as
α(Ψ) : 1

N

∑N
i=1 di (Label(〈τi, di〉 , Ψ)). This accuracy is a fraction between [0, 1]

with higher accuracy representing a better discriminant.
A decision tree learning algorithm seeks to learn a discriminant as a decision

tree over the predicates p1, . . . , pm and outcome labels �1, . . . , �K . Typically, algo-
rithms will maximize α(Ψ) while keeping the description length |Ψ | as small as
possible. A variety of efficient tree learning algorithms have been defined includ-
ing ID3 [15], CART [5], CHAID [11] and many others [14,18]. These algorithms
have been supported by popular machine learning tools such as Scikit-learn
python library (http://scikit-learn.org/stable/) and RapidMiner [2].

4 Discriminant Analysis

In this section, we provide details of max likelihood and decision tree approaches,
and compare their performances over a scalable set of micro-benchmarks.

4.1 Maximum Likelihood Approach

We now present an approach for inferring a conjunctive discriminant Ψ using
integer linear programming (ILP) that maximizes the likelihood λ(Ψ) for given
predicates p1, . . . , pm, labels �1, . . . , �K and traces 〈τ1, d1〉 , . . . , 〈τN , dN 〉. This
problem was already noted to be NP-hard in Theorem1.

We first present our approach for the special case of K = 2 labels. Let �1, �2 be
the two labels. Our goal is to learn a conjunctive formula ϕ1 for �1. We use binary
decision variables x1, . . . , xm wherein xi = 1 denotes that ϕ1 has the predicate

http://scikit-learn.org/stable/

28 S. Tizpaz-Niari et al.

pi as a conjunct, whereas xi = 0 denotes that pi is not a conjunct in ϕ1. Also we
add binary decision variables w1, . . . , wN corresponding to each of the N traces,
respectively. The variable wi = 1 denotes that the trace 〈τi, di〉 receives label �2
under ϕ1 and wi = 0 indicates that the trace receives label �1. The likelihood

of the discriminant Ψ can be given as λ(Ψ) def=
∏N

i=1

{
di(�1) if wi = 0
di(�2) if wi = 1 . Rather

than maximize λ(Ψ), we equivalently maximize log(λ(Ψ))

log(λ(Ψ)) =
N∑

i=1

{
log(di(�1)) if wi = 0
log(di(�2)) if wi = 1 .

Let ri := di(�1) = 1 − di(�2), and simplify the expression for log(λ(Ψ)) as
∑N

i=1(1 − wi) log(ri) + wi log(1 − ri).
Next, the constraints need to relate the values of xi to each wi. Specifically,

let for each trace 〈τi, di〉 , Ri ⊆ {p1, . . . , pm} denote the predicates that are valued
false in the trace. We can verify that if wi = 0, then none of the predicates in
Ri can be part of ϕ1, and if wi = 1, at least one of the predicates in Ri must
be part of ϕ1. This is expressed by the following inequality 1

|Ri| (
∑

pk∈Ri
xk) ≤

wi ≤ ∑
pk∈Ri

xk. If any of the pk ∈ Ri is included in the conjunction, then the
LHS of the inequality is at least 1

|Ri| , forcing wi = 1. Otherwise, if all pk are not
included, the RHS of the inequality is 0, forcing wi = 0.
The overall ILP is given by

max
∑N

i=1(1 − wi) log(ri) + wi log(1 − ri)
s.t. 1

|Ri| (
∑

pk∈Ri
xk) ≤ wi i = 1, . . . , N

wi ≤ ∑
pk∈Ri

xk i = 1, . . . , N

xj ∈ {0, 1}, wi ∈ {0, 1} i = 1, . . . , N, j = 1, . . . , m (1)

Theorem 2. Let x∗
1, . . . , x

∗
m denote the solution for ILP (1) over a given TDLP

instance with labels {�1, �2}. The discriminant Ψ = 〈ϕ1, true〉 wherein ϕ1 =∧
x∗
i =1 pi maximizes the likelihood λ(Ψ) over all conjunctive discriminants.

With the approach using the ILP in Eq. (1), we can tackle an instance with
K > 2 labels by recursively applying the two label solution. First, we learn a
formula ϕ1 for �1 and L \ �1. Next, we eliminate all traces that satisfy ϕ1 and
eliminate the label �1. We then recursively consider L̂ : L \ �1 as the new label
set. Doing so, we obtain a discriminant Ψ : 〈ϕ1, ϕ2, . . . , ϕK−1, true〉.

In theory, the ILP in (1) has N + m variables, which can be prohibitively
large. However, for the problem instances considered, we drastically reduced the
problem size through standard preprocessing/simplification steps that allowed
us to resolve the values of xi, wj for many of the variables to constants.

4.2 Decision Tree Learning Appraoch

In order to discriminate traces, Discriminer employs decision tree learning
to learn classifiers that discriminate the traces. Given a set of N traces on a

Discriminating Traces with Time 29

dependent variable (labels) L that takes finitely-many values in the domain
{�1, . . . , �K} and m feature variables (predicates) F = {f1, . . . , fm}, the goal
of a classification algorithm is to produce a partition the space of the feature
variables into K disjoint sets A1, . . . , AK such that the predicted value of L is
i if the F -variables take value in Ai. Decision-tree methods yield rectangular
sets Ai by recursively partitioning the data set one F variable at a time. CART
(Classification and Regression Trees) is a popular and effective algorithm to learn
decision-tree based classifiers. It constructs binary decision trees by iteratively
exploring features and thresholds that yield the largest information gain (Gini
index) at each node. For a detailed description of the CART, we refer to [5].

4.3 Performance Evaluation

We created a set of micro-benchmarks—containing a side-channel in time—
to evaluate the performance of the decision-tree discriminator computed using
scikit-learn implementation of CART and the maximum likelihood conjunctive
discriminant using an ILP implementation from the GLPK library.

These micro-benchmarks consist of a set of programs that take as an input a
sequence of binary digits (say a secret information), and perform some computa-
tion whose execution time (enforced using sleep commands) depends on some
property of the secret information. For the micro-benchmark series LSB0 and
MSB0, the execution time is a Gaussian-distributed random variable whose mean
is proportional to the position of least significant 0 and most significant 0 in the
secret, respectively. In addition, we have a micro-benchmark series Patd whose
execution time is a random variable whose mean depends upon the position of
the pattern d in the input. For instance, the micro-benchmark Pat101 takes a
20-bit input data and the leftmost occurrence i of the pattern 101 executes three
methods Fi, Fi+1, Fi+2 with mean exec. time of a method Fj being 10∗j ms.

In our experiments with micro-benchmarks, we generate the dataset by ran-
domly generating the input. For each input, we execute the benchmark programs
10 times to approximate the mean and the standard deviation of the observa-
tion, and log the list of method called for each such input. For a given set of
execution traces, we cluster the execution time based on their mean and assign
weighted labels to each trace according to Gaussian distribution. We defer the
details of this data collection to Sect. 5. Our dataset consists of trace id, label,
weight, and method calls for every execution trace. We use this common dataset
to both the decision-tree and the maximum likelihood algorithms.

Table 1 shows the performance of the decision-tree classifiers and the max-
likelihood approach for given micro-benchmarks. The table consists of bench-
mark scales (based on the number of methods and traces), the accuracy of
approaches, time of computing decision tree and max-likelihood discriminant,
the height of decision tree, and the maximum number of conjuncts among all
learned discriminants in the max-likelihood approach. In order to compute the
performance of both models and avoid overfitting, we train and test data sets
using group k-fold cross-validation procedure with k set to 20.

30 S. Tizpaz-Niari et al.

Table 1. Micro-benchmark results for decision-tree discriminators learned using
decision tree and the max-likelihood approach. Legend: #M: number of methods,
#N: number of traces, T: computation time in seconds, A: accuracy, H: decision-tree
height, M: max. discriminant size (Max. # of conjuncts in discriminants), ε < 0.1 sec.

Benchmark ID #M #N Decision tree Max-likelihood

T A H T A M

LSB0 10 188 ε 100% 7 ε 100 % 10

MSB0 10 188 ε 100% 7 ε 100 % 10

Pat101 20 200 ε 100% 13 0.2 89.4% 20

Pat1010 50 500 ε 98.4% 22 1.3 93.6% 50

Pat10111 80 800 0.1 97.8% 37 8.1 94.8% 72

Pat10101 100 1000 0.2 92.9% 43 9.8 87.9% 86

Pat10011 150 1500 0.5 89.2% 44 45.0 91.5% 118

Pat101011 200 2000 0.8 92.1% 50 60.2 90.9% 156

Pat1010101 400 4000 4.2 88.6% 111 652.4 92.9% 294

Table 1 shows that both decision tree and max-likelihood approaches have
decent accuracy in small and medium sized benchmarks. On the other hand,
decision tree approach stands out as highly scalable: it takes only 4.2 s for the
decision-tree approach to building a classifier for the benchmark Pat1010101 with
400 methods and 4000 traces, while it takes 652.4 s for the max-likelihood app-
roach to constructing the discriminants. Table 1 shows that the discriminants
learned using decision tree approach are simpler than the ones learned using
max-likelihood approach requiring a fewer number of tests.

5 Case Study: Understanding Traces with Decision Trees

The data on microbenchmarks suggest that the decision tree learning approach
is more scalable and has comparable accuracy as the max-likelihood approach.
Therefore, we consider three case studies to evaluate whether the decision tree
approach produces useful artifacts for debugging program vulnerabilities.

Research Question. We consider the following question:

Does the learned discriminant pinpoint code fragments that explain dif-
ferences in the overall execution times?

We consider this question to be answered positively if we can identify an
explanation for timing differences (which can help debug to side channel or
availability vulnerabilities) through Discriminer2.

2 https://github.com/cuplv/Discriminer.

https://github.com/cuplv/Discriminer

Discriminating Traces with Time 31

Table 2. Parameters for trace set discriminant analysis, which predicts a class label
based on attributes. Here, we wish to discriminate traces to predict the total execution
time of the trace based on the methods called in the trace and the number of times
each method is called. To consider a finite number of class labels, we fix a priori n
possible time ranges based on choosing the best number of clustering.

Attributes (1) the methods called in the trace (Boolean)

(2) the number of times each method is called in a trace (integer)

Class label A time range for the total execution time of the trace

Number of classes 6, 6, and 2 for SnapBuddy, GabFeed, and TextCrunchr

Methodology. We consider the discriminant analysis approach based on deci-
sion tree learning from Sect. 4. Table 2 summarizes the particular instantiations
for the discriminant analysis that we consider here.

Attributes: Called Methods. For this case study, we are interested in seeing whe-
ther the key methods that explain the differences in execution time can be pin-
pointed. Thus, we consider attributes corresponding to the called methods in a
trace. In order to collect information regarding the called methods, we instru-
mented Java bytecode applications using Javassist analysis framework (http://
jboss-javassist.github.io/javassist/).

Class Label: Total Execution Time Ranges. To identify the most salient attri-
butes, we fix a small number of possible labels, and cluster traces according to
total execution time. Each cluster is defined by a corresponding time interval.
The clusters and their intervals are learned using k-means clustering algorithm.

We consider the execution time for each trace to be a random variable and
assume a normal distribution. We obtain the mean and variance through 10
repeated measurements. We apply clustering to the mean execution times of each
trace to determine the class labels. Henceforth, when we speak of the execution
time of a trace, we refer to the mean of the measurements for that trace.

A class label (or cluster) can be identified by the mean of all execution times
belonging to that cluster. Then, considering the class labels sorted in increasing
order, we define the lower boundary of a bucket for classifying new traces by
averaging the maximum execution time in the previous bucket and the minimum
execution time in this bucket (and analogously for the upper boundary).

Weighted Labeling of Traces. Given a set of time ranges (clusters), we define
a weighted labeling of traces that permits a trace to be assigned to different
clusters with different weights. For a given trace, the weights to clusters are
determined by the probability mass that belongs to the time range of the cluster.
For example, consider a sample trace whose execution-time distribution straddles
the boundary of two clusters C0 and C1, with 22% area of the distribution
intersecting with cluster C0 and 78% with cluster C1. In this case, we assign the
trace to both clusters C0 and C1 with weights according to their probability mass
in their respective regions. Note that this provides a smoother interpretation of
the class labels rather than assigning the most likely label.

http://jboss-javassist.github.io/javassist/
http://jboss-javassist.github.io/javassist/

32 S. Tizpaz-Niari et al.

Decision Tree Learning. From a training set with this weighted labeling, we apply
the weighted decision tree learning algorithm CART described in Sect. 4. We use
Discriminer both for clustering in the time domain as described above to deter-
mine the class labels and weights of each trace and for learning the classification
model. We use group k-fold cross validation procedure to find accuracy.

Program Total
methods
(num)

Total
traces
(num)

Observed
methods
(num)

SnapBuddy 3071 439 160
GabFeed 573 368 30
TextCrunchr 327 180 35
Total 3971 987 225

Objects of Study. We con-
sider three programs drawn from
benchmarks provided by the
DARPA STAC project. These
medium-sized Java programs
were developed to be realistic
applications that may potentially
have timing side-channel or avail-
ability security vulnerabilities.
SnapBuddy is a web application for social image sharing. The profile page of
a user includes their picture (with a filter). The profile page is publicly acces-
sible. GabFeed is a web application for hosting community forums. Users and
servers can mutually authenticate using public-key infrastructure. TextCrunchr
is a text analysis program capable of performing standard text analysis including
word frequency, word length, and so on. It uses sorting algorithms to perform
the analysis.

In the inset table, we show the basic characteristics of these benchmarks. The
benchmarks, in total, consist of 3,971 methods. From these programs, we gener-
ated 987 traces by using a component of each applications web API (scripted via
curl). In these recorded traces, we observed 225 distinct methods called. Note
that some methods are called thousands to millions of times.

Decision Trees Produced by DISCRIMINER. In Fig. 3(b)–(d)–(f), we show
the decision tree learned from the SnapBuddy, GabFeed, and TextCrunchr
traces, respectively. As a decision tree is interpreted by following a path from the
root to a leaf where the leaf yields the class label and the conjunction of the inter-
nal nodes describes the discriminator, one can look for characteristics of discrim-
inated trace sets by following different paths in the tree. The class labels at leaves
are annotated with the bucket’s mean time. For example, in (b), the label 15.7
shows that the path to this label which calls image.OilFilter.filterPixels
takes 15.7 s to execute. The colors in bars in the leaves represent the actual
labels of the training traces that would be classified in this bucket according to
the learned discriminator. Multiple colors in the bars mean that a discriminator,
while not perfectly accurate on the training traces, is also able to tolerate noise.
The height of the bar gives an indication of the number of training traces fol-
lowing this discriminator. The scatter plots in (a)–(c)–(e) show the time of each
trace, with the color indicating the corresponding cluster.

Findings for SnapBuddy. For SnapBuddy, the traces exercise downloading
the public profile pages of all user from a mock database. We have explained in

Discriminating Traces with Time 33

(a) Time (s) of each trace (b) Decision tree accuracy: 99.5%

(c) Time (s) of each trace (d) Decision tree accuracy: 97.6%

(e) Time (s) of each trace (f) Decision tree accuracy: 99.1%

Fig. 3. Clustering in the time domain (a)-(c)-(e) to learn decision tree classification
models (b)-(d)-(f). The upper row corresponds to SnapBuddy traces, the middle row
corresponds GabFeed traces, while the bottom row corresponds to TextCrunchr traces.
(Color figure online)

Sect. 2 how clustering (in Fig. 3(a)) helps to identify a timing side-channel, and
how the decision tree (in Fig. 3b) helps in debugging the vulnerability.

Findings for GabFeed. Inputs. For GabFeed, the traces exercise the authen-
tication web API by fixing the user public key and by sampling uniformly from
the server private key space (3064-bit length keys). Identifying a Timing Side-
Channel with Clustering. Considering scatter plot of GabFeed in Fig. 3c (bound-
aries show different clusters), we can see less definitive timing clusters. However,
it shows timing differences that indicate a side channel. Debugging Timing Side-
Channels with Decision Tree Learning. The (part of) decision tree for GabFeed
in Fig. 3d is also less definitive than for SnapBuddy as we might expect given the

34 S. Tizpaz-Niari et al.

less well-defined execution time clusters. However, the part of the decision tree
discriminants OptimizedMultiplier.standardMultiply for time differences.
Note that the attributes on the outgoing edge labels correspond to a range
for the number of times a particular method is called. The decision tree explains
that the different number of calls for OptimizedMultiplier.standardMultiply
leads to different time buckets. By going back to the source code, we observed
that standardMultiply is called for each 1-bit in the server’s private key. The
method standardMultiply is called from a modular exponentiation method
called during authentication. What leaks is thus the number of 1 s in the private
key. A potential fix could be to rewrite the modular exponentiation method to
pad the timing differences.

Findings for TextCrunchr. Inputs. For TextCrunchr, we provided four types
of text inputs to analyze timing behaviors: sorted, reverse-sorted, randomly gen-
erated, and reversed-shuffled arrays of characters (reverse-shuffle is an oper-
ation that undoes a shuffle that TextCrunchr performs internally). It is the
reverse shuffled inputs that lead to high execution time. Although the input
provided to Discriminer for analyzing TextCrunchr include carefully crafted
inputs (reversed shuffled sorted array), it can be argued that a system adminis-
trator interested in auditing a security of a server has access to a log of previous
inputs including some that resulted in high execution time. Identifying Avail-
ability Vulnerabilities with Clustering. Considering scatter plot of TextCrunchr
in Fig. 3e we can see well-defined timing clusters which can potentially lead to
security issues. It shows that a small fraction of inputs takes comparably higher
time of execution in comparison to the others. Thus an attacker can execute a
denial-of-service (availability) attack by repeatedly providing the costly inputs
(for some inputs, it will take more than 600 s to process the text). The sys-
tem administrator mentioned above probably knew from his logs about possible
inputs with high execution time. What he did not know is why these inputs lead
to high execution time. Debugging Availability Vulnerabilities with Decision Tree
Learning. The decision tree for TextCrunchr in Fig. 3f shows that the number of
calls on stac.sort.qsPartition as the explanation for time differences (out of
327 existing methods in the application). This can help identify the sorting algo-
rithm (Quicksort) used as a source of the problem and leads to the realization
that certain inputs trigger the worst-case execution time of Quicksort.

Threats to Validity. These case studies provide evidence that decision tree
learning helps in identifying code fragments that correlate with differential exe-
cution time. Clearly, the most significant threat to validity is whether these
programs are representative of other applications. To mitigate, we considered
programs not created by us nor known to us prior to this study. These applica-
tions were designed to faithfully represent real-world Java programs—for exam-
ple, using Java software engineering patterns and best practices. Another threat
concerns the representativeness of the training sets. To mitigate this threat,
we created sample traces directly using the web interface for the whole appli-
cation, rather than interposing at any intermediate layer. This interface is for
any user of these web applications and specifically the interface available to a

Discriminating Traces with Time 35

potential attacker. A training set focuses on exercising a particular feature of the
application, which also corresponds to the ability of an attacker to build training
sets specific to different features of the application.

6 Related Work

Machine learning techniques have been used for specification mining, that is, for
learning succinct representations of the set of all program traces. Furthermore,
machine learning techniques have been applied to learn classifiers of programs
for malware detection and for software bug detection.

Specification Mining. In [3], machine learning techniques are used to synthe-
size an NFA (nondeterministic finite automaton) that represents all the correct
traces of a program. In our setting, this would correspond to learning a discrim-
inant for one cluster (of correct traces). In contrast, our decision trees discrim-
inate multiple clusters. However, the discriminants we considered in this paper
are less expressive than NFAs. The survey [21] provides an overview of other
specification mining approaches.

Malware and Bug Detection. In malware detection, machine learning tech-
niques are used to learn classifiers that classify programs into benign and mali-
cious [1,4,6,9,12,16,20]. In software bug detection, the task is to learn classifiers
that classify programs behaviors into faulty and non-faulty [8,13,17,19]. In con-
trast, we consider more clusters of traces. In particular, Lo et al. [13] constructs
a classifier to generalize known failures of software systems and to further detect
(predict) other unknown failures. First, it mines iterative patterns from program
traces of known normal and failing executions. Second, it applies a feature selec-
tion method to identify highly discriminative patterns which distinguish failing
traces from normal ones.

In all these works, the training set is labeled: all the programs are labeled
either benign or malicious (faulty or non-faulty). In contrast, we start with an
unlabeled set of traces, and construct their labels by clustering in the time
domain.

7 Conclusion

Summary. We introduced the trace set discrimination problem as a formaliza-
tion of the practical problem of finding what can be inferred from limited run
time observations of the system. We have shown that the problem is NP-hard,
and have proposed two scalable techniques to solve it. The first is ILP-based,
and it can give formal guarantees about the discriminant that was found but
infers discriminants of a limited form. The second is based on decision trees,
infers general discriminants, but does not give formal guarantees. For three real-
istic applications, our tool produces a decision tree useful for explaining timing
differences between executions.

36 S. Tizpaz-Niari et al.

Future Work. There are several intriguing directions for future research. First,
we will investigate the extension of our framework to reactive systems, by gen-
eralizing our notion of execution time observations to sequences of timed events.
Second, we will build up the network traffic monitoring ability of our tool, to
make it usable by security analysts for distributed architectures.

References

1. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust
malware detection in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M.
(eds.) SecureComm 2013. LNICSSITE, vol. 127, pp. 86–103. Springer, Heidelberg
(2013). doi:10.1007/978-3-319-04283-1 6

2. Akthar, F., Hahne, C.: Rapidminer 5 operator reference. Rapid-I GmbH (2012)
3. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: POPL, pp. 4–16

(2002)
4. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario,

J.: Automated classification and analysis of internet malware. In: Kruegel, C.,
Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74320-0 10

5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth, Belmont (1984)

6. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for android. In: Workshop on Security and Privacy in Smart-
phones and Mobile devices, pp. 15–26 (2011)

7. Domingos, P.: The role of Occam’s razor in knowledge discovery. Data Min. Knowl.
Discov. 3(4), 409–425 (1999). ISSN 1573–756X

8. Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support
vector machines. J. Syst. Softw. 81(5), 649–660 (2008)

9. Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Near-optimal mal-
ware specifications from suspicious behaviors. In: Security and Privacy (SP), pp.
45–60 (2010)

10. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete.
Inf. Process. Lett. 5(1), 15–17 (1976)

11. Kass, G.V.: An exploratory technique for investigating large quantities of categor-
ical data. J. R. Stat. Soc. Ser. C (Appl. Stat.) 29(2), 119–127 (1980)

12. Kolbitsch, C., Comparetti, P.M., Kruegel, C., Kirda, E., Zhou, X., Wang, X.: Effec-
tive and efficient malware detection at the end host. In: USENIX Security, pp.
351–366 (2009)

13. Lo, D., Cheng, H., Han, J., Khoo, S.-C., Sun, C.: Classification of software behav-
iors for failure detection: a discriminative pattern mining approach. In: SIGKDD,
pp. 557–566 (2009)

14. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
The MIT Press, Cambridge (2012). ISBN 026201825X, 9780262018258

15. Ross Quinlan, J.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
16. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification

of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp.
108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70542-0 6

17. Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.-C.: A discriminative model approach
for accurate duplicate bug report retrieval. In: ICSE, pp. 45–54 (2010)

http://dx.doi.org/10.1007/978-3-319-04283-1_6
http://dx.doi.org/10.1007/978-3-540-74320-0_10
http://dx.doi.org/10.1007/978-3-540-70542-0_6

Discriminating Traces with Time 37

18. Tan, P.-N., Steinbach, M., Kumar, V., et al.: Introduction to Data Mining, vol. 1.
Pearson Addison Wesley, Boston (2006)

19. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31980-1 30

20. Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., Wu, K.-P.: Droidmat: android
malware detection through manifest and API calls tracing. In: JCIS, pp. 62–69
(2012)

21. Zeller, A.: Specifications for free. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 2–12. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20398-5 2

http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://dx.doi.org/10.1007/978-3-642-20398-5_2

Directed Automated Memory Performance
Testing

Sudipta Chattopadhyay(B)

Singapore University of Technology and Design (SUTD), Singapore, Singapore
sudipta chattopadhyay@sutd.edu.sg

Abstract. Understanding software non-functional properties (e.g. time,
energy and security) requires deep understanding of the execution plat-
form. The design of caches plays a crucial role in impacting software
performance (for low latency of caches) and software security (for cache
being used as a side channel). We present CATAPULT, a novel test gen-
eration framework to systematically explore the cache behaviour of an
arbitrary program. Our framework leverages dynamic symbolic execu-
tion and satisfiability modulo theory (SMT) solvers for generating test
inputs. We show the application of CATAPULT in testing timing-related
properties and testing cache side-channel vulnerabilities in several open-
source programs, including applications from OpenSSL and Linux GDK
libraries.

1 Introduction

Program path captures an artifact of program behaviour in critical software val-
idation process. For instance, in directed automated random testing (in short
DART) [15], program paths are systematically explored to attempt path cov-
erage and construct a test-suite for software validation. Several non-functional
software properties (e.g. performance and security) critically depend on the exe-
cution platform and its interaction with the application software. For validating
such properties, it is not sufficient to explore merely the program behaviour
(e.g. program paths), it is crucial to explore both program behaviour and its
interaction with the underlying hardware components (e.g. cache and communi-
cation bus). Hence, any technique that systematically explores both the program
behaviour and the associated changes in the hardware, can be extremely useful
for testing software non-functional properties.

In order to illustrate our observation, let us consider Fig. 1, which specifically
records cache performance. We have generated Fig. 1 by executing an implemen-
tation of Advanced Encryption Standard (AES) [1]. We randomly generated
256000 different inputs to execute a single path of the respective implementa-
tion. Figure 1 captures the distribution of the number of inputs w.r.t. the num-
ber of observed cache misses [12]. We clearly observe a high variation on cache
misses, hence the overall memory performance, even within the scope of a single
program path. To solve the problem of systematically exploring cache behaviour

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 38–55, 2017.
DOI: 10.1007/978-3-662-54580-5 3

Directed Automated Memory Performance Testing 39

Fig. 1. Distribution of cache misses within a single program path [1]

and to expose the memory performance of a program, is the main contribution
of our paper.

We present CATAPULT – a framework that leverages dynamic symbolic execu-
tion and satisfiability modulo theory (SMT) to explore both program behaviour
and its associated cache behaviour. CATAPULT takes the binary code and a cache
configuration as inputs, and produces a test suite as output. Each test in the test
suite exposes a unique cache performance (i.e. the number of cache misses). Our
framework does not generate false positives, meaning that the cache performance
associated with each test indeed serves as an witness of an execution. Moreover,
if our framework terminates, it guarantees to witness all possible cache behav-
iour in the respective program. Therefore, CATAPULT shares all the guarantees
that come with classic approaches based on dynamic symbolic execution [15].

Our approach significantly differs from the techniques based on static cache
analysis [20]. Unlike approaches based on static analysis, CATAPULT guarantees
the absence of false positives. Moreover, unlike static analysis, CATAPULT gen-
erates a witness for each possible cache behaviour. To explore different cache
behaviour of a program is, however, extremely involved. This is due to the com-
plex interaction between program artifacts (e.g. memory-related instructions)
and the design principle of caches. In order to solve this challenge, we have
designed a novel symbolic model for the cache. Given a set of inputs, expressed
via quantifier-free predicates, such a symbolic model encodes all possible cache
behaviour observed for the respective set of inputs. As a result, this model can be
integrated easily with the constraints explored and manipulated during dynamic
symbolic execution. The size of our symbolic cache model is polynomial with
respect to the number of memory-related instructions.

In summary, this paper makes the following contributions:

1. We present a test generator CATAPULT, leveraging on dynamic symbolic exe-
cution, to systematically explore the cache behaviour and hence, the memory
performance of a program.

2. To show the generality of our approach, we instantiate our framework for two
widely used cache replacement strategies – least recently used (LRU) and first
in first out (FIFO).

40 S. Chattopadhyay

3. We show the application of CATAPULT in two different contexts – (i) for testing
timing-related constraints and (ii) for testing cache side-channel leakage.

4. We implement our framework on top of a state-of-the-art symbolic execu-
tion tool KLEE [2] and evaluate it with several cryptographic and device
driver routines in OpenSSL library and Linux GDK library. For all the cho-
sen subject programs, exhaustive test input generation is infeasible. However,
CATAPULT terminates for all the subject programs and it generates all tests
within a feasible timing-range from 10 s to 4.5 h. CATAPULT prototype and the
obtained results are available for future usage and extension in the following
URL: https://bitbucket.org/sudiptac/catapult/.

2 Background and Overview

Background on Caches. A cache is a fast memory employed between the
CPU and the main memory (DRAM). For a given memory access, the cache is
looked up first. A cache configuration can be defined by three parameters – cache
line size (in bytes), number of cache sets, associativity and replacement policy.
In an M -bit memory address, S bits are reserved to distinguish the cache set in
which the respective address is mapped to and B bits are reserved to distinguish
individual bytes within a cache line. For an arbitrary memory address addr, we
say that it belongs to the memory block starting at address

⌊
addr
2B

⌋
. If the content

of addr is not found in the cache, 2B consecutive bytes are fetched from the
memory address

⌊
addr
2B

⌋
and they are mapped into the cache set

⌊
addr
2B

⌋
mod 2S .

Each cache set can only hold as many cache lines as the associativity of the
cache. Therefore, if the associativity of the cache is A, the overall size of the
cache is

(
2S · 2B · A)

. Finally, since different memory blocks may map into the
same cache set, caches store a tag in each cache line to distinguish different
memory blocks. Since (S + B) bits are used to identify cache sets and individual
bytes in a cache line, the rest of the bits in the memory address are used as tag.
For an A-way set-associative cache, a cache state is a set of ordered A-tuples,
one for each cache set. Such a tuple captures the set of memory blocks contained
in the respective set and the order in which these blocks would be replaced. For
example, an ordered pair 〈m1,m2〉 captures the cache state where m2 would be
replaced before m1 in a 2-way set-associative cache.

Overview. In this section, we discuss the motivation behind our approach
through the example in Fig. 2. For the sake of illustration, we use both assembly-
level and source-level syntax in Fig. 2(a). However, our test generation is carried
out directly on the binary. Let us assume the code shown in Fig. 2(a) runs on a
platform having direct-mapped (i.e. associativity A = 1), 256 bytes cache. The
mapping of different variables into the cache is shown in Fig. 2(b). We assume
that the variable x is also allocated a register in the generated code. Therefore,
reading variable x in the code fragment, as shown in Fig. 2(a), does not involve
any cache access.

Let us assume that we want to check whether the code in Fig. 2(a) exhibits
more than two cache misses when x is a program input. We first execute the

https://bitbucket.org/sudiptac/catapult/

Directed Automated Memory Performance Testing 41

/* x is a program input */
char p[128];
unsigned char x;
char q[128];

if (x >= 0 && x <= 127) {
/* add reg1 and reg2 */
r1: load reg1, p[127-x]
r2: load reg2, q[x]
r3: add reg1, reg2
r4: store reg1, p[127-x]

} else {
/* do nothing */

}

p[0], q[127]

p[1]

x

q[0]

q[1]

q[126]

Cache

128 bytes

128 bytes

p[127] x=127 (#miss=3)

0 x 126 (#miss=2)

127 < x 255
(#miss=0)

(a) (b) (c)

Fig. 2. (a) a program where cache performance exhibits variation within a program
path, (b) mapping of variables in a 256 bytes cache, (c) cache performance with respect
to different inputs

program with a random input x = 0. We also compute the path condition
x ≥ 0 ∧ x ≤ 127 which symbolically encodes all inputs exercising the respective
program path. We note that for x = 0, both r1 and r2 suffer cache misses. For
x = 0, the store instruction r4 is a cache hit, as p[127] is already loaded into
the cache and it was not replaced by q[0].

Since dynamic symbolic execution aims to obtain path coverage, the next
test input will be generated by manipulating the path condition and solving the
following constraint: ¬(x ≥ 0 ∧ x ≤ 127). This will result in inputs exercising
the else branch in Fig. 2(a), which, in turn does not access memory.

It is worthwhile to note that classic symbolic execution may not reveal crit-
ical inputs related to cache performance. For instance, executing the code in
Fig. 2(a), for x = 127, will access p[0], q[127] and p[0] in sequence. Since
q[127] replaces p[0] from the cache, all accesses will be cache misses. Figure 2(c)
shows the partitioning of the input space according to cache performance.

A classic symbolic-execution-based approach explores program paths instead
of cache behaviour. The if branch in Fig. 2(a) encodes two different cache behav-
iors – one for inputs 0 ≤ x ≤ 126 and another for input x = 127. Therefore, it
is crucial to devise a methodology that can differentiate inputs based on cache
behaviour, even though such inputs exercise the same program path.

How CATAPULT Works. For each explored program path, CATAPULT gen-
erates symbolic constraints to encode all possible cache behaviour. For instance,
consider the program path captured by the path condition x ≥ 0 ∧ x ≤ 127.
Assuming an empty cache, the first load instruction will suffer a cache miss. For
instruction r2, we check whether the memory block containing address &q[x]
has been accessed for the first time as follows:

tag(r2) �= tag(r1) ∨ set(r2) �= set(r1)

where tag (respectively, set) captures the cache-tag (respectively, cache set)
for the memory address accessed by the respective instruction. Intuitively, the

42 S. Chattopadhyay

aforementioned constraint is true if r2 accesses a different cache set than r1 or
the memory address accessed by r2 has a different cache-tag as compared to the
memory address accessed by r1. In such cases r2 will suffer a cold miss. The con-
straint is valid as p and q are different arrays. Similarly, we can check whether
r4 suffers a cold miss as follows:

(tag(r4) �= tag(r1) ∨ set(r4) �= set(r1)) ∧ (tag(r4) �= tag(r2) ∨ set(r4) �= set(r2))

This constraint is unsatisfiable, as r1 and r4 access the same memory address
for all possible inputs. Therefore, r4 cannot suffer a cold cache miss. To check
whether p[127-x] can be replaced by r2 (hence inducing a cache miss at r4),
we use the following set of constraints.

(tag(r2) �= tag(r4) ∧ set(r2) = set(r4)) ⇒ (miss4 = 1)

(tag(r2) = tag(r4) ∨ set(r2) �= set(r4)) ⇒ (miss4 = 0)

The variable miss4 indicates whether r4 is a cache miss or not. CATAPULT explores
different solutions of miss4. In this example, miss4 is 1 for x = 127 and miss4 is
0 for 0 ≤ x ≤ 126. Therefore, by systematically generating symbolic constraints
and exploring the different solutions, CATAPULT can discover that r4 suffers a
cache miss only for input x = 127, leading to a total three cache misses in the
respective execution.

3 Test Generation

Figure 3 and Algorithm 1 outline all the stages involved in CATAPULT. Algorithm 1
takes a program P, the cache configuration C and an objective O as inputs. Infor-
mally, O captures dynamic properties related to cache performance. In Sect. 5, we
show how O is formulated to check (i) timing-related properties and (ii) cache
side-channel vulnerabilities. Given the inputs, Algorithm1 leverages dynamic
symbolic execution and computes all unique tests (in the given time budget)
that satisfy O.

Fig. 3. Our test generation framework

Directed Automated Memory Performance Testing 43

Algorithm 1. Test Generation Algorithm
Input: Program P, cache configuration C, objective O.
Output: A test suite T , where each test t ∈ T satisfies O

1: AllPCs = UnchkdPCs = T = empty
2: Select a random input I
3: Explore(P, C, I)
4: while UnchkdPCs �= empty do
5: select ϕ ∈ UnchkdPCs
6: UnchkdPCs := UnchkdPCs \ {ϕ}
7: let ϕ ← pc1 ∧ pc2 ∧ . . . ∧ pcr−1 ∧ pcr

8: if ϕ is satisfiable then
9: tθ ← concrete input satisfying ϕ
10: Explore(P, C, tθ)
11: end if
12: end while
13: Report generated test suite T
14:
15: procedure Explore(P, C, t)
16: execute P on input t
17: let Ψpath be the path condition
18: let S be the execution trace
19: /* Generate the cache model */
20: /* See Sect. 5 */
21: Γ (Ψpath) := CacheModel(C, Ψpath, S)
22: /* formulate objective (Sect. 5) */
23: OS := ObjectivePred(S)

24: /* exclude current solutions */
25: /* this step ensures unique tests */
26: OS := ExcludeCurTest(T , OS)
27: let Ω := Γ (Ψpath) ∧ OS ∧ Ψpath

28: /* Generate relevant tests */
29: /* See Sect. 5 */
30: while Ω is satisfiable do
31: get kθ satisfying Ω
32: T ⋃

= {kθ}
33: refine OS to exclude solution kθ

34: Ω := Γ (Ψpath) ∧ OS ∧ Ψpath

35: end while
36: let Ψpath ≡ pc1 ∧ pc2 ∧ . . . ∧ pcu

37: /* build partial path conditions */
38: for i ← 1, u do
39: ϕi := pc1 ∧ pc2 ∧ . . . pci−1 ∧ ¬pci

40: if ϕi /∈ AllPCs then
41: AllPCs

⋃
= {ϕi}

42: UnchkdPCs
⋃

= {ϕi}
43: end if
44: end for
45: /* end exploration of Ψpath */
46: end procedure

We first execute P with a random input I and compute the path condition
Ψpath as well as the execution trace S. The trace S is captured via a sequence of
pairs as follows:

S ≡ 〈(r1, σ1), (r2, σ2), . . . , (rn, σn)〉 (1)

Here ri denotes the i-th memory-related instruction executed and σi symbolically
captures the memory address accessed by ri. For example, when we execute the
code fragment of Fig. 2(a) with input x = 0, we obtain the following execution
trace:

S ≡ 〈(r1,&p + 127 − x), (r2,&q + x), (r3,&p + 127 − x)〉
We use the variable missi to represent whether ri is a cache miss (set to 1 if ri

was a cache miss and set to 0 otherwise) for inputs satisfying Ψpath. The value of
missi depends on all symbolic memory addresses σk, where k ∈ [0, i). Therefore,
we bound the value of missi through symbolic constraints. In particular, given
the execution trace S and the path condition Ψpath, the procedure CacheModel
computes Γ (Ψpath) for cache configuration C (cf. line 21 in Algorithm1). Such
a model Γ (Ψpath) encodes all possible values of missi for all i ∈ [1, n] and for
any input satisfying Ψpath. In Sect. 4, we describe the formulation of Γ (Ψpath)
in detail.

The cache model Γ (Ψpath) and the path condition Ψpath are used to generate
test inputs that satisfy the objective O (cf. lines 31–34). We first extract a
predicate OS from the execution trace S that captures such an objective (cf.
line 23). For example, let us assume our objective is to generate test inputs that

44 S. Chattopadhyay

suffer at least 1000 cache misses. For an execution trace S, we can simply extract
OS as

∑n
1 missi ≥ 1000. Subsequently, we can generate a test input that satisfies

the following formula:

Γ (Ψpath) ∧
(

n∑

i=1

missi ≥ 1000

)

∧ Ψpath (2)

The refinement of OS (line 33) depends on the context. For instance, let us
assume that the designer needs to compute (at most) one test for each scenario
exhibiting at least 1000 cache misses. In such a case, the following refinement is
made to OS:

OS = OS ∧
(

n∑

i=1

missi �=
n∑

i=1

miss
(c)
i

)

where missi = miss
(c)
i (for i ∈ [1, n]) captures a satisfying solution of Con-

straint (2).
The procedure ExcludeCurTest ensures that the explored solutions in test

suite T are unique (cf. line 26). In particular, once OS is constructed from the
execution trace S, it modifies OS to exclude the previous solutions. For instance,
if T includes solutions of exhibiting 1000 and 2000 cache misses, objtrace is
modified to OS ∧ ∑n

i=1 missi �= 1000 ∧ ∑n
i=1 missi �= 2000. Subsequently, this

modified OS is leveraged to explore different solutions of the predicate Ω (cf.
lines 31–34).

When Γ (Ψpath)∧OS∧Ψpath becomes unsatisfiable, UnchkdPCs keeps track of
all unexplored partial path conditions (cf. lines 39–42) to manifest the remaining
cache behaviour. In particular, our test generation satisfies the following crucial
property.

Theorem 1. CATAPULT guarantees to discover all possible cache behaviour upon
termination. Besides, each input generated by CATAPULT witnesses a unique cache
behaviour.

4 Generating Γ (Ψpath)

Given a path condition Ψpath and the execution trace S (cf. Eq. (1)), this section
describes the formulation of Γ (Ψpath) – the set of all cache behaviour for inputs
x satisfying Ψpath (cf. line 21 in Algorithm1). In order to explain the formulation
of Γ (Ψpath), we assume the following notations throughout the paper:

– 2S : The number of cache sets in the cache.
– 2B : The size of a cache line (in bytes).
– A : Associativity of cache.
– set(ri) : Cache set accessed by memory-related instruction ri.
– tag(ri) : The tag stored in the cache for accessing address σi (cf. Eq. (1)).
– ζi : The cache state before ri and after ri−1.

Directed Automated Memory Performance Testing 45

The formulation of Γ (Ψpath) revolves around the concept of cache conflict.
Formally, we define cache conflict as follows:

Definition 1 (Cache Conflict): rj generates a cache conflict to ri only if rj

accesses a different memory block than ri and executing rj can influence the
relative position of memory block

⌊
σi

2B
⌋

within the cache state ζi.

Clearly, rj generates cache conflict to ri only if j < i. In the next sections,
we shall elaborate other crucial conditions required for the generation of cache
conflicts. Subsequently, we build upon such conditions to formulate the number
of cache misses.

4.1 Modeling Symbolic Cache Access

Recall from Eq. (1) that we record the address σi (σi can be symbolic or con-
crete) for each memory-related instruction ri during the execution. From σi, we
formulate the accessed cache set set(ri) and the respective cache tag tag(ri) as
follows:

set(ri) = (σi � B) &
(
2S − 1

)
; tag(ri) = (σi � (B + S)) (3)

In Eq. (3), “&” captures a bitwise-and operation and “�”captures a right-shift
operation. Since σi can be symbolic, both set(ri) and tag(ri), as captured via
Eq. (3), can be symbolic expressions.

4.2 Modeling Symbolic Cache Constraints

In this section, we formulate constraints for the following two types of cache
misses:

– cold miss: Cold miss occurs if a memory block is accessed for the first time.
– eviction miss: Any cache miss other than cold misses.

Conditions for Cold Misses. If ri accesses a memory block for the first time,
the following condition must hold:

Θcold
i ≡

∧

1≤k<i

((tag (rk) �= tag (ri)) ∨ (set (rk) �= set (ri))) (4)

Informally, Constraint (4) states that every memory access r ∈ {r1, r2, . . . , ri−1}
is either mapped to a different cache set than set(ri) or has a different tag
compared to tag(ri). This leads to a cold cache miss at ri.

In Constraint (4), for the sake of simplicity in the formulation, we assumed
that initially, the cache is not loaded with any memory block used by the system
under test. However, this condition can easily be relaxed via additional con-
straints that check the (un)availability of memory block

⌊
σi

2B
⌋

in an arbitrary
initial cache state.

Necessary Conditions for Cache Conflict. The basic design principle of
cache dictates that every cache set is independent. Therefore, a necessary con-
dition for cache conflict is that the accessed memory blocks are mapped to the

46 S. Chattopadhyay

same cache set. In particular, the following two conditions must be satisfied for
a possible cache conflict from rj to ri:

1. ψcnf (j, i): ri and rj access the same cache set. Therefore, we get the following:

ψcnf (j, i) ≡ (set(rj) = set(ri)) (5)

2. ψdif (j, i): ri and rj access different memory-block tags. Therefore, we have,

ψdif (j, i) ≡ (tag(rj) �= tag(ri)) (6)

The satisfiability of ψcnf (j, i) and ψdif (j, i) is necessary irrespective of the under-
lying cache replacement policy. However, these two constraints are not sufficient
to guarantee that rj can affect the cache state ζi (i > j). We need additional
constraints that depend on the specific replacement policy. In the subsequent sec-
tions, we formulate these constraints for two widely used replacement policies –
LRU and FIFO.

Constraints for LRU Caches. In this section, we formulate a set of con-
straints that precisely capture the cache conflict scenarios in LRU replacement
policy.

Fig. 4. Cache conflict scenarios for caches with LRU policy. ri:mj captures memory-
related instruction ri accessing memory block mj . The rightmost position in the cache
denotes the memory block accessed in the cache the earliest. (a) r2 does not generate
any cache conflict to r4, as m1 is reloaded between r2 and r4, (b) in order to count
unique cache conflicts to r4, we only record the cache conflict from r3 and not from r2,
as both r2 and r3 access m2.

Conditions for Eviction Misses. Let us check the conditions where instruc-
tion ri will suffer a cache miss due to eviction. This might happen only due
to instructions appearing before (in the program order) ri. Consider one such
instruction rj , for j ∈ [1, i). Informally, rj generates a cache conflict to ri, only
if the following conditions hold:

1. ψlru
eqv(j, i) : There does not exist any instruction rk where k ∈ [j + 1, i), such

that rk accesses the same memory block as ri (i.e.
⌊

σi

2B
⌋
). It is worthwhile to

note that the execution of rk will make the memory block
⌊

σi

2B
⌋

to be most
recently used. For instance, in Fig. 4(a), r3 accesses memory block m1 and

Directed Automated Memory Performance Testing 47

therefore, r2 cannot generate cache conflict to r4. We capture ψeqv(j, i) via
the following constraints:

ψlru
eqv (j, i) ≡

∧

k: j<k<i

((tag(rk) �= tag(ri)) ∨ (set(rk) �= set(ri))) (7)

2. ψlru
unq(j, i) : Secondly, we need to count cache conflicts from unique memory

blocks. As an example, consider the example shown in Fig. 4(b). r4 will still
be a cache hit. This is because both r2 and r3 access the memory block m2.
In order to account unique cache conflicts, we only record the cache conflict
from the closest access to different memory blocks. For instance, in Fig. 4(b),
we only record cache conflict from r3 to r4. We use the constraint ψunq (j, i)
for such purpose. ψunq (j, i) is satisfiable if and only if there does not exist any
memory-related instruction between rj (where j ∈ [1, i)) and ri that accesses
the same memory block as rj . Therefore, ψunq (j, i) is captured as follows:

ψlru
unq (j, i) ≡

∧

k: j<k<i

((tag(rj) �= tag(rk)) ∨ (set(rj) �= set(rk))) (8)

Constraints to Formulate Cache Conflict. Constraints (5)–(8) accurately
capture scenarios where rj (j ∈ [1, i)) will create a unique cache conflict to ri.
Let us assume Ψevt

i,j captures whether rj creates a unique cache conflict to ri.
Using the intuition described in the preceding paragraph, we can now formulate
the following constraints to set the value of Ψevt

i,j .

Θem,lru
j,i ≡ (

ψcnf (j, i) ∧ ψdif (j, i) ∧ ψlru
eqv (j, i) ∧ ψlru

unq (j, i)
) ⇒ (

Ψevt
j,i = 1

)
(9)

If any of the conditions in Constraints (5)–(8) is not satisfied between rj and
ri, then rj cannot influence the cache state immediately before ri and therefore,
rj cannot create cache conflict to ri, as captured by the following constraints:

Θeh,lru
j,i ≡ (¬ψcnf (j, i) ∨ ¬ψdif (j, i) ∨ ¬ψlru

eqv (j, i) ∨ ¬ ψlru
unq (j, i)

) ⇒ (
Ψevt

j,i = 0
)

(10)

Constraints for FIFO Caches. Unlike LRU replacement policy, for FIFO
replacement policy, the cache state does not change for a cache hit. Therefore,
rj can generate a cache conflict to ri (where i > j) only if rj is a cache miss.

Conditions for Eviction Misses. In order to incorporate the changes in
the formulation of Γ (Ψpath), we need to modify Constraints (7)–(10) for FIFO
replacement policy. In particular, instruction rj can create a unique cache conflict
to instruction ri (i > j) only if rj is a cache miss and the following conditions
hold with ψcnf (j, i) and ψdif (j, i):

1. ψfifo
eqv (j, i) : There does not exist any instruction rk, where k ∈ [j + 1, i),

such that rk is a cache miss and it accesses the same memory block as ri. For

48 S. Chattopadhyay

Fig. 5. Cache conflict scenarios in FIFO policy. ri:mj captures memory-related instruc-
tion ri accessing memory block mj . The rightmost position in the cache denotes the
memory block inserted in the cache the earliest. (a) r2 generates cache conflict to r4
even though m1 is accessed at r3. This is because r3 is a cache hit. (b) We record cache
conflict from r2 to r5 even though r4 is closer to r5 and r5 accesses the same memory
block as r2. This is because r4 is a cache hit.

instance, in Fig. 5(a), r2 generates cache conflict to r4 because r3 was a cache
hit. We capture ψfifo

eqv (j, i) as follows:

ψfifo
eqv (j, i) ≡

∧

k: j<k<i

((tag(rk) �= tag(ri))∨ (set(rk) �= set(ri)) ∨ (missk = 0))

(11)
2. ψfifo

unq (j, i) : This constraint ensures that we only count unique cache con-
flicts. For LRU policy, we checked whether rj was the closest instruction to
ri accessing memory block

⌊ σj

2B
⌋
. For FIFO policy, we have a slightly dif-

ferent situation, as demonstrated in Fig. 5(b). Even though r4 is the closest
instruction to r5 accessing m2, r4 cannot generate cache conflict to r5. This
is because r4 is a cache hit. As a result, we record cache conflict from r2 to
r5. It is worthwhile to mention that in LRU policy, we will discard the cache
conflict from r2 to r5 due to the presence of r4. Formally, we ensure there
does not exist any instruction rk, where k ∈ [j + 1, i), such that rk is a cache
miss and it accesses the same memory block as rj . Therefore, ψfifo

unq (j, i) can
be formalized as follows:

ψfifo
unq (j, i) ≡

∧

k: j<k<i

((tag(rj) �= tag(rk))∨ (set(rj) �= set(rk)) ∨ (missk = 0))

(12)

Constraints to Formulate Cache Conflict. Let us assume Ψevt
j,i captures

whether rj creates a cache conflict to ri. For FIFO replacement policy, this is
possible only if rj is a cache miss (i.e. missj = 1). Using the intuition described
in the preceding paragraphs, we can bound the value of Ψevt

j,i as follows:

Θem,fifo
j,i ≡

(
ψcnf (j, i) ∧ ψdif (j, i) ∧ ψfifo

eqv (j, i) ∧ ψfifo
unq (j, i) ∧ (missj = 1)

) ⇒ (
Ψevt

j,i = 1
)

(13)
Θeh,fifo

j,i ≡(
¬ψcnf (j, i) ∨ ¬ψdif (j, i) ∨ ¬ψfifo

eqv (j, i) ∨ ¬ψfifo
unq (j, i) ∨ (missj = 0)

)
⇒ (Ψevt

j,i = 0
)

(14)

Directed Automated Memory Performance Testing 49

Constraints to Formulate Cache Misses. Let us assume that missi captures
the cache behaviour of instruction ri. Therefore, missi is set to 1 if ri is a cache
miss, and is set to 0 otherwise. We can formulate the value of missi using the
following constraints:

Θmp
i ≡

⎛

⎝
∑

j∈[1,i)

Ψevt
j,i ≥ A

⎞

⎠ ∨ Θcold
i (15)

Θm
i ≡ Θmp

i ⇒ (missi = 1) ; Θh
i ≡ ¬Θmp

i ⇒ (missi = 0) (16)

where A captures the associativity of the cache. Once a memory block is loaded
into the cache, it requires at least A unique cache conflicts to evict the block. If
Ψevt

i,j ≥ A, ri has suffered at least A unique cache conflicts since the last access
of the memory block referenced by ri – resulting ri to be a cache miss. If ri is
not a cold miss (i.e. ¬Θcold

i holds) and Ψevt
i,j ≥ A does not hold, ri will be a

cache hit, as captured by Constraint (16).

Putting It All Together. To derive the symbolic cache behavior Γ (Ψpath), we
gather all constraints over {r1, . . . , rn} as follows:

Γ (Ψpath) ≡
∧

i∈[1,n]

⎛

⎝Θm
i ∧ Θh

i ∧
∧

j∈[1,i)

Θem,repl
j,i ∧

∧

j∈[1,i)

Θeh,repl
j,i

⎞

⎠ (17)

where repl ∈ {lru, fifo} capturing the underlying replacement policy. Θm
i and

Θh
i together bound the value of missi, which, in turn captures whether ri is

a cache miss. However, Θm
i and Θh

i are dependent on symbolic variables Ψevt
j,i

where j ∈ [1, i). The bound on symbolic variables Ψevt
j,i is captured via Θem,repl

j,i

and Θeh,repl
j,i (Constraints (9)–(10) and Constraints (13)–(14)). Hence, the for-

mulation of Γ (Ψpath) includes both Θem,repl
j,i and Θeh,repl

j,i for j ∈ [1, i).

Complexity of Constraints. The size of our constraint system is O(n3), where
n is the number of memory accesses. The dominating factor in our constraint
system is the set of constraints generated from Constraints (9)–(10) for LRU
policy and from Constraints (13)–(14) for FIFO policy. In general, we generate
constraints for each pair of memory accesses that may potentially conflict in
the cache, leading to O(n2) pairs in total. For each such pair, the constraint
may have a size O(n) — making the size of overall constraint system to be
O(n3). However, our evaluation reveals that such a bound is pessimistic and the
constraint system can be solved efficiently for real-life programs.

5 Application

In this section, we instantiate Algorithm 1 to formulate the objective OS from
the execution trace S and the refinement of OS (cf. line 23 and lines 31–34 in
Algorithm 1).

50 S. Chattopadhyay

Testing Timing-Related Properties. Embedded and real-time systems are
often constrained via several timing-related properties. Given a timing deadline
D, Algorithm 1 can find a witness where such timing deadline is violated for
program P or prove that no such witness exists.

In this paper, we assume that the timing of a given instruction may vary only
due to the same incurring a cache hit or a cache miss. However, such a timing
model can always be extended leveraging on the rich body of work in timing
analysis [21].

Given the execution trace S (cf. Eq. (1)), we use the variable missi to capture
whether a memory-related instruction ri suffered a cache miss. Let us assume C

is the time taken to execute all instructions not accessing the memory subsys-
tems. Given the preceding descriptions, we formulate the objective OS from S

as follows:

OS ≡
(

n∑

i=1

missi

)

∗ L + C > D (18)

where L is the latency incurred for a cache miss and n is the total number of
memory-related instructions. If a solution is found for Γ (Ψpath) ∧ OS ∧ Ψpath

using OS in Eq. (18), then we found witness of a violation of timing deadline
D. Such a witness can be used for further investigation and improve the timing
behaviour of the system.

In our evaluation, we refine OS to find unique violations, meaning each test
input capture a unique value of

∑n
i=1 missi ∗ L +C. Therefore, if

∑n
i=1 missi =

N is true for a satisfying solution of Γ (Ψpath) ∧ OS ∧ Ψpath, OS is refined as
OS ∧ ∑n

i=1 missi �= N .

Testing Cache Side-Channel Vulnerabilities. The performance gap bet-
ween cache and main memory (DRAM) can be exploited by an attacker to
discover classified information (e.g. a secret key). Such attacks are often non-
invasive and they can even be mounted over the network [8]. In this paper, we
choose timing-related attacks, where the observer monitors the overall cache
misses to discover secret information [8].

Let us assume the cache side channel to be a function C : I → O, mapping
a finite set of secret inputs to a finite set of observations. Since the attacker
monitors the number of cache misses, in this scenario, an observation simply
captures the number of cache misses in an execution. If we model the choice
of a secret input via a random variable X and the respective observation by a
random variable Y , the leakage through channel C is the reduction in uncertainty
about X when Y is observed. In particular, the following result holds for any
distribution of X [17].

ML(C) ≤ log2 |C(I)| (19)

where ML(C) captures the maximal leakage of channel C. The equality holds in
Eq. (19) when X is uniformly distributed.

Directed Automated Memory Performance Testing 51

CATAPULT can be tuned to compute each unique element in the set C(I) and
thereby, to derive an upper bound (exact bound when X is uniformly distributed)
on the maximal leakage ML(C). We accomplish this by setting and refining OS

as follows:

OS ≡
(

n∑

i=1

missi ≥ 0

)

(20)

If miss
(c)
i captures a satisfying solution of missi (for i ∈ [1, n]) in Γ (Ψpath) ∧

OS ∧ Ψpath, then we refine OS as follows: OS ∧
(∑n

i=1 missi �= ∑n
i=1 miss

(c)
i

)
.

It is worthwhile to mention that the number of tests computed is directly cor-
related with the maximal leakage through the cache side channel (cf. Eq. (19)).
As a result, our test generation method can be used as a metric to measure
the information leak through cache side channel. Besides, since we also gener-
ate an witness for each possible observation (i.e. the number of cache misses),
these witnesses can further be used for analyzing, quantifying and controlling
the information leaked at runtime.

Due to the lack of space, we only show the instantiation for one type of
attacker. However, our framework can model a variety of different attacking
scenarios, as long as the observation by an attacker can be modeled via symbolic
constraints over the set of variables {miss1,miss2, . . . ,missn}.

6 Evaluation

Experimental Setup. We build CATAPULT on top of KLEE symbolic execution
engine [2]. We first decompile PISA [5] compliant binaries (a MIPS like architec-
ture) into LLVM bitcode. It is worthwhile to note that compiling source code to
LLVM bitcode will inaccurately capture the cache performance. This is because
of the target-dependent compiler optimizations that take place while generating
binary code. The decompiled LLVM bitcode is identical with the PISA binary
in terms of functionality, memory placement and the number of memory-related
instructions. This ensures that the translated LLVM code has exactly the same
cache performance as the binary code. To use CATAPULT for a different architec-
ture (e.g. ARM), we only need the translator that converts the binary code for
the respective architecture to the LLVM bitcode. The rest of our test generation
framework remains completely unchanged. The translated LLVM code is pro-
vided as an input to CATAPULT. All our experiments have been performed on an
Intel I7 machine with 8 GB of RAM and running Debian operating system.

To evaluate CATAPULT, we choose cryptographic routines from OpenSSL and
other libraries [1,3] and user-interface routines from Linux GDK library (cf.
Table 1). Our choice is motivated by the importance of validating security and
performance related properties in these programs. Moreover, these programs are
memory intensive and in particular, the cryptographic routines exhibit complex
memory access patterns. As a result, such programs are also appropriate for
stress testing our framework.

52 S. Chattopadhyay

Table 1. Evaluated subject programs (input sizes are unchanged from the original
programs)

Program name Input size Lines of C code Lines of LLVM code Max. no. of memory accesses

AES [1] 16 bytes 800 4950 2134

AES [3] 16 bytes 1428 1800 420

DES [3] 8 bytes 552 3990 334

RC4 [3] 10 bytes 160 668 1538

RC5 [3] 16 bytes 256 1820 410

gdk keyval to unicode 4 bytes 1300 268 114

gdk keyval name 4 bytes 1350 1408 12

Table 2. “#test” captures the total number of tests generated, where each test exhibits
a unique cache performance (cf. Sect. 5). Testing time includes the total time to run
Algorithm 1.

Program Replacement policy #tests Time (in cycles)

[min,max]

Maximum no.

of constraints

Testing time

AES [1] LRU 35 [3719,7619] 2397228 260min

FIFO 1 [5149,5149] 11578752 15 sec

AES [3] LRU 37 [1796,4996] 26528 127min

FIFO 1 [1896,1896] 1205860 3min

DES [3] LRU 21 [3971,6071] 1501080 10min

FIFO 1 [7971,7971] 1947656 2 sec

RC4 [3] LRU 1 [5553,5553] 337588 15min

FIFO 1 [3153,3153] 764208 15 sec

RC5 [3] LRU 1 [6167,6167] 0 10 sec

FIFO 1 [6367,6367] 0 10 sec

gdk keyval to unicode LRU 19 [652,2652] 10 13 sec

FIFO 28 [652,4852] 10 12 sec

gdk keyval name LRU 11 [126,1126] 11 18 sec

FIFO 11 [126,1126] 11 18 sec

Basic Result. Table 2 captures the key result obtained from CATAPULT. For
all experiments in Table 2, we used a two-way and 8 KB cache, with 32 bytes
cache-line and a cache-miss latency of 10 cycles. We make the following cru-
cial observations from Table 2. We observe that the number of tests generated
for FIFO policy is significantly smaller than the number of tests obtained for
LRU policy. Since each test is attached to a unique cache performance (i.e. the
number of cache miss), the LRU policy suffers from significantly higher cache
side-channel leakage (cf. Eq. (19)), as compared to FIFO policy. This happens
due to the reason that cache states change more frequently in LRU policy as
compared to FIFO policy (e.g. for every access in LRU policy and for every
cache miss in FIFO policy). This potentially leads to more variation in cache
performance across different inputs in LRU policy, resulting in more tests and
higher cache side-channel leakage. This result indicates important trade-offs in
system design, as LRU policy is, on average, superior compared to FIFO policy
in terms of overall performance. For experiments in Table 2, we can also validate
that the maximal leakage of a basic AES implementation [3] is comparable with

Directed Automated Memory Performance Testing 53

the AES implementation in the OpenSSL library. The implementation of RC5
does not exhibit any input-dependent memory access or branch. Hence, the size
of our constraint system is 0 and there is exactly one test generated for both
replacement policies. As observed from Table 2, CATAPULT terminates within rea-
sonable time for all the experiments. Therefore, our results guarantee both the
exact number of test cases and the best/worst-case timing obtained over all
inputs. Finally, it is worthwhile to note that an exhaustive enumeration (2128

possibilities for AES) of all test inputs is infeasible to provide such guarantees.

 0

 10

 20

 30

 40

 50

2-way, 8KB

4-way, 8KB

2-way, 16 KB

4-way, 16KB

2-way, 32 KB

4-way, 32 KB

2-way, 64 KB

4-way, 64 KB

#t
es

ts

No. of generated tests for varying cache size (LRU)

AES from basic crypto
AES from OpenSSL

DES

RC4
GDK

 0

 5

 10

 15

 20

 25

2-way, 8KB

4-way, 8KB

2-way, 16 KB

4-way, 16KB

2-way, 32 KB

4-way, 32 KB

2-way, 64 KB

4-way, 64 KB

#t
es

ts

No. of generated tests for varying cache size (FIFO)

AES from basic crypto
AES from OpenSSL

DES

RC4
GDK

Fig. 6. Number of tests w.r.t. different cache configurations

Sensitivity Result. Figure 6 shows the sensitivity of CATAPULT with respect
to cache configurations. Although increasing cache size usually improves perfor-
mance, this may not be true for security. As an example, a smaller cache may
result in cache misses for all possible inputs (i.e. one test), whereas a bigger
cache may result in cache misses for a subset of inputs (i.e. more than one test).
As a result, increasing the cache size may lead to increased number of tests and
hence, increased likelihood of cache side-channel leakage (cf. Eq. (19)). For a huge
cache, however, the dependency between inputs and the cache behaviour may
disappear, resulting in reduced cache side-channel leakage. In Fig. 6, we observe
both the increase and the decrease in the number of tests (and hence, the max-
imal leakage) with increased cache size. We also observe that FIFO policy on
average outperforms LRU policy, in terms of side-channel resistant.

Summary. In summary, CATAPULT reveals useful information regarding the
memory performance of programs. This includes the cache side-channel vul-
nerability of these programs as well as their worst-case memory performance.
Concretely, we can show, for most of the chosen subjects, FIFO replacement
policy is significantly more resistant to cache side channel as compared to LRU
policy. We also show that increasing cache size may not necessarily lead to a
more secure implementation (cf. Fig. 6).

7 Related Work

Works on worst-case execution time (WCET) analysis [20,21] compute an upper
bound on the execution time of program. In addition, approaches based on pro-
gram synthesis [9] aim to generate optimal software by construction. In contrast

54 S. Chattopadhyay

to these works, our approach has a significant flavor of testing and CATAPULT is
used to generate witnesses violating certain non-functional properties. Our work
is orthogonal to the efforts in statically analyzing cache side channels [7,14,17].
Specifically, CATAPULT generates test inputs that violate timing-related con-
straints and to quantify cache side-channel leakage. Our framework does not
generate false positives, however, it is not aimed to verify the absence of cache
side-channel leaks and timing-related violations.

Recent works on performance testing [16,18,19] consider performance purely
at code level and ignore any influence of execution platform on performance. Our
previous works had targeted specific performance bugs (e.g. cache thrashing [6])
and they do not consider the variation of memory performance within a program
path [6,11,13].

In summary, a majority of works in software testing have either focused
on functionality bugs or ignore the influence of execution platforms on non-
functional properties. In this paper, we propose to systematically explore the
behaviour of execution platform via dynamic symbolic execution, with a specific
focus on memory performance.

8 Discussion

Extensions and Limitations. CATAPULT generates witnesses to show the evi-
dence of side-channel leakage or timing-related faults. However, it does not
debug these faults. Debugging faults related to software non-functional prop-
erties (e.g. timing and security) is a challenging research problem in its own
right and CATAPULT provides the necessary foundation for debugging research in
the context of timing or security-related faults. A limitation of our approach is
the requirement of the knowledge of cache architecture (e.g. cache replacement
policy). In the future, this limitation can be lifted via using some machine learn-
ing approach to approximately capture the cache replacement policy [4]. Subse-
quently, we can formulate the test generation problem via symbolic constraints
in a similar fashion as in CATAPULT. The scalability of CATAPULT is primarily
limited by the number of memory accesses in an execution. Since our symbolic
constraints encode the cache conflict (and not the actual cache states), the scala-
bility of CATAPULT is not affected by increased cache sizes and associativity [10].

Perspective. We have presented CATAPULT where the key insight is to express
the platform-dependent software properties (e.g. performance and security) via
logical constraints. Hence, our approach can be adapted easily within existing
software testing methodologies based on symbolic execution. To show the gener-
ality of our approach, we have instantiated our framework for a variety of cache
designs and shown its application in both performance and security testing via
real-life case studies (e.g. including OpenSSL and Linux GDK applications). This
makes the idea of CATAPULT quite appealing for further exploration in the future.
Among others, techniques to improve the testing time and extension of CATAPULT
for regression testing are worth exploring in the area of testing non-functional
software properties.

Directed Automated Memory Performance Testing 55

References

1. Advanced Encryption Standard Implementation. https://github.com/B-Con/cry
pto-algorithms

2. KLEE LLVM execution engine. https://klee.github.io/
3. OpenSSL Library. https://github.com/openssl/openssl/tree/master/crypto
4. Abel, A., Reineke, J.: Measurement-based modeling of the cache replacement pol-

icy. In: RTAS, pp. 65–74 (2013)
5. Austin, T., Larson, E., Ernst, D.: Simplescalar: an infrastructure for computer

system modeling. Computer 35(2), 59–67 (2002)
6. Banerjee, A., Chattopadhyay, S., Roychoudhury, A.: Static analysis driven cache

performance testing. In: RTSS, pp. 319–329 (2013)
7. Barthe, G., Betarte, G., Campo, J., Luna, C., Pichardie, D.: System-level non-

interference for constant-time cryptography. In: CCS, pp. 1267–1279 (2014)
8. Bernstein, D.J.: Cache-timing attacks on AES (2005)
9. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quanti-

tative synthesis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 20

10. Chattopadhyay, S.: Directed Automated Memory Performance Testing. http://
sudiptac.bitbucket.org/papers/catapult-TR.pdf

11. Chattopadhyay, S.: MESS: memory performance debugging on embedded multi-
core systems. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232,
pp. 105–125. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23404-5 8

12. Chattopadhyay, S., Beck, M., Rezine, A., Zeller, A.: Quantifying the information
leak in cache attacks through symbolic execution. CoRR, abs/1611.04426 (2016)

13. Chattopadhyay, S., Eles, P., Peng, Z.: Automated software testing of memory per-
formance in embedded GPUs. In: EMSOFT, pp. 17:1–17:10 (2014)

14. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: a tool for the
static analysis of cache side channels. TISSEC 18(1), 4 (2015)

15. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI (2005)

16. Jin, G., Song, L., Shi, X., Scherpelz, J., Lu, S.: Understanding and detecting real-
world performance bugs. In: PLDI (2012)

17. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-
channels. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 564–580. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 40

18. Nistor, A., Song, L., Marinov, D., Lu, S.: Toddler: detecting performance problems
via similar memory-access patterns. In: ICSE, pp. 562–571 (2013)

19. Olivo, O., Dillig, I., Lin, C.: Static detection of asymptotic performance bugs in
collection traversals. In: PLDI, pp. 369–378 (2015)

20. Theiling, H., Ferdinand, C., Wilhelm, R.: Fast and precise WCET prediction by
separated cache and path analyses. Real-Time Syst. 18(2–3), 157–179 (2000)

21. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P.P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem - overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst.
7(3), 36 (2008)

https://github.com/B-Con/crypto-algorithms
https://github.com/B-Con/crypto-algorithms
https://klee.github.io/
https://github.com/openssl/openssl/tree/master/crypto
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://sudiptac.bitbucket.org/papers/catapult-TR.pdf
http://sudiptac.bitbucket.org/papers/catapult-TR.pdf
http://dx.doi.org/10.1007/978-3-319-23404-5_8
http://dx.doi.org/10.1007/978-3-642-31424-7_40

Context-Bounded Analysis for POWER

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Ahmed Bouajjani2,
and Tuan Phong Ngo1(B)

1 Uppsala University, Uppsala, Sweden
{parosh,mohamed faouzi.atig,tuan-phong.ngo}@it.uu.se

2 IRIF, Université Paris Diderot, Paris, France
abou@irif.fr

Abstract. We propose an under-approximate reachability analysis algo-
rithm for programs running under the POWER memory model, in the
spirit of the work on context-bounded analysis intitiated by Qadeer
et al. in 2005 for detecting bugs in concurrent programs (supposed to
be running under the classical SC model). To that end, we first intro-
duce a new notion of context-bounding that is suitable for reasoning
about computations under POWER, which generalizes the one defined
by Atig et al. in 2011 for the TSO memory model. Then, we provide
a polynomial size reduction of the context-bounded state reachability
problem under POWER to the same problem under SC: Given an input
concurrent program P , our method produces a concurrent program P ′

such that, for a fixed number of context switches, running P ′ under SC
yields the same set of reachable states as running P under POWER. The
generated program P ′ contains the same number of processes as P , and
operates on the same data domain. By leveraging the standard model
checker CBMC, we have implemented a prototype tool and applied it on
a set of benchmarks, showing the feasibility of our approach.

1 Introduction

For performance reasons, modern multi-processors may reorder memory access
operations. This is due to complex buffering and caching mechanisms that make
the response memory queries (load operations) faster, and allow to speed up
computations by parallelizing independent operations and computation flows.
Therefore, operations may not be visible to all processors at the same time, and
they are not necessarily seen in the same order by different processors (when they
concern different addresses/variables). The only model where all operations are
visible immediately to all processors is the Sequential Consistency (SC) model
[28] which corresponds to the standard interleaving semantics where the program
order between operations of a same processor is preserved. Modern architectures
adopt weaker models (in the sense that they allow more behaviours) due to
the relaxation in various ways of the program order. Examples of such weak
models are TSO adopted in Intel x86 machines for instance, POWER adopted
in PowerPC machines, or the model adopted in ARM machines.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 56–74, 2017.
DOI: 10.1007/978-3-662-54580-5 4

Context-Bounded Analysis for POWER 57

Apprehending the effects of all the relaxations allowed in such models is
extremely hard. For instance, while TSO allows reordering stores past loads (of
different addresses/variables) reflecting the use of store buffers, a model such as
POWER allows reordering of all kinds of store and load operations under quite
subtle conditions. A lot of work has been devoted to the definition of formal
models that accurately capture the program semantics corresponding to mod-
els such as TSO and POWER [11,30,32,34,35]. Still, programming against weak
memory models is a hard and error prone task. Therefore, developing formal ver-
ification approaches under weak memory models is of paramount importance. In
particular, it is crucial in this context to have efficient algorithms for automatic
bug detection. This paper addresses precisely this issue and presents an algo-
rithmic approach for checking state reachability in concurrent programs running
on the POWER semantics as defined in [21] (which is essentially the POWER
model presented in [34] with small changes that have been introduced in order
to increase the accuracy and the precision of the model).

The verification of concurrent programs under weak memory models is known
to be complex. Indeed, encoding the buffering and storage mechanisms used in
these models leads in general to complex, infinite-state formal operational mod-
els involving unbounded data structures like FIFO queues (or more generally
unbounded partial order constraints). For the case of TSO, efficient, yet precise
encodings of the effects of its storage mechanism have been designed recently
[3,5]. It is not clear how to define such precise and practical encodings for POWER.

In this paper, we consider an alternative approach. We investigate the issue of
defining approximate analysis. Our approach consists in introducing a parametric
under-approximation schema in the spirit of context-bounding [12,25,27,31,33].
Context-bounding has been proposed in [33] as a suitable approach for efficient
bug detection in multithreaded programs. Indeed, for concurrent programs, a
bounding concept that provides both good coverage and scalability must be
based on aspects related to the interactions between concurrent components. It
has been shown experimentally that concurrency bugs usually show up after a
small number of context switches [31].

In the context of weak memory models, context-bounded analysis has been
extended in [12] to the case of programs running on TSO. The work we present
here aims at extending this approach to the case of POWER. This extension is
actually very challenging due to the complexity of POWER and requires devel-
oping new techniques that are different from, and much more involved than, the
ones used for the case of TSO. First, we introduce a new concept of bounding
that is suitable for POWER. Intuitively, the architecture of POWER is similar
to a distributed system with a replicated memory, where each processor has its
own replica, and where operations are propagated between replicas according to
some specific protocol. Our bounding concept is based on this architecture. We
consider that a computation is divided in a sequence of “contexts”, where a con-
text is a computation segment for which there is precisely one active processor.
All actions within a context are either operations issued by the active proces-
sor, or propagation actions performed by its storage subsystem. Then, in our
analysis, we consider only computations that have a number of contexts that is

58 P.A. Abdulla et al.

less or equal than some given bound. Notice that while we bound the number
of contexts in a computation, we do not put any bound on the lengths of the
contexts, nor on the size of the storage system.

We prove that for every bound K, and for every concurrent program Prog ,
it is possible to construct, using code-to-code translation, another concurrent
program Prog• such that for every K-bounded computation π in Prog under
the POWER semantics there is a corresponding K-bounded computation π• of
Prog• under the SC semantics that reaches the same set of states and vice-versa.
Thus, the context-bounded state reachability problem for Prog can be reduced
to the context-bounded state reachability problem for Prog• under SC. We show
that the program Prog• has the same number of processes as Prog , and only
O(|P ||X |K + |R |) additional shared variables and local registers compared to
Prog , where |P | is the number of processes, |X | is the number of shared variables
and |R | is the number of local registers in Prog . Furthermore, the obtained pro-
gram has the same type of data structures and variables as the original one. As
a consequence, we obtain for instance that for finite-data programs, the context-
bounded analysis of programs under POWER is decidable. Moreover, our code-
to-code translation allows to leverage existing verification tools for concurrent
programs to carry out verification of safety properties under POWER.

To show the applicability of our approach, we have implemented our reduc-
tion, and we have used cbmc version 5.1 [17] as the backend tool for solving SC
reachability queries. We have carried out several experiments showing the effi-
ciency of our approach. Our experimental results confirm the assumption that
concurrency bugs manifest themselves within small bounds of context switches.
They also confirm that our approach based on context-bounding is more efficient
and scalable than approaches based on bounding sizes of computations and/or
of storage systems.

Related work. There has been a lot of work on automatic program verification
under weak memory models, based on precise, under-approximate, and abstract
analyses, e.g., [2,5,8,10,12–16,18–20,23,24,26,29,36–40]. While most of these
works concern TSO, only a few of them address the safety verification problem
under POWER (e.g., [6,9–11,36]). The paper [21] addresses the different issue
of checking robustness against POWER, i.e., whether a program has the same
(trace) semantics for both POWER and SC.

The work in [9] extends the cbmc framework by taking into account weak mem-
ory models including TSO and POWER. While this approach uses reductions to
SC analysis, it is conceptually and technically different from ours. The work in [10]
develops a verification technique combining partial orders with bounded model
checking, that is applicable to various weak memory models including TSO and
POWER. However, these techniques are not anymore supported by the latest ver-
sion of cbmc. The work in [6] develops stateless model-checking techniques under
POWER. In Sect. 4, we compare the performances of our approach with those
of [6,9]. The tool herd [11] operates on small litmus tests under various memory
models. Our tool can handle in an efficient and precise way such litmus tests.

Recently, Tomasco et al. [36] presented a new verification approach, based
on code-to-code translations, for programs running under TSO and PSO. They

Context-Bounded Analysis for POWER 59

also discuss the extension of their approach to programs running under POWER
(however the detailed formalization and the implementation of this extension are
kept for future work). Our approach and the one proposed in [36] are orthogonal
since we are using different bounding parameters: In this paper, we are bounding
the number of contexts while Tomasco et al. [36] are bounding the number of
write operations.

2 Concurrent Programs

In this section, we first introduce some notations and definitions. Then, we
present the syntax we use for concurrent programs and its semantics under
POWER as in [21,34].

Preliminaries. Consider sets A and B. We use [A �→ B] to denote the set of
functions from A to B, and write f : A �→ B to indicate that f ∈ [A �→ B].
We write f(a) = ⊥ to denote that f is undefined for a. We use f [a ← b] to
denote the function g such that g(a) = b and g(x) = f(x) if x �= a. We will use a
function gen which, for a given set A, returns an arbitrary element gen (A) ∈ A.
For integers i, j, we use [i..j] to denote the set {i, i + 1, . . . , j}. We use A∗ to
denote the set of finite words over A. For words w1, w2 ∈ A∗, we use w1 · w2 to
denote the concatenation of w1 and w2.

Syntax. Figure 1 gives the grammar for a small but general assembly-like lan-
guage that we use for defining concurrent programs. A program Prog first
declares a set X of (shared) variables followed by the code of a set P of processes.
Each process p has a finite R (p) of (local) registers. We assume w.l.o.g. that the
sets of registers of the different processes are disjoint, and define R := ∪pR (p).
The code of each process p ∈ P starts by declaring a set of registers followed by
a sequence of instructions.

Fig. 1. Syntax of concurrent programs.

For the sake of simplicity, we assume
that the data domain of both the shared
variables and registers is a single set D.
We assume a special element 0 ∈ D which
is the initial value of each shared variable
or register. Each instruction i is of the
form λ :s where λ is a unique label (across
all processes) and s is a statement. We
define lbl (i) := λ and stmt (i) := s. We define Ip to be the set of instructions
occurring in p, and define I := ∪p∈PIp. We assume that Ip contains a designated
initial instruction iinitp from which p starts its execution. A read instruction in
a process p ∈ P has a statement of the form $r ← x, where $r is a register
in p and x ∈ X is a variable. A write instruction has a statement of the form
x ← exp where x ∈ X is a variable and exp is an expression. We will assume a set
of expressions containing a set of operators applied to constants and registers,
but not referring to the content of memory (i.e., the set of variables). Assume,
conditional, and iterative instructions (collectively called aci instructions) can
be explained in a similar manner. The statement term will cause the process to

60 P.A. Abdulla et al.

terminate its execution. We assume that term occurs only once in the code of a
process p and that it has the label λterm

p . For an expression exp, we use R (exp)
to denote the set of registers that occur in exp. For a write or an aci instruction
i, we define R (i) := R (exp) where exp is the expression that occurs in stmt (i).

For an instruction i ∈ Ip, we define next (i) to be the set of instructions that
may follow i in a run of a process. Notice that this set contains two elements if i is
an aci instruction (in the case of an assume instruction, we assume that if the con-
dition evaluates to false, then the process moves to λterm

p : term), no element if i is a
terminating instruction, and a single element otherwise. We define Tnext (i) (resp.
Fnext (i)) to be the (unique) instruction to which the process execution moves in
case the condition in the statement of i evaluates to true (resp. false).

Configurations. We will assume an infinite set E of events, and will use an event
to represent a single execution of an instruction in a process. A given instruction
may be executed several times during a run of the program (for instance, when it
is in the body of a loop). In such a case, the different executions are represented
by different events. An event e is executed in several steps, namely it is fetched,
initialized, and then committed. Furthermore, a write event may be propagated to
the other processes. A configuration c is a tuple 〈E,≺, ins, status, rf, Prop,≺co〉,
defined as follows.

Events. E ⊆ E is a finite set of events, namely the events that have been created
up to the current point in the execution of the program. ins : E �→ I is a function
that maps an event e to the instruction ins (e) that e is executing. We partition
the set E into disjoint sets Ep, for p ∈ P , where Ep := {e ∈ E | ins (e) ∈ Ip}, i.e.,
for a process p ∈ P , the set Ep contains the events whose instructions belong to
p. For an event e ∈ Ep, we define proc (e) := p. We say that e is a write event if
ins (e) is a write instruction. We useEW to denote the set of write events. Similarly,
we define the setER of read events, and the setEACI of aci events whose instructions
are either assume, conditional, or iterative. We define EW

p, E
R
p, and EACI

p , to be the
restrictions of the above sets to Ep. For an event e where stmt (ins (e)) is of the
form x ← exp or $r ← x, we define var (e) := x. If e is neither a read nor a write
event, then var (e) := ⊥.

Program Order. The program-order relation ≺⊆ E × E is an irreflexive partial
order that describes, for a process p ∈ P , the order in which events are fetched
from the code of p. We require that (i) e1 �≺ e2 if proc (e1) �= proc (e2), i.e., ≺
only relates events belonging to the same process, and that (ii) ≺ is a total order
on Ep.

Status. The function status : E �→ {fetch, init, com} defines, for an event e,
the current status of e, i.e., whether it has been fetched, initialized, or committed.

Propagation. The function Prop : P ×X �→ EW ∪Einit defines, for a process p ∈ P
and variable x ∈ X , the latest write event on x that has been propagated to p. Here
Einit := {einitx | x ∈ X} is a set disjoint from the set of events E , and will be used
to define the initial values of the variables.

Context-Bounded Analysis for POWER 61

Read-From. The function rf : ER �→ EW ∪ Einit defines, for a read event e ∈ ER,
the write event rf (e) from which e gets its value.

Coherence Order. All processes share a global view about the order in which write
events are propagated. This is done through the coherence order ≺co that is a par-
tial order on EW s.t. e1 ≺co e2 only if var (e1) = var (e2), i.e., it relates only
events that write on identical variables. If a write event e1 is propagated to a
process before another write event e2 and both events write on the same variable,
then e1 ≺co e2 holds. Furthermore, the events cannot be propagated to any other
process in the reverse order. However, it might be the case that a write event is
never propagated to a given process.

Dependencies. We introduce a number of dependency orders on events that we
will use in the definition of the semantics. We define the per-location program-
order ≺poloc⊆ E × E such that e1 ≺poloc e2 if e1 ≺ e2 and var (e1) = var (e2),
i.e., it is the restriction of ≺ to events with identical variables. We define the data
dependency order ≺data s.t. e1 ≺data e2 if (i) e1 ∈ ER, i.e., e1 is a read event;
(ii) e2 ∈ EW ∪ EACI, i.e., e2 is either a write or an aci event; (iii) e1 ≺ e2; (iv)
stmt (ins (e1)) is of the form $r ← x; (v) $r ∈ R (ins (e2)); and (vi) there is no
event e3 ∈ ER such that e1 ≺ e3 ≺ e2 and stmt (ins (e3)) is of the form $r ← y.
Intuitively, the loaded value by e1 is used to compute the value of the expression
in the statement on the instruction of e2. We define the control dependency order
≺ctrl such that e1 ≺ctrl e2 if e1 ∈ EACI and e1 ≺ e2.

We say that c is committed if status (e) = com for all events e ∈ E. The initial
configuration cinit is defined by 〈∅, ∅, λe.⊥, λe.⊥, λe.⊥, λp.λx.einitx , ∅〉. We use C
to denote the set of all configurations.

Transition Relation. We define the transition relation as a relation −→ ⊆ C ×
P × C. For configurations c1, c2 ∈ C and a process p ∈ P , we write c1

p−→ c2 to
denote that 〈c1, p, c2〉 ∈−→ . Intuitively, this means that p moves from the current
configuration c1 to c2. The relation −→ is defined through the set of inference rules
shown in Fig. 2.

The rule Fetch chooses the next instruction to be executed in the code of a
process p ∈ P . This instruction should be a possible successor of the instruction
that was last executed by p. To satisfy this condition, we define MaxI (c, p) to be the
set of instructions as follows: (i) If Ep = ∅ then define MaxI (c, p) :=

{
iinitp

}
, i.e.,

the first instruction fetched by p is iinitp . (ii) If Ep �= ∅, let e′ be the maximal event
of p (w.r.t. ≺) in the configuration c and then define MaxI (c, p) := next (ins (e′)).
In other words, we consider the instruction i′ = ins (e′) ∈ Ip, and take its possible
successors. The possibility of choosing any of the (syntactically) possible succes-
sors corresponds to speculatively fetching statements. As seen below, whenever we
commit an aci event, we check whether the made speculations are correct or not.
We create a new event e, label it by i ∈ MaxI (c, p), and make it larger than all the
other events of p w.r.t. ≺. In such a way, we maintain the property that the order
on the events of p reflects the order in which they are fetched in the current run of
the program.

There are two ways in which read events get their values, namely either from
localwrite events that are performed by the process itself, or from write events that

62 P.A. Abdulla et al.

Fig. 2. Inference rules defining the relation
p−→ where p ∈ P .

are propagated to the process. The first case is covered by the rule Local-Read in
which the process p initializes a read event e ∈ ER on a variable (say x), where e
has already been fetched. Here, the event e is made to read its value from a local
write event e′ ∈ EW

p on x such that (i) e′ has been initialized but not yet committed,
and such that (ii) e′ is the closest write event that precedes e in the order ≺poloc.
Notice that, by condition (ii), e′ is unique if it exists. To formalize this, we define
the Closest Write function CW (c, e) := e′ where e′ is the unique event such that
(i) e′ ∈ EW, (ii) e′ ≺poloc e, and (iii) there is no event e′′ such that e′′ ∈ EW

and e′ ≺poloc e′′ ≺poloc e. Notice that e′ may not exist, i.e., it may be the case
that CW (c, e) = ⊥. If e′ exists and it has been inititialized but not commited, we
initialize e and update the read-from relation appropriately. On the other hand,
if such an event does not exist, i.e., if there is no write event on x before e by p, or
if the closest write event on x before e by p has already been committed, then we
use the rule Prop-Read to let e fetch its value from the latest write event on x that
has been propagated to p. Notice this event is the value of Prop (p, x).

Context-Bounded Analysis for POWER 63

To commit an initialized read event e ∈ ER
p, we use the rule Com-Read. The rule

can be performed if e satisfies two conditions in c. The first condition is defined as
RdCnd (c, e) := ∀e′ ∈ ER : (e′ ≺poloc e) =⇒ (rf (e′) �co rf (e)). It states that
for any read event e′ such that e′ precedes e in the order ≺poloc, the write event
from which e′ reads its value is equal to or precedes the write event for e in the
coherence order ≺co. The second condition is defined by ComCnd (c, e) := ∀e′ ∈
E : (e′ ≺data e) ∨ (e′ ≺ctrl e) ∨ (e′ ≺poloc e) =⇒ (status (e′) = com). It states
that all events e′ ∈ E that precede e in one of the orders ≺data, ≺ctrl, or ≺poloc

should have already been committed.
To initialize a fetched write event e ∈ ER

p, we use the rule Init-Write that
requires all events that precede e in the order ≺data should have already been ini-
tialized. This condition is formulated as WrInitCnd (c, e) := ∀e′ ∈ ER : (e′ ≺data

e) =⇒ (status (e′) = init ∨ status (e′) = com). When a write event in a
process p ∈ P is committed, it is also immediately propagated to p itself. To main-
tain the coherence order, the semantics keeps the invariant that the latest write
event on a variable x ∈ X that has been propagated to a process p ∈ P is the largest
one in the coherence order among all write events on x that have been propagated
to p up to now in the run. This invariant is maintained in Com-Write by requiring
that the event e (that is being propagated) is strictly larger in the coherence order
than the latest write event on the same variable as e that has been propagated to p.

Write events are propagated to other processes through the rule Prop. A write
event e on a variable x is allowed to be propagated to a process q only if it has
a coherence order that is strictly larger than the coherence of any event that has
been to propagated to q up to now. Notice that this is given by coherence order of
Prop (q, x) which is the latest write event on x that has been propagated to q.

When committing an aci event through the rule Com-ACI, we also require that
we verify any potential speculation that have been made when fetching the subse-
quent events. We assume that we are given a function Val (c, e) that takes as input
an aci event e and returns the value of the expression of the conditional statement
in the instruction of e when evaluated in the configuration c. The Val (c, e) is only
defined when all events that precede e in the order ≺data should have already been
initialized.

To that end, we define predicate ValidCnd (c, e) := (∃e′ ∈ E : e ≺ e′ ∧�e′′ ∈
E : e ≺ e′′ ≺ e′) =⇒ ((Val (c, e) = true ∧ ins (e′) = Tnext (ins (e))) ∨
(Val (c, e) = false ∧ ins (e′) = Fnext (ins (e)))). The rule intuitively finds the
event e′ that was fetched immediately after e. Notice that such an event may not
exist and it is unique if it exists. The predicate requires the choice of e′ is consistent
with the value Val (c, e) of the expression in the statement of the instruction of e.

Bounded Reachability. A run π is a sequence of transitions c0
p1−→ c1

p2−→
c2 · · · cn−1

pn−→ cn. In such a case, we write c0
π−→ cn. We define last (π) := cn. We

define π↑:= p1p2 · · · pn, i.e., it is the sequence of processes performing the transi-
tions in π. For a sequence σ = p1p2 · · · pn ∈ P∗, we say that σ is a context if there
is a process p ∈ P such that pi = p for all i : 1 ≤ i ≤ n. We say that π is committed
(resp. k-bounded) if last (π) is committed (resp. if π ↑= σ1 · σ2 · · · · σk where σi is
a context for all i : 1 ≤ i ≤ k).

64 P.A. Abdulla et al.

For c ∈ C and p ∈ P , we define the set of reachable labels of the configuration
c as follows. (i) If c = cinit then lbl (c) := {⊥}, i.e. process p does not reach to
any label in the initial configuration. (ii) If c �= cinit , let e be the maximal event
of p (w.r.t. ≺) in c. We define lbl (c) := {lbl (ins (e))}, i.e. process p reaches
to the label of the maximal event e of p (w.r.t. ≺) in the configuration c. In the
reachability problem, we are given a label λ and asked whether there is a committed
run π and a configuration c such that cinit

π−→ c where λ ∈ lbl (c). For a natural
numberK, theK-bounded reachability problem is defined by requiring that the run
π in the above definition is K-bounded.

3 Translation

In this section, we introduce an algorithm that reduces, for a given number K, the
K-bounded reachability problem for POWER to the corresponding problem for
SC. Given an input concurrent program Prog , the algorithm constructs an out-
put concurrent program Prog• whose size is polynomial in Prog and K, such that
for each K-bounded run π in Prog under the POWER semantics there is a cor-
responding K-bounded run π• of Prog• under the SC semantics that reaches the
same set of process labels. Below, we first present a scheme for the translation of
Prog , and mention some of the challenges that arise due to the POWER seman-
tics. Then, we give a detailed description of the data structures we use in Prog•.
Finally, we describe the codes of the processes in Prog•.

Fig. 3. Translation map [[.]]K. We omit the label
of an intermediary instruction when it is not rel-
evant.

Scheme.Our construction is based
on code-to-code translation scheme
that transforms the program Prog
into the program Prog• following
the map function [[.]]K given in
Fig. 3. Let P and X be the sets of
processes and (shared) variables in
Prog . The map [[.]]K replaces the
variables of Prog by (|P | ·(2K+1))
copies of the set X , in addition to
a finite set of finite-data structures
(which will be formally defined in
theData Structures paragraph).
The map function then declares
two additional processes iniProc
and verProc that will be used to
initialize the data structures and to
check the reachability problem at
the end of the run of Prog•. The
formal definition of iniProc (resp.
verProc) will be given in the Ini-
tializing process (resp. Verifier

Context-Bounded Analysis for POWER 65

process) paragraph. Furthermore, the map function [[.]]K transforms the code of
each process p ∈ P to a corresponding process p• that will simulate the moves of
p. The processes p and p• will have the same set of registers. For each instruction
i appearing in the code of the process p, the map [[i]]pK transforms it to a sequence
of instructions as follows: First, it adds the code defined by activeCnt to check
if the process p is active during the current context, then it transforms the state-
ment s of the instruction i into a sequence of instructions following the map [[s]]pK,
and finally it adds the sequence of instructions defined by closeCnt to guess the
occurrence of a context switch. The translation of an aci statement keeps the same
statements and adds control to guess the contexts when the corresponding event
will be committed. The terminating statement remains identical by the map func-
tion [[term]]pK. The translations of write and read statements will be described in
the Write Instructions and Read Instructions paragraphs respectively.

Challenges. There are two aspects of the POWER semantics (cf. Sect. 2) that
make it difficult to simulate the run π under the SC semantics, namely non-
atomicity and asynchrony. First, events are not executed atomically. In fact, an
event is first fetched and initialized before it is committed. In particular, an event
may be fetched in one context and be initialized and committed only in later con-
texts. Since there is no bound on the number of events that may be fetched in
a given context, our simulation should be able to handle unbounded numbers of
pending events. Second, write events of one process are propagated in an asynchro-
nous manner to the other processes. This implies that we may have unbounded
numbers of “traveling” events that are committed in one context and propagated
to other processes only in subsequent contexts. This creates two challenges in the
simulation. On the one hand, we need to keep track of the coherence order among
the different write events. On the other hand, since write events are not distributed
to different processes at the same time, the processes may have different views of
the values of a given variable at a given point of time.

Since it is not feasible to record the initializing, committing, and propagat-
ing contexts of an unbounded number of events in an SC run, our algorithm will
instead predict the summary of effects of arbitrarily long sequences of events that
may occur in a given context. This is implemented using an intricate scheme that
first guesses and then checks these summaries. Concretely, each event e in the run π

is simulated by a sequence of instructions in π•. This sequence of instructions will
be executed atomically (without interruption from other processes and events).
More precisely, if e is fetched in a context k : 1 ≤ k ≤ K, then the corresponding
sequence of instructions will be executed in the same context k in π•. Furthermore,
we let π• guess (speculate) (i) the contexts in which e will be initialized, commit-
ted, and propagated to other processes, and (ii) the values of variables that are
seen by read operations. Then, we check whether the guesses made by π• are valid
w.r.t. the POWER semantics. As we will see below, these checks are done both on-
the-fly during π•, as well as at the end of π•. To implement the guess-and-check
scheme, we use a number of data structures, described below.

Data Structures. We will introduce the data structures used in our simulation
in order to deal with the above asynchrony and non-atomicity challenging aspects.

66 P.A. Abdulla et al.

Asynchrony. In order to keep track of the coherence order, we associate a time
stamp with each write event. A time stamp τ is a mapping P �→ K⊗ where K⊗ :=
K∪{⊗}. For a process p ∈ P , the value of τ (p) represents the context in which the
given event is propagated to p. In particular, if τ (p) = ⊗ then the event is never
propagated to p. We use T to denote the set of time stamps. We define an order �
on T such that τ1 � τ2 if, for all processes p ∈ P , either τ1(p) = ⊗, or τ2(p) = ⊗,
or τ1(p) ≤ τ2(p). Notice that if τ1 � τ2 and there is a process p ∈ P such that
τ1(p) �= ⊗, τ2(p) �= ⊗, and τ1(p) < τ2(p) then τ1(q) ≤ τ2(q) whenever τ1(q) �= ⊗
and τ2(q) �= ⊗. In such a case, τ1 � τ2. On the other hand, if either τ1(p) = ⊗ or
τ2(p) = ⊗ for all p ∈ P , then both τ1 � τ2 and τ2 � τ1. The coherence order ≺co

on write events will be reflected in the order � on their time stamps. In particular,
for events e1 and e2 with time stamps τ1 and τ2 respectively, if τ1 � τ2 then e1
precedes e2 in coherence order. The reason is that there is at least one process
p to which both e1 and e2 are propagated, and e1 is propagated to p before e2.
However, if both τ1 � τ2 and τ2 � τ1 then the events are never propagated to the
same process, and hence they need not to be related by the coherence order.

If τ1 � τ2 then we define the summary of τ1 and τ2, denoted by τ1 ⊕ τ2, to be
the time stamp τ such that τ(p) = τ1(p) if τ2(p) = ⊗, and τ(p) = τ2(p) otherwise.
For a sequence σ = τ0 � τ1 � · · · � τn of time stamps, we define the summary
⊕ σ := τ′

n where τ′
i is defined inductively by τ′

0 := τ0, and τ′
i := τ′

i−1 ⊕ τi for
i : 1 ≤ i ≤ n. Notice that, for p ∈ P , we have ⊕ σ(p) = τi(p) where i is the largest
j : 1 ≤ j ≤ n s.t. τj(p) �= ⊗.

Our simulation observes the sequence of write events received by a process in
each context. In fact, the simulation will initially guess and later verify the sum-
maries of the time stamps of such a sequence. This is done using data structures
αinit and α. The mapping αinit : P × X × K �→ [P �→ K⊗] stores, for a process
p ∈ P , a variable x ∈ X , and a context k : 1 ≤ k ≤ K, an initial guess αinit (p, x, k)
of the summary of the time stamps of the sequence of write events on x prop-
agated to p up to the start of context k. Starting from a given initial guess for
a given context k, the time stamp is updated successively using the sequence of
write events on x propagated to p in k. The result is stored using the mapping
α : P × X × K �→ [P �→ K⊗]. More precisely, we initially set the value of α to
αinit . Each time a new write event e on x is created by p in the context k, we
guess the time stamp β of e, and then update α (p, x, k) by computing its sum-
mary with β. Thus, given a point in a context k, α (p, x, k) contains the summary
of the time stamps of the whole sequence of write events on x that have been propa-
gated to p up to that point. At the end of the simulation, we verify, for each context
k : 1 ≤ k < K, that the value of α for a context k is equal to the value of αinit for
the next context k + 1.

Furthermore, we use three data structures for storing the values of variables.
The mapping μinit : P × X ×K �→ D stores, for a process p ∈ P , a variable x ∈ X ,
and a context k : 1 ≤ k ≤ K, an initial guess μinit (p, x, k) of the value of the latest
write event on x propagated to p up to the start of the context k. The mapping
μ : P × X × K �→ D stores, for a process p ∈ P , a variable x ∈ X , and a point in
a context k : 1 ≤ k ≤ K, the value μ (p, x, k) of the latest write event on x that

Context-Bounded Analysis for POWER 67

has been propagated to p up to that point. Moreover, the mapping ν : P ×X �→ D
stores, for a process p ∈ P and a variable x ∈ X , the latest value ν (p, x) that has
been written on x by p.

Non-atomicity. In order to satisfy the different dependencies between events, we
need to keep track of the contexts in which they are initialized and committed. One
aspect of our translation is that it only needs to keep track of the context in which
the latest read or write event on a given variable in a given process is initialized or
committed. The mapping iW : P×X �→ K defines, for p ∈ P and x ∈ X , the context
iW (p, x) in which the latest write event on x by p is initialized. The mapping cW :
P ×X �→ K is defined in a similar manner for committing (rather than initializing)
write events. Furthermore, we define similar mappings iR and cR for read events.
The mapping iReg : R �→ K gives, for a register $r ∈ R , the initializing context
iReg ($r) of the latest read event loading a value to $r. For an expression exp, we
define iReg (exp) := max {iReg ($r) | $r ∈ R (exp)}. The mapping cReg : R �→
K gives the contexts for committing (rather than initializing) of the read events.
We extend cReg from registers to expressions in a similar manner to iReg. Finally,
the mapping ctrl : P �→ K gives, for a process p ∈ P , the committing context
ctrl (p) of the latest aci event in p.

Initializing Process. Algorithm 1 shows the initialization process. The for-loop
of lines 1, 3 and 5 define the values of the initializing and committing data struc-
tures for the variables and registers together with ν (p, x), μ (p, x, 1), α (p, x, 1) and
ctrl (p) for all p ∈ P and x ∈ X . The for-loop of line 7 defines the initial values
of α and μ at the start of each context k ≥ 2 (as described above). The for-loop of
line 10 chooses an active process to execute in each context. The current context
variable cntxt is initialized to 1.

Write Instructions. Consider a write instruction i in a process p ∈ P whose
statement is of the form x ← exp. The translation of i is shown in Algorithm 3.
The code simulates an event e executing i, by encoding the effects of the inference
rules Init-Write, Com-Write and Prop that initialize, commit, and propagate a
write event respectively. The translation consists of three parts, namely guessing,
checking and update.

Guessing. We guess the initializing and committing contexts for the event e,
together with its time stamp. In line 1, we guess the context in which the event
e will be initialized, and store the guess in iW (p, x). Similarly, in line 3, we guess
the context in which the event e will be committed, and store the guess in cW (p, x)
(having stored its old value in the previous line). In the for-loop of line 4, we guess
a time stamp for e and store it in β. This means that, for each process q ∈ P , we
guess the context in which the event e will be propagated to q and we store this
guess in β (q).

Checking. We perform sanity checks on the guessed values in order to verify that
they are consistent with the POWER semantics. Lines 6–8 perform the sanity
checks for iW (p, x). In lines 6–7, we verify that the initializing context of the event

68 P.A. Abdulla et al.

Alg. 1: Translating [[iniProc]]K.

1 for p ∈ P ∧ x ∈ X do
2 iR (p, x) ← 1; cR (p, x) ← 1;

iW (p, x) ← 1; cW (p, x) ← 1;
ν (p, x) ← 0; µ (p, x, 1) ← 0;

α (p, x, 1) ← ⊗|P|;

3 for p ∈ P do
4 ctrl (p) ← 1;

5 for $r ∈ R do
6 iReg ($r) ← 1; cReg ($r) ← 1;

7 for p ∈ P ∧ x ∈ X ∧ k ∈ [2..K] do
8 α (p, x, k) ← αinit (p, x, k);

9 µ (p, x, k) ← µinit (p, x, k);

10 for k ∈ [1..K] do
11 active (k) ← gen (P);

12 cntxt ← 1;

Alg. 2:Translating [[$r ← x]]p,ReadK .

// Guess
1 old-iR ← iR (p, x);
2 iReg ($r) ← iR (p, x) ← gen ([1..K]);
3 old-cR ← cR (p, x);
4 cReg ($r) ← cR (p, x) ← gen ([1..K]);

// Check
5 assume (iR (p, x) ≥ cntxt);
6 assume (active (iR (p, x)) = p);
7 assume (iR (p, x) ≥ iW (p, x));
8 assume(iR (p, x) ≥ cW (p, x) =⇒

iR (p, x) ≥
α (p, x, old-iR) (p));

9 assume (cR (p, x) ≥ iR (p, x));
10 assume (active (cR (p, x)) = p);
11 assume(cR (p, x) ≥

max {ctrl (p) , old-cR, cW (p, x)});

// Update
12 if iR (p, x)<cW (p, x) then

$r ← ν (p, x) ;
13 else $r ← µ (p, x, iR (p, x)) ;

Alg. 3: Translating [[x ← exp]]p,WriteK .

// Guess
1 iW (p, x) ← gen ([1..K]);
2 old-cW ← cW (p, x);
3 cW (p, x) ← gen ([1..K]);
4 for q ∈ P do
5 β (q) ← gen

(
K⊗);

// Check
6 assume (iW (p, x) ≥ cntxt);
7 assume (active (iW (p, x)) = p);
8 assume (iW (p, x) ≥ iReg (exp));
9 assume (cW (p, x) ≥ iW (p, x));

10 assume(cW (p, x) ≥
max{cReg (exp) , ctrl (p) , cR (p, x) , old-cW});

11 for q ∈ P do
12 if q = p then
13 assume (β (q) = cW (p, x));

14 if q �= p then
15 assume(β (q) �=⊗ =⇒ β (q)≥cW (p, x));

16 if β (q) �= ⊗ then
17 assume (α (q, x, β (q)) � β);
18 assume(active (β (q)) = p);

// Update
19 for q ∈ P do
20 if β (q) �= ⊗ then
21 α (q, x, β (q)) ← α (q, x, β (q)) ⊕ β;
22 µ (q, x, β (q)) ← exp;

23 ν (p, x) ← exp;

Alg. 4: Translating [[verProc]]K.

1 for p ∈ P ∧ x ∈ X ∧ k ∈ [1..K − 1] do
2 assume

(
α (p, x, k) = αinit (p, x, k + 1)

)
;

3 assume
(
µ (p, x, k) = µinit (p, x, k + 1)

)
;

4 if λ is reachable then error ;

e is not smaller than the current context. This captures the fact that initialization
happens after fetching of e. It also verifies that initialization happens in a context
in which p is active. In line 8, we check whether WrInitCnd in the rule Init-Write
is satisfied. To do that, we verify that the data dependency order ≺data holds. More
precisely, we find, for each register $r that occurs in exp, the initializing context of
the latest read event loading to $r. We make sure that the initializing context of
e is later than the initializing contexts of all these read events. By definition, the
largest of all these contexts is stored in iReg (exp).

Lines 9–10 perform the sanity checks for cW (p, x). In line 9, we check the com-
mitting context of the event e is at least as large as its initializing context. In line
10, we check that ComCnd in the rule Com-Write is satisfied. To do that, we check
that the committing context is larger than (i) the committing context of all the
read events from which the registers in the expression exp fetch their values (to
satisfy the data dependency order ≺data, in a similar manner to that described

Context-Bounded Analysis for POWER 69

for initialization above), (ii) the committing contexts of the latest read and write
events on x in p, i.e., cR (p, x) and cW (p, x) (to satisfy the per-location program
order ≺poloc), and (iii) the committing context of the latest aci event in p, i.e.,
ctrl (p) (to satisfy the control order ≺ctrl).

The for-loop of line 11 performs three sanity checks on the time stamp β. In
line 12, we verify that the event e is propagated to p in the same context as the
one in which it is committed. This is consistent with the rule Com-Write which
requires that when a write event is committed then it is immediately propagated
to the committing process. In line 14, we verify that if the event e is propagated
to a process q (different from p), then the propagation takes place in a context
later than or equal to the one in which e is committed. This is to be consistent
with the fact that a write event is propagated to other processes only after it has
been committed. In line 17, we check that guessed time stamp of the event e does
not cause a violation of the coherence order ≺co. To do that, we consider each
process q ∈ P to which e will be propagated (i.e., β (q) �= ⊗). The time stamp of e
should be larger than the time stamp of any other write event e′ on x that has been
propagated to q up to the current point (since e should be larger in the coherence
order than e′). Notice that by construction the time stamp of the largest such event
e′ is currently stored in α (q, x, β (q)). Moreover, in line 18, we check that the event
is propagated to q in a context in which p is active.

Updating. The for-loop of line 19 uses the values guessed above for updating the
global data structure α. More precisely, if the event e is propagated to a process q,
i.e., β (q) �= ⊗, then we add β to the summary of the time stamps of the sequence of
write operations on x propagated to q up to the current point in the context β (q).
Lines 22–23 assign the value exp to μ (p, x, β (q)) and ν (p, x) respectively. Recall
that the former stores the value defined by the latest write event on x propagated
to q up to the current point in the context β (q), and the latter stores the value
defined by the latest write on x by p.

Read Instructions. Consider a read instruction i in a process p ∈ P whose state-
ment is of the form $r ← x. The translation of i is shown in Algorithm 2. The code
simulates an event e running i by encoding the three inference rules Local-Read,
Prop-Read, and Com-Read. In a similar manner to a write instruction, the transla-
tion scheme for a read instruction consists of guessing, checking and update parts.
Notice however that the initialization of the read event is carried out through two
different inference rules.

Guessing. In line 1, we store the old value of iR (p, x). In line 2, we guess the con-
text in which the event e will be initialized, and store the guessed context both in
iR (p, x) and iReg ($r). Recall that the latter records the initializing context of the
latest read event loading a value to $r. In lines 3–4, we execute similar instructions
for committing (rather than initializing).

Checking. Lines 5–8 perform the sanity checks for iR (p, x). Lines 5–6 check that
the initializing context for the event e is not smaller than the current context and

70 P.A. Abdulla et al.

the initialization happens in a context in which p is active. Line 7 makes sure that
at least one of the two inference rules Local-Read and Prop-Read is satisfied, by
checking that the closest write event CW (c, e) (if it exists) has already been ini-
tialized. In line 8, we satisfy RdCnd in the rule Com-Read. Lines 9–11 perform the
sanity checks for cR (p, x) in a similar manner to the corresponding instructions
for write events (see above).

Updating. The purpose of the update part (the if-statement of line 12) is to ensure
that the correct read-from relation is defined as described by the inference rules
Local-Read and Prop-Read. If iR (p, x) < cW (p, x), then this means that the latest
write event e′ on x by p is not committed and hence, according to Local-Read, the
event e reads its value from that event. Recall that this value is stored in ν (p, x).
On the other hand, if iR (p, x) ≥ cW (p, x) then the event e′ has been committed
and hence, according to Prop-Read, the event e reads its value from the latest write
event on x propagated to p in the context where e is initialized. We notice that this
value is stored in μ (p, x, iR (p, x)).

Verifier Process. The verifier process makes sure that the updated value α of
the time stamp at the end of a given context k : 1 ≤ k ≤ K − 1 is equal to the
corresponding guessed value αinit at the start of the next context. It also performs
the corresponding checking for the values written on the variables (by comparing
μ and μinit). Finally, it checks whether we reach an error label λ or not.

4 Experimental Results

In order to evaluate the efficiency of our approach, we have implemented a context-
bounded model checker for programs under POWER, called power2sc1. We use
cbmc version 5.1 [17] as the backend tool. However, observe that our code-to-code
translation can be implemented on the top of any backend tool that provides safety
verification of concurrent programs running under the SC semantics. In the fol-
lowing, we present the evaluation of power2sc on 28 C/pthreads benchmarks col-
lected from goto-instrument [9], nidhugg [6], memorax [5], and the SV-COMP17
bechmark suit [1]. These are widespread medium-sized benchmarks that are used
by many tools for analyzing concurrent programs running under weak memory
models (e.g. [2–4,7,8,10,12–15,22,24,37,40]). We divide our results in two sets.
The first set concerns unsafe programs while the second set concerns safe ones. In
both parts, we compare results obtained from power2sc to the ones obtained from
goto-instrument and nidhugg, which are, to the best of our knowledge, the only two
tools supporting C/pthreads programs under POWER2. All experiments were run
on a machine equipped with a 2.4 GHz Intel x86-32 Core2 processor and 4 GB
RAM.

Table 1a shows that power2sc performs well in detecting bugs compared to the
other tools for most of the unsafe examples. We observe that power2sc manages to

1 https://www.it.uu.se/katalog/tuang296/mguess.
2 cbmc previously supported POWER [10], but has withdrawn support in later versions.

https://www.it.uu.se/katalog/tuang296/mguess

Context-Bounded Analysis for POWER 71

Table 1. Comparing ➂ power2sc with ➀ goto-instrument and ➁ nidhugg on two sets of
benchmarks: (a) unsafe and (b) safe (with manually inserted synchronizations). The LB
column indicates whether the tools were instructed to unroll loops up to a certain bound.
The CB column gives the context bound for power2sc. The program size is the number
of code lines. A t/o entry means that the tool failed to complete within 1800 s. The best
running time (in seconds) for each benchmark is given in bold font.

(a) (b)

Program/size LB ➀ ➁ ➂ Program/size LB ➀ ➁ ➂

Time Time Time CB Time Time Time CB

Bakery/76 [5] 8 226 t/o 1 3 Bakery/85 [5] 8 t/o t/o 70 3

Burns/74 [5] 8 t/o t/o 1 3 Burns/79 [5] 8 t/o t/o 1018 3

Dekker/82 [1] 8 t/o t/o 1 2 Dekker/88 [1] 8 t/o t/o 1158 2

Sim Dekker/69 [5] 8 12 t/o 1 2 Sim Dekker/73 [5] 8 209 t/o 14 2

Dijkstra/82 [5] 8 t/o t/o 5 3 Dijkstra/88 [5] 8 t/o t/o t/o 3

Szymanski/83 [1] 8 t/o t/o 1 4 Szymanski/93 [1] 8 t/o t/o 89 4

Fib bench 0/36 [1] - 2 1101 6 6 Fib bench 1/36 [1] - 9 t/o 5 6

Lamport/109 [1] 8 t/o 1 1 3 Lamport/119 [1] 8 t/o t/o t/o 3

Peterson/76 [1] 8 25 1056 1 3 Peterson/84 [1] 8 928 t/o 7 3

Peterson 3/96 [5] 8 t/o 1 3 4 Peterson 3/111 [5] 8 t/o t/o 348 4

Pgsql/69 [9] 8 1079 1 1 2 Pgsql/73 [9] 8 1522 2 38 2

Pgsql bnd/71 [6] - t/o 1 1 2 Pgsql bnd/75 [6] - t/o t/o 10 2

Tbar 2/75 [5] 8 16 1 1 3 Tbar 2/80 [5] 8 t/o 332 29 3

Tbar 3/94 [5] 8 104 1 1 3 Tbar 3/103 [5] 8 t/o t/o 138 3

find all the errors using at most 6 contexts while nidhugg and goto-instrument time
out to return the errors for several examples. This also confirms that few context
switches are sufficient to find bugs. Table 1b demonstrates that our approach is
also effective when we run safe programs. power2sc manages to run most of the
examples (except Dijkstra and Lamport) using the same context bounds as in the
case of their respective unsafe examples. While nidhugg and goto-instrument time
out for several examples, they do not impose any bound on the number of context
switches while power2sc does.

We have also tested the performance of power2sc with respect to the verifica-
tion of small litmus tests. power2sc manages to successfully run all 913 litmus tests
published in [34]. Furthermore, the output result returned by power2sc matches
the ones returned by the tool herd [11] in all the litmus tests.

References

1. SV-COM17 benchmark suit (2017). https://sv-comp.sosy-lab.org/2017/
benchmarks.php

2. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 28

https://sv-comp.sosy-lab.org/2017/benchmarks.php
https://sv-comp.sosy-lab.org/2017/benchmarks.php
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28

72 P.A. Abdulla et al.

3. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: The benefits of duality in veri-
fying concurrent programs under TSO. In: CONCUR. LIPIcs, vol. 59, pp. 5:1–5:15.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

4. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Auto-
matic fence insertion in integer programs via predicate abstraction. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 164–180. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33125-1 13

5. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28756-5 15

6. Abdulla, P.A., Atig, M.F., Jonsson, B., Leonardsson, C.: Stateless model checking
for POWER. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
134–156. Springer, Cham (2016). doi:10.1007/978-3-319-41540-6 8

7. Abdulla, P.A., Atig, M.F., L̊ang, M., Ngo, T.P.: Precise and sound automatic
fence insertion procedure under PSO. In: Bouajjani, A., Fauconnier, H. (eds.)
NETYS 2015. LNCS, vol. 9466, pp. 32–47. Springer, Cham (2015). doi:10.1007/
978-3-319-26850-7 3

8. Abdulla, P.A., Atig, M.F., Ngo, T.-P.: The best of both worlds: trading efficiency
and optimality in fence insertion for TSO. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 308–332. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46669-8 13

9. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 28

10. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 9

11. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation, test-
ing, and data mining for weak memory. ACM TOPLAS 36(2), 7:1–7:74 (2014)

12. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 9

13. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness against
TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 533–553.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-37036-6 29

14. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of con-
current data types on relaxed memory models. In: PLDI, pp. 12–21. ACM (2007)

15. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 12

16. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory
models. In: ISSTA, pp. 122–132. ACM (2011)

17. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

18. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935,
pp. 84–104. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 7

http://dx.doi.org/10.1007/978-3-642-33125-1_13
http://dx.doi.org/10.1007/978-3-642-28756-5_15
http://dx.doi.org/10.1007/978-3-642-28756-5_15
http://dx.doi.org/10.1007/978-3-319-41540-6_8
http://dx.doi.org/10.1007/978-3-319-26850-7_3
http://dx.doi.org/10.1007/978-3-319-26850-7_3
http://dx.doi.org/10.1007/978-3-662-46669-8_13
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1007/978-3-642-22110-1_9
http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://dx.doi.org/10.1007/978-3-540-70545-1_12
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-38856-9_7

Context-Bounded Analysis for POWER 73

19. Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Effective abstractions for verifica-
tion under relaxed memory models. Comput. Lang. Syst. Struct. 47(Part 1), 62–76
(2017)

20. Demsky, B., Lam, P.: Satcheck: sat-directed stateless model checking for SC and
TSO. In: OOPSLA 2015, pp. 20–36. ACM (2015)

21. Derevenetc, E., Meyer, R.: Robustness against power is PSpace-complete.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP
2014. LNCS, vol. 8573, pp. 158–170. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43951-7 14

22. Huang, S., Huang, J.: Maximal causality reduction for TSO and PSO. In: OOPSLA
2016, pp. 447–461 (2016)

23. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.
In: FMCAD, pp. 111–119. IEEE (2010)

24. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for relaxed
memory models. In: PLDI, pp. 187–198. ACM (2011)

25. Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02658-4 36

26. Lahav, O., Vafeiadis, V.: Explaining relaxed memory models with program trans-
formations. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 479–495. Springer, Cham (2016). doi:10.1007/
978-3-319-48989-6 29

27. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequen-
tial analysis. FMSD 35(1), 73–97 (2009)

28. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. C–28(9), 690–691 (1979)

29. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis
for relaxed memory models. In: PLDI 2012, pp. 429–440. ACM (2012)

30. Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave, J., Owens, S.,
Alur, R., Martin, M.M.K., Sewell, P., Williams, D.: An axiomatic memory
model for POWER multiprocessors. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 495–512. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31424-7 36

31. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of mul-
tithreaded programs. In: PLDI, pp. 446–455. ACM (2007)

32. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 391–407. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 27

33. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31980-1 7

34. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: PLDI, pp. 175–186. ACM (2011)

35. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. CACM 53, 89–97 (2010)

36. Tomasco, E., Lam, T.N., Fischer, B., La Torre, S., Parlato, G.: Embedding weak
memory models within eager sequentialization (2016). http://eprints.soton.ac.uk/
402285/

http://dx.doi.org/10.1007/978-3-662-43951-7_14
http://dx.doi.org/10.1007/978-3-662-43951-7_14
http://dx.doi.org/10.1007/978-3-642-02658-4_36
http://dx.doi.org/10.1007/978-3-642-02658-4_36
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-319-48989-6_29
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-540-31980-1_7
http://eprints.soton.ac.uk/402285/
http://eprints.soton.ac.uk/402285/

74 P.A. Abdulla et al.

37. Tomasco, E., Lam, T.N., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy
sequentialization for TSO and PSO via shared memory abstractions. In: FMCAD
2016, pp. 193–200 (2016)

38. Travkin, O., Wehrheim, H.: Verification of concurrent programs on weak memory
models. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 3–24.
Springer, Cham (2016). doi:10.1007/978-3-319-46750-4 1

39. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: a framework for
axiomatic and executable specifications of memory consistency models. In: IPDPS.
IEEE (2004)

40. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed mem-
ory models. In: PLDI, pp. 250–259. ACM (2015)

http://dx.doi.org/10.1007/978-3-319-46750-4_1

Run-Time Verification and Logic

Rewriting-Based Runtime Verification
for Alternation-Free HyperLTL

Noel Brett, Umair Siddique, and Borzoo Bonakdarpour(B)

Department of Computing and Software, McMaster University, Hamilton, Canada
borzoo@mcmaster.ca

Abstract. Analysis of complex security and privacy policies (e.g., infor-
mation flow) involves reasoning about multiple execution traces. This
stems from the fact that an external observer may gain knowledge about
the system through observing and comparing several executions. Moni-
toring of such policies is in particular challenging because most existing
monitoring techniques are limited to the analysis of a single trace at run
time. In this paper, we present a rewriting-based technique for runtime
verification of the full alternation-free fragment of HyperLTL, a tempo-
ral logic for specification of hyperproperties. The distinguishing feature
of our proposed technique is its space complexity, which is independent
of the number of trace quantifiers in a given HyperLTL formula.

1 Introduction

Dependability and reliability are two crucial aspects of any computing system
that deals with cybersecurity. This is because even a short transient violation
of security or privacy policies may result in leaking private or highly sensitive
information, compromising safety, or lead to the interruption of vital public or
social services. One approach to gain confidence about the well-being of such a
system is to continuously monitor it with respect to a set of formally specified
requirements that system should meet at all times. This approach is commonly
known as runtime verification (RV).

We start with the premise that existing RV techniques cannot monitor a
large but vital class of the security and privacy polices, e.g., information flow.
Take, for instance, the non-interference policy [12], where a low user should not
be able to acquire any information about the activities (if any) of the high user
by observing independent execution traces. Monitoring this policy would require
observing and reasoning about multiple execution traces, whereas existing RV
techniques are limited to evaluating only one trace at run time.

In order to specify security and privacy policies, we focus on HyperLTL [8],
a temporal logic for expressing hyperproperties [9]. A hyperproperty is a set
of sets of execution traces. HyperLTL adds explicit and simultaneous quan-
tification over multiple traces to the standard LTL. HyperLTL significantly
extends the range of security policies under consideration, including complex

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 77–93, 2017.
DOI: 10.1007/978-3-662-54580-5 5

78 N. Brett et al.

t1 C1

t2 C2

t3 C3

tm Cm

∧m
i=1 Ci

Snapshot

Verdict

(a) Monitor Overview

Γ
Bookkeeping

ϕ

Rewriting

ti

ϕr

Observer

Constraint Ci

ϕr

Observer

Rewriting

(b) Constraint Generation for Single Trace

Fig. 1. RV framework for HyperLTL

information-flow properties like generalized non-interference, declassification,
and quantitative non-interference. For example, the following is a HyperLTL
formula:

ϕ = ∀π.∀π′. aπ → Fbπ′

It states that for any pair of traces π and π′, if proposition a holds in the initial
state of π, then proposition b should eventually hold in trace π

′
. To describe the

challenges in monitoring HyperLTL specifications, consider formula ϕ and two
traces t = cde and t′ = acddb. These traces individually (e.g., if π and π′ are both
instantiated by t), satisfy the formula, but collectively (e.g., if π is instantiated
by t and π′ by t′) do not. If a monitor first observes trace t and then t′, it has
to somehow remember that b never occurred in t and declare violation as soon
as it observes a in the initial state of t′. Thus, a HyperLTL monitor has to be
memeoryful; i.e., the monitoring algorithm has to be able to memorize the status
of propositions of interest in the past traces to be able to reason about current
and future traces.

With this motivation, in this paper, we introduce a novel RV algorithm
for monitoring the alternation-free fragment of (i.e., ∀∗ and ∃∗) HyperLTL (in
Sect. 4, we will argue that alternating formulas cannot be monitored using a
runtime technique only). Our algorithm takes as input a formula ϕ and a finite
but unbounded-size set T of finite traces (see Fig. 1(a)). The traces in T can
be produced by multiple sequential terminating or concurrent executions of a
system under inspection. This means that the traces in T can grow in number
and/or length at run time. The algorithm works as follows (see Fig. 1(b)):

– First, given ϕ, it identifies the propositions and possibly simple Boolean
expressions that need bookkeeping using a function Γ.

– Then, for each trace ti ∈ T , by incorporating the elements returned by Γ, the
monitor generates a constraint Ci. This constraint basically encapsulates two
things. It

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 79

1. encodes what the monitor has observed in ti with respect to the elements
returned by Γ, so it can reason about new incoming traces as well as
existing traces growing in length, and

2. rewrites the inner LTL formula in ϕ using Havelund and Rosu’s algo-
rithm [13] and obtains a formula ϕr.

Hence, the resulting constraint Ci encodes the full memory of all relevant
things that has occurred in ti.

– At any point of time, the conjunction
∧m

i=1 Ci where m is the number of traces
being monitored, determines the current RV verdict (see Fig. 1(a)). That is, the
result of simplification of the conjunction shows whether ϕ has been satisfied,
violated, or currently impossible to tell (i.e., it can go either way in the future).

Finally, we note that although the number and length of the generated con-
straints are theoretically unbounded, this can be prevented by making practical
assumptions. One example is to incorporate a synchronization mechanism that
ensures that the difference in length of traces do not grow over a certain bound.
Furthermore, the complexity of our algorithm is detached from the number of
trace quantifiers in a given HyperLTL formula.

Organization. The rest of the paper is organized as follows. Section 2 presents
the syntax and semantics of HyperLTL. In Sect. 3, we introduce our finite seman-
tics for HyperLTL. Section 4 discusses challenges in monitoring HyperLTL for-
mulas. Subsequently, the components of our RV algorithm are presented in
Sects. 5 and 6. Related work is discussed in Sect. 7. Finally, we make concluding
remarks and discuss future work in Sect. 8.

2 Background

Let AP be a finite set of atomic propositions and Σ = 2AP be the finite alphabet.
We call each element of Σ a letter (or an event). Throughout the paper, Σω

denotes the set of all infinite sequences (called traces) over Σ, and Σ∗ denotes
the set of all finite traces over Σ. For a trace t ∈ Σω (or t ∈ Σ∗), t[i] denotes
the ith element of t, where i ∈ Z≥0. Also, t[0, i] denotes the prefix of t up to and
including i, and t[i,∞] is written to denote the infinite suffix of t beginning with
element i. By, |t| we mean the length of (finite or infinite) trace t.

Now, let u be a finite trace and v be a finite or infinite trace. We denote the
concatenation of u and v by σ = uv. Also, u ≤ σ denotes the fact that u is a
prefix of σ. Finally, if U is a set of finite traces and V is a finite or infinite set of
traces, then the prefix relation ≤ on sets of traces is defined as:

U ≤ V ≡ ∀u ∈ U. (∃v ∈ V. u ≤ v)

Note that V may contain traces that have no prefix in U .

80 N. Brett et al.

2.1 HyperLTL

Clarkson and Schneider [9] proposed the notion of hyperproperties as a means
to express security policies that cannot be expressed by traditional properties.
A hyperproperty is a set of sets of execution traces. Thus, a hyperproperty
essentially defines a set of systems that respect a policy. HyperLTL [8] is a logic
for syntactic representation of hyperproperties. It generalizes LTL by allowing
explicit quantification over multiple execution traces simultaneously.

Syntax. The set of HyperLTL formulas is inductively defined by the grammar
as follows:

ϕ:: = ∃π.ϕ | ∀π.ϕ | φ

φ:: = aπ | ¬φ | φ ∨ φ | φUφ | Xφ

where a ∈ AP and π is a trace variable from an infinite supply of variables V.
Similar to LTL, U and X are the ‘until’ and ‘next’ operators, respectively. Other
standard temporal connectives are defined as syntactic sugar as follows: ϕ1 →
ϕ2 = ¬ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), true = aπ ∨ ¬aπ, false = ¬true,
Fφ = trueUφ, and Gφ = ¬F¬φ. Quantified formulas ∃π and ∀π are read as
‘along some trace π’ and ‘along all traces π’, respectively.

Semantics. A formula ϕ in HyperLTL satisfied by a set of traces T is written
as Π |=T ϕ, where trace assignment Π : V → Σω is a partial function mapping
trace variables to traces. Π[π → t] denotes the same function as Π, except that π
is mapped to trace t. The validity judgment for HyperLTL is defined as follows:

Π |=T ∃π.ϕ iff ∃t ∈ T.Π[π → t] |=T ϕ
Π |=T ∀π.ϕ iff ∀t ∈ T.Π[π → t] |=T ϕ
Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬φ iff Π �|=T φ
Π |=T φ1 ∨ φ2 iff (Π |=T φ1) ∨ (Π |=T φ2)
Π |=T Xφ iff Π[1,∞] |=T φ
Π |=T φ1 Uφ2 iff ∃i ≥ 0. (Π[i,∞] |=T φ2 ∧

∀j ∈ [0, i).Π[j,∞] |=T φ1)

where the trace assignment suffix Π[i,∞] denotes the trace assignment Π′ =
Π(π)[i,∞] for all π. If Π |=T φ holds for the empty assignment Π, then T
satisfies φ.

Example. Non-interference (NI) security policy requires any pair of traces with
the same initial low observation to remain indistinguishable for low users, yet
low inputs will be unaltered, irrespective of the the high inputs. This policy can
be specified by the following HyperLTL formula:

∀π.∀π′.(GλH(π′) ∧ G¬(
∧

a∈H

aπ ↔ aπ′)) → G(
∧

a∈L

aπ ↔ aπ′)

Where GλH(π′) denotes all the high variables in π′ that hold the value λ, and
H and L are the high and low variables in their respected security levels.

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 81

3 Finite Semantics for HyperLTL

In this section, we present our finite semantics for HyperLTL, inspired by the
finite semantics of LTL [15]. For a finite trace t, let t[i, j] denote the subtrace of
t from position i up to and including position j:

t[i, j] =

{
ε if i > |t|
t[i,min(j, |t| − 1)] otherwise

where ε is the empty trace. We let t[i, ..] denote t[i, |t| − 1].
Let trace assignment ΠF : V → Σ∗ be a partial function mapping trace

variables to finite traces. Similar to the infinite semantics, ΠF [π → t] denotes
the same function as ΠF , except that π is mapped to finite trace t. We consider
two truth values for the finite semantics: � and ⊥. To distinguish finite from
infinite semantics, we use [ΠF |=T ϕ] to denote the valuation of HyperLTL
formula ϕ for a set T of finite traces. The finite semantics for Boolean operators
‘∨’ and ‘¬’ as well as for the trace quantifiers ‘∀’ and ‘∃’ are identical to those
of infinite semantics. We define the finite semantics of HyperLTL for temporal
operators as follows:

[ΠF |=T ∀/∃π.ϕ] =

{
� if ∀/∃t ∈ T.[ΠF [π → t] |=T ϕ] = �
⊥ otherwise

[ΠF |=T φ1 ∨ φ2] =

{
⊥ if [ΠF |=T φ1] = ⊥ ∧ [ΠF |=T φ2] = ⊥
� otherwise

[ΠF |=T ¬φ] =

{
⊥ if [ΠF |=T φ] = �
� otherwise

[ΠF |=T Xϕ] =

{
[ΠF [1, ..] |=T ϕ] if Π[1, ..]
= ε

⊥ otherwise

[
ΠF |=T X̄ϕ

]
=

{
[ΠF [1, ..] |=T ϕ] if Π[1, ..]
= ε

� otherwise

[ΠF |=T ϕ1 Uϕ2] =

⎧
⎪⎨
⎪⎩

� if ∃i ≥ 0 : ΠF [i, ..]
= ε ∧ [ΠF [i, ..] |=T ϕ2] = � ∧
∀j ∈ [0, i) : [ΠF [j, ..] |=T ϕ1] = �

⊥ otherwise

where X̄ denotes the ‘weak next’ operator.

82 N. Brett et al.

Example. Consider formula φ = ∀π1.∀π2. aπ1 U bπ2 and T = {t1 = aaab, t2 =
aab, t3 = aab}. Although traces t1, t2, and t3 individually satisfy the formula φ,
we have [ΠF |=T ϕ] = ⊥, as there does not exist a position, where each pair of
traces agree on the position of b. Now consider formula ϕ′ = ∀π1.∀π2.Faπ1 ∧Fbπ2

and let T ′ = {∗ ∗ a ∗ b, ∗ b ∗ ∗a}. We have [ΠF |=T ′ ϕ′] = �.

4 Challenges in Monitoring HyperLTL Formulas

Let us assume we are to monitor a finite but unbounded-size set T of finite
traces with respect to a HyperLTL formula ϕ. The traces in T can be produced
by multiple sequential terminating or concurrent executions of a system under
inspection. This means that traces in T can grow in number and/or length at
run time. Unlike conventional runtime monitoring techniques, where verification
decision only depends upon one current execution, monitoring T for ϕ may
depend on the past, future, or concurrent evolution of the traces in T . Thus,
a monitor for ϕ needs to bookkeep the occurrence (and even not occurrence)
of certain events to be able to reason about ϕ at run time. In the following,
we outline a set of challenges which need to be addressed in order to develop a
monitoring algorithm.

Alternating Formulas. Let ϕ = ∀π.∃π′.ψ. Verifying this formula requires us to
show that for all traces in T , there exists a trace that satisfies ψ. However, since
the number of traces in T may grow, a runtime monitor can never prove or
disprove ϕ. This argument holds in general for ∀∗∃∗ and ∃∗∀∗ formulas. This is
the main reason that in the remainder of this paper, we will only focus on the
alternation-free fragment of HyperLTL. Observe that for ∀∗ (respectively, ∃∗)
formulas, it is possible to compute verdict ⊥ (respectively, �) at run time.

Inter-trace Dependencies. Reasoning about ϕ by observing individual traces
in T is clearly not sufficient. Progression through traces in T requires to keep
information about the past or concurrent traces in T . One root cause of this is due
to the existence of a disjunction in ϕ involving two distinct trace variables. For
example, let φ = ∀π1.∀π2. aπ1 → Fbπ2 . Now, consider two traces t1 = dcf and
t2 = aeb, where AP = {a, b, c, d, e, f}. Note that traces t1 and t2, individually
satisfy ϕ, but they collectively violate ϕ, as event b does not occur in t1.

Time of Occurrence of Events. Reasoning about some formulas requires book-
keeping the time of occurrence of some propositions in each trace. For example,
consider formula ϕ1 = ∀π1.∀π2. aπ1 U bπ2 and traces t1 = aab, t2 = ab, and
t3 = aaaab. Although, each trace individually satisfies the formula, any pair
of them violates the formula, as event b occurs at different times. This can
become even more complex when the occurrence of some propositions needs to
agree across multiple traces and multiple times. An example of such a formula
is ϕ2 = ∀π1.∀π2.∀π3. (aπ1 U bπ2) U cπ3 , where the first occurrence of c and
every occurrence of b need to be agreed across all traces in T . For example,

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 83

for traces t1 = (ab)a(ac)(ac)b, t2 = (ab)a(ac)(a)(b), and t3 = a(ac)(ac)b,
traces t1 and t2 agree on times of occurrence of b and c, but trace t3 vio-
lates this agreement, thus violating formula ϕ2. Yet other examples are formula
ϕ3 = ∀π1.∀π2. G(aπ1 → aπ2) (which requires all traces to agree on each occur-
rence of a) and the non-interference formula discussed in Sect. 2.

5 Identifying Propositions of Interest

The challenges and examples outlined in Sect. 4 suggest that monitoring a Hyper-
LTL formula requires the identification of propositions which shape the trace
agreement to be followed amongst distinct traces. We call this process bookkeep-
ing, denote BK as a set of all elements which require bookkeeping, and Γ as the
function that computes BK.

We note that only the structure of the HyperLTL formula contributes to the
elements of BK. More precisely, the ‘until’ operator is the main contributor to
BK, as its semantics (in particular, the existential quantifier) may delineate the
existence of an index for satisfaction of some propositions across multiple traces.
Moreover, we may need to bookkeep Boolean expressions (and not just atomic
propositions). We may prefix elements of BK by either # or X. Prefixing an
element by # means that only the first occurrence of the element needs to be
bookkept. Prefixing by X means that bookkeeping starts from the next state.

Examples. In formula ∀π1.∀π2.∀π3.(aπ1 Ubπ2)Ucπ3 , we will have BK = {b,#c},
meaning every occurrence of b and only the first occurrence of c should be memo-
rized. For formula ∀π1.∀π2.aπ1 U (bπ2 ∨ cπ2), we have BK = {#(b ∨ c)}. However,
for formula ∀π1.∀π2.∀π3.aπ1 U (bπ2 ∨ cπ3), we have BK = {#b,#c}. Finally, for
formula ∀π.∀π′.X(aπ Ubπ′), we will have BK = {X#b}.

Our bookkeeping recursive function Γ takes as input a HyperLTL formula, a
set of trace variables V (initially empty), and a Boolean value (initially false), and
it returns as output the set BK, defined in Fig. 2. The function works as follows.
The first three cases are straightforward, as a HyperLTL formula involving only
a proposition requires bookkeeping if it is under the scope of an ‘until’ operator,
whereas operators ¬ and X allow the recursive application of Γ function to the
formula φ. The symbol � denotes the application of unary operators (¬, # and
X) to the elements of set BK (e.g., ¬ � {a, b} = {¬a,¬b}).

The next case φ1Uφ2, we require further matching on the structure of both
φ1 and φ2, as follows:

– (Case 1: Both operands are propositions). In this case, Γ returns {#b}
if π and π′ are bound by different quantifiers or removing π′ from V does
not result in an empty set. Otherwise, Γ returns the empty set. For example,
consider two formulas ∀π1.aπ1 U bπ1 and ∀π1.∀π2.aπ1 U bπ2 . The first formula
does not require any trace agreement whereas the second does require a trace
agreement due to the scope of the trace quantifiers.

84 N. Brett et al.

Fig. 2. Bookkeeping function Γ

– (Case 2: Only the left operand is a proposition). In this case, we store
the trace variable associated with a in set V and invoke Γ recursively to for-
mula φ2. We also set the value of Boolean variable k to true which indi-
cates that the original formula φ includes an ‘until’ operator. For example,
for formula ∀π.aπ U (bπUcπ), recursing through Γ will result in an empty
set since there were no variations in the trace variables, whereas for formula
∀π1.∀π2.aπ1 U (bπ1 U cπ2), the Γ function will simply return {#c}.

– (Case 3: None of the operands are propositions). In this case, we recurse
through φ1 only if it contains an ‘until’ operator, where trace vars(φ) denotes
the set of trace variables found in φ. Furthermore, we recurse through φ2 and
indicate that any elements produced need to be tracked only once (i.e., their
first occurrence). Moreover, we prefix the recursion of Γ on φ1 by symbol
#−1, which helps to remove the prefix # for elements which require tracking
more than once. The result will consist of the union of both produced sets.
For example, for formula ∀π1.∀π2.∀π3.∀π4.(aπ1Ubπ2)U(cπ3Udπ4), we have

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 85

BK = {b,#d}. Note that expressions #−1#a and ##b are equivalent to a
and #b, respectively.

The last inductive case includes an ‘or’ (∨), which also requires further match-
ing on the structure of formulas φ1 and φ2. Here, we consider the condition of
k, which reflects the case when φ1 ∨ φ2 is under the scope of an ‘until’ operator.
For example, formula ∀π1.∀π2.aπ1 U (bπ2 ∨ cπ2). The application of Γ function
will result in Γ(bπ2 ∨ cπ2 ,V, k := true), which further results in {#(b ∨ c)}. On
the contrary, the case of formula ∀π1.∀π2.∀π3.aπ1 U (bπ2 ∨ cπ3), the Γ function
will return {#b,#c} due to the disparity of trace variables.

Theorem 1 (Soundness and optimality of Γ function). Given a HyperLTL
formula ϕ and assuming we have set T such that [ΠF |=T ϕ] = � then

– Γ function returns all the propositions required for bookkeeping.
– Given the set BK, every element k ∈ BK is included in some trace agreement

described by ϕ.

6 Monitoring Algorithm

6.1 Algorithm Sketch

Given an alternation-free HyperLTL formula ϕ of the form ∀∗, our algorithm
consists of the following elements:

1. Monitor: In order to monitor ϕ, we begin by intaking an event for a particular
trace and begin to generate the constraints. At any point of time, we can take
a snapshot of our system and utilize our satisfaction function SAT to find the
RV verdict (see Fig. 1(a)).

2. Constraint Handler: Next, we manipulate ϕ according to its structure.
Disjunctions are divided and treated separately to detect which half
prompted the satisfaction. Each sub-formula of the disjunction is then sub-
ject to ConstraintRewriting. Temporal formulas without disjunction do not
undergo any manipulation before being sent to ConstraintRewriting.

3. Constraint Rewriting: Initially, ϕ is stripped of its quantifiers. This allows for
rewriting using the technique in [22] to evaluate the altered formula ϕr. The
events are examined against the propositions or Boolean expressions in BK
and the satisfaction of ϕr to generate the corresponding constraints.

4. Satisfaction of Function SAT: On each invocation of the SAT function, we com-
pute the conjunction of all the constraints collectively. If SAT returns false,
then ϕ is violated. Otherwise, the constraints are further checked for possible
refinement by checking the membership of other generated constraints.

Observe that a formula of the form ∀∗ cannot be evaluated to �. This would
require the full set of all possible system traces, which is not possible at run time.
We note that monitoring a formula of the form ∃∗ can be achieved by simply
monitoring its negation which would be of the form ∀∗.

86 N. Brett et al.

6.2 Algorithm Details

We utilize the following HyperLTL formula as a running example to demonstrate
the steps of our proposed algorithm.

∀π1.∀π2.∀π3.∀π4. ((aπ1 ∨ bπ2)U cπ3) ∨ dπ4

where AP = {a, b, c, d}. We now describe the algorithm in detail which leads to
the overview of Fig. 1.

Algorithm 1 (HyperLTL Monitor). This is our main monitoring algorithm
which is comprised of a while loop. We continue to iterate as long as new events
associated with a trace come in and until we find a violation. On Lines 2–3,
we check for a new trace and then add it to our set of traces M . Given
that the incoming event is associated with some trace tj , at Line 4, we call
ConstraintsHandler for tj , which returns constraint Cj . Lines 5–6 deal with
the process of taking a snapshot of our system to determine the RV verdict using
function SAT. Finally, if the returned value from function SAT is false (Lines
7–9), then we have found a violation and return ⊥ (Line 10). Otherwise, we
continue to iterate through the while loop.

Algorithm 2 (Constraint Handler). In this algorithm, we treat the given
HyperLTL formula according to its structure. The algorithm is recursively
applied to the given formula based on different cases. The first block of the
algorithm (Lines 1–10) handles the case (ϕ = φ1 ∨ φ2), where the given (sub-)
formula is a disjunction. In particular, we call ConstraintsHandler function
for both φ1 and φ2 (Lines 2–3). We also need to pass the information about the
elements of BK which are associated with φ1 and φ2 (as given by BKφi

). In our
running example, we have φ1 = ((aπ1 ∨ bπ2)U cπ3) and φ2 = dπ4 . In case both
values from previous steps are false, then we have found a violation and the
algorithm returns false (Lines 4–5). On the other hand, if one of the values from
Lines 2 and 3 is a constraint, then we return the corresponding constraint (Lines
6–7). Moreover, if both values have generated constraints, we return them both
(Lines 10) meaning that any one of them can influence the verdict in future.

Next block in the algorithm (Lines 12–22) handles the case when the input
formula contains an ‘until’ operators with a disjunction on the left operand with
a disparity in corresponding trace quantifiers. We invoke ConstraintsHandler
function for both operands of ‘∨’; i.e., φL and φR (Lines 13–14). In our running
example, φ1 = ((aπ1 ∨ bπ2)U cπ3) matches this case and aπ1 and bπ2 will go
through ConstraintsHandler. If both values in Lines 13 and 14 result in false,
then the formula has been violated and we return false.

However, if only one of the sides returns some constraints, then we return
false and alternating constraint for further refinement (Lines 17–20). Finally,
if both sides satisfy the formula, then we return a combination of the returned
values of Lines 13 and 14. This allows us to refine the constraints from the
function SAT in Algorithm 4.

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 87

Algorithm 1. HyperLTL Monitor
Input: HyperLTL formula φ, BK,

set of incoming traces M
Output: λ = {⊥, ?}

1 while getEvent(ei, tm) do
2 if newIncomingTrace(tm) then
3 M ← M ∪ {tm}
4 Cm ← ConstraintsHandler (φ,

BK, ei)
5 Take a snapshot for constraints

C = {C1, C2, · · ·, Cm} at time
instant

6 β ← SAT(C)
7 if (β = false) then
8 λ ← ⊥
9 break

10 return (λ)

Algorithm 3. ConstraintRewriting
Input: HyperLTL formula ϕ, BK, ei

Output: Constraints r
1 r ← true

2 ϕr ← quantifier-elimination(ϕ)
3 ϕr ← REWRITE (ei, ϕr)
4 if (ϕr = false) then
5 return ϕr

6 for (each a ∈ BK s.t. ei � a) do
7 r ← r ∧ Xia
8 if (a = #a′) then
9 BK ← BK \ {a}

10 for (each a ∈ BK s.t. a = Xa′) do
11 BK ← (BK \ {a}) ∪ {a′}
12 return r

Algorithm 2. ConstraintsHandler
Input: HyperLTL formula φ, BK,

event ei

Output: {false, Set of Constraints}
1 if (φ = φ1 ∨ φ2) then
2 ψ1 ← ConstraintsHandler

(φ1, BKφ1 , ei)
3 ψ2 ← ConstraintsHandler

(φ2, BKφ2 , ei)
4 if (ψ1 = false ∧ ψ2 = false)

then
5 return (false)

6 else if (ψ1 = false) then
7 return (ψ2)

8 else if (ψ2 = false) then
9 return (ψ1)

10 else
11 return (ψ1, ψ2)

12 else if
(φ := φ1 U φ2 ∧ ((φ1 := φL ∨ φR) ∧
¬(samequantifiers(φL, φR))))
then

13 ψ1 ← ConstraintsHandler

(φLU φ2, BK, ei)
14 ψ2 ← ConstraintsHandler

(φRU φ2, BK, ei)
15 if (ψ1 = false ∧ ψ2 = false)

then
16 return (false)

17 else if (ψ1 = false) then
18 return (ψ2, false)

19 else if (ψ2 = false) then
20 return (false, ψ1)

21 else
22 return (ψ2, ψ1)

23 else
24 r ←

ConstraintRewriting(φ,BK,
ei)

25 if (r = false) then
26 return false

27 else
28 return r

The last part of the algorithm (Lines 24–28) invokes theConstraintRewriting
function which return the constraints for other types of formulas. For example, for-
mula ∀π1.∀π2.∀π3.∀π4.(aπ1Ubπ2)U (cπ3 U dπ4)) will directly undergo constraint
generation.

Algorithm 3 (Constraints Rewriting). This algorithm generates the con-
straints (denoted by r) by utilizing the elements of BK. We set the initial value
of r to true as we have no violation in the start of the monitoring process. We
strip off the quantifiers of our formula ϕ to convert into its corresponding LTL
form ϕr (Line 2). For example, ∀π1.∀π2.(aπ1 U bπ2) will be converted to (aU b).
Then, we apply REWRITE function to formula ϕr with the given event ei (Line 3).

88 N. Brett et al.

This function is essentially the rewriting algorithm by Havelund and Rosu [13]
(see Algorithm 5). If the event violates our formula then we immediately return
the violation (Lines 4–5).

If φ is not violated and if the event satisfies any object a ∈ BK, then a is
considered for our constraints (Line 6). Given the position of the event is i in a
trace, in Line 7 we administer Xi on a (i.e., Xia). The elements of BK which
are prefixed by “#” are removed from BK as we have indicated that their first
appearance is significant (Lines 8–9). In our running example, the invocation
of ConstraintRewriting for aπ1 U cπ3 with set BK = {#c} and consecutive
events of traces t1 = (ab)(ab)a(ad)c, t2 = a(abcd), t3 = c will result in r1 = X4c,
r2 = Xc and r3 = c, respectively.

The elements of BK with “X” operators are considered for upcoming events
by stripping one instance of “X” on that element (Lines 10–11). Indeed, the
presence of X’s in the elements of BK delays the observation and expose the
corresponding proposition to be observed for constraint generation in the sub-
sequent rounds. Finally, we return our generated constraint r.

Algorithm 4. SAT
Input: Constraint Matrix C
Output: λ = {false, ?}

1 Function SAT (C)
2 Initialize m′

3 columns ← max{|x| | x ∈ C}
4 existsConstrains ← false

5 for
(j ← 0; j < columns; j + +)
do

6 β ← ∧|M|
m=1 Cm[j]

7 if (β = false) then
8 dropColumn

9 else
10 m′ ←

largest constraint of column j

11 if (∃t ∈
C(t,j).¬memberof(t, m′)
then

12 dropColumn

13 else
14 existsConstrains ←

true

15 if
(existsConstraints = false)
then

16 return (false)

17 else
18 return (?)

Algorithm 5. REWRITE
Input: ϕr, e
Output: {true, false, φ}

1 match (ϕr) with
2 | (a) :
3 if (a ∈ e) then
4 return (true)

5 else if (a /∈ e) then
6 return (false)

7 | (true) :
8 return (true)
9 | (false) :

10 return (false)
11 | (φ1 ∨ φ2) :
12 return

(REWRITE(φ1, e) ∨
REWRITE(φ2, e))

13 | (φ1 U φ2) :
14 if (lastevent (e)) then
15 return

(REWRITE(φ2, e))

16 else
17 return

(REWRITE(φ2, e) ∨
(REWRITE(φ1, e) ∧
(φ1 U φ2)))

18 | (Xφ) :
19 if (lastevent (e)) then
20 return (false)

21 else
22 return

(REWRITE(φ, e))

Algorithm 4 (Satisfaction Function). The input of the SAT function is a set
consisting of the constraints associated with each trace, i.e., C = {C1, C2, . . . , Cm}.
We can imagine all these constraints as rows of a matrix. For our running example,

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 89

we will have Ci = [C(aπ1 U cπ3)
i , C

(bπ2 U cπ3)
i , C

dπ4
i] where i corresponds to ith trace

in M . We iterate through the columns for each of the traces and conjunct together
their constraints. If they evaluate to false, then we can drop the column as traces
have found a disagreement (Lines 3–8). If the conjunction is not false, we acquire
the longest constraintm′ of the corresponding column.We then check to see that no
constraints associated by other traces disagree by confirming that they are mem-
bers of m′ (Lines 10–11). If one of the constraints disagrees, then we drop the col-
umn, or else we have found an agreement of constraints between the traces (Lines
12–14). Finally, we return a violation if we were unable to find any agreement
within the constraints between traces (Lines 15–18).

Note that the process of dropping columns indeed results in a refined set
of constraints. Since the incoming traces can progress at various speeds, we
confirm that the constraints for “slower” traces are in-fact a member of the
“fastest” trace’s constraints. If no traces contradict the “fastest trace”, then this
suggests that no disagreement has yet emerged in the system. We resume taking
snapshots of the system until a violation is detected.

Theorem 2 (Correctness of Algorithm1). Let ϕ be a HyperLTL formula.
Algorithm1 returns ⊥ for an input set of traces T iff [ΠF |=T ϕ] = ⊥.

6.3 Discussion

Our algorithms reflect that the decision of appropriate consideration for propo-
sitions or Boolean expressions, paired with the effective structural division of a
HyperLTL formula, and provides an effective way to monitor complex HyperLTL
formulas. Additionally, we encode only the minimum information to check that
the agreement between traces is delineated according to the observed locations
of propositions or Boolean expressions.

A potential drawback of our RV technique is its theoretical unbounded mem-
ory requirement. However, this requirement does not influence the cases where
the verification is done offline. For online RV we can still use our algorithms for
by making practical assumptions. For example, we can incorporate a synchro-
nization mechanism amongst traces to ensure that the difference in length of
traces is not beyond some bound. We note that the worst case complexity of
Algorithm 1 is O(|t| · |T |), where |t| is the length of the longest trace in set T .
Interestingly, this complexity is independent from the number of trace quanti-
fiers in a given HyperLTL formula. Indeed, the set BK computed pre-runtime
by Γ function provides the means to avoid dependence on the trace quantifiers,
which otherwise is polynomial on the order of numbers of quantifiers. We believe
that our proposed algorithm is efficient enough to be adopted for the monitoring
of security policies in real-world applications.

Note that our proposed algorithm can only be used to monitor alternation-
free fragment (i.e., ∀∗ and ∃∗) of HyperLTL, which can express a wide class of
security policies including non-interference and declassification. However, speci-
fication of some security policies require alternation in the trace quantifiers. For
example, noninference [17] specifies that the behavior of low-variables should

90 N. Brett et al.

not change when all high variables are replaced by an arbitrary variable λ, given
as follows:

∀π.∃π′.(GλH(π′) ∧ G(
∧

a∈L

aπ ↔ aπ′)

Similarly, generalized non-interference (GNI) [16] also requires alternation in
trace quantifiers as it allows non-determinism in the low variables of the system.

7 Related Work

Static Analysis. Sabelfeld and Myers [24] survey the literature focusing on
static program analysis for enforcement of security policies. In some cases, with
compilers using Just-in-time compilation techniques and dynamic inclusion of
code at run time in web browsers, static analysis does not guarantee secure exe-
cution at run time. Type systems, frameworks for JavaScript [6] and ML [21] are
some approaches to monitor information flow. Several tools [11,18,19] add exten-
sions such as statically checked information flow annotations to Java language.
Clark and Hunt [7] present verification of information flow for deterministic inter-
active programs. On the other hand, our approach is capable of monitoring the
subset of hyperproperties described by alternation-free HyperLTL and not just
information flow without assistance from static analyzers. In [2], the authors pro-
pose a technique for designing runtime monitors based abstract interpretation
of the system under inspection.

Dynamic Analysis. Russo and Sabelfeld [23] concentrate on permissive tech-
niques for the enforcement of information flow under flow-sensitivity. It has been
shown that in the flow-insensitive case, a sound purely dynamic monitor is more
permissive than static analysis. However, they show the impossibility of such a
monitor in the flow-sensitive case. A framework for inlining dynamic informa-
tion flow monitors has been presented by Magazinius et al. [14]. The approach
by Chudnov and Naumann [5] uses hybrid analysis instead and argues that due
to JIT compilation processes, it is no longer possible to mediate every data and
control flow event of the native code. They leverage the results of Russo and
Sabelfeld [23] by inlining the security monitors. Chudnov et al. [4] again use
hybrid analysis of 2-safety hyperproperties in relational logic. In [1], the authors
propose an automata-based RV technique for monitoring only a disjunctive frag-
ment of alternation-free HyperLTL.

Austin and Flanagan [3] implement a purely dynamic monitor, however,
restrictions such as “no-sensitive upgrade” were placed. Some techniques deploy
taint tracking and labelling of data variables dynamically [20,26]. Zdancewic
and Myers [25] verify information flow for concurrent programs. Most of the
techniques cited above aim to monitor security policies described solely with
two trace quantifiers (without alternation), on observing a single run, whereas,
our work is for any hyperproperties that can be described with alternation-free
HyperLTL, when multiple runs are observed.

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 91

SME. Secure multi-execution [10] is a technique to enforce non-interference. In
SME, one executes a program multiple times, once for each security level, using
special rules for I/O operations. Outputs are only produced in the execution
linked to their security level. Inputs are replaced by default inputs except in exe-
cutions linked to their security level or higher. Input side effects are supported by
making higher-security-level executions reuse inputs obtained in lower-security-
level threads. This approach is sound in a deterministic language.

While there are small similarities between SME and our work, there are fun-
damental differences. SME only focuses on non-interference and aims to enforce
it, but there are many critical hyperproperties that differ from non-interference
that our method is able to monitor. Thus, SME enforces a security policy at the
cost of restricting what it can enforce, whereas our technique monitors a much
larger set of policies.

8 Conclusion

In this paper, we introduced an algorithm for monitoring alternation-free frag-
ment of HyperLTL [8], a temporal logic that allows for expressing complex
information-flow properties like generalized non-interference, declassification,
and quantitative non-interference. The main challenge in designing an RV algo-
rithm for HyperLTL formulas is that reasoning about the formula involves ana-
lyzing multiple traces (as opposed to a single trace in traditional RV techniques).
Our algorithm has three components: (1) a function that identifies propositions
that have to be bookkept across multiple traces, (2) a constraint generator that
encodes the occurrence of propositions of interest, and (3) a rewriting mod-
ule based on the algorithm in [22] that incorporates formula progression with
respect to incoming events for traces. In our view, our algorithm is a significant
step forward in monitoring sophisticated information-flow security and privacy
policies.

Our first step to extend this work will be to implement our algorithm and
test it for real-world applications, e.g., in smartphones. For future work, one may
consider RV algorithms based on monitor synthesis (as opposed to rewriting).
We are also planning to develop techniques for monitoring alternating Hyper-
LTL formulas. We believe dealing with such formulas is not possible without
assistance from a static analyzer.

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: Proceedings of the 29th IEEE Computer Security Foundations
Symposium (CSF), pp. 239–252 (2016)

2. Assaf, M., Naumann, D.A.: Calculational design of information flow monitors. In:
Proceedings of the 29th IEEE Computer Security Foundations Symposium (CSF),
pp. 210–224 (2016)

3. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis. In:
ACM Transactions on Programming Languages and Systems, pp. 113–124 (2009)

92 N. Brett et al.

4. Chudnov, A., Kuan, G., Naumann, D.A.: Information flow monitoring as abstract
interpretation for relational logic. In: IEEE 27th Computer Security Foundations
Symposium, CSF 2014, Vienna, Austria, 19–22 July 2014, pp. 48–62 (2014)

5. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: Proceedings
of CSF, pp. 200–214 (2010)

6. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for
JavaScript. In: Proceedings of PLDI, pp. 50–62 (2009)

7. Clark, D., Hunt, S.: Non-interference for deterministic interactive programs. In:
Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp.
50–66. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01465-9 4

8. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54792-8 15

9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

10. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: 31st
IEEE Symposium on Security and Privacy, S&P, pp. 109–124 (2010)

11. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2010, Vancouver, BC, Canada, pp.
393–407. USENIX Association, Berkeley (2010). http://dl.acm.org/citation.cfm?
id=1924943.1924971

12. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

13. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Automated Soft-
ware Engineering (ASE), pp. 135–143 (2001)

14. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security
monitors. Comput. Secur. 31(7), 827–843 (2012)

15. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems - Safety. Springer,
Heidelberg (1995)

16. McCullough, D.: Noninterference and the composability of security properties. In:
IEEE Symposium on Security and Privacy, pp. 177–186 (1988)

17. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: IEEE Computer Society Symposium on Research in
Security and Privacy, pp. 79–93 (1994)

18. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proceed-
ings of Conference Record of the Annual ACM Symposium on Principles of Pro-
gramming Languages, pp. 228–241 (1999)

19. Myers, A.C., Liskov, B.: Complete, safe information flow with decentralized labels
(1998)

20. Nair, S., Simpson, P.N.D., Crispo, B., Tanenbaum, A.S.: A virtual machine based
information flow control system for policy enforcement. Electron. Notes Theor.
Comput. Sci. 197(1), 3–16 (2008)

21. Pottier, F., Simonet, V.: Information flow inference for ML. In: Proceedings of
Conference Record of the Annual ACM Symposium on Principles of Programming
Languages, pp. 319–330 (2002)

22. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

http://dx.doi.org/10.1007/978-3-642-01465-9_4
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971

Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 93

23. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
Proceedings of the XXrd IEEE Computer Security Foundations Symposium (CSF),
pp. 186–199 (2010)

24. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

25. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Computer Security Foundations Workshop, p. 29 (2003)

26. Zhu, Y., Jung, J., Song, D., Kohno, T., Wetherall, D.: Privacy scope: a precise
information flow tracking system for finding application leaks. Technical report,
EECS Department, University of California, Berkeley, October 2009

Almost Event-Rate Independent Monitoring
of Metric Temporal Logic

David Basin, Bhargav Nagaraja Bhatt(B), and Dmitriy Traytel(B)

Department of Computer Science, Institute of Information Security, ETH Zürich,
Zürich, Switzerland

{bhargav.bhatt,traytel}@inf.ethz.ch

Abstract. A monitoring algorithm is trace-length independent if its
space consumption does not depend on the number of events processed.
The analysis of many monitoring algorithms has aimed at establish-
ing trace-length independence. But a trace-length independent monitor’s
space consumption can depend on characteristics of the trace other than
its size.

We put forward the stronger notion of event-rate independence, where
the monitor’s space usage does not depend on the event rate. This prop-
erty is critical for monitoring voluminous streams of events arriving at a
varying rate. Some previously proposed algorithms for past-only tempo-
ral logics satisfy this new property. However, when dealing with future
operators, the traditional approach of using a queue to wait for future
obligations to be resolved is not event-rate independent. We propose a
new algorithm that supports metric past and bounded future operators
and is almost event-rate independent, where “almost” denotes a logarith-
mic dependence on the event rate: the algorithm must store the event
rate as a number. We compare our algorithm with traditional ones, pro-
viding evidence that almost event-rate independence matters in practice.

1 Introduction

Rules are integral to society. Companies and administrations are highly regu-
lated and subjected to rules, laws, and policies that they must comply to and
demonstrate their compliance to. In many domains, the rules are sufficiently pre-
cise that automatic monitoring tools can be used to prove compliance or identify
violations.

A monitoring tool should solve the standard (online) monitoring problem:
Given a stream of time-stamped data, called events, and a policy formulated
in a temporal logic, decide whether the policy is satisfied at every point in the
stream [6,13,17]. Compared with other verification techniques, the monitoring
problem is attractive because it can be solved in a scalable way. Monitoring
algorithms usually have a modest time complexity per inspected event. In con-
trast, keeping the space requirements low for high-velocity event streams is more
challenging; this is precisely the problem we tackle here.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 94–112, 2017.
DOI: 10.1007/978-3-662-54580-5 6

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 95

Monitoring algorithms have been analyzed in the past with respect to their
space requirements. The notion of trace-length independence requires a moni-
tor’s space complexity to be constant in the overall number of events. In some
settings, only algorithms satisfying this property are considered worthy of being
called monitors [5]. Trace-length independence aims at distinguishing monitors
that can handle huge volumes of data from those that cannot. The classic 3 V
characterization by volume, velocity, and variety [15], however, tells us that this
is only one challenging aspect of big data. Here, we account for another aspect:
velocity or event rate.

We propose a new notion, event-rate independence, which states that a mon-
itor’s space requirement does not depend on the number of events in a fixed time
unit. We survey existing monitoring algorithms (Sect. 2) and identify several for
past-only linear temporal logic (ptLTL) [10] and its extension with metric inter-
vals (ptMTL) [19] that have this property. No such monitors exist, however, that
support future operators.

We tackle this problem, focusing on metric temporal logic (MTL) [12] with
bounded future operators interpreted over streams of time-stamped events
(Sect. 3). This discrete semantics is based on integer time-stamps, which mir-
rors the imprecision of physical clocks. A finite number of consecutive events,
each defining a time-point, might, however, carry the same time-stamp. The
event rate is defined as the number of time-points per time-stamp. There are
several trace-length independent monitoring algorithms for MTL on streams
with a bounded event rate, but none that are event-rate independent or even
trace-length independent on streams with an unbounded event rate.

From a traditional standpoint, event-rate independent monitors for MTL
seem impossible: future operators require the monitor to wait before it can out-
put a Boolean verdict on whether the formula holds. The sheer number of events
that the monitor may need to wait for is larger than the event rate. Moreover,
it is unclear if one could even achieve a slightly weaker notion, which we call
almost event-rate independence, where the monitor’s space complexity is upper
bounded by a logarithm of the event rate (and hence the monitor can store
indices or pointers).

As a way out of this dilemma, we propose a monitor that works differently
from the traditional ones. Our monitor outputs two kinds of verdicts: standard
Boolean verdicts expressing that a formula is true or false at a particular time-
point and equivalence verdicts. The latter express that the monitor does not
know the Boolean verdict at a given time-point, but it knows that the verdict
will be equal to another one (presently also not known) at a different time-
point. Additionally, our monitor will output verdicts out of order relative to the
input stream. Thus, it must indicate in the output to which time-point a verdict
belongs. Instead of storing (and outputting) a global time-point reference, we
store the time-stamp and the time-point’s relative offset denoting its position
among the time-points labeled with the same time-stamp. We assume that time-
stamps can be stored in constant space, which is realistic since 32 bits (as used
for Unix time-stamps) will suffice to model seconds for the next twenty years.

96 D. Basin et al.

Storing the offset, however, requires space logarithmic in the event rate.1 Beyond
this, our monitor’s space requirement is independent of the event rate.

Although our monitor’s output is nonstandard, we are convinced that it is
useful. First, the output provides sufficient information to reconstruct all viola-
tions. Second, often the monitor’s users are only interested in the existence of
violations. In this case, they can safely ignore all equivalence verdicts. Third,
users are generally interested in the first (earliest) violation. When outputting
equivalences, we ensure that the equivalence is output for the later time-points,
while the earliest time-point stays in the monitor’s memory and is eventually
output with a Boolean verdict. Thus, users will always see a truth value at the
earliest violating event.

In summary, our work makes the following contributions. We propose the
new notion of (almost) event-rate independence, which is crucial for the online
monitoring of high-velocity event streams (Sect. 4). We provide an almost event-
rate independent monitoring algorithm for MTL on integer time-stamps with
bounded future operators (Sect. 5). Finally, we report on a prototype imple-
mentation of our algorithm (Sect. 5.4) together with an experimental evaluation
(Sect. 6). Taken together, these contributions lay the foundations for online mon-
itoring that scales both with respect to the volume and the velocity of the event
stream.

2 Related Work

There is considerable related work on monitoring. We focus on those algorithms
and techniques that are closely related to ours and we touch upon other related
works.

Havelund and Roşu [10] propose a simple, yet efficient online monitor for past-
time linear temporal logic (ptLTL) using dynamic programming. The satisfaction
relation of ptLTL can be recursively defined on a trace by examining the truth-
values of subformulas only at the previous time-point. They exploit this insight
to develop an algorithm that stores the truth-values of subformulas only at the
two latest time-points. The algorithm’s space complexity is O(n), where n is the
number of subformulas.

Thati and Roşu [19] extend the results by Havelund and Roşu [10] to provide a
trace-length independent, dynamic programming monitoring algorithm for MTL
based on derivatives of formulas. Their monitor’s space complexity depends only
on the size of the formula and the constants occurring in its intervals. Thus
their monitor is event-rate independent. However, the algorithm outputs verdicts
with respect to a non-standard semantics of MTL, truncated to finite traces. It
immediately outputs a verdict at time-points without looking at future events

1 One could argue that, if time-stamps model seconds, there is a physical bound on
the number of events that fit into this fixed unit of time and the space to store this
number can be considered constant. However, we envision applications where time-
stamps model days, month, or even years, for which the number of events fitting
into one time unit increases dramatically.

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 97

that could possibly alter the verdict. Computing verdicts this way defeats the
purpose of (top-level) future operators: An until that is not satisfied at the
current time-point, but only at the next one, is reported as a violation.

Our algorithm builds on these dynamic programming approaches [10,19] to
handle past-time operators. Our technique for monitoring future formulas under
the standard non-truncated semantics of MTL in an event-rate independent
manner is new.

Basin et al. [3,4] introduce techniques to handle MTL and metric first-order
temporal logic with bounded future operators, adhering to the standard non-
truncated semantics for future formulas. Their monitor uses a queue to postpone
evaluation until sufficient time has elapsed to determine the formula’s satisfia-
bility at a previous time-point. This requires the algorithm to store in the worst
case all time-points during the time-interval it waits. Therefore the monitor’s
space complexity grows linearly with the event rate, as is confirmed by their
empirical evaluation [3, Sect. 6.3]. Their monitor outputs verdicts in order with
respect to time-points, while our algorithm may output verdicts out of order to
achieve a better space complexity.

Researchers have developed trace-length independent monitoring algorithms
for various temporal specification languages. Maler et al. [14] compare the expres-
sive power of timed automata and MTL. They show that past formulas can be
converted to deterministic timed automata (DTA) and there exist future for-
mulas that cannot be represented by a DTA. Ho et al. [11] give a trace-length
independent algorithm for MTL in the dense time domain. There exist trace-
length independent monitors for timed regular expressions [20], ptLTL extended
with counting quantifiers [7], and ptMTL extended with recursive definitions [9].
The underlying logics have different time domains and semantics. We leave the
study of event-rate independence in these settings as future work.

3 Metric Temporal Logic

Metric temporal logic (MTL) [12] is a logic for specifying qualitative and quan-
titative temporal properties. We briefly describe the syntax and the point-based
semantics of MTL over a discrete time domain. A more in-depth discussion of
various flavors of MTL is given elsewhere [4].

Let I denote the set of non-empty intervals over N. We write an interval in I

as [a, b], where a ∈ N, b ∈ N ∪ {∞}, a ≤ b, and [a, b] = {x ∈ N | a ≤ x ≤ b}. For
a number n ∈ N, I − n denotes {x − n | x ∈ I} ∩ N. For an interval I, let max(I)
denote the largest constant occurring at the endpoints of I, i.e. max([a, b]) = b if
b �= ∞, else a. We write r for the upper bound of the interval, i.e., r([a, b]) = b,
which is possibly ∞.

The set of MTL formulas over a set of atomic propositions P is defined
inductively:

ϕ = p | ¬ϕ | ϕ1 ∨ ϕ2 | �I ϕ | �I ϕ | ϕ1 SI ϕ2 | ϕ1 UI ϕ2,

where p ∈ P and I ∈ I. Along with the standard Boolean operators, MTL
includes the temporal operators �I (previous), SI (since), �I (next), and UI

98 D. Basin et al.

(until), which may be nested freely. We restrict the intervals attached to future
operators to be bounded, i.e., we require r(I) �= ∞, as we want the formulas to be
both finitely satisfiable and falsifiable (see [3] for details). We omit the subscript
I if I = [0,∞), and use the usual syntactic sugar for additional Boolean constants
and operators true = p ∨ ¬p, false = ¬true, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ) and future
temporal operators eventually ♦Iϕ ≡ true UI ϕ and always �Iϕ ≡ ¬♦I¬ϕ as well
as their past counterparts once �I and historically �I .

MTL formulas are interpreted over streams, which are infinite sequences of
time-stamped events. A time-stamped event is of the form (πi, τi), where πi ∈ 2P

and τi ∈ N. Given a stream ρ = 〈(π0, τ0), (π1, τ1), (π2, τ2), . . .〉, abbreviated
by 〈(πi, τi)〉i∈N, we call the τi time-stamps and their indices i time-points. The
sequence of time-stamps 〈τi〉i∈N is monotonically increasing, i.e., τi ≤ τi+1 for all
i ≥ 0. Moreover, 〈τi〉i∈N makes progress, i.e., for every τ ∈ N, there is some index
i ≥ 0 such that τi > τ. Note that successive time-points can have identical time-
stamps; for example, 〈5, 5, 5, 7, 8, . . .〉. Hence, time-stamps may stutter, but only
for finitely many time-points. A finite prefix of an event stream is called trace.

The semantics of MTL formulas for a given stream ρ = 〈(πi, τi)〉i∈N and a
time-point i is defined inductively as follows.

(ρ, i) |= p iff p ∈ πi
(ρ, i) |= ¬ϕ iff (ρ, i) �|= ϕ
(ρ, i) |= ϕ1 ∨ ϕ2 iff (ρ, i) |= ϕ1 or (ρ, i) |= ϕ2
(ρ, i) |= �Iϕ iff i > 0 and τi − τi−1 ∈ I and (ρ, i − 1) |= ϕ
(ρ, i) |= �Iϕ iff τi+1 − τi ∈ I and (ρ, i + 1) |= ϕ
(ρ, i) |= ϕ1 SI ϕ2 iff (ρ, j) |= ϕ2 for some j ≤ i with τi − τ j ∈ I

and (ρ, k) |= ϕ1 for all j < k ≤ i
(ρ, i) |= ϕ1 UI ϕ2 iff (ρ, j) |= ϕ2 for some j ≥ i with τ j − τi ∈ I

and (ρ, k) |= ϕ1 for all i ≤ k < j

When the stream ρ is clear from the context, we also simply write i |= ϕ.
From the semantics of MTL, it is easy to derive an equivalent recursive

definition for the until and since operators for a fixed stream ρ:

i |= ϕ1 SI ϕ2 iff 0 ∈ I and i |= ϕ2, or
i > 0, τi − τi−1 ≤ r(I), i |= ϕ1, and i − 1 |= ϕ1 SI−(τi−τi−1) ϕ2

i |= ϕ1 UI ϕ2 iff 0 ∈ I and i |= ϕ2, or
τi+1 − τi ≤ r(I), i |= ϕ1, and i + 1 |= ϕ1 UI−(τi+1−τi) ϕ2

Note that the formula being “evaluated” on the right-hand side of these recur-
sive equations has the same structure as the initial formula, except that the
interval has been shifted by the difference between the current and the previ-
ous (or the next) time-stamps. Our algorithm, described in Sect. 5, uses these
recursive equations to update the monitor’s state by simultaneously monitor-
ing the formulas arising from all possible interval shifts. We call such formulas
interval-skewed subformulas. For an MTL formula ϕ, let SF(ϕ) denote the set of

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 99

i (time-point)
i (events) {a} {a} {a} {b} {a b}
i (time-stamps)

3 40 1 2

1 2 2 3 4
i |= aU[0, 1] b ⊥ � � � �

Fig. 1. Evaluation of a U[0, 1] b on an example stream

its subformulas defined in the usual manner. Note that ϕ ∈ SF(ϕ). The set of
interval-skewed subformulas of ϕ is defined as

ISF(ϕ) = SF(ϕ) ∪ {ϕ1 SI−n ϕ2 | ϕ1 SI ϕ2 ∈ SF(ϕ) and n ∈ [1,max(I)]}
∪ {ϕ1 UI−n ϕ2 | ϕ1 UI ϕ2 ∈ SF(ϕ) and n ∈ [1,max(I)]}.

Clearly, the size of ISF(ϕ) is bounded by O(|SF(ϕ)| × c), where c is the largest
integer constant occurring in the intervals of ϕ. We define a well-order < over
ISF(ϕ) that respects the following conditions:

– if ϕ1 is a subformula of ϕ2 and ϕ1 �= ϕ2, then ϕ1 < ϕ2
– if ϕ1 = α SI β and ϕ2 = αS I′β and I′ = I − n for some n > 0, then ϕ1 < ϕ2.

We use this to order the elements of ISF(ϕ) into an array in Sect. 5.
We also define the future reach (FR) of an MTL formula following Ho

et al. [11], which we subsequently use to analyze the complexity of our proposed
algorithm.

FR(p) = 0 FR(¬ϕ) = FR(ϕ) FR(ϕ1 ∨ ϕ2) = max(FR(ϕ1), FR(ϕ2))
FR(�Iϕ) = FR(ϕ) − inf(I) FR(�Iϕ) = sup(I) + FR(ϕ)
FR(ϕ1 SI ϕ2) = maximum(FR(ϕ1), FR(ϕ2) − inf(I))
FR(ϕ1 UI ϕ2) = sup(I) + maximum(FR(ϕ1), FR(ϕ2))

Here maximum denotes the maximum of two integers and sup and inf denote the
supremum and infimum of sets of integers, respectively. For a bounded future
MTL formula ϕ, we have FR(ϕ) �= ∞. Intuitively, events that have a time-stamp
larger than τi + FR(ϕ) are irrelevant for determining ϕ’s validity at a time-point
i with time-stamp τi.

Example 1. Consider the formula ϕ = a U[0, 1] b and the event stream ρ =
〈({a}, 1), ({a}, 2), ({a}, 2), ({b}, 3), ({a, b}, 4), . . .〉. In Fig. 1, � and ⊥ denote
the satisfaction and violation of ϕ. Note that the verdict ⊥ at time-point 0 is
determined only after the event ({b}, 3) has arrived. This observation would also
apply, even if the event ({a}, 2) was replicated arbitrarily often in the stream.

4 Almost Event-Rate Independence

The space complexity of monitoring algorithms has been previously analyzed
with respect to two parameters: formula size and trace length. In most sce-
narios, the formula is much smaller than the trace and does not change dur-
ing monitoring. Hence, an algorithm with a space complexity exponential in

100 D. Basin et al.

the formula size is usually tolerable, but a space complexity linear in the trace
length is problematic since this corresponds to storing the entire trace. Recently,
researchers have studied trace-length independence [5]. A monitor is trace-length
independent if its efficiency does not decline as the number of events increases. In
the setting of MTL, we call a monitoring algorithm M trace-length independent
on the stream ρ if the space required by M to output the verdict at time-point i
when monitoring ρ is independent of i. This property is critical for determining
whether a monitor scales to large quantities of data. However, it does not yield
insights into the monitor’s performance regarding other aspects of the stream
such as its velocity.

We propose the notion of event-rate independence, which not only guarantees
the monitor’s memory efficiency with respect to the number of events, but also
with respect to the rate at which the events arrive. A varying event rate is a
realistic concern in many practically relevant monitoring scenarios. For example,
if the unit of time-stamps is on the order of days, there may be millions of time-
points with the same time-stamp in a stream. An event-rate dependent algorithm
may work well on days with a few thousand events, but fall short of memory when
the number of events rises significantly. (Such a situation could be an indicator
that something interesting happened, which in turn makes the monitor’s output
particularly valuable on that day.)

We first formally define a stream’s event rate.

Definition 1. The event rate er of a stream ρ = 〈(πi, τi)〉i∈N at time-stamp τ
is defined as the number of time-points whose time-stamps are equal to τ, i.e.,
erρ(τ) = |{i | τi = τ}|.
An online monitoring algorithm M for MTL is event-rate independent on the
stream ρ if for all time-points i the monitor M’s space complexity to compute
the verdict at i is constant with respect to erρ(τj) for all j ≤ i, i.e., the event
rates in ρ at all time-stamps up to and including the current one. Ultimately,
we are interested in monitors that are event-rate independent on all streams ρ.
For example, the dynamic programming algorithms [10,19] are event-rate inde-
pendent on all streams ρ for past-only MTL.

The trace length up to time-point i is greater than the sum of the event rates
erρ(τ) for τ < τi for all streams ρ. Hence, we obtain the following lemma by
contraposition.

Lemma 1. Fix a stream ρ. Let M be a monitoring algorithm for MTL. If M
is event-rate independent on ρ, then M is trace-length independent on ρ.

In general, event-rate independence is not strictly stronger than trace-length
independence. To see this, consider the following stream where the event rate
itself depends on the trace length: ρ= 〈(π0, 0), (π1, 1), (π1, 1), (π2, 2), (π2, 2),
(π2, 2), (π2, 2), . . .〉, where (πτ, τ) is repeated 2τ times. Any event-rate dependent
monitor for ρ is also trace-length dependent, since the event rate is roughly half
of the trace length at each time-point.

In contrast to the above example, streams arising in practice have a bound on
the event rate. For such an (event-rate) bounded stream ρ we have ∀i. erρ(τi) < bρ

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 101

for some arbitrary but fixed bρ. In fact, the related bounded variability assump-
tion [8,11,14] is deemed necessary for trace-length independence. The considera-
tion of the event rate clarifies the need for this assumption: On bounded streams
ρ, event-rate independence is strictly stronger than trace-length independence.
For example, monitors using a waiting queue for future operators [3] are trace-
length independent on ρ, but not event-rate independent on ρ. On unbounded
streams, i.e., streams that are not event-rate bounded, the two notions coincide.
This is in line with the fact that there are trace-length independent monitors for
MTL (with future operators) on bounded streams [3,11], but none on unbounded
streams.

Event-rate independence and trace-length independence for unbounded
streams are indeed impossible if we adhere to the mode of operation of exist-
ing MTL monitors. Existing monitors output verdicts monotonically, i.e., for
time-points i and j, if i < j then the verdict at i is output before the verdict
at j. Monotonicity makes any monitor handling future operators linearly event-
rate dependent (and hence trace-length dependent for unbounded streams), as
it must wait for and therefore store information associated to more than erρ(τ)-
many events (for some τ) before being able to output a verdict. So event-rate
independence seems to be too strong a condition for traditional monitors.

To overcome this problem, our monitor outputs verdicts differently. In addi-
tion to the standard Boolean verdicts � and ⊥, it outputs equivalence verdicts
j ≡ i (with i < j) if it is certain that the verdict at time-point j will be equiv-
alent to the verdict at a previous time-point i, even if the exact truth value is
presently unknown at both points. This makes verdict outputs non-monotonic
with respect to time-points, but it is still possible to ensure monotonicity with
respect to time-stamps for time-stamps that are far enough apart. More precisely,
a monitor that is monotonic with respect to time-stamps outputs the verdict at
i before the verdict at j when monitoring ϕ, if τ j − τi > FR(ϕ).

To output equivalence verdicts, the algorithm must refer to time-points. This
requires non-constant space, e.g., logarithmic space for natural numbers. Time-
points increase with the trace length, leading to a logarithmic dependence on
the trace length. An alternative way to refer to time-points is to use time-stamps
together with an offset pointing into a block of consecutive time-points labeled
with the same time-stamp. (The size of such a block is bounded by the event
rate.) The space requirement of an algorithm outputting such verdicts is there-
fore not event-rate independent. However, it is logarithmic in the event rate.
These observations suggest the slightly weaker notion of almost event-rate inde-
pendence, which is defined identically to event-rate independence except that
the space complexity is upper bounded by a logarithm of the event rate.

Definition 2. An online monitoring algorithm M for MTL is almost event-rate
independent if for all time-points i and streams ρ the space complexity of M for
outputting the verdict at i is O(log(max j≤i erρ(τj))).

Our proposed monitor is almost event-rate independent. Moreover, it is the
first almost trace-length independent monitor on unbounded streams.

102 D. Basin et al.

5 Monitoring Algorithm

We describe the high-level design of our monitoring algorithm for MTL infor-
mally. Then we give a formal description using functional programming notation,
prove its correctness and almost event-rate independence, and discuss implemen-
tation details.

5.1 Informal Account

The idea of outputting equivalence verdicts draws inspiration from a natural
way to approach simultaneous suffix matching with automata. To decide which
suffixes of a word are matched by an automaton, a naive approach is to start
running the automaton at each position in the word. For a word of length n
this requires storing n copies of the automaton. A more space-efficient approach
is to store a single copy, and use markers (one marker for each position in the
word) that are moved between states upon transitions. If n is larger than the
number of states, then at some point two markers will necessarily mark the same
state. At this point, it suffices to output their equivalence and track only one of
them, since they would travel through the automaton together. Our algorithm
follows a similar approach; however, we avoid explicitly constructing automata
from formulas.

Our algorithm builds on Havelund and Roşu’s dynamic programming algo-
rithm for past-time LTL [10], where the monitor’s state consists of an array
of Boolean verdicts for all subformulas of the monitored formula at a given
time-point. The array is dynamically updated when consuming the next event
based on the recursive definition of satisfiability for LTL. To support intervals,
we use the idea by Thati and Roşu [19] to store an array of verdicts for all
interval-skewed subformulas instead of plain subformulas as in Havelund and
Roşu. This accounts for possible interval changes when moving between differ-
ent time-stamps according to the recursive definition of satisfiability for past-
time MTL. This step crucially relies on the time-stamps being integer-valued,
as otherwise the number of skewed subformulas would be infinite.

The problem with future operators is that they require us to wait until we
are able to output a verdict. At first, we sidestep almost event-rate independence
and formulate a dynamic programming algorithm that treats past operators as
Havelund and Roşu’s algorithm [10] but also supports future operators. The
recursive equation for until reduces the satisfaction of a formula ϕ1 UI ϕ2 at the
current time-point to a Boolean combination of the satisfaction of ϕ1 and ϕ2 at
the current time-point and the satisfaction of ϕ1 UI−n ϕ2 (for some n) at the next
time-point. While we can immediately resolve the dependencies on the current
time-point, those on the next time-point force us to wait. This also means that
we cannot store the verdict in an array (because we do not know it yet), but
instead we will store the dependency in the form of pointers to some entries
in the next array to be filled. In general, our dynamically updated array (of
length |ISF(ϕ)|), indexed by interval-skewed subformulas, will contain Boolean

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 103

expressions instead of Booleans, in which the variables denote the dependencies
on those next entries.

Additionally, we may only output verdicts when the Boolean expressions are
resolved to a Boolean verdict. This will happen eventually, since in our setting
time progresses and future intervals are bounded. But until this happens, the
yet-to-be-output Boolean expressions must be stored, which affects the algo-
rithm’s space consumption. In the worst case, the monitor would store as many
expressions as there are time-points in any interval of timespan d, where d is the
future reach of the monitored formula.

Finally, to obtain almost event-rate independence, we refine our monitor’s
output by allowing it to output equivalence verdicts between different time-
points. As soon as the monitor sees two semantically equivalent Boolean expres-
sions, it may output such verdicts and discard one of the two expressions.
Since there are only O(22

|ISF(ϕ)|
) semantically different Boolean expressions in

O(|ISF(ϕ)|) variables (corresponding to the verdicts for interval-skewed subfor-
mulas at the next time-point), the space required to store them depends only on
the monitored formula ϕ. However, for the equivalence verdicts to be understand-
able to users, the equivalences must refer to different time-points via indices.
Storing those indices requires logarithmic space in the event rate. Hence, the
overall algorithm is almost event-rate independent.

5.2 The Algorithm

We now give a more formal description of our algorithm. For the presentation,
we use a functional programming-style pseudo code, with pattern matching, that
resembles Standard ML. Type constructors, such as − list or − array for func-
tional lists and arrays (lists of fixed length with constant time element access),
are written postfix, with the exception of the product type × and the function
space →, which are written infix. We write N for the type of natural numbers
and for the type of time-stamps (although, in our case, these are again just
natural numbers). Lists are either empty [] or constructed by prepending an
element to a list x::xs. List concatenation is written infix as ++. Anonymous
functions are introduced using λ-abstractions.

Our monitor for a fixed formula Φ operates on an input stream of time-
stamped events I and writes verdicts to an output stream O. Additionally, it
starts in some initial state init of type σ and can perform state transitions
step : σ → σ. The state consists of three parts: a list of time-stamped Boolean
expressions for which the verdict depends on future events, a current time-stamp,
and an array of Boolean expressions for all interval-skewed subformulas at the
current time-point (similarly to the state of Havelund and Roşu’s algorithm).
Expressions for small subformulas are stored at low indices in this array, while
the monitored formula Φ has index |ISF(Φ)| − 1. In other words, if we think of
the array as being indexed by subformulas, then the array’s indices are ordered
by the well-order <. We formalize the state using a record type:

104 D. Basin et al.

Fig. 2. The transition system of the monitor: init and step

Two points are worth noting here. First, in addition to the time-stamp for each
time-point, we store an offset of type N, which stores the position of the time-
point within a block of time-points with the same time-stamp. Using the time-
stamp and the offset, each time-point can be uniquely identified. Second, the
array in arr has a dependency on a future time-stamp because the recursive
definition of satisfaction for until depends the time-stamp difference between the
next and the current time-point. As a result, our monitor will output a verdict
for a time-point only after having seen the time-stamp of the next time-point.
We will revisit and rectify this limitation in Sect. 5.4.

Overloading notation, (Boolean) expressions can be defined inductively as
follows:

bexp = ⊥ | � | bexp ∧ bexp | bexp ∨ bexp | ¬bexp | var N.

Here, a variable should be thought of as a pointer into the arr array of the yet-
to-be-computed next state, i.e., a natural number less than n, where n is the
number of interval-skewed subformulas of Φ. To lighten the notation, we implic-
itly convert interval-skewed subformulas of Φ to natural numbers between 0 and
n − 1, and vice versa. For example, we write var ϕ (or a[ϕ]) to denote a variable
pointing to the array entry corresponding to the formula ϕ (or the array entry
itself). We assume that all expressions of type bexp are normalized using Boolean
simplifications, e.g., ⊥ ∧ x is rewritten to ⊥. Thus, each expression is either a
Boolean ⊥ or � or does not contain ⊥ or � as a subexpression. Furthermore,
we will use the function subst : (N → bexp) → bexp → bexp to replace variables
with expressions according to the given function argument as well as a decision
procedure ≡ : bexp → bexp → {⊥, �} for the semantic equivalence of Boolean
expressions. We omit the definitions of those two functions.

The monitor’s initial state init and its transition function step are shown
in Fig. 2. The function step formalizes the transition from the current time-
point to the next one. First, it retrieves the new event π and its time-stamp τ′

from the input stream I (which we write as (π, τ′) ⇐ I). Using τ′, the next step
evaluates the future-dependent array fa to obtain an array of Boolean expressions
a. Note that the expressions in a refer to the array of the next state, while all

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 105

Fig. 3. Recursive formula progression and insertion modulo semantic expression equiv-
alence

expressions in the history h refer to the current state, namely to a itself. To
overcome this mismatch, the monitor iterates over the history using the standard
fold combinator on lists and updates each of the Boolean expressions to refer to
the next state using subst in the function update. This update may convert some
of the expressions into Boolean verdicts, which are immediately output (written
. . . ⇒ O) and removed from the history. Next, the monitor computes the new
offset j depending on whether the time-stamp has increased. Finally, the last
entry of the array a is added to the history (or output in case it is a Boolean
verdict) using the function add and the new future-dependent array is produced
by (a partial application of) the progress function and stored in the state. We
describe these two core functions next.

We consider three different implementations of the add function:

add (x as (, , c)) xs =

if c = ⊥ ∨ c = � then (let x ⇒ O in xs) else

⎧
⎪⎨

⎪⎩

x::xs naive

go ⊥ [] x xs global

go � [] x xs local

The naive version simply prepends the element to the history (which is kept
in reversed order with respect to the input stream). This version is not almost
event-rate independent. The global version adds the new expression only if
there is no semantically equivalent expression in the history. The local version
adds the new expression only if there is no semantically equivalent expression
labeled with the same time-point. Whenever an expression is not added to the
history, an equivalence verdict is output. Both versions, local and global,
are implemented using the auxiliary function go shown in Fig. 3 and give rise to
almost event-rate independent algorithms.

106 D. Basin et al.

Fig. 4. An execution of the monitoring algorithm on a U[0, 1] b

The last missing piece is the update of the arr entry of the monitor’s state.
The function progress shown in Fig. 3 performs this update. It has access to
the previous time-stamp τ, the current time-stamp τ′, the next time-stamp τ′′,
the current event π, and the previous array of Boolean expressions a. Given
these inputs, it fills the next array b starting from the smallest subformulas
and progressing up to the formula Φ itself. Each array entry is filled following
the recursive definition of satisfaction of the topmost operator of the formula
it corresponds to. Moreover, whenever the previous array a is accessed for past
operators, the retrieved expression’s dependencies are updated using subst as
before. In contrast, for future dependencies, the var constructor of expressions
is used.

Example 1 (continued). Figure 4 shows the internal states of the global version
of our algorithm when monitoring the formula a U[0, 1] b on the stream ρ =
〈({a}, 1), ({a}, 2), ({a}, 2), ({b}, 3), ({a, b}, 4), . . .〉. The first two rows show the
incoming events and their time-stamps, the third the within-time-stamp offset,
and the fourth the current history. The next four rows are dedicated to the
Boolean expressions stored for each interval-skewed subformula. The last row
displays the monitor’s verdicts. At each time-point, the monitor’s state consists
(roughly) of one column from this table. Since it is hard to display the function
fa, we show instead the result of applying fa to the time-stamp of the next state.
This causes a delay of one time-point between the values in the arrays and the
history updates and verdict outputs.

5.3 Correctness and Complexity Analysis

In this subsection, we fix a formula Φ and a stream ρ. To prove the soundness
and completeness of our monitor and to establish its space complexity bounds,
we formulate an invariant I that holds after processing the first event and all
subsequent states.

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 107

I {hist = h, now = (τ, i), arr = fa)} =
(I1) (∀(τ′, j, b) ∈ h. τ′@ j |= Φ←→ τ@i |=bexp b)

∧ (I2) (∀ϕ ∈ ISF(Φ). τ@i |= ϕ←→ τ@i + 1 |=bexp fa (ττ@i+1)[ϕ])
∧ (I3) (∀ϕ ∈ ISF(Φ). vars (fa (ττ@i+1)[ϕ]) ⊆ ISF(ϕ))
∧ (I4) (∀(τ′, j, b) ∈ h. b �= � ∧ b �= ⊥)
∧ (I5) h is sorted in strictly descending order by time-point
∧ (I6) (∀(τ′, j, b)∈h. ∀(τ′′, k, c)∈h. τ′@ j �=τ′′@k→compact τ′ τ′′ b c)

We write τ@i to denote the time-point uniquely identified by the time-stamp
τ and the within-time-stamp offset i. Moreover, vars is the set of vars in a Boolean
expression, τk is the time-stamp from ρ at time-point k, and |=bexp is the lifting
of MTL satisfaction to expressions. For the base case of this lifting, we have
k |=bexp var ϕ←→ k |= ϕ.

The invariant consists of six predicates. (I1) and (I2) capture the semantics
of the entries in the history and the expression array. (I3) expresses that future
dependencies in any expression indexed by a subformula ϕ may only refer to ϕ’s
interval-skewed subformulas. (I4) and (I5) are important structural properties
of the history. (I6) is crucial for our complexity analysis. It uses an auxiliary
predicate compact, defined differently for each of the three versions of the mon-
itoring algorithm we consider.

compact τ′ τ′′ b c =

⎧
⎪⎨

⎪⎩

� naive

b �≡ c global

τ′ = τ′′ → b �≡ c local

We prove that I holds for every reachable state except the initial state itself.
In the initial state (I2) is violated. The fa array of the initial state is accessed
only for past-time operators at the first event. In this case, the stored values ⊥
for all subformulas have exactly the right semantics: essentially they affirm that
there is no previous time-point.

Lemma 2. I (step init) and for any state s if I(s) then I (step s).

Proof (core idea). The core of the proof is the preservation of (I2) by the progress
function. We prove the following auxiliary lemma: Fix a stream ρ = 〈(πi, τi)〉i∈N

and a time-point k. Assume progress a τk πk+1 τk+1 τk+1 = b and for all ϕ ∈
ISF(Φ) we have k |= ϕ←→ k + 1 |=bexp a[ϕ]. Then k + 1 |= ϕ←→ k + 2 |=bexp b[ϕ]
holds for all ϕ ∈ ISF(Φ).

The lemma follows by well-founded induction on the lexicographic product
of the natural number order on time-points and the order < on formulas: Fix
ϕ ∈ ISF(Φ). The induction hypothesis allows us to assume k + 1 |= ψ ←→ k +
2 |=bexp b[ψ] for any ψ < ϕ. We continue by a case distinction on ϕ and present
here only the case where ϕ = ϕ1 UI ϕ2. Let Δ = τ′′ − τ′ and I′ = I − Δ. We
calculate

108 D. Basin et al.

k + 1 |= ϕ1 UI ϕ2
recursive def. of|=←→ (0 ∈ I ∧ k + 1 |= ϕ2) ∨

(Δ ≤ r(I) ∧ k + 1 |= ϕ1 ∧ k + 2 |= ϕ1 UI′ ϕ2)
twice IH + def. |=bexp←→ (0 ∈ I ∧ k + 2 |=bexp b[ϕ2]) ∨
(Δ ≤ r(I) ∧ k + 2 |=bexp b[ϕ1] ∧ k + 2 |=bexp var (ϕ1 UI′ ϕ2))

def. of progress←→ k + 2 |=bexp b[ϕ1 UI ϕ2]

Other cases follow similarly. Past operators additionally use the assumption on a.
��

The step from the invariant to a correctness theorem is easy. For soundness,
we calculate the expected semantic properties for verdicts output in a step taking
(I1) and (I2) of the invariant into account. Completeness also holds: for each
time-point either a verdict is output or an expression is inserted into the history.
Each expression from the history is eventually output as time progresses and all
future intervals are bounded.

Theorem 1 (Correctness). The monitor for a formula Φ is sound: whenever
it outputs the Boolean verdict (τ, i, b) we have τ@i |= Φ ←→ b and whenever it
outputs the equivalence verdict (τ, i) ≡ (τ′, j) we have τ@i > τ′@ j and τ@i |=
Φ ←→ τ′@ j |= Φ. For the local mode, we additionally have τ = τ′. Moreover,
the monitor is complete.

Finally, we establish complexity bounds. Let n = |ISF(Φ)| and d = FR(ϕ).
Note that d ≤ n. The size of a Boolean expression in n variables can be bounded
by 2n assuming a normal form for expressions such as CNF. Then the size of the
future-dependent array arr is n · 2n. The length of the history depends on the
version of the algorithm used and (except for the naive algorithm) dominates
the size of arr.

Theorem 2 (Space Complexity). The space complexity for storing all
Boolean expressions used by the three versions of the algorithm at the time-stamp
τ is

naive: O(2n · (n +
∑τ
τ′=τ−d er(τ

′))), global: O(22
n+n), and local: O(d · 22

n+n).

Time-stamps additionally require a constant and the offsets a logarithmic amount
of space in the event rate. Hence, global and local are almost event-rate
independent.

Proof. Each stored Boolean expression requires O(2n) space. The bound for
naive follows since, at time-stamp τ, we can output Boolean verdicts for all
time-stamps that are at most τ− d. Hence, the history needs to store only those
expressions that fit into the interval (τ−d, τ]. For global (or local) there are
at most 22

n
(or d · 22

n
) semantically different Boolean expressions that must be

stored in the history. ��

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 109

5.4 Implementation

We have implemented the presented algorithm using Standard ML. The imple-
mentation comprises just roughly 600 lines of code. It is available online [1].

Our implementation follows the pseudo-code in Sect. 5.2. In one aspect, it
takes a more refined approach. The monitor’s users would like violations to
be reported as early as possible. The presented monitor does not do this as
it delays the output of verdicts for one time-point, even if no future opera-
tors are involved. Our implementation improves this by refining the type of
arr in the monitor’s state from to the more precise

, where the type of potentially future expressions bexpf is
either an immediate Boolean expression or a future-dependent expression as
before. Formally

This refined type makes it possible to output verdicts at the current time-
point instead of the following one, provided that the computation of progress
resulted in a Now constructor for the monitored formula Φ. Accordingly, the
function progress must be refined to carefully assemble possibly future expres-
sions to maximize the number of Now constructors in the array. To achieve this,
all constructors (e.g., ∧) of bexp are lifted to functions (e.g., ∧f) on bexpf that
try to produce as many Nows as possible by applying simplification rules such
as Now ⊥ ∧f Later f = Now ⊥.

To implement the expression equivalence check, we use a simple BDD based
algorithm that has been formally verified in the Isabelle proof assistant by
Nipkow [16]. It would be interesting to explore working with BDDs instead of
Boolean expressions all the time (and not only in the equivalence check) to poten-
tially improve time complexity.

6 Evaluation

We compare the three versions of our tool with MonPoly [2,3], a state-of-
the art monitor for metric first-order temporal logic. The experiments were run
on a 3.1 GHz dual-core Intel Core-i7 processor and 16 GB RAM. We evaluate
the memory consumption of all tools while monitoring four MTL formulas on
pseudo-randomly generated event logs with varying average event rates. For the
random generation, we used a different probability distribution for each event,
depending on the formula. For example, for the formula ♦[0,5]p, the probability
of p occurring was very small. All our logs consist of 100 different time-stamps,
with the number of time-points labeled with the same time-stamp ranging from
100 to 100 000 on average per log. Overall, the log files comprised 8 GB of data.
Their generation required more time than the actual monitoring task (at least
for the local and global version of our algorithms). GNU Parallel [18] was
invaluable for both generating the logs and running the four tools on them.

Figure 5 shows our evaluation results. Each data point in the graphs rep-
resents the average of the maximum memory consumption over 10 randomly
generated logs of a fixed average event rate. (The standard deviation is omitted
in the figure as it was far below 1 MB for most time-points.) For all formulas,

110 D. Basin et al.

Fig. 5. Results of the experimental evaluation

the space consumption of both the naive version of our tool and MonPoly
increases linearly in the event rate, while for local and global it stays almost
constant. This relationship between the memory usage and the average event rate
is consistent with our theoretical analysis. Moreover, local and global do not
differ essentially in memory consumption. We therefore advise using the local
version of the algorithm given its additional guarantee of outputting equivalence
verdicts only for time-points labeled with the same time-stamp.

Although we were not measuring time, increasing the memory consumption
to 60 MB results in a significant increase in processing time per event, which
leads to a much lower throughput for monitors like naive and MonPoly. This
is not the case for our almost event-rate independent monitors.

7 Conclusion

We introduced the notion event-rate independence for measuring the space com-
plexity of monitoring algorithms. This notion is desirable for monitors processing
event streams of varying velocity. We presented a novel algorithm for monitoring
metric temporal logic with bounded future operators that is almost event-rate
independent. Our algorithm is concise and efficient.

As future work, we plan to study which extensions of metric temporal logic
permit almost event-rate independent algorithms. Moreover, we intend to par-
allelize our algorithm, using existing frameworks in the spirit of Spark [21], to
obtain monitors for expressive temporal logics that scale to big data applications.

Almost Event-Rate Independent Monitoring of Metric Temporal Logic 111

Acknowledgment. Jasmin Blanchette, Srdjan Krstic, and anonymous TACAS
reviewers helped to improve the presentation of this work. Bhatt is supported by the
Swiss National Science Foundation grant Big Data Monitoring (167162).

References

1. Aerial: An almost event-rate independent monitor for metric temporal logic (2016).
https://bitbucket.org/traytel/aerial

2. Basin, D.A., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring of metric
first-order temporal properties. In: FSTTCS 2008, pp. 49–60 (2008)

3. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15 (2015)

4. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time prop-
erties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-29860-8 20

5. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40787-1 4

6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010)

7. Du, X., Liu, Y., Tiu, A.: Trace-length independent runtime monitoring of quan-
titative policies in LTL. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol.
9109, pp. 231–247. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19249-9 15

8. Furia, C.A., Spoletini, P.: Bounded variability of metric temporal logic. In:
Cesta, A., Combi, C., Laroussinie, F. (eds.) TIME 2014, pp. 155–163. IEEE Com-
puter Society (2014)

9. Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: a
case study in the android operating system. In: Jones, C., Pihlajasaari, P., Sun, J.
(eds.) FM 2014. LNCS, vol. 8442, pp. 296–311. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-06410-9 21

10. Havelund,K.,Roşu,G.: Synthesizingmonitors for safetyproperties. In:Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg
(2002). doi:10.1007/3-540-46002-0 24

11. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11164-3 15

12. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

13. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

14. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future.
In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16.
Springer, Heidelberg (2005). doi:10.1007/11603009 2

15. McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harv. Bus.
Rev. 90(10), 61–67 (2012)

16. Nipkow, T.: Boolean expression checkers. Archive of Formal Proofs (2014). http://
isa-afp.org/entries/Boolean Expression Checkers.shtml

17. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

https://bitbucket.org/traytel/aerial
http://dx.doi.org/10.1007/978-3-642-29860-8_20
http://dx.doi.org/10.1007/978-3-642-40787-1_4
http://dx.doi.org/10.1007/978-3-319-19249-9_15
http://dx.doi.org/10.1007/978-3-319-06410-9_21
http://dx.doi.org/10.1007/978-3-319-06410-9_21
http://dx.doi.org/10.1007/3-540-46002-0_24
http://dx.doi.org/10.1007/978-3-319-11164-3_15
http://dx.doi.org/10.1007/11603009_2
http://isa-afp.org/entries/Boolean_Expression_Checkers.shtml
http://isa-afp.org/entries/Boolean_Expression_Checkers.shtml

112 D. Basin et al.

18. Tange, O.: GNU parallel - the command-line power tool. login: USENIX Mag.
36(1), 42–47 (2011). http://www.gnu.org/s/parallel

19. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electr. Notes Theor. Comput. Sci. 113, 145–162 (2005)

20. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636,
pp. 736–751. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 47

21. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Nahum, E.M., Xu, D. (eds.) HotCloud 2010.
USENIX Association (2010)

http://www.gnu.org/s/parallel
http://dx.doi.org/10.1007/978-3-662-49674-9_47

Optimal Translation of LTL to Limit
Deterministic Automata

Dileep Kini(B) and Mahesh Viswanathan

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, USA

kini2@illinois.edu

Abstract. A crucial step in model checking Markov Decision Processes
(MDP) is to translate the LTL specification into automata. Efforts have
been made in improving deterministic automata construction for LTL
but such translations are double exponential in the worst case. For model
checking MDPs though limit deterministic automata suffice. Recently it
was shown how to translate the fragment LTL\GU to exponential sized
limit deterministic automata which speeds up the model checking prob-
lem by an exponential factor for that fragment. In this paper we show
how to construct limit deterministic automata for full LTL. This trans-
lation is not only efficient for LTL\GU but for a larger fragment LTLD

which is provably more expressive. We show experimental results demon-
strating that our construction yields smaller automata when compared
to state of the art techniques that translate LTL to deterministic and
limit deterministic automata.

1 Introduction

Markov Decision Processes (MDPs) [4,19,23] are the canonical model used to
define the semantics of systems like concurrently running probabilistic programs
that exhibit both stochastic and nondeterministic behavior. MDPs are inter-
preted with respect to a scheduler that resolves the nondeterminism. Such a
scheduler chooses a probabilistic transition from a state based on the past
sequence of states visited during the computation. When undesirable system
behaviors are described by a formula ϕ in linear temporal logic (LTL), qualita-
tive verification involves checking if there is some (adversarial) scheduler with
respect to which the measure of paths satisfying ϕ is non-zero. Model checking
algorithms [4] in this context proceed by translating the LTL requirement ϕ into
an automaton A, taking the synchronous cross-product of the MDP model M
and the automaton A to construct a new MDP M ′, and finally, analyzing the
MDP M ′ to check the desired property. The complexity of this procedure is
polynomial in the size of the final MDP M ′, and hence critically depends on the
size of automaton A that results from translating the LTL specification.

D. Kini and M. Viswanathan—Authors were supported by NSF grants CNS 1314485
and CCF 1422798.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 113–129, 2017.
DOI: 10.1007/978-3-662-54580-5 7

114 D. Kini and M. Viswanathan

MDP model checking algorithms based on the above idea require the trans-
lated automaton to be of a special form as general non-deterministic automata
are not sufficient. The Büchi automaton has to be either deterministic or deter-
ministic in the limit — a Büchi automaton is deterministic in the limit if every
state reachable from an accepting state has deterministic transitions1. Limit-
determinism is also sometimes referred to as semi-determinism. Deterministic or
limit deterministic automata for LTL formulae can be constructed by first trans-
lating the formula into a nondeterministic Büchi automaton, and then either
determinizing or “limit-determinizing” the machine. This results in an automa-
ton that is doubly exponential in the size of the LTL formula, which gives a
2EXPTIME algorithm for model checking MDPs.

Direct translations of LTL (and fragments of LTL) to deterministic Rabin
automata have been proposed [3,5,10,13,16,17]. However, any such translation,
in the worst case, results in automata that are doubly exponential in size [2];
this holds for any fragment of LTL that contains the operators ∨, ∧, and F.
Recently [8] a fragment of LTL called LTL\GU [14] was translated into limit
deterministic Büchi automata. LTL\GU is a fragment of LTL where formulae are
built from propositions and their negations using conjunction, disjunction, and
the temporal operators X (next), F (eventually/finally), G (always/globally),
and U (until), with the restriction that no U operator appears within the scope
of a G operator. The most important feature of this translation from LTL\GU
to limit deterministic automata is the fact that the resulting automaton is only
exponential in the size of the formula. Thus, this automata construction can
be used to obtain an EXPTIME algorithm for model checking MDP against
LTL\GU formulas, as opposed to 2EXPTIME.

Recently, a translation from full LTL logic to limit deterministic automata
has been proposed [20]. This translation is very similar to the translation to
deterministic automata proposed in [5], with the use of nondeterminism being
limited to simplifying the acceptance condition. Therefore, like the determinis-
tic translations of LTL, it can be shown to construct doubly exponential sized
automata even for very simple LTL fragments like those that contain ∨, ∧, and
F. Thus, it does not achieve the optimal bounds for LTL\GU shown in [8].
However, one advantage of the construction in [20] is that it can be used in
quantitative verification as well as qualitative verification of MDPs and has been
implemented in [21]. Quantitative verification of MDPs can also be performed
using nondeterministic automata that have the good-for-games (GFG) property
[7,11], but translating a general NBA into a GFG automaton is known to result
in an exponential blow-up. An alternate approach to quantitative verification
using subset/breakpoint construction on a NBA is proposed in [6] but it also
suffers from an exponential blow up.

1 Limit deterministic automata are not the same as unambiguous automata. Unam-
biguous automata have at most one accepting run for any input. It is well known
that every LTL formula can be translated into an unambiguous automaton of expo-
nential size [22]. This has been shown to be not true for limit deterministic automata
in [20].

Optimal Translation of LTL to Limit Deterministic Automata 115

In this paper we continue the line of work started in [8,20], and present a new
translation of the full LTL logic to limit deterministic Büchi automata. The new
translation can be shown to be a generalization of the construction in [8] in that
it constructs exponential sized automata for LTL\GU . In fact, we show that this
new translation yields exponential sized automata for a richer fragment of LTL
that we call LTLD (see Sect. 5 for a comparison between the expressive powers of
LTLD and LTL\GU). This improves the complexity of qualitative MDP model
checking against LTLD to EXPTIME from 2EXPTIME.

Our automaton construction uses two main ideas. The first is an idea dis-
covered in [8]. To achieve limit determinism, for certain subformulae ψ of ϕ, the
automaton of ϕ tracks how often Fψ and Gψ formulae are true; this is in addi-
tion to tracking the truth (implicitly) of all subformulae ψ, as all translations
from LTL to automata do. Second, for untils within the scope of G, we do a
form of subset construction that ensures that the state explores all the possible
ways in which such formulae can be satisfied in the future, and for untils outside
the scope of G we use non-determinism to check its truth.

We have implemented our translation from LTL to limit deterministic
automata in a tool called Büchifier. We show experimental results demon-
strating that in most cases our construction yields smaller automata when com-
pared to state of the art techniques that translate LTL to deterministic and limit
deterministic automata.

2 Preliminaries

First we introduce the notation we use throughout the paper. We use P to denote
the set of propositions. We use w to denote infinite words over a finite alphabet.
We use wi to denote the ith (index starting at 0) symbol in the sequence w,
and use w[i] to denote the suffix wiwi+1 . . . of w starting at i. We use w[i, j] to
denote the substring wi . . . wj−1. We use [n] to denote all non-negative integers
less than n that is {0, 1, . . . , n−1}. We begin by recalling the syntax of LTL:

Definition 1 (LTL Syntax). Formulae in LTL are given by the following
syntax:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕ U ϕ p ∈ P

Next, we look at the semantics of the various operators:

Definition 2 (Semantics). LTL formulae over a set P are interpreted over
words w in (2P)ω. The semantics of the logic is given by the following rules

w � p (¬p) ⇐⇒ p ∈ w0 (p /∈ w0) w � Xϕ ⇐⇒ w[1] � ϕ

w � ϕ ∨ ψ ⇐⇒ w � ϕ or w � ψ w � Fϕ ⇐⇒ ∃ i : w[i] � ϕ

w � ϕ ∧ ψ ⇐⇒ w � ϕ and w � ψ w � Gϕ ⇐⇒ ∀ i : w[i] � ϕ

w � ϕ U ψ ⇐⇒ ∃ i : w[i] � ψ, and
∀ j < i : w[j] � ϕ

The semantics of ϕ, denoted by �ϕ�, is defined as the set {w ∈ (2P)ω | w � ϕ}.

116 D. Kini and M. Viswanathan

(Note that the release operator R, the dual of U, can be expressed using U and
G, i.e. ψ1 R ψ2 ≡ (ψ2 U (ψ1 ∧ ψ2)) ∨ Gψ2. Hence we omit it from any of the
logics we consider.)

In this paper the terminology subformula of ϕ is used to denote a node
within the parse tree of ϕ. When we refer to the subformula as an LTL formula
we will be referring to the formula at that node. Two subformulae that have the
same formulae at their nodes need not be the same owing to the possibility of
them being in different contexts. This distinction will be important as we treat
formulae differently depending on their contexts. For the purposes of describ-
ing different subfragments we qualify subformulae as being either internal or
external.

Definition 3. A subformula ψ of ϕ is said to be internal if ψ is in the scope of
some G-subformula of ϕ, otherwise it is said to be external.

Many syntactic restrictions of LTL have been considered for the sake of
obtaining smaller automata translations. LTL(F ,G) (read “LTL F G”) and
LTL\GU (read “LTL set minus G U”) are two such fragments which we recall
in the next two definitions.

Definition 4 (LTL(F,G) Syntax). The fragment LTL(F ,G) over propositions
P is described by the following syntax

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ p ∈ P

Definition 5 (LTL\GU Syntax). The fragment LTL\GU is given by the
syntax

ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψ U ψ ϕ ∈ LTL(F ,G)

LTL(F ,G) allows for G and F as the only temporal operators. The fragment
LTL\GU additionally allows for external U but not internal ones. Also, we
choose to represent an external F using U. In other words every F will be
internal. Next, we introduce the fragment LTLD (read “LTL D”)

Definition 6 (LTLD Syntax). The formulae in the fragment LTLD are given
by the syntax for ϑ:

ψ ::= ϕ | ψ ∨ ϕ | ϕ ∨ ψ | ψ ∧ ψ | ψ U ϕ | Gψ | Xψ ϕ ∈ LTL(F ,G)
ϑ ::= ψ | ϑ ∨ ϑ | ϑ ∧ ϑ | ϑ U ϑ | Xϑ

Unlike LTL\GU , LTLD allows for internal U but it is restricted. The following
restrictions apply on LTLD:

1. The second argument of every internal U formula is in LTL(F ,G)
2. At least one argument of every internal ∨ is in LTL(F ,G)

Note that LTLD is strictly larger than LTL\GU in the syntactic sense, as every
LTL\GU formula is also an LTLD formula. We shall show in Sect. 5 that it is
strictly richer in the semantic sense as well.

Optimal Translation of LTL to Limit Deterministic Automata 117

Next we define depth and height. A subformula ψ of ϕ is said to be at depth
k if the number of X operators in ϕ within which ψ appears is exactly k. The
height of a formula is the maximum depth of any of its subformulae.

Definition 7 (Büchi Automata). A nondeterministic Büchi automaton
(NBA) over input alphabet Σ is a tuple (Q, δ, I, F) where Q is a finite set of
states; δ ⊆ Q×Σ×Q is a set of transitions; I ⊆ Q is a set of initial states and
F ⊆ Q is a set of final states.

A run of a word w ∈ Σω over a NBA is an infinite sequence of states
q0q1q2 . . . such that q0 ∈ I and ∀ i ≥ 0 (qi, wi, qi+1) ∈ δ. A run is accepting
if qi ∈ F for infinitely many i.

The language accepted by an NBA A, denoted by L(A) is the set of all words
w ∈ Σω which have an accepting run on A.

Definition 8 (Limit Determinism). A NBA (Q, δ, I, F) over input alphabet
Σ is said to be limit deterministic if for every state q reachable from a final
state, it is the case that |δ(q, σ)| ≤ 1 for every σ ∈ Σ.

3 Construction

In this section we show our construction of limit deterministic automata for full
LTL. First, let us look at an example that shows that the standard construction
(Fischer-Ladner and its variants) is not limit deterministic. The standard con-
struction involves guessing the set of subformulae that are true at each step and
ensuring the guess is correct. For ϕ = G(a ∨ Fb) this gives us the automaton
(after pruning unreachable states and merging bisimilar ones. Here all 3 states
are initial) in Fig. 1a which is not limit deterministic as the final state q1 has
non-deterministic choices enabled.

q0 : {ϕ,Fb} q1 : {ϕ,Fb, b}

q2 : {ϕ}

¬b b

¬b

b

b

a

(a) Standard Construction

q0 : 〈 ϕ | Fb | - 〉, 0

q1 : 〈 ϕ,Fb | - | - 〉, 0

q2 : 〈 ϕ | - | Fb 〉, 0

q3 : 〈 ϕ | - | Fb 〉, 1

true

b

a

trueb

¬b

(b) Tripartition Construction

Fig. 1. Automata for G(a ∨ Fb)

Our construction builds upon the idea introduced in [8] of keeping track of
how often F,G-subformulae are true. Therefore, we will incrementally describe
the features of our automaton: first by revisiting the technique required for
LTL(F ,G) without Xs, later by introducing the new ideas required to handle
the untils and nexts.

Given an LTL(F ,G) formula, for each of its G-subformula we are going to
predict whether it is: always true (α), true at some point but not always (β),
never true (γ). Note that for any formula if we predict α/γ then the prediction

118 D. Kini and M. Viswanathan

should remain the same going forward. For a G-subformula, Gψ, if we predict
β it means we are asserting FGψ ∧ ¬Gψ and therefore the prediction should
remain β until a certain point and then change to α. This prediction entails
two kinds of non-deterministic choices: (i) the initial choice of assigning one of
α, β, γ (ii) if assigned β initially then the choice of the time point at which to
change it to α. The first choice needs to be made once at the beginning and
the second choice has to be made eventually in a finite time. They together only
constitute finitely many choices which is the source of the limit determinism. We
similarly define predictions for F-subformulae as: never true (α), true at some
point but not always (β), always true (γ). We flip the meaning of α and γ to
ensure β becomes α eventually as for G-subformulae. An FG-prediction for a
formula ϕ ∈ LTL(F ,G), denoted by π, is a tri-partition 〈α(π), β(π), γ(π)〉 of its
F,G-subformulae. We drop π when it is clear from the context. The prediction
for a subformula ψ made by π is said to be α/β/γ depending upon the partition
of π in which ψ is present. The space of all FG-predictions for ϕ is denoted
by Π(ϕ).

Example 1. Consider the formula ϕ = G(a ∨ Fb), and an FG-prediction π =
〈α, β, γ〉 for ϕ where α = {ϕ}, β = {Fb} and γ = ∅. For the formula ϕ the
prediction made is α. Since it is a G-formula this prediction says that ϕ is
always true or simply ϕ is true. For the subformula Fb the prediction made is β.
This prediction says that Fb is true at some point but not always which implies
Fb is true but not GFb.

The automaton for LTL(F ,G) essentially makes a non-deterministic choice
for π initially and at each step makes a choice of whether to move some formula(e)
from β to α. The correctness of predictions made by π is monitored inductively.
Suppose our prediction for a formula Gψ is α at some instant: this implies we
need to check that ψ is true at every time point there onwards (or equivalently
check that ψ is true whenever α is predicted for Gψ since the prediction α never
changes). If we are able to monitor the truth of ψ at every instant then it is
clear how this can be used to monitor the prediction α for Gψ. The crucial
observation here is that the correct prediction for G/F formula gives us their
truth: a G/F formula is true/false (respectively) at a time point if and only if
its correct prediction is α at that time. Now the prediction α for Gψ can be
checked by using the truths (derived from the predictions) of the subformulae of
ψ (inductive step). If ψ is propositional then its truth is readily available from
the input symbol being seen (base case of the induction). This inductive idea
shall be used for all predictions. Note that since our formulae are in negation
normal form we only need to verify a prediction is correct if it asserts the truth
rather than falsehood of a subformula. Therefore the predictions β, γ for Gψ
need not be checked. In case of Fψ the prediction α need not be checked (as it
entails falsehood of Fψ) but β, γ do need to be checked. If our prediction for Fψ
is β then we are asserting ψ is true until a certain point in the future at which
the prediction becomes α. Therefore we only need to check that ψ is true when
the prediction for Fψ changes to α. Once again we can inductively obtain the

Optimal Translation of LTL to Limit Deterministic Automata 119

truth of ψ at that instant from the predictions for the subformulae of ψ and from
the next input. For checking a prediction γ about Fψ we need to check ψ is true
infinitely often. For this purpose we use the Büchi acceptance where the final
states are those where ψ is evaluated to be true, again inductively. When we are
monitoring multiple Fψ for γ we will need a counter to cycle through all the Fψ
in γ. Let m be the number of Fψ in γ. Observe that the set of formulae predicted
to be γ never changes once fixed at the beginning and hence m is well defined.
When the counter has value n, it is incremented cyclically to n + 1(mod m)
whenever the ψ corresponding to the nth Fψ ∈ γ evaluates to true. The initial
states are those in which the top formula evaluates to true given the predictions
in that state. The final states are those where no formula is assigned β and the
counter is 0. Summarizing, a state in our automata has two components: (a) an
FG-prediction π = 〈α, β, γ〉 (a tri-partition of the F,G-subformulae) and (b) a
cyclic integer counter n. The transitions are determined by how the predictions
and counters are allowed to change as described. We illustrate the construction
using once again the formula ϕ = G(a∨Fb) for which the automaton is presented
in Fig. 1b and its details are completely described in the technical report [9].

3.1 Handling Untils and Nexts

Next we observe that the above technique does not lend itself to the U/X oper-
ators. The crucial property used above about F,G-formulae is that they cannot
be simultaneously infinitely often true and infinitely often false unlike U/X
formulae. So if we tried the above technique for U/X we would not get limit
determinism since the truth of the U/X formulae would have to be guessed
infinitely often.

The key idea we use in handling U/Xs is to propagate their obligation along
the states. Let us say the automaton needs to check if a formula ϕ holds for an
input w, and it begins by making an FG-prediction π about w. The obligation
when no input has been seen is ϕ. When the first symbol w0 is seen it needs
to update the obligation to reflect what “remains to be checked” for the rest
of the input w[1], in order for w � ϕ to hold, assuming π is correct for w. The
automaton can keep updating the obligation as it sees each input symbol. The
claim will be that the obligation is never falsified iff w � ϕ, given that π is
correct. This brings up some questions:

1. How are we exploiting opportunities for non-determinism?
2. How is the obligation computed at each step?
3. How is π checked to be correct in the presence of U/Xs?

Exploiting Non-determinism. Being able to exploit non-determinism helps
in reducing the size of the automaton we construct. So the question is: how are
we exploiting any opportunities for non-determinism (albeit for finite time)? The
answer is to update the obligation non-deterministically. Checking the formula
ψ1Uψ2 presents us with two alternatives: either ψ2 is true now or ψ1∧X(ψ1Uψ2)
is true now. Similarly ψ1∨ψ2 brings up two alternatives. We can pick between the
obligations of these two choices non-deterministically. But we should somehow

120 D. Kini and M. Viswanathan

q0 : {ϕ} q1 : {Gb, b}a
a

b

Fig. 2. Standard NBA construction for ϕ = aU(Gb).

ensure that we are only allowed to use this non-determinism finitely often. This is
where we treat internal and external (Definition 3) U/∨ subformulae differently.
The observation is that external U/∨ need to be checked for only a finite amount
of time. Hence the disjunctive choice presented by them can be dispatched non-
deterministically each time without worrying about violating limit determinism.
To illustrate this point we show the standard NBA for the formula ϕ = aU(Gb)
in Fig. 2 which turns out to be limit deterministic owing to the fact that the U
is external. In Fig. 1a we saw that the standard construction for ϕ = G(a ∨ Fb)
resulted in a NBA that was not limit-deterministic, and one of the reasons is
that the F, which is a special form of U, is internal. An internal U/∨ may need
to be checked infinitely many times and hence the choice should not be resolved
non-deterministically, but carried forward as a disjunction of the obligations of
the choices. Passing the choice forward without resolving it comes at a cost of a
bigger state space, this is akin to the subset construction where all the choices
are being kept track of.

Now we begin to formalize the ideas. To exploit the non-determinism allowed
by the external U/∨ we introduce the concept of ex-choice. We use Λϕ to denote
the set of all external U/∨ subformulae. Any subset of it λ ⊆ Λϕ is called an
ex-choice. An ex-choice dictates how each external U/∨ should be satisfied if
it needs to be satisfied. The interpretation associated with λ is the following:
if ψ1Uψ2 ∈ λ then ψ2 has to hold or if ψ1Uψ2 ∈ Λϕ−λ then ψ1 ∧ X(ψ1Uψ2)
has to hold. Similarly if ψ1∨ψ2 ∈ λ then ψ1 has to hold and if ψ1∨ψ2 ∈ Λϕ − λ
then ψ2 has to hold. The automaton we are going to construct is going to non-
deterministically pick an ex-choice at each step and use it resolve the choices on
external U/∨. After a finite time the ex-choice will not matter as the obligations
will not consist of any external U/∨ that need to be checked (which will be
enforced as a part of the acceptance condition), and hence limit determinism is
ensured. The ex-choice picked along a transition is going to determine the obliga-
tion computed. Which leads us to the question of how the obligation is computed.

Computing Obligation. We define the derivative of a formula μ w.r.t an input
symbol σ, FG-prediction π and ex-choice λ. The derivative should capture the
obligation/requirement on any word ρ such that those obligations are able to
imply that σρ satisfies μ. This enables us to keep passing on the obligation
forward as we see each symbol of the input by taking the derivative of the
obligation so far. First, we need to ensure that the ex-choice λ picked when we
are taking the transition dictates how a formula in Λϕ should be satisfied if it
needs to be. With that in mind we define f(λ) as follows:

f(λ) = (∧(φUψ∈λ)φ U ψ ⇒ ψ) ∧ (∧(φUψ∈(Λϕ−λ))φ U ψ ⇒ (φ ∧ X(φ U ψ)))

∧ (∧(φ∨ψ∈λ)φ ∨ ψ ⇒ φ) ∧ (∧(φ∨ψ∈Λϕ−λ)φ ∨ ψ ⇒ ψ)

Optimal Translation of LTL to Limit Deterministic Automata 121

Since predictions made by π already tell us the truth of some of the subformu-
lae, they need to be taken into account. Towards that we define the substitution
of a formula φ w.r.t π, denoted by [φ]π as the formula obtained from φ by sub-
stituting occurrences Gψ with tt if Gψ ∈ α and ff otherwise, and similarly for
Fψ with ff if Fψ ∈ α and tt otherwise. The substitutions are done only for the
maximal formulae in π that appear in φ, i.e., if ψ1, ψ2 are formulae in π such
that ψ1 is a subformula of ψ2 then the substitution is not performed for ψ1. Now
we are ready to give a declarative definition of the derivative:

Definition 9. Given an LTL formula μ over P , and a triple ε = (σ, π, λ) where
σ ∈ 2P , π ∈ Π(ϕ) and λ ⊆ Λϕ: an LTL formula ψ is said to be a derivative of
μ w.r.t to ε if

∀ ρ ∈ (
2P

)ω
ρ � ψ =⇒ σρ � [μ ∧ f(λ)]π

The weakest derivative of μ w.r.t ε, denoted by ∇(μ, ε), is a derivative
such that ψ =⇒ ∇(μ, ε) for any other derivative ψ.

Since we will only be interested in the weakest derivative (as opposed to any
other derivative) we shall refer to it as the derivative. The above definition is
only declarative in the sense that it does not give us an explicit way to compute
the derivative. We present this definition here for the sake of simplicity and ease
of understanding for the reader. In the companion technical report [9] we provide
a syntactic definition and all the necessary machinery that allows us to compute
such a formula. The syntactic definition also restricts the representation of the
obligations to B+(ϕ) which is the set of all positive Boolean combinations of
subformulae of ϕ.

The automaton now will have an extra component μ corresponding to the
obligation along with (π, n) from before. In the initial state μ will be the given
formula ϕ that needs to be checked. At each step, the automaton sees an input
symbol σ and makes a non-deterministic ex-choice λ ⊆ Λϕ. The obligation at the
next state will then become ∇(μ, ε) where ε = (σ, π, λ). The process continues
as long as the obligation is never falsified. In order to ensure that every external
until is dispatched in finite time, we impose that the obligation μ in the final
states is ex-free, i.e. free of any formulae in Λϕ. When the obligation is ex-free
the ex-choice does not play a role in determining its derivative and we shall drop
λ whenever that is the case, and this eliminates any non-determinism once a
final state is visited. In order to ensure that an internal until, say φ U ψ is not
delayed forever, we involve Fψ in the FG-prediction and enhance the definition
of substitution to say that φ U ψ is replaced with ff if Fψ ∈ α. This way the
derivative will impose that Fψ is true whenever φ U ψ is claimed to be true.
With this in mind we define the closure of ϕ, denoted by C(ϕ), to be set of all
F,G-subformulae of ϕ, along with all Fψ for every internal φUψ subformula of
ϕ. We re-define an FG-prediction π to be any tri-partition of C(ϕ). Note that
for every Fψ or Gψ in C(ϕ), ψ is internal.

Example 2. Let ϕ = G(Fa ∨ (b U c)). Here C(ϕ) = {ϕ,Fa,Fc}.

122 D. Kini and M. Viswanathan

Example 3. Let ϕ = aU(b∧Gc) be an internal subformula of some given formula.
∇(ϕ, ε) can take different values depending upon ε = (σ, π). Here ex-choice λ
does not play a role because the only U is internal. Note that ϕ′ = F(b ∧ Gc)
is in the closure. If ϕ′ ∈ α, then ∇(ϕ, ε) = ff because [ϕ]π would be ff owing
to ϕ being substituted with ff . Let ϕ′ /∈ α. Now if Gc ∈ α then substituting
tt in place of Gc gives us aUb whose satisfaction depends upon the truth of a
and b as given by σ. So if σ(b) = tt then the U is immediately satisfied and
so ∇(ϕ, ε) = tt. If σ(b) = ff then the U is delayed and hence ∇(ϕ, ε) is either
aUb or ff depending on σ(a) = tt/ff respectively. If Gc /∈ α then truth of b
does not matter (as replacing Gc with ff makes b∧Gc = ff) and once again the
derivative is ϕ/ff depending upon σ(a).

Checking FG-Predictions in the Presence of Untils and Nexts. The
main idea in being able to check an FG-prediction π was that a correct prediction
about an F,G-subformula also tells us its truth. When we have U/Xs in the
mix, we no longer have a prediction available for them, and hence no immediate
way to check if some subformula is true. For example when Gψ ∈ α we needed to
check ψ is true and we did so inductively using the predictions for subformulae
in ψ. Now, since ψ can have U/X within them it is not clear how we are going to
check truth of ψ. In this case we pass ψ to the obligation μ. Similarly when the
prediction of Fψ is changed from β to α we need to check ψ is true so once again
we pass ψ to the obligation. So given consecutive FG-predictions π, π′ define Ψ
as the set

Ψ = {ψ | Fψ ∈ β(π) ∩ α(π′) or Gψ ∈ α(π)} (1)

and update the obligation along a transition (μ, π, n) σ−→ (μ′, π′, n′) as: μ′ =
∇(μ ∧ (∧ψ∈Ψψ), ε) where ε = (σ, π, λ). Now consider the case when the counter
is n > 0 and need to verify that the nth Fψ formula in γ is true. In this case we
cannot pass on ψ to the obligation because Fψ may be true because ψ is true at
a later point and not now. Since we cannot predict when ψ is going to be true we
carry the disjunction of all the derivatives of ψ since the counter was incremented
to n. We keep doing it until this “carry” becomes true indicating that ψ became
true at some point since we started checking for it. We also increment the counter
at that point. This “carry” becomes yet another component ν in the automaton’s
state. We use F(S) to denote all Fψ in set S. Now we are ready to put the pieces
together to formally describe the entire construction.

Definition 10 (Construction). Given a formula ϕ ∈ LTL over propositions
P , let D(ϕ) be the NBA (Q, δ, I, F) over the alphabet 2P defined as follows:

� Q is the set B+(ϕ) × B+(ϕ) × Π(ϕ) × [n] where n = |F(C(ϕ))| + 1
� δ is the set of all transitions (μ, ν, π,m) σ−→ (μ′, ν′, π′,m′) such that

(a) α(π) ⊆ α(π′) and γ(π) = γ(π′)
(b) μ′ = ∇(μ ∧ θ, ε) for some λ ⊆ Λϕ

where θ = (∧ψ∈Ψψ), Ψ as defined in (1) and ε = (σ, π, λ)

Optimal Translation of LTL to Limit Deterministic Automata 123

(c) m′ =

{
(m + 1) (mod |F(γ)| + 1) ν = tt
m otherwise

(d) ν′ =

{
ψm′ ν = tt
∇(ν, ε) ∨ ψm otherwise

where {Fψ1, . . ,Fψk} is an enumeration of F(γ), ψ0 = tt and ε = (σ, π)
� I is all states of the form (ϕ, tt, π, 0)
� F is all states of the form (μ, tt, π, 0) where β(π) = ∅, μ �= ff , μ is ex-free

We state the correctness result here and include the proofs in the technical
report [9].

Theorem 1. For ϕ ∈ LTL, D(ϕ) is a limit deterministic automaton such that
L(D(ϕ)) = �ϕ� and D(ϕ) is of size at most double exponential in ϕ.

The number of different formulae in B+(ϕ), is at most double exponential
in the size of ϕ, since each can be represented as a collection of subsets of
subformulae of ϕ. Π(ϕ) is simply tripartition of C(ϕ) which is bounded above
by 3|ϕ|. And the counter can take |F(C(ϕ))| + 1 different values which is ≤ |ϕ|.
The entire state space B+(ϕ) × B+(ϕ) × Π(ϕ) × [n] is upper bounded by the
product of these which is clearly doubly exponential.

q0 : (ϕ, tt, π, 0)

q1 : (tt, b, π, 1)

q2 : (aUb, b, π, 1)

q3 : (tt, tt, π, 0)

b

a.b

a.b

b

b

b

a.b

a.b

Fig. 3. Our construction for ϕ = G(aUb).

We illustrate our construction using ϕ = G(aUb) which is a formula outside
LTL\GU . The automaton for ϕ is shown in Fig. 3. First note that the C(ϕ) =
{ϕ,Fb}. Next, observe that the only interesting FG-prediction is π in which
α = {ϕ}, β = ∅ and γ = {Fb}. This is because any initial state will have μ = ϕ
which forces ϕ ∈ α, and since predictions in α don’t change, every reachable
state will have ϕ ∈ α as well. As for Fb note that the corresponding internal
until aUb will become ff if Fb is in α and thus making the derivative ff (aUb
is added to the obligation at each step since ϕ ∈ α and rule (b)). Therefore Fb
cannot be in α, and it cannot be in β because then it would be eventually in α.
So Fb has to be in γ. Now that π is fixed, and given input σ, the obligation μ
changes according to rule (b) as μ′ = ∇(μ ∧ (aUb), (σ, π)). Similarly the carry
ν changes to b if ν = tt (as in q3 to q1/q2) and becomes ν′ = ∇(ν, (σ, π)) ∨ b

124 D. Kini and M. Viswanathan

otherwise in accordance with rule (d). The initial state is q0 with μ = ϕ, ν = tt
and counter = 0. The counter is incremented whenever ν becomes tt. It is easy
to see that the automaton indeed accepts G(a U b) and is limit deterministic.

4 Efficiency

In this section we state the results regarding the efficiency of our construction
for LTLD. We prove that there are only exponentially many reachable states
in D(ϕ). A state q = (μ, ν, π, n) of D(ϕ) is called reachable if there exists a
valid finite run of the automaton that ends in q. A μ is said to be reachable if
(μ, ν, π, n) is reachable for some choice of ν, π and n. Similarly for ν. We show
that the space of reachable μ and ν is only exponentially large in the size of ϕ.
Our approach will be to show that every reachable μ (or ν) can be expressed in a
certain way, and we will count the number of different such expressions to obtain
an upper bound. The expression for μ and ν relies on them being represented
in DNF form and uses the syntactic definition of the derivative given in the
technical report [9]. Therefore we state only the main result and its consequence
on the model checking complexity here and present the proofs in [9].

Theorem 2. For ϕ ∈ LTLD the number of reachable states in the D(ϕ) is at
most exponential in |ϕ|.
Theorem 3. The model checking problem for MDPs against specification in
LTLD is EXPTIME-complete

Proof. The upper bound follows from our construction being of exponential size
and the fact that the model checking of MDPs can be done by performing a
linear time analysis of the synchronous product of the MDP and the automaton
[4]. The EXPTIME hardness lower bound is from the fact that the problem is
EXPTIME hard for the subfragment LTL\GU as proved in [8].

5 Expressive Power of LTLD

In this section we show that LTLD is semantically more expressive than
LTL\GU . We demonstrate that the formula ϕ0 = G(p∨(qUr)) which is express-
ible in LTLD, cannot be expressed by any formula in LTL\GU .

Let us fix integers �, k ∈ N. We will use LTL�(F,G) to denote the subfragment
of LTL(F ,G) where formulae have maximum height �. Since X distributes over all
other operators we assume that all the Xs are pushed inside. We use LTL�,k\GU
to denote the fragment where formulae are built out of U, ∧, ∨ and LTL�(F,G)
formulae such that the number of Us used is at most k.

Next, consider the following strings over 2P where P = {p, q, r}:

u = {p}{p, q}�{p} v = {q}{p, q}�{r} w = {q}{p, q}�{p}
sk = (uv)k+1u σ = (uv)ω ηk = skwvσ

The observation we make is that σ satisfies ϕ0 but ηk does not. We state the
main theorem and the corollary here and leave the details in the tech report [9].

Optimal Translation of LTL to Limit Deterministic Automata 125

Theorem 4. ∀ϕ ∈ LTL�,k\GU σ � ϕ =⇒ ηk � ϕ

Corollary 1. ϕ0 is not expressible in LTL�,k\GU . Also since � and k are arbi-
trary, ϕ0 is not expressible in LTL\GU .

6 Experimental Results

We present our tool Büchifier (available at [1]) that implements the techniques
described in this paper. Büchifier is the first tool to generate LDBA with prov-
able exponential upper bounds for a large class of LTL formulae. The states
(μ, ν, π, n) in our automaton described in Definition 10, involve μ, ν ∈ B+(ϕ)
which are essentially sets of sets of subformulae. We view each subformula as a
different proposition. We then interpret the formulae in B+(ϕ) as a Boolean func-
tion on these propositions. In Büchifier we represent these Boolean functions
symbolically using Binary Decision Diagrams (BDD). Our overall construction
follows a standard approach where we begin with an initial set of states and
keep adding successors to discover the entire reachable set of states. We report
the number of states, number of transitions and the number of final states for
the limit deterministic automata we construct.

MDP model checkers like PRISM [15], for a long time have used the trans-
lation from LTL to deterministic Rabin automata and only recently [20] have
started using limit deterministic Büchi automata. As a consequence we compare
the performance of our method against Rabinizer 3 [12] (the best known tool
for translating LTL to deterministic automata) and ltl2ldba [20] (the only other
known tool for translating LTL to LDBA). Rabinizer 3 constructs determin-
istic Rabin automata with generalized Rabin pairs (DGRA). The experimental
results in [5,12] report the size of DGRA using the number of states and number
of acceptance pairs of the automata; the size of each Rabin pair is, unfortu-
nately, not reported. Since the size of Rabin pairs influences the efficiency of
MDP model checking, we report it here to make a meaningful comparison. We
take the size of a Rabin pair to be simply the number of transitions in it. The
tool ltl2ldba generates transition-based generalized Büchi automata (TGBA).
The experimental results in [20] report the size of the TGBA using number of
states and number of acceptance sets, and once again the size of each of these
sets is not reported. Since their sizes also effect the model checking procedure
we report them here. We take the size of an acceptance set to be simply the
number of transitions in it. In Table 1 we report a head to head to comparison
of Büchifier, Rabinizer 3 and ltl2ldba on various LTL formulae.

1. The first 5 formulae are those considered in [5]; they are from the GR(1)
fragment [18] of LTL. These formulae capture Boolean combination of fairness
conditions for which generalized Rabin acceptance is particularly well suited.
Rabinizer 3 does well on these examples, but Büchifier is not far behind
its competitors. The formulae are instantiations of the following templates:
g0(j) = ∧j

i=1(GFai ⇒ GFbi), g1(j) = ∧j
i=1(GFai ⇒ GFai+1).

126 D. Kini and M. Viswanathan

Table 1. A Comparison between the sizes of automata produced by Büchifier,
Rabinizer 3 and ltl2ldba on various formulae. Column St denotes the number of
states, column Tr denotes the number of transitions and column AC denotes the size
of the acceptance condition. Entries marked as “–” indicate that the tool failed to con-
struct the automaton and/or the acceptance condition due to the memory limit (1 GB)
being exceeded.

Büchifier Rabinizer 3 ltl2ldba

St Tr AC St Tr AC St Tr AC

g0(1) 4 7 2 1 1 3 3 6 2 (1)

g0(2) 12 23 5 1 1 8 5 14 12 (2)

g0(3) 32 63 8 1 1 20 9 36 54 (3)

g1(2) 12 21 5 1 1 8 5 13 11 (2)

g1(3) 31 54 13 1 1 18 9 30 44 (3)

ϕ1 5 7 3 5 13 40 7 23 12 (4)

ϕ2 26 83 8 12 48 233 36 101 75 (2)

ϕ3 13 25 3 16 128 64 21 140 129 (2)

ϕ4 17 47 7 2 4 35 9 29 31 (2)

ϕ5 36 111 11 12 48 330 41 133 94 (2)

f0(1) 4 7 2 2 4 2 2 4 2 (1)

f0(2) 14 29 5 16 74 26 4 16 16 (2)

f0(3) 44 105 13 – – – 8 64 96 (3)

f0(4) 130 369 33 – – – 16 256 512 (4)

f1(1) 14 29 5 6 24 10 8 32 12 (1)

f1(2) 130 369 33 – – – 64 1024 768 (2)

f1(3) 1050 4801 193 – – – 512 32768 36K (3)

f2(1) 1 1 1 2 3 2 1 1 2 (2)

f2(2) 5 7 3 5 13 45 6 21 9 (3)

f2(3) 19 37 7 19 109 847 19 218 28 (4)

f2(4) 65 175 15 167 2529 – 93 6301 75 (5)

f3(1) 2 4 1 3 7 4 1 2 3 (2)

f3(2) 10 20 4 17 91 53 14 62 28 (1)

f3(3) 36 78 12 – – – 212 2359 953 (1)

f3(4) 114 288 32 – – – 17352 598330 167K (1)

h(2, 1) 26 54 9 15 49 49 14 44 1 (1)

h(2, 2) 60 138 21 65 469 469 64 434 1 (1)

h(2, 3) 182 468 57 315 5119 5119 314 4892 1 (1)

h(4, 1) 80 146 36 76 250 250 75 229 1 (1)

h(4, 2) 230 464 96 990 8068 8068 989 7465 1 (1)

h(4, 3) 908 1994 348 – – – – – –

ψ1 35 62 9 3 6 12 3 6 8 (3)

ψ2 7 15 3 8 39 53 2 5 18 (3)

ψ3 29 62 8 29 116 74 62 293 27 (2)

ψ4 26 92 6 4 11 7 3 8 3 (1)

ψ5 9 58 1 5 17 9 3 9 3 (1)

Optimal Translation of LTL to Limit Deterministic Automata 127

2. The next 5 formulae are also from [5] to show how Rabinizer 3 can effectively
handle Xs. Büchifier has a comparable number of states and much smaller
acceptance condition when compared to Rabinizer 3 and ltl2ldba in all
these cases. ϕ1 = G(q ∨XGp)∧G(r ∨XG¬p), ϕ2 = (GF(a∧X2b)∨FGb)∧
FG(c ∨ (Xa ∧ X2b)), ϕ3 = GF(X3a ∧ X4b) ∧ GF(b ∨ Xc) ∧ GF(c ∧ X2a),
ϕ4 = (GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨ Xe)), ϕ5 = (GF(a ∧ X2c) ∨ FGb) ∧
(GFc ∨ FG(d ∨ (Xa ∧ X2b))).

3. The next 15 formulae (4 groups) express a variety of natural properties, such
as G(req ⇒ Fack) which says that every request that is received is eventually
acknowledged. As shown in the table in many of the cases Rabinizer 3 runs
out of memory (1 GB) and fails to produce an automaton, and ltl2ldba fails
to scale in comparison with Büchifier. The formulae in the table are instanti-
ations of the following templates: f0(j)=G(∧j

i=1(ai ⇒ Fbi)), f1(j)=G(∧j
i=1

(ai ⇒ (Fbi ∧ Fci))), f2(j) = G(∨j
i=1(ai ∧ Gbi)), f3(j) = G(∨j

i=1(ai ∧ Fbi)).
4. The next 6 formulae expressible in LTL\GU , contain multiple Xs and external

Us. Büchifier constructs smaller automata and is able to scale better than
ltl2ldba in these cases as well. The formulae are instantiations of: h(m,n) =
(Xmp) U (q ∨ (∧n

i=1(ai U Xmbi))).
5. The last few examples are from outside of LTL\GU . The first three are in

LTLD while the rest are outside LTLD. We found that Büchifier did better
only in a few cases (like ψ3), this is due to the multiplicative effect that
the internal untils have on the size of the automaton. So there is scope for
improvement and we believe there are several optimizations that can be done
to reduce the size in such cases and leave it for future work. ψ1 = FG((a ∧
X2b∧GFb)U(G(X2¬c∨X2(a∧b)))), ψ2 = G(F¬a∧F(b∧Xc)∧GF(aUd)),
ψ3 = G((X3a)U(b∨Gc)), ψ4 = G((aUb)∨(cUd)), ψ5 = G(aU(bU(cUd))).

7 Conclusion

In this paper we presented a translation of formulas in LTL to limit deterministic
automata, generalizing the construction from [8]. While the automata resulting
from the translation can, in general, be doubly exponential in the size of the
original formula, we observe that for formulas in the subfragment LTLD, the
automaton is guaranteed to be only exponential in size. The logic LTLD is a more
expressive fragment than LTL\GU , and thus our results enlarge the fragment
of LTL for which small limit deterministic automata can be constructed. One
consequence of our results here is a new EXPTIME algorithm for model checking
MDPs against LTLD formulas, improving the previously known upper bound of
2EXPTIME.

Our results in this paper, however, have not fully settled the question of
when exponential sized limit deterministic automata can be constructed. We do
not believe LTLD to be the largest class. For example, our construction yields
small automata for ϕ = G(∨i(pi U qi)), where pi, qi are propositions. ϕ is not
expressible in LTLD. Of course we cannot have an exponential sized construction
for full LTL as demonstrated by the double exponential lower bound in [20].

128 D. Kini and M. Viswanathan

References

1. Büchifier. http://kini2.web.engr.illinois.edu/buchifier/
2. Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments.

ACM Trans. Comput. Logic 5(1), 1–25 (2004)
3. Babiak, T., Blahoudek, F., Křet́ınský, M., Strejček, J.: Effective translation of

LTL to deterministic Rabin automata: beyond the (F,G)-fragment. In: Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg
(2013). doi:10.1007/978-3-319-02444-8 4

4. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

5. Esparza, J., Křet́ınský, J.: From LTL to deterministic automata: a safraless com-
positional approach. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 192–208. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 13

6. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: CONCUR, pp. 354–367 (2015)

7. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik,
Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006).
doi:10.1007/11874683 26

8. Kini, D., Viswanathan, M.: Limit deterministic and probabilistic automata for
LTL\GU. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 628–
642. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 57

9. Kini, D., Viswanathan, M.: Optimal translation of LTL to limit deterministic
automata. Technical report, University of Illinois at Urbana-Champaign (2017).
http://hdl.handle.net/2142/95004

10. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)

11. Klein, J., Müller, D., Baier, C., Klüppelholz, S.: Are good-for-games automata
good for probabilistic model checking? In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-
Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 453–465.
Springer, Cham (2014). doi:10.1007/978-3-319-04921-2 37

12. Komárková, Z., Křet́ınský, J.: Rabinizer 3: safraless translation of LTL to small
deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 235–241. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6 17

13. Křet́ınský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 7

14. Křet́ınský, J., Garza, R.L.: Rabinizer 2: small deterministic automata for LTL\GU.
In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 446–450.
Springer, Heidelberg (2013). doi:10.1007/978-3-319-02444-8 32

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

16. Morgenstern, A., Schneider, K.: From LTL to symbolically represented deter-
ministic automata. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI
2008. LNCS, vol. 4905, pp. 279–293. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78163-9 24

17. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: VMCAI,
pp. 279–293 (2006)

http://kini2.web.engr.illinois.edu/buchifier/
http://dx.doi.org/10.1007/978-3-319-02444-8_4
http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1007/11874683_26
http://dx.doi.org/10.1007/978-3-662-46681-0_57
http://hdl.handle.net/2142/95004
http://dx.doi.org/10.1007/978-3-319-04921-2_37
http://dx.doi.org/10.1007/978-3-319-11936-6_17
http://dx.doi.org/10.1007/978-3-642-31424-7_7
http://dx.doi.org/10.1007/978-3-319-02444-8_32
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-540-78163-9_24
http://dx.doi.org/10.1007/978-3-540-78163-9_24

Optimal Translation of LTL to Limit Deterministic Automata 129

18. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). doi:10.1007/11609773 24

19. Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)
20. Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic Büchi automata

for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 312–332. Springer, Cham (2016). doi:10.1007/978-3-319-41540-6 17

21. Sickert, S., Křet́ınský, J.: MoChiBA: probabilistic LTL model checking using
limit-deterministic Büchi automata. In: Artho, C., Legay, A., Peled, D. (eds.)
ATVA 2016. LNCS, vol. 9938, pp. 130–137. Springer, Cham (2016). doi:10.1007/
978-3-319-46520-3 9

22. Vardi, M., Wolper, P., Sistla, A.P.: Reasoning about infinite computation paths.
In: FOCS (1983)

23. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: Proceedings of FOCS, pp. 327–338 (1985)

http://dx.doi.org/10.1007/11609773_24
http://dx.doi.org/10.1007/978-3-319-41540-6_17
http://dx.doi.org/10.1007/978-3-319-46520-3_9
http://dx.doi.org/10.1007/978-3-319-46520-3_9

Quantitative Systems I

Sequential Convex Programming
for the Efficient Verification of Parametric

MDPs

Murat Cubuktepe1, Nils Jansen1(B), Sebastian Junges2, Joost-Pieter Katoen2,
Ivan Papusha1, Hasan A. Poonawala1, and Ufuk Topcu1

1 The University of Texas at Austin, Austin, USA
njansen@utexas.edu

2 RWTH Aachen University, Aachen, Germany

Abstract. Multi-objective verification problems of parametric Markov
decision processes under optimality criteria can be naturally expressed
as nonlinear programs. We observe that many of these computation-
ally demanding problems belong to the subclass of signomial programs.
This insight allows for a sequential optimization algorithm to efficiently
compute sound but possibly suboptimal solutions. Each stage of this
algorithm solves a geometric programming problem. These geometric
programs are obtained by convexifying the nonconvex constraints of the
original problem. Direct applications of the encodings as nonlinear pro-
grams are model repair and parameter synthesis. We demonstrate the
scalability and quality of our approach by well-known benchmarks.

1 Introduction

We study the applicability of convex optimization to the formal verification of
systems that exhibit randomness or stochastic uncertainties. Such systems are
formally represented by so-called parametric Markov models.

In fact, many real-world systems exhibit random behavior and stochastic
uncertainties. One major example is in the field of robotics, where the presence
of measurement noise or input disturbances requires special controller synthesis
techniques [39] that achieve robustness of robot actions against uncertainties in
the robot model and the environment. On the other hand, formal verification
offers methods for rigorously proving or disproving properties about the system
behavior, and synthesizing strategies that satisfy these properties. In particu-
lar, model checking [36] is a well-studied technique that provides guarantees on
appropriate behavior for all possible events and scenarios.

Model checking can be applied to systems with stochastic uncertain-
ties, including discrete-time Markov chains (MCs), Markov decision processes

Partly funded by the awards AFRL # FA8650-15-C-2546, DARPA # W911NF-16-1-
0001, ARO # W911NF-15-1-0592, ONR # N00014-15-IP-00052, ONR # N00014-16-
1-3165, and NSF # 1550212. Also funded by the Excellence Initiative of the German
federal and state government and the CDZ project CAP (GZ 1023).

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 133–150, 2017.
DOI: 10.1007/978-3-662-54580-5 8

134 M. Cubuktepe et al.

(MDPs), and their continuous-time counterparts [31]. Probabilistic model
checkers are able to verify reachability properties like “the probability of reach-
ing a set of unsafe states is ≤ 10%” and expected costs properties like “the
expected cost of reaching a goal state is ≤ 20.” A rich set of properties, speci-
fied by linear- and branching-time logics, reduces to such properties [31]. Tools
like PRISM [15], STORM [29], and iscasMc [22] are probabilistic model checkers
capable of handling a wide range of large-scale problems.

Key requirements for applying model checking are a reliable system model
and formal specifications of desired or undesired behaviors. As a result, most
approaches assume that models of the stochastic uncertainties are precisely
given. For example, if a system description includes an environmental distur-
bance, the mean of that disturbance should be known before formal statements
are made about expected system behavior. However, the desire to treat many
applications where uncertainty measures (e.g., faultiness, reliability, reaction
rates, packet loss ratio) are not exactly known at design time gives rise to para-
metric probabilistic models [1,30]. Here, transition probabilities are expressed as
functions over system parameters, i.e., descriptions of uncertainties. In this set-
ting, parameter synthesis addresses the problem of computing parameter instan-
tiations leading to satisfaction of system specifications. More precisely, parame-
ters are mapped to concrete probabilities inducing the resulting instantiated
model to satisfy specifications. A direct application is model repair [13], where
a concrete model (without parameters) is changed (repaired) such that specifi-
cations are satisfied.

Dedicated tools like PARAM [11], PRISM [15], or PROPhESY [25] com-
pute rational functions over parameters that express reachability probabilities
or expected costs in a parametric Markov chain (pMC). These optimized tools
work with millions of states but are restricted to a few parameters, as the nec-
essary computation of greatest common divisors does not scale well with the
number of parameters. Moreover, the resulting functions are inherently non-
linear and often of high degree. Evaluation by an SMT solver over nonlinear
arithmetic such as Z3 [17] suffers from the fact that the solving procedures are
exponential in the degree of polynomials and the number of variables.

This paper takes an alternative perspective. We discuss a general nonlin-
ear programming formulation for the verification of parametric Markov decision
processes (pMDPs). The powerful modeling capabilities of nonlinear programs
(NLPs) enable incorporating multi-objective properties and penalties on the
parameters of the pMDP. However, because of their generality, solving NLPs
to find a global optimum is difficult. Even feasible solutions (satisfying the con-
straints) cannot always be computed efficiently [5,37]. In contrast, for the class of
NLPs called convex optimization problems, efficient methods to compute feasible
solutions and global optima even for large-scale problems are available [38].

We therefore propose a novel automated method of utilizing convex opti-
mization for pMDPs. Many NLP problems for pMDPs belong to the class of
signomial programs (SGPs), a certain class of nonconvex optimization problems.
For instance, all benchmarks available at the PARAM–webpage [26] belong to

Sequential Convex Programming for the Efficient Verification 135

this class. Restricting the general pMDP problem accordingly yields a direct and
efficient synthesis method—formulated as an NLP—for a large class of pMDP
problems. We list the two main technical results of this paper:

1. We relax nonconvex constraints in SGPs and apply a simple transformation
to the parameter functions. The resulting programs are geometric programs
(GPs) [7], a class of convex programs. We show that a solution to the relaxed
GP induces feasibility (satisfaction of all specifications) in the original pMDP
problem. Note that solving GPs is polynomial in the number of variables.

2. Given an initial feasible solution, we use a technique called sequential convex
programming [7] to improve a signomial objective. This local optimization
method for nonconvex problems leverages convex optimization by solving a
sequence of convex approximations (GPs) of the original SGP.

Sequential convex programming is known to efficiently find a feasible solution
with good, though not necessarily globally optimal, objective values [7,8]. We
initialize the sequence with a feasible solution (obtained from the GP) of the
original problem and compute a trust region. Inside this region, the optimal
value of the approximation of the SGP is at least as good as the objective value
at the feasible solution of the GP. The optimal solution of the approximation is
then the initial point of the next iteration with a new trust region. This procedure
is iterated to approximate a local optimum of the original problem.

Utilizing our results, we discuss the concrete problems of parameter syn-
thesis and model repair for multiple specifications for pMDPs. Experimental
results with a prototype implementation show the applicability of our optimiza-
tion methods to benchmarks of up to 105 states. As solving GPs is polyno-
mial in the number of variables, our approaches are relatively insensitive to the
number of parameters in pMDPs. This is an improvement over state-of-the-art
approaches that leverage SMT, which—for our class of problems—scale expo-
nentially in variables and the degree of polynomials. This is substantiated by
our experiments.

Related Work. Several approaches exist for pMCs [11,12,23,25] while the num-
ber of approaches for pMDPs [12,33] is limited. Ceska et al. [21] synthesize rate
parameters in stochastic biochemical networks. Multi-objective model check-
ing of non-parametric MDPs [9] is a convex problem [14]. Bortolussi et al. [28]
developed a Bayesian statistical algorithm for properties on stochastic popula-
tion models. Convex uncertainties in MDPs without parameter dependencies are
discussed in [20]. Parametric probabilistic models are used to rank patches in
the repair of software [32] and to compute perturbation bounds [24,34].

2 Preliminaries

A probability distribution over a finite or countably infinite set X is a function
μ : X → [0, 1] ⊆ R with

∑
x∈X μ(x) = 1. The set of all distributions on X is

denoted by Distr(X).

136 M. Cubuktepe et al.

Definition 1 (Monomial, Posynomial, Signomial). Let V = {x1, . . . , xn}
be a finite set of strictly positive real-valued variables. A monomial over V is an
expression of the form

g = c · xa1
1 · · · xan

n ,

where c ∈ R>0 is a positive coefficient, and ai ∈ R are exponents for 1 ≤ i ≤ n.
A posynomial over V is a sum of one or more monomials:

f =
K∑

k=1

ck · xa1k
1 · · · xank

n . (1)

If ck is allowed to be a negative real number for any 1 ≤ k ≤ K, then the expres-
sion (1) is a signomial. The sets of all monomials, posynomials, and signomials
over V are denoted by MonV , PosV , and SigV , respectively.

This definition of monomials differs from the standard algebraic definition where
exponents are positive integers with no restriction on the coefficient sign. A sum
of monomials is then called a polynomial. Our definitions are consistent with [7].

Definition 2 (Valuation). For a set of real-valued variables V , a valuation
u over V is a function u : V → R. The set of all valuations over V is ValV .

Applying valuation u to monomial g over V yields a real number g[u] ∈ R by
replacing each occurrence of variables x ∈ V in g by u(x); the procedure is
analogous for posynomials and signomials using standard arithmetic operations.

Definition 3 (pMDP and pMC). A parametric Markov decision process
(pMDP) is a tuple M = (S, sI ,Act , V,P) with a finite set S of states, an initial
state sI ∈ S, a finite set Act of actions, a finite set of real-valued variables V , and
a transition function P : S×Act×S → SigV satisfying for all s ∈ S : Act(s) �= ∅,
where Act(s) = {α ∈ Act | ∃s′ ∈ S.P(s, α, s′) �= 0}. If for all s ∈ S it holds that
|Act(s)| = 1, M is called a parametric discrete-time Markov chain (pMC).

Act(s) is the set of enabled actions at state s; as Act(s) �= ∅, there are no deadlock
states. Costs are defined using a state–action cost function c : S × Act → R≥0.

Remark 1. Largely due to algorithmic reasons, the transition probabilities in
the literature [12,25,33] are polynomials or rational functions, i.e., fractions of
polynomials. Our restriction to signomials is realistic; all benchmarks from the
PARAM–webpage [26] contain only signomial transition probabilities.

A pMDP M is a Markov decision process (MDP) if the transition func-
tion is a valid probability distribution, i.e., P : S × Act × S → [0, 1] and∑

s′∈S P(s, α, s′) = 1 for all s ∈ S s.t. α ∈ Act(s). Analogously, a Markov chain
(MC) is a special class of a pMC; a model is parameter-free if all probabilities are
constant. Applying a valuation u to a pMDP, denoted M[u], replaces each signo-
mial f in M by f [u]; we call M[u] the instantiation of M at u. The application
of u is to replace the transition function f by the probability f [u]. A valuation
u is well-defined for M if the replacement yields probability distributions at all
states; the resulting model M[u] is an MDP or an MC.

Sequential Convex Programming for the Efficient Verification 137

s0

s1 s2

s3 s4 s5 s6

p 1−p

q 1−q
p

1−p 1−p p

q 1−q
p

1−p 1−p p

(a) pMC model

s0

s1 s2

s3 s4 s5 s6

0.4 0.6

0.7 0.30.4

0.6 0.6 0.4

0.7 0.30.4

0.6 0.6 0.4

(b) Instantiation using p=0.4
and q=0.7

Fig. 1. A variant of the Knuth–Yao die for unfair coins.

Example 1 (pMC). Consider a variant of the Knuth–Yao model of a die [2], where
a six-sided die is simulated by successive coin flips. We alternate flipping two
biased coins, which result in heads with probabilities defined by the monomials
p and q, respectively. Consequently, the probability for tails is given by the
signomials 1 − p and 1 − q, respectively. The corresponding pMC is depicted in
Fig. 1(a); and the instantiated MC for p = 0.4 and q = 0.7 is given in Fig. 1(b).
Note that we omit actions, as the model is deterministic.

In order to define a probability measure and expected cost on MDPs, nonde-
terministic choices are resolved by so-called schedulers. For practical reasons we
restrict ourselves to memoryless schedulers; details can be found in [36].

Definition 4 (Scheduler). A (randomized) scheduler for an MDP M is a
function σ : S → Distr(Act) such that σ(s)(α) > 0 implies α ∈ Act(s). The set
of all schedulers over M is denoted by SchedM.

Applying a scheduler to an MDP yields a so-called induced Markov chain.

Definition 5 (Induced MC). Let MDP M = (S, sI ,Act ,P) and scheduler
σ ∈ SchedM. The MC induced by M and σ is Mσ = (S, sI ,Act ,Pσ) where for
all s, s′ ∈ S,

Pσ(s, s′) =
∑

α∈Act(s)

σ(s)(α) · P(s, α, s′).

We consider reachability properties and expected cost properties. For MC D with
states S, let PrD

s (♦T) denote the probability of reaching a set of target states
T ⊆ S from state s ∈ S; simply PrD(♦T) denotes the probability for initial state
sI . We use the standard probability measure as in [36, Chap. 10]. For threshold
λ ∈ [0, 1], the reachability property asserting that a target state is to be reached
with probability at most λ is denoted ϕ = P≤λ(♦T). The property is satisfied
by D, written D |= ϕ, iff PrD(♦T) ≤ λ.

The cost of a path through MC D until a set of goal states G ⊆ S is the
sum of action costs visited along the path. The expected cost of a finite path
is the product of its probability and its cost. For PrD(♦G) = 1, the expected

138 M. Cubuktepe et al.

cost of reaching G is the sum of expected costs of all paths leading to G. An
expected cost property EC≤κ(♦G) is satisfied if the expected cost of reaching T
is bounded by a threshold κ ∈ R. Formal definitions are given in e.g., [36].

If multiple specifications ϕ1, . . . , ϕq are given, which are either reachability
properties or expected cost properties of the aforementioned forms, we write the
satisfaction of all specifications ϕ1, . . . , ϕq for an MC D as D |= ϕ1 ∧ . . . ∧ ϕq.

An MDP M satisfies the specifications ϕ1, . . . , ϕq, iff for all schedulers
σ ∈ SchedM it holds that Mσ |= ϕ1 ∧ . . . ∧ ϕq. The verification of multiple
specifications is also referred to as multi-objective model checking [9,16]. We are
also interested in the so-called scheduler synthesis problem, where the aim is
to find a scheduler σ such that the specifications are satisfied (although other
schedulers may not satisfy the specifications).

3 Nonlinear Programming for pMDPs

In this section we formally state a general pMDP parameter synthesis problem
and describe how it can be formulated using nonlinear programming.

3.1 Formal Problem Statement

Problem 1 Given a pMDP M = (S, sI ,Act , V,P), specifications ϕ1, . . . , ϕq

that are either probabilistic reachability properties or expected cost prop-
erties, and an objective function f : V → R over the variables V , compute
a well-defined valuation u ∈ ValV for M, and a (randomized) scheduler
σ ∈ SchedM such that the following conditions hold:

(a) Feasibility : the Markov chain Mσ[u] induced by scheduler σ and instanti-
ated by valuation u satisfies the specifications, i.e., Mσ[u] |= ϕ1 ∧ . . .∧ϕq.

(b) Optimality : the objective f is minimized.

Intuitively, we wish to compute a parameter valuation and a scheduler such that
all specifications are satisfied, and the objective is globally minimized. We refer to
a valuation–scheduler pair (u, σ) that satisfies condition (a), i.e., only guarantees
satisfaction of the specifications but does not necessarily minimize the objective
f , as a feasible solution to the pMDP synthesis problem. If both (a) and (b) are
satisfied, the pair is an optimal solution to the pMDP synthesis problem.

3.2 Nonlinear Encoding

We now provide an NLP encoding of Problem 1. A general NLP over a set of
real-valued variables V can be written as

minimize f (2)
subject to

∀i. 1 ≤ i ≤ m gi ≤ 0, (3)
∀j. 1 ≤ i ≤ p hj = 0, (4)

Sequential Convex Programming for the Efficient Verification 139

where f , gi, and hj are arbitrary functions over V, and m and p are the number
of inequality and equality constraints of the program respectively. Tools like
IPOPT [10] solve small instances of such problems.

Consider a pMDP M = (S, sI ,Act , V,P) with specifications ϕ1 = P≤λ(♦T)
and ϕ2 = EC≤κ(♦G). We will discuss how additional specifications of either
type can be encoded. The set V = V ∪W of variables of the NLP consists of the
variables V that occur in the pMDP as well as a set W of additional variables:

– {σs,α | s ∈ S, α ∈ Act(s)}, which define the randomized scheduler σ by
σ(s)(α) = σs,α.

– {ps | s ∈ S}, where ps is the probability of reaching the target set T ⊆ S from
state s under scheduler σ, and

– {cs | s ∈ S}, where cs is the expected cost to reach G ⊆ S from s under σ.

A valuation over V consists of a valuation u ∈ ValV over the pMDP variables
and a valuation w ∈ ValW over the additional variables.

minimize f (5)
subject to

psI
≤ λ, (6)

csI
≤ κ, (7)

∀s ∈ S.
∑

α∈Act(s)

σs,α = 1, (8)

∀s ∈ S ∀α ∈ Act(s). 0 ≤ σs,α ≤ 1, (9)

∀s ∈ S ∀α ∈ Act(s).
∑

s′∈S

P(s, α, s′) = 1, (10)

∀s, s′ ∈ S ∀α ∈ Act(s). 0 ≤ P(s, α, s′) ≤ 1, (11)
∀s ∈ T. ps = 1, (12)

∀s ∈ S \ T. ps =
∑

α∈Act(s)

σs,α ·
∑

s′∈S

P(s, α, s′) · ps′ , (13)

∀s ∈ G. cs = 0, (14)

∀s ∈ S \ G. cs =
∑

α∈Act(s)

σs,α ·
(
c(s, α) +

∑

s′∈S

P(s, α, s′) · cs′
)
.

(15)

The NLP (5)–(15) encodes Problem 1 in the following way. The objective func-
tion f in (5) is any real-valued function over the variables V. The constraints (6)
and (7) encode the specifications ϕ1 and ϕ2, respectively. The constraints (8)–(9)
ensure that the scheduler obtained is well-defined by requiring that the scheduler
variables at each state sum to unity. Similarly, the constraints (10)–(11) ensure
that for all states, parameters from V are instantiated such that probabilities
sum up to one. (These constraints are included if not all probabilities at a state
are constant.) The probability of reaching the target for all states in the target

140 M. Cubuktepe et al.

set is set to one using (12). The reachability probabilities in each state depend on
the reachability of the successor states and the transition probabilities to those
states through (13). Analogously to the reachability probabilities, the cost for
each goal state G ⊆ S must be zero, thereby precluding the collection of infinite
cost at absorbing states, as enforced by (14). Finally, the expected cost for all
states except target states is given by the equation (15), where according to the
strategy σ the cost of each action is added to the expected cost of the successors.

We can readily extend the NLP to include more specifications. If another
reachability property ϕ′ = P≤λ′(♦T ′) is given, we add the set of probability
variables {p′

s | s ∈ S} to W , and duplicate the constraints (12)–(13) accordingly.
To ensure satisfaction of ϕ′, we also add the constraint p′

sI
≤ λ′. The procedure

is similar for additional expected cost properties. By construction, we have the
following result relating the NLP encoding and Problem 1.

Theorem 1. The NLP (5)–(15) is sound and complete with respect to
Problem 1.

We refer to soundness in the sense that each variable assignment that satisfies the
constraints induces a scheduler and a valuation of parameters such that a feasible
solution of the problem is induced. Moreover, any optimal solution to the NLP
induces an optimal solution of the problem. Completeness means that all possible
solutions of the problem can be encoded by this NLP; while unsatisfiability
means that no such solution exists, making the problem infeasible.

Signomial Programs. By Definitions 1 and 3, all constraints in the NLP consist
of signomial functions. A special class of NLPs known as signomial programs
(SGPs) is of the form (2)–(4) where f , gi and hj are signomials over V, see
Definition 1. Therefore, we observe that the NLP (5)–(15) is an SGP. We will
refer to the NLP as an SGP in what follows.

SGPs with equality constraints consisting of functions that are not affine
are not convex in general. In particular, the SGP (5)–(15) is not necessarily
convex. Consider a simple pMC only having transition probabilities of the form
p and 1 − p, as in Example 1. The function in the equality constraint (13) of the
corresponding SGP encoding is not affine in parameter p and the probability
variable ps for some state s ∈ S. More generally, the equality constraints (10),
(13), and (15) involving P are not necessarily affine, and thus the SGP may not
be a convex program [38]. Whereas for convex programs global optimal solutions
can be found efficiently [38], such guarantees are not given for SGPs. However,
we can efficiently obtain local optimal solutions for SGPs in our setting, as shown
in the following sections.

4 Convexification

We investigate how to transform the SGP (5)–(15) into a convex program by
relaxing equality constraints and a lifting of variables of the SGP. A certain sub-
class of SGPs called geometric programs (GPs) can be transformed into convex

Sequential Convex Programming for the Efficient Verification 141

programs [7, Sect. 2.5] and solved efficiently. A GP is an SGP of the form (2)–(4)
where f, gi ∈ PosV and hj ∈ MonV . We will refer to a constraint with posynomial
or monomial function as a posynomial or monomial constraint, respectively.

4.1 Transformation and Relaxation of Equality Constraints

As discussed before, the SGP (5)–(15) is not convex because of the presence of
non-affine equality constraints. First observe the following transformation [7]:

f ≤ h ⇐⇒ f

h
≤ 1, (16)

for f ∈ PosV and h ∈ MonV . Note that monomials are strictly positive
(Definition 1). This (division-)transformation of f ≤ h yields a posynomial
inequality constraint.

We relax all equality constraints of SGP (5)–(15) that are not monomials
to inequalities, then we apply the division-transformation wherever possible.
Constraints (6), (7), (8), (10), (13), and (15) are transformed to

psI

λ
≤ 1, (17)

csI

κ
≤ 1, (18)

∀s ∈ S.
∑

α∈Act(s)

σs,α ≤ 1, (19)

∀s ∈ S ∀α ∈ Act(s).
∑

s′∈S

P(s, α, s′) ≤ 1, (20)

∀s ∈ S \ T.

∑

α∈Act(s)

σs,α · ∑

s′∈S

P(s, α, s′) · ps′

ps
≤ 1, (21)

∀s ∈ S \ G.

∑

α∈Act(s)

σs,α ·
(
c(s, α) +

∑

s′∈S

P(s, α, s′) · cs′
)

cs
≤ 1. (22)

These constraints are not necessarily posynomial inequality constraints because
(as in Definition 3) we allow signomial expressions in the transition probability
function P. Therefore, replacing (6), (7), (8), (10), (13), and (15) in the SGP
with (17)–(22) does not by itself convert the SGP to a GP.

4.2 Convexification by Lifting

The relaxed equality constraints (20)–(22) involving P are signomial, rather
than posynomial, because the parameters enter Problem 1 in signomial form.
Specifically, consider the relaxed equality constraint (21) at s0 in Example 1,

p · ps1 + (1 − p) · ps2

ps0

≤ 1. (23)

142 M. Cubuktepe et al.

ss1

s2 sn−1

sn
f1

f2
fn−1

1 − ∑n−1
i=1 fi

. . .

(a) signomial transition functions

ss1

s2 sn−1

sn
f1

f2
fn−1

f̄

. . .

(b) posynomial transition functions

Fig. 2. Lifting of signomial transition probability function.

The term (1 − p) · ps2 is signomial in p and ps2 . We lift by introducing a new
variable p̄ = 1 − p, and rewrite (23) as a posynomial inequality constraint and
an equality constraint in the lifted variables:

p · ps1 + p̄ · ps2

ps0

≤ 1, p̄ = 1 − p. (24)

We relax the (non-monomial) equality constraint to p + p̄ ≤ 1. More generally,
we restrict the way parameters occur in P as follows. Refer to Fig. 2(a). For
every state s ∈ S and every action α ∈ Act(s) we require that there exists at
most one state s̄ ∈ S such that P(s, α, s̄) ∈ SigV and P(s, α, s′) ∈ PosV for all
s′ ∈ S \ {s̄}. In particular, we require that

P(s, α, s̄)
︸ ︷︷ ︸

∈SigV

= 1 −
∑

s′∈S\{s̄}
P(s, α, s′)
︸ ︷︷ ︸

∈PosV

.

This requirement is met by all benchmarks available at the PARAM–
webpage [26]. In general, we lift by introducing a new variable p̄s,α,s̄ = P(s, α, s̄)
for each such state s ∈ S; refer to Fig. 2(b). We denote this set of lifting vari-
ables by L. Lifting as explained above then creates a new transition probability
function P̄ where for every s, s′ ∈ S and α ∈ Act we have P̄(s, α, s′) ∈ PosV∪L.

We call the set of constraints obtained through transformation, relaxation,
and lifting of every constraint of the SGP (6)–(15) as shown above the convexi-
fied constraints. Any posynomial objective subject to the convexified constraints
forms by construction a GP over the pMDP parameters V , the SGP additional
variables W , and the lifting variables L.

4.3 Tightening the Constraints

A solution of the GP as obtained in the previous section does not have a direct
relation to the original SGP (5)–(15). In particular, a solution to the GP may
not have the relaxed constraints satisfied with equality. For (19) and (20), the
induced parameter valuation and the scheduler are not well-defined, i.e., the
probabilities may not sum to one. We need to relate the relaxed and lifted GP
to Problem 1. By defining a regularization function F over all parameter and

Sequential Convex Programming for the Efficient Verification 143

scheduler variables, we ensure that the constraints are satisfied with equality;
enforcing well-defined probability distributions.

F =
∑

p∈V

1
p

+
∑

p̄∈L

1
p̄

+
∑

s∈S,α∈Act(s)

1
σs,α

. (25)

The function F is monotone in all its variables. We discard the original objective
f in (5) and form a GP with the regularization objective F (25):

minimize F (26)
subject to

psI

λ
≤ 1, (27)

csI

κ
≤ 1, (28)

∀s ∈ S.
∑

α∈Act(s)

σs,α ≤ 1, (29)

∀s ∈ S ∀α ∈ Act(s). σs,α ≤ 1, (30)

∀s ∈ S ∀α ∈ Act(s).
∑

s′∈S

P̄(s, α, s′) ≤ 1, (31)

∀s, s′ ∈ S ∀α ∈ Act(s). P̄(s, α, s′) ≤ 1, (32)
∀s ∈ T. ps = 1, (33)

∀s ∈ S \ T.

∑

α∈Act(s)

σs,α · ∑

s′∈S

P̄(s, α, s′) · ps′

ps
≤ 1, (34)

∀s ∈ S \ G.

∑

α∈Act(s)

σs,α ·
(
c(s, α) +

∑

s′∈S

P̄(s, α, s′) · cs′
)

cs
≤ 1.

(35)

Since the objective F (25) and the inequality constraints (29) and (31) are
monotone in V , L, and the scheduler variables, each optimal solution for a fea-
sible problem satisfies them with equality. We obtain a well-defined scheduler σ
and a valuation u as in Problem 1. Note that variables from (14) are explicitly
excluded from the GP by treating them as constants.

The reachability probability constraints (34) and cost constraints (35) need
not be satisfied with equality. However, (34) is equivalent to

ps ≥
∑

α∈Act(s)

σs,α ·
∑

s′∈S

P̄(s, α, s′) · ps′

for all s ∈ S \ T and α ∈ Act . The probability variables ps are assigned upper
bounds on the actual probability to reach the target states T under scheduler σ
and valuation u. Put differently, the ps variables cannot be assigned values that
are lower than the actual probability; ensuring that σ and u induce satisfaction

144 M. Cubuktepe et al.

of the specification given by (27) if the problem is feasible and σ and u are
well-defined. An analogous reasoning applies to the expected cost computa-
tion (35). A solution consisting of a scheduler or valuation that are not well-
defined occurs only if Problem 1 itself is infeasible. Identifying that such a solu-
tion has been obtained is easy. These facts allow us to state the main result of
this section.

Theorem 2. A solution of the GP (26)–(35) inducing well-defined scheduler σ
and valuation u is a feasible solution to Problem 1.

Note that the actual probabilities induced by σ and u for the given pMDP
M are given by the MC Mσ[u] induced by σ and instantiated by u. Since all
variables are implicitly positive in a GP, no transition probability function will
be instantiated to probability zero. The case of a scheduler variable being zero
to induce the optimum can be excluded by a previous graph analysis.

5 Sequential Geometric Programming

We showed how to efficiently obtain a feasible solution for Problem 1 by solving
GP (26)–(35). We propose a sequential convex programming trust-region method
to compute a local optimum of the SGP (5)–(15), following [7, Sect. 9.1], solving a
sequence of GPs. We obtain each GP by replacing signomial functions in equality
constraints of the SGP (5)–(15) with monomial approximations of the functions.

Definition 6 (Monomial approximation). Given a posynomial f ∈ SigV ,
variables V = {x1, . . . , xn}, and a valuation u ∈ ValV , a monomial approxima-
tion f̂ ∈ MonV for f near u is

∀i.1 ≤ i ≤ n f̂ = f [u]
n∏

i=1

(
xi

u(xi)

)ai

, where ai =
u(xi)
f [u]

∂f

∂xi
[u].

Intuitively, we compute a linearization f̂ of f ∈ SigV around a fixed valuation u.
We enforce the fidelity of monomial approximation f̂ of f ∈ SigV by restricting
valuations to remain within a set known as trust region. We define the following
constraints on the variables V with t > 1 determining the size of the trust region:

∀i.1 ≤ i ≤ n (1/t) · u(xi) ≤ xi ≤ t · u(xi) (36)

For a given valuation u, we approximate the SGP (5)–(15) to obtain a local GP
as follows. First, we apply a lifting procedure (Sect. 4.2) to the SGP ensuring
that all constraints consist of posynomial functions. The thus obtained posyno-
mial inequality constraints are included in the local GP. After replacing posyn-
omials in every equality constraint by their monomial approximations near u,
the resulting monomial equality constraints are also included. Finally, we add
trust region constraints (36) for scheduler and parameter variables. The objec-
tive function is the same as for the SGP. The optimal solution of the local GP is

Sequential Convex Programming for the Efficient Verification 145

not necessarily a feasible solution to the SGP. Therefore, we first normalize the
scheduler and parameter values to obtain well-defined probability distributions.
These normalized values are used to compute precise probabilities and expected
cost using PRISM. The steps above provide a feasible solution of the SGP.

We use such approximations to obtain a sequence of feasible solutions to
the SGP approaching a local optimum of the SGP. First, we compute a feasible
solution u(0) for Problem 1 (Sect. 4), forming the initial point of a sequence of
solutions u(0), . . . , u(N), N ∈ N. The solution u(k) for 0 ≤ k ≤ N is obtained
from a local GP defined using u(k−1) as explained above.

The parameter t for each iteration k is determined based on its value for the
previous iteration, and the ratio of f

[
u(k−1)

]
to f

[
u(k−2)

]
, where f is the objec-

tive function in (5). The iterations are stopped when
∣
∣f

[
u(k)

] − f
[
u(k−1)

]∣
∣ < ε.

Intuitively, ε defines the required improvement on the objective value for each
iteration; once there is not enough improvement the process terminates.

6 Applications

We discuss two applications and their restrictions for the general SGP (5)–(15).

Model Repair. For MC D and specification ϕ with D �|= ϕ, the model repair
problem [13] is to transform D to D′ such that D′ |= ϕ. The transformation
involves a change of transition probabilities. Additionally, a cost function mea-
sures the change of probabilities. The natural underlying model is a pMC where
parameters are added to probabilities. The cost function is minimized subject to
constraints that induce satisfaction of ϕ. In [13], the problem is given as NLP.
Heuristic [27] and simulation-based methods [19] (for MDPs) were presented.

Leveraging our results, one can readily encode model repair problems for
MDPs, multiple objectives, and restrictions on probability or cost changes
directly as NLPs. The encoding as in [13] is handled by our method in Sect. 5
as it involves signomial constraints. We now propose a more efficient approach,
which encodes the change of probabilities using monomial functions. Consider an
MDP M = (S, sI ,Act ,P) and specifications ϕ1, . . . , ϕq with M �|= ϕ1 ∧ . . .∧ϕq.
For each probability P(s, α, s′) = a ∈ R that may be changed, introduce a
parameter p, forming the parameter set V . We define a parametric transition
probability function by P ′(s, α, s′) = p · a ∈ MonV . The quadratic cost function
is for instance f =

∑
p∈V p2 ∈ PosV . By minimizing the sum of squares of the

parameters (with some regularization), the change of probabilities is minimized.
By incorporating these modifications into SGP (5)–(15), our approach is

directly applicable. Either we restrict the cost function f to an upper bound, and
efficiently solve a feasibility problem (Sect. 4), or we compute a local minimum
of the cost function (Sect. 5). In contrast to [13], our approach works for MDPs
and has an efficient solution. While [19] uses fast simulation techniques, we
can directly incorporate multiple objectives and restrictions on the results while
offering an efficient numerical solution of the problem.

146 M. Cubuktepe et al.

Parameter Space Partitioning. For pMDPs, tools like PRISM [15] or PROPh-
ESY [25] aim at partitioning the parameter space into regions with respect to a
specification. A parameter region is given by a convex polytope defined by lin-
ear inequalities over the parameters, restricting valuations to a region. Now, for
pMDP M a region is safe regarding a specification ϕ, if no valuation u inside this
region and no scheduler σ induce Mσ[u] �|= ϕ. Vice versa, a region is unsafe, if
there is no valuation and scheduler such that the specification is satisfied. In [25],
this certification is performed using SMT solving. More efficiency is achieved by
using an approximation method [33].

Certifying regions to be unsafe is directly possible using our approach. Assume
pMDP M, specifications ϕ1, . . . , ϕq, and a region candidate defined by a set of
linear inequalities. We incorporate the inequalities in the NLP (5)–(15). If the
feasibility problem (Sect. 4) has no solution, the region is unsafe. This yields the
first efficient numerical method for this problem of which we are aware. Proving
that a region is safe is more involved. Given one specification ϕ = P≤λ(♦T), we
maximize the probability to reach T . If this probability is at most λ, the region is
safe. For using our method from Sect. 5, one needs domain specific knowledge to
show that a local optimum is a global optimum.

7 Experiments

We implemented a prototype using the Python interfaces of the probabilistic
model checker STORM [29] and the optimization solver MOSEK [35]. All exper-
iments were run on a 2.6 GHz machine with 32 GB RAM. We used PRISM [15] to
correct approximation errors as explained before. We evaluated our approaches
using mainly examples from the PARAM–webpage [26] and from PRISM [18].
We considered several parametric instances of the Bounded Retransmission Pro-
tocol (BRP) [4], NAND Multiplexing [6], and the Consensus protocol (CONS) [3].
For BRP, we have a pMC and a pMDP version, NAND is a pMC, and CONS
is a pMDP. For obtaining feasibility solutions, we compare to the SMT solver
Z3 [17]. For additional optimality criteria, there is no comparison to another tool
possible as IPOPT [10] already fails for the smallest instances we consider.

Figure 3(a) states for each benchmark instance the number of states (#states)
and the number of parameters (#par). We defined two specifications consisting
of a expected cost property (EC) and a reachability property (P). For some
benchmarks, we also maximized the probability to reach a set of “good states”
(∗). We list the times taken by MOSEK; for optimality problems we also list
the times PRISM took to compute precise probabilities or costs (Sect. 5). For
feasibility problems we list the times of Z3. The timeout (TO) is 90 min.

We observe that both for feasibility with optimality criteria we can handle
most benchmarks of up to 105 states within the timeout, while we ran into a
timeout for CONS. The number of iterations N in the sequential convex pro-
gramming is less than 12 for all benchmarks with ε = 10−3. As expected, simply
solving feasibility problems is faster by at least one order of magnitude. Rais-
ing the number of parameters from 2 to 4 for BRP does not cause a major
performance hit, contrary to existing tools. For all benchmarks except NAND,
Z3 only delivered results for the smallest instances within the timeout.

Sequential Convex Programming for the Efficient Verification 147

Benchmark #states #par specs MOSEK (s) Z3

BRP (pMC) 5382 2 EC,P, ∗ 23.17 (6.48) −
112646 2 EC,P, ∗ 3541.59 (463.74) −
112646 4 EC,P, ∗ 4173.33 (568.79) −

5382 2 EC,P 3.61 904.11
112646 2 EC,P 479.08 TO

NAND (pMC) 4122 2 EC,P, ∗ 14.67 (2.51) −
35122 2 EC,P, ∗ 1182.41 (95.19) −
4122 2 EC,P 1.25 1.14

35122 2 EC,P 106.40 11.49
BRP (pMDP) 5466 2 EC,P, ∗ 31.04 (8.11) −

112846 2 EC,P, ∗ 4319.16 (512.20) −
5466 2 EC,P 4.93 1174.20

112846 2 EC,P 711.50 TO
CONS (pMDP) 4112 2 EC,P, ∗ 102.93 (1.14) −

65552 2 EC,P, ∗ TO −
4112 2 EC,P 6.13 TO

65552 2 EC,P 1361.96 TO

(a) Benchmark results

2 3 4 5 6 7 8

0.1

0.2

0.5

1

2

5

10

20

50

TO

Number of parameters

T
im

e
(s
)

MOSEK Z3

PROPhESY

(b) Sensitivity to #par

Fig. 3. Experiments.

To demonstrate the insensitivity of our approach to the number of parame-
ters, we considered a pMC of rolling multiple Knuth–Yao dice with 156 states,
522 transitions and considered instances with up to 8 different parameters. The
timeout is 100 s. In Fig. 3(b) we compare our encoding in MOSEK for this bench-
mark to the mere computation of a rational function using PROPhESY [25] and
again to Z3. PROPhESY already runs into a timeout for 4 parameters1. Z3
needs around 15 s for most of the tests. Using GPs with MOSEK proves far
more efficient as it needs less than one second for all instances.

In addition, we test model repair (Sect. 6) on a BRP instance with 17415
states for ϕ = P≤0.9(♦T). The initial parameter instantiation violates ϕ. We
performed model repair towards satisfaction of ϕ. The probability of reaching
T results in 0.79 and the associated cost is 0.013. The computation time is
21.93 s. We compare our result to an implementation of [19], where the proba-
bility of reaching T is 0.58 and the associated cost is 0.064. However, the time
for the simulation-based method is only 2.4 s, highlighting the expected trade-off
between optimality and computation times for the two methods.

Finally, we encode model repair for the small pMC from Example 1 in IPOPT,
see [13]. For ψ = P≤0.125(♦T) where T represents the outcome of the die being 2,
the initial instantiation induces probability 1/6. With our method, the probabil-
ity of satisfying ψ is 0.1248 and the cost is 0.0128. With IPOPT, the probability
is 0.125 with cost 0.1025, showing that our result is nearly optimal.

8 Conclusion and Future Work

We presented a way to use convex optimization in the field of parameter synthesis
for parametric Markov models. Using our results, many NLP encodings of related
problems now have a direct and efficient solution.
1 Due to the costly computation of greatest common divisors employed in PROPhESY.

148 M. Cubuktepe et al.

Future work will concern the integration of these methods into mature tools
like PRISM or PROPhESY to enable large-scale benchmarking by state space
reduction techniques and advanced data structures. Moreover, we will explore
extensions to richer models like continuous-time Markov chains [31].

References

1. Satia, J.K., Lave Jr., R.E.: Markovian decision processes with uncertain transition
probabilities. Oper. Res. 21(3), 728–740 (1973)

2. Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number genera-
tion. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions and Recent
Results, p. 375. Academic Press, Cambridge (1976)

3. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. J. Algo-
rithms 15(1), 441–460 (1990)

4. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link pro-
tocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp.
127–165. Springer, Heidelberg (1994). doi:10.1007/3-540-58085-9 75

5. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796–817 (2001)

6. Han, J., Jonker, P.: A system architecture solution for unreliable nanoelectronic
devices. IEEE Trans. Nanotechnol. 1, 201–208 (2002)

7. Boyd, S., Kim, S.-J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric pro-
gramming. Optim. Eng. 8(1), 67 (2007)

8. Boyd, S.: Sequential convex programming. Lecture Notes (2008)
9. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective

model checking of Markov decision processes. LMCS 4(4), 50–65 (2008)
10. Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an

integrating framework for enterprise-wide dynamic optimization. Comput. Chem.
Eng. 33(3), 575–582 (2009)

11. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker
for parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14295-6 56

12. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. STTT 13(1), 3–19 (2010)

13. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19835-9 30

14. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19835-9 11

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

16. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 317–332. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/3-540-58085-9_75
http://dx.doi.org/10.1007/978-3-642-14295-6_56
http://dx.doi.org/10.1007/978-3-642-14295-6_56
http://dx.doi.org/10.1007/978-3-642-19835-9_30
http://dx.doi.org/10.1007/978-3-642-19835-9_30
http://dx.doi.org/10.1007/978-3-642-19835-9_11
http://dx.doi.org/10.1007/978-3-642-22110-1_47

Sequential Convex Programming for the Efficient Verification 149

17. Jovanović, D., Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 27

18. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST, pp. 203–204. IEEE CS (2012)

19. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair
for Markov decision processes. In: TASE, pp. 85–92. IEEE CS (2013)

20. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39799-8 35

21. Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter syn-
thesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone,
K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-12982-2 7

22. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM
2014. LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06410-9 22

23. Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P.,
Becker, B.: Accelerating parametric probabilistic verification. In: Norman, G.,
Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-10696-0 31

24. Su, G., Rosenblum, D.S.: Nested reachability approximation for discrete-time
Markov chains with univariate parameters. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 364–379. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-11936-6 26

25. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 13

26. PARAM Website (2015). http://depend.cs.uni-sb.de/tools/param/
27. Pathak, S., Ábrahám, E., Jansen, N., Tacchella, A., Katoen, J.-P.: A greedy app-

roach for the efficient repair of stochastic models. In: Havelund, K., Holzmann, G.,
Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 295–309. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-17524-9 21

28. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

29. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: The probabilistic model checker
storm (extended abstract). CoRR, abs/1610.08713 (2016)

30. Delgado, K.V., de Barros, L.N., Dias, D.B., Sanner, S.: Real-time dynamic pro-
gramming for Markov decision processes with imprecise probabilities. Artif. Intell.
230, 192–223 (2016)

31. Katoen, J.-P.: The probabilistic model checking landscape. In: IEEE Symposium
on Logic In Computer Science (LICS). ACM (2016)

32. Long, F., Rinard, M.: Automatic patch generation by learning correct code. In:
POPL, pp. 298–312. ACM (2016)

33. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.)
ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-46520-3 4

http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-39799-8_35
http://dx.doi.org/10.1007/978-3-319-12982-2_7
http://dx.doi.org/10.1007/978-3-319-06410-9_22
http://dx.doi.org/10.1007/978-3-319-06410-9_22
http://dx.doi.org/10.1007/978-3-319-10696-0_31
http://dx.doi.org/10.1007/978-3-319-11936-6_26
http://dx.doi.org/10.1007/978-3-319-11936-6_26
http://dx.doi.org/10.1007/978-3-319-21690-4_13
http://depend.cs.uni-sb.de/tools/param/
http://dx.doi.org/10.1007/978-3-319-17524-9_21
http://dx.doi.org/10.1007/978-3-319-46520-3_4
http://dx.doi.org/10.1007/978-3-319-46520-3_4

150 M. Cubuktepe et al.

34. Su, G., Rosenblum, D.S., Tamburrelli, G.: Reliability of run-time QOS evaluation
using parametric model checking. In: ICSE. ACM (2016, to appear)

35. MOSEK ApS: The MOSEK optimization toolbox for PYTHON. Version 7.1 (Revi-
sion 60) (2015)

36. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

37. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
38. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,

New York (2004)
39. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge

(2005)

JANI: Quantitative Model and Tool Interaction

Carlos E. Budde1, Christian Dehnert2, Ernst Moritz Hahn3,
Arnd Hartmanns4(B), Sebastian Junges2, and Andrea Turrini3

1 Universidad Nacional de Córdoba, Córdoba, Argentina
2 RWTH Aachen University, Aachen, Germany

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

4 University of Twente, Enschede, The Netherlands
a.hartmanns@utwente.nl

Abstract. The formal analysis of critical systems is supported by a
vast space of modelling formalisms and tools. The variety of incompati-
ble formats and tools however poses a significant challenge to practical
adoption as well as continued research. In this paper, we propose the Jani
model format and tool interaction protocol. The format is a metamodel
based on networks of communicating automata and has been designed
for ease of implementation without sacrificing readability. The purpose
of the protocol is to provide a stable and uniform interface between tools
such as model checkers, transformers, and user interfaces. Jani uses the
Json data format, inheriting its ease of use and inherent extensibility.
Jani initially targets, but is not limited to, quantitative model check-
ing. Several existing tools now support the verification of Jani models,
and automatic converters from a diverse set of higher-level modelling
languages have been implemented. The ultimate purpose of Jani is to
simplify tool development, encourage research cooperation, and pave the
way towards a future competition in quantitative model checking.

1 Introduction

Significant progress has been made in the area of formal verification to allow the
analysis of ever more realistic, mathematically precise models of performance-,
safety- or economically-critical systems. Such models can be automatically
derived from the program or machine code of an existing implementation, or
they can be constructed in a suitable modelling language during the system
design phase. Many such languages, including process algebras like CCS [50]
and CSP [36], lower-level formalisms like reactive modules [2], and high-level
imperative-style languages like Promela [37], have been developed. However,
the variety of languages, most of them supported by a single dedicated tool, is
a major obstacle for new users seeking to apply formal methods in their field
of work. Several efforts have been made to standardise modelling languages for
broader use (notably Lotos [10], an ISO standard), or to develop overarching
formalisms that offer a union of the features of many different specialised lan-
guages (a recent example being the CIF language and format [1]). Yet none of
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 151–168, 2017.
DOI: 10.1007/978-3-662-54580-5 9

152 C.E. Budde et al.

these efforts appears to have had a lasting impact on practice; of our examples,
effectively the only implementation of Lotos is in the Cadp toolset [26], and
active CIF support appears restricted to the CIF 3 tool [6].

We argue that the adoption of any standard formalism is hindered by a com-
bination of the proposed standard (a) being complex and difficult to implement,
(b) appearing at a time when there are already a number of well-established
tools with their own modelling formalisms, and (c) existing in a conflict between
supporting many different modelling purposes versus being a succinct way to
support a particular technique or type of systems. As most new verification
tools are still developed in an academic context, problem a creates work that
is at best tangential to the actual research, and problem b means that there is
little incentive to implement a new parser in an existing tool since such an effort
is unlikely to lead to a publication. We observe that new tools continue to define
their own new input language or a new dialect of an existing one as a result.

A New Format. In this paper, we propose jani-model: another format for for-
mal models aimed at becoming a common input language for existing and
future tools. However, jani-model was created with problems a-c in mind: First
of all, it is targeted to the specific field of quantitative verification using
(extensions of) automata-like probabilistic models such as Markov decision
processes (MDP [52]), probabilistic timed automata (PTA [45]), or continuous-
time Markov chains (CTMC). This field is much younger than formal methods
in general. Consequently, the tooling landscape is at an earlier stage in its evo-
lution. We believe that problem b yet has little relevance there, and that now
is actually the time where a push for commonality in quantitative verification
tools is still possible as well as maximally beneficial. Several tools already sup-
port subsets or extensions of the Prism model checker’s [43] language, so a good
basis to avoid problem c appears to already exist in this field.

Consequently, the semantic model of the Prism language—networks of
discrete- or continuous-time Markov chains (DTMC or CTMC), MDP or PTA
with variables—forms the conceptual basis of jani-model. We have conservatively
extended this model to also support Markov automata (MA, [21]) as well as
stochastic timed and hybrid automata (STA [9] and SHA [24]). We have also
replaced or generalised some concepts to allow more concise and flexible mod-
elling. Notably, we took inspiration from the use of synchronisation vectors in
Cadp and related tools to compactly-yet-flexibly specify how automata interact;
we have added transient variables as seen in RDDL [54] to e.g. allow value pass-
ing without having to add state variables; and we have revised the specification
of rewards and removed restrictions on global variables.

We could have made these changes and extensions to the textual syntax of
the Prism language, creating a new dialect. However, in our experience, imple-
menting a Prism language parser is non-trivial and time-consuming. To avoid
problem a, jani-model is thus designed to be easy to generate and parse program-
matically (while remaining “human-debuggable”) without library dependencies.
It defines an intentionally small set of core constructs, but its structure allows for
easy extensibility. Several advanced features—like support for complex datatypes

JANI: Quantitative Model and Tool Interaction 153

or recursive functions—are already specified as separate extensions. We do not
expect users to create jani-model files manually. Instead, they will be automati-
cally generated from higher-level and domain-specific languages.

A Tool Interaction Protocol. jani-model helps the users as well as the developers
of quantitative verification tools. Yet the latter face another obstacle: New tech-
niques often require combining existing approaches implemented by others, or
using existing tools for parts of the new analysis. In an academic setting, reim-
plementation is usually work for little reward, but also squanders the testing and
performance tuning effort that went into the original tool. The alternative is to
reuse the existing tool through whatever interface it provides: either a command-
line interface—usually unstable, changing between tool versions—or an API tied
or tailored to one programming language. The same problems apply to bench-
marking and verification competitions. To help with interfacing verification tools,
we propose the jani-interaction protocol. It defines a clean, flexible, programming
language-independent interface to query a tool’s capabilities, configure its para-
meters, perform model transformations, launch verification tasks, and obtain
results. Again, we focused on ease of implementation, so jani-interaction is sim-
ple to support without dependencies on external libraries or frameworks, and
only prescribes a small set of messages with clearly defined extension points.

Tool Support. Jani has been designed in a collaborative effort, and a number
of quantitative verification tools implement jani-model and jani-interaction today.
They provide connections to existing modelling languages designed for humans
as well as a number of analysis techniques with very different capabilities and spe-
cialisations based on traditional and statistical model checking. We summarise
the current tool support in Sect. 5. We expect the number of Jani implemen-
tations to further grow as more input languages are connected and future new
verification techniques are implemented for jani-model right from the start.

Related Work. We already mentioned Lotos as an early standardisation
effort, as well as CIF, which covers quantitative aspects such as timed and hybrid,
but not probabilistic, behaviour. CIF is a complex specification consisting of a
textual and graphical syntax for human use plus an XML representation. It had
connections to a variety of tools including those based on Modelica [25], which
itself is also an open specification intended to be supported by tools focusing
on continuous system and controller simulation. The HOA format [4] is a tool-
independent exchange format for ω-automata designed to represent linear-time
properties for or during model checking. Atlantif [55] is an intermediate model
for real-time systems with data that can be translated to timed automata or Petri
nets. In the area of satisfiability-modulo-theories (SMT) solvers, the SMT-LIB
standard [5] defines a widely-used data format and tool interface protocol anal-
ogous to the pair of jani-model/jani-interaction that we propose for quantitative
verification. Boogie 2 [47] is an intermediate language used by static program ver-
ification tools. The formats mentioned so far provide concise high-level descrip-
tions of potentially vast state spaces. An alternative is to exchange low-level

154 C.E. Budde et al.

var ReplyAnalysisEngines = schema({
"type": "analysis-engines",
"id": Number.min(1).step(1),
"engines": Array.of({

"id": Identifier,
"metadata": Metadata,
"?params": Array.of(ParamDef)

})
});

Listing 1. js-schema message specification

{ "type": "analysis-engines",
"id": 123456,
"engines": [

"id": "simengine2"
"metadata": {

"name": "FIG",
"version": {

"major": 1, "minor": 13
} }] }

Listing 2. Json message instance

representations of actual state spaces, representing all the concrete states of the
semantics of some high-level model. Examples of such state space-level encod-
ings include Cadp’s BCG format and Mrmc’s [41] .tra files. Disadvantages are
that the file size explodes with the state space, and all structural information
necessary for symbolic (e.g. BDD-based) verification or static analysis is lost.

A number of tools take a reversed approach by providing an interface to
plug in different input languages. In the non-quantitative setting, one example is
LTSmin [39] and its PINS interface. However, this is a C/C++ API on the state
space level, so every input language needs to provide a complete implementation
of its semantics for this tool-specific interface. A prominent tool with a similar
approach that uses quantitative models is Möbius [13]. Notably, a command-line
interface has recently been added to Möbius’ existing graphical and low-level
interfaces to improve interoperability [42]. The Modest Toolset [33] also used
an internal semantic model similar to that of jani-model that allows it to translate
and connect to various external tools, albeit over their command-line interfaces.

The Jani specification can be seen as a metamodel. The Eclipse EMF/Ecore
platform [19] is popular for building and working with metamodels. We chose to
create a standalone specification instead in order to avoid the heavy dependency
on Eclipse and to not force a preferred programming language on implementers.

2 JSON and js-schema

jani-model and jani-interaction use the Json [11] data format to encode their mod-
els and messages, respectively. Json is a textual, language independent format
for representing data based on objects, arrays, and a small number of primitives.
In contrast to alternatives like XML, it is extremely simple: its entire grammar
can be given in just five small syntax diagrams. A generic Json parser is easy
to write, plus native parser libraries are available for many programming lan-
guages. The json.org website shows the syntax diagrams and maintains a list of
libraries. In contrast to binary encodings, Json remains human-readable, aiding
in debugging. We show an example of the Json code of an (abbreviated) jani-
interaction message in Listing 2. Many of the advantages of Jani can be directly
derived from the use of a Json encoding. We already mentioned the simplicity
of implementing a parser, but another important aspect is that a Json format is

http://www.json.org/

JANI: Quantitative Model and Tool Interaction 155

Fig. 1. Model types supported by the jani-model format

inherently extensible as new attributes can be added to objects without breaking
an implementation that only reads a previously defined, smaller set of attributes.
In addition, both jani-model and jani-interaction contain dedicated versioning and
extension mechanisms to cleanly handle situations where future additions may
change the semantics of previously defined constructs.

To formally specify what a valid Jani model is, as well as how the messages
of the interaction protocol are encoded, we use the js-schema language [51]. js-
schema is a lightweight syntax to define object schemas as well as a schema
validation library. Compared to the popular alternative of Json Schema, js-
schema specifications are syntactically more similar to the data they describe and
thus easier to write and understand. By using an executable schema definition
language, we directly obtain a procedure to unambiguously determine whether
a given piece of Json data can represent a Jani object. Some more complex
requirements cannot be expressed within js-schema, e.g. when the presence of
one attribute is required if and only if another attribute is not present. These
additional checks are documented as comments in our js-schema specification
for Jani, and they are checked by the reference parser implementation in the
Modest Toolset. In Listing 1, we show (part of) the js-schema specification
for the ReplyAnalysisEngines message type of jani-interaction. The Json object
of Listing fig:json conforms to this schema. An attribute name starting with ?
indicates an optional attribute, and in our example, Identifier, Metadata and
ParamDef are references to other schemas defined elsewhere within the Jani
specification while everything else refers to built-in components of js-schema.

3 The JANI Model Format

The first part of the Jani specification is the jani-model model format. It defines
a direct Json representation of networks of SHA with variables, or special cases
thereof. In Fig. 1, we show the automata models supported by jani-model. By
providing variables and parallel composition, models with large or infinite state
spaces can be represented succinctly. jani-model includes a basic set of variable

156 C.E. Budde et al.

... "features": ["derived-operators"],
"variables": [{ "name": "i", "initial-value": 0,

"type": { "kind": "bounded", "base": "int",
"lower-bound": 0, "upper-bound": 7 } }],

"edges":
[{ "location": "loc0",

"guard": { "op": "∧",
"left": { "op": "<", "left": 0, "right": "i" },
"right": { "op": "<", "left": "i", "right": 7 } },

"destinations": [
{ "location": "loc0", "probability": 0.8, "assignments": [

{ "ref": "i",
"value": { "op": "+", "left": "i", "right": 1 } }] },

{ "location": "fail", "probability": 0.2 }] }], ...

Listing 3. Excerpt of a jani-model MDP model

types and expressions with most common operations, and allows the specification
of probabilistic and reward-based properties for verification within a model.

The overriding goal of jani-model is simplicity for implementers. The core
specification fits on five printed pages. Where expressions over the model’s vari-
ables are required (such as a guard, the probability of a destination of an edge,
or the right-hand side of an assignment), they are represented as expression
trees. This is in contrast to other representations of networks of automata, e.g.
Uppaal’s [7] XML format, where they are stored as expression strings. Using
trees makes it entirely unnecessary to write any kind of expression parsing code
to process jani-model models. Listing 3 shows a slightly simplified excerpt of an
MDP model with two locations loc0 and fail. It has one edge from loc0 with
guard 0 < i ∧ i < 7 that loops back to loc0 with probability 0.8, incrementing i
by 1, and goes to fail with probability 0.2.

An important aspect of the format is its extensibility, which is based on the
mentioned use of Json in combination with an explicit extension mechanism: a
model can list a number of model features that it makes use of. They are defined
separately from the core jani-model specification, and include a derived-oper-
ators features, which provides for e.g. max and min operations (which could
be represented with comparisons and if-then-else in core jani-model), an arrays
and a datatypes feature that specify array types resp. functional-style recursive
datatypes (e.g. to define an unbounded linked list type), and a functions feature
that allows the definition of (mutually) recursive functions for use in expressions.
Feature support will vary between tools; for example, BDD-based model checkers
will typically not be able to easily handle unbounded recursive datatypes.

While its syntax is completely different, the semantic concepts of jani-model
are based on the Prism language. However, it is more general in some aspects:

Locations. Automata in jani-model consist of local variables and locations con-
nected by edges with action labels, guards, rates, probabilistic branches and
assignments over the variables. While being natural for an automaton, having
both locations and discrete variables is not strictly necessary as one can be

JANI: Quantitative Model and Tool Interaction 157

encoded using the other. In fact, Prism only supports the latter, necessitat-
ing the use of “program counter” variables to emulate locations if desired. By
supporting both, jani-model provides modelling flexibility; if a tool prefers one
extreme, an automatic conversion can easily be implemented. Locations pro-
vide structural information for e.g. optimisations and static analysis as well as
a natural point to store the time progress conditions (“invariants”) of TA-based
models.

Synchronisation Vectors. A jani-model model consists of a set of automata that
execute in parallel. Edges are either performed independently, or two or more
automata synchronise on an action label and perform an edge simultaneously.
Inspired by Cadp’s exp.open tool, jani-model uses synchronisation vectors and
sets of input-enabled actions as a general specification of synchronisation pat-
terns. As an example, consider three automata. To specify CSP- or Prism-style
multi-way synchronisation on action a, we include the one vector [a, a, a]. For
CCS-style binary synchronisation between a! and a?, we need the six vectors

{ [a!, a?,−], [a?, a!,−], [a!,−, a?], [a?,−, a!], [−, a!, a?], [−, a?, a!] }.
For Uppaal-style broadcast synchronisation, we make all automata input-
enabled on a? and use the three vectors { [a!, a?, a?], [a?, a!, a?], [a?, a?, a!] }.
Synchronisation vectors can express all common process-algebraic operations like
renaming or hiding, too—they are a concise yet extremely powerful mechanism.

As a further difference to Prism, jani-model allows assignments to global
variables on synchronising edges. Inconsistent concurrent assignments are a mod-
elling error. This small extension removes a major modelling annoyance, but also
has important implementation consequences (see Sect. 5 on the Storm tool).

Transient Variables and Assignments. When edges synchronise in a network of
automata, the assignments of all participating automata are typically performed
all at once, atomically. In jani-model, we additionally allow each assignment to be
annotated with an index. Assignments with the same index are executed atomi-
cally, but sets of assignments with different indices are performed sequentially in
the indexed order. In combination with transient variables, which are not part
of the state vectors and get reset before and after taking an edge so they do not
blow up the state space, this allows e.g. efficient value passing: If two automata
synchronise and want to pass a value v, the first one can “send” v by making an
assignment t := v to a global transient variable t with index i on its synchronis-
ing edge while the second one can “receive” v by making an assignment l := t
to the local variable l with index i′ > i on its own synchronising edge.

Rewards. Finally, reward structures in jani-model are simply expressions over
global (transient or non-transient) variables. Properties indicate whether they
are instantaneous or steady-state rewards, or whether to accumulate when edges
are taken (edge/transition rewards) or over time in locations (rate rewards). This
is again a very simple but expressive way to specify rewards. As an example,

{ "op": "Emax", "exp": "i", "accumulate": ["steps"], "step-instant": 6 }

158 C.E. Budde et al.

asks for the maximum expected reward, computed by accumulating the current
value of variable i whenever a transition is taken, after exactly 6 transitions.

4 The JANI Interaction Protocol

The second part of the Jani specification is the jani-interaction tool interaction
and automation protocol. Its purpose is to provide a stable interface that allows
the reuse of existing implementations from new tools, reduce setup problems by
allowing communication between tools running on different machines, and allow
for a common integrated graphical user interface for Jani-based verifiers.

jani-interaction is a client-server protocol. A server can support a number of
roles. We currently define the analyse and transform roles, which offer access
to verification procedures and model transformations, respectively. Roles are
the main extension point, allowing new roles to be added in the future. A tool
supporting the analyse role provides a number of analysis engines, which repre-
sent the verification algorithms it implements. The protocol then allows analysis
tasks to be started, with the server subsequently sending status updates to the
client and the client having the ability to cancel the analysis. The jani-interaction
specification defines a total of 18 message types, out of which 4 are specific to
the analyse and 4 are specific to the transform role. 5 message types are for
task management and used by both roles. The ReplyAnalysisEngines message
that we showed (in a slightly shortened form) in Listing 1 and 2, for example, is
a server-to-client message of the analyse role that is sent when the client has
queried for the available analysis engines. It includes an array of self-describing
parameter definitions; the client can supply values for these parameters to config-
ure the analysis engine when it starts an analysis task. Within the corresponding
StartAnalysisTask message, the client also submits the model to be analysed.
It can be either a jani-model model, which is Json data and thus included ver-
batim in the message, or a set of Json strings with the contents of the model
files of any other modelling formalism with a textual representation.

A jani-interaction session consists of the exchange of a number of Json mes-
sages. This can occur in one of two ways: either remotely over the WebSocket
network protocol [23], with each message transmitted in one WebSocket text
message, or locally by the client starting the server tool and writing its messages
into the server’s standard input stream, with the server writing its replies onto
its standard output stream, one message per line. Using WebSocket communi-
cation allows running a tool remotely on a machine that is configured in exactly
the way required for the tool to run, and makes it possible to access tools using
JavaScript from websites in a browser. Using standard streams is an easier-to-
implement alternative for making an existing tool support jani-interaction. We
show an example jani-interaction session in Fig. 2.

5 Tool Support

The Jani specification is already supported by a number of quantitative verifi-
cation tools as outlined in Fig. 3. These tools provide translations from several

JANI: Quantitative Model and Tool Interaction 159

Fig. 2. An example jani-interaction session

higher-level modelling languages to jani-model and, in some cases, vice-versa,
thus implementing the functionality of the transform role of jani-interaction.
Each of them also comes with a set of analysis engines that perform transi-
tional exhaustive or statistical model checking of jani-model models to produce
consistent verification results, corresponding to jani-interaction’s analyse role.

5.1 Modelling Languages

jani-model is designed to be easily machine-readable and we do not expect users
to write jani-model files directly. Instead, we provide automated translations from
the Prism language, GSPN, IOSA, Modest, pGCL and xSADF.

Prism language. The Prism language is based on reactive modules [2] and used
as input language of the Prism model checker [43]. Variants and subsets are
used by other quantitative verification tools, which is why we decided to base

160 C.E. Budde et al.

Fig. 3. The Jani landscape

jani-model on its core concepts. A model in the Prism language consists of a set
of modules executing in parallel. Each has a number of discrete variables and a
set of probabilistic commands with a guard and a probability distribution over
assignments. There are no control flow constructs like e.g. loops; they have to be
manually encoded in variables. The Prism language was originally designed to
model DTMC, CTMC and MDP, and has since been extended to support PTA.
We show an example of a Prism model in Fig. 4.

The official bidirectional conversion between the Prism language and jani-
model is implemented in IscasMC. This gives access to the vast collection of
Prism case studies and benchmarks [44] to all tools that support jani-model, and
allows the use of Prism’s model checking engines to analyse jani-model files and
models in all input languages for which a conversion to jani-model exists.

GSPN. Petri Nets are a widely-used model for concurrent processes. Generalised
stochastic Petri nets (GSPN, [48]) provide exponentially delayed transitions in
addition to the standard immediate transitions. Nondeterminism arising due to
the latter has often been resolved by assigning weights, thereby implicitly having
discrete probabilistic branching in the model. We show an example GSPN in
Fig. 5, which contains two exponentially delayed transitions with rates λ1 and
λ2. A formal semantics for every GSPN, including “confused” ones with actual
nondeterminism, in terms of MA has been developed recently [20].

Based on an implementation of this semantics, the Storm tool can translate
GSPN given either as a greatSPN project [3] or in a variant of the ISO-standard
PNML [38] format into a jani-model description. Variables describe the markings,
and the encoding of nondeterministic and delayed transitions is straightforward.
Only weights require a somewhat more involved encoding as expressions.

IOSA. Stochastic automata (SA, [14]) are decision processes in which the occur-
rence of events is governed by random variables called clocks. These can follow
arbitrary continuous probability distributions. Input/output SA (I/O SA, [15])
are a variant of networks of SA that guarantee the absence of nondeterminism:

JANI: Quantitative Model and Tool Interaction 161

Fig. 4. A channel PTA model in Prism and Modest Fig. 5. A GSPN

Automata must be input-enabled, each output can only be produced by a single
automaton in the network, and clocks can only control the timing of outputs.
Networks of input/output SA can be modelled in the IOSA language, which is
syntactically a variant of the Prism language. We show an example in Listing 4,
where action a is output (!) for M1 and input (?) for M2. Synchronisation is
performed in a broadcast fashion, meaning an output will synchronise with all
matching inputs. This ensures the input-enabledness requirement.

The Fig tool [12] translates IOSA to and from jani-model. In jani-model,
the STA model type is used, since I/O SA are a proper subset of STA. When
converting from jani-model to IOSA, STA and CTMC models where the synchro-
nisation vectors correspond to broadcast synchronisation are supported. STA are
accepted only if the STA clocks are used in a way that can be mapped to SA.

MODEST. The Modest language is a modelling formalism with a semantics
in terms of STA [9], later extended to SHA [29]. It is an expressive, high-level
language with features like recursive process calls, do loops, exception handling,
and complex datatypes. We show a very small example in Fig. 4. The Modest
Toolset implements conversions from Modest to jani-model and back. In terms
of supported model types, Modest is the most expressive language currently
connected to jani-model because everything can be seen as a special case of SHA.

pGCL. Probabilistic programming languages extend standard languages with
constructs to sample from random distributions and to condition program runs
on observations about (random) data. Such constructs are at the heart of algo-
rithms in machine learning, security, and quantum computing [27]. The opera-
tional semantics of probabilistic programs are (possibly infinite) MDP.

One example of a probabilistic programming language is the probabilistic
guarded command language (pGCL, [49]) with observe statements [40]. The
Storm tool implements a translation from pGCL via program graphs to jani-
model. A noticeable feature of the translation is the detection of rewards: In the
example pGCL program given in Listing 5, if we omit the observe statement,
the variable x can be considered a reward, which then makes the MDP finite
and thus amenable to probabilistic model checking.

162 C.E. Budde et al.

module M1
c: clock;
[a!] true @ c -> (c’ = gamma(0.5, 2 * N));

endmodule
module M2

i: [0..M]; x: [1..M + 1];
[a?] i <= M -> (i’ = x) & (x’ = i + 1);

endmodule

Listing 4. An IOSA model of two modules

while(c = 0)
{

{ x := x + 1 }
[1/2]
{ c := 1 }

};
observe "x is odd"

Listing 5. pGCL

xSADF. Dataflow formalisms are popular in the study of embedded data process-
ing applications. The recently introduced formalism xSADF [35], an extension
of scenario-aware dataflow [56], adds cost annotations (to model, for exam-
ple, power consumption), nondeterminism, and continuous stochastic execution
times. It is equipped with a compositional semantics in terms of STA, which is
implemented in the Modest Toolset. Via the latter’s support for jani-model,
we can now also convert xSADF specifications to jani-model. The resulting mod-
els are networks of STA that make use of the datatypes and functions features
to encode the unbounded typed scenario channels of xSADF.

5.2 Analysis Tools

Support for the verification of jani-model models is currently provided by Fig,
IscasMC, the Modest Toolset and Storm, as well as Prism via IscasMC’s
ability to convert jani-model to the Prism language. We summarise the capabili-
ties and restrictions of the various analysis engines in Table 1. � denotes current
support, while ∗ means that an implementation is planned. (1) indicates that
only broadcast-based input/output STA that correspond to stochastic automata
are supported. (2) marks planned support of the arrays feature that will be
restricted to fixed-size arrays. The Modest Toolset’s support for SHA is via
the prohver tool [29], indicated by (3), and its statistical model checker only sup-
ports deterministic models where marked (4). Concerning supported properties,
we consider the broad classes of probabilistic reachability (P), probabilistic com-
putation tree logic (PCTL), the probabilities of linear temporal logic formulas
(LTL), any type of expected values or rewards (E) and steady-state measures (S).

Fig. Specialised in rare event simulation, Fig [12] implements novel techniques
that allow the use of importance splitting [46] in a fully automated way. Impor-
tance splitting speeds up the occurrence of some user-defined rare event in order
to better estimate its probability of occurrence.

Fig can be used to study transient and long run behaviour. Transient prop-
erties are expressed as P(¬stop U rare), where stop and rare are propositional
formulas describing simulation truncation and rare event occurrence, respec-
tively. Steady state properties correspond to the CSL expression S(rare). Aside
from standard Monte Carlo simulation, an engine based on RESTART-like [57]

JANI: Quantitative Model and Tool Interaction 163

Table 1. Support for model types, features and property classes in analysis tools

importance splitting can be used. The importance function needed by the latter
can be provided ad hoc by the user or computed automatically by the tool.

IscasMC. A Java-based model checker for stochastic systems, IscasMC [31]
offers an easy-to-use web interface for the evaluation of Markov chains and
decision processes against PCTL, PLTL, and PCTL* specifications. It is par-
ticularly efficient in evaluating the probabilities of LTL properties, supporting
multiple resolution methods that improve the actual runtime on complex LTL
properties [30]. IscasMC provides two analysis engines: one based on an explicit
sparse matrix encoding of the state space, and a symbolic one using binary deci-
sion diagrams (BDD). IscasMC can be extended with plugins. This permits to
support the analysis of other formalisms, like quantum Markov chains [22] and
stochastic parity games [32], as well as to use different (multi-terminal) BDD
libraries [18] to symbolically represent both the model and the automaton for
the LTL formula.

The MODEST TOOLSET. A modular collection of model transformation and
analysis tools centred around an internal metamodel of networks of stochastic
hybrid systems, which greatly influenced the design of jani-model, the Modest
Toolset [33] is an implementation of the multiple-formalism, multiple-solution
idea. Its core analysis engines today are the explicit-state model checker mcsta
and the statistical model checker (SMC) modes. The former handles MDP, PTA
and STA with billions of states via a disk-based approach [34] and efficiently
checks time- and reward-bounded properties without unnecessarily unfolding
the state space [28]. The latter focuses on detecting spurious nondeterminism
on-the-fly during simulation in order to be able to handle not just Markov chains.

STORM. Newly developed as the successor of the probabilistic model checker
MRMC [41], Storm [17] works with DTMC, CTMC, MDP and MA models.
In addition to its support for jani-model and the Prism language, it can also
read files in an explicit state space-level format similar to MRMC’s. The analy-
sis of models is backed by different engines that use different representations for

164 C.E. Budde et al.

the model structure and reachable states, including sparse matrices and BDD.
Storm’s first aim is to achieve good performance, but special attention is also
given to a modular design that enables coherent and easy access to a variety
of solvers used by the analysis processes such as linear equation, mixed-integer
linear programming, and SMT solvers. Storm also supports parametric DTMC
and MDP. As the backend for Prophesy [16] and using a parameter lifting app-
roach [53], it significantly outperforms other parametric discrete-time verification
tools.

Table 2. Comparison of Prism- and jani-model-based state space generation

sparse/explicit engines symbolic engines (BDD)

Storm
Prism

Storm
Prism

model type params Jani Prism params Jani Prism

crowds DTMC 〈20, 5〉 8.9 s 8.4 s 26.2 s 〈20, 25〉 9.1 s 9.6 s 9.6 s

cluster CTMC 250 20.2 s 18.4 s 26.5 s 3000 32.1 s 31.1 s 96.7 s

consensus MDP 〈6, 4〉 15.3 s 14.6 s 48.3 s 〈10, 100〉 24.1 s 25.4 s 27.5 s

CSMA MDP 〈3, 4〉 13.8 s 13.1 s 15.4 s 〈4, 4〉 10.2 s 10.2 s 27.8 s

The Prism language is known for its ability to compactly represent gigantic
models which can be very efficiently handled by BDD-based engines. In Storm,
jani-model and Prism models are currently handled by separate code paths. This
provided the opportunity to investigate whether the changes in state space gen-
eration code caused by the new concepts of jani-model (in particular to support
synchronising assignments to global variables in the BDD-based engine) impact
performance. Experiments were run on a quad-core 3.5 GHz Intel Core i7 sys-
tem with Mac OS X 10.12, using four Prism benchmark models [44] and their
conversions to jani-model. We tested both explicit-state and symbolic engines.
Table 2 lists the model construction time of Storm with the jani-model and
Prism files and, for comparison, of Prism with the Prism file. The results
indicate that allowing for the extra language features in jani-model does not sig-
nificantly influence the model construction performance; the comparison with
Prism furthermore shows that this is not just due to a näıve implementation of
the Prism code path within Storm.

6 Conclusion

We have proposed the Jani specification for model exchange and tool interaction.
The complete specification and a library of models are available at jani-spec.org.
The goal of Jani is to reduce the effort required to develop verification tools,
especially in an academic setting, and to foster tool interoperation and compari-
son. Supporting the jani-model format gives access to a large number of existing
models (in the format itself and in the various connected languages) for testing

http://www.jani-spec.org

JANI: Quantitative Model and Tool Interaction 165

and benchmarking at little effort compared to writing a full parser for one of the
existing modelling languages, which prioritise being easily human-writeable over
being easily machine-readable. While Jani is currently focused on quantitative
verification (cf. problem b of Sect. 1), standard labelled transition systems or
Kripke structures as used in traditional verification approaches can be repre-
sented in jani-model, too, and the jani-interaction protocol can be used with any
modelling formalism with a textual representation.

Outlook. As Jani is an ongoing effort, we use the jani-spec.org website to track
the growing list of implementing tools and their status (akin to Table 1). Ulti-
mately, we hope that Jani can lead the way towards a more coordinated tool
development process in quantitative verification that, together with the previous
definition of the Prism benchmark suite [44], will eventually enable a quantita-
tive model checking competition. Such competitions have been shown to have a
strong positive impact on the tooling landscape in affected fields [8].

Acknowledgements. This work is supported by the 3TU project “Big Software
on the Run”, ANPCyT grant PICT-2012-1823, BMBF-IKT 2020 project 16KIS0138
HODRIAN, CDZ project GZ 1023 (CAP), the CAS Fellowship for International Young
Scientists, the CAS/SAFEA International Fellowship Program for Creative Research
Teams, the National Natural Science Foundation of China (grants no. 61550110506 and
61650410658), and SeCyT-UNC grant 05/BP12.

References

1. Agut, D.E.N., van Beek, D.A., Rooda, J.E.: Syntax and semantics of the compo-
sitional interchange format for hybrid systems. J. Log. Algebr. Program. 82(1),
1–52 (2013)

2. Alur, R., Henzinger, T.A.: Reactive modules. FMSD 15(1), 7–48 (1999)
3. Amparore, E.G.: A new greatSPN GUI for GSPN editing and CSLTA model check-

ing. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 170–173.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-10696-0 13

4. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křet́ınský, J., Müller, D.,
Parker, D., Strejček, J.: The Hanoi omega-automata format. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Heidel-
berg (2015). doi:10.1007/978-3-319-21690-4 31

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.5. Tech-
nical report, Department of Computer Science, The University of Iowa (2015).
www.smt-lib.org

6. van Beek, D.A., Fokkink, W.J., Hendriks, D., Hofkamp, A., Markovski, J., van de
Mortel-Fronczak, J.M., Reniers, M.A.: CIF 3: model-based engineering of supervi-
sory controllers. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 575–580. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 48

7. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST, pp. 125–126. IEEE CS (2006)

8. Beyer, D.: Software verification and verifiable witnesses (report on SV-COMP
2015). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–
416. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 31

http://www.jani-spec.org
http://dx.doi.org/10.1007/978-3-319-10696-0_13
http://dx.doi.org/10.1007/978-3-319-21690-4_31
http://www.smt-lib.org/
http://dx.doi.org/10.1007/978-3-642-54862-8_48
http://dx.doi.org/10.1007/978-3-662-46681-0_31

166 C.E. Budde et al.

9. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MODEST: a
compositional modeling formalism for hard and softly timed systems. IEEE TSE
32(10), 812–830 (2006)

10. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. 14, 25–59 (1987)

11. Bray, T.: The JavaScript Object Notation (JSON) data interchange format. RFC
7159, RFC Editor, March 2014. rfc-editor.org/rfc/rfc7159.txt

12. Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of impor-
tance functions in fully automated importance splitting. In: VALUETOOLS, ICST
(2016)

13. Courtney, T., Gaonkar, S., Keefe, K., Rozier, E., Sanders, W.H.: Möbius 2.3: an
extensible tool for dependability, security, and performance evaluation of large and
complex system models. In: DSN, pp. 353–358. IEEE CS (2009)

14. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

15. D’Argenio, P.R., Lee, M.D., Monti, R.E.: Input/Output stochastic automata
- compositionality and determinism. In: Fränzle, M., Markey, N. (eds.) FOR-
MATS 2016. LNCS, vol. 9884, pp. 53–68. Springer, Cham (2016). doi:10.1007/
978-3-319-44878-7 4

16. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 13

17. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: The probabilistic model checker
Storm (extended abstract). CoRR abs/1610.08713 (2016)

18. van Dijk, T., Hahn, E.M., Jansen, D.N., Li, Y., Neele, T., Stoelinga, M., Turrini,
A., Zhang, L.: A comparative study of BDD packages for probabilistic symbolic
model checking. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409,
pp. 35–51. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25942-0 3

19. Eclipse Foundation: Eclipse Modeling Framework (EMF). eclipse.org/modeling/
emf. Accessed 27 Jan 2016

20. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927,
pp. 90–109. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38697-8 6

21. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE CS (2010)

22. Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: a model checker for quantum
programs and protocols. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol.
9109, pp. 265–272. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19249-9 17

23. Fette, I., Melnikov, A.: The WebSocket protocol. RFC 6455, RFC Editor, December
2011. rfc-editor.org/rfc/rfc6455.txt

24. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM
(2011)

25. Fritzson, P.: Modelica - a cyber-physical modeling language and the OpenModelica
environment. In: IWCMC, pp. 1648–1653. IEEE (2011)

26. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

27. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE, pp. 167–181. ACM (2014)

http://www.rfc-editor.org/rfc/rfc7159.txt
http://dx.doi.org/10.1007/978-3-319-44878-7_4
http://dx.doi.org/10.1007/978-3-319-44878-7_4
http://dx.doi.org/10.1007/978-3-319-21690-4_13
http://dx.doi.org/10.1007/978-3-319-25942-0_3
https://eclipse.org/modeling/emf/
https://eclipse.org/modeling/emf/
http://dx.doi.org/10.1007/978-3-642-38697-8_6
http://dx.doi.org/10.1007/978-3-319-19249-9_17
http://www.rfc-editor.org/rfc/rfc6455.txt

JANI: Quantitative Model and Tool Interaction 167

28. Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded prob-
abilistic model checking techniques. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
SETTA 2016. LNCS, vol. 9984, pp. 85–100. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-47677-3 6

29. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. FMSD 43(2), 191–232
(2013)

30. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: CONCUR, vol. 42. LIPIcs, pp. 354–367.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

31. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: IscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM
2014. LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06410-9 22

32. Hahn, E.M., Schewe, S., Turrini, A., Zhang, L.: A simple algorithm for solving
qualitative probabilistic parity games. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 291–311. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-41540-6 16

33. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 51

34. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using
partitioning and secondary storage. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 131–147. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-24953-7 10

35. Hartmanns, A., Hermanns, H., Bungert, M.: Flexible support for time and costs
in scenario-aware dataflow. In: EMSOFT, pp. 3:1–3:10. ACM (2016)

36. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

37. Holzmann, G.J.: The model checker SPIN. IEEE TSE 23(5), 279–295 (1997)
38. ISO 15909-2:2011. High-level Petri nets – Part 2: Transfer format (2011)
39. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:

high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46681-0 61

40. Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding
probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct
System Design. LNCS, vol. 9360, pp. 15–32. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23506-6 4

41. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

42. Keefe, K., Sanders, W.H.: Möbius shell: a command-line interface for Möbius. In:
Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol.
8054, pp. 282–285. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40196-1 24

43. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

44. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST, pp. 203–204. IEEE CS (2012)

http://dx.doi.org/10.1007/978-3-319-47677-3_6
http://dx.doi.org/10.1007/978-3-319-47677-3_6
http://dx.doi.org/10.1007/978-3-319-06410-9_22
http://dx.doi.org/10.1007/978-3-319-06410-9_22
http://dx.doi.org/10.1007/978-3-319-41540-6_16
http://dx.doi.org/10.1007/978-3-319-41540-6_16
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-319-24953-7_10
http://dx.doi.org/10.1007/978-3-319-24953-7_10
http://dx.doi.org/10.1007/978-3-662-46681-0_61
http://dx.doi.org/10.1007/978-3-319-23506-6_4
http://dx.doi.org/10.1007/978-3-319-23506-6_4
http://dx.doi.org/10.1007/978-3-642-40196-1_24
http://dx.doi.org/10.1007/978-3-642-22110-1_47

168 C.E. Budde et al.

45. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. TCS 282(1), 101–150
(2002)

46. L’Ecuyer, P., Le Gland, F., Lezaud, P., Tuffin, B.: Splitting techniques. In: Rare
Event Simulation using Monte Carlo Methods, pp. 39–61. Wiley, Ltd. (2009)

47. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12002-2 26

48. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets, 1st edn. Wiley, New York (1994)

49. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2005)

50. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

51. Molnár, G.: js-schema website. molnarg.github.io/js-schema. Accessed 28 Jan 2016
52. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley, New York (1994)
53. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-

thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.)
ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-46520-3 4

54. Sanner, S.: Relational dynamic influence diagram language (RDDL): Language
description (2010). http://users.cecs.anu.edu.au/∼ssanner/IPPC 2011/RDDL.pdf

55. Stöcker, J., Lang, F., Garavel, H.: Parallel processes with real-time and data:
the ATLANTIF intermediate format. In: Leuschel, M., Wehrheim, H. (eds.) IFM
2009. LNCS, vol. 5423, pp. 88–102. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00255-7 7

56. Theelen, B.D., Geilen, M., Basten, T., Voeten, J., Gheorghita, S.V., Stuijk, S.:
A scenario-aware data flow model for combined long-run average and worst-case
performance analysis. In: MEMOCODE, pp. 185–194. IEEE CS (2006)

57. Villén-Altamirano, M., Villén-Altamirano, J.: The rare event simulation method
RESTART: efficiency analysis and guidelines for its application. In: Kouvatsos,
D.D. (ed.) Network Performance Engineering. LNCS, vol. 5233, pp. 509–547.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-02742-0 22

http://dx.doi.org/10.1007/978-3-642-12002-2_26
http://dx.doi.org/10.1007/978-3-642-12002-2_26
http://molnarg.github.io/js-schema/
http://dx.doi.org/10.1007/978-3-319-46520-3_4
http://dx.doi.org/10.1007/978-3-319-46520-3_4
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://dx.doi.org/10.1007/978-3-642-00255-7_7
http://dx.doi.org/10.1007/978-3-642-00255-7_7
http://dx.doi.org/10.1007/978-3-642-02742-0_22

Computing Scores of Forwarding Schemes
in Switched Networks with Probabilistic Faults

Guy Avni1(B), Shubham Goel2, Thomas A. Henzinger1,
and Guillermo Rodriguez-Navas3

1 IST Austria, Klosterneuburg, Austria
guy.avni@ist.ac.at

2 IIT Bombay, Mumbai, India
3 Mälardalen University, Väster̊as, Sweden

Abstract. Time-triggered switched networks are a deterministic com-
munication infrastructure used by real-time distributed embedded sys-
tems. Due to the criticality of the applications running over them, devel-
opers need to ensure that end-to-end communication is dependable and
predictable. Traditional approaches assume static networks that are not
flexible to changes caused by reconfigurations or, more importantly,
faults, which are dealt with in the application using redundancy. We
adopt the concept of handling faults in the switches from non-real-time
networks while maintaining the required predictability.

We study a class of forwarding schemes that can handle various types
of failures. We consider probabilistic failures. For a given network with a
forwarding scheme and a constant �, we compute the score of the scheme,
namely the probability (induced by faults) that at least � messages arrive
on time. We reduce the scoring problem to a reachability problem on a
Markov chain with a “product-like” structure. Its special structure allows
us to reason about it symbolically, and reduce the scoring problem to
#SAT. Our solution is generic and can be adapted to different networks
and other contexts. Also, we show the computational complexity of the
scoring problem is #P-complete, and we study methods to estimate the
score. We evaluate the effectiveness of our techniques with an implemen-
tation.

1 Introduction

An increasing number of distributed embedded applications, such as the Internet-
of-Things (IoT) or modern Cyber-Physical Systems, must cover wide geographi-
cal areas and thus need to be deployed over large-scale switched communication
networks. The switches used in such networks are typically fast hardware devices
with limited computational power and with a global notion of discrete time. Due

This research was supported in part by the Austrian Science Fund (FWF) under
grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award) and by the
People Programme (Marie Curie Actions) of the European Union’s Seventh Frame-
work Programme FP7/2007-2013/ under REA grant agreement 607727.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 169–187, 2017.
DOI: 10.1007/978-3-662-54580-5 10

170 G. Avni et al.

to the criticality of such applications, developers need to ensure that end-to-end
communication is dependable and predictable, i.e. messages need to arrive at
their destination on time. The weakness of traditional hard real-time techniques
is that they assume nearly static traffic characteristics and a priori knowledge
about them. These assumptions do not fit well with setups where highly dynamic
traffic and evolving network infrastructure are the rule and not the exception;
e.g. see [26]. For this reason, there is a pressing need to combine flexibility and
adaptability features with traditional hard real-time methods [11,12,30].

The Time-Triggered (TT) scheduling paradigm has been advocated for real-
time communication over switched networks [28]. The switches follow a static
schedule that prescribes which message is sent through each link at every time
slot. The schedule is synthesized offline, and it is repeated cyclically during the
system operation [22]. TT-schedules are both predictable and easy to implement
using a simple lookup table. Their disadvantage is that they lack robustness;
even a single fault can cause much damage (in terms of number of lost mes-
sages). Error-handling is left to the application designer and is typically solved
by statically introducing redundancy [5]. Static allocation of redundancy has
its limitations: (i) it adds to the difficulty of finding a TT-schedule, which is
a computationally demanding problem even before the addition of redundant
messages, and (ii) it reduces the effective utilization of resources.

In contrast, non real-time communication networks typically implement
error-recovery functionality within the switches, using some kind of flexible rout-
ing, to reduce the impact of crashes. Such an approach is used in software defined
networking (SDN) [17], which is a booming field in the context of routing in the
Internet. Handling crashes has been extensively studied in such networks (c.f.,
[8,24,33] and references therein), though the goal is different than in real-time
networks; a message in their setting should arrive at its destination as long as a
path to it exists in the network. Thus, unlike real-time applications, there is no
notion of a “deadline” for a message.

In this work we explore the frontier between both worlds. We adopt the con-
cept of programmable switches from SDN to the real-time setting in order to
cope with network faults. The challenge is to maintain the predictability require-
ment, which is the focus of this work. We suggest a class of deterministic routing
schemes, which we refer to as forwarding schemes, and we show how to predict
the behavior of the network when using a particular forwarding scheme. More
formally, the input to our problem consists of a network N that is accompanied
with probabilities of failures on edges, a set of messages M to be routed through
N , a (deterministic) forwarding scheme F that is used to forward the messages
in M, a timeout t ∈ N on the arrival time of messages, i.e., if a message arrives
after time t, it is considered to be lost, and a guarantee � ∈ N on the number
of messages that should arrive. Our goal is to compute the score of F , which is
defined as the probability (induced by faults) that at least � messages arrive at
their destinations on time when forwarding using F .

Our score is a means for predicting the outcome of the network. If the score
is too low, a designer can use redundancy techniques to increase it. Also, it

Computing Scores of Forwarding Schemes in Switched Networks 171

is a means to compare forwarding schemes. When constructing a forwarding
scheme, be it a TT-schedule or any other scheme, a designer has control on
some of the components and others are fixed by the application. For example,
in many networks, the size of the switches’ queues are fixed to be small, making
it impossible to use algorithms that rely on large memories. The choices made
by the designer can highly influence the performance of the system on the one
hand, and are very hard to predict on the other; especially when faults come
into the picture. Our score can be used to compare different forwarding schemes,
allowing the designer to evaluate his algorithm of choice. Also, our solution can
be used for sensitivity analysis with respect to certain parameters of the network;
for example, one can fix the score and �, and find the error probabilities for the
channels [4].

A first step towards handling faults in the switches was made in [3]. In their
framework, the switches follow a TT-schedule and resort to a forwarding algo-
rithm once a crash occurs. Our forwarding scheme is simpler and allows con-
sideration of richer faults in a clean and elegant manner, which were impossible
to handle in [3]’s framework. More importantly, they study adversarial faults
whereas we study probabilistic ones, which are a better model for reality while
they are considerably more complicated to handle. Using failover paths to allow
for flexibility in switched networks was considered in [20,32].

The definition of the class of forwarding schemes requires care. On the one
hand, the switches computation power is limited, so forwarding rules in the
switches should be specified as propositional rules. But, on the other hand, it is
infeasible to manually specify the rules at each switch as the network is large and
is subject to frequent changes. So, we are required to use a central symbolic defin-
ition of an algorithm. However, while the definition of the central algorithm uses
propositional rules, it should allow for variability between the switches and the
messages’ behavior in them. There are many ways to overcome these challenges,
and we suggest one solution, which is simple and robust. Our forwarding scheme
consists of three components. The first component is a forwarding algorithm that
the switches run and is given by means of propositional forwarding rules. The
two other components allow variability between the switches, each switch has
priorities on messages, and each message has a preference on outgoing edges
from each switch. The forwarding rules of the algorithm take these priorities
and preferences into consideration. A similar priority-list model is taken in [14].
Our algorithm for computing the score of a scheme is general and can handle
various forwarding schemes that are given as propositional rules as we elaborate
in Sect. 8.

In order to score a given forwarding scheme, we first reduce the scoring
problem to a reachability problem on a certain type of Markov chain, which
is constructed in two steps. First, we focus on an individual message m and
construct a deterministic automaton Dm that simulates the forwarding scheme
from the perspective of the message. Then, we combine the automata of all the
messages into an automaton that simulates their execution simultaneously, and
construct a Markov chain C on top of it by assuming a distribution on input

172 G. Avni et al.

letters (faults). The size of C is huge and the crux of our approach is reasoning
about it symbolically rather than implicitly using PRISM [18] for example. We
construct a Boolean formula ψ that simulates the execution of C. The special
product-like structure of C allows us to construct ψ that is proportional in size
to the sum of sizes of the Dm automata rather than the product of their sizes,
which is the size of C. There is a one-to-one correspondence between satisfying
assignments to ψ and “good outcomes”, namely outcomes in which at least �
messages arrive on time. We then infer the score of the forwarding scheme from
the weighted count of satisfying assignments to ψ; the weight of a satisfying
assignment is the probability of the crashes in the corresponding execution of
the network.

The problem of counting the number of satisfying assignments of a Boolean
formula is called #SAT and it has received much attention. The practical
developments on this problem are quite remarkable given its computational
intractably; even deciding whether a Boolean formula has one solution is an
NP-complete problem that was considered impossible to solve practically twenty
years ago, a fortiori counting the number of solutions of a formula, which is a
#P-complete problem and “closer” to PSPACE than to NP. Still, there are tools
that calculate an exact solution to the problem [29] and a recent line of work
that adapts the rich theory of finding approximate solutions with high proba-
bility [16] to practice (see [21] for an overview). Also, extensions of the original
problem were studied; strengthening of the formula to SMT rather than SAT [9]
and reasoning about assignments with weights, referred to weighted #SAT. As
mentioned above, our solution requires this second extension. We show that we
can alter the formula we construct above to fit in the framework of [7], allowing
us to use their reduction and generate an equivalent #SAT instance.

While solving #SAT is becoming more practical, it is still far from solved
and it would be surprising if the tools will ever be able to compete with tools
for solving SAT, e.g., [10]. Thus, one can question our choice of using such a
heavy tool to solve our scoring problem. We show that a heavy tool is essential
by showing that scoring a forwarding scheme is #P-complete, by complementing
the upper bound above with a reduction in the other direction: from #SAT to
scoring a forwarding scheme.

We also study approaches to estimate the score of a forwarding scheme. We
run a randomized algorithm that, with high probability, finds a solution that
is close to the actual score. Using an approximate counting tool to count the
Boolean formula we construct above, performs very poorly as the reduction of [7]
constructs an instance which is particularly hard for the approximate counting
techniques. Thus, in order to employ the tools to approximately solve #SAT
we need to bypass the reduction. We suggest an iterative algorithm that takes
advantage of the fact that in practice, the probability of failure is low, so traces
with many faults have negligible probability. A second technique we use is a
Monte-Carlo simulation, which has been found very useful in reasoning about
networks [25] as well as in statistical model checking in tools like PLASMA [15],
UPPAAL [19], and PVeSta [1].

Computing Scores of Forwarding Schemes in Switched Networks 173

We have implemented all our techniques. We show that the exact solution
scales to small networks. The solution that relies on approximated counting
scales better, but is overshadowed by the Monte-Carlo approach, which scales
nicely to moderate networks. We also use the exact solution to evaluate the
scores of the Monte-Carlo approach and we find that it is quite accurate. We
note that our counting techniques rely on counting tools as black-boxes and, as
mentioned above, improving these techniques is an active line of work. We expect
these tools to improve over time, which will in turn improve the scalability of
our solution.

Due to lack of space some proofs and examples are given in the full version [2].

2 Preliminaries

We model a network as a directed graph N = 〈V,E〉. For a vertex v ∈ V , we use
out(v) ⊆ E to denote the set of outgoing edges from v, thus out(v) = {〈v, u〉 ∈
E}. A collection M of messages are sent through the network. Each message
m ∈ M has a source and a target vertex, which we refer to as s(m) and t(m),
respectively. Time is discrete. There is a global timeout t ∈ N and a message
meets the timeout if it arrives at its destination by time t.

Forwarding Messages

A forwarding scheme is a triple F = 〈A, {≺v}v∈V , {≺v
m}m∈M, v∈V 〉, where A

is a forwarding algorithm that the switches run and we describe the two other
components below. For ease of notation, we assume the same number of edges
d ∈ N exit all the switches in the network and in each switch they are ordered in
some manner1. Then, our rules forward messages with respect to this order. For
example, we can specify a rule that says “forward a message m on the first edge”
by writing Forward(m, e1). The two other components of F allow variability;
each switch v ∈ V has an order ≺v on messages, which are priorities on messages,
and each message m ∈ M has an ordering ≺v

m on the outgoing edges from v,
which are preference on edges.

The propositional rules in A are of the form ϕ → Forward(m, e). We refer
to ϕ as the assertion of the rule and its syntax is as follows

ϕ :: = m | ei | m < m′ | ei <m ej | ϕ ∨ ϕ | ¬ϕ

Note that m and m′ refer to specific messages in M while ei refers to the i-th
exiting edges from a switch. The forwarding at a switch is determined only by
the local information it has; the messages in its queue and its outgoing active
edges. In other words, switches are not aware of faults in distant parts of the
network and this fits well with the philosophy of the simple networks we model.

1 In many settings, messages are grouped into few priorities making “priority ties”
common. We assume a total order on message priorities, i.e., there is some arbitrary
procedure to break ties.

174 G. Avni et al.

Intuitively, the algorithm takes as input the messages in the queue as well
as the active edges, and the output is the forwarding choices. Accordingly, the
semantics of an assertion ϕ is with respect to a set of messages M ⊆ M (the
messages in the queue) and a set of edges T ⊆ {e1, . . . , ed} (the active edges).
Consider a rule ϕ → Forward(m, ei). We denote by (M,T) |=≺v,{≺v

m}m∈M ϕ
the fact that (M,T) satisfies ϕ. Then, m is forwarded on the i-th outgoing edge
from v, namely ei. When ≺v and ≺v

m are clear from the context, we omit them.
The semantics is defined recursively on the structure of ϕ. For the base cases,
we have (M,T) |= m iff m ∈ M , thus m is in v’s queue, we have (M,T) |= ei iff
ei ∈ T , thus ei is active, we have (M,T) |= (m < m′) iff m ≺v m′, thus m′ has
precedence over m in v, and we have (M,T) |= (ei <m ej) iff ei ≺v

m ej , thus m
prefers being forwarded on the j-th edge over the i-th edge. The inductive cases
are as expected.

The algorithm forwards messages on active links. We think of its output as
pairs O ⊆ M × E, where 〈m, e〉 ∈ O implies that the algorithm forwards m on
e. We require that the algorithm obey the constraints of the network; at most
one message is forwarded on a link, messages are forwarded only on active links,
messages originate only from their source switch, they are forwarded only after
they are received, and they are not forwarded from their destination.

It is sometimes convenient to use definitions of sets in an algorithm as we
illustrate in the examples below. A definition of a set is either a collection of
messages or a collection of edges that satisfy an assertion as in the above. We also
allow set operations like union, intersection, and difference, for sets over the same
types of elements. Later on, when we simulate the execution of the forwarding
algorithm as a propositional formula, we use extra variables to simulate these
operations.

Example 1. TT-schedule. A time-triggered schedule (TT-schedule, for short)
assigns messages to edges such that (1) the schedule assigns a message m on a
path from its source to target, i.e., it is not possible that m is scheduled on e
before it reaches s(e), (2) two messages cannot be sent on the same link at the
same time, and (3) all messages must arrive by time t. Given a TT-schedule S, we
can construct an equivalent forwarding scheme assuming there is no redundant
waiting, namely assuming a message m arrives at a switch v at time i and should
be forwarded on e at a later time, then, if m stays in v, it is only because e is
occupied by a different message. We note that a schedule induces an order on
the messages at each vertex, which we use as ≺m, and it induces a path πm for
each message, which induces an order ≺v

m in which the edges on πm have the
highest preference.

In order to describe the rules of the algorithm (as well as the rules in the
following example), we introduce several definition. For S ⊆ M, we define an
assertion priority(m,S) that is satisfied in switches where m has the highest
priority out of the messages in S, thus priority(m,S) =

∧
m′∈S(m′ < m). Next,

we define an assertion prefers(m, ei) that is satisfied in vertices where m prefers
ei over all the active edges, thus prefers(m, ei) =

∧
j �=i

(
ej → (ej <m ei)

)
.

Finally, we define a set of message Sei
= {m ∈ M : prefers(m, ei)}, namely Sei

Computing Scores of Forwarding Schemes in Switched Networks 175

at a vertex v contains the messages that are forwarded on i-th outgoing edge
from v.

We are ready to describe the algorithm using forwarding rules. For every
m ∈ M and i = 1, . . . , d, m is forwarded on ei when (1) m is in the queue, (2)
m prefers ei, (3) ei is active, and (4) m has the highest priority of the messages
in Sei

. The corresponding rule is m ∧ prefers(m, ei) ∧ ei ∧ priority(m,Sei
) →

Forward(m, ei).

Example 2. Hot-potato. This algorithm is intended for networks in which the
switches’ queue size is limited. Intuitively, messages are ordered in decreasing
priority and are allowed to choose free edges according to their preferences. So,
assume that the set of active outgoing edges of a switch v is T ⊆ {e1, . . . , ed}, and
the message in the queue are M = {m1, . . . ,mk} ordered in increasing priority,
i.e., for 1 � i < j � k, we have mj ≺v mi. Then, m1 chooses its highest priority
edge e in T , i.e., for every other edge e′ ∈ T , we have e′ ≺v

m e. Following m1,
the message m2 chooses its highest priority edge in T \ {e}, and so forth. If a
message is left with no free outgoing edge, it stays in v’s queue. The algorithm
has a low memory consumption: rather than keeping a message m in the queue
till its preferred edge is free, the switch forwards m on a lower-preference edge.
Note that unlike the algorithm in Example 1, the hot-potato algorithm has fault
tolerant capabilities. The definition of the algorithm using propositional rules
can be found in the full version.

Faults and Outcomes

We consider two types of faults. The first type are crashes of edges. We distin-
guish between two types of crashes: temporary and permanent crashes in which
edges can and cannot recover, respectively. A second type of fault model we con-
sider are faults on sent messages. We consider omissions in which a sent message
can be lost. We assume the switches detect such omissions, so we model these
faults as a sent message that does not reach its destination and re-appears in
the sending switch’s queue. As we elaborate in Sect. 8, our approach can handle
other faults such as “clock glitches”, which are common in practice.

The outcome of a forwarding scheme F is a sequence of snapshots of the
network at each time point. Each snapshot, which we refer to as a configuration,
includes the positions of all the messages, thus it is a set of |M| pairs of the
form 〈m, v〉, meaning that m is on vertex v in the configuration. We use O to
denote the set of all outcomes. Each outcome in O has t + 1 configurations,
thus O ⊆ (M × V)t+1. All outcomes start from the same initial configuration
{〈m, s(m)〉 : m ∈ M} in which all messages are at their origin. Consider a
configuration C. Defining the next configuration C ′ in the outcome is done in
two steps. In the first step, we run F in all vertices. Consider a vertex v, let
T ⊆ out(v) be a set of active edges. The set of messages in v’s queue is M =
{m : 〈m, v〉 ∈ C}. Intuitively, we run F at v with input M and T . The forwarding
algorithm keeps some of the messages S ⊆ M in v’s queue and forwards others.
The messages in S stay in v’s queue, thus we have 〈m, v〉 ∈ C ′ for every message

176 G. Avni et al.

m ∈ S. Recall that the algorithm’s output is O ⊆ (M × E), where 〈m, e〉 ∈ O
means that m is forwarded on the link e. In the second step, we allow omissions to
occur on the pairs in O. If an omission occurs on 〈m, 〈v, u〉〉 ∈ O, then m returns
to the source of the edge and we have 〈m, v〉 ∈ C ′, and otherwise, sending is
successful and we have 〈m,u〉 ∈ C ′.

We consider probabilistic failures. For every edge e ∈ E, we assume there
is a probability pe

crash that e crashes as well as a probability pe
omit that a for-

warded message on e is omitted. Allowing different probabilities for the edges is
useful for modeling settings in which the links are of different quality. Note that we
allow “ideal” links with probability 0 of failing. Faults occur independently though
some dependencies arise from our definitions and we highlight them below. In the
temporary-crash model, the probability that e is active at a time i is 1−pe

crash. In
the permanent-crash model, crashes are dependent. Consider a set of active edges
T ⊆ E. The probability that the active edges in the next time step are T ′ ⊆ T
is

∏
e∈T ′(1 − pe

crash) · ∏
e∈(T\T ′) pe

crash. We define omissions similarly. Consider
a configuration C, active edges T , and let O be the output of the algorithm. The
probability that an omission occurs to a pair in 〈m, e〉 ∈ O is pe

omit. Here too there
is dependency between omissions and crashes: an omission can only occur on an
edge that a message is sent on, thus the edge must be active. Such fault probabil-
ities give rise to a probability distribution on O, which we refer to as D(O).

Definition 1. Consider 1 � � � |M|. Let G be the set of outcomes in which at
least � messages arrive on time. We define Score(F) = Prπ∼D(O)[π ∈ G].

3 From Computing Scores to Reasoning About Markov
Chains

In this section we show how to reduce the problem of finding the score of a for-
warding scheme to a reachability problem on a Markov chain. We describe the
intuition for the construction and the formal details can be found in the full ver-
sion. We start with temporary crashes and omissions. A deterministic automaton
(DFA, for short) is a tuple D = 〈Σ,Q, δ, q0, F 〉, where Σ is an alphabet, Q is a
set of states, δ : Q×Σ → Q is a transition function, q0 ∈ Q is an initial state, and
F ⊆ Q is a set of accepting states. We use |D| to denote the number of states in
D. An automaton frame is a DFA with no accepting states. A Markov chain is a
tuple 〈Q,P, q0〉, where Q is a set of states, P : Q×Q → [0, 1] is a probability func-
tion such that for every state q ∈ Q, we have

∑
e=〈q,p〉∈Q×Q P[e] = 1, and q0 ∈ Q

is an initial state. A Markov chain induces a probability distribution on finite
paths. The probability of a path π = π1, . . . , πn, where π1 = q0 is the product of
probabilities of the transitions it traverses, thus Pr[π] =

∏
1�i<n Pr[〈πi, πi+1〉].

For a bound t ∈ N, we use Pr{π:|π|�t} to highlight the fact that we are restricting
to the probability space on runs of length at most t.

Consider a network N = 〈V,E〉, a set of messages M, a forwarding scheme
F , and a message m ∈ M. We describe an automaton frame Dm[N ,M,F] that
simulates the routing of m in N using F . We have Dm[N ,M,F] = 〈(2M ×2E)∪
(E ∪ {⊥}), V ∪ E, δm, s(m)〉, where we describe δm below. We omit N , M, and

Computing Scores of Forwarding Schemes in Switched Networks 177

F when they are clear from the context. Intuitively, the subset of states V model
positions in the network and the subset of states E are intermediate states that
allow us to model omissions. When Dm is at state v ∈ V , it models the fact that
m is in the switch v. Accordingly, the initial state is s(m) and the transition
function δm simulates the forwarding scheme F : every outgoing transition τ
from a state v ∈ V corresponds to forwarding rule ϕ → Forward(m, ei) for m.
The transition τ is labeled by an alphabet letter (M,T), where M ⊆ M models
the messages in v’s queue, and T ⊆ E models the active edges. Furthermore,
we have (M,T) |= ϕ, thus m is forwarded on the i-th edge leaving v. We refer
to the state at the end-point of the transition τ as e ∈ E, thus e is the i-th
edge leaving v. Recall that e is used to model omission. Accordingly, it has two
outgoing transitions: one directs back to v, and the second models a successful
transmission and directs to the state that corresponds to the vertex t(e).

Next, given a network N , a set of messages M, and a forwarding scheme
F , we construct an automaton-frame DFA D[N ,M,F] that simulates the runs
of all the Dm frames. Consider a guarantee constant 1 � � � |M|. The con-
stant � determines the accepting states of D[N ,M,F]: states in which at least
� messages arrive on time are accepting. Formally, we have D�[N ,M,F] =
〈2E , V |M| ∪ E|M|, δ, qD

0 , F�〉, where we describe the definition of qD
0 , δ, and F�

below. We omit N , M, F , and � when they are clear from the context. Recall
that D simulates the execution of the network when routing according to F . A
state 〈v1, v2, . . . , v|M|〉 in D represents the fact that, for 1 � i ≤ |M|, message
mi is in the switch vi and its frame is in the corresponding state, and similarly
for a state in E|M|. Accordingly, the initial state qD

0 is 〈s(m1), . . . , s(m|M|)〉
and a state is accepting iff at least � messages arrive at their destination, thus
F� = {〈v1, . . . , v|M|〉 : |{j : vj = t(mj)}| � �}. Recall that the alphabet of a
frame Dm consists of two types of letters; a letter M ⊆ M models the mes-
sages in a switch’s queue and a letter T ⊆ E models failures. Since in D, the
messages in the queues can be induced by the positions of the frames, the alpha-
bet of the frame D consists only of the second type of letters. Consider a state
〈v1, v2, . . . , v|M|〉 in D and an input letter T ⊆ E. For 1 � i ≤ |M|, let M ⊆ M
be the messages at vertex vi, thus M = {mj : vj = vi}. Then, the i-th compo-
nent in the next state of D is δmi

(vi, (M,T)). The definition for states in E|M| is
similar, though here, when an outgoing transition is labeled by a letter O ⊆ E,
it models the messages that where successfully delivered.

Recall that the letters in D[N ,M,F] model failures. We assume probabilis-
tic failures, thus in order to reason about N we construct a Markov chain
C[N ,M,F] on the structure of D[N ,M,F] by assuming a distribution on
input letters. Formally, we have C[N ,M,F] = 〈V |M| ∪ E|M|,P, qD

0 〉, where
τ = 〈v, e〉 ∈ V |M| × E|M| has a positive probability iff there exists T ⊆ E such
that δ(v, T) = e, then P[τ] =

∏
e∈T pe · ∏

e/∈T (1 − pe), and the definition of
edges from states in E|M| to V |M| is similar. We can now specify the score of a
forwarding scheme as the probability of reaching F� in C[N ,M,F].

178 G. Avni et al.

Theorem 1. Let N be a network, M a set of messages, F be a forwarding
scheme, and 1 � � � |M| a guarantee. For a timeout t ∈ N, we have that
Pr{π:|π|�t}[{π : π reaches F�}] in C[N ,M,F] equals Score(F).

The construction above considers temporary crashes. Recall that in perma-
nent crashes, once an edge crashes it does not recover. In order to reason about
such crashes, we take a product of D with 2|E|. A state that is associated with a
set T ⊆ E represents the fact that the edges in E \ T have crashed. Thus, input
letters from such a state include only edges in T .

4 Computing the Score of a Forwarding Scheme

While Theorem 1 suggests a method to compute the score of a forwarding scheme
by solving a reachability problem on the Markov chain C, the size C is too big
for practical purposes. In this section we reason about C without constructing
it implicitly by reducing the scoring problem to #SAT, the problem of counting
the number of satisfying assignments of a Boolean formula. We proceed in two
steps.

Simulating Executions of D. Recall that the Markov chain C shares the same
structure as an automaton D whose input alphabet represents faults. We reason
about D by constructing a Boolean formula ψ whose satisfying assignments
correspond to accepting runs of length t of D, which correspond in turn to
“good outcomes” of the network, i.e., outcomes in which at least � messages
arrive on time. The crux of the construction is that the size of ψ is proportional
to the sum of sizes of the Dm automata that compose D rather than the product
of their sizes, which is the size of D. In order to ensure that the run a satisfying
assignment simulates, is accepting, we need to verify that at least � messages
arrive on time. We show how to simulate a counter using a Boolean formula in
the following lemma whose proof can be found in the full version.

Lemma 1. Consider a set X of |M| variables, a truth assignment f : X →
{tt, ff}, and a constant 1 � � � |M|. There is a Boolean formula CNT� over
variables X ∪ Y such that there is a satisfying assignment to CNT� that agrees
with f on X iff |{x ∈ X : f(x) = tt}| � �. The size of Y is |M| · log
� + 1� and
CNT� has linear many constraints in |X ∪ Y |.
We proceed to construct the formula ψ.

Theorem 2. Given a forwarding scheme F for a network N , a set of messages
M, and two constants t, � ∈ N, there is a Boolean formula ψ such that there is
a one-to-one correspondence between satisfying assignment to ψ and accepting
runs of D�[N ,M,F]. The size of ψ is poly(|N |, |F|, |M|, t, log �).

Proof. We describe the intuition of the construction and the detail can be found
in the full version. We use |M| · |N | · t variables to simulate the execution of
the underlying |M| frames. A variable of the form xm,v,i represents the fact that
message m is on switch v at time i. We model the faults using variables: a variable

Computing Scores of Forwarding Schemes in Switched Networks 179

xe,i represents the fact that e is active at time i and a variable xe,m,i represents
the fact that sending message m on link e at time i was successful. Recall that
the transition function of the frames corresponds to the forwarding algorithm,
which is given by a set of propositional rules. We simulate these rules using a
Boolean formula over the variables. Finally, we add constraints that require that
the run starts from the initial state, i.e., xm,s(m),1 = tt, and ends in an accepting
state, i.e., |{m ∈ M : xm,t(m),t = tt}| � �. For the later we use the assertion
CNT� that is described in Lemma 1 with X = {xm,t(m),t : m ∈ M}. ��

Reasoning About C Using ψ. Recall that in Theorem 1, we reduce the problem
of scoring a forwarding scheme to the problem of finding the probability of reach-
ing the accepting states in C in t iterations. By Theorem 2 above, a satisfying
assignment f to ψ corresponds to such an execution r. We think of f as having
a probability, which is Pr[r]. Let SAT (ψ) be the set of satisfying assignments to
ψ. We have established the following connection: Score(F) =

∑
f∈SAT (ψ) Pr[f].

Recall that #SAT is the problem of counting the number of satisfying assign-
ments of a Boolean formula. The counting problem in the right-hand side of the
equation above is a weighted-model counting (WMC, for short) problem, which
generalizes #SAT. The input to WMC is a Boolean formula ϕ and a weight
function w that assigns to each satisfying assignment a weight, and the goal is
to calculate Score(ϕ) =

∑
f∈SAT (ϕ) w(f). #SAT is a special case in which the

weight function is w ≡ 1, thus all assignments get weight 1. In order to distin-
guish between the two problems, we sometimes refer to #SAT as unweighted
model counting (UMC, for short).

The last step in our solution adjusts ψ to fit in the framework of [7] and
use the reduction there from WMC to UMC. Their framework deals with weight
functions of a special form: each literal has a probability of getting value true and
the literals are independent. So the weight of an assignment is the product of the
literals’ probabilities. Accordingly, they call this fragment literal-weighted WMC.
Formally, we have a probability function Pr[l], for every literal l in ψ. We define
w(f) =

∏
l:σ(l)=tt Pr[l] ·∏l:σ(l)=ff(1−Pr[l])), and Score(ψ) =

∑
f∈SAT (ψ) w(f).

Theorem 3. Consider the WMC instance 〈ψ,w〉, where ψ is the Boolean for-
mula obtained in Theorem2 and, for f ∈ SAT (ψ) with corresponding execution
r, we have w(f) = Pr[r]. There is a literal-weighted WMC 〈ψ′, w′〉 and a factor
γ such that γ · Score(ψ′) = Score(ψ) and ψ′ is polynomial in the size of ψ.

Proof. We prove for temporary crashes and omits and for permanent crashes
the proof is similar and can be found in the full version. Recall that there are
two types of variables in ψ; variables of the form xm,v,i that simulate the runs of
the underlying automata and variables of the form xe,i that represent the fact
that a fault occurs in e (crashes for odd i and omissions for even i). Since the
automata are deterministic, the values of the first type of variables is determined
by the second type of variables. A first attempt to define the weights of the xe,i

variables would be to set them to pe
crash and pe

omit, respectively. However, this

180 G. Avni et al.

definition fails as there is dependency between crashes and omits; an omit cannot
occur on an edge that crashes. In the following, we introduce new variables to
correct the dependencies.

It is convenient to add a variable fre,i that gets value true when one of
the messages is forwarded on e at time i, thus an omission can occur only if
fre,i = tt. Note that it is implicit that fre,i = tt only when e does not crash.
Let i be even, and recall that xe,i = tt when e exhibits an omission. The behavior
we are expecting is Pr[xe,i = tt|fre,i = tt] = pe

omit and Pr[xe,i = tt|fre,i =
ff] = 0. In order to model this behavior, we multiply the score of ψ′ by γ, add
two independent variables ae,i and be,i with respective weights a and b, which we
calculate below, and constraints ae,i = xe,i∧fre,i and be,i = ¬xe,i∧¬fre,i. Recall
that Pr[xe,i = tt|fre,i = tt] should equal pe

omit. In that case, we have ae,i = tt
and be,i = ff with probability a · (1− b). Thus, we have pe

omit = γ ·a · (1− b). We
do a similar calculation for the three other cases to obtain two other equations:
1 − pe

omit = γ · (1 − a) · (1 − b) and 1 = γ · (1 − a) · b. Thus, we define a = pe
omit,

b = 1
2−pe

omit
, and γ−1 = (1 − a) · b. ��

Finally, we use the reduction from literal-weight WMC to UMC as described
in [7], thus we obtain the following.

Theorem 4. The problem of scoring a forwarding scheme is polynomial-time
reducible to #SAT.

5 Computational Complexity

We study the computational complexity of finding the score of a forwarding
scheme. We show that it is #P-complete by showing that it is equivalent to the
problem of counting the number of satisfying assignments of a Boolean formula
(a.k.a the #SAT problem).

Theorem 5. The problem of computing the score of a forwarding scheme is
#P-Complete.

Proof. The upper bound follows from Theorem4. For the lower bound, we reduce
#3SAT, the problem of counting the number of satisfying assignments of a 3CNF
formula, to the problem of finding the score of a forwarding scheme. Consider an
input 3CNF formula ψ = C1∧. . .∧Ck over a set X of n variables. We construct a
network N with n+ k messages, a forwarding scheme F , and t, � ∈ N, such that
the number of satisfying assignments to ψ is (1 − Score(F)) · 2n. We describe
the intuition of the construction and the details can be found in the full version.

We have two types of messages; variable messages of the form mx, for x ∈ X,
and clause messages of the form mC , where C is a clause in ψ. A variable message
mx has two possible paths it can traverse πx and π¬x, where the probability of
traversing each path is 0.5. We achieve this by using the hot-potato algorithm of
Example 2, using πx as the first-choice path for mx and π¬x as the second-choice
path, and having the first edge on πx crash with probability 0.5 and all other
edges cannot crash. There is a clear one-to-one correspondence between outcomes

Computing Scores of Forwarding Schemes in Switched Networks 181

and assignments to the variables: an outcome τ corresponds to an assignment
f : X → {tt, ff}, where f(x) = tt if mx traverses πx in τ and f(x) = ff if mx

traverses π¬x in τ . Since crashes in times later than 0 do not affect the choice
of mx, we have Pr[outcomes with πx] = Pr[outcomes with π¬x] = 0.5, thus the
probability of every assignment is 1/2n.

Finally, we associate satisfying assignments with bad outcomes. A bad out-
come is an outcome in which no message arrives on time, thus � = 1. Both paths
for the variable messages are longer than the timeout t, so these messages miss
the timeout in any case. Each clause message mC has a unique path πC and
its length is t. Let l ∈ {x,¬x} be a literal in C. Then, πC intersects the path
πl in exactly one edge e. The paths are “synchronized” such that if mx chooses
πl, then both mx and mC reach the origin of e at the same time. Since mx has
precedence over mC , it will traverse e first, making mC wait at s(e) for one time
unit and causing it to miss the timeout (recall that |πC | = t). Note that mC

misses the timeout iff one of the literals in it gets value tt. Thus, an outcome in
which all clause messages miss the timeout, i.e., a bad outcome, corresponds to
a satisfying assignment to ψ, and we are done. ��

6 Estimating the Score of a Forwarding Scheme

In this section we relax the requirement of finding an exact score and study the
problem of estimating the score. We study probabilistic algorithms that with
high probability return a score that is close to the exact score.

Iterative Counting Approach. We build on the counting method developed
in Sect. 4. A first attempt to estimate the score would be to feed the Boolean for-
mula ψ′ we develop there into a tool that approximately solves #SAT. However,
this attempt fails as the reduction of [7] from weighted to unweighted count-
ing produces an instance that is particularly hard to solve for such solvers. In
order to use the literature on approximate counting, we must develop a different
technique. We take advantage of the fact that in practice, the probability of fail-
ures is very small. Thus, the executions that include many faults have negligible
probability. We find an approximate score of a forwarding scheme in an itera-
tive manner. We start with a score of 0 and uncertainty gap 1, and iteratively
improve both. We allow only permanent edge crashes in this approach and we
require all edges to have the same probability. In each iteration we allow exactly
k crashes. Calculating the probability of all outcomes with k crashes is not hard.
The proof of the following lemma can be found in the full version.

Lemma 2. The probability of all outputs with exactly k crashes is
(|E|

k

) · (1 −
pcrash)(|E|−k)·t · (1 − (1 − pcrash)t)k.

We find the probability of the “good outcomes” with k crashes using a count-
ing method, add to the score of the scheme and update the uncertainty gap by
deducting the probability of the bad outcomes. We use the weighted counting
framework of [6] (which is not weighted-literal WMC). Restricting to k crashes

182 G. Avni et al.

has two advantages, which significantly speed up the counting. First, the solu-
tion space is significantly reduced. More importantly, we use the fact that the
probabilities of the outcomes do not vary too much. The running time of the
method of [6] depends on a given estimation of the ratio between the weight
of the maximal weighted satisfying assignment and the minimal weighted one,
which the authors refer to as the tilt. The proof of the following lemma can be
found in the full version.

Lemma 3. tilt � (1 − pcrash)k·t.

We describe the pseudo code of the approach below.

Input: A network N = 〈V,E〉, a set of messages M, a forwarding scheme F ,
constants t, � ∈ N, the probability of a permanent crash pcrash, and ε > 0.

Output: An additive ε-approximation of Score(F).
uncertainty = 1, score = 0, k = 0.
while uncertainty > ε do

all ← Probability of all outcomes with k crashes.
bad ← CalcBadProb(N ,M,S, t, �, k)
uncertainty −= all; score += (all − bad); k ++;

return score

6.1 A Monte-Carlo Approach

The Monte-Carlo approach is a very simple and well-known approach to reason
about reachability in Markov chains. It performs well in practice as we elaborate
in Sect. 7. We perform n probabilistic simulations of the execution of the Markov
chain C for 2t iterations, where t is the timeout and n is a large number which
we choose later. In each simulation, we start from the initial state of C. At each
iteration we probabilistically choose an outgoing edge and follow it. If we reach a
state in F�, we list the experiment as 1, and otherwise as 0. We use y1, . . . , yn to
refer to the outcomes of the experiments, thus yi ∈ {0, 1}. Let r be the number of
successful experiments. We return r/n. We use Hoeffding’s inequality to bound
the error: Pr[1n

∑n
i=1 yi − Score(F) � ε] � e−2nε2 . Thus, we choose n so that

given requirements on the error and confidence are met.

7 Evaluation

In this section we evaluate the techniques to compute the exact and approximate
score of a forwarding scheme. We compare the scalability of these approaches.
Our counting techniques rely on black-boxes that count the number of satisfying
assignments of a SAT formula. We used sharpSAT [29] to exactly solve #SAT
and WeightMC [6] to approximately solve weighted #SAT. Our implementations
are in Python and we ran our experiments on a personal computer; an Intel Core
i3 quad core 3.40 GHz processor.

Computing Scores of Forwarding Schemes in Switched Networks 183

Fig. 1. The running time of
the approaches on increasing-sized
networks.

Table 1. Comparison of the exact score with the
one obtained by the Monte-Carlo approach.

Num. of nodes Exact Monte-Carlo Error

4 0.998 0.998 0.0002

5 0.965 0.963 0.001

6 0.967 0.968 0.0005

Generating a Setting. We evaluate the algorithm on networks that were
generated randomly using the library Networkx [13]. We fix the number of ver-
tices, edges, and messages and generate a random directed graph. We consider
relatively dense graphs, where the number of edges are approximately 2.5 times
the number of vertices. Once we have a graph, we randomly select a source and
a target for each message. Recall that a forwarding scheme has three compo-
nents: the forwarding algorithm, message priorities, and edge priorities for each
message.

The forwarding algorithm we use is the “Hot-potato” algorithm, which is
described in Example 2 and has some error-handling capabilities. We choose
the message priorities arbitrarily, and we choose the edge preference as follows.
We follow a common practice in generating TT-schedules in which we restrict
messages to be scheduled on few predefined paths from source to target [23,
27]. For each message, we select a “first-choice” path πm using some simple
heuristic like taking the shortest path between s(m) and t(m), and a “fall-back”
path from each vertex on πm to t(m). The collection of fall-back paths form a
DAG with one sink t(m). This restriction significantly shrinks the formula ψ
that we construct. We assume permanent crashes, and set the probabilities of a
crash and an omission uniformly in the network to be 0.01. This is a very high
probability for practical uses, but we use it because it is convenient to evaluate
the calculation methods with a high probability, and the actual score of the
forwarding scheme is less important to us. All results have been averaged over
3–5 runs. Each program times out after 1 h, returning “timeout” if it has not
terminated by then.

Execution Time Measurements. We have implemented the exact and esti-
mating approaches that are described in Sects. 4 and 6. The running times are
depicted in Fig. 1. We note that it is unfair to compare the exact method to
the estimation ones, and we do it nonetheless as it gives context to the results.
The sharpSAT tool performs well (even better than the approximation tools) for
small instances. But, the jump in running time is sudden and occurs for networks
with 7 nodes, where the running time exceeded an hour.

184 G. Avni et al.

For estimating the score, we have implemented two approaches; an iterative
approach and a Monte-Carlo approach. Recall that the crux in the first approach
is computing the probability of bad outcomes with exactly k crashes. We use
two techniques; the tool weightMC [6] as well as a naive counting method: we
iteratively run Z3 [10] to find an assignment and add its negation to the solver so
that it is not found again. We combine the naive approach with an optimization
that is similar to the one that was shown to be helpful in [3], but we find it is
not helpful in our setting.

Finally, we implemented a Monte-Carlo approach in Python using random-
ization functions from the Numpy library. We ran the simulations on 4 threads,
which we found was an optimal number for our working environment. We eval-
uated the Monte Carlo approach using an error ε = 0.01, and a confidence of
δ = 0.99.

The leading estimation method is the Monte-Carlo approach, which scales
quite well; in reasonable time, it can calculate the score of moderate sized net-
works and shows a nice linear escalation with the network growth. It is somewhat
frustrating that this simple approach beats the approaches that rely on counting
hands down as a significant amount of work, both theoretical and in terms of
optimizations, has been devoted in them. As mentioned earlier, the research on
SAT counting is still new and we expect improvements in the tools, which will
in turn help with our scalability.

Evaluating the Approximation. Apart from the theoretical interest in an
exact solution, it can serve as a benchmark to evaluate the score the estimation
methods output. In Table 1, we compare the scores obtained by the exact solution
and by the Monte-Carlo solution and show that the error is well below our
required error of 0.01.

8 Discussion

We introduce a class of forwarding schemes that are capable of coping with
faults and we reason on the predictability of a forwarding scheme. We study the
problem of computing the score of a given a forwarding scheme F in a network N
subject to probabilistic failures, namely the probability that at least � messages
arrive on time when using F to forward messages in N . We reduce the problem
of scoring a forwarding scheme to #SAT, the problem of counting the number
of satisfying assignments of a Boolean formula. Our reduction goes through a
reachability problem on a succinctly represented Markov chain C. The Boolean
formula we construct simulates the executions of C. We considered a class of
forwarding schemes that operate in a network with a notion of global time and
two types of faults; edge crashes and message omissions. Our solution is general
and allows extensions in all three aspects. We can add features to our forwarding
scheme such as allowing “message waits” (as was mentioned in Example 1) or
even probabilistic behavior of the switches as long as the forwarding scheme is
represented by propositional rules in the switches, we can support asynchronous
executions of the switches (which requires a careful definition of “timeout”), and

Computing Scores of Forwarding Schemes in Switched Networks 185

we can support other faults like “clock glitches” in which a message arrives at a
later time than it is expect to arrive. Our work on reasoning about Markov chains
with the “product-like” structure of C is relevant for other problems in which
such structures arise. For example in reasoning about concurrent probabilistic
programs [31], where C simulates the execution of concurrent programs modeled
using automata.

Acknowledgments. We thank Kuldeep Meel for his assistance with the tools as well
as helpful discussions.

References

1. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22944-2 28

2. Avni, G., Goel, S., Henzinger, T.A., Rodriguez-Navas, G.: Computing scores
of forwarding schemes in switched networks with probabilistic faults. coRR,
abs/0902.0885 (2017). http://arxiv.org/abs/1701.03519

3. Avni, G., Guha, S., Rodriguez-Navas, G.: Synthesizing time-triggered schedules
for switched networks with faulty links. In: Proceedings of the 16th IEEE/ACM
International Conference on Embedded Software (2016)

4. Avni, G., Kupferman, O.: Stochastization of weighted automata. In: Italiano, G.F.,
Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 89–102.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48057-1 7

5. Bauer, G., Kopetz, H.: Transparent redundancy in the time-triggered architecture.
In: Proceedings International Conference on Dependable Systems and Networks,
DSN, pp. 5–13. IEEE (2000)

6. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT. In: Proceedings of the 28th
Conference on Artificial Intelligence, pp. 1722–1730 (2014)

7. Chakraborty, S., Fried, D., Meel, K.S., Vardi, M.Y.: From weighted to unweighted
model counting. In: Proceedings of the 31th International Joint Conference on
Artificial Intelligence, pp. 689–695 (2015)

8. Chiesa, M., Gurtov, A.V., Madry, A., Mitrovic, S., Nikolaevskiy, I., Schapira, M.,
Shenker, S.: On the resiliency of randomized routing against multiple edge failures.
In: 43rd International Colloquium on Automata, Languages, and Programming,
pp. 134:1–134:15 (2016)

9. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and
value estimation for probabilistic programs. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 320–334. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 26

10. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

11. Ferreira, J., Almeida, L., Fonseca, A., Pedreiras, P., Martins, E., Rodriguez-Navas,
G., Rigo, J., Proenza, J.: Combining operational flexibility and dependability in
FTT-CAN. IEEE Trans. Industr. Inf. 2(2), 95–102 (2006)

http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://arxiv.org/abs/1701.03519
http://dx.doi.org/10.1007/978-3-662-48057-1_7
http://dx.doi.org/10.1007/978-3-662-46681-0_26
http://dx.doi.org/10.1007/978-3-662-46681-0_26
http://dx.doi.org/10.1007/978-3-540-78800-3_24

186 G. Avni et al.

12. GutiÈrrez, M., Steiner, W., Dobrin, R., Punnekkat, S.: A configuration agent based
on the time-triggered paradigm for real-time networks. In: 2015 IEEE World Con-
ference on Factory Communication Systems (WFCS), pp. 1–4, May 2015

13. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynam-
ics, and function using NetworkX. In: Proceedings of the 7th Python in Science
Conference (SciPy 2008), Pasadena, CA, USA, pp. 11–15, August 2008

14. Harks, T., Peis, B., Schmand, D., Koch, L.V.: Competitive packet routing with
priority lists. In: 41st International Symposium on Mathematical Foundations of
Computer Science, pp. 49:1–49:14 (2016)

15. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statis-
tical model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28756-5 37

16. Jerrum, M., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)

17. Kreutz, D., Ramos, F.M.V., Veŕıssimo, P.E., Rothenberg, C.E., Azodolmolky,
S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE
103(1), 14–76 (2015)

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

19. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. STTT 1(1–2), 134–
152 (1997)

20. Liu, V., Halperin, D., Krishnamurthy, A., Anderson, T.: F10: a fault-tolerant engi-
neered network. Presented as Part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2013), pp. 399–412 (2013)

21. Meel, K.S., Vardi, M.Y., Chakraborty, S., Fremont, D.J., Seshia, S.A., Fried, D.,
Ivrii, A., Malik, S.: Constrained sampling and counting: universal hashing meets
SAT solving. In: Beyond NP, Papers from the 2016 AAAI Workshop (2016)

22. Pozo, F., Rodriguez-Navas, G., Hansson, H., Steiner, W.: SMT-based synthesis
of TTEthernet schedules: a performance study. In: 2015 10th IEEE International
Symposium on Industrial Embedded Systems (SIES), pp. 1–4. IEEE (2015)

23. Pozo, F., Steiner, W., Rodriguez-Navas, G., Hansson, H.: A decomposition app-
roach for SMT-based synthesis for time-triggered networks. In: IEEE 20th Confer-
ence on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE
(2015)

24. Reitblatt, M., Canini, M., Guha, A., Foster, N.: FatTire: declarative fault tolerance
for software-defined networks. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, pp. 109–114 (2013)

25. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, vol. 707.
Wiley, Hoboken (2011)

26. Shreejith, S., Fahmy, S.A., Lukasiewycz, M.: Reconfigurable computing in next-
generation automotive networks. IEEE Embed. Syst. Lett. 5(1), 12–15 (2013)

27. Steiner, W.: An evaluation of SMT-based schedule synthesis for time-triggered
multi-hop networks. In: IEEE 31st Real-Time Systems Symposium (RTSS), pp.
375–384. IEEE (2010)

28. Steiner, W., Bonomi, F., Kopetz, H.: Towards synchronous deterministic channels
for the internet of things. In: IEEE World Forum on Internet of Things (WF-IoT),
pp. 433–436. IEEE (2014)

http://dx.doi.org/10.1007/978-3-642-28756-5_37
http://dx.doi.org/10.1007/978-3-642-28756-5_37
http://dx.doi.org/10.1007/978-3-642-22110-1_47

Computing Scores of Forwarding Schemes in Switched Networks 187

29. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006). doi:10.1007/11814948 38

30. Valls, M.G., Lopez, I.R., Villar, L.F.: iLAND: an enhanced middleware for real-
time reconfiguration of service oriented distributed real-time systems. IEEE Trans.
Industr. Inf. 9(1), 228–236 (2013)

31. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: 26th Annual Symposium on Foundations of Computer Science,
Portland, pp. 327–338 (1985)

32. Wei, Y., Kim, D.-S.: Exploiting real-time switched ethernet for enhanced network
recovery scheme in naval combat system. In: International Conference on Infor-
mation and Communication Technology Convergence (ICTC), pp. 595–600. IEEE
(2014)

33. Yang, B., Liu, J., Shenker, S., Li, J., Zheng, K.: Keep forwarding: towards k-link
failure resilient routing. In: 2014 IEEE Conference on Computer Communications,
pp. 1617–1625 (2014)

http://dx.doi.org/10.1007/11814948_38

Long-Run Rewards for Markov Automata

Yuliya Butkova1(B), Ralf Wimmer2, and Holger Hermanns1

1 Saarland University, Saarbrücken, Germany
{butkova,hermanns}@depend.uni-saarland.de

2 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
wimmer@informatik.uni-freiburg.de

Abstract. Markov automata are a powerful formalism for modelling
systems which exhibit nondeterminism, probabilistic choices and contin-
uous stochastic timing. We consider the computation of long-run average
rewards, the most classical problem in continuous-time Markov model
analysis. We propose an algorithm based on value iteration. It improves
the state of the art by orders of magnitude. The contribution is rooted
in a fresh look on Markov automata, namely by treating them as an
efficient encoding of CTMDPs with – in the worst case – exponentially
more transitions.

1 Introduction

The need for automated verification is becoming more and more pertinent with
the complexity of systems growing day by day. Estimating the expected cost
of system maintenance, maximising the expected profit, evaluating the avail-
ability of the system in the long run – all these questions can be answered by
quantitative model checking.

Quantitative model checking of models such as continuous-time Markov
chains (CTMCs) and continuous-time Markov decision processes (CTMDPs) has
been studied extensively. Unfortunately, modelling complex systems requires a
formalism that admits compositionality, which neither CTMCs nor CTMDPs
can offer. The most general compositional formalism available to date are
Markov automata [5]. Markov automata can model controllable (via nondeter-
ministic choices) systems running in continuous time that are prone to random
phenomena.

Enriching Markov automata with rewards enables the assessment of system
performance, dependability and more generally quality of service (QoS) [10].
State rewards represent costs that are accumulated over time, for instance,
related to energy consumption. Costs associated with executing a certain step
or policy, e.g. a deliberate violation of QoS, are modelled by means of action
rewards.

This work is partly supported by the ERC Advanced Grant 695614 (POWVER),
by the German Research Council (DFG) as part of the Cluster of Excellence Brain-
Links/BrainTools (EXC 1086) and by the Sino-German Center for Research Promo-
tion as part of the project CAP (GZ 1023).

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 188–203, 2017.
DOI: 10.1007/978-3-662-54580-5 11

Long-Run Rewards for Markov Automata 189

The long-run behaviour of a model is by far the most prominent and most
often studied property in the general context of continuous-time Markov mod-
els [13,14]. We discuss the corresponding problem for Markov automata with
rewards, namely the computation of long-run average reward properties. Thus
far, this problem is solved by reducing it to linear programming (LP) [10]. LP
solvers, despite the abundance of options as well as numerous techniques improv-
ing their efficiency, tend to scale poorly with the size of the model.

In this paper we develop the Bellman equation [1] for long-run average reward
properties. This characterisation enables the use of value or policy iteration
approaches, which on other Markov models are known to scale considerably bet-
ter than algorithms based on linear programming. This characterisation is made
possible by considering a Markov automaton as a compact representation of a
CTMDP with – in the worst case – exponentially more transitions. To arrive
there, we do not consider probabilistic states as first-class objects, but rather
as auxiliary states that encode the CTMDP’s transitions compactly. From this
new perspective, the analysis of Markov automata does not require designing new
techniques, but lets us adopt those used for CTMDPs. However, a trivial adap-
tation of CTMDP algorithms to an exponentially larger model obtained from
a Markov automaton would obviously induce exponential runtime. We manage
to avoid this issue by a dedicated treatment of exponentiality via dynamic pro-
gramming. As a result, considering the problem from a different angle enables us
to design a simple, yet very efficient algorithm. Its building blocks are algorithms
that have been known for a long time – relative value iteration for CTMDPs and
dynamic programming for classical finite horizon problems.

The original LP-based algorithm is available in the IMCA tool [10]. We have
implemented our algorithm in IMCA as well and evaluated both approaches on
a number of benchmarks. The runtime of our algorithm for long-run average
reward is several orders of magnitude better than the LP-based approach. The
latter can outperform our algorithm on small models, but it scales far worse,
which makes our algorithm the clearly preferred solution for real-world models.

2 Foundations

Given a finite or countable set S, a probability distribution over S is a function
μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. We denote the set of all probability

distributions over S by Dist(S). We set μ(S′) :=
∑

s∈S′ μ(s) for S′ ⊆ S.

Definition 1. A (closed) Markov reward automaton (MRA) M is a tuple M =
(S, s0,Act , ↪→,�, r, ρ) such that

– S is a finite set of states;
– s0 ∈ S is the initial state;
– Act is a finite set of actions;
– ↪→ ⊆ S × Act × Dist(S) is a finite probabilistic transition relation;
– � ⊆ S × R

≥0 × S is a finite Markovian transition relation;
– r : S × Act → R�0 is a transient reward function;
– ρ : S → R�0 is a state reward function.

190 Y. Butkova et al.

no jobs

s10.5 has a job

s2

λ

process

d
is
c
a
rd

1

0
.2

μ

0.8

α,101

Fig. 1. An example
MRA.

We often abbreviate (s, α, μ) ∈ ↪→ by s
α
↪→ μ and

write s
λ� s′ instead of (s, λ, s′) ∈ �. Act(s) = {α ∈

Act | ∃μ ∈ Dist(S) : s
α
↪→ μ} denotes the set of actions

that are enabled in state s ∈ S. A state s is probabilistic
(Markovian), if it has at least one probabilistic transition
s

α
↪→ μ (Markovian transition s

λ� s′, resp.). States can
be both probabilistic and Markovian. We denote the set
of probabilistic states by PSM and the Markovian states
by MSM. To simplify notation, we assume w. l. o. g. that
actions of probabilistic transitions of a state are pairwise different (this can be
achieved by renaming them).

Example 1. Figure 1 shows an example MRA of a lazy server. Grey and white
coloring of states indicate the sets MSM, respectively PSM (their intersection
being disjoint here). Transitions labelled as discard, process or α are actions
enabled in a state. Dashed transitions associated with an action represent the
distribution assigned to the action. Purely solid transitions are Markovian. The
server has to process jobs, which arrive at rate λ; this is modelled by a Markovian
transition with a corresponding rate. Whenever there is a job to process, the
server chooses either to process or to discard it. These decisions are modelled by
probabilistic transitions with corresponding actions. A job is processed by the
server with rate μ and requires energy. We model energy consumption as a state
reward 0.5 for state s1. Discarding a job doesn’t cost any energy, but with a 20%
chance leads to a complaint and associated costs. These costs are modelled as
an action reward 10 of state s2 and action α.

For a Markovian state s ∈ MSM, the value R(s, s′) :=
∑

(s,λ,s′)∈� λ is
called the transition rate from s to s′. The exit rate of a Markovian state s is
E(s) :=

∑
s′∈S R(s, s′). We require E(s) < ∞ for all s ∈ MSM.

For a probabilistic state s, s.t. s
α
↪→ μ for some α, the value P[s, α, s′] := μ(s′).

For a Markovian state s with E(s) > 0, the branching probability distribution
when leaving the state through a Markovian transition is denoted by P[s, ·] ∈
Dist(S) and defined by P[s, s′] := R(s, s′)/E(s).

The Markovian transitions are governed by an exponential distributions,
i. e. the probability of leaving s ∈ MSM within t ≥ 0 time units is given by
1 − e−E(s)·t, after which the next state is chosen according to P[s, ·].

In this paper we consider closed MRA, i. e. probabilistic transitions cannot
be delayed by further compositions. Therefore we can make the usual urgency
assumption that probabilistic transitions happen instantaneously. Whenever the
system is in state s with Act(s) �= ∅ and an action α ∈ Act(s) is chosen, the
successor s′ is selected according to the distribution P[s, α, ·] and the system
moves instantaneously from s to s′. The residence time in probabilistic states is
therefore always 0. As the execution of a probabilistic transition is instantaneous
and because the probability that a Markovian transition is triggered immediately
is 0, we can assume that the probabilistic transitions take precedence over the
Markovian transitions. We therefore assume PSM ∩ MSM = ∅.

Long-Run Rewards for Markov Automata 191

Additionally, we make the following non-Zenoness assumption, as in [9]. An
MRA is non-Zeno iff no maximal end component [9] of only probabilistic states is
reachable with probability > 0. This excludes models in which there is a chance
to get trapped in an infinite number of transitions occurring in finite time.

Paths, Rewards and Schedulers. A (timed) path in M is a finite or infinite

sequence π = s0
α0,t0−→ s1

α1,t1−→ · · · αk,tk−→ sk+1
αk+1,tk+1−→ · · · . Here si

αi,0−→ si+1 s.t.

αi ∈ Act(si) is a probabilistic transition via action αi, and si
⊥,ti−→ si+1, s.t. ti > 0

and si
λ� si+1, denotes a Markovian transition with sojourn time ti in state si.

The set of all finite (infinite) paths of M is denoted by Paths∗
M (PathsM). An

untimed path π = s0
α0−→ s1

α1−→ · · · αk−→ sk+1
αk+1−→ · · · is a path containing

no timing information. We use prefix(π, t) to denote the prefix of path π until
time t, i. e. prefix(π, t) = s0

α0,t0−→ s1
α1,t1−→ · · · αk,tk−→ sk+1, s.t.

∑k
i=0 ti � t and

∑k+1
i=0 ti > t. If π = s0

α0,t0−→ s1
α1,t1−→ · · · αk−1,tk−1−→ sk is finite, we define |π| := k

and π↓ := sk.
Let π be a finite path, we define the accumulated reward of π as follows:

rew(π) :=
∑|π|−1

i=0
ρ(si) · ti + r(si, αi).

For an infinite path π, rew(π, t) := rew
(
prefix(π, t)

)
denotes the reward collected

until time t. The following two assumptions can be made without restricting
reward expressiveness: (i) the state reward of probabilistic states is always 0
(since residence time in probabilistic states is 0); (ii) if s ∈ MSM then r(s, ·) = 0
(due to the absence of outgoing probabilistic transitions in Markovian states).

In order to resolve the nondeterminism in probabilistic states of an MRA we
need the notion of a scheduler. A scheduler (or policy) D : Paths∗

M → Dist(↪→) is
a measurable function, s.t. D(π) assigns positive probability only to transitions
(π↓, α, μ) ∈ ↪→, for some α, μ. The set of all measurable schedulers is denoted
by GM M. A (deterministic) stationary scheduler is a function D : PSM → ↪→,
s.t. D(s) chooses only from transitions (s, α, μ) ∈ ↪→, for some α, μ.

An initial state s0 and a fixed scheduler D induce a stochastic process on
M. For a stationary scheduler this process is a continuous-time Markov chain
(CTMC). A CTMC is called a unichain (multichain) if it has only 1 (>1) recur-
rence class [3] plus possibly some transient states. We say that an MRA M is
a unichain if all stationary schedulers induce a unichain CTMC on M, and a
multichain otherwise.

3 Long-Run Average Reward Property

In this section, we introduce the long-run average reward property on Markov
reward automata and discuss the only available algorithm for this problem.

Let M = (S, s0,Act , ↪→,�, r, ρ) be a Markov reward automaton and π an
infinite path in M. The random variable LM : PathsM → R�0 such that

LM(π) := lim
t→∞

1
t
rew(π, t)

192 Y. Butkova et al.

denotes the long-run average reward over a path π in M. We now define the
optimal expected long-run average reward on M with initial state s as follows:

aRopt
M (s) := opt

D∈GMM
Es,D[LM] = opt

D∈GMM

∫

PathsM

LM(π)Prs,D[dπ],

where opt ∈ {sup, inf}. In the following, we use aRopt
M instead of aRopt

M (s), when-
ever the value does not depend on the initial state. Furthermore, aRD

M(s) denotes
the long-run average reward gathered when following the policy D.

Guck et al. [10] show that under the assumptions mentioned in Sect. 2 there
is always an optimal scheduler for the aRopt problem that is stationary. From
now on we therefore consider only stationary schedulers.

Quantification. We will present now the only available solution for the quan-
tification of aRopt [10]. The computation is split into three steps:

1. Find all maximal end components of M. A maximal end component (MEC)
of a MRA can be seen as a maximal sub-MRA whose underlying graph is
strongly connected. An MRA may have multiple MECs. The problem of find-
ing all MECs of an MRA is equivalent to decomposing a graph into strongly
connected components. This problem admits efficient solutions [4].

2. Compute aRopt
M for each maximal end component. An optimal scheduler for

aRopt on an MEC induces a unichain on this MEC [10]. A solution for unichain
MRA is therefore needed for this step. The solution provided by Guck
et al. [10] is based on a reduction of the aRopt computation to the solu-
tion of a linear optimisation problem. The latter in turn can be solved by any
of the available linear programming solvers.

3. Compute a stochastic shortest path (SSP) problem. Having the optimal values
aRopt

Mj
for maximal end components Mj , the following holds [9,10]:

aRopt
M (s) = sup

D∈GM

k∑

j=1

Prs,D[♦�Sj] · aRopt
Mj

,

where Prs,D[♦�Sj] denotes the probability to eventually reach and then stay
in the MEC Mj starting from state s and using the scheduler D. Sj is the
state space of Mj . The authors reduce this problem to a well-established SSP
problem on Markov decision processes [13], that admits efficient solutions,
such as value or policy iteration [2].

One can see that steps 1 and 3 of this algorithm admit efficient solutions, while
the algorithm for step 2 is based on linear programming. The algorithms for
linear programming are, unfortunately, known to not scale well with the size of
the problem in the context of Markov decision processes, relative to iterative
algorithms based on value or policy iteration. So far, however, no iterative algo-
rithm is known for long-run average rewards on Markov automata. In this work
we fill this gap and design an iterative algorithm for the computation of long-run
average rewards on MRA.

Long-Run Rewards for Markov Automata 193

4 An Iterative Approach to Long-Run Average Rewards

In this section, we present our approach for quantifying the long-run aver-
age reward on Markov reward automata. Recall that the original algorithm,
described in the previous section, is efficient in all the steps except for step 2 –
the computation of the long-run average reward for unichain MRA. We therefore
target this specific sub-problem and present our algorithm for unichain MRA.
Having an arbitrary MRA M, one can quantify aRopt by applying steps 1 and
3 of the original algorithm and using our solution for unichain MRA for step 2.

Effective Analysis of Unichain MRA. The core of our approach lies in the
following observation: a Markov reward automaton can be considered as a com-
pact representation of a possibly exponentially larger continuous-time Markov
decision process (CTMDP). This observation enables us to use efficient algo-
rithms available for CTMDPs [13] to compute long-run average rewards. But
since that CTMDP, in the worst case, has exponentially more transitions, this
näıve approach does not seem promising. We circumvent this problem by means
of classical dynamic programming, and thereby arrive at an efficient solution
that avoids the construction of the large CTMDP.

For the rest of this section, M = (S, s0,Act , ↪→,�, r, ρ) denotes a unichain
Markov reward automaton. Guck et al. [10] show that aRopt for a unichain MRA
does not depend on the initial state, i.e. ∀s, s′ : aRopt

M (s) = aRopt
M (s′). We will

therefore refer to this value as aRopt
M .

4.1 CTMDP Preserving aRopt

We will now present a transformation from a unichain MRA to a CTMDP that
preserves the long-run average reward property.

Definition 2. A continuous-time Markov decision process (CTMDP) is a tuple
C = (S,Act ,R), where S is a finite set of states, Act is a finite set of actions,
and R : S × Act × S → R≥0 is a rate function.

The set Act(s) = {α ∈ Act | ∃s′ ∈ S : R(s, α, s′) > 0} is the set of enabled
actions in state s. A path in a CTMDP is a finite or infinite sequence π = s0

α0,t0−→
s1

α1,t1−→ · · · αk−1,tk−1−→ sk · · · , where αi ∈ Act(si) and ti denotes the residence time
of the system in state si. E(s, α) :=

∑
s′∈S R(s, α, s′) and PC [s, α, s′] := R(s,α,s′)

E(s,α) .
The notions of Paths∗

C , PathsC , prefix(π, t), |π|, π↓, schedulers and unichain
CTMDP are defined analogously to corresponding definitions for an MRA (see
Sect. 2).

A reward structure on a CTMDP C is a tuple (ρC , rC), where ρC : S → R�0

and rC : S × Act → R�0. The reward of a finite path π is defined as follows:

rewC(π) :=
∑|π|−1

i=0
ρC(si) · ti + rC(si, αi)

194 Y. Butkova et al.

The optimal expected long-run average reward aRopt
C of a CTMDP C is defined

analogously to aRopt
M on MRA (see Sect. 2). As shown in [13], for a unichain

CTMDP C we have ∀s, s′ ∈ S : aRopt
C (s) = aRopt

C (s′). In the future we will refer
to this value as aRopt

C .

Transformation to Continuous-Time MDP. Let M be a unichain MRA.
We construct the CTMDP CM = (SC ,ActC ,RC) with reward structure (ρC , rC)
as follows:

– SC := MSM;
– The set ActC is obtained as follows. Let s ∈ MSM, then we denote as PS s

the set of all probabilistic states s′ ∈ PSM reachable from s via the transition
relation ↪→. Let As be a function As : PS s → Act , s.t. As(s′) ∈ Act(s′). Then
the set of all enabled actions ActC(s) for state s in CM is the set of all possible
functions As, and ActC =

⋃
s∈MSM ActC(s).

– Next, we define the transition matrix RC . Let s, s′ ∈ MSM, and ΠPS (s,As, s
′)

be the set of all untimed paths in M from s to s′ via only probabilistic states
and choosing those actions in the probabilistic states that are defined by As.
Then RC(s,As, s

′) := E(s) · ∑
π∈ΠPS (s,As,s′) PrM[π], where π = s

⊥−→ s1
α1−→

· · · αk−→ s′ and PrM[π] = P[s, s1] · P[s1, α1, s2] · · ·P[sk, αk, s′].
– ρC(s) := ρ(s);
– rC(s,As) :=

∑
s′∈SC

∑
π∈ΠPS (s,As,s′) PrM[π] · rM(π), where π = s

⊥−→ s1
α1−→

· · · sk
αk−→ s′ and rM(π) =

∑k
i=1 r(si, As(si)). The action reward for state s

and action As in C is therefore the expected accumulated action reward over
all successors s′(in C) of state s and over all paths from s to s′.

An example of this transformation is depicted in Fig. 2. One can already see that
even in small examples the amount of transitions of the CTMDP corresponding
to a MRA can grow extremely fast. If every probabilistic successor s′ ∈ PS s of
a state s in M has 2 enabled actions, the set of enabled actions ActC(s) of s
in CM is 2|PSs|. This growth is therefore exponential in the worst-case, and the
worst case occurs frequently, due to cascades of probabilistic states.

Remark. It is obvious that this transformation if applied to a unichain MRA
yields a unichain CTMDP. Moreover, at each state s of the resulting CTMDP
the exit rate is the same across all actions enabled. We therefore refer to this
exit rate as E(s).

Theorem 1. aRopt
CM = aRopt

M

4.2 Dealing with Exponentiality

In this section, we will develop a simple yet efficient solution to cope with expo-
nentiality, harvesting the Bellman equation for CTMDPs [13] together with the
structure of M. A näıve direct application to CM yields:

Long-Run Rewards for Markov Automata 195

s0

p0

p1

p2

p3

s1

s2

λ1

λ2

μ1

μ2

α0

β0

α1

β1

γ2

ω2

γ3

ω3

s0

· · ·

s1

s2

α
0

,
γ 2

α
1

,
γ 3

α0, ω2

β1, γ3

β
0 ,

ω
2

β
1 ,

ω
3

μ1

μ2

Fig. 2. An example of M → CM transformation. The MRA M is depicted on the left
and the resulting CTMDP CM on the right. In this picture we omitted the probabilities
of the probabilistic transitions. If distributions P[p0, α0, ·] and P[p0, α1, ·] are uniform,

then RC(s0,
α0,γ2
α1,γ3

, s1) = (λ1+λ2)·
[

λ1
λ1+λ2

(0.5 · 1 + 0.5 · 0) + λ2
λ1+λ2

(1 · 1)
]

= 0.5·λ1+λ2.

Theorem 2 (Bellman equation. Inefficient way). Let CM = (SC ,ActC ,
RC) and (ρC , rC) be a CTMDP and a reward structure obtained through the above
transformation. Let opt ∈ {sup, inf}, then there exists a vector h ∈ R

|SC| and a
unique value aRopt

M ∈ R�0 that are a solution to the Bellman equation:
∀s ∈ MSM :

aRopt
M

E(s)
+ h(s) = opt

α∈Act(s)

{

rC(s, α) +
ρC(s)
E(s)

+
∑

s′∈SC

PC [s, α, s′] · h(s′)

}

(1)

It is easy to see that the only source of inefficiency in this case is the optimisation
operation on the right-hand side, performed over possibly exponentially many
actions. Left untreated, this operation in essence is a brute force check of opti-
mality of each action. We will now show how to avoid this problem by working
with M itself and not with CM. Informally, we will show that the right-hand
side optimisation problem on CM is nothing more than a total expected reward
problem on a discrete-time Markov decision process. Knowing this, we can apply
well-known dynamic programming techniques to solve this problem.

MDPs and Total Expected Reward. We will first need to briefly introduce
Markov decision processes and the total expected reward problem.

Definition 3. A Markov decision process (MDP) is a tuple D = (SD, s0,ActD,
PD) where SD is a finite set of states, s0 is the initial state, ActD is a finite set
of actions, and PD : SD ×ActD → Dist(SD) is a probabilistic transition matrix.

The definitions of paths, schedulers and other related notions are analogous
to those of CTMDP. In contrast to CTMDPs and MRA, MDPs run in discrete
time. A reward structure on an MDP is a function rD : SD × ActD → R�0.

196 Y. Butkova et al.

Let Xs
i , Y s

i be random variables denoting the state occupied by D and the
action chosen at step i starting from state s. Then the value

tRopt
D,rD (s) := opt

D∈GMD
Es,D

[

lim
N→∞

N−1∑

i=0

rD(Xs
i , Y s

i)

]

,

where opt ∈ {sup, inf}, denotes the optimal total expected reward on D with
reward structure rD, starting from state s [2].

The total expected reward problem on MDPs is a well-established problem
that admits policy-iteration and LP-based algorithms [13]. Moreover, for acyclic
MDPs it can be computed by the classical finite horizon dynamic programming
approach [2], in which each state has to be visited only once. We will present
now the iterative scheme that can be used to compute tRopt on an acyclic MDP.

A state of an MDP is a terminal state if all its outgoing transitions are self-
loops with probability 1 and reward 0. We call an MDP acyclic if the self-loops
of terminal states are its only loops. We say that a non-terminal state s has
maximal depth i, or d(s) = i, if the longest path π from s until a terminal state
has length |π| = i. We define d(t) := 0. The following is the iterative scheme to
compute the value tRopt on D:

vd(s)(s) =

⎧
⎨

⎩

0 d(s) = 0

opt
α∈Act

{
rewD(s, α) +

∑

s′∈S

P[s, α, s′]vd(s′)(s′)
}

d(s) > 0 (2)

Theorem 3. tRopt(s) = vd(s)(s)

Transformation to Discrete-Time MDP. Let Emax
M be the maximal exit

rate among all the Markovian states of M and λ > Emax
M . We will present now

a linear transformation from M to the terminal MDP Dλ
M:

1. At first we obtain the MDP Dλ = (S, s0,Act ′,Pλ) with Act ′ = Act ∪̇{⊥}. This
MDP contains all probabilistic states of M and their actions. Additionally, we
add the Markovian states by making them probabilistic. In each Markovian
state only action ⊥ is enabled. The probability distribution for this action
is obtained by uniformising the states. Uniformisation with rate λ fixes the
means of the residence times (which are discrete quantities, as opposed to the
CTMDP formulation) in all Markovian states s to 1

λ instead of 1
E(s) . This is

achieved by introducing self-loops [13].

Pλ[s, α, s′] :=

⎧
⎨

⎩

P[s, α, s′] for s ∈ PSM, α ∈ Act ′(s)
R(s,s′)

λ for s ∈ MSM, α = ⊥, s′ �= s

1 − E(s)−R(s,s)
λ for s ∈ MSM, α = ⊥, s′ = s

Long-Run Rewards for Markov Automata 197

no jobs

s1 has a job

s2

λ

process
d
is
c
a
rd

1

0
.2

μ

0.8

α1

(a)

no jobs

s1 has a job

s2
⊥

λ
η

1 − λ
η

process

dr
a

csi
d

1

0
. 2

⊥

μ
η

1 − μ
η

0.8

α1

(b) Step 1.

no jobs

s1 has a job

s2 no jobscp

s1cp

t

⊥

λ
η

1 − λ
η

process

d
is
c
a
rd

1

0
.2

⊥

μ
η

1 − μ
η

0.8

α 1

⊥, 1

⊥, 1

⊥, 1

(c) Step 2.

Fig. 3. Transformation to terminal MDP with uniformisation rate η. Figure (a) depicts
the original MRA from Fig. 1. The result of the first step of the transformation is shown
in figure (b), and the second step is depicted in (c).

2. Next, for each Markovian state, we introduce a copy state and redirect all the
transitions leading to Markovian states to these new copy states. Additionally,
we introduce a terminal state t, that has only self-loop transitions. Let Dλ =
(S, s0,Act ′,Pλ) be the MDP obtained in the previous step, then we build
Dλ

M = (SD, s0,Act ′,PD), where Scp = {scp | s ∈ MSM}, SD = S ∪̇ Scp ∪̇ {t}
and

P
′
D[s, α, s′] =

⎧
⎪⎪⎨

⎪⎪⎩

Pλ[s, α, p] for s′ = pcp ∈ Scp

Pλ[s, α, s′] for s′ ∈ PSM
1 for s ∈ Scp, s

′ = t, α = ⊥
1 for s, s′ = t, α = ⊥

Figure 3 depicts both steps of the transformation. The resulting MDP is the one
that we will use to compute the total expected reward sub-problem.

Efficient Characterisation. We can now present an efficient characterisation
of the long-run average reward on unichain MRA.

Let Dλ
M = (SD, s0,Act ′,PD) be the terminal MDP for M and v : SD → R.

We define the reward structure rewD,v for Dλ
M as follows:

rewD,v(s, α) :=

⎧
⎪⎪⎨

⎪⎪⎩

r(s, α) for s ∈ PSM, α ∈ Act ′(s)
ρ(s)

λ for s ∈ MSM, α = ⊥
v(s) for s ∈ Scp, α = ⊥
0 for s = t, α = ⊥

Theorem 4 (Bellman equation. Efficient way). There exists a vector h ∈
R|MSM| and a unique value aRopt

M ∈ R�0 that are a solution to the system:

∀s ∈ MSM :
aRopt

M
λ

+ h(s) = tRopt

Dλ
M,rewD,h

(s)

198 Y. Butkova et al.

The difference between this characterisation and the one derived in Theo-
rem 2 is the right-hand side of the equations. The brute force traversal of expo-
nentially many actions of the former is changed to a total expected reward
computed over a linear-sized MDP in the latter.

The correctness of the approach is rooted in two facts. First of all, as a con-
sequence of Theorems 1 and 2 the computation of the long-run average reward of
an MRA can be reduced to the same problem on a continuous-time MDP. By the
results of [13] the latter in turn can be reduced to the long-run average reward
problem on its uniformised discrete-time MDP. This explains the uniformisation
of Markovian states in step 1 of the above transformation, and it explains the
reward value ρ(s)

λ of the Markovian states. The second observation is more tech-
nical. For a Markovian state s the right-hand side of Eq. (1) (Theorem 2) is the
total expected reward collected when starting from s in the MDP from step 1,
and finishing upon encountering a Markovian state for the second time (the first
one being s itself). This explains the addition of copy states in step 2 that lead
to a terminal state.

The above equation can be solved with many available techniques, e. g. by
policy iteration [13]. This will naturally cover cases where the MDP Dλ

M has
inherited from M cycles visiting only probabilistic states (without a chance of
getting trapped there, since non-Zenoness is assumed). Such a cycle of proba-
bilistic transitions almost never happens in real-world applications and is usually
considered a modelling mistake. In fact, we are not aware of any practical exam-
ple where that case occurs. We therefore treat separately the class of models
that have no cycles of this type and call such MRA PS-acyclic.

Theorem 5 (Bellman equation for PS-acyclic M). Let M be a PS-acyclic
unichain MRA. Then there exists a vector h ∈ R|MSM| and a unique value
aRopt

M ∈ R�0 that are a solution to the Bellman equation:

∀s ∈ MSM :
aRopt

M
λ

+ h(s) = ρ(s)
λ +

∑

s′∈PSM

R(s,s′)
λ · vd(s′)(s′)

+
∑

s′∈MSM
s′
=s

R(s,s′)
λ · h(s′) +

(
1 − E(s)−R(s,s)

λ

)
· h(s)

∀s ∈ PSM : vd(s)(s) = opt
α∈Act

{

r(s, α) +
∑

s′∈MSM

P[s, α, s′] · h(s′)

+
∑

s′∈PSM

P[s, α, s′] · vd(s′)(s′)

}

,

where λ is the uniformisation rate used to construct Dλ
M and d(s) denotes the

depth of state s in Dλ
M.

Long-Run Rewards for Markov Automata 199

Algorithm 1. RelativeValueIteration
input : Unichain MRA M = (S, s0,Act , ↪→, �, r, ρ), opt ∈ {sup, inf},

approximation error ε > 0
output : aRε

M such that ‖aRε
M − aRopt

M ‖ � ε

1 λ ←− Emax
M + 1;

2 Dλ
M ←− terminal MDP obtained as described above;

3 s∗ ←− any Markovian state of M;

4 v0 = 0, v1 = 1;

5 w0 = 0;

6 for (n = 0; sp(vn+1 − vn) < ε
λ
; n + +) do

7 vn+1 = TotalExpectedReward(Dλ
M, rewDλ

M,wn
, opt);

8 wn+1 = vn+1 − vn+1(s
∗) · e; /∗ e is the vector of ones ∗/

9 return vn+1(s
∗) · λ;

4.3 Algorithmic Solution

In order to solve the efficient variant of the Bellman equation, standard value or
policy iteration approaches are applicable. In this section, we present the relative
value iteration algorithm1 for this problem (Algorithm 1). This algorithm has two
levels of computations: the standard MDP value iteration as an outer loop on
Markovian states, and during each iteration of the value iteration we compute
the total expected reward on the terminal MDP.

Here sp(v) :=
∣
∣ max
s∈MSM

{v(s)} − min
s∈MSM

{v(s)}∣∣ and TotalExpectedReward

denotes the function that computes the total expected reward on an MDP.

Theorem 6. Algorithm1 computes for all ε > 0 the value aRε
M, such that

‖aRε
M − aRopt

M ‖ � ε.

Remark. Notice that in order to obtain the ε-optimal policy that achieves the
value aRε

M, one only needs to store the optimising actions, computed during the
TotalExpectedReward phase.

In case M is PS -acyclic, Theorem 5 applies, and instead of the general algo-
rithm computing the total expected reward (Algorithm1, line 7), one can resort
to its optimised version, that computes the values (2) as defined in Sect. 4.2.

Remark. Needless to say, the CTMDP for a MRA does not necessarily grow
exponentially large. So, an alternative approach would be to first build the
CTMDP as described in Sect. 4.1 and then, provided that model is small enough,
analyse it with standard algorithms for long-run average reward [13]. Since our
approach can directly work on the MRA we did not explore this alternative
route.

1 Classical value iteration is also possible, but is known to be numerically unstable.

200 Y. Butkova et al.

FTWC-res
p-5

0-4
0

FTWC-for
g-4

0-6
0

PS-6
4-2

-7

PS-2
56-

3-4

QS-2
56-

256
GFS-5

0

0

2,000

4,000

6,000

8,000
> 2 hrs > 2 hrs

ru
nn

in
g

ti
m

e
(s

ec
)

LP
RVI10−10

|S| |PSM| |MSM| |π |M M

FTWC-resp-50-40 92,819 20,806 72,013 1 5

FTWC-forg-40-60 185,634 20,807 164,827 1 6

PS-64-2-7 454,667 324,616 130,051 2 2

PS-256-3-4 131,529 87,605 43,924 2 3

QS-256-256 465,177 398,096 67,081 4 2

GFS-50 44,916 14,955 29,961 1 2

Fig. 4. Running time comparison of the LP and RVI. The table on the right presents
the general data of the models used.

5 Experiments

In this section, we will present the empirical evaluation of the discussed
algorithms.

Benchmarks. Our primary interest is to evaluate our approach on real-world
examples. We therefore do not consider synthetic benchmarks but rather assess
the algorithm on published ones. For this reason the model parameters we
can vary is limited. Additionally the degree of variation of some parameters
is restricted by the runtime/space requirements of the tool SCOOP [15], used to
generate those models. The following is the collection of published benchmark
models used to perform the experiments:

PS-S-J-K. The Polling System case study [8,16] consists of S servers that
process requests of J types, stored in two queues of size K. We enriched this
benchmark with rewards denoting maintenance costs. Maintaining a queue
yields state reward proportional to its occupancy and processing a request of
type j has an action reward dependent on the request type.

QS-K1-K2. The Queuing System [11] stores requests into two queues of size K1

and K2, that are later processed by a server attached to the queue. This model
has only state-rewards proportional, which are to the size of the queue.

GFS-N . The Google File System [6,7] splits files into chunks, which are main-
tained by N chunk servers. The system is functioning if it is backed up and
for each chunk at least one copy is available. We assign state reward 1 to all
the functioning states thus computing the long-run availability of the system.

FTWC-B-N1-N2. The Fault Tolerant Workstation Cluster [12] models two net-
works of N1 and N2 workstations, interconnected by a switch. The two
switches communicate via a backbone. The system is managed by a repair-
man, his behaviour (B) can be either responsible, forgetful or lazy. Rewards
assigned to states and actions denote the cost of repairs, energy consumption
and QoS violation.

Long-Run Rewards for Markov Automata 201

1 2 3 4 5
·104

0

20

40

60

|S|

ru
nn

in
g
ti
m
e
(s
ec
)

LP
RVI10−10

(a) GFS-X

0 1 2 3 4 5
·105

0

1,000

2,000

3,000

4,000

|S|

ru
nn

in
g

ti
m

e
(s

ec
)

LP
RVI10−10

(b) QS-X-X

0.5 1 1.5 2
·105

0

1,000

2,000

3,000

4,000

|S|

ru
nn

in
g

ti
m

e
(s

ec
)

LP
RVI10−10

(c) FTWC-forg-X-X

2 4 6 8 10

0

1,000

2,000

3,000

4,000

> 1 hr

�
ru

nn
in

g
ti

m
e

(s
ec

)

LP
RVI10−10

2 4 6 8 10

0

2

4

6

8

(d) PS-64-X-2

Fig. 5. Runtime complexity of LP and RVI w.r.t. the increase of the model size.

Implementation/Hardware Aspects. We have implemented our approach
as a part of the IMCA/MAMA toolset [8], the only toolset providing quantifi-
cation of long-run average rewards on MRA. IMCA 1.6 contains the implemen-
tation of the aRopt algorithm from [10] that we have discussed in Sect. 3. It uses
the SoPlex LP-solver [17] for the solution of linear optimisation problems with
the primal and dual feasibility tolerance parameters set to 10−6. All experiments
were run on a single core of Intel Core i7-4790 with 8 GB of RAM.

10−1010−910−810−710−610−5
50

100

150

200

250

ru
nn

in
g
ti
m
e
(s
ec
)

FTWC-50-40-resp
QS-256-256

Fig. 6. Observed dependency
of RVI on the precision para-
meter ε in reversed logarith-
mic x-axis.

Empirical Evaluation. The space complexity of
both the algorithms is polynomial. Therefore, we
have used two measures to evaluate the algorithms:
running time w.r.t. the increase of precision and
model size.

All the models we tested have only one MEC.
We will denote the size of this MEC as |M|, and
PSM (MSM) represents the number of probabilis-
tic (Markovian) states of this MEC. We use the
symbol |π↪→|M to denote the length of the longest
path π (in M) that contains only probabilistic
states, and �M stands for the maximal number of
enabled actions in probabilistic states of M. RVIε
denotes that Algorithm 1 ran with precision ε and LP the LP-based algorithm
from [9]. We use the symbol “X” whenever the varying parameter of the exper-
iment is a part of the model name, e.g. PS-2-X.

202 Y. Butkova et al.

Long-Run Average Reward

Efficiency. Figure 4 depicts the comparison of running times of RVI (with pre-
cision 10−10) and LP. The running time of RVI on performed experiments is
several orders of magnitude better than the running time of LP.

Precision. Figure 6 shows the dependency of the computation time of our app-
roach on the precision parameter ε. We observed in all the experiments sig-
nificant growth of the computation time with the decrease of ε.

Model size. Figure 5 shows the running time comparison of the two algorithms
w.r.t. the increase of the model size. In the experiments shown in Fig. 5a–c,
both algorithms show a more or less linear dependency on the state space
size. The general observation here is that RVI scales much better with the
increase of model size than LP. Figure 5a shows that the LP can be better
on smaller models, but on larger models RVI takes over. Figure 5d shows the
dependency not only on the state space size but also on the maximal number
of enabled actions. In this case both algorithms exhibit quadratic dependency
with RVI scaling much better than LP.

Remark. All the models we considered (and all case studies we know of) are PS -
acyclic (which is stronger than our base non-Zenoness assumption). Therefore,
Theorem 5 applies that computes the aRopt value for PS -acyclic MRA. The orig-
inal LP approach we compare with is, however, not optimised for PS -acyclicity.

6 Conclusion

We have presented a novel algorithm for long-run expected rewards for Markov
automata. It considers the automaton as a compact representation of a possibly
exponentially larger CTMDP. We circumvent exponentiality by applying avail-
able algorithms for dynamic programming and for total expected rewards on
discrete-time MDPs, derived from the Markov automaton using uniformisation.
Experiments on a series of case studies have demonstrated that our algorithm
outperforms the available LP-based algorithm by several orders of magnitude.
We consider this a genuine breakthrough in Markov automata applicability, in
light of the importance of long-run evaluations in performance, dependability
and quality-of-service analysis, together with the fact that MAs provide the
semantic foundation for engineering frameworks such as (dynamic) fault trees,
generalised stochastic Petri nets, and the Architecture Analysis & Design Lan-
guage (AADL). The general approach we developed is particularly efficient if
restricted to Markov automata free of cycles of probabilistic states, which are
the only models occurring in practice. Whether or not one should consider all
models with such loops as instances of Zeno behaviour is an open question. In
fact, a profound understanding of all aspects of Zenoness in Markov automata
is not yet developed. It is on our research agenda.

Long-Run Rewards for Markov Automata 203

References

1. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton
(1957)

2. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 2nd edn. Athena
Scientific, Belmont (2000)

3. Bhattacharya, R.N., Waymire, E.C.: Stochastic Processes with Applications.
SIAM, Philadelphia (2009)

4. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: Proceedings of SODA, pp. 1318–1336, January 2011

5. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of LICS, pp. 342–351. IEEE CS (2010)

6. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: Scott, M.L.,
Peterson, L.L. (eds.) Proceedings of SOSP, Bolton Landing, NY, USA, pp. 29–43.
ACM, October 2003

7. Guck, D.: Quantitative Analysis of Markov Automata. Master’s thesis, RWTH
Aachen University, June 2012

8. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduc-
tion and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-40196-1 5

9. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. Log. Methods Comput. Sci. 10(3)
(2014)

10. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and
analysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 168–184. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11936-6 13

11. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. ECE
ASST 53 (2012). http://journal.ub.tu-berlin.de/eceasst/article/view/783

12. Haverkort, B.R., Hermanns, H., Katoen, J.: On the use of model checking tech-
niques for dependability evaluation. In: Proceedings of SRDS, Nürnberg, Germany,
pp. 228–237. IEEE CS, October 2000

13. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. Wiley, New York (1994)

14. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Prince-
ton University Press, Princeton (1994)

15. Timmer, M.: SCOOP: a tool for symbolic optimisations of probabilistic processes.
In: Proceedings of QEST, Aachen, Germany, pp. 149–150. IEEE CS, September
2011

16. Timmer, M., Pol, J., Stoelinga, M.I.A.: Confluence reduction for Markov automata.
In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 243–
257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40229-6 17

17. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. the-
sis, Berlin Institute of Technology (1996). http://d-nb.info/950219444

http://dx.doi.org/10.1007/978-3-642-40196-1_5
http://dx.doi.org/10.1007/978-3-319-11936-6_13
http://dx.doi.org/10.1007/978-3-319-11936-6_13
http://journal.ub.tu-berlin.de/eceasst/article/view/783
http://dx.doi.org/10.1007/978-3-642-40229-6_17
http://d-nb.info/950219444

SAT and SMT

HiFrog: SMT-based Function Summarization
for Software Verification

Leonardo Alt1(B), Sepideh Asadi1(B), Hana Chockler2(B),
Karine Even Mendoza2(B), Grigory Fedyukovich3(B),
Antti E.J. Hyvärinen1(B), and Natasha Sharygina1(B)

1 Università della Svizzera italiana, Lugano, Switzerland
leonardoaltt@gmail.com, antti.hyvarinen@gmail.com,

{sepideh.asadi,natasha.sharygina}@usi.ch
2 King’s College London, London, UK

{hana.chockler,karine.even mendoza}@kcl.ac.uk
3 University of Washington, Seattle, USA

grigory.fedyukovich@gmail.com

Abstract. Function summarization can be used as a means of incre-
mental verification based on the structure of the program. HiFrog is
a fully featured function-summarization-based model checker that uses
SMT as the modeling and summarization language. The tool supports
three encoding precisions through SMT: uninterpreted functions, linear
real arithmetics, and propositional logic. In addition the tool allows opti-
mized traversal of reachability properties, counter-example-guided sum-
mary refinement, summary compression, and user-provided summaries.
We describe the use of the tool through the description of its architecture
and a rich set of features. The description is complemented by an exper-
imental evaluation on the practical impact the different SMT precisions
have on model-checking.

1 Introduction

Incremental verification addresses the unique opportunities and challenges that
arise when a verification task can be performed in an incremental way, as a
sequence of smaller closely related tasks. We present an implementation of
the incremental verification of software with assertions that uses the insights
obtained from a successful verification of earlier assertions. As a fundamental
building block in storing the insights we use function summaries known to pro-
vide speed-up through localizing and modularizing verification [12,13].

In this paper we describe the HiFrog verification tool that uses Craig inter-
polation [6] in the context of Bounded Model Checking (BMC) [4] for con-
structing function summaries. The novelty of the tool is in the unique way
it combines function summaries with the expressiveness of satisfiability mod-
ulo theories (SMT). The system currently supports verification based on the
quantifier-free theories of linear real arithmetics (QF LRA) and uninterpreted

This work was supported by the SNF projects 153402 and 163001.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 207–213, 2017.
DOI: 10.1007/978-3-662-54580-5 12

208 L. Alt et al.

functions (QF UF), in addition to propositional logic (QF BOOL). Compared
to our earlier propositional tool FunFrog [13], the SMT summaries are smaller
and more efficient in verification. They are also often significantly more human-
readable, enabling their easier reuse, as well as injection of summaries provided
directly by the user. The difference is due to the propositional summaries being
based on correctness proofs over circuit-level representation of arithmetic oper-
ations. Theory encoding uses instead directly arithmetic symbols in the sum-
maries. In addition, the tool offers a rich set of features such as verification of
recursive programs, different ways of optimizing the summaries with respect to
both size and strength, efficient heuristics for removing redundant safety proper-
ties, and easy-to-understand witnesses of property violations that can be directly
mapped to bugs in the source code.

The paper provides an architectural description of the tool, an introduction
to its use, and experimental evidence of its performance. The tool together with
a comprehensive demo is available at http://verify.inf.usi.ch/hifrog.

Related Work. Incremental verification is extensively researched in domains such
as hardware verification, deductive verification, and model checking. Due to
space constraints we provide only a brief review of recent related work. The
CPAchecker tool is able to migrate predicates across program versions [3].
Deductive verification tools such as Viper and Dafny offer modular verifica-
tion [11] and caching the intermediate verification results [9] respectively. CBMC
is a symbolic bounded model-checker for C that to a limited extent exploits incre-
mental capabilities of a SAT solver1, but does not use or output any reusable
information like function summaries. Similar to HiFrog, ESBMC also shares
the CProver infrastructure and is based on an SMT solver. To the best of our
knowledge, it does not support incremental verification [5].

2 Tool Overview

HiFrog consists of two main components SMT encoder and interpolating SMT
solver; and the function summaries (see Fig. 1). The components are initially con-
figured with the theory and the interpolation algorithms. The tool then processes
assertions sequentially using function summaries when possible. The results of
a successful assertion verification are stored as interpolated function summaries,
and failed verifications trigger a refinement phase or the printing of an error
trace. This section details the tool features.

Preprocessing. The source code is parsed and transformed into an intermediate
goto-program using the goto-cc symbolic compiler. The loops are unwound to
the pre-determined number of iterations. HiFrog identifies the set of assertions
from the source code, reads the user-defined function summaries (if any) in the
smtlib2-format, and makes them available for the subsequent analysis.

1 http://www.cprover.org.

http://verify.inf.usi.ch/hifrog
http://www.cprover.org

HiFrog: SMT-based Function Summarization for Software Verification 209

Fig. 1. HiFrog overview. Grey and black arrows connect different modules of the tool
(dashed - optional). Blue arrows represent the flow of the input/output data. (Color
figure online)

SMT Encoding and Function Summarization. For a given assertion, the goto-
program is symbolically executed function-per-function resulting in the “modu-
lar” Static Single Assignment (SSA) form of the unwound program, i.e., a form
where each function has its own isolated SSA-representation. To reduce the size
of the SSA form, HiFrog performs slicing that keeps only the variables in the
SSA form that are syntactically dependent on the variables in the assertion.

When the SSA form is pruned, HiFrog creates the SMT formula in the pre-
determined logic (QF BOOL, QF UF or QF LRA). The modularity of the SSA
form comes in handy when the function summaries of the chosen logic (either
user-defined, interpolation-based, or treated nondeterministically) are available.
If this is the case, the call to a function with the available summary is replaced
by the summary. The final SMT formula is pushed to an SMT solver to decide
its satisfiability.

Due to over-approximating nature of function summaries, the program
encoded with the summaries may contain spurious errors. The summary refiner
identifies and marks summaries directly involved in the detected error, and
HiFrog returns to the encoding stage to replace the marked summaries by the
precise (up to the pre-determined logic) function representations. Note that due
to refinement, HiFrog reveals nested function calls (including recursive ones)
which are again replaced by available summaries. For an unsatisfiable SMT for-
mula, HiFrog extracts function summaries using interpolation. The extracted
summaries are serialized in a persistent storage so that they are available for
other HiFrog runs. For a more detailed description we refer to [13].

Theories. HiFrog supports three different quantifier-free theories in which the
program can be modelled: bit-precise QF BOOL, QF UF and QF LRA. The use

210 L. Alt et al.

of theories beyond QF BOOL allows the system to scale to larger problems since
encoding in particular the arithmetic operations using bit-precision can be very
expensive. As the precise arithmetics often do not play a role in the correctness
of the program, substituting them with linear arithmetics, uninterpreted func-
tions, or even nondeterministic behavior might result in a significant reduction
in model-checking time (see Sect. 3). If a property is proved using one of the
light-weight theories QF UF and QF LRA, the proof holds also for the exact
BMC encoding of the program. However, the loss of precision can sometimes
produce spurious counterexamples due to the over-approximating encoding. The
light-weight theories therefore need to be refined (i.e., using theory refiner) to
QF BOOL if the provided counter-example does not correspond to a concrete
counterexample.

Obtaining Summaries by Interpolation. HiFrog relies on different interpola-
tion frameworks for the different theories it supports. As a result the genera-
tion of propositional, QF UF and QF LRA interpolants can be controlled with
respect to strength and size by specifying an interpolation algorithm for a theory.
For propositional logic we provide the Labeled Interpolation Systems [7] includ-
ing the Proof-Sensitive interpolation algorithms [1]. Interpolation for QF UF
is implemented with duality-based interpolation [2], and a similar extension is
applied to the interpolation algorithm for QF LRA based on [10]. HiFrog also
provides a range of techniques to reduce the size of the generated interpolants
through removing redundancies in propositional proofs [12]: the algorithms Recy-
clePivotsWithIntersection and LowerUnits, structural hashing, and a set of local
rewriting rules.

Assertion Optimizer. In addition to incremental verification of a set of assertions,
HiFrog supports the basic functionality of classical model checkers to verify all
assertions at once. For the cases when the set of assertions is too large, it can be
optimized by constructing an assertion implication relation and exploiting it to
remove redundant assertions [8]. In a nutshell, the assertion optimizer considers
pairs of spatially close assertions ai and aj and uses the SMT solver to check
if ai conjoined with the code between ai and aj implies aj (if there is any
other assertion between ai and aj then it is treated as assumption). If the check
succeeds then aj is proven redundant and its verification can be safely skipped.

3 HIFROG Usage

We provide a Linux binary of HiFrog reading as input a C-program, assertions
to be verified, a set of parameters and the interpolated or user-defined func-
tion summaries in the SMT-LIB2 format. HiFrog exploits the CProver frame-
work and inherits some of its options (e.g., --unwind for the loop unrolling,
--show-claims and --claim for managing the assertions checks); the abil-
ity for the user to declare and to use a nondet TYPE() function of a specific
numerical type (e.g., int, long, double, unsigned, in QF LRA only) or add a
CPROVER assume() statement to limit the domain to a specific range of values.

HiFrog: SMT-based Function Summarization for Software Verification 211

HiFrog uses QF LRA by default but can be switched to QF UF via the
--logic option.2 HiFrog uses a variety of interpolation and proof compression
algorithms to control the the precision (with --itp-uf-algorithm option for
QF UF, --itp-lra-algorithm option for QF LRA, and --itp-algorithm
option for propositional interpolation) and the size (with --reduce-proof) of
summaries. The summary storage is controlled using the --save-summaries
and --load-summaries options. In between verification runs, the summaries
contained in the corresponding files for QF UF and QF LRA might be edited
manually. Note that due to the SMT encoding constraints HiFrog does not
allow interchanging summaries between the theories. Finally, HiFrog supports
the identification and reporting of redundant assertions with --claims-opt, a
useful feature for some automatically generated assertions [8].

In the end of each verification run, HiFrog either reports VERIFICATION
SUCCESSFUL or VERIFICATION FAILED accompanied by an error trace. An error
trace presents a sequence of steps with a direct reference to the code and the
values of variables in these steps. In most cases when QF UF and QF LRA intro-
duce a spurious error, HiFrog outputs a warning, and thus the user is advised
to use HiFrog with a more precise theory. HiFrog also reports the statistics
on the running time and the number of the summary-refinements performed.

Experimental Results. We evaluated HiFrog on a large set of C programs coming
from both academic and industrial sources such as SV-COMP. All benchmarks
contained multiple assertions to be checked. To demonstrate the advantages of
the SMT-based summarization, here we provide data for analysis of benchmarks
containing 1086 assertions from which 474 were proven to hold using QF BOOL
(meaning that those properties satisfy the system specifications). Even despite
the over-approximating nature of QF UF and QF LRA, our experiments wit-
nessed a large amount of properties which were also proven to be correct by
employing the light-weight theories of HiFrog (namely, 50.65% and 69.2% of
validated properties out of 474 for QF UF and QF LRA respectively).

Furthermore, those experiments revealed that model checking using the
QF UF and QF LRA-based summarization was extremely efficient. Figure 2

10−2 10−1 100 101 102

10−2

10−1

100

101

102

QF BOOL(sec).

Q
F

U
F
(s

ec
).

10−2 10−1 100 101 102

10−2

10−1

100

101

102

QF BOOL(sec).

L
R

A
(s

ec
).

Fig. 2. Running time by QF BOOL against QF UF and QF LRA.

2 Currently the support for QF BOOL needs to be specified at compile time.

212 L. Alt et al.

presents two logarithmic plots for comparison of running times3 of HiFrog with
QF BOOL to respectively QF UF and QF LRA. Each point represents a pair
of verification runs of a holding assertion with the two corresponding theories
using the interpolation-based summaries. Note that for most of the assertions,
the verification with QF UF and QF LRA is an order of magnitude faster than
the verification with QF BOOL.

References

1. Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A proof-sensitive app-
roach for small propositional interpolants. In: Gurfinkel, A., Seshia, S.A. (eds.)
VSTTE 2015. LNCS, vol. 9593, pp. 1–18. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29613-5 1

2. Alt, L., Hyvärinen, A.E.J., Sharygina, N.: Duality-based interpolation for
quantifier-free equalities and uninterpreted functions (2016). http://www.inf.usi.
ch/postdoc/hyvarinen/euf-interpolation.pdf

3. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: ESEC/FSE, pp. 389–399. ACM (2013)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). doi:10.1007/3-540-49059-0 14

5. Cordeiro, L.C., de Lima Filho, E.B.: SMT-based context-bounded model checking
for embedded systems: challenges and future trends. ACM SIGSOFT Softw. Eng.
Notes 41(3), 1–6 (2016)

6. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log. 22(3), 269–285 (1957)

7. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–
145. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11319-2 12

8. Fedyukovich, G., D‘Iddio, A.C., Hyvärinen, A.E.J., Sharygina, N.: Symbolic detec-
tion of assertion dependencies for bounded model checking. In: Egyed, A., Schaefer,
I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 186–201. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46675-9 13

9. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 380–397.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 22

10. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005)

11. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure
for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 2

3 The timing results were obtained on an Ubuntu 14.04.1 LTS server running two
Intel(R) Xeon(R) E5620 CPUs @ 2.40 GHz and 16 GB RAM. We prepared a
pre-compiled Linux-binary available at the Virtual Machine at http://verify.inf.usi.
ch/hifrog/binary; our benchmarks set is available at http://verify.inf.usi.ch/hifrog/
bench and can facilitate the property verification for other researchers.

http://dx.doi.org/10.1007/978-3-319-29613-5_1
http://dx.doi.org/10.1007/978-3-319-29613-5_1
http://www.inf.usi.ch/postdoc/hyvarinen/euf-interpolation.pdf
http://www.inf.usi.ch/postdoc/hyvarinen/euf-interpolation.pdf
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-642-11319-2_12
http://dx.doi.org/10.1007/978-3-662-46675-9_13
http://dx.doi.org/10.1007/978-3-319-21690-4_22
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://verify.inf.usi.ch/hifrog/binary
http://verify.inf.usi.ch/hifrog/binary
http://verify.inf.usi.ch/hifrog/bench
http://verify.inf.usi.ch/hifrog/bench

HiFrog: SMT-based Function Summarization for Software Verification 213

12. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
a framework for producing effective interpolants in SAT-based software verification.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol.
8312, pp. 683–693. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5 45

13. Sery, O., Fedyukovich, G., Sharygina, N.: FunFrog: bounded model checking with
interpolation-based function summarization. In: Chakraborty, S., Mukund, M.
(eds.) ATVA 2012. LNCS, vol. 7561, pp. 203–207. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33386-6 17

http://dx.doi.org/10.1007/978-3-642-45221-5_45
http://dx.doi.org/10.1007/978-3-642-33386-6_17

Congruence Closure with Free Variables

Haniel Barbosa1,2(B), Pascal Fontaine1, and Andrew Reynolds3

1 LORIA–Inria, Université de Lorraine, Nancy, France
{Haniel.Barbosa,Pascal.Fontaine}@inria.fr

2 Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
3 University of Iowa, Iowa City, USA

andrew.j.reynolds@gmail.com

Abstract. Many verification techniques nowadays successfully rely on
SMT solvers as back-ends to automatically discharge proof obligations.
These solvers generally rely on various instantiation techniques to han-
dle quantifiers. We here show that the major instantiation techniques
in SMT solving can be cast in a unifying framework for handling quan-
tified formulas with equality and uninterpreted functions. This frame-
work is based on the problem of E-ground (dis)unification, a variation of
the classic rigid E -unification problem. We introduce a sound and com-
plete calculus to solve this problem in practice: Congruence Closure with
Free Variables (CCFV). Experimental evaluations of implementations of
CCFV in the state-of-the-art solver CVC4 and in the solver veriT exhibit
improvements in the former and makes the latter competitive with state-
of-the-art solvers in several benchmark libraries stemming from verifica-
tion efforts.

1 Introduction

SMT solvers [8] are highly efficient at handling large ground formulas with inter-
preted symbols, but they still struggle with quantified formulas. Pure quantified
first-order logic is best handled with resolution and superposition-based the-
orem proving [3]. Although there are first attempts to unify such techniques
with SMT [13], the main approach used in SMT is still instantiation: quantified
formulas are reduced to ground ones and refuted with the help of decision pro-
cedures for ground formulas. The main instantiation techniques are E -matching
based on triggers [12,17,26], finding conflicting instances [24] and model-based
quantifier instantiation (MBQI) [19,25]. Each of these techniques contributes to
the efficiency of state-of-the-art solvers, yet each one is typically implemented
independently.

We introduce the E-ground (dis)unification problem as the cornerstone of a
unique framework in which all these techniques can be cast. This problem relates

This work has been partially supported by the ANR/DFG project STU 483/2-1
SMArT ANR-13-IS02-0001 of the Agence Nationale de la Recherche, by the H2020-
FETOPEN-2016-2017-CSA project SC2 (712689), and by the European Research
Council (ERC) starting grant Matryoshka (713999).

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 214–230, 2017.
DOI: 10.1007/978-3-662-54580-5 13

Congruence Closure with Free Variables 215

to the classic problem of rigid E -unification and is also NP-complete. Solving
E-ground (dis)unification amounts to finding substitutions such that literals
containing free variables hold in the context of currently asserted ground literals.
Since the instantiation domain of those variables can be bound, a possible way
of solving the problem is by first non-deterministically guessing a substitution
and checking if it is a solution. The Congruence Closure with Free Variables
algorithm (CCFV, for short) presented here is a practical decision procedure
for this problem based on the classic congruence closure algorithm [21,22]. It is
goal-oriented: solutions are constructed incrementally, taking into account the
congruence closure of the terms defined by the equalities in the context and the
possible assignments to the variables.

We then show how to build on CCFV to implement trigger-based, conflict-
based and model-based instantiation. An experimental evaluation of the tech-
nique is presented, where our implementations exhibits improvements over state-
of-the-art approaches.

1.1 Related Work

Instantiation techniques for SMT have been studied extensively. Heuristic instan-
tiation based on E -matching of selected triggers was introduced by Detlefs
et al. [17]. A highly efficient implementation of E -matching was presented by de
Moura and Bjørner [12]; it relies on elaborated indexing techniques and genera-
tion of machine code for optimizing performance. Rümmer uses triggers alongside
a classic tableaux method [26]. Trigger based instantiation unfortunately pro-
duces many irrelevant instances. To tackle this issue, a goal-oriented instantiation
technique producing only useful instances was introduced by Reynolds et al. [24].
CCFV shares resemblance with this algorithm, the search being based on the
structure of terms and a current model coming from the ground solver. The app-
roach here is however more powerful and more general, and somehow subsumes
this previous technique. Ge and de Moura’s model based quantifier instantiation
(MBQI) [19] provides a complete method for first-order logic through successive
derivation of conflicting instances to refine a candidate model for the whole for-
mula, including quantifiers. Thus it also allows the solver to find finite models
when they exist. Model checking is performed with a separate copy of the ground
SMT solver searching for a conflicting instance. Alternative methods for model
construction and checking were presented by Reynolds et al. [25]. Both these
model based approaches [19,25] allow integration of theories beyond equality,
while CCFV for now only handles equality and uninterpreted functions.

Backeman and Rümmer solve the related problem of rigid E -unification
through encoding into SAT, using an off-the-shelf SAT solver to compute solu-
tions [5]. Our work is more in line with goal-oriented techniques as those by
Goubault [20] and Tiwari et al. [27]; congruence closure algorithms being very
efficient at checking solutions, we believe they can also be the core of effi-
cient algorithms to discover them. CCFV differs from those previous techniques
notably, since it handles disequalities and since the search for solutions is pruned
based on the structure of a ground model and is thus most suitable for an SMT
context.

216 H. Barbosa et al.

2 Notations and Basic Definitions

We refer to classic notions of many-sorted first-order logic (e.g. by Baader and
Nipkow [1] and by Fitting [18]) as the basis for notations in this paper. Only the
most relevant are mentioned.

A first-order language is a tuple L = 〈S,X ,P,F , sort〉 in which S, X , P and
F are disjoint enumerable sets of sort, variable, predicate and function symbols,
respectively, and sort : X ∪ F ∪ P → S+ is a function assigning sorts, according
to the symbols’ arities. Nullary functions and predicates are called constants and
propositions, respectively. Formulas and terms are generated in a well-sorted
manner by

t ::=x | f(t, . . . , t) ϕ ::= t � t | p(t, . . . , t) | ¬ϕ | ϕ ∨ ϕ | ∀x1 . . . xn.ϕ

in which x, x1, . . . , xn ∈ X , p ∈ P and f ∈ F . The predicate symbol � stands
for equality. The terms in a formula ϕ are denoted by T(ϕ). In a function or
predicate application, the symbol being applied is referred as the term’s top
symbol. The free variables of a formula ϕ are denoted by FV(ϕ). A formula or
term is ground iff it contains no variables. Whenever convenient, an enumeration
of symbols s1, . . . , sn will be represented as s.

A substitution σ is a mapping from variables to terms. The application of σ
to the formula ϕ (respectively the term t) is denoted by ϕσ (tσ). The domain
of σ is the set dom(σ) = {x | x ∈ X and xσ
= x}, while the range of σ is
ran(σ) = {xσ | x ∈ dom(σ)}. A substitution σ is ground iff every term in ran(σ)
is ground and acyclic iff, for any variable x, x does not occur in xσ . . . σ. For an
acyclic substitution, σ� is the fixed point substitution of σ.

Given a set of ground terms T closed under the subterm relation and a
congruence relation � on T, a congruence over T is a subset of {s � t | s, t ∈ T}
closed under entailment. The congruence closure (CC, for short) of a set of
equations E on a set of terms T is the least congruence on T containing E.
Given a consistent set of equality literals E, two terms t1, t2 are said congruent
iff E |= t1 � t2 and disequal iff E |= t1
� t2. The congruence class in T of a
given term is the set of terms in T congruent to it. The signature of a term is
the term itself for a nullary symbol, and f(c1, . . . cn) for a term f(t1, . . . tn) with
ci being the class of ti. The signature class of t is a set [t]E containing one and
only one term in the class of t for each signature. Notice that the signature class
of two terms in the same class is the same set of terms, and is a subset of the
congruence class. We drop the subscript in [t]E when E is clear from the context.
The set of signature classes of E on a set of terms T is Ecc = {[t] | t ∈ T}.

3 E-ground (Dis)unification

For simplicity, and without loss of generality, we consider formulas in Skolem
form, with all quantified subformulas being quantified clauses; we also assume
all atomic formulas are equalities. SMT solvers proceed by enumerating the
models for the propositional abstraction of the input formula, i.e. the formula

Congruence Closure with Free Variables 217

obtained by replacing every atom and quantified subformula by a proposition.
Such a model of the propositional abstraction corresponds to a set E ∪ Q, in
which E and Q are conjunctive sets of ground literals and quantified formulas,
respectively. If E ∪ Q is consistent, all of its models also satisfy the input formula;
if not, a new candidate model is derived. The ground SMT solver first checks
the satisfiability of E, and, if it is satisfiable, proceeds to reason on the set of
quantified formulas Q. Ground instances I are derived from Q, and subsequently
the satisfiability of E ∪ I is checked. This is repeated until either a conflict is
found, and a new model for the propositional abstraction must be produced,
or no more instantiations are possible. Of course, the whole process might not
terminate and the solver might loop indefinitely.

In this approach, a central problem is to determine which instances I to
derive. Section 5 shows that the problem of finding instances via existing instan-
tiation techniques can be reduced to the problem of E-ground (dis)unification.

Definition 1 (E-ground (dis)unification). Given two finite sets of equality
literals E and L, E being ground, the E-ground (dis)unification problem is that
of finding substitutions σ such that E |= Lσ.

E-ground (dis)unification can be recast as the classic problem of (non-simul-
taneous) rigid E -unification (transformation proof in Appendix B of [6]), i.e.
computing substitutions σ such that Eeqσ |= sσ � tσ, in which Eeq is a set of
equations and s, t are terms. Rigid E -unification has been studied extensively in
the context of automated theorem proving [2,10,15]. In particular, its intrinsic
relation with congruence closure has been investigated by Goubault [20] and
Tiwari et al. [27], in which variations of the classic procedure are integrated
with first-order rewriting techniques and the search for solutions is guided by
the structure of the terms. We build on these ideas to develop our method for
solving E-ground (dis)unification, as discussed in Sect. 4.

Example 1. Consider the sets E = {f(a) � f(b), h(a) � h(c), g(b)
� h(c)}
and L = {h(x1) � h(c), h(x2)
� g(x3), f(x1) � f(x3), x4 � g(x5)}. A solu-
tion for their E-ground (dis)unification problem is {x1 �→ a, x2 �→ c, x3 �→ b,
x4 �→ g(x5)}.

The above example shows that x5 can be mapped to any term; this E-
ground (dis)unification problem has infinitely many solutions. However, here,
like in general,1 the set of all solutions can be finitely represented:

Theorem 1. Given an E-ground (dis)unification problem, if a substitution σ
exists such that E |= Lσ, then there is an acyclic substitution σ′ such that
ran(σ′) ⊆ T(E ∪ L), σ′� is ground, and E |= Lσ′�.

Proof. The proof can be found in Appendix A of [6].
�

1 It is assumed, without loss of generality, that T(E ∪ L) contains at least one ground
term of each sort in E ∪ L.

218 H. Barbosa et al.

As a corollary, the problem is in NP: it suffices indeed to guess an acyclic
substitution with ran(σ′) ⊆ T(E ∪ L), and check (polynomially) that it is a
solution. The problem is also NP-hard, by reduction of 3-SAT (Appendix C
of [6]). As our experiments show, however, a concrete algorithm effective in
practice is possible.

4 Congruence Closure with Free Variables

In this section we describe a calculus to find each substitution σ solving an
E-ground (dis)unification problem E |= Lσ. This calculus, Congruence Closure
with Free Variables (CCFV), uses a congruence closure algorithm as a core ele-
ment to guide the search and build solutions. It proceeds by building a set of
equations Eσ such that E ∪ Eσ |= L, in which Eσ corresponds to a solution sub-
stitution, built step by step, by decomposing L in a top-down manner into sets
of simpler constraints.

Example 2. Considering again E and L as in Example 1, the calculus should find
σ such that

f(a) � f(b), h(a) � h(c), g(b)
� h(c)
|= (h(x1) � h(c) ∧ h(x2)
� g(x3) ∧ f(x1) � f(x3) ∧ x4 � g(x5)) σ

For L to be entailed by E ∪ Eσ, each of its literals contributes to equations in
Eσ in the following manner:

– h(x1) � h(c): either x1 � c or x1 � a belongs to Eσ;
– h(x2)
� g(x3): either x2 � c ∧ x3 � b or x2 � a ∧ x3 � b belongs to Eσ;
– f(x1) � f(x3): either x1 � x3 or x1 � a ∧ x3 � b or x1 � b ∧ x3 � a must be

in Eσ;
– x4 � g(x5): the literal itself must be in Eσ.

One solution is thus Eσ = {x1 � a, x2 � a, x3 � b, x4 � g(x5)}, corresponding
to the acyclic substitution σ = {x1 �→ a, x2 �→ a, x3 �→ b, x4 �→ g(x5)}. Notice
that, for any ground term t ∈ T(E ∪ L), σg = σ ∪ {x5 �→ t} is such that
ran(σg) ⊆ T(E ∪ L), σg

� is ground, and E |= Lσg
�.

4.1 The Calculus

Given an E-ground (dis)unification problem E |= Lσ, the CCFV calculus com-
putes the various possible Eσ corresponding to a coverage of all substitution solu-
tions, i.e. such that E ∪ Eσ |= L. We describe the calculus as a set of rules that
operate on states of the form Eσ �E C, in which C is a (disjunctive normal form)
formula stemming from the decomposition of L into simpler constraints, and Eσ

is a conjunctive set of equalities representing a partial solution. Starting from
the initial state ∅ �E L, the right side of the state is progressively decomposed,
whereas the left side is step by step augmented with new equalities building the
candidate solution. Example 2 shows that, for a literal to be entailed by E ∪ Eσ,

Congruence Closure with Free Variables 219

Table 1. The CCFV calculus in equational FOL. E is fixed from a problem E |= Lσ.

sometimes several solutions Eσ exist, thus the calculus involves branching.
To simplify the presentation, the rules do not apply branching directly, but
build disjunctions on the right part of the state, those disjunctions later leading
to branching. A branch is closed when its constraint is decomposed into either
⊥ or �. The latter are branches for which E ∪ Eσ |= L holds.

The set of CCFV derivation rules is presented in Table 1; t stands for a
ground term, x, y for variables, u for non-ground terms, u1, . . . , un for terms

220 H. Barbosa et al.

such that at least one is non-ground and s, s1, . . . , sn for terms in general. Rules
are applied top-down, the symmetry of equality being used implicitly. Each rule
simplifies the constraint of the right hand side of the state, and as a consequence
any derivation strategy is terminating (Theorem2).

When an equality is added to the left hand side of a state Eσ �E C (rule
Assign), the constraint C is normalized with respect to congruence closure to
reflect the assignments to variables. That is, all terms in C are representatives
of classes in the congruence closure of E ∪ Eσ. We write

rep(x) =
{

some chosen y ∈ [x]Eσ
if all terms in [x]Eσ

are variables
rep(f(s)) otherwise, for some f(s) ∈ [x]Eσ

rep(f(s1, . . . , sn)) =
{

f(s1, . . . , sn) if f(s1, . . . , sn) is ground
f(rep(s1), . . . , rep(sn)) otherwise

and write rep(C) to denote the result of applying rep on both sides of each literal
s � s′ or s
� s′ in C. The above definition of rep leaves room for some choice of
representative, but soundness and completeness are not impacted by the choice.
What actually matters is whether the representative is a variable, a ground term
or a non-ground function application. The Assign rule adds equations from the
right side of the state into the tentative solution in the left side of the state: it
extends Eσ with the mapping for a variable. Because C is replaced by rep(C),
one variable (either x, or s if it is a variable) disappears from the right side.

The other rules can be divided into two categories. First are the branching
rules (U var through R gen), which enumerate all possibilities for deriving the
entailment of some literal from C. For example, the rule U comp enumerates
the possibilities for which a literal of the form f(u1, . . . , un) � f(s1, . . . , sn) is
entailed, which may be either due to syntactic unification, since both terms have
the same top symbol, or by matching f -terms occurring in the same signature
class of Ecc. Second are the structural rules (Split, Fail and Yield), which
create or close branches. Split creates branches when there are disjunctions in
the constraint. Fail closes a branch when it is no longer possible to build on the
current solution to entail the remaining constraints. Yield closes a branch when
all remaining constraints are already entailed by E ∪ Eσ, with Eσ embodying
a solution for the given E-ground (dis)unification problem. Theorems 3 and 4
state the correctness of the calculus.

If a branch is closed with Yield, the respective Eσ defines a substitution
σ = {x �→ rep(x) | x ∈ FV(L)}. The set Sols(Eσ) of all ground solutions
extractable from Eσ is composed of substitutions σg which extend σ by mapping
all variables in ran(σ�) into ground terms in T(E ∪ L), s.t. each σg is acyclic,
σ�

g ground and E |= Lσ�
g .

4.2 A Strategy for the Calculus

A possible derivation strategy for CCFV, given an initial state ∅ �E L, is to
apply the sequence of steps described below at each state Eσ �E C. Let sel be
a function that selects a literal from a conjunction according to some heuristic,

Congruence Closure with Free Variables 221

such as selecting first literals with less variables or literals whose top symbols
have less ground signatures in Ecc. The result of sel is denoted selected literal.
Since no two rules can be applied on the same literal, the function sel effectively
enforces an order on the application of the rules.

1. Select branch: While C is a disjunction, apply Split and consider the leftmost
branch, by convention.

2. Simplify constraint : Apply the rule for which sel(C) is amenable.
3. Discard failure: If Fail was applied or a branching rule had the empty dis-

junction as a result, discard this branch and consider the next open branch.
4. Mark success: If all remaining constraints in the branch are entailed by

E ∪ Eσ, apply Yield to mark the successful branch and then consider the
next open branch.

A solution σ for the E-ground (dis)unification problem E |= Lσ can be extracted
at each branch terminated by the Yield rule (Corollary 1).

Example 3. Consider again E and L as in Example 1. The set of signature classes
of E is

Ecc = {[a], [b], [c], [f(a), f(b)], [h(a), h(c)], [g(b)]}
Let sel select the literal in C with the minimum number of variables. The deriva-
tion tree produced by CCFV for this problem is shown below. Selected literals
are underlined. Disjunctions and the application of Split are kept implicit to
simplify the presentation, as is the handling of x4 � g(x5). Its entailment does
not relate with the other literals in L and it can be handled by an early appli-
cation of Assign.

∅ �E h(x1) � h(c), h(x2) �� g(x3), f(x1) � f(x3)
U compA B

with A being

∅ �E x1 � c, h(x2) �� g(x3), f(x1) � f(x3)
Assign{x1 � c} �E h(x2) �� g(x3), f(c) � f(x3)

U comp{x1 � c} �E h(x2) �� g(x3), x3 � c
Assign{x1 � c, x3 � c} �E h(x2) �� g(c)
R gen{x1 � c, x3 � c} �E ⊥

Fail{x1 � c, x3 � c} �E ⊥

and B:
∅ �E x1 � a, h(x2) �� g(x3), f(x1) � f(x3)

Assign{x1 � a} �E h(x2) �� g(x3), f(a) � f(x3)
U comp{x1 � a} �E h(x2) �� g(x3), x3 � a

Assign{x1 � a, x3 � a} �E h(x2) �� g(a)
R gen{x1 � a, x3 � a} �E ⊥

Fail{x1 � a, x3 � a} �E ⊥

{x1 � a} �E h(x2) �� g(x3), x3 � b
Assign{x1 � a, x3 � b} �E h(x2) �� g(b)
R gen{x1 � a, x3 � b} �E x2 � a

Assign{x1 � a, x2 � a, x3 � b} �E �
Yield{x1 � a, x2 � a, x3 � b} �E �

A solution is produced by the rightmost branch of B.

222 H. Barbosa et al.

4.3 Correctness of CCFV

Theorem 2 (Termination). All derivations in CCFV are finite.

Proof (Sketch). The width of any split rule is always finite. It then suffices to
show that the depth of the tree is bounded. For simplicity, but without any
fundamental effect on the proof, let us assume that all rules but Split apply on
conjunctions. Let d(C) be the sum of the depths of all occurrences of variables
in the literals of the conjunction C. The Assign rule decreases the number of
variables of C. The Fail and Yield rules close a branch. All remaining rules from
Eσ �E C to E′

σ �E C ′
1 ∨ . . . ∨ C ′

n decrease d, i.e. d(C) > d(C ′
1), . . . , d(C) >

d(C ′
n). At each node, d(C) or the number of variables in C are decreasing,

except at the Split steps. Since no branch can contain infinite sequences of
Split applications, the depth is always finite.
�
Lemma 1. Given a computed solution Eσ for an E-ground (dis)unification
problem E |= Lσ, each σg ∈ Sols(Eσ) is an acyclic substitution such that
ran(σg) ⊆ T(E ∪ L) and σ�

g is ground.

Proof (Sketch). The proof can be found in Appendix D of [6].
�
Lemma 2 (Rules capture entailment conditions). For each rule

Eσ �E C
R

E′
σ �E C ′

and any ground substitution σ, E |= ({C} ∪ Eσ)σ iff E |= ({C ′} ∪ E′
σ)σ.

Proof (Sketch). The proof can be found in Appendix D of [6].
�
Theorem 3 (Soundness). Whenever a branch is closed with Yield, every
σg ∈ Sols(Eσ) is s.t. E |= Lσ�

g .

Proof (Sketch). Consider an arbitrary substitution σg ∈ Sols(Eσ) at the appli-
cation of Yield. Lemma 1 ensures that σ�

g is ground. Thanks to the side condition
of the Yield rule and of the construction of σ�

g , E |= ({C} ∪ Eσ)σ�
g at the leaf.

Then, thanks to Lemma 2, E |= ({C} ∪ Eσ)σ�
g also holds at the root, in which

C = L and Eσ = ∅. Thus E |= Lσ�
g .
�

Theorem 4 (Completeness). Let σ be a solution for an E-ground (dis)unifi-
cation problem E |= Lσ. Then there exists a derivation tree starting on ∅ �E L
with at least one branch closed with Yield s.t. σg ∈ Sols(Eσ) and E |= Lσ�

g .

Proof (Sketch). By Theorem 1, there is an acyclic substitution σg corresponding
to σ such that ran(σg) ⊆ T(E ∪ L), σ�

g is ground and E |= Lσ�
g . Lemma 2

ensures that all rules in CCFV preserve the entailment conditions according to
ground substitutions, therefore there is a branch in the derivation tree starting
from ∅ �E L whose leaf is Eσ �E � and σg ∈ Sols(Eσ).
�
Corollary 1 (CCFV decides E-ground (dis)unification). Any derivation
strategy based on the CCFV calculus is a decision procedure to find all solutions
σ for the E-ground (dis)unification problem E |= Lσ.

Congruence Closure with Free Variables 223

5 Relation to Instantiation Techniques

Here we discuss how different instantiation techniques for evaluating a candidate
model E ∪ Q can be related with E-ground (dis)unification and thus integrated
with CCFV.

5.1 Trigger Based Instantiation

The most common instantiation technique in SMT solving is a heuristic one:
its search is based solely on E -matching of selected triggers [12,17,26], without
further semantic criteria. A trigger T for a quantified formula ∀x.ψ ∈ Q is a
set of terms f1(s1), . . . , fn(sn) ∈ T(ψ) s.t. {x} ⊆ FV(f1(s1)) ∪ · · · ∪ FV(fn(sn)).
Instantiations are determined by E -matching all terms in T with terms in T(E),
such that resulting substitutions allow instantiating ∀x.ψ into ground formulas.
Computing such substitutions amounts to solving the E-ground (dis)unification
problem

E |= (f1(s1) � y1 ∧ · · · ∧ fn(sn) � yn) σ

with the further restriction that σ is acyclic, ran(σ) ⊆ T(E ∪ L) and σ is ground.
This forces each yi to be grounded into a term in T(E), thus enumerating all
possibilities for E -matching fi(si).2 The desired instantiations are obtained by
restricting the found solutions to x.

Example 4. Consider the sets E = {f(a) � g(b), h(a) � b, f(a) � f(c)} and
Q = {∀x. f(x)
� g(h(x))}. Triggers from Q are T1 = {f(x)}, T2 = {h(x)},
T3 = {f(x), g(h(x))} and so on. The instantiations from those triggers are
derived from the solutions yielded by CCFV for the respective problems:

– E |= (f(x) � y)σ, solved by substitutions σ1 = {y �→ f(a), x �→ a} and
σ2 = {y �→ f(c), x �→ c}

– E |= (h(x) � y)σ, solved by σ = {y �→ h(a), x �→ a}
– E |= (f(x) � y1 ∧ g(h(x)) � y2)σ, by σ = {y1 �→ f(a), y2 �→ g(b), x �→ a}

Discarding Entailed Instances. Trigger-based instantiation may produce
instances which are already entailed by the ground model. Such instances most
probably will not contribute to the solving, so they should be discarded. Check-
ing this, however, is not straightforward with pre-processing techniques. CCFV,
on the other hand, allows it by simply checking, given an instantiation σ for a
quantified formula ∀x.ψ, whether there is a literal � ∈ ψ s.t. E ∪ Eσ |= �, with
Eσ = {x � xσ | x ∈ dom(σ)}.

2 For CCFV to generate such solutions it is sufficient to add the side condition to
Assign that s is a variable or a ground term and to remove the side condition of
U var. This will lead to the application of U var in each fi(s1) � yi.

224 H. Barbosa et al.

5.2 Conflict Based Instantiation

A goal-oriented instantiation technique was introduced by Reynolds et al. [24] to
provide fewer and more meaningful instances. Quantified formulas are evaluated,
independently, in search for conflicting instances: for each quantified formula
∀x.ψ ∈ Q, only instances ψσ for which E ∪ ψσ is unsatisfiable are derived. Such
instances force the derivation of a new candidate model E ∪ Q for the formula.
Finding a conflicting instance amounts to solving the E-ground (dis)unification
problem

E |= ¬ψσ, for some ∀x.ψ ∈ Q
since ¬ψ is a conjunction of equality literals. Differently from the algorithm
shown in [24], CCFV finds all conflicting instantiations for a given quantified
formula.

Example 5. Let E and Q be as in Example 4. Applying CCFV in the problem

E |= (f(x) � g(h(x))) σ

leads to the sole conflicting instantiation σ = {x �→ a}.

Propagating Equalities. As discussed in [24], even when the search for con-
flicting instances fails it is still possible to “propagate” equalities. Given some
¬ψ = �1 ∧ · · · ∧ �n, let σ be a ground substitution s.t. E |= �1σ ∧ · · · ∧ �k−1σ
and all remaining literals �kσ, . . . , �nσ not entailed are ground disequalities with
(T(�k) ∪ · · · ∪ T(�n)) ⊆ T(E). The instantiation ∀x.ψ → ψσ introduces a dis-
junction of equalities constraining T(E). CCFV can generate such propagating
substitutions if the side conditions of Fail and Yield are relaxed w.r.t. ground
disequalities whose terms occur in T(E) and originally had variables: the former
is not applied based on them and the latter is if all other literals are entailed.

Example 6. Consider E = {f(a) � t, t′ � g(a)} and ∀x. f(x)
� t ∨ f(x) � g(x).
When applying CCFV in the problem

E |= (f(x) � t ∧ f(x)
� g(x)) σ

to entail the first literal a candidate solution Eσ = {x � a} is produced. The
second literal would then be normalized to f(a)
� g(a), which would lead to
the application of Fail, since it is not entailed by E. However, as it is a dise-
quality whose terms are in T(E) and originally had variables, the rule applied
is Yield instead. The resulting substitution σ = {x �→ a} leads to propagating
the equality f(a) � g(a), which merges two classes previously different in Ecc.

5.3 Model Based Instantiation (MBQI)

A complete instantiation technique was introduced by Ge and de Moura [19].
The set E is extended into a total model, each quantified formula is evaluated in

Congruence Closure with Free Variables 225

this total model, and conflicting instances are generated. The successive rounds
of instantiation either lead to unsatisfiability or, when no conflicting instance
is generated, to satisfiability with a concrete model. Here we follow the model
construction guidelines by Reynolds et al. [25].

A distinguished term eτ is associated to each sort τ ∈ S. For each f ∈ F
with sort 〈τ1, . . . , τn, τ〉 a default value ξf is defined such that

ξf =
{

f(t1, . . . , tn) ∈ T(E) if [t1] = [eτ1], . . . , [tn] = [eτn]
some t ∈ T(E) otherwise

The extension Etot is built s.t. all fresh ground terms which might be consid-
ered when evaluating Q are in its congruence closure, according to the respective
default values; and all terms in T(E) not asserted equal are explicitly asserted
disequal, i.e.

Etot = E ∪ ⋃
t1,t2∈T(E){t1
� t2 | E
|= t1 � t2}

⋃
∀x.ψ∈Q,t∈T(E)

{
f(s)σ � ξf σ = {x �→ t}, f(s) ∈ T(ψ) and

f(s)σ is not in the CC of E.

}

As before, finding conflicting instances amounts to solving the E-ground
(dis)unification problem

Etot |= ¬ψσ, for some ∀x.ψ ∈ Q
Example 7. Let E = {f(a) � g(b), h(a) � b}, Q = {∀x. f(x)
� g(x), ∀xy. ψ}
and e = a, with all terms having the same sort. The computed default val-
ues of the function symbols are ξf = f(a), ξg = a, ξh = h(a). For simplicity, the
extension Etot is shown explicitly only for ∀x. f(x)
� g(x),

Etot = E ∪ {a
� b, a
� f(a), b
� f(a)}
∪ {f(b) � f(a), f(f(a)) � f(a), g(a) � a, g(f(a)) � a} ∪ {. . . }

Applying CCFV in

{. . . , f(a) � g(b), f(b) � f(a), . . . } |= f(x) � g(x)σ

leads to a conflicting instance with σ = {x �→ b}. Notice that it is not necessary
to explicitly build Etot, which can be quite large. Terms can be defined lazily
as they are required by CCFV for building potential solutions.

6 Implementation and Experiments

CCFV has been implemented in the veriT [11] and CVC4 [7] solvers. As is common
in SMT solvers, they make use of an E -graph to represent the set of signature
classes Ecc and efficiently check ground entailment.3 Indexing techniques for fast
3 Currently the ground congruence closure procedures are not closed under entailment

w.r.t. disequalities. E.g. g(f(a), h(b)) �� g(f(b), h(a)) ∈ E does not lead to the addi-
tion of a �� b to the data structure. A complete implementation of CCFV requires
the ground congruence closure to entail all entailed disequalities.

226 H. Barbosa et al.

retrieval of candidates are paramount for a practical procedure, so Ecc is indexed
by top symbols. Each function symbol points to all their related signatures. They
are kept sorted by congruence classes to allow binary search when retrieving all
signatures with a given top symbol congruent to a given term. To quickly discard
classes without signatures with a given top symbol, bit masks are associated to
congruence classes: each symbol is assigned an arbitrary bit, and the mask for
the class is the set of all bits of the top symbols. Another important optimization
is to minimize E, since the candidate model E ∪ Q produced by the SAT solver
and guiding the instantiation is generally not minimal. A minimal partial model
(a prime implicant) for the CNF is computed in linear time [16], and this model
is further reduced to circumvent the effect of the CNF transformation, using a
process similar to the one described by de Moura and Bjørner [12] for relevancy.

During rule application, matching a term f(u) with a ground term f(t) fails
unless all the ground arguments are pairwise congruent. Thus after an assign-
ment, if an argument of a term f(u) in a branching constraint becomes ground,
it can be checked whether there is a ground term f(t) ∈ T(E) s.t., for every
ground argument ui, E |= ui � ti. If no such term exists and f(u) is not in a
literal amenable for U comp, the branch can be eagerly discarded. For this tech-
nique, a dedicated index for each function symbol f maps tuples of pairs, with a
ground term and a position, 〈(t1, i1), . . . , (tk, ik)〉 to all signatures f(t′1, . . . , t

′
n)

in Ecc s.t. E |= t1 � t′i1 , . . . , E |= tk � t′ik
, i.e. all signatures whose arguments,

in the respective positions, are congruent with the given ground terms.

Experiments. Here we evaluate the impact of optimizations and instantiation
techniques based on CCFV over previous versions and compare them against
the state-of-the-art instantiation based solver Z3 [14]. Different configurations
are identified in this section according to which techniques and algorithms they
have activated:

t: trigger instantiation through CCFV;
c: conflict based instantiation through CCFV;
e: optimization for eagerly discarding branches with unmatchable applications;
d: discards already entailed trigger based instances (as in Sect. 5.1)

The configuration verit refers to the previous version of veriT, which only
offered support for quantified formulas through näıve trigger instantiation, with-
out further optimizations. The configuration cvc refers to version 1.5 of CVC4,
which applies t and c by default, as well as propagation of equalities. Both
implementations of CCFV include efficient term indexing and apply a simple
selection heuristic, checking ground and reflexive literals first but otherwise con-
sidering the conjunction of constraints as a queue. The evaluation was made on
the UF, UFLIA, UFLRA and UFIDL categories of SMT-LIB [9], with 10 495
benchmarks annotated as unsatisfiable, mostly stemming for verification and
ITP platforms. The categories with bit vectors and non-linear arithmetic are
currently not supported by veriT and in those in which uninterpreted functions
are not predominant the techniques shown here are not as effective. Our exper-
iments were conducted using machines with 2 CPUs Intel Xeon E5-2630 v3,

Congruence Closure with Free Variables 227

Fig. 1. Improvements in veriT and CVC4

8 cores/CPU, 126 GB RAM, 2x558 GB HDD. The timeout was set for 30 s, since
our goal is evaluating SMT solvers as back-ends of verification and ITP plat-
forms, which require fast answers.

Figure 1 exhibits an important impact of CCFV and the techniques and opti-
mizations built on top of it. verit+t performs much better than verit, solely
due to CCFV. cvc+d improves significantly over cvc, exhibiting the advantage
of techniques based on the entailment checking features of CCFV. The com-
parison between the different configurations of veriT and CVC4 with the SMT
solver Z3 (version 4.4.2) is summarized in Table 2, excluding categories whose
problems are trivially solved by all systems, which leaves 8 701 problems for
consideration. verit+tc shows further improvements, solving approximately the
same number of problems as Z3, although mostly because of the better perfor-
mance on the sledgehammer benchmarks, containing less theory symbols. It also

Table 2. Instantiation based SMT solvers on SMT-LIB benchmarks

Logic Class Z3 cvc+d cvc+e cvc verit+tc verit+t verit

UF grasshopper 418 411 420 415 430 418 413

sledgehammer 1249 1438 1456 1428 1265 1134 1066

UFIDL all 62 62 62 62 58 58 58

UFLIA boogie 852 844 834 801 705 660 661

sexpr 26 12 11 11 7 5 5

grasshopper 341 322 326 319 357 340 335

sledgehammer 1581 1944 1953 1929 1783 1620 1569

simplify 831 766 706 705 803 735 690

simplify2 2337 2330 2292 2286 2304 2291 2177

Total 7697 8129 8060 7956 7712 7261 6916

228 H. Barbosa et al.

performs best in the grasshopper families, stemming from the heap verification
tool GRASShopper [23]. Considering the overall performance, both cvc+d and
cvc+e solve significantly more problems than cvc, specially in benchmarks from
verification platforms, approaching the performance of Z3 in these families. Both
these techniques, as well as the propagation of equalities, are fairly important
points in the performance of CVC4, so their implementation is a clear direction
for improvements in veriT.

7 Conclusion and Future Work

We have introduced CCFV, a decision procedure for E-ground (dis)unification,
and shown how the main instantiation techniques of SMT solving may be
based on it. Our experimental evaluation shows that CCFV leads to significant
improvements in the solvers CVC4 and veriT, making the former surpass the
state-of-the-art in instantiation based SMT solving and the latter competitive
in several benchmark libraries. The calculus presented is very general, allowing
for different strategies and optimizations, as discussed in previous sections.

A direction for improvement is to use lemma learning in CCFV, in a similar
manner as SAT solvers do. When a branch fails to produce a solution and is dis-
carded, analyzing the literals which led to the conflict can allow backjump rather
than simple backtracking, thus further reducing the solution search space. The
Complementary Congruence Closure introduced by Backeman and Rümmer [4]
could be extended to perform such an analysis.

Like other main instantiation techniques in SMT, the framework here focuses
on the theory of equality only. Extensions to first-order theories such as arith-
metic are left for future work. The implementation of MBQI based on CCFV,
whose theoretical suitability we outlined, is left for future work as well. Another
possible extension of CCFV is to handle rigid E -unification, so it could be applied
in techniques such as BREU [5]. This amounts to have non-ground equalities in
E, so it is not trivial. It would, however, allow integrating an efficient goal-
oriented procedure into E -unification based calculi.

Acknowledgments. We are grateful to David Déharbe for his help with the imple-
mentation of CCFV and to Jasmin Blanchette for suggesting textual improvements.
Experiments presented in this paper were carried out using the Grid’5000 testbed, sup-
ported by a scientific interest group hosted by Inria and including CNRS, RENATER
and several universities as well as other organizations (https://www.grid5000.fr).

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York (1998)

2. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A., (eds)
Handbook of Automated Reasoning, pp. 445–532. Elsevier and MIT Press (2001)

3. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Logic Comput. 4(3), 217–247 (1994)

https://www.grid5000.fr

Congruence Closure with Free Variables 229

4. Backeman, P., Rümmer, P.: Efficient algorithms for bounded rigid E -unification.
In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 70–85.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24312-2 6

5. Backeman, P., Rümmer, P.: Theorem proving with bounded rigid E -unification.
In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp.
572–587. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21401-6 39

6. Barbosa, H., Fontaine, P., Reynolds, A.: Congruence closure with free variables.
Technical report, Inria (2016). https://hal.inria.fr/hal-01442691

7. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

8. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885.
IOS Press, Amsterdam (2009)

9. Barrett, C., Stump, A., Tinelli, C.: The SML-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds) International Workshop on Satisfiability Modulo Theories
(SMT) (2010)

10. Beckert, B.: Ridig E-unification. In: Bibel, W., Schimidt, P.H. (eds.) Automated
Deduction: A Basis for Applications. Foundations: Calculi and Methods, vol. 1.
Kluwer Academic Publishers, Dordrecht (1998)

11. Bouton, T., de Oliveira, D.C.B., Fontaine, P.: veriT: an open, trustable and efficient
SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp.
151–156. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2 12

12. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73595-3 13

13. de Moura, L., Bjørner, N.: Engineering DPLL(T) + saturation. In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
475–490. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7 40

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

15. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In:
Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 611–
706. Elsevier, Amsterdam (2001)

16. Déharbe, D., Fontaine, P., Le Berre, D., Mazure, B.: Computing prime implicants.
In: Formal Methods in Computer-Aided Design (FMCAD), pp. 46–52. IEEE (2013)

17. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

18. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, New
York (1990)

19. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfia-
biliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 306–320. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 25

20. Goubault, J.: A rule-based algorithm for rigid E-unification. In: Gottlob, G.,
Leitsch, A., Mundici, D. (eds.) KGC 1993. LNCS, vol. 713, pp. 202–210. Springer,
Heidelberg (1993). doi:10.1007/BFb0022569

21. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356–364 (1980)

http://dx.doi.org/10.1007/978-3-319-24312-2_6
http://dx.doi.org/10.1007/978-3-319-21401-6_39
https://hal.inria.fr/hal-01442691
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-02959-2_12
http://dx.doi.org/10.1007/978-3-540-73595-3_13
http://dx.doi.org/10.1007/978-3-540-71070-7_40
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-02658-4_25
http://dx.doi.org/10.1007/BFb0022569

230 H. Barbosa et al.

22. Nieuwenhuis, R., Oliveras, A.: Fast congruence closure, extensions. Inf. Comput.
205(4), 557–580 (2007). Special Issue: 16th International Conference on Rewriting
Techniques and Applications

23. Piskac, R., Wies, T., Zufferey, D.: GRASShopper - complete heap verifica-
tion with mixed specifications. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 124–139. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 9

24. Reynolds, A., Tinelli, C., de Moura, L.: Finding conflicting instances of quantified
formulas in SMT. In: Formal Methods in Computer-Aided Design (FMCAD), pp.
195–202. FMCAD Inc (2014)

25. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS (LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38574-2 26

26. Rümmer, P.: E-matching with free variables. In: Bjørner, N., Voronkov, A. (eds.)
LPAR 2012. LNCS, vol. 7180, pp. 359–374. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28717-6 28

27. Tiwari, A., Bachmair, L., Ruess, H.: Rigid E -unification revisited. In: McAllester,
D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 220–234. Springer, Heidelberg
(2000). doi:10.1007/10721959 17

http://dx.doi.org/10.1007/978-3-642-54862-8_9
http://dx.doi.org/10.1007/978-3-642-54862-8_9
http://dx.doi.org/10.1007/978-3-642-38574-2_26
http://dx.doi.org/10.1007/978-3-642-28717-6_28
http://dx.doi.org/10.1007/978-3-642-28717-6_28
http://dx.doi.org/10.1007/10721959_17

On Optimization Modulo Theories, MaxSMT
and Sorting Networks

Roberto Sebastiani and Patrick Trentin(B)

DISI, University of Trento, Trento, Italy
patrick.trentin@unitn.it

Abstract. Optimization Modulo Theories (OMT) is an extension of
SMT which allows for finding models that optimize given objectives.
(Partial weighted) MaxSMT–or equivalently OMT with Pseudo-Boolean
objective functions, OMT+PB– is a very-relevant strict subcase of OMT.
We classify existing approaches for MaxSMT or OMT+PB in two
groups: MaxSAT-based approaches exploit the efficiency of state-of-the-
art MaxSAT solvers, but they are specific-purpose and not always appli-
cable; OMT-based approaches are general-purpose, but they suffer from
intrinsic inefficiencies on MaxSMT/OMT+PB problems.

We identify a major source of such inefficiencies, and we address it by
enhancing OMT by means of bidirectional sorting networks. We imple-
mented this idea on top of the OptiMathSAT OMT solver. We run
an extensive empirical evaluation on a variety of problems, comparing
MaxSAT-based and OMT-based techniques, with and without sorting
networks, implemented on top of OptiMathSAT and νZ. The results
support the effectiveness of this idea, and provide interesting insights
about the different approaches.

1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability
of first-order formulas with respect to first-order theories [5,27] (e.g., the theory
of linear arithmetic over the rationals, LRA). In the last decade, SMT solvers
–powered by very efficient Conflict-Driven-Clause-Learning (CDCL) engines for
Boolean Satisfiability [16] combined with a collection of T -Solvers, each one
handling a different theory T – have risen to be a pervasive and indispensable
tool for dealing with many problems of industrial interest, e.g. formal verification
of hardware and software systems, resource planning, temporal reasoning and
scheduling of real-time embedded systems.

Optimization Modulo Theories (OMT) is an extension of SMT, which allows
for finding models that make a given objective optimum through a combina-
tion of SMT and optimization procedures [8,9,11,12,14,15,21,28–31]. Latest
advancements in OMT have further broadened its horizon by making it incre-
mental [8,31] and by supporting objectives defined in other theories than lin-
ear arithmetic (e.g. Bit-Vectors) [8,9,17]. Moreover, OMT has been extended
with the capability of handling multiple objectives at the same time either
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 231–248, 2017.
DOI: 10.1007/978-3-662-54580-5 14

232 R. Sebastiani and P. Trentin

independently (aka boxed optimization) or through their linear, min-max/
max-min, lexicographic or Pareto combination [8,9,31].

We focus on an important strict sub-case of OMT, (partial weighted)1

MaxSMT –or equivalently OMT with Pseudo-Boolean (PB) objective functions
[25], OMT+PB– which is the problem of finding a model for an input formula
which both satisfies all hard clauses and maximizes the cumulative weight of all
soft clauses satisfied by the model [11,12,21]. We identify two main approaches
which have been adopted in the literature (see related work). One specific-
purpose approach, which we call MaxSAT-based, is to embed some MaxSAT
engine within the SMT solver itself, and use it in combination with dedicated
T -solvers [3,8,9] or with SMT solvers used as blackboxes [12]. One general-
purpose approach, which we call OMT-based, is to encode MaxSMT/OMT+PB
into general OMT with linear-real-arithmetic cost functions [29].

We compare the two approaches and notice the following facts.
The MaxSAT-based approach can exploit the efficiency of state-of-the-art

MaxSAT procedures and solvers. Unfortunately it suffers from some limita-
tions that make it impractical or inapplicable in some cases. First, to the best of
our knowledge, available MaxSAT engines deal with integer weights only; some
applications, e.g., (Machine) Learning Modulo Theories, LMT [34] –a hybrid
Machine Learning approach in which OMT is used as an oracle for Support Vec-
tor Machines [34]– may require the weight of soft constraints to be high-precision
rational values.2 (In this context, it is preferable not to round the weights asso-
ciated with soft-clauses since it affects the accuracy of the Machine Learning
approach; also multiplying all rational coefficients for their lowest common mul-
tiple of the denominators is not practical, because such values tend to become
huge.) Second, a MaxSAT engine cannot be directly used when dealing with an
OMT problem with multiple-independent objectives that need to be optimized
at the same time [15],3 or when the objective function is given by combina-
tions of PB and arithmetic terms –like, e.g., for Linear Generalized Disjunctive
Programming problems [26,29] or LMT problems [34].

The OMT-based approach does not suffer from the above limitations, because
it exploits the infinite-precision linear-arithmetic package on the rationals of
OMT solvers, and it treats PB functions as any other arithmetic functions.
Nevertheless this approach may result in low performances when dealing with
MaxSMT/OMT+PB problems.

We analyze the latter fact and identify a major source of inefficiency by
noticing that the presence of same-weight soft clauses entails the existence of
symmetries in the solution space that may lead to a combinatorial explosion of
the partial truth assignments generated by the CDCL engine during the opti-
mization search. To cope with this fact, we introduce and describe a solution

1 Hereafter, when speaking of MaxSAT or MaxSMT, we keep “partial weighted”
implicit.

2 For example, 1799972218749879
2251799813685248

is a sample weight value from problems in [34].
3 One could run a MaxSAT-based search separately on each objective, but doing this

he/she would loose the benefits of boxed optimization, see [8,15,31].

On Optimization Modulo Theories, MaxSMT and Sorting Networks 233

based on (bidirectional) sorting networks [1,4,32]. We implemented this idea
within the OptiMathSAT OMT solver [30].

We run an empirical evaluation on a large amount of problems comparing
MaxSAT-based and OMT-based techniques, with and without sorting networks,
implemented on top of OptiMathSAT [30] and νZ [9]. The results are summa-
rized as follows.

(a) Comparing MaxSAT-based wrt. OMT-based approaches on problems where
the former are applicable, it turns out that the former provide much better
performances, in particular when adopting the maximum-resolution [8,18]
MaxSAT engine.

(b) Evaluating the benefits of bidirectional sorting-network encodings, it turns
out that they improve significantly the performances of OMT-based
approaches, and often also of MaxSAT-based ones.

(c) Comparing νZ and OptiMathSAT, it turns out that the former performed
better on MaxSAT-based approaches, whilst the latter performed seom-
times equivalently and sometimes significantly better on OMT-based ones,
in particular when enhanced by the sorting-network encoding.

Related Work. The idea of MaxSMT and of optimization in SMT was first intro-
duced by Nieuwenhuis & Oliveras [21], who presented a general logical frame-
work of “SMT with progressively stronger theories” (e.g., where the theory is
progressively strengthened by every new approximation of the minimum cost),
and presented implementations for MaxSMT based on this framework. Cimatti
et al. [11] introduced the notion of “Theory of Costs” C to handle Pseudo-Boolean
(PB) cost functions and constraints by an ad-hoc “C-solver” in the standard lazy
SMT schema, and implemented a variant of MathSAT tool able to handle SMT
with PB constraints and to minimize PB cost functions. Cimatti et al. [12] pre-
sented a “modular” approach for MaxSMT, combining a lazy SMT solver with a
MaxSAT solver, where the SMT solver is used as an oracle generating T -lemmas
that are then learned by the MaxSAT solver so as to progressively narrow the
search space toward the optimal solution.

Sebastiani and Tomasi [28,29] introduced a wider notion of optimization in
SMT, namely Optimization Modulo Theories (OMT) with LRA cost functions,
OMT(LRA ∪ T), which allows for finding models minimizing some LRA cost
term –T being some (possibly empty) stably-infinite theory s.t. T and LRA
are signature-disjoint– and presented novel OMT(LRA ∪ T) tools which com-
bine standard SMT with LP minimization techniques. (T can also be a com-
bination of Theories

⋃
i Ti.) Eventually, OMT(LRA ∪ T) has been extended

so that to handle costs on the integers,incremental OMT, multi-objective, and
lexicographic OMT and Pareto-optimality [8,9,14,15,30,31]. To the best of
our knowledge only four OMT solvers are currently implemented: bclt [14],
νZ (aka Z3Opt) [8,9], OptiMathSAT [30,31], and Symba [15]. Remarkably,
bclt, νZ and OptiMathSAT currently implement also specialized procedures
for MaxSMT, leveraging to SMT level state-of-the-art MaxSAT procedures; in
addition, νZ features a Pseudo-Boolean T -solver which can generate sorting

234 R. Sebastiani and P. Trentin

circuits on demand for Pseudo-Boolean inequalities featuring sums with small
coefficients when a Pseudo-Boolean inequality is used some times for unit prop-
agation/conflicts [7,9].

Content. The paper is structured as follows. Section 2 briefly reviews the back-
ground; Sect. 3 describes the source of inefficiency arising when MaxSMT is
encoded in OMT as in [29]; Sect. 4 illustrates a possible solution based on bidi-
rectional sorting networks; in Sect. 5 we provide empirical evidence of the benefits
of this approach on two applications of OMT interest. Section 6 provides some
conclusions with some considerations on the future work.

2 Background

We assume the reader is familiar with the main theoretical and algorithmic
concepts in SAT and SMT solving (see [5,16]). Optimization Modulo Theories
(OMT) is an extension of SMT which addresses the problem of finding a model
for an input formula ϕ which is optimal wrt. some objective function obj [21,28].
The basic minimization scheme implemented in state-of-the-art OMT solvers,
known as linear-search scheme [21,28], requires solving an SMT problem with a
solution space that is progressively tightened by means of unit linear constraints
in the form ¬(ubi ≤ obj), where ubi is the value of obj that corresponds to the
optimum model of the most-recently found truth assignment μi s.t. μi |= ϕ. The
ubi value is computed by means of a specialized optimization procedure embed-
ded within the T -solver which, taken as input a pair 〈μ, obj〉, returns the optimal
value ub of obj for such μ. The OMT search terminates when such procedure
finds that obj is unbounded or when the SMT search is unsat, in which case the
latest value of obj (if any) and its associated model Mi is returned as optimal
solution value. (Alternatively, binary-search schemes can also be used [28,29].)

An important subcase of OMT is that of MaxSMT, which is a pair 〈ϕh, ϕs〉,
where ϕh denotes the set of “hard” T -clauses, ϕs is a set of positive-weighted
“soft” T -clauses, and the goal is to find the maximum-weight set of T -clauses ψs,
ψs ⊆ ϕs, s.t. ϕh∪ψs is T -satisfiable [3,11,12,21]. As described in [29], MaxSMT
〈ϕh, ϕs〉 can be encoded into a general OMT problem with a Pseudo-Boolean
objective: first introduce a fresh Boolean variable Ai for each soft-constraint
Ci ∈ ϕs as follows

ϕ∗ def= ϕh ∪
⋃

Ci∈ϕs

{(Ai ∨ Ci)}; obj
def=

∑

Ci∈ϕs

wiAi (1)

and then encode the problem into OMT as a pair 〈ϕ, obj〉 where ϕ is defined as

ϕ
def= ϕ∗ ∧ ∧

i((¬Ai ∨ (xi = wi)) ∧ (Ai ∨ (xi = 0))) ∧ (2)
∧

i((0 ≤ xi) ∧ (xi ≤ wi)) ∧ (3)
(obj =

∑
i xi), xi, obj fresh. (4)

On Optimization Modulo Theories, MaxSMT and Sorting Networks 235

Notice that, although redundant from a logical perspective, the constraints
in (3) serve the important purpose of allowing early-pruning calls to the LRA-
Solver (see [5]) to detect a possible LRA inconsistency among the current partial
truth assignment over variables Ai and linear cuts in the form ¬(ub ≤ obj) that
are pushed on the formula stack by the OMT solver during the minimization
of obj. To this extent, the presence of such constraints improves performance
significantly.

3 Problems with OMT-based Approaches

Consider first the case of a MaxSMT-derived OMT problem as in (1) s.t.
all weights are identical, that is: let 〈ϕ, obj〉 be an OMT problem, where
obj =

∑n
i=1 w · Ai, where the Ais are Boolean variables, and let μ be a sat-

isfiable truth assignment found by the OMT solver during the minimization of
obj. Given AT = {Ai|μ |= Ai} and k = |AT |, then the upper bound value of obj
in μ is ub = w · k. As described in [28,29], the OMT solver adds a unit clause in
the form ¬(ub ≤ obj) in order to (1) remove the current truth assignment μ from
the feasible search space and (2) seek for another μ′ which improves the current
upper-bound value ub. Importantly, the unit clause ¬(ub ≤ obj) does not only
prune the current truth assignment μ from the feasible search space, but it also
makes inconsistent any other (partial) truth assignment μ′ which sets exactly k
(or more) Ai variables to True. Thus, each new unit clause in this form prunes
γ =

(
n
k

)
truth assignments from the search space, where γ is the number of possi-

ble permutations of μ over the variables Ai. A dual case occurs when some lower-
bound unit clause ¬(obj ≤ lb) is learned (e.g., in a binary-search step, see [28]).

Unfortunately, the inconsistency of a truth assignment μ′ which sets exactly
k variables to True wrt. a unit clause ¬(ub ≤ obj), where ub = w · k, can-
not be determined by simple Boolean Constraint Propagation (BCP). In fact,
¬(ub ≤ obj) being a LRA term, the CDCL engine is totally oblivious to this
inconsistency until when the T -solver for linear rational arithmetic (LRA-Solver)
is invoked, and a conflict clause is generated. Therefore, since the LRA-Solver is
much more resource-demanding than BCP and it is invoked less often, it is clear
that the performance of an OMT solver can be negatively affected when dealing
with this kind of objectives.

Example 1. Figure 1 shows a toy example of OMT search execution over the
pair 〈ϕ, obj〉, where ϕ is some SMT formula and obj

def=
∑4

i=1 Ai (i.e., wi = 1
for every i). We assume the problem has been encoded as in (2)–(4), so that the
truth assignment μ0

def= ∪4
i=1{(0 ≤ xi), (xi ≤ 1)} ∪ {(obj =

∑4
i=1 xi)} is immedi-

ately generated by BCP, and is part of all truth assignments generated in the
search. In the first branch (left) a truth assignment μ

def= μ0 ∪ {A1, (x1 = 1), A2,
(x2 = 1),¬A3, (x3 = 0),¬A4, (x4 = 0)} is found s.t. obj = 2, resulting from
the decisions A1, A2, ¬A3 and ¬A4. Then the unit clause ¬(2 ≤ obj) is learned
and the Boolean search is restarted in order to find an improved solution. In the
second branch (center) A1 and A2 are decided, forcing by BCP the assignment

236 R. Sebastiani and P. Trentin

Fig. 1. A simple example of OMT search.

μ′ def= μ0 ∪ {¬(2 ≤ obj), A1, (x1 = 1), A2, (x2 = 1)} which is LRA-inconsistent.
However, it takes a (possibly-expensive) intermediate call to the LRA-Solver to
reveal such an inconsistency.4 If so, a new conflict clause ¬A1 ∨ ¬A2 is learned,
forcing the solver to back-jump and toggle the value of A2 (right). The search
continues with the new decision A3, which is again LRA inconsistent, causing a
new conflict clause as before, and so on. In this way, the solver might uselessly
enumerate and check all the up-to

(
4
2

)
assignments that assign two Ai’s to true

and are consistent with ϕ, even though they are intrinsically incompatible with
¬(2 ≤ obj).

The performance issue identified with the previous case example can be gen-
eralized to any objective obj in which groups of Ai’s share the same weights:

obj = τ1 + . . . + τm, (5)
∧m

j=1 ((τj = wj · ∑kj

i=1 Aji) ∧ (0 ≤ τj) ∧ (τj ≤ wj · kj)), (6)

where the logically-redundant constraints (0 ≤ τj) ∧ (τj ≤ wj · kj) are added for
the same reason as with (3).

4 Combining OMT with Sorting Networks

Notationally, the symbols �,⊥, ∗ denote respectively “true”, “false” and “unas-
signed”. We represent truth assignment as sets (or conjunctions) of literals s.t.
a positive [resp. negative] literal denotes the fact that the corresponding atom is
assigned to � [resp. ⊥]. Given a Boolean formula ϕ and two truth assignments
μ, η on the atoms in ϕ, “〈ϕ, μ〉 �bcp η” denotes the fact that all literals in η are
inferred by BCP on ϕ if all literals in μ are asserted. (Notice that “〈ϕ, μ〉 �bcp η”
is stronger than “ϕ ∧ μ |= η”.)
4 The fact that such call is actually performed depends on the early-pruning strategy

implemented in the OMT solver; alternatively, a possibly-expensive T -propagation
step on the previous LRA-Solver call has a similar effect. (See e.g. [5,27].)

On Optimization Modulo Theories, MaxSMT and Sorting Networks 237

When dealing with MaxSMT and OMT with PB objectives in the form

obj = w · ∑n
i=1 Ai (7)

a solution for improving search efficiency is to reduce the dependency on the
expensive LRA-Solver by better exploiting BCP with the aid of Boolean bidi-
rectional sorting networks.

Definition 1. Let SN[A,B] be a CNF Boolean formula on n input Boolean vari-

ables A
def
= {A1, . . . , An} and n output Boolean variables B

def
= {B1, . . . , Bn},

possibly involving also auxiliary Boolean variables which are not mentioned.
We say that SN[A,B] is a bidirectional sorting network if and only if,

for every m and k s.t. n ≥ m ≥ k ≥ 0 and for every partial truth assignment μ
s.t. μ assigns exactly k input variables Ai to � and n − m variables Ai to ⊥:

〈SN[A,B], μ〉 �bcp { B1, . . . , Bk}, (8)
〈SN[A,B], μ〉 �bcp {¬Bm+1, . . . ,¬Bn}. (9)
〈SN[A,B], μ ∪ {¬Bk+1}〉 �bcp {¬Ai s.t. Ai unassigned in μ}, (10)
〈SN[A,B], μ ∪ { Bm}〉 �bcp {Ai s.t. Ai unassigned in μ}. (11)

The schema of a bidirectional sorting network is depicted in Fig. 2.
(8)–(9) state that the output values B of SN[A,B] are propagated from the

inputs A via BCP. (10)–(11) describe how assigning output variables B propa-
gates back to input variables A: (10) states that, when k Ai’s are true and Bk+1

is false, then all other Ai’s are forced to be false by BCP; dually, (11) states
that, when n − m Ai’s are false and Bm is true, then all other Ai’s are forced
to be true by BCP. (If any of the above BCP assignments conflicts with some
previous assignment, a conflict is produced.)

Given an OMT problem 〈ϕ, obj〉, where obj is as in (7), and a Boolean formula
SN[A,B] encoding a bidirectional sorting network relation as in Definition 1, we
extend ϕ in (2)–(4) as follows:

ϕ′ = ϕ ∧ SN[A,B] ∧
n∧

i=1

⎧
⎪⎨

⎪⎩

(¬Bi ∨ (i · w ≤ obj)) ∧
(Bi ∨ (obj ≤ (i − 1) · w)) ∧
(¬(i · w ≤ obj) ∨ ¬(obj ≤ (i − 1) · w))

(12)

Fig. 2. The basic schema of a bidirectional sorting network.

238 R. Sebastiani and P. Trentin

and optimize obj over ϕ′. Notice here that the third line in Eq. 12 is LRA-valid,
but it allows for implying the negation of (obj ≤ (i − 1) · w) from (i · w ≤ obj)
(and vice versa) directly by BCP, without any call to the LRA-Solver.

Consider (8)–(9) and assume that μ assigns k Ais to � and n − m to ⊥ as
in Definition 1. Then (8) with (12) forces the unit-propagation of B1, . . . , Bk,
and then, among others, of (k · w ≤ obj), while (9) with (12) forces the unit-
propagation of ¬Bm+1, . . . ,¬Bn, and then, among others, of (obj ≤ m ·w). This
automatically restricts the range of obj to [k ·w,m ·w], obtaining the same effect
as (2)–(4).

The benefits of the usage of SN[A,B] are due to both (10) and (11). When
the optimization search finds a new minimum k · w and a unit clause in the
form ¬(k · w ≤ obj) is learned (see e.g. [28]) and ¬Bk is unit-propagated on
(12), then as soon as k − 1 Ais are set to True, all the remaining n − k + 1 Ais
are set to False by BCP (10). A dual case occurs when some lower-bound unit
clause ¬(obj ≤ k · w) is learned (e.g., in a binary-search step [28]) and Bk+1 is
unit-propagated on (12): as soon as n − k − 1 Ais are set to False, then all the
remaining k + 1 Ais are set to True by BCP (11).

Example 2. Figure 3 considers the same scenario as in Example 1, in which we
extend the encoding with a bidirectional sorting-network relation as in (12). The
behaviour is identical to that of Example 1 until the assignment μ is generated,
the unit clause ¬(2 ≤ obj), and the procedure backtracks for the first time
(Fig. 3 left). This causes the unit-propagation of ¬B2 on (12). As soon as A1 is
picked as new decision, ¬A2,¬A3,¬A4 are unit propagated (10), saving up to

(
4
2

)

(expensive) calls to the LRA-Solver (Fig. 3 center). Then ¬(1 ≤ obj) is learned,
and the search proceeds (Fig. 3 right).

Fig. 3. An example of OMT search with sorting networks.

On Optimization Modulo Theories, MaxSMT and Sorting Networks 239

We generalize this approach to deal with the general objectives as in (5)–(6).
In this case a separate sorting circuit is generated for each term τj , and con-
straints in the form

∧m
j=1

∧kj

i=1(¬(wj · i ≤ obj) → ¬(wj · i ≤ τj)), (13)

are added to ensure that the circuit is activated by BCP.

4.1 Bidirectional Sorting Networks

Unlike the usage of sorting networks in other contexts, which consider only (8)
and (10) as relevant properties (e.g. [32]), we are interested in sorting networks
which propagate both � and ⊥ values in both directions (i.e., which comply
with all properties (8)–(11)). To this extent, we have considered two encodings:
the sequential counter encoding in [32], which we have extended to comply with
all properties (8)–(11), and the cardinality network encoding in [1,4].

Bidirectional Sequential Counter Encoding. The sequential counter encoding
LTn,k

SEQ for ≤ k(A1, . . . , An) presented in [32] consists of O(k · n) clauses and
variables and complies with (8) and (10). The circuit is given by the compo-
sition of n sub-circuits, each of which computes Si =

∑i
j=1 Aj , represented in

unary form with the bits Si,j , i.e., Si,j = � if
∑i

r=1 Ar ≥ j, so that Bj
def= Sn,j ,

j ∈ [1 . . . n]. The (CNF version of the)5 following formula is the encoding of
LTn,k

SEQ presented in [32], with k
def= n:

(A1 → S1,1) ∧ ∧n
i=2{((Ai ∨ Si−1,1) → Si,1)} ∧ (14)

∧n
i=2{(¬Ai ∨ ¬Si−1,n)} ∧ ∧n

j=2{(¬S1,j)} ∧ (15)
∧n

i,j=2{(((Ai ∧ Si−1,j−1) ∨ Si−1,j) → Si,j)} (16)

Notice that, in order to reduce the size of the encoding, in (14)–(16) only right
implications “→” were used to encode each gate in the Boolean sorting circuit
[32], so that (14)–(16) complies with (8) and (10) but not with (9) and (11). To
cope with this fact, we have added the following part, which reintroduces the
left implications “←” of the encoding of each gate in (14) and (16), making it
compliant also with (9) and (11):

(A1 ← S1,1) ∧ ∧n
i=2{((Ai ∨ Si−1,1) ← Si,1)} ∧ (17)

∧n
i,j=2(((Ai ∧ Si−1,j−1) ∨ Si−1,j) ← Si,j). (18)

Bidirectional Cardinality Network Encoding. The cardinality network encoding
presented in [1,4,13], based on the underlying sorting scheme of the well-known
merge-sort algorithm, has complexity O(n log2 k) in the number of clauses and

5 Here (14)–(18) are written as implications to emphasize the directionality of the
encodings.

240 R. Sebastiani and P. Trentin

variables. Due to space limitations, we refer the reader to [1,4] for the encoding
of cardinality networks we used in our own work. Notice that, differently than
in the previous case, this sorting network propagates both � and ⊥ values in
both directions (i.e., it complies with all properties (8)–(11) [1,4] and it is thus
suitable to be used within OMT without modifications.

Both of the previous encodings are istantiated assuming k = n, since the
sorting network is generated prior to starting the search. Therefo re, the cardi-
nality network circuit looks more appealing than the sequential counter encoding
due to its lower complexity in terms of clauses and variables employed.

5 Experimental Evaluation

We extended OptiMathSAT with a novel internal preprocessing step, which
automatically augments the input formula with a sorting network circuit of
choice between the bidirectional sequential counter and the cardinality network,
as described in Sect. 4. To complete our comparison, we also implemented in
OptiMathSAT two MaxSAT-based approaches, the max-resolution approach
implemented in νZ [8,18] and (for MaxSMT only) the lemma-lifting approach
of [12], using Maxino [2] as external MaxSAT solver.

Here we present an extensive empirical evaluation of various MaxSAT-based
and OMT-based techniques in OptiMathSAT [23,30] and νZ [9,22]. Overall,
we considered >20,000 OMT problems and run >270,000 job pairs. The prob-
lems were produced either by CGM-Tool [10] from optimization of Constrained
Goal Models [19,20] (a modeling and automated-reasoning tool for requirement
engineering) or by PyLMT [24] from (Machine) Learning Modulo Theories [34].
We partition these problems into two distinct categories. In Sect. 5.1 we analyze
problems which are solvable by MaxSAT-based approaches, like those with PB
objective functions or their lexicographic combination, so that to allow both νZ
and OptiMathSAT to use their MaxSAT-specific max-resolution engines (plus
others). In Sect. 5.2 we analyze problems which cannot be solved by MaxSAT-
based approaches, because the objective functions involve some non-PB compo-
nents, forcing to restrict to OMT-based approaches only.

The goal of this empirical evaluation is manyfold:

(i) compare the performance of MaxSAT-based approaches wrt. OMT-based
ones, on the kind of OMT problems where the former are applicable;

(ii) evaluate the benefits of sorting-network encodings with OMT-based
approaches (and also with MaxSAT-based ones);

(iii) compare the performances of OptiMathSAT with those of νZ.

For goals (i) and (ii) we used the following configurations of OptiMathSAT.

OMT-based: standard, enriched with the bidirectional sequential-counter and
cardinality sorting network;

MaxSAT-based: the above-mentioned max-resolution implementation, with
and without the cardinality sorting network, and lemma-lifting (for pure
MaxSMT only).

On Optimization Modulo Theories, MaxSMT and Sorting Networks 241

For goal (iii) we also used the following configurations of νZ.6

OMT-based: standard (encoded as in (2)–(4)).
MaxSAT-based: using alternatively the internal implementations of the max-

resolution [8,18] and Wmax [21] procedures.

Each job pair was run on one of two identical Ubuntu Linux machines featur-
ing 8-core Intel-Xeon@2.20GHz CPU, 64 GB of ram and kernel 3.8-0-29. Impor-
tantly, we verified that all tools/configurations under test agreed on the results
on all problems when terminating within the timeout. (The timeout varies with
the benchmark sets, see Sects. 5.1 and 5.2.) All benchmarks, as well as our exper-
imental results and all the tools which are necessary to reproduce the results,
are available [33].

5.1 Problems Suitable for MaxSAT-Based Approaches

Test Set #1: CGMs with Lexicographic PB Optimization. In our first
experiment we consider the set of all problems produced by CGM-Tool [10]
in the experimental evaluation in [19]. They consist of 18996 automatically-
generated formulas which encode the problem of computing the lexicographically-
optimum realization of a constrained goal model [19], according to a prioritized
list of (up to) three objectives 〈obj1, obj2, obj3〉. A solution optimizes lexico-
graphically 〈obj1, . . . , objk〉 if it optimizes obj1 and, if more than one such obj1-
optimum solutions exists, it also optimizes obj2,. . . , and so on; both OMT-based
and MaxSAT-based techniques handle lexicographic optimization, by optimiz-
ing obj1, obj2, . . . in order, fixing the value of each obji to its optimum as soon
as it is found [8,9,30,31]. In this experiment, we set the timeout at 100 s. The
results are reported in Fig. 4 (top and middle).

As far as OptiMathSAT (OMT-based) is concerned, extending the input
formula with either of the sorting networks increases the number of benchmarks
solved within the timeout. Notably, the cardinality network encoding –which
has the lowest complexity– scores the best both in terms of number of solved
benchmarks and solving time. On the other hand, the sequential counter network
is affected by a significant performance hit on a number of benchmarks, as it
is witnessed by the left scatter plot in Fig. 4. This not only affects unsatisfiable
benchmarks, for which using sorting networks appears to be not beneficial in
general, but also satisfiable ones.

A possible strategy for overcoming this performance issue is to reduce the
memory footprint determined by the generation of the sorting network circuit.

6 Notice that, unlike OptiMathSAT, νZ selects automatically its presumably-best
configuration for a given input problem. In particular, when MaxSMT-encodable
problems are fed to νZ –like, e.g., those in Sect. 5.1– νZ forces automatically the
choice of the MaxSAT-based configuration, allowing the user only the choice of the
MaxSAT algorithm. Thus we could not test νZ also with OMT-based configura-
tion for the problems in Sect. 5.1. Alternatively, we should have disguised the input
problem, with the risk of affecting the significance or the result.

242 R. Sebastiani and P. Trentin

Fig. 4. [Top, table] Results of various solvers, configurations and encodings on all the
problems encoding CGM optimization with lexicographic PB optimization of [19,20].
(Values in boldface denote the best performance of each category; values in blue denote
the absolute best performance.) [Middle, scatterplots]. Pairwise comparison on Opti-
MathSAT (OMT-based) with/out sequential-counter encoding (left) and with/out
cardinality-network encoding (right). (Brown points denote unsatisfiable benchmarks,
blue denote satisfiable ones and green ones represent timeouts.) [Bottom, tables] Effect
of splitting the PB sums into chunks of maximum variable number (no split, 10, 15,
20 variables) with the sequential-counter encoding (left) and the cardinality-network
encoding (right). (Color figure online)

This can be easily achieved by splitting each Pseudo-Boolean sum in smaller
sized chunks and generating a separate sorting circuit for each splice. The result
of applying this enhancement, using chunks of increasing size, is shown in Fig. 4
(bottom). The data suggest that the sequential counter encoding can benefit
from this simple heuristic, but it does not reach the performances of the car-
dinality network, which are not affected by this strategy. (In next experiments
this strategy will be no more considered.)

As far as OptiMathSAT (MaxSAT-based) is concerned, we notice that it
significantly outperforms all OMT-based techniques. Remarkably, extending the
input formula with the sorting networks improves the performance also of this
configuration.

On Optimization Modulo Theories, MaxSMT and Sorting Networks 243

Fig. 5. Results of various solvers, configurations and encodings on CGM-encoding prob-
lems of [19,20] with single-objective weight-1.

As far as νZ (MaxSAT-based) is concerned, we notice that when using
the max-resolution algorithm it outperforms all other techniques by solving all
problems.

Test Set #2: CGMs with Weight-1 PB Optimization. Our second exper-
iment is a variant of the previous one, in which we consider only single-objective
optimizations and we fix all weights to 1, so that each problem is encoded as a
plain un-weighted MaxSMT problem. We set the timeout to 100 s. The results
are reported in Fig. 5.

As far as OptiMathSAT (OMT-based) is concerned, extending the input
formula with either of the sorting networks increases the number of benchmarks
solved within the timeout. Surprisingly, this time the sequential counter network
performs significantly better than the cardinality network, despite its bigger size.
(We do not have a clear explanation of this fact.)

As far as OptiMathSAT (MaxSAT-based) is concerned, we notice that
it significantly outperforms all OMT-based techniques, solving all problems.
Extending the input formula with the cardinality networks slightly worsens the
performances. Also the lemma-lifting techniques outperforms all OMT-based
techniques, solving only two problem less than the previous MaxSAT-based
techniques.

As far as νZ (MaxSAT-based) is concerned, we notice that using the max-
resolution MaxSAT algorithm it is the best scorer, although the differences
wrt. OptiMathSAT (MaxSAT-based) are negligible, whilst by using the wmax
engine the performances decrease drastically.

5.2 Problems Unsuitable for MaxSAT-Based Approaches

Here we present a couple of test sets which cannot be supported by any
MaxSAT-based technique in OptiMathSAT or νZ and, to the best of our
knowledge, no encoding of these problem into MaxSMT has ever been con-
ceived. Thus the solution is restricted to OMT-based techniques. (To this extent,

244 R. Sebastiani and P. Trentin

with OptiMathSAT we have used the linear-search strategy rather than the
default adaptive linear/binary one to better compare with the linear strategy
adopted by νZ.)

Test Set #3: CGMs with Max-Min PB Optimization. In our third exper-
iment we consider another variant of the problems in Test Set #1, in which the
three PB/MaxSMT objectives 〈obj1, obj2, obj3〉 are subject to a max-min com-
bination: each objective objj is normalized so that its range equals [0, 1] (i.e., it
is divided by

∑
i wji), then

∧3
j=1(objj ≤ obj) s.t. obj is a fresh LRA variable

is added to the main formula, and the solver is asked to find a solution making
obj minimum (see [30]). Notice that max-min optimization guarantees a sort of
“fairness” among the objectives obj1, . . . , obj3. Since the problem is more com-
plex than the previous ones and the most-efficient MaxSAT-based techniques
are not applicable, we increased the timeout to 300 s. The results are shown in
Fig. 6. (Unlike with Fig. 4, since the difference in performance between Opti-
MathSAT with the two sorting networks is minor, here and in Fig. 7 we have
dropped the scatterplot with the sequential-counter encoding and we introduced
one comparing with νZ instead.)

Looking at the table and at the scatterplot on the left, we notice that enhanc-
ing the OMT-based technique of OptiMathSAT by adding the cardinality net-
works improves significantly the performances. Also, looking at the table and
at the scatterplot on the right, we notice that OMT-based technique of Opti-
MathSAT, with the help of sorting networks, performs equivalently or slightly
better than that of νZ.

Fig. 6. [Table:] results of various solvers with OMT-based configurations on CGMen-
coding problems of [19,20] with max-min objective functions. [Left scatterplot:] Opti-
MathSAT + card. network vs. plain OptiMathSAT. [Right scatterplot:] νZ vs. Opti-
MathSAT + card. network.

On Optimization Modulo Theories, MaxSMT and Sorting Networks 245

Test Set #4: LMT with Mixed Complex Objective Functions. In our
fourth experiment we consider a set of 500 problems taken from PyLMT [24], a
tool for Structured Learning Modulo Theories [34] which uses OptiMathSAT
as back-end oracle for performing inference in the context of machine learning
in hybrid domains. The objective functions obj are complex combinations of PB
functions in the form:

obj
def=

∑

j

wj · Bj + cover −
∑

k

wk · Ck − |K − cover|, (19)

s.t. cover
def=

∑
i wiAi, (20)

Ai, Bj , Ck being Boolean atoms, wi, vj , zk,K being rational constants. We
imposed a timeout of 600 s. The results are presented in Fig. 7.

Looking at the table and at the scatterplot on the left, we notice that enhanc-
ing the OMT-based technique of OptiMathSAT by adding the cardinality net-
works improves the performances, although this time the improvement is not
dramatic. (We believe this is due that the values of the weights wi, vj , zk,K are
very heterogeneous, not many weights share the same value.) Also, looking at the
table and at the scatterplot on the right, we notice that OMT-based technique
of OptiMathSAT performs significantly better than that of νZ, even without
the help of sorting networks.

Fig. 7. [Table:] results of various solvers with OMT-based configurations on LMT-
encoding problems of [34] with complex objective functions. [Left scatterplot:]
OptiMathSAT + card. network vs. plain OptiMathSAT. [Right scatterplot:] νZ
vs. OptiMathSAT + card. network.

246 R. Sebastiani and P. Trentin

Discussion. We summarize the results as follows.

(a) When applicable, MaxSAT-based approaches performed much better than
OMT-based ones, in particular when adopting Maximum-Resolution as
MaxSAT engine.

(b) Bidirectional sorting-network encodings improved significantly the perfor-
mances of OMT-based approaches, and often also of MaxSAT-based ones.

(c) νZ performed better than OptiMathSAT on MaxSAT-based approaches,
whilst the latter performed sometimes similarly and sometimes significantly
better on OMT-based ones, in particular when enhanced by the sorting-
network encodings.

6 Conclusion and Future Work

MaxSMT and OMT with Pseudo-Boolean objective functions are important
sub-cases of OMT, for which specialized techniques have been developed over
the years, in particular exploiting state-of-the-art MaxSAT procedures. When
applicable, these specialized procedures seem to be more efficient than general-
purpose OMT. When they are not applicable, OMT-based technique can strongly
benefit from the integration with bidirectional sorting networks to deal with PB
components of objectives.

OMT is a young technology, with large margins for improvements. Among
others, one interesting research direction is that of integrating MaxSAT-based
techniques with standard OMT-based ones for efficiently handling complex
objectives and constraints, so that to combine the efficiency of the former with
the expressivity of the latter.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: A parametric
approach for smaller and better encodings of cardinality constraints. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 80–96. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40627-0 9

2. Alviano, M., Dodaro, C., Ricca, F.: A maxsat algorithm using cardinality con-
straints of bounded size. In: Proceedings of the 24th International Conference on
Artificial Intelligence, IJCAI 2015, pp. 2677–2683. AAAI Press (2015)

3. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M., Theories, S.M.: An effi-
cient approach for the resource-constrained project scheduling problem. In: SARA
(2011)

4. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

5. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories,
Chap. 26, vol. 185, pp. 825–885, Biere et al. [6], February 2009

6. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-
bility, vol. 185. IOS Press, February 2009

7. Bjorner, N.: Personal communication, 02 (2016)

http://dx.doi.org/10.1007/978-3-642-40627-0_9
http://dx.doi.org/10.1007/978-3-642-40627-0_9

On Optimization Modulo Theories, MaxSMT and Sorting Networks 247

8. Bjorner, N., Phan, A.-D.: νZ - maximal satisfaction with Z3. In: Proceedings
of the International Symposium on Symbolic Computation in Software Science,
Gammart, Tunisia, December 2014. EasyChair Proceedings in Computing (EPiC).
http://www.easychair.org/publications/?page=862275542

9. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 14

10. CGM-Tool. http://www.cgm-tool.eu
11. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability

modulo the theory of costs: foundations and applications. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12002-2 8

12. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach
to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT
2013. LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39071-5 12

13. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

14. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Minimal-model-
guided approaches to solving polynomial constraints and extensions. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 333–350. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-09284-3 25

15. Li, Y., Albarghouthi, A., Kincad, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: POPL (2014)

16. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers, Chap. 4, vol. 185, pp. 131–153, Biere et al. [6], February 2009

17. Nadel, A., Ryvchin, V.: Bit-vector optimization. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 851–867. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49674-9 53

18. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided maxsat
resolution. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, 27–31 July, Québec City, Québec, Canada, pp. 2717–2723. AAAI Press
(2014)

19. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-object reasoning
with constrained goal models. Requirements Eng. 1–37 (2016). http://dx.doi.org/
10.1007/s00766-016-0263-5

20. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Requirements evolution
and evolution requirements with constrained goal models. In: Comyn-Wattiau, I.,
Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974,
pp. 544–552. Springer, Heidelberg (2016). doi:10.1007/978-3-319-46397-1 42

21. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). doi:10.1007/11814948 18

22. μZ. http://rise4fun.com/z3opt
23. OptiMathSAT. http://optimathsat.disi.unitn.it
24. PyLMT. http://www.bitbucket.org/stefanoteso/pylmt
25. Roussel, O., Manquinho, V.: Pseudo-boolean and cardinality constraints, Chap.

22, vol. 185, pp. 695–733 Biere et al. [6], February 2009
26. Sawaya, N.W., Grossmann, I.E.: A cutting plane method for solving linear gener-

alized disjunctive programming problems. Comput. Chem. Eng. 29(9), 1891–1913
(2005)

http://www.easychair.org/publications/?page=862275542
http://dx.doi.org/10.1007/978-3-662-46681-0_14
http://www.cgm-tool.eu
http://dx.doi.org/10.1007/978-3-642-12002-2_8
http://dx.doi.org/10.1007/978-3-642-39071-5_12
http://dx.doi.org/10.1007/978-3-642-39071-5_12
http://dx.doi.org/10.1007/978-3-319-09284-3_25
http://dx.doi.org/10.1007/978-3-662-49674-9_53
http://dx.doi.org/10.1007/s00766-016-0263-5
http://dx.doi.org/10.1007/s00766-016-0263-5
http://dx.doi.org/10.1007/978-3-319-46397-1_42
http://dx.doi.org/10.1007/11814948_18
http://rise4fun.com/z3opt
http://optimathsat.disi.unitn.it
http://www.bitbucket.org/stefanoteso/pylmt

248 R. Sebastiani and P. Trentin

27. Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisf. Boolean Model. Com-
put. JSAT 3(3–4), 141–224 (2007)

28. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364,
pp. 484–498. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3 38

29. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Log. 16(2), 12 (2015)

30. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 27

31. Sebastiani, R., Trentin, P.: Pushing the envelope of optimization modulo theo-
ries with linear-arithmetic cost functions. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 335–349. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 27

32. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints.
In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). doi:10.1007/11564751 73

33. http://disi.unitn.it/trentin/resources/tacas17.tar.gz
34. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif.

Intell. J. 244, 166–187 (2015). http://dx.doi.org/10.1016/j.artint.2015.04.002

http://dx.doi.org/10.1007/978-3-642-31365-3_38
http://dx.doi.org/10.1007/978-3-319-21690-4_27
http://dx.doi.org/10.1007/978-3-662-46681-0_27
http://dx.doi.org/10.1007/978-3-662-46681-0_27
http://dx.doi.org/10.1007/11564751_73
http://disi.unitn.it/trentin/resources/tacas17.tar.gz
http://dx.doi.org/10.1016/j.artint.2015.04.002

The Automatic Detection of Token Structures
and Invariants Using SAT Checking

Pedro Antonino(B), Thomas Gibson-Robinson, and A.W. Roscoe

Department of Computer Science, University of Oxford, Oxford, UK
{pedro.antonino,thomas.gibson-robinson,bill.roscoe}@cs.ox.ac.uk

Abstract. Many distributed systems rely on token structures for their
correct operation. Often, these structures make sure that a fixed number
of tokens exists at all times, or perhaps that tokens cannot be com-
pletely eliminated, to prevent systems from reaching undesired states.
In this paper we show how a SAT checker can be used to automatically
detect token and similar invariants in distributed systems, and how these
invariants can improve the precision of a deadlock-checking framework
that is based on local analysis. We demonstrate by a series of practical
experiments that this new framework is as efficient as similar incomplete
techniques for deadlock-freedom analysis, while handling a different class
of systems.

1 Introduction

Many concurrent and distributed systems rely on some token mechanism to
avoid reaching undesired states. For these systems, understanding/recognising
these token structures often leads to system invariants (i.e. system abstractions)
that are sufficiently strong to prove safety properties of the considered system.
For instance, token invariants are frequently used to show mutual exclusion
properties and deadlock freedom. In this work, motivated by deadlock-freedom
analysis, we propose two techniques that can recognise token structures using
SAT checking. The first technique detects token structures where the number
of tokens is conserved at all times, whereas the second one ensures that at least
one token exists in the system at all times.

To demonstrate how these structures can be used in the analysis of safety
properties, we combine our detection techniques with the local-analysis frame-
work for deadlock checking presented in [4] to create a more precise, albeit
still incomplete, deadlock-checking framework. Incomplete frameworks can be
far more scalable than complete ones at the cost of being unable to prove that
some deadlock-free systems are deadlock free [6,7,9,10,18,19,24]. The new token
framework handles a different class of system than current incomplete techniques
for deadlock-freedom analysis. We implement our framework, and detection tech-
niques, in a new mode of the DeadlOx tool [5], called DeadlOx-VT (for Virtual
Tokens). We reinforce that the core of our framework should be easily adaptable
for the verification of other safety properties using other formalisms.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 249–265, 2017.
DOI: 10.1007/978-3-662-54580-5 15

250 P. Antonino et al.

Outline. Section 2 briefly introduces CSP’s operational semantics, which is the
formalism upon which our strategy is based. However, this paper can be under-
stood purely in terms of communicating LTSs, and knowledge of CSP is not a
prerequisite. Section 3 presents some related invariant generation and incomplete
deadlock-freedom-checking techniques. In Sect. 4, we introduce our techniques for
automatically detecting token structures. Section 5 presents our new framework
for imprecise deadlock-freedom checking. Section 6 presents an experiment con-
ducted to assess the accuracy and efficiency of DeadlOx-VT. Finally, in Sect. 7,
we present our concluding remarks.

2 Background

The CSP notation [17,26] models concurrent systems as processes that exchange
messages. Here we describe some structures used by the refinement checker
FDR3 [15] in implementing CSP’s operational semantics. As this paper does
not depend on the details of CSP, we do not describe the details of the language
or its semantics. These can be found in [26].

FDR3 interprets CSP terms as a labelled transition system (LTS).

Definition 1. A labelled transition system is a 4-tuple (S,Σ,Δ, ŝ) where S is
a set of states, Σ is the alphabet, Δ ⊆ S × Σ × S is a transition relation, and
ŝ ∈ S is the starting state.

FDR3 represents concurrent systems as supercombinator machines. A super-
combinator machine consists of a set of component LTSs along with a set of
rules that describe how components transitions should be combined. We restrict
FDR3’s usual definition to systems with pairwise communication, as per [5,21].

Definition 2. A triple-disjoint supercombinator machine is a pair (L,R) where:

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;
– R is a set of rules of the form (e, a) where:

• e ∈ (Σ ∪ {−})n specifies the event that each component must perform,
where − indicates that the component performs no event. e must also be
triple-disjoint, that is, at most two components must be involved in a rule.

triple disjoint(e) =̂ ∀i, j, k ∈ {1 . . . n} | i �= j ∧ j �= k ∧ i �= k•
(ei = − ∨ ej = − ∨ ek = −)

• a ∈ Σ is the event the supercombinator performs.

We say that two components interact/communicate in a supercombinator
machine, if a rule in this system requires the participation of these two com-
ponents. Given a supercombinator machine, a corresponding LTS can be con-
structed.

The Automatic Detection of Token Structures and Invariants 251

Definition 3. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi,Δi, ŝi). The LTS induced by S is the tuple (S,Σ,Δ, ŝ) such that:

– S = S1 × . . . × Sn;
– Σ =

⋃n
i=1 Σi;

– Δ = {((s1, . . . , sn), a, (s′
1, . . . , s

′
n)) | ∃((e1, . . . , en), a) ∈ R • ∀i ∈ {1 . . . n}•

(ei = − ∧ si = s′
i) ∨ (ei �= − ∧ (si, ei, s

′
i) ∈ Δi)};

– ŝ = (ŝ1, . . . , ŝn).

We write s
e−→ s′ if (s, e, s′) ∈ Δ. There is a path from s to s′ with the

sequence of events 〈e1, . . . , en〉 ∈ Σ∗, represented by s
〈e1,...,en〉−−−−−−→ s′, if there exist

s0, . . . , sn such that s0
e1−→ s1 . . . sn−1

en−→ sn, s0 = s and sn = s′.
From now on, we use system state (component state) to designate a state

in the system’s (component’s) LTS. Also, for the sake of decidability, we only
analyse supercombinator machines with a finite number of components, which
are themselves represented by finite LTSs with finite alphabets.

Definition 4. A LTS (S,Σ,Δ, ŝ) deadlocks in state s if and only if the predicate
deadlock(s) =̂ reachable(s) ∧ blocked(s) holds, where reachable(s) =̂ ∃t ∈ Σ∗ •
ŝ

t−→ s, and blocked(s) =̂ ¬∃s′ ∈ S; e ∈ Σ • s
e−→ s′.

3 Related Work

System invariants are meant to capture compact abstractions of a system’s
behaviour. For concurrent/distributed systems, invariants are often calculated
by combining component invariants using rules that carefully analyse how com-
ponents interact [5,8,13,20]. Component invariants can be automatically gen-
erated using static analysis [5] or by custom-made generation rules [13]. These
automatic invariant-generation techniques tend to be either too imprecise to
capture token structures in general [5], or too precise so that it captures not
only token structures but a much more complex abstraction of the system [13].
Token invariants are commonly used to prove mutual-exclusion properties and
deadlock-freedom for Petri nets [1,23]. However, many systems are more natu-
rally described by formalisms where token structures are not obviously recognis-
able. We are not aware of any previous use of SAT checkers to calculate token-like
invariants.

In the context of deadlock-analysis, we proposed Pair [4], a technique that
uses local analysis to check deadlock-freedom. It characterises a deadlock by
analysing how pairs of components interact using the following projection:

Definition 5. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine. The
pairwise projection Si,j of the machine S on components i and j is given by:

Si,j = (〈Li, Lj〉, {((ei, ej), a) | ∃((e1, . . . , en), a) ∈ R • (ei �= − ∨ ej �= −)})

Pair characterises a deadlock as a state of the system that is fully consistent
with local reachability and blocking information. We called it a Pair candidate.

252 P. Antonino et al.

Definition 6. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, and
(S,Σ,Δ, ŝ) its induced LTS. A state s = (s1, . . . , sn) ∈ S is a Pair candidate iff
pair candidate(s) holds, where:

– pair candidate(s) =̂ pairwise reachable(s) ∧ blocked(s)
– pairwise reachable(s) =̂ ∀i, j ∈ {1 . . . n} | i �= j • reachablei,j((si, sj))

reachablei,j is the reachable predicate for the pairwise projection Si,j.

The analysis of pairs of components cannot precisely characterise reachabil-
ity; Pair approximates reachability with pairwise reachable(s). This limitation
makes this technique unable to show unreachability if that is due to some global
property of the system’s behaviour.

To cope with this inability, some incomplete frameworks combine the use
of local analysis with some system invariants [5,22]. However, these techniques
rely on a degree of predicability in how individual components interact. So, they
often work well on token rings where tokens take a predictable route round the
network, but they do not seem to do so on more complex uses of tokens. The
following two deadlock-free systems employ a token mechanism where compo-
nents can dynamically choose which other component to pass a token to; this
unpredictability makes these techniques unable to prove them deadlock free.

Running example 1. Let S = (〈L0, L1, L2〉,R) be the supercombinator machine
with L0, L1 and L2 defined in Fig. 1 and R the set of rules that require com-
ponents to synchronise on shared events; e.g. for event tk0,1, we have rule
((tk0,1, tk0,1,−), tk0,1). An arrow with two labels represents two transitions with
the same source and target states but with different labels. S implements a token
network where process L0 has the token initially and event tki,j represents the
passage of a token from Li to Lj . Both Pair and the techniques in [5] are unable
to show (s1, s2, s2) unreachable, so they consider it a deadlock candidate.
�

s0 s1 s2

tk1,0

tk2,0

work0

tk0,1

tk0,2
s0 s1 s2

tk0,1

tk2,1 work1

tk1,0

tk1,2

s0 s1 s2

tk0,2

tk1,2 work2

tk2,0

tk2,1

Fig. 1. LTSs of components L0, L1, and L2, respectively.

Running example 2. Let S = (〈L0, L1, L2〉,R) be the supercombinator machine
with L0, L1 and L2 defined in Fig. 2 and R the set of rules that requires com-
ponents to synchronise on shared events except for τ that can be performed
independently. Component i can receive a message (i.e. a token) either from
component j, via event tkj,i, or from its user, via event ini. If it holds a message,
it can pass the message to component j, via event tki,j , or output the message
to its user, via outi. The τ transitions represent an internal (non-deterministic)
decision of the component. Neither Pair nor the techniques in [5] can show that
the state (s6, s6, s6) is unreachable, so they flag it as a potential deadlock.
�

The Automatic Detection of Token Structures and Invariants 253

s0 s1

s2

s3

s4

s5

s6

ini

tki⊕1,i

tki⊕2,i

τ

τ

tki⊕1,i

tki⊕2,i

outi

tki⊕1,i

tki⊕2,i

tki,i⊕1

tki,i⊕2

τ

outi

τ

tki,i⊕1

tki,i⊕2

Fig. 2. LTS of component Li where ⊕ represents addition modulo 3.

4 Detecting Token Structures and Invariants Using SAT

Many concurrent systems use some sort of token mechanism to guide interactions
between components and avoid undesired behaviours. In this section, we present
two techniques that interpret concurrent systems as token networks, trying to
understand how virtual tokens might flow in these systems. We use “virtual” as
tokens are not part of the system itself but rather an element of the abstract
token mechanism it employs. Each technique assumes a particular policy that
controls how tokens can flow. So, our techniques try to mark in which component
states a component holds a token; this marking represents a token flow. This
marking is later used to create reachability invariants (i.e. predicates over system
states that over-approximate reachability) for the system under analysis.

4.1 Conservative Technique

Each technique proposes a SAT formula F with a boolean variable ti,s for each
state s of each component i such that the values for these variables in a sat-
isfying assignment creates a marking of the component states. The boolean
value assigned to ti,s represents whether the component i is holding a vir-
tual token at state s or not. F is a conjunction of three sub-formulas: Policy,
NotAlwaysHoldingToken and Participation.

Policy enforces a token-flow policy; it dictates how tokens are manipulated
when components (inter)act (i.e. a system transition takes place). As the system
being analysed is triple disjoint, either a component acts on its own (i.e. an
individual transition takes place) or a pair of components agrees on a rule and
interact (i.e. a pairwise transition takes place). So, this sub-formula relies on
constraint enci(s, s′) to dictate how tokens are to be manipulated by individual
transitions, whereas enci,j(s, s′) is its counterpart for pairwise transitions.

The first technique we propose, which we refer to as the conservative tech-
nique, implements a token-conservation policy. For an individual transition
(s, a, s′) of component i, enci(s, s′) is as follows.

enci(s, s′) =̂ ti,s ↔ ti,s′ (1)

254 P. Antonino et al.

For a pairwise transition (s, a, s′) =̂ ((s0, s1), a, (s′
0, s

′
1)) involving components

i and j, enci,j(s, s′) is as follows. It allows exchanges of tokens between i and j.
It relies on the auxiliary variables maxsrc, minsrc, maxtgt, and mintgt to count
the number of tokens in the source s and target s′ states, respectively.

enci,j(s, s′) =̂ maxsrc ↔ (ti,s0 ∨ tj,s1) ∧ maxtgt ↔ (ti,s′
0
∨ tj,s′

1
)

∧ minsrc ↔ (ti,s0 ∧ tj,s1) ∧ mintgt ↔ (ti,s′
0
∧ tj,s′

1
)

∧ maxsrc ↔ maxtgt ∧ minsrc ↔ mintgt

(2)

Policy ensures a token-policy by making sure that for all system transitions
either enci or enci,j is enforced, according to whether the transition is individual
or pairwise, respectively. Thanks to triple-disjointness, the transitions of system
S can be efficiently over-approximated by the examination of components, or
rather component projections Si, and pairs of interacting components, or rather
pairwise projections Si,j as per Definition 5.

Definition 7. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine. The
component projection Si of the machine S on components i is given by:

Si = (〈Li〉, {((ei), a) | ∃((e1, . . . , en), a) ∈ R • ei �= −})

For a component projection Si, transitions of its induced LTS that are derived
from pure-individual rules (i.e. rules that come from individual rules in S) rep-
resent possible system transitions, whereas transitions derived from truncated
rules (i.e. rules that come from pairwise rules of S that involve i and another
component of the system) do not. For pairwise projections Si,j , only transitions
derived from pairwise rules in Si,j represent possible system transitions.

Definition 8. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine, Δi

the transition relation of the LTS induced by component projection Si, Δi,j the
transition relation of the LTS induced by pairwise projection Si,j, and Sync the
set of pairs of components interacting, i.e. participating together in a rule, in S.

Policy =̂ (
∧

i∈{1...n}
∧(s,a,s′)∈Δi

∧indi(s,s′)

enci(s, s′)) ∧ (
∧

(i,j)∈Sync
∧(s,a,s′)∈Δi,j

∧pairi,j(s,s′)

enci,j(s, s′))

where indi(s, s′) holds iff (s, a, s′) is a transition derived from a pure-individual
rule of Si involving component i, and pairi,j(s, s′) holds iff (s, a, s′) is a transition
derived from an pairwise rule of Si,j.

The sub-formulas NotAlwaysHoldingToken and Participation forbid some
trivial markings (i.e. in which tokens do not get exchanged between components)
from being valid assignments for our formula. The NotAlwaysHoldingToken
sub-formula forbids assignments where some component always holds a token,
though we do permit components that never hold a token. Participation requires
the system to hold at least one token initially. To implement Participation, we
create the participation variables pi. In a satisfying assignment, the variable pi

states whether component i participates on the token-flow represented by this
assignment. These variables play an important role as we present later.

The Automatic Detection of Token Structures and Invariants 255

Definition 9. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Si and ŝi gives the set of states and the starting state of component Li, respec-
tively.

NotAlwaysHoldingToken =̂
∧

i∈{1...n}
(

∨

s∈Si

¬ti,s)

Participation =̂
∧

i∈{1...n}
(pi ↔ (

∨

s∈Si

ti,s)) ∧ ∨

i∈{1...n}
ti,ŝi

For the conservative technique, we end up with the following formula:

Definition 10. For the supercombinator machine S,

F =̂ Policy ∧ NotAlwaysHoldingToken ∧ Participation

where Policy uses enci and enci,j as defined in (1) and (2), respectively.

This technique uses function FindMarkings in Algorithm 1 to systemati-
cally find markings for different parts of the systems. For this algorithm, we use
the function Solve to solve SAT formulas. It returns whether the formula is
satisfiable and updates the global field A with a satisfying assignment. When
Solve is called for an unsatisfiable formula, A is not updated. We use A(var)
to denote the value assigned to variable var on the satisfying assignment A.

The call to Solve in FindMarkings tries to find a marking for some subsys-
tem (i.e. a subset of components) of the system S. Note that the Participation
clause only requires some subsystem of S to participate in a token-flow. If a
marking is found, it is minimised by Minimise. The minimal marking is, then,
recorded by ExtractMarking. We modify our formula at the end of each iter-
ation to ensure that in the next iteration we look for a marking for a different
subsystem; this also guarantees that our function terminates.

Minimise iteratively minimises the subsystem currently marked (i.e. the com-
ponents that participate in the token-flow associated with the current satisfying
assignment in A), making sure a component in this subsystem holds a token ini-
tially, until a minimal subsystem is found. It begins with the subsystem marked
by FindMarkings, and at each iteration, it tries to mark a strictly smaller
subsystem. Finally, ExtractMarking records in the global fields partitions
and marking the subsystem marked and the marking itself.

The proposed minimisation attempts to more finely capture the behaviour of
systems. Small(er) subsystems imply that we know more precisely where tokens
are confined, and so, we have a better understanding on how tokens can move
around. For instance, we can better identify illegal behaviours such as a token
that has moved between two confined subsystems.

We use the information recorded in partitions and marking to create reach-
ability invariants. As we enforce the preservation of the number of tokens for any
system transition, all reachable states must have the same number of tokens. So,
we can calculate the number of tokens at the initial state and use it to enforce
this sum invariant ; we systematically enforce it for each subsystem in partitions.

256 P. Antonino et al.

Algorithm 1. Algorithm to find conservative token-structures
1: function FindMarkings(S)
2: partitions := ∅; marking := ∅
3: Construct F for S
4: while Solve(F) do
5: Minimise(F)
6: ExtractMarking(A)
7: F := F ∧ (

∧
i∈{1...n}∧A(pi)

¬pi)
8: end while
9: end function

10: function Minimise(F)
11: repeat
12: F := F ∧ (

∨
i∈{1...n}
∧A(pi)

¬pi) ∧ (
∨

i∈{1...n}
∧A(pi)

ti,ŝi) ∧ (
∧

i∈{1...n}
∧¬A(pi)

¬pi)

13: until not Solve(F)
14: end function

15: function ExtractMarking(A)
16: partitions := partitions ∪ {{i | i ∈ {1 . . . n} ∧ A(pi)}}
17: marking := marking ∪ {(i, s,A(ti,s)) | i ∈ {1 . . . n} ∧ s ∈ Si ∧ A(pi)}
18: end function

Definition 11. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
ŝi is the starting state for Li, partitions and marking the sets recorded after the
execution of FindMarkings(S) in Algorithm1, and marking(i, s) yields 1 if
the state s of component i is assigned to true, and 0 otherwise. The reachability
invariant reachC(s) is as follows:

reachC(s) =̂ ∀sub ∈ partitions • N(sub) = Tks(sub, s)

where N(sub) =̂
∑

i∈sub

marking(i, ŝi), and Tks(sub, s) =̂
∑

i∈sub

marking(i, si).

This technique should be particularly useful when applied to systems that
implement a token-conservation mechanism to avoid reaching undesired states.
We illustrate the application of this technique with Running Example 1.

Running example 1. FindMarkings(S) can result in partitions = {{0, 1, 2}}
and marking = {(0, s0), (0, s1), (1, s1), (1, s2), (2, s1), (2, s2)}; for conciseness,
we represent a marking by the states that are assigned to true, so the miss-
ing states are assigned to false. With this information, we create the invariant
reachC(s) =̂ Tks({0, 1, 2}, s) = 1. As we have that Tks({0, 1, 2}, (s1, s2, s2)) = 3,
we have that this technique is able to prove that (s1, s2, s2) is unreachable. This
reachability invariant can show that this system can never be either filled with
tokens, as in (s1, s2, s2), or empty, as in (s2, s0, s0). As these are the two cases in
which this system is blocked, this technique can prove that S is deadlock-free.

The Automatic Detection of Token Structures and Invariants 257

In this example, S is a token network with three components and a single token,
initially held by L0. This technique can, in fact, show that similar systems with
N components and n (where 0 < n < N) tokens are deadlock-free.
�

4.2 Existential Technique

We term our second approach the existential technique. It enforces a token-flow
policy where tokens can be created and destroyed but not eliminated altogether.
We implement this new policy using the following definitions for enci and enci,j .
For an individual transition (s, a, s′) of component i, we define enci(s, s′) as
follows. It says that such transitions can create but not destroy tokens.

enci(s, s′) =̂ ti,s → ti,s′ (3)

For a pairwise transition (s, a, s′) =̂ ((s0, s1), a, (s′
0, s

′
1)) involving components

i and j, i and j can create or destroy tokens, provided that whenever a token is
destroyed one of i and j continues to hold one. Thus the only way a token can be
destroyed is in a pairwise transition where both parties hold a token before and
only one after. The auxiliary variables hastksrc and hastktgt represent whether
a component holds a token in the source s and target s′ states, respectively.

enci,j(s, s′) =̂ hastksrc ↔ (ti,s0 ∨ tj,s1) ∧ hastktgt ↔ (ti,s′
0
∨ tj,s′

1
)

∧ hastksrc ↔ hastktgt

(4)

So, for this technique, we have the following SAT formula:

Definition 12. For the supercombinator machine S,

F =̂ Policy ∧ NotAlwaysHoldingToken ∧ Participation

where Policy uses enci and enci,j as defined in (3) and (4), respectively.

The existential technique uses FindMarkings presented in Algorithm 2 to
systematically find markings. It works exactly like the one presented for the
conservative technique except that it does a second minimisation step, carried
out by FurtherMinimise. The functions Minimise and ExtractMarking
are as described in Algorithm 1.

While Minimise tries to minimise the subsystem being marked, Further-
Minimise tries to minimise the timespan in which components hold a token.
Given the minimal assignment found by Minimise, it tries to reduce the num-
ber of component states where tokens are held1. This second minimisation is an
attempt to prevent the creation of spurious tokens; for instance, the creation of
unnecessary tokens by individual transitions. Again, markings and subsystems
marked are recorded in the global fields marking and partitions.

1 Setting the polarity of SAT variables, so that the solver first decides to assign vari-
ables to false, can substantially speed this minimisation process.

258 P. Antonino et al.

Algorithm 2. Algorithm to find existential token-structures
1: function FindMarkings(S)
2: partitions := ∅; marking := ∅
3: Construct F for S
4: while Solve(F) do
5: Minimise(F)
6: FurtherMinimise(F)
7: ExtractMarking(A)
8: F := F ∧ (

∧
i∈{1...n}∧A(pi)

¬pi)
9: end while

10: end function

11: function FurtherMinimise(F)
12: repeat
13: F := F ∧ (

∨
i∈{1...n}∧A(pi)
∧s∈Si∧A(ti,s)

¬ti,s) ∧ (
∧

i∈{1...n}∧A(pi)
∧s∈Si∧¬A(ti,s)

¬ti,s)

14: until not Solve(F)
15: end function

The information in partitions and marking is, once again, used to create
reachability invariants. Note that our token-flow policy allows tokens to be
destroyed as long as tokens are not completely annihilated from the system.
So, as this technique guarantees that at least a token exists initially, a token
should exists at all times. The reachability invariant that we propose enforce
this existential property for each subsystem in partitions.

Definition 13. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
ŝi is the starting state for Li, partitions and marking the sets recorded after
the execution of FindMarkings(S) in Algorithm2, and marking(i, s) yields
1 if the state s of component i is assigned to true, and 0 otherwise. Also,
Tks(sub, s) =̂

∑

i∈sub

marking(i, si). The reachability invariant reachE(s) is as

follows:

reachE(s) =̂ ∀sub ∈ partitions • Tks(sub, s) ≥ 1

This technique should be particularly useful when applied to systems where
tokens represent property of components and the fact that at least one com-
ponent always has this property (i.e. a token) prevents the system from reach-
ing a “bad” state. We illustrate the application this technique with Running
Example 2.

Running example 2. Applying FindMarkings to S can result in partitions =
{{0, 1, 2}} and

marking = {(0, s0), (0, s1), (0, s2), (0, s3), (1, s0), (1, s1),
(1, s2), (1, s3), (2, s0), (2, s1), (2, s2), (2, s3)}

The Automatic Detection of Token Structures and Invariants 259

With this information, we create invariant reachE(s) =̂ Tks({0, 1, 2}, s) ≥ 1. For
this examples, we can interpret tokens as marking states in which the component
is not full, and the invariant being that all components cannot be full at the same
time. As we have that Tks({0, 1, 2}, (s6, s6, s6)) = 0, this technique is able to
prove that (s6, s6, s6) is unreachable. As this state is the only one in which
the system is blocked, this technique can prove that S is deadlock-free. In this
example, S is a token network with three components, each of them has a two-slot
buffer to store messages. This technique can, in fact, show that similar systems
with N ≥ 3 components with b-slot buffers, where b ≥ 2, are deadlock-free.
�

5 Checking Deadlock-Freedom

In this section we combine Pair, a technique proposed in [4], with the new reach-
ability tests presented in Sect. 4. In this new framework, a potential deadlock is
a pair candidate that meets our new reachability invariants.

Definition 14. Let S be a supercombinator machine and (S,Σ,Δ, ŝ) its induced
LTS. A state s ∈ S is a deadlock candidate iff deadlock candidate(s) holds,
where deadlock candidate(s) =̂ pair candidate(s) ∧ reachC(s) ∧ reachE(s).

Since our reachability tests over-approximate reachability and every deadlock
is also a Pair candidate [4], every deadlock must also be a deadlock candidate.
So, a system free of deadlock candidates has to be deadlock free (see proof in [3]).

Theorem 1. If a supercombinator machine is deadlock-candidate free, then it
must also be deadlock free.

Our new characterisation is clearly more precise than the Pair one, but it
remains imprecise: a blocked state can be unreachable and yet meet our two
reachability invariants. Nevertheless, by conjoining these new reachability tests,
we tighten the state space analysed. Observe that it only takes one failed test
to consider a state unreachable. Furthermore, we note that the techniques pre-
sented in Sect. 4 might generate different reachability invariants for the same
system. This means that we might have different outcomes when verifying sys-
tems with this deadlock-checking technique. We illustrate the unpredictability
and incompleteness of our method with the following example.

Example 1. Let S = (〈L1, L2, L3〉,R) be the supercombinator machine such that
L1, L2 and L3 are described in Fig. 3 and R requires components to synchro-
nise on shared events. The states (p0, q0, r1) and (p1, q1, r2) are blocked but not
reachable, so neither of them represents a deadlock. Let us consider partitions =
{1, 2, 3}, marking = {p1, q1, r0, r2} and marking′ = {p0, q0, r0, r1}. For S, the
conservative technique cannot find any markings, while the existential technique
might compute either partition and marking or partition and marking′. If it
computes marking, then (p0, q0, r1) is proved unreachable but not (p1, q1, r2). In
case marking′ is computed, (p1, q1, r2) is proved unreachable but not (p0, q0, r1).
As it cannot use marking and marking′ simultaneously, it cannot show that S
is deadlock free. It could with a slightly modification in our techniques.
�

260 P. Antonino et al.

p0 p1

a

b

q0 q1

b

c r0

r1

r2

a

c

c a

Fig. 3. LTSs of components L1, L2 and L3, respectively.

5.1 Implementation

We built upon [4] to create an efficient implementation for our framework. So,
we encode the search for a deadlock candidate as a satisfiability problem to
be later checked by a SAT solver. For the remainder of this section, let S =
(〈L1, . . . , Ln〉,R), where Li = (Si, Σi,Δi, ŝi), be a supercombinator machine,
and (S,Σ,Δ, ŝ) its induced LTS.

In our propositional encoding, sti,s is the boolean variable representing the
state s of component i. The assignment sti,s = true indicates this component
state belongs to a deadlock candidate, whereas sti,s = false means it does
not. Our formula DC =̂PC ∧ ReachC ∧ ReachE is a conjunction of three sub-
formulas, each of them captures a predicate of our deadlock characterisation. The
combination of component states assigned to true in a satisfying assignment of
DC forms a deadlock candidate.

The first sub-formula PC captures the pair-candidate characterisation; we
reuse the propositional formula that is presented in [4]. The component states
assigned to true in a satisfying assignment for PC form a Pair candidate.

ReachC and ReachE capture the reachability invariants reachC and reachE ,
respectively. To encode Reachx where x in {C,E}, we encode the markings
with Markingx and the associated cardinality constraints with Cardinalityx.
In the following, we assume partitionsC and markingC were generated by our
conservative technique, and partitionsE and markingE by the existential one.

Markingx, where x is C or E, uses a boolean variable tki
x for each component

i (tki
x conveys whether component i holds a token) to encode the information

recorded in markingx, i.e. in which states components hold tokens.

Markingx =̂
∧

i∈{1...n}∧s∈Si

sti,s →
{

tki
x if (i, s, true) ∈ markingx

¬tki
x if (i, s, false) ∈ markingx

The cardinality constraint CardinalityC uses the variables tki
C to make sure

that, in a satisfying assignment, subsystems in partitionsC have their expected
number of tokens. Let sub be a subsystem in partitionsC , tk

sub

C the vector of
variables tki

C such that i ∈ sub, xsub a vector of fresh boolean variable of size
|sub|, and Nsub

C =
∑

i∈sub markingC(i, ŝi) the number of tokens confined in sub.

Constraint Sort(tk
sub

C , xsub) makes sure that xsub is the result of sorting the
values assigned to tk

sub

C , i.e. true values come first. We use odd-even-merging
sorting networks [12] to implement this sorting; they tend to provide a better

The Automatic Detection of Token Structures and Invariants 261

compromise between the size of the encoding and the efficiency in which these
constraints are checked [14]. Intuitively, tk

sub

C is a unary-unordered representa-
tion of the number of tokens being held by components in sub, whereas xsub

gives its unary-ordered representation. Constraint Eq(xsub, Nsub
C) ensures that

xsub is the unary-ordered representation of number Nsub
C .

CardinalityC =̂
∧

sub∈partitionsC

Sort(tk
sub

C , x̄sub) ∧ Eq(xsub, N
sub
C)

For instance, if in a satisfying assignment we have tk
sub

C = (true, false, true)
(i.e. 101, a unary-unordered representation of 2), Sort makes sure that xsub =
(true, true, false) (i.e. 110, the unary-ordered representation of 2).

The cardinality constraint CardinalityE uses the variables tki
E to ensure

that, in a satisfying assignment, subsystems in partitions have at least one token.
The “at least one token is being held” restriction is a trivial case of a cardinality
constraint that can be implemented without need to sorting networks.

CardinalityE =̂
∧

sub∈partitionsE

(
∨

i∈sub

tki
E)

6 Practical Evaluation

We here evaluate our framework. FDR3’s ability to analyse CSP and generate
supercombinator machines is exploited in generating our SAT encoding, which is
then checked by the Glucose 4.0 solver [11]. Our framework, implemented as the
new DeadlOx-VT mode in the DeadlOx tool [5], detects both types of structures
and combine them to prove deadlock-freedom2. Our tool and the models used in
this section are available at [2]. For this experiment, we checked deadlock free-
dom for some CSP benchmark problems. The experiment was conducted on a
dedicated machine with a quad-core Intel Core i5-4300U CPU @ 1.90GHz, and
8GB of RAM. We compare our prototype against: CSDD and FSDD (which
are implemented in Martin’s Deadlock Checker tool [22]); the original DeadlOx
mode [5]; FDR3’s built-in deadlock freedom assertion (FDR3) [15], and its com-
bination with partial order reduction (FDR3p) [16] or compression techniques
(FDR3c) [25]. We point out that only FDR3’s techniques take advantage of the
multicore setting.

We analyse 12 systems that are deadlock free, triple disjoint and cannot be
proved deadlock-free by pure local analysis. We evaluate systems that cannot
be proved deadlock free by pure local analysis as we want to evaluate how well
incomplete techniques can leverage global invariants. Out of these systems, 10
2 Note that the conditions for the conservative technique imply those for the existential

one. So, a system that has a conservative invariant must have a existential one as
well. We plan to improve our tool by, first, detecting conservative structures, and
then only in case the invariants derived from these structures are not strong enough
to prove deadlock-freedom, we would search for existential structures.

262 P. Antonino et al.

Table 1. Benchmark efficiency comparison. N is a parameter that is used to alter the
size of the system. We measure in seconds the time taken to check deadlock freedom for
each system. * means that the method took longer than 300 s. - means that the method
is unable to prove deadlock freedom. + means that no efficient compression technique
could be found. For the DeadlOx-VT, we present the total time taken to verify deadlock
freedom in column DF, whereas columns Co and Ex present the time taken for token-
structure detection by the conservative and existential techniques, respectively, and x
means that a token structure has not been detected. There was no significant difference
between the time taken by successful and failed detections of token structures.

Incomplete Complete

N DeadlOx DeadlOx-VT CSDD FSDD FDR3c FDR3p FDR3

DF Co Ex

DDB 5 0.14 - x 0.02 - - 0.31 0.18 0.15

10 1.61 - x 0.47 - - * * *

20 57.75 - x 19.13 - - * * *

Mat 10 3.68 - 0.05 0.05 0.17 - 15.52 0.29 *

20 48.19 - 0.37 0.30 0.59 - * 22.43 *

30 * - 1.97 1.14 2.08 - * * *

Ring 500 0.80 1.34 x 0.22 - 0.86 0.64 * *

1000 2.38 4.47 x 0.50 - 2.63 1.49 * *

1500 5.02 9.83 x 0.88 - 5.93 6.68 * *

Sched 500 0.55 0.82 0.19 0.23 0.45 - 3.05 103.26 *

1000 1.29 2.23 0.55 0.73 0.84 - 8.72 * *

1500 2.29 4.76 1.31 1.62 1.30 - 20.06 * *

Tk 50 0.78 1.08 0.22 0.21 - - + 45.62 11.85

100 5.84 7.40 1.43 1.35 - - + * *

200 66.44 76.11 11.23 11.84 - - + * *

Tk2 50 0.75 1.05 0.21 0.21 - - + * *

100 5.71 7.56 1.40 1.46 - - + * *

200 63.74 79.13 12.62 12.91 - - + * *

Tck 100 - 0.48 0.09 0.09 - - 20.56 2.30 1.30

200 - 1.16 0.22 0.18 - - 209.96 23.84 9.24

500 - 4.85 0.67 0.58 - - * * 177.07

Tck2 100 - 0.55 0.09 0.09 - - 20.66 * *

200 - 1.24 0.21 0.22 - - 209.96 * *

500 - 5.03 0.66 0.54 - - * * *

RC 30 - 18.81 4.59 4.50 - - + * 5.65

40 - 79.52 19.00 18.61 - - + * 36.05

50 - 241.36 54.97 54.69 - - + * 134.58

RC2 30 - 19.08 4.66 4.52 - - + * *

40 - 79.95 19.05 19.15 - - + * *

50 - 243.39 55.88 55.58 - - + * *

RE 25 - 0.80 x 0.21 - - + * *

50 - 5.21 x 1.42 - - + * *

100 - 38.86 x 10.64 - - + * *

RE10 30 - 20.18 x 5.94 - - + * *

40 - 44.93 x 13.09 - - + * *

50 - 87.53 x 26.30 - - + * *

The Automatic Detection of Token Structures and Invariants 263

can be proved deadlock free by DeadlOx-VT, 6 by DeadlOx, 2 by CSDD, and 1
by FSDD. The systems that we evaluated are: a distributed database (DDB), a
matrix multiplication system (Mat), a non-fillable ring system (Ring), Milner’s
scheduler (Sched), a token ring system with a single token (Tk), a token ring
system with N/2 tokens (Tk2), a train track system with two trains (Tck), a train
track system with 2N trains (Tck2), and four routing networks: RC and RC2
implement a conservative token mechanism with two and N/2 tokens intially,
respectively, whereas RE and RE10 implement an existential token structure
with components that have two-slot and 10-slot buffers, respectively. Table 1
presents the results that we obtain for them.

Our results attest that DeadlOx-VT is able to handle a class of systems that
is different from the one tackled by the original DeadlOx, while faring similarly
in terms of analysis time. Comparing to the complete approaches, incomplete
frameworks are consistently faster than the best complete approach, which is the
combination of FDR3’s deadlock assertion with compression techniques, while
being able to prove deadlock freedom for almost all benchmark problems. The
effective use of compression techniques, however, requires a careful and skilful
application of those, whereas our method is fully automatic.

The token structures discovered in the Mat example are interesting because
we did not anticipate them. Considering these structures, it seems no single one
can prove deadlock freedom for this example. However, we have established that
a combination of them can. We will comment on this is a subsequent paper.

7 Conclusion

Motivated by deadlock analysis, we have demonstrated that token structures of
concurrent systems, sometimes too subtle to be obviously recognisable as such,
can be recognised by SAT checkers and used to prove safety properties of the
system concerned. We have identified two types of token structures: the first one
makes sure that tokens are conserved, and the second one ensures at least one
token is present in the system at all times. While we have interpreted these struc-
tures as token mechanisms, there might be other views to them. For instance,
as we discussed in the application of our existential technique to Running
Example 2, tokens can be seen as the component property “component is not
full”. Our token-structure-detection techniques are combined to create a use-
ful framework for deadlock-freedom analysis that improves on the precision of
current incomplete locally-based frameworks, as confirmed by our experiments.
These experiments have also demonstrated that, for the systems analysed, the
SAT calculations used to detect token structures can be carried out efficiently.

There is nothing CSP-specific in our methods, other than that we have a
systems described as a network of pairwise-interacting LTSs. So, the ideas in
this paper should transfer easily to any formalism where systems are described as
such. DeadlOx-VT uses FDR3 to obtain supercombinator machines from systems
described using CSP, but an analogous tool could be created for other notations
by replacing its use of FDR3 to generate such machines.

264 P. Antonino et al.

This work begs a number of questions. What other uses, besides deadlock-
checking, do the types of invariant we have identified have? What other sorts
of invariants are there where partitioning of component states can be efficiently
calculated? An obvious one is to handle token systems where nodes can have
more than one token, or where there are multiple tokens with different properties.
We will aim to answer these questions in future research.

Acknowledgments. The first author is a CAPES Foundation scholarship holder
(Process no: 13201/13-1). The second and third authors are partially sponsored by
DARPA under agreement number FA8750-12-2-0247 and EPSRC under agreement
number EP/N022777.

References

1. Agerwala, T., Choed-Amphai, Y.-C.: A synthesis rule for concurrent systems. In:
15th Conference on Design Automation, pp. 305–311. IEEE (1978)

2. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Experiment package (2016).
http://www.cs.ox.ac.uk/people/pedro.antonino/pkg-vt.zip

3. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: The automatic detection of
token structures and invariants using SAT checking. Technical report, University of
Oxford (2016). http://www.cs.ox.ac.uk/people/pedro.antonino/techreport-vt.pdf

4. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Efficient deadlock-freedom
checking using local analysis and SAT solving. In: Ábrahám, E., Huisman, M. (eds.)
IFM 2016. LNCS, vol. 9681, pp. 345–360. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-33693-0 22

5. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Tighter reachability criteria for
deadlock-freedom analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A.
(eds.) FM 2016. LNCS, vol. 9995, pp. 43–59. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-48989-6 3

6. Antonino, P.R.G., Oliveira, M.M., Sampaio, A.C.A., Kristensen, K.E., Bryans,
J.W.: Leadership election: an industrial SoS application of compositional deadlock
verification. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
31–45. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06200-6 3

7. Antonino, P., Sampaio, A., Woodcock, J.: A refinement based strategy for local
deadlock analysis of networks of CSP processes. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 62–77. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-06410-9 5

8. Apt, K.R., Francez, N., de Roever, W.P.: A proof system for communicating sequen-
tial processes. ACM Trans. Program. Lang. Syst. (TOPLAS) 2(3), 359–385 (1980)

9. Attie, P.C., Bensalem, S., Bozga, M., Jaber, M., Sifakis, J., Zaraket, F.A.:
An abstract framework for deadlock prevention in BIP. In: Beyer, D., Bore-
ale, M. (eds.) FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 161–177. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38592-6 12

10. Attie, P.C., Chockler, H.: Efficiently verifiable conditions for deadlock-freedom of
large concurrent programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385,
pp. 465–481. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30579-8 30

11. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, San Francisco, CA, USA, pp. 399–404 (2009)

http://www.cs.ox.ac.uk/people/pedro.antonino/pkg-vt.zip
http://www.cs.ox.ac.uk/people/pedro.antonino/techreport-vt.pdf
http://dx.doi.org/10.1007/978-3-319-33693-0_22
http://dx.doi.org/10.1007/978-3-319-33693-0_22
http://dx.doi.org/10.1007/978-3-319-48989-6_3
http://dx.doi.org/10.1007/978-3-319-48989-6_3
http://dx.doi.org/10.1007/978-3-319-06200-6_3
http://dx.doi.org/10.1007/978-3-319-06410-9_5
http://dx.doi.org/10.1007/978-3-642-38592-6_12
http://dx.doi.org/10.1007/978-3-540-30579-8_30

The Automatic Detection of Token Structures and Invariants 265

12. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the April
30-May 2, Spring Joint Computer Conference, AFIPS 1968 (Spring), pp. 307–314.
ACM, New York (1968)

13. Bensalem, S., Lakhnech, Y.: Automatic generation of invariants. Form. Methods
Syst. Des. 15(1), 75–92 (1999)

14. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1–4), 1–26 (2006)

15. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

16. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial
order reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM
2015. LNCS, vol. 9058, pp. 188–203. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17524-9 14

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

18. Jezequel, L., Lime, D.: Lazy reachability analysis in distributed systems. In: 27th
International Conference on Concurrency Theory, CONCUR 2016, 23-26 August
2016, Quebec City, Canada, pp. 17:1–17:14 (2016)

19. Lambertz, C., Majster-Cederbaum, M.: Analyzing component-based systems on
the basis of architectural constraints. In: Arbab, F., Sirjani, M. (eds.) FSEN
2011. LNCS, vol. 7141, pp. 64–79. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29320-7 5

20. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 2, 125–143 (1977)

21. Martin, J.M.R.: The design and construction of deadlock-free concurrent systems.
Ph.D. thesis, University of Buckingham (1996)

22. Martin, J.M.R., Jassim, S.A.: An efficient technique for deadlock analysis of large
scale process networks. In: Fitzgerald, J., Jones, C.B., Lucas, P. (eds.) FME
1997. LNCS, vol. 1313, pp. 418–441. Springer, Heidelberg (1997). doi:10.1007/
3-540-63533-5 22

23. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

24. Oliveira, M.V.M., Antonino, P., Ramos, R., Sampaio, A., Mota, A., Roscoe, A.W.:
Rigorous development of component-based systems using component metadata and
patterns. Formal Aspects Comput. 28, 937–1004 (2016)

25. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995). doi:10.1007/3-540-60630-0 7

26. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-319-17524-9_14
http://dx.doi.org/10.1007/978-3-319-17524-9_14
http://dx.doi.org/10.1007/978-3-642-29320-7_5
http://dx.doi.org/10.1007/978-3-642-29320-7_5
http://dx.doi.org/10.1007/3-540-63533-5_22
http://dx.doi.org/10.1007/3-540-63533-5_22
http://dx.doi.org/10.1007/3-540-60630-0_7

Quantitative Systems II

Maximizing the Conditional Expected Reward
for Reaching the Goal

Christel Baier(B), Joachim Klein(B), Sascha Klüppelholz(B),
and Sascha Wunderlich(B)

Institute for Theoretical Computer Science, Technische Universität Dresden,
Dresden, Germany

{christel.baier,joachim.klein,sascha.klueppelholz,
sascha.wunderlich}@tu-dresden.de

Abstract. The paper addresses the problem of computing maximal
conditional expected accumulated rewards until reaching a target state
(briefly called maximal conditional expectations) in finite-state Markov
decision processes where the condition is given as a reachability con-
straint. Conditional expectations of this type can, e.g., stand for the
maximal expected termination time of probabilistic programs with non-
determinism, under the condition that the program eventually termi-
nates, or for the worst-case expected penalty to be paid, assuming that
at least three deadlines are missed. The main results of the paper are (i)
a polynomial-time algorithm to check the finiteness of maximal condi-
tional expectations, (ii) PSPACE-completeness for the threshold problem
in acyclic Markov decision processes where the task is to check whether
the maximal conditional expectation exceeds a given threshold, (iii) a
pseudo-polynomial-time algorithm for the threshold problem in the gen-
eral (cyclic) case, and (iv) an exponential-time algorithm for computing
the maximal conditional expectation and an optimal scheduler.

1 Introduction

Stochastic shortest (or longest) path problems are a prominent class of opti-
mization problems where the task is to find a policy for traversing a proba-
bilistic graph structure such that the expected value of the generated paths
satisfying a certain objective is minimal (or maximal). In the classical setting
(see e.g. [15,22,25,29]), the underlying graph structure is given by a finite-state
Markov decision process (MDP), i.e., a state-transition graph with nondetermin-
istic choices between several actions for each of its non-terminal states, proba-
bility distributions specifying the probabilities for the successor states for each
state-action pair and a reward function that assigns rational values to the state-
action pairs. The stochastic shortest (longest) path problem asks to find a sched-
uler, i.e., a function that resolves the nondeterministic choices, possibly in a

The authors are supported by the DFG through the collaborative research cen-
tre HAEC (SFB 912), the Excellence Initiative by the German Federal and State
Governments (cluster of excellence cfAED), the Research Training Group QuantLA
(GRK 1763), and the DFG-project BA-1679/11-1.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 269–285, 2017.
DOI: 10.1007/978-3-662-54580-5 16

270 C. Baier et al.

history-dependent way, which minimizes (maximizes) the expected accumulated
reward until reaching a goal state. To ensure the existence of the expectation
for given schedulers, one often assumes that the given MDP is contracting, i.e.,
the goal is reached almost surely under all schedulers, in which case the optimal
expected accumulated reward is achieved by a memoryless deterministic sched-
uler that optimizes the expectation from each state and is computable using
a linear program with one variable per state (see e.g. [25]). The contraction
assumption can be relaxed by requiring the existence of at least one scheduler
that reaches the goal almost surely and taking the extremum over all those
schedulers [15,16,22]. These algorithms and corresponding value or policy iter-
ation approaches have been implemented in various tools and used in many
application areas.

The restriction to schedulers that reach the goal almost surely, however, limits
the applicability and significance of the results. First, the known algorithms
for computing extremal expected accumulated rewards are not applicable for
models where the probability for never visiting a goal state is positive under
each scheduler. Second, statements about the expected rewards for schedulers
that reach the goal with probability 1 are not sufficient to draw any conclusion for
the best- or worst-case behavior, if there exist schedulers that miss the goal with
positive probability. This motivates the consideration of conditional stochastic
path problems where the task is to compute the optimal expected accumulated
reward until reaching a goal state, under the condition that a goal state will
indeed be reached and where the extrema are taken over all schedulers that reach
the goal with positive probability. More precisely, we address here a slightly
more general problem where we are given two sets F and G of states in an
MDP M with non-negative integer rewards and ask for the maximal expected
accumulated reward until reaching F , under the condition that G will be visited
(denoted Emax

M,sinit
(F |♦G) where sinit is the initial state of M). Computation

schemes for conditional expectations of this type can, e.g., be used to answer the
following questions (assuming the underlying model is a finite-state MDP):

(Q1) What is the maximal termination time of a probabilistic and nondetermin-
istic program, under the condition that the program indeed terminates?

(Q2) What are the maximal expected costs of the repair mechanisms that are
triggered in cases where a specific failure scenario occurs, under the con-
dition that the failure scenario indeed occurs?

(Q3) What is the maximal energy consumption, under the condition that all
jobs of a given list will be successfully executed within one hour?

The relevance of question (Q1) and related problems becomes clear from the work
[14,20,23,24,26] on the semantics of probabilistic programs where no guarantees
for almost-sure termination can be given. Question (Q2) is natural for a worst-
case analysis of resilient systems or other types of systems where conditional
probabilities serve to provide performance guarantees on the protocols triggered
in exceptional cases that appear with positive, but low probability. Question
(Q3) is typical when the task is to study the trade-off between cost and utility
functions (see e.g. [9]). Given the work on anonymity and related notions for
information leakage using conditional probabilities in MDP-like models [7,21] or

Maximizing the Conditional Expected Reward for Reaching the Goal 271

Fig. 1. MDP M[r] for Example 1.1

the formalization of posterior vulnerability as an expectation [4], the concept of
conditional accumulated excepted rewards might also be useful to specify the
degree of protection of secret data or to study the trade-off between privacy and
utility, e.g., using gain functions [3,5]. Other areas where conditional expecta-
tions play a crucial role are risk management where the conditional value-at-risk
is used to formalize the expected loss under the assumption that very large
losses occur [2,32] or regression analysis where conditional expectations serve to
predict the relation between random variables [31].

Example 1.1. To illustrate the challenges for designing algorithms to compute
maximal conditional expectations we regard the MDP M[r] shown in Fig. 1. The
reward of the state-action pair (s1, γ) is given by a reward parameter r ∈ N. Let
sinit = s0 be the initial state and F = G = {goal}. The only nondeterministic
choice is in state s2, while states s0 and s1 behave purely probabilistic and goal
and fail are trap states. Given a scheduler S, we write CES for the conditional
expectation ES

M[r],s0
(goal |♦goal). (See also Sect. 2 for our notations.) For the

two memoryless schedulers that choose α resp. β in state s2 we have:

CEα =
1
2 · r + 1

2 · 0
1
2 + 1

2

=
r

2
and CEβ =

1
2 · r + 0
1
2 + 0

= r

We now regard the schedulers Sn for n = 1, 2, . . . that choose β for the first n
visits of s2 and action α for the (n+1)-st visit of s2. Then:

CESn =
1
2 · r + 1

2 · 1
2n · n

1
2 + 1

2 · 1
2n

= r +
n − r

2n+1

Thus, CESn > CEβ iff n > r, and the maximum is achieved for n = r+2.
This example illustrates three phenomena that distinguish conditional and

unconditional expected accumulated rewards and make reasoning about maximal
conditional expectations harder than about unconditional ones. First, optimal
schedulers for M[r] need a counter for the number of visits in state s2. Hence,
memoryless schedulers are not powerful enough to maximize the conditional
expectation. Second, while the maximal conditional expectation for M[r] with

272 C. Baier et al.

initial state sinit = s0 is finite, the maximal conditional expectation for M[r]
with starting state s2 is infinite as:

sup
n∈N

ESn

M[r],s2
(goal |♦goal) = sup

n∈N

n
2n

1
2n

= ∞

Third, as S2 maximizes the conditional expected accumulated reward for r = 0,
while S3 is optimal for r = 1, optimal decisions for paths ending in state s2
depend on the reward value r of the γ-transition from state s1, although state
s1 is not reachable from s2. Thus, optimal decisions for a path π do not only
depend on the past (given by π) and possible future (given by the sub-MDP
that is reachable from π’s last state), but require global reasoning. �

The main results of this paper are the following theorems. We write CEmax for the
maximal conditional expectation, i.e., the supremum of the conditional expecta-
tions ES

M,sinit
(F |♦G), when ranging over all schedulers S where PrSM,sinit

(♦G)
is positive and PrSM,sinit

(♦F |♦G) = 1. (See also Sect. 2 for our notations.)

Theorem 1 (Checking finiteness and upper bound). There is a
polynomial-time algorithm that checks if CEmax is finite. If so, an upper bound
CEub for CEmax is computable in pseudo-polynomial time for the general case
and in polynomial time if F = G and Prmin

M,s(♦G) > 0 for all states s with
s |= ∃♦G.

The threshold problem asks whether the maximal conditional expectation
exceeds or misses a given rational threshold ϑ.

Theorem 2 (Threshold problem). The problem “does CEmax �� ϑ hold?”
(where ��∈ {>,�, <,�}) is PSPACE-hard and solvable in exponential (even
pseudo-polynomial) time. It is PSPACE-complete for acyclic MDPs.

For the computation of an optimal scheduler, we suggest an iterative scheduler-
improvement algorithm that interleaves calls of the threshold algorithm with
linear programming techniques to handle zero-reward actions. This yields:

Theorem 3 (Computing optimal schedulers). The value CEmax and an
optimal scheduler S are computable in exponential time.

Algorithms for checking finiteness and computing an upper bound (Theorem1)
will be sketched in Sect. 3. Section 4 presents a pseudo-polynomial thresh-
old algorithm and a polynomially space-bounded algorithm for acyclic MDPs
(Theorem 2) as well as an exponential-time computation scheme for the con-
struction of an optimal scheduler (Theorem 3). Further details, soundness proofs
and a proof for the PSPACE-hardness as stated in Theorem2 can be found
in [13]. The general feasibility of the algorithms will be shown by experimental
studies with a prototypical implementation (for details, see Appendix K of [13]).

Related Work. Although conditional expectations appear rather naturally in
many applications and despite the large amount of publications on variants

Maximizing the Conditional Expected Reward for Reaching the Goal 273

of stochastic path problems and other forms of expectations in MDPs (see
e.g. [18,30]), we are not aware that they have been addressed in the context of
MDPs. Computation schemes for extremal conditional probabilities Prmax(ϕ|ψ)
or Prmin(ϕ|ψ) where both the objective ϕ and the assumption ψ are path proper-
ties specified in some temporal logic have been studied in [6,8,11]. For reachabil-
ity properties ϕ and ψ, the algorithm of [6,8] has exponential time complexity,
while the algorithm of [11] runs in polynomial time. Although the approach
of [11] is not applicable for calculating maximal conditional expectations (see
Appendix B of [13]), it can be used to compute an upper bound for CEmax

(see Sect. 3). Conditional expected rewards in Markov chains can be computed
using the rescaling technique of [11] for finite Markov chains or the approxi-
mation techniques of [1,19] for certain classes of infinite-state Markov chains.
The conditional weakest precondition operator of [26] yields a technique to com-
pute conditional expected rewards for purely probabilistic programs (without
non-determinism).

2 Preliminaries

We briefly summarize our notations used for Markov decision processes. Further
details can be found in textbooks, see e.g. [25,29] or Chapter 10 in [10].

A Markov decision process (MDP) is a tuple M = (S,Act , P, sinit , rew)
where S is a finite set of states, Act a finite set of actions, sinit ∈ S the
initial state, P : S × Act × S → [0, 1] ∩ Q is the transition probability
function and rew : S × Act → N the reward function. We require that∑

s′∈S P (s, α, s′) ∈ {0, 1} for all (s, α) ∈ S × Act . We write Act(s) for the
set of actions that are enabled in s, i.e., α ∈ Act(s) iff P (s, α, ·) is not the null
function. State s is called a trap if Act(s) = ∅. The paths of M are finite or
infinite sequences s0 α0 s1 α1 s2 α2 . . . where states and actions alternate such
that P (si, αi, si+1) > 0 for all i � 0. A path π is called maximal if it is either
infinite or finite and its last state is a trap. If π = s0 α0 s1 α1 s2 α2 . . . αk−1 sk is
finite then rew(π) = rew(s0, α0) + rew(s1, α1) + . . . + rew(sk−1, αk−1) denotes
the accumulated reward and first(π) = s0, last(π) = sk its first resp. last state.
The size of M, denoted size(M), is the sum of the number of states plus the
total sum of the logarithmic lengths of the non-zero probability values P (s, α, s′)
and the reward values rew(s, α).1

An end component of M is a strongly connected sub-MDP. End components
can be formalized as pairs E = (E,A) where E is a nonempty subset of S and
A a function that assigns to each state s ∈ E a nonempty subset of Act(s) such
that the graph induced by E is strongly connected.

A (randomized) scheduler for M, often also called policy or adversary, is
a function S that assigns to each finite path π where last(π) is not a trap a
1 The logarithmic length of an integer n is the number of bits required for a represen-

tation of n as a binary number. The logarithmic length of a rational number a/b is
defined as the sum of the logarithmic lengths of its numerator a and its denominator
b, assuming that a and b are coprime integers and b is positive.

274 C. Baier et al.

probability distribution over Act(last(π)). S is called memoryless if S(π) =
S(π′) for all finite paths π, π′ with last(π) = last(π′), in which case S can be
viewed as a function that assigns to each non-trap state s a distribution over
Act(s). S is called deterministic if S(π) is a Dirac distribution for each path π,
in which case S can be viewed as a function that assigns an action to each finite
path π where last(π) is not a trap. We write PrSM,s or briefly PrSs to denote the
probability measure induced by S and s. Given a measurable set ψ of maximal
paths, then Prmin

M,s(ψ) = infS PrSM,s(ψ) and Prmax
M,s(ψ) = supS PrSM,s(ψ). We will

use LTL-like notations to specify measurable sets of maximal paths. For these it
is well-known that optimal deterministic schedulers exists. If ψ is a reachability
condition then even optimal deterministic memoryless schedulers exist.

Let ∅ �= F ⊆ S. For a comparison operator �� ∈ {=, >,�, <,�} and r ∈ N,
♦��rF denotes the event “reaching F along some finite path π with rew(π) �� r”.
The notation F will be used for the random variable that assigns to each
maximal path ς in M the reward rew(π) of the shortest prefix π of ς where
last(π) ∈ F . If ς �|= ♦F then (F)(ς) = ∞. If s ∈ S then ES

M,s(F) denotes
the expectation of F in M with starting state s under S, which is infinite
if PrSM,s(♦F) < 1. Emax

M,s(F) ∈ R ∪ {±∞} stands for supS ES
M,s(F) where

the supremum is taken over all schedulers S with PrSM,s(♦F) = 1. Let ψ be a
measurable set of maximal paths. ES

M,s(F |ψ) stands for the expectation of F

w.r.t. the conditional probability measure PrSM,s(· |ψ) given by PrSM,s(ϕ|ψ) =
PrSM,s(ϕ ∧ ψ)/PrSM,s(ψ). Emax

M,s(F |ψ) is the supremum of ES
M,s(F |ψ) where

PrSM,s(ψ) > 0 and PrSM,s(♦F |ψ) = 1, and Prmax
M,s(ϕ|ψ) = supS PrSM,s(ϕ|ψ)

where S ranges over all schedulers with PrSM,s(ψ) > 0 and sup ∅ = −∞.
For the remainder of this paper, we suppose that two nonempty subsets F

and G of S are given such that Prmax
M,s(♦F |♦G) = 1. The task addressed in this

paper is to compute the maximal conditional expectation given by:

CEmax
M,s

def= sup
S

CES
M,s ∈ R ∪ {∞} where CES

M,s = ES
M,s(F |♦G)

Here, S ranges over all schedulers S with PrSM,s(♦G) > 0 and PrSM,s(♦F |♦G) =
1. If M and its initial state are clear from the context, we often simply write
CEmax resp. CES. We assume that all states in M are reachable from sinit and
sinit /∈ F ∪ G (as CEmax = 0 if s ∈ F and CEmax = Emax

M,sinit
(F) if s ∈ G \ F).

3 Finiteness and Upper Bound

Checking Finiteness. We sketch a polynomially time-bounded algorithm
that takes as input an MDP M = (S,Act , P, sinit , rew) with two distin-
guished subsets F and G of S such that Prmax

M,sinit
(♦F |♦G) = 1. If CEmax =

Emax
M,sinit

(F |♦G) = ∞ then the output is “no”. Otherwise, the output is an
MDP M̂ = (Ŝ, Âct , P̂ , ŝinit , ˆrew) with two trap states goal and fail such that:

Maximizing the Conditional Expected Reward for Reaching the Goal 275

(1) Emax
M,sinit

(F |♦G) = Emax
M̂,ŝinit

(goal |♦goal),

(2) ŝ |= ∃♦goal and Prmin
M̂,ŝ

(
♦(goal ∨ fail)

)
= 1 for all states ŝ ∈ Ŝ \ {fail}, and

(3) M̂ does not have critical schedulers where a scheduler U for M̂ is said to be
critical iff PrUM̂,ŝinit

(♦fail) = 1 and there is a reachable positive U-cycle.2

We provide here the main ideas of the algorithms and refer to Appendix C
of [13] for the details. The algorithm first transforms M into an MDP M̃ that
permits to assume F = G = goal . Intuitively, M̃ simulates M, while operating
in four modes: “normal mode”, “after G”, “after F” and “goal”. M̃ starts in
normal mode where it behaves as M as long as neither F nor G have been visited.
If a G \F -state has been reached in normal mode then M̃ switches to the mode
“after G”. Likewise, as soon as an F \G-state has been reached in normal mode
then M̃ switches to the mode “after F”. M̃ enters the goal mode (consisting of
a single trap state goal) as soon as a path fragment containing a state in F and
a state in G has been generated. This is the case if M visits an F -state in mode
“after G” or a G-state in mode “after F”, or a state in F ∩ G in the normal
mode. The rewards in the normal mode and in mode “after G” are precisely as
in M, while the rewards are 0 in all other cases. We then remove all states s̃
in the “after G” mode with Prmax

M̃,s̃
(♦goal) < 1, collapse all states s̃ in M̃ with

s̃ �|= ∃♦goal into a single trap state called fail and add zero-reward transitions to
fail from all states s̃ that are not in the “after G” mode and Prmax

M̃,s̃
(♦goal) = 0.

Using techniques as in the unconditional case [22] we can check whether M̃ has
positive end components, i.e., end components with at least one state-action
pair (s, α) with rew(s, α) > 0. If so, then Emax

M,sinit
(F |♦G) = ∞. Otherwise, we

collapse each maximal end component of M̃ into a single state.
Let M̂ denote the resulting MDP. It satisfies (1) and (2). Property (3) holds

iff Emax
M̂,ŝinit

(goal |♦goal) < ∞. This condition can be checked in polynomial

time using a graph analysis in the sub-MDP of M̂ consisting of the states ŝ with
Prmin

M̂,ŝ
(♦goal) = 0 (see Appendix C of [13]).

Computing an Upper Bound. Due to the transformation used for checking
finiteness of the maximal conditional expectation, we can now suppose that
M = M̂, F = G = {goal} and that (2) and (3) hold. We now present a
technique to compute an upper bound CEub for CEmax. The upper bound will
be used later to determine a saturation point from which on optimal schedulers
behave memoryless (see Sect. 4).

We consider the MDP M′ simulating M, while operating in two modes. In
its first mode, M′ attaches the reward accumulated so far to the states. More
precisely, the states of M′ in its first mode have the form 〈s, r〉 ∈ S × N where
0 � r � R and R =

∑
s∈S′ max{rewM′(s, α) : α ∈ ActM′(s)}. The initial

state of M′ is s′
init = 〈sinit , 0〉. The reward for the state-action pairs (〈s, r〉, α)

where r+rew(s, α) � R is 0. If M′ fires an action α in state 〈s, r〉 where

2 The latter means a U-path π = s0 α0 s1 α1 . . . αk−1 sk where s0 = ŝinit and si = sk
for some i ∈ {0, 1, . . . , k−1} such that ˆrew(sj , αj) > 0 for some j ∈ {i, . . . , k−1}.

276 C. Baier et al.

r′ def= r+rew(s, α) > R then it switches to the second mode, while earning reward
r′. In its second mode M′ behaves as M without additional annotations of the
states and earning the same rewards as M. From the states 〈goal , r〉, M′ moves
to goal with probability 1 and reward r. There is a one-to-one correspondence
between the schedulers for M and M′ and the switch from M to M′ does not
affect the probabilities and the accumulated rewards until reaching goal .

Let N denote the MDP resulting from M′ by adding reset-transitions from
fail (as a state of the second mode) and the copies 〈fail , r〉 in the first mode to
the initial state s′

init . The reward of all reset transitions is 0. The reset-mechanism
has been taken from [11] where it has been introduced as a technique to compute
maximal conditional probabilities for reachability properties. Intuitively, N “dis-
cards” all paths of M′ that eventually enter fail and “redistributes” their prob-
abilities to the paths that eventually enter the goal state. In this way, N mimics
the conditional probability measures PrSM′,s′

init
(· |♦goal) = PrSM,sinit

(· |♦goal)
for prefix-independent path properties. Paths π from sinit to goal in M are sim-
ulated in N by paths of the form � = ξ1; . . . ξk;π where ξi is a cycle in N with
first(ξi) = s′

init and ξi’s last transition is a reset-transition from some fail-state
to s′

init . Thus, rew(π) � rewN (�). The distinction between the first and second
mode together with property (3) ensure that the new reset-transitions do not
generate positive end components in N . By the results of [22], the maximal
unconditional expected accumulated reward in N is finite and we have:

Emax
M,sinit

(goal |♦goal) = Emax
M′,s′

init
(goal |♦goal) � Emax

N ,s′
init

(goal)

Hence, we can deal with CEub = Emax
N ,s′

init
(goal), which is computable in time

polynomial in the size of N by the algorithm proposed in [22]. As size(N) =
Θ(R · size(M)) we obtain a pseudo-polynomial time bound for the general case.
If, however, Prmin

M,s(♦goal) > 0 for all states s ∈ S \ {fail} then there is no need
for the detour via M′ and we can apply the reset-transformation M � N by
adding a reset-transition from fail to sinit with reward 0, in which case the upper
bound CEub = Emax

N ,sinit
(goal) is obtained in time polynomial in the size of M.

For details we refer to Appendix C of [13].

4 Threshold Algorithm and Computing Optimal
Schedulers

In what follows, we suppose that M = (S,Act , P, sinit , rew) is an MDP with two
trap states goal and fail such that s |= ∃♦goal for all states s ∈ S \ {fail} and
mins∈S Prmin

M,s(♦(goal ∨ fail)) = 1 and CEmax = Emax
M,sinit

(goal |♦goal) < ∞.
A scheduler S is said to be reward-based if S(π) = S(π′) for all finite paths π,

π′ with (last(π), rew(π)) = (last(π′), rew(π′)). Thus, deterministic reward-based
schedulers can be seen as functions S : S × N → Act . We show in Appendix D
of [13] that CEmax equals the supremum of the values CES, when ranging over
all deterministic reward-based schedulers S with PrSM,sinit

(♦goal) > 0.

Maximizing the Conditional Expected Reward for Reaching the Goal 277

The basis of our algorithms are the following two observations. First, there
exists a saturation point ℘ ∈ N such that the optimal decision for all paths π
with rew(π) � ℘ is to maximize the probability for reaching the goal state (see
Proposition 4.1 below). The second observation is a technical statement that will
be used at several places. Let ρ, θ, ζ, r, x, y, z, p ∈ R with 0 � p, x, y, z � 1, p > 0,
y > z and x + z > 0 and let

A =
ρ + p(ry + θ)

x + py
, B =

ρ + p(rz + ζ)
x + pz

and C = max{A,B}

Then:

A � B iff r +
θ−ζ

y−z
� C iff θ − (C−r)y � ζ − (C−r)z (†)

and the analogous statement for > rather than �. For details, see Appendix G
of [13]. We will apply this observation in different nuances. To give an idea how
to apply statement (†), suppose A = CET and B = CEU where T and U are
reward-based schedulers that agree for all paths � that do not have a prefix π
with rew(π) = r where last(π) is a non-trap state, in which case x denotes the
probability for reaching goal from sinit along such a path � and ρ stands for the
corresponding partial expectation, while p denotes the probability of the paths π
from sinit to some non-trap state with rew(π) = r. The crucial observation is that
r+(θ−ζ)/(y−z) does not depend on x, ρ, p. Thus, if r+(θ−ζ)/(y−z) � CEub for
some upper bound CEub of CEmax then (†) allows to conclude that T’s decisions
for the state-reward pairs (s, r) are better than U, independent of x, ρ and p.

Let R ∈ N and S, T be reward-based schedulers. The residual scheduler S↑R
is given by (S↑R)(s, r) = S(s,R+r). S�R T denotes the unique scheduler that
agrees with S for all state-reward pairs (s, r) where r < R and (S�RT)↑R = T.
We write ES

M,s for the partial expectation

ES
M,s =

∞∑

r=0

PrSM,s(♦=rgoal) · r

Thus, ET
M,s = ET

M,s(goal) if PrTM,s(♦goal) = 1, while ET
M,s < ∞ =

ET
M,s(goal) if PrTM,s(♦goal) < 1.

Proposition 4.1. There exists a natural number ℘ (called saturation point of
M) and a deterministic memoryless scheduler M such that:

(a) CET � CET�℘M for each scheduler T with PrTM,sinit
(♦goal) > 0, and

(b) CES = CEmax for some deterministic reward-based scheduler S such that
PrSM,sinit

(♦goal) > 0 and S↑℘ = M.

The proof of Proposition 4.1 (see Appendices E and F of [13]) is constructive
and yields a polynomial-time algorithm for generating a scheduler M as in
Proposition 4.1 and a pseudo-polynomial algorithm for the computation of a
saturation point ℘.

278 C. Baier et al.

Scheduler M maximizes the probability to reach goal from each state. If
there are two or more such schedulers, then M is one where the conditional
expected accumulated reward until reaching goal is maximal under all sched-
ulers U with PrUM,s(♦goal) = Prmax

M,s(♦goal) for all states s. Such a scheduler
M is computable in polynomial time using linear programming techniques. (See
Appendix E of [13].)

The idea for the computation of the saturation point is to compute the
threshold ℘ above which the scheduler M becomes optimal. For this we rely
on statement (†) where θ/y stands for the conditional expectation under M, ζ/z
for the conditional expectation under an arbitrary scheduler S and C = CEub

is an upper bound of CEmax (see Theorem 1), while r = ℘ is the wanted value.
More precisely, for s ∈ S, let θs = EM

M,s, ys = PrMM,s(♦goal) = Prmax
M,s(♦goal).

To compute a saturation point we determine the smallest value ℘ ∈ N such that

θs − (CEub−℘) · ys = max
S

(
ES

M,s − (CEub−℘) · PrSM,s(♦goal)
)

for all states s where S ranges over all schedulers for M. In Appendix F of [13]
we show that instead of the maximum over all schedulers S it suffices to take
the local maximum over all “one-step-variants” of M. That is, a saturation point
is obtained by ℘ = max{�CEub − D�, 0} where

D = min
{
(θs − θs,α)/(ys − ys,α) : s ∈ S, α ∈ Act(s), ys,α < ys

}

and ys,α =
∑

t∈S

P (s, α, t) · yt and θs,α = rew(s, α) · ys,α +
∑

t∈S

P (s, α, t) · θt.

Example 4.2. The so obtained saturation point for the MDP M[r] in Fig. 1 is
℘ = �CEub+1�. Note that only state s = s2 behaves nondeterministically, and
M(s) = α, ys = ys,α = 1, θs = θs,α = 0, while ys,β = θs,β = 1

2 . This yields
D = (0− 1

2)/(1− 1
2) = −1. Thus, ℘ � r+2 as CEub � CEmax > r. �

The logarithmic length of ℘ is polynomial in the size of M. Thus, the value
(i.e., the length of an unary encoding) of ℘ can be exponential in size(M). This
is unavoidable as there are families (Mk)k∈N of MDPs where the size of Mk is
in O(k), while 2k is a lower bound for the smallest saturation point of Mk. This,
for instance, applies to the MDPs Mk = M[2k] where M[r] is as in Fig. 1. Recall
from Example 1.1 that the scheduler Sr+2 that selects β by the first r+2 visits
of s and α for the (r+3)-rd visit of s is optimal for M[r]. Hence, the smallest
saturation point for M[2k] is 2k+2.

Threshold Algorithm. The input of the threshold algorithm is an MDP M
as above and a non-negative rational number ϑ. The task is to generate a deter-
ministic reward-based scheduler S with S↑℘ = M (where M and ℘ are as in
Proposition 4.1) such that CES > ϑ if CEmax > ϑ, and CES = ϑ if CEmax = ϑ.
If CEmax < ϑ then the output of the threshold algorithm is “no”.3

3 The threshold algorithm solves all four variants of the threshold problem. E.g.,
CEmax � ϑ iff CES = ϑ, while CEmax < ϑ iff the threshold algorithm returns “no”.

Maximizing the Conditional Expected Reward for Reaching the Goal 279

The algorithm operates level-wise and determines feasible actions action(s, r)
for all non-trap states s and r = ℘−1, ℘−2, . . . , 0, using the decisions action(·, i)
for the levels i ∈ {r+1, . . . , ℘} that have been treated before and linear pro-
gramming techniques to treat zero-reward loops. In this context, feasibility
is understood with respect to the following condition: If CEmax � ϑ where
� ∈ {>,�} then there exists a reward-based scheduler S with CES � ϑ and
S(s,R) = action(s,min{℘,R}) for all R � r.

The algorithm stores for each state-reward pair (s, r) the probabilities ys,r to
reach goal from s and the corresponding partial expectation θs,r for the scheduler
given by the decisions in the action table. The values for r = ℘ are given by
action(s, ℘) = M(s), ys,℘ = PrMM,s(♦goal) and θs,℘ = EM

M,s. The candidates for
the decisions at level r < ℘ are given by the deterministic memoryless schedulers
P for M. We write P+ for the reward-based scheduler given by P+(s, 0) = P(s)
and P+(s, i) = action(s,min{℘, r+i}) for i � 1. Let ys,r,P = PrP+

M,s(♦goal) and

θs,r,P = EP+
M,s be the corresponding partial expectation.

To determine feasible actions for level r, the threshold algorithm makes use
of a variant of (†) stating that if θ − (ϑ−r)y � ζ − (ϑ−r)z and B�ϑ then A�ϑ,
where A and B are as in (†) and the requirement y > z is dropped. Thus, the aim
of the threshold algorithm is to compute a deterministic memoryless scheduler
P∗ for M such that the following condition (∗) holds:

θs,r,P∗ − (ϑ−r) · ys,r,P∗ = max
P

(
θs,r,P − (ϑ−r) · ys,r,P

)
(∗)

Such a scheduler P∗ is computable in time polynomial in the size of M (without
the explicit consideration of all schedulers P and their extensions P+) using the
following linear program with one variable xs for each state. The objective is to
minimize

∑

s∈S

xs subject to the following conditions:

(1) If s ∈ S \ {goal , fail} then for each action α ∈ Act(s) with rew(s, α) = 0:

xs �
∑

t∈S

P (s, α, t) · xt

(2) If s ∈ S \ {goal , fail} then for each action α ∈ Act(s) with rew(s, α) > 0:

xs �
∑

t∈S

P (s, α, t) · (θt,R + rew(s, α) · yt,R − (ϑ−r) · yt,R

)

where R = min{℘, r+rew(s, α)}
(3) For the trap states: xgoal = r − ϑ and xfail = 0.

This linear program has a unique solution (x∗
s)s∈S . Let Act∗(s) denote the set

of actions α ∈ Act(s) such that the following constraints (E1) and (E2) hold:

(E1) If rew(s, α) = 0 then: x∗
s =

∑

t∈S

P (s, α, t) · x∗
t

(E2) If rew(s, α) > 0 and R = min
{

℘, r+rew(s, α)
}

then:

x∗
s =

∑

t∈S

P (s, α, t) · (θt,R + rew(s, α) · yt,R − (ϑ−r) · yt,R

)

280 C. Baier et al.

Let M∗ = M∗
r,ϑ denote the MDP with state space S induced by the state-action

pairs (s, α) with α ∈ Act∗(s) where the positive-reward actions are redirected to
the trap states. Formally, for s, t ∈ S, α ∈ Act∗(s) we let PM∗(s, α, t) = P (s, α, t)
if rew(s, α) = 0 and PM∗(s, α, goal) =

∑
t∈S P (s, α, t)·yt,R and PM∗(s, α, fail) =

1 − PM∗(s, α, goal) if rew(s, α) > 0 and R = min{℘, r+rew(s, α)}. The reward
structure of M∗ is irrelevant for our purposes.

A scheduler P∗ satisfying (∗) is obtained by computing a memoryless deter-
ministic scheduler for M∗ with PrP

∗
M∗,s(♦goal) = Prmax

M∗,s(♦goal) for all states s.
This scheduler P∗ indeed provides feasible decisions for level r, i.e., if CEmax�ϑ
where � ∈ {>,�} then there exists a reward-based scheduler S with CES � ϑ,
S(s, r) = P∗(s) and S(s,R) = action(s,min{℘,R}) for all R > r.

The threshold algorithm then puts action(s, r) = P∗(s) and computes the
values ys,r and θs,r as follows. Let T denote the set of states s ∈ S \ {goal , fail}
where rew(s,P∗(s)) > 0. For s ∈ T , the values ys,r = ys,r,P∗ and θs,r = θs,r,P∗

can be derived directly from the results obtained for the previously treated levels
r+1, . . . , ℘ as we have:

ys,r =
∑

t∈S

P (s, α, t) · yt,R and θs,r = rew(s, α) · ys,r +
∑

t∈S

P (s, α, t) · θt,R

where α = P∗(s) and R = min{℘, r+rew(s, α)}. For the states s ∈ S \ T :

ys,r =
∑

t∈T

PrP
∗

M,s(¬T U t) · yt,r and θs,r =
∑

t∈T

PrP
∗

M,s(¬T U t) · θt,r

Having treated the last level r = 0, the output of the algorithm is as follows.
Let S be the scheduler given by the action table action(·). For the condi-
tional expectation we have CES = θsinit ,0/ysinit ,0 if ysinit ,0 > 0. If ysinit ,0 = 0
or θsinit ,0/ysinit ,0 < ϑ then the algorithm returns the answer “no”. Otherwise, the
algorithm returns S, in which case CES > ϑ or CES = ϑ = CEmax. Proofs
for the soundness and the pseudo-polynomial time complexity are provided in
Appendix G of [13].

Example 4.3. For the MDP M[r] in Example 1.1, scheduler M selects action
α for state s = s2. Thus, action(s, ℘) = α for the computed saturation point
℘ � r + 2 (see Example 4.2). The threshold algorithm for each positive rational
threshold ϑ computes for each level r = ℘−1, ℘−2, . . . , 1, 0 where action(s, r +
1) = α, the value x∗

s = max{r−ϑ, 1
2 + 1

2 (r−ϑ)} and the action set Act∗(s) = {α}
if r > ϑ+1, Act∗(s) = {α, β} if r = ϑ+1 and Act∗(s) = {β} if r < ϑ+1. Thus, if
n = min{℘, �ϑ+1�} then action(s, r) = α, ys,r = 1, θs,r = 0 for r ∈ {n, . . . , ℘},
while action(s, n−k) = β, ys,n−k = 1/2k, θs,n−k = k/2k for k = 1, . . . , n. That
is, the threshold algorithm computes the scheduler Sn that selects β for the
first n visits of s and α for the (n+1)-st visit of s. Thus, if r � ϑ < r+1 then
n = r+2, in which case the computed scheduler Sn is optimal (see Example 1.1).
The returned answer depends on whether ϑ � CEmax. If, for instance, ϑ = r

2
and r > 0 is even then the threshold algorithm returns the scheduler Sn where
n = r

2+1, whose conditional expectation is r − (r
2−1)/(2

r
2+1+1) > r

2 = ϑ. �

Maximizing the Conditional Expected Reward for Reaching the Goal 281

MDPs Without Zero-Reward Cycles and Acyclic MDPs. If M does not contain
zero-reward cycles then there is no need for the linear program. Instead we can use
a topological sorting of the states in the graph of the sub-MDP consisting of zero-
reward actions and determine a scheduler P∗ satisfying (∗) directly. For acyclic
MDPs, there is even no need for a saturation point. We can explore M using
a recursive procedure and determine feasible decisions for each reachable state-
reward pair (s, r) on the basis of (∗). This yields a polynomially space-bounded
algorithm to decide whether CEmax�ϑ in acyclic MDPs. (See Appendix I of [13].)

Construction of an Optimal Scheduler. Let ThresAlgo[ϑ] denote the sched-
uler that is generated by calling the threshold algorithm for the threshold value
ϑ. A simple approach is to apply the threshold algorithm iteratively:

let S be the scheduler M as in Proposition 4.1;
REPEAT ϑ := CES; S := ThresAlgo[ϑ] UNTIL ϑ = CES;
return ϑ and S

The above algorithm generates a sequence of deterministic reward-based sched-
ulers that are memoryless from ℘ on with strictly increasing conditional expec-
tations. The number of such schedulers is bounded by md℘ where md denotes
the number of memoryless deterministic schedulers for M. Hence, the algorithm
terminates and correctly returns CEmax and an optimal scheduler. As md can be
exponential in the number of states, this simple algorithm has double-exponential
time complexity.

To obtain a (single) exponential-time algorithm, we seek for better (larger,
but still promising) threshold values than the conditional expectation of the
current scheduler. We propose an algorithm that operates level-wise and freezes
optimal decisions for levels r = ℘, ℘−1, ℘−2, . . . , 1, 0. The algorithm maintains
and successively improves a left-closed and right-open interval I = [A,B[with
CEmax ∈ I and CES ∈ I for the current scheduler S.

Initialization. The algorithm starts with the scheduler S = ThresAlgo[CEM]
where M is as above. If CES = CEM then the algorithm immediately terminates.
Suppose now that CES > CEM. The initial interval is I = [A,B[where A =
CES and B = CEub+1 where CEub is as in Theorem 1.

Level-wise Scheduler Improvement. The algorithm successively determines opti-
mal decisions for the levels r = ℘−1, ℘−2, . . . , 1, 0. The treatment of level
r consists of a sequence of scheduler-improvement steps where at the same
time the interval I is replaced with proper sub-intervals. The current sched-
uler S has been obtained by the last successful run of the threshold algo-
rithm, i.e., it has the form S = ThresAlgo[ϑ] where CES > ϑ. Besides the
decisions of S (i.e., the actions S(s,R) for all state-reward pairs (s,R) where
s ∈ S \ {goal , fail} and R ∈ {0, 1, . . . , ℘}), the algorithm also stores the values
ys,R and θs,R that have been computed in the threshold algorithm.4 For the
4 As the decisions of the already treated levels are optimal, the values ys,R and

θs,R for R ∈ {r+1, . . . , ℘} can be reused in the calls of the threshold algorithms.
That is, the calls of the threshold algorithm that are invoked in the scheduler-
improvement steps at level r can skip levels ℘, ℘−1, . . . , r+1 and only need to process
levels r, r−1, . . . , 1, 0.

282 C. Baier et al.

current level r, the algorithm also computes for each state s ∈ S \ {goal , fail}
and each action α ∈ Act(s) the values ys,r,α =

∑
t∈S P (s, α, t) · yt,R and

θs,r,α = rew(s, α)·ys,r,α +
∑

t∈S P (s, α, t)·θt,R where R = min{℘, r+rew(s, α)}.

Scheduler-improvement Step. Let r be the current level, I = [A,B[the current
interval and S the current scheduler with CEmax ∈ I. At the beginning of the
scheduler-improvement step we have CES = A. Let

IS,r =
{

r + θs,r−θs,r,α

ys,r−ys,r,α
: s ∈ S \ {goal , fail}, α ∈ Act(s), ys,r > ys,r,α

}

I↑
S,r =

{
d ∈ IS,r : d � CES

} IB
S,r =

{
d ∈ IS,r : d < B

}

Intuitively, the values in d ∈ IB
S,r are the “most promising” threshold values, as

according to statement (†) these are the points where the decision of the current
scheduler S for some state-reward pair (s, r) can be improved, provided that
CEmax > d. (Note that the values in IS,r\IB

S,r can be discarded as CEmax < B.)
The algorithm proceeds as follows. If IB

S,r = ∅ then no further improvements
at level r are possible as the function P∗ = S(·, r) satisfies (∗) for the (still
unknown) value ϑ = CEmax. See Appendix H of [13]. In this case:

– If r = 0 then the algorithm terminates with the answer CEmax = CES and S
as an optimal scheduler.

– If r > 0 then the algorithm goes to the next level r−1 and performs the
scheduler-improvement step for S at level r−1.

Suppose now that IB
S,r is nonempty. Let K = I↑

S,r ∪ {CES}. The algorithm
seeks for the largest value ϑ′ ∈ K ∩ I such that CEmax � ϑ′. More precisely, it
successively calls the threshold algorithm for the threshold value ϑ′ = max(K∩I)
and performs the following steps for the generated scheduler S′ = ThresAlgo[ϑ′]:

– If the result of the threshold algorithm is “no” and PrS
′

M,sinit
(♦goal) is positive

(in which case CES′
� CEmax < ϑ′), then:

• If CES′
� A then the algorithm refines I by putting B := ϑ′.

• If CES′
> A then the algorithm refines I by putting A := CES′

, B := ϑ′

and adds CES′
to K (Note that then CES′ ∈ K ∩ I, while CES ∈ K \ I.)

– Suppose now that CES′
� ϑ′. The algorithm terminates if CES′

= ϑ′, in which
case S′ is optimal. Otherwise, i.e., if CES′

> ϑ′, then the algorithm aborts the
loop by putting K := ∅, refines the interval I by putting A := CES′

, updates
the current scheduler by setting S := S′ and performs the next scheduler-
improvement step.

The soundness proof and complexity analysis can be found in Appendix H
of [13], where (among others) we show that the scheduler-improvement step
for schedulers S with CES < CEmax terminates with some scheduler S′ such
that CES < CES′

. The total number of calls of the threshold algorithm is
in O(℘ · md · |S| · |Act |). This yields an exponential time bound as stated in
Theorem 3.

Maximizing the Conditional Expected Reward for Reaching the Goal 283

Example 4.4. We regard again the MDP M[r] of Example 1.1 where we sup-
pose r is positive and even. The algorithm first computes CEub (see Sect. 3), a
saturation point ℘ � r+2 (see Example 4.2), the scheduler M, its conditional
expectation CEM = r

2 and the scheduler S = ThresAlgo[r2]. The initial interval
is I = [A,B[where A = CES = r − (r

2−1)/(2
r
2+1+1) (see Example 4.3) and

B = CEub+1. The scheduler improvement step for S at levels r = ℘−1, . . . , r+1
determines the set IS,r = {r−1} and calls the threshold algorithm for ϑ′ = r−1.
These calls are not successful for r = ℘−1, . . . , r+2. That is, the scheduler S
remains unchanged and the upper bound B is successively improved to r−1.
At level r = r+1, the threshold algorithm is called for ϑ′ = r, which yields the
optimal scheduler S′ = ThresAlgo[ϑ′] (see Example 4.3). �

Implementation and Experiments. We have implemented the algorithms
presented in this paper as a prototypical extension of the model checker
PRISM [27,28] and carried out initial experiments to demonstrate the general
feasibility of our approach (see https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/
TACAS17/ and Appendix K of [13] for details).

5 Conclusion

Although the switch to conditional expectations appears rather natural to escape
from the limitations of known solutions for unconditional extremal expected
accumulated rewards, to the best of our knowledge computation schemes for
conditional expected accumulated rewards have not been addressed before. Our
results show that new techniques are needed to compute maximal conditional
expectations, as optimal schedulers might need memory and local reasoning in
terms of the past and possible future is not sufficient (Example 1.1). The key
observations for our algorithms are the existence of a saturation point ℘ for the
reward that has been accumulated so far, from which on optimal schedulers can
behave memoryless, and a linear correlation between optimal decisions for all
state-reward pairs (s, r) of the same reward level r (see (∗) and the linear pro-
gram used in the threshold algorithm). The difficulty to reason about conditional
expectations is also reflected in the achieved complexity-theoretic results stating
that all variants of the threshold problem lie between PSPACE and EXPTIME.
While PSPACE-completeness has been established for acyclic MDPs (Appen-
dix I of [13]), the precise complexity for cyclic MDPs is still open. In contrast,
optimal schedulers for unconditional expected accumulated rewards as well as for
conditional reachability probabilities are computable in polynomial time [11,22].

Using standard automata-based approaches, our method can easily be gen-
eralized to compute maximal conditional expected rewards for regular co-safety
conditions (rather than reachability conditions ♦G) and/or where the accumula-
tion of rewards is “controlled” by a deterministic finite automaton as in the logics
considered in [12,17] (rather than F). In this paper, we restricted to MDPs
with non-negative integer rewards. Non-negative rational rewards can be treated
by multiplying all reward values with their least common multiple (Appendix J.1
of [13]). In the case of acyclic MDPs, our methods are even applicable if the MDP

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/TACAS17/
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/TACAS17/

284 C. Baier et al.

has negative and positive rational rewards (Appendix J.2 of [13]). By swapping
the sign of all rewards, this yields a technique to compute minimal conditional
expectations in acyclic MDPs. We expect that minimal conditional expectations
in cyclic MDPs with non-negative rewards can be computed using similar algo-
rithms as we suggested for maximal conditional expectations. This as well as
MDPs with negative and positive rewards will be addressed in future work.

References

1. Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Logical Methods
Comput. Sci. 3(4) (2007)

2. Acerbi, C., Tasche, D.: Expected shortfall: a natural coherent alternative to value
at risk. Econ. notes 31(2), 379–388 (2002)

3. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: On
the information leakage of differentially-private mechanisms. J. Comput. Secur.
23(4), 427–469 (2015)

4. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Axioms for information leakage. In: Proceedings of Computer Security Foun-
dations Symposium (CSF), pp. 77–92. IEEE Computer Society (2016)

5. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of Computer Security
Foundations Symposium (CSF), pp. 265–279. IEEE Computer Society (2012)

6. Andrés, M.E.: Quantitative Analysis of Information Leakage in Probabilistic and
Nondeterministic Systems. Ph.D. thesis, UB Nijmegen (2011)

7. Andrés, M.E., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hiding
in probabilistic concurrent systems. Theoret. Comput. Sci. 412(28), 3072–3089
(2011)

8. Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and
nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 157–172. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 12

9. Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilistic
model checking for energy-utility analysis. In: Breugel, F., Kashefi, E., Palamidessi,
C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panan-
gaden. LNCS, vol. 8464, pp. 96–123. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06880-0 5

10. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

11. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional prob-
abilities in Markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 43

12. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear
temporal logic: complexity and decidability. In: Proceedings of Computer Science
Logic/Logic in Computer Science (CSL-LICS), pp. 11:1–11:10. ACM (2014)

13. Baier, C., Klein, J., Klüppelholz, S. Wunderlich, S.: Maximizing the conditional
expected reward for reaching the goal (extended version). arXiv:1701.05389 (2017)

14. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilis-
tic invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 43–61. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-41528-4 3

http://dx.doi.org/10.1007/978-3-540-78800-3_12
http://dx.doi.org/10.1007/978-3-540-78800-3_12
http://dx.doi.org/10.1007/978-3-319-06880-0_5
http://dx.doi.org/10.1007/978-3-319-06880-0_5
http://dx.doi.org/10.1007/978-3-642-54862-8_43
http://dx.doi.org/10.1007/978-3-642-54862-8_43
http://arxiv.org/abs/1701.05389
http://dx.doi.org/10.1007/978-3-319-41528-4_3
http://dx.doi.org/10.1007/978-3-319-41528-4_3

Maximizing the Conditional Expected Reward for Reaching the Goal 285

15. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Math. Oper. Res. 16(3), 580–595 (1991)

16. Bertsekas, D.P., Yu, H.: Stochastic path problems under weak conditions. Technical
report, M.I.T. Cambridge, Report LIDS 2909 (2016)

17. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifica-
tions with accumulative values. In: Proceedings of Logic in Computer Science
(LICS), pp. 43–52. IEEE Computer Society (2011)

18. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on
multiple mean-payoff objectives in Markov decision processes. Logical Methods
Comput. Sci. 10(1) (2014)

19. Brázdil, T., Kučera, A.: Computing the expected accumulated reward and gain
for a subclass of infinite Markov Chains. In: Sarukkai, S., Sen, S. (eds.) FSTTCS
2005. LNCS, vol. 3821, pp. 372–383. Springer, Heidelberg (2005). doi:10.1007/
11590156 30

20. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilis-
tic programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 3–22. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-41528-4 1

21. Chatzikokolakis, K., Palamidessi, C., Braun, C.: Compositional methods for
information-hiding. Math. Struct. Comput. Sci. 26(6), 908–932 (2016)

22. Alfaro, L.: Computing minimum and maximum reachability times in probabilistic
systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999). doi:10.1007/3-540-48320-9 7

23. Gretz, F., Katoen, J., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

24. Jansen, N., Kaminski, B.L., Katoen, J., Olmedo, F., Gretz, F., McIver, A.: Con-
ditioning in probabilistic programming. In: Proceedings of Mathematical Founda-
tions of Programming Semantics (MFPS), Electronic Notes Theoretical Computer
Science, vol. 319, pp. 199–216 (2015)

25. Kallenberg, L.: Markov Decision Processes. Lecture Notes. University of Leiden,
Leiden (2011)

26. Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding
probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct
System Design. LNCS, vol. 9360, pp. 15–32. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23506-6 4

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

28. PRISM model checker. http://www.prismmodelchecker.org/
29. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. Wiley, New York (1994)
30. Randour, M., Raskin, J.-F., Sankur, O.: Variations on the stochastic shortest path

problem. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol.
8931, pp. 1–18. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46081-8 1

31. Seber, G., Lee, A.: Linear Regression Analysis. Wiley Series in Probability and
Statistics. Wiley, New York (2003)

32. Uryasev, S.: Conditional value-at-risk: optimization algorithms and applications.
In Proceedings of Computational Intelligence and Financial Engineering (CIFEr),
pp. 49–57. IEEE (2000)

http://dx.doi.org/10.1007/11590156_30
http://dx.doi.org/10.1007/11590156_30
http://dx.doi.org/10.1007/978-3-319-41528-4_1
http://dx.doi.org/10.1007/978-3-319-41528-4_1
http://dx.doi.org/10.1007/3-540-48320-9_7
http://dx.doi.org/10.1007/978-3-319-23506-6_4
http://dx.doi.org/10.1007/978-3-319-23506-6_4
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://www.prismmodelchecker.org/
http://dx.doi.org/10.1007/978-3-662-46081-8_1

ARES: Adaptive Receding-Horizon Synthesis
of Optimal Plans

Anna Lukina1(B), Lukas Esterle1, Christian Hirsch1, Ezio Bartocci1,
Junxing Yang2, Ashish Tiwari3, Scott A. Smolka2, and Radu Grosu1,2

1 Cyber-Physical Systems Group, Technische Universität Wien, Vienna, Austria
anna.lukina@tuwien.ac.at

2 Department of Computer Science, Stony Brook University, New York, USA
3 SRI International, Menlo Park, USA

Abstract. We introduce ARES, an efficient approximation algorithm
for generating optimal plans (action sequences) that take an initial state
of a Markov Decision Process (MDP) to a state whose cost is below a
specified (convergence) threshold. ARES uses Particle Swarm Optimiza-
tion, with adaptive sizing for both the receding horizon and the particle
swarm. Inspired by Importance Splitting, the length of the horizon and
the number of particles are chosen such that at least one particle reaches
a next-level state, that is, a state where the cost decreases by a required
delta from the previous-level state. The level relation on states and the
plans constructed by ARES implicitly define a Lyapunov function and an
optimal policy, respectively, both of which could be explicitly generated
by applying ARES to all states of the MDP, up to some topological equiv-
alence relation. We also assess the effectiveness of ARES by statistically
evaluating its rate of success in generating optimal plans. The ARES
algorithm resulted from our desire to clarify if flying in V-formation is a
flocking policy that optimizes energy conservation, clear view, and veloc-
ity alignment. That is, we were interested to see if one could find optimal
plans that bring a flock from an arbitrary initial state to a state exhibit-
ing a single connected V-formation. For flocks with 7 birds, ARES is
able to generate a plan that leads to a V-formation in 95% of the 8,000
random initial configurations within 63 s, on average. ARES can also
be easily customized into a model-predictive controller (MPC) with an
adaptive receding horizon and statistical guarantees of convergence. To
the best of our knowledge, our adaptive-sizing approach is the first to
provide convergence guarantees in receding-horizon techniques.

1 Introduction

Flocking or swarming in groups of social animals (birds, fish, ants, bees, etc.)
that results in a particular global formation is an emergent collective behavior
that continues to fascinate researchers [1,7]. One would like to know if such a
formation serves a higher purpose, and, if so, what that purpose is.

One well-studied flight-formation behavior is V-formation. Most of the
work in this area has concentrated on devising simple dynamical rules that,
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 286–302, 2017.
DOI: 10.1007/978-3-662-54580-5 17

ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans 287

when followed by each bird, eventually stabilize the flock to the desired
V-formation [11,12,26]. This approach, however, does not shed very much light
on the overall purpose of this emergent behavior.

In previous work [35,36], we hypothesized that flying in V-formation is noth-
ing but an optimal policy for a flocking-based Markov Decision Process (MDP)
M. States of M, at discrete time t, are of the form (xi(t),vi(t)), 1� i� N ,
where xi(t) and vi(t) are N -vectors (for an N -bird flock) of 2-dimensional posi-
tions and velocities, respectively. M’s transition relation, shown here for bird i
is simply and generically given by

xi(t + 1) = xi(t) + vi(t + 1),
vi(t + 1) = vi(t) + ai(t),

where ai(t) is an action, a 2-dimensional acceleration in this case, that bird i
can take at time t. M’s cost function reflects the energy-conservation, velocity-
alignment and clear-view benefits enjoyed by a state of M (see Sect. 2).

In this paper, we not only confirm this hypothesis, but we also devise a very
general adaptive, receding-horizon synthesis algorithm (ARES) that, given an
MDP and one of its initial states, generates an optimal plan (action sequence)
taking that state to a state whose cost is below a desired threshold. In fact,
ARES implicitly defines an optimal, online-policy, synthesis algorithm that could
be used in practice if plan generation can be performed in real-time.

ARES makes repeated use of Particle Swarm Optimization (PSO) [23] to
effectively generate a plan. This was in principle unnecessary, as one could gen-
erate an optimal plan by calling PSO only once, with a maximum plan-length
horizon. Such an approach, however, is in most cases impractical, as every unfold-
ing of the MDP adds a number of new dimensions to the search space. Conse-
quently, to obtain an adequate coverage of this space, one needs a very large
number of particles, a number that is either going to exhaust available memory
or require a prohibitive amount of time to find an optimal plan.

A simple solution to this problem would be to use a short horizon, typically of
size two or three. This is indeed the current practice in Model Predictive Control
(MPC) [13]. This approach, however, has at least three major drawbacks. First,
and most importantly, it does not guarantee convergence and optimality, as one
may oscillate or become stuck in a local optimum. Second, in some of the steps,
the window size is unnecessarily large thereby negatively impacting performance.
Third, in other steps, the window size may be not large enough to guide the
optimizer out of a local minimum (see Fig. 1 (left)). One would therefore like to
find the proper window size adaptively, but the question is how one can do it.

Inspired by Importance Splitting (IS), a sequential Monte-Carlo technique for
estimating the probability of rare events, we introduce the notion of a level-based
horizon (see Fig. 1 (right)). Level �0 is the cost of the initial state, and level �m is
the desired threshold. By using a state function, asymptotically converging to the
desired threshold, we can determine a sequence of levels, ensuring convergence
of ARES towards the desired optimal state(s) having a cost below �m =ϕ.

The levels serve two purposes. First, they implicitly define a Lyapunov func-
tion, which guarantees convergence. If desired, this function can be explicitly

288 A. Lukina et al.

State

Cost

s0 s1

�0

�1

si si+3.

�i

�i+1

State

Level

s0s1sisi+3 s∗. . .

�0

�1

�i

�i+1

.

.

.

ϕ
�m

.

.

.

Fig. 1. Left: If state s0 has cost �0, and its successor-state s1 has cost less than �1, then
a horizon of length 1 is appropriate. However, if si has a local-minimum cost �i, one
has to pass over the cost ridge in order to reach level �i+1, and therefore ARES has to
adaptively increase the horizon to 3. Right: The cost of the initial state defines �0 and
the given threshold ϕ defines �m. By choosing m equal segments on an asymptotically
converging (Lyapunov) function (where the number m is empirically determined), one
obtains on the vertical cost-axis the levels required for ARES to converge.

generated for all states, up to some topological equivalence. Second, the lev-
els help PSO overcome local minima (see Fig. 1 (left)). If reaching a next level
requires PSO to temporarily pass over a state-cost ridge, ARES incrementally
increases the size of the horizon, up to a maximum length.

Another idea imported from IS is to maintain n clones of the initial state at
a time, and run PSO on each of them (see Fig. 3). This allows us to call PSO
for each clone and desired horizon, with a very small number of particles per
clone. Clones that do not reach the next level are discarded, and the successful
ones are resampled. The number of particles is increased if no clone reaches a
next level, for all horizons chosen. Once this happens, we reset the horizon to
one, and repeat the process. In this way, we adaptively focus our resources on
escaping from local minima. At the last level, we choose the optimal particle (a
V-formation in case of flocking) and traverse its predecessors to find a plan.

We assess the rate of success in generating optimal plans in form of an (ε, δ)-
approximation scheme, for a desired error margin ε, and confidence ratio 1−δ.
Moreover, we can use the state-action pairs generated during the assessment (and
possibly some additional new plans) to construct an explicit (tabled) optimal
policy, modulo some topological equivalence. Given enough memory, one can
use this policy in real time, as it only requires a table look-up.

To experimentally validate our approach, we have applied ARES to the prob-
lem of V-formation in bird flocking (with a deterministic MDP). The cost func-
tion to be optimized is defined as a weighted sum of the (flock-wide) clear-view,
velocity-alignment, and upwash-benefit metrics. Clear view and velocity align-
ment are more or less obvious goals. Upwash optimizes energy savings. By flap-
ping its wings, a bird generates a trailing upwash region off its wing tips; by

ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans 289

using this upwash, a bird flying in this region (left or right) can save energy.
Note that by requiring that at most one bird does not feel its effect, upwash can
be used to define an analog version of a connected graph.

We ran ARES on 8,000 initial states chosen uniformly and at random, such
that they are packed closely enough to feel upwash, but not too close to collide.
We succeeded to generate a V-formation 95% of the time, with an error margin
of 0.05 and a confidence ratio of 0.99. These error margin and confidence ratio
dramatically improve if we consider all generated states and the fact that each
state within a plan is independent from the states in all other plans.

The rest of this paper is organized as follows. Section 2 reviews our work on
bird flocking and V-formation, and defines the manner in which we measure the
cost of a flock (formation). Section 3 revisits the swarm optimization algorithm
used in this paper, and Sect. 4 examines the main characteristics of importance
splitting. Section 5 states the definition of the problem we are trying to solve.
Section 6 introduces ARES, our adaptive receding-horizon synthesis algorithm
for optimal plans, and discusses how we can extend this algorithm to explicitly
generate policies. Section 7 measures the efficiency of ARES in terms of an (ε, δ)-
approximation scheme. Section 8 compares our algorithm to related work, and
Sect. 9 draws our conclusions and discusses future work.

2 V-Formation MDP

We represent a flock of birds as a dynamically evolving system. Every bird in
our model [16] moves in 2-dimensional space performing acceleration actions
determined by a global controller. Let xi(t),vi(t) and ai(t) be 2-dimensional
vectors of positions, velocities, and accelerations, respectively, of bird i at time
t, where i∈ {1, . . . , b}, for a fixed b. The discrete-time behavior of bird i is then

xi(t + 1) = xi(t) + vi(t + 1),
vi(t + 1) = vi(t) + ai(t). (1)

The controller detects the positions and velocities of all birds through sensors,
and uses this information to compute an optimal acceleration for the entire flock.
A bird uses its own component of the solution to update its velocity and position.

We extend this discrete-time dynamical model to a (deterministic) MDP by
adding a cost (fitness) function1 based on the following metrics inspired by [35]:

– Clear View (CV). A bird’s visual field is a cone with angle θ that can be
blocked by the wings of other birds. We define the clear-view metric by accu-
mulating the percentage of a bird’s visual field that is blocked by other birds.
Figure 2 (left) illustrates the calculation of the clear-view metric. The optimal
value in a V-formation is CV ∗= 0, as all birds have a clear view.

– Velocity Matching (VM). The accumulated differences between the velocity
of each bird and all other birds, summed up over all birds in the flock defines

1 A classic MDP [28] is obtained by adding sensor/actuator or wind-gust noise, which
are the case we are addressing in the follow-up work.

290 A. Lukina et al.

Fig. 2. Illustration of the clear view (CV), velocity matching (VM), and upwash ben-
efit (UB) metrics. Left: Bird i’s view is partially blocked by birds j and k. Hence, its
clear view is CV = (α + β)/θ. Middle: A flock and its unaligned bird velocities results
in a velocity-matching metric VM = 6.2805. In contrast, VM = 0 when the velocities
of all birds are aligned. Right: Illustration of the (right-wing) upwash benefit bird i
receives from bird j depending on how it is positioned behind bird j. Note that bird
j’s downwash region is directly behind it.

VM . Figure 2 (middle) depicts the values of VM in a velocity-unmatched flock.
The optimal value in a V-formation is VM ∗= 0, as all birds will have the same
velocity (thus maintaining the V-formation).

– Upwash Benefit (UB). The trailing upwash is generated near the wingtips of
a bird, while downwash is generated near the center of a bird. We accumu-
late all birds’ upwash benefits using a Gaussian-like model of the upwash and
downwash region, as shown in Fig. 2 (right) for the right wing. The maximum
upwash a bird can obtain has an upper bound of 1. For bird i with UB i, we use
1−UB i as its upwash-benefit metric, because the optimization algorithm per-
forms minimization of the fitness metrics. The optimal value in a V-formation
is UB∗ = 1, as the leader does not receive any upwash.

Finding smooth and continuous formulations of the fitness metrics is a key ele-
ment of solving optimization problems. The PSO algorithm has a very low prob-
ability of finding an optimal solution if the fitness metric is not well-designed.

Let c(t)= {ci(t)}b
i=1 = {xi(t),vi(t)}b

i=1 ∈R be a flock configuration at time-
step t. Given the above metrics, the overall fitness (cost) metric J is of a sum-
of-squares combination of VM , CV , and UB defined as follows:

J(c(t),ah(t), h) = (CV (ch
a(t)) − CV ∗)2 + (VM (ch

a(t)) − VM ∗)2

+ (UB(ch
a(t)) − UB∗)2, (2)

where h is the receding prediction horizon (RPH), ah(t)∈R is a sequence of
accelerations of length h, and ch

a(t) is the configuration reached after applying
ah(t) to c(t). Formally, we have

ch
a(t) = {xh

a(t),vh
a(t)} = {x(t) +

h(t)∑

τ=1

v(t + τ),v(t) +
h(t)∑

τ=1

aτ (t)}, (3)

where aτ (t) is the τth acceleration of ah(t). A novelty of this paper is that, as
described in Sect. 6, we allow RPH h(t) to be adaptive in nature.

ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans 291

The fitness function J has an optimal value of 0 in a perfect V-formation.
The main goal of ARES is to compute the sequence of acceleration actions
that lead the flock from a random initial configuration towards a controlled V-
formation characterized by optimal fitness in order to conserve energy during
flight including optimal combination of a clear visual field along with visibility
of lateral neighbors. Similar to the centralized version of the approach given
in [35], ARES performs a single flock-wide minimization of J at each time-step
t to obtain an optimal plan of length h of acceleration actions:

opt−ah(t) = {opt−ah
i (t)}b

i=1 = arg min
ah(t)

J(c(t),ah(t), h). (4)

The optimization is subject to the following constraints on the maximum
velocities and accelerations: ||vi(t)||�vmax, ||ah

i (t)||� ρ||vi(t)|| ∀ i∈ {1, . . . , b},
where vmax is a constant and ρ∈ (0, 1). The above constraints prevent us from
using mixed-integer programming, we might, however, compare our solution to
other continuous optimization techniques in the future. The initial positions and
velocities of each bird are selected at random within certain ranges, and limited
such that the distance between any two birds is greater than a (collision) constant
dmin, and small enough for all birds, except for at most one, to feel the UB . In
the following sections, we demonstrate how to generate optimal plans taking the
initial state to a stable state with optimal fitness.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a randomized approximation algorithm
for computing the value of a parameter minimizing a possibly nonlinear cost
(fitness) function. Interestingly, PSO itself is inspired by bird flocking [23]. Hence,
PSO assumes that it works with a flock of birds.

Note, however, that in our running example, these birds are “acceleration
birds” (or particles), and not the actual birds in the flock. Each bird has the
same goal, finding food (reward), but none of them knows the location of the
food. However, every bird knows the distance (horizon) to the food location.
PSO works by moving each bird preferentially toward the bird closest to food.

ARES uses Matlab-Toolbox particleswarm, which performs the classical
version of PSO. This PSO creates a swarm of particles, of size say p, uniformly
at random within a given bound on their positions and velocities. Note that in
our example, each particle represents itself a flock of bird-acceleration sequences
{ah

i }b
i=1, where h is the current length of the receding horizon. PSO further

chooses a neighborhood of a random size for each particle j, j = {1, . . . , p}, and
computes the fitness of each particle. Based on the fitness values, PSO stores two
vectors for j: its so-far personal-best position xj

P (t), and its fittest neighbor’s
position xj

G(t). The positions and velocities of each particle j in the particle
swarm 1� j � p are updated according to the following rule:

vj(t + 1) = ω · vj(t) + y1 · u1(t + 1) ⊗ (xj
P (t) − xj(t))

+ y2 · u2(t + 1) ⊗ (xj
G(t) − xj(t)), (5)

292 A. Lukina et al.

where ω is inertia weight, which determines the trade-off between global and
local exploration of the swarm (the value of ω is proportional to the explo-
ration range); y1 and y2 are self adjustment and social adjustment, respectively;
u1,u2 ∈Uniform(0, 1) are randomization factors; and ⊗ is the vector dot prod-
uct, that is, ∀ random vector z: (z1, . . . , zb) ⊗ (xj

1, . . . ,x
j
b) = (z1x

j
1, . . . , zbx

j
b).

If the fitness value for xj(t + 1)=xj(t)+vj(t + 1) is lower than the one
for xj

P (t), then xj(t + 1) is assigned to xj
P (t + 1). The particle with the best

fitness over the whole swarm becomes a global best for the next iteration. The
procedure is repeated until the number of iterations reaches its maximum, the
time elapses, or the minimum criteria is satisfied. For our bird-flock example we
obtain in this way the best acceleration.

4 Importance Splitting

Importance Splitting (IS) is a sequential Monte-Carlo approximation technique
for estimating the probability of rare events in a Markov process [21]. The algo-
rithm uses a sequence S0, S1, S2, . . . , Sm of sets of states (of increasing “impor-
tance”) such that S0 is the set of initial states and Sm is the set of states
defining the rare event. The probability p, computed as P(Sm |S0) of reach-
ing Sm from the initial set of states S0, is assumed to be extremely low (thus,
a rare event), and one desires to estimate this probability [15]. Random sam-
pling approaches, such as the additive-error approximation algorithm described
in Sect. 7, are bound to fail (are intractable) in this case, as they would require
an enormous number of samples to estimate p with low-variance.

Importance splitting is a way of decomposing the estimation of p. In IS, the
sequence S0, S1, . . . of sets of states is defined so that the conditional proba-
bilities pi =P(Si |Si−1) of going from one level, Si−1, to the next one, Si, are
considerably larger than p, and essentially equal to one another. The resulting
probability of the rare event is then calculated as the product p =

∏k
i=1 pi of the

intermediate probabilities. The levels can be defined adaptively [22].
To estimate pi, IS uses a swarm of particles of size N , with a given initial

distribution over the states of the stochastic process. During stage i of the algo-
rithm, each particle starts at level Si−1 and traverses the states of the stochastic
process, checking if it reaches Si. If, at the end of the stage, the particle fails to
reach Si, the particle is discarded. Suppose that Ki particles survive. In this case,
pi =Ki/N . Before starting the next stage, the surviving particles are resampled,
such that IS once again has N particles. Whereas IS is used for estimating prob-
ability of a rare event in a Markov process, we use it here for synthesizing a plan
for a controllable Markov process, by combining it with ideas from controller
synthesis (receding-horizon control) and nonlinear optimization (PSO).

5 Problem Definition

Definition 1. A Markov decision process (MDP) M is a sequential deci-
sion problem that consists of a set of states S (with an initial state s0), a set of
actions A, a transition model T , and a cost function J . An MDP is determin-
istic if for each state and action, T : S ×A→ S specifies a unique state.

ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans 293

Definition 2. The optimal plan synthesis problem for an MDP M, an
arbitrary initial state s0 of M, and a threshold ϕ is to synthesize a sequence of
actions ai of length 1� i� m taking s0 to a state s∗ such that cost J(s∗)� ϕ.

Section 6 presents our adaptive receding-horizon synthesis algorithm (ARES)
for the optimal plan synthesis problem. In our flocking example (Sect. 2), ARES
is used to synthesize a sequence of acceleration-actions bringing an arbitrary bird
flock s0 to an optimal state of V-formation s∗. We assume that we can easily
extend such an optimal plan to maintain the cost of successor states below ϕ ad
infinitum (optimal stability).

6 The ARES Algorithm for Plan Synthesis

As mentioned in Sect. 1, one could in principle solve the optimization problem
defined in Sect. 5 by calling the PSO only once, with a horizon h in M equaling
the maximum length m allowed for a plan. This approach, however, tends to
explode the search space, and is therefore in most cases intractable. Indeed,
preliminary experiments with this technique applied to our running example
could not generate any convergent plan.

A more tractable approach is to make repeated calls to PSO with a small
horizon length h. The question is how small h can be. The current practice in
model-predictive control (MPC) is to use a fixed h, 1� h � 3 (see the outer loop
of Fig. 3, where resampling and conditional branches are disregarded). Unfortu-
nately, this forces the selection of locally-optimal plans (of size less than three) in
each call, and there is no guarantee of convergence when joining them together.
In fact, in our running example, we were able to find plans leading to a V-
formation in only 45% of the time for 10, 000 random initial flocks.

Inspired by IS (see Figs. 1 (right) and 3), we introduce the notion of a level-
based horizon, where level �0 equals the cost of the initial state, and level �m

equals the threshold ϕ. Intuitively, by using an asymptotic cost-convergence
function ranging from �0 to �m, and dividing its graph in m equal segments, we
can determine on the vertical axis a sequence of levels ensuring convergence.

The asymptotic function ARES implements is essentially �i = �0 (m − i)/m,
but specifically tuned for each particle. Formally, if particle k has previously
reached level equaling Jk(si−1), then its next target level is within the distance
Δk = Jk(si−1)/(m− i+ 1). In Fig. 3, after passing the thresholds assigned to
them, values of the cost function in the current state si are sorted in ascending
order {Ĵk}n

k=1. The lowest cost Ĵ1 should be apart from the previous level �i−1

at least on its Δ1 for the algorithm to proceed to the next level �i := Ĵ1.
The levels serve two purposes. First, they implicitly define a Lyapunov func-

tion, which guarantees convergence. If desired, this function can be explicitly
generated for all states, up to some topological equivalence. Second, the levels
�i help PSO overcome local minima (see Fig. 1 (left)). If reaching a next level
requires PSO to temporarily pass over a state-cost ridge, then ARES incremen-
tally increases the size of the horizon h, up to a maximum size hmax. For particle

294 A. Lukina et al.

Fig. 3. Graphical representation of ARES.

k, passing the thresholds Δk means that it reaches a new level, and the definition
of Δk ensures a smooth degradation of its threshold.

Another idea imported from IS and shown in Fig. 3, is to maintain n clones
{Mk}n

k=1 of the MDP M (and its initial state) at any time t, and run PSO, for
a horizon h, on each h-unfolding Mh

k of them. This results in an action sequence
ah

k of length h (see Algorithm 1). This approach allows us to call PSO for each
clone and desired horizon, with a very small number of particles p per clone.

Algorithm 1. Simulate (M, h, i, {Δk, Jk(si−1)}n
k=1)

1 foreach Mk ∈ M do

2 [ah
k , Mh

k] ← particleswarm(Mk, p, h); // use PSO in order to determine
best next action for the MDP Mk with RPH h

3 Jk(si) ← Cost(Mh
k ,ah

k , h); // calculate cost function if applying the
sequence of optimal actions of length h

4 if Jk(si−1) − Jk(si) > Δk then
5 Δk ← Jk(si)/(m − i); // new level-threshold
6 end

7 end

ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans 295

Algorithm 2. Resample ({Mh
k , Jk(si)}n

k=1)

1 I ← Sort ascending Mh
k by their current costs; // find indexes of MDPs whose

costs are below the median among all the clones
2 for k = 1 to n do
3 if k /∈ I then

4 Sample r uniformly at random from I; Mk ← Mh
r ;

5 else

6 Mk ← Mh
k ; // Keep more successful MDPs unchanged

7 end

8 end

To check which particles have overcome their associated thresholds, we sort
the particles according to their current cost, and split them in two sets: the
successful set, having the indexes I and whose costs are lower than the median
among all clones; and the unsuccessful set with indexes in {1, . . ., n} \I, which are
discarded. The unsuccessful ones are further replenished, by sampling uniformly
at random from the successful set I (see Algorithm 2).

The number of particles is increased p = p + pinc if no clone reaches a next
level, for all horizons chosen. Once this happens, we reset the horizon to one, and
repeat the process. In this way, we adaptively focus our resources on escaping
from local minima. From the last level, we choose the state s∗ with the minimal
cost, and traverse all of its predecessor states to find an optimal plan comprised
of actions {ai}1�i�m that led MDP M to the optimal state s∗. In our running
example, we select a flock in V-formation, and traverse all its predecessor flocks.
The overall procedure of ARES is shown in Algorithm3.

Proposition 1 (Optimality and Minimality). (1) Let M be an MDP. For
any initial state s0 of M, ARES is able to solve the optimal-plan synthesis
problem for M and s0. (2) An optimal choice of m in function Δk, for some
particle k, ensures that ARES also generates the shortest optimal plan.

Proof (Sketch). (1) The dynamic-threshold function Δk ensures that the initial
cost in s0 is continuously decreased until it falls below ϕ. Moreover, for an appro-
priate number of clones, by adaptively determining the horizon and the number
of particles needed to overcome Δk, ARES always converges, with probability
1, to an optimal state, given enough time and memory. (2) This follows from
convergence property (1), and from the fact that ARES always gives preference
to the shortest horizon while trying to overcome Δk.

The optimality referred to in the title of the paper is in the sense of (1).
One, however, can do even better than (1), in the sense of (2), by empirically
determining parameter m in the dynamic-threshold function Δk. Also note that
ARES is an approximation algorithm. As a consequence, it might return non-
minimal plans. Even in these circumstances, however, the plans will still lead to
an optimal state. This is a V-formation in our flocking example.

296 A. Lukina et al.

Algorithm 3. ARES
Input : M, ϕ, pstart, pinc, pmax, hmax, m, n
Output: {ai}1�i� m // synthesized optimal plans

1 Initialize �0 ← inf; {Jk(s0)}n
k=1 ← inf; p ← pstart; i ← 1; h ← 1; Δk ← 0;

2 while (�i > ϕ) ∨ (i < m) do
3 // find and apply best actions with RPH h

4 [{ah
k , Jk(si), Mh

k}n
k=1] ←Simulate(M, h, i, {Δk, Jk(si−1)}n

k=1);

Ĵ1 ← sort(J1(si), . . . , Jn(si)); // find minimum cost among all the clones

5 if �i−1 − Ĵ1 > Δ1 then

6 �i ← Ĵ1; // new level has been reached
7 i ← i + 1; h ← 1; p ← pstart; // reset adaptive parameters

8 {Mk}n
k=1 ← Resample({Mh

k , Jk(si)}n
k=1);

9 else
10 if h < hmax then
11 h ← h + 1; // improve time exploration
12 else
13 if p < pmax then
14 h ← 1; p ← p + pinc; // improve space exploration
15 else
16 break;
17 end

18 end

19 end

20 end
21 Take a clone in the state with minimum cost �i = J(s∗

i) � ϕ at the last level i;
22 foreach i do
23 {s∗

i−1,a
i} ← Pre(s∗

i); // find predecessor and corresponding action
24 end

7 Experimental Results

To assess the performance of our approach, we developed a simple simulation
environment in Matlab. All experiments were run on an Intel Core i7-5820K
CPU with 3.30 GHz and with 32 GB RAM available.

We performed numerous experiments with a varying number of birds. Unless
stated otherwise, results refer to 8,000 experiments with 7 birds with the follow-
ing parameters: pstart = 10, pinc = 5, pmax = 40, �max = 20, hmax = 5, ϕ = 10−3,
and n= 20. The initial configurations were generated independently uniformly
at random subject to the following constraints:

1. Position constraints: ∀ i∈ {1, . . ., 7}. xi(0) ∈ [0, 3] × [0, 3].
2. Velocity constraints: ∀ i∈ {1, . . ., 7}. vi(0) ∈ [0.25, 0.75] × [0.25, 0.75].

Table 1 gives an overview of the results with respect to the 8,000experiments
we performed with 7 birds for a maximum of 20 levels. The average fitness
across all experiments is at 0.0282 with a standard deviation of 0.1654. We

ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans 297

Table 1. Overview of the results for 8,000 experiments with 7 birds

No. experiments Successful Total

7573 8000

Min Max Avg Std Min Max Avg Std

Cost, J 2.88·10−7 9·10−4 4·10−4 3·10−4 2.88·10−7 1.4840 0.0282 0.1607

Time, t 23.14 s 310.83 s 63.55 s 22.81 s 23.14 s 661.46 s 64.85 s 28.05 s

Plan length, i 7 20 12.80 2.39 7 20 13.13 2.71

RPH, h 1 5 1.40 0.15 1 5 1.27 0.17

Fig. 4. Left: Example of an arbitrary initial configuration of 7 birds. Right: The V-
formation obtained by applying the plan generated by ARES. In the figures, we show
the wings of the birds, bird orientations, bird speeds (as scaled arrows), upwash regions
in yellow, and downwash regions in dark blue. (Color figure online)

Fig. 5. Left: Distribution of execution times for 8,000 runs. Middle: Statistics of increas-
ing RPH h. Right: Particles of PSO p for 8,000 experiments

achieved a success rate of 94.66% with fitness threshold ϕ = 10−3. The average
fitness is higher than the threshold due to comparably high fitness of unsuccessful
experiments. When increasing the bound for the maximal plan length m to 30 we
achieved a 98.4% success rate in 1,000 experiments at the expense of a slightly
longer average execution time.

The left plot in Fig. 5 depicts the resulting distribution of execution times for
8,000runs of our algorithm, where it is clear that, excluding only a few outliers
from the histogram, an arbitrary configuration of birds (Fig. 4 (left)) reaches

298 A. Lukina et al.

Table 2. Average duration for 100 experiments with various number of birds

No. of birds 3 5 7 9

Avg. duration 4.58 s 18.92 s 64.85 s 269.33 s

V-formation (Fig. 4 (right)) in around 1 min. The execution time rises with the
number of birds as shown in Table 2.

In Fig. 5, we illustrate for how many experiments the algorithm had to
increase RPH h (Fig. 5 (middle)) and the number of particles used by PSO
p (Fig. 5 (right)) to improve time and space exploration, respectively.

After achieving such a high success rate of ARES for an arbitrary initial
configuration, we would like to demonstrate that the number of experiments
performed is sufficient for high confidence in our results. This requires us to deter-
mine the appropriate number N of random variables Z1, ...ZN necessary for the
Monte-Carlo approximation scheme we apply to assess efficiency of our approach.
For this purpose, we use the additive approximation algorithm as discussed
in [16]. If the sample mean μZ = (Z1 + . . . + ZN)/N is expected to be large,
then one can exploit the Bernstein’s inequality and fix N to Υ∝ ln(1/δ)/ε2.
This results in an additive or absolute-error (ε, δ)-approximation scheme:

P[μZ − ε ≤ μ̃Z ≤ μZ + ε] ≥ 1 − δ,

where μ̃Z approximates μZ with absolute error ε and probability 1 − δ.
In particular, we are interested in Z being a Bernoulli random variable:

Z =
{

1, if J(c(t),a(t), h(t)) � ϕ,
0, otherwise.

Therefore, we can use the Chernoff-Hoeffding instantiation of the Bernstein’s
inequality, and further fix the proportionality constant to Υ = 4 ln(2/δ)/ε2, as
in [19]. Hence, for our performed 8,000 experiments, we achieve a success rate
of 95% with absolute error of ε = 0.05 and confidence ratio 0.99.

Moreover, considering that the average length of a plan is 13, and that each
state in a plan is independent from all other plans, we can roughly consider
that our above estimation generated 80,000 independent states. For the same
confidence ratio of 0.99 we then obtain an approximation error ε = 0.016, and
for a confidence ratio of 0.999, we obtain an approximation error ε = 0.019.

8 Related Work

Organized flight in flocks of birds can be categorized in cluster flocking and line
formation [18]. In cluster flocking the individual birds in a large flock seem to
be uncoordinated in general. However, the flock moves, turns, and wheels as
if it were one organism. In 1987 Reynolds [27] defined his three famous rules
describing separation, alignment, and cohesion for individual birds in order to
have them flock together. This work has been great inspiration for research in
the area of collective behavior and self-organization.

ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans 299

In contrast, line formation flight requires the individual birds to fly in a very
specific formation. Line formation has two main benefits for the long-distance
migrating birds. First, exploiting the generated uplift by birds flying in front,
trailing birds are able to conserve energy [9,24,34]. Second, in a staggered forma-
tion, all birds have a clear view in front as well as a view on their neighbors [1].
While there has been quite some effort to keep a certain formation for multiple
entities when traveling together [10,14,30], only little work deals with a task
of achieving this extremely important formation from a random starting con-
figuration [6]. The convergence of bird flocking into V-formation has been also
analyzed with the use of combinatorial techniques [7].

Compared to previous work, in [5] this question is addressed without using
any behavioral rules but as problem of optimal control. In [35] a cost func-
tion was proposed that reflects all major features of V-formation, namely, Clear
View (CV), Velocity Matching (VM), and Upwash Benefit (UB). The technique
of MPC is used to achieve V-formation starting from an arbitrary initial con-
figuration of n birds. MPC solves the task by minimizing a functional defined
as squared distance from the optimal values of CV, VM, and UB, subject to
constraints on input and output. The approach is to choose an optimal velocity
adjustment, as a control input, at each time-step applied to the velocity of each
bird by predicting model behavior several time-steps ahead.

The controller synthesis problem has been widely studied [33]. The most pop-
ular and natural technique is Dynamic Programming (DP) [4] that improves the
approximation of the functional at each iteration, eventually converging to the
optimal one given a fixed asymptotic error. Compared to DP, which considers all
the possible states of the system and might suffer from state-space explosion in
case of environmental uncertainties, approximate algorithms [2,3,17,25,31,32]
take into account only the paths leading to desired target. One of the most effi-
cient ones is Particle Swarm Optimization (PSO) [23] that has been adopted
for finding the next best step of MPC in [35]. Although it is a very powerful
optimization technique, it has not yet been possible to achieve a high success
rate in solving the considered flocking problem. Sequential Monte-Carlo methods
proved to be efficient in tackling the question of control for linear stochastic sys-
tems [8], in particular, Importance Splitting (IS) [22]. The approach we propose
is, however, the first attempt to combine adaptive IS, PSO, and receding-horizon
technique for synthesis of optimal plans for controllable systems. We use MPC
to synthesize a plan, but use IS to determine the intermediate fitness-based way-
points. We use PSO to solve the multi-step optimization problem generated by
MPC, but choose the planning horizon and the number of particles adaptively.
These choices are governed by the difficulty to reach the next level.

9 Conclusion and Future Work

In this paper, we have presented ARES, a very general adaptive, receding-horizon
synthesis algorithm for MDP-based optimal plans. Additionally, ARES can be
readily converted into a model-predictive controller with an adaptive receding

300 A. Lukina et al.

horizon and statistical guarantees of convergence. We also conducted a very
thorough performance analysis of ARES based on the problem of V-formation
in a flock of birds. For flocks of 7 birds, with high confidence ARES is able to
generate an optimal plan leading to a V-formation in 95% of the 8,000 random
initial configurations we considered, with an average execution time of only 63 s
per plan.

The execution time of the ARES algorithm can be improved even further.
First, we currently do not parallelize our implementation of the PSO algorithm.
Recent work [20,29,37] has shown how Graphic Processing Units (GPUs) are
very efficient at accelerating PSO computation. Modern GPUs, by providing
thousands of cores, are well-suited for implementing PSO as they enable exe-
cution of a very large number of particles in parallel. Together with the paral-
lelization of the fitness function calculation, this should significantly speed up
our simulations and improve accuracy of the optimization procedure.

Second, we are currently using a static approach to decide how to increase
our prediction horizon and the number of particles used in PSO. Specifically, we
first increase the prediction horizon from 1 to 5, while keeping the number of
particles unchanged at 10; if this fails to find a solution with fitness Ĵ1 satisfying
�i−1 − Ĵ1 > Δ1, we then increase the number of particles by 5. Based on our
results, we speculate that in the initial stages, increasing the prediction horizon is
more beneficial (leading rapidly to the appearance of cost-effective formations),
whereas in the later stages, increasing the number of particles is more helpful. As
future work, we will use machine-learning approaches to decide on the value of
above parameters at runtime given the current level and state of the MDP, as well
as study the impact of different level decomposition. Moreover, in our approach,
we calculate the number of clones for resampling based on the current state. An
alternative approach would rely on statistics built up over multiple levels along
with the rank in the sorted list to chose configurations for resampling.

Finally, we are currently using our approach to generate plans for a flock
to go from an initial configuration to a final V-formation. Our eventual goal
is to achieve formation flight for a robotic swarm of (bird-like) drones. A real-
world example is parcel-delivering drones that follow the same route to their
destinations. Letting them fly together for a while could save energy and increase
flight time. To achieve this goal, we first need to investigate the wind dynamics
of multi-rotor drones. Then, the fitness function needs to be adopted to the
new wind dynamics. Lastly, a decentralized approach of this method needs to
be implemented and tested on the drone firmware, as well as various attacking
modes are to be analyzed for proving the resilience of the approach.

Acknowledgments. The first author and the last author would like to thank Jan
Kr̆et́ınský for very valuable feedback. This work was partially supported by the
Doctoral Program Logical Methods in Computer Science and the Austrian National
Research Network RiSE/SHiNE (S11405-N23 and S11412-N23) project funded by the
Austrian Science Fund (FWF) project W1255-N23, the EU ICT COST Action IC1402
ARVI, the Fclose (Federated Cloud Security) project funded by UnivPM, and National
Science Foundation grant CCF 1423296.

ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans 301

References

1. Bajec, I.L., Heppner, F.H.: Organized flight in birds. Anim. Behav. 78(4), 777–789
(2009)

2. Bartocci, E., Bortolussi, L., Brázdil, T., Milios, D., Sanguinetti, G.: Policy learn-
ing for time-bounded reachability in continuous-time Markov decision processes
via doubly-stochastic gradient ascent. In: Agha, G., Houdt, B. (eds.) QEST
2016. LNCS, vol. 9826, pp. 244–259. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-43425-4 17

3. Baxter, J., Bartlett, P.L., Weaver, L.: Experiments with infinite-horizon, policy-
gradient estimation. J. Artif. Int. Res. 15(1), 351–381 (2011)

4. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
5. Camacho, E.F., Alba, C.B.: Model Predictive Control. Advanced Textbooks in

Control and Signal Processing. Springer, Heidelberg (2007)
6. Cattivelli, F.S., Sayed, A.H.: Modeling bird flight formations using diffusion adap-

tation. IEEE Trans. Signal Process. 59(5), 2038–2051 (2011)
7. Chazelle, B.: The convergence of bird flocking. J. ACM 61(4), 21:1–21:35 (2014)
8. Chen, Y., Wu, B., Lai, T.L.: Fast Particle Filters and Their Applications to Adap-

tive Control in Change-Point ARX Models and Robotics. INTECH Open Access
Publisher (2009)

9. Cutts, C., Speakman, J.: Energy savings in formation flight of pink-footed geese.
J. Exp. Biol. 189(1), 251–261 (1994)

10. Dang, A.D., Horn, J.: Formation control of autonomous robots following desired
formation during tracking a moving target. In: Proceedings of the International
Conference on Cybernetics, pp. 160–165. IEEE (2015)

11. Dimock, G., Selig, M.: The aerodynamic benefits of self-organization in bird flocks.
Urbana 51, 1–9 (2003)

12. Flake, G.W.: The Computational Beauty of Nature: Computer Explorations of
Fractals, Chaos, Complex Systems, and Adaptation. MIT Press, Cambridge (1998)

13. Garćıa, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and prac-
tice – a survey. Automatica 25(3), 335–348 (1989)

14. Gennaro, M.C.D., Iannelli, L., Vasca, F.: Formation control and collision avoid-
ance in mobile agent systems. In: Proceedings of the International Symposium on
Control and Automation Intelligent Control, pp. 796–801. IEEE (2005)

15. Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Multilevel splitting
for estimating rare event probabilities. Oper. Res. 47(4), 585–600 (1999)

16. Grosu, R., Peled, D., Ramakrishnan, C.R., Smolka, S.A., Stoller, S.D., Yang, J.:
Using statistical model checking for measuring systems. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2014. LNCS, vol. 8803, pp. 223–238. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45231-8 16

17. Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical
model checking for Markov decision processes. In: Proceedings of QEST 2012:
The Ninth International Conference on Quantitative Evaluation of Systems, QEST
2012, pp. 84–93. IEEE Computer Society (2012)

18. Heppner, F.H.: Avian flight formations. Bird-Banding 45(2), 160–169 (1974)
19. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic

model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24622-0 8

20. Hung, Y., Wang, W.: Accelerating parallel particle swarm optimization via GPU.
Optim. Methods Softw. 27(1), 33–51 (2012)

http://dx.doi.org/10.1007/978-3-319-43425-4_17
http://dx.doi.org/10.1007/978-3-319-43425-4_17
http://dx.doi.org/10.1007/978-3-662-45231-8_16
http://dx.doi.org/10.1007/978-3-540-24622-0_8

302 A. Lukina et al.

21. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
Natl. Bur. Stand. Appl. Math. Ser. 12, 27–30 (1951)

22. Kalajdzic, K., Jegourel, C., Lukina, A., Bartocci, E., Legay, A., Smolka, S.A.,
Grosu, R.: Feedback control for statistical model checking of cyber-physical sys-
tems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 46–61.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-47166-2 4

23. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995
IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

24. Lissaman, P., Shollenberger, C.A.: Formation flight of birds. Science 168(3934),
1003–1005 (1970)

25. Mannor, S., Rubinstein, R.Y., Gat, Y.: The cross entropy method for fast policy
search. In: ICML, pp. 512–519 (2003)

26. Nathan, A., Barbosa, V.C.: V-like formations in flocks of artificial birds. Artif. Life
14(2), 179–188 (2008)

27. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIG-
GRAPH Comput. Graph. 21(4), 25–34 (1987)

28. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice-Hall, Upper Saddle River (2010)

29. Rymut, B., Kwolek, B., Krzeszowski, T.: GPU-accelerated human motion track-
ing using particle filter combined with PSO. In: Blanc-Talon, J., Kasinski, A.,
Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp.
426–437. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02895-8 38

30. Seiler, P., Pant, A., Hedrick, K.: Analysis of bird formations. In: Proceedings of
the Conference on Decision and Control, vol. 1, pp. 118–123. IEEE (2002)

31. Stulp, F., Sigaud, O.: Path integral policy improvement with covariance matrix
adaptation. arXiv preprint arXiv:1206.4621 (2012)

32. Stulp, F., Sigaud, O.: Policy improvement methods: between black-box optimiza-
tion and episodic reinforcement learning (2012). http://hal.upmc.fr/hal-00738463/

33. Verfaillie, G., Pralet, C., Vidal, V., Teichteil, F., Infantes, G., Lesire, C.: Synthesis
of plans or policies for controlling dynamic systems. AerospaceLab (4), 1–12 (2012)

34. Weimerskirch, H., Martin, J., Clerquin, Y., Alexandre, P., Jiraskova, S.: Energy
saving in flight formation. Nature 413(6857), 697–698 (2001)

35. Yang, J., Grosu, R., Smolka, S.A., Tiwari, A.: Love thy neighbor: V-formation as a
problem of model predictive control. In: LIPIcs-Leibniz International Proceedings
in Informatics, vol. 59. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

36. Yang, J., Grosu, R., Smolka, S.A., Tiwari, A.: V-formation as optimal control. In:
Proceedings of the Biological Distributed Algorithms Workshop 2016 (2016)

37. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proceed-
ings of the Congress on Evolutionary Computation, pp. 1493–1500. IEEE (2009)

http://dx.doi.org/10.1007/978-3-319-47166-2_4
http://dx.doi.org/10.1007/978-3-319-02895-8_38
http://arxiv.org/abs/1206.4621
http://hal.upmc.fr/hal-00738463/

FlyFast: A Mean Field Model Checker

Diego Latella1, Michele Loreti2,3(B), and Mieke Massink1

1 Consiglio Nazionale delle Ricerche - Istituto di Scienza e Tecnologie
dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy
{diego.latella,mieke.massink}@isti.cnr.it

2 Università di Firenze, Florence, Italy
michele.loreti@unifi.it

3 IMT Alti Studi, Lucca, Italy

Abstract. We present FlyFast, a recently introduced on-the-fly mean
field model checker for the verification of time-dependent probabilistic
properties of individual objects in the context of large populations. An
example of its use is illustrated analysing a push-pull gossip protocol.
Such protocols form the basis on top of which many smart collective
adaptive systems are built. Typical properties are the replication of a
fresh data element throughout a network, the coverage of the network,
and the time to convergence.

Keywords: Mean field model checking · Collective Adaptive Systems ·
Discrete time markov chains · Self-organisation · Gossip protocols

1 Introduction

FlyFast is a, first of its kind, on-the-fly mean field probabilistic model checker.
Its purpose is the automatic verification of bounded PCTL (Probabilistic Com-
putation Tree Logic) properties of a selected individual in the context of systems
that consist of a large number of (similar, but) independent, interacting objects.
Typical examples of such systems are large scale Collective Adaptive Systems
(CAS) and distributed algorithms for sharing data in a distributed network,
such as gossip protocols. Following the mean field approach proposed in [7],
an on-the-fly mean field model checking algorithm was developed and proven
correct in [4,6]. Models that can be analysed by FlyFast are time-synchronous
DTMC-based population models in which each object performs a probabilistic
step in each discrete time unit, moving between its local states and possibly
returning to the same state. Objects interact in an indirect way, via the global
state of the system. In fact, the evolution of the global system is specified by
the local transition probabilities of an object. The latter are the same for each
object in the population (i.e. one abstracts from their identity) and may depend
on the distribution of local states of all objects in the system, i.e. its occupancy

Research partially funded by the EU project QUANTICOL (nr. 600708).

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 303–309, 2017.
DOI: 10.1007/978-3-662-54580-5 18

304 D. Latella et al.

measure vector1. When the number of objects is large (at least several hundreds)
the overall behaviour, in terms of its occupancy measure vector, can be approx-
imated by the deterministic solution of a difference equation, which is called the
‘mean field’ [7]. This iterative approach to obtain the occupancy measure vector
has shown to combine very well with an on-the-fly probabilistic model checking
approach [6]. The latter is parametric w.r.t. the semantics interpretation of the
model specification language and in FlyFast it is instantiated on a mean-field
population semantics. The algorithm consists of two phases, an expansion phase
and a computation phase. Both phases are linear in the number of states and
transitions of the expansion of the initial state of the selected object and occu-
pancy measure vector [6] for the time bounded fragment of PCTL. FlyFast has
been applied on a.o. bike sharing [6], client-server systems and computer worm
epidemic models [5].

FlyFast is provided within the jSAM (java StochAstic Model Checker) frame-
work which is an open source Eclipse plugin2 integrating a set of tools for sto-
chastic analysis of concurrent and distributed systems specified using process
algebras. We illustrate the use of FlyFast using a push-pull gossip protocol as a
running example [1,2]. Gossip protocols provide a scalable, simple, robust and
fully decentralised communication mechanism for the spreading of information
in large-scale networks where nodes periodically contact each other in a random
fashion, exchanging part of their local information. They also form the basis for
higher level interaction between nodes in large CAS. Besides mean field model
checking procedures, FlyFast also provides two kinds of stochastic simulation pro-
cedures: one based on standard individual probabilistic simulation and one based
on fast simulation [7]. The latter uses a mean-field approximation to simulate
the behaviour of a single object in a large population.

2 Gossip Protocol

As a running example we consider the gossip shuffle protocol of [1,2] that we
briefly recall in the following. In particular, as in [1], we analyse the dissemination
of a generic data item d in a fully connected network in which the nodes execute
the shuffling protocol. We consider the discrete time variant of this protocol with
a maximal delay between two subsequent gossips of a node denoted by Gmax .
Following the mean field approximation technique [1,2,7] the behaviour of an
individual node is based on its local state and the current occupancy measure
vector.

Figure 1 shows the states and transitions of a single node where Gmax = 3
due to space limitations. The red states, D0 and O0, denote states in which
the gossip node is active, i.e. it can initiate an exchange of local information
with a passive node; in D0 (resp. O0) the node has (resp. does not have) the
1 More specifically, the occupancy measure vector consists of a number of elements
equal to the number of local states of an object, providing, for each state, the fraction
of objects in the total population that are currently in that state.

2 http://quanticol.github.io/jSAM/.

http://quanticol.github.io/jSAM/

FlyFast: A Mean Field Model Checker 305

D0 D1 D2 D3

O0 O1 O2 O3

dksdksdks

onsonsons

dlsdlsdls

ogsogsogs

onr

dkr

ogr

dlr

Fig. 1. Push-pull gossip model of individual gossip node with rounds of length 3 (i.e.
gmax = 3). Active states are red, passive ones blue. (Color figure online)

data element in its local store. The blue states denote states in which the node
is passive and can be contacted by an active node. The D/O convention w.r.t.
having the data element applies also to the passive nodes. For further details of
the model the reader is referred to [1,2].

3 The FlyFast Population Modelling Language

The modelling language of FlyFast consists of basic constructs to describe the
probabilistic behaviour of an individual object, such as constants, states, action
probabilities and transitions. The constants in the gossip model are the total
number of nodes N , the number of different data elements in the system n, the
size of the cache c and the number of data elements exchanged between two
shuffling nodes s. Their definition is shown in Fig. 2. Furthermore, the action
probabilities make use of a number of conditional probabilities, expressed in
terms of the constants n, c and s. For example, P 01 10 stands for P(01|10) and
denotes the conditional probability that after a shuffle the active node looses
the data element, whereas the passive node acquires it (the ‘01’ part of P 01 10)
given that before the shuffle the active node had the data element and the passive
one did not (the ‘10’ part of P 01 10, see [1,2] for details).

Action probabilities are defined as shown in Fig. 3. The action labels are those
of Fig. 1. For example, the action dlr (‘has d, looses it and resets gossip delay’)
labels the transition from the active state in which the object has the d-element
(D0) to the passive state without d in which the clock is reset to Gmax, i.e. O3

Fig. 2. Constants of the FlyFast Gossip model.

306 D. Latella et al.

Fig. 3. Actions and their probabilities in the FlyFast Gossip model

Fig. 4. States and initial configuration of the FlyFast Gossip model.

in this case. The probability of action dlr depends on the occupancy measure
via the quantities frc(Xi), with X ∈ {O,D} and i ∈ {0, . . . , 3}, which denote
the fraction of objects that are in state Xi. The expression e−2∗(frc(O0)+frc(D0))

denotes the probability that no ‘collision’ occurs in the communication between
two nodes, such as two active nodes that contact each other. Finally, Fig. 4 shows
the definition of the states and transitions of a single node as in Fig. 1, and the
non-empty elements of the initial occupancy measure vector mainO0. By default,
the first element of the vector is the object selected for FlyFast analysis. We refer
to [1] for further details of the model.

FlyFast: A Mean Field Model Checker 307

4 FlyFast Properties and Verification

The FlyFast syntax of bounded PCTL formulas is:

Φ ::= ap | !Φ | Φ|Φ | Φ&Φ | P{�� p}[ϕ] with ϕ ::=X Φ | Φ U≤ k Φ

where �� ∈ {<,≤, >,≥} and ap an atomic proposition, !, |,& the usual Boolean
operators, P the probabilistic path quantifier, X and U the next and until opera-
tors. These bounded PCTL formulas are interpreted over state labelled DTMCs
in which the states consist of pairs where the first element is the local state of
the selected object and the second element the limit occupancy measure vec-
tor [7]. The formal semantics can be found in [6]. FlyFast uses memoization to
speed up the computation of series of path formulas where the time-bound is
a parameter. For example, for a model extended in the obvious way to one in
which Gmax = 9, Fig. 5 shows the probability that the selected node has seen
the data element within time t ∈ {0, . . . , 3000}:

isTrue U ≤ t hasD where hasD = inD0 | . . . | inD9
Since all nodes have the same probabilistic behaviour, this probability corre-
sponds to the fraction of the network that has seen the data-element within
time t (i.e. the coverage and convergence). This parametric analysis required
16,997 ms on an iMAC, 2,66 GHz ICi5, with 8 GB memory (same for any pop-
ulation size N ≥ 2500!). The results in [1] show close correspondence to those
obtained3 with FlyFast for an initial state defined as system main in Fig. 4 but
for Gmax = 9. Figure 6 shows an example of a parametric nested path formula
expressing, for time-bounds t ∈ {0, . . . , 1000}, the probability to reach a state in
which the probability to get the data element within 20 steps is greater than 0.1.
The jump in the graph at t = 700 can be explained by the crossing of a threshold

Fig. 5. Network coverage for a model with Gmax = 9, N = 2500, n = 500, s = 100
and c = 50.

3 Note that there is no need to extend the model with additional states that represent
the fact that a node ‘has seen’ the data element, as was the case in [1].

308 D. Latella et al.

Fig. 6. Nested time-dependent probability for Gmax = 9, N = 2500, n = 500, s = 100
and c = 50.

in the distribution of the data element in the network w.r.t. the bounds used in
the formula4.

isTrue U ≤ t (P{> 0.1}[!hasD U ≤ 20 hasD])

Also time-dependent probabilities of (non-parametric) path formulas can be
analysed. For example we may wish to make sure that in the model the prob-
ability to leave active state O0 in the next step is equal to 1 at any time of
interest, given that such transitions model clock-ticks in this gossip model. As
this probability depends on the limit occupancy measure, this may not be given
for granted. However, analysis of the path formula O0 U ≤ 1(D9 | O9), at
different times 0, . . . , 3000, shows that the probability is indeed 1. Results can
be visualised with the graph view in the Eclipse plugin, as in Figs. 5 and 6, or
exported for customised visualisation via Gnuplot, Octave or Matlab.

5 Related Work and Conclusions

We briefly presented some features of the novel on-the-fly mean field model
checker FlyFast. It scales to very large populations as the method is essentially
independent of the population size (as long as it is large enough). In comparison,
statistical model checking techniques scale linearly with population size. FlyFast
implements a discrete time, on-the-fly probabilistic counterpart of the global
fluid model checking method [3] for continuous time population models. Under
some conditions, set out in [5], continuous time population models can be treated
too by FlyFast applying an appropriate discretisation of the model and related
CSL formulas.

References

1. Bakhshi, R.: Gossiping models - formal analysis of epidemic protocols. Ph.D. the-
sis, Vrije Universiteit Amsterdam, January 2011. http://www.cs.vu.nl/en/Images/
Gossiping Models van Rena Bakhshi tcm210-256906.pdf

4 Model checking time: 14,720ms.

http://www.cs.vu.nl/en/Images/Gossiping_Models_van_Rena_Bakhshi_tcm210-256906.pdf
http://www.cs.vu.nl/en/Images/Gossiping_Models_van_Rena_Bakhshi_tcm210-256906.pdf

FlyFast: A Mean Field Model Checker 309

2. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.R.: Mean-field framework for
performance evaluation of push-pull gossip protocols. Perform. Eval. 68(2), 157–
179 (2011)

3. Bortolussi, L., Hillston, J.: Model checking single agent behaviours by fluid approx-
imation. Inf. Comput. 242, 183–226 (2015)

4. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297–314.
Springer, Heidelberg (2014)

5. Latella, D., Loreti, M., Massink, M.: On-the-fly fluid model checking via discrete
time population models. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW
2015. LNCS, vol. 9272, pp. 193–207. Springer, Heidelberg (2015)

6. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approximated
model-checking for self-organising coordination. Sci. Comput. Program. 110, 23–50
(2015)

7. Le Boudec, J., McDonald, D.D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: Fourth International Conference on
the Quantitative Evaluation of Systems (QEST 2007), pp. 3–18. IEEE Computer
Society (2007)

ERODE: A Tool for the Evaluation and
Reduction of Ordinary Differential Equations

Luca Cardelli1, Mirco Tribastone2, Max Tschaikowski2,
and Andrea Vandin2(B)

1 Microsoft Research & University of Oxford, Oxford, UK
2 IMT School for Advanced Studies Lucca, Lucca, Italy

andrea.vandin@imtlucca.it

Abstract. We present ERODE, a multi-platform tool for the solution
and exact reduction of systems of ordinary differential equations (ODEs).
ERODE supports two recently introduced, complementary, equivalence
relations over ODE variables: forward differential equivalence yields a
self-consistent aggregate system where each ODE gives the cumulative
dynamics of the sum of the original variables in the respective equiv-
alence class. Backward differential equivalence identifies variables that
have identical solutions whenever starting from the same initial con-
ditions. As back-end ERODE uses the well-known Z3 SMT solver to
compute the largest equivalence that refines a given initial partition of
ODE variables. In the special case of ODEs with polynomial derivatives
of degree at most two (covering affine systems and elementary chemical
reaction networks), it implements a more efficient partition-refinement
algorithm in the style of Paige and Tarjan. ERODE comes with a rich
development environment based on the Eclipse plug-in framework offer-
ing: (i) seamless project management; (ii) a fully-featured text editor;
and (iii) importing-exporting capabilities.

1 Introduction

Ordinary differential equations (ODEs) have gained momentum in computer sci-
ence due to the interest in formal methods for computational biology [14,20,35]
and for their capability of accurately approximating large-scale Markovian mod-
els [5,24,30,37,39]. This has led to a number of results concerning the important,
cross-disciplinary, and longstanding problem of reducing the size of ODE sys-
tems (e.g., [2,27,32]) using techniques such as abstract interpretation [13,18]
and bisimulation [9,12,19,26,38].

Our contribution borrows ideas from programming languages and concur-
rency theory to recast the ODE reduction problem into finding an appropriate
equivalence relation over ODE variables [9,11,12]. Two equivalence relations
are presented in [12] for a class of nonlinear systems that covers multivari-
ate rational derivatives and minimum/maximum operators. Forward differen-
tial equivalence (FDE) identifies a partition of the ODE variables for which a
self-consistent aggregate ODE system can be provided which preserves the sums

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 310–328, 2017.
DOI: 10.1007/978-3-662-54580-5 19

ERODE: A Tool for the Evaluation and Reduction of ODEs 311

of variables within each block. Variables related by a backward differential equiv-
alence (BDE) have the same solution whenever initialized equally. The largest
differential equivalence that refines a given input partition is computed via an
SMT encoding, using Z3 [15] as a back-end.

ODEs with derivatives that are multivariate polynomials of degree at most
two are an important sub-class, covering notable models such as affine systems
and elementary chemical reaction networks (CRNs) with mass-action semantics
(where each reaction has at most two reagents). For this class, in [9] we presented
the notions of forward bisimulation (FB) and backward bisimulation (BB). FB
is a sufficient condition for FDE; BB, instead, coincides with BDE for this class
of ODEs. The main advantage in using these bisimulations is that the more
expensive, symbolic checks through SMT are replaced by “syntactic” ones on
a reaction network, a finitary structure similar to a CRN which encodes the
ODE system. This has led in [11] to an efficient partition-refinement algorithm
with polynomial space and time complexity. The bisimulations can be seen as
liftings of equivalences and minimization algorithms for continuous-time Markov
chains (CTMCs). Indeed the well-known notions of CTMC ordinary and exact
lumpability [7] correspond to FB and BB, respectively, when the ODEs represent
the CTMC’s Kolmogorov equations; and, in this case, the complexity of our
partition-refinement algorithm collapses to those of the best-performing ones for
CTMC minimization [16,41]. As a consequence of this connection, FDE and
BDE are not comparable in general.

This paper presents ERODE (https://sysma.imtlucca.it/tools/erode/), a
fully-featured multi-platform tool implementing the reduction techniques
from [9,11,12]. The tool distinguishes itself from the prototypes accompany-
ing [9,11,12] in that: (i) It is not a command-line prototype but a mature tool
with a modern integrated development environment; (ii) It collects all the tech-
niques of our framework for ODE reduction in a unified coherent environment;
(iii) It offers a language, and an editor, to express the entire class of ODEs
supported by the reduction techniques, while the prototypes could reduce only
CRNs; (iv) It implements an ODE workflow consisting of numerical solution and
graphical visualization of results; (v) It offers importing/exporting facilities for
other formats like biochemical models for the well-known tools BioNetGen [4]
and Microsoft GEC [21], or ODEs defined in MATLAB.

Paper Outline. Section 2 reviews the reduction techniques from [9,11,12];
Sect. 3.1 describes ERODE’s architecture, while Sect. 3.2 details its functionali-
ties by discussing the components of an ERODE specification. ERODE’s capa-
bilities are further stated using a collection of large examples in Sect. 4. Finally,
Sect. 5 concludes.

2 Theory Overview

The theory behind the techniques implemented in ERODE has been presented
in [9,11,12], while a tutorial-like unifying presentation can be found in [43]. This
section provides an overview that emphasizes relevant aspects for explaining
ERODE’s performance.

https://sysma.imtlucca.it/tools/erode/

312 L. Cardelli et al.

Fig. 1. CRN model (a) and underlying ODEs (b) of an idealized biochemical
interaction.

Illustrating Example. Let us consider an idealized biochemical interaction
between molecules A and B; A can be in two states, u (unphosphorylated)
and p (phosphorylated) and can bind/unbind with B. This results in a network
with five species, denoted by Au, Ap, B, AuB, and ApB. The dynamics of the
system is described in Fig. 1(a) through a CRN with six reactions, where r1, r2,
r3 and r4, are the kinetic constants. By applying the well-known law of mass
action, each species is associated with one ODE variable which models the evo-
lution of its concentration as a function of time, with reactions that fire at a
speed proportional to their rate times the concentrations of their reagents. For
example, Au +B

r3−→ AuB fires at speed r3[Au][B], where [·] denotes the current
concentration of a species. Consequently, this term appears with negative sign
in the ODEs of its reagents (Au and B), and with positive sign in the ODE
of its product, AuB. The resulting ODEs for our sample system are shown in
Fig. 1(b), where the ‘dot’ operator denotes the (time) derivative. The model is
completed by an initial condition which assigns the initial concentration [X](0)
to each species X in the network.1

Differential Equivalences. It can be shown that {{[Au], [Ap]}, {[B]}, {[AuB],
[ApB]}} is an FDE for our running example. Indeed, exploiting basic properties
one can write self-consistent ODEs for the sums of species in each equivalence
class:

˙[Au] + ˙[Ap] = −r3
(
[Au] + [Ap]

)
[B] + r4

(
[AuB] + [ApB]

)
,

˙[B] = −r3
(
[Au] + [Ap]

)
[B] + r4

(
[AuB] + [ApB]

)
,

˙[AuB] + ˙[ApB] = r3
(
[Au] + [Ap]

)
[B] − r4

(
[AuB] + [ApB]

)
. (1)

By the change of variables [A] = [Au] + [Ap] and [AB] = [AuB] + [ApB], we get:

˙[A]=−r3[A][B] + r4[AB], ˙[B]=−r3[A][B] + r4[AB], ˙[AB]=r3[A][B] − r4[AB]

This quotient ODE model essentially disregards the phosphorilation status of the
A molecule. Setting the initial condition [A](0) = [Au](0)+[Ap](0) and [AB](0) =
1 Throughout the paper we will work with autonomous ODE systems, which are

not dependent on time. Also, we will use the terms ‘variable’ and ‘species’
interchangeably.

ERODE: A Tool for the Evaluation and Reduction of ODEs 313

[AuB](0) + [ApB](0) yields that the solution satisfies [A](t) = [Au](t) + [Ap](t)
and [AB](t) = [AuB](t) + [ApB](t) at all time points t.

Backward differential equivalence (BDE) equates variables that have the
same solutions at all time points, if initialized equally. It can be shown that
{{[Au], [Ap]}, {[B]}, {[AuB], [ApB]}} is also a BDE if r1 = r2. In this case, we
obtain a quotient ODE by keeping only one variable (and equation) per equiva-
lence class, say [Au], [B] and [AuB], and rewriting every occurrence of [Ap] and
[ApB] as [Au] and [AuB], respectively:

˙[Au] = −2r1[Au] − r3[Au][B] + r4[AuB]
˙[B] = −2r3[Au][B] + 2r4[AuB]

˙[AuB] = r3[Au][B] − r4[AuB]

Both FDE and BDE yield a reduced model that can be exactly related to
the original one. BDE is lossless, because every variable in the same equivalence
class has the same solution, but it is subject to the constraint that variables
in the same block be initialized equally. Instead, with FDE one cannot recover
the individual solution of an original variable in general, but no constraint is
imposed on the initial conditions.

Symbolic Minimization Algorithms. In [12], establishing that a given partition
is a differential equivalence amounts to checking the equality of the functions
representing their derivatives. This is encoded in (quantifier-free) first-order logic
formulae over the nonlinear theory of the reals. The problem is decidable for a
large class of ODEs (and Z3 implements a decision procedure [28]). Such a class
is identified by the IDOL language of [12], covering polynomials of any degree,
rational expressions, minima and maxima. This captures affine systems, CRNs
with mass-action or Hill kinetics [44], and the deterministic fluid semantics of
process algebra [24,37].

A partition of ODE variables is a BDE if any assignment with equal values in
any equivalence class has equal derivatives within each equivalence class. Thus,
{{[Au], [Ap]}, {[B], [AuB], [ApB]}} is a BDE if and only if the following formula
is valid (i.e. true for all assignments to the real variables [Au], [Ap], [B], [AuB],
and [ApB]):

[Au] = [Ap] ∧ [B] = [AuB] = [ApB] =⇒
f[Au] = f[Ap] ∧ f[B] = f[AuB] = f[ApB] (2)

where f[·] stands for the derivative assigned to the corresponding species in
Fig. 1(b). As usual, the SMT solver will check the satisfiability of its negation.

To automatically find differential equivalences of an ODE model, the SMT
checks are embedded in a partition-refinement algorithm that computes the
largest differential equivalence which refines a given input partition of variables.
In particular, a current partition is refined at each step using the witness returned
by the SMT solver, i.e. a variable assignment that falsifies the hypothesis that
the current partition is a differential equivalence. The algorithm terminates

314 L. Cardelli et al.

when no witness is found, guaranteeing that the current partition is a differ-
ential equivalence. Let us fix the rates r1 = r2 = 1, r3 = 3 and r4 = 4.
Then, {{[Au], [Ap]}, {[B], [AuB], [ApB]}} is not a BDE for our running example.
Indeed, the assignment {[Au] = 1, [Ap] = 1, [B] = 2, [AuB] = 2, [ApB] = 2}
is a witness for the negation of Eq. 2, since we get f[Au] = 2, f[Ap] = 2,
f[B] = 4, f[AuB] = −2 and f[ApB] = −2 under this assignment. This infor-
mation is then used to refine the current partition by splitting its blocks into
sub-blocks of variables that have the same computation of derivative, obtain-
ing {{[Au], [Ap]}, {[B]}, {[AuB], [ApB]}}. No witness can be generated for this
partition, ensuring that it is a BDE.

The FDE case is more involved, as discussed in [12]. Considering our running
example, we have that {{[Au], [Ap]}, {[B], [AuB], [ApB]}} is an FDE if and only if

(f[Au]+f[Ap] = f̂[Au]+f̂[Ap])∧(f[B]+f[AuB]+f[ApB] = f̂[B]+f̂[AuB]+f̂[ApB]) (3)

is valid, where each f̂[·] is obtained from the corresponding derivative f[·] by
replacing each variable with the sum of the variables in its block divided by the
size of the block. For example, each occurrence of the term r4[AuB] is replaced
by r4

[B]+[AuB]+[AuB]
3 . It can be shown that the partition is not an FDE, because

a witness falsifying Eq. 3 can be found by the SMT solver. However, differently
from the BDE case, Eq. 3 does not compare single derivatives, but sums of deriv-
atives, hence it cannot be used to decide how to refine the partition. For this, a
“binary” characterization of FDE performs SMT checks on each pair of species
in the same block of a partition to decide if they have to be split into different
sub-blocks.

We remark that the algorithms allow the preservation of user-defined observ-
ables. For instance, a variable of interest can be put in an initial singleton block
when reducing with FDE. Similarly, in order to meet the constraints on BDE,
one can build an initial partition consistent with the initial conditions of the
original model (that is, two variables are in the same initial block if their initial
conditions are the same).

Syntax-Driven Minimisation. A reaction network (RN) differs from an elemen-
tary CRN in that the kinetic constants may be negative. This gives rise to an
ODE system with derivatives that are multivariate polynomials of degree at
most two [11]. FB and BB are equivalence relations over variables/species in the
Larsen-Skou style of probabilistic bisimulation [31]. They are defined in terms
of quantities computed by inspecting the set of reactions [31]. In order to check
if a given partition of species H is an FB one computes the ρ-reaction rate of a
species X, and the cumulative ρ-production rate by X of the species in a block
H ∈ H, defined respectively as:

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α, pr[X,H, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α · π(H)

ERODE: A Tool for the Evaluation and Reduction of ODEs 315

where ρ and π are multisets of species, and ρ(X) and π(H) denote the multiplic-
ity of X in ρ, and the cumulative multiplicity of species from H in ρ, respectively.
We note that ρ is the reagent partner of X, which can be either ∅ for unary reac-
tions, or a species for binary ones. Intuitively, crr[X, ρ] quantifies the decrease
of X’s concentration due to reactions where X has partner ρ, while pr[X,H, ρ]
quantifies the increase of its concentration gained by the species in H. In partic-
ular, H is an FB if for any pair of species X, Y in the same block of H it holds
that crr[X, ρ] = crr[Y, ρ] and pr[X,H, ρ] = pr[Y,H, ρ] for all blocks H of H,
and all reagent partners ρ. BB is defined similarly. We refer to [9] for a detailed
presentation of FB and BB.

The bisimulation style enabled in [11] the adaptation of Paige and Tarjan’s
coarsest refinement problem [33] to compute the largest FB/BB. This is done by
generalizing algorithms for Markov chain lumping [16,41], obtaining algorithms
with O(m · n · log n) and O(m · n) time and space complexity, respectively, with
m being the number of monomials appearing in the underlying ODE system,
and n the number of ODE variables.

Let us fix r1 = 1, r2 = 2, r3 = 3 and r4 = 4 in our running example. Then,
{{Au, Ap}, {B,AuB,ApB}} is not an FB. The algorithm from [11] proceeds in
two steps.

In the first step, crr[X, ρ] is computed for each species X and partner ρ. This
information is used to refine the input partition, obtaining {{Au}, {Ap}, {B},
{AuB,ApB}}. The first block is split because we have crr[Au, ∅] = r1 and
crr[Au, ∅] = r2. Similarly, B is singled out because crr[B, ∅] = 0, while
crr[AuB, ∅] = crr[ApB, ∅] = r4.

In the second step, the algorithm iteratively refines the current partition by
selecting one of its blocks, Hsp, as a splitter in the current iteration: pr[X,Hsp, ρ]
is computed for each X and ρ. This can be done efficiently by considering only
reactions with species of Hsp in their products. Let us assume that {Au} is
the splitter used in the first iteration. Only two reactions have Au in their
products, leading to the computation of pr[Ap, {Au}, ∅] = r2 and pr[AuB,
{Au}, ∅] = r4. Any other production rate of {Au}, like pr[ApB, {Au}, ∅],
has value 0. This information is used to refine the partition, obtaining
{{Au}, {Ap}, {B}, {AuB}, {ApB}}. No further refinement is possible in the fol-
lowing iterations, hence the partition, which is an FB, is returned.

3 ERODE

ERODE is an application based on the Eclipse framework for Windows, Mac
OS and Linux. It does not require any installation process, and it is available,
together with a manual and sample models, at http://sysma.imtlucca.it/tools/
erode.

3.1 Architecture

Figure 2 provides a pictorial representation of the architecture of ERODE. It is
organized in the presentation layer, with the graphical user interface, and the

http://sysma.imtlucca.it/tools/erode
http://sysma.imtlucca.it/tools/erode

316 L. Cardelli et al.

Fig. 2. ERODE’s architecture.

Fig. 3. A screenshot of ERODE.

core layer. The main components of the GUI layer are depicted in the screenshot
of ERODE in Fig. 3, including a fully-featured text editor based on the xText
framework which supports syntax highlighting, content assist, error detection
and fix suggestions (top-middle of Fig. 3). This layer also offers a number of
views, including a project explorer to navigate among different ERODE files (top-
left of Fig. 3); an outline to navigate the parts of the currently open ERODE
file (bottom-left of Fig. 3); a plot view to display ODE solutions (top-right of
Fig. 3); and a console view to display diagnostic information like warnings and
model reduction statistics (bottom-right of Fig. 3). Finally, the GUI layer offers

ERODE: A Tool for the Evaluation and Reduction of ODEs 317

a number of wizards for: (i) updating ERODE to the latest distribution; (ii)
creating new ERODE files and projects; and (iii) importing models provided in
third-party languages.

The core layer implements the minimization algorithms and related data
structures for FDE, BDE, FB and BB (not detailed here because already
addressed in [11,12,43]). A wrapper to Z3 via Java bindings is included for
FDE/BDE reduction. The core layer also provides functionalities to encode an
RN specification in its corresponding explicit ODE (or IDOL) format, and vice
versa, as well as export/import functionalities for third-party languages. Finally,
this layer provides support for numerical ODE solvers, using the Apache Com-
mons Maths library [3]. When the input is a CRN (i.e. an RN with only posi-
tive rates) it can also be interpreted as a CTMC, following an established app-
roach [22]. Using the FERN library [17], ERODE features CTMC simulation.

3.2 Language

This section details ERODE’s features by discussing the parts composing an
ERODE file. We do this referring to the two alternative specification formats of
our running example from Fig. 1, expressed in ERODE in Listings 1 and 2 There
are six components of an ERODE specification: (i) parameter specification; (ii)
declaration of variables and (optional) initial conditions; (iii) initial partition of
variables; (iv) ODE system, either in plain format or as an RN; (v) observables,
called views, tracked by the numerical solver; (vi) commands for ODE numerical
solution, reduction, and exporting into other formats.

begin model ExampleODE
begin parameters
r1 = 1.0
r2 = 2.0

end parameters
begin init
Au = 1.0 Ap = 2.0 B = 3.0
AuB = 0 ApB = 0

end init
begin partition
{Au,Ap}, {AuB}, {B,ApB}

end partition
begin ODE
// C-style comments
d(Au) = -r1*Au + r2*Ap - 3*Au*B + 4*AuB
d(Ap) = r1*Au - r2*Ap - 3*Ap*B + 4*ApB
d(B) = -3*Au*B + 4*AuB - 3*Ap*B + 4*ApB
d(AuB) = 3*Au*B - 4*AuB
d(ApB) = 3*Ap*B - 4*ApB

end ODE
begin views
v1 = Au + Ap
v2 = AuB

end views
reduceBDE(reducedFile="ExampleODE_BDE.ode")

end model

Listing 1. Direct ODE specification.

begin model ExampleRN
begin parameters
r1 = 1.0
r2 = 2.0

end parameters
begin init
Au = 1.0 Ap = 2.0 B = 3.0
AuB ApB

end init
begin partition

{Au,Ap}, {AuB}
end partition

begin reactions
Au -> Ap , r1
Ap -> Au , r2
Au + B -> AuB , 3.0
AuB -> Au + B , 4.0
Ap + B -> ApB , 3.0
ApB -> Ap + B , 4.0

end reactions
begin views
v1 = Au + Ap
v2 = AuB

end views
simulateODE(tEnd =1.0)

end model

Listing 2. Reaction network.

318 L. Cardelli et al.

Parameter Specification. An ERODE specification might start with an optional
list of parameters enclosed in the parameters block, each is specified as:

<parameter> = expression

where expression is an arithmetic expression involving parameter names and
reals through the following operators: +, -, *, / ^ abs, min, and max. Parameters
can be used to specify values of initial conditions, kinetic rates, or views.

Variable Declaration. The mandatory init block defines all ODE variables of
the model, each specified as:

<variable> [= expression]

where expression is an arithmetic expression as above that evaluates to the
initial condition assigned to the variable (defaulting to zero if not specified).

Initial Partition of Variables. Optionally, a partition of variables can be spec-
ified in the partition block. This can then be used as the initial partition of
the partition-refinement algorithms, as described later. (The user is required to
specify only the partition blocks of interest, while all variables not mentioned
explicitly are assigned to an implicit additional block.) For instance, Listings 1
and 2 represent the same initial partition {{Au,Ap},{AuB},{B,ApB}}.

ODE Definition. In the direct declaration format (Listing 1) the derivatives are
specified within the ODE block. Each equation is specified as:

d(<variable>) = derivative

where derivative is an arithmetic expression, possibly containing also ODE
variables. This allows to express ODEs belonging to IDOL [12].

In the reaction network format (Listing 2), the ODEs are inferred from reac-
tions of the form:

reagents -> products, rate

where reagents and products are two multisets of variables. The multiplicity
of a variable in a multiset can be defined through the + operator or with the
* operator in the obvious way; that is, A + A is equivalent to 2*A. If rate is a
variable-free expression that evaluates to a real number (as in all reactions of
Listing 2), then the reaction represents a dynamics akin to the law of mass action,
discussed in Sect. 2. In addition, ERODE supports more general arithmetical
expressions for rates through the arbitrary keyword. In this case, the reaction
firing rate is explicit. For instance, the two following reactions are equivalent:

Au + B -> AuB, arbitrary 3.0*Au*B Au + B -> AuB, 3.0

ERODE: A Tool for the Evaluation and Reduction of ODEs 319

Views. Views are the observations of interest. As for ODEs, each view can be
specified as an arithmetic expression involving variables, parameters and reals. In
Listings 1 and 2 the intent is to collect the total concentration of the A-molecules,
regardless of their phosphorylation state (view v1), and the concentration of the
species AuB (view v2).

For a CRN specification, views can also contain terms of form var(s1) and
covar(s1,s2), to compute the variance of the variable s1 and the covariance
of s1 and s2, respectively. To do so, ERODE implements the so-called linear
noise approximation (e.g., [6]) to be able to study approximations of higher order
moments of the concentrations of species in a CRN.

ODE Solution. The ODEs can be numerically solved using the command:

simulateODE(tEnd=<value>, steps=<value>, csvFile=<filename>)

It numerically integrates the ODE system starting from the specified initial
conditions up to time point tEnd, interpolating the results at steps equally
spaced time points. Two plots are generated, one for the trace of each ODE
variable and one for the trace of each specified view, respectively. If the optional
argument csvFile is present, the plots are exported into a comma-separated
values format.

Conversion Options. An explicit ODE specification can be converted in the RN
format (and vice versa) using

write(fileOut=fileName,format=<ODE|RN|MA-RN>)

If format is set to ODE, then the target file will be in explicit ODE format, while
with RN an RN with possibly arbitrary rates will be generated. If the ERODE
input to be exported is an explicit ODE with derivatives given by multivariate
polynomials of degree at most two, the MA-RN will use the encoding of [11] to
output a mass-action RN.

Export to Third-Party Languages. The command:

export<format> (fileOut=fileName)

exports ERODE files into four different target third-party languages:

Matlab: a Matlab function representing an ODE system (extension .m).
BNG: a CRN generated with the well-established tool BioNetGen version 2.2.5-

stable [4] (extension .net). This is available for CRN specifications only.
LBS: format of the Microsoft’s tool GEC [21] (extension .lbs), available for CRN

specifications only.
SBML: the well-known SBML interchange format (http://sbml.org) (extension

.sbml).

http://sbml.org

320 L. Cardelli et al.

Reduction Commands. All ODE reduction commands share the common
signature

reduce<kind> (prePartition=<NO|IC|USER>, reducedFile=<name>)

where kind can be FDE, BDE, FB, or BB. The ODE input format affects which
reduction options are available. For an ODE system defined directly, only FDE
and BDE are enabled. FB and BB are additionally available for RNs representing
polynomial ODE systems of degree at most two [11]. This is imposed by having
reagents multisets of size at most two in each reaction and restricting to mass-
action type rate expressions.

The option prePartition defines the initial partition for the minimization
algorithm. The maximal aggregation is obtained with the NO option. If it is set
to IC, the initial partition is built according to the constraints given by the
initial conditions: variables are in the same initial block whenever their initial
conditions are equal. If the option is set to USER, then the partition specified in
the partition block will be used.

If reducedFile is present, then a reduced model will be generated according
to the computed partition following the model-to-model transformation from [9]
(for FB and BB) and [12] (for FDE and BDE). This will have the same format
as the input, and will contain one variable for each equivalence class. The name
of the variable is given by the first variable name in that block, according to a
lexicographical order.

Considering our running example, no reduction is found running reduceFDE
on Listing 1 if pre-partitioning is set to USER. Instead, when it is set to NO
we find the FDE {{Au, Ap}, {B}, {AuB,ApB}} discussed in Sect. 2, implying
that it is the maximal one of the model. The output file for the case without
pre-partitioning is provided in Listing 3, which also shows that the association
between the original ODE variables and those in the reduced model is maintained
by annotating the output file with comments alongside the new variables.2 This
information can be useful for visually inspecting the reduced model in order to
gain insights into the physical interpretation of the reduction [9]. Finally, we note
that each reduced species has initial concentration equal to the sum of those in
the corresponding block.

In Sect. 2 we have shown that the partition {{Au, Ap}, {B}, {AuB,ApB}} is
also a BDE provided that r1 = r2. However, this reduction is not found if running
reduceBDE with pre-partitioning set to IC, as it violates the initial conditions for
Au and Ap. Instead, if the pre-partitioning is disabled, then the above partition is
the coarsest refinement, but the user is warned about the inconsistency with the
initial conditions. The BDE reduction without pre-partitioning for r1=r2=1.0
is given in Listing 4. The initial condition for the ODE of each representative is
equal to that of the corresponding original variable.

2 Here output files have been typographically adjusted to improve presentation.

ERODE: A Tool for the Evaluation and Reduction of ODEs 321

begin model ExampleODE_FDE
begin parameters
r1 = 1.0
r2 = 2.0

end parameters
begin init
Au = 1.0 + 2.0
B = 3.0
AuB

end init
begin ODE
d(Au) = - 3*Au*B + 4*AuB
d(B) = - 3*Au*B + 4*AuB
d(AuB) = 3*Au*B - 4*AuB

end ODE
// Comments associated to the

species
//Au: Block {Au, Ap}
//B: Block {B}
//AuB: Block {AuB , ApB}

end model

Listing 3. FDE reduction.

begin model ExampleODE_BDE
begin parameters
r1 = 1.0
r2 = 1.0

end parameters
begin init
Au = 1.0
B = 3.0
AuB

end init
begin ODE
d(Au) = - 3*Au*B + 4*AuB
d(B) = - 6*Au*B + 8*AuB
d(AuB) = 3*Au*B - 4*AuB

end ODE
// Comments associated to the

species
//Au: Block {Au, Ap}
//B: Block {B}
//AuB: Block {AuB , ApB}

end model

Listing 4. BDE reduction.

begin parameters
r1 = 1.0 r2 = 1.0

end parameters
begin init
Au = 1.0 B = 3.0 AuB
SINK

end init
begin reactions
Au -> 2*Au , r2
Au -> SINK , r1
Au + B -> Au , 3.0
Au + B -> AuB , 3.0
AuB -> Au + B , 4.0
AuB -> B + AuB , 4.0

end reactions
// Comments associated to the species
//Au: Block {Au, Ap}
//B: Block {B}
//AuB: Block {AuB , ApB}

end model

The model of Listing 2 is not
reduced by FB, independently on the
pre-partitioning choice. This is consis-
tent with FB being only a sufficient
condition for FDE (although it is effec-
tive on many meaningful models from
the literature, as discussed in [11]). The
result of the BB reduction is instead
provided in the right inset. As for BDE,
we considered the case r1=1.0 and
r2=1.0 without pre-partitioning. It can
be shown that the underlying ODEs of
the reduced model correspond to those
of Listing 4, as expected. (The place-
holder species SINK is created to rule
out reactions that have no products.)

4 Evaluation

Prototypal versions of ERODE’s reduction algorithms have been evaluated in [9,
11,12,43] against a number of models from the literature. The main outcomes
of these analyses are: (i) Our reduction techniques are effective, as we found
reductions in many large-scale models that enjoy substantial speed-ups for the
numerical ODE solution [9,11]; (ii) Our forward and backward notions are not
comparable in general, as there are models which can be reduced by the former
but not by the latter, and vice versa [9]; (iii) In some cases, observables of
interest specified by the modeller can be used to automatically generate initial
partitions that lead to forward reductions preserving them [43]; (iv) FDE and
BDE are less efficient than FB and BB, but are more general and lead to better

322 L. Cardelli et al.

reductions in the forward case [12]. (v) FB and BB correspond to the notions
of ordinary and exact CTMC lumpability [7], respectively [11]; in particular FB
has been validated in [11] against the ordinary CTMC lumping algorithm [16]
implemented in MRMC [29].

With ERODE we could confirm all these previously reported results. In this
section, we carry out a systematic evaluation of ERODE’s capabilities in terms
of scalability as a function of: the input model size (Sect. 4.1), its degree of
non-linearity (Sect. 4.2), and its degree of aggregability (Sect. 4.3). For this, we
considered a collection of synthetic benchmarks to be able to gain full control
on the model parameters to be changed for performing these studies.

All experiments were run on a 3.2 GHz Intel Core i5 machine with 16 GB of
RAM. In order to avoid interferences, each single model was tested on a fresh
Java Virtual Machine, with assigned 10 GB of RAM. For each reduction we used
initial partitions with one block only containing all variables. Information on
how to replicate the experiments is available at http://sysma.imtlucca.it/tools/
erode/benchmarks.

4.1 Scalability

We begin by studying the scalability of the partition-refinement algorithms in
terms of the model size. Such an assessment has been conducted already in [12]
for BDE/FDE, where it has been shown that BDE can handle models up to
786,432 reactions and 65,538 species, while FDE handled up to 8,620 reactions
and 745 species. For larger models Z3 issued out-of-memory errors. Here we
confirm these figures when using ERODE.

Instead, to study the scalability of FB and BB, we consider a number of ran-
dom RNs underlying degree-two polynomials. The set-up is as follows. First, we
fixed 7 different configurations with increasing number of reactions and species
(columns |R| and |S| of Table 1, respectively). For each configuration, we gen-
erated five random RNs, each having 70% unary reactions in the form A → B,
leading to degree-one monomials in the ODEs for species A and B, and 30%

Table 1. FB and BB reductions for random RNs with 30% of binary reactions.

http://sysma.imtlucca.it/tools/erode/benchmarks
http://sysma.imtlucca.it/tools/erode/benchmarks

ERODE: A Tool for the Evaluation and Reduction of ODEs 323

binary reactions in the form A+B→C, leading to degree-two monomials for A,
B, and C. (Here the percentage of binary reactions was fixed arbitrarily — it will
be studied in more detail in the next subsection.) The species involved in each
reaction were sampled uniformly (with re-insertion), while the kinetic rates were
drawn uniformly from the interval [1;10,000]. We ensured that none of the RNs
could be reduced in order to stress the algorithm by forcing it to evaluate the
maximum number of partition-refinement iterations. To reduce noise, the mea-
surements for each RN were repeated three times, for a total of 15 experiments
per configuration.

Table 1 summarizes the results. The columns Min, Avg and Max provide,
respectively, the minimum, average, and maximum reduction times obtained per
configuration. FB and BB reductions succeeded for models up to 25,000,000 reac-
tions and 2,50,0000 species, requiring about 5 and 15 min, respectively. Larger
RNs led to out-of-memory errors. The first and sixth row show that an incre-
ment of factor 25 in both the number of species and reactions leads to about two
order of magnitude larger runtimes, consistently with the algorithms’ complexi-
ties (Sect. 2). Finally, we note that BB reductions were performed twice as slow
as the corresponding FB ones This is consistent with [11], which shows that for
BB the inner loops of the partition-refinement algorithm execute about twice as
many instructions as for FB (see Algorithms 4 and 5 from [11]).

4.2 Degree of Nonlinearity

We now study how the reduction runtimes are affected by the nonlinearity in
the model, here measured as the percentage of monomials of degree greater than
one in the ODE.

For FB and BB we fixed a configuration with |R|= 3,500,000, and |S| =
250,000, similarly to the largest CRN in [9,11], and considered models with
increasing percentage of binary reactions. For each percentage, we generated
five RNs similarly to Sect. 4.1. Table 2 gives the reduction runtimes. We note
an increase in the runtimes as a function of the percentage of binary reactions.
This is consistent with the time complexity of FB and BB (Sect. 2). In fact, RNs

Table 2. Reductions of random elementary RNs with varying ratio of binary reactions.

324 L. Cardelli et al.

with higher ratio of binary reactions have more monomials in the underlying
ODEs (see Sect. 4.1). However we note that in practice the runtimes at worst
only quadruplicates respect to the linear case (column 0%).

Table 2 also reports the evaluation for FDE/BDE considering RNs of size |R|
= 1,500 and |S| = 250. We note that BDE requires much less time than FDE,
as expected from the discussion in Sect. 2. In addition, we find that the BDE
runtimes are essentially not affected. The same does not hold for FDE: incre-
menting the percentage of binary reactions by 20 leads to an increment of factor
between 1.3 and 2.3 in the runtimes. The different impact on the performance
of BDE and FDE can be explained by the algebraic transformations required by
FDE to compute the f̂[·] terms shown in Eq. (3). Consider for example a parti-
tion H and a species X belonging to a block H of H. Then, terms of form X2

are substituted with terms of form (
∑

Y ∈H Y)2/|H|2, with an explosion in the
number of monomials appearing in the derivatives. We do not provide the FDE
runtime for the 0% case, because it can be shown that, akin to CTMC lumpa-
bility, partitions with one block only are FDE for RNs with unary reagents and
products only.

We further study the behavior of FDE/BDE as a function of the max-
imum degree of the polynomials. For this, we constructed RNs with 60%
unary reactions and 40% n-ary reactions (leading to degree n monomials
in the underlying ODEs), with n = 20, 40, 60, 80, 100. The RNs have size
|R| = 1,500, |S|= 250, as in the last rows of Table 2. The runtimes, averaged
over 5 random RNs, are given in the bottom inset. The BDE runtime for
n = 20 is five times that of the corresponding one for degree-two polynomi-
als (third column of Table 2), and it further increases of factor 20 for n = 100.

Maximum degree of the polynomial n

20 40 60 80 100
BDE (s) 1.46E+0 8.30E+0 9.881E+0 1.42E+1 3.34E+1
FDE (s) 7.00E+2 2.00E+3 – “unknown” –

FDE succeeded for up to n = 40,
despite the discussed highly demand-
ing algebraic manipulations required,
while Z3 returned “unknown” for
larger values of n, suggesting an out
of memory error.

4.3 Number of Iterations vs Runtime

Finally, we study how the number of performed iterations of the partition-
refinement algorithms affects the runtime. For FB and BB this is done using
variants of model M1 of [9,11], with 3,538,944 reactions and 262,146 species.
It is the largest of a family of synthetic benchmarks used in [36] to study the
scalability of a network-free simulator for CRNs. It models an idealized bind-
ing/unbiding interaction between two molecules, A and B, which can take place
through A’s nine binding sites. Symmetries in the model are introduced through
the assumption that such binding sites are equivalent, in the sense that the rate
of binding/unbinding does not depend on the identity of the binding site.

Table 3(a) studies increasingly less symmetric variants of the model, obtained
by changing the binding/unbinding rates of each site; the first column shows

ERODE: A Tool for the Evaluation and Reduction of ODEs 325

Table 3. Reductions for variants of M1 of [9,11] by decreasing binding sites’
symmetries.

FB reduction BB reduction

Sym. Red. (s) Iter. |H| Red. (s) Iter. |H|
9 3.61E+0 223 222 7.60E+0 224 222
8 3.96E+0 663 662 8.12E+0 664 662
7 4.18E+0 1,923 1,922 8.63E+0 1,924 1,922
6 4.51E+0 5,379 5,378 8.73E+0 5,380 5,378
5 4.51E+0 14,339 14,338 8.77E+0 14,340 14,338
4 4.71E+0 35,849 35,842 8.97E+0 35,844 35,842
3 5.29E+0 81,959 81,922 9.58E+0 81,924 81,922
2 5.56E+0 163,910 163,842 9.71E+0 163,845 163,842
0 6.29E+0 262,147 262,146 1.12E+1 262,157 262,146

(a) 9 binding sites, |R|=3,538,944, |S|=262,146

FDE reduction BDE reduction

Sym. Red.(s) Iter. |H| Red.(s) Iter. |H|
4 1.39E+2 13,284 37 4.10E–1 42 37
3 2.66E+2 38,355 82 6.00E–1 81 82
2 3.52E+2 50,517 162 7.75E–1 113 162
0 2.54E+2 37,022 258 2.22E–1 9 258

(b) 4 binding sites, |R|=1,536, |S|=258

the number of equivalent sites in the model. The columns Red. provide the
runtimes of our algorithms. Columns Iter. and |H| show the number of iterations
performed and the blocks for the coarsest partitions obtained. Decreasing the
number of symmetric binding sites by one leads to an increment of factor between
2 and 3 in the number of iterations and blocks in the partitions. Instead, the
runtime increases only slightly: the number of iterations between the first and the
last experiment are separated by three orders of magnitude while their respective
runtimes at most only double for both FB and BB. This can be explained by
the fact that, at each iteration, one block of the current partition is chosen as a
potential splitter. Therefore only the reactions that have species belonging to the
splitter in their products will be inspected. As a result, the smaller is the current
splitter, the fewer reactions are scanned in the iteration. More importantly, as
discussed in detail in [11], the FB/BB algorithms follow Paige and Tarjan’s
approach of ignoring the largest sub-part [33]. This means that, whenever a
block is split, one of its sub-blocks with maximal size will not be further used as
splitter. This guarantees that each species will appear in at most log |S| splitters,
with S being the species in the model.

Table 3(b) reports a similar analysis for FDE and BDE. We use a simpli-
fication of M1 where A has only four binding sites, obtaining 1,536 reactions
and 258 species, to which both FDE and BDE can be successfully applied. The
table has the same structure of Table 3(a), however here Iter. counts the num-
ber of performed SMT checks. The table also shows that our symbolic algo-
rithms are strongly affected by the number of performed iterations: the nature
of the FDE/BDE algorithms does not allow for advanced optimizations like
those discussed for FB/BB. Lastly, it is interesting to note that the number of
necessary iterations decreases in the case when no reduction is found (last row
of Table 3(b)). Here, the computation of the largest BDE required nine SMT
checks: the SMT solver was able to split the initial block in 250 blocks in the
first iteration, then one new block has been created in the following eight iter-
ations until reaching the final partition with one block per species. For FDE,

326 L. Cardelli et al.

instead, 37,022 SMT checks were necessary. We note that this is relatively close
to the number of binary comparisons among 258 elements, i.e.

(
258
2

)
= 33153, as

expected from the discussion in Sect. 2.

5 Conclusion

We presented ERODE, a tool for the analysis and reduction of ODEs. The main
novelty is in the implementation of partition-refinement algorithms that com-
pute the largest equivalence over ODE variables that refine an initial partition,
using both syntactic criteria as well as symbolic SMT ones. However, currently
ERODE does not support algorithms required when the modeler is interested in
equivalences that satisfy constraints that are not expressible as initial partitions.
An example is the notion of emulation used for model comparison between two
CRNs [8], where each BDE partition block must contain at least one species of
the source CRN, and exactly one of the target. We plan to integrate ERODE
with the algorithm for computing all the BDEs of a CRN from [10].

ERODE is concerned with exact aggregations. These may be too strong in
some cases, as small perturbations in the parameters might prevent reductions
for ODE variables with nearby trajectories in practice. This motivated the devel-
opment of approximate notions of equivalence [1,23,34,42]. Preliminary work is
treated in [25,40]. However these approaches lack an algorithm for automatic
reduction, and they provide error bounds that tend to grow fast with time. In
the future we aim at tackling these two issues.

Acknowledgments. This work was partially supported by the EU project QUANTI-
COL, 600708. L. Cardelli is partially funded by a Royal Society Research Professorship.

References

1. Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis
of probabilistic noninterference. JCS 12(2), 191–245 (2004)

2. Aoki, M.: Control of large-scale dynamic systems by aggregation. IEEE Trans.
Autom. Control 13(3), 246–253 (1968)

3. Apache Commons Mathematics Library. http://commons.apache.org/proper/
commons-math/

4. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

5. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

6. Bortolussi, L., Lanciani, R.: Model checking Markov population models by central
limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40196-1 9

7. Buchholz, P.: Exact and ordinary lumpability in finite Markov Chains. J. Appl.
Probab. 31(1), 59–75 (1994)

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
http://dx.doi.org/10.1007/978-3-642-40196-1_9
http://dx.doi.org/10.1007/978-3-642-40196-1_9

ERODE: A Tool for the Evaluation and Reduction of ODEs 327

8. Cardelli, L.: Morphisms of reaction networks that couple structure to function.
BMC Syst. Biol. 8(1), 84 (2014)

9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward
bisimulations for chemical reaction networks. In: CONCUR (2015)

10. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical
reaction networks: a categorical and algorithmic perspective. In: LICS (2016)

11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven
lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 6

12. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. In: POPL (2016)

13. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: exact and automated model reduction. In:
LICS, pp. 362–381 (2010)

14. Danos, V., Laneve, C.: Formal molecular biology. Theoret. Comput. Sci. 325(1),
69–110 (2004)

15. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

16. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87(6), 309–315 (2003)

17. Erhard, F., Friedel, C.C., Zimmer, R.: FERN - a Java framework for stochastic
simulation and evaluation of reaction networks. BMC Bioinform. 9(1), 356 (2008)

18. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. Proc. Nat. Acad. Sci. 106(16), 6453–6458 (2009)

19. Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-
based systems. Theoret. Comput. Sci. 431, 137–164 (2012)

20. Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239–
1249 (2007)

21. Microsoft GEC. http://research.microsoft.com/en-us/projects/gec/
22. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem. 81(25), 2340–2361 (1977)
23. Gupta, V., Jagadeesan, R., Panangaden, P.: Approximate reasoning for real-time

probabilistic processes. Log. Methods Comput. Sci. 2(1), 1–23 (2006)
24. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process

algebra. Theor. Comput. Sci. 411(22–24), 2260–2297 (2010)
25. Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent

types. In: DSN, pp. 1–11 (2013)
26. Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian

process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48057-1 23

27. Iwasa, Y., Andreasen, V., Levin, S.: Aggregation in model ecosystems. I. Perfect
aggregation. Ecol. Model. 37(3–4), 287–302 (1987)

28. Jovanović, D., Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 27

29. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In:
QEST, pp. 243–244 (2005)

http://dx.doi.org/10.1007/978-3-662-49674-9_6
http://dx.doi.org/10.1007/978-3-662-49674-9_6
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://research.microsoft.com/en-us/projects/gec/
http://dx.doi.org/10.1007/978-3-662-48057-1_23
http://dx.doi.org/10.1007/978-3-662-48057-1_23
http://dx.doi.org/10.1007/978-3-642-31365-3_27

328 L. Cardelli et al.

30. Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I.: Scaling size and para-
meter spaces in variability-aware software performance models. In: ASE (2015)

31. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

32. Li, G., Rabitz, H.: A general analysis of exact lumping in chemical kinetics. Chem.
Eng. Sci. 44(6), 1413–1430 (1989)

33. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

34. Pierro, A., Hankin, C., Wiklicky, H.: Quantitative relations and approximate
process equivalences. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol.
2761, pp. 508–522. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45187-7 33

35. Regev, A., Shapiro, E.: Cellular abstractions: cells as computation. Nature
419(6905), 343–343 (2002)

36. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and
coarse-graining of biological complexity with NFsim. Nat. Methods 8(2), 177–183
(2011)

37. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)

38. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for markovian process
algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp.
380–394. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32940-1 27

39. Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations
in Markovian process algebra. J. Log. Algebr. Meth. Program. 84(2), 238–258
(2015)

40. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous non-
linear models with differential hulls. IEEE Trans. Autom. Control 61, 1099–1104
(2016)

41. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 4

42. van Breugel, F., Worrell, J.: Approximating, computing behavioural distances in
probabilistic transition systems. Theoret. Comput. Sci. 360(1–3), 373–385 (2006)

43. Vandin, A., Tribastone, M.: Quantitative abstractions for collective adaptive sys-
tems. In: Bernardo, M., Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700,
pp. 202–232. Springer, Heidelberg (2016). doi:10.1007/978-3-319-34096-8 7

44. Voit, E.O.: Biochemical systems theory: a review. ISRN Biomath. 2013, 53 (2013)

http://dx.doi.org/10.1007/978-3-540-45187-7_33
http://dx.doi.org/10.1007/978-3-642-32940-1_27
http://dx.doi.org/10.1007/978-3-642-12002-2_4
http://dx.doi.org/10.1007/978-3-319-34096-8_7

SV COMP

Software Verification with Validation of Results

(Report on SV-COMP 2017)

Dirk Beyer

LMU Munich, Munich, Germany

Abstract. This report describes the 2017 Competition on Software Ver-
ification (SV-COMP), the 6th edition of the annual thorough compara-
tive evaluation of fully-automatic software verifiers. The goal is to reflect
the current state of the art in software verification in terms of effec-
tiveness and efficiency. The major achievement of the 6th edition of
SV-COMP is that the verification results were validated in most cate-
gories. The verifiers have to produce verification witnesses, which contain
hints that a validator can later use to reproduce the verification result.
The answer of a verifier counts only if the validator confirms the verifica-
tion result. SV-COMP uses two independent, publicly available witness
validators. For 2017, a new category structure was introduced that now
orders the verification tasks according to the property to verify on the
top level, and by the type of programs (e.g., which kind of data types
are used) on a second level. The categories Overflows and Termination
were heavily extended, and the category SoftwareSystems now contains
also verification tasks from the software system BusyBox. The competi-
tion used 8 908 verification tasks that each consisted of a C program and
a property (reachability, memory safety, termination). SV-COMP 2017
had 32 participating verification systems from 12 countries.

1 Introduction

Software verification is an increasingly important research area, and the annual
Competition on Software Verification (SV-COMP)1 is the showcase of the state
of the art in the area, in particular, of the effectiveness and efficiency that is cur-
rently achieved by tool implementations of the most recent ideas, concepts, and
algorithms for fully-automatic verification. Every year, the SV-COMP project
consists of two parts: (1) The collection of verification tasks and their parti-
tion into categories has to take place before the actual experiments start, and
requires quality-assurance work on the source code in order to ensure a high-
quality evaluation. It is important that the SV-COMP verification tasks reflect
what the research and development community considers interesting and chal-
lenging for evaluating the effectivity (soundness and completeness) and efficiency
(performance) of state-of-the-art verification tools. (2) The actual experiments
of the comparative evaluation of the relevant tool implementations is performed

1 https://sv-comp.sosy-lab.org

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 331–349, 2017.
DOI: 10.1007/978-3-662-54580-5 20

https://sv-comp.sosy-lab.org

332 D. Beyer

by the organizer of SV-COMP. Since SV-COMP shall stimulate and showcase
new technology, it is necessary to explore and define standards for a reliable and
reproducible execution of such a competition: we use BenchExec [10], a mod-
ern framework for reliable benchmarking and resource measurement, to run the
experiments, and verification witnesses [7,8] to validate the verification results.

As for every edition, this SV-COMP report describes the (updated) rules
and definitions, presents the competition results, and discusses other interesting
facts about the execution of the competition experiments. Also, we need to
measure the success of SV-COMP by evaluating whether the main objectives of
the competition are achieved (list taken from [5]):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results, and

4. accelerate the transfer of new verification technology to industrial practice.

As for (1), there were 32 participating software systems from 12 countries, rep-
resenting a broad spectrum of technology (cf. Table 4). SV-COMP is considered
an important event in the research community, and increasingly also in industry.
This year, SV-COMP for the first time had two participating verification sys-
tems from industry. As for (2), the total set of verification tasks increased in size
from 6 661 to 8 908. Still, SV-COMP has an ongoing focus on collecting and con-
structing verification tasks to ensure even more diversity. Compared to the last
years, the level and amount of quality-assurance activities from the SV-COMP
community increased significantly, as witnessed by the issue tracker2 and by the
pull requests3 in the GitHub project. As for (3), the largest step forward was to
apply an extension of the standard witness language as a common, exchangeable
format to correctness witnesses as well this year (violation witnesses have been
used before). This means, if a verifier reports False (claims to know an error
path through the program that violates the specification), then it produces a
violation witness; if a verifier reports True (claims to know a proof of correct-
ness), then it produces a correctness witness. The two points of the SV-COMP
scoring schema for correct answers True are assigned only if the correctness
witness was confirmed by a witness validator, i.e., a proof of correctness could
be reconstructed by a different tool. As for (4), we continuously received positive
feedback from industry.

Related Competitions. It is well-understood that competitions are an important
evaluation method, and there are other competitions in the field of software ver-
ification: RERS4 [20] and VerifyThis5 [22]. While SV-COMP performs replicable
2 https://github.com/sosy-lab/sv-benchmarks/issues?q=is:issue
3 https://github.com/sosy-lab/sv-benchmarks/pulls?q=is:pr
4 http://rers-challenge.org
5 http://etaps2016.verifythis.org

https://github.com/sosy-lab/sv-benchmarks/issues?q=is:issue
https://github.com/sosy-lab/sv-benchmarks/pulls?q=is:pr
http://rers-challenge.org
http://etaps2016.verifythis.org

Software Verification with Validation of Results 333

experiments in a controlled environment (dedicated resources, resource limits),
the RERS Challenges give more room for exploring combinations of interactive
with automatic approaches without limits on the resources, and the VerifyThis
Competition focuses on evaluating approaches and ideas rather than on fully-
automatic verification. The termination competition termCOMP6 [16] concen-
trates on termination but considers a broader range of systems, including logic
and functional programs. A more comprehensive list of other competitions is
provided in the report on SV-COMP 2014 [4].

2 Procedure

The overall competition organization did not change in comparison to the past
editions [2–6]. SV-COMP is an open competition, where all verification tasks
are known before the submission of the participating verifiers, which is neces-
sary due to the complexity of the language C. During the benchmark submission
phase, new verification tasks were collected and classified, during the training
phase, the teams inspected the verification tasks and trained their verifiers (also,
the verification tasks received fixes and quality improvement), and during the
evaluation phase, verification runs were preformed with all competition candi-
dates, and the system descriptions were reviewed by the competition jury. The
participants received the results of their verifier directly via e-mail, and after a
few days of inspection, the results were publicly announced on the competition
web site. The Competition Jury consisted again of the chair and one member of
each participating team. Team representatives of the jury are listed in Table 3.

3 Definitions, Formats, and Rules

Verification Task. The definition of verification task was not changed (taken
from [4]). A verification task consists of a C program and a property. A verifica-
tion run is a non-interactive execution of a competition candidate (verifier) on
a single verification task, in order to check whether the following statement is
correct: “The program satisfies the property.” The result of a verification run is
a triple (answer, witness, time). answer is one of the following outcomes:

True: The property is satisfied (no path exists that violates the property), and a
correctness witness is produced that contains hints to reconstruct the proof.

False: The property is violated (there exists a path that violates the property),
and a violation witness is produced that contains hints to replay the error
path to the property violation.

Unknown: The tool cannot decide the problem, or terminates abnormally, or
exhausts the computing resources time or memory (the competition candi-
date does not succeed in computing an answer True or False).

6 http://termination-portal.org/wiki/Termination Competition

http://termination-portal.org/wiki/Termination_Competition

334 D. Beyer

Arrays

Bit Vectors

Heap Data Structures

Integers and Control Flow

Software Systems

Arrays

ArraysReach

ArraysMemSafety

Bit Vectors

BitVectorsReach

Overflows

Heap Data Structures

HeapReach

HeapMemSafety

Floats

Integers and Control Flow

ControlFlow

Simple

ECA

Loops

Recursive

ProductLines

Sequentialized

Termination

Concurrency

Software Systems

DeviceDriversLinux64

Overall

Overflows

MemorySafety

ReachSafety

SoftwareSystems

Termination

ReachSafety

ArraysReach

BitVectorsReach

ControlFlow

ECA

Floats

HeapReach

Loops

ProductLines

Recursive

Sequentialized

MemorySafety

ArraysMemSafety

HeapMemSafety

LinkedLists

Other

ConcurrencySafety

Overflows

BitVectors

Other

Termination

Main-ControlFlow

Main-Heap

Other

SoftwareSystems

BusyBox MemorySafety

BusyBox Overflows

DeviceDriversLinux64 Safety

Overall

Fig. 1. Categories; left: SV-COMP 2016; right: SV-COMP 2017; category Falsification
contains all verification tasks of Overall without Termination

Software Verification with Validation of Results 335

Table 1. Properties used in SV-COMP 2017 (cf. [5] for more details)

Formula Interpretation

G ! call(foo()) A call to function foo is not reachable on any finite execution

G valid-free All memory deallocations are valid (counterexample: invalid
free). More precisely: There exists no finite execution of the
program on which an invalid memory deallocation occurs

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists no
finite execution of the program on which the program lost track
of some previously allocated memory

F end All program executions are finite and end on proposition end,
which marks all program exits (counterexample: infinite loop).
More precisely: There exists no execution of the program on
which the program never terminates

The component witness [7,8] was this year for the first time mandatory for
both answers True or False; a few categories were excluded from validation if
the validators did not sufficiently support a certain kind of program or prop-
erty. We used the two publicly available witness validators CPAchecker and
UAutomizer. time is measured as consumed CPU time until the verifier ter-
minates, including the consumed CPU time of all processes that the verifier
started [10]. If time is equal to or larger than the time limit (15 min), then the
verifier is terminated and the answer is set to ‘timeout’ (and interpreted as
Unknown).

Categories. The collection of verification tasks is partitioned into categories.
A major update was done on the structure of the categories, in order to sup-
port various extensions that were planned for SV-COMP 2017. For example, the
categories Overflows and Termination were considerably extended (Overflows
from 12 to 328 and Termination from 631 to 1 437 verification tasks). Figure 1
shows the previous structure of main and sub-categories on the left, and the
new structure is shown on the right. The guideline is to have main categories
that correspond to different properties and sub-categories that reflect the type of
program. The goal of the category SoftwareSystems is to complement the other
categories (which sometimes contain small and constructed examples to show
certain verification features) by large and complicated verification tasks from
real software systems (further structured according to system and property to
verify). The category assignment was proposed and implemented by the com-
petition chair, and approved by the competition jury. SV-COMP 2017 has a
total of eight categories for which award plaques are handed out, including the
six main categories, category Overall, which contains the union of all categories,

336 D. Beyer

Table 2. Scoring schema for SV-COMP 2017

Reported result Points Description

Unknown 0 Failure to compute verification result

False correct +1 Violation of property in program was correctly found

False incorrect −16 Violation reported but property holds (false alarm)

True correct +2 Correct program reported to satisfy property

True correct
unconfirmed

+1 Correct program reported to satisfy property, but the
witness was not confirmed by a validator

True incorrect −32 Incorrect program reported as correct (wrong proof)

TASK

VERIFIERtrue-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0unknown

-16

false

2true (witness confirmed)

1unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32
true

0
unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Fig. 2. Visualization of the scoring schema for the reachability property

and category Falsification. Category Falsification consists of all verification tasks
with safety properties, and any answers True are not counted for the score (the
goal of this category is to show bug-hunting capabilities of verifiers that are not
able to construct correctness proofs). The categories are described in more detail
on the competition web site.7

Properties and Their Format. For the definition of the properties and the
property format, we refer to the previous competition report [5]. All specifica-
tions are available in the main directory of the benchmark repository. Table 1
lists the properties and their syntax as overview.

Evaluation by Scores and Run Time. The scoring schema of SV-COMP
2017 is similar to the previous scoring schema, except that results with answer
True are now assigned two points only if the witness was confirmed by a val-
idator, and one point is assigned if the answer matches the expected result but
the witness was not confirmed. Table 2 provides the overview and Fig. 2 visually
illustrates the score assignment for one property. The ranking is decided based
on the sum of points (normalized for meta categories) and for equal sum of points
according to success run time, which is the total CPU time over all verification

7 https://sv-comp.sosy-lab.org/2017/benchmarks.php

https://sv-comp.sosy-lab.org/2017/benchmarks.php

Software Verification with Validation of Results 337

(a) Verification Tasks
(public git: 'svcomp17')

(e) Verification Run
(BenchExec 1.10)

(b) Benchmark Definitions
(public git: 'svcomp17')

(c) Tool-Info Modules
(BenchExec 1.10)

(d) Verifier Archives
(public web: sha1hash)

FALSE UNKNOWN TRUE(f) Violation
Witness

(g) Correctness
Witness

Fig. 3. Setup: SV-COMP components that support reproducibility

tasks for which the verifier reported a correct verification result. Opt-out from
Categories and Score Normalization for Meta Categories was done as described
previously [3] (page 597).

4 Reproducibility

It is important that the SV-COMP experiments can be independently replicated,
and that the results can be reproduced. Therefore, all major components that are
used for the competition need to be publicly available. Figure 3 gives an overview
over the components that contribute to the reproducible setup of SV-COMP.

Repositories for Verification Tasks (a), Benchmark Definitions (b),
and Tool-Information Modules (c). The previous competition report [6]
describes how replicability is ensured by making all essential ingredients available
in public archives. The verification tasks (a) are available via the tag ‘svcomp17’
in a public Git repository.8 The benchmark definitions (b) define for each ver-
ifier (i) on which verification tasks the verifier is to be executed (each verifier
can choose which categories to participate in) and (ii) which parameters need
to be passed to the verifier (there are global parameters that are specified for
all categories, and there are specific parameters such as the bit architecture).
The benchmark definitions are available via the tag ‘svcomp17’ in another pub-
lic Git repository.9 The tool-information modules (c) ensure, for each verifier
respectively, that the command line to execute the verifier is correctly assem-
bled (including source and property file as well as the options) from the parts
specified in the benchmark definition (b), and that the results of the verifier are
correctly interpreted and translated into the uniform SV-COMP result (True,
False(p), Unknown). The tool-info modules that were used for SV-COMP
2017 are available in BenchExec 1.10.10

Reliable Assignment and Controlling of Computing Resources (e). We
use BenchExec11 [10] to satisfy the requirements for scientifically valid experi-
mentation, such as (i) accurate measurement and reliable enforcement of limits

8 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp17/c
9 https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs

10 https://github.com/sosy-lab/benchexec/tree/1.10/benchexec/tools
11 https://github.com/sosy-lab/benchexec

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp17/c
https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/1.10/benchexec/tools
https://github.com/sosy-lab/benchexec

338 D. Beyer

for CPU time and memory, and (ii) reliable termination of processes (including
all child processes). For the first time in SV-COMP, we used BenchExec’s con-
tainer mode, in order to make sure that read and write operations are properly
controlled. For example, it was previously not automatically and reliably enforced
that tools do not increase the assigned memory by using a RAM disk. This and
some other issues that previously required manual inspection and analysis are
now systematically solved.

Violation Witnesses (f) and Correctness Witnesses (g). In SV-COMP,
each verification run (if applicable) is followed by a validation run that checks
whether the witness adheres to the exchange format and can be confirmed. The
resource limits for the witness validators were 2 processing units (one physical
CPU core with hyper-threading), 7 GB memory, and 10% of the verification time
(i.e., 1.5 min) for violation witnesses and 100% (15 min) for correctness witnesses.
The purpose of the tighter resource limits is to avoid delegating all verification
work to the validator. This witness-based validation process ensures a higher
quality of assignment of scores, compared to without witnesses: if a verifier claims
a found bug but is not able to provide a witness, then the verifier does not get
the full score. The witness format and the validation process is explained on the
witness-format web page12. The version of the exchange format that was used
for SV-COMP 2017 has the tag ‘svcomp17’. More details on witness validation
is given in two related research articles [7,8].

Verifier Archives (d). Due to legal issues we do not re-distribute the verifiers
on the competition web site, but list for each verifier a URL to an archive that
the participants promised to keep publicly available, together with the SHA1
hash of the archive that was used in SV-COMP. An overview table is provided
on the systems-description page of the competition web site13. For replicating
experiments, the archive can be downloaded and verified against the given SHA1
hash. Each archive contains all parts that are needed to execute the verifier
(statically-linked executables and all components that are required in a certain
version, or for which no standard Ubuntu package is available). The archives are
also supposed to contain a license that permits use in SV-COMP, replicating the
SV-COMP experiments, that all data that the verifier produces as output are
property of the person that executes the verifier, and that the results obtained
from the verifier can be published without any restriction.

5 Results and Discussion

For the sixth time, the competition experiments represent the state of the art in
fully-automatic software-verification tools. The report shows the improvements
of the last year, in terms of effectiveness (number of verification tasks that can

12 https://github.com/sosy-lab/sv-witnesses/tree/svcomp17
13 https://sv-comp.sosy-lab.org/2017/systems.php

https://github.com/sosy-lab/sv-witnesses/tree/svcomp17
https://sv-comp.sosy-lab.org/2017/systems.php

Software Verification with Validation of Results 339

Table 3. Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

2LS [34] Peter Schrammel U. of Sussex, UK

AProVE [19] Jera Hensel RWTH Aachen, Germany

Blast [35] Vadim Mutilin ISP RAS, Russia

CBMC [26] Michael Tautschnig Queen Mary, UK

Ceagle Guang Chen Tsinghua U., China

CIVL [37] Stephen Siegel U. of Delaware, USA

ConSequence Anand Yeolekar TCS, India

CPA-BAM-BnB [1] Pavel Andrianov ISP RAS, Russia

CPA-kInd [9] Matthias Dangl U. of Passau, Germany

CPA-Seq [14] Karlheinz Friedberger U. of Passau, Germany

DepthK [33] Herbert O. Rocha Federal U. of Roraima, Brazil

ESBMC [28] Lucas Cordeiro U. of Oxford, UK

ESBMC-falsi [28] Bernd Fischer Stellenbosch U., ZA

ESBMC-incr [28] Denis Nicole U. of Southampton, UK

ESBMC-kind [15] Mikhail Ramalho U. of Southampton, UK

Forester [21] Martin Hruska Brno U. of Technology, Czechia

HipTNT+ [27] Ton Chanh Le National U. of Singapore, Singapore

Lazy-CSeq [23] Omar Inverso Gran Sasso Science Institute, Italy

Lazy-CSeq-Abs [30] Bernd Fischer Stellenbosch U., ZA

Lazy-CSeq-Swarm Truc Nguyen Lam U. of Southampton, UK

MU-CSeq [36] Salvatore La Torre U. of Salerno, Italy

PredatorHP [25] Tomas Vojnar Brno U. of Technology, Czechia

Skink [11] Franck Cassez Macquarie U. at Sydney, Australia

SMACK [32] Zvonimir Rakamarić U. of Utah, USA

Symbiotic [12] Jan Strejček Masaryk U., Czechia

SymDIVINE [24] Jǐŕı Barnat Masaryk U., Czechia

UAutomizer [18] Matthias Heizmann U. of Freiburg, Germany

UKojak [31] Daniel Dietsch U. of Freiburg, Germany

UL-CSeq [29] Gennaro Parlato U. of Southampton, UK

UTaipan [17] Marius Greitschus U. of Freiburg, Germany

VeriAbs [13] Priyanka Darke TCS, India

Yogar-CBMC Liangze Yin National U. of Defense Techn., China

be solved, correctness of the results, as accumulated in the score) and efficiency
(resource consumption in terms of CPU time). The results that are presented in
this article were inspected and approved by the participating teams.

Participating Verifiers. Table 3 provides an overview of the participating com-
petition candidates and Table 4 lists the features and technologies that are used
in the verification tools.

340 D. Beyer

Table 4. Technologies and features that the competition candidates offer

Software Verification with Validation of Results 341

Table 5. Quantitative overview over all results; empty cells mark opt-outs

342 D. Beyer

Table 6. Overview of the top-three verifiers for each category (CPU time in h, rounded
to two significant digits)

Computing Resources. The resource limits were the same as last year [6]:
Each verification run was limited to 8 processing units (cores), 15 GB of memory,
and 15 min of CPU time. The witness validation was limited to 2 processing
units, 7 GB of memory, and 1.5 min of CPU time for violation witnesses and
15 min of CPU time for correctness witnesses. The machines for running the
experiments were different from last year, because we now had 168 machines
available and each verification run could be executed on a completely unloaded,

Software Verification with Validation of Results 343

Table 7. Necessary effort to compute results False versus True (measurement values
rounded to two significant digits)

Result True False

CPU time CPU energy CPU time CPU energy

(avg. in s) (avg. in J) (avg. in s) (avg. in J)

UAutomizer 46 450 42 420

SMACK 210 2 200 51 580

CPA-Seq 65 650 39 320

dedicated machine, in order to achieve precise measurements. Each machine had
one Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of
3.4 GHz 33 GB of RAM, and a GNU/Linux operating system (x86 64-linux,
Ubuntu 16.04 with Linux kernel 4.4).

One complete verification execution of the competition consisted of
421 benchmarks (each verifier on each selected category according to the opt-
outs), summing up to 170 417 verification runs. Witness validation required
678 benchmarks (combinations of verifier, category with witness validation, and
two validators) summing up to 232 916 validation runs. The consumed total
CPU time for one complete competition run for verification required a total of
490 days of CPU time. Each tool was executed several times, in order to make
sure no installation issues occur during the execution. We used BenchExec [10]
to measure and control computing resources (CPU time, memory, CPU energy)
and VerifierCloud14 to distribute, install, run, and clean-up verification runs,
and to collect the results.

Quantitative Results. Table 5 presents the quantitative overview over all tools
and all categories (Forester participated only in subcategory ReachSafety-
Heap, MemSafety-Heap, and MemSafety-LinkedLists; VeriAbs participated
only in some subcategories of ReachSafety). The head row mentions the cat-
egory, the maximal score for the category, and the number of verification tasks.
The tools are listed in alphabetical order; every table row lists the scores of
one verifier for each category. We indicate the top-three candidates by format-
ting their scores in bold face and in larger font size. An empty table cell means
that the verifier opted-out from the respective category. There was one cat-
egory for which the winner was decided based on the run time: in category
ConcurrencySafety, all top-three verifiers achieved the maximum score of 1293
points, but the run time differed. More information (including interactive tables,
quantile plots for every category, and also the raw data in XML format) is avail-
able on the competition web-site.15

Table 6 reports the top-three verifiers for each category. The run time (col-
umn ‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved
Tasks’). The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of

14 https://vcloud.sosy-lab.org/
15 https://sv-comp.sosy-lab.org/2017/results/

https://vcloud.sosy-lab.org/
https://sv-comp.sosy-lab.org/2017/results/

344 D. Beyer

verification tasks for which the verifier reported wrong results: reporting an
error path but the property holds (incorrect False) and claiming that the
program fulfills the property although it actually contains a bug (incorrect
True), respectively.

Discussion of Scoring Schema and Normalization. The verification com-
munity considers it more difficult to compute correctness proofs compared to
computing error paths: according to Table 2, an answer True yields 2 points
(confirmed witness) and 1 point (unconfirmed witness), while an answer False
yields 1 point (confirmed witness). This can have consequences on the final rank-
ing, as discussed in the report on the last SV-COMP edition [6].

Assigning a higher score value to results True (compared to results False)
seems justified by the CPU time and energy that the verifiers need to compute
the result. Table 7 shows actual numbers on this: the first column lists the three
best verifiers of category Overall, the second and third columns report the aver-
age CPU time and average CPU energy for results True, and the forth and fifth
columns for results False. The average is taken over all verification tasks; the
CPU time is reported in seconds and the CPU energy in Joule (BenchExec
reads and accumulates the energy measurements of Intel CPUs). Especially for
the verifier SMACK, the effort to compute results True is significantly higher
compared to the effort to compute results False: 210 s versus 51 s of average
CPU time per verification task and 2 200 J versus 580 J of average CPU energy.

A similar consideration was made on the score normalization. The commu-
nity considers the value of each category equal, which has the consequence
that solving a verification task in a large category (many, often similar veri-
fication tasks) has less value than solving a verification task in a small cat-
egory (only a few verification tasks) [3]. The values for category Overall in
Table 6 illustrate the purpose of the score normalization: CPA-Seq solved
5 393 tasks, which is 791 solved tasks more than the winner UAutomizer could
solve (4 602). So why did CPA-Seq not win the category? Because UAutomizer
is better in the intuitive sense of ‘overall’: it solved tasks more diversely, the
‘overall’ value of the verification work is higher. Thus, UAutomizer received
7 099 points and CPA-Seq received 5 296 points. Similarly, in category Soft-
wareSystems, UAutomizer solved 177 more tasks than SMACK; the tasks
that UAutomizer solved were considered of less value (i.e., from large cate-
gories). SMACK was able to solve considerably more verification tasks in the
seemingly difficult BusyBox categories. In these cases, the score normalization
correctly maps the community’s intuition.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [3] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The web-site (see footnote 15)
includes such a plot for each category; as example, we show the plot for category
Overall (all verification tasks) in Fig. 4. A total of 15 verifiers participated in
category Overall, for which the quantile plot shows the overall performance over
all categories (scores for meta categories are normalized [3]). A more detailed

Software Verification with Validation of Results 345

 1

 10

 100

 1000
T

im
e

in
 s

2LS
CBMC
Ceagle

CPA-kInd
CPA-Seq

DepthK
ESBMC-falsi
ESBMC-incr
ESBMC-kind

ESBMC
SMACK

Symbiotic
UAutomizer

UKojak
UTaipan

-2000 0 2000 4000 6000

Accumulated score

Fig. 4. Quantile functions for category Overall. Each quantile function illustrates the
quantile (x-coordinate) of the scores obtained by correct verification runs below a
certain run time (y-coordinate). More details were given previously [3]. A logarithmic
scale is used for the time range from 1 s to 1000 s, and a linear scale is used for the
time range between 0 s and 1 s.

Table 8. Confirmation rate of witnesses

Result True False

Total Confirmed Unconfirmed Total Confirmed Unconfirmed

UAutomizer 3 558 3 481 77 1 173 1 121 52

SMACK 2 947 2 695 252 1 929 1 768 161

CPA-Seq 3 357 3 078 279 2 342 2 315 27

discussion of score-based quantile plots, including examples of what interest-
ing insights one can obtain from the plots, is provided in previous competition
reports [3,6].

Correctness of Results. Out of those verifiers that participated in all cat-
egories, UKojak is the only verifier that did not report any wrong result,
CBMC did not report any false alarm, and Ceagle, CPA-kInd,CPA-Seq,
and ESBMC-falsi did not report any wrong proof.

Verifiable Witnesses. For SV-COMP, it is not sufficient to answer with just
True or False: each answer must be accompanied by a verification witness. For
correctness witnesses, an unconfirmed answer True was still accepted, but was
assigned only 1 point instead of 2 (cf. Table 2). All verifiers in categories that
required witness validation support the common exchange format for violation
and correctness witnesses. We used the two independently developed witness
validators that are integrated in CPAchecker and UAutomizer [7,8].

It is interesting to see that the majority of witnesses that the top-three
verifiers produced can be confirmed by the witness-validation process (more
than 90%). Table 8 shows the confirmed versus unconfirmed result: the first

346 D. Beyer

column lists the three best verifiers of category Overall, the three columns for
result True reports the total, confirmed, and unconfirmed number of verifica-
tion tasks for which the verifier answered with True, respectively, and the three
columns for result False reports the total, confirmed, and unconfirmed number
of verification tasks for which the verifier answered with False, respectively.
More information (for all verifiers) is given in the detailed tables on the com-
petition web-site (see footnote 15), cf. also the report on the demo category for
correctness witnesses from SV-COMP 2016 [6].

6 Conclusion

SV-COMP 2017, the 6th edition of the Competition on Software Verification,
attracted 32 participating teams from 12 countries (number of teams 2012: 10,
2013: 11, 2014: 15, 2015: 22, 2016: 35). SV-COMP continues to be the broad-
est overview of the state of the art in automatic software verification. For the
first time in verification history, proof hints (stored in an exchangeable witness)
from verifiers were used on a large scale to help a different tool (validator) to
validate whether it can, given the proof hints, reproduce a correctness proof.
Given the results (cf. Table 8), this approach is successful. The two points for
the results True were counted only if the correctness witness was confirmed; for
unconfirmed results True, only 1 point was assigned. The number of verifica-
tion tasks was increased from 6 661 to 8 908. The partitioning of the verification
tasks into categories was considerably restructured; the categories Overflows,
MemSafety, and Termination were extended and structured using sub-categories;
many verification tasks from the software system BusyBox were added to the
category SoftwareSystems. As before, the large jury and the organizer made
sure that the competition follows the high quality standards of the TACAS
conference, in particular with respect to the important principles of fairness,
community support, and transparency.

References

1. Andrianov, P., Mutilin, V., Friedberger, K., Mandrykin, M., Volkov, A.: CPA-
BAM-BnB: Block-abstraction memorization and region-based memory models for
predicate abstractions (competition contribution). In: Legay, A., Margaria, T.
(eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp. 355–359. Springer, Heidelberg
(2017)

2. Beyer, D.: Competition on software verification (SV-COMP). In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 504–524. Springer, Heidelberg
(2012)

3. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 594–609. Springer, Heidelberg
(2013)

4. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg (2014)

Software Verification with Validation of Results 347

5. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

6. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016)

7. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchang-
ing verification results between verifiers. In: FSE, pp. 326–337. ACM (2016)

8. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness vali-
dation and stepwise testification across software verifiers. In: FSE, pp. 721–733.
ACM (2015)

9. Beyer, D., Dangl, M., Wendler, P.: Boosting k -induction with continuously-refined
invariants. In: Kröning, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 622–640. Springer, Cham (2015)

10. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178.
Springer, Cham (2015)

11. Cassez, F., Sloane, T., Roberts, M., Pigram, M., Aledo, P.G.D., Suvanpong, P.:
Skink 2.0: Static analysis of LLVM intermediate representation (competition
contribution). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS,
vol. 10206, pp. 380–384. Springer, Heidelberg (2017)

12. Chalupa, M., Vitovská, M., Jonáš, M., Slaby, J., Strejček, J.: Symbiotic 4: Beyond
reachability (competition contribution). In: Legay, A., Margaria, T. (eds.) TACAS
2017, Part II. LNCS, vol. 10206, pp. 385–389. Springer, Heidelberg (2017)

13. Chimdyalwar, B., Darke, P., Chauhan, A., Shah, P., Kumar, S., Venkatesh, R.:
VeriAbs: Verification by abstraction (competition contribution). In: Legay, A.,
Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp. 404–408. Springer,
Heidelberg (2017)

14. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive pro-
grams and floating-point arithmetic. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 423–425. Springer, Heidelberg (2015)

15. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT 19(1), 97–114 (2017)

16. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination com-
petition (termCOMP 2015). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015.
LNCS (LNAI), vol. 9195, pp. 105–108. Springer, Cham (2015)

17. Greitschus, M., Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schilling, C.,
Schüssele, F., Podelski, A.: Ultimate Taipan: Trace abstraction and abstract
interpretation (competition contribution). In: Legay, A., Margaria, T. (eds.)
TACAS 2017, Part II. LNCS, vol. 10206, pp. 399–403. Springer, Heidelberg (2017)

18. Heizmann, M., Chen, Y.-W., Dietsch, D., Greitschus, M., Musa, B., Nutz, A.,
Schätzle, C., Schilling, C., Schüssele, F., Podelski, A.: Ultimate Automizer
with an on-demand construction of Floyd-Hoare automata (competition contribu-
tion). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206,
pp. 394–398. Springer, Heidelberg (2017)

19. Hensel, J., Emrich, F., Frohn, F., Stroeder, T., Giesl, J.: AProVE: Proving and
disproving termination of memory-manipulating C programs (competition contri-
bution). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206,
pp. 350–354. Springer, Heidelberg (2017)

348 D. Beyer

20. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-
box challenge 2012: Analysis of event-condition-action systems. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 608–614. Springer, Heidelberg
(2012)

21. Hruska, M., Holik, L., Vojnar, T., Lengal, O., Rogalewicz, A., Simacek, J.:
Forester: From heap shapes to automata predicates (competition contribution).
In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206,
pp. 365–369. Springer, Heidelberg (2017)

22. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012: A program verification
competition. STTT 17(6), 647–657 (2015)

23. Inverso, O., Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A
context-bounded model checking tool for multi-threaded C programs. In: ASE,
pp. 807–812. IEEE (2015)

24. Jonáš, M., Mrázek, J., Štill, V., Barnat, J., Lauko, H.: Optimizing and caching SMT
queries in SymDIVINE (competition contribution). In: Legay, A., Margaria, T.
(eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp. 390–393. Springer, Heidelberg
(2017)

25. Kotoun, M., Peringer, P., Šoková, V., Vojnar, T.: Optimized PredatorHP and
the SV-COMP heap and memory-safety benchmark (competition contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 942–945.
Springer, Heidelberg (2016)

26. Kröning, D., Tautschnig, M.: CBMC: C bounded model checker (competition con-
tribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413,
pp. 389–391. Springer, Heidelberg (2014)

27. Le, T.C., Ta, Q.-T., Chin, W.-N.: HipTNT+: A termination and non-termination
analyzer by second-order abduction (competition contribution). In: Legay, A.,
Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206, pp. 370–374.
Springer, Heidelberg (2017)

28. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22 (com-
petition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 405–407. Springer, Heidelberg (2014)

29. Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy sequentialization
for the safety verification of unbounded concurrent programs. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 174–191. Springer,
Cham (2016)

30. Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq 2.0:
Combining lazy sequentialization with abstract interpretation (competition contri-
bution). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS, vol. 10206,
pp. 375–379. Springer, Heidelberg (2017)

31. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate Kojak with
memory-safety checks (competition contribution). In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 458–460. Springer, Heidelberg (2015)

32. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from ver-
ifier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Cham (2014)

33. Rocha, W., Rocha, H.O., Ismail, H., Cordeiro, L., Fischer, B.: DepthK: A
k-induction verifier based on invariant inference for C programs (competition
contribution). In: Legay, A., Margaria, T. (eds.) TACAS 2017, Part II. LNCS,
vol. 10206, pp. 360–364. Springer, Heidelberg (2017)

Software Verification with Validation of Results 349

34. Schrammel, P., Kröning, D.: 2LS for program analysis (competition contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 905–907.
Springer, Heidelberg (2016)

35. Shved, P., Mandrykin, M., Mutilin, V.: Predicate analysis with Blast 2.7 (com-
petition contribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 525–527. Springer, Heidelberg (2012)

36. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.:
MU-CSeq 0.4: Individual memory location unwindings (competition contribution).
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 938–941.
Springer, Heidelberg (2016)

37. Zheng, M., Edenhofner, J.G., Luo, Z., Gerrard, M.J., Rogers, M.S., Dwyer, M.B.,
Siegel, S.F.: CIVL: Applying a general concurrency verification framework to C/P
threads programs (competition contribution). In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 908–911. Springer, Heidelberg (2016)

AProVE: Proving and Disproving Termination
of Memory-Manipulating C Programs

(Competition Contribution)

Jera Hensel, Frank Emrich, Florian Frohn, Thomas Ströder,
and Jürgen Giesl(B)

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany
{hensel,florian.frohn,stroeder,giesl}@informatik.rwth-aachen.de,

frank.emrich@rwth-aachen.de

Abstract. AProVE is a system for automatic termination and complex-
ity analysis of C, Java, Haskell, Prolog, and several forms of rewrite sys-
tems. The new contributions in this version of AProVE are its capabili-
ties to prove non-termination of C programs and to handle recursive C
programs, even if these programs use pointer arithmetic combined with
direct memory accesses. Moreover, in addition to mathematical integers,
AProVE can now also handle fixed-width bitvector integers.

1 Verification Approach and Software Architecture

The focus of AProVE’s analysis for C programs lies on the connection between
memory addresses and their contents. To this end, AProVE employs symbolic exe-
cution and abstraction to obtain a finite symbolic execution graph from a C pro-
gram. This graph over-approximates all possible program executions and models
memory addresses and contents explicitly. However, all reasoning required to
construct this graph is reduced to first-order SMT solving on integers. During
the construction of the graph, AProVE proves that the original program does
not expose undefined behavior. For proving termination, the strongly connected
components (SCCs) of the graph are transformed to integer transition systems
(ITSs). Standard techniques can be used to analyze termination of these ITSs
and in case of success, this implies termination of the original program. For more
information on AProVE’s approach to prove termination of C programs, we refer
to [15]. Moreover, AProVE’s modular architecture allows to use the same back-
end to prove termination for several programming languages (cf. the figure on
the next page). An overview on the use of AProVE for different languages is
found in [10].

The approach of [15] is powerful for termination of C, but we need sev-
eral adaptions for non-termination, as both the symbolic execution graph and
the resulting ITSs are over-approximations. So in general, non-termination
of an ITS does not imply non-termination of the original program. How-
ever, there are many program instructions that are modeled precisely

Supported by DFG grant GI 274/6-1.
J. Hensel—Jury member.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 350–354, 2017.
DOI: 10.1007/978-3-662-54580-5 21

AProVE: Proving and Disproving Termination 351

Java

C

Haskell

Prolog

Symbolic
Execution
Graph

ITS

Termination

Complexity

Non-Termination

Safety
︸ ︷︷ ︸

Front-End

︸ ︷︷ ︸
Back-End

in the graph and in the
resulting ITSs. Therefore, to
prove non-termination of the
program, it suffices to find
a non-terminating lasso of
the graph that does not
contain any proper over-
approximation. Here, a lasso
is an SCC together with a path from the root of the graph to the SCC. AProVE’s
back-end does not consider that evaluation of ITSs may only begin with desig-
nated “start terms” (in order to exclude spurious symbolic execution paths).
Thus, to prove non-termination of the resulting ITS, we use the tool T2 [4]
which takes such start terms into account. Moreover, we heuristically add con-
ditions to the ITS rules which restrict the possible values of the variables (i.e.,
they yield an under-approximation of the ITS). Then, non-termination of the
under-approximated ITS implies non-termination of the program.

In addition, we implemented an alternative approach for non-termination
which uses our over-approximation of the program to detect candidates for non-
terminating executions. Afterwards, one still has to prove that the candidate
corresponds to an actual execution of the program. To this end, we build SMT
formulas for the cycles in the symbolic execution graph. They encode that those
program variables and memory contents which influence the control flow are not
changed when traversing the cycle. A model M1 of such a formula ϕ1 corresponds
to actual values where a loop in the program is not left. Then, this model needs
to be traced back to the initial state of the graph. For this, the path from the
initial state to the cycle is transformed into an SMT formula ϕ2, where the values
in the cycle are chosen according to the model M1. A model of ϕ2 yields concrete
input values for the initial state that lead to a non-terminating execution. This
approach is based on a previous technique in AProVE for proving non-termination
of Java programs [3]. Since both our approaches to prove non-termination are
orthogonal in power, these approaches are run in parallel in AProVE.

We also extended our graph construction of [15] to support recursive pro-
grams. To this end, we adapted our techniques developed for recursive Java
programs [2] to handle explicit (de)allocation of memory and pointer arithmetic.
(Compared to [2], a particular challenge is to infer and exploit information about
memory that is not reachable from program variables.) The nodes of the sym-
bolic execution graph are abstract states, which represent sets of concrete pro-
gram states.

recursive call of f
B

first instruct. of f,
stack frames below

C
intersection
of C and R

I

first instruct. of fDfirst instruct. of f
A

return instr. of f
R

callabstraction

generalization

intersection
To

prove ter-
mination
of a func-
tion f, we start with a state A whose program position is at f’s initial instruction.
If A evaluates to a state B where f is called recursively, this yields a next state
C where a new stack frame at f’s initial instruction is added on top of the

352 J. Hensel et al.

stack of B (we refer to C as a “call state”). To ensure termination of the graph
construction, we perform call abstraction, which leads to a state D that results
from C by removing all lower stack frames except the top one. Our previous
state A is a generalization of D, i.e., all concrete states represented by D are
also represented by A. Thus, we do not need further symbolic execution for the
less general state D. However, whenever the initial state A evaluates to a return
state R where the function f terminates, we have to take into account that the
call of f in state C might lead to such a return state. Thus, for every pair of
a call state C and a return state R of f, we construct an intersection state I
which represents those states that result from C after completely executing the
call of f in its topmost stack frame. With this extension, the symbolic execution
graph construction of [15] can now also deal with recursion.

Finally, while up to now we assumed the program variables to range over
mathematical integers Z, we now developed an extension which also allows to
handle fixed-width bitvector integers, cf. [11]. So our technique for termination
analysis of C programs now covers both byte-accurate pointer arithmetic and bit-
precise modeling of integers. To this end, we express relations between bitvectors
by corresponding relations on Z. In this way, we can use standard SMT solving
over Z for all steps needed to construct the symbolic execution graph. Moreover,
this allows us to obtain ITSs over Z from these graphs, and to use standard
approaches for termination analysis of these ITSs.

2 Strengths and Weaknesses

Our approach is particularly powerful when the control flow depends on rela-
tions between addresses and memory contents. In addition, AProVE also proves
absence of undefined behavior while many other termination analyzers just
assume memory safety when analyzing C programs. AProVE’s participation at
former editions of SV-COMP and at the annual Termination Competition1

shows the applicability of our approach to termination analysis of real-world
programming languages: AProVE won most categories related to termination of
C, Java, Haskell, Prolog, and to termination or runtime complexity of rewriting.

The downside of our approach is that it often takes long to construct symbolic
execution graphs and that AProVE cannot give any meaningful answer before
this construction is finished. Thus, AProVE’s runtime is often higher than that of
other tools. Moreover, our approach is currently limited to programs operating on
integers and pointers (including arrays) but without struct types. For struct
types, a main challenge for future work is to extend our approach to handle
recursive data types in combination with explicit low-level pointer arithmetic.

3 Setup and Configuration

Since the setup of AProVE has not changed much during the last years, this
section is mainly a recapitulation of the corresponding section in [14]. AProVE is
1 http://www.termination-portal.org/wiki/Termination Competition.

http://www.termination-portal.org/wiki/Termination_Competition

AProVE: Proving and Disproving Termination 353

developed in the “Programming Languages and Verification” group headed by
Jürgen Giesl at RWTH Aachen University. On the website [1], AProVE can be
obtained as a command-line tool or as a plug-in for the popular Eclipse software
development environment [8]. In this way, AProVE can already be applied during
program construction. Moreover, AProVE can be accessed directly via a web
interface as well. The website [1] also contains a list of external tools used by
AProVE and a list of present and past contributors.

The particular version for analyzing C programs according to the SV-COMP
format can be downloaded from the following URL. AProVE only participates in
the category “Termination”. Thus, in this version of AProVE, we disabled some
checks for memory safety, since it was agreed that only memory safe programs
will be included in the termination category of SV-COMP.

http://aprove.informatik.rwth-aachen.de/eval/Pointer/AProVE2017.zip

All files from this archive must be extracted into one folder. AProVE is imple-
mented in Java and needs a Java 8 Runtime Environment. To avoid handling the
intricacies of C, we analyze programs in the intermediate representation of the
LLVM compilation framework [12] and AProVE requires the Clang compiler [5]
(version ≥ 3.5) to translate C to LLVM. To solve the search problems in the
back-end, AProVE uses T2 and it applies the satisfiability checkers Z3 [6], Yices
[7], and MiniSAT [9] in parallel (our archive contains all these tools). As a depen-
dency of T2, Mono [13] (version ≥ 4.0) needs to be installed. Extending the path
environment is necessary so that AProVE can find these programs. AProVE can
be invoked using the wrapper script aprove.py in the BenchExec tool.

References

1. AProVE. http://aprove.informatik.rwth-aachen.de/
2. Brockschmidt, M., Otto, C., Giesl, J.: Modular termination proofs of recursive

Java Bytecode programs by term rewriting. In: Schmidt-Schauß, M. (ed.) RTA 2011.
LIPIcs, vol. 10, pp. 155–170. Dagstuhl Publishing (2011). doi:10.4230/LIPIcs.RTA.
2011.155

3. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for Java Bytecode. In: Beckert, B., Dami-
ani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31762-0 9

4. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 387–393. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 22

5. Clang. http://clang.llvm.org
6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

7. Dutertre, B., de Moura, L.: The Yices SMT solver, 2006. Tool paper at http://
yices.csl.sri.com/tool-paper.pdf

8. Eclipse. http://www.eclipse.org/

http://aprove.informatik.rwth-aachen.de/eval/Pointer/AProVE2017.zip
http://aprove.informatik.rwth-aachen.de/
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.155
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.155
http://dx.doi.org/10.1007/978-3-642-31762-0_9
http://dx.doi.org/10.1007/978-3-662-49674-9_22
http://clang.llvm.org
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf
http://www.eclipse.org/

354 J. Hensel et al.

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24605-3 37

10. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C.,
Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann,
R.: Analyzing program termination and complexity automatically with AProVE.
J. Autom. Reason. 58(1), 3–31 (2017)

11. Hensel, J., Giesl, J., Frohn, F., Ströder, T.: Proving termination of programs with
bitvector arithmetic by symbolic execution. In: De Nicola, R., Kühn, E. (eds.)
SEFM 2016. LNCS, vol. 9763, pp. 234–252. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-41591-8 16

12. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program analy-
sis and transformation. In: CGO 2004, pp. 55–88. IEEE (2004). doi:10.1109/CGO.
2004.1281665

13. Mono. http://www.mono-project.com/
14. Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: AProVE: termination

and memory safety of C programs (competition contribution). In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 417–419. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46681-0 32

15. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-
Kamp, P., Aschermann, C.: Automatically proving termination and memory safety
for programs with pointer arithmetic. J. Autom. Reason. 58(1), 33–65 (2017)

http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-319-41591-8_16
http://dx.doi.org/10.1007/978-3-319-41591-8_16
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO.2004.1281665
http://www.mono-project.com/
http://dx.doi.org/10.1007/978-3-662-46681-0_32

CPA-BAM-BnB: Block-Abstraction
Memoization and Region-Based Memory Models

for Predicate Abstractions

(Competition Contribution)

Pavel Andrianov1(B), Karlheinz Friedberger2, Mikhail Mandrykin1,
Vadim Mutilin1, and Anton Volkov1

1 Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

andrianov@ispras.ru
2 University of Passau, Passau, Germany

Abstract. Our submission to SV-COMP’17 is based on the software
verification framework CPAchecker. Combined with value analysis and
predicate analysis we use the concept of block-abstraction memoiza-
tion with optimization and several fixes relative to the version of SV-
COMP’16. A novelty of our approach is usage of BnB memory model
for predicate analysis, which efficiently divides the accessed memory into
memory regions and thus leads to smaller formulas.

1 Software Architecture

The framework CPAchecker can be used for software verification. Following
the concept of Configurable Program Analysis (CPA) [1], each abstract
domain is implemented in its own CPA, e.g., common tasks like tracking the
program location or the call stack are implemented in their own CPAs. The
CPAs in the framework can be combined to build an efficient and more precise
approach like value analysis or predicate analysis. A configurable algorithm like
CEGAR uses the CPAs to verify reachability and memory-safety properties.

CPAchecker is a Java program that uses the Eclipse CDT1 to parse C source
code, and the JavaSMT library2 [2] to query SMT solvers like SMTInterpol3, for
deciding the satisfiability of formulas and generating interpolants.

2 Verification Approach

Our configuration uses two orthogonal approaches, block-abstraction memoiza-
tion (BAM) and BnB memory model, to speedup the analysis. These approaches
are explained in the following.

The research was supported by RFBR grant 15-01-03934.
1 https://eclipse.org/cdt.
2 https://github.com/sosy-lab/java-smt.
3 https://ultimate.informatik.uni-freiburg.de/smtinterpol.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 355–359, 2017.
DOI: 10.1007/978-3-662-54580-5 22

https://eclipse.org/cdt
https://github.com/sosy-lab/java-smt
https://ultimate.informatik.uni-freiburg.de/smtinterpol

356 P. Andrianov et al.

2.1 Block-Abstraction Memoization with Value Analysis
and Predicate Analysis

BAM [3,4] implements modular verification by dividing the program into blocks
and analyzing them separately. The block size matches function calls, i.e., a
block starts at a function entry and ends at the corresponding function exit.
The analysis uses a cache to reuse block abstractions, such that whenever a
block that has been already analyzed is visited again, the stored result from the
cache is applied. BAM uses a nested analysis to track variables and assignments.
In our configuration BAM executes value analysis and predicate analysis in a
parallel manner, because this was found to be a very effective approach for find-
ing bugs and verifying programs with BAM. Figure 1 shows the control flow of
our approach. After finding a counterexample path, two precise counterexam-
ple checks are applied, one for each analysis. For a spurious path we apply a
refinement, for a feasible path we report a violation witness.

Reachability Analysis with BAM,
Value Analysis, and Predicate Analysis

Value Analysis
Counterexample Check

Value Analysis
Refinement

Predicate Analysis
Counterexample Check

Predicate Analysis
Refinement

FALSE

TRUE
valid

counterexample

feasible

spurious

feasiblespurious

Fig. 1. Control flow for BAM with value analysis and predicate analysis

2.2 Modeling Memory with Memory Regions

BnB is a memory model based on ideas of Bornat and Burstall [5,6]. The model
is implemented into the predicate analysis, which uses uninterpreted functions
for mapping memory locations to memory values. An uninterpreted function f is
a mathematical function, i.e. it satisfies the axiom ∀a.∀b.(a = b ⇒ f(a) = f(b)).

In a program a memory location is represented by an lvalue expression,
e.g., a pointer dereference ∗p. Assignments to lvalues change the memory state
and are modeled by introducing a new uninterpreted function having the new
memory value for the changed memory location and the same memory values
for the unchanged ones. For example, if we have an assignment for a pointer
dereference ∗p = expr, we model it by introducing a new function fnew with
fnew(p) = formula(expr). At the same time we should add retention conditions
stating equality of memory values for the unchanged memory locations of this
assignment. As far as we may not know the memory location for an lvalue expres-
sion during analysis, the retention conditions C are represented as a conjunction
of disjunctions for each memory location a:

C :=
∧

a∈{A1,...,AN}
(p = a ∨ fnew(a) = fold(a)) ,

CPA-BAM-BnB: Block-Abstraction Memoization 357

where p is an lvalue expression, A1, . . . , AN are memory locations, Ai �= Aj for
i �= j, and fold and fnew are uninterpreted functions for old and new memory
states. The complexity of C highly depends on the number of memory locations.

To reduce the formula complexity we introduce memory regions representing
disjoint sets of memory locations, i.e., a pointer associated with one memory
region never references a memory location in another region. For each mem-
ory region R with R ⊆ {A1, . . . , AN} we introduce a separate uninterpreted
function fR. For each lvalue expression we associate a memory region R, such
that an assignment to it changes only the memory locations from the associated
region. Hence in retention conditions C ′ we consider only addresses aR from a
corresponding region R:

C ′ :=
∧

aR∈R

(
p = aR ∨ fR

new(aR) = fR
old(a

R)
)
.

The retention conditions C ′ are less complex than C, because only a subset
R of memory locations is used to construct the formula instead of all possible
ones.

The previous implementation of the memory model [7] used type regions with
an assumption that every memory location is always accessed with the same type.
For this year we implemented BnB regions, which divide structure types into
separate memory regions by field names. For each structure field we introduce
a region defined by its name and structure type if we never take the memory
address of that field. In that case we assume that the field is always accessed
using field access expressions. Otherwise, if a memory address was taken, then
somewhere in a program we may access this field with a pointer to a field type,
thus we place such fields to a common memory region defined by the field type.

3 Strengths and Weaknesses

The contributed configuration is optimized for large programs where we need to
ignore many irrelevant details. BAM is effective for the programs consisting of
many functions, so that we can reuse block abstractions and have little overhead
of BAM itself.

The BnB memory model benefits from separation of memory into mem-
ory regions for different fields. We have made experiments on 2795 tasks from
the category DeviceDriversLinux64 and the ratio number of not addressed
fields/number of fields was 77%. According to the BnB memory model the major-
ity of fields can be placed into separate regions. Thus the number of disjunctions
in the resulting formulas becomes smaller. We have compared the results to the
tool without BnB memory model. The CPU time was almost the same. With
BnB memory model it proves 6 tasks more, but finds 5 less false, thus gets a
little more points. In practice the BnB memory model may work slower if the
program contains pointers for which memory was not allocated with standard
memory allocation functions. In this case the analysis may prove more paths to
be unreachable, thus requiring more refinements.

358 P. Andrianov et al.

As far as BnB separates different fields into disjoint regions it knows that an
assignment to one field does not change the other memory regions even if the
pointer does not point to properly allocated memory.

Consider the following example:

p = not_malloc();

p->f = a; // write access

q->g = b; p->h = c; // updates of other fields

if (p->f != a) __VERIFIER_error();

The assignments to q->g and p->h do not change p->f and we can be sure that it
still contains value a.

4 Setup and Configuration

We submit CPAchecker in version 1.6.1-svcomp17-bam-bnb build from revision
ldv-bam:23987 for participation in the categories DeviceDriversLinux64 and Falsi-
fication. The tool requires a Java 8 runtime environment and is available at: http://lin
uxtesting.org/downloads/CPAchecker-1.6.1-svcomp17-bam-bnb-unix.tar.bz2

CPAchecker has to be executed with the following command line:

scripts/cpa.sh -sv-comp17-bam-bnb -heap 10000m -spec prop.prp program.i

5 Project and Contributors

The CPAchecker project is open-source and developed by an international
research group from Ludwig-Maximilian University of Munich, University of Pas-
sau, and Institute for System Programming of the Russian Academy of Sciences.
We thank all contributors for their work. More information about the project
(including a list of bugs in the Linux kernel found by LDV4 with CPAchecker)
can be accessed at https://cpachecker.sosy-lab.org.

References

1. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73368-3 51

2. Karpenkov, E.G., Friedberger, K., Beyer, D.: JavaSMT: a unified interface for SMT
solvers in java. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp.
139–148. Springer, Heidelberg (2016). doi:10.1007/978-3-319-48869-1 11

3. Wonisch, D., Wehrheim, H.: Predicate analysis with block-abstraction memoiza-
tion. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 332–347.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34281-3 24

4 http://linuxtesting.org/ldv.

http://linuxtesting.org/downloads/CPAchecker-1.6.1-svcomp17-bam-bnb-unix.tar.bz2
http://linuxtesting.org/downloads/CPAchecker-1.6.1-svcomp17-bam-bnb-unix.tar.bz2
https://cpachecker.sosy-lab.org
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-319-48869-1_11
http://dx.doi.org/10.1007/978-3-642-34281-3_24
http://linuxtesting.org/ldv

CPA-BAM-BnB: Block-Abstraction Memoization 359

4. Friedberger, K.: CPA-BAM: block-abstraction memoization with value analysis and
predicate analysis. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 912–915. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 58

5. Bornat, R.: Proving pointer programs in Hoare logic. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000).
doi:10.1007/10722010 8

6. Burstall, R.M.: Some techniques for proving correctness of programs which alter
data structures. Mach. Intell. 7, 23–50 (1972)

7. Löwe, S., Mandrykin, M., Wendler, P.: CPAchecker with sequential combination
of explicit-value analyses and predicate analyses. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 392–394. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54862-8 27

http://dx.doi.org/10.1007/978-3-662-49674-9_58
http://dx.doi.org/10.1007/10722010_8
http://dx.doi.org/10.1007/978-3-642-54862-8_27

DepthK: A k-Induction Verifier
Based on Invariant Inference for C Programs

(Competition Contribution)

Williame Rocha1, Herbert Rocha2(B), Hussama Ismail1, Lucas Cordeiro1,3,
and Bernd Fischer4

1 Electronic and Information Research Center,
Federal University of Amazonas, Manaus, Brazil

2 Department of Computer Science, Federal University of Roraima, Boa Vista, Brazil
herberthb12@gmail.com

3 Department of Computer Science, University of Oxford, Oxford, UK
4 Division of Computer Science,

University of Stellenbosch, Stellenbosch, South Africa

Abstract. DepthK is a software verification tool that employs a proof
by induction algorithm that combines k -induction with invariant infer-
ence. In order to efficiently and effectively verify and falsify safety prop-
erties in C programs, DepthK infers program invariants using polyhedral
constraints. Experimental results show that our approach can handle a
wide variety of safety properties in several intricate verification tasks.

1 Overview

DepthK is a software verification tool that employs bounded model check-
ing (BMC) and k -induction based on program invariants, which are automati-
cally generated using polyhedral constraints. DepthK uses ESBMC, a context-
bounded symbolic model checker that verifies single- and multi-threaded C pro-
grams [1,2], as its main verification engine. More specifically, it uses ESBMC
either to find property violations up to a given bound k or to prove correctness by
using the k -induction schema [3–5]. However, in contrast to the “plain” ESBMC,
DepthK first infers program invariants using polyhedral constraints. It can use
the PAGAI [8] (employed in the SVCOMP’17) and PIPS tools [9,10] to infer
these invariants. DepthK also integrates the witness checkers CPAchecker [6]
(employed in the SVCOMP’17) and Ultimate Automizer [7] for checking verifi-
cation results.

DepthK pre-processes the C program to classify (bounded and unbounded)
loops by tracking variables in the loop header. Based on that categorization,
DepthK verifies the C program using either plain BMC or k -induction, together
with invariant inference and witness checking. The k -induction uses an iterative
deepening approach and checks, for each step k up to a maximum value, three
different cases, called base case, forward condition, and inductive step, respec-
tively. Intuitively, in the base case, DepthK searches for a counterexample of
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 360–364, 2017.
DOI: 10.1007/978-3-662-54580-5 23

DepthK: A k -Induction Verifier Based on Invariant Inference for C Programs 361

the safety property φ with up to k iterations of the loop. The forward condition
checks whether loops have been fully unrolled and whether φ holds in all states
reachable within k iterations. The inductive step verifies that if φ is valid for k
iterations, then φ will also be valid for the next iteration. In order to improve
the effectiveness of the k -induction algorithm, DepthK tries to infer invariants
that prune the state space and strengthen the induction hypothesis.

2 Verification Approach

DepthK extends ESBMC to falsify or prove correctness of a given (safety) prop-
erty for any depth without manual annotation of loops with invariants. In our
preliminary experiments, the integration of the inferred program invariants,
in the form of polyhedral constraints, with the k -induction algorithm allows
DepthK to solve more verification tasks than plain ESBMC.

Figure 1 shows an overview of the DepthK tool, with the k -induction algo-
rithm, invariant generation, and witness validation components. The tool’s
inputs are a C program P (without invariants) and a safety property φ. It returns
TRUE (if there is no path that violates the safety property), FALSE (if there
exists a path that violates the safety property), or UNKNOWN otherwise.

Fig. 1. Flow of the proposed method.

DepthK infers program invariants using the PAGAI and PIPS tools, which
are both inter-procedural source-to-source transformation tools for C programs
and rely on a polyhedral abstraction of the program behavior. PAGAI applies
source code analysis to infer invariants for each control-flow point of a C program
using the LLVM infrastructure (see http://llvm.org), focusing on path distinc-
tion inside the control-flow graph, while avoiding a systematic exponential path
enumeration [8]. PIPS performs a two-step analysis [9]. (1) Each program instruc-
tion is associated to an affine transformer, representing its underlying transfer
function. This is a bottom-up procedure, starting from elementary instructions,
then working on compound statements and up to function definitions. (2) Poly-
hedral invariants are propagated along with instructions, using the previously
computed transformers.

http://llvm.org

362 W. Rocha et al.

In DepthK, PAGAI and PIPS receive as input the program to be analyzed
and generate as output C code that contains invariants written as comments
around instructions. These invariants are then translated into assume state-
ments, to constrain all possible values of those variables related to the invariants.
DepthK needs to perform this step since PAGAI and PIPS generate invariants
represented as mathematical expressions, which are not accepted by the syntax
of C programs.

DepthK also checks the results provided by the ESBMC k -induction algo-
rithm. In particular, DepthK checks the results related to the forward condition
and inductive step using the witness validators. This re-checking procedure is
needed due to the inclusion of invariants, which over-approximates the analyzed
program; otherwise, the invariants could result in incorrect exploration of the
states sets.

Additionally, DepthK also checks the result provided by the base case of
the ESBMC k -induction algorithm, using CPAchecker (as default) or Ultimate
Automizer as witness checkers via a graphml file. DepthK executes this step due
to limitations in the memory model adopted by ESBMC [11]. We observed that
the use of witness checkers has significantly improved DepthK’s results, given
that we are able to decrease the number of wrong proofs and false alarms by an
order of magnitude.

3 Architecture, Implementation and Availability

Architecture. DepthK is implemented as a source-to-source transformation
tool in Python (v2.7.1). It uses pycparser (v2.10) to parse a C program into
an AST, and then identifies and tracks variables for invariant translation and
loop classification. Ctags (v5.8, http://sourceforge.net/projects/ctags) identifies
C language objects found in C source and header files. Clang (v3.5.0, http://
clang.llvm.org) compiles a C file into LLVM bitcode that PAGAI takes as input.
PAGAI (employed for SVCOMP’17, http://pagai.forge.imag.fr) generates the
program invariants. It uses Uncrustify (v0.60, http://uncrustify.sourceforge.net)
as a source code beautifier. ESBMC (v3.1) is employed as k -induction veri-
fier, and CPAchecker (v1.3.10) as witness validator. In the current submission,
DepthK uses Z3 (v4.0, https://z3.codeplex.com) as SMT solver in ESBMC’s
k -induction schema. DepthK participates in all categories of SVCOMP’17.

Availability and Installation. DepthK is freely available under the GPL
license. The competition candidate DepthK v3 (for a 64-bit Linux environment)
can be downloaded from https://github.com/hbgit/depthk/archive/depthk v3.
tar.gz. It must be installed as a Python script; it also requires the installation
of pycparser, Uncrustify, Ctags, Clang, and open-jdk-7-jre (http://openjdk.java.
net/install/). The verifiers ESBMC and CPAchecker, and the invariant generator
PAGAI are included with the DepthK distribution.

User Interface. DepthK is invoked via a command-line (as in the depthk.py
module for BenchExec) as follows: ./depthk-wrapper.sh -c propertyFile.prp

http://sourceforge.net/projects/ctags
http://clang.llvm.org
http://clang.llvm.org
http://pagai.forge.imag.fr
http://uncrustify.sourceforge.net
https://z3.codeplex.com
https://github.com/hbgit/depthk/archive/depthk_v3.tar.gz
https://github.com/hbgit/depthk/archive/depthk_v3.tar.gz
http://openjdk.java.net/install/
http://openjdk.java.net/install/

DepthK: A k -Induction Verifier Based on Invariant Inference for C Programs 363

file.i DepthK accepts the property file and the verification task and provides
as result: TRUE + Witness, FALSE + Witness, or UNKNOWN. For each error-
path or correctness witness, a file that contains the witness proof is generated in
the DepthK root-path graphml folder; this file contains the same verification task
name with the extension graphml.

4 Strengths and Weaknesses of the Approach

The strength of the tool lies in the combination of the proof by induction algo-
rithm with the program invariants inference to specify pre- and post-conditions,
and witness validation to check the verification results of the k -induction algo-
rithm. DepthK uses CPAchecker as a witness validator to confirm the verification
results, which leads to improvements in DepthK to avoid false alarms and wrong
proof. However, DepthK is in the initial development and there are still limi-
tations on the structure of the programs and the inference of strong program
invariants to prove properties. In particular, in the preliminary experiments with
SV-COMP benchmarks, we observed that PAGAI/PIPS tool could not generate
strong invariants for the k -induction algorithm, either due to a weak transformer
or due to invariants that are not convex. All incorrect answers produced by our
tool in the competition are due to bugs in its implementation.

Results. DepthK has proven to be a noticeable improvement over “plain”
ESBMC. In particular, it outperforms all ESBMC versions in the sub-categories
ReachSafety-BitVectors, ReachSafety-Heap, ReachSafety-Loops, and MemSafety-
Arrays. It also outperforms CPA-kInd, which implements a similar approach
to DepthK, in the sub-categories ReachSafety-Heap, ReachSafety-Recursive,
Overflows-BitVectors, as well as in the category FalsificationOverall. In total,
DepthK produced 1091 confirmed correct true results and 1056 confirmed cor-
rect false results, with a further 467 unconfirmed results. It also produced 20
incorrect true results and 32 incorrect false results, mostly due to limitations in
ESBMC’s memory model.

5 Software Project and Contributors

DepthK is an open-source project, mainly developed by members of the software
verification group from Federal University of Roraima and Federal University of
Amazonas. The script, source code, and self-contained binaries for 64-bit Linux
environments are available at https://github.com/hbgit/depthk/; versions for
other operating systems are available on request. The current development of
DepthK is funded by the Amazonas State Research Funding Agency (FAPEAM).

https://github.com/hbgit/depthk/

364 W. Rocha et al.

References

1. Cordeiro, L., Fischer, B.: Verifying multi-threaded software using SMT-based
context-bounded model checking. In: ICSE, pp. 331–340 (2011)

2. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. In: ASE, pp. 137–148 (2009)

3. Morse, J., Cordeiro, L., Nicole, D., Fischer, B.: Handling unbounded loops with
ESBMC 1.20. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 619–622. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 47

4. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT (to appear)

5. Rocha, H., Ismail, H., Cordeiro, L.C., Barreto, R.S.: Model checking embedded C
software using k-induction and invariants. In: SBESC, pp. 90–95 (2015)

6. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 16

7. Heizmann, M., Dietsch, D., Greitschus, M., Leike, J., Musa, B., Schätzle, C.,
Podelski, A.: Ultimate automizer with two-track proofs. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 950–953. Springer, Heidel-
berg (2016). doi:10.1007/978-3-662-49674-9 68

8. Henry, J., Monniaux, D., Moy, M.: PAGAI: a path sensitive static analyser. Elec-
tron. Notes Theor. Comput. Sci. 289, 15–25 (2012)

9. PIPS: Automatic parallelizer and code transformation framework (2013). http://
pips4u.org

10. Maisonneuve, V., Hermant, O., Irigoin, F.: Computing invariants with transform-
ers: experimental scalability and accuracy. In: NSAD, vol. 307, pp. 17–31 (2014)

11. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22 -
(competition contribution). In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 405–407. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 31

http://dx.doi.org/10.1007/978-3-642-36742-7_47
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-662-49674-9_68
http://pips4u.org
http://pips4u.org
http://dx.doi.org/10.1007/978-3-642-54862-8_31
http://dx.doi.org/10.1007/978-3-642-54862-8_31

FORESTER: From Heap Shapes to Automata
Predicates

(Competition Contribution)

Lukáš Hoĺık, Martin Hruška(B), Ondřej Lengál, Adam Rogalewicz,
Jǐŕı Šimáček, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence,
Brno, Czech Republic
ihruska@fit.vutbr.cz

Abstract. This paper describes the participation of Forester in
the SV-COMP 2017 competition on software verification. We briefly
present the verification procedure used by Forester, the architecture
of Forester, and changes in Forester done since the previous year
of SV-COMP, in particular the fully-automatically refinable abstraction
for hierarchical forest automata.

1 Verification Approach

Forester implements an automated shape analysis that uses forest automata
(FAs) to represent sets of reachable shapes of the heap of the analysed program.
In particular, heap configurations are viewed as (directed) graphs, decomposed
into tuples of trees, and sets of such decompositions are encoded by FAs that
themselves have the form of tuples of tree automata (TAs). The tree decomposi-
tion is based on detecting the so-called cut-points of the heap graphs, which are
nodes either pointed by a variable or having more than one incoming edge. The
tree decomposition is then obtained by cutting a heap graph at the cut-points
and redirecting each incoming edge of a cut-point to a new leaf node labelled by
a reference to the tree with the cut-point as the root.

In order to allow for representing data structures with an unbounded number
of cut-points, a notion of hierarchical FAs (HFAs) is introduced. An example of a
structure for whose representation plain FAs are insufficient and HFAs are needed
is the doubly-linked list (DLL). Indeed, each internal DLL node is a cut-point
since it is pointed to by its predecessor and successor nodes. An HFA can use
other HFAs, called nested HFAs or boxes, as symbols of its alphabet. Boxes can
represent (repeating) sub-graphs of heap graphs, possibly encapsulating (hiding)
an unbounded number of cut-points. A special folding operation is then used to
pack a part of an HFA into a box and add the box to the alphabet of the resulting
HFA. On the contrary, when an analysed program accesses a part of a heap folded
into a box, the box is unfolded by plugging its content back to the wrapping HFA.
A more detailed description of these operations can be found in [1,2].

M. Hruška —Jury member.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 365–369, 2017.
DOI: 10.1007/978-3-662-54580-5 24

366 L. Hoĺık et al.

The verification procedure implemented in Forester symbolically exe-
cutes the program in the abstract domain of HFAs. At loop points, HFAs are
abstracted, implementing the idea of abstract regular model checking [3]. The
abstraction is applied component-wise, i.e., to individual TAs, collapsing some
of their states, which over-approximates the set of reachable heap configura-
tions. The abstraction speeds up the reachability analysis and enables termina-
tion on infinite state spaces, but can also yield spurious counterexamples. To
recognize them, Forester was, in the previous SV-COMP [8], modified to run
backwards (not using any abstraction) along a suspected error trace. Together
with using predicate language abstraction of TAs—which collapses TA states
intersecting with the same predicate languages, and which can be refined by
adding more predicate languages—a counterexample-guided abstraction refine-
ment (CEGAR) [6] loop is obtained.

The backward run is performed over a trace consisting of micro-instructions
used by Forester. The trace leads from the beginning of the analysed pro-
gram to a line where the given specification was found broken. Forester then
precisely reverts all micro-instructions along the trace starting from its end. For
example, when a new state of an FA was created in the forward run, Forester
removes it in the backward run. The abstraction is reverted by intersecting FAs
from the forward and backward run. If the intersection is empty, Forester
reports a spurious counterexample, derives new predicates to refine the abstrac-
tion, and restarts the analysis. The new predicate languages are encoded by TAs
selected from the FA obtained in the backward run at the point where the empty
intersection with the forward run was detected. Otherwise, if the backward run
reaches the beginning of the trace, the counterexample is reported as real.

For SV-COMP 2017, we extended the backward run and predicate language
abstraction from plain FAs (done in [8]) to HFAs, which requires one to take into
account boxes. In particular, if the original algorithms were used, it may happen
that some subgraphs would be folded into a box in the forward run, while they
would not be folded into this box in the backward run, meaning that the general
structure of the FAs would be different. The intersection operation (which does
not consider the semantics of boxes) would then determine that languages of
the corresponding HFAs do not intersect. This would significantly decrease the
precision of the operation. One option how to address this issue and increase the
precision would be to modify the intersection operation to take into account the
semantics of boxes and make it try to unfold them on the fly. We take a different
approach, which enables us to successfully a larger class of programs.

Our way of dealing with the issue is to keep the HFAs obtained during the
backward run compatible with the HFAs in the forward run. The compatibil-
ity intuitively means that the two HFAs partition the same heaps in the same
way, in other words, if a heap is accepted by both HFAs, it is decomposed into
the same components and the same boxes in both HFAs. When compatibility
is enforced, we can (i) avoid inner inspection of boxes during the intersection
operation, (ii) enable precise reversion of micro-instructions, and, as a side-effect,
(iii) use a simple standard TA intersection operation performed component-wise

Forester: From Heap Shapes to Automata Predicates 367

on the HFAs. To maintain the HFAs in the backward compatible, we needed to
significantly alter instructions used therein (previously, no structural constraints
were imposed on the FAs; in order to deal with their different interconnection
structure, a more complex intersection operation was needed).

The operations that are the most challenging to revert in the backward run
are the following: folding (which is, in fact, performed together with abstraction
in a loop of the form fold, abstract, fold, abstract, and so on until a fixpoint is
reached), unfolding, and normalization. The normalization removes cut-points
that are no longer needed, glues together TAs that stop being separated by cut-
points, and orders component TAs in an FA in order to transforms the given
HFA into a so-called canonicity-respecting form needed for testing inclusion. The
reversion of folding then needs to guarantee that the sub-graphs in the folded box
will appear in the correct components after the operation (taking into account
that folding can be done multiple times during a single abstraction). On the other
hand, the reversion of unfolding needs to guarantee that the unfolded box will
be folded back into a box within the correct component. Lastly, the reversion of
normalization needs to cut and re-order components into correct places. A more
precise description of the described methods can be found in [7].

2 Tool Architecture

Forester is implemented in C++11 as a GCC plugin using the Code Listener
framework [4]. The representation of a program obtained through Code Listener
is translated into Forester’s own internal microcode, which is symbolically exe-
cuted. Forester uses the Vata library [5] for representation and manipulation
with nondeterministic TAs (NTAs). Vata contains an optimized implementa-
tion of efficient algorithms for dealing with TAs, including operations such as
state reduction of NTAs and testing their language inclusion, which is a cru-
cial operation in Forester for determining whether an execution branch has
reached a fixpoint.

3 Strengths and Weaknesses

One of the most important features of Forester is that it is sound (wrt the
intermediate code obtained from GCC, which may have already removed some
possible behaviours of the original code; e.g., GCC already fixes the order of
evaluation of a function’s parameters), i.e., if it answers TRUE, there is indeed
no bug in the program. Moreover, due to the recent improvements in Forester
regarding counterexample-based abstraction refinement [7], the number of false
positives (i.e., wrong answers FALSE) on the benchmark of SV-COMP 2017
is significantly reduced. Concretely, the new version gets no false positives,
which gives us approximately 40% more points than we would have obtained
with the version of Forester from SV-COMP 2016, in particular on examples
that contain DLLs and need to perform abstraction refinement. Forester can
also output UNKNOWN if it establishes that it cannot give a correct answer.

368 L. Hoĺık et al.

This happens when the tool exceeds the time given by the SV-COMP rules—e.g.,
when searching for a shape invariant not expressible using HFAs—or upon detec-
tion of an unsupported feature of C. Forester specialises almost exclusively
in pointer manipulations and inference of complex shape properties of pointer
structures. It does not implement advanced syntactic features such as function
pointers, heavily used in the LDV benchmark, but also more basic features such
as arrays, unions, recursion, arithmetic, or bit operations.

The formalism of HFAs allows Forester to represent in a quite precise way
the invariant of rather complex data structures, such as skip lists of 2 or 3 levels,
various flavours of nested lists, or trees with parent and root pointers. The used
representation is, moreover, quite compact, and kept small via simulation-based
reduction of NTAs.

4 Tool Setup, Configuration, and Witnesses

The distribution of Forester for SV-COMP 2017 is available from the
web page of Forester1 from the link highlighted as the SV-COMP 2017
binary version. The tool is provided in the form of a shared object
library libfa.so together with a Python wrapper sv comp run.py. The file
README-FORESTER-SVCOMP-2017 describes the dependencies of Forester and
parameters of the Python script.

The sv comp run.py script is run as follows:

sv comp run.py [--help] <source>
--properties <prp> --trace <trace>

where <trace> is the output file for a (violation/correctness) witness, <prp>
is the path to the property file, and <source> is the verified program. When
Forester is run within the BenchExec framework, most of the parameters are
set automatically by its BenchExec wrapper script. The only exception is the
parameter --trace, which must be defined manually in an option node of the
XML input file of BenchExec.

The format of a violation witness is an automaton, represented using
GraphML (an XML schema), that represents a buggy trace through the pro-
gram, while the format of a correctness witness is (again) a GraphML automa-
ton whose states correspond to loop points in the program, and are further
annotated (using an XML node with the key automaton) by a representation
of the set of FAs over-approximating the set of reachable program configura-
tions at the given state. Forester participates only in the MemSafety-Heap
and ReachSafety-Heap categories and opts out from the rest.

5 Software Project and Contributors

Forester has been under development at Brno University of Technology
since 2010. Forester and the Vata library are both licensed under GPLv3.
1 http://www.fit.vutbr.cz/research/groups/verifit/tools/forester.

http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

Forester: From Heap Shapes to Automata Predicates 369

The source code of Forester is available at https://github.com/martinhruska/

forester/. The authors of this paper are currently the only people involved in its
development.

Acknowledgement. Supported by the Czech Science Foundation (project 17-
12465S), the BUT FIT project FIT-S-17-4014, and the IT4IXS: IT4Innovations Excel-
lence in Science project (LQ1602). Martin Hruška is a holder of the Brno Ph.D. Talent
Scholarship, funded by the Brno City Municipality.

References

1. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. Formal Methods Syst. Des. 41(1), 83–106
(2012)

2. Hoĺık, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully automated
shape analysis based on forest automata. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 740–755. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 52

3. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree)
model checking. STTT 14(2), 167–191 (2012)

4. Dudka, K., Peringer, P., Vojnar, T.: An easy to use infrastructure for building static
analysis tools. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EURO-
CAST 2011. LNCS, vol. 6927, pp. 527–534. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27549-4 68

5. Lengál, O., Šimáček, J., Vojnar, T.: VATA: a library for efficient manipulation
of non-deterministic tree automata. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 79–94. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28756-5 7

6. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

7. Hoĺık, L., Hruška, M., Lengál, O., Rogalewicz, A., Vojnar, T.: Counterexample val-
idation and interpolation-based refinement for forest automata. In: Bouajjani, A.,
Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 288–309. Springer, Cham
(2017). doi:10.1007/978-3-319-52234-0 16

8. Hoĺık, L., Hruška, M., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.:
Run Forester, Run Backwards!. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 923–926. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 61

https://github.com/martinhruska/forester/
https://github.com/martinhruska/forester/
http://dx.doi.org/10.1007/978-3-642-39799-8_52
http://dx.doi.org/10.1007/978-3-642-39799-8_52
http://dx.doi.org/10.1007/978-3-642-27549-4_68
http://dx.doi.org/10.1007/978-3-642-27549-4_68
http://dx.doi.org/10.1007/978-3-642-28756-5_7
http://dx.doi.org/10.1007/978-3-642-28756-5_7
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-319-52234-0_16
http://dx.doi.org/10.1007/978-3-662-49674-9_61
http://dx.doi.org/10.1007/978-3-662-49674-9_61

HipTNT+: A Termination and Non-termination
Analyzer by Second-Order Abduction

(Competition Contribution)

Ton Chanh Le(B), Quang-Trung Ta, and Wei-Ngan Chin

School of Computing, National University of Singapore, Singapore, Singapore
{chanhle,taqt,chinwn}@comp.nus.edu.sg

Abstract. HipTNT+ is a modular termination and non-termination
analyzer for imperative programs. For each given method, the analyzer
first annotates it with an initial specification with second-order unknown
predicates and then incrementally derives richer known specifications
with case analysis. Subsequently, the final inference result indicates
either (conditional) termination, non-termination, or unknown. During
the proving process, new conditions for the case analysis are abductively
inferred from the failure of both termination and non-termination proof,
which aim to separate the terminating and non-terminating behaviors for
each method. This paper introduces the verification approach and the
structure of HipTNT+, and instructs how to set up and use the system.

1 Overview

HipTNT+ is an automated verification and inference system for the termina-
tion and non-termination properties of imperative programs [2,3]. The system is
built upon the HIP/SLEEK toolset [1], a separation logic-based platform for auto-
matically proving and inferring functional correctness of heap-manipulating pro-
grams. The development of HipTNT+ follows an incremental process, in which
a verifier with an appropriate specification logic for reasoning about both pro-
gram termination and non-termination is first developed, prior to augmenting it
with specification inference capability. In our approach, the outcomes of infer-
ence mechanism are represented by an enriched specification logic, that can be
optionally re-verified by the verifier constructed in the earlier phase. This devel-
opment methodology is helpful for debugging a new inference mechanism that
is being implemented. In contrast, the other analyzers simply represent their
outcomes in some internal forms, without automated re-scrutiny.

2 Verification Approach

HipTNT+ has been developed based on two technical innovations proposed
by Le et al., that are (i) a unified resource-based specification logic [2],

T.C. Le—Jury member.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 370–374, 2017.
DOI: 10.1007/978-3-662-54580-5 25

HipTNT+: A Termination and Non-termination Analyzer 371

and (ii) an abductive specification inference mechanism [3] for reasoning
about both program termination and non-termination at the same time. These
approaches analyze the program terminating and non-terminating behaviors on
a per-method basis, thus providing a modular, reusable and scalable proving
technique for these program properties.

2.1 Termination Verification via Resource Reasoning

To specify and verify the termination and non-termination of a program,
Le et al. [2] propose a unified specification logic with three temporal predi-
cates Term M , Loop, and MayLoop, denoting definite termination (with a lex-
icographic ing function M), definite non-termination and possible (unknown)
non-termination, respectively. The formal semantics of these predicates can be
uniformly defined using a resource capacity predicate LC(L, U) with a lower bound
L and an upper bound U on the execution length, as follows:

Term M � LC(0, f(M)) Loop � LC(∞, ∞) MayLoop � LC(0, ∞)

where f is an order-embedding from a finite list of non-negative expressions into
naturals.

Intuitively, a program terminates if its execution length has a finite upper
bound. On the other hand, a non-terminating program has an infinite lower
bound on the execution length. Verification conditions involving these tempo-
ral predicates can be discharged in terms of resource reasoning via a resource
consumption entailment �t. Given the current program state ρ with an execu-
tion resource θa and a code fragment that requires a resource θc to execute,
the entailment ρ ∧ θa �t θc � θr checks if the required resource θc can be met
(or subsumed) by the current resource θa. If succeeded, the entailment returns
the (largest) remaining execution resource, denoted by the residue θr, after θc is
consumed in θa.

2.2 From Verification to Inference

To infer the termination specification of each method in a program, Le et al. [3]
first enhance the proposed specification logic by a pair of second-order temporal
pre-predicate, for precondition, and post-predicate, for postcondition, to cap-
ture the unknown status of (non-)termination properties. They then extend the
resource entailment procedure to handle entailments with these unknown tem-
poral predicates, and employs a Hoare-style forward verification to collect a set
of relational assumptions on them.

From these relational assumptions, a comprehensive summary of both ter-
mination and non-termination behaviors of each program’s method is incre-
mentally constructed. Specifically, the pre-assumptions collected when proving
preconditions at method calls guide the overall inference process and can be
used to infer ing functions when proving termination. The post-assumptions col-
lected when proving postconditions contain information about the reachability or

372 T.C. Le et al.

unreachability of the method’s exits. Therefore, they can be used (i) to determine
base-case scenarios with obvious termination property, (ii) to prove inductive
unreachability for a definite non-termination, and (iii) to derive new conditions
for further case-split via an abductive inference from the failure proofs of defi-
nite termination and non-termination. Note that the ranking functions and the
abductive conditions can be inferred by the constraint-based synthesis technique
via Farkas’ lemma.

The derived summary of the method’s termination and non-termination char-
acteristics is represented in the high-level specification logic, so that it can be
reused in the inference of the remaining methods higher-up in the calling hier-
archy. This enables better modularity and reuse for the proving process.

3 Software Architecture

As illustrated in Fig. 1, HipTNT+ has been built on top of the HIP/SLEEK plat-
form, so that it can exploit the infrastructure of HIP/SLEEK, such as the front-
end components, the Hoare-style verification, and the SMT solver’s interface.
Note that the annotated specifications are optional; when they are not given,
the system automatically inserts a second-order specification for each method of
the input program to trigger the inference process.

For reasoning about termination and non-termination, the core of HipTNT+
is made up of two main components:

– A prover for the resource-based termination logic. This prover implements
the resource consumption entailment �t to discharge verification conditions
involving the temporal constraints. Moreover, it also generates a set of rela-
tional assumptions on the unknown temporal predicates as the input of the
termination inference system.

– An abductive inference system for termination and non-termination analysis.
This component implements the search procedure to simultaneously analyze
the termination and non-termination behaviors of a program from a given set
of relational assumptions, via case analysis with abductive inference.

Fig. 1. Structure of HipTNT+

HipTNT+: A Termination and Non-termination Analyzer 373

4 Strengths and Weaknesses

The incorporation of HipTNT+ in a verification toolset like HIP/SLEEK allows us
to gradually evolve our termination analyzer with new capabilities. For example,
HipTNT+ can analyze heap-based programs with ease because they are natively
supported by HIP/SLEEK via separation logic. However, it is also our main
weakness as we have to wait for the support from HIP/SLEEK to handle string-
manipulating programs or programs with function pointers in the SV-COMP
benchmarks.

5 Tool Setup and Configuration

Download and Installation. The competition submission of the HipTNT+
system is at version 2.0. A zip bundle containing a wrapper script and self-
contained binaries of HipTNT+ v2.0 can be freely downloaded from http://
loris-5.d2.comp.nus.edu.sg/hiptnt/plus/hiptnt svcomp17.zip. The bundle also
provides for your convenience executables of all needed third party provers, i.e.,
Omega Calculator1 and Z32 provers.

To run the system, the wrapper script hiptnt.sh can be invoked via a
command-line interface as follows: ./hiptnt.sh file.c. Note that the current work-
ing directory must be the one that contains this wrapper. The system outputs
the verification results, i.e., TRUE, FALSE + Witness, or UNKNOWN, to the con-
sole. A witness represents a counterexample to termination, indicating a feasible
path of method call locations to a definite non-termination condition with Loop.

Participation Statement. HipTNT+ participates in the Termination category.

6 Software Project and Contributors

HipTNT+ is maintained by Ton Chanh Le, a member of the Software Verification
research group, led by Wei-Ngan Chin, at the National University of Singapore.
HipTNT+ is freely available for academic and non-commercial use at http://
loris-5.d2.comp.nus.edu.sg/hiptnt/plus/. For third party provers, i.e., Omega
Calculator and Z3, their original licensing requirements apply. Our thanks go
to all contributors of the core verification system HIP/SLEEK. The full descrip-
tion of the system can be found at http://loris-5.d2.comp.nus.edu.sg/hip/, it is
also where all of its contributors are listed.

Acknowledgement. Ton Chanh and Wei-Ngan are partially supported by the MoE
Tier-2 grant MOE2013-T2-2-146.

1 http://www.cs.umd.edu/projects/omega/.
2 https://github.com/Z3Prover/z3.

http://loris-5.d2.comp.nus.edu.sg/hiptnt/plus/hiptnt_svcomp17.zip
http://loris-5.d2.comp.nus.edu.sg/hiptnt/plus/hiptnt_svcomp17.zip
http://loris-5.d2.comp.nus.edu.sg/hiptnt/plus/
http://loris-5.d2.comp.nus.edu.sg/hiptnt/plus/
http://loris-5.d2.comp.nus.edu.sg/hip/
http://www.cs.umd.edu/projects/omega/
https://github.com/Z3Prover/z3

374 T.C. Le et al.

References

1. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

2. Le, T.C., Gherghina, C., Hobor, A., Chin, W.-N.: A resource-based logic for termina-
tion and non-termination proofs. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS,
vol. 8829, pp. 267–283. Springer, Cham (2014). doi:10.1007/978-3-319-11737-9 18

3. Le, T.C., Qin, S., Chin, W.: Termination and non-termination specification infer-
ence. In: PLDI, pp. 489–498 (2015)

http://dx.doi.org/10.1007/978-3-319-11737-9_18

Lazy-CSeq 2.0: Combining Lazy
Sequentialization with Abstract Interpretation

(Competition Contribution)

Truc L. Nguyen1, Omar Inverso4, Bernd Fischer2, Salvatore La Torre3,
and Gennaro Parlato1(B)

1 Electronics and Computer Science, University of Southampton,
Southampton, UK

gennaro@ecs.soton.ac.uk
2 Division of Computer Science, Stellenbosch University, Stellenbosch, South Africa

3 Dipartimento di Informatica, Università degli Studi di Salerno, Fisciano, Italy
4 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. Lazy sequentialization has emerged as one of the most effec-
tive techniques to find bugs in concurrent programs. However, the size of
the shared global and thread-local state still poses a problem for further
scaling. We therefore use abstract interpretation to minimize the repre-
sentation of the concurrent program’s state variables. More specifically,
we run the Frama-C abstract interpretation tool over the sequentialized
program output by Lazy-CSeq to compute over-approximating intervals
for all (original) state variables and then exploit CBMC’s bitvector sup-
port to reduce the number of bits required to represent these in the
sequentialized program. We demonstrate that this leads to substantial
performance gains on complex instances.

1 Verification Approach

Overview. In recent editions of the software verification competition [1,5,9,10],
as well as in complex industrial case studies [11], sequentialization has proven
to be a very effective program verification approach expecially for bug-hunting
purposes. However, the size of the shared global and thread-local state still poses
a problem for further scaling. In an experiment [11], we manually reduced the
size of the state variables to the minimum required to find the bug (three bits in
the case of safestack), which lead to a 20x speed-up. This clearly indicates the
potential benefits of such a reduction.

Here, we automate this reduction and integrate abstract interpretation into
the lazy sequentialization described in [6], in order to minimize the representa-
tion of the concurrent program’s state variables, and to scale up sequentializa-
tion to more complex concurrent verification tasks. This integration of abstract
interpretation is the main novelty of Lazy-CSeq 2.0 over previous versions [5,8].

Partially supported by EPSRC EP/M008991/1, INDAM-GNCS 2016, and MIUR-
FARB 2014–2016 grants.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 375–379, 2017.
DOI: 10.1007/978-3-662-54580-5 26

376 T.L. Nguyen et al.

More specifically, we use abstract interpretation to over-approximate the
intervals of all variables of the sequentialized program P ′ corresponding to a
given a concurrent program P . Then, we replace in P ′ the original state vari-
ables from P with bitvectors of sizes sufficient to safely represent them; these
bitvectors are often much smaller than the original data types. Finally, the result-
ing sequential program P ′′ is verified using an off-the-shelf verification backend
for sequential programs. In Lazy-CSeq 2.0, we rely on Frama-C [2] as abstract
interpretation framework for the interval analysis and CBMC [3] as sequential
verification backend with native support for bitvectors.

In more detail, we first transform the input concurrent program P into a
bounded concurrent program by inlining the functions and unwinding the loops
up to a given depth. Then, we sequentialize this program by bounding the num-
ber of rounds of thread executions; in each round all threads are executed at most
once and always in the same order [6]. The resulting non-deterministic sequential
program P ′ simulates all computations that P can execute in the given number
of round-robin schedules and loop unwinding depth. Program flattening guar-
antees that in P ′ there is a bounded number of threads, that each statement is
executed at most once, and that all jumps are forward. P ′ consists of a main
driver function and a simulation function for each thread instance (including the
original main) identified during the unrolling phase.

Data Structures. P ′ stores and maintains, for each thread, a flag denoting
whether the thread is active, the thread’s original arguments, and the program
location at which the previous context switch has happened. In addition, Lazy-
CSeq 2.0 also maintains, for each thread, the length of each round. An important
optimization is that all variables in P ′ that refer to program locations (i.e., the
context switch locations, the round lengths, and the current program counters)
are now kept separate for each thread, which allows us to use bitvectors with
different sizes as data types, and so to reduce the memory overhead introduced
by the translation. Further, as mentioned above, the original state variables of
P are represented in P ′′ using bitvectors of a possibly more compact size, safely
over-approximated using abstraction-based interval analysis.

Main Driver. The main function of P ′ consists of two phases. The first phase
simply guesses all round lengths, and ensures that the guesses are smaller than
the corresponding thread sizes. In our experience this leads to simpler verifi-
cation conditions than the original approach, where the individual run lengths
were guessed right before the corresponding sequentialized thread functions were
called. The second phase consists of a sequence of small code snippets, one for
each thread and each round, that (if the thread’s active flag is on) set the next
context switch point, call the sequentialized thread function with the original
arguments, and store the context switch point for the next round.

Thread Translation. Within the simulation function for each thread instance,
each statement is guarded by a check whether its location is before the stored
location or after the guessed next context switch. In the former case, the state-
ment has already been executed in a previous round, and the simulation jumps

Lazy-CSeq 2.0: Combining Lazy Sequentialization 377

ahead one hop; in the latter case, the statement will be executed in a future
round, and the simulation jumps to the thread’s exit. Each jump target (cor-
responding either directly to a goto label or indirectly to a branch of an if
statement) is also guarded by an additional check to ensure that the jump does
not jump over the context switch.

2 Software Architecture

Lazy-CSeq 2.0 is implemented as a source-to-source transformation tool in
Python (v2.7.9) within the CSeq framework [4,7], which consists of indepen-
dent modules that can be configured and composed easily. In particular, it is
implemented as CSeq configuration of about twenty modules, which include (i)
the frontend processing module, which is based on the pycparser (v2.14, http://
github.com/eliben/pycparser); (ii) simple transformation modules to rewrite
the input program in steps into a progressively simplified syntax; (iii) trans-
lators for program flattening to produce a bounded program [6]; (iv) two mod-
ules implementing the sequentialization algorithm and that produce a backend-
independent sequentialized file [6]; (v) wrappers for the abstract interpretation
backend and for transforming the program’s state variables into bitvectors of
compact size, exploiting the over-approximated intervals; (vi) a standard pro-
gram instrumentation to adapt the sequentialized file for a specific backend; and
(vii) wrappers for backend invocation and user report generation or counterex-
ample translation.

Due to CSeq’s source-to-source translation architecture, we can use Frama-C
as a black box. We simply run it over the sequentialized program and extract,
for each state variable, the intervals estimated at the end of P ′. Since these over-
approximate the size requried to hold the variables’ values at any given program
point, the bitvector transformation can simply compute bitvector sizes from the
upper bounds of these intervals.

3 Tool Setup and Configuration

Availability and Installation. Lazy-CSeq 2.0 can be downloaded from http:
//users.ecs.soton.ac.uk/gp4/cseq/lazy-cseq-2.0-svcomp17.tar.gz. It can be inst-
alled as global Python script. It requires installation of the pycparser, CBMC
(v5.6), and Frama-C (Aluminium version); CBMC must be installed in the same
directory as the Python script. For convenience, our archive contains the required
CBMC and Frama-C versions. The wrapper script for the tool on the BenchExec
repository is lazycseqabs.py.

Call. Lazy-CSeq 2.0 only participates in the concurrency category. It should be
called in the installation directory using a wrapper script as follows:

lazy-cseq-abs.py -i<file> --spec<specfile> --witness<logfile>.

Note that Lazy-CSeq 2.0 produces a witness in a CBMC-like textual format,
since there is no witness format for concurrent programs. The wrapper script

http://github.com/eliben/pycparser
http://github.com/eliben/pycparser
http://users.ecs.soton.ac.uk/gp4/cseq/lazy-cseq-2.0-svcomp17.tar.gz
http://users.ecs.soton.ac.uk/gp4/cseq/lazy-cseq-2.0-svcomp17.tar.gz

378 T.L. Nguyen et al.

bundles up translation and verification and calls Lazy-CSeq 2.0 six times, with
different parameters and bounds. As soon as it detects a reachable error condition
within the given bounds, it reports FALSE and terminates; otherwise it continues
with the next set of parameters otherwise. If the last invocation reports no
reachable error conditions, the script returns TRUE.

4 Strengths and Weaknesses

Since Lazy-CSeq 2.0 is not a full verification tool but only a concurrency pre-
processor, we only competed in the Concurrency category.

Lazy sequentialization has already proven to be effective, especially in a bug-
hunting setting, in recent editions of the software verification competition. The
strength of this year’s approach is in the compact bitblasting induced by the
combined use of abstract interpretation’s interval analysis and bitvector support.
This can indeed provide significant analysis speedups on complex problems. In
particular, interval analysis turns out to be quite lightweight yet quite accurate
even on such problems, perhaps due to the particularly simple structure of the
sequentialized programs. In practice, the interval analysis requires only a few
hundreds of milliseconds to a few seconds, and overall verification times can
improve by tens of seconds.

The intervals of the program’s state variables are safely over-approximated,
to minimize the number of bits needed for their representation while avoiding
overflow problems. This enabled us to correctly solve all benchmarks.

On the other hand, one possible weakness of our approach is that a judicious
choice of bounding parameters is essential, because it is ultimately based on
bounded model-checking. This is not really a problem in the competition setting,
where fine-tuning of the parameters is possible during the training phase.

References

1. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (Report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 55

2. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: SCAM, pp.
123–124 (2009)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

4. Fischer, B., Inverso, O., Parlato, G.: CSeq: a concurrency pre-processor for sequen-
tial C verification tools. In: ASE, pp. 710–713 (2013)

5. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: a
lazy sequentialization tool for C. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 398–401. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 29

http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-642-54862-8_29
http://dx.doi.org/10.1007/978-3-642-54862-8_29

Lazy-CSeq 2.0: Combining Lazy Sequentialization 379

6. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-08867-9 39

7. Inverso, O., Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: a
context-bounded model checking tool for multi-threaded C-programs. In: ASE,
pp. 807–812 (2015)

8. Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy sequentialization for the
safety verification of unbounded concurrent programs. In: Artho, C., Legay, A.,
Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 174–191. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-46520-3 12

9. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying con-
current programs by memory unwinding. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 551–565. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 52

10. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: MU-
CSeq 0.4: individual memory location unwindings. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 938–941. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49674-9 65

11. Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Lazy
sequentialization for TSO and PSO via shared memory abstractions. In: FMCAD,
pp. 193–200 (2016)

http://dx.doi.org/10.1007/978-3-319-08867-9_39
http://dx.doi.org/10.1007/978-3-319-46520-3_12
http://dx.doi.org/10.1007/978-3-662-46681-0_52
http://dx.doi.org/10.1007/978-3-662-46681-0_52
http://dx.doi.org/10.1007/978-3-662-49674-9_65

Skink: Static Analysis of Programs in LLVM
Intermediate Representation

(Competition Contribution)

Franck Cassez(B), Anthony M. Sloane, Matthew Roberts, Matthew Pigram,
Pongsak Suvanpong, and Pablo Gonzalez de Aledo

Macquarie University, Sydney, Australia
franck.cassez@mq.edu.au

Abstract. Skink is a static analysis tool that analyses the LLVM inter-
mediate representation (LLVM-IR) of a program source code. The analy-
sis consists of checking whether there is a feasible execution that can
reach a designated error block in the LLVM-IR. The result of a program
analysis is “correct” if the error block is not reachable, “incorrect” if
the error block is reachable, or “inconclusive” if the status of the pro-
gram could not be determined. In this paper, we introduce Skink 2.0 to
analyse single and multi-threaded C programs.

1 Overview

Skink is a static analysis tool that analyses the LLVM intermediate repre-
sentation (LLVM-IR) of a source program. For instance, Skink can analyse
C/C++ programs using the LLVM-IR as generated by the Clang compiler.
The objective of the static analysis is to check whether a program is correct
w.r.t. a given specification. For C/C++ programs, the specification is provided
via assert(condition) statements in the C program. The aim of the analysis
is to determine whether a condition can be violated. In the SV-COMP setting,
assert calls VERIFIER error if the condition is false.

The LLVM-IR representation consists of a collection of functions made up of
blocks. A block represents a sequence of simple instructions (e.g., store, load,
function calls) and ends with a terminating instruction such as a branch that
points to the next block(s). The LLVM-IR we analyse contains a designated
“error” block that corresponds to a call to VERIFIER error. A (feasible) pro-
gram trace (execution) that contains the error block is an error trace. A program
is incorrect if and only if it can generate an error trace.

2 Verification Approach

Skink’s strategy to determine whether an error trace exists uses the iterative
refinement of the trace abstraction algorithm of Heizmann [1,2]. First the LLVM-
IR of a source program is mapped to a control flow graph (CFG) which is a
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 380–384, 2017.
DOI: 10.1007/978-3-662-54580-5 27

Skink: Static Analysis of LLVM Intermediate Representation 381

finite labeled automaton. The labels are the “basic blocks” and the “choices”
(branching) of the LLVM-IR. In the automaton the labels are letters and do not
carry any special meaning.

The (regular) language accepted by the CFG is the set of traces leading to
an error block. These traces are abstract error traces: the CFG does not give any
semantics to the labels, and it is not guaranteed that any such trace is actually
feasible in the concrete program.

Checking whether a program is correct reduces to determining whether an
abstract error trace is feasible or equivalently whether the language of the CFG
contains a feasible abstract error trace. To determine whether a trace is feasible,
we take into account the semantics of the instructions of the basic blocks. This
is achieved by encoding a trace of the CFG as a logical statement and checking
whether this statement is satisfiable or not. If satisfiable, a feasible error trace
has been found and the program is incorrect. Otherwise, if a trace t is spurious,
an interpolant automaton can be computed that accepts t and other traces that
are infeasible for the same reason as t [1,2]. In the latter case, we can refine the
CFG and look for an error trace in the language of the CFG minus the language
accepted by the interpolant automaton. When this iterative refinement process
stops1 either no error traces remain and the program is correct or a feasible error
trace is discovered and the program is incorrect.

This algorithm can also be used for checking concurrent programs using the
product of the CFGs in each thread. This is in general not very effective as the
number of interleavings grows exponentially in the number of threads. The algo-
rithm implemented in Skink 2.0 to analyse multi-threaded C programs extends
our previous work that showed how to combine trace abstraction refinement and
partial-order reduction [3].2 In Skink 2.0 we have combined trace abstraction
refinement with state-of-the-art dynamic partial order reduction techniques [4].

3 Software Architecture

Skink 2.0 is developed in Scala and can directly analyse LLVM-IR programs.
Skink 2.0 is currently able to analyse programs in C (via Clang) but it is
trivially expandable to any language that can be compiled to LLVM-IR.

Front-end: Skink’s front-end is written using our sbt-rats parser generator [5]3

and our Kiama Scala library for language processing [6].4 We have developed
a Scala-LLVM parser that can read LLVM-IR and build an abstract syntax tree
(AST). Semantic analysis is performed on the AST to recover information such
as variable types. Skink 2.0 constructs CFGs for functions from the AST using
the Kiama attribute grammar methods.
1 It may never stop and in this case the analysis is inconclusive.
2 The implementation introduced in [3] has nothing in common with Skink; it was
limited to analysing programs written in a custom input language (but not C) and
implemented static partial-order reductions algorithms.

3 https://bitbucket.org/inkytonik/sbt-rats.
4 https://bitbucket.org/inkytonik/kiama.

https://bitbucket.org/inkytonik/sbt-rats
https://bitbucket.org/inkytonik/kiama

382 F. Cassez et al.

Middle-end: Our Scala library Automat5 provides the automata-theoretic
operations (union, intersection, DFS, partial order reduction) that are needed in
the refinement algorithm. This is used to obtain candidate abstract error traces
(via a test for language emptiness) and to construct the refinements (difference
between two regular languages). On top of the automata-based refinement algo-
rithm, Skink 2.0 provides two core functionalities. The first is the encoding of
an abstract error trace into an SSA form and eventually a logical formula; this
logical formula is satisfiable if and only if the trace is feasible. Satisfiability is
determined by an SMT-solver (see Back-end section below). The second is the
computation of an interpolant automaton which is based on an annotation of an
infeasible trace with invariants.

Back-end: To check whether a (symbolic) abstract error trace is feasible we
use a Scala abstraction over the SMTLIB standard for common languages
and interfaces for SMT solvers. Our library MQ-scala-smtlib6 provides this
abstraction. MQ-scala-smtlib was also developed using sbt-rats and Kiama.

We support most of the SMT-solvers (including Z37, SMTInterpol 8 and
CVC49) via a common Scala abstract interface. As a result we can choose which
solver to use at run time, and we may use multiple and different solvers during
the same program analysis. In the current implementation, Skink 2.0, we mostly
use Z3, SMTInterpol and CVC4, depending on the theories and operations we
need (linear integer arithmetic, arrays, bitvectors, interpolants) and on the SV-
COMP categories to analyse.

4 Strengths and Weaknesses

Skink 2.0 does not support the full LLVM-IR assembly language and our
front-end parser may fail to parse some LLVM-IR input. Another limitation
of Skink 2.0 is that we use the LLVM inlining capability (opt -inline) to
obtain a single CFG for each LLVM-IR. This may fail preventing the subsequent
program analysis. These limitations should be overcome in the next months
by extending our front-end Scala-LLVM parser and implementing our modular
analysis technique [7]. We may assume unbounded integers in the analysis and
this may result in false negatives due to overflow/underflow errors (in our tests
it happened once in the ControlFlow category).

On the positive side, Skink 2.0 can analyse programs that can be com-
piled into LLVM-IR which makes it usable on a variety of languages including
C/C++, Objective C and Swift. A major strength of Skink 2.0 is that it can dis-
cover loop invariants (interpolants) and is able to establish program correctness.

5 https://bitbucket.org/franck44/automat.
6 https://bitbucket.org/franck44/mq-scala-smtlib.
7 https://github.com/Z3Prover/z3.
8 https://ultimate.informatik.uni-freiburg.de/smtinterpol/.
9 http://cvc4.cs.nyu.edu/web/.

https://bitbucket.org/franck44/automat
https://bitbucket.org/franck44/mq-scala-smtlib
https://github.com/Z3Prover/z3
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
http://cvc4.cs.nyu.edu/web/

Skink: Static Analysis of LLVM Intermediate Representation 383

Our abstract Scala solver library MQ-Scala-smtlib provides access to a
number of theories (Arrays, BitVectors) and solver capabiltities (generate inter-
polants). Skink 2.0 is, to the best of our knowledge, the only tool that com-
bines trace abstraction refinement with a version (source-DPOR) of the optimal
state-of-the-art dynamic partial order reduction algorithm [4]. This enables us
to efficiently verify some programs in the Concurrency benchmarks category.

5 Set up and Configuration

Participation Statement: Skink opts-out from all categories except Integer and
Control Flow, Concurrency and BitVectors.

Set up and Configuration: Skink 2.0 is available from http://science.mq.edu.
au/∼fcassez/sw/skinkv2.0.tgz. The archive includes all dependencies needed to
run it on Ubuntu Xenial Xerus 64-bit (16.04.1). skink.sh is the simplest and
the recommended way to run this Skink 2.0 distribution10. skink.sh should be
passed the C file on which analysis is to be performed. It will place along that file
the verification output (.verif) and the witness file (.graphml) as appropriate.

6 Software Project and Contributors

Skink 2.0 is developed by F. Cassez, A. M. Sloane, M. Roberts, M. Pigram, P.
Gonzalez, P. Suvanpong at the Department of Computing, Macquarie University.
The libraries used in Skink 2.0 are open-source software. More information can
be found at http://science.mq.edu.au/∼fcassez/software-verif.html.

References

1. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03237-0 7

2. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 2

3. Cassez, F., Ziegler, F.: Verification of concurrent programs using trace abstrac-
tion refinement. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR
2015. LNCS, vol. 9450, pp. 233–248. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48899-7 17

4. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial
order reduction. In: Jagannathan, S., Sewell, P. (eds.) POPL 2014, San Diego, CA,
USA, 20–21 January 2014, pp. 373–384. ACM (2014)

5. Sloane, A.M., Cassez, F., Buckley, S.: The sbt-rats parser generator plugin for ala
(tool paper). In: SCALA 2016, pp. 110–113. ACM, New York (2016)

10 The required Scala run-time and libraries are bundled into the skink.jar file.

http://science.mq.edu.au/~fcassez/sw/skinkv2.0.tgz
http://science.mq.edu.au/~fcassez/sw/skinkv2.0.tgz
http://science.mq.edu.au/~fcassez/software-verif.html
http://dx.doi.org/10.1007/978-3-642-03237-0_7
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/978-3-662-48899-7_17
http://dx.doi.org/10.1007/978-3-662-48899-7_17

384 F. Cassez et al.

6. Sloane, A.M.: Lightweight language processing in Kiama. In: Fernandes, J.M.,
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 408–
425. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18023-1 12

7. Cassez, F., Müller, C., Burnett, K.: Summary-based inter-procedural analysis via
modular trace refinement. In: FSTTCS 2014, LIPIcs, vol. 29, pp. 545–556. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

http://dx.doi.org/10.1007/978-3-642-18023-1_12

Symbiotic 4: Beyond Reachability

(Competition Contribution)

Marek Chalupa(B), Martina Vitovská, Martin Jonáš, Jiri Slaby,
and Jan Strejček

Faculty of Informatics, Masaryk University, Brno, Czech Republic
xchalup4@fi.muni.cz

Abstract. The fourth version of Symbiotic brings a brand new instru-
mentation part, which can now instrument the analyzed program with
code pieces checking various specification properties. As a consequence,
Symbiotic 4 participates for the first time also in categories focused on
memory safety. Further, we have ported both Symbiotic and Klee to
llvm 3.8 and added new features to the slicer which is now modular and
easily extensible.

1 Verification Approach and Software Architecture

Symbiotic implements the approach of [6] combining instrumentation, slicing,
and symbolic execution [4] to detect errors in C programs. While all the previous
releases [2,5,7] focus on checking reachability of an error location, Symbiotic
4 can check any property definable by a finite state machine. For example, the
finite state machine of Fig. 1 describes the double free error. Intuitively, for every
allocated block of memory we create a copy of the state machine that tracks its
current status. An error state is reached if the block is deallocated twice. Hence,
the instrumentation reduces property checking to unreachability checking as the
program violates the property iff the error state is reachable.

Creation and tracking of the state machine is performed by code instrumented
to the original program. In fact, the brand new instrumentation implemented
in Symbiotic works more generally. It gets a JSON file with instrumentation
rules. Every rule specifies a function call to be inserted before (or after) each
occurrence of a given sequence of instructions. Bodies of called functions are then
defined in a separate file written in C. Each instrumentation rule can be refined
using an output of a specified static analysis. For example, a code checking NULL
dereference does not have to be instrumented to locations where a suitable static
analysis guarantees that the corresponding pointer cannot be NULL.

For SV-COMP 2017, we have prepared instrumentation rules for checking
memory safety properties. For overflow property, we let clang sanitizer to

The research was supported by The Czech Science Foundation, grant GA15-17564S.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 385–389, 2017.
DOI: 10.1007/978-3-662-54580-5 28

386 M. Chalupa et al.

allocatedmalloc

freed

error

freemalloc

free

int *p = malloc(sizeof(int));

fsm change state(p, FSM MALLOC);
.
.
.

fsm change state(p, FSM FREE);

free(p);
.
.
.

if (VERIFIER nondet int()) {
fsm change state(p2, FSM FREE);

free(p2); // double free if p2 == p

}

Fig. 1. State machine describing double free and a code example with instrumented
function calls (red). (Color figure online)

instrument the program. We do not support checking termination property as
it cannot be simply translated to reachability analysis.

The workflow of Symbiotic 4 is illustrated by Fig. 2. As the first step, we
check that the verified property is not termination. Then we translate the ana-
lyzed C program to the llvm bitcode by clang. Next, we check that the bitcode
contains no calls to pthread create as neither our slicer, nor Klee can process
concurrent programs. If the check is successful, we proceed to the instrumenta-
tion of the bitcode. The instrumentation step has two phases. In the first phase,
we insert instructions that tell the symbolic executor to treat all memory as sym-
bolic, which allows us to correctly handle uninitialized variables. In the second
phase, we perform a static analysis of the bitcode and instrument it as described
above. We currently use a points-to analysis when instrumenting memory safety
properties to insert property-checking functions only to the locations where the
analysis itself does not guarantee that the property holds. The inserted func-
tions call VERIFIER error whenever the property is violated. Definitions of
the inserted property-checking functions as well as definitions of VERIFIER *
functions are then linked to the bitcode. Parts of the produced code that have
no effect on reaching VERIFIER error call sites are consequently removed by
slicing. Moreover, code optimizations provided by llvm are used before and
after slicing. Before the bitcode is symbolically executed by Klee [1], we check
that it does not contain instructions related to the floating point arithmetic not
supported by Klee, e.g. isnan or inf. We use our fork of Klee that pro-
duces an error witness when a property violation is detected. If Klee reports
that VERIFIER error is unreachable, we return true and a trivial correctness
witness unless Klee warns about not exploring the whole state space. This can
happen for example due to limitted support of floating point instructions. In
such cases, we return unknown.

The slicer has undergone significant changes. Points-to analyses and reach-
ing definitions analysis (needed to build dependency graphs for slicing [3]) were
redesigned into a more general modular framework: Symbiotic now supports

Symbiotic 4: Beyond Reachability 387

instrumentation

slicer

llvm 3.8.1

property termination? unknownC program

convert to bitcode is parallel? unknown

KLEE-related functions

static analysis

property-related
functions

link undefined functions function definitions

-O3 optimizations

points-to analysis

slicing

-O3 optimizations

unsupported
instructions?

−

unknown

KLEE KLEE output analysis
true (+ witness)

false (+ witness)

unknown

+

−

+

−

+

Fig. 2. Workflow of Symbiotic 4. Dashed lines represent verification inputs, solid lines
llvm bitcode and control flow, and dotted lines represent outputs.

more types of analyses that share a common interface and are therefore inter-
changeable. In particular, the current version of Symbiotic supports both flow-
sensitive and flow-insensitive points-to analyses and for both of these analy-
ses, field-sensitive and field-insensitive variants are available. Further, points-to
analyses can now precisely handle a larger subset of llvm including memset
and memcpy llvm’s intrinsic calls. We have also implemented additional opti-
mizations based on the information about strongly connected components of the
program’s control flow graph to speed up the analyses. Note that the redesigned
analyses are not firmly integrated into the slicer and can therefore be reused by
external tools.

The last significant change in Symbiotic 4 is that all components have been
ported to llvm 3.8, including the symbolic executor Klee. Finally, we got rid
of separate Perl and bash scripts in favor of a concise modular implementation
in Python.

388 M. Chalupa et al.

2 Strengths and Weaknesses

The main strength of the approach is its universality and modularity. Thanks
to the instrumentation, Symbiotic now supports almost all checked properties
specified by SV-COMP. Authors of other llvm-based verification tools can also
benefit from the implemented instrumentation and slicer: the instrumentation
can be used to add the ability to verify additional properties such as memory
safety to tools that only support reachability and the slicer can be used to remove
irrelevant parts of the verified program.

The main disadvantage of the current configuration is the high computational
cost of symbolic execution for branching-intensive programs. However, thanks
to the modular architecture, a suitable software verifier can be in principle used
instead of Klee to alleviate this problem.

3 Tool Setup and Configuration

– Download: https://github.com/staticafi/symbiotic/releases/tag/4.0.0
– Installation: Unpack the archive. The only requirement is python 2.7.
– Participation Statement: Symbiotic 4 participates in all categories.
– Execution: Run ./symbiotic OPTS <source>, where available OPTS include:

• --64, which sets the environment for 64-bit benchmarks,
• --prp=file, which sets the property specification file to use,
• --witness=file, which sets the output file for the witness,
• --help, which shows the full list of possible options.

4 Software Project and Contributors

Symbiotic 4 has been developed by M. Chalupa, M. Vitovská, and J. Slaby
with support of M. Jonáš and under supervision of J. Strejček. The tool and its
components are available under GNU GPLv2 and MIT Licenses. The project is
hosted by the Faculty of Informatics, Masaryk University. llvm, Klee, stp, and
MiniSat are also available under open-source licenses. The project web page is:
https://github.com/staticafi/symbiotic

References

1. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI, pp. 209–224. USENIX
Association (2008)

2. Chalupa, M., Jonáš, M., Slaby, J., Strejček, J., Vitovská, M.: Symbiotic 3: new
slicer and error-witness generation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 946–949. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 67

3. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

https://github.com/staticafi/symbiotic/releases/tag/4.0.0
https://github.com/staticafi/symbiotic
http://dx.doi.org/10.1007/978-3-662-49674-9_67
http://dx.doi.org/10.1007/978-3-662-49674-9_67

Symbiotic 4: Beyond Reachability 389

4. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

5. Slaby, J., Strejček, J.: Symbiotic 2: more precise slicing. In: Ábrahám, E., Havelund,
K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 415–417. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54862-8 34

6. Slabý, J., Strejček, J., Trt́ık, M.: Checking properties described by state machines:
on synergy of instrumentation, slicing, and symbolic execution. In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 207–221. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32469-7 14

7. Slaby, J., Strejček, J., Trt́ık, M.: Symbiotic: synergy of instrumentation, slicing, and
symbolic execution. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol.
7795, pp. 630–632. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 50

http://dx.doi.org/10.1007/978-3-642-54862-8_34
http://dx.doi.org/10.1007/978-3-642-32469-7_14
http://dx.doi.org/10.1007/978-3-642-36742-7_50

Optimizing and Caching SMT Queries
in SymDIVINE

(Competition Contribution)

Jan Mrázek(B), Martin Jonáš, Vladimı́r Štill, Henrich Lauko, and Jǐŕı Barnat

Faculty of Informatics, Masaryk University, Brno, Czech Republic
jan.mrazek@mail.muni.cz

Abstract. This paper presents a new version of the tool SymDIVINE,
a model-checker for concurrent C/C++ programs. SymDIVINE uses a
control-explicit data-symbolic approach to model checking, which allows
for the bit-precise verification of programs with inputs, by representing
data part of a program state by a first-order bit-vector formula. The
new version of the tool employs a refined representation of symbolic
states, which allows for efficient caching of smt queries. Moreover, the
new version employs additional simplifications of first-order bit-vector
formulas, such as elimination of unconstrained variables from quantified
formulas. All changes are documented in detail in the paper.

1 Verification Approach and Software Architecture

SymDIVINE is a model checker that primarily aims for verification of parallel
C and C++ programs. In contrast to explicit-state model checker [2], SymDI-
VINE represents data values symbolically and can therefore handle programs
with inputs, which would otherwise cause state-space explosion due to the num-
ber of possible input values. In particular, SymDIVINE uses the control-explicit
data-symbolic (ceds) approach to model checking in which control-flow of the
program is represented explicitly and values of data structures are represented
symbolically [1,7].

We now describe the approach in more detail. In a ceds model checker,
each generated state is a triple that contains a control part (program counter
for each thread), explicit data storage, and symbolic data storage. The explicit
data storage keeps values of constants and of variables whose values are uniquely
determined. The symbolic data storage represents a set of possible values of pro-
gram variables by a first-order formula in the theory of bit-vectors. To generate
the state space, SymDIVINE explores all possible evaluations of the program and
tracks the effect of program instructions on the explicit values and on the for-
mula representing the symbolic values. To avoid exploring infeasible paths, an
smt solver is used to check satisfiability of the formula representing the data

This work has been partially supported by Czech Science Foundation grant No.
15-08772S.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 390–393, 2017.
DOI: 10.1007/978-3-662-54580-5 29

Optimizing and Caching SMT Queries in SymDIVINE 391

values. The current version of SymDIVINE relies on the smt solver Z3 [6]. For
purposes of the competition we used version 4.4.1. Additionally, in order to avoid
generating unnecessary thread interleavings, SymDIVINE collapses steps invisible
to other threads into a single transition using the τ -reduction algorithm [3].

In addition to verification of safety properties, SymDIVINE also supports
verification of properties specified in ltl. To check such properties, SymDIVINE
uses standard ltl model checking algorithms based on detection of accepting
cycles in the product of the program with the Büchi automaton. However, in
order to detect accepting cycles, SymDIVINE has to be able to test states for
equality. The equality of states is represented as a quantified bit-vector formula,
which is handed to an smt solver [1]. Use of the state equality test can also
reduce the state space, as the same state is represented and explored only once.
On the other hand, the equality test requires potentially expensive quantified
smt reasoning.

To increase performance of SymDIVINE, we added several optimizations in
the latest version. The first one, state slicing, is a new method of state represen-
tation. In this representation, the symbolic part of the state is represented by
multiple independent formulas that describe sets of variables that do not affect
each other. This allows for more efficient emptiness and equality tests as query
results can be cached and smaller queries (related only to the changed program
variables) can be issued. Moreover, the issued queries are usually smaller and
can, in many cases, be handled by internal SymDIVINE optimizations, like check-
ing for the syntactic equality of formulas, without the need to query the smt
solver. The motivation for state slicing comes from the observation regarding
the verified llvm bitcode. As the llvm bitcode is in the single static assignment
(ssa) form, individual instructions usually affect only a few variables. These local
changes are often independent of the rest of the state. This is not just the case
for concurrent programs, but also for sequential programs containing repeated
function calls or non-trivial loops. We have also implemented caching, which can
leverage the decomposition of the issued smt queries to independent parts.

The second optimization is the integration of formula simplifications based
on elimination of unconstrained variables [4,5] (i.e. variables that occur only
once in the formula) from quantified bit-vector formulas. The effectivity of such
simplifications also follows from the ssa form of llvm: the formulas generated
by SymDIVINE often contain many unconstrained variables. Although the elimi-
nation of unconstrained variables in quantifier-free formulas is provided by stan-
dard smt solvers, we have extended the approach to quantified formulas, which
is necessary for equality queries generated by SymDIVINE. Therefore, we have
implemented our own elimination of unconstrained variables from quantified bit-
vector formulas in SymDIVINE.

From the implementation point of view, SymDIVINE can be seen as three
components – an llvm interpreter, a state representation and an exploration
algorithm. The algorithm uses the interpreter to produce successors of each
state and uses emptiness and equality tests provided by the state representa-
tion to detect empty (unreachable) or already visited states. An overview of
this architecture can be seen in Fig. 1. In the picture, the smt store refers to

392 J. Mrázek et al.

llvm interpreter

ltl Reachability

Algorithms

State representation

Partial store smt store

Formula simplifications and cache

smt solver

llvm bitcode

ltl formula

SymDIVINE

Fig. 1. High-level overview of the SymDIVINE architecture. Nested boxes correspond
to interfaces and their concrete implementations.

the original storage of states and the partial store refers to the newly imple-
mented storage using state slicing. Both storages are available and users can
use whichever they prefer. The entire tool is written in C++ and leverages the
llvm framework. Thanks to the well-defined interface, each of the three main
components is easily interchangeable.

2 Strengths and Weaknesses

The main strength of the approach is its universality: although it is aimed at
parallel programs, SymDIVINE is applicable to all competition categories except
termination, heap manipulation and overflows. SymDIVINE can also verify pro-
grams in multiple programming languages, as it uses the llvm bitcode as the
input format.

SymDIVINE is also precise: it can find every race condition in the program
regardless of the necessary number of context switches, and thanks to the sym-
bolic representation in the bit-vector theory, the verification is also bit-precise.
Moreover, unlike symbolic execution or bounded model checkers, SymDIVINE
also handles programs with infinite behaviour provided that their state space is
finite. The usage of the llvm infrastructure allows to precisely capture compiler
optimizations and architecture-specific issues such as the bit width of variables.

On the other hand, the approach does not deal well with loops with num-
ber of iterations dependent on an input. In the worst-case scenario, SymDIVINE
unrolls the cycle completely, resulting in an enormous state space. SymDIVINE
also cannot handle programs that spawn an infinite number of threads or allo-
cate memory from the heap. Support for other smt solvers is not currently
implemented in SymDIVINE.

Optimizing and Caching SMT Queries in SymDIVINE 393

3 Tool Setup and Configuration

In order to run SymDIVINE, libboost-graph, Z3 and clang-3.5 have to be
installed. If ltl model checking is requested, ltl2tgba is also required.

A prebuilt package of the tool (version 0.5) can be downloaded from a GitHub
release1. The archive contains binaries for SymDIVINE and also a run script that
eases the process of verification by automatically compiling C/C++ files to the
llvm bitcode. To verify a C program, run run symdivine <symdivine dir>
[options] <benchmark>, where <symdivine dir> is a directory in which the
SymDIVINE executable is located. All available options can be listed by using
the switch --help. We decided to opt-out from categories Arrays, BitVec-
tors, Heap Data Structures and Floats. The tool should be run with options
--fix volatile --fix inline --silent -Os.

4 Software Project and Contributors

SymDIVINE source code can be found on GitHub2 under the MIT License. The
tool is developed at the Faculty of Informatics, Masaryk University, and includes
contributions by the authors of this paper, Petr Bauch, and Vojtěch Havel.

References

1. Barnat, J., Bauch, P., Havel, V.: Model checking parallel programs with inputs. In:
PDP, pp. 756–759 (2014)

2. Barnat, J., Brim, L., Havel, V., Havĺıček, J., Kriho, J., Lenčo, M., Ročkai, P., Štill, V.,
Weiser, J.: DiVinE 3.0 - an explicit-state model checker for multithreaded C & C++
programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 863–
868. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 60

3. Barnat, J., Brim, L., Ročkai, P.: Towards LTL model checking of unmodified
thread-based C & C++ programs. In: Goodloe, A.E., Person, S. (eds.) NFM
2012. LNCS, vol. 7226, pp. 252–266. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28891-3 25

4. Brummayer, R.: Efficient SMT solving for bit vectors and the extensional theory of
arrays. Ph.D. thesis, Johannes Kepler University of Linz (2010)

5. Bruttomesso, R.: RTL verification: from SAT to SMT(BV). Ph.D. thesis, University
of Trento (2008)

6. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

7. Mrázek, J., Bauch, P., Lauko, H., Barnat, J.: SymDIVINE: tool for control-
explicit data-symbolic state space exploration. In: Bošnački, D., Wijs, A. (eds.)
SPIN 2016. LNCS, vol. 9641, pp. 208–213. Springer, Cham (2016). doi:10.1007/
978-3-319-32582-8 14

1 https://github.com/yaqwsx/SymDIVINE/releases/download/v0.5/symdivine.zip.
2 https://github.com/yaqwsx/SymDIVINE.

http://dx.doi.org/10.1007/978-3-642-39799-8_60
http://dx.doi.org/10.1007/978-3-642-28891-3_25
http://dx.doi.org/10.1007/978-3-642-28891-3_25
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-32582-8_14
http://dx.doi.org/10.1007/978-3-319-32582-8_14
https://github.com/yaqwsx/SymDIVINE/releases/download/v0.5/symdivine.zip
https://github.com/yaqwsx/SymDIVINE

Ultimate Automizer with an On-Demand
Construction of Floyd-Hoare Automata

(Competition Contribution)

Matthias Heizmann(B), Yu-Wen Chen, Daniel Dietsch, Marius Greitschus,
Alexander Nutz, Betim Musa, Claus Schätzle, Christian Schilling,

Frank Schüssele, and Andreas Podelski

University of Freiburg, Freiburg, Germany
heizmann@informatik.uni-freiburg.de

Abstract. Ultimate Automizer is a software verifier that implements
an automata-based approach for the verification of safety and liveness
properties. A central new feature that speeded up the abstraction refine-
ment of the tool is an on-demand construction of Floyd-Hoare automata.

1 Verification Approach

Ultimate Automizer is a software verifier of the Ultimate program analy-
sis framework1. The tool implements the automata-theoretic verification app-
roach [3,4] that is outlined in Fig. 1 and is able to analyze reachability of error
functions, memory safety, absence of overflows and termination. In this section,
we briefly explain the overall algorithm and discuss a feature that speeded up the
tool significantly, namely the on-demand construction of Floyd-Hoare automata,
in detail.

1 Aabs
0 := constructCFA()

2 for i = 0, 1, 2, . . .
3 if (Aabs

i = ∅)
4 return property holds
5 take error trace πi ∈ Aabs

i

6 if (πi is feasible)
7 return property violated
8 construct automaton Afh

i s.t.
πi ∈ Afh

i and Afh
i accepts

only infeasible traces
9 Aabs

i+1 := Aabs
i \Afh

i

Fig. 1. Overall verification algorithm

We initially construct an automaton,
called control flow automaton (CFA),
that resembles the control flow graph
and whose acceptance condition reflects
the property that is checked. E.g., for
reachability problems, the error location
of the program is the accepting state of
the CFA. The alphabet Σ of the CFA
consists of all program statements that
occur in the control flow graph. We call
a word over the alphabet Σ a trace and
a word that is accepted by the CFA an
error trace. The input program violates
the given property if and only if there
exists a feasible error trace, i.e., an error

1 https://ultimate.informatik.uni-freiburg.de.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 394–398, 2017.
DOI: 10.1007/978-3-662-54580-5 30

https://ultimate.informatik.uni-freiburg.de

Ultimate Automizer with an On-Demand Construction 395

trace that corresponds to a real program execution. In our algorithm we
construct automata Aabs

i that overapproximate the set of feasible error traces.
Our initial abstraction Aabs

0 is the CFA. All subsequent abstractions Aabs
i are

constructed in a CEGAR-style refinement loop (depicted in Fig. 1).
A central step of this algorithm is the construction of the automaton Afh

i

in line 8. This automaton defines the set of (spurious) error traces that are
eliminated in the current iteration. If this automaton accepts only few traces,
the overall algorithm is more likely to diverge. For soundness, we require that
Afh

i does not accept any feasible error trace. To account for that we construct Afh
i

as a Floyd-Hoare automaton [4] which is a kind of automaton over the alphabet
of program statements that accepts only infeasible traces. More details on the
construction are given below.

Construction of Difference. In line 9 of the algorithm we construct a new abstrac-
tion for the set of feasible error traces. This new abstraction is an automaton
Aabs

i+1 whose set of traces is the set-theoretic difference of the traces from the
old abstraction Aabs

i and the traces from the Floyd-Hoare automaton Afh
i . The

automaton Afh
i is deterministic and total. We construct Aabs

i+1 as the product
automaton of Aabs

i and Afh
i where a state of the product is accepting iff its first

component is accepting and the second component is not accepting. In our imple-
mentation, we construct this product incrementally. We start with the initial
state of the product and construct successively all reachable states and transi-
tions. This allows us to construct the Floyd-Hoare automaton Afh

i on-demand
as we explain next.

Afh
i := (Σ,Q, , q0, Qfin)
Q := {∧

P | P ∈ 2Pred}
(ϕ, st) :=

∧{p ∈ Pred | Hoare triple
{ϕ}st{p} is valid}

q0 := true
Qfin := {false}

Fig. 2. Definition of Floyd-Hoare
automaton for i-th iteration

On-Demand Construction of Floyd-Hoare
Automata . The input for the construc-
tion is a set of predicates Pred. We obtain
this set by computing sequences of inter-
polants along infeasible error traces. Con-
ceptually, the Floyd-Hoare automaton
Afh

i is the automaton (defined in Fig. 2)
whose states are the input predicates and
all conjunctions of the input predicates.
By construction, this automaton accepts
only infeasible traces.

Usually, the automaton Aabs
i is very sparse and hence only few transitions

of Afh
i contribute to the difference operation (line 9). Since we construct the

reachable state-space of the difference incrementally, we can construct the Floyd-
Hoare automaton Afh

i on-demand. At the beginning, we construct only the initial
state. Whenever the difference operation asks for successors of a state ϕ under a
symbol st, we check if this transition was already added. If not, we compute the
successor state and add transition and successor state if necessary. The successor
state is the conjunction of all input predicates p ∈ Pred such that the Hoare triple
{ϕ}st{p} is valid.

396 M. Heizmann et al.

Checking Hoare Triples Using a Cache and Unified Predicates. We can check
Hoare triples using an SMT solver. However, these calls to an SMT solver can
be costly and we try to reduce their number as follows. First, we keep a cache
in which we store for each Hoare triple that has been checked so far whether it
was valid or not. In order to have only one representative for logically equiva-
lent predicates, we unify all predicates and all conjunctions of predicates that
were constructed as states of the Floyd-Hoare automaton Afh

i . In this unification
process, we check for all pairs of formulas ϕ,ψ whether the implications ϕ |= ψ
and ψ |= ϕ hold and store the results. If we now have to check the validity of
a Hoare triple, we first check if one of the rules depicted in Fig. 3 is applicable.
Only if none of these rules is applicable we use an SMT solver for the Hoare
triple check.

ϕ |= ϕ′

ψ′ |= ψ
{ϕ′}st{ψ′} is valid

{ϕ}st{ψ} is valid
ImplPos

ϕ′ |= ϕ
ψ |= ψ′

{ϕ′}st{ψ′} is not valid

{ϕ}st{ψ} is not valid
ImplNeg

ϕ |= ψ
vars(ϕ) ∩ write(st) = ∅

{ϕ}st{ψ} is valid
DataPos

ϕ �|= ψ
vars(ϕ) ∩ read(st) = ∅
vars(ψ) ∩ read(st) = ∅
vars(ψ) ∩ write(st) = ∅
{ϕ}st{ψ} is not valid

DataNeg

Fig. 3. Rules that allow us to infer validity of Hoare triples without calling an SMT
solver. The set vars(ϕ) contains all variables that occur in the formula ϕ, the sets read(st)
and write(st) contain all variables that are read (resp. written) by the statement st.

2 Software Architecture

Ultimate Automizer uses several SMT solvers. For the unification of pred-
icates, the simplification of formulas and the Hoare triple checks we use Z32

because this solver can handle several SMT theories in combination with quan-
tifiers. For the analysis of error traces we use CVC43, MathSAT4, SMTInter-
pol5, and Z3. These solvers each provide interpolants or unsatisfiable cores,
which both can be used by Ultimate to extract predicates from infeasi-
ble traces. Furthermore, Ultimate Automizer uses several components of
the Ultimate program analysis framework. The termination analysis is per-
formed by the Buchi Automizer [5] component. This component requires

2 https://github.com/Z3Prover.
3 https://cvc4.cs.nyu.edu.
4 http://mathsat.fbk.eu.
5 https://ultimate.informatik.uni-freiburg.de/smtinterpol/.

https://github.com/Z3Prover
https://cvc4.cs.nyu.edu
http://mathsat.fbk.eu
https://ultimate.informatik.uni-freiburg.de/smtinterpol/

Ultimate Automizer with an On-Demand Construction 397

ranking functions [6] and nontermination arguments [7] which are provided by
LassoRanker6. LassoRanker uses SMTInterpol for the synthesis of ranking
functions and Z3 for the synthesis of nontermination arguments. For our inter-
procedural analysis, we use nested word automata; in the termination analysis
these automata have a Büchi acceptance condition. Data structures and algo-
rithms for these automata are provided by the Automata Library. Ultimate
also provides support for violation witnesses [2] and correctness witnesses [1].
Our competition candidate is able to produce and to validate both kinds of
witnesses7.

3 Tool Setup and Configuration

A zip archive that contains the tool and all above mentioned SMT solvers is
available at the website of Ultimate Automizer8. The tool can be started by
the following command,

./Ultimate.py prop.prp inputfile 32bit|64bit simple|precise

where Ultimate.py is a Python script, prop.prp the SV-COMP property file,
and inputfile a C program. The other parameters determine the architecture
and the memory model, respectively.

4 Software Project

The Ultimate program analysis framework is mainly developed at the Uni-
versity of Freiburg and received contributions from more than 50 people. The
framework is written in Java and the source code is available on Github9.

References

1. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchanging
verification results between verifiers. In: FSE. ACM (2016)

2. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: ESEC/FSE, pp. 721–733.
ACM (2015)

3. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Hermenegildo,
M.V., Palsberg, J. (eds.) POPL, pp. 471–482. ACM, New York (2010)

4. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 2

6 https://ultimate.informatik.uni-freiburg.de/LassoRanker/.
7 https://github.com/sosy-lab/sv-witnesses.
8 https://ultimate.informatik.uni-freiburg.de/automizer/.
9 https://github.com/ultimate-pa.

http://dx.doi.org/10.1007/978-3-642-39799-8_2
https://ultimate.informatik.uni-freiburg.de/LassoRanker/
https://github.com/sosy-lab/sv-witnesses
https://ultimate.informatik.uni-freiburg.de/automizer/
https://github.com/ultimate-pa

398 M. Heizmann et al.

5. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning termi-
nating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
797–813. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 53

6. Leike, J., Heizmann, M.: Ranking templates for linear loops. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 172–186. Springer, Hei-
delberg (2014). doi:10.1007/978-3-642-54862-8 12

7. Leike, J., Heizmann, M.: Geometric nontermination arguments. CoRR, abs/1609.
05207 (2016)

http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1007/978-3-642-54862-8_12

Ultimate Taipan: Trace Abstraction
and Abstract Interpretation

(Competition Contribution)

Marius Greitschus(B), Daniel Dietsch, Matthias Heizmann, Alexander Nutz,
Claus Schätzle, Christian Schilling, Frank Schüssele, and Andreas Podelski

University of Freiburg, Freiburg im Breisgau, Germany
greitsch@informatik.uni-freiburg.de

Abstract. Ultimate Taipan is a software model checker for C pro-
grams. It is based on a CEGAR variant, trace abstraction [7], where pro-
gram abstractions, counterexample selection and abstraction refinement
are based on automata. Ultimate Taipan constructs path programs
from counterexamples and computes fixpoints for those path programs
using abstract interpretation. If the fixpoints are strong enough to prove
the path program to be correct, they are guaranteed to be loop invari-
ants for the path program. If they are not strong enough, Ultimate
Taipan uses an interpolating SMT solver to obtain state assertions from
the original counterexample, thus guaranteeing progress.

1 Verification Approach

Ultimate Taipan unifies the strengths of trace abstraction [7] and abstract
interpretation [5]. Trace abstraction follows a counterexample-guided abstraction
refinement (CEGAR) [4] approach for verifying programs. The initial abstrac-
tion is a program automaton constructed from the control flow graph (CFG) of
the program. In the program automaton, accepting locations, called error loca-
tions, represent the violations of reachability properties of the program. Thus,
the language accepted by the program automaton corresponds to all sequences
of statements, i.e., to all traces, that lead to an error location. In each iteration,
a trace τ is chosen from the current program automaton and analyzed for feasi-
bility. If τ is feasible, it represents a concrete counterexample to the correctness
of the program, as the error location is reachable. If τ is infeasible, a proof for its
infeasibility is constructed. The proof is again encoded as an automaton, whose
language consists of infeasible traces. Next, this automaton is generalized by
adding transitions such that it accepts all traces of the program which are infea-
sible for the same reason as τ . This generalized automaton is then removed from
the current program automaton by computing the automata-theoretic difference
and the next iteration of trace abstraction starts. If the program automaton rep-
resents the empty language, i.e., if there are no traces of the program automaton
left to analyze, the program is proven to be correct, because no error location is
reachable.
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 399–403, 2017.
DOI: 10.1007/978-3-662-54580-5 31

400 M. Greitschus et al.

The efficiency of this approach relies on the reasons for infeasibility of a trace.
If the analyzed trace contains statements that are part of a loop, these reasons
should ideally form an inductive loop invariant. If this is not the case, the trace
abstraction algorithm diverges, i.e., the loop is unrolled until all traces of the
loop have been excluded, either by discovering a suitable loop invariant, or by
complete unrolling.

In Ultimate Taipan, we combat divergence by analyzing path programs [2]
instead of traces [6]. A path program is a projection of the original program to
the trace, i.e., a program in which only those statements occur that also occur in
the trace. Hence, the path program may contain loops if the trace contains state-
ments which are part of a loop. After choosing a trace of the program automaton,
we construct a path program from the trace and use abstract interpretation to
compute fixpoints for each path program location. If the fixpoint for an error
location is false, this error location is unreachable and the computed fixpoints
provide the proof of infeasibility for the whole path program, including the ini-
tially chosen trace. The advantage is that we are guaranteed to obtain inductive
loop invariants if our abstract interpreter can prove the path program. In the
case where abstract interpretation is not strong enough to prove infeasibility of
the path program, we fall back on the classical analysis of single traces.

1 int x :=0 , y :=1000;
2 while (∗) {
3 x:=x+1;
4 y:=y−1;
5 }
6 i f (x==1000) {
7 assert y<=0;
8 }

(a) C code.

�0

�1 �2

�3 �4

x:=0;y:=1000

x:=x+1

y:=y-1

x==1000

y>0

(b) Program automaton.

Fig. 1. Example C code and its corresponding program automaton. The location �0 of
the automaton is the initial location, �4 is the error location.

Example. Consider the program and its corresponding program automaton
in Fig. 1. In the program automaton, the violation of the assertion in line 7 is
encoded by the accepting error location �4. Ultimate Taipan analyzes this
program by first picking a counterexample trace starting in the initial location
and ending in location �4, e.g. τ1 = x:=0;y:=1000 x==1000 y>0 . This trace
is infeasible because the first and the second statement contradict each other. A
state assertion capturing this fact is, e.g., x = 0. In the next step, an automaton
recognizing all traces that are infeasible because of this fact is constructed and
subtracted from the current program automaton.

In the next iteration, Ultimate Taipan’s algorithm picks the trace τ2 =
x:=0;y:=1000 x:=x+1 y:=y-1 x==1000 y>0 . Like τ1, τ2 is infeasible. The

statements x:=0 , x:=x+1 , and x==1000 contradict each other. This time,

Ultimate Taipan: Trace Abstraction and Abstract Interpretation 401

the analysis of this single trace uses x = 1 as state assertion. If the algorithm
continued in this fashion, it would need to unroll the loop completely, because
the inductive loop invariant, which has to relate the variables x and y, would not
be discovered. The reason for this is that the analysis of a single trace uses an
interpolating SMT solver that favors “easier” and more concise state assertions
over the relational one.

Hence, Ultimate Taipan uses a different method to extract state assertions.
When analyzing τ2, which contains statements that are part of a loop body, Ulti-
mate Taipan constructs a path program from the trace and analyzes this path
program with an abstract interpreter. Note that the path program correspond-
ing to τ2 is coincidentally the same as the program automaton. When using a
relational abstract domain, e.g. octagons, in abstract interpretation, the state
assertion x ≥ 0 ∧ y ≤ 1000 ∧ x + y = 1000 is found, which is an inductive loop
invariant and thus suitable to prove unreachability of the error location in the
path program. Therefore, when the path program is excluded from the program
automaton, the resulting program automaton becomes empty and the program
is proven to be safe.

2 Strengths and Weaknesses

Ultimate Taipan uses an abstract interpreter for proving infeasibility of traces
containing loops. By not analyzing the whole program but a smaller path pro-
gram, the imprecision that typically comes with abstract interpretation is mit-
igated and allows Ultimate Taipan to find inductive loop invariants in many
cases. Because Ultimate Taipan needs to compensate for cases where the used
abstract domain is not able to infer a proof of the path program, an interpo-
lating SMT solver is still required. The combination of proofs obtained by the
SMT solver with the proofs obtained from the abstract interpreter, e.g. during
generation of correctness witnesses for the whole program, is expensive. In our
current version, the computed fixpoints contain information about all variables
in the path program, which leads to large SMT formulas.

3 Software Project

Ultimate Taipan is implemented on top of the program analysis frame-
work ULTIMATE

1. Nearly all components except the refinement algorithm and
the abstract interpretation engine were already provided by Ultimate. We
developed a new abstract interpretation plugin and integrated the refinement
algorithm in the CEGAR loop of Ultimate Automizer. Ultimate pro-
vided the parsing back end and the verification condition generation as well as
the construction of the control flow graph, the various automata operations,
internal data structures for logic, the SMT solver SMTInterpol [3], and an
interface to external SMT solvers compatible with the SMT-LIBv2 or v2.5

1 https://ultimate.informatik.uni-freiburg.de.

https://ultimate.informatik.uni-freiburg.de

402 M. Greitschus et al.

format. Like Ultimate, Ultimate Taipan is written in Java and the source
code is available on GitHub2. Ultimate Taipan is licensed under LGPLv33.

4 Tool Setup and Configuration

Ultimate Taipan’s website4 provides a zip archive containing the competition
submission. This archive contains an executable version of Ultimate Taipan
for Linux platforms as well as the necessary theorem provers Z35 and CVC46.
Ultimate Taipan itself only requires a current Java installation (≥JRE 1.8).

The archive also contains a Python script, Ultimate.py, which maps the
SV-COMP interface to Ultimate’s command line interface and automatically
selects the correct settings and the correct toolchain for Ultimate Taipan. This
script requires a working Python 2.7 installation. In the SV-COMP scenario,
the input to the script is a C program input, a property file prop.prp, the
architecture setting 32bit or 64bit, and the memory model (either simple or
precise) that should be assumed for the input file. Ultimate Taipan can be
invoked with the following command.

./Ultimate.py prop.prp input 32bit|64bit simple|precise

The output of Ultimate Taipan is written to the file Ultimate.log and the
result is written to stdout. When using the BENCHEXEC

7 benchmarking frame-
work to evaluate Ultimate Taipan, the output will automatically be translated
by the tool-info module ultimatetaipan.py contained in BenchExec.

If the checked property does not hold, a human readable counterexample
is stored in the file UltimateCounterExample.errorpath and a violation wit-
ness [1] is written to witness.graphml.

References

1. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: ESEC/FSE 2015, pp. 721–733
(2015)

2. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI 2007, pp. 300–309 (2007)

3. Christ, J., Hoenicke, J.: Cutting the mix. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 37–52. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21668-3 3

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

2 https://github.com/ultimate-pa/ultimate/.
3 https://www.gnu.org/licenses/lgpl-3.0.en.html.
4 https://ultimate.informatik.uni-freiburg.de/taipan.
5 https://github.com/Z3Prover/z3.
6 https://cvc4.cs.nyu.edu/.
7 https://github.com/sosy-lab/benchexec.

http://dx.doi.org/10.1007/978-3-319-21668-3_3
http://dx.doi.org/10.1007/978-3-319-21668-3_3
https://github.com/ultimate-pa/ultimate/
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://ultimate.informatik.uni-freiburg.de/taipan
https://github.com/Z3Prover/z3
https://cvc4.cs.nyu.edu/
https://github.com/sosy-lab/benchexec

Ultimate Taipan: Trace Abstraction and Abstract Interpretation 403

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252 (1977)

6. Greitschus, M., Dietsch, D., Podelski, A.: Refining Trace Abstraction using Abstract
Interpretation. arXiv:1702.02369 [cs.LO] (2017)

7. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 2

http://arxiv.org/abs/1702.02369
http://dx.doi.org/10.1007/978-3-642-39799-8_2

VeriAbs: Verification by Abstraction
(Competition Contribution)

Bharti Chimdyalwar, Priyanka Darke(B), Avriti Chauhan, Punit Shah,
Shrawan Kumar, and R. Venkatesh

Tata Research Development and Design Center, Pune, India
{bharti.c,priyanka.darke,avriti.chauhan,shah.punit,shrawan.kumar,

r.venky}@tcs.com

Abstract. VeriAbs verifies C programs by transforming them to
abstract programs. The transformation replaces loops in the original code
by abstract loops of small known bounds. Bounded model checkers can
then be used to prove properties over such programs. To perform such
a transformation, VeriAbs implements (i) a static value analysis to com-
pute loop invariants, (ii) abstract acceleration and output abstraction
for numerical loops, (iii) a novel array witness selection for loops that
iterate over arrays, and (iv) an iterative refinement using an enhanced
k -induction technique. To find errors, VeriAbs computes bounds of the
original loops and then checks for errors within those bounds. VeriAbs
can thus prove properties and find errors using bounded model checking.
It uses the C Bounded Model Checker (CBMC) version 5.4 with MiniSat
version 2.2.

1 Verification Approach

Bounded model checking [3] verifies programs up to a finite execution length.
Hence it can find errors effectively but not prove properties. To overcome this
limitation, we present a tool called VeriAbs that implements a loop abstraction
technique to transform a source C program to an abstract program called a
target. By this, loops in the source are replaced with abstract loops of small
known bounds in the target. Due to the known bounds of the abstract loops,
the target has a finite execution length and bounded model checking can then
prove properties over this program. The following two techniques are applied to
abstract loops in the source:

Numerical Loop Abstraction. VeriAbs abstracts a loop by over-
approximating the values of numerical variables modified by that loop [5]. The
variables modified by a loop are called output variables and are classified as (i)
input-output (IO) - variables that are read and modified in the loop body, and
(ii) pure output (PO) - variables that are modified but never read in the loop
body. We explain the abstraction of outputs as follows.

P. Darke—Jury member.

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 404–408, 2017.
DOI: 10.1007/978-3-662-54580-5 32

VeriAbs: Verification by Abstraction (Competition Contribution) 405

The IO variables are abstracted using abstract acceleration [5] which captures
the effect of several loop iterations. It comprises of assignments to all IO variables
using closed form expressions, like those computed for recurrence relations. This
generates an abstraction of the IO variables at the start of a non-deterministically
chosen kth iteration of the loop. VeriAbs then executes the loop body to gen-
erate an abstraction of the IO variables at the end of the kth iteration. A pure
output on the other hand cannot be accelerated, as it is never read in the loop
body but only modified through assignments. So to abstract one pure output,
VeriAbs non-deterministically selects and executes an iteration that assigns to
the pure output. Before executing this iteration VeriAbs applies abstract accel-
eration to the IO variables. Executing the loop body in this manner abstracts
the pure output because all variables controlling the execution of the assignment
to the pure output or read in the assignment to the pure output were abstracted
using acceleration. So to abstract all outputs of a loop, VeriAbs applies abstract
acceleration followed by loop body execution, then repeats this as many times
as the number of pure outputs. This generates an abstract loop of a known small
bound.

To improve precision, VeriAbs applies induction whenever the input property
lies within the loop [5]. The base case of the induction consists of the original loop
body with the property check; and the induction step consists of the abstract
loop assuming the property holds (the induction hypothesis), followed by the
original loop body with the property check. VeriAbs extends this to incremental
k -induction in order to refine the abstraction as explained in Sect. 1.1. VeriAbs
for the first time implements k -induction wherein the induction hypothesis is
generated using numerical loop abstraction. This technique can lead to a better
precision than others which only assign non-deterministic values to the outputs
in the hypothesis. VeriAbs also generates loop invariants using a light weight
value analysis [8]. These invariants are further strengthened by loop abstraction
and k -induction.

Array Loop Abstraction. The abstraction differs for loops that process arrays
of large or unknown sizes [9]. In such cases, the abstraction over-approximates
the behavior of the original program by substituting the loop with an abstract
loop that executes over a small non-deterministically chosen sequence of array
elements. We call this chosen sequence as a witness sequence of the original
loop. The witness sequence guides the abstract loop to execute iterations that
correspond to specific iterations of the original loop. This abstraction ensures
that if the program is incorrect, the abstract program will also be incorrect and
the same will be demonstrated by some witness sequence. The size of witness
sequence depends on the input property and loop body characteristics.

1.1 Verification Process

VeriAbs accepts C code with user defined properties and outputs its verification
result as successful (if all properties hold), failure (if any property fails), or
unknown (if any property is unresolved). For this, VeriAbs first transforms the
source to generate a target with abstract arrays and loops of known small bounds.

406 B. Chimdyalwar et al.

Since the target is an over-approximation of the source, if the property holds in
the target, it holds in the source as well. VeriAbs verifies the input property
using the following steps:

– Step 1 : It passes the target to a bounded model checker while ensuring that
each loop in the target is unrolled up to its known small bound. So if the
model checker proves the property, VeriAbs reports the verification status as
successful. If it generates a counter example due to over-approximation, Step
2 is executed.

– Step 2 : In this step, VeriAbs computes bounds of loops which have a constant
number of iterations in the source. For this it uses a light weight value analysis
[8]. Then the source along with these bounds are passed to the bounded model
checker while ensuring that the model checker is inconclusive if any loop is
not unrolled up to its maximum bound. Accordingly, VeriAbs reports the
verification status if the model checker is able to (in)validate the property. If
the model checker is inconclusive due to loops of unknown or infinite bounds,
Step 3 is executed.

– Step 3 : In this step, VeriAbs iteratively refines the target by incrementally
applying k -induction to the loops in which the input property lies. k -induction
implemented by VeriAbs consists of k base cases of the original loop followed
by the induction step as explained in Sect. 1. In each refinement iteration,
VeriAbs generates a target with an incremented value of k starting from 2.
It then passes this abstraction to the bounded model checker while ensuring
that each abstract loop is unrolled up to its known bound. Thus VeriAbs
reports the verification status as successful if the model checker proves the
property. Otherwise it continues to refine the target till the property is proved
or k reaches a threshold value of 150 (chosen heuristically) and the property
remains unresolved.

VeriAbs generates safety witnesses from the target, and violation witnesses
from the source using an off-the-shelf witness generator.

2 Software Architecture

Figure 1 shows the architecture of VeriAbs. It implements a static analysis in
Java to perform loop and array abstraction, compute loop bounds, and generate

C program
with

property ɸ

Bounded Model Checker

VerificaƟon
results

no counter
example (c-ex)

<ɸ proved>

c-ex over
original
program

<ɸ violated>

c-ex over
abstract
program

Refinement using
k-inducƟon

abstract
program

aŌer
refinement

Loop bound
evaluator

Witness
generator

Loop and
Array

AbstracƟon
module

t

t

witness.graphml

Ta
rg

et
 p

ro
gr

am
 (t

)

t

t

Fig. 1. The architecture of VeriAbs

VeriAbs: Verification by Abstraction (Competition Contribution) 407

target code. It uses a program analysis framework called PRISM [7] to implement
this analysis. It implements iterative refinement in Java and Perl. It uses the C
Bounded Model Checker (CBMC) version 5.4 [4] with a SAT solver, MiniSat
version 2.2 [6]. It uses CPAchecker version 1.6.1 [2] for generating witnesses in
the graphml format.

3 Strengths and Weaknesses

The main strength of VeriAbs is that it is sound. All transformations imple-
mented by the tool are abstractions and hence if the tool reports that a property
holds then it indeed holds. Another key strength is that it transforms all loops in
a program to abstract loops with a known finite number of iterations, enabling
the use of bounded model checkers for property proving. The main weakness of
the tool is that it does not implement a refinement process that is well suited
to find errors. VeriAbs uses bounded model checkers directly to find errors by
unrolling loops a small finite number of times.

4 Tool Setup and Configuration

The VeriAbs executable for SV-COMP 2017 is available for download at
the URL http://115.113.148.49/VeriAbs.htm. To install the tool, download
the archive, extract its contents, and follow the installation instructions in
VeriAbs/INSTALL.txt. To execute VeriAbs, the user needs to specify the prop-
erty file of the respective verification category using the property-file option.
The witness is generated in the current working directory as witness.graphml.
A sample command is as follows:

VeriAbs/scripts/veriabs --property-file ALL.prp example.c

VeriAbs executes CBMC with the unwinding-assertions option to ensure
soundness. It is participating in the Arrays, ControlFlow, ECA, Loops, Product-
Lines, Recursive and Sequentialized sub-categories of the ReachSafety category.

5 Software Project and Contributors

VeriAbs and the PRISM program analysis framework are maintained by TCS
Research [1]. VeriAbs has been developed by Bharti Chimdyalwar, Priyanka
Darke, Avriti Chauhan and Punit Shah under the guidance of R Venkatesh and
Shrawan Kumar. We would like to thank graduate and under-graduate interns
who have contributed to the development of the numerical loop abstraction
module in VeriAbs.

References

1. TCS Research. http://www.tcs.com/research/Pages/default.aspx
2. Beyer, D., Erkan Keremoglu, M.: CPAchecker: a tool for configurable software ver-

ification. CoRR, abs/0902.0019 (2009)

http://115.113.148.49/VeriAbs.htm
http://www.tcs.com/research/Pages/default.aspx

408 B. Chimdyalwar et al.

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999). doi:10.1007/3-540-49059-0 14

4. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

5. Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-
approximating loops to prove properties using bounded model checking. In: DATE
2015, Grenoble, France, 9–13 March 2015, pp. 1407–1412. IEEE (2015)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24605-3 37

7. Khare, S., Saraswat, S., Kumar, S.: Static program analysis of large embedded code
base: an experience. In: ISEC, pp. 99–102. ACM (2011)

8. Kumar, S., Chimdyalwar, B., Shrotri, U.: Precise range analysis on large industry
code. In: ESEC/FSE 2013, pp. 675–678 (2013)

9. Kumar, S., Sanyal, A., Venkatesh, R., Shah, P.: Property checking array programs
using witness sequences. TCS Internal Technical report (2016)

http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37

Author Index

Abdulla, Parosh Aziz II-56
Akshay, S. I-337
Alrajeh, Dalal I-281
Alt, Leonardo II-207
Alur, Rajeev I-319
Amadini, Roberto I-41
Andrianov, Pavel II-355
Antonino, Pedro II-249
Asadi, Sepideh II-207
Atig, Mohamed Faouzi II-56
Avni, Guy II-169

Baier, Christel II-269
Bak, Stanley I-555
Barbosa, Haniel II-214
Barnat, Jiří II-390
Bartocci, Ezio II-286
Basin, David II-94
Becker, Bernd I-373
Beyer, Dirk II-331
Bhatt, Bhargav Nagaraja II-94
Biere, Armin I-264
Blatter, Lionel I-391
Bogomolov, Sergiy I-589
Bonakdarpour, Borzoo II-77
Bonchi, Filippo I-535
Borralleras, Cristina I-99
Bouajjani, Ahmed II-56
Brett, Noel II-77
Brockschmidt, Marc I-99
Budde, Carlos E. II-151
Butkova, Yuliya II-188

Cardelli, Luca II-310
Cassez, Franck II-380
Cavezza, Davide G. I-281
Černý, Pavol II-21
Chakraborty, Supratik I-337
Chalupa, Marek II-385
Chang, Bor-Yuh Evan II-21
Chattopadhyay, Sudipta II-38
Chauhan, Avriti II-404
Chen, Yu-Fang I-208
Chen, Yu-Wen II-394

Cheng, Chih-Hong I-398
Chimdyalwar, Bharti II-404
Chin, Wei-Ngan II-370
Chockler, Hana II-207
Cimatti, Alessandro I-58
Cordeiro, Lucas II-360
Courant, Nathanaël I-136
Cruz-Filipe, Luís I-118
Cubuktepe, Murat II-133

D’Antoni, Loris I-173, I-518
Darke, Priyanka II-404
Das, Ankush I-190
de Aledo, Pablo Gonzalez II-380
Dehnert, Christian II-151
Dietsch, Daniel II-394, II-399
Dillig, Isil II-3
Drews, Samuel I-173
Duggirala, Parasara Sridhar I-555

Emrich, Frank II-350
Esparza, Javier I-426
Esterle, Lukas II-286
Even Mendoza, Karine II-207

Faymonville, Peter I-354
Fedyukovich, Grigory II-207
Feldman, Yotam M.Y. I-76
Fiedor, Tomáš I-407
Finkbeiner, Bernd I-354
Fischer, Bernd II-360, II-375
Fontaine, Pascal II-214
Forrest, Stephanie I-301
Frehse, Goran I-589
Friedberger, Karlheinz II-355
Frohn, Florian II-350

Gange, Graeme I-41
Gauthier, François I-41
Giacobbe, Mirco I-589
Gibson-Robinson, Thomas II-249
Giesl, Jürgen II-350
Goel, Shubham II-169

Greitschus, Marius II-394, II-399
Griggio, Alberto I-58
Grosu, Radu II-286

Hahn, Ernst Moritz II-151
Hartmanns, Arnd II-151
Heizmann, Matthias I-461, II-394, II-399
Hensel, Jera II-350
Henzinger, Thomas A. I-589, II-169
Hermanns, Holger II-188
Heule, Marijn J.H. II-3
Hirsch, Christian II-286
Hoffmann, Jan I-190
Holík, Lukáš I-407, II-365
Hou, Zhe I-481
Hruška, Martin II-365
Hyvärinen, Antti E.J. II-207

Immerman, Neil I-76
Inala, Jeevana Priya I-247
Inverso, Omar II-375
Irfan, Ahmed I-58
Ismail, Hussama II-360

Janků, Petr I-407
Jansen, Nils II-133
John, Ajith K. I-337
Jonáš, Martin II-385, II-390
Jordan, Alexander I-41
Junges, Sebastian II-133, II-151

Kapur, Deepak I-301
Katoen, Joost-Pieter II-133
Kini, Dileep II-113
Klein, Joachim II-269
Klüppelholz, Sascha II-269
König, Barbara I-535
Kosmatov, Nikolai I-391
Křetínský, Jan I-426, I-443
Kumar, Shrawan II-404
Kupferman, Orna I-229
Küpper, Sebastian I-535

La Torre, Salvatore II-375
Larraz, Daniel I-99
Larsen, Kim Guldstrand I-3
Latella, Diego II-303
Lauko, Henrich II-390
Le Gall, Pascale I-391

Le, Ton Chanh II-370
Lee, Edward A. I-398
Lee, Insup I-153
Lengál, Ondřej I-407, I-499, II-365
Lerner, Benjamin S. I-247
Li, Yong I-208
Lin, Anthony W. I-499
Liu, Depeng I-208
Liu, Yang I-481
Loreti, Michele II-303
Lukina, Anna II-286

Majumdar, Rupak I-499
Mandrykin, Mikhail II-355
Marin, Paolo I-373
Marques-Silva, Joao I-118
Massink, Mieke II-303
Meggendorfer, Tobias I-443
Mrázek, Jan II-390
Musa, Betim II-394
Mutilin, Vadim II-355

Ngo, Tuan Phong II-56
Nguyen, ThanhVu I-301
Nguyen, Truc L. II-375
Niemetz, Aina I-264
Nutz, Alexander II-394, II-399

Oliveras, Albert I-99
Olivo, Oswaldo II-3

Padon, Oded I-76
Pajic, Miroslav I-153
Papusha, Ivan II-133
Park, Junkil I-153
Parlato, Gennaro II-375
Pigram, Matthew II-380
Podelski, Andreas II-394, II-399
Polikarpova, Nadia I-247
Poonawala, Hasan A. II-133
Prabhakar, Pavithra I-573
Preiner, Mathias I-264
Prevosto, Virgile I-391

Qiu, Xiaokang I-247

Rabe, Markus N. I-354
Radhakrishna, Arjun I-319
Raskin, Jean-François I-426

410 Author Index

Reimer, Sven I-373
Reynolds, Andrew II-214
Roberts, Matthew II-380
Rocha, Herbert II-360
Rocha, Williame II-360
Rodríguez-Carbonell, Enric I-99
Rodriguez-Navas, Guillermo II-169
Rogalewicz, Adam II-365
Roohi, Nima I-573
Roscoe, A.W. II-249
Roveri, Marco I-58
Rubio, Albert I-99
Ruess, Harald I-398
Rümmer, Philipp I-499

Sagiv, Mooly I-76
Sanán, David I-481
Sankaranarayanan, Sriram II-21
Sankur, Ocan I-23
Schachte, Peter I-41
Schätzle, Claus II-394, II-399
Schilling, Christian I-461, II-394, II-399
Schneider-Kamp, Peter I-118
Schüssele, Frank II-394, II-399
Sebastiani, Roberto I-58, II-231
Shah, Punit II-404
Shah, Shetal I-337
Sharygina, Natasha II-207
Shoham, Sharon I-76
Sickert, Salomon I-426
Siddique, Umair II-77
Šimáček, Jiří II-365
Slaby, Jiri II-385
Sloane, Anthony M. II-380
Smolka, Scott A. II-286
Sokolsky, Oleg I-153
Solar-Lezama, Armando I-247
Søndergaard, Harald I-41
Štill, Vladimír II-390
Strejček, Jan II-385
Ströder, Thomas II-350
Stuckey, Peter J. I-41
Suvanpong, Pongsak II-380

Ta, Quang-Trung II-370
Talpin, Jean-Pierre I-23
Tamir, Tami I-229
Tentrup, Leander I-354
Tischner, Daniel I-461
Tiu, Alwen I-481
Tiwari, Ashish II-286
Tizpaz-Niari, Saeid II-21
Topcu, Ufuk II-133
Traytel, Dmitriy II-94
Trentin, Patrick II-231
Tribastone, Mirco II-310
Trivedi, Ashutosh II-21
Tschaikowski, Max II-310
Turrini, Andrea II-151

Udupa, Abhishek I-319
Urban, Caterina I-136

Vandin, Andrea II-310
Veanes, Margus I-518
Venkatesh, R. II-404
Viswanathan, Mahesh I-573, II-113
Vitovská, Martina II-385
Vojnar, Tomáš I-407, II-365
Volkov, Anton II-355

Waldmann, Clara I-443
Weimer, Westley I-301
Weininger, Maximilian I-443
Wimmer, Ralf I-373, II-188
Wunderlich, Sascha II-269
Wüstholz, Valentin II-3

Yang, Junxing II-286

Zhang, Chenyi I-41
Zhang, Fuyuan I-481
Zhang, Lijun I-208
Zhao, Yongwang I-481

Author Index 411

	ETAPS Foreword
	Preface
	Organization
	Abstracts of Invited Talks
	Validation, Synthesis and Optimization for Cyber-Physical Systems
	The Facebook Infer Static Analyser
	Contents – Part II
	Contents – Part I
	Security
	Static Detection of DoS Vulnerabilities in Programs that Use Regular Expressions
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Detecting Hyper-Vulnerable NFAs
	5 Detecting Vulnerable NFAs
	5.1 Understanding Super-Linear NFAs
	5.2 Algorithm for Detecting Vulnerable NFAs

	6 Dynamic Regular Expression Analysis
	7 Static Program Analysis
	8 Experimental Evaluation
	9 Related Work
	10 Conclusions and Future Work
	References

	Discriminating Traces with Time
	1 Introduction
	2 Timing Side-Channel Debugging with DISCRIMINER
	3 Trace-Set Discrimination Problem
	3.1 Maximum Likelihood Learning
	3.2 Decision Tree Learning

	4 Discriminant Analysis
	4.1 Maximum Likelihood Approach
	4.2 Decision Tree Learning Appraoch
	4.3 Performance Evaluation

	5 Case Study: Understanding Traces with Decision Trees
	6 Related Work
	7 Conclusion
	References

	Directed Automated Memory Performance Testing
	1 Introduction
	2 Background and Overview
	3 Test Generation
	4 Generating (path)
	4.1 Modeling Symbolic Cache Access
	4.2 Modeling Symbolic Cache Constraints

	5 Application
	6 Evaluation
	7 Related Work
	8 Discussion
	References

	Context-Bounded Analysis for POWER
	1 Introduction
	2 Concurrent Programs
	3 Translation
	4 Experimental Results
	References

	Run-Time Verification and Logic
	Rewriting-Based Runtime Verification for Alternation-Free HyperLTL
	1 Introduction
	2 Background
	2.1 HyperLTL

	3 Finite Semantics for HyperLTL
	4 Challenges in Monitoring HyperLTL Formulas
	5 Identifying Propositions of Interest
	6 Monitoring Algorithm
	6.1 Algorithm Sketch
	6.2 Algorithm Details
	6.3 Discussion

	7 Related Work
	8 Conclusion
	References

	Almost Event-Rate Independent Monitoring of Metric Temporal Logic
	1 Introduction
	2 Related Work
	3 Metric Temporal Logic
	4 Almost Event-Rate Independence
	5 Monitoring Algorithm
	5.1 Informal Account
	5.2 The Algorithm
	5.3 Correctness and Complexity Analysis
	5.4 Implementation

	6 Evaluation
	7 Conclusion
	References

	Optimal Translation of LTL to Limit Deterministic Automata
	1 Introduction
	2 Preliminaries
	3 Construction
	3.1 Handling Untils and Nexts

	4 Efficiency
	5 Expressive Power of LTLD
	6 Experimental Results
	7 Conclusion
	References

	Quantitative Systems I
	Sequential Convex Programming for the Efficient Verification of Parametric MDPs
	1 Introduction
	2 Preliminaries
	3 Nonlinear Programming for pMDPs
	3.1 Formal Problem Statement
	3.2 Nonlinear Encoding

	4 Convexification
	4.1 Transformation and Relaxation of Equality Constraints
	4.2 Convexification by Lifting
	4.3 Tightening the Constraints

	5 Sequential Geometric Programming
	6 Applications
	7 Experiments
	8 Conclusion and Future Work
	References

	JANI: Quantitative Model and Tool Interaction
	1 Introduction
	2 JSON and js-schema
	3 The JANI Model Format
	4 The JANI Interaction Protocol
	5 Tool Support
	5.1 Modelling Languages
	5.2 Analysis Tools

	6 Conclusion
	References

	Computing Scores of Forwarding Schemes in Switched Networks with Probabilistic Faults
	1 Introduction
	2 Preliminaries
	3 From Computing Scores to Reasoning About Markov Chains
	4 Computing the Score of a Forwarding Scheme
	5 Computational Complexity
	6 Estimating the Score of a Forwarding Scheme
	6.1 A Monte-Carlo Approach

	7 Evaluation
	8 Discussion
	References

	Long-Run Rewards for Markov Automata
	1 Introduction
	2 Foundations
	3 Long-Run Average Reward Property
	4 An Iterative Approach to Long-Run Average Rewards
	4.1 CTMDP Preserving aRopt
	4.2 Dealing with Exponentiality
	4.3 Algorithmic Solution

	5 Experiments
	6 Conclusion
	References

	SAT and SMT
	HiFrog: SMT-based Function Summarization for Software Verification
	1 Introduction
	2 Tool Overview
	3 HIFROG Usage
	References

	Congruence Closure with Free Variables
	1 Introduction
	1.1 Related Work

	2 Notations and Basic Definitions
	3 E-ground (Dis)unification
	4 Congruence Closure with Free Variables
	4.1 The Calculus
	4.2 A Strategy for the Calculus
	4.3 Correctness of CCFV

	5 Relation to Instantiation Techniques
	5.1 Trigger Based Instantiation
	5.2 Conflict Based Instantiation
	5.3 Model Based Instantiation (MBQI)

	6 Implementation and Experiments
	7 Conclusion and Future Work
	References

	On Optimization Modulo Theories, MaxSMT and Sorting Networks
	1 Introduction
	2 Background
	3 Problems with OMT-based Approaches
	4 Combining OMT with Sorting Networks
	4.1 Bidirectional Sorting Networks

	5 Experimental Evaluation
	5.1 Problems Suitable for MaxSAT-Based Approaches
	5.2 Problems Unsuitable for MaxSAT-Based Approaches

	6 Conclusion and Future Work
	References

	The Automatic Detection of Token Structures and Invariants Using SAT Checking
	1 Introduction
	2 Background
	3 Related Work
	4 Detecting Token Structures and Invariants Using SAT
	4.1 Conservative Technique
	4.2 Existential Technique

	5 Checking Deadlock-Freedom
	5.1 Implementation

	6 Practical Evaluation
	7 Conclusion
	References

	Quantitative Systems II
	Maximizing the Conditional Expected Reward for Reaching the Goal
	1 Introduction
	2 Preliminaries
	3 Finiteness and Upper Bound
	4 Threshold Algorithm and Computing Optimal Schedulers
	5 Conclusion
	References

	ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans
	1 Introduction
	2 V-Formation MDP
	3 Particle Swarm Optimization
	4 Importance Splitting
	5 Problem Definition
	6 The ARES Algorithm for Plan Synthesis
	7 Experimental Results
	8 Related Work
	9 Conclusion and Future Work
	References

	FlyFast: A Mean Field Model Checker
	1 Introduction
	2 Gossip Protocol
	3 The FlyFast Population Modelling Language
	4 FlyFast Properties and Verification
	5 Related Work and Conclusions
	References

	ERODE: A Tool for the Evaluation and Reduction of Ordinary Differential Equations
	1 Introduction
	2 Theory Overview
	3 ERODE
	3.1 Architecture
	3.2 Language

	4 Evaluation
	4.1 Scalability
	4.2 Degree of Nonlinearity
	4.3 Number of Iterations vs Runtime

	5 Conclusion
	References

	SV COMP
	Software Verification with Validation of Results
	1 Introduction
	2 Procedure
	3 Definitions, Formats, and Rules
	4 Reproducibility
	5 Results and Discussion
	6 Conclusion
	References

	AProVE: Proving and Disproving Termination of Memory-Manipulating C Programs
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Setup and Configuration
	References

	CPA-BAM-BnB: Block-Abstraction Memoization and Region-Based Memory Models for Predicate Abstractions
	1 Software Architecture
	2 Verification Approach
	2.1 Block-Abstraction Memoization with Value Analysis and Predicate Analysis
	2.2 Modeling Memory with Memory Regions

	3 Strengths and Weaknesses
	4 Setup and Configuration
	5 Project and Contributors
	References

	DepthK: A k-Induction Verifier Based on Invariant Inference for C Programs
	1 Overview
	2 Verification Approach
	3 Architecture, Implementation and Availability
	4 Strengths and Weaknesses of the Approach
	5 Software Project and Contributors
	References

	FORESTER: From Heap Shapes to Automata Predicates
	1 Verification Approach
	2 Tool Architecture
	3 Strengths and Weaknesses
	4 Tool Setup, Configuration, and Witnesses
	5 Software Project and Contributors
	References

	HipTNT+: A Termination and Non-termination Analyzer by Second-Order Abduction
	1 Overview
	2 Verification Approach
	2.1 Termination Verification via Resource Reasoning
	2.2 From Verification to Inference

	3 Software Architecture
	4 Strengths and Weaknesses
	5 Tool Setup and Configuration
	6 Software Project and Contributors
	References

	Lazy-CSeq 2.0: Combining Lazy Sequentialization with Abstract Interpretation
	1 Verification Approach
	2 Software Architecture
	3 Tool Setup and Configuration
	4 Strengths and Weaknesses
	References

	Skink: Static Analysis of Programs in LLVM Intermediate Representation
	1 Overview
	2 Verification Approach
	3 Software Architecture
	4 Strengths and Weaknesses
	5 Set up and Configuration
	6 Software Project and Contributors
	References

	Symbiotic 4: Beyond Reachability
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project and Contributors
	References

	Optimizing and Caching SMT Queries in SymDIVINE
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project and Contributors
	References

	Ultimate Automizer with an On-Demand Construction of Floyd-Hoare Automata
	1 Verification Approach
	2 Software Architecture
	3 Tool Setup and Configuration
	4 Software Project
	References

	Ultimate Taipan: Trace Abstraction and Abstract Interpretation
	1 Verification Approach
	2 Strengths and Weaknesses
	3 Software Project
	4 Tool Setup and Configuration
	References

	VeriAbs: Verification by Abstraction (Competition Contribution)
	1 Verification Approach
	1.1 Verification Process

	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

	Author Index

