
An Abstraction Technique for Parameterized
Model Checking of Leader Election Protocols:

Application to FTSP

Ocan Sankur1(B) and Jean-Pierre Talpin2

1 CNRS, Irisa, Rennes, France
ocan.sankur@irisa.fr
2 Inria, Rennes, France

Abstract. We consider distributed timed systems that implement
leader election protocols which are at the heart of clock synchronization
protocols. We develop abstraction techniques for parameterized model
checking of such protocols under arbitrary network topologies, where
nodes have independently evolving clocks. We apply our technique for
model checking the root election part of the flooding time synchronisa-
tion protocol (FTSP), and obtain improved results compared to previous
work. We model check the protocol for all topologies in which the dis-
tance to the node to be elected leader is bounded by a given parameter.

1 Introduction

One of the apparently simplest services in any loosely-coupled distributed system
is the time service. Usually, a client in such a system, e.g. your laptop, simply
posts an NTP (network time protocol) request to any registered server and
uses the first reply. In many such systems, however, the accuracy and reliability
of the time service are critical: clients of traffic and power grids, banking and
transaction networks, automated factories and supply plants, acutely depend on
a reliable and accurate measure of time.

To make things worse, most cyber-physical system in such distributed net-
works rely on a quasi-synchronous hypothesis that critically relies on drift and
jitter bounds provided by time synchronisation protocols. In a remedy for this
Achille’s heel of the “Internet of things”, fault-tolerant and self-calibrating pro-
tocols have been proposed, such as the open source flooding time synchronisation
protocol (FTSP) of Tiny OS, Google’s True Time API, as well as commercial
solutions, such as IGS’ Real-Time Service. It is critical to provide such services
to the 21st Century’s Internet as is it to provide proof of their correctness.

Our goal is to develop both modular and scalable verification techniques for
time synchronisation protocols. Towards this aim, in this paper, we concentrate
on leader election protocols which are at the basis of several time synchronisation
protocols where the nodes in the network synchronise their clocks to that of
the elected leader. Leader election protocols pose exciting benchmarks and case

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 23–40, 2017.
DOI: 10.1007/978-3-662-54577-5 2

24 O. Sankur and J.-P. Talpin

studies to the verification of distributed systems design. These have been the
subject of formal proofs or model-checking, e.g. Chang-Robert’s algorithm [6,15],
and that of Dolev-Klaweh-Rodeh [13,17].

The root election part of FTSP [20], available in open-source in the imple-
mentation of Tiny OS, has drawn attention from the formal verification commu-
nity. Kusy and Abdelwahed [19] model-check FTSP root election using SPIN,
showing that a 4-node FTSP network is guaranteed to converge to a single root
node. McInnes [21] verifies root-convergence for 7-node models using the FDR2
model checker, and also considers time-convergence properties, i.e. whether all
nodes agree on the time of the root node. Tan et al. [28] use timed automata to
introduce a more realistic simulation model of wireless sensor networks (WSN)
with transmission delays and node failures and check the FTSP against these.
They identify an error in a scenario where two root nodes fail continuously.

Parameterized Verification. The major issue when model checking such distrib-
uted protocols is the state explosion problem due to the large number of nodes
in the protocol. Several works have concentrated on given network topologies,
for instance, a grid of fixed size, e.g. [21]. To model check properties for an
arbitrary number of nodes, parameterized verification techniques have been con-
sidered. Although the general problem is undecidable [2], decidability has been
shown in several cases, by proving cutoffs [14] either on fully connected topolo-
gies or particular ones such as rings. Compositional model checking techniques
were used in [22] for model checking a cache coherence protocol.

Contributions. We present an abstraction technique for the parameterized ver-
ification of distributed protocols with unique identifiers and apply it for model
checking the leader election part of the FTSP. Our model for FTSP is more
precise compared to the previous works in several aspects. In fact, we consider
asynchronous communication between nodes rather than instantaneous broad-
casts, and we model the periodically executed tasks as run with local clocks that
are subject to imperfections. We were able to model check that a unique leader
is elected starting at an arbitrary configuration, assuming no fault occurs dur-
ing this period. This corresponds to checking fault recovery, that is, proving the
protocol correct following an arbitrary fault. Thus, if we prove that the leader is
elected within N steps in this setting, then following any fault, a unique leader
is elected again within N steps in the worst case.

Our parameterized verification algorithm allows us to check FTSP (a) for
arbitrary topologies in which the maximal distance to the future leader is at
most K, (b) where each node evolves under clock deviations whose magnitude
can be adjusted, (c) where communication between nodes are either synchronous
or asynchronous. As an example, we were able to model check the protocol for
K = 7 in the synchronous case, and for K = 5 in the asynchronous case. Graphs
with K = 7 include 2D grids with 169 nodes (or 3D grids with 2197 nodes),
where the future leader is at the middle. For K = 5, these include 2D grids
with 81 nodes (and 729 in 3D). Observe that grids of size 60 were considered for
simulation in [20], which is out of the reach of previous model checking attempts.

We believe our parameterized verification technique can be adapted to other
distributed protocols that work in a similar fashion, e.g. [29]. Our project is

An Abstraction Technique for Parameterized Model Checking 25

to extend our technique by integrating non-functional characteristics that have
an impact on the accuracy and reliability of these protocols: electronic haz-
ards (inaccuracy in physical clocks fabric), environmental hazards (temperature
of clients environment), power hazards (capacity and stability of clients power
source). Protocols accounting for such cyber-physical characteristics are being
developed in the NSF Roseline and our goal is to prove their correctness.

More on Related Work. Our parameterized verification approach is inspired by [7]
where an abstraction technique is given for parameterized model checking against
safety properties in cache coherence protocols. Using the fact that such systems
are symmetric, the main idea is to isolate a pair of nodes and abstract away
other nodes as an abstract environment. In our work, the systems we consider
are not symmetric since the nodes have unique identifiers which influence their
behaviors and the network topology is arbitrary. We thus deal with these issues
in order to lift the technique in our case. Another work introduces a refinement of
existential abstraction for parameterized model checking: in [8], an abstraction
is obtained by isolating a component, and abstracting away the other nodes by
summarizing which control states are occupied by some component, which is
similar to counter abstraction [25]. Parameterized verification techniques have
been studied for fault-tolerant distributed systems with Byzantine or other types
of failures [16]. Such protocols often consider threshold guards, which are used
to make sure that a given number of messages have been received from different
processes. The authors define abstractions on the set of participating nodes with
predicates that use these thresholds. This approach is not applicable in our case
due to our network topologies, and that the nodes do not use such thresholds.
Parameterized verification results on processes with unique identifiers are more
rare but decidability was obtained under some restrictions [11].

Overview of the Abstraction Technique. Let us give an overview of our
parameterized verification technique. Let us call future leader the node that is
expected to become the leader. We consider classes of graphs GK in which the
maximal distance from the future leader is K. We show how to verify the protocol
for all network topologies in GK , for given K, essentially in two steps:

1. We apply abstractions on local variables including node identifiers, which
reduce the state spaces and renders all nodes anonymous except for the future
leader. In fact, the variables storing node ids are mapped to a Boolean domain;
encoding whether the node id is that of the future leader or not.

2. We then pick a shortest path of length K from the future leader. We derive an
abstract model where all nodes that appear on this path are kept as concrete,
but all other nodes have been abstracted away.

For each K, we thus construct a model A(K) and prove that it is an over-
approximation of the protocol on all topologies in GK . We make sure that A(K)
does not depend on the choice of the shortest path; if the property holds on A(K),
it holds on the whole network. The approach is illustrated in Fig. 1.

Clock Deviations. We are interested in protocols where each node executes a
periodic action with identical period. However, this period is subject to small

26 O. Sankur and J.-P. Talpin

(a) A network with a grid
topology. The future root,
that is, the node with the
smallest ID is shown with
a white dot.

(b) We choose a path from
the future root to some
node

(c) We model all nodes on
the path concretely, and
summarize the behavior
of all other nodes by one
abstract node

Fig. 1. Shortest-path abstraction illustrated on a grid topology with K = 3.

deviations due to environment and hardware differences. Rather than using real-
time verification techniques [1], we use a recent and simple way of modeling
behaviors under such conditions. In [12], it is shown that an approximately syn-
chronous semantics, where one bounds the progress of each process with respect
to that of others, over-approximates the behaviors under bounded clock devia-
tions, which makes it possible to use finite-state model checking techniques and
tools.

Incremental Verification. We use an incremental proof technique for model check-
ing A(K) for increasing values of K, as follows. To check A(K+1), we first model
check A(K), proving that all nodes eventually agree on the leader. Our abstrac-
tion method implies that the first K components in A(K+1) eventually agree on
the leader since their part of the graph belongs to GK . Thus, to check A(K +1),
we initialize the first K nodes at states where they have agreed on the future
leader. This significantly simplifies the verification process.

Overview. Section 2 presents definitions for the formalization of our approach.
We describe FTSP in detail in Sect. 3, as well as the abstraction steps explained
above, and the incremental verification result. A semi-algorithm for model check-
ing and experimental results on FTSP are presented in Sect. 4.

2 Definitions

Communicating Processes. A process is an automaton A = (S, sinit, δ, Σ) where S
are states, sinit ⊆ S are the initial states, and δ ⊆ S ×Σ×S a transition relation,
with alphabet Σ. A transition (s, a, s′) ∈ δ is also written δ(s, a, s′) or s

a−→ s′,
and we write s � a−→ to mean that there is no s′ such that δ(s, a, s′). We consider
predicates that are evaluated on the states of a given process. Let P be a finite
number of predicates where each p ∈ P is a subset p ⊆ S, representing states in
which the predicate is satisfied. We write s |= p if s ∈ p.

We define simulation between two processes as follows. Consider process A =
(S, sinit, δ, Σ) with predicates P and A′ = (S′, s′

init, δ
′, Σ′) with predicates P ′, an

alphabet Σ′′ ⊆ Σ, and any function α : Σ′′ → Σ′. Assume that P and P ′ are in

An Abstraction Technique for Parameterized Model Checking 27

bijection denoted by p �→ p′ for each p ∈ P. We say that A′ (Σ′′, α)-simulates A,
written A �Σ′′,α A′ if there exists R ⊆ S × S′ such that sinit × s′

init ⊆ R and
∀(s, s′) ∈ R,∀a ∈ Σ′′, t ∈ S, δ(s, a, t) ⇒ ∃t′ ∈ S′, δ′(s′, α(a), t′) ∧ (t, t′) ∈ R, and
moreover for all (s, s′) ∈ R and p ∈ P, s |= p ⇔ s′ |= p′. When α is the identity
and Σ′′ = Σ, this is the usual simulation notion, and we write �Σ′′ . Given a
process A, let us define the mapping of A by α the process obtained by A by
replacing the transitions δ by δ′ = {(s, α(a), s′) | (s, a, s′) ∈ δ}. It is clear that
the mapping A′ (Σ,α)-simulates A.

For any positive integer N , we write A �N
Σ′′,α A′ if there exist R1, . . . , RN ⊆

S × S′ such that sinit × s′
init ⊆ R1 and for all 1 ≤ i ≤ N − 1, ∀(s, s′) ∈ Ri,∀a ∈

Σ′′, t ∈ S, δ(s, a, t) ⇒ ∃t′ ∈ S′, δ′(s′, α(a), t′) ∧ (t, t′) ∈ Ri+1; and for all (s, s′) ∈
R1 ∪ . . . ∪ Rn, s |= p ⇔ s′ |= p′. The latter relation is called simulation up to N .

We define a particular alphabet Σ to model synchronization by rendez-vous.
Let us fix n > 0, and define the set of identifiers Id = {1, . . . , n}. Consider also
an arbitrary set Msg of message contents. We denote [1, n] = {1, . . . , n}. We
define the alphabet Σ(Id,Msg) = {i!(j,m) | i ∈ Id, j ∈ Id,m ∈ Msg} ∪ {j?(i,m) |
i, j ∈ Id,m ∈ Msg} ∪ {τ}. We let Σ = Σ(Id,Msg). We will later use different
sets Id and Msg to define alphabets. Intuitively, the label i!(j,m) means that a
process with id i sends message m to process with id j, while j?(i,m) means
that process j receives a message m from process i. The special symbol τ is an
internal action. For a subset I ⊆ Id, let ΣI(Id,Msg) = {τ} ∪ {i!(j,m), i?(j,m) ∈
Σ(Id,Msg) | i ∈ I, j ∈ Id,m ∈ Msg}. These are the actions where the senders
and receivers have ids in I. A τ -path of A is a sequence s1s2 . . . of states such
that for all i ≥ 1, δ(si, τ, si+1). An initialized τ -path is such that s1 ∈ sinit.

Graphs. To formalize network topologies, we consider undirected graphs. A graph
is a pair G = (V,E) with V = {1, . . . , n} and E ⊆ V × V which is symmetric.
Let G(n) the set of graphs on vertex set {1, . . . , n}. In our setting, a node will
be identified with a process id. For a graph G = (V,E), and node i, let NG(i) =
{j ∈ V, (i, j) ∈ E}, the neighborhood of i. We define the following subclass of
graphs. For any positive number K ≥ 0, let GK(n) denote the set of graphs
of G(n) in which the longest distance between node 1 and any other node is at
most K. Here, distance is the length of the shortest path between two nodes.

Asynchronous Product. We now define the product of two processes A and A′

following CCS-like synchronization [23]. Intuitively, processes synchronize on
send i!(j,m) and receive j?(i,m), and the joint transition becomes a τ -transition.

Definition 1. Consider A = (S, sinit, δ, ΣJ (Id,Msg)) and A′ = (S′, s′
init, δ

′,
ΣJ ′(Id,Msg)) where J, J ′ ⊆ {1, . . . , n} with J ∩ J ′ = ∅. Let G = (V,E) ∈ G(n).
We define the product A′′ = A ‖G A′ as (S′′, s′′

init, δ
′′, ΣJ∪J ′) where S′′ = S ×S′,

s′′
init = sinit×s′

init, and δ′′ is defined as follows. There are four types of transitions.
Internal transitions are defined by (s1, s′

1)
τ−→ (s2, s′

2) whenever δ(s1, τ, s2) ∧
s′
1 = s′

2 or δ′(s′
1, τ, s

′
2) ∧ s1 = s2.

28 O. Sankur and J.-P. Talpin

Synchronizing transitions are defined as (s1, s′
1)

τ−→ (s2, s′
2) whenever ∃i ∈

J, j ∈ J ′,m ∈ Msg with i ∈ NG(j), s.t. either s1
i!(j,m)−−−−→ s2 and, s′

1

j?(i,m)−−−−−→ s′
2;

or, s′
1

j!(i,m)−−−−→ s′
2, and s1

i?(j,m)−−−−→ s2.

Sending transitions without matching receive is defined as (s1, s′
1)

i!(j,m)−−−−→
(s2, s′

2) whenever i ∈ J, j �∈ J ′,m ∈ Msg, i ∈ NG(j) s.t. either s1
i!(j,m)−−−−→ s2, s

′
1 =

s′
2; or, i ∈ J ′, j �∈ J, s′

1

i!(j,m)−−−−→ s′
2, s1 = s2.

Receive transitions without matching send are defined, for all i, j ∈ Id and

m ∈ Msg, (s1, s′
1)

i?(j,m)−−−−→ (s2, s′
2) whenever i ∈ NG(j) and either i ∈ J, j �∈

J ′, s1
i?(j,m)−−−−→ s2, s

′
1 = s′

2, or i ∈ J ′, j �∈ J, s′
1

i?(j,m)−−−−→ s′
2, s1 = s2.

The composition operation ‖G is commutative and associative by definition. We
will thus write the product of several processes as A1 ‖G . . . ‖G An, or ‖G

i=1...n Ai.

Predicates and LTL Satisfaction. We will use LTL for our specifications [24] which
use the predicates P we consider for our model. We assume the reader is familiar
with this logic, and refer to [10,24] otherwise. We just need the eventually (F),
and globally (G) modalities. Given an LTL formula φ, we write A |= φ if all
initialized τ -paths satisfy φ.

Abstractions and Simulation. A label abstraction function is defined by α :
Id → Id�, and α : Msg → Msg�1. This function is uniquely extended
to Σ(Id,Msg) by α(τ) = τ, α(i!(j,m)) = α(i)!(α(j), α(m)), and α(i?(j,m)) =
α(i)?(α(j), α(m)). We will see examples of label abstractions later in this paper.

Lemma 1. Let Ai = (Si, s
i
init, δi, ΣJi

(Id,Msg)) for i ∈ [1, n], with pairwise dis-
joint Ji ⊆ Id, and G ∈ G(m) with ∪iJi ⊆ {1, . . . , m}. Consider a label abstraction
function α, s.t. α(Ji) ∩ α(Jj) = ∅ for all i �= j ∈ [1, n]; and mappings A′

i of Ai

by α so that Ai �ΣJi
(Id,Msg),α A′

i. Then, ‖G
i=1...n Ai �{τ}‖G

i=1...n A′
i.

Notice that when A �{τ} B, all LTL formulas that hold in B also hold
in A (see e.g. [3]) since simulation implies trace inclusion. Thus, to prove that A
satisfies a given property, it suffices to verify B.

An abstraction can also be obtained by relaxing the graph G.

Lemma 2. Consider Ai = (Si, s
i
init, δi, ΣJi

(Id,Msg)) for i ∈ [1, n], where Ji ⊆ Id
are pairwise disjoint, and G,G′ ∈ G(m) where ∪iJi ⊆ {1, . . . , m}. We write G =
(V,E) and G′ = (V,E′). If E ⊆ E′, then ‖G

i=1...n Ai �{τ}‖G′
i=1...n Ai.

Approximate Synchrony. We recall the results of [12] where a finite-state sched-
uler is defined for concurrent processes which run a periodic action with an
approximately equal period. This is the case in FTSP since all nodes run
processes that wake up and execute an action with an identical nominal period T .
Since each node is executed on a distinct hardware with a local clock, the

1 Both are denoted α. Formally, α can be defined on the disjoint union of these sets.

An Abstraction Technique for Parameterized Model Checking 29

observed period is only approximately equal to T . Thus, some nodes can exe-
cute faster than other nodes. In our model, we would like to include different
interleavings that can be observed due to clock rate changes. Let us assume that
the actual period lies in the interval [σl, σu] (which contains T). However, not
all interleavings between processes can be observed. In particular, if |σu − σl|
is small, the periods of different processes will be close, so they will be approx-
imately synchronous: within one period of a process, another process cannot
execute several periods. This restricts considerably the interleavings to be con-
sidered for model checking. Following [12], we define a scheduler that generates
at least all interleavings that can be observed during the first N periods, when
the clock rates are within a given interval.

We give two schedulers to model such approximately periodic behaviors.
We will later instantiate these again for the particular case of FTSP. Let us
consider A1, . . . ,An, and an additional process S which will be used to schedule
processes Ai. Let us add a label ticki? to each Ai, and {ticki!}1≤i≤n to S;
this models the periodic task of the node i.2 Let us assume that all states of Ai

accept a transition with ticki?

Real-Time Scheduler. We define a concrete scheduler St which describes the
executions generated by local clocks. We define St with an infinite state space,
SS = [0, σu]n, where the i-th component is the elapsed time since the latest exe-
cution of ticki? in process Ai. We allow two kinds of transitions that alternate.
There are time elapse transitions (t1, . . . , tn) τ−→ (t′1, . . . , t

′
n) if for some d ≥ 0,

∀1 ≤ i ≤ n, t′i = ti + d, and ∀1 ≤ i ≤ n, t′i ≤ σu. Second, we have the transition

(t1, . . . , tn) ticki!−−−−→ (t′1, . . . , t
′
n) where t′j = tj for all j �= i and t′i = 0 if ti ∈ [σl, σu].

Thus, St describes the executions where each process is executed with a period
that varies within [σl, σu].

Abstract Scheduler. Although the scheduler St above describes the behaviors
we are interested in, its state space is continuous, and one would need a priori
timed or hybrid automata to model it precisely. In this work, we prefer using
finite-state model checking techniques for better efficiency, thus we now describe
a simple abstraction of St using finite automata.

For each process i, and time t, let us denote by Ni(t) the number of tran-
sitions ticki? that was executed in A1 ‖ . . . ‖ An ‖ St up to time t. We
define the abstract scheduler Sa(Δ) on a finite state-space, given integer Δ,
which ensures that, at any time point t, for all pairs of processes i, j, we
have |Ni(t) − Nj(t)| ≤ Δ. Intuitively, Sa(Δ) describes the behaviors in which a
fast process can execute at most Δ periods within one period of a slow process.
Notice that Sa(Δ) can be defined simply by counting the number of times each
process has executed ticki? One can actually use bounded counters in [0,Δ];
in fact, it is sufficient to keep the relative values of Ni(t) with respect to the
smallest one, so Sa(Δ) can be defined as a finite automaton.

2 These labels can actually be defined within Σ(Id,Msg) by adding a special message
content tick toMsg, and setting ticki! = (n+1)!(i, tick) where n+1 is the identifier
of S. We will write them simply as ticki? and ticki! to simplify the presentation.

30 O. Sankur and J.-P. Talpin

The intuition behind Sa(Δ) is that, given the bounds [σl, σu] on the observ-
able periods, all interleavings up to some length N under St are also present in
Sa(Δ). That is, Sa(Δ) over-approximates St for finite executions. We will show
how one can choose N . Let us denote Ticks = {ticki!}1≤i≤n. We have the
following correspondance between St and Sa:

Lemma 3 ([12]). Consider Δ > 0, and interval [σl, σu]. Let Nf be the minimal
integer satisfying the following constraints: Nf ≥ Ns, Nf −Ns > Δ,σlNf +σu ≤
σuNs, and Nf , Ns ≥ 1. Then, we have St �Nf −1

Ticks Sa(Δ).

In the above lemma, Nf represents the number of steps performed by the fastest
processes, and Ns is that of the slowest processes. Minimizing Nf means that
we look for the earliest step where Nf − Ns > Δ holds, so that the simulation
holds up to Nf − 1 steps. Hence, we can use Sa(Δ) for model checking rather
than St for N steps, where N is determined by Δ and σl, σu.

3 Parameterized Model Checking of FTSP

In the FTSP, each node has a unique identifier, and the nodes dynamically elect
the node with the least id as the root. The root regularly sends messages to its
neighbors, which forward it to their own neighbors and so on. These messages
contain time information which is used by the nodes to adjust their clocks. If the
root node fails, that is, stops transmitting messages, then other nodes eventually
time out and declare themselves as roots, and the protocol makes sure that a
unique root is eventually elected if no more faults occur during a period of time.

More precisely, each node has an identifier ID, and executes the periodic
action send, depicted in Fig. 2 in which it increments a “heart beat” counter b.
This counter is reset to 0 if the node receives a certain message via the receive
function: this can happen either when the node first hears about a node with a
smaller ID ri than the currently known one, stored in r, or when the currently
known root sends a new message with a larger sequence number si than that
of the latest message s. The sequence numbers are used to distinguish new
messages from the old ones that originate from a root node; a lexicographic order
is used so that smaller root IDs with higher sequence numbers are preferred.
A node declares itself root if the counter b exceeds the threshold FTO; and it
only broadcasts messages if it is root, or if it has received at least LIM messages
from some root. We refer the reader to [20] for the details on FTSP.

Both functions send and receive are executed atomically. Thus, the effects
of each function on local variables are self-explanatory. The operation o!!(r, s)
means broadcast: it is a system call to broadcast the message (r, s) to all the
neighbors of the node. This operation is non-blocking: when the function send
returns, the node sends the message to each neighbor in an arbitrary order. We
assume the broadcast data is stored in a variable m which takes values from
the set {⊥} ∪ 2Id × Msg. Here ⊥ means that there is no ongoing broadcast,

An Abstraction Technique for Parameterized Model Checking 31

and a pair (I,m) means that processes with ids in I are still to receive the
message m. That is, the operation o!!(r, s) actually just assigns the value (r, s)
to local variable m.

The node can receive messages and execute receive before its own broadcast
is over. We just make the following assumption on broadcasts, which is justified
by the fact that the typical period of the send events is about 30 s [20].

Assumption: Any broadcast started by a node is completed before the node
executes the next send event.

3.1 Concrete Model

We fix a graph G ∈ G(n) with n nodes, and set Id = {1, . . . , n}, and Msg = Id×N.
In Msg, the first component of a message is the ID of the root node which has
generated the message (and not the ID of the node that forwards the message),
while the second component is the sequence number. Each process Ai is a node
in the protocol in which the variable ID is i, and executes functions receive
and send of Fig. 2. We define Ai = (Si, s

i
init, δi, Σ{i}(Id,Msg)), with Si = Vi ×

(2n ∪ {⊥}) where Vi are the set of valuations for all local variables. For any
variable a, and state s ∈ Si, we write s(a) for the value of a in s (we also
write v(a) for v ∈ Vi). The second component of a state s ∈ Si denotes whether
the process is currently broadcasting: if it is ⊥, there is no broadcast occurring
and s(m) = ⊥; if it is I ⊆ 2Id, then message s(m) is to be received by processes
in I. We denote by s[a ← a] the state obtained from s by assigning a to a.

Since each function is executed atomically, in Ai, a single transition corre-
sponds to an uninterrupted execution of send or receive, or to a communica-
tion. For any m ∈ Msg, let us define the relation receivei(m) ⊆ Vi × Vi (resp.
send) as (v, v′) ∈ receivei(m) (resp. (v, v′) ∈ sendi) if, and only if there is an
execution of this function from state v to state v′, when the node ID is i. These
relations are functions since receivei and sendi are deterministic; however, sub-
sequent abstractions will transform these into nondeterministic programs, thus
we will obtain relations instead of functions. Thus, δi is defined as follows:

1 #define MAX 6 /∗ MAX ENTRIES ∗/
2 #define LIM 3 /∗ ENTRY SEND LIMIT∗/
3 #define MIN 2 /∗ IGNOREROOTMSG ∗/
4 #define FTO 8 /∗ ROOTTIMEOUT ∗/
5 extern int ID /∗ TOS NODE ID ∗/
6 #define NIL 255
7
8 void r e c e i v e (byte r i , byte s i) {
9 i f (r i < r && ! (b < MIN && r==ID))

10 | | (r i == r && s i − s > 0){
11 r = r i ;
12 s = s i ;
13 i f (r < ID){b = 0;}
14 i f (e < MAX){ e++;}
15 }
16 }

1 byte b ; /∗ heartBeats ∗/
2 byte e ; /∗ numEntries ∗/
3 byte r ; /∗ outgoingMsg . rootID ∗/
4 byte s ; /∗ outgoingMsg . seqNum ∗/
5 chan o ; /∗ Output channel ∗/
6
7 void send () {
8 i f (b >= FTO){
9 i f (r == NIL){ s = 0 ; }

10 else { b = 0 ; s++; }
11 r = ID
12 }
13 b++;
14 i f (r == ID){ o ! ! (r , s) ; s++; }
15 else i f (e >= LIM){ o ! ! (r , s) }
16 }

Fig. 2. Pseudocode of the main send and receive functions in FTSP

32 O. Sankur and J.-P. Talpin

(v,⊥) ticki?−−−−→ (v′,NG(i)) ⇔ (v, v′) ∈ sendi ∧ v′(m) �= ⊥,

(v,⊥) ticki?−−−−→ (v′,⊥) ⇔ (v, v′) ∈ sendi ∧ v′(m) = ⊥,

(v, ∅) tocki?−−−−→ (v[m ← ⊥],⊥),

(v, I)
j?(i,m)−−−−−→ (v′, I) ⇔ (v, v′) ∈ receivei(m) ∧ j ∈ NG(i),

(v, I)
i!(j,m)−−−−→ (v, I \ {j}) ⇔ m = v(m) �= ⊥ ∧ j ∈ I,

where the last two lines are defined for all I ∈ {⊥} ∪ 2Id.
Notice that we separate the execution of the body of the two functions and the

broadcast operations. A broadcast operation is completed between the ticki?
and tocki? events. Hence, the broadcast can be interrupted with a receive event,
but another send event cannot be executed before the broadcast is complete,
which conforms to our assumption above. The role of ticki and tocki signals
will be clear in the next paragraph where the schedulers are defined. The initial
states are the set of all valuations since we assume that the network starts in
an arbitrary configuration. Now, ‖G

i=1...n Ai defines the protocol on the given
topology G. It remains to define the schedulers.

Schedulers and Two Communication Semantics. We define schedulers
which determine when each process can execute its send event, and how the
communication is modeled. We sketch our schedulers with two communication
models.

Synchronous Communication. In the first model, we assume that communication
between the sender and all receivers occur simultaneously. So, one step consists
in a node executing send followed by all its neighbors immediately receiving the
message by executing receive. This is the synchronous communication model
as considered in previous works [19,21,28].

To implement synchronous communication, we introduce the signal tocki!,
and force the whole communication initiated by node i to happen uninterrupted
between ticki! and tocki! signals. We define St,syn by modifying the real-time
scheduler St defined above by requiring that each ticki! is immediately followed
by a corresponding tocki!, and by disallowing any other tickj ! inbetween. We
also define S ftsp

a,syn(Δ) from Sa(Δ) using the alternating ticki and tocki signals.

Asynchronous Communication. The second type of schedulers we define imple-
ment asynchronous communication, and is more faithful to the real behavior e.g.
in the TinyOS implementation. In this setting, both events send and receive
are still atomic, but the broadcast is concurrent: while the sender is broadcasting
the message to its neighbors, other nodes can execute their own send action or
receive other messages. We call this the asynchronous communication model.

We define St,asyn by adding to St self-loops labeled by tocki! to all states for
all i ∈ Id. (Note that tocki! signals are useless here, but we keep them so that
both schedulers have a uniform interface). We define the scheduler S ftsp

a,asyn(Δ)
similarly, by adding self-loop tocki! to all states of Sa(Δ).

The next developments are independent from the communication model.

An Abstraction Technique for Parameterized Model Checking 33

Complete Model and Property to be Verified. Given a graph G ∈ G(n)
let A1, . . . ,An denote the processes thus defined, and write A(G) =‖G

i=1...n Ai.
We let Mconc

�� (G) = A(G) ‖ St,��, for 	
 ∈ {syn, asyn}, which is the concrete
protocol under the real-time scheduler St defined above. This model defines the
behaviors we would like to verify. For each i ∈ Id, let us add a counter ci to
the model that counts the number of times ticki! is executed, and define c =
maxi ci, which will be used in the specifications.

The property we want to check is that all nodes eventually agree on a common
root. Let FRID denote the constant 1, which stands for the f uture root id. In
fact, according to the protocol, A1 is expected to become the root since it has
the least id. We will call A1 the future root. Define Pi as the set of states in
which the local variable r of process i has value FRID. We consider the property
P(N) = F(c ≤ N ∧ ∧n

i=1Pi) for some N . Thus, along all executions, before any
process has executed more than N ticki’s, all processes agree on FRID to be
the root. Thus, our goal is to show that Mconc

�� (G) |= P(N) for some N > 0. By
Lemma 3, given Δ, it suffices to find N > 0 for each 	
 ∈{syn, asyn}, such that
A(G) ‖ S ftsp

a,��(Δ) |= P(N).

3.2 Abstractions on Individual Nodes

We now present the abstraction steps we use before model checking. We will
abstract our variables and statements involving these using data abstraction:
we map the domain of the variables to a smaller set, and redefine the tran-
sitions using existential abstraction so that the abstract program is an over-
approximation in the sense that the original process is simulated by the existen-
tial abstraction. This is a standard abstraction technique; we refer the reader
to [9] for details.

More precisely, the applied abstraction steps are the following.

1. Add a redundant variable imroot that stores the value of the predicate r ==
ID, that is, whether the node is currently root.

2. Relax the behaviors of both functions in the case r �= FRID∧ri �= FRID∧ID �=
FRID by abstracting the variables s and e away (i.e. we assume their values
change arbitrarily at any time).

3. Map the variables r and ri in the abstract domain {FRID, NRID} in each node.
Also map b to the bounded integer domain {0, FTO}, e to {0, . . . , LIM}.

The resulting pseudocode is shown in Fig. 3. Here, the value ⊥ represents any
value, which make any comparison operation nondeterministic. The constant
NRID we introduce stands for non-root id, and is an abstract value that represents
all ids different than FRID.

Note that the second step always yields an over-approximation, indepen-
dently from the if-then-else condition chosen to separate the concrete and
abstract cases in Fig. 3. In fact, the concrete case is identical to the origi-
nal code, while the abstract case is an over-approximation by data abstrac-
tion. In Fig. 3, the abstractions of the predicates on variables r and ri are

34 O. Sankur and J.-P. Talpin

1 #define LIM 3 /∗ ENTRY SEND LIMIT ∗/
2 #define MIN 2 /∗ IGNOREROOTMSG ∗/
3 #define FTO 8 /∗ ROOTTIMEOUT ∗/
4 #define NIL 255
5 extern int ID ; /∗ TOS NODE ID ∗/
6 #define FRID 0 /∗ FUTURE ROOT ID ∗/
7 #define NRID 1 /∗ Abstract ID for
8 a l l other nodes > FRID ∗/
9

10 void r e c e i v e (byte r i , byte s i) {
11 /∗ Concrete case ∗/
12 i f (r == FRID | | r i ==

FRID | | ID == FRID){
13 i f (“ri < r” && ! (b < MIN && imroot)
14 | | “ri == r” && s i − s > 0){
15 r = r i ;
16 s = s i ;
17 imroot = (ID == FRID) ;
18 i f (“r < ID”) b = 0 ;
19 i f (e < LIM) e++;
20 }
21 } else {
22 /∗ Abstract case ∗/
23 i f (“ri < r” && ! (b < MIN && imroot)
24 | | (“ri == r” && ∗){
25 r = r i ;
26 s = ⊥ ;
27 imroot = “r == ID” ;
28 i f (“r < ID”) b = 0 ;
29 e = ⊥ ;
30 }}}

1 byte b ; /∗ heartBeats ∗/
2 byte e ; /∗ numEntries ∗/
3 byte r ; /∗ outgoingMsg . rootID ∗/
4 byte s ; /∗ outgoingMsg . seqNum ∗/
5 chan i , o ; /∗ IO channels ∗/
6 byte imroot ; /∗ Predicate : r == ID ∗/
7
8 void send () {
9 /∗ Concrete case ∗/

10 i f (r == FRID | | ID == FRID){
11 i f (b >= FTO){
12 i f (“r == NIL”) s = 0 ;
13 i f (“r! = ID”) { b = 0 ; s++; }
14 r = ID ;
15 imroot = 1 ;
16 }
17 b++;
18 i f (imroot){ o ! ! (r , s) ; s++; }
19 else i f (e >= LIM){ o ! ! (r , s) ; }
20 } else {
21 /∗ Abstract case ∗/
22 i f (b >= FTO){
23 i f (“r! = ID”) { b = 0 ; s = ⊥ ; }
24 r = ID ;
25 imroot = 1 ;
26 }
27 i f (b < FTO) b++;
28 i f (imroot){ o ! ! (r , ∗) ; s = ⊥ ; }
29 else i f (∗){ o ! ! (r , ∗) ; }
30 }}

Fig. 3. After the second and third steps of the abstraction. The behavior of receive

is relaxed when r != FRID or the received message (ri,si) is such that ri != FRID.
Similarly, the behavior of send is relaxed when r != FRID and ID != FRID. For both
functions, we redefine the behaviors of the protocol by disregarding the variables e and
s. The updates and tests on these variables become completely non-deterministic. In
particular, nodes in such states can send more often messages with arbitrary sequence
numbers. Then, the variables r,ri are mapped to the domain {FRID, NRID}. The vari-
able b is mapped to {0, 1, . . . , MAX}, and e to {0, 1, . . . , LIM}.

represented in quotes. They represent non-deterministic transitions as fol-
lows. The comparison relation becomes non-deterministic: we have FRID <
NRID and FRID = FRID, but, for instance, a comparison between NRID
and NRID can yield both true and false. As an example, “r == ri” stands for
r = FRID && ri = FRID || r = NRID && ri = NRID && *, ∗ being a nonde-
terministic Boolean value.

Let S′
i = V ′

i × (2n ∪ {⊥}) where V ′
i is the set of valuations of node variables

(with given id i), with the abstract domains we have described. Let us define
the relations receive′

i ⊆ V ′
i × V ′

i and send′
i ⊆ V ′

i × V ′
i , similarly as before,

e.g. (s, s′) ∈ receive′
i if, and only if there is an execution of receive′

i from s
yielding s′. Let A′

i denote the process defined just like Ai in Subsect. 3.1 but
using the new relations receive′

i and send′
i. We state the relation between Ai

and A′
i using a label abstraction function α. We let α be the identity over Id,

and set Msg� = {FRID, NRID}× (N∪{⊥}) with α((k, s)) = (FRID, s) if k = FRID,
and α((k, s)) = (NRID,⊥) otherwise.

Lemma 4. For all i, Ai �Σi(Id,Msg),α A′
i.

By Lemma 1, it follows that ‖G
i=1...n Ai �{τ}‖G

i=1...n A′
i.

An Abstraction Technique for Parameterized Model Checking 35

3.3 Abstraction on Network Topology: Shortest-Path Abstraction

Recall that our model has a network topology G ∈ GK(n). Consider an arbitrary
shortest path Ai1Ai2 . . . Aim

with m ≤ K, where i1 = 1. Let C = {i2, . . . , im},
that is, all nodes on this path but the future root. Define O = Id\C. Let us relax
the graph G = (V,E) into G′ = (V,E′) by E′ = E ∪ O × O ∪ O × C ∪ C × O.
Thus, we render the graph complete within O, and add all edges between O
and C. Let us write A′

C =‖G′
i∈C A′

i, and A′
O =‖G′

i∈O A′
i. By Lemma 2, these are

over-approximations of the products defined for G.
We define A′′

O as a single-state process with alphabet ΣO(Id,Msg�) which can
send any message to any other node. We clearly have A′

O �ΣO(Id,Msg�) A′′
O.

We now get rid of the identifiers outside C ∪{1} by defining a label abstrac-
tion function α′ : Id → Id� with Id� = C ∪ {O, 1} where O is a fresh symbol. We
let α′(i) = i for all i ∈ C ∪ {1}, and α′(i) = O for all i ∈ O \ {1}. So, all nodes
outside C ∪ {1} are merged into one identifier O. Let BO be the mapping of A′′

O

by α′, and BC that of A′
C , so that we have A′

O �ΣO(Id,Msg�) A′′
O �ΣO(Id,Msg�),α′ BO

and A′
C �ΣC(Id,Msg�),α′ BC .

We need to adapt the scheduler so that it does not keep track of the offset of
the processes represented by O. Let S ′ftsp

a,syn(Δ) and S ′ftsp
a,asyn(Δ) defined similarly

as before which track the offsets of all nodes in C ∪ {1}, but have a self-loop
with label tickO! at all states. We thus have S ftsp

a,��(Δ) �Ticks,α′ S ′ftsp
a,��(Δ) for

both 	
 ∈ {syn, asyn}.
By Lemmas 1–2, A′

O ‖G A′
C ‖G S ftsp

a,��(Δ) �{τ},α′ BO ‖G′ BC ‖G′ S ′ftsp
a,��(Δ).

We need another abstraction to obtain a finite model: The variable s is
a priori unbounded in each process; however, the only applied operations are
incrementation (by FRID only), assignment, and comparison. Therefore, we can
shift the values so that the minimal one is always 0; thus limiting the maximal
value that is observed. We modify our process to map these variables to a finite
domain {0, 1, . . . , SeqMax,⊥} and normalize their values after each transition:
we make sure that at any step, the values taken by s at all nodes define a
set X ∪ {⊥} for some 0 ∈ X ⊆ {0, 1, . . . , SeqMax}.

We summarize all the steps of the abstractions as follows. Given graph G ∈
GK(n), a path π of length K from node 1, let Mabs

�� (G, π,Δ) = BO ‖G′ BC ‖G′

S ′ftsp
a,��(Δ) where 	
 ∈ {syn, asyn}.

Lemma 5. For all n,K > 0, and all G ∈ GK(n), let π be any shortest path
from node 1. Let C be the nodes of π except 1, and O = [1, n] \ C. We have, for
all 	
 ∈ {syn, async}, Mconc

�� (G) �{τ} Mabs
�� (G, π,Δ).

Notice that in Mabs
�� (G, π,Δ), all node ids are in the set {FRID, NRID}. Thus,

given two different paths π, π′, Mabs
�� (G, π,Δ) and Mabs

�� (G, π′,Δ) are identical
up to the renaming of their channel numbers since both models still contain
labels of the form i!(j,m) and i?(j,m). However, these numbers i, j only define
the topology and do not affect the behaviors. Let us state this formally as follows:

Lemma 6. For all K,n > 0, graph G ∈ GK(n), and paths π, π′ of same length
from node 1, we have Mabs

�� (G, π,Δ) �{τ} Mabs
�� (G, π′,Δ).

36 O. Sankur and J.-P. Talpin

From the above lemma, it follows that for verification purposes (against
LTL), the model Mabs

�� (G, π,Δ) is actually independent of the chosen path π,
but only depends on the length of π. For each K > 0, let us pick one such model
with |π| = K and name it Mabs

�� (K,Δ). Then, we have Mabs
�� (G, π,Δ) �{τ}

Mabs
�� (K,Δ) for all G ∈ GK(n) and Δ > 0. It follows that model checking a

property in Mabs
�� (K,Δ) proves it on all graphs G ∈ GK(n) and all paths π.

In the rest, w.l.o.g. let us assume that C = {2, . . . , K}. Our goal is to check
Mabs

�� (K,Δ) |= PK(N) for some N , where PK(N) = F(c ≤ N ∧ ∧K
i=1 Pi).

3.4 Incremental Verification Technique and Refinement

We explain an incremental approach to model-check our system for successive
values of K. Intuitively, we assume that we have proved the root election property
for K, and we want to prove it for K + 1. For K, if we prove the property is
persistent, that is, holds forever after some point in time, then, we can prove
the property for K + 1 as follows: initialize the first K nodes in Mabs

�� (K + 1,Δ)
to a state in which they agree on the future root, and the K + 1-th node in an
arbitrary state; then verify the property for the last process only:

Lemma 7. Consider processes R1, . . . ,Rn, and S1, . . . ,Sn. For some graph G,
let R(K) =‖G

i=0...K Ri. Assume that R(K + 1) ‖G SK+1 �τ R(K) ‖G SK

for all K. Consider predicate Qi for each Ri, and define Q(K) = ∧K
i=1Qi. Con-

sider R′(K+1) obtained from R(K+1) by restricting the states to Q(K) (That is,
we remove all states outside and all transitions that leave outside this set.), where
the initial state set is Q(K). We have that R(K) ‖ SK |= FGQ(K) ∧ R′(K+1) ‖
SK+1 |= FGQK+1 implies R(K + 1) ‖ SK+1 |= FGQ(K + 1).

Here is how we apply the above lemma in our case. Let Ri = A′
i+1 for i =

1 . . . K. We write SK = S ′ftsp
a,asyn(Δ) defined for C = {1, . . . , K} in Sect. 3.3, and

let SK = A′′
OK

‖ SK with OK = Id \ {2, . . . ,K}. We have A′′
OK+1

�Σ(OK+1,Msg�)

A′′
OK

and SK+1 �Ticks SK by definition, so these processes do satisfy the relation
R(K + 1) ‖ SK+1 �τ R(K) ‖ SK . As properties to satisfy, we consider Qi =
Pi ∧bi ≤ FTO−1∧e ≥ LIM, and also define Q(K,N) = (c ≤ N ∧∧K

i=1Qi). Notice
that Q(K,N) implies PK(N).

Assume we have proved the following statements: M′abs
�� (1,Δ) |= FGQ(1, n1),

M′abs
�� (2,Δ) |= FGQ(2, n2), . . ., M′abs

�� (K − 1,Δ) |= FGQ(K − 1, nk−1), and
M′abs

�� (K,Δ) |= FGQ(K,nk). Then, by the previous lemma, Mabs
�� (K,Δ) |=

FGQ(K,N) for N = n1 + . . . + nk, which means PK(N). Note that the last
property to be proven can also be chosen as FPK which might be satisfied ear-
lier than FGQ(K,nk).

Non-interference Lemma. The first verification attempts reveal a spurious
counter-example: the non-deterministic process BO can send a node in C a mes-
sage (r, s) with r = FRID and s large enough so that the node will ignore all
messages for a long period of time, causing a timeout; this causes the viola-
tion of FGPi. However, intuitively, a node should not be able to send a message

An Abstraction Technique for Parameterized Model Checking 37

with r = FRID with a newer sequence number than what has been generated
by the root itself. Following [7], we use guard strengthening : We require that all
messages that come from the process BO must satisfy that either r �= FRID or s
is at most equal to the variable s of the root. Let this condition be φ. We thus
constrain the transitions of our model to satisfy φ, which eliminates this spu-
rious counter-example. Property φ is also called a non-interference lemma [7].
However, we also need to actually prove φ. As it turns out, one can prove φ on
the very same abstraction obtained by strenghtening. The works [7,18] explain
why the apparently circular reasoning is correct. We do not detail this technique
further since this is now a well-known result; see also [5,27].

4 Algorithm and Experimental Results

Semi-Algorithm for FG Properties with Optimal Bound Computation. Model
checking algorithms consist in traversing the state space while storing the set of
visited states so as to guarantee termination. However, this set can sometimes
become prohibitively large. We introduce a simple semi-algorithm for properties
of type FG p where we do not store all states: at iteration i, we just store the
states reachable in i steps exactly, and only if all these satisfy p, do we start
a fixpoint computation from these states. The resulting semi-algorithm is more
efficient and allows us to find the smallest i in one shot.

We implemented the semi-algorithm in NuSMV 2.5.43. We model-checked
the property P(N), and computed the bounds N using our semi-algorithm. The
models are initialized in an arbitrary state, so our results show that the network
recovers from any arbitrary fault within the given time bound. We summarize
our results in Fig. 4. We distinguish the best values for N in both communication
models for different values of K. Missing rows mean timeout of 24 h.

synchronous asynchronous
K N time N time

1 8 0s 8 0s
2 14 1s 14 1s
3 23 1s 25 28s
4 35 3s 39 130s
5 54 16s 63 65mins
6 67 76s
7 107 13mins

Fig. 4. Verification results for
the property P(N), obtained
with the semi-algorithm. For
each K and communication
model, the best derived N is
given.

We observe that the time for the root elec-
tion N differs in the two communication seman-
tics. This value is higher in the asynchronous
case since it contains all behaviors that are pos-
sible in the synchronous case. Observe that the
largest network topology that had been model
checked for FTSP contained 7 nodes [21] with
synchronous communication. In our case, we
prove the property for K = 7, which means that
it holds on two dimensional grids with 169 nodes
(13 × 13) when the root is at the middle (and
three-dimensional grids with 2197 nodes), and 49
nodes if it is on a corner (and 343 nodes in three
dimensions). In the asynchronous case, we prove
the property for K = 5, e.g. 2D grids of size 81
nodes where the root is at the middle.

3 The source code and models are available at https://github.com/osankur/nusmv/tree/
ftsp.

https://github.com/osankur/nusmv/tree/ftsp
https://github.com/osankur/nusmv/tree/ftsp

38 O. Sankur and J.-P. Talpin

This implies the following bounds on clock rates: by Lemma3, for N = 107,
property P(N) is guaranteed on Mconc

�� (G) for all G ∈ GK and [σl, σu] =
[29.7, 30.3] which is the case when the clock rates are within 1 ± 10−2.

5 Conclusion

We presented an environment abstraction technique inspired from [7] for
processes with unique identifiers, arbitrary network topologies, and drifting
clocks. We introduced an incremental model checking technique, and gave an
efficient semi-algorithm that can compute bounds for the eventually properties
in one shot. We applied our technique to model check the root election part of
FTSP and obtained significant improvements over previous results.

An important future work will be to automatize the presented abstraction
method. Several steps of our abstractions, such as data abstractions, can easily
be automatized with minimal user intervention. We would like to go further
following [5], and consider automatic abstractions of the network topology.

Our aim is to address the case of more elaborate time synchronisation pro-
tocols based on interval methods, such as Sugihara and Gupta’s [26] that are
able to implement TSP in WSN without making assumptions on bounded drift,
but simply on precise thermal and cristal oscillator specifications of the WSN
hardware. We would like to obtain formal bounds on time precision guaranteed
by a protocol under various assumptions on environment.

We believe our shortest-path abstraction technique can be used to verify
different distributed protocols in which an information is forwarded in layers
through the network such as [4,29]. An interesting future work would be to
consider protocols that construct a spanning tree of the network in which case
shortest paths would be replaced by a richer subgraph of the network topology.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

3. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT press, Cambridge
(2008)

4. Bakhshi, R., Bonnet, F., Fokkink, W., Haverkort, B.: Formal analysis techniques
for gossiping protocols. ACM SIGOPS Oper. Syst. Rev. 41(5), 28–36 (2007)

5. Bingham, J.: Automatic non-interference lemmas for parameterized model check-
ing. In: Proceedings of the 2008 International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2008, Piscataway, NJ, USA, pp. 11:1–11:8. IEEE
Press (2008)

6. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)

An Abstraction Technique for Parameterized Model Checking 39

7. Chou, C.-T., Mannava, P.K., Park, S.: A simple method for parameterized veri-
fication of cache coherence protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD
2004. LNCS, vol. 3312, pp. 382–398. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30494-4 27

8. Clarke, E., Talupur, M., Veith, H.: Proving ptolemy right: the environment abstrac-
tion framework for model checking concurrent systems. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 33–47. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 4

9. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994)

10. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

11. Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verification of broad-
cast networks of register automata. In: Abdulla, P.A., Potapov, I. (eds.) RP
2013. LNCS, vol. 8169, pp. 109–121. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41036-9 11

12. Desai, A., Seshia, S.A., Qadeer, S., Broman, D., Eidson, J.C.: Approxi-
mate synchrony: an abstraction for distributed almost-synchronous systems. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 429–448.
Springer, Cham (2015). doi:10.1007/978-3-319-21668-3 25

13. Dolev, D., Klawe, M., Rodeh, M.: An o (n log n) unidirectional distributed algo-
rithm for extrema finding in a circle. J. Algorithms 3(3), 245–260 (1982)

14. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1995, pp. 85–94. ACM, New York (1995)

15. Garavel, H., Mounier, L.: Specification and verification of various distributed leader
election algorithms for unidirectional ring networks. Sci. Comput. Program. 29(1),
171–197 (1997)

16. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp.
201–209 (2013)

17. Fredlund, L., Groote, J.F., Korver, V.: Formal verification of a leader election
protocol in process algebra. Theoret. Comput. Sci. 177(2), 459–486 (1997)

18. Krstic, S.: Parameterized system verification with guard strengthening and para-
meter abstraction. In: Automated Verification of Infinite State Systems (2005)

19. Kusy, B., Abdelwahed, S.: FTSP protocol verification using SPIN, May 2006
20. Maróti, M., Kusy, B., Simon, G., Lédeczi, A.: The flooding time synchronization

protocol. In: Proceedings of the 2nd International Conference on Embedded Net-
worked Sensor Systems, SenSys 2004, pp. 39–49. ACM, New York (2004)

21. McInnes, A.I.: Model-checking the flooding time synchronization protocol. In:
IEEE International Conference on Control and Automation, ICCA 2009, pp. 422–
429, December 2009

22. McMillan, K.L.: Parameterized verification of the FLASH cache coherence protocol
by compositional model checking. In: Margaria, T., Melham, T. (eds.) CHARME
2001. LNCS, vol. 2144, pp. 179–195. Springer, Heidelberg (2001). doi:10.1007/
3-540-44798-9 17

23. Milner, R.: A Calculus of Communicating Systems. Springer, New York (1982)
24. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-

dations of Computer Science, pp. 46–57, October 1977

http://dx.doi.org/10.1007/978-3-540-30494-4_27
http://dx.doi.org/10.1007/978-3-540-30494-4_27
http://dx.doi.org/10.1007/978-3-540-78800-3_4
http://dx.doi.org/10.1007/978-3-642-41036-9_11
http://dx.doi.org/10.1007/978-3-642-41036-9_11
http://dx.doi.org/10.1007/978-3-319-21668-3_25
http://dx.doi.org/10.1007/3-540-44798-9_17
http://dx.doi.org/10.1007/3-540-44798-9_17

40 O. Sankur and J.-P. Talpin

25. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1, ∞)- counter abstraction. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122.
Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 9

26. Sugihara, R., Gupta, R.K.: Clock synchronization with deterministic accuracy
guarantee. In: Marrón, P.J., Whitehouse, K. (eds.) EWSN 2011. LNCS, vol. 6567,
pp. 130–146. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19186-2 9

27. Talupur, M., Tuttle, M.R.: Going with the flow: parameterized verification using
message flows. In: Formal Methods in Computer-Aided Design, FMCAD 2008, pp.
1–8, November 2008

28. Tan, L., Bu, L., Zhao, J., Wang, L.: Analyzing the robustness of FTSP with timed
automata. In: Proceedings of the Second Asia-Pacific Symposium on Internetware,
Internetware 2010, pp. 21:1–21:4. ACM, New York (2010)

29. Vasudevan, S., Kurose, J., Towsley, D.: Design and analysis of a leader election
algorithm for mobile ad hoc networks. In: Proceedings of the 12th IEEE Interna-
tional Conference on Network Protocols, ICNP 2004, pp. 350–360. IEEE (2004)

http://dx.doi.org/10.1007/3-540-45657-0_9
http://dx.doi.org/10.1007/978-3-642-19186-2_9

	An Abstraction Technique for Parameterized Model Checking of Leader Election Protocols: Application to FTSP
	1 Introduction
	2 Definitions
	3 Parameterized Model Checking of FTSP
	3.1 Concrete Model
	3.2 Abstractions on Individual Nodes
	3.3 Abstraction on Network Topology: Shortest-Path Abstraction
	3.4 Incremental Verification Technique and Refinement

	4 Algorithm and Experimental Results
	5 Conclusion
	References

