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ETAPS Foreword

Welcome to the proceedings of ETAPS 2017, which was held in Uppsala! It was the
first time ever that ETAPS took place in Scandinavia.

ETAPS 2017 was the 20th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program enables
participation in an exciting event, offering the possibility to meet many researchers
working in different directions in the field and to easily attend talks of different con-
ferences. Before and after the main conference, numerous satellite workshops take
place and attract many researchers from all over the globe.

ETAPS 2017 received 531 submissions in total, 159 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all authors for their interest in
ETAPS, all reviewers for their peer reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2017 was enriched by the unifying invited speakers Kim G. Larsen (Aal-
borg University, Denmark) and Michael Ernst (University of Washington, USA), as
well as the conference-specific invited speakers (FoSSaCS) Joel Ouaknine (MPI-SWS,
Germany, and University of Oxford, UK) and (TACAS) Dino Distefano (Facebook and
Queen Mary University of London, UK). In addition, ETAPS 2017 featured a public
lecture by Serge Abiteboul (Inria and ENS Cachan, France). Invited tutorials were
offered by Véronique Cortier (CNRS research director at Loria, Nancy, France) on
security and Ken McMillan (Microsoft Research Redmond, USA) on compositional
testing. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2017 took place in Uppsala, Sweden, and was organized by the Department
of Information Technology of Uppsala University. It was further supported by the
following associations and societies: ETAPS e.V., EATCS (European Association for
Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). Facebook, Microsoft, Amazon, and the city of Uppsala financially sup-
ported ETAPS 2017. The local organization team consisted of Parosh Aziz Abdulla
(general chair), Wang Yi, Bjorn Victor, Konstantinos Sagonas, Mohamed Faouzi Atig,
Andreina Francisco, Kaj Lampka, Tjark Weber, Yunyun Zhu, and Philipp Riimmer.

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its executive board. The ETAPS Steering Committee
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consists of an executive board, and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The executive board
consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Liittgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Parosh Abdulla (Uppsala), Amal Ahmed (Boston),
Christel Baier (Dresden), David Basin (Zurich), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Giuseppe Castagna (Paris), Tom Crick (Cardiff), Javier Esparza (Munich),
Jan Friso Groote (Eindhoven), Jurriaan Hage (Utrecht), Reiko Heckel (Leicester),
Marieke Huisman (Twente), Panagotios Katsaros (Thessaloniki), Ralf Kiisters (Trier),
Ugo del Lago (Bologna), Kim G. Larsen (Aalborg), Axel Legay (Rennes), Matteo
Maffei (Saarbriicken), Tiziana Margaria (Limerick), Andrzej Murawski (Warwick),
Catuscia Palamidessi (Palaiseau), Julia Rubin (Vancouver), Alessandra Russo
(London), Mark Ryan (Birmingham), Don Sannella (Edinburgh), Andy Schiirr
(Darmstadt), Gabriele Taentzer (Marburg), Igor Walukiewicz (Bordeaux), and Hon-
gseok Yang (Oxford).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. Finally, a big thanks to
Parosh and his local organization team for all their enormous efforts enabling a fantastic
ETAPS in Uppsala!

April 2017 Joost-Pieter Katoen



Preface

TACAS 2017 was the 23rd edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. The conference took place
during April 2017, in the Uppsala Concert and Congress Hall as part of the 19th
European Joint Conferences on Theory and Practice of Software (ETAPS 2017).

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building systems.

As in former years, TACAS 2017 solicited four types of submissions:

— Research papers, identifying and justifying a principled advance to the theoretical
foundations for the construction and analysis of systems, where applicable sup-
ported by experimental validation

— Case-study papers, reporting on case studies and providing information about the
system being studied, the goals of the study, the challenges the system poses to
automated analysis, research methodologies and approaches used, the degree to
which goals were attained, and how the results can be generalized to other problems
and domains

— Regular tool papers, presenting a new tool, a new tool component, or novel
extensions to an existing tool, with an emphasis on design and implementation
concerns, including software architecture and core data structures, practical appli-
cability, and experimental evaluation

— Short tool-demonstration papers, focusing on the usage aspects of tools

This year, 181 papers were submitted to TACAS, among which 167 were research,
case study, or tool papers, and 14 were tool demonstration papers. After a rigorous review
process followed by an online discussion, the Program Committee accepted 48 full papers
and four tool demonstration papers. This volume also includes an invited paper by the
ETAPS unifying speaker Kim. G. Larsen titled “Validation, Synthesis, and Optimization
for Cyber-Physical Systems” and an invited paper by TACAS invited speaker Dino
Distefano titled “The Facebook Infer Static Analyzer.”

TACAS 2017 also hosted the 6th International Competition on Software Verification
(SV-COMP), chaired and organized by Dirk Beyer. The competition again had a high
participation: 32 verification tools from 12 countries were submitted for the systematic
comparative evaluation, including two submissions from industry. This volume includes
an overview of the competition results, and short papers describing 12 of the partici-
pating verification systems. These papers were reviewed by a separate Program Com-
mittee; each of the papers was assessed by four reviewers. One session in the TACAS
program was reserved for the presentation of the results: the summary by the SV-COMP
chair and the participating tools by the developer teams.



VIII Preface

Many people worked hard and offered their valuable time generously to make
TACAS 2017 successful. First, the chairs would like to thank the authors for sub-
mitting their papers to TACAS 2017. We are grateful to the reviewers who contributed
to nearly 550 informed and detailed reports and discussions during the electronic
Program Committee meeting. We also sincerely thank the Steering Committee for their
advice. We also acknowledge the work of Parosh Aziz Abdulla and the local organizers
for ETAPS 2017. Furthermore, we would like to express a special thanks to
Joost-Pieter Katoen, who answered many of our questions during the preparation of
TACAS 2017. Finally, we thank EasyChair for providing us with the infrastructure to
manage the submissions, the reviewing process, the Program Committee discussion,
and the preparation of the proceedings.

April 2017 Dirk Beyer
Axel Legay

Tiziana Margaria

Dave Parker
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Validation, Synthesis and Optimization
for Cyber-Physical Systems

Kim Guldstrand Larsen

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, 9220 Aalborg East, Denmark
kgl@cs.aau.dk

Abstract. The growing complexity of Cyber-Physical Systems increasingly
challenges existing methods and techniques. What is needed is a new generation
of scalable tools for model-based learning, analysis, synthesis and optimization
based on a mathematical sound foundation, that enables trade-offs between
functional safety and quantitative performance. In paper we illustrate how recent
branches of the UppaAL tool suit are making an effort in this direction.

This work is partly funded by the ERC Advanced Grant LASSO: Learning, Analysis, SynthesiS
and Optimization of Cyber-Physical Systems as well as the Innovation Center DiCyPS: Data-Intensive
Cyber Physical Systems.



The Facebook Infer Static Analyser

Dino Distefano

Facebook Inc., Menlo Park, USA

Abstract. Infer is an open-source static analyser developed at Facebook [1].
Originally based on Separation Logic [2, 3], Infer has lately evolved from a
specific tool for heap-manipulating programs to a general framework which
facilitates the implementation of new static analyses.

In this talk, I will report on the Infer team’s experience of applying our tool
to Facebook mobile code, each day helping thousands of engineers to build
more reliable and secure software [4]. Moreover, I will discuss the team’s
current effort to turn Infer into a static analysis platform for research and
development useful both to academic researchers and industrial practitioners.

References

1. http://fbinfer.com

2. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: POPL, pp. 289-300. ACM (2009)

3. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety of C
programs. In: Bobaru, M., Havelund. K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS,
vol. 6617, pp. 459-465. Springer, Heidelberg (2011)

4. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn, P.W.,
Papakonstantinou, 1., Purbrick, J., Rodriguez, D.: Moving Fast with Software Verification. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3-11.
Springer, Switzerland (2015)

© Facebook.
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Abstract. In an algorithmic complexity attack, a malicious party
takes advantage of the worst-case behavior of an algorithm to cause
denial-of-service. A prominent algorithmic complexity attack is regu-
lar expression denial-of-service (ReDoS), in which the attacker exploits
a vulnerable regular expression by providing a carefully-crafted input
string that triggers worst-case behavior of the matching algorithm. This
paper proposes a technique for automatically finding ReDoS vulnerabil-
ities in programs. Specifically, our approach automatically identifies vul-
nerable regular expressions in the program and determines whether an
“evil” input string can be matched against a vulnerable regular expres-
sion. We have implemented our proposed approach in a tool called REX-
PLOITER and found 41 exploitable security vulnerabilities in Java web
applications.

1 Introduction

Regular expressions provide a versatile mechanism for parsing and validating
input data. Due to their flexibility, many developers use regular expressions to
validate passwords or to extract substrings that match a given pattern. Hence,
many languages provide extensive support for regular expression matching.

While there are several algorithms for determining membership in a regular
language, a common technique is to construct a non-deterministic finite automa-
ton (NFA) and perform backtracking search over all possible runs of this NFA.
Although simple and flexible, this strategy has super-linear (in fact, exponential)
complexity and is prone to a class of algorithmic complexity attacks [14]. For some
regular expressions (e.g., (alb)*(alc)*), it is possible to craft input strings that
could cause the matching algorithm to take quadratic time (or worse) in the size
of the input. For some regular expressions (e.g., (a+)+), one can even generate
input strings that could cause the matching algorithm to take exponential time.
Hence, attackers exploit the presence of vulnerable regular expressions to launch
so-called regular expression denial-of-service (ReDoS) attacks.

ReDoS attacks have been shown to severely impact the responsiveness and
availability of applications. For example, the .NET framework was shown to be
vulnerable to a ReDoS attack that paralyzed applications using .NET’s default
validation mechanism [2]. Furthermore, unlike other DoS attacks that require
© Springer-Verlag GmbH Germany 2017
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thousands of machines to bring down critical infrastructure, ReDoS attacks
can be triggered by a single malicious user input. Consequently, developers are
responsible for protecting their code against such attacks, either by avoiding the
use of vulnerable regular expressions or by sanitizing user input.

Unfortunately, protecting an application against ReDoS attacks can be non-
trivial in practice. Often, developers do not know which regular expressions are
vulnerable or how to rewrite them in a way that avoids super-linear complexity.
In addition, it is difficult to implement a suitable sanitizer without understanding
the class of input strings that trigger worst-case behavior. Even though some
libraries (e.g., the .NET framework) allow developers to set a time limit for
regular expression matching, existing solutions do not address the root cause of
the problem. As a result, ReDoS vulnerabilities are still being uncovered in many
important applications. For instance, according to the National Vulnerability
Database (NVD), there are over 150 acknowledged ReDoS vulnerabilities, some
of which are caused by exponential matching complexity (e.g., [2,3]) and some
of which are characterized by super-linear behavior (e.g., [1,4,5]).

In this paper, we propose a static technique for automatically uncovering
DoS vulnerabilities in programs that use regular expressions. There are two
main technical challenges that make this problem difficult: First, given a regu-
lar expression &£, we need to statically determine the worst-case complexity of
matching £ against an arbitrary input string. Second, given an application A
that contains a vulnerable regular expression £, we must statically determine
whether there can exist an execution of A in which £ can be matched against
an input string that could cause super-linear behavior.

We solve these challenges by developing a two-tier algorithm that combines
(a) static analysis of regular expressions with (b) sanitization-aware taint analy-
sis at the source code level. Our technique can identify both vulnerable regular
expressions that have super-linear complexity (quadratic or worse), as well as
hyper-vulnerable ones that have exponential complexity. In addition and, most
importantly, our technique can also construct an attack automaton that cap-
tures all possible attack strings. The construction of attack automata is crucial
for reasoning about input sanitization at the source-code level.

To summarize, this paper makes the following contributions:

— We present algorithms for reasoning about worst-case complexity of NFAs.
Given an NFA A, our algorithm can identify whether A has linear, super-
linear, or exponential time complexity and can construct an attack automaton
that accepts input strings that could cause worst-case behavior for A.

— We describe a program analysis to automatically identify ReDoS vulnera-
bilities. Our technique uses the results of the regular expression analysis to
identify sinks and reason about input sanitization using attack automata.

— We use these ideas to build an end-to-end tool called REXPLOITER for finding
vulnerabilities in Java. In our evaluation, we find 41 security vulnerabilities in
150 Java programs collected from Github with a 11% false positive rate.
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1 public class RegExValidator {

2 boolean validEmail(String t) { return t.matches(".+@.+\\.[a-2z]+"); }
3 boolean validComment (String t) {

4 return !t.matches (" (\\p{Blank}*(\\r?\\n)\\p{Blankl}*)+"); }
5 boolean safeComment (String t) { return t.matches("([~\/<>])+"); }
6 boolean validUrl(String t) {

7 return t.matches ("www\\.shoppers\\.com/.+/.+/.+/.+/"); }
El

9 public class CommentFormValidator implements Validator {

10 private Admin admin;

11 public void validate (CommentForm form, Errors errors) {

12 String senderEmail = form.getSenderEmail ();

13 String productUrl = form.getProductUrl();

14 String comment = form.getComment ();

15 if (!RegExValidator.validEmail (admin.getEmail())) return;
16 if (senderEmail.length() <= 254) {

17 if (RegExValidator.validEmail(senderEmail)) ... }

18 if (productUrl.split("/").length == 5) {

19 if (RegExValidator.validUrl(productUrl)) ... }

20 if (RegExValidator.safeComment (comment)) {

21 if (RegExValidator.validComment (comment)) ... }

22 }

Fig. 1. Motivating example containing ReDoS vulnerabilities

2 Overview

We illustrate our technique using the code snippet shown in Fig. 1, which shows
two relevant classes, namely RegExValidator, that is used to validate that
certain strings match a given regular expression, and CommentFormValidator,
that checks the validity of a comment form filled out by a user. In particular,
the comment form submitted by the user includes the user’s email address, the
URL of the product about which the user wishes to submit a comment', and
the text containing the comment itself. We now explain how our technique can
determine whether this program contains a denial-of-service vulnerability.

Regular Expression Analysis. For each regular expression in the program, we
construct its corresponding NFA and statically analyze it to determine whether
its worst-case complexity is linear, super-linear, or exponential. For our running
example, the NFA complexity analysis finds instances of each category. In par-
ticular, the regular expression used at line 5 has linear matching complexity,
while the one from line 4 has exponential complexity. The regular expressions
from lines 2 and 7 have super-linear (but not exponential) complexity. Figure 2
plots input size against running time for the regular expressions from lines 2
and 4 respectively. For the super-linear and exponential regular expressions, our
technique also constructs an attack automaton that recognizes all strings that
cause worst-case behavior. In addition, for each regular expression, we determine
a lower bound on the length of any possible attack string using dynamic analysis.

Program Amnalysis. The presence of a vulnerable regular expression does not
necessarily mean that the program itself is vulnerable. For instance, the vulnerable

! Due to the store’s organization, the URL is expected to be of the form
www . shoppers. com/Dept/Category/Subcategory/product-id/.
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Fig. 2. Matching time against malicious string size for vulnerable (left) and hyper-
vulnerable (right) regular expressions from Fig. 1.

regular expression may not be matched against an attacker-controlled string, or
the program may take measures to prevent the user from supplying a string that
is an instance of the attack pattern. Hence, we also perform static analysis at the
source code level to determine if the program is actually vulnerable.

Going back to our example, the validate procedure (lines 11-22) calls
validEmail to check whether the website administrator’s email address is valid.
Even though validEmail contains a super-linear regular expression, line 15 does
not contain a vulnerability because the administrator’s email is not supplied by
the user. Since our analysis tracks taint information, it does not report line 15 as
being vulnerable. Now, consider the second call to validEmail at line 17, which
matches the vulnerable regular expression against user input. However, since the
program bounds the size of the input string to be at most 254 (which is smaller
than the lower bound identified by our analysis), line 17 is also not vulnerable.

Next, consider the call to validUrl at line 19, where productUrl is a user
input. At first glance, this appears to be a vulnerability because the matching
time of the regular expression from line 4 against a malicious input string grows
quite rapidly with input size (see Fig.2). However, the check at line 18 actu-
ally prevents calling validUrl with an attack string: Specifically, our analysis
determines that attack strings must be of the form www.shoppers.com-/°-/*-x,
where x denotes any character and b is a constant inferred by our analysis (in
this case, much greater than 5). Since our program analysis also reasons about
input sanitization, it can establish that line 19 is safe.

Finally, consider the call to validComment at line 21, where comment is again
a user input and is matched against a regular expression with exponential com-
plexity. Now, the question is whether the condition at line 20 prevents comment
from conforming to the attack pattern \n\t\n\t(\t\n\t)*a. Since this is not
the case, line 21 actually contains a serious DoS vulnerability.

Summary of Challenges. This example illustrates several challenges we must
address: First, given a regular expression £, we must reason about the worst-
case time complexity of its corresponding NFA. Second, given vulnerable regular
expression £, we must determine whether the program allows £ to be matched
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against a string that is (a) controlled by the user, (b) is an instance of the attack
pattern for regular expression £, and (c) is large enough to cause the matching
algorithm to take significant time.

Our approach solves these challenges by combining complexity analysis of
NFAs with sanitization-aware taint analysis. The key idea that makes this
combination possible is to produce an attack automaton for each vulnerable
NFA. Without such an attack automaton, the program analyzer cannot effec-
tively determine whether an input string can correspond to an attack string.

As shown in Fig. 3, the REX-

PLOITER toolchain incorporates g )\
. . Regex Stati
both static and dynamic reg- extraction —>
ular expression analysis. The
static analysis creates attack
k . /] Dynamic regex ?dé
patterns sg - s” - s1 and dynamic N analysis =%

of s in order to exceed a min- analysis
imum runtime threshold. The
program analysis uses both the
attack automaton and the lower Fig. 3. Overview of our approach
bound b to reason about input

sanitization.

analysis infers a lower bound b \ l Vulner-
Program abilities
\

on the number of occurrences
Static program ]‘
J

3 Preliminaries

This section presents some useful background and terminology.

Definition 1. (NFA) An NFA A is a 5-tuple (Q, X, A, qo, F) where Q is a
finite set of states, X is a finite alphabet of symbols, and A : Q x X — 29 is the
transition function. Here, qo € @ is the initial state, and F' C Q is the set of
accepting states. We say that (q,1,q’) is a transition via label | if ¢ € A(q,1).

An NFA A accepts a string s = agay - .. a, iff there exists a sequence of
states qo,q1, ..., qn such that ¢, € F and ¢;41 € A(gi,a;). The language of A,
denoted L(A), is the set of all strings that are accepted by .A. Conversion from
a regular expression to an NFA is sometimes referred to as compilation and can
be achieved using well-known techniques, such as Thompson’s algorithm [25].

In this paper, we assume that membership in a regular language L(E) is
decided through a worst-case exponential algorithm that performs backtracking
search over possible runs of the NFA representing £. While there exist linear-time
matching algorithms (e.g., based on DFAs), many real-world libraries employ
backtracking search for two key reasons: First, the compilation of a regular
expression is much faster using NFAs and uses much less memory (DFA’s can be
exponentially larger). Second, the backtracking search approach can handle reg-
ular expressions containing extra features like backreferences and lookarounds.
Thus, many widely-used libraries (e.g., java.util.regex, Python’s standard
library) employ backtracking search for regular expression matching.
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In the remainder of this paper, we will use the notation A* and A? to denote
the NFA that accepts X* and the empty language respectively. Given two NFAs
A; and A, we write A; N As, A1 U Az, and A; - Ay to denote automata inter-
section, union, and concatenation. Finally, given an automaton A, we write A
to represent its complement, and we use the notation A" to represent the NFA
that recognizes exactly the language {s* | k > 1A s € L(A)}.

Definition 2 (Path). Given an NFA A = (Q, X, A,qo, F), a path © of A is
a sequence of transitions (q1,41,42), -, (@m—1,bm—1,¢m) where ¢; € Q, {; € X,
and ¢i+1 € A(gi, l;). We say that © starts in g; and ends at qp,, and we write
labels(7) to denote the sequence of labels (¢1,...,lm—1).

4 Detecting Hyper-Vulnerable NFAs

In this section, we explain our technique for determining if an NFA is hyper-
vulnerable and show how to generate an attack automaton that recognizes exactly
the set of attack strings.

Definition 3 (Hyper-Vulnerable NFA). An NFA A = (Q,X,A,qo, F) is
hyper-vulnerable iff there exists a backtracking search algorithm MATCH over the
paths of A such that the worst-case complezity of MATCH is exponential in the
length of the input string.

We will demonstrate that an NFA A is hyper-vulnerable by showing that
there exists a string s such that the number of distinct matching paths 7; from
state go to a rejecting state g, with labels(m;) = s is exponential in the length of
s. Clearly, if s is rejected by A, then MATCH will need to explore each of these
exponentially many paths. Furthermore, even if s is accepted by A, there exists a
backtracking search algorithm (namely, the one that explores all rejecting paths
first) that results in exponential worst-case behavior.

Theorem 1. An NFA A= (Q,X, A, qo, F) is hyper-vulnerable iff there exists
a pivot state ¢ € Q and two distinct paths w1, 7o such that (i) both m,mo start
and end at q, (i) labels(m1) = labels(ms), and (i) there is a path w, from initial
state qo to q, and (iv) there is a path w5 from q to a state q. ¢ F.

Proof. The sufficiency argument is laid out below, and the necessity argument
can be found in the extended version of this paper [31].

To gain intuition about hyper-
vulnerable NFAs, consider Fig.4
illustrating the conditions of prefix
Theorem 1. First, a hyper-vulnerable
NFA must contain a pivot state g,
such that, starting at ¢, there are

two different ways (namely, 71, 72)
of getting back to ¢ on the same

labels(m1)=labels(ms)

Fig. 4. Hyper-vulnerable NFA pattern
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input string s (i.e., labels(m1)). Second, the pivot state ¢ should be reachable
from the initial state gg, and there must be a way of reaching a rejecting state
qr from gq.

To understand why these conditions cause exponential behavior, consider a
string of the form sq-s*-s1, where sq is the attack prefiz given by labels(,), s1 is
the attack suffiz given by labels(ws), and s is the attack core given by labels(my).

Clearly, there is an execution path of A in which the string sq - s* - s; will be

rejected. For example, m, - 7% . 7, is exactly such a path.

Algorithm 1. Hyper-vulnerable NFA k+11\T0W7 consider a Stfif{g' So -
1: function ATTACKAUTOMATON(.A) s 51 that has an addltlon.al
9: assume A = (Q, X, A, qo, F) instance of the attack core s in
3 AY AP the middle, and suppose that
4 for ¢; € Q do there are n possible executions
5: AY — ATTACKFORPIVOT(A, ¢;) of A on the prefix s - s* that
6 AV — AYu A! end in ¢q. Now, for each of these n
7 return A" executions, there are two ways to

y

8: function ATTACKFORPIVOT(A, q) get back to g after reading s: one
9: asiume _,;l =(Q,X,A,q,F) that takes path m; and another
10: AT — A that takes path my. Therefore,
11: for (¢,1,q1),(¢,1,42) € ANq1 # g2 do there are 2n possible executions
12: A1 — LoOoPBACK(A, ¢,1,q1) of A that end in ¢. Furthermore,
13: Az — LOOPBACK(A, q,1, ¢2) . . s

the matching algorithm will (in

14: AP - (Q527A7q07{q}) :
15: A —(Q.5, A, q, F) the worst case) end up exploring
16: Ai _ AL’JU EA; ~7(A1 N As)* - AL) all of these 2n executions since
17: return A" there is a way to reach the reject-
18: function LoorPBACK(A,q,l,q") mg Stﬁate qr- Hen'ce, V\_’e end up
19: assume A = (Q, X, A, qo, F) doubling the running time of the

20: ¢* — NEWSTATE(Q) algorithm every time we add an

21: Q —QuUg; A —AuU(¢hlq) instance of the attack core s to

22: return (Q', X, A', ¢*, {q}) the middle of the input string.

Ezample 1. The NFA in Fig. 5 (left) is hyper-vulnerable because there exist two
different paths m = (q,q,q), (¢,a,q) and T = (q,a,qo), (g0, a,q) that contain
the same labels and that start and end in ¢. Also, ¢ is reachable from ¢y, and
the rejecting state ¢, is reachable from q. Attack strings for this NFA are of the
form a - (a - a)* - b, and the attack automaton is shown in Fig. 5 (right).
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Fig. 5. A hyper-vulnerable NFA (left) and an attack automaton (right).
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We now use Theorem 1 to devise Algorithm 1 for constructing the attack
automaton A" for a given NFA. The key idea of our algorithm is to search for
all possible pivot states ¢; and construct the attack automaton .A;-P for state ¢;.
The full attack automaton is then obtained as the union of all AY. Note that
Algorithm 1 can be used to determine if automaton A is vulnerable: A exhibits
worst-case exponential behavior iff the language accepted by A* is non-empty.

In Algorithm 1, most of the real work is done by the ATTACKFORPIVOT
procedure, which constructs the attack automaton for a specific state ¢q: Given
a pivot state ¢, we want to find two different paths 7y, w9 that loop back to ¢
and that have the same set of labels. Towards this goal, line 11 of Algorithm 1
considers all pairs of transitions from ¢ that have the same label (since we must
have labels(my) = labels(ms)).

Now, let us consider a pair of transitions 71 = (q,,¢1) and 72 = (q,1, g2). For
each ¢; (i € {1,2}), we want to find all strings that start in ¢, take transition
7;, and then loop back to ¢. In order to find all such strings S, Algorithm 1
invokes the LoOPBACK function (lines 18-22), which constructs an automaton
A’ that recognizes exactly S. Specifically, the final state of A’ is g because we
want to loop back to state ¢. Furthermore, A’ contains a new initial state ¢*
(where ¢* ¢ Q) and a single outgoing transition (¢*, 1, g;) out of ¢* because we
only want to consider paths that take the transition to ¢; first. Hence, each A;
in lines 12-13 of the ATTACKFORPIVOT procedure corresponds to a set of paths
that loop back to ¢ through state g;. Observe that, if a string s is accepted by
A; N Ay, then s is an attack core for pivot state q.

We now turn to the problem of computing the set of all attack prefixes and
suffixes for pivot state g: In line 14 of Algorithm 1, A, is the same as the original
NFA A except that its only accepting state is g. Hence, A, accepts all attack
prefixes for pivot ¢. Similarly, A, is the same as A except that its initial state is
g instead of qo; thus, A, accepts all attack suffixes for g.

Finally, let us consider how to construct the full attack automaton A" for g.
As explained earlier, all attack strings are of the form s; - s¥ - so where s; is the
attack prefix, s is the attack core, and s, is the attack suffix. Since A, A; N As,
and A, recognize attack prefixes, cores, and suffixes respectively, any string that
is accepted by A, - (A1 N A2)T - Ay is an attack string for the original NFA A.

Theorem 2 (Correctness of Algorithm 1)2. Let A¥ be the result of calling
ATTACKAUTOMATON(A) for NFA A = (Q, X, A, qo, F). For every s € L(AY),
there exists a rejecting state . € Q\ F s.t. the number of distinct paths m; from
qo to qr with labels(m;) = s is exponential in the number of repetitions of the
attack core in s.

5 Detecting Vulnerable NFAs

So far, we only considered the problem of identifying NFAs whose worst-case
running time is exponential. However, in practice, even NFAs with super-linear

2 The proofs of Theorems 2 and 4 are given in the extended version of this paper [31].
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complexity can cause catastrophic backtracking. In fact, many acknowledged
ReDoS vulnerabilities (e.g., [1,4,5]) involve regular expressions whose match-
ing complexity is “only” quadratic. Based on this observation, we extend the
techniques from the previous section to statically detect NFAs with super-linear
time complexity. Our solution builds on insights from Sect.4 to construct an
attack automaton for this larger class of vulnerable regular expressions.

5.1 TUnderstanding Super-Linear NFAs

Before we present the algorithm for detecting super-linear NFAs, we provide a
theorem that explains the correctness of our solution.

Definition 4 (Vulnerable NFA). An NFA A= (Q, X, A, qo, F) is vulnerable
iff there exists a backtracking search algorithm MATCH over the paths of A such
that the worst-case complezity of MATCH is at least quadratic in the length of
the input string.

Theorem 3. An NFA A = (Q, X, A, qo, F) is vulnerable iff there exist two
states g € Q (the pivot), ¢’ € Q, and three paths w1, 2, and 73 (where w1 # m3)
such that (i) w1 starts and ends at q, (i) mo starts at q and ends at q', (%) 73
starts and ends at ¢', (iv) labels(m) = labels(mg) = labels(ws), and (v) there is
a path m, from qqo to q, (vi) there is a path ws from ¢’ to a state ¢, ¢ F.

Proof. The sufficiency argument is laid out below, and the necessity argument
can be found in the extended version of this paper [31].

Figure6 illustrates the intuition behind the conditions above. The distin-
guishing characteristic of a super-linear NFA is that it contains two states q, ¢’
such that ¢’ is reachable from ¢ on input string s, and it is possible to loop back
from ¢ and ¢’ to the same state on string s. In addition, just like in Theorem 1,
the pivot state ¢ needs to be reachable from the initial state, and a rejecting
state ¢ must be reachable from ¢’. Observe that any automaton that is hyper-
vulnerable according to Theorem 1 is also vulnerable according to Theorem 3.
Specifically, consider an automaton A with two distinct paths 71, w5 that loop
around ¢. In this case, if we take ¢’ to be g and 73 to be 7, we immediately see
that A also satisfies the conditions of Theorem 3.

To understand why the conditions of Theorem 3 imply super-linear time com-
plexity, let us consider a string of the form sq - s* - s1 where sq is the attack prefiz

prefix “
(@A Py

pivot

labels(my) = labels(mz)
= labels(ms)

Fig. 6. General pattern characterizing vulnerable NFAs
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Fig. 7. A vulnerable NFA (left) and its attack automaton (right).

given by labels(my), s1 is the attack suffiz given by labels(r), and s is the attack
core given by labels(mi). Just like in the previous section, the path m, ¥
describes an execution for rejecting the string s - s* - s; in automaton A. Now,
let T,(k) represent the running time of rejecting the string s*s; starting from
q, and suppose that it takes 1 unit of time to read string s. We can write the
following recurrence relation for T (k):

To(k) =1+ Ty(k—1))+ (1 +Ty(k—1))

To understand where this recurrence is coming from, observe that there are two
ways to process the first occurence of s:

— Take path m; and come back to ¢, consuming 1 unit of time to process string s.
Since we are back at ¢, we still have T, (k — 1) units of work to perform.

— Take path mo and proceed to ¢’, also consuming 1 unit of time to process
string s. Since we are now at ¢/, we have T,/ (k — 1) units of work to perform.

Now, observe that a lower bound on T (k) is k since one way to reach ¢, is
78w, which requires us to read the entire input string. This observation allows
us to obtain the following recurrence relation:

Ty(k) > Ty(k— 1)+ k+1

k

Thus, the running time of A on the input string sg - s* - 51 is at least k2.

Ezample 2. The NFA shown in Fig.7 (left) exhibits super-linear complexity
because we can get from ¢ to ¢’ on input string ab, and for both ¢ and ¢/,
we loop back to the same state when reading input string ab. Specifically, we
have:

ot (q,a,(h)a (qlabaQ) T2 ! (Q>a7q2)7 (QQ,b, ql) 3 : (q/7a7q2)7 (Q2,b» q/)

Furthermore, ¢ is reachable from ¢y, and there exists a rejecting state, namely
q' itself, that is reachable from ¢’. The attack strings are of the form c(ab)*, and
Fig. 7 (right) shows the attack automaton.

5.2 Algorithm for Detecting Vulnerable NFAs

Based on the observations from the previous subsection, we can now formulate
an algorithm that constructs an attack automaton A* for a given automaton A.



Static Detection of DoS Vulnerabilities in Programs 13

Algorithm 2. Construct super-linear attack automaton A" for A and pivot ¢
1: function ANYLOOPBACK(A,q")
2: assume A = (Q, X, A, qo, F)
: q* — NEWSTATE(Q); Q «— QUqg"; A «— A

3

4 for (¢',1,q;) € A do

5: A — AU (g%, 1, q:)
6 A —(Q, X, A q"{d'})
7 return A’

8

: function ATTACKFORPIVOT(A, q)
9: assume A = (Q, X, A, qo, F)

10 AY — A

11: for (q,1,q1) € AN(q,l,q2) € ANq1 # ¢2 do

12: A1 «— LoorPBACK(A,q,1,q1)

13: 'AP — (Q727A7q07{q})

14: for ¢ € Q do

15: ¢i — NEWSTATE(Q)

16: Az — (QU{ai}, 2, AU{(gi,1,g2)}, a6, {a'})
17: As — ANYLoOPBACK(A, ¢')

18: As —(Q, 2, 4,4, F)

19: AY <—.AIPU(.AP~ (A1 N Az N A3)T - Ay)

20: return A"

Just like in Algorithm 1, we construct an attack automaton .A'f for each state in
A by invoking the ATTACKFORPIVOT procedure. We then take the union of all
such .Alf’s to obtain an automaton A* whose language consists of strings that
cause super-linear running time for A.

Algorithm 2 describes the ATTACKFORPIVOT procedure for the super-linear
case. Just like in Algorithm 1, we consider all pairs of transitions from g with the
same label (line 11). Furthermore, as in Algorithm 1, we construct an automaton
A, that recognizes attack prefixes for ¢ (line 13) as well as an automaton A,
that recognizes non-empty strings that start and end at g (line 12).

The key difference of Algorithm 2 is that we also need to consider all states
that could be instantiated as ¢’ from Fig.6 (lines 15-19). For each of these
candidate ¢'’s, we construct automata As, A3 that correspond to paths mo, w3
from Fig.6 (lines 16-17). Specifically, we construct As by introducing a new
initial state ¢; with transition (g;, [, ¢2) and making its accepting state ¢’. Hence,
A accepts strings that start in ¢, transition to g2, and end in ¢'.

The construction of automaton A3, which should accept all non-empty words
that start and end in ¢, is described in the ANYLOOPBACK procedure. First,
since we do not want A3 to accept empty strings, we introduce a new initial
state ¢* and add a transition from ¢* to all successor states ¢; of ¢’. Second, the
final state of A’ is ¢’ since we want to consider paths that loop back to ¢'.

The final missing piece of the algorithm is the construction of A, (line 19),
whose complement accepts all attack suffixes for state ¢’. As expected, Ay is
the same as the original automaton A, except that its initial state is ¢’. Finally,
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similar to Algorithm 1, the attack automaton for states ¢, ¢’ is obtained as A, -

(A1NAzxn A3)+ - As.

Theorem 4 (Correctness of Algorithm 2). Let NFA A= (Q,X, A, qo, F)
and A* be the result of calling ATTACKAUTOMATON(A). For every s € L(AY),
there exists a rejecting state g € Q\ F s.t. the number of distinct paths m; from
qo to q, with labels(m;) = s is super-linear in the number of repetitions of the
attack core in s.

6 Dynamic Regular Expression Analysis

Algorithms 1 and 2 allow us to determine whether a given NFA is vulnerable.
Even though our static analyses are sound and complete at the NFA level, differ-
ent regular expression matching algorithms construct NFAs in different ways and
use different backtracking search algorithms. Furthermore, some matching algo-
rithms may determinize the NFA (either lazily or eagerly) in order to guarantee
linear complexity. Since our analysis does not perform such partial determiniza-
tion of the NFA for a given regular expression, it can, in practice, generate false
positives. In addition, even if a regular expression is indeed vulnerable, the input
string must still exceed a certain minimum size to cause denial-of-service.

In order to overcome these challenges in practice, we also perform dynamic
analysis to (a) confirm that a regular expression £ is indeed vulnerable for Java’s
matching algorithm, and (b) infer a minimum bound on the size of the input
string. Given the original regular expression &, a user-provided time limit ¢, and
the attack automaton A¥ (computed by static regular expression analysis), our
dynamic analysis produces a refined attack automaton as well as a number b
such that there exists an input string of length greater than b for which Java’s
matching algorithm takes more than ¢ seconds. Note that, as usual, this dynamic
analysis trades soundness for completeness to avoid too many false positives.

In more detail, given an attack automaton A" of the form A, - A} - Aj, the
dynamic analysis finds the smallest k where the shortest string s € £(A,-A*- Ay)
exceeds the time limit £. In practice, this process does not require more than a
few iterations because we use the complexity of the NFA to predict the number
of repetitions that should be necessary based on previous runs. The minimum
required input length b is determined based on the length of the found string s.
In addition, the value k is used to refine the attack automaton: in particular,
given the original attack automaton A, - AT - Ay, the dynamic analysis refines

it to be A, - AF - A% - A,

7 Static Program Analysis

As explained in Sect. 2, the presence of a vulnerable regular expression does not
necessarily mean that the program is vulnerable. In particular, there are three
necessary conditions for the program to contain a ReDoS vulnerability: First, a
variable x that stores user input must be matched against a vulnerable regular
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expression €. Second, it must be possible for x to store an attack string that
triggers worst-case behavior for £; and, third, the length of the string stored in
r must exceed the minimum threshold determined using dynamic analysis.

To determine if the program actually contains a ReDoS vulnerability, our
approach also performs static analysis of source code. Specifically, our program
analysis employs the Cartesian product [7] of the following abstract domains:

— The taint abstract domain [6,26] tracks taint information for each variable. In
particular, a variable is considered tainted if it may store user input.

— The automaton abstract domain [12,33,34] overapproximates the contents of
string variables using finite automata. In particular, if string s is in the lan-
guage of automaton A representing x’s contents, then z may store string s.

— The interval domain [13] is used to reason about string lengths. Specifically,
we introduce a ghost variable [, representing the length of string x and use
the interval abstract domain to infer upper and lower bounds for each .

Since these abstract domains are fairly standard, we only explain how to
use this information to detect ReDoS vulnerabilities. Consider a statement
match(z, £) that checks if string variable x matches regular expression &, and
suppose that the attack automaton for £ is A¥. Now, our program analysis con-
siders the statement match(z, £) to be vulnerable if the following three conditions
hold:

1. £ is vulnerable and variable x is tainted;

2. The intersection of A" and the automaton abstraction of z is non-empty;

3. The upper bound on ghost variable [, representing z’s length exceeds the min-
imum bound b computed using dynamic analysis for A* and a user-provided
time limit ¢.

The extended version of this paper [31] offers a more rigorous formalization
of the analysis.

8 Experimental Evaluation

To assess the usefulness of the techniques presented in this paper, we performed
an evaluation in which our goal is to answer the following questions:

Q1: Do real-world Java web applications use vulnerable regular expressions?
Q2: Can REXPLOITER detect ReDoS vulnerabilities in web applications and
how serious are these vulnerabilities?

Results for Q1. In order to assess if real-world Java programs contain vulnera-
bilities, we scraped the top 150 Java web applications (by number of stars) that
contain at least one regular expression from GitHub repositories (all projects
have between 10 and 2,000 stars and at least 50 commits) and collected a total
of 2,864 regular expressions. In this pool of regular expressions, REXPLOITER
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found 37 that have worst-case exponential complexity and 522 that have super-
linear (but not exponential) complexity. Thus, we observe that approximately
20% of the regular expressions in the analyzed programs are vulnerable. We
believe this statistic highlights the need for more tools like REXPLOITER that can
help programmers reason about the complexity of regular expression matching.

Results for Q2. To evaluate the effectiveness of REXPLOITER in finding ReDoS
vulnerabilities, we used REXPLOITER to statically analyze all Java applications
that contain at least one vulnerable regular expression. These programs include
both web applications and frameworks, and cover a broad range of application
domains. The average running time of REXPLOITER is approximately 14 min per
program, including the time to dynamically analyze regular expressions. The
average size of analyzed programs is about 58,000 lines of code.

Our main result is that REXPLOITER found exploitable vulnerabilities in
27 applications (including from popular projects, such as the Google Web
Toolkit and Apache Wicket) and reported a total of 46 warnings. We manually
inspected each warning and confirmed that 41 out of the 46 vulnerabilities are
exploitable, with 5 of the exploitable vulnerabilities involving hyper-vulnerable
regular expressions and the rest being super-linear ones. Furthermore, for each
of these 41 vulnerabilities (including super-linear ones), we were able to come
up with a full, end-to-end exploit that causes the server to hang for more than
10 min.

In Fig. 8, we explore a subset of the vulnerabilities uncovered by REXPLOITER
in more detail. Specifically, Fig. 8 (left) plots input size against running time for
the exponential vulnerabilities, and Fig.8 (right) shows the same information
for a subset of the super-linear vulnerabilities.

Possible Fires. We now briefly discuss some possible ways to fix the vul-
nerabilities uncovered by REXPLOITER. The most direct fix is to rewrite the
regular expression so that it no longer exhibits super-linear complexity. Alter-
natively, the problem can also be fixed by ensuring that the user input cannot
contain instances of the attack core. Since our technique provides the full attack
automaton, we believe REXPLOITER can be helpful for implementing suitable
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Fig. 8. Running times for exponential vulnerabilities (left) and super-linear vulnera-
bilities (right) for different input sizes.
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sanitizers. Another possible fix (which typically only works for super-linear reg-
ular expressions) is to bound input size. However, for most vulnerabilities found
by REXPLOITER, the input string can legitimately be very large (e.g., review).
Hence, there may not be an obvious upper bound, or the bound may still be
too large to prevent a ReDoS attack. For example, Amazon imposes an upper
bound of 5000 words (~25,000 characters) on product reviews, but matching a
super-linear regular expression against a string of that size may still take signif-
icant time.

9 Related Work

To the best of our knowledge, we are the first to present an end-to-end solution
for detecting ReDoS vulnerabilities by combining regular expression and program
analysis. However, there is prior work on static analysis of regular expressions
and, separately, on program analysis for finding security vulnerabilities.

Static Analysis of Regular Expressions. Since vulnerable regular expres-
sions are known to be a significant problem, previous work has studied static
analysis techniques for identifying regular expressions with worst-case exponen-
tial complexity [9,18,22,24]. Recent work by Weideman et al. [30] has also pro-
posed an analysis for identifying super-linear regular expressions. However, no
previous technique can construct attack automata that capture all malicious
strings. Since attack automata are crucial for reasoning about sanitization, the
algorithms we propose in this paper are necessary for performing sanitization-
aware program analysis. Furthermore, we believe that the attack automata pro-
duced by our tool can help programmers write suitable sanitizers (especially in
cases where the regular expression is difficult to rewrite).

Program Analysis for Vulnerability Detection. There is a large body of
work on statically detecting security vulnerabilities in programs. Many of these
techniques focus on detecting cross-site scripting (XSS) or code injection vul-
nerabilities [8,11,12,15,17,19,20,23,27-29,32-35]. There has also been recent
work on static detection of specific classes of denial-of-service vulnerabilities.
For instance, Chang et al. [10] and Huang et al. [16] statically detect attacker-
controlled loop bounds, and Olivo et al. [21] detect so-called second-order DoS
vulnerabilities, in which the size of a database query result is controlled by the
attacker. However, as far as we know, there is no prior work that uses program
analysis for detecting DoS vulnerabilities due to regular expression matching.

Time-Outs to Prevent ReDoS. As mentioned earlier, some libraries (e.g.,
the .NET framework) allow developers to set a time-limit for regular expression
matching. While such libraries may help mitigate the problem through a band-
aid solution, they do not address the root cause of the problem. For instance,
they neither prevent against stack overflows nor do they prevent DoS attacks in
which the attacker triggers the regular expression matcher many times.
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10 Conclusions and Future Work

We have presented an end-to-end solution for statically detecting regular expres-
sion denial-of-service vulnerabilities in programs. Our key idea is to combine
complexity analysis of regular expressions with safety analysis of programs.
Specifically, our regular expression analysis constructs an attack automaton that
recognizes all strings that trigger worst-case super-linear or exponential behavior.
The program analysis component takes this information as input and performs
a combination of taint and string analysis to determine whether an attack string
could be matched against a vulnerable regular expression.

We have used our tool to analyze thousands of regular expressions in the
wild and we show that 20% of regular expressions in the analyzed programs are
actually vulnerable. We also use REXPLOITER to analyze Java web applications
collected from Github repositories and find 41 exploitable security vulnerabilities
in 27 applications. Each of these vulnerabilities can be exploited to make the
web server unresponsive for more than 10 min.

There are two main directions that we would like to explore in future work:
First, we are interested in the problem of automatically repairing vulnerable
regular expressions. Since it is often difficult for humans to reason about the
complexity of regular expression matching, we believe there is a real need for
techniques that can automatically synthesize equivalent regular expressions with
linear complexity. Second, we also plan to investigate the problem of automat-
ically generating sanitizers from the attack automata produced by our regular
expression analysis.
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Abstract. What properties about the internals of a program explain the
possible differences in its overall running time for different inputs? In this
paper, we propose a formal framework for considering this question we
dub trace-set discrimination. We show that even though the algorithmic
problem of computing maximum likelihood discriminants is NP-hard,
approaches based on integer linear programming (ILP) and decision tree
learning can be useful in zeroing-in on the program internals. On a set
of Java benchmarks, we find that compactly-represented decision trees
scalably discriminate with high accuracy—more scalably than maximum
likelihood discriminants and with comparable accuracy. We demonstrate
on three larger case studies how decision-tree discriminants produced by
our tool are useful for debugging timing side-channel vulnerabilities (i.e.,
where a malicious observer infers secrets simply from passively watching
execution times) and availability vulnerabilities.

1 Introduction

Different control-flow paths in a program can have varying execution times.
Such observable differences in execution times may be explainable by information
about the program internals, such as whether or not a given function or functions
were called. How can a software developer (or security analyst) determine what
internals may or may not explain the varying execution times of the program?
In this paper, we consider the problem of helping developers and analysts to
identify such explanations.

We identify a core problem for this task—the trace-set discrimination prob-
lem. Given a set of execution traces with observable execution times binned
(or clustered) into a finite set of labels, a discriminant (or classifier) is a map
relating each label to a property (i.e., a Boolean formula) satisfied by the traces
assigned to that label. Such a discriminant model can then be used, for example,
to predict a property satisfied by some trace given the timing label of that trace.

This problem is, while related, different than the profiling problem. In perfor-
mance profiling, the question is given an execution trace, how do the various parts
of the program contribute to the overall execution time? The trace-set discrim-
ination problem, in contrast, looks for distinguishing features among multiple
traces that result in varying execution times.
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Crucially, once we can explain the timing differences in terms of properties of
traces (e.g., what functions are called only in traces with long execution time),
the analyst can use the explanation to diagnose the possible timing side-channel
and potentially find a fix for the vulnerability. Section2 shows on an example
how a security analyst might use the tool for debugging information leaks.

In this paper, we consider the discriminating properties of traces to be
Boolean combinations of a given set of atomic predicates. These atomic predi-
cates correspond to actions that can be observed through instrumentation in a
training set of execution traces. Examples of such predicates are as follows: (1)
Does the trace have a call to the function f in the program? (2) Does the trace
have a call to the sort function with an array of more than a 1000 numbers? In
our case study, we consider atomic predicates corresponding to the number of
times each function is called.

Concretely, our overall approach is to first obtain a set of execution traces
with information recorded to determine the satisfiability of the given atomic
predicates along with corresponding execution times. Then, we cluster these
training traces based on their overall execution times to bin them into timing
labels. Finally, we learn a trace-set discriminant model from these traces (using
various techniques) to capture what is common amongst the traces with the
same timing labels and what is different between traces with different labels.

In particular, we make the following contributions:

— We formalize the problem of trace-set discrimination with timing differences
and show that the algorithmic problem of finding the maximum likelihood
conjunctive discriminant is NP-hard (Sect. 3).

— We describe two methods for learning trace-set discriminants: (1) a direct
method for inferring the maximum likelihood conjunctive discriminant using
an encoding into integer linear programming (ILP) and (2) by applying deci-
sion tree learning that each offer different trade-offs (Sect.4). For instance,
decision tree algorithms are designed to tolerate noisy labels and work effec-
tively on large data sets but do not have formal guarantees. On a set of
microbenchmarks, we find that the methods have similar accuracy but deci-
sion tree learning appears more scalable.

— We present three case studies in identifying and debugging timing side-channel
and availability vulnerabilities, armed with a prototype tool DISCRIMINER
that performs label clustering and decision tree-discriminant learning (Sect. 5).
These case studies were conducted on medium-sized Java applications, which
range in size from approximately 300 to 3,000 methods and were developed
by a third party vendor as challenge problems for identifying and debugging
such side-channel vulnerabilities. We show that the decision trees produced by
DISCRIMINER are useful for explaining the timing differences amongst trace
sets and performing this debugging task.

In our approach, we need to execute both an instrumented and an uninstru-
mented version of the program of interest on the same inputs. This is because a
trace of the instrumented program is needed to determine the satisfiability of the
atomic predicates, while the execution time of interest is for the uninstrumented
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program. Therefore we need to assume that the program is deterministic. Since
timing observations are noisy due to many sources of non-determinism, each
trace is associated with a distribution over the labels. For instance, a trace may
have a label ¢; with probability 0.9 and label ¢ with probability 0.1.

Like with profiling, we also assume the test inputs that drive the program of
interest to expose interesting behavior are given. It is a separate problem to get
such interesting inputs: whether the analyst has logged some suspicious inputs
from a deployment or whether the developer generates tests using random or
directed test-case generation.

2 Timing Side-Channel Debugging with DiscrRIMINER

In this section, we demonstrate by example how DISCRIMINER can be useful in
identifying timing side-channel vulnerabilities and suggesting ways to fix them.
We use an application called SnapBuddy' as an example. SnapBuddy is a Java
application with 3,071 methods, implementing a mock social network in which
each user has their own page with a photograph.

Identifying a Timing Side-Channel with Clustering. The analyst inter-
acts with the application by issuing download requests to the pages of various
users to record execution times. Figurel shows a scatter plot of the running
times of various traces with each trace represented by a point in the figure. The
running times are clustered into 6 different clusters using a standard k-means
clustering algorithm and shown using different colors. We see that for some users,
the download times were roughly 15 s, whereas for some others they were roughly
7.5s. This significant time differential suggests a potential timing side-channel
if the difference can be correlated with sensitive program state and thus this
differential should be investigated further with DISCRIMINER.

To see how such a time differential could be a timing side-channel, let us
consider an attacker that (a) downloads the public profile pages of all users
and learns each download time, and (b) can observe timing between packets by
sniffing the network traffic between legitimate users. If the attacker observes user
Alice downloading the page of another user whose identity is supposed to be a
secret and sees that the download took approximately 7.5s, the attacker can
infer that Alice downloaded the page of one of the six users corresponding to the
six squares (with time close to 7.5s) in Fig. 1. The timing information leak thus
helped the attacker narrow down the possibilities from hundreds of users to six.

Debugging Timing Side-Channels with Decision Tree Learning. How
can the analyst go about debugging the SnapBuddy application to eliminate
this timing side-channel? We show how DISCRIMINER can help. Recall that the
analyst downloaded pages of all the users. Now the same download queries are
executed over an instrumented version of the SnapBuddy server to record the

1 From DARPA STAC (www.darpa. mil/program/space-time-analysis-for- cybersecurity) .
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Fig. 2. Snippet of a decision-tree
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Buddy traces using the timing
labels from Fig. 1.

number of times each method in the application is called by the trace. As a
result, we obtain a set of traces with their (uninstrumented) overall running
times and set of corresponding method calls.

Then DISCRIMINER uses the standard CART decision tree learning algo-
rithm [5] to infer a decision tree that succinctly represents a discriminant
using atomic predicates that characterize whether or not the trace invoked
a particular method (shown in Fig.2). For instance, the cluster represent-
ing the longest running time (around 15s) is discriminated by the prop-
erty snapservice.model.Filter.filter A image.0ilFilter.filterPixels, indi-
cating that the two methods are both invoked by the trace. Likewise, the
cluster representing the running time around 7.5s is discriminated by the
property snapservice.model.Filter.filter A —image.0ilFilter.filterPixels A
image.ChromeFilter.filter, indicating that image.0ilFilter.filterPixels must
not be invoked while the other two must be.

The analyst might now suspect what is going on: the timing differences are
caused by the filters that each user chooses to apply to their picture. Note
that the analyst running DISCRIMINER did not need to know that the filters
are important for causing this time differential, or even that they existed. The
tool discovers them simply because the trace contains all method calls, and the
decision tree learning algorithm produces a useful discriminant.

A possible fix now suggests itself: make sure that the execution of each type
of filter takes the same amount of time (though of course an implementation of
such a fix still requires development effort). Overall, the example demonstrates
how the decision tree produced by DISCRIMINER can be used to debug (and
potentially fix) side-channel vulnerabilities.

3 Trace-Set Discrimination Problem

A discrete probability distribution, or just distribution, over a finite set L is a
function d : L—[0, 1] such that ), ; d(¢) = 1. Let D(L) denote the set of all
discrete distributions over L.
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Let p1, ..., pm represent a set of atomic predicates over traces. Each predicate
evaluates to a Boolean value over a given trace. Therefore, for simplicity, we
represent a trace simply by the truth valuations of the predicates over the trace.
In addition to atomic predicates, traces are associated with a distribution over
labels. These distributions are generated by first measuring the execution time
t of the trace. The execution time is obtained as the average over some fixed
number of measurements M > 0. Therefore, the timing is taken to be a Gaussian
random variable with mean ¢ and a standard deviation ;. Using this information,
we derive a discrete distribution d € D(L) over the set of labels in L.

Definition 1 (Traces, Predicates and Label Distributions). An ezecution
trace T' of the program is a tuple (T,d) wherein T = {(p1,..., pm) represents the
truth valuations to the predicates pi,...,pm, Tespectively and d € D(L) is the
associated label distribution over the finite set of labels L.

We define a trace discriminant as a tuple of Boolean formulae that predict
the labels of the traces given the truth valuations in the following fashion.

Definition 2. Given a set of labels L = {{1,...,lx} and predicates P =
{p1,-.,Pm}, a discriminant ¥ is a tuple (¢1,...,0x) of Boolean formulae
where each formula @; is over the predicates in P and corresponds to a label ¢;.

A trace (7, d) receives a label £, under trace discriminant ¥ = (¢1, ..., 9x), and
we write LABEL((7,d) ,¥) = {y, if k is the smallest index 1 < ¢ < K such that
T = 4, 1.e. p; evaluates to true for the truth valuation 7. Formally,

¢ if 7 | ¢1, else

by if T Y2, else
Lanen((rdy ) = |0 T E

€K if 7 ':(pK.

Definition 3. Given a set of predicates {pi,...,pm}, set of labels {{1,... ¢k},
and a set of traces {{T1,d1),...,{Tn,dN)}, the trace set discriminant prob-
lem (TDLP) is to learn a trace discriminant ¥ = {(p1,...,0K)-

In general, there are numerous possible discriminants that can be inferred for
a given instance of the TDLP. We consider two approaches in this paper: (a) a
formal maximum likelihood learning model over a structured set of discriminants
and (b) an informal decision tree learning approach to maximize accuracy while
minimizing the discriminant size.

3.1 Maximum Likelihood Learning

Given a discriminant and a set of traces, we define the likelihood of the
discriminant as the probability that each trace (7;,d;) receives the label
LABEL({7;,d;),¥) dictated by the discriminant.
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Definition 4. The likelihood \(¥) of a discriminant ¥ over a set of traces
{((r1,dv) ..., (Tn, A} is given by N@) = [TV, di (LABEL((1y, d;) , ¥)) .

The mazimum likelihood discriminant ¥,,; is defined as the discriminant amongst
all possible Boolean formulae that maximizes A\(¥), i.e. ¥,,; = argmaxy (A(¥)).
This maximization runs over the all possigle tuples of K Boolean formulae over m
atomic predicates, i.e., a space of (K!) (2; ) possible discriminants! In particular,
Hyafil and Rivest [10] show that the problem of learning optimal decision trees is
NP-hard. Therefore, for our formal approach, we consider the following simpler
class of discriminants by restricting the form of the Boolean formulae ¢; that
make up the discriminants to monotone conjunctive formulae.

Definition 5 (Conjunctive Discriminants). A monotone conjunctive for-
mula over predicates P = {p1,...,pm} is a finite conjunction of the form
/\;leij such that 1 < iy,...,i, < m. A discriminant ¥ = {(p1,...,pK) 18
a (monotone) conjunctive discriminant if each ¢; is a monotone conjunctive
formula for 1 < i < K. In order to make a traces discriminant exhaustive, we
assume @ to be the formula true.

The number of conjunctive discriminants is (K — 1)!( 1?:) However, they can
be easily represented and learned using SAT or ILP solvers, as shown subse-
quently. Moreover, working with simpler monotone conjunctive discriminants is
preferable [7] in the presence of noisy data, as using formal maximum likelihood
model to learn arbitrary complex Boolean function would lead to over-fitting.
The problem of mazimum likelihood conjunctive discriminant is then naturally
defined. We refine the result of [10] in our context to show that the problem of
learning (monotone) conjunctive discriminants is already NP-hard.

Theorem 1. Given an instance of TDLP, the problem of finding the mazimum
likelihood conjunctive discriminant is NP-hard.

Proof. We prove the NP-hardness of the problem of finding maximum likeli-
hood conjunctive discriminant by giving a reduction from the minimum weight
monotone SAT problem that is already known to be NP-hard. Recall that a
monotone Boolean formula is propositional logic formula where all the literals
are positive. Given a monotone instance of SAT ¢ = /\;;1 C; over the set of
variable X = {x1,..., %}, the minimum weight monotone SAT problem is to
find a truth assignment satisfying ¢ with as few variables set to true as possible.

Consider the trace-set discrimination problem Py where there is one predicate
p; per variable x; € X of ¢, two labels ¢; and ¢5, and the set of traces such that

— there is one trace (7;,d;) per clause C; of ¢ such that predicate p; evaluates
to true in the trace 7; if variable ; does not occur in clause Cj}, and the label
distribution d; is such that d;(¢1) =0 and d;(¢2) = 1.

— there is one trace (7%, d") per variable z; of ¢ such that only the predicate
p; evaluates to false in the trace 7% and the label distribution d’ is such that
di(t;) =1—¢ and d'({;) = £ where 0 < ¢ < 3.
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Observe that for every truth assignment (x7,...,z},) to variables in X, there is
a conjunctive discriminant A;x—1p; such that if the clause Cj is satisfied then
the trace (7;,d;) receives the label 5. This implies that the likelihood of the
discriminant is non-zero only for the discriminant corresponding to satisfying
valuations of ¢. Moreover, for every variable z; receiving a true assignment, the
trace (7, d") receives the label /5 with e contributed to the likelihood term and
for every variable z; receiving false assignment, the trace (7¢,d‘) receives the
label ¢; with 1 — ¢ being contributed to the likelihood. This construction implies
that a maximum likelihood discriminant should give label /5 to all of the traces
(7;,d;) and label £; to as many traces in {Ti, di} as possible. It is easy to verify
that there exists a truth assignment of size k for ¢ if and only if there exists a
conjunctive discriminant in P, with likelihood Hle €- HZZ}k(l — ). 0

3.2 Decision Tree Learning

As noted earlier, the max likelihood approach over structured Boolean for-
mulae can be prohibitively expensive when the number of traces, predicates
and labels are large. An efficient alternative is to consider decision tree learn-
ing approaches that can efficiently produce accurate discriminants while keep-
ing the size of the discriminant as small as possible. The weighted accuracy
of a discriminant ¥ over traces (7;,d;),i = 1,..., N is defined additively as
o) : SN | d;i (LABEL((73,d;) , ¥)). This accuracy is a fraction between [0, 1]
with higher accuracy representing a better discriminant.

A decision tree learning algorithm seeks to learn a discriminant as a decision
tree over the predicates p1, . .., pm and outcome labels ¢4, . .., £ . Typically, algo-
rithms will maximize (%) while keeping the description length || as small as
possible. A variety of efficient tree learning algorithms have been defined includ-
ing ID3 [15], CART [5], CHAID [11] and many others [14,18]. These algorithms
have been supported by popular machine learning tools such as Scikit-learn
python library (http://scikit-learn.org/stable/) and RapidMiner [2].

4 Discriminant Analysis

In this section, we provide details of max likelihood and decision tree approaches,
and compare their performances over a scalable set of micro-benchmarks.

4.1 Maximum Likelihood Approach

We now present an approach for inferring a conjunctive discriminant ¥ using
integer linear programming (ILP) that maximizes the likelihood A\(¥) for given
predicates pi,...,pm, labels £1,... ¢k and traces (ri,d1),...,{(Tn,dn). This
problem was already noted to be NP-hard in Theorem 1.

We first present our approach for the special case of K = 2 labels. Let 1, {5 be
the two labels. Our goal is to learn a conjunctive formula ¢ for ¢;. We use binary
decision variables 1, ..., x,, wherein x; = 1 denotes that ¢, has the predicate
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p; as a conjunct, whereas x; = 0 denotes that p; is not a conjunct in ¢;. Also we
add binary decision variables w1, ..., wy corresponding to each of the N traces,
respectively. The variable w; = 1 denotes that the trace (7;, d;) receives label {9
under 7 and w; = 0 indicates that the trace receives label ¢;. The likelihood
of the discriminant ¥ can be given as \(¥) © HN {di (61)if wi =0 . Rather
i=1 dl(fg) ifw; =1

than maximize A\(¥), we equivalently maximize log(A(¥))

Y (10 (di(€1)) if w; =0
log(A(%)) = {bi(di(yg)) if w; =1 "

=1
Let r; = d;({1) = 1 — d;(¢2), and simplify the expression for log(A(¥)) as
Zivzl(l — w;) log(r;) + w; log(1 — r;).

Next, the constraints need to relate the values of x; to each w;. Specifically,
let for each trace (7;,d;) , R; C {p1,...,pm} denote the predicates that are valued
false in the trace. We can verify that if w; = 0, then none of the predicates in
R; can be part of ¢1, and if w; = 1, at least one of the predicates in R; must
be part of 1. This is expressed by the following inequality Iflil(zpk er, Tk) <
w; < ZpkeRi x. If any of the pi € R; is included in the conjunction, then the
LHS of the inequality is at least ITlf,l’ forcing w; = 1. Otherwise, if all pg are not
included, the RHS of the inequality is 0, forcing w; = 0.

The overall ILP is given by

max Y00 (1= w;) log(r;) + wilog(1 — ;)

st \le‘\(zpkeRi Tr) < w i=1,...,N
Wi <3 per, Tk i=1,...,N
IJE{O;1}3 wae{O,l} l‘:l,...,N,j:l"."m (1)

Theorem 2. Let z7,...,x}, denote the solution for ILP (1) over a given TDLP
instance with labels {¢1,03}. The discriminant ¥ = (o1, true) wherein @1 =
N+—1 Di mazimizes the likelihood A\(¥) over all conjunctive discriminants.

With the approach using the ILP in Eq. (1), we can tackle an instance with
K > 2 labels by recursively applying the two label solution. First, we learn a
formula ¢; for ¢; and L\ ¢;. Next, we eliminate all traces that satisfy ¢; and
eliminate the label £;. We then recursively consider L:L \ 41 as the new label
set. Doing so, we obtain a discriminant ¥ : (@1, @2, ...,pK_1,true).

In theory, the ILP in (1) has N + m variables, which can be prohibitively
large. However, for the problem instances considered, we drastically reduced the
problem size through standard preprocessing/simplification steps that allowed
us to resolve the values of ;,w; for many of the variables to constants.

4.2 Decision Tree Learning Appraoch

In order to discriminate traces, DISCRIMINER employs decision tree learning
to learn classifiers that discriminate the traces. Given a set of N traces on a
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dependent variable (labels) L that takes finitely-many values in the domain
{¢1,...,0k} and m feature variables (predicates) F' = {f1,..., fmm}, the goal
of a classification algorithm is to produce a partition the space of the feature
variables into K disjoint sets Aq,..., Ax such that the predicted value of L is
1 if the F-variables take value in A;. Decision-tree methods yield rectangular
sets A; by recursively partitioning the data set one F' variable at a time. CART
(Classification and Regression Trees) is a popular and effective algorithm to learn
decision-tree based classifiers. It constructs binary decision trees by iteratively
exploring features and thresholds that yield the largest information gain (Gini
index) at each node. For a detailed description of the CART, we refer to [5].

4.3 Performance Evaluation

We created a set of micro-benchmarks—containing a side-channel in time—
to evaluate the performance of the decision-tree discriminator computed using
scikit-learn implementation of CART and the maximum likelihood conjunctive
discriminant using an ILP implementation from the GLPK library.

These micro-benchmarks consist of a set of programs that take as an input a
sequence of binary digits (say a secret information), and perform some computa-
tion whose execution time (enforced using sleep commands) depends on some
property of the secret information. For the micro-benchmark series LSBO and
MSBO, the execution time is a Gaussian-distributed random variable whose mean
is proportional to the position of least significant 0 and most significant 0 in the
secret, respectively. In addition, we have a micro-benchmark series Pat; whose
execution time is a random variable whose mean depends upon the position of
the pattern d in the input. For instance, the micro-benchmark Patig; takes a
20-bit input data and the leftmost occurrence i of the pattern 101 executes three
methods Fj, Fiy1, Fi12 with mean exec. time of a method F; being 10xj ms.

In our experiments with micro-benchmarks, we generate the dataset by ran-
domly generating the input. For each input, we execute the benchmark programs
10 times to approximate the mean and the standard deviation of the observa-
tion, and log the list of method called for each such input. For a given set of
execution traces, we cluster the execution time based on their mean and assign
weighted labels to each trace according to Gaussian distribution. We defer the
details of this data collection to Sect.5. Our dataset consists of trace id, label,
weight, and method calls for every execution trace. We use this common dataset
to both the decision-tree and the maximum likelihood algorithms.

Table 1 shows the performance of the decision-tree classifiers and the max-
likelihood approach for given micro-benchmarks. The table consists of bench-
mark scales (based on the number of methods and traces), the accuracy of
approaches, time of computing decision tree and max-likelihood discriminant,
the height of decision tree, and the maximum number of conjuncts among all
learned discriminants in the max-likelihood approach. In order to compute the
performance of both models and avoid overfitting, we train and test data sets
using group k-fold cross-validation procedure with k set to 20.
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Table 1. Micro-benchmark results for decision-tree discriminators learned using
decision tree and the max-likelihood approach. Legend: #M: number of methods,
#N: number of traces, T: computation time in seconds, A: accuracy, H: decision-tree
height, M: max. discriminant size (Max. # of conjuncts in discriminants), € < 0.1 sec.

Benchmark ID | #M | #N | Decision tree Max-likelihood
T A H [T A M

LSBO 10 | 188 e | 100% 7 e 100 % | 10
MSBO 10 | 188 |e |100% 7 e 100 % | 10
Patio1 20 | 200 |e |100% | 13 |0.2 |89.4% 20
Patio10 50 | 500 |e [98.4%| 22 [1.3 ]93.6% | 50
Patio111 80 | 800 |0.1/97.8% 37 |81 |94.8% 72
Patio101 100 | 1000 {0.2]/92.9% | 43 9.8 |87.9% | 86
Patioo11 150 | 1500 |0.5|89.2% | 44 45.0 |91.5% | 118
Patioio11 200 2000 [0.8/92.1% | 50 |60.2 | 90.9% | 156
Patio10101 400 4000 |4.2|88.6% | 111 |652.4192.9% | 294

Table 1 shows that both decision tree and max-likelihood approaches have
decent accuracy in small and medium sized benchmarks. On the other hand,
decision tree approach stands out as highly scalable: it takes only 4.2s for the
decision-tree approach to building a classifier for the benchmark Patg19101 with
400 methods and 4000 traces, while it takes 652.4s for the max-likelihood app-
roach to constructing the discriminants. Table 1 shows that the discriminants
learned using decision tree approach are simpler than the ones learned using
max-likelihood approach requiring a fewer number of tests.

5 Case Study: Understanding Traces with Decision Trees

The data on microbenchmarks suggest that the decision tree learning approach
is more scalable and has comparable accuracy as the max-likelihood approach.
Therefore, we consider three case studies to evaluate whether the decision tree
approach produces useful artifacts for debugging program vulnerabilities.

Research Question. We consider the following question:

Does the learned discriminant pinpoint code fragments that explain dif-
ferences in the overall execution times?

We consider this question to be answered positively if we can identify an
explanation for timing differences (which can help debug to side channel or
availability vulnerabilities) through DISCRIMINER?.

2 https://github.com/cuplv/Discriminer.
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Table 2. Parameters for trace set discriminant analysis, which predicts a class label
based on attributes. Here, we wish to discriminate traces to predict the total execution
time of the trace based on the methods called in the trace and the number of times
each method is called. To consider a finite number of class labels, we fix a priori n
possible time ranges based on choosing the best number of clustering.

Attributes (1) the methods called in the trace (Boolean)

(2) the number of times each method is called in a trace (integer)

Class label A time range for the total execution time of the trace
Number of classes | 6, 6, and 2 for SnapBuddy, GabFeed, and TextCrunchr

Methodology. We consider the discriminant analysis approach based on deci-
sion tree learning from Sect. 4. Table 2 summarizes the particular instantiations
for the discriminant analysis that we consider here.

Attributes: Called Methods. For this case study, we are interested in seeing whe-
ther the key methods that explain the differences in execution time can be pin-
pointed. Thus, we consider attributes corresponding to the called methods in a
trace. In order to collect information regarding the called methods, we instru-
mented Java bytecode applications using Javassist analysis framework (http://
jboss-javassist.github.io/javassist /).

Class Label: Total Execution Time Ranges. To identify the most salient attri-
butes, we fix a small number of possible labels, and cluster traces according to
total execution time. Each cluster is defined by a corresponding time interval.
The clusters and their intervals are learned using k-means clustering algorithm.

We consider the execution time for each trace to be a random variable and
assume a normal distribution. We obtain the mean and variance through 10
repeated measurements. We apply clustering to the mean execution times of each
trace to determine the class labels. Henceforth, when we speak of the execution
time of a trace, we refer to the mean of the measurements for that trace.

A class label (or cluster) can be identified by the mean of all execution times
belonging to that cluster. Then, considering the class labels sorted in increasing
order, we define the lower boundary of a bucket for classifying new traces by
averaging the maximum execution time in the previous bucket and the minimum
execution time in this bucket (and analogously for the upper boundary).

Weighted Labeling of Traces. Given a set of time ranges (clusters), we define
a weighted labeling of traces that permits a trace to be assigned to different
clusters with different weights. For a given trace, the weights to clusters are
determined by the probability mass that belongs to the time range of the cluster.
For example, consider a sample trace whose execution-time distribution straddles
the boundary of two clusters Cy and Cp, with 22% area of the distribution
intersecting with cluster Cy and 78% with cluster Cy. In this case, we assign the
trace to both clusters Cy and C with weights according to their probability mass
in their respective regions. Note that this provides a smoother interpretation of
the class labels rather than assigning the most likely label.
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Decision Tree Learning. From a training set with this weighted labeling, we apply
the weighted decision tree learning algorithm CART described in Sect. 4. We use
DiSCRIMINER both for clustering in the time domain as described above to deter-
mine the class labels and weights of each trace and for learning the classification
model. We use group k-fold cross validation procedure to find accuracy.

Objects of Study. We con-

. Program Total Total | Observed
sider three programs drawn from
. methods |traces |methods
benchmarks provided by the (num) (num) | (num)
DARPA STA ject. Th
RPASTAC projec ¢ SnapBuddy 3071 439 160
medium-sized Java programs
... GabFeed 573 368 30
were developed to be realistic
applications that may potentially TextCrunchr| 327 180 35
have timing side-channel or avail- Total 3971 987 225

ability security vulnerabilities.

SnapBuddy is a web application for social image sharing. The profile page of
a user includes their picture (with a filter). The profile page is publicly acces-
sible. GabFeed is a web application for hosting community forums. Users and
servers can mutually authenticate using public-key infrastructure. TextCrunchr
is a text analysis program capable of performing standard text analysis including
word frequency, word length, and so on. It uses sorting algorithms to perform
the analysis.

In the inset table, we show the basic characteristics of these benchmarks. The
benchmarks, in total, consist of 3,971 methods. From these programs, we gener-
ated 987 traces by using a component of each applications web API (scripted via
curl). In these recorded traces, we observed 225 distinct methods called. Note
that some methods are called thousands to millions of times.

Decision Trees Produced by DISCRIMINER. In Fig. 3(b)—(d)—(f), we show
the decision tree learned from the SnapBuddy, GabFeed, and TextCrunchr
traces, respectively. As a decision tree is interpreted by following a path from the
root to a leaf where the leaf yields the class label and the conjunction of the inter-
nal nodes describes the discriminator, one can look for characteristics of discrim-
inated trace sets by following different paths in the tree. The class labels at leaves
are annotated with the bucket’s mean time. For example, in (b), the label 15.7
shows that the path to this label which calls image.0ilFilter.filterPixels
takes 15.7s to execute. The colors in bars in the leaves represent the actual
labels of the training traces that would be classified in this bucket according to
the learned discriminator. Multiple colors in the bars mean that a discriminator,
while not perfectly accurate on the training traces, is also able to tolerate noise.
The height of the bar gives an indication of the number of training traces fol-
lowing this discriminator. The scatter plots in (a)—(c)—(e) show the time of each
trace, with the color indicating the corresponding cluster.

Findings for SnapBuddy. For SnapBuddy, the traces exercise downloading
the public profile pages of all user from a mock database. We have explained in
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Fig. 3. Clustering in the time domain (a)-(c)-(e) to learn decision tree classification
models (b)-(d)-(f). The upper row corresponds to SnapBuddy traces, the middle row
corresponds GabFeed traces, while the bottom row corresponds to TextCrunchr traces.
(Color figure online)

Sect. 2 how clustering (in Fig. 3(a)) helps to identify a timing side-channel, and
how the decision tree (in Fig. 3b) helps in debugging the vulnerability.

Findings for GabFeed. Inputs. For GabFeed, the traces exercise the authen-
tication web API by fixing the user public key and by sampling uniformly from
the server private key space (3064-bit length keys). Identifying a Timing Side-
Channel with Clustering. Considering scatter plot of GabFeed in Fig. 3¢ (bound-
aries show different clusters), we can see less definitive timing clusters. However,
it shows timing differences that indicate a side channel. Debugging Timing Side-
Channels with Decision Tree Learning. The (part of) decision tree for GabFeed
in Fig. 3d is also less definitive than for SnapBuddy as we might expect given the



34 S. Tizpaz-Niari et al.

less well-defined execution time clusters. However, the part of the decision tree
discriminants OptimizedMultiplier.standardMultiply for time differences.
Note that the attributes on the outgoing edge labels correspond to a range
for the number of times a particular method is called. The decision tree explains
that the different number of calls for OptimizedMultiplier.standardMultiply
leads to different time buckets. By going back to the source code, we observed
that standardMultiply is called for each 1-bit in the server’s private key. The
method standardMultiply is called from a modular exponentiation method
called during authentication. What leaks is thus the number of 1s in the private
key. A potential fix could be to rewrite the modular exponentiation method to
pad the timing differences.

Findings for TextCrunchr. Inputs. For TextCrunchr, we provided four types
of text inputs to analyze timing behaviors: sorted, reverse-sorted, randomly gen-
erated, and reversed-shuffled arrays of characters (reverse-shuffle is an oper-
ation that undoes a shuffle that TextCrunchr performs internally). It is the
reverse shuffled inputs that lead to high execution time. Although the input
provided to DISCRIMINER for analyzing TextCrunchr include carefully crafted
inputs (reversed shuffled sorted array), it can be argued that a system adminis-
trator interested in auditing a security of a server has access to a log of previous
inputs including some that resulted in high execution time. Identifying Avail-
ability Vulnerabilities with Clustering. Considering scatter plot of TextCrunchr
in Fig.3e we can see well-defined timing clusters which can potentially lead to
security issues. It shows that a small fraction of inputs takes comparably higher
time of execution in comparison to the others. Thus an attacker can execute a
denial-of-service (availability) attack by repeatedly providing the costly inputs
(for some inputs, it will take more than 600s to process the text). The sys-
tem administrator mentioned above probably knew from his logs about possible
inputs with high execution time. What he did not know is why these inputs lead
to high execution time. Debugging Availability Vulnerabilities with Decision Tree
Learning. The decision tree for TextCrunchr in Fig. 3f shows that the number of
calls on stac.sort.qsPartition as the explanation for time differences (out of
327 existing methods in the application). This can help identify the sorting algo-
rithm (Quicksort) used as a source of the problem and leads to the realization
that certain inputs trigger the worst-case execution time of Quicksort.

Threats to Validity. These case studies provide evidence that decision tree
learning helps in identifying code fragments that correlate with differential exe-
cution time. Clearly, the most significant threat to validity is whether these
programs are representative of other applications. To mitigate, we considered
programs not created by us nor known to us prior to this study. These applica-
tions were designed to faithfully represent real-world Java programs—for exam-
ple, using Java software engineering patterns and best practices. Another threat
concerns the representativeness of the training sets. To mitigate this threat,
we created sample traces directly using the web interface for the whole appli-
cation, rather than interposing at any intermediate layer. This interface is for
any user of these web applications and specifically the interface available to a
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potential attacker. A training set focuses on exercising a particular feature of the
application, which also corresponds to the ability of an attacker to build training
sets specific to different features of the application.

6 Related Work

Machine learning techniques have been used for specification mining, that is, for
learning succinct representations of the set of all program traces. Furthermore,
machine learning techniques have been applied to learn classifiers of programs
for malware detection and for software bug detection.

Specification Mining. In [3], machine learning techniques are used to synthe-
size an NFA (nondeterministic finite automaton) that represents all the correct
traces of a program. In our setting, this would correspond to learning a discrim-
inant for one cluster (of correct traces). In contrast, our decision trees discrim-
inate multiple clusters. However, the discriminants we considered in this paper
are less expressive than NFAs. The survey [21] provides an overview of other
specification mining approaches.

Malware and Bug Detection. In malware detection, machine learning tech-
niques are used to learn classifiers that classify programs into benign and mali-
cious [1,4,6,9,12,16,20]. In software bug detection, the task is to learn classifiers
that classify programs behaviors into faulty and non-faulty [8,13,17,19]. In con-
trast, we consider more clusters of traces. In particular, Lo et al. [13] constructs
a classifier to generalize known failures of software systems and to further detect
(predict) other unknown failures. First, it mines iterative patterns from program
traces of known normal and failing executions. Second, it applies a feature selec-
tion method to identify highly discriminative patterns which distinguish failing
traces from normal ones.

In all these works, the training set is labeled: all the programs are labeled
either benign or malicious (faulty or non-faulty). In contrast, we start with an
unlabeled set of traces, and construct their labels by clustering in the time
domain.

7 Conclusion

Summary. We introduced the trace set discrimination problem as a formaliza-
tion of the practical problem of finding what can be inferred from limited run
time observations of the system. We have shown that the problem is NP-hard,
and have proposed two scalable techniques to solve it. The first is ILP-based,
and it can give formal guarantees about the discriminant that was found but
infers discriminants of a limited form. The second is based on decision trees,
infers general discriminants, but does not give formal guarantees. For three real-
istic applications, our tool produces a decision tree useful for explaining timing
differences between executions.
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Future Work. There are several intriguing directions for future research. First,
we will investigate the extension of our framework to reactive systems, by gen-
eralizing our notion of execution time observations to sequences of timed events.
Second, we will build up the network traffic monitoring ability of our tool, to
make it usable by security analysts for distributed architectures.
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Abstract. Understanding software non-functional properties (e.g. time,
energy and security) requires deep understanding of the execution plat-
form. The design of caches plays a crucial role in impacting software
performance (for low latency of caches) and software security (for cache
being used as a side channel). We present CATAPULT, a novel test gen-
eration framework to systematically explore the cache behaviour of an
arbitrary program. Our framework leverages dynamic symbolic execu-
tion and satisfiability modulo theory (SMT) solvers for generating test
inputs. We show the application of CATAPULT in testing timing-related
properties and testing cache side-channel vulnerabilities in several open-
source programs, including applications from OpenSSL and Linux GDK
libraries.

1 Introduction

Program path captures an artifact of program behaviour in critical software val-
idation process. For instance, in directed automated random testing (in short
DART) [15], program paths are systematically explored to attempt path cov-
erage and construct a test-suite for software validation. Several non-functional
software properties (e.g. performance and security) critically depend on the exe-
cution platform and its interaction with the application software. For validating
such properties, it is not sufficient to explore merely the program behaviour
(e.g. program paths), it is crucial to explore both program behaviour and its
interaction with the underlying hardware components (e.g. cache and communi-
cation bus). Hence, any technique that systematically explores both the program
behaviour and the associated changes in the hardware, can be extremely useful
for testing software non-functional properties.

In order to illustrate our observation, let us consider Fig. 1, which specifically
records cache performance. We have generated Fig. 1 by executing an implemen-
tation of Advanced Encryption Standard (AES) [1]. We randomly generated
256000 different inputs to execute a single path of the respective implementa-
tion. Figure 1 captures the distribution of the number of inputs w.r.t. the num-
ber of observed cache misses [12]. We clearly observe a high variation on cache
misses, hence the overall memory performance, even within the scope of a single
program path. To solve the problem of systematically exploring cache behaviour

© Springer-Verlag GmbH Germany 2017
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Fig. 1. Distribution of cache misses within a single program path [1]

and to expose the memory performance of a program, is the main contribution
of our paper.

We present CATAPULT — a framework that leverages dynamic symbolic execu-
tion and satisfiability modulo theory (SMT) to explore both program behaviour
and its associated cache behaviour. CATAPULT takes the binary code and a cache
configuration as inputs, and produces a test suite as output. Each test in the test
suite exposes a unique cache performance (i.e. the number of cache misses). Our
framework does not generate false positives, meaning that the cache performance
associated with each test indeed serves as an witness of an execution. Moreover,
if our framework terminates, it guarantees to witness all possible cache behav-
iour in the respective program. Therefore, CATAPULT shares all the guarantees
that come with classic approaches based on dynamic symbolic execution [15].

Our approach significantly differs from the techniques based on static cache
analysis [20]. Unlike approaches based on static analysis, CATAPULT guarantees
the absence of false positives. Moreover, unlike static analysis, CATAPULT gen-
erates a witness for each possible cache behaviour. To explore different cache
behaviour of a program is, however, extremely involved. This is due to the com-
plex interaction between program artifacts (e.g. memory-related instructions)
and the design principle of caches. In order to solve this challenge, we have
designed a novel symbolic model for the cache. Given a set of inputs, expressed
via quantifier-free predicates, such a symbolic model encodes all possible cache
behaviour observed for the respective set of inputs. As a result, this model can be
integrated easily with the constraints explored and manipulated during dynamic
symbolic execution. The size of our symbolic cache model is polynomial with
respect to the number of memory-related instructions.

In summary, this paper makes the following contributions:

1. We present a test generator CATAPULT, leveraging on dynamic symbolic exe-
cution, to systematically explore the cache behaviour and hence, the memory
performance of a program.

2. To show the generality of our approach, we instantiate our framework for two
widely used cache replacement strategies — least recently used (LRU) and first
in first out (FIFO).
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3. We show the application of CATAPULT in two different contexts — (%) for testing
timing-related constraints and (i) for testing cache side-channel leakage.

4. We implement our framework on top of a state-of-the-art symbolic execu-
tion tool KLEE [2] and evaluate it with several cryptographic and device
driver routines in OpenSSL library and Linux GDK library. For all the cho-
sen subject programs, exhaustive test input generation is infeasible. However,
CATAPULT terminates for all the subject programs and it generates all tests
within a feasible timing-range from 10 s to 4.5 h. CATAPULT prototype and the
obtained results are available for future usage and extension in the following
URL: https://bitbucket.org/sudiptac/catapult/.

2 Background and Overview

Background on Caches. A cache is a fast memory employed between the
CPU and the main memory (DRAM). For a given memory access, the cache is
looked up first. A cache configuration can be defined by three parameters — cache
line size (in bytes), number of cache sets, associativity and replacement policy.
In an M-bit memory address, S bits are reserved to distinguish the cache set in
which the respective address is mapped to and B bits are reserved to distinguish
individual bytes within a cache line. For an arbitrary memory address addr, we
say that it belongs to the memory block starting at address Laggrj . If the content
of addr is not found in the cache, 28 consecutive bytes are fetched from the
memory address L“;lg’”J and they are mapped into the cache set L“ggTJ mod 2.
Each cache set can only hold as many cache lines as the associativity of the
cache. Therefore, if the associativity of the cache is A, the overall size of the
cache is (25 2B A). Finally, since different memory blocks may map into the
same cache set, caches store a tag in each cache line to distinguish different
memory blocks. Since (S + B) bits are used to identify cache sets and individual
bytes in a cache line, the rest of the bits in the memory address are used as tag.
For an A-way set-associative cache, a cache state is a set of ordered A-tuples,
one for each cache set. Such a tuple captures the set of memory blocks contained
in the respective set and the order in which these blocks would be replaced. For
example, an ordered pair {(m1,msy) captures the cache state where mo would be
replaced before m; in a 2-way set-associative cache.

Overview. In this section, we discuss the motivation behind our approach
through the example in Fig. 2. For the sake of illustration, we use both assembly-
level and source-level syntax in Fig. 2(a). However, our test generation is carried
out directly on the binary. Let us assume the code shown in Fig. 2(a) runs on a
platform having direct-mapped (i.e. associativity A = 1), 256 bytes cache. The
mapping of different variables into the cache is shown in Fig.2(b). We assume
that the variable x is also allocated a register in the generated code. Therefore,
reading variable x in the code fragment, as shown in Fig. 2(a), does not involve
any cache access.

Let us assume that we want to check whether the code in Fig. 2(a) exhibits
more than two cache misses when z is a program input. We first execute the
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/* x is a program input */ plO]. a[127]
char p[128]; p[1]
unsigned char x;
char q[128]; 128 bytes
p[127]
if (x >= 0 && x <= 127) { X
/* add regl and reg2 */ 301
ri: load regl, p[l27-x] e
r2: load reg2, qlx] al 0 =< x <126 (#miss=2)
r3: add regl, reg2 128 bytes
ry: store regl, pl[l27-x]
} else {
/* do nothing */ q[126]
} Cache
(a) (b) (©

Fig. 2. (a) a program where cache performance exhibits variation within a program
path, (b) mapping of variables in a 256 bytes cache, (c) cache performance with respect
to different inputs

program with a random input x = 0. We also compute the path condition
x > 0 Az < 127 which symbolically encodes all inputs exercising the respective
program path. We note that for z = 0, both r; and ry suffer cache misses. For
x = 0, the store instruction r4 is a cache hit, as p[127] is already loaded into
the cache and it was not replaced by q[0].

Since dynamic symbolic execution aims to obtain path coverage, the next
test input will be generated by manipulating the path condition and solving the
following constraint: —(z > 0 A z < 127). This will result in inputs exercising
the else branch in Fig.2(a), which, in turn does not access memory.

It is worthwhile to note that classic symbolic execution may not reveal crit-
ical inputs related to cache performance. For instance, executing the code in
Fig.2(a), for = 127, will access p[0], q[127] and p[0] in sequence. Since
q[127] replaces p [0] from the cache, all accesses will be cache misses. Figure 2(c)
shows the partitioning of the input space according to cache performance.

A classic symbolic-execution-based approach explores program paths instead
of cache behaviour. The if branch in Fig. 2(a) encodes two different cache behav-
iors — one for inputs 0 < x < 126 and another for input z = 127. Therefore, it
is crucial to devise a methodology that can differentiate inputs based on cache
behaviour, even though such inputs exercise the same program path.

How CATAPULT Works. For each explored program path, CATAPULT gen-
erates symbolic constraints to encode all possible cache behaviour. For instance,
consider the program path captured by the path condition x > 0 Az < 127.
Assuming an empty cache, the first load instruction will suffer a cache miss. For
instruction 72, we check whether the memory block containing address &q[x]
has been accessed for the first time as follows:

tag(ry) # tag(ri) V set(rq) # set(ry)

where tag (respectively, set) captures the cache-tag (respectively, cache set)
for the memory address accessed by the respective instruction. Intuitively, the
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aforementioned constraint is true if ro accesses a different cache set than r; or
the memory address accessed by ry has a different cache-tag as compared to the
memory address accessed by r1. In such cases ro will suffer a cold miss. The con-
straint is valid as p and q are different arrays. Similarly, we can check whether
ry suffers a cold miss as follows:

(tag(ry) # tag(ri) V set(ry) # set(r1)) A (tag(ra) # tag(re) V set(ry) # set(ra))

This constraint is unsatisfiable, as r; and ry access the same memory address
for all possible inputs. Therefore, r4 cannot suffer a cold cache miss. To check
whether p[127-x] can be replaced by 72 (hence inducing a cache miss at ry),
we use the following set of constraints.

(tag(re) # tag(ra) A set(rg) = set(ry)) = (missy = 1)

(tag(ra) = tag(ry) V set(rq) # set(ry)) = (missy = 0)

The variable miss, indicates whether 74 is a cache miss or not. CATAPULT explores
different solutions of miss4. In this example, miss, is 1 for x = 127 and missy is
0 for 0 < z < 126. Therefore, by systematically generating symbolic constraints
and exploring the different solutions, CATAPULT can discover that ry suffers a
cache miss only for input z = 127, leading to a total three cache misses in the
respective execution.

3 Test Generation

Figure 3 and Algorithm 1 outline all the stages involved in CATAPULT. Algorithm 1
takes a program P, the cache configuration C and an objective O as inputs. Infor-
mally, O captures dynamic properties related to cache performance. In Sect. 5, we
show how O is formulated to check () timing-related properties and (i) cache
side-channel vulnerabilities. Given the inputs, Algorithm 1 leverages dynamic
symbolic execution and computes all unique tests (in the given time budget)
that satisfy O.

| Execution trace | Objecﬂve'(e.g. #cache- miss
T ¢ exceeding a threshold)
Pé?,?;fm Symbolic Generate
Y Execution cache model Generate test Concrete inputs
input satisfying the objective
Random l T P
input | Path condition

érest generation loop

Fig. 3. Our test generation framework
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Algorithm 1. Test Generation Algorithm

Input: Program P, cache configuration C, objective O.
Output: A test suite 7, where each test ¢t € 7 satisfies O

1: AllPCs = UnchkdPCs = T = empty 24: /* exclude current solutions */

2: Select a random input T 25: /* this step ensures unique tests */
3: Ezplore(P,C,T) 26: Os := EzcludeCurTest(T, Os)
4: while UnchkdPCs # empty do 27: let 2 := I (Ypatn) AN Os A Wparn
5: select ¢ € UnchkdPCs 28: /* Generate relevant tests */

6: UnchkdPCs := UnchkdPCs \ {¢} 29: /* See Sect.5 */

7 let ¢ <« pci Apca A ... Apcr—1 A pcy 30: while 2 is satisfiable do

8: if ¢ is satisfiable then 31: get kg satisfying 2

9: tg « concrete input satisfying ¢ 32: 7T U= {ke}

10: Ezxplore(P,C, tg) 33: refine Og to exclude solution kg
11: end if 34: Q2 :=T (Wpatn) A Os A Wparn
12: end while 35: end while

13: Report generated test suite 7 36: let Ypath = pc1 Apca A ... A pcy
14: 37: /* build partial path conditions */
15: procedure ExprLORE(P, C, t) 38: for i — 1,u do

16: execute P on input t 39: @i = pc1 Apca N\ ...pci—1 N\ ~pc;
17: let ¥p,q¢n be the path condition 40: if p; ¢ AlIPCs then

18: let S be the execution trace 41: AllPCs | ={vi}

19: /* Generate the cache model */ 42: UnchkdPCs |J = {¢i}
20: /* See Sect.5 */ 43: end if

21: I (Wpatn) = CacheModel(C, ¥path,S) 44: end for

22: /* formulate objective (Sect.5) */ 45: /* end exploration of Wp,q:p */

23: Os := ObjectivePred(S) 46: end procedure

We first execute P with a random input Z and compute the path condition
Wpath, as well as the execution trace S. The trace S is captured via a sequence of
pairs as follows:

S={(r1,01),(r2,02), ..., (Tn,0n)) (1)

Here r; denotes the i-th memory-related instruction executed and o; symbolically
captures the memory address accessed by ;. For example, when we execute the
code fragment of Fig.2(a) with input z = 0, we obtain the following execution
trace:

S =((r1,&p + 127 — ), (re, &q + ), (r3, &p + 127 — z))

We use the variable miss; to represent whether r; is a cache miss (set to 1 if r;
was a cache miss and set to 0 otherwise) for inputs satisfying Wpqp. The value of
miss; depends on all symbolic memory addresses oy, where k € [0, 7). Therefore,
we bound the value of miss; through symbolic constraints. In particular, given
the execution trace S and the path condition ¥4, the procedure CacheModel
computes I' (Wpqp) for cache configuration C (cf. line 21 in Algorithm 1). Such
a model I' (¥pqr) encodes all possible values of miss; for all ¢ € [1,n] and for
any input satisfying Wp.¢n. In Sect. 4, we describe the formulation of I" (Wpan)
in detail.

The cache model I' (W,,4¢,) and the path condition ¥, are used to generate
test inputs that satisfy the objective O (c¢f. lines 31-34). We first extract a
predicate Og from the execution trace S that captures such an objective (cf.
line 23). For example, let us assume our objective is to generate test inputs that
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suffer at least 1000 cache misses. For an execution trace S, we can simply extract
Os as > miss; > 1000. Subsequently, we can generate a test input that satisfies
the following formula:

n
T (yain) N (Z miss; > 1000) AWyt (2)

i=1

The refinement of Og (line 33) depends on the context. For instance, let us
assume that the designer needs to compute (at most) one test for each scenario
exhibiting at least 1000 cache misses. In such a case, the following refinement is

made to Os:
n n
Os = 0Os A (Z miss; # Z missgc)>
i=1 i=1
where miss; = missgc) (for i € [1,n]) captures a satisfying solution of Con-
straint (2).

The procedure EzcludeCurTest ensures that the explored solutions in test
suite 7 are unique (cf. line 26). In particular, once Os is constructed from the
execution trace S, it modifies Og to exclude the previous solutions. For instance,
if 7 includes solutions of exhibiting 1000 and 2000 cache misses, objtrace is
modified to Og A Y i miss; # 1000 A " miss; # 2000. Subsequently, this
modified Os is leveraged to explore different solutions of the predicate 2 (cf.
lines 31-34).

When I' (Zpatn ) AOs AWpqu, becomes unsatisfiable, UnchkdPCs keeps track of
all unexplored partial path conditions (cf. lines 39-42) to manifest the remaining
cache behaviour. In particular, our test generation satisfies the following crucial

property.

Theorem 1. CATAPULT guarantees to discover all possible cache behaviour upon
termination. Besides, each input generated by CATAPULT witnesses a unique cache
behaviour.

4 Generating I' (Wpatn)

Given a path condition ¥, and the execution trace S (¢f. Eq. (1)), this section
describes the formulation of I" (Wy,q:1,) — the set of all cache behaviour for inputs
x satisfying Wpaun (cf. line 21 in Algorithm 1). In order to explain the formulation
of I' (Wpatr ), we assume the following notations throughout the paper:

— 25 : The number of cache sets in the cache.

— 2B : The size of a cache line (in bytes).

— A : Associativity of cache.

— set(r;) : Cache set accessed by memory-related instruction r;.

— tag(r;) : The tag stored in the cache for accessing address o; (¢f. Eq. (1)).
— (; : The cache state before r; and after r;_;.
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The formulation of I" (W,4,) revolves around the concept of cache conflict.
Formally, we define cache conflict as follows:

Definition 1 (Cache Conflict): r; generates a cache conflict to r; only if r;
accesses a different memory block than r; and executing r; can influence the
relative position of memory block M%J within the cache state ;.

Clearly, r; generates cache conflict to 7; only if j < ¢. In the next sections,
we shall elaborate other crucial conditions required for the generation of cache
conflicts. Subsequently, we build upon such conditions to formulate the number
of cache misses.

4.1 Modeling Symbolic Cache Access

Recall from Eq. (1) that we record the address o; (o; can be symbolic or con-
crete) for each memory-related instruction r; during the execution. From o;, we
formulate the accessed cache set set(r;) and the respective cache tag tag(r;) as
follows:

set(r;) = (o> B) & (23 -1); tag(r;) = (o; > (B+S)) (3)

In Eq.(3), “&” captures a bitwise-and operation and “>>”captures a right-shift
operation. Since o; can be symbolic, both set(r;) and tag(r;), as captured via
Eq. (3), can be symbolic expressions.

4.2 Modeling Symbolic Cache Constraints

In this section, we formulate constraints for the following two types of cache
misses:

— cold miss: Cold miss occurs if a memory block is accessed for the first time.
— eviction miss: Any cache miss other than cold misses.

Conditions for Cold Misses. If r; accesses a memory block for the first time,
the following condition must hold:

ol = /\ ((tag (1) # tag (r;)) V (set (1) # set (1)) (4)
1<k<i
Informally, Constraint (4) states that every memory access r € {ry,7a,...,7i_1}

is either mapped to a different cache set than set(r;) or has a different tag
compared to tag(r;). This leads to a cold cache miss at r;.

In Constraint (4), for the sake of simplicity in the formulation, we assumed
that initially, the cache is not loaded with any memory block used by the system
under test. However, this condition can easily be relaxed via additional con-
straints that check the (un)availability of memory block Lg—BJ in an arbitrary
initial cache state.

Necessary Conditions for Cache Conflict. The basic design principle of
cache dictates that every cache set is independent. Therefore, a necessary con-
dition for cache conflict is that the accessed memory blocks are mapped to the
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same cache set. In particular, the following two conditions must be satisfied for
a possible cache conflict from r; to r;:

1. %ens(j,3): r; and r; access the same cache set. Therefore, we get the following:

Yeny (4,4) = (set(r;) = set(ri)) ()
2. Yaif(§,7): r; and r; access different memory-block tags. Therefore, we have,
Vaif (J,1) = (tag(rj) # tag(rs)) (6)

The satisfiability of cp (4, ¢) and ¥q; ¢ (4, ) is necessary irrespective of the under-
lying cache replacement policy. However, these two constraints are not sufficient
to guarantee that r; can affect the cache state ¢; (¢ > j). We need additional
constraints that depend on the specific replacement policy. In the subsequent sec-

tions, we formulate these constraints for two widely used replacement policies —
LRU and FIFO.

Constraints for LRU Caches. In this section, we formulate a set of con-
straints that precisely capture the cache conflict scenarios in LRU replacement

policy.

no 9?9.*.".999["“‘01 cachggg‘nfhct
(miss) (m/ss) (hit) (hrt) (miss) (miss) (hrt) (h/t)
Memory access: F1:my r2:mz r3im, rami  rimg r2:m r3imy ra:mq
Cache content: [m] | [me[mi] [mi]me] [m] ] [mefmi] [me]mi]
@ (b)

Fig. 4. Cache conflict scenarios for caches with LRU policy. r;:m; captures memory-
related instruction r; accessing memory block m;. The rightmost position in the cache
denotes the memory block accessed in the cache the earliest. (a) r2 does not generate
any cache conflict to r4, as m1 is reloaded between r2 and r4, (b) in order to count
unique cache conflicts to r4, we only record the cache conflict from rs and not from r2,
as both 7o and r3 access mo.

Conditions for Eviction Misses. Let us check the conditions where instruc-
tion r; will suffer a cache miss due to eviction. This might happen only due
to instructions appearing before (in the program order) r;. Consider one such
instruction r;, for j € [1,). Informally, r; generates a cache conflict to r;, only
if the following conditions hold:

1. ¢l (j,4) : There does not exist any instruction rj, where k € [j 4 1,i), such
that r accesses the same memory block as r; (i.e. LQ%J) It is worthwhile to
note that the execution of r; will make the memory block L J to be most

recently used. For instance, in Fig.4(a), r3 accesses memory block m; and
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therefore, ro cannot generate cache conflict to r4. We capture ¢eq,(J,4) via
the following constraints:

Gz N ((tagln) # tag(r) V (set(ry) # set(r))  (7)
k: j<k<i

2. Z;?q (j,1) : Secondly, we need to count cache conflicts from unique memory
blocks. As an example, consider the example shown in Fig.4(b). r4 will still
be a cache hit. This is because both r, and r3 access the memory block ms.
In order to account unique cache conflicts, we only record the cache conflict
from the closest access to different memory blocks. For instance, in Fig. 4(b),
we only record cache conflict from 73 to r4. We use the constraint 9,4 (7, ¢)
for such purpose. 1unq (4, ¢) is satisfiable if and only if there does not exist any
memory-related instruction between r; (where j € [1,4)) and r; that accesses

the same memory block as ;. Therefore, ¢ynq (J,1) is captured as follows:

g Gii) = N\ ((tag(ry) # tag(re)) V (set(r;) # set(ry)))  (8)

k: j<k<i

Constraints to Formulate Cache Conflict. Constraints (5)—(8) accurately
capture scenarios where r; (j € [1,4)) will create a unique cache conflict to r;.
Let us assume Lpeg’t captures whether r; creates a unique cache conflict to r;.
Using the intuition described in the preceding paragraph, we can now formulate
the following constraints to set the value of Q/fgt

Q;T}lru = ('Q[Jcnf (.77 )/\ def (.77 ) (l—:glé (.77 ) LT#q (]v )) = (wjefi)t = 1) (9)

If any of the conditions in Constraints (5)—(8) is not satisfied between r; and
r;, then r; cannot influence the cache state immediately before r; and therefore,
r; cannot create cache conflict to r;, as captured by the following constraints:

O = (~beny (4,9) V ~aig () V =l (,4) V =l (5, ))j(w;,?:( o))
10

Constraints for FIFO Caches. Unlike LRU replacement policy, for FIFO
replacement policy, the cache state does not change for a cache hit. Therefore,
r; can generate a cache conflict to r; (where ¢ > j) only if r; is a cache miss.

Conditions for Ewviction Misses. In order to incorporate the changes in
the formulation of I" (Wpqn), we need to modify Constraints (7)-(10) for FIFO
replacement policy. In particular, instruction r; can create a unique cache conflict
to instruction r; (i > j) only if r; is a cache miss and the following conditions
hold with ©eny (4,%) and air (4,1):

1. ¢£;£° (4,4) : There does not exist any instruction r, where k € [j + 1,1),
such that ry is a cache miss and it accesses the same memory block as r;. For
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cng'_emggn_fllct _cache, confllct
(miss) (m/ss) iy iy (miss) (m/ss) (miss) {h/t) TR miss)
Memory access: FiMq ——» F2iMz— F3iMy —» F4iMq  F4:my r3:ms ra:mg rs:my
Cache content: |m1| | |m2|m1| |m2|m1| [mi] | |m2|m1| [ma]ma] [ms]me]
(a) (b)

Fig. 5. Cache conflict scenarios in FIFO policy. r;:m; captures memory-related instruc-
tion r; accessing memory block m;. The rightmost position in the cache denotes the
memory block inserted in the cache the earliest. (a) ro generates cache conflict to ra
even though m, is accessed at r3. This is because r3 is a cache hit. (b) We record cache
conflict from 72 to 75 even though 74 is closer to r5 and rs accesses the same memory
block as ro. This is because r4 is a cache hit.

instance, in Fig. 5(a), ro generates cache conflict to r4 because r3 was a cache
hit. We capture /i1 (j,) as follows:
Gl G = N\ ((tag(re) # tag(ri)) V (set(ry) # set(r:)) V (missy, = 0))

k: j<k<i
(11)

2. pfifo(j,i) : This constraint ensures that we only count unique cache con-
flicts. For LRU policy, we checked whether r; was the closest instruction to
r; accessing memory block [g—éj For FIFO policy, we have a slightly dif-
ferent situation, as demonstrated in Fig. 5(b). Even though r4 is the closest
instruction to r5 accessing mso, r4 cannot generate cache conflict to r5. This
is because r4 is a cache hit. As a result, we record cache conflict from r5 to
r5. It is worthwhile to mention that in LRU policy, we will discard the cache
conflict from 75 to 75 due to the presence of r4. Formally, we ensure there
does not exist any instruction 7y, where k € [j 4 1,4), such that r is a cache
miss and it accesses the same memory block as ;. Therefore, ¢5;J;O (4, i) can
be formalized as follows:

Vi Gy =\ ((tag(ry) # tag(ri))V (set(r;) # set(ry)) V (missy, = 0))
k: j<k<i
(12)
Constraints to Formulate Cache Conflict. Let us assume Wﬁ’jt captures
whether r; creates a cache conflict to r;. For FIFO replacement policy, this is
possible only if r; is a cache miss (i.e. miss; = 1). Using the intuition described
in the preceding paragraphs, we can bound the value of Ll'/ﬁ?t as follows:

@em,fifo =
(Yeny (4,7) A ais (3, 1) AL (5,4) AOLEe (4,4) A (miss; = 1)) = (T4 = 1)
(13)
eh,fifo _
8],1 f—

(hens (G3) Vi (G,3) v 6L4d (G,3) v =Ll (5,3) v (miss; = 0)) = (@53 = 0)
(14)
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Constraints to Formulate Cache Misses. Let us assume that miss; captures
the cache behaviour of instruction r;. Therefore, miss; is set to 1 if r; is a cache
miss, and is set to 0 otherwise. We can formulate the value of miss; using the
following constraints:

o= > wt> Al ver (15)
JEi)
O = 0" = (miss; = 1); O = =0"" = (miss; = 0) (16)

where A captures the associativity of the cache. Once a memory block is loaded
into the cache, it requires at least A unique cache conflicts to evict the block. If
ngt > A, r; has suffered at least A unique cache conflicts since the last access
of the memory block referenced by r; — resulting r; to be a cache miss. If r; is
not a cold miss (i.e. =6°!" holds) and ¥¢%* > A does not hold, r; will be a
cache hit, as captured by Constraint (16).

Putting It All Together. To derive the symbolic cache behavior I' (¥patp), we

gather all constraints over {rq,...,r,} as follows:
I (Wparn) = /\ oM AOMA /\ QEZL’MPI A /\ @;Z’re’)l (17)
i€[1,n] Jell9) Je[l,d)

where repl € {lru, fifo} capturing the underlying replacement policy. O and
@f together bound the value of miss;, which, in turn captures whether r; is
a cache miss. However, O™ and OF are dependent on symbolic variables weyt

where j € [1,). The bound on symbolic variables ¥£%* is captured via 057" !

and Q;Z’Tem (Constraints (9)—(10) and Constraints (13)—(14)). Hence, the for-
mulation of I'(Wpq) includes both ©57"%" and O™ for j € [1,4).

Complexity of Constraints. The size of our constraint system is O(n?), where
n is the number of memory accesses. The dominating factor in our constraint
system is the set of constraints generated from Constraints (9)—(10) for LRU
policy and from Constraints (13)—(14) for FIFO policy. In general, we generate
constraints for each pair of memory accesses that may potentially conflict in
the cache, leading to O(n?) pairs in total. For each such pair, the constraint
may have a size O(n) — making the size of overall constraint system to be
O(n®). However, our evaluation reveals that such a bound is pessimistic and the
constraint system can be solved efficiently for real-life programs.

5 Application

In this section, we instantiate Algorithm 1 to formulate the objective Og from
the execution trace S and the refinement of Os (cf. line 23 and lines 31-34 in
Algorithm 1).
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Testing Timing-Related Properties. Embedded and real-time systems are
often constrained via several timing-related properties. Given a timing deadline
D, Algorithm 1 can find a witness where such timing deadline is violated for
program P or prove that no such witness exists.

In this paper, we assume that the timing of a given instruction may vary only
due to the same incurring a cache hit or a cache miss. However, such a timing
model can always be extended leveraging on the rich body of work in timing
analysis [21].

Given the execution trace S (cf. Eq. (1)), we use the variable miss; to capture
whether a memory-related instruction r; suffered a cache miss. Let us assume C
is the time taken to execute all instructions not accessing the memory subsys-
tems. Given the preceding descriptions, we formulate the objective Og from S
as follows:

Os = (Z missi> *L+C>D (18)

i=1

where L is the latency incurred for a cache miss and n is the total number of
memory-related instructions. If a solution is found for I (Wpein) A Os A Ypain
using Os in Eq. (18), then we found witness of a violation of timing deadline
D. Such a witness can be used for further investigation and improve the timing
behaviour of the system.

In our evaluation, we refine Og to find unique violations, meaning each test
input capture a unique value of Z?Zl mass; ¥ L+ C. Therefore, if Z?Zl miss; =
N is true for a satisfying solution of I" (Wpan) A Os A parn, Os is refined as
OsAY"  miss; # N.

Testing Cache Side-Channel Vulnerabilities. The performance gap bet-
ween cache and main memory (DRAM) can be exploited by an attacker to
discover classified information (e.g. a secret key). Such attacks are often non-
invasive and they can even be mounted over the network [8]. In this paper, we
choose timing-related attacks, where the observer monitors the overall cache
misses to discover secret information [8].
Let us assume the cache side channel to be a function C' : I — O, mapping
a finite set of secret inputs to a finite set of observations. Since the attacker
monitors the number of cache misses, in this scenario, an observation simply
captures the number of cache misses in an execution. If we model the choice
of a secret input via a random variable X and the respective observation by a
random variable Y, the leakage through channel C is the reduction in uncertainty
about X when Y is observed. In particular, the following result holds for any
distribution of X [17].
ML(C) < log, |C(D)| (19)

where ML(C') captures the maximal leakage of channel C. The equality holds in
Eq. (19) when X is uniformly distributed.
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CATAPULT can be tuned to compute each unique element in the set C(I) and
thereby, to derive an upper bound (exact bound when X is uniformly distributed)
on the maximal leakage ML(C). We accomplish this by setting and refining Og
as follows:

Os = <i miss; > 0) (20)

i=1

()
K3
Os A Wpain, then we refine Og as follows: Os A (Z?:l miss; # Yy missl(.c)).

It is worthwhile to mention that the number of tests computed is directly cor-
related with the maximal leakage through the cache side channel (cf. Eq. (19)).
As a result, our test generation method can be used as a metric to measure
the information leak through cache side channel. Besides, since we also gener-
ate an witness for each possible observation (i.e. the number of cache misses),
these witnesses can further be used for analyzing, quantifying and controlling
the information leaked at runtime.

Due to the lack of space, we only show the instantiation for one type of
attacker. However, our framework can model a variety of different attacking
scenarios, as long as the observation by an attacker can be modeled via symbolic
constraints over the set of variables {missi, missa,...,miss,}.

If miss;” captures a satisfying solution of miss; (for i € [1,n]) in I (Wpan) A

6 Evaluation

Ezxperimental Setup. We build CATAPULT on top of KLEE symbolic execution
engine [2]. We first decompile PISA [5] compliant binaries (a MIPS like architec-
ture) into LLVM bitcode. It is worthwhile to note that compiling source code to
LLVM bitcode will inaccurately capture the cache performance. This is because
of the target-dependent compiler optimizations that take place while generating
binary code. The decompiled LLVM bitcode is identical with the PISA binary
in terms of functionality, memory placement and the number of memory-related
instructions. This ensures that the translated LLVM code has exactly the same
cache performance as the binary code. To use CATAPULT for a different architec-
ture (e.g. ARM), we only need the translator that converts the binary code for
the respective architecture to the LLVM bitcode. The rest of our test generation
framework remains completely unchanged. The translated LLVM code is pro-
vided as an input to CATAPULT. All our experiments have been performed on an
Intel I7 machine with 8 GB of RAM and running Debian operating system.

To evaluate CATAPULT, we choose cryptographic routines from OpenSSL and
other libraries [1,3] and user-interface routines from Linux GDK library (cf.
Table1). Our choice is motivated by the importance of validating security and
performance related properties in these programs. Moreover, these programs are
memory intensive and in particular, the cryptographic routines exhibit complex
memory access patterns. As a result, such programs are also appropriate for
stress testing our framework.
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Table 1. Evaluated subject programs (input sizes are unchanged from the original
programs)

Program name Input size | Lines of C code | Lines of LLVM code | Max. no. of memory accesses
AES [1] 16 bytes 800 4950 2134
AES [3] 16 bytes 1428 1800 420
DES [3] 8 bytes 552 3990 334
RC4 [3] 10 bytes 160 668 1538
RC5 [3] 16 bytes 256 1820 410
gdk keyval_to_unicode | 4 bytes 1300 268 114
gdk_keyval_name 4 bytes 1350 1408 12

Table 2. “#test” captures the total number of tests generated, where each test exhibits
a unique cache performance (cf. Sect.5). Testing time includes the total time to run
Algorithm 1.

Program Replacement policy | #tests | Time (in cycles) | Maximum no. | Testing time
[min,max] of constraints
AES [1] LRU 35 [3719,7619] 2397228 260 min
FIFO 1 [5149,5149] 11578752 15 sec
AES [3] LRU 37 [1796,4996] 26528 127 min
FIFO 1 [1896,1896] 1205860 3min
DES [3] LRU 21 [3971,6071] 1501080 10 min
FIFO 1 [7971,7971] 1947656 2 sec
RC4 [3] LRU 1 [5553,5553] 337588 15 min
FIFO 1 [3153,3153] 764208 15 sec
RC5 [3] LRU 1 [6167,6167] 0 10 sec
FIFO 1 [6367,6367] 0 10 sec
gdk keyval_to_unicode | LRU 19 [652,2652] 10 13 sec
FIFO 28 [652,4852] 10 12 sec
gdk _keyval_name LRU 11 [126,1126] 11 18 sec
FIFO 11 (126,1126] 11 18 sec

Basic Result. Table2 captures the key result obtained from CATAPULT. For
all experiments in Table2, we used a two-way and 8 KB cache, with 32 bytes
cache-line and a cache-miss latency of 10 cycles. We make the following cru-
cial observations from Table 2. We observe that the number of tests generated
for FIFO policy is significantly smaller than the number of tests obtained for
LRU policy. Since each test is attached to a unique cache performance (i.e. the
number of cache miss), the LRU policy suffers from significantly higher cache
side-channel leakage (cf. Eq.(19)), as compared to FIFO policy. This happens
due to the reason that cache states change more frequently in LRU policy as
compared to FIFO policy (e.g. for every access in LRU policy and for every
cache miss in FIFO policy). This potentially leads to more variation in cache
performance across different inputs in LRU policy, resulting in more tests and
higher cache side-channel leakage. This result indicates important trade-offs in
system design, as LRU policy is, on average, superior compared to FIFO policy
in terms of overall performance. For experiments in Table 2, we can also validate
that the maximal leakage of a basic AES implementation [3] is comparable with
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the AES implementation in the OpenSSL library. The implementation of RC5
does not exhibit any input-dependent memory access or branch. Hence, the size
of our constraint system is 0 and there is exactly one test generated for both
replacement policies. As observed from Table 2, CATAPULT terminates within rea-
sonable time for all the experiments. Therefore, our results guarantee both the
exact number of test cases and the best/worst-case timing obtained over all
inputs. Finally, it is worthwhile to note that an exhaustive enumeration (2128
possibilities for AES) of all test inputs is infeasible to provide such guarantees.
e b s &5« ST == 85k
DES @ L

DES
No. of generated tests for varying cache size (LRU) No. of generated tests for varying cache size (FIFO)

Fig. 6. Number of tests w.r.t. different cache configurations

Sensitivity Result. Figure 6 shows the sensitivity of CATAPULT with respect
to cache configurations. Although increasing cache size usually improves perfor-
mance, this may not be true for security. As an example, a smaller cache may
result in cache misses for all possible inputs (i.e. one test), whereas a bigger
cache may result in cache misses for a subset of inputs (7.e. more than one test).
As a result, increasing the cache size may lead to increased number of tests and
hence, increased likelihood of cache side-channel leakage (cf. Eq. (19)). For a huge
cache, however, the dependency between inputs and the cache behaviour may
disappear, resulting in reduced cache side-channel leakage. In Fig. 6, we observe
both the increase and the decrease in the number of tests (and hence, the max-
imal leakage) with increased cache size. We also observe that FIFO policy on
average outperforms LRU policy, in terms of side-channel resistant.

Summary. In summary, CATAPULT reveals useful information regarding the
memory performance of programs. This includes the cache side-channel vul-
nerability of these programs as well as their worst-case memory performance.
Concretely, we can show, for most of the chosen subjects, FIFO replacement
policy is significantly more resistant to cache side channel as compared to LRU
policy. We also show that increasing cache size may not necessarily lead to a
more secure implementation (cf. Fig. 6).

7 Related Work

Works on worst-case execution time (WCET) analysis [20,21] compute an upper
bound on the execution time of program. In addition, approaches based on pro-
gram synthesis [9] aim to generate optimal software by construction. In contrast
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to these works, our approach has a significant flavor of testing and CATAPULT is
used to generate witnesses violating certain non-functional properties. Our work
is orthogonal to the efforts in statically analyzing cache side channels [7,14,17].
Specifically, CATAPULT generates test inputs that violate timing-related con-
straints and to quantify cache side-channel leakage. Our framework does not
generate false positives, however, it is not aimed to verify the absence of cache
side-channel leaks and timing-related violations.

Recent works on performance testing [16,18,19] consider performance purely
at code level and ignore any influence of execution platform on performance. Our
previous works had targeted specific performance bugs (e.g. cache thrashing [6])
and they do not consider the variation of memory performance within a program
path [6,11,13].

In summary, a majority of works in software testing have either focused
on functionality bugs or ignore the influence of execution platforms on non-
functional properties. In this paper, we propose to systematically explore the
behaviour of execution platform via dynamic symbolic execution, with a specific
focus on memory performance.

8 Discussion

Extensions and Limitations. CATAPULT generates witnesses to show the evi-
dence of side-channel leakage or timing-related faults. However, it does not
debug these faults. Debugging faults related to software non-functional prop-
erties (e.g. timing and security) is a challenging research problem in its own
right and CATAPULT provides the necessary foundation for debugging research in
the context of timing or security-related faults. A limitation of our approach is
the requirement of the knowledge of cache architecture (e.g. cache replacement
policy). In the future, this limitation can be lifted via using some machine learn-
ing approach to approximately capture the cache replacement policy [4]. Subse-
quently, we can formulate the test generation problem via symbolic constraints
in a similar fashion as in CATAPULT. The scalability of CATAPULT is primarily
limited by the number of memory accesses in an execution. Since our symbolic
constraints encode the cache conflict (and not the actual cache states), the scala-
bility of CATAPULT is not affected by increased cache sizes and associativity [10].

Perspective. We have presented CATAPULT where the key insight is to express
the platform-dependent software properties (e.g. performance and security) via
logical constraints. Hence, our approach can be adapted easily within existing
software testing methodologies based on symbolic execution. To show the gener-
ality of our approach, we have instantiated our framework for a variety of cache
designs and shown its application in both performance and security testing via
real-life case studies (e.g. including OpenSSL and Linux GDK applications). This
makes the idea of CATAPULT quite appealing for further exploration in the future.
Among others, techniques to improve the testing time and extension of CATAPULT
for regression testing are worth exploring in the area of testing non-functional
software properties.
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Abstract. We propose an under-approximate reachability analysis algo-
rithm for programs running under the POWER memory model, in the
spirit of the work on context-bounded analysis intitiated by Qadeer
et al. in 2005 for detecting bugs in concurrent programs (supposed to
be running under the classical SC model). To that end, we first intro-
duce a new notion of context-bounding that is suitable for reasoning
about computations under POWER, which generalizes the one defined
by Atig et al. in 2011 for the TSO memory model. Then, we provide
a polynomial size reduction of the context-bounded state reachability
problem under POWER to the same problem under SC: Given an input
concurrent program 2, our method produces a concurrent program 2’
such that, for a fixed number of context switches, running ?’ under SC
yields the same set of reachable states as running ? under POWER. The
generated program P’ contains the same number of processes as P, and
operates on the same data domain. By leveraging the standard model
checker CBMC, we have implemented a prototype tool and applied it on
a set of benchmarks, showing the feasibility of our approach.

1 Introduction

For performance reasons, modern multi-processors may reorder memory access
operations. This is due to complex buffering and caching mechanisms that make
the response memory queries (load operations) faster, and allow to speed up
computations by parallelizing independent operations and computation flows.
Therefore, operations may not be visible to all processors at the same time, and
they are not necessarily seen in the same order by different processors (when they
concern different addresses/variables). The only model where all operations are
visible immediately to all processors is the Sequential Consistency (SC) model
[28] which corresponds to the standard interleaving semantics where the program
order between operations of a same processor is preserved. Modern architectures
adopt weaker models (in the sense that they allow more behaviours) due to
the relaxation in various ways of the program order. Examples of such weak
models are TSO adopted in Intel x86 machines for instance, POWER adopted
in PowerPC machines, or the model adopted in ARM machines.

© Springer-Verlag GmbH Germany 2017
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Apprehending the effects of all the relaxations allowed in such models is
extremely hard. For instance, while TSO allows reordering stores past loads (of
different addresses/variables) reflecting the use of store buffers, a model such as
POWER allows reordering of all kinds of store and load operations under quite
subtle conditions. A lot of work has been devoted to the definition of formal
models that accurately capture the program semantics corresponding to mod-
els such as TSO and POWER [11,30,32,34,35]. Still, programming against weak
memory models is a hard and error prone task. Therefore, developing formal ver-
ification approaches under weak memory models is of paramount importance. In
particular, it is crucial in this context to have efficient algorithms for automatic
bug detection. This paper addresses precisely this issue and presents an algo-
rithmic approach for checking state reachability in concurrent programs running
on the POWER semantics as defined in [21] (which is essentially the POWER
model presented in [34] with small changes that have been introduced in order
to increase the accuracy and the precision of the model).

The verification of concurrent programs under weak memory models is known
to be complex. Indeed, encoding the buffering and storage mechanisms used in
these models leads in general to complex, infinite-state formal operational mod-
els involving unbounded data structures like FIFO queues (or more generally
unbounded partial order constraints). For the case of TSO, efficient, yet precise
encodings of the effects of its storage mechanism have been designed recently
[3,5]. It is not clear how to define such precise and practical encodings for POWER.

In this paper, we consider an alternative approach. We investigate the issue of
defining approximate analysis. Our approach consists in introducing a parametric
under-approximation schema in the spirit of context-bounding [12,25,27,31,33].
Context-bounding has been proposed in [33] as a suitable approach for efficient
bug detection in multithreaded programs. Indeed, for concurrent programs, a
bounding concept that provides both good coverage and scalability must be
based on aspects related to the interactions between concurrent components. It
has been shown experimentally that concurrency bugs usually show up after a
small number of context switches [31].

In the context of weak memory models, context-bounded analysis has been
extended in [12] to the case of programs running on TSO. The work we present
here aims at extending this approach to the case of POWER. This extension is
actually very challenging due to the complexity of POWER, and requires devel-
oping new techniques that are different from, and much more involved than, the
ones used for the case of TSO. First, we introduce a new concept of bounding
that is suitable for POWER. Intuitively, the architecture of POWER is similar
to a distributed system with a replicated memory, where each processor has its
own replica, and where operations are propagated between replicas according to
some specific protocol. Our bounding concept is based on this architecture. We
consider that a computation is divided in a sequence of “contexts”, where a con-
text is a computation segment for which there is precisely one active processor.
All actions within a context are either operations issued by the active proces-
sor, or propagation actions performed by its storage subsystem. Then, in our
analysis, we consider only computations that have a number of contexts that is
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less or equal than some given bound. Notice that while we bound the number
of contexts in a computation, we do not put any bound on the lengths of the
contexts, nor on the size of the storage system.

We prove that for every bound K, and for every concurrent program Prog,
it is possible to construct, using code-to-code translation, another concurrent
program Prog® such that for every K-bounded computation m in Prog under
the POWER semantics there is a corresponding K-bounded computation t® of
Prog® under the SC semantics that reaches the same set of states and vice-versa.
Thus, the context-bounded state reachability problem for Prog can be reduced
to the context-bounded state reachability problem for Prog® under SC. We show
that the program Prog® has the same number of processes as Prog, and only
O(|?||X|K + |R|) additional shared variables and local registers compared to
Prog, where |P| is the number of processes, |X| is the number of shared variables
and |R| is the number of local registers in Prog. Furthermore, the obtained pro-
gram has the same type of data structures and variables as the original one. As
a consequence, we obtain for instance that for finite-data programs, the context-
bounded analysis of programs under POWER  is decidable. Moreover, our code-
to-code translation allows to leverage existing verification tools for concurrent
programs to carry out verification of safety properties under POWER.

To show the applicability of our approach, we have implemented our reduc-
tion, and we have used cbmc version 5.1 [17] as the backend tool for solving SC
reachability queries. We have carried out several experiments showing the effi-
ciency of our approach. Our experimental results confirm the assumption that
concurrency bugs manifest themselves within small bounds of context switches.
They also confirm that our approach based on context-bounding is more efficient
and scalable than approaches based on bounding sizes of computations and/or
of storage systems.

Related work. There has been a lot of work on automatic program verification
under weak memory models, based on precise, under-approximate, and abstract
analyses, e.g., [2,5,8,10,12-16,18-20,23,24,26,29,36-40]. While most of these
works concern TSO, only a few of them address the safety verification problem
under POWER (e.g., [6,9-11,36]). The paper [21] addresses the different issue
of checking robustness against POWER, i.e., whether a program has the same
(trace) semantics for both POWER and SC.

The work in [9] extends the cbmc framework by taking into account weak mem-
ory models including TSO and POWER. While this approach uses reductions to
SC analysis, it is conceptually and technically different from ours. The work in [10]
develops a verification technique combining partial orders with bounded model
checking, that is applicable to various weak memory models including TSO and
POWER. However, these techniques are not anymore supported by the latest ver-
sion of cbmc. The work in [6] develops stateless model-checking techniques under
POWER. In Sect. 4, we compare the performances of our approach with those
of [6,9]. The tool herd [11] operates on small litmus tests under various memory
models. Our tool can handle in an efficient and precise way such litmus tests.

Recently, Tomasco et al. [36] presented a new verification approach, based
on code-to-code translations, for programs running under TSO and PSO. They
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also discuss the extension of their approach to programs running under POWER
(however the detailed formalization and the implementation of this extension are
kept for future work). Our approach and the one proposed in [36] are orthogonal
since we are using different bounding parameters: In this paper, we are bounding
the number of contexts while Tomasco et al. [36] are bounding the number of
write operations.

2 Concurrent Programs

In this section, we first introduce some notations and definitions. Then, we
present the syntax we use for concurrent programs and its semantics under
POWER as in [21,34].

Preliminaries. Consider sets A and B. We use [A — B] to denote the set of
functions from A to B, and write f : A — B to indicate that f € [A — B].
We write f(a) = L to denote that f is undefined for a. We use fla < b] to
denote the function g such that g(a) = b and g(z) = f(z) if  # a. We will use a
function gen which, for a given set A, returns an arbitrary element gen (A) € A.
For integers i, j, we use [i..j] to denote the set {i,i+1,...,5}. We use A* to
denote the set of finite words over A. For words wy,ws € A*, we use w; - wy to
denote the concatenation of w; and ws.

Syntax. Figurel gives the grammar for a small but general assembly-like lan-
guage that we use for defining concurrent programs. A program Prog first
declares a set X of (shared) variables followed by the code of a set # of processes.
Each process p has a finite ® (p) of (local) registers. We assume w.l.0.g. that the
sets of registers of the different processes are disjoint, and define R := U, R (p).
The code of each process p € P starts by declaring a set of registers followed by
a sequence of instructions.

For the sake of simplicity, we assume

” Prog ::= var x* (proc p reg $r* i*)*
that the data domain of both the shared R
variables and registers is a single set D. 5 = $r<x | x<exp | assume exp
We assume a special element 0 € D which | if exp theni* else i*
is the initial value of each shared variable | while exp do i* | term

or register. Each instruction i is of the

form \:s where )\ is a unique label (across Fig. 1. Syntax of concurrent programs.
all processes) and s is a statement. We

define 1bl (i) := \ and stmt (i) := 5. We define J, to be the set of instructions
occurring in p, and define J := UpepJp. We assume that J, contains a designated
inatial instruction ili,"” from which p starts its execution. A read instruction in
a process p € P has a statement of the form $r « =z, where $r is a register
in p and x € X is a variable. A write instruction has a statement of the form
r «— exp where x € X is a variable and ezp is an expression. We will assume a set
of expressions containing a set of operators applied to constants and registers,
but not referring to the content of memory (i.e., the set of variables). Assume,
conditional, and iterative instructions (collectively called aci instructions) can
be explained in a similar manner. The statement term will cause the process to
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terminate its execution. We assume that term occurs only once in the code of a
process p and that it has the label %;*™. For an expression erp, we use R (exp)
to denote the set of registers that occur in exp. For a write or an aci instruction
i, we define R (i) := R (exp) where exp is the expression that occurs in stmt (i).

For an instruction i € J,, we define next (i) to be the set of instructions that
may follow i in a run of a process. Notice that this set contains two elements if i is
an aci instruction (in the case of an assume instruction, we assume that if the con-
dition evaluates to false, then the process moves to )\;,em : term), no element if i is a
terminating instruction, and a single element otherwise. We define Tnext (i) (resp.
Fnext (i)) to be the (unique) instruction to which the process execution moves in
case the condition in the statement of i evaluates to true (resp. false).

Configurations. We will assume an infinite set E of events, and will use an event
to represent a single execution of an instruction in a process. A given instruction
may be executed several times during a run of the program (for instance, when it
is in the body of a loop). In such a case, the different executions are represented
by different events. An event @ is executed in several steps, namely it is fetched,
initialized, and then committed. Furthermore, a write event may be propagated to
the other processes. A configurationcis a tuple (IE, <, ins, status, rf, Prop, <¢o),
defined as follows.

FEvents. IE C £ is a finite set of events, namely the events that have been created
up to the current point in the execution of the program. ins : [E +— 7 is a function
that maps an event e to the instruction ins () that e is executing. We partition
the set E into disjoint sets IE,, for p € P, where E, := {e € E | ins (e) € J,}, i.e.,
for a process p € P, the set IE, contains the events whose instructions belong to
p. For an event e € IE,, we define proc (e) := p. We say that e is a write event if
ins (e) is a write instruction. We use EY to denote the set of write events. Similarly,
we define the set IE® of read events, and the set IEA%! of acievents whose instructions
are either assume, conditional, or iterative. We define EY, X, and AT, to be the
restrictions of the above sets to IE,. For an event e where stmt (ins (e)) is of the
form x « exp or $r — z, we define var (e) := z. If e is neither a read nor a write
event, then var (e) := L.

Program Order. The program-order relation <C | x IE is an irreflexive partial
order that describes, for a process p € P, the order in which events are fetched
from the code of p. We require that (i) e; £ ez if proc(e;) # proc(ez), i.e., <
only relates events belonging to the same process, and that (ii) < is a total order
on [,

Status. The function status : IE — {fetch,init, com} defines, for an event e,
the current status of €, i.e., whether it has been fetched, initialized, or committed.

Propagation. The function Prop : P x X — EY U £™!* defines, for a process p € P
and variable x € X, the latest write event on x that has been propagated to p. Here
Einit .= {elnit | 1 € X} is a set disjoint from the set of events E, and will be used
to define the initial values of the variables.
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Read-From. The function rf : E? — EY U £1*i* defines, for a read event e € IEF,
the write event rf (e) from which e gets its value.

Coherence Order. All processes share a global view about the order in which write
events are propagated. This is done through the coherence order <., that is a par-
tial order on E¥ s.t. €1 <, @2 only if var (e;) = var (eg), i.e., it relates only
events that write on identical variables. If a write event e, is propagated to a
process before another write event €; and both events write on the same variable,
then €1 <, @2 holds. Furthermore, the events cannot be propagated to any other
process in the reverse order. However, it might be the case that a write event is
never propagated to a given process.

Dependencies. We introduce a number of dependency orders on events that we
will use in the definition of the semantics. We define the per-location program-
order <po10cC E X IE such that €1 <po1ec 2 if €1 < @2 and var (e;) = var (e3),
i.e., it is the restriction of < to events with identical variables. We define the data
dependency order <gata S.b. €1 <gata €2 if (i) €1 € ER ie., € is a read event;
(i) @2 € EY U E*L ie., @y is either a write or an aci event; (iii) €; < e2; (iv)
stmt (ins (e1)) is of the form $r «— z; (v) $r € R (ins (e2)); and (vi) there is no
event e3 € E* such that e; < e3 < @3 and stmt (ins (e3)) is of the form $r «— y.
Intuitively, the loaded value by e; is used to compute the value of the expression
in the statement on the instruction of e;. We define the control dependency order
~ctr1 Such that €] <cir1 €2 if €7 € EAT and @1 < es.

We say that ¢ is committed if status (&) = com for all events @ € E. The initial
configuration ¢y is defined by (0,0, Ae. L, Ae.L, Ae. L, A\p.A\z.el™* (). We use C
to denote the set of all configurations.

Transition Relation. We define the transition relation as a relation — C C x
P x C. For configurations c¢1,co € C and a process p € P, we write ¢y L ¢y to
denote that (c1,p,c2) €—. Intuitively, this means that p moves from the current
configuration ¢; to ¢z. The relation — is defined through the set of inference rules
shown in Fig. 2.

The rule Fetch chooses the next instruction to be executed in the code of a
process p € P. This instruction should be a possible successor of the instruction
that was last executed by p. To satisfy this condition, we define MaxI (c, p) to be the
set of instructions as follows: (i) If B, = @ then define MaxI (c, p) := {i"}, i.e.,
the first instruction fetched by pis i, (ii) If IE,, # 0, let @’ be the maximal event
of p (w.r.t. <) in the configuration ¢ and then define MaxI (c,p) := next (ins (¢’)).
In other words, we consider the instruction i’ = ins (¢’) € J,, and take its possible
successors. The possibility of choosing any of the (syntactically) possible succes-
sors corresponds to speculatively fetching statements. As seen below, whenever we
commit an aci event, we check whether the made speculations are correct or not.
We create a new event e, label it by i € MaxI (c, p), and make it larger than all the
other events of p w.r.t. <. In such a way, we maintain the property that the order
on the events of p reflects the order in which they are fetched in the current run of
the program.

There are two ways in which read events get their values, namely either from
local write events that are performed by the process itself, or from write events that
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e¢E, <'=<U{(¢,e) |& €E,},i€cMaxI(c,p)

Fetch
¢ b (EU{e},<, ins[e « i|,status[e + fetch], rf,Prop, <co)

e € E}, status (e) = fetch, CW(c,e) = @, status (¢/) = init

Local-Read
¢ (E, <, ins, status[e < init],rf[e < &'],Prop, <co)

e € E}, status (e) =fetch, (CW(c,e) = 1) V (CW (c,e) =&’ Astatus (¢’) = com)
Prop-Read

¢ (E, <, ins, status[e < init],rf[e < Prop (p,var (e))],Prop, <co)

e € E}, status (e) = init, ConCnd (c,e), RdCnd (c, @)

Com-Read

¢ (E, <, ins, status[e < com],rf,Prop, <co)

e € EY, status (e) = fetch, WrInitCnd(c,e)
Init-Write
¢ (E,<,ins, status[e + init],rf,Prop, <co)
e € EY, status (e) = init, ConCnd (c,e),
<co==co U{(e,@) | &’ =Zco Prop(p,var(e))}
Com-Write

¢ (E, <, ins, status[e + com|,rf, Prop|(p, var (e)) < &],<.,)

q € P, e cE}, status (e) = com, Prop(q,var (e)) <co @,
<L ==co U{(e,@) | & =co Prop(q,var(e))}

Prop
¢ % (E, <, ins, status, rf,Prop[(q, var (&)) « e], <., )

S IE;CI, status (e) = fetch, ComCnd (c,e), ValidCnd (c,e)

Com-ACI
c (E, <,ins, status[e + com|,rf,Prop, <co)

Fig. 2. Inference rules defining the relation 2> where p € .

are propagated to the process. The first case is covered by the rule Local-Read in
which the process p initializes a read event e € IE? on a variable (say z), where e
has already been fetched. Here, the event e is made to read its value from a local
write event @’ € IEY on x such that (i) @’ has been initialized but not yet committed,
and such that (ii) € is the closest write event that precedes @ in the order <po1oc.
Notice that, by condition (ii), €’ is unique if it exists. To formalize this, we define
the Closest Write function CW (¢, e) := &’ where &’ is the unique event such that
(i) @ € EV, (ii) @ <poroc ©, and (iii) there is no event ¢” such that ¢” € EY
and € <poroc € <potoc €. Notice that @ may not exist, i.e., it may be the case
that CW (¢, e) = L. If @ exists and it has been inititialized but not commited, we
initialize @ and update the read-from relation appropriately. On the other hand,
if such an event does not exist, i.e., if there is no write event on x before e by p, or
if the closest write event on x before e by p has already been committed, then we
use the rule Prop-Read to let e fetch its value from the latest write event on z that
has been propagated to p. Notice this event is the value of Prop (p, z).
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To commit an initialized read event e € Eﬁ, we use the rule Com-Read. The rule
can be performed if e satisfies two conditions in ¢. The first condition is defined as
RACnd (c,e) := Ve’ € E* : (€’ <poroc €) = (rf(€') Zc rf (e)). It states that
for any read event @ such that € precedes e in the order = poloc, the write event
from which e’ reads its value is equal to or precedes the write event for e in the
coherence order <.,. The second condition is defined by ComCnd (c,e) := Ve’ €
E: (¢ <aata ®) V(€ <cer1 @) V (€' <poroc €) = (status (e’) = com). It states
that all events ¢’ € IE that precede e in one of the orders <gata, <ctr1, OF =poloc
should have already been committed.

To initialize a fetched write event ¢ € E%, we use the rule Init-Write that
requires all events that precede e in the order <ga¢, should have already been ini-
tialized. This condition is formulated as WrInitCnd (c,e) := Ve’ € EF : (€/ <4ata
e) = (status(e’) = init V status(e’) = com). When a write event in a
process p € P is committed, it is also immediately propagated to p itself. To main-
tain the coherence order, the semantics keeps the invariant that the latest write
event on a variable z € X that has been propagated to a process p € P is the largest
one in the coherence order among all write events on x that have been propagated
to p up to now in the run. This invariant is maintained in Com-Write by requiring
that the event e (that is being propagated) is strictly larger in the coherence order
than the latest write event on the same variable as e that has been propagated to p.

Write events are propagated to other processes through the rule Prop. A write
event e on a variable x is allowed to be propagated to a process ¢ only if it has
a coherence order that is strictly larger than the coherence of any event that has
been to propagated to ¢ up to now. Notice that this is given by coherence order of
Prop (g, x) which is the latest write event on x that has been propagated to g.

When committing an aci event through the rule Com-ACI, we also require that
we verify any potential speculation that have been made when fetching the subse-
quent events. We assume that we are given a function Val (c, ) that takes as input
an aci event € and returns the value of the expression of the conditional statement
in the instruction of @ when evaluated in the configuration c. The Val (c, e) is only
defined when all events that precede e in the order <4.¢2 should have already been
initialized.

To that end, we define predicate ValidCnd (c,e) := (J&' € E: e <&/ APe” €
E: e<e <xe) = ((Val(c,e) = true A ins(e’) = Tnext (ins(e))) V
(Val(c,e) = false A ins (e¢’) = Fnext (ins(e)))). The rule intuitively finds the
event e’ that was fetched immediately after e. Notice that such an event may not
exist and it is unique if it exists. The predicate requires the choice of @’ is consistent
with the value Val (c, ) of the expression in the statement of the instruction of e.

- . _, P P
Bounded Reachability. A run 7 is a sequence of transitions ¢g — ¢; —

Co Cno1 25 ¢, Insuch a case, we write o — c,,. We define last (m) :=c,. We
define 1t T:= p1ps - - - Py, i.€., it is the sequence of processes performing the transi-
tions in m. For a sequence 0 = p1ps ---p, € P*, we say that o is a context if there
is a process p € P such that p; = pforalli: 1 <i < n. Wesay that 1 is committed
(resp. k-bounded) if last () is committed (resp. if ® = 0y - 05 - - - - 0} where o; is
a context for all i : 1 < i < k).
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For ¢ € C and p € P, we define the set of reachable labels of the configuration
c as follows. (i) If ¢ = c€jnit then 1bl (c) := {L}, i.e. process p does not reach to
any label in the initial configuration. (ii) If ¢ # ¢jpns, let @ be the maximal event
of p (w.r.t. <) in c. We define 1bl (¢) := {1bl (ins (e))}, i.e. process p reaches
to the label of the maximal event e of p (w.r.t. <) in the configuration c. In the
reachability problem, we are given a label \ and asked whether there is a committed
run 7 and a configuration ¢ such that ¢;,; — ¢ where % € 1bl (c). For a natural
number K, the K-bounded reachability problem is defined by requiring that the run
7 in the above definition is IK-bounded.

3 Translation

In this section, we introduce an algorithm that reduces, for a given number K, the
K-bounded reachability problem for POWER to the corresponding problem for
SC. Given an input concurrent program Prog, the algorithm constructs an out-
put concurrent program Prog® whose size is polynomial in Prog and K, such that
for each IKK-bounded run m in Prog under the POWER, semantics there is a cor-
responding IK-bounded run ©t® of Prog® under the SC semantics that reaches the
same set of process labels. Below, we first present a scheme for the translation of
Prog, and mention some of the challenges that arise due to the POWER seman-
tics. Then, we give a detailed description of the data structures we use in Prog®.
Finally, we describe the codes of the processes in Prog®.

Scheme. Our construction is based [Prog] ' yar X (addvars)y ; <iniPro<':>]K
on code-to-code translation scheme (adavars),. <‘ET;TT;°|>§)(H%‘E‘°; ;f;:; )
addvars =M ) ) M ) 5
.that transforms the pro.gram P.rog a2 X K) o (2], 1 X], K)
into the program Prog® following v(|],|X]) 1R (], |X]) cR(|P], | X])
the map function [] iven in W (|2}, |X]) W (|2], |X]) iReg(|R.))
'e ap Iunctio K give cReg(|R|) ctrl(|P|)active (K) cntxt
Fig. 3. Let 2 and X be the sets of (iniProc)y ¥ [iniProc]x
processes and (shared) variables in (verProc)y jze: [verProc]x
Prog. The map [.Jik replaces the [procpreg$r il ipmc/’ reg $r* ([i%)*
sqp 98t 4 : P oTel? P
variables of Prog by (|?|- (2K +1)) (activec [[;E?f e <a6t?ve:?t>u(< [[1HH;)<C1°)Secm>K
. N .. activeCnt)p = assume(active(cntxt)=p
COpl?S of the Set_ X, in addition to (closeCnt)f, &' cntxt < cntxt +gen ([0.K — 1]);
a finite set of finite-data structures assume(cntxt < K)
(which will be formally defined in [r T = [8r D50
the Data Structures paragraph). [r e e"”ﬂ%i - [ ¢ exple )
The map function then declares [[éssume P H]f e o <C.°2tr*°1>“<
. . [if exp thenly = if exp then ([i]}) )
two additional processes iniProc elsei*]h  else ([i]i)";(control)l,
and verProc that will be used to  [whileexpdo i) & while expdo ([i])": (control)h
initialize the data structures and to {control)fe ' ctrl (p) ¢ ctrl (p) + gen ((0.K —1]):

assume(ctrl(p) < K)

[term]f % term

check the reachability problem at
the end of the run of Prog®. The
formal definition of iniProc (resp. Fig. 3. Translation map [.Jx. We omit the label

verProc) will be given in the Ini-  of an intermediary instruction when it is not rel-
tializing process (resp. Verifier evant.
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process) paragraph. Furthermore, the map function [.Jk transforms the code of
each process p € P to a corresponding process p® that will simulate the moves of
p. The processes p and p*® will have the same set of registers. For each instruction
i appearing in the code of the process p, the map [i]}; transforms it to a sequence
of instructions as follows: First, it adds the code defined by activeCnt to check
if the process p is active during the current context, then it transforms the state-
ment s of the instruction i into a sequence of instructions following the map [s]7,
and finally it adds the sequence of instructions defined by closeCnt to guess the
occurrence of a context switch. The translation of an aci statement keeps the same
statements and adds control to guess the contexts when the corresponding event
will be committed. The terminating statement remains identical by the map func-
tion [term]%. The translations of write and read statements will be described in
the Write Instructions and Read Instructions paragraphs respectively.

Challenges. There are two aspects of the POWER semantics (cf. Sect. 2) that
make it difficult to simulate the run m under the SC semantics, namely non-
atomicity and asynchrony. First, events are not executed atomically. In fact, an
event is first fetched and initialized before it is committed. In particular, an event
may be fetched in one context and be initialized and committed only in later con-
texts. Since there is no bound on the number of events that may be fetched in
a given context, our simulation should be able to handle unbounded numbers of
pending events. Second, write events of one process are propagated in an asynchro-
nous manner to the other processes. This implies that we may have unbounded
numbers of “traveling” events that are committed in one context and propagated
to other processes only in subsequent contexts. This creates two challenges in the
simulation. On the one hand, we need to keep track of the coherence order among
the different write events. On the other hand, since write events are not distributed
to different processes at the same time, the processes may have different views of
the values of a given variable at a given point of time.

Since it is not feasible to record the initializing, committing, and propagat-
ing contexts of an unbounded number of events in an SC run, our algorithm will
instead predict the summary of effects of arbitrarily long sequences of events that
may occur in a given context. This is implemented using an intricate scheme that
first guessesand then checks these summaries. Concretely, each event e in the run ©
is simulated by a sequence of instructions in ®. This sequence of instructions will
be executed atomically (without interruption from other processes and events).
More precisely, if e is fetched in a context k : 1 < k < KK, then the corresponding
sequence of instructions will be executed in the same context k in °. Furthermore,
we let ° guess (speculate) (i) the contexts in which e will be initialized, commit-
ted, and propagated to other processes, and (ii) the values of variables that are
seen by read operations. Then, we check whether the guesses made by n® are valid
w.r.t. the POWER semantics. As we will see below, these checks are done both on-
the-fly during n®, as well as at the end of ®®. To implement the guess-and-check
scheme, we use a number of data structures, described below.

Data Structures. We will introduce the data structures used in our simulation
in order to deal with the above asynchrony and non-atomicity challenging aspects.
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Asynchrony. In order to keep track of the coherence order, we associate a time
stamp with each write event. A time stamp T is a mapping ? — K® where K® :=
KU{®}. For a process p € P, the value of T (p) represents the context in which the
given event is propagated to p. In particular, if T (p) = ® then the event is never
propagated to p. We use T to denote the set of time stamps. We define an order C
on T such that 11 C 14 if, for all processes p € P, either 11 (p) = ®, or 12(p) = ®,
or 11(p) < t2(p). Notice that if Ty T t9 and there is a process p € P such that
1 (p) # ®, 1a(p) # ®, and 11 (p) < T2(p) then 11(q) < T2(q) whenever 11(q) # ®
and 12(¢) # ®. In such a case, 11 C T2. On the other hand, if either t;(p) = ® or
T2(p) = ® for all p € P, then both 11 C 15 and 15 C 1. The coherence order <,
on write events will be reflected in the order C on their time stamps. In particular,
for events e; and es with time stamps 17 and 15 respectively, if Ty C To then e
precedes e, in coherence order. The reason is that there is at least one process
p to which both e; and e, are propagated, and e, is propagated to p before es.
However, if both t; C 13 and 1o C 1 then the events are never propagated to the
same process, and hence they need not to be related by the coherence order.

If 11 C 15 then we define the summary of 11 and 1o, denoted by 11 @ 12, to be
the time stamp t such that t(p) = 11(p) if t12(p) = ®, and t(p) = 12(p) otherwise.
For a sequence 0 = 19 C 17 C --- C 1, of time stamps, we define the summary
®o := 1), where 1} is defined inductively by 1§ := 19, and ¥, := t,_, ® 1; for
i:1 < i <mn.Notice that, for p € P, we have @& o(p) = 1;(p) where i is the largest
j:1<j<nst 1(p) #®.

Our simulation observes the sequence of write events received by a process in
each context. In fact, the simulation will initially guess and later verify the sum-
maries of the time stamps of such a sequence. This is done using data structures
a® and a. The mapping a™ : ? x X x K + [P — K®] stores, for a process
p € P, avariable z € X, and a context k : 1 < k < K, an initial guess o™ (p, z, k)
of the summary of the time stamps of the sequence of write events on x prop-
agated to p up to the start of context k. Starting from a given initial guess for
a given context k, the time stamp is updated successively using the sequence of
write events on x propagated to p in k. The result is stored using the mapping
a: P x X x K~ [P— K®]. More precisely, we initially set the value of a to
o™ Each time a new write event e on x is created by p in the context k, we
guess the time stamp B of e, and then update a (p, z, k) by computing its sum-
mary with B. Thus, given a point in a context k, a (p, x, k) contains the summary
of the time stamps of the whole sequence of write events on x that have been propa-
gated to p up to that point. At the end of the simulation, we verify, for each context
k:1 <k < K, that the value of a for a context k is equal to the value of a™* for
the next context & + 1.

Furthermore, we use three data structures for storing the values of variables.
The mapping p*™ : ? x X x IK — D stores, for a process p € P, a variable x € X,
and a context k : 1 < k < K, an initial guess ™ (p, x, k) of the value of the latest
write event on x propagated to p up to the start of the context k. The mapping
w: P x X xIK+— Dstores, for a process p € P, a variable x € X, and a point in
a context k : 1 < k < K, the value u (p, z, k) of the latest write event on z that
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has been propagated to p up to that point. Moreover, the mapping v : ? X X — D
stores, for a process p € P and a variable x € X, the latest value v (p, z) that has
been written on z by p.

Non-atomicity. In order to satisfy the different dependencies between events, we
need to keep track of the contexts in which they are initialized and committed. One
aspect of our translation is that it only needs to keep track of the contextin which
the latest read or write event on a given variable in a given process is initialized or
committed. The mapping iW : Px X +— K defines, for p € Pand x € X, the context
iW (p, z) in which the latest write event on z by p is initialized. The mapping cW :
P x X — K is defined in a similar manner for committing (rather than initializing)
write events. Furthermore, we define similar mappings iR and cR for read events.
The mapping iReg : R — K gives, for a register $r € R, the initializing context
iReg ($r) of the latest read event loading a value to $r. For an expression ezp, we
define iReg (ezp) := max {iReg ($r) | $r € R (exp)}. The mapping cReg : R +—
K gives the contexts for committing (rather than initializing) of the read events.
We extend cReg from registers to expressions in a similar manner to iReg. Finally,
the mapping ctrl : P — K gives, for a process p € P, the committing context
ctrl (p) of the latest aci event in p.

Initializing Process. Algorithm 1 shows the initialization process. The for-loop
of lines 1, 3 and 5 define the values of the initializing and committing data struc-
tures for the variables and registers together with v (p, x), p (p, x, 1), a (p, x, 1) and
ctrl (p) for all p € P and = € X. The for-loop of line 7 defines the initial values
of o and p at the start of each context k > 2 (as described above). The for-loop of
line 10 chooses an active process to execute in each context. The current context
variable cntxt is initialized to 1.

Write Instructions. Consider a write instruction i in a process p € P whose
statement is of the form x < exp. The translation of i is shown in Algorithm 3.
The code simulates an event e executing i, by encoding the effects of the inference
rules Init-Write, Com-Write and Prop that initialize, commit, and propagate a
write event respectively. The translation consists of three parts, namely guessing,
checking and update.

Guessing. We guess the initializing and committing contexts for the event e,
together with its time stamp. In line 1, we guess the context in which the event
e will be initialized, and store the guess in iW (p, ). Similarly, in line 3, we guess
the context in which the event e will be committed, and store the guess in cW (p, )
(having stored its old value in the previous line). In the for-loop of line 4, we guess
a time stamp for ¢ and store it in f. This means that, for each process ¢ € P, we
guess the context in which the event e will be propagated to ¢ and we store this

guess in B (q).

Checking. We perform sanity checks on the guessed values in order to verify that
they are consistent with the POWER semantics. Lines 6-8 perform the sanity
checks for iW (p, x). In lines 6-7, we verify that the initializing context of the event
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Alg. 1: Translating [iniProc]k.

L forpe?Azexdo Alg. 3: Translating [z < exp
2 |iR(p,x) < 1; cR(p,x) <« 1;
iW(p,z) < 1; cW(p,z) «— 1;
v(p,x) < 05 p(p,z,1) < 0;
a(p,x,1) «— ®M;
3 for p € ? do for ¢ € ? do
4 |ctrl(p) «— 1; Lﬁ (¢) «— gen (K®);
5 for $r € ® do // Check
6 LiReg ($r) < 1; cReg ($7) «— 1; assume (iW (p, ) > cntxt);
7 forpe?Az € XAke[2.K] do assune (active (W (p, z)) = p);
init assume (iW (p, ) > iReg (ezp));
ol A assume (o (p, ) > 14, 2));
p(p,z, k) — p™ (p,z, k); assume(cW (p, z) >
10 for k € [1..K] do max{cReg (exp) , ctrl (p),cR(p, x), old-cW});
11 |active (k) « gen (?);

]]ﬁ){,Write.

// Guess

iW (p, z) < gen ([1..K]);
old-cW « cW (p, z);

cW (p, x) — gen ([1..K]);

(SR VI

©C © ®NOo

=

11 for ¢ € P do

12 cotxt — 15 12 |if ¢ = p then
13 | |assume (B (q) = clW (p, 2));
Alg. 2: Translating [$r < m]]ﬂpgRead. 14 | if ¢ # p then
T 15 | |assune(B(q)#® == B (q) >cW (p, 2));
uess

1 old-iR « iR (p, z); 16 |if B(q) # ® then

2 iReg ($r) < iR (p, z) < gen ([1..K]); 17 Lassu.me (a (q.,fc,ﬁ(q)) CB);

3 old-cR «+ cR(p, z); 18 assume(active (B (¢)) = p);

4 cReg($r) «— cR(p,z) « gen ([1..K]); -

// Check [ ] // Update

5 assume (iR (p, ) > cntxt); 19 fo.r q € 7 do

6 assume (active (iR (p, z)) = p); 20 |if B(g) # ® then

7 assume (iR (p, z) > iW (p, x)); 21 L‘X(%I»ﬂ(qn —a(q,z,B(q) ®B;

8 assume(iR (p,x) > cW(p,z) = 22 w (g, z,B(q)) — exp;

R (p,7) > v
o (p, z, 01d-iR) (p)); 23 v(p, @) — exp;
o assune (ch (p. ) > ik (p, 2));
19 aoume (active (L pm) = p) Alg. 4: Translating [verProc]x.
max {ctrl (p) ,old-cR, cW (p,z)}); 1 forpe® Az € XAkE[L.K—1] do
2 Lassume (a(p,x, k) =™ (p,z, k +1));
12 {f/ fP}:?;ti) <cW(p,z) then s [assune (u(p, 2, k) = u™" (p, 2,k +1);
$r — 7\,'@7 z) ; . 4 if \ is reachable then error;

13 else $r «— pu(p,z,iR(p, x)) ;

@ is not smaller than the current context. This captures the fact that initialization
happens after fetching of e. It also verifies that initialization happens in a context
in which p is active. In line 8, we check whether WrInitCnd in the rule Init-Write
is satisfied. To do that, we verify that the data dependency order <g4a.¢2 holds. More
precisely, we find, for each register $r that occurs in exp, the initializing context of
the latest read event loading to $r. We make sure that the initializing context of
e is later than the initializing contexts of all these read events. By definition, the
largest of all these contexts is stored in iReg (exp).

Lines 9-10 perform the sanity checks for cW (p, ). In line 9, we check the com-
mitting context of the event e is at least as large as its initializing context. In line
10, we check that ComCnd in the rule Com-Write is satisfied. To do that, we check
that the committing context is larger than (i) the committing context of all the
read events from which the registers in the expression exp fetch their values (to
satisfy the data dependency order <g4ata, in a similar manner to that described
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for initialization above), (ii) the committing contexts of the latest read and write
events on x in p, i.e., cR (p,x) and cW (p, x) (to satisfy the per-location program
order <po1oc), and (iii) the committing context of the latest aci event in p, i.e.,
ctrl (p) (to satisfy the control order <cir1).

The for-loop of line 11 performs three sanity checks on the time stamp f. In
line 12, we verify that the event e is propagated to p in the same context as the
one in which it is committed. This is consistent with the rule Com-Write which
requires that when a write event is committed then it is immediately propagated
to the committing process. In line 14, we verify that if the event e is propagated
to a process ¢ (different from p), then the propagation takes place in a context
later than or equal to the one in which e is committed. This is to be consistent
with the fact that a write event is propagated to other processes only after it has
been committed. In line 17, we check that guessed time stamp of the event e does
not cause a violation of the coherence order <.,. To do that, we consider each
process ¢ € P to which e will be propagated (i.e., B (¢) # ®). The time stamp of e
should be larger than the time stamp of any other write event € on x that has been
propagated to ¢ up to the current point (since e should be larger in the coherence
order than €’). Notice that by construction the time stamp of the largest such event
@’ is currently stored in a (g, x, B (¢)). Moreover, in line 18, we check that the event
is propagated to ¢ in a context in which p is active.

Updating. The for-loop of line 19 uses the values guessed above for updating the
global data structure a. More precisely, if the event e is propagated to a process g,
ie., B (q) # ®, then we add B to the summary of the time stamps of the sequence of
write operations on x propagated to g up to the current point in the context § (g).
Lines 22-23 assign the value exp to p (p,z,p (¢)) and v (p, z) respectively. Recall
that the former stores the value defined by the latest write event on = propagated
to ¢ up to the current point in the context f (¢), and the latter stores the value
defined by the latest write on z by p.

Read Instructions. Consider a read instruction i in a process p € P whose state-
ment is of the form $r < z. The translation of i is shown in Algorithm 2. The code
simulates an event e running i by encoding the three inference rules Local-Read,
Prop-Read, and Com-Read. In a similar manner to a write instruction, the transla-
tion scheme for a read instruction consists of guessing, checking and update parts.
Notice however that the initialization of the read event is carried out through two
different inference rules.

Guessing. Inline 1, we store the old value of iR (p, z). In line 2, we guess the con-
text in which the event e will be initialized, and store the guessed context both in
iR (p, ) and iReg ($r). Recall that the latter records the initializing context of the
latest read event loading a value to $r. In lines 34, we execute similar instructions
for committing (rather than initializing).

Checking. Lines 5-8 perform the sanity checks for iR (p, x). Lines 5-6 check that
the initializing context for the event e is not smaller than the current context and
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the initialization happens in a context in which p is active. Line 7 makes sure that
at least one of the two inference rules Local-Read and Prop-Read is satisfied, by
checking that the closest write event CW (c, @) (if it exists) has already been ini-
tialized. In line 8, we satisfy RdCnd in the rule Com-Read. Lines 9-11 perform the
sanity checks for cR (p,z) in a similar manner to the corresponding instructions
for write events (see above).

Updating. The purpose of the update part (the if-statement of line 12) is to ensure
that the correct read-from relation is defined as described by the inference rules
Local-Read and Prop-Read. If iR (p, z) < cW (p, z), then this means that the latest
write event ¢ on x by p is not committed and hence, according to Local-Read, the
event e reads its value from that event. Recall that this value is stored in v (p, z).
On the other hand, if iR (p,z) > cW(p, z) then the event @ has been committed
and hence, according to Prop-Read, the event e reads its value from the latest write
event on x propagated to p in the context where e is initialized. We notice that this
value is stored in u (p, x, iR (p, z)).

Verifier Process. The verifier process makes sure that the updated value o of
the time stamp at the end of a given context k : 1 < k < K — 1 is equal to the
corresponding guessed value a™ at the start of the next context. It also performs
the corresponding checking for the values written on the variables (by comparing
wand p*"%). Finally, it checks whether we reach an error label % or not.

4 Experimental Results

In order to evaluate the efficiency of our approach, we have implemented a context-
bounded model checker for programs under POWER, called power2sc!. We use
cbmc version 5.1 [17] as the backend tool. However, observe that our code-to-code
translation can be implemented on the top of any backend tool that provides safety
verification of concurrent programs running under the SC semantics. In the fol-
lowing, we present the evaluation of power2sc on 28 C/pthreads benchmarks col-
lected from goto-instrument [9], nidhugg [6], memorax [5], and the SV-COMP17
bechmark suit [1]. These are widespread medium-sized benchmarks that are used
by many tools for analyzing concurrent programs running under weak memory
models (e.g. [2-4,7,8,10,12-15,22,24,37,40]). We divide our results in two sets.
The first set concerns unsafe programs while the second set concerns safe ones. In
both parts, we compare results obtained from power2sc to the ones obtained from
goto-instrument and nidhugg, which are, to the best of our knowledge, the only two
tools supporting C/pthreads programs under POWER?. All experiments were run
on a machine equipped with a 2.4 GHz Intel x86-32 Core2 processor and 4 GB
RAM.

Table 1a shows that power2sc performs well in detecting bugs compared to the
other tools for most of the unsafe examples. We observe that power2sc manages to

! https://www.it.uu.se/katalog/tuang296 /mguess.
2 cbmc previously supported POWER, [10], but has withdrawn support in later versions.
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Table 1. Comparing @ power2sc with @ goto-instrument and @ nidhugg on two sets of
benchmarks: (a) unsafe and (b) safe (with manually inserted synchronizations). The LB
column indicates whether the tools were instructed to unroll loops up to a certain bound.
The C'B column gives the context bound for power2sc. The program size is the number
of code lines. A t/o0 entry means that the tool failed to complete within 1800s. The best
running time (in seconds) for each benchmark is given in bold font.

(@) (b)
Program/size LB|® @ ® Program/size LB|® @ ®
Time|Time Time|CB Time|Time| Time |CB
Bakery /76 [5] 8 [226 |t/o |1 3 |Bakery/85 [5] 8 [t/o |t/o |70 |3
Burns/74 [5] 8 |t/o |t/o |1 3 |Burns/79 [5] 8 |t/o |t/o /10183
Dekker/82 [1] 8 |t/o |t/o |1 2 |Dekker/88 [1] 8 |t/o |t/o |1158|2
Sim Dekker/69 [5] |8 |12 |t/o |1 2 |Sim Dekker/73 [5] |8 [209 |t/o |14 |2
Dijkstra/82 [5] 8 |t/o |t/o |5 3 |Dijkstra/88 [5] 8 |t/o |t/o |t/o |3
Szymanski/83 [1] |8 |t/o |t/o |1 4 |Szymanski/93 [1] |8 |t/o |[t/o |89 |4
Fib_bench.0/36 [1]|- |2 1101 6 |6 |Fib_bench.1/36[1]- 9 |t/o |5 |6
Lamport/109 [1] |8 [t/o |1 1 3 |Lamport/119 [1] |8 |[t/o |t/o |[t/o |3
Peterson/76 [1] 8 |25 |1056 |1 3 |Peterson/84 [1] 8 1928 |t/o |T 3
Peterson_3/96 [5] |8 |t/o |1 3 4 |Peterson_3/111 [5]|8 |t/o |t/o |348 |4
Pgsql/69 [9] 8 |1079 1 |1 |2 |Pgsql/73[9] 8 15222 (38 |2
Pgsql-bnd/71 [6] |- [t/o |1 1 2 |Pgsql-bnd/75[6] |- |[t/o |t/o |10 |2
Tbar_2/75 [5] 8 16 |1 |1 |3 |Tbar2/80 [5] 8 t/o 332 |29 |3
Thar_3/94 [5] 8 1104 |1 |1 |3 |Tbar3/103[5] |8 |t/o |t/o |138 |3

find all the errors using at most 6 contexts while nidhugg and goto-instrument time
out to return the errors for several examples. This also confirms that few context
switches are sufficient to find bugs. Table 1b demonstrates that our approach is
also effective when we run safe programs. power2sc manages to run most of the
examples (except Dijkstra and Lamport) using the same context bounds as in the
case of their respective unsafe examples. While nidhugg and goto-instrument time
out for several examples, they do not impose any bound on the number of context
switches while power2sc does.

We have also tested the performance of power2sc with respect to the verifica-
tion of small litmus tests. power2sc manages to successfully run all 913 litmus tests
published in [34]. Furthermore, the output result returned by power2sc matches
the ones returned by the tool herd [11] in all the litmus tests.
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Abstract. Analysis of complex security and privacy policies (e.g., infor-
mation flow) involves reasoning about multiple execution traces. This
stems from the fact that an external observer may gain knowledge about
the system through observing and comparing several executions. Moni-
toring of such policies is in particular challenging because most existing
monitoring techniques are limited to the analysis of a single trace at run
time. In this paper, we present a rewriting-based technique for runtime
verification of the full alternation-free fragment of HyperLTL, a tempo-
ral logic for specification of hyperproperties. The distinguishing feature
of our proposed technique is its space complexity, which is independent
of the number of trace quantifiers in a given HyperLTL formula.

1 Introduction

Dependability and reliability are two crucial aspects of any computing system
that deals with cybersecurity. This is because even a short transient violation
of security or privacy policies may result in leaking private or highly sensitive
information, compromising safety, or lead to the interruption of vital public or
social services. One approach to gain confidence about the well-being of such a
system is to continuously monitor it with respect to a set of formally specified
requirements that system should meet at all times. This approach is commonly
known as runtime verification (RV).

We start with the premise that existing RV techniques cannot monitor a
large but vital class of the security and privacy polices, e.g., information flow.
Take, for instance, the non-interference policy [12], where a low user should not
be able to acquire any information about the activities (if any) of the high user
by observing independent execution traces. Monitoring this policy would require
observing and reasoning about multiple execution traces, whereas existing RV
techniques are limited to evaluating only one trace at run time.

In order to specify security and privacy policies, we focus on HyperLTL [g],
a temporal logic for expressing hyperproperties [9]. A hyperproperty is a set
of sets of execution traces. HyperLTL adds explicit and simultaneous quan-
tification over multiple traces to the standard LTL. HyperLTL significantly
extends the range of security policies under consideration, including complex
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Fig. 1. RV framework for HyperLTL

information-flow properties like generalized non-interference, declassification,
and quantitative non-interference. For example, the following is a HyperLTL
formula:

o =Vrvr'. ar — Fb_

It states that for any pair of traces m and =/, if proposition a holds in the initial
state of , then proposition b should eventually hold in trace 7 . To describe the
challenges in monitoring HyperLTL specifications, consider formula ¢ and two
traces t = cde and t' = acddb. These traces individually (e.g., if 7 and 7" are both
instantiated by t), satisfy the formula, but collectively (e.g., if 7 is instantiated
by t and 7’ by ¢') do not. If a monitor first observes trace ¢ and then ¢, it has
to somehow remember that b never occurred in ¢ and declare violation as soon
as it observes a in the initial state of ¢. Thus, a HyperLTL monitor has to be
memeoryful; i.e., the monitoring algorithm has to be able to memorize the status
of propositions of interest in the past traces to be able to reason about current
and future traces.

With this motivation, in this paper, we introduce a novel RV algorithm
for monitoring the alternation-free fragment of (i.e., V* and 3*) HyperLTL (in
Sect. 4, we will argue that alternating formulas cannot be monitored using a
runtime technique only). Our algorithm takes as input a formula ¢ and a finite
but unbounded-size set T of finite traces (see Fig.1(a)). The traces in T can
be produced by multiple sequential terminating or concurrent executions of a
system under inspection. This means that the traces in T' can grow in number
and/or length at run time. The algorithm works as follows (see Fig. 1(b)):

— First, given ¢, it identifies the propositions and possibly simple Boolean
expressions that need bookkeeping using a function I'.

— Then, for each trace t; € T, by incorporating the elements returned by I', the
monitor generates a constraint C;. This constraint basically encapsulates two
things. It
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1. encodes what the monitor has observed in t; with respect to the elements
returned by I', so it can reason about new incoming traces as well as
existing traces growing in length, and

2. rewrites the inner LTL formula in ¢ using Havelund and Rosu’s algo-
rithm [13] and obtains a formula ¢,.

Hence, the resulting constraint C; encodes the full memory of all relevant
things that has occurred in t;.

— At any point of time, the conjunction A~ C; where m is the number of traces
being monitored, determines the current RV verdict (see Fig. 1(a)). That is, the
result of simplification of the conjunction shows whether ¢ has been satisfied,
violated, or currently impossible to tell (i.e., it can go either way in the future).

Finally, we note that although the number and length of the generated con-
straints are theoretically unbounded, this can be prevented by making practical
assumptions. One example is to incorporate a synchronization mechanism that
ensures that the difference in length of traces do not grow over a certain bound.
Furthermore, the complexity of our algorithm is detached from the number of
trace quantifiers in a given HyperLTL formula.

Organization. The rest of the paper is organized as follows. Section 2 presents
the syntax and semantics of HyperLTL. In Sect. 3, we introduce our finite seman-
tics for HyperLTL. Section4 discusses challenges in monitoring HyperLTL for-
mulas. Subsequently, the components of our RV algorithm are presented in
Sects. 5 and 6. Related work is discussed in Sect. 7. Finally, we make concluding
remarks and discuss future work in Sect. 8.

2 Background

Let AP be a finite set of atomic propositions and ¥ = 24F be the finite alphabet.
We call each element of ¥ a letter (or an event). Throughout the paper, ¢
denotes the set of all infinite sequences (called traces) over ¥, and ¥* denotes
the set of all finite traces over X. For a trace ¢t € X (or t € ¥*), ¢[i] denotes
the 3" element of ¢, where i € Z>o. Also, t[0, 4] denotes the prefix of ¢ up to and
including 4, and ¢[i, 00] is written to denote the infinite suffix of ¢ beginning with
element 4. By, |t| we mean the length of (finite or infinite) trace ¢.

Now, let u be a finite trace and v be a finite or infinite trace. We denote the
concatenation of uw and v by ¢ = uv. Also, u < o denotes the fact that u is a
prefix of o. Finally, if U is a set of finite traces and V is a finite or infinite set of
traces, then the prefix relation < on sets of traces is defined as:

U<V =VuelU (veV.u<v)

Note that V' may contain traces that have no prefix in U.
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2.1 HyperLTL

Clarkson and Schneider [9] proposed the notion of hyperproperties as a means
to express security policies that cannot be expressed by traditional properties.
A hyperproperty is a set of sets of execution traces. Thus, a hyperproperty
essentially defines a set of systems that respect a policy. HyperLTL [8] is a logic
for syntactic representation of hyperproperties. It generalizes LTL by allowing
explicit quantification over multiple execution traces simultaneously.

Syntax. The set of HyperLTL formulas is inductively defined by the grammar
as follows:

pi=3mp | Vrp | ¢

= ar | 0| ¢V |oUG| X
where a € AP and 7 is a trace variable from an infinite supply of variables V.
Similar to LTL, U and X are the ‘until’ and ‘next’ operators, respectively. Other
standard temporal connectives are defined as syntactic sugar as follows: ¢, —
w2 =1 V a2, p1 A w2 = (1 V Tpa), true = ap V —a,, false = —true,
F¢ = true U ¢, and G¢ = -F-¢. Quantified formulas 37 and V7 are read as
‘along some trace 7w’ and ‘along all traces 7’, respectively.

Semantics. A formula ¢ in HyperLTL satisfied by a set of traces T is written
as IT =1 ¢, where trace assignment IT : )V — X% is a partial function mapping
trace variables to traces. II[r — t] denotes the same function as II, except that 7
is mapped to trace t. The validity judgment for HyperLTL is defined as follows:

Il =r 3m it IteT.lr—tlEre
H':TV’]T.QO iff Vt€T.H[7T—>ﬂ ’:TSD
II Er ax iff a € II(m)[0]

I E=r —¢ iff I [ ¢

OErér Ve iff TEr¢r) Vv AL Er ¢2)
I Er X¢ iff I[1,00] =1 ¢

V] € [O,Z)H[j,OO] ':T ¢1)

where the trace assignment suffix II[i, 00] denotes the trace assignment II' =
II(7)[i,00] for all w. If I =7 ¢ holds for the empty assignment II, then T'
satisfies ¢.

Ezample. Non-interference (NI) security policy requires any pair of traces with
the same initial low observation to remain indistinguishable for low users, yet
low inputs will be unaltered, irrespective of the the high inputs. This policy can
be specified by the following HyperLTL formula:

V.’ (GAg (") A G—( /\ ar < ap)) — G( /\ Ar < Qnr)
acH a€Ll

Where Gy (7') denotes all the high variables in 7’ that hold the value A, and
H and L are the high and low variables in their respected security levels.
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3 Finite Semantics for HyperLTL

In this section, we present our finite semantics for HyperLTL, inspired by the
finite semantics of LTL [15]. For a finite trace ¢, let t[¢, j] denote the subtrace of
t from position ¢ up to and including position j:

.. € if  i>|t
t[m]{... .H

t[¢, min(j, [t| — 1)] otherwise

where € is the empty trace. We let t[¢,..] denote t[¢, [t| — 1].

Let trace assignment IIp : V — X* be a partial function mapping trace
variables to finite traces. Similar to the infinite semantics, IIp[m — t] denotes
the same function as I1x, except that 7 is mapped to finite trace t. We consider
two truth values for the finite semantics: T and 1. To distinguish finite from
infinite semantics, we use [IIr =1 ¢] to denote the valuation of HyperLTL
formula ¢ for a set T of finite traces. The finite semantics for Boolean operators
V' and ‘=’ as well as for the trace quantifiers ‘Y’ and ‘3’ are identical to those
of infinite semantics. We define the finite semantics of HyperLTL for temporal
operators as follows:

T if V/3teT[Urlr—tlEre=T
otherwise

[r 7 V/3m.¢) {

11 X
[ F o tp T otherwise

)L i e Er il =L A [MF Er é2] = L
Wz o1V ¢2] = {T otherwise
L [ rel =
[r Fr ~g] = {T otherwise
(e f=r X o] = {J_ otherwise

T if HiEO:HF[i,..]#E AN [HF[Z,} ':T (pQ]:T A
Mr Er @1 U ps] = Vj€[0,i): [rfj,..] Fr va] =T
1 otherwise

where X denotes the ‘weak next’ operator.
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Ezample. Consider formula ¢ = Vm;.Vma. aq, U by, and T = {t; = aaab, ty =
aab, t3 = aab}. Although traces t1, to, and t3 individually satisfy the formula ¢,
we have [IIp 7 ] = L, as there does not exist a position, where each pair of
traces agree on the position of b. Now consider formula ¢’ = Vm; .Vry.Fa,, AFb,,
and let 7" = {xxaxb, xbxxa}. We have [IIp Er '] =T.

4 Challenges in Monitoring HyperLTL Formulas

Let us assume we are to monitor a finite but unbounded-size set T' of finite
traces with respect to a HyperLTL formula . The traces in T' can be produced
by multiple sequential terminating or concurrent executions of a system under
inspection. This means that traces in T can grow in number and/or length at
run time. Unlike conventional runtime monitoring techniques, where verification
decision only depends upon one current execution, monitoring 7' for ¢ may
depend on the past, future, or concurrent evolution of the traces in 7. Thus,
a monitor for ¢ needs to bookkeep the occurrence (and even not occurrence)
of certain events to be able to reason about ¢ at run time. In the following,
we outline a set of challenges which need to be addressed in order to develop a
monitoring algorithm.

Alternating Formulas. Let ¢ = Vr.37’.4). Verifying this formula requires us to
show that for all traces in T, there exists a trace that satisfies ). However, since
the number of traces in 7' may grow, a runtime monitor can never prove or
disprove ¢. This argument holds in general for V*3* and 3*V* formulas. This is
the main reason that in the remainder of this paper, we will only focus on the
alternation-free fragment of HyperLTL. Observe that for V* (respectively, 3*)
formulas, it is possible to compute verdict L (respectively, T) at run time.

Inter-trace Dependencies. Reasoning about ¢ by observing individual traces
in T is clearly not sufficient. Progression through traces in 7" requires to keep
information about the past or concurrent traces in 7. One root cause of this is due
to the existence of a disjunction in ¢ involving two distinct trace variables. For
example, let ¢ = Vmy.Vma. ar, — Fbr,. Now, consider two traces t; = dcf and
to = aeb, where AP = {a,b,c,d,e, f}. Note that traces ¢t; and to, individually
satisfy o, but they collectively violate ¢, as event b does not occur in ¢;.

Time of Occurrence of FEvents. Reasoning about some formulas requires book-
keeping the time of occurrence of some propositions in each trace. For example,
consider formula ¢; = Vm.Vma. ar, Ub,, and traces t; = aab, to = ab, and
t3 = aaaab. Although, each trace individually satisfies the formula, any pair
of them violates the formula, as event b occurs at different times. This can
become even more complex when the occurrence of some propositions needs to
agree across multiple traces and multiple times. An example of such a formula
is o = Vm .Vma.¥73. (an, U br,) U c¢p,, where the first occurrence of ¢ and
every occurrence of b need to be agreed across all traces in 7. For example,



Rewriting-Based Runtime Verification of Alternation-Free HyperLTL 83

for traces t; = (ab)a(ac)(ac)b, t2 = (ab)alac)(a)(db), and t3 = a(ac)(ac)b,
traces t; and to agree on times of occurrence of b and ¢, but trace t3 vio-
lates this agreement, thus violating formula 5. Yet other examples are formula
w3 = Vm.Vme. G(ar, — ar,) (which requires all traces to agree on each occur-
rence of a) and the non-interference formula discussed in Sect. 2.

5 Identifying Propositions of Interest

The challenges and examples outlined in Sect. 4 suggest that monitoring a Hyper-
LTL formula requires the identification of propositions which shape the trace
agreement to be followed amongst distinct traces. We call this process bookkeep-
ing, denote BIC as a set of all elements which require bookkeeping, and I as the
function that computes BX.

We note that only the structure of the HyperLTL formula contributes to the
elements of BXC. More precisely, the ‘until’ operator is the main contributor to
BIC, as its semantics (in particular, the existential quantifier) may delineate the
existence of an index for satisfaction of some propositions across multiple traces.
Moreover, we may need to bookkeep Boolean expressions (and not just atomic
propositions). We may prefix elements of BIC by either # or X. Prefixing an
element by # means that only the first occurrence of the element needs to be
bookkept. Prefixing by X means that bookkeeping starts from the next state.

Ezamples. In formula Vr,.Vme Vr3.(aq, Ubs,) Ucy,, we will have BK = {b, #c},
meaning every occurrence of b and only the first occurrence of ¢ should be memo-
rized. For formula Vry.Vma.ar, U (br, V r, ), we have BIC = {#(bV ¢)}. However,
for formula Vry Vra.Vrg.ar, U (br, V Cry), we have BIC = {#b, #c}. Finally, for
formula V.V’ . X (a; Uby), we will have BK = {X#b}.

Our bookkeeping recursive function I' takes as input a HyperLTL formula, a
set of trace variables V (initially empty), and a Boolean value (initially false), and
it returns as output the set B/C, defined in Fig. 2. The function works as follows.
The first three cases are straightforward, as a HyperLTL formula involving only
a proposition requires bookkeeping if it is under the scope of an ‘until’ operator,
whereas operators — and X allow the recursive application of I' function to the
formula ¢. The symbol ® denotes the application of unary operators (-, # and
X) to the elements of set BK (e.g., = ® {a,b} = {—a, -b}).

The next case ¢1Ugps, we require further matching on the structure of both
¢1 and ¢o, as follows:

— (Case 1: Both operands are propositions). In this case, I" returns {#b}
if 7 and 7’ are bound by different quantifiers or removing 7’ from V does
not result in an empty set. Otherwise, I' returns the empty set. For example,
consider two formulas Vmy.ar, Uby, and Vm.Vme.ar, Ubyg,. The first formula
does not require any trace agreement whereas the second does require a trace
agreement due to the scope of the trace quantifiers.
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_ J{#a} i (E=true AV —{x'} #0)
Plax, V. k) = {{} otherwise
I'Xo¢,V, k) =X 0T(¢,V, k)
L(=¢,V, k) == 0T(,V, k)

L(¢1 U2,V k) =
match ¢, ¢2  with
{#b} if (V-—{a'}#O0Vvrm#n)
| ax b; —

{} otherwise
| ax — — D(¢2,VU{n}, k :=true)

T'(¢2, V Utracevars(¢r), k := true)
if ¢1 ¢HYPERLTL,(U)
- - =
#LOT(¢1,V, k = true) U
# O I(¢2,V Utrace_vars(py), k := true) otherwise

I'(¢1V 2,V k) =
match ¢, ¢2  with

{a V b} if k=trueAnwT=mx"
| ax b;'r — ¢ {a}n{b} if k=trueAw#n’
{} otherwise
a _ N {a} UT(¢2,V, k) if k=true
" T(p2,V, k) otherwise
-

T(¢1,V,k)U{b} if k=true
L(¢1,V, k) otherwise

[ - — = T(¢1,V, k) Ul (g2, V, k)

Fig. 2. Bookkeeping function I'

— (Case 2: Only the left operand is a proposition). In this case, we store
the trace variable associated with a in set V and invoke I' recursively to for-
mula ¢o. We also set the value of Boolean variable k to true which indi-
cates that the original formula ¢ includes an ‘until’ operator. For example,
for formula Vr.a; U (b,Uc,), recursing through I' will result in an empty
set since there were no variations in the trace variables, whereas for formula
Vr1.Vma.aq, U (by, Uey,), the T function will simply return {#c}.

— (Case 3: None of the operands are propositions). In this case, we recurse
through ¢4 only if it contains an ‘until’ operator, where trace_vars(¢) denotes
the set of trace variables found in ¢. Furthermore, we recurse through ¢2 and
indicate that any elements produced need to be tracked only once (i.e., their
first occurrence). Moreover, we prefix the recursion of I' on ¢; by symbol
#~1. which helps to remove the prefix # for elements which require tracking
more than once. The result will consist of the union of both produced sets.
For example, for formula Vmy.Vme.V7rs.Vmy.(ar, Ubs,)U(cry Udy,), we have
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BK = {b,#d}. Note that expressions # '#a and ##0b are equivalent to a
and #b, respectively.

The last inductive case includes an ‘or’ (V), which also requires further match-
ing on the structure of formulas ¢; and ¢o. Here, we consider the condition of
k, which reflects the case when ¢, V ¢5 is under the scope of an ‘until’ operator.
For example, formula Vm.V7a.az, U (br, V ¢r,). The application of T' function
will result in T'(br, V €ry, V, k 1= true), which further results in {#(bV ¢)}. On
the contrary, the case of formula Vr,.Vma.Vrs.ar, U (b, V ¢ry), the T' function
will return {#b, #c} due to the disparity of trace variables.

Theorem 1 (Soundness and optimality of I" function). Given a HyperLTL
formula ¢ and assuming we have set T such that [Ilp =7 @] = T then

— T function returns all the propositions required for bookkeeping.
— Given the set BK, every element k € BK is included in some trace agreement
described by .

6 Monitoring Algorithm

6.1 Algorithm Sketch

Given an alternation-free HyperLTL formula ¢ of the form V*, our algorithm
consists of the following elements:

1. Monitor: In order to monitor ¢, we begin by intaking an event for a particular
trace and begin to generate the constraints. At any point of time, we can take
a snapshot of our system and utilize our satisfaction function SAT to find the
RV verdict (see Fig.1(a)).

2. Constraint Handler: Next, we manipulate ¢ according to its structure.
Disjunctions are divided and treated separately to detect which half
prompted the satisfaction. Each sub-formula of the disjunction is then sub-
ject to ConstraintRewriting. Temporal formulas without disjunction do not
undergo any manipulation before being sent to ConstraintRewriting.

3. Constraint Rewriting: Initially, ¢ is stripped of its quantifiers. This allows for
rewriting using the technique in [22] to evaluate the altered formula ¢,. The
events are examined against the propositions or Boolean expressions in BXC
and the satisfaction of ¢, to generate the corresponding constraints.

4. Satisfaction of Function SAT: On each invocation of the SAT function, we com-
pute the conjunction of all the constraints collectively. If SAT returns false,
then ¢ is violated. Otherwise, the constraints are further checked for possible
refinement by checking the membership of other generated constraints.

Observe that a formula of the form V* cannot be evaluated to T. This would
require the full set of all possible system traces, which is not possible at run time.
We note that monitoring a formula of the form 3* can be achieved by simply
monitoring its negation which would be of the form V*.
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6.2 Algorithm Details

We utilize the following HyperLTL formula as a running example to demonstrate
the steps of our proposed algorithm.

V1 Ve Vg Vg, ((ary V bay) Ucn,) Vdyr,

where AP = {a,b,c,d}. We now describe the algorithm in detail which leads to
the overview of Fig. 1.

Algorithm 1 (HyperLTL Monitor). This is our main monitoring algorithm
which is comprised of a while loop. We continue to iterate as long as new events
associated with a trace come in and until we find a violation. On Lines 2-3,
we check for a new trace and then add it to our set of traces M. Given
that the incoming event is associated with some trace t;, at Line 4, we call
ConstraintsHandler for ¢;, which returns constraint C;. Lines 5-6 deal with
the process of taking a snapshot of our system to determine the RV verdict using
function SAT. Finally, if the returned value from function SAT is false (Lines
7-9), then we have found a violation and return L (Line 10). Otherwise, we

continue to iterate through the while loop.

Algorithm 2 (Constraint Handler). In this algorithm, we treat the given
HyperLTL formula according to its structure. The algorithm is recursively
applied to the given formula based on different cases. The first block of the
algorithm (Lines 1-10) handles the case (¢ = ¢1 V ¢2), where the given (sub-)
formula is a disjunction. In particular, we call ConstraintsHandler function
for both ¢ and ¢y (Lines 2-3). We also need to pass the information about the
elements of B/C which are associated with ¢1 and ¢9 (as given by BK,,). In our
running example, we have ¢1 = ((ar, V bry) Ucy,) and ¢g = d,. In case both
values from previous steps are false, then we have found a violation and the
algorithm returns false (Lines 4-5). On the other hand, if one of the values from
Lines 2 and 3 is a constraint, then we return the corresponding constraint (Lines
6-7). Moreover, if both values have generated constraints, we return them both
(Lines 10) meaning that any one of them can influence the verdict in future.

Next block in the algorithm (Lines 12-22) handles the case when the input
formula contains an ‘until’ operators with a disjunction on the left operand with
a disparity in corresponding trace quantifiers. We invoke ConstraintsHandler
function for both operands of ‘V’; i.e., ¢1, and ¢r (Lines 13-14). In our running
example, ¢1 = ((an, V bry) Ucy,) matches this case and ar, and b, will go
through ConstraintsHandler. If both values in Lines 13 and 14 result in false,
then the formula has been violated and we return false.

However, if only one of the sides returns some constraints, then we return
false and alternating constraint for further refinement (Lines 17-20). Finally,
if both sides satisfy the formula, then we return a combination of the returned
values of Lines 13 and 14. This allows us to refine the constraints from the
function SAT in Algorithm 4.
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Algorithm 1. HyperLTL Monitor

Input: HyperLTL formula ¢, B,
set of incoming traces M
Output: A = {1, 7}

1 while getEvent(e;, ) do

2 if newIncomingTrace(t,,) then

3 L M — MU {tm}

4 Cyn < ConstraintsHandler (¢,
BK, e;)

Take a snapshot for constraints
C={C1,Cs,-,Cp} at time
instant

3 « SAT(C)

if (3 = false) then

Ae— L1
break

0 return (\)

@

© 0N o

=

Algorithm 3. ConstraintRewriting

Input: HyperLTL formula ¢, BK, e;
Output: Constraints r
T < true
¢r < quantifier-elimination(yp)
@r < REWRITE (e;, r)
if (¢, = false) then
L return ¢,
for (each a € BK s.t. e; F a) do
re—rAXa
if (a = #d') then
| BK — BK\ {a}

© NS s W N

10 for (each a € BK s.t. a = Xa') do
11 | BK — (BK\{a})U{a}

12 return r
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Algorithm 2. ConstraintsHandler

[

© ® N w»

10
11

13

14

15

16

17
18
19
20

21
22

23
24

25
26

27
28

Input: HyperLTL formula ¢, B,
event e;

Output: {false, Set of Constraints}

if (¢ = ¢1V ¢2) then

11 < ConstraintsHandler
(¢1, B, , €i)

1o < ConstraintsHandler
(d’?v B}C¢2’ 6,)

if (1 = false A1)y = false)
then
L return (false)

else if (i); = false) then
L return (i2)

else if (3, = false) then
L return (¢1)

else

L return (1, 12)

else if
(¢:=01 U ¢2 A((¢1:= ¢V ¢r) A
—(samequantifiers(¢r, $r))))
then

11 < ConstraintsHandler
(¢LU @2, BK, €:)

12 «— ConstraintsHandler
(6RU 2, BK, ;)

if (i1 = false A1) = false)
then
L return (false)

else if (i1 = false) then
L return (¢, false)

else if (Y = false) then
L return (false, 1)

else
L return (2, 1)

else

r—
ConstraintRewriting(¢,BKC,
e;)

if (r = false) then
L return false

else
L return r

The last part of the algorithm (Lines 24-28) invokes the ConstraintRewriting
function which return the constraints for other types of formulas. For example, for-
mula V71 Vo Vi3 .Vry.(ar, Ubg, ) U (¢ry, Udy,)) will directly undergo constraint

generation.

Algorithm 3 (Constraints Rewriting). This algorithm generates the con-
straints (denoted by r) by utilizing the elements of BIC. We set the initial value
of r to true as we have no violation in the start of the monitoring process. We
strip off the quantifiers of our formula ¢ to convert into its corresponding LTL
form ¢, (Line 2). For example, V7r1.Vma.(ax, Uby,,) will be converted to (a U b).
Then, we apply REWRITE function to formula ¢, with the given event e; (Line 3).
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This function is essentially the rewriting algorithm by Havelund and Rosu [13]
(see Algorithm 5). If the event violates our formula then we immediately return
the violation (Lines 4-5).

If ¢ is not violated and if the event satisfies any object a € B, then a is
considered for our constraints (Line 6). Given the position of the event is 7 in a
trace, in Line 7 we administer X’ on a (i.e., X‘a). The elements of BK which
are prefixed by “#” are removed from B as we have indicated that their first
appearance is significant (Lines 8-9). In our running example, the invocation
of ConstraintRewriting for ar, Ucy, with set BK = {#c} and consecutive
events of traces t; = (ab)(ab)a(ad)c, to = a(abed), t3 = c will result in r; = X,
ro = Xc and r3 = ¢, respectively.

The elements of BIC with “X” operators are considered for upcoming events
by stripping one instance of “X” on that element (Lines 10-11). Indeed, the
presence of X’s in the elements of B/C delays the observation and expose the
corresponding proposition to be observed for constraint generation in the sub-
sequent rounds. Finally, we return our generated constraint r.

Algorithm 4. SAT Algorithm 5. REWRITE

Input: Constraint Matrix C Input: ¢r, e
Output: A\ = {false, 7} Output: {true, false, ¢}
’ match (¢,) with

1 Function SAT (C) 1 :
2 Initialize m’ z | E?(a € ¢) then
3 columns — max{|z| | z € C} 4 | return (true)
4 existsConstrains < false
5 for 5 else if (a ¢ ¢) then
(j —0; j < columns; j++) 6 L return (false)
do 7 | (true) :
B8 — /\‘ﬂi‘f:‘l Com 4] 8  return (true)
if (3 = false) then 9 | (false) :
8 L dropColumn 10 return (false)
11 | (¢1Vé2):
9 else 12 return
10 m' — (REWRITE(¢1,e) V
largest constraint of column j REWRITE(¢2,€))
18 | (41 U ¢2):
11 if 3te 14 if (lastevent (¢)) then
Ct,j)-—memberof (t, m') 15 return
then (REWRITE(¢2,¢))
12 L dropColumn 16 else
13 else 17 return
i ot o omstrains (REWRITE(¢2,€) V
14 L eﬁ:f:Cunatrmns — (RENRITE(gy. ) A
L (61 U ¢2)))

15 if 18 | gX@‘) :
(ezistsConstraints = false) 19 if (lastevent (¢)) then
then 20 L return (false)

16 | return (false) 21 else
1 22 return

i;{ efereturn (7) (REWRITE($ ¢))

Algorithm 4 (Satisfaction Function). The input of the SAT function is a set
consisting of the constraints associated with each trace, i.e.,C = {C1,Ca,...,Cp}.
We can imagine all these constraints as rows of a matrix. For our running example,
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. w1 Ucr bry Ucn d . .
we will have C; = [Ci(a 1> e 3), Ci( 2 - ¢ 3), C,; ™| where i corresponds to ith trace

in M. We iterate through the columns for each of the traces and conjunct together
their constraints. If they evaluate to false, then we can drop the column as traces
have found a disagreement (Lines 3-8). If the conjunction is not false, we acquire
the longest constraint m’ of the corresponding column. We then check to see that no
constraints associated by other traces disagree by confirming that they are mem-
bers of m’ (Lines 10-11). If one of the constraints disagrees, then we drop the col-
umn, or else we have found an agreement of constraints between the traces (Lines
12-14). Finally, we return a violation if we were unable to find any agreement
within the constraints between traces (Lines 15-18).

Note that the process of dropping columns indeed results in a refined set
of constraints. Since the incoming traces can progress at various speeds, we
confirm that the constraints for “slower” traces are in-fact a member of the
“fastest” trace’s constraints. If no traces contradict the “fastest trace”, then this
suggests that no disagreement has yet emerged in the system. We resume taking
snapshots of the system until a violation is detected.

)

Theorem 2 (Correctness of Algorithm 1). Let ¢ be a HyperLTL formula.
Algorithm 1 returns L for an input set of traces T iff [llr =1 @] = L.

6.3 Discussion

Our algorithms reflect that the decision of appropriate consideration for propo-
sitions or Boolean expressions, paired with the effective structural division of a
HyperLTL formula, and provides an effective way to monitor complex HyperLTL
formulas. Additionally, we encode only the minimum information to check that
the agreement between traces is delineated according to the observed locations
of propositions or Boolean expressions.

A potential drawback of our RV technique is its theoretical unbounded mem-
ory requirement. However, this requirement does not influence the cases where
the verification is done offline. For online RV we can still use our algorithms for
by making practical assumptions. For example, we can incorporate a synchro-
nization mechanism amongst traces to ensure that the difference in length of
traces is not beyond some bound. We note that the worst case complexity of
Algorithm 1 is O(|t| - |T|), where |¢| is the length of the longest trace in set T
Interestingly, this complexity is independent from the number of trace quanti-
fiers in a given HyperLTL formula. Indeed, the set B/C computed pre-runtime
by I' function provides the means to avoid dependence on the trace quantifiers,
which otherwise is polynomial on the order of numbers of quantifiers. We believe
that our proposed algorithm is efficient enough to be adopted for the monitoring
of security policies in real-world applications.

Note that our proposed algorithm can only be used to monitor alternation-
free fragment (i.e., V* and 3*) of HyperLTL, which can express a wide class of
security policies including non-interference and declassification. However, speci-
fication of some security policies require alternation in the trace quantifiers. For
example, noninference [17] specifies that the behavior of low-variables should
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not change when all high variables are replaced by an arbitrary variable A, given
as follows:

V. 3n' (GAp (') AG( )\ ax < ax)
a€Ll

Similarly, generalized non-interference (GNI) [16] also requires alternation in
trace quantifiers as it allows non-determinism in the low variables of the system.

7 Related Work

Static Analysis. Sabelfeld and Myers [24] survey the literature focusing on
static program analysis for enforcement of security policies. In some cases, with
compilers using Just-in-time compilation techniques and dynamic inclusion of
code at run time in web browsers, static analysis does not guarantee secure exe-
cution at run time. Type systems, frameworks for JavaScript [6] and ML [21] are
some approaches to monitor information flow. Several tools [11,18,19] add exten-
sions such as statically checked information flow annotations to Java language.
Clark and Hunt [7] present verification of information flow for deterministic inter-
active programs. On the other hand, our approach is capable of monitoring the
subset of hyperproperties described by alternation-free HyperLTL and not just
information flow without assistance from static analyzers. In [2], the authors pro-
pose a technique for designing runtime monitors based abstract interpretation
of the system under inspection.

Dynamic Analysis. Russo and Sabelfeld [23] concentrate on permissive tech-
niques for the enforcement of information flow under flow-sensitivity. It has been
shown that in the flow-insensitive case, a sound purely dynamic monitor is more
permissive than static analysis. However, they show the impossibility of such a
monitor in the flow-sensitive case. A framework for inlining dynamic informa-
tion flow monitors has been presented by Magazinius et al. [14]. The approach
by Chudnov and Naumann [5] uses hybrid analysis instead and argues that due
to JIT compilation processes, it is no longer possible to mediate every data and
control flow event of the native code. They leverage the results of Russo and
Sabelfeld [23] by inlining the security monitors. Chudnov et al. [4] again use
hybrid analysis of 2-safety hyperproperties in relational logic. In [1], the authors
propose an automata-based RV technique for monitoring only a disjunctive frag-
ment of alternation-free HyperLTL.

Austin and Flanagan [3] implement a purely dynamic monitor, however,
restrictions such as “no-sensitive upgrade” were placed. Some techniques deploy
taint tracking and labelling of data variables dynamically [20,26]. Zdancewic
and Myers [25] verify information flow for concurrent programs. Most of the
techniques cited above aim to monitor security policies described solely with
two trace quantifiers (without alternation), on observing a single run, whereas,
our work is for any hyperproperties that can be described with alternation-free
HyperLTL, when multiple runs are observed.
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SME. Secure multi-execution [10] is a technique to enforce non-interference. In
SME, one executes a program multiple times, once for each security level, using
special rules for I/O operations. Outputs are only produced in the execution
linked to their security level. Inputs are replaced by default inputs except in exe-
cutions linked to their security level or higher. Input side effects are supported by
making higher-security-level executions reuse inputs obtained in lower-security-
level threads. This approach is sound in a deterministic language.

While there are small similarities between SME and our work, there are fun-
damental differences. SME only focuses on non-interference and aims to enforce
it, but there are many critical hyperproperties that differ from non-interference
that our method is able to monitor. Thus, SME enforces a security policy at the
cost of restricting what it can enforce, whereas our technique monitors a much
larger set of policies.

8 Conclusion

In this paper, we introduced an algorithm for monitoring alternation-free frag-
ment of HyperLTL [8], a temporal logic that allows for expressing complex
information-flow properties like generalized non-interference, declassification,
and quantitative non-interference. The main challenge in designing an RV algo-
rithm for HyperLTL formulas is that reasoning about the formula involves ana-
lyzing multiple traces (as opposed to a single trace in traditional RV techniques).
Our algorithm has three components: (1) a function that identifies propositions
that have to be bookkept across multiple traces, (2) a constraint generator that
encodes the occurrence of propositions of interest, and (3) a rewriting mod-
ule based on the algorithm in [22] that incorporates formula progression with
respect to incoming events for traces. In our view, our algorithm is a significant
step forward in monitoring sophisticated information-flow security and privacy
policies.

Our first step to extend this work will be to implement our algorithm and
test it for real-world applications, e.g., in smartphones. For future work, one may
consider RV algorithms based on monitor synthesis (as opposed to rewriting).
We are also planning to develop techniques for monitoring alternating Hyper-
LTL formulas. We believe dealing with such formulas is not possible without
assistance from a static analyzer.
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Abstract. A monitoring algorithm is trace-length independent if its
space consumption does not depend on the number of events processed.
The analysis of many monitoring algorithms has aimed at establish-
ing trace-length independence. But a trace-length independent monitor’s
space consumption can depend on characteristics of the trace other than
its size.

We put forward the stronger notion of event-rate independence, where
the monitor’s space usage does not depend on the event rate. This prop-
erty is critical for monitoring voluminous streams of events arriving at a
varying rate. Some previously proposed algorithms for past-only tempo-
ral logics satisfy this new property. However, when dealing with future
operators, the traditional approach of using a queue to wait for future
obligations to be resolved is not event-rate independent. We propose a
new algorithm that supports metric past and bounded future operators
and is almost event-rate independent, where “almost” denotes a logarith-
mic dependence on the event rate: the algorithm must store the event
rate as a number. We compare our algorithm with traditional ones, pro-
viding evidence that almost event-rate independence matters in practice.

1 Introduction

Rules are integral to society. Companies and administrations are highly regu-
lated and subjected to rules, laws, and policies that they must comply to and
demonstrate their compliance to. In many domains, the rules are sufficiently pre-
cise that automatic monitoring tools can be used to prove compliance or identify
violations.

A monitoring tool should solve the standard (online) monitoring problem:
Given a stream of time-stamped data, called events, and a policy formulated
in a temporal logic, decide whether the policy is satisfied at every point in the
stream [6,13,17]. Compared with other verification techniques, the monitoring
problem is attractive because it can be solved in a scalable way. Monitoring
algorithms usually have a modest time complexity per inspected event. In con-
trast, keeping the space requirements low for high-velocity event streams is more
challenging; this is precisely the problem we tackle here.

© Springer-Verlag GmbH Germany 2017
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Monitoring algorithms have been analyzed in the past with respect to their
space requirements. The notion of trace-length independence requires a moni-
tor’s space complexity to be constant in the overall number of events. In some
settings, only algorithms satisfying this property are considered worthy of being
called monitors [5]. Trace-length independence aims at distinguishing monitors
that can handle huge volumes of data from those that cannot. The classic 3V
characterization by volume, velocity, and variety [15], however, tells us that this
is only one challenging aspect of big data. Here, we account for another aspect:
velocity or event rate.

We propose a new notion, event-rate independence, which states that a mon-
itor’s space requirement does not depend on the number of events in a fixed time
unit. We survey existing monitoring algorithms (Sect. 2) and identify several for
past-only linear temporal logic (ptLTL) [10] and its extension with metric inter-
vals (ptMTL) [19] that have this property. No such monitors exist, however, that
support future operators.

We tackle this problem, focusing on metric temporal logic (MTL) [12] with
bounded future operators interpreted over streams of time-stamped events
(Sect. 3). This discrete semantics is based on integer time-stamps, which mir-
rors the imprecision of physical clocks. A finite number of consecutive events,
each defining a time-point, might, however, carry the same time-stamp. The
event rate is defined as the number of time-points per time-stamp. There are
several trace-length independent monitoring algorithms for MTL on streams
with a bounded event rate, but none that are event-rate independent or even
trace-length independent on streams with an unbounded event rate.

From a traditional standpoint, event-rate independent monitors for MTL
seem impossible: future operators require the monitor to wait before it can out-
put a Boolean verdict on whether the formula holds. The sheer number of events
that the monitor may need to wait for is larger than the event rate. Moreover,
it is unclear if one could even achieve a slightly weaker notion, which we call
almost event-rate independence, where the monitor’s space complexity is upper
bounded by a logarithm of the event rate (and hence the monitor can store
indices or pointers).

As a way out of this dilemma, we propose a monitor that works differently
from the traditional ones. Our monitor outputs two kinds of verdicts: standard
Boolean verdicts expressing that a formula is true or false at a particular time-
point and equivalence verdicts. The latter express that the monitor does not
know the Boolean verdict at a given time-point, but it knows that the verdict
will be equal to another one (presently also not known) at a different time-
point. Additionally, our monitor will output verdicts out of order relative to the
input stream. Thus, it must indicate in the output to which time-point a verdict
belongs. Instead of storing (and outputting) a global time-point reference, we
store the time-stamp and the time-point’s relative offset denoting its position
among the time-points labeled with the same time-stamp. We assume that time-
stamps can be stored in constant space, which is realistic since 32 bits (as used
for Unix time-stamps) will suffice to model seconds for the next twenty years.
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Storing the offset, however, requires space logarithmic in the event rate.! Beyond
this, our monitor’s space requirement is independent of the event rate.

Although our monitor’s output is nonstandard, we are convinced that it is
useful. First, the output provides sufficient information to reconstruct all viola-
tions. Second, often the monitor’s users are only interested in the existence of
violations. In this case, they can safely ignore all equivalence verdicts. Third,
users are generally interested in the first (earliest) violation. When outputting
equivalences, we ensure that the equivalence is output for the later time-points,
while the earliest time-point stays in the monitor’s memory and is eventually
output with a Boolean verdict. Thus, users will always see a truth value at the
earliest violating event.

In summary, our work makes the following contributions. We propose the
new notion of (almost) event-rate independence, which is crucial for the online
monitoring of high-velocity event streams (Sect.4). We provide an almost event-
rate independent monitoring algorithm for MTL on integer time-stamps with
bounded future operators (Sect.5). Finally, we report on a prototype imple-
mentation of our algorithm (Sect. 5.4) together with an experimental evaluation
(Sect. 6). Taken together, these contributions lay the foundations for online mon-
itoring that scales both with respect to the volume and the velocity of the event
stream.

2 Related Work

There is considerable related work on monitoring. We focus on those algorithms
and techniques that are closely related to ours and we touch upon other related
works.

Havelund and Rosu [10] propose a simple, yet efficient online monitor for past-
time linear temporal logic (ptLTL) using dynamic programming. The satisfaction
relation of ptLTL can be recursively defined on a trace by examining the truth-
values of subformulas only at the previous time-point. They exploit this insight
to develop an algorithm that stores the truth-values of subformulas only at the
two latest time-points. The algorithm’s space complexity is O(n), where n is the
number of subformulas.

Thati and Rosu [19] extend the results by Havelund and Rosu [10] to provide a
trace-length independent, dynamic programming monitoring algorithm for MTL
based on derivatives of formulas. Their monitor’s space complexity depends only
on the size of the formula and the constants occurring in its intervals. Thus
their monitor is event-rate independent. However, the algorithm outputs verdicts
with respect to a non-standard semantics of MTL, truncated to finite traces. It
immediately outputs a verdict at time-points without looking at future events

! One could argue that, if time-stamps model seconds, there is a physical bound on
the number of events that fit into this fixed unit of time and the space to store this
number can be considered constant. However, we envision applications where time-
stamps model days, month, or even years, for which the number of events fitting
into one time unit increases dramatically.
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that could possibly alter the verdict. Computing verdicts this way defeats the
purpose of (top-level) future operators: An wuntil that is not satisfied at the
current time-point, but only at the next one, is reported as a violation.

Our algorithm builds on these dynamic programming approaches [10,19] to
handle past-time operators. Our technique for monitoring future formulas under
the standard non-truncated semantics of MTL in an event-rate independent
manner is new.

Basin et al. [3,4] introduce techniques to handle MTL and metric first-order
temporal logic with bounded future operators, adhering to the standard non-
truncated semantics for future formulas. Their monitor uses a queue to postpone
evaluation until sufficient time has elapsed to determine the formula’s satisfia-
bility at a previous time-point. This requires the algorithm to store in the worst
case all time-points during the time-interval it waits. Therefore the monitor’s
space complexity grows linearly with the event rate, as is confirmed by their
empirical evaluation [3, Sect. 6.3]. Their monitor outputs verdicts in order with
respect to time-points, while our algorithm may output verdicts out of order to
achieve a better space complexity.

Researchers have developed trace-length independent monitoring algorithms
for various temporal specification languages. Maler et al. [14] compare the expres-
sive power of timed automata and MTL. They show that past formulas can be
converted to deterministic timed automata (DTA) and there exist future for-
mulas that cannot be represented by a DTA. Ho et al. [11] give a trace-length
independent algorithm for MTL in the dense time domain. There exist trace-
length independent monitors for timed regular expressions [20], ptLTL extended
with counting quantifiers [7], and ptMTL extended with recursive definitions [9].
The underlying logics have different time domains and semantics. We leave the
study of event-rate independence in these settings as future work.

3 Metric Temporal Logic

Metric temporal logic (MTL) [12] is a logic for specifying qualitative and quan-
titative temporal properties. We briefly describe the syntax and the point-based
semantics of MTL over a discrete time domain. A more in-depth discussion of
various flavors of MTL is given elsewhere [4].

Let I denote the set of non-empty intervals over N. We write an interval in 1
as [a,b], where a € N,b € NU {c0},a < b, and [a,b] = {x € N|a < x < b}. For
a number n € N,I — n denotes {x —n | x € [} N N. For an interval I, let max(I)
denote the largest constant occurring at the endpoints of 7, i.e. max([a, b]) = b if
b # o0, else a. We write r for the upper bound of the interval, i.e., r([a,b]) = b,
which is possibly oco.

The set of MTL formulas over a set of atomic propositions P is defined
inductively:

e=pl@leiVes | Ore| @ ¢|e1Sies| el g,

where p € P and I € I. Along with the standard Boolean operators, MTL
includes the temporal operators @; (previous), S (since), Oy (next), and U;
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(until), which may be nested freely. We restrict the intervals attached to future
operators to be bounded, i.e., we require r(I) # 0o, as we want the formulas to be
both finitely satisfiable and falsifiable (see [3] for details). We omit the subscript
Iif I = [0, 00), and use the usual syntactic sugar for additional Boolean constants
and operators true = p V —p, false = —true, ¢ Ay = =(—¢ V =) and future
temporal operators eventually ;o = true Uy ¢ and always o = =0~ as well
as their past counterparts once 4; and historically H;.

MTL formulas are interpreted over streams, which are infinite sequences of
time-stamped events. A time-stamped event is of the form (r;, 7;), where n; € 27
and 7; € N. Given a stream p = ((mo, 70), (71, T1), (72, T2), ...), abbreviated
by ((m;, 7i))ien, we call the 1; time-stamps and their indices i time-points. The
sequence of time-stamps (7;);cn is monotonically increasing, i.e., 7; < 7,41 for all
i > 0. Moreover, (1;);cn makes progress, i.e., for every T € N, there is some index
i > 0 such that 7; > 7. Note that successive time-points can have identical time-
stamps; for example, (5,5, 5, 7, 8, ...). Hence, time-stamps may stutter, but only
for finitely many time-points. A finite prefix of an event stream is called trace.

The semantics of MTL formulas for a given stream p = ((m;, 7;))ien and a
time-point i is defined inductively as follows.

(p,l)Fp iff pem

(p, 1) iff (p, i) = ¢

(p: 1) = @1 Vsoz iff (o, i) = @1 or (p, i) = @2

(0, 1) E @19 iff i>0and 7, — 71 €Tand (p,i—1) = ¢

(0, 1) E Cre ity —1€land (p,i+1)E¢

(0, 1) = o1 S o2 iff (p, j) = @2 for some j <iwitht,—7;, €1
and (p, k) = ¢y for all j<k <i

o1 U @2 iff (p, j) = @2 for some j>iwith 7, — 7, €1
and (p, k) =@y foralli <k<j

= -
=
=
=
=
=

(p, 1)

When the stream p is clear from the context, we also simply write i |= ¢.
From the semantics of MTL, it is easy to derive an equivalent recursive
definition for the until and since operators for a fixed stream p:

i=¢1 S iff 0€landi=gq, or
i>0, 1 =71 <r(I),iF ¢, andi—1F @1 S_(r,—7_,) $2

iE@piU g iff 0€landil=gs, or
T - <), iEe, andi+1E @ U_(r,,—r) ¢2

Note that the formula being “evaluated” on the right-hand side of these recur-
sive equations has the same structure as the initial formula, except that the
interval has been shifted by the difference between the current and the previ-
ous (or the next) time-stamps. Our algorithm, described in Sect. 5, uses these
recursive equations to update the monitor’s state by simultaneously monitor-
ing the formulas arising from all possible interval shifts. We call such formulas
interval-skewed subformulas. For an MTL formula ¢, let SF(¢) denote the set of
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i (time-point) o 1 2 3 4

n(events) | {a} {a} {a} {b} {a.b} ...
7; (time-stamps)| 1 2 2 3 4 ...
i }: “Z/I[O, 1] b 1L T T T T

Fig. 1. Evaluation of a U)o, 1] b on an example stream

its subformulas defined in the usual manner. Note that ¢ € SF(p). The set of
interval-skewed subformulas of ¢ is defined as

ISF(¢) = SF(¢) U {¢1 Si—n 92 | 1 S1 @2 € SF(¢) and n € [1,max(I)]}
U {1 Ur—n 2 | o1 Us @2 € SF(p) and n € [1, max(I)]}.

Clearly, the size of ISF(¢) is bounded by O(|SF(¢)| x ¢), where ¢ is the largest
integer constant occurring in the intervals of ¢. We define a well-order < over
ISF(p) that respects the following conditions:

— if ¢ is a subformula of ¢o and @1 # o, then ¢1 < o
—if gy =a8S;Band g3 =aSpB and I' = I — n for some n > 0, then ¢; < @s.

We use this to order the elements of ISF(¢) into an array in Sect. 5.

We also define the future reach (FR) of an MTL formula following Ho
et al. [11], which we subsequently use to analyze the complexity of our proposed
algorithm.

FR(p) =0  FR(=¢) =FR(¢)  FR(¢1V ¢2) = max(FR(¢1), FR(¢2))
FR(®:¢) = FR(¢) — inf(1) FR(Or¢) = sup(I) + FR(¢)

FR(¢1 S ¢2) = maximum(FR(¢1), FR(p2) — inf(1))

FR(¢1 U; ¢2) = sup(I) + maximum(FR(¢1), FR(¢2))

Here maximum denotes the maximum of two integers and sup and inf denote the
supremum and infimum of sets of integers, respectively. For a bounded future
MTL formula ¢, we have FR(¢) # oo. Intuitively, events that have a time-stamp
larger than 7; + FR(p) are irrelevant for determining ¢’s validity at a time-point
i with time-stamp 7;.

Ezample 1. Consider the formula ¢ = a U|p 1) b and the event stream p =
(({a}, 1), ({a}, 2), ({a}. 2), ({b}, 3). {a,b}, 4),...). In Fig.1, T and L denote
the satisfaction and violation of ¢. Note that the verdict L at time-point 0 is
determined only after the event ({4}, 3) has arrived. This observation would also
apply, even if the event ({a}, 2) was replicated arbitrarily often in the stream.

4 Almost Event-Rate Independence

The space complexity of monitoring algorithms has been previously analyzed
with respect to two parameters: formula size and trace length. In most sce-
narios, the formula is much smaller than the trace and does not change dur-
ing monitoring. Hence, an algorithm with a space complexity exponential in
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the formula size is usually tolerable, but a space complexity linear in the trace
length is problematic since this corresponds to storing the entire trace. Recently,
researchers have studied trace-length independence [5]. A monitor is trace-length
independent if its efficiency does not decline as the number of events increases. In
the setting of MTL, we call a monitoring algorithm M trace-length independent
on the stream p if the space required by M to output the verdict at time-point i
when monitoring p is independent of i. This property is critical for determining
whether a monitor scales to large quantities of data. However, it does not yield
insights into the monitor’s performance regarding other aspects of the stream
such as its velocity.

We propose the notion of event-rate independence, which not only guarantees
the monitor’s memory efficiency with respect to the number of events, but also
with respect to the rate at which the events arrive. A varying event rate is a
realistic concern in many practically relevant monitoring scenarios. For example,
if the unit of time-stamps is on the order of days, there may be millions of time-
points with the same time-stamp in a stream. An event-rate dependent algorithm
may work well on days with a few thousand events, but fall short of memory when
the number of events rises significantly. (Such a situation could be an indicator
that something interesting happened, which in turn makes the monitor’s output
particularly valuable on that day.)

We first formally define a stream’s event rate.

Definition 1. The event rate er of a stream p = ((m;,7;))ien at time-stamp 7
is defined as the number of time-points whose time-stamps are equal to 7, i.e.,
erp(7) = {i| i = 7},
An online monitoring algorithm M for MTL is event-rate independent on the
stream p if for all time-points i the monitor M’s space complexity to compute
the verdict at i is constant with respect to ery(t;) for all j < i, i.e., the event
rates in p at all time-stamps up to and including the current one. Ultimately,
we are interested in monitors that are event-rate independent on all streams p.
For example, the dynamic programming algorithms [10,19] are event-rate inde-
pendent on all streams p for past-only MTL.

The trace length up to time-point i is greater than the sum of the event rates
erp(t) for v < 71; for all streams p. Hence, we obtain the following lemma by
contraposition.

Lemma 1. Fiz a stream p. Let M be a monitoring algorithm for MTL. If M
is event-rate independent on p, then M is trace-length independent on p.

In general, event-rate independence is not strictly stronger than trace-length
independence. To see this, consider the following stream where the event rate
itself depends on the trace length: p = (7o, 0), (71, 1), (71, 1), (72, 2), (72, 2),
(72, 2), (72, 2), ...), where (77, T) is repeated 27 times. Any event-rate dependent
monitor for p is also trace-length dependent, since the event rate is roughly half
of the trace length at each time-point.

In contrast to the above example, streams arising in practice have a bound on
the event rate. For such an (event-rate) bounded stream p we have Vi. er,(7;) < b,
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for some arbitrary but fixed b,. In fact, the related bounded variability assump-
tion [8,11,14] is deemed necessary for trace-length independence. The considera-
tion of the event rate clarifies the need for this assumption: On bounded streams
p, event-rate independence is strictly stronger than trace-length independence.
For example, monitors using a waiting queue for future operators [3] are trace-
length independent on p, but not event-rate independent on p. On unbounded
streams, i.e., streams that are not event-rate bounded, the two notions coincide.
This is in line with the fact that there are trace-length independent monitors for
MTL (with future operators) on bounded streams [3,11], but none on unbounded
streams.

Event-rate independence and trace-length independence for unbounded
streams are indeed impossible if we adhere to the mode of operation of exist-
ing MTL monitors. Existing monitors output verdicts monotonically, i.e., for
time-points i and j, if i < j then the verdict at i is output before the verdict
at j. Monotonicity makes any monitor handling future operators linearly event-
rate dependent (and hence trace-length dependent for unbounded streams), as
it must wait for and therefore store information associated to more than er,(7)-
many events (for some 7) before being able to output a verdict. So event-rate
independence seems to be too strong a condition for traditional monitors.

To overcome this problem, our monitor outputs verdicts differently. In addi-
tion to the standard Boolean verdicts T and L, it outputs equivalence verdicts
Jj =i (with i < j) if it is certain that the verdict at time-point j will be equiv-
alent to the verdict at a previous time-point i, even if the exact truth value is
presently unknown at both points. This makes verdict outputs non-monotonic
with respect to time-points, but it is still possible to ensure monotonicity with
respect to time-stamps for time-stamps that are far enough apart. More precisely,
a monitor that is monotonic with respect to time-stamps outputs the verdict at
i before the verdict at j when monitoring ¢, if 7; — 7; > FR(¢).

To output equivalence verdicts, the algorithm must refer to time-points. This
requires non-constant space, e.g., logarithmic space for natural numbers. Time-
points increase with the trace length, leading to a logarithmic dependence on
the trace length. An alternative way to refer to time-points is to use time-stamps
together with an offset pointing into a block of consecutive time-points labeled
with the same time-stamp. (The size of such a block is bounded by the event
rate.) The space requirement of an algorithm outputting such verdicts is there-
fore not event-rate independent. However, it is logarithmic in the event rate.
These observations suggest the slightly weaker notion of almost event-rate inde-
pendence, which is defined identically to event-rate independence except that
the space complexity is upper bounded by a logarithm of the event rate.

Definition 2. An online monitoring algorithm M for MTL is almost event-rate
independent if for all time-points i and streams p the space complexity of M for
outputting the verdict at i is O(log(max;<; ery(1;))).

Our proposed monitor is almost event-rate independent. Moreover, it is the
first almost trace-length independent monitor on unbounded streams.
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5 Monitoring Algorithm

We describe the high-level design of our monitoring algorithm for MTL infor-
mally. Then we give a formal description using functional programming notation,
prove its correctness and almost event-rate independence, and discuss implemen-
tation details.

5.1 Informal Account

The idea of outputting equivalence verdicts draws inspiration from a natural
way to approach simultaneous suffix matching with automata. To decide which
suffixes of a word are matched by an automaton, a naive approach is to start
running the automaton at each position in the word. For a word of length n
this requires storing n copies of the automaton. A more space-efficient approach
is to store a single copy, and use markers (one marker for each position in the
word) that are moved between states upon transitions. If n is larger than the
number of states, then at some point two markers will necessarily mark the same
state. At this point, it suffices to output their equivalence and track only one of
them, since they would travel through the automaton together. Our algorithm
follows a similar approach; however, we avoid explicitly constructing automata
from formulas.

Our algorithm builds on Havelund and Rosu’s dynamic programming algo-
rithm for past-time LTL [10], where the monitor’s state consists of an array
of Boolean verdicts for all subformulas of the monitored formula at a given
time-point. The array is dynamically updated when consuming the next event
based on the recursive definition of satisfiability for LTL. To support intervals,
we use the idea by Thati and Rosu [19] to store an array of verdicts for all
interval-skewed subformulas instead of plain subformulas as in Havelund and
Rosu. This accounts for possible interval changes when moving between differ-
ent time-stamps according to the recursive definition of satisfiability for past-
time MTL. This step crucially relies on the time-stamps being integer-valued,
as otherwise the number of skewed subformulas would be infinite.

The problem with future operators is that they require us to wait until we
are able to output a verdict. At first, we sidestep almost event-rate independence
and formulate a dynamic programming algorithm that treats past operators as
Havelund and Rosu’s algorithm [10] but also supports future operators. The
recursive equation for until reduces the satisfaction of a formula ¢; U; @2 at the
current time-point to a Boolean combination of the satisfaction of ¢; and ¢y at
the current time-point and the satisfaction of ¢1 U;_, 2 (for some n) at the next
time-point. While we can immediately resolve the dependencies on the current
time-point, those on the next time-point force us to wait. This also means that
we cannot store the verdict in an array (because we do not know it yet), but
instead we will store the dependency in the form of pointers to some entries
in the next array to be filled. In general, our dynamically updated array (of
length [ISF(¢)|), indexed by interval-skewed subformulas, will contain Boolean
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expressions instead of Booleans, in which the variables denote the dependencies
on those next entries.

Additionally, we may only output verdicts when the Boolean expressions are
resolved to a Boolean verdict. This will happen eventually, since in our setting
time progresses and future intervals are bounded. But until this happens, the
yet-to-be-output Boolean expressions must be stored, which affects the algo-
rithm’s space consumption. In the worst case, the monitor would store as many
expressions as there are time-points in any interval of timespan d, where d is the
future reach of the monitored formula.

Finally, to obtain almost event-rate independence, we refine our monitor’s
output by allowing it to output equivalence verdicts between different time-
points. As soon as the monitor sees two semantically equivalent Boolean expres-
sions, it may output such verdicts and discard one of the two expressions.
Since there are only O(QQHSFW) semantically different Boolean expressions in
O(|ISF(¢)]) variables (corresponding to the verdicts for interval-skewed subfor-
mulas at the next time-point), the space required to store them depends only on
the monitored formula ¢. However, for the equivalence verdicts to be understand-
able to users, the equivalences must refer to different time-points via indices.
Storing those indices requires logarithmic space in the event rate. Hence, the
overall algorithm is almost event-rate independent.

5.2 The Algorithm

We now give a more formal description of our algorithm. For the presentation,
we use a functional programming-style pseudo code, with pattern matching, that
resembles Standard ML. Type constructors, such as _ list or _ array for func-
tional lists and arrays (lists of fixed length with constant time element access),
are written postfix, with the exception of the product type x and the function
space —, which are written infix. We write N for the type of natural numbers
and € for the type of time-stamps (although, in our case, these are again just
natural numbers). Lists are either empty [] or constructed by prepending an
element to a list x::zs. List concatenation is written infix as 4. Anonymous
functions are introduced using A-abstractions.

Our monitor for a fixed formula @ operates on an input stream of time-
stamped events I and writes verdicts to an output stream O. Additionally, it
starts in some initial state init of type o and can perform state transitions
step : 0 — 0. The state consists of three parts: a list of time-stamped Boolean
expressions for which the verdict depends on future events, a current time-stamp,
and an array of Boolean expressions for all interval-skewed subformulas at the
current time-point (similarly to the state of Havelund and Rosu’s algorithm).
Expressions for small subformulas are stored at low indices in this array, while
the monitored formula @ has index [ISF(®)| — 1. In other words, if we think of
the array as being indexed by subformulas, then the array’s indices are ordered
by the well-order <. We formalize the state using a record type:

record o = {hist : (€ x N X bexp) list, now : €3 x N, arr : €) — bexp array}.
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init = {hist =[], now = (—1,0),arr=4_. 1"} updatea (t,i,b) h =
step {hist = &, now = (1, i), arr = fa} = let ¢ = subst (Ax. a[x]) b
let (n,7) <1 inifc=TVe= 1
a:fa e then
i = fold (update a) (rev h) ] letif 7 > O then (t.i.c)=0
j=if r=17'theni+ 1 else 0 in h
in {hist = add (7, i, a[®]) ', now = (7', j), else

arr = progressatn v’} add (7.4, ¢) h

Fig. 2. The transition system of the monitor: init and step

Two points are worth noting here. First, in addition to the time-stamp for each
time-point, we store an offset of type N, which stores the position of the time-
point within a block of time-points with the same time-stamp. Using the time-
stamp and the offset, each time-point can be uniquely identified. Second, the
array in arr has a dependency on a future time-stamp because the recursive
definition of satisfaction for until depends the time-stamp difference between the
next and the current time-point. As a result, our monitor will output a verdict
for a time-point only after having seen the time-stamp of the next time-point.
We will revisit and rectify this limitation in Sect. 5.4.

Overloading notation, (Boolean) expressions can be defined inductively as
follows:

bexp = L | T | bexp A bexp | bexp V bexp | —bexp | var N.

Here, a variable should be thought of as a pointer into the arr array of the yet-
to-be-computed next state, i.e., a natural number less than n, where n is the
number of interval-skewed subformulas of @. To lighten the notation, we implic-
itly convert interval-skewed subformulas of @ to natural numbers between 0 and
n — 1, and vice versa. For example, we write var ¢ (or a[g]) to denote a variable
pointing to the array entry corresponding to the formula ¢ (or the array entry
itself). We assume that all expressions of type bexp are normalized using Boolean
simplifications, e.g., L A x is rewritten to L. Thus, each expression is either a
Boolean | or T or does not contain I or T as a subexpression. Furthermore,
we will use the function subst : (N — bexp) — bexp — bexp to replace variables
with expressions according to the given function argument as well as a decision
procedure = : bexp — bexp — {1, T} for the semantic equivalence of Boolean
expressions. We omit the definitions of those two functions.

The monitor’s initial state init and its transition function step are shown
in Fig.2. The function step formalizes the transition from the current time-
point to the next one. First, it retrieves the new event 7 and its time-stamp 7’
from the input stream I (which we write as (7, ") < I). Using 7/, the next step
evaluates the future-dependent array fa to obtain an array of Boolean expressions
a. Note that the expressions in a refer to the array of the next state, while all
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progressatnt v = go loc done x [| = x :: rev done
leth= 1" go loc done (1,1, b) (7', j, ¢) :: todo) =
forx=0,...,n—1 if loc AT # 7' then (z, i, b) :: rev done +- (7, j, c) :: todo
b[x] = case x of else if ¢ = d then
| p =pen let (r,i) = (¢, j) = O'in rev done +(7', j, ¢) :: todo
|—¢ = —bly] else go loc ((7/, j, ¢) :: done) (x, i, b) todo

[ oVu = blg] v bly]
| @19 = if 7' —7 € Ithensubst (Ax. b[x]) aly] else L
| Or¢ = ift” —7/ € Ithenvarpelse L
|oSry = (if 0 € I'then bly]else L) V
(if 7' — 7 < r(I) then blg] A subst (Ax. b[x]) alp S;_z_r) ¢] else L)
| U = (if 0 € I then by else L) V
(if 7" — 7' <r(I) then blg] Avar (¢ S;_ oy ) else L)
in b

Fig. 3. Recursive formula progression and insertion modulo semantic expression equiv-
alence

expressions in the history & refer to the current state, namely to a itself. To
overcome this mismatch, the monitor iterates over the history using the standard
fold combinator on lists and updates each of the Boolean expressions to refer to
the next state using subst in the function update. This update may convert some
of the expressions into Boolean verdicts, which are immediately output (written
... = 0) and removed from the history. Next, the monitor computes the new
offset j depending on whether the time-stamp has increased. Finally, the last
entry of the array a is added to the history (or output in case it is a Boolean
verdict) using the function add and the new future-dependent array is produced
by (a partial application of) the progress function and stored in the state. We
describe these two core functions next.
We consider three different implementations of the add function:

add (xas (-, -, ¢)) zs = X::x8 NAIVE
ifc=1Ve=T then (let x = Oin zs) else ¢ go | [] x zs GLOBAL
go T[] xxs LOCAL

The NAIVE version simply prepends the element to the history (which is kept
in reversed order with respect to the input stream). This version is not almost
event-rate independent. The GLOBAL version adds the new expression only if
there is no semantically equivalent expression in the history. The LOCAL version
adds the new expression only if there is no semantically equivalent expression
labeled with the same time-point. Whenever an expression is not added to the
history, an equivalence verdict is output. Both versions, LOCAL and GLOBAL,
are implemented using the auxiliary function go shown in Fig. 3 and give rise to
almost event-rate independent algorithms.
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@ @ {a} ) f.2}
c - 2 2 3 .
i 0 0 0 1 0 0
[(2,0,var ¢),
h 0 0 [(1,0,vargg)] (1,0, var ¢o)] (2,0, var ¢o)] L
fal fa2 fa?2 fa3 fa4
a T T T T L
b T L 1 T
go=allpgb| L L var ¢ 1 T
pr=allp ) b| L vargy  varg, var ¢o 1l
: (LO)=L (2,00=T
verdicts (2,1)=(2,0) 3,0)=T

Fig. 4. An execution of the monitoring algorithm on a U, 1) b

The last missing piece is the update of the arr entry of the monitor’s state.
The function progress shown in Fig.3 performs this update. It has access to
the previous time-stamp 7, the current time-stamp 7/, the next time-stamp 7",
the current event &, and the previous array of Boolean expressions a. Given
these inputs, it fills the next array b starting from the smallest subformulas
and progressing up to the formula @ itself. Each array entry is filled following
the recursive definition of satisfaction of the topmost operator of the formula
it corresponds to. Moreover, whenever the previous array a is accessed for past
operators, the retrieved expression’s dependencies are updated using subst as
before. In contrast, for future dependencies, the var constructor of expressions
is used.

Ezample 1 (continued). Figure 4 shows the internal states of the GLOBAL version
of our algorithm when monitoring the formula a U 1} b on the stream p =
(({a}, 1), ({a}, 2), ({a}, 2), ({b}, 3), ({a, b}, 4),...). The first two rows show the
incoming events and their time-stamps, the third the within-time-stamp offset,
and the fourth the current history. The next four rows are dedicated to the
Boolean expressions stored for each interval-skewed subformula. The last row
displays the monitor’s verdicts. At each time-point, the monitor’s state consists
(roughly) of one column from this table. Since it is hard to display the function
fa, we show instead the result of applying fa to the time-stamp of the next state.
This causes a delay of one time-point between the values in the arrays and the
history updates and verdict outputs.

5.3 Correctness and Complexity Analysis

In this subsection, we fix a formula @ and a stream p. To prove the soundness
and completeness of our monitor and to establish its space complexity bounds,
we formulate an invariant Z that holds after processing the first event and all
subsequent states.
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T {hist = h, now = (1, i), arr = fa)} =

(Il) ( (T J’ ) €h. T/@J }: P — 7Qi ':bexp )

12) (Vg € ISF(®). Qi | ¢ > 1Qi + 1 Eperp fa (Trai1)[¢])
(Ve € ISF(D). vars (fa (trait1)[¢]) € ISF(p))
V(7. j,b) ERb#TAbF# L)

h is sorted in strictly descending order by time-point
(~V(', j, b)eh. YT, k, c)€h. T'Qj=£7"Qk — compact 7/ 7"/ b ¢)

We write 7@i to denote the time-point uniquely identified by the time-stamp
7 and the within-time-stamp offset i. Moreover, vars is the set of vars in a Boolean
expression, 7 is the time-stamp from p at time-point k, and f=peqp is the lifting
of MTL satisfaction to expressions. For the base case of this lifting, we have
k ):bezp var ¢ «— k ): P

The invariant consists of six predicates. (Z1) and (Z2) capture the semantics
of the entries in the history and the expression array. (Z3) expresses that future
dependencies in any expression indexed by a subformula ¢ may only refer to ¢’s
interval-skewed subformulas. (Z4) and (Z5) are important structural properties
of the history. (Z6) is crucial for our complexity analysis. It uses an auxiliary
predicate compact, defined differently for each of the three versions of the mon-
itoring algorithm we consider.

T NAIVE
compact ' " bec=<b#c GLOBAL
v =17"—>b#c LOCAL

We prove that Z holds for every reachable state except the initial state itself.
In the initial state (Z2) is violated. The fa array of the initial state is accessed
only for past-time operators at the first event. In this case, the stored values 1
for all subformulas have exactly the right semantics: essentially they affirm that
there is no previous time-point.

Lemma 2. 7 (step init) and for any state s if Z(s) then T (step s).

Proof (core idea). The core of the proof is the preservation of (Z2) by the progress
function. We prove the following auxiliary lemma: Fiz a stream p = (7, Ti))ien
and a time-point k. Assume progress a Ty Ti+1 Tik+1 Tkr1 = b and for all ¢ €
ISF(®@) we have k = @ «— k+ 1 FEpesp ale]. Then k+ 1= ¢ «— k+2 Epegp b[¢]
holds for all ¢ € ISF(®).

The lemma follows by well-founded induction on the lexicographic product
of the natural number order on time-points and the order < on formulas: Fix
¢ € ISF(®). The induction hypothesis allows us to assume k+ 1=y «— k +
2 FEpesp bly] for any ¥ < ¢. We continue by a case distinction on ¢ and present
here only the case where ¢ = @1 Uy ¢o3. Let 4 = 7" — 7' and I' = I — 4. We
calculate
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recursive def. off=
>

k+1|:<p1U1902 (061/\k+1':¢2)\/

A<r(D)Nk+1Ep1 Nk+2FE @1 Uy ¢2)

wice TH + def. cxp
‘ EE B (0 € TAK+2 Eponp blga]) V
(A <r(I) Nk+ 2 =pegp ble1] ANk + 2 FEpegp var (o1 Uy ¢2))

def. of progress 4 | Fbeap blo1 Ur @2]

Other cases follow similarly. Past operators additionally use the assumption on a.
O

The step from the invariant to a correctness theorem is easy. For soundness,
we calculate the expected semantic properties for verdicts output in a step taking
(Z1) and (Z2) of the invariant into account. Completeness also holds: for each
time-point either a verdict is output or an expression is inserted into the history.
Each expression from the history is eventually output as time progresses and all
future intervals are bounded.

Theorem 1 (Correctness). The monitor for a formula @ is sound: whenever
it outputs the Boolean verdict (t, i, b) we have TQi | @ «— b and whenever it
outputs the equivalence verdict (1, i) = (7', j) we have TQi > 7'Qj and tQi |
& «— 7'Qj = @. For the LOCAL mode, we additionally have T = 7. Moreover,
the monitor is complete.

Finally, we establish complexity bounds. Let n = |ISF(®)| and d = FR(y).
Note that d < n. The size of a Boolean expression in n variables can be bounded
by 2" assuming a normal form for expressions such as CNF. Then the size of the
future-dependent array arr is n - 2". The length of the history depends on the
version of the algorithm used and (except for the NAIVE algorithm) dominates
the size of arr.

Theorem 2 (Space Complexity). The space complexity for storing all
Boolean expressions used by the three versions of the algorithm at the time-stamp
T8

NAIVE: O(2" - (n-+ Y0_,_yer(r'))), GLOBAL: O(2'*), and LocaL: O(d - 27+7).

Time-stamps additionally require a constant and the offsets a logarithmic amount
of space in the event rate. Hence, GLOBAL and LOCAL are almost event-rate
independent.

Proof. Each stored Boolean expression requires O(2") space. The bound for
NAIVE follows since, at time-stamp 7, we can output Boolean verdicts for all
time-stamps that are at most 7 — d. Hence, the history needs to store only those
expressions that fit into the interval (7 —d, 7]. For GLOBAL (or LOCAL) there are
at most 2% (or d - 2%") semantically different Boolean expressions that must be
stored in the history. O
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5.4 Implementation

We have implemented the presented algorithm using Standard ML. The imple-
mentation comprises just roughly 600 lines of code. It is available online [1].

Our implementation follows the pseudo-code in Sect.5.2. In one aspect, it
takes a more refined approach. The monitor’s users would like violations to
be reported as early as possible. The presented monitor does not do this as
it delays the output of verdicts for one time-point, even if no future opera-
tors are involved. Our implementation improves this by refining the type of
arr in the monitor’s state from €)x N x (€) — bexp array) to the more precise
€ x N X bexp; array,, where the type of potentially future expressions bexp is
either an immediate Boolean expression or a future-dependent expression as
before. Formally bexp; = Now bexp | Later (£ — bexp).

This refined type makes it possible to output verdicts at the current time-
point instead of the following one, provided that the computation of progress
resulted in a Now constructor for the monitored formula @. Accordingly, the
function progress must be refined to carefully assemble possibly future expres-
sions to maximize the number of Now constructors in the array. To achieve this,
all constructors (e.g., A) of bexp are lifted to functions (e.g., Af) on bexps that
try to produce as many Nows as possible by applying simplification rules such
as Now L Af Later f = Now L.

To implement the expression equivalence check, we use a simple BDD based
algorithm that has been formally verified in the Isabelle proof assistant by
Nipkow [16]. It would be interesting to explore working with BDDs instead of
Boolean expressions all the time (and not only in the equivalence check) to poten-
tially improve time complexity.

6 Evaluation

We compare the three versions of our tool with MoONPOLY [2,3], a state-of-
the art monitor for metric first-order temporal logic. The experiments were run
on a 3.1 GHz dual-core Intel Core-i7 processor and 16 GB RAM. We evaluate
the memory consumption of all tools while monitoring four MTL formulas on
pseudo-randomly generated event logs with varying average event rates. For the
random generation, we used a different probability distribution for each event,
depending on the formula. For example, for the formula Qo5 p, the probability
of p occurring was very small. All our logs consist of 100 different time-stamps,
with the number of time-points labeled with the same time-stamp ranging from
100 to 100000 on average per log. Overall, the log files comprised 8 GB of data.
Their generation required more time than the actual monitoring task (at least
for the LoCAL and GLOBAL version of our algorithms). GNU Parallel [18] was
invaluable for both generating the logs and running the four tools on them.
Figure5 shows our evaluation results. Each data point in the graphs rep-
resents the average of the maximum memory consumption over 10 randomly
generated logs of a fixed average event rate. (The standard deviation is omitted
in the figure as it was far below 1 MB for most time-points.) For all formulas,
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Fig. 5. Results of the experimental evaluation

the space consumption of both the NAIVE version of our tool and MoONPOLY
increases linearly in the event rate, while for LOCAL and GLOBAL it stays almost
constant. This relationship between the memory usage and the average event rate
is consistent with our theoretical analysis. Moreover, LOCAL and GLOBAL do not
differ essentially in memory consumption. We therefore advise using the LOCAL
version of the algorithm given its additional guarantee of outputting equivalence
verdicts only for time-points labeled with the same time-stamp.

Although we were not measuring time, increasing the memory consumption
to 60 MB results in a significant increase in processing time per event, which
leads to a much lower throughput for monitors like NAIVE and MONPoOLY. This
is not the case for our almost event-rate independent monitors.

7 Conclusion

We introduced the notion event-rate independence for measuring the space com-
plexity of monitoring algorithms. This notion is desirable for monitors processing
event streams of varying velocity. We presented a novel algorithm for monitoring
metric temporal logic with bounded future operators that is almost event-rate
independent. Our algorithm is concise and efficient.

As future work, we plan to study which extensions of metric temporal logic
permit almost event-rate independent algorithms. Moreover, we intend to par-
allelize our algorithm, using existing frameworks in the spirit of Spark [21], to
obtain monitors for expressive temporal logics that scale to big data applications.
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Abstract. A crucial step in model checking Markov Decision Processes
(MDP) is to translate the LTL specification into automata. Efforts have
been made in improving deterministic automata construction for LTL
but such translations are double exponential in the worst case. For model
checking MDPs though limit deterministic automata suffice. Recently it
was shown how to translate the fragment LTL\GU to exponential sized
limit deterministic automata which speeds up the model checking prob-
lem by an exponential factor for that fragment. In this paper we show
how to construct limit deterministic automata for full LTL. This trans-
lation is not only efficient for LTL\GU but for a larger fragment LTLp
which is provably more expressive. We show experimental results demon-
strating that our construction yields smaller automata when compared
to state of the art techniques that translate LTL to deterministic and
limit deterministic automata.

1 Introduction

Markov Decision Processes (MDPs) [4,19,23] are the canonical model used to
define the semantics of systems like concurrently running probabilistic programs
that exhibit both stochastic and nondeterministic behavior. MDPs are inter-
preted with respect to a scheduler that resolves the nondeterminism. Such a
scheduler chooses a probabilistic transition from a state based on the past
sequence of states visited during the computation. When undesirable system
behaviors are described by a formula ¢ in linear temporal logic (LTL), qualita-
tive verification involves checking if there is some (adversarial) scheduler with
respect to which the measure of paths satisfying ¢ is non-zero. Model checking
algorithms [4] in this context proceed by translating the LTL requirement ¢ into
an automaton A, taking the synchronous cross-product of the MDP model M
and the automaton A to construct a new MDP M’, and finally, analyzing the
MDP M’ to check the desired property. The complexity of this procedure is
polynomial in the size of the final MDP M’, and hence critically depends on the
size of automaton A that results from translating the LTL specification.
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MDP model checking algorithms based on the above idea require the trans-
lated automaton to be of a special form as general non-deterministic automata
are not sufficient. The Biichi automaton has to be either deterministic or deter-
ministic in the limit — a Biichi automaton is deterministic in the limit if every
state reachable from an accepting state has deterministic transitions'. Limit-
determinism is also sometimes referred to as semi-determinism. Deterministic or
limit deterministic automata for LTL formulae can be constructed by first trans-
lating the formula into a nondeterministic Biichi automaton, and then either
determinizing or “limit-determinizing” the machine. This results in an automa-
ton that is doubly exponential in the size of the LTL formula, which gives a
2EXPTIME algorithm for model checking MDPs.

Direct translations of LTL (and fragments of LTL) to deterministic Rabin
automata have been proposed [3,5,10,13,16,17]. However, any such translation,
in the worst case, results in automata that are doubly exponential in size [2];
this holds for any fragment of LTL that contains the operators V, A, and F.
Recently [8] a fragment of LTL called LTL\GU [14] was translated into limit
deterministic Biichi automata. LTL\GU is a fragment of LTL where formulae are
built from propositions and their negations using conjunction, disjunction, and
the temporal operators X (next), F (eventually/finally), G (always/globally),
and U (until), with the restriction that no U operator appears within the scope
of a G operator. The most important feature of this translation from LTL\GU
to limit deterministic automata is the fact that the resulting automaton is only
exponential in the size of the formula. Thus, this automata construction can
be used to obtain an EXPTIME algorithm for model checking MDP against
LTL\GU formulas, as opposed to 2EXPTIME.

Recently, a translation from full LTL logic to limit deterministic automata
has been proposed [20]. This translation is very similar to the translation to
deterministic automata proposed in [5], with the use of nondeterminism being
limited to simplifying the acceptance condition. Therefore, like the determinis-
tic translations of LTL, it can be shown to construct doubly exponential sized
automata even for very simple LTL fragments like those that contain Vv, A, and
F. Thus, it does not achieve the optimal bounds for LTL\GU shown in [§].
However, one advantage of the construction in [20] is that it can be used in
quantitative verification as well as qualitative verification of MDPs and has been
implemented in [21]. Quantitative verification of MDPs can also be performed
using nondeterministic automata that have the good-for-games (GFG) property
[7,11], but translating a general NBA into a GFG automaton is known to result
in an exponential blow-up. An alternate approach to quantitative verification
using subset/breakpoint construction on a NBA is proposed in [6] but it also
suffers from an exponential blow up.

! Limit deterministic automata are not the same as unambiguous automata. Unam-
biguous automata have at most one accepting run for any input. It is well known
that every LTL formula can be translated into an unambiguous automaton of expo-
nential size [22]. This has been shown to be not true for limit deterministic automata
in [20].
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In this paper we continue the line of work started in [8,20], and present a new
translation of the full LTL logic to limit deterministic Biichi automata. The new
translation can be shown to be a generalization of the construction in [8] in that
it constructs exponential sized automata for LTL\GU. In fact, we show that this
new translation yields exponential sized automata for a richer fragment of LTL
that we call LTLp (see Sect. 5 for a comparison between the expressive powers of
LTLp and LTL\GU). This improves the complexity of qualitative MDP model
checking against LTLp to EXPTIME from 2EXPTIME.

Our automaton construction uses two main ideas. The first is an idea dis-
covered in [8]. To achieve limit determinism, for certain subformulae ¢ of ¢, the
automaton of ¢ tracks how often Fv and G formulae are true; this is in addi-
tion to tracking the truth (implicitly) of all subformulae 1, as all translations
from LTL to automata do. Second, for untils within the scope of G, we do a
form of subset construction that ensures that the state explores all the possible
ways in which such formulae can be satisfied in the future, and for untils outside
the scope of G we use non-determinism to check its truth.

We have implemented our translation from LTL to limit deterministic
automata in a tool called Biichifier. We show experimental results demon-
strating that in most cases our construction yields smaller automata when com-
pared to state of the art techniques that translate LTL to deterministic and limit
deterministic automata.

2 Preliminaries

First we introduce the notation we use throughout the paper. We use P to denote
the set of propositions. We use w to denote infinite words over a finite alphabet.
We use w; to denote the i*" (index starting at 0) symbol in the sequence w,
and use w[i] to denote the suffix w;w;41 ... of w starting at i. We use wli, j] to
denote the substring w; ... w;_1. We use [n] to denote all non-negative integers
less than n that is {0,1,...,n—1}. We begin by recalling the syntax of LTL:

Definition 1 (LTL Syntax). Formulae in LTL are given by the following
syntax:
¢ = plwplereleVe | Xe | Fo|Gep| oUgp peEP
Next, we look at the semantics of the various operators:
Definition 2 (Semantics). LTL formulae over a set P are interpreted over
words w in (2F). The semantics of the logic is given by the following rules
wEp(-p) < pEwo(p¢wo) wEXp — wll]kFe
wEeVY <= wkyporwEy wEFp < Ji:wl[i|Ee
wEEANY <= wE @ andwE Y wkEGp < Vi:wl[i|Egp
wkE Uy < Fi:wli|EY,and
Vi<i:w[jlEe

The semantics of @, denoted by [¢], is defined as the set {w € (2F)% | w E ¢}.
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(Note that the release operator R, the dual of U, can be expressed using U and
G, ie. Y1 Ry = (2 U (Y1 A))) V Gibe. Hence we omit it from any of the
logics we consider.)

In this paper the terminology subformula of ¢ is used to denote a node
within the parse tree of ¢. When we refer to the subformula as an LTL formula
we will be referring to the formula at that node. Two subformulae that have the
same formulae at their nodes need not be the same owing to the possibility of
them being in different contexts. This distinction will be important as we treat
formulae differently depending on their contexts. For the purposes of describ-
ing different subfragments we qualify subformulae as being either internal or
external.

Definition 3. A subformula v of ¢ is said to be internal if ¢ is in the scope of
some G-subformula of p, otherwise it is said to be external.

Many syntactic restrictions of LTL have been considered for the sake of
obtaining smaller automata translations. LTL(F,G) (read “LTL F G”) and
LTL\GU (read “LTL set minus G U”) are two such fragments which we recall
in the next two definitions.

Definition 4 (LTL(F,G) Syntax). The fragment LTL(F,G) over propositions
P is described by the following syntax

g u= plplereleve | Xe|Fp|Ge peP
Definition 5 (LTL\GU Syntax). The fragment LTL\GU is given by the

syntax

von= @[ YAy [ PVY | XY [ YUY ¢ € LTL(F,G)

LTL(F,G) allows for G and F as the only temporal operators. The fragment
LTL\GU additionally allows for external U but not internal ones. Also, we
choose to represent an external F using U. In other words every F will be
internal. Next, we introduce the fragment LTLp (read “LTL D”)

Definition 6 (LTLp Syntax). The formulae in the fragment LTLp are given
by the syntax for ¥:

Vo= e[ YVe | eVy [ YAy [P U | Gy | Xy ¢ € LTL(F,G)
9 n= Y |9V | IAD | YUY | X0

Unlike LTL\GU, LTLp allows for internal U but it is restricted. The following
restrictions apply on LTLp:

1. The second argument of every internal U formula is in LTL(F,QG)
2. At least one argument of every internal V is in LTL(F,G)

Note that LTLp is strictly larger than LTL\GU in the syntactic sense, as every
LTL\GU formula is also an LTLp formula. We shall show in Sect.5 that it is
strictly richer in the semantic sense as well.
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Next we define depth and height. A subformula v of ¢ is said to be at depth
k if the number of X operators in ¢ within which ¢ appears is exactly k. The
height of a formula is the maximum depth of any of its subformulae.

Definition 7 (Biichi Automata). A nondeterministic Biichi automaton
(NBA) over input alphabet X is a tuple (Q,6,1,F) where Q is a finite set of
states; § € QxXXQ is a set of transitions; I C Q is a set of initial states and
F C Q is a set of final states.

A run of a word w € X% over a NBA is an infinite sequence of states
q0q1q2 - .. such that qo € I and ¥i > 0 (¢, wi,qiv1) € 5. A run is accepting
if ¢; € F for infinitely many i.

The language accepted by an NBA A, denoted by L(A) is the set of all words
w € X% which have an accepting run on A.

Definition 8 (Limit Determinism). A NBA (Q, 9,1, F) over input alphabet
X is said to be limit deterministic if for every state q reachable from a final
state, it is the case that |6(q,0)| <1 for every o € X.

3 Construction

In this section we show our construction of limit deterministic automata for full
LTL. First, let us look at an example that shows that the standard construction
(Fischer-Ladner and its variants) is not limit deterministic. The standard con-
struction involves guessing the set of subformulae that are true at each step and
ensuring the guess is correct. For ¢ = G(a V Fb) this gives us the automaton
(after pruning unreachable states and merging bisimilar ones. Here all 3 states
are initial) in Fig. la which is not limit deterministic as the final state ¢; has
non-deterministic choices enabled.

b
cm)——Cm > o~ )
b
b

b b true

0
o> > Geimio-

(a) Standard Construction (b) Tripartition Construction

Fig. 1. Automata for G(a V Fb)

Our construction builds upon the idea introduced in [8] of keeping track of
how often F,G-subformulae are true. Therefore, we will incrementally describe
the features of our automaton: first by revisiting the technique required for
LTL(F,G) without Xs, later by introducing the new ideas required to handle
the untils and nexts.

Given an LTL(F,G) formula, for each of its G-subformula we are going to
predict whether it is: always true («), true at some point but not always (3),
never true (7). Note that for any formula if we predict a/~ then the prediction
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should remain the same going forward. For a G-subformula, G, if we predict
([ it means we are asserting FGy A =Gvy and therefore the prediction should
remain 3 until a certain point and then change to «. This prediction entails
two kinds of non-deterministic choices: (i) the initial choice of assigning one of
a, B, (ii) if assigned § initially then the choice of the time point at which to
change it to a. The first choice needs to be made once at the beginning and
the second choice has to be made eventually in a finite time. They together only
constitute finitely many choices which is the source of the limit determinism. We
similarly define predictions for F-subformulae as: never true («), true at some
point but not always (), always true (). We flip the meaning of o and ~ to
ensure 0 becomes « eventually as for G-subformulae. An FG-prediction for a
formula ¢ € LTL(F,G), denoted by m, is a tri-partition (a(r), B(x),v(7)) of its
F, G-subformulae. We drop 7 when it is clear from the context. The prediction
for a subformula ¥ made by = is said to be a/3/~ depending upon the partition
of m in which v is present. The space of all FG-predictions for ¢ is denoted
by I ().

Ezample 1. Consider the formula ¢ = G(a V Fb), and an FG-prediction 7 =
(a, B,7) for ¢ where a = {¢}, 8 = {Fb} and v = (). For the formula ¢ the
prediction made is «. Since it is a G-formula this prediction says that ¢ is
always true or simply ¢ is true. For the subformula Fb the prediction made is .
This prediction says that Fb is true at some point but not always which implies
Fb is true but not GFb.

The automaton for LTL(F,G) essentially makes a non-deterministic choice
for 7 initially and at each step makes a choice of whether to move some formula(e)
from B to a. The correctness of predictions made by 7 is monitored inductively.
Suppose our prediction for a formula Gt is o at some instant: this implies we
need to check that 1 is true at every time point there onwards (or equivalently
check that 1) is true whenever « is predicted for G since the prediction a never
changes). If we are able to monitor the truth of ¢ at every instant then it is
clear how this can be used to monitor the prediction o for Gi. The crucial
observation here is that the correct prediction for G/F formula gives us their
truth: a G/F formula is true/false (respectively) at a time point if and only if
its correct prediction is « at that time. Now the prediction « for G can be
checked by using the truths (derived from the predictions) of the subformulae of
¥ (inductive step). If ¢ is propositional then its truth is readily available from
the input symbol being seen (base case of the induction). This inductive idea
shall be used for all predictions. Note that since our formulae are in negation
normal form we only need to verify a prediction is correct if it asserts the truth
rather than falsehood of a subformula. Therefore the predictions (3,v for G
need not be checked. In case of Fy the prediction o need not be checked (as it
entails falsehood of F1) but 3, do need to be checked. If our prediction for Fi
is 0 then we are asserting v is true until a certain point in the future at which
the prediction becomes «. Therefore we only need to check that v is true when
the prediction for Fi changes to a. Once again we can inductively obtain the
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truth of ¢ at that instant from the predictions for the subformulae of ¢ and from
the next input. For checking a prediction v about Fi we need to check v is true
infinitely often. For this purpose we use the Biichi acceptance where the final
states are those where 1) is evaluated to be true, again inductively. When we are
monitoring multiple F1 for v we will need a counter to cycle through all the F
in 7. Let m be the number of F in . Observe that the set of formulae predicted
to be v never changes once fixed at the beginning and hence m is well defined.
When the counter has value n, it is incremented cyclically to n 4+ 1(mod m)
whenever the v corresponding to the n'* Fi € v evaluates to true. The initial
states are those in which the top formula evaluates to true given the predictions
in that state. The final states are those where no formula is assigned 3 and the
counter is 0. Summarizing, a state in our automata has two components: (a) an
FG-prediction m = {(a, 8,7) (a tri-partition of the F, G-subformulae) and (b) a
cyclic integer counter n. The transitions are determined by how the predictions
and counters are allowed to change as described. We illustrate the construction
using once again the formula ¢ = G(aVFb) for which the automaton is presented
in Fig. 1b and its details are completely described in the technical report [9].

3.1 Handling Untils and Nexts

Next we observe that the above technique does not lend itself to the U/X oper-
ators. The crucial property used above about F, G-formulae is that they cannot
be simultaneously infinitely often true and infinitely often false unlike U/X
formulae. So if we tried the above technique for U/X we would not get limit
determinism since the truth of the U/X formulae would have to be guessed
infinitely often.

The key idea we use in handling U/Xs is to propagate their obligation along
the states. Let us say the automaton needs to check if a formula ¢ holds for an
input w, and it begins by making an FG-prediction 7 about w. The obligation
when no input has been seen is ¢. When the first symbol wy is seen it needs
to update the obligation to reflect what “remains to be checked” for the rest
of the input w[1], in order for w F ¢ to hold, assuming 7 is correct for w. The
automaton can keep updating the obligation as it sees each input symbol. The
claim will be that the obligation is never falsified iff w E ¢, given that « is
correct. This brings up some questions:

1. How are we exploiting opportunities for non-determinism?
2. How is the obligation computed at each step?
3. How is m checked to be correct in the presence of U/Xs?

Exploiting Non-determinism. Being able to exploit non-determinism helps
in reducing the size of the automaton we construct. So the question is: how are
we exploiting any opportunities for non-determinism (albeit for finite time)? The
answer is to update the obligation non-deterministically. Checking the formula
11 Uths presents us with two alternatives: either 1), is true now or ¢ AX (1)1 Us)
is true now. Similarly 11 V)2 brings up two alternatives. We can pick between the
obligations of these two choices non-deterministically. But we should somehow
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<o e )

Fig. 2. Standard NBA construction for ¢ = aU(Gb).

ensure that we are only allowed to use this non-determinism finitely often. This is
where we treat internal and external (Definition 3) U/V subformulae differently.
The observation is that external U/V need to be checked for only a finite amount
of time. Hence the disjunctive choice presented by them can be dispatched non-
deterministically each time without worrying about violating limit determinism.
To illustrate this point we show the standard NBA for the formula ¢ = aU(Gb)
in Fig. 2 which turns out to be limit deterministic owing to the fact that the U
is external. In Fig. la we saw that the standard construction for ¢ = G(a V Fb)
resulted in a NBA that was not limit-deterministic, and one of the reasons is
that the F, which is a special form of U, is internal. An internal U/V may need
to be checked infinitely many times and hence the choice should not be resolved
non-deterministically, but carried forward as a disjunction of the obligations of
the choices. Passing the choice forward without resolving it comes at a cost of a
bigger state space, this is akin to the subset construction where all the choices
are being kept track of.

Now we begin to formalize the ideas. To exploit the non-determinism allowed
by the external U/V we introduce the concept of ez-choice. We use A, to denote
the set of all external U/V subformulae. Any subset of it A\ C A, is called an
ex-choice. An ex-choice dictates how each external U/V should be satisfied if
it needs to be satisfied. The interpretation associated with A is the following:
if 91Uty € A then 99 has to hold or if 1 Uy € A,—A then 1 A X(11Uths)
has to hold. Similarly if 1)1 Va2 € A then 1)1 has to hold and if 1) Vs € A, — A
then 15 has to hold. The automaton we are going to construct is going to non-
deterministically pick an ex-choice at each step and use it resolve the choices on
external U/V. After a finite time the ex-choice will not matter as the obligations
will not consist of any external U/V that need to be checked (which will be
enforced as a part of the acceptance condition), and hence limit determinism is
ensured. The ex-choice picked along a transition is going to determine the obliga-
tion computed. Which leads us to the question of how the obligation is computed.

Computing Obligation. We define the derivative of a formula p w.r.t an input
symbol o, FG-prediction m and ex-choice A\. The derivative should capture the
obligation /requirement on any word p such that those obligations are able to
imply that op satisfies p. This enables us to keep passing on the obligation
forward as we see each symbol of the input by taking the derivative of the
obligation so far. First, we need to ensure that the ex-choice A picked when we
are taking the transition dictates how a formula in A, should be satisfied if it
needs to be. With that in mind we define f(\) as follows:

FA) = (N gupen® U = ) A (Aguyen,-2)¢ U = (¢ AX (@ U)))
A (A@gvpen® Vo = @) A (Agvper,—2@ Vb =)
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Since predictions made by 7 already tell us the truth of some of the subformu-
lae, they need to be taken into account. Towards that we define the substitution
of a formula ¢ w.r.t 7, denoted by [ ], as the formula obtained from ¢ by sub-
stituting occurrences G with tt if Gy € a and ff otherwise, and similarly for
Fvy with ff if Fy) € o and tt otherwise. The substitutions are done only for the
maximal formulae in 7 that appear in ¢, i.e., if 11,19 are formulae in 7 such
that 11 is a subformula of v, then the substitution is not performed for ;. Now
we are ready to give a declarative definition of the derivative:

Definition 9. Given an LTL formula p over P, and a triple e = (o, 7, \) where
o€2P mell(p) and A C Ay: an LTL formula 1 is said to be a derivative of
ww.r.ttoe if

Vpe (20)" pEy = opE[uAf(N)]x

The weakest derivative of p w.r.t €, denoted by V(u,¢€), is a derivative
such that v = V(u,e) for any other derivative 1.

Since we will only be interested in the weakest derivative (as opposed to any
other derivative) we shall refer to it as the derivative. The above definition is
only declarative in the sense that it does not give us an explicit way to compute
the derivative. We present this definition here for the sake of simplicity and ease
of understanding for the reader. In the companion technical report [9] we provide
a syntactic definition and all the necessary machinery that allows us to compute
such a formula. The syntactic definition also restricts the representation of the
obligations to BT (¢) which is the set of all positive Boolean combinations of
subformulae of .

The automaton now will have an extra component p corresponding to the
obligation along with (7, n) from before. In the initial state p will be the given
formula ¢ that needs to be checked. At each step, the automaton sees an input
symbol o and makes a non-deterministic ex-choice A C A,. The obligation at the
next state will then become V(u,e) where € = (0,7, A). The process continues
as long as the obligation is never falsified. In order to ensure that every external
until is dispatched in finite time, we impose that the obligation p in the final
states is ex-free, i.e. free of any formulae in A,. When the obligation is ex-free
the ex-choice does not play a role in determining its derivative and we shall drop
A whenever that is the case, and this eliminates any non-determinism once a
final state is visited. In order to ensure that an internal until, say ¢ U 1 is not
delayed forever, we involve F in the FG-prediction and enhance the definition
of substitution to say that ¢ U v is replaced with ff if Fi) € a. This way the
derivative will impose that Fi is true whenever ¢ U 9 is claimed to be true.
With this in mind we define the closure of ¢, denoted by C(p), to be set of all
F, G-subformulae of ¢, along with all Fi for every internal ¢ U subformula of
. We re-define an FG-prediction 7 to be any tri-partition of C(¢). Note that
for every Fi or G in C(y), 1 is internal.

Ezample 2. Let ¢ = G(FaV (b U ¢)). Here C(p) = {p,Fa,Fc}.
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Ezample 3. Let ¢ = aU(bAGc) be an internal subformula of some given formula.
V(p,e) can take different values depending upon e = (o, 7). Here ex-choice A
does not play a role because the only U is internal. Note that ¢’ = F(b A Ge)
is in the closure. If ¢’ € «, then V(p,e) = ff because [¢], would be ff owing
to ¢ being substituted with ff. Let ¢’ ¢ . Now if Ge € a then substituting
tt in place of Ge gives us aUb whose satisfaction depends upon the truth of a
and b as given by o. So if o(b) = tt then the U is immediately satisfied and
so V(p,e) = tt. If o(b) = ff then the U is delayed and hence V(¢y,¢) is either
aUb or fI depending on o(a) = tt/ff respectively. If Ge ¢ « then truth of b
does not matter (as replacing Ge with ff makes b A Ge = ff) and once again the
derivative is ¢/ff depending upon o(a).

Checking FG-Predictions in the Presence of Untils and Nexts. The
main idea in being able to check an FG-prediction 7 was that a correct prediction
about an F, G-subformula also tells us its truth. When we have U/Xs in the
mix, we no longer have a prediction available for them, and hence no immediate
way to check if some subformula is true. For example when G € a we needed to
check 1 is true and we did so inductively using the predictions for subformulae
in 9. Now, since 9 can have U/X within them it is not clear how we are going to
check truth of #. In this case we pass 9 to the obligation u. Similarly when the
prediction of F is changed from § to o we need to check 1) is true so once again
we pass 1 to the obligation. So given consecutive FG-predictions 7,7’ define ¥
as the set

¥ = {¢| Fy € B(m) Nal(r') or Gv € a(m)} (1)

and update the obligation along a transition (u,m,n) % (u/',7',n’) as: y/ =
V(p A (Apew)), €) where € = (o, m, A). Now consider the case when the counter
is n > 0 and need to verify that the n'® F¢ formula in 7 is true. In this case we
cannot pass on v to the obligation because F1 may be true because v is true at
a later point and not now. Since we cannot predict when 1) is going to be true we
carry the disjunction of all the derivatives of ¢ since the counter was incremented
to n. We keep doing it until this “carry” becomes true indicating that 1) became
true at some point since we started checking for it. We also increment the counter
at that point. This “carry” becomes yet another component v in the automaton’s
state. We use F(.S) to denote all Fy in set S. Now we are ready to put the pieces
together to formally describe the entire construction.

Definition 10 (Construction). Given a formula ¢ € LTL over propositions
P, let D(p) be the NBA (Q, 6,1, F) over the alphabet 2F defined as follows:

B Q is the set BT (p) x BT (p) x II(p) x [n] where n = [F(C(p))| + 1
B § is the set of all transitions (p, v, m,m) 2 (u', v/, 7', m’) such that
(a) a(r) € a(x’) and ~(7) = y(')
(b) ' =V (uA0b,e) for some X T A,
where 0 = (Ayeco?)), ¥ as defined in (1) and € = (0,7, A)
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(c) m/ = {7(;“ 1) (mod [F(y)| +1) v =tt

otherwise

V(v,e) V otherwise

where {Fi,..,Fiyi} is an enumeration of F(v), o = tt and € = (o, )
B [ is all states of the form (o, tt,7,0)
B F is all states of the form (u,tt,m,0) where B(w) =0, p # fF, p is ex-free

(d)y,_{wm/ V= tt

We state the correctness result here and include the proofs in the technical
report [9].

Theorem 1. For ¢ € LTL, D(yp) is a limit deterministic automaton such that
L(D(v)) =[] and D(p) is of size at most double exponential in .

The number of different formulae in Bt (y), is at most double exponential
in the size of ¢, since each can be represented as a collection of subsets of
subformulae of ¢. II(y) is simply tripartition of C(¢) which is bounded above
by 3!#l. And the counter can take |F(C())| + 1 different values which is < |¢|.
The entire state space BT (p) x B*(¢) x II(¢) X [n] is upper bounded by the
product of these which is clearly doubly exponential.

/ \
o : (¢, tt,7,0) l _

a.b g3 : (tt,tt,7,0)

/

\) g
R T
a.

ab

Fig. 3. Our construction for ¢ = G(aUb).

We illustrate our construction using ¢ = G(aUb) which is a formula outside
LTL\GU. The automaton for ¢ is shown in Fig. 3. First note that the C(y) =
{p,Fb}. Next, observe that the only interesting FG-prediction is 7 in which
a ={¢}, B =0 and v = {Fb}. This is because any initial state will have yu = ¢
which forces ¢ € a, and since predictions in « don’t change, every reachable
state will have ¢ € a as well. As for Fb note that the corresponding internal
until aUb will become ff if Fb is in « and thus making the derivative ff (aUb
is added to the obligation at each step since ¢ € a and rule (b)). Therefore Fb
cannot be in «, and it cannot be in § because then it would be eventually in .
So Fb has to be in . Now that 7 is fixed, and given input o, the obligation p
changes according to rule (b) as ¢ = V(u A (aUb), (o, 7)). Similarly the carry
v changes to b if v = tt (as in g3 to ¢1/¢g2) and becomes v/ = V(v, (o,7)) Vb
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otherwise in accordance with rule (d). The initial state is go with = ¢, v = tt
and counter = 0. The counter is incremented whenever v becomes tt. It is easy
to see that the automaton indeed accepts G(a U b) and is limit deterministic.

4 Efficiency

In this section we state the results regarding the efficiency of our construction
for LTLp. We prove that there are only exponentially many reachable states
in D(p). A state ¢ = (u,v,m,n) of D(p) is called reachable if there exists a
valid finite run of the automaton that ends in ¢. A p is said to be reachable if
(4, v, m,n) is reachable for some choice of v, © and n. Similarly for v. We show
that the space of reachable 1 and v is only exponentially large in the size of ¢.
Our approach will be to show that every reachable p (or v/) can be expressed in a
certain way, and we will count the number of different such expressions to obtain
an upper bound. The expression for y and v relies on them being represented
in DNF form and uses the syntactic definition of the derivative given in the
technical report [9]. Therefore we state only the main result and its consequence
on the model checking complexity here and present the proofs in [9].

Theorem 2. For ¢ € LTLp the number of reachable states in the D(p) is at
most exponential in |pl.

Theorem 3. The model checking problem for MDPs against specification in
LTLp is EXPTIME-complete

Proof. The upper bound follows from our construction being of exponential size
and the fact that the model checking of MDPs can be done by performing a
linear time analysis of the synchronous product of the MDP and the automaton
[4]. The EXPTIME hardness lower bound is from the fact that the problem is
EXPTIME hard for the subfragment LTL\GU as proved in [8].

5 Expressive Power of LTLp

In this section we show that LTLp is semantically more expressive than
LTL\GU. We demonstrate that the formula ¢y = G(pV (qUr)) which is express-
ible in LTLp, cannot be expressed by any formula in LTL\GU.

Let us fix integers ¢, k € N. We will use LTL,(F, G) to denote the subfragment
of LTL(F,G) where formulae have maximum height ¢. Since X distributes over all
other operators we assume that all the Xs are pushed inside. We use LTL, ;\GU
to denote the fragment where formulae are built out of U, A, V and LTL,(F, G)
formulae such that the number of Us used is at most k.

Next, consider the following strings over 2 where P = {p,q,r}:

u={pHp. a}{p} v={aHp. ¢} {r} w={aHp a}"{p}
sp = (wv)* 1y o= (ww)* g = SLWUO

The observation we make is that o satisfies ¢g but 7, does not. We state the
main theorem and the corollary here and leave the details in the tech report [9].
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Theorem 4. V¢ € LTL, ,\GU ok ¢ = mF ¢

Corollary 1. g is not expressible in LTL; x\GU. Also since ¢ and k are arbi-
trary, po is not expressible in LTL\GU.

6 Experimental Results

We present our tool Biichifier (available at [1]) that implements the techniques
described in this paper. Biichifier is the first tool to generate LDBA with prov-
able exponential upper bounds for a large class of LTL formulae. The states
(u,v,m,n) in our automaton described in Definition 10, involve u,v € BT (p)
which are essentially sets of sets of subformulae. We view each subformula as a
different proposition. We then interpret the formulae in B¥ () as a Boolean func-
tion on these propositions. In Biichifier we represent these Boolean functions
symbolically using Binary Decision Diagrams (BDD). Our overall construction
follows a standard approach where we begin with an initial set of states and
keep adding successors to discover the entire reachable set of states. We report
the number of states, number of transitions and the number of final states for
the limit deterministic automata we construct.

MDP model checkers like PRISM [15], for a long time have used the trans-
lation from LTL to deterministic Rabin automata and only recently [20] have
started using limit deterministic Biichi automata. As a consequence we compare
the performance of our method against Rabinizer 3 [12] (the best known tool
for translating LTL to deterministic automata) and 1t121dba [20] (the only other
known tool for translating LTL to LDBA). Rabinizer 3 constructs determin-
istic Rabin automata with generalized Rabin pairs (DGRA). The experimental
results in [5,12] report the size of DGRA using the number of states and number
of acceptance pairs of the automata; the size of each Rabin pair is, unfortu-
nately, not reported. Since the size of Rabin pairs influences the efficiency of
MDP model checking, we report it here to make a meaningful comparison. We
take the size of a Rabin pair to be simply the number of transitions in it. The
tool 1t121dba generates transition-based generalized Biichi automata (TGBA).
The experimental results in [20] report the size of the TGBA using number of
states and number of acceptance sets, and once again the size of each of these
sets is not reported. Since their sizes also effect the model checking procedure
we report them here. We take the size of an acceptance set to be simply the
number of transitions in it. In Table 1 we report a head to head to comparison
of Biichifier, Rabinizer 3 and 1t121ldba on various LTL formulae.

1. The first 5 formulae are those considered in [5]; they are from the GR(1)
fragment [18] of LTL. These formulae capture Boolean combination of fairness
conditions for which generalized Rabin acceptance is particularly well suited.
Rabinizer 3 does well on these examples, but Biichifier is not far behind
its competitors. The formulae are instantiations of the following templates:
go(j) = /\gzl(GFCLi = GFbl), g1 (j) = /\gzl(GFai = GFaiH).
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Table 1. A Comparison between the sizes of automata produced by Biichifier,
Rabinizer 3 and 1tl2ldba on various formulae. Column St denotes the number of
states, column Tr denotes the number of transitions and column AC denotes the size
of the acceptance condition. Entries marked as “~” indicate that the tool failed to con-
struct the automaton and/or the acceptance condition due to the memory limit (1 GB)
being exceeded.

Biichifier Rabinizer 3 1t12ldba

St Tr AC | St Tr AC St Tr AC
go(1) 4 7 2 1 1 3 3 62 (1)
g0(2) 12 23 5 1 1 8 5 14 |12 (2)
g90(3) 32 63 8 1 1 20 9 36 |54 (3)
g1(2) 12 21 5 1 1 8 5 13 |11 (2)
g1(3) 31 54 13 1 1 18 9 30 |44 (3)
©1 5 7 3 5 13 40 7 23 |12 (4)
©2 26 83 8 12 48 | 233 36 101 |75 (2)
©3 13 25 3 16 128 64 21 140 | 129 (2)
©4 17 47 7 2 4 35 9 29 |31 (2)
©s5 36 111 11 12 48 | 330 41 133 |94 (2)
fo(1) 4 7 2 2 4 2 2 4 12(1)
fo(2) 14 29 5 16 74 26 4 16 |16 (2)
fo(3) 44 105 13 - - - 8 64 |96 (3)
fo(4) 130 | 369 | 33 - - - 16 256 | 512 (4)
f1(1) 14 29 5 6 24 10 8 32 112 (1)
f1(2) 130 | 369 | 33 - - - 64 1024 | 768 (2)
f1(3) | 1050 | 4801 | 193 - - - 512 | 32768 | 36K (3)
f2(1) 1 1 1 2 3 2 1 112(2)
f2(2) 5 7 3 5 13 45 6 21 |9 (3)
f2(3) 19 37 7 19 109 | 847 19 218 | 28 (4)
f2(4) 65 175 15 | 167 | 2529 - 93 6301 |75 (5)
f3(1) 2 4 1 3 7 4 1 2 13(2)
f3(2) 10 20 4 17 91 53 14 62 |28 (1)
f3(3) 36 78 12 - - - 212 2359 | 953 (1)
f3(4) 114 | 288 | 32 - - - 17352 | 598330 | 167K (1)
h(2,1) 26 54 9 15 49 49 14 44 |1 (1)
h(2,2) 60 138 | 21 65 | 469 | 469 64 434 |1 (1)
h(2,3)| 182 | 468 | 57 |315 |5119 | 5119 314 4892 |1 (1)
h(4,1) 80 146 | 36 | 76 | 250 | 250 75 229 |1 (1)
h(4,2)| 230 | 464 | 96 | 990 | 8068 | 8068 989 7465 |1 (1)
h(4,3) | 908 | 1994 | 348 - - - - - -
P1 35 62 9 6 12 6 8 (3)
o 7 15 3 39 53 2 5 118 (3)
3 29 62 8 | 29 116 74 62 293 | 27 (2)
[on 26 92 6 11 7 3 8 13 (1)
s 9 58 1 17 9 3 9 13 (1)
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2. The next 5 formulae are also from [5] to show how Rabinizer 3 can effectively
handle Xs. Biichifier has a comparable number of states and much smaller
acceptance condition when compared to Rabinizer 3 and 1tl2ldba in all
these cases. ¢1 = G(qV XGp) A G(rVXG—p), p2 = (GF(a AX?%b) VFGbH) A
FG(cV (Xa A X2b)), 3 = GF(X3a A X)) A GF(bV Xc) A GF(c A X2a),
04 = (GFa V FGb) A (GFcV FG(dV Xe)), p5 = (GF(a A X?%¢) V FGb) A
(GFcV FG(dV (Xa A X2b))).

3. The next 15 formulae (4 groups) express a variety of natural properties, such
as G(req = Fack) which says that every request that is received is eventually
acknowledged. As shown in the table in many of the cases Rabinizer 3 runs
out of memory (1 GB) and fails to produce an automaton, and 1t121dba fails
to scale in comparison with Biichifier. The formulae in the table are instanti-
ations of the following templates: fo(j)=G(A_;(a; = Fb;)), f1(j)=G(A]_;
(a; = (Fb; AFc;))), f2(5) = G(Vi_i(ai A Gby)), f3() = G(Vi_y(a; AFby)).

4. The next 6 formulae expressible in LTL\GU, contain multiple Xs and external
Us. Biichifier constructs smaller automata and is able to scale better than
1t121dba in these cases as well. The formulae are instantiations of: h(m,n) =
(X7p) U (qV (A2 (a; U X™b,))).

5. The last few examples are from outside of LTL\GU. The first three are in
LTLp while the rest are outside LTLp. We found that Biichifier did better
only in a few cases (like ¢3), this is due to the multiplicative effect that
the internal untils have on the size of the automaton. So there is scope for
improvement and we believe there are several optimizations that can be done
to reduce the size in such cases and leave it for future work. ¢ = FG((a A
X2 AGFb) U (G(X2=cVX2(anb)))), 2 = G(F-aAF(bAXc) AGF(aUd)),
Y3 = G((X3a) U (bVGe)), 14 = G((aUb)V(cUd)), 15 = G(aU (bU (cUd))).

7 Conclusion

In this paper we presented a translation of formulas in LTL to limit deterministic
automata, generalizing the construction from [8]. While the automata resulting
from the translation can, in general, be doubly exponential in the size of the
original formula, we observe that for formulas in the subfragment LTLp, the
automaton is guaranteed to be only exponential in size. The logic LTLp is a more
expressive fragment than LTL\GU, and thus our results enlarge the fragment
of LTL for which small limit deterministic automata can be constructed. One
consequence of our results here is a new EXPTIME algorithm for model checking
MDPs against LTLp formulas, improving the previously known upper bound of
2EXPTIME.

Our results in this paper, however, have not fully settled the question of
when exponential sized limit deterministic automata can be constructed. We do
not believe LTLp to be the largest class. For example, our construction yields
small automata for ¢ = G(V;(p; U ¢;)), where p;, g; are propositions. ¢ is not
expressible in LTLp. Of course we cannot have an exponential sized construction
for full LTL as demonstrated by the double exponential lower bound in [20].
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Abstract. Multi-objective verification problems of parametric Markov
decision processes under optimality criteria can be naturally expressed
as nonlinear programs. We observe that many of these computation-
ally demanding problems belong to the subclass of signomial programs.
This insight allows for a sequential optimization algorithm to efficiently
compute sound but possibly suboptimal solutions. Each stage of this
algorithm solves a geometric programming problem. These geometric
programs are obtained by convexifying the nonconvex constraints of the
original problem. Direct applications of the encodings as nonlinear pro-
grams are model repair and parameter synthesis. We demonstrate the
scalability and quality of our approach by well-known benchmarks.

1 Introduction

We study the applicability of convex optimization to the formal verification of
systems that exhibit randomness or stochastic uncertainties. Such systems are
formally represented by so-called parametric Markov models.

In fact, many real-world systems exhibit random behavior and stochastic
uncertainties. One major example is in the field of robotics, where the presence
of measurement noise or input disturbances requires special controller synthesis
techniques [39] that achieve robustness of robot actions against uncertainties in
the robot model and the environment. On the other hand, formal verification
offers methods for rigorously proving or disproving properties about the system
behavior, and synthesizing strategies that satisfy these properties. In particu-
lar, model checking [36] is a well-studied technique that provides guarantees on
appropriate behavior for all possible events and scenarios.

Model checking can be applied to systems with stochastic uncertain-
ties, including discrete-time Markov chains (MCs), Markov decision processes
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(MDPs), and their continuous-time counterparts [31]. Probabilistic model
checkers are able to verify reachability properties like “the probability of reach-
ing a set of unsafe states is < 10%” and expected costs properties like “the
expected cost of reaching a goal state is < 20.” A rich set of properties, speci-
fied by linear- and branching-time logics, reduces to such properties [31]. Tools
like PRISM [15], STORM [29], and iscasMc [22] are probabilistic model checkers
capable of handling a wide range of large-scale problems.

Key requirements for applying model checking are a reliable system model
and formal specifications of desired or undesired behaviors. As a result, most
approaches assume that models of the stochastic uncertainties are precisely
given. For example, if a system description includes an environmental distur-
bance, the mean of that disturbance should be known before formal statements
are made about expected system behavior. However, the desire to treat many
applications where uncertainty measures (e.g., faultiness, reliability, reaction
rates, packet loss ratio) are not exactly known at design time gives rise to para-
metric probabilistic models [1,30]. Here, transition probabilities are expressed as
functions over system parameters, i.e., descriptions of uncertainties. In this set-
ting, parameter synthesis addresses the problem of computing parameter instan-
tiations leading to satisfaction of system specifications. More precisely, parame-
ters are mapped to concrete probabilities inducing the resulting instantiated
model to satisfy specifications. A direct application is model repair [13], where
a concrete model (without parameters) is changed (repaired) such that specifi-
cations are satisfied.

Dedicated tools like PARAM [11], PRISM [15], or PROPhESY [25] com-
pute rational functions over parameters that express reachability probabilities
or expected costs in a parametric Markov chain (pMC). These optimized tools
work with millions of states but are restricted to a few parameters, as the nec-
essary computation of greatest common divisors does not scale well with the
number of parameters. Moreover, the resulting functions are inherently non-
linear and often of high degree. Evaluation by an SMT solver over nonlinear
arithmetic such as Z3 [17] suffers from the fact that the solving procedures are
exponential in the degree of polynomials and the number of variables.

This paper takes an alternative perspective. We discuss a general nonlin-
ear programming formulation for the verification of parametric Markov decision
processes (pMDPs). The powerful modeling capabilities of nonlinear programs
(NLPs) enable incorporating multi-objective properties and penalties on the
parameters of the pMDP. However, because of their generality, solving NLPs
to find a global optimum is difficult. Even feasible solutions (satisfying the con-
straints) cannot always be computed efficiently [5,37]. In contrast, for the class of
NLPs called conver optimization problems, efficient methods to compute feasible
solutions and global optima even for large-scale problems are available [38].

We therefore propose a novel automated method of utilizing convex opti-
mization for pMDPs. Many NLP problems for pMDPs belong to the class of
signomial programs (SGPs), a certain class of nonconvex optimization problems.
For instance, all benchmarks available at the PARAM—webpage [26] belong to
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this class. Restricting the general pMDP problem accordingly yields a direct and
efficient synthesis method—formulated as an NLP—for a large class of pMDP
problems. We list the two main technical results of this paper:

1. We relax nonconvex constraints in SGPs and apply a simple transformation
to the parameter functions. The resulting programs are geometric programs
(GPs) [7], a class of convex programs. We show that a solution to the relaxed
GP induces feasibility (satisfaction of all specifications) in the original pMDP
problem. Note that solving GPs is polynomial in the number of variables.

2. Given an initial feasible solution, we use a technique called sequential convex
programming [7] to improve a signomial objective. This local optimization
method for nonconvex problems leverages convex optimization by solving a
sequence of convex approximations (GPs) of the original SGP.

Sequential convex programming is known to efficiently find a feasible solution
with good, though not necessarily globally optimal, objective values [7,8]. We
initialize the sequence with a feasible solution (obtained from the GP) of the
original problem and compute a trust region. Inside this region, the optimal
value of the approximation of the SGP is at least as good as the objective value
at the feasible solution of the GP. The optimal solution of the approximation is
then the initial point of the next iteration with a new trust region. This procedure
is iterated to approximate a local optimum of the original problem.

Utilizing our results, we discuss the concrete problems of parameter syn-
thesis and model repair for multiple specifications for pMDPs. Experimental
results with a prototype implementation show the applicability of our optimiza-
tion methods to benchmarks of up to 10° states. As solving GPs is polyno-
mial in the number of variables, our approaches are relatively insensitive to the
number of parameters in pMDPs. This is an improvement over state-of-the-art
approaches that leverage SMT, which—for our class of problems—scale expo-
nentially in variables and the degree of polynomials. This is substantiated by
our experiments.

Related Work. Several approaches exist for pMCs [11,12,23,25] while the num-
ber of approaches for pMDPs [12,33] is limited. Ceska et al. [21] synthesize rate
parameters in stochastic biochemical networks. Multi-objective model check-
ing of non-parametric MDPs [9] is a convex problem [14]. Bortolussi et al. [28]
developed a Bayesian statistical algorithm for properties on stochastic popula-
tion models. Convex uncertainties in MDPs without parameter dependencies are
discussed in [20]. Parametric probabilistic models are used to rank patches in
the repair of software [32] and to compute perturbation bounds [24,34].

2 Preliminaries

A probability distribution over a finite or countably infinite set X is a function
p: X — [0, 1] € R with >° v u(x) = 1. The set of all distributions on X is
denoted by Distr(X).
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Definition 1 (Monomial, Posynomial, Signomial). Let V = {z1,...,z,}
be a finite set of strictly positive real-valued variables. A monomial over V is an
expression of the form

Qn

— ai
g=C-Ty - -Tp",

where ¢ € Ry is a positive coefficient, and a; € R are exponents for 1 <1i < n.
A posynomial over V' is a sum of one or more monomials:

K
oY ath g )
k=1

If ¢k is allowed to be a negative real number for any 1 < k < K, then the expres-
sion (1) is a signomial. The sets of all monomials, posynomials, and signomials
over V are denoted by Mony, Posy, and Sigy, respectively.

This definition of monomials differs from the standard algebraic definition where
exponents are positive integers with no restriction on the coefficient sign. A sum
of monomials is then called a polynomial. Our definitions are consistent with [7].

Definition 2 (Valuation). For a set of real-valued variables V', a valuation
u over V' is a function u: V — R. The set of all valuations over V is Val" .

Applying valuation u to monomial g over V yields a real number g[u] € R by
replacing each occurrence of variables € V in g by wu(x); the procedure is
analogous for posynomials and signomials using standard arithmetic operations.

Definition 3 (pMDP and pMC). A parametric Markov decision process
(pMDP) is a tuple M = (S, sy, Act,V, P) with a finite set S of states, an initial
state s; € S, a finite set Act of actions, a finite set of real-valued variables V', and
a transition function P: SX Act x S — Sigy satisfying for alls € S: Act(s) # 0,
where Act(s) = {a € Act | 3s' € S.P(s, a, ') # 0}. If for all s € S it holds that
|Act(s)] =1, M is called a parametric discrete-time Markov chain (pMC).

Act(s) is the set of enabled actions at state s; as Act(s) # 0, there are no deadlock
states. Costs are defined using a state—action cost function c: S x Act — R>g.

Remark 1. Largely due to algorithmic reasons, the transition probabilities in
the literature [12,25,33] are polynomials or rational functions, i.e., fractions of
polynomials. Our restriction to signomials is realistic; all benchmarks from the
PARAM-webpage [26] contain only signomial transition probabilities.

A pMDP M is a Markov decision process (MDP) if the transition func-
tion is a valid probability distribution, i.e., P: S x Act x S — [0,1] and
Y oes P(s,a,8) =1for all s € S s.t. a € Act(s). Analogously, a Markov chain
(MC) is a special class of a pMC; a model is parameter-free if all probabilities are
constant. Applying a valuation u to a pMDP, denoted M |u], replaces each signo-
mial f in M by flu]; we call M[u] the instantiation of M at u. The application
of u is to replace the transition function f by the probability f[u]. A valuation
u is well-defined for M if the replacement yields probability distributions at all
states; the resulting model M[u] is an MDP or an MC.
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(a) pMC model (b) Instantiation using p=0.4
and ¢=0.7

Fig. 1. A variant of the Knuth—Yao die for unfair coins.

Ezample 1 (pMC). Consider a variant of the Knuth—Yao model of a die [2], where
a six-sided die is simulated by successive coin flips. We alternate flipping two
biased coins, which result in heads with probabilities defined by the monomials
p and ¢, respectively. Consequently, the probability for tails is given by the
signomials 1 — p and 1 — ¢, respectively. The corresponding pMC is depicted in
Fig. 1(a); and the instantiated MC for p = 0.4 and ¢ = 0.7 is given in Fig. 1(b).
Note that we omit actions, as the model is deterministic.

In order to define a probability measure and expected cost on MDPs, nonde-
terministic choices are resolved by so-called schedulers. For practical reasons we
restrict ourselves to memoryless schedulers; details can be found in [36].

Definition 4 (Scheduler). A (randomized) scheduler for an MDP M is a
function o: S — Distr(Act) such that o(s)(a) > 0 implies « € Act(s). The set
of all schedulers over M is denoted by Sched™.

Applying a scheduler to an MDP yields a so-called induced Markov chain.

Definition 5 (Induced MC). Let MDP M = (S, sy, Act,P) and scheduler
o € Sched™. The MC induced by M and o is M = (S, s1, Act,P?) where for
all s,s' € S,

P (s,8") = Z a(s)(a) - P(s,a, 8).

a€cAct(s)

We consider reachability properties and expected cost properties. For MC D with
states S, let Pr?(OT) denote the probability of reaching a set of target states
T C S from state s € S; simply PrD(QT) denotes the probability for initial state
s7. We use the standard probability measure as in [36, Chap. 10]. For threshold
A € [0,1], the reachability property asserting that a target state is to be reached
with probability at most A is denoted ¢ = P<»(0T). The property is satisfied
by D, written D k= ¢, iff PrP(0T) < \.

The cost of a path through MC D until a set of goal states G C S is the
sum of action costs visited along the path. The expected cost of a finite path
is the product of its probability and its cost. For PrD(OG) = 1, the expected
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cost of reaching G is the sum of expected costs of all paths leading to G. An
expected cost property EC<, (0G) is satisfied if the expected cost of reaching T
is bounded by a threshold x € R. Formal definitions are given in e.g., [36].

If multiple specifications 1, ..., ¢, are given, which are either reachability
properties or expected cost properties of the aforementioned forms, we write the
satisfaction of all specifications 1, ..., ¢, for an MC D as D = 1 A ... A @q.

An MDP M satisfies the specifications ¢1,...,¢@q, iff for all schedulers
o € Sched™ it holds that M7 E @1 A ... A pg. The verification of multiple
specifications is also referred to as multi-objective model checking [9,16]. We are
also interested in the so-called scheduler synthesis problem, where the aim is
to find a scheduler o such that the specifications are satisfied (although other
schedulers may not satisfy the specifications).

3 Nonlinear Programming for pMDPs

In this section we formally state a general pMDP parameter synthesis problem
and describe how it can be formulated using nonlinear programming.

3.1 Formal Problem Statement

Problem 1 Given a pMDP M = (S, sy, Act, V,P), specifications ¢1, ..., @,
that are either probabilistic reachability properties or expected cost prop-
erties, and an objective function f: V — R over the variables V', compute
a well-defined valuation v € Val' for M, and a (randomized) scheduler
o € Sched™ such that the following conditions hold:

(a) Feasibility: the Markov chain M?[u] induced by scheduler ¢ and instanti-
ated by valuation u satisfies the specifications, i.e., M7 [u] = g1 A...Ap,.
(b) Optimality: the objective f is minimized.

Intuitively, we wish to compute a parameter valuation and a scheduler such that
all specifications are satisfied, and the objective is globally minimized. We refer to
a valuation—scheduler pair (u, o) that satisfies condition (a), i.e., only guarantees
satisfaction of the specifications but does not necessarily minimize the objective
f, as a feasible solution to the pMDP synthesis problem. If both (a) and (b) are
satisfied, the pair is an optimal solution to the pMDP synthesis problem.

3.2 Nonlinear Encoding

We now provide an NLP encoding of Problem 1. A general NLP over a set of
real-valued variables V can be written as

minimize f (2)
subject to
Vi.l<i<m g¢; <0, (3)

Vjil<i<p h;=0, (4)
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where f, g;, and h; are arbitrary functions over V, and m and p are the number
of inequality and equality constraints of the program respectively. Tools like
IPOPT [10] solve small instances of such problems.

Consider a pMDP M = (S, s1, Act, V,P) with specifications ¢; = P<(0T)
and @y = EC<,(0G). We will discuss how additional specifications of either
type can be encoded. The set V = V UW of variables of the NLP consists of the
variables V' that occur in the pMDP as well as a set W of additional variables:

—{o®>* | s € S,a € Act(s)}, which define the randomized scheduler o by
o(s)(a) =o%“.

— {ps | s € S}, where p; is the probability of reaching the target set T' C S from
state s under scheduler o, and

— {cs | s € S}, where ¢4 is the expected cost to reach G C S from s under o.

A valuation over V consists of a valuation u € Val' over the pMDP variables
and a valuation w € Val" over the additional variables.

minimize f (5)
subject to
pS[ S >\3 (6)
cs; <K, (7)
Vs e S. Z o> =1, (8)
acAct(s)
Vs €S Ya € Act(s). 0<% <1, (9)
Vs €S Va € Act(s). Y P(s,a,8) =1, (10)
s’'eS
Vs,s' € S Va € Act(s). 0<P(s,a,8") <1, (11)
VseT. ps=1, (12)
Vse S\T. ps= Z o> Z P(s,a,s")  ps, (13)
acAct(s) s’eS
Vs € G. ¢s =0, (14)
Vs e S\ G. c¢s= Z as e (c(s,a) + Z P(s,a,s") ~cS/).
acAct(s) s'eS
(15)

The NLP (5)—(15) encodes Problem 1 in the following way. The objective func-
tion f in (5) is any real-valued function over the variables V. The constraints (6)
and (7) encode the specifications ;1 and o, respectively. The constraints (8)—(9)
ensure that the scheduler obtained is well-defined by requiring that the scheduler
variables at each state sum to unity. Similarly, the constraints (10)—(11) ensure
that for all states, parameters from V are instantiated such that probabilities
sum up to one. (These constraints are included if not all probabilities at a state
are constant.) The probability of reaching the target for all states in the target
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set is set to one using (12). The reachability probabilities in each state depend on
the reachability of the successor states and the transition probabilities to those
states through (13). Analogously to the reachability probabilities, the cost for
each goal state G C S must be zero, thereby precluding the collection of infinite
cost at absorbing states, as enforced by (14). Finally, the expected cost for all
states except target states is given by the equation (15), where according to the
strategy o the cost of each action is added to the expected cost of the successors.

We can readily extend the NLP to include more specifications. If another
reachability property ¢’ = P<x/(0T”) is given, we add the set of probability
variables {p/, | s € S} to W, and duplicate the constraints (12)—(13) accordingly.
To ensure satisfaction of ¢’, we also add the constraint p}, < X". The procedure
is similar for additional expected cost properties. By construction, we have the
following result relating the NLP encoding and Problem 1.

Theorem 1. The NLP (5)—(15) is sound and complete with respect to
Problem 1.

We refer to soundness in the sense that each variable assignment that satisfies the
constraints induces a scheduler and a valuation of parameters such that a feasible
solution of the problem is induced. Moreover, any optimal solution to the NLP
induces an optimal solution of the problem. Completeness means that all possible
solutions of the problem can be encoded by this NLP; while unsatisfiability
means that no such solution exists, making the problem infeasible.

Signomial Programs. By Definitions 1 and 3, all constraints in the NLP consist
of signomial functions. A special class of NLPs known as signomial programs
(SGPs) is of the form (2)—(4) where f, g; and h; are signomials over V, see
Definition 1. Therefore, we observe that the NLP (5)—(15) is an SGP. We will
refer to the NLP as an SGP in what follows.

SGPs with equality constraints consisting of functions that are not affine
are not convezr in general. In particular, the SGP (5)-(15) is not necessarily
convex. Consider a simple pMC only having transition probabilities of the form
p and 1 —p, as in Example 1. The function in the equality constraint (13) of the
corresponding SGP encoding is not affine in parameter p and the probability
variable py for some state s € S. More generally, the equality constraints (10),
(13), and (15) involving P are not necessarily affine, and thus the SGP may not
be a convex program [38]. Whereas for convex programs global optimal solutions
can be found efficiently [38], such guarantees are not given for SGPs. However,
we can efficiently obtain local optimal solutions for SGPs in our setting, as shown
in the following sections.

4 Convexification

We investigate how to transform the SGP (5)-(15) into a convex program by
relaxing equality constraints and a lifting of variables of the SGP. A certain sub-
class of SGPs called geometric programs (GPs) can be transformed into convex
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programs [7, Sect. 2.5] and solved efficiently. A GP is an SGP of the form (2)—(4)
where f, g; € Posy and h; € Mony. We will refer to a constraint with posynomial
or monomial function as a posynomial or monomial constraint, respectively.

4.1 Transformation and Relaxation of Equality Constraints

As discussed before, the SGP (5)—(15) is not convex because of the presence of
non-affine equality constraints. First observe the following transformation [7]:

f§h<=>£§1, (16)

for f € Posy and h € Mony. Note that monomials are strictly positive
(Definition 1). This (division-)transformation of f < h yields a posynomial
inequality constraint.

We relaz all equality constraints of SGP (5)—(15) that are not monomials
to inequalities, then we apply the division-transformation wherever possible.
Constraints (6), (7), (8), (10), (13), and (15) are transformed to

Ps;
— <1 1
o<, a7
Cs;
— <1 1
<, (18)
Vses. > ovv<l, (19)
a€Act(s)
Vs € SVa € Act(s). > P(s,a,8) <1, (20)
s'es
Z o Z P(S7 «a, S/) *Ps’
Vse §\T. oAU S;S <1, (21)
> o%e (c(s,oz) + > P(s,a,8) ~cs/>
acAct(s) s’es
Vse S\ G. <1. (22)

Cs
These constraints are not necessarily posynomial inequality constraints because
(as in Definition 3) we allow signomial expressions in the transition probability
function P. Therefore, replacing (6), (7), (8), (10), (13), and (15) in the SGP
with (17)—(22) does not by itself convert the SGP to a GP.

4.2 Convexification by Lifting

The relaxed equality constraints (20)—(22) involving P are signomial, rather
than posynomial, because the parameters enter Problem 1 in signomial form.
Specifically, consider the relaxed equality constraint (21) at so in Example 1,

p-ps; + (1 —p)
Dso

P2 . (23)
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f’l— o
f2 ' ;
Q o Nyl h T
(a) signomial transition functions (b) posynomial transition functions

Fig. 2. Lifting of signomial transition probability function.

The term (1 — p) - ps, is signomial in p and ps,. We lift by introducing a new
variable p = 1 — p, and rewrite (23) as a posynomial inequality constraint and
an equality constraint in the lifted variables:

P Ps; T D Ds,y <1

. (24)

We relax the (non-monomial) equality constraint to p + p < 1. More generally,
we restrict the way parameters occur in P as follows. Refer to Fig.2(a). For
every state s € S and every action a € Act(s) we require that there exists at
most one state 5 € S such that P(s,«,5) € Sigy and P(s,a,s") € Posy for all
s’ € S\ {5}. In particular, we require that

P(s,a,5) =1— P(s,a,s') .
( ) > P )

N
€Sigy s’eS\{s} €Posy

This requirement is met by all benchmarks available at the PARAM-
webpage [26]. In general, we lift by introducing a new variable ps o5 = P(s, o, 5)
for each such state s € S; refer to Fig.2(b). We denote this set of lifting vari-
ables by L. Lifting as explained above then creates a new transition probability
function P where for every s,s' € S and o € Act we have P(s,a, s') € Posyyr.

We call the set of constraints obtained through transformation, relaxation,
and lifting of every constraint of the SGP (6)—(15) as shown above the convezi-
fied constraints. Any posynomial objective subject to the convexified constraints
forms by construction a GP over the pMDP parameters V', the SGP additional
variables W, and the lifting variables L.

4.3 Tightening the Constraints

A solution of the GP as obtained in the previous section does not have a direct
relation to the original SGP (5)—(15). In particular, a solution to the GP may
not have the relaxed constraints satisfied with equality. For (19) and (20), the
induced parameter valuation and the scheduler are not well-defined, i.e., the
probabilities may not sum to one. We need to relate the relaxed and lifted GP
to Problem 1. By defining a regularization function F over all parameter and
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scheduler variables, we ensure that the constraints are satisfied with equality;
enforcing well-defined probability distributions.

DL N S @

= Os,a
peV peL seS,acAct(s)

The function F' is monotone in all its variables. We discard the original objective
fin (5) and form a GP with the regularization objective F' (25):

minimize F (26)
subject to
Ps,
2 27
1, (21)
Cs;
— <1 2
<1 (28)
Vses. > ovv<, (29)
a€Act(s)
Vs € SVa € Act(s). o®>* <1, (30)
Vs € SVa € Act(s). > P(s,a,8) <1, (31)
s'es
Vs,s' € SVa € Act(s). P(s,a,s) <1, (32)
VseT. ps=1, (33)
Z o 75(830558 ) DPs
Vse g\ T. 24 €8 <1, (34)
Ps
> o5 (c(s,a) + P(s,a,s) - cs/)
acAct(s) s’esS
Vs e S\ G. <1
CS
(35)

Since the objective F' (25) and the inequality constraints (29) and (31) are
monotone in V', L, and the scheduler variables, each optimal solution for a fea-
sible problem satisfies them with equality. We obtain a well-defined scheduler o
and a valuation u as in Problem 1. Note that variables from (14) are explicitly
excluded from the GP by treating them as constants.

The reachability probability constraints (34) and cost constraints (35) need
not be satisfied with equality. However, (34) is equivalent to

ps= Y 0%y Pls.as) pe

a€Act(s) s'esS

for all s € S\ T and a € Act. The probability variables p, are assigned upper
bounds on the actual probability to reach the target states T" under scheduler o
and valuation u. Put differently, the p, variables cannot be assigned values that
are lower than the actual probability; ensuring that ¢ and w induce satisfaction
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of the specification given by (27) if the problem is feasible and ¢ and u are
well-defined. An analogous reasoning applies to the expected cost computa-
tion (35). A solution consisting of a scheduler or valuation that are not well-
defined occurs only if Problem 1 itself is infeasible. Identifying that such a solu-
tion has been obtained is easy. These facts allow us to state the main result of
this section.

Theorem 2. A solution of the GP (26)—(35) inducing well-defined scheduler o
and valuation u is a feasible solution to Problem 1.

Note that the actual probabilities induced by ¢ and u for the given pMDP
M are given by the MC M?[u] induced by o and instantiated by u. Since all
variables are implicitly positive in a GP, no transition probability function will
be instantiated to probability zero. The case of a scheduler variable being zero
to induce the optimum can be excluded by a previous graph analysis.

5 Sequential Geometric Programming

We showed how to efficiently obtain a feasible solution for Problem 1 by solving
GP (26)—(35). We propose a sequential convex programming trust-region method
to compute a local optimum of the SGP (5)—(15), following [7, Sect. 9.1], solving a
sequence of GPs. We obtain each GP by replacing signomial functions in equality
constraints of the SGP (5)—(15) with monomial approzimations of the functions.

Definition 6 (Monomial approximation). Given a posynomial f € Sigy,
variables V = {x1,...,2,}, and a valuation w € Val”, a monomial approxima-
tion f € Mony for f near u is

Viil<i<n f:f[u]ﬁ( i ) , whereaizl}(xi) af[u]

i\ u()

Intuitively, we compute a linearization f of f € Sigy around a fixed valuation u.
We enforce the fidelity of monomial approximation f of f € Sigy by restricting
valuations to remain within a set known as trust region. We define the following
constraints on the variables V with ¢t > 1 determining the size of the trust region:

Viil<i<n (V) u(x;) <z <t-u(x;) (36)

For a given valuation u, we approximate the SGP (5)—(15) to obtain a local GP
as follows. First, we apply a lifting procedure (Sect.4.2) to the SGP ensuring
that all constraints consist of posynomial functions. The thus obtained posyno-
mial inequality constraints are included in the local GP. After replacing posyn-
omials in every equality constraint by their monomial approximations near w,
the resulting monomial equality constraints are also included. Finally, we add
trust region constraints (36) for scheduler and parameter variables. The objec-
tive function is the same as for the SGP. The optimal solution of the local GP is
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not necessarily a feasible solution to the SGP. Therefore, we first normalize the
scheduler and parameter values to obtain well-defined probability distributions.
These normalized values are used to compute precise probabilities and expected
cost using PRISM. The steps above provide a feasible solution of the SGP.

We use such approximations to obtain a sequence of feasible solutions to
the SGP approaching a local optimum of the SGP. First, we compute a feasible
solution u(®) for Problem 1 (Sect.4), forming the initial point of a sequence of
solutions u(®, ..., uN) N € N. The solution u® for 0 < k < N is obtained
from a local GP defined using u*~1) as explained above.

The parameter ¢ for each iteration k is determined based on its value for the
previous iteration, and the ratio of f [u(k_l)] to f [u(k_Q)}, where f is the objec-
tive function in (5). The iterations are stopped when ’f [u(’“)] —f [u(kfl)ﬂ < €.
Intuitively, € defines the required improvement on the objective value for each
iteration; once there is not enough improvement the process terminates.

6 Applications

We discuss two applications and their restrictions for the general SGP (5)—(15).

Model Repair. For MC D and specification ¢ with D [~ ¢, the model repair
problem [13] is to transform D to D’ such that D' |= . The transformation
involves a change of transition probabilities. Additionally, a cost function mea-
sures the change of probabilities. The natural underlying model is a pMC where
parameters are added to probabilities. The cost function is minimized subject to
constraints that induce satisfaction of ¢. In [13], the problem is given as NLP.
Heuristic [27] and simulation-based methods [19] (for MDPs) were presented.

Leveraging our results, one can readily encode model repair problems for
MDPs, multiple objectives, and restrictions on probability or cost changes
directly as NLPs. The encoding as in [13] is handled by our method in Sect. 5
as it involves signomial constraints. We now propose a more efficient approach,
which encodes the change of probabilities using monomial functions. Consider an
MDP M = (S, s1, Act, P) and specifications o1, ..., pq with M = p1 AL Agp,.
For each probability P(s,a,s’) = a € R that may be changed, introduce a
parameter p, forming the parameter set V. We define a parametric transition
probability function by P’(s,«,s’) = p-a € Mony. The quadratic cost function
is for instance f = ZpeVpQ € Posy. By minimizing the sum of squares of the
parameters (with some regularization), the change of probabilities is minimized.

By incorporating these modifications into SGP (5)—(15), our approach is
directly applicable. Either we restrict the cost function f to an upper bound, and
efficiently solve a feasibility problem (Sect.4), or we compute a local minimum
of the cost function (Sect.5). In contrast to [13], our approach works for MDPs
and has an efficient solution. While [19] uses fast simulation techniques, we
can directly incorporate multiple objectives and restrictions on the results while
offering an efficient numerical solution of the problem.
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Parameter Space Partitioning. For pMDPs, tools like PRISM [15] or PROPh-
ESY [25] aim at partitioning the parameter space into regions with respect to a
specification. A parameter region is given by a convex polytope defined by lin-
ear inequalities over the parameters, restricting valuations to a region. Now, for
pMDP M a region is safe regarding a specification ¢, if no valuation u inside this
region and no scheduler o induce M7[u] & . Vice versa, a region is unsafe, if
there is no valuation and scheduler such that the specification is satisfied. In [25],
this certification is performed using SMT solving. More efficiency is achieved by
using an approximation method [33].

Certifying regions to be unsafe is directly possible using our approach. Assume
pMDP M, specifications ¢1, ..., ¢q, and a region candidate defined by a set of
linear inequalities. We incorporate the inequalities in the NLP (5)—(15). If the
feasibility problem (Sect.4) has no solution, the region is unsafe. This yields the
first efficient numerical method for this problem of which we are aware. Proving
that a region is safe is more involved. Given one specification ¢ = P<,(0T), we
maximize the probability to reach T'. If this probability is at most A, the region is
safe. For using our method from Sect. 5, one needs domain specific knowledge to
show that a local optimum is a global optimum.

7 Experiments

We implemented a prototype using the Python interfaces of the probabilistic
model checker STORM [29] and the optimization solver MOSEK [35]. All exper-
iments were run on a 2.6 GHz machine with 32 GB RAM. We used PRISM [15] to
correct approximation errors as explained before. We evaluated our approaches
using mainly examples from the PARAM-webpage [26] and from PRISM [18].
We considered several parametric instances of the Bounded Retransmission Pro-
tocol (BRP) [4], NAND Multiplexing [6], and the Consensus protocol (CONS) [3].
For BRP, we have a pMC and a pMDP version, NAND is a pMC, and CONS
is a pMDP. For obtaining feasibility solutions, we compare to the SMT solver
Z3 [17]. For additional optimality criteria, there is no comparison to another tool
possible as IPOPT [10] already fails for the smallest instances we consider.

Figure 3(a) states for each benchmark instance the number of states (#states)
and the number of parameters (#par). We defined two specifications consisting
of a expected cost property (EC) and a reachability property (P). For some
benchmarks, we also maximized the probability to reach a set of “good states”
(). We list the times taken by MOSEK; for optimality problems we also list
the times PRISM took to compute precise probabilities or costs (Sect.5). For
feasibility problems we list the times of Z3. The timeout (70) is 90 min.

We observe that both for feasibility with optimality criteria we can handle
most benchmarks of up to 10° states within the timeout, while we ran into a
timeout for CONS. The number of iterations N in the sequential convex pro-
gramming is less than 12 for all benchmarks with e = 1072, As expected, simply
solving feasibility problems is faster by at least one order of magnitude. Rais-
ing the number of parameters from 2 to 4 for BRP does not cause a major
performance hit, contrary to existing tools. For all benchmarks except NAND,
73 only delivered results for the smallest instances within the timeout.
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Benchmark — #states #par specs  MOSEK (s) 73 TO
BRP (pMC) 5382 2 EC,P,x 23.17 (6.48) - 50
112646 2 EC,P,« 3541.59 (463.74) - .
112646 4 EC,P, 4173.33 (568.79) -
5382 2 EC,P 3.61 904.11 10
112646 2 EC,P 479.08 TO | = s
NAND (pMC) 4122 2 EC,P,* 14.67 (2.51) - ©
35122 2 EC,P,* 1182.41 (95.19) - ‘5 2
4122 2 EC,P 1.25 1.14 1
35122 2 EC,P 106.40 11.49 0.5
BRP (pMDP) 5466 2 EC,P,x 31.04 (8.11) -
112846 2 EC,P, « 4319.16 (512.20) - 0.2
5466 2 EC,P 4.93 1174.20 01| e N
112846 2 EC,P 711.50 TO 5 3 4 5 6 7 &
CONS (pMDP) 4112 2 EC,P,« 102.93 (1.14) - Number of parameters
65552 2 BEC,P,x TO -
4112 2EC,P 6.13 TO —e- MOSEK  —=-73
65552 2 EC,P 1361.96 TO —=- PROPRESY
(a) Benchmark results (b) Sensitivity to #par

Fig. 3. Experiments.

To demonstrate the insensitivity of our approach to the number of parame-
ters, we considered a pMC of rolling multiple Knuth—Yao dice with 156 states,
522 transitions and considered instances with up to 8 different parameters. The
timeout is 100s. In Fig. 3(b) we compare our encoding in MOSEK for this bench-
mark to the mere computation of a rational function using PROPhESY [25] and
again to Z3. PROPhESY already runs into a timeout for 4 parameters'. Z3
needs around 15s for most of the tests. Using GPs with MOSEK proves far
more efficient as it needs less than one second for all instances.

In addition, we test model repair (Sect.6) on a BRP instance with 17415
states for ¢ = P<g.9(0T). The initial parameter instantiation violates . We
performed model repair towards satisfaction of . The probability of reaching
T results in 0.79 and the associated cost is 0.013. The computation time is
21.93s. We compare our result to an implementation of [19], where the proba-
bility of reaching T is 0.58 and the associated cost is 0.064. However, the time
for the simulation-based method is only 2.4s, highlighting the expected trade-off
between optimality and computation times for the two methods.

Finally, we encode model repair for the small pMC from Example 1 in IPOPT,
see [13]. For 1) = P<(.125(0T) where T represents the outcome of the die being 2,
the initial instantiation induces probability 1/6. With our method, the probabil-
ity of satisfying v is 0.1248 and the cost is 0.0128. With IPOPT, the probability
is 0.125 with cost 0.1025, showing that our result is nearly optimal.

8 Conclusion and Future Work

We presented a way to use convex optimization in the field of parameter synthesis
for parametric Markov models. Using our results, many NLP encodings of related
problems now have a direct and efficient solution.

! Due to the costly computation of greatest common divisors employed in PROPhESY.
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Future work will concern the integration of these methods into mature tools
like PRISM or PROPhESY to enable large-scale benchmarking by state space
reduction techniques and advanced data structures. Moreover, we will explore
extensions to richer models like continuous-time Markov chains [31].
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Abstract. The formal analysis of critical systems is supported by a
vast space of modelling formalisms and tools. The variety of incompati-
ble formats and tools however poses a significant challenge to practical
adoption as well as continued research. In this paper, we propose the JANI
model format and tool interaction protocol. The format is a metamodel
based on networks of communicating automata and has been designed
for ease of implementation without sacrificing readability. The purpose
of the protocol is to provide a stable and uniform interface between tools
such as model checkers, transformers, and user interfaces. JANI uses the
JSON data format, inheriting its ease of use and inherent extensibility.
JANI initially targets, but is not limited to, quantitative model check-
ing. Several existing tools now support the verification of JANI models,
and automatic converters from a diverse set of higher-level modelling
languages have been implemented. The ultimate purpose of JANI is to
simplify tool development, encourage research cooperation, and pave the
way towards a future competition in quantitative model checking.

1 Introduction

Significant progress has been made in the area of formal verification to allow the
analysis of ever more realistic, mathematically precise models of performance-,
safety- or economically-critical systems. Such models can be automatically
derived from the program or machine code of an existing implementation, or
they can be constructed in a suitable modelling language during the system
design phase. Many such languages, including process algebras like CCS [50]
and CSP [36], lower-level formalisms like reactive modules [2], and high-level
imperative-style languages like PROMELA [37], have been developed. However,
the variety of languages, most of them supported by a single dedicated tool, is
a major obstacle for new users seeking to apply formal methods in their field
of work. Several efforts have been made to standardise modelling languages for
broader use (notably LoTos [10], an ISO standard), or to develop overarching
formalisms that offer a union of the features of many different specialised lan-
guages (a recent example being the CIF language and format [1]). Yet none of
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these efforts appears to have had a lasting impact on practice; of our examples,
effectively the only implementation of LOTOS is in the CADP toolset [26], and
active CIF support appears restricted to the CIF 3 tool [6].

We argue that the adoption of any standard formalism is hindered by a com-
bination of the proposed standard (a) being complex and difficult to implement,
(b) appearing at a time when there are already a number of well-established
tools with their own modelling formalisms, and (c) existing in a conflict between
supporting many different modelling purposes versus being a succinct way to
support a particular technique or type of systems. As most new verification
tools are still developed in an academic context, problem a creates work that
is at best tangential to the actual research, and problem b means that there is
little incentive to implement a new parser in an existing tool since such an effort
is unlikely to lead to a publication. We observe that new tools continue to define
their own new input language or a new dialect of an existing one as a result.

A New Format. In this paper, we propose jani-model: another format for for-
mal models aimed at becoming a common input language for existing and
future tools. However, jani-model was created with problems a-c in mind: First
of all, it is targeted to the specific field of quantitative verification using
(extensions of) automata-like probabilistic models such as Markov decision
processes (MDP [52]), probabilistic timed automata (PTA [45]), or continuous-
time Markov chains (CTMC). This field is much younger than formal methods
in general. Consequently, the tooling landscape is at an earlier stage in its evo-
lution. We believe that problem b yet has little relevance there, and that now
is actually the time where a push for commonality in quantitative verification
tools is still possible as well as maximally beneficial. Several tools already sup-
port subsets or extensions of the PRisM model checker’s [43] language, so a good
basis to avoid problem c appears to already exist in this field.

Consequently, the semantic model of the PRISM language—networks of
discrete- or continuous-time Markov chains (DTMC or CTMC), MDP or PTA
with variables—forms the conceptual basis of jani-model. We have conservatively
extended this model to also support Markov automata (MA, [21]) as well as
stochastic timed and hybrid automata (STA [9] and SHA [24]). We have also
replaced or generalised some concepts to allow more concise and flexible mod-
elling. Notably, we took inspiration from the use of synchronisation vectors in
CADP and related tools to compactly-yet-flexibly specify how automata interact;
we have added transient variables as seen in RDDL [54] to e.g. allow value pass-
ing without having to add state variables; and we have revised the specification
of rewards and removed restrictions on global variables.

We could have made these changes and extensions to the textual syntax of
the PrisM language, creating a new dialect. However, in our experience, imple-
menting a PRISM language parser is non-trivial and time-consuming. To avoid
problem a, jani-model is thus designed to be easy to generate and parse program-
matically (while remaining “human-debuggable”) without library dependencies.
It defines an intentionally small set of core constructs, but its structure allows for
easy extensibility. Several advanced features—Ilike support for complex datatypes
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or recursive functions—are already specified as separate extensions. We do not
expect users to create jani-model files manually. Instead, they will be automati-
cally generated from higher-level and domain-specific languages.

A Tool Interaction Protocol. jani-model helps the users as well as the developers
of quantitative verification tools. Yet the latter face another obstacle: New tech-
niques often require combining existing approaches implemented by others, or
using existing tools for parts of the new analysis. In an academic setting, reim-
plementation is usually work for little reward, but also squanders the testing and
performance tuning effort that went into the original tool. The alternative is to
reuse the existing tool through whatever interface it provides: either a command-
line interface—usually unstable, changing between tool versions—or an API tied
or tailored to one programming language. The same problems apply to bench-
marking and verification competitions. To help with interfacing verification tools,
we propose the jani-interaction protocol. It defines a clean, flexible, programming
language-independent interface to query a tool’s capabilities, configure its para-
meters, perform model transformations, launch verification tasks, and obtain
results. Again, we focused on ease of implementation, so jani-interaction is sim-
ple to support without dependencies on external libraries or frameworks, and
only prescribes a small set of messages with clearly defined extension points.

Tool Support. JANI has been designed in a collaborative effort, and a number
of quantitative verification tools implement jani-model and jani-interaction today.
They provide connections to existing modelling languages designed for humans
as well as a number of analysis techniques with very different capabilities and spe-
cialisations based on traditional and statistical model checking. We summarise
the current tool support in Sect.5. We expect the number of JANI implemen-
tations to further grow as more input languages are connected and future new
verification techniques are implemented for jani-model right from the start.

Related Work. We already mentioned LOTOS as an early standardisation
effort, as well as CIF, which covers quantitative aspects such as timed and hybrid,
but not probabilistic, behaviour. CIF is a complex specification consisting of a
textual and graphical syntax for human use plus an XML representation. It had
connections to a variety of tools including those based on MODELICA [25], which
itself is also an open specification intended to be supported by tools focusing
on continuous system and controller simulation. The HOA format [4] is a tool-
independent exchange format for w-automata designed to represent linear-time
properties for or during model checking. ATLANTIF [55] is an intermediate model
for real-time systems with data that can be translated to timed automata or Petri
nets. In the area of satisfiability-modulo-theories (SMT) solvers, the SMT-LIB
standard [5] defines a widely-used data format and tool interface protocol anal-
ogous to the pair of jani-model/jani-interaction that we propose for quantitative
verification. Boogie 2 [47] is an intermediate language used by static program ver-
ification tools. The formats mentioned so far provide concise high-level descrip-
tions of potentially vast state spaces. An alternative is to exchange low-level
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var ReplyAnalysisEngines = schema({ { "type": "analysis-engines",
"type": "analysis-engines", "id": 123456,
"id": Number.min(1l).step(1), "engines": [
"engines": Array.of ({ "id": "simengine2"
"id": Identifier, "metadata": {
"metadata": Metadata, "name": "FIG",
"?params": Array.of (ParamDef) "version": {
b "major": 1, "minor": 13
n; Fr1}
Listing 1. js-schema message specification Listing 2. JSON message instance

representations of actual state spaces, representing all the concrete states of the
semantics of some high-level model. Examples of such state space-level encod-
ings include CADP’s BCG format and MRMC’s [41] .tra files. Disadvantages are
that the file size explodes with the state space, and all structural information
necessary for symbolic (e.g. BDD-based) verification or static analysis is lost.
A number of tools take a reversed approach by providing an interface to
plug in different input languages. In the non-quantitative setting, one example is
LTSMIN [39] and its PINS interface. However, this is a C/C++ API on the state
space level, so every input language needs to provide a complete implementation
of its semantics for this tool-specific interface. A prominent tool with a similar
approach that uses quantitative models is Mobius [13]. Notably, a command-line
interface has recently been added to Mobius’ existing graphical and low-level
interfaces to improve interoperability [42]. The MODEST TOOLSET [33] also used
an internal semantic model similar to that of jani-model that allows it to translate
and connect to various external tools, albeit over their command-line interfaces.
The JANI specification can be seen as a metamodel. The Eclipse EMF /Ecore
platform [19] is popular for building and working with metamodels. We chose to
create a standalone specification instead in order to avoid the heavy dependency
on Eclipse and to not force a preferred programming language on implementers.

2 Json and js-schema

jani-model and jani-interaction use the JSON [11] data format to encode their mod-
els and messages, respectively. JSON is a textual, language independent format
for representing data based on objects, arrays, and a small number of primitives.
In contrast to alternatives like XML, it is extremely simple: its entire grammar
can be given in just five small syntax diagrams. A generic JSON parser is easy
to write, plus native parser libraries are available for many programming lan-
guages. The json.org website shows the syntax diagrams and maintains a list of
libraries. In contrast to binary encodings, JSON remains human-readable, aiding
in debugging. We show an example of the JSON code of an (abbreviated) jani-
interaction message in Listing 2. Many of the advantages of JANI can be directly
derived from the use of a JSON encoding. We already mentioned the simplicity
of implementing a parser, but another important aspect is that a JSON format is
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SHA Key: SHA stochastic hybrid automata
/ \ PHA probabilistic hybrid automata
STA stochastic timed automata
PHA STA + confinuous HA hybrid .a.utf)m&}ta
/ \ / \ P Y PTA probabilistic timed automata
HA PTA MA MA Markov automata,
dt,ﬁg%:gg / ‘ / TA timed automata
TA MDP CTMDP MDP Markov decision processes
L real _— CTMDP continuous-time MDP
time é ‘ LTS labelled transition systems
LTS DTMC CTMC ; DTMC discrete-time Markov chains
nr%gzestfvf ) prngz%rﬁfteies efé’fﬁ?ﬁfﬁ? CTMC continuous-time Markov chains

Fig. 1. Model types supported by the jani-model format

inherently extensible as new attributes can be added to objects without breaking
an implementation that only reads a previously defined, smaller set of attributes.
In addition, both jani-model and jani-interaction contain dedicated versioning and
extension mechanisms to cleanly handle situations where future additions may
change the semantics of previously defined constructs.

To formally specify what a valid JANI model is, as well as how the messages
of the interaction protocol are encoded, we use the js-schema language [51]. js-
schema is a lightweight syntax to define object schemas as well as a schema
validation library. Compared to the popular alternative of JSON SCHEMA, js-
schema specifications are syntactically more similar to the data they describe and
thus easier to write and understand. By using an executable schema definition
language, we directly obtain a procedure to unambiguously determine whether
a given piece of JSON data can represent a JANI object. Some more complex
requirements cannot be expressed within js-schema, e.g. when the presence of
one attribute is required if and only if another attribute is not present. These
additional checks are documented as comments in our js-schema specification
for JANI, and they are checked by the reference parser implementation in the
MoDEST TOOLSET. In Listing 1, we show (part of) the js-schema specification
for the ReplyAnalysisEngines message type of jani-interaction. The JSON object
of Listingfig:json conforms to this schema. An attribute name starting with ?
indicates an optional attribute, and in our example, Identifier, Metadata and
ParamDef are references to other schemas defined elsewhere within the JANI
specification while everything else refers to built-in components of js-schema.

3 The Jant Model Format

The first part of the JANI specification is the jani-model model format. It defines
a direct JSON representation of networks of SHA with variables, or special cases
thereof. In Fig. 1, we show the automata models supported by jani-model. By
providing variables and parallel composition, models with large or infinite state
spaces can be represented succinctly. jani-model includes a basic set of variable
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. "features": [ "derived-operators" ],
"variables": [ { "name": "i", "initial-value": O,
"type": { "kind": "bounded", "base": "int",
"lower-bound": O, "upper-bound": 7 } } 1],
"edges":
[ { "location": "locO",
"guard": { "Op": n/\n’
"left": { lloplI: ||<||, "left": O, "I‘ight"! nin }’
"I'ight": { "Op": n<||’ "left": "i", "right": 7 } }’
"destinations": [
{ "location": "locO", "probability": 0.8, "assignments": [
{ Nyrafh. "i",
"value": { "op": "+", "left": "i", "right": 1 } } 1 },
{ "location": "fail", "probability": 0.2 } 1 } 1,

Listing 3. Excerpt of a jani-model MDP model

types and expressions with most common operations, and allows the specification
of probabilistic and reward-based properties for verification within a model.

The overriding goal of jani-model is simplicity for implementers. The core
specification fits on five printed pages. Where expressions over the model’s vari-
ables are required (such as a guard, the probability of a destination of an edge,
or the right-hand side of an assignment), they are represented as expression
trees. This is in contrast to other representations of networks of automata, e.g.
UpPAAL’s [7] XML format, where they are stored as expression strings. Using
trees makes it entirely unnecessary to write any kind of expression parsing code
to process jani-model models. Listing 3 shows a slightly simplified excerpt of an
MDP model with two locations 1ocO and fail. It has one edge from locO with
guard 0 < i A7 < 7 that loops back to locO with probability 0.8, incrementing @
by 1, and goes to fail with probability 0.2.

An important aspect of the format is its extensibility, which is based on the
mentioned use of JSON in combination with an explicit extension mechanism: a
model can list a number of model features that it makes use of. They are defined
separately from the core jani-model specification, and include a derived-oper-
ators features, which provides for e.g. max and min operations (which could
be represented with comparisons and if-then-else in core jani-model), an arrays
and a datatypes feature that specify array types resp. functional-style recursive
datatypes (e.g. to define an unbounded linked list type), and a functions feature
that allows the definition of (mutually) recursive functions for use in expressions.
Feature support will vary between tools; for example, BDD-based model checkers
will typically not be able to easily handle unbounded recursive datatypes.

While its syntax is completely different, the semantic concepts of jani-model
are based on the PRisM language. However, it is more general in some aspects:

Locations. Automata in jani-model consist of local variables and locations con-
nected by edges with action labels, guards, rates, probabilistic branches and
assignments over the variables. While being natural for an automaton, having
both locations and discrete variables is not strictly necessary as one can be
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encoded using the other. In fact, PRISM only supports the latter, necessitat-
ing the use of “program counter” variables to emulate locations if desired. By
supporting both, jani-model provides modelling flexibility; if a tool prefers one
extreme, an automatic conversion can easily be implemented. Locations pro-
vide structural information for e.g. optimisations and static analysis as well as
a natural point to store the time progress conditions (“invariants”) of TA-based
models.

Synchronisation Vectors. A jani-model model consists of a set of automata that
execute in parallel. Edges are either performed independently, or two or more
automata synchronise on an action label and perform an edge simultaneously.
Inspired by CADP’s EXP.OPEN tool, jani-model uses synchronisation vectors and
sets of input-enabled actions as a general specification of synchronisation pat-
terns. As an example, consider three automata. To specify CSP- or PRIsM-style
multi-way synchronisation on action a, we include the one vector [a, a,a]. For
CCS-style binary synchronisation between a! and a?, we need the six vectors
{[a!,a?,—],[a7,a!, -], [a!, —,a?],[a?, —,a!],[—,a!,a?],[-,a?,a!] }.
For UppAAL-style broadcast synchronisation, we make all automata input-
enabled on a? and use the three vectors { [a!,a?,a?],[a?,a!,a?],[a?,a?,a!]}.
Synchronisation vectors can express all common process-algebraic operations like
renaming or hiding, too—they are a concise yet extremely powerful mechanism.
As a further difference to PRISM, jani-model allows assignments to global
variables on synchronising edges. Inconsistent concurrent assignments are a mod-
elling error. This small extension removes a major modelling annoyance, but also
has important implementation consequences (see Sect.5 on the STORM tool).

Transient Variables and Assignments. When edges synchronise in a network of
automata, the assignments of all participating automata are typically performed
all at once, atomically. In jani-model, we additionally allow each assignment to be
annotated with an indexr. Assignments with the same index are executed atomi-
cally, but sets of assignments with different indices are performed sequentially in
the indexed order. In combination with transient variables, which are not part
of the state vectors and get reset before and after taking an edge so they do not
blow up the state space, this allows e.g. efficient value passing: If two automata
synchronise and want to pass a value v, the first one can “send” v by making an
assignment ¢ := v to a global transient variable ¢ with index ¢ on its synchronis-
ing edge while the second one can “receive” v by making an assignment [ := ¢
to the local variable | with index i’ > ¢ on its own synchronising edge.

Rewards. Finally, reward structures in jani-model are simply expressions over
global (transient or non-transient) variables. Properties indicate whether they
are instantaneous or steady-state rewards, or whether to accumulate when edges
are taken (edge/transition rewards) or over time in locations (rate rewards). This
is again a very simple but expressive way to specify rewards. As an example,

{ "op": "Emax", "exp":"i", "accumulate": ["steps"], "step-instant":6 }
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asks for the maximum expected reward, computed by accumulating the current
value of variable i whenever a transition is taken, after exactly 6 transitions.

4 The JanI Interaction Protocol

The second part of the JANI specification is the jani-interaction tool interaction
and automation protocol. Its purpose is to provide a stable interface that allows
the reuse of existing implementations from new tools, reduce setup problems by
allowing communication between tools running on different machines, and allow
for a common integrated graphical user interface for JANI-based verifiers.

jani-interaction is a client-server protocol. A server can support a number of
roles. We currently define the analyse and transform roles, which offer access
to verification procedures and model transformations, respectively. Roles are
the main extension point, allowing new roles to be added in the future. A tool
supporting the analyse role provides a number of analysis engines, which repre-
sent the verification algorithms it implements. The protocol then allows analysis
tasks to be started, with the server subsequently sending status updates to the
client and the client having the ability to cancel the analysis. The jani-interaction
specification defines a total of 18 message types, out of which 4 are specific to
the analyse and 4 are specific to the transform role. 5 message types are for
task management and used by both roles. The ReplyAnalysisEngines message
that we showed (in a slightly shortened form) in Listing 1 and 2, for example, is
a server-to-client message of the analyse role that is sent when the client has
queried for the available analysis engines. It includes an array of self-describing
parameter definitions; the client can supply values for these parameters to config-
ure the analysis engine when it starts an analysis task. Within the corresponding
StartAnalysisTask message, the client also submits the model to be analysed.
It can be either a jani-model model, which is JSON data and thus included ver-
batim in the message, or a set of JSON strings with the contents of the model
files of any other modelling formalism with a textual representation.

A jani-interaction session consists of the exchange of a number of JSON mes-
sages. This can occur in one of two ways: either remotely over the WebSocket
network protocol [23], with each message transmitted in one WebSocket text
message, or locally by the client starting the server tool and writing its messages
into the server’s standard input stream, with the server writing its replies onto
its standard output stream, one message per line. Using WebSocket communi-
cation allows running a tool remotely on a machine that is configured in exactly
the way required for the tool to run, and makes it possible to access tools using
JavaScript from websites in a browser. Using standard streams is an easier-to-
implement alternative for making an existing tool support jani-interaction. We
show an example jani-interaction session in Fig. 2.

5 Tool Support

The JANI specification is already supported by a number of quantitative verifi-
cation tools as outlined in Fig. 3. These tools provide translations from several
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Fig. 2. An example jani-interaction session

higher-level modelling languages to jani-model and, in some cases, vice-versa,
thus implementing the functionality of the transform role of jani-interaction.
Each of them also comes with a set of analysis engines that perform transi-
tional exhaustive or statistical model checking of jani-model models to produce
consistent verification results, corresponding to jani-interaction’s analyse role.

5.1 Modelling Languages

jani-model is designed to be easily machine-readable and we do not expect users
to write jani-model files directly. Instead, we provide automated translations from
the PrisM language, GSPN, IOSA, MoDEST, pGCL and xSADF.

PrIsM language. The PRISM language is based on reactive modules [2] and used
as input language of the PRISM model checker [43]. Variants and subsets are
used by other quantitative verification tools, which is why we decided to base
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Fig. 3. The JANI landscape

jani-model on its core concepts. A model in the PrRISM language consists of a set
of modules executing in parallel. Each has a number of discrete variables and a
set of probabilistic commands with a guard and a probability distribution over
assignments. There are no control flow constructs like e.g. loops; they have to be
manually encoded in variables. The PRiSM language was originally designed to
model DTMC, CTMC and MDP, and has since been extended to support PTA.
We show an example of a PRISM model in Fig. 4.

The official bidirectional conversion between the PRISM language and jani-
model is implemented in ISCASMC. This gives access to the vast collection of
PRISM case studies and benchmarks [44] to all tools that support jani-model, and
allows the use of PRISM’s model checking engines to analyse jani-model files and
models in all input languages for which a conversion to jani-model exists.

GSPN. Petri Nets are a widely-used model for concurrent processes. Generalised
stochastic Petri nets (GSPN, [48]) provide exponentially delayed transitions in
addition to the standard immediate transitions. Nondeterminism arising due to
the latter has often been resolved by assigning weights, thereby implicitly having
discrete probabilistic branching in the model. We show an example GSPN in
Fig. 5, which contains two exponentially delayed transitions with rates A\; and
Ao. A formal semantics for every GSPN, including “confused” ones with actual
nondeterminism, in terms of MA has been developed recently [20].

Based on an implementation of this semantics, the STORM tool can translate
GSPN given either as a GREATSPN project [3] or in a variant of the ISO-standard
PNML [38] format into a jani-model description. Variables describe the markings,
and the encoding of nondeterministic and delayed transitions is straightforward.
Only weights require a somewhat more involved encoding as expressions.

TOSA. Stochastic automata (SA, [14]) are decision processes in which the occur-
rence of events is governed by random variables called clocks. These can follow
arbitrary continuous probability distributions. Input/output SA (I/O SA, [15])
are a variant of networks of SA that guarantee the absence of nondeterminism:
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Prism language: MODEST:
module Channel process Channel() {
1: [0..1]; // control loc ———

snd palt {

c: clock; // for delay :99: delay(2)
invariant rcv

1=1 => c<=2 : 1: // msg lost
endinvariant {==}

l l

[sndl 1 =0 -> 0.01:(1’=0) }; i i
+ 0.99:(1°’=1) & (c’=0) Channel ()

[rcv] 1=1&c>=2 -> (1°=0) } A2 O A

endmodule Channel ()

Fig.4. A channel PTA model in PrRISM and MODEST Fig.5. A GSPN

Automata must be input-enabled, each output can only be produced by a single
automaton in the network, and clocks can only control the timing of outputs.
Networks of input/output SA can be modelled in the IOSA language, which is
syntactically a variant of the PRISM language. We show an example in Listing 4,
where action a is output (!) for M1 and input (?) for M2. Synchronisation is
performed in a broadcast fashion, meaning an output will synchronise with all
matching inputs. This ensures the input-enabledness requirement.

The FI1G tool [12] translates IOSA to and from jani-model. In jani-model,
the STA model type is used, since I/O SA are a proper subset of STA. When
converting from jani-model to IOSA, STA and CTMC models where the synchro-
nisation vectors correspond to broadcast synchronisation are supported. STA are
accepted only if the STA clocks are used in a way that can be mapped to SA.

MopesT. The MODEST language is a modelling formalism with a semantics
in terms of STA [9], later extended to SHA [29]. It is an expressive, high-level
language with features like recursive process calls, do loops, exception handling,
and complex datatypes. We show a very small example in Fig. 4. The MODEST
TOOLSET implements conversions from MODEST to jani-model and back. In terms
of supported model types, MODEST is the most expressive language currently
connected to jani-model because everything can be seen as a special case of SHA.

pGCL. Probabilistic programming languages extend standard languages with
constructs to sample from random distributions and to condition program runs
on observations about (random) data. Such constructs are at the heart of algo-
rithms in machine learning, security, and quantum computing [27]. The opera-
tional semantics of probabilistic programs are (possibly infinite) MDP.

One example of a probabilistic programming language is the probabilistic
guarded command language (pGCL, [49]) with observe statements [40]. The
STORM tool implements a translation from pGCL via program graphs to jani-
model. A noticeable feature of the translation is the detection of rewards: In the
example pGCL program given in Listing 5, if we omit the observe statement,
the variable x can be considered a reward, which then makes the MDP finite
and thus amenable to probabilistic model checking.
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module M1
c: clock; while(c = 0)
[a!] true@c -> (¢’ = gamma(0.5, 2*N)); {
endmodule {x:=x+1}
module M2 [1/2]
i: [0..M]; =x: [1..M+1]; {c:=1}
[a?7] i <=M > (i’ =x) & (x? =i+1); }s
endmodule observe "x is odd"
Listing 4. An IOSA model of two modules Listing 5. pGCL

xSADF'. Dataflow formalisms are popular in the study of embedded data process-
ing applications. The recently introduced formalism xSADF [35], an extension
of scenario-aware dataflow [56], adds cost annotations (to model, for exam-
ple, power consumption), nondeterminism, and continuous stochastic execution
times. It is equipped with a compositional semantics in terms of STA, which is
implemented in the MODEST TOOLSET. Via the latter’s support for jani-model,
we can now also convert xSADF specifications to jani-model. The resulting mod-
els are networks of STA that make use of the datatypes and functions features
to encode the unbounded typed scenario channels of xSADF.

5.2 Analysis Tools

Support for the verification of jani-model models is currently provided by F1q,
IscasMC, the MODEST T OOLSET and STORM, as well as PRISM via IsSCASMC’s
ability to convert jani-model to the PRISM language. We summarise the capabili-
ties and restrictions of the various analysis engines in Table 1. v* denotes current
support, while * means that an implementation is planned. (1) indicates that
only broadcast-based input/output STA that correspond to stochastic automata
are supported. (2) marks planned support of the arrays feature that will be
restricted to fixed-size arrays. The MODEST TOOLSET’s support for SHA is via
the prohver tool [29], indicated by (3), and its statistical model checker only sup-
ports deterministic models where marked (4). Concerning supported properties,
we consider the broad classes of probabilistic reachability (P), probabilistic com-
putation tree logic (PCTL), the probabilities of linear temporal logic formulas
(LTL), any type of expected values or rewards (E) and steady-state measures (S).

F1G. Specialised in rare event simulation, F1G [12] implements novel techniques
that allow the use of importance splitting [46] in a fully automated way. Impor-
tance splitting speeds up the occurrence of some user-defined rare event in order
to better estimate its probability of occurrence.

F1G can be used to study transient and long run behaviour. Transient prop-
erties are expressed as P(—stop U rare), where stop and rare are propositional
formulas describing simulation truncation and rare event occurrence, respec-
tively. Steady state properties correspond to the CSL expression S(rare). Aside
from standard Monte Carlo simulation, an engine based on RESTART-like [57]
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Table 1. Support for model types, features and property classes in analysis tools
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importance splitting can be used. The importance function needed by the latter
can be provided ad hoc by the user or computed automatically by the tool.

IscasMC. A Java-based model checker for stochastic systems, IScCASMC [31]
offers an easy-to-use web interface for the evaluation of Markov chains and
decision processes against PCTL, PLTL, and PCTL* specifications. It is par-
ticularly efficient in evaluating the probabilities of LTL properties, supporting
multiple resolution methods that improve the actual runtime on complex LTL
properties [30]. IscAsMC provides two analysis engines: one based on an explicit
sparse matrix encoding of the state space, and a symbolic one using binary deci-
sion diagrams (BDD). IsScASMC can be extended with plugins. This permits to
support the analysis of other formalisms, like quantum Markov chains [22] and
stochastic parity games [32], as well as to use different (multi-terminal) BDD
libraries [18] to symbolically represent both the model and the automaton for
the LTL formula.

The Mopest Toorser. A modular collection of model transformation and
analysis tools centred around an internal metamodel of networks of stochastic
hybrid systems, which greatly influenced the design of jani-model, the MODEST
TOOLSET [33] is an implementation of the multiple-formalism, multiple-solution
idea. Its core analysis engines today are the explicit-state model checker mcsta
and the statistical model checker (SMC) modes. The former handles MDP, PTA
and STA with billions of states via a disk-based approach [34] and efficiently
checks time- and reward-bounded properties without unnecessarily unfolding
the state space [28]. The latter focuses on detecting spurious nondeterminism
on-the-fly during simulation in order to be able to handle not just Markov chains.

Storm. Newly developed as the successor of the probabilistic model checker
MRMC [41], STORM [17] works with DTMC, CTMC, MDP and MA models.
In addition to its support for jani-model and the PRISM language, it can also
read files in an explicit state space-level format similar to MRMC’s. The analy-
sis of models is backed by different engines that use different representations for
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the model structure and reachable states, including sparse matrices and BDD.
STORM’s first aim is to achieve good performance, but special attention is also
given to a modular design that enables coherent and easy access to a variety
of solvers used by the analysis processes such as linear equation, mixed-integer
linear programming, and SMT solvers. STORM also supports parametric DTMC
and MDP. As the backend for PROPHESY [16] and using a parameter lifting app-
roach [53], it significantly outperforms other parametric discrete-time verification
tools.

Table 2. Comparison of PRISM- and jani-model-based state space generation

sparse/explicit engines symbolic engines (BDD)
SToRrM Prism SToRM Prism
model type |params JANI PRISM params JANI PRISM
crowds DTMC| (20,5) 89s 84s 26.2s (20,25) 9.1s 9.6s 9.6s
cluster CTMC| 250 20.2s 18.4s 26.5s| 3000 32.1s 31.1s 96.7s
consensus MDP | (6,4) 15.3s 14.6s 48.35|(10,100) 24.1s 25.4s 27.5s
CSMA MDP | (3,4) 13.8s 13.1s 15.4s| (4,4) 10.2s 10.2s 27.8s

The PRISM language is known for its ability to compactly represent gigantic
models which can be very efficiently handled by BDD-based engines. In STORM,
jani-model and PRISM models are currently handled by separate code paths. This
provided the opportunity to investigate whether the changes in state space gen-
eration code caused by the new concepts of jani-model (in particular to support
synchronising assignments to global variables in the BDD-based engine) impact
performance. Experiments were run on a quad-core 3.5 GHz Intel Core i7 sys-
tem with Mac OS X 10.12, using four PRISM benchmark models [44] and their
conversions to jani-model. We tested both explicit-state and symbolic engines.
Table 2 lists the model construction time of STORM with the jani-model and
PrisMm files and, for comparison, of PRisM with the PrisM file. The results
indicate that allowing for the extra language features in jani-model does not sig-
nificantly influence the model construction performance; the comparison with
PRrisMm furthermore shows that this is not just due to a naive implementation of
the PRISM code path within STORM.

6 Conclusion

We have proposed the JANT specification for model exchange and tool interaction.
The complete specification and a library of models are available at jani-spec.org.
The goal of JANTI is to reduce the effort required to develop verification tools,
especially in an academic setting, and to foster tool interoperation and compari-
son. Supporting the jani-model format gives access to a large number of existing
models (in the format itself and in the various connected languages) for testing
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and benchmarking at little effort compared to writing a full parser for one of the
existing modelling languages, which prioritise being easily human-writeable over
being easily machine-readable. While JANI is currently focused on quantitative
verification (cf. problem b of Sect.1), standard labelled transition systems or
Kripke structures as used in traditional verification approaches can be repre-
sented in jani-model, too, and the jani-interaction protocol can be used with any
modelling formalism with a textual representation.

Outlook. As JANI is an ongoing effort, we use the jani-spec.org website to track
the growing list of implementing tools and their status (akin to Table1). Ulti-
mately, we hope that JANI can lead the way towards a more coordinated tool
development process in quantitative verification that, together with the previous
definition of the PRiSM benchmark suite [44], will eventually enable a quantita-
tive model checking competition. Such competitions have been shown to have a
strong positive impact on the tooling landscape in affected fields [8].
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Abstract. Time-triggered switched networks are a deterministic com-
munication infrastructure used by real-time distributed embedded sys-
tems. Due to the criticality of the applications running over them, devel-
opers need to ensure that end-to-end communication is dependable and
predictable. Traditional approaches assume static networks that are not
flexible to changes caused by reconfigurations or, more importantly,
faults, which are dealt with in the application using redundancy. We
adopt the concept of handling faults in the switches from non-real-time
networks while maintaining the required predictability.

We study a class of forwarding schemes that can handle various types
of failures. We consider probabilistic failures. For a given network with a
forwarding scheme and a constant ¢, we compute the score of the scheme,
namely the probability (induced by faults) that at least £ messages arrive
on time. We reduce the scoring problem to a reachability problem on a
Markov chain with a “product-like” structure. Its special structure allows
us to reason about it symbolically, and reduce the scoring problem to
#SAT. Our solution is generic and can be adapted to different networks
and other contexts. Also, we show the computational complexity of the
scoring problem is #P-complete, and we study methods to estimate the
score. We evaluate the effectiveness of our techniques with an implemen-
tation.

1 Introduction

An increasing number of distributed embedded applications, such as the Internet-
of-Things (IoT) or modern Cyber-Physical Systems, must cover wide geographi-
cal areas and thus need to be deployed over large-scale switched communication
networks. The switches used in such networks are typically fast hardware devices
with limited computational power and with a global notion of discrete time. Due
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to the criticality of such applications, developers need to ensure that end-to-end
communication is dependable and predictable, i.e. messages need to arrive at
their destination on time. The weakness of traditional hard real-time techniques
is that they assume nearly static traffic characteristics and a priori knowledge
about them. These assumptions do not fit well with setups where highly dynamic
traffic and evolving network infrastructure are the rule and not the exception;
e.g. see [26]. For this reason, there is a pressing need to combine flexibility and
adaptability features with traditional hard real-time methods [11,12,30].

The Time-Triggered (TT) scheduling paradigm has been advocated for real-
time communication over switched networks [28]. The switches follow a static
schedule that prescribes which message is sent through each link at every time
slot. The schedule is synthesized offline, and it is repeated cyclically during the
system operation [22]. TT-schedules are both predictable and easy to implement
using a simple lookup table. Their disadvantage is that they lack robustness;
even a single fault can cause much damage (in terms of number of lost mes-
sages). Error-handling is left to the application designer and is typically solved
by statically introducing redundancy [5]. Static allocation of redundancy has
its limitations: (i) it adds to the difficulty of finding a TT-schedule, which is
a computationally demanding problem even before the addition of redundant
messages, and (ii) it reduces the effective utilization of resources.

In contrast, non real-time communication networks typically implement
error-recovery functionality within the switches, using some kind of flexible rout-
ing, to reduce the impact of crashes. Such an approach is used in software defined
networking (SDN) [17], which is a booming field in the context of routing in the
Internet. Handling crashes has been extensively studied in such networks (c.f.,
[8,24,33] and references therein), though the goal is different than in real-time
networks; a message in their setting should arrive at its destination as long as a
path to it exists in the network. Thus, unlike real-time applications, there is no
notion of a “deadline” for a message.

In this work we explore the frontier between both worlds. We adopt the con-
cept of programmable switches from SDN to the real-time setting in order to
cope with network faults. The challenge is to maintain the predictability require-
ment, which is the focus of this work. We suggest a class of deterministic routing
schemes, which we refer to as forwarding schemes, and we show how to predict
the behavior of the network when using a particular forwarding scheme. More
formally, the input to our problem consists of a network A that is accompanied
with probabilities of failures on edges, a set of messages M to be routed through
N, a (deterministic) forwarding scheme F that is used to forward the messages
in M, a timeout ¢t € IN on the arrival time of messages, i.e., if a message arrives
after time ¢, it is considered to be lost, and a guarantee £ € IN on the number
of messages that should arrive. Our goal is to compute the score of F, which is
defined as the probability (induced by faults) that at least ¢ messages arrive at
their destinations on time when forwarding using F.

Our score is a means for predicting the outcome of the network. If the score
is too low, a designer can use redundancy techniques to increase it. Also, it
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is a means to compare forwarding schemes. When constructing a forwarding
scheme, be it a TT-schedule or any other scheme, a designer has control on
some of the components and others are fixed by the application. For example,
in many networks, the size of the switches’ queues are fixed to be small, making
it impossible to use algorithms that rely on large memories. The choices made
by the designer can highly influence the performance of the system on the one
hand, and are very hard to predict on the other; especially when faults come
into the picture. Our score can be used to compare different forwarding schemes,
allowing the designer to evaluate his algorithm of choice. Also, our solution can
be used for sensitivity analysis with respect to certain parameters of the network;
for example, one can fix the score and ¢, and find the error probabilities for the
channels [4].

A first step towards handling faults in the switches was made in [3]. In their
framework, the switches follow a TT-schedule and resort to a forwarding algo-
rithm once a crash occurs. Our forwarding scheme is simpler and allows con-
sideration of richer faults in a clean and elegant manner, which were impossible
to handle in [3]’s framework. More importantly, they study adversarial faults
whereas we study probabilistic ones, which are a better model for reality while
they are considerably more complicated to handle. Using failover paths to allow
for flexibility in switched networks was considered in [20,32].

The definition of the class of forwarding schemes requires care. On the one
hand, the switches computation power is limited, so forwarding rules in the
switches should be specified as propositional rules. But, on the other hand, it is
infeasible to manually specify the rules at each switch as the network is large and
is subject to frequent changes. So, we are required to use a central symbolic defin-
ition of an algorithm. However, while the definition of the central algorithm uses
propositional rules, it should allow for variability between the switches and the
messages’ behavior in them. There are many ways to overcome these challenges,
and we suggest one solution, which is simple and robust. Our forwarding scheme
consists of three components. The first component is a forwarding algorithm that
the switches run and is given by means of propositional forwarding rules. The
two other components allow variability between the switches, each switch has
priorities on messages, and each message has a preference on outgoing edges
from each switch. The forwarding rules of the algorithm take these priorities
and preferences into consideration. A similar priority-list model is taken in [14].
Our algorithm for computing the score of a scheme is general and can handle
various forwarding schemes that are given as propositional rules as we elaborate
in Sect. 8.

In order to score a given forwarding scheme, we first reduce the scoring
problem to a reachability problem on a certain type of Markov chain, which
is constructed in two steps. First, we focus on an individual message m and
construct a deterministic automaton D,,, that simulates the forwarding scheme
from the perspective of the message. Then, we combine the automata of all the
messages into an automaton that simulates their execution simultaneously, and
construct a Markov chain C on top of it by assuming a distribution on input
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letters (faults). The size of C is huge and the crux of our approach is reasoning
about it symbolically rather than implicitly using PRISM [18] for example. We
construct a Boolean formula ¢ that simulates the execution of C. The special
product-like structure of C allows us to construct v that is proportional in size
to the sum of sizes of the D,, automata rather than the product of their sizes,
which is the size of C. There is a one-to-one correspondence between satisfying
assignments to ¥ and “good outcomes”, namely outcomes in which at least /¢
messages arrive on time. We then infer the score of the forwarding scheme from
the weighted count of satisfying assignments to v; the weight of a satisfying
assignment is the probability of the crashes in the corresponding execution of
the network.

The problem of counting the number of satisfying assignments of a Boolean
formula is called #SAT and it has received much attention. The practical
developments on this problem are quite remarkable given its computational
intractably; even deciding whether a Boolean formula has one solution is an
NP-complete problem that was considered impossible to solve practically twenty
years ago, a fortiori counting the number of solutions of a formula, which is a
#P-complete problem and “closer” to PSPACE than to NP. Still, there are tools
that calculate an exact solution to the problem [29] and a recent line of work
that adapts the rich theory of finding approximate solutions with high proba-
bility [16] to practice (see [21] for an overview). Also, extensions of the original
problem were studied; strengthening of the formula to SMT rather than SAT [9]
and reasoning about assignments with weights, referred to weighted #SAT. As
mentioned above, our solution requires this second extension. We show that we
can alter the formula we construct above to fit in the framework of [7], allowing
us to use their reduction and generate an equivalent #SAT instance.

While solving #SAT is becoming more practical, it is still far from solved
and it would be surprising if the tools will ever be able to compete with tools
for solving SAT, e.g., [10]. Thus, one can question our choice of using such a
heavy tool to solve our scoring problem. We show that a heavy tool is essential
by showing that scoring a forwarding scheme is #P-complete, by complementing
the upper bound above with a reduction in the other direction: from #SAT to
scoring a forwarding scheme.

We also study approaches to estimate the score of a forwarding scheme. We
run a randomized algorithm that, with high probability, finds a solution that
is close to the actual score. Using an approximate counting tool to count the
Boolean formula we construct above, performs very poorly as the reduction of [7]
constructs an instance which is particularly hard for the approximate counting
techniques. Thus, in order to employ the tools to approximately solve #SAT
we need to bypass the reduction. We suggest an iterative algorithm that takes
advantage of the fact that in practice, the probability of failure is low, so traces
with many faults have negligible probability. A second technique we use is a
Monte-Carlo simulation, which has been found very useful in reasoning about
networks [25] as well as in statistical model checking in tools like PLASMA [15],
UPPAAL [19], and PVeSta [1].
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We have implemented all our techniques. We show that the exact solution
scales to small networks. The solution that relies on approximated counting
scales better, but is overshadowed by the Monte-Carlo approach, which scales
nicely to moderate networks. We also use the exact solution to evaluate the
scores of the Monte-Carlo approach and we find that it is quite accurate. We
note that our counting techniques rely on counting tools as black-boxes and, as
mentioned above, improving these techniques is an active line of work. We expect
these tools to improve over time, which will in turn improve the scalability of
our solution.

Due to lack of space some proofs and examples are given in the full version [2].

2 Preliminaries

We model a network as a directed graph N' = (V, E). For a vertex v € V, we use
out(v) C E to denote the set of outgoing edges from v, thus out(v) = {{v,u) €
E}. A collection M of messages are sent through the network. Each message
m € M has a source and a target vertex, which we refer to as s(m) and t(m),
respectively. Time is discrete. There is a global timeout t € IN and a message
meets the timeout if it arrives at its destination by time t.

Forwarding Messages

A forwarding scheme is a triple F = (A, {<uv}vev, {=<t }mem, vev), where A
is a forwarding algorithm that the switches run and we describe the two other
components below. For ease of notation, we assume the same number of edges
d € NN exit all the switches in the network and in each switch they are ordered in
some manner'. Then, our rules forward messages with respect to this order. For
example, we can specify a rule that says “forward a message m on the first edge”
by writing FORWARD(m, e1). The two other components of F allow variability;
each switch v € V has an order <, on messages, which are priorities on messages,
and each message m € M has an ordering <!, on the outgoing edges from v,
which are preference on edges.

The propositional rules in A are of the form ¢ — FORWARD(m,e). We refer
to ¢ as the assertion of the rule and its syntax is as follows

pu=ml|e |m<m |e<mej|pVelp

Note that m and m’ refer to specific messages in M while e; refers to the i-th
exiting edges from a switch. The forwarding at a switch is determined only by
the local information it has; the messages in its queue and its outgoing active
edges. In other words, switches are not aware of faults in distant parts of the
network and this fits well with the philosophy of the simple networks we model.

! In many settings, messages are grouped into few priorities making “priority ties”
common. We assume a total order on message priorities, i.e., there is some arbitrary
procedure to break ties.
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Intuitively, the algorithm takes as input the messages in the queue as well
as the active edges, and the output is the forwarding choices. Accordingly, the
semantics of an assertion ¢ is with respect to a set of messages M C M (the
messages in the queue) and a set of edges T' C {ey,...,eq} (the active edges).
Consider a rule ¢ — FORWARD(m, ¢;). We denote by (M,T) <, (<o 3,cn ©
the fact that (M, T) satisfies ¢. Then, m is forwarded on the i-th outgoing edge
from v, namely e;. When <, and <}, are clear from the context, we omit them.
The semantics is defined recursively on the structure of . For the base cases,
we have (M, T) |=m iff m € M, thus m is in v’s queue, we have (M, T) k= e; iff
e; € T, thus e; is active, we have (M,T) = (m < m’) iff m <, m’/, thus m’ has
precedence over m in v, and we have (M, T) |= (e; <, €;) iff e; <7, e;, thus m
prefers being forwarded on the j-th edge over the i-th edge. The inductive cases
are as expected.

The algorithm forwards messages on active links. We think of its output as
pairs O C M x E, where (m,e) € O implies that the algorithm forwards m on
e. We require that the algorithm obey the constraints of the network; at most
one message is forwarded on a link, messages are forwarded only on active links,
messages originate only from their source switch, they are forwarded only after
they are received, and they are not forwarded from their destination.

It is sometimes convenient to use definitions of sets in an algorithm as we
illustrate in the examples below. A definition of a set is either a collection of
messages or a collection of edges that satisfy an assertion as in the above. We also
allow set operations like union, intersection, and difference, for sets over the same
types of elements. Later on, when we simulate the execution of the forwarding
algorithm as a propositional formula, we use extra variables to simulate these
operations.

Ezample 1. TT-schedule. A time-triggered schedule (TT-schedule, for short)
assigns messages to edges such that (1) the schedule assigns a message m on a
path from its source to target, i.e., it is not possible that m is scheduled on e
before it reaches s(e), (2) two messages cannot be sent on the same link at the
same time, and (3) all messages must arrive by time ¢. Given a TT-schedule S, we
can construct an equivalent forwarding scheme assuming there is no redundant
waiting, namely assuming a message m arrives at a switch v at time ¢ and should
be forwarded on e at a later time, then, if m stays in v, it is only because e is
occupied by a different message. We note that a schedule induces an order on
the messages at each vertex, which we use as <,,,, and it induces a path =, for
each message, which induces an order <7 in which the edges on ,, have the
highest preference.

In order to describe the rules of the algorithm (as well as the rules in the
following example), we introduce several definition. For § C M, we define an
assertion priority(m,S) that is satisfied in switches where m has the highest
priority out of the messages in S, thus priority(m, S) = A, cg(m’ < m). Next,
we define an assertion prefers(m, e;) that is satisfied in vertices where m prefers
e; over all the active edges, thus prefers(m,e;) = A, (ej — (&5 <m €))-
Finally, we define a set of message S., = {m € M : preters(m, ¢;)}, namely S,
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at a vertex v contains the messages that are forwarded on i-th outgoing edge
from v.

We are ready to describe the algorithm using forwarding rules. For every
me Mandi=1,...,d, mis forwarded on e; when (1) m is in the queue, (2)
m prefers e;, (3) e; is active, and (4) m has the highest priority of the messages
in S.,. The corresponding rule is m A prefers(m,e;) A e; A priority(m, Se,) —
FORWARD(m, €;).

Ezample 2. Hot-potato. This algorithm is intended for networks in which the
switches’ queue size is limited. Intuitively, messages are ordered in decreasing
priority and are allowed to choose free edges according to their preferences. So,
assume that the set of active outgoing edges of a switch vis T' C {ey,...,eq}, and
the message in the queue are M = {m,...,my} ordered in increasing priority,
ie., for 1 <i < j <k, we have m; <, m;. Then, m; chooses its highest priority
edge e in T, i.e., for every other edge ¢ € T, we have ¢/ <2, e. Following m,
the message mo chooses its highest priority edge in T\ {e}, and so forth. If a
message is left with no free outgoing edge, it stays in v’s queue. The algorithm
has a low memory consumption: rather than keeping a message m in the queue
till its preferred edge is free, the switch forwards m on a lower-preference edge.
Note that unlike the algorithm in Example 1, the hot-potato algorithm has fault
tolerant capabilities. The definition of the algorithm using propositional rules
can be found in the full version.

Faults and Outcomes

We consider two types of faults. The first type are crashes of edges. We distin-
guish between two types of crashes: temporary and permanent crashes in which
edges can and cannot recover, respectively. A second type of fault model we con-
sider are faults on sent messages. We consider omissions in which a sent message
can be lost. We assume the switches detect such omissions, so we model these
faults as a sent message that does not reach its destination and re-appears in
the sending switch’s queue. As we elaborate in Sect. 8, our approach can handle
other faults such as “clock glitches”, which are common in practice.

The outcome of a forwarding scheme F is a sequence of snapshots of the
network at each time point. Each snapshot, which we refer to as a configuration,
includes the positions of all the messages, thus it is a set of | M| pairs of the
form (m,v), meaning that m is on vertex v in the configuration. We use O to
denote the set of all outcomes. Each outcome in O has t + 1 configurations,
thus O C (M x V)1 All outcomes start from the same initial configuration
{{m,s(m)) : m € M} in which all messages are at their origin. Consider a
configuration C. Defining the next configuration C’ in the outcome is done in
two steps. In the first step, we run F in all vertices. Consider a vertex v, let
T C out(v) be a set of active edges. The set of messages in v’s queue is M =
{m : (m,v) € C}. Intuitively, we run F at v with input M and T. The forwarding
algorithm keeps some of the messages S C M in v’s queue and forwards others.
The messages in S stay in v’s queue, thus we have (m,v) € C’ for every message
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m € S. Recall that the algorithm’s output is O C (M x E), where (m,e) € O
means that m is forwarded on the link e. In the second step, we allow omissions to
occur on the pairs in O. If an omission occurs on (m, (v,u)) € O, then m returns
to the source of the edge and we have (m,v) € C’, and otherwise, sending is
successful and we have (m,u) € C".

We consider probabilistic failures. For every edge e € FE, we assume there
is a probability p¢,,., that e crashes as well as a probability p¢ .., that a for-
warded message on e is omitted. Allowing different probabilities for the edges is
useful for modeling settings in which the links are of different quality. Note that we
allow “ideal” links with probability 0 of failing. Faults occur independently though
some dependencies arise from our definitions and we highlight them below. In the
temporary-crash model, the probability that e is active at a time ¢is 1 —p¢ ;. In
the permanent-crash model, crashes are dependent. Consider a set of active edges
T C E. The probability that the active edges in the next time step are 7/ C T
is [leer (1 = Plrasn) * Ilee(r\17) Perasn- We define omissions similarly. Consider
a configuration C, active edges T, and let O be the output of the algorithm. The
probability that an omission occurs to a pair in (m, e) € O is pS,, ;. Here too there
is dependency between omissions and crashes: an omission can only occur on an
edge that a message is sent on, thus the edge must be active. Such fault probabil-
ities give rise to a probability distribution on O, which we refer to as D(O).

Definition 1. Consider 1 < ¢ < |M|. Let G be the set of outcomes in which at
least £ messages arrive on time. We define SCORE(F) = Pr . po[m € GI.

3 From Computing Scores to Reasoning About Markov
Chains

In this section we show how to reduce the problem of finding the score of a for-
warding scheme to a reachability problem on a Markov chain. We describe the
intuition for the construction and the formal details can be found in the full ver-
sion. We start with temporary crashes and omissions. A deterministic automaton
(DFA, for short) is a tuple D = (¥, @, 9, qo, F'), where X' is an alphabet, @ is a
set of states, § : Q x X — (@ is a transition function, ¢y € @ is an initial state, and
F C Q is a set of accepting states. We use |D| to denote the number of states in
D. An automaton frame is a DFA with no accepting states. A Markov chain is a
tuple (@, P, qo), where @ is a set of states, P : @xQ — [0, 1] is a probability func-
tion such that for every state ¢ € @), we have Ze:(q,p)eQxQ Ple] =1, and gp € Q
is an initial state. A Markov chain induces a probability distribution on finite
paths. The probability of a path m = 7, ..., m,, where m; = ¢¢ is the product of
probabilities of the transitions it traverses, thus Pr[r] = [[, ¢,_,, Pr[(mi, mi41)].
For a bound ¢ € IN, we use Prr.|r|<¢} to highlight the fact that we are restricting
to the probability space on runs of length at most ¢.

Consider a network N’ = (V, E), a set of messages M, a forwarding scheme
F, and a message m € M. We describe an automaton frame D,, [N, M, F]| that
simulates the routing of m in A using F. We have D,, [N, M, F] = ((2M x 2F)u
(EU{L1}),VUE, b, s(m)), where we describe §,, below. We omit N, M, and
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F when they are clear from the context. Intuitively, the subset of states V" model
positions in the network and the subset of states F are intermediate states that
allow us to model omissions. When D,,, is at state v € V', it models the fact that
m is in the switch v. Accordingly, the initial state is s(m) and the transition
function 4, simulates the forwarding scheme F: every outgoing transition 7
from a state v € V' corresponds to forwarding rule ¢ — FORWARD(m, e;) for m.
The transition 7 is labeled by an alphabet letter (M, T), where M C M models
the messages in v’s queue, and T' C E models the active edges. Furthermore,
we have (M, T) = ¢, thus m is forwarded on the i-th edge leaving v. We refer
to the state at the end-point of the transition 7 as e € E, thus e is the i-th
edge leaving v. Recall that e is used to model omission. Accordingly, it has two
outgoing transitions: one directs back to v, and the second models a successful
transmission and directs to the state that corresponds to the vertex t(e).

Next, given a network N, a set of messages M, and a forwarding scheme
F, we construct an automaton-frame DFA DN, M, F| that simulates the runs
of all the D,, frames. Consider a guarantee constant 1 < ¢ < |M]. The con-
stant £ determines the accepting states of DN, M, F]: states in which at least
¢ messages arrive on time are accepting. Formally, we have D[N, M, F] =
(28 VIMIy EIMI s P Fy), where we describe the definition of ¢, §, and Fj
below. We omit A/, M, F, and £ when they are clear from the context. Recall
that D simulates the execution of the network when routing according to F. A
state (vi,va,...,v| ) in D represents the fact that, for 1 < < | M|, message
m; is in the switch v; and its frame is in the corresponding state, and similarly
for a state in EMI. Accordingly, the initial state ¢¥ is (s(m1),.. - 8(mym)))
and a state is accepting iff at least ¢ messages arrive at their destination, thus
Fy = {{v1,...,on) : {7+ vj = t(my)}| = £}. Recall that the alphabet of a
frame D,, consists of two types of letters; a letter M C M models the mes-
sages in a switch’s queue and a letter T C F models failures. Since in D, the
messages in the queues can be induced by the positions of the frames, the alpha-
bet of the frame D consists only of the second type of letters. Consider a state
(v1,v2,...,90) in D and an input letter T C E. For 1 <i < |[M], let M C M
be the messages at vertex v;, thus M = {m; : v; = v;}. Then, the i-th compo-
nent in the next state of D is d,,, (v, (M, T)). The definition for states in EIM! is
similar, though here, when an outgoing transition is labeled by a letter O C E,
it models the messages that where successfully delivered.

Recall that the letters in DN, M, F] model failures. We assume probabilis-
tic failures, thus in order to reason about A we construct a Markov chain
CIN, M, F] on the structure of DN, M,F| by assuming a distribution on
input letters. Formally, we have CIN, M, F] = (VIMI U EMI P ¢P) where
T=(T,e) € VIMI . EIMI has a positive probability iff there exists T C F such
that 6(v,T) = e, then P[r] = [[.crpe - [[cgr(1 — pe), and the definition of
edges from states in EM! to VIMI is similar. We can now specify the score of a
forwarding scheme as the probability of reaching F; in C[N, M, F].
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Theorem 1. Let N be a network, M a set of messages, F be a forwarding
scheme, and 1 < ¢ < |M| a guarantee. For a timeout t € N, we have that
Prirxi<ey ({7 : mreaches Fy}] in CIN', M, F| equals SCORE(F).

The construction above considers temporary crashes. Recall that in perma-
nent crashes, once an edge crashes it does not recover. In order to reason about
such crashes, we take a product of D with 2/Zl. A state that is associated with a
set T' C E represents the fact that the edges in E'\ T have crashed. Thus, input
letters from such a state include only edges in T'.

4 Computing the Score of a Forwarding Scheme

While Theorem 1 suggests a method to compute the score of a forwarding scheme
by solving a reachability problem on the Markov chain C, the size C is too big
for practical purposes. In this section we reason about C without constructing
it implicitly by reducing the scoring problem to #SAT, the problem of counting
the number of satisfying assignments of a Boolean formula. We proceed in two
steps.

Simulating Executions of D. Recall that the Markov chain C shares the same
structure as an automaton D whose input alphabet represents faults. We reason
about D by constructing a Boolean formula 1 whose satisfying assignments
correspond to accepting runs of length ¢ of D, which correspond in turn to
“good outcomes” of the network, i.e., outcomes in which at least ¢ messages
arrive on time. The crux of the construction is that the size of v is proportional
to the sum of sizes of the D,,, automata that compose D rather than the product
of their sizes, which is the size of D. In order to ensure that the run a satisfying
assignment simulates, is accepting, we need to verify that at least ¢ messages
arrive on time. We show how to simulate a counter using a Boolean formula in
the following lemma whose proof can be found in the full version.

Lemma 1. Consider a set X of | M| variables, a truth assignment f : X —
{tt, ff}, and a constant 1 < £ < |M|. There is a Boolean formula CNT; over
variables X UY such that there is a satisfying assignment to CNTy that agrees
with f on X iff {x € X : f(x) = tt}| = L. The size of Y is |M|-log[€+ 1] and
CNTy has linear many constraints in | X UY|.

We proceed to construct the formula ).

Theorem 2. Given a forwarding scheme F for a network N, a set of messages
M, and two constants t,€ € IN, there is a Boolean formula ¢ such that there is
a one-to-ome correspondence between satisfying assignment to ¥ and accepting

runs of DN, M, F|. The size of ¥ is poly(JN|,|F|,| M|, t,log ).

Proof. We describe the intuition of the construction and the detail can be found
in the full version. We use |[M| - |N] -t variables to simulate the execution of
the underlying | M| frames. A variable of the form z,, , ; represents the fact that
message m is on switch v at time . We model the faults using variables: a variable
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Z,; represents the fact that e is active at time ¢ and a variable z. ,, ; represents
the fact that sending message m on link e at time ¢ was successful. Recall that
the transition function of the frames corresponds to the forwarding algorithm,
which is given by a set of propositional rules. We simulate these rules using a
Boolean formula over the variables. Finally, we add constraints that require that
the run starts from the initial state, i.e., T, s(m),1 = tt, and ends in an accepting
state, i.e., [{m € M : Zp, (m)+ = tt}| = £ For the later we use the assertion
CNT that is described in Lemma 1 with X = {x, 4(m)+ : m € M}. O

Reasoning About C Using . Recall that in Theorem 1, we reduce the problem
of scoring a forwarding scheme to the problem of finding the probability of reach-
ing the accepting states in C in t iterations. By Theorem 2 above, a satisfying
assignment f to 1 corresponds to such an execution r. We think of f as having
a probability, which is Pr[r]. Let SAT () be the set of satisfying assignments to
1. We have established the following connection: SCORE(F) = > ¢c g ar(y) Prlf]-

Recall that #SAT is the problem of counting the number of satisfying assign-
ments of a Boolean formula. The counting problem in the right-hand side of the
equation above is a weighted-model counting (WMC, for short) problem, which
generalizes #SAT. The input to WMC is a Boolean formula ¢ and a weight
function w that assigns to each satisfying assignment a weight, and the goal is
to calculate SCORE(p) = > e gar(,) W(f)- #SAT is a special case in which the
weight function is w = 1, thus all assignments get weight 1. In order to distin-
guish between the two problems, we sometimes refer to #SAT as unweighted
model counting (UMC, for short).

The last step in our solution adjusts ¢ to fit in the framework of [7] and
use the reduction there from WMC to UMC. Their framework deals with weight
functions of a special form: each literal has a probability of getting value true and
the literals are independent. So the weight of an assignment is the product of the
literals’ probabilities. Accordingly, they call this fragment literal-weighted WMC.
Formally, we have a probability function Pr[l], for every literal [ in . We define

w(f) = Ilio@y=ee Pl TTio ) =2 (1 = Pr[l])), and SCORE(Y) = 3 re g ary) w(f)-

Theorem 3. Consider the WMC instance (1, w), where 1 is the Boolean for-
mula obtained in Theorem 2 and, for f € SAT(¢) with corresponding execution
r, we have w(f) = Pr[r]. There is a literal-weighted WMC' (¢’ ,w') and a factor
~ such that v - SCORE(¢) = SCORE(y)) and ' is polynomial in the size of 1.

Proof. We prove for temporary crashes and omits and for permanent crashes
the proof is similar and can be found in the full version. Recall that there are
two types of variables in ; variables of the form x,, , ; that simulate the runs of
the underlying automata and variables of the form z.; that represent the fact
that a fault occurs in e (crashes for odd ¢ and omissions for even ). Since the
automata are deterministic, the values of the first type of variables is determined
by the second type of variables. A first attempt to define the weights of the z. ;
variables would be to set them to p¢, ., and p¢ .., respectively. However, this
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definition fails as there is dependency between crashes and omits; an omit cannot
occur on an edge that crashes. In the following, we introduce new variables to
correct the dependencies.

It is convenient to add a variable fr., that gets value true when one of
the messages is forwarded on e at time ¢, thus an omission can occur only if
fre,s = tt. Note that it is implicit that fr.; = tt only when e does not crash.
Let i be even, and recall that . ; = tt when e exhibits an omission. The behavior
we are expecting is Pr{z.; = tt|fr.; = tt] = pS,,;; and Priz.; = tt|fr.; =
££] = 0. In order to model this behavior, we multiply the score of ¥’ by v, add
two independent variables a ; and b, ; with respective weights a and b, which we
calculate below, and constraints ae; = ¢ ;A fre,; and be; = ~@e ;A fre ;. Recall
that Pr{z.; = tt|fre,; = tt] should equal p,,,;,. In that case, we have a.; = tt
and b, ; = £f with probability a- (1 —b). Thus, we have p$,.., =v-a-(1—b). We
do a similar calculation for the three other cases to obtain two other equations:
1-p%=7-(1—a) - (1—>b)and 1 =+- (1 —a)-b. Thus, we define a = p%,,;,
b:ﬁlgmt,andv_lz(l—a)b. O

Finally, we use the reduction from literal-weight WMC to UMC as described
in [7], thus we obtain the following.

Theorem 4. The problem of scoring a forwarding scheme is polynomial-time
reducible to #SAT.

5 Computational Complexity

We study the computational complexity of finding the score of a forwarding
scheme. We show that it is #P-complete by showing that it is equivalent to the
problem of counting the number of satisfying assignments of a Boolean formula
(a.k.a the #SAT problem).

Theorem 5. The problem of computing the score of a forwarding scheme is
#P-Complete.

Proof. The upper bound follows from Theorem 4. For the lower bound, we reduce
#3SAT, the problem of counting the number of satisfying assignments of a 3CNF
formula, to the problem of finding the score of a forwarding scheme. Consider an
input 3CNF formula ¢» = C1 A.. . AC}, over a set X of n variables. We construct a
network N with n + k messages, a forwarding scheme F, and ¢,¢ € IN, such that
the number of satisfying assignments to ¢ is (1 — SCORE(F)) - 2. We describe
the intuition of the construction and the details can be found in the full version.

We have two types of messages; variable messages of the form m,, for x € X,
and clause messages of the form m¢, where C' is a clause in . A variable message
m, has two possible paths it can traverse m, and 7—,, where the probability of
traversing each path is 0.5. We achieve this by using the hot-potato algorithm of
Example 2, using 7, as the first-choice path for m, and n_, as the second-choice
path, and having the first edge on 7, crash with probability 0.5 and all other
edges cannot crash. There is a clear one-to-one correspondence between outcomes
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and assignments to the variables: an outcome 7 corresponds to an assignment
f:X — {tt,ff}, where f(z) = tt if m, traverses 7, in 7 and f(x) = £f if m,
traverses m_, in 7. Since crashes in times later than 0 do not affect the choice
of m,, we have Proutcomes with 7] = Pr[outcomes with 7_,] = 0.5, thus the
probability of every assignment is 1/2™.

Finally, we associate satisfying assignments with bad outcomes. A bad out-
come is an outcome in which no message arrives on time, thus £ = 1. Both paths
for the variable messages are longer than the timeout ¢, so these messages miss
the timeout in any case. Each clause message m¢ has a unique path 7o and
its length is ¢. Let [ € {x, ~x} be a literal in C. Then, ¢ intersects the path
m in exactly one edge e. The paths are “synchronized” such that if m, chooses
7y, then both m, and m¢ reach the origin of e at the same time. Since m, has
precedence over mg, it will traverse e first, making m¢ wait at s(e) for one time
unit and causing it to miss the timeout (recall that |7¢| = t). Note that m¢
misses the timeout iff one of the literals in it gets value tt. Thus, an outcome in
which all clause messages miss the timeout, i.e., a bad outcome, corresponds to
a satisfying assignment to ¢, and we are done. O

6 Estimating the Score of a Forwarding Scheme

In this section we relax the requirement of finding an ezact score and study the
problem of estimating the score. We study probabilistic algorithms that with
high probability return a score that is close to the exact score.

Iterative Counting Approach. We build on the counting method developed
in Sect. 4. A first attempt to estimate the score would be to feed the Boolean for-
mula 1)’ we develop there into a tool that approximately solves #SAT. However,
this attempt fails as the reduction of [7] from weighted to unweighted count-
ing produces an instance that is particularly hard to solve for such solvers. In
order to use the literature on approximate counting, we must develop a different
technique. We take advantage of the fact that in practice, the probability of fail-
ures is very small. Thus, the executions that include many faults have negligible
probability. We find an approximate score of a forwarding scheme in an itera-
tive manner. We start with a score of 0 and uncertainty gap 1, and iteratively
improve both. We allow only permanent edge crashes in this approach and we
require all edges to have the same probability. In each iteration we allow exactly
k crashes. Calculating the probability of all outcomes with k crashes is not hard.
The proof of the following lemma can be found in the full version.

Lemma 2. The probability of all outputs with exactly k crashes is (lfl) (1 -
pcrash)(‘E‘_k).t : (1 - (1 - pcrash)t)k~

We find the probability of the “good outcomes” with k crashes using a count-
ing method, add to the score of the scheme and update the uncertainty gap by
deducting the probability of the bad outcomes. We use the weighted counting
framework of [6] (which is not weighted-literal WMC). Restricting to k crashes
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has two advantages, which significantly speed up the counting. First, the solu-
tion space is significantly reduced. More importantly, we use the fact that the
probabilities of the outcomes do not vary too much. The running time of the
method of [6] depends on a given estimation of the ratio between the weight
of the maximal weighted satisfying assignment and the minimal weighted one,
which the authors refer to as the tilt. The proof of the following lemma can be
found in the full version.

Lemma 3. tilt < (1 — perasn)® .

We describe the pseudo code of the approach below.

Input: A network N' = (V, E), a set of messages M, a forwarding scheme F,
constants ¢, ¢ € IN, the probability of a permanent crash p..qsp, and € > 0.
Output: An additive e-approximation of SCORE(F).
uncertainty = 1, score = 0,k = 0.
while uncertainty > € do
all < Probability of all outcomes with k crashes.
bad « CALCBADPROB(N, M, S,t, 0, k)
uncertainty —= all; score += (all —bad); k ++;

return score

6.1 A Monte-Carlo Approach

The Monte-Carlo approach is a very simple and well-known approach to reason
about reachability in Markov chains. It performs well in practice as we elaborate
in Sect. 7. We perform n probabilistic simulations of the execution of the Markov
chain C for 2t iterations, where ¢ is the timeout and n is a large number which
we choose later. In each simulation, we start from the initial state of C. At each
iteration we probabilistically choose an outgoing edge and follow it. If we reach a
state in Fy, we list the experiment as 1, and otherwise as 0. We use y1, ..., ¥y, to
refer to the outcomes of the experiments, thus y; € {0,1}. Let 7 be the number of
successful experiments. We return r/n. We use Hoeffding’s inequality to bound

the error: Pr[2 3" | y; — SCORE(F) > €] < e=27¢* Thus, we choose n so that
given requirements on the error and confidence are met.

7 Evaluation

In this section we evaluate the techniques to compute the exact and approximate
score of a forwarding scheme. We compare the scalability of these approaches.
Our counting techniques rely on black-boxes that count the number of satisfying
assignments of a SAT formula. We used sharpSAT [29] to exactly solve #SAT
and WeightMC [6] to approximately solve weighted #SAT. Our implementations
are in Python and we ran our experiments on a personal computer; an Intel Core
i3 quad core 3.40 GHz processor.
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Runtime (sec)

Table 1. Comparison of the exact score with the
one obtained by the Monte-Carlo approach.

2 Monte Carlo
== |terative + naive

b "™ Num. of nodes | Exact | Monte-Carlo | Error

T Ty 0.998 | 0.998 0.0002

Fig. 1. The running time of 5 0.965 | 0.963 0.001

the approaches on increasing-sized 6 0.967 | 0.968 0.0005
networks.

Generating a Setting. We evaluate the algorithm on networks that were
generated randomly using the library Networkx [13]. We fix the number of ver-
tices, edges, and messages and generate a random directed graph. We consider
relatively dense graphs, where the number of edges are approximately 2.5 times
the number of vertices. Once we have a graph, we randomly select a source and
a target for each message. Recall that a forwarding scheme has three compo-
nents: the forwarding algorithm, message priorities, and edge priorities for each
message.

The forwarding algorithm we use is the “Hot-potato” algorithm, which is
described in Example2 and has some error-handling capabilities. We choose
the message priorities arbitrarily, and we choose the edge preference as follows.
We follow a common practice in generating TT-schedules in which we restrict
messages to be scheduled on few predefined paths from source to target [23,
27]. For each message, we select a “first-choice” path m,, using some simple
heuristic like taking the shortest path between s(m) and t(m), and a “fall-back”
path from each vertex on 7, to t(m). The collection of fall-back paths form a
DAG with one sink ¢(m). This restriction significantly shrinks the formula
that we construct. We assume permanent crashes, and set the probabilities of a
crash and an omission uniformly in the network to be 0.01. This is a very high
probability for practical uses, but we use it because it is convenient to evaluate
the calculation methods with a high probability, and the actual score of the
forwarding scheme is less important to us. All results have been averaged over
3-5 runs. Each program times out after 1h, returning “timeout” if it has not
terminated by then.

Execution Time Measurements. We have implemented the exact and esti-
mating approaches that are described in Sects.4 and 6. The running times are
depicted in Fig. 1. We note that it is unfair to compare the exact method to
the estimation ones, and we do it nonetheless as it gives context to the results.
The sharpSAT tool performs well (even better than the approximation tools) for
small instances. But, the jump in running time is sudden and occurs for networks
with 7 nodes, where the running time exceeded an hour.
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For estimating the score, we have implemented two approaches; an iterative
approach and a Monte-Carlo approach. Recall that the crux in the first approach
is computing the probability of bad outcomes with exactly k crashes. We use
two techniques; the tool weightMC [6] as well as a naive counting method: we
iteratively run Z3 [10] to find an assignment and add its negation to the solver so
that it is not found again. We combine the naive approach with an optimization
that is similar to the one that was shown to be helpful in [3], but we find it is
not helpful in our setting.

Finally, we implemented a Monte-Carlo approach in Python using random-
ization functions from the Numpy library. We ran the simulations on 4 threads,
which we found was an optimal number for our working environment. We eval-
uated the Monte Carlo approach using an error € = 0.01, and a confidence of
0 = 0.99.

The leading estimation method is the Monte-Carlo approach, which scales
quite well; in reasonable time, it can calculate the score of moderate sized net-
works and shows a nice linear escalation with the network growth. It is somewhat
frustrating that this simple approach beats the approaches that rely on counting
hands down as a significant amount of work, both theoretical and in terms of
optimizations, has been devoted in them. As mentioned earlier, the research on
SAT counting is still new and we expect improvements in the tools, which will
in turn help with our scalability.

Evaluating the Approximation. Apart from the theoretical interest in an
exact solution, it can serve as a benchmark to evaluate the score the estimation
methods output. In Table 1, we compare the scores obtained by the exact solution
and by the Monte-Carlo solution and show that the error is well below our
required error of 0.01.

8 Discussion

We introduce a class of forwarding schemes that are capable of coping with
faults and we reason on the predictability of a forwarding scheme. We study the
problem of computing the score of a given a forwarding scheme F in a network N
subject to probabilistic failures, namely the probability that at least £ messages
arrive on time when using F to forward messages in /. We reduce the problem
of scoring a forwarding scheme to #SAT, the problem of counting the number
of satisfying assignments of a Boolean formula. Our reduction goes through a
reachability problem on a succinctly represented Markov chain C. The Boolean
formula we construct simulates the executions of C. We considered a class of
forwarding schemes that operate in a network with a notion of global time and
two types of faults; edge crashes and message omissions. Our solution is general
and allows extensions in all three aspects. We can add features to our forwarding
scheme such as allowing “message waits” (as was mentioned in Example1) or
even probabilistic behavior of the switches as long as the forwarding scheme is
represented by propositional rules in the switches, we can support asynchronous
executions of the switches (which requires a careful definition of “timeout”), and



Computing Scores of Forwarding Schemes in Switched Networks 185

we can support other faults like “clock glitches” in which a message arrives at a
later time than it is expect to arrive. Our work on reasoning about Markov chains
with the “product-like” structure of C is relevant for other problems in which
such structures arise. For example in reasoning about concurrent probabilistic
programs [31], where C simulates the execution of concurrent programs modeled
using automata.

Acknowledgments. We thank Kuldeep Meel for his assistance with the tools as well
as helpful discussions.
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Abstract. Markov automata are a powerful formalism for modelling
systems which exhibit nondeterminism, probabilistic choices and contin-
uous stochastic timing. We consider the computation of long-run average
rewards, the most classical problem in continuous-time Markov model
analysis. We propose an algorithm based on value iteration. It improves
the state of the art by orders of magnitude. The contribution is rooted
in a fresh look on Markov automata, namely by treating them as an
efficient encoding of CTMDPs with — in the worst case — exponentially
more transitions.

1 Introduction

The need for automated verification is becoming more and more pertinent with
the complexity of systems growing day by day. Estimating the expected cost
of system maintenance, maximising the expected profit, evaluating the avail-
ability of the system in the long run — all these questions can be answered by
quantitative model checking.

Quantitative model checking of models such as continuous-time Markov
chains (CTMCs) and continuous-time Markov decision processes (CTMDPs) has
been studied extensively. Unfortunately, modelling complex systems requires a
formalism that admits compositionality, which neither CTMCs nor CTMDPs
can offer. The most general compositional formalism available to date are
Markov automata [5]. Markov automata can model controllable (via nondeter-
ministic choices) systems running in continuous time that are prone to random
phenomena.

Enriching Markov automata with rewards enables the assessment of system
performance, dependability and more generally quality of service (QoS) [10].
State rewards represent costs that are accumulated over time, for instance,
related to energy consumption. Costs associated with executing a certain step
or policy, e.g. a deliberate violation of QoS, are modelled by means of action
rewards.

This work is partly supported by the ERC Advanced Grant 695614 (POWVER),
by the German Research Council (DFG) as part of the Cluster of Excellence Brain-
Links/BrainTools (EXC 1086) and by the Sino-German Center for Research Promo-
tion as part of the project CAP (GZ 1023).

© Springer-Verlag GmbH Germany 2017

A. Legay and T. Margaria (Eds.): TACAS 2017, Part II, LNCS 10206, pp. 188-203, 2017.
DOI: 10.1007/978-3-662-54580-5_11



Long-Run Rewards for Markov Automata 189

The long-run behaviour of a model is by far the most prominent and most
often studied property in the general context of continuous-time Markov mod-
els [13,14]. We discuss the corresponding problem for Markov automata with
rewards, namely the computation of long-run average reward properties. Thus
far, this problem is solved by reducing it to linear programming (LP) [10]. LP
solvers, despite the abundance of options as well as numerous techniques improv-
ing their efficiency, tend to scale poorly with the size of the model.

In this paper we develop the Bellman equation [1] for long-run average reward
properties. This characterisation enables the use of value or policy iteration
approaches, which on other Markov models are known to scale considerably bet-
ter than algorithms based on linear programming. This characterisation is made
possible by considering a Markov automaton as a compact representation of a
CTMDP with — in the worst case — exponentially more transitions. To arrive
there, we do not consider probabilistic states as first-class objects, but rather
as auxiliary states that encode the CTMDP’s transitions compactly. From this
new perspective, the analysis of Markov automata does not require designing new
techniques, but lets us adopt those used for CTMDPs. However, a trivial adap-
tation of CTMDP algorithms to an exponentially larger model obtained from
a Markov automaton would obviously induce exponential runtime. We manage
to avoid this issue by a dedicated treatment of exponentiality via dynamic pro-
gramming. As a result, considering the problem from a different angle enables us
to design a simple, yet very efficient algorithm. Its building blocks are algorithms
that have been known for a long time — relative value iteration for CTMDPs and
dynamic programming for classical finite horizon problems.

The original LP-based algorithm is available in the IMCA tool [10]. We have
implemented our algorithm in IMCA as well and evaluated both approaches on
a number of benchmarks. The runtime of our algorithm for long-run average
reward is several orders of magnitude better than the LP-based approach. The
latter can outperform our algorithm on small models, but it scales far worse,
which makes our algorithm the clearly preferred solution for real-world models.

2 Foundations

Given a finite or countable set S, a probability distribution over S is a function
p S — [0,1] such that ) _qpu(s) = 1. We denote the set of all probability
distributions over S by Dist(S). We set u(S") := " g u(s) for " C S.

Definition 1. A (closed) Markov reward automaton (MRA) M is a tuple M =
(S, sg, Act,—,~>, 1, p) such that

— S is a finite set of states;

— So € S is the initial state;

— Act is a finite set of actions;

- — C 8§ x Act x Dist(S) is a finite probabilistic transition relation;
~ ~ C 8 xR2% x S is a finite Markovian transition relation;

—1:85 % Act — Ry is a transient reward function;

- p:8 —= Ry is a state reward function.
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We often abbreviate (s,a, 1) € < by s <> pu and ¥
write s <5 s’ instead of (s,A,8) € ~. Act(s) = {a €
Act|3u € Dist(S) : s < pu} denotes the set of actions

that are enabled in state s € S. A state s is probabilistic
(Markovian), if it has at least one probabilistic transition

1 process

s <5 u (Markovian transition s 2 ', resp.). States can 0.5«
be both probabilistic and Markovian. We denote the set

of probabilistic states by PSa¢ and the Markovian states Fig.1. An example
by MS . To simplify notation, we assume w. L. 0. g. that MRA.

actions of probabilistic transitions of a state are pairwise different (this can be
achieved by renaming them).

Example 1. Figure 1 shows an example MRA of a lazy server. Grey and white
coloring of states indicate the sets MS nq, respectively PSaq (their intersection
being disjoint here). Transitions labelled as discard, process or « are actions
enabled in a state. Dashed transitions associated with an action represent the
distribution assigned to the action. Purely solid transitions are Markovian. The
server has to process jobs, which arrive at rate A; this is modelled by a Markovian
transition with a corresponding rate. Whenever there is a job to process, the
server chooses either to process or to discard it. These decisions are modelled by
probabilistic transitions with corresponding actions. A job is processed by the
server with rate p and requires energy. We model energy consumption as a state
reward 0.5 for state s;. Discarding a job doesn’t cost any energy, but with a 20%
chance leads to a complaint and associated costs. These costs are modelled as
an action reward 10 of state s; and action «.

For a Markovian state s € MSq, the value R(s,s’) = Z(S’/\’S,)ew)\ is
called the transition rate from s to s’. The exit rate of a Markovian state s is
E(s) :== 3 cq R(s,5"). We require E(s) < oo for all s € MS .

For a probabilistic state s, s.t. s < p for some a, the value P[s, a, §'] := p(s’).
For a Markovian state s with E(s) > 0, the branching probability distribution
when leaving the state through a Markovian transition is denoted by P[s,-] €
Dist(S) and defined by P[s, s'] := R(s,s’)/E(s).

The Markovian transitions are governed by an exponential distributions,
i.e. the probability of leaving s € MS, within ¢ > 0 time units is given by
1 — e ()t after which the next state is chosen according to P[s, -].

In this paper we consider closed MRA, i.e. probabilistic transitions cannot
be delayed by further compositions. Therefore we can make the usual urgency
assumption that probabilistic transitions happen instantaneously. Whenever the
system is in state s with Act(s) # 0 and an action o € Act(s) is chosen, the
successor s’ is selected according to the distribution P[s,«, ] and the system
moves instantaneously from s to s’. The residence time in probabilistic states is
therefore always 0. As the execution of a probabilistic transition is instantaneous
and because the probability that a Markovian transition is triggered immediately
is 0, we can assume that the probabilistic transitions take precedence over the
Markovian transitions. We therefore assume PSaq N MS = 0.
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Additionally, we make the following non-Zenoness assumption, as in [9]. An
MRA is non-Zeno iff no mazimal end component [9] of only probabilistic states is
reachable with probability > 0. This excludes models in which there is a chance
to get trapped in an infinite number of transitions occurring in finite time.

Paths, Rewards and Schedulers. A (timed) path in M is a finite or infinite
ag,to a1,ty a,tk Qk41,lk41 a;,0
sequence ™ = §g —— §] —— -+ —> Sgr1  ——  ---. Here s; —> s;41 s.t.
. e - .. . . L.t
a; € Act(s;) is a probabilistic transition via action «;, and s; = s;41, s.t. t; > 0

and s; 2 Si+1, denotes a Markovian transition with sojourn time ¢; in state s;.
The set of all finite (infinite) paths of M is denoted by Paths), (Pathsaq). An

. [o75) aq g Q41 . ..
untimed path m = sg — 83 — -+ —> Sk11 —— --- is a path containing
no timing information. We use prefix(m,t) to denote the prefix of path 7 until
. . «@p,t ar,t ag,t k
time ¢, i.e. prefix(m,t) = 5o —= §1 —= --- =% spiq, st Yoioti < tand
k+1 ap,t aq,t ap_1,tp— . .
Zi:() ti >t If =59 2F 5 % .. TV gy s finite, we define |71] = k

and 7] = sp.
Let 7 be a finite path, we define the accumulated reward of 7 as follows:
[m|-1

rew(m) := Zi:o p(si) - ti +1(si, ).

For an infinite path 7, rew(m, ) := rew (prefix(r, t)) denotes the reward collected
until time t. The following two assumptions can be made without restricting
reward expressiveness: (i) the state reward of probabilistic states is always 0
(since residence time in probabilistic states is 0); (ii) if s € MSaq then r(s,-) =0
(due to the absence of outgoing probabilistic transitions in Markovian states).

In order to resolve the nondeterminism in probabilistic states of an MRA we
need the notion of a scheduler. A scheduler (or policy) D : Paths’, — Dist(—) is
a measurable function, s.t. D(m) assigns positive probability only to transitions
(ml,a,p) € —, for some a, pu. The set of all measurable schedulers is denoted
by GM aq. A (deterministic) stationary scheduler is a function D : PSy — <,
s.t. D(s) chooses only from transitions (s, a, i) € —, for some «, p.

An initial state sp and a fixed scheduler D induce a stochastic process on
M. For a stationary scheduler this process is a continuous-time Markov chain
(CTMC). A CTMC is called a unichain (multichain) if it has only 1 (>1) recur-
rence class [3] plus possibly some transient states. We say that an MRA M is
a unichain if all stationary schedulers induce a unichain CTMC on M, and a
multichain otherwise.

3 Long-Run Average Reward Property

In this section, we introduce the long-run average reward property on Markov

reward automata and discuss the only available algorithm for this problem.
Let M = (S, sq, Act,—,~,1,p) be a Markov reward automaton and 7 an

infinite path in M. The random variable L : Pathsa — Rxo such that

Lap(m) :== lim %rew(mt)

t—o0
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denotes the long-run average reward over a path 7 in M. We now define the
optimal expected long-run average reward on M with initial state s as follows:

aR%'(s):= opt Egp[Lm]= opt / L (7)Prs pldr],
DeGM m DEGMMP o
aths aq

where opt € {sup, inf}. In the following, we use aRj’\ﬂt instead of aR%’[t(s), when-

ever the value does not depend on the initial state. Furthermore, aR’y(s) denotes
the long-run average reward gathered when following the policy D.

Guck et al. [10] show that under the assumptions mentioned in Sect. 2 there
is always an optimal scheduler for the aR°?" problem that is stationary. From
now on we therefore consider only stationary schedulers.

Quantification. We will present now the only available solution for the quan-
tification of aR°P" [10]. The computation is split into three steps:

1. Find all mazimal end components of M. A mazimal end component (MEC)
of a MRA can be seen as a maximal sub-MRA whose underlying graph is
strongly connected. An MRA may have multiple MECs. The problem of find-
ing all MECs of an MRA is equivalent to decomposing a graph into strongly
connected components. This problem admits efficient solutions [4].

2. Compute aRi\Ijlt for each mazximal end component. An optimal scheduler for
aR°P" on an MEC induces a unichain on this MEC [10]. A solution for unichain
MRA is therefore needed for this step. The solution provided by Guck
et al. [10] is based on a reduction of the aR°** computation to the solu-
tion of a linear optimisation problem. The latter in turn can be solved by any
of the available linear programming solvers.

3. Compute a stochastic shortest path (SSP) problem. Having the optimal values
aR%ﬁ for maximal end components M, the following holds [9,10]:

k
aR%®(s) = su Pr, p[00S;] - aRE" |
M (5) DegM; ol il M;

where Pr; p[O0S;] denotes the probability to eventually reach and then stay
in the MEC M, starting from state s and using the scheduler D. S; is the
state space of M. The authors reduce this problem to a well-established SSP
problem on Markov decision processes [13], that admits efficient solutions,
such as value or policy iteration [2].

One can see that steps 1 and 3 of this algorithm admit efficient solutions, while
the algorithm for step 2 is based on linear programming. The algorithms for
linear programming are, unfortunately, known to not scale well with the size of
the problem in the context of Markov decision processes, relative to iterative
algorithms based on value or policy iteration. So far, however, no iterative algo-
rithm is known for long-run average rewards on Markov automata. In this work
we fill this gap and design an iterative algorithm for the computation of long-run
average rewards on MRA.
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4 An Iterative Approach to Long-Run Average Rewards

In this section, we present our approach for quantifying the long-run aver-
age reward on Markov reward automata. Recall that the original algorithm,
described in the previous section, is efficient in all the steps except for step 2 —
the computation of the long-run average reward for unichain MRA. We therefore
target this specific sub-problem and present our algorithm for unichain MRA.
Having an arbitrary MRA M, one can quantify aR°"* by applying steps 1 and
3 of the original algorithm and using our solution for unichain MRA for step 2.

Effective Analysis of Unichain MRA. The core of our approach lies in the
following observation: a Markov reward automaton can be considered as a com-
pact representation of a possibly exponentially larger continuous-time Markov
decision process (CTMDP). This observation enables us to use efficient algo-
rithms available for CTMDPs [13] to compute long-run average rewards. But
since that CTMDP, in the worst case, has exponentially more transitions, this
naive approach does not seem promising. We circumvent this problem by means
of classical dynamic programming, and thereby arrive at an efficient solution
that avoids the construction of the large CTMDP.

For the rest of this section, M = (S, sg, Act,—,~,1, p) denotes a unichain
Markov reward automaton. Guck et al. [10] show that aR°"" for a unichain MRA
does not depend on the initial state, i.e. Vs, s’ : aR% (s) = aR{ (s'). We will
therefore refer to this value as aR%’lt.

4.1 CTMDP Preserving aR°P*

We will now present a transformation from a unichain MRA to a CTMDP that
preserves the long-run average reward property.

Definition 2. A continuous-time Markov decision process (CTMDP) is a tuple
C = (S, Act,R), where S is a finite set of states, Act is a finite set of actions,
and R: S x Act x S — R>¢ is a rate function.

The set Act(s) = {a € Act|3s’ € S : R(s,a,8") > 0} is the set of enabled

actions in state s. A path in a CTMDP is a finite or infinite sequence m = sq 0.t
Catee . .

S1 T L Sk -+, where a; € Act(s;) and t; denotes the residence time

of the system in state s;. E(s, ) := s R(s,a,s") and Pe[s, o, '] := Rés(fj)l).

The notions of Pathsp, Pathsc, prefix(m,t), ||, 7|, schedulers and unichain
CTMDP are defined analogously to corresponding definitions for an MRA (see
Sect. 2).

A reward structure on a CTMDP C is a tuple (p¢,1¢), where pc : S — Rxg
and r¢ : S X Act — Ryo. The reward of a finite path 7 is defined as follows:

|mw|—1
rewe(m) == Zi:O pc(si) - ti +re(si, ;)
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The optimal expected long-run average reward aRgpt of a CTMDP C is defined
analogously to aR(j\E’lt on MRA (see Sect.2). As shown in [13], for a unichain
CTMDP C we have Vs, s’ € S : aRZ™" (s) = aRgP'(s'). In the future we will refer

to this value as aRgpt.

Transformation to Continuous-Time MDP. Let M be a unichain MRA.
We construct the CTMDP Caq = (S¢, Acte, Re) with reward structure (pc,re)
as follows:

- Sc = MSM;

— The set Acte is obtained as follows. Let s € MS u4, then we denote as PS
the set of all probabilistic states s’ € PSq reachable from s via the transition
relation <. Let A be a function A, : PSs — Act, s.t. As(s") € Act(s’). Then
the set of all enabled actions Actc(s) for state s in Cpy is the set of all possible
functions Ay, and Acte = U, ps,, Acte(s).

— Next, we define the transition matrix Re. Let s, 8" € MS o, and ITpg(s, As, ')
be the set of all untimed paths in M from s to s’ via only probabilistic states
and choosing those actions in the probabilistic states that are defined by Ag.

Then Re(s, As, 8') := E(s) - Xrcmpg(s,a,,5) Prml7], where m = s RN
- 25 s and Prag[n] = P[s, s1] - P[s1, o1, 82] - - - P[s, ok, 5]
= pe(s) = pls);
= 1e(8,As) = Y gese Doneltps(s,Ay,sn) PIM[T] - Taa(T), Where m = s EN
s~k s and Ty (m) = Zle r(s;, As(s;)). The action reward for state s
and action A, in C is therefore the expected accumulated action reward over
all successors s'(in C) of state s and over all paths from s to s’

An example of this transformation is depicted in Fig. 2. One can already see that
even in small examples the amount of transitions of the CTMDP corresponding
to a MRA can grow extremely fast. If every probabilistic successor s’ € PS, of
a state s in M has 2 enabled actions, the set of enabled actions Actc(s) of s
in Cy is 217521, This growth is therefore exponential in the worst-case, and the
worst case occurs frequently, due to cascades of probabilistic states.

Remark. It is obvious that this transformation if applied to a unichain MRA
yields a unichain CTMDP. Moreover, at each state s of the resulting CTMDP
the exit rate is the same across all actions enabled. We therefore refer to this
exit rate as E(s).

Theorem 1. aR%"" = aRSP!
Cm M

4.2 Dealing with Exponentiality

In this section, we will develop a simple yet efficient solution to cope with expo-
nentiality, harvesting the Bellman equation for CTMDPs [13] together with the
structure of M. A naive direct application to Cyq yields:
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Fig. 2. An example of M — Caq transformation. The MRA M is depicted on the left
and the resulting CTMDP Caq on the right. In this picture we omitted the probabilities
of the probabilistic transitions. If distributions P[po, v, -] and Plpo, a1, -] are uniform,

thel’ch( 0,72 1):()\1+)\2) |:A Ep (05 14+0.5- 0)+ PYES +A (1 1)] =0.5-A1+Na.
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Theorem 2 (Bellman equation. Inefficient way). Let Cypq = (Se, Acle,
Re) and (pc,1rc) be a CTMDP and a reward structure obtained through the above
transformation. Let opt € {sup,inf}, then there exists a vector h € RISc! and a

unique value aR?&t € R>¢ that are a solution to the Bellman equation:
Vs € MSa :

aR%® (s)
E(/;/; +h(s) = opt {rc( Bs) + Z Pels,a, s'] - h(s )} (1)

aEAct(s) s'€Se

It is easy to see that the only source of inefficiency in this case is the optimisation
operation on the right-hand side, performed over possibly exponentially many
actions. Left untreated, this operation in essence is a brute force check of opti-
mality of each action. We will now show how to avoid this problem by working
with M itself and not with Caq. Informally, we will show that the right-hand
side optimisation problem on Ca is nothing more than a total expected reward
problem on a discrete-time Markov decision process. Knowing this, we can apply
well-known dynamic programming techniques to solve this problem.

MDPs and Total Expected Reward. We will first need to briefly introduce
Markov decision processes and the total expected reward problem.

Definition 3. A Markov decision process (MDP) is a tuple D = (Sp, sg, Actp,
Pp) where Sp is a finite set of states, sg is the initial state, Actp is a finite set
of actions, and Pp : Sp X Actp — Dist(Sp) is a probabilistic transition matriz.

The definitions of paths, schedulers and other related notions are analogous
to those of CTMDP. In contrast to CTMDPs and MRA, MDPs run in discrete
time. A reward structure on an MDP is a function rp : Sp x Actp — Rxyp.
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Let X?,Y;? be random variables denoting the state occupied by D and the
action chosen at step ¢ starting from state s. Then the value

N—-1
tREy,(s) = opt Eyp | lim > rp(X7,Y})
DeGMp N=oo i35

where opt € {sup,inf}, denotes the optimal total expected reward on D with
reward structure rp, starting from state s [2].

The total expected reward problem on MDPs is a well-established problem
that admits policy-iteration and LP-based algorithms [13]. Moreover, for acyclic
MDPs it can be computed by the classical finite horizon dynamic programming
approach [2], in which each state has to be visited only once. We will present
now the iterative scheme that can be used to compute tR°* on an acyclic MDP.

A state of an MDP is a terminal state if all its outgoing transitions are self-
loops with probability 1 and reward 0. We call an MDP acyclic if the self-loops
of terminal states are its only loops. We say that a non-terminal state s has
maximal depth i, or d(s) = i, if the longest path 7 from s until a terminal state
has length || = i. We define d(t) := 0. The following is the iterative scheme to
compute the value tR°P* on D:

0 d(s)=0
V(s)(s) = opt {rewD(s,a) + > P[s,a,s']vd(sl)(s’)} d(s) >0 (2)
acAct s’eS

Theorem 3. tR°"'(s) = V4(s)(8)

Transformation 