
 123

23rd International Conference, TACAS 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017, Proceedings, Part I

Tools and Algorithms
for the Construction
and Analysis of SystemsLN

CS
 1

02
05

AR
Co

SS
Axel Legay
Tiziana Margaria (Eds.)



Lecture Notes in Computer Science 10205

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Axel Legay • Tiziana Margaria (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems
23rd International Conference, TACAS 2017
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017
Uppsala, Sweden, April 22–29, 2017
Proceedings, Part I

123



Editors
Axel Legay
Inria
Rennes Cedex
France

Tiziana Margaria
University of Limerick and Lero - The Irish
Software Research Center

Limerick
Ireland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-54576-8 ISBN 978-3-662-54577-5 (eBook)
DOI 10.1007/978-3-662-54577-5

Library of Congress Control Number: 2017935566

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag GmbH Germany 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany



ETAPS Foreword

Welcome to the proceedings of ETAPS 2017, which was held in Uppsala! It was the
first time ever that ETAPS took place in Scandinavia.

ETAPS 2017 was the 20th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program enables
participation in an exciting event, offering the possibility to meet many researchers
working in different directions in the field and to easily attend talks of different con-
ferences. Before and after the main conference, numerous satellite workshops take
place and attract many researchers from all over the globe.

ETAPS 2017 received 531 submissions in total, 159 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all authors for their interest in
ETAPS, all reviewers for their peer reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2017 was enriched by the unifying invited speakers Kim G. Larsen (Aal-
borg University, Denmark) and Michael Ernst (University of Washington, USA), as
well as the conference-specific invited speakers (FoSSaCS) Joel Ouaknine (MPI-SWS,
Germany, and University of Oxford, UK) and (TACAS) Dino Distefano (Facebook and
Queen Mary University of London, UK). In addition, ETAPS 2017 featured a public
lecture by Serge Abiteboul (Inria and ENS Cachan, France). Invited tutorials were
offered by Véronique Cortier (CNRS research director at Loria, Nancy, France) on
security and Ken McMillan (Microsoft Research Redmond, USA) on compositional
testing. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2017 took place in Uppsala, Sweden, and was organized by the Department
of Information Technology of Uppsala University. It was further supported by the
following associations and societies: ETAPS e.V., EATCS (European Association for
Theoretical Computer Science), EAPLS (European Association for Programming
Languages and Systems), and EASST (European Association of Software Science and
Technology). Facebook, Microsoft, Amazon, and the city of Uppsala financially sup-
ported ETAPS 2017. The local organization team consisted of Parosh Aziz Abdulla
(general chair), Wang Yi, Björn Victor, Konstantinos Sagonas, Mohamed Faouzi Atig,
Andreina Francisco, Kaj Lampka, Tjark Weber, Yunyun Zhu, and Philipp Rümmer.

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its executive board. The ETAPS Steering Committee



consists of an executive board, and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The executive board
consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Parosh Abdulla (Uppsala), Amal Ahmed (Boston),
Christel Baier (Dresden), David Basin (Zurich), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Giuseppe Castagna (Paris), Tom Crick (Cardiff), Javier Esparza (Munich),
Jan Friso Groote (Eindhoven), Jurriaan Hage (Utrecht), Reiko Heckel (Leicester),
Marieke Huisman (Twente), Panagotios Katsaros (Thessaloniki), Ralf Küsters (Trier),
Ugo del Lago (Bologna), Kim G. Larsen (Aalborg), Axel Legay (Rennes), Matteo
Maffei (Saarbrücken), Tiziana Margaria (Limerick), Andrzej Murawski (Warwick),
Catuscia Palamidessi (Palaiseau), Julia Rubin (Vancouver), Alessandra Russo
(London), Mark Ryan (Birmingham), Don Sannella (Edinburgh), Andy Schürr
(Darmstadt), Gabriele Taentzer (Marburg), Igor Walukiewicz (Bordeaux), and Hon-
gseok Yang (Oxford).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. Finally, a big thanks to
Parosh and his local organization team for all their enormous efforts enabling a fantastic
ETAPS in Uppsala!

April 2017 Joost-Pieter Katoen
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Preface

TACAS 2017 was the 23rd edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. The conference took place
during April 2017, in the Uppsala Concert and Congress Hall as part of the 19th
European Joint Conferences on Theory and Practice of Software (ETAPS 2017).

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building systems.

As in former years, TACAS 2017 solicited four types of submissions:

– Research papers, identifying and justifying a principled advance to the theoretical
foundations for the construction and analysis of systems, where applicable sup-
ported by experimental validation

– Case-study papers, reporting on case studies and providing information about the
system being studied, the goals of the study, the challenges the system poses to
automated analysis, research methodologies and approaches used, the degree to
which goals were attained, and how the results can be generalized to other problems
and domains

– Regular tool papers, presenting a new tool, a new tool component, or novel
extensions to an existing tool, with an emphasis on design and implementation
concerns, including software architecture and core data structures, practical appli-
cability, and experimental evaluation

– Short tool-demonstration papers, focusing on the usage aspects of tools

This year, 181 papers were submitted to TACAS, among which 167 were research,
case study, or tool papers, and 14 were tool demonstration papers. After a rigorous review
process followed by an online discussion, the Program Committee accepted 48 full papers
and four tool demonstration papers. This volume also includes an invited paper by the
ETAPS unifying speaker Kim. G. Larsen titled “Validation, Synthesis, and Optimization
for Cyber-Physical Systems” and an invited paper by TACAS invited speaker Dino
Distefano titled “The Facebook Infer Static Analyzer.”

TACAS 2017 also hosted the 6th International Competition on Software Verification
(SV-COMP), chaired and organized by Dirk Beyer. The competition again had a high
participation: 32 verification tools from 12 countries were submitted for the systematic
comparative evaluation, including two submissions from industry. This volume includes
an overview of the competition results, and short papers describing 12 of the partici-
pating verification systems. These papers were reviewed by a separate Program Com-
mittee; each of the papers was assessed by four reviewers. One session in the TACAS
program was reserved for the presentation of the results: the summary by the SV-COMP
chair and the participating tools by the developer teams.



Many people worked hard and offered their valuable time generously to make
TACAS 2017 successful. First, the chairs would like to thank the authors for sub-
mitting their papers to TACAS 2017. We are grateful to the reviewers who contributed
to nearly 550 informed and detailed reports and discussions during the electronic
Program Committee meeting. We also sincerely thank the Steering Committee for their
advice. We also acknowledge the work of Parosh Aziz Abdulla and the local organizers
for ETAPS 2017. Furthermore, we would like to express a special thanks to
Joost-Pieter Katoen, who answered many of our questions during the preparation of
TACAS 2017. Finally, we thank EasyChair for providing us with the infrastructure to
manage the submissions, the reviewing process, the Program Committee discussion,
and the preparation of the proceedings.

April 2017 Dirk Beyer
Axel Legay

Tiziana Margaria
Dave Parker
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Validation, Synthesis and Optimization
for Cyber-Physical Systems

Kim Guldstrand Larsen

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

kgl@cs.aau.dk

Abstract. The growing complexity of Cyber-Physical Systems increasingly
challenges existing methods and techniques. What is needed is a new generation
of scalable tools for model-based learning, analysis, synthesis and optimization
based on a mathematical sound foundation, that enables trade-offs between
functional safety and quantitative performance. In paper we illustrate how recent
branches of the UPPAAL tool suit are making an effort in this direction.

This work is partly funded by the ERC Advanced Grant LASSO: Learning, Analysis, SynthesiS
and Optimization of Cyber-Physical Systems as well as the Innovation Center DiCyPS: Data-Intensive
Cyber Physical Systems.



The Facebook Infer Static Analyser

Dino Distefano

Facebook Inc., Menlo Park, USA

Abstract. Infer is an open-source static analyser developed at Facebook [1].
Originally based on Separation Logic [2, 3], Infer has lately evolved from a
specific tool for heap-manipulating programs to a general framework which
facilitates the implementation of new static analyses.

In this talk, I will report on the Infer team’s experience of applying our tool
to Facebook mobile code, each day helping thousands of engineers to build
more reliable and secure software [4]. Moreover, I will discuss the team’s
current effort to turn Infer into a static analysis platform for research and
development useful both to academic researchers and industrial practitioners.

References

1. http://fbinfer.com
2. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by

means of bi-abduction. In: POPL, pp. 289–300. ACM (2009)
3. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety of C

programs. In: Bobaru, M., Havelund. K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS,
vol. 6617, pp. 459–465. Springer, Heidelberg (2011)

4. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn, P.W.,
Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving Fast with Software Verification. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11.
Springer, Switzerland (2015)

© Facebook.
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Abstract. The growing complexity of Cyber-Physical Systems increas-
ingly challenges existing methods and techniques. What is needed is
a new generation of scalable tools for model-based learning, analysis,
synthesis and optimization based on a mathematical sound foundation,
that enables trade-offs between functional safety and quantitative per-
formance. In paper we illustrate how recent branches of the Uppaal tool
suit are making an effort in this direction.

Cyber-Physical Systems

The term Cyber-Physical Systems (CPS) describes systems that combine com-
puting elements with dedicated hardware and software having to monitor and
control a particular physical environment. This combination of the physical with
a virtual world provides the digital foundation for smart solutions throughout
society and within all sectors. The constant demand for increased functionality
and performance that needs to be produced with tight time schedules and cost
budges without compromising dependability of the final products constitutes a
significant software engineering challenge.

What is needed are mathematically well-founded, scalable methods, tools and
techniques that support the development of CPS. For this we have over more
than 20 years pursued a model-based approach for the design of dependable
and optimal CPS, supported by tools that are based on efficient algorithms and
datastructures for analysis of semantically well-founded models. This has been
the guiding pricinple behind the Uppaal suite (www.uppaal.org) [54] which
by now have been applied to a wide range of industrial applications from the
domains of Embedded Systems and Cyber-Physical Systems.

The first version of the Uppaal tool was presented at the very first TACAS
conference in 1995 in Aarhus, Denmark. During the first several years the tool
was developed in tight collaboration between Uppsala University, Sweden and
Aalborg University, Denmark. Over the years a number branches has been devel-
oped, some of which will be described in the following sections.
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1 The UPPAAL Tool Suite

Uppaal. The underlying formalism of Uppaal is that of timed automata with
the tool providing support for model checking of hard real-time properties. Since
the introduction of the tool in 1995, significant effort have been put into devel-
opment and implementation of improved datastructures and algorithms for the
analysis of timed automata. This includes guided search algorithms using heuris-
tics from AI [6,40,46,47], fully symbolic datastructures [9], minimal constraint
normal forms [50], as well as a new symblistic DART datastructure [43,45] mak-
ing usefull tradeoffs between the effectiveness of discrete and symbolic semantics.
Also, this research has included the development of a series of exact abstractions
(or extrapolation) that not only ensures finiteness of the symbolic semantics,
but also provide significant performance improvements [3,4,42]. Besides these
advance with respect to the verification engine, significant effort has over the
years been put on the graphical interface of the tool (e.g. [7]), and on the mod-
elling side the introduction of user-defined, structured datatypes and procedures
has undoubtedly made the tool significantly more usable in modeling real control
programs and communication protocols [6].

Uppaal Cora. Motivated by the need for addressing (optimal) usage of
resource, extension of priced timed automata was introduced in 2001 with [2,8]
(independently) demonstrating decidability of cost-optimal reachability. Soon
after efficient priced extension of the symbolic zone datastructures was imple-
mented in the branch Uppaal Cora, which combined with a symbolic A* algo-
rithm providing a new generic tool for cost-optimal planning competetive to
traditional OR methods such as Mixed-Integer Linear Programming [49]. Most
recently new efficient extrapolation methods for priced timed automata has been
introduced [17] and Uppaal Cora has been used for the optimal planning of
missions for battery-powered nano-satelittes [12].

Uppaal Tron. In 2004 the branch Uppaal Tron was introduced offering the
possibility of performing on-line conformance testing of real real-time systems
with respect to timed input-output automata [51,56]. Uppaal Tron implements
a sound and (theoretically) complete randomized testing algorithm, and uses a
formally defined notion of correctness to assign verdicts: i.e. relativized timed
input/output conformance providing a timed extension of Jan Tretmans ioco
[58]. Using online testing, events are generated and simultaneously executed on
the system under test. Uppaal Tron has been succesfully applied to a number
of industrial case studies including an advanced electronic thermostat regulator
sold world-wide in high volume by the Danish company Danfoss [52].

Uppaal Tiga. In 2005 - encouraged by suggestions from Tom Henzinger – the
branch Uppaal Tiga was released, allowing for control strategies to be synthe-
sized from timed games, i.e. two-player games played on a timed automata [5,24].
The branch implements an efficient symbolic on-the-fly algorithm for synthesiz-
ing winning strategies for reachability, safety as well as Büchi objectives and tak-
ing possible partial observability into account [25]. The branch marks a disruptive
direction with respect to development of control programs for embedded systems:
rather than manually developing the control program with subsequent model
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checking (and correction), Uppaal Tiga provides a fully automatic method for
deriving a correct-by-construction control program. In particular, this method
allows for easy personalization of control program simply by modification of the
objective. The branch has so far been industrially applied to the automatic syn-
thesis of control strategies for zone-base climate control in pigsties [44] and safe
and optimal operation of hydralic pumps [26].

Uppaal Ecdar. In 2010 the branch Uppaal Ecdar was introduced supporting
a scalable methodology for compositional development and stepwise refinenemet
of real-time systems [36,38]. The underlying specification theory is that of timed
I/O automata being essentially timed games (with inputs being controllable,
and outputs being uncontrollable) equipped with suitable methods for refine-
ment checking (in terms of an alternating simulation between two timed game
specifications), consistency checking, logical as well as structural composition.
The Uppaal Ecdar branch uses heavily the Uppaal Tiga engine to solve var-
ious games that arise in the computing the various composition operators and
refinements. For a full account of Uppaal Ecdar we refer the reader to the
tutorial [35].

2 UPPAAL SMC

One of most recent branches of the Uppaal tool suite – Uppaal SMC intro-
duced in 2011 – allows for performance evaluation the much richer formalisms
of stochastic hybrid automata and games [33,34] and has by now been widely
applied to analysis of a variety of case studies ranging from biological examples
[32], schedulability for mixed-critical systems [13,37], evaluation of controllers
for energy-aware buildings [28], social-technical attacks in security [39] as well
as performance evaluation of a variety of wireless communication protocols [59].
Also the statistical model checking engine of Uppaal SMC is supported by a
distributed implementation [23], and allows for the statistical model checking of
a large subset of MITL [21,22]. For a full account of Uppaal SMC we refer the
reader to the recent tutorial [31].

The modeling formalism of Uppaal SMC is based on a stochastic interpreta-
tion and extension of the timed automata formalism used in the classical model
checking version of Uppaal. For individual components the stochastic interpre-
tation replaces the nondeterministic choices between multiple enabled transitions
by probabilistic choices (that may or may not be user-defined). Similarly, the
non-deterministic choices of time-delays are refined by probability distributions,
which at the component level are given either uniform distributions in cases
with time-bounded delays or exponential distributions (with user-defined rates)
in cases of unbounded delays.

To illustrate the features of Uppaal SMC let us consider the example in
Fig. 1, providing an “extended” timed automata based model of a car, that needs
to make it from its initial position Start to the final position End. In the model
the driver of the car twice needs to make a choice between using a high road (H1
and H2) or a low road (L1 and L2). The four roads differ in their travel-times
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between 0 and 100min (respective 0 and 50min) as reflected by the invariants on
the clock x). Also the roads differ in fuel-consumption reflected by the difference
in the rate of the continuous variable fc (representing the total amount of fuel
consumed). The model is in fact a priced timed automaton (as supported by the
branch Uppaal Cora) with the total time that it will take to make it to End
ranging between 0 and 200, and total fuel-consumption ranging between 0 and
900. However, interpreted as a stochastic priced timed automaton, the discrete
choice betweeen the high and the low roads are made based on a (uniform) ran-
dom choice. Similary, the travel times of the 4 roads are resolved using uniform
distributions of the respect travel-time intervals.

Fig. 1. The stochastic route model for a car

Now assume that we are interested in the expected fuel-consumption before
reaching the goal End. Given the described stochastic semantics of the priced
timed automaton in Fig. 1 this is easily seen to be the value of the following
expression:

(
0.5 ·

∫ 100

t=0

3t · 0.01dt + 0.5 ·
∫ 50

t=0

10t · 0.02dt
)
+

(
0.5 ·

∫ 100

t=0

1t · 0.01dt + 0.5 ·
∫ 50

t=0

8t · 0.02dt
)
= 325

For this model the above expression giving the desired expectation was par-
ticularly easy as the clock x is reset. In general – and formally – the stochastic
semantics of a stochastic (priced) timed automata is given by a probability mea-
sure assigning probabilities to (certain) sets of runs, being countable unions or
complements of so-called cylinder-sets, i.e. sets of runs that follow the same
prefix of edges in the automaton. In general, the probability of such a cylin-
der will be a nested integral (the nesting depth being the length of the path in
the automaton). When considering networks of stochastic timed automata, the
probability measure will moreover reflect a repeated race between components
(for who is to perform the next discrete action) of the networks. Decidability
(and undecidability) results for the stochastic interpretation of timed automata
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have so far – despite significant research – only given few conclusive results, e.g.
that qualitative reachability (i.e. probability of reachability is 0 or 1) is decid-
able for one-clock stochastic timed automata [11,14], or for acyclic models [55].
Instead, the statistical model checking engine of Uppaal SMC resorts to simu-
lation in order to settle a large range of quantitative questions, e.g. reachability
probability or expectations. Being based on simulation, the results are however
approximate (e.g. confidence intervals) but come with a statistically assured level
of confidence. As an example, the Uppaal SMC query

Pr[<=100](<> Car.End)

will after some 7382 random runs of the model (made according to the stochastic
semantic described) return the 95% confidence interval [0.735636, 0.755635] as
the probability that the location End is reached within 100 minutes. Addressing
our original problem the query

E[<=200; 5000](max: fc)

will return the value 322.565 ± 4.70747 as an estimate of the expected fuel-
comsumption based on 5000 random runs of the model. In Fig. 2 we see the
additional plots offered by Uppaal SMC for the cumulative probability of the
time for reaching End and the frequency count of the fuel-consumption over 5000
random runs.

Fig. 2. Performance evaluation of stochastic car model.

3 UPPAAL Stratego

Uppaal Stratego from 2014 [29,30] is the most recent branch of the Uppaal

tool suite that allows to generate, optimize, compare and explore consequences
and performance of strategies synthesized for stochastic priced timed games
(SPTG) in a user-friendly manner. In particular, Uppaal Stratego comes with
an extended query language (see Table 1), where strategies are first class objects
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Table 1. Various types of Uppaal Stratego queries: “strategy S =” means strategy
assignment and “under S” is strategy usage via strategy identifier S. Here the variables
NS, DS and SS correspond to non-deterministic, deterministic and stochastic strategies
respectively; bound is a bound expression on time or cost like x<=100 and n is the
number of simulations.

Strategy generators using [29]:

Minimize objective: strategy DS = minE (expr) [bound]: <> prop

Maximize objective: strategy DS = maxE (expr) [bound]: <> prop under NS

Strategy generators using Uppaal Tiga:

Guarantee objective: strategy NS = control: A<> prop

Guarantee objective: strategy NS = control: A[] prop

Statistical model checking queries:
Hypothesis testing: Pr[bound](<> prop)>=0.1 under SS

Evaluation: Pr[bound](<> prop) under SS

Comparison: Pr[bound](<> prop1) under SS1 >= Pr[<=20](<> prop2) under SS2

Expected value: value E[bound;n](min: prop) under SS

Simulations simulate n [bound] { expr1, expr2 } under SS

Symbolic model checking queries:
Safety: A[] prop under NS

Liveness: A<> prop under NS

Infimum of value: inf { condition } : expression

Supremum of value: sup { condition } : expression

that may be constructed, compared, optimized and used when performing (sta-
tistical) model checking of a game under the constraints of a given synthesized
strategy. As such Uppaal Stratego may be seen as a superset of Uppaal

Tiga and Uppaal SMC.
To illustrate the features of Uppaal Stratego, let us revise our running

example of the car-route-problem as illustrated in in Fig. 3. Again there are four
different roads with their individual required travel-times.

However, whereas the choice of road is up to the driver of the car to control
(indicated by the solid transitions), the actual travel-time of the road is uncon-
trollable (indicated by the dashed transitions) reflecting the uncertainty of the
amount of traffic on the particular day. In one scenario, the objective of the
car it to choose the combination of roads that will ensure the shortest overall
travel-time even in the most hostile traffic situation on the four roads. Under this
interpretation, Fig. 3 represents a timed game. Clearly the strategy that would
ensure the smallest worst-case travel-time is to take the two low roads, giving a
guaranteed arrival time in 100min. Taking the rates for the cost variable fc into
account, makes Fig. 3 describe a priced time game, where the problem is to deter-
mine the best strategy in terms of minimizing the worst-case fuel-consumption.
For our model this best strategy clearly consists in consistently choosing the
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Fig. 3. The stochastic decision model for a car.

high roads. Unfortunaltely, cost-optimal winning strategies for priced games is
undecidable in general when the underlying timed automata has three or more
clocks [20]. Decidability results have been provided for one-clock priced timed
games [19] and for so-called strongly cost-non-zeno priced timed games [15,16];
also approximate algorithms have been proposed [18].

However in Uppaal Stratego, the model of Fig. 3 is interpreted as a sto-
chastic priced timed game (SPTG), assuming that the travel-times of the four
roads are chosen by uniform distributions, and the objective of the control strat-
egy is to minimize the expected overall travel-time, or the expected overall fuel-
consumption (e.g. the rate or fuel-consumption fc’==3 on the first high road H1
indicates that the cost variable fc grows with rate 3 in this location).

We are interested in synthesizing strategies for various objectives. Being pri-
marily concerned with fuel-consumption we may want to determine the strategy
that will minimize the expected fuel-consumption. For our simple decision model
Fig. 3 this is clearly given by the following expression:

min
{ ∫ 100

t=0

3t · 0.01dt ,

∫ 50

t=0

10t · 0.02dt
}
+

min
{ ∫ 100

t=0

1t · 0.01dt ,

∫ 50

t=0

8t · 0.02dt
}
= 200

However, possing the Uppaal Stratego query

strategy Opt = minE (fc) [<=200] : <> Car.End

will provide (by reinforcement learning1) the strategy Opt, that minimizes the
expected total fuel-consumption, learning from runs which are maximally 200
time units long. The relativized query E[<=200 ; 1000] (max: fc) under Opt,
generates 1000 runs of length 200 time units and then averages the maximum
value of fc from each run. this is used to estimate the expected cost to be
200.39. Figure 4a summarizes 10 random runs according Opt illustrating fuel-
consumption. None of the runs had a fuel consumption of 400 indicating that we
1 The reinforcement learning uses machine learning techniques to learn strategies from

sets of randomly generated runs. See [29] for more details.
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Fig. 4. Evaluation of strategy Opt via simulation.

always choose the energy-efficient roads. In Fig. 4b we see that this is actually
the case as the simulations always choose to go to locations H1 and H2, which
models the energy-efficient roads.

Now, assume that the task must be completed before 150 time-units. From
Fig. 4 it can be seen that the strategy Opt unfortunately does not guarantee
this, as there are a few runs which exceeds 150 before reaching End. However,
the query

strategy Safe = control: A<> Car.End and time<=150

will generate the most permissive (non-deterministic) strategy Safe that guaran-
tees this bound but unfortunately with a high expected total fuel-consumption
of 342.19. However, the relativized learning query

strategy OptSafe = minE (fc) [<=200] : <> Car.End under Safe

will provide a sub-strategy OptSafe that minimizes the expected total fuel-
consumption – here found to be 279.87 – subject to the constraints of
Safe. Figure 5 summarizes 10 random runs according to SafeOpt, incidat-
ing that only road L1 is never choosen. Also, the failed model checking of
E<> Car.H2 and time>=51 and Car.x==0 under Safe reveals that the high road
H2 may only be choosen in case the first phase is completed before 50 time-units,
confirming the observations from the simulations.

For learning the strategy OptSafe the reinforcement learning method required
5 iterations each with 1000 runs. We illustrate in Fig. 6 the outcome of the runs in
the last 3 iterations focusing on the choice, time and resulting fuel-consumption
at the choice-point between H2 and L2. As can be seen the method correctly
learns to take the low road whenever the choice point is reached before a total
time of 50min (leaving enough time to guarantee that End will be reached within
150min.

In general, as shown in the overview Fig. 7, Uppaal Stratego will start from
a SPTG P. It can then abstract P into a timed game (TGA) G by simply ignoring
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Fig. 5. Evaluation of strategy OptSafe via simulation.

Fig. 6. Total fuel-consumption versus time at mid-location for runs 1000 runs choosing
between H2 and L2 towards learning the strategy OptSafe.

Fig. 7. Overview of Uppaal Stratego

prices and stochasticity in the model. Using G, Uppaal Tiga [5] may now be used
to (symbolically) synthesize a (most permissive) strategy σ meeting a required
safety or (time-bounded) liveness constraint φ. The TGA G under σ (denoted
G|σ) may now be subject to additional (statistical) model checking using classi-
cal Uppaal [54] and Uppaal SMC [31,34]. Similarly, the original STGA P under
σ may be subject to statistical model checking. Now using reinforcement learn-
ing [29], we may synthesize near-optimal strategies that minimizes (maximizes)
the expectation of a given cost-expression cost. In case the learning is performed
from P|σ, we obtain a sub-strategy σo of σ that optimizes the expected value of
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cost subject to the hard constraints guaranteed by σ. Finally, given σo, one may
perform additional statistical model checking of P|σo.

4 Applications

The importance of CPS is clear within the domains of energy and transport with
the emergence Smart Grid, Home Automation, Autonomous Driving, Advanced
Driver Assistance and Intelligent Traffic Control where optimizing critical func-
tionality is provided by intelligent and flexible software components. Uppaal

stratego has already been applied to a number of case studies including synthe-
sis of a safe and optimal adaptive cruice control [53], synthesis of optimal floor
heating system [48], and most recently synthesis of optimal control of traffic
lights in intersections as described in the following sub-sections.

Adaptive Cruice Control. These days the Google Self-Driving car is about to
become a reality: legislation has been passed in several U.S. states allowing
driverless cars, in April 2014, Google announced that their vehicles had been
logging nearly 1.1 million km, and it is forecast that Google’s self-driving cars
will hit the roads this summer. Also, in Europe driverless cars have been actively
pursued, both by the automotive industry itself and within a number of national
and European research projects (e.g. FP7 and Horizon2020). With more and
more traffic, European roads are becoming increasingly congested, polluted and
unsafe. One potential solution to this growing problem is seen to be the use of
small, automated, low-polluting vehicles for driverless transport in (and between)
cities. Within the last decade, a number of European projects have been launched
for making transport systems capable of fully automated driving, energy efficient
and environmentally friendly while performing. In addition, many individual
driving assistant systems based on suitable sensors have been developed for cars.

In [53], we have considered a small part of lane-change manoeuvres, namely
the existence of a safe-distance controller (assumed in the above work of Olderog
et al.). In particular, we demonstrated how Uppaal Stratego may be applied
to automatically obtain a safe yet optimal adaptive strategy safe for the cruice
control. Modelling the cruice control as a game with a car in front a safe strategy
was synthezed ensuring that the distance to the front care would never get below
5 meters. In fact utilizing the distinct feature of Uppaal Stratego – allowing
additional properties to be verified of a synthesized strategy – we may verify the
smallest distance possible to the front care which will not violate the safe as
shown in Fig. 8.

Now asking for a sub-strategy safeFast of safe that will minimize the
expected accumulated distance to the front care yields a substantial improve-
ment as seen in Fig. 9.

Home Automation. Home automation includes the centralized control of a num-
ber of functionalities in a house such as lighting, HVAC (heating, ventilation and
air conditioning), appliances, security locks of gates and doors as well as other
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Fig. 8. Smallest distance possible under the safe strategy as a function of speed differ-
ence computed using inf{velocityFront-velocityEgo==v}: distance under safe for
each v value. Connecting lines are from linear regression analysis.

Fig. 9. The probability density distribution over rDistance at time >= 100 thus after
100 time units under the strategies safe and safeFast. The (dark) red bars for safe

and the (light) green bars for safeFast. (Color figure online)

systems. The overall goal is to achieve improved convenience, comfort, energy
efficiency as well as security. The popularity of home automation has increased
significantly in recent years through affordable smartphone and tablet connec-
tivity. Also the emergence of “Internet of Things” has tied in closely with the
popularization of home automation.

In [48] we collaborated with the Danish company Seluxit within the Euro-
pean project CASSTING2. The focus was on the floorheating system of a family
house, where each room of the house has its own hot-water pipe circuit. These
are controlled through a number of valves based on information about room
temperatures communicated wirelessly (periodically due to energy considera-
tions) from a number of temperature sensors. In the existing system, a simple

2 http://www.cassting-project.eu/.

http://www.cassting-project.eu/
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“Bang-Bang”-like strategy is applied, however, there are though several problems
with this strategy, as experienced by the house owner: it completely disregards
the interaction between rooms in terms of heat-exchange, the impact of the
outside temperature and weather forecast as well as information about move-
ments in the house. Taking this knowledge into account should potentially enable
the synthesis of significantly improved control strategies. Unfortunately, direct
application of Uppaal Stratego does not scale: due to the enormous number
of control modes it is virtually impossible to learn optimal control. Instead, we
proposed a novel on-line synthesis methodology, where we periodically—and on-
line—learn the optimal controller for the near future based on the current sensor
readings. For additional scalability, we proposed and applied a novel composi-
tional synthesis approach.

In particular, the strategy provided by Uppaal Stratego takes weather
information into account, as illustrated by Fig. 10 showing the spring stability
scenario. From points of time between 0 and 500min, the outside temperature
increases and exceeds the target temperature. We observe that since the con-
troller synthesized by Uppaal Stratego is able to look at the weather forecast
for the next 45min, it shuts down the valves much earlier than the other con-
trollers. This results in energy savings and increased comfort.

Fig. 10. Room temperatures in the spring stability scenario

Intelligent Control of Trafic Light. The Danish Congestion Commission calls in
its recent report for improved traffic signal control in order to reduce congestion,
travel time and energy consumption. This project has been formulated to con-
tribute to a more efficient utilisation of the existing infrastructure by improving
traffic signal control. However, modern traffic lights use information from induc-
tion loops and to some extend radar information. Recent developments in radar
technology has made it possible to obtain more detailed information relevant
to the control mechanism of the traffic light. Unfortunately much of the current
controllers do not profit from this additional information. Using this information
could minimize waiting times and energy waste.

Within the Innovation Center DiCyPS3 we have collaborated with researchers
in traffic control to apply Uppaal Stratego to the synthesis of an efficient
3 Center for Data-Intensive Cyber-Physical Systems, www.dicyps.dk.

www.dicyps.dk
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Fig. 11. Intersection between Nylandsvej and Værkstedvej at Køge municipality. Lay-
out of loops and radar area.

traffic signal control strategy that takes advantage of the continuous traffic
monitoring made available by radar detectors. The purpose of the strategy is
to optimize the total traffic flow in the junction, i.e. to reduce the total delay,
queue length and the number of stops. The synthesis of Uppaal Stratego is
done on-line offering every 5 s a new updated optimal strategy for the next oper-
ation of a signalized intersection in the municiplaity of Køge, Denmark, Fig. 11.
In doing so the Uppaal Stratego model takes into account the random gener-
ation of traffic in the various directions. The on-line strategy generated is fed to
a richer simulation engine in SUMO, an open source tool which allows to model
and simulate traffic systems. SUMO also provides a number of supporting tools
which allow for visualization, network transformation, waiting time calculations,
traffic light performance, etc.

In the resulting evaluation shown in Fig. 2 we have compared the performance
of a so-called Static controller, the Loop Controller and the Uppaal Stratego

controller. In the most demanding MAX scenario – with highest intenty of traf-
fic – it is clear that the Uppaal Stratego controller is performining signifi-
cantly better than any of the others. For MID scenario the findings are similar
and for the LOW scenario all the controllers perform quite similar, but the Loop
controller is in general the best (Table 2).
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Table 2. Results of the experiments. We show the mean and the 95 percentile for
respectively the waiting time of the cars and the queue length. This is done for each
controller in all scenarios.
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Abstract. We consider distributed timed systems that implement
leader election protocols which are at the heart of clock synchronization
protocols. We develop abstraction techniques for parameterized model
checking of such protocols under arbitrary network topologies, where
nodes have independently evolving clocks. We apply our technique for
model checking the root election part of the flooding time synchronisa-
tion protocol (FTSP), and obtain improved results compared to previous
work. We model check the protocol for all topologies in which the dis-
tance to the node to be elected leader is bounded by a given parameter.

1 Introduction

One of the apparently simplest services in any loosely-coupled distributed system
is the time service. Usually, a client in such a system, e.g. your laptop, simply
posts an NTP (network time protocol) request to any registered server and
uses the first reply. In many such systems, however, the accuracy and reliability
of the time service are critical: clients of traffic and power grids, banking and
transaction networks, automated factories and supply plants, acutely depend on
a reliable and accurate measure of time.

To make things worse, most cyber-physical system in such distributed net-
works rely on a quasi-synchronous hypothesis that critically relies on drift and
jitter bounds provided by time synchronisation protocols. In a remedy for this
Achille’s heel of the “Internet of things”, fault-tolerant and self-calibrating pro-
tocols have been proposed, such as the open source flooding time synchronisation
protocol (FTSP) of Tiny OS, Google’s True Time API, as well as commercial
solutions, such as IGS’ Real-Time Service. It is critical to provide such services
to the 21st Century’s Internet as is it to provide proof of their correctness.

Our goal is to develop both modular and scalable verification techniques for
time synchronisation protocols. Towards this aim, in this paper, we concentrate
on leader election protocols which are at the basis of several time synchronisation
protocols where the nodes in the network synchronise their clocks to that of
the elected leader. Leader election protocols pose exciting benchmarks and case
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studies to the verification of distributed systems design. These have been the
subject of formal proofs or model-checking, e.g. Chang-Robert’s algorithm [6,15],
and that of Dolev-Klaweh-Rodeh [13,17].

The root election part of FTSP [20], available in open-source in the imple-
mentation of Tiny OS, has drawn attention from the formal verification commu-
nity. Kusy and Abdelwahed [19] model-check FTSP root election using SPIN,
showing that a 4-node FTSP network is guaranteed to converge to a single root
node. McInnes [21] verifies root-convergence for 7-node models using the FDR2
model checker, and also considers time-convergence properties, i.e. whether all
nodes agree on the time of the root node. Tan et al. [28] use timed automata to
introduce a more realistic simulation model of wireless sensor networks (WSN)
with transmission delays and node failures and check the FTSP against these.
They identify an error in a scenario where two root nodes fail continuously.

Parameterized Verification. The major issue when model checking such distrib-
uted protocols is the state explosion problem due to the large number of nodes
in the protocol. Several works have concentrated on given network topologies,
for instance, a grid of fixed size, e.g. [21]. To model check properties for an
arbitrary number of nodes, parameterized verification techniques have been con-
sidered. Although the general problem is undecidable [2], decidability has been
shown in several cases, by proving cutoffs [14] either on fully connected topolo-
gies or particular ones such as rings. Compositional model checking techniques
were used in [22] for model checking a cache coherence protocol.

Contributions. We present an abstraction technique for the parameterized ver-
ification of distributed protocols with unique identifiers and apply it for model
checking the leader election part of the FTSP. Our model for FTSP is more
precise compared to the previous works in several aspects. In fact, we consider
asynchronous communication between nodes rather than instantaneous broad-
casts, and we model the periodically executed tasks as run with local clocks that
are subject to imperfections. We were able to model check that a unique leader
is elected starting at an arbitrary configuration, assuming no fault occurs dur-
ing this period. This corresponds to checking fault recovery, that is, proving the
protocol correct following an arbitrary fault. Thus, if we prove that the leader is
elected within N steps in this setting, then following any fault, a unique leader
is elected again within N steps in the worst case.

Our parameterized verification algorithm allows us to check FTSP (a) for
arbitrary topologies in which the maximal distance to the future leader is at
most K, (b) where each node evolves under clock deviations whose magnitude
can be adjusted, (c) where communication between nodes are either synchronous
or asynchronous. As an example, we were able to model check the protocol for
K = 7 in the synchronous case, and for K = 5 in the asynchronous case. Graphs
with K = 7 include 2D grids with 169 nodes (or 3D grids with 2197 nodes),
where the future leader is at the middle. For K = 5, these include 2D grids
with 81 nodes (and 729 in 3D). Observe that grids of size 60 were considered for
simulation in [20], which is out of the reach of previous model checking attempts.

We believe our parameterized verification technique can be adapted to other
distributed protocols that work in a similar fashion, e.g. [29]. Our project is
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to extend our technique by integrating non-functional characteristics that have
an impact on the accuracy and reliability of these protocols: electronic haz-
ards (inaccuracy in physical clocks fabric), environmental hazards (temperature
of clients environment), power hazards (capacity and stability of clients power
source). Protocols accounting for such cyber-physical characteristics are being
developed in the NSF Roseline and our goal is to prove their correctness.

More on Related Work. Our parameterized verification approach is inspired by [7]
where an abstraction technique is given for parameterized model checking against
safety properties in cache coherence protocols. Using the fact that such systems
are symmetric, the main idea is to isolate a pair of nodes and abstract away
other nodes as an abstract environment. In our work, the systems we consider
are not symmetric since the nodes have unique identifiers which influence their
behaviors and the network topology is arbitrary. We thus deal with these issues
in order to lift the technique in our case. Another work introduces a refinement of
existential abstraction for parameterized model checking: in [8], an abstraction
is obtained by isolating a component, and abstracting away the other nodes by
summarizing which control states are occupied by some component, which is
similar to counter abstraction [25]. Parameterized verification techniques have
been studied for fault-tolerant distributed systems with Byzantine or other types
of failures [16]. Such protocols often consider threshold guards, which are used
to make sure that a given number of messages have been received from different
processes. The authors define abstractions on the set of participating nodes with
predicates that use these thresholds. This approach is not applicable in our case
due to our network topologies, and that the nodes do not use such thresholds.
Parameterized verification results on processes with unique identifiers are more
rare but decidability was obtained under some restrictions [11].

Overview of the Abstraction Technique. Let us give an overview of our
parameterized verification technique. Let us call future leader the node that is
expected to become the leader. We consider classes of graphs GK in which the
maximal distance from the future leader is K. We show how to verify the protocol
for all network topologies in GK , for given K, essentially in two steps:

1. We apply abstractions on local variables including node identifiers, which
reduce the state spaces and renders all nodes anonymous except for the future
leader. In fact, the variables storing node ids are mapped to a Boolean domain;
encoding whether the node id is that of the future leader or not.

2. We then pick a shortest path of length K from the future leader. We derive an
abstract model where all nodes that appear on this path are kept as concrete,
but all other nodes have been abstracted away.

For each K, we thus construct a model A(K) and prove that it is an over-
approximation of the protocol on all topologies in GK . We make sure that A(K)
does not depend on the choice of the shortest path; if the property holds on A(K),
it holds on the whole network. The approach is illustrated in Fig. 1.

Clock Deviations. We are interested in protocols where each node executes a
periodic action with identical period. However, this period is subject to small
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(a) A network with a grid
topology. The future root,
that is, the node with the
smallest ID is shown with
a white dot.

(b) We choose a path from
the future root to some
node

(c) We model all nodes on
the path concretely, and
summarize the behavior
of all other nodes by one
abstract node

Fig. 1. Shortest-path abstraction illustrated on a grid topology with K = 3.

deviations due to environment and hardware differences. Rather than using real-
time verification techniques [1], we use a recent and simple way of modeling
behaviors under such conditions. In [12], it is shown that an approximately syn-
chronous semantics, where one bounds the progress of each process with respect
to that of others, over-approximates the behaviors under bounded clock devia-
tions, which makes it possible to use finite-state model checking techniques and
tools.

Incremental Verification. We use an incremental proof technique for model check-
ing A(K) for increasing values of K, as follows. To check A(K+1), we first model
check A(K), proving that all nodes eventually agree on the leader. Our abstrac-
tion method implies that the first K components in A(K+1) eventually agree on
the leader since their part of the graph belongs to GK . Thus, to check A(K +1),
we initialize the first K nodes at states where they have agreed on the future
leader. This significantly simplifies the verification process.

Overview. Section 2 presents definitions for the formalization of our approach.
We describe FTSP in detail in Sect. 3, as well as the abstraction steps explained
above, and the incremental verification result. A semi-algorithm for model check-
ing and experimental results on FTSP are presented in Sect. 4.

2 Definitions

Communicating Processes. A process is an automaton A = (S, sinit, δ, Σ) where S
are states, sinit ⊆ S are the initial states, and δ ⊆ S ×Σ×S a transition relation,
with alphabet Σ. A transition (s, a, s′) ∈ δ is also written δ(s, a, s′) or s

a−→ s′,
and we write s � a−→ to mean that there is no s′ such that δ(s, a, s′). We consider
predicates that are evaluated on the states of a given process. Let P be a finite
number of predicates where each p ∈ P is a subset p ⊆ S, representing states in
which the predicate is satisfied. We write s |= p if s ∈ p.

We define simulation between two processes as follows. Consider process A =
(S, sinit, δ, Σ) with predicates P and A′ = (S′, s′

init, δ
′, Σ′) with predicates P ′, an

alphabet Σ′′ ⊆ Σ, and any function α : Σ′′ → Σ′. Assume that P and P ′ are in
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bijection denoted by p �→ p′ for each p ∈ P. We say that A′ (Σ′′, α)-simulates A,
written A �Σ′′,α A′ if there exists R ⊆ S × S′ such that sinit × s′

init ⊆ R and
∀(s, s′) ∈ R,∀a ∈ Σ′′, t ∈ S, δ(s, a, t) ⇒ ∃t′ ∈ S′, δ′(s′, α(a), t′) ∧ (t, t′) ∈ R, and
moreover for all (s, s′) ∈ R and p ∈ P, s |= p ⇔ s′ |= p′. When α is the identity
and Σ′′ = Σ, this is the usual simulation notion, and we write �Σ′′ . Given a
process A, let us define the mapping of A by α the process obtained by A by
replacing the transitions δ by δ′ = {(s, α(a), s′) | (s, a, s′) ∈ δ}. It is clear that
the mapping A′ (Σ,α)-simulates A.

For any positive integer N , we write A �N
Σ′′,α A′ if there exist R1, . . . , RN ⊆

S × S′ such that sinit × s′
init ⊆ R1 and for all 1 ≤ i ≤ N − 1, ∀(s, s′) ∈ Ri,∀a ∈

Σ′′, t ∈ S, δ(s, a, t) ⇒ ∃t′ ∈ S′, δ′(s′, α(a), t′) ∧ (t, t′) ∈ Ri+1; and for all (s, s′) ∈
R1 ∪ . . . ∪ Rn, s |= p ⇔ s′ |= p′. The latter relation is called simulation up to N .

We define a particular alphabet Σ to model synchronization by rendez-vous.
Let us fix n > 0, and define the set of identifiers Id = {1, . . . , n}. Consider also
an arbitrary set Msg of message contents. We denote [1, n] = {1, . . . , n}. We
define the alphabet Σ(Id,Msg) = {i!(j,m) | i ∈ Id, j ∈ Id,m ∈ Msg} ∪ {j?(i,m) |
i, j ∈ Id,m ∈ Msg} ∪ {τ}. We let Σ = Σ(Id,Msg). We will later use different
sets Id and Msg to define alphabets. Intuitively, the label i!(j,m) means that a
process with id i sends message m to process with id j, while j?(i,m) means
that process j receives a message m from process i. The special symbol τ is an
internal action. For a subset I ⊆ Id, let ΣI(Id,Msg) = {τ} ∪ {i!(j,m), i?(j,m) ∈
Σ(Id,Msg) | i ∈ I, j ∈ Id,m ∈ Msg}. These are the actions where the senders
and receivers have ids in I. A τ -path of A is a sequence s1s2 . . . of states such
that for all i ≥ 1, δ(si, τ, si+1). An initialized τ -path is such that s1 ∈ sinit.

Graphs. To formalize network topologies, we consider undirected graphs. A graph
is a pair G = (V,E) with V = {1, . . . , n} and E ⊆ V × V which is symmetric.
Let G(n) the set of graphs on vertex set {1, . . . , n}. In our setting, a node will
be identified with a process id. For a graph G = (V,E), and node i, let NG(i) =
{j ∈ V, (i, j) ∈ E}, the neighborhood of i. We define the following subclass of
graphs. For any positive number K ≥ 0, let GK(n) denote the set of graphs
of G(n) in which the longest distance between node 1 and any other node is at
most K. Here, distance is the length of the shortest path between two nodes.

Asynchronous Product. We now define the product of two processes A and A′

following CCS-like synchronization [23]. Intuitively, processes synchronize on
send i!(j,m) and receive j?(i,m), and the joint transition becomes a τ -transition.

Definition 1. Consider A = (S, sinit, δ, ΣJ (Id,Msg)) and A′ = (S′, s′
init, δ

′,
ΣJ ′(Id,Msg)) where J, J ′ ⊆ {1, . . . , n} with J ∩ J ′ = ∅. Let G = (V,E) ∈ G(n).
We define the product A′′ = A ‖G A′ as (S′′, s′′

init, δ
′′, ΣJ∪J ′) where S′′ = S ×S′,

s′′
init = sinit×s′

init, and δ′′ is defined as follows. There are four types of transitions.
Internal transitions are defined by (s1, s′

1)
τ−→ (s2, s′

2) whenever δ(s1, τ, s2) ∧
s′
1 = s′

2 or δ′(s′
1, τ, s

′
2) ∧ s1 = s2.
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Synchronizing transitions are defined as (s1, s′
1)

τ−→ (s2, s′
2) whenever ∃i ∈

J, j ∈ J ′,m ∈ Msg with i ∈ NG(j), s.t. either s1
i!(j,m)−−−−→ s2 and, s′

1

j?(i,m)−−−−−→ s′
2;

or, s′
1

j!(i,m)−−−−→ s′
2, and s1

i?(j,m)−−−−→ s2.

Sending transitions without matching receive is defined as (s1, s′
1)

i!(j,m)−−−−→
(s2, s′

2) whenever i ∈ J, j �∈ J ′,m ∈ Msg, i ∈ NG(j) s.t. either s1
i!(j,m)−−−−→ s2, s

′
1 =

s′
2; or, i ∈ J ′, j �∈ J, s′

1

i!(j,m)−−−−→ s′
2, s1 = s2.

Receive transitions without matching send are defined, for all i, j ∈ Id and

m ∈ Msg, (s1, s′
1)

i?(j,m)−−−−→ (s2, s′
2) whenever i ∈ NG(j) and either i ∈ J, j �∈

J ′, s1
i?(j,m)−−−−→ s2, s

′
1 = s′

2, or i ∈ J ′, j �∈ J, s′
1

i?(j,m)−−−−→ s′
2, s1 = s2.

The composition operation ‖G is commutative and associative by definition. We
will thus write the product of several processes as A1 ‖G . . . ‖G An, or ‖G

i=1...n Ai.

Predicates and LTL Satisfaction. We will use LTL for our specifications [24] which
use the predicates P we consider for our model. We assume the reader is familiar
with this logic, and refer to [10,24] otherwise. We just need the eventually (F),
and globally (G) modalities. Given an LTL formula φ, we write A |= φ if all
initialized τ -paths satisfy φ.

Abstractions and Simulation. A label abstraction function is defined by α :
Id → Id�, and α : Msg → Msg�1. This function is uniquely extended
to Σ(Id,Msg) by α(τ) = τ, α(i!(j,m)) = α(i)!(α(j), α(m)), and α(i?(j,m)) =
α(i)?(α(j), α(m)). We will see examples of label abstractions later in this paper.

Lemma 1. Let Ai = (Si, s
i
init, δi, ΣJi

(Id,Msg)) for i ∈ [1, n], with pairwise dis-
joint Ji ⊆ Id, and G ∈ G(m) with ∪iJi ⊆ {1, . . . , m}. Consider a label abstraction
function α, s.t. α(Ji) ∩ α(Jj) = ∅ for all i �= j ∈ [1, n]; and mappings A′

i of Ai

by α so that Ai �ΣJi
(Id,Msg),α A′

i. Then, ‖G
i=1...n Ai �{τ}‖G

i=1...n A′
i.

Notice that when A �{τ} B, all LTL formulas that hold in B also hold
in A (see e.g. [3]) since simulation implies trace inclusion. Thus, to prove that A
satisfies a given property, it suffices to verify B.

An abstraction can also be obtained by relaxing the graph G.

Lemma 2. Consider Ai = (Si, s
i
init, δi, ΣJi

(Id,Msg)) for i ∈ [1, n], where Ji ⊆ Id
are pairwise disjoint, and G,G′ ∈ G(m) where ∪iJi ⊆ {1, . . . , m}. We write G =
(V,E) and G′ = (V,E′). If E ⊆ E′, then ‖G

i=1...n Ai �{τ}‖G′
i=1...n Ai.

Approximate Synchrony. We recall the results of [12] where a finite-state sched-
uler is defined for concurrent processes which run a periodic action with an
approximately equal period. This is the case in FTSP since all nodes run
processes that wake up and execute an action with an identical nominal period T .
Since each node is executed on a distinct hardware with a local clock, the

1 Both are denoted α. Formally, α can be defined on the disjoint union of these sets.
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observed period is only approximately equal to T . Thus, some nodes can exe-
cute faster than other nodes. In our model, we would like to include different
interleavings that can be observed due to clock rate changes. Let us assume that
the actual period lies in the interval [σl, σu] (which contains T ). However, not
all interleavings between processes can be observed. In particular, if |σu − σl|
is small, the periods of different processes will be close, so they will be approx-
imately synchronous: within one period of a process, another process cannot
execute several periods. This restricts considerably the interleavings to be con-
sidered for model checking. Following [12], we define a scheduler that generates
at least all interleavings that can be observed during the first N periods, when
the clock rates are within a given interval.

We give two schedulers to model such approximately periodic behaviors.
We will later instantiate these again for the particular case of FTSP. Let us
consider A1, . . . ,An, and an additional process S which will be used to schedule
processes Ai. Let us add a label ticki? to each Ai, and {ticki!}1≤i≤n to S;
this models the periodic task of the node i.2 Let us assume that all states of Ai

accept a transition with ticki?

Real-Time Scheduler. We define a concrete scheduler St which describes the
executions generated by local clocks. We define St with an infinite state space,
SS = [0, σu]n, where the i-th component is the elapsed time since the latest exe-
cution of ticki? in process Ai. We allow two kinds of transitions that alternate.
There are time elapse transitions (t1, . . . , tn) τ−→ (t′1, . . . , t

′
n) if for some d ≥ 0,

∀1 ≤ i ≤ n, t′i = ti + d, and ∀1 ≤ i ≤ n, t′i ≤ σu. Second, we have the transition

(t1, . . . , tn) ticki!−−−−→ (t′1, . . . , t
′
n) where t′j = tj for all j �= i and t′i = 0 if ti ∈ [σl, σu].

Thus, St describes the executions where each process is executed with a period
that varies within [σl, σu].

Abstract Scheduler. Although the scheduler St above describes the behaviors
we are interested in, its state space is continuous, and one would need a priori
timed or hybrid automata to model it precisely. In this work, we prefer using
finite-state model checking techniques for better efficiency, thus we now describe
a simple abstraction of St using finite automata.

For each process i, and time t, let us denote by Ni(t) the number of tran-
sitions ticki? that was executed in A1 ‖ . . . ‖ An ‖ St up to time t. We
define the abstract scheduler Sa(Δ) on a finite state-space, given integer Δ,
which ensures that, at any time point t, for all pairs of processes i, j, we
have |Ni(t) − Nj(t)| ≤ Δ. Intuitively, Sa(Δ) describes the behaviors in which a
fast process can execute at most Δ periods within one period of a slow process.
Notice that Sa(Δ) can be defined simply by counting the number of times each
process has executed ticki? One can actually use bounded counters in [0,Δ];
in fact, it is sufficient to keep the relative values of Ni(t) with respect to the
smallest one, so Sa(Δ) can be defined as a finite automaton.

2 These labels can actually be defined within Σ(Id,Msg) by adding a special message
content tick toMsg, and setting ticki! = (n+1)!(i, tick) where n+1 is the identifier
of S. We will write them simply as ticki? and ticki! to simplify the presentation.
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The intuition behind Sa(Δ) is that, given the bounds [σl, σu] on the observ-
able periods, all interleavings up to some length N under St are also present in
Sa(Δ). That is, Sa(Δ) over-approximates St for finite executions. We will show
how one can choose N . Let us denote Ticks = {ticki!}1≤i≤n. We have the
following correspondance between St and Sa:

Lemma 3 ([12]). Consider Δ > 0, and interval [σl, σu]. Let Nf be the minimal
integer satisfying the following constraints: Nf ≥ Ns, Nf −Ns > Δ,σlNf +σu ≤
σuNs, and Nf , Ns ≥ 1. Then, we have St �Nf −1

Ticks Sa(Δ).

In the above lemma, Nf represents the number of steps performed by the fastest
processes, and Ns is that of the slowest processes. Minimizing Nf means that
we look for the earliest step where Nf − Ns > Δ holds, so that the simulation
holds up to Nf − 1 steps. Hence, we can use Sa(Δ) for model checking rather
than St for N steps, where N is determined by Δ and σl, σu.

3 Parameterized Model Checking of FTSP

In the FTSP, each node has a unique identifier, and the nodes dynamically elect
the node with the least id as the root. The root regularly sends messages to its
neighbors, which forward it to their own neighbors and so on. These messages
contain time information which is used by the nodes to adjust their clocks. If the
root node fails, that is, stops transmitting messages, then other nodes eventually
time out and declare themselves as roots, and the protocol makes sure that a
unique root is eventually elected if no more faults occur during a period of time.

More precisely, each node has an identifier ID, and executes the periodic
action send, depicted in Fig. 2 in which it increments a “heart beat” counter b.
This counter is reset to 0 if the node receives a certain message via the receive
function: this can happen either when the node first hears about a node with a
smaller ID ri than the currently known one, stored in r, or when the currently
known root sends a new message with a larger sequence number si than that
of the latest message s. The sequence numbers are used to distinguish new
messages from the old ones that originate from a root node; a lexicographic order
is used so that smaller root IDs with higher sequence numbers are preferred.
A node declares itself root if the counter b exceeds the threshold FTO; and it
only broadcasts messages if it is root, or if it has received at least LIM messages
from some root. We refer the reader to [20] for the details on FTSP.

Both functions send and receive are executed atomically. Thus, the effects
of each function on local variables are self-explanatory. The operation o!!(r, s)
means broadcast: it is a system call to broadcast the message (r, s) to all the
neighbors of the node. This operation is non-blocking: when the function send
returns, the node sends the message to each neighbor in an arbitrary order. We
assume the broadcast data is stored in a variable m which takes values from
the set {⊥} ∪ 2Id × Msg. Here ⊥ means that there is no ongoing broadcast,
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and a pair (I,m) means that processes with ids in I are still to receive the
message m. That is, the operation o!!(r, s) actually just assigns the value (r, s)
to local variable m.

The node can receive messages and execute receive before its own broadcast
is over. We just make the following assumption on broadcasts, which is justified
by the fact that the typical period of the send events is about 30 s [20].

Assumption: Any broadcast started by a node is completed before the node
executes the next send event.

3.1 Concrete Model

We fix a graph G ∈ G(n) with n nodes, and set Id = {1, . . . , n}, and Msg = Id×N.
In Msg, the first component of a message is the ID of the root node which has
generated the message (and not the ID of the node that forwards the message),
while the second component is the sequence number. Each process Ai is a node
in the protocol in which the variable ID is i, and executes functions receive
and send of Fig. 2. We define Ai = (Si, s

i
init, δi, Σ{i}(Id,Msg)), with Si = Vi ×

(2n ∪ {⊥}) where Vi are the set of valuations for all local variables. For any
variable a, and state s ∈ Si, we write s(a) for the value of a in s (we also
write v(a) for v ∈ Vi). The second component of a state s ∈ Si denotes whether
the process is currently broadcasting: if it is ⊥, there is no broadcast occurring
and s(m) = ⊥; if it is I ⊆ 2Id, then message s(m) is to be received by processes
in I. We denote by s[a ← a] the state obtained from s by assigning a to a.

Since each function is executed atomically, in Ai, a single transition corre-
sponds to an uninterrupted execution of send or receive, or to a communica-
tion. For any m ∈ Msg, let us define the relation receivei(m) ⊆ Vi × Vi (resp.
send) as (v, v′) ∈ receivei(m) (resp. (v, v′) ∈ sendi) if, and only if there is an
execution of this function from state v to state v′, when the node ID is i. These
relations are functions since receivei and sendi are deterministic; however, sub-
sequent abstractions will transform these into nondeterministic programs, thus
we will obtain relations instead of functions. Thus, δi is defined as follows:

1 #define MAX 6 /∗ MAX ENTRIES ∗/
2 #define LIM 3 /∗ ENTRY SEND LIMIT∗/
3 #define MIN 2 /∗ IGNOREROOTMSG ∗/
4 #define FTO 8 /∗ ROOTTIMEOUT ∗/
5 extern int ID /∗ TOS NODE ID ∗/
6 #define NIL 255
7
8 void r e c e i v e ( byte r i , byte s i ) {
9 i f ( r i < r && ! ( b < MIN && r==ID ) )

10 | | ( r i == r && s i − s > 0){
11 r = r i ;
12 s = s i ;
13 i f ( r < ID){b = 0;}
14 i f ( e < MAX){ e++;}
15 }
16 }

1 byte b ; /∗ heartBeats ∗/
2 byte e ; /∗ numEntries ∗/
3 byte r ; /∗ outgoingMsg . rootID ∗/
4 byte s ; /∗ outgoingMsg . seqNum ∗/
5 chan o ; /∗ Output channel ∗/
6
7 void send ( ) {
8 i f (b >= FTO){
9 i f ( r == NIL){ s = 0 ; }

10 else { b = 0 ; s++; }
11 r = ID
12 }
13 b++;
14 i f ( r == ID){ o ! ! ( r , s ) ; s++; }
15 else i f ( e >= LIM){ o ! ! ( r , s ) }
16 }

Fig. 2. Pseudocode of the main send and receive functions in FTSP
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(v,⊥) ticki?−−−−→ (v′,NG(i)) ⇔ (v, v′) ∈ sendi ∧ v′(m) �= ⊥,

(v,⊥) ticki?−−−−→ (v′,⊥) ⇔ (v, v′) ∈ sendi ∧ v′(m) = ⊥,

(v, ∅) tocki?−−−−→ (v[m ← ⊥],⊥),

(v, I)
j?(i,m)−−−−−→ (v′, I) ⇔ (v, v′) ∈ receivei(m) ∧ j ∈ NG(i),

(v, I)
i!(j,m)−−−−→ (v, I \ {j}) ⇔ m = v(m) �= ⊥ ∧ j ∈ I,

where the last two lines are defined for all I ∈ {⊥} ∪ 2Id.
Notice that we separate the execution of the body of the two functions and the

broadcast operations. A broadcast operation is completed between the ticki?
and tocki? events. Hence, the broadcast can be interrupted with a receive event,
but another send event cannot be executed before the broadcast is complete,
which conforms to our assumption above. The role of ticki and tocki signals
will be clear in the next paragraph where the schedulers are defined. The initial
states are the set of all valuations since we assume that the network starts in
an arbitrary configuration. Now, ‖G

i=1...n Ai defines the protocol on the given
topology G. It remains to define the schedulers.

Schedulers and Two Communication Semantics. We define schedulers
which determine when each process can execute its send event, and how the
communication is modeled. We sketch our schedulers with two communication
models.

Synchronous Communication. In the first model, we assume that communication
between the sender and all receivers occur simultaneously. So, one step consists
in a node executing send followed by all its neighbors immediately receiving the
message by executing receive. This is the synchronous communication model
as considered in previous works [19,21,28].

To implement synchronous communication, we introduce the signal tocki!,
and force the whole communication initiated by node i to happen uninterrupted
between ticki! and tocki! signals. We define St,syn by modifying the real-time
scheduler St defined above by requiring that each ticki! is immediately followed
by a corresponding tocki!, and by disallowing any other tickj ! inbetween. We
also define S ftsp

a,syn(Δ) from Sa(Δ) using the alternating ticki and tocki signals.

Asynchronous Communication. The second type of schedulers we define imple-
ment asynchronous communication, and is more faithful to the real behavior e.g.
in the TinyOS implementation. In this setting, both events send and receive
are still atomic, but the broadcast is concurrent: while the sender is broadcasting
the message to its neighbors, other nodes can execute their own send action or
receive other messages. We call this the asynchronous communication model.

We define St,asyn by adding to St self-loops labeled by tocki! to all states for
all i ∈ Id. (Note that tocki! signals are useless here, but we keep them so that
both schedulers have a uniform interface). We define the scheduler S ftsp

a,asyn(Δ)
similarly, by adding self-loop tocki! to all states of Sa(Δ).

The next developments are independent from the communication model.
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Complete Model and Property to be Verified. Given a graph G ∈ G(n)
let A1, . . . ,An denote the processes thus defined, and write A(G) =‖G

i=1...n Ai.
We let Mconc

�� (G) = A(G) ‖ St,��, for 	
 ∈ {syn, asyn}, which is the concrete
protocol under the real-time scheduler St defined above. This model defines the
behaviors we would like to verify. For each i ∈ Id, let us add a counter ci to
the model that counts the number of times ticki! is executed, and define c =
maxi ci, which will be used in the specifications.

The property we want to check is that all nodes eventually agree on a common
root. Let FRID denote the constant 1, which stands for the f uture root id. In
fact, according to the protocol, A1 is expected to become the root since it has
the least id. We will call A1 the future root. Define Pi as the set of states in
which the local variable r of process i has value FRID. We consider the property
P(N) = F(c ≤ N ∧ ∧n

i=1Pi) for some N . Thus, along all executions, before any
process has executed more than N ticki’s, all processes agree on FRID to be
the root. Thus, our goal is to show that Mconc

�� (G) |= P(N) for some N > 0. By
Lemma 3, given Δ, it suffices to find N > 0 for each 	
 ∈{syn, asyn}, such that
A(G) ‖ S ftsp

a,��(Δ) |= P(N).

3.2 Abstractions on Individual Nodes

We now present the abstraction steps we use before model checking. We will
abstract our variables and statements involving these using data abstraction:
we map the domain of the variables to a smaller set, and redefine the tran-
sitions using existential abstraction so that the abstract program is an over-
approximation in the sense that the original process is simulated by the existen-
tial abstraction. This is a standard abstraction technique; we refer the reader
to [9] for details.

More precisely, the applied abstraction steps are the following.

1. Add a redundant variable imroot that stores the value of the predicate r ==
ID, that is, whether the node is currently root.

2. Relax the behaviors of both functions in the case r �= FRID∧ri �= FRID∧ID �=
FRID by abstracting the variables s and e away (i.e. we assume their values
change arbitrarily at any time).

3. Map the variables r and ri in the abstract domain {FRID, NRID} in each node.
Also map b to the bounded integer domain {0, FTO}, e to {0, . . . , LIM}.

The resulting pseudocode is shown in Fig. 3. Here, the value ⊥ represents any
value, which make any comparison operation nondeterministic. The constant
NRID we introduce stands for non-root id, and is an abstract value that represents
all ids different than FRID.

Note that the second step always yields an over-approximation, indepen-
dently from the if-then-else condition chosen to separate the concrete and
abstract cases in Fig. 3. In fact, the concrete case is identical to the origi-
nal code, while the abstract case is an over-approximation by data abstrac-
tion. In Fig. 3, the abstractions of the predicates on variables r and ri are



34 O. Sankur and J.-P. Talpin

1 #define LIM 3 /∗ ENTRY SEND LIMIT ∗/
2 #define MIN 2 /∗ IGNOREROOTMSG ∗/
3 #define FTO 8 /∗ ROOTTIMEOUT ∗/
4 #define NIL 255
5 extern int ID ; /∗ TOS NODE ID ∗/
6 #define FRID 0 /∗ FUTURE ROOT ID ∗/
7 #define NRID 1 /∗ Abstract ID for
8 a l l other nodes > FRID ∗/
9

10 void r e c e i v e ( byte r i , byte s i ) {
11 /∗ Concrete case ∗/
12 i f ( r == FRID | | r i ==

FRID | | ID == FRID){
13 i f (“ri < r” && ! ( b < MIN && imroot )
14 | | “ri == r” && s i − s > 0 ){
15 r = r i ;
16 s = s i ;
17 imroot = ( ID == FRID ) ;
18 i f (“r < ID” ) b = 0 ;
19 i f ( e < LIM) e++;
20 }
21 } else {
22 /∗ Abstract case ∗/
23 i f (“ri < r” && ! ( b < MIN && imroot )
24 | | (“ri == r” && ∗){
25 r = r i ;
26 s = ⊥ ;
27 imroot = “r == ID” ;
28 i f (“r < ID” ) b = 0 ;
29 e = ⊥ ;
30 }}}

1 byte b ; /∗ heartBeats ∗/
2 byte e ; /∗ numEntries ∗/
3 byte r ; /∗ outgoingMsg . rootID ∗/
4 byte s ; /∗ outgoingMsg . seqNum ∗/
5 chan i , o ; /∗ IO channels ∗/
6 byte imroot ; /∗ Predicate : r == ID ∗/
7
8 void send ( ) {
9 /∗ Concrete case ∗/

10 i f ( r == FRID | | ID == FRID){
11 i f (b >= FTO){
12 i f (“r == NIL”) s = 0 ;
13 i f (“r! = ID”) { b = 0 ; s++; }
14 r = ID ;
15 imroot = 1 ;
16 }
17 b++;
18 i f ( imroot ){ o ! ! ( r , s ) ; s++; }
19 else i f ( e >= LIM){ o ! ! ( r , s ) ; }
20 } else {
21 /∗ Abstract case ∗/
22 i f (b >= FTO){
23 i f (“r! = ID”) { b = 0 ; s = ⊥ ; }
24 r = ID ;
25 imroot = 1 ;
26 }
27 i f (b < FTO) b++;
28 i f ( imroot ){ o ! ! ( r , ∗ ) ; s = ⊥ ; }
29 else i f (∗ ){ o ! ! ( r , ∗ ) ; }
30 }}

Fig. 3. After the second and third steps of the abstraction. The behavior of receive

is relaxed when r != FRID or the received message (ri,si) is such that ri != FRID.
Similarly, the behavior of send is relaxed when r != FRID and ID != FRID. For both
functions, we redefine the behaviors of the protocol by disregarding the variables e and
s. The updates and tests on these variables become completely non-deterministic. In
particular, nodes in such states can send more often messages with arbitrary sequence
numbers. Then, the variables r,ri are mapped to the domain {FRID, NRID}. The vari-
able b is mapped to {0, 1, . . . , MAX}, and e to {0, 1, . . . , LIM}.

represented in quotes. They represent non-deterministic transitions as fol-
lows. The comparison relation becomes non-deterministic: we have FRID <
NRID and FRID = FRID, but, for instance, a comparison between NRID
and NRID can yield both true and false. As an example, “r == ri” stands for
r = FRID && ri = FRID || r = NRID && ri = NRID && *, ∗ being a nonde-
terministic Boolean value.

Let S′
i = V ′

i × (2n ∪ {⊥}) where V ′
i is the set of valuations of node variables

(with given id i), with the abstract domains we have described. Let us define
the relations receive′

i ⊆ V ′
i × V ′

i and send′
i ⊆ V ′

i × V ′
i , similarly as before,

e.g. (s, s′) ∈ receive′
i if, and only if there is an execution of receive′

i from s
yielding s′. Let A′

i denote the process defined just like Ai in Subsect. 3.1 but
using the new relations receive′

i and send′
i. We state the relation between Ai

and A′
i using a label abstraction function α. We let α be the identity over Id,

and set Msg� = {FRID, NRID}× (N∪{⊥}) with α((k, s)) = (FRID, s) if k = FRID,
and α((k, s)) = (NRID,⊥) otherwise.

Lemma 4. For all i, Ai �Σi(Id,Msg),α A′
i.

By Lemma 1, it follows that ‖G
i=1...n Ai �{τ}‖G

i=1...n A′
i.
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3.3 Abstraction on Network Topology: Shortest-Path Abstraction

Recall that our model has a network topology G ∈ GK(n). Consider an arbitrary
shortest path Ai1Ai2 . . . Aim

with m ≤ K, where i1 = 1. Let C = {i2, . . . , im},
that is, all nodes on this path but the future root. Define O = Id\C. Let us relax
the graph G = (V,E) into G′ = (V,E′) by E′ = E ∪ O × O ∪ O × C ∪ C × O.
Thus, we render the graph complete within O, and add all edges between O
and C. Let us write A′

C =‖G′
i∈C A′

i, and A′
O =‖G′

i∈O A′
i. By Lemma 2, these are

over-approximations of the products defined for G.
We define A′′

O as a single-state process with alphabet ΣO(Id,Msg�) which can
send any message to any other node. We clearly have A′

O �ΣO(Id,Msg�) A′′
O.

We now get rid of the identifiers outside C ∪{1} by defining a label abstrac-
tion function α′ : Id → Id� with Id� = C ∪ {O, 1} where O is a fresh symbol. We
let α′(i) = i for all i ∈ C ∪ {1}, and α′(i) = O for all i ∈ O \ {1}. So, all nodes
outside C ∪ {1} are merged into one identifier O. Let BO be the mapping of A′′

O

by α′, and BC that of A′
C , so that we have A′

O �ΣO(Id,Msg�) A′′
O �ΣO(Id,Msg�),α′ BO

and A′
C �ΣC(Id,Msg�),α′ BC .

We need to adapt the scheduler so that it does not keep track of the offset of
the processes represented by O. Let S ′ftsp

a,syn(Δ) and S ′ftsp
a,asyn(Δ) defined similarly

as before which track the offsets of all nodes in C ∪ {1}, but have a self-loop
with label tickO! at all states. We thus have S ftsp

a,��(Δ) �Ticks,α′ S ′ftsp
a,��(Δ) for

both 	
 ∈ {syn, asyn}.
By Lemmas 1–2, A′

O ‖G A′
C ‖G S ftsp

a,��(Δ) �{τ},α′ BO ‖G′ BC ‖G′ S ′ftsp
a,��(Δ).

We need another abstraction to obtain a finite model: The variable s is
a priori unbounded in each process; however, the only applied operations are
incrementation (by FRID only), assignment, and comparison. Therefore, we can
shift the values so that the minimal one is always 0; thus limiting the maximal
value that is observed. We modify our process to map these variables to a finite
domain {0, 1, . . . , SeqMax,⊥} and normalize their values after each transition:
we make sure that at any step, the values taken by s at all nodes define a
set X ∪ {⊥} for some 0 ∈ X ⊆ {0, 1, . . . , SeqMax}.

We summarize all the steps of the abstractions as follows. Given graph G ∈
GK(n), a path π of length K from node 1, let Mabs

�� (G, π,Δ) = BO ‖G′ BC ‖G′

S ′ftsp
a,��(Δ) where 	
 ∈ {syn, asyn}.

Lemma 5. For all n,K > 0, and all G ∈ GK(n), let π be any shortest path
from node 1. Let C be the nodes of π except 1, and O = [1, n] \ C. We have, for
all 	
 ∈ {syn, async}, Mconc

�� (G) �{τ} Mabs
�� (G, π,Δ).

Notice that in Mabs
�� (G, π,Δ), all node ids are in the set {FRID, NRID}. Thus,

given two different paths π, π′, Mabs
�� (G, π,Δ) and Mabs

�� (G, π′,Δ) are identical
up to the renaming of their channel numbers since both models still contain
labels of the form i!(j,m) and i?(j,m). However, these numbers i, j only define
the topology and do not affect the behaviors. Let us state this formally as follows:

Lemma 6. For all K,n > 0, graph G ∈ GK(n), and paths π, π′ of same length
from node 1, we have Mabs

�� (G, π,Δ) �{τ} Mabs
�� (G, π′,Δ).
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From the above lemma, it follows that for verification purposes (against
LTL), the model Mabs

�� (G, π,Δ) is actually independent of the chosen path π,
but only depends on the length of π. For each K > 0, let us pick one such model
with |π| = K and name it Mabs

�� (K,Δ). Then, we have Mabs
�� (G, π,Δ) �{τ}

Mabs
�� (K,Δ) for all G ∈ GK(n) and Δ > 0. It follows that model checking a

property in Mabs
�� (K,Δ) proves it on all graphs G ∈ GK(n) and all paths π.

In the rest, w.l.o.g. let us assume that C = {2, . . . , K}. Our goal is to check
Mabs

�� (K,Δ) |= PK(N) for some N , where PK(N) = F(c ≤ N ∧ ∧K
i=1 Pi).

3.4 Incremental Verification Technique and Refinement

We explain an incremental approach to model-check our system for successive
values of K. Intuitively, we assume that we have proved the root election property
for K, and we want to prove it for K + 1. For K, if we prove the property is
persistent, that is, holds forever after some point in time, then, we can prove
the property for K + 1 as follows: initialize the first K nodes in Mabs

�� (K + 1,Δ)
to a state in which they agree on the future root, and the K + 1-th node in an
arbitrary state; then verify the property for the last process only:

Lemma 7. Consider processes R1, . . . ,Rn, and S1, . . . ,Sn. For some graph G,
let R(K) =‖G

i=0...K Ri. Assume that R(K + 1) ‖G SK+1 �τ R(K) ‖G SK

for all K. Consider predicate Qi for each Ri, and define Q(K) = ∧K
i=1Qi. Con-

sider R′(K+1) obtained from R(K+1) by restricting the states to Q(K) (That is,
we remove all states outside and all transitions that leave outside this set.), where
the initial state set is Q(K). We have that R(K) ‖ SK |= FGQ(K) ∧ R′(K+1) ‖
SK+1 |= FGQK+1 implies R(K + 1) ‖ SK+1 |= FGQ(K + 1).

Here is how we apply the above lemma in our case. Let Ri = A′
i+1 for i =

1 . . . K. We write SK = S ′ftsp
a,asyn(Δ) defined for C = {1, . . . , K} in Sect. 3.3, and

let SK = A′′
OK

‖ SK with OK = Id \ {2, . . . ,K}. We have A′′
OK+1

�Σ(OK+1,Msg�)

A′′
OK

and SK+1 �Ticks SK by definition, so these processes do satisfy the relation
R(K + 1) ‖ SK+1 �τ R(K) ‖ SK . As properties to satisfy, we consider Qi =
Pi ∧bi ≤ FTO−1∧e ≥ LIM, and also define Q(K,N) = (c ≤ N ∧∧K

i=1Qi). Notice
that Q(K,N) implies PK(N).

Assume we have proved the following statements: M′abs
�� (1,Δ) |= FGQ(1, n1),

M′abs
�� (2,Δ) |= FGQ(2, n2), . . ., M′abs

�� (K − 1,Δ) |= FGQ(K − 1, nk−1), and
M′abs

�� (K,Δ) |= FGQ(K,nk). Then, by the previous lemma, Mabs
�� (K,Δ) |=

FGQ(K,N) for N = n1 + . . . + nk, which means PK(N). Note that the last
property to be proven can also be chosen as FPK which might be satisfied ear-
lier than FGQ(K,nk).

Non-interference Lemma. The first verification attempts reveal a spurious
counter-example: the non-deterministic process BO can send a node in C a mes-
sage (r, s) with r = FRID and s large enough so that the node will ignore all
messages for a long period of time, causing a timeout; this causes the viola-
tion of FGPi. However, intuitively, a node should not be able to send a message
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with r = FRID with a newer sequence number than what has been generated
by the root itself. Following [7], we use guard strengthening : We require that all
messages that come from the process BO must satisfy that either r �= FRID or s
is at most equal to the variable s of the root. Let this condition be φ. We thus
constrain the transitions of our model to satisfy φ, which eliminates this spu-
rious counter-example. Property φ is also called a non-interference lemma [7].
However, we also need to actually prove φ. As it turns out, one can prove φ on
the very same abstraction obtained by strenghtening. The works [7,18] explain
why the apparently circular reasoning is correct. We do not detail this technique
further since this is now a well-known result; see also [5,27].

4 Algorithm and Experimental Results

Semi-Algorithm for FG Properties with Optimal Bound Computation. Model
checking algorithms consist in traversing the state space while storing the set of
visited states so as to guarantee termination. However, this set can sometimes
become prohibitively large. We introduce a simple semi-algorithm for properties
of type FG p where we do not store all states: at iteration i, we just store the
states reachable in i steps exactly, and only if all these satisfy p, do we start
a fixpoint computation from these states. The resulting semi-algorithm is more
efficient and allows us to find the smallest i in one shot.

We implemented the semi-algorithm in NuSMV 2.5.43. We model-checked
the property P(N), and computed the bounds N using our semi-algorithm. The
models are initialized in an arbitrary state, so our results show that the network
recovers from any arbitrary fault within the given time bound. We summarize
our results in Fig. 4. We distinguish the best values for N in both communication
models for different values of K. Missing rows mean timeout of 24 h.

synchronous asynchronous
K N time N time

1 8 0s 8 0s
2 14 1s 14 1s
3 23 1s 25 28s
4 35 3s 39 130s
5 54 16s 63 65mins
6 67 76s
7 107 13mins

Fig. 4. Verification results for
the property P(N), obtained
with the semi-algorithm. For
each K and communication
model, the best derived N is
given.

We observe that the time for the root elec-
tion N differs in the two communication seman-
tics. This value is higher in the asynchronous
case since it contains all behaviors that are pos-
sible in the synchronous case. Observe that the
largest network topology that had been model
checked for FTSP contained 7 nodes [21] with
synchronous communication. In our case, we
prove the property for K = 7, which means that
it holds on two dimensional grids with 169 nodes
(13 × 13) when the root is at the middle (and
three-dimensional grids with 2197 nodes), and 49
nodes if it is on a corner (and 343 nodes in three
dimensions). In the asynchronous case, we prove
the property for K = 5, e.g. 2D grids of size 81
nodes where the root is at the middle.

3 The source code and models are available at https://github.com/osankur/nusmv/tree/
ftsp.

https://github.com/osankur/nusmv/tree/ftsp
https://github.com/osankur/nusmv/tree/ftsp
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This implies the following bounds on clock rates: by Lemma3, for N = 107,
property P(N) is guaranteed on Mconc

�� (G) for all G ∈ GK and [σl, σu] =
[29.7, 30.3] which is the case when the clock rates are within 1 ± 10−2.

5 Conclusion

We presented an environment abstraction technique inspired from [7] for
processes with unique identifiers, arbitrary network topologies, and drifting
clocks. We introduced an incremental model checking technique, and gave an
efficient semi-algorithm that can compute bounds for the eventually properties
in one shot. We applied our technique to model check the root election part of
FTSP and obtained significant improvements over previous results.

An important future work will be to automatize the presented abstraction
method. Several steps of our abstractions, such as data abstractions, can easily
be automatized with minimal user intervention. We would like to go further
following [5], and consider automatic abstractions of the network topology.

Our aim is to address the case of more elaborate time synchronisation pro-
tocols based on interval methods, such as Sugihara and Gupta’s [26] that are
able to implement TSP in WSN without making assumptions on bounded drift,
but simply on precise thermal and cristal oscillator specifications of the WSN
hardware. We would like to obtain formal bounds on time precision guaranteed
by a protocol under various assumptions on environment.

We believe our shortest-path abstraction technique can be used to verify
different distributed protocols in which an information is forwarded in layers
through the network such as [4,29]. An interesting future work would be to
consider protocols that construct a spanning tree of the network in which case
shortest paths would be replaced by a richer subgraph of the network topology.
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Abstract. Strings play a central role in JavaScript and similar script-
ing languages. Owing to dynamic features such as the eval function
and dynamic property access, precise string analysis is a prerequisite
for automated reasoning about practically any kind of runtime prop-
erty. Although the literature presents a considerable number of abstract
domains for capturing and representing specific aspects of strings, we
are not aware of tools that allow flexible combination of string abstract
domains. Indeed, support for string analysis is often confined to a single,
dedicated string domain. In this paper we describe a framework that
allows us to combine multiple string abstract domains for the analysis
of JavaScript programs. It is implemented as an extension of SAFE, an
open-source static analysis tool. We investigate different combinations of
abstract domains that capture various aspects of strings. Our evaluation
suggests that a combination of a few, simple abstract domains suffice
to outperform the precision of state-of-the-art static analysis tools for
JavaScript.

1 Introduction

JavaScript is a highly dynamic and flexible language. Flexibility has a price:
features such as dynamic property access and code execution, prototype-based
inheritance, profligate coercion, and reflection combine to make the static analy-
sis of JavaScript very challenging.1

Precise reasoning about strings is especially critical in JavaScript analysis.
A coarse treatment of string values, and in particular of property names, may
result in an inefficient and less than useful analysis. For example, consider the
1 In JavaScript, an object is a map that associates property names to values. The pro-
totype of an object is instead the object from which it inherits (possibly recursively)
methods and properties. Each object has a property named proto (standardized
in ECMAScript6, even if deprecated) which points to its prototype.

c© Springer-Verlag GmbH Germany 2017
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dynamic access obj[x] for property name x of object obj. Since the value of x
can be unknown (or difficult to know) at compile time, a rough static analysis
may approximate x with the set of all possible string values. This can lead to a
dramatic loss of precision (and, consequently, of efficiency) since obj[x] would
point to any property of obj and any property of its prototype.

In this paper we consider static analysis of string values by means of abstract
interpretation [8], a well-known theory of reasoning with approximations. Infor-
mally, each JavaScript string is approximated by an abstract counterpart, an
“abstract” string. The abstract values used for abstracting a “concrete” string
constitute a string abstract domain, or just string domain.

State-of-the-art JavaScript static analysers such as TAJS [11], JSAI [13], and
SAFE [15] use similar, yet slightly different, abstract domains for representing
string values. However, each commits to one single string domain defined ad
hoc for JavaScript analysis. The precision of such JavaScript-specific domains is
often limited, e.g., for most of the web applications relying on the well-known
jQuery library [12], owing to the inherently dynamic nature of such libraries. On
the other hand, the literature contains proposals for a large variety of general-
purpose string domains [6,7,14,16,17].

Here we describe a usable and open-source tool which implements and inte-
grates several string domains. The tool is built on top of SAFE and we refer to
it as SAFEstr. It allows a user to use combinations of different string domains for
the analysis of JavaScript programs. Analysis with SAFEstr is not limited to a
single specific string domain but allows arbitrary combination of string domains.
This is useful, since a large number of string abstract domains have been pro-
posed. It facilitates experiments with different combinations and investigation
into the (complementary) advantages of different domains.

We have validated the performance of SAFEstr on different JavaScript pro-
grams, most of which rely on the jQuery library. Our experiments suggest that
the use of a single domain often leads to a severe loss of precision, whereas a suit-
able combination of relatively simple string domains can match, and sometimes
outperform the precision of state-of-the-art JavaScript analysers.

The contributions of this paper are:

– a detailed discussion of state-of-the-art string domains, useful also in contexts
beyond JavaScript, that we have integrated into SAFEstr;

– a description of SAFEstr, a major extension and re-engineering of SAFE which
enables the tuning of different string abstract domains;

– an empirical evaluation of SAFEstr on different JavaScript benchmarks that
shows the impact and the benefits of combining string domains.

Paper Structure. Section 2 recapitulates string analysis concepts and gives
examples. Section 3 discusses a range of string domains we have implemented
and evaluated. Section 4 describes SAFEstr. Section 5 reports on the experimental
results. Section 6 discusses related work and Sect. 7 concludes.
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2 Preliminaries

JavaScript is a high-level, dynamic, and untyped language. It has been standard-
ised in the ECMAScript language specification [10]. The flexibility of JavaScript
is a double-edged sword that might surprise the user with unexpected behaviours.

Consider the snippet of code in Fig. 1. The value of variable res will be the
string proto . This is due to the coercion of numbers to strings for property
access, including not only digits but also special literals. For instance, the numer-
ical expressions 1/0 and Math.pow(2, 1024) both evaluate to the Infinity
string literal, while 0/0 turns into the string NaN.

In this case, the value of res can be statically determined since all the
accesses to the properties of obj are known at compile time. Unfortunately,
as we shall see, this is not always the case.

Fig. 1. Unusual but legal property access in JavaScript

Fig. 2. A lookup function (left) and an update function (right)

Example 1. Consider Fig. 2(left). The call to lookup returns the value of prop-
erty 0n123 of object obj (that we assumed defined somewhere in the code) where
n = max{0, N−3} and N is a value unknown at compile time (it may be a random-
generated number or an input value provided by the user). This function might
encode the lookup to a dictionary where the keys are numbers of at least N digits.
A precise string analysis should be able to infer that x = 0n123. Unfortunately,
static analysis often results in over-approximations and thus imprecision, so it
is possible that a sound analysis says that x can be any string and therefore the
function lookup(obj, x) points to any of the properties of obj, including all
the properties of the prototype hierarchy of obj. ��
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Example 2. Dynamic writes can be even nastier, since JavaScript enables to
override properties dynamically. Consider the code in Fig. 2 (right) which acts
analogously to lookup. The update function might encode the update of a value
in a dictionary where the input key is padded to length N with n = max{0, N−3}
leading zeros. In this case obj[0n123] is set to value "foo". If the analysis can
not say anything about x, we have a situation where any property of object
obj (including special property proto ) can be overwritten by "foo". In our
example, this raises a false alarm that a coarse analysis cannot avoid. ��

For the static analysis of string-manipulation we take advantage of the
abstract interpretation framework [8].

Let Σ be the set of characters allowed in JavaScript. We define the concrete
domain as the lattice 〈P(Σ∗),⊆, ∅, Σ∗,∩,∪〉 where Σ∗ is the set of all the strings
of Σ, P(Σ∗) is its powerset, and ⊆, ∅, ∩, and ∪ have the usual set-theoretic
meanings. We define a string (abstract) domain as a lattice 〈S,
,⊥,�,�,�〉
where each abstract string ŝ ∈ S denotes a set of concrete strings γ(ŝ) ∈ P(Σ∗)
via a concretisation function γ such that ŝ 
 ŝ′ ⇒ γ(ŝ) ⊆ γ(ŝ′). Hence 

captures the relation “is at least as precise as” on S.

Often we require that γ has a (lower) adjoint α : P(Σ∗) → S, the so-
called abstraction function.2 In this case, every k-ary “concrete operation”
f : P(Σ∗)k → P(Σ∗) has a unique optimal counterpart on S, namely the
“abstract operation” f̂ such that f̂(ŝ1, . . . , ŝk) = (α ◦ f)(γ(ŝ1), . . . , γ(ŝk)).

Now suppose we have n ≥ 1 string abstract domains 〈Si,
i,⊥i,�i,�i,�i〉,
each abstracting the concrete domain P(Σ∗). We can define their direct product
as a structure 〈S,
,⊥,�,�,�〉 such that:

– S = S1 × · · · × Sn

– (ŝ1, . . . , ŝn) 
 (ŝ′
1, . . . , ŝ

′
n) ⇐⇒ ŝ1 
1 ŝ′

1 ∧ . . . ∧ ŝn 
n ŝ′
n

– ⊥ = (⊥1, . . . ,⊥n) and � = (�1, . . . ,�n)
– (ŝ1, . . . , ŝn) � (ŝ′

1, . . . , ŝ
′
n) = (ŝ1 �1 ŝ′

1, . . . , ŝn �n ŝ′
n)

– (ŝ1, . . . , ŝn) � (ŝ′
1, . . . , ŝ

′
n) = (ŝ1 �1 ŝ′

1, . . . , ŝn �n ŝ′
n)

– γ(ŝ1, . . . , ŝn) =
⋂n

i=1 γi(ŝi) and α(S) = (α1(S), . . . , αn(S))

The direct product simply captures an analysis which acts componentwise on
the Cartesian product S1 × · · · × Sn. A drawback of the direct product is that
γ may not be injective, even if all of γ1, . . . , γn are. This may give rise to a not
optimal, but still sound, precision of the analysis.

3 String Domains

This section summarises the string domains we have integrated in SAFEstr. We
show how they behave in analysis of the programs from Fig. 2, assuming that
lookup(obj, "123") is called after update(obj, "123", "foo") on an ini-
tially empty object obj, in a context where N has an unknown value.

2 In this case α and γ form a Galois connection, i.e., α(S) � ŝ ⇐⇒ S ⊆ γ(ŝ).
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3.1 The String Set and Constant String Domains

The String Set (SSk) enables precise representation of at most k ≥ 1 concrete
strings. Formally, SSk = {�SSk

} ∪ {S ∈ P(Σ∗) | |S| ≤ k} and the lattice
operations 
SSk

,�SSk
,�SSk

correspond to ⊆,∩,∪ respectively (⊥SSk
= ∅).

The concretisation function is: γCS(S) = S, if S �= �SSk
; Σ∗ otherwise. The

abstraction function is: αCS(S) = S, if |S| ≤ k; �SSk
otherwise. The abstract

concatenation is S �SSk
S′ = {s · s′ | s ∈ S, s′ ∈ S′}. If the set resulting from an

abstract operation exceeds k strings, �SSk
is returned.

One instance of SSk is the Constant String (CS) domain, which is able to
represents a single concrete string exactly (i.e., CS = SS1). Despite the limited
expressive power, this domain is commonly used, as pointed out in [16].

The SSk domain is clearly more expressive than CS, and for some analysis
a well picked value of k can be enough for achieving high precision. Unfortu-
nately, when analysing loops with an unknown number of iterations, it is often
no more expressive. This is the case of the update function of Fig. 2, where the
abstract value of variable x becomes � and thus string "foo" might potentially
be assigned to any property of obj. As a consequence, lookup(obj, "123")
returns not only "foo" but also all the properties of the prototype of obj.

3.2 The Character Inclusion Domain

The Character Inclusion (CI) domain tracks the characters occurring in a string.
Each abstract string has the form [L,U ] = {X ∈ P(Σ) | L ⊆ X ⊆ U}. The lower
bound L contains the characters that must occur in the concrete string(s), while
the upper bound U represents the characters that may appear.

Formally, CI = {⊥CI} ∪ {[L,U ] | L,U ∈ P(Σ), L ⊆ U} and [L,U ] 
CI
[L′, U ′] ⇐⇒ L′ ⊆ L ∧ U ⊆ U ′. The meet operation is [L,U ] �CI [L′, U ′] =
[L ∪ L′, U ∩ U ′] while the join is [L,U ] �CI [L′, U ′] = [L ∩ L′, U ∪ U ′].

Let chars : Σ∗ → P(Σ) return the set of characters occurring in a string. The
abstraction function is αCI(S) = [

⋂
CS ,

⋃
CS ], where CS = {chars(w) | w ∈ S},

while γCI([L,U ]) = {w ∈ Σ∗ | L ⊆ chars(w) ⊆ U}. Abstract concatenation is
[L,U ] �CI [L′, U ′] = [L ∪ L′, U ∪ U ′].

This domain completely ignores the structure of the concrete strings it
approximates. But, CI is in general computationally cheap and sometimes pro-
vides very useful information. For example, for the update function in Fig. 2 we
have that αCI(x) = [{1, 2, 3}, {0, 1, 2, 3}]. This information is enough to avoid
the assignment of αCI("foo") to all the properties of obj and to restrict the
(string) return value of the lookup function to αCI("foo") = [{f, o}, {f, o}].3

3.3 The Prefix-Suffix Domain

An element of the Prefix-Suffix (PS) domain is a pair 〈p, s〉 ∈ Σ∗ × Σ∗, corre-
sponding to all the concrete strings that start as p and end as s. The domain is
3 This is actually the only possible string value. However, SAFE also tracks possible

non-string results (such as the special value undefined).
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PS = {⊥PS}∪(Σ∗×Σ∗). Let lcp(S) (respectively lcs(S)) be the longest common
prefix (suffix) of a set of strings S. Then 〈p, s〉 
PS 〈p′, s′〉 ⇐⇒ lcp({p, p′}) =
p′ ∧ lcs({s, s′}) = s′, the join is 〈p, s〉 �PS 〈p′, s′〉 = 〈lcp{p, p′}, lcs{s, s′}〉, and
the meet �PS is naturally induced by 
PS .

Abstraction is defined by αPS(S) = 〈lcp(S), lcs(S)〉 while concretisation is
γ(〈p, s〉) = {p · w | w ∈ Σ∗} ∩ {w · s | w ∈ Σ∗}. The abstract concatenation is
〈p, s〉 �PS 〈p′, s′〉 = 〈p, s′〉.

The PS domain can not keep track of concrete strings. Nonetheless, as for
CI, this domain is able to increase the precision of SSk. Indeed, for the update
function we have that αPS(x) = 〈ε, 123〉 which allows to restrict the string return
value of the lookup function to αPS("foo") = 〈"foo", "foo"〉.

3.4 The String Hash Domain

The String Hash (SH) domain was proposed by Madsen and Andreasen [16].
For some fixed integer range U = [0, b] and hash function h : Σ∗ → U , a
concrete string s is mapped into a “bucket” of U according to the sum of the
character codes of s, i.e., α(S) =

⋃
s∈S h(Σc∈chars(s)I(c)) where I : Σ → N maps

a character of alphabet Σ to the corresponding code (e.g., ASCII or Unicode).
The concretisation function is γSH(X) = {s ∈ Σ∗ | h(Σc∈chars(s)I(c)) ∈ X}.

The abstract concatenation requires the hash function to be distributive. A
linear-time implementation is possible (see [16] for details). This is one of the
main strengths of SH, together with its ability to infer string disequality: if
αSH(s) �SH αSH(s′) = ∅ then we can safely conclude that s �= s′.

Unfortunately, SH can display slow convergence when analysing loops (in
the worst case we may generate all elements of U before reaching a fixed point)
and its precision appears limited. As with CS and SSk, this domain loses all
information when analysing the programs in Fig. 2.

3.5 JavaScript-Specific Domains

The string domains we have seen so far are “general-purpose”, rather than tai-
lored for specific applications. We now discuss three simple domains, UO, NO,
and NS, that constitute the bases for the string domains of the TAJS, SAFE,
and JSAI static analysers. Although easily extensible to other languages, these
domains are in fact JavaScript-specific.

The Unsigned-or-Other (UO) domain used by TAJS (see Fig. 3) discriminates
between strings representing an unsigned integer and all the other JavaScript
strings. TAJS uses this domain to better analyse array indexing. Note that if
we concatenate two unsigned integers we do not necessarily get a valid unsigned
integer since we might exceed the maximum unsigned integer 232 −1. Also, if we
concatenate an unsigned i with a string x we can still have i if x = ε. However,
concatenating two non-unsigned always results in a non-unsigned.

The Number-or-Other (NO) domain used by SAFE (see Fig. 4) is very similar
to UO: the only difference is that it discriminates between numeric strings and
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�T J

Unsigned NotUnsigned

⊥T J

UO

CS

Fig. 3. TAJS string domain

�SF

{42, NaN} {foo, bar}

Number NotNumber

{42} {NaN} {foo} {bar}

⊥SF

NO

SSk

Fig. 4. SAFE string domain

�J S

NotSpecial NotNumber

Numeric Other Special

⊥J S

NS

CS

Fig. 5. JSAI string domain

other strings. Literals like −3, 0.1, or NaN are considered numeric strings. In
this case the concatenation is even more imprecise: we can get a numeric string
by concatenating two non-numeric strings (e.g., "N" and "aN").

The Number-Special-or-other (NS) domain used by JSAI (see Fig. 5) gen-
eralises NO by also distinguishing special JavaScript strings.4 Concatenating a
special string with another special string or a numeric string always results in
an “Other” string, i.e., a string neither special nor numeric. Concatenating a
special string with Other always results in a non-numeric string.

Although these domains are useful to capture specific aspects of JavaScript
they have little meaning when used stand-alone. In the next section we show
how TAJS, SAFE, and JSAI combine them with the CS and SSk lattices.

3.6 The TAJS, SAFE and JSAI Domains

The string domains adopted by TAJS, SAFE, and JSAI are built respectively
on top of the UO, NO, and NS domains from Sect. 3.5 in combination with the
CS and SSk domains from Sect. 3.1. The T J domain used by TAJS is shown in
Fig. 3. First, the analysis is conducted with the constant domain CS. Then, when
there is more than one constant string to track, T J falls back to the UO domain
trying to discriminate if all such strings are definitely unsigned or definitely not

4 Namely, length, concat, join, pop, push, shift, sort, splice, reverse, valueOf,
toString, indexOf, lastIndexOf, constructor, isPrototypeOf, toLocaleString,
hasOwnProperty, and propertyIsEnumerable.
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unsigned integers. If such a distinction is not possible (e.g., -1�T J 1) then �T J
is returned.

The SF domain used by SAFE (Fig. 4) uses a similar logic. The difference
is that the analysis is conducted with the string set domain SSk (for a certain
value of k ≥ 1) and then, when we have more than k constant strings to track, it
falls back to the NO domain trying to discriminate if such strings are numeric
or not. This is not a generalisation of T J : indeed, let us suppose k = 2 and
S = {foo, bar, -1}. We have αSF (S) = �SF and thus γSF (αSF (S)) = Σ∗.
Instead, αT J (S) = NotUnsigned so γT J (αT J (S)) = Σ∗ \ {0, . . . , 4294967295}.

Being built on top of SSk, SF is also parametric. When the set size is not
specified, we will assume k = 1 (which is the default value in SAFE).

The J S domain used by JSAI (Fig. 5) acts analogously to SF . However, like
T J , a single constant string is tracked instead of a set of k strings. When we
have more than one constant string to track, the J S domain falls back to the
NS domain (which actually generalises NO, so we can say that J S generalises
SF if and only if k = 1 for the SSk domain of SF).

Even if not strictly comparable, T J , SF and J S are very similar. Their
JavaScript-driven nature is however not helpful for analysing the programs
in Fig. 2. Indeed, when we call update(obj,"123", "foo") we have that the
abstract value of property x at the end of the loop is � for both T J and SF
(as seen in Sect. 3.5, they lose all the information when concatenating two num-
bers) while αJ S(x) = NotSpecial . However, this information is not enough to
prevent the return of all the properties of obj and its prototypes (except for
those corresponding to the special strings) when lookup(obj, "123") is called.

3.7 Direct Products and the Hybrid Domain

So far we have seen several string domains, some general, some JavaScript spe-
cific. We observed that each has its strengths and weaknesses. A natural exten-
sion is to combine different string domains into a single, compound string domain
that generalises them in order to improve the precision of the analysis.

In Sect. 2 we introduced the direct product S = S1×· · ·×Sn for systematically
composing n string domains. We can thus apply this definition for combining
the string domains we have seen so far. Clearly, while the precision of S is never
lower than for a component domain Si, it may be the case that the direct product
does not bring any benefit. For instance, SH × T J × SF × J S is not beneficial
for analysing the Examples 1 and 2. Conversely, CI × PS significantly increases
the precision: if we consider α(x) as the abstraction of property x of Exam-
ples 1 and 2 we have α(x) = (αCI(x), αPS(x)) = ([{1,2,3}, {0,1,2,3}], 〈ε, 123〉),
so by definition the corresponding concretisation is γ(α(x)) = γCI(αCI(x)) ∩
γPS(αPS(x)) = {x · 123 | x ∈ {0,1,2,3}∗}.

The Hybrid (HY) string domain [16] is defined as the product of character
inclusion, string set, and string hash: HY = CI×SSk×SH. This domain appears
to perform well, so we consider it in our evaluation of Sect. 5.
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As mentioned in Sect. 2, the systematic combination via direct product does
not always reach the optimal precision. For example, at first it may appear that
SF = SSk × NO but this is not the case, as the following example shows.

Example 3. Consider the following JavaScript statement, where E is unknown:

x = "0"; if (E) x = x + "1";

If we approximate x with SS1×NO we have ({1}�SS1
{01},Number�NO�NO) =

(�SS1
,�NO) after the statement. Conversely, even if the default SF domain can

not represent the set {0,01}, it can infer from it that x is a Number . ��
To avoid these precision leaks when combining different domains, the reduced

product [4,9] has been introduced as a refinement of the direct product.
Figure 6 concludes the section with a diagram summarising the string

domains we have encountered so far. There is an upward edge between domain
S and domain S ′ if and only if S is never less precise than S ′.

None

PS

NO CS

CI SHNSUO SSk

T J J S SF HY

All

Fig. 6. String abstract domains

4 Implementation

We now describe SAFEstr, the extension of the SAFE tool in which we have
implemented all the string domains discussed in Sect. 3.

SAFE [15] is a static analyser for ECMAScript developed for the JavaScript
community. We chose it as a starting point for our analyser because it is open-
source, under active development, exhaustively implements the DOM semantics,
and utilises loop-sensitive analysis.

The execution flow of SAFE is structured into three main parts. First, the
input JavaScript program is parsed and translated into a simplified Abstract
Syntax Tree (AST). Then, the AST is translated into an Intermediate Repre-
sentation (IR). Finally, the IR is used to build the Control Flow Graph (CFG).
The CFG is the best representation for tracing control flows of a program, and in
fact is used by SAFE to perform a type-based analysis of JavaScript programs.
SAFE is implemented in Scala (with some modules written in Java).
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The static analysis performed by SAFE relies on the string abstract domain
described in Sect. 3.6 to model primitive JavaScript strings as well as for the
lookup and update of properties in abstract JavaScript objects. The user can
tune the size k of the underlying SSk domain, but can not choose among other
string domains. We therefore re-engineered and extended this tool to enable the
user to combine all the domains described in Sect. 3. The resulting tool, SAFEstr,
is a major extension of SAFE with improved usability, flexibility, and—as we
shall see in Sect. 5—precision of the static analysis.

Table 1 lists the Scala classes that we have implemented in SAFEstr. The
AbsString represents the base class, from which every other string domain inher-
its. AbsString has methods for the lattice operations (e.g., �, �, 
), for the
abstraction/concretisation functions α and γ, for abstracting string operations
(e.g., concatenation, trimming, slicing) and for general utility (e.g., toString
or equals). Each class that implements a string domain must be a subclass of
AbsString, and possibly overrides its methods.

Table 1. Scala classes implementing string domains into SAFEstr

Class Description Class Description

AbsString Base class AbsStringHash SH
AbsStringConst CS AbsStringSet SSk

AbsStringPrefSuff PS AbsStringCharIncl CI
AbsStringUnsOth UO AbsStringTAJS T J
AbsStringNumOth NO AbsStringSAFE SF
AbsStringNumSplOth NS AbsStringJSAI J S
AbsStringProd Direct product of AbsString domains

The new design of SAFEstr is suitable for combining different string domains.
An important novelty is the AbsStringProd class—which is itself a subclass of
AbsString—that allows the user to systematically combine an arbitrary collec-
tion of AbsString classes. AbsStringProd can be specialised for refining the
direct product of different string domains (see Example 3). For example, the
T J , SF , and J S domains are now specialised subclasses of AbsStringProd
since they actually combine other basic domains (as shown in Figs. 3, 4, and 5).
Furthermore, the HY domain does not need to be implemented at all: it is enough
to define it as an AbsStringProd object consisting of AbsStringCharIncl,
AbsStringSet, and AbsStringHash domains.

We implemented the string domains in SAFEstr trying to be as un-intrusive
as possible and to preserve the original structure of SAFE. In this we faced a
number of design choices. For instance, SAFE analysis is not sound unless the
target string domain is able to keep track of a single, concrete string. With
SAFEstr it is trivial to ensure this by just adding (via direct product) a new
constituent domain like CS or SSk. Another crucial point for SAFE analysis is
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the ability to distinguish whether an abstract string is definitely numeric or not
numeric. Again, with SAFEstr it is easy to enrich a given domain by composing
it with NO or NS for discriminating numeric strings.

The SAFEstr tool can be imported into a Scala application or used as a stand-
alone analyser from the command line. Notably, the user can choose and config-
ure the string domains for an analysis run via command line options. SAFEstr is
open-source and can be downloaded from https://git.io/vPH9w.

5 Evaluation

In this section we evaluate the string domains that we implemented in SAFEstr.
The default configuration for SAFEstr tries to be as precise as possible. In par-
ticular, like SAFE, it uses a loop-sensitive analysis with a context-depth of 10
(see [18] for more details). While SAFEstr diverged from the version of SAFE in
[17], we tried to resemble the evaluation environment as closely as possible.
We evaluated SAFEstr on two benchmark sets from the literature:5

– jQuery, a set of 61 JavaScript programs from a jQuery tutorial6. All the
programs of this benchmark, adopted also in [17], use jQuery version 1.7.0
without any modification.

– Jsai, a set of 11 JavaScript sources made available with the JSAI tool [13].
Because of their JSAI-specific modelling, we made some minor modifications
to conform with SAFEstr. Seven programs of Jsai are Firefox browser add-ons,
while the remaining four come from the linq.js project.7

We stress that the goal of the evaluation is not to assess the performance of
different analysis tools. Rather, our focus is on evaluating (the composition of)
different string domains within the SAFEstr environment. Note that we are com-
paring the implementation of TAJS and JSAI domains in SAFEstr, not the TAJS
and JSAI tools themselves. A direct comparison with such tools is impracticable
since a fair measurement of their performance requires knowledge, and modifi-
cation, of their internals.

Measuring the precision within a complex static analysis framework like
SAFE is inherently difficult. Simple metrics, such as runtime of the analysis
or reachable program states provide glib information at best. To measure the
overall performance we adopted three metrics—used in [17] and, with modi-
fications, in [18]—that count ‘how much imprecision’ occurs during the static
analysis. In more detail, the metrics are:

Multiple dereference (MD) : The number of program points where derefer-
encing an abstract object leads to more than one object value.

Multiple call (MC) : The number of program points where dereferencing an
abstract function object leads to more than one function.

5 All the benchmarks and the scripts we used are available at https://git.io/vPH9w.
6 See http://www.jquery-tutorial.net.
7 See https://linqjs.codeplex.com/.

https://git.io/vPH9w
https://git.io/vPH9w
http://www.jquery-tutorial.net
https://linqjs.codeplex.com/
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Non-concrete property access (PR) : The number of program points where
an object property is accessed with a non-concrete abstract string, i.e., with
an abstract string representing an infinite set of concrete strings.

Static analysis of non-trivial programs often involves the handling of failures
and timeouts. In particular, owing to the dynamic nature of JavaScript, a lack
of static boundaries like types or modules can cause the imprecision to spread
explosively, causing the analysis to become infeasible or its results to be unusable.

We devised a mechanism to possibly terminate the analysis early, thus avoid-
ing getting stuck in a non-meaningful analysis. We use empirically determined
bounds to trigger an “imprecision stop”, e.g., when the number of possible call
targets for a function encountered during analysis becomes greater than 20.8

Unfortunately, since MD, MC, and PR do not have a reasonable upper bound,
choosing a “penalty value” for these metrics when the analysis fails is not trivial.
To overcome this problem, inspired by the MiniZinc Challenge [20], we defined a
scoring system where we compare pairs of domains on each benchmark program.

Let P be a benchmark set of programs and D a collection of string domains.
For each program P ∈ P and each domain S ∈ D we define the imprecision index
of S on P as: IMPS(P ) = MDS(P ) + MCS(P ) + PRS(P ), if the analysis of P
using domain S terminates normally; IMPS(P ) = ∞ if the imprecision stop is
triggered. Given two distinct domains S and S ′ we define a scoring function:

ScoreS(P,S ′) =

⎧
⎪⎨
⎪⎩

0 if IMPS(P ) = ∞ ∨ IMPS(P ) > IMPS′(P )
0.5 if IMPS(P ) = IMPS′(P ) �= ∞
1 if IMPS(P ) < IMP ′

S(P )

Finally, the overall score of the domain S on benchmark P is the sum of each
ScoreS(P,S ′) value, for each P ∈ P and for each S ∈ D such that S �= S ′.

We analysed all the domains depicted in Fig. 6. As mentioned in Sect. 4,
because of the internal design of SAFE (which we did not want to modify), the
static analysis in SAFEstr needs a string abstract domain able to track (at least)
a single constant string. For each S ∈ {PS, CI,SH,NO,NS,J S} we therefore
evaluated the domain extension S = S × CS instead of S. Note that this did
not require any additional effort, since SAFEstr allows the user to specify the
preferred domain combination on the command line.

Similarly, instead of the original TAJS domain T J we actually considered
T J ∗ = T J ×NO. This is because the underlying UO domain allows to discrim-
inate only strings representing unsigned integers, but can not deal with numeric
strings in general (e.g., floats or negative numbers). Since SAFE’s design relies
heavily on the distinction between numeric and other strings, the T J domain is
inevitably penalised when used by SAFEstr. This is arguably due to the SAFE
structure, and not necessarily a weakness of TAJS. Thus, we took advantage of
SAFEstr for automatically combining T J with NO.

In addition, we evaluated the All baseline, i.e., the direct product of all the
implemented domains, and a new hybrid domain, namely HY∗ = CI×NO×SSk.
8 We noticed that imprecision stops only occurred in the analysis of jQuery.
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That is, we replace the more complex SH domain of HY by the simpler NO.
For HY∗, as well as for SSk, we used the default set size of the HY domain,
k = 3. For SF we instead used the default set size of SAFE, k = 1. As we shall
see, the difference turned out to be irrelevant.

Table 2a shows the overall performance of the string domains. All is the
union of jQuery and Jsai, thus consisting of 61 + 11 = 72 programs.9

Table 2. Performance of string domains

All HY∗

HY
CI

T J ∗ SF J S
NO NS

CS SSk PS
SH UO

HY∗

All
HY
CI

T J ∗

NS
J S
NO
SF

The “Score” column summarises the overall score of each domain. We note
that HY∗ has the same performance as All . Hence, at least for our benchmarks,
it sufficient to combine three simple domains, namely CI, NO, and SSk, to
reach the same precision as the combination of all the domains. However, if
we consider such domains independently the precision is far lower and often
results in imprecision stops (especially for jQuery, see the bottommost row of
Table 2a). This shows the potential of combining different string domains.

The HY∗ domain outperforms HY. Why is replacing the String Hash domain
by the Numeric-or-Other domain advantageous? In our context, SH appears
to be unfruitful, but the NO domain is essential for detecting (non-)numeric
strings. While that other HY∗ component, CI, can be helpful in this regard (as
noticed in Sect. 3.2), it is often not enough. For example, let x be a variable
representing a string in S = {-1,0,1}. Its abstraction is αCI(S) = [∅, {-, 0, 1}],
but this does not suffice to state that x is a number (e.g., the string - belongs
to αCI(S) but it is not a number). However, αNO(S) = Number .

The benefits of NO are noticeable especially for the Jsai benchmark, while
for jQuery, CI remains important. CI never causes a loss of precision in
abstract concatenation, and this is very important, especially when concatenat-
ing an unknown string (as often happens when generating the jQuery.expando
property). Overall, HY∗ scores better than HY and CI for 40 programs (31 of
jQuery and 9 of Jsai) and is never worse than any other domain.

9 We have run all the experiments with a timeout of T = 600 seconds on Ubuntu 15.10
machines with 16GB of RAM and 2.60 GHz CPU.
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The HY domain is better than CI for only seven programs of jQuery. This is
the only benefit that SS3 has brought to the analysis, compared to the constant
domain CS. We tried to investigate this aspect further, by performing a sensi-
tivity analysis on the k parameter of SSk for all the domains we implemented,
varying k ∈ {8, 16, 32, 64, 128}. No improvement was observed for larger k.

If we look at the domains used by TAJS, SAFE, and JSAI, we observe a
substantial equivalence. They are all very effective on the Jsai benchmark, but
they have rather poor performance for the problems of jQuery. We believe
that this happens because these domains fail when concatenation involves an
unknown string. Note that, in spite of Example 3 highlighting their difference,
SF and NO = NO × CS have identical performance. Similarly, J S and NS
perform equally well.

Looking at the bottom of the table, apart from the aforementioned SH,
SSk and UO, we see that PS too has a rather poor performance. This was
somewhat unexpected, considering the benefits seen in Examples 1 and 2. One
explanation is that PS is less precise than CI when joining different abstract
strings, and it loses all the information about the ‘inner’ structure of the string.
A curious drawback of PS is that abstracting the empty string means losing all
information, since αPS(ε) = 〈ε, ε〉 = �PS .

The “Fails” column of Table 2 shows, in percentage, the number of times the
analysis failed due to imprecision stops or timeouts. Again in this case we see
the advantage of combining the string domains. For example, while the analysis
using the TAJS, SAFE, or JSAI domains often fail, the HY∗ domain we intro-
duced significantly improve on them (in particular for jQuery benchmark).
Nevertheless, even for HY∗ we still notice a remarkable number of cases (about
44%) where the analysis fails. This calls for further investigation.

Although in this work we are more concerned in the precision of the analysis,
it is clear that also efficiency plays an important role. Table 2b reports the average
analysis time, where we assign a penalty of T = 600 seconds when the analysis
fails. We see that in this case HY∗ slightly outperforms the combination of all
the domains. This is due to its lighter composition (only three domains). On
average, the analysis with HY∗ takes about 100 seconds less than analysing
programs with the TAJS, SAFE, or JSAI domains.

Let us finally compare our evaluation with that of [16]. In that work, 12 string
domains (including HY, referred as H in the paper) are proposed and compared.
We note that, while the dynamic analysis evaluation of [16] is exhaustive, the
static analysis evaluation is limited: it is performed on only 10 JavaScript pro-
grams (for which sources are not available) and HY is only compared against
the constant domain CS (which is inherently less precise than HY). The more
comprehensive evaluation we provide in this paper in part confirms the good
intuition of [16] of including the CI domain within a collection of other domains.

6 Related Work

Our work has taken the SAFE framework [15] as inspiration and starting point.
There are other well-engineered mature analysis frameworks such as TAJS [11],
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WALA [19], and JSAI [13]. We chose SAFE because of its conformance with the
latest ECMAScript standard, formal specification, loop-sensitivity [18], accessi-
bility, and active development (SAFE 2.0 was released in October 2016).

The number of (string) abstract domains that have been proposed is surpris-
ingly large. In [1,2] the configurable program analysis (CPA) and the dynamic
precision adjustment (CPA+) frameworks are introduced to make the analysis
configurable and possibly improve its precision.

Many of the domains we have evaluated were discussed by Madsen and
Andreasen [16] who cover 12 string domains, half of which were new. Costantini
et al. [5,7] discuss two domains whose product amounts to PS, the CI domain,
and two additional (rather more complex) string domains. In the context of Java
analysis, Choi et al. [3] have used restricted regular expressions as an abstract
domain. Sets of strings are approximated by sets of “regular string expressions”.
Such expressions are liberally defined and allow for nesting of Kleene stars. How-
ever, regular expressions of the form r∗ cannot be juxtaposed. So while a∗ab∗ is
a valid regular string expression, aa∗b∗ is not, and the latter, should it arise, will
effectively be “flattened” into the coarser a(a + b)∗. Excessive nesting of stars
is curbed through widening, which similarly flattens expressions at a certain
star-depth.

Park et al. [17] use a stricter variant of this idea, with a more clearly
defined string abstract domain. Here sets of strings are approximated by sets
of “atomic” regular expressions. A regular expression is atomic (over alphabet
Σ = {a1, . . . , an}) iff it can be generated by the grammar

S → ‘ε’ | ‘Σ∗’ | A S | ‘Σ∗’A S A → a1 | . . . | an

Quotes indicate that ε and Σ∗ are not meta-symbols, but terminals. This
abstract domain is more restrictive than that of Choi et al. [3]. What is gained
by this is faster analysis, and in particular tractability of the inclusion relation.

The number and richness of different string abstract domains provides a
rich seam for experimental work and comparative evaluation. In spite of that,
the number of systematic studies is very limited. An exception is the work by
Madsen and Andreasen [16] which, in the static analysis evaluation, compares
the precision of HY-based analysis against CS.

7 Conclusion

We have presented SAFEstr, an extension of the SAFE JavaScript static analy-
sis tool. SAFEstr provides support for a number of string analysis domains, as
well as for analysis using arbitrary combinations of these domains. Precise string
analysis is of paramount importance in a programming language like JavaScript,
because almost any other kind of analysis relies heavily on the quality of string
analysis to aid it; without precise string analysis, control and data flow informa-
tion is weak; for example, field access becomes ambiguous. The required precision
is ultimately achieved through the combination of a variety of string domains,
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each capturing some relevant aspect of strings and, accordingly, the literature is
replete with proposals for string abstract domains.

We have used SAFEstr to conduct the first systematic comparison of a broad
range of such string abstract domains for the static analysis of JavaScript pro-
grams. We have measured precision and analysis time over two established bench-
mark sets. The results suggest that there is little value in maintaining string sets
(elements of SSk) of cardinality k > 3; and that the relatively simple combi-
nation CI × NO × CS achieves higher precision than the various combinations
proposed elsewhere—in fact, for our sets of benchmarks, it achieves as high pre-
cision as the combination of all of the string domains we have studied.

Future work will focus on the evaluation, and the combination, of new
domains over new benchmarks. In particular, we wish to compare the use of
direct products with reduced products [9] of string abstract domains.
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2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic pre-
cision adjustment. In: 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), pp. 29–38 (2008)

3. Choi, T.-H., Lee, O., Kim, H., Doh, K.-G.: A practical string analyzer by the
widening approach. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp.
374–388. Springer, Heidelberg (2006). doi:10.1007/11924661 23

4. Cortesi, A., Costantini, G., Ferrara, P.: A survey on product operators in abstract
interpretation. In: Semantics, Abstract Interpretation, and Reasoning About Pro-
grams: Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth
Birthday, pp. 325–336 (2013)

5. Costantini, G.: Lexical and numerical domains for abstract interpretation. Ph.D.
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Abstract. Model checking invariant properties of designs, represented
as transition systems, with non-linear real arithmetic (NRA), is an
important though very hard problem. On the one hand NRA is a hard-to-
solve theory; on the other hand most of the powerful model checking tech-
niques lack support for NRA. In this paper, we present a counterexample-
guided abstraction refinement (CEGAR) approach that leverages lin-
earization techniques from differential calculus to enable the use of
mature and efficient model checking algorithms for transition systems
on linear real arithmetic (LRA) with uninterpreted functions (EUF).
The results of an empirical evaluation confirm the validity and potential
of this approach.

1 Introduction

Invariant checking for infinite-state transition systems is a fundamental research
area. Based on the recent improvements of SMT technologies, effective
approaches have been developed for the case of transition systems with dynam-
ics over Linear Real Arithmetic [4,9,18,21]. However, many real-world industrial
designs (e.g. aerospace, automotive) require modeling as transition systems over
non-linear arithmetic (NRA). Although both problems are undecidable, proving
properties of the NRA transition systems turns out to be much harder than
the linear case, and has in fact received much less attention. Approaches based
on BMC and k-induction [15,29] are possible, so that non-linearity is handled
at the SMT-level, by means of an SMT(NRA) solver (e.g. Z3 [13], nlSAT [20],
Yices [14], SMT-RAT [1]). Their power is however limited. Consider the follow-
ing simple transition system: initially, x ≥ 2 ∧ y ≥ 2 ∧ z = x ∗ y; the transition
relation is defined by x′ = x + 1 ∧ y′ = y + 1 ∧ z′ = x′ ∗ y′. The property “it is
always the case that z ≥ x+y” is not k-inductive, not even for a very large value
of k. Thus, the typical proving techniques that are based on k-induction using an
SMT(NRA) solver will not be able to prove it. In principle, it is also possible to
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lift other approaches (e.g. interpolation, IC3 [9,26]) to handle non-linearities at
the level of the solver. However, this requires the SMT(NRA) solver to carry out
interpolation or quantifier elimination, and to proceed incrementally. These extra
functions are usually not available, or they have a very high computational cost.

In this paper, we propose a completely different approach to tackle invariant
checking for NRA transition systems. Basically, we work with an abstract version
of the transition system, expressed over LRA with EUF, for which we have
effective verification tools [9]. In the abstract space, nonlinear multiplication
is modeled as an uninterpreted function. When spurious counter-examples are
found, the abstraction is tightened by the incremental introduction of linear
constraints, including tangent planes resulting from differential calculus, and
monotonicity constraints.

We implemented the approach on top of the nuXmv model checker [7], lever-
aging the IC3 engine with Implicit Abstraction [9] for invariant checking of tran-
sition systems over LRA with EUF. We compared it, on a wide set of bench-
marks, against multiple approaches working at NRA level, including BMC and
k-induction using SMT(NRA), the recent interpolation-based iSAT3 engine [24],
and the static abstraction approach proposed in [8]. The results demonstrate sub-
stantial superiority of our approach, that is able to solve the highest number of
benchmarks.

The effectiveness of our approach is possibly explained with the following
insights. On the one hand, in contrast to LRA, NRA is a hard-to-solve the-
ory: in practice, most available complete solvers rely on CAD techniques [12],
which require double exponential time in worst case. Thus, we try to avoid NRA
reasoning, trading it for LRA and EUF reasoning. On the other hand, proving
properties of practical NRA transition systems may not require the full power
of non-linear solving. In fact, some systems are “mostly-linear” (i.e. non-linear
constraints are associated to a very small part of the system), an example being
the Transport Class Model (TCM) for aircraft simulation from the Simulink
model library [19]. Furthermore, even NRA transition systems with significant
non-linear dynamics may admit a piecewise-linear invariant of the transition
system that is strong enough to prove the property.

Structure. In Sect. 2 we discuss the related work, and in Sect. 3 introduce some
background. In Sect. 4 we discuss the approach in the setting of SMT(NRA).
In Sect. 5 we present the verification algorithm for NRA transition systems.
In Sect. 6 we describe the results of the experimental evaluation. In Sect. 7 we
conclude and outline the directions for future research.

2 Related Work

There are not many tools that deal with NRA transition systems. The most rele-
vant is the recently proposed iSAT3 [28], that uses an interpolation-based [23,24]
approach to prove invariants. In addition to NRA, it also supports trascendental
functions and some form of differential equations. iSAT3 is built on an SMT
solver based on numeric techniques (interval arithmetic), and is able to provide
results that are accurate up to the specified precision. In fact, in addition to
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(a) x ∗ y (b) x ∗ y (top
view)

(c) x ∗ y and tangent
plane

(d) x ∗ y and tan-
gent plane (top
view)

Fig. 1. Multiplication function and tangent plane.

“safe” and “unsafe” answers, iSAT3 may return “maybe unsafe” when it finds
an envelope of given precision that may (but is not guaranteed to) contain a
counterexample. Another relevant tool is dReach [22], a bounded model checker
implemented on top of the dReal [16] SMT solver, that adopts numerical tech-
niques similar to iSAT3. dReach has an expressiveness similar to iSAT3, but
being a bounded model checker it is unable to prove properties.

The work in [8] follows a reduction-based approach to check invariants of
NRA transition systems. It over-approximates the non-linear terms with a coarse
abstraction, encoding into LRA some weak properties of multiplication like iden-
tity and sign. Another reduction-based approach is presented in [25] in the con-
text of program analysis. The idea is to find a (tighter) convex approximation
of polynomials in form of polyhedra, thus obtaining a conservative linear transi-
tion system. The key differences of our approach with respect to [8,25] are that
we iteratively refine the abstraction, and we adopt a reduction to LRA+EUF.
Furthermore, to the best of our knowledge, there is no available implementation
of the approach [25] in a program analysis tool – it has been only shown to work
on SMT problems.

The idea of approximating a univariate function (in particular the natural
logarithm ln) with tangent lines is used in [30]. Here we abstract a bivariate
function (multiplication), and use tangent planes for the refinement. We also
exploit other properties (e.g. monotonicity) to derive additional axioms. The
idea of using tangent planes (spaces) has been explored in [27], limited to the
case of SMT solving. Another key differences is that the tangent planes area
used to under-approximate predicates, while we use them to refine the over-
approximation of the multiplication function.

3 Background

Properties of the Multiplication Function. Geometrically, the surface gen-
erated by the multiplication function f(x, y) def= x ∗ y is shown in Fig. 1a and b.
This kind of surface is known in geometry as hyperbolic paraboloid. A hyperbolic
paraboloid is a doubly-ruled surface, i.e. for every point on the surface, there are
two distinct lines projected from the surface such that they pass through the
point. In case of the multiplication surface, the projected lines basically lie on
the surface.
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Tangent Plane. The tangent plane to a surface at a point of interest (a, b) is a
plane that “just touches” the surface at the point. The tangent planes can be
used to linearly approximate the surface at the point of interest. An important
property of the tangent plane to a hyperbolic paraboliod is that the two projected
lines from the surface are also in the tangent plane, and they define how the
plane cuts the surface (see Fig. 1c and d). The tangent plane Tmula,b(x, y) to
the multiplication function f(x, y) at point (a, b) is calculated as follows:

Tmula,b(x, y) def= f(a, b) +
d

dx
f(x, y)|(a,b)

∗ (x − a) +
d

dy
f(x, y)|(a,b)

∗ (y − b)

where d
dxf(x, y)|(a,b)

and d
dy f(x, y)|(a,b)

are the first-order partial derivatives of
f(x, y) w.r.t. x and y respectively, evaluated at (a, b). Tmula,b(x, y) simplifies
to:

Tmula,b(x, y) def= b ∗ x + a ∗ y − a ∗ b (1)

Logic and Satisfiability. We assume the standard first-order quantifier-free
logical setting and standard notions of theory, model, satisfiability, and logical
consequence. If ϕ is a formula, we denote with vars(ϕ) the set of its variables, and
with atoms(ϕ) the set of its atoms. We write ϕ(X) to denote that vars(ϕ) ⊆ X.
If x and y are two variables, we denote with ϕ{x �→ y} the formula obtained
by replacing all the occurrences of x in ϕ with y. We extend this notation to
ordered sequences of variables in the natural way. If μ is a model and x is a
variable, we write μ[x] to denote the value of x in μ, and we extend this notation
to terms in the usual way. If X is a set of variables, we denote with X ′ the
set obtained by replacing each element x ∈ X with x′, and with X〈i〉 the set
obtained by replacing x with x〈i〉. If Γ is a set of formulas, we write

∧
Γ to

denote the formula obtained by taking the conjunction of all its elements. If
∧

Γ
is unsatisfiable (modulo some theory T ), an unsatisfiable core is a set C ⊆ Γ
such that

∧
C is still unsatisfiable.

Symbolic Transition Systems. A symbolic transition system S def= 〈X, I, T 〉
is a tuple where X is a finite set of (state) variables, I(X) is a formula denot-
ing the initial states of the system, and T (X,X ′) is a formula expressing its
transition relation. A state si of S is an assignment to the variables X. A
path (execution trace) π = s0, s1, s2, . . . , sk−1 of length k (possibly infinite)
for S is a sequence of states such that s0 |= I and si ∧ si+1{X �→ X ′} |= T
for all 0 ≤ i < k − 2. We call an unrolling of S of length k the formula
I{X �→ X〈0〉} ∧ ∧k−1

i=0 T{X �→ X〈i〉}{X ′ �→ X〈i+1〉}.
Let P (X) be a formula whose assignments represent a property (good states)

over the state variables X. The invariant verification problem, denoted with
S |= P , is the problem of checking if for all the finite paths s0, s1, . . . , sk of S,
for all i, 0 ≤ i ≤ k, si |= P . Its dual formulation in terms of reachability of
¬P is the problem of finding a path s0, s1, . . . , sk of S such that sk |= ¬P . P
represents the “good” states, while ¬P represents the “bad” states.
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Fig. 2. Solving SMT(NRA) via abstraction to SMT(LRA+EUF).

4 Solving SMT(NRA) via SMT(LRA+EUF)

Top-Level Algorithm. The main idea of this paper is that of solving an SMT
formula containing non-linear polynomial constraints (i.e., expressed in the NRA
theory) by overapproximating it with a formula over the combined theory of lin-
ear arithmetic and uninterpreted functions (LRA+EUF). Our main SMT solving
procedure follows a classic abstraction refinement loop, in which at each iteration
the current overapproximation of the input SMT formula is refined by adding
new constraints that rule out one (or possibly more) spurious solutions, until
one of the following occurs: (i) the SMT formula becomes unsatisfiable in the
LRA+EUF theory; or (ii) the LRA+EUF model for the current overapproxima-
tion can be lifted to an NRA model for the original SMT formula; or (iii) the
resource budget (e.g. time, memory, number of iterations) is exhausted.

The pseudocode for the top-level algorithm is shown in Fig. 2. We provide
more details about its main components in the rest of this section.

Initial Abstraction. The function initial-abstraction takes as input an
SMT(NRA) formula ϕ and returns an overapproximation ϕ̂ of it in the
LRA+EUF theory.

First, each multiplication expression x ∗ y between two variables1 occurring
in ϕ is replaced by fmul(x, y), where fmul() is a binary uninterpreted function
returning a real. We remark that this happens only for non-linear multiplications:
expressions like c ∗ x or x ∗ c in which c is a constant are not rewritten.

Then, some simple axioms about multiplication are added to ϕ̂ via static
learning. For each fmul(x, y) ∈ ϕ̂, we add the following axioms:

1 To simplify the presentation, we assume (here and in the rest of the paper) that all
multiplications in ϕ are either between two variables or between one constant and
one variable.
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Commutativity: fmul(x, y) = fmul(y, x)
Sign: fmul(x, y) = fmul(−x,−y) ∧ fmul(x, y) = −fmul(−x, y) ∧

fmul(x, y) = −fmul(x,−y)
Zero: ((x = 0 ∨ y = 0) ↔ fmul(x, y) = 0) ∧

(((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0)) → fmul(x, y) > 0) ∧
(((x < 0 ∧ y > 0) ∨ (x < 0 ∧ y > 0)) → fmul(x, y) < 0)

Abstraction Refinement. If the SMT check on the LRA+EUF abstraction
returns false (line 7 of Fig. 2), we can conclude that the input formula is unsat-
isfiable. In this case, Γ contains all the lemmas (discussed later in this section)
that were added in the earlier refinements (line 11 of Fig. 2).

Otherwise, we have to check whether the model μ̂ found for ϕ̂ is also a model
for the original NRA formula ϕ. Let Fmuls be the set of all fmul(x, y) terms
occurring in ϕ̂. In its simplest version, the function get-NRA-model checks whether,
for all fmul(x, y) in Fmuls, μ̂[fmul(x, y)] = μ̂[x] ∗ μ̂[y]. If this is the case,
then μ̂ is also a model for the original formula, and get-NRA-model returns true.
(We present more sophisticated versions of get-NRA-model below.) Otherwise, let
CFmuls be the set of all fmul(x, y) terms whose value in μ̂ is different from
μ̂[x]∗ μ̂[y]. The function refine generates a set of axioms Γ ′ such that there exists
at least one element fmul(x, y) of CFmuls such that the formula ϕ̂ ∧ ∧

Γ ′ has
no model μ̂′ that agrees with μ̂ on the values of x, y and fmul(x, y) (i.e. such
that μ̂′[fmul(x, y)] = μ̂[fmul(x, y)], μ̂′[x] = μ̂[x] and μ̂′[y] = μ̂[y]). Intuitively,
the axioms Γ ′ block the bad model values for fmul(x, y), making the abstraction
more precise by restricting the set of spurious solutions.

In our current implementation, two kinds of lemmas are generated during
refinement: tangent lemmas and monotonicity lemmas.

Tangent Lemmas. We use the model values μ̂[fmul(x, y)], μ̂[x] and μ̂[y] and (1)
to generate tangent plane lemmas for fmul(x, y):

fmul(a, y) = a ∗ y ∧ fmul(x, b) = b ∗ x ∧
(((x > a ∧ y < b) ∨ (x < a ∧ y > b)) → fmul(x, y) < Tmula,b(x, y)) ∧
(((x < a ∧ y < b) ∨ (x > a ∧ y > b)) → fmul(x, y) > Tmula,b(x, y))

(2)

where we can choose a and b as:

a
def= μ̂[x] and b

def= μ̂[y] (3)

a
def=

1
μ̂[fmul(x, y)]

and b
def= μ̂[y] (4)

a
def= μ̂[x] and b

def=
1

μ̂[fmul(x, y)]
. (5)

Basically the equalities in the tangent lemma are providing multiplication lines
that enforce the correct value of fmul(x, y) when x = a or y = b. Moreover, the
inequalities of the tangent lemma are providing bounds for fmul(x, y) when x
and y are not on the multiplication lines.
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Fig. 3. A complete procedure using an NRA solver.

Monotonicity Lemmas. Let fmul(x, y) and fmul(w, z) be two terms in ϕ̂, such
that |μ̂[x]| ≤ |μ̂[w]|, |μ̂[y]| ≤ |μ̂[z]|, and |μ̂[fmul(x, y)]| > |μ̂[fmul(w, z)]|. Then,
we add the monotonicity lemma

(abs(x) ≤ abs(w)∧abs(y) ≤ abs(z)) → abs(fmul(x, y)) ≤ abs(fmul(w, z)), (6)

where abs(t) stands for ite(t < 0,−t, t).

Finding Models. It is easy to see that our algorithm is expected to perform
much better for unsatisfiable instances than for satisfiable ones. The algorithm
can return true (meaning that the formula is satisfiable) only if the LRA+EUF
solver “guesses” a model that is consistent with all the nonlinear multiplications.
In an infinite and dense domain like the reals, the chances that this will happen
are close to zero in general.

Moreover, our approach is inherently limited, because it can only find models
over the rationals. If the input formula is satisfiable, but all its models contain
some irrational values, then our algorithm will always abort (or never terminate,
if there is no resource budget set). In practice, it is very likely that the same will
happen even for formulas admitting a rational solution.

One possibility for addressing this limitation would be to couple our proce-
dure with a complete solver for NRA, to be used for detecting satisfiable cases,
in order to implement a more effective version of get-NRA-model. One such pos-
sibility is shown in Fig. 3, where we extract the truth assignment ψ̂ induced by
the LRA+EUF model μ̂ on the atoms of ϕ̂:

ψ̂
def=

∧
[âi∈atoms(ϕ̂) s.t. μ̂|=âi]

âi ∧
∧

[âi∈atoms(ϕ̂) s.t. μ̂�|=âi]

¬âi, (7)

We concretize it by replacing each fmul(x, y) in ψ̂ with x ∗ y, and invoke the
complete NRA theory solver on the resulting conjunction of NRA-literals ψ, to
check whether it contains at least one solution. Although in general the problem
is expected to be simpler than the original input formula because the Boolean
structure of ϕ is disregarded, invoking a complete NRA theory solver at each
loop iteration of SMT-NRA-check-abstract-ext could be very expensive. Moreover,
this would still require a complete NRA theory solver, which might not always
be available.

As an alternative, we propose the procedure outlined in Fig. 4, where we
extract the truth assignment ψ̂ induced by the LRA+EUF model μ̂ on the
atoms of ϕ̂, and we conjoin to it the multiplication lines:
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Fig. 4. An incomplete procedure using an SMT(LRA+EUF) solver.

ψ̂∗ = ψ̂ ∧
∧

fmul(x,y)∈Fmuls

(
(x = μ̂[x] ∧ fmul(x, y) = μ̂[x] ∗ y) ∨
(y = μ̂[y] ∧ fmul(x, y) = μ̂[y] ∗ x)

)
, (8)

Fmuls being the usual set of all fmul(x, y) terms occurring in ϕ̂.
The main idea is to build an LRA+EUF underapproximation ψ̂∗ of the NRA

formula ψ of Fig. 3, in which all multiplications are forced to be linear. Com-
pared to the previous solution, this has the advantage of requiring a complete
SMT(LRA+EUF) solver rather than a (much more expensive) complete NRA
solver. Moreover, given the simplicity of the Boolean structure of the underap-
proximated formula, the check should in general be very cheap. The drawback is
that this is (clearly) still an incomplete procedure. However, in our experiments
(for which we refer to Sect. 6) we have found it to be surprisingly effective for
many problems.

Unlike with the basic implementation of get-NRA-model which considers only
one single candidate model at a time, the implementations in Figs. 3 and 4
consider an infinite amount of them, drastically increasing the chances of finding
a model.

Correctness and Progress. We notice that the procedure in Fig. 2 is correct.
In fact, it returns false only if ϕ is NRA-unsatisfiable because by construction
ϕ̂ is an over-approximation of ϕ, and all axioms in Γ are valid in any theory
interpreting fmul(x, y) as x∗y. Also, it returns true only if ϕ is NRA-satisfiable:

– if get-NRA-model is based only on evaluation, then by construction μ is an
LRA+EUF-model for ϕ̂ s.t. each fmul(x, y) equals x∗y in μ, so that μ is also
a model for ϕ;

– if get-NRA-model is as in Fig. 3, then μ is an NRA-model of a conjunction of
literals ψ which tautologically entails ϕ, so that μ is a model for ϕ;

– if get-NRA-model is as in Fig. 4, then μ is an LRA+EUF-model of a conjunction
of literals ψ̂∗ which tautologically entails ϕ̂ and it is s.t. each fmul(x, y) equals
x ∗ y in μ, so that μ is a also model for ϕ.

We also notice that the progress of the procedure in Fig. 2 is guaranteed by
the refinement step, which rules out significant parts of the search space at every
loop by means of the added lemmas.

Important Heuristics for Refinement. The description of refine provided
above leaves some flexibility in deciding what axioms to add (and how many of
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regions with lower bounds regions with upper bounds regions with both upper and lower
bounds

(a) current frontier (b) new point (a, b) (c) instantiation of (2)
on (a, b)

(d) additional instan-
tiations and updated
frontier

Fig. 5. Illustration of the tangent lemma frontier strategy.

them) at each iteration. It is possible to conceive strategies with an increasing
degree of eagerness, from very lazy (e.g. adding only a single axiom per iteration)
to more aggressive ones. In our current implementation, we eagerly add all the
axioms (2)–(6) that are violated by the current abstract solution μ̂, leaving the
investigation of alternative strategies as future work. However, we found the
following two strategies to be crucial for performance.

Tangent Lemma Frontiers. The tangent lemmas of (2) for a given point (a, b) are
based on the fact that the multiplication function x∗y is a hyperbolic paraboloid
surface, and a tangent plane to such surface cuts the surface into four regions
such that in two of the regions the tangent plane is above the surface, whereas
in the other two regions the tangent plane is below the surface (see Fig. 1).
Each instantiation of (2) for a given point, therefore, can only provide either
a lower or an upper bound for a given region. In some cases, this might lead
to an infinite refinement loop in which at each iteration the “wrong” bound is
refined. In order to address the problem, we use the following strategy. For each
fmul(x, y) in the input formula, we maintain a frontier 〈lx, ux, ly, uy〉 with the
invariant that whenever x is in the interval [lx, ux] or y is in the interval [ly, uy],
then fmul(x, y) has both an upper and a lower bound. Initially, the frontiers
are set to 〈0, 0, 0, 0〉. Whenever a lemma (2) for fmul(x, y) is instantiated on a
point (a, b), we generate further instantiations of (2) and update the frontier as
follows:

case a < lx and b < ly: instantiate (2) on (a, uy) and on (ux, b), and set the
frontier to 〈a, ux, b, uy〉;

case a < lx and b > uy: instantiate (2) on (a, ly) and on (ux, b), and set the
frontier to 〈a, ux, ly, b〉;

case a > ux and b > uy: instantiate (2) on (a, ly) and on (lx, b), and set the
frontier to 〈lx, a, ly, b〉;

case a > ux and b < ly: instantiate (2) on (a, uy) and on (lx, b), and set the
frontier to 〈lx, a, b, uy〉.

Figure 5 shows a graphical illustration of the strategy.
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Tangent Lemma Rounding. The instantiation of a tangent lemma at the point
(a, b) has the side-effect of adding the rational constants a, b and a ∗ b to the
formula that is solved by the LRA+EUF solver. If such values have large numer-
ators and/or denominators, they might be a source of a significant slow-down for
the LRA solver (which works on exact, arbitrary-precision rational arithmetic).
We address this issue by observing that, in order to block a bad model μ̂ such
that μ̂[fmul(x, y)] �= μ̂[x]∗ μ̂[y], it is sufficient to add one of the two equalities of
(2); therefore, instead of instantiating a tangent lemma at (a, b), we can instan-
tiate it at either (a+δ, b) or at (a, b+δ), for any value of δ. In practice, if a (resp.
b) is a rational constant with a very large numerator or denominator, instead of
instantiating a tangent lemma at (a, b), we instantiate two tangent lemmas at
(�a�, b) and (�a�, b).

5 From Satisfiability to Verification

We now move from satisfiability checking to verification.

Overview. In principle, the solver described in the previous section could be
integrated as a “black box” in any off-the-shelf SMT-based verification algo-
rithm, such as BMC, k-induction, or one of the many extensions of IC3 to the
SMT case (e.g. [4,9,18,21]). In practice, however, such black-box integration
would hardly be effective, especially in the case of state-of-the-art algorithms
like IC3. IC3 requires a very incremental interaction with the underlying SMT
engine, which is asked to solve a large number of relatively-cheap queries. The
procedure of Sect. 4, however, can be very expensive, especially for satisfiable
queries, which are very common in an IC3-like algorithm.2 Moreover, some of
the IC3 extensions mentioned above require the ability of performing (approx-
imated) quantifier eliminations, a functionality not provided by the algorithm
of Fig. 2.

We propose therefore a white-box integration, in which we lift the abstrac-
tion refinement approach of Sect. 4 at the transition system level. We generate an
abstract LRA+EUF version of the input NRA transition system, which is then
checked with the IC3-based procedure of [9]. In case a counterexample is pro-
duced, we use the SMT-NRA-check-abstract-ext algorithm of Fig. 2 to check whether
it is spurious. If so, the axioms generated by SMT-NRA-check-abstract-ext are then
used to refine the abstraction of the transition system. The pseudo-code of this
algorithm is reported in Fig. 6. Similarly to the satisfiability checking case, the
initial-abstraction function replaces every non-linear multiplication x∗y in the input
transition system and property with a fmul(x, y) term, and adds some simple
axioms about the behaviour of multiplication to the initial-state and transition-
relation formulas of the transition system (see Sect. 4). In the rest of this section,
we describe the abstraction refinement algorithm in more detail.

2 In fact, as already discussed in Sect. 4, the procedure is biased towards unsatisfiable
instances, and might easily diverge on satisfiable ones.
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Fig. 6. Verification of NRA transition systems via abstraction to LRA+EUF.

Counterexample Checking and Refinement. When IC3-LRA+EUF-prove

returns a counterexample trace π̂ for the abstract system Ŝ, we use
SMT-NRA-check-abstract-ext to check for its spuriousness. The function
get-cex-formula builds a formula ψ to feed to SMT-NRA-check-abstract-ext, whose
unsatisfiability implies that π̂ is spurious. The formula ψ is built by unrolling
the transition relation of Ŝ, and optionally adding constraints that restrict the
allowed transitions to be compatible with the states in π̂. Various heuristics are
possible, trading generality for complexity: ψ could be fully constrained by the
states in π̂ (thus checking only one abstract counterexample path per iteration);
it could be only partially constrained (e.g. by considering only the Boolean vari-
ables and/or the state variables occurring only in linear constraints); or it could
be left unconstrained, considering only the length of the abstract counterexam-
ple. In our current implementation (see Sect. 6), we use the last option, i.e. we
only consider the length of π̂ to build a BMC formula that checks for any coun-
terexample of the given length, leaving the investigation of alternative strategies
to future work.

If SMT-NRA-check-abstract-ext returns true, the property is violated. In this
case, we can use the model found by SMT-NRA-check-abstract-ext to build a coun-
terexample trace for the input system and property.

If SMT-NRA-check-abstract-ext returns false, we use the axioms Γ produced
during search to refine the transition system Ŝ, using the procedure shown in
Fig. 7. Essentially, refine-transition-system translates back the axioms from their
unrolled version (i.e. on variables X〈0〉,X〈1〉, . . .) to their “single step” version
(on variables X and X ′), adding each of them either to the initial-states formula
or to the transition relation formula. In case an axiom γ spans more than a
single transition step (lines 9–10 of Fig. 7), we arbitrarily choose to map the
variables with the lowest index as current state variables X, and all the others
as next-state variables X ′. Notice that this might cause some refinement failure,
as discussed in the next paragraph.

Reducing the Number of Axioms to Add. In general, not all the axioms generated
during a call to SMT-NRA-check-abstract-ext are needed to successfully block a
counterexample, especially if eager strategies like those described in Sect. 4 are
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Fig. 7. Refinement of the LRA+EUF transition system.

Fig. 8. Reducing the axioms needed for refinement.

used. In the long run, having a large number of redundant axioms can be quite
harmful for performance. In order to mitigate this problem, we apply a filtering
strategy (based on unsatisfiable cores) to the set of axioms, before adding them
to the transition system. Instead of adding ΓI and ΓT directly to Ŝ, we invoke
the function shown in Fig. 8. Note that due to the flattening of multi-step axioms
described above (lines 9–10 of Fig. 7), the refinement might fail. In this case, our
current implementation simply aborts the execution.3

6 Experimental Analysis

Implementation and Comparisons. We have implemented a prototype
of the IC3-NRA-prove procedure using the IC3 engine of nuXmv [7] for
IC3-LRA+EUF-prove. The code is written in Python, using the PySMT library [17].
Our implementation, benchmarks, and experimental data are available at
https://es-static.fbk.eu/people/griggio/papers/tacas17-ic3-nra.tar.gz. We have
used the following tools for our evaluation.
nuXmv-LRA-static: we apply the upfront abstraction of NRA to LRA proposed
in [8], running the IC3 engine of nuXmv on the resulting transition system.
3 We remark however that so far we have never observed this behaviour during our

experiments.

https://es-static.fbk.eu/people/griggio/papers/tacas17-ic3-nra.tar.gz
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NRA-BMC-{z3, dReal} and NRA-K-induction-{z3, dReal}: we have imple-
mented the BMC [3] and k-induction [29] algorithms in Python (using PySMT),
using either z3 (NRA) or dReal (NRA) as back-end SMT solver.
iSAT3[1e-1] and iSAT3[1e-9]: we have used the latest version of the iSAT3
solver [24], which combines an SMT solver integrating CDCL and inter-
val constraint propagation techniques with an interpolation-based abstrac-
tion/refinement algorithm for verification. iSAT3 supports both transition sys-
tems and software programs encoded as control flow graphs. Similarly to dReal,
iSAT3 may return a “maybe unsafe” answer and provide a candidate solution
identifying the upper and lower bounds on the variables. In the experiments,
iSAT3[1e-1] is the configuration suggested by the iSAT3 authors4 and iSAT3[1e-
9] is the same except that the minimum splitting width (msw) parameter is set
to 10−9. We have used a smaller value for the msw to get more precise answers,
i.e. “safe” or “unsafe”, as suggested in the iSAT3 user manual.

Benchmarks. We have collected a total of 114 NRA benchmarks from various
sources.
Handcrafted. This set contains 14 hand-written instances, 13 safe and 1 unsafe.
HyComp. The second set contains 7 benchmarks (3 safe, 4 unsafe) which are
taken from [11] and converted to NRA transition systems using HyComp [10].
HYST. This is the biggest set, consisting of 65 benchmarks. These are gener-
ated from the Hybrid examples that come with the HYST [2] distribution, by
approximating the continuous time by sampling at a fixed time interval. This
process is done automatically using an extended version of HYST. Since the
generated benchmarks are approximations, we do not know their safety status.
The benchmarks contain mostly non-linear behaviour.
iSAT3 and iSAT3-CFG. The 11 benchmarks in this set (7 safe, 4 unsafe) are
taken from [24] and the iSAT3 examples available online.
nuXmv. In this set, we have 2 safe benchmarks which we collected from the
nuXmv users’ mailing list. These benchmarks have complex boolean structure.
SAS13. These 13 benchmarks are generated from the C programs used in [5],
but interpreted over NRA instead of the theory of IEEE floating-point numbers.
This makes some of the instances unsafe.
TCM. We have generated 2 safe benchmarks from the Simulink models (taken
from the case study [6]) by first generating the C code using the Embedded
Coder5 and then encoding the program into a symbolic transition system.

Results. We ran our experiments on a cluster of machines with 2.67 GHz Xeon
X5650 CPUs and 96 GB of RAM, running Scientific Linux 6.7. We used 6 GB
memory limit and 3600 s CPU timeout.

4 -I --use-craig-interpolation --use-cegar --cegar-abstraction-inductive

--interpolant-rules-mcmillan --interpolant-a-biased

--interpolation-offset --interpolant-offset 2.
5 https://www.mathworks.com/products/embedded-coder/.

https://www.mathworks.com/products/embedded-coder/
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Table 1. Summary of experimental results.
Total

H
andcrafted

H
yC

om
p

H
Y
ST

ISA
T
3

ISA
T
3-C

F
G

nuX
m
v

SA
S13

T
C
M

(114) (14) (7) (65) (1) (10) (2) (13) (2)
IC3-NRA-prove 60/15 9/1 3/0 33/7 0/0 6/2 2/0 5/5 2/0
iSAT3[1e-1] 48/2(47) 2/0(8) 0/0(3) 34/2(23) 0/0 6/0(4) 0/0 4/0(9) 2/0
iSAT3[1e-9] 47/2(19) 2/0(3) 0/0(2) 32/2(3) 0/0 6/0(3) 0/0 5/0(8) 2/0
NRA-K-induction-Z3 22/25 2/1 0/2 12/15 0/0 6/2 0/0 0/5 2/0
NUXMV-LRA-static 37/0 4/0 1/0 19/0 0/0 4/0 2/0 5/0 2/0
NRA-BMC-Z3 0/26 0/1 0/2 0/15 0/0 0/3 0/0 0/5 0/0
NRA-K-induction-DREAL 16/0(32) 2/0(4) 0/0(2) 9/0(19) 0/0 5/0(2) 0/0 0/0(5) 0/0
NRA-BMC-DREAL 0/0(39) 0/0(8) 0/0(2) 0/0(19) 0/0 0/0(3) 0/0 0/0(7) 0/0
virtual-best 66/26 9/1 3/2 38/15 0/0 7/3 2/0 5/5 2/0

Each column shows a benchmark family, and each entry gives the number of safe/unsafe
instances found. For tools working over interval arithmetic, the number of “maybe unsafe”
is reported in parentheses.

The results are summarized in Tables 1 and 2 and in Fig. 9. The plots show the
time to solve an instance on the x-axis and the total number of solved instances
on the y-axis. Table 1 reports a summary of the solved instances by family,
whereas Table 2 shows a comparitive analysis by reporting for each tool the
number of uniquely solved instances and the difference of solved instances w.r.t
IC3-NRA-prove. We can make the following observations from the experimental
results:
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Table 2. Comparitive summary of total solved benchmarks.

# Solved # Uniquely Solved
Difference wrt.
IC3-NRA-prove

Gained Lost

IC3-NRA-prove 60/15 9/0 - - -
NUXMV-LRA-static 37/0 0/0 -38 1/0 24/15
iSAT3[1e-1] 48/2(47)

4/0
-25 4/0 16/13

iSAT3[1e-9] 47/2(19) -26 3/0 16/13
NRA-K-induction-Z3 22/25

0/11
-28 2/11 40/1

NRA-BMC-Z3 0/26 -49 0/11 60/0
NRA-K-induction-DREAL 16/2(32)

0/0
-59 2/0 46/15

NRA-BMC-DREAL 0/0(39) -75 0/0 60/15

virtual-best 66/26 - 17 6/11 0

– IC3-NRA-prove is the best performer overall, and it significantly outperforms
all the other approaches on safe instances (where it can solve 9 problems that
are out of reach for all the other tools). Interestingly, despite its simplicity,
our model finding approach (as outlined in Sect. 4) is surprisingly effective,
allowing IC3-NRA-prove to find 15 counterexample traces.

– The simple abstraction proposed in [8] is quite effective for many families,
allowing nuXmv-LRA-static to verify more properties than the approaches
based on K-induction with an NRA solver. However, IC3-NRA-prove results
in a clear and very significant improvement, solving more than twice as many
instances than nuXmv-LRA-static (and losing only 1).

– None of the other tools (with the exception of nuXmv-LRA-static) is able to
solve any safe benchmark in the HyComp and nuXmv families. These bench-
marks have a non-trivial Boolean structure and a significant linear compo-
nent. Both IC3-NRA-prove and nuXmv-LRA-static are able to fully exploit
the effectiveness of the underlying IC3 engine of nuXmv, outperforming the
competitors. However, IC3-NRA-prove is very competitive also on the HYST
family, whose instances are mostly non-linear and have very little Boolean
structure.

– Increasing the default precision of iSAT3 significantly reduces the number of
“maybe unsafe” answers, but it doesn’t seem to help in solving more bench-
marks. In fact, we remark that even with the increased precision iSAT3[1e-9]
classifies 2 safe instances as “maybe unsafe” (whereas in the default configu-
ration, 6 safe instances are classified as “maybe unsafe”).

7 Conclusions and Future Work

We presented a novel abstraction-refinement approach to the verification of
transition systems with nonlinear dynamics expressed in the NRA theory. We
abstract non-linear multiplication as an uninterpreted function, leveraging effi-
cient invariant checkers for transition systems over LRA and EUF to solve the
problem in the abstract space. In case of spurious counterexample, the abstrac-
tion of multiplication is incrementally refined by introducing suitable axioms,
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based on the idea of tangent planes. An extensive experimental evaluation
demonstrates that the proposed approach is significantly more effective than
approaches directly based on SMT(NRA) solving.

This work opens up several important directions. First, we are going to
improve the implementation, by integrating all the steps within the nuXmv [7]
model checker, and to perform a thorough analysis of the various heuristic
choices. Second, we will investigate the potential of the approach for SMT, both
for other theories (e.g. NIA) and for extended functionalities (e.g. interpolation).
We will also extend the scope of the approach to deal with transcendental func-
tions, look-up tables, and partially axiomatized functions (e.g. gain functions
known to be monotonic and of restricted co-domain).

Finally, we are going to investigate the generalization of the approach from
transition systems to continuous-time hybrid systems with nonlinear character-
istic functions.

Acknowledgement. We greatly thank the iSAT3 team for providing the latest
iSAT3 executable and iSAT3-CFG benchmarks. We also thank James Davenport for
the fruitful discussions on CAD techniques and finding solutions in NRA.
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Abstract. We consider the problem of checking whether a proposed
invariant ϕ expressed in first-order logic with quantifier alternation is
inductive, i.e. preserved by a piece of code. While the problem is undecid-
able, modern SMT solvers can sometimes solve it automatically. However
they employ powerful quantifier instantiation methods that may diverge,
especially when ϕ is not preserved. A notable difficulty arises due to coun-
terexamples of infinite size.

This paper studies Bounded-Horizon instantiation, a natural method
for guaranteeing the termination of SMT solvers. The method bounds the
depth of terms used in the quantifier instantiation process. We show that
this method is surprisingly powerful for checking quantified invariants in
uninterpreted domains. Furthermore, by producing partial models it can
help the user diagnose the case when ϕ is not inductive, especially when
the underlying reason is the existence of infinite counterexamples.

Our main technical result is that Bounded-Horizon is at least as pow-
erful as instrumentation, which is a manual method to guarantee con-
vergence of the solver by modifying the program so that it admits a
purely universal invariant. We show that with a bound of 1 we can sim-
ulate a natural class of instrumentations, without the need to modify
the code and in a fully automatic way. We also report on a prototype
implementation on top of Z3, which we used to verify several examples
by Bounded-Horizon of bound 1.

1 Introduction

This paper addresses a fundamental problem in automatic program verification:
how to prove that a piece of code preserves a given invariant. In Floyd-Hoare
style verification this means that we want to automatically prove the validity
of the Hoare triple {P}C{P} where P is an assertion and C is a command.
Alternatively, this can be shown by proving the unsatisfiability of the formula
P (V ) ∧ δ(V, V ′) ∧ ¬P (V ′) (the verification condition) where P (V ) denotes the
assertion P before the command, P (V ′) denotes the assertion P after the com-
mand, and δ(V, V ′) is a formula expressing the meaning of the command C as
a transition relation between pre- and post-states. When C is a loop body, such
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a P is an inductive invariant and can be used to prove safety properties of the
loop (if it also holds initially and implies the desired property).

For programs with infinite state space, proving the validity of {P}C{P}
is generally undecidable even when C does not include loops. Indeed, existing
SMT solvers can diverge even for simple assertions and simple commands. Recent
attempts to apply program verification to prove the correctness of critical sys-
tem’s design and code [16] identify this as the main hurdle for using program
verification.

The difficulty is rooted in powerful constructs used in SMT-based verification
of interesting programs. Prominent among these constructs are arithmetic and
other program operations modeled using background theories, and logical quanti-
fiers. In this paper we target the verification of applications in which the problem
can be modeled without interpreted theories. This is in line with recent works
that show that although reasoning about arithmetic is crucial for low-level code,
in many cases the verification of high-level programs and designs can be per-
formed by reasoning about quantification in uninterpreted theories. Specifically,
the decidable Effectively Propositional logic (EPR) has been successfully applied
to domains such as linked-list manipulation [21], Software-Defined Networks [6]
and some distributed protocols [29]. Without interpreted theories it remains to
address the complications induced by the use of quantifier alternation.

In the presence of quantifier alternation, the solver’s ability to check asser-
tions is hindered by the following issues: (1) an infinite search space of proofs
that needs to be explored for correct assertions, a problem which is sometimes
manifested in matching loops [12], and (2) a difficulty of finding counterexam-
ples for invalid assertions, notably when counterexamples may be of infinite size.
Current SMT techniques often fail to produce models of satisfiable quantified
formulas [15,34], which is somewhat unfortunate since one of the main values
of program verification is early detection of flaws in designs and programs. The
existence of infinite counterexamples is a major complication as they are diffi-
cult to find. In uninterpreted domains, infinite counterexamples usually do not
indicate a real violation of the verification conditions and are counterintuitive to
programmers, yet render assertions invalid in the context of general first-order
logic (on which SMT proof techniques are based). Hence infinite counter-models
pose a real problem in the verification process.

Previous work on EPR [6,21,29] used universally quantified invariants with
programs expressed by ∃∗∀∗ formulas1, in which case checking inductive invari-
ants is decidable, hence problems (1) and (2) do not occur. In particular, EPR
enjoys the finite-model property and so counterexamples are of finite size. EPR
programs are in fact Turing-complete [29], but universal invariants are not always
sufficient to express the required program properties.

For example, [16] describes a client server scenario where the invariant is
“For every reply message sent by the server, there exists a corresponding request

1 Automated tools that extract EPR transition relation from code exist for C code
manipulating linked lists [21–23] and for the modeling language RML [29] which is
Turing-complete.
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message sent by a client”. (See Example 1 for further details.) This invariant is
∀∗∃∗ and thus leads to verification conditions with quantifier alternation. This
kind of quantifier alternation may lead to divergence of the solver as problems
(1) and (2) re-emerge.

The current work aims to expand the applicability of the EPR-based verifi-
cation approach to invariants of more complex quantification. We focus on the
class ∀∗∃∗ invariants, which arise in interesting programs. As we show, checking
inductiveness of invariants in this class is undecidable. We thus study problems
(1),(2) above for this setting using the notion of bounded quantifier instantia-
tions, which we term Bounded-Horizon.

Main Results. This paper explores the utility of limited quantifier instan-
tiations for checking ∀∗∃∗invariants, and for dealing with the problems that
arise from quantifier alternation: divergence of the proof search and infinite
counter-models.

We consider instantiations that are bounded in depth of terms. Bounded
instantiations trivially prevent divergence while maintaining soundness.
Although for a given bound the technique is not complete, i.e. unable to
prove every correct invariant, we provide completeness guarantees by compar-
ing bounded instantiations to the method of instrumentation, a powerful tech-
nique implicitly employed in previous works [21,23,29]. Instrumentation tackles
a ∀∗∃∗invariant by transforming the program in a way that allows the invari-
ant to be expressed in a universal form, and, accordingly, makes the verification
conditions fall in EPR. We show that for invariants that can be proven using a
typical form of instrumentation, bounded instantiations of a small bound are also
complete. Namely, they are sufficiently powerful to prove the original program
without modifications and in a fully automatic way. This is encouraging since
instrumentation is labor-intensive and error-prone while bounded instantiations
are completely automatic.

This result suggests that in many cases correct ∀∗∃∗invariants of EPR pro-
grams can be proven using a simple proof technique. Typically in such cases tools
such as Z3 will also manage to automatically prove the verification conditions.
However, bounded instantiations guarantee termination a-priori even when the
invariant is not correct. When it terminates, the procedure returns a logical
structure which is not necessarily a true counterexample but “approximates” it,
as it satisfies all the bounded instantiations. Interestingly, this suggests a way
to overcome the problem of infinite models. This problem arises when the user
provides an invariant that is correct for finite models but is incorrect in general
first-order logic. In such cases, state-of-the-art SMT solvers typically produce
“unknown” or timeout since they fail to find infinite models. Thus the user is
left with very little aid from the solver when attempting to make progress and
successfully verify the program. In contrast, bounded quantifier instantiation can
be used to find finite models with increasing sizes, potentially indicating the exis-
tence of an infinite model, and provide hints as to the source of the error. This
information allows the user to modify the program or the invariant to exclude
the problematic models. We demonstrate this approach on a real example in
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which such a scenario occurred in one of our verification attempts. We show
that the provided models assist in identifying and fixing the error, allowing the
user to successfully verify the program.

We also implemented a prototype tool that performs bounded instantiations
of bound 1, and used it to verify several distributed protocols and heap manipu-
lating programs. The implementation efficiently reduces the problem of checking
inductiveness with bound 1 to a Z3 satisfiability check on which the solver always
terminates, thereby taking advantage of Z3’s instantiation techniques while guar-
anteeing termination.

2 Preliminaries

In this section we provide background and explain our notation. Σ will always
denote a relational first-order vocabulary, which may contain constant symbols,
ci, and relation symbols, rj , but no function symbols. For a formula ϕ we denote
by const[ϕ] the set of constants that appear in ϕ. We write that ϕ ∈ ∃∗(Σ) to
mean that ϕ is an existential formula defined over vocabulary Σ. Similarly, the
class of universal formulas is denoted by ∀∗(Σ). We say that ϕ is quantifier-free,
denoted ϕ ∈ QF(Σ) if it contains no quantifiers, and that it is alternation free,
denoted ϕ ∈ AF(Σ), if it can be written as a Boolean combination of formulas
in ∃∗(Σ). FOL(Σ) stands for arbitrary first-order formulas over Σ. A sentence
is a closed formula.

EPR. The effectively-propositional (EPR) fragment of first-order logic, also
known as the Bernays-Schönfinkel-Ramsey class, consists of ∃∗∀∗(Σ) sentences.
Such sentences enjoy the small model property. Thus satisfiability of EPR sen-
tences is decidable [31].

EPR Transition Relation. We specify a transition relation via an EPR sen-
tence, δ, over a vocabulary Σ � Σ′ where Σ is a relational vocabulary used to
describe the source state of a transition and Σ′ = {a′ | a ∈ Σ} is used to describe
the target state.

Inductive Invariants. A first-order sentence I over Σ is an inductive invariant
for δ if I ∧δ → I ′ is valid, or, equivalently, if I ∧δ∧¬I ′ is unsatisfiable2, where I ′

results from substituting every constant and relation symbol in I by its primed
version.

Skolemization. Let ϕ(z1, . . . , zn) ∈ FOL(Σ). The Skolemization of ϕ, denoted
ϕS , is a universal formula over Σ � ΣS , where ΣS consists of fresh constant
symbols and function symbols, obtained as follows. We first convert ϕ to negation
normal form (NNF) using the standard rules. For every existential quantifier
∃y that appears under the scope of the universal quantifiers ∀x1, . . . ,∀xm, we
introduce a fresh function symbol fy ∈ ΣS of arity n + m. We replace each
bound occurrence of y by fy(z1, . . . , zn, x1, . . . , xm), and remove the existential

2 In this paper, satisfiability and validity refer to general models, not restricted to
finite models.
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quantifier. If n + m = 0 (i.e., ϕ has no free variables and ∃y does not appear in
the scope of a universal quantifier) a fresh constant symbol is used to replace y.
It is well known that ϕS → ϕ is valid and ϕS and ϕ are equi-satisfiable.

3 Bounded-Horizon

In this section, we define a systematic method of quantifier instantiation called
Bounded-Horizon as a way of checking the inductiveness of first-order logic for-
mulas, and explore some of its basic properties. We start with the undecidability
of the problem.

Undecidability of Inductiveness. For a universal formula I ∈ ∀∗(Σ), check-
ing inductiveness amounts to checking unsatisfiability of an EPR formula, and is
therefore decidable. The same holds for I ∈ AF (Σ). However, this is no longer
true when quantifier alternation is introduced. For example, checking induc-
tiveness of I ∈ ∀∗∃∗(Σ) amounts to checking unsatisfiability of a formula in a
fragment for which satisfiability is undecidable. In fact we prove that:

Theorem 1. The problem of determining on input I ∈ ∀∗∃∗(Σ) and δ ∈ ∃∗∀∗

(Σ,Σ′), whether I is an inductive invariant for δ, is undecidable.

Proof Sketch. The proof is by reduction from the halting problem, which can be
encoded using a ∀∗∃∗ formula via tiling (see e.g. [20]). For the setting of checking
invariants, we start with a Turing machine M , and construct δ ∈ ∃∗∀∗(Σ,Σ′),
and I ∈ ∀∗∃∗(Σ) s.t. I is an inductive invariant for δ iff M halts on the empty
tape. In case M does not halt, the counter-model that shows that I is not
inductive is an infinite structure which encodes an infinite run of M . �	

Bounded-Horizon Instantiations. Let δ ∈ ∃∗∀∗(Σ,Σ′) be an EPR transition
relation and I ∈ FOL(Σ) a candidate invariant. We would like to check the
satisfiability of I ∧ δ ∧ ¬I ′, and equivalently of Ind = IS ∧ δS ∧ (¬I ′)S . Recall
that ϕS denotes the Skolemization of ϕ, and note that IS and (¬I ′)S possibly
add Skolem functions to the vocabulary. Roughly speaking, for a given k ∈ N,
Bounded-Horizon instantiates the universal quantifiers in Ind, while restricting
the instantiations to produce ground-terms of function nesting at most k.

Below we provide the formal definitions and discuss soundness and
(in)completeness. We start with the notion of instantiations, and recall
Herbrand’s theorem which establishes completeness of proof by (unrestricted)
instantiations. Suppose that some vocabulary Σ̃ including constants and func-
tion symbols is understood (e.g., Σ̃ = Σ � ΣS , where ΣS includes Skolem con-
stants and function symbols).

Definition 1 (Instantiation). Let ϕ(x) ∈ ∀∗(Σ̃) be a universal formula with
n free variables and m universal quantifiers. An instantiation of ϕ by a tuple
t of n + m ground terms, denoted by ϕ[ t ], is obtained by substituting t for the
free variables and the universally quantified variables, and then removing the
universal quantifiers.
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Note that an instantiation is a quantifier-free sentence.

Theorem 2 (Herbrand’s Theorem). Let ϕ ∈ ∀∗(Σ̃). Then ϕ is satisfiable
iff the (potentially infinite) set

{
ϕ[ t ] | t is a tuple of ground terms over Σ̃

}
is

satisfiable.

We now turn to restrict the depth of terms used in instantiations.

Definition 2 (Bounded-Depth Terms). For every k ∈ N, we define BHTk

to be the set of ground terms over Σ̃ with function symbols nested to depth at
most k. BHTk is defined by induction over k. Let C be the set of constants in
Σ̃, F the set of functions, and for every f ∈ F let Arityf be the arity of f . Then
BHT0 = C and for k > 0:

BHTk = BHTk−1 ∪ {f(t1, . . . tm) | f ∈ F, m = Arityf , t1, . . . , tm ∈ BHTk−1}.

We will also write t ∈ BHTk for a tuple of terms t, to mean that every entry
of t is in BHTk (the number of elements in t should be clear from the context).
Note that the set of ground terms is BHT∞ =

⋃
k∈N

BHTk.

Definition 3 (Depth of Instantiation). Let ϕ ∈ ∀∗(Σ̃) and t ∈ BHT∞. The
depth of instantiation, denoted depth(ϕ[ t ]), is the smallest k such that all ground
terms that appear in ϕ[ t ] are included in BHTk.

Bounded-Horizon Algorithm. Given a candidate invariant I ∈ FOL(Σ), a
transition relation δ over Σ � Σ′, and k ∈ N, the Bounded-Horizon algorithm
constructs the formula Ind = IS ∧ δS ∧ (¬I ′)S , and checks if the set

{
Ind[ t ] | t ∈ BHTk, depth(Ind[ t ]) ≤ k

}
(1)

is unsatisfiable. If it is, then I is provably inductive w.r.t. δ with Bounded-
Horizon of bound k. Otherwise we report that I is not known to be inductive.

Note that the satisfiability check performed by Bounded-Horizon is decidable
since the set of instantiations is finite, and each of them is a ground formula.

Bounded-Horizon for ∀∗∃∗ Invariants. We illustrate the definition of
Bounded-Horizon in the case that I ∈ ∀∗∃∗(Σ). Assume that I = ∀x. ∃y. α(x, y)
where α ∈ QF. Then IS = ∀x. α(x, f(x)) where f are new Skolem function
symbols. δS introduces Skolem constants but no function symbols, and in this
case so does (¬I ′)S . Bounded-Horizon check of bound k can be approximately
understood as checking the satisfiability of

( ∧

t∈BHTk−1

IS [ t ]
) ∧ ( ∧

t∈BHTk

δS [ t ]
) ∧ ( ∧

t∈BHTk

(¬I ′)
S
[ t ]

)
. (2)

(In fact, it is possible that IS contains sub-formulas for which instantiations of
depth k do not increase the total depth of instantiations beyond k, and are thus
also included.)
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Lemma 1 (Soundness). For every k ∈ N, Bounded-Horizon with bound k is
sound, i.e., if it reports that I ∈ FOL(Σ) is inductive w.r.t. δ, then I is indeed
inductive.

Proof. Assume that I is not inductive w.r.t. δ, so there is a structure A such
that A |= IS ∧ δS ∧ (¬I ′)S . In particular A |= Ind[ t ] for every t ∈ BHT∞ and
in particular for every t ∈ BHTk such that depth(Ind[ t ]) ≤ k. Hence, Bounded-
Horizon of bound k will not report that I is inductive. �	

Fig. 1. Example demonstrating a ∀∗∃∗ invariant that is provable with bound 1. The
reader should first ignore the instrumentation code denoted by /@ (see Example 2).
This example is inspired by [16]. The complete program is provided in [2] (files
client server ae.ivy, client server instr.ivy).

Example 1. Figure 1 presents a simple model of the client server scenario
described in [16]. The program induces an EPR transition relation, and its invari-
ant is provable by Bounded-Horizon of bound 1.

We first explain this example ignoring the annotations denoted by “/@”.
The system state is modeled using three binary relations. The req relation stores
pairs of users and requests, representing requests sent by users. The resp relation
similarly stores pairs of users and replies, representing replies sent back from the
server. The match relation maintains the correspondence between a request and
its reply.

The action new request models an event where a user u sends a new request
to the server. The action respond models an event where the server responds
to a pending request by sending a reply to the user. The request and response
are related by the match relation. The action check is used to verify the safety
property that every response sent by the server has a matching request, by
aborting the system if this does not hold.

A natural inductive invariant for this system is

I = ∀u, p. resp(u, p) → ∃q . req(u, q) ∧ match(q , p).
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The invariant proves that the then branch in action check will never happen
and thus the system will never abort. This invariant is preserved under execution
of all actions, and is provable by Bounded Horizon of bound 1.

Lemma 2 (Completeness for some k). If I ∈ FOL(Σ) is inductive w.r.t. δ
then there exists k ∈ N s.t. I is provably inductive w.r.t. δ with Bounded-Horizon
of bound k.

Proof. From Theorem 2 and compactness there is a finite set S of instantiations
that is unsatisfiable. Take k to be the maximal depth of instantiations in S. �	

For example, if I ∈ ∀∗ then Bounded-Horizon of bound 0 is complete. How-
ever, as expected due to the undecidability of checking inductiveness, for arbi-
trary invariants Bounded-Horizon is not necessarily complete for a given k: An
example for which a bound of 1 is insufficient appears in the extended version [1].

Small Bounded-Horizon for ∀∗∃∗ Invariants. Despite the incompleteness,
we conjecture that a small depth of instantiations typically suffices to prove
inductiveness. The intuition is that an EPR transition relation has a very limited
“horizon” of the domain: it interacts only with a small fraction of the domain,
namely elements pointed to by program variables (that correspond to logical
constants in the vocabulary).

When performing the Bounded-Horizon check with bound 1 on a ∀∗∃∗ invari-
ant I = ∀x. ∃y. α(x, y), we essentially assume that the existential part of the
invariant ψ(x) = ∃y. α(x, y) holds on all program variables—but not necessarily
on all elements of the domain — and try to prove that it holds on all elements
of the domain after the transition. We expect that for most elements of the
domain, the correctness of ψ is maintained simply because they were not modi-
fied at all by the transition. For elements that are modified by the transition, we
expect the correctness after modifications to result from the fact that ψ holds
for the elements of the domain that the transition directly interacts with. If this
is indeed the reason that ψ is maintained, a bound of 1 sufficiently uses ψ in the
pre-state to prove the invariant in the post-state, i.e. it is inductive.

This is the case in Example 1. Additional examples are listed in Sect. 6.

4 Power of Bounded-Horizon for Proving Inductiveness

We now turn to investigate the ability of Bounded-Horizon to verify inductive-
ness. In this section we provide sufficient conditions for its success by relating
it to the notion of instrumentation (which we explain below). We show that
Bounded-Horizon with a low bound of 1 or 2 is as powerful as a natural class of
sound program instrumentations, those that do not add existential quantifiers.
Section 6 demonstrates the method’s power on several interesting programs we
verified using Bounded-Horizon of bound 1.
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4.1 Instrumentation

We present our view of the instrumentation procedure used in previous
works [21,23,29] to eliminate the need for quantifier-alternation, thus reduc-
ing the verification task to a decidable fragment. The procedure begins with a
program that induces a transition relation δ ∈ ∃∗∀∗(Σ ∪ Σ′). The purpose of
instrumentation is to modify δ into another transition relation δ̂ that admits an
inductive invariant with simpler quantification (e.g., universal, in which case it
is decidable to check). We note that instrumentation is generally a manual pro-
cedure. For simplicity, we describe the instrumentation process informally, but
provide the semantic soundness requirement in Definition 4. The instrumentation
procedure consists of the following three steps:

1. Identify a formula ψ(x) ∈ FOL(Σ) (usually ψ will be existential) that cap-
tures information that is needed in the inductive invariant. Extend the vocab-
ulary with an instrumentation relation r(x) that intentionally should capture
the derived relation defined by ψ(x). Let Σ̂ = Σ ∪ {r} denote the extended
vocabulary3.

2. Add update code that updates r when the original (“core”) relations are mod-
ified, and maintains the meaning of r as encoding ψ. The update code must
not block executions of real code, and can possibly be a sound approximation.
Sometimes it can be generated automatically via finite differencing [32].

3. Modify the program to use r. Often this is performed by rewriting some
program conditions, keeping in mind that r encodes ψ. This means replacing
some quantified expressions by uses of r.

Example 2. In the example of Fig. 1, to achieve a universal invariant we add an
instrumentation relation r defined by r(x, y) ≡ ∃z. req(x, z) ∧ match(z, y) (step
1). The simple form of ψ allows us to obtain precise update code, which appears
as annotations marked with /@ in lines that mutate req and match (step 2). We
also replace the if condition in the action check by an equivalent condition that
uses r (step 3). The line marked with /@ ↪→ in the check action replaces the line
above it. The resulting program has the invariant Î = ∀u, p. resp(u, p) → r(u, p),
which is universal.

Let δ̂ ∈ ∃∗∀∗(Σ̂ ∪ Σ̂′) denote the transition relation induced by the modified
program (modifications occur in steps 2, 3). The soundness of the instrumenta-
tion procedure is formalized in the following connection between ψ, δ, and δ̂:

Definition 4 (Sound Instrumentation). δ̂ ∈ ∃∗∀∗(Σ̂ ∪ Σ̂′) is a sound
instrumentation for δ ∈ ∃∗∀∗(Σ ∪ Σ′) and ψ ∈ FOL(Σ) if

(∀x. r(x) ↔ ψ(x) ∧
δ ∧ ∀x. r′(x) ↔ ψ′(x)

) → δ̂ is valid, or equivalently, δ → δ̂[ψ/r, ψ′/r′] is valid.

3 It is also possible to instrument the program with constants. This can be emulated by
adding a unary relation c(x) representing the constant, and adding the assumption
that c contains exactly one element to the invariant. This is also aligned with the
conditions of Theorem 5.
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Definition 4 ensures that the instrumented program includes at least all the
behaviors of the original program, when r is interpreted according to ψ. Thus,
if the instrumented program is safe, then it is sound to infer that the original
program is safe.

The instrumentation procedure does not require the user to know an induc-
tive invariant for the original program. However, if a sound instrumentation
which leads to an invariant exists, then an inductive invariant for the original δ
can be produced by substituting back the “meaning” of r as ψ (thus, safety of
the original program is implied):

Lemma 3. Let δ̂ be a sound instrumentation for δ and ψ, and Î ∈ FOL(Σ̂) be
an inductive invariant for δ̂. Then I = Î[ψ/r] is inductive w.r.t. δ.

Proof. Î ∧ δ̂ → Î ′ is valid, thus, so is (Î ∧ δ̂ → Î ′)[ψ/r, ψ′/r′]. δ̂ is a sound
instrumentation for δ, so (using Definition 4) I ∧ δ → I ′ is valid. �	
Note that typically the quantification structure of I is more complex than that
of Î.

Instrumentation Without Additional Existential Quantifiers. In order
to relate instrumentation to Bounded-Horizon instantiations, we consider the
typical case where the instrumentation process of δ does not add new existen-
tial quantifiers to δ̂. This happens when the update code does not introduce
additional existential quantifiers. Formally:

Definition 5 (Existential Naming). Let δ̂ = ∃z1, . . . zm. ϕ(z1, . . . , zm) where
ϕ ∈ ∀∗(Σ̂, Σ̂′). An existential naming η for (δ̂, δ) is a mapping η : {z1, . . . , zm}
→ const[δS ] ∪ const[δ̂S ]. We define η(δ̂) to be ϕ[η(z1)/z1, . . . , η(zm)/zm].

An existential naming provides a Skolemization procedure which uses existing
constants rather than fresh ones. If such η exists, it maps the (Skolemized)
existential quantifiers in δ̂ to their counterparts in δ. For example, the instru-
mentation in Fig. 1 results in δ̂ that has an existential naming w.r.t. the original
δ. Note that it is possible that δ̂ has in fact fewer existential quantifiers than
δ, for example due to the rewriting of conditions (as happens in the example of
Fig. 1—see the if statement in action check).

Definition 6 (Instrumentation Without Additional Existenials). δ̂ is a
sound instrumentation without additional existentials for δ if there exists an
existential naming η such that δS → η(δ̂)[ψ/r, ψ′/r′] is valid.

4.2 From Instrumentation to Bounded-Horizon

The results described in this section show that if there is an instrumentation
without additional existentials, then Bounded-Horizon with a low bound is able
to prove the original invariant, without specific knowledge of the instrumentation
and without manual assistance from the programmer. This is the case in the
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example of Fig. 1, which admits an instrumentation that transforms the invariant
to a universal invariant (see Example 2) in a form that matches Theorem 3, and
indeed the original invariant is provable by Bounded-Horizon of bound 1.

Interestingly, in case Bounded-Horizon with a small bound does not prove
inductiveness (see the example in the extended version [1]), the results imply
that either the invariant is not inductive or no instrumentation that does not
add existential quantifiers can be used to show that it is inductive (even with
the programmer’s manual assistance).

In the remainder of this section we will assume that δ̂ is a sound instrumen-
tation without additional existentials for δ, and η is the corresponding naming
of existentials. Further, we assume that Î is an inductive invariant for δ̂ and
denote I = Î[ψ/r].

The following theorems state our results for I ∈ ∀∗∃∗.

Theorem 3. Let Î ∈ ∀∗. Assume ψ ∈ ∃∗ and r appears only positively in Î, or
ψ ∈ ∀∗ and r appears only negatively in Î. Then I = Î[ψ/r] is inductive for δ
with Bounded-Horizon of bound 1. (Note that I ∈ ∀∗∃∗.)

Proof Sketch. Let I = ∀x. α(x) where α ∈ ∃∗. Assume for the sake of contra-
diction that I is not inductive for δ with Bounded-Horizon of bound 1. By the
assumptions on ψ and Î, this means that there is a structure A such that

A |= (∧
c α(c)

) ∧ δS ∧ (¬I ′)S .

From the assumption (Definition 6) and properties of Skolemization, it follows
that

A |= (∧
c α(c)

) ∧ (
η(δ̂)

)
[ψ/r, ψ′/r′] ∧ (

(¬Î ′)S
)
[ψ/r, ψ′/r′].

From the assumptions on the way ψ appears in Î, when we write Î = ∀x. α̂(x)
where α̂ ∈ QF we have α = α̂[ψ/r]. Thus, from properties of substitution (inter-
preting r, r′ according to ψ,ψ′ in A) it follows that there is a structure Â such
that

Â |= (∧
c α̂(c)

) ∧ η(δ̂) ∧ (¬Î ′)S .

By reducing Â’s domain to the constants we have that
(∀x. α̂(x)

)∧η(δ̂)∧(¬Î ′)S
is satisfiable. (This is a use of complete instantiation for universal formulas.)

This in turn implies (by properties of Skolemization) that Î ∧ δ̂ ∧ ¬Î ′ is
satisfiable, which is a contradiction to the assumption that Î is inductive for δ̂.

�	
Theorem 4. Let Î ∈ ∀∗. If ψ ∈ AF then I = Î[ψ/r] is inductive for δ with
Bounded-Horizon of bound 2. (Note that I ∈ ∀∗∃∗.)

The following theorem generalizes the above result to 1-alternation invari-
ants. A formula is 1-alternation if it can be written as a Boolean combination of
∀∗∃∗ formulas.

Theorem 5. Let Î ∈ AF. If ψ ∈ AF then I = Î[ψ/r] is inductive for δ with
Bounded-Horizon of bound 2. (Note that I ∈ 1-alternation.)
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The full proofs appear in the extended version [1]. The results of this section
also apply when multiple instrumentation relations ψ1, . . . , ψt ∈ FOL(Σ) are
simultaneously substituted instead of the relation symbols r1, . . . , rt in δ̂ and Î.

Instrumentations for Higher Bounds. While instrumentation that does not
add existentials is at most as powerful as Bounded-Horizon with a low bound,
sound instrumentations that do add existentials to the program (thereby not
satisfying Definition 6) can be used to simulate quantifier instantiation of an
arbitrary depth. A simple way is to add r as an instrumentation that tracks the
existential part of a ∀∗∃∗ invariant. Instantiations are performed by introducing
existentially quantified variables to the program and using assume statements to
make these variables function as witnesses for a tuple of variables that instantiate
the universal quantifiers. Doing this recursively generates instantiations of an
arbitrary depth. See the extended version [1] for further details.

5 Partial Models for Understanding Non-Inductiveness

When conducting SMT-based deductive verification (e.g., using Dafny [26]), the
user constructs both the formal representation of the system and its invariants.
In many cases, the invariant I is initially not inductive w.r.t. the given program,
due to a bug in the program or in the invariant. Therefore, deductive verification
is typically an iterative process in which the user attempts to prove inductiveness,
and, when this fails, adapts the program, the invariant, or both.

In such scenarios, it is extremely desirable to present the user with a coun-
terexample to induction in the form of a state that satisfies I but makes a
transition to a state that violates it. Such a state can be obtained from a model
of the formula Ind = I ∧ δ ∧¬I ′ which is used to check inductiveness. It explains
the error, and guides the user towards fixing the program and/or the invari-
ant [13,26]. However, in many cases where the check involves quantifier alterna-
tion, current SMT solvers are unable to produce counterexamples. Instead, SMT
solvers usually diverge or report “unknown” [15,33]. In such cases, Bounded-
Horizon instantiations can be used to present a concrete logical structure which
is comprehensible to the user, and is obtained as a model of the (finite) instan-
tiations of the formula Ind. While this structure is not a true counterexample
(as it is only a model of a subset of the instantiations of the formula), it can
still guide the user in the right direction towards fixing the program and/or the
invariant.

We illustrate this using a simple leader-election protocol in a ring [10], whose
model is presented in Fig. 2(a). The protocol assumes that nodes are organized
in a directional ring topology with unique IDs, and elects the node with the
highest ID as the leader. Each node sends its own ID to its successor, and
forwards messages when they contain an ID higher than its own ID. A node that
receives its own ID is elected as leader. We wish to prove a termination property
which states that once all nodes have sent their ID, and there are no pending
messages in the network, then there is an elected leader. To verify this we use a
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Fig. 2. Leader-election in a ring protocol as an illustration of the use of partial models
for incorrect programs and invariants. (a) sketches the protocol (the complete program
appears in [2], file ring leader termination.ivy). (b), (c) show partial models of
bound 1 and 2, respectively, and (d) illustrates an infinite structure that explains the
root cause of the non-inductiveness.

relational model of the protocol similar to [29], and specify the property via the
following formula:

(∃n. leader(n)) ∨ (∃n1, n2. ¬sent(n1) ∨ pending(n1, n2)) (3)

A natural attempt of proving this using an inductive invariant is by conjoining
Eq. (3) (which is not inductive by itself) with the following property (this was
the authors’ actual next step in proving this termination property):

∀n1. sent(n1) ∧ ¬leader(n1) → ((∃n2. pending(n1, n2)) ∨ (∃n2. n1 < n2)) (4)

meaning that if a node has sent its own ID but has not (yet) become leader,
then there is either a message pending in the network with the node’s ID, or a
node with a higher ID.

Alas, the conjunction of Eqs. (3) and (4) is still not an inductive invariant for
the protocol (as we explain below). Since Eq. (4) contains ∀∗∃∗ quantification,
the associated inductiveness check is outside of the decidable EPR fragment.
Indeed, Z3 diverges when it is used to check Ind. This is not surprising since the
formula has no satisfying finite structures, but has an infinite model (a scenario
that is not unusual for ∀∗∃∗ formulas).

On the other hand, applying Bounded-Horizon (with any bound) to Ind
results in a formula that has finite models. These concrete models are partial
models of Ind. Figure 2(b) and (c) show partial models (restricted to the pre-
states) obtained with bounds of 1 and 2, respectively, on this example.

These models are not true counterexamples to induction: the sub-formula of
Eq. (4) residing under the universal quantifier does not hold for all the elements
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of the domain. It does, however, hold for all elements with which the quantifier
was instantiated, which are the elements above the dashed line. These elements
have all sent their own ID, which was blocked by their successor that has a higher
ID, so none of them is the leader. In a finite model, this has to end somewhere,
because one of the nodes must have the highest ID. Hence, no finite counter-
model exists. However, extrapolating from Fig. 2(b) and (c), we can obtain the
infinite model depicted in Fig. 2(d). This model represents an infinite (“open”)
ring in which each node has a lower ID than its successor. This model is a true
model of the formula Ind generated by the invariant in Eqs. (3) and (4), but the
fact that it is infinite prevented Z3 from producing it.

Since we use tools that check general (un)satisfiability, which is not limited
to finite structures, the only way to prove that an invariant is inductive is to
exclude infinite counterexamples to induction as well. Using Bounded-Horizon
instantiations, we are able to obtain meaningful partial models that provide
hints to the user about what is missing. In this case, the solution is to add an
axiom to the system model which states that there is a node with maximal ID:
∃n1. ∀n2. n2 ≤ n1. With this additional assumption, the formula Ind is unsatis-
fiable so the invariant is inductive, and this is proven both by Z3’s instantiation
heuristics and by Bounded-Horizon with a bound of 1. This illustrates the use-
fulness of Bounded-Horizon when the invariant is not inductive.

6 Implementation and Initial Evaluation

We implemented a prototype of Bounded-Horizon of bound 1 on top of Z3 [11]
and used it within Ivy [29] and the framework of [21]. We applied the procedure
to the incorrect example of Sect. 5, and successfully verified several correct pro-
grams and invariants using bound 1. These examples are (the examples’ code
can be found in [2]):

– The client-server example of Fig. 1.
– List reverse [21], where the invariant states that the n edges (“next” pointers)

are reversed. The invariant is ∀∗∃∗ due to the encoding of n via n∗ as explained
in [21].

– Learning switch [6], where the invariant states every routing node has a
successor.

– Hole-punching firewall [6], where the invariant states that every allowed exter-
nal node was contacted by some internal node. We explored two modeling
alternativies: using a ghost history relation, or existensially quantifying over
time.

– Leader election in a ring [10,29] with the invariant discussed in Sect. 5.

An initial evaluation of the method’s performance appears in Table 1.
Our implementation works by adding “guards” that restrict the range of uni-

versal quantifiers to the set of constants where necessary. Technically, recall that
we are considering the satisfiability of Ind = IS ∧ δS ∧ (¬I ′)S . Let ∀x. θ be a
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Table 1. Experimental results.

Program #∀ #Func #Consts #∀↓ B1 Total B1 Solve Baseline Z3

Client-server 14 1 15 2 58 ms 3 ms 3 ms

List reverse 47 3 15 4 319 ms 211 ms 50 ms

Learning switch 70 1 7 37 245 ms 65 ms 33 ms

Hole-punching firewall with ghost 15 1 18 3 75 ms 4 ms 4 ms

Hole-punching firewall ∃ time 32 2 21 3 102 ms 4 ms 4 ms

Leader-election in a ring (correct) 41 1 21 1 113 ms 36 ms 27 ms

Leader-election in a ring (incorrect) 40 1 20 1 1112 ms 1008 ms —

B1 Total is the time in milliseconds for the bound 1 implementation. It is compared to Baseline Z3

which is the solving time in milliseconds of Ind as is (with quantifier alternation) by Z3. B1 Solve

measures the solving time of the formula restricted to bound 1, which demonstrates that most

of the overhead occurs when constructing the formula. #∀ is the number of universal quantifiers

in Ind, #Func the number of different Skolem function symbols, and #Consts the number of

constants. #∀↓ is the number of universally quantified variables that were restricted in the bound 1

check. Measurements were performed on a 3.5GHz Intel i5-4690 CPU with 8GB RAM running Linux

3.13 x86 64.

subformula of Ind. If θ contains function symbol applications4, we transform the
subformula to ∀x.

(∨
c x = c

) → θ where c ranges over const[Ind]. The resulting
formula is then dispatched to the solver. This is a simple way to encode the
termination criterion of bound 1 while leaving room for the solver to perform
the necessary instantiations cleverly. The translation enlarges the formula by
O(#Consts · #∀) although the number of bounded instantiations grows expo-
nentially with #∀. The exponential explosion is due to combinations of constants
in the instantiation, a problem we defer to the solver.

Z3 terminates on the class of formulas because during the Model-Based Quan-
tifier Instantiation process every instantiation of a universally quantified formula
has the same truth value in the model as an instantiation using one of the exist-
ing ground terms (constants and then BHT1 terms). Z3’s instantiation engine
will produce instantiations using existing terms rather than create superfluous
new terms [8].

The results are encouraging because they suggest that the termination strat-
egy of Bounded-Horizon, at least for bound 1, can be combined with existing
instantiation techniques to assure termination with only a slight performance
penalty. Most encouraging is the satisfiable example of Sect. 5. On this instance,
Z3 was able to return “sat” within seconds, although to do so, in theory, the
solver must exhaust the entire set of bounded instantiations. This suggests that
the Bounded-Horizon termination criterion might indeed be useful for “sat”
instances on which the solver may diverge.

A different approach to the implementation is to integrate the termination
criterion of the bound with the solver’s heuristics more closely (see [7]).

4 This in fact implements the approximation as of Eq. (2). The exact bound 1 per
Eq. (1) can be implemented by a more careful consideration of which universally
quantified variables should be restricted, but this was not necessary for our examples.
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7 Related Work

Quantifier Instantiation. The importance of formulas with quantifier-
alternations for program verification has led to many developments in the SMT
and theorem-proving communities that aim to allow automated reasoning with
quantifier-alternations. The Simplify system [12] promoted the practical usage
of quantifier triggers, which let the user affect the quantifier instantiation in a
clever way. Similar methods are integrated into modern SMT solvers such as
Z3 [11]. Recently, a method for annotating the source code with triggers has
been developed for Dafny [27]. The notion of instantiation depth is related to
the notions of matching-depth [12] and instantiation-level [14] which are used
for prioritization within the trigger-based instantiation procedure.

In addition to user-provided triggers, many automated heuristics for quanti-
fier instantiation have been developed, such as Model-Based Quantifier Instan-
tiation [15]. Even when quantifier instantiation is refutation-complete, it is still
important and challenging to handle the SAT cases, which are especially impor-
tant for program verification. Accordingly, many works (e.g., [33]) consider the
problem of model finding.

Local Theory Extensions and Psi-Local Theories [7,19,36] identify settings in
which limited quantifier instantiations are complete. They show that complete-
ness is achieved exactly when every partial model can be extended to a (total)
model. In such settings Bounded-Horizon instantiations are complete for invari-
ant checking. However, Bounded-Horizon can also be useful when completeness
cannot be guaranteed.

Classes of SMT formulas that are decidable by complete instantiations
have been studied by [15]. In the uninterpreted fragment, a refined version of
Herbrand’s Theorem generates a finite set of instantiations when the dependen-
cies are stratified. Bounded-Horizon is a way to bound unstratified dependencies.

Natural Proofs. Natural proofs [30] provide a sound and incomplete proof
technique for deductive verification. The key idea is to instantiate recursive defi-
nitions over the terms appearing in the program. Bounded-Horizon is motivated
by a similar intuition, but focuses on instantiating quantifiers in a way that is
appropriate for the EPR setting.

Decidable Logics. Different decidable logics can be used to check inductive
invariants. For example, Monadic second-order logic [17] obtains decidability by
limiting the underlying domain to consist of trees only, and in particular does
not allow arbitrary relations, which are useful to describe properties of programs.
There are also many decidable fragments of first-order logic [9]. Our work aims
to transcend the class of invariants checkable by a reduction to the decidable
logic EPR. We note that the example of Sect. 5 does not fall under the Loosely-
Guarded Fragment of first-order logic [18] due to a use of a transitivity axiom,
and does not enjoy the finite-model property.

Abstractions for Verification of Infinite-State Systems. Our work is
closely related to abstractions of infinite state systems. These abstractions aim at
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automatically inferring inductive invariants in a sound way. We are interested in
checking if a given invariant is inductive either for automatic and semi-automatic
verification.

The View-Abstraction approach [3–5] defines a useful abstraction for the
verification of parameterized systems. This abstraction is closely related to uni-
versally quantified invariants. An extension of this approach [5] adds contexts to
the abstraction, which are used to capture ∀∗∃∗ invariants in a restricted setting
where nodes have finite-state and are only related by specific topologies. Our
work is in line with the need to use ∀∗∃∗ invariants for verification, but applies
in a more general setting (with unrestricted high-arity relations) at the cost of
losing completeness of invariant checking.

Our work is related to the TVLA system [28,35] which allows the program-
mers to define instrumentation relations. TVLA also employs finite differenc-
ing to infer sound update code for updating instrumentation relations [32],
but generates non-EPR formulas and does not guarantee completeness. The
focus operation in TVLA implements materialization which resembles quantifier-
instantiation. TVLA shows that very few built-in instrumentation relations can
be used to verify many different programs.

Instrumentation and Update Formulas. The idea of using instrumentation
relations and generating update formulas is not limited to TVLA and was also
used for more predictable SMT verification [24,25].

8 Conclusion

We have provided an initial study of the power of bounded instantiations for
tackling quantifier alternation. This paper shows that quantifier instantiation
with small bounds can simulate instrumentation. This is a step in order to elim-
inate the need for instrumenting the program, which can be error-prone. The
other direction, i.e. simulating quantifier instantiation with instrumentation, is
also possible but is less appealing from a practical point of view, and is presented
in the extended version [1].

We are encouraged by our initial experience that shows that various proto-
cols can be proven with small instantiation bounds, and that partial models are
useful for understanding the failures of the solver to prove inductiveness. Some of
these failures correspond to non-inductive claims, especially those due to infinite
counterexamples. In the future we hope to leverage this in effective deductive
verification tools, and explore meaningful ways to display infinite counterexam-
ples to the user.
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Abstract. We present a constraint-based method for proving condi-
tional termination of integer programs. Building on this, we construct a
framework to prove (unconditional) program termination using a pow-
erful mechanism to combine conditional termination proofs. Our key
insight is that a conditional termination proof shows termination for
a subset of program execution states which do not need to be considered
in the remaining analysis. This facilitates more effective termination as
well as non-termination analyses, and allows handling loops with dif-
ferent execution phases naturally. Moreover, our method can deal with
sequences of loops compositionally. In an empirical evaluation, we show
that our implementation VeryMax outperforms state-of-the-art tools on
a range of standard benchmarks.

1 Introduction

Proving program termination requires not only synthesizing termination argu-
ments, but also reasoning about reachability of program states, as most non-
trivial programs contain subprocedures or loops that only terminate for the
executions that actually reach them. Thus, a termination prover has to segment
the program state space according to its termination behavior, ignoring non-
terminating but unreachable states. Recent advances in termination proving try
to tackle this problem by abducing conditions for non-termination, and focusing
the termination proof search on the remaining state space [25,32]. However, these
techniques rely on relatively weak non-termination proving techniques. Further-
more, different termination arguments may be required depending on how a loop
or subprocedure is reached, and thus, even though no non-termination argument
can be found, the state space needs to be segmented.
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In this work, we propose to use preconditions for termination to drive the
unconditional termination proof. The key insight is that a condition φ imply-
ing termination allows a termination prover to focus on those program states in
which ¬φ holds. To obtain preconditions for termination, we introduce a new
constraint-based method that analyzes program components (i.e., loops or sub-
procedures) independently and synthesizes termination arguments together with
a conditional supporting invariant [12]. To prove full program termination, we
use a novel program transformation we call unfolding which syntactically splits
terminating from potentially non-terminating states using the generated termi-
nation conditions. This allows us to combine several conditional termination
arguments, each obtained for a small component of the program independently,
into a proof for the input program. In summary, we present the following con-
tributions:

– A new method based on Max-SMT for finding preconditions for termination
(cf. Sect. 3 and Algorithm 1).

– A framework to prove termination or non-termination by repeatedly simpli-
fying the program analysis task by combining conditional termination argu-
ments using the unfolding transformation (cf. Sect. 4 and Algorithm 2).

– An implementation of the technique in our tool VeryMax for C++ input pro-
grams and an extensive experimental evaluation showing that it is not only
more powerful than existing tools, but also more efficient (cf. Sect. 5).

2 Preliminaries

SAT, Max-SAT, and Max-SMT. Let P be a fixed set of propositional variables.
For p ∈ P, p and ¬p are literals. A clause is a disjunction of literals l1 ∨ · · · ∨ ln.
A (CNF) propositional formula is a conjunction of clauses C1 ∧ · · · ∧ Cm. The
problem of propositional satisfiability (SAT) is to determine whether a proposi-
tional formula F has a model, i.e., an assignment M that satisfies F , denoted
by M |= F . An extension of SAT is Satisfiability Modulo Theories (SMT) [6],
where one checks the satisfiability of a formula with literals from a given back-
ground theory. Another extension is (weighted partial) Max-SAT [6], where some
clauses in the input formula are soft clauses with an assigned weight, and the
others are hard clauses. Here, we look for a model of the hard clauses that max-
imizes the sum of the weights of the satisfied soft clauses. Finally, Max-SMT
combines Max-SAT and SMT. In a Max-SMT problem a formula is of the form
H1 ∧ . . . ∧ Hn ∧ [S1, ω1] ∧ . . . ∧ [Sm, ωm], where the hard clauses Hi and the soft
clauses Sj (with weight ωj) are disjunctions of literals over a background theory,
and the aim is to find a model of the hard clauses that maximizes the sum of
the weights of the satisfied soft clauses.

Programs and States. We fix a set of integer program variables V = {v1, . . . , vn}
and denote by F (V) the conjunctions of linear inequalities over the variables V.

Let L be the set of program locations, which contains a canonical initial
location �init. Program transitions are tuples (�s, ρ, �t), where �s and �t ∈ L are
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the source and target locations respectively, and ρ ∈ F (V ∪V ′) describes the
transition relation. Here V ′ = {v′

1, . . . , v
′
n} represent the values of the program

variables after the transition.1

A program P is a set of transitions.2 The set of locations in these transitions
is denoted by L(P). We identify a program with its control-flow graph (CFG), a
directed graph in which nodes are the locations and edges are the transitions.3

A program component C of a program P is the set of transitions of a strongly
connected component (SCC) of the CFG of P. Its entry transitions EC are those
transitions τ = (�s, ρ, �t) such that τ �∈ C but �t ∈ L(C) (and in this case �t is
called an entry location), while its exit transitions XC are such that τ �∈ C but
�s ∈ L(C) (and then �s is an exit location).

A state s = (�, v) consists of a location � ∈ L and a valuation v : V →
Z. Initial states are of the form (�init, v). We denote a computation step with
transition τ = (�s, ρ, �t) by (�s, v) →τ (�t, w), where (v, w) |= ρ. We use →P
if we do not care about the executed transition of P, and →∗

P to denote the
transitive-reflexive closure of →P . Sequences of computation steps are called
computations.

Safety and Termination. An assertion (�, ϕ) is a pair of a location � and a formula
ϕ ∈ F (V). A program P is safe for the assertion (�, ϕ) if for every computation
starting at an initial state s0 of the form s0 →∗

P (�, v), we have that v |= ϕ
holds. Safety can be proved using conditional invariants [12], which like ordinary
invariants are inductive, but not necessarily initiated in all computations.

Definition 1 (Conditional Inductive Invariant). Let P be a program. We
say a map Q : L(P) → F (V) is a conditional (inductive) invariant for P if for
all (�s, v) →P (�t, w), we have v |= Q(�s) implies w |= Q(�t).

A program P is terminating if any computation starting at an initial state
is finite. An important tool for proving termination are ranking functions:

Definition 2 (Ranking Function). Let C be a component of a program
P, and τ = (�s, ρ, �t) ∈ C. A function R : Z

n → Z is a ranking function
for τ if:

– ρ |= R ≥ 0 [Boundedness]
– ρ |= R > R′ [Decrease]

and for every (�̂s, ρ̂, �̂t) ∈ C,

– ρ̂ |= R ≥ R′ [Non-increase]

1 For ϕ ∈ F (V), we denote by ϕ′ ∈F (V ′) the version of ϕ using primed variables.
2 Hence in our programming model procedure calls are not allowed. Note however that

programs with non-recursive calls can also be handled by inlining the calls.
3 Since we label transitions only with conjunctions of linear inequalities, disjunctive

conditions are represented using several transitions with the same source and target
location. Thus, P is actually a multigraph.
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The key property of ranking functions is that if a transition admits one, then
it cannot be executed infinitely.

A core concept in our approach is conditional termination, i.e., the notion
that once a condition holds, a program is definitely terminating. As we make
heavy use of the program’s control flow graph structure, we introduce this con-
cept as location-dependent.

Definition 3 (Conditional Termination). We say that a program P is (�, ϕ)-
conditionally terminating if every computation that contains a state (�, v) with
v |= ϕ uses transitions from P only a finite number of times. In that case the
assertion (�, ϕ) is called a precondition for termination.

3 Synthesizing Conditional Termination Arguments

Our approach for synthesizing conditional termination arguments works on one
program component at a time. As proving that a program terminates is equiv-
alent to showing that there is no program component where a computation can
stay indefinitely, this turns out to be a convenient way to decompose termination
proofs.

For a fixed program component C, a conditional lexicographic termination
argument is constructed iteratively by transition elimination as follows. In each
iteration, we synthesize a linear ranking function together with supporting con-
ditional invariants, requiring that they show that at least one transition of C is
finitely executable, i.e., can only occur a finite number of times in any execution.
The intuition here is that once we have proven that a transition τ can only be
used finitely often, we only need to consider (possibly infinite) suffixes of pro-
gram executions in which τ cannot appear anymore. If after some iterations no
transition of C can be executed infinitely anymore, then the conjunction of all
conditional invariants obtained at an entry location of C yields a precondition for
termination. Indeed, once the conditional invariants hold at that entry location,
then by inductiveness they hold from then on at all locations of C, and hence
the termination argument applies.

Example 1. Consider the program in Fig. 1 and its CFG, with initial location
�init = �0. We want to find a precondition for termination of the component
C = {τ1, τ2}, corresponding to the while loop.

In a first iteration, we generate the ranking function y for τ2, together with the
supporting conditional invariant z < 0. Note that z < 0 is indeed a conditional
invariant: it is preserved by τ2 as z decreases its value, and is also trivially
preserved by τ1 since this transition is in fact disabled if z < 0. Under the
condition z < 0, y is bounded and decreases in τ2, and τ1 is disabled and so
finitely executable. Hence, (�1, z < 0) is a precondition for termination. �

As observed in [9,30], synthesizing lexicographic termination arguments
together with supporting invariants requires to keep several copies of the pro-
gram under analysis. Thus, in the analysis of a component C, we keep a set M of
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int x, y, z ;
x = nondet();
y = nondet();
z = nondet();
while (y ≥ 0 && z �= 0) {

if (z ≥ 0) {
x = x − z;
y = y + x;
z = z + 1;

} else {
y = y + z;
z = z − 1;

} }

�0 �1 �2
τ0 : true

τ1 : y ≥ 0 ∧ z > 0
∧ x′ = x − z
∧ y′ = y + x
∧ z′ = z + 1

τ2 : y ≥ 0 ∧ z < 0
∧ x′ = x
∧ y′ = y + z
∧ z′ = z − 1

τ3 : y < 0 ∧ x′ = x
∧ y′ = y ∧ z′ = z

τ4 : z = 0 ∧ x′ = x
∧ y′ = y ∧ z′ = z

Fig. 1. Program and its CFG.

possibly infinitely executable transitions (i.e., those for which we have not proved
conditional termination yet), called the termination component. Nonetheless, to
compute sound invariants (i.e., soundly reason about reachable states), we need
to take all transitions into account. However, these transitions can be strength-
ened with the supporting invariants that we synthesized in earlier proof steps.
Hence, we keep another copy I, called the conditional invariant component,
which is like the original component C, except for the addition of the conditional
invariants found in previous iterations. Initially both the termination and the
conditional invariant components are identical copies of the component C.

The proposed method for generating preconditions for termination is an
extension of the constraint-based approach for proving (unconditional) termi-
nation presented in [30]. The individual constraints used in our method are
displayed in Fig. 2, corresponding to the standard constraints employed in
constraint-based techniques [8]. For all locations � in C, we introduce templates
I� corresponding to fixed-length conjunctions of linear inequalities on the pro-
gram variables; i.e., I� is of the form

∧
1≤i≤k(ai +

∑
v∈V ai,vv ≤ 0) for some

k and where the a∗ are integer template variables that do not appear in V.

For τ = ( s t):

Initiation: Iτ
def
= ρ ⇒ I

t

Consecution: Cτ
def
= I s ∧ ρ ⇒ I

t

Boundedness: Bτ
def
= I s ∧ ρ ⇒ R ≥ 0

Decrease: Dτ
def
= I s ∧ ρ ⇒ R > R

Non-increase: Nτ
def
= I s ∧ ρ ⇒ R ≥ R

Fig. 2. Constraints used for generating preconditions for termination.
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Furthermore, we also define a template R for a linear ranking function4 with
integer coefficients, i.e., R is of the form a +

∑
v∈V avv. For a given component

C with entries EC , we combine these constraints in the (non-linear) formula F as
follows:

F
def
=

∧
τ∈EC

Iτ ∧
∧
τ∈I

Cτ ∧
∧

τ∈M
Nτ ∧

∨
τ∈M

(Bτ ∧ Dτ ) .

However, not all of these constraints are treated as hard constraints. Most
notably, we turn

∧
τ∈EC Iτ into soft constraints. Intuitively this means that,

if possible, we want to synthesize a true (unconditional) supporting invari-
ant, but will also allow invariants that do not always hold. However, we keep∧

τ∈I Cτ as a hard constraint, ensuring that our conditional invariants are indeed
inductive, i.e., keep on holding after they have been satisfied once. Similarly,∧

τ∈M Nτ ∧ ∨
τ∈M(Bτ ∧ Dτ ) are kept as hard constraints, enforcing that a true

ranking function is found, though it may only hold in those cases where the
supporting invariant is initiated. The conditions for the supporting invariants
will eventually become our preconditions for termination.

Algorithm 1 shows our procedure CondTerm for generating preconditions for
termination. It takes as inputs the component C under consideration and its
entry transitions EC , and returns a conditional invariant Q that ensures that no
infinite computation can remain within C.

Algorithm 1. Procedure CondTerm for computing preconditions for termination

Input: component C, entry transitions EC
Output: None | Q, where Q maps locations in L(C) to conjunctions of inequalities
1: (I, M) ← (C, C)
2: Q ← { � �→ true | � ∈ L(C) }
3: while M �= ∅ do
4: construct formula F from I, M, EC
5: σ ← Max-SMT-solver(F)
6: if σ is a solution then
7: I ← { (�s, ρ ∧ σ(I�s), �t) | (�s, ρ, �t) ∈ I }
8: M ← { (�s, ρ ∧ σ(I�s), �t) | (�s, ρ, �t) ∈ M }
9: M ← M − { τ ∈ M | σ(R) is a ranking function for τ }

10: Q ← { � �→ Q(�) ∧ σ(I�) | � ∈ L(C) }
11: else return None
12: return Q

In Algorithm 1, we continue to extend the termination argument as long as
there are still potentially infinitely executable transitions (line 3). For this, we
build a Max-SMT problem F to generate a ranking function and its supporting

4 While using a different ranking function for each program location is possible, we
have found that the added power does not justify the increased complexity of the
ensuing SMT problem.
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conditional invariants. If no solution can be found, then the procedure gives
up (line 11). Otherwise, a solution σ to F yields a linear function σ(R) (the
instantiation of the template ranking function R determined by σ) together with
conditional invariants σ(I�s). Since the σ(I�s) are conditional invariants, they can
be used to strengthen transitions τ = (�s, ρ, �t) by conjoining σ(I�s) to ρ, both
in the conditional invariant component and in the termination component (lines
7–8). Most importantly, we identify the subset of the transitions τ from M for
which σ(R) is a ranking function, and hence can be removed from M (line 9).
Finally, conditional invariants from previous iterations are accumulated so that,
in the end, a global conjunction can be returned (lines 10 and 12).

In essence, this process corresponds to the step-wise construction of a lexi-
cographic termination argument. For a location � at which the component C is
entered, the conjunction of all obtained σ(I�) is then a precondition for termi-
nation. The following theorem states the correctness of procedure CondTerm:

Theorem 1 (CondTerm soundness). Let P be a program, C a component, and
EC its entry transitions. If the procedure call CondTerm(C, EC) returns Q �= None,
then C is (�,Q(�))-conditionally terminating for any � ∈ L(C).

Of course, Algorithm 1 is an idealized, high-level description of our procedure.
In an implementation of the procedure CondTerm, a number of small changes
help to improve the overall number of solved instances.

Constraint Strengthening. Additional constraints can be added to formula F

to favor conditional invariants that are more likely to be useful. In particular,
a constraint requiring that the conditional invariants are compatible with the
entry transitions and with the previously generated conditional invariants has
proven useful, i.e.

∨
(�s, ρ, �t)∈EC

∃V,V ′ ( I ′
�t ∧ ρ ∧ Q(�t)′ ) .

Constraint Softening. Similarly, we can increase the allowed range of models
by turning more of the clauses into soft clauses. For example, this can be used
to allow quasi-ranking functions [30] in addition to ranking functions. Quasi-
ranking functions are functions that satisfy the non-increase condition, but may
fail to decrease or be bounded, or both. By using them to partition transitions
and perform case analysis, programs can also be shown to be terminating.

Pseudo-Invariants of Termination Component. In some circumstances, inductive
properties of the termination component M (i.e., satisfying Consecution only
for transitions in M) can be sound and useful; namely, when the complement of
the property disables a transition.

Formally, let Q be a map from L(P) to F (V) such that Q(�̃s) ∧ ρ̃ ⇒ Q(�̃t)′

for all (�̃s, ρ̃, �̃t) ∈ M, and ¬Q(�s) ∧ ρ |= false for some τ = (�s, ρ, �t) ∈ M.
Moreover, assume that Q supports a ranking function R for τ . Then τ can only
be used finitely often. To see this, assume that there is an infinite computation
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in which τ occurs infinitely often. Then there is a state at location �s in the
computation from which only transitions in M are taken. Since Q is inductive
over transitions in M, if Q(�s) holds at that state then it holds from then on,
and therefore R proves that τ cannot be executed an infinite number of times.
Otherwise, if Q(�s) does not hold, then τ cannot be executed at all. This weaker
requirement on Q allows removing transitions from M and is easier to satisfy.
Still, it is insufficient to do a case analysis as a full conditional invariant allows.

4 Proving Termination Using Conditional Termination

Our key contribution is to leverage conditional termination arguments to per-
form a natural case analysis of program executions. In this way, as our analysis
progresses, more and more program runs are excluded from the program analysis,
allowing the method to focus on those parts of the program for which termina-
tion has not been guaranteed yet. The core component of this is a syntactic
program transformation we call unfolding that implements the semantic intu-
ition of distinguishing program states for which termination has not been proven
yet.

4.1 Program Unfoldings

We begin this subsection with an example that illustrates how conditional invari-
ants can be used to unfold the component under consideration.

Example 2. Consider the program from Fig. 1 again. In Example 1 it was shown
that all computations for which z < 0 holds at location �1 are finite. In fact, a
byproduct of the proof was that z < 0 is a conditional invariant at location �1.
We show how to exploit this to prove unconditional termination next.

Following the intuition of a case analysis, we unfold the program component
by introducing a copy of it in which we assume that the conditional invariant
holds. In our example, we duplicate the location �1, introducing a copy denoted
by �̂1. We also duplicate all transitions in, from and to the component, using
the newly introduced location. However, all copied transitions should also reflect
our case analysis, and are thus strengthened by the conditional invariant z < 0.
In our case analysis, the original component now corresponds to the case that
the conditional invariant does not hold, and thus, all of the original transitions
are strengthened to assume the negation of the conditional invariant. Finally,
to allow for computations where the invariant eventually becomes true, we add
copies of the transitions from the original component to the copied location,
again strengthened by the invariant. The resulting program is shown in Fig. 3(a).

The original program and its unfolding behave equivalently, in particular
regarding termination. However, we already know from Example 1 that under
the assumption z > 0, the new component has no infinite executions. Hence, we
can narrow the set of potentially infinite computations and focus on the pro-
gram shown in Fig. 3(b), obtained by removing all known-terminating locations



Proving Termination Through Conditional Termination 107

0

1

1

2

τ0 : true

τ1 : y ≥ 0 ∧ z > 0
∧ x = x − z
∧ y = y + x
∧ z = z + 1

τ2 : y ≥ 0 ∧ z < 0
∧ x = x
∧ y = y + z
∧ z = z − 1

τ3 : y < 0
∧ x = x
∧ y = y
∧ z = z

τ4 : z = 0
∧ x = x
∧ y = y
∧ z = z

τ0
∧ z

≥ 0

τ1 ∧ z ≥ 0 τ2 ∧ z ≥ 0

τ
3

τ4

τ
0 ∧

z
<

0

τ1 ∧ z < 0 τ2 ∧ z < 0

τ
2 ∧

z
<

0

τ
1 ∧

z
<

0

τ3

τ4

0 1 2

τ0 ∧ z ≥ 0

τ1 ∧ z ≥ 0

τ3

τ4
0 1 2

τ0 ∧ z ≥ 0

∧ x ≥ 0

τ1 ∧ z ≥ 0 ∧ x ≥ 0

τ3

τ4

(a)

)c()b(

Fig. 3. Unfolding of the program from Fig. 1 for conditional invariant z < 0 at �1 (a),
ensuing narrowing/simplification (b) and narrowing after unfolding for x < 0 at �1 (c).

(i.e., �̂1) from the unfolding and simplifying. If this narrowed program termi-
nates, we can conclude that the original program terminates too.

Synthesizing another conditional termination argument for the program from
Fig. 3(b) now yields the ranking function y, supported by the conditional invari-
ant x < 0 at �1. Then we can unfold with x < 0 again and narrow, obtaining
the program in Fig. 3(c). Finally this program can be proven terminating with
ranking function x without the need of any conditional invariant and, hence,
without precondition. This concludes the proof of termination of the original
program.

Note that the unfolding/narrowing mechanism provides not only a termi-
nation proof but also a characterization of the program execution phases. In
particular, our example can be viewed to have three phases, corresponding to
the unfoldings we have applied. One phase corresponds to the case where z < 0
(where the else-block is repeatedly used), one to the case z > 0 ∧ x < 0, and
finally, one corresponds to the case z > 0 ∧ x ≥ 0. �

To formalize this execution phase-structured proof technique, we first define
the unfolding program transformation:

Definition 4. Let P be a program, C a component of P, EC its entry transitions,
XC its exit transitions, and Q : L(C) → F (V) a conditional invariant for C. The
unfolding of P is
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P̂ = { (�s, ρ ∧ ¬ Q(�t)′, �t),
(�s, ρ ∧ Q(�t)′, �̂t),
(�̂s, ρ ∧ Q(�s), �̂t) | (�s, ρ, �t) ∈ C }

∪ { (�s, ρ ∧ ¬Q(�t)′, �t),
(�s, ρ ∧ Q(�t)′, �̂t) | (�s, ρ, �t) ∈ EC }

∪ { (�s, ρ, �t),
(�̂s, ρ, �t) | (�s, ρ, �t) ∈ XC }

∪ {τ | τ ∈ P \(C ∪ EC ∪ XC)}

where for each � ∈ L(C) there is a fresh location �̂ such that �̂ �∈ L(P).

s t

s t

ρ ∧ ¬Q( t)

ρ ∧ Q(
t )

ρ ∧ Q( s)

s

t

t

ρ ∧ ¬Q( t)

ρ ∧ Q(
t)

s

s

t

ρ

ρ

)c()b()a(

Fig. 4. Transitions in unfolding ̂P for conditional invariant Q corresponding to a tran-
sition τ = (�s, ρ, �t) ∈ P, depending on whether (a) τ ∈ C, (b) τ ∈ EC , (c) τ ∈ XC .

Figure 4 represents graphically how a transition of the original program is
transformed, depending on whether it is a transition of the component, an entry
transition, or an exit transition. The following result states that a program and
its unfolding are semantically equivalent, i.e., that the encoded case analysis is
complete.

Theorem 2. Given states (�0, v0) and (�k, vk) such that �0, �k ∈ L(P), there is
a computation in P of length k of the form (�0, v0) →∗

P (�k, vk) if and only if
there is a computation in P̂ of length k of the form (�0, v0) →∗

̂P (�k, vk) or of the

form (�0, v0) →∗
̂P (�̂k, vk).

Now we are ready to formally define the narrowing of a program:

Definition 5. Let P be a program, C a component of P, EC its entry transitions,
and Q : L(C) → F (V) a conditional invariant for C. The narrowing of P is:

narrow(P) = { (�s, ρ ∧ ¬ Q(�t)′, �t) | (�s, ρ, �t) ∈ C ∪ EC } ∪
{τ | τ ∈ P −(C ∪ EC)}

The narrowing of a program can be viewed as the result of eliminating the
copies �̂ of the locations � ∈ L(C) in the unfolding P̂ and their corresponding
transitions. Alternatively, one may take the original program P and consider that
for any transition τ = (�s, ρ, �t) ∈ C ∪EC , the relation is replaced by ρ∧¬Q(�t)′.
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The intuition is that, if a call to CondTerm(C, EC) has been successful (i.e., Q def
=

CondTerm(C, EC) �= None), by the inductiveness of Q a computation that satisfies
Q(�) for a certain � ∈ C cannot remain within C indefinitely. Hence we only need
to consider computations such that whenever a location � ∈ C is reached, we
have that Q(�) does not hold.

Corollary 1. Let P be a program, C a component of P, EC its entry transitions,
and Q : L(C) → F (V) a conditional invariant for C obtained from a call to
CondTerm(C, EC). There is an infinite computation in P that eventually only
uses transitions from C if and only if there is such a computation in narrow(P)
using transitions from narrow(C).

Proof. The right to left implication holds by Theorem2 as narrow(P) ⊆ P̂. For
the left to right implication, by Theorem2 an infinite computation of P staying
in C yields an infinite computation of P̂ staying in Ĉ. By induction, for any
location � ∈ L(C) we have that Q(�) is an (unconditional) invariant at location �̂

of P̂: now the initiation condition also holds by definition because all transitions
arriving at �̂ require Q(�) to hold. By Theorem1, no infinite computation in P̂
staying in Ĉ can reach a location of the form �̂, where � ∈ L(C). So such an
infinite computation is a computation of narrow(P) that eventually only uses
transitions from narrow(C). �

Our termination proofs are sequences of relatively simple program transfor-
mations and termination proving techniques. This formal simplicity allows one to
easily implement, extend and certify the technique. As discussed in Example 2,
the unfolding/narrowing mechanism provides not only a termination proof, but
also a characterization of the execution phases. In contrast to other works [37],
these phases are obtained semantically from the generated conditional invariants,
and do not require syntactic heuristics.

4.2 Proving Program Termination

int x = nondet();
int y = nondet();
int z = nondet();
assume(x > z && z ≥ 0);
while (z > 0) {
x = x − 1;
z = z − 1; }

: while (y < 0)
y = y + x;

Fig. 5. Program that cannot
be proven terminating with the
approach in [30].

So far we have discussed the handling of a single
component at a time. By combining our method
with an off-the-shelf safety checker, full program
termination can be proven too. The next exam-
ple illustrates this while comparing with pre-
vious Max-SMT-based techniques for proving
termination [30].

Example 3. The method from [30] considers
components following a topological ordering.
Each component is dealt with locally: only its
transitions and entries are taken into account,
independently of the rest of the program. The
analysis of a component concludes when the
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Algorithm 2. Procedure Term for proving or disproving program termination

Input: program P
Output: Yes (resp., No) if P terminates (resp., does not terminate), or ⊥ if unknown
1: S ← stack of components of P
2: while S �= ∅ ∧ ¬timed out() do
3: C ← Pop(S)
4: E ← EC
5: Q ← CondTerm(C, E)
6: while Q �= None do
7: if ∀�∈L(C) ∩ L(E): P is safe for assertion(�, Q(�)) then {Call safety

check}
8: break
9: C ← { (�s, ρ ∧ ¬ Q(�t)

′, �t) | (�s, ρ, �t) ∈ C } {Narrow component}
10: E ← { (�s, ρ ∧ ¬ Q(�t)

′, �t) | (�s, ρ, �t) ∈ E } {Narrow entries}
11: Q ← CondTerm(C, E)

12: if Q = None then return (ProvedNonTermination(C, E , P) ? No : ⊥)

13: return (S = ∅ ? Yes : ⊥)

component is proven (unconditionally) terminating. Hence, for the program in
Fig. 5, the first loop is proven terminating using the ranking function z. How-
ever, if no additional information is inferred, then the proof of termination of
the second loop cannot succeed: the necessary invariant that x ≥ 1 between the
two loops, at program location �, is missing.

On the other hand, the approach proposed here is able to handle this program
successfully. Indeed, the first loop can be proven terminating with z as a ranking
function as observed above. Regarding the second loop, the conditional invariant
x ≥ 1 together with the ranking function −y are generated. To prove x ≥ 1 holds
at � a safety checker may be used, which then makes a global analysis to verify
the truth of the assertion. Finally full termination can be established. Note
that components may be considered in any order, not necessarily a topological
one. �

Example 3 illustrates that combining our conditional termination proving
technique with a safety checker is necessary to efficiently handle long and com-
plex programs.

It is also important to note that, as the proof of Corollary 1 indicates, the nar-
rowed program is termination-equivalent to the original program. In particular,
this means that a non-termination proof for the narrowed program is a non-
termination proof for the original program, as only terminating computations
have been discarded by the transformation. Further, our program transforma-
tion does not only add information to the entry transitions (as in [32]) but also
to all transitions occurring in the component under analysis. This significantly
improves the precision of our otherwise unchanged non-termination analysis (cf.
Sect. 5).
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Altogether, our procedure for proving or disproving program termination is
described in Algorithm 2. It takes as input a program P and returns Yes if the
program can be proved to terminate, No if it can be proved not to terminate, or
⊥ otherwise. Components are handled in sequence one at a time provided the
time limit has not been exceeded (line 2). For each component, preconditions
for termination are computed (lines 5 and 11), which are then checked to hold
by calling an external safety checker (line 7). If this test is passed, the compo-
nent is guaranteed to terminate and the next one can be considered. Otherwise
narrowing is applied (lines 9–10) and the process is repeated. If at some point
the generation of preconditions for termination fails, then non-termination is
attempted by calling an out-of-the-box non-termination prover (line 12). Note
that the outer loop can easily be parallelized (i.e., all components can be consid-
ered at the same time), and that similarly, the generation of more preconditions
can be attempted in parallel to the safety checks for already generated termina-
tion conditions. The correctness of Algorithm2 follows directly from Corollary 1.

5 Related Work and Experimental Results

We build on a rich tradition of methods to prove termination [1,10,16,18,21,22,
25,26,28,32,36,39,42–44] and non-termination [4,13,14,24,29,46] of imperative
programs. Most notably, our constraint-based approach to conditional termina-
tion is an extension of existing work on ranking function synthesis using con-
straint solvers [2,3,5,8,23,30,33,35], and is most closely related to our earlier
work on using Max-SMT solving to infer quasi-ranking functions [30]. There,
an independent invariant generation procedure was used before unconditional
termination arguments were synthesized for program components. Thus, invari-
ants were not generated “on demand” and the method fails on examples such as
Example 3.

The key contribution of our method is to use conditional termination argu-
ments to segment the state space for the remainder of the analysis. A related idea
was used in TRex [25] and HipTNT+ [32], which alternate termination and non-
termination proving techniques in their proof search. However, both approaches
only use preconditions for non-termination to segment the state space, and thus
are reliant on non-termination techniques. As finding non-termination arguments
is an ∃∀∃ problem (there exists a state set such that for all its states there exists
a computation leading back to it), these methods tend to be significantly weaker
in practice than those based on termination, which is an ∃∀ problem (there exists
a ranking function such that all computations decrease it).

A related idea is counterexample-guided termination proving [10,16,26,28,
36], in which a speculated termination argument is refined until it covers all
program executions. Thus, these methods grow a set of terminating program
states, whereas our method shrinks the set of potentially non-terminating states.
In practice, “ignoring” the terminating states in a safety prover is often a non-
trivial semantic operation, in contrast to the effects of our syntactic narrowing
operation.
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Proving conditional termination has seen less interest than full termination
analysis. A first technique combined constraint-based methods for finding poten-
tial ranking functions with quantifier elimination [15] to infer preconditions.
More recently, policy iteration-based methods [34], backwards reasoning in the
abstract interpretation framework [45] and an adaptation of conflict-driven learn-
ing from satisfiability solving [17] have been adapted to find conditions for termi-
nation. Our algorithm CondTerm differs in its relative simplicity (by delegating
the majority of the work to a constraint solver), and our procedure Term could
combine it with or replace it by other approaches. Finally, in a related line of
work, decision procedures for conditional termination on restricted programming
languages (e.g., only using linear or affine operations) have been developed [7].

Evaluation. To evaluate our method, we have implemented Algorithm 2 in the
tool VeryMax, using it as a safety prover [12] and a non-termination prover
[29]. The effectiveness of VeryMax depends crucially on the underlying non-
linear Max-SMT solver, described in [31]. All experiments were carried out on
the StarExec cluster [40], whose nodes are equipped with Intel Xeon 2.4GHz
processors.5 We have compared VeryMax with a range of competing termination
provers on three benchmark sets. The first two example sets are the benchmark
suites Integer Transition Systems and C Integer used in termCOMP
2016 [41], on which we compare with a superset of the tools [22,26,27,32,44]
that competed in these categories in the 2016 edition6. Following the rules of the
competition, we use a wall clock timeout of 300 s for the C Integer benchmark
set, and a wall clock timeout of 30 s for the Integer Transition Systems
benchmark set. The results of these experiments are displayed in Table 1, where
the “Term” (resp. “NTerm”) column indicates the number of examples proven
terminating (resp. non-terminating), “Fail” any kind of prover failure, and “TO”

Table 1. Experimental results on benchmarks from termCOMP 2016.

Tool C Integer Integer Transition Systems

Term NTerm Fail TO Total (s) Term NTerm Fail TO Total (s)

AProVE 210 73 39 13 7547.68 623 386 11 202 9651.05

Ctrl – – – – – 348 0 421 453 17229.10

HipTNT+ 210 95 25 5 2615.80 – – – – –

SeaHorn 171 73 19 72 22499.33 – – – – –

Ultimate 208 98 23 6 4745.79 – – – – –

VeryMax 213 100 22 0 2354.94 620 412 103 87 8481.39

5 A binary of VeryMax as well as the detailed results of the experiments can be found
at http://www.cs.upc.edu/∼albert/VeryMax.html.

6 Due to incompatibilities of input formats, some tools could not be run on some of
the benchmark sets. This is indicated in the tables with a dash −.

http://www.cs.upc.edu/~albert/VeryMax.html
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the number of times the timeout was reached. Finally, “Total (s)” indicates the
total time spent on all examples, in seconds.

Table 2. Results on SV-COMP bench-
marks.

Tool Term NTerm Fail TO Total (s)

AProVE 222 76 41 19 10235.44

SeaHorn 189 75 22 72 34760.69

Ultimate 224 103 25 6 7882.13

VeryMax 231 101 26 0 2444.29

We additionally evaluated our tool
on the examples from the Termina-
tion category of the Software Verifi-
cation Competition 2016, comparing to
the participants in 2016 [22,26,44] with
a CPU timeout of 900 s. As VeryMax has
no support for recursion and pointers at
the moment, we removed 273 examples
using these features and tested the tools on the remaining 358 examples. The
results of this experiment are shown in Table 2. Altogether, the overall experi-
mental results show that our method is not only the most powerful combined
termination and non-termination prover, but also more efficient than all com-
peting tools.

Table 3. Impact of narrowing on non-
termination proofs.

NTerm Exclusive

Narrowing 412 82

Original 334 4

Moreover, to analyze the effect
of our narrowing technique on non-
termination proofs, we experimented
with the Integer Transition Sys-
tems benchmark set. Namely, in
Table 3 we compare the performance
of VeryMax when trying to prove non-termination of narrowed components
(Narrowing row) against using the original component (Original row). For each
case, column “NTerm” indicates the examples proven non-terminating, and col-
umn “Exclusive” identifies those that could only be proven with that approach.
The results show that removing (conditionally) terminating computations from
the analysis significantly improves the effectiveness of the analysis. Still, the more
complex narrowed components make the non-termination procedure in VeryMax
time out in 4 cases that are otherwise proved non-terminating when using the
original program components.

Finally, we studied the gain obtained with constraint strengthening, con-
straint softening and pseudo-invariants of the termination component (see
Sect. 3). While constraint softening and pseudo-invariants help in proving ter-
mination in few cases at the cost of a time overhead, constraint strengthening
significantly improves both the number of problems proved terminating and the
time required to do so.

6 Conclusions and Future Work

We have proposed a new method for modular termination proofs of integer pro-
grams. A program is decomposed into program components, and conditional
termination arguments are sought for each component separately. Termination
arguments are synthesized iteratively using a template-based approach with a
Max-SMT solver as a constraint solving engine. At each iteration, conditional
invariants and ranking functions are generated which prove termination for a
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subset of program execution states. The key step of our technique is to exclude
these states from the remaining termination analysis. This is achieved by narrow-
ing, i.e., strengthening the transitions of the component and its entry transitions
with the negation of the conditional invariant. This operation of narrowing can
be viewed as unfolding the program in two phases, namely when the conditional
termination argument holds and when it does not, and focusing on the latter,
for which termination is not guaranteed yet.

In the future, we want to remove some of the limitations of our method. For
example, we do not support the heap at this time, and combining our condi-
tional termination proving procedure with a heap analysis would greatly extend
the applicability of our approach. Moreover, as in many other techniques, num-
bers are treated as mathematical integers, not machine integers. However, a
transformation that handles machine integers correctly by inserting explicit nor-
malization steps at possible overflows [19] could be added. We are also interested
in formally verifying our technique and to produce certificates for termination
that can be checked by theorem provers [11]. Finally, we plan to extend our tech-
nique to proving bounds on program complexity. Finding such bounds is closely
related to termination proving, and also requires to distinguish different phases
of the execution precisely [20,38]. Our termination proving method does this
naturally, and an adaption to complexity could thus yield more precise bounds.
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Abstract. We present a novel propositional proof tracing format that
eliminates complex processing, thus enabling efficient (formal) proof
checking. The benefits of this format are demonstrated by implementing
a proof checker in C, which outperforms a state-of-the-art checker by two
orders of magnitude. We then formalize the theory underlying proposi-
tional proof checking in Coq, and extract a correct-by-construction proof
checker for our format from the formalization. An empirical evaluation
using 280 unsatisfiable instances from the 2015 and 2016 SAT competi-
tions shows that this certified checker usually performs comparably to
a state-of-the-art non-certified proof checker. Using this format, we for-
mally verify the recent 200 TB proof of the Boolean Pythagorean Triples
conjecture.

1 Introduction

The practical success of Boolean Satisfiability (SAT) solvers cannot be over-
stated. Generally accepted as a mostly academic curiosity until the early 1990s,
SAT solvers are now used ubiquitously, in a variety of industrial settings, and
with an ever increasing range of practical applications [6]. Several of these appli-
cations are safety-critical, and so in these cases it is essential that produced
results have some guarantee of correctness [37].

One approach investigated over the years has been to develop formally
derived SAT solvers [7,32,34,35,39]. These works all follow the same underly-
ing idea: formally specify SAT solving techniques within a constructive theorem
prover and apply program extraction (an implementation of the Curry–Howard
correspondence) to obtain a certified SAT solver. Unfortunately, certified SAT
solvers produced by this method cannot match the performance of carefully
hand-optimized solvers, as these optimizations typically rely on low-level code
whose correctness is extremely difficult to prove formally, and the performance
gap is still quite significant.

An alternative approach that has become quite popular is to check the results
produced by SAT solvers, thus adding some level of assurance regarding the com-
puted results. This line of work can be traced at least to the seminal work of
Blum and Kannan [8], with recent work also focusing on certifying algorithms
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and their verification [1,36]. Most SAT checkers expect the SAT solver to pro-
duce a witness of its result, and then validate the witness against the input for-
mula. For satisfiable instances, this is a trivial process that amounts to checking
the computed satisfying assignment against the input formula. For unsatisfiable
instances, since SAT is known to be in NP and believed not to be in coNP, it is
unlikely that there exist succinct witnesses, in the worst case. As a result, the
solution in practice has been to output a trace of the execution of the SAT solver,
which essentially captures a resolution proof of the formula’s unsatisfiability.
Although this approach finds widespread use [5,18,20–24,26–28,38,40,44–47],
and has been used to check large-scale resolution proofs [9,25,29–31], its main
drawback is that there still is effectively no guarantee that the computed result
is correct, since the proof checker has again not been proven correct.

Combining these two approaches, several authors [2,16,17,23,43,44] have
experimented with the idea of developing certified proof checkers, i.e. programs
that check traces of unsatisfiability proofs and that have themselves been for-
mally proven correct. However, all these approaches are limited in their scalabil-
ity, essentially for one of two reasons: (1) information about deletion of learned
clauses is not available nor used [2,16,17,43]; and (2) the formats used to pro-
vide proof traces by SAT solvers still require the checker to perform complex
checking steps [22,23,44,46], which are very difficult to optimize.

In this paper we examine the fundamental reasons for why these attempts do
not scale in practice, and propose a resolution proof trace format that extends the
one developed in recent work [21–23,45] by incorporating enough information to
allow the reconstruction of the original resolution proof with minimum compu-
tational effort. This novel proof trace format impacts resolution proof checking
in a number of fundamental aspects. First, we show how we can implement an
(uncertified, optimized) proof checker in C whose run times are negligible when
compared to those of state-of-the-art checkers, in particular drat-trim [19,45]1.
Second, we capitalize on the simplicity of the new proof format to formalize the
proof verification algorithm inside the theorem prover Coq. Third, we extract
a certified checker from this formalization and show that it performs compa-
rably with drat-trim on a number of significant test cases. As a consequence,
this certified checker is able to verify, in reasonable time, the currently largest
available resolution proof, namely the 200 TB proof of the unsatisfiability of a
SAT encoding of the Boolean Pythagorean Triples conjecture [25].

The paper is organized as follows. Section 2 briefly summarizes basic SAT
and proof checking definitions, and presents a brief overview of the Coq theorem
prover and its extraction mechanism. Section 3 provides an overview of the best
known resolution proof formats proposed in the recent past. Section 4 introduces
the novel resolution proof trace format and outlines the pseudo-code of a veri-
fication algorithm, which is then implemented in C. Section 4 also compares its
performance to that of drat-trim [45]. Section 5 then describes a formalization
of the SAT problem in Coq, which includes a specification of the pseudo-code
in the previous section and a proof of its soundness. By applying the program

1 The sole purpose of comparing two checkers with different aims and based on different
formats is to motivate the development of the efficient certified checker.
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extraction capabilities of Coq, we obtain a certified checker in OCaml, which
we evaluate on the same test set as our uncertified C checker. Section 6 details
the performance of the certified checker on the verification of the proof of the
Pythagorean Boolean Triples conjecture. The paper concludes in Section 7.

2 Preliminaries

Standard Boolean Satisfiability (SAT) definitions are assumed throughout [6].
Propositional variables are taken from a set X. In this work, we assume X = N

+.
A literal is either a variable or its negation. A clause is a disjunction of literals,
also viewed as a set of literals. A conjunctive normal form (CNF) formula is a con-
junction of clauses, also viewed as a set of clauses. Formulas are represented in
calligraphic font, e.g. F , with var(F) denoting the subset of X representing the
variablesoccurring inF .Clausesare representedwithcapital letters, e.g.C.Assign-
ments are represented by a mapping µ : X → {0, 1}, and the semantics is defined
inductively on the structure of propositional formulas, as usual. The paper focuses
on CDCL SAT solvers [6]. The symbol � is used for entailment, whereas �u is used
for representing the result of running the well-known unit propagation algorithm.

Thispaperdevelopsa formalizedchecker forproofs ofunsatisfiabilityofproposi-
tional formulasusingthe theoremproverCoq [4].Coq isa type-theoretical construc-
tive interactive theorem prover based on the Calculus of Constructions (CoC) [10]
using a propositions-as-types interpretation. Proofs of theorems are terms in the
CoC, which are constructed interactively and type checked when the proof is com-
pleted; this final step ensures that the correctness of the results obtained in Coq
only depends on the correctness of the type checker – a short piece of code that is
much easier to verify by hand than the whole system.

A particular feature of Coq that we make use of in this paper is program
extraction [33], which is an implementation of the Curry–Howard correspondence
for CoC and several functional programming languages (in our case, OCaml).
Programs thus obtained are correct-by-construction, as they are guaranteed to
satisfy all the properties enforced by the Coq term they originate form. The CoC
includes a special type Prop of propositions, which are understood to have no
computational content; in particular, it is not allowed to define computational
objects by case analysis on a term whose type lives in Prop. This allows these
terms to be removed by program extraction, making the extracted code much
smaller and more efficient; however, all properties of the program that they
express are still valid, as stated by the soundness of the extraction mechanism.

3 Propositional Proof Trace Formats

The generation of resolution proof traces for checking the results of SAT solvers
has been actively studied since the early 2000s [18,47]. Over the course of the
years, different resolution proof tracing formats and extensions have been pro-
posed [5,18,20–24,26,27,38,40,42,44–47]. These all boil down to listing infor-
mation about the clauses learned by CDCL SAT solvers, with recent efforts
allowing an extended set of operations [22,44]. Resolution proof traces can list
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the literals of each learned clause [21,23,40,42,45,46], the labels of the clauses
used for learning each clause, or both [5,40,42]. Moreover, the checking of proof
traces can traverse the trace from the start to the end, i.e. forward checking,
or from end to the start, i.e. backward checking. In addition, the checking of
proof traces most often exploits one of two key mechanisms. One validation
mechanism uses trivial resolution steps (TVR) [3]. This is a restriction over the
already restricted input resolution [42]. For proof checking purposes it suffices to
require that every two consecutively listed clauses must contain a literal and its
complement (and obviously not be tautologous). Another validation mechanism
exploits the so-called reverse unit propagation (RUP) property [18]. Let F be a
CNF formula, and C be a clause learned from F . Thus, we must have F � C.
The RUP property observes that, since F ∧ ¬C � ⊥, then it is also true that
F ∧ ¬C � ⊥. The significance of the RUP property is that proof checking can
be reduced to validating a sequence of unit propagations that yield the empty
clause. More recent work proposed RAT property2 checking [22,46]. The result-
ing format, DRAT, enables extended resolution proofs and, as a result, a wide
range of preprocessing techniques [22,24,45].

A few additional properties of formats have important impact on the type
of resulting proof checking. Some formats do not allow for clause deletion. This
is the case with the RUP [40,42] and the trace [5] formats. For formats that
generate clause dependencies, some will allow clauses not to be ordered, and so
the checker is required to infer the correct order of steps.

Example 1. Figure 1 samples the proof tracing formats RUP, trace, and DRUP.
(Compared to DRUP, the DRAT format is of interest when extended resolution is
used. Every DRUP proof is by definition also a DRAT proof.) With the exception
of the more verbose RES format, earlier formats did not allow for clause deletion.
The DRUP format (and the more recent DRAT format) allow for clause deletion.
A number of different traces would represent DRAT traces, including the DRUP
trace shown.

Table 1 summarizes some of the best known formats, and their drawbacks.
RES [40,42] is extremely verbose, separately encoding each resolution step, and
is not in current use. RUP [40,42] and trace [5] do not consider clause deletion,
and so are inadequate for modern SAT solvers. DRUP addresses most of the
drawbacks of earlier formats, and has been superseded by DRAT, which provides
an extended range of operations besides clause learning.

A number of guidelines for implementing resolution proof trace checking have
emerged over the years. First, backward checking is usually preferred, since only
the clauses in some unsatisfiable core need to be checked. Second, RUP is pre-
ferred over checking TVR steps [21–23,45,46], because the format becomes more
flexible. Third, the SAT solver is often expected to minimize the time spent
generating the proof trace. This means that, for formats that output clause
dependencies, these are in general unordered. Moreover, modern checkers also
carry out the validation of the RAT property [22,45,46]. These observations also

2 We do not detail the RAT property here, as it is immaterial for our development.
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problem CNF

p cnf 3 5

1 2 0

-1 2 0

1 -2 0

-1 3 0

-2 -3 0

RUP format

1 0

2 0

3 0

0

tracecheck

1 1 2 0 0

2 -1 2 0 0

3 1 -2 0 0

4 -1 3 0 0

5 -2 -3 0 0

6 1 0 1 3 0

7 2 0 2 6 0

8 3 0 4 6 0

9 0 5 7 8 0

DRUP format

1 0

d 1 2 0

d 1 -2 0

2 0

d -1 2 0

3 0

d -1 3 0

d 1 0

0

Fig. 1. Examples of trace formats (example adapted from [23]; with original clauses
in green, deletion information in blue, learnt clauses in red, and unit propagation
information in yellow) (Color figure online)

Table 1. Comparison of some of the best known proof tracing formats

Format Clause

dependencies

Clause

literals

Clause

deletion

Clause

reordering

RAT

checking

Drawbacks

RES [40,42] Yes Yes Yes No No Size, RAT

RUP [40,42] No Yes No No No Deletion,

RAT

trace [5] Yes Yes No Yes No Deletion,

reordering,

RAT

DRUP [21,23] No Yes Yes Yes No RAT,

reordering

DRAT [45,46] No Yes Yes No Yes Complex

checking

indicate that recent work on checking of resolution proof traces has moved in
the direction of more complex checking procedures.

Besides efficient checking of resolution proof traces, another important line
of work has been to develop certified checkers. Different researchers exploited
existing proof formats to develop certified proof checkers [2,16,17,43]. The main
drawback of this earlier work is that it was based on proof formats that did
not enable clause deletion. For large proofs, this can result in unwieldy memory
requirements. Recent work addressed this issue by considering proof formats
that enable clause deletion [22,44,46]. Nevertheless, this recent work builds on
complex proof checking (see Table 1) and so does not scale well in practice.

Given past evidence, one can argue that, in order to develop efficient certified
resolution proof checkers, proof checking must be as simple as possible. This has
immediate consequences on the proof format used, and also on the algorithm
used for checking that format. The next section details our proposed approach.
The proposed format requires enough information to enable a checking algorithm
that minimizes the processing effort. The actual checking algorithms exploits the
best features of TVR and RUP, to enable what can be described as restricted
reverse unit propagation.
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4 Introducing the GRIT Format

As described in the section above, an important aspect in the design of propo-
sitional proof trace formats has been the desire to make it easy for SAT solvers
to produce a proof in that format. As a consequence, all the major proof trace
formats have left some complex processing to the proof checker:

– The DRUP and DRAT formats specify the clauses learnt, but they do not spec-
ify the clauses that are used in reverse unit propagation to verify redundancy of
these clauses. Thus, proof checkers need to implement a full unit-propagation
algorithm. Our results suggest that even state-of-the-art implementations of
such algorithms underperform our approach.

– The trace format specifies which clauses are used in reverse unit propagation,
but it deliberately leaves the order of these undetermined. Thus, proof checkers
still need to implement a unit-propagation algorithm, though limited to the
clauses specified.

Experience from recent work verifying large-scale proof [14,15], co-authored by
two of the authors of this work, suggests that fully eliminating complex process-
ing is a key ingredient in developing efficient proof checkers that scale to very
large proofs. Furthermore, in the concrete case of unit-propagation, efficient algo-
rithms rely on pointer structures that are not easily ported to the typical func-
tional programming setting used in most theorem provers.

Based on these observations, as well as on the importance of deleting clauses
that are no longer needed [21,22], we propose a novel proof trace format that
includes deletion and fully eliminates complex processing, effectively reducing
unit-propagation to simple pre-determined set operations.

4.1 The Format

The Generalized ResolutIon Trace (GRIT) format builds on the trace format
with its unique clause identifiers, but with two fundamental changes:

– We fix the order of the clauses dependencies given as a witness for each learnt
clause to be: an order in which unit propagation produces the empty clause.
This is a restriction of the freedom allowed by the trace format.

– In addition to the two types of lines specifying original and learnt clauses, we
extend the format with a third type of line for deletions. These lines start with
a 0 followed by a list of clause identifiers to delete and end with a 0, and are
thus easily distinguishable from the other two types of lines that start with a
positive integer.

These changes are minimal w.r.t. achieving the integration of deletion and the
elimination of complex processing, and in particular the new lines keep some of
the properties that make the trace format easy to parse (two zeroes per line;
the integers between those zeroes are clause identifiers). In this way, the changes
follow the spirit of the extension of the RUP format to DRUP and later DRAT,
just with trace as the point of departure.
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problem CNF

p cnf 3 5

1 2 0

-1 2 0

1 -2 0

-1 3 0

-2 -3 0

tracecheck

1 1 2 0 0

2 -1 2 0 0

3 1 -2 0 0

4 -1 3 0 0

5 -2 -3 0 0

6 1 0 1 3 0

7 2 0 2 6 0

8 3 0 4 6 0

9 0 5 7 8 0

DRUP format

1 0

d 1 2 0

d 1 -2 0

2 0

d -1 2 0

3 0

d -1 3 0

d 1 0

0

GRIT format

1 1 2 0 0

2 -1 2 0 0

3 1 -2 0 0

4 -1 3 0 0

5 -2 -3 0 0

6 1 0 1 3 0

0 1 3 0

7 2 0 6 2 0

0 2 0

8 3 0 6 4 0

0 4 6 0

9 0 7 8 5 0

Fig. 2. Synthesis of the GRIT format (with original clauses in green, deletion informa-
tion in blue, learnt clauses in red, and unit propagation information in yellow). (Color
figure online)

proof = line clause = lit , ”0”
line = ( original learnt delete ), ”\n” idlist = id , id
original = id , clause , ”0”, ”0” id = pos
learnt = id , clause , ”0”, idlist , ”0” lit = pos neg
delete = ”0”, idlist , ”0” pos = ”1” | ”2” | . . .

neg = ”-”, pos

Fig. 3. EBNF grammar for the GRIT format. (Color figure online)

Figure 2 shows how the GRIT version of our running example from Fig. 1
incorporates the deletion information from the DRUP format into a trace-style
proof, where the clause dependencies have been reordered to avoid the complex-
ity of checking the RUP property by full unit propagation, instead facilitating
the application of restricted reverse unit propagation.

The full syntax of the GRIT format is given by the grammar in Fig. 3, where
for the sake of sanity whitespace (tabs and spaces) is ignored. Here, additions
with respect to the original trace format are given in green. In addition to the
extension with delete information, there is a semantic restriction on the list of
clause identifiers marked in red, namely that the clause dependencies represented
are in the order as specified above. Existing parsers for the trace format should
be easy to extend to this syntax.

4.2 The Checker

To obtain an empirical evaluation of the potential of the GRIT format, we imple-
mented a proof checking algorithm based on restricted reverse unit propagation
in C. The source code is available from [13]. While the C code is quite opti-
mized, the general algorithm follows the pseudo code given in Fig. 4 as 25 lines
of fully-functional Python (also available from [13]).

The set of instances we considered consists of the 280 instances from the 2015
and 2016 main and parallel tracks of the SAT competition that could be shown
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def parse(line):
ints = [int(s) for s in line.split() ]
i0 = ints.index(0)
return ints[0 ], set(ints[1:i0 ]), ints[i0+1:−1 ]

def verify(file):
cs = {}
for id, c, ids in (parse(line) for line in file):
if not id: # delete clauses

for id in ids: del cs[id ]
elif not ids: # add original clause

cs[id ] = c

else: # check & add learnt clause

d = c.copy()
for i in ids:
e = cs[i ]−d

if e:
d.add(−e.pop()) # propagate

assert not e # is unit?
else: # empty clause reached

cs[id ] = c

if not c: return "VERIFIED"

break

return "NOT VERIFIED"

import sys

print(verify(open(sys.argv[1 ])))

Fig. 4. Fully functional checker for the GRIT format written in Python.

to be UNSAT within 5000 s using the 2016 competition version of lingeling.
For each of these instances, the original CNF and proof trace are trimmed and
optimized using drat-trim in backward checking mode. This is a side-effect of
using drat-trim to generate proof traces in the GRIT format, and was applied
in the same way to generate DRAT files from the original RUP files in order to
ensure a level playing field. In this way, the RUP steps required are the same for
both GRIT and DRAT checkers.

The C-checker successfully verifies all 280 GRIT files in just over 14 min
(843.64 s), while drat-trim requires more than a day to solve the corresponding
DRAT files (109214.08 s) using backward mode. Executing drat-trim in forward
mode incurred a runtime overhead of 15% on the total set of trimmed and
optimized instances. As expected, the overhead was even bigger when working
on the original CNFs and proof traces. The quantitative results are summarized
in the plots of Fig. 5, with details available from [13].

This two-orders-of-magnitude speedup demonstrates the potential of using a
file format for propositional resolution proof checking by restricted reverse unit
propagation. Note that we currently do not output the GRIT format directly, but
require a modified version of drat-trim as a pre-processor3 in order to determine

3 The modified version essentially uses drat-trim’s tracecheck output, interleaving it
with deletion information. The modified source code is available from [13].
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Fig. 5. Scatter and cactus plot comparing the runtime of the C-checker on GRIT files
and drat-trim on the corresponding DRAT files.

both the order of clauses used in unit propagation, the set of original and learnt
clauses relevant, and the deletion of clauses that are no longer needed. We stress
the importance of this additional information in obtaining the performance gains
we measure. Additional experiments (whose results we do not detail for space
constraints) show that deletion of clauses alone is responsible for a speedup
of more than one order of magnitude for the larger instances, when using the
certified checker we develop in the next section. In this way, deletion is essential
for making certified checking feasible on the largest available instances.

While it is in principle thinkable to modify a SAT solver to output the GRIT
format directly, building on [41], in this work our focus is on enabling sufficiently
efficient certified proof checking. To this end, it seems fully acceptable to run an
uncertified proof checker as a pre-processor to generate the oracle data enabling
the application of restricted reverse unit propagation in a certified checker.

5 Coq Formalization

We now show how to obtain a certified checker of unsatisfiability proofs. Rather
than verify the code of the C checker developed earlier, we formalize the underly-
ing algorithm in Coq and extract a new certified checker. This approach has the
benefits of being simpler and less dependent on the soundness of the underlying
software stack.

We follow the strategy outlined in [14,15]: first, we formalize the necessary
theoretical concepts (propositional satisfiability, entailment and soundness of
unit propagation); then, we naively specify the verification algorithm; finally, we
optimize this algorithm using standard computer science techniques to obtain
feasible runtimes. In the interest of succintness, we only present the formalization
obtained at the end of this process. The source files can be obtained from [13].
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5.1 Formalizing Propositional Satisfiability

We identify propositional variables with Coq’s binary natural numbers (type
positive), and define a literal to be a signed variable. The type of literals is
thus isomorphic to that of integers (excluding zero).

Inductive Literal : Type :=
| pos : positive → Literal

| neg : positive → Literal.

A clause is a set of literals, and a CNF is a set of clauses. For efficiency,
there are two different definitions of each type, with mappings between them.
A Clause is a list Literal, and is the type preferably used in proofs due to its
simplicity; it is also the type used for inputting data from the oracle. A CNF is a
BinaryTree Clause, where the dependent type BinaryTree implements search
trees over any type with a comparison operator. This is the type of the CNF given
as input to the algorithm, which is built once, never changed, and repeatedly
tested for membership. The working set uses two different representations of
these types. A SetClause is a BinaryTree Literal, where in particular set
differences can be computed much more efficiently than using Clause. Finally, an
ICNF is a Map {cl:SetClause | SC_wf cl}, where Map is the Coq standard library’s
implementation of Patricia trees. The elements of an ICNF must be well-formed
search trees (ensured by the condition in the definition of subset type); proofs
of well-formedness do not contain computational meaning and are removed by
extraction.4 In particular, every SetClause built from a Clause is well-formed.

A valuation is a function from positive numbers to Booleans. Satisfaction is
defined for literals, clauses and CNFs either directly (as below) or by translating
to the appropriate type (for SetClause and ICNF).

Definition Valuation := positive → bool.

Fixpoint L_satisfies (v:Valuation) (l:Literal) : Prop :=
match l with

| pos x ⇒ if (v x) then True else False

| neg x ⇒ if (v x) then False else True

end.

Fixpoint C_satisfies (v:Valuation) (c:Clause) : Prop :=
match c with

| nil ⇒ False

| l :: c' ⇒ (L_satisfies v l) ∨ (C_satisfies v c')
end.

Fixpoint satisfies (v:Valuation) (c:CNF) : Prop :=
match c with

| nought ⇒ True

| node cl c' c' ' ⇒ (C_satisfies v cl) ∧ (satisfies v c') ∧ (satisfies v c'')
end.

4 Soundness of extraction implies that these trees are well-formed.
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Definition unsat (c:CNF) : Prop := ∀ v:Valuation, ˜(satisfies v c).

Definition entails (c:CNF) (c':Clause) : Prop :=
∀ v:Valuation, satisfies v c → C_satisfies v c'.

We then prove the intuitive semantics of satisfaction: a clause is satisfied if
one of its literals is satisfied, and a CNF is satisfied if all its clauses are satisfied.
Other properties that we need include: the empty clause is unsatisfiable; every
non-empty clause is satisfiable; a subset of a satisfiable CNF is satisfiable; and
a CNF that entails the empty clause is unsatisfiable.

Lemma C_satisfies_exist : ∀ (v:Valuation) (cl:Clause),
C_satisfies v cl → ∃ l, In l cl ∧ L_satisfies v l.

Lemma satisfies_remove : ∀ (c:CNF) (cl:Clause) (v:Valuation),
satisfies v c → satisfies v (CNF_remove cl c).

Lemma unsat_subset : ∀ (c c':CNF),
(∀ cl, CNF_in cl c → CNF_in cl c') → unsat c → unsat c'.

Lemma CNF_empty : ∀ c, entails c nil → unsat c.

5.2 Soundness of Unit Propagation

The key ingredient to verifying unsatisfiability proofs in GRIT format is being
able to verify the original unit propagation steps. Soundness of unit propagation
relies on the following results, formalizing the two relevant outcomes of resolving
two clauses: a unit clause and the empty clause.

Lemma propagate_singleton : ∀ (cs:CNF) (c c':SetClause), ∀ l,
entails cs (SetClause_to_Clause (SC_add (negate l) c')) →
SC_diff c c' = (node l nought nought) → entails (CNF_add c cs) c'.

Lemma propagate_empty : ∀ (cs:CNF) (c c':SetClause),
SC_diff c c' = nought → entails (BT_add Clause_compare c cs) c'.

We then define a function propagate that receives an ICNF, a SetClause
and a list of indices (of type ad, used in the implementation of Map) and returns
true if reverse unit propagation from the given clause using the clauses referred
to by the given indices reaches the empty clause.5 Concretely, we take the clause
in the ICNF corresponding to the first index and check whether the set difference
between it and the given clause is (i) the empty clause, in which case we return
true, (ii) a singleton, in which case we add the negation of the derived literal
to the clause, remove the index from the list and recur, or (iii) a longer list of
literals, and we return false. We omit the formal definition of propagate, and
reproduce only the lemma stating its soundness.
5 The function propagate actually implements a restricted version of reverse unit

propagation analogous to the one in our C-checker, which in particular avoids com-
plex processing to determine the next clause to use in unit propagation.
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Lemma propagate_sound : ∀ (cs:ICNF) (c:SetClause) (is:list ad),
propagate cs c is = true → entails cs c.

To check that a given formula is unsatisfiable, we start with an empty work-
ing set, and iteratively change it by applying actions given by the oracle. These
actions form a type Action with three constructors: delete a clause; add a clause
from the original CNF; or extend it with a clause that is derivable by unit prop-
agation (together with the indices of the clauses that should be used in this
derivation).

Inductive Action : Type :=
| D : list ad → Action

| O : ad → Clause → Action

| R : ad → Clause → list ad → Action.

Definition Answer := bool.

We then define a function refute that processes a list of Actions (the oracle),
starting from a given CNF. This function starts with an empty ICNF, and processes
each Action as expected: it deletes the clause with the given index from the ICNF
(doing nothing if the index does not occur); it adds a clause from the argument
CNF (checking that it occurs there, and failing otherwise); or add a clause to the
ICNF after using propagate to ensure that it is entailed by the ICNF (and failing
otherwise).

The list of Actions is actually defined to be a lazy list. Lazy lists are defined
exactly as lists with constructors lnil and lcons, but with the second argument
of lcons inside an invocation of an identity function. Likewise, additional func-
tions for deferring or forcing evaluation inside refute are defined as the identity.
These additions are necessary to be able to extract a memory-efficient checker to
OCaml. On extraction, these functions are mapped to the adequate OCaml con-
structs implementing laziness; although in principle this approach could break
soundness of extraction, these constructs do indeed behave as identities. With-
out them, the extracted checker attempts to load the entire oracle data at the
start of execution, and thus risks running out of memory for larger proofs.6

The following result states soundness of refute: if refute c O returns true,
then c is unsatisfiable. Since O is universally quantified, the result holds even if
the oracle gives incorrect data. (Namely, because refute will output false.)

Theorem refute_correct : ∀ c O, refute c O = true → unsat (make_CNF c).

5.3 Experimental Evaluation

In order to evaluate the efficiency of our formalized checker, we extracted it to
OCaml. The extraction definition is available in the file Extraction.v from [13].
As is customary, we extract the Coq type positive, used for variable and clause

6 Targeting a lazy language like Haskell would not require this workaround. However,
in our context, using OCaml reduced computation times to around one-fourth.



130 L. Cruz-Filipe et al.

Fig. 6. Scatter and cactus plot comparing the runtime of our certified checker (includ-
ing pre-processing) and drat-trim on the original proof traces from lingeling.

identifiers, to OCaml’s native integers, and the comparator function on this type
to a straightforward implementation of comparison of two integers. This reduces
not only the memory footprint of the verified checker, but also its runtime (as
lookups in ICNFs require comparison of keys). It is routine to check that these
functions are correct. Furthermore, as described above, we extract the type of
lazy lists to OCaml’s lazy lists.

We ran the certified extracted checker on the same 280 unsatisfiable instances
as in the previous section, with a timeout of 20,000 s, resulting in 260 success-
ful verifications and 20 timeouts. On the 260 examples, the certified checker
runs in good 4 days and 18 h (412469.50 s) compared to good 2 days and
17 h (234922.46 s) required by the uncertified checker drat-trim. The pre-
processing using our modified version of drat-trim adds another 2 days and 19 h
(241453.84 s) for a total runtime of 7 days and good 13 (653923.34 s). Thus, the
extra degree of confidence provided by the certified checker comes at the price
of approx. 2.8 times slower verification for these instances (180% overhead).

The quantitative results on all 280 instances are summarized in the plots
of Fig. 6, where we added the pre-processing time to the time of the certified
checker, with details available from [13].

The reason for the 20 timeouts can be found in the set implementation
of our formalization. If we extract Coq sets to native OCaml sets, there are
no time-outs. We extracted such a version of the certified checker in order to
check this hypothesis, as well as to assess the performance impact. And indeed,
this version of our checker successfully verifies all 280 GRIT files in less time
(186599.20 s) than it takes to pre-process them using our modified drat-trim ver-
sion (281516.13), and consequently the overhead of running a certified checker
instead of an uncertified checker is down to 75%. The quantitative results for this
variant are summarized in the plots of Fig. 7, with details available from [13].
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Fig. 7. Scatter and cactus plot comparing the runtime of a certified checker using
OCaml sets (including pre-processing) and drat-trim on the original proof traces from
lingeling.

6 Veryifing the Boolean Pythagorean Triples Proof

As a large-scale litmus test of our formally verified checker, we reconstituted
the recent SAT-based proof of the Boolean Pythagorean Triples conjecture [25]
(508 CPU days) using the incremental SAT solver iGlucose, transformed it into
the GRIT format (871 CPU days) using our modified version of drat-trim, and
formally verified that all 1,000,000 cases (“cubes”) cover the entire search space
(12 min), and that they are all indeed unsatisfiable (2608 days) using our certi-
fied checker (the original version, where all data structures except integers are
extracted). This amounts to formally verifying the Boolean Pythagorean Triples
conjecture (provided that its encoding as a propositional formula is correct).

The cactus plot in Fig. 8 visualizes the distribution of runtime on the
1,000,000 cubes. The size of the reconstituted proof traces in RUP format was
measured to be 175 TB. After transformation to the more detailed GRIT format,
the proof traces filled a total 389 TB. During runtime, the maximum resident
memory usage of the incremental SAT solver was 237 MB, while drat-trim in
backward mode used up to 1.59 GB. Our certified checker reached a maximum of
67 MB of resident memory usage thanks to lazyness. Details on this experiment
are available from [12].

7 Conclusions and Research Directions

This paper revisits past work on proof checking, aiming at developing high-
performance certified proof checkers. It proposes a new format, which enables a
very simple proof checking algorithm. This simple algorithm is formalized in the
Coq theorem prover, from which an OCaml executable is then extracted.

The experimental results amply demonstrate the validity of the proposed
approach. The C implementation of the checker is on average two orders of
magnitude faster than what can be considered a reference C-implemented proof
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Fig. 8. Cactus plot comparing the runtimes for reconstituting the proof (decode and
solve), transforming it into GRIT (drat-trim and tac), and formally verifying the GRIT
files using our certified checker.

checker, drat-trim [19,45]. This represents an essential requirement for develop-
ing an efficient certified proof checker. More importantly, the certified OCaml
version of the checker performs comparably with drat-trim on problem instances
from the SAT competitions. Perhaps more significantly, the certified checker has
been used to formally verify the 200 TB proof of the Boolean Pythagorean Triples
conjecture [25], in time comparable to the non-certified drat-trim checker.

Future work will address existing limitations of the approach. Currently, a
modified version of drat-trim is used to generate the GRIT format. This can
impact the overall running time, especially if the C-implemented checker for
the GRIT format is to be used. This also includes modifying top performing
SAT solvers to output the GRIT format, potentially based on A. Van Gelder’s
approach [41,42].

A natural continuation of this work is the extension of GRIT to a format
as general as DRAT, in particular by including support for the RAT property.
This task is quite challenging, as verifying the RAT property requires global
checks on the whole CNF – unlike the properties describable by GRIT, which
are locally verified. Preliminary results regarding the extension of GRIT to the
RAT property can be found in [11].
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Abstract. FuncTion is a static analyzer designed for proving condi-
tional termination of C programs by means of abstract interpretation.
Its underlying abstract domain is based on piecewise-defined functions,
which provide an upper bound on the number of program execution steps
until termination as a function of the program variables.

In this paper, we fully parameterize various aspects of the abstract
domain, gaining a flexible balance between the precision and the cost of
the analysis. We propose heuristics to improve the fixpoint extrapolation
strategy (i.e., the widening operator) of the abstract domain. In partic-
ular we identify new widening operators, which combine these heuristics
to dramatically increase the precision of the analysis while offering good
cost compromises. We also introduce a more precise, albeit costly, vari-
able assignment operator and the support for choosing between integer
and rational values for the piecewise-defined functions.

We combined these improvements to obtain an implementation of
the abstract domain which subsumes the previous implementation. We
provide experimental evidence in comparison with state-of-the-art tools
showing a considerable improvement in precision at a minor cost in per-
formance.

1 Introduction

Programming errors which cause non-termination can compromise software sys-
tems by making them irresponsive. Notorious examples are the Microsoft Zune
Z2K bug1 and the Microsoft Azure Storage service interruption2. Termination
bugs can also be exploited in denial-of-service attacks3. Therefore, proving pro-
gram termination is important for ensuring software reliability.

The traditional method for proving termination is based on the synthesis of a
ranking function, a well-founded metric which strictly decreases during the pro-
gram execution. FuncTion [36] is a static analyzer which automatically infers

1 http://techcrunch.com/2008/12/31/zune-bug-explained-in-detail/.
2 http://azure.microsoft.com/blog/2014/11/19/update-on-azure-storage-service-

interruption/.
3 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1890.
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ranking functions and sufficient precondition for program termination by means
of abstract interpretation [13]. The tool is based on the abstract interpretation
framework for termination introduced by Cousot and Cousot [14].

The underlying abstract domain of FuncTion is based on piecewise-defined
ranking functions [40], which provide an upper bound on the number of program
execution steps until termination as a function of the program variables. The
piecewise-defined functions are represented by decision trees, where the decision
nodes are labeled by linear constraints over the program variables, and the leaf
nodes are labeled by functions of the program variables.

In this paper, we fully parameterize various aspects of the abstract domain,
gaining a flexible balance between the precision and the cost of the analysis.
We propose options to tune the representation of the domain and value of the
ranking functions manipulated by the abstract domain. In particular, we intro-
duce the support for using rational coefficients for the functions labeling the leaf
nodes of the decision trees, all the while strengthening their decrease condition
to still ensure termination. We also introduce a variable assignment operator
which is very effective for programs with unbounded non-determinism. Finally,
we propose heuristics to improve the widening operator of the abstract domain.
Specifically, we suggest an heuristic inspired by [1] to infer new linear constraints
to add to a decision tree and two heuristics to infer a value for the leaf nodes on
which the ranking function is not yet defined. We identify new widening oper-
ators, which combine these heuristics to dramatically increase the precision of
the analysis while offering good cost compromises.

We combined these improvements to obtain an implementation of the
abstract domain which subsumes the previous implementation. We provide
experimental evidence in comparison with state-of-the-art tools [21,22,34] show-
ing a considerable improvement in precision at a minor cost in performance.

Outline. Sect. 2 offers a glimpse into the theory behind proving termination
by abstract interpretation. In Sect. 3, we recall the ranking functions abstract
domain and we discuss options to tune the representation of the piecewise-defined
functions manipulated by the abstract domain. We suggest new precise widening
operators in Sect. 4. Section 5 presents the result of our experimental evaluation.
We discuss related work in Sect. 6 and Sect. 7 concludes.

2 Termination and Ranking Functions

The traditional method for proving program termination dates back to Turing
[35] and Floyd [17]. It consists in inferring a ranking function, namely a function
from the program states to elements of a well-ordered set whose value decreases
during program execution. The best known well-ordered sets are the natural
numbers 〈N,≤〉 and the ordinals 〈O,≤〉, and the most obvious ranking func-
tion maps each program state to the number of program execution steps until
termination, or some well-chosen upper bound on this number.

In [14], Cousot and Cousot formalize the notion of a most precise ranking
function w for a program. Intuitively, it is a partial function defined starting
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from the program final states, where it has value zero, and retracing the program
backwards while mapping each program state definitely leading to a final state
(i.e., a program state such that all program execution traces to which it belongs
are terminating) to an ordinal representing an upper bound on the number of
program execution steps remaining to termination. The domain dom(w) of w is
the set of states from which the program execution must terminate: all traces
branching from a state s ∈ dom(w) terminate in at most w(s) execution steps,
while at least one trace branching from a state s �∈ dom(w) does not terminate.

Example 1. Let us consider the following execution traces of a given program:

The most precise ranking function for the program is iteratively defined as:

0

0

1 0

0
2

1 0

0
2

1 0

0

where unlabelled states are outside the domain of the function.

The most precise ranking function w is sound and complete to prove pro-
gram termination [14]. However, it is usually not computable. In the following
sections we recall and present various improvements on decidable approxima-
tions of w [40]. These over-approximate the value of w and under-approximate
its domain of definition dom(w). In this way, we infer sufficient preconditions for
program termination: if the approximation is defined on a program state, then
all execution traces branching from that state are terminating.

3 The Ranking Functions Abstract Domain

We use abstract interpretation [13] to approximate the most precise ranking
function mentioned in the previous section. In [40], to this end, we introduce
an abstract domain based on piecewise-defined ranking functions. We recall here
(and in the next section) the features of the abstract domain that are relevant
for our purposes and introduce various improvements and parameterizations to
tune the precision of the abstract domain. We refer to [37] for an exhaustive
presentation of the original ranking functions abstract domain.

The elements of the abstract domain are piecewise-defined partial functions.
Their internal representation is inspired by the space partitioning trees [18] devel-
oped in the context of 3D computer graphics and the use of decision trees in
program analysis and verification [3,24]: the piecewise-defined partial functions
are represented by decision trees, where the decision nodes are labeled by linear
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int f ( int x, int y, int r ) {
while ( r > 0 ) {

r = r + x;
r = r − y;

}
return r;

}
(a)

r − 1 ≥ 0

x − y ≥ 0

⊥ 3r + 1

1

(b)

Fig. 1. Decision tree representation (b) of the piecewise-defined ranking function for a
simple C function (a). The linear constraints are satisfied by their left subtree, while
their right subtree satisfies their negation. The leaves of the tree represent partial
functions the domain of which is determined by the constraints satisfied along the path
to the leaf node. The leaf with value ⊥ explicitly represents the undefined partition of
the partial function.

constraints over the program variables, and the leaf nodes are labeled by func-
tions of the program variables. The decision nodes recursively partition the space
of possible values of the program variables and the functions at the leaves provide
the corresponding upper bounds on the number of program execution steps until
termination. An example of decision tree representation of a piecewise-defined
ranking function is shown in Fig. 1.

The partitioning is dynamic: during the analysis, partitions (resp. decision
nodes and constraints) are split (resp. added) by tests, modified by variable
assignments and joined (resp. removed) when merging control flows. In order to
minimize the cost of the analysis, a widening limits the height of the decision
trees and the number of maintained partitions.

The abstract domain is parameterized in various aspects. Figure 2 offers an
overview of the various parameterizations currently available. We discuss here
options to tune the representation of the domain and value of the ranking func-
tions manipulated by the abstract domain. The discussion on options to tune
the precision of the widening operator is postponed to the next section.

3.1 Domain Representation

The domain of a ranking function represented by a decision tree is partitioned
into pieces which are determined by the linear constraints encountered along the
paths to the leaves of the tree. The abstract domain supports linear constraints
of different expressivity. In the following, we also propose an alternative strategy
to modify the linear constraints as a result of a variable assignment. We plan to
support non-linear constraints as part of our future work.

Linear Constraints. We rely on existing numerical abstract domains for labeling
the decision nodes with the corresponding linear constraints and for manipulat-
ing them. In order of expressivity, we support interval [12] constraints (i.e., of
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Fig. 2. Overview of the various parameterizations for the components of the ranking
function abstract domain. Highlighted with a double border are the components for
which new parameterizations are introduced in this paper.

the form ±x ≤ c), octagonal [30] constraints (i.e., of the form ±xi±xj ≤ c), and
polyhedral [15] constraints (i.e., of the form c1 · x1 + · · · + ck · xk ≤ ck+1). As for
efficiency, contrary to expectations, octagonal constraints are the costliest label-
ing in practice. The reason for this lies in how constraints are manipulated as a
results of a variable assignment which amplifies known performance drawbacks
for octagons [19,26]. We expand on this shortly.

Assignment Operator. A variable assignment might impact some of the linear
constraints within the decision nodes as well as some functions within the leaf
nodes. The abstract domain now supports two strategies to modify the decision
trees as a result of a variable assignment:

– The default strategy [40] consists in carrying out a variable assignment inde-
pendently on each linear constraint labeling a decision node and each function
labeling a leaf of the decision tree. This strategy is cheap since it requires a
single tree traversal. It is sometimes imprecise as shown in Fig. 3.

– The new precise strategy consists in carrying out a variable assignment on each
partition of a ranking function and then merging the resulting partitions.
This strategy is costlier since it requires traversing the initial decision tree
to identify the initial partitions, building a decision tree for each resulting
partition, and traversing these decision trees to merge them. Note that building
a decision tree requires sorting a number of linear constraints possibly higher
than the height of the initial decision tree [37]. However, this strategy is much
more precise as shown in Fig. 3.
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Fig. 3. Impact of the non-deterministic variable assignment x = ? (which resets the
value of x to a randomly chosen value) on a ranking function (a) using the default
assignment strategy (b) and the precise assignment strategy (c). Note that the default
assignment strategy loses all information.

Both strategies do not work well with octagonal constraints. It is known that
the original algorithms for manipulating octagons do not preserve their sparsity
[19,26]. An immediate consequence of this is that a variable assignment on a
single octagonal constraints often yields multiple linear constraints. This effect
is particularly amplified by the default assignment strategy described above. The
precise assignment strategy suffers less from this but the decision trees still tend
to grow considerably in size. We plan to support sparsity-preserving algorithms
for octagonal constraints as part of our future work.

3.2 Value Representation

The functions used for labeling the leaves of the decision trees are affine functions
of the program variables (i.e., of the form m1·x1+· · ·+mk ·xk+q), plus the special
elements ⊥ and � which explicitly represent undefined functions (cf. Fig. 1b).
The element � shares the same meaning of ⊥ but is only introduced by the
widening operator. We expand on this in the next section. More specifically, we
support lexicographic affine functions (fk, . . . , f1, f0) in the isomorphic form of
ordinals ωk ·fk+· · ·+ω ·f1+f0 [29,39]. The maximum degree k of the polynomial
is a parameter of the analysis. We leave non-linear functions for future work.

The coefficients of the affine functions are by default integers [40] and we now
also support rational coefficients. Note that, when using rational coefficients, the
functions have to decrease by at least one at each program execution step to
ensure termination. Indeed, a decreasing sequence of rational number is not
necessarily finite. However, the integer parts of rational-valued functions which
decrease by at least one at each program step yield a finite decreasing sequence.

4 The Widening Operator on Ranking Functions

The widening operator � tries to predict a value for the ranking function over
the states on which it is not yet defined. Thus, it has more freedom than tradi-
tional widening operators, in the sense that it is temporarily allowed to under-
approximate the value of the most precise ranking function w (cf. Sect. 2) or
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over-approximate its domain of definition dom(w), or both — in contrast with
the observation made at the end of Sect. 2. The only requirement is that these
discrepancies are resolved before the analysis stabilizes.

In more detail, give two decision trees t1 and t2, the widening operator will
go through the following steps to compute t1 � t2 [40]:

Domain Widening. This step resolves an eventual over-approximation of the
domain dom(w) of w following the inclusion of a program state from which a
non-terminating program execution is reachable. This discrepancy manifests
itself when a leaf in t1 is labeled by a function and its corresponding leaf in t2
is labeled by ⊥. The widening operator marks the offending leaf in t2 with �
to prevent successive iterates of the analysis from mistakenly including again
the same program state into the domain of the ranking function.

Domain Extrapolation. This step extrapolates the domain of the ranking
functions over the states on which it is not yet defined. The default strategy
consists in dropping the decision nodes that belong to t2 but not to t1 and
merging the corresponding subtrees4. In this way we might lose information
but we ensure convergence by limiting the size of the decision trees.

Value Widening. This step resolves an eventual under-approximation of the
value of w and an eventual over-approximation of the domain dom(w) of w
following the inclusion of a non-terminating program state. These discrepan-
cies manifest themselves when the value of a function labeling a leaf in t1 is
smaller than the value of the function labeling the corresponding leaf in t2.
In this case, the default strategy consists again in marking the offending leaf
in t2 with � to exclude it from the rest of the analysis.

Value Extrapolation. This step extrapolates the value of the ranking function
over the states that have been added to the domain of the ranking function in
the last analysis iterate. These states are represented by the leaves in t2 that
are labeled by a function and their corresponding leaves in t1 are labeled by
⊥. The default heuristic consists in increasing the gradient of the functions
with respect to the functions labeling their adjacent leaves in the decision
tree. The rationale being that programs often loop over consecutive values
of a variable, we use the information available in adjacent partitions of the
domain of the ranking function to infer the shape of the ranking function for
the current partitions. An example is shown in Fig. 4.

In the rest of the section, we suggest new heuristics to improve the default
strategies used in the last three steps performed by the widening operator. These
yield new widening operators which combine these heuristics to dramatically
increase the precision of the analysis while offering good cost compromises.

Note that, to improve precision, it is customary to avoid the use of the
widening operator for a certain number of analysis iterates. In the following, we
refer to this number as delay threshold.

4 We requires the decision nodes belonging to t1 to be a subset of those belonging to
t2. This can always be ensured by computing t1 � (t1 � t2) instead of t1 � t2.
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x

6 11

�

x

6 11

=

x

6 11

Fig. 4. Example of value extrapolation. The default heuristics increases the slope of
the function defined for x < 6 with respect to the value of the function defined in its
adjacent partition (i.e., for 6 ≤ x < 11).

4.1 Domain Extrapolation

The default strategy for the domain extrapolation never infers new linear con-
straints and this hinders proving termination for some programs. In the following,
we propose an alternative strategy which limits the number of decision nodes to
be dropped during the analysis and labels them with new linear constraints. It is
important to carefully choose the new added constraints to avoid slowing down
the analysis unnecessarily and to make sure that the analysis still converges.

We suggest here a strategy inspired by the evolving rays heuristic presented
in [1] to improve the widening operator of the polyhedra abstract domain [15].
The evolving strategy examines each linear constraint c2 in t2 (i.e., the decision
tree corresponding to the last iterate of the analysis) as if it was generated by
rotation of a linear constraint c1 in t1 (i.e., the decision tree corresponding to
the previous iterate of the analysis). This rotation is formalized as follows [1]:

evolve(u, v) = w

where wi =

{
0 if ∃j ∈ {1, . . . , n}.(uivj − ujvi)uiuj < 0
ui otherwise

where u and w are the vectors of coefficients of the linear constraints c2 in t2 and
c1 in t1, respectively. In particular, evolve sets to zero the components of u that
match the direction of rotation. Intuitively, the evolving strategy continues the
rotation of c2 until one or more of the non-null coefficients of c2 become zero.
The new constraint reaches one of the boundaries of the orthant where c2 lies
without trespassing it. This strategy is particularly useful in situations similar
to the one depicted in Fig. 5a: the ranking function is defined over increasingly
smaller pieces delimited by different rotations of a linear constraint. In such case,
the evolving strategy infers the linear constraints highlighted in red in Fig. 5b,
thus extrapolating the domain of the ranking function up to the boundary of
the orthant where the function is defined.

More specifically, the evolving strategy explores each pair of linear constraints
on the same path in the decision tree t2 and modifies them as described above to
obtain new constraints. The strategy then discards the less frequently obtained
constraints. The relevant frequency is a parameter of the analysis which in the



144 N. Courant and C. Urban

Fig. 5. The ranking function (b) obtained after widening using the evolving strategy on
a given ranking function (a). Highlighted in red are the linear constraints inferred by
the strategy, which limit the domain extrapolation to the increasingly smaller pieces
on which the given ranking function is defined. (Color figure online)

following we call the evolving threshold. In our experience, it is usually a good
choice to set the evolving threshold to be equal to the delay threshold of the
widening. The remaining constraints are used to substitute the linear constraints
that appear in t2 but not in t1, possibly merging the corresponding subtrees.

Note that, by definition, the number of new linear constraints that can be
added by the evolving strategy is finite. The strategy then defaults to the default
strategy and this guarantees the termination of the analysis.

4.2 Value Widening

The default strategy for the value widening marks with � the leaves in t2 (i.e.,
the decision tree corresponding to the last iterate of the analysis) labeled with
a larger value than their corresponding leaves in t1 (i.e., the decision tree corre-
sponding to the previous iterate of the analysis). This resolves eventual discrep-
ancies in the approximation of the most precise ranking function w at the cost of
losing precision in the analysis. As an example, consider the situation shown in
Fig. 6: Fig. 6a depicts the most precise ranking function for a program and Fig. 6b
depicts its approximation at the iterate immediately after widening. Note that
one partition of the ranking function shown in Fig. 6b under-approximates the

Fig. 6. The ranking function (c) obtained after widening using the retrying strategy
on a given ranking function (b). Note that the given ranking function (b) under-
approximates the value of the ranking function shown in (a).
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value of the ranking function shown in Fig. 6a. The default strategy would then
label the offending partition with �, in essence giving up on trying to predict a
value for the ranking function on that partition.

A simple and yet powerful improvement is to maintain the values of the
offending leaves in t2 and continue the analysis. In this way, the analysis can
do various attempts at predicting a stable value for the ranking function. Note
that using this retrying strategy without caution would cause the analysis to not
converge for a number of programs. Instead, we limit the number of attempts to
a certain retrying threshold, and then revert to the default strategy.

The retrying strategy for ordinals of the form ωk · fk + · · · + ω · f1 + f0
(cf. Sect. 3.2) behaves analogously to the other abstract domain operators for
manipulating ordinals [39]. It works in ascending powers of ω carrying to the
next higher degree when the retrying threshold has been reached (up to the
maximum degree for the polynomial, in which case we default to �).

4.3 Value Extrapolation

The default heuristic for the value extrapolation consists in increasing the gra-
dient of the ranking function with respect to its value in adjacent partition of
its domain. Note that, many other heuristics are possible. In fact, this step only
affects the precision of the analysis, and not its convergence or its soundness.

In this paper, we propose a selective extrapolation heuristic, which increases
the gradient of the ranking function with respect to selected partitions of its
domain. More specifically, the heuristic selects the partitions from which the
current partition is reachable in one loop iteration. This strategy is particularly
effective in combination with the evolving strategy described in Sect. 4.1. Indeed,
the evolving strategy often splits partitions by adding new linear constraints and,
in some cases, this affects the precision of the analysis since it alters the adjacency
relationships between the pieces on which the ranking function is defined.

We plan to investigate other strategies as part of our future work.

5 Implementation and Experimental Evaluation

The ranking functions abstract domain and the new parameterizations intro-
duced in this paper are implemented in FuncTion [36] and are available online5.
The implementation is in OCaml and consists of around 3K lines of code. The
current front-end of FuncTion accepts programs written in a (subset of) C,
without struct and union types. It provides only a limited support for arrays,
pointers, and recursion. The only basic data type are mathematical integers,
deviating from the standard semantics of C. The abstract domain builds on the
numerical abstract domains provided by the APRON library [25].

The analysis proceeds by structural induction on the program syntax, iter-
ating loops until a fixpoint is reached. In case of nested loops, a fixpoint on the
inner loop is computed for each iteration of the outer loop, following [4,31]. It
is also possible to refine the analysis by only considering the reachable states.
5 https://github.com/caterinaurban/function.

https://github.com/caterinaurban/function
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Experimental Evaluation. The ranking functions abstract domain was evaluated
on 242 terminating C programs collected from the 5th International Competition
on Software Verification (SV-COMP 2016). Due to the limitations in the current
front-end of FuncTion we were not able to analyze 47% of the test cases. The
experiments were performed on a system with a 3.20 GHz 64-bit Dual-Core CPU
(Intel i5-3470) and 6 GB of RAM, running Ubuntu 16.04.1 LTS.

We compared multiple configurations of parameters for the abstract domain.
We report here the result obtained with the most relevant configurations. Unless
otherwise specified, the common configuration of parameters uses the default
strategy for handling variable assignments (cf. Sect. 3.1), a maximum degree of
two for ordinals using integer coefficients for affine functions (cf. Sect. 3.2), and a
delay threshold of three for the widening (cf. Sect. 4). Figure 7 presents the results
obtained using polyhedral constraints. Figure 8 shows the successful configura-

N
Value Widening Assignment

Success Time TO
N Q delay retrying evolving selective default precise

128 0.35s 5
1

140 0.44s 3
124 0.35s 5

2
138 0.78s 3
138 0.40s 6

3
152 0.48s 3
125 1.28s 11

4
127 1.01s 10
118 0.28s 5

5
106 0.21s 3
136 1.74s 17

6
139 1.18s 14
129 0.35s 5

7
124 0.26s 4
116 0.92s 11

8
102 0.31s 10
134 1.40s 16

9
123 0.63s 19
128 1.41s 18

10
120 0.48s 16
133 3.41s 50

11
132 6.59s 56
122 8.70s 92

12 6
120 6.22s 98

Fig. 7. Evaluation of FuncTion using polyhedral constraints. For each configuration
N, the bottom row corresponds to the results obtained by restricting the analysis to
the reachable states, and the top row to the results obtained without reachability infor-
mation. Highlighted in blue is the best configuration in terms of number of successes.
Time is the mean time per successful test case. (Color figure online)
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Fig. 8. Test case coverage for the evaluation of FuncTion using polyhedral constraints.
The horizontal axis enumerates the test cases. For each configuration of FuncTion
given on the vertical axis (without and with reachability information, as in Fig. 7), a
colored area corresponds to successful test cases. (Color figure online)

tions for each test case. Using interval constraints yields fewer successful test
cases (around 50% less successes) but it generally ensures better runtimes. The
exception is a slight slowdown of the analysis when using rational coefficients,
which is not observed when using polyhedral constraints. We did not evaluate
the use of octagonal constraints due to the performance drawbacks discussed in
Sect. 3.1. We used a time limit of 300 s for each test case.

We can observe that using the retrying strategy always improves the overall
analysis result: configurations 3, 6, 7, and 9are more successful than the corre-
sponding configurations 1, 4, 5, and 8, which instead use the default strategy. In
particular, configuration 3 is the best configuration in terms of number of suc-
cesses (cf. Fig. 7). However, in general, improving the precision of the widening
operator does not necessarily improve the overall analysis result. More specifi-
cally, configurations 4 to 9 seem to perform generally worse than configuration 1
and 3 both in terms of number of successes and running times. However, although
these configurations are not effective for a number of programs for which config-
uration 1 and 3 are successful, they are not subsumed by them since they allow
proving termination of many other programs (cf. Fig. 8).

Another interesting observation is that using rational coefficients in configura-
tion 2 worsens the result of the analysis compared to configuration 1 which uses
integer coefficients (cf. Fig. 8). Instead, using rational coefficients in configuration
10 allows proving termination for a number of programs for which configuration
9 (which uses integer coefficients) is unsuccessful.

The configurations using the evolving strategy (i.e., 4, 6, 8, 9, and 10)
tend to be slower than the configurations which use the default strategy. As
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a consequence, they suffer from a higher number of timeouts (cf. Fig. 7). Even
worse is the slowdown caused by the precise strategy to handle variable assign-
ments (cf. configurations 11 and 12) and a higher delay threshold for the widening
(cf. configuration 12). We observed that a delay threshold higher than six only
marginally improves precision while significantly worsening running times.

Finally, we observed that there are some configurations for which decreasing
the precision of the linear constraints (from polyhedral to interval constraints)
allows proving termination of some more programs. In particular, this concerns
configuration 2 as well as some of the other configurations when limiting the
analysis to the reachable states. However, this happens very rarely: overall, only
three programs can be proven terminating only using interval constraints.

We also compared FuncTion against the tools participating to SV-COMP
2016 : AProVE [34], SeaHorn [21,38] and UAutomizer [22]. We did not
compare with other tools such as T2 [6] and 2LS [9] since FuncTion does
not yet support the input format of T2 and bit-precise integer semantics (like
2LS does). As we observed that most of the parameter configurations of the
abstract domain do not subsume each other, for the comparison, we set up
FuncTion to use multiple parameter combinations successively, each with a
time limit of 25 s. More specifically, we first use configuration 3, which offers
the best compromise between number of successes and running times. We then
move onto configurations that use the evolving strategy and the selective strategy,
which are successful for other programs at the cost of an increased running time.
Finally, we try the even more costly configurations that use the precise strategy
for handling variable assignments and a higher delay threshold for the widening.

We ran FuncTion on the same machine as above, while for the other tools
we used the results of SV-COMP 2016 since our machine was not powerful
enough to run them. The time limit per test case was again 300 s. Figure 9
shows the result of the comparison and Fig. 10 shows the successful tools for each
test case. We can observe that, despite being less successful than AProVE or
UAutomizer, FuncTion is able to prove termination of an important number
of programs (i.e., 80% of the test cases, cf. Fig. 9). Moreover, FuncTion is
generally faster than all other tools, despite the fact that these were run on

× Success Time TO

FuncTion − − − − 195 5.25s 7

AProVE [34] 7 36 188 11 224 15.66s 15

SeaHorn [21,38] 31 22 164 25 186 8.57s 52

UAutomizer [22] 10 36 185 11 221 14.04s 6

Fig. 9. Comparison of FuncTion against tools participating in SV-COMP 2016. �
denotes the number of programs for which only FuncTion was successful, � the num-
ber of programs for which only the other tool was successful, × the number for which
both tools were successful and the number for which neither tool was. Time corre-
sponds to the mean time per success of the tool.
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Fig. 10. Test case coverage for the comparison of FuncTion against tools participating
in SV-COMP 2016. The horizontal axis enumerates the test cases. Each colored area
corresponds to successful test cases. (Color figure online)

more powerful machines. Finally, we can observe in Fig. 10, that for each tool
there is a small subset of the test cases for which it is the only successful tool.
The four tools together are able to prove termination for all the test cases.

6 Related Work

In the recent past, termination analysis has benefited from many research
advances and powerful termination provers have emerged over the years.

AProVE [34] is probably the most mature tool in the field. Its underlying
theory is the size-change termination approach [27], originated in the context of
term rewriting systems, which consists in collecting a set of size-change graphs
(representing function calls) and combining them into multipaths (representing
program executions) in such a way that at least one variable is guaranteed to
decrease. Compared to size-change termination, FuncTion avoids the explo-
ration of the combinatorial space of multipaths by manipulating ordinals.

Terminator [10] is based on the transition invariants method introduced
in [33]. More specifically, the tool iteratively constructs transition invariants by
searching within a program for single paths representing potential counterexam-
ples to termination, computing a ranking function for each one of them indi-
vidually (as in [32]), and combining the obtained ranking functions into a single
termination argument. Its successor, T2 [6], has abandoned the transition invari-
ants approach in favor of lexicographic ranking functions [11] and has broadened
its scope to a wide range of temporal properties [7].

UAutomizer [22] is a software model checker based on an automata-
theoretic approach to software verification [23]. Similarly to Terminator, it
reduces proving termination to proving that no program state is repeatedly vis-
ited (and it is not covered by the current termination argument), and com-
poses termination arguments by repeatedly invoking a ranking function synthe-
sis tool [28]. In contrast, the approach recently implemented in the software
model checker SeaHorn [21] systematically samples terminating program exe-
cutions and extrapolates from these a ranking function [38] using an approach
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which resembles the value extrapolation of the widening operator implemented
in FuncTion.

Finally, another recent addition to the family of termination provers is 2LS
[9], which implements a bit-precise inter-procedural termination analysis. The
analysis solves a series of second-order logic formulae by reducing them to first-
order using polyhedral templates. In contrast with the tools mentioned above,
both 2LS and FuncTion prove conditional termination.

7 Conclusion and Future Work

In this paper, we fully parameterized various aspects of the ranking function
abstract domain implemented in the static analyzer FuncTion. We identified
new widening operators, which increase the precision of the analysis while offer-
ing good cost compromises. We also introduced options to tune the representa-
tion of the ranking functions manipulated by the abstract domain. In combining
these improvements, we obtained an implementation which subsumes the previ-
ous implementation and is competitive with state-of-the-art termination provers.

In the future, we would like to extend the abstract domain to also support
non-linear constraints, such as congruences [20], and non-linear functions, such
as polynomials [5] or exponentials [16]. In addition, we plan to support sparsity-
preserving algorithms for manipulating octagonal constraints [19,26]. We would
also like to investigate new strategies to predict a value for the ranking func-
tion during widening. Finally, we plan to work on proving termination of more
complex programs, such as heap-manipulating programs. We would like to inves-
tigate the adaptability of existing methods [2] and existing abstract domains for
heap analysis [8], and possibly design new techniques.
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Abstract. We consider the problem of verifying finite precision imple-
mentation of linear time-invariant controllers against mathematical spec-
ifications. A specification may have multiple correct implementations
which are different from each other in controller state representation, but
equivalent from a perspective of input-output behavior (e.g., due to opti-
mization in a code generator). The implementations may use finite preci-
sion computations (e.g. floating-point arithmetic) which cause quantiza-
tion (i.e., roundoff) errors. To address these challenges, we first extract a
controller’s mathematical model from the implementation via symbolic
execution and floating-point error analysis, and then check approximate
input-output equivalence between the extracted model and the speci-
fication by similarity checking. We show how to automatically verify
the correctness of floating-point controller implementation in C language
using the combination of techniques such as symbolic execution and con-
vex optimization problem solving. We demonstrate the scalability of our
approach through evaluation with randomly generated controller speci-
fications of realistic size.

1 Introduction

Most modern safety- and life-critical embedded applications rely on software-
based control for their operation. When reasoning about safety of these systems,
it is extremely important to ensure that control software is correctly imple-
mented. In this paper, we study the problem of whether a given piece of software
is a faithful representation of an abstract specification of the control function.

We assume a commonly used development approach, where control systems
are developed in a model-driven fashion. The model captures both the dynamics
of the “plant”, the entity to be controlled, and the controller itself, as math-
ematical expressions using well established tools, such as Simulink and State-
flow. Control theory offers a rich set of techniques to determine these expres-
sions, determine their parameters, and perform analysis of the model to conclude
whether the plant model adequately describes the system to be controlled and

c© Springer-Verlag GmbH Germany 2017
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whether the controller achieves the desired goals of the control system. In this
work, we assume that such control design activities have been performed, achiev-
ing the acceptable degree of assurance for the control design. In other words, we
assume that the mathematical model of the controller is correct with respect to
any higher-level requirements and can be used as the specification for a software
implementation of the controller.

Typically, control software is obtained by code generation from the mathe-
matical model. Code generation tools such as Embedded Coder are widely used.
Ideally, we would like to have these code generation tools to be verified, that is,
to offer guarantees that generated code correctly computes the control function.
In this case, no verification of the control code would be needed. However, com-
mercially available code generators are complex black-box tools and are generally
not amenable to formal verification. Subtle bugs have been found in commer-
cially available code generators in the past [25]. In the absence of verified code
generators, we would like to be able to verify instances of generated code with
respect to their mathematical specification.

In our past work [26,28], we explored several approaches to the verification
of implementations of linear time invariant (LTI) controllers. In LTI controllers,
the relationships between the values of inputs and state variables, and between
state variables and outputs, are captured as linear functions, and coefficients
of these functions are constant (i.e., time-invariant). The main limitation in
all of these approaches is the assumption that the calculations are performed
using real numbers. Of course, real numbers are a mathematical abstraction. In
practice, software performs calculations using a limited-precision representation
of numbers, such as the floating-point representation. The use of floating-point
numbers introduces errors into the computation, which have to be accounted for
in the verification process.

In this paper, we build on the work of [28], which follows an equivalence
checking approach. We apply symbolic execution to the generated code, which
calculates symbolic expressions for the values of state and output variables in the
code at the completion of the invocation of the controller. We use these symbolic
values to reconstruct a mathematical representation of the control function. We
introduce error terms into this representation that characterize the effects of
numerical errors. The verification step then tries to establish the approximate
equivalence between the specification of the control function and the recon-
structed representation. In [28], we considered two promising alternatives for
assessing the equivalence: one based on SMT solving and the other one based on
convex optimization. Somewhat surprisingly, when the error terms that account
for floating-point calculations are added, the SMT-solving approach becomes
impractical, while the optimization-based approach suffers minimal degradation
in performance.

The paper is organized as follows: Sect. 2 provides background of LTI systems.
Section 3 describes how to extract a model from the controller code. Section 4
presents the approximate equivalence checking. Section 5 evaluates the scalabil-
ity of our approach. Sections 6 and 7 provide an overview of related work and
conclude the paper.
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2 Preliminaries

This section presents preliminaries on LTI controllers and their software imple-
mentations. We also introduce two real-world examples that motivate the prob-
lem considered in this paper, as well as the problem statement.

2.1 Linear Feedback Controller

The goal of feedback controllers is to ensure that the closed-loop systems have
certain desired behaviors. In general, these controllers derive suitable control
inputs to the plants (i.e., systems to control) based on previously obtained mea-
surements of the plant outputs. In this paper, we consider a general class of
feedback controllers that can be specified as linear time-invariant (LTI) con-
trollers in the standard state-space representation form:

zk+1 = Azk + Buk

yk = Czk + Duk.
(1)

where uk ∈ R
p, yk ∈ R

m and zk ∈ R
n are the input vector, the output vector

and the state vector at time k respectively. The matrices A ∈ R
n×n, B ∈ R

n×p,
C ∈ R

m×n and D ∈ R
m×p together with the initial controller state z0 completely

specify an LTI controller. Thus, we use Σ(A,B,C,D, z0) to denote an LTI
controller, or just use Σ(A,B,C,D) when the initial controller state z0 is zero.

During the control-design phase, controller Σ(A,B,C,D, z0) is derived to
guarantee the desired closed-loop performance, while taking into account avail-
able computation and communication resources (e.g., finite-precision arithmetic
logic units). This model (i.e., controller specification) is then usually ‘mapped’
into a software implementation of a step function that: (1) maintains the state
of the controller, and updates it every time new sensor measurements are avail-
able (i.e., when it’s invoked); and (2) computes control outputs (i.e., inputs
applied to the plant) from the current controller’s state and incoming sensor
measurements. In most embedded control systems, the step function is periodi-
cally invoked, or whenever new sensor measurements arrive. In this work, as in
our previous work [28], we assume that data is exchanged with the step function
through global variables.1 In other words, the input, output and state variables
are declared in the global scope, and the step function reads both input and
state variables, and updates both output and state variables as the effect of its
execution. It is worth noting however that this assumption does not critically
limit our approach because it can be easily extended to support a different code
interface for the step function.

2.2 Motivating Examples

To motivate our work, we introduce two examples from [26,28]. These examples
illustrate limitations of the standard verification techniques that directly utilize
1 This convention is used by Embedded Coder, a code generation toolbox for Mat-

lab/Simulink.
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the mathematical model from (1), in cases when controller software is generated
by a code generator whose optimizations potentially violate the model while still
ensuring the desired control functionality.

A Scalar Linear Integrator. Consider a simple controller that computes
control input uk as a scaled sum of all previous sensor data yi ∈ R, i = 0, ..., k−1
– i.e.,

uk =

k−1
∑

i=0

αyi, k > 1, and, u0 = 0. (2)

Now, if we use the Simulink Integrator block with Forward Euler integration to
implement this controller, the resulting controller model will be Σ(1, α, 1, 0), –
i.e., zk+1 = zk + αyk, uk = zk. On the other hand, a realization Σ̂(1, 1, α, 0) –
i.e., zk+1 = zk + yk, uk = αzk, of the controller would introduce a reduced com-
putational error when finite precision arithmetics is used [10]. Thus, controller
specification (2) may result in two different software implementations due to the
use of different code generation tools. Still, it is important to highlight that these
two implementations would have identical input-output behavior – the only dif-
ference is whether they maintain a scaled or unscaled sum of the previous sensor
measurements.

Multiple-Input-Multiple-Output Controllers. Now, consider a more gen-
eral Multiple-Input-Multiple-Output (MIMO) controller with two inputs and
two outputs which maintains five states

zk+1 =

⎡

⎢

⎢

⎢

⎢

⎣

−0.500311 0.16751 0.028029 −0.395599 −0.652079
0.850942 0.181639 −0.29276 0.481277 0.638183

−0.458583 −0.002389 −0.154281 −0.578708 −0.769495
1.01855 0.638926 −0.668256 −0.258506 0.119959
0.100383 −0.432501 0.122727 0.82634 0.892296

⎤

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

A

zk+

+

⎡

⎢

⎢

⎢

⎢

⎣

1.1149 0.164423
−1.56592 0.634384
1.04856 −0.196914
1.96066 3.11571

−3.02046 −1.96087

⎤

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

B

uk (3)

yk =

[

0.283441 0.032612 −0.75658 0.085468 0.161088
−0.528786 0.050734 −0.681773 −0.432334 −1.17988

]

︸ ︷︷ ︸

C

zk (4)

The controller has to perform 25 + 10 = 35 multiplications as part of the
state z update in every invocation of the step function. On the other hand, the
following controller requires only 5 + 10 = 15 multiplications for state update.
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ẑk+1 =

⎡

⎢

⎢

⎢

⎢

⎣

0.87224 0 0 0 0
0 0.366378 0 0 0
0 0 −0.540795 0 0
0 0 0 −0.332664 0
0 0 0 0 −0.204322

⎤

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

Â

ẑk+

+

⎡

⎢

⎢

⎢

⎢

⎣

0.822174 −0.438008
−0.278536 −0.824313
0.874484 0.858857

−0.117628 −0.506362
−0.955459 −0.622498

⎤

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

B̂

uk, (5)

yk =

[−0.793176 0.154365 −0.377883 −0.360608 −0.142123
0.503767 −0.573538 0.170245 −0.583312 −0.56603

]

︸ ︷︷ ︸

Ĉ

ẑk (6)

The above controllers Σ and Σ̂ are similar,2 which means that the same input
sequences yk delivered to both controllers, would result in identical outputs of
the controllers. Note that the controller’s states will likely differ. Consequently,
the ‘diagonalized’ controller Σ̂ results in the same control performance and thus
provides the same control functionality as Σ, while violating the state evolution
model of the initial controller Σ. The motivation for the use of the diagonalized
controller comes from a significantly reduced computational cost that allow for
the utilization of resource constrained embedded platforms. In general, any con-
troller (1), would require n2 + np = n(n + p) multiplications to update its state.
This can be significantly reduced when matrix A in (1) is diagonal – in this case
only n + np = n(p + 1) multiplications are needed.

2.3 Problem Statements

As illustrated with the motivating examples, the initial controller model and its
implementation (i.e., step function) may be different from each other in represen-
tation (i.e., controller parameters, state representation) due to the optimization
of code generators, while being functionally equivalent from the input-output
perspective. Thus, we would like to develop the verification technique that is
not sensitive to the state representation of the controller. Moreover, the con-
troller software for embedded systems uses a finite precision arithmetic which
introduces rounding errors in the computation. Thus, it is necessary to analyze
the effect of rounding errors in the verification process. This work focuses on
the controller implementations using floating-point arithmetic, but can be eas-
ily extended to the setup for fixed-point arithmetic. Consequently, our problem
statements are as follows: given an LTI model, a step function using floating-
point arithmetic and an approximate equivalence precision, verify if the step

2 Similarity transform is formally defined in Sect. 4.
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function is approximately equivalent to the initial LTI model from the input-
output perspective.

3 Extracting Model from Floating-Point Controller
Implementation

Our approach to the verification of a controller implementation against its math-
ematical model takes two steps: we first extract a model from the finite precision
implementation (i.e., step function using floating-point arithmetic), and then
compare it with the original model. This approach is an extension of [28] to con-
sider the quantization error in the finite-precision implementation. To obtain a
model from the step function, we employ the symbolic execution technique [7,21],
which allows us to identify the computation of the step function (i.e., the big-step
transition relation on global states between before and after the execution of the
step function). From the transition relation, we extract a mathematical model
for the controller implementation. Since the implementation has floating-point
quantization (i.e., roundoff) errors, the representation of the extracted model
includes roundoff error terms, thus being different from the representation of the
initial LTI model (1). We will describe the representation of extracted models in
the next subsection.

3.1 Quantized Controller Model

A finite precision computation (e.g., floating-point arithmetic) involves rounding
errors, which makes the computation result slightly deviated from the exact value
that might be computed with the infinite precision computation. The floating-
point rounding error can be modeled with the notions of both absolute error
and relative error. The absolute error is defined as the difference between an
exact number and its rounded number. The relative error defines such difference
relative to the exact number. To model quantized controller implementations,
we extend the representation of LTI model (1) with the new terms of absolute
errors and relative errors, and obtain the following representation of quantized
controller model:

ẑk+1 = (Â + EA)ẑk + (B̂ + EB)uk + ez

yk = (Ĉ + EC)ẑk + (D̂ + ED)uk + ey.
(7)

where Â, B̂, Ĉ and D̂ are controller parameters. EA, EB, EC and ED are the
relative errors regarding the state and input variables which are bounded by the
relative error bound brel such that ‖EA‖ , ‖EB‖ , ‖EC‖ , ‖ED‖ ≤ brel where ‖·‖
is the L∞ norm operator. In addition, ez and ey are the absolute errors which
are bounded by the absolute error bound babs such that ‖ex‖ , ‖ey‖ ≤ babs.
In the rest of this section, we explain how to extract a quantized controller
model (Â, B̂, Ĉ, D̂, brel, babs) from the floating-point controller implementation
via symbolic execution and floating-point error analysis techniques.
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3.2 Symbolic Execution of Floating-Point Controller
Implementation

In our approach, the symbolic execution technique [7,21] is employed to analyze
the step function C code. We symbolically execute the step function with sym-
bolic values such as symbolic inputs and symbolic controller states, and examine
the change of the program’s global state where the output and new controller
state are updated with symbolic expressions in terms of the symbolic values.
The goal of the symbolic execution in our approach is to find symbolic formulas
that concisely represent the computation of the step function C code that origi-
nally has loops and pointer arithmetic operations. The idea behind this symbolic
execution process is that the linear controller implementations that we consider
in this work have simple control flows for the sake of deterministic real-time
behaviors (e.g., fixed upper bound of loops), thus being amenable to our sym-
bolic execution process. Consequently, the symbolic execution of linear controller
implementations yield finite and deterministic symbolic execution paths [28].

However, unlike [28], our work herein newly considers the effect of floating-
point rounding errors in the step function. Thus it is necessary to pay special
attention (e.g., normalization [6]) to the floating-point computation in symbolic
execution. When symbolic expressions are constructed with floating-point oper-
ators in the course of symbolic execution, the evaluation order of floating-point
operations should be preserved according to the floating-point program seman-
tics, because floating-point arithmetic does not hold basic algebraic properties
such as associativity and distributivity in general.

Once the symbolic execution is completed, symbolic formulas are produced.
The symbolic formulas represent the computation of the step function in a con-
cise way (i.e., in the arithmetic expression form without loops, function calls and
side effects). The produced symbolic formula has the following form, which we
call transition equation:

v(new) = f(v1, v2, . . . , vt) (8)

where v(new) is a global variable which is updated with the symbolic expression,
vi are the initial symbolic values of the corresponding variables before the sym-
bolic execution of the step function. f(v1, v2, . . . , vt) is the symbolic expression
that consists of floating-point operations where t is the number of variables used
in f . This expression should preserve the correct order of evaluation according
to the floating-point semantics of the step function C code.

For example, consider the step function in [27], which is generated by Embed-
ded Coder (the code generator of MATLAB/Simulink) for the LTI controller
models (5) and (6). We illustrate one of the transition equations obtained from
the symbolic execution of the step function as follows:

y[1](new) = (((((0.503767 ⊗ x[0]) ⊕ (−0.573538 ⊗ x[1])) ⊕ (0.170245 ⊗ x[2]))

⊕(−0.583312 ⊗ x[3])) ⊕ (−0.56603 ⊗ x[4])). (9)

where x is the shortened name for LTIS DW.Internal DSTATE, and y is the short-
ened name for LTIS Y.y for presentation purposes only, and ⊕, � and ⊗ are
floating-point operators corresponding to +, − and × respectively. In the next
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subsection, we explain how to extract the quantized model (17) from the sym-
bolic expressions.

3.3 Quantization Error Analysis and Model Extraction

This subsection explains how to extract the quantized controller model (17) from
a set of symbolic expressions (8) obtained from the step function. The symbolic
expression consists of floating-point operations of symbolic values and numeric
constants. We first describe how to analyze the floating-point quantization (i.e.,
roundoff) error in the symbolic expression evaluation. Since we only consider
linear controller implementations rejecting nonlinear cases in the symbolic exe-
cution phase, the symbolic expression f obtained from the step function has the
following syntax, thus guaranteeing the linearity:

f := v | f ⊕ f | f � f | f � fc | fc � f

fc := c | fc � fc

where v is a variable (i.e., the initial symbolic value of the variable), c is a
constant, and � ∈ {⊕,�,⊗}. fc is a sub-expression which contains no variable,
thus being evaluated to a constant, while f contains at least one variable. The
multiplication operation ⊗ appears only when at least one operand is a constant-
expression fc, thus preventing the expression from being nonlinear (i.e., the
product of two symbolic values).

In order to simplify a certain program analysis problem, a common assump-
tion is often made in the literature [14,28] that the floating-point operations
(e.g., ⊕, � and ⊗) behave the same way as the real operations (e.g., +, − and
×) with no rounding. Under this assumption, the Eq. (8) can be represented in
the following canonical form [28]:

v(new) =

t
∑

i=1

civi (10)

where t is the number of product terms, v, vi are variables, and ci is the coeffi-
cient. In reality, however, floating-point numbers have limited precision, and the
floating-point operations involve rounding errors. In this work, we consider the
effect of such floating-point rounding errors in the verification.

The IEEE 754 standard [1] views a finite precision floating-point operation
as the corresponding real operation followed by a rounding operation:

x1 � x2 = rnd(x1 ∗ x2) (11)

where � ∈ {⊕,�,⊗} and ∗ is the corresponding real arithmetic operation to
�. A rounding operator rnd is a function that takes a real number as input
and returns as output a floating-point number that is closest to the input real
number, thus causes a quantization error (i.e., rounding error) in the floating-
point operation. There are multiple common rounding operators (e.g. round to
the nearest, ties to even) defined in the IEEE 754 standard [1]. A rounding
operator can be modeled as follows [15]:
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rnd(x) = x(1 + e) + d (12)

for some e and d where e is a relative error, d is an absolute error, and |e| ≤ ε
and |d| ≤ δ. ε and δ can be determined according to the rounding mode and
the precision (i.e., the number of bits) of the system. For example, ε = 2−53 and
δ = 2−1075 for the double precision (i.e., 64 bits) rounding to the nearest [33].
Combining the two Eqs. (11) and (12), we have the following model for the
floating-point operations:

x1 � x2 = (x1 ∗ x2)(1 + e) + d (13)

After rewriting the symbolic expression of the transition equation (8) applying
the Eq. (13), suppose that we have the following equation form:

v(new) =
∑

civi + errrel + errabs (14)

where
∑

civi is the exact expression as (10), and errabs is the absolute error
term bounded by babs such that |errabs| ≤ babs. errrel is the relative error term
which is related to the variables {vi} (i.e., symbolic values). We rewrite errrel

as
∑

errivi where erri is the relative error term specific to the variable vi, and
bi is the upper bound for erri such that |erri| ≤ bi. We relax the equation by
over-approximating each erri as follows:

v(new) =
∑

civi +
∑

errivi + errabs

=
∑

civi + err
∑

vi + errabs (15)

where err is bounded by brel such that |err| ≤ brel where brel is defined as
brel = max{bi}.

We now rearrange and group the product terms by variable names such
as the state variables and the input variables. We assume that the names of
input and output variables are given as the interface of the step function. The
state variables can be identified as the variables appearing in the transition
equations which are not input variables nor output variables. In addition to
the rearrangement, by transforming the sum of products into a form of scalar
product of vectors, we have:

v(new) =[c1, c2, ..., cn]x + [err, err, ..., err]x (16)
+ [c′

1, c
′
2, ..., c

′
p]u + [err, err, ..., err]u + errabs

where x is the vector of state variables, and u is the vector of input variables.
Finally, we rewrite the transition equations as two matrix equations as fol-

lows:
x(new) = (Â + EA)x + (B̂ + EB)u + ex

y(new) = (Ĉ + EC)x + (D̂ + ED)u + ey.
(17)
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where Â ∈ R
n×n, B̂ ∈ R

n×p, Ĉ ∈ R
m×n and D̂ ∈ R

m×p. The matrices for the
relative errors are bounded by b∗

rel such that ‖EA‖ , ‖EB‖ , ‖EC‖ , ‖ED‖ ≤ b∗
rel.

The absolute error vectors ex and ey are bounded by b∗
abs such that ‖ex‖ , ‖ey‖ ≤

b∗
abs. Note that b∗

rel and b∗
abs can be easily determined using brel and babs obtained

from the floating-point error analysis for each transition equation.
For example, consider the transition equation (9), from which via the floating-

point error analysis, we have:

y[1](new) = (((((0.503767 ⊗ x[0]) ⊕ (−0.573538 ⊗ x[1])) ⊕ (0.170245 ⊗ x[2]))

⊕(−0.583312 ⊗ x[3])) ⊕ (−0.56603 ⊗ x[4]))

= 0.503767 · x[0] + −0.573538 · x[1] + 0.170245 · x[2]
+ − 0.583312 · x[3] + −0.56603 · x[4] + errrel + errabs (18)

= 0.503767 · x[0] + −0.573538 · x[1] + 0.170245 · x[2]
+ − 0.583312 · x[3] + −0.56603 · x[4]
+err(x[0] + x[1] + x[2] + x[3] + x[4]) + errabs

where |err| ≤ 988331
250000 ε ÷ (1 − 4ε) = brel, and |errabs| ≤ 4 · (1 + ε)4 · δ = babs.

For the double precision (i.e., 64 bits) rounding to nearest (i.e., ε = 2−53 and
δ = 2−1075), brel ≈ 4.389071 × 10−16 and babs ≈ 1.235164 × 10−323.

4 Approximate Input-Output Equivalence Checking

In order to verify a finite precision implementation of the linear controller, the
previous section described how to extract the quantized controller model from
the implementation. In this section, we introduce how to compare the extracted
model (17) and the initial model (1) with a notion of approximate input-output
(IO) equivalence.

4.1 Approximate Input-Output Equivalence

This subsection defines an approximate IO equivalence relation, inspired by the
similarity transformation of LTI systems [30]. In order for two LTI systems to
be IO equivalent to each other, there must exist an invertible linear mapping
T from one system’s state z to another system’s state ẑ such that z = Tẑ
and ẑ = T−1z. The matrix T is referred to as the similarity transformation
matrix [30]. Assuming that a proper T is given, we substitute zk by Tẑ in the
initial LTI model (1), thus having:

Tẑk+1 = ATẑk + Buk, yk = CTẑk + Duk.

or
ẑk+1 = (T−1AT)ẑk + (T−1B)uk, yk = (CT)ẑk + Duk. (19)

By the similarity transformation, two LTI systems (1) and (19) are similar,
meaning that they are IO equivalent. We now compare the transformed initial
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LTI model (19) and the quantized controller model (17) that is extracted from
the step function. Equating the corresponding coefficient matrices of the two
models (19) and (17), we have:

T−1AT = Â + EA, T−1B = B̂ + EB, CT = Ĉ + EC, D = D̂ + ED

or

AT = TÂ + TEA, B = TB̂ + TEB, CT = Ĉ + EC, D = D̂ + ED (20)

However, the equality of the exact equivalence condition (20) will never hold
because of the floating-point error terms (e.g., EA) and the numerical errors
in the implementation’s controller parameters (e.g., Â) due to the optimiza-
tion of the code generator. To overcome this problem, we define and use an
approximate equivalence relation ≈ρ on matrices such that M ≈ρ M̂ if and only

if
∥∥∥M − M̂

∥∥∥ ≤ ρ where ρ is a given precision (i.e., threshold for approximate
equivalence). Note that the approximate equivalence relation ≈ρ is not transi-
tive, thus not an equivalence relation unless ρ = 0. With ≈ρ for a precision ρ,
the Eq. (20) are relaxed as follows:

AT ≈ρ TÂ + TEA, B ≈ρ TB̂ + TEB, CT ≈ρ Ĉ + EC, D ≈ρ D̂ + ED (21)

Finally, we say that the initial LTI model (1) and the quantized model (17)
extracted from the implementation are approximately IO equivalent with preci-
sion ρ if there exists a similarity transformation matrix T which satisfies (21),
and the absolute errors of the floating-point computations are negligible (i.e.,
ez ≈ρ 0 and ey ≈ρ 0). Note that the problem of checking the approximate IO
equivalence is the problem of finding a proper similarity transformation matrix.
In the rest of this section, we explain how to find the similarity transforma-
tion matrix using a satisfiability problem formulation and a convex optimization
problem formulation.

4.2 Satisfiability Problem Formulation

This section discusses the satisfiability problem formulation for the approximate
IO equivalence checking. To find the similarity transformation matrix using exist-
ing SMT solvers, the problem can be formulated roughly as follows:

∃T : ∀EA,EB,EC,ED : ‖EA‖ , ‖EB‖ , ‖EC‖ , ‖ED‖ ≤ brel =⇒ (21) holds

In this formulation, the variable T and the relative error variables (e.g., EA)
are quantified alternately, thus requiring exists/forall (EF) problem solving.
Moreover, the formula involves the non-linear real arithmetic (NRA) due to
the terms TEA and TEB in (21). For these reasons, the scalability of this SMT
formulation-based approach is questionable because the current SMT solvers
rarely supports EF-NRA problem solving with scalability. In the next subsec-
tion, we describe a more efficient approach based on convex optimization as an
alternative method.
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4.3 Convex Optimization Formulation

This subsection describes the convex optimization-based approach to the approx-
imate IO equivalence checking. Since the relative error variables EA make the
condition (21) inappropriate to be formulated as a convex optimization problem,
our approach is to derive a sufficient condition for (21). By over-approximating
the error terms and removing the error variables, we derive such a sufficient con-
dition for (21) which is formulated as a convex optimization problem as follows:

variables e ∈ R,T ∈ R
n×n

minimize e

subject to
∥

∥

∥ÂT − TA
∥

∥

∥

∞
+ n2 ‖T‖∞ brel ≤ e

∥

∥

∥B̂ − TB
∥

∥

∥

∞
+ n2 ‖T‖∞ brel ≤ e

∥

∥

∥ĈT − C
∥

∥

∥

∞
+ n · brel ≤ e,

∥

∥

∥D̂ − D
∥

∥

∥

∞
+ n · brel ≤ e

(22)

The idea behind this formulation is to use convex optimization to find the min-
imum precision e and then check whether e ≤ ρ where ρ is the given precision.

Remark 1. Our verification method is sound (i.e., no false positive) but not
complete. Due to the relaxations both in the floating-point error approximation
and the approximate IO equivalence checking, there might be a case with a
model and a correct implementation where our method remains indecisive in
the equivalence decision. This can be potentially improved by tightening the
relaxations in future work. In addition, a larger ρ can make the approximate
equivalence decision positive, which is not with a smaller ρ. The IO equivalence
with a large ρ may not guarantee the controller’s well-behavedness. Relating the
approximate equivalence precision ρ and the performance of the controller (e.g.,
robustness) is an avenue of future work.

5 Evaluation

This section presents our toolchain for the verification of finite precision con-
troller implementations, and evaluates its scalability. We also evaluate computa-
tional overhead (i.e., running time) over our own earlier work [28] which assumes
that the computations of controller implementations have no rounding errors.

5.1 Toolchain

This subsection presents the verification toolchain (shown in Fig. 1) that we
implemented based on our method described in this paper. The toolchain is an
extension of [28] to consider the floating-point error of step function in verifi-
cation. The toolchain takes as input a step function C code and an LTI model
specification. We use the off-the-shelf symbolic execution tool PathCrawler [37]
to symbolically execute the step function and produce the transition equations
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Fig. 1. The verification toolchain

for the step function. From the transition equations, the model extractor based
on Sect. 3.3 extracts the quantized controller model using the floating-point error
analysis tool PolyFP [2]. Finally, the extracted quantized model is compared
with the given specification (i.e., LTI model) based on the approximate IO rela-
tion defined in Sect. 4. The approximate IO equivalence checker uses the convex
optimization solver CVX [17] to solve the formulas in Sect. 4.3.

5.2 Scalability Analysis

This subsection evaluates the scalability of our approach/toolchain presented
in this paper. To evaluate, we use the Matlab function drss to randomly
generate discrete stable linear controller specifications (i.e., the elements of
Σ(A,B,C,D)) varying the controller dimension n from 2 to 14. To obtain an IO
equivalent implementation, we perform an arbitrary similarity transformation on
Σ, and yield the transformed model Σ̂. We use an LTI system block of Simulink
to allow the Embedded Coder (i.e., code generator of Matlab/Simulink) to gen-
erate a floating-point implementation (i.e., step function in C) for Σ̂. Note that
the generated step function has multiple loops and pointer arithmetic operations
as illustrated in the step function in [27]. We employ our toolchain to verify that
the generated step function correctly implements the original controller model.
We pick the precision ρ to be 10−6 to tolerate both numerical errors in the
similarity transformation and the floating-point controller implementation.

We now evaluate the scalability of our approach running our toolchain with
the random controller specifications and their implementations generated. We
measure the running time of the front-end and the back-end of our approach sep-
arately. The front-end refers to the process of symbolic execution of the step func-
tion (using PathCrawler) and model extraction using the floating-point analysis
(using PolyFP). The back-end refers to the approximate IO equivalence checking
using convex optimization problem solving (using CVX). The scalability analysis
result is shown in Fig. 2, which demonstrates that our approach is scalable for
the realistic size of controller dimension.

We now evaluate the overhead of our approach compared to the previous
work [28] where the verification problem is simpler than our verification problem
herein because the previous work [28] assumes that the computation of step func-
tion C code is exact without having any roundoff error. Our approach herein pro-
vides a higher assurance for the finite precision controller implementations con-
sidering the rounding errors in computation. Figure 3 shows the computational
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The running time of our approach
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Fig. 2. The running time of both the front-end and the back-end of our approach

The overhead in our approach
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Fig. 3. The overhead in both the front-end and the back-end of our approach

overhead (i.e., the increase of running time) in our approach as a result of consid-
ering the floating-point roundoff error in controller implementation verification.
We observe that the overhead of the floating-point error analysis in the front-
end is marginal. The running time of the back-end increases because the convex
optimization problem formulation for approximate IO equivalence requires more
computations to solve. Finally, the total running time only increases marginally
from 0.4% to 7.5% over the previous work [28] at a cost of providing higher
assurance for the correctness of the finite precision computations of controller
implementations.

6 Related Work

High-assurance control software for cyber physical systems has received much
attention recently (e.g., [3,10,12,22–24,32]). Focusing on robust controller imple-
mentation, [22,32] provide simulation-based robustness analysis tools, while [3,
10,12,24] studies issues related to fixed-point controller design. [4] presents a the-
orem proving method to verify the control related properties of Simulink models.

Moreover, there also has been work focusing on the code-level verification
of controller implementation. [23,31] propose methods to check a Simulink dia-
gram and the generated code based on the structure of the diagram and the
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code, instead of input-output equivalence checking. [14,18,35,36] apply the con-
cept of proof-carrying code to control software verification. Their approach is
to annotate the code based on Lyapunov function, and prove the properties
using the PVS linear algebra library [18]. However, they only consider stability
and convergence properties rather than the equivalence between controller spec-
ifications and the implementations. Moreover, their verification approach may
not be applicable to the code generated by existing off-the-shelf code generators
because it requires the internal control of the code generators. Our own ear-
lier work [26,28] presents methods to verify controller implementations against
mathematical models, yet ignores the rounding errors in the finite precision com-
putations of controller software implementations. There has been static analysis
techniques (e.g., [5,13,16]) developed for the analysis of finite precision numeri-
cal programs, but they focus on verifying properties such as numerical stability,
the absence of buffer overflow and the absence of arithmetic exception rather
than verifying the equivalence between code and a dynamical system model as
the specification of the controller. Finally, there has been software verification
work using the model extraction technique [8,19,20,29,34], and the floating-
point roundoff error estimation has been studied in [9,11,33].

7 Conclusion

We have presented an approach for the verification of finite precision imple-
mentations of linear controllers against mathematical specifications. We have
proposed the use of a combination of techniques such as symbolic execution
and floating point error analysis in order to extract the quantized controller
model from finite precision linear controller implementations. We have defined an
approximate input-output equivalence relation between the specification model
(i.e., linear time-invariant model) and the extracted model (i.e., quantized con-
troller model), and presented a method to check the approximate equivalence
relation using the convex optimization formulation. We have evaluated our app-
roach using randomly generated controller specifications and implementations
by MATLAB/Simulink/Embedded Coder. The evaluation result shows that our
approach is scalable for the realistic controller size, and the computational over-
head to analyze the effect of floating-point error is negligible compared to our
own earlier work. Future work includes the verification of a broader class of
controller implementations.
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M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005). doi:10.1007/11408901 21

http://www.mathworks.com/support/bugreports/?product=ALL&release=R2015b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2015b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2015b&keyword=Incorrect+Code+Generation
http://dx.doi.org/10.5281/zenodo.44338
http://dx.doi.org/10.1007/978-3-662-49674-9_43
http://dx.doi.org/10.1007/978-3-642-02658-4_57
http://dx.doi.org/10.1007/978-3-319-19249-9_33
http://repository.upenn.edu/cis_reports/967
http://arxiv.org/abs/1307.2641
http://dx.doi.org/10.1007/11408901_21


Learning



Learning Symbolic Automata

Samuel Drews(B) and Loris D’Antoni

University of Wisconsin–Madison, Madison, USA
sedrews@wisc.edu

Abstract. Symbolic automata allow transitions to carry predicates over
rich alphabet theories, such as linear arithmetic, and therefore extend
classic automata to operate over infinite alphabets, such as the set of
rational numbers. In this paper, we study the foundational problem of
learning symbolic automata. We first present Λ∗, a symbolic automata
extension of Angluin’s L∗ algorithm for learning regular languages. Then,
we define notions of learnability that are parametric in the alphabet
theories of the symbolic automata and show how these notions nicely
compose. Specifically, we show that if two alphabet theories are learnable,
then the theory accepting the Cartesian product or disjoint union of
their alphabets is also learnable. Using these properties, we show how
existing algorithms for learning automata over large alphabets nicely fall
in our framework. Finally, we implement our algorithm in an open-source
library and evaluate it on existing automata learning benchmarks.

1 Introduction

Finite automata are a ubiquitous formalism that is simple enough to model
many real-life systems and phenomena, and they enjoy a large variety of theo-
retical properties: automata are closed under Boolean operations, have decidable
emptiness and equivalence checking procedures, and can be learned [3]. This last
problem on automata learning is the focus of this paper; learning has been stud-
ied extensively for several variations of finite automata [4,9] and has found many
applications in program verification [2] and program synthesis [15].

Unfortunately, finite automata have an inherent limitation: they can only
operate over finite (and typically small) alphabets. Symbolic finite automata
(s-FA) allow transitions to carry predicates over rich alphabet theories, such as
linear arithmetic, and therefore extend classic automata to operate over infinite
alphabets, such as the set of rational numbers. Existing automata algorithms rely
on the alphabet being finite, and generalizing them to the symbolic setting is not
a trivial task. However, algorithms have been proposed for s-FA equivalence, for
minimization, and for performing Boolean operations. In this paper, we study
the foundational problem of learning symbolic automata.

We start by extending Angluin’s L∗ algorithm [3] for learning regular lan-
guages to symbolic automata. L∗ iteratively updates a table of evidence, con-
jectures an automaton, and then if that conjecture is not correct, repeats with
new evidence. However, at every step it must make a query to an oracle for each
character in an alphabet; thus it does not scale in practice on alphabets that are
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 173–189, 2017.
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large and cannot be run on those that are infinite. Our algorithm, Λ∗, operates
in a largely similar manner, except that the queries are asked only for a small set
of representatives, and then there is an additional stage after updating the table
of evidence during which the evidence is generalized into symbolic predicates;
these predicates form the transitions for the symbolic automaton.

We then define notions of learnability that are parametric in the alphabet
theory of the symbolic automata and show that these notions compose. For
example, if two alphabet theories are learnable, then the theory accepting the
Cartesian product of their alphabets is also learnable. We use these properties to
show how existing algorithms for learning automata over large alphabets nicely
fall in our framework: e.g., Maler and Mens present an ad hoc method for learning
automata over the alphabet Z×Z [13], which we show is learnable because it is
the Cartesian product of the alphabet Z—which itself is learnable.

Finally, we implement our algorithm in an open-source symbolic automata
library and evaluate it on existing automata learning benchmarks from [13].
The implementation is modular and only requires the programmer to provide
learnable Boolean algebras as input to the learner; the disjoint union and product
algebras are implemented as meta-algebras that can be instantiated arbitrarily.
Our implementation, despite its generality, can learn the benchmarks appearing
in [13] using a similar number of equivalence and membership queries.

In summary, our contributions are:

– An algorithm for learning Symbolic Finite Automata (Sect. 3).
– A notion of learnability parametric in the alphabet theory that composes over

the Cartesian product and disjoint union of Boolean algebras (Sect. 4).
– A modular implementation of our algorithm in an existing open-source library

and an evaluation on existing benchmarks (Sect. 5).

2 Preliminaries

In symbolic automata, transitions carry predicates over a decidable Boolean
algebra. An effective Boolean algebra A is a tuple (D, Ψ, � �,⊥,�,∨,∧,¬) where
D is a set of domain elements; Ψ is a set of predicates closed under the Boolean
connectives, with ⊥,� ∈ Ψ ; � � : Ψ → 2D is a denotation function such that
(i) �⊥� = ∅, (ii) ��� = D, and (iii) for all ϕ,ψ ∈ Ψ , �ϕ ∨ ψ� = �ϕ� ∪ �ψ�,
�ϕ ∧ ψ� = �ϕ� ∩ �ψ�, and �¬ϕ� = D \ �ϕ�.

Example 1 (Equality Algebra). The equality algebra for an arbitrary set D has
predicates formed from Boolean combinations of formulas of the form λc. c = a
where a ∈ D. Formally, Ψ is generated from the Boolean closure of Ψ0 = {ϕa |
a ∈ D} ∪ {⊥,�} where for all a ∈ D, �ϕa� = {a}. Example predicates in this
algebra include the predicates λc. c = 5 ∨ c = 10 and λc.¬(c = 0).

Example 2 (Interval Algebra). The finite union of left-closed right-open intervals
over non-negative integers (i.e. N) also forms a Boolean algebra: take the Boolean
closure of Ψ0 = {ϕij | i, j ∈ N ∧ i < j} ∪ {⊥,�} where �ϕij� = [i, j). Example
predicates in this algebra include those (written as their denotation) of the form
[0, 5) ∪ [10, 15) or [50,∞).
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Definition 1 (Symbolic Finite Automata). A symbolic finite automaton
(s-FA) M is a tuple (A, Q, qinit, F,Δ) where A is an effective Boolean algebra,
called the alphabet; Q is a finite set of states; qinit ∈ Q is the initial state;
F ⊆ Q is the set of final states; and Δ ⊆ Q × ΨA × Q is the transition relation
consisting of a finite set of moves or transitions.

Characters are elements of DA, and words are finite sequences of characters,
or elements of D∗

A. The empty word of length 0 is denoted by ε. A move ρ =
(q1, ϕ, q2) ∈ Δ, also denoted q1

ϕ−→ q2, is a transition from the source state q1
to the target state q2, where ϕ is the guard or predicate of the move. A move
is feasible if its guard is satisfiable. For a character a ∈ DA, an a-move of M ,
denoted q1

a−→ q2 is a move q1
ϕ−→ q2 such that a ∈ �ϕ�.

An s-FA M is deterministic if, for all transitions (q, ϕ1, q1), (q, ϕ2, q2) ∈ Δ,
q1 = q2 → �ϕ1 ∧ ϕ2� = ∅; i.e., for each state q and character a there is at most one
a-move out of q. An s-FA M is complete if, for all q ∈ Q,

∨
(q,ϕi,qi)∈Δ ϕi = �; i.e.,

for each state q and character a there exists an a-move out of q. Throughout the
paper we assume all s-FAs are deterministic and complete, since determinization
and completion are always possible [8]. An example s-FA is M11 in Fig. 2. This
s-FA has 4 states and it operates over the interval algebra from Example 2.

Given an s-FA M = (A, Q, qinit, F,Δ) and a state q ∈ Q, we say a word
w = a1a2 . . . ak is accepted at state q if, for 1 ≤ i ≤ k, there exist moves
qi−1

ai−→ qi such that q0 = q and qk ∈ F . We refer to the set of words accepted
at q as the language accepted at q, denoted as Lq(M); the language accepted
by M is L(M) = Lqinit(M). The s-FA M11 in Fig. 2 accepts, among others,
words consisting only of numbers accepted by the predicate [0, 51) ∪ [101,∞)
and rejects, among others, the word 51, 25.

3 Learning Algorithm

Here we present our algorithm, Λ∗, for learning symbolic automata. The premise
is that the automaton to be learned, called the target, is hidden in a black box,
so knowledge of it comes from some oracle that admits two kinds of queries:
membership queries that ask whether a word is in the language of the target,
and equivalence queries that ask whether a conjectured automaton is equivalent
to the target—if not, a counterexample is provided. Λ∗, which builds upon L∗ [3],
maintains an observation table that comprises its knowledge about the target.
The observation table is used to build the intermediary guesses of the target
automaton and, eventually, the final automaton. It is assumed that the learner
knows both the alphabet and the Boolean algebra in question.

3.1 Observation Table

The observation table consists of rows of prefixes and columns of suffixes. Each
entry determines whether the target automaton accepts the word formed by
concatenating the prefix and suffix. Intuitively, prefixes provide knowledge about
words that lead to states, and suffixes help differentiate those states.
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Definition 2 (Observation Table). An observation table T for an s-FA M is
a tuple (Σ,S,R,E, f) where Σ is a potentially infinite set called the alphabet;
S,R,E ⊂ Σ∗ are finite subsets of words: S is called the set of prefixes, R is
called the boundary, and E is called the set of suffixes; f : (S ∪ R) · E → {0, 1}
is a classification function1 such that for a word w · e ∈ (S ∪ R) · E, f(w · e) = 1
if w · e ∈ L(M), and f(w · e) = 0 if w · e ∈ L(M).2 Additionally, ( i) S and R
are disjoint, ( ii) S ∪ R is prefix-closed and ε ∈ S, ( iii) for all s ∈ S, there exists
a character a ∈ Σ such that s · a ∈ R, and ( iv) ε ∈ E.

Table T1 in Fig. 2 is an example observation table: The rows begin with elements
of S ∪ R, where the elements in S are shown above the horizontal divider and
the elements in R below, and the columns begin with elements of E.

The observation table induces the construction of an automaton. For intu-
ition, each s ∈ S corresponds to a state q such that s is a string of moves
from qinit to q. The boundary R gives information about the transitions between
states. The states are differentiated by the strings in E and the classification
function f , as if there exist s1, s2 ∈ S and e ∈ E such that f(s1 · e) = f(s2 · e),
then s1 and s2 behave differently and must lead to different states. We use the
notation row(w) for w ∈ S ∪R to denote the vector indexed by e ∈ E of f(w ·e).

Λ∗ manipulates the observation table and eventually conjectures an s-FA.
For this to happen, the table must first satisfy certain properties—we call such a
table cohesive—that are established through membership queries to the oracle.
The cohesive observation table is used to construct an intermediary automaton
that is ultimately used to produce a conjectured s-FA. An observation table is
closed if for each r ∈ R there exists s ∈ S such that row(s) = row(r); in other
words, each element in the boundary corresponds to a state. An observation
table is reduced if for all s1, s2 ∈ S, row(s1) = row(s2), meaning each state is
uniquely characterized by f and E. An observation table is consistent if for all
w1, w2 ∈ S ∪R, if a ∈ Σ∗ and w1 ·a,w2 ·a ∈ S ∪R and row(w1) = row(w2), then
row(w1 · a) = row(w2 · a). A table being consistent means that if the words w1

and w2 are equivalent according to f and E, then w1 · a and w2 · a ought to be
equivalent as well, and thus there is no evidence to the contrary.3 An observation
table is evidence-closed if for all e ∈ E and s ∈ S, s · e ∈ S ∪ R. An observation
table is cohesive if it is closed, reduced, consistent, and evidence-closed.

Consider, for example, the observation tables in Fig. 2. T2 is not closed, since
row(51) = − and there is no s ∈ S with row(s) = −. Table T5 is not consistent
because row(51) = − = row(51, 0), but row(51 · 0) = − = + = row(51, 0 · 0).
Table T11 is closed, reduced, consistent, and evidence-closed.

If an observation table is cohesive, then it admits the construction of an
evidence automaton that classifies words w ∈ Σ∗ equivalently to the observation
table’s classification function f .
1 We also use {−, +} to denote the range of f .
2 We use · to denote both the concatenation of strings and its lifting to sets of strings,

as is standard.
3 We use a ∈ Σ∗ for the definition of consistent, but since the table is prefix-closed by

definition, it is equivalent to consider only single-characters a ∈ Σ.
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Definition 3 (Evidence Automaton). An evidence automaton is a tuple
(Σ,Q, qinit, F,Δ) where Σ is a set; Q is a finite set of states; qinit ∈ Q is the
initial state; F ⊆ Q is the set of final states; Δ ⊆ Q × Σ × Q is the transition
relation.

A move ρ = (q1, a, q2), also denoted q1
a−→ q2, is a transition from q1 to q2 using

the character a. A word w = a1a2 . . . ak is accepted at state q if for 1 ≤ i ≤ k there
exist moves qi−1

ai−→ qi such that q0 = q and qk ∈ F . Conversely, if that qk ∈ F ,
then w is not accepted at q. If there is no path through the automaton for w,
then the acceptance is undefined. An evidence automaton differs from an s-FA in
that transitions carry characters in Σ instead of predicates in a Boolean algebra
over the domain Σ. Additionally, the evidence automaton can be deliberately
sparse: it is not complete, and we avoid the notion that a state q does not accept
a character a if there is no q′ such that (q, a, q′) ∈ Δ—as stated above, such a
case simply indicates the behavior of a at q is undefined.

Given a cohesive observation table T = (Σ,S,R,E, f), we build an evidence
automaton A = (Σ,Q, qinit, F,Δ) as follows: for each s ∈ S, we introduce a state
qs ∈ Q. qinit is assigned to qε. The final state set F contains all qs such that s ∈ S
and f(s) = 1. Since the observation table is closed and reduced, there exists a
function g : S ∪ R → S such that g(w) = s if and only if row(w) = row(s).
This function allows us to define the transition relation of A: if w · a ∈ S ∪ R
for w ∈ Σ∗ and a ∈ Σ, then (qg(w), a, qg(w·a)) ∈ Δ. In Fig. 2, the automaton Me

1
(resp Me

11) is the evidence automaton corresponding to cohesive table T1 (resp.
T11).

Lemma 1 (Evidence compatibility). Given a cohesive observation table
T = (Σ,S,R,E, f), if Mevid = (Σ,Q, qinit, F,Δ) is the evidence automaton
construction of T , then for all w · e ∈ (S ∪ R) · E, if f(w · e) = 1 then Mevid
accepts w · e, and if f(w · e) = 0 then Mevid does not accept w · e.

3.2 Separating Predicates

Given an evidence automaton with an alphabet Σ, we require two pieces to
build an s-FA: (i) a Boolean algebra A with DA = Σ, and (ii) a partitioning
function P for A, which we define below. This latter component, the partitioning
function, is the key insight to Λ∗’s generalization of L∗.

Definition 4 (Partitioning function). A partitioning function for a Boolean
algebra A = (D, Ψ, � �,⊥,�,∨,∧,¬) is a function P : (2D)∗ → Ψ∗ that takes
as input a list LD = 
1 . . . 
k of disjoint sets of elements in D, and returns a
parallel list LΨ = ϕ1 . . . ϕk of predicates in Ψ such that

–
∨

ϕi∈LΨ
ϕi = �

– ϕi ∧ ϕj = ⊥ for all ϕi, ϕj ∈ LΨ with i = j
– for each 
i ∈ LD corresponding to ϕi ∈ LΨ , all a ∈ 
i are such that a ∈ �ϕi�.
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Example 3 (Equality Algebra Separating Predicates). We can construct a parti-
tioning function for the equality algebra: given a list LD = 
1 . . . 
k we construct
a list LΨ = ϕ1 . . . ϕk where each ϕi has �ϕi� = 
i. We choose a j with max-
imal |
j | and update ϕj ← ϕj ∨ ∧

1≤i≤k ¬ϕi. In the concrete case of D = Z

and LD = [{2}, {3}, ∅, {0, 5}], the partitioning function would produce (after
simplification) LΨ = [λa. a = 2, λa. a = 3,⊥, λa. a = 2 ∧ a = 3].

At a high level, as long as the s-FA is consistent with the evidence automaton,
it will be consistent with the observation table. The words in the remainder
of Σ∗—for which the evidence automaton has unspecified classification—can
be assigned to paths in a largely arbitrary manner. The partitioning function
handles generalizing the concrete evidence by creating separating predicates, in
effect specifying the behavior for the remaining words. Ideally, this generalization
allows an automaton to be learned with a relatively small observation table, even
if the alphabet is large—or even infinite.

Given an evidence automaton A = (Σ,Q, qinit, F,Δ), a Boolean algebra A
with domain Σ, and an appropriate partitioning function P , we build an s-FA
M = (A, Q, qinit, F,ΔM ) using that Boolean algebra and that exact configuration
of states. All that remains is the construction of the transition relation ΔM .

For each q ∈ Q, we perform the following. We gather all evidence transitions
out of q into a set Δq = {(q, a, q′) ∈ Δ} and construct a list LΣ indexed over the
states qi ∈ Q, where each set in LΣ is 
i = {a | (q, a, qi) ∈ Δq}. We apply the
partitioning function to get a list of separating predicates LΨA = P (LΣ) which
is also indexed over qi ∈ Q, and add (q, ϕi, qi) to ΔM for each ϕi ∈ LΨA .

Lemma 2 (s-FA evidence compatibility). Given a cohesive observation
table T = (Σ,S,R,E, F ), if Mevid = (Σ,Q, qinit, F,Δ) is the evidence automa-
ton construction of T , and M = (A, Q, qinit, F,Δ) is produced from Mevid using
a partitioning function, then for all w · e ∈ (S ∪ R) · E, if f(w · e) = 1 then
w · e ∈ L(M), and if f(w · e) = 0 then w · e ∈ L(M).

An example observation table, its corresponding evidence automaton, and a
resultant s-FA are shown in the last row of Fig. 2.

3.3 Algorithm Description

We now present a description of Λ∗ and an example execution. The algorithm
begins by initializing an observation table with S = {ε}, R = {a} for an arbitrary
a ∈ Σ, and E = {ε}. f is initially undefined. The knowledge of the table is grown
using the operations fill, close, evidence-close, and make-consistent.

The operation fill asks a membership query for all w · e ∈ (S ∪ R) · E for
which f is undefined and then adds those results to f ; in this way, it ensures f
is defined over the entire domain of the observation table.

The operation close checks for the existence of an r ∈ R such that for all
s ∈ S, row(r) = row(s). Such an r is moved from R to S, and r · a is added to
R for some arbitrary a ∈ Σ.
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The operation evidence-close ensures for all e ∈ E and s ∈ S that s·e ∈ S∪R
by adding to R all s · e that are not. It also adds to R any necessary prefixes so
that S ∪ R is prefix-closed.

The operation make-consistent operates as follows: if there exist w1, w2 ∈
S ∪R and w1 ·a,w2 ·a ∈ S ∪R for some a ∈ Σ such that row(w1) = row(w2) but
row(w1 · a) = row(w2 · a), then w1 and w2 actually lead to different states; using
the e ∈ E such that f(w1 · a · e) = f(w2 · a · e), it is clear a · e thus differentiates
those states. Accordingly, a · e is added to E. Additionally, we then add ({u2 · b |
u1 · b ∈ S ∪ R} ∪ {u1 · b | u2 · b ∈ S ∪ R}) \ S to R for all pairs u1, u2 ∈ S ∪ R
such that before adding e to E, row(u1) = row(u2), but f(u1 · e) = f(u2 · e) (this
includes the pair w1, w2). This operation distributes the old evidence leading out
of the amalgamated state between the newly differentiated states, simplifying the
constructions in Sect. 4.

Upon receiving a counterexample c ∈ Σ∗ from an equivalence query sent
to the oracle, all prefixes of c are added to R (except those already present in
S). There are two cases for a counterexample: one of the predicates in the s-FA
needs refinement, which is facilitated by adding those new words to the table, or
a new state must exist in the automaton, which is handled by make-consistent.

is table
cohesive?

build
evidence

automaton

build s-FA; is
equivalent? done

initialize
table yes

no:
membership queries

partitioning
function yes

no:
add counterexample to table

Fig. 1. Overview of the learning algorithm Λ∗.

Figure 1 shows an overview of the learning algorithm: after the table is initial-
ized, the operations make-consistent, evidence-close, and close are applied until
the table is cohesive.4 (Fill is applied throughout whenever a change is made to
the table.) An s-FA M is then conjectured from the table, and an equivalence
query is performed: if M is equivalent to the target automaton, then the algo-
rithm terminates. Otherwise, a counterexample is produced and processed, and
the procedure repeats.

Λ∗ can be thought of as a lazily-evaluated version of L∗ with the additional
generalization step, and therefore it maintains the property of L∗ that the learned
automaton has a minimal number of states.

Theorem 1 (Λ∗ minimality). When Λ∗ terminates it returns a minimal s-FA.

4 It is an invariant of the initialization of the table and of the operations applied to it
that the observation table is always reduced.
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Fig. 2. An example run of the Λ∗ algorithm.
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3.4 Worked Example

Suppose we invoke Λ∗ to learn the automaton over non-negative integers that
accepts all words except those that contain a number between 51 and 100 that
is not immediately followed by two numbers between 0 and 20.

The Boolean algebra we use is the union of left-closed right-open inter-
vals. We fix a partitioning function P that assumes that if a ∈ 
, b ∈ 
′, and
there are no c in the input sets such that a < c < b, then the whole interval
[a, b) behaves equivalently to a. For example, P ({0}, {10}) = [0, 10), [10,∞) and
P ({0, 20}, {10}) = [0, 10) ∪ [20,∞), [10,∞).

The trace of the algorithm is illustrated in Fig. 2. Λ∗ begins by initializing an
observation table so that S = {ε}, R = {0} (the 0 is an arbitrary character from
Σ and is used purely so that the table contains ε·a for some a), and E = {ε}. The
appropriate membership queries are made to the oracle, resulting in the table
T1. T1 is cohesive, so it is used to construct the evidence automaton Me

1, and
by calling the partitioning function P on the outgoing transitions of each state in
Me

1—in this case just P ({0}) = [0,∞)—the s-FA M1 is conjectured. The oracle
is given M1 as an equivalence query, and it returns the single-character word 51
as a counterexample. 51 is added to R in the observation table, as would all of
its prefixes if it were a word of length greater than one, and a membership query
is asked for 51 · ε, resulting in table T2.

T2 is not closed, since row(51) = − and there is no s ∈ S with row(s) = −.
Accordingly, 51 represents a path to a new state, so it is moved from S to R,
and a continuation 51, 0 is added to R. This produces table T3, which is now
cohesive and thus admits the construction of the evidence automaton Me

3 and
ultimately the s-FA M3 through the use of the partitioning function: for example,
for the outgoing transitions of the initial state, P ({0}, {51}) = [0, 51), [51,∞).
An equivalence query sent to the oracle returns the counterexample of 101.

Adding 101 to R results in the cohesive table T4 and the s-FA M4, and
the oracle provides the counterexample 51, 0, 0. 51, 0, 0 is added to R (all of its
prefixes are already present in S ∪ R), resulting in the table T5 which is not
consistent: observe that row(51) = − = row(51, 0), but row(51 · 0) = − = + =
row(51, 0·0). This means that 51 and 51, 0 actually lead to different states, which
will be addressed in two stages. First, following the rule make-consistent, since
f(51 · 0 · ε) = f(51, 0 · 0 · ε), we add 0 · ε to E to distinguish the states led to
by 51 and 51, 0, which produces table T6. Applying close to T6 results in T7,
which is then cohesive (we added an element to E, which would normally require
applying evidence-close, but it happens to be that T7 is already evidence-closed)
and produces an s-FA M7. The counterexample 51, 21, 0 requires adding it as
well as the prefix 51, 21 to R, producing table T8.

T8 is also inconsistent, since row(51) = −,− = row(51, 21) but row(51 · 0) =
−,+ = −,− = row(51, 21 · 0). Since f(51 · 0 · 0) = f(51, 21 · 0 · 0), we add
0 · 0 to E to distinguish 51 from 51, 21, and evidence-close the table to get T9.
Closing and evidence-closing this table results in T10, the conjecture M10, the
counterexample 51, 0, 21, the table T11, and finally the automaton M11 which
passes the equivalence query.
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4 Learnability and Its Properties

Whether an s-FA can be learned and, if so, the complexity of learning that
s-FA, depends on a more fundamental property concerning the learnability of
the underlying Boolean algebra. In Λ∗, this notion of learnability determines
the complexity of the algorithm. We first provide a definition for an algebra’s
learnability with respect to the inputs given to a partitioning function and
then connect these inputs to the queries given to the oracle during the learning
algorithm.

4.1 Learnability of a Boolean Algebra

Fix a partitioning function P over a Boolean algebra A. Let C denote a concept
class for which each concept c ∈ C is a finite partition of DA using predicates in
ΨA, and let G denote the set of generators which, informally, provide a sequence
of counterexamples—elements in DA—to update the sets given to P . We analyze
how many times a generator g must make an update before P learns a desired
partition. A generator g ∈ G can be thought of as a function that takes as
input a tuple (L, cguess, ctarget)—where L is the list of subsets of DA given as
input to P , cguess ∈ C is a partition of DA consistent with L, and ctarget ∈
C is the target partition—and outputs a new list L′ of DA-subsets. We say
g provides sets to P to refer to the iterative process in which L0 = [∅] and
Li+1 = g(Li, P (Li), ctarget). Intuitively, a generator iteratively updates a list of
sets to be given to a partitioning function so that the output of that function
approaches the target partition.

Additionally, the generators are subject to the following restrictions that
ensure a sense of monotonicity: (i) the output L′ is greater than the input L in
the sense that ∀a ∈ DA[(∃
 ∈ L. a ∈ 
) → (∃
′ ∈ L′. a ∈ 
′)] (a character present
in the input will always be present in future iterations); (ii) if a1 ∈ 
i ∈ L and
a2 ∈ 
j ∈ L and i = j, then it cannot be that there is some 
′ ∈ L′ and both
a1 ∈ 
′ and a2 ∈ 
′ (if the generator says two elements belong to different sets
in a partition, that must be true for all future iterations); and (iii) either the
number of sets in L′ is larger than the number of sets in L, or at least one
a ∈ DA that was not present in any 
 ∈ L is present in some 
′ ∈ L′ Also, the
inputs to the generator are subject to a notion of consistency: if a1 ∈ 
i ∈ L and
a2 ∈ 
j ∈ L such that i = j, then there is no ϕ ∈ ctarget such that {a1, a2} ⊆ �ϕ�.

This definition of a generator exactly captures the high-level process of updat-
ing the observation table in our algorithm via queries to the oracle and projecting
those changes onto the individual lists of sets that are given to the partitioning
function for the creation of the conjectured s-FA. For example, in Fig. 2, the
evidence for the outgoing transitions of the ε-state is provided by a generator
such that L1 = [{0}], L2 = [{0}, {51}], and L3 = [{0, 101}, {51}]. Below we will
formalize a notion of learnability with respect to these generators, and it will
thus bear a close correspondence to the complexity of learning an s-FA.
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Definition 5 (sg-learnability). Given a Boolean algebra A, a partitioning
function P , and a generator g ∈ G, we say the pair (A, P ) is sg-learnable if
there exists an implicit function sg : C → N such that P needs as input a list
of sets, provided by g, with total size at most sg(c) to discover a target partition
c ∈ C. Furthermore, we say A itself is sg-learnable if there exists a partitioning
function P such that (A, P ) is sg-learnable.

We also classify A as belonging to a learning class that depends on these sg

functions—but first we need an auxiliary notion of the size of a partition.

Definition 6 (DNF-Size of a partition). Let C be the set of partitions of A.
Each c ∈ C is a list ϕ1, . . . , ϕn: we can expand each ϕi to a minimal disjunctive-
normal-form formula

∨
j ψi,j such that c′ = ψ1,1, . . . , ψ1,m1 , . . . , ψn,1, . . . , ψn,mn

is a partition of A that is at least as fine as c. We say the DNF-size of c is the
length of the list of such a minimal c′.

Example 4. The partition {x < 5 ∨ x > 10, 5 ≤ x ∧ x ≤ 10} has DNF-size 3.

Definition 7 (Learning Class). For a fixed Boolean algebra A if there exists
a g ∈ G such that A is sg-learnable, then

– if sg is a constant function, i.e. ∃k∀c. sg(c) = k, we say A ∈ C∃
const

– if sg is a function only of the DNF-size of c, we say A ∈ C∃
size

– if sg is otherwise unconstrained, we say A ∈ C∃
finite

Additionally, for some fixed partitioning function P , if for all g ∈ G, (A, P )
is sg-learnable, then

– if each sg is a constant function, we say A ∈ C∀
const

– if each sg is a function only of the DNF-size of c, we say A ∈ C∀
size

– if each sg is otherwise unconstrained, we say A ∈ C∀
finite

Fig. 3. Learning classes.

Observe that learning classes are partially-ordered by the subset relation
shown in Fig. 3. This categorization is convenient for reasoning about differ-
ent instantiations of domains and oracles. For example: (i) When A ∈ C∀

const,
learning a partition over DA is equivalent to the machine-learning notion of a
mistake-bound [12]. (ii) The equality algebra for any finite alphabet is in C∀

const.
(iii) The interval algebra over the integers or rationals is in C∃

size; if the oracle
provides lexicographically minimal counterexamples, the number of times the
partitions must be updated through the generator is determined by the number
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of connected regions in the partition, as illustrated in [13] and as applicable for
Fig. 2. The integer case is also in C∀

finite, since after arbitrary counterexamples
are found beyond the least and greatest finite bounds in the partition, m and
M respectively, at most M − m more counterexamples are required. (iv) Using
enumeration, linear rational arithmetic is in C∀

finite.
Since for each state in an s-FA, the set of outgoing transitions forms a parti-

tion of the alphabet, i.e. a concept in C, the number of counterexamples needed
to learn the entire automaton is related to the sum of sg(c) for each state’s out-
going transitions. Hence, the complexity of learning depends on (i) the choice
of the partitioning function and, potentially, (ii) the quality of counterexamples
provided by the oracle.

Theorem 2 (SFA Learnability). If M is an s-FA over a learnable Boolean
algebra A with n states, then the number of equivalence queries needed to learn
M is bounded above by n2

∑
qi∈Q sgi

(ci), where sgi
is the projection of the oracle

onto learning the partition ci for the outgoing transitions of state qi.

The notion of an algebra’s learning class can have powerful ramifications in
conjuction with the result of Theorem 2. For example, if an s-FA uses a Boolean
algebra contained in C∀

finite, then the use of the appropriate partitioning function
guarantees termination of the learning algorithm, independent of the quality of
counterexamples produced from equivalence queries. Investigating which of the
subset relations in Fig. 3 are strict subsets, as well as what (if any) algebras fall
outside of C∃

finite are interesting future problems.

4.2 Composing Learnable Algebras

The definition of learnability described prior has the remarkable property that it
is preserved by some constructions that combine Boolean algebras, such as the
disjoint union and the cartesian product. In these cases, a partitioning function
for the resultant algebra can be constructed by using partitioning functions for
the original algebras as black boxes; This allows us to phrase the learnability of
the constructed algebra in terms of the learnability of the individual algebras.

Definition 8 (Disjoint Union Algebra). Let A1,A2 be boolean algebras.
Their disjoint union algebra A	 = (D, Ψ, � �,⊥,�,∨,∧,¬), which we denote
A	 = A1 � A2, is constructed as follows:5

D = DA1 � DA2 Ψ = ΨA1 × ΨA2 �(ϕA1 , ϕA2)� = �ϕA1�A1 � �ϕA2�A2

⊥ = (⊥A1 ,⊥A2) � = (�A1 ,�A2) ¬(ϕA1 , ϕA2) = (¬A1ϕA1 ,¬A2ϕA2)
(ϕA1 , ϕA2) ∨ (ϕ′

A1
, ϕ′

A2
) = ((ϕA1 ∨A1 ϕ′

A1
), (ϕA2 ∨A2 ϕ′

A2
))

(ϕA1 , ϕA2) ∧ (ϕ′
A1

, ϕ′
A2

) = ((ϕA1 ∧A1 ϕ′
A1

), (ϕA2 ∧A2 ϕ′
A2

))

5 In our definition, we use DA1 �DA2 to denote the disjoint union of sets; rigorously,
when the sets are not already disjoint, this is constructed by taking (DA1 × {1}) ∪
(DA2 × {2}) and lifting all the remaining constructs appropriately.
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If A1 has partitioning function P1 and A2 has partitioning function P2, then
we can construct a partitioning function P	 for A	 = A1�A2: P	 takes as input
a list L	 of sets where each set 
	i

⊂ DA1 � DA2 . We decompose L	 into LD1

and LD2 , two lists of sets of 
1i
⊂ DA1 and 
2i

⊂ DA2 , respectively: for each
a ∈ 
	i

, if a ∈ DA1 , then we add a to 
1i
, and otherwise if a ∈ DA2 , then we

add a to 
2i
. We obtain LΨ1 = P1(LD1) and LΨ2 = P2(LD2). We construct LΨ�

by taking ϕ	i
= (ϕ1i

, ϕ2i
) for all i, return LΨ� , and terminate.

The disjoint union is useful since, for example, we can represent arbitrary
intervals over the integers as the disjoint union of (i) intervals over non-negative
integers and (ii) intervals over negative integers. In other words, a partitioning
function suited for a single notion of ∞ can be extended to capture two.

Theorem 3 (Disjoint Union Algebra Learnability). Given Boolean alge-
bras A1,A2 with partitioning functions P1, P2, (A1, P1) is sg1-learnable and
(A2, P2) is sg2-learnable if and only if there exists g	 such that their disjoint
union algebra (A	, P	) is sg�-learnable, where sg�(c) = sg1(c1) + sg2(c2) and c1
and c2 are the restrictions of c to DA1 and DA2 , respectively.

Corollary 1. If A1 and A2 are in learning class C, then their disjoint union
A	 is also in learning class C.

We present a similar construction for the product of two Boolean algebras.

Definition 9 (Product Algebra). Let A1,A2 be boolean algebras. Their prod-
uct algebra A× = (D, Ψ, � �,⊥,�,∨,∧,¬), which we denote A× = A1 × A2, is
constructed as follows:

D = DA1 × DA2 Ψ = 2ΨA1×ΨA2 �{(ϕA1i, ϕA2i)}i� =
⋃

i �ϕA1i�A1 × �ϕA2i�A2

⊥ = {(⊥A1 ,⊥A2)} � = {(�A1 ,⊥A2)}
¬{(ϕA1i, ϕA2i)}i =

∧
i{(¬A1ϕA1i,�A2), (�A1 ,¬A2ϕA2i)}

{(ϕA1i, ϕA2i)}i ∨ {(ϕ′
A1j , ϕ

′
A2j)}j = {(ϕA1i, ϕA2i)}i ∪ {(ϕ′

A1j , ϕ
′
A2j)}j

{(ϕA1i, ϕA2i)}i ∧ {(ϕ′
A1j , ϕ

′
A2j)}j = {(ϕA1i ∧A1 ϕ′

A1j , ϕA2i ∧A2 ϕ′
A2j) | ∀i, j}

If A1 has partitioning function P1 and A2 has partitioning function P2, then
we can construct a partitioning function P× for A× = A1×A2: P× takes as input
a list L× of sets where each set 
×i

⊂ DA1 ×DA2 . We first take the set D1 = {d1 |
(d1, d2) ∈ 
×i

for some 
×i
∈ L×}, turn it into a list D′

1 = {d1,1}, . . . , {d1,n},
and compute a partition L1 = P1(D′

1). Then for each di ∈ D1, we construct a
list D2,di

where the j-th element is the set {d2 | (di, d2) ∈ 
×j
} and compute

a partition L2,di
= P2(D2,di

). Finally, we initialize the list of predicates to be
returned LΨ× = ϕ×1 , . . . , ϕ×k

so that initially each ϕ×i
= ⊥. Then for all i

and each (d1, d2) ∈ 
×i
, let ϕd1 be the predicate in L1 corresponding to {d1} in

D′
1 and let ϕd2 be the predicate in L2,d1 corresponding to the set of D2,d1 that

contains d2; update ϕ×i
← ϕ×i

∨ (ϕd1 , ϕd2). Return LΨ× and terminate.

Example 5. Suppose we want to find a partition over (x, y) ∈ Z × Z where
each component uses the interval algebra, and suppose the input sets are
L× = [{(0, 0), (1, 0), (1, 2)}, {(0, 2)}]. Then D′

1 = [{0}, {1}] and perhaps
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L1 = P1(D′
1) = [x ≤ 0, x > 0]. Then we have D2,0 = [{0}, {2}] and

D2,1 = [{0, 2}, ∅]. Perhaps L2,0 = P2(D2,0) = [y ≤ 1, y > 1] and L2,1 =
P2(D2,1) = [�,⊥]. Then (without simplification) LΨ× = [(x ≤ 0, y ≤ 1) ∨ (x >
0,�) ∨ (x > 0,�), (x ≤ 0, y > 1)].

Theorem 4 (Product Algebra Learnability). Given Boolean algebras
A1,A2 with partitioning functions P1, P2 and their product algebra A× with the
composite partitioning function P×, let c ∈ C× be the target partition over the
product algebra, let c1 ∈ C1 be the minterms of the A1-components of c, and
let c2 ∈ C2 be the minterms of the A2-components of c. ( i) If (A1, P1) is sg1-
learnable and (A2, P2) is sg2-learnable, then there exists g× such that (A×, P×)
is sg×-learnable where sg×(c) = sg1(c1)sg2(c2). ( ii) If (A×, P×) is sg×-learnable,
then there exist g1, g2 such that (A1, P1) is sg1-learnable and (A2, P2) is sg2-
learnable where sg×(c) = sg1(c1) = sg2(c2).

Corollary 2. If A1 and A2 are in learning class C, then their product A× is
also in learning class C.

Since learnability is closed under disjoint union and product, symbolic automata
over non-recursive data types can be learned using partitioning functions for the
component types, as opposed to necessitating specialized partitioning functions.

5 Implementation

We implemented Λ∗ in the open-source Java library Symbolic Automata. Our
modular implementation only requires the programmer to provide learnable
Boolean algebras as input to the learner; we have already implemented the equal-
ity and interval algebras as well as the disjoint union and product algebras—
which are implemented as meta-algebras and can be instantiated arbitrarily.

We evaluated our algorithm on the examples presented by Maler and
Mens [13], who proposed two extensions of L∗ for learning s-FAs where 1) pred-
icates are union of intervals in N, or 2) predicates are union of intervals over
N×N. Their algorithms assume that the oracle always provides lexicographically
minimal counterexamples, so that every counterexample identifies a boundary
in a partition. They evaluate their techniques on two automata: one over the
alphabet N (Ex. 4.1 [13]) and one over the alphabet N × N (Ex. 5.1 [13]).

We implemented a partitioning function equivalent to their characterization
of the interval algebra over N. While, to learn automata over N × N, [13] intro-
duces an ad-hoc separate technique that requires the oracle to always give locally
minimal counterexamples, in our setting, the algebra for pairs can be trivially
implemented as the Cartesian product of the interval algebra over N with itself.

We learn the first automaton using 8 equivalence and 23 membership queries,
while their algorithm only requires 7 and 17, respectively. The former difference
is due to their algorithm adding a different suffix to E than ours, which hap-
pens to discover two new states instead of one and ultimately saves them an
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equivalence query. The latter is due to a more refined handling of counterexam-
ples (more in our related work). Similarly, we learn the second automaton using
28 equivalence and 43 membership queries, while their algorithm only requires
18 and 20, respectively. In this case, the discrepancy is amplified because the
algorithm in [13] uses a specialized implicit partitioning function that avoids the
quadratic blowup caused by the Cartesian product construction in Theorem4.
We implemented an analogous specialized partitioning function directly on the
product algebra and were able to learn the same example using 19 equivalence
and 30 membership queries.

6 Related Work

Λ∗ builds on L∗ [3], for which many extensions have been proposed, the most
advanced one being TTT [1,11]. While these extensions could be applied to Λ∗ to
potentially improve the size of the observation table, the number of membership
queries is dictated by the amount of evidence needed for the partitioning func-
tion to generalize. Our algorithm opens new questions: Can we efficiently store
intermediate predicates computed by the partitioning functions? Can separating
predicates be computed incrementally?

Our paper is the first one to provide: (i) an algorithm for learning symbolic
automata over arbitrary alphabet theories, with a notion of learnability that is
parametric in both the alphabet theory and the oracle (through its projection
onto generators), and (ii) compositionality properties that permit combining
learnable algebras. We detail our comparison against the most relevant works.

Isberner et al. augment L∗ with abstractions to learn automata over poten-
tially infinite alphabets [10]. The algorithm creates abstract symbols to gener-
alize sets of characters, and the final automaton operates over these abstract
symbols. Abstractions can cause non-determinism that is resolved using refine-
ment operators. This approach differs from ours in two aspects. First, while the
final output of Λ∗ is a symbolic automaton over the target Boolean algebra,
the output in [10] is an automaton operating over a separate abstract alpha-
bet that is discovered during the learning process and might not necessarily
form a Boolean algebra. Second, our algorithm enjoys well-defined learnability
and compositionality properties over the input Boolean algebras, while the one
in [10] does not provide any such properties. Maler and Mens [13] instantiate
the algorithm proposed in [10] and learn automata over the interval algebra for
integers and pair of integers. As we discussed throughout the paper, their results
are special cases of our formulation. In fact, their specialized algorithm for learn-
ing automata over pairs of integers is a special case of our Cartesian product
of two algebras. Using our technique, we can also drop the assumption that the
oracle provides lexicographically minimal counterexamples, which simply causes
a change to the sg functions and learnability.

Argyros et al. [5] present an algorithm for learning symbolic automata where
the learnability is parametric with respect to a guardgen method, which is an
equivalent formulation of our partitioning function. Their definition of learnabil-
ity only captures our learning class C∀

const and can therefore only describe Boolean
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algebras operating over finite alphabets or with finitely many predicates. Our
work introduces generators, proposes a deeper analysis of the learnability of a
Boolean algebra, and shows how learnable algebras can be composed.

The Sigma∗ algorithm [6] is a practical algorithm for learning symbolic trans-
ducers, but it does not have learnability guarantees. Other algorithms can learn
nominal [14] and register automata [7]. In these models, the alphabet is infinite
but not structured (i.e., it does not form a Boolean algebra) and characters at
different positions can be compared using binary relations (typically equality or
simple arithmetic relations). These models are orthogonal to symbolic automata.

Acknowledgements. We would like to thank Alexandra Silva, Joshua Moerman, and
Nimit Singhania for their feedback on an early version of this paper.
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Abstract. It is an open problem in static resource bound analysis to
connect high-level resource bounds with the actual execution time and
memory usage of compiled machine code. This paper proposes to use
machine learning to derive a cost model for a high-level source language
that approximates the execution cost of compiled programs on a specific
hardware platform. The proposed technique starts by fixing a cost seman-
tics for the source language in which certain constants are unknown. To
learn the constants for a specific hardware, a machine learning algo-
rithm measures the resource cost of a set of training programs and com-
pares the cost with the prediction of the cost semantics. The quality of
the learned cost model is evaluated by comparing the model with the
measured cost on a set of independent control programs. The technique
has been implemented for a subset of OCaml using Inria’s OCaml com-
piler on an Intel x86-64 and ARM 64-bit v8-A platform. The considered
resources in the implementation are heap allocations and execution time.
The training programs are deliberately simple, handwritten micro bench-
marks and the control programs are retrieved from the standard library,
an OCaml online tutorial, and local OCaml projects. Different machine
learning techniques are applied, including (weighted) linear regression
and (weighted) robust regression. To model the execution time of pro-
grams with garbage collection (GC), the system combines models for
memory allocations and executions without GC, which are derived first.
Experiments indicate that the derived cost semantics for the number of
heap allocations on both hardware platforms is accurate. The error of
the cost semantics on the control programs for the x86-64 architecture
for execution time with and without GC is about 19.80% and 13.04%,
respectively. The derived cost semantics are combined with RAML, a
state-of-the-art system for automatically deriving resource bounds for
OCaml programs. Using these semantics, RAML is for the first time
able to make predictions about the actual worst-case execution time.

1 Introduction

Motivated by longstanding problems such as performance bugs [32], side-
channel attacks [10,31], and to provide development-time feedback to program-
mers, the programming language community is developing tools that help pro-
grammers understand the resource usage of code at compile time. There has
been great progress on automatically determining loop bounds in sequential
c© Springer-Verlag GmbH Germany 2017
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C-like programs [13,15,22,35], deriving, solving recurrence relations [4,6,9,19],
and automating amortized analysis [23–25]. There exist several tools that can
automatically derive loop and recursion bounds, including SPEED [21,22],
KoAT [13], PUBS [5], Rank [7], ABC [11], LOOPUS [35,38], C4B [14], and
RAML [23,24].

Most of these resource analysis tools use high-level cost models, like number
of loop iterations and function calls, and it is often unclear how the derived
bounds relate to the machine code executing on a specific hardware. To make
the connection, one has to take into account compilation, hardware specific cache
and memory effects, instruction pipelines, and garbage collection cycles. While
there exist tools and techniques for analyzing low-level assembly code to produce
worst-case execution time bounds for concrete hardware [37], they are limited in
their expressive power, as analyzing assembly code is a complicated problem.

In this article, we propose a novel technique to derive cost models that
can link high-level resource bounds to the execution of low-level code. We
present a simple operational cost semantics for a subset of OCaml [20] that have
been learned using standard machine learning techniques like linear regression.
The resources we are considering are heap allocations, execution time without
garbage collection (GC), and execution time with GC. The subset of OCaml we
are considering is purely functional and includes lists, tuples and pattern match-
ing. However, the technique is also applicable to programs with side effects.

To learn a cost semantics, we first define an operational big-step semantics
that assign a parametric cost expression to a well-formed expression. This cost
expression is parametric in (yet unknown) constants that correspond to high-
level constructs in OCaml. The assumption is that the number of executions of
each of these constructs constitutes the majority of the execution time of the
expression. We keep track of the number of executions of each of these constructs
in the cost semantics, which has been implemented in an OCaml interpreter. Our
semantics then models the execution time of the program as a linear sum of the
number of executions of each construct. The (unknown) coefficients of this linear
function intuitively represent the execution time of each construct.

We then determine the average values of the coefficients on a specific hard-
ware by experiment. We carefully select a set of relatively simple training pro-
grams and measure the median execution time of these programs on the hard-
ware of interest. To this end, each program is executed with the OCaml native
code compiler 500 times on an Intel x86-64 and a ARM 64-bit v8-A platform.
We then apply machine learning techniques, such as linear regression [30], on
the linear functions obtained by running the cost semantics to determine the
constant costs of the constructs by fitting the prediction of the cost semantics
to the measured costs. We measure the execution time using the Unix library in
OCaml, which is hardware independent. We measure the number of allocation
by relying on the OCaml GC library, which is again hardware independent. As
a result, our approach is completely hardware independent and can be easily
extended to different architectures, as we demonstrate in this work.

Of course, the execution time of, say, an addition cannot be described by
a constant. In fact, it can vary by a large margin depending on whether the
arguments are stored on the stack or in a register. Similarly, a cons operation
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can be costly if one of the arguments is not in the cache has to be fetched from
memory. So the constants that we learn in our experiment will represent roughly
the average cost of the operations on the training programs.

Once we have learned these cost coefficients for a specific hardware and
resource metric, we validate our cost with control (or test) programs, retrieved
from the standard library, an OCaml online tutorial, and local OCaml projects.
Each control program is first compiled and executed on the hardware and the
median execution cost is measured in the same way we did for training programs.
The program is then run on the interpreter to obtain the parametric linear cost
function. By plugging in the learned coefficients, we get a prediction for the exe-
cution time or memory usage. We compare the predictions of the cost semantics
with the median cost, and report the percentage error on test programs. We
use the median instead of the mean because it is more resilient against outliers
which are often caused by context switches in the OS.

The result of the experiments with the control programs are surprisingly
encouraging. We precisely learn the amount of memory that is allocated by each
construct. For execution time of programs that do not trigger GC, the error of
our model is up to 43%, for all but one program.

In memory intensive programs, the impact of garbage collection cycles on the
execution time is significant. So, we adapt our cost semantics to account for the
time taken by the GC. We make two simplifying assumptions to model the GC
time. One of them is that the time taken by each GC cycle is a constant and
the other is that each GC cycle starts with a full heap, and ends with an empty
heap. These assumptions, as we will see in the experiments and the OCaml
documentation, are quite close to the collections of the minor heap. To model
this behavior, we combine the cost semantics for memory allocations and the
cost semantics for programs without GC. Since the GC cycle occurs periodically
when the minor heap is full, we can predict the number of minor GC cycles in
the lifetime of a program using the allocation semantics. To determine the time
needed for a minor garbage collection, we just measure the median GC time
taken by a GC cycle for the training programs.

The main application of our cost semantics is the integration into Resource
Aware ML (RAML), a state-of-the-art tool for automatic resource analysis.
Using the semantics for execution time on x86, RAML can automatically derive
worst-case bounds for many functions that are close to the measured execution
time of the compiled code. Our results are precise enough, to statically deter-
mine the faster versions of different implementations of list append, Sieve of
Eratosthenes, and factorial.

2 Method and Experimental Setup

In this section, we describe our experimental setup and training method. The
main hypothesis, going into this experiment, is that the resource consumption
of a program, whether time or memory, is a linear combination of the number
of executions of each construct in the program. Moreover, the time (or mem-
ory) consumed by each construct is averaged out to be a constant. Hence, the
execution time of a program is
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T =
∑
c∈C

ncTc (1)

where C represents the set of constructs and nc is the count of each construct
during program execution, and Tc is the execution time of the respective con-
struct. Clearly, these assumptions do not, in general, hold for most of the rele-
vant platforms. Hence, we will analyze the error incurred by these simplifying
assumptions on the execution time (or memory allocation) of a program.

Consider the following OCaml program, which computes the factorial.

let rec fact n = if (n = 0) then 1 else n ∗ fact (n−1);;
(fact 10);;

In the above program, if we count the number of high level constructs, we get 10
function calls, 11 equality checks, 10 subtractions and multiplications and 1 “let
rec” that defines the function. In our model the execution time of a program
is the sum of the execution time of each construct multiplied by the number
of times that construct is executed. For the above program, the total execution
time is 11 ∗ TFunApp + 11 ∗ TIntEq + 10 ∗ TIntSub + 10 ∗ TIntMult + 1 ∗ Tletrec.

We are interested in the resources costs Ti that best approximate the actual
cost. With this representative example, we describe our experimental setup.

Language Description. We have chosen a subset of OCaml as our modeling
language. In this subset, we include the following program constructs: recursive
functions, conditionals, boolean, integer and float comparisons and arithmetic,
pattern matching and tuples. With this fairly general subset, we can write a
variety of programs including list manipulation, matrix operations and other
numeric programs, as we will demonstrate in our results. We chose OCaml as the
source language for several reasons. For one, OCaml is a widely used language
for functional programming which is quite efficient in practice. Moreover, we
wanted to demonstrate that it is possible to define a practical cost semantics
for a high-level functional language with a sophisticated compiler and automatic
memory management. We assume that defining such a semantics would be easier
for imperative programs, which are closer to assembly code.

A major obstacle when analyzing high-level languages is compiler optimiza-
tion. The resource usage of the generated target assembly code depends greatly
on the choices that are made by the compiler and cannot directly be derived from
the original OCaml program. Hence, the cost semantics need to account for com-
piler optimizations. In our experience, we found two compiler optimizations with
a significant impact on the execution time.

– Tail Call Optimization [36] - If the final action of a function body is a func-
tion call, it is optimized to a jump instruction. This is relevant for the cost
semantics because a jump is faster than a call, hence we need two different
costs for usual function calls and tail calls. Moreover, separating these costs in
the semantics will later help us validate the claim that tail call optimization
indeed reduces the execution time.

– Function Inlining [16] - OCaml compiler inlines functions as an optimization.
Instead of accounting for inlining in our interpreter, we forced the compiler to
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not inline any function when generating the native code. We will demonstrate
the effect of this optimization when describing training programs. Conceptu-
ally, inlining is not a problem for our approach since it is possible to track at
compile time which function applications have been inlined.

Training Algorithm. We formally describe the algorithm we use to learn the
values of the constructs. Consider again our cost expression T =

∑
c∈C ncTc.

Essentially, we execute the native code obtained from the compiler to obtain the
value T , and we execute the program on the interpreter to obtain the values
nc. Let there be P training programs and suppose we generate M instances of
training data from each training program using the above method. We denote the
count of each construct and execution time of the i-th instance of training data
generated by j-th training program by (n(i,j)

c )c∈C and T(i,j) respectively. Since
we need to learn a linear model on Tc’s, linear regression is the natural choice of
machine learning algorithm. A simple linear regression [33] would produce the
following objective function.

S =
P∑

j=1

M∑
i=1

(
T(i,j) −

∑
c∈C

n(i,j)
c Tc

)2

.

where Tc are the unknowns that need to be learned. However, this approach is
useful only when the error is additive, i.e. the error is independent of nc. Unfortu-
nately, in our case, each instruction has an inherent noise, which depends on the
instruction, the operating system and synchronization overhead, measurement
error and possibly other factors. So, as the number of instructions executed
increases, the error in execution time also increases. Such an error is called
multiplicative, and a solution by simple linear regression is skewed towards the
constructs which have a higher cost, leading to inaccurate results. To overcome
this problem, we need to normalize our objective function. We normalize the
objective function by the sum of the execution time for each training program
over all inputs. Hence, the new objective function is

S =
P∑

j=1

M∑
i=1

(
T(i,j)

Sj
−

∑
c∈C

n
(i,j)
c

Sj
Tc

)2

.

where Sj =
∑M

i=1 T(i,j), i.e. the total execution time of the j-th training pro-
gram. We learn the cost of each construct using the weighted linear regression
technique. In addition to the above method, we also employ two other regres-
sion techniques. One is robust regression [34], where the objective function is the
L1-norm, instead of the L2-norm (written as SRR below).

SRR =
P∑

j=1

M∑
i=1

∣∣∣∣∣
T(i,j)

Sj
−

∑
c∈C

n
(i,j)
c

Sj
Tc

∣∣∣∣∣ .

And the other is the non-negative least squares method [28], where the sum
of squares is minimized under the constraint that all constants need to be
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non-negative. We evaluate each algorithm, and compare the results obtained
for each regression technique in Sect. 7.

Training Programs. The main goal of training is to learn appropriate values
Tc for each program construct c in the language described above. Since we have
|C| variables that we need to learn, all we need is at least |C| training programs
to get a feasible cost semantics. However, there is a pitfall here that we want to
avoid. Most of the typical machine learning algorithms suffer from the problem
of overfitting, i.e. when the model learned is biased towards the training data,
and performs poorly on the testing data. Specifically, in our case, the function
call construct exists in all the training programs, hence, the learning algorithm
overfits the data w.r.t. the cost for function call. Moreover, the regression algo-
rithm is unaware of the fact that these costs need to all be positive. To overcome
these issues, we need to linearly separate out the cost of each construct. To this
end, we create one training program for each construct. Such a program has a
significant count of one construct while being moderate in other constructs. For
example, the training program for function call is

let id n = n;;
let rec fapp x = if (x = 0) then 0 else fapp (id (id (id (id (x−1)))));

If we don’t account for function inlining, the function id gets inlined, and the
above is treated as 1 application instead of 5. This massively impacts our train-
ing, and we obtain an incorrect cost for function application. Similarly, the train-
ing program for integer addition is

let rec fintadd x = if (x = 0) then 0 else x + x + x + x + fintadd (x−1);;

Once we decided the training programs, we ran each training program with
20 inputs, ranging from 1000 to 20000. In this experiment, we have a total
of 36 programs, and with 20 inputs for each program, we have a total of 720
training points for our linear regression algorithm. With this small training set,
the regression techniques learn the cost model in less than 1 s. This training
set might appear overly simplistic but our results show that this simple setup
produces already surprisingly satisfying results.

Hardware Platforms. All of the above experiments have been performed on
two separate platforms. One is an Intel NUC5i5RYH which has a 1.6 GHz 5th
generation Intel Core i5-5250U processor based on the x86-64 instruction set.
Another is a Raspberry Pi 3 which has a 1.2 GHz 64-bit quad-core ARM Cortex-
A53 processor based on the ARM v8-A instruction set. We will report the results
for both these platforms.

3 Operational Cost Semantics

In the following, we define the big-step operational cost semantics. A value envi-
ronment V maps variables to values. An evaluation judgment V � e ⇓ v | t
denotes that in the environment V , the expression e evaluates to the value v
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V e1 ⇓ v1 | t1 V e2 ⇓ v2 | t2 v1, v2 ∈ B

V e1 && e2 ⇓ v1 && v2 | t1 + t2 + TBoolAnd

(BoolAnd)

V e1 ⇓ v1 | t1 V e2 ⇓ v2 | t2 v1, v2 ∈ Z

V e1 + e2 ⇓ v1 + v2 | t1 + t2 + TIntAdd

(IntAdd)

V e1 ⇓ v1 | t1 . . . V en ⇓ vn | tn

V (e1, . . . , en) ⇓ (v1, . . . , vn) | t1 + . . . + tn + TtupleHead + nTtupleElem

(Tuple)

V tup ⇓ (v1, . . . vn) | t1 V [x1 → v1] . . . [xn → vn] e ⇓ v | t2

V let (x1, . . . , xn) = tup in e ⇓ v | t1 + t2 + n TtupleMatch

(TupleMatch)

v = (V, λx.e) |FV (e) \ {x}| = n

V λx.e ⇓ v | TfunDef + n Tclosure

(Closure)

V e1 ⇓ (V , λx.e ) | t1 V e2 ⇓ v2 | t2
V [x → v2] e ⇓ v | t3 tag(e1) = tail

V ;TM app(e1, e2) ⇓ v | t1 + t2 + t3 + TTailApp

(TailApp)

V e1 ⇓ (V , λx.e ) | t1 V e2 ⇓ v2 | t2
V [x → v2] e ⇓ v | t3 tag(e1) = normal

V ;TM app(e1, e2) ⇓ v | t1 + t2 + t3 + TFunApp

(FunApp)

Fig. 1. Selected rules of the big-step operational cost semantics.

with resource cost t. To differentiate between normal function calls and tail calls,
we perform a semantics-preserving program transformation, which adds a tag to
all function calls. A tag tail is added to tail calls and a tag normal is added
to all other function calls. Our decision to give a positive cost to the constructs
below, while a zero cost to other constructs comes from analyzing the compiled
assembly code. Only the constructs below generated assembly instructions with
a significant relative execution time. Intuitively, the cost of other constructs can
be thought of as absorbed in these constructs. For example, the cost for addition
absorbs the cost for loading the two addends.

Figure 1 contains illustrative example rules of the big-step cost semantics.
The rules for operations on booleans and integers are very similar to BoolAnd
and IntAdd. For tuples, we introduce two constants TtupleHead and TtupleElem.
TtupleHead is counted every time we create a tuple, and TtupleElem is counted for
the length of the tuple. Similarly, for tuple matching, we count a TtupleMatch for
every element in the tuple being matched. When creating a tuple, there is an
additional instruction, which assigns a tag to the tuple that represents the tuple
constructor. Since there is no such instruction during a tuple match, we have an
extra TtupleHead for creating tuples, but not when matching on it.

Since we support higher order functions, the rule Closure for function defin-
itions accounts for the cost of creating closures. We again introduce two constants
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to deal with function definitions, TfunDef for creating a function, and Tclosure

for creating a closure and capturing the free variables. Here, FV (e) denotes the
set of free variables of e. Since x is already bounded as the function argument,
we remove it from the set of free variables of e. Rules TailApp and FunApp
distinguish the cost of tail calls from the cost of regular function calls.

Lastly, we added a constant Tbase to account for initializations made by each
program, irrespective of the program code. Hence, we say that the execution
cost of program p is t+ Tbase if · � p ⇓ v | t. With these evaluation rules for the
cost semantics, we are ready to train our model by learning the values of the
constructs described in this section.

4 Learning Memory Allocations

Before analyzing execution times, we will demonstrate the effectiveness of our
approach by learning a cost semantics for memory allocations. We realized that
our experiments did not lead to accurate results for floating point and tuple
operations because they are generally stored on the heap, but often, optimized
to be stored on the stack or the registers:

– The OCaml compiler performs constant propagation to determine which
floats and tuples can be treated as globals, and need not be allocated on
the heap, every time they are defined.

– If tuples only appear as arguments of a function, they are passed via registers
and not allocated on the heap.

To accurately learn a cost semantics for floats and tuples we would need feedback
from the OCaml compiler about the optimizations that have been performed.
That is why, for the memory semantics only, we leave floats and tuples to future
work and focus on booleans, integers, and lists. We use the cost semantics that
is described in the previous section. According to this semantics, M , the number
of bytes allocated by a program is a linear combination M =

∑
c∈C ncMc.

We use the same training programs for learning memory allocations as for
execution times. An interesting point is that the count nc for each construct
remains the same whether executing the training programs for time or mem-
ory. Hence, while performing the linear regression, we only need to execute
the program on the interpreter once to obtain the counts nc. We then use the
Gc module in OCaml to obtain the number M of bytes allocated by the pro-
gram. Since the memory allocation of a program is constant over different runs,
we only need to measure the memory consumption once. For the Intel x86-64
platform, the memory costs of each construct obtained by the linear regres-
sion are as follows where Mx = 0.00 for all constants Mx that are not listed.
Mbase = 96.03 MFunDef = 24.00 Mclosure = 7.99 Mcons = 24.00

An analysis of the OCaml compiler indicates that rounding the learned con-
stants to the nearest integer corresponds exactly to the number of bytes that are
allocated by the corresponding construct. For example, our model implies that
integers and booleans are not stored on the heap. And the OCaml manual [20]
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indeed confirms that all integers and booleans are immediate, i.e., stored in reg-
isters and on the stack. The value 96 for the constant Mbase is also confirmed as
each program, even without memory allocations, has an initial heap consump-
tion of 96 bytes. The cost MFunDef = 24 and Mclosure = 8 for function closures
is also confirmed by the OCaml manual. If there are free variables trapped in
the closure of a function, there is an additional memory allocation of 24 bytes
on the heap to indicate that the program has a non-empty closure. Every cons
constructor consumes 24 bytes on the heap; 8 bytes each for the head and tail,
and 8 bytes for the tag to indicate the cons constructor. The empty list ([]) is
represented as an immediate integer 0. Hence, the memory consumption of a list
of size n is 24n bytes. Similarly, for the ARM v8-A platform, the memory costs
of the non-zero constants obtained by the same linear regression are as follows.
The results are also as expected and the data size seems to be 4 words.
Mbase = 64.05 MFunDef = 12.00 Mclosure = 3.99 Mcons = 12.00

We prefer learning the memory semantics instead of using them directly from
the OCaml manual, because our technique is hardware-independent and can be
extended in the event of creation of new architectures. It is notable that we
can learn OCaml’s heap model by performing a simple regression without the
constraint that the learned coefficients need to be integral or non-negative.

5 Learning Execution Times

As mentioned earlier, we used several regression techniques to train our cost
semantics: linear regression, robust regression, and non-negative least squares.
The accuracy of all three approaches is similar. Also, we train on the median exe-
cution times since they are less prone to noise than the mean. Below we give the
cost of each high-level construct (in nanoseconds) trained using the normalized
linear regression technique for the Intel x86-64 architecture. Intuitively, these
constants define the median execution time of the respective construct on this
specific platform.

Tbase = 832.691 TFunApp = 1.505 TTailApp = 0.156

TFunDef = 0.000 Tclosure = 2.921 TBoolNot = 0.424

TBoolAnd = 0.184 TBoolOr = 0.183 TIntUMinus = 0.419

TIntAdd = 0.297 TIntSub = 0.278 TIntMult = 1.299

TIntMod = 19.231 TIntDiv = 19.011 TFloatUMinus = 1.232

TFloatAdd = 2.102 TFloatSub = 2.116 TFloatMult = 1.737

TFloatDiv = 8.575 TIntCondEq = 0.382 TIntCondLT = 0.381

TIntCondLE = 0.381 TIntCondGT = 0.375 TIntCondGE = 0.381

TFloatCondEq = 0.582 TFloatCondLT = 0.619 TFloatCondLE = 0.625

TFloatCondGT = 0.585 TFloatCondGE = 0.629 Tletdata = 2.828

Tletlambda = 1.312 Tletrec = 1.312 TpatternMatch = 0.223

TtupleHead = 5.892 TtupleElem = 1.717 TtupleMatch = 0.237
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We make several qualitative observations about the learned cost semantics.

– TFunApp > TTailApp indicates that a tail call is cheaper than a normal function
call, confirming that tail call optimization reduces the execution time.

– TBoolOr ≈ TBoolAnd, which is again expected as the && and ‖ operators just
place jump instructions at appropriate locations in the assembly.

– TIntMod ≈ TIntDiv � TIntMult > TIntAdd ≈ TIntSub. This is again expected,
since whenever we perform integer division or modulo, a check is performed to
see if the denominator is 0 and raise an appropriate exception. Hence, division
and modulo are much more expensive than multiplication. The latter is more
expensive than addition and subtraction.

– TIntCondEq ≈ TIntCondLE ≈ TIntCondLT ≈ TIntCondGT ≈ TIntCondGE is con-
firmed by studying the generated assembly code. A comparison is compiled
to comparing the two integers and storing the result in a register, followed
by a conditional jump. The analogous observation holds for floating point
comparisons.

6 Garbage Collection

The OCaml garbage collector (GC) has 2 major components, the variable size
major heap and the fixed size minor heap. Allocations occur first on the minor
heap. If the minor heap is full, the GC is invoked. Roughly, the GC frees unreach-
able cells, and promotes all live variables on the minor heap to the major heap,
essentially emptying the minor heap. OCaml employs a generational hypothesis,
which states that young memory cells tend to die young, and old cells tend to
stay around for longer than young ones.

We roughly model this behavior of the GC. Our hypothesis is that every call
to the GC roughly starts with the full minor heap and empties the minor heap.
We currently do not model the major heap. Hence, the time taken for each call
to the GC in our model is roughly the same. We need two parameters to model
the time taken by the GC, one is ngc, which is the number of calls to the GC,
and the other is Tgc, which is the time taken by 1 call to the GC. Our hypothesis

states that ngc =
⌊

M
H0

⌋
, where H0 is the size of the minor heap, and M is the

total number of memory allocations. Since we can already model the number of
heap allocations, all we need is the size of the minor heap.

Consequently, the two parameters Tgc and H0 can be learnt from our training
programs. OCaml offers a Gc module, which provides the number of calls to
the GC. We use this module to find out the first call to the GC, the number
of memory allocations and the time taken by the GC call, thereby learning H0,
which is equal to the number of memory allocations (due to our hypothesis), and
Tgc. With these parameters learned, the total execution time of the program is

T =
∑
c∈C

ncTc +
⌊∑

c∈C ncMc

H0

⌋
· Tgc
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7 Experiments with Control Programs

For our testing experiment, we used programs from the standard List library [2]
and an OCaml tutorial [1].

Testing Method. For each test program, we first fix inputs of different sizes.
For input i, we execute the compiled test program 500 times, measure the exe-
cution time, and compute the median T actual

i . We then execute the test program
on our interpreter to obtain the count of each construct nc for c ∈ C, and calcu-
late T expected

i =
∑

c∈C ncTc. The average percentage error for each test program
is

Error(%) =
1
n

(
n∑

i=1

|T actual
i − T expected

i |
T actual
i

)
× 100

Experiments. Figure 2 shows the results on a compilation of control programs.
The horizontal(x) axis represents the input size, while the vertical(y) axis rep-
resents the execution times. factorialTR is a tail recursive implementation of
factorial. append concatenates two lists. map is a higher-order function, which
maps a list of integers to booleans. Positive integers are mapped to true and
the rest to false. bubblesort sorts a list using the bubblesort algorithm.

The measurement noise is significant, particularly in cases where high over-
head is caused by context switches in the OS. Nevertheless, our prediction is
surprisingly accurate given the simplicity of our model, particularly for func-
tions without allocations, like factorialTR. For append our prediction is very
accurate till the point of the first GC cycle (x ≈ 2.9). The execution time after
the first GC cycle is very unpredictable with frequent unexpected jumps (e.g.
x ≈ 7) and drops (e.g. x ≈ 14). For bubblesort the GC jumps become invisible
since the runtime of the GC is dominated by the actual computation. We can
always very accurately predict the input size at which the GC cycles are trig-
gered. This validates the accuracy of our model for learning memory allocations.

Table 1 summarizes the results obtained by evaluating our approach on 43
control programs. We implemented 3 different training algorithms for training in
programs without GC, linear regression (LR), robust regression (RR) and non-
negative least squares (NNLS). Each column represents the average percentage
error for both architectures. We also tested all memory-intensive programs with
larger inputs to evaluate our cost model for the GC. The last column presents the
percentage error for programs with GC cycles, trained using linear regression.
Note that the error increase of programs with GC cycles is not significant, and
it indeed decreases for ARM architecture, indicating that our model for GC
cycles is also accurate. However, in about 5% of the programs, the error is
quite high (error above 50%). This is usually caused by an unmodeled compiler
optimization, causing a significant reduction in execution time.
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Fig. 2. Graph showing actual and expected time for factorialTR (input sizes ×103)
(top), append (input ×104) (2nd), map (input ×104) (3rd), and bubblesort (input
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end of the vertical line denote the minimum and maximum execution time, while the
lower and upper end of the box denotes the 1st and 3rd quartile of the execution time.
(Color figure online)



202 A. Das and J. Hoffmann

Table 1. Results on x86-64 and ARM architectures

Architecture Err (LR) Err (RR) Err (NNLS) Err (GC)

x86-64 13.29 13.04 13.32 19.80

ARM v8-A 21.81 22.94 21.36 20.12

8 Applications

Integration with Resource Aware ML. We have integrated our learned
cost semantics into Resource Aware ML [24], a static resource analysis tool
for OCaml. RAML is based on an automatic amortized resource analysis
(AARA) [23–25] that is parametric in a user defined cost metric. Such a metric
can be defined by providing a constant cost (in floating point) for each syntac-
tic form. This parametricity in a resource metric, and the ability to provide a
cost to each syntactic form makes RAML very suitable for our integration pur-
poses. Given an OCaml function, a resource metric, and a maximal degree of the
search space of bounds, RAML statically derives a multivariate resource poly-
nomial that is an upper bound on the resource usage as defined by the metric.
The resource polynomial is parametric in the input sizes of the functions and
contains concrete constant factors. The analysis is fully automatic and reduces
bound inference to off-the-shelf LP solving. The subset of OCaml that is cur-
rently supported by RAML contains all language constructs that we consider in
this paper. We used the experiments performed for this work to further refine
the cost semantics and automatic analysis. For example, we added an analysis
phase prior to the analysis that marks tail calls.

With the new cost metrics, we can use RAML for the first time to make
predictions about the worst-case behavior of compiled code. For example, if we
use the new execution-time metric (without GC) for x86 then we derive the
following bounds in Table 2. The variables in the bounds are the input sizes.
The table also contains runtime of the analysis and the number of generated
constraint (cumulative for both bounds).

We can also use RAML to predict the execution time of programs with GC.
To this end, we just derive two bounds using the execution metric and the metric
for the number of allocations, respectively. We then combine the two bounds

Table 2. Symbolic bounds from RAML on x86-64

Program Time bound (ns) Heap bound (B) Time (s) #Cons

append 0.45 + 11.28M 24M 0.02 50

map 0.60 + 13.16M 24M 0.02 59

insertion sort 0.45 + 6.06M + 5.83M2 12M + 12M2 0.04 298

echelon 0.60 + 17.29LM2+
23.11M + 37.38M2

24LM2 + 24M + 72M2 0.59 16297
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using our model for GC which basically, accounts for a constant cost after a
constant number of allocations. For example for append we obtain the following
bound (heap size = 2097448 bytes, GC cycle = 3125429.15 ns on x86).

0.45 + 11.28M +
⌊

3125429.15 × 24M
2097448

⌋

Since the derived bounds for execution time and allocations are tight, this bound
precisely corresponds to the prediction of our model as plotted in Fig. 2.

Qualitative Analysis. In addition to quantitative validation, we can also infer
qualitative results from our learned cost semantics. For instance, we can compare
two semantically-equivalent programs, and determine which one is more efficient
on a specific hardware. Our model, predicts for example correctly the fastest ver-
sion of different implementations of factorial, append, and sieve of Eratosthenes.
Consider for example our Intel x86 machine and the following versions of append.

let rec append1 l1 l2 =

match l1 with

| [] −> l2

| hd::tl −> hd::(append1 tl l2);;

let rec append2 l1 l2 = match l1 with

| [] −> l2

| x::[] −> x::l2

| x::y::[] −> x::y::l2

| x::y::tl −> x::y::(append2 tl l2);;

The trade-off in the above implementations is that the first has twice the
number of function calls but half the number of pattern matches, as the second
one. Since TFunApp = 1.505 > 4 × 0.223 = 2 × TpatternMatch, hence, using our
cost semantics concludes that the second version is more efficient. To reach this
conclusion we can now analyze the two programs in RAML and automatically
derive the execution-time bounds 0.45+11.28M and 0.45+10.53M for append1
and append2, respectively. The fact that append2 is faster carries over to the
execution-time bounds with GC since the memory allocation bound for both
functions is 24M bytes.

9 Related Work

The problem of modeling and execution time of programs has been extensively
studied for several decades. Static bound analysis on the source level [4,6,9,13,
15,19,22,25,35] does not take into account compilation and concrete hardware.

Closer related are analyses that target real-time systems by modeling and
analyzing worst case execution times (WCET) of programs. Wilhelm et al. [37]
provides an overview of these techniques, which can be classified into static [18],
measurement-based methods, and simulation [8]. Lim et al. [29] associate a worst
case timing abstraction containing detailed information of every execution path
to get tighter WCET bounds. Colin and Puaut [17] study the effect of branch
prediction on WCET. The goals of our work are different since we are not aiming
at a sound bound of the worst-case but rather an approximation of the average
case. Advantages of our approach include hardware independence, modeling of
GC, and little manual effort after the cost semantics is defined.
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Lambert and Power [27] introduced a hardware independent method of esti-
mating time cost of Java bytecode instructions. Unlike our work, they do not
take into account GC and compilation. Huang et al. [26] build accurate predic-
tion models of program performance using program execution on sample inputs
using sparse polynomial regression. The difference to our work is that they build
a model for one specific program, are not interested in low-level features, and
mainly want to predict the (high-level) execution time for a given input.

Acar et al. [3] learn cost models for execution time to determine whether
tasks need to run sequentially or in parallel. They observe executions to learn
the cost of one specific program. In contrast, we build a cost semantics to make
predictions for all programs. There exist many works that build on high-level
cost semantics [23], for instance to model cache and I/O effects [12]. However,
these semantics do not incorporate concrete constants for specific hardware.

10 Conclusion and Future Work

We have presented an operational cost semantics learned using standard machine
learning techniques, like linear regression, robust regression, etc. These semantics
were able to model the execution time of programs with surprising accuracy; even
in the presence of compilation and garbage collection. Since all the three models
can be learned without relying on hardware specifics, our method is completely
hardware independent and easily extensible to other hardware platforms. We
have also presented an integration of the cost semantics with RAML, hence,
allowing static analyzers to predict the execution time and heap allocations of
assembly code for the first time.

One of the significant future directions is a more precise model for the garbage
collector. Our model is limited to the minor heap, we need a model for the major
heap and heap compactions as well. The size of the major heap is variable,
hence, modeling the major heap is an important and complicated problem. We
also need to incorporate other language features, especially user-defined data
types in our semantics. Another challenge with real-world languages is compiler
optimizations. We modeled one optimization (and suppressed another) in these
semantics, but we should extend our semantics to incorporate more. Since these
optimizations are performed at compile time, using static analysis techniques,
it should be possible to model all of them. Finally, we think that it is possible
to extend this technique to other programming languages, and we only need an
appropriate interpreter to achieve that. We would like to validate this claim.
We believe this connection between high-level program constructs and low-level
program resources like time and memory is a first step towards connecting the-
oretical features of a language and its practical applications.
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15. Černý, P., Henzinger, T.A., Kovács, L., Radhakrishna, A., Zwirchmayr, J.: Seg-
ment abstraction for worst-case execution time analysis. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 105–131. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46669-8 5

https://ocaml.org/learn/tutorials/99problems.html
https://ocaml.org/learn/tutorials/99problems.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
http://dx.doi.org/10.1007/978-3-642-28717-6_1
http://dx.doi.org/10.1007/978-3-642-28717-6_1
http://dx.doi.org/10.1007/978-3-540-71316-6_12
http://dx.doi.org/10.1007/978-3-662-46681-0_6
http://dx.doi.org/10.1007/978-3-642-15769-1_8
http://dx.doi.org/10.1007/978-3-642-17511-4_7
http://dx.doi.org/10.1007/978-3-642-17511-4_7
http://dx.doi.org/10.1007/978-3-642-54862-8_10
http://dx.doi.org/10.1007/978-3-662-46669-8_5
http://dx.doi.org/10.1007/978-3-662-46669-8_5


206 A. Das and J. Hoffmann

16. Chen, W.Y., Chang, P.P., Conte, T.M., Hwu, W.W.: The effect of code expanding
optimizations on instruction cache design. IEEE Trans. Comput. 42(9), 1045–1057
(1993)

17. Colin, A., Puaut, I.: Worst case execution time analysis for a processor with branch
prediction. Real-Time Syst. 18(2), 249–274 (2000)

18. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. ACM, New York (1977)

19. Danner, N., Licata, D.R., Ramyaa, R.: Denotational cost semantics for functional
languages with inductive types. In: 29th International Conference on Functional
Programming (ICFP 2015) (2012)

20. Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml system
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Abstract. In this paper, we propose a novel algorithm to learn a Büchi
automaton from a teacher who knows an ω-regular language. The algo-
rithm is based on learning a formalism named family of DFAs (FDFAs)
recently proposed by Angluin and Fisman [10]. The main catch is that
we use a classification tree structure instead of the standard observation
table structure. The worst case storage space required by our algorithm
is quadratically better than the table-based algorithm proposed in [10].
We implement the first publicly available library ROLL (Regular Omega
Language Learning), which consists of all ω-regular learning algorithms
available in the literature and the new algorithms proposed in this paper.
Experimental results show that our tree-based algorithms have the best
performance among others regarding the number of solved learning tasks.

1 Introduction

Since the last decade, learning-based automata inference techniques [7,11,30,36]
have received significant attention from the community of formal system analy-
sis. In general, the primary applications of automata learning in the commu-
nity can be categorized into two: improving efficiency and scalability of verifica-
tion [6,15,17,19,21,23,25,33] and synthesizing abstract system model for further
analysis [1,5,16,18,22,24,26,35,37,40].

The former usually is based on the so called assume-guarantee compositional
verification approach, which divides a verification task into several subtasks
via a composition rule. Learning algorithms are applied to construct environ-
mental assumptions of components in the rule automatically. For the latter,
automata learning has been used to automatically generate interface model of
computer programs [5,22,26,37,41], a model of system error traces for diagnosis
purpose [16], behavior model of programs for statistical program analysis [18],
and model-based testing and verification [24,35,40].

Besides the classical finite automata learning algorithms, people also apply
and develop learning algorithm for richer models for the above two applications.
For example, learning algorithms for register automata [27,28] have been devel-
oped and applied to synthesis system and program interface models. Learning
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 208–226, 2017.
DOI: 10.1007/978-3-662-54577-5 12
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algorithm for timed automata has been developed for automated compositional
verification for timed systems [33]. However, all the results mentioned above
are for checking safety properties or synthesizing finite behavior models of sys-
tems/programs. Büchi automaton is the standard model for describing liveness
properties of distributed systems [4]. The model has been applied in automata
theoretical model checking [39] to describe the property to be verified. It is also
often used in the synthesis of reactive systems. Moreover, Büchi automata have
been used as a means to prove program termination [31]. However, unlike the
case for finite automata learning, learning algorithms for Büchi automata are
very rarely used in our community. We believe this is a potentially fertile area
for further investigation.

The first learning algorithm for the full-class of ω-regular languages repre-
sented as Büchi automata was described in [20], based on the L∗ algorithm [7]
and the result of [14]. Recently, Angluin and Fisman propose a new learning
algorithm for ω-regular languages [10] using a formalism called a family of DFAs
(FDFAs), based on the results of [34]. The main problem of applying their algo-
rithm in verification and synthesis is that their algorithm requires a teacher for
FDFAs. In this paper, we show that their algorithm can be adapted to support
Büchi automata teachers.

We propose a novel ω-regular learning algorithm based on FDFAs and a
classification tree structure (inspired by the tree-based L∗ algorithm in [30]).
The worst case storage space required by our algorithm is quadratically better
than the table-based algorithm proposed in [10]. Experimental results show that
our tree-based algorithms have the best performance among others regarding
the number of solved learning tasks.

For regular language learning, there are robust and publicly available
libraries, e.g., libalf [12] and LearnLib [29]. A similar library is still lacking
for Büchi automata learning. We implement the first publicly available Büchi
automata learning library, named ROLL (Regular Omega Language Learning,
http://iscasmc.ios.ac.cn/roll), which includes all Büchi automata learning algo-
rithms of the full class of ω-regular languages available in the literature and the
ones proposed in this paper. We compare the performance of those algorithms
using a benchmark consisting of 295 Büchi automata corresponding to all 295
LTL specifications available in BüchiStore [38].

To summarize, our contribution includes the following. (1) Adapting the algo-
rithm of [10] to support Büchi automata teachers. (2) A novel learning algorithm
for ω-regular language based on FDFAs and classification trees. (3) The publicly
available library ROLL that includes all Büchi automata learning algorithms can
be found in the literature. (4) A comprehensive empirical evaluation of Büchi
automata learning algorithms.

2 Preliminaries

Let A and B be two sets. We use A ⊕ B to denote their symmetric difference,
i.e., the set (A \ B) ∪ (B \ A). Let Σ be a finite set called alphabet. We use ε

http://iscasmc.ios.ac.cn/roll
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to represent an empty word. The set of all finite words is denoted by Σ∗, and
the set of all infinite words, called ω-words, is denoted by Σω. Moreover, we
also denote by Σ+ the set Σ∗ \ {ε}. We use |u| to denote the length of the
finite word u. We use [i · · · j] to denote the set {i, i + 1, · · · , j}. We denote by
w[i] the i-th letter of a word w. We use w[i..k] to denote the subword of w
starting at the i-th letter and ending at the k-th letter, inclusive, when i ≤ k
and the empty word ε when i > k. A language is a subset of Σ∗ and an ω-
language is a subset of Σω. Words of the form uvω are called ultimately periodic
words. We use a pair of finite words (u, v) to denote the ultimately periodic
word w = uvω. We also call (u, v) a decomposition of w. For an ω-language L,
let UP(L) = {uvω | u ∈ Σ∗, v ∈ Σ+, uvω ∈ L}, i.e., all ultimately periodic words
in L.

A finite automaton (FA) is a tuple A = (Σ,Q, q0, F, δ) consisting of a finite
alphabet Σ, a finite set Q of states, an initial state q0, a set F ⊆ Q of accepting
states, and a transition relation δ ⊆ Q × Σ × Q. For convenience, we also use
δ(q, a) to denote the set {q′ | (q, a, q′) ∈ δ}. A run of an FA on a finite word v =
a1a2a3 · · · an is a sequence of states q0, q1, · · · , qn such that (qi, ai+1, qi+1) ∈ δ.
The run v is accepting if qn ∈ F . A word u is accepting if it has an accepting run.
The language of A, denoted by L(A), is the set {u ∈ Σ∗ | u is accepted by A}.
Given two FAs A and B, one can construct a product FA A × B recognizing
L(A) ∩ L(B) using a standard product construction.

A deterministic finite automaton (DFA) is an FA such that δ(q, a) is a sin-
gleton for any q ∈ Q and a ∈ Σ. For DFA, we write δ(q, a) = q′ instead of
δ(q, a) = {q′}. The transition can be lifted to words by defining δ(q, ε) = q and
δ(q, av) = δ(δ(q, a), v) for q ∈ Q, a ∈ Σ and v ∈ Σ∗. We also use A(v) as a
shorthand for δ(q0, v).

A Büchi automaton (BA) has the same structure as an FA, except that it
accepts only infinite words. A run of an infinite word in a BA is an infinite
sequence of states defined similarly to the case of a finite word in an FA. An
infinite word w is accepted by a BA iff it has a run visiting at least one accepting
state infinitely often. The language defined by a BA A, denoted by L(A), is the
set {w ∈ Σω | w is accepted by A}. An ω-language L ⊆ Σω is ω-regular iff there
exists a BA A such that L = L(A).

Theorem 1 (Ultimately Periodic Words of ω-Regular Languages [13]).
Let L, L′ be two ω-regular languages. Then L = L′ if and only if UP(L) =
UP(L′).

Definition 1 (Family of DFAs (FDFA) [10]). A family of DFAs F =
(M, {Aq}) over an alphabet Σ consists of a leading automaton M = (Σ,Q, q0, δ)
and progress DFAs Aq = (Σ,Qq, sq, δq, Fq) for each q ∈ Q.

Notice that the leading automaton M is a DFA without accepting states.
Each FDFA F characterizes a set of ultimately periodic words UP(F). Formally,
an ultimately periodic word w is in UP(F) iff it has a decomposition (u, v)
accepted by F . A decomposition (u, v) is accepted by F iff M(uv) = M(u)
and v ∈ L(AM(u)). An example of an FDFA F is depicted in Fig. 1. The leading
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automaton M has only one state ε. The progress automaton of ε is Aε. The word
(ba)ω is in UP (F) because it has a decomposition (ba, ba) such that M(ba ·ba) =
M(ba) and ba ∈ L(AM(ba)) = L(Aε). It is easy to see that the decomposition
(bab, ab) is not accepted by F since ab �∈ L(AM(bab)) = L(Aε).

Fig. 1. An example of an FDFA

For any ω-regular language L, there exists
an FDFA F such that UP(L) = UP(F) [10].
We show in Sect. 6 that it is not the case for
the reverse direction. More precisely, in [10],
three kinds of FDFAs are suggested as the
canonical representations of ω-regular lan-
guages, namely periodic FDFA, syntactic
FDFA and recurrent FDFA. Their formal
definitions are given in terms of right congru-
ence.

An equivalence relation � on Σ∗ is a right congruence if x � y implies
xv � yv for every x, y, v ∈ Σ∗. The index of �, denoted by |�|, is the number
of equivalence classes of �. We use Σ∗/� to denote the equivalence classes of
the right congruence �. A finite right congruence is a right congruence with a
finite index. For a word v ∈ Σ∗, we use the notation [v]� to represent the class
of � in which v resides and ignore the subscript � when the context is clear.
The right congruence �L of a given ω-regular language L is defined such that
x �L y iff ∀w ∈ Σω.xw ∈ L ⇐⇒ yw ∈ L. The index of �L is finite because
it is not larger than the number of states in a deterministic Muller automaton
recognizing L [34].

Definition 2 (Canonical FDFA [10]). Given an ω-regular language L, a peri-
odic (respectively, syntactic and recurrent) FDFA F = (M, {Aq}) of L is defined
as follows. The leading automaton M is the tuple (Σ,Σ∗/�L

, [ε]�L
, δ), where

δ([u]�L
, a) = [ua]�L

for all u ∈ Σ∗ and a ∈ Σ.
We define the right congruences ≈u

P ,≈u
S, and ≈u

R for progress automata Au

of periodic, syntactic, and recurrent FDFA respectively as follows:

x ≈u
P y iff ∀v ∈ Σ∗, u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L,

x ≈u
S y iff ux �L uy and ∀v ∈ Σ∗, uxv �L u =⇒ (u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L), and

x ≈u
R y iff ∀v ∈ Σ∗, uxv �L u ∧ u(xv)ω ∈ L ⇐⇒ uyv �L u ∧ u(yv)ω ∈ L.

The progress automaton Au is the tuple (Σ,Σ∗/≈u
K

, [ε]≈u
K

, δK , FK), where
δK([u]≈u

K
, a) = [ua]≈u

K
for all u ∈ Σ∗ and a ∈ Σ. The accepting states FK

is the set of equivalence classes [v]≈u
K

for which uv �L u and uvω ∈ L when
K ∈ {S,R} and the set of equivalence classes [v]≈u

K
for which uvω ∈ L when

K ∈ {P}.
In this paper, by an abuse of notation, we use a finite word u to denote the

state in a DFA in which the equivalence class [u] resides.

Lemma 1 [10]. Let F be a periodic (syntactic, recurrent) FDFA of an ω-regular
language L. Then UP(F) = UP(L).

Lemma 2 [9]. Let F be a periodic (syntactic, recurrent) FDFA of an ω-regular
language L. One can construct a BA recognizing L from F .
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Fig. 2. Overview of the learning framework based on FDFA learning. The components
in boxes are results from existing works. The components in boxes are our
new contributions. (Color figure online)

3 Büchi Automata Learning Framework Based on FDFA

We begin with an introduction of the framework of learning BA recognizing an
unknown ω-regular language L.

Overview of the Framework: First, we assume that we already have a BA
teacher who knows the unknown ω-regular language L and answers member-
ship and equivalence queries about L. More precisely, a membership query
MemBA(uvω) asks if uvω ∈ L. For an equivalence query EquBA(B), the BA
teacher answers “yes” when L(B) = L, otherwise it returns “no” as well as
a counterexample uvω ∈ L ⊕ L(B).

The framework depicted in Fig. 2 consists of two components, namely the
FDFA learner and the FDFA teacher. Note that one can place any FDFA
learning algorithm to the FDFA learner component. For instance, one can use
the FDFA learner from [10] which employs a table to store query results, or
the FDFA learner using a classification tree proposed in this paper. The FDFA
teacher can be any teacher who can answer membership and equivalence queries
about an unknown FDFA.

FDFA Learners: The FDFA learners component will be introduced in Sects. 4
and 5. We first briefly review the table-based FDFA learning algorithms [10] in
Sect. 4. Our tree-based learning algorithm for canonical FDFAs will be intro-
duced in Sect. 5. The algorithm is inspired by the tree-based L∗ learning algo-
rithm [30]. Nevertheless, applying the tree structure to learn FDFAs is not a
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trivial task. For example, instead of a binary tree used in [30], we need to use
a K-ary tree to learn syntactic FDFAs. The use of K-ary tree complicates the
procedure of refining the classification tree and automaton construction. More
details will be provided in Sect. 5.

FDFA Teacher: The task of the FDFA teacher is to answer queries
MemFDFA(u, v) and EquFDFA(F ) posed by the FDFA learner. Answering
MemFDFA(u, v) is easy. The FDFA teacher just needs to redirect the result of
MemBA(uvω) to the FDFA learner. Answering equivalence query EquFDFA(F ) is
more tricky.

From an FDFA F to a BA B: The FDFA teacher needs to transform an FDFA
F to a BA B to pose an equivalence query EquBA(B). In Sect. 6, we show
that, in general, it is impossible to build a BA B from an FDFA F such
that UP(L(B)) = UP(F ). Therefore in Sect. 6, we propose two methods
to approximate UP(F ), namely the under-approximation method and the
over-approximation method. As the name indicates, the under-approximation
(respectively, over-approximation) method constructs a BA B from F such
that UP(L(B)) ⊆ UP(F ) (respectively, UP(F ) ⊆ UP(L(B))). The under-
approximation method is modified from the algorithm in [14]. Note that if
the FDFAs are the canonical representations, the BAs built by the under-
approximation method recognize the same ultimately periodic words as the
FDFAs, which makes it a complete method for BA learning (Lemmas 1 and
2). As for the over-approximation method, we cannot guarantee to get a BA B
such that UP(L(B)) = UP(F ) even if the F is a canonical representation, which
thus makes it an incomplete method. However, in the worst case, the over-
approximation method produces a BA whose number of states is only quadratic
in the size of the FDFA. In contrast, the number of states in the BA constructed
by the under-approximation method is cubic in the size of the FDFA.

Counterexample Analysis: If the FDFA teacher receives “no” and a counterex-
ample uvω from the BA teacher, the FDFA teacher has to return “no” as well as
a valid decomposition (u′, v′) that can be used by the FDFA learner to refine F .
In Sect. 7, we show how the FDFA teacher chooses a pair (u′, v′) from uvω that
allows FDFA learner to refine current FDFA F . As the dashed line with a label
F in Fig. 2 indicates, we use the current conjectured FDFA F to analyze the
counterexample. The under-approximation method and the over-approximation
method of FDFA to BA translation require different counterexample analysis
procedures. More details will be provided in Sect. 7.

Once the BA teacher answers “yes” for the equivalence query EquBA(B),
the FDFA teacher will terminate the learning procedure and outputs a BA
recognizing L.

Due to the lack of space, all missing proofs and details for our Büchi learning
algorithm are provided in [32].
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4 Table-Based Learning Algorithm for FDFAs

In this section, we briefly introduce the table-based learner for FDFAs [10]. It
employs a structure called observation table [7] to organize the results obtained
from queries and propose candidate FDFAs. The table-based FDFA learner
simultaneously runs several instances of DFA learners. The DFA learners are
very similar to the L∗ algorithm [7], except that they use different conditions
to decide if two strings belong to the same state (based on Definition 2). More
precisely, the FDFA learner uses one DFA learner L∗

M for the leading automaton
M , and for each state u in M , one DFA learner L∗

Au for each progress automaton
Au. The table-based learning procedure works as follows. The learner L∗

M first
closes the observation table by posing membership queries and then constructs
a candidate for leading automaton M . For every state u in M , the table-based
algorithm runs an instance of DFA learner L∗

Au to find the progress automaton
Au. When all DFA learners propose candidate DFAs, the FDFA learner assem-
bles them to an FDFA F = (M, {Au}) and then poses an equivalence query
for it. The FDFA teacher will either return “yes” which means the learning
algorithm succeeds or return “no” accompanying with a counterexample. Once
receiving the counterexample, the table-based algorithm will decide which DFA
learner should refine its candidate DFA. We refer interested readers to [10] for
more details of the table-based algorithm.

5 Tree-Based Learning Algorithm for FDFAs

In this section, we provide our tree-based learning algorithm for FDFAs. To
that end, we first define the classification tree structure for FDFA learning in
Sect. 5.1 and present the tree-based algorithm in Sect. 5.2.

5.1 Classification Tree Structure in Learning

Here we present our classification tree structure for FDFA learning. Compared
to the classification tree defined in [30], ours is not restricted to be a binary tree.
Formally, a classification tree is a tuple T = (N, r, Ln, Le) where N = I ∪ T is a
set of nodes consisting of the set I of internal nodes and the set T of terminal
nodes, the node r ∈ N is the root of the tree, Ln : N → Σ∗ ∪ (Σ∗ × Σ∗)
labels an internal node with an experiment and a terminal node with a state,
and Le : N × D → N maps a parent node and a label to its corresponding child
node, where the set of labels D will be specified below.

During the learning procedure, we maintain a leading tree T for the leading
automaton M , and for every state u in M , we keep a progress tree Tu for the
progress automaton Au. For every classification tree, we define a tree experiment
function TE : Σ∗ × (Σ∗ ∪ (Σ∗ × Σ∗)) → D. Intuitively, TE(x, e) computes the
entry value at row (state) x and column (experiment) e of an observation table
in table-based learning algorithms. The labels of nodes in the classification tree
T satisfy the follow invariants: Let t ∈ T be a terminal node labeled with a
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state x = Ln(t). Let t′ ∈ I be an ancestor node of t labeled with an experiment
e = Ln(t′). Then the child of t′ following the label TE(x, e), i.e., Le(t′,TE(x, e)),
is either the node t or an ancestor node of t.

Leading Tree T : The leading tree T for M is a binary tree with labels D =
{F,T}. The tree experiment function TE(u, (x, y)) = T iff uxyω ∈ L (recall the
definition of �L in Sect. 2) where u, x, y ∈ Σ∗. Intuitively, each internal node
n in T is labeled by an experiment xyω represented as (x, y). For any word
u ∈ Σ∗, uxyω ∈ L (or uxyω /∈ L) implies that the equivalence class of u lies in
the T-subtree (or F-subtree) of n.

Progress Tree Tu: The progress trees Tu and the corresponding function
TE(x, e) are defined based on the right congruences ≈u

P , ≈u
S , and ≈u

R of canon-
ical FDFAs in Definition 2.
Periodic FDFA: The progress tree for periodic FDFA is also a binary tree
labeled with D = {F,T}. The experiment function TE(x, e) = T iff u(xe)ω ∈ L
where x, e ∈ Σ∗.
Syntactic FDFA: The progress tree for syntactic FDFA is a K-ary tree with
labels D = Q × {A,B,C} where Q is the set of states in the leading automaton
M . For all x, e ∈ Σ∗, the experiment function TE(x, e) = (M(ux), t), where
t = A iff u = M(uxe) ∧ u(xe)ω ∈ L, t = B iff u = M(uxe) ∧ u(xe)ω �∈ L, and
t = C iff u �= M(uxe).

For example, assuming that M is constructed from the right congruence
�L, for any two states x and y such that TE(x, e) = TE(y, e) = (z,A), it
must be the case that ux �L uy because M(ux) = z = M(uy). Moreover, the
experiment e cannot distinguish x and y because uxe �L u �L uye and both
u(xe)ω, u(ye)ω ∈ L.
Recurrent FDFA: The progress tree for recurrent FDFA is a binary tree labeled
with D = {F,T}. The function TE(x, e) = T iff u(xe)ω ∈ L∧u = M(uxe) where
x, e ∈ Σ∗.

5.2 Tree-Based Learning Algorithm

The tree-based learning algorithm first initializes the leading tree T and the
progress tree Tε as a tree with only one terminal node r labeled by ε.

From a classification tree T = (N, r, Ln, Le), the learner constructs a can-
didate of a leading automaton M = (Σ,Q, ε, δ) or a progress automaton
Au = (Σ,Q, ε, δ, F ) as follow. The set of states is Q = {Ln(t) | t ∈ T}. Given
s ∈ Q and a ∈ Σ, the transition function δ(s, a) is constructed by the fol-
lowing procedure. Initially the current node n := r. If n is a terminal node,
it returns δ(s, a) = Ln(n). Otherwise, it picks a unique child n′ of n with
Le(n,TE(sa, Ln(n))) = n′, updates the current node to n′, and repeats the
procedure1. By Definition 2, the set of accepting states F of a progress automa-
ton can be identified from the structure of M with the help of membership
1 For syntactic FDFA, it can happen that δ(s, a) goes to a “new” terminal node. A

new state for the FDFA is identified in such a case.
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queries. For periodic FDFA, F = {v | uvω ∈ L, v ∈ Q} and for syntactic and
recurrent FDFA, F = {v | uv �M u, uvω ∈ L, v ∈ Q}.

Whenever the learner has constructed an FDFA F = (M, {Au}), it will pose
an equivalence query for F . If the teacher returns “no” and a counterexam-
ple (u, v), the learner has to refine the classification tree and propose another
candidate of FDFA.

Definition 3 (Counterexample for FDFA Learner). Given the conjectured
FDFA F and the target language L, we say that the counterexample

– (u, v) is positive if uv �M u, uvω ∈ UP(L), and (u, v) is not accepted by F ,
– (u, v) is negative if uv �M u, uvω �∈ UP(L), and (u, v) is accepted by F .

We remark that in our case all counterexamples (u, v) from the FDFA teacher
satisfy the constraint uv �M u, which corresponds to the normalized factoriza-
tion form in [10].

Counterexample Guided Refinement of F : Below we show how to refine the
classification trees based on a negative counterexample (u, v). The case of a posi-
tive counterexample is symmetric. By definition, we have uv ∼M u, uvω /∈ UP(L)
and (u, v) is accepted by F . Let ũ = M(u), if ũvω ∈ UP(L), the refinement of
the leading tree is performed, otherwise ũvω /∈ UP(L), the refinement of the
progress tree is performed.

Refinement for the Leading Tree: In the leading automaton M of the
conjectured FDFA, if a state p has a transition to a state q via a letter a,
i.e., q = M(pa), then pa has been assigned to the terminal node labeled by
q during the construction of M . If one also finds an experiment e such that
TE(q, e) �= TE(pa, e), then we know that q and pa should not belong to the
same state in a leading automaton. W.l.o.g., we assume TE(q, e) = F. In such a
case, the leading tree can be refined by replacing the terminal node labeled with
q by a tree such that (i) its root is labeled by e, (ii) its left child is a terminal
node labeled by q, and (iii) its right child is a terminal node labeled by pa.

Below we discuss how to extract the required states p, q and experiment e. Let
|u| = n and s0s1 · · · sn be the run of M over u. Note that s0 = M(ε) = ε and sn =
M(u) = ũ. From the facts that (u, v) is a negative counterexample and ũvω ∈
UP(L) (the condition to refine the leading tree), we have TE(s0, (u[1 · · · n], v)) =
F �= T = TE(sn, (ε, v)) = TE(sn, (u[n + 1 · · · n], v)) because uvω /∈ UP(L)
and ũvω ∈ UP(L). Recall that we have w[j · · · k] = ε when j > k. Therefore,
there must exist a smallest j ∈ [1 · · · n] such that TE(sj−1, (u[j · · · n], v)) �=
TE(sj , (u[j + 1 · · · n], v)). It follows that we can use the experiment e = (u[j +
1 · · · n], v) to distinguish q = sj and pa = sj−1u[j].

Example 1. Consider a conjectured FDFA F in Fig. 1 produced during the
process of learning L = aω + bω. The corresponding leading tree T and the
progress tree Tε are depicted on the left of Fig. 3. The dashed line is for the F
label and the solid one is for the T label. Suppose the FDFA teacher returns
a negative counterexample (ab, b). The leading tree has to be refined since
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M(ab)bω = bω ∈ L. We find an experiment (b, b) to differentiate ε and a using the
procedure above and update the leading tree T to T ′. The leading automaton
M constructed from T ′ is depicted on the right of Fig. 3.

Fig. 3. Refinement of the leading tree and the corresponding leading automaton

Refinement for the Progress Tree: Here we explain the case of periodic
FDFAs. The other cases are similar and we leave the details in [32]. Recall
that ũvω /∈ UP(L) and thus the algorithm refines the progress tree Tũ. Let
|v| = n and h = s0s1 · · · sn be the corresponding run of Aũ over v. Note that
s0 = Aũ(ε) = ε and sn = Aũ(v) = ṽ. We have ũ(ṽ)ω ∈ UP(L) because ṽ is an
accepting state. From the facts that ũvω /∈ UP(L) and ũ(ṽ)ω ∈ UP(L), we have
TE(s0, v[1 · · · n]) = F �= T = TE(sn, ε) = TE(sn, v[n+1 · · · n]). Therefore, there
must exist a smallest j ∈ [1 · · · n] such that TE(sj−1, v[j · · · n]) �= TE(sj , v[j +
1 · · · n]). It follows that we can use the experiment e = v[j+1 · · · n] to distinguish
q = sj , pa = sj−1v[j] and refine the progress tree Tũ.

Optimization: Example 1 also illustrates the fact that the counterexample
(ab, b) may not be eliminated right away after the refinement. In this case,
it is still a valid counterexample (assuming that the progress tree Tε remains
unchanged). Thus as an optimization in our tool, one can repeatedly use the
counterexample until it is eliminated.

6 From FDFA to Büchi Automata

Fig. 4. An FDFA F such that
UP(F) does not characterize an ω-
regular language

Since the FDFA teacher exploits the BA
teacher for answering equivalence queries, it
needs first to convert the given FDFA into a
BA. Unfortunately, with the following exam-
ple, we show that in general, it is impossible
to construct a precise BA B for an FDFA
F such that UP(L(B)) = UP(F).

Example 2. Consider a non-canonical FDFA
F in Fig. 4, we have UP(F) =

⋃∞
n=0{a, b}∗ ·

(abn)ω. We assume that UP(F) characterizes an ω-regular language L. It is
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known that the periodic FDFA recognizes exactly the ω-regular language and
the index of each right congruence is finite [10]. However, we can show that the
right congruence ≈ε

P of a periodic FDFA of L is of infinite index. Observe that
abk �≈ε

P abj for any k, j ≥ 1 and k �= j, because ε · (abk · abk)ω ∈ UP(F) and
ε · (abj ·abk)ω /∈ UP(F). It follows that ≈ε

P is of infinite index. We conclude that
UP(F) cannot characterize an ω-regular language.

We circumvent the above problem by proposing two BAs B,B, which under-
and over-approximate the ultimately periodic words of an FDFA. Given an
FDFA F = (M, {Au}) with M = (Σ,Q, q0, δ) and Au = (Σ,Qu, su, δu, Fu) for
all u ∈ Q, we define Ms

v = (Σ,Q, s, δ, {v}) and (Au)s
v = (Σ,Qu, s, δu, {v}), i.e.,

the DFA obtained from M and Au by setting their initial and accepting states
as s and {v}, respectively. Define N(u,v) = {vω | uv �M u ∧ v ∈ L((Au)su

v )}.
Then UP(F) =

⋃
u∈Q,v∈Fu

L(Mq0
u ) · N(u,v).

We construct B and B by approximating the set N(u,v). For B, we first define
an FA P (u,v) = (Σ,Qu,v, su,v, {fu,v}, δu,v) = Mu

u × (Au)su
v and let N (u,v) =

L(P (u,v))ω. Then one can construct a BA (Σ,Qu,v ∪ {f}, su,v, {f}, δu,v ∪ δf )
recognizing N (u,v) where f is a “fresh” state and δf = {(f, ε, su,v), (fu,v, ε, f)}.
For B, we define an FA P (u,v) = Mu

u × (Au)su
v × (Au)v

v and let N (u,v) =
L(P (u,v))

ω. One can construct a BA recognizing N (u,v) using a similar con-
struction to the case of N (u,v). In Definition 4 we show how to construct
BAs B and B s.t. UP(L(B)) =

⋃
u∈Q,v∈Fu

L(Mq0
u ) · N (u,v) and UP(L(B)) =⋃

u∈Q,v∈Fu
L(Mq0

u ) · N (u,v).

Definition 4. Let F = (M, {Au}) be an FDFA where M = (Σ,Q, q0, δ) and
Au = (Σ,Qu, su, Fu, δu) for every u ∈ Q. Let (Σ,Qu,v, su,v, {fu,v}, δu,v) be a
BA recognizing N (u,v) (respectively N (u,v)). Then the BA B (respectively B) is
defined as the tuple
⎛
⎝Σ, Q ∪

⋃
u∈Q,v∈Fu

Qu,v , q0,
⋃

u∈Q,v∈Fu

{fu,v}, δ ∪
⋃

u∈Q,v∈Fu

δu,v ∪
⋃

u∈Q,v∈Fu

{(u, ε, su,v)}
⎞
⎠ .

Lemma 3 (Sizes and Languages of B and B). Let F be an FDFA and B,
B be the BAs constructed from F by Definition 4. Let n and k be the numbers
of states in the leading automaton and the largest progress automaton of F .
The number of states of B and B are in O(n2k3) and O(n2k2), respectively.
Moreover, UP(L(B)) ⊆ UP(F) ⊆ UP(L(B)) and we have UP(L(B)) = UP(F)
when F is a canonical FDFA.

The properties below will be used later in analyzing counterexamples.

Lemma 4. Given an FDFA F = (M, {Au}), and B the BA constructed from
F by Definition 4. If (u, vk) is accepted by F for every k ≥ 1, then uvω ∈
UP(L(B)).

Lemma 5. Given an ω-word w ∈ UP(L(B)), there exists a decomposition (u, v)
of w and n ≥ 1 such that v = v1 · v2 · · · vn and for all i ∈ [1 · · · n], vi ∈ L(AM(u))
and uvi �M u.
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Fig. 5. NBA B and B for F in Fig. 1

Figure 5 depicts the BAs B and B constructed from the FDFA F in Fig. 1.
In the example, we can see that the bω ∈ UP(F) while bω /∈ UP(L(B)).

7 Counterexample Analysis for FDFA Teacher

During the learning procedure, if we failed the equivalence query for the BA B,
the BA teacher will return a counterexample uvω to the FDFA teacher.

Definition 5 (Counterexample for the FDFA Teacher). Given the con-
jectured BA B ∈ {B,B}, the target language L, we say that

– uvω is a positive counterexample if uvω ∈ UP(L) and uvω �∈ UP(L(B)),
– uvω is a negative counterexample if uvω �∈ UP(L) and uvω ∈ UP(L(B)).

Obviously, the above is different to the counterexample for the FDFA learner
in Definition 3. Below we illustrate the necessity of the counterexample analysis
by an example.

Example 3. Again, consider the conjectured FDFA F depicted in Fig. 1 for L =
aω + bω. Suppose the BA teacher returns a negative counterexample (ba)ω. In
order to remove (ba)ω ∈ UP(F), one has to find a decomposition of (ba)ω that F
accepts, which is the goal of the counterexample analysis. Not all decompositions
of (ba)ω are accepted by F . For instance, (ba, ba) is accepted while (bab, ab) is
not.

A positive (respectively negative) counterexample uvω for the FDFA teacher
is spurious if uvω ∈ UP(F) (respectively uvω �∈ UP(F)). Suppose we use
the under-approximation method to construct the BA B from F depicted in
Fig. 5. The BA teacher returns a spurious positive counterexample bω, which is
in UP(F) but not in UP(L(B)). We show later that in such a case, one can
always find a decomposition, in this example (b, bb), as the counterexample for
the FDFA learner.

Given FDFA F = (M, {Au}), in order to analyze the counterexample uvω,
we define:
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Fig. 6. The Case for Counterexample Analysis

– an FA Du$v with L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, uvω = u′v′ω},
– an FA D1 with L(D1) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv �M u, v ∈ L(AM(u))}, and
– an FA D2 with L(D2) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv �M u, v /∈ L(AM(u))}.

Here $ is a letter not in Σ. Intuitively, Du$v accepts every possible decomposition
(u′, v′) of uvω, D1 recognizes every decomposition (u′, v′) which is accepted by
F and D2 accepts every decomposition (u′, v′) which is not accepted by F yet
u′v′ �M u′.

Given a BA B constructed by the under-approximation method to construct
a BA B from F , we have that UP(L(B)) ⊆ UP(F). Figure 6(a) depicts all
possible cases of uvω ∈ UP(L(B)) ⊕ UP(L).

U1: uvω ∈ UP(L) ∧ uvω /∈ UP(F) (square). The word uvω is a positive coun-
terexample, one has to find a decomposition (u′, v′) such that u′v′ �M u′

and u′v′ω = uvω. This can be easily done by taking a word u′$v′ ∈
L(Du$v) ∩ L(D2).

U2: uvω /∈ UP(L) ∧ uvω ∈ UP(F) (circle). The word uvω is a negative coun-
terexample, one needs to find a decomposition (u′, v′) of uvω that is accepted
by F . This can be done by taking a word u′$v′ ∈ L(Du$v) ∩ L(D1).

U3: uvω ∈ UP(L)∧uvω ∈ UP(F) (triangle). The word uvω is a spurious positive
counterexample. Suppose the decomposition (u, v) of uvω is accepted by F ,
according to Lemma 4, there must exist some k ≥ 1 such that (u, vk) is
not accepted by F . Thus, we can also use the same method in U1 to get a
counterexample (u′, v′).

We can also use the over-approximation construction to get a BA B from
F such that UP(F) ⊆ UP(L(B)), and all possible cases for a counterexample
uvω ∈ UP(L(B)) ⊕ UP(L) is depicted in Fig. 6(b).

O1: uvω ∈ UP(L) ∧ uvω /∈ UP(F) (square). The word uvω is a positive coun-
terexample that can be dealt with the same method for case U1.

O2: uvω /∈ UP(L) ∧ uvω ∈ UP(F) (circle). The word uvω is a negative coun-
terexample that can be dealt with the same method for case U2.

O3: uvω /∈ UP(L) ∧ uvω /∈ UP(F) (triangle). In this case, uvω is a spurious neg-
ative counterexample. In such a case it is possible that we cannot find a valid
decomposition of uvω to refine F . By Lemma 5, we can find a decomposition
(u′, v′) of uvω such that v′ = v1v2 · · · vn, u′vi �M u′, and vi ∈ L(AM(u′))
for some n ≥ 1. It follows that (u′, vi) is accepted by F . If we find some
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i ∈ [1 · · · n] such that u′vω
i /∈ UP(L), then we return (u′, vi), otherwise, the

algorithm aborts with an error.

Finally, we note that determining whether uvω ∈ UP(L) can be done by
posing a membership query MemBA(uvω), and checking whether uvω ∈ UP(F)
boils down to checking the emptiness of L(Du$v) ∩ L(D1). The construction for
Du$v, D1, and D2, and the correctness proof of counterexample analysis are given
in [32].

8 Complexity

We discuss the complexity of tree-based FDFA learning algorithms in Sect. 5.
Let F = (M, {Au}) be the corresponding periodic FDFA of the ω-regular lan-
guage L, and let n be the number of states in the leading automaton M and
k be the number of states in the largest progress automaton Au. We remark
that F is uniquely defined for L and the table-based algorithm needs the same
amount of equivalence queries as the tree-based one in the worst case. Given a
counterexample (u, v) returned from the FDFA teacher, we define its length as
|u| + |v|.
Theorem 2 (Query Complexity). Let (u, v) be the longest counterexample
returned from the FDFA teacher. The number of equivalence queries needed for
the tree-based FDFA learning algorithm to learn the periodic FDFA of L is in
O(n+nk), while the number of membership queries is in O((n+nk) · (|u|+ |v|+
(n + k) · |Σ|)).

For the syntactic and recurrent FDFAs, the number of equivalence queries
needed for the tree-based FDFA learning algorithm is in O(n + n3k), while the
number of membership queries is in O((n + n3k) · (|u| + |v| + (n + nk) · |Σ|)).

The learning of syntactic and recurrent FDFAs requires more queries since
once their leading automata have been modified, they need to redo the learning
of all progress automata from scratch.

Theorem 3 (Space Complexity). For all tree-based algorithms, the space
required to learn the leading automaton is in O(n). For learning periodic FDFA,
the space required for each progress automaton is in O(k), while for syntactic and
recurrent FDFAs, the space required is in O(nk). For all table-based algorithms,
the space required to learn the leading automaton is in O((n + n · |Σ|) · n). For
learning periodic FDFA, the space required for each progress automaton is in
O((k + k · |Σ|) · k), while for syntactic and recurrent FDFAs, the space required
is in O((nk + nk · |Σ|) · nk).

Theorem 4 (Correctness and Termination). The BA learning algorithm
based on the under-approximation method always terminates and returns a BA
recognizing the unknown ω-regular language L in polynomial time. If the BA
learning algorithm based on the over-approximation method terminates without
reporting an error, it returns a BA recognizing L.
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Given a canonical FDFA F , the under-approximation method produces a
BA B such that UP(F) = UP(L(B)), thus in the worst case, FDFA learner
learns a canonical FDFA and terminates. In practice, the algorithm very often
finds a BA recognizing L before converging to a canonical FDFA.

9 Experimental Results

The ROLL library (http://iscasmc.ios.ac.cn/roll) is implemented in JAVA. The
DFA operations in ROLL are delegated to the dk.brics.automaton package, and
we use the RABIT tool [2,3] to check the equivalence of two BAs. We evaluate
the performance of ROLL using the smallest BAs corresponding to all the 295
LTL specifications available in BüchiStore [38], where the numbers of states in
the BAs range over 1 to 17 and transitions range over 0 to 123. The machine we
used for the experiments is a 2.5 GHz Intel Core i7-6500 with 4 GB RAM. We
set the timeout period to 30 min.

The overall experimental results are given in Table 1. In this section, we use
L$ to denote the ω-regular learning algorithm in [20], and LPeriodic, LSyntactic,
and LRecurrent to represent the periodic, syntactic, and recurrent FDFA learning
algorithm introduced in Sects. 4 and 5. From the table, we can find the follow-
ing facts: (1) The BAs learned from L$ have more states but fewer transitions
than their FDFA based counterpart. (2) LPeriodic uses fewer membership queries
comparing to LSyntactic and LRecurrent. The reason is that LSyntactic and LRecurrent

need to restart the learning of all progress automata from scratch when the lead-
ing automaton has been modified. (3) Tree-based algorithms always solve more
learning tasks than their table-based counterpart. In particular, the tree-based
LSyntactic with the under-approximation method solves all 295 learning tasks.

Table 1. Overall experimental results. We show the results of 285 cases where all
algorithms can finish the BA learning within the timeout period and list the number
of cases cannot be solved (#Unsolved). The mark n∗/m denotes that there are n cases
terminate with an error (in the over-approximation method) and it ran out of time
for m − n cases. The rows #St., #Tr., #MQ, and #EQ, are the numbers of states,
transitions, membership queries, and equivalence queries. Timeeq is the time spent in
answering equivalence queries and Timetotal is the total execution time.

Models L$ LPeriodic LSyntactic LRecurrent

Struct. &
Approxi.

Table Tree Table Tree Table Tree Table Tree

Under Over Under Over Under Over Under Over Under Over Under Over

#Unsolved 4 2 3 0/2 2 0/1 1 4*/5 0 3*/3 1 0/1 1 0/1

#St 3078 3078 2481 2468 2526 2417 2591 2591 2274 2274 2382 2382 2400 2400

#Tr 10.6k 10.3k 13.0k 13.0k 13.4k 12.8k 13.6k 13.6k 12.2k 12.2k 12.7k 12.7k 12.8k 12.8k

#MQ 105k 114k 86k 85k 69k 67k 236k 238k 139k 139k 124k 124k 126k 126k

#EQ 1281 2024 1382 1351 1950 1918 1399 1394 2805 2786 1430 1421 3037 3037

Timeeq (s) 146 817 580 92 186 159 111 115 89 91 149 149 462 465

Timetotal (s) 183 861 610 114 213 186 140 144 118 120 175 176 499 501

EQ (%) 79.8 94.9 95.1 80.7 87.3 85.5 79.3 79.9 75.4 75.8 85.1 84.6 92.6 92.8

http://iscasmc.ios.ac.cn/roll
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Fig. 7. Growth of state counts in BA.

In the experiment, we observe
that table-based L$ has 4 cases can-
not be finished within the timeout
period, which is the largest number
amount all learning algorithms2. We
found that for these 4 cases, the
average time required for L$ to
get an equivalence query result is
much longer than the FDFA algo-
rithms. Under scrutiny, we found
that the growth rate of the size
(number of states) of the conjec-
tured BAs generated by table-based
L$ is much faster than that of table-
based FDFA learning algorithms.

In Fig. 7, we illustrate the growth rate of the size (number of states) of the
BAs generated by each table-based learning algorithm using one learning task
that cannot be solved by L$ within the timeout period. The figures of the other
three learning tasks show the same trend and hence are omitted. Another inter-
esting observation is that the sizes of BAs generated by LSyntactic can decrease in
some iteration because the leading automaton is refined and thus the algorithms
have to redo the learning of all progress automata from scratch.

It is a bit surprise to us that, in our experiment, the size of BAs B produced by
the over-approximation method is not much smaller than the BAs B produced by
the under-approximation method. Recall that the progress automata of B comes
from the product of three DFAs Mu

u × (Au)su
v × (Au)v

v while those for B comes
from the product of only two DFAs Mu

u × (Au)su
v (Sect. 6). We found the reason

is that very often the language of the product of three DFAs is equivalent to the
language of the product of two DFAs, thus we get the same DFA after applying
DFA minimizations. Nevertheless, the over-approximation method is still helpful
for LPeriodic and LRecurrent. For LPeriodic, the over-approximation method solved
more learning tasks than the under-approximation method. For LRecurrent, the
over-approximation method solved one tough learning task that is not solved by
the under-approximation method.

As we mentioned at the end of Sect. 5.2, a possible optimization is to reuse
the counterexample and to avoid equivalence query as much as possible. The
optimization helps the learning algorithms to solve nine more cases that were
not solved before.

10 Discussion and Future Works

Regarding our experiments, the BAs from LTL specifications are in general
simple; the average sizes of the learned BAs are around 10 states. From our
2 Most of the unsolved tasks using the over-approximation method are caused by the

situation that the FDFA teacher cannot find a valid counterexample for refinement.
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experience of applying DFA learning algorithms, the performance of tree-based
algorithm is significantly better than the table-based one when the number of
states of the learned DFA is large, say more than 1000. We believe this will also
apply to the case of BA learning. Nevertheless, in our current experiments, most
of the time is spent in answering equivalence queries. One possible direction to
improve the scale of the experiment is to use a PAC (probably approximately
correct) BA teacher [8] instead of an exact one, so the equivalence queries can
be answered faster because the BA equivalence testing will be replaced with a
bunch of BA membership testings.

There are several avenues for future works. We believe the algorithm and
library of learning BAs should be an interesting tool for the community because
it enables the possibility of many applications. For the next step, we will inves-
tigate the possibility of applying BA learning to the problem of reactive system
synthesis, which is known to be a very difficult problem and learning-based app-
roach has not been tried yet.
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Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). doi:10.1007/978-3-319-21690-4 32

30. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

31. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, pp. 81–92 (2001)

32. Li, Y., Chen, Y., Zhang, L., Liu, D.: A novel learning algorithm for Büchi automata
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Abstract. Classical network-formation games (NFGs) are played on
directed graphs, and are used in network design and analysis. Edges
in the network are associated with costs and players have reachability
objectives, which they try to fulfill at a minimal cost. When several play-
ers use the same edge, they share its cost. The theoretical and practical
aspects of NFGs have been extensively studied and are well understood.
All studies of NFGs, however, consider an explicit representation of the
network. In practice, networks are often built in a hierarchical manner.
Technically, some of the vertices in the network are boxes, associated with
nested sub-networks, where a sub-network may be “called” by several
boxes in the network. This makes hierarchical networks exponentially
more succinct than traditional “flat” networks.

We introduce hierarchical network formation games (HNFGs) and
study theoretical and practical aspects of the hierarchical setting. Differ-
ent applications call for different cost-sharing mechanisms, which define
how edge-formation costs are shared by their users. Indeed, in some appli-
cations, cost sharing should refer to the flat expansion of the network
and in some it should take into account the hierarchical structure of the
network. We study properties of HNFGs like stability and equilibrium
inefficiency in the different mechanisms. We also study computational
aspects of HNFGs, where the principal question is whether their exponen-
tial succinctness with respect to NFGs leads to an exponential increase
in the complexity of reasoning about them. This question is analogous
to research done in the formal-verification community about the ability
to model-check hierarchical systems in their succinct presentation. We
show that the picture is diverse and depends on the mechanism applied.

1 Introduction

Network design is a fundamental well-studied problem. A game-theoretic app-
roach to network design has become especially relevant with the emergence of
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the Internet, where different users share resources like software or communi-
cation channels [1,7,18,21]. In network-formation games (NFGs, for short) [7],
the network is modeled by a weighted directed graph. The weight of an edge
indicates the cost of activating the transition it models, which is independent of
the number of times the edge is used. Players have reachability objectives, each
given by a source and a target vertex. A strategy for a player is a path from the
source to the target. Under the common fair cost-sharing mechanism, the cost
of an edge is shared evenly by the players that use it.

Since the players attempt to minimize their own costs, rather than to optimize
some global objective, they selfishly select a path instead of being assigned one
by a central authority. The focus in game theory is on the stable outcomes of a
given setting. The most prominent stability concept is that of a Nash equilibrium
(NE): a profile (vector of strategies, one for each player) such that no player
can decrease his cost by unilaterally deviating from his current strategy; that is,
assuming that the strategies of the other players do not change.1 A best-response
(BR) for a player is a move that results in a profile with a reduced cost for the
player. Thus, an NE can be viewed as a profile in which no player has a BR
move. A social optimum (SO) is a profile that minimizes the total cost of the
edges used by all players; thus the one obtained when the players obey some
centralized authority.

Research on NFGs involves conceptual questions about them, like the exis-
tence of an NE or an analysis of equilibrium inefficiency. It is well known that
decentralized decision-making may lead to solutions that are sub-optimal from
the point of view of society as a whole. The inefficiency incurred due to selfish
behavior is reflected in the price of stability (PoS) [7], namely the ratio between
the costs of the best NE and the SO, and the price of anarchy (PoA) [26,33],
namely the ratio between the costs of the worst NE and the SO. Research also
concerns computational problems, like finding an SO, BR moves, and an NE.
In NFGs, the picture is well understood. Every NFG has an NE; In a k-player
game, the PoS and PoA are O(log k) and k, respectively; the problem of finding
an SO is NP-complete, a single best-response move can be found in polynomial
time; and the problem of finding an NE is PLS-complete [24,31,37].

To the best of our knowledge, all studies of NFGs consider an explicit repre-
sentation of the network: it is given by means of its underlying weighted graph,
and reasoning about it involves algorithms applied to explicitly-represented
graphs. In practice, however, networks are often structured and given in some
succinct presentation. This calls for a fresh examination of NFGs. First, the
source for the succinctness may require new and more suitable cost-sharing mech-
anisms. In addition, the computational aspects of NFGs should be examined in
terms of their succinct presentation.

In this paper we introduce and study hierarchical network formation games
(HNFGs). Essentially, HNFGs are NFGs in which some of the vertices in the

1 Throughout this paper, we consider pure strategies, as is the case for the vast lit-
erature on cost-sharing games. Unlike mixed strategies, pure strategies may not be
random, or drawn from a distribution.
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network may “call” (that is, be substituted by) nested sub-networks. Since a
sub-network may be called by several vertices in the network, an HNFG may be
exponentially more succinct than the NFG obtained by its “flattening”.

Before we describe HNFGs and the challenges they bring with them in more
detail, let us survey briefly the analogous research in model checking, where the
study of succinct presentations and symbolic algorithms is a major research area.
In model checking, we verify that a system meets its specification by translating
the system to a finite state machine (FSM), translating the specification to a
temporal-logic formula, and checking that the FSM satisfies the formula [17].
The translation of a high-level description of a system to an FSM involves a
blow-up, and the size of the FSM is typically the computational bottleneck in
model-checking algorithms. There are several sources of the blow-up that the
translation of systems to FSMs involves. One is the ability of components in
the system to work in parallel and communicate with each other, possibly using
variables [19,20,34]. Another source has to do with the ability of a high-level
description of a system to reuse the same component in different contexts (say,
by calling a procedure). Researchers have studied hierarchical FSMs, in which
some of the states of the FSM are boxes, which correspond to nested FSMs.
The naive approach to model checking such systems is to “flatten” them. This,
however, may involve an exponential blow up in the state space. In [5], it is shown
that for LTL model checking, one can avoid this blow-up altogether, whereas for
CTL, one can trade it for an exponential blow-up in the (often much smaller) size
of the formula and the maximal number of exits of sub-structures. Likewise, it is
shown in [6] that hierarchical parity games can be solved in PSPACE, also leading
to a PSPACE model checking algorithm for the μ-calculus. In other words, while
hierarchical FSMs are exponentially more succinct than flat FSMs [4], in many
cases the complexity of the model-checking problem is not exponentially higher
in the hierarchical setting. Thus, there is clear motivation not to flatten the FSM
before model checking it. The hierarchical setting is appealing in the context of
network design, as many networks are structured in a hierarchical manner.2 In
addition, understanding which types of problems can be solved in the hierarchical
setting is of general interest to the formal-verification community.

The fact that box-vertices may be “called” by several vertices in the net-
work motivates new cost-sharing mechanisms – ones that take the hierarchy into
account when defining how edge-formation costs are shared by their users. We
suggest three different cost-sharing mechanisms. In the flat mechanism, the hier-
archical structure is flattened and the costs refer to the resulting network. The
flat mechanism corresponds to the traditional setting of NFGs, and is suitable

2 We note that different types of hierarchies, mainly ones that refer to a partition
of the network to levels, have already been studied. In particular, in [35,36], it is
shown how these levels induce a hierarchical game (also termed “hierarchical NFG”,
but with the adjective “hierarchical” describing the game rather than the network),
leading to a clever decomposition of the game. Our notion of hierarchy is different
and refers to nesting of sub-networks. In particular, in earlier work there is no notion
of a flat extension, which is the key issue in our games.
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in applications in which the traversal of edges corresponds to the utilization of
consumable resources. For example, when the network models a hardware design
that is built from a library of components, or when the network models a com-
munication system in which local routing is performed by local networks that
are composed into a global one. In the hierarchical approach, the cost of forming
an edge in a sub-network is charged only once, regardless of the number of times
it is used in different calls. The hierarchical approach is suitable in applications
in which the traversal of edges corresponds to the utilization of non-consumable
resources. Thus, repeated calls to a resource do not require its re-formation.
For example, when the network models a software design that is built from a
library of procedures and functions. The emergence of the OOP programming
paradigm makes the hierarchical approach common [27,30]. In this approach, we
study both a uniform hierarchical (UH) cost-sharing mechanism, where all play-
ers that use an edge share its cost evenly, and a proportional hierarchical (PH)
cost-sharing mechanism, where the cost of an edge is shared among its users in
proportion to their demand: each player may use each sub-network a different
number of times. In the PH mechanism, this number influences the cost of using
the sub-network. Note that the PH mechanism is related to a resource-allocation
game in which players’ strategies are multisets of resources [9,10].

After introducing HNFGs and the possible cost-sharing mechanisms, we
study stability and equilibrium inefficiency in the different mechanisms. In par-
ticular, we show that while in HNFGs with the flat or UH mechanism, an NE
always exists, this is not the case for the PH mechanism. Likewise, while the PoS
and PoA in HNFGs with the flat or UH mechanisms agree with these known for
NFGs, HNFGs with the PH mechanism are less stable, and we prove that their
PoS may be the number of players. Then, we study the computational aspects
of HNFG. The main questions that we answer refer to the ability to reason
about an HNFG without first flattening it, which may involve an exponential
blow-up. This question is analogous to research done in the formal-verification
community about the ability to model-check hierarchical FSMs in their suc-
cinct presentation. We observe that the challenge of efficient reasoning about
HNFGs starts already with a symbolic presentation of strategies. For the UH
and PH mechanisms, we prove that it is sound to restrict attention to homoge-
neous strategies. Intuitively, in such strategies, repeated sub-objectives defined
with respect to nested sub-networks are fulfilled in the same way. We show that
homogeneous strategies can be represented and operated efficiently. This implies
that the problems of finding an SO or a BR move in HNFGs is in NP, and we
show matching lower bounds, already for very restricted classes of HNFGs. For
the flat mechanism, we focus on HNFGs in which each sub-network has a con-
stant number of exit vertices. We show that for such HNFGs, the problems of
finding an SO or an NE are not more complex than these in the non-hierarchical
setting.

Many variants of cost-sharing games have been studied. A generalization of
the network-formation game of [7] in which players are weighted and a player’s
share in an edge cost is proportional to its weight is considered in [16], where it is
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shown that the weighted game does not necessarily have a pure NE. In congestion
games, sharing of a resource increases its cost. Studied variants of congestion
games include settings in which players’ payments depend on the resource they
choose to use, the set of players using this resource, or both [22,28,29,32]. In
some of these variants a pure NE is guaranteed to exist while in others it is not.
The three different ideas behind cost sharing, namely flat, UH, and PH, can be
combined with other games.

We view this work as another chain in an exciting transfer of concepts and
ideas between the areas of game theory and formal verification: logics for specify-
ing multi-agent systems [3,14], studies of equilibria in games related to synthesis
and repair problems [2,12,13,23], an extension of NFGs to objectives that are
richer than reachability [9], studies of non-zero-sum games in formal methods
[11,15], augmentation of the problem of synthesis from component libraries with
costs [8], and more.

2 Preliminaries

2.1 Hierarchical Graphs

A weighted graph is G = 〈V,E, c〉, where V is a set of vertices, E ⊆ V × V is a
set of directed edges, and c : E → IR≥0 is a cost function that maps each edge
to a non-negative cost. When c(e) = 0, we say that e is free. A path in G is a
sequence ρ = e1, e2, . . . , em of adjacent edges in G. For two vertices s, t ∈ V , we
say that ρ is an (s, t)-path if it connects s to t.

A hierarchical graph consists of a vector of subgraphs that together com-
pose a graph. A subgraph may be used several times in the composition. Tech-
nically, this is done via special vertices, called boxes, that are substituted in
the composition by other subgraphs. In order to ensure a finite nesting depth
of substitutions, the subgraphs are indexed, and a box of a graph can only
call (that is, be substituted by) subgraphs with a strictly bigger index. For-
mally, a hierarchical graph is a tuple G = 〈G1, . . . , Gn〉, where each subgraph is
Gj = 〈Vj , Bj , inj ,Exitj , τj , Ej〉, where Vj and Bj are sets of vertices and boxes,
respectively. We assume that Bn = ∅ and that V1, . . . , Vn, B1, . . . , Bn−1 are pair-
wise disjoint. Then, inj ∈ Vj is an entry vertex for Gj , and Exitj ⊆ Vj is a set of
exit vertices for Gj . The function τj : Bj → {j + 1, . . . , n} maps each box of Gj

to an index greater than j. If τj(b) = �, we say that the box b is substituted by
G� in Gj . Finally, Ej is an edge relation. Each edge in Ej is a pair 〈u, v〉 with
source u and target v. The source u is either a vertex of Gj , or a pair (b, x),
where b ∈ Bj and x ∈ Exitτj(b). That is, u may be a box b coupled with an exit
vertex of the subgraph by which b is about to be substituted. The target v is a
vertex or a box of Gj . Formally, Ej ⊆ (Vj ∪(

⋃
b∈Bj

({b}×Exitτj(b))))×(Vj ∪Bj).
The depth of G is the number n of subgraphs. A weighted hierarchical graph is
a hierarchical graph with cost functions cj : Ej → IR≥0 that map the edges in
each subgraph to costs.
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A subgraph without boxes is flat. Every hierarchical graph can be trans-
formed to an equivalent flat graph, referred to as its flat expansion, by recur-
sively substituting each box by a copy of the corresponding subgraph. Formally,
given a hierarchical graph G, we inductively define for each subgraph Gj its flat
expansion Gf

j = 〈V f
j , inj ,Exitj , E

f
j 〉, where V f

j = Vj ∪ (
⋃

b∈Bj
({b} × V f

τj(b)
)).

Note that different boxes in Gj can be substituted by the same subgraph. This
is why we preserve b as an identifier when we substitute it by the flat expansion
of τj(b). The edge relation Ef

j includes the following edges, which we partition
into four classes.

– [Top]: 〈u, v〉 such that u, v ∈ Vj and 〈u, v〉 ∈ Ej ,
– [Call]: 〈u, (b, v)〉 such that u ∈ Vj , v = inτj(b), and 〈u, b〉 ∈ Ej ,
– [Return]: 〈(b, u), v〉 such that u ∈ Exitτj(b), v ∈ Vj , and 〈(b, u), v〉 ∈ Ej , and
– [Internal]: 〈(b, u), (b, v)〉 such that u, v ∈ V f

τj(b)
and 〈u, v〉 ∈ Ef

τj(b)
.

Note that each edge in Ef
j originates from an edge 〈u, v〉 ∈ Ej′ for some

j′ ≥ j. Indeed, in top, call, and return edges, we have that j′ = j, and in internal
edges, we have that j′ is the subgraph from which the edge 〈u, v〉 originates
(recursively) in Ef

τj(b)
. Formally, let E =

⋃
1≤j≤n Ej and Ef =

⋃
1≤j≤n Ef

j .
Then, the function orig : Ef → E is defined recursively as follows. For a top
edge e = 〈u, v〉 or a return edge e = 〈(b, u), v〉, we have orig(e) = e. For a
call edge e = 〈u, (b, v)〉, we have orig(e) = 〈u, b〉. Then, for an internal edge
e = 〈(b, u), (b, v)〉, we have orig(e) = orig(〈u, v〉). The graph Gf

1 is the flat
expansion of G, and we denote it by Gf . For an edge e in Gf , we refer to orig(e)
as the origin of e in Gf . Consider a path ρ = e1, e2, . . . , em in Gf . For a set
π ⊆ E of edges in G, we say that ρ is covered by π if for all 1 ≤ i ≤ m, we have
orig(ei) ∈ π.

A multiset over a set E of elements is a generalization of a subset of E in
which each element may appear more than once. For a multiset π over E and an
element e ∈ E, we use π(e) to denote the number of times e appears in π. For
two multisets π1 and π2, the union of π1 and π2 is the multiset π1 ∪ π2 in which
for all e ∈ E, we have (π1 ∪π2)(e) = π1(e)+π2(e). Then, the difference between
p1 and p2 is the multiset π1 \ π2 in which for all e ∈ E, we have (π1 \ π2)(e) =
max{0, π1(e) − π2(e)}. A multiset π is given as a set of its members, with each
member e followed by a binary (or decimal) encoding of π(e). Accordingly, we
define the length of π by

∑
e∈π log π(e). Consider a path ρ = e1, e2, . . . , em in

Gf and a multiset π over E; that is, π is a multiset of edges in G. We say that ρ
is covered by π if for every edge e ∈ E, the number of edges in ρ whose origin is
e is at most the number of times that e appears in π. Formally, for every e ∈ E,
we have that |{1 ≤ i ≤ m : orig(ei) = e}| ≤ π(e).

Example 1. Figure 1 presents a weighted hierarchical graph G = 〈G1, G2〉 with
τ1(b1) = τ1(b2) = G2. The flat expansion Gf of G appears on the right.

The path ρ = 〈s, (b1, u1)〉, 〈(b1, u1), (b1, u2)〉, 〈(b1, u2), (b1, u4)〉, 〈(b1, u4),
(b2, u1)〉, 〈(b2, u1),(b2, u2)〉, 〈(b2, u2), (b2, u4)〉, 〈(b2, u4), t2〉 in Gf is covered by the
set π = {〈s, b1〉, 〈(b1, u4), b2〉, 〈(b2, u4), t2〉, 〈u1, u2〉, 〈u2, u4〉}. Note that each of
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the edges 〈s, b1〉, 〈(b1, u4), b2〉, and 〈(b2, u4), t2〉 in π serve as the origin of a single
edge in ρ, whereas each of the edges 〈u1, u2〉 and 〈u2, u4〉 serve as the origin of two
edges in ρ. Accordingly, ρ is covered by the multiset π = {〈s, b1〉1, 〈(b1, u4), b2〉1,
〈(b2, u4), t2〉1, 〈u1, u2〉2, 〈u2, u4〉2}.

s

v

t1 t2

b1

b2

G1
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Fig. 1. An example of a hierarchical graph and its flat expansion.

We define the size of a hierarchical graph G by |G| =
∑n

j=1(|Vj | + |Bj |). The
size of its flat expansion, denoted |Gf |, is the number of vertices in |Gf |. Note that
|Gf | =

∑n
j=1(|Vj | +

∑
b∈Bj

|Gf
τj(b)

|). It is not hard to see that the hierarchical
setting is exponentially more succinct. Formally, we have the following.

Observation 1. Flattening a hierarchical graph may involve an exponential
blow up. That is, Gf may be exponentially larger than G. In fact, the exponential
blow-up applies already to the diameter of the graph, and applies even when all
the subgraphs in G have a single exit vertex.

2.2 Network Formation Games

For an integer k ∈ IN, let [k] = {1, . . . , k}. A network-formation game (NFG,
for short) [7] is N = 〈k,G, 〈si, ti〉i∈[k]〉, where k is the number of players, G =
〈V,E, c〉 is a weighted graph, and for each i ∈ [k], the pair 〈si, ti〉 ∈ V × V
describes the objective of Player i, namely forming a path from his source vertex
si to his target vertex ti.

A strategy of a player i ∈ [k] is a path from si to ti. A profile in N is a tuple
P = 〈π1, . . . , πk〉 of strategies for the players. That is, for 1 ≤ i ≤ k, we have
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that πi is a path from si to ti. Consider a profile P = 〈π1, . . . , πk〉. Recall that
c maps each edge to a cost, intuitively standing for the cost of its formation.
The players aim at fulfilling their objective with minimal cost. Since all costs
are positive, we can restrict attention to strategies in which the paths chosen
by the players are simple. Then, we can also ignore the order between edges in
the paths and assume that for all i ∈ [k], we have that πi ⊆ E is a set of edges
that compose a path from si to ti. For an edge e ∈ E, we denote the number of
players that use e in P by loadP (e). Formally, loadP (e) = |{i : e ∈ πi}|. Players
that share an edge also share its formation cost. Thus, the cost of Player i in
the profile P is cost i(P ) =

∑
e∈πi

c(e)
loadP (e) . Finally, the cost of a profile P is

the sum of the costs of all the players in P . Thus, cost(P ) =
∑

i∈[k] cost i(P ).
Note that cost(P ) is equal to the sum of costs of edges that participate in some
strategy in P .

For a profile P and a strategy π of player i ∈ [k], let [P−i, π] denote the profile
obtained from P by replacing the strategy for Player i by π. For two strategies
πi and π′

i of Player i, we say that πi is dominated by π′
i, if for every profile P in

which Player i uses πi, we have that cost i([P−i, π
′
i]) ≤ cost i(P ). A best response

(BR) for Player i is a strategy πi that minimizes cost i([P−i, πi]). A profile P
is said to be a (pure) Nash equilibrium (NE) if none of the players in [k] can
benefit from an unilateral deviation from his strategy in P to another strategy.
In other words, for every player i and every strategy π that Player i can deviate
to from his current strategy in P , it holds that cost i([P−i, π]) ≥ cost i(P ). The
set of NEs of the game N is denoted by Γ (N ).

A social optimum (SO) of a game N is a profile that attains the lowest cost.
We denote by OPT (N ) the cost of an SO profile; i.e., OPT (N ) = minP cost(P ).
A social optimum may be achieved by a centralized authority and need not be a
NE. The following parameters measure the inefficiency caused as a result of the
selfish interests of the players. First, the price of stability (PoS) [7] of an NFG N
is the ratio between the minimal cost of an NE and the cost of a social optimum of
N . That is, PoS(N ) = minP∈Γ (N ) cost(P )/OPT (N ). Then, the price of anarchy
(PoA) [33] of N is the ratio between the maximal cost of an NE and the cost of
the social optimum of N . That is, PoA(N ) = maxP∈Γ (N ) cost(P )/OPT (N ).

2.3 Hierarchical Network Formation Games

A hierarchical network-formation game (HNFG, for short) N = 〈k,G, 〈si,
ti〉i∈[k]〉, is similar to an NFG, except that the underlying graph is hierarchical.
The objective of Player i is to form a path from si to ti in the flat expansion of
G. We assume that the objectives of all players are in {in1}×Exit1, for the entry
vertex in1 and the set Exit1 of exit vertices in the “outer” subgraph G1. While
this strictly restricts the class of games, it is very easy to extend our results to
a setting in which the objectives involve arbitrary vertices in G. Essentially, our
algorithms proceed from the innermost sub-graph Gn to G1. The assumption
above saves a special treatment for G1.

We introduce and study three cost-sharing mechanisms for HNFGs.
Consider an HNFG N = 〈k,G, 〈si, ti〉i∈[k]〉. Let G = 〈G1, . . . , Gn〉, with
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Gj = 〈Vj , Bj , inj ,Exitj , τj , Ej , cj〉. Also, let N f = 〈k,Gf , 〈si, ti〉i∈[k]〉 be the
NFG obtained from N by replacing G by its flat expansion.

The Flat Cost-Sharing Mechanism. In the flat cost-sharing mechanism
(Flat-mechanism, for short), the strategies and the costs of the players are defined
with respect to N f . Thus, the only affect of the hierarchical structure in the flat
approach is its succinctness. The flat mechanism fits settings in which the traver-
sal of edges corresponds to the formation of physical channels or the utilization
of consumable resources. For example, when the network models a hardware
design that should be built from a library of components.

Consider, for example, the graph G = 〈G1, G2〉 in Fig. 1. Let N =
〈2,G, {〈s, t1〉, 〈s, t2〉}〉. Then, the game is played on the flat graph Gf on the
right. Consider the profile P = 〈π1, π2〉 in which Player 1 takes the path that
traverses both boxes and in both calls to G2 takes the u3 exit, and Player 2
takes the path that traverses both boxes and in both calls to G2 takes the
u4 exit. Then, the players share the edges 〈s, (b1, u1)〉, 〈(b1, u1), (b1, u2)〉, and
〈(b2, u1), (b2, u2)〉. Accordingly, cost1(P ) = 2

2 + 6
2 +4+4+2+ 6

2 +4+3 = 24 and
cost2(P ) = 2

2 + 6
2 +5+7+ 6

2 +5+1 = 25. This is not a stable profile, as Player 1
can reduce his cost to 22 by deviating to the edge 〈s, t1〉. Also, Player 2 can join
Player 1 in the first box and reduce his cost to 2

2 + 6
2 + 4

2 + 4
2 + 2

2 + 6
2 +5+1 = 18.

Note that this deviation also reduces the cost of Player 1, to 19.

The Uniform Hierarchical Cost-Sharing Mechanism. Recall that E =⋃
1≤j≤n Ej . In the uniform hierarchical (UH) cost-sharing mechanism, a strategy

for Player i is a set πi ⊆ E of edges in the hierarchical graph G such that πi

covers a path from si to ti in Gf . Players’ costs in a profile P = 〈π1, . . . , πk〉 are
defined as follows: For a subgraph Gj and an edge e ∈ Ej , we define the load
on e, denoted loadP (e), as the number of strategies in P that include e. Thus,
loadP (e) = |{i ∈ [k] : e ∈ πi}|. The cost of an edge is shared evenly by the
players that use it. Thus, the cost of Player i in P is cost i(P ) =

∑
e∈πi

c(e)
loadP (e) .

The UH mechanism corresponds to settings in which the traversal of edges
corresponds to the utilization of non-consumable resources. Thus, repeated calls
to the resource do not require its re-formation. For example, when the network
models a software design that should be build from a library of components. In
the uniform sharing rule, we care for the binary information of whether or not a
player has used the resource, and we do not distinguish between light and heavy
users of the resource.

Consider again the HNFG N , now with the UH mechanism. Let P =
〈π1, π2〉 be the profile in which Player 1 takes the path that traverses both
boxes and in both calls to G2 takes the u3 exit, and Player 2 takes the
path that traverses both boxes and in both calls to G2 takes the u4 exit.
Thus, π1 = {〈s, b1〉, 〈(b1, u3), v〉, 〈v, b2〉, 〈(b2, u3), t1〉, 〈u1, u2〉, 〈u2, u3〉} and π2 =
{〈s, b1〉, 〈(b1, u4), b2〉, 〈(b2, u4), t2〉, 〈u1, u2〉, 〈u2, u4〉}. The load on 〈s, b1〉 and
〈u1, u2〉 is 2, and the load on all other edges used in P is 1. Accordingly,
cost1(P ) = 2

2 + 4 + 2 + 3 + 6
2 + 4 = 17 and cost2(P ) = 2

2 + 7 + 1 + 6
2 + 5 = 17.
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Now, Player 1 has no incentive to deviate to 〈s, t1〉. However, P is not a NE
as Player 2 can join Player 1 in the first box and reduce his cost. Indeed, let
π′
2 = {〈s, b1〉, 〈(b1, u3), v〉, 〈v, b2〉, 〈(b2, u4), t2〉, 〈u1, u2〉, 〈u2, u3〉, 〈u2, u4〉}. Then,

in the profile P ′ = 〈π1, π
′
2〉, we have that cost2(P ′) = 2

2+ 4
2+ 2

2+1+ 6
2+ 4

2+5 = 15.
Note that Player 1 also benefits from this move, as cost1(P ′) = 12. This example
demonstrates that, even-though players have incentive to use an edge multiple
times, the optimal strategy of a player in a subgraph Gi need not induce a single
path from ini to some vertex in Exit i. Rather, it is sometimes beneficial for the
players to pay for accessing several exit vertices.

The Proportional Hierarchical Cost-Sharing Mechanism. Like the UH
mechanism, the proportional hierarchical (PH) cost-sharing mechanism corre-
sponds to settings in which the traversal of edges corresponds to the utilization of
a non-consumable resources. Here, however, we care for the number of times such
resources are used by the players, as their costs are proportional to the use. In the
PH mechanism, a strategy for Player i is a multiset πi of edges in the hierarchical
graph G such that πi covers a path from si to ti in Gf . Players’ costs in a profile
P = 〈π1, . . . , πk〉 are defined as follows: For a subgraph Gj and an edge e ∈ Ej ,
we define the weighted load on e, denoted wloadP (e), as the number of times e
appears in all the strategies in P . Recall that for a multiset π, we denote by π(e)
the number of times an element e appears in π. Then, wloadP (e) =

∑
i∈[k] πi(e),

and the cost of Player i in P is cost i(P ) =
∑

e∈πi

πi(e)·c(e)
wloadP (e) .

Back to our example N , the profile P with the PH mechanism consists of the
strategies π1 = {〈s, b1〉1, 〈u1, u2〉2, 〈u2, u3〉2, 〈(b1, u3), v〉1, 〈v, b2〉1, 〈(b2, u3), t1〉1}
and π2 = {〈s, b1〉1, 〈u1, u2〉2, 〈u2, u4〉2, 〈(b1, u4), b2〉1, 〈(b2, u4), t2〉1}. Now,
wloadP (〈s, b1〉) = wloadP (〈u2, u3〉) = wloadP (〈u2, u4〉) = 2,wloadP (〈u1, u2〉) =
4, and the weighted load on all other edges used in P is 1. Accordingly,
every traversal of 〈u1, u2〉 costs 6

4 , and similarly for the other edges. Hence,
cost1(P ) = 2

2 + 2 · 6
4 + 4 + 4 + 2 + 3 = 17 and cost2(P ) = 2

2 + 2 · 6
4 + 5 +

7 + 1 = 17. While Player 1 has no incentive to deviate to 〈s, t〉, Player 2 can
reduce his cost by deviating to a path that joins Player 1 in b1. Indeed, let
π′
2 = {〈s, b1〉1, 〈u1, u2〉2, 〈u2, u3〉1, 〈(b1, u3), v〉1, 〈v, b2〉1, 〈u2, u4〉1, 〈(b2, u4), t2〉1}.

Then, in the profile P ′ = 〈π1, π
′
2〉, we have wloadP (〈v1, b1〉) = 2,wloadP (〈u1,

u2〉) = 4,wloadP (〈u2, u3〉) = 3,wloadP (〈(b1, u3), v〉) = 2,wloadP (〈v, b2〉) = 2,
and the weighted load on all other edges used in P is 1. Accordingly, cost2(P ′) =
2
2 + 2 · 6

4 + 4
3 + 4

2 + 2
2 + 5 + 1 = 141

3 . Note that Player 1 also benefits from this
move, as cost1(P ′) = 2

2 + 2 · 6
4 + 2 · 4

3 + 4
2 + 2

2 + 3 = 122
3 .

3 Stability Existence and Inefficiency

In this section we study the stability of HNFGs. We show that the cost-sharing
mechanism is crucial in this analysis. Specifically, HNFGs with the Flat or the
UH mechanism have an NE and their PoA and PoS are identical to the bounds
known for NFGs. On the other hand, we show that even simple instances of
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HNFGs with the PH mechanism need not have an NE, and there are games for
which the only stable profile is k times more expensive than the SO.

We start with the stability existence question. The proof of the following
theorem is based on converting every HNFG with the flat or the UH mechanism
to an equivalent resource-allocation game, which is known to have an NE. As we
show, the relation with resource-allocation games also induces potential functions
for HNFGs in the flat and UH mechanisms.

Theorem 2. Every HNFG with the flat or UH mechanism has an NE.

For the PH mechanism, we present a negative result.

Theorem 3. An HNFG with the PH mechanism need not have an NE.

Proof. Consider the hierarchical graph G = 〈G1, Ga, Gb, Gc〉 depicted in Fig. 2.
Let N = 〈2,G, {〈s, ti〉}i∈{1,2}〉. For every σ ∈ {a, b, c}, we have that τ1(bσ) = Gσ.
In the figure, edges that are not labeled are free. Thus, Player 1 needs to select
in G1 one of the two paths ρ11 = (s, ba, bc, t1) and ρ21 = (s, bb, t1), and Player 2
needs to select one of two paths ρ12 = (s, ba, ba, ba, t2) and ρ22 = (s, bc, ba, ba, t2).

We show that N with the PH mechanism does not have an NE. Recall that
a strategy for Player i is a multiset πi over edges in G such that πi covers a path
from s to ti in Gf . Since all the edges in E1 are free, we describe the players’
strategies as multisets that include only the edges in the subgraphs Ga, Gb, and
Gc. Denote by ea, eb, and ec the (only) edge in Ga, Gb and Gc respectively. Thus,
for Player 1, we have strategies π1

1 = {ea, ec} and π2
1 = {eb}, and for Player 2

we have π1
2 = {ea, ea, ea} and π2

2 = {ec, ea, ea}.
Table 1 describes the players’ costs in the four possible profiles. Note that

c(ea) = 36, c(eb) = 12 and c(ec) = 2. Consider for example the top left profile
P = 〈π1

1 , π
1
2〉. In this profile, the edge ea is traversed four times, eb is not traversed

at all, and ec is traversed once. Thus, wloadP (ea) = 4. This implies that every
traversal of ea costs c(ea)/wloadP (ea) = 36/4 = 9. Since wloadP (ec) = 1 and
ec ∈ π1

1 , Player 1 should also cover the cost of ec. Hence, cost1(P ) = 9 + 2 = 11
and cost2(P ) = 3 · 9 = 27. The players’ costs in all other profiles are calculated
in a similar way. The costs in the table imply that players benefit from changing
strategies in counter clockwise direction, thus no NE exists. ��

A natural question arising from the above theorem is whether we can dis-
tinguish between instances that have or do not have a stable profile. In the full
version of this paper we show that we can do it in Σ2

P , yet this is an NP-hard
task.

We turn to analyze the equilibrium inefficiency. Once again, the fact that
each HNFG with the flat or the UH mechanism has an equivalent resource-
allocation cost-sharing game enables us to adopt the upper bounds known for
resource-allocation games to our setting. Matching lower bounds then follow
from the known bounds on NFGs and the fact that every NFG can be viewed
as an HNFG with no nesting of subgraphs.
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s
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t2
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bc ba

bb ba bc

G1

36
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12

Gb

2
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Fig. 2. An HNFG N that has no NE with
the PH mechanism.

Table 1. Players’ costs in
N with the PH mechanism.
Each entry describes the cost of
Player 1 followed by the cost of
Player 2.

{ea, ec} {eb}
{ea, ea, ea} 11, 27 12, 36

{ec, ea, ea} 13, 25 12, 38

Theorem 4. The PoS and PoA of k-player HNFGs with the flat or the UH
mechanism are O(log k) and k, respectively.

For the PH mechanism, we show that stability may came with a high cost,
strictly higher than the one known for NFGs.

Theorem 5. The PoS and PoA of k-player HNFGs with the PH mechanism
are k.

Proof. Similar to the analysis of many other cost-sharing games, PoA ≤ k as
otherwise, some player in some NE profile P is paying more than the SO, and can
benefit from deviating to his strategy in the SO, whose cost is not larger than the
cost of the whole SO profile. This contradicts the stability of P . Combining the
fact that PoA ≥ PoS, it is sufficient to show that PoS ≥ k in order to establish
the tight bounds.

For every k > 1, we describe a k-player HNFG Nk such that the cost of the
only NE in Nk is kM , for some large constant M , whereas the SO is M + ε′′, for
a small constant ε′′. Assume first that k is even. Partition the set [k] of players
into pairs 〈2� − 1, 2�〉 for 1 ≤ � ≤ k

2 . Let N � be a 2-player HNFG with no NE,
with the costs of its edges multiplied by a small constant ε. In particular, we
refer to the HNFG described in the proof of Theorem3.

The HNFG Nk is played on the hierarchical graph G = 〈G0, {G�
1, G

�
a, G�

b,
G�

c}1≤�≤k/2〉, where G0 is depicted in Fig. 3, and the other components consists
of k/2 copies of the graphs G1, Ga, Gb, and Gc, described in Fig. 2, with all costs
multiplied by ε. The graph G0 includes an edge 〈s, t〉 of cost kM , an edge 〈s, v〉
of cost M , and k/2 free edges 〈v, s�〉 leading the copies G�

1 for 1 ≤ � ≤ k
2 .

For simplicity, we assume that each player can choose between one of two
targets. It is easy to see that this assumption can be removed by adding a new
target connected from the two targets by free edges. Consider the �-th pair of
players. The target vertices of the first player in the pair are t and t�1. The
target vertices of the second player are t and t�2. Thus, every player has three
strategies: the path consisting of the edge 〈s, t〉 and the paths starting with
s, v, s� and continuing with one of the two strategies in G�

1, as detailed in the
proof of Theorem 3.
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The SO of Nk consists of edges from the right side of the network: the edges
〈s, v〉, {〈v, s�〉1≤�≤k/2}, and edges forming an SO for each of the disjoint k

2 games
(the latter consists of the edges e�

a, e�
c, and additional free edges from G�

1). The
cost of the SO is then M + ε′k

2 , for ε′ = 38ε.
We show that the only NE in Nk is the profile in which all the players share

the edge 〈s, t〉. This profile is indeed an NE, as the cost of every player is exactly
M , and by deviating to the right side of the network, a player must pay the cost
of 〈s, v〉 plus the cost of his chosen path in some G�

1, which together exceeds
M . Moreover, this is the only NE since in every other profile, players would
benefit from leaving the edge 〈s, t〉 and reaching N � – our familiar no-NE game
described in the proof of Theorem3. The cost of this NE profile is kM , implying
that the PoS is Mk

M+19kε , which tends to k.
Finally, if the number k of players is odd, we define for the unpaired player

two strategies: one is the path 〈s, t〉, and the other is a path s, v, u for a new
vertex u. By setting to ε the cost of 〈u, v〉, it still holds that 〈s, t〉 is the only NE
profile. The PoS for an odd k is therefore Mk

M+(19k+1)ε , which tends to k. ��

s
t v

G1
1 G2

1
. . . G

k
2
1

k · M M

Fig. 3. An HNFG Nk for which PoS = k. Every G�
1 is a copy of G1 depicted in Fig. 2.

4 Computational Complexity

In this section we study the complexity of reasoning about HNFGs in the differ-
ent cost-sharing mechanisms. The principal question is whether the exponential
succinctness of HNFGs leads to an exponential increase in the complexity of
reasoning about them.

4.1 The UH and PH Mechanisms

Recall that a strategy for Player i in the UH or PH mechanism is a set or
a multiset πi over E. A strategy is feasible if there is a path ρ from si to ti
in Gf such that ρ is covered by πi. In traditional NFGs, it is easy to check in
polynomial time whether a given set of edges is a feasible strategy. Indeed, there,
the underlying graph is given explicitly. This is not the case in HNFGs: given
πi, a naive check that πi indeed covers a path from si to ti in Gf involves a
construction of Gf , which may be exponential in G. An efficient checking that a
given strategy πi is feasible requires a clever encoding of πi, involving a restriction
to a subset of all possible strategies. We first define this subset and prove that it
is dominating, that is, every Player has a best-response move to a homogeneous
strategy.
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Recall that πi is feasible if there is a path ρ from si to ti in Gf such that
ρ is covered by πi. The path ρ may traverse subgraphs Gj of G several times
(in fact, per Observation 1, even exponentially many times). In each traversal,
the path ρ may exit Gj through different exit vertices. For example, in the
HNFGs described in Sect. 2.3, we showed that the players benefit from taking
a strategy that exits G2 from both u3 and u4. Thus, restricting attention to
strategies in which all the traversals of Gj use the same exit vertex is not sound
(and in fact may affect not only the cost of Player i but also cause ti not to be
reachable from si). Consider now two traversals of the subgraph Gj in which
Player i chooses to exit Gj through the same exit vertex u ∈ Exitj . Here too,
Player i may choose to fulfill this repeated “nested sub-objective” in different
ways. We say that a strategy for Player i is homogeneous if for every j ∈ [n] and
every u ∈ Exitj , whenever Player i traverses the subgraph Gj through exit u it
uses the same 〈inj , u〉-path. We claim that restricting attention to homogeneous
strategies is sound, and also leads to an efficient feasibility check. Intuitively, in
the UH mechanism, the proof of the dominance is easy, as by repeating the same
path a player can only reduce the set of edges in his strategy, which results in
reduced payment. Thus, in the UH mechanism, the used 〈inj , u〉-path can be
chosen arbitrarily. In the PH mechanism, the proof is more involved, as moving
to the chosen 〈inj , u〉-path may increase the payment for other uses of this path.
Accordingly, not all choices of a 〈inj , u〉-path are beneficial. We show, however,
that at least one choice is beneficial. In addition, checking the feasibility of
homogeneous strategies requires only one check for each subgraph Gj and exit
vertex u ∈ Exitj , which can be done in polynomial time. Hence we have the
following:

Lemma 1. Consider an HNFG N with the UH or PH mechanism, and a player
i ∈ [k].

1. Every non-homogeneous strategy for Player i is dominated by a homogeneous
one.

2. Checking that a homogeneous strategy of Player i is feasible can be done in
polynomial time.

We proceed to study the complexity of finding a BR and an SO in HNFGs with
the UH or PH mechanism. For NFGs, a BR move can be found in polynomial
time, and the problem of finding an SO is NP-complete [31]. For the lower bound,
we show two reductions, both with a single-player HNFG. One, for the case the
depth of the HNFG is a constant, is from the directed Steiner tree problem; and
one, for the case the number of exit vertices is a constant, is from the hitting-set
problem.

Theorem 6. The problem of finding a BR move for a HFNG with the UH or PH
mechanism is NP-complete. NP-hardness holds already for single-player HNFGs
of a constant depth or with a constant number of exit vertices.

Thus, the exponential succinctness of HNFGs makes the BR problem for the
UH and PH mechanisms exponentially more complex than the one for NFGs.
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Since the BR problem in single-player HNFGs coincides with the SO problem,
Theorem 6 immediately implies the lower bound in the following theorem. The
upper bound follows from the fact that a witness to the SO consists of listing
the set of edges purchased in every subgraph. It is easy to see that there exists
an SO in which every player is assigned a homogeneous strategy, therefore, the
SO’s feasibility is tractable.

Theorem 7. The problem of finding an SO for an HNFG with the UH or PH
mechanism is NP-complete. NP-hardness holds already for single-player HNFGs
of a constant depth or with a constant number of exit vertices.

4.2 The Flat Mechanism with a Constant Number of Exit Vertices

Consider an HNFG played over a hierarchical graph G. Recall that in the flat
mechanism, costs are calculated with respect to Gf , which is exponentially larger
than G. While the exponential blow-up applies already for hierarchical graphs
in which the number of exit vertices in each subgraph is a constant (in fact,
per Observation 1, is 1), experience in formal verification of hierarchical sys-
tems shows that reasoning about hierarchical-FSMs in which each subgraph has
a constant number of exit vertices does make verification easier [5,6]. In this
section we consider HNFGs that are played over hierarchical graphs in which
each subgraph has a constant number of exit vertices. We denote this class by
CE-HNFGs. We note that CE-HNFGs are common in practice: in software, pro-
cedures typically have a constant number of returns, and in hardware, nested
boxes are plugged in via a constant number of connections.

Before we describe our results for CE-HNFGs, let us point out that there
are additional aspects in which the flat mechanism is computationally easier
than the UH and PH mechanisms. For example, while the problem of finding an
SO in HNFGs in the UH or PH mechanism is NP-complete already for single-
player CE-HNFGs (as we proved in Theorem 7), for the flat mechanism, the
single-player instance is easy even without restricting to CE-HNFGs. Indeed,
let N = 〈1,G, 〈s, t〉〉, with G = 〈G1, . . . , Gn〉. Starting with Gn, we recursively
replace each box that calls a subgraph Gj by a tree of depth 1 with root inj

and edges to all exit vertices t ∈ Exitj . The cost of such an edge is the cost of
the shortest path from inj to t, which we need to calculate only once (and after
boxes in Gj have been recursively replaced by trees of depth 1). Thus, we have,

Theorem 8. The problem of finding an SO in a single-player HNFG with the
flat mechanism can be solved in polynomial time.

For k > 1 players, finding an SO is still tractable, but the algorithm is more
involved:

Theorem 9. The problem of finding an SO in CE-HNFGs with the flat mech-
anism can be solved in polynomial time.
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Proof. Let N be a CE-HNFG with G = 〈G1, . . . , Gn〉, where Gj =
〈Vj , Bj , inj ,Exitj , τj , Ej , cj〉. A profile of N utilizes a subset of the edges in
G. In fact, for every box in G that calls a subgraph Gj , the utilized edges form
a Steiner tree connecting inj with a set T ⊆ Exitj of exit vertices. Our algo-
rithm is based on the fact that these Steiner trees can be enumerated, and that
the minimum Steiner tree problem can be solved efficiently when the number of
terminals is a constant [25].

For j ∈ [n] and a set T ⊆ Exitj , we define the HNFG Nj,T =
〈|T |,Gj , 〈inj , t〉t∈T 〉, where Gj = 〈Gj , Gj+1, . . . , Gn〉. That is, Nj,T is a |T |-player
game, where each player tries to reach from inj to a different exit vertex t ∈ T .
Note that an SO in Nj,T is a profile that minimizes the cost required for forming
paths from inj to all vertices in T in the flat expansion of Gj . Now, let G′

j be
a weighted tree of depth 1 with root inj and leaves in 2Exitj , where the cost of
an edge 〈inj , T 〉, for T ⊆ Exitj , is the SO in Nj,T . Thus, G′

j describes, for every
subset T ⊆ Exitj , the cost of covering paths from inj to all vertices in T in the
flat expansion of Gj . Note that since |Exitj | is constant, so is the size of G′

j .
We argue that for all j ∈ [n] and T ⊆ Exitj , there is an algorithm that finds

an SO in Nj,T and constructs G′
j in polynomial time. In particular, taking j = 1

and T = ∪i∈[k]{ti}, we can find the SO of N in polynomial time. The algorithm
is omitted from this extended abstract. ��

We turn to the problem of calculating an NE. A well-known approach for
calculating an NE in NFGs is best-response dynamics (BRD): starting with
an arbitrary profile, we let players perform BR moves until an NE is reached.
The complexity class PLS contains local search problems with polynomial time
searchable neighborhoods [24]. Essentially, a problem is in PLS if there is a set
of feasible solutions for it such that it is possible to find, in polynomial time, an
initial feasible solution and then iteratively improve it, with each improvement
being performed in polynomial time, until a local optimum is reached. While
every iteration of BRD takes polynomial time, the number of iterations needs
not be polynomial. The problem of finding an NE in NFGs is known to be PLS-
complete. We show how to implement BRD in CE-HNFGs in a way that keeps
the polynomial time-complexity for each improvement step. The idea is to use a
succinct representation of a profile in a CE-HNFG, and to restrict attention to
a limited class of profiles that are guaranteed to include an NE.

Theorem 10. The problem of finding an NE in CE-HNFGs with the flat mech-
anism is PLS-complete.
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Abstract. Recent work has proposed a promising approach to improv-
ing scalability of program synthesis by allowing the user to supply a syn-
tactic template that constrains the space of potential programs. Unfortu-
nately, creating templates often requires nontrivial effort from the user,
which impedes the usability of the synthesizer. We present a solution
to this problem in the context of recursive transformations on algebraic
data-types. Our approach relies on polymorphic synthesis constructs: a
small but powerful extension to the language of syntactic templates,
which makes it possible to define a program space in a concise and highly
reusable manner, while at the same time retains the scalability benefits
of conventional templates. This approach enables end-users to reuse pre-
defined templates from a library for a wide variety of problems with
little effort. The paper also describes a novel optimization that further
improves the performance and the scalability of the system. We evalu-
ated the approach on a set of benchmarks that most notably includes
desugaring functions for lambda calculus, which force the synthesizer to
discover Church encodings for pairs and boolean operations.

1 Introduction

Recent years have seen remarkable advances in tools and techniques for auto-
mated synthesis of recursive programs [1,4,8,13,16]. These tools take as input
some form of correctness specification that describes the intended program
behavior, and a set of building blocks (or components). The synthesizer then
performs a search in the space of all programs that can be built from the given
components until it finds one that satisfies the specification. The biggest obsta-
cle to practical program synthesis is that this search space grows extremely fast
with the size of the program and the number of available components. As a
result, these tools have been able to tackle only relatively simple tasks, such as
textbook data structure manipulations.

Syntax-guided synthesis (SyGuS) [2] has emerged as a promising way to
address this problem. SyGuS tools, such as Sketch [18] and Rosette [20,21]
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leverage a user-provided syntactic template to restrict the space of programs the
synthesizer has to consider, which improves scalability and allows SyGus tools to
tackle much harder problems. However, the requirement to provide a template
for every synthesis task significantly impacts usability.

This paper shows that, at least in the context of recursive transformations
on algebraic data-types (ADTs), it is possible to get the best of both worlds.
Our first contribution is a new approach to making syntactic templates highly
reusable by relying on polymorphic synthesis constructs (PSC s). With PSC s, a
user does not have to write a custom template for every synthesis problem, but
can instead rely on a generic template from a library. Even when the user does
write a custom template, the new constructs make this task simpler and less
error-prone. We show in Sect. 4 that all our 23 diverse benchmarks are synthe-
sized using just 4 different generic templates from the library. Moreover, thanks
to a carefully designed type-directed expansion mechanism, our generic tem-
plates provide the same performance benefits during synthesis as conventional,
program-specific templates. Our second contribution is a new optimization called
inductive decomposition, which achieves asymptotic improvements in synthesis
times for large and non-trivial ADT transformations. This optimization, together
with the user guidance in the form of reusable templates, allows our system to
attack problems that are out of scope for existing synthesizers.

We implemented these ideas in a tool called SyntRec, which is built on top of
the open source Sketch synthesis platform [19]. Our tool supports expressive cor-
rectness specifications that can use arbitrary functions to constrain the behavior
of ADT transformations. Like other expressive synthesizers, such as Sketch [18]
and Rosette [20,21], our system relies on exhaustive bounded checking to establish
whether a program candidate matches the specification. While this does not pro-
vide correctness guarantees beyond a bounded set of inputs, it works well in prac-
tice and allows us to tackle complex problems, for which full correctness is unde-
cidable and is beyond the state of the art in automatic verification. For example,
our benchmarks include desugaring functions from an abstract syntax tree (AST)
into a simpler AST, where correctness is defined in terms of interpreters for the
two ASTs. As a result, our synthesizer is able to discover Church encodings for
pairs and booleans, given nothing but an interpreter for the lambda calculus. In
another benchmark, we show that the system is powerful enough to synthesize a
type constraint generator for a simple programming language given the semantics
of type constraints. Additionally, several of our benchmarks come from transfor-
mation passes implemented in our own compiler and synthesizer.

2 Overview

In this section, we use the problem of desugaring a simple language to illustrate
the main features of SyntRec. Specifically, the goal is to synthesize a function
dstAST desugar(srcAST src) {. . .}, which translates an expression in source AST into
a semantically equivalent expression in destination AST. Data type definitions
for the two ASTs are shown in Fig. 1: the type srcAST has five variants (two
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Fig. 1. ADTs for two small expression languages

of which are recursive), while dstAST has only three. In particular, the source
language construct BetweenS(a, b, c), which denotes a < b < c, has to be desug-
ared into a conjunction of two inequalities. Like case classes in Scala, data type
variants in SyntRec have named fields.

Specification. The first piece of user input required by the synthesizer is the
specification of the program’s intended behavior. In the case of desugar, we would
like to specify that the desugared AST is semantically equivalent to the original
AST, which can be expressed in SyntRec using the following constraint:

assert( srcInterpret (exp) == dstInterpret(desugar(exp)) )

This constraint states that interpreting an arbitrary source-language expression
exp (bounded to some depth) must be equivalent to desugaring exp and inter-
preting the resulting expression in the destination language. Here, srcInterpret
and dstInterpret are regular functions written in SyntRec and defined recur-
sively over the structure of the respective ASTs in a straightforward manner.
As we explain in Sect. 3.4, our synthesizer contains a novel optimization called
inductive decomposition that can take advantage of the structure of the above
specification to significantly improve the scalability of the synthesis process.

Templates. The second piece of user input required by our system is a syntactic
template, which describes the space of possible implementations. The template
is intended to specify the high-level structure of the program, leaving low-level
details for the system to figure out. In that respect, SyntRec follows the SyGuS
paradigm [2]; however, template languages used in existing SyGuS tools, such
as Sketch or Rosette, work poorly in the context of recursive ADT transfor-
mations.

For example, Fig. 2 shows a template for desugar written in Sketch, the
predecessor of SyntRec. It is useful to understand this template as we will
show, later, how the new language features in SyntRec allow us to write the
same template in a concise and reusable manner. This template uses three kinds
of synthesis constructs already existing in Sketch: a choice (choose(e1, ..., en))
must be replaced with one of the expressions e1, . . . , en; a hole (??) must be
replaced with an integer or a boolean constant; finally, a generator (such as rcons)
can be thought of as a macro, which is inlined on use, allowing the synthesizer
to make different choices for every invocation1. The task of the synthesizer is to
1 Recursive generators, such as rcons, are unrolled up to a fixed depth, which is a

parameter to our system.
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Fig. 2. Template for desugar in Sketch

fill in every choice and hole in such a way that the resulting program satisfies
the specification.

The template in Fig. 2 expresses the intuition that desugar should recursively
traverse its input, src, replacing each node with some subtree from the destina-
tion language. These destination subtrees are created by calling the recursive,
higher-order generator rcons (for “recursive constructor”). rcons(e) constructs a
nondeterministically chosen variant of dstAST, whose fields, depending on their
type, are obtained either by recursively invoking rcons, by invoking e (which is
itself a generator), or by picking an integer or boolean constant. For exam-
ple, one possible instantiation of the template rcons(choose(x, y, src .op))2 can
lead to new BinaryD(op = src.op, a = x, b = new NumD(5)). Note that the template
for desugar provides no insight on how to actually encode each node of scrAST in
terms of dstAST, which is left for the synthesizer to figure out. Despite containing
so little information, the template is very verbose: in fact, more verbose than
the full implementation! More importantly, this template cannot be reused for
other synthesis problems, since it is specific to the variants and fields of the two
data types. Expressing such a template in Rosette will be similarly verbose.

Reusable Templates. SyntRec addresses this problem by extending the tem-
plate language with polymorphic synthesis constructs (PSC s), which essentially
support parametrizing templates by the structure of data types they manipulate.
As a result, in SyntRec the end user can express the template for desugar with
a single line of code:

dstAST desugar(srcAST src) { return recursiveReplacer ( src , desugar);}

Here, recursiveReplacer is a reusable generator defined in a library; its code is
shown in Fig. 3. When the user invokes recursiveReplacer ( src ,desugar), the body

2 When an expression is passed as an argument to a higher-order function that expects
a function parameter such as rcons, it is automatically casted to a generator lambda
function. Hence, the expression will only be evaluated when the higher-order function
calls the function parameter and each call can result in a different evaluation.
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Fig. 3. Left: generic template for recursiveReplacer . Right: solution to the running
example

of the generator is specialized to the surrounding context, resulting in a tem-
plate very similar to the one in Fig. 2. Unlike the template in Fig. 2, however,
recursiveReplacer is not specific to srcAST and dstAST, and can be reused with no
modifications to synthesize desugaring functions for other languages, and even
more general recursive ADT transformations. Crucially, even though the reusable
template is much more concise than the Sketch template, it does not increase
the size of the search space that the synthesizer has to consider, since all the
additional choices are resolved during type inference. Figure 3 also shows a com-
pacted version of the solution for desugar, which SyntRec synthesizes in about
8s. The rest of the section gives an overview of the PSC s used in Fig. 3.

Polymorphic Synthesis Constructs. Just like a regular synthesis construct,
a PSC represents a set of potential programs, but the exact set depends on
the context and is determined by the types of the arguments to a PSC and its
expected return type. SyntRec introduces four kinds of PSC s.

1. A Polymorphic Generator is a polymorphic version of a Sketch gener-
ator. For example, recursiveReplacer is a polymorphic generator, parametrized
by types T and Q. When the user invokes recursiveReplacer ( src ,desugar), T and
Q are instantiated with dstAST and srcAST, respectively.

2. Flexible Pattern Matching (switch(x) case? : e) expands into pattern
matching code specialized for the type of x. In our example, once Q in
recursiveReplacer is instantiated with srcAST, the case? construct in Line 4
expands into five cases (case NumS, ..., case BetweenS) with the body of case?
duplicated inside each of these cases.

3. Field List (e. fields?) expands into an array of all fields of type τ in a particu-
lar variant of e, where τ is derived from the context. Going back to Fig. 3, Line
5 inside recursiveReplacer maps a function rec over a field list src . fields? ; in our
example, rec is instantiated with desugar, which takes an input of type srcAST.
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Hence, SyntRec determines that src. fields? in this case denotes all fields of
type srcAST. Note that this construct is expanded differently in each of the five
cases that resulted from the expansion of case?. For example, inside case NumS,
this construct expands into an empty array (NumS has no fields of type srcAST),
while inside case BetweenS, it expands into the array {src .a, src .b, src .c}.

4. Unknown Constructor (new cons?(e_1, ..., e_n)) expands into a construc-
tor for some variant of type τ , where τ is derived from the context, and uses
the expressions e1, . . . , en as the fields. In our example, the auxiliary gen-
erator rcons uses an unknown constructor in Line 11. When rcons is invoked
in a context that expects an expression of type dstAST, this unknown con-
structor expands into choose(new NumD(...), new BoolD(...), new BinaryD(...)). If
instead rcons is expected to return an expression of type opcode, then the
unknown constructor expands into choose(new AndOp(),...,new LtOp()). If the
expected type is an integer or a boolean, this construct expands into a regu-
lar Sketch hole (??).

Even though the language provides only four PSC s, they can be combined in
novel ways to create richer polymorphic constructs that can be used as library
components. The generators field and rcons in Fig. 3 are two such components.

Fig. 4. Kernel language

The field component expands into
an arbitrary field of type τ , where τ
is derived from the context. Its imple-
mentation uses the field list PSC to
obtain the array of all fields of type τ ,
and then accesses a random element
in this array using an integer hole. For
example, if field (e) is used in a con-
text where the type of e is BetweenS
and the expected type is srcAST, then
field (e) expands into {e.a, e.b, e.c}[??]
which is semantically equivalent to
choose(e.a, e.b, e.c).

The rcons component is a polymor-
phic version of the recursive construc-
tor for dstAST in Fig. 2, and can pro-
duce ADT trees of any type up to a
certain depth. Note that since rcons is
a polymorphic generator, each call to
rcons in the argument to the unknown constructor (Line 11) is specialized
based on the type required by that constructor and can make different non-
deterministic choices. Similarly, it is possible to create other generic constructs
such as iterators over arbitrary data structures. Components such as these are
expected to be provided by expert users, while end users treat them in the
same way as the built-in PSC s. The next section gives a formal account of the
SyntRec’s language and the synthesis approach.
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3 SyntRec Formally

3.1 Language

Figure 4 shows a simple kernel language that captures the relevant features of
SyntRec. In this language, a program consists of a set of ADT declarations
followed by a set of function declarations. The language distinguishes between a
standard function f , a generator f̂ and a polymorphic generator ˆ̂

f . Functions can
be passed as parameters to other functions, but they are not entirely first-class
citizens because they cannot be assigned to variables or returned from functions.
Function parameters lack type annotations and are declared as type fun, but
their types can be deduced from inference. Similarly, expressions are divided into
standard expressions that does not contain any unknown choices (e), existing
synthesis constructs in Sketch (ê), and the new PSC s (ˆ̂e). The language also
has support for arrays with expressions for array creation ({e1, e2, ..., en}) and
array access (e1[e2]). An array type is represented as θ[ ]. In this formalism, we
use the Greek letter τ to refer to a fully concrete type and θ to refer to a type
that may involve type variables. The distinction between the two is important
because PSC s can only be expanded when the types of their context are known.
We formalize ADTs as tagged unions τ =

∑
varianti, where each of the variants

is a record type varianti = namei

{
lik : τ i

k

}
k<ni

. Note that ADTs in SyntRec
are not polymorphic. The notation {ai}i is used to denote the {a1, a2, ...}.

3.2 Synthesis Approach

Given a user-written program ˆ̂
P that can potentially contain PSC s, choices

and holes, and a specification, the synthesis problem is to find a program P
in the language that only contains standard expressions (e) and functions (f).
SyntRec solves this problem using a two step approach as shown below:

First, SyntRec uses a set of expansion rules that uses bi-directional type
checking to eliminate the PSC s. The result is a program that only contains
choices and holes. The second step is to use a constraint-based approach to solve
for these choices. The next subsections will present each of these steps in more
detail.

3.3 Type-Directed Expansion Rules

We will now formalize the process of specializing and expanding the PSC s into
sets of possible expressions. We should first note that the expansion and the
specialization of the different PSC s interact in complex ways. For example, for
the case? construct in the running example, the system cannot determine which
cases to generate until it knows the type of src, which is only fixed once the
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polymorphic generator for recursiveReplacer is specialized to the calling context.
On the other hand, if a polymorphic generator is invoked inside the body of
a case? (like rcons in the running example), we may not know the types of the
arguments until after the case? is expanded into separate cases. Because of this,
type inference and expansion of the PSC s must happen in tandem.

We formalize the process of expanding PSC s using two different kinds of
judgements. The typing judgement Γ � e : θ determines the type of an expression
by propagating information bottom-up from sub-expressions to larger expres-
sions. On the other hand, PSC s cannot be type-checked in a bottom-up manner;
instead, their types must be inferred from the context. The expansion judgment
Γ � e

θ−→ e′ expands an expression e involving PSC s into an expression e′ that
does not contain PSC s (but can contain choices and holes). In this judgment,
θ is used to propagate information top-down and represents the type required
in a given context; in other words, after this expansion, the typing judgement
Γ � e′ : θ must hold. We are not the first to note that bi-directional typing [15]
can be very useful in pruning the search space for synthesis [13,16], but we
are the first to apply this in the context of constraint-based synthesis and in a
language with user-provided definitions of program spaces.

Fig. 5. Expansion rules for various language constructs

The expansion rules for functions and PSC s are shown in Fig. 5. At the top
level, given a program P , every function in P is transformed using the expansion
rule FUN. The body of the function is expanded under the known output type
of the function. The most interesting cases in the definition of the expansion
judgment correspond to the PSC s as outlined below. The expansion rules for
the other expressions are straightforward and are elided for brevity.
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Field List. The rule FL shows how a field list is expanded. If the required type
is an array of τ0, then this PSC can be expanded into an array of all fields of
type τ0.

Flexible Pattern Matching. For each case, the body of case? is expanded while
setting x to a different type corresponding to each variant namei

{
lik : τ i

k

}
k<ni

as
shown in the rule FPM. Here, the argument to switch is required to be a variable
so that it can be used with a different type inside each of the different cases. Note
that each case is expanded independently, so the synthesizer can make different
choices for each ei.

Unknown Constructor. If the required type is an ADT, the rule UC1 expands
the expressions passed to the unknown constructor based on the type of each
field of each variant of the ADT and uses the resulting expressions to initialize
the fields in the relevant constructor. It returns a choose expression with all these
constructors as the arguments. If the required type is a primitive type (int or
bit), the unknown constructor is expanded into a Sketch hole by the rule UC2.

Polymorphic Generator Calls. When the expansion encounters a call to a
polymorphic generator, the generator will be expanded and specialized according
to the PG rule. When a generator is called with arguments {ei}i, we can separate
the arguments into expressions that can be typed using the standard typing
judgement, and expressions such as new cons? (...) that cannot. In the rule, we
assume, without loss of generality, that the first k expressions can be typed and
the reminder cannot. The basic idea behind the expansion is as follows. First,
the rule obtains the types of the first k arguments and unifies them with the
types of the formal parameters of the function to get a type substitution S. The
arguments to the original call are expanded with our improved knowledge of the
types, and the body of the generator is then inlined and expanded in turn. The
actual implementation also keeps track of how many times each generator has
been inlined and replaces the generator invocation with assert false when the
inlining bound has been reached.

The above expansion rules fail if a type variable is encountered in places
where a concrete type is expected, and in such cases the system will throw an
error. For example, expressions such as field ( field (e)), where field is as defined
in Fig. 3, cannot by type-checked in our system because the expected type of the
inner field call cannot be determined using top-down type propagation.

3.4 Constraint-Based Synthesis

Once we have a program with a fixed number of integer unknowns, the synthesis
problem can be encoded as a constraint ∃φ. ∀σ. P (φ, σ) where φ is a control
vector describing the set of choices that the synthesizer has to make, σ is the
input state of the program, and P (φ, σ) is a predicate that is true if the program
satisfies its specification under input σ and control φ. Our system follows the
standard approach of unrolling loops and inlining recursive calls to derive P and
uses counterexample guided inductive synthesis (CEGIS) to solve this doubly
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quantified problem [18]. For readers unfamiliar with this approach, the most
relevant aspect from the point of view of this paper is that the doubly quantified
problem is reduced to a sequence of inductive synthesis steps. At each step,
the system generates a solution that works for a small set of inputs, and then
checks if this solution is in fact correct for all inputs; otherwise, it generates a
counter-example for the next inductive synthesis step.

Applying the standard approach can, however, be problematic in our con-
text especially with regards to inlining recursive calls. For instance, con-
sider the example from Sect. 2. Here, the function desugar that has to be
synthesized is a recursive function. If we were to inline all the recur-
sive calls to desugar, then a given concrete value for the input σ such as
BetweenS(a = NumS(...), b = BinaryS(...), ...) , will exercise multiple cases within
desugar (BetweenS, NumS and BinaryS for the example). This is problematic in the
context of CEGIS, because at each inductive synthesis step the synthesizer has
to jointly solve for all these variants of desugar which greatly hinders scalability
when the source language has many variants.

3.5 Inductive Decomposition

The goal of this section is to leverage the inductive specification to potentially
avoid inlining the recursive calls to the synthesized function. This idea of treating
the specification as an inductive hypothesis is well known in the deductive verifi-
cation community where the goal is to solve the following problem: ∀σ. P (φ0, σ).
However, in our case, we want to apply this idea during the inductive synthe-
sis step of CEGIS where the goal is to solve ∃φ. P (φ, σ0) which has not been
explored before.

Definition 1 (Inductive Decomposition). Suppose the specification is of the
form interps(e) = interpd(trans(e)) where trans is the function that needs to be
synthesized. Let trans(e′) be a recursive call within trans(e) where e′ is strictly
smaller term than e. Inductive Decomposition is defined as the following sub-
stitution: 1. Replace trans(e′) with a special expression e′ . 2. When inlining

function calls, apply the following rules for the evaluation of e′ :

interpd( e′ ) −−−−−→ interps(e′)
e′ in any other context −−−−−→ trans(e′)

i.e. Inductive Decomposition works by delaying the evaluation of a recursive
trans(e′) call by replacing it with a placeholder that tracks the input e′. Then, if
the algorithm encounters these placeholders when inlining interpd in the specifi-
cation, it replaces them directly with interps(e′) which we know how to evaluate,
thus, eliminating the need to inline the unknown trans function. This replace-
ment is sound because the specification states interpd(trans(e′)) = interps(e′).
If the algorithm encounters the placeholders in any other context where the
inductive specification can not be leveraged, it defaults to evaluating trans(e′).
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Theorem 1. Inductive Decomposition is sound and complete. In other words,
if the specification is valid before the substitution, then it will be valid after the
substitution and vice-versa.

A proof of this theorem can be found in the tech report [6]. Although
the Inductive Decomposition algorithm imposes restrictions on which recur-
sive calls can be eliminated, it turns out that for many of the ADT trans-
formation scenarios, the algorithm can totally eliminate all recursive calls to
trans. For instance, in the running example, because of the inductive struc-
ture of dstInterpret , all placeholders for recursive desugar calls will occur only in
the context of dstInterpret (desugar(e ’)) which can be replaced by srcInterpret (e ’)
according to the algorithm. Thus, after the substitution, the desugar function
is no longer recursive and moreover, the desugaring for the different variants
can be synthesized separately. For the running example, we gain a 20X speedup
using this optimization. Our system also implements several generalizations of
the aforementioned optimization that are detailed in the tech report [6].

4 Evaluation

Benchmarks. We evaluated our approach on 23 benchmarks as shown in Fig. 6.
All benchmarks along with the synthesized solutions can be found in the tech
report [6]. Since there is no standard benchmark suite for morphism problems,
we chose our benchmarks from common assignment problems (the lambda cal-
culus ones), desugaring passes from Sketch compiler and some standard data
structure manipulations on trees and lists. The AST optimization benchmarks
are from a system that synthesizes simplification rules for SMT solvers [17].

Templates. The templates for all our benchmarks use one of the four generic
descriptions we have in the library. All benchmarks except arrAssertions , NegNorm
and AST optimizations use a generalized version of the recursiveReplacer generator
seen in Fig. 3 (the exact generator is in the tech report). This generator is also
used as a template for problems that are very different from the desugaring
benchmarks such as the list and the tree manipulation problems, illustrating
how generic and reusable the templates can be. The arrAssertions benchmark
differs slightly from the others as its ADT definitions have arrays of recursive
fields and hence, we have a version of the recursive replacer that also recursively
iterates over these arrays. The NegNorm benchmark requires a template that has
nested pattern matching. Another interesting example of reusability of templates
is the AST optimization benchmarks. All 5 benchmarks in this category are
synthesized from a single library function. The template column in Fig. 6 shows
the number of lines used in the template for each benchmark. Most benchmarks
have a single line that calls the appropriate library description similar to the
example in Sect. 2. Some benchmarks also specify additional components such
as helper functions that are required for the transformation. Note that these
additional components will also be required for other systems such as Leon and
Synquid.
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4.1 Experiments

Methodology. All experiments were run on a machine with forty 2.4GHz Intel
Xeon processors and 96GB RAM. We ran each experiment 10 times and report
the median.

Hypothesis 1: Synthesis of Complex Routines is Possible. Figure 6 shows
the running times for all our benchmarks (T−opt column). SyntRec can synthe-
size all but one benchmark very efficiently when run on a single core using less
than 1GB memory—19 out of 23 benchmarks take ≤1min. Many of these bench-
marks are beyond what can be synthesized by other tools like Leon, Rosette,
and others and yet, SyntRec can synthesize them just from very general tem-
plates. For instance, the lcB and lcP benchmarks are automatically discovering
the Church encodings for boolean operations and pairs, respectively. The tc
benchmark synthesizes an algorithm to produce type constraints for lambda cal-
culus ASTs to be used to do type inference. The output of this algorithm is
a conjunction of type equality constraints which is produced by traversing the
AST. Several other desugaring benchmarks have specifications that involve com-
plicated interpreters that keep track of state, for example. Some of these specifi-
cations are even undecidable and yet, SyntRec can synthesize these benchmarks
(up to bounded correctness guarantees). The figure also shows the size of the
synthesized solution (code column)3.

There is one benchmark (langState) that cannot be solved by SyntRec using
a single core. Even in this case, SyntRec can synthesize the desugaring for 6
out of 7 variants in less than a minute. The unresolved variant requires generat-
ing expression terms that are very deep which exponentially increases the search
space. Luckily, our solver is able to leverage multiple cores using the random
concretization technique [7] to search the space of possible programs in paral-
lel. The column T−parallel in Fig. 6 shows the running times for all benchmarks
when run on 16 cores. SyntRec can now synthesize all variants of the langState
benchmark in about 9min.

The results discussed so far are obtained for optimal search parameters for
each of the benchmarks. We also run an experiment to randomly search for these
parameters using the parallel search technique with 16 cores and report the
results in the T−search column. Although these times are higher than when using
the optimal parameters for each benchmark (T−parallel column), the difference
is not huge for most benchmarks.

Hypothesis 2: The Inductive Decomposition Improves the Scalability.
In this experiment, we run each benchmark with the Inductive Decomposition
optimization disabled and the results are shown in Fig. 6 (T−unopt column). This
experiment is run on a single core. First of all, the technique is not applicable
for the AST optimization benchmarks because the functions to be synthesized
are not recursive. Second, for three benchmarks—the λ-calculus ones and the

3 Solution size is measured as the number of nodes in the AST representation of the
solution.
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Bench Description template code T-opt T-parallel T-search T-unopt
D
es
ug

ar
lang Running example 1 50 7.5 8.6 85.9 152.5
langState Running example with mutable state 1 62 ⊥ 527.2 1746.9 ⊥
regex Desugaring regular expressions 1 22 2.0 3.3 9.1 3.3
elimBo ol Boolean operations to if else 1 21 1.5 2.9 7.5 2.4
compAssign Eliminates compound assignments 1 42 16.6 20.9 31.8 176.2
langLarge Desugaring a large language 1 126 61.2 58.0 49.7 ⊥
arrAssertions Add out of bounds assertions 3 40 37.2 50.5 66.7 53.0
NegNorm Computes negation normal form 3 57 21.2 13.6 64.4 ⊥
lcB Boolean operations to λ-calculus 1 55 43.1 47.4 40.6 47.4
lcP Pairs to λ-calculus 1 41 163.6 258.2 288.3 258.2

A
na

ly
si
s

tc Type constraints for λ-calculus 8 41 168.9 68.0 201.9 68.0

A
ST

op
ti
m

andLt AST optimization 1 1 15 3.1 3.1 13.2 N/A
andNot AST optimization 2 1 6 2.6 3.0 13.0 N/A
andOr AST optimization 3 1 12 3.7 3.1 14.0 N/A
plusEq AST optimization 4 1 18 3.3 3.0 14.0 N/A
mux AST optimization 5 1 6 2.4 3.0 12.4 N/A

L
is
t lIns List insertion 1 12 1.5 2.3 2.2 2.1

lDel List deletion 2 14 4.0 4.6 4.1 3.1
lUnion Union of two lists 1 10 8.7 2.7 4.8 2.1

T
re
e

tIns Binary search tree insertion 1 48 20.7 14.5 41.6 11.6
tDel Binary search tree deletion 4 63 224.8 227.4 286.1 298.9
tDelMin Binary search tree delete min 2 18 27.1 32.2 57.7 24.9
tDelMax Binary search tree delete max 2 18 25.9 30.8 54.4 25.9

Fig. 6. Benchmarks. All reported times are in seconds. ⊥ stands for timeout (>45 min)
and N/A stands for not applicable.

tc benchmark, we noticed that their specifications do not have the inductive
structure and hence, the optimization never gets triggered.

But for the other benchmarks, it can be seen that inductive decomposition
leads to a substantial speed-up on the bigger benchmarks. Three benchmarks
time out (>45min) and we found that langState times out even when run in
parallel. In addition, without the optimization, all the different variants need to
be synthesized together and hence, it is not possible to get partial solutions. The
other benchmarks show an average speedup of 2X with two benchmarks having
a speedup >10X. We found that for benchmarks that have very few variants,
such as the list and the tree benchmarks, both versions perform almost similarly.

To evaluate how the performance depends on the number of variants in the
initial AST, we considered the langLarge benchmark that synthesizes a desugar-
ing for a source language with 15 variants into a destination language with just
4 variants. We started the benchmark with 3 variants in the source language
while incrementally adding the additional variants and measured the run times
both with the optimization enabled and disabled. The graph of run time against
the number of variants is shown in Fig. 7. It can be seen that without the opti-
mization the performance degrades very quickly and moreover, the unoptimized
version times out (>45min) when the number of variants is >11.

4.2 Comparison to Other Tools

We compared SyntRec against three tools—Leon, Synquid and Rosette that
can express our benchmarks. The list and the tree benchmarks are the typical
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benchmarks that Leon and Synquid can solve and they are faster than us on
these benchmarks. However, this difference is mostly due to SyntRec’s final
verification time. For these benchmarks, our verification is not at the state of
the art because we use a very naive library for the set related functions used
in their specifications. We also found that Leon and Synquid can synthesize
some of our easy desugaring benchmarks that requires constructing relatively
small ADTs like elimBool and regex in almost the same time as us. However, Leon
and Synquid were not able to solve the harder desugaring problems including
the running example. We should also note that this comparison is not totally
apples-to-apples as Leon and Synquid are more automated than SyntRec.

Fig. 7. Run time (in seconds) versus the
number of variants of the source lan-
guage for the langLarge benchmark with
and without the optimization.

For comparison against Rosette, we
should first note that since Rosette is
also a SyGus solver, we had to write
very verbose templates for each bench-
mark. But even then, we found that
Rosette cannot get past the compi-
lation stage because the solver gets
bogged down by the large number of
recursive calls requiring expansion. For
the other smaller benchmarks that were
able to get to the synthesis stage, we
found that Rosette is either compa-
rable or slower than SyntRec. For
example, the benchmark elimBool takes
about 2min in Rosette compared to
2 s in SyntRec. We attribute these
differences to the different solver level
choices made by Rosette and Sketch
(which we used to built SyntRec
upon).

5 Related Work

There are many recent systems that synthesize recursive functions on algebraic
data-types. Leon [3,8,9] and Synquid [16] are two systems that are very close
to ours. Leon, developed by the LARA group at EPFL, is built on prior work
on complete functional synthesis by the same group [10] and moreover, their
recent work on Synthesis Modulo Recursive Functions [8] demonstrated a sound
technique to synthesize provably correct recursive functions involving algebraic
data types. Unlike our system, which relies on bounded checking to establish
the correctness of candidates, their procedure is capable of synthesizing prov-
ably correct implementations. The tradeoff is the scalability of the system; Leon
supports using arbitrary recursive predicates in the specification, but in practice
it is limited by what is feasible to prove automatically. Verifying something like
equivalence of lambda interpreters fully automatically is prohibitively expen-
sive, which puts some of our benchmarks beyond the scope of their system.
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Synquid [16], on the other hand, uses refinement types as a form of specifica-
tion to efficiently synthesize programs. Like our system, Synquid also depends
on bi-directional type checking to effectively prune the search space. But like
Leon, it is also limited to decidable specifications. There has also been a lot
of recent work on programming by example systems for synthesizing recursive
programs [1,4,13,14]. All of these systems rely on explicit search with some
systems like [13] using bi-directional typing to prune the search space and other
systems like [1] using specialized data-structures to efficiently represent the space
of implementations. However, they are limited to programming-by-example set-
tings, and cannot handle our benchmarks, especially the desugaring ones.

Our work builds on a lot of previous work on SAT/SMT based synthesis
from templates. Our implementation itself is built on top of the open source
Sketch synthesis system [18]. However, several other solver-based synthesizers
have been reported in the literature, such as Brahma [5]. More recently, the
work on the solver aided language Rosette [20,21] has shown how to embed
synthesis capabilities in a rich dynamic language and then how to leverage these
features to produce synthesis-enabled embedded DSLs in the language. Rosette
is a very expressive language and in principle can express all the benchmarks
in our paper. However, Rosette is a dynamic language and lacks static type
information, so in order to get the benefits of the high-level synthesis constructs
presented in this paper, it would be necessary to re-implement all the machinery
in this paper as an embedded DSL.

There is also some related work in the context of using polymorphism to
enable re-usability in programming. [11] is one such approach where the authors
describe a design pattern in Haskell that allows programmers to express the
boilerplate code required for traversing recursive data structures in a reusable
manner. This paper, on the other hand, focuses on supporting reusable templates
in the context of synthesis which has not been explored before. Finally, the
work on hole driven development [12] is also related in the way it uses types
to gain information about the structure of the missing code. The key difference
is that existing systems like Agda lack the kind of symbolic search capabilities
present in our system, which allow it to search among the exponentially large
set of expressions with the right structure for one that satisfies a deep semantic
property like equivalence with respect to an interpreter.

6 Conclusion

The paper has shown that by combining type information from algebraic data-
types together with the novel Inductive Decomposition optimization, it is possi-
ble to efficiently synthesize complex functions based on pattern matching from
very general templates, including desugaring functions for lambda calculus that
implement non-trivial Church encodings.

Acknowledgments. We would like to thank the authors of Leon and Rosette for
their help in comparing against their systems and the reviewers for their feedback.
This research was supported by NSF award #1139056 (ExCAPE).
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Abstract. In this paper we present a new approach for solving quanti-
fied formulas in Satisfiability Modulo Theories (SMT), with a particular
focus on the theory of fixed-size bit-vectors. We combine counterexample-
guided quantifier instantiation with a syntax-guided synthesis approach,
which allows us to synthesize both Skolem functions and terms for quan-
tifier instantiations. Our approach employs two ground theory solvers to
reason about quantified formulas. It neither relies on quantifier specific
simplifications nor heuristic quantifier instantiation techniques, which
makes it a simple yet effective approach for solving quantified formulas.
We implemented our approach in our SMT solver Boolector and show
in our experiments that our techniques are competitive compared to the
state-of-the-art in solving quantified bit-vectors.

1 Introduction

Many techniques in hardware and software verification rely on quantifiers for
describing properties of programs and circuits, e.g., universal safety properties,
inferring program invariants [1], finding ranking functions [2], and synthesizing
hardware and software [3,4]. Quantifiers further allow to define theory axioms
to reason about a theory of interest not supported natively by an SMT solver.

The theory of fixed-size bit-vectors provides a natural way of encoding bit-
precise semantics as found in hardware and software. In recent SMT competi-
tions, the division for quantifier-free fixed-size bit-vectors was the most compet-
itive with an increasing number of participants every year. Quantified bit-vector
reasoning, however, even though a highly required feature, is still very challeng-
ing and did not get as much attention as the quantifier-free fragment. The com-
plexity of deciding quantified bit-vector formulas is known to be NExpTime-hard
and solvable in ExpSpace [5]. Its exact complexity, however, is still unknown.

While there exist several SMT solvers that efficiently reason about quantifier-
free bit-vectors, only CVC4 [6], Z3 [7], and Yices [8] support the quantified bit-
vector fragment. The SMT solver CVC4 employs counterexample-guided quan-
tifier instantiation (CEGQI) [9], where a ground theory solver tries to find con-
crete values (counterexamples) for instantiating universal variables by generat-
ing models of the negated input formula. In Z3, an approach called model-based
quantifier instantiation (MBQI) [10] is combined with a model finding procedure
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based on templates [11]. In contrast to only relying on concrete counterexam-
ples as candidates for quantifier instantiation, MBQI additionally uses symbolic
quantifier instantiation to generalize the counterexample by selecting ground
terms to rule out more spurious models. The SMT solver Yices provides quan-
tifier support limited to exists/forall problems [12] of the form ∃x∀y.P [x,y]. It
employs two ground solver instances, one for checking the satisfiability of a set of
generalizations and generating candidate solutions for the existential variables
x, and the other for checking if the candidate solution is correct. If the candi-
date model is not correct, a model-based generalization procedure refines the
candidate models.

Recently, a different approach based on binary decision diagrams (BDD)
was proposed in [13]. Experimental results of its prototype implementation Q3B
show that it is competitive with current state-of-the-art SMT solvers. However,
employing BDDs for solving quantified bit-vectors heavily relies on formula sim-
plifications, variable ordering, and approximation techniques to reduce the size
of the BDDs. If these techniques fail to substantially reduce the size of the BDDs
this approach does not scale. Further, in most applications it is necessary to pro-
vide models in case of satisfiable problems. However, it is unclear if a bit-level
BDD-based model can be lifted to produce more succinct word-level models.

In this paper, we combine a variant of CEGQI with a syntax-guided syn-
thesis [14] approach to create a model finding algorithm called counterexample-
guided model synthesis (CEGMS), which iteratively refines a synthesized candi-
date model. Unlike Z3, our approach synthesizes Skolem functions based on a
set of ground instances without the need for specifying function or circuit tem-
plates up-front. Further, we can apply CEGMS to the negation of the formula
in a parallel dual setting to synthesize quantifier instantiations that prove the
unsatisfiability of the original problem. Our approach is a simple yet efficient
technique that does not rely on quantifier specific simplifications, which have
previously been found to be particularly useful [11]. Our experimental evalua-
tion shows that our approach is competitive with the state-of-the-art in solving
quantified bit-vectors. However, even though we implemented it in Boolector, an
SMT solver for the theory of bit-vectors with arrays and uninterpreted functions,
our techniques are not restricted to the theory of quantified bit-vectors.

2 Preliminaries

We assume the usual notions and terminology of first-order logic and primarily
focus on the theory of quantified fixed-size bit-vectors. We only consider many-
sorted languages, where bit-vectors of different size are interpreted as bit-vectors
of different sorts.

Let Σ be a signature consisting of a set of function symbols f : n1, . . . , nk → n
with arity k ≥ 0 and a set of bit-vector sorts with size n, n1, . . . , nk. For the sake
of simplicity and w.l.o.g., we assume that sort Bool is interpreted as a bit-vector
of size one with constants � (1) and ⊥ (0), and represent all predicate symbols
as function symbols with a bit-vector of size one as the sort of the co-domain. We
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refer to function symbols occurring in Σ as interpreted, and those symbols not
included in Σ as uninterpreted. A bit-vector term is either a bit-vector variable
or an application of a bit-vector function of the form f(t1, . . . , tk), where f ∈ Σ
or f 	∈ Σ, and t1, . . . , tk are bit-vector terms. We denote bit-vector term t of size
n as t[n] and define its domain as BV [n], which consists of all bit-vector values
of size n. Analogously, we represent a bit-vector value as an integer with its size
as a subscript, e.g., 1[4] for 0001 or −1[4] for 1111.

We assume the usual interpreted symbols for the theory of bit-vectors, e.g.,
=[n],+[n], ∗[n], concat [n+m], <[n], etc., and will omit the subscript specifying their
bit-vector size if the context allows. We further interpret an ite(c, t0, t1) as an
if-then-else over bit-vector terms, where ite(�, t0, t1) = t0 and ite(⊥, t0, t1) = t1.

In general, we refer to 0-arity function symbols as constant symbols, and
denote them by a, b, and c. We use f and g for non-constant function symbols,
P for predicates, x, y and z for variables, and t for arbitrary terms. We use
symbols in bold font, e.g., x, as a shorthand for tuple (x1, . . . , xk), and denote a
formula (resp. term) that may contain variables x as ϕ[x] (resp. t[x]). If a formula
(resp. term) does not contain any variables we refer to it as ground formula
(resp. term). We further use ϕ[t/x] as a notation for replacing all occurrences of x
in ϕ with a term t. Similarly, ϕ[t/x] is used as a shorthand for ϕ[t1/x1, . . . , tk/xk].

Given a quantified formula ϕ[x,y] with universal variables x and existential
variables y, Skolemization [15] eliminates all existential variables y by intro-
ducing fresh uninterpreted function symbols with arity ≥ 0 for the existential
variables y. For example, the skolemized form of formula ∃y1∀x∃y2.P (y1,x, y2)
is ∀x.P (fy1 ,x, fy2(x)), where fy1 and fy2 are fresh uninterpreted symbols, which
we refer to as Skolem symbols. The subscript denotes the existential variable that
was eliminated by the corresponding Skolem symbol. We write skolemize(ϕ) for
the application of Skolemization to formula ϕ, var∀(ϕ) for the set of universal
variables in ϕ, and symsk(ϕ) for the set of Skolem symbols in ϕ.

A Σ-structure M maps each bit-vector sort of size n to its domain BV [n],
each function symbol f : n1, . . . , nk → n ∈ Σ with arity k > 0 to a total func-
tion M(f) : BV [n1], . . . ,BV [nk] → BV [n], and each constant symbol with size n
to an element in BV [n]. We use M ′ := M{x �→ v} to denote a Σ-structure M ′

that maps variable x to a value v of the same sort and is otherwise identi-
cal to M . The evaluation M(x[n]) of a variable x[n] and M(c[n]) of a constant
c in M is an element in BV [n]. The evaluation of an arbitrary term t in M is
denoted by M [[t]] and is recursively defined as follows. For a constant c (resp. vari-
able x) M [[c]] = M(c) (resp. M [[x]] = M(x)). A function symbol f is evaluated
as M [[f(t1, . . . , tk)]] = M(f)(M [[t1]], . . . , M [[tk]]). A Σ-structure M is a model of
a formula ϕ if M [[ϕ]] = �. A formula is satisfiable if and only if it has a model.

3 Overview

In essence, our counterexample-guided model synthesis (CEGMS) approach for
solving quantified bit-vector problems combines a variant of counterexample-
guided quantifier instantiation (CEGQI) [9] with the syntax-guided synthesis
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Fig. 1. Basic workflow of our CEGMS approach.

approach in [14] in order to synthesize Skolem functions. The general workflow
of our approach is depicted in Fig. 1 and introduced as follows.

Given a quantified formula ϕ as input, CEGMS first applies Skolemization as
a preprocessing step and initializes an empty set of ground instances. This empty
set is, in the following, iteratively extended with ground instances of ϕ, generated
via CEGQI. In each iteration, CEGMS first checks for a ground conflict by calling
a ground theory solver instance on the set of ground instances. If the solver
returns unsatisfiable, a ground conflict was found and the CEGMS procedure
concludes with UNSAT. If the solver returns satisfiable, it produces a model
for the Skolem symbols, which serves as a base for synthesizing a candidate
model for all Skolem functions. If the candidate model is valid, the CEGMS
procedure concludes with SAT. However, if the candidate model is invalid, the
solver generates a counterexample, which is used to create a new ground instance
of the formula via CEGQI. The CEGMS procedure terminates, when either a
ground conflict occurs, or a valid candidate model is synthesized.

4 Counterexample-Guided Model Synthesis

The main refinement loop of our CEGMS approach is realized via CEGQI [9],
a technique similar to the generalization by substitution approach described
in [12], where a concrete counterexample to universal variables is used to create a
ground instance of the formula, which then serves as a refinement for the candi-
date model. Similarly, every refinement step of our CEGMS approach produces
a ground instance of the formula by instantiating its universal variables with a
counter example if the synthesized candidate model is not valid. The counterex-
ample corresponds to a concrete assignment to the universal variables for which
the candidate model does not satisfy the formula. Figure 2 introduces the main
algorithm of our CEGMS approach as follows.
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1 function CEGMS (ϕ)
2 G := �, x := var∀(ϕ)
3 ϕsk := skolemize(preprocess(ϕ)) // apply Skolemization
4 f := symsk(ϕsk) // Skolem symbols
5 ϕG := ϕsk[u/x] // ground ϕsk with fresh constants u
6 while true
7 r, MG := sat(G) // check set of ground instances
8 if r = unsat return unsat // found ground
9 MS := synthesize(f , G, MG, ϕG) // synthesize candidate model

10 r, MC := sat(¬ϕG[MS(f)/f ]) // check candidate model
11 if r = unsat return sat // candidate model is valid
12 G := G ∧ ϕG[MC(u)/u] // new ground instance via CEGQI

conflict

Fig. 2. High level view of our CEGMS approach.

Given a quantified bit-vector formula ϕ, we represent ϕ as a directed acyclic
graph (DAG), with the Boolean layer expressed by means of AND and NOT.
As a consequence, it is not possible to transform ϕ into negative normal form
(NNF) and we therefore apply quantifier normalization as a preprocessing step
to ensure that a quantifier does not occur in both negated and non-negated form.
For the same reason, an ite-term is eliminated in case that a quantifier occurs
in its condition. Note that if ϕ is not in NNF, it is sufficient to keep track of
the polarities of the quantifiers, i.e., to count the number of negations from the
root of the formula to the resp. quantifier, and flip the quantifier if the number
of negations is odd. If a quantifier occurs negative and positive, the scope of the
quantifier is duplicated, the quantification is flipped, and the negative occurrence
is substituted with the new subgraph. Further note that preprocessing currently
does not include any further simplification techniques such as miniscoping or
destructive equality resolution (DER) [11].

After preprocessing, Skolemization is applied to the normalized formula, and
all universal variables x in ϕsk are instantiated with fresh bit-vector constants
u of the same sort. This yields ground formula ϕG. Initially, procedure CEGMS
starts with an empty set of ground instances G, which is iteratively extended
with new ground instances during the refinement loop.

In the first step of the loop, an SMT solver instance checks whether G con-
tains a ground conflict (line 7). If this is the case, procedure CEGMS has found
conflicting quantifier instantiations and concludes with unsatisfiable. Else, the
SMT solver produces model MG for all Skolem symbols in G, i.e., every Skolem
constant is mapped to a bit-vector value, and every uninterpreted function cor-
responding to a Skolem function is mapped to a partial function mapping bit-
vector values. Model MG is used as a base for synthesizing a candidate model
MS that satisfies G. The synthesis of candidate models MS will be introduced
in more detail in the next section. In order to check if MS is also a model that
satisfies ϕ, we check with an additional SMT solver instance if there exists an
assignment to constants u (corresponding to universal variables x), such that
candidate model MS does not satisfy formula ϕ (line 10).
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If the second SMT solver instance returns unsatisfiable, no such assignment to
constants u exists and consequently, candidate model MS is indeed a valid model
for the Skolem functions and procedure CEGMS returns with satisfiable. Else,
the SMT solver produces a concrete counterexample for constants u, for which
candidate model MS does not satisfy formula ϕ. This counterexample is used as
a quantifier instantiation to create a new ground instance gi := ϕG[MC(u)/u],
which is added to G := G ∧ gi as a refinement (line 12) and considered in the
next iteration for synthesizing a candidate model. These steps are repeated until
either a ground conflict is found or a valid candidate model was synthesized.

Our CEGMS procedure creates in the worst-case an unmanageable number
of ground instances of the formula prior to finding either a ground conflict or
a valid candidate model, infinitely many in case of infinite domains. In the bit-
vector case, however, it produces in the worst-case exponentially many ground
instances in the size of the domain. Since, given a bit-vector formula, there
exist only finitely many such ground instances, procedure CEGMS will always
terminate. Further, if CEGMS concludes with satisfiable, it returns with a model
for the existential variables.

5 Synthesis of Candidate Models

In our CEGMS approach, based on a concrete model MG we apply synthe-
sis to find general models MS to accelerate either finding a valid model or a
ground conflict. Consider formula ϕ := ∀xy∃z . z = x + y, its skolemized form
ϕsk := ∀xy . fz(x, y) = x + y, some ground instances G := fz(0, 0) = 0 ∧ fz(0, 1)
= 1 ∧ fz(1, 2) = 3, and model MG := {fz(0, 0) �→ 0, fz(0, 1) �→ 1, fz(1, 2) �→ 3}
that satisfies G. A simple approach for generating a Skolem function for fz
would be to represent model MG(fz) as a lambda term λxy.ite(x = 0 ∧ y =
0, 0, ite(x = 0 ∧ y = 1, 1, ite(x = 1 ∧ y = 2, 3, 0))) with base case constant 0, and
check if it is a valid Skolem function for fz. If it is not valid, a counterexam-
ple is generated and a new ground instance is added via CEGQI to refine the
set of ground instances G. However, this approach, in the worst-case, enumer-
ates exponentially many ground instances until finding a valid candidate model.
By introducing a modified version of a syntax-guided synthesis technique called
enumerative learning [16], CEGMS is able to produce a more succinct and more
general lambda term λxy . x + y, which satisfies the ground instances G and
formula ϕsk.

Enumerative learning as in [16] systematically enumerates expressions that
can be built based on a given syntax and checks whether the generated expression
conforms to a set of concrete test cases. These expressions are generated in
increasing order of a specified complexity metric, such as, e.g., the size of the
expression. The algorithm creates larger expressions by combining smaller ones
of a given size, which is similar to the idea of dynamic programming. Each
generated expression is evaluated on the concrete test cases, which yields a vector
of values also denoted as signature. In order to reduce the number of enumerated
expressions, the algorithm discards expressions with identical signatures, i.e., if
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two expressions produce the same signature the one generated first will be stored
and the other one will be discarded. Figure 3 depicts a simplified version of the
enumerative learning algorithm as employed in our CEGMS approach, while a
more detailed description of the original algorithm can be found in [16].

1 function enumlearn (f , I, O, T , M)
2 S := ∅, E[1] := I, size = 0
3 while true
4 size := size + 1 // increase expression size to create
5 for t ∈ enumexps(size, O, E) // enumerate all expressions of size size
6 s := eval(M, T [t/f ]) // compute signature of t
7 if s �∈ S // expression not yet created
8 S := S ∪ {s} // cache signature
9 if checksig(s) return t // t conforms to test cases T

10 E[size] := E[size] ∪ {t} // store expression t

Fig. 3. Simplified version of enumerative learning [16] employed in CEGMS.

Given a Skolem symbol f , a set of inputs I, a set of operators O, a set of
test cases T , and a model M , algorithm enumlearn attempts to synthesize a
term t, such that T [t/f ] evaluates to true under model M . This is done by enu-
merating all terms t that can be built with inputs I and bit-vector operators O.
Enumerating all expressions of a certain size (function enumexps) follows the
original enumerative learning approach [16]. Given an expression size size and a
bit-vector operator o, the size is partitioned into partitions of size k = arity(o),
e.g., (1,3) (3,1) (2,2) for size = 4 and k = 2. Each partition (s1, . . . , sk) specifies
the size si of expression ei, and is used to create expressions of size size with
operator o, i.e., {o(e1, . . . , ek) | (e1, . . . , ek) ∈ E[s1] × . . . × E[sk]}, where E[si]
corresponds to the set of expressions of size si. Initially, for size = 1, function
enumexps enumerates inputs only, i.e., E[1] = I.

For each generated term t, a signature s is computed from a set of test cases
T with function eval. In the original algorithm [16], set T contains concrete
examples of the input/output relation of f , i.e., it defines a set of output val-
ues of f under some concrete input values. In our case, model M(f) may be
used as a test set T , since it contains a concrete input/output relation on some
bit-vector values. However, we are not looking for a term t with that concrete
input/output value behaviour, but a term t that at least satisfies the set of cur-
rent ground instances G. Hence, we use G as our test set and create a signature s
by evaluating every ground instance gi ∈ G[t/f ], resulting in a tuple of Boolean
constants, where the Boolean constant at position i corresponds to the value
M [[gi]] of ground instance gi ∈ G[t/f ] under current model M . Procedure check-
sig returns true if signature s contains only the Boolean constant �, i.e., if every
ground instance gi ∈ G is satisfied.

As a consequence of using G rather than M(f) as a test set T , the expres-
sion enumeration space is even more pruned since computing the signature of f
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w.r.t. G yields more identical expressions (and consequently, more expressions
get discarded). Note that the evaluation via function eval does not require addi-
tional SMT solver calls, since the value of ground instance gi ∈ G[t/f ] can be
computed via evaluating M [[gi]].

Algorithm synthesize produces Skolem function candidates for every Skolem
symbol f ∈ f , as depicted in Fig. 4. Initially, a set of bit-vector operators O is
selected, which consists of those operators appearing in formula ϕG. Note that
we do not select all available bit-vector operators of the bit-vector theory in order
to reduce the number of expressions to enumerate. The algorithm then selects a
set of inputs I, consisting of the universal variables on which f depends and the
constant values that occur in formula ϕG. Based on inputs I and operators O, a
term t for Skolem symbol f is synthesized and stored in model MS (lines 4–7).
If algorithm enumlearn is not able to synthesize a term t, model MG(f) is used
instead. This might happen if function enumlearn hits some predefined limit
such as the maximum number of expressions enumerated.

1 function synthesize (f , G, MG, ϕG)
2 MS := MG, O := ops(ϕG) // choose operators O w.r.t. formula ϕG

3 for f ∈ f
4 I := inputs(f, ϕG) // choose inputs for f
5 t := enumlearn(f, I, O, G, MS) // synthesize term t
6 if t �= null
7 MS := MS{f �→ t} // update model
8 return MS

Fig. 4. Synthesis of candidate models in CEGMS.

In each iteration step of function synthesize, model MS is updated if enum-
learn succeeded in synthesizing a Skolem function. Thus, in the next iterations,
previously synthesized Skolem functions are considered for evaluating candidate
expressions in function enumlearn. This is crucial to guarantee that each syn-
thesized Skolem function still satisfies the ground instances in G. Otherwise, MS

may not rule out every counterexample generated so far, and thus, validating the
candidate model may result in a counterexample that was already produced in a
previous refinement iteration. As a consequence, our CEGMS procedure would
not terminate even for finite domains since it might get stuck in an infinite
refinement loop while creating already existing ground instances.

The number of inputs and bit-vector operators used as base for algorithm
enumlearn significantly affects the size of the enumeration space. Picking too
many inputs and operators enumerates too many expressions and algorithm
enumlearn will not find a candidate term in a reasonable time, whereas restrict-
ing the number of inputs and operators too much may not yield a candidate
expression at all. In our implementation, we kept it simple and maintain a set of
base operators {ite,∼}, which gets extended with additional bit-vector opera-
tors occurring in the original formula. The set of inputs consists of the constant
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values occurring in the original formula and the universal variables on which a
Skolem symbol depends. Finding more restrictions on the combination of inputs
and bit-vector operators in order to reduce the size of the enumeration space is
an important issue, but left to future work.

Example 1. Consider ϕ := ∀x∃y . (x < 0 → y = −x) ∧ (x ≥ 0 → y = x), and its
skolemized form ∀x . (x < 0 → fy(x) = −x) ∧ (x ≥ 0 → fy(x) = x), where y and
consequently fy(x) corresponds to the absolute value function abs(x). For syn-
thesizing a candidate model for fy, we first pick the set of inputs I := {x, 0}
and the set of operators O := {−,∼, <, ite} based on formula ϕ. Note that we
omitted operators ≥ and → since they can be expressed by means of the other
operators. The ground formula and its negation are defined as follows.

ϕG := (u < 0 → fy(u) = −u) ∧ (u ≥ 0 → fy(u) = u)
¬ϕG := (u < 0 ∧ fy(u) 	= −u) ∨ (u ≥ 0 ∧ fy(u) 	= u)

For every refinement round i, the table below shows the set of ground
instances G, the synthesized candidate model M(fy), formula ¬ϕG[MS(fy)/fy]
for checking the candidate model, and a counterexample MC for constant u if
the candidate model was not correct.

i G MS(fy) ¬ϕG[MS(fy)/fy] MC(u)

1 � λx.0 (u < 0 ∧ 0 �= −u) ∨ (u ≥ 0 ∧ 0 �= u) 1

2 fy(1) = 1 λx.x (u < 0 ∧ u �= −u) ∨ (u ≥ 0 ∧ u �= u) −1

3 fy(−1) = 1 λx.ite(x < 0, −x, x) (u < 0 ∧ ite(u < 0, −u, u) �= −u) ∨
(u ≥ 0 ∧ ite(u < 0, −u, u) �= u)

-

In the first round, the algorithm starts with ground formula G := �. Since
any model of fy satisfies G, for the sake of simplicity, we pick λx.0 as candidate,
resulting in counterexample u = 1, and refinement ϕG[1/u] ≡ fy(1) = 1 is
added to G. In the second round, lambda term λx.x is synthesized as candidate
model for fy since it satisfies G := fy(1) = 1. However, this is still not a valid
model for fy and counterexample u = −1 is produced, which yields refinement
ϕG[−1/u] ≡ fy(−1) = 1. In the third and last round, MS(fy) := λx.ite(x <
0,−x, x) is synthesized and found to be a valid model since ¬ϕG[MS(fy)/fy] is
unsatisfiable, and CEGMS concludes with satisfiable.

6 Dual Counterexample-Guided Model Synthesis

Our CEGMS approach is a model finding procedure that enables us to synthesize
Skolem functions for satisfiable problems. However, for the unsatisfiable case we
rely on CEGQI to find quantifier instantiations based on concrete counterex-
amples that produce conflicting ground instances. In practice, CEGQI is often
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successful in finding ground conflicts. However, it may happen that way too many
quantifier instantiations have to be enumerated (in the worst-case exponentially
many for finite domains, infinitely many for infinite domains). In order to obtain
better (symbolic) candidates for quantifier instantiation, we exploit the concept
of duality of the input formula and simultaneously apply our CEGMS approach
to the original input and its negation (the dual formula).

Given a quantified formula ϕ and its negation, the dual formula ¬ϕ, e.g.,
ϕ := ∀x∃y.P [x, y] and ¬ϕ := ∃x∀y.¬P [x, y]. If ¬ϕ is satisfiable, then there
exists a model M(x) to its existential variables x such that ϕ[M(x)/x,y] is
unsatisfiable. That is, a model in the dual formula ¬ϕ can be used as a quantifier
instantiation in the original formula ϕ to immediately produce a ground conflict.
Similarly, if ¬ϕ is unsatisfiable, then there exists no quantifier instantiation in
ϕ such that ϕ is unsatisfiable. As a consequence, if we apply CEGMS to the
dual formula and it is able to synthesize a valid candidate model, we obtain
a quantifier instantiation that immediately produces a ground conflict in the
original formula. Else, if our CEGMS procedure concludes with unsatisfiable on
the dual formula, there exists no model to its existential variables and therefore,
the original formula is satisfiable.

Dual CEGMS enables us to simultaneously search for models and quantifier
instantiations, which is particularly useful in a parallel setting. Further, apply-
ing synthesis to produce quantifier instantiations via the dual formula allows
us to create terms that are not necessarily ground instances of the original for-
mula. This is particularly useful in cases where heuristic quantifier instantiation
techniques based on E-matching [17] or model-based quantifier instantiation [10]
struggle due to the fact that they typically select terms as candidates for quan-
tifier instantiation that occur in some set of ground terms of the input formula,
as illustrated by the following example.

Example 2. Consider the unsatisfiable formula ϕ := ∀x . a ∗ c + b ∗ c 	= x ∗ c,
where x = a + b produces a ground conflict. Unfortunately, a + b is not a ground
instance of ϕ and is consequently not selected as a candidate by current state-
of-the-art heuristic quantifier instantiation techniques. However, if we apply
CEGMS to the dual formula ∀abc∃x . a ∗ c + b ∗ c = x ∗ c, we obtain λxyz.x + y
as a model for Skolem symbol fx(a, b, c), which corresponds to the term a + b if
instantiated with (a, b, c). Selecting a + b as a term for instantiating variable x in
the original formula results in a conflicting ground instance, which immediately
allows us to determine unsatisfiability.

Note that if CEGMS concludes unsatisfiable on the dual formula, we cur-
rently do not produce a model for the original formula. Generating a model
would require further reasoning, e.g., proof reasoning, on the conflicting ground
instances of the dual formula and is left to future work.

Further, dual CEGMS currently only utilizes the final result of applying
CEGMS to the dual formula. Exchanging intermediate results (synthesized can-
didate models) between the original and the dual formula in order to prune the
search is an interesting direction for future work.
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In the context of quantified Boolean formulas (QBF), the duality of the
given input has been previously successfully exploited to prune and consequently
speed up the search in circuit-based QBF solvers [18]. In the context of SMT, in
previous work we applied the concept of duality to optimize lemmas on demand
approach for the theory of arrays in Boolector [19].

7 Experiments

We implemented our CEGMS technique and its dual version in our SMT solver
Boolector [20], which supports the theory of bit-vectors combined with arrays
and uninterpreted functions. We evaluated our approach on two sets of bench-
marks (5029 in total). Set BV (191) contains all BV benchmarks of SMT-
LIB [21], whereas set BVLNIRA (4838) consists of all LIA, LRA, NIA, NRA
benchmarks of SMT-LIB [21] translated into bit-vector problems by substituting
every integer or real with a bit-vector of size 32, and every arithmetic operator
with its signed bit-vector equivalent.

We evaluated four configurations of Boolector1: (1) Btor, the CEGMS ver-
sion without synthesis, (2) Btor+s, the CEGMS version with synthesis enabled,
(3) Btor+d, the dual CEGMS version without synthesis, (4) Btor+ds, the
dual CEGMS version with synthesis enabled. We compared our approach to
the current development versions of the state-of-the-art SMT solvers CVC42 [6]
and Z33 [7], and the BDD-based approach implemented as a prototype called
Q3B4 [13]. The tool Q3B runs two processes with different approximation strate-
gies in a parallel portfolio setting, where one process applies over-approximation
and the other under-approximation. The dual CEGMS approach implemented in
Boolector is realized with two parallel threads within the solver, one for the orig-
inal formula and the other for the dual formula. Both threads do not exchange
any information and run in a parallel portfolio setting.

All experiments were performed on a cluster with 30 nodes of 2.83GHz Intel
Core 2 Quad machines with 8GB of memory using Ubuntu 14.04.5 LTS. We set
the limits for each solver/benchmark pair to 7GB of memory and 1200 seconds
of CPU time (not wall clock time). In case of a timeout, memory out, or an
error, a penalty of 1200 seconds was added to the total CPU time.

Figure 5 illustrates the effect of our model synthesis approach by comparing
configurations Btor and Btor+s on the BV and BVLNIRA benchmark sets.
On the BV benchmark set, Btor+s solves 22 more instances (21 satisfiable, 1
unsatisfiable) compared to Btor. The gain in the number of satisfiable instances
is due to the fact that CEGMS is primarily a model finding procedure, which
allows to find symbolic models instead of enumerating a possibly large number
of bit-vector values, which seems to be crucial on these instances.

1 Boolector commit 4f7837876cf9c28f42649b368eaffaf03c7e1357.
2 CVC4 commit d19a95344fde1ea1ff7d784b2c4fc6d09f459899.
3 Z3 commit 186afe7d10d4f0e5acf40f9b1f16a1f1c2d1706c.
4 Q3B commit 68301686d36850ba782c4d0f9d58f8c4357e1461.
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Fig. 5. Comparison of Boolector with model synthesis enabled (Btor+s) and disabled
(Btor) on the BV and BVLNIRA benchmarks.

On set BVLNIRA, however, Btor+s does not improve the overall number
of solved instances, even though it solves two satisfiable instances more than
Btor. Note that benchmark set BVLNIRA contains only a small number of
satisfiable benchmarks (at most 12% = 575 benchmarks5), where configuration
Btor already solves 465 instances without enabling model synthesis. For the
remaining satisfiable instances, the enumeration space may still be too large
to synthesize a model in reasonable time and may require more pruning by
introducing more syntactical restrictions for algorithm enumlearn as discussed
in Sect. 5.

Figure 6 shows the effect of model synthesis on the dual configurations
Btor+d and Btor+ds on benchmark sets BV and BVLNIRA. On the BV bench-
mark set, configuration Btor+ds is able to solve 10 more instances of which all
are satisfiable. On the BVLNIRA benchmark set, compared to Btor+d, configu-
ration Btor+ds is able to solve 132 more instances of which all are unsatisfiable.
The significant increase is due to the successful synthesis of quantifier instanti-
ations (133 cases).

Table 1 summarizes the results of all four configurations on both bench-
mark sets. Configuration Btor+ds clearly outperforms all other configurations
w.r.t. the number of solved instances and runtime on both benchmark sets. Out
of all 77 (517) satisfiable instances in set BV (BVLNIRA) solved by Btor+ds,
32 (321) were solved by finding a ground conflict in the dual CEGMS approach.
In case of configuration Btor+d, out of 67 (518) solved satisfiable instances, 44
(306) were solved by finding a ground conflict in the dual formula. As an inter-
esting observation, 16 (53) of these instances were not solved by Btor. Note,

5 Boolector, CVC4, Q3B, and Z3 combined solved 4263 unsatisfiable and 533 satisfi-
able instances, leaving only 42 instances unsolved.
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Fig. 6. Comparison of dual CEGMS with model synthesis enabled (Btor+ds) and
disabled (Btor+d) on the BV and BVLNIRA benchmarks.

Table 1. Results for all configurations on the BV and BVLNIRA benchmarks.

BV (191) BVLNIRA (4838)

Solved Sat Unsat Time [s] Uniq Solved Sat Unsat Time [s] Uniq

Btor 142 51 91 59529 0 4527 465 4062 389123 3

Btor+s 164 72 92 32996 0 4526 467 4059 390661 1

Btor+d 162 67 95 35877 0 4572 518 4054 342412 4

Btor+ds 172 77 95 24163 0 4704 517 4187 187411 135

however, that Btor+d is not able to construct a model for these instances due
to the current limitations of our dual CEGMS approach as described in Sect. 6.

On the BV benchmark set, model synthesis significantly reduces the number
of refinement iterations. Out of 142 commonly solved instances, Btor+s required
165 refinement iterations, whereas Btor required 664 refinements. On the 4522
commonly solved instances of the BVLNIRA benchmark set, Btor+s requires
5249 refinement iterations, whereas Btor requires 5174 refinements. The differ-
ence in the number of refinement iterations is due to the fact that enabling model
synthesis may produce different counterexamples that requires the CEGMS pro-
cedure to sometimes create more refinements. However, as noted earlier, enabling
model synthesis on set BVLNIRA does not improve the overall number of solved
instances in the non-dual case.

We analyzed the terms produced by model synthesis for both Btor+s and
Btor+ds on both benchmark sets. On the BV benchmark set, mainly terms of
the form λx . c and λx . xi with a bit-vector value c and xi ∈ x have been synthe-
sized. On the BVLNIRA benchmarks, additional terms of the form λx . (xi op xj),
λx . (c op xi), λx .∼(c ∗ xi)) and λx . (xi + (c + ∼xj)) with a bit-vector operator
op were synthesized. On these benchmarks, more complex terms did not occur.
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Fig. 7. Cactus plot of the runtime of all solvers on benchmark sets BV and BVLNIRA.

Figure 7 depicts two cactus plots over the runtime of our best configuration
Btor+ds and the solvers CVC4, Q3B, and Z3 on the benchmark sets BV and
BVLNIRA. On both benchmark sets, configuration Btor+ds solves the second
highest number of benchmarks after Q3B (BV) and Z3 (BVLNIRA). On both
benchmark sets, a majority of the benchmarks seem to be trivial since they were
solved by all solvers within one second.

Table 2 summarizes the results of all solvers on both benchmark sets. On
the BV benchmark set, Q3B solves with 187 instances the highest number of
benchmarks, followed by Btor+ds with a total of 172 solved instances. Out
of all 19 benchmarks unsolved by Btor+ds, 9 benchmarks are solved by Q3B
and CVC4 through simplifications only. We expect Boolector to also benefit
from introducing quantifier specific simplification techniques, which is left to
future work. On the BVLNIRA set, Z3 solves the most instances (4732) and
Btor+ds again comes in second with 4704 solved instances. In terms of satisfiable
instances, however, Btor+ds solves the highest number of instances (517). In
terms of unsatisfiable instances, Z3 clearly has an advantage due to its heuristic

Table 2. Results for all solvers on the BV and BVLNIRA benchmarks with a CPU
time limit of 1200 seconds (not wall clock time).

BV (191) BVLNIRA (4838)

Solved Sat Unsat Time [s] Uniq Solved Sat Unsat Time [s] Uniq

Btor+ds 172 77 95 24163 2 4704 517 4187 187411 19

CVC4 145 64 81 57652 0 4362 339 4023 580402 3

Q3B 187 93 94 9086 9 4367 327 4040 581252 5

Z3 161 69 92 36593 0 4732 476 4256 130405 11
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quantifier instantiation techniques and solves 69 instances more than Btor+ds,
out of which 66 were solved within 3 seconds. The BDD-based approach of Q3B
does not scale as well on the BVLNIRA set as on the BV set benchmark set and is
even outperformed by Btor+s. Note that most of the benchmarks in BVLNIRA

involve more bit-vector arithmetic than the benchmarks in set BV.
Finally, considering Btor+ds, a wall clock time limit of 1200 seconds increases

the number of solved instances of set BVLNIRA by 11 (and by 6 for Q3B). On
set BV, the number of solved instances does not increase.

8 Conclusion

We presented CEGMS, a new approach for handling quantifiers in SMT, which
combines CEGQI with syntax-guided synthesis to synthesize Skolem functions.
Further, by exploiting the duality of the input formula dual CEGMS enables us
to synthesize terms for quantifier instantiation. We implemented CEGMS in our
SMT solver Boolector. Our experimental results show that our technique is com-
petitive with the state-of-the-art in solving quantified bit-vectors even though
Boolector does not yet employ any quantifier specific simplification techniques.
Such techniques, e.g., miniscoping or DER were found particularly useful in Z3.
CEGMS employs two ground theory solvers to reason about arbitrarily quan-
tified formulas. It is a simple yet effective technique, and there is still a lot of
room for improvement. Model reconstruction from unsatisfiable dual formulas,
symbolic quantifier instantiation by generalizing concrete counterexamples, and
the combination of quantified bit-vectors with arrays and uninterpreted func-
tions are interesting directions for future work. It might also be interesting to
compare our approach to the work presented in [22–25].
Binary of Boolector, the set of translated benchmarks (BVLNIRA) and all log files of

our experimental evaluation can be found at http://fmv.jku.at/tacas17.
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C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
doi:10.1007/978-3-319-21668-3 12

10. Ge, Y., Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 306–320. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 25

11. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. In: Bloem, R., Sharygina, N. (eds.) Proceedings of 10th Inter-
national Conference on Formal Methods in Computer-Aided Design, FMCAD
2010, Lugano, Switzerland, 20–23 October, pp. 239–246. IEEE (2010)

12. Dutertre, B.: Solving exists/forall problems in Yices. In: Workshop on Satisfiability
Modulo Theories (2015)
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Abstract. This paper considers the problem of assumptions refinement
in the context of unrealizable specifications for reactive systems. We
propose a new counterstrategy-guided synthesis approach for GR(1)
specifications based on Craig’s interpolants. Our interpolation-based
method identifies causes for unrealizability and computes assumptions
that directly target unrealizable cores, without the need for user input.
Thereby, we discuss how this property reduces the maximum number of
steps needed to converge to realizability compared with other techniques.
We describe properties of interpolants that yield helpful GR(1) assump-
tions and prove the soundness of the results. Finally, we demonstrate
that our approach yields weaker assumptions than baseline techniques.

Keywords: Reactive synthesis · Assumption refinement · Interpolation

1 Introduction

Constructing formal specifications that capture user requirements precisely and
from which implementations can be successfully derived is a difficult task [25].
Their imprecision often results from the conception of over-ideal systems, i.e.,
where the environment always behaves as expected [2,26]. Thus one of the chal-
lenges in building correct specifications is identifying sufficient assumptions over
the environment under which a system would always be able to guarantee their
satisfaction, in other words making a specification realizable.

This paper presents a new technique for automatically synthesizing assump-
tions over an adversarial environment for realizability assurance. More specifi-
cally, we develop a novel counterstrategy-guided synthesis procedure that itera-
tively generates assumption refinements, expressed in a fragment of Linear Tem-
poral Logic (LTL) called Generalized Reactivity (1) (GR(1) for short), based on
logical interpolation. Craig interpolants characterize automatically computable
explanations for the inconsistency between Boolean formulae, in their shared
alphabet. We exploit this feature to construct expressions that explain why a
counterstrategy, and hence the environment, violates a guarantee, and whose
negations form assumptions.

We demonstrate in our case study applications that our approach directly tar-
gets unrealizable cores, in the sense that by adding the assumptions returned at
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 281–297, 2017.
DOI: 10.1007/978-3-662-54577-5 16
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each iteration, a specific subset of minimally unfulfillable guarantees [13] becomes
realizable. Therefore each iteration takes a step closer to realizability. To char-
acterize the scope of our approach we introduce the notion of fully-separable
interpolants and prove the soundness of our computation when interpolants are
fully separable. We further provide a discussion about the complexity of the pro-
posed approach and its convergence, as well as the weakness of our refinements
in comparison with those computed by existing techniques [3,4,27].

2 Related Work

Recent years have seen the development of effective counterstrategy-guided
approaches to GR(1) assumptions refinement, notably [3,4,27]. Nonetheless
those approaches depend significantly on users’ knowledge of the problem domain
and of the cause of unrealizability. The work in [27] requires users to specify a set
of temporal logic templates as formulae with placeholders to be replaced with
Boolean variables. Assumptions are then generated as instantiations of such tem-
plates that eliminate a given counterstrategy. This typically constrains the search
space to only a subset of GR(1) formulae, which do not necessarily address the
cause of unrealizability, and potentially eliminate viable solutions to the realiz-
ability problem. Similarly, the work in [3], although generating such templates
automatically, requires users to provide a subset of variables for template instan-
tiation. Unless the user knows the exact subset of variables that form the cause,
this may yield assumptions that do not target the true cause of unrealizability,
leading to refinements that needlessly over-constrain the environment. Our pro-
posed method instead directly targets counter-strategies and unrealizable cores,
and does not require users to provide variables for constructing refinements.

Other related work on assumption refinement includes those operating
directly on game structures [12]. With regard to the parity game model used
for controller synthesis (such as in [32,33]), the paper defines the concept of
safety assumptions as sets of edges that have to be avoided by the environment,
and the concept of fairness assumptions as sets of edges that have to be traversed
by the environment infinitely often. The work devises an algorithm for finding
minimal edge sets in order to ensure that the controller has a winning strategy.
Our approach instead focuses on synthesizing general declarative temporal asser-
tions whose inclusion has the effect of removing edges from the game structure,
and directly targeting sources of unrealizability. The problem of synthesizing
environment constraints has been tackled in the context of assume-guarantee
reasoning for compositional model checking [15,21,31] to support compositional
verification. In these, assumptions are typically expressed as LTSs and learning
algorithms like L∗ [5] are used to incrementally refine the environment assump-
tions needed in order to verify the satisfaction of properties.

Craig interpolants have been deployed in the context of abstraction refine-
ment for verification in [18,19]. The differences with our work are in specification
language and overall objective: they seek additional assertions for static analy-
sis of programs, while we look for GR(1) refinements of systems specifications
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to enable their automated synthesis. The authors of [17] use interpolation to
support the extraction of pre- and trigger-conditions of operations within event-
driven systems to enable the ‘satisfaction’ of goals expressed within restricted
fragment of LTL. Though different in objective, approach and class of properties,
our technique can help in identifying specifications operationalizable by [17].

3 Background

Generalized Reactivity (1) Specifications. LTL [29] is a formalism widely
used for specifying reactive systems. The syntax of LTL is defined over a finite
non-empty set of propositional variables V, the logical constants true and false,
Boolean connectives, and operators X (next), G (always), F (eventually), U
(until). Given a set of states Q and a labelling function λ : Q → 2V , an LTL
formula φ is interpreted over an infinite sequence of states σ = q0q1... in the stan-
dard way, and its language L(φ) is the set of (infinite) state valuation sequences
w = λ(q0)λ(q1)... such that w |= φ). We assume that the set V consists of two
disjoint sets: input variables X and output variables Y. We will use the expres-
sion B(V) for a boolean expression (i.e., a logical expression without temporal
operators) which uses variables in the set V. We will also denote by XV the set
of expressions obtained by prepending a “next” operator to the variables in V:
this is equivalent to the set of primed versions of such variables [9].

Generalized Reactivity (1) specifications (written GR(1) for short) are a sub-
set of LTL of the form φE → φS where φE represents the assumptions of an
environment and φS the guarantees of a controller. The expression φθ, where
θ ∈ {E ,S}, is specified as conjunction of the following: (1) a Boolean formula ϕθ

init
of the form B(X ) if θ = E and B(V) otherwise, representing initial conditions; (2)
a set of LTL formulae ϕθ

inv of the form GB(V ∪XX ) if θ = E and GB(V ∪XV)
when θ = S, representing invariants; and (3) a set of LTL formulae ϕθ

fair of
the form GFB(V) representing fairness conditions. We will sometimes indicate
GR(1) specifications as a tuple 〈φE , φS〉 with φθ = {ϕθ

init} ∪ {ϕθ
inv} ∪ {ϕθ

fair}.
A finite-state Moore transducer is a tuple M = 〈Q, q0, I,O, ρ, δ〉 where Q

is a set of states, q0 ∈ Q is the initial state, ρ : Q × I → Q is the transi-
tion function, and δ : Q → O is the output function. Given an input sequence
w = i0i1..., a run of M is the sequence σ = q0q1... such that qk+1 = ρ(qk, ik)
for all k ≥ 0. A run σ on input sequence w ∈ Iω produces an infinite word
M(w) = (δ(q0), i0), (δ(q1), i1).... The language of a Moore transducer M is
L(M) = {M(w)|w ∈ Iω}, i.e., the infinite words generated by a sequence of
inputs and the corresponding outputs over runs of M . A Moore transducer M is
said to satisfy an LTL expression φ if L(M) ⊆ L(φ); in this case we also say that
M is a model of φ and we denote it as M |= φ. A GR(1) property φ is said to
be realizable if there exists an M (representing a controller) such that M |= φ.

Given a specification 〈φE , φS〉 that is unrealizable, we say that ϕS ⊆ φS

is minimally unfulfillable w.r.t. to φE iff the removal of any guarantee g ∈ ϕS

makes 〈φE , ϕS\{g}〉 realizable [13]. Furthermore, an assumption a ∈ φE is said
to be unhelpful w.r.t. φS if ∀ϕS ⊆ φS . 〈φE , ϕS〉 is realizable ↔ 〈φE\{a}, ϕS〉 is
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realizable. It is said to be helpful otherwise. Given a set of minimally unfulfillable
guarantees ϕS w.r.t. φE , let ϕE ⊆ φE be a set of helpful assumptions for ϕS ; the
specification 〈ϕE , ϕS〉 is called an unrealizable core [13].

If a specification φ over V = X ∪ Y is unrealizable, an unrealizable core
〈ϕE , ϕS〉 and an environment strategy (called a counterstrategy) can be
computed [13,23]. A counterstrategy is defined as a Moore transducer
(S, sinit, 2Y′

, 2X , ρ, δ) that satisfies ϕE and violates ϕS [4]. It describes the inputs
produced by an admissible environment in response to the output configuration
yielded by the controller in order to force the violation of φ. The runs of a coun-
terstrategy are called plays. The terms ‘counterstrategy’ and ‘play’ come from
the game-theoretic algorithms used to reason about realizability [3,9,23]. The
transition function ρ depends only on a subset of the output variables Y ′ ⊆ Y
[23]. We define a labelling function λ′ : S → 2X∪Y′

over states in the counter-
strategy in this way: a propositional variable is in λ′(s) if it is asserted in all
the incoming transitions of s, while λ′(s) is arbitrary for any s with no incoming
transitions.

Interpolants. Craig interpolation was originally defined for first-order logic
[16] and later for propositional logic [24]. No interpolation theorems have been
proved for the general LTL. Extensions have been proposed recently for LTL
fragments [20,22]. However these do not include GR(1) formulae and therefore
are not applicable in our case. We use interpolation for propositional logic.

Formally, given an unsatisfiable conjunction of formulae α∧β, a Craig inter-
polant I is a formula that is implied by α, is unsatisfiable in conjunction with
β, and is defined on the common alphabet of α and β. We write Lφ to denote
the set of variables that occur in a formula φ (also called the alphabet of φ).

Definition 1 (Interpolant [24]). Let α and β be two logical formulae such
that their conjunction α ∧ β is unsatisfiable. Then there exists a third formula
I, called interpolant of α and β, such that, α → I, I → ¬β and LI ⊆ Lα ∩ Lβ.

An interpolant can be considered as an over-approximation of α that is still
unsatisfiable in conjunction with β. As stated in Craig’s interpolation theorem,
although an interpolant always exists, it is not unique. Several efficient algo-
rithms have been proposed for interpolation in propositional logics. The result-
ing interpolant depends on the internal strategies of these algorithms (e.g., SAT
solvers, theorem provers). Our approach is based on McMillan’s interpolation
algorithm described in [30] and implemented in MathSAT [14]. In brief, the
algorithm considers a proof by resolution for the unsatisfiability of α ∧ β.

4 Approach Overview

The general procedure is based on a sequence of realizability checks and coun-
terstrategy computations, in the spirit of [3,27]. A specification 〈φE , φS〉 is first
checked for realizability. If it is unrealizable, a counterstrategy C and an unreal-
izable core 〈ϕE , ϕS〉 are computed. The counterstrategy constitutes an example
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of environment behaviours that force the violation of the guarantees of ϕS :
therefore, the assumptions ϕE are refined by adding a GR(1) formula which is
inconsistent with the counterstrategy. A set of such formulae Ψ is automati-
cally computed by interpolating (α) the description of an environment behav-
iour in the counterstrategy, given by the assumptions and a sequence of state
labellings in the counterstrategy; and (β) the guarantees, and by negating the
interpolant. A formula ψi ∈ Ψ is added to the original set of assumptions φE and
the procedure repeats the above steps recursively until realizability is achieved.
Algorithm 1 describes this procedure schematically.

Algorithm 1. CounterstrategyGuidedRefinement procedure
Data: φE , assumptions
Data: φS , guarantees
Result: {ψi}, set of alternative assumption refinements such that φE ∧ ψi → φS

is realizable for every i
1 if Satisfiable(φE → φS) & not Realizable(φE → φS) then
2 (ϕE , ϕS , C) := Counterstrategy(φE , φS);

3 Ψ := InterpolationBasedSynthesis(ϕE , ϕS , C);
4 foreach ψi ∈ Ψ do
5 foreach ψ′

j ∈ CounterstrategyGuidedRefinement(φE ∧ ψi, φS) do
6 refinements.add(ψi ∧ ψ′

j) ;
7 end

8 end
9 return refinements;

10 else if Satisfiable(φE → φS) & Realizable(φE → φS) then
11 return {true};

12 else
13 return {false};

The function InterpolationBasedSynthesis constitutes the core of our
proposal (see Algorithm 2). It takes as inputs an unrealizable core and a coun-
terstrategy and executes the computation of Ψ via interpolation. We give the
details in the following section.

5 Interpolation-Based Synthesis

Each execution of InterpolationBasedSynthesis involves extracting tempo-
ral formulae that are satisfied by a single play of a counterstrategy (henceforth
called counterplay), and obtaining refinements from its negation. It is sufficient
to exclude a single counterplay of a counterstrategy to eliminate the entire coun-
terstrategy from models of the assumption. Reasoning about counterplays has
also some advantages, which are discussed in Sect. 8. For the purpose of this
paper, we assume that the procedure ExtractCounterplay (line 1) extracts a
counterplay πC at random and consider metrics for selecting one in future work.
A counterplay representing the violation of an initial condition or an invariant
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Algorithm 2. InterpolationBasedSynthesis(ϕE , ϕS , C)
Data: ϕE , environment assumptions (in an unrealizable core)
Data: ϕS , system guarantees (in an unrealizable core)
Data: C, counterstrategy
Result: Ψ , alternative assumptions eliminating the counterstrategy

1 πC := ExtractCounterplay(C);
2 u := 0;
3 πC,u := πC ;
4 Ψold := ∅;
5 stopping condition := true;
6 repeat
7 [[πC,u, ϕE

u]]:= TranslateCounterplayAssumptions(πC,u, ϕE);

8 [[ϕS
u ]] := TranslateGuarantees(πC,u,ϕS);

9 Iu := Interpolate([[πC,u, ϕE
u]], [[ϕS

u ]]);
10 if Iu == false or Iu is not fully-separable then
11 Ψ := {false};
12 stopping condition := true;

13 else
14 T (Iu) := TranslateInterpolant(πC,u, Iu);
15 Ψ := ExtractDisjuncts(¬T (Iu));
16 if πC,u is looping then
17 if Ψ �= Ψold then
18 Ψold := Ψ ;
19 u := u + 1;
20 πC,u := UnrollCounterplay(πC ,u);
21 stopping condition:= false;

22 else
23 stopping condition := true;
24 end

25 end

26 end

27 until stopping condition;
28 return Ψ ;

guarantee is finite, while that of a fairness guarantee violation ends in a loop
[28]. We call the latter a looping counterplay, and the loop an ending loop.

We distinguish four types of states that may appear in πC : (a) the initial state
Sinit = {sinit}; (b) the failing state in a finite counterplay Sfail = {sfail} (c)
looping states that include the states in ending loop, Sloop = {sloop

1 , . . . , sloop
h },

(d) transient states including all states between the initial state and the first
failing state or loop state (exclusive) Strans = {strans

1 , . . . , strans
k }. With this

classification, a finite counterplay has the form sinitstrans
1 . . . strans

k sfail; whilst
a looping counterplay has the form sinitstrans

1 . . . strans
k (sloop

1 . . . sloop
h )ω. The for-

mulae in the next subsection also refer to a fifth set of states, called unrolled
states, which represent replicates of looping states, and to the unrolling degree u.
They are explored in Sect. 5.2. Each state in πC is labelled with variables from
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the set X ∪Y ′ defined in Sect. 3. The value of u is initialized to 0, and thus πC,u

equates to πC (lines 2–3).
The extraction of the counterplay occurs at the start of every call of the

synthesis phase. The remaining steps described in this section are iteratively
executed when the extracted counterplay is looping, and only once otherwise. In
the former case, we will refer to the iteration as the inner-cycle, to distinguish
it from the counterstrategy-guided refinement cycle.

5.1 Candidate Assumptions Computation

Refinements of environment assumptions are computed in four steps: (i) produc-
tion of two inconsistent Boolean formulae from the counterplay and the unrealiz-
able core, (ii) interpolation between the two Boolean formulae, (iii) translation
of the interpolant into LTL, and (iv) negation of the translated interpolant.

Step (i) is executed by the functions TranslateCounterplayAssumptions
and TranslateGuarantees (lines 7–8). The procedure employs the translation
scheme in [7] for bounded model checking: it ensures that the obtained Boolean
formula is satisfiable if and only if the play taken into account satisfies the
LTL formula. The inclusion of assumptions in the counterplay translation is
important in yielding an interpolant in the shared alphabet of assumptions and
guarantees that explains why the assumptions violate the guarantees. Given a
GR(1) formula in ϕθ over V and a counterplay πC,u with state space Sπ ∈ S, its
translation is a Boolean formula over the domain V(Sπ) obtained by replicating
every variable p ∈ V for every state s ∈ Sπ; we denote by p(s) the replica of
p corresponding to state s, and by V(s) the subset of V(Sπ) containing all the
variables referring to state s. This step produces two formulae:

– [[πC,u, ϕE
u]], which is a conjunction between the assumptions translation [[ϕE

u]]
over πC,u and a formula representing the valuation of every s ∈ Sπ in πC,u;
the latter is a conjunctive formula containing a literal p(s) (resp. ¬p(s)) for
every p ∈ X ∪ Y ′ that is true (resp. false) in λ′(s) (see end of Sect. 3);

– [[ϕS
u ]] which is the guarantees translation over πC,u.

The translations [[ϕE
u]] and [[ϕS

u ]] are given in the extended version of this work
[11]. Since by definition a counterplay πC satisfies the assumptions and violates
the guarantees, the formula [[πC,u, ϕE

u]] ∧ [[ϕS
u ]] is unsatisfiable by construction.

Therefore, there exists an interpolant for [[πC,u, ϕE
u]] and [[ϕS

u ]].
Step (ii) consists of the function Interpolate (line 9). The returned inter-

polant Iu is an over-approximation of [[πC,u, ϕE
u]] which by definition implies

the negation of [[ϕS
u ]]: it can be interpreted as a cause of the guarantees not

being satisfied by the counterplay, and as such a characterization of a set of
counterplays not satisfying the guarantees.

From such interpolant the procedure aims at extracting a set of refinements
that fit the GR(1) format. In order to do this, the Boolean to temporal transla-
tion requires the interpolant to adhere a specific structure. This is embodied in
the notion of full-separability. To formally define full-separability, we need first
to define state-separability and I/O-separability.



288 D.G. Cavezza and D. Alrajeh

Definition 2 (State-separable interpolant). An interpolant Iu is said to be
state-separable iff it can be expressed as

∧
s∈Su

Bs(V(s)) (1)

where Bs(V(s)) is a Boolean formula either equal to true or expressed over vari-
ables in V(s) only.

We will refer to each Bs(V(s)) as a state component of the interpolant. In par-
ticular, a state component is equal to true if Iu does not use any variables from
s. State-separability intuitively means that the subformulae of the interpolant
involving a single state are linked by conjunctions. This means that in any model
of the interpolant each state component must be itself true.

Definition 3 (I/O-separable Boolean expression). A Boolean expression
Bs(V(s)) is said to be I/O-separable if it can be written as a conjunction of two
subformulae containing only input and output variables respectively:

Bs(V(s)) = Bs,X (X (s)) ∧ Bs,Y(Y(s)) (2)

We call Bs,X (X (s)) and Bs,Y(Y(s)) the projections of Bs(V(s)) onto X and
Y respectively. Any model of an I/O-separable Boolean expression satisfies the
projections separately. We can now define full-separability of an interpolant.

Definition 4 (Fully-separable interpolant). An interpolant is called fully-
separable if it is state-separable and each of its state components is I/O-
separable.

An example of a fully-separable interpolant over X = {a, b},Y = {c, d}
and states S = {s0, s1} is (a(s0) ∨ b(s0)) ∧ c(s0) ∧ ¬b(s1); a non-fully-separable
interpolant, instead, is a(s0)∨a(s1), since literals referring to different states are
linked via a disjunction.

Remark 1. A particular class of fully-separable interpolants is that of fully con-
junctive interpolants, where no disjunctions appear. Whether or not the result-
ing interpolant is conjunctive depends on the order in which the interpolation
algorithm [30] chooses the root clauses for building the unsatisfiability proof.
A sufficient condition for obtaining a fully-conjunctive interpolant is that such
root clauses be single literals from [[πC,u, ϕE

u]], and that the pivot variable in
each resolution step belong to the shared alphabet of [[πC,u, ϕE

u]] and [[ϕS
u ]]. (see

[11,30] for details on the interpolation algorithm used).

Step (iii) consists of the function TranslateInterpolant (line 14). It con-
verts a fully-separable interpolant Iu =

∧
s∈Su

Bs(V(s)) into the LTL formula

T (Iu) =Binit
X (X ) ∧

∧
s∈Su

F
(
Bs(V) ∧ Bsucc (s),X (XX )

)
∧

FG
|Sloop|∨

j=1

(
Bloop

j (V) ∧
u∧

r=1

Bunr
j,r (V)

) (3)
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where the expression Binit
X (X ) is a shorthand for Bsinit,X (X ), Bloop

j (V) for
B

sloop
j

(V) and Bunr
j,r (V) for Bsunr

j,r
(V). Formula (3) is formed from the single state

components of Iu by replacing the variables in V(s) with the corresponding vari-
ables in V and by projecting the components onto the input variables where
required by the GR(1) template. The translation consists of three units: a sub-
formula describing the initial state, a conjunction of F formulae each containing
two consecutive state components, and an FG formula; this unit consists of a
disjunction over all the looping states, where each disjunct j groups the state
components of all the replicas of state sloop

j .
Formula (3) is guaranteed to hold in the counterplay πC . Intuitively, since

Iu is fully-separable by construction, [[πC,u, ϕE
u]] implies each state component

and its projections onto X and Y ′. A state component Bs(V(s)) corresponds
to a formula Bs(V) satisfied by state s of the counterplay. Therefore, since the
initial state satisfies Binit(V), πC satisfies Binit

X (X ); since there are two consecu-
tive states s and succ (s) that satisfy Bs(V(s)) and Bs(V(succ (s))) respectively,
πC satisfies F

(
Bs(V) ∧ Bsucc (s),X (XX )

)
. Finally, for the FG subformula, it is

sufficient to observe that the looping state j satisfies the formula obtained from
the state components referring to sloop

j and sunr
j,r : since the counterplay remains

indefinitely in the looping state, there is a suffix of it where such formula is
true for at least one j. Based on these considerations, we prove the following
soundness property.

Theorem 1. Let πC be a counterplay and ϕE a set of assumptions satisfied in
πC , such that their Boolean translation [[πC,u, ϕE

u]] implies Iu, and let Iu be a
fully-separable interpolant. Then πC |= T (Iu).

The proof is in the extended version [11]. In the case a fully-separable inter-
polant is not generated from which T (Iu) can be constructed, the algorithm
returns false as its candidate assumption. Otherwise, the approach proceeds to
step (iv) (function ExtractDisjuncts, line 15) producing the candidate refine-
ments by negating (3) and extracting the disjuncts in the resulting formula:

¬Binit
X (X ) ∨

∨
s∈Su

G¬
(
Bs(V) ∧ Bsucc (s),X (XX )

)
∨

GF
|Sloop|∧

j=1

¬
(

Bloop
j (V) ∧

u∧
r=1

Bunr
j,r (V)

) (4)

Each disjunct above is a GR(1) candidate assumption which, by Theorem1,
ensures the exclusion of the counterplay πC from the models of the assumptions.

5.2 Equivalence Checking and Unrolling

The equivalence checking of the produced candidates and the unrolling of the
counterplay (lines 17–24) are only executed in case of a looping counterplay.
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Thus in each iteration of the inner-cycle, our procedure checks whether the
synthesized assumptions are equivalent to the assumptions ψold computed in
the previous iteration. If not, the looping part of the counterplay is unrolled
once (UnrollCounterplay, line 20) and the steps in Sect. 5.1–5.2 are repeated.
If the equivalence condition is met, the synthesis procedure returns the last set
of computed candidates as output.

Counterplay unrolling consists in making the first traversals of looping states
explicit. It is achieved by augmenting a counterplay with replicates of the loop-
ing states. The number of unrollings is referred to as the unrolling degree u.
Each unrolling yields a new set of states Sunr = {sunr

1,1 , . . . , sunr
h,1 , . . . , sunr

1,u , . . . ,

sunr
h,u }. An unrolled looping counterplay has the form sinitstrans

1 . . . strans
k

sunr
1,1 . . . sunr

h,1 . . . sunr
1,u . . . sunr

h,u (sloop
1 . . . sloop

k )ω. Unrolling has two possible effects
on the computed interpolant: on one hand, it can introduce new state compo-
nents in the interpolant, which yield new invariant refinements according to (4);
on the other hand, the interpolant can express a more specific characterization of
looping states, which corresponds to a weaker fairness refinement in (4). These
effects are both observed in our evaluation (see Sect. 7).

6 Convergence

Our procedure is guaranteed to terminate after a finite number of recursive calls.
We discuss below the case of all computed interpolants being fully-separable. If
not, the procedure terminates with a trivial assumption refinement false.

Theorem 2. Given a satisfiable but unrealizable specification 〈φE , φS〉 Algo-
rithm1 terminates with a realizable specification 〈φE′

, φS〉.
To prove this, it is sufficient to show that both the recursion in Algorithm 1

and the iteration over unrollings in Algorithm2 reach the respective termina-
tion conditions. In the following arguments, we will refer to the recursion tree
of Algorithm 1. Each node is associated with the candidate assumption tested
in one specific call of CounterstrategyGuidedRefinements. The root corre-
sponds to the initial assumption; every internal node symbolizes an unrealizable
assumptions refinement; the children of an internal node correspond to the alter-
native refinements that rule out the relevant counterstrategy. The leaves repre-
sent alternative realizable assumption refinements returned by the algorithm.
We will show that this tree has finite depth and breadth.

Let us consider the number of children nC of an internal node (the subscript
C indicates the counterstrategy computed in that internal node). It consists of
the maximum number of refinements that are generated from a single counter-
strategy. Assuming that the maximum unrolling degree is finite (we will see that
later in this section), denoted uC,MAX , the maximum number of refinements
generated from C can be computed by counting the maximum number of dis-
juncts in (4). Suppose |SuC,MAX

| denotes the number of distinct states in the
unrolled counterplay, then nC ≤ |SuC,MAX

| + 2: we count one initial condition,
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one fairness condition and |SuC,MAX
| invariants. Given that every node has a

finite number of children, the breadth of each level in the tree is also finite.
We now consider the depth. The algorithm keeps refining a computed

assumption until the property becomes realizable (in case the returned refine-
ment is false, then the property is realizable, and therefore the algorithm reaches
a true leaf). Given the soundness property, at each step every refinement excludes
the latest computed counterstrategy; since this counterstrategy satisfies all the
previously computed refinements by definition, the new refinement cannot be
equivalent to any of the previous refinements along the same branch.

For the above reason, the depth d of the recursion tree is limited by the max-
imum number of existing GR(1) refinements modulo logical equivalence. The
maximum number of initial conditions is dinit,MAX = 22

|X|
, that is the num-

ber of all distinct Boolean expressions over the input variables. The maximum
number of invariants is dinv,MAX = 22

|V|+2|X|
; this corresponds to the maxi-

mum number of distinct Bs that can be present in the expression (4) times the
number of distinct Bsucc (s),X . Finally, the maximum number of distinct fairness
assumptions is dfair,MAX = 22

|V|
Therefore, the total depth d is bounded by the

sum of these three quantities: d ≤ dMAX = dinit,MAX + dinv,MAX + dfair,MAX .
Given the above, we conclude that the recursion tree is finite. This gives us

a worst-case upper bound on the depth d of the recursion, which has a doubly
exponential growth over |V| — a general observation of counterstrategy-guided
assumptions refinement strategies. It remains to show that the inner-cycle ter-
minates in finite time. As mentioned in Sect. 5.2, each iteration can provide
additional or weaker refinements with respect to the previous iteration. The ter-
mination condition holds when the current iteration does not yield new refine-
ments with respect to the previous one. This is reached in the worst case after
all distinct GR(1) refinements are generated. The computation is the same as
the one for d: uC,MAX = dMAX .

7 Evaluation

We apply our approach to two benchmarks presented in [3,9,23]: a lift controller
and ARM’s AMBA-AHB protocol. The requirements analysis tool RATSY [8]
is used to check unrealizability and compute counterstrategies. The SAT solver
MathSAT [10,14] is used to compute interpolants. We implemented a translation
module for GR(1) specifications and randomly extracted plays into a proposi-
tional logic format executable by MathSAT. For each case study, we report the
maximum depth and breadth of the recursion tree, and an interpretation of some
interesting refinements that are computed. Details are available at [1].

Table 1 provides a summary of both case studies. The columns In and Out
contain the number of input and output variables in the specification alpha-
bet respectively; A and G contain the number of assumptions and guarantees
respectively; MaxPlay contains the maximum number of states in a counterplay
among all the counterplays used in the refinement process; MaxUnr reports the
maximum unrolling degree reached in any step of the approach before reaching
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the termination condition; TreeDepth corresponds to the depth of the recursion
tree; MaxAltRef is the maximum number of alternative refinements computed
to rule out any single counterstrategy (it corresponds to the maximum number
of children of an internal node in the recursion tree); #Ref shows the total
number of refinement sets computed that make the property realizable.

Table 1. Summary of refinement results on benchmarks

Specification In Out A G MaxPlay MaxUnr TreeDepth MaxAltRef #Ref

Lift 3 3 7 12 2 2 1 3 3

AMBA02 7 16 10 66 4 2 3 6 17

AMBA04 11 23 16 97 7 1 2 2 8

AMBA08 19 36 28 157 18 1 7 2 80

7.1 Lift Controller

This case study (also used for controller synthesis problems [3,9]) involves the
specification of a system comprising a lift controller. The lift moves between three
floors. The environment consists of three buttons, whose states can be pressed or
unpressed ; the corresponding state is represented by three binary input variables
{b1, b2, b3}. The controller’s state consists of three output variables {f1, f2, f3}
which indicate at which floor the lift is. The assumptions are:

1. ϕe
init = ¬b1 ∧ ¬b2 ∧ ¬b3

2. ϕe
1,i = G(bi ∧ fi → X¬bi)

3. ϕe
2,i = G(bi ∧ ¬fi → Xbi)

for i ∈ {1, 2, 3}. They state that the buttons are not pressed in the initial state
(1); a pressed button transits to a non-pressed state when the lift arrives at the
corresponding floor (2); and the button remains in the pressed state until the
lift arrives at that floor (3). The guarantees are:

1. ϕs
init = f1 ∧ ¬f2 ∧ ¬f3

2. ϕs
1 = G(¬(f1 ∧ f2) ∧ ¬(f2 ∧ f3) ∧ ¬(f1 ∧ f3))

3. ϕs
2,1 = G(f1 → (Xf1 ∨ Xf2))

4. ϕs
2,2 = G(f2 → (Xf1 ∨ Xf2 ∨ Xf3))

5. ϕs
2,3 = G(f3 → (Xf2 ∨ Xf3))

6. ϕs
3 = G(((f1 ∧Xf2) ∨ (f2 ∧Xf3) ∨ (f2 ∧Xf1) ∨ (f3 ∧Xf2)) → (b1 ∨ b2 ∨ b3))

7. ϕs
4,i = GF(bi → fi)

8. ϕs
5,i = GFfi

for i ∈ {1, 2, 3}. They state that the lift starts from floor 1 (1); it can never be
in two floors at the same time (2); it can move only between consecutive states
(3–5), and moves only when at least a button is pressed (6); plays in which the
environment keeps a button bi pressed infinitely and the lift never reaches the
corresponding fi are forbidden (7); and that the lift is required to visit all the
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floors infinitely often (8). Given this specification, the fairness guarantee can be
satisfied if the environment sets one of its bi to 1 at least once.

The specification is unrealizable, since when the buttons (environment) stay
indefinitely unpressed, the lift (controller) cannot move and therefore ϕs

5,2 and
ϕs
5,3 are violated. The unrealizable core consists of the whole set of assumptions

and the guarantees ϕs
init, ϕs

2,1, ϕs
3 and ϕs

5,2. From this core, RATSY computes the
counterstrategy πC in Fig. 1, which consists of a unique play. After translating
the unrealizable core over the counterplay, the interpolant is I0 = ¬b1(s0) ∧
¬b2(s0) ∧ ¬b3(s0), which corresponds to the GR(1) refinement ¬b1 ∧ ¬b2 ∧ ¬b3.
The first unrolling is performed yielding the interpolant I1 = ¬b1(s0)∧¬b2(s0)∧
¬b3(s0) ∧ ¬b1(sunr

1,1 ) ∧ ¬b2(sunr
1,1 ) ∧ ¬b3(sunr

1,1 ). By translating and negating this
interpolant, we obtain the alternative refinements

1. b1 ∨ b2 ∨ b3
2. G(¬b1 ∧ ¬b2 ∧ ¬b3 → X(b1 ∨ b2 ∨ b3))
3. GF(b1 ∨ b2 ∨ b3)

Notice that unrolling results in an interpolant containing an additional state
component, thus allowing for more alternative refinements (see Sect. 5.2). More-
over, the new state component refers to an unrolled state, from which a new fair-
ness refinement that is not inferable from I0 is synthesized. The second unrolling
produces equivalent refinements, and thereby the inner-cycle terminates.

s0
b1 = 0
b2 = 0
b3 = 0

start

s1
b1 = 0
b2 = 0
b3 = 0

∅ ∅

Fig. 1. Lift counterstrategy produced by RATSY. The labelling λ′ is shown in each
state. In this case the lift position plays no role in the environment’s choice of next
state, therefore Y ′ = ∅.

Every candidate refinement computed by our approach is helpful. Moreover,
each one solves the unrealizability problem for the original specification. Refine-
ment (1) does this in a trivial way, since it contradicts the initial assumption
contained in the specification. Notice that all the computed refinements force at
least one of the buttons to be pressed at some point in any play of the environ-
ment. This corresponds to the refinement produced by the approach in [3].

7.2 AMBA-AHB Protocol

The Advanced High-performance Bus (AHB) is part of the Advanced Microcon-
troller Bus Architecture (AMBA) specification. It is an open-source communica-
tion protocol for on-chip devices through a shared bus. Devices are divided into
masters, which initiate a communication, and slaves, which respond to requests.
Multiple masters can request the bus simultaneously, but only one at a time can
communicate through it. Masters and slaves constitute the environment, while
the system is the bus arbiter implementing the protocol. The specification of the
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AHB protocol is provided with RATSY. It is a GR(1) description of the protocol
in [6], and formalized in [9]. We consider specifications for two, four and eight
masters (AMBA02, AMBA04, AMBA08 respectively) which are realizable. To
evaluate our approach, we remove the assumption GFhready as done in [3,27].

In all the variants, our approach was able to produce refinements that were
semantically related to the removed assumption. In the AMBA02 case, one of
the refinements is the invariant G(hready ∨Xhready), which forces hready to be
true at least every two steps. The other refinements in all the AMBA0x variants
involve the variable hmaster, which indicates the master that currently owns the
bus. These refinements force hmaster to change infinitely often. This corresponds
to having hready equal to true infinitely often, since hready must be true at any
ownership switch according to the protocol [9].

The approach was further tested by extracting different counterplays from the
same counterstrategy in the AMBA02 case. Every refinement produced within
each synthesis call was helpful. We compared our results to those obtainable
through [3,27] when variables not contained in the interpolant are provided as
input. The refinements GF(¬hburst1) and GFhlock0 (which are possible outputs
of [3,27] if the user chooses the corresponding templates/variables) remove the
first counterstrategy; however neither is helpful, since even after their addition
the corresponding set of minimally unfulfillable guarantees is still unrealizable.

8 Discussion

Targeting Unrealizable Cores. The evaluation shows that our approach
automatically selects variables that need to be constrained in order to reach
realizability. In particular, all the intermediate refinements eliminate precisely a
cause of unrealizability, consisting of the set of minimally unfulfillable guaran-
tees from which a counterstrategy has been computed. We note that the returned
variables in the AMBA02 example (hready and hbusreq1) are a subset of the vari-
ables that the authors in [3] suggest to use in order to instantiate the refinement
templates.

Helpfulness of intermediate refinements is a desirable condition for reducing
the convergence rate of the algorithm. When this holds, then the expected tree
depth d (see Sect. 6) is reduced to O(ng), where ng is the number of minimally
unfulfillable subsets of guarantees. The application of our approach on the case
studies consistently supports the attainment of this condition.

Number of Unrollings. We further define an upper bound to the number
of unrollings needed to reach the termination condition as of Sect. 5.2. Every
unrolling iteration produces an interpolant which is either the same as the pre-
vious iteration, or contains the description of one more state in the counterplay.
In the worst case, without unrolling the interpolant describes just the initial
state; after the first unrolling it contains a state component for the first tran-
sient state strans

1 ; it is iteratively strengthened by one more state component
until it describes all the transient states and the first replica of the unrolled
states sunr

j,1 for each j. In the following unrolling step, the interpolant contains
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the component of sunr
1,2 , which is such that λ′(sunr

1,2 ) = λ′(sunr
1,1 ): interpolation pro-

duces an equivalent refinement to the previous step, and therefore the procedure
terminates. The maximum number of unrollings before reaching the termination
condition is: uC,MAX = |S| where |S| is the number of states in πC .

Comparison with Existing Approaches. Our approach extracts weaker
refinements that those of [3]. The reason is that [3] uses templates that are
true over all paths of a counterstrategy, while our approach requires them to
be true in a single counterplay. More specifically, an invariant template used in
[3] has the form G¬q ∨ X

(∧
q′∈Next(q) ¬q′

)
, where q and q′ indicate states in

a counterstrategy and Next(q) is the set of successor states of q; our approach
extracts invariants of the form G¬q ∨ ¬q′ for a q′ ∈ Next(q), which is implied
by the former one, provided that they use the same variables set for q and q′.

We notice that in principle our approach may generate assumptions
containing only output variables. This happens if some state component in
the interpolant contains only output variables. Those are valid GR(1) formu-
lae according to the definition, although hardly interpretable as constraints on
the environment. Existing approaches circumvent the problem by allowing only
input variables in their refinements [3,4]: however, in this way valid assumptions
are also excluded. In our AMBA04 case study, one of the computed assump-
tions was G((¬hmaster0 ∧ hbusreq1) → X(¬hbusreq1)), where hmaster0 ∈ Y
and hbusreq1 ∈ X . This assumption would not have been computed with that
restriction.

9 Conclusions

We presented an interpolation-based approach for synthesizing weak environ-
ment assumptions for GR(1) specifications. Our approach exploits the infor-
mation in counterstrategies and unrealizable cores to compute assumptions
that directly target the cause of unrealizability. Compared to closely related
approaches [3,27], our algorithm does not require the user to provide the set of
variables upon which the assumptions are constructed. The case study appli-
cations show that our approach implicitly performs a variable selection that
targets an unrealizable core, allowing for a quicker convergence to a realizable
specification.

The final set of refinements is influenced by the choice of counterplay. We are
investigating in our current work the effect of and criteria over the counterplay
selection particularly on the full-separability of interpolants. Furthermore, since
interpolants are over-approximations of the counterplays, the final specification
is an under-approximation. In future work, we will explore the use of witnesses
(winning strategies for the system) to counteract this effect. Finally, the applica-
bility of our approach depends on the separability properties of the computed
interpolants: further investigation is needed to characterize the conditions under
which an interpolation algorithm returns fully-separable interpolants.
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Abstract. We prove that certain formulations of program synthesis and
reachability are equivalent. Specifically, our constructive proof shows the
reductions between the template-based synthesis problem, which gener-
ates a program in a pre-specified form, and the reachability problem,
which decides the reachability of a program location. This establishes a
link between the two research fields and allows for the transfer of tech-
niques and results between them.

To demonstrate the equivalence, we develop a program repair pro-
totype using reachability tools. We transform a buggy program and its
required specification into a specific program containing a location reach-
able only when the original program can be repaired, and then apply an
off-the-shelf test-input generation tool on the transformed program to
find test values to reach the desired location. Those test values corre-
spond to repairs for the original program. Preliminary results suggest
that our approach compares favorably to other repair methods.

Keywords: Program synthesis · Program verification · Program
reachability · Reduction proof · Automated program repair · Test-input
generation

1 Introduction

Synthesis is the task of generating a program that meets a required specification.
Verification is the task of validating program correctness with respect to a given
specification. Both are long-standing problems in computer science, although
there has been extensive work on program verification and comparatively less on
program synthesis until recently. Over the past several years, certain verification
techniques have been adopted to create programs, e.g., applying symbolic execu-
tion to synthesize program repairs [25,26,29,32], suggesting the possibility that
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 301–318, 2017.
DOI: 10.1007/978-3-662-54577-5 17



302 T. Nguyen et al.

these two problems may be “two sides of the same coin”. Finding and formalizing
this equivalence is valuable in both theory and practice: it allows comparisons
between the complexities and underlying structures of the two problems, and
it raises the possibility of additional cross-fertilization between two fields that
are usually treated separately (e.g., it might enable approximations designed to
solve one problem to be applied directly to the other).

This paper establishes a formal connection between certain formulations of
program synthesis and verification. We focus on the template-based synthesis
problem, which generates missing code for partially completed programs, and
we view verification as a reachability problem, which checks if a program can
reach an undesirable state. We then constructively prove that template-based
synthesis and reachability are equivalent. We reduce a template-based synthesis
problem, which consists of a program with parameterized templates to be synthe-
sized and a test suite specification, to a program consisting of a specific location
that is reachable only when those templates can be instantiated such that the
program meets the given specification. To reduce reachability to synthesis, we
transform a reachability instance consisting of a program and a given location
into a synthesis instance that can be solved only when the location in the origi-
nal problem is reachable. Thus, reachability solvers can be applied to synthesize
code, and conversely, synthesis tools can be used to determine reachability.

To demonstrate the equivalence, we use the reduction to develop a new auto-
matic program repair technique using an existing test-input generation tool.
We view program repair as a special case of template-based synthesis in which
“patch” code is generated so that it behaves correctly. We present a prototype
tool called CETI that automatically repairs C programs that violate test-suite
specifications. Given a test suite and a program failing at least one test in that
suite, CETI first applies fault localization to obtain a list of ranked suspicious
statements from the buggy program. For each suspicious statement, CETI trans-
forms the buggy program and the information from its test suite into a program
reachability instance. The reachability instance is a new program containing a
special if branch, whose then branch is reachable only when the original pro-
gram can be repaired by modifying the considered statement. By construction,
any input value that allows the special location to be reached can map directly
to a repair template instantiation that fixes the bug. To find a repair, CETI
invokes an off-the-shelf automatic test-input generation tool on the transformed
code to find test values that can reach the special branch location. These values
correspond to changes that, when applied to the original program, cause it to
pass the given test suite. This procedure is guaranteed to be sound, but it is not
necessarily complete. That is, there may be bugs that the procedure cannot find
repairs for, but all proposed repairs are guaranteed to be correct with respect to
the given test suite. We evaluated CETI on the Tcas program [13], which has 41
seeded defects, and found that it repaired over 60%, which compares favorably
with other state-of-the-art automated bug repair approaches.

To summarize, the main contributions of the paper include:

– Equivalence Theorem: We constructively prove that the problems of template-
based program synthesis and reachability in program verification are
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equivalent. Even though these two problems are shown to be undecidable in
general, the constructions allow heuristics solving one problem to be applied
to the other.

– Automatic Program Repair: We present a new automatic program repair tech-
nique, which leverages the construction. The technique reduces the task of
synthesizing program repairs to a reachability problem, where the results pro-
duced by a test-input generation tool correspond to a patch that repairs the
original program.

– Implementation and Evaluation: We implement the repair algorithm in a pro-
totype tool that automatically repairs C programs, and we evaluate it on a
benchmark that has been targeted by multiple program repair algorithms.

2 Motivating Example

We give a concrete example of how the reduction from template-based synthesis
to reachability can be used to repair a buggy program. Consider the buggy
code shown in Fig. 1, a function excerpted from a traffic collision avoidance
system [13]. The intended behavior of the function can be precisely described
as: is upward(in,up,down) = in*100 + up > down. The table in Fig. 1 gives
a test suite describing the intended behavior. The buggy program fails two of
the tests, which we propose to repair by synthesizing a patch.

We solve this synthesis problem by restricting ourselves to generating patches
under predefined templates, e.g., synthesizing expressions involving program
variables and unknown parameters, and then transforming this template-based
synthesis problem into a reachability problem instance. In this approach, a tem-
plate such as

c0 + c1 v1 + c2 v2

is a linear combination1 of program variables vi and unknown template para-
meters ci . For clarity, we often denote template parameters with a box to

1 i n t is upward ( i n t in , i n t up , i n t down){
2 i n t bias , r ;
3 i f ( in )
4 b ia s = down ; // f i x : b i a s = up + 100
5 e l s e
6 b ia s = up ;
7 i f ( b i a s > down)
8 r = 1 ;
9 e l s e

10 r = 0 ;
11 return r ;
12 }

Inputs Output
Test in up down expected observed Passed?

1 1 0 100 0 0
2 1 11 110 1 0
3 0 100 50 1 1
4 1 -20 60 1 0
5 0 0 10 0 0
6 0 0 -10 1 1

Fig. 1. Example buggy program and test suite. CETI suggests replacing line 4 with
the statement bias = up + 100; to repair the bug.

1 More general templates (e.g., nonlinear polynomials) are also possible as shown in
Sect. 3.4.
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i n t c0 , c1 , c2 , c3 , c4 ; // g l oba l inputs

i n t is upwardP ( i n t in , i n t up , i n t
down){

i n t bias , r ;
i f ( in )

b i a s =
c0+c1∗ b ia s+c2∗ in+c3∗up+c4∗down ;

e l s e
b i a s = up ;

i f ( b i a s > down)
r = 1 ;

e l s e
r = 0 ;

re turn r ;
}

i n t main ( ) {
i f ( i s upwardP (1 ,0 , 100) == 0 &&

is upwardP (1 ,11 ,110) == 1 &&
is upwardP (0 ,100 ,50) == 1 &&
is upwardP (1 , −20 ,60) == 1 &&
is upwardP (0 , 0 , 10 ) == 0 &&
is upwardP (0 ,0 , −10) == 1){

[L ]
}
re turn 0 ;

}

Fig. 2. The reachability problem instance derived from the buggy program and test
suite in Fig. 1. Location L is reachable with values such as c0 = 100, c1 = 0, c2 = 0, c3 =
1, c4 = 0. These values suggest using the statement bias = 100 + up; at Line 4 in the
buggy program.

distinguish them from normal program elements. This template can be instan-
tiated to yield concrete expressions such as 200 + 3v1 + 4v2 via c0 = 200, c1 =
3, c2 = 4. To repair Line 4 of Fig. 1, (bias = down;) with a linear template, we
would replace Line 4 with:

bias = c0 + c1 ∗ bias + c2 ∗ in + c3 ∗ up + c4 ∗ down;

where bias, in, up, and down are the variables in scope at Line 4 and the value
of each ci must be found. We propose to find them by constructing a special
program reachability instance and then solving that instance.

The construction transforms the program, its test suite (Fig. 1), and the tem-
plate statement into a reachability instance consisting of a program and target
location. The first key idea is to derive a new program containing the template
code with the template parameters ci represented explicitly as program vari-
ables ci. This program defines the reachability instance, which must assign values
to each ci. The second key idea is that each test case is explicitly represented as a
conditional expression. Recall that we seek a single synthesis solution (one set of
values for ci) that respects all tests. Each test is encoded as a conditional expres-
sion (a reachability constraint), and we take their conjunction, being careful to
refer to the same ci variables in each expression. In the example, we must find
one repair that satisfies all six tests, not six separate repairs that each satisfy
only one test.

The new program, shown in Fig. 2, contains a function is upwardP that
resembles the function is upward in the original code but with Line 4 replaced
by the template statement with each reference to a template parameter replaced
by a reference to the corresponding new externally-defined program variable.
The program also contains a starting function main, which encodes the inputs
and expected outputs from the given test suite as the guards to the conditional
statement leading to the target location L. Intuitively, the reachability problem
instance asks if we can find values for each ci that allow control flow to reach
location L, which is only reachable iff all tests are satisfied.
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This reachability instance can be given as input to any off-the-self test-input
generation tool. Here, we use KLEE [8] to find value for each ci. KLEE deter-
mines that the values c0 = 100, c1 = 0, c2 = 0, c3 = 1, c4 = 0 allow control flow
to reach location L. Finally, we map this solution back to the original program
repair problem by applying the ci values to the template

bias = c0 + c1 ∗ bias + c2 ∗ in + c3 ∗ up + c4 ∗ down;

generating the statement:

bias = 100 + 0 ∗ bias + 0 ∗ in + 1 ∗ up + 0 ∗ down;

which reduces to bias = 100 + up. Replacing the statement bias = down in
the original program with the new statement bias = 100 + up produces a pro-
gram that passes all of the test cases.

To summarize, a specific question (i.e., can the bug be repaired by applying
template X to line Y of program P while satisfying test suite T?) is reduced to a
single reachability instance, solvable using a reachability tool such as a test-input
generator. This reduction is formally established in the next section.

3 Connecting Program Synthesis and Reachability

We establish the connection between the template-based formulation of program
synthesis and the reachability problem in program verification. We first review
these problems and then show their equivalence.

3.1 Preliminaries

We consider standard imperative programs in a language like C. The base
language includes usual program constructs such as assignments, conditionals,
loops, and functions. A function takes as input a (potentially empty) tuple
of values and returns an output value. A function can call other functions,
including itself. For simplicity, we equate a program P with its finite set of
functions, including a special starting function mainP . For brevity, we write
P (ci, . . . , cn) = y to denote that evaluating the function mainP ∈ P on the
input tuple (ci, . . . , cn) results in the value y. Program or function semantics are
specified by a test suite consisting of a finite set of input/output pairs. When
possible, we use ci for concrete input values and vi for formal parameters or
variable names.

To simplify the presentation, we assume that the language also supports
exceptions, admitting non-local control flow by raising and catching exceptions
as in modern programming languages such as C++ and Java. We discuss how
to remove this assumption in Sect. 3.3.
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Template-Based Program Synthesis. Program synthesis aims to automat-
ically generate program code to meet a required specification. The problem of
synthesizing a complete program is generally undecidable [42], so many practi-
cal synthesis techniques operate on partially-complete programs, filling in well-
structured gaps [1,36,39,41,43,44]. These techniques synthesize programs from
specific grammars, forms, or templates and do not generate arbitrary code. A
synthesis template expresses the shape of program constructs, but includes holes
(sometimes called template parameters), as illustrated in the previous section.
We refer to a program containing such templates as a template program and
extend the base language to include a finite, fixed set of template parameters
ci as shown earlier. Using the notation of contextual operational semantics, we

write P [c0, . . . , cn] to denote the result of instantiating the template program P
with template parameter values c0 . . . cn. To find values for the parameters in
a template program, many techniques (e.g., [1,41,43,44]) encode the program
and its specification as a logical formula (e.g., using axiomatic semantics) and
use a constraint solver such as SAT or SMT to find values for the parameters ci
that satisfy the formula. Instantiating the templates with those values produces
a complete program that adheres to the required specification.

Definition 1. Template-based Program Synthesis Problem. Given a
template program Q with a finite set of template parameters S = { c1 , . . . , cn }
and a finite test suite of input/output pairs T = {(i1, o1), . . . , (im, om)}, do there
exist parameter values ci such that ∀(i, o) ∈ T . (Q[c1, . . . , cn])(i) = o?

For example, the program in Fig. 1 with Line 4 replaced by bias =
c0 + c1 ∗ bias + c2 ∗ in + c3 ∗ up + c4 ∗ down is an instance of template-

based synthesis. This program passes its test suite given in Fig. 1 using the
solution {c0 = 100, c1 = 1, c2 = 0, c3 = 1, c4 = 0}. The decision formulation
of the problem asks if satisfying values c1 . . . cn exist; in this presentation we
require that witnesses be produced.

Program Reachability. Program reachability is a classic problem which asks
if a particular program state or location can be observed at run-time. It is not
decidable in general, because it can encode the halting problem (cf. Rice’s Theo-
rem [35]). However, reachability remains a popular and well-studied verification
problem in practice. In model checking [10], for example, reachability is used
to determine whether program states representing undesirable behaviors could
occur in practice. Another application area is test-input generation [9], which
aims to produce test values to explore all reachable program locations.

Definition 2. Program Reachability Problem. Given a program P , set of
program variables {x1, . . . , xn} and target location L, do there exist input values
ci such that the execution of P with xi initialized to ci reaches L in a finite
number of steps?

For example, the program in Fig. 3 has a reachable location L using the
solution {x = −20, y = −40}. Similar to the synthesis problem, the decision
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// g l oba l inputs
i n t x , y ;

i n t P( ) {
i f (2 ∗ x == y)

i f ( x > y + 10)
[L ]

r e turn 0 ;
}

Fig. 3. An instance of pro-
gram reachability. Program P
reaches location L using the
solution {x = −20, y = −40}.

i n t PQ ( ) {
i f (2∗ x == y )

i f ( x > y +10)

// l o c L in P
r a i s e

REACHED;

return 0 ;
}

i n t mainQ ( ) {
// syn the s i z e x , y
i n t x = cx ;
i n t y = cy ;
try

PQ ( ) ;
catch (REACHED)

return 1 ;

re turn 0 ;
}

Fig. 4. Reducing the reachability example in
Fig. 3 to a template-based synthesis program
(i.e., synthesize assignments to cx and cy). The
test suite of the reduced synthesis program is
Q() = 1.

problem formulation of reachability merely asks if the input values c1, . . . , cn
exist; in this presentation we require witnesses be produced.

3.2 Reducing Synthesis to Reachability

We present the constructive reduction from synthesis to reachability. The key to
the reduction is a particular “gadget”, which constructs a reachability instance
that can be satisfied iff the synthesis problem can be solved.

Reduction: Let Q be a template program with a set of template parameters
S = { c1 , . . . , cn } and a set of finite tests T = {(i1, o1), . . . }. We construct
GadgetS2R(Q,S, T ), which returns a new program P (the constructed reacha-
bility instance) with a special location L, as follows:

1. For every template parameter ci , add a fresh global variable vi. A solution
to this reachability instance is an assignment of concrete values ci to the
variables vi.

2. For every function q ∈ Q, define a similar function qP ∈ P . The body of qP is
the same as q, but with every reference to a template parameter ci replaced
with a reference to the corresponding new variable vi.

3. P also contains a starting function mainP that encodes the specification infor-
mation from the test suite T as a conjunctive expression e:

e =
∧

(i,o)∈T

mainQP (i) = o

where mainQP is a function in P corresponding to the starting function mainQ

in Q. In addition, the body of mainP is one conditional statement leading to
a fresh target location L if and only if e is true. Thus, mainP has the form
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i n t mainP ( ) {
i f (e)

[L ]
}

4. The derived program P consists of the declaration of the new variables (Step
1), the functions qP ’s (Step 2), and the starting function mainP (Step 3).

Example: Figure 2 illustrates the reduction using the example from Fig. 1. The
resulting reachability program can arrive at location L using the input {c0 =
100, c1 = 0, c2 = 0, c3 = 1, c4 = 0}, which corresponds to a solution.

Reduction Correctness and Complexity: The correctness of GadgetS2R, which
transforms synthesis to reachability, relies on two key invariants2. First, function
calls in the derived program P have the same behavior as template functions in
the original program Q. Second, location L is reachable if and only if values ci
can be assigned to variables vi such that Q passes all of the tests.

The complexity of GadgetS2R is linear in both the program size and number
of test cases of the input instance Q,S, T . The constructed program P consists
of all functions in Q (with |S| extra variables) and a starting function mainP

with an expression encoding the test suite T .
This reduction directly leads to the main result for this direction of the

equivalence:

Theorem 1. The template-based synthesis problem in Definition 1 is reducible
to the reachability problem in Definition 2.

3.3 Reducing Reachability to Synthesis

Here, we present the reduction from reachability to synthesis. The reduction also
uses a particular gadget to construct a synthesis instance that can be solved iff
the reachability instance can be determined.

Reduction: Let P be a program, L be a location in P , and V = {v1, . . . , vn} be
global variables never directly assigned in P . We construct GadgetR2S(P,L, V ),
which returns a template program Q with template parameters S and a test
suite T , as follows:

1. For every variable vi, define a fresh template variable ci . Let the set of
template parameters S be the set containing each ci .

2. For every function p ∈ P , define a derived function pQ ∈ Q. Replace each
function call to p with the corresponding call to pQ. Replace each use of
a variable vi with a read from the corresponding template parameter ci ;
remove all declarations of variables vi.

2 The full proof is given in the Appendix of [34].
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3. Raise a unique exception REACHED, at the location in Q corresponding to the
location L in P . As usual, when an exception is raised, control immediately
jumps to the most recently-executed try-catch block matching that exception.
The exception REACHED will be caught iff the location in Q corresponding to
L ∈ P would be reached.

4. Define a starting function mainQ that has no inputs and returns an integer
value. Let mainPQ be the function in Q corresponding to the starting function
mainP in P .

– Insert try-catch construct that calls pQ and returns the value 1 if the
exception REACHED is caught.

– At the end of mainQ, return the value 0.
– Thus, mainQ has the form

i n t mainQ ( ) {
try {

mainP Q ( ) ;
} catch (REACHED) {

re turn 1 ;
}
re turn 0 ;

}

5. The derived program Q consists of the finite set of template parameters S =
{ c1 ), . . . , cn } (Step 1), functions pQ’s (Step 2), and the starting function
mainQ (Step 4).

6. The test suite T for Q consists of exactly one test case Q() = 1, indicating
the case when the exception REACHED is raised and caught.

Example: Figure 4 illustrates the reduction using the example from Fig. 3. The
synthesized program can be satisfied by c0 = −20, c1 = −40, corresponding to
the input (x = −20, y = −40) which reaches L in Fig. 3.

The exception REACHED represents a unique signal to mainQ that the location
L has been reached. Many modern languages support exceptions for handling
special events, but they are not strictly necessary for the reduction to succeed.
Other (potentially language-dependent) implementation techniques could also
be employed. Or, we could use a tuple to represent the signal, e.g., returning
(v, false) from a function that normally returns v if the location corresponding
L has not been reached and (1, true) as soon as it has. BLAST [6], a model
checker for C programs (which do not support exceptions), uses goto and labels
to indicate when a desired location has been reached.

Reduction Correctness and Complexity: The correctness of the GadgetS2R, which
transforms reachability to synthesis, depends on two key invariants3. First, for
any ci, execution in the derived template program Q with ci �→ ci mirrors
execution in P with vi �→ ci up to the point when L is reached (if ever). Second,
the exception REACHED is raised in Q iff location L is reachable in P .

3 The full proof is given in the Appendix of [34].
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The complexity of GadgetR2S is linear in the input instance P,L, vi. The
constructed program Q consists of all functions in P and a starting function
mainQ having n template variables, where n = |{vi}|.

This reduction directly leads to the main result for this direction of the
equivalence:

Theorem 2. The reachability problem in Definition 2 is reducible to the
template-based synthesis problem in Definition 1.

3.4 Synthesis ≡ Reachability

Together, the above two theorems establish the equivalence between the reacha-
bility problem in program verification and the template-based program synthesis.

Corollary 1. The reachability problem in Definition 2 and the template-based
synthesis problem in Definition 1 are linear-time reducible to each other.

This equivalence is perhaps unsurprising as researchers have long assumed
certain relations between program synthesis and verification (e.g., see Sect. 5).
However, we believe that a proof of the equivalence is valuable. First, our proof,
although straightforward, formally shows that both problems inhabit the same
complexity class (e.g., the restricted formulation of synthesis in Definition 1 is as
hard as the reachability problem in Definition 2). Second, although both prob-
lems are undecidable in the general case, the linear-time transformations allow
existing approximations and ideas developed for one problem to apply to the
other one. Third, in term of practicality, the equivalence allows for direct appli-
cation of off-the-shelf reachability and verification tools to synthesize and repair
programs. Our approach is not so different from verification works that trans-
form the interested problems into SAT/SMT formulas to be solved by existing
efficient solvers. Finally, this work can be extended to more complex classes of
synthesis and repair problems. While we demonstrate the approach using linear
templates, more general templates can be handled. For example, combinations
of nonlinear polynomials can be considered using a priority subset of terms (e.g.,
t1 = x2, t2 = xy, as demonstrated in nonlinear invariant generation [33]).

We hope that these results help raise fruitful cross-fertilization among pro-
gram verification and synthesis fields that are usually treated separately. Because
our reductions produce reachability problem instances that are rarely encoun-
tered by current verification techniques (e.g., with large guards), they may help
refine existing tools or motivate optimizations in new directions. As an example,
our bug repair prototype CETI (discussed in the next Section) has produced
reachability instances that hit a crashing bug in KLEE that was confirmed to
be important by the developers4. These hard instances might be used to evalu-
ate and improve verification and synthesis tools (similar to benchmarks used in
annual SAT5 and SMT6 competitions).
4 http://mailman.ic.ac.uk/pipermail/klee-dev/2016-February/001278.html.
5 SAT Competitions: http://www.satcompetition.org.
6 SMT competitions: http://smtcomp.sourceforge.net/2016.

http://mailman.ic.ac.uk/pipermail/klee-dev/2016-February/001278.html
http://www.satcompetition.org
http://smtcomp.sourceforge.net/2016
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4 Program Repair Using Test-Input Generation

We use the equivalence to develop CETI (Correcting Errors using Test Inputs),
a tool for automated program repair (a synthesis problem) using test-input gen-
eration techniques (which solves reachability problems). We define problem of
program repair in terms of template-based program synthesis:

Definition 3 Program Repair Problem. Given a program Q that fails at
least one test in a finite test suite T and a finite set of parameterized templates
S, does there exist a set of statements {si} ⊆ Q and parameter values c1, . . . , cn
for the templates in S such that si can be replaced with S[c1, . . . , cn] and the
resulting program passes all tests in T?

This repair problem thus allows edits to multiple program statements (e.g.,
we can replace both lines 4 and 10 in Fig. 1 with parameterized templates). The
single-edit repair problem restricts the edits to one statement.

CETI implements the key ideas from Theorem 1 in Sect. 3.2 to transform this
repair problem into a reachability task solvable by existing verification tools.
Given a test suite and a buggy program that fails some test in the suite, CETI
employs the statistical fault localization technique Tarantula [23] to identify par-
ticular code regions for synthesis, i.e., program statements likely related to the
defect. Next, for each suspicious statement and synthesis template, CETI trans-
forms the buggy program, the test suite, the statement and the template into
a new program containing a location reachable only when the original program
can be repaired. Thus, by default CETI considers single-edit repairs, but it can
be modified to repair multiple lines by using k top-ranked suspicious statements
(cf. Angelix [29]). Such an approach increases the search space and thus the
computational burden placed on the reachability solver.

Our current implementation employs CIL [31] to parse and modify C pro-
grams using repair templates similar to those given in [25,32]. These templates
allow modifying constants, expressions (such as the linear template shown in
Sect. 2), and logical, comparisons, and arithmetic operators (such as changing
|| to &&, ≤ to <, or + to −). Finally, we send the transformed program to
the test-input generation tool KLEE, which produces test values that can reach
the designated location. Such test input values, when combined with the syn-
thesis template and the suspicious statement, correspond exactly to a patch
that repairs the bug. CETI synthesizes correct-by-construction repairs, i.e., the
repair, if found, is guaranteed to pass the test suite.

4.1 Evaluation

To evaluate CETI, we use the Tcas program from the SIR benchmark [13]. The
program, which implements an aircraft traffic collision avoidance system, has
180 lines of code and 12 integer inputs. The program comes with a test suite
of about 1608 tests and 41 faulty functions, consisting of seeded defects such as
changed operators, incorrect constant values, missing code, and incorrect control
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flow. Among the programs in SIR, Tcas has the most introduced defects (41),
and it has been used to benchmark modern bug repair techniques [12,26,32].

We manually modify Tcas, which normally prints its result on the screen, to
instead return its output to its caller, e.g., printf("output is %d\n",v) becomes
return v. For efficiency, many repair techniques initially consider a smaller num-
ber of tests in the suite and then verify candidate repairs on the entire suite [32].
In contrast, we use all available tests at all times to guarantee that any repair
found by CETI is correct with respect to the test suite. We find that mod-
ern tools such as KLEE can handle the complex conditionals that encode such
information efficiently and generate the desired solutions within seconds.

The behavior of CETI is controlled by customizable parameters. For the
experiments described here, we consider the top n = 80 from the ranked list of
suspicious statements and, then apply the predefined templates to these state-
ments. For efficiency, we restrict synthesis parameters to be within certain value
ranges: constant coefficients are confined to the integral range [−100000, 100000]
while the variable coefficients are drawn from the set {−1, 0, 1}.

Results. Table 1 shows the results with 41 buggy Tcas versions. These experi-
ments were performed on a 32-core 2.60 GHz Intel Linux system with 128 GB of
RAM. Column Bug Type describes the type of defect. Incorrect Const denotes
a defect involving the use of the wrong constant, e.g., 700 instead of 600. Incorrect
Op denotes a defect that uses the wrong operator for arithmetic, comparison,
or logical calculations, e.g., ≥ instead of >. Missing code denotes defects that
entirely lack an expression or statement, e.g., a&&b instead of a&&b||c or return
a instead of return a+b. Multiple denotes defects caused by several actions such
as missing code at a location and using an incorrect operator at another loca-
tion. Column T(s) shows the time taken in seconds. Column R-Prog lists the
number of reachability program instances that were generated and processed by
KLEE. Column Repair? indicates whether a repair was found.

We were able to correct 26 of 41 defects, including multiple defects of differ-
ent types. On average, CETI takes 22 seconds for each successful repair. The tool
found 100% of repairs for which the required changes are single edits according
to one of our predefined templates (e.g., generating arbitrary integer constants or
changing operators at one location). In several cases, defects could be repaired in
several ways. For example, defect v28 can be repaired by swapping the results of
both branches of a conditional statement or by inverting the conditional guard.
CETI also obtained unexpected repairs. For example, the bug in v13 is a com-
parison against an incorrect constant; the buggy code reads < 700 while the
human-written patch reads < 600. Our generated repair of < 596 also passes all
tests.

We were not able to repair 15 of 41 defects, each of which requires edits
at multiple locations or the addition of code that is beyond the scope of the
current set of templates. As expected, CETI takes longer for these programs
because it tries all generated template programs before giving up. One common
pattern among these programs is that the bug occurs in a macro definition,
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Table 1. Repair results for 41 Tcas defects

Bug type R-Progs T(s) Repair? Bug type R-Progs T(s) Repair?

v1 incorrect op 6143 21 � v22 missing code 5553 175 –

v2 missing code 6993 27 � v23 missing code 5824 164 –

v3 incorrect op 8006 18 � v24 missing code 6050 231 –

v4 incorrect op 5900 27 � v25 incorrect op 5983 19 �
v5 missing code 8440 394 – v26 missing code 8004 195 –

v6 incorrect op 5872 19 � v27 missing code 8440 270 –

v7 incorrect const 7302 18 � v28 incorrect op 9072 11 �
v8 incorrect const 6013 19 � v29 missing code 6914 195 –

v9 incorrect op 5938 24 � v30 missing code 6533 170 –

v10 incorrect op 7154 18 � v31 multiple 4302 16 �
v11 multiple 6308 123 – v32 multiple 4493 17 �
v12 incorrect op 8442 25 � v33 multiple 9070 224 –

v13 incorrect const 7845 21 � v34 incorrect op 8442 75 �
v14 incorrect const 1252 22 � v35 multiple 9070 184 –

v15 multiple 7760 258 – v36 incorrect const 6334 10 �
v16 incorrect const 5470 19 � v37 missing code 7523 174 –

v17 incorrect const 7302 12 � v38 missing code 7685 209 –

v18 incorrect const 7383 18 � v39 incorrect op 5983 20 �
v19 incorrect const 6920 19 � v40 missing code 7364 136 –

v20 incorrect op 5938 19 � v41 missing code 5899 29 �
v21 missing code 5939 31 �

e.g., #define C = 100 instead of #define C = 200. Since the CIL front end
automatically expands such macros, CETI would need to individually fix each
use of the macro in order to succeed. This is an artifact of CIL, rather than a
weakness inherent in our algorithm.

CETI, which repairs 26 of 41 Tcas defects, performs well compared to other
reported results from repair tools on this benchmark program. GenProg, which
finds edits by recombining existing code, can repair 11 of these defects [32,
Table 5]. The technique of Debroy and Wong, which uses random mutation, can
repair 9 defects [12, Table 2]. FoREnSiC, which uses the concolic execution in
CREST, repairs 23 defects [26, Table 1]. SemFix out-performs CETI, repairing
34 defects [32, Table 5], but also uses fifty test cases instead of the entire suite
of thousands7. Other repair techniques, including equivalence checking [26] and
counterexample guided refinement [26], repair 15 and 16 defects, respectively.

Although CETI uses similar repair templates as both SemFix and FoREn-
SiC, the repair processes are different. SemFix directly uses and customizes the

7 Thus CETI’s repairs, which pass the entire suite instead of just 50 selected tests,
meet a higher standard. We were unable to obtain SemFix details, e.g., which 50
tests, online or from the authors.
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KLEE symbolic execution engine, and FoRenSiC integrates concolic execution
to analyze programs and SMT solving to generate repairs. In contrast, CETI
eschews heavyweight analyses, and it simply generates a reachability instance.
Indeed, our work is inspired by, and generalizes, these works, observing that the
whole synthesis task can be offloaded with strong success in practice.

However, there is a trade-off: customizing a reachability solver to the task of
program repair may increase the performance or the number of repairs found,
but may also reduce the generality or ease-of-adoption of the overall technique.
We note that our unoptimized tool CETI already outperforms published results
for GenProg, Debroy and Wong, and FoREnSiC on this benchmark, and is com-
petitive with SemFix.

Limitations. We require that the program behaves deterministically on the
test cases and that the defect be reproducible. This limitation can be mitigated
by running the test cases multiple times, but ultimately our technique is not
applicable if the program is non-deterministic. We assume that the test cases
encode all relevant program requirements. If adequate test cases are not avail-
able then the repair may not retain required functionality. Our formulation also
encodes the test cases as inputs to a starting function (e.g., main) with a single
expected output. This might not be feasible for certain types of specifications,
such as liveness properties (“eventually” and “always”) in temporal logic. The
efficiency of CETI depends on fault localization to reduce the search space. The
reachability or test-input generation tool used affects both the efficiency and the
efficacy of CETI. For example, if the reachability tool uses a constraint solver
that does not support data types such as string or arrays then we will not be
able to repair program defects involving those types. Finally, we assume that the
repair can be constructed from the provided repair templates.

The reduction in Sect. 3.2 can transform a finite space (buggy) program into
an infinite space reachability problem (e.g., we hypothesize that a bounded loop
guard i ≤ 10 is buggy and try to synthesize a new guard using an unknown
parameter i ≤ c ). However, this does not invalidate the theoretical or empirical
results and the reduction is efficient in the program size and the number of tests.
The reduction also might not be optimal if we use complex repair templates (e.g.,
involving many unknown parameters). In practice we do not need to synthesize
many complex values for most defects and thus modern verification tools such
as KLEE can solve these problems efficiently, as shown in our evaluation.

This paper concretely demonstrates the applicability of program reachability
(test-input generation) to program synthesis (defect repair) but not the reverse
direction of using program synthesis to solve reachability. Applying advances
in automatic program repair to find test-inputs to reach nontrivial program
locations remains future work.
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5 Related Work

Program Synthesis and Verification. Researchers have long hypothesized
about the relation between program synthesis and verification and proposed
synthesis approaches using techniques or tools often used to verify programs
such as constraint solving or model checking [1,43]. For example, Bodik and
Solar-Lezama et al.’s work [39,40] on sketching defines the synthesis task as:
∃c . ∀(i, o) . ∈ T . (P [c])(i) = o (similar to our template-based synthesis formu-
lation in Definition 1) and solves the problem using a SAT solver. Other synthesis
and program repair researches, e.g., [4,29,32,43,44], also use similar formulation
to integrate verification tools, e.g., test-input generation, to synthesize desired
programs. In general, such integrations are common in many ongoing synthe-
sis works including the multi-disciplinary ExCAPE project [14] and the SyGuS
competition [45], and have produced many practical and useful tools such as
Sketch that generates low-level bit-stream programs [39], Autograder that pro-
vides feedback on programming homework [38], and FlashFill that constructs
Excel macros [19,20].

The work presented in this paper is inspired by these works, and general-
izes them by establishing a formal connection between synthesis and verification
using the template-based synthesis and reachability formulations. We show that
it is not just a coincident that the aforementioned synthesis works can exploit
verification techniques, but that every template-based synthesis problem can
be reduced to the reachability formulation in verification. Dually, we show the
other direction that reduces reachability to template-based synthesis, so that
every reachability problem can be solved using synthesis. Furthermore, our con-
structive proofs describe efficient algorithms to do such reductions.

Program Repair and Test-Input Generation. Due to the pressing demand
for reliable software, automatic program repair has steadily gained research
interests and produced many novel repair techniques. Constraint-based repair
approaches, e.g., AFix [21], Angelix [29], SemFix [32], FoRenSiC [7], Gopinath
et al. [18], Jobstmann et al. [22], generate constraints and solve them for patches
that are correct by construction (i.e., guaranteed to adhere to a specification
or pass a test suite). In contrast, generate-and-validate repair approaches, e.g.,
GenProg [46], Pachika [11], PAR [24], Debroy and Wong [12], Prophet [28], find
multiple repair candidates (e.g., using stochastic search or invariant inferences)
and verify them against given specifications.

The field of test-input generation has produced many practical techniques
and tools to generate high coverage test data for complex software, e.g., fuzz
testing [15,30], symbolic execution [8,9], concolic (combination of static and
dynamic analyses) execution [16,37], and software model checking [5,6]. Compa-
nies and industrial research labs such as Microsoft, NASA, IBM, and Fujitsu have
also developed test-input generation tools to test their own products [2,3,17,27].
Our work allows program repair and synthesis approaches directly apply these
techniques and tools.
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6 Conclusion

We constructively prove that the template-based program synthesis problem
and the reachability problem in program verification are equivalent. This equiv-
alence connects the two problems and enables the application of ideas, optimiza-
tions, and tools developed for one problem to the other. To demonstrate this, we
develop CETI, a tool for automated program repair using test-input generation
techniques that solve reachability problems. CETI transforms the task of syn-
thesizing program repairs to a reachability problem, where the results produced
by a test-input generation tool correspond to a patch that repairs the original
program. Experimental case studies suggest that CETI has higher success rates
than many other standard repair approaches.
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Abstract. Given a semantic constraint specified by a logical formula,
and a syntactic constraint specified by a context-free grammar, the
Syntax-Guided Synthesis (SyGuS) problem is to find an expression that
satisfies both the syntactic and semantic constraints. An enumerative
approach to solve this problem is to systematically generate all expres-
sions from the syntactic space with some pruning, and has proved to
be surprisingly competitive in the newly started competition of SyGuS

solvers. It performs well on small to medium sized benchmarks, produces
succinct expressions, and has the ability to generalize from input-output
examples. However, its performance degrades drastically with the size
of the smallest solution. To overcome this limitation, in this paper we
propose an alternative approach to solve SyGuS instances.

The key idea is to employ a divide-and-conquer approach by sepa-
rately enumerating (a) smaller expressions that are correct on subsets of
inputs, and (b) predicates that distinguish these subsets. These expres-
sions and predicates are then combined using decision trees to obtain an
expression that is correct on all inputs. We view the problem of com-
bining expressions and predicates as a multi-label decision tree learning
problem. We propose a novel technique of associating a probability dis-
tribution over the set of labels that a sample can be labeled with. This
enables us to use standard information-gain based heuristics to learn
compact decision trees.

We report a prototype implementation eusolver. Our tool is able
to match the running times and the succinctness of solutions of both
standard enumerative solver and the latest white-box solvers on most
benchmarks from the SyGuS competition. In the 2016 edition of the
SyGuS competition, eusolver placed first in the general track and the
programming-by-examples track, and placed second in the linear integer
arithmetic track.

1 Introduction

The field of program synthesis relates to automated techniques that attempt to
automatically generate programs from requirements that a programmer writes.
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It has been applied to various domains such as program completion [21], program
optimization, and automatic generation of programs from input-output exam-
ples [7], among others. Recently, Syntax-Guided Synthesis (SyGuS) has been pro-
posed as a back-end exchange format and enabling technology for program syn-
thesis [2]. The aim is to allow experts from different domains to model their syn-
thesis problems as SyGuS instances, and leverage general purpose SyGuS solvers.

In the SyGuS approach, a synthesis task is specified using restrictions on both
the form (syntax) and function (semantics) of the program to be synthesized:
(a) The syntactic restrictions are given in terms of a context-free grammar
from which a solution program may be drawn. (b) The semantic restrictions
are encoded into a specification as an SMT formula. Most SyGuS solvers operate
in two cooperating phases: a learning phase in which a candidate program is
proposed, and a verification phase in which the proposal is checked against the
specification. SyGuS solvers can be broadly categorized into two kinds: (a) black-
box solvers, where the learning phase does not deal with the specification directly,
but learns from constraints on how a potential solution should behave on sample
inputs points [2,18,23]; and (b) white-box solvers, which attempt learn directly
from the specification, generally using constraint solving techniques [3,17].

The enumerative solver [2] placed first and second in the SyGuS competition
2014 and 2015, respectively. It maintains a set of concrete input points, and in
each iteration attempts to produce an expression that is correct on these concrete
inputs. It does so by enumerating expressions from the grammar and checking if
they are correct on the input points, while pruning away expressions that behave
equivalently to already generated expressions. If an expression that is correct on
the input points is found, it is verified against the full specification. If it is
incorrect, a counter-example point is found and added to the set of input points.

Though the enumerative strategy works well when the solutions have small
sizes, it does not scale well. The time take to explore all potential solutions up to
a given size grows exponentially with the size. To overcome this scalability issue,
we introduce a divide-and-conquer enumerative algorithm.

The divide-and-conquer enumerative approach is based on this insight: while
the full solution expression to the synthesis problem may be large, the important
individual parts are small. The individual parts we refer to here are: (a) terms
which serve as the return value for the solution, and (b) predicates which serve
as the conditionals that choose which term is the actual return value for a given
input. For example, in the expression if x ≤ y then y else x, the terms are x and
y, and the predicate is x ≤ y. In this example, although the full expression has
size 6, the individual terms have size 1 each, and the predicate has size 3. Hence,
the divide-and-conquer enumerative approach only enumerates terms and pred-
icates separately and attempts to combine them into a conditional expression.

To combine the different parts of a solution into a conditional expression, we
use the technique of learning decision trees [4,16]. The input points maintained
by the enumerative algorithm serve as the samples, the predicates enumerated
serve as the attributes, and the terms serve as the labels. A term t is a valid
label for a point pt if t is correct for pt. We use a simple multi-label decision tree
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learning algorithm to learn a decision tree that classifies the samples soundly,
i.e., for each point, following the edges corresponding to the attribute values
(i.e., predicates) leads to a label (i.e., term) which is correct for the point.

To enhance the quality of the solutions obtained, we extend the basic divide-
and-conquer algorithm to be an anytime algorithm, i.e., the algorithm does not
stop when the first solution is found, and instead continues enumerating terms
and predicates in an attempt to produce more compact solutions. Decomposing
the verification queries into branch-level queries helps in faster convergence.

Evaluation. We implemented the proposed algorithm in a tool eusolver and
evaluated it on benchmarks from the SyGuS competition. The tool was able to per-
form on par or better than existing solvers in most tracks of the 2016 SyGuS com-
petition, placing first in the general and programming-by-example tracks, and
second in the linear-integer-arithmetic track. In the general and linear-integer-
arithmetic tracks, eusolver’s performance is comparable to the state-of-the-art
solvers. However, in the programming-by-example track, eusolver performs
exceptionally well, solving 787 of the 852 benchmarks, while no other tool solved
more than 39. This exceptional performance is due to eusolver being able to
generalize from examples like other enumerative approaches, while also being
able to scale to larger solution sizes due to the divide-and-conquer approach.

Further, to test the anytime extension, we run eusolver on 50 ICFP bench-
marks with and without the extension. Note that no previous solver has been
able to solve these ICFP benchmarks. We observed that the anytime extension
of the algorithm was able to produce more compact solutions in 18 cases.

2 Illustrative Example

Fig. 1. Grammar for linear integer
expressions

Consider a synthesis task to generate an
expression e such that: (a) e is generated by
the grammar from Fig. 1. (b) e when substi-
tuted for f , in the specification Φ, renders it
true, where Φ ≡ ∀x, y : f(x, y) ≥ x∧f(x, y) ≥
y ∧ (f(x, y) = x ∨ f(x, y) = y). Note that the
specification constrains f(x, y) to return maximum of x and y. Here, the smallest
solution expression is if x ≤ y then y else x.

Basic Enumerative Strategy. We explain the basic enumerative algo-
rithm [23] using Table 1. The enumerative algorithm maintains a set of input
points pts (initially empty), and proceeds in rounds. In each round, it proposes
a candidate solution that is correct on all of pts. If this candidate is correct on all
inputs, it is returned. Otherwise, a counter-example input point is added to pts.

The algorithm generates the candidate solution expression by enumerating
expressions generated by the grammar in order of size. In the first round, the
candidate expression proposed is the first expression generated (the expression
0) as pts is empty. Attempting to verify the correctness of this expression, yields
a counter-example point {x �→ 1, y �→ 0}. In the second round, the expression
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Table 1. Example run of the basic enumerative algorithm

Round no Enumerated expressions Candidate expression Point added

1 0 0 {x �→ 1, y �→ 0}
2 0, 1 1 {x �→ 0, y �→ 2}
3 0, 1, x, y, . . ., x + y, x + y {x �→ 1, y �→ 2}
. . .

n 0, . . . , if x ≤ y then y else x if x ≤ y then y else x

0 is incorrect on the point, and the next expression to be correct on all of
pts (the expression 1) is proposed. This fails to verify as well, and yields the
counter-example point {x �→ 0, y �→ 2}. In the third round, all expressions of
size 1 are incorrect on at least one point in pts, and the algorithm moves on
to enumerate larger expressions. After several rounds, the algorithm eventually
generates the expression if x ≤ y then y else x which the SMT solver verifies to
be correct. In the full run, the basic enumerative strategy (algorithm presented
in Sect. 3.1) generates a large number (in this case, hundreds) of expressions
before generating the correct expression. In general, the number of generated
expressions grows exponentially with the size of the smallest correct expression.
Thus, the enumerative solver fails to scale to large solution sizes.

Divide and Conquer Enumeration. In the above example, though the solu-
tion is large, the individual components (terms x and y, and predicate x ≤ y) are
rather small and can be quickly enumerated. The divide-and-conquer approach
enumerates terms and predicates separately, and attempts to combine them into
a conditional expression. We explain this idea using an example (see Table 2).

Similar to the basic algorithm, the divide-and-conquer algorithm maintains
a set of points pts, and works in rounds. The first two rounds are similar to
the run of the basic algorithm. In contrast to the basic algorithm, the enumer-
ation stops in the third round after 0, 1, x, and y are enumerated – the terms
1 and y are correct on {x �→ 1, y �→ 0} and {x �→ 0, y �→ 2}, respectively, and
thus together “cover” all of pts. Now, to propose an expression, the algorithm
starts enumerating predicates until it finds a sufficient number of predicates to

Table 2. Example run of the divide-and-conquer enumerative algorithm

Round no Enumerated
terms

Enumerated
predicates

Candidate
expression

Point added

1 0 0 ∅ {x �→ 1, y �→ 0}
2 0, 1 1 ∅ {x �→ 0, y �→ 2}
3 0, 1, x, y 0 ≤ 0, . . . 0 ≤ y,

1 ≤ 0, . . . 1 ≤ y
if 1 ≤ y then y else 1 {x �→ 2, y �→ 0}

4 0, 1, x, y 0 ≤ 0, . . .x ≤ y if x ≤ y then y else x
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generate a conditional expression using the previously enumerated terms. The
terms and predicates are combined into conditional expression by learning deci-
sion trees (see Sect. 4.2). The candidate expression proposed in the third round
is if 1 ≤ y then y else x and the counter-example generated is {x �→ 2, y �→ 0}
(see table). Proceeding further, in the fourth round, the correct expression is
generated. Note that this approach only generates 4 terms and 11 predicates in
contrast to the basic approach which generates hundreds of expressions.

3 Problem Statement and Background

Let us fix the function to be synthesized f and its formal parameters params.
We write range(f) to denote the range of f . The term point denotes a valuation
of params, i.e., a point is an input to f .

Example 1. For the running example in this section, we consider a function to
be synthesized f of type Z×Z → Z with the formal parameters params = {x, y}.
Points are valuations of x and y. For example, {x �→ 1, y �→ 2} is a point.

Specifications. SMT formulae have become the standard formalism for speci-
fying semantic constraints for synthesis. In this paper, we fix an arbitrary theory
T and denote by T [symbols], the set of T terms over the set of symbols symbols.
A specification Φ is a logical formula in a theory T over standard theory symbols
and the function to be synthesized f . An expression e satisfies Φ (e |= Φ) if
instantiating the function to be synthesized f by e makes Φ valid.

Example 2. Continuing the running example, we define a specification Φ ≡
∀x, y : f(x, y) ≥ x ∧ f(x, y) ≥ y ∧ f(x, y) = x ∨ f(x, y) = y. The specifica-
tion states that f maps each pair x and y to a value that is at least as great as
each of them and equal to one of them, i.e., the maximum of x and y.

Grammars. An expression grammar G is a tuple 〈N , S,R〉 where: (a) the set
N is a set of non-terminal symbols, (b) the non-terminal S ∈ N is the initial
non-terminal, (c) R ⊆ N ×T [N ∪params] is a finite set of rewrite rules that map
N to T -expressions over non-terminals and formal parameters. We say that an
expression e rewrites to an incomplete expression e′ (written as e →G e′) if there
exists a rule R = (N, e′′) ∈ R and e′ is obtained by replacing one occurrence of
N in e by e′′. Let →∗

G be the transitive closure of →. We say that an expression
e ∈ T [params] is generated by the grammar G (written as e ∈ [[G]]) if S →∗

G e.
Note that we implicitly assume that all terms generated by the grammar have
the right type, i.e., are of the type range(f).

Example 3. For the running example, we choose the following grammar. The
set of non-terminals is given by N = {S, T,C} with the initial non-terminal
being S. The rules of this grammar are {(S, T ), (S, if C then S else S)} ∪
{(T, x), (T, y), (T, 1), (T, 0), (T, T +T )}∪{(C, T ≤ T ), (C,C ∧C), (C,¬C)}. This
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is the standard linear integer arithmetic grammar used for many SyGuS problems.
This grammar is equivalent to the one from Fig. 1.

The Syntax-Guided Synthesis Problem. An instance of the SyGuS problem
is given by a pair 〈Φ,G〉 of specification and grammar. An expression e is a
solution to the instance if e |= Φ and e ∈ [[G]].

Example 4. Continuing the running example, for the specification Φ from Exam-
ple 2 and the grammar from Example 3, one of the solution expressions is given
by f(x, y) ≡ if x ≤ y then y else x.

From our definitions, it is clear that we restrict ourselves to a version of the
SyGuS problem where there is exactly one unknown function to be synthesized,
and the grammar does not contain let rules. Further, we assume that our speci-
fications are point-wise. Intuitively, a specification is point-wise, if it only relates
an input point to its output, and not the outputs of different inputs.

Here, we use a simple syntactic notion of point-wise specifications, which we
call plain separability, for convenience. However, our techniques can be general-
ized to any notion of point-wise specifications. Formally, we say that a specifi-
cation is plainly separable if it can be rewritten into a conjunctive normal form
where each clause is either (a) a tautology, or (b) each appearing application of
the function to be synthesized f has the same arguments.

Example 5. The specification for our running example Φ ≡ f(x, y) ≥ x ∧
f(x, y) ≥ y ∧ f(x, y) = x ∨ f(x, y) = y is plainly separable. For exam-
ple, this implies that the value of f(1, 2) can be chosen irrespective of the
value of f on any other point. On the other hand, a specification such as
f(x, y) = 1 ⇒ f(x + 1, y) = 1 is neither plainly separable nor point-wise. The
value of f(1, 2) cannot be chosen independently of the value of f(0, 2).

The above restrictions make the SyGuS problem significantly easier. However,
a large fraction of problems do fall into this class. Several previous works address
this class of problem (see, for example, [3,13,17]).

Plainly separable specifications allow us to define the notion of an expression
e satisfying a specification Φ on a point pt. Formally, we say that e |= Φ �
pt if e satisfies the specification obtained by replacing each clause C in Φ by
PreC(pt) ⇒ C. Here, the premise PreC(pt) is given by

∧
p∈params ArgC(p) = pt[p]

where ArgC(p) is the actual argument corresponding to the formal parameter p
in the unique invocation of f that occurs in C. We extend this definition to sets
of points as follows: e |= Φ � pts ⇔ ∧

pt∈pts e |= Φ � pt.

Example 6. For the specification Φ of the running example, the function given
by f(x, y) ≡ x + y is correct on the point {x �→ 0, y �→ 3} and incorrect on the
point {x �→ 1, y �→ 2}
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3.1 The Enumerative Solver

Algorithm 1 Enumerative Solver
Require: Grammar G = 〈N , S, R〉
Require: Specification Φ
Ensure: e s.t. e ∈ [[G]] ∧ e |= Φ

1: pts ← ∅
2: while true do
3: for e ∈ enumerate(G, pts) do

4: if e �|= Φ � pts then continue

5: cexpt ← verify(e, Φ)
6: if cexpt = ⊥ then return e

7: pts ← pts ∪ cexpt

The principal idea behind the enumera-
tive solver is to enumerate all expressions
from the given syntax with some pruning.
Only expressions that are distinct with
respect to a set of concrete input points
are enumerated.

The full pseudo-code is given in Algo-
rithm1. Initially, the set of points is set
to be empty at line 1. In each iteration,
the algorithm calls the enumerate pro-
cedure1 which returns the next element

from a (possibly infinite) list of expressions such that no two expressions in this
list evaluate to the same values at every point pt ∈ pts (line 3). Every expression
e in this list is then verified, first on the set of points (line 4) and then fully
(line 5). If the expression e is correct, it is returned (line 6). Otherwise, we pick
a counter-example input point (i.e., an input on which e is incorrect) and add
it to the set of points and repeat (line 7). A full description of the enumerate
procedure can be found in [2] and [23].

Theorem 1. Given a SyGuS instance (Φ,G) with at least one solution expres-
sion, Algorithm1 terminates and returns the smallest solution expression.

Features and Limitations. The enumerative algorithm performs surprisingly
well, considering its simplicity, on small to medium sized benchmarks (see [2,23]).
Further, due to the guarantee of Theorem1 that the enumerative approach pro-
duces small solutions, the algorithm is capable of generalizing from specifications
that are input-output examples. However, enumeration quickly fails to scale with
growing size of solutions. The time necessary for the enumerative solver to gen-
erate all expressions up to a given size grows exponentially with the size.

4 The Divide-and-Conquer Enumeration Algorithm

Conditional Expression Grammars. We introduce conditional expression
grammars that separate an expression grammar into two grammars that gener-
ate: (a) the return value expression, and (b) the conditionals that decide which
return value is chosen. These generated return values (terms) and conditionals
(predicates) are combined using if-then-else conditional operators.

A conditional expression grammar is a pair of grammars 〈GT , GP 〉 where:
(a) the term grammar GT is an expression grammar generating terms of type
range(f); and (b) the predicate grammar GP is an expression grammar generating

1 Note that enumerate is a coprocedure. Unfamiliar readers may assume that each
call to enumerate returns the next expression from an infinite list of expressions.
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boolean terms. The set of expressions [[〈GT , GP 〉]] generated by 〈GT , GP 〉 is the
smallest set of expressions T [params] such that: (a) [[GT ]] ⊆ [[〈GT , GP 〉]], and (b)
e1, e2 ∈ [[〈GT , GP 〉]] ∧ p ∈ [[GP ]] =⇒ if p then e1 else e2 ∈ [[〈GT , GP 〉]]. Most
commonly occurring SyGuS grammars in practice can be rewritten as conditional
expression grammars automatically.

Example 7. The grammar from Example 3 is easily decomposed into a condi-
tional expression grammar 〈GT , GP 〉 where: (a) the term grammar GT contains
only the non-terminal T , and the rules for rewriting T . (b) the predicate gram-
mar GP contains the two non-terminals {T,C} and the associated rules.

Decision Trees. We use the concept of decision trees from machine learning
literature to model conditional expressions. Informally, a decision tree DT maps
samples to labels. Each internal node in a decision tree contains an attribute
which may either hold or not for each sample, and each leaf node contains a
label. In our setting, labels are terms, attributes are predicates, and samples are
points.

To compute the label for a given point, we follow a path from the root of the
decision tree to a leaf, taking the left (resp. right) child at each internal node if
the attribute holds (resp. does not hold) for the sample. The required label is
the label at the leaf. We do not formally define decision trees, but instead refer
the reader to a standard text-book (see, for example, [4]).

Example 8. Figure 2 contains a decision tree in our setting, i.e., with attributes
being predicates and labels being terms. To compute the associated label with
the point pt ≡ {x �→ 2, y �→ 0}: (a) we examine the predicate at the root node,
i.e., y ≤ 0 and follow the left child as the predicate hold for pt; (b) examine the
predicate at the left child of the root node, i.e., x ≤ y and follow the right child
as it does not hold; and (c) return the label of the leaf x + y.

Fig. 2. Sample decision tree

The expression expr(DT ) corresponding to a deci-
sion tree DT is defined as: (a) the label of the
root node if the tree is a single leaf node; and (b)
if p then expr(DTL) else expr(DTY ) where p is
the attribute of the root node, and DTL and DTY

are the left and right children, otherwise.
Decision tree learning is a technique that learns

a decision tree from a given set of samples. A decision tree learning procedure
is given: (a) a set of samples (points), (b) a set of labels (terms), along with a
function that maps a label to the subset of samples which it covers; and (c) a
set of attributes (predicates). A sound decision tree learning algorithm returns
a decision tree DT that classifies the points correctly, i.e., for every sample pt,
the label associated with it by the decision tree covers the point. We use the
notation LearnDT to denote a generic, sound decision tree learning procedure.
The exact procedure we use for decision tree learning is presented in Sect. 4.2.
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4.1 Algorithm

Algorithm 2 presents the full divide-and-conquer enumeration algorithm for syn-
thesis. Like Algorithm 1, the divide-and-conquer algorithm maintains a set of
points pts, and in each iteration: (a) computes a candidate solution expression
e (lines 3–10); (b) verifies and returns e if it is correct (lines 10 and 11); and (c)
otherwise, adds the counter-example point into the set pts (line 12).

However, the key differences between Algorithms 2 and 1 are in the way
the candidate solution expression e is generated. The generation of candidate
expressions is accomplished in two steps.

Term Solving. Instead of searching for a single candidate expression that is
correct on all points in pts, Algorithm 2 maintains a set of candidate terms
terms. We say that a term t covers a point pt ∈ pts if t |= Φ � pt. The set of
points that a term covers is computed and stored in cover[t] (line 15). Note that
the algorithm does not store terms that cover the same set of points as already
generated terms (line 16). When the set of terms terms covers all the points in
pts, i.e., for each pt ∈ pts, there is at least one term that is correct on pt, the
term enumeration is stopped (while-loop condition in line 4).

Unification and Decision Tree Learning. In the next step (lines 6–9), we
generate a set of predicates preds that will be used as conditionals to combine the
terms from terms into if-then-else expressions. In each iteration, we attempt to
learn a decision tree that correctly labels each point pt ∈ pts with a term t such
that pt ∈ cover[t]. If such a decision tree DT exists, the conditional expression
expr(DT ) is correct on all points, i.e., expr(DT ) |= Φ � pts. If a decision tree does
not exist, we generate additional terms and predicates and retry.

Algorithm 2 DCSolve: The divide-and-conquer enumeration algorithm
Require: Conditional expression grammar G = 〈GT , GP 〉
Require: Specification Φ
Ensure: Expression e s.t. e ∈ [[G]] ∧ e |= Φ
1: pts ← ∅
2: while true do
3: terms ← ∅; preds ← ∅; cover ← ∅;DT = ⊥
4: while

⋃
t∈terms cover[t] �= pts do � Term solver

5: terms ← terms ∪ NextDistinctTerm(pts, terms, cover)

6: while DT = ⊥ do � Unifier

7: terms ← terms ∪ NextDistinctTerm(pts, terms, cover)
8: preds ← preds ∪ enumerate(GP , pts)
9: DT ← LearnDT(terms, preds)

10: e ← expr(DT ); cexpt ← verify(e, Φ) � Verifier

11: if cexpt = ⊥ then return e

12: pts ← pts ∪ cexpt

13: function NextDistinctTerm(pts, terms, cover)
14: while True do

15: t ← enumerate(GT , pts); cover[t] ← {pt | pt ∈ pts ∧ t |= Φ � pt}
16: if ∀t′ ∈ terms : cover[t] �= cover[t′] then return t
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Remark 1. In line 7, we generate additional terms even though terms is guar-
anteed to contain terms that cover all points. This is required to achieve semi-
completeness, i.e., without this, the algorithm might not find a solution even if
one exists.

Theorem 2. Algorithm2 is sound for the SyGuS problem. Further, assuming a
sound and complete LearnDT procedure, if there exists a solution expression,
Algorithm2 is guaranteed to find it.

The proof of the above theorem is similar to the proof of soundness and partial-
completeness for the original enumerative solver. The only additional assumption
is that the LearnDT decision tree learning procedure will return a decision tree
if one exists. We present such a procedure in the next section.

4.2 Decision Tree Learning

The standard multi-label decision tree learning algorithm (based on ID3 [16]) is
presented in Algorithm 3. The algorithm first checks if there exists a single label
(i.e., term) t that applies to all the points (line1). If so, it returns a decision
tree with only a leaf node whose label is t (line 1). Otherwise, it picks the best
predicate p to split on based on some heuristic (line 3). If no predicates are left,
there exists no decision tree, and the algorithm returns ⊥ (line 2). Otherwise, it
recursively computes the left and right sub-trees for the set of points on which
p holds and does not hold, respectively (lines 4 and 5). The final decision tree
is returned as a tree with a root (with attribute p), and positive and negative
edges to the roots of the left and right sub-trees, respectively.

Algorithm 3 Learning Decision Trees
Require: pts, terms, cover, preds
Ensure: Decision tree DT

1: if ∃t : pts ⊆ cover[t] then return LeafNode[L ← t]

2: if preds = ∅ then return ⊥
3: p ← Pick predicate from preds
4: L ← LearnDT({pt | p[pt]}, terms, cover, preds \ {p})
5: R ← LearnDT({pt | ¬p[pt]}, terms, cover, preds \ {p})
6: return InternalNode[A ← p, left ← L, right ← R]

Information-Gain Heuristic. The choice of the predicate at line 3 influences
the size of the decision tree learned by Algorithm3, and hence, in our setting,
the size of the solution expression generated by Algorithm2. We use the classical
information gain heuristic to pick the predicates. Informally, the information
gain heuristic treats the label as a random variable, and chooses to split on
the attribute knowing whose value will reveal the most information about the
label. We do not describe all aspects of computing information gain, but refer
the reader to any standard textbook on machine learning [4]. Given a set of
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points pts′ ⊆ pts the entropy H(pts′) is defined in terms of the probability
Ppts′(label(pt) = t) of a point pt ∈ pt′ being labeled with the term t as

H(pts′) = −
∑
t

Ppts′(label(pt) = t) · log2 Ppts′(label(pt) = t)

Further, given a predicate p ∈ preds, the information gain of p is defined as

G(p) =
|ptsy|
|pts| · H(ptsy) +

|ptsn|
|pts| · H(ptsn)

where ptsy = {pt ∈ pts | p[pt]} and ptsn = {pt ∈ pts | ¬p[pt]}. Hence, at line 3,
we compute the value G(p) for each predicate in preds, and pick the one which
maximizes G(p).

We use conditional probabilities Ppts′(label(pt) = t | pt) to compute the prob-
ability Ppts′(label(pt) = t). The assumption we make about the prior distribution
is that the likelihood of a given point pt being labeled by a given term t is pro-
portional to the number of points in cover[t]. Formally, we define:

Ppts′(label(pt) = t | pt) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if pt /∈ cover[t]
|cover[t] ∩ pts′|∑

t′|pt∈cover[t′]

|cover[t′] ∩ pts′|
if pt ∈ cover[t]

Now, the unconditional probability of an arbitrary point being labeled with t is
given by Ppts′(label(pt) = t) =

∑
pt Ppts′(label(pt) = t | pt) · Ppts′(pt). Assuming a

uniform distribution for picking points, we have that

Ppts′(label(pt) = t) =
1

|pts| ·
∑
pt

Ppts′(label(pt) = t | pt)

4.3 Extensions and Optimizations

The Anytime Extension. Algorithm 2 stops enumeration of terms and pred-
icates as soon as it finds a single solution to the synthesis problem. However,
there are cases where due to the lack of sufficiently good predicates, the decision
tree and the resulting solution can be large (see Example 9). Instead, we can
let the algorithm continue by generating more terms and predicates. This could
lead to different, potentially smaller decision trees and solutions.

Example 9. Given the specification (x ≥ 0∧y ≥ 0) ⇒ (f(x, y) = 1 ⇔ x+y ≤ 2)
and a run of Algorithm2 where the terms 0 and 1 are generated; the terms fully
cover any set of points for this specification. Over a sequence of iterations the
predicates are generated in order of size. Now, the predicates generated of size 3
include x = 0, x = 1, x = 2, y ≤ 2, y ≤ 1, and y ≤ 0. With these predicates, the
decision tree depicted in Fig. 3a is learned, and the corresponding conditional
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expression is correct for the specification. However, if the procedure continues
to run after the first solution is generated, predicates of size 4 are generated.
Among these predicates, the predicate x + y ≤ 2 is also generated. With this
additional predicate, the decision tree in Fig. 3b is generated, leading to the
compact solution f(x, y) ≡ if x + y ≤ 2 then 1 else 0.

Fig. 3. Initial decision tree and the
more compact version learned with the
anytime extension for Example 9

Decision Tree Repair. In Algorithm 2,
we discard the terms that cover the same
set of points as already generated terms in
line 16. However, these discarded terms
may lead to better solutions than the
already generated ones.

Example 10. Consider a run of the algo-
rithm for the running example, where the
set pts contains the points {x �→ 1, y �→ 0}
and {x �→ −1, y �→ 0}. Suppose the algo-
rithm first generates the terms 0 and 1.
These terms are each correct on one of
the points and are added to terms. Next,
the algorithm generates the terms x and y.
However, these are not added to terms as
x (resp. y) is correct on exactly the same
set of points as 1 (resp. 0).

Suppose the algorithm also generates the predicate x ≤ y and learns the
decision tree corresponding to the expression e ≡ if x ≤ y then 0 else 1. Now,
verifying this expression produces a counter-example point, say {x �→ 1, y �→ 2}.
While the term 0, and correspondingly, the expression e is incorrect on this
point, the term y which was discarded as an equivalent term to 0, is correct.

Hence, for a practical implementation of the algorithm we do not discard
these terms and predicates, but store them separately in a map Eq : terms →
[[GT ]] that maps the terms in terms to an additional set of equivalent terms. At
lines 16, if the check for distinctness fails, we instead add the term t to the Eq
map. Now, when the decision tree learning algorithm returns an expression that
fails to verify and returns a counter-example, we attempt to replace terms and
predicates in the decision tree with equivalent ones from the Eq map to make
the decision tree behave correctly on the counter-example.

Example 11. Revisiting Example 10, instead of discarding the terms x and y,
we store them into the Eq array, i.e., we set Eq(0) = {y} and Eq(1) = {x}.
Now, when the verification of the expression fails, with the counter-example
point {x �→ 1, y �→ 2}, we check the term that is returned for the counter-
example point–here, 0. Now, we check whether any term in Eq(0) is correct on
the counter-example point–here, the term y. If so, we replace the original term
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with the equivalent term that is additionally correct on the counter-example
point and proceed with verification. Replacing 0 with y in the expression gives
us if x ≤ y then y else 1. Another round of verification and decision tree repair
will lead to replacing the term 1 with x, giving us the final correct solution.

Branch-Wise Verification. In Algorithm 2, and in most synthesis techniques,
an incorrect candidate solution is used to generate one counter-example point.
However, in the case of conditional expressions and point-wise specifications,
each branch (i.e., leaf of the decision tree) can be verified separately. Verifying
each branch involves rewriting the specification as in the point-wise verification
defined in Sect. 3 – but instead of adding a premise to each clause asserting that
the arguments to the function are equal to a point, we add a premise that asserts
that the arguments satisfy all predicates along the path to the leaf. This gives
us two separate advantages:

– We are able to generate multiple counter-examples from a single incorrect
expression. This reduces the total number of iterations required, as well as
the number of calls to the expensive decision tree learning algorithm.

– It reduces the complexity of each call to the verifier in terms of the size of
the SMT formula to be checked. As verification procedures generally scale
exponentially with respect to the size of the SMT formula, multiple simpler
verification calls are often faster than one more complex call.

This optimization works very well along with the decision tree repair described
above as we can verify and repair each branch of the decision tree separately.

Example 12. Consider the verification of the expression if x ≤ y then 0 else 1
for the running example. Instead of running the full expression through the ver-
ifier to obtain one counter-example point, we can verify the branches separately
by checking the satisfiability of the formulae x ≤ y ∧ f(x, y) = 0 ∧ ¬Φ and
¬(x ≤ y) ∧ f(x, y) = 1 ∧ ¬Φ. This gives us two separate counter-example points.

5 Evaluation

We built a prototype SyGuS solver named eusolver that uses the divide-and-
conquer enumerative algorithm. The tool consists of 6000 lines of Python code
implementing the high-level enumeration and unification algorithms, and 3000
lines of C++ code implementing the decision tree learning. The code is written to
be easily extensible and readable, and has not been optimized to any degree. All
experiments were executed on the Starexec platform [22] where each benchmark
is solved on a node with two 4-core 2.4 GHz Intel processors and 256 GB of RAM,
with a timeout of 3600 s.
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Fig. 4. Number of benchmarks solved
per track for eusolver (red), CVC4
(blue), and esolver (green) (Color
figure online)

Goals. We seek to empirically evaluate
how our synthesis algorithm compares to
other state-of-the-art synthesis techniques
along the following dimensions: (a) Per-
formance: How quickly can the algorithms
arrive at a correct solution? (b) Qual-
ity: How good are the solutions produced
by the algorithms? We use compactness
of solutions as a metric for the quality
of solutions. (c) Effect of anytime exten-
sion: How significant is the improvement
in the quality of the solutions generated if
the algorithm is given an additional (but
fixed) time budget?

Benchmarks. We draw benchmarks
from 3 tracks of the SyGuS competition
2016:2

(a)General track. The general track contains 309 benchmarks drawn from a
wide variety of domains and applications.

(b) Programming-by-example track. The PBE track contains 852 benchmarks
where, for each benchmark, the semantic specification is given by a set of input-
output examples.

(c)Linear-integer-arithmetic track. The LIA track contains 73 benchmarks,
each over the linear integer arithmetic theory, where the grammar is fixed to a
standard grammar that generates conditional linear arithmetic expressions.

5.1 Discussion

Figures 5 and 4 plot the full results of running eusolver on the benchmarks
from the three categories. The plots also contain the results of 2 other state-of-
the-art solvers: (a) the white-box solver CVC4-1.5.1 based on [17], and (b) the
enumerative black-box solvers esolver described in [2]

Performance. eusolver was able to solve 206 of the 309 benchmarks in the
general track and 72 of the 73 benchmarks in the PBE track. CVC4 solves 195
and 73 benchmarks in these categories, while esolver solves 139 and 34. As
Fig. 5 shows, the performance is comparable to both CVC4 and esolver in
both tracks, being only marginally slower in the LIA track. However, eusolver
performs exceptionally well on the PBE benchmarks, solving 787 while CVC4
solved 39 and esolver solved 1. PBE benchmarks require the solver to gen-
eralize from input-output examples—eusolver inherits this ability from the
enumerative approach.
2 The SyGuS competition 2016 included an addition track – the invariant genera-

tion track. However, the specifications in this track are not simply separable, and
eusolver falls back to the standard enumeration algorithm instead of the divide-
and-conquer techniques described in this paper.
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Fig. 5. Running times for esolver (dotted), CVC4 (dashed), and eusolver (solid).

Fig. 6. Scatter plot of
eusolver and esolver
solution sizes.

However, the standard enumerative solver esolver
is unable to solve these benchmarks due to the large
solution sizes—eusolver overcomes this hurdle with
the divide-and-conquer approach.

Quality of Solutions. Figure 6 highlights the solu-
tion sizes produced by eusolver and esolver for
the commonly solved benchmarks in the general track.
eusolver often matches the solution sizes produced
by esolver (108 of the 112 benchmarks). esolver
is guaranteed to produce the smallest solution possi-
ble. This shows that the divide-and-conquer approach
does not significantly sacrifice solution quality for bet-
ter performance.

Fig. 7. Scatter plot of first
vs. minimum size solutions
with the anytime extension.
Points below x = y benefit
from the anytime extension.

Effect of Anytime Extension. We selected 50
ICFP benchmarks from the general track and use
them to test the anytime extension described in
Sect. 4.3. The ICFP benchmarks are synthesis tasks
that were first proposed as a part of the ICFP pro-
gramming contest 2013, which were then adapted to
the SyGuS setting. To the best of our knowledge, no
other SyGuS solver has been able to solve the ICFP
benchmarks satisfactorily. For 18 of the 50 ICFP
benchmarks, we were able to obtain a more compact
solution by letting the algorithm continue execution
after the first solution was discovered (Fig. 7). Fur-
ther, the difference in the first and smallest solutions
is sometimes significant—for example, in the case of
the “icfp 118 100” benchmark, we see a reduction of
55%. An interesting phenomenon that we observed was that while the size of
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the decision tree almost always went down with time, the size of the solutions
sometimes increased. This is because the algorithm generated larger terms and
predicates over time, increasing the size of the labels and attributes in each node
of the decision tree.

Overall, our experiments suggests that: (a) The DCSolve algorithm is able to
quickly learn compact solutions, and generalizes well from input-output exam-
ples. (b) The anytime nature of DCSolve often reduces the size of the computed
solution; (c) The DCSolve algorithm works competently on problems from differ-
ent domains.

6 Concluding Remarks

Related Work. Program synthesis has seen a revived interest in the last decade,
starting from the sketch framework [20,21] which proposed counterexample
guided inductive synthesis (CEGIS). Most synthesis algorithms proposed in
recent literature can be viewed as an instantiation of CEGIS. Synthesis of string
manipulating programs using examples has found applications in Microsoft’s
FlashFill [7], and the ideas have been generalized in a meta-synthesis framework
called FlashMeta [15]. Other recent work in the area of program synthesis have
used type-theoretic approaches [9,14] for program completion and for generating
code snippets. Synthesis of recursive programs and data structure manipulat-
ing code has also been studied extensively [1,5,12]. Lastly, synthesis techniques
based on decision trees have been used to learn program invariants [6].

In the area of SyGuS, solvers based on enumerative search [23], stochastic
search [2,19] and symbolic search [8,11] were among the first solvers devel-
oped. The sketch approach has also been used to develop SyGuS solvers [10].
Alchemist [18] is another solver that is quite competitive on benchmarks in
the linear arithmetic domains. More recently, white box solvers like the CVC4
solver [17] and the unification based solver [3] have also been developed.

The enumerative synthesis algorithm used by esolver [2,23] and the work
on using decision trees for piece-wise functions [13] are perhaps the most closely
related to the work described in this paper. We have already discussed at length
the shortcomings of esolver that our algorithm overcomes. The approach for
learning piece-wise functions [13] also uses decision trees. While the presented
framework is generic, the authors instantiate and evaluate it only for the linear
arithmetic domain with a specific grammar. In DCSolve, neither the decision tree
learning algorithm, nor the enumeration is domain-specific, making DCSolve a
domain and grammar agnostic algorithm. The algorithm presented in [13] can
easily learn large constants in the linear integer domain. This is something that
enumerative approaches, including DCSolve, struggle to do. The heuristics used for
decision tree learning are different; in [13], the authors use a heuristic based on
hitting sets, while we use an information gain heuristic with cover-based priors.

Conclusion. This paper has presented a new enumerative algorithm to solve
instances of the Syntax-Guided Synthesis (SyGuS) problem. The algorithm over-
comes the shortcomings of a basic enumerative algorithm by using enumeration
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to only learn small expressions which are correct on subsets of the inputs. These
expressions are then used to form a conditional expression using Boolean com-
binations of enumerated predicates using decision trees. We have demonstrated
the performance and scalability of the algorithm by evaluating it on standard
benchmarks, with exceptional performance on programming-by-example bench-
marks. The algorithm is generic, efficient, produces compact solutions, and is
anytime — in that continued execution can potentially produce more compact
solutions.
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Abstract. Given a relational specification ϕ(X, Y ), where X and Y
are sequences of input and output variables, we wish to synthesize each
output as a function of the inputs such that the specification holds. This
is called the Boolean functional synthesis problem and has applications
in several areas. In this paper, we present the first parallel approach for
solving this problem, using compositional and CEGAR-style reasoning
as key building blocks. We show by means of extensive experiments that
our approach outperforms existing tools on a large class of benchmarks.

1 Introduction

Given a relational specification of input-output behaviour, synthesizing out-
puts as functions of inputs is a key step in several applications, viz. program
repair [14], program synthesis [28], adaptive control [25] etc. The synthesis prob-
lem is, in general, uncomputable. However, there are practically useful restric-
tions that render the problem solvable, e.g., if all inputs and outputs are Boolean,
the problem is computable in principle. Nevertheless, functional synthesis may
still require formidable computational effort, especially if there are a large num-
ber of variables and the overall specification is complex. This motivates us to
investigate techniques for Boolean functional synthesis that work well in practice.

Formally, let X be a sequence of m input Boolean variables, and Y be a
sequence of n output Boolean variables. A relational specification is a Boolean
formula ϕ(X,Y ) that expresses a desired input-output relation. The goal in
Boolean functional synthesis is to synthesize a function F : {0, 1}m → {0, 1}n

that satisfies the specification. Thus, for every value of X, if there exists some
value of Y such that ϕ(X,Y ) = 1, we must also have ϕ(X,F (X)) = 1. For values
of X that do not admit any value of Y such that ϕ(X,Y ) = 1, the value of F (X)
is inconsequential. Such a function F is also referred to as a Skolem function for
Y in ϕ(X,Y ) [15,22].

An interesting example of Boolean functional synthesis is the problem of
integer factorization. Suppose Y1 and Y2 are n-bit unsigned integers, X is a 2n-bit
unsigned integer and ×[n] denotes n-bit unsigned multiplication. The relational
specification ϕfact(X,Y1, Y2) ≡ ((X = Y1 ×[n] Y2) ∧ (Y1 �= 1) ∧ (Y2 �= 1)) specifies
that Y1 and Y2 are non-trivial factors of X. This specification can be easily
encoded as a Boolean relation. The corresponding synthesis problem requires
c© Springer-Verlag GmbH Germany 2017
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us to synthesize the factors Y1 and Y2 as functions of X, whenever X is non-
prime. Note that this problem is known to be hard, and the strength of several
cryptographic systems rely on this hardness.

Existing approaches to Boolean functional synthesis vary widely in their
emphasis, ranging from purely theoretical treatments (viz. [3,6,7,10,20,23]) to
those motivated by practical tool development (viz. [4,11,12,15,17,18,21,22,27–
29]). A common aspect of these approaches is their focus on sequential algorithms
for synthesis. In this paper, we present, to the best of our knowledge, the first
parallel algorithm for Boolean functional synthesis. A key ingredient of our app-
roach is a technique for solving the synthesis problem for a specification ϕ by
composing solutions of synthesis problems corresponding to sub-formulas in ϕ.
Since Boolean functions are often represented using DAG-like structures (such
as circuits, AIGs [16], ROBDDs [1,8]), we assume w.l.o.g. that ϕ is given as a
DAG. The DAG structure provides a natural decomposition of the original prob-
lem into sub-problems with a partial order of dependencies between them. We
exploit this to design a parallel synthesis algorithm that has been implemented
on a message passing cluster. Our initial experiments show that our algorithm
significantly outperforms state-of-the-art techniques on several benchmarks.

Related Work: The earliest solutions to Boolean functional synthesis date back
to Boole [6] and Lowenheim [20], who considered the problem in the context
of Boolean unification. Subsequently, there have been several investigations into
theoretical aspects of this problem (see e.g., [3,7,10,23]). More recently, there
have been attempts to design practically efficient synthesis algorithms that scale
to much larger problem sizes. In [22], a technique to synthesize Y from a proof
of validity of ∀X∃Y ϕ(X,Y ) was proposed. While this works well in several
cases, not all specifications admit the validity of ∀X∃Y ϕ(X,Y ). For example,
∀X∃Y ϕfact(X,Y ) is not valid in the factorization example. In [12,29], a synthe-
sis approach based on functional composition was proposed. Unfortunately, this
does not scale beyond small problem instances [11,15]. To address this draw-
back, a CEGAR based technique for synthesis from factored specifications was
proposed in [15]. While this scales well if each factor in the specification depends
on a small subset of variables, its performance degrades significantly if we have
a few “large” factors, each involving many variables, or if there is significant
sharing of variables across factors. In [21], Macii et al. implemented Boole’s
and Lowenheim’s algorithms using ROBDDs and compared their performance
on small to medium-sized benchmarks. Other algorithms for synthesis based on
ROBDDs have been investigated in [4,17]. A recent work [11] adapts the func-
tional composition approach to work with ROBDDs, and shows that this scales
well for a class of benchmarks with pre-determined variable orders. However,
finding a good variable order for an arbitrary relational specification is hard,
and our experiments show that without prior knowledge of benchmark classes
and corresponding good variable orders, the performance of [11] can degrade
significantly. Techniques using templates [28] or sketches [27] have been found to
be effective for synthesis when we have partial information about the set of can-
didate solutions. A framework for functional synthesis, focused on unbounded



Towards Parallel Boolean Functional Synthesis 339

domains such as integer arithmetic, was proposed in [18]. This relies heavily on
tailor-made smart heuristics that exploit specific form/structure of the relational
specification.

2 Preliminaries

Let X = (x1, . . . xm) be the sequence of input variables, and Y = (y1, . . . yn) be
the sequence of output variables in the specification ϕ(X,Y ). Abusing notation,
we use X (resp. Y ) to denote the set of elements in the sequence X (resp. Y ),
when there is no confusion. We use 1 and 0 to denote the Boolean constants
true and false, respectively. A literal is either a variable or its complement. An
assignment of values to variables satisfies a formula if it makes the formula true.

Fig. 1. DAG representing ϕ(X, Y )

We assume that the speci-
fication ϕ(X,Y ) is represented
as a rooted DAG, with inter-
nal nodes labeled by Boolean
operators and leaves labeled
by input/output literals and
Boolean constants. If the oper-
ator labeling an internal node
N has arity k, we assume
that N has k ordered chil-
dren. Figure 1 shows an exam-
ple DAG, where the internal
nodes are labeled by AND and
OR operators of different arities. Each node N in such a DAG represents a
Boolean formula Φ(N), which is inductively defined as follows. If N is a leaf,
Φ(N) is the label of N . If N is an internal node labeled by op with arity k,
and if the ordered children of N are c1, . . . ck, then Φ(N) is op(Φ(c1), . . . Φ(ck)).
A DAG with root R is said to represent the formula Φ(R). Note that popular
DAG representations of Boolean formulas, such as AIGs, ROBDDs and Boolean
circuits, are special cases of this representation.

A k-ary Boolean function f is a mapping from {0, 1}k to {0, 1}, and can
be viewed as the semantics of a Boolean formula with k variables. We use the
terms “Boolean function” and “Boolean formula” interchangeably, using formu-
las mostly to refer to specifications. Given a Boolean formula ϕ and a Boolean
function f , we use ϕ[y �→ f ] to denote the formula obtained by substituting
every occurrence of the variable y in ϕ with f . The set of variables appearing
in ϕ is called the support of ϕ. If f and g are Boolean functions, we say that f
abstracts g and g refines f , if g → f , where → denotes logical implication.

Given the specification ϕ(X,Y ), our goal is to synthesize the outputs
y1, . . . yn as functions of X. Unlike some earlier work [5,13,22], we do not assume
the validity of ∀X∃Y ϕ(X,Y ). Thus, we allow the possibility that for some val-
ues of X, there may be no value of Y that satisfies ϕ(X,Y ). This allows us to
accommodate some important classes of synthesis problems, viz. integer factor-
ization. If y1 = f1(X), . . . yn = fn(X) is a solution to the synthesis problem,
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we say that (f1(X), . . . fn(X)) realizes Y in ϕ(X,Y ). For notational clarity, we
simply use (f1, . . . fn) instead of (f1(X), . . . fn(X)) when X is clear from the
context.

In general, an instance of the synthesis problem may not have a unique
solution. The following proposition, stated in various forms in the literature,
characterizes the space of all solutions, when we have one output variable y.

Proposition 1. A function f(X) realizes y in ϕ(X, y) iff the following holds:
ϕ[y �→ 1] ∧ ¬ϕ[y �→ 0] → f(X) and f(X) → ϕ[y �→ 1] ∨ ¬ϕ[y �→ 0].

As a corollary, both ϕ[y �→ 1] and ¬ϕ[y �→ 0] realize y in ϕ(X, y). Proposi-
tion 1 can be easily extended when we have multiple output variables in Y . Let

 be a total ordering of the variables in Y , and assume without loss of gen-
erality that y1 
 y2 
 · · · yn. Let

−→
F denote the vector of Boolean functions

(f1(X), . . . fn(X)). For i ∈ {1, . . . n}, define ϕ(i) to be ∃y1 . . . ∃yi−1 ϕ, and ϕ
(i)−→
F

to be (· · · (ϕ(i)[yi+1 �→ fi+1]) · · · )[yn �→ fn], with the obvious modifications for
i = 1 (no existential quantification) and i = n (no substitution). The following
proposition, once again implicit in the literature, characterizes the space of all
solutions

−→
F that realize Y in ϕ(X,Y ).

Proposition 2. The function vector
−→
F = (f1(X), . . . fn(X)) realizes Y =

(y1, . . . yn) in ϕ(X,Y ) iff the following holds for every i ∈ {1, . . . n}:
ϕ
(i)−→
F

[yi �→ 1] ∧ ¬ϕ
(i)−→
F

[yi �→ 0] → fi(X), and fi(X) → ϕ
(i)−→
F

[yi �→ 1] ∨ ¬ϕ
(i)−→
F

[yi �→ 0].

Propositions 1 and 2 are effectively used in [11,12,15,29] to sequentially syn-
thesize y1, . . . yn as functions of X. Specifically, output y1 is first synthesized
as a function g1(X, y2, . . . yn). This is done by treating y1 as the sole output
and X ∪ {y2, . . . yn} as the inputs in ϕ(X,Y ). By substituting g1 for y1 in ϕ,
we obtain ϕ(2) ≡ ∃y1ϕ(X,Y ). Output y2 can then be synthesized as a function
g2(X, y3, . . . yn) by treating y2 as the sole output and X ∪ {y3, . . . yn} as the
inputs in ϕ(2). Substituting g2 for y2 in ϕ(2) gives ϕ(3) ≡ ∃y1∃y2 ϕ(X,Y ). This
process is then repeated until we obtain yn as a function gn(X). The desired
functions f1(X), . . . fn(X) realizing y1, . . . yn can now be obtained by letting
fn(X) be gn(X), and fi(X) be (· · · (gi[yi+1 �→ fi+1(X)]) · · · )[yn �→ fn(X)], for
all i from n − 1 down to 1. Thus, given ϕ(X,Y ), it suffices to obtain (g1, . . . gn),
where gi has support X ∪ {yi+1, . . . yn}, in order to solve the synthesis problem.
We therefore say that (g1, . . . gn) effectively realizes Y in ϕ(X,Y ), and focus on
obtaining (g1, . . . gn).

Proposition 1 implies that for every i ∈ {1, . . . n}, the function gi ≡ ϕ(i)[yi �→
1] realizes yi in ϕ(i). With this choice for gi, it is easy to see that ∃yi ϕ(i) (or
ϕ(i+1)) can be obtained as ϕ(i)[yi �→ gi] = ϕ(i)[yi �→ ϕ(i)[yi �→ 1]]. While synthe-
sis using quantifier elimination by such self-substitution [11] has been shown to
scale for certain classes of specifications with pre-determined optimized variable
orders, our experience shows that this incurs significant overheads for general
specifications with unknown “good” variable orders. An alternative technique for
synthesis from factored specification was proposed by John et al. [15], in which
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initial abstractions of g1, . . . gn are first computed quickly, and then a CEGAR-
style [9] loop is used to refine these abstractions to correct Skolem functions. We
use John et al.’s refinement technique as a black-box module in our work; more
on this is discussed in Sect. 3.1.

Definition 1. Given a specification ϕ(X,Y ), we define Δyi
(ϕ) to be the formula

(¬∃y1 . . . yi−1 ϕ) [yi �→ 0], and Γyi
(ϕ) to be the formula (¬∃y1 . . . yi−1 ϕ) [yi �→

1], for all i ∈ {1, . . . n}1. We also define
−→
Δ(ϕ) and

−→
Γ (ϕ) to be the vectors

(Δy1(ϕ), . . . Δyn
(ϕ)) and (Γy1(ϕ), . . . Γyn

(ϕ)) respectively.

If N is a node in the DAG representation of the specification, we abuse notation
and use Δyi

(N) to denote Δyi
(Φ(N)), and similarly for Γyi

(N),
−→
Δ(N) and−→

Γ (N). Furthermore, if both Y and N are clear from the context, we use Δi, Γi,−→
Δ and

−→
Γ instead of Δyi

(N), Γyi
(N),

−→
Δ(N) and

−→
Γ (N), respectively. It is easy

to see that the supports of both Γi and Δi are (subsets of) X ∪ {yi+1, . . . yn}.
Furthermore, it follows from Definition 1 that whenever Γi (resp. Δi) evaluates
to 1, if the output yi has the value 1 (resp. 0), then ϕ must evaluate to 0.
Conversely, if Γi (resp. Δi) evaluates to 0, it doesn’t hurt (as far as satisfiability
of ϕ(X,Y ) is concerned) to assign the value 1 (resp. 0) to output yi. This suggests
that both ¬Γi and Δi suffice to serve as the function gi(X, yi+1, . . . yn) when
synthesizing functions for multiple output variables. The following proposition,
adapted from [15], follows immediately, where we have abused notation and used
¬−→

Γ to denote (¬Γ1, . . . ¬Γn).

Proposition 3. Given a specification ϕ(X,Y ), both
−→
Δ and ¬−→

Γ effectively real-
ize Y in ϕ(X,Y ).

Proposition 3 shows that it suffices to compute
−→
Δ (or

−→
Γ ) from ϕ(X,Y ) in order

to solve the synthesis problem. In the remainder of the paper, we show how to
achieve this compositionally and in parallel by first computing refinements of
Δi (resp. Γi) for all i ∈ {1, . . . n}, and then using John et al.’s CEGAR-based
technique [15] to abstract them to the desired Δi (resp. Γi). Throughout the
paper, we use δi and γi to denote refinements of Δi and Γi respectively.

3 Exploiting Compositionality

Given a specification ϕ(X,Y ), one way to synthesize y1, . . . yn is to decom-
pose ϕ(X,Y ) into sub-specifications, solve the synthesis problems for the sub-
specifications in parallel, and compose the solutions to the sub-problems to
obtain the overall solution. A DAG representation of ϕ(X,Y ) provides a natural
recursive decomposition of the specification into sub-specifications. Hence, the
key technical question relates to compositionality: how do we compose solutions
to synthesis problems for sub-specifications to obtain a solution to the synthesis
problem for the overall specification? This problem is not easy, and no state-of-
the-art tool for Boolean functional synthesis uses such compositional reasoning.
1 In [15], equivalent formulas were called Cb0yi(ϕ) and Cb1yi(ϕ) respectively.
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Our compositional solution to the synthesis problem is best explained in
three steps. First, for a simple, yet representationally complete, class of DAGs
representing ϕ(X,Y ), we present a lemma that allows us to do compositional
synthesis at each node of such a DAG. Next, we show how to use this lemma to
design a parallel synthesis algorithm. Finally, we extend our lemma, and hence
the scope of our algorithm, to significantly more general classes of DAGs.

3.1 Compositional Synthesis in AND-OR DAGs

For simplicity of exposition, we first consider DAGs with internal nodes labeled
by only AND and OR operators (of arbitrary arity). Figure 1 shows an example
of such a DAG. Note that this class of DAGs is representationally complete for
Boolean specifications, since every specification can be expressed in negation
normal form (NNF). In the previous section, we saw that computing Δi(ϕ) or
Γi(ϕ) for all i in {1, . . . n} suffices for purposes of synthesis. The following lemma
shows the relation between Δi and Γi at an internal node N in the DAG and
the corresponding formulas at the node’s children, say c1, . . . ck.

Lemma 1 (Composition Lemma). Let Φ(N) = op(Φ(c1), . . . , Φ(ck)), where
op = ∨ or op = ∧. Then, for each 1 ≤ i ≤ n:

⎛
⎝

k∧
j=1

Δi(cj)

⎞
⎠ ↔ Δi(N) and

⎛
⎝

k∧
j=1

Γi(cj)

⎞
⎠ ↔ Γi(N) if op = ∨ (1)

⎛
⎝

k∨
j=1

Δi(cj)

⎞
⎠ → Δi(N) and

⎛
⎝

k∨
j=1

Γi(cj)

⎞
⎠ → Γi(N) if op = ∧ (2)

The proof of this lemma can be found in [2]. Thus, if N is an OR-node,
we obtain Δi(N) and Γi(N) directly by conjoining Δi and Γi at its children.
However, if N is an AND-node, disjoining the Δi and Γi at its children only gives
refinements of Δi(N) and Γi(N) (see Eq. (2)). Let us call these refinements δi(N)
and γi(N) respectively. To obtain Δi(N) and Γi(N) exactly at AND-nodes, we
must use the CEGAR technique developed in [15] to iteratively abstract δi(N)
and γi(N) obtained above. More on this is discussed below.

A CEGAR step involves constructing, for each i from 1 to n, a Boolean
error formula Errδi (resp. Errγi

) such that the error formula is unsatisfiable iff
δi(N) ↔ Δi(N) (resp. γi(N) ↔ Γi(N)). A SAT solver is then used to check
the satisfiability of the error formula. If the formula is unsatisfiable, we are
done; otherwise the satisfying assignment can be used to further abstract the
respective refinement. This check-and-abstract step is then repeated in a loop
until the error formulas become unsatisfiable. Following the approach outlined
in [15], it can be shown that if we use Errδi ≡ ¬δi ∧ ∧i

j=1 (yj ↔ δj) ∧ ¬ϕ

and Errγi
≡ ¬γi ∧ ∧i

j=1 (yj ↔ ¬γj) ∧ ¬ϕ, and perform CEGAR in order
from i = 1 to i = n, it suffices to gives us Δi and Γi. For details of the CEGAR
implementation, the reader is referred to [15]. The above discussion leads to
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a straightforward algorithm Compute (shown as Algorithm 1) that computes−→
Δ(N) and

−→
Γ (N) for a node N , using

−→
Δ(cj) and

−→
Γ (cj) for its children cj .

Here, we have assumed access to a black-box function Perform Cegar that
implements the CEGAR step.

Algorithm 1. Compute(Node N)

Input: A DAG Node N labelled either AND or OR

Precondition: Children of N , if any, have their
−→
Δ and

−→
Γ computed.

Output:
−→
Δ(N),

−→
Γ (N)

1 if N is a leaf // Φ(N) is a literal/constant; use Definition 1

2 then
3 for all yi ∈ Y , Δi(N) = ¬∃y1 . . . yi−1(Φ(N))[yi �→ 0];
4 for all yi ∈ Y , Γi(N) = ¬∃y1 . . . yi−1(Φ(N))[yi �→ 1];

5 else
// N is an internal node; let its children be c1, . . . ck

6 if N is an OR-node then
7 for each yi ∈ Y do
8 Δi(N) := Δi(c1) ∧ Δi(c2) . . . ∧ Δi(ck);
9 Γi(N) := Γi(c1) ∧ Γi(c2) . . . ∧ Γi(ck);

10 if N is an AND-node then
11 for each yi ∈ Y do
12 δi(N) := Δi(c1) ∨ Δi(c2) . . . ∨ Δi(ck); /* δi(N) → Δi(N) */

13 γi(N) := Γi(c1) ∨ Γi(c2) . . . ∨ Γi(ck); /* γi(N) → Γi(N) */

14
(−→

Δ(N),
−→
Γ (N)

)

= Perform Cegar(N, (δi(N), γi(N))yi∈Y );

15 return
(−→

Δ(N),
−→
Γ (N)

)

;

3.2 A Parallel Synthesis Algorithm

The DAG representation of ϕ(X,Y ) gives a natural, recursive decomposition of
the specification, and also defines a partial order of dependencies between the
corresponding synthesis sub-problems. Algorithm Compute can be invoked in
parallel on nodes in the DAG that are not ordered w.r.t. this partial order, as
long as Compute has already been invoked on their children. This suggests a
simple parallel approach to Boolean functional synthesis. Algorithm ParSyn,
shown below, implements this approach, and is motivated by a message-passing
architecture. We consider a standard manager-worker configuration, where one
out of available m cores acts as the manager, and the remaining m − 1 cores act
as workers. All communication between the manager and workers is assumed to
happen through explicit send and receive primitives.

The manager uses a queue Q of ready-to-process nodes. Initially, Q is ini-
tialized with the leaf nodes in the DAG, and we maintain the invariant that all
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Algorithm 2. ParSyn
Input: AND-OR DAG with root Rt representing ϕ(X, Y ) in NNF form
Output: (g1, . . . gn) that effectively realize Y in ϕ(X, Y )

/* Algorithm for Manager */

1 Queue Q ;
/* Invariant: Q has nodes that can be processed in parallel, i.e.,

leaves or nodes whose children have their
−→
Δ,

−→
Γ computed. */

2 Insert all leaves of DAG into Q;
3 while all DAG nodes not processed do
4 while a worker W is idle and Q is not empty do
5 Node N := Q.front();
6 send node N for processing to W ;

7 if N has children c1, . . . ck then send
−→
Δ(cj),

−→
Γ (cj) for 1 ≤ j ≤ k to W ;

8 wait until some worker W ′ processing node N ′ becomes free;

9 receive
(−→

Δ,
−→
Γ
)

from W ′, and store as
(−→

Δ(N ′),
−→
Γ (N ′)

)

;

10 Mark node N ′ as processed;
11 for each parent node N ′′ of N ′ do
12 if all children of N ′′ are processed then insert N ′′ into Q

/* All DAG nodes are processed; return ¬−→
Γ or

−→
Δ from root Rt */

13 return (¬Γ1(Rt), . . . ¬Γn(Rt)) // or alternatively (Δ1(Rt), . . . Δn(Rt))

/* Algorithm for Worker W */

14 receive node N to process, and
−→
Δ(cj),

−→
Γ (cj) for every child cj of N , if any;

15
(−→

Δ,
−→
Γ
)

:= Compute(N) ;

16 send
(−→

Δ,
−→
Γ
)

to Manager ;

nodes in Q can be processed in parallel. If there is an idle worker W and if Q is
not empty, the manager assigns the node N at the front of Q to worker W for
processing. If N is an internal DAG node, the manager also sends

−→
Δ(cj) and−→

Γ (cj) for every child cj of N to W . If there are no idle workers or if Q is empty,
the manager waits for a worker, say W ′, to finish processing its assigned node,
say N ′. When this happens, the manager stores the result sent by W ′ as

−→
Δ(N ′)

and
−→
Γ (N ′). It then inserts one or more parents N ′′ of N ′ in the queue Q, if all

children of N ′′ have been processed. The above steps are repeatedly executed
at the manager until all DAG nodes have been processed. The job of a worker
W is relatively simple: on being assigned a node N , and on receiving

−→
Δ(cj) and−→

Γ (cj) for all children cj of N , it simply executes Algorithm Compute on N

and returns
(−→

Δ(N),
−→
Γ (N)

)
.

Note that Algorithm ParSyn is guaranteed to progress as long as all workers
complete processing the nodes assigned to them in finite time. The partial order
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of dependencies between nodes ensures that when all workers are idle, either all
nodes have already been processed, or at least one unprocessed node has

−→
Δ and−→

Γ computed for all its children, if any.

3.3 Extending the Composition Lemma and Algorithms

So far, we have considered DAGs in which all internal nodes were either AND- or
OR-nodes. We now extend our results to more general DAGs. We do this by gen-
eralizing the Composition Lemma to arbitrary Boolean operators. Specifically,
given the refinements δi(cj) and γi(cj) at all children cj of a node N , we show
how to compose these to obtain δi(N) and γi(N), when N is labeled by an arbi-
trary Boolean operator. Note that the CEGAR technique discussed in Sect. 3.1
can be used to abstract the refinements δi and γi to Δi and Γi respectively, at
any node of interest. Therefore, with our generalized Composition Lemma, we
can use compositional synthesis for specifications represented by general DAGs,
even without computing Δi and Γi exactly at all DAG nodes. This gives an
extremely powerful approach for parallel, compositional synthesis.

Let Φ(N) = op(Φ(c1), . . . Φ(cr)), where op is an r-ary Boolean operator. For
convenience of notation, we use ¬N to denote ¬Φ(N), and similarly for other
nodes, in the subsequent discussion. Suppose we are given δi(cj), γi(cj), δi(¬cj)
and γi(¬cj), for 1 ≤ j ≤ r and for 1 ≤ i ≤ n. We wish to compose these
appropriately to compute δi(N), γi(N), δi(¬N) and γi(¬N) for 1 ≤ i ≤ n. Once
we have these refinements, we can adapt Algorithm 1 to work for node N , labeled
by an arbitrary Boolean operator op.

To understand how composition works for op, consider the formula
op(z1, . . . zr), where z1, . . . zr are fresh Boolean variables. Clearly, Φ(N) can be
viewed as (· · · (op(z1, . . . zr)[z1 �→ Φ(c1)]) · · · )[zr �→ Φ(cr)]. For simplicity of nota-
tion, we write op instead of op(z1, . . . , zr) in the following discussion. W.l.o.g.,
let z1 ≺ z2 ≺ · · · ≺ zr be a total ordering of the variables {z1, . . . zr}. Given
≺, suppose we compute the formulas δzl

(op), γzl
(op), δzl

(¬op) and γzl
(¬op) in

negation normal form (NNF), for all l ∈ {1, . . . r}. Note that these formulas have
support {zl+1, . . . zr}, and do not have variables in X ∪ Y in their support. We
wish to ask if we can compose these formulas with δi(cj), γi(cj), δi(¬cj) and
γi(¬cj) for 1 ≤ j ≤ r to compute δi(N), γi(N), δi(¬N) and γi(¬N), for all
i ∈ {1, . . . n}. It turns out that we can do this.

Recall that in NNF, negations appear (if at all) only on literals. Let Υl,op be
the formula obtained by replacing every literal ¬zs in the NNF of γzl

(op) with a
fresh variable zs. Similarly, let Ωl,op be obtained by replacing every literal ¬zs in
the NNF of δzl

(op) with the fresh variable zs. The definitions of Υl,¬op and Ωl,¬op

are similar. Replacing ¬zs by a fresh variable zs allows us to treat the literals zs

and ¬zs independently in the NNF of γzl
(op) and δzl

(op). The ability to treat
these independently turns out to be important when formulating the generalized
Composition Lemma. Let (Υl,op [zs �→ δi(¬cs)] [zs �→ δi(cs)])

r
s=l+1 denote the for-

mula obtained by substituting δi(¬cs) for zs and δi(cs) for zs, for every s ∈ {l +
1, . . . r}, in Υl,op. The interpretation of (Ωl,op [zs �→ δi(¬cs)] [zs �→ δi(cs)])

r
s=l+1 is

analogous. Our generalized Composition Lemma can now be stated as follows.
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Lemma 2 (Generalized Composition Lemma). Let Φ(N) = op(Φ(c1), . . .
Φ(cr)), where op is an r-ary Boolean operator. For each 1 ≤ i ≤ n and 1 ≤ l ≤ r:

1. δi(cl) ∧ (Ωl,op [zs �→ δi(¬cs)] [zs �→ δi(cs)])
r
s=l+1 → Δi(N)

2. δi(¬cl) ∧ (Υl,op [zs �→ δi(¬cs)] [zs �→ δi(cs)])
r
s=l+1 → Δi(N)

3. γi(cl) ∧ (Ωl,op [zs �→ γi(¬cs)] [zs �→ γi(cs)])
r
s=l+1 → Γi(N)

4. γi(¬cl) ∧ (Υl,op [zs �→ γi(¬cs)] [zs �→ γi(cs)])
r
s=l+1 → Γi(N)

If we replace op by ¬op above, we get refinements of Δi(¬N) and Γi(¬N).

The reader is referred to [2] for a proof of Lemma2. We simply illus-
trate the idea behind the lemma with an example here. Suppose Φ(N) =
Φ(c1) ∧ ¬Φ(c2) ∧ (¬Φ(c3) ∨ Φ(c4)), where each Φ(cj) is a Boolean function
with support X ∪ {y1, . . . yn}. We wish to compute a refinement of Δi(N),
using refinements of Δi(cj) and Δi(¬cj) for j ∈ {1, . . . 4}. Representing
N as op(c1, c2, c3, c4), let z1, . . . z4 be fresh Boolean variables, not in X ∪
{y1, . . . yn}; then op(z1, z2, z3, z4) = z1 ∧ ¬z2 ∧ (¬z3 ∨ z4). For ease of expo-
sition, assume the ordering z1 ≺ z2 ≺ z3 ≺ z4. By definition, Δz2(op) =
(¬∃z1 (z1 ∧ ¬z2 ∧ (¬z3 ∨ z4))) [z2 �→ 0] = z3 ∧ ¬z4, and suppose δz2(op) =
Δz2(op). Replacing ¬z4 by z4, we then get Ω2,op = z3 ∧ z4.

Recalling the definition of δz2(·), if we set z3 = 1, z4 = 0 and z2 = 0, then
op must evaluate to 0 regardless of the value of z1. By substituting δi(¬c3) for
z3 and δi(c4) for z4 in Ω2,op, we get the formula δi(¬c3) ∧ δi(c4). Denote this
formula by χ and note that its support is X ∪ {yi+1, . . . yn}. Note also from
the definition of δi(·) that if χ evaluates to 1 for some assignment of values to
X ∪ {yi+1, . . . yn} and if yi = 0, then ¬Φ(c3) evaluates to 0 and Φ(c4) evaluates
to 0, regardless of the values of y1, . . . yi−1. This means that z3 = 1 and z4 = 0,
and hence δz2(op) = 1. If z2 (or Φ(c2)) can also be made to evaluate to 0 for
the same assignment of values to X ∪ {yi, yi+1, . . . yn}, then N = op(c1, . . . cr)
must evaluate to 0, regardless of the values of {y1, . . . yi−1}. Since yi = 0, values
assigned to X∪{yi+1, . . . yn} must therefore be a satisfying assignment of Δi(N).
One way of having Φ(c2) evaluate to 0 is to ensure that Δi(c2) evaluates to 1 for
the same assignment of values to X ∪ {yi+1, . . . yn} that satisfies χ. Therefore,
we require the assignment of values to X ∪ {yi+1, . . . yn} to satisfy χ ∧ Δi(c2),
or even χ ∧ δi(c2). Since χ = δi(¬c3) ∧ δi(c4), we get δi(c2) ∧ δi(¬c3) ∧ δi(c4) as
a refinement of Δi(N).

Applying the Generalized Composition Lemma: Lemma 2 suggests a way of com-
positionally obtaining δi(N), γi(N), δi(¬N) and γi(¬N) for an arbitrary Boolean
operator op. Specifically, the disjunction of the left-hand sides of implications (1)
and (2) in Lemma 2, disjoined over all l ∈ {1, . . . r} and over all total orders (≺)
of {z1, . . . zr}, gives a refinement of Δi(N). A similar disjunction of the left-hand
sides of implications (3) and (4) in Lemma 2 gives a refinement of Γi(N). The
cases of Δi(¬N) and Γi(¬N) are similar. This suggests that for each operator op
that appears as label of an internal DAG node, we can pre-compute a template
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of how to compose δi and γi at the children of the node to obtain δi and γi at
the node itself. In fact, pre-computing this template for op = ∨ and op = ∧ by
disjoining as suggested above, gives us exactly the left-to-right implications, i.e.,
refinements of Δi(N) and Γi(N), as given by Lemma 1. We present templates
for some other common Boolean operators like if-then-else in [2].

Once we have pre-computed templates for composing δi and γi at children of
a node N to get δi(N) and γi(N), we can use these pre-computed templates in
Algorithm 1, just as we did for AND-nodes. This allows us to apply compositional
synthesis on general DAG representations of Boolean relational specifications.

Optimizations Using Partial Computations: Given δi and γi at children of a node
N , we have shown above how to compute δi(N) and γi(N). To compute Δi(N)
and Γi(N) exactly, we can use the CEGAR technique outlined in Sect. 3.1. While
this is necessary at the root of the DAG, we need not compute Δi(N) and Γi(N)
exactly at each intermediate node. In fact, the generalized Composition Lemma
allows us to proceed with δi(N) and γi(N). This suggests some optimizations:
(i) Instead of using the error formulas introduced in Sect. 3.1, that allow us to
obtain Δi(N) and Γi(N) exactly, we can use the error formula used in [15].
The error formula of [15] allows us to obtain some Skolem function for yi (not
necessarily Δi(N) or ¬Γi(N)) using the sub-specification Φ(N) corresponding
to node N . We have found CEGAR based on this error formula to be more
efficient in practice, while yielding refinements of Δi(N) and Γi(N). In fact, we
use this error formula in our implementation. (ii) We can introduce a timeout
parameter, such that

−→
Δ(N),

−→
Γ (N) are computed exactly at each internal node

until timeout happens. Subsequently, for the nodes still under process, we can
simply combine δi and γi at their children using our pre-computed composition
templates, and not invoke CEGAR at all. The only exception to this is at the
root node of the DAG where CEGAR must be invoked.

4 Experimental Results

Experimental Methodology. We have implemented Algorithm 2 with the
error formula from [15] used for CEGAR in Algorithm 1 (in function Per-
form Cegar), as described at the end of Sect. 3.3. We call this implementation
ParSyn in this section, and compare it with the following algorithms/tools: (i)
CSk: This is based on the sequential algorithm for conjunctive formulas, pre-
sented in [15]. For non-conjunctive formulas, the algorithm in [15], and hence
CSk, reduces to [12,29]. (ii) RSynth: The RSynth tool as described in [11]. (iii)
Bloqqer: As prescribed in [22], we first generate special QRAT proofs using the
preprocessing tool bloqqer, and then generate Boolean function vectors from the
proofs using the qrat-trim tool.

Our implementation of ParSyn, available online at [26], makes extensive use
of the ABC [19] library to represent and manipulate Boolean functions as AIGs.
We also use the default SAT solver provided by ABC, which is a variant of
MiniSAT. We present our evaluation on three different kinds of benchmarks.
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1. Disjunctive Decomposition Benchmarks: Similar to [15], these benchmarks
were generated by considering some of the larger sequential circuits in the
HWMCC10 benchmark suite, and formulating the problem of disjunctively
decomposing each circuit into components as a problem of synthesizing a vec-
tor of Boolean functions. Each generated benchmark is of the form ∃Y ϕ(X,Y )
where ∃X(∃Y ϕ(X,Y )) is true. However, unlike [15], where each benchmark
(if not already a conjunction of factors) had to be converted into factored
form using Tseitin encoding (which introduced additional variables), we have
used these benchmarks without Tseitin encoding.

2. Arithmetic Benchmarks: These benchmarks were taken from the work
described in [11]. Specifically, the benchmarks considered are floor, ceiling,
decomposition, equalization and intermediate (see [11] for details).

3. Factorization Benchmarks: We considered the integer factorization problem
for different bit-widths, as discussed in Sect. 1.

For each arithmetic and factorization benchmark, we first specified the prob-
lem instance as an SMT formula and then used Boolector [24] to generate the
Boolean version of the benchmark. For each arithmetic benchmark, three vari-
ants were generated by varying the bit-width of the arguments of arithmetic
operators; specifically, we considered bit-widths of 32, 128 and 512. Similarly,
for the factorization benchmark, we generated four variants, using 8, 10, 12 and
16 for the bit-width of the product. Further, as Bloqqer requires the input to
be in qdimacs format and RSynth in cnf format, we converted each benchmark
into qdimacs and cnf formats using Tseitin encoding [30]. All benchmarks and
the procedure by which we generated them are detailed in [26].

Variable Ordering: We used the same ordering of variables for all algorithms. For
each benchmark, the variables are ordered such that the variable which occurs in
the transitive fan-in of the least number of nodes in the AIG representation of the
specification, appears at the top. For RSynth this translated to an interleaving
of most of the input and output variables.

Machine Details: All experiments were performed on a message-passing clus-
ter, where each node had 20 cores and 64 GB main memory, each core being a
2.20 GHz Intel Xeon processor. The operating system was Cent OS 6.5. For CSk,
Bloqqer, and RSynth, a single core on the cluster was used. For all comparisons,
ParSyn was executed on 4 nodes using 5 cores each, so that we had both intra-
node and inter-node communication. The maximum time given for execution
was 3600 s, i.e., 1 h. We also restricted the total amount of main memory (across
all cores) to be 16 GB. The metric used to compare the different algorithms was
the time taken to synthesize Boolean functions.

Results. Our benchmark suite consisted of 27 disjunctive decomposition bench-
marks, 15 arithmetic benchmarks and 4 factorization benchmarks. These bench-
marks are fairly comprehensive in size i.e., the number of AIG nodes (|SZ|)
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in the benchmark, and the number of variables (|Y |) for which Boolean func-
tions are to be synthesized. Amongst disjunctive decomposition benchmarks,
|SZ| varied from 1390 to 58752 and |Y | varied from 21 to 205. Amongst the
arithmetic benchmarks, |SZ| varied from 442 to 11253 and |Y | varied from 31
to 1024. The factorization benchmarks are the smallest and the most complex
of the benchmarks, with |SZ| varying from 122 to 502 and |Y | varying from 8
to 16.

We now present the performance of the various algorithms. On 4 of the 46
benchmarks, none of the tools succeeded. Of these, 3 belonged to the intermediate
problem type in the arithmetic benchmarks, and the fourth one was the 16 bit
factorization benchmark.

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25

T
im

e 
in

 P
ar

S
yn

 (
se

cs
)

Number of cores

FL
Dd1
Dd2
Ar1
Ar2
Fa1

(a) ParSyn on different cores

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01  0.1  1  10  100  1000 10000

T
im

e 
in

 C
S

k

Time in ParSyn

FL

       FL

Dd Ar Fa

(b) ParSyn vs CSk

Fig. 2. Legend: Ar: arithmetic, Fa: factorization, Dd: disjunctive decomposition. FL:
benchmarks for which the corresponding algorithm was unsuccessful.

Effect of the Number of Cores. For this experiment, we chose 5 of the larger
benchmarks. Of these, two benchmarks belonged to the disjunctive decomposi-
tion category, two belonged to the arithmetic benchmark category and one was
the 12 bit factorization benchmark. The number of cores was varied from 2 to 25.
With 2 cores, ParSyn behaves like a sequential algorithm with one core acting as
the manager and the other as the worker with all computation happening at the
worker core. Hence, with 2 cores, we see the effect of compositionality without
parallelism. For number of cores > 2, the number of worker cores increase, and
the computation load is shared across the worker cores.

Figure 2a shows the results of our evaluation. The topmost points indicated
by FL are instances for which ParSyn timed out. We can see that, for all 5
benchmarks, the time taken to synthesize Boolean function vectors when the
number of cores is 2 is considerable; in fact, ParSyn times out on three of the
benchmarks. When we increase the number of cores we observe that (a) by
synthesizing in parallel, we can now solve benchmarks for which we had timed
out earlier, and (b) speedups of about 4–5 can be obtained with 5–15 cores.
From 15 cores to 25 cores, the performance of the algorithm, however, is largely
invariant and any further increase in cores does not result in further speed up.
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To understand this, we examined the benchmarks and found that their AIG
representations have more nodes close to the leaves than to the root (similar
to the DAG in Fig. 1). The time taken to process a leaf or a node close to a
leaf is typically much less than that for a node near the root. Furthermore, the
dependencies between the nodes close to the root are such that at most one or
two nodes can be processed in parallel leaving most of the cores unutilized. When
the number of cores is increased from 2 to 5–15, the leaves and the nodes close
to the leaves get processed in parallel, reducing the overall time taken by the
algorithm. However, the time taken to process the nodes close to the root remains
more or less the same and starts to dominate the total time taken. At this point,
even if the number of cores is further increased, it does not significantly reduce
the total time taken. This behaviour limits the speed-ups of our algorithm. For
the remaining experiments, the number of cores used for ParSyn was 20.

ParSyn vs CSk: As can be seen from Fig. 2b, CSk ran successfully on only
12 of the 46 benchmarks, whereas ParSyn was successful on 39 benchmarks,
timing out on 6 benchmarks and running out of memory on 1 benchmark. Of
the benchmarks that CSk was successful on, 9 belonged to the arithmetic cate-
gory, 2 to the factorization and 1 to the disjunctive decomposition category. On
further examination, we found that factorization and arithmetic benchmarks
(except the intermediate problems) were conjunctive formulae whereas disjunc-
tive decomposition benchmarks were arbitrary Boolean formulas. Since CSk has
been specially designed to handle conjunctive formulas, it is successful on some
of these benchmarks. On the other hand, since disjunctive decomposition bench-
marks are not conjunctive, CSk treats the entire formula as one factor, and the
algorithm reduces to [12,29]. The performance hit is therefore not surprising; it
has been shown in [15] and [11] that the algorithms of [12,29] do not scale to
large benchmarks that are not conjunctions of small factors. In fact, among the
disjunctive decomposition benchmarks, CSk was successful on only the smallest
one.

ParSyn vs RSynth: As seen in Fig. 3a, RSynth was successful only on 3 of the
46 benchmarks; it timed out on 37 and ran out of memory on 6 benchmarks.
The 3 benchmarks that RSynth was successful on were the smaller factorization
benchmarks. Note that the arithmetic benchmarks used in [11] are semantically
the same as the ones used in our experiments. In [11], custom variable orders
were used to construct the ROBDDs, which resulted in compact ROBDDs. In
our case, we use the variable ordering heuristic mentioned earlier, and include the
considerable time taken to build BDDs from cnf representation. As mentioned in
Sect. 1, if we know a better variable ordering, then the time taken can potentially
reduce. However, we may not know the optimal variable order for an arbitrary
specification in general. We also found the memory footprint of RSynth to be
higher as indicated by the memory-outs. This is not surprising, as RSynth uses
BDDs to represent Boolean formulas and it is well-known that BDDs can have
large memory requirements.
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Fig. 3. Legend: Ar: arithmetic, Fa: factorization, Dd: disjunctive decomposition. FL:
benchmarks for which the corresponding algorithm was unsuccessful.

ParSyn vs Bloqqer: Since Bloqqer cannot synthesize Boolean functions for for-
mulas wherein ∀X∃Y ϕ(X,Y ) is not valid, we restricted our comparison to only
the disjunctive decomposition and arithmetic benchmarks, totalling 42 in num-
ber. From Fig. 3b, we can see that Bloqqer successfully synthesizes Boolean func-
tions for 25 of the 42 benchmarks. For several benchmarks for which it is success-
ful, it outperforms ParSyn. In line 14 of Algorithm1, Perform Cegar makes
extensive use of the SAT solver, and this is reflected in the time taken by ParSyn.
However, for the remaining 17 benchmarks, Bloqqer gave a Not Verified message
indicating that it could not synthesize Boolean functions for these benchmarks.
In comparison, ParSyn was successful on most of these benchmarks.

Effect of Timeouts on ParSyn. Finally, we discuss the effect of the time-
out optimization discussed in Sect. 3.3. Specifically, for 60 s (value set through
a timeout parameter), starting from the leaves of the AIG representation of a
specification, we synthesize exact Boolean functions for DAG nodes. After time-
out, on the remaining intermediate nodes, we do not invoke the CEGAR step at
all, except at the root node of the AIG.

This optimization enabled us to handle 3 more benchmarks, i.e., ParSyn with
this optimization synthesized Boolean function vectors for all the equalization
benchmarks (in <340 s). Interestingly, ParSyn without timeouts was unable to
solve these problems. This can be explained by the fact that in these bench-
marks many internal nodes required multiple iterations of the CEGAR loop to
compute exact Boolean functions, which were, however, not needed to compute
the solution at the root node.

5 Conclusion and Future Work

In this paper, we have presented the first parallel and compositional algorithm
for complete Boolean functional synthesis from a relational specification. A key
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feature of our approach is that it is agnostic to the semantic variabilities of the
input, and hence applies to a wide variety of benchmarks. In addition to the dis-
junctive decomposition of graphs and the arithmetic operation benchmarks, we
considered the combinatorially hard problem of factorization and attempted to
generate a functional characterization for it. We found that our implementation
outperforms existing tools in a variety of benchmarks.

There are many avenues to extend our work. First, the ideas for composi-
tional synthesis that we develop in this paper could potentially lead to parallel
implementations of other synthesis tools, such as that described in [11]. Next,
the factorization problem can be generalized to synthesis of inverse functions
for classically hard one-way functions, as long as the function can be described
efficiently by a circuit/AIG. Finally, we would like to explore improved ways
of parallelizing our algorithm, perhaps exploiting features of specific classes of
problems.
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Abstract. The reactive synthesis problem is to compute a system sat-
isfying a given specification in temporal logic. Bounded synthesis is the
approach to bound the maximum size of the system that we accept as
a solution to the reactive synthesis problem. As a result, bounded syn-
thesis is decidable whenever the corresponding verification problem is
decidable, and can be applied in settings where classic synthesis fails,
such as in the synthesis of distributed systems. In this paper, we study
the constraint solving problem behind bounded synthesis. We consider
different reductions of the bounded synthesis problem of linear-time tem-
poral logic (LTL) to constraint systems given as boolean formulas (SAT),
quantified boolean formulas (QBF), and dependency quantified boolean
formulas (DQBF). The reductions represent different trade-offs between
conciseness and algorithmic efficiency. In the SAT encoding, both inputs
and states of the system are represented explicitly; in QBF, inputs are
symbolic and states are explicit; in DQBF, both inputs and states are
symbolic. We evaluate the encodings systematically using benchmarks
from the reactive synthesis competition (SYNTCOMP) and state-of-the-
art solvers. Our key, and perhaps surprising, empirical finding is that
QBF clearly dominates both SAT and DQBF.

1 Introduction

There has been a recent surge of new algorithms and tools for the synthesis
of reactive systems from temporal specifications [5,9,14,15,19]. Roughly, these
approaches can be classified into two categories: game-based synthesis [8] trans-
lates the specification into an deterministic automaton and subsequently deter-
mines the winner in a game played on the state graph of this automaton; bounded
synthesis [25] constructs a constraint system that characterizes all systems, up to
a fixed bound on the size of the system, that satisfy the specification.

The success of game-based synthesis is largely due to the fact that it is often
possible to represent and analyze the game arena symbolically, in particular with
BDDs (cf. [19]). As a result, it has been possible to scale synthesis to realistic
benchmarks such as the AMBA bus protocol [3]. However, because the deter-
ministic automaton often contains many more states than are needed by the
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implementation, the synthesized systems are often unnecessarily (and imprac-
tically) large (cf. [11]). This problem is addressed by bounded synthesis, where
an iteratively growing bound can ensure that the synthesized system is actually
the smallest possible realization of the specification. However, bounded synthesis
has not yet reached the same scalability as game-based synthesis. A likely expla-
nation for the phenomenon is that the encoding of bounded synthesis into the
constraint system is “less symbolic” than the BDD-based representation of the
game arena. Even though bounded synthesis tools typically use powerful SMT
solvers, a careful study of the standard encoding shows that both the states of
the synthesized system and its inputs are enumerated explicitly [14].

The question arises whether it is the encodings that need to be improved, or
whether the poor scalability points to a more fundamental flaw in the underly-
ing solver technology. To answer this question, we reduce the bounded synthe-
sis problem of linear-time temporal logic (LTL) to constraint systems given as
boolean formulas (SAT), quantified boolean formulas (QBF), and dependency
quantified boolean formulas (DQBF). The reductions are landmarks on the spec-
trum of symbolic vs. explicit encodings. All encodings represent the synthesized
system in terms of its transition function, which identifies the successor state in
terms of the current state and the input, and additionally in terms of an output
function, which identifies the output signals in terms of the current state and
the input, and annotation functions, which relate the states of the system to the
states of a universal automaton representing the specification.

In the SAT encoding of the transition function, a separate boolean variable
is used for every combination of a source state, an input signal, and a target
state. The encoding is thus explicit in both the state and the input. In the
QBF encoding, a universal quantification over the inputs is added, so that the
encoding becomes symbolic in the inputs, while staying explicit in the states.
Quantifying universally over the states, just like over the input signals, is not
possible in QBF because the states occur twice in the transition function, as
source and as target. Separate quantifiers over sources and targets would allow
for models where, for example, the value of the output function differs, even
though both the source state and the input are the same. In DQBF we can
avoid such artifacts and obtain a “fully symbolic” encoding in both the states
and the input.

We evaluate the encodings systematically using benchmarks from the reactive
synthesis competition (SYNTCOMP) and state-of-the-art solvers. Our empirical
finding is that QBF clearly dominates both SAT and DQBF. While the domi-
nance of QBF over SAT fits with our intuition that a more symbolic encoding
provides opportunities for optimization in the solver, the dominance of QBF over
DQBF is surprising. This indicates that with the currently available solvers, the
most symbolic encoding (DQBF) is not the best choice. Of course, with bet-
ter DQBF solvers, this may change: our benchmarks identify opportunities for
improvement for current DQBF solvers.
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Related Work. The game-based approach to the synthesis of reactive systems
dates back to Büchi and Landweber’s seminal 1969 paper [8]. Modern imple-
mentations of this approach exploit symbolic representations of the game arena,
using BDDs (cf. [19]) or decision procedures for the satisfiability of Boolean for-
mulas (SAT-, QBF- and DQBF-solvers). We refer to [4] for a detailed comparison
of the different methods.

Bounded synthesis belongs to the class of Safraless decision procedures [22].
Safraless synthesis algorithms avoid the translation of the specification into
an equivalent deterministic automaton via Safra’s determinization procedure.
Instead, the specification is first translated into an equivalent universal co-Büchi
automaton, whose language is then approximated in a sequence of determin-
istic safety automata, obtained by bounding the number of visits to reject-
ing states [25]. Most synthesis tools for full LTL, including Unbeast [9], and
Acacia+ [5], are based on this idea.

Bounded synthesis [25] limits not only the number of visits to rejecting states,
but also the number of states of the synthesized system itself. As a result, the
bounded synthesis problem can be represented as a decidable constraint system,
even in settings where the classic synthesis problem is undecidable, such as the
synthesis of asynchronous and distributed systems (cf. [14]). There have been
several proposals for encodings of bounded synthesis. The first encoding [13,25]
was based on first-order logic modulo finite integer arithmetic. Improvements to
the original encoding include the representation of transition systems that are
not necessarily input-preserving, and, hence, often significantly smaller [14], the
lazy generation of the constraints from model checking runs [11], and specifi-
cation rewriting and modular solving [21]. Recently, a SAT-based encoding was
proposed [27]. Another SAT-based encoding [12] bounds, in addition to the num-
ber of states, also the number of loops. A QBF-based encoding has been used
in the related problem of solving Petri games [10]. Petri games can be used to
solve certain distributed synthesis problems. They have, however, a significantly
simpler winning condition than the games resulting from LTL specifications.

This paper presents the first encodings of bounded synthesis based on QBF
and DQBF, and the first comprehensive evaluation of the spectrum of encodings
from SAT to DQBF with state-of-the-art solvers. The encodings are significantly
more concise than the previous SAT-based encodings and provide opportunities
for solvers to exploit the symbolic representation of inputs and states. The empir-
ical evidence shows that, with current solvers, the QBF encoding is superior to
the SAT and DQBF encodings. A further contribution of the paper are the
benchmarks themselves, which pinpoint opportunities for the improvement of
the solvers, in particular for DQBF.

2 Preliminaries

Given a finite set of variables V , we identify boolean assignments α : V → B as
elements from the powerset of V , i.e., given V and α, then v = {v | α(v) = �} ∈
2V is a representation of α. We use B(V ) to denote the set of propositional
boolean formulas over the variables V .
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LTL. Linear-time temporal logic (LTL) is the standard specification language
for linear-time properties. Let Σ be a finite alphabet, i.e., a finite set of atomic
propositions. The grammar of LTL is given by

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ | ϕ U ψ | ϕ R ψ,

where p ∈ Σ is an atomic proposition. The abbreviations true := p∨¬p, false :=
¬true, ϕ = true U ϕ, and ϕ = false R ϕ are defined as usual. We assume
standard semantics and write σ � ϕ if σ ∈ (2Σ)ω satisfies ϕ. The language of ϕ,
written L(ϕ), is the set of ω-words that satisfy ϕ.

Automata. A universal co-Büchi automaton A over finite alphabet Σ is a tuple
〈Q, q0, δ, F 〉, where Q is a finite set of states, q0 ∈ Q the designated initial state,
δ : Q × 2Σ × Q is the transition relation, and F ⊆ Q is the set of rejecting
states. Given an infinite word σ ∈ (2Σ)ω, a run of σ on A is an infinite path
q0q1q2 · · · ∈ Qω where for all i ≥ 0 it holds that (qi, σi, qi+1) ∈ δ. A run is
accepting, if it contains only finitely many rejecting states. A accepts a word σ,
if all runs of σ on A are accepting. The language of A, written L(A), is the set
{σ ∈ (2Σ)ω | A accepts σ}.

We represent automata as directed graphs with vertex set Q and a sym-
bolic representation of the transition relation δ as propositional boolean formulas
B(Σ). The rejecting states in F are marked by double lines.

Lemma 1. Given an LTL formula ϕ, we can construct a universal co-Büchi
automaton Aϕ with O(2|ϕ|) states that accepts the language L(ϕ).

Example 1. Consider the LTL formula ψ = (r1 → g1) ∧ (r2 → g2) ∧
¬(g1 ∧ g2). Whenever there is a request ri, the corresponding grant gi must be

set eventually. Further, it is disallowed to set both grants simultaneously. The
universal co-Büchi automaton Aψ that accepts the same language as ψ is shown
in Fig. 1(a).

Transition Systems. In the following, we partition the set of atomic propositions
into a set I that contains propositions controllable by the environment and a set
O that contains propositions controllable by the system. A transition system T
is a tuple 〈T, t0, τ〉 where T is a finite set of states, t0 ∈ T is the designated initial
state, and τ : T×2I → 2O×T is the transition function. The transition function τ
maps a state t and a valuation of the inputs i ∈ 2I to a valuation of the outputs,
also called labeling, and a next state t′. If the labeling produced by τ(t, i) is
independent of i, we call T a state-labeled (or Moore) transition system and
transition-labeled (or Mealy) otherwise. Formally, T is a state-labeled transition
system if, given a state t ∈ T and any i �= i′ ∈ 2I with τ(t, i) = (o, ) and
τ(t, i′) = (o′, ) it holds that o = o′.

Given an infinite word i0i1 · · · ∈ (2I)ω over the inputs, T produces an infinite
trace ({t0} ∪ i0 ∪o0)({t1} ∪ i1 ∪o1) · · · ∈ (2T∪I∪O)ω where τ(tj , ij) = (oj , tj+1)
for every j ≥ 0. A path w ∈ (2I∪O)ω is the projection of a trace to the atomic
propositions. We denote the set of all paths generated by a transition system T
as Paths(T ). A transition system realizes an LTL formula if Paths(T ) ⊆ L(ϕ).
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Example 2. Figure 1(b) depicts the two-state (state-labeled) transition system
Tarb = 〈{t0, t1}, t0, τ〉 with τ(t0, i) = ({g1}, t1) and τ(t1, i) = ({g2}, t0) for every
i ∈ 2I . The set of paths is Paths(T ) = ({g1}{g2})ω ∪ (2{i1,i2})ω.

q0

q1 q2

qe

�

r1 r2

g1g2

g1 g2

�
notamotuaihcüB-oclasrevinU)a( Aψ

t0 t1

�/g1

�/g2

(b) Transition system Tarb

Fig. 1. A specification automaton over inputs r1, r2 and outputs g1, g2 and a realizing
transition system.

3 Bounded Synthesis

Bounded synthesis [14] is a synthesis procedure for LTL specifications that pro-
duces size-optimal transition systems. A given LTL formula ϕ is translated into
a universal co-Büchi automaton A that accepts the language L(ϕ). A transition
system T realizes specification ϕ if, and only if, every trace generated by T is
in the language L(ϕ). T is accepted by A if every path of the unique run graph,
that is the product of T and A, has only finitely many visits to rejecting states.
This acceptance is witnessed by a bounded annotation on this product.

The bounded synthesis approach is to synthesize a transition system of
bounded size n, by solving a constraint system that asserts the existence of
a transition system and labeling function of T as well as a valid annotation. In
this section we discuss how to construct a formula that represents that a given
annotation is correct. We will use this formula as a building block for different
bounded synthesis constraint systems in Sect. 4.

The product of a transition system T = 〈T, t0, τ〉 and a universal co-Büchi
automaton A = 〈Q, q0, δ, F 〉 is a run graph G = 〈V,E〉, where V = T × Q is the
set of vertices and E ⊆ V × V is the edge relation with

((t, q), (t′, q′)) ∈ E iff ∃i ∈ 2I .∃o ∈ 2O. τ(t, i) = (o, t′) and (q, i ∪ o, q′) ∈ δ.

An annotation λ : T ×Q → {⊥}∪N is a function that maps nodes from the run
graph to either unreachable ⊥ or a natural number k. An annotation is valid if
it satisfies the following conditions:
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– the pair of initial states (t0, q0) is labeled by a natural number (λ(t0, q0) �= ⊥),
and

– if a pair of states (t, q) is annotated with a natural number (λ(t, q) = k �= ⊥)
then for every i ∈ 2I and o ∈ 2O with τ(t, i) = (o, t′) and (q, i∪o, q′) ∈ δ, the
successor pair (t′, q′) is annotated with a greater number, which needs to be
strictly greater if q′ ∈ F is rejecting. That is, λ(t′, q′) �q′ k where �q′ := >
if q′ ∈ F and ≥ otherwise.

〈t0, q0〉
λ : 0

〈t1, q0〉
λ : 0

〈t1, q1〉
λ : 1

〈t1, q2〉
λ : 2

〈t0, q1〉
λ : 2

〈t0, q2〉
λ : 1

〈t0, qe〉
λ : ⊥

〈t1, qe〉
λ : ⊥

Fig. 2. Run graph of the automaton Aψ and the two-state transition system Tarb from
the earlier example (Fig. 1). The bottom node part displays a valid λ-annotation of the
run graph.

Example 3. Figure 2 shows the run graph of Tarb and Aψ from our earlier
example (Fig. 1). Additionally, a valid annotation λ is provided at the second
component of every node. One can verify that the annotation is correct by check-
ing every edge individually. For example, the annotation has to increase from
〈t0, q0〉 → 〈t1, q2〉 and from 〈t0, q2〉 → 〈t1, q2〉 as q2 is rejecting. As λ(〈t0, q0〉) = 0
and λ(〈t0, q2〉) = 1, it holds that λ(〈t1, q2〉) must be at least 2.

Given T , A, and λ, we want to derive a propositional constraint that is
satisfiable if, and only if, the annotation is valid. First, by the characterization
above, we know that we can verify the annotation by local checks, i.e., we have to
consider only one step in the product graph. To derive a propositional encoding,
we encode T , A, and λ:

– T = 〈T, t0, τ〉. We represent the transition function τ by one variable ot,i

for every output proposition o ∈ O and one variable τt,i,t′ representing a
transition form t to t′. Given (t, t′) ∈ T × T and i ∈ 2I , it holds that (1)
τt,i,t′ is true if, and only if, τ(t, i) = ( , t′), and (2) ot,i is true if, and only if,
τ(t, i) = (o, ) and o ∈ o.

– A = 〈Q, q0, δ, F 〉. We represent δ : (Q × 2I∪O × Q) as propositional formulas
δt,q,i,q′ over the output variables ot,i. That is, an assignment o to the variables
ot,i satisfies δt,q,i,q′ iff (q, i ∪ o, q′) ∈ δ.
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– We first split the annotation λ into two parts: The first part λB : T × Q → B

represents the reachability constraint and the second part λ# : T × Q → N

represents the bound. For every t ∈ T and q ∈ Q we introduce variables λB
t,q

that we assign to be true iff the state pair is reachable from the initial state
pair and a bit vector λ#

t,q of length O(log(|T | · |Q|)) that we assign the binary
encoding of the value λ(t, q).

Using the variables ot,i, τt,i,t′ , λB
t,q, and λ#

t,q (which have a unique assignment for
a given T , A, and λ) as well as the propositional formulas δt,q,i,q′ , we construct
a formula that represents that the annotation is valid:

∧
q∈Q

∧
t∈T

⎛
⎝λB

t,q →
∧

q′∈Q

∧
i∈2I

(
δt,q,i,q′ →

∧
t′∈T

(
τt,i,t′ → λB

t′,q′ ∧ λ#
t′,q′ �q′ λ#

t,q

))⎞
⎠

Theorem 1 [14]. Given T , A, and an annotation λ. If the propositional encod-
ing of T , A, and λ satisfy the constraint system, then λ is a valid annotation.

4 Encodings

Using the constraints developed in the last section for checking the validity of
a given annotation, we now consider the problem of finding a transition system
with a valid annotation.

This section introduces four encodings, starting with the most explicit encod-
ing and moving first to an input-symbolic variant, then to a input- and state-
symbolic variant and then further to a “fully symbolic” variant which treats
inputs, transition systems states and the specification automaton symbolically.
The first encoding can be solved using a SAT solver, the second requires a QBF
solver, and the remaining two encodings require a DQBF solver. We will indi-
cate for each encoding the difficulty to switch from the decision variant of the
problem (realizability) to the constructive variant of the problem (synthesis).

4.1 SAT: The Basic Encoding

The basic encoding of bounded synthesis follows almost immediately from the
last section. Instead of checking that for given T , A, and λ, the unique assign-
ment to the variables satisfies the formula, we existentially quantify over the
variables to find an assignment. We only have to add constraints that assert
that the reachability information, represented in the variables λB

t,q, is consistent,
and that the transition relation, represented in the variables τt,i,t′ , provides at
least one transition for every source state and every input. The consistency of
the reachability annotation is given once we assert λB

t0,q0 , as the formula itself
asserts that the λB

t,q annotations are consistent with the transition relation.
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∃{λB

t,q, λ
#
t,q | t ∈ T, q ∈ Q}

∃{τt,i,t′ | (t, t′) ∈ T × T, i ∈ 2I}
∃{ot,i | o ∈ O, t ∈ T, i ∈ 2I}
λB

t0,q0 ∧
∧
t∈T

∧
i∈2I

∨
t′∈T

τt,i,t′

∧
q∈Q

∧
t∈T

⎛
⎝λB

t,q →
∧

q′∈Q

∧
i∈2I

(
δt,q,i,q′ →

∧
t′∈T

(
τt,i,t′ → λB

t′,q′ ∧ λ#
t′,q′ �q′ λ#

t,q

))⎞
⎠

Theorem 2. The size of the constraint system is in O(nm2 · 2|I| · (|δq,q′ | +
n log(nm))) and the number of variables is in O(n(m log(nm)+2|I| · (|O|+n))),
where n = |T | and m = |Q|.

Since we only quantify existentially over propositional variables, the encoding
can be solved by a SAT solver. The synthesized transition system can be directly
extracted from the satisfying assignment of the solver. For each state and each
input, there is at least one true variable, indicating a possible successor. The
variables ot,i indicate whether output o is given at state t for input i.

4.2 QBF: The Input-Symbolic Encoding

One immediate drawback of the encoding above is the explicit handling of the
inputs in the existential quantifiers representing the transition relation τ and
the outputs o, which introduces several variables for each possible input i ∈ 2I .
This leads to a constraint system that is exponential in the number of inputs,
both in the size of the constraints and in the number of variables. Also, since all
variables are quantified on the same level, some of the inherent structure of the
problem is lost and the solver will have to assign a value to each propositional
variable, which may lead to non-minimal solutions of τ and o due to unnecessary
interdependencies.

By adding a universal quantification over the input variables, we obtain a
quantified boolean formula (QBF) and avoid this exponential blow-up. In this
encoding, the variables representing the λ-annotation remain in the outer exis-
tential quantifier - they cannot depend on the input. We then universally quantify
over the valuations of the input propositions I (interpreted as variables in this
encoding) before we existentially quantify over the remaining variables.

By the semantics of QBF, the innermost quantified variables, representing
the transition function τ of T , can be seen as boolean functions (Skolem func-
tions) whose domain is the set of assignments to I. Indicating the dependency
on the inputs in the quantifier hierarchy, we can now drop the indices i from
the variables τt,i,t′ and ot,i. Further, we now represent δ : (Q × 2I∪O × Q) as
propositional formulas δt,q,q′ over the inputs I and output variables ot (which
depend on I) with the following property: an assignment i ∪ o satisfies δt,q,q′ iff
(q, i ∪ o, q′) ∈ δ. We obtain the following formula for the input-symbolic encod-
ing. (The gray box highlights the changes in the quantifier prefix compared to
the previous encoding.)
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∃{λB

t,q, λ
#
t,q | t ∈ T, q ∈ Q}

∀I

∃{τt,t′ | (t, t′) ∈ T × T}
∃{ot | o ∈ O, t ∈ T}
λB

t0,q0 ∧
∧
t∈T

∨
t′∈T

τt,t′

∧
q∈Q

∧
t∈T

⎛
⎝λB

t,q →
∧

q′∈Q

(
δt,q,q′ →

∧
t′∈T

(
τt,t′ → λB

t′,q′ ∧ λ#
t′,q′ �q′ λ#

t,q

))⎞
⎠

Theorem 3. Let n = |T | and m = |Q|. The size of the input-symbolic constraint
system is in O(nm2(|δq,q′ |+n log(nm))). The number of existential and universal
variables is in O(n(m log(nm) + |O| + n)) and O(|I|), respectively.

The input-symbolic encoding is not only exponentially smaller (in |I|) than
the basic encoding, but also enables the solver to exploit the dependency between
I and the transition function τ . An additional property of this encoding that
we use in the implementation is the following: If we fix the values of the λ-
annotation, the resulting 2QBF query represents all transition systems that are
possible with respect to the λ-annotation. Since the outermost variables are
existentially quantified, their assignments (in case the formula is satisfiable) can
be extracted easily, even from non-certifying QBF solvers. For synthesis, we
thus employ a two-step approach. We first solve the complete encoding and, if
the formula was satisfiable, extract the assignment of the annotation variables
λB

t,q, and λ#
t,q. In the second step we instantiate the formula by the satisfiable

λ-annotation and solve the remaining formula with a certifying solver to gener-
ate boolean functions for the inner existential variables. Those can be then be
translated into a realizing transition system.

4.3 DQBF/EPR: The State- and Input-Symbolic Encoding

The previous encoding shows how to describe the functional dependency between
the inputs I and the transition function τ and outputs o as a quantifier alterna-
tion. The reactive synthesis problem, however, contains more functional depen-
dencies that we can exploit.

In the following we describe an encoding that also treats the states of the
system to generate symbolically. First, we change the definition of T slightly.
Where before, T was the set of states of the transition system, we now consider
T as the set of state bits of the transition system. Consequently, the state space
of T is now 2T and we consider the initial state to be the all-zero assignment to
the variables T .

Since all variables depend on the state, we no longer have propositional vari-
ables. Instead, we quantify over the existence of boolean functions. Candidate
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logics for solving this query are dependency-quantified boolean formulas (DQBF)
and the effective propositional fragment of first-order logic (EPR). While the
existential quantification over functions is not immediately available in DQBF,
we can encode them in a quadratic number of constraints, which is known as
Ackermannization [7].

∃{λB

q : 2T → B, λ#
q : 2T → B

b | q ∈ Q}
∃τ : 2T × 2I → 2T

∃{o : 2T × 2I → B | o ∈ O}
∀I.∀T, T ′.

(T = 0 → λB

q0(T ))

∧
q∈Q

⎛
⎝λB

q (T ) →
∧

q′∈Q

(
δq,q′ ∧ (τ(T, I) ⇒ T ′) → λB

q′(T ′) ∧ λ#
q′(T ′) �q′ λ#

q (T )
)
⎞
⎠

Theorem 4. Let n = |T | and m = |Q|. The size of the state-symbolic constraint
system is in O(m2(|δq,q′ | + log(nm))). The number of existential and universal
variables is in O(n + m log(nm) + |O|) and O(n + |I|), respectively.
Encoding the states of the specification automaton. The last dependency that we
consider here is the dependency on the state space of the specification automa-
ton. As a precondition, we need a symbolic representation A = 〈Q, qinit, δ, qreject〉
of a universal co-Büchi automaton over alphabet I ∪O, where Q is a set of vari-
ables whose valuations represent the state space, qinit ∈ B(Q) is a propositional
formula representing the initial state, δ ∈ B(Q, I ∪ O,Q′) is the transition rela-
tion (q ∪ i ∪ o ∪ q′ satisfies δ iff q

i∪o−−→ q′), and qreject ∈ B(Q) is a formula
representing the rejecting states.

∃λB : 2T × 2Q → B, λ# : 2T × 2Q → B
b

∃τ : 2T × 2I → 2T

∃{o : 2T × 2I → B | o ∈ O}
∀I.∀T, T ′.∀Q,Q′.

(tinit ∧ qinit → λB(T,Q)) ∧(
λB(T,Q) →

(
δ ∧ (τ(T, I) ⇒ T ′) → λB(T ′, Q′) ∧ λ#(T ′, Q′) �q′

reject
λ#(T,Q)

))

Theorem 5. Let n = |T | and m = |Q|. The size of the state-symbolic constraint
system is in O(n + m + |δ| + log(nm)). The number of existential and universal
variables is in O(log n + |O|) and O(n + m + |I|), respectively.

4.4 Comparison

Table 1 compares the sizes of the encodings presented in this paper. From the
basic propositional encoding, we developed more symbolic encodings by making
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Table 1. The table compares the encodings with respect to the number of variables
and the size of the constraint system. We indicate the number of states of the transition
system and the automaton by n and m, respectively.

# existentials # universals Constraint size

Basic n(m log(nm) + 2|I| · (|O|+ n)) - nm2 · 2|I| ·(∣∣δq,q′
∣∣+ n log(nm))

Input-symbolic n(m log(nm) + |O|+ n) |I| nm2(
∣∣δq,q′

∣∣+ n log(nm))

State-symbolic n + m log(nm) + |O| n + |I| m2(
∣∣δq,q′

∣∣+ log(nm))

Symbolic logn + |O| n + m + |I| n + m + |δ|+ log(nm)

dependencies explicit and employing Boolean functions. This conciseness, how-
ever, comes with the price of higher solving complexity. In the following section
we study this tradeoff empirical.

5 Experimental Evaluation

5.1 Implementation

We implemented the encodings described in this paper in a tool called BoSy1.
The LTL to automaton conversion is provided by the tool ltl3ba [1]. We reduce
the number of counters and their size by only keeping them for automaton states
within a rejecting strongly connected component, as proposed in [21]. The tool
searches for a system implementation and a counter-strategy for the environment
in parallel. An exponential search strategy is employed for the bound on the size
of the transition system. In synthesis mode, we apply as a post-processing step
circuit minimization provided by ABC [6].

For solving the non-symbolic encoding, we translate the propositional query
to the DIMACS file format and solve it using the CryptoMiniSat SAT solver in
version 5. The satisfying assignment is used to construct the realizing transition
system.

The input-symbolic encoding is translated to the QDIMACS file format and
is solved by a combination of the QBF preprocessor Bloqqer [2] and QBF solver
RAReQS [18]. The solution extraction is implemented in two steps. For satisfi-
able queries, we first derive a top level (λ) assignment [26] and instantiate the
QBF query using this assignment which results in a 2QBF query that represents
transition systems that satisfy the specification. This is then solved using a cer-
tifying QBF solver, such as QuAbS [28], CADET [23], or CAQE [24]. Among
those, QuAbS performed best and was used in the evaluation. The resulting
resulting Skolem functions, represented as AIGER circuit, are transformed into
a representation of the transition system.

The symbolic encodings are translated to DQDIMACS file format and solved
by the DQBF solver iDQ [16]. Due to limited solver support, we have not imple-
mented solution extraction.

1 The tool is available at https://react.uni-saarland.de/tools/bosy/.

https://react.uni-saarland.de/tools/bosy/
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Table 2. Implementation matrix

Basic Input-symbolic State-symbolic Symbolic

Fragment SAT QBF DQBF/EPR DQBF/EPR

Mealy/Moore �/� �/� �/� �/�
Solution extraction � � � �

For comparison, we also implemented an SMT version using the classical
encoding [14]. We also tested the state-symbolic and symbolic encoding with
state-of-the art EPR solvers, but the solving times were not competitive. Table 2
gives an overview over the capabilities of the implemented encodings.

5.2 Setup and Benchmarks

For our experiments, we used a machine with a 3.6GHz quad-core Intel Xeon
processor and 32GB of memory. The timeout and memout were set to 1 h and
8GB, respectively. We use the LTL benchmark sets from the latest reactive
synthesis competition (SYNTCOMP 2016) [17]. The benchmarks include a vari-
ety of arbiter specifications of increasing complexity, load balancers, buffers,
detectors as well as benchmark suites from previously existing tools. Some of
the benchmark classes are parameterized in the number of clients or masters,
which allows scaling them for experimental purposes. In total, the realizability
benchmark suite of SYNTCOMP 2016 consists of 195 benchmarks. We have
additionally added six instances from scalable benchmark classes of this set to
cover larger parameter values, resulting in a total size of 201 benchmarks for our
benchmark set.

For comparison, we run the other two solves that participated in the SYNT-
COMP 2016, that is Acacia [5], a game-based solver, and Party [20], a variant
of the SMT bounded synthesis.

5.3 Realizability

In Table 3, we report results on realizability for all scalable instances from the
aforementioned competition. We have omitted the results of our fully symbolic
encoding from the table, since it could not solve a single instance of the selected
benchmarks. The results from our own SMT encoding are also omitted, since they
are very close to the results of the tool Party. Highlighted are those entries which
reach the highest parameter value among the solvers and the best cumulative
runtime within the class of instances.

An overall comparison of all realizability solvers on the full benchmark set is
provided in Fig. 3. For the individual solvers, we track the number of instances
solved by this solver within a certain time bound.
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Table 3. Experimental results on selected scalable instances. Reported is the maximal
parameter value k for which the instance could be solved and the cumulative solving
time t (in seconds) up to this point.

basic input-sym state-sym Acacia Party

instance max k sum t max k sum t max k sum t max k sum t max k sum t

simple-arbiter 7 1008.7 8 2.7 3 100.5 8 59.2 6 902.7

full-arbiter 4 2994.5 3 0.6 2 13.3 5 2683.4 3 111.7

roundrob-arbiter 4 143.1 4 227.0 2 11.0 4 345.6 4 19.2

loadfull 5 268.7 8 44.2 2 25.1 4 83.7 4 213.5

prio-abiter 4 176.5 4 1.6 2 0.4 6 701.2 3 69.0

loadcomp 5 36.9 6 639.4 3 432.1 5 387.8 5 212.7

genbuf 2 1840.3 2 2711.8 0 – 5 159.3 0 –

generalized-buffer 2 2093.8 2 3542.8 0 – 6 3194.8 2 792.5

load-balancer 5 1148.8 8 83.2 2 75.3 5 270.8 0 –

detector 6 1769.0 8 1010.7 3 239.4 8 261.6 5 370.3
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Fig. 3. Number of solved instances within 1 h among the 201 instances from
SYNTCOMP 2016. The time axis has logarithmic scale.
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5.4 Synthesis

To evaluate the different encodings in terms of their solutions to the synthesis
problem and to compare with other competing tools, we measure the size of
the provided solutions. In line with the rules of SYNTCOMP, the synthesized
transition system is encoded as an AIGER circuit. The size of the result is mea-
sured in terms of the number of AND gates. In the comparisons, we only consider
instances where both solvers in the comparison had a result. All resulting circuits
have been minimized using ABC.

First, we compare in the scatter plot of Fig. 4 the propositional, non-symbolic
encoding to the input-symbolic encoding. Since most points are below the diag-
onal and are therefore smaller than their counterparts, the input-symbolic solu-
tions are better in size compared to the non-symbolic encoding.
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m
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c

Fig. 4. Scatter plot comparing the size of the synthesized strategies between the basic
(Sect. 4.1) and input-symbolic (Sect. 4.2) encoding. Both axes have logarithmic scale.

In Fig. 5, we compare our input-symbolic encoding against two competing
tools. On the left, we observe that the solution sizes of our input-symbolic encod-
ing are significantly better (observe the log-log scale) than the solutions provided
by Acacia. The reason for the size difference is that the strategies of Acacia may
depend on the current state of the specification automaton, as they are extracted
from the resulting safety game. When comparing to the SMT-based Party tool,
we again see a strict improvement in terms of strategy size, but not as significant
as for Acacia.
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We thus observe that the ability to universally quantify over the inputs and
extract the transition system from the functional descriptions leads to advan-
tages in terms of the size of the solution strategies.
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Fig. 5. Scatter plot comparing the size of the synthesized strategies of BoSy, Acacia,
and Party elli rally. Both axes have logarithmic scale.

6 Conclusion

We have revisited the bounded synthesis problem [14] and presented alternative
encodings into boolean formulas (SAT), quantified boolean formulas (QBF), and
dependency-quantified boolean formulas (DQBF). Our evaluation shows that the
QBF approach clearly dominates the SAT approach and the DQBF approach,
and also previous approaches to bounded synthesis – both in terms of the num-
ber of instances solved and in the size of the solutions. This demonstrates that,
while modern QBF-solvers effectively exploit the input-symbolic representation,
current DQBF solvers cannot yet take similar advantage of the state-symbolic
representation. The benchmarks obtained from the encodings of bounded synthe-
sis problems should therefore be useful in improving current solvers, in particular
for DQBF.
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Abstract. We present our new preprocessor HQSpre, a state-of-the-
art tool for simplifying quantified Boolean formulas (QBFs) and the
first available preprocessor for dependency quantified Boolean formu-
las (DQBFs). The latter are a generalization of QBFs, resulting from
adding so-called Henkin-quantifiers to QBFs. HQSpre applies most of
the preprocessing techniques that have been proposed in the literature.
It can be used both as a standalone tool and as a library. It is possible
to tailor it towards different solver back-ends, e. g., to preserve the cir-
cuit structure of the formula when a non-CNF solver back-end is used.
Extensive experiments show that HQSpre allows QBF solvers to solve
more benchmark instances and is able to decide more instances on its
own than state-of-the-art tools. The same impact can be observed in the
DQBF domain as well.

1 Introduction

Solvers for Boolean formulas have proven to be powerful tools for many appli-
cations, ranging from CAD, e. g., for formal verification [4] and circuit test [11],
to artificial intelligence [33]. They are not only of academic interest, but have
also gained acceptance in industry. While solvers for deciding satisfiability
of quantifier-free propositional formulas (the famous SAT-problem [5]) have
reached a certain level of maturity during the last years, solving quantified and
dependency quantified Boolean formulas (QBFs and DQBFs [27], resp.) is still
a hot topic in research. In particular, the last two decades have brought enor-
mous progress in solving QBFs [16,19,25,29] and the last five years also in
solving DQBFs [12,13,15]. With increasing improvements of solver technology
also new applications have arisen which could not be handled (or only handled
approximately) before, such as verification of partial designs [14,35], controller
synthesis [7], and games with incomplete information [27].

One part of this success is due to improved solution methods not only based
on depth-first search (the QDPLL algorithm) as implemented in solvers like

This work was supported by the German Research Council (DFG) as part of
the project “Solving Dependency Quantified Boolean Formulas” and by the Sino-
German Center for Research Promotion (CDZ) as part of the project CAP (GZ
1023).
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DepQBF [25], QuBE [16], and AQuA (see [32]), but also using quantifier
elimination as applied by AIGSolve [29] and Quantor [2], counterexample-
guided abstraction refinement, which is the principle underlying the solvers
GhostQ [22], RAReQS [19], and Qesto [20], and further algorithms. Another
protagonist are sophisticated preprocessing techniques. Their goal is to simplify
the formula using algorithms of lower complexity (mostly polynomial) than the
actual decision problem before the solver is called. This can reduce the overall
computation time by orders of magnitude and, most interestingly, it can even
make solving instances feasible which cannot be solved without preprocessing.

Many techniques have been proposed for preprocessing and implemented
in different tools. One can distinguish between four main types of preprocessor
routines: clause elimination, clause strengthening, variable elimination, and other
formula modifications. We will discuss these categories and the corresponding
techniques in Sect. 2.2. All of them yield an equisatisfiable formula, which is
typically easier to solve than the original one.

Contribution. In this paper, we present the new tool HQSpre, which supports
most preprocessing techniques for QBFs and extends them to DQBFs. It is
the first available tool for preprocessing DQBFs. The available QBF tools like
sQueezeBF and Bloqqer only have a subset of these techniques available.
HQSpre can be used both as a standalone tool and as a library. It is designed
to be easily extensible and adaptable to different solver back-ends. For instance,
if the back-end solver is not CNF-based, but rather works on a circuit represen-
tation of the formula, the preprocessor takes care not to destroy this structure,
e. g., by forbidding the application of clause elimination routines to clauses that
encode circuit gates.

We provide an extensive experimental evaluation where we show that
HQSpre is state of the art: (1) it enables state-of-the-art QBF solvers
(AIGSolve [29], AQuA [32], Caqe [38], DepQBF [25], Qesto [20], and
RAReQS [19]) to solve more instances in less time than using the alternative
preprocessors sQueezeBF [17] and Bloqqer [6], and it is robust over different
kinds of solvers; (2) HQSpre is very effective on DQBFs as well, as it is able to
solve directly or to simplify into QBFs many formulas, and lets DQBF solvers
decide several more problems.

HQSpre is available as an open source tool. The most recent version can be
downloaded from:

https://projects.informatik.uni-freiburg.de/projects/dqbf/files.

Structure of this Paper. In the following section, we introduce the necessary
foundations and describe the different preprocessing techniques and how they
are implemented in HQSpre. Section 3 contains the results of our experiments.
Finally, in Sect. 4, we conclude this paper with an outlook on future work.

https://projects.informatik.uni-freiburg.de/projects/dqbf/files
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2 Preprocessing Techniques in HQSPRE

2.1 Foundations

Let V be a set of Boolean variables. We consider (dependency) quantified
Boolean formulas in prenex conjunctive normal form (PCNF): a quantifier-free
Boolean formula is in CNF if it is a conjunction of clauses. A clause is a disjunc-
tion of literals, and a literal is either a variable v ∈ V or its negation ¬v. We
write clauses in the form {v1, . . . , vn} with literals vi. A clause is called unit if it
contains only one literal, and called binary if it contains two literals. We denote
the size of a formula as the number of all literals in all clauses. A formula is in
PCNF if it can be split into a quantifier prefix and a Boolean formula in CNF,
the matrix of the formula.

Definition 1. Let V = {v1, . . . , vn} be a set of Boolean variables and ϕ a
quantifier-free Boolean formula over V . A quantified Boolean formula (QBF) ψ
has the form ψ = Q1v1 . . . Qnvn : ϕ with Qi ∈ {∀,∃} and vi ∈ V for i = 1, . . . , n.
Q1v1 . . . Qnvn is called the quantifier prefix and ϕ the matrix of ψ.

We denote universal variables with x, and existential ones with y. If the
quantifier does not matter, we use v. Accordingly, � is an arbitrary literal, �∃ a
literal with an existential variable, and �∀ a universal literal. For a literal �, we
define var(�) as the corresponding variable, i. e., var(v) = var(¬v) = v.

The quantifier prefix imposes a linear order on the variables. One can think
of a QBF as a two-player game: one player assigns the existential variables, the
other player the universal ones. The game proceeds turn-based according to the
prefix from left to right: When it is the existential player’s turn, he assigns the
corresponding existential variable, and similarly for the universal player. The
goal of the existential player is to satisfy the formula, the universal player wants
to falsify it. The formula is satisfiable if the existential player has a winning
strategy, i. e., if he can satisfy the formula no matter how the universal player
assigns his variables.

Dependency quantified Boolean formulas are a generalization of QBFs. They
are obtained syntactically by relaxing the requirement of a linearly ordered pre-
fix and making the dependencies explicit, and semantically by restricting the
knowledge of the players.

Definition 2. Let V = {x1, . . . , xn, y1, . . . , ym} be a set of Boolean variables
and ϕ a quantifier-free Boolean formula over V in CNF. A dependency quantified
Boolean formula (DQBF) Ψ has the form ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym

) : ϕ,
where Dyi

⊆ {x1, . . . , xn} for i = 1, . . . ,m is the dependency set of yi.

In contrast to QBF, a DQBF can be considered as a game with partial informa-
tion: The universal player assigns all universal variables in the beginning. The
existential player assigns a value to each existential variable y based only on the
assignment of the universal variables in the corresponding dependency set Dy.

A DQBF is equivalent to a QBF iff for all existential variables y, y′ the
condition Dy ⊆ Dy′ or Dy′ ⊆ Dy holds.
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Algorithm 1. Outline of the main preprocessing routine. Note that after each
routine, a fast formula simplification procedure is called. Universal reduction
and subsumption checks are performed for each added or modified clause.

Preprocess((D)QBF ψ = Q : ϕ)
begin

simplify(ψ) (1)
repeat (2)

if iteration ≤ gateConvLoops then (3)
gates ← gateDetection(ψ) (4)
gateSubstitutionAndRewriting(ψ, gates); simplify(ψ) (5)

end if (6)
eliminateClauses(ψ); simplify(ψ) � Hidden/covered TE/SE/BCE (7)
selfsubsumingResolution(ψ); simplify(ψ) (8)
variableEliminationByResolution(ψ); simplify(ψ) (9)
syntacticConstants(ψ); simplify(ψ) (10)
if first iteration then (11)

semanticConstants(ψ); simplify(ψ) (12)
trivialMatrixChecks(ψ) (13)

end if (14)
universalExpansion(ψ); simplify(ψ) (15)

until ψ has not been changed anymore or ψ is decided (16)
return ψ (17)

end

DQBFs are strictly more expressive than QBFs. While deciding satisfiabil-
ity of QBFs is PSPACE complete [26], deciding DQBFs is NEXPTIME com-
plete [27].

2.2 Preprocessing Techniques

The goal of preprocessing the formula before the actual solution process is to
simplify the formula. Experience suggests that benefits of preprocessing increase
with the difficulty of the decision problem. As mentioned already in the intro-
duction, the techniques that we apply in our preprocessor HQSpre can be
grouped into four different classes: (1) variable elimination, (2) clause elimi-
nation, (3) clause strengthening, and (4) other formula modification routines.
Due to space restrictions, we cannot provide all details of the techniques. For
more information we refer the reader to the cited literature. We present more
details for routines which (a) are not described or applied in the literature so far
or (b) have interesting implementation details.

Algorithm 1 gives an overview of the main preprocessing routine which calls
the different techniques in a loop until the formula does not change anymore.

Variable Elimination Routines. We define variable elimination routines as
methods which are able to remove a variable v from the formula ϕ. The first kind
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of such techniques can eliminate v whenever we can fix the truth value of v and
propagate it through ϕ using Boolean constraint propagation (BCP) [5]. Com-
mon techniques are the detection of constant and pure literals [5]. For efficiency
reasons both kinds are usually only checked syntactically: a literal � is constant
if there exists a unit clause {�} in ϕ, and a literal � is pure if ϕ does not contain
¬� in any clause. Both conditions can be easily generalized to (D)QBF [40].

We also apply a check for constants using another syntactic criterion over
binary clauses. For this, we first determine the transitive implication closure,
i. e., binary clauses of the form: {¬�1, �2}, {¬�2, �3}, {¬�3, �4}, . . . , {¬�n−1, �n},
and {¬�n,¬�1}. These clauses represent a chain of implications: if �1 is assigned
the truth value �, we can deduce that also �2, �3, �4, . . . , �n get the truth value
� in the example above, and this in turn implies that �1 has to get the truth
value ⊥, i. e., �1 implies ¬�1, which is a contradiction. So the matrix will be
unsatisfied, if we set �1 to �. Hence, we can deduce ¬�1 to be a constant literal.

Additionally, we use a SAT-based constant check as described in [30], which
is able to detect constants semantically. For this the matrix ϕ is passed to an
incremental SAT solver and it is determined whether ϕ ∧ � is unsatisfiable. In
this case, ¬� is constant. This method reasons only over the matrix without
consideration of the dependencies and can therefore be applied without any
restrictions for (D)QBF. However, ignoring the quantifiers makes this method
incomplete for (D)QBF.

Another well known variable elimination technique is the detection of equiv-
alences, i. e., determining whether a literal �1 is logically equivalent to another
literal �2. In this case, one of the variables can be eliminated by replacing all
occurrences with the other one. In the (D)QBF case one has to take into account
the quantifiers and the dependencies of the affected variables. A very efficient
syntactic check to detect equivalent literals is to represent all binary clauses as
a directed graph and to determine the strongly connected components (SCCs)
within this graph. Every literal which is contained in such an SCC is equivalent
to all other literals in the same component [9]. We refer to [40] for details.

The basic (syntactic) detection and propagation of constant and pure literals
as well as equivalent literals can be (and were) implemented very efficiently
and turned out to be a necessary feature to let preprocessing scale. Hence,
in our implementation we apply these three methods1 after each and every
more complex technique until a fixed-point is reached. This is referred to as
the simplify() method in Algorithm1.

After eliminating unit, pure, and equivalent literals, we start the main pre-
processing loop by applying gate substitution [10]. To do so, we first identify def-
initions of logical gates within the formula, which can, e. g., result from applying
Tseitin transformation [39] to a circuit (see Algorithm 1, line 4). In particular,
we seek for AND gates with an arbitrary number of inputs and 2-input XOR
gates [29]. For both we allow arbitrary negations on both inputs and output.2

As many (D)QBF instances result from applications with circuits, the number

1 The syntactic constant detection using transitive implication chains is not included.
2 Note, this covers also OR gates with arbitrarily negated inputs and output.
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of detectable gates can be very large. Once a gate definition is found, the vari-
able yout, defining the gate output, is no longer needed. Instead yout is replaced
in each and every clause by its definition. The defining clauses can be deleted
afterwards. This direct substitution often produces smaller formulas than elim-
inating yout by resolution (see next paragraphs), but can nevertheless produce
very large formulas in some cases. Hence, it is only performed if the formula
does not grow above a user-given bound. It is important that this technique is
applied early, since many other methods, in particular the clause elimination
methods (see next section), might eliminate gate defining clauses. To overcome
this issue we optionally apply the concept of frozen variables and clauses [23] for
gate definitions, i. e., these variables and clauses are excluded from elimination
methods (with the exception of unit, pure, and equivalent literal detection).

Lastly, there are techniques for the elimination of existential and universal
variables applying resolution and universal expansion, respectively. For both,
the QBF generalization can be found in [5], and the DQBF version in [40].
Generally speaking, both methods eliminate a variable at the cost of expanding
the formula.

Variable elimination by resolution can be applied for any existential variable y
depending on all universal variables. In this case, we obtain an equisatisfiable
formula by adding all possible resolvents with the pivot y and removing all
clauses containing y or ¬y. The resolution of a variable is performed if the
estimated size of the formula does not grow beyond a threshold (which is usually
set to zero, i. e., resolution is only performed if the formula does not grow).

We observed a special case of resolution which is efficiently identified and
always leads to a smaller formula. Therefore, we perform these resolutions more
frequently – namely during BCP and blocked clause elimination (see clause elim-
ination routines). If an existential literal �∃ only occurs in exactly one binary
clause {�∃, �} (¬�∃ can occur arbitrarily often), then resolution of the pivot lit-
eral �∃ yields resolvents in which ¬�∃ is replaced by � w. r. t. the original clauses.
In our implementation we simply remove the clause {�∃, �} and replace ¬�∃ with �
in every clause. This procedure is sound as long as var(�) is also existential and
Dvar(�) ⊆ Dvar(�∃) or var(�) is universal and var(�∃) depends on it.

Universal expansion [8,40] of a universal variable x allows to remove x by
introducing a copy y′ for every existential variable y depending on x, which
has to depend on the same variables as y. Therefore every clause in which y
occurs has to be copied, too, such that y is replaced by y′ in the copy. Every
occurrence of x in the original part of the formula is now replaced by �, and
every occurrence in the copied part is replaced by ⊥ (or vice versa) resulting in an
equisatisfiable formula. In our DQBF benchmark set, the number of depending
existential variables is often very large and therefore we obtain a huge blow-
up of the formula. Hence, in our implementation we do not apply universal
expansion for DQBF. In contrast, in QBF many benchmark classes have quite
small universal quantifier blocks. In this case, it turns out that the elimination of
a complete universal block is often very beneficial, whereas expansion of single
variables in large blocks does have a rather small impact. Therefore, we try
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to expand blocks with small sizes (< 20). We always try to expand the whole
block as long as the blow-up of the formula is at most 50% per variable. After
each expansion step we also apply variable elimination by resolution in order to
reduce the potential number of copied existential variables in the next steps as
suggested in [8].

Clause Elimination Routines. As clause elimination routines [18] we under-
stand techniques which eliminate a clause c such that deleting c yields an equi-
satisfiable formula.

The simplest form of clause elimination is tautology elimination (TE): A
clause c ∈ ϕ is a tautology iff c contains both the literals � and ¬�. Tautological
clauses can be eliminated from ϕ. This condition is independent from the quan-
tifier and hence can be applied for QBF and DQBF without any restrictions.

Another well-known technique is subsumption elimination (SE) [5]. A clause
c ∈ ϕ is subsumed if there exists another clause c′ ∈ ϕ such that the set of
occurring literals in c′ are a subset of those in c, i. e., if ∃c′ ∈ ϕ : c′ ⊆ c. In
this case, c can be removed from ϕ. This technique is applied whenever new
clauses are added to the formula and for each clause which was strengthened
(see next section). Subsumption can be applied without any restrictions in the
same manner for QBF as for DQBF as it yields a logically equivalent matrix.

Recently, blocked clause elimination (BCE) [21] has been intensively inves-
tigated. It was generalized to QBF in [6] and to DQBF in [40]. A clause c ∈ ϕ
is blocked if there is an existential literal �∃ ∈ c such that every resolvent with
the pivot literal �∃ and the clause c is a tautology and the variable v which is
responsible for the resolvent being a tautology is either universal and var(�∃)
depends on v or v is existential and v’s dependencies are a subset of var(�∃)’s
dependencies (in the QBF context this means that v is left of var(�∃) in the quan-
tifier prefix). Such a blocked clause can be removed from ϕ without changing
satisfiability. See the given literature for further details.

Furthermore, all clause elimination routines can be extended by adding so-
called hidden and covered literals [18]. Simply speaking, these methods identify
literals which can be added to c without changing satisfiability. These literals
are added temporarily to c, obtaining a clause c′. TE, SE and BCE can be
applied to c′, resulting in hidden/covered tautology/subsumption/blocked clause
elimination [18]. In case the checks were unsuccessful, the additional literals are
removed. The intuition behind this literal addition is the following: The more
literals a clause c contains, the more likely c is either a tautology, subsumed,
or blocked. These methods are generalized to (D)QBF in [6,40], except for TE
and SE with hidden/covered literals to DQBF. It is rather easy to see that these
methods are sound, too; therefore we do not state an explicit proof here.

In our implementation we perform all clause elimination routines in a loop
until a fixed-point is reached, i. e., until no further changes to the formula can be
made (see Algorithm 1, line 7). To do so, we keep a queue of clause candidates,
which are updated after removing a clause from the formula. Whenever a clause
c = {�1, . . . , �n} has been removed, every clause in which at least one of the
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literals �1,¬�1, . . . , �n,¬�n occurs becomes a new candidate to be removed by
one of the above methods.

Clause Strengthening Routines. Clause strengthening routines try to elim-
inate literals from a clause while preserving the truth value of the formula. We
identify two main ways to do so.

Universal reduction (QBF [5], DQBF [1]) removes a universal literal �∀ from
a clause c ∈ ϕ if there are no existential literals �∃ in c that depend on �∀. In
our implementation universal reduction is applied for every added clause as well
as for every clause that was strengthened by self-subsuming resolution.

Self-subsuming resolution [10] identifies two clauses c1 and c2 with � ∈ c1,
¬� ∈ c2 and c2\{¬�} ⊆ c1\{�}, i. e., c2 “almost subsumes” c1 with the exception
of exactly one literal �, which is contained in the opposite polarity. Resolution
of c1 and c2 with the pivot literal � leads to cr = c1 \ {�}. By adding cr to
the formula, c1 is “self-subsumed” by cr; therefore c1 can be removed after this
addition. Our implementation simply removes � from c1, which has the same
effect. This technique leads to a logically equivalent matrix and is therefore
independent of the quantification type and the dependencies of the variables;
hence it can be applied to QBF and DQBF without any restrictions.

In our implementation, we iterate over all clauses in order to identify such
self-subsumptions until a fixed-point is reached. To do so efficiently, we keep a
queue of candidates that is updated after deleting a literal. Whenever a literal
�i is removed from a clause c = {�1, . . . , �n}, each clause containing at least one
of ¬�1, . . . ,¬�i−1,¬�i+1, . . . ,¬�n is potentially self-subsuming with c.

Other Formula Modifications. As formula modifications we consider tech-
niques which do not eliminate variables, literals or clauses, but which are able
to identify properties that are helpful to decide the formula.

Whenever substituting a gate’s output variable yout with its definition is too
costly, we apply gate rewriting [17] instead. It adds a new existential variable y′

out

to the same quantifier block as yout. For one implication direction of the Tseitin
encoding of the gate, yout is replaced by y′

out, thus delivering a double Plaisted
encoding [31], and the occurrences of ¬yout in the (D)QBF are replaced by ¬y′

out.
The purpose of this transformation is to favor detection of pure literals when the
clauses including yout evaluate to true and to increase the chance that clauses
are blocked [6].

Dependency schemes [34] allow to identify dependencies of existential vari-
ables y on universal ones x as pseudo-dependencies. The dependencies are syn-
tactically given by the order of the variables in prefix for QBFs and by the
dependency sets for DQBFs. A dependency (x, y) is a pseudo-dependency, if it
can be added or removed without altering the truth value of the formula. Since
deciding whether a dependency is a pseudo-dependency is as hard as solving the
formula itself [34,41], different sufficient criteria have been proposed, which are
called dependency schemes.



HQSpre – An Effective Preprocessor for QBF and DQBF 381

During universal expansion (see variable elimination routines), we utilize
the reflexive quadrangle resolution path dependency scheme [37,41], which is
currently the most effective dependency scheme that is sound for both QBF
and DQBF. Before expanding a universal variable x, we identify its pseudo-
dependencies. All pseudo-dependencies of x do not have to be copied and neither
have the clauses to be doubled in which only pseudo-dependencies and variables
independent of x occur. This often leads to significantly smaller formulas after
the expansion.

Lastly, we also apply SAT checks over the matrix in order to find trivially
(un)satisfied formulas. A (D)QBF is trivially unsatisfied if the matrix ϕ is already
unsatisfied for an arbitrary assignment of the universal variables. For this check,
we use an assignment of the universal variables which satisfies the fewest clauses,
i. e., we assign x to � if x occurs in fewer clauses than ¬x. A (D)QBF is triv-
ially satisfied if, after removing each occurrence of a universal literal within the
matrix ϕ, the resulting matrix ϕ′ is satisfiable. Finally, if a formula does not con-
tain any universal variables after universal expansion, we immediately employ a
SAT solver for deciding the resulting formula.

2.3 Implementation Details

Our tool was implemented in C++ on a 64 bits Linux machine. We can handle
the standard qdimacs and dqdimacs file formats and also provide a clause inter-
face. We are able to convert each QBF into a DQBF and vice-versa in case the
dependencies of the DQBF can be linearized into a QBF prefix.

We apply all described techniques in our preprocessor within a main loop
until a fixed-point is reached, i. e., no further changes in the formula arise dur-
ing the latest iteration. Some (costly) techniques, like trivialMatrixChecks(),
which use a SAT solver, are applied only once. For all SAT-based techniques
we use the SAT solver Antom [36]. Whenever a routine was able to decide the
(D)QBF, we immediately exit the loop and return the result.

For an efficient access to all clauses in which a literal � occurs, we keep
complete occurrence lists for each literal. Furthermore, we redundantly hold
for each literal � a list of all binary clauses in which � occurs, since many of
our syntactic methods, such as gate and equivalence detection, employ binary
clauses.

We re-use unused variable IDs, i. e., whenever a variable was removed, we
mark the index as “open” and such that it can be re-used. This avoids very large
variable IDs and gaps in the data structure, which is crucial during universal
expansion where many existential variables are newly introduced as a copy.

We tested different data structures for clauses. Structures based on std::set
have the advantage of sorted ranges, which is beneficial for, e. g., subsumption
and hidden/covered literal addition, but comes with the downside of more expen-
sive access and insertion costs. On the other hand, a std::vector has con-
stant access time, but checking the occurence of a literal in a clause gets more
expensive. To overcome this issue we implemented a data structure which marks
already occuring literals in the current clause. This “seen” data structure is also
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implemented as a std::vector with the length of the maximal literal ID. By
doing so, we have efficient access on clause data, and checking whether a lit-
eral occurs in the clause becomes very cheap. By using this structure, we have
measured a speed-up compared to std::set-based clauses of up to a factor of 4.

3 Experimental Evaluation

3.1 QBF Instances

Setting. We evaluated the effectiveness of HQSpre by comparing it against
Bloqqer (Version 037) [6] and sQueezeBF [17] (we used QuBE 7.2, which
includes sQueezeBF) regarding both the reduction of the input formula and
the impact on several back-end solvers. Our new tool was run in two settings,
its default one (HQSpre) and HQSpreg, which preserves gate information. In
Bloqqer and sQueezeBF two subsets of the techniques available in HQSpre
are implemented, for more details the interested reader is referred to [6] and [17],
respectively.

We used the testset selected for the latest QBF Evaluation (QBFEval
2016 [32]), consisting of 825 formulas. We selected several state-of-the-art QBF
solvers (AIGSolve [29], AQuA-F2V [32] Caqe v2 [38], DepQBF v5.01 [25],
GhostQ [19], Qesto v1.0 [20], and RAReQS v1.1 [19]) and observed the effects
of HQSpre and the other preprocessors on the solvers, which are based on dif-
ferent solving techniques. AIGSolve was also run in a modified version named
AIG-HQS, where the built-in preprocessor was replaced with HQSpre. This
way, we can better evaluate how the preprocessors affect circuit-based solvers.
The experiments were run on DALCO computing nodes, each having 2× 8 Intel
E5-2650v2 cores running at 2.6 GHz and providing 64 GB RAM. Each job3 was
run on a single core and limited to 600 s CPU time and 4 GB RAM. An overall
consistency check reported no deviation in the results of different tools.

Comparing Pure Preprocessors. In Table 1 we evaluate the ability of the pre-
processors to act as incomplete solvers and their efficiency. For each preprocessor
under analysis, the number of formulas evaluated to true, to false, and of those
on which the preprocessor fails are given; additionally, we specify the accumu-
lated computation time needed to handle the testset. Whenever HQSpre failed,
the reason was the time limit; memory consumption was not an issue for our
preprocessor. HQSpre is the tool that solves the largest number of formulas and
takes the least time on average to perform its transformations. HQSpreg is the
fastest tool as it applies clause elimination techniques only to those clauses that
do not encode gate information. Additionally, it restricts variable elimination by
resolution to variables that are not gate outputs.

3 A job consists of preprocessing and, where applicable, solving one formula. To guar-
antee repeatability, the sub-job of preprocessing a formula was performed once for
all the solvers.
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Table 1. Number of QBF instances decided by different preprocessors.

#sat #unsat #fails Time (s)

sQueezeBF 73 64 53 47548.7

Bloqqer 177 171 44 41872.0

HQSpreg 162 209 29 25660.6

HQSpre 236 242 31 32127.0

Formula Reduction. In Table 2, we show the main features of the formulas in
the testset we used, and their counterparts after the transformation with the
preprocessors under analysis. The average number of existential variables, uni-
versal variables, overall variables, clauses, and quantifier alternations are given in
columns 2 to 6. The testsets obtained by using the tools under analysis are split
into three sub-rows (“r”, “s”, and “f ”, resp.) to distinguish between reduced,
solved, and failed instances, respectively. For the reduced instances we report

Table 2. Formula changes by preprocessing QBF: For each preprocessor, data is shown
as “before → after” for just reduced formulas (“r”); for solved (“s”) and failed (“f ”)
instances we show their original size. At the bottom, the averages concern the subset
made of the 233 instances all the preprocessors strictly reduced.

∃-Vars ∀-Vars Vars Clauses Q-alt

Original 23769 570 24339 85984 17.0

sQueezeBF r 8748→3674 303→261 9051→3935 40907→25782 17.2→10.2

s 77096 259 77355 167100 20.7

f 65893 4573 70466 416385 4.6

Bloqqer r 8729→3256 608→548 9336→3805 50015→28933 13.4→6.6

s 25938 142 26080 55860 19.9

f 154630 3584 158214 678207 28.9

HQSpreg r 9194→12027 943→889 10137→12916 37949→68601 12.9→8.8

s 28303 104 28407 91853 22.4

f 179367 1066 180433 714867 6.7

HQSpre r 12775→13232 1317→1232 14092→14463 54693→99763 11.1→7.1

s 25797 109 25905 81852 21.4

f 104575 77 104652 468670 8.1

Original 7037 661 7698 29498 11.3

sQueezeBF 3695 566 4226 13889 7.4

Bloqqer 2389 584 2973 13628 6.7

HQSpreg 15354 634 15988 89002 7.1

HQSpre 10572 619 11191 77491 7.0
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the averages of the quantity shown in the header before and after preprocessing,
whereas for the others we report the averages of the original formulas.

The number of remaining clauses and variables for HQSpre are larger on
average than for the competing preprocessors. This is mainly due to more aggres-
sive universal expansion in HQSpre leading to many copied existential variables
and clauses. On the other hand, many instances can be decided only due to this
aggressive expansion. This can also be seen from the average number of uni-
versal variables: for the solved formulas, the number of universal variables is
significantly smaller for HQSpre than for the other preprocessors.

At the bottom of Table 2, we also compare the numbers for all 233 instances
which are neither solved nor failed for all applied preprocessors. Since the set
of instances which are neither solved nor failed is different for each solver, this
allows a better comparison of the size of the remaining formula. Also from this
point of view, Bloqqer leads on average to the smallest formulas, but the
difference to our preprocessor is not as large since many huge formulas for which
Bloqqer fails but HQSpre does not are excluded from this presentation. As
our next experiments show, the remaining larger average size does not worsen
the results when applying a QBF solver to the preprocessed formula.

Combination with QBF Solvers. In Table 3, we show the overall performance
of the solvers when considering our testset in its original form and when trans-
formed by the preprocessors under analysis. For each testset, we list the number
of formulas to be solved, which excludes those already solved by the preprocessor
and those where the preprocessor failed. For each solver and testset, the number
of solved instances includes those already solved by the preprocessor.

At first glance, we notice that HQSpre improves the state-of-the-art: for
each solver, the number of solved instances is strictly higher compared to
sQueezeBF and Bloqqer. CEGAR-based solvers (Caqe, RAReQS, and
Qesto) take the greatest advantage from using HQSpre compared to Blo-
qqer, whereas search-based ones (AQuA and DepQBF) improve by a rather

Table 3. Overall results using the original QBF instances, preprocessed by Bloqqer,
sQueezeBF, and HQSpre. We give the number of solved instances together with the
accumulated computation times in seconds. Best results for each tool are highlighted.

Solver Original sQueezeBF Bloqqer HQSpreg HQSpre

# Time (s) # Time (s) # Time (s) # Time (s) # Time (s)

AQuA 330 306288 496 208396 574 163106 463 222542 592 149602

DepQBF 434 243677 520 196531 585 157570 509 196605 600 148303

AIGSolve 532 188046 480 212830 518 194297 559 171348 544 175234

AIG-HQS 507 203696 440 239303 499 206756 560 172549 536 180341

Caqe 358 290370 534 195257 576 169814 485 213024 637 132017

RAReQS 337 300562 517 204385 615 144281 458 227326 638 127443

Qesto 360 291301 550 184821 606 148490 477 217943 652 122782



HQSpre – An Effective Preprocessor for QBF and DQBF 385

small number of solved instances. AIGSolve is the only solver which does not
always take advantage from preprocessing: in most cases, its performance gets
even degraded. This is mainly due to the underlying data structure of AIG-
Solve: it uses AND-Inverter graphs (AIGs), which are basically a circuit rep-
resentation. Since AIGSolve applies syntactic gate detection on the clauses,
any preprocessing step destroying this structure is harmful to the solver. AIG-
HQSbenefits most from our HQSpreg variant, where gate defining clauses and
variables are untouched, and both variants of AIGSolve simply work worse if
coupled with general purpose CNF preprocessors. AIGSolve contains an inte-
grated preprocessor, which is well optimized to the AIG-based back-end solver.
Still, by using HQSpre as additional front-end preprocessor, the number of
solved instances increases. For the other preprocessors, results get worse because
they destroy the gate information that AIGSolve can exploit. Note, that even
though our preprocessor runs until a fixed-point is reached, a second indepen-
dent run can change the results, since some methods are only applied at the very
beginning and not in every pass through the main preprocessing loop.

Impact on QBF Solvers. In Table 4, we show the impact of the preprocessors
on the solvers regarding their robustness. For each pair, we report as a nega-
tive number (left) the amount of formulas a solver is able to solve only without
preprocessing, and as a positive number (right) the amount of those instances
where the preprocessor is necessary for the solver to solve them. Large positive
numbers show complementarity, negative numbers close to zero demonstrate
good robustness. As a solver based on a circuit representation of the formula,
AIGSolve shows the highest complementarity, whereas our gate-preserving pre-
processor version HQSpreg is the most robust one for this solver. For most
solvers, HQSpre is the most robust preprocessor; exceptions are DepQBF,
Caqe, and RAReQS whose techniques are less impaired by sQueezeBF.

Table 4. Positive and negative effect of preprocessing on QBF solvers. Best results for
each QBF solver are highlighted.

sQueezeBF Bloqqer HQSpreg HQSpre

AQuA −8 +174 −11 +255 −7 +140 −6 +268

DepQBF −9 +95 −15 +166 −21 +96 −19 +185

AIGSolve −86 +34 −75 +61 −36 +63 −64 +76

AIG-HQS −103 +36 −70 +62 −32 +85 −68 +97

Caqe −8 +184 −13 +231 −11 +138 −10 +289

RAReQS −9 +189 −16 +294 −12 +133 −12 +313

Qesto −6 +196 −14 +260 −5 +122 −3 +295
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3.2 DQBF Instances

Setting. We apply our preprocessor to DQBF benchmarks and use it as a
front-end for the only two currently available solvers: HQS [15] and iDQ [13].
HQS is – like AIGSolve – an elimination-based solver using AIGs; iDQ is an
instantiation-based approach using a SAT solver as back-end. Since HQSpre is
the first available preprocessor for DQBF, there are no competitors to com-
pare with. We also apply the gate preserving version HQSpreg for this test
set. Since there is no standard benchmark set for DQBF we randomly selected
499 benchmarks of different size and difficulty from currently available bench-
mark sets: They encompass equivalence checking problems for incomplete cir-
cuits [12,13,15], and formulas resulting from the synthesis of safe controllers [7].
We used the DALCO computing nodes with the same limitations as in our QBF
experiments.

Comparing Pure Preprocessors. Table 5 shows the ability of HQSpre to act as
an incomplete solver. Since no universal expansion is applied, on the one hand
HQSpre solved fewer instances compared to the QBF benchmarks set. On the
other hand, HQSpre could preprocess all instances within the given limits.

Table 5. Decided instances of different preprocessors for DQBF.

#sat #unsat #fails Time (s)

HQSpreg 7 60 0 29441.2

HQSpre 5 71 0 162615.8

Formula Reduction. Table 6 shows the effect on the formula size for the DQBF
instances in the same manner as in Table 2. Note, there are no quantifier blocks
for DQBF, hence we cannot give the number of quantifier alternations. Instead,
we state the number of dependencies (“deps”), which is the sum of the cardinal-
ities of the dependency sets of the existential variables. The given number is the
average over all concerned benchmarks. In the last rows, we state the numbers
for the 407 commonly reduced, but not solved benchmarks.

Especially, the number of dependencies is significantly reduced for both vari-
ations. Since we do not apply any universal expansion the number of universal
variables is almost unchanged – the small decrease is mainly caused by pure
literal detection of universal variables. On the other hand, this strictly leads to
smaller formulas in terms of variables, clauses, and dependencies. Notably, there
are 18 instances with HQSpreg and 20 instances with HQSpre, respectively,
for which the DQBF dependencies were linearized, i. e., the tools were able to
convert the formula into an easier to solve QBF problem.
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Table 6. Formula shrinking after preprocessing DQBF: For each preprocessing setting,
data is shown as “before → after” for just reduced (“r”) formulas, and for solved (“s”)
formulas we show their original size. At the bottom, the averages concern the subset
made of the 407 instances all the preprocessors successfully reduce but not solve.

∃-Vars ∀-Vars Vars Clauses Deps

Original 367.7 70.5 438.3 1165.1 8425.8

HQSpreg r 390.3→243.3 78.3→77.2 468.6→320.5 1187.9→883.7 9038.3→37.7

s 222.3 20.4 242.7 1018.2 4476.7

HQSpre r 402.4→96.1 79.6→78.2 482.1→174.3 1229.9→540.7 9540.8→589.8

s 174.5 19.9 194.4 804.1 2219.8

Original 407.1 81.9 489.0 1240.0 9544.8

HQSpreg 257.4 81.0 338.4 933.8 39.8

HQSpre 97.2 80.6 177.8 543.6 612.4

Impact on DQBF Solvers. Finally, we passed the preprocessed formulas to the
two DQBF solvers and compare them with the results for the original formula.
For HQS we use two versions: the usual one (HQS) and a version where we have
integrated HQSpreg into the solver (HQSI). This means that in the combina-
tion of HQSpre and HQSpreg with HQSI the formula is actually preprocessed
twice. The results are given in Table 7. As it can be seen, iDQ and HQS both sig-
nificantly benefit from preprocessing. However, preprocessing the formula and
feeding it into HQS in CNF form does not yield an optimal behavior of the
solver compared to a tight integration as in HQSI . The reason for this is that
HQS does not apply gate detection on its own, which leads to much larger AIGs
with more variables. Still, we can see that HQSpre is effective: without pre-
processing, only 223 instances are solved, with gate-preserving preprocessing, but
without exploiting the gate information 326 instances, and with full preprocess-
ing 351 instances are solved. However, the best results are obtained if we inte-
grate the preprocessor into the solver such that the gate information extracted
from the CNF is exploited when creating the AIG data structures of the solver.
In this case, 456 instances get solved. Preprocessing the formula twice as in

Table 7. Overall results using the original DQBF instances and preprocessed by
HQSpre and HQSpreg. The accumulated computation times are given in seconds.
Best results for each DQBF solver are highlighted.

Solver Original HQSpreg HQSpre

# Time (s) # Time (s) # Time (s)

iDQ 151 214404 170 201165 214 171676

HQS 223 176222 326 108788 351 93912

HQSI 456 30946 450 34621 228 164299
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HQSpre + HQSI or HQSpreg + HQSI , causes an additional overhead and
modifies the formula: Since some of the more expensive techniques like SAT-
based constant detection are applied only once, preprocessing the formula twice
leads not only to additional overhead, but also to a different formula.

We can conclude that HQSpre is effective also for preprocessing DQBFs.
For HQS as the back-end solver, it is of highest importance not only to preserve
gate information, but also to integrate the preprocessor into the solver such that
this information is exploited optimally.

4 Conclusion

We presented a new state-of-the-art tool HQSpre for preprocessing QBF out-
performing every tested competing tool by the number of solved instances as
well as increasing the number of solved instances for each state-of-the-art QBF-
solver using HQSpre as front-end. Moreover our tool is able to preprocess DQBF
formulas effectively and efficiently, being the first available DQBF preprocessor.
An integrated version of the DQBF preprocessor clearly outperforms every other
competing solver and preprocessor combination.

As future work we want to improve and enhance our gate detection methods.
Namely, we want to support the Plaisted-Greenbaum encoding [31] and semantic
gate detection. We like to develop an explicit gate and/or AIGER [3] interface,
which also closes the gap between solver and applications in general. We also
plan to expand our methodology portfolio by other well-known techniques like
unit propagation look-ahead [24] (also sometimes referred to as failed literal
detection) and vivification [28]. Moreover, we would like to extend our tool with
Skolem and Herbrand functions in order to provide and preserve certificates.
Lastly, our experimental results indicate that deciding DQBF is very efficient if
we are able to transform the formula into a QBF. In order to decide whether
a DQBF can be transformed into an equivalent QBF and which operations are
needed to do so, a more intense utilization of dependency schemes is needed.
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Abstract. Self-composition provides a powerful theoretical approach
to prove relational properties, i.e. properties relating several program
executions, that has been applied to compare two runs of one or simi-
lar programs (in secure dataflow properties, code transformations, etc.).
This tool demo paper presents RPP, an original implementation of self-
composition for specification and verification of relational properties in C
programs in the Frama-C platform. We consider a very general notion
of relational properties invoking any finite number of function calls of
possibly dissimilar functions with possible nested calls. The new tool
allows the user to specify a relational property, to prove it in a com-
pletely automatic way using classic deductive verification, and to use it
as a hypothesis in the proof of other properties that may rely on it.

Keywords: Self-composition · Relational properties · Deductive
verification · Specification · Frama-C

1 Introduction

Modular deductive verification allows the user to prove that a function respects
its formal specification. For a given function f , any individual call to f can
be proved to respect the contract of f , that is, basically an implication: if the
given precondition is true before the call, the given postcondition is true after it.
However, some kinds of properties are not reduced to one function call. Indeed,
it is frequently necessary to express a property that involves several functions or
relates the results of several calls to the same function for different arguments.
We call them relational properties.

Different theories and techniques have been proposed to deal with relational
properties in different contexts. They include Relational Hoare Logic to show the
equivalence of program transformations [5] or Cartesian Hoare Logic for k-safety
properties [15]. Self-composition [2] is a theoretical approach to prove relational
properties relating two execution traces. It reduces the verification of a relational
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property to a standard verification problem of a new function. Self-composition
techniques have been applied for verification of information flow properties [1,2]
and properties of two equivalent-result object methods [14]. Relational proper-
ties can be expressed on Java pure methods [11] using the JML specification
language. OpenJML [8] offers a partial support for deductive verification of rela-
tional properties. The purpose of the present work is to implement and extend
self-composition for specification and verification of relational properties in the
context of the acsl specification language [4] and the deductive verification plu-
gin Wp of Frama-C [13]. We consider a large class of relational properties
(universally quantified properties invoking any finite number of calls of possibly
dissimilar functions with possibly nested calls), and propose an automatic solu-
tion allowing the user not only to prove a relational property, but also to use it
as a hypothesis.

Motivation. The necessity to deal with relational properties in Frama-C has
been faced in various verification projects. Recent work [6] reports on verifi-
cation of continuous monotonic functions in an industrial case study on smart
sensor software. The authors write: “After reviewing around twenty possible
code analysis tools, we decided to use Frama-C, which fulfilled all our require-
ments (apart from the specifications involving the comparison of function calls).”
The relational property in question is the monotonicity of a function (e.g.,
x ≤ y ⇒ f(x) ≤ f(y)). To deal with it in Frama-C, [6] applies a variation
of self-composition consisting in a separate verification of an additional, manu-
ally created wrapper function simulating the calls to be compared.

Relational properties can often be useful to give an expressive specification of
library functions or hardware-supported functions, when the source code is not
available. In this case, relational properties are only specified and used to verify
client code, but are not verified themselves. For instance, in the PISCO project1,
an industrial case study on verification of software using hardware-provided
cryptographic primitives (PKCS#11 standard) required tying together different
functions with properties such as Decrypt(Encrypt(Msg, PrivKey), PubKey) =
Msg. Other examples include properties of data structures, such as matrix trans-
formations (e.g. (A + B)ᵀ = Aᵀ + Bᵀ or det(A) = det(Aᵀ)), the specifica-
tion of Push and Pop over a stack [7], or parallel program specification (e.g.,
map(append(l1, l2)) = append(map(l1),map(l2)) in the MapReduce approach).
A subclass of relational properties, metamorphic properties, relating multiple
executions of the same function [12], are also used in a different context in order
to address the oracle problem in software testing [16].

Manual application of self-composition or possible workarounds reduce the
level of automation, can be error-prone and do not provide a complete automated
link between three key components: (i) the property specification, (ii) its proof,
and (iii) its usage as a hypothesis in other proofs. Thus, the lack of support for
relational properties can be a major obstacle to a wider application of deductive
verification in academic and industrial projects.

1 http://www.systematic-paris-region.org/en/projets/pisco.

http://www.systematic-paris-region.org/en/projets/pisco
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The contributions of this tool demo paper include:

– a new specification mechanism to formally express a relational property in
acsl;

– a fully-automated transformation into ACSL-annotated C code based on (an
extension of) self-composition, that allows the user to prove such a property;

– a generation of an axiomatic definition and additional annotations that allow
us to use a relational property as a hypothesis for the proof of other properties
in a completely automatic and transparent way;

– an extension of self-composition to a large class of relational properties,
including several calls of possibly dissimilar functions and possibly nested
calls, and

– an implementation of this approach in a Frama-C plugin RPP with a sound
integration of proof statuses of relational properties.

2 The Method and the Tool

2.1 Specification and Preprocessing of a Relational Property

The proposed solution is designed and implemented on top of Frama-C [13],
a framework for analysis of C code developed at CEA LIST. Frama-C offers
a specification language, called acsl [4], and a deductive verification plugin,
Wp [3], that allow the user to specify the desired program properties as function
contracts and to prove them. A typical acsl function contract may include a
precondition (requires clause stating a property supposed to hold before the
function call) and a postcondition (ensures clause that should hold after the
call), as well as a frame rule (assigns clause indicating which parts of the
global program state the function is allowed to modify). An assertion (assert
clause) can also specify a local property at any function statement.

Specification. To specify a relational property, we propose an extension of acsl
specification language with a new clause, relational. For technical, Frama-
C-related, reasons, these clauses must be attached to a function contract. Thus, a
property relating calls of different functions, such as R3 in Fig. 1a, must appear in
the contract of the last function involved in the property, i.e. when all relevant
functions are in scope. To refer to several function calls in such a property,
we introduce a new construct \call(f,<args>) used to indicate the value
returned by the call f(<args>) to f with arguments <args>. \call can be
used recursively, i.e. a parameter of a called function can be the result of another
function call. For example, properties R1,R2 at lines 2–3, 10–11 of Fig. 1a specify
monotonicity of functions f1,f2, while property R3 at line 12–13 indicates that
f1(x) is always less than f2(x).

Preprocessing and Proof Status Propagation. Since this new syntax is not
supported by classic deductive verification tools, we have designed a code trans-
formation, inspired by self-composition, allowing the user to prove the property
with one of these tools.
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Fig. 1. (a) Two monotonic functions f1,f2 with three relational properties (file f.c),
and (b) excerpt of their transformation by RPP for deductive verification

We illustrate the transformation for function f1 and property R1 (see
Fig. 1a). The transformation result (Fig. 1b) consists of three parts. First, a new
function, called wrapper, is generated. The wrapper function is inspired by the
workaround proposed in [6] and self-composition. It inlines the function calls
occurring in the relational property, records their results in local variables and
states an assertion equivalent to the relational property (lines 1–7 in Fig. 1b).
The proof of such an assertion is possible with a classic deductive verification
tool (Wp can prove it in this example).

However, a wrapper function is not sufficient if we need to use the relational
property as a hypothesis in other proofs and to make their support fully auto-
matic and transparent for the user. For this purpose, we generate an axiomatic
definition (cf. axiomatic section at lines 9–14) to give a logical reformulation
of the relational property as a lemma (cf. lines 11–12). This logical formulation
can be used in subsequent proofs (as we illustrate below). Lemmas can refer to
several function calls, but only for logic functions. Therefore, a logic counter-
part (with−acsl suffix) is declareds for each C function involved in a relational
property (cf. line 10). The ACSL function is partially specified via lemmas cor-
responding to the relational properties of the original C function. Note that the
correspondence between f and f−acsl implies that f does not access global
memory (neither for writing nor for reading). Indeed, since f−acsl is a pure
logic function, it has no side effect and its result only depends on its parame-
ters. Extending our approach for this case can rely on assigns...\from...
clauses, similarly to what is proposed in [10], for adding to f−acsl parameters
representing the relevant parts of the program state. This extension is left as
future work.
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Finally, to create a bridge between the C function and its logic counterpart,
we add a postcondition (an ensures clause, placed in a separate behavior for
readability) to state that they always return the same result (cf. line 18 relating
f1 and f1−acsl).

To make the proposed solution as transparent as possible for the user and
to ensure automatic propagation of proof statuses in the Frama-C property
database [9], two additional rules are necessary. First, the postconditions making
the link between C functions and their associated logic counterparts are always
supposed valid (so the clause of line 18 is declared as valid). Second, the logic
reformulation of a relational property in a lemma (lines 11–12) is declared valid2

as soon as the assertion (line 6) at the end of the wrapper function is proved.

2.2 Implementation and Illustrative Examples

Implementation. A proof-of-concept implementation of the proposed tech-
nique has been realized in a Frama-C plugin RPP (Relational Property Prover).
RPP works like a preprocessor for Wp: after its execution on a project con-
taining relational properties, the proof on the generated code proceeds like any
other proof with Wp [13]: proof obligations are generated and can be either
discharged automatically by automatic theorem provers (e.g. Alt-Ergo, CVC4,
Z33) or proven interactively (e.g. in Coq4).

Thanks to the proposed code transformation no significant modification was
required in Frama-C and Wp. RPP currently supports relational properties of
the form

∀ <args1>, . . . , ∀ <argsN>,

P ( <args1>, . . . ,<argsN>, \call(f_1,<args1>), . . . , \call(f_N,<argsN>))

for an arbitrary predicate P invoking N ≥ 1 calls of non-recursive functions
without side effects and complex data structures.

Illustrative Examples. After preprocessing with RPP, Frama-C/Wp auto-
matically validates properties R1-R3 of Fig. 1a by proving the assertions in the
generated wrapper functions and by propagating proof statuses.

To show how relational properties can be used in another proof, consider
properties Rg,Rh of Fig. 2a for slightly more complex functions (inspired by [6])
whose proof needs to use properties R1,R2. Thanks to their reformulation as
lemmas and to the link between logic and C functions (cf. lines 11–12, 18 of
Fig. 1b for f1), Wp automatically proves the assertion at line 6 of Fig. 2b and
validates property Rg as proven. The proof for Rh is similar.

2 Technically, a special “valid under condition” status is used in this case in Frama-C.
3 See, resp., https://alt-ergo.ocamlpro.com, http://cvc4.cs.nyu.edu, https://z3.
codeplex.com/.

4 See http://coq.inria.fr/.

https://alt-ergo.ocamlpro.com
http://cvc4.cs.nyu.edu
https://z3.codeplex.com/
https://z3.codeplex.com/
http://coq.inria.fr/
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Fig. 2. (a) Two monotonic functions g,h with two relational properties, and (b) extract
of their transformation by RPP for deductive verification

Notice that in examples of Fig. 2, functions f1,f2 can be undefined since
only their (relational) specification is required, which is suitable for specifica-
tion of library or hardware-provided functions that cannot be specified without
relational properties.

The RPP tool has also been successfully tested on several other examples such
as cryptographic properties like Decrypt(Encrypt(Msg, PrivKey), PubKey) =
Msg, squeeze lemma condition (i.e. ∀x, f1(x) ≤ f2(x) ≤ f3(x)), median func-
tion properties (e.g. ∀a, b, c, Med(a, b, c) = Med(a, c, b)), properties of determi-
nant for matrices of order 2 and 3 (e.g. det(A) = det(Aᵀ)), matrix equations like
(A + B)ᵀ = Aᵀ + Bᵀ, etc. Some of them include loops whose loop invariants are
automatically transferred by RPP into the wrapper function to make possible its
automatic proof.

3 Conclusion and Future Work

We proposed a novel technique for specification and proof of relational properties
for C programs in Frama-C. We implemented it in a Frama-C plugin RPP and
illustrated its capacity to treat a large range of examples coming from various
industrial and academic projects that were suffering from the impossibility to
express relational properties. One benefit of this approach is its capacity to rely
on sound and mature verification tools like Frama-C/Wp, thus allowing for
automatic or interactive proof from the specified code. Thanks to an elegant
transformation into auxiliary C code and logic definitions accompanied by a
property status propagation, the user can treat complex relational properties
and observe the results in a convenient and fully automatic manner. Another
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key benefit is that this approach is suitable for verification of programs relying
on library or hardware-provided functions whose source code is not available.

Future work includes extending the tool to support complex data structures
and functions with side-effects, support of recursive functions, studying other
variants of generated code (e.g. avoiding function inlining in some cases), as well
as further experiments on real-life programs.
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ACSL: ANSI/ISO C Specification Language (2016). http://frama-c.com/acsl.html
5. Benton, N.: Simple relational correctness proofs for static analyses and program

transformations. In: POPL (2004)
6. Bishop, P.G., Bloomfield, R.E., Cyra, L.: Combining testing and proof to gain high

assurance in software: a case study. In: ISSRE (2013)
7. Burghardt, J., Gerlach, J., Lapawczyk, T.: ACSL by Example (2016). http://www.

fokus.fraunhofer.de/download/acsl by example
8. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and

Eclipse. In: F-IDE (2014)
9. Correnson, L., Signoles, J.: Combining analyses for C program verification. In:

Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32469-7 8

10. Cuoq, P., Monate, B., Pacalet, A., Prevosto, V.: Functional dependencies of C
functions via weakest pre-conditions. STTT 13(5), 405–417 (2011)

11. Darvas, A., Müller, P.: Reasoning about method calls in JML specifications. FTfJP
(2005)

12. Hui, Z.W., Huang, S.: A formal model for metamorphic relation decomposition.
In: WCSE (2013)

13. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: a software analysis perspective. Form. Aspect Comput. 27(3), 573–609 (2015).
http://frama-c.com

14. Leino, K.R.M., Müller, P.: Verification of equivalent-results methods. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 307–321. Springer, Hei-
delberg (2008). doi:10.1007/978-3-540-78739-6 24

15. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:
PLDI (2016)

16. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470
(1982)

http://www.dewi-project.eu
http://frama-c.com/acsl.html
http://www.fokus.fraunhofer.de/download/acsl_by_example
http://www.fokus.fraunhofer.de/download/acsl_by_example
http://dx.doi.org/10.1007/978-3-642-32469-7_8
http://frama-c.com
http://dx.doi.org/10.1007/978-3-540-78739-6_24


autoCode4: Structural Controller Synthesis

Chih-Hong Cheng1(B), Edward A. Lee2, and Harald Ruess1

1 fortiss - An-Institut Technische Universität München, Munich, Germany
cheng@fortiss.org

2 EECS, UC Berkeley, Berkeley, USA

Abstract. autoCode4 synthesizes structured reactive controllers from
realizable specifications in the GXW subset of linear temporal logic
(LTL). Generated reactive controllers are expressed in terms of an inter-
mediate synchronous dataflow (SDF) format, which is further translated,
using an open interface, into SCADE/Lustre and Ptolemy II. Moreover,
autoCode4 generates and maintains a traceability relation between indi-
vidual requirements and generated code blocks, as mandated by current
standards for certifying safety-critical control code.

1 Introduction

autoCode4 synthesizes structured and certifiable reactive controllers from a given
realizable specification in the GXW [5] subset of linear temporal logic (LTL).
It is released under the LGPLv3 open source license, and can be downloaded,
including a hands-on tutorial, from

http://autocode4.sourceforge.net

autoCode4 is based on structural recursion of GXW input formulas [5] for
generating synchronous dataflow (SDF) [12] controllers composed from a set
of actors, and for maintaining the traceability between given specifications
and the generated code blocks. The underlying synthesis algorithm [5] of
autoCode4 differs considerably from previous approaches and tools for reactive
synthesis [4,6,7,11,14,16,17]. In contrast to these prevailing automata-based
approaches, autoCode4 generates a reactive controller in a structured actor lan-
guage with high-level behavioral constructs and synchronous dataflow communi-
cation between connected actors. This choice of generating structured controllers
is motivated by the fact that a subset of SDF is compatible with the underlying
model of computation for state-of-the-practice design tools including LabVIEW1

and SCADE2. Indeed, autoCode4 includes pre-defined code generators for Lus-
tre/SCADE and for Ptolemy II [9], where C code or a hardware description, say,
in Verilog, can be generated subsequently. Structured SDF controllers also sup-
port the integration of manually designed or legacy elements. Furthermore, the
structure of the generated SDF controller is often instrumental in pinpointing
1

http://www.ni.com/labview.
2

http://www.ansys.com/Products/Embedded-Software/ANSYS-SCADE-Suite.
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and isolating problematic (e.g. realizable but demonstrating undesired behavior)
specifications for validating requirements.

autoCode4 supports the necessary interfaces for integration into existing
development tool chains. In this way, autoCode4 has been embedded into the
Ptolemy II [9] platform for the design, simulation, and code generation of cyber-
physical systems. The open interfaces of autoCode4 are suitable for realizing addi-
tional code generators for, say, Matlab Simulink3 or continuous function charts
(IEC 61131-3). Moreover, requirement specification languages for embedded con-
trol systems, such as EARS [8], may be translated to the GXW input language
of autoCode4.

autoCode4 is unique among reactive synthesis tools in that it explicitly main-
tains the traceability between individual requirements (as sub-specifications) and
the generated controller code blocks. Such a traceability relation is mandated by
current industrial standards for safety-related developments such IEC 61508 (e.g.
industrial automation), DO-178C (aerospace), and ISO-26262 (automotive).

2 Structural Synthesis in a Nutshell

autoCode4 uses the GXW subset of linear temporal logic (LTL) as defined in [5] for
specifying the input-output behavior of reactive controllers. This specification
language supports a conjunction of input assumptions, invariance conditions on
outputs, transition-like reactions of the form G(input → Xioutput), and reac-
tions of the form G(input → Xi(outputW release)), where input is an LTL for-
mula whose validity is determined by the next i input valuations (e.g. falling
edge (in∧X¬in)). The latter reaction formula states that if there is a temporal
input event satisfying the constraint input, then the output constraint should
hold on output events until there is a release event (or output always holds).

i5 i4

i2

i3

i1

(lower limit) (upper limit)

(lower the pla orm) (move up the pla orm)

Fig. 1. A hydraulic lifting platform

The operator G is the universal path
quantifier, Xi abbreviates i consecutive next-
steps, W denotes the weak until tempo-
ral operator, the constraint output contains
no temporal operator, and the subformula
release may contain certain numbers of con-
secutive next-steps but no other temporal
operators. Output response to input events
in GXW is immediate and, whenever an event
occurs the specification excludes choices of
the controller to select among multiple out-
put options (such as setting either out1 or
out2 to be true).

The design of the GXW language has been guided by expressiveness, use-
ability, and complexity considerations. We demonstrated the expressiveness of
GXW by encoding of a large and rather diverse set of (Booleanized) control spec-
ifications from the domain of industrial automation [1,2]. On the other hand,
3

http://www.mathworks.com/products/simulink/.

http://www.mathworks.com/products/simulink/
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reactive synthesis for GXW is in PSPACE [5] compared to 2EXPTIME for full LTL.
Moreover, the restrictions of GXW support the control designer by excluding non-
causal, and commonly unrealizable, specifications, where output assignments are
supposed to depend on future input values.

Structural synthesis [5] generates synchronous data flow [12] controllers from
LTL specifications. Hereby, a controller is structurally composed from a set of
interacting actors (behavior expressed in terms of Mealy machines). One of the
main steps of the structural synthesis [5] involves checking for potentially con-
flicting constraints, from multiple sub-specifications, for the output assignments,
and determining satisfiability of given invariance properties.

3 autoCode4 in Action

We illustrate the use of GXW by means of the simple example of controlling
a hydraulic ramp as shown in Fig. 1 (cmp. with [2], Sect. 7.1.3, for similar sce-
narios). By pressing button i2 (up) the motor enables upward movement of the
platform by setting output variable k2 to true. Button i3 (stop) stops the move-
ment, and i1 (down) triggers the lowering of the hub by setting output variable
k1 to true. Sensors i5 and i4 are used for detecting upper and lower limits. If
i1 and i2 are simultaneously pressed, one needs to stop the movement. Finally,
simultaneous triggering the motor in both directions (i.e., G¬(k1 ∧ k2)) is dis-
abled. The corresponding GXW specification is depicted in Fig. 2. Lines starting
with “##” are comments, and a total of 8 GXW sub-specifications are listed.
Sub-specifications are (implicitly) labeled, from top-to-bottom, by the indices
0 to 7.

Fig. 2. GXW specification for hydraulic lifting platform

For the hydraulic lifting platform, Fig. 3 shows the resulting SDF controller
synthesized under Ptolemy II. One may run interactive simulation or further
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use code generation features in Ptolemy II to automatically generate executable
code in C or HDL. Due to space limits, we do not show the control structure
within each block; instead we refer the reader to Fig. 4 for the corresponding
Lustre implementation.

Now, we shortly comment on the requirement-to-implementation traceability
using sub-specification S7: (¬k1∧¬k2)W(i1∨ i2) (the tool also allows generating
a traceability report). In Fig. 3, an or-gate called event7 connects i1 and i2. The
output of event7 is fed into an InUB-typed actor called Ctrl 7. The output of
Ctrl 7 is negated (via Not 7k1 and Not 7k2) to influence output variables k1
and k2 respectively. One can observe that the specification index “7” can be
identified in above mentioned blocks due to the naming convention.

Fig. 3. Control realization as Ptolemy II models

autoCode4 may also generate reactive controllers in Lustre [13]. Figure 4
includes the Lustre v4 code generated from controlling the hydraulic lift-
ing platform. The requirement-to-implementation traceability is similar to the
Ptolemy II graphical representation in Fig. 3. Notice that parameterized blocks
such as Res5 in Fig. 4 are instantiated twice. This kind of block reuse makes
textual representations of generated code (i.e., define once, instantiate multiple
times) highly compact.
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node GXWcontroller(GIi1, GIi2, GIi3, GIi4, GIi5 : bool) returns (GOk1, GOk2: bool);
var
 Ctrl_4, Not_7k2, Ctrl_5, Ctrl_6, Not_6k1, Not_5k2, Ctrl_7, Not_7k1, Not_6k2, 
 Ctrl_0, Not_4k1, Not_3k2, Ctrl_1, Not_5k1, Ctrl_3: int;
 Resk2, Resk1, event1, event0, release1, release0, event7, event5, 
 AND_3_OR_0, AND_3_OR_1: bool;
let
 event0 = (GIi2 and (not GIi1) and (not GIi3)); 
 event1 = (GIi1 and (not GIi2) and (not GIi3)); 
 AND_3_OR_0 = (GIi1 and GIi2); release0 = (AND_3_OR_0 or GIi5 or GIi1 or GIi3); 
 AND_3_OR_1 = (GIi1 and GIi2); release1 = (AND_3_OR_1 or GIi4 or GIi2 or GIi3); 
 event7 = (GIi1 or GIi2);  event5 = (GIi1 and GIi2); 
 Ctrl_0 = TrUB(event0 , release0); Ctrl_1 = TrUB(event1 , release1);
 Ctrl_3 = IfTB(GIi5); Ctrl_4 = IfTB(GIi4);
 Ctrl_5 = IfTB(event5); Ctrl_6 = IfTB(GIi3); Ctrl_7 = InUB(event7);
 Not_3k2 = TernaryNot(Ctrl_3);  Not_4k1 = TernaryNot(Ctrl_4);
 Not_5k1 = TernaryNot(Ctrl_5);  Not_5k2 = TernaryNot(Ctrl_5);
 Not_6k1 = TernaryNot(Ctrl_6);  Not_6k2 = TernaryNot(Ctrl_6);
 Not_7k2 = TernaryNot(Ctrl_7);  Not_7k1 = TernaryNot(Ctrl_7);
 Resk1 = Res5(Not_4k1, Ctrl_1, Not_5k1, Not_6k1, Not_7k1, false); GOk1 = Resk1;
 Resk2 = Res5(Ctrl_0, Not_3k2, Not_7k2, Not_5k2, Not_6k2, false); GOk2 = Resk2;
tel

node Res5 (input0, input1, input2, input3, input4: int; A: bool) returns (output: bool);
let
 output = if input0 = 1 or input1 = 1 or input2 = 1 or input3 = 1 or input4 = 1 then true

else if input0 = 0 or input1 = 0 or input2 = 0 or input3 = 0 or input4 = 0 then false
else A;

tel

node IfTB (input: bool) returns (output: int);
let  output = if input then 1 else 2;         tel

node TrUB (input, release: bool) returns 
(output: int);
var lock: bool;
let lock = if input and not release then true

else if release then false
else false -> pre(lock);

output = if input and not release then 1
else if release then 2
else 2 -> if pre(lock) then 1 else 2 ;

tel

node InUB (release: bool) returns (output: int);
var lock: bool;
let 
 lock = if release then false else true -> 
pre(lock);
 output = if release then 2

else 1 -> if pre(lock) then 1 else 2 ;
telnode TernaryNot (input: int) returns (output: 
int);
let output = if input = 1 then 0 

else if input = 0 then 1 else input;
tel

Fig. 4. Control realization in Lustre format

4 autoCode4 Software Architecture

The software architecture of autoCode4 is depicted in Fig. 5 and follows the gen-
eral outline of the structural synthesis algorithm as described [5]. Input speci-
fications are analyzed and categorized by the specification analyzer, which also
rejects non-GXW specifications. In our running example, S0 and S1 are of type
TrUB (when event A triggers, do B until event C). S3, S4 and S5 are categorized
as IfTB (when event A triggers, do B), S7 is InUB (initially, do A until B), and
lastly, S2 is an invariance property.

Subsequently, Constraint Builder builds the corresponding SDF structure (via
SDF Builder), which is not fully instantiated yet, and constructs a quantified
Boolean formula with one quantifier alternation (2QBF) for resolving poten-
tial conflicts between individual sub-specifications. In this process, each sub-
specification is associated with a set of actors; for example, formula S7 is
associated with actors such as event7 or Ctrl 7. The engine can hash a set of
actors that was instantiated previously, to enable actor reuse among multiple
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Fig. 5. System architecture of autoCode4, where dashed elements are extension points.

sub-specifications. Moreover, blocks such as Res5 in Fig. 4 are used for deter-
mining an output value A if none of the sub-specifications constrain such an
output.

The generated 2QBF constraint is analyzed for potential conflicts on certain
output variables from different sub-specifications, and for analyzing invariance
properties. These constraints are of the form: ∃ A1,..., Ak ∀ system state s:
(Env-Assumption(s)∧ SDF-dynamics(s)) → (No-output-conflict(s)∧ Invariance(s)).
The open design choices are determined by witnesses for the existentially-
quantified variables A1,..., Ak, as specified in the previous step. Informally, the
body of this formula encodes the condition: if the environment assumptions hold
and the system adheres to the semantics of the SDF dynamics then there is no
output conflict and the specified invariance properties hold. Our 2QBF solver
implements an algorithm for alternating two Boolean satisfiability solvers [10]
as in SAT4J [3]. It takes the negation of the constraint above with forall-exists
top-level quantification. Therefore, whenever the 2QBF solver returns false, the
generated counterexample determines a non-conflicting assignment for the unin-
stantiated variables. Using the definition of Resk1 and Resk2 in Fig. 4 in our
running example, the variable A is set to false in both cases.

The internal SDF controller is stored using the class SDFctrl, and can be
traversed for generating control code in Ptolemy II, Lustre, and other SDF-
based languages. Finally, autoCode4 uses the Report generator for producing a
requirement-to-implementation traceability report.
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Abstract. We present a new decision procedure for the logic WS1S. It
originates from the classical approach, which first builds an automaton
accepting all models of a formula and then tests whether its language is
empty. The main novelty is to test the emptiness on the fly, while con-
structing a symbolic, term-based representation of the automaton, and
prune the constructed state space from parts irrelevant to the test. The
pruning is done by a generalization of two techniques used in antichain-
based language inclusion and universality checking of finite automata:
subsumption and early termination. The richer structure of the WS1S
decision problem allows us, however, to elaborate on these techniques
in novel ways. Our experiments show that the proposed approach can
in many cases significantly outperform the classical decision procedure
(implemented in the Mona tool) as well as recently proposed alterna-
tives.

1 Introduction

Weak monadic second-order logic of one successor (WS1S) is a powerful lan-
guage for reasoning about regular properties of finite words. It has found numer-
ous uses, from software and hardware verification through controller synthesis
to computational linguistics, and further on. Some more recent applications of
WS1S include verification of pointer programs and deciding related logics [1–5]
as well as synthesis from regular specifications [6]. Most of the successful appli-
cations were due to the tool Mona [7], which implements classical automata-
based decision procedures for WS1S and WS2S (a generalization of WS1S to
finite binary trees). The worst case complexity of WS1S is nonelementary [8]
and, despite many optimizations implemented in Mona and other tools, the
complexity sometimes strikes back. Authors of methods translating their prob-
lems to WS1S/WS2S are then forced to either find workarounds to circumvent
the complexity blowup, such as in [2], or, often restricting the input of their
approach, give up translating to WS1S/WS2S altogether [9].

The classical WS1S decision procedure builds an automaton Aϕ accepting
all models of the given formula ϕ in a form of finite words, and then tests Aϕ for
language emptiness. The bottleneck of the procedure is the size of Aϕ, which can
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be huge due to the fact that the derivation of Aϕ involves many nested automata
product constructions and complementation steps, preceded by determinization.
The main point of this paper is to avoid the state-space explosion involved
in the classical explicit construction by representing automata symbolically and
testing the emptiness on the fly, while constructing Aϕ, and by omitting the state
space irrelevant to the emptiness test. This is done using two main principles:
lazy evaluation and subsumption-based pruning. These principles have, to some
degree, already appeared in the so-called antichain-based testing of language
universality and inclusion of finite automata [10]. The richer structure of the
WS1S decision problem allows us, however, to elaborate on these principles in
novel ways and utilize their power even more.

Overview of Our Algorithm. Our algorithm originates in the classical WS1S
decision procedure as implemented in Mona, in which models of formulae are
encoded by finite words over a multi-track binary alphabet where each track
corresponds to a variable of ϕ. In order to come closer to this view of formula
models as words, we replace the input formula ϕ by a language term tϕ describing
the language Lϕ of all word encodings of its models.

In tϕ, the atomic formulae of ϕ are replaced by predefined automata accepting
languages of their models. Boolean operators (∧, ∨, and ¬) are turned into
the corresponding set operators (∪, ∩, and complement) over the languages of
models. An existential quantification ∃X becomes a sequence of two operations.
First, a projection πX removes information about valuations of the quantified
variable X from symbols of the alphabet. After the projection, the resulting
language L may, however, encode some but not necessarily all encodings of the
models. In particular, encodings with some specific numbers of trailing 0̄’s, used
as a padding, may be missing. 0̄ here denotes the symbol with 0 in each track. To
obtain a language containing all encodings of the models, L must be extended
to include encodings with any number of trailing 0̄’s. This corresponds to taking
the (right) 0̄∗-quotient of L, written L − 0̄∗, which is the set of all prefixes of
words of L with the remaining suffix in 0̄∗. We give an example WS1S formula ϕ
in (1) and its language term tϕ in (2). The dotted operators represent operators

ϕ ≡ ∃X: Sing(X) ∧ (∃Y :Y =X + 1) (1)

tϕ ≡ πX(
{ASing(X) ∩ (πY (AY =X+1)− 0̄∗)

}
)− 0̄∗ (2)

over language terms. See
Fig. 2 for the automata
ASing(X) and AY =X+1.

The main novelty of our work is that we test emptiness of Lϕ directly over tϕ.
The term is used as a symbolic representation of the automata that would be
explicitly constructed in the classical procedure: inductively to the terms struc-
ture, starting from the leaves and combining the automata of sub-terms by stan-
dard automata constructions that implement the term operators. Instead of first
building automata and only then testing emptiness, we test it on the fly during
the construction. This offers opportunities to prune out large portions of the
state space that turn out not to be relevant for the test.

A sub-term tψ of tϕ, corresponding to a sub-formula ψ, represents final states
of the automaton Aψ accepting the language encoding models of ψ. Predeces-
sors of the final states represented by tψ correspond to quotients of tψ. All states
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of Aψ could hence be constructed by quotienting tψ until fixpoint. By working
with terms, our procedure can often avoid building large parts of the automata
when they are not necessary for answering the emptiness query. For instance,
when testing emptiness of the language of a term t1 ∪ t2, we adopt the lazy app-
roach (in this particular case the so-called short-circuit evaluation) and first test
emptiness of the language of t1; if it is non-empty, we do not need to process t2.
Testing language emptiness of terms arising from quantified sub-formulae is more
complicated since they translate to −0̄∗ quotients. We evaluate the test on t− 0̄∗

by iterating the −0̄ quotient from t. We either conclude with the positive result
as soon as one of the iteration computes a term with a non-empty language,
or with the negative one if the fixpoint of the quotient construction is reached.
The fixpoint condition is that the so-far computed quotients subsume the newly
constructed ones, where subsumption is a relation under-approximating inclu-
sion of languages represented by terms. Subsumption is also used to prune the
set of computed terms so that only an antichain of the terms maximal wrt
subsumption is kept.

Besides lazy evaluation and subsumption, our approach can benefit from mul-
tiple further optimizations. For example, it can be combined with the explicit
WS1S decision procedure, which can be used to transform arbitrary sub-terms
of tϕ to automata. These automata can then be rather small due to minimiza-
tion, which cannot be applied in the on-the-fly approach (the automata can,
however, also explode due to determinisation and product construction, hence
this technique comes with a trade-off). We also propose a novel way of utilising
BDD-based encoding of automata transition functions in the Mona style for
computing quotients of terms. Finally, our method can exploit various methods
of logic-based pre-processing, such as anti-prenexing, which, in our experience,
can often significantly reduce the search space of fixpoint computations.

Experiments. We have implemented our decision procedure in a prototype tool
called Gaston and compared its performance with other publicly available
WS1S solvers on benchmarks from various sources. In the experiments, Gaston
managed to win over all other solvers on various parametric families of WS1S
formulae that were designed—mostly by authors of other tools—to stress-test
WS1S solvers. Moreover, Gaston was able to significantly outperform Mona
and other solvers on a number of formulae obtained from various formal verifi-
cation tasks. This shows that our approach is applicable in practice and has a
great potential to handle more complex formulae than those so far obtained in
WS1S applications. We believe that the efficiency of our approach can be pushed
much further, making WS1S scale enough for new classes of applications.

Related Work. As already mentioned above, Mona [7] is the usual tool of choice
for deciding WS1S formulae. The efficiency of Mona stems from many opti-
mizations, both higher-level (such as automata minimization, the encoding of
first-order variables used in models, or the use of BDDs to encode the tran-
sition relation of the automaton) as well as lower-level (e.g. optimizations of
hash tables, etc.) [11,12]. Apart from Mona, there are other related tools based
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on the explicit automata procedure, such as jMosel [13] for a related logic
M2L(Str), which implements several optimizations (such as second-order value
numbering [14]) that allow it to outperform Mona on some benchmarks (Mona
also provides an M2L(Str) interface on top of the WS1S decision procedure), or
the procedure using symbolic finite automata of D’Antoni et al. in [15].

Our work was originally inspired by antichain techniques for checking uni-
versality and inclusion of finite automata [10,16,17], which use symbolic com-
putation and subsumption to prune large state spaces arising from subset con-
struction. In [18], which is a starting point for the current paper, we discussed
a basic idea of generalizing these techniques to a WS1S decision procedure. In
the current paper we have turned the idea of [18] to an algorithm efficient in
practice by roughly the following steps: (1) reformulating the symbolic represen-
tation of automata from nested upward and downward closed sets of automata
states to more intuitive language terms, (2) generalizing the procedure origi-
nally restricted to formulae in the prenex normal form to arbitrary formulae, (3)
introduction of lazy evaluation, and (4) many other important optimizations.

Recently, a couple of logic-based approaches for deciding WS1S appeared.
Ganzow and Kaiser [19] developed a new decision procedure for the weak mon-
adic second-order logic on inductive structures, within their tool Toss, which
is even more general than WSkS. Their approach completely avoids automata;
instead, it is based on Shelah’s composition method. The Toss tool is quite
promising as it outperforms Mona on some of the benchmarks. It, however,
lacks some features in order to perform meaningful comparison on benchmarks
used in practice. Traytel [20], on the other hand, uses the classical decision
procedure, recast in the framework of coalgebras. The work focuses on testing
equivalence of a pair of formulae, which is performed by finding a bisimulation
between derivatives of the formulae. While it is shown that it can outperform
Mona on some simple artificial examples, the implementation is not optimized
enough and is easily outperformed by the rest of the tools on other benchmarks.

2 Preliminaries on Languages and Automata

A word over a finite alphabet Σ is a finite sequence w = a1 · · · an, for n ≥ 0, of
symbols from Σ. Its i-th symbol ai is denoted by w[i]. For n = 0, the word is
the empty word ε. A language L is a set of words over Σ. We use the standard
language operators of concatenation L.L′ and iteration L∗. The (right) quotient
of a language L wrt the language L′ is the language L−L′ = {u | ∃v ∈ L′ : uv ∈
L}. We abuse notation and write L − w to denote L − {w}, for a word w ∈ Σ∗.

A finite automaton (FA) over an alphabet Σ is a quadruple A = (Q, δ, I, F )
where Q is a finite set of states, δ ⊆ Q × Σ × Q is a set of transitions, I ⊆ Q
is a set of initial states, and F ⊆ Q is a set of final states. The pre-image of
a state q ∈ Q over a ∈ Σ is the set of states pre [a](q) = {q′ | (q′, a, q) ∈ δ}, and
it is the set pre [a](S) =

⋃
q∈S pre [a](q) for a set of states S.

The language L(q) accepted at a state q ∈ Q is the set of words that can
be read along a run ending in q, i.e. all words a1 · · · an, for n ≥ 0, such that δ
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contains transitions (q0, a1, q1), . . . , (qn−1, an, qn) with q0 ∈ I and qn = q. The
language L(A) of A is then the union

⋃
q∈F L(q) of languages of its final states.

3 WS1S

In this section, we give a minimalistic introduction to the weak monadic second-
order logic of one successor (WS1S) and outline its explicit decision procedure
based on representing sets of models as regular languages and finite automata.
See, for instance, Comon et al. [21] for a more thorough introduction.

3.1 Syntax and Semantics of WS1S

WS1S allows quantification over second-order variables, which we denote by
upper-case letters X,Y, . . . , that range over finite subsets of N0. Atomic formulae
are of the form (i) X ⊆ Y , (ii) Sing(X), (iii) X = {0}, and (iv) X = Y + 1.
Formulae are built from the atomic ones using the logical connectives ∧,∨,¬,
and the quantifier ∃X where X is a finite set of variables (we write ∃X if X is a
singleton {X}). A model of a WS1S formula ϕ(X ) with the set of free variables
X is an assignment ρ : X → 2N0 of the free variables X of ϕ to finite subsets of N0

for which the formula is satisfied, written ρ |= ϕ. Satisfaction of atomic formulae
is defined as follows: (i) ρ |= X ⊆ Y iff ρ(X) ⊆ ρ(Y ), (ii) ρ |= Sing(X) iff ρ(X)
is a singleton set, (iii) ρ |= X = {0} iff ρ(X) = {0}, and (iv) ρ |= X = Y + 1
iff ρ(X) = {x}, ρ(Y ) = {y}, and x = y + 1. Satisfaction for formulae obtained
using Boolean connectives is defined as usual. A formula ϕ is valid, written |= ϕ,
iff all assignments of its free variables to finite subsets of N0 are its models, and
satisfiable if it has a model. Wlog we assume that each variable in a formula is
quantified at most once.

3.2 Models as Words

Let X be a finite set of variables. A symbol τ over X is a mapping of all variables
in X to the set {0, 1}, e.g. τ = {X1 �→ 0,X2 �→ 1} for X = {X1,X2}, which
we will write as τ = X1 : 0

X2 : 1 below. The set of all symbols over X is denoted
as ΣX . We use 0̄ to denote the symbol in ΣX that maps all variables to 0,
i.e. 0̄ = {X �→ 0 | X ∈ X}.

An assignment ρ : X → 2N0 may be encoded as a word wρ of symbols over
X in the following way: wρ contains 1 in the (i + 1)-st position of the row
for X iff i ∈ X in ρ. Notice that there exists an infinite number of encodings
of ρ: the shortest encoding is ws

ρ of the length n + 1, where n is the largest
number appearing in any of the sets that is assigned to a variable of X in ρ,
or −1 when all these sets are empty. The rest of the encodings are all those
corresponding to ws

ρ extended with an arbitrary number of 0̄’s appended to its
end. For example, X1 : 0

X2 : 1 ,
X1 : 00
X2 : 10 ,

X1 : 000
X2 : 100,

X1 : 000 . . . 0
X2 : 100 . . . 0 are all encodings of the assignment

ρ = {X1 �→ ∅,X2 �→ {0}}. We use L(ϕ) ⊆ Σ∗
X to denote the language of all

encodings of a formula ϕ’s models, where X are the free variables of ϕ.
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For two sets X and Y of variables and any two symbols τ1, τ2 ∈ ΣX , we
write τ1 ∼Y τ2 iff ∀X ∈ X \ Y : τ1(X) = τ2(X), i.e. the two symbols differ (at
most) in the values of variables in Y. The relation ∼Y is generalized to words
such that w1 ∼Y w2 iff |w1| = |w2| and ∀1 ≤ i ≤ |w1| : w1[i] ∼Y w2[i]. For
a language L ⊆ Σ∗

X , we define πY(L) as the language of words w that are ∼Y -
equivalent with some word w′ ∈ L. Seen from the point of view of encodings of
sets of assignments, πY(L) encodes all assignments that may differ from those
encoded by L (only) in the values of variables from Y. If Y is disjoint with the
free variables of ϕ, then πY(L(ϕ)) corresponds to the so-called cylindrification
of L(ϕ), and if it is their subset, then πY(L(ϕ)) corresponds to the so-called
projection [21]. We use πY to denote π{Y } for a variable Y .

LV(ϕ ∨ ψ) = LV(ϕ) ∪ LV(ψ) (3)

LV(ϕ ∧ ψ) = LV(ϕ) ∩ LV(ψ) (4)

LV(¬ϕ) = Σ∗
V

\ LV(ϕ) (5)

LV(∃X : ϕ) = πX (LV(ϕ)) − 0̄∗ (6)

Consider formulae over the set V of vari-
ables. Let free(ϕ) be the set of free vari-
ables of ϕ, and let LV(ϕ) = πV\free(ϕ)(L(ϕ))
be the language L(ϕ) cylindrified wrt those
variables of V that are not free in ϕ. Let ϕ
and ψ be formulae and assume that LV(ϕ)
and LV(ψ) are languages of encodings of their models cylindrified wrt V. Lan-
guages of formulae obtained from ϕ and ψ using logical connectives are defined
by Eqs. (3) to (6). Equations (3)–(5) above are straightforward: Boolean connec-
tives translate to the corresponding set operators over the universe of encodings
of assignments of variables in V. Existential quantification ∃X : ϕ translates into
a composition of two language transformations. First, πX makes the valuations
of variables of X arbitrary, which intuitively corresponds to forgetting every-
thing about values of variables in X (notice that this is a different use of πX
than the cylindrification since here variables of X are free variables of ϕ). The
second step, removing suffixes of 0̄’s from the model encodings, is necessary since
πX (LV(ϕ)) might be missing some encodings of models of ∃X : ϕ. For exam-
ple, suppose that V = {X,Y } and the only model of ϕ is {X �→ {0}, Y �→ {1}},
yielding LV(ϕ) = X : 10

Y : 01

[
0
0

]∗. Then πY (LV(ϕ)) = X : 10
Y : ??

[
0
?

]∗ does not contain the short-
est encoding X : 1

Y : ? (where each ‘?’ denotes an arbitrary value) of the only model
{X �→ {0}} of ∃Y : ϕ. It only contains its variants with at least one 0̄ appended
to it. This generally happens for models of ϕ where the largest number in the
value of the variable Y being eliminated is larger than maximum number found
in the values of the free variables of ∃Y : ϕ. The role of the −0̄∗ quotient is to
include the missing encodings of models with a smaller number of trailing 0̄’s
into the language.

The standard approach to decide satisfiability of a WS1S formula ϕ with
the set of variables V is to construct an automaton Aϕ accepting LV(ϕ) and
check emptiness of its language. The construction starts with simple pre-defined
automata Aψ for ϕ’s atomic formulae ψ (see Fig. 2 for examples of automata
for selected atomic formulae and e.g. [21] for more details) accepting cylindri-
fied languages LV(ψ) of models of ψ. These are simple regular languages. The
construction then continues by inductively constructing automata Aϕ′ accepting
languages LV(ϕ′) of models for all other sub-formulae ϕ′ of ϕ, using Eqs. (3)–(6)
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above. The language operators used in the rules are implemented using standard
automata-theoretic constructions (see [21]).

4 Satisfiability via Language Term Evaluation

This section introduces the basic version of our symbolic algorithm for deciding
satisfiability of a WS1S formula ϕ with a set of variables V. Its optimized version
is the subject of the next section. To simplify presentation, we consider the
particular case of ground formulae (i.e. formulae without free variables), for
which satisfiability corresponds to validity. Satisfiability of a formula with free
variables can be reduced to this case by prefixing it with existential quantification
over the free variables. If ϕ is ground, the language LV(ϕ) is either Σ∗

V
in the

case ϕ is valid, or empty if ϕ is invalid. Then, to decide the validity of ϕ, it
suffices to test if ε ∈ LV(ϕ).

Our algorithm evaluates the so-called language term tϕ, a symbolic represen-
tation of the language LV(ϕ), whose structure reflects the construction of Aϕ.
It is a (finite) term generated by the following grammar:

t ::= A | t∪ t | t ∩ t | t | πX (t) | t− α | t −α∗ | T

where A is a finite automaton over the alphabet ΣV, α is a symbol τ ∈ ΣV or
a set S ⊆ ΣV of symbols, and T is a finite set of terms. We use marked variants
of the operators to distinguish the syntax of language terms manipulated by
our algorithm from the cases when we wish to denote the semantical meaning
of the operators. A term of the form t− α∗ is called a star quotient, or shortly
a star, and a term t − τ is a symbol quotient. Both are also called quotients. The
language L(t) of a term t is obtained by taking the languages of the automata
in its leaves and combining them using the term operators. Terms with the
same language are language-equivalent. The special terms T , having the form of
a set, represent intermediate states of fixpoint computations used to eliminate
star quotients. The language of a set T equals the union of the languages of
its elements. The reason for having two ways of expressing a union of terms
is a different treatment of ∪ and T , which will be discussed later. We use the
standard notion of isomorphism of two terms, extended with having two set
terms isomorphic iff they contain isomorphic elements.

A formula ϕ is initially transformed into the term tϕ by replacing every
atomic sub-formula ψ in ϕ by the automaton Aψ accepting LV(ψ), and by replac-
ing the logical connectives with dotted term operators according to Eqs. (3)–(6)
of Sect. 3.2. The core of our algorithm is evaluation of the ε-membership query
ε ∈ tϕ, which will also trigger further rewriting of the term.
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ε ∈ T iff ε ∈ t for some t ∈ T (7)
ε ∈ t ∪ t′ iff ε ∈ t or ε ∈ t′ (8)
ε ∈ t ∩ t′ iff ε ∈ t and ε ∈ t′ (9)

ε ∈ t iff not ε ∈ t (10)
ε ∈ πX (t) iff ε ∈ t (11)

ε ∈ A iff I(A) ∩ F (A) �= ∅ (12)

The ε-membership query on a quo-
tient-free term is evaluated using equiv-
alences (7) to (12). Equivalences (7) to
(11) reduce tests on terms to Boolean
combinations of tests on their sub-terms
and allow pushing the test towards the
automata at the term’s leaves. Equiva-
lence (12) then reduces it to testing intersection of the initial states I(A) and
the final states F (A) of an automaton.

Equivalences (7) to (11) do not apply to quotients, which arise from quantified
sub-formulae (cf. Eq. (6) in Sect. 3.2). A quotient is therefore (in the basic ver-
sion) first rewritten into a language-equivalent quotient-free form. This rewriting
corresponds to saturating the set of final states of an automaton in the explicit
decision procedure with all states in their pre∗-image over 0̄. In our procedure,
we use rules (13) and (14).

πX (T )− 0̄∗ → πX (T −πX (0̄)∗) (13)Rule (13) transforms the term into
a form in which a star quotient is
applied on a plain set of terms rather than on a projection. A star quotient
of a set is then eliminated using a fixpoint computation that saturates the set
with all quotients of its elements wrt the set of symbols S = πX (0̄). A single
iteration is implemented using rule (14).

T −S∗ →
{

T if T � S � T
(T ∪ (T � S))− S∗ otherwise (14)

There, T � S is the
set {t − τ | t ∈ T ∧
τ ∈ S} of quotients
of terms in T wrt symbols of S. (Note that (14) uses the identity S∗ = {ε}∪S∗S.)
Termination of the fixpoint computation is decided based on the subsumption
relation �, which is some relation that under-approximates language inclusion of
terms. When the condition holds, then the language of T is stable wrt quotienting
by S, i.e. L(T ) = L(T − S∗). In the basic algorithm, we use term isomorphism for
�; later, we provide a more precise subsumption relation with a good trade-off
between precision and cost. Note that an iteration of rule (14) can be imple-
mented efficiently by the standard worklist algorithm, which extends T only
with quotients T ′ �S of terms T ′ that were added to T in the previous iteration.

(t∪ t′)− τ → (t − τ)∪(t′ − τ) (15)
(t∩ t′)− τ → (t − τ)∩(t′ − τ) (16)

t − τ → t − τ (17)
πX (t)− τ → πX (t − πX (τ)) (18)

A − τ → pre [τ ](A) (19)

The set T � S introduces quotient
terms of the form t− τ , for τ ∈ ΣV,
which also need to be eliminated to facil-
itate the ε-membership test. This is done
using rewriting rules (15) to (19), where
pre [τ ](A) is A with its set of final states
F replaced by pre [τ ](F ).

If t is quotient-free, then rules (15)–(18) applied to t − τ push the symbol
quotient down the structure of t towards the automata in the leaves, where it is
eliminated by rule (19). Otherwise, if t is not quotient-free, it can be re-written
using rules (13)–(19). In particular, if t is a star quotient of a quotient-free term,
then the quotient-free form of t can be obtained by iterating rule (14), combined
with rules (15)–(19) to transform the new terms in T into a quotient-free form.
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Fig. 1. Example of deciding validity of the formula ϕ ≡ ∃X : Sing(X) ∧ (∃Y : Y =
X + 1) (Color figure online)

Finally, terms with multiple quotients can be rewritten to the quotient-free form
inductively to their structure. Every inductive step rewrites some star quotient
of a quotient-free sub-term into the quotient-free form. Note that this procedure
is bound to terminate since the terms generated by quotienting a star have the
same structure as the original term, differing only in the states in their leaves.
As the number of the states is finite, so is the number of the terms.

p q

[X: 0 ] [X: 0 ][X: 1 ]

a) ASing(X)

r s t

[
X : 0
Y : 0

] [
X : 0
Y : 0

]

[
X : 1
Y : 0

] [
X : 0
Y : 1

]

b) AY=X+1

Fig. 2. Example automata

Example 1. We will show the workings of our proce-
dure using an example of testing satisfiability of the
formula ϕ ≡ ∃X.Sing(X) ∧ (∃Y. Y = X + 1). We
start by rewriting ϕ into a term tϕ representing its
language LV(ϕ):

tϕ ≡ πX({{q}∩ πY ({t}− πY (0̄)∗)} −πX(0̄)∗)

(we have already used rule (13) twice). In the exam-
ple, a set R of states will denote an automaton
obtained from ASing(X) or AY =X+1 (cf. Fig. 2) by
setting the final states to R. Red nodes in the computation tree denote ε-
membership tests that failed and green nodes those that succeeded. Grey nodes
denote tests that were not evaluated.

As noted previously, it holds that |= ϕ iff ε ∈ tϕ. The sequence of computation
steps for determining the ε-membership test is shown using the computation tree
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in Fig. 1. The nodes contain ε-membership tests on terms and the test of each
node is equivalent to a conjunction or disjunction of tests of its children. Leafs of
the form ε ∈ R are evaluated as testing intersection of R with the initial states
of the corresponding automaton. In the example, we also use the lazy evaluation
technique (described in Sect. 5.2), which allows us to evaluate ε-membership tests
on partially computed fixpoints.

The computation starts at the root of the tree and proceeds along the edges in
the order given by their circled labels. Edges 2 and 4 were obtained by a partial
unfolding of a fixpoint computation by rule (14) and immediately applying ε-
membership test on the obtained terms. After step 3 , we conclude that ε /∈ {q}
since {p}∩{q} = ∅, which further refutes the whole conjunction below 2 , so the
overall result depends on the sub-tree starting by 4 . The steps 5 and 9 are
another application of rule (14), which transforms πX(0̄) to the symbols

[
X : 0
Y : 0

]

and
[
X : 1
Y : 0

]
respectively. The branch 5 pushes the − [

X : 0
Y : 0

]
quotient to the leaf term

using rules (16) and (9) and eventually fails because the predecessors of {q} over
the symbol

[
X : 0
Y : 0

]
in ASing(X) is the empty set. On the other hand, the evaluation

of the branch 9 continues using rule (16), succeeding in the branch 10 . The
branch 12 is further evaluated by projecting the quotient − [

X : 1
Y : 0

]
wrt Y (rule 18)

and unfolding the inner star quotient zero times ( 14 , failed) and once ( 16 ).
The unfolding of one symbol eventually succeeds in step 19 , which leads to
concluding validity of ϕ. Note that thanks to the lazy evaluation, none of the
fixpoint computations had to be fully unfolded. ��

5 An Efficient Algorithm

In this section, we show how to build an efficient algorithm based on the symbolic
term rewriting approach from Sect. 4. The optimization opportunities offered by
the symbolic approach are to a large degree orthogonal to those of the explicit
approach. The main difference is in the available techniques for reducing the
explored automata state space. While the explicit construction in Mona prof-
its mainly from calling automata minimization after every step of the inductive
construction, the symbolic algorithm can use generalized subsumption and lazy
evaluation. None of the two approaches seems to be compatible with both these
techniques (at least in their pure variant, disregarding the possibility of a com-
bination of the two approaches discussed below).

Efficient data structures have a major impact on performance of the decision
procedure. The efficiency of the explicit procedure implemented in Mona is to a
large degree due to the BDD-based representation of automata transition rela-
tions. BDDs compactly represent transition functions over large alphabets and
provide efficient implementation of operations needed in the explicit algorithm.
Our symbolic algorithm can, on the other hand, benefit from a representation
of terms as DAGs where all occurrences of the same sub-term are represented
by a unique DAG node. Moreover, we assume the nodes to be associated with
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languages rather than with concrete terms (allowing the term associated with a
node to change during its further processing, without a need to transform the
DAG structure as long as the language of the term does not change).

We also show that despite our algorithm uses a completely different data
structure than the explicit one, it can still exploit a BDD-based representation
of transitions of the automata in the leaves of terms. Moreover, our symbolic
algorithm can also be combined with the explicit algorithm. Particularly, it turns
out that, sometimes, it pays off to translate to automata sub-formulae larger
than the atomic ones. Our procedure can then be viewed as an extension of
Mona that takes over once Mona stops managing. Lastly, optimizations on the
level of formulae often have a huge impact on the performance of our algorithm.
The technique that we found most helpful is the so-called anti-prenexing. We
elaborate on all these optimizations in the rest of this section.

5.1 Subsumption

Our first technique for reducing the explored state space is based on the notion
of subsumption between terms, which is similar to the subsumption used in
antichain-based universality and inclusion checking over finite automata [10].
We define subsumption as the relation �s on terms that is given by equiva-
lences (20)–(25). Notice that, in rule (20), all terms of T are tested against all
terms of T ′, while in rule (21), the left-hand side term t1 is not tested against
the right-hand side term t′2 (and similarly for t2 and t′1).

T �s T ′ iff ∀t ∈ T ∃t′ ∈ T ′ : t �s t′ (20)
t1 ∪ t2 �s t′1 ∪ t′2 iff t1 �s t′1 and t2 �s t′2 (21)
t1 ∩ t2 �s t′1 ∩ t′2 iff t1 �s t′1 and t2 �s t′2 (22)

t �s t′ iff t �s t′ (23)
πX (t) �s πX (t′) iff t �s t′ (24)

A �s A′ iff F (A) ⊆ F (A′) (25)

The reason why ∪ is
order-sensitive is that the
terms on different sides of
the ∪ are assumed to be
built from automata with
disjoint sets of states (orig-
inating from different sub-
formulae of the original for-
mula), and hence the sub-
sumption test on them can never conclude positively. The subsumption under-
approximates language inclusion and can therefore be used for � in rule (14). It
is far more precise than isomorphism and its use leads to an earlier termination
of fixpoint computations.

T → T \ {t} if there is t′ ∈ T \ {t} with t �s t′ (26)
Moreover, �s can

be used to prune star
quotient terms T −S∗ while preserving their language. Since the semantics of
the set T is the union of the languages of its elements, then elements subsumed
by others can be removed while preserving the language. T can thus be kept in
the form of an antichain of �s-incomparable terms. The pruning corresponds to
using the rewriting rule (26).
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5.2 Lazy Evaluation

The top-down nature of our technique allows us to postpone evaluation of some
of the computation branches in case the so-far evaluated part is sufficient for
determining the result of the evaluated ε-membership or subsumption test. We
call this optimization lazy evaluation. A basic variant of lazy evaluation short-
circuits elimination of quotients from branches of ∪ and ∩. When testing whether
ε ∈ t ∪ t′ (rule (8)), we first evaluate, e.g., the test ε ∈ t, and when it holds, we
can completely avoid exploring t′ and evaluating quotients there. When testing
ε ∈ t ∩ t′, we can proceed analogously if one of the two terms is shown not to
contain ε. Rules (21) and (22) offer similar opportunities for short-circuiting
evaluation of subsumption of ∪ and ∩.

Let us note that subsumption is in a different position than ε-membership
since correctness of our algorithm depends on the precision of the ε-membership
test, but subsumption may be evaluated in any way that under-approximates
inclusion of languages of terms (and over-approximates isomorphism in order
to guarantee termination). Hence, ε-membership test must enforce eliminating
quotients until it can conclude the result, while there is a choice in the case of
the subsumption. If subsumption is tested on quotients, it can either eliminate
them, or it can return the (safe) negative answer. However, this choice comes
with a trade-off. Subsumption eliminating quotients is more expensive but also
more precise. The higher precision allows better pruning of the state space and
earlier termination of fixpoint computation, which, according to our empirical
experience, pays off.

Lazy evaluation can also reduce the number of iterations of a star. The iter-
ations can be computed on demand, only when required by the tests. The idea
is to try to conclude a test ε ∈ T −S∗ based on the intermediate state T of the
fixpoint computation. This can be done since L(T ) always under-approximates
L(T − S∗), hence if ε ∈ L(T ), then ε ∈ L(T −S∗). Continuing the fixpoint com-
putation is then unnecessary.

The above mechanism alone is, however, rather insufficient in the case
of nested stars. Assume that an inner star fixpoint computation was termi-
nated in a state T −S∗ when ε was found in T for the first time. Every
unfolding of an outer star then propagates − τ quotients towards T −S∗.
We have, however, no way of eliminating it from (T −S∗)− τ other than
finishing the unfolding of T − S∗ first (which eliminates the inner star).
The need to fully unfold T − S∗ would render the earlier lazy evaluation
of the ε-membership test worthless. To remove this deficiency, we need a
way of eliminating the − τ quotient from the intermediate state of T −S∗.

T − S∗ → T − S∗ � T (27)
ε ∈ t � t′ if ε ∈ t′ (28)

t � T ��s t′ if T ��s t′ (29)
t � T �s t′ if T �s t′ (30)

The elimination is achieved by letting the star
quotient T −S∗ explicitly “publish” its interme-
diate state T using rule (27). The symbol � is
read as “is under-approximated by.” Rules (28)–
(30) allow to conclude ε-membership and sub-
sumption by testing the under-approximation on
its right-hand side (notice the distinction between “if” and the “iff” used in the
rules earlier).
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(t � T )− S → ((t � T )− S) � T � S (31)Symbol quotients that come
from the unfolding of an outer
star can be evaluated on the approximation too using rule (31),
which then applies the symbol-set quotient on the approximation T
of the inner term t, and publishes the result on the right-hand side
of �. The left-hand side still remembers the original term t− S.

Terms arising from rules (27) and (31) allow an efficient update in the case an
inner term t spawns a new, more precise approximation. In the process, rule (32)
is used to remove old outdated approximations.

T � T ′ → T (32)We will explain the working of the rules and their effi-
cient implementation on an evaluation from Example 1.
Note that in Example 1, the partial unfoldings of the fixpoints that are tested for
ε-membership are under-approximations of a star quotient term. For instance,
branch 14 corresponds to testing ε-membership in the right-most approxima-

tion of the term
((

({t}− πY (0̄)∗) � {t}) − [
X : 1
Y : 0

])
� {t}− [

X : 1
Y : 0

]
by rule (28)

(the branch determines that ε /∈ {t}− [
X : 1
Y : 0

]
). The result of 14 cannot con-

clude the top-level ε-membership test because {t}− [
X : 1
Y : 0

]
is just an under-

approximation of ({t}− πY (0̄)∗)− [
X : 1
Y : 0

]
. Therefore, we need to compute a better

approximation of the term and try to conclude the test on it. We compute it
by first applying rule (32) twice to discard obsolete approximations ({t} and
{t}− [

X : 1
Y : 0

]
), followed by applying rule (14) to replace ({t}− πY (0̄)∗)− [

X : 1
Y : 0

]
with(

({t} ∪ ({t} � πY (0̄)))− πY (0̄)∗) − [
X : 1
Y : 0

]
. Let β = {t} ∪ ({t} � πY (0̄)). Then,

using rules (27) and (31), we can rewrite the term
(
β −πY (0̄)∗) − [

X : 1
Y : 0

]
into((

β − πY (0̄)∗ � β
) − [

X : 1
Y : 0

])
� β � [

X : 1
Y : 0

]
, where β � [

X : 1
Y : 0

]
is the approximation

used in step 16 , and re-evaluate the ε-membership test on it.
Implemented näıvely, the computation of subsequent approximations of fix-

points would involve a lot of redundancy, e.g., in β − [
X : 1
Y : 0

]
we would need to

recompute the term {t}− [
X : 1
Y : 0

]
, which was already computed in step 15 . The

mechanism can, however, be implemented efficiently so that it completely avoids
the redundant computations. Firstly, we can maintain a cache of already eval-
uated terms and never evaluate the same term repeatedly. Secondly, suppose
that a term t− S∗ has been unfolded several times into intermediate states
(T1 = {t})− S∗, T2 −S∗, . . . , Tn − S∗. One more unfolding using (14) would
rewrite Tn − S∗ into Tn+1 = (Tn ∪ (Tn � S))− S∗. When computing the set
Tn � S, however, we do not need to consider the whole set Tn, but only those
elements that are in Tn and are not in Tn−1 (since Tn = Tn−1 ∪ (Tn−1 � S), all
elements of Tn−1 � S are already in Tn). Thirdly, in the DAG representation of
terms described in Sect. 5.3, a term (T ∪ (T � S))− S∗ � T ∪ (T � S) is repre-
sented by the set of terms obtained by evaluating T � S, a pointer to the term
T −S∗ (or rather to its associated DAG node), and the set of symbols S. The
cost of keeping the history of quotienting together with the under-approximation
(on the right-hand side of �) is hence only a pointer and a set of symbols.
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5.3 Efficient Data Structures

We describe two important techniques used in our implementation that concern
(1) representation of terms and (2) utilisation of BDD-based symbolic represen-
tation of transition functions of automata in the leaves of the terms.

Representation of Language Terms. We keep the term in the form of a DAG such
that all isomorphic instances of the same term are represented as a unique DAG
node, and, moreover, when a term is rewritten into a language-equivalent one,
it is still associated with the same DAG node. Newly computed sub-terms are
always first compared against the existing ones, and, if possible, associated with
an existing DAG node of an existing isomorphic term. The fact that isomorphic
terms are always represented by the same DAG node makes it possible to test
isomorphism of a new and previously processed term efficiently—it is enough to
test that their direct sub-terms are represented by identical DAG nodes (let us
note that we do not look for language equivalent terms because of the high cost
of such a check).

We also cache results of membership and subsumption queries. The key to the
cache is the identity of DAG nodes, not the represented sub-terms, which has the
advantage that results of tests over a term are available in the cache even after
it is rewritten according to → (as it is still represented by the same DAG node).
The cache together with the DAG representation is especially efficient when
evaluating a new subsumption or ε-membership test since although the result is
not in the cache, the results for its sub-terms often are. We also maintain the
cache of subsumptions closed under transitivity.

BDD-Based Symbolic Automata. Coping with large sets of symbols is central
for our algorithm. Notice that rules (14) and (18) compute a quotient for each
of the symbols in the set πX (τ) separately. Since the number of the symbols is
2|X |, this can easily make the computation infeasible.

Mona resolves this by using a BDD-based symbolic representation of tran-
sition relations of automata as follows: The alphabet symbols of the automata
are assignments of Boolean values to the free variables X1, . . . , Xn of a for-
mula. The transitions leading from a state q can be expressed as a function
fq : 2{X1,...,Xn} → Q from all assignments to states such that (q, τ, q′) ∈ δq

iff fq(τ) = q′. The function fq is encoded as a multi-terminal BDD (MTBDD)
with variables X1, . . . , Xn and terminals from the set Q (essentially, it is a DAG
where a path from the root to a leaf encodes a set of transitions). The BDD apply
operation is then used to efficiently implement the computation of successors of
a state via a large set of symbols, and to facilitate essential constructions such as
product, determinization, and minimization. We use Mona to create automata
in leaves of our language terms. To fully utilize their BDD-based symbolic rep-
resentation, we had to overcome the following two problems.

First, our algorithm computes predecessors of states, while the BDDs of
Mona are meant to compute successors. To use apply to compute backwards,
the BDDs would have to be turned into a representation of the inverted transition
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function. This is costly and, according to our experience, prone to produce much
larger BDDs. We have resolved this by only inverting the edges of the original
BDDs and by implementing a variant of apply that runs upwards from the
leaves of the original BDDs, against the direction of the original BDD edges.
It cannot be as efficient as the normal apply because, unlike standard BDDs,
the DAG that arises by inverting BDD edges is nondeterministic, which brings
complications. Nevertheless, it still allows an efficient implementation of pre that
works well in our implementation.

A more fundamental problem we are facing is that our algorithm can use
apply to compute predecessors over the compact representation provided by
BDDs only on the level of explicit automata in the leaves of terms. The symbols
generated by projection during evaluation of complex terms must be, on the
contrary, enumerated explicitly. For instance, the projection πX (t) with X =
{X1, . . . , Xn} generates 2n symbols, with no obvious option for reduction. The
idea to overcome this explosion is to treat nodes of BDDs as regular automata
states. Intuitively, this means replacing words over ΣX that encode models of
formulae by words over the alphabet {0, 1}: every symbol τ ∈ ΣX is replaced
by the string τ over {0, 1}. Then, instead of computing a quotient over, e.g.,
the set πX (0̄) of the size 2n, we compute only quotients over the 0’s and 1’s.
Each quotienting takes us only one level down in the BDDs representing the
transition relation of the automata in the leaves of the term. For every variable
Xi, we obtain terms over nodes on the i-th level of the BDDs as −0 and −1
quotients of the terms at the level i− 1. The maximum number of terms in each
level is thus 2i. In the worst case, this causes roughly the same blow-up as when
enumerating the “long” symbols. The advantage of this techniques is, however,
that the blow-up can now be dramatically reduced by using subsumption to
prune sets of terms on the individual BDD levels.

5.4 Combination of Symbolic and Explicit Algorithms

It is possible to replace sub-terms of a language term by a language-equivalent
automaton built by the explicit algorithm before starting the symbolic algorithm.
The main benefit of this is that the explicitly constructed automata have a sim-
pler flat structure and can be minimized. The minimization, however, requires
to explicitly construct the whole automaton, which might, despite the benefit
of minimization, be a too large overhead. The combination hence represents
a trade-off between the lazy evaluation and subsumption of the symbolic algo-
rithm, and minimization and flat automata structure of the explicit one. The
overall effect depends on the strategy of choice of the sub-formulae to be trans-
lated into automata, and, of course, on the efficiency of the implementation of
the explicit algorithm (where we can leverage the extremely efficient implemen-
tation of Mona). We mention one particular strategy for choosing sub-formulae
in Sect. 6.
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5.5 Anti-prenexing

Before rewriting an input formula to a symbolic term, we pre-process the formula
by moving quantifiers down by several language-preserving identities (which we
call anti-prenexing). We, e.g., change ∃X. (ϕ∧ψ) into ϕ∧(∃X. ψ) if X is not free
in ϕ. Moving a quantifier down in the abstract syntax tree of a formula speeds up
the fixpoint computation induced by the quantifier. In effect, one costlier fixpoint
computation is replaced by several cheaper computations in the sub-formulae.
This is almost always helpful since if the original fixpoint computation unfolds,
e.g., a union of two terms, the two fixpoint computations obtained by anti-
prenexing will each unfold only one operand of the union. The number of union
terms in the original fixpoint is roughly the product of the numbers of terms in
the simpler fixpoints. Further, in order to push quantifiers even deeper into the
formula, we reorder the formula by several heuristics (e.g. group sub-formulae
with free occurrences of the same variable in a large conjunction) and move
negations down in the structure towards the leaves using De Morgan’s laws.

6 Experiments

Table 1. UABE experiments
Mona Gaston

Formula Time Space Time Space

a-a 1.71 30 253 >2m >2m

ex10 7.71 131 835 12.67 82 236

ex11 4.40 2 393 0.18 4 156

ex12 0.13 2 591 6.31 68 159

ex13 0.04 2 601 1.19 16 883

ex16 0.04 3 384 0.28 3 960

ex17 3.52 165 173 0.17 3 952

ex18 0.27 19 463 >2m >2m

ex2 0.18 26 565 0.01 1 841

ex20 1.46 1 077 0.27 12 266

ex21 1.68 30 253 >2m >2m

ex4 0.08 6 797 0.50 22 442

ex6 4.05 27 903 22.69 132 848

ex7 0.90 857 0.01 594

ex8 7.69 106 555 0.03 1 624

ex9 7.16 586 447 9.41 412 417

fib 0.10 8 128 24.19 126 688

We have implemented the proposed app-
roach in a prototype tool Gaston1,
Our tool uses the front-end of Mona
to parse input formulae, to construct
their abstract syntax trees, and also
to construct automata for sub-formulae
(as mentioned in Sect. 5.4). From several
heuristics for choosing the sub-formulae
to be converted to automata by Mona,
we converged to converting only quan-
tifier free sub-formulae and negations of
innermost quantifiers to automata since
Mona can usually handle them without
any explosion. Gaston, together with all
the benchmarks described below and their
detailed results, is freely available [22].

We compared Gaston’s performance
with that of Mona, dWiNA implement-
ing our older approach [18], Toss implementing the method of [19], and the
implementations of the decision procedures of [20] and [15] (which we denote
as Coalg and SFA, respectively).2 In our experiments, we consider formulae
1 The name was chosen to pay homage to Gaston, an Africa-born brown fur seal who

escaped the Prague Zoo during the floods in 2002 and made a heroic journey for
freedom of over 300 km to Dresden. There he was caught and subsequently died due
to exhaustion and infection.

2 We are not comparing with jMosel [13] as we did not find it available on the
Internet.
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obtained from various formal verification tasks as well as parametric families of
formulae designed to stress-test WS1S decision procedures.3 We performed the
experiments on a machine with the Intel Core i7-2600@3.4 GHz processor and
16 GiB RAM running Debian GNU/Linux.

Table 2. Strand experiments
Mona Gaston

Formula Time Space Time Space

bs-loop-else 0.05 14 469 0.04 2 138

bs-loop-if-else 0.19 61 883 0.08 3 207

bs-loop-if-if 0.38 127 552 0.18 5 428

sl-insert-after-loop 0.01 2 634 0.36 5 066

sl-insert-before-head 0.01 678 0.01 541

sl-insert-before-loop 0.01 1 448 0.01 656

sl-insert-in-loop 0.02 5 945 0.01 1 079

sl-reverse-after-loop 0.01 1 941 0.01 579

sl-search-in-loop 0.08 23 349 0.03 3 247

Table 1 contains results of
our experiments with formu-
lae from the recent work [24]
(denoted as UABE below),
which uses WS1S to rea-
son about programs with
unbounded arrays. Table 2
gives results of our experi-
ments with formulae derived
from the WS1S-based shape
analysis of [2] (denoted as
Strand). In the table, we use
sl to denote Strand formulae over sorted lists and bs for formulae from verifi-
cation of the bubble sort procedure. For this set of experiments, we considered
Mona and Gaston only since the other tools were missing features (e.g., atomic
predicates) needed to handle the formulae. In the UABE benchmark, Gaston was
used with the last optimization of Sect. 5.3 (treating MTBDD nodes as automata
states) to efficiently handle quantifiers over large numbers of variables. In par-
ticular, without the optimization, Gaston hit 11 more timeouts. On the other
hand, this optimization was not efficient (and hence not used) in Strand.

The tables compare the overall time (in seconds) the tools needed to decide
the formulae, and they also try to characterize the sizes of the generated state
spaces. For the latter, we count the overall number of states of the generated
automata for Mona, and the overall number of generated sub-terms for Gaston.
The tables contain just a part of the results, more can be found in [22]. We use
>2m in case the running time exceeded 2 min, oom to denote that the tool ran out
of memory, +k to denote that we added k quantifier alternations to the original
benchmark, and N/A to denote that the benchmark requires some feature or
atomic predicate unsupported by the given tool. On Strand, Gaston is mostly
comparable, in two cases better, and in one case worse than Mona. On UABE,
Gaston outperformed Mona on six out of twenty-three benchmarks, it was
worse on ten formulae, and comparable on the rest. The results thus confirm
that our approach can defeat Mona in practice.

3 We note that Gaston currently does not perform well on formulae with many
Boolean variables and M2L formulae appearing in benchmarks such as Secrets [11]
or Strand2 [1,23], which are not included in our experiments. To handle such formu-
lae, further optimizations of Gaston such as Mona’s treatment of Boolean variables
via a dedicated transition are needed.
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Table 3. Experiments with parametric families of formulae
Benchmark Src Mona dWiNA Toss Coalg SFA Gaston

HornLeq [15] oom(18) 0.03 0.08 >2m(08) 0.03 0.01

HornLeq (+3) [15] oom(18) >2m(11) 0.16 >2m(07) >2m(11) 0.01

HornLeq (+4) [15] oom(18) >2m(13) 0.04 >2m(06) >2m(11) 0.01

HornIn [19] oom(15) >2m(11) 0.07 >2m(08) >2m(08) 0.01

HornTrans [18] 86.43 >2m(14) N/A N/A 38.56 1.06

SetSingle [18] oom(04) >2m(08) 0.10 N/A >2m(03) 0.01

Ex8 [24] oom(08) N/A N/A N/A N/A 0.15

Ex11(10) [24] oom(14) N/A N/A N/A N/A 1.62

The second part
of our experiments
concerns parametric
families of WS1S
formulae used for
evaluation in [15,18,
19], and also para-
meterized versions
of selected UABE for-
mulae [24]. Each of these families has one parameter (whose meaning is explained
in the respective works). Table 3 gives times needed to decide instances of the
formulae for the parameter having value 20. If the tools did not manage this
value of the parameter, we give in parentheses the highest value of the parame-
ter for which the tools succeeded. More results are available in [22]. In this set of
experiments, Gaston managed to win over the other tools on many of their own
benchmark formulae. In the first six rows of Table 3, the superior efficiency of
Gaston was caused mainly by anti-prenexing. It turns out that this optimiza-
tion of the input formula is universally effective. When run on anti-prenexed
formulae, the performance of the other tools was comparable to that of Gas-
ton. The last two benchmarks (parameterized versions of formulae from UABE)
show, however, that Gaston’s performance does not stand on anti-prenexing
only. Despite that its effect here was negligable (similarly as for all the original
benchmarks from UABE and Strand), Gaston still clearly outperformed Mona.
We could not compare with other tools on these formulae due to a missing
support of the used features (e.g. constants).
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3. Iosif, R., Rogalewicz, A., Šimáček, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21–38. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 2

4. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

5. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data struc-
tures. In: POpPL 2008, pp. 349–361. ACM (2008)

6. Hamza, J., Jobstmann, B., Kuncak, V.: Synthesis for regular specifications over
unbounded domains. In: FMCAD 2010, pp. 101–109. IEEE (2010)

http://dx.doi.org/10.1007/978-3-642-23702-7_8
http://dx.doi.org/10.1007/978-3-642-38574-2_2


Lazy Automata Techniques for WS1S 425

7. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: new techniques for WS1S and
WS2S. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 516–520.
Springer, Heidelberg (1998). doi:10.1007/BFb0028773

8. Meyer, A.R.: Weak monadic second order theory of successor is not elementary-
recursive. In: Parikh, R. (ed.) Logic Colloquium. LNM, vol. 453, pp. 132–154.
Springer, Heidelberg (1972). doi:10.1007/BFb0064872
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Abstract. Controller synthesis for general linear temporal logic (LTL)
objectives is a challenging task. The standard approach involves trans-
lating the LTL objective into a deterministic parity automaton (DPA) by
means of the Safra-Piterman construction. One of the challenges is the
size of the DPA, which often grows very fast in practice, and can reach
double exponential size in the length of the LTL formula. In this paper we
describe a single exponential translation from limit-deterministic Büchi
automata (LDBA) to DPA, and show that it can be concatenated with a
recent efficient translation from LTL to LDBA to yield a double exponen-
tial, “Safraless” LTL-to-DPA construction. We also report on an imple-
mentation, a comparison with the SPOT library, and performance on
several sets of formulas, including instances from the 2016 SyntComp
competition.

1 Introduction

Limit-deterministic Büchi automata (LDBA, also known as semi-deterministic
Büchi automata) were introduced by Courcoubetis and Yannakakis (based on
previous work by Vardi) to solve the qualitative probabilistic model-checking
problem: Decide if the executions of a Markov chain or Markov Decision Process
satisfy a given LTL formula with probability 1 [Var85,VW86,CY95]. The prob-
lem faced by these authors was that fully nondeterministic Büchi automata
(NBAs), which are as expressible as LTL, and more, cannot be used for proba-
bilistic model checking, and deterministic Büchi automata (DBA) are less expres-
sive than LTL. The solution was to introduce LDBAs as a model in-between: as
expressive as NBAs, but deterministic enough.

After these papers, LDBAs received little attention. The alternative path
of translating the LTL formula into an equivalent fully deterministic Rabin
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automaton using Safra’s construction [Saf88] was considered a better option,
mostly because it also solves the quantitative probabilistic model-checking prob-
lem (computing the probability of the executions that satisfy a formula). How-
ever, recent papers have shown that LDBAs were unjustly forgotten. Blahoudek
et al. have shown that LDBAs are easy to complement [BHS+16]. Kini and
Viswanathan have given a single exponential translation of LTL\GU to LDBA
[KV15]. Finally, Sickert et al. describe in [SEJK16] a double exponential trans-
lation for full LTL that can also be applied to the quantitative case, and behaves
better than Safra’s construction in practice.

In this paper we add to this trend by showing that LDBAs are also attractive
for synthesis. The standard solution to the synthesis problem with LTL objec-
tives consists of translating the LTL formula into a deterministic parity automa-
ton (DPA) with the help of the Safra-Piterman construction [Pit07]. While limit-
determinism is not “deterministic enough” for the synthesis problem, we intro-
duce a conceptually simple and worst-case optimal translation LDBA→DPA.
Our translation bears some similarities with that of [Fin15] where, however, a
Muller acceptance condition is used. This condition can also be phrased as a
Rabin condition, but not as a parity condition. Moreover, the way of tracking
all possible states and finite runs differs.

Together with the translation LTL→LDBA of [SEJK16], our construction
provides a “Safraless”, procedure to obtain a DPA from an LTL formula. How-
ever, the direct concatenation of the two constructions does not yield an algo-
rithm of optimal complexity: the LTL→LDBA translation is double exponential
(and there is a double-exponential lower bound), and so for the LTL→DPA
translation we only obtain a triple exponential bound. In the second part of
the paper we solve this problem. We show that the LDBAs derived from LTL
formulas satisfy a special property, and prove that for such automata the con-
catenation of the two constructions remains double exponential. To the best of
our knowledge, this is the first double exponential “Safraless” LTL→DPA pro-
cedure. (Another asymptotically optimal “Safraless” procedure for determiniza-
tion of Büchi automata with Rabin automata as target has been presented in
[FKVW15].)

In the third and final part, we report on the performance of an implemen-
tation of our LTL→LDBA→DPA construction, and compare it with algorithms
implemented in the SPOT library [DLLF+16]. Note that it is not possible to
force SPOT to always produce DPA, sometimes it produces a deterministic gen-
eralized Büchi automaton (DGBA). The reason is that DGBA are often smaller
than DPA (if they exist) and game-solving algorithms for DGBA are not less
efficient than for DPA. Therefore, also our implementation may produce DGBA
in some cases. We show that our implementation outperforms SPOT for sev-
eral sets of parametric formulas and formulas used in synthesis examples taken
from the SyntComp 2016 competition, and remains competitive for randomly
generated formulas.

Structure of the Paper. Section 2 introduces the necessary preliminaries
about automata. Section 3 defines the translation LDBA→DPA. Section 4 shows



428 J. Esparza et al.

how to compose of LTL→LDBA and LDBA→DPA in such a way that the result-
ing DPA is at most doubly exponential in the size of the LTL formula. Section 5
reports on the experimental evaluation of this worst-case optimal translation,
and Sect. 6 contains our conclusions. Several proofs and more details on the
implementation can be found in [EKRS17].

2 Preliminaries

Büchi Automata. A (nondeterministic) ω-word automaton A with Büchi
acceptance condition (NBA) is a tuple (Q, q0, Σ, δ, α) where Q is a finite set
of states, q0 ∈ Q is the initial state, Σ is a finite alphabet, δ ⊆ Q × Σ × Q is
the transition relation, and α ⊆ δ is the set of accepting transitions1. W.l.o.g.
we assume that δ is total in the following sense: for all q ∈ Q, for all σ ∈ Σ,
there exists q′ ∈ Q such that (q, σ, q′) ∈ δ. A is deterministic if for all q ∈ Q,
for all σ ∈ Σ, there exists a unique q′ ∈ Q such that (q, σ, q′) ∈ δ. When δ is
deterministic and total, it can be equivalently seen as a function δ : Q×Σ → Q.
Given S ⊆ Q and σ ∈ Σ, let postσδ (S) = {q′ | ∃q ∈ S · (q, σ, q′) ∈ δ}.

A run of A on a ω-word w : N → Σ is a ω-sequence of states ρ : N → Q such
that ρ(0) = q0 and for all positions i ∈ N, we have that (ρ(i), w(i), ρ(i + 1)) ∈ δ.
A run ρ is accepting if there are infinitely many positions i ∈ N such that
(ρ(i), w(i), ρ(i+1)) ∈ α. The language defined by A, denoted by L(A), is the set
of ω-words w for which A has an accepting run.

A limit-deterministic Büchi automaton (LDBA) is a Büchi automaton A =
(Q, q0, Σ, δ, α) such that there exists a subset Qd ⊆ Q satisfying the three fol-
lowing properties:

1. α ⊆ Qd × Σ × Qd, i.e. all accepting transitions are transitions within Qd;
2. ∀q ∈ Qd · ∀σ ∈ Σ · ∀q1, q2 ∈ Q · (q, σ, q1) ∈ δ ∧ (q, σ, q2) ∈ δ → q1 = q2, i.e. the

transition relation δ is deterministic within Qd;
3. ∀q ∈ Qd · ∀σ ∈ Σ · ∀q′ ∈ Q · (q, σ, q′) ∈ δ → q′ ∈ Qd, i.e. Qd is a trap (when

Qd is entered it is never left).

W.l.o.g. we assume that q0 ∈ Q\Qd, and we denote Q\Qd by Qd. Courcoubetis
and Yannakakis show that for every ω-regular language L, there exists an LDBA
A such that L(A) = L [CY95]. That is, LDBAs are as expressive as NBAs. An
example of LDBA is given in Fig. 1. Note that the language accepted by this
LDBA cannot be recognized by a deterministic Büchi automaton.

Parity Automata. A deterministic ω-word automaton A with parity accep-
tance condition (DPA) is a tuple (Q, q0, Σ, δ, p), defined as for deterministic
Büchi automata with the exception of the acceptance condition p, which is now

1 Here, we consider automata on infinite words with acceptance conditions based on
transitions. It is well known that there are linear translations from automata with
acceptance conditions defined on transitions to automata with acceptance conditions
defined on states, and vice-versa.
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Fig. 1. An LDBA for the LTL language FGa∨FGb. The behavior of A is deterministic
within the subset of states Qd = {2, 3, 4} which is a trap, the set of accepting transitions
are depicted in bold face and they are defined only between states of Qd.

a function assigning an integer in {1, 2, . . . , d}, called a color, to each transition
in the automaton. Colors are naturally ordered by the order on integers.

Given a run ρ over a word w, the infinite sequence of colors traversed by
the run ρ is noted p(ρ) and is equal to p(ρ(0), w(0), ρ(1)) p((ρ(1), w(1), ρ(2)) . . .
p(ρ(n), w(n), ρ(n+1)) . . . . A run ρ is accepting if the minimal color that appears
infinitely often along p(ρ) is even. The language defined by A, denoted by L(A)
is the set of ω-words w for which A has an accepting run.

While deterministic Büchi automata are not expressively complete for the
class of ω-regular languages, DPAs are complete for ω-regular languages: for
every ω-regular language L there exists a DPA A such that L(A) = L, see
e.g. [Pit07].

3 From LDBA to DPA

3.1 Run DAGs and Their Coloring

Run DAG. A nondeterministic automaton A may have several (even an infinite
number of) runs on a given ω-word w. As in [KV01], we represent this set of
runs by means of a directed acyclic graph structure called the run DAG of A on
w. Given an LDBA A = (Q,Qd, q0, Σ, δ, α), this graph Gw = (V,E) has a set of
vertices V ⊆ Q × N and edges E ⊆ V × V defined as follows:

– V =
⋃

i∈N
Vi, where the sets Vi are defined inductively:

• V0 = {(q0, 0)}, and for all i ≥ 1,
• Vi = {(q, i) | ∃(q′, i − 1) ∈ Vi−1 : (q′, w(i), q) ∈ δ};

– E = {((q, i), (q′, i + 1)) ∈ Vi × Vi+1 | (q, w(i), q′) ∈ δ}.

We denote by V d
i the set Vi ∩ (Qd × {i}) that contains the subset of vertices of

layer i that are associated with states in Qd.
Observe that all the paths of Gw that start from (q0, 0) are runs of A on w,

and, conversely, each run ρ of A on w corresponds exactly to one path in Gw that
starts from (q0, 0). So, we call runs the paths in the run DAG Gw. In particular,
we say that an infinite path v0v1 . . . vn . . . of Gw is an accepting run if there
are infinitely many positions i ∈ N such that vi = (q, i), vi+1 = (q′, i + 1), and
(q, w(i), q′) ∈ α. Clearly, w is accepted by A if and only if there is an accepting
run in Gw. We denote by ρ(0..n) = v0v1 . . . vn the prefix of length n + 1 of the
run ρ.
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Ordering of Runs. A function Ord : Q → {1, 2, . . . , |Qd|,+∞} is called an
ordering of the states of A w.r.t. Qd if Ord defines a strict total order on the
state from Qd, and maps each state q ∈ Qd to +∞, i.e.:

– for all q ∈ Qd, Ord(q) = +∞,
– for all q ∈ Qd, Ord(q) �= +∞, and
– for all q, q′ ∈ Qd, Ord(q) = Ord(q′) implies q = q′.

We extend Ord to vertices in Gw as follows: Ord((q, i)) = Ord(q).
Starting from Ord, we define the following pre-order on the set of run prefixes

of the run DAG Gw. Let ρ(0..n) = v0v1 . . . vn . . . and ρ′(0..n) = v′
0v

′
1 . . . v′

n . . .
be two run prefixes of length n + 1, we write ρ(0..n) � ρ′(0..n), if ρ(0..n) is
smaller than ρ′(0..n), which is defined as:

– for all i, 0 ≤ i ≤ n, Ord(ρ(i)) = Ord(ρ′(i)), or
– there exists i, 0 ≤ i ≤ n, such that:

• Ord(ρ(i)) < Ord(ρ′(i)), and
• for all j, 0 ≤ j < i, Ord(ρ(j)) = Ord(ρ′(j)).

This is extended to (infinite) runs as: ρ � ρ′ iff for all i ≥ 0 · Ord(ρ(0..i)) �
Ord(ρ′(0..i)).

Remark 1. If A accepts a word w, then A has a �-smallest accepting run for w.

We use the �-relation on run prefixes to order the vertices of Vi that belong to
Qd: for two different vertices v = (q, i) ∈ Vi and v′ = (q′, i) ∈ Vi, v is �i-smaller
than v′, if there is a run prefix of Gw that ends up in v which is �-smaller than
all the run prefixes that ends up in v′, which induces a total order among the
vertices of V d

i because the states in Qd are totally ordered by the function Ord.

Lemma 1. For all i ≥ 0, for two different vertices v = (q, i), v′ = (q′, i) ∈ V d
i ,

then either v �i v′ or v′ �i v, i.e., �i is a total order on V d
i .

Indexing Vertices. The index of a vertex v = (q, i) ∈ Vi such that q ∈ Qd,
denoted by Indi(v), is a value in {1, 2, . . . , |Qd|} that denotes its order in V d

i

according to �i (the �i-smallest element has index 1). For i ≥ 0, we identify
two important sets of vertices:

– Dec(V d
i ) is the set of vertices v ∈ V d

i such that there exists a vertex v′ ∈ V d
i+1:

(v, v′) ∈ E and Indi+1(v′) < Indi(v), i.e. the set of vertices in V d
i whose

(unique) successor in V d
i+1 has a smaller index value.

– Acc(V d
i ) is the set of vertices v = (q, i) ∈ V d

i such that there exists v′ =
(q′, i + 1) ∈ V d

i+1: (v, v′) ∈ E and (q, w(i), q′) ∈ α, i.e. the set of vertices in V d
i

that are the source of an accepting transition on w(i).
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Remark 2. Along a run, the index of vertices can only decrease. As the function
Ind(·) has a finite range, the index along a run has to eventually stabilize.

Assigning Colors. The set of colors that are used for coloring the levels of the
run DAG Gw is {1, 2, . . . , 2 · |Qd| + 1}. We associate a color with each transition
from level i to level i + 1 according to the following set of cases:

1. if Dec(V d
i ) = ∅ and Acc(V d

i ) �= ∅, the color is 2 · minv∈Acc(V d
i ) Indi(v).

2. if Dec(V d
i ) �= ∅ and Acc(V d

i ) = ∅, the color is 2 · minv∈Dec(V d
i ) Indi(v) − 1.

3. if Dec(V d
i ) �= ∅ and Acc(V d

i ) �= ∅, the color is defined as the minimal color
among

– codd = 2 · minv∈Dec(V d
i ) Indi(v) − 1, and

– ceven = 2 · minv∈Acc(V d
i ) Indi(v).

4. if Dec(V d
i ) = Acc(V d

i ) = ∅, the color is 2 · |Qq| + 1.

The intuition behind this coloring is as follows: the coloring tracks runs in Qd

(only those are potentially accepting as α ⊆ Qd × Σ × Qd) and tries to produce
an even color that corresponds to the smallest index of an accepting run. If in
level i the run DAG has an outgoing transition that is accepting, then this is a
positive event, as a consequence the color emitted is even and it is a function of
the smallest index of a vertex associated with an accepting transition from Vi to
Vi+1. Runs in Qd are deterministic but they can merge with smaller runs. When
this happens, this is considered as a negative event because the even colors that
have been emitted by the run that merges with the smaller run should not be
taken into account anymore. As a consequence an odd color is emitted in order
to cancel all the (good) even colors that were generated by the run that merges
with the smaller one. In that case the odd color is function of the smallest index
of a run vertex in Vi whose run merges with a smaller vertex in Vi+1. Those
two first cases are handled by cases 1 and 2 of the case study above. When
both situations happen at the same time, then the color is determined by the
minimum of the two colors assigned to the positive and the negative events. This
is handled by case 3 above. And finally, when there is no accepting transition
from Vi to Vi+1 and no merging, the largest odd color is emitted as indicated by
case 4 above.

According to this intuition, we define the color summary of the run DAG Gw

as the minimal color that appears infinitely often along the transitions between
its levels. Because of the deterministic behavior of the automaton in Qd, each
run can only merge at most |Qd| − 1 times with a smaller one (the size of the
range of the function Ind(·) minus one), and as a consequence of the definition of
the above coloring, we know that, on word accepted by A, the smallest accepting
run will eventually generate infinitely many (good) even colors that are never
trumped by smaller odd colors.

Example 1. The left part of Fig. 2 depicts the run DAG of the limit-deterministic
automaton of Fig. 1 on the word w = abb(ab)ω. Each path in this graph represents
a run of the automaton on this word. The coloring of the run DAG follows the
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Fig. 2. The run DAGs automaton of Fig. 1 on the word w = (ab)ω given on the left,
and on the word w = aabω given on the right, together with their colorings.

coloring rules defined above. Between level 0 and level 1, the color is equal to
7 = 2|Qd| + 1, as no accepting edge is taken from level 0 to level 1 and no run
merges (within Qd). The color 7 is also emitted from level 1 to level 2 for the
same reason. The color 4 is emitted from level 2 to level 3 because the accepting
edge (3, b, 3) is taken and the index of state 3 in level 2 is equal to 2 (state 4 has
index 1 as it is the end point of the smallest run prefix within Qd). The color 3
is emitted from level 3 to level 4 because the run that goes from 3 to 4 merges
with the smaller run that goes from 4 to 4. In order to cancel the even colors
emitted by the run that goes from 3 to 4, color 3 is emitted. It cancels the even
color 4 emitted before by this run. Afterwards, colors 3 is emitted forever. The
color summary is 3 showing that there is no accepting run in the run DAG.

The right part of Fig. 2 depicts the run DAG of the limit deterministic
automaton of Fig. 1 on the word w = aabω. The coloring of the run DAG fol-
lows the coloring rules defined above. Between levels 0 and 1, color 7 is emitted
because no accepting edge is crossed. To the next level, we see the accepting
edge (2, a, 2) and color 2 · 1 = 2 is emitted. Upon reading the first b, we see
again 7 since there is neither any accepting edge seen nor any merging takes
place. Afterwards, each b causes an accepting edge (3, b, 3) to be taken. While
the smallest run, which visits 4 forever, is not accepting, the second smallest
run that visits 3 forever is accepting. As 3 has index 2 in all the levels below
level 3, the color is forever equal to 4. The color summary of the run is thus
equal to 2 · 2 = 4 and this shows that word w = aabω is accepted by our limit
deterministic automaton of Fig. 1.
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The following theorem tells us that the color summary (the minimal color
that appears infinitely often) can be used to identify run DAGs that contain
accepting runs. The proof can be found in [EKRS17, Appendix A].

Theorem 1. The color summary of the run DAG Gw is even if and only if
there is an accepting run in Gw.

3.2 Construction of the DPA

From an LDBA A = (Q,Qd, q0, Σ, δ, α) and an ordering function Ord : Q →
{1, 2, . . . , |Qd|,+∞} compatible with Qd, we construct a deterministic parity
automaton B = (QB , qB

0 , Σ, δB , p) that, on a word w, constructs the levels of
the run DAG Gw and the coloring of previous section. Theorem1 tells us that
such an automaton accepts the same language as A.

First, we need some notations. Given a finite set S, we note P(S) the set of its
subsets, and OP(S) the set of its totally ordered subsets. So if (s,<) ∈ OP(S)
then s ⊆ S and < ⊆ s × s is a total strict order on s. For e ∈ s, we denote
by Ind(s,<)(e) the position of e ∈ s among the elements in s for the total strict
order <, with the convention that the index of the <-minimum element is equal
to 1. The deterministic parity automaton B = (QB , qB

0 , Σ, δB , p) is defined as
follows.

States and Initial State. The set of states is QB = P(Qd) × OP(Qd), i.e.
a state of B is a pair (s, (t, <)) where s is a set of states outside Qd, and t is
an ordered subset of Qd. The ordering reflects the relative index of each state
within t. The initial state is qB

0 = ({q0}, ({}, {})).

Transition Function. Let (s1, (t1, <1)) be a state in QB , and σ ∈ Σ. Then
δB((s1, (t1, <1))) = (s2, (t2, <2)) where:

– s2 = postσδ (s1) ∩ Qd;
– t2 = postσδ (s1 ∪ t1) ∩ Qd;
– <2 is defined from <1 and Ord as follows: ∀q1, q2 ∈ t2: q1 <2 q2 iff:

1. either, ¬∃q′
1 ∈ t1 : q1 = δ(q′

1, σ), and ¬∃q′
2 ∈ t1 : q2 = δ(q′

2, σ), and
Ord(q1) < Ord(q2),
i.e. none has a predecessor in Qd, then they are ordered using Ord;

2. or, ∃q′
1 ∈ t1 : q1 = δ(q′

1, σ), and ¬∃q′
2 ∈ t1 : q2 = δ(q′

2, σ),
i.e. q1 has a σ-predecessor in Qd, and q2 not;

3. or ∃q′
1 ∈ t1 : q1 = δ(q′

1, σ), and ∃q′
2 ∈ t1 : q2 = δ(q′

2, σ), and min<1{q′
1 ∈

t1 | q1 = δ(q′
1, σ)} < min<1{q′

2 ∈ t1 | q2 = δ(q′
2, σ)},

i.e. both have a predecessor in Qd, and they are ordered according to the
order of their minimal parents.

Coloring. To define the coloring of edges in the deterministic automaton, we
need to identify the states q ∈ t1 in a transition (s1, (t1, <1))

σ→ (s2, (t2, <2))
whose indices decrease when going from t1 to t2. Those are defined as follows:

Dec(t1) = {q1 ∈ t1 | Ind(t2,<2)(δ(q1, σ)) < Ind(t1,<1)(q1)}.
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Additionally, let Acc(t1) = {q | ∃q′ ∈ t2 : (q, σ, q′) ∈ α} denote the subset of
states in t1 that are the source of an accepting transition.

We assign a color to each transition (s1, (t1, <1)) →σ (s2, (t2, <2)) as follows:

1. if Dec(t1) = ∅ and Acc(t1) �= ∅, the color is 2 · minq∈Acc(t1) Ind(t1,<1)(q).
2. if Dec(t1) �= ∅ and Acc(t1) = ∅, the color is 2 · minq∈Dec(t1) Ind(t1,<1)(q) − 1.
3. if Dec(t1) �= ∅ and Acc(t1) �= ∅, the color is defined as the minimal color

among
– codd = 2 · minq∈Dec(t1) Ind(t1,<1)(q) − 1, and
– ceven = 2 · minq∈Acc(t1) Ind(t1,<1)(q).

4. if Dec(t1) = Acc(t1) = ∅, the color is 2 · |Qq| + 1.
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Fig. 3. Left: DPA that accepts the LTL language FGa ∨ FGb, edges are decorated
with a natural number that specifies its color. Right: A reduced DPA.

Example 2. The DPA of Fig. 3 is the automaton that is obtained by applying the
construction LDBA→DPA defined above to the LDBA of Fig. 1 that recognizes
the LTL language FGa∨FGb. The figure only shows the reachable states of this
construction. As specified in the construction above, states of DPA are labelled
with a subset of Qd and a ordered subset of Qd of the original NBA. As an
illustration of the definitions above, let us explain the color of edges from state
({1}, [4, 3]) to itself on letter b. When the NBA is in state 1, 3 or 4 and letter b
is read, then the next state of the automaton is again 1, 3 or 4. Note also that
there are no runs that are merging in that case. As a consequence, the color that
is emitted is even and equal to the index of the smallest state that is the target
of an accepting transition. In this case, this is state 3 and its index is 2. This
is the justification for the color 4 on the edge. On the other hand, if letter a is
read from state ({1}, [4, 3]), then the automaton moves to states ({1}, [4, 2]). The
state 3 is mapped to state 4 and there is a run merging which induces that the
color emitted is odd and equal to 3. This 3 trumps all the 4’s that were possibly
emitted from state ({1}, [4, 3]) before.

Theorem 2. The language defined by the deterministic parity automaton B
is equal to the language defined by the limit deterministic automaton A, i.e.
L(A) = L(B).
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Proof. Let w ∈ Σω and Gw be the run DAG of A on w. It is easy to show
by induction that the sequence of colors that occur along Gw is equal to the
sequence of colors defined by the run of the automaton B on w. By Theorem 1,
the language of automaton B is thus equal to the language of automaton A. ��

3.3 Complexity Analysis

Upper Bound. Let n = |Q| be the size of the LDBA and let nd = |Qd| be the
size of the accepting component. We can bound the number of different orderings
using the series of reciprocals of factorials (with e being Euler’s number):

|OP(Qd)| =
nd∑
i=0

nd!
(nd − i)!

≤ nd · nd! ·
∞∑

i=0

1
i!

= e · nd · nd! ∈ O(2n·log n)

Thus the obtained DPA has O(2n ·2n·log n) = 2O(n·log n) states and O(n) colours.

Lower Bound. We obtain a matching lower bound by strengthening Theorem 8
from [Löd99]:

Lemma 2. There exists a family (Ln)n≥2 of languages (Ln over an alphabet of
n letters) such that for every n the language Ln can be recognized by a limit-
deterministic Büchi automaton with 3n + 2 states but can not be recognized by a
deterministic Parity automaton with less than n! states.

Proof. The proof of Theorem 8 from [Löd99] constructs a non-deterministic
Büchi automaton of exactly this size and which is in fact limit-deterministic.

Assume there exists a deterministic Parity automata for Ln with m < n!
states. Since parity automata are closed under complementation, we can obtain
a parity automaton and hence also a Rabin automaton of size m for Ln and
thus a Streett automaton of size m for Ln, a contradiction to Theorem 8
of [Löd99]. ��
Corollary 1. Every translation from limit-deterministic Büchi automata of size
n to deterministic parity yields automata with 2Ω(n log n) states in the worst case.

4 From LTL to Parity in 22O(n)

In [SEJK16] we present a LTL→LDBA translation. Given a formula ϕ of size
n, the translation produces an asymptotically optimal LDBA with 22

O(n)
states.

The straightforward composition of this translation with the single exponential
LDBA→DPA translation of the previous section is only guaranteed to be triple
exponential, while the Safra-Piterman construction produces a DPA of at most
doubly exponential size. In this section we describe a modified composition that
yields a double exponential DPA. To the best of our knowledge this is the first
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translation of the whole LTL to deterministic parity automata that is asymp-
totically optimal and does not use Safra’s construction.

The section is divided into two parts. In the first part, we explain and illus-
trate a redundancy occurring in our LDBA→DPA translation, responsible for
the undesired extra exponential. We also describe an optimization that removes
this redundancy when the LDBA satisfies some conditions. In the second part,
we show these conditions are satisfied on the products of the LTL→LDBA trans-
lation, which in turn guarantees a doubly exponential LTL→DPA procedure.

4.1 An Improved Construction

We can view the second component of a state of the DPA as a sequence of states
of the LDBA, ordered by their indices. Since there are 22

O(n)
states of the LDBA

for an LTL formula of length n, the number of such sequences is

22
O(n)

! = 22
2O(n)

If only the length of the sequences (the maximum index) were bounded by 2n,
the number of such sequences would be smaller than the number of functions
2n → 22

O(n)
which is

(22
O(n)

)2
n

= 22
O(n)·2n

= 22
O(n)

Fix an LDBA with set of states Q. Assume the existence of an oracle: a list
of statements of the form L(q) ⊆ ⋃

q′∈Qq
L(q′) where q ∈ Q and Qq ⊆ Q. We use

the oracle to define a mapping that associates to each run DAG Gw a “reduced
DAG” G∗

w, defined as the result of iteratively performing the following four-step
operation:

– Find the first Vi in the current DAG such that the sequence (v1, i) � (v2, i) �
· · · � (vni

, i) of vertices of V d
i contains a vertex (vk, i) for which the oracle

ensures

L(vk) ⊆
⋃
j<k

L(vj) (∗)

We call (vk, i) a redundant vertex.
– Remove (vk, i) from the sequence, and otherwise keep the ordering �i

unchanged (thus decreasing the index of vertices (v, 	) with 	 > k).
– Redirect transitions leading from vertices in Vi−1 to (vk, i) so that they lead

to the smallest vertex (v1, i) of Vi.
– Remove any vertices (if any) that are no longer reachable from vertices of V1.

We define the color summary of G∗
w in exactly the same way as the color summary

of Gw. The DAG G∗
w satisfies the following crucial property, whose proof can be

found in [EKRS17, Appendix B]:
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Proposition 1. The color summary of the run DAG G∗
w is even if and only if

there is an accepting run in Gw.

The mapping on DAGs induces a reduced DPA as follows. The states are
the pairs (s, (t, <)) such that (t, <) does not contain redundant vertices. There
is a transition (s1, (t1, <)) a→ (s2, (t2, <)) with color c iff there is a word w and
an index i such that (s1, (t1, <)) and (s2, (t2, <)) correspond to the i-th and
(i + 1)-th levels of G∗

w, and a and c are the letter and color of the step between
these levels in G∗

w. Observe that the set of transitions is independent of the words
chosen to define them.

The equivalence between the initial DPA A and the reduced DPA Ar follows
immediately from Proposition 1: A accepts w iff Gw contains an accepting run
iff the color summary of G∗

w is even iff Ar accepts w.

Example 3. Consider the LDBA of Fig. 1 and an oracle given by L(4) = ∅, ensur-
ing L(4) ⊆ ⋃

i∈I L(i) for any I ⊆ Q. Then 4 is always redundant and merged,
removing the two rightmost states of the DPA of Fig. 3(left), resulting in the
DPA of Fig. 3(right). However, for the sake of technical convenience, we shall
refrain from removing a redundant vertex when it is the smallest one (with
index 1).

Since the construction of the reduced DPA is parametrized by an oracle, the
obvious question is how to obtain an oracle that does not involve applying an
expensive language inclusion test. Let us give a first example in which an oracle
can be easily obtained:

Example 4. Consider an LDBA where each state v = {s1, . . . , sk} arose from
some powerset construction on an NBA in such a way that L({s1, . . . , sk}) =
L(s1) ∪ · · · L(sk). An oracle can, for instance, allow us to merge whenever vk ⊆⋃

j<k vj , which is a sound syntactic approximation of language inclusion. This
motivates the following formal generalization.

Let LB = {Li | i ∈ B} be a finite set of languages, called base languages.
We call LC := {⋃ L | L ⊆ LB} the join-semilattice of composed languages. We
shall assume an LDBA with some LB such that L(q) ∈ LC for every state q. We
say that such an LDBA has a base LB . In other words, every state recognizes
a union of some base languages. (Note that every automaton has a base of at
most linear size.) Whenever we have states vj recognizing

⋃
i∈Ij

Li with Ij ⊆ B

for every j, the oracle allows us to merge vertices vk satisfying Ik ⊆ ⋃
j<k Ij .

Intuitively, the oracle declares a vertex redundant whenever the simple syntactic
check on the indices allows for that.

Let V1 =
⋃

i∈I1
Li, · · · Vj =

⋃
i∈Ij

Li be a sequence of languages of LC where
the reduction has been applied and there are no more redundant vertices. The
maximum length of such a sequence is given already by the base LB and we
denote it width(LB).

Lemma 3. For any LB, we have width(LB) ≤ |LB | + 1.
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Proof. We provide an injective mapping of languages in the sequence (except
for V1) into B. Since I2 �⊆ I1, there is some i ∈ I2 \ I1 and we map V2 to this i.
In general, since Ik �⊆ ⋃k−1

j=1 Ij , we also have i ∈ Ik \ ⋃k−1
j=1 Ij and we map Vk to

this i. ��
On the one hand, the transformation of LDBA to DPA without the reduction

yields 2O(|Q|·log |Q|) states. On the other hand, we can now show that the second
component of reduced LDBA with a base can be exponentially smaller. Further,
let us assume the LDBA is initial-deterministic, meaning that δ ∩ (Qd ×Σ ×Qd)
is deterministic, thus not resulting in blowup in the first component.

Corollary 2. For every initial-deterministic LDBA with base of size m, there
is an equivalent DPA with 2O(m2) states.

Proof. The number of composed languages is LC = 2m. Therefore, the LDBA
has at most 2m (non-equivalent) states. Hence the construction produces at most

|LC | · |LC |O(width(LB)) = 2m · (2m)O(m) = 2O(m2)

states since the LDBA is initial-deterministic, causing no blowup in the first
component. ��

4.2 Bases for LDBAs Obtained from LTL Formulas

We prove that the width for LDBA arising from the LTL transformation is only
singly exponential in the formula size. To this end, we need to recall a property
of the LTL→LDBA translation of [SEJK16]. Since partial evaluation of formulas
plays a major role in the translation, we introduce the following definition. Given
an LTL formula ϕ and sets T and F of LTL formulas, let ϕ[T, F ] denote the
result of substituting tt (true) for each occurrence of a formula of T in ϕ, and
similarly ff (false) for formulas of F . The following property of the translation
is proven in [EKRS17, Appendix C].

Proposition 2. For every LTL formula ϕ, every state s of the LDBA of
[SEJK16] is labelled by an LTL formula label(s) such that (i) L(s) = L(label(s))
and (ii) label(s) is a Boolean combination of subformulas of ϕ[Ts, Fs] for some
Ts and Fs. Moreover, the LDBA is initial-deterministic.

As a consequence, we can bound the corresponding base:

Corollary 3. For every LTL formula ϕ, the LDBA of [SEJK16] for ϕ has a
base of size 2O(|ϕ|).

Proof. Firstly, we focus on states using the same ϕ[Ts, Fs]. The language of
each state can be defined by a Boolean formula over O(|ϕ|) atoms. Since every
Boolean formula can be expressed in the disjunctive normal form, its language
is a union of the conjuncts. The conjunctions thus form a base for these states.
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There are exponentially many different conjunction in the number of atoms.
Hence the base is of singly exponential size 2O(|ϕ|) as well.

Secondly, observe that there are only 2O(|ϕ|) different formulas ϕ[Ts, Fs] and
thus only 2O(|ϕ|) different sets of atoms. Altogether, the size is bounded by

2O(|ϕ|) · 2O(|ϕ|) = 2O(|ϕ|)

��
Theorem 3. For every LTL formula ϕ, there is a DPA with 22

O(|ϕ|)
states.

Proof. The LDBA for ϕ has base of singly exponential size 2O(|ϕ|) by Corollary 3
and is initial-deterministic by Proposition 2. Therefore, by Corollary 2, the size
of the DPA is doubly exponential, in fact

2(2
O(|ϕ|))2 = 22

O(|ϕ|)

��
This matches the lower bound 22

Ω(n)
by [KR10] as well as the upper bound by the

Safra-Piterman approach. Finally, note that while the breakpoint constructions
in [SEJK16] is analogous to Safra’s vertical merging, the merging introduced
here is analogous to Safra’s horizontal merging.

5 Experimental Evaluation

We evaluate the performance of our construction on several datasets taken
from [BKS13,DWDMR08,SEJK16] and several Temporal Logic Synthesis For-
mat (TLSF) specifications [JBB+16] of the SyntComp 2016 competition.

We use the size of the constructed deterministic automaton as an indicator for
the overall performance of the synthesis procedure. In [ST03] it is argued that the
degree of determinism of the automaton is a better predictor for performance in
model-checking problems; however, this parameter is not applicable for synthesis
problems, which require deterministic automata.

We compare two versions of our implementation (with and without optimiza-
tions, see below) with the algorithms of Spot [DLLF+16]. Each tool is given
64 GB of memory and 10 min. Increasing time to 10 hours does not change the
results. More precisely, we compare the following three setups:

S. (ltl2tgba, 2.1.1) - Spot [DLLF+16] implements a version of the Safra-
Piterman determinization procedure [Red12] with several optimizations.

L2P and L2P′. (ltl2dpa, 1.0.0) - L2P is the construction of this paper, avail-
able at https://www7.in.tum.de/∼sickert/projects/ltl2dpa. L2P′ adds two opti-
mizations. First, the tool translates both the formula and its negation to DPAs
A1, A2, complements A2 to yield A2, and picks the smaller of A1, A2. Further, we
apply the simplification routines of Spot (ltlfilt and autfilt, respectively).

We consider three groups of benachmarks:

https://www7.in.tum.de/~sickert/projects/ltl2dpa
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Fig. 4. Comparison of Spot and our implementation using the best configurations.
Timeouts are denoted by setting the size of the automaton to the maximum.

Parametric Formulas. 10 benchmarks from [BKS13,SEJK16]). In six cases S
and L2P′ produce identical results. The other four are

R(n) =
∧n

i=1(GFpi ∨ FGpi+1) G(n) = (
∧n

i=1GFpi) → (
∧n

i=1GFqi)
θ(n) = ¬((

∧n
i=1GFpi) → G(q → Fr)) F (n) =

∧n
i=1(GFpi → GFqi)

for which the results are shown in (Fig. 4a). Additionally, we consider the “f”
formulas from [SEJK16] (Table 1). Observe that L2P′ performs clearly better,
and the gap between the tools grows when the parameter increases.

Randomly Generated Formulas from [BKS13] (Fig. 4b).

Real Data. Formulas taken from case studies and synthesis competitions—the
intended domain of application of our approach. Figure 4c and d show results
for the real-world formulas of [BKS13] and the TLSF specifications contained in
the Acacia set of [JBB+16]. Table 1 shows results for LTL formulas expressing
properties of Szymanski’s protocol [DWDMR08], and for the generalised buffer
benchmark of Acacia.
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Table 1. Number of states and number of used colours in parenthesis for the con-
structed automata. Timeouts are marked with t.

f(1, 0) f(1, 2) f(1, 4) f(2, 0) f(2, 2) zn zp1 zp2 zp3 Buffer

S 18(6) 141(8) 2062(8) 208(12) 883(12) t t t t t

L2P 12(8) 114(9) 332(15) 144(14) 4732(19) t t t t 1425(27)

L2P′ 12(8) 78(7) 271(11) 106(9) 1904(15) 32(6) 42(6) 111(12) 97(12) 435(4)

Average Compression Ratios. The geometric average compression ratio for
a benchmark suite B is defined as

∏
ϕ∈B(nS

ϕ/nL2P ′
ϕ )

1/|B|
, where nS

ϕ and nL2P ′
ϕ

denote the number of states of the automata produced by Spot and L2P′, respec-
tively. The ratios in our experiments (excluding benchmarks where Spot times
out) are: 1.14 for random formulas, 1.12 for the real-world formulas of [BKS13],
and 1.35 for the formulas of Acacia.

6 Conclusion

We have presented a simple, “Safraless”, and asymptotically optimal transla-
tion from LTL and LDBA to deterministic parity automata. Furthermore, the
translation is suitable for an on-the-fly implementation. The resulting automata
are substantially smaller than those produced by the SPOT library for formulas
obtained from synthesis specifications, and have comparable or smaller size for
other benchmarks. In future work we want to investigate the performance of the
translation as part of a synthesis toolchain.

Acknowledgments. The authors want to thank Michael Luttenberger for helpful
discussions and the anonymous reviewers for constructive feedback.
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deterministic parity automata. Logical Methods Comput. Sci. 3(3:5),
1–21 (2007)

[Red12] Redziejowski, R.R.: An improved construction of deterministic omega-
automaton using derivatives. Fundam. Inform. 119(3–4), 393–406 (2012)

[Saf88] Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327
(1988)

[SEJK16] Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic Büchi
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Abstract. Transforming deterministic ω-automata into deterministic
parity automata is traditionally done using variants of appearance
records. We present a more efficient variant of this approach, tailored to
Rabin automata, and several optimizations applicable to all appearance
records. We compare the methods experimentally and find out that our
method produces smaller automata than previous approaches. Moreover,
the experiments demonstrate the potential of our method for LTL syn-
thesis, using LTL-to-Rabin translators. It leads to significantly smaller
parity automata when compared to state-of-the-art approaches on com-
plex formulae.

1 Introduction

Constructing correct-by-design systems from specifications given in linear tem-
poral logic (LTL) [Pnu77] is a classical problem [PR89], called LTL synthesis.
The automata-theoretic solution to this problem is to translate the LTL for-
mula to a deterministic automaton and solve the corresponding game on the
automaton. Although different kinds of automata can be used, a reasonable
choice would be parity automata (DPA) due to the practical efficiency of par-
ity game solvers [FL09,ML16] and the fact they allow for optimal memoryless
strategies. The bottleneck is thus to create a reasonably small DPA. The classical
way to transform LTL formulae into DPA is to first create a non-deterministic
Büchi automaton (NBA) and then determinize it, as implemented in ltl2dstar
[KB06]. Since determinization procedures [Pit06,Sch09] based on Safra’s con-
struction [Saf88] are practically inefficient, many alternative approaches to LTL
synthesis arose, trying to avoid determinization and/or focusing on fragments
of LTL, e.g. [KV05,PPS06,AL04]. However, new results on translating LTL
directly and efficiently into deterministic automata [KE12,EK14] open new pos-
sibilities for the automata-theoretic approach. Indeed, tools such as Rabinizer
[KK14] or LTL3DRA [BBKS13] can produce practically small deterministic
Rabin automata (DRA). Consequently, the task is to efficiently transform DRA
into DPA, which is the aim of this paper.

Transformations of deterministic automata into DPA are mostly based on
appearance records [GH82]. For instance, for deterministic Muller automata, we

c© Springer-Verlag GmbH Germany 2017
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want to track which states appear infinitely often and which do not. In order to
do that, the state appearance record keeps a permutation of the states, ordered
according to their most recent visits, see e.g. [Sch01]. In contrast, for determin-
istic Streett automata (DSA) we only want to track which sets of states are
visited infinitely often and which not. Consequently, index appearance record
(IAR) keeps a permutation of these sets of interest instead, which are typically
very few. Such a transformation has been given first in [Saf92] from DSA to DRA
only (not DPA, which is a subclass of DRA). Fortunately, this construction can
be further modified into a transformation of DSA to DPA, as shown in [Löd99b].

Since (1) DRA and DSA are syntactically the same, recognizing the com-
plement languages of each other, and (2) DPA can be complemented without
any cost, one can apply the IAR of [Löd99b] to DRA, too. However, we design
another IAR, which is more natural from the DRA point of view, as opposed to
the DSA perspective taken in [Löd99b]. This is in spirit more similar to a sketch
of a construction suggested in [FEK11]. Surprisingly, we have found that the
DRA perspective yields an algorithm producing considerably smaller automata
than the DSA perspective.

Our contribution in this paper is as follows:

– We provide an IAR construction transforming DRA to DPA.
– We present optimizations applicable to all appearance records.
– We evaluate all the unoptimized and optimized versions of our IAR and the

IAR of [Löd99b] experimentally, in comparison to the procedure implemented
in GOAL [TTH13].

– We compare our approach LTL Rabinizer−−−−−−→DRA
optimized IAR−−−−−−−−−→DPA to the state-

of-the-art translation of LTL to DPA by Spot 2.1 [DLLF+16], which mixes the
construction of [Red12] with some optimizations of ltl2dstar [KB06] and of
their own. The experiments show that for more complex formulae our method
produces smaller automata.

2 Preliminaries on ω-automata

We recall basic definitions of ω-automata and establish some notation.

2.1 Alphabets and Words

An alphabet is any finite set Σ. The elements of Σ are called letters. A word is
a (possibly infinite) sequence of letters. The set of all infinite words is denoted
by Σω. A set of words L ⊆ Σω is called (infinite) language. The i-th letter of a
word w ∈ Σω is denoted by wi, i.e. w = w0w1 . . . .

2.2 Transition Systems

A deterministic transition system (DTS) T is given by a tuple (Q,Σ, δ, q0) where
Q is a set of states, Σ is an alphabet, δ is a transition function δ : Q × Σ → Q
which may be partial (due to technical reasons) and q0 ∈ Q is the initial state.
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The transition function induces the set of transitions Δ = {〈q, a, q′〉 | q ∈ Q, a ∈
Σ, q′ = δ(p, a)}. For a transition t = 〈q, a, q′〉 ∈ Δ we say that t starts at q,
moves under a and ends in q′. A sequence of transitions ρ is a run of a DTS T
on a word w ∈ Σω if ρ0 starts at q0, ρi moves under wi for each i ≥ 0 and ρi+1

starts at the same state as ρi ends for each i ≥ 0. We write T (w) to denote the
unique run of T on w, if it exists. A transition t occurs in ρ if there is some i with
ρi = t. By Inf(ρ) we denote the set of all transitions occurring infinitely often in
ρ. Additionally, we extend Inf to words by defining InfT (w) = Inf(T (w)) if T
has a run on w. If T is clear from the context, we write Inf(w) for InfT (w).

2.3 Acceptance Conditions and ω-automata

An acceptance condition for T is a positive Boolean formula over the formal
variables VΔ = {Inf(T ),Fin(T ) | T ⊆ Δ}. Acceptance conditions are interpreted
over runs as follows. Given a run ρ of T and such an acceptance condition α,
we consider the truth assignment that sets the variable Inf(T ) to true iff ρ visits
(some transition of) T infinitely often, i.e. Inf(ρ) ∩ T 	= ∅. Dually, Fin(T ) is set
to true iff ρ visits every transition in T finitely often, i.e. Inf(ρ) ∩ T = ∅. A run
ρ satisfies α if this truth-assignment evaluates α to true.

A deterministic ω-automaton over Σ is a tuple A = (Q,Σ, δ, q0, α), where
(Q,Σ, δ, q0) is a DTS and α is an acceptance condition for it. An automaton
A accepts a word w ∈ Σω if the run of the automaton on w satisfies α. The
language of A, denoted by L(A), is the set of words accepted by A. An acceptance
condition α is a

– Rabin condition {(Fi, Ii)}k
i=1 if α =

∨k
i=1(Fin(Fi) ∧ Inf(Ii)). Each (Fi, Ii) is

called a Rabin pair, where the Fi and Ii are called the prohibited set and the
required set respectively.

– generalized Rabin condition {(Fi, {Ij
i }ki

j=1)}k
i=1 if the acceptance condition is

of the form α =
∨n

i=1(Fin(Fi) ∧ ∧ki

j=1 Inf(Ik
j )). This generalizes the Rabin

condition, where each ki = 1. Furthermore, every generalized Rabin automa-
ton can be de-generalized into an equivalent Rabin automaton, which however
may incur an exponential blow-up [KE12].

– Streett condition {(Fi, Ii)}k
i=1 if α =

∧k
i=1(Inf(Fi) ∨ Fin(Ii)). Note that the

Streett condition is exactly the negation of the Rabin condition and thus an
automaton with a Rabin condition can be interpreted as a Streett automaton
recognizing exactly the complement language.

– Rabin chain condition {(Fi, Ii)}k
i=1 if it is a Rabin condition and F1 ⊆ I1 ⊆ · · ·

⊆ Fk ⊆ Ik. A Rabin chain condition is equivalent to a parity condition, spec-
ified by a priority assignment λ : Δ → N. Such a parity condition is satisfied
by a run ρ iff the maximum priority of all infinitely often visited transitions
max{λ(q) | q ∈ Inf(ρ)} is even.

A deterministic Rabin, generalized Rabin, Street or parity automaton is a deter-
ministic ω-automaton with an acceptance condition of the corresponding kind.
In the rest of the paper we use the corresponding abbreviations DRA, DGRA,
DSA and DPA.
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Furthermore, given a DRA with an acceptance set {(Fi, Ii)}k
i=1 and a word

w ∈ Σω, we write Finf = {Fi | Fi ∩ Inf(w) 	= ∅} and Iinf = {Ii | Ii ∩ Inf(w) 	= ∅}
to denote the set of all infinitely often visited prohibited and required sets,
respectively.

3 Index Appearance Record

In order to translate (state-based acceptance) Muller automata to parity
automata, a construction called latest appearance record has been devised1. In
essence, the constructed state space consists of permutations of all states in the
original automaton. In each transition, the state which has just been visited is
moved to the front of the permutation. From this, one can deduce the set of all
infinitely often visited states by investigating which states change their position
in the permutation infinitely often along the run of the word. Such a constraint
can be encoded as parity condition.

However, this approach comes with a very fast growing state space, as the
amount of permutations grows exponentially. Moreover, applying this idea to
transition based acceptance leads to even faster growth, as there usually are a
lot more transitions than states. In contrast to Muller automata, the exact set of
infinitely often visited transitions is not needed to decide acceptance of a word by
a Rabin automaton. It is sufficient to know which of the prohibited and required
sets are visited infinitely often. Hence, index appearance record uses the indices
of the Rabin pairs instead of particular states in the permutation construction.
This provides enough information to decide acceptance.

We introduce some formalities regarding permutations: For a given n ∈ N, we
use Πn to denote the set of all permutations of N = {1, . . . , n}, i.e. the set of all
bijective functions π : N → N . We identify π with its canonical representation
as a vector (π(1), . . . , π(n)). In the following, we will often say “the position of
Fi in π” or similar to refer to the position of i in a particular π, i.e. π−1(i). With
this, we define our variant of the index appearance record construction. Note
that in contrast to previous constructions, ours is transition based, which also
has a positive effect on the size of the produced automata, as discussed in our
experimental results.

Definition 1 (Transition-based index appearance record for Rabin
automata). Let R = (Q,Σ, δ, q0, {(Fi, Ii)}k

i=1) be a Rabin automaton. Then
the index appearance record automaton IAR(R) = (Q̃,Σ, δ̃, q̃0, λ) is defined as
the parity automaton with

– Q̃ = Q × Πk.
– q̃0 = (q0, (1, . . . , k)).
– δ̃((q, π), a) = (δ(q, a), π′) where π′ is the permutation obtained from π by mov-

ing all indices of prohibited sets visited by the transition t = 〈q, a, δ(q, a)〉
1 Originally, it appeared in an unpublished report of McNaughton under the name

“order vector with hit”.
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to the front. Formally, let Move = {i | t ∈ Fπ(i)} be the set of positions of
currently visited prohibited sets. If Move = ∅, define π′ = π, otherwise let
n = |Move| and Move = {i1, . . . , in}. With this

π′(j) =

{
ij if j ≤ n

π(j − n + |{i ∈ Move | i ≤ j}|) otherwise.

– To define the priority assignment, we first introduce some auxiliary notation.
For a transition t̃ = 〈(q, π), a, (q′, π′)〉 and its corresponding transition 〈q, a, q′〉
in the original automaton, let

maxInd(t̃) = max({π−1(i) | t ∈ Fi ∪ Ii} ∪ {0})

be the maximal position of acceptance pair in π visited by t (or 0 if none is
visited). Using this, define the priority assignment as follows:

λ(t̃) :=

⎧
⎪⎨
⎪⎩

1 if maxInd(t̃) = 0,
2 · maxInd(t̃) if t ∈ Iπ(maxInd(t̃)) \ Fπ(maxInd(t̃))

2 · maxInd(t̃) + 1 otherwise, i.e. if t ∈ Fπ(maxInd(t̃)).

When a transition visits multiple prohibited sets, they can be moved to the
front of the appearance record in arbitrary order. As an optimization we choose
existing states as successors whenever possible.

Before formally proving correctness, i.e. that IAR(R) recognizes the same
language as R, we provide a small example in Fig. 1 and explain the general
intuition behind the construction. For a given run, all prohibited sets which are
visited infinitely often will eventually be “in front” of all those only seen finitely
often: After some finite number of steps, none of the finitely often visited ones
will be seen any more. Taking another sufficiently large amount of steps, every
infinitely often visited set has been seen again and all their indices have been
moved to the front.

Lemma 1. Let w ∈ Σω be a word on which IAR(R) has a run ρ̃. Then, the
positions of all finitely often visited prohibited sets stabilize after a finite number
of steps, i.e. their positions are identical in all infinitely often visited states.
Moreover, for any i, j with Fi ∈ Finf , Fj /∈ Finf we have that the position of Fi

is smaller than the position of Fj in every infinitely often visited state.

Proof. The position of any Fi only changes in two different ways:

– Either Fi itself has been visited and thus is moved to the front,
– or some Fi′ with a position greater than the one of Fi has been visited and is

moved to the front, increasing the position of Fi.

Let ρ be the run of R on w. (We prove the existence of such a run in [KMWW17,
Lemma 3].) Assume that Fi is visited finitely often in some run ρ, i.e. there is
a step in the run from which on Fi is never visited again. As the amount of
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Fig. 1. An example DRA and its resulting IAR DPA. For the Rabin automaton, a
number in a white box next to a transition indicates that this transition is a required
one of that Rabin pair. A black shape dually indicates membership in the corresponding
prohibited set. For example, with t = 〈p, a, p〉 we have t ∈ F1 and t ∈ I2. In the
IAR construction, we shorten the notation for permutations to save space, so p, 12
corresponds to (p, (1, 2)). The priority of a transition is written next to the transitions
letter.

positions is bounded, the second case may only occur finitely often after this step
and the position of Fi eventually remains constant. As Fi was chosen arbitrarily,
we conclude that all finitely often visited Fi are eventually moved to the right
and remain on their position. Trivially, all infinitely often visited Fi move to the
left, proving the claim. ��
As an immediate consequence we see that if some transition (q, a, q′) ∈ Fi is
visited infinitely often, then every Fj with a smaller position than Fi in q is also
visited infinitely often:

Corollary 1. Let t̃ ∈ InfIAR(R)(w) be an infinitely often visited transition with
its corresponding transition t ∈ Fπ(i) for some i. Then ∀j ≤ i.Fπ(j) ∈ Finf .

Looking back at the definition of the priority function, the central idea of cor-
rectness can be outlined as follows. For every Ii which is visited infinitely often
we can distinguish two cases:

– Fi is visited finitely often. Then the position of the pair is greater than the one
of every Fj ∈ Finf . Hence the priority of every transition t̃ with corresponding
transition t ∈ Ii is both even and bigger than every odd priority seen infinitely
often along the run.

– Fi is visited infinitely often, i.e. after each visit of Ii, Fi is eventually visited.
As argued in the proof of Lemma 1, the position of Fi can only increase until it
is visited again. Hence every visit of Ii which yields an even parity is followed
by a visit of Fi yielding an odd parity which is strictly greater.

Using this intuition, we formally show correctness of the construction in
[KMWW17, Appendix A.1].
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Theorem 1. For any DRA R we have that L(IAR(R)) = L(R).

Proposition 1 (Complexity). For every DRA R with n states and k Rabin
pairs, the constructed automaton IAR(R) has at most n · k! states and 2k + 1
priorities.

Moreover, using the [Löd99a], one can show that this is essentially optimal.
There exists a family {Ln}n≥2 of languages such that for every n the language
Ln can be recognized by a DRA with O(n) states and O(n) pairs, but cannot
be recognized by a DPA with less than n! states. For details, see [KMWW17,
Appendix A.2].

Remark 1 (Comparison to previous IAR). Our construction is similar to the
index appearance record of [Löd99b] in that it keeps the information about the
current state and a permutation of pairs, implementing the appearance record.
However, from the point of view of Streett automata, it is very natural to keep
two pointers into the permutation, indicating the currently extreme positions of
both types of sets in the accpetance condition. Indeed, this way we can keep
track of all conjuncts of the form Inf(Ij) =⇒ Inf(Fj). This is also the approach
that [Löd99b] takes. In contrast, we have no pointers at all. From the Rabin
point of view, it is more natural to keep track of the prohibited sets only and the
respective pointer is hidden in the information about the current state together
with the current permutation. Additionally, the pointer for the required set is
hidden into the acceptance status of transitions. In the transition-based setting,
it is not necessary to remember the visit of a required set in the state-space; it is
sufficient to emit the respective priority upon seeing this during the transition
when we know both the source and target states. The absence of these pointers
results in better performance.

Remark 2 (Using IAR for DGRA). The straightforward way to translate a
DGRA to DPA is to first de-generalize the DGRA and then apply the pre-
sented IAR construction. However, one can also apply the IAR idea to directly
translate from DGRA to DPA: Instead of only tracking the pair indices, one
could incorporate all Fi and Ij

i into the appearance permutation. With the same
reasoning as above, a parity condition can be used to decide acceptance.

This approach yields a correct algorithm, but compared to de-generalization
combined with IAR, the state space grows much larger. Indeed, given a DGRA
with n states and k accepting pairs with li required sets each, the de-generalized
DRA has at most n·∏k

i=1 li states and k pairs, hence the resulting parity automa-
ton has at most k!·n·∏k

i=1 li states and 2k+1 priorities. Applying the mentioned
specific construction gives n · (∑k

i=1(li +1))! states and 2 · (∑k
i=1(li +1))+1 pri-

orities. A simple induction on k suffices to show that the worst case upper bound
for the specific construction is always larger. We conjecture that this behaviour
also shows in real-world applications.
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4 Optimizations

In general, many states generated by the IAR procedure are often superfluous
and could be omitted. In the following, we present several optimizations of our
construction, which aim to do so. Moreover, these optimizations can be applied
also to the IAR construction of [Löd99b] and in a slighly adjusted way also to
the standard SAR [Sch01]. Further, although the optimizations are transition-
based, they can be of course easily adapted to the state-based setting. Due to
space constraints, the correctness proofs can be found in [KMWW17, Appendix
A.3].

Fig. 2. Example of a suboptimal initial permutation, using the same notation as
in Fig. 1. Only the shaded states are constructed when choosing a better initial
permutation.

4.1 Choosing an Initial Permutation

The first observation is that the arbitrary choice of (1, . . . , k) as initial per-
mutation can lead to suboptimal results. It may happen that several states of
the resulting automaton are visited at most once by every run before some
“recurrent” permutation is reached. These states enlarge the state-space unnec-
essarily, as demonstrated in Fig. 2. Indeed, when choosing (p, (3, 1, 2)) instead of
(p, (1, 2, 3)) as the initial state in the example, only the shaded states are built
during the construction, while the language of the resulting automaton is still
equal to that of the input DRA.

We overload the IAR algorithm to be parametrized by the starting permu-
tation, i.e. we write IAR(R, π0) to denote the IAR construction applied to the
DRA R starting with permutation π0.
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Theorem 2. For an arbitrary Rabin automaton R with k pairs we have that
L(IAR(R)) = L(IAR(R, π0)) for all π0 ∈ Πk.

How to choose a “good” initial permutation is deferred to Sect. 4.3, as it is
intertwined with the algorithm presented in the following section.

4.2 SCC Decomposition

Acceptance of a word by an ω-automaton only depends on the set of states
visited infinitely often by its run. This set of states is strongly connected on
the underlying graph structure, i.e. starting from any state in the set, any other
state can be reached with finitely many steps. In general, any strongly connected
set belongs to exactly one strongly connected component (SCC). Therefore, for
a fixed SCC, only the Rabin pairs with required sets intersecting this SCC are
relevant.

Using this we can restrict ourselves to the Rabin pairs that can possibly
accept in that SCC while processing it. This reduces the number of indices we
need to track in the appearance record for each SCC, which can lead to significant
savings.

For readability, we introduce some abbreviations. Given a DRA R =
(Q,Σ, δ, q0, {(Fi, Ii)}k

j=1) and a set of states S ⊆ Q we write δ � S : S × Σ → S
to denote the restriction of δ to S, i.e. δ � S(q, a) = δ(q, a) if δ(q, a) ∈ S and
undefined otherwise. Analogously, we define Δ � S = Δ∩S ×Σ ×S as the set of
transitions in the restricted automaton. Consequently, we define the restriction
of the whole automaton R to the set of states S using q ∈ S as initial state by

R �q S = (S,Σ, δ � S, q, {(Fi ∩ (Δ � S), Ii ∩ (Δ � S)) | Ii ∩ (Δ � S) 	= ∅}).

Furthermore, we call a SCC of an automaton transient, if it is a singleton set
without a self-loop. This means that it is visited at most once by any run and
it is not of interest for acceptance. Finally, we use ε to denote the “empty”
permutation (of length 0).

Using this notation, we describe the optimized IAR construction, denoted
IAR∗ in Algorithm 1. The algorithm decomposes the DRA into its SCCs, applies
the formerly introduced IAR procedure to each sub-automaton separately and
finally connects the resulting DPAs back together.

As we apply the IAR construction to each SCC separately, we have to choose
the initial permutation for each state of those SCCs. Theorem 2 shows that
for a particular initial state, correctness of IAR does not depend on the chosen
permutation. We therefore delegate the choice to a function pickPerm and prove
correctness of the optimized algorithm independent of this function, allowing for
further optimizations. We present an optimal definition of pickPerm in the next
subsection.

Figure 3 shows an example application and the obtained savings of the con-
struction. Pair 1 is only relevant for acceptance in the SCC {p}, but in the
unoptimized construction it still changes the permutations in the part of the
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Input : A DRA R = (Q, Σ, δ, q0, {(Fi, Ii)}k
j=1)

Output: A DPA recognizing the same language as R
1 Q∗ ← {}, δ∗ ← {}, λ∗ ≡ 1
2 foreach SCC S in R do
3 if S transient or {i | Ii ∩ Δ � S �= ∅} = ∅ then // SCC not relevant

4 Add S × {ε} to Q∗

5 foreach q ∈ S, a ∈ Σ such that (δ � S)(q, a) is defined do
6 Let q′ = δ(q, a)
7 Set δ∗((q, ε), a) = (q′, ε) and λ∗(〈(q, ε), a, (q′, ε)〉) = 1

8 end

9 else // SCC relevant, apply IAR to the sub-automaton

10 Pick a starting state q ∈ S
11 (QS , Σ, δS , (q, π), λS) ← IAR(R �q S, pickPerm(q, S))
12 Update Q∗, δ∗ and λ∗ with QS , δS and λS , respectively

13 end

14 end
// Connect all SCCs

15 foreach (q, π) ∈ Q∗ and a ∈ Σ s.t. q′ = δ(q, a) in different SCC of R than q do
16 Pick a π′ with (q′, π′) ∈ Q∗

17 Set δ∗((q, π), a) = (q′, π′)

18 end

Algorithm 1. The optimized IAR construction IAR∗

Fig. 3. Example application of Algorithm 1

automaton constructed from {q, r}, as e.g. the transition 〈r, b, q〉 is contained
in F1. Similarly, pair 2 is tracked in {p} while actually not being relevant. The
optimized version yields improvements in both state-space size and amount of
priorities.
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Theorem 3. For any DRA R we have that L(IAR∗(R)) = L(R), independent
of pickPerm.

4.3 Optimal Choice of the Initial Permutation

In Fig. 2 we provided a scalable example where the choice of the initial per-
mutation can significantly reduce the size of the generated automaton. In this
subsection, we explain a procedure yielding a permutation which minimizes the
state space of the automaton generated by IAR∗.

First, we recall that pickPerm is only invoked when processing a particu-
lar (non-transient) SCC of the input automaton. Consequently, we can restrict
ourselves to only deal with Rabin automata forming a single SCC. Let now R
be such an automaton. While IAR(R, π0) may contain multiple SCCs, we show
that it contains exactly one bottom SCC (BSCC), i.e. a SCC without outgoing
edges. Additionally, this BSCC is the only SCC which contains all states of the
original automaton R in the first component of its states.

Theorem 4. Let R = (Q,Σ, δ, q0, {(Fi, Ii)}k
i=1) be a Rabin automaton that is

strongly connected. For a fixed π0 ∈ Πk, IAR(R, π0) contains exactly one BSCC
S and for every SCC S′ we have that S = S′ iff Q = {q | ∃π ∈ Πk.(q, π) ∈ S′}.
Furthermore the BSCCs for different π0 are isomorphic.

The proof can be found in [KMWW17, Appendix A.4]. This result makes defining
an optimal choice of pickPerm straightforward. By the theorem, there always is
a BSCC of the same size, independent of pickPerm. If (q0, π) is in the BSCC of
some IAR(R, π0), IAR(R, π) will generate the same BSCC and no other states.
Hence, we define pickPerm(q, S) to return any permutation such that (q, π)
lies in the corresponding BSCC. As a trivial consequence of the theorem, this
choice is optimal in terms of the state-space size of the generated automaton. In
our implementation, we start exploring the state space using an arbitrary initial
permutation and then prune all states which do not belong into the respective
BSCC.

5 Experimental Results

In this section, we compare variants of our new approach to the established
tools. All of the benchmarks have been run on a Linux 4.4.3-gentoo x64 virtual
machine with 3.0 GHz per core. We implemented our construction as part of
Rabinizer [KK14] and used the 64 bit Oracle JDK 1.8.0 102 as JVM for our
experiments.

5.1 DRA to DPA Translation

We present comparisons of different approaches to translate DRA into DPA.
As there are to our knowledge no “standard” DRA datasets for this kind of
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comparison, we use Spot’s tool randaut to produce various Rabin automata.
All executions in this chapter ran with a time-out of five minutes.

We consider both our basic method IAR of Sect. 3 and the optimized ver-
sion IAR∗ of Sect. 4. We compare our methods to GOAL2 [TTH13] and the
Streett-based construction StreetIAR of [Löd99b]. As we are not aware of any
implementations of StreetIAR, we implemented it ourselves in Haskell3. Both of
these constructions are using state-based acceptance. In order to allow for a fair
comparison, we therefore also implemented sbIAR, a variant of our construction
working directly with state-based acceptance4 in Haskell (See footnote 3), too.
Additionally, we combine every tool with Spot’s multi-purpose post-processing5

and denote this by a subscript P (for post-processing), e.g. IAR∗ combined with
this post-processing is written IAR∗

P .
In Table 1 we present a comparison between GOAL, StreettIAR and our

unoptimized state-based implementation sbIAR. Additionally, since GOAL does
not perform too well, we also include its post-processed variant GOALP . For
comparison, we also include our optimized variant IAR∗

P . As test data, we use
1000 state-based DRA over 4 atomic propositions with 5 to 15 states, a transition
density of 0.05 and 2 to 3 Rabin pairs6. We use Spot’s tool autfilt to gather
the statistics. Failures denote either time-outs, out of memory errors or invalid
results, e.g. automata which could not be read by autfilt, which sometimes
occurred with GOAL.

Table 1. Comparison of the DRA to DPA translations on 1000 randomly generated
DRAs. First, we compare the cases where all tools finished successfully, according to the
average size, the number of SCCs and the run-time. Second, we give the percentage each
tool produces an automaton with the least number of states, and failures, respectively.

GOAL GOALP StreettIAR sbIAR IAR∗
P

Avg. #states 1054 281 18.4 15.4 8.83

#SCC 73.2 19.2 4.97 4.33 1.61

time (s) 11.7 15.7 0.02 0.02 0.99

Smallest (%) 15.5 37.8 7.7 15.5 95.9

Failure (%) 8.6 11.9 0 0 0

2 gc batch"\$nba = load -c HOAF /dev/stdin; \$dpa = convert -t dpw \$nba;
save \$dpa -c HOAF /dev/stdout;", executed with OpenJDK IcedTea 2.6.6,

java version 1.7.0 101.
3 Compiled with GHC 7.10.3.
4 We also proved correctness for the direct construction, the proof can be obtained by

trivial modifications of the proofs in this paper.
5 autfilt --deterministic --generic --small --high.
6 randaut 4 --seed=0 -Q 5..15 --acceptance="Rabin 2..3"--density=0.05 --

deterministic --acc-probability 0.2 --state-based-acceptance --hoaf -

n1000. The acceptance probability parameter denotes the chance of a particular
transition belonging to a Rabin pair.
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From the results in Table 1 we observe that on this dataset all appearance-
record variants drastically outperform GOAL. We remark that IAR∗ performs
even better compared to GOAL if more SCCs are involved. However, for rea-
sonably complex automata, virtually every execution of GOAL timed out or
crashed, making more specific experiments difficult. Already for the automata
in Table 1 with 5–15 states, GOAL regularly consumed around 3 GB of memory
and needed roughly 10 seconds to complete on average, whereas our methods
only used a few hundred MB and less than a second. We could not find a dataset
where GOAL showed a significant advantage over our new methods. Therefore,
we exclude GOAL from further experiments. The remaining methods are inves-
tigated more thoroughly in the next experiment.

Table 2. Comparison of StreettIAR and (sb)IAR on 1000 randomly generated DRAs.
We use the same definitions as in Table 1.

StreettIAR sbIAR StreettIAR∗
P sbIAR∗

P IAR∗
P

Avg. #states 4959 1568 4175 1081 833

#SCC 63.8 42.5 1.35 1.35 1.35

time (s) 1.86 0.34 39.47 3.11 3.38

Smallest (%) 0 0 0.4 5.90 95.1

Failure (%) 1.3 0 1.4 0 0

In Table 2 we compare StreettIAR to sbIAR on more complex input automata
to demonstrate the advantages of our new method compared to the existing
StreettIAR construction. We consider the methods both in the basic setting and
with post-processing and optimizations. Note that as the presented optimizations
are applicable to appearance records in general, we also added them to our
implementation of StreettIAR. Its optimized version is denoted by StreettIAR∗.
Again, we include our best (transition-based) variant IAR∗

P for reference. The
dataset now contains DRA with 20 to 30 states7.

StreettIAR is significantly outperformed by our new methods in this experi-
ment. This is quite surprising, considering that both methods essentially follow
the same idea of index appearance records, only from different perspectives.
The difference is partially due to Remark 1. Besides, we have observed that
the discrepancy between StreettIAR and IAR is closely linked to the amount of
acceptance pairs. After increasing the number of pairs further, the gap between
the two approaches grows dramatically. For instance, on a dataset of automata
with 8 states and 8 Rabin pairs, the IAR construction yielded automata roughly
an order of magnitude smaller: sbIAR needed less than three hundred states

7 randaut 4 --seed=0 -Q 20..30 --acceptance="Rabin 6"--density=0.05 --acc

-probability=0.2 --deterministic --state-based-acceptance --hoaf-n1000.
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compared to StreettIAR needing over three thousand. Applying the post-
processing does not remedy the situation.

Table 3. Evaluation of the presented optimizations on 1000 randomly generated DRAs,
again using the same definitions as in Table 1. No tool failed for any of the input
automata.

sbIAR sbIAR∗
P IAR IARP IAR∗ IAR∗

P

Avg. #states 3431 2530 1668 1655 1302 1296

#SCC 24.8 1.14 8.98 3.5 1.43 1.43

Time (s) 0.77 11.47 1.09 48.3 76.5 95.7

Smallest (%) 0 0 38.3 48.30 76.5 95.7

Finally, we demonstrate the significance of the transition-based acceptance
and our optimizations in Table 3. To evaluate the impact of our improvements,
we compare the unoptimized IAR procedure and its post-processed counterpart
to the optimized IAR∗ and IAR∗

P . Furthermore, we also include our state-based
version in its basic (sbIAR) and best (sIAR∗

P
8) form. We run these algorithms

on a dataset of DRA with 20 states each9.
Spot’s generic post-processing algorithms often yield sizeable gains, but they

are marginal compared to the effect of our optimizations on this dataset. Our
optimizations are thus not only significantly beneficial, but also irreplacable by
general purpose optimizations. We furthermore want to highlight the reduction
of SCCs. As a final remark, we emphasize the improvements due to the adoption
of transition-based acceptance, halving the size of the automata.

5.2 Linear Temporal Logic

Motivated by the previous results we concatenated IAR∗ with Rabinizers LTL-
to-DRA translation, obtaining an LTL-to-DPA translation. We compare this
approach to the established tool ltl2tgba of Spot, which can also produce
DPA10. We use Spot’s comparison tool ltlcross in order to produce the results.
Unfortunately, this tool sometimes crashes caused by too many acceptance
sets11. We alleviated this problem by splitting our datasets into smaller chunks.
Time-outs are set to 15 min.

8 We use autfilt --state-based-acceptance to convert the transition based input
DRA to state based.

9 randaut 4 --seed=0 -Q 20 --acceptance="Rabin 5"--acc-probability=0.05--

density=0.1 --deterministic --hoaf -n1000.
10 By specifying --deterministic --generic on the command line.
11 Around 20 acceptance sets. The exact error message emitted is -terminate

called after throwing an instance of’std::runtime error’ what(): Too

many acceptance sets used.
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First, we compare the two tools on random LTL formulae. We use randltl
and ltlfilt to generate pure LTL formulae12. The test results are outlined in
Table 4. On average, our methods are comparable to ltl2tgba, even outper-
forming it slightly in the number of states.

Note that the averages have to be compared carefully. As the constructions
used by ltl2tgba are fundamentally different from ours, there are some formulae
where we outperform ltl2tgba by orders of magnitude and similarly in the other
direction. We conjecture that on some formulae ltl2tgba has an edge merely due
to its rewriting together with numerous pre- and post-processing steps, whereas
our method profits from Rabinizer, which can produce smaller deterministic
automata also for very complex formulae. On many dataset we tested, median
state count over all formulae (including timeouts) is better for our methods. For
more detail, see the histogram in [KMWW17, Appendix B, Fig. 4].

Table 4. Comparison of ltl2tgba to Rabinizer + IAR∗
P on 2000 LTL formulae.

Rabinizer + IAR∗
P ltl2tgba

Avg. #states 6.60 7.89

#acc 2.31 1.79

#SCC 4.49 4.69

Timeouts 22 0

To give more insight in the difference between the approaches, we list sev-
eral classes of formulae where our technique performs particularly well. For
instance, for fairness-like constraints our toolchain produces significantly smaller
automata than ltl2tgba, see Table 5. Further examples, previously investigated
in e.g. [KE12,BBKS13,EK14] can be found in [KMWW17, Appendix B, Table 6],
including formulae of the GR(1) fragment [PPS06]. Additionally, our method is
performing better on many practical formulae, for instance complex formulae
from Spec Pattern [DAC99]13.

6 Conclusion

We have presented a new version of index appearance record. In comparison to
the standard Streett-based approach, our new Rabin-based approach produces
significantly smaller automata. Besides, it has a significant potential for LTL
synthesis. For more complex formulae, it makes use of high efficiency of Rabinizer

12 randltl -n2000 5 --tree-size=20..25 --seed=0 --simplify=3 -p --ltl -

priorities’ ap=3, false=1,true=1,not=1,F=1,G=1,X=1,equiv=1,implies=1,

xor=0,R=0,U=1,W=0,M=0,and=1,or=1’ | ltlfilt --unabbreviate="eiMRW"̂.
13 Spec Patterns: Property Pattern Mappings for LTL. http://patterns.projects.cis.ksu.

edu/documentation/patterns/ltl.shtml.

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
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Table 5. Fairness formulae: Fairness(k) =
∧k

i=1(GF ai ⇒ GF bi)

Rabinizer+IAR∗
P ltl2tgba

Formula States Acc SCCs States Acc SCCs

Fairness(1) 2 4 1 5 4 3

Fairness(2) 12 9 1 44 8 9

Fairness(3) 1431 17 1 8607 20 546

and thus avoids the blow-up in many cases, compared to determinization-based
methods.

Since we only provided the method for DRA we want to further investigate
whether it can be extended to DGRA more efficiently than by de-generalization.
Besides, a more targeted post-processing of the state space and the priority
function is desirable. For instance, in order to decrease the total number of
used priorities, all non-accepting SCCs can be assigned any odd priority that
is already required elsewhere instead of the one suggested by the algorithm.
Further, one can adopt optimizations of Spot as well as consider optimizations
taking the automaton topology more into account. The whole tool-chain will
then be integrated into Rabinizer. Finally, in order to estimate the effect on
LTL synthesis more precisely, we shall link our tool chain to parity-game solvers
and apply it to realistic case studies.
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Abstract. We consider the problem of state-space reduction for nonde-
terministic weakly-hierarchical visibly pushdown automata (Vpa). Vpa
recognize a robust and algorithmically tractable fragment of context-free
languages that is natural for modeling programs.

We define an equivalence relation that is sufficient for language-
preserving quotienting of Vpa. Our definition allows to merge states
that have different behavior, as long as they show the same behavior
for reachable equivalent stacks. We encode the existence of such a rela-
tion as a Boolean partial maximum satisfiability (PMax-Sat) problem
and present an algorithm that quickly finds satisfying assignments. These
assignments are sub-optimal solutions to the PMax-Sat problem but can
still lead to a significant reduction of states.

We integrated our method in the automata-based software verifier
Ultimate Automizer and show performance improvements on bench-
marks from the software verification competition SV-COMP.

1 Introduction

The class of visibly pushdown languages (Vpl) [6] lies properly between the
regular and the context-free languages. Vpl enjoy most desirable properties of
regular languages (closure under Boolean operations and decision procedures
for, e.g., the equivalence problem). They are well-suited for representing data
that have both a linear and a hierarchical ordering, e.g., procedural programs
[4,22,24,37] and XML documents [31,33,34,38].

The corresponding automaton model is called visibly pushdown automaton
(Vpa). It extends the finite automaton model with a stack of restricted access by
requiring that the input symbol specifies the stack action – a call (resp. return)
symbol implies a push (resp. pop) operation, and an internal symbol ignores the
stack. In this paper, we consider a notion of Vpa where a call always pushes the
current state on the stack. These Vpa are called weakly-hierarchical Vpa [7].

Size reduction of automata is an active research topic [2,3,8,9,14,15,32] that
is theoretically appealing and has practical relevance: smaller automata require
less memory and speed up automata-based tools [21,23,27,29]. In this paper,
we present a size reduction technique for a general class of (nondeterministic)
Vpa that is different from classes that were considered in previous approaches
[5,13,30]. An extended version of this paper is available [26].
c© Springer-Verlag GmbH Germany 2017
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It is well-known that for deterministic finite automata the unique minimal
automaton can be obtained by quotienting (i.e., merging equivalent states), and
there exists an efficient algorithm for this purpose [28]. Vpa do not have a
canonical minimum [5]. For other automaton classes that lack this property,
the usual approach is to find equivalence relations that are sufficient for quoti-
enting [1,3,18]. The main difficulty of a quotienting approach for Vpa is that
two states may behave similarly given one stack but differently given another
stack, and as the number of stacks is usually infinite, one cannot simply compare
the behaviors for each of them.

1.1 Motivating Examples

We now present three observations. The first observation is our key insight and
shows that Vpa have interesting properties that we can exploit. The other obser-
vations show that Vpa have intricate properties that make quotienting nontrivial.
For convenience, we use a for internal, c for call, and r for return symbols, and
we omit transitions to the sink state.

Exploiting Unreachable Stacks Allows Merging States. Consider the
Vpa in Fig. 1(a). The states q1 and q2 have the same behavior for the internal
symbol a but different behaviors for the return symbol r with stack symbol q0:
Namely, state q1 leads to the accepting state while q2 has no respective return
transition. However, in q2 it is generally impossible to take a return transition
with stack symbol q0 since q2 can only be reached with an empty stack. Thus
the behavior for the stack symbol q0 is “undefined” and we can merge q1 and q2
without changing the language. The resulting Vpa is depicted in Fig. 1(b).

q0 q2

q1

q3

qf

c1

a

c2

r/q
0

a

a
a

r/q0

a

(a) A Vpa.

q0 q2
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a

c2

r/{q0}
a
a

r/{q0}

a

(b) One possible quotienting.

q0 q2

q1

q3

qf

c1

a
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r/{q0}
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a

r/{q0}

a

(c) Another possible quotienting.

Fig. 1. A Vpa and two possible quotientings due to unreachable stacks.
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Merging States Requires a Transitive Relation. Using the same argument
as above, we can also merge the states q2 and q3; the result is depicted in Fig. 1(c).
For finite automata, mergeability of states is transitive. However, here we cannot
merge all three states q1, q2, and q3 without changing the language because q1
and q3 have different behaviors for stack symbol q0. For Vpa, we have to check
compatibility for each pair of states.

Merging States Means Merging Stack Symbols. Consider the Vpa in
Fig. 2(a). Since for (weakly-hierarchical) Vpa, stack symbols are states, merging
the states q1 and q2 implicitly merges the stack symbols q1 and q2 as well. After
merging we receive the Vpa in Fig. 2(b) which recognizes a different language
(e.g., it accepts the word a1c r2).

q0

q1

q2

q3 qf

a1

a2

c

c

r1/q1

r2/q2

a

(a) A Vpa.

q0

q1

q2

q3 qf
a1

a2

c r1/{q1, q2}
r2/{q1, q2}

a

(b) A language-changing quotienting.

Fig. 2. A Vpa where quotienting of states leads to quotienting of stack symbols.

1.2 Our Approach

We define an equivalence relation over Vpa states for quotienting that is
language-preserving. This equivalence relation exploits our key observation,
namely that we can merge states if they have the same behavior on equiva-
lent reachable stacks, even if they have different behavior in general (Sect. 3).
We show an encoding of such a relation as a Boolean partial maximum satisfia-
bility (PMax-Sat) instance (Sect. 4). In order to solve these instances efficiently,
we propose a greedy algorithm that finds suboptimal solutions (Sect. 5.1). As a
proof of concept, we implemented the algorithm and evaluated it in the context of
the automata-based software verifier Ultimate Automizer [23,25] (Sect. 5.2).

2 Visibly Pushdown Automata

In this section, we recall the basic definitions for visibly pushdown automata [6]
and quotienting. After that, we characterize when an automaton is live.

2.1 Preliminaries

Alphabet. A (visibly pushdown) alphabet Σ = Σi � Σc � Σr is a partition
consisting of three finite sets of internal (Σi), call (Σc), and return (Σr) symbols.
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A word is a sequence of symbols. We denote the set of finite words over alphabet
Σ by Σ∗ and the empty word by ε. As a convention we use a for internal, c for
call, and r for return symbols, x for any type of symbol, and v, w for words.

The set of well-matched words over Σ, WM (Σ), is the smallest set satisfying:
(1) ε ∈ WM (Σ); (2) if w ∈ WM (Σ), so is wa for a ∈ Σi; and if v, w ∈ WM (Σ),
so is vcwr for c r ∈ Σc ·Σr, and we call symbols c and r matching. Given a word
over Σ, for any return symbol we can uniquely determine whether the symbol is
matching. The set of matched-return words, MR(Σ), consists of all words where
each return symbol is matching. Clearly, WM (Σ) is a subset of MR(Σ).

Visibly Pushdown Automaton. A visibly pushdown automaton (Vpa) is
a tuple A = (Q,Σ,⊥,Δ,Q0, F ) with a finite set of states Q, a visibly push-
down alphabet Σ, a bottom-of-stack symbol ⊥ /∈ Q, a transition relation
Δ = (Δi,Δc,Δr) consisting of internal transitions Δi ⊆ Q × Σi × Q, call transi-
tions Δc ⊆ Q×Σc×Q, and return transitions Δr ⊆ Q×Σr×Q×Q, a nonempty
set of initial states Q0 ⊆ Q, and a set of accepting states F ⊆ Q.

A stack σ is a word over St def={⊥} · Q∗. We write σ[i] for the i-th symbol of
σ. A configuration is a pair (q, σ) ∈ Q × St . A run ρA(w) of Vpa A on word
w = x1x2 · · · ∈ Σ∗ is a sequence of configurations (q0, σ0)(q1, σ1) · · · according
to the following rules (for i ≥ 0):

1. If xi+1 ∈ Σi then (qi, xi+1, qi+1) ∈ Δi and σi+1 = σi.
2. If xi+1 ∈ Σc then (qi, xi+1, qi+1) ∈ Δc and σi+1 = σi · qi.
3. If xi+1 ∈ Σr then (qi, xi+1, q̂, qi+1) ∈ Δr and σi = σi+1 · q̂.

A run is initial if (q0, σ0) ∈ Q0 × {⊥}. A configuration (q, σ) is reachable if
there exists some initial run ρ = (q0, σ0)(q1, σ1) · · · such that (qi, σi) = (q, σ)
for some i ≥ 0, and unreachable otherwise. Similarly, we say that a stack σ is
reachable (resp. unreachable) for state q if (q, σ) is reachable (resp. unreachable).
A run of length n is accepting if qn ∈ F . A word w ∈ Σ∗ is accepted if some
initial run ρA(w) is accepting. The language recognized by a Vpa A is defined
as L(A) def={w | w is accepted by A}. A Vpa is deterministic if it has one initial
state and the transition relation is functional.

A finite automaton (Fa) is a Vpa where Σc = Σr = ∅.

Remark 1. We use a variant of Vpa that deviates from the Vpa model by Alur
and Madhusudan [6] in two ways: (1) We forbid return transitions when the stack
is empty, i.e., the automata accept only matched-return words; this assumption
is also used in other works [30,35]. (2) We consider weakly-hierarchical Vpa
where a call transition implicitly pushes the current state on the stack; this
assumption is also a common assumption [13,30]; every Vpa can be converted
to weakly-hierarchical form with 2|Q||Σ| states [7].

Both assumptions are natural in the context of computer programs: The
call stack can never be empty, and return transitions always lead back to the
respective program location after the corresponding call.
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Quotienting. For an equivalence relation over some set S, we denote the equiv-
alence class of element e by [e]; analogously, lifted to sets, let [T ] def={[e] | e ∈ T}.

Given a Vpa A = (Q,Σ,⊥, (Δi,Δc,Δr), Q0, F ) and an equivalence relation
≡⊆ Q×Q on states, the quotient Vpa is the Vpa A/≡

def=([Q], Σ,⊥,Δ′, [Q0], [F ])
with Δ′ = (Δ′

i,Δ
′
c,Δ

′
r) and

• Δ′
i = {([p], a, [p′]) | ∃(q, a, q′) ∈ Δi. q ∈ [p], q′ ∈ [p′]},

• Δ′
c = {([p], c, [p′]) | ∃(q, c, q′) ∈ Δc. q ∈ [p], q′ ∈ [p′]}, and

• Δ′
r = {([p], r, [p̂], [p′]) | ∃(q, r, q̂, q′) ∈ Δr. q ∈ [p], q′ ∈ [p′], q̂ ∈ [p̂]}.

Quotienting is the process of merging states from the same equivalence class
to obtain the quotient Vpa; this implicitly means merging stack symbols, too.

2.2 Live Visibly Pushdown Automata

Let Q⊥
def= Q ∪ {⊥} be the stack alphabet. The function top : St → Q⊥ returns

the topmost symbol of a stack:

top(σ) def=

{
⊥ σ = ⊥
q σ = σ′ · q for some σ′ ∈ St

Given a state q, the function tops : Q → 2Q⊥ returns the topmost symbols
of all reachable stacks σ for q (i.e., reachable configurations (q, σ)):

tops(q) def={top(σ) | ∃σ ∈ St . (q, σ) is reachable}
For seeing that tops is computable, consider a Vpa A = (Q,Σ,⊥,Δ,Q0, F ).

The function tops is the smallest function f : Q → 2Q⊥ satisfying:

1. q ∈ Q0 =⇒ ⊥ ∈ f(q)
2. q̂ ∈ f(q), (q, a, q′) ∈ Δi =⇒ q̂ ∈ f(q′)
3. (q, σ) reachable for some σ, (q, c, q′) ∈ Δc =⇒ q ∈ f(q′)
4. q̂ ∈ f(q), (q, r, q̂, q′) ∈ Δr =⇒ f(q̂) ⊆ f(q′)

We call a Vpa live if the following holds. For each state q and for each internal
and call symbol x there is at least one outgoing transition (q, x, q′) to some state
q′; additionally, for each return symbol r and state q̂ there is at least one outgoing
return transition (q, q̂, r, q′) to some state q′ if and only if q̂ ∈ tops(q).

Note that a live Vpa has a total transition relation in a weaker sense: There
are outgoing return transitions from state q if and only if the respective transition
can be taken in at least one run. That is, we forbid return transitions when no
corresponding configuration is reachable. Every Vpa can be converted to live
form by adding one sink state.

Remark 2. For live Vpa A, a run ρA(w) on word w can only “get stuck” in an
empty-stack configuration, i.e., if w = v1r v2 with r ∈ Σr such that ρA(v1) =
(q0, σ0) · · · (qk,⊥) for some qk ∈ Q. If w ∈ MR(Σ), no run gets stuck.

For the remainder of the paper, we fix a live Vpa A = (Q,Σ,⊥,Δ,Q0, F ). We
sometimes refer to this Vpa as the input automaton.
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3 A Quotienting Relation for VPA

In this section, we define an equivalence relation on the states of a Vpa that is
useful for quotienting, i.e., whose respective quotient Vpa is language-preserving.

We first need the notion of closure under successors for each kind of symbol.
Let R ⊆ Q×Q be a binary relation over states and let p, q, p̂, q̂ ∈ Q be states.

We say that R is

• closed under internal successors for (p, q) if for each internal symbol a ∈ Σi

• for all (p, a, p′) ∈ Δi there exists (q, a, q′) ∈ Δi s.t. (p′, q′) ∈ R and
• for all (q, a, q′) ∈ Δi there exists (p, a, p′) ∈ Δi s.t. (p′, q′) ∈ R,

• closed under call successors for (p, q) if for each call symbol c ∈ Σc

• for all (p, c, p′) ∈ Δc there exists (q, c, q′) ∈ Δc s.t. (p′, q′) ∈ R and
• for all (q, c, q′) ∈ Δc there exists (p, c, p′) ∈ Δc s.t. (p′, q′) ∈ R,

• closed under return successors for (p, q, p̂, q̂) if for each return symbol r ∈ Σr

• for all (p, r, p̂, p′) ∈ Δr there exists (q, r, q̂, q′) ∈ Δr s.t. (p′, q′) ∈ R and
• for all (q, r, q̂, q′) ∈ Δr there exists (p, r, p̂, p′) ∈ Δr s.t. (p′, q′) ∈ R.

We are ready to present an equivalence relation that is useful for quotienting
using a fixpoint characterization.

Definition 1 (Reachability-aware quotienting relation). Let A be a V pa
and R ⊆ Q × Q be an equivalence relation over states. We say that R is a Raq
relation if for each pair of states (p, q) ∈ R the following constraints hold.

(i) State p is accepting if and only if state q is accepting (p ∈ F ⇐⇒ q ∈ F ).
(ii) R is closed under internal successors for (p, q).
(iii) R is closed under call successors for (p, q).
(iv) For each pair of states (resp. topmost stack symbols) (p̂, q̂) ∈ R,

• R is closed under return successors for (p, q, p̂, q̂), or
• no configuration (q, σq) with q̂ = top(σq) is reachable, or
• no configuration (p, σp) with p̂ = top(σp) is reachable.

Remark 3. “No configuration (q, σq) with q̂ = top(σq) is reachable” is equivalent
to “q̂ /∈ tops(q)”. The equality relation {(q, q) | q ∈ Q} is a Raq relation for any
Vpa; the respective quotient Vpa is isomorphic to the input automaton.

Example 1. Consider again the Vpa from Fig. 1(a). We claim that the relation
R

def={(q, q) | q ∈ Q} ∪ {(q1, q2), (q2, q1)} is a Raq relation. Note that it cor-
responds to the quotient Vpa from Fig. 1(b). First we observe that R is an
equivalence relation. We check the remaining constraints only for the two pairs
(q1, q2) and (q2, q1). Both states are not accepting. Relation R is closed under
internal (here: a) and call (here: none, i.e., implicitly leading to a sink) succes-
sors. The return transition constraint is satisfied because in state q2 no stack
with topmost symbol q0 is reachable (q0 /∈ tops(q2)).
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We want to use a Raq relation for language-preserving quotienting. For this
purpose we need to make sure that unreachable configurations in Definition 1
do not enable accepting runs that are not possible in the original Vpa. In the
remainder of this section, we show that this is indeed the case.

Given an equivalence relation R ⊆ Q × Q on states, we call a stack σ the
R-quotienting of some stack σ′ of the same height if either σ = σ′ = ⊥ or for all
i = 2, . . . , |σ| each symbol σ[i] is the equivalence class of σ′[i], i.e., σ′[i] ∈ [σ[i]].
We write σ′ ∈ [σ] in this case. (We compare stacks only for i ≥ 2 because the
first stack symbol is always ⊥.)

Lemma 1 (Corresponding run). Let A be a V pa and ≡ be some Raq rela-
tion for A. Then for any matched-return word w and respective run

ρA/≡(w) = ([p0],⊥) · · · ([pn], [σn])

with p0 ∈ Q0 in A/≡ there is some corresponding run

ρA(w) = (q′
0,⊥) · · · (q′

n, σ′
n)

in A such that q′
i ∈ [pi] and σ′

i ∈ [σi] for all i ≥ 0, and furthermore q′
0 ∈ Q0.

Proof. The proof is by induction on the length of w. The case for w = ε is
trivial. Now assume w′ = w · x for x ∈ Σ and fix some run ρA/≡(w′) =
([p0],⊥) · · · ([pn], [σn]) · ([pn+1], [σn+1]). The hypothesis ensures that there exists
a corresponding run for the prefix ρA(w) = (q′

0,⊥) · · · (q′
n, σ′

n) s.t. q′
n ∈ [pn] and

σ′
n ∈ [σn]. We will extend this run in each of the three cases for symbol x.

(1) If x ∈ Σi, then, since there is a transition ([pn], x, [pn+1]) ∈ Δi/≡, there exist
some states q′′

n ∈ [pn] and q′′
n+1 ∈ [pn+1] s.t. (q′′

n, x, q′′
n+1) ∈ Δi (from the

definition of quotienting). Using that ≡ is closed under internal successors,
there also exists a target state q′

n+1 ∈ [pn+1] s.t. (q′
n, x, q′

n+1) ∈ Δi. Addi-
tionally, because x ∈ Σi, we have that σ′

n+1 = σ′
n ∈ [σn] = [σn+1] by the

hypothesis.
(2) If x ∈ Σc, a similar argument holds, only this time the stack changes. We

have that σ′
n+1 = σ′

n · q′
n ∈ [σn · pn] = [σn+1] by the hypothesis.

(3) If x ∈ Σr, then the configuration (q′
n, σ′

n) is reachable (witnessed by the run
ρA(w)). Since ≡ is closed under return successors for all states in [pn] (mod-
ulo unreachable configurations), for each top-of-stack symbol q̂ ∈ [top(σ′

n)]
s.t. (q′

n, σ′′ · q̂) is reachable for some stack σ′′ there exists a corresponding
return transition (q′

n, x, q̂, q′
n+1) ∈ Δr with q′

n+1 ∈ [pn+1]; in particular, this
holds for q̂ = top(σ′

n). Recall that A is assumed to be live, which ensures that
every return transition that exists in the quotient Vpa has such a witness.
The stack property σ′

n+1 ∈ [σn+1] follows from the hypothesis. ��
From the above lemma we can conclude that quotienting with a Raq relation

preserves the language.

Theorem 1 (Language preservation of quotienting). Let A be a V pa and
let ≡ be a Raq relation on the states of A. Then L(A) = L(A/≡).
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Proof. Clearly, L(A) ⊆ L(A/≡) for any equivalence relation ≡. We show the
other inclusion by means of a contradiction.

Assume there exists a word w s.t. w ∈ L(A/≡) \ L(A). By assumption, in
A/≡ there is an initial accepting run ρA/≡(w). Then, by Lemma 1, there is a
corresponding run ρA(w), and furthermore this run is initial.

The run ρA(w) is also accepting by the property that [p] ∈ [F ] if and only if
q ∈ F for all q ∈ [p] (cf. Property (i) of a Raq relation). ��

4 Computing Quotienting Relations

In Sect. 3, we introduced the notion of a Raq relation and showed how we can
use it to minimize Vpa while preserving the language. In this section, we show
how we can compute a Raq relation. For this purpose, we provide an encoding
as a partial maximum satisfiability problem (PMax-Sat). From a (in fact, any)
solution, i.e., satisfying assignment, we can synthesize a Raq relation. While
this does not result in the coarsest Raq relation possible, the relation obtained
is locally optimal, i.e., there is no coarser Raq relation that is a strict superset.

4.1 Computing RAQ Relations

Note that in general there are many possible instantiations of a Raq relation,
e.g., the trivial equality relation which is not helpful for minimization. Since we
are interested in reducing the number of states, we prefer coarser relations over
finer relations.

To obtain a coarse relation, we describe an encoding of the Raq relation
constraints as an instance of the PMax-Sat problem [12,19]. Such a problem
consists of a propositional logic formula in conjunctive normal form with each
clause being marked as either hard or soft. The task is to find a truth assignment
such that all hard clauses are satisfied and the number of the satisfied soft clauses
is maximal.

SAT Encoding. For the moment, we ignore soft clauses and provide a stan-
dard Sat encoding of the constraints. The encoding has the property that any
satisfying assignment induces a valid Raq relation ≡.

Let true and false be the Boolean constants. We need O(n2) variables of the
form X{p,q} where p and q are states of the input automaton. The idea is that
p ≡ q holds if we assign the value true to X{p,q}. (We ignore the order of p and
q as ≡ must be symmetric.) We express the constraints from Definition 1 as
follows.

Consider the constraint (i). For each pair of states (p, q) not satisfying the
constraint we introduce the clause

¬X{p,q}. (1)
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Consider the constraints (ii), (iii), (iv). For each transition (p, a, p′) ∈ Δi,
(p, c, p′) ∈ Δc, and (p, r, p̂, p′) ∈ Δr and all states q and q̂ we respectively con-
struct one of the following clauses.

¬X{p,q} ∨ (X{p′,qa1 } ∨ · · · ∨ X{p′,qaka
}) (2)

¬X{p,q} ∨ (X{p′,qc1} ∨ · · · ∨ X{p′,qckc
}) (3)

¬X{p,q} ∨ ¬X{p̂,q̂} ∨ (X{p′,qr1} ∨ · · · ∨ X{p′,qrkr
}) (4)

Here the qai /qci are the respective a/c-successors of q and the qri are the r-
successors of q with stack symbol q̂. To account for the unreachable configuration
relaxation, we may omit return transition clauses (4) where p̂ /∈ tops(p) or
q̂ /∈ tops(q).

We also need to express that ≡ is an equivalence relation, i.e., we need addi-
tional reflexivity clauses

X{q1,q1} (5)

and transitivity clauses

¬X{q1,q2} ∨ ¬X{q2,q3} ∨ X{q1,q3} (6)

for any distinct states q1, q2, q3 (assuming there are least three states). Recall
that our variables already ensure symmetry.

Let Φ be the conjunction of all clauses of the form (1), (2), (3), (4), (5), and
(6). All assignments satisfying Φ represent valid Raq relations.

However, we know that the assignment

X{p,q} �→
{
true p = q

false otherwise

corresponding to the equality relation is always trivially satisfying. Such an
assignment is not suited for our needs. We consider an assignment optimal if
it represents a Raq relation with a coarsest partition.

PMax-SAT Encoding. We now describe an extension of the Sat encoding
to a PMax-Sat encoding. In this setting, we can enforce that the number of
variables that are assigned the value true is maximal.

As an addition to Φ, we add for every two states p, q with p �= q the clause

X{p,q} (7)

and finally we consider all old clauses, i.e., clauses of the form (1)–(6), as
hard clauses and all clauses of the form (7) as soft clauses.
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4.2 Locally Maximal RAQ Relation

Note that an assignment obtained from the PMax-Sat encoding does not neces-
sarily give us a coarsest Raq relation. Consider a Vpa with seven states q0, . . . , q6
and the partition

{{q0, q1, q2, q3}, {q4}, {q5}, {q6}
}
. Here we set six variables to

true (all pairs of states from the first set). However, the partition
{{q0, q1, q2},

{q3, q4}, {q5, q6}
}

is coarser, and yet we only set five variables to true.
Despite not finding the globally maximal solution, we can establish local

maximality.

Theorem 2 (Local maximum). A satisfying assignment of the PMax-Sat
instance corresponds to a Raq relation such that no strict superset of the relation
is also a Raq relation.

Proof. It is clear from the construction that in the obtained assignment, no fur-
ther variable X{p,q} can be assigned the value true. Each such variable determines
membership of the symmetric pairs (p, q) and (q, p) in the Raq relation. ��

5 Experimental Evaluation

In this section, we report on our implementation and its potential in practice.

5.1 Implementation

Initially, we apply the following preprocessing steps for reducing the complex-
ity. First, we remove unreachable and dead states and make the Vpa live for
return transitions (we do not require that the Vpa is total for internal or call
transitions). Second, we immediately replace variables X{p} by true (reflexivity).
Third, we construct an initial partition of the states and replace variables X{p,q}
by false if p and q are not in the same block. This partition is the coarsest fix-
point of a simple partition refinement such that states in the same block have
the same acceptance status, the same outgoing internal and call symbols, and, if
all states in a block have a unique successor under an internal/call symbol, those
successors are in the same block (cf. Definition 1 and Hopcroft’s algorithm [28]).

Optimally solving a PMax-Sat instance is an Np-complete problem. Expect-
edly, a straightforward implementation of the algorithm presented in Sect. 4 using
an off-the-shelf PMax-Sat solver does not scale to interesting problems (see also
the extended version [26]). Therefore, we implemented a domain-specific greedy
PMax-Sat solver that only maximizes the satisfied soft clauses locally.

Our solver is interactive, i.e., clauses are added one after another, and prop-
agation is applied immediately. After adding the last clause, the solver chooses
some unset variable and first sets it to true optimistically. Theorem 2 still holds
with this strategy. Apart from that, the solver follows the standard DPLL algo-
rithm and uses no further enhancements found in modern Sat solvers.
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Remark 4. If the Vpa is deterministic, we obtain a Horn clause system. Then
the above algorithm never needs to backtrack for more than one level, as the
remaining clauses can always be satisfied by assigning false to the variables.

The main limitation of the approach is the memory consumption. Clearly, the
majority of clauses are those expressing transitivity. Therefore, we implemented
and integrated a solver for the theory of equality: When a variable X{p,q} is set to
true, this solver returns all variables that must also be set to true for consistency.
That allowed us to omit the transitivity clauses (see [26] for details).

5.2 Experiments

Our evaluation consists of three parts. First, we evaluate the impact of our
minimization on an verifier Ultimate Automizer. Second, we evaluate the
performance of our minimization on automata that were produced by Ultimate
Automizer. Third, we evaluate the performance of our minimization on a set
of random automata. All experiments are performed on a PC with an Intel i7
3.60 GHz CPU running Linux.

Impact on the software verifier Ultimate Automizer. The software verifier
Ultimate Automizer [23] follows an automata-based approach [25] in which
sets of program traces are represented by automata. The approach can be seen
as a CEGAR-style algorithm in which an abstraction is iteratively refined. This
abstraction is represented as a weakly-hierarchical Vpa where the automaton
stack only keeps track of the states from where function calls were triggered.

For our evaluation, we run Ultimate Automizer on a set of C programs
in two different modes. In the mode “No minimization” no automata minimiza-
tion is applied. In the mode “Minimization” we apply our minimization in each
iteration of the CEGAR loop to the abstraction if it has less than 10,000 states.
(In cases where the abstraction has more than 10,000 states the minimization
can be too slow to pay off on average.)

As benchmarks we took C programs from the repository of the SV-COMP
2016 [10] and let Ultimate Automizer analyze if the error location is reachable.
In this repository the folders systemc and eca-rers2012 contain programs that
use function calls (hence the Vpa contain calls and returns) and in whose analysis
the automata sizes are a bottleneck for Ultimate Automizer. We randomly
picked 100 files from the eca-rers2012 folder and took all 65 files from the
systemc folder. The timeout of Ultimate Automizer was set to 300 s and the
available memory was restricted to 4 GiB.

The results are given in Table 1. Our minimization increases the number
of programs that are successfully analyzed from 66 to 78. On programs that
are successfully analyzed in both modes, the mode using minimization is slightly
faster. Hence, the additional cost due to minimization is more than compensated
by savings in other operations on the (now smaller) Vpa on average.

Evaluation on automata from Ultimate Automizer. To evaluate the per-
formance of our minimization algorithm in more details, we applied it to a bench-
mark set that consists of 1026 Vpa produced by Ultimate Automizer. All
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Table 1. Performance of Ultimate Automizer with and without minimization. Col-
umn # shows the number of successful reachability analyses (out of 165), average run
time is given in milliseconds, average removal shows the states removed for all itera-
tions, and the last column shows the relative number of iterations where minimization
was employed. The first two rows contain the data for those programs where both
modes succeeded, and the third row contains the data for those programs where only
the minimization mode succeeded.

∅ Time ∅ Time % Iterations
Mode Set # ∅ Removal

total minimization with minimization

No minimization 16085 – – –
Both 66

Minimization 15564 2649 3077 75

Minimization Exclusive 12 101985 61384 8472 76

Table 2. Performance of our algorithm on automata produced by Ultimate
Automizer (see also Fig. 3). We aggregate the data for all automata whose number of
states is in a certain interval. Column # shows the number of automata, #nd shows
the number of nondeterministic automata, and the other data is reported as average.
The next seven columns show information about the input automata. The run time is
given in milliseconds. The last two columns show the number of variables and clauses
passed to the PMax-Sat solver.

|Q| (interval) # #nd |Q| |Σi| |Σc| |Σr| |Δi| |Δc| |Δr| Time |Var| |Cls|
[22; 250] 102 46 149 29 4 4 131 13 75 130 1440 35375

[250; 1000] 158 64 554 83 11 11 533 43 105 607 8363 53016

[1000; 4000] 161 27 2053 413 34 34 2188 170 345 2536 36865 170256

[4000; 16000] 127 6 8530 1535 152 150 9293 625 889 31481 161214 244007

[16000; 34114] 48 5 21755 2133 203 202 25348 603 1137 32129 361866 813549

automata from this set contain call and return transitions and do not contain
any dead ends (states from which no accepting state is reachable). Details on
the construction of these automata can be found in the extended version [26]

We ran our implementation on these automata using a timeout of 300 s and
a memory limit of 4 GiB. Within the resource bounds we were able to minimize
596 of the automata. Details about these automata and the minimization run
are presented in Table 2. In the table we grouped automata according to their
size. For instance, the first row aggregates the data of all automata that have
up to 250 states. The table shows that we were able to minimize automata up to
a five-digit number of states and that automata that have a few thousand states
can be minimized within seconds. Figure 3 shows the sizes of the minimization
results. The first four graphs compare the sizes of input and output in terms of
states and transitions. The fourth graph shows that the (partly) significant size
reduction is not only due to “intraprocedural” merges, but that also the number
of return transitions is reduced. The last two graphs show that the relative size
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Fig. 3. Minimization results on automata produced by Ultimate Automizer (see also
Table 2). D(N) stands for (non-)deterministic automata.

reduction is higher on larger automata. The reason is that small automata in
Ultimate Automizer tend to have similarities to the control flow graph of a
program, which is usually already minimal.

Evaluation on Random Automata. The automata produced by Ultimate
Automizer have relatively large alphabets (according to Table 2 there are on
average less than 10 states per symbol) and are extremely sparse (on aver-
age less than 1.5 transitions per state). To investigate the applicability of
our approach to Vpa without such structure, we also evaluate it on random
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Fig. 4. Minimization results on random Vpa with 100 states, of which 50% are accept-
ing, and with one internal, call, and return symbol each. Return transitions are each
inserted with 50 random stack symbols. The transition density is increased in steps of
2%. Each data point stems from 500 random automata.

nondeterministic Vpa. We use a generalization of the random Büchi automata
model by Tabakov and Vardi [36] to Vpa (see the extended version [26] for
details). Figure 4 shows that our algorithm can remove some states on top of
removing dead ends for lower transition densities, but overall it seems more
appropriate to automata that have some structure.

6 Related Work

Alur et al. [5] show that a canonical minimal Vpa does not exist in general. They
propose the single entry-Vpa (Sevpa) model, a special Vpa of equivalent expres-
siveness with the following constraints: Each state and call symbol is assigned to
one of k modules, and each module has a unique entry state which is the target
of all respective call transitions. This is enough structure to obtain the unique
minimal k-Sevpa from any given k-Sevpa by quotienting.

Kumar et al. [30] extend the idea to modular Vpa. Here the requirement
of having a unique entry per module is overcome, but more structure must be
fixed to preserve a unique minimum – most notably the restriction to weakly-
hierarchical Vpa and the return alphabet being a singleton.

Chervet and Walukiewicz [13] generalize the above classes to call driven
automata. They show that general Vpa can be exponentially more succinct than
the three classes presented. Additionally, they propose another class called block
V pa for which a unique minimum exists that is at most quadratic in the size
of some minimal (general) Vpa. However, to find it, the “right” partition into
modules must be chosen, for which no efficient algorithm is known.

All above Vpa classes have in common that the languages recognized are
subsets of WM (Σ), the states are partitioned into modules, and the minimal
automaton (respecting the partition) can be found by quotienting. While the
latter is an enjoyable property from the algorithmic view, the constraints limit
practical applicability: Even under the assumption that the input Vpa recog-
nizes a well-matched language, if it does not meet the constraints, it must first be
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converted to the respective form. This conversion generally introduces an expo-
nential blow-up in the number of states. In contrast, our procedure assumes only
weakly-hierarchical Vpa accepting matched-return words. In general, a weakly-
hierarchical Vpa can be obtained with only a linear blow-up. (In Ultimate
Automizer the automata already have this form.)

q0

q1

...

qk

qf

c1

ck

r/q0

r/q
0

Fig. 5. A parametric k-Sevpa.

Consider the k-Sevpa in Fig. 5. It has k
modules {q1}, . . . , {qk} (and the default module
{q0, qf}). This is the minimal k-Sevpa recogniz-
ing the language with the given modules. Our
algorithm will (always) merge all singleton mod-
ules into one state, resulting in a (minimal)
three-state Vpa.

Caralp et al. [11] present a polynomial trim-
ming procedure for Vpa. The task is to ensure
that every configuration exhibited in the Vpa is both reachable and co-reachable.
Such a procedure may add new states. We follow the opposite direction and
exploit untrimmed configurations to reduce the number of states.

Ehlers [17] provides a Sat encoding of the question “does there exist an
equivalent Büchi automaton (Ba) of size n − 1”. Baarir and Duret-Lutz [8,9]
extend the idea to so-called transition-based generalized Ba. Since the search is
global, on the one hand, such a query can be used iteratively to obtain a reduced
Ba after each step and some globally minimal Ba upon termination; on the other
hand, global search leaves little structure to the solver.

Geldenhuys et al. [20] also use a Sat encoding to reduce the state-space of
nondeterministic Fa. The first step is to construct the minimal deterministic
Fa B. Then the solver symbolically guesses a candidate Fa of a fixed size and
checks that the automaton resulting from the subset construction applied to the
candidate is isomorphic to B. If the formula is unsatisfiable, the candidate size
must be increased. Determinization may incur an exponential blow-up, and the
resulting automaton is not always (but often) minimal.

In contrast to the above works, our PMax-Sat encoding consists of con-
straints about a quotienting relation (which always exists) that is polynomial in
the size of the Vpa. We do not find a minimal Vpa, but our technique can be
applied to Vpa of practical relevance (the authors report results for automata
with less than 20 states), in particular using our greedy algorithm.

Restricted to Fa, the definition of a Raq relation coincides with direct bisim-
ulation [16,18]. This has two consequences. First, for Fa, we can omit the tran-
sitivity clauses because a direct bisimulation is always transitive. Second, our
algorithm always produces the (unique) maximal direct bisimulation. This can
be seen as follows. If two states p and q bisimulate each other, then X{p,q} can be
assigned true: since we are looking for a maximal assignment, we will assign this
value. If p and q do not bisimulate each other, then in any satisfying assignment
X{p,q} must be false. Alternatively, one can also say that our algorithm searches
for some maximal fixpoint, which is unique for direct bisimulation.
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For Fa, it is well-known that minimization based on direct simulation yields
smaller automata compared to direct bisimulation (i.e., the induced equivalence
relation is coarser) [18]. Two states can be merged if they simulate each other.
Our PMax-Sat encoding can be generalized to direct simulation by making the
variables non-symmetric, i.e., using both Xp,q and Xq,p and adapting the clauses
in a straightforward way. This increases the complexity by a polynomial.
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Abstract. It is essential to deal with the interference of the environment
between programs in concurrent program verification. This has led to the
development of concurrent program reasoning techniques such as rely-
guarantee. However, the source code of the programs to be verified often
involves language features such as exceptions and procedures which are
not supported by the existing mechanizations of those concurrent reason-
ing techniques. Schirmer et al. have solved a similar problem for sequential
programs by developing a verification framework in the Isabelle/HOL the-
orem prover called Simpl, which provides a rich sequential language that
can encode most of the features in real world programming languages.
However Simpl only aims to verify sequential programs, and it does not
support the specification nor the verification of concurrent programs. In
this paper we introduce CSimpl, an extension of Simpl with concurrency-
oriented language features and verification techniques. We prove the com-
positionality of the CSimpl semantics and we provide inference rules for
the language constructors to reason about CSimpl programs using rely-
guarantee, showing that the inference rules are sound w.r.t. the language
semantics. Finally, we run a case study where we use CSimpl to specify
and prove functional correctness of an abstract communication model of
the XtratuM partitioning separation micro-kernel.

1 Introduction

In the past two decades, formal methods have been successfully applied in the
verification of many critical systems. To improve confidence on the reliability of
computer systems, verification of functional correctness and security properties
is applied not only at the specification level [19], but also at the implementa-
tion [9] or even at the machine code level [5]. Verification of the implementation
requires modelling languages that are able to capture the features in program-
ming languages such as exceptions and procedure calls. Verification of sequential
programs at implementation and machine code level has gained much attention
both in academia and in industry [11], and now there is a reasonably strong
tool support in this area [10,15]. However, nowadays critical and high-assurance
systems are often designed for multi-core architectures where multiple processes
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run in parallel, but verification techniques and tools for concurrent programs are
relatively less developed than those for sequential programs.

In order to tackle the verification of concurrent programs, first Owicki and
Gries’s work [14] introduced techniques for the verification of parallel programs.
Later Jones [4] introduced the rely-guarantee method to improve Owicki and
Gries’s method by allowing compositional verification. The Owicki-Gries method
has been mechanized in the Isabelle/HOL theorem prover in [13], and Jones’s
rely-guarantee method has been mechanized in Isabelle/HOL in [12] which fol-
lows the specification in [17]. Also, [1] models in Isabelle/HOL an algebraic
specification of rely-guarantee. Although the languages used in previous mech-
anizations of the above mentioned methods are suitable for verifying system
specifications, many implementations cannot be directly captured in those mech-
anizations. Therefore there is a need to develop a richer modelling language to
accurately capture the behaviour of programs at the implementation level.

Simpl [15] is a while-language that supports most of the features of real world
programming languages. The syntax and semantics of Simpl are modelled in
Isabelle/HOL and Simpl has been used in the verification of seL4 source code [9].
However, its design aims only at reasoning about sequential programs, conse-
quently, this language lacks constructors for parallel composition of programs.
Moreover, its proof system is based on Hoare Logic, also for the verification
of sequential languages, which cannot be used for reasoning about concurrent
programs.

Building on the Simpl framework and the rely-guarantee method, we develop
a formal verification framework in Isabelle/HOL, called CSimpl, for verifying
partial correctness of high-assurance concurrent systems. The main contributions
of this paper are as below:

(1) We extend Simpl using the notion of computation [12,17] to introduce
parallelism in two layers: the bottom layer is the execution of sequential Simpl
programs extended with a synchronization primitive Await over shared vari-
ables; and the top layer is the parallel execution of the bottom layer programs
by means of a parallel composition operator. While existing rely-guarantee meth-
ods are mechanized for reasoning about abstract specification languages [12,13],
our method goes one step further and covers most of the features of system
programming languages such as exceptions, procedures, and pointers, among
others.

(2) We define a compositional semantics of rely-guarantee for CSimpl. We
also provide a set of inference rules for the rely-guarantee proof system and
we prove that they are sound w.r.t. the semantics. The rich expressibility of
CSimpl means that the number of inference rules of the rely-guarantee proof
system is much higher than the work in [12] and their complexity is significantly
increased. The CSimpl semantics, the rely-guarantee proof system specification
and its soundness proof comprise more than 15k lines of proof and specification
in Isabelle/HOL and Isar1.

1 Due to space reasons we only show some excerpts of the semantics and proofs, the
whole model can be found at: http://securify.scse.ntu.edu.sg/MicroVer/CSimpl.

http://securify.scse.ntu.edu.sg/MicroVer/CSimpl
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(3) As a case study, we specify in CSimpl two XtratuM [3] services for queu-
ing inter-partition communication and we prove the correctness of an invariant
on the queuing communication structure. Inter-partition communication is the
mechanism used to implement information flow and is critical in proving event-
based non-interference. XtratuM is a separation micro-kernel for space and time
partitioning of applications. XtratuM supports multi-core architectures, being
able to run several instances of the micro-kernel in parallel in multiple cores.
Using our new rely-guarantee proof system, we prove that the specification of the
inter-partition communication services correctly introduces and removes mes-
sages in the communication channel. The specification and the proofs comprise
3500 lines of formalization. To the best of our knowledge, this is the first attempt
on the verification of separation micro-kernels targeting multi-core architectures.
Other works such as [18–20] verify functional correctness and non-interference
for sequential micro-kernels, and the work in [2] focuses on the verification of
sequential applications using the ARINC standard.

2 CSimpl Language

2.1 Simpl Overview

Schirmer introduces in [15] a verification framework for imperative sequential
programs developed in Isabelle/HOL. The verification framework includes a
generic imperative language, called Simpl, which is composed of the necessary
constructors to capture most of the features present in common sequential lan-
guages, such as conditional branching, loops, abrupt termination and exceptions,
assertions, mutually recursive functions, expressions with side effects, and non-
determinism. Additionally, Simpl can express memory related features like the
memory heap, pointers, and pointers to functions. The Simpl verification frame-
work also includes a Floyd/Hoare-like logic to reason about partial and total
correctness, and on top of it, the framework implements a verification condition
generator (VCG) to ease the verification process.

In order to capture all aspects of abrupt termination, assertions, and func-
tion calls, the program state ’s in Simpl is modelled in Isabelle/HOL as a
datatype xstate (shown in Fig. 1), which is composed of four different con-
structors: Normal ’s, representing a regular execution; Fault ’f, representing a
failed assertion; Abrupt ’s, representing an exceptional state; and Stuck, rep-
resenting a state where a call to a non-defined function is made. Additionally,
the semantics requires an environment Γ containing procedure definitions, i.e.,
a partial function from the set ’p of procedure names to the body of the proce-
dures. Both features regarding the state and procedures definitions are used in
CSimpl.

2.2 CSimpl Syntax

The syntax of CSimpl is shown in Fig. 1. CSimpl extends Simpl by adding two
constructors for concurrency: Await, which takes two parameters cond and body,
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type synonym ’s bexp = "’s set"
datatype (’s, ’p, ’f) com =

Skip | Throw | Basic "’s ⇒ ’s" | Spec "(’s × ’s) set"
| Seq "(’s ,’p, ’f) com" "(’s,’p, ’f) com"
| Cond "’s bexp" "(’s,’p,’f) com" "(’s,’p,’f) com"
| While "’s bexp" "(’s,’p,’f) com" | Call "’p"
| DynCom "’s ⇒ (’s,’p,’f) com"
| Guard "’f" "’s bexp" "(’s,’p,’f) com"
| Catch "(’s,’p,’f) com" "(’s,’p,’f) com"
| Await "’s bexp" "(’s,’p,’f) Simpl.com"

datatype (’s,’f) xstate = Normal ’s | Abrupt ’s | Fault ’f | Stuck
type synonym(’s,’p,’f) config = "(’s,’p,’f)com × (’s,’f) xstate"
type synonym (’s,’p,’f) body = "’p ⇒ (’s,’p,’f) com option"
type synonym(’s,’p,’f) par_Simpl = "(’s,’p,’f) com list"

Fig. 1. Syntax and state definition of the CSimpl language

and Parallel Composition. Await allows synchronization of processes under the
boolean condition cond and then it atomically executes body, which is a pure
sequential Simpl program. This allows us to use Hoare logic for sequential pro-
grams and the original Simpl VCG in the verification of the atomic blocks.
Parallel composition happens at the top layer (root program), and it can not be
nested with other constructors like in the approach followed in [7]. Therefore, a
parallel program launches n sequential programs that are executed concurrently
and that do not create new concurrent threads. A parallel program is defined as
a list of sequential programs. Since we are aiming the verification of programs
without dynamic creation of process, this approach is not a problem for our goal
and simplify the mechanization.

CSimpl’s syntax, following the syntax of Simpl, is defined in terms of states,
of type ’s; a set of fault types, of type ’f; and a set of procedure names of type
’p. The constructor Skip indicates program termination; Seq s1 s2, Cond b
c1 c2, and While b c are respectively the standard constructors for sequential,
conditional, and loop statements. Throw and Throw c1 c2 are the complements
for abrupt termination of programs of Skip and Seq c1 c2, and they allow to
model exceptions. Call p invokes procedure p; Guard f g c represents asser-
tions, where c is executed if the guard g holds in the current state, fault of
type ’f is raised otherwise. Finally, Spec r and DynCom cs respectively intro-
duce a nondeterministic behavior expressed by relation r, and a state dependent
dynamic command transformation which is used to model blocks and functions
with arguments.

2.3 CSimpl Semantics

The small-step operational semantics of CSimpl is a predicate inductively defined
based on an environment for procedures Γ and a pair of component configura-
tions ((P,s), (P’,s’)) where the program P in the state s, transits to the
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program P’ and the state s’. It is represented as Γ�c(P ,s) → (P ′,s′), where c
indicates it is a step transition in CSimpl. A CSimpl component configuration is
defined as a tuple (P,s) where P is a CSimpl program and s is of type xstate.
A component configuration (p,s) is called final if p = Skip or p = Throw and
there exists a state s′ such that s = Normal s′. A final configuration cannot
progress to another configuration.

CSimpl extends Simpl with rules for synchronization on shared variables,
Await, and the parallel computation shown below. For space reason we only
provide the small-step semantics rules Await and AwaitAb for the Await com-
mand (Fig. 2). The rest are similar to those defined in [15].

s ∈ b ¬a c,Normal s t
¬(∃t .t = Abrupt t )

c (Await b p,Normal s) → (Skip, t) AWAIT
c (P,Normal s) →e (P, t) ENV

s ∈ b ¬a c,Normal s t t = Abrupt t

c (Await b p,Normal s) → (Throw,Normal t )
AWAITAB

∀s .s = Normal s
c (P,s) →e (P,s) ENV N

i<length Ps c (Ps!i,s) → (r, t)

p (Ps,s) → (Ps[i := r], t) PAR
p (Ps,Normal s) →e (Ps,Normal t) P ENV

Fig. 2. Small step and environment CSimpl semantic rules

The Await rules leverage Simpl’s big step semantics to atomically transit from
the initial configuration (p,s) to the next state t resulting from the execution of
p from s and it is expressed as Γ�〈p,s〉 ⇒ t. The two rules express the situation
where from a current state s satisfying the synchronization condition. The atomic
program in Simpl ends in a state t that can be an abrupt state as a result of an
exception thrown in the sequential program for the rule AwaitAb, or any other
possible state for the rule Await. This distinction is necessary since a Simpl
program can finish in an Abrupt state, however the small-step semantics does
not use the state Abrupt. Instead, a CSimpl program finishes in an exception
state when the last configuration of a computation is a pair composed of the
program Throw, together with a Normal state. Note that big step transitions use
sequential Simpl programs, therefore the environment in the atomic step has to
be a function from procedure names to Simpl programs, which do not contain
Await instructions (for the same reason the body of Await cannot contain nested
Await neither). Γ¬a translates bodies of procedures in Γ into Simpl programs if
they do not contain any Await instruction, removing from Γ those procedures
containing Await instructions.

A Parallel CSimpl configuration is defined as a tuple (Ps,s) where Ps is
a list of CSimpl programs and s is of type xstate. Parallel CSimpl semantics
is inductively defined by means of rule PAR in Fig. 2. A parallel configuration
(Ps,s) transits to another parallel configuration (Ps[i:=r], s’) when there
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is a program i in Ps such that Γ�c(Ps!i,s) → (r,s′). It is represented with
Γ�p(Ps, s) → (Ps[i:=r], s′). Similarly to component configurations, a parallel
CSimpl configuration (xs, s) is called final if xs is not empty and every compo-
nent configuration (xs!i, s), with i smaller than the length of xs, is final. Ps!i
means accessing the i element in the list Ps, whilst Ps[i := r] means substitute
the i element in Ps for r.

Together with the semantic representing component transitions, it is neces-
sary to define semantics for environment transitions. They are inductively defined
using rules Env and Env n in Fig. 2, where e is to express that it is an environ-
ment transition. CSimpl semantics for components can transit from a Normal
state to a different type. However it is not possible to transit from a non Normal
state to a different type of state, i.e. Γ �p (P, Stuck) → (P′, Normal t). More-
over, the component semantics always transits from a configuration (p,s) with
p = Skip and 
 ∃s′.s = Normal s′ to a final transition (Skip,s). Therefore, the
environment at the sequential layer needs to model this behaviour in the rules
Env and Env n in order to make the semantics at the parallel layer compositional.
Environment transitions at the parallel level are defined in such a way that they
can transit from a Normal state to another Normal state as shown in rule P ENV
in Fig. 2.

3 Rely-Guarantee for CSimpl

The rely-guarantee [7] method extends the specification of a program with two
relations R and G characterizing, respectively, how the environment interferes
with the program (Rely) and how the program modifies the environment (Guar-
antee). Therefore a specification for the verification of parallel systems using
rely-guarantee is composed of four elements: precondition, postcondition, rely,
and guarantee.

In order to take into account CSimpl state specification xstate (which can
take multiple forms to express different execution issues), the semantic for pro-
cedure calls, and the dual postcondition for normal or exception termination,
the rely-guarantee specification and proof rules need to be modified accordingly.
In the proof system itself, a total of 8 new rules have been added to the work
in [12] to deal with all the language constructors present in CSimpl. Finally,
soundness of the axiomatic rules for the proof system w.r.t. the rely-guarantee
specification of validity is proven. The multiple forms of states makes the proof
considerably more complex and larger than the work in [12]. While the work
in [12] consists of around 2300 lines of proofs and specification, the current work
consists of more than 13000 lines of proofs and specification.

3.1 Definition of Computation for CSimpl

The formal validity of a rely-guarantee tuple in this work is based on the defin-
ition of computation, which is the set of all possible sequences of configurations
resulting of transiting the component or the environment, starting from an initial
configuration.
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Definition 1 (Sequential Component Computation). A computation is a
tuple (Γ, confs) where Γ is an environment for procedures and confs is a list of
sequential configurations. The set of possible computations cptn is inductively
defined as follows:

– (Γ , [(P ,s)]) ∈ cptn
– if Γ�c(P ,s) →e (P ,t) and (Γ ,(P , t)#xs) ∈ cptn then (Γ ,(P ,s)#(P ,t)#xs)

∈ cptn
– if Γ�c(P ,s) → (Q,t) and (Γ ,(Q, t)#xs) ∈ cptn then (Γ ,(P ,s)#(Q,t)#xs)

∈ cptn

Definition 2 (cp Γ P s). The set of possible computations of an environment
for procedures Γ starting from an initial configuration (P, s) is the set of tuples
(Γ, l) such that l!0 = (P, s) and (Γ, l) ∈ cptn.

The set of parallel computations par cp is defined similarly to cp using par-
allel configurations and the semantic rules for parallel and environment step
transitions.

Definition 3 (∝). Conjoin [17] represented by ∝, defines an equivalence rela-
tion between a parallel computation p of n CSimpl components and a list clist of
n component computations, where for all i < n. clist!i = (Γi, cptni). (Γ , p) ∝
clist iff:

– for all i < n, length cptni = lenght p and Γi = Γ .
– for all i < n and k < length p, cptni!k = (cki , s

k
i ) and p!k = (cs, s) with

cs!i = cki and s = ski .
– for all k such that k + 1 < length p, if Γ �p p!k →e p!(k + 1), then for all

i < n, Γi � cptni!k →e cptni!(k + 1); if Γ �p p!k → p!(k + 1) then there
exists an i < n where Γi � cptni!k → (cptni)!(k + 1) and ∀j. j 
= i −→
Γj � cptnj !k →e cptnj !(k + 1).

The last condition of conjoin states that for any step k in p, if k is an envi-
ronment step in p, then k is also an environment step in all cptni; and if it is a
component step, then there is some cptni where k is a component step and for
any other cptnj , with j 
= i, k is an environment step.

Lemma 1 (Parallel computation as component computation).

xs �= [] =⇒ par cp Γxs s ={(Γ1, c).Γ1 = Γ ∧ (∃clist.(length clist) = (length xs) ∧
(∀i < lenght clist.(clist!i) ∈ cpΓ (xs!i)s) ∧ (Γ, c)∝clist)}

Lemma 1 states that given a parallel configuration (xs, s) such that xs is
not empty ([]), then for any parallel computation (Γ, c) starting from (xs, s)
there is a list of component computations clist with the same length of xs
and (Γ, c)∝ clist. That is, the execution of a parallel number of components
xs0 . . . xsn can be expressed as the execution of one single component xsi, with
i smaller than n, where the execution of any other component xsj is simulated
by a component environment transition, with j smaller than n and different than
i. The right and left implications of the equality in Lemma 1 are proven first by
induction on the parallel computation and then by cases on the type of parallel
and component events using conjoin.
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3.2 Validity of Formulas for Rely-Guarantee in CSimpl

Based on the rely-guarantee definitions, we define the validity of a rely-guarantee
tuple from the set of all possible computations from an initial configuration.
This uses the notions of assumption of preconditions and the environment, and
commitment of the component and the postcondition.

Definition 4 (assum(pre, rely)). The assumption of a predicate pre and an
environment relation rely for an environment of procedures Γ is the set of com-
ponent computations (Γ, cptn) such that cptn!0 = Normal s and s ∈ pre, and
for any step transition in the computation Γ �c cptn!k →e cptn!(k + 1), where
k + 1 < lenght cptn, cptn!k = (pk, sk), and cptn!(k + 1) = (pk+1, sk+1) then
(sk, sk+1) ∈ rely.

The predicate assum represents the set of component computations (Γ, cptn),
such that the state component of the initial configuration of the computation is
a Normal state satisfying pre. Also, in any transition of the environment Γ �c

cptn!k →e cptn!(k+1), the states of the configurations cptn!k and cptn!(k+1)
belong to the rely relation.

To take advantage of automatic methods such as model checking, and fol-
lowing the original notion of validity for Hoare triples in Simpl, the commitment
assumes that the last configuration in a computation does not end in a Fault
state belonging to the set F, which is a set of non-reachable states previously
calculated using external tools. Then the commitment is the set of computations
such that component transitions belong to the guarantee relation, and that their
last configuration are final (therefore with the program state equal to Skip or
Throw) with the state component belonging to q or a.

Definition 5 (comm(guar, (q, a)) F). The commitment of a relation guar,
a pair of predicates (q, a), and a set of Fault states F, for an environment
of procedures Γ , is the set of component computations (Γ, cptn) such that if
cptn!(length l − 1) = (lp, ls) and there is not a fault f such that ls = Fault f
and f ∈ F , then (1) if for any component transition in the computation Γ �c

cptn!k → cptn!(k + 1) where k < length cptn, cptn!k = (pk, sk), and cptn!(k +
1) = (pk+1, sk+1) then (sk, sk+1) ∈ guar, and (2) if l is final then ls = Normal l′s
and if lp = Skip then l′s ∈ q and if lp = Throw then l′s ∈ a.

Definition 6 (com validity). Validity of a specification of a component P
w.r.t. a precondition p, postcondition (q,a), a rely relation R, a guarantee rela-
tion G, an environment of procedures Γ , and a set F of Faults, is repre-
sented as Γ |=/F P sat[p,R,G, q, a] iff for all s, cp Γ P s ∩ assum(p,R) ⊆
comm(G(q, a)) F .

Following [15], we use a set of procedure specifications Θ that are used dur-
ing the procedure verification. The set of procedure specifications Θ, is a tuple
which elements represent a procedure name and its specification in terms of pre-
condition, rely and guarantee relations, and postcondition. Note that procedures
in specifications belonging to Θ do not need to match the procedures defined in
the environment Γ .
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Definition 7 (com cvalidity). CValidity of a specification of a component
P w.r.t. a precondition p, postcondition (q,a), a rely relation R, a guarantee
relation G, an environment of procedures Γ , a specification of procedures Θ,
and a set F of Faults, represented as Γ,Θ |=/F P sat[p,R,G, q, a] iff for all
tuples (c, p′, R′, G′, q′, a′) ∈ Θ such that Γ |=/F (Call c) sat[p′, R′, G′, q′, a′] then
Γ |=/F P sat[p,R,G, q, a].

Validity and CValidity for parallel computations are respectively represented
by Γ |=/F P SAT [p,R,G, q, a] and Γ,Θ |=/F P SAT [p,R,G, q, a]. They are
defined similarly to the ones for computation of components, using the definitions
of computation, assumption, and commitment for parallel programs. We omit
these definitions due to space reasons. Theorem 1 shows compositionality of
validity of parallel rely-guarantee specifications.

Theorem 1 (validity compositionality).
∀i<length xs.Γ, Θ |=/F C(xs!i)sat [P (xs!i), R(xs!i), G(xs!i), Q(xs!i), A(xs!i)] −→

(1) ∀i < length xs. Rp ∪ (
⋃

j ∈ {j. j < length xs ∧ j �= i}. G(xs!j) ⊆ R(xs!i)) −→
(2)
⋃

j < length xs. G(xs!j) ⊆ Gp −→ (3) p ⊆ (
⋂

i < length xs. P (xs!i)) −→
(4) (

⋂

i < length xs. (Q(xs!i))) ⊆ q −→ (5) (
⋂

i < length xs. (A(xs!i))) ⊆ a −→
Γ, Θ |=/F ParCom xs SAT [p, Rp, Gp, q, a].

Therefore, to show that a parallel rely-guarantee specification is true, it is
only necessary to prove rely-guarantee validity for each one of the single compo-
nents and that (1) the rely of individual components is implied by the parallel
rely and the union of the guarantee relations of the other individual components
of the parallel system, (2) the union of the guarantee relations of the component
specifications implies the guarantee relation for the parallel specification, (3) the
precondition of the parallel specification is included in all the component speci-
fications, (4) the intersection of all the normal postconditions of the component
specifications is included in the normal postcondition of the parallel specification,
(5) the union of the abrupt postcondition of all the component specifications is
included in the abrupt postcondition of the parallel specification. Theorem 1 is
proven using Lemma 1 and the definition of parallel validity of a rely-guarantee
specification.

3.3 Inference Rules of the Proof System

The rely-guarantee proof system for CSimpl extends the previous mechanization
of the logic in [12] with eight more inference rules. There are a total of fifteen
rules, one for each language constructor, plus the consequence rule. Figure 3
shows those rules that are either new or substantially changed w.r.t. the work
in [12]. Rules Skip, and Throw are added to handle program termination for
normal and abrupt termination respectively. Since Skip deals with normal ter-
mination it requires the normal postcondition to be stable w.r.t. the rely relation,
whilst in the case of Throw is the abrupt postcondition which has to be stable
w.r.t. the rely relation. Similarly, Catch is the complement of the sequential rule
for abrupt termination. In CSimpl, composition of programs can finish on an
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Sta p R Sta q R p ⊆ {s. f s ∈ q}
∀s t.s ∈ p∧ (t = f s) (Normal s,Normal s) ∈ G

, /F Basic f sat [p,R,G,q,a] BASIC

Sta p R Sta q R
p ⊆ {s.(∀t.(s, t) ∈ r t ∈ q)∧ (∃t.(s, t) ∈ r)}
∀s t.s ∈ p∧ (s, t) ∈ r (Normal s,Normal s) ∈ G

, /F Spec r sat [p,R,G,q,a] SPEC

Sta a R
∀s.(Normal s,Normal s) ∈ G
, /F Throw sat [a,R,G,q,a] THROW

Sta q R
∀s.(Normal s,Normal s) ∈ G
, /F Skip sat [q,R,G,q,a] SKIP

Sta p R Sta q R Sta a R
∀V. ¬a, /F (p∩b∩{V})c

{s.(Normal V,Normal s) ∈ G}∩q,
{s.(Normal V,Normal s) ∈ G}∩a
, /F Await b c sat [p,R,G,q,a] AW

, /F c sat [p∩g,R,G,q,a]
Sta (p∩g)R
∀s.(Normal s,Normal s) ∈ G

, /F Guard f g c sat [p∩g,R,G,q,a] GD

, /F c1 sat [p,R,G,q,r]
, /F c2 sat [r,R,G,q,a]

Sta (p∩g)R Sta (a∩g)R
∀s.(Normal s,Normal s) ∈ G

, /F Catch c1 c2 sat [p,R,G,q,a] CATCH

, /F c1 sat [p,R,G,r,a]
, /F c2 sat [r,R,G,q,a]

Sta (p∩g)R Sta (a∩g)R
∀s.(Normal s,Normal s) ∈ G

, /F Seq c1 c2 sat [p,R,G,q,a]
SEQ

, /F c sat [p∩g,R,G,q,a]
Sta (p∩g)R f ∈ F
∀s.(Normal s,Normal s) ∈ G

, /F Guard f g c sat [p,R,G,q,a] G

, /F the( c) sat [p∩g,R,G,q,a]
Sta (p∩g)R c ∈ dom
∀s.(Normal s,Normal s) ∈ G

, /F Call c sat [p,R,G,q,a] C

∀s ∈ p. , /F c s sat [p∩g,R,G,q,a]
Sta p R ∀s.(Normal s,Normal s) ∈ G

, /F DynCom c sat [p,R,G,q,a] DYNCOM

∀i<xs.R∪ ( j ∈ { j. j<xs∧ j = i}.(Guar(xs! j))) ⊆ Rely(xs!i)
( j<length xs.(Guard(xs! j))) ⊆ G p ⊆ ( i<length xs.Pre(xs!i))
( j<length xs.(Post(xs! j))) ⊆ q ( j<length xs.(Abr(xs! j))) ⊆ a
∀i<xs. , /F Com(xs!i) sat [Pre(xs!i),Rely(xs!i),Guar(xs!i),Post(xs!i),Abr(xs!i)]

, /F xs SAT [p,R,G,q,a] COMP

Fig. 3. Rely-guarantee proof rules for CSimpl
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abrupt state without executing the second program. Hence it is necessary stabil-
ity of the abrupt postcondition w.r.t. the rely relation. Similarly, the Catch rule
requires stability of the normal postcondition with rely. We say that a predicate
p is stable w.r.t. a relation R, Sta p R, if given two states s, s’, such that p s
is true and (s, s′) ∈ R, then s’ is also true in p.

The Await rule requires Hoare satisfiability of the sequential program repre-
senting its body, which is represented following traditional Hoare triplet notation
{p}c{q}. In this case the postcondition is given as a pair to capture normal and
abrupt termination. See [15] for more details on sequential Simpl program verifi-
cation. Since the Hoare program can finish in either a normal state or an abrupt
state, it is necessary that both postconditions are stable. The precondition should
also be stable to remain unchanged under environment transitions. Since every
component transition has to belong to the guarantee relation, we add this con-
straint into the Hoare triple, binding the initial states from the precondition to
the final states of both the normal and abrupt postconditions.

The rest of rules can be deduced intuitively from their semantics adding sta-
bility of the precondition for non-terminal commands, e.g., if for branching and
call for non-recursive procedure calls; and adding also stability of the normal
postcondition for commands modifying the state.

Finally COMP is the rule for parallel composition. To apply compositionality,
the rule is applied over a tuple xs composed of a sequential component Com
and rely-guarantee specification, i.e. Pre,Rely,Guarantee, Post for Com. The
rule follows [12] taking abrupt termination into consideration, since this is an
exception state, and not all the individual computations may be in an exception
state. Therefore, whilst we require that the intersection of all component post-
conditions is included in the postcondition of the parallel program, for abrupt
termination we only require that the union of abrupt postconditions is in the
parallel program.

3.4 Soundness of the Proof System

We prove that the set of inference rules in the proof system is sound w.r.t. the
definition of validity for parallel systems. The proof is carried out in two steps,
first we prove that the inference rules for single components are sound.

Theorem 2 (comp rgsound).
Γ,Θ �/F c sat [p,R,G, q, a] −→ Γ,Θ |=/F c sat [p,R,G, q, a]

This is proved by induction on the inference rules. Axioms, i.e., those rules
without assumptions on the proof system induction, are proven based on the
notion of stability and the fact that any computation starting from them only
has one component step. Therefore we prove that the stability rule preserves the
precondition under any environment step. We then show that the component
step preserves the commitment.

The semantics for computation makes it cumbersome to prove the soundness
for those CSimpl constructors whose semantic is recursively defined, such as Seq,



492 D. Sanán et al.

Catch, and While. Soundness for these constructors are proven using a modular
notion of computation [17] and the equivalence of both types of computation.
The modular computation serializes the recursive specification of computation
for the CSimpl constructors. This alternative semantics for computation unfolds
the computation of CSimpl constructors. Soundness for these constructors is
proven based on the different cases these rules provide. The modular computation
for CSimpl extends the one provided in [12] with rules for the new language
constructors, and new rules for seq and while, considering that the program
in a final configurations can be Skip or Throw. The constructors If and Call,
for non-recursive function calls, are proven similarly to the axioms based on the
existence of a first component step for non-final configurations. After applying
the component transition, we prove the correctness by the inductive step.

Recursive procedure calls require to consider the maximum number of nested
function calls invoked by an execution and we do not currently provide a rule for
them. cptn serializes the small step semantics removing scopes, which does not
allow to prove soundness of recursive procedure calls. Nevertheless, it is possible
to provide such a rule for recursive procedure calls, by extending the modular
computation, with a parameter n representing the limit of nested procedures
for which the computation is valid. Also, the semantics for validity must be
extended to express that a formula is valid when it invokes at least n nested
function calls by intersecting the assumptions in com validity with the set of
modular computations with limit n. Soundness of recursive procedure calls can
be proven similarly to [15], by monotonicity of the extended computation in n
and equality of the semantics.

Finally we show soundness of the proof system for the parallel composition
of programs using Theorems 1 and 2.

Theorem 3 (par rgsound).
Γ,Θ �/F Ps SAT [p,R,G, q, a] −→ Γ,Θ |=/F (ParCom Ps) SAT [p,R,G, q, a]

4 Case Study

We apply the proof system for the specification and the verification of two
XtratuM services for inter-partition communication. The XtratuM separation
micro-kernel [3] provides spatial and temporal partitioning of applications. In a
separation micro-kernel, different partitions are executed in separated memory
domains, and the only allowed communication among partitions is by means
of static dedicated channels explicitly defined between two or more partitions.
XtratuM provides, among others services to communicate partitions through
channels, partitions health-monitoring, and a static cyclic scheduler. In this
case study we provide a very abstract CSimpl specification of the services to
send and receive messages using queuing channels in a parallel architecture,
where the XtratuM micro-kernel is executed in several cores of a multi-core
processor. Using the rely-guarantee proof system introduced in Sect. 3 we prove:
(1) that the services correctly introduce and remove elements in the queues asso-
ciated with each communication channel and (2) that the number of elements in
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the queues do not exceed the channel maximum capacity. The specification and
proofs are comprised of more than 3500 lines of specification.

4.1 Queuing Inter-Partition Communication Description

Queuing inter-partition communication services allow partitions to escape from
the isolated environment that XtratuM provides, allowing them to send and
receive messages to/from other partitions using communication channels by
means of dedicated ports assigned to partitions. A communication channel is
an entity storing the communication data and the source and destination ports
involved in the communication.

XtratuM implements two types of communication: sampling and queuing
communication. While the former only allows to store one message, and it is
multicasting, i.e., a channel has one source port and a list of destination ports.
The latter allows to store many messages in a bounded buffer implemented as
a queue, and only allows peer to peer communication, i.e., the channel has one
source port and one destination port. Channels and ports are classified according
to the type of communication. Therefore, a channel and a port can be of type
sampling or queuing, and a sampling channel can only allocate sampling ports,
and vice-verse. The services have as input a port to/from which the message
is sent/received, and the message to be sent in the case of the sending service.
Prior to modifying the queue, the services check whether the input values are
consistent, e.g., the port which receives the message belongs to the partition, or
it is a source or destination port depending on the invoked service.

4.2 State and Specification Definition

The state definition provides global and local variables. Global variables repre-
sent those variables shared by multiple instances of the micro-kernel, they hold
the data for inter-partition communication, partitions, and the partition sched-
uler. Since we are targeting only queuing inter-partition communication, the
components for the scheduler and partitions contain the necessary information
for those services. The scheduler is highly abstracted and only contains informa-
tion about the partition that is currently being executed, and therefore invoking
the service; partitions only contain the list of assigned ports to the partition.
The communication datatype includes the specification of channels and ports.
A channel is defined as a datatype with the two possible types of channels,
having as parameters the source and destination ports, and the message shared
between the partitions, for which the queue is abstracted in the model as a mul-
tiset. The queuing channel also has a parameter indicating the maximum size of
the channel buffer. Messages are modelled just as an abstract entity.

record com = ports :: "port_id ⇀ port" channels :: "chan_id ⇀ channel"

record vars = p_’ :: "part_id ⇀ partition" c_’ :: "com"

s_’ :: "scheduler list" l_’ ::"locals list"

In the model, ´l, ´c, ´s, and ´p access the locals, communication, scheduler,
and partition component of the state, respectively. Local variables for each
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process are a structure with the necessary variables for the input and output
parameters of the services. One of the limitations of rely-guarantee is that the
relations lose track of the sequence of executed operations. To solve this, verifi-
cation of the concurrent increment of a variable, or adding/removing elements
from a set like in this example, requires using additional variables to help track-
ing the changes [17]. In our model, we include a variable of type Message option
that is initialized to None, and when a message is correctly sent or received the
model assigns it to the variable. Our state abstracts and maps XtratuM global
structures xmcCommChannelTab, and xmcCommChannelPorts, storing channel and
port data, into the components of ´c and xmcPartition, storing partition data,
into´p respectively.

The parallel execution of services is modelled parametrically on the number
of processes, which is defined as a fixed natural number within a Isabelle/HOL
locale [8]. Each service is modelled as a procedure that is also parametrized
by the process being executed; this allows that each specific procedure only
accesses its local variables. The function Γ is generated by assigning a unique
name for each service using a fold higher order function and assigning to each
parametrized service name the corresponding parametrized body of the service.
The parametrized event receive is shown below.

definition receive_q_message_i where "receive_q_message_i i ≡
(IF (¬ (ex_port_id ´ c ((pt ((´ l)!i))))) ∨

(¬ (port_q (the ((ports ´ c) (pt (´ l!i)))))) ∨
(¬ (port_dest (the ((ports ´ c) (pt (´ l!i)))))) ∨
(¬ port_in_part ´ p ((´ s)!i) (the ((ports ´ c) (pt (´ l!i))))) THEN

´ l :== ´ l[i:=((´ l!i)(|ret_msg := None|))]
ELSE AWAIT True

IFs port_empty (pt ((´ l)!i)) ´ c THEN

´ l :==s ´ l[i:=((´ l!i)(|ret_msg := None|))]
ELSE

´ l :==s ´ l[i:=((´ l!i) (|ret_msg := port_get_msg (pt (´ l!i))´ c |))];;s
´ c :==s port_rem_msg (pt (´ l!i)) (the (ret_msg (´ l!i))) ´ c ;;s
´ l :==s ´ l[i:=((´ l!i) (|aux_msg := (ret_msg (´ l!i)) |))] FI FI)"

The services abstract the low level behaviour of the Xtratum functions.
They first check parameters validity, and then carries out the insertion/ex-
traction of the message to/from the queue. Atomic blocks abstract XtratuM’s
mutexes for mutual exclusion. Validation of correctness of the model w.r.t. the
implementation is carried out at this stage by inspecting the code. For the
ReceiveQueuingPort model, the event first checks that the accessed port exists
in the current communication state, that it is a queuing and destination port,
and that the partition that it belongs to the partition being executed. If any
parameter is not valid then the service finishes returning None, otherwise it per-
forms the operations over the channel queue after checking whether the queue is
not empty for event receive, or not full for event send. The statements in the
body of the Await statement are IFs and :==s. This is because the body of the
Await is a sequential Simpl program and when embedded into a CSimpl program
needs to modify the syntax. Event SendQueuingPort is modeled similarly.
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4.3 Verification

For the parallel verification, we specify the rely and guarantee relations for the
receive and send services. This relations are parameterized by a variable i, which
refers to the ith process. We show the rely relation, the guarantee relation is
similar to this, only differing in that local variables for any process j different
than i will not be modified.
definition Rely where "Rely B i≡
{(x,y). (∃ x1 y1. x=Normal x1 ∧ y=Normal y1 ∧ s_’ x1 = s_’ y1 ∧

(l_’ x1)!i = (l_’ y1)!i ∧ ports (c_’ x1) = ports (c_’ y1) ∧
p_’ x1 = p_’ y1 ∧ (x1 ∈ Invariant B −→ y1 ∈ Invariant B)) } "

Since parallel programs do not change others programs’ local variables, the
i element in the list of local variables is not changed by the rely. Also, ports,
partitions, and the scheduler are not changed by any service, therefore the rely
relation does not change them. Finally, if the initial state of the relation preserves
the invariant, it also preserves the shape of the channel’s queues, then so does
the final state of the relation.

The invariant establishes consistency of the port and channel structures that
must be preserved by the services. Its most important specification is channel
spec which preserves the specification of the queue for every defined channel in
the state.
definition channel_spec where "channel_spec B ≡

{| ∀ c_id c. (channels ´ c) c_id = Some c −→
chan_get_msgs c = (B c_id + chan_sent_msgs c_id ´ c ´ l) -

chan_rec_msgs c_id ´ c ´ l ∧
(size (chan_get_msgs c) ≤ chan_get_max_bufs c) ∧
chan_rec_mes c_id ´ c ´ l) ⊆# B c_id + chan_sent_msgs c_id ´ c ´ l |}"
channel spec checks that the multiset modelling the queue for each defined

c id is equal to its initial value, which is given by B c_id; those messages cor-
rectly sent are pushed into the queue by the service; and that the received
messages are popped out of the queue. chan sent\rec msgs gets for each c
id the multiset with the auxiliary variables different than None, meaning that
the service has modified the queue for that channel. Also, for consistency of the
multiset, the invariant needs to ensure that removed messages are a subset of
the added messages.

Lemma 2 (Send Rec Correct).
n>0 =⇒ Γ,{} �/{} (COBEGIN SCHEME [0 ≤ i < n]

(ex_service i, pre_i B i, Rely B i, Guar B i, Post_Arinc B, {|True|})
COEND) SAT [Pre_Arinc B, {(x,y). x = y}, {|True|}, Post_Arinc B, {|True|}]

Lemma 2 proves the property on the parallel execution of the services. ex
service is a sequence of nested ifs controlling the call to the services, each
if guarded by a local variable that indicates which service is invoked in each
parallel process. In the parallel program, the identity relation indicates that the
parallel environment does not change the state, being therefore a closed system,
i.e., there is not any environment at the parallel level. The guarantee relation
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is the universal set in which everything can be modified. The precondition Pre
Arinc B defines the invariant and auxiliary variables initialization to None. The
precondition for each process pre i B i sets the initial value for the auxiliary
variable, the initial values of the channel queues, and it defines the invariant
that is preserved by the postcondition for the normal termination Post Arinc B.
The abrupt postcondition is the universal set since we do not have any abrupt
termination in this specification.

The proof obligations for the parallel rule are proven immediately after
unfolding the definitions of the precondition, postcondition, and rely and guar-
antee relations. After applying the parallel rule on the parallel execution of the
n components, it is necessary to prove that the parametrized execute service
satisfies the postcondition using the rely-guarantee rules for components. Once
the conditional and call rules have been applied on execute service, only
the proof of the verification of each service body is left. Both send and receive
services are similarly proven.

To prove the body of the services, it is necessary to apply the conditional
rule to generate the proof obligations for the execution of two branches of the
if. The first corresponds to the case in which the service is not invoked with
the appropriate parameters and is immediately proven after apply the Basic
rule since it does not modify any channel or auxiliary variable. For the sec-
ond branch, after invoking Await, the sequential Simpl program representing
its body is automatically unfolded using Simpl’s VCG. The resulting goal, now
without any embedded Simpl specification, is solved by proving that the state
after removing or inserting a message from/to the channel associated to the input
port, and after assigning the removed/inserted message to the auxiliary variable,
satisfies channel spec. We use some auxiliary lemmas to prove it: first, that the
modification of the auxiliary variable in a component does not modify the sets
chan sent msgs and chan rec msgs for any channel other than the one associ-
ated to the port the service access; second, that the modification of a variable
only modifies one of these sets. Using these auxiliary lemmas the postcondition
is proven immediately by applying the properties over multisets.

5 Conclusions and Future Work

In this work we have presented CSimpl, a framework for specifying concur-
rent programs and verifying their partial correctness using rely-guarantee. This
framework allows us to specify programs written in a large subset of the C lan-
guage. Currently we are working also on axiomatic separation rules for the proof
system following works on separation logic and rely-guarantee [6,16]. This will
help to cope with local variables and to hide global variables, thus improving
scalability of the approach. There are, however, some aspects where this frame-
work can be improved. First, we can introduce deadlock freedom and weak total
correctness, which enable us to reason about termination of programs. Second,
we can provide VCG tactics to achieve a higher level of automation. Currently,
the language supports annotation to provide loop invariant, but the soundness



CSimpl: A Rely-Guarantee-Based Framework 497

of annotated rules is yet to be proven. Third, it is also desirable to have com-
pleteness of the proof system to introduce properties proven at the language and
semantics levels. The complexity of proving completeness make us to consider
this as future work. Finally, the current proof system do not include a rule for
recursive procedure calls, but our framework can be easily extended to support
it, with minimal modifications on the rules already proven.
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Ondřej Lengál1, Anthony W. Lin2(B), Rupak Majumdar3,
and Philipp Rümmer4
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Abstract. We consider the problem of automatically verifying that a
parameterized family of probabilistic concurrent systems terminates with
probability one for all instances against adversarial schedulers. A para-
meterized family defines an infinite-state system: for each number n, the
family consists of an instance with n finite-state processes. In contrast to
safety, the parameterized verification of liveness is currently still consid-
ered extremely challenging especially in the presence of probabilities in
the model. One major challenge is to provide a sufficiently powerful sym-
bolic framework. One well-known symbolic framework for the parameter-
ized verification of non-probabilistic concurrent systems is regular model
checking. Although the framework was recently extended to probabilistic
systems, incorporating fairness in the framework—often crucial for veri-
fying termination—has been especially difficult due to the presence of an
infinite number of fairness constraints (one for each process). Our main
contribution is a systematic, regularity-preserving, encoding of finitary
fairness (a realistic notion of fairness proposed by Alur and Henzinger)
in the framework of regular model checking for probabilistic parameter-
ized systems. Our encoding reduces termination with finitary fairness to
verifying parameterized termination without fairness over probabilistic
systems in regular model checking (for which a verification framework
already exists). We show that our algorithm could verify termination for
many interesting examples from distributed algorithms (Herman’s proto-
col) and evolutionary biology (Moran process, cell cycle switch), which
do not hold under the standard notion of fairness. To the best of our
knowledge, our algorithm is the first fully-automatic method that can
prove termination for these examples.

1 Introduction

In parameterized probabilistic concurrent systems, a population of agents, each
typically modeled as a finite-state probabilistic program, run concurrently in
discrete time and update their states based on probabilistic transition rules.
c© Springer-Verlag GmbH Germany 2017
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The interaction is governed by an underlying topology, which determines which
agents can interact in one step, and a scheduler, which picks the specific agents
involved in the interaction. Concurrent probabilistic systems arise as models of
distributed algorithms [25,29,31,34,38], where each agent is a processor, the
interaction between processors is determined by a communication topology, and
the processor can update its internal state based on the communication as well
as randomization. In each step, the scheduler adversarially chooses a processor
to run. Concurrent probabilistic populations also arise in agent-based popula-
tion models in biology [35], wherein an agent can represent an allele, a cell, or
a species, and the interaction between agents describes how these entities evolve
over time. For a population of a fixed size, there is a rich theory of probabilistic
verification [1,7,20,48] based on finite-state Markov decision processes (MDPs).
Verification questions for population models, however, ask if a property holds
for populations of all sizes: even if each agent is finite-state, the family of all
processes (for each population size) is an infinite-state MDP. Indeed, for many
simple population models, one can show that the verification question is unde-
cidable, even for reachability or safety properties in the non-probabilistic set-
ting [6,11,22]. Consequently, the verification question for populations requires
techniques beyond finite-state probabilistic verification, and requires symbolic
techniques to represent potentially infinite sets of states.

One well-known symbolic framework for verifying parameterized non-
probabilistic concurrent systems is regular model checking [3,4,13,41,42,47],
where states of a population are modeled using words over a suitable alpha-
bet, sets of states are represented as regular languages, and the transition rela-
tion is defined as a regular transducer. From parameterized verification of non-
probabilistic processes, it is known that regular languages provide a robust sym-
bolic representation of infinite sets, and automata-theoretic algorithms provide
the basis of checking safety or termination properties.

In this paper, we consider the problem of verifying that a given parameterized
family of probabilistic concurrent systems almost surely terminates, i.e., reaches
certain final states with probability 1 from each initial state regardless of the
behaviour of the schedulers. Termination is a fundamental property when veri-
fying parameterized probabilistic systems. Since termination typically, however,
fails without imposing certain fairness conditions on the scheduler, it is cru-
cial to be able to incorporate fairness assumptions into a termination analysis.
Therefore, although the framework of regular model checking has recently been
extended for proving termination (without fairness) over parameterized proba-
bilistic concurrent systems [36], it still cannot be used to prove termination for
many interesting parameterized probabilistic concurrent systems.

What notion of fairness should we consider for proving termination for para-
meterized probabilistic concurrent systems? To answer this question, one would
naturally start by looking at standard notions of fairness in probabilistic model
checking [7], which asserts that every process must be chosen infinitely often.
However, this notion seems to be too weak to prove termination for many of
our examples, notably Herman’s self-stabilizing protocol [29] in an asynchro-
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nous setting, and population models from biology (e.g. Moran’s process [35]).
The standard notion of fairness gives rise to a rather unintuitive and unrealistic
strategy for the scheduler, which could delay an enabled process for as long as
it desires while still being fair (see [15, Example 8] and the Herman’s protocol
example in Sect. 3). For this reason, we propose to consider Alur and Henzinger’s
[5] finitary fairness—a stronger notion of fairness that allows the scheduler to
delaying executing an enabled process in an infinite run for at most k steps, for
some unknown but fixed bound k ∈ N. Alur and Henzinger argued that this
fairness notion is more realistic in practice, but it is not as restrictive as the
notion of k-fairness, which fixes the bound k a priori. In addition, it should be
noted that finitary fairness is strictly weaker than probabilistic fairness (sched-
uler chooses processes randomly) for almost-sure termination over finite MDPs
and parameterized probabilistic systems (an infinite family of finite MDPs). We
will show in this paper that there are many interesting examples of parame-
terized probabilistic concurrent systems for which termination is satisfied under
finitary fairness, but not under the most general notion of fairness.

Contributions. Our main contribution is a systematic, regularity-preserving,
encoding of finitary fairness in the framework of regular model checking for
parameterized probabilistic concurrent systems. More precisely, our encoding
reduces the problem of verifying almost sure termination under finitary fairness
to almost sure termination without fairness in regular model checking, for which
a verification framework exists [36].

In general, the difficulty with finding an encoding of fairness is how to deal
with an infinite number of fairness requirements (one for each process) in a sys-
tematic and regularity-preserving manner. There are known encodings of general
notions of fairness in regular model checking, e.g., by using a token that is passed
to the next process (with respect to some ordering of the processes) when the
current process is executed, and ensuring that the first process holds the token
and passes it to the right infinitely many times (e.g. see [4,42]). However, these
encodings do not work in our case for several reasons. Firstly, they do not take
into account the unknown upper bound (from finitary fairness) within which
time a process has to be executed. Adapting these encodings to finitary fairness
would require the use of unbounded counters, which do not preserve regularity.
Secondly, such encodings would yield the problem of verifying an almost-sure
Rabin property (of the form �♦A∧♦B in LTL notation, where A and B are reg-
ular sets). Although we could reduce this to an almost-sure termination property
by means of product automata construction (i.e. by first converting the formula
to deterministic Rabin automaton), the target set B in the resulting termina-
tion property ♦B (consisting of configurations in strongly connected components
satisfying some properties) is not necessarily regular.

Instead, we revisit the well-known abstract program transformation in the
setting of non-probabilistic concurrent systems [26] encoding fairness into the
program by associating to each process an unbounded counter that acts as an
“alarm clock”, which will “set off” if an enabled process has not been chosen
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by the scheduler for “too long.” This abstract program transformation has been
adapted by Alur and Henzinger [5] in the case of finitary fairness by additionally
incorporating an extra counter n that stores the unknown upper bound and
resetting the value of a counter belonging to a chosen process to the “default
value” n. Our contributions are as follows:

1. We show how Alur and Henzinger’s program transformation could be adapted
to the setting of probabilistic parameterized concurrent systems (infinite fam-
ily of finite MDPs). This involves constructing a new parameterization of the
system (using the idea of weakly finite systems) and a proof that the trans-
formation preserves reachability probabilities.

2. We show how the resulting abstract program transformation could be made
concrete in the setting of regular model checking without using automata
models beyond regular automata.

3. We have implemented this transformation in FairyTail. Combined with the
existing algorithm [36] for verifying almost sure termination (without fair-
ness) in regular model checking, we have successfully verified a number of
models obtained from distributed algorithms and biological systems includ-
ing Herman’s protocol [29], Moran processes in a linear array [35,40], and the
cell cycle switch model [17] on ring and line topologies. To the best of our
knowledge, our algorithm is the first fully-automatic method that can prove
termination for these examples.

Related Work. There are few techniques for automatic verification of live-
ness properties of parameterized probabilistic programs. Almost sure verifica-
tion of probabilistic finite-state programs goes back to Pnueli and co-workers
[28,45]. Esparza et al. [23] generalize the reasoning to weakly finite programs,
and describe a heuristic to guess a terminating pattern by constructing a non-
deterministic program from a given probabilistic program and a terminating
pattern candidate. This allows them to exploit model checkers and termination
provers for nondeterministic programs. More recently, Lin and Rümmer [36] con-
sider unconditional termination for parameterized probabilistic programs. While
our work builds on these techniques, our main contribution is the incorporation
of fairness in regular model checking of probabilistic programs, which was not
considered before.

Fairness for concurrent probabilistic systems was considered by Vardi [48]
and by Hart et al. [28], and generalized later [8,21,45]. The focus was, however,
on a fixed number of processes. The notion of fairness through explicit scheduling
was developed by Olderog and Apt [43]. More recently, notions of fairness for
infinitary control (i.e., where an infinite number of processes can be created) was
considered by Hoenicke, Olderog, and Podelski [30,44].

Martingale techniques have been used to prove termination of sequential,
infinite-state, probabilistic programs [18,19,24,32,39]. These results are not com-
parable to our results, as they do not consider unbounded families of fairness
constraints nor communication topologies.
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2 Preliminaries

General Notations: For any two given real numbers i ≤ j, we use a standard
notation (with an extra subscript) to denote real intervals, e.g., [i, j]R = {k ∈
R : i ≤ k ≤ j} and (i, j]R = {k ∈ R : i < k ≤ j}. We will denote intervals over
integers by removing the subscript, i.e., [i, j] = [i, j]R ∩Z. Given a set S, we use
S∗ to denote the set of all finite sequences of elements from S. The set S∗ always
includes the empty sequence, which we denote by ε. We use S+ to denote the
set S∗ \ {ε}. Given two sets of words S1, S2, we use S1 · S2 to denote the set
{v · w : v ∈ S1, w ∈ S2} of words formed by concatenating words from S1 with
words from S2. Given two relations R1, R2 ⊆ S ×S, we define their composition
as R1 ◦ R2 = {(s1, s3) : ∃s2((s1, s2) ∈ R1 ∧ (s2, s3) ∈ R2)}.

Transition Systems: We fix the (countably infinite) set AP of atomic propo-
sitions. Let ACT be a finite set of action symbols. A transition system over
ACT is a tuple S = 〈S; {→a}a∈ACT, �〉, where S is a set of configurations,
→a ⊆ S × S is a binary relation over S, and � : AP → 2S maps atomic
propositions to sets of configurations (we omit � if it is not important). We
use → to denote the relation

(⋃
a∈ACT →a

)
. The notation →+ (resp. →∗) is

used to denote the transitive (resp. transitive-reflexive) closure of →. We say
that a sequence s1 → · · · → sn is a path (or run) in S (or in →). Given two
paths π1 : s1 →∗ s2 and π2 : s2 →∗ s3 in →, we may concatenate them to
obtain π1 � π2 (by gluing together s2). We call π1 a prefix of π1 � π2. For each
S′ ⊆ S, we use the notations pre→(S′) and post→(S′) to denote the pre/post
image of S′ under →. That is, pre→(S′) = {p ∈ S : ∃q ∈ S′(p → q)} and
post→(S′) = {q ∈ S : ∃p ∈ S′(p → q)}.

Words and Automata: We assume basic familiarity with finite word
automata. Fix a finite alphabet Σ. For each finite word w = w1 . . . wn ∈ Σ∗, we
write w[i, j], where 1 ≤ i ≤ j ≤ n, to denote the segment wi . . . wj . Given an
automaton A = (Σ,Q, δ, q0, F ), a run of A on w is a function ρ : {0, . . . , n} → Q
with ρ(0) = q0 that obeys the transition relation δ. We may also denote the run
ρ by the word ρ(0) · · · ρ(n) over the alphabet Q. The run ρ is said to be accepting
if ρ(n) ∈ F , in which case we say that w is accepted by A. The language L(A)
of A is the set of words in Σ∗ accepted by A.

Reachability Games: We recall some basic concepts on 2-player reachability
games (see e.g. [27, Chapter 2] on games with 1-accepting conditions). An arena
is a transition system S = 〈S = V1 ∪ V2;→1,→2〉, where S (i.e. the set of
“game configurations”) is partitioned into two disjoint sets V1 and V2 such that
pre→i

(S) ⊆ Vi for each i ∈ {1, 2}. The transition relation →i denotes the actions
of Player i. Similarly, for each i ∈ {1, 2}, the configurations Vi are controlled by
Player i. In the following, Player 1 will also be called “Scheduler,” and Player 2
“Process”. Given a set I0 ⊆ S of initial configurations and a set F ⊆ S of final
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(a.k.a. target) configurations, the goal of Player 2 is to reach F from I0, while the
goal of Player 1 is to avoid it. More formally, a strategy for Player i is a partial
function f : S∗Vi → S such that, for each v ∈ S∗ and p ∈ Vi, if vp is a path
in S and p is not a dead end (i.e., p →i q for some q), then f(vp) is defined in
such a way that p →i f(vp). Given a strategy fi for Player i ∈ {1, 2} and an
initial configuration s0 ∈ S, we can define a unique (finite or infinite) path in
S such that π : s0 →j1 s1 →j2 · · · where sjk+1 = fi(s0s1 . . . sjk) for i ∈ {1, 2}
is the (unique) configuration s.t. sjk ∈ Vi. Player 2 wins iff some configuration
in F appears in π, or if the path is finite and the last configuration belongs
to Player 1. Player 1 wins iff Player 2 does not win; we say Player 2 loses.
A strategy f for Player i is winning from I0 if for each strategy g of Player 3− i,
the unique path in S from each s0 ∈ I0 witnesses a win for Player i. Such games
(a.k.a. reachability games) are determined (see e.g. [27, Proposition 2.21]): either
Player 1 has a winning strategy or Player 2 has a winning strategy.

Convention. For notational simplicity, w.l.o.g., we make the following assump-
tions on our reachability games. They suffice for the purpose of proving liveness
for parameterised systems.

(A0) Arenas are strictly alternating, i.e., a move made by a player does not take
the game back to her configuration (post→i

(S) ∩ Vi = ∅, for each i ∈ {1, 2}).
(A1) Initial and final configurations belong to Player 1, i.e., I0, F ⊆ V1

(A2) Non-final configurations are not dead ends: ∀x ∈ S \ F,∃y : x →1 y ∨
x →2 y.

Markov Chains: A (discrete-time) Markov chain (a.k.a. DTMC ) is a structure
of the form S = 〈S; δ, �〉 where S is a set of configurations, δ is a function that
associates a configuration s ∈ S with a probability distribution over a sample
space D ⊆ S (i.e. the probability of going to a certain configuration from s), and
� : AP → 2S maps atomic propositions to subsets of S. In what follows, we will
assume that each δ(s) is a discrete probability distribution with a finite sample
space. This assumption allows us to simplify our notation: a DTMC 〈S; δ, �〉
can be seen as a transition system 〈S;→, �〉 with a transition probability func-
tion δ mapping a transition t = (s, s′) ∈ → to a value δ(t) ∈ (0, 1] such that∑

s′∈post(s) δ((s, s′)) = 1. That is, transitions with zero probabilities are removed

from →. We will write s
p−→ s′ to denote s → s′ and that δ((s, s′)) = p. The

underlying transition graph of a DTMC 〈S; δ, �〉 is the transition system 〈S;→,
�〉 with δ omitted. Given a finite path π = s0 → · · · → sn from the initial con-
figuration s0 ∈ S, let Runπ be the set of all finite/infinite paths with π as a
prefix, i.e., of the form π �π′ for some finite/infinite path π′. Given a set F ⊆ S
of target configurations, the probability ProbS(s0 |= ♦F ) (the subscript S may
be omitted when understood) of reaching F from s0 in S can be defined using
a standard cylinder construction (see e.g. [33]) as follows. For each finite path
π = s0 → · · · → sn in S from s0, we set Runπ to be a basic cylinder, to which
we associate the probability Prob(Runπ) =

∏n−1
i=0 δ((si, si+1)). This gives rise to
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a unique probability measure for the σ-algebra over the set of all runs from s0.
The probability Prob(s0 |= ♦F ) is then the probability of the event F containing
all paths in S with some “accepting” finite path as a prefix, i.e., a finite path
from s0 ending in some configuration in F . In general, given an LTL formula ϕ
over AP, the event containing all paths from s0 in S satisfying ϕ is measurable
[48] and its probability value Prob(s0 |= ϕ) is well-defined.

Notation: Whenever understood, we will omit mention of � from 〈S; δ, �〉.

3 Abstract Models of Probabilistic Concurrent Programs

In this section, we recall the notion of Markov Decision Processes (MDPs) and
fair MDPs [7]. These serve as our abstract models of probabilistic concurrent
programs. We then define the notion of finitary fairness [5] and discuss its basic
properties in the setting of MDPs.

3.1 Markov Decision Processes

A Markov decision process (MDP) is a strictly alternating arena S = 〈S =
V1 ∪ V2;→1,→2〉 such that 〈S;→2〉 is a DTMC, i.e., →2 is associated with
some transition probability function, and that the atomic propositions are not
important. Intuitively, the transition relation →1 is nondeterministic (controlled
by a “demonic” scheduler), whereas the transition relation →2 is probabilistic.
By definition of arenas, the configurations of the MDPs are partitioned into
the set V1 of nondeterministic states (controlled by Scheduler) and the set V2

of probabilistic states. Formally, pre→1(S) ∩ pre→2(S) = ∅. Each Scheduler’s
strategy1 f : S∗V1 → S gives rise to an infinite-state DTMC with the underlying
transition system Sf = 〈S′;→3, �〉 and the transition probability function δ′

defined as follows. Here, S′ is the set of all finite/infinite paths π from s0. For
each state s′ ∈ S and each path π from s0 ending in some state s ∈ S, we define
π →3 πs′ iff: (1) if s ∈ V1 is a nondeterministic state, then f(π) = s′, and (2) if
s ∈ V2 is a probabilistic state, then s →2 s′. Intuitively, Sf is an unfolding of
the game arena S (i.e. a disjoint union of trees) where branching only occurs on
probabilistic states. Transitions π →3 πs′ satisfying Case (1) have the probability
δ′((π, πs′)) = 1; otherwise, its probability is δ′((π, πs′)) = δ((s, s′)). We let � be
a function mapping each subset X ⊆ S (used as an atomic proposition) to the set
of all finite paths in Sf from s0 to X. Since Sf is a DTMC, given an LTL formula
ϕ over subsets of S as atomic propositions, the probability ProbSf

(s0 |= ϕ) of
satisfying ϕ in S from s0 under the scheduler f is well-defined. In particular,
ProbSf

(s0 |= ♦F ) is the probability of reaching F from s0 in S under the
scheduler f . The probability ProbS,C(s0 |= ϕ) of satisfying ϕ from s0 in the
MDP S under a class C of schedulers is defined to be the infimum of the set of
all probabilities ProbSf

(s0 |= ϕ) over all f ∈ C. We will omit mention of C when
it denotes the class of all schedulers.

1 Also called “scheduler” or “adversary” for short.
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An MDP is weakly-finite [23] if from each configuration, the set of all con-
figurations that are reachable from it (in the underlying transition system of
the MDP) is finite. Note that the state space of weakly-finite MDPs can be
infinite. The restriction of weak finiteness is another way of defining the notion
of parameterized systems, which are an infinite family of finite-state systems.
Weakly-finite MDPs capture many interesting probabilistic concurrent systems
in which each process is finite-state; this is the case for many probabilistic dis-
tributed protocols.

3.2 Fair Markov Decision Processes

A fair Markov decision process (FMDP) is a structure of the form S = 〈S =
V1 ∪V2;→1,→2,C, J〉, where 〈S = V1 ∪V2;→1,→2〉 is an MDP, J is a weak fair-
ness (a.k.a. justice) requirement, and C is a strong fairness (a.k.a. compassion)
requirement. More precisely, a weak fairness requirement is a set (at most count-
ably infinite) of atomic weak fairness requirements of the form ♦�A ⇒ �♦B,
for some A,B ⊆ S. Here, the � and ♦ modalities are the standard “always”
and “eventually” LTL operators. The set A (resp. B) will be called the premise
(resp. consequence). Intuitively, if A is interpreted as “Process 1 is waiting to
move” and B as “Process 1 is chosen”, then this fairness requirement may be read
as: at no point can Process 1 be continuously waiting to move without being cho-
sen. In addition, a strong fairness requirement is a set (again, at most countably
infinite) of atomic strong fairness requirements of the form �♦A ⇒ �♦B, for
some A,B ⊆ S. Using the above example, a strong fairness requirement reads:
if Process 1 is waiting to move infinitely often, then it is chosen infinitely often.
As before, the set A (resp. B) will be called the premise (resp. consequence).
In the following, when it is clear whether a fairness requirement is a justice or
a compassion, we will denote it by the pair (A,B) of premise and consequence.

Given an FMDP S = 〈S = V1 ∪ V2;→1,→2,C,J〉, a configuration s0 ∈ S,
and a scheduler f , since each atomic fairness requirement is an LTL formula
and there are at most countably many atomic fairness requirements, the set of
paths from s0 in the DTMC Sf induced by f satisfying C and J is measurable.
We say that a scheduler f is S-fair if ProbSf

(s0 |= C ∧ J) = 1 for every initial
configuration s0. The fairness conditions (C,J) are realizable in S if there exists
at least one S-fair scheduler.

A natural fairness notion we consider in this paper is process fairness, which
asserts that each process is chosen infinitely often. For this notion of fairness, we
can assume that the consequence B of each atomic fairness requirement asserts
that a particular process is chosen. We make one simplifying assumption: each
process is always enabled (i.e., can always be chosen by the scheduler). This
assumption is reasonable since we can always introduce an idle transition for
each process. Under this assumption, we have that from each v1 ∈ V1, there
exists a transition v1 →1 v2 for some v2 ∈ B. This implies that our fairness
conditions are always realizable and that the probability ProbS,C(E) of event E
over the set of all S-fair schedulers is well-defined.
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3.3 Finitary Fairness

Given an FMDP S = 〈S = V1 ∪ V2;→1,→2,C,J〉, a configuration s0 ∈ S, and
a number k ∈ N, we say that a scheduler f is S-k-fair (or k-fair whenever S is
understood) if for each atomic fairness requirement (A,B):

1. if (A,B) is justice, then (the underlying graph of) Sf contains no path π of
length k satisfying the LTL formula �(A ∧ ¬B).

2. if (A,B) is compassion, then Sf contains no path π satisfying the LTL for-
mula ψk ∧ �¬B, where ψ0 := true and ψi := ♦(A ∧ ψi−1) for each i > 0.

In other words, a premise in a justice requirement cannot be satisfied for k con-
secutive steps without satisfying a consequence, while a premise in a compassion
requirement cannot be satisfied for k (not necessarily consecutive) steps without
satisfying a consequence. A scheduler is said to be finitary fair (fin-fair) if it is
k-fair for some k. The fairness conditions (C,J) are said to be finitary-realizable
(fin-realizable) in S if there exists at least one fin-fair scheduler. Under this
assumption, the probability ProbS,C(E) of an event E over the set C of all fin-
fair schedulers is well-defined. In what follows, for an FMDP S, we will simply
denote ProbS,C(E) as ProbS(E). In this paper, we propose to study termination
of probabilistic concurrent programs under finitary fairness, i.e., to determine
whether ProbS,C(s0 |= ♦F ) = 1, where C is the class of all fin-fair schedulers.

The following proposition states one special property of weakly-finite MDPs.

Proposition 1. Let S and S′ be two weakly-finite fair MDPs with identi-
cal underlying transition systems (but possibly different probability values). For
each set F of final states, and each initial configuration s0, it is the case that
ProbS(s0 |= ♦F ) = 1 iff ProbS′(s0 |= ♦F ) = 1.

By Proposition 1, when dealing with almost-sure finitary-fair termination of
weakly-finite MDPs, we only care whether a transition has a zero or a non-zero
probability, i.e., if it is non-zero, then the exact value is irrelevant. Incidentally,
the same also holds for other properties including almost-sure termination with-
out fairness and qualitative temporal specifications [28,36,45]. For this reason,
we may simply omit these probability values from our symbolic representation of
weakly-finite MDPs, which we will do from the next section onwards.

3.4 Herman’s Protocol

Herman’s protocol [29] is a distributed self-stabilization algorithm for a pop-
ulation of processes organized in a ring. The correct configurations are those
where exactly one process holds a token. If, through some error, the ring enters
an erroneous configuration (in which multiple processes hold tokens), Herman’s
protocol ensures that the system will self-stabilize: it will almost surely go back
to a configuration with only one token.
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Let us discuss how the protocol works in more detail. Fix N ≥ 3 processors
organized in a ring. If a chosen process does not hold a token, then it can perform
an idle transition (i.e. do nothing). If a chosen process holds a token, then it
can keep holding the token with probability 1

2 or pass it on to its clockwise
neighbor (the process (i+1) mod N , for processes numbered 0, . . . , N − 1) with
probability 1

2 . If a process currently holds a token and receives another token
from its (counter-clockwise) neighbor, then the two tokens are merged2 into one,
leaving the process with one token.

Formally, Hermann’s protocol can be modeled as a weakly-finite Markov
decision process whose states are vectors in {⊥,�}∗. For each N , the state of
the protocol is described by a bitvector of N bits, with the i-th bit being one
iff the i-th process holds a token. From a state v, the scheduler picks a process
i ∈ {0, . . . , N − 1}. Given a chosen process i, the new state remains v if the
chosen process i did not hold a token (v(i) = ⊥). If v(i) = �, the new state is v
with probability 1

2 and v⊕ei ⊕e(i+1) mod N with probability 1
2 . Here, ei denotes

a vector with � in the i-th position and ⊥ everywhere else, and ⊕ is the XOR
operation. We want to ensure that, starting from an arbitrary initial assignment
of tokens, any population self-stabilizes with probability one.

Process fairness for Herman’s protocol is a set of N atomic fairness require-
ments, each asserting that the process i is executed infinitely often, for each
i ∈ {1, . . . , N}. Unfortunately, Herman’s protocol does not terminate with prob-
ability one against some fair schedulers. To see this, consider the start state
s0 = (�,⊥,�). Let us call the token held by Process 0 “the first token”, and
the token held by Process 2 “the second token”. Define a round as the following
sequence of moves by the scheduler: keep choosing the process that holds the
first token until it passes the token to the right, and do the same to the same to
the second token. For example, the two configurations obtained after completing
the first and second rounds from s0 are, respectively, (�,�,⊥) and (⊥,�,�).
To see that the scheduler is fair, for each integer i > 0, the probability that the
i-th round is not completed is 0 since the probability that one of the tokens will
be kept at the same process for an infinite amount of time is 0. Therefore, the
probability that some round is not completed is also 0. Completing two rounds
ensure that all the processes are picked. Therefore, every process will be cho-
sen with probability 1. On the other hand, observe that correct configurations
are not seen in the induced DTMC, showing that self-stabilization holds with
probability 0 under this scheduler.

Herman’s protocol can be shown to self-stabilize with probability one under
all fin-fair schedulers, which can be proved by our fully-automatic verification
algorithm (presented later in the paper).

2 Herman [29] describes a more general protocol in which tokens can be merged/
destroyed with some probability. We consider this restriction for simplicity of pre-
sentation.
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4 Regular Model Checking: A Symbolic Framework

In this section, we recall regular model checking (see e.g. [3,42,46]), a symbolic
framework for specifying infinite-state systems based on finite automata and
regular transducers and developing automatic verification (semi-)algorithms.

A transition system S = 〈S = V1 ∪V2;→1,→2〉 is specified in the framework
as a regular language S (e.g. as a regular expression over some alphabet Σ), and
two “regular relations” →1,→2 ⊆ Σ∗ × Σ∗. For simplicity, in the following we
will assume that S = Σ∗. How do we specify regular relations? One standard way
is to restrict to length-preserving relations (i.e. the relation may only contain a
pair of words of the same length) and specify such relations as regular languages
over the alphabet Σ × Σ. There is, then, a simple one-to-one correspondence
between the set of words over Σ × Σ and the set of all pairs of words over Σ of
the same length. This can be achieved by mapping a pair (v, w) of words Σ with
|v| = |w| = n to a word v ⊗ w, defined as (v1, w1)(v2, w2) · · · (vn, wn) whenever
v = v1 · · · vn and w = w1 · · · wn.

Proving that a property ϕ holds over a transition system S is done “in a
regular way,”, by finding a “regular proof” for the property. For example, if ϕ
asserts that the set Bad of bad states can never be reached, then a regular proof
amounts to finding an inductive invariant Inv in the form of a regular language
[3,42] that does not intersect with Bad , i.e., Bad ∩ Inv = ∅, S0 ⊆ Inv (S0 is
a regular set of initial states), and post→(Inv) ⊆ Inv , where → = →1 ∪ →2.
Since regular languages are effectively closed under boolean operations and tak-
ing pre/post images w.r.t. regular transducers, an algorithm for verifying the
correctness of a given regular proof can be obtained by using language inclusion
algorithms for regular automata, e.g., [2,14]. The framework of regular proofs is
incomplete in general since it could happen that there is a proof, but no regular
proof. The pathological cases when only non-regular proofs exist do not, however,
seem to frequently occur in practice, e.g., see [3,9,10,12,16,37,41,42,47].

The framework of regular proofs has been extended to deal with almost-
sure termination for weakly-finite probabilistic concurrent programs in [36]. We
briefly summarise the main idea, since we reduce the fair termination problem
to their setting. By Proposition 1, the actual probability values do not matter in
proving almost-sure termination. For this reason, we may specify a weakly-finite
MDP S = 〈S = V1 ∪ V2;→1,→2〉 as a regular specification in the same way
as we specify a non-probabilistic transition system in our regular specification
language. Given an MDP S = 〈S = V1 ∪ V2;→1,→2〉, a set I0 ⊆ V1 of initial
configurations, and a set F ⊆ V1 of final configurations, a regular proof for
Prob(s0 |= F ) = 1 for each s0 ∈ I0 is a pair 〈Inv ,≺〉 consisting of a regular
inductive invariant Inv ⊆ S and a regular relation ≺ ⊆ S × S such that:

1. I0 ⊆ Inv and post→(Inv) ⊆ Inv .
2. ≺ is a strict preorder on S, i.e., it is irreflexive (∀s ∈ S : s �≺ s) and transitive

(∀s, s′, s′′ ∈ S : s ≺ s′ ∧ s′ ≺ s′′ → s ≺ s′′).
3. Irrespective of the nondeterministic transitions from any configuration in Inv ,

there is a probabilistic transition to a configuration in Inv that decreases its
rank with respect to ≺:
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∀x ∈ Inv \ F, y ∈ S \ F :
(
(x →1 y) ⇒ (∃z ∈ Inv : (y →2 z) ∧ x � z)

)
.

An automata-theoretic algorithm can then be devised for checking the above
verification conditions with respect to a given regular proof [36].

Example 1 (Herman’s protocol, continued). We provide a regular encod-
ing of Herman’s protocol. The configurations are words over the alphabet
{�,⊥,�,⊥}, where � (resp. ⊥) signifies that a process holds (resp. does not
hold) a token, while overlining the character signifies that the process is chosen
by the scheduler. We set Σ = {�,⊥}. The set S0 of initial configurations is
Σ∗�Σ∗, i.e., at least one process holds a token. The set of final configurations
is ⊥∗�⊥∗, i.e., there is only a single token in the system. The actions of the
scheduler is to choose a process; this can be expressed as the regular expression
I∗((�,�)+(⊥,⊥))I∗, where I denotes the regular language (�,�)+(⊥,⊥). The
probabilistic actions can be expressed as a union of the following three regular
expressions:

I∗((�,�) + (⊥,⊥))I∗ (idle)

I∗(�,⊥)((⊥,�)) + (�,�))I∗, ((⊥,�) + (�,�))I∗(�,⊥)) (pass token right)

5 Handling Fairness Requirements

We now describe the main result of the paper: a general method for embedding
finitary fairness into regular model checking for probabilistic concurrent systems.

5.1 Regular Specifications of Fairness

When a complex system or a distributed protocol is being modelled in regu-
lar model checking, it is often necessary to add an infinite number of fairness
requirements. This is because such a system admits a finite but arbitrary num-
ber of agents or processes, each with its own fairness requirement (e.g. that the
process should be executed infinitely often). For this reason, it is not enough
to simply express the fairness requirements as a finite set of pairs of regular
languages (one for the premise, and one for the consequence). We describe a
regular way of specifying infinitely many fairness constraints. Our presentation
is a generalisation of the regular specification of fairness from [4,42].

The general idea is to define a “regular function” T that maps a configu-
ration s = s1 · · · sn ∈ S to a word w = w1 · · · wn such that wi contains: (1)
a bit bi indicating whether s is in the premise of the i-th fairness requirement,
(2) a bit b′

i indicating whether s is in the consequence of the i-th fairness require-
ment, and (3) a bit t indicating whether the i-th fairness requirement is justice
or compassion. Such a regular specification of fairness allows an infinite number
of fairness constraints since S is potentially infinite (i.e., containing words of
unbounded lengths), though only the first |s| fairness requirements matter for
a word s ∈ S. This is sufficient for weakly-finite MDPs since the set of reach-
able configurations from any given configuration s is finite and so, among the
infinite number of fairness constraints, only finitely many are distinguishable.
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The regular function can be defined by a letter-to-letter tranducer with input
alphabet Σ and output alphabet Γ := {0, 1} × {0, 1} × {0, 1}. Without loss of
generality, we assume that the i-th letter in the output of every input word of T
agree on the third bit (i.e., whether the fairness requirement is justice or com-
passion is well-defined): for every s, s′ ∈ S and i ∈ N, if T (s)[i] = (a, b, c) and
T (s′)[i] = (a′, b′, c′), then c = c′. Observe this condition on T can be algorithmi-
cally checked by using a simple automata-theoretic method: find two accepted
words in which in some position their third bits differ.

In this case, T gives rise to compassion requirements C and justice require-
ments J by associating the i-th position in all output words by a unique fairness
constraint. More precisely, let Ai = {s : T (s)[i] = (1, j, t), for some j, t ∈ {0, 1}}
and Bi = {s : T (s)[i] = (j, 1, t), for some j, t ∈ {0, 1}}. Define: (i) J =
{♦�Ai ⇒ �♦Bi : T (s)[i] = (i, j, 0), for some s ∈ S, for some j ∈ {0, 1}}, (ii)
C = {�♦Ai ⇒ �♦Bi : T (s)[i] = (i, j, 1), for some s ∈ S, for some j ∈ {0, 1}}.
Therefore, by Proposition 1, our regular fairness specification allows us to define
weakly-finite fair MDPs 〈S = V1 ∪ V2;→1,→2,C,J〉. In the following, we shall
call such fair MDPs regular.

Our main theorem is a regularity-preserving reduction from proving almost
sure termination for regular FMDPs (under finitary fairness) to proving almost
sure termination for regular MDPs (without fairness).

Theorem 1. Let S = 〈S = V1 ∪ V2;→1,→2,C,J〉 be a regular representation
of an FMDP, I0 ⊆ V1 be a regular set of initial configurations, and F ⊆ V1 be a
regular set of final configurations. Then one can compute a regular presentation
of MDP S′ = 〈S = V ′

1 ∪ V ′
2 ;�1,�2〉 and two regular sets I ′

0, F
′ ⊆ V ′

1 such
that it holds that if C and J are realizable, then ProbS′(I ′

0 |= ♦F ′) = 1 iff
ProbS(I0 |= ♦F ) = 1.

5.2 Abstract Program Transformation

Before proving Theorem 1, let us first recall an abstract program transformation
à la Alur and Henzinger [5], which encodes finitary fairness into a program using
integer counter variables. Intuitively, we reserve one variable for each atomic
fairness condition as an “alarm clock” that will set off if its corresponding process
has not been executed for a long time, and one global variable n that acts
as a default value to reset a clock to as soon as the corresponding process is
executed. Although Alur and Henzinger [5] did not discuss about probabilistic
programs, their transformation can be easily adapted to the setting of MDPs,
though correctness still has to be proven.

We now elaborate on the details of the transformation. Given an FMDP
S = 〈S = V1 ∪ V2;→1,→2,C,J〉 with a probability distribution δ, the transfor-
mation will produce an MDP S′ = 〈S = V ′

1 ∪ V ′
2 ;�1,�2〉 with a probability

distribution δ′ as follows. Introduce a set V of “counter” variables that range
over natural numbers: xj (for each j ∈ J), yc (for each c ∈ C), and n. Let F be
the set of all valuations f mapping each variable in V to a natural number such
that f(xj), f(yc) ≤ f(n) for each j ∈ J and c ∈ C. We define V ′

1 = V1 × F and
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V ′
2 = V2×F. We now define the transition relation �i such that (s, f) �i (s′, f ′)

if s →i s′ and

– for each z ∈ V, f(z) > 0,
– f ′(n) := f(n),
– xj (for j = (A,B) ∈ J) and yc (for c = (A,B) ∈ C) change as follows:

f ′(xj) =
{

f(xj) − 1 if s ∈ A ∩ B
f(n) if s ∈ A ∪ B

f ′(yc) =

⎧
⎨
⎩

f(n) if s ∈ A ∩ B
f(yc) − 1 if s ∈ A ∩ B

f(n) if s ∈ B

(A denotes the set-complement of A). Finally, we define the probability distrib-
ution δ′ underlying �2 as δ′((s, f), (s′, f ′)) = δ(s, s′) whenever s ∈ V2.

Lemma 1. If S is a weakly-finite FMDP, then S′ is weakly-finite.

Intuitively, the variables xj ’s and yc’s keep track of how long the scheduler
has delayed choosing an enabled process, while the variable n (unchanged once
the initial configuration of the MDP is fixed) aims to ensure that the scheduler
is n-fair. Since n is a variable (not a constant), the resulting MDP S′ captures
precisely the behaviour of S under fin-fair schedulers.

We next state a correctness lemma for the transformation (proof in the full
version). To this end, given a set S0 ⊆ S of initial configurations in S, we define:

– S′
0 := S0 ×F=, where F= contains functions f ∈ F such that f(xj) = f(yc) =

f(n) for each j ∈ J and c ∈ C.
– F ′ = (F × F>0) ∪ (S × F0), where F0 contains all f ∈ F such that f(xj) = 0

for some j ∈ J or f(yc) = 0 for some c ∈ C (i.e. one of the alarms has been
triggered), and F>0 := F \ F0.

Lemma 2 (Correctness). For weakly-finite fair MDPs S, it is the case that
ProbS(S0 |= ♦F ) = ProbS′(S′

0 |= ♦F ′).

These two lemmas immediately imply Theorem 1.

5.3 Finitary Fairness in Regular Model Checking

We now show how to implement the aforementioned abstract program trans-
formation in our regular model checking framework. Fix a regular presentation
of an FMDP S = 〈S = V1 ∪ V2;→1,→2,C,J〉, which includes two automata
over the alphabet Σ × Σ representing →1 and →2, and an automaton over the
alphabet Σ × Γ representing the regular specification of the fairness conditions
C and J. [Recall that Γ := {0, 1}×{0, 1}×{0, 1}.] We describe the construction
of �1 (the construction for �2 is similar). Let A = (Σ × Σ,Q,Δ, q0, F ) be an
automaton representing →1 and Af = (Σ × Γ,Qf ,Δf , qf

0 , F f ) be an automa-
ton representing the regular specification of fairness. The construction of the
automaton for �1 has two stages.
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Stage 1: Compute an Intermediate Automaton. The intermediate automaton B
will have the alphabet Σ′ := (Σ ×Σ)∪Γ and recognize a subset of ((Σ ×Σ)Γ )∗.
Intuitively, on input (a, b) ∈ Σ × Σ, the automaton B simultaneously runs both
A and Af . Here, the automaton Af will nondeterministically guess a letter c ∈ Γ
and make a transition on the letter (a, c). The automaton B, then, immediately
consumes the letter c. This process is repeated until both A and Af accept.
More precisely, the automaton is defined as B := (Σ′, QB ,ΔB , qB

0 , FB) where:

– QB = Q × Qf × (Γ ∪ {?}), qB
0 = (q0, q

f
0 , ?), and FB = F × F f × {?}

– ΔB has the following transitions:
• ((p1, q

f
1 , ?), (a, b), (p2, q

f
2 , c)) if (p1, (a, b), p2) ∈ Δ and (qf

1 , (a, c), qf
2 ) ∈ Δf .

• ((p, qf , c), c, (p, qf , ?)) for each c ∈ Γ .

Stage 2: Regular Substitution of Letters in Γ . Define the following regular
languages

– (Identity) ID := (1, 1)+(?, ?)∗,
– (Decrement) DEC := (1, 1)∗(1, ?)(?, ?)∗, and
– (Reset) RES := (1, 1)+(?, 1)∗.

Define the regular substitution σ mapping letters in Γ to regular languages:

– if (x, y, z) is (i, 1, j) or (0, i, 0) (for i, j ∈ {0, 1}), then σ((x, y, z)) = RES.
– if (x, y, z) is of the form (1, 0, i) (for some i ∈ {0, 1}), then σ((x, y, z)) = DEC.
– define σ((0, 0, 1)) = ID.

We then apply the regular substitution σ to the letters Γ appearing in our
intermediate automaton B. The resulting automaton implements the desired
automaton for �1.

Finishing Off the Rest of the Construction. Computing S′
0, F

′ is easy. Define S′
0

to be the set of all words a1w1a2w2 · · · amwm—where ai ∈ Σ and wi ∈ 1+ for
each i ∈ {1, . . . , m}—such that a1 · · · am ∈ S0. Similarly, define F ′ to be the set
of all words a1w1a2w2 · · · amwm—where ai ∈ Σ and wi ∈ 1+?∗ ∪ ?+ for each
i ∈ {1, . . . , m}—such that a1 · · · am ∈ F or wi ∈ ?+ for some i ∈ {1, . . . , m}.
Regular automata for these sets could be easily constructed given automata for
S0 and F .

Example 2 (Herman’s protocol). We encode process fairness in the following
way. The counters use the unary encoding, their values represented as the lengths
of sequences of 1’s padded on the right by the symbol ? (crucial to keep the
transducers length-preserving). For example, the number 3 is represented by
any word of the form 111?∗. Define X = 1∗?∗, i.e., the set of all valid counters.
The set of initial configurations can be expressed using the regular expression
(Σ · X )∗(� · X )(Σ · X )∗, i.e., counters for all processes are initialized to an
arbitrary value. The set of final configurations is now (⊥ · X )∗(� · X )(⊥ · X )∗ ∪
(Σ · X )∗(Σ· ?∗)(Σ · X )∗, i.e., either there is exactly one token in the system, or
(at least) one counter has reached 0. Scheduler now also performs operations on
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the counters for processes: for a chosen process, the counter is reset, for other
processes, the counter is decremented. This can be expressed as the language
(I ·DEC)∗(((⊥,⊥)+ (�,�)) ·RES)(I ·DEC)∗. Actions of the protocol are the same
as in the original encoding and the values of counters are left unmodified:

(I · ID)∗(((⊥,⊥) + (�,�)) · ID)(I · ID)∗ (idle)

(I · ID)∗((�,⊥) · ID)(((⊥,�) + (�,�)) · ID)(I · ID)∗ (pass token right1)(
((⊥,�) + (�,�)) · ID)(I · ID)∗((�,⊥) · ID) (pass token right2)

At this point, we can use existing tools for checking termination (without fairness
constraints), e.g. [36]. Indeed, we can automatically check that the system after
reduction terminates with probability one, thus proving that Herman’s protocol
fairly terminates with probability one (under finitary process-fair schedulers).

6 Implementation and Experiments

The approach presented in this paper has been implemented in the tool Fairy-
Tail.3 For evaluation, we extracted models of a number of probabilistic parame-
terized systems. The tool receives a system with fairness conditions and trans-
forms it into a system without fairness conditions, where fairness of the original
system is encoded using counters. For solving liveness in the output transformed
system, we use Slrp [36] (in the incremental liveness proofs setting) as the
underlying liveness checker for parameterized systems.

Table 1. Times of analyses of prob-
abilistic paremeterised systems. The
timeout was set to 10 h (timeout is
denoted as T/O).

Case study Time

Herman’s protocol (merge, line) 3.64 s

Herman’s protocol (annih., line) 4.33 s

Herman’s protocol (merge, ring) 4.31 s

Herman’s protocol (annih., ring) 4.61 s

Moran process (2 types, line) 2m 48 s

Moran process (3 types, line) 56m 14 s

Cell cycle switch (1 types, line) 43.94 s

Cell cycle switch (2 types, line) 9 h 46m

Clustering (2 types, line) 10m 30 s

Clustering (3 types, line) T/O

Coin game (k = 3, clique) 1m 0 s

Table 1 shows the results of our exper-
iments. The times given are the wall clock
times for the individual benchmarks on
a PC with 4 Quad-Core AMD Opteron
8389 processors with Java heap mem-
ory limited to 64 GiB. The time included
translation of the system into a system
without fairness (always less than 1 s)
and the runtime of Slrp.

We consider two versions of Herman’s
protocol and two topologies. Moran
process, is a model of genetic drift [40]
with individuals of N ≥ 2 types. When
an individual is chosen by the scheduler,
it can either idle or infect a neighbor. The
model of cell cycle switch is a simplification of the model of [17]. Individuals
can be committed to a decision from N ≥ 1 types. An individual neighboring
another one not sharing the same decision can make him undecided, or persuade
an undecided individual to commit to his decision. Clustering considers a pop-
ulation model of alleles of N ≥ 2 (resp. 3) types on a line, that can change

3 https://github.com/uuverifiers/autosat/tree/master/Fairness.

https://github.com/uuverifiers/autosat/tree/master/Fairness
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position with their neighbours of a different type. Coin game is a population
protocol where every agent has one of two types of coins. If an agent is chosen
by the scheduler, it can change its coin to the one held by the majority of k other
randomly selected agents.

In our experiments, we verify that a given property holds under every finitary
process-fair scheduler with probability one. For clustering, the property is that
the system eventually reaches a configuration with N clusters of the same type,
while for the other population protocols, the property is that the system reaches
a stable configuration.

The experiments show that our encoding of fairness into systems is viable
and can be used for verification of parameterized systems with fairness by their
reduction to systems without fairness. On the other hand, when the size of the
regular proof is large, we observe that the problem for the underlying solver
gets significantly more difficult (as can be seen on the example of clustering
for three types of alleles). We conjecture that the performance can be improved
significantly by making the solver take into account the (not arbitrary) structure
of the problem, which we leave for future work.

Future Work. We leave the reader with several research challenges. A natural
question is how to deal with non-finitary fairness for parameterized probabilistic
concurrent systems in general and in the framework of regular model checking.
Secondly, since there are numerous examples of population models over more
complex topologies (e.g. grids), how do you deal with termination and fair ter-
mination over such models in the parameterized setting?
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Abstract. Symbolic automata allow transitions to carry predicates over
rich alphabet theories, such as linear arithmetic, and therefore extend
classic automata to operate over infinite alphabets, such as the set of
rational numbers. Existing automata algorithms rely on the alphabet
being finite, and generalizing them to the symbolic setting is not a trivial
task. In our earlier work, we proposed new techniques for minimizing
deterministic symbolic automata and, in this paper, we generalize these
techniques and study the foundational problem of computing forward
bisimulations of nondeterministic symbolic finite automata. We propose
three algorithms. Our first algorithm generalizes Moore’s algorithm for
minimizing deterministic automata. Our second algorithm generalizes
Hopcroft’s algorithm for minimizing deterministic automata. Since the
first two algorithms have quadratic complexity in the number of states
and transitions in the automaton, we propose a third algorithm that
only requires a number of iterations that is linearithmic in the number of
states and transitions at the cost of an exponential worst-case complexity
in the number of distinct predicates appearing in the automaton. We
implement our algorithms and evaluate them on 3,625 nondeterministic
symbolic automata from real-world applications.

1 Introduction

Finite automata are used in many applications in software engineering, including
software verification [8] and text processing [3]. Despite their many applications,
finite automata suffer from a major drawback: in the most common forms they
can only handle finite and small alphabets. Symbolic automata allow transitions
to carry predicates over a specified alphabet theory, such as linear arithmetic, and
therefore extend finite automata to operate over infinite alphabets, such as the
set of rational numbers [13]. Symbolic automata are therefore more general and
succinct than their finite-alphabet counterparts. Traditional algorithms for finite
automata do not always generalize to the symbolic setting, making the design
of algorithms for symbolic automata challenging. A notable example appears
in [11]: while allowing finite state automata transitions to read multiple adjacent
inputs does not add expressiveness, in the symbolic case this extension makes
problems such as checking equivalence undecidable.
c© Springer-Verlag GmbH Germany 2017
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Symbolic finite automata (s-FA) are closed under Boolean operations and
enjoy decidable equivalence if the alphabet theory forms a decidable Boolean
algebra [13]. s-FAs have been used in combination with symbolic transducers to
analyze complex string and list-manipulating programs [12,16]. In these appli-
cations it is crucial to keep the automata “small” and, in our previous work,
we proposed algorithms for minimizing deterministic s-FAs [13]. However, no
algorithms have been proposed to reduce the state space of nondeterministic
s-FAs (s-NFAs). While computing minimal nondeterministic automata is a hard
problem [18], several techniques have been proposed to produce “small enough”
automata. These algorithms compute bisimulations over the state space and use
them to collapse bisimilar states [2,26]. In this paper, we study the problem of
computing forward bisimulations for s-NFAs.

While the problem of computing forward bisimulations has been studied for
classic NFAs, it is not easy to adapt these algorithms to s-NFAs. Most effi-
cient automata algorithms view the size of the alphabet as a constant and use
data structures that are optimized for this view [2]. We propose three new algo-
rithms for computing forward bisimulation of s-NFAs. First, we extend the classic
Moore’s algorithm for minimizing deterministic finite automata [25] and define
an algorithm that operates in quadratic time. We then adapt our previous algo-
rithm for minimizing deterministic s-FAs [13] to the problem of computing for-
ward bisimulations and show that a natural implementation leads to a quadratic
running time algorithm. Finally, we adapt a technique proposed by Abdulla
et al. [2] to our setting, and propose a new symbolic data-structure that allows
us to perform only a number of iterations that is linearithmic in the number
of states and transitions. However, this improved state complexity comes at the
cost of an exponential complexity in the number of distinct predicates appear-
ing in the automaton. We compare the performance of the three algorithms on
3,625 s-FAs obtained from regular expressions and NFAs appearing in verifica-
tion applications and show that, unlike for the case of deterministic s-FAs, no
algorithm strictly outperforms the other ones.

Contributions. In summary, our contributions are:

– a formal study of the notion of forward bisimulations for s-FAs and their
relation to state reduction for nondeterministic s-FAs (Sect. 3);

– three algorithms for computing forward bisimulations (Sects. 4, 5 and 6);
– an implementation and a comprehensive evaluation of the algorithms on 3,625

s-FAs obtained from real-world applications (Sect. 7).

2 Effective Boolean Algebras and s-NFAs

We define the notion of effective Boolean algebra and symbolic finite automata.
An effective Boolean algebra A has components (U, Ψ, [[ ]],⊥,�,∨,∧,¬). U is a set
called the universe. Ψ is a set of predicates closed under the Boolean connectives
and ⊥,� ∈ Ψ. The denotation function [[ ]] : Ψ → 2U is such that, [[⊥]] = ∅,
[[�]] = U, for all ϕ,ψ ∈ Ψ, [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and
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[[¬ϕ]] = U \ [[ϕ]]. For ϕ ∈ Ψ, we write SAT(ϕ) when [[ϕ]] �= ∅ and say that ϕ is
satisfiable. A is decidable if SAT is decidable.

Intuitively, such an algebra is represented programmatically as an API with
corresponding methods implementing the Boolean operations and the denota-
tion function. We are primarily going to use the following two effective Boolean
algebras in the examples, but the techniques in the paper are fully generic.

2bvk is the powerset algebra whose domain is the finite set bvk, for some k > 0,
consisting of all non-negative integers smaller than 2k—i.e., all k-bit bit-
vectors. A predicate is represented by a Binary Decision Diagram (BDD) of
depth k.1 Boolean operations correspond directly to BDD operations and ⊥
is the BDD representing the empty set. The denotation [[β]] of a BDD β is
the set of all integers n such that a binary representation of n corresponds to
a solution of β.

int[k] is an algebra for small finite alphabets of the form Σ = {0, . . . , 32k − 1}.
A predicate ϕ is an array of k unsigned 32-bit integers, ϕ = [a1, . . . , ak], and
for all i ∈ Σ: i ∈ [[ϕ]] iff in the integer ai/32+1 the bit in position i mod 32
is 1. Boolean operations can be performed efficiently using bit-vector opera-
tions. For example, the conjunction [a1, . . . , ak] ∧ [b1, . . . , bk] corresponds to
[a1&b1, . . . , ak&bk], where & is the bit-wise and of two integers.

We can now define symbolic finite automata. Intuitively, a symbolic finite
automaton is a finite automaton over a symbolic alphabet, where edge labels
are replaced by predicates. In order to preserve the classical Boolean closure
operations (intersection, complement, and union) over languages, the predicates
must also form a Boolean algebra. Since the core topic of the paper is about
nondeterministic automata we adopt the convention often used in studies of
NFAs [10,22,28] that an automaton has a set of initial states rather than a
single initial state as used in other literature on automata theory [21].

Definition 1. A symbolic nondeterministic finite automaton (s-NFA ) M is a
tuple (A, Q, I, F,Δ) where A is an effective Boolean algebra, called the alphabet,
Q is a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of
final states, and Δ ⊆ Q × ΨA × Q is a finite set of moves or transitions.

Elements of UA are called characters and finite sequences of characters, elements
of U∗

A , are called words; ε denotes the empty word. A move ρ = (p, ϕ, q) ∈ Δ is
also denoted by p

ϕ−→M q (or p
ϕ−→ q when M is clear from the context), where p

is the source state, q is the target state, and ϕ is the guard or predicate of the
move. Given a character a ∈ UA, an a-move of M is a tuple (p, a, q) such that
p

ϕ−→M q and a ∈ [[ϕ]], also denoted p
a−→M q (or p

a−→ q when M is clear). In the
following let M = (A, Q, I, F,Δ) be an s-NFA.

Definition 2. Given a state p ∈ Q, the (right) language of p in M, denoted
L (p,M), is the set of all w = [ai]ki=1 ∈ U∗

A such that, either w = ε and p ∈ F , or
1 Let the variable order of the BDD be the reverse bit order of the binary representa-

tion of a number, i.e., the most significant bit has the lowest ordinal, etc.



Forward Bisimulations for Nondeterministic Symbolic Finite Automata 521

w �= ε and there exist pi−1
ai−→M pi for 1 ≤ i ≤ k, such that p0 = p, and pk ∈ F .

The language of M is L(M) def=
⋃

q∈I L (q,M). Two states p and q of M are
indistinguishable if L (p,M) = L (q,M). Two s-NFAs M and N are equivalent
if L(M) = L(N).

The following terminology is used to characterize various key properties of
M . A state p ∈ Q is called complete if for all a ∈ UA there exists an a-move from
p, p is partial otherwise. A move is feasible if its guard is satisfiable.

– M is deterministic: |I| = 1 and whenever p
a−→ q and p

a−→ q′ then q = q′.
– M is complete: all states of M are complete; M is partial, otherwise.
– M is clean: all moves of M are feasible.
– M is normalized : for all (p, ϕ, q), (p, ψ, q) ∈ Δ: ϕ = ψ.
– M is minimal : there exists no equivalent s-NFA with fewer states.

In the following, we always assume that M is clean. If E is an equivalence
relation over Q, then, for q ∈ Q, q/E denotes the E-equivalence class containing
q, for X ⊆ Q, X/E denotes {q/E | q ∈ X}. The E-quotient of M is the s-NFA

M/E
def= (A, Q/E , I/E , F/E , {(p/E , ϕ, q/E) | (p, ϕ, q) ∈ Δ})

3 Forward Bisimulations

Here we adapt the notion of forward bisimulation to s-NFAs. Below, consider a
fixed s-NFA M = (A, Q, I, F,Δ).

Definition 3. Let E ⊆ Q × Q be an equivalence relation. E is a forward bisim-
ulation on M when, for all (p, q) ∈ E, if p ∈ F then q ∈ F , and, for all a ∈ UA
and p′ ∈ Q, if p

a−→ p′ then there exists q′ ∈ p′
/E such that q

a−→ q′.

If E is a forward bisimulation on M then the quotient M/E preserves the
language of all states in M , as stated formally by Theorem 1, as a generalization
of the same property known in the classical case when the alphabet is finite.

Theorem 1. Let E be a forward bisimulation on M. Then, for all states q of
M, L (q,M) = L (q/E ,M/E).

Proof. We prove the statement φ(w) by induction over |w| for w ∈ U∗
A :

φ(w) : ∀p ∈ QM (w ∈ L (p,M) ⇔ w ∈ L (p/E ,M/E))

The base case |w| = 0 follows from the property of the forward bisimulation E
on M that if p ∈ F then p/E ⊆ F and by definition of E-quotient of M that its
set of final states is F/E .
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For the induction case assume that φ(w) holds as the IH. Let a ∈ UA. We
prove φ(a · w). Fix p ∈ QM .

a · w ∈ L (p,M) ⇔ ∃q ∈ Q such that (p a−→M q, w ∈ L (q,M))
by IH⇔ ∃q ∈ Q such that (p a−→M q, w ∈ L (q/E ,M/E))
(∗)⇔ ∃q ∈ Q such that (p/E

a−→M/E
q/E , w ∈ L (q/E ,M/E))

⇔ a · w ∈ L (p/E ,M/E)

Proof of (∗):
(⇒): If p

a−→M q then there is (p, ϕ, q) ∈ ΔM such that a ∈ [[ϕ]]. By definition of
M/E , there is (p/E , ϕ, q/E) ∈ ΔM/E

, hence p/E
a−→M/E

q/E .
(⇐): Fix a q such that p/E

a−→M/E
q/E and w ∈ L (q/E ,M/E). By definition of

ΔM/E
there exists a transition (p1, α, q1) in ΔM where a ∈ [[α]] and p1/E = p/E

and q1/E = q/E , so p1
a−→M q1. By the assumption that E is a bisimulation on

M it follows that there exists q′ ∈ q1/E such that p
a−→M q′. But q1/E = q/E , so

q′
/E = q/E and therefore ∃q′ ∈ Q such that (p a−→M q′, w ∈ L (q′

/E ,M/E)). �

Corollary 1. Let E be a forward bisimulation on M . Then L(M) = L(M/E).

For a deterministic s-NFA M one can efficiently compute the coarsest for-
ward bisimulation relation ≡M over QM defined by indistinguishability of states,
in order to construct M/≡M

as the minimal canonical (up to equivalence of
predicates) deterministic s-NFA that is equivalent to M [13, Theorem 2]. The
nondeterministic case is much more difficult because there exists, in general, no
canonical minimal NFA [22] for a given regular language.

Our aim in this paper is to study algorithms for computing forward bisim-
ulations for s-NFAs. Once a forward bisimulation E has been computed for an
s-NFA M , it can be applied, according to Corollary 1, to build the equivalent E-
quotient M/E with reduced number of states, M/E need not be minimal though.

4 Symbolic Partition Refinement

We start by presenting the high-level idea of symbolic partition refinement for
forward bisimulations as an abstract algorithm. Let the given s-NFA be M =
(A, Q, I, F,Δ). It is convenient to view Δ, without loss of generality, as a function
from Q × Q to ΨA, and we also lift the definition over its second argument to
subsets S ⊆ Q of states,

Δ(p, q) def=
∨

(p,ϕ,q)∈Δ

ϕ, Δ(p, S) def=
∨
q∈S

Δ(p, q),

where the predicates are effectively constructed using ∨A. Essentially, this view
of Δ corresponds to M being normalized, where all pairs (p, q) such that there
is no transition from p to q have Δ(p, q) =

∨ ∅ def= ⊥, else the guard of the



Forward Bisimulations for Nondeterministic Symbolic Finite Automata 523

transition from p to q is Δ(p, q). The predicate Δ(p, S) denotes the set of all
those characters that transition from p to some state in S.

M is assumed to be nontrivial, so that both F and Q\F are nonempty. We
construct partitions Pi of Q such that Pi is a refinement of Pi−1 for i ≥ 1, i.e.,
each block in Pi is a subset of some block in Pi−1. Initially let

P0 = {Q}, P1 = {F,Q\F}.

For a partition P of Q define ∼P as the following equivalence relation over Q:

p ∼P q
def= ∃B ∈ P such that (p, q ∈ B).

Let ∼i
def= ∼Pi

. The partition Pi is refined until Pn+1 = Pn for some n ≥ 1.
Each such refinement step maintains the invariant (1) for i ≥ 1 and p, q ∈ Q:2

p ∼i+1 q ⇐⇒ p ∼i q and for all B ∈ Pi : [[Δ(p,B)]] = [[Δ(q,B)]] (1)

Under the assumption that A is decidable, [[Δ(p,B)]] = [[Δ(q,B)]] can be decided
by checking that Δ(p,B) � Δ(q,B) is unsatisfiable.3 So Pi+1 can be computed
effectively from Pi and iterating this step provides an abstract algorithm for
computing the fixpoint ∼M

def= ∼Pn
such that Pn+1 = Pn.

Theorem 2. ∼M is the coarsest forward bisimulation on M .

Proof. Let ∼ = ∼M . We show first that ∼ is a forward bisimulation on M by
way of contradiction. Suppose that ∼ is not a forward bisimulation on M . Since
p ∼1 q iff p, q ∈ F or p, q /∈ F , and ∼ refines ∼1, the condition that for p ∼ q
if p ∈ F then q ∈ F holds. Therefore, there must exists p ∼ q such that for
some a ∈ UA and p′ ∈ Q we have p

a−→ p′, while for all q′ such that q
a−→ q′ we

have q′
� p′. Hence there is B ∈ Pi for some i ≥ 1, namely B = p′

/∼, such that
a ∈ [[Δ(p,B)]] but a /∈ [[Δ(q,B)]], so [[Δ(p,B)]] �= [[Δ(q,B)]]. But then p �i+1 q,
contradicting that p ∼ q. So ∼ is a forward bisimulation on M .

Next, consider any bisimulation � on M . We show that � ⊆ ∼i for all i ≥ 1.
Base case. Suppose p � q. If p ∈ F then q ∈ F , by Definition 3, and, since �

is an equivalence relation, symmetrically, if p /∈ F then q /∈ F . So p ∼1 q.
Induction case. Assume as the IH that � ⊆ ∼i. We prove that � ⊆ ∼i+1.

Suppose p � q. We show that p ∼i+1 q. By using the IH, we have that p ∼i q. By
using Eq. (1), we need to show that for all B ∈ Pi, [[Δ(p,B)]] = [[Δ(q,B)]]. By way
of contradiction, suppose there exists B ∈ Pi such that [[Δ(p,B)]] �= [[Δ(q,B)]].
Then, w.l.o.g., there exists a ∈ UA and p′ ∈ B such that p

a−→ p′, and for all
q′ ∈ Q if q

a−→ q′ then q′ /∈ B, i.e., q′
�i p′, and by using the contrapositive of the

IH (�i ⊆ ��) we have q′ �� p′. But then p
a−→ p′ while there is no q′ ∈ p′

/� such

that q
a−→ q′, contradicting, by Definition 3, that p � q. Thus, for all B ∈ Pi,

[[Δ(p,B)]] = [[Δ(q,B)]]. So p ∼i+1 q.
It follows that � ⊆ ∼ which proves that ∼ is coarsest. �

2 One can view one iteration of refinement from Pi to Pi+1 as computing �i+1 from
�i, which is often how Moore’s algorithm is presented for DFAs.

3 ϕ ⇔ ψ is defined as ((ϕ ∨ ¬ψ) ∧ (¬ϕ ∨ ψ)) and ϕ � ψ stands for ¬(ϕ ⇔ ψ).
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1 SimpleBisimSFA(M = (A, Q, I, F, Δ))
def
=

2 P := {F, Q\F} //initial partition
3 W := {F, Q\F} //workset
4 while (W = ∅)
5 pull R from W //choose a splitter candidate
6 while (exists B in P and q, r in B such that SAT(Δ(q, R) ∧ ¬Δ(r,R)))
7 let D = {p ∈ B | SAT(Δ(p, R) ∧ Δ(q, R) ∧ ¬Δ(r, R))}
8 P := (P \ {B}) ∪ {D, B\D} //refine the partition
9 W := (W\{B}) ∪ {D, B\D} //update the workset
10 return ∼P

1 GreedyBisimSFA(M = (A, Q, I, F, Δ))
def
=

2 P := {F, Q\F} //initial partition
3 W := {if (|F | ≤ |Q\F |) then F else Q\F} //workset
4 super(F ) := Q; super(Q\F ) := Q //super(B) is the superblock of B
5 while (W = ∅)
6 pull R from W //choose a splitter candidate
7 let R = super(R)\R
8 while (exists B in P and q, r in B such that
9 SAT(Δ(q, R) ∧ ¬Δ(r,R)) or SAT(Δ(q, R ) ∧ ¬Δ(r, R )))
10 let D = if SAT(Δ(q,R) ∧ ¬Δ(r, R))
11 then {p ∈ B | SAT(Δ(p,R) ∧ Δ(q, R) ∧ ¬Δ(r, R))}
12 else {p ∈ B | SAT(Δ(p, R ) ∧ Δ(q, R ) ∧ ¬Δ(r, R ))}
13 P := (P\{B}) ∪ {D, B\D} //refine P
14 if (B ∈ W ) then //add both parts into the workset
15 W := (W\{B}) ∪ {D, B\D}
16 super(D) := super(B); //super(B) remains the superblock of B parts
17 super(B\D) := super(B)
18 else //add only the smaller of the two parts into the workset
19 W := W ∪ {if (|D| ≤ |B\D|) then D else B\D}
20 super(D) := B; //B becomes the superblock of both parts
21 super(B\D) := B
22 return ∼P

Fig. 1. Simple and greedy algorithms for computing ∼M .

A simple algorithm for computing ∼M is shown in Fig. 1. It differs from the
abstract algorithm in that the partition is refined in smaller increments, rather
than in large parallel refinement steps corresponding to Eq. (1). The order of
such steps does not matter as long as progress is made at each step.

Theorem 3. SimpleBisimSFA(M) computes ∼M .

Proof (outline). The key observation is the following: if [[Δ(q,B)]] �= [[Δ(r,B)]]
holds for some q ∼P r and B ∈ P and B has been split into {Bi}n

i=1 before
it has been chosen from the workset then [[Δ(q,Bi)]] �= [[Δ(r,Bi)]] for some i,
or else [[Δ(q,B)]] =

⋃
i[[Δ(q,Bi)]] =

⋃
i[[Δ(r,Bi)]] = [[Δ(r,B)]]. In other words,

even if B has not yet been used as a splitter, the fact that q �M r holds will
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be detected at some later point using one of the blocks Bi because all subblocks
are added to the workset W .

The splitting of B into D and B\D requires some explanation. First note that
q ∈ D and r ∈ B\D, so both new blocks are nonempty. Second, pick any p ∈ D
and any s ∈ B\D. We need to show that [[Δ(p,R)]] �= [[Δ(s,R)]] to justify the
split. We know that SAT(Δ(p,R) ∧ Δ(q,R) ∧ ¬Δ(r,R)) holds. Thus, if Δ(p,R)
were equivalent to Δ(s,R) then SAT(Δ(s,R) ∧ Δ(q,R) ∧ ¬Δ(r,R)) would also
hold, contradicting that s /∈ D.

It follows that upon termination, when W = ∅, P cannot be refined further
and thus ∼P = ∼M . �

Complexity. If the complexity of checking satisfiability of predicates of size �
is f(�), then SimpleBisimSFA(M) has complexity O(mnf(n�)), where m is the
number of transitions in the input s-FA, n is the number of states, and � is the size
of the largest predicate in the input s-FA.4 Since we check satisfiability by taking
the union of all predicates in multiple transition (e.g., Δ(q,R)), satisfiability
checks are performed on predicates of size O(n�).

5 Greedy Symbolic Partition Refinement

We can improve the simple algorithm by incorporating Hoprcoft’s “keep the
smaller half” partition refinement strategy [19]. This strategy is also reused in
Paige-Tarjan’s relational coarsest partition algorithm [26]. Hopcroft’s strategy is
generalized to symbolic alphabets in [13] by incorporating the idea of using sym-
metric differences of character predicates during partition refinement, instead of
single characters, as illustrated also in the simple algorithm. Here we further
generalize the algorithm from [13] to s-NFAs. The algorithm can also be seen
as a generalization of Paige-Tarjan’s relational coarsest partition algorithm from
computing the coarsest forward bisimulation of an NFA to that of an s-NFA.

The greedy algorithm is shown in Fig. 1. The computation of partition P is
altered in such a way that whenever a block B (that is no longer, or never was,
in the workset W ) is split into D and B\D, only the smaller of the two halves
is added to the workset. In order to preserve correctness, the original SAT con-
dition involving R must be augmented with a corresponding condition involving
R′ = super(R)\R, where super(R) is the block that contained R before split-
ting. This means that the other half will also participate in the splitting process.
The gain is how efficiently the information computed for a block is reused in
the computation. The core difference to the deterministic case [13] is that if
M is deterministic then the use of R′ is redundant, i.e., the SAT check holds
for R iff it holds for super(R)\R, so the superblock mapping is not needed.

4 This bound is obtained using the same amortized complexity argument used for
Moore’s minimization algorithm [25].



526 L. D’Antoni and M. Veanes

q f

r
aa

a

Fig. 2. Sample NFA.

Example 1. This example illustrates why the
additional SAT-checks on super(R)\R are
needed in the greedy algorithm, when M is
nondeterministic. Let M be the NFA in Fig. 2,
where UA = {a}. Then initially W = {{f}}
and P = {{q, r}, {f}}. So, in the first itera-
tion R = {f}. Let R′ = super(R)\R = {q, r}.
The only candidate block for B is {q, r}. SAT(Δ(q,R)∧¬Δ(r,R)) fails because
[[Δ(q,R)]] = [[Δ(r,R)]] = {a}, while [[Δ(q,R′)]] = {a} and [[Δ(r,R′)]] = ∅.
Thus, if SAT(Δ(q,R′)∧¬Δ(r,R′)) was omitted then the algorithm would return
∼{{q,r},{f}} but q �M r. �

Theorem 4. GreedyBisimSFA(M) computes ∼M .

Proof (outline). The justification behind splitting of B into D and B\D based
on R or super(R)\R is analogous to the argument provided in the proof of
Theorem 3. We show that no splits are missed due to the additional optimization.

In the case a block B in W has not yet been used as a splitter, its original
superblock Bs = super(B) must be kept as the superblock of the new sub-
blocks D and B\D. This implies that blocks Bs\D and Bs\(B\D) serve as the
replacement candidate splitters for the block Bs\B. In the case a block B is not
in W , its use as a splitter is already covered, and it serves as the superblock for
its subblocks D and B\D, i.e., super(D) = B and super(B\D) = B, which
implies that super(D)\D = B\D and super(B\D)\(B\D) = D. �

Complexity. If the complexity of checking satisfiability of predicates of size �
is f(�), the naive implementation of GreedyBisimSFA(M) presented in Fig. 1,
which explicitly computes Δ(r, super(R)\R), has complexity O(mnf(n�)), with
m as the number of transitions in the input s-FA and n as the number of states.
Even though only the small block is added to added to W after a split, both
blocks are eventually visited. Therefore, we still have a quadratic complexity as
n and m are multiplied. In the next section, we discuss a different data structure
that yields a different complexity for the greedy algorithm in Fig. 1.

6 Counting Symbolic Partition Refinement

We want to avoid explicit computation of Δ(p, super(R)\R) in the greedy algo-
rithm. We investigate a method that can reuse the computation performed for
super(R) and R in order to calculate Δ(p, super(R)\R). We consider a sym-
bolic bag datastructure that, by using predicates in ΨA, provides a finite partition
for UA and maps each part in the partition into a natural number. A (symbolic)
bag σ denotes a function [[σ]] from UA to N that has a finite range. All elements
that map to the same number effectively define a part or block of the partition.
For p ∈ Q and S ⊆ Q let Bag(p, S) be a bag such that, for all a ∈ UA,

[[Bag(p, S)]](a) = |{q ∈ S | p
a−→ q}|.
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In other words, in addition to encoding if a character a can reach S from p, the
bag also encodes, to how many different target states. Let Set be a function that
transforms bags σ to predicates in ΨA such that

[[Set(σ)]] = {a ∈ UA | [[σ]](a) > 0}

In particular [[Set(Bag(p, S))]] = [[Δ(p, S)]]. A bag can be implemented effectively
in several ways and we defer the discussion of such choices to below. We assume
that there is an effective difference operation σ .− τ over bags such that, for all
a ∈ UA, given m .− n

def= max(0,m − n), [[σ .− τ ]](a) = [[σ]](a) .− [[τ ]](a). So

[[Δ(p, super(R)\R)]] = [[Set(Bag(p, super(R)) .− Bag(p,R))]].

This shows that each Δ(p,X) in the greedy algorithm can be represented
using a symbolic bag. The potential advantage is, provided that we can effi-
ciently implement the difference and the Set operations, that in the computa-
tion of Bag(p, super(R)) .− Bag(p,R) we can reuse the prior computations of
Bag(p, super(R)) and Bag(p,R), and therefore do not need super(R)\R.

We call the instance of the greedy algorithm that uses symbolic bags, the
counting algorithm or CountingBisimSFA. The counting algorithm is a general-
ization of the bisimulation based minimization algorithm of NFAs [2] from using
algebraic decision diagrams (ADDs) [4] and binary decision diagrams (BDDs) [9]
for representing multisets ands sets of characters, to symbolic bags and predi-
cates. If the size of the alphabet is k = 2p then p is the depth or the number
of bits required in the ADDs. An open problem for symbolic bags is to main-
tain an equally efficient data structure. Although theoretically p is bounded by
the number of predicates in the s-NFA, the actual computation of those bits
and their relationship to the predicates of the s-NFA requires that the s-NFA is
first transformed into an NFA. However, the NFA transformation has complexity
O(2p). This factor is also reflected in the complexity of the algorithm in [2] that
is O(km log n) with k, m and n as above.

Implementation. We define symbolic bags over A, denoted BagA, as the least set
of expressions that satisfies the following conditions.

– If n ∈ N then nat(n) ∈ BagA.
– If ϕ ∈ ΨA and σ, τ ∈ BagA then ite(ϕ, σ, τ) ∈ BagA.

The denotation of a bag σ is a function [[σ]] : UA → N such that, for all a ∈ UA,

[[nat(n)]](a) def= n, [[ite(ϕ, σ, τ)]](a) def=
{

[[σ]](a), if a ∈ [[ϕ]];
[[τ ]](a), otherwise.

We say that a symbolic bag is clean if all paths from the root to any of its leaves
is satisfiable. In our operations over bags we maintain cleanness. An operator �,
such as + or .−, over N is lifted to bags as follows.
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σ � τ
def= σ �	 τ

nat(m) �γ nat(n) def= nat(m � n)

ite(ϕ, σ, τ) �γ ρ
def= ite(ϕ, σ �γ∧ϕ ρ, τ �γ∧¬ϕ ρ)

nat(n) �γ ite(ϕ, σ, τ) def=

⎧
⎨
⎩

nat(n) �γ τ, if not SAT(γ ∧ ϕ);
nat(n) �γ σ, else if not SAT(γ ∧ ¬ϕ);
ite(ϕ,nat(n) �γ∧ϕ σ,nat(n) �γ∧¬ϕ τ), otherwise.

Cleaning of the result is done incrementally during construction by passing the
context condition γ with the operator �γ . Observe that if α ∧ β is unsatisfiable
(i.e., [[α]] ∩ [[β]] = ∅) then α implies ¬β (i.e., [[α]] ⊆ [[¬β]]). For all p, q ∈ Q let

Bag(p, q) def=
{
ite(Δ(p, q),nat(1),nat(0)), if Δ(p, q) �= ⊥;
nat(0), otherwise.

Let Bag(p,R) def=
∑

q∈R Bag(p, q). One additional simplification that is per-
formed is that if [[σ]] = [[τ ]] then the expression ite(ϕ, σ, τ) is simplified to σ. The
Set(σ) operation replaces each non-zero leaf in σ with � and each zero leaf in σ
with ⊥, assuming, w.l.o.g., that A has the corresponding operator ite(ϕ,ψ, γ)
with the expected semantics that [[ite(ϕ,ψ, γ)]] = [[(ϕ ∧ ψ) ∨ (¬ϕ ∧ γ)]].

Example 2. Consider an s-NFA M with alphabet A such that UA = N that has
the following transitions from a given state p: {p

φ2−→ q2, p
φ3−→ q3, p

φ6−→ q6}
where φk for k ≥ 1 is a predicate such that n ∈ [[φk]] iff n is divisible by k. In
the following ite(ϕ, l, r) is depicted with ϕ as the node, l as the left subtree,
and r as the right subtree. Let R = {q2, q3, q6}. Then Bag(p,R) = Bag(p, q2) +
Bag(p, q3) + Bag(p, q6) is computed as follows:

φ2

1 0

+ φ3

1 0

+ φ6

1 0

= φ2

φ3

2 1

φ3

1 0

+ φ6

1 0

= φ2

φ3

3 1

φ3

1 0

= t

In the second addition, all the branch conditions of the leaves of the first tree,
other than the first branch, become unsatisfiable with the condition φ6. Only
the very first branch condition φ2 ∧ φ3 is consistent (in this case equivalent)
with φ6 while nat(0) is the identity. Hence nat(3) = nat(2) + nat(1) in t. �

Complexity. In this implementation, Δ(r,B) is represented by Set(Bag(r,B)),
and Δ(r, super(R)\R) can be computed from Bag(r, super(R)) and Bag(r,R)
without having to iterate over the automaton transitions. However, in the worst
case, at each step in the algorithm, the Bag data structure can have exponential
size in p, the number of distinct predicates in the s-FA. Using a similar amor-
tized complexity argument to that used by Hopcroft’s algorithm for minimizing
DFAs [20], we have that, if we ignore the cost of computing the bag data struc-
ture, the algorithm has complexity O(m log n). In summary, if the complexity of
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checking satisfiability of predicates of size � is f(�), the counting implementation
of GreedyBisimSFA(M) presented in Fig. 1 has complexity O(2pm log nf(n�)),
where m is the number of transitions in the input s-FA and n is the number
of states, and p is the number of distinct predicates in the automaton. Con-
cretely, while this implementation helps reducing the number of iterations over
the automaton transitions, it suffers from an extra cost that is a function of the
alphabet complexity and of the predicates appearing in the automaton. Notice,
that in the case of finite alphabets 2p is exactly the size of the alphabet and
this problem does not exist [2]. This is another remarkable case of how adapting
classic algorithms to the symbolic setting is not always possible.

7 Evaluation

We evaluate our algorithms on two sets of benchmarks. We report the state
reduction obtained using forward bisimulations and, for each algorithm, we com-
pare the running times and the number of explored blocks. We use Simple to
denote the algorithm presented at the top of Fig. 1, Greedy to denote the algo-
rithm presented in Sect. 5, and Count to denote the counting based algorithm
described in Sect. 6. As a sanity check, we assured that all the algorithms com-
puted the same results. All the experiments were run on a 4-core Intel i7-2600
CPU 3.40 GHz, with 8 GB of RAM.

Fig. 3. State reduction for the two benchmark sets.

Regexlib. We collected the s-NFAs over the alphabet 2bv16 resulting from convert-
ing 2,625 regular expressions appearing in http://regexlib.com/. This website
contains a library of crowd-sourced regular expressions for tasks such as detect-
ing URLs, emails, and phone numbers. These s-NFAs have 1 to 3,174 states, 1 to
10,670 transitions, and have an average of 2 transitions per state. These bench-
marks operate over very large alphabets and can only be handled symbolically.
We use the algebra 2bvk.

http://regexlib.com/
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Verification s-NFAs. We collected 1,000 s-NFAs over small alphabets (2-40 sym-
bols) appearing in verification applications from [8]. These s-NFAs are generated
from the steps of abstract regular model checking while verifying the bakery algo-
rithm, a producer-consumer system, bubble sort, an algorithm that reverses a
circular list, and a Petri net model of the readers/writers protocol. These s-FAs
have 4 to 3,782 states, 7 to 18,670 transitions, and have an average of 4.1 transi-
tions per state. Given the small size of the alphabets, these automata are quite
dense. We represent the alphabet using the algebra int[k].

State Reduction. Figure 3 shows the state reduction obtained by our algorithm.
Each point (x, y) in the figure shows that an automaton with x states was reduced
to an equivalent automaton with y states. On average, the number of states
reduces by 14% and 19% for the regexlib benchmarks and the verification NFAs
respectively.

Fig. 4. Running times of three algorithms on regular expression from www.regexlib.
com and on NFAs from verification applications. In the second plot, we do not show
data points that are very close to each other to make the figure readable.

Runtime. Figure 4 shows the running times of the algorithms on each benchmark
s-FA. For the regexlib s-FAs, most automata take less than 1ms to complete
causing the same running time for the three algorithms on 2528 benchmarks. In
general, the Greedy algorithm is slightly faster than the other two algorithms
and the Count algorithm is at times slower than both the other two algorithms
(93 cases total), on relatively small cases. On two large instances (1,502 and
3,174 states, 1,502 and 10,670 transitions) the Greedy and Count algorithms
clearly outperform the Simple algorithm.

For s-FAs from [8], the algorithms Simple and Greedy, have very compara-
ble performances (Greedy is, on average, 6 ms slower than Simple). The Count
algorithm is slower than both these algorithms in 90% of the cases and has the
same performance in the remaining 10% of the cases.

In both experiments, almost all the computation time of the Count algorithm
is spent manipulating the counting data structure presented in Sect. 6. In sum-
mary, the Count algorithm, despite having m log n complexity, is consistently

www.regexlib.com
www.regexlib.com
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slower than the other two algorithms and the slowdown is due to the complexity
of manipulating the counting data structure.

Fig. 5. Ratio of number of explored blocks between the simple algorithm and the other
algorithms.

Explored Blocks. We measure the number of blocks pushed into the worklist
W for the different algorithms. Figure 5 shows the ratio between the explored
blocks of the Simple algorithm and the other two algorithms. As expected from
the theoretical complexities, the Count algorithm consistently explores fewer
blocks than the Simple algorithm. As we observed in Fig. 4, this is not enough
to achieve better speedups. The Greedy algorithm often explores more blocks
than the other two algorithms. This is because R′ = super(R)\R of a set R is
explored even in the cases where R′ has already been split into subsets. In this
case, the simple algorithm will only explore the splits and not the original set,
while the Greedy algorithm will explore both R′ as well as its splits.

8 Related Work

Minimization of Deterministic Automata. Automata minimization algorithms
have been studied and analyzed extensively in several different aspects. Moore’s
and Hopcroft’s algorithms [20,25] are the two most common algorithms for min-
imizing DFAs. Both of these algorithms compute forward bisimulations over
DFAs and can be implemented with complexity O(kn log n) (where k is the size
of the alphabet). This bound is tight [5–7]. The two algorithms, although in
different ways, iteratively refine a partition of the set of states until the for-
ward bisimulation is computed. In the case of DFAs, the equivalence relation
induced by the bisimulation relation produces a minimal and canonical DFA.
In our earlier work, we extended Hopcroft’s algorithm to work with symbolic
alphabets [13] and showed how, for deterministic s-FAs, the algorithm can be
implemented in O(m log nf(nl)) for automata with m transitions, n states, and
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predicates of size l. Here f(x) is the cost of checking satisfiability of predicates
of size x. The algorithm proposed in [13] is similar to the greedy algorithm in
Fig. 1. The main difference is in the necessity to use super(R)\R in the SAT
checks and that this seemingly small change has drastic complexity implications.

Minimization and State Reduction in Nondeterministic Automata. In the case of
NFAs, there exists no canonical minimal automaton and the problem of finding
a minimal NFA is known to be PSPACE complete [24]. It is shown in [18] that it
is not even possible to efficiently approximate NFA minimization. The original
search based algorithm for minimizing NFAs is known as the Kameda-Weiner
method [22]. A generalization of the Kameda-Weiner method based on atoms of
regular languages [10] was recently introduced in [28]. Most practical approaches
for computing small nondeterministic automata use notions of state reductions
that do not always produce a minimal NFAs [2]. These techniques are based
on computing various kinds of simulation and bisimulation relations. The set of
most common such relations has been described in detail and extended to Büchi
automata in [23]. In this paper, we are only concerned with performing state
reduction by computing forward bisimulations.

Abdulla et al. were the first to observe that forward bisimulation for NFAs
could be computed with complexity O(km log n) by keeping track of the num-
ber of states each symbol can reach from a certain part of a partition [2]. In
their paper, they also proposed an efficient implementation based on BDDs and
algebraic decision diagrams for the special case in which the alphabet is a set
of bit-vectors. The techniques proposed in [2] are tailored for finite alphabets
and the goal of our paper is extending them to arbitrary alphabets that form a
decidable Boolean algebra. In this paper, we propose an extension based on our
symbolic bag data structure and experimentally show that, unlike for the case
of finite alphabets, the counting algorithm is not practical.

Recently, Geldenhuys et al. have proposed a technique for reducing the size of
certain classes of NFAs using SAT solvers [17]. In this technique, a SAT formula
is used to describe the existence of an NFA that is equivalent to the original one,
but has at most k states. Applying these techniques to symbolic automata is an
interesting research direction.

Automata with Predicates. The concept of automata with predicates instead of
concrete symbols was first mentioned in [31] and was first discussed in [29] in
the context of natural language processing. Since then s-FAs have been studied
extensively and we have seen algorithms for minimizing deterministic s-FAs [13]
and deterministic s-FAs over trees [14], and extensions of classic logic results to
s-FAs [15]. To the best of our knowledge, the problem of reducing the states and
efficiently computing forward bisimulations for nondeterministic s-FAs has not
been studied before. The term symbolic automata is sometimes used to refer
to automata over finite alphabets where the state space is represented using
BDDs [27]. This meaning is different from the one described in this paper.

AutomataDotNet. This is an open source Microsoft Automata project [1] that
is an extension of the automata toolkit originally introduced in [30]. The source
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code (written in C#) of all the algorithms discussed in this paper as well as the
source code of the experiments discussed in Sect. 7 are available in [1].

Acknowledgements. Loris D’Antoni performed part of this work while visiting
Microsoft Research, Redmond. We thank Zachary Kincaid for his feedback.
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Abstract. We show how up-to techniques for (bi-)similarity can be used
in the setting of weighted systems. The problems we consider are lan-
guage equivalence, language inclusion and the threshold problem (also
known as universality problem) for weighted automata. We build a bisim-
ulation relation on the fly and work up-to congruence and up-to similar-
ity. This requires to determine whether a pair of vectors (over a semiring)
is in the congruence closure of a given relation of vectors. This problem
is considered for rings and l-monoids, for the latter we provide a rewrit-
ing algorithm and show its confluence and termination. We then explain
how to apply these up-to techniques to weighted automata and provide
runtime results.

1 Introduction

Language equivalence of deterministic automata can be checked by means of
the bisimulation proof principle. For non-deterministic automata, this principle
is sound but not complete: to use bisimulation, one first has to determinize
the automaton, via the so-called powerset construction. Since the determinized
automaton might be much larger than the original non-deterministic one, several
algorithms [1,9,13,23] have been proposed to perform the determization on the
fly and to avoid exploring a huge portion of states. Among these, the algorithm
in [9] that exploits up-to techniques is particularly relevant for our work.

Up-to techniques have been introduced by Robin Milner in his seminal work
on CCS [18] and, since then, they proved useful, if not essential, in numerous
proofs about concurrent systems (see [19] for a list of references). According to
the standard definition a relation R is a bisimulation whenever two states x, y in
R can simulate each other, resulting in a pair x′, y′ that is still in R. An up-to
technique allows to replace the latter R by a larger relation f(R) which contains
more pairs and hence allows to cut off bisimulation proofs and work with much
smaller relations.

Here we focus on up-to techniques in a quantitative setting: weighted systems,
especially weighted automata over arbitrary semirings. Some examples of up-to
techniques for weighted systems already appeared in [8,20], that study up-to
techniques from the abstract perspective of coalgebras.
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Although up-to techniques for weighted systems have already received some
attentions, their relevance for algorithms to perform behavioural analysis has
never been studied properly. This is the main aim of our paper: we give a uniform
class of algorithms exploiting up-to techniques to solve the problems of equiv-
alence, inclusion and universality, which, in the weighted setting, asks whether
the weight of all words is below some given threshold. In particular we show how
to implement these techniques and we perform runtime experiments.

The key ingredient to algorithmically exploit up-to techniques is a proce-
dure to decide, given x, y,R as above, whether x, y belongs to f(R). For a non-
deterministic automaton (NFA) with state space S, the algorithm in [9] uses
as sub-routine a rewriting system to check whether two sets of states S, S′ ∈
P(X) – representing states of the determinised automaton – belong to c(R), the
congruence closure of R.

For NFA, the congruence closure is taken with respect to the structure of join
semi-lattices (P(X),∪, ∅), carried by the state space of a determinized automa-
ton. For weighted automata, rather than join semi-lattices, we need to consider
the congruence closure for semimodules (which resemble vector spaces, but are
defined over semirings instead of fields). Indeed, an analogon of the powerset con-
struction for weighted automata results in a sort of “determinised automaton”
(called in [6] linear weighted automaton) whose states are vectors with values in
the underlying semiring.

Our first issue is to find a procedure to check whether two vectors belong
to the congruence closure (with respect to semimodules) of a given relation. We
face this problem for different semirings, especially rings and l-monoids. For l-
monoids we adapt the rewriting procedure for the non-deterministic case [9] and
show its confluence and termination, which guarantees a unique normal form
as a representative for each equivalence class. Confluence holds in general and
termination can be shown for certain semirings, such as the tropical semiring
(also known as the (min,+)-semiring).

Reasoning up-to congruence is sound for language equivalence, but not for
inclusion. For the latter, we need the precongruence closure that, in the case
of l-monoids, can be checked with a simple modification of the rewriting proce-
dure. Inspired by [1], we further combine this technique with a certain notion
of weighted similarity, a preorder that entails language inclusion and can be
computed in polynomial time.

We then show how to apply our up-to techniques to language equivalence and
inclusion checks for weighted automata. For some interesting semirings, such as
the tropical semiring, these problems are known to be undecidable [17]. But
based on the inclusion algorithm we can develop an algorithm which solves the
universality (also called threshold) problem for the tropical semiring over the
natural numbers. This problem is known to be PSPACE-complete and we give
detailed runtime results that compare our up-to threshold algorithm with one
previously introduced in [3].
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2 Preliminaries

In this section we recall all the algebraic structures we intend to work with and,
in particular, spaces of vectors over these structures.

A semiring is a tuple S = (S,+, ·, 0, 1) where (S,+, 0) is a commutative
monoid, (S, ·, 1) is a monoid, 0 annihilates · (i.e., 0 · s1 = 0 = s1 · 0) and ·
distributes over + (i.e., (s1+s2)·s3 = s1·s3+s2·s3 and s3·(s1+s2) = s3·s1+s3·s2).
A ring is a semiring equipped with inverses for +.

Let (L,�) be a partially ordered set. If for all pairs of elements �1, �2 ∈ L the
infimum �1 � �2 and the supremum �1 � �2 exist (wrt. the order �), it is a lattice.
If (�1 � �2) � �3 = (�1 � �3) � (�2 � �3) for all �1, �2, �3 ∈ L, it is called distributive.
It is complete if suprema and infima of arbitrary subsets exist. Every complete
distributive lattice is a semiring (L,�,�,⊥,	), where ⊥, 	 are the infimum and
supremum of L.

Let (L,�) be a lattice and (L, ·, 1) be a monoid. If · distributes over �, we call
(L,�, ·) an l-monoid. Moreover, if L has a ⊥-element 0 that annihilates ·, we call
(L,�, ·) bounded. and it is then a semiring (L,�, ·, 0, 1) It is called completely
distributive if (L,�) is complete and multiplication distributes over arbitrary
suprema. Observe that every completely distributive l-monoid is bounded.1 It is
called integral if 	 = 1.

Example 2.1. The tropical semiring is the structure T = (R+
0 ∪ {∞},min,

+,∞, 0).2 T is a distributive l-monoid for the lattice (R+
0 ∪ {∞},≥).

Another example for a distributive l-monoid is M = ([0, 1],max, ·, 0, 1), which
is based on the lattice ([0, 1],≤).

The l-monoid M is isomorphic to T via the isomorphism ϕ :T→ M, x �→ 2−x.

Hereafter, we will sometimes identify the semiring S with the underlying set
S. For the sake of readability, we will only consider commutative semirings, i.e.,
semirings where multiplication is commutative.

For a semiring S and a finite set X, an S-vector of dimension X is a map-
ping v : X → S. The set of all such vectors is denoted by S

X and is called a
semimodule.

For notational convenience, we assume that X = {1, 2, . . . , |X|} and we write
a vector v as a column vector. For X and Y finite sets, an S-matrix of dimension
X × Y is a mapping M : X × Y → S. The set of all such matrices is denoted
by S

X×Y . M [x, y] (v[x]) denotes the (x, y)-th entry of M (x-th entry of v).
Furthermore v · s denotes the multiplication of a vector with a scalar s and
v1 + v2 is the componentwise addition.

Given a set V of S-vectors, a linear combination of vectors in V is a vector
v1 · s1 + · · · + vn · sn, where v1, . . . , vn ∈ V , s1, . . . , sn ∈ S. A subset of SX that
is closed under linear combinations is called a (sub-)semimodule.

Henceforward we will always require l-monoids to be completely distributive:
this ensures that we have a residuation operation defined as follows.
1 Completely distributive l-monoids are often referred to as unital quantales.
2 We will sometimes use min as an infix operator (i.e., amin b).
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Definition 2.2. The residuation operation for a completely distributive l-
monoid L is defined for all �1, �2 ∈ L as �1 → �2 =

⊔{� ∈ L | �1 · � � �2},also
called residuum of �1, �2. We extend this to L-vectors, replacing �1, �2 by v1, v2 ∈
L

X .

Example 2.3. Recall T, M in Example 2.1. For �1, �2 ∈ T we have �1 → �2 =
min{� ∈ R

+
0 ∪{∞} | �1+� ≥ �2} = �2 −̇ �1 (modified subtraction). For �1, �2 ∈ M,

we have �1 → �2 = max{� ∈ [0, 1] | �1 · � ≤ �2} = min{1, �2
�1

}.
Another example where the residuation operation can be easily characterized

is any boolean algebra (B,∨,∧, 0, 1). For �1, �2 ∈ B we have �1 → �2 = ¬�1 ∨ �2.

We will assume that all relevant operations of any semiring under con-
sideration (addition, multiplication, in the case of l-monoids residuation) are
computable.

3 Congruence Closure

As explained in the introduction, the key ingredient for exploiting up-to tech-
niques in Sect. 4 is an algorithmic procedure to check whether two vectors belong
to the congruence closure of a given relation of vectors.

3.1 Problem Statement

Let X be a finite set and let S be a semiring. A relation R ⊆ S
X × S

X is a
congruence if it is an equivalence and closed under linear combinations, that is,
for each (v1, v′

1), (v2, v
′
2) ⊆ R and each scalar s ∈ S, (v1 + v2, v

′
1 + v′

2) ∈ R and
(v1 · s, v′

1 · s) ∈ R. The congruence closure c(R) of a relation R over a semiring
S is the smallest congruence R′ ⊆ S

X × S
X such that R ⊆ R′. Alternatively,

two vectors v, v′ ∈ S
X are in c(R) whenever this can be derived via the rules in

Table 1.

Table 1. Proof rules for the congruence closure

Given a finite R ⊆ S
X × S

X and v, w ∈ S
X , we aim to determine if (v, w) ∈

c(R).
In [9], Bonchi and Pous presented a procedure to compute the congruence

closure for the two-valued boolean semiring B = {0, 1}. The purpose of this
section is to generalise the procedure towards more general semirings, such as
rings and l-monoids.
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3.2 Congruence Closure for Rings

A simple case to start our analysis is the congruence closure of a ring. It is
kind of folklore (see e.g. [10,21]) that a submodules3 can be used to represent a
congruences. In particular we write [V ] to denote the submodule generated by a
set of vectors V .

Proposition 3.1. Let I be a ring and X be a finite set. Let R ⊆ I
X × I

X

be a relation and let (v, v′) ∈ I
X × I

X be a pair of vectors. We construct a
generating set for a submodule of I

X by defining UR = {u − u′ | (u, u′) ∈ R}.
Then (v, v′) ∈ c(R) iff v − v′ ∈ [UR].

This yields an algorithm for a congruence check whenever we have a n algo-
rithm to solve linear equations, e.g. for fields. If the ring is not a field, it might
still be possible to embed it into a field. In this case we can solve e.g. the lan-
guage equivalence problem (Sect. 4.1) for weighted automata in the field and
the results are also valid in the ring. Similarly, the procedure can be used for
probabilistic automata which can be seen as weighted automata over the reals.

3.3 Congruence Closure for l-Monoids

Rewriting and Normal Forms. Our method to determine if a pair of vectors
is in the congruence closure is to employ a rewriting algorithm that rewrites
both vectors to a normal form. These coincide iff the vectors are related by the
congruence closure.

Definition 3.2 (Rewriting and normal forms). Let L be an integral l-
monoid and let R ⊆ L

X × L
X be a finite relation.

We define a set of rewriting rules R as follows: For each pair of vectors
(v, v′) ∈ R, we obtain two rewriting rules v �→ v � v′ and v′ �→ v � v′.

A rewriting step works as follows: given a vector v and a rewriting rule l �→ r,
we compute the residuum l → v and, provided v � (v � r · (l → v)), the rewriting
rule is applicable and v rewrites to v � r · (l → v) (symbolically: v � v � r · (l →
v)). A vector v is in normal form wrt. R, provided there exists no rule that is
applicable to v.

Example 3.3. In order to illustrate how rewriting works, we work in T, set
X = {1, 2} (two dimensions) and take the relation R = {((∞

0

)
,
(
0
∞

))} ⊆ T
2×T

2,
relating the two unit vectors, and the vector v =

(∞
3

)
. This yields a rule l =(∞

0

) �→ r =
(
0
0

)
. We obtain l → v = 3 and hence v � v � r · (l → v) =(∞

3

)
min

((
0
0

)
+ 3

)
=

(
3
3

)
.

It is worth to observe that when L is the boolean semiring, the above proce-
dure coincides with the one in [9]. The rewriting relation satisfies some simple
properties:

3 A sub-semimodule for a ring is called submodule.
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Lemma 3.4. (i) If v � v′ and v � w, then v′ � w or there exists w′ s.t. w � w′

and v′ � w′.
(ii) Whenever v � v′ and w is any vector, there exists a vector u s.t. v � w �

u � v′ � w or v � w = v′ � w.

We now have to prove the following three statements: (i) Our technique is
sound, i.e. whenever two vectors have the same normal form wrt. R, they are
in c(R). (ii) Our technique is complete, i.e. whenever two vectors are in c(R),
they have the same normal form wrt. R. (iii) Our algorithm to compute normal
forms terminates.

We will show (i) and prove that (ii) follows from (iii). Afterwards we will
discuss sufficient conditions and examples where (iii) holds.

Theorem 3.5. Whenever there exists a vector v, such that two vectors v1,v2
both rewrite to v, i.e., v1 �∗ v, v2 �∗ v, then (v1, v2) ∈ c(R).

Proof. We will show that if v rewrites to v′ via a rule l �→ r, then (v, v′) ∈ c(R).
Since l �→ r is a rewriting rule we have that l = w, r = w�w′ for (w,w′) ∈ R

or (w′, w) ∈ R. In both cases w = w � w c(R) w � w′ due to the definition of
congruence closure, using rules (Plus), (Rel) and (Refl), as well as (Sym) in
case (w′, w) ∈ R. Hence l c(R) r. This implies that l·(l → v) c(R) r·(l → v) (Sca)
and furthermore v � l · (l → v) c(R) v � r · (l → v) (Plus). Since l · (l → v) � v
we have v � l · (l → v) = v and hence v c(R) v′. ��

This concludes the proof of soundness, we will go on proving completeness.

Lemma 3.6. Assume we have a rewriting system that always terminates. Then
the local Church-Rosser property holds. That is whenever v � v1 and v � v2,
there exists a vector v′ such that v1 �∗ v′ and v2 �∗ v′.

If a rewriting system terminates and the local Church-Rosser property holds,
the system is automatically confluent [12]. In this case, every vector v is as
associated with a unique normal form, written ⇓R v or simply ⇓v where v �∗⇓
v ��.

Furthermore, due to Lemma 3.4.(i) we know that ⇓ is monotone, i.e., v � v′

implies ⇓v �⇓v′. This also implies ⇓(v � v′) � (⇓v) � (⇓v′).

Lemma 3.7. For all v ∈ L
X , � ∈ L we have that if v � v′, then v · � � v′′ for

some v′′ � v′ · � or v · � = v′ · �. In particular, if rewriting terminates, we have
(⇓v) · � �⇓(v · �).

Now we have all the necessary ingredients to show that the technique is
complete, provided the computation of a normal form terminates.

Theorem 3.8. Assume that rewriting terminates. If v c(R) v′ then ⇓v =⇓v′.
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Termination. One technique to prove termination is given in Corollary 3.10:
it suffices to show that the supremum of all the elements reachable via � is
included in the congruence class. First we need the following result.

Proposition 3.9. If v c(R) v, then v �∗ v′ where v′ � v � v.

Now take v =
⊔{v̂ | v �∗ v̂}. By the above proposition if v c(R) v, then

v′ = v and v �∗ v. Since � is irreflexive, v ��. If we assume that rule application
is fair, we can guarantee that v is eventually reached in every rewriting sequence.

Corollary 3.10. If v c(R)
⊔{v̂ | v �∗ v̂}, then the rewriting algorithm termi-

nates, assuming that every rule that remains applicable is eventually applied.

Termination for Specific l-Monoids. We now study the l-monoid M =
([0, 1],max, ·, 0, 1) from Example 2.1 and show that the rewriting algorithm ter-
minates for this l-monoid. For the proof we mainly use the pigeon-hole principle
and exploit the total ordering of the underlying lattice. Since M is isomorphic
to T, we obtain termination for the tropical semiring as a corollary.

Theorem 3.11. The rewriting algorithm terminates for the l-monoids M and T.

These results provide an effective procedure for checking congruence closure
over the tropical semiring. We will mainly apply them to weighted automata,
but expect that they can be useful to solve other problems. For instance, in [7],
we show an interesting connection to the shortest path problem.

Termination for Lattices. We next turn to lattices and give a sufficient condi-
tion for termination on lattices. Obviously, rewriting terminates for lattices for
which the ascending chain condition holds (i.e., every ascending chain eventually
becomes stationary), but one can go beyond that.

In this section, we assume a completely distributive lattice L and a boolean
algebra B such that the orders of L and B, as well as the infima coincides.
Suprema need not coincide. Thus, whenever there is ambiguity, we will add the
index B or L to the operator. For the negation of a given x ∈ B, we write ¬x.
One way to obtain such a boolean algebra – in particular one where the suprema
coincide as well – is via Funayama’s theorem, see [5].

We want to show that if L approximates B “well enough”, the rewriting
algorithm terminates for L.

Theorem 3.12. The approximation of an element � ∈ B in the lattice L is
defined as ��� =

⊔
L
{�′ ∈ L | �′ ≤ �}.

Let R be a rewriting system for vectors in L
X . Whenever the set L(l, x) =

{� ∈ L | �¬l[x]� � � � ¬l[x]} is finite for all rules (l �→ r) ∈ R and all x ∈ X,
rewriting terminates.

Note that [¬�] = [� →B 0] = � →L 0. Hence the theorem says that there
should be only finitely many elements between the negation of an element in
the lattice and the negation of the same element in the boolean algebra. As a
simple corollary we obtain that the rewriting algorithm terminates for all boolean
algebras.
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4 Up-To Techniques for Weighted Automata

In this section we present applications of our congruence closure method. More
specifically, we investigate weighted automata and present up-to techniques both
for the language equivalence and the inclusion problem, which are variants of
the efficient up-to based algorithm presented in [9]. For the tropical semiring we
also give a procedure for solving the threshold problem, based on the language
inclusion algorithm.

4.1 Language Equivalence for Weighted Automata

We turn our attention towards weighted automata and their languages.
A weighted automaton over the semiring S and alphabet A is a triple (X, o, t)

where X is a finite set of states, t = (ta : X → S
X)a∈A is an A-indexed set of

transition functions and o : X → S is the output function. Intuitively ta(x)(y) =
s means that the states x can make a transition to y with letter a ∈ A and weight
s ∈ S (sometimes written as x

a,s−−→ y). The functions ta can be represented as
X × X-matrices with values in S and o as a row vector of dimension X. Given
a vector v ∈ S

X , we use ta(v) to denote the vector obtained by multiplying the
matrix ta by v and o(v) to denote the scalar in S obtained by multiplying the
row vector o by the column vector v.

A weighted language is a function ϕ : A∗ → S, where A∗ is the set of all words
over A. We will use ε to denote the empty word and aw the concatenation of
a letter a ∈ A with the word w ∈ A∗. Every weighted automaton is associated
with a function [[− ]] : SX → S

A∗
mapping each vector into its accepted language.

For all v ∈ S
X , a ∈ A and w ∈ A∗, this is defined as

[[v]](ε) = o(v) [[v]](aw) = [[ta(v)]](w).

Two vectors v1, v2 ∈ S
X are called language equivalent, written v1 ∼ v2

iff [[v1]] = [[v2]].4 The problem of checking language equivalence in weighted
automata for an arbitrary semiring is undecidable: for the tropical semiring this
was shown by Krob in [17]; the proof was later simplified in [3]. However, for
several semirings the problem is decidable, for instance for all (complete and dis-
tributive) lattices. For finite non-deterministic automata, i.e., automata weighted
over the boolean semiring, Bonchi and Pous introduced in [9] the algorithm HKC.
The name stems from the fact that the algorithm extends the procedure of
Hopcroft and Karp [15] with congruence closure.

Figure 1 shows the extension of HKC to weighted automata over an arbitrary
semiring: the code is the same as the one in [9], apart from the fact that, rather

4 The accepted notions of language and language equivalence can be given for states
rather than for vectors by assigning to each state x ∈ X the corresponding unit
vector ex ∈ S

X . On the other hand, when weighted automata are given with an
initial vector i – which is often the case in literature – one can define the language
of an automaton as [[i]].
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Fig. 1. Algorithm to check the equivalence of vectors v1, v2 ∈ S
X for a weighted

automata (X, o, t).

than exploring sets of states, the algorithm works with vectors in S
X . The check

at step (3.2) can be performed with the procedures discussed in Sect. 3.
Below we prove that the algorithm is sound and complete, but termination

can fail in two ways: either the check at step (3.2) does not terminate, or the
while loop at step (3) does not. For the tropical semiring we have seen that the
check at step (3.2) can be effectively performed by rewriting (Theorem 3.11).
Therefore, due to Krob’s undecidability result, the while loop at step (3) may
not terminate. For (distributive) lattices, we have shown termination of rewriting
under some additional constraints (Theorem 3.12); moreover the loop at (3) will
always terminate, because from a given finite set of lattice elements only finitely
many lattice elements can be constructed using infimum and supremum [16].

To prove soundness of HKC, we introduce the notions of simulation and
bisimulation up-to. Let RelSX be the complete lattice of relations over S

X and
b1 : RelSX → RelSX be the monotone map defined for all R ⊆ S

X × S
X as

b1(R) = {(v1, v2) | o(v1) = o(v2) and for all a ∈ A, (ta(v1), ta(v2)) ∈ R}
Definition 4.1. A relation R ⊆ S

X × S
X is a b1-simulation if R ⊆ b1(R), i.e.,

for all (v1, v2) ∈ R: (i) o(v1) = o(v2); (ii) for all a ∈ A, (ta(v1), ta(v2)) ∈ R.
For a monotone map f : RelSX → RelSX , a b1-simulation up-to f is a relation

R such that R ⊆ b1(f(R)).

It is easy to show (see e.g. [19]) that b1-simulation provides a sound and
complete proof technique for ∼. On the other hand, not all functions f can be
used as sound up-to techniques. HKC exploits the monotone function c : RelSX →
RelSX mapping each relation R to its congruence closure c(R).

Proposition 4.2. Let v1, v2 ∈ S
X . It holds that v1 ∼ v2 iff there exists a b1-

simulation R such that (v1, v2) ∈ R iff there exists a b1-simulation up-to c R
such that (v1, v2) ∈ R.

With this result, it is easy to prove the correctness of the algorithm.
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Theorem 4.3. Whenever HKC terminates, it returns true iff [[v1]] = [[v2]].

Proof. Observe that R ⊆ b1(c(R) ∪ todo) is an invariant for the while loop at
step (3).

If HKC returns true then todo is empty and thus R ⊆ b1(c(R)), i.e., R is a
b1-simulation up-to c. By Proposition 4.2, v1 ∼ v2.

Whenever HKC returns false, it encounters a pair (v′
1, v

′
2) ∈ todo such

that o(v′
1) �= o(v′

2). Observe that for all pairs (v′
1, v

′
2) ∈ todo, there exists

a word w = a1a2 . . . an ∈ A∗ such that v′
1 = tan

(. . . ta2(ta1(v1))) and v′
2 =

tan
(. . . ta2(ta1(v2))). Therefore [[v1]](w) = [[v′

1]](ε) = o(v′
1) �= o(v′

2) = [[v′
2]](ε) =

[[v′
2]](w). ��

4.2 Language Inclusion

Whenever a semiring S carries a partial order �, one can be interested in checking
language inclusion of the states of a weighted automata (X, o, t). More generally,
given v1, v2 ∈ S

X , we say that the language of v1 is included in the language of
v2 (written v1 �∼ v2) iff [[v1]](w) � [[v2]](w) for all w ∈ A∗.

The algorithm HKC can be slightly modified to check language inclusion,
resulting in algorithm HKP: steps (3.2) and (3.3) are replaced by

(3.2) if (v′
1, v

′
2) ∈ p(R) then continue

(3.3) if o(v′
1) �� o(v′

2) then return false

where p : RelSX → RelSX is the monotone function assigning to each relation R
its pre-congruence closure p(R).

(Ord)
v � v′

v p(R) v′

The precongruence closure is defined as the closure of R
under �, transitivity and linear combination. That is, in
the rules of Table 1 c(R) is replaced by p(R), rule (Sym)
is removed and rule (Refl) is replaced by rule (Ord) on the
right.

The soundness of the modified algorithm can be proved
in the same way as for HKC by replacing c by p and b1 by b2 : RelSX → RelSX
defined for all R ⊆ S

X × S
X as

b2(R) = {(v1, v2) | o(v1) � o(v2) and for all a ∈ A, (ta(v1), ta(v1)) ∈ R}.

However, the soundness of up-to reasoning is guaranteed only if � is a precon-
gruence, that is p(�) is contained in �.

Theorem 4.4. Let S be a semiring equipped with a precongruence �. Whenever
HKP(v1, v2) terminates, it returns true if and only if v1 �∼ v2.

In order for HKP to be effective, we need a procedure to compute p. When
S is an integral l-monoid, we can check (v, v′) ∈ p(R) via a variation of the
congruence check, using a rewriting system as in Sect. 3.3.
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Proposition 4.5. Let L be an integral l-monoid and let R ⊆ L
X × L

X be a
relation.

The set of rules R is defined as {v′ �→ v � v′ | (v, v′) ∈ R}.5 Rewriting steps
are defined as in Definition 3.2. If the rewriting algorithm terminates, then for
all v, v′ ∈ L

X , (v, v′) ∈ p(R) iff ⇓ v′ ≥ v (where, as usual, ⇓ v′ denotes the
normal form of v′).

Observe that Theorems 3.11 and 3.12 guarantee termination for certain spe-
cific l-monoids. In particular, termination for the tropical semiring will be pivotal
henceforward.

4.3 Threshold Problem for Automata over the Tropical Semiring

Language inclusion for weighted automata over the tropical semiring is not decid-
able, because language equivalence is not. However, the algorithm that we have
introduced in the previous section can be used to solve the so called threshold
problem over the tropical semiring of natural numbers (N0 ∪{∞},min,+,∞, 0).
The problem is to check whether for a given threshold T ∈ N0, a vector of
states of a weighted automaton v ∈ (N0 ∪ {∞})X satisfies the threshold T , i.e.
[[v]](w) ≤ T for all w ∈ A∗.

Note that this problem is also known as the universality problem: universality
for non-deterministic automata can be easily reduced to it, by taking weight 0
for each transition and setting T = 0 for the threshold.

t
a, 0

T

This problem – which is known to be PSPACE-complete [3] –
can be reduced to language inclusion by adding a new state t with
output o(t) = T and a 0 self-loop for each letter a ∈ A. Then we
check whether the language of v includes the language of the unit
vector et.

It is worth to note that in (N0∪{∞},min,+,∞, 0) the ordering �
is actually ≥, the reversed ordering on natural numbers. Therefore
to solve the threshold problem, we need to check et

�∼ v.
The reader can easily concoct an example where HKP may not terminate.

However, it has already been observed in [3] that it is a sound reasoning technique
to replace every vector entry larger than T by ∞. To formalise this result, we will
first introduce an abstraction mapping A and then state our modified algorithm:

Definition 4.6. Let a threshold T ∈ N0 be given. We define the abstraction
A : N0 ∪ {∞} → N0 ∪ {∞} according to A(s) = s if s ≤ T and A(s) = ∞
otherwise. The definition extends elementwise to vectors in (N0 ∪ {∞})X .

With this definition, we call HKPA, the algorithm obtained from HKP by replac-
ing step (3.4) with the following:

(3.4) for all a ∈ A
insert (ta(v′

1),A(ta(v′
2))) into todo

5 Whenever v ≤ v′, the rule can be omitted, since it is never applicable.



546 F. Bonchi et al.

Now to check whether a certain vector v satisfies the threshold of T , it is enough
to run HKPA(et, v) where et is the unit vector for t as defined above.

The soundness of the proposed algorithm can be shown in essentially the same
way as for HKP but using a novel up-to technique to take care of the abstraction
A. For the completeness, we need the following additional result.

Lemma 4.7. For all vectors v ∈ (N0∪{∞})X it holds that (i) A(ta(A(v))) =
A(ta(v)); (ii) A(o(A(v))) = A(o(v)).

Theorem 4.8. HKPA(et, v1) always terminates. Moreover HKPA(et, v1) returns
true iff [[v1]](w) ≤ T for all w ∈ A∗.

4.4 Exploiting Similarity

For checking language inclusion of non-deterministic automaton it is often conve-
nient to precompute a similarity relation that allows to immediately skip some
pairs of states [1]. This idea can be readapted to weighted automata over an
l-monoid by using the following notion.

Definition 4.9. Let (X, o, t) be a weighted automaton. A relation R ⊆ S
X ×

S
X on unit vectors is called a simulation relation whenever for all (v, v′) ∈ R

(i) o(v) � o(v′); (ii) for all a ∈ A, there exists a pair (u, u′) that is a linear
combination of vector pairs in R and furthermore ta(v) � u, u′ � ta(v′).

Similarity, written �, is the greatest simulation relation.

Lemma 4.10. Simulation implies language inclusion, i.e. � is included in �∼ .

Similarity over an l-monoid can be computed with the algorithm in Fig. 2.
Even though the relation is not symmetric, the method is conceptually close to
the traditional partition refinement algorithm to compute bisimilarity. Starting
from the cross-product of all states, the algorithm first eliminates all pairs of

Fig. 2. Algorithm to compute similarity (�) for a weighted automaton (X, o, t).
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states where the first state does not have a smaller-or-equal output than the
second one and then continuously removes all pairs of states that do not meet
the second requirement for a simulation relation, until the relation does not
change anymore.

Lemma 4.11. SIM computes �.

Lemma 4.12. The runtime complexity of SIM when applied to an automaton
over state set X and alphabet A is polynomial, assuming constant time complex-
ity for all semiring operations (supremum, multiplication, residuation).

Once � is known, it can be exploited by HKP and HKPA. To be completely
formal in the proofs, it is convenient to define two novel algorithm – called HKP′

and HKP′
A – which are obtained from HKP and HKPA by replacing step (3.2) by

(3.2) if (v′
1, v

′
2) ∈ p′(R) then continue

where p′(R) is defined for all relations R as p′(R) = p(R ∪ �). The following
two results state the correctness of the two algorithms.

Lemma 4.13. Let S be a semiring equipped with a precongruence �. Whenever
HKP′(v1, v2) terminates, it returns true iff v1 �∼ v2.

Lemma 4.14. HKP′
A(et, v1) always terminates. Moreover HKP′

A(et, v1) returns
true iff [[v1]](w) ≤ T for all w ∈ A∗.

4.5 An Exponential Pruning

To illustrate the benefits of up-to techniques, we show an example where HKP′
A

exponentially prunes the exploration space by exploiting the technique p′. We
compare HKP′

A against ABK in Fig. 3, that can be thought as an adaptation of the
algorithm proposed in [3] to the notation used in this paper.

Fig. 3. Algorithm to check whether a vector v0 of a weighted automata (X, o, t) satisfies
the threshold T ∈ N0
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Consider the family of automata over the tropical semiring in Fig. 4 and
assume that T = n. By taking as initial vector ex � ey (i.e., the vector mapping
x and y to 0 and all other states to ∞), the automaton clearly does not respect
the threshold, but this can be observed only for words longer than n.

x x1 x2 xn−1 xn

y y1 y2 yn−1 yn

a, b
a

a, b a, b

a, b
b

a, b a, b

Fig. 4. Examples where HKP′
A exponentially improves over ABK. Output weight is always

0, transition weight is always 1.

First, for ABK the runtime is exponential. This happens, since every word
up to length n produces a different weight vector. For a word w of length m
state xi has weight m iff the i-last letter of the word is a, similarly state yi has
weight m iff the i-last letter is b. All other weights are ∞. For instance, the
weights for word aab are given below.

x x1 x2 x3 x4 . . . y y1 y2 y3 y4 . . .

3 ∞ 3 3 ∞ . . . 3 3 ∞ ∞ ∞ . . .

Now we compare with HKP′
A. Observe that xi � x, yi � y for all i. (Remember

that since the order is reversed, a lower weight simulates a higher weight.) Hence,
we obtain rewriting rules that allow to replace an ∞-entry in xi and yi by m for
all i. (Since both entries x and y are m, we can always apply this rule.) In the
example above this leads to a vector where every entry is 3.

Hence it turns out that for all words of the same length, the corresponding
vectors are all in the precongruence relation with each other – as they share
the same normal form – and we only have to consider exactly one word of each
length. Therefore, only linearly many words are considered and the runtime is
polynomial.

5 Runtime Results for the Threshold Problem

We now discuss runtime results for the threshold problem for weighted automata
over the tropical semiring of the natural numbers. We compare the follow-
ing three algorithms: the algorithm without up-to technique (ABK) algorithm
in Fig. 3, the algorithm that works up-to precongruence (HKPA), explained in
Sect. 4.3, and the algorithm that additionally exploits pre-computed similarity
(HKP′

A), introduced in Sect. 4.4. This precomputation step is relatively costly and
is included in the runtime results below.
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Table 2. Runtime results on randomly generated automata

Runtime (millisec.) Size of R/P Size of �
(|X|, T ) Algo 50% 90% 99% 50% 90% 99% 50% 90% 99%

(3,10) HKP′
A 2 8 20 5 14 33 0 2 4

HKPA 1 3 14 5 14 34 - - -

ABK 1 3 13 6 28 92 - - -

(3,15) HKP′
A 3 17 127 11 34 100 0 2 4

HKPA 2 16 126 11 34 100 - - -

ABK 2 17 90 18 119 373 - - -

(3,20) HKP′
A 6 65 393 18 70 174 0 2 4

HKPA 4 64 466 18 71 192 - - -

ABK 5 79 315 55 364 825 - - -

(6,10) HKP′
A 21 227 1862 18 106 302 0 2 12

HKPA 8 217 1858 19 106 302 - - -

ABK 9 286 2045 40 693 2183 - - -

(6,15) HKP′
A 90 2547 12344 65 353 750 0 2 11

HKPA 84 2560 12328 65 353 750 - - -

ABK 88 4063 20987 346 3082 7270 - - -

(6,20) HKP′
A 239 7541 59922 111 589 1681 0 3 11

HKPA 234 7613 60360 111 589 1681 - - -

ABK 253 16240 103804 702 6140 14126 - - -

(9,10) HKP′
A 274 9634 73369 98 582 1501 0 3 21

HKPA 236 9581 72833 99 582 1501 - - -

ABK 232 17825 99332 536 6336 14956 - - -

(9,15) HKP′
A 1709 71509 301033 256 1517 3319 0 3 19

HKPA 1681 70587 301018 256 1517 3319 - - -

ABK 919 112323 515386 1436 14889 28818 - - -

(9,20) HKP′
A 3885 168826 874259 407 2347 5086 0 3 20

HKPA 3838 168947 872647 407 2347 5086 - - -

ABK 1744 301253 1617813 2171 22713 48735 - - -

(12,10) HKP′
A 1866 93271 560824 247 1586 3668 0 7 31

HKPA 1800 92490 560837 251 1586 3668 - - -

ABK 1067 189058 889949 1342 18129 37387 - - -

(12,15) HKP′
A 5127 363530 1971541 423 3001 6743 0 7 35

HKPA 5010 362908 1968865 423 3001 6743 - - -

ABK 1418 509455 2349335 1672 27225 55627 - - -

(12,20) HKP′
A 15101 789324 3622374 744 4489 9027 0 6 32

HKPA 15013 787119 3623393 744 4489 9027 - - -

ABK 4169 1385929 4773543 3297 43756 80712 - - -
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We performed the following experiment: for certain values of |X| (size of
state set) and of T (threshold) we generated random automata. The alphabet
size was randomly chosen between 1 and 5. For each pair of states and alphabet
symbol, the probability of having an edge with finite weight is 90%. (We chose
this high number, since otherwise the threshold is almost never respected and
the algorithms return false almost immediately due to absence of a transition for
a given letter. With our choice instead, the algorithms need many steps and the
threshold is satisfied in 14% of the cases.) In case the weight is different from
∞, a random weight from the set {0, . . . , 10} is assigned.

For each pair (|X|, T ) we generated 1000 automata. The runtime results can
be seen in Table 2. We considered the 50%, 90% and 99% percentiles: the 50%
percentile is the median and the 90% percentile means that 90% of the runs were
faster and 10% slower than the time given in the respective field. Analogously
for the 99% percentile.

Apart from the runtime we also measured the size of the relation R (or
P in the case of ABK) and the size of the similarity � (in case of HKP′

A). The
program was written in C# and executed on an Intel Core 2 Quad CPU Q9550
at 2.83 GHz with 4 GB RAM, running Windows 10.

First note that, as expected, HKPA and HKP′
A always produce much smaller

relations than ABK. However, they introduce some overhead, due to rewriting for
checking p(R), and due to the computation of similarity, which is clearly seen
for the 50% percentile. However, if we look at the larger parameters and at the
90% and 99% percentiles (which measure the worst-case performance), HKPA and
HKP′

A gain the upper hand in terms of runtime.
Note also that while in the example above similarity played a large role,

this is not the case for the random examples. Here similarity (not counting the
reflexive pairs) is usually quite small. This means that similarity does not lead
to savings, only in very few cases does the size of R decrease for HKP′

A. But this
also means that the computation of � is not very costly and hence the runtime
of HKPA is quite similar to the runtime of HKP′

A. We believe that for weighted
automata arising from concrete problems, the similarity relation will usually be
larger and promise better runtimes. Note also that similarity is independent of
the initial vector and the threshold and if one wants to ask several threshold
questions for the same automaton, it has to be computed only once.

6 Conclusion and Future Work

In this work, we have investigated up-to techniques for weighted automata,
including methods to determine the congruence closure for semimodules.

Related Work: Related work on up-to techniques has already been discussed in
the introduction. For the language equivalence problem for weighted automata
we are mainly aware of the algorithm presented in [4], which is a partition
refinement algorithm and which already uses a kind of up-to technique: it can
eliminate certain vectors which arise as linear combinations of other vectors. The
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paper [22] considers simulation for weighted automata, but not in connection to
up-to techniques.

Congruence closure for term rewriting has been investigated in [11].
Our examples mainly involved the tropical semiring (and related semirings).

Hence there are relations to work by Aceto et al. [2] who presented an equational
theory for the tropical semiring and related semirings, as well as Gaubert and
Plus [14] who discuss several reasons to be interested in the tropical semiring
and present solution methods for several types of linear equation systems.

Future Work: As we have seen in the experiments on the threshold problem, our
techniques greatly reduce the size of the relations. However, the reduction in run-
time is less significant, which is due to the overhead for the computation of sim-
ilarity and the rewriting procedure. There is still a substantial improvement for
the worst-case running times (90% and 99% percentiles). So far, the algorithms,
especially algorithm SIM for computing similarity, are not very sophisticated and
we believe that there is further potential for optimization.

Acknowledgements. We would like to thank Pawe�l Sobociński and Damien Pous for
interesting discussions on the topic of this paper. Furthermore we express our thanks
to Issai Zaks for his help with the runtime results.
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Abstract. Design analysis of Cyber-Physical Systems (CPS) with com-
plex continuous and discrete behaviors, in-practice, relies heavily on
numerical simulations. While useful for evaluation and debugging, such
analysis is often incomplete owing to the nondeterminism in the discrete
transitions and the uncountability of the continuous space. In this paper,
we present a precise notion of simulations for CPS called simulation-
equivalent reachability, which includes all the states that can be reached
by any simulation. While this notion is weaker than traditional reachabil-
ity, we present a technique that performs simulation-equivalent reacha-
bility in an efficient, scalable, and theoretically sound and complete man-
ner. For achieving this, we describe two improvements, namely invari-
ant constraint propagation for handling invariants and on-demand suc-
cessor deaggregation for handling discrete transitions. We use our tool
implementation of the approach, HyLAA (Hybrid Linear Automata
Analyzer), to evaluate the improvements, and demonstrate computing
the simulation-equivalent reachable set for a replicated helicopter sys-
tems with over 1000 dimensions in about 10 min.

1 Introduction

Cyber-Physical Systems (CPS) that involve interaction between a system’s soft-
ware and the physical world can be naturally modeled using the framework of
hybrid automata [4,29]. A common industrial practice to design and debug these
systems is to use a model-based design framework such as Simulink or Modelica,
which produces concrete traces of system behavior. An engineer uses a combina-
tion of his or her intuition about potential edge cases and sampled simulations
to try and find behaviors that violate the safety specification. While performing
large numbers of simulations can be extremely useful, the space of possible simu-
lations is often infinite, and so simulations can miss critical error cases. For large
and complex models, with high numbers of dimensions, the amount of coverage
provided by simulations decreases further, increasing the chances of missing a
simulation that violates safety.

DISTRIBUTION A. Approved for public release; Distribution unlimited. (Approval
AFRL PA #88ABW-2016-5197, 18 OCT 2016).

c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 555–572, 2017.
DOI: 10.1007/978-3-662-54577-5 32



556 S. Bak and P.S. Duggirala

In this work, we add rigor to such simulation-based analysis and compute
what we call the simulation-equivalent reachable set. To do this, we build upon a
recently proposed method [18] that exploits the superposition property of linear
systems by combining the information from selected individual simulations to
reason about an unbounded number of simulations. We extend this approach to
analyze a general linear hybrid system, and provide an analysis method which
is exact, with respect to a particular simulation algorithm. Upon termination, if
our algorithm infers that the system is safe, then no simulation enters the unsafe
set; if our algorithm infers that the system is unsafe, a counter-example trace is
provided. One of the main reasons to present an alternative notion of reachabil-
ity is fundamentally driven by the desire to generate counterexamples which are
of high importance during the debugging phase of design analysis. Additionally,
while simulation-equivalent reachability is a bit weaker than traditional reacha-
bility, the simplifications enable analysis which is more scalable, as well as sound
and complete. The contributions of this paper are as follows.

1. We formally state the simulation-equivalent reachability problem and provide
a sound and complete algorithm for its computation.

2. We present two new improvements, first, for reducing the number of con-
straints in handling invariants, and second, for aggregating and deaggregating
sets after discrete transitions, without losing simulation-equivalence.

3. We present an accuracy-equivalent comparison with traditional reachabil-
ity algorithms, and evaluate the proposed techniques in a new tool called
HyLAA (Hybrid Linear Automata Analyzer).

Related Approaches: Verification techniques for hybrid automata can be clas-
sified into two main categories: flow-pipe construction [13] and deductive verifica-
tion [24,31]. Flow-pipe construction methods, which are more closely related to
this paper, are typically classified by the complexity allowed by their continuous
dynamics. Existing techniques can handle systems where continuous dynamics
are restricted to be timers [5,10], piecewise constants [21,26], linear [23,25], and
general nonlinear expressions [2,12]. In this context, our approach fits in with
the class of tools used to analyze linear systems. The proposed method differs,
however, in that our analysis is sound and complete for simulation-equivalent
reachability, and can provide concrete counterexamples if the system violates
the safety specification. Systems with complex dynamics are sometimes analyzed
using hybridization [6,14]. In hybridization, complex dynamics are simplified as
a hybrid system with simpler dynamics and nondeterministic inputs, where the
inputs account for the simplification errors.

Simulations have also been leveraged before to perform more formal analysis
of hybrid systems. One approach studies the effects of perturbations of the initial
state on the divergence of trajectories [15–17,20]. These approaches are different
from the way HyLAA uses simulations, in that they reason about tubes of states
around individual simulations. Other falsification methods use a metric to deter-
mine how close a particular simulation is to violating a formal specification [19],
and then apply a global optimization routine to generate new simulation inputs
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which try to optimize the metric, essentially trying to generate simulations that
are closer to a violation [9,30]. While often better than purely random Monte
Carlo simulation, this class of approaches is incomplete and so may still miss
error trajectories.

2 Preliminaries

States and vectors are elements in R
n are denoted as x and v. Given a sequence

seq = s1, s2, . . ., the ith element in the sequence is denoted as seq[i]. In this
work, we use the following mathematical notation of a linear hybrid automata.

Definition 1. A linear hybrid automaton is defined to be a tuple
〈Loc,X, F low, Inv, Trans,Guard〉 where:

Loc is a finite set of locations (also called modes).
X ⊆ R

n is the state space of the behaviors.
Flow: Loc → AffineDeq(X) assigns an affine differential equation ẋ = Alx+Bl

for location l of the hybrid automaton.
Inv: Loc → 2R

n

assigns an invariant set for each location of the hybrid automa-
ton.
Trans ⊆ Loc × Loc is the set of discrete transitions.
Guard: Trans → 2R

n

defines the set of states where a discrete transition is
enabled. For a linear hybrid automaton, the invariants and guards are given as
a conjunction of linear constraints.

The initial set of states Θ is a subset of Loc × 2R
n

, where second element
in the pair is a conjunction of linear constraints. An initial state q0 is a pair
(Loc0, x0), such that x0 ∈ X, and (Loc0, x0) ∈ Θ. Unsafe states are indicated by
having a set of error modes, U ⊆ Loc.

Definition 2. Given a hybrid automaton and an initial set of states Θ, an
execution of the hybrid automaton is a sequence of trajectories and actions
τ0a1τ1a2 . . . such that (i) the first state of τ0 denoted as q0 is in the initial set,
i.e., q0 = (Loc0, x0) ∈ Θ, (ii) each τi is the solution of the differential equation
of the corresponding location Loci, (iii) all the states in the trajectory τi respect
the invariant of the location Loci, and (iv) the state of the trajectory before each
action ai satisfies Guard(ai).

The set of states encountered by all executions that conform to the above seman-
tics is called the reachable set. For linear systems, the closed form expression for
the trajectories is given as τi(t) = eAltτ(0) +

∫ t

0
eAl(t−μ)Bldμ where Al and Bl

define the affine dynamics of the mode. Instead of computing the reachable set
of states, we compute the set of states which can be reached by a fixed simula-
tion algorithm. We now precisely define the semantics for a simulation of hybrid
automata that we will use in this paper.
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Definition 3. A sequence ρH(q0, h) = q0, q1, q2, . . ., where each qi = (Loci, xi),
is a (q0, h)-simulation of the hybrid automaton H with initial set Θ if and only if
q0 ∈ Θ and each pair (qi, qi+1) corresponds to either: (i) a continuous trajectory
in location Loci with Loci = Loci+1 such that a trajectory starting from xi would
reach xi+1 after exactly h time units with xi ∈ Inv(Loci), or (ii) a discrete
transition from Loci to Loci+1 (with Loci−1 = Loci) where ∃a ∈ Trans such
that xi = xi+1, xi ∈ Guard(a) and xi+1 ∈ Inv(Loci+1). Bounded-time variants
of these simulations, with time bound T , are called (q0, h, T )-simulations.

For simulations, h is called the step size and T is called time bound. While talking
about the continuous or discrete behaviors of simulations, we abuse notation
and use xi, the continuous component of the state instead of qi. Notice that
the simulation engine given in Definition 3 does not check if the invariant is
violated for the entire time interval, but only at a given time instance. Also, the
discrete transitions are only enabled at time instances that are multiples of h.
To avoid Zeno behaviors, the simulation engine forces that the system should
spend at least h time units in each mode. Hence, if two consecutive states xi

and xi+1 corresponds to a continuous trajectory of the hybrid automaton, it is
not necessary that xi+1 ∈ Inv(Loci). If a guard is enabled and the invariant is
still true, or if multiple guards are enabled, the simulation engine can make a
nondeterministic choice. We call the set of states encountered by all simulations
which conform to this definition the simulation-equivalent reachable set.

Condition (ii) in the semantics of simulations permits a discrete transition
to be taken even if the invariant condition of the predecessor mode is false. This
is necessary to handle the common case where a guard is the complement of an
invariant, and a sampled simulation jumps over the guard boundary during a
single step. If these types of behaviors are not desired, the guard can be explicitly
strengthened with the invariant of the originating mode. For readers familiar with
the simulation engines in standard tools like Simulink or Modelica, the defined
simulation sequences do not perform special algorithms to isolate zero crossings,
and the transitions are not necessarily urgent.

Definition 4. A given simulation ρH(q0, h) is said to be safe with respect to an
unsafe set of locations U if and only if ∀qi = (Loci, xi) ∈ ρH(q0, h), Loci /∈ U .
Safety for bounded time simulations are defined similarly.

Definition 5. A hybrid automaton H with initial set Θ, time bound T , and
unsafe set of locations U is said to be safe with respect to its simulations if all
simulations starting from Θ for bounded time T are safe.

Definition 6. Given any initial state x0, vectors v1, . . . , vm where vi ∈ R
n,

scalars α1, . . . , αm, the trajectories of linear differential equations in a given
location τ always satisfy

τ(x0 + Σm
i=1αivi, t) = τ(x0, t) + Σm

i=1αi(τ(x0 + vi, t) − τ(x0, t)).
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Fig. 1. Observe that the state reached
at time t from x0 + v1 + v2 is identical
to τi(x0, t)+(τi(x0 +v1, t)−τi(x0, t))+
(τi(x0 + v2, t) − τi(x0, t)).

We exploit the superposition prop-
erty of linear systems in order to com-
pute the simulation-equivalent reachable
set of states for a linear hybrid system.
An illustration of the superposition prin-
ciple for two vectors is shown in Fig. 1.
Before describing the algorithm for com-
puting the reachable set, we finally intro-
duce the data structure called a gener-
alized star that is used to represent the
reachable set of states.

Definition 7. A generalized star (or simply star) Θ is a tuple 〈c, V, P 〉 where
c ∈ R

n is called the center, V = {v1, v2, . . . , vm} is a set of m (≤ n) vectors in
R

n called the basis vectors, and P : Rn → {
,⊥} is a predicate.
A generalized star Θ defines a subset of Rn as follows.

[[Θ]] = {x | ∃ᾱ = [α1, . . . , αm]T such that x = c + Σn
i=1αivi and P (ᾱ) = 
}

Sometimes we will refer to both Θ and [[Θ]] as Θ.

In this paper, we consider predicates P which are conjunctions of linear con-
straints, in order to be able to use linear programming for several key operations
on stars such as checking if a point is in a star.

Example 1. Consider a set Θ ⊂ R
2 given as Θ

Δ= {(x, y)|x ∈ [2, 3], y ∈ [2, 3]}. The
given set Θ can be represented as a generalized star in multiple ways. One way of
representing the set is given as 〈c, V, P 〉 where c = (2.5, 2.5), V = {[0, 1]T , [0, 1]T }
and P

Δ= −0.5 ≤ α1 ≤ 0.5 ∧ −0.5 ≤ α2 ≤ 0.5. That is, the set Θ is represented
as a star with center (2.5, 2.5) with vectors as the orthonormal vectors in the
Cartesian plane and predicate where the components along the basis vectors are
restricted by the set [−0.5, 0.5] × [−0.5, 0.5].

Operations on Generalized Stars: In this paper we restrict our attention
to stars with predicates that are conjunctions of linear inequalities. As general-
ized stars are used to represent the reachable set of states, one has to perform
operations such as basis transformation, intersection, and union. For stars with
linear predicates, one can perform basis and center transformation by changing
the center to another center, the basis vectors to a new basis vector set (with
same rank), and perform matrix multiplication.

Given two stars S1
Δ= 〈c, V, P1〉 and S2

Δ= 〈c, V, P2〉 the set intersection of
two stars is obtained as S∩

Δ= 〈c, V, P1 ∧ P2〉 and their aggregation as Sagg =
〈c, V, Pagg〉 where P1 ∨ P2 ⇒ Pagg. For computing Pagg one can choose sev-
eral template directions, compute the maximum and minimum values along each
direction using linear programming.
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2.1 Reachable Set Computation for Linear Dynamical Systems
Using Simulations

We now outline the algorithm that computes the reachable set of states for
continuous dynamics on which we base our approach. Owing to space limitations,
we briefly describe the algorithm here, and note that a longer explanation and
proof of correctness is available in prior work [18]. At its crux, the algorithm
exploits the superposition principle of linear systems and computes the reachable
states using a generalized star representation. For an n-dimensional system, this
algorithm requires at most n + 1 simulations.

Given an initial set Θ
Δ= 〈c, V, P 〉 with V = {v1, v2, . . . , vm}(m ≤ n), the

algorithm performs a simulation starting from c (denoted as ρ(c, h, k)), and
∀1 ≤ j ≤ n, performs a simulation from c + vj (denoted as ρ(c + vj , h, k)). For
a given time instance i · h, the reachable set denoted as Reachi(Θ) is defined
as 〈ci, Vi, P 〉 where ci = ρ(c, h, k)[i] and Vi = 〈v′

1, v
′
2, . . . , v

′
m〉 where ∀1 ≤ j ≤

m, v′
j = ρ(c+ vj , h, k)[i]− ρ(c, h, k)[i]. Notice that the predicate does not change

for the reachable set, but only the center and the basis vectors are changed.

input : Initial Set: Θ = 〈c, V, P 〉, time step: h, time bound: k · h
output : Reach(Θ) = Reach0(Θ), . . . , Reachk(Θ)
for each i from 0 to k do1

ci ← ρ(c, h, k)[i];2

for each vj ∈ V do3

v′
j ← ρ(c + vj , h, k)[i] − ci;4

end5

Vi ← {v′
1, . . . , v

′
m};6

Reachi(Θ) ← 〈ci, Vi, P 〉;7

Append Reachi(Θ) to Reach(Θ);8

end9

return Reach(Θ);10

Algorithm 1. Algorithm that computes the reachable set at time instances
i · h from n + 1 simulations.

Fig. 2. Illustration of the reachable set
using sample simulations and generalized
star representation. Notice that in the star
representation, the predicate that defines
the reachable set is same as that of the ini-
tial set.

An illustration of this reachable set
computation is shown in Fig. 2. Here,
as the system is 2-dimensional, a total
number of three simulations are per-
formed, one from center c and one from
c + v1 and one from c + v2. The reach-
able set after time i · h is given as
the star with center c′ = ρ(c, h, k)[i],
basis vectors v′

1 = ρ(c + v1, h, k)[i] −
ρ(c, h, k)[i], and v′

2 = ρ(c+v2, h, k)[i]−
ρ(c, h, k)[i] and the same predicate P
as the given in the initial set.
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Remark 1. Observe that the reachable set computation described in Algorithm 1
is not dependent on the predicate of the initial set. Therefore, if the given initial
set Θ

Δ= 〈c, V, P 〉 is changed to 〈c, V, P ′〉, the reachable set computed in line 7
changes from 〈ci, Vi, P 〉 to 〈ci, Vi, P

′〉. This key observation helps us in proposing
new techniques for handling invariants and discrete transitions.

Assumptions: Since our method for reasoning about states reachable in the
continuous space uses numerical simulations and superposition, we make a few
key assumptions. First, the numerical computations performed by our algorithm
are exact (we do not track floating-point errors through the computations). Sec-
ond, the underlying ODE simulation engine provides an exact result. We believe
that these assumptions are reasonable, because in practice, most of the sys-
tem designers accept that numerical simulations are a very close approximation
to a model’s true behavior, and using numerical simulations requires the same
assumptions. A user concerned about the inaccuracy of numerical simulation
can either use validated simulations [1] or compute the linear ODE solution as
a matrix exponential to an arbitrary degree of precision.

3 Constraint Propagation for Invariants

The goal of this paper is to perform simulation-equivalent reachability for hybrid
automata. While Algorithm 1 computes reachable set for a dynamical system, it
does not take into account the invariant and the discrete transitions. An earlier
extension of Algorithm 1 for hybrid systems propose handling the invariants
by performing Reachi ∩ Inv(l) where Inv(l) is the invariant of the current
mode [18].

Fig. 3. Figure depicting the overapproxi-
mation of the reachable set computed by
performing Reachi ∩Inv(l) without invari-
ant propagation.

Although sound, such procedure
would result in an overapproxima-
tion, but not a simulation-equivalent
reachable set. Consider the illustra-
tion in Fig. 3 depicting reachable sets
Reachi and Reachi+1 and their over-
lap with the invariant of the cur-
rent mode. If one considers the exe-
cutions that visit Reachi ∩ Inv(l),
one can only reach the states labeled
as ActualReachi+1(Θ). To avoid such
overapproximations, we present an
algorithm that performs constraint
propagation for computing the reachable set while respecting the invariant.

We exploit the observation made in Remark 1 for performing constraint prop-
agation. Consider the scenario where Reachi contains states that satisfy the
invariant and states that violate the invariant. For accurately computing the
reachable set for all the future iterations, one must only consider the states orig-
inating from Reachi ∩ Inv(l). Given Reachi = 〈ci, Vi, P 〉, we perform center and
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basis transformation on Inv(l) to represent it as a star with center ci and basis
Vi such that Inv(l) = 〈ci, Vi, Qi〉. Hence, Reachi ∩ Inv(l) = 〈ci, Vi, P ∧ Qi〉.
From the correctness of Algorithm 1, it follows that the simulations reaching
〈ci, Vi, P ∧ Qi〉 should originate from Θ′ ⊆ Θ where Θ′ = 〈c, V, P ∧ Qi〉.

For the time instances j > i, since the simulations should visit 〈ci, Vi, P ∧ Qi〉,
they should originate from Θ′ = 〈c, V, P ∧ Qi〉. This implies that the constraints
Qi should be added to the predicate in Reachj . Therefore, for every instance i,
we propagate the constraints Qi for all future time instances. The reachable set
at time instance j accumulates the constraints from time instances 0, 1, . . . , j −1
and updates the predicate with the conjunction of these constraints. We call
this technique as invariant constraint propagation. This procedure is formally
presented in Algorithm 2 and its correctness is given in Theorems 2 and 1.

input : Initial Set: Θ = 〈c, V, P 〉, time step: h, time bound: k ·h, Invariant: Inv
output : Reach(Θ) = Reach0(Θ), . . . , Reachk(Θ) that respect the invariant
ConstraintsList ← ∅;1

AccumulatedConstraints ← �;2

R ← Alg1(Θ, h, k);3

for each i from 1 to k do4

Ri = 〈ci, Vi, Pi〉 ← R[i];5

Qi ← Tranformation(Inv, ci, Vi);6

AccumulatedConstraints ← AccumulatedConstraints ∧ Qi;7

Ri ← 〈ci, Vi, P ∧ AccumulatedConstraints〉;8

Append Ri to Reach(Θ);9

Append Qi to ConstraintsList ;10

end11

return (Reach(Θ),ConstraintsList);12

Algorithm 2. Algorithm that computes the reachable set at time instances
i · h from n + 1 simulations and respects the invariant.

Theorem 1 (Soundness). Consider initial set Θ
Δ= 〈c, V, P 〉, time bound k ·h,

invariant Inv, and reachable set computed by Algorithm2 as Reach(Θ) =
R0, R1, . . . , Rk. Consider a simulation x0, x1, . . . , xj where j ≤ k such that
x0 ∈ Θ, and ∀0 ≤ i ≤ j, xi ∈ Inv, then we have ∀0 ≤ i ≤ j, xi ∈ Ri.

Proof. Consider the initial state x0 ∈ Θ ∩ Inv, it automatically follows that
x0 ∈ 〈c0, V0, P ∧ Q0〉, where Q0 is computed in line 6 in the first iteration of the
loop (lines 4–11). Hence, it follows that ∀i > 0, xi ∈ 〈ci, Vi, P ∧ Q0〉.

Consider xi, 0 < i ≤ k, the ith state in the simulation that respects invariant.
Therefore, we have that ∀m < i, xm ∈ Inv. Consider Q0, Q1, . . . , Qi−1 be the
clauses computed in line 6 for the iterations 0, 1, . . . , i−1 of the loop respectively.
Since ∀m ≤ i, xm ∈ Inv, if follows that xm ∈ 〈cm, Vm, P ∧ Qm〉. Therefore,
the simulation should originate in 〈c, V, P ∧ Q0 ∧ Q1 ∧ . . . ∧ Qi〉. Hence, xi ∈
〈ci, Vi, P ∧ Q0 ∧ Q1 ∧ . . . ∧ Qi〉. Therefore, xi ∈ Ri.
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Theorem 2 (Completeness). Given an initial set Θ
Δ= 〈c, V, P 〉, dynamics

A,B, time bound k · h, invariant Inv, and the reachable set computed as
Reach(Θ) = R0, R1, . . . , Rk by Algorithm2, we have ∀0 ≤ j ≤ k, given any
xj ∈ Rj, the simulation x0, x1, . . . , xj that reaches xj is such that x0 ∈ Θ and
∀0 ≤ i ≤ j, xi ∈ Inv.

Proof. Consider the reachable set Reach(Θ) = R0, R1, . . . , Rk computed by
Algorithm 2 and an element xj ∈ Rj . Consider the simulation x0, x1, . . . , xj

be a simulation that reaches xj . Let Q0, Q1, . . . , Qj represents the constraints
computed in line 6 for the iterations 0, 1, . . . , j of the loop from lines 4–11 respec-
tively. Since xj ∈ Rj

Δ= 〈cj , Vj , P ∧ Q0 ∧ Q1 ∧ . . . ∧ Qj〉, it follows that the sim-
ulation should origin from Θ′ = 〈c, V, P ∧ Q0 ∧ Q1 ∧ . . . ∧ Qj〉. This simulation
therefore respects the invariant at time instances m ≤ j as Θ′ ⊆ 〈c, V, P ∧ Qm〉.
Therefore the simulation x0, x1, . . . , xj is indeed a valid simulation.

Discussion: Theorems 2 and 1 establish that the reachable set returned by Algo-
rithm2 only contains all the states that are reachable by a simulation that
respects the invariant. One potential drawback of the constraint propagation
is that the number of clauses can increase linearly with the number of steps
in the simulation. We mitigate this by performing three optimizations. First,
we do not add any constraints if Reachi ⊆ Inv(l) because in such instances
P ⇒ Qi. Second, a constraint Qi is added to the list of constraints only if it is
strictly stronger than the existing constraints. Formally, Qi is added if and only
if ¬(P ∧Q0∧Q1∧ . . .∧Qi−1 ⇒ Qi). Third, we remove the redundant constraints,
i.e., a constraint Qj is dropped from the list if (P

∧i�=j
i=1...k Qi) ⇒ Qj . In practice,

we observe that these optimizations drastically reduce the number of constraints
to an almost constant.

4 Discrete Transitions and Reachable Set Computation

In this section, we discuss computing the simulation-equivalent reachable set for
a given hybrid automaton across discrete transitions.

4.1 Guards

Algorithm 3, which computes the set of states obtained after a discrete transition
takes an input the set of reachable states computed by Algorithm1 (which does
not take into account the invariant), and the list of constraints that needed to be
added to predicates for respecting the invariants ConstraintsList computed by
Algorithm 2. The algorithm for checking discrete transition does not consider the
first element R0 in the sequence R0, R1, . . . , Rk. This is because the simulations
generated enforce that at least a minimum time h is spent in each mode of the
hybrid automaton. Given 1 ≤ i ≤ k, the set of state in Ri that can be reached
by simulations that respect the invariants for time instances 0, 1, . . . , i − 1 is
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Input : Reachable set R obtained from Algorithm 1, List of constraints
ConstraintsList from Algorithm 2

Output: NextReach, a list of stars that take the discrete transition.

ConstraintsList
Δ
= Q0, Q1, . . . , Qk; R

Δ
= R0, R1, . . . , Rk;1

NextReach ← ∅;2

for each i from 1 to k do3

Ri = 〈ci, Vi, P 〉 ← R[i];4

R′
i ← 〈ci, Vi, P ∧ Q0 ∧ . . . ∧ Qi−1〉;5

for each guard Ga for a discrete transition a do6

if Ga ∩ R′
i 
= ∅ then7

append R′
i ∩ Ga to NextReach;8

end9

end10

end11

return NextReach;12

Algorithm 3. Computing the states after discrete transitions.

computed by adding the constraints Q0, Q1, . . . , Qi−1 to the predicate. This
new set is assigned as R′

i in line 5. Notice that the number of constraints added
for Ri does not include Qi. This is because the discrete transition can be taken
even when the state does not satisfy the invariant of the current location. The
correctness of Algorithm 3 is given in Theorem 3

Theorem 3 (Correctness). Given a reachable set R = R0, R1, . . . , Rk

from initial set Θ computed by Algorithm1, and the list of constraints
Q0, Q1, . . . , Qk computed by Algorithm2, the following statements about
NextReach returned by Algorithm3 are true.

1. ∀S ∈ NextReach,∀x ∈ S, ∃ρ = x0, x1, . . . , xm, x such that x0 ∈ Θ and ρ is a
valid simulation.

2. For any valid simulation ρ = x0, x1, . . . , xm, xm+1 starting from Θ, such that
∀0 ≤ i ≤ m,xi ∈ Inv, and xm+1 ∈ Ga, ∃R ∈ NextReach such that xm+1 ∈ R.

Proof. Consider S ∈ NextReach and x ∈ S, we have that ∃R0, R1, . . . , Rm, Rm+1

and constraints Q0, Q1, . . . , Qm+1 such that S = 〈cm+1, Vm+1, P ∧Q0∧. . .∧Qm〉.
Therefore, it follows that x ∈ 〈cm+1, Vm+1, P ∧ Q0 ∧ . . . ∧ Qm〉, therefore, there
exists a simulation x0, . . . , xm, x such that 0 ≤ i ≤ m,xi ∈ Inv. and x0 ∈ Θ.

Next, consider a simulation ρ = x0, x1, . . . , xm, xm+1, where ∀0 ≤ i ≤ m,xi ∈
Inv, xm+1 ∈ Ga for some a, it follows that xi ∈ 〈ci, Vi, P ∧ Q0 ∧ . . . ∧ Qi〉.
Hence xm+1 ∈ 〈cm+1, Vm+1, P ∧ Q0 ∧ . . . ∧ Qm〉. From Algorithm 3, it follows
that 〈cm+1, Vm+1, P ∧ Q0 ∧ . . . ∧ Qm〉 ∈ NextReach. Therefore ∃R ∈ NextReach
such that xm+1 ∈ R.

4.2 Algorithm for Computing Simulation-Equivalent Reachable Set

Algorithm 4 that computes the simulation-equivalent reachable set for hybrid
automata uses Algorithms 2 and 3 as sub-routines for handling invariants and
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input : Initial set Θ, Hybrid automaton H, Time bound k · h, Unsafe locations U .

output : ReachSet as the set of reachable states.
queueStars ← ∅; append Θ to queueStars; ReachSet ← ∅;1
while queueStars is not empty do2

S ← dequeue(queueStars);3
if S.loc ∈ U then4

return (Unsafe, execution leading to S);5
end6
R ← SimulationsReachableSet(S);7
(R′,ConstraintsList) ← InvariantTrimming(R);8
ReachSet ← ReachSet ∪ R′;9
nextRegions ← discreteTrans(R,ConstraintsList);10
append nextRegions to queueStars;11

end12
return (Safe, ReachSet);13

Algorithm 4. Algorithm that computes bounded time simulation equiva-
lent reachable set.

discrete transitions respectively. The set of initial states for each mode are stored
in the queue called queueStars. The algorithm first computes the reachable set
using n + 1 simulations by calling SimulationsReachableSet (Algorithm 1). Next,
calling the InvariantTrimming procedure (Algorithm 2) uses the invariant of the
mode to return the set of states that respect the invariant (R′) and the corre-
sponding list of constraints for each set in the sequence (ConstraintsList). The
call to discreteTrans then produces the initial states for the next mode, which get
added to queueStars. The correctness of Algorithm 4 follows from the correctness
of Algorithms 2 and 3.

4.3 Aggregation and Deaggregation

A component of many flow-pipe construction methods is the aggregation of states
that result from a discrete transition. This is often necessary because multiple
regions in the reachable set have the guard enabled resulting in several regions
being added to the nextRegions queue. Over multiple discrete transitions, this
can cause an exponential blowup in the number of states in queueStars.

The drawback of aggregation is that it introduces conservativeness in the
reachability analysis. In general, a single convex set cannot exactly capture the
union of two or more convex sets, so an overapproximation of the union is the
only sound option. If the reachable set from an aggregated star reaches an unsafe
mode, the user cannot discern whether this is because of overapproximation due
to aggregation or if it corresponds to an unsafe simulation of the system.

For this reason, we propose a new aggregation and deaggregation approach.
By default, we aggregate all the stars that make a discrete transition into to
the same mode as Sagg and compute the reachable set of Sagg. If Sagg reaches
a state when a guard is enabled, we deaggregate the star by splitting it into
two stars. If Sagg is an aggregation of S1, S2, . . . Sw, then the two new stars are
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aggregations of S1, . . . , Sw/2 and of Sw/2+1, . . . , Sw respectively. This process
can repeat recursively if the new stars intersect the guard.

If m · h time units have elapsed before Sagg reaches a guard, the component
stars skip the first m steps in the reachable set computation and checking for
discrete transitions. This is because if Sagg did not reach any guard until m
steps, then its component stars also did not reach any guard. However, one has
to propagate the constraints from the invariants for all the deaggregated stars.
This approach ensures that whenever a discrete transition is taken, there exists
an unaggregated star for which the discrete transition is enabled. Therefore, if
an unsafe mode is reached, there exists a simulation trace of the system that
starts from initial set and reaches the unsafe mode, thus maintaining simulation-
equivalence.

5 Implementation and Evaluation

The proposed simulation-equivalent algorithm has been implemented in a tool
named HyLAA that is mostly written in Python, although computational
libraries are used which may be written in other languages. Simulations are
performed using scipy’s odeint function, which can handle stiff and non-stiff
differential equations using the FORTRAN library odepack’s lsoda solver. Lin-
ear programming is performed using the GLPK library, and matrix operations
are performed using numpy. HyLAA can produce static visualizations of the
reachable set and live animations during the reachable set computation (that
can be exported as videos) using matplotlib. The following experiments were
performed using the model generation capability within the Hyst [7] tool, and
hypy [8] was used to script together the the model generation with the tool exe-
cution. The measurements were performed using a 2.30 GHz Intel i5-5300U CPU
with 16 GB RAM.

5.1 Scalability

We performed scalability measurement on a replicated version of the helicopter
benchmark available on SpaceEx website1. This model consists of a 28 dimen-
sional helicopter plus controller system, along with a time dimension. We used
the x8 over time large variant of the benchmark, considering the same initial
states, step size, and time bound.

We emphasize that we tried to explicitly control for the accuracy of the result
in the comparison, which is not straightforward as different approaches use dif-
ferent parameters. From a preliminary analysis, we observed the x8 variable
always stays below 0.45, so we used this as a metric for accuracy. By adding
a transition to unsafe mode if x8 ≥ 0.45, we tuned tool parameters until the
condition was on the verge of being violated. For SpaceEx [23], we found that
a flowpipe-tolerance of 0.0304 was safe for the stc scenario [22], whereas

1 http://spaceex.imag.fr/news/helicopter-example-posted-39.

http://spaceex.imag.fr/news/helicopter-example-posted-39
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Fig. 4. Plots of x8 over time for the helicopter system show the selected accuracy
settings result in similar plots. This remained true for replicated variants.

0.5222 was safe for the supp scenario [28]. Furthermore, increasing these para-
meters by 0.0001 would cause forbidden error states to be reached. We also
attempted to use Flow*’s [12] linear ODE mode, although failed to find a set
of parameters for which the accuracy condition was satisfied. For HyLAA, we
used the default simulation parameters used by odeint, absolute tolerance and
relative tolerance of 1.49 · 10−8, and no error states were reached. Then, for the
actual runtime measurements, we removed the error states while keeping each
tool’s accuracy parameters. This results in a plot of the reachable set of states
that is qualitatively similar, as shown in Fig. 4.

We replicated the 28-dimensional helicopter multiple times within the same
model, and measured the runtime of the reachability computation. The results
are shown in Fig. 5. The simulation-equivalent approach outperforms the two
SpaceEx scenarios on this model, and is capable of analyzing a 449 dimensional
system (16 replicated helicopters plus time) in under a minute, and a system
with 1009 dimensions (36 helicopters) in about 10 min. It is important to be
aware that SpaceEx’s analysis is a guaranteed overapproximation (subject to
floating-point error), whereas HyLAA’s correctness is subject to the accuracy of
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the underlying simulations, and only reasons about states at exact multiples of
the time step.

5.2 Invariant Constraint Propagation

We next provide a simple evaluation of the importance of invariant constraint
propagation as well as our proposed optimization. Consider a 2-D harmonic
oscillator, a single-mode system with ẋ = y and ẏ = −x. Trajectories of this
system rotate clockwise around the origin. The initial set of states are x ∈
[−6,−5] and y ∈ [0, 0.1], and the invariant is 0 ≤ y ≤ 5.1.

This system is designed so that most of the trajectories actually get trimmed
away because of the invariant. Reachability analysis of this system was per-
formed using SpaceEx’s stc scenario, Flow*, and HyLAA, and is shown in
Fig. 6. Here, SpaceEx removes states which violate the invariant after comput-
ing states reachable by the continuous dynamics, which is sound, but results in
an overapproximation. Flow* uses domain contraction of Taylor models [12] to
trim invariant-violating states, and its result appears correct. HyLAA performs
invariant constraint propagation, and also produces a correct result. The table
shows the number of constraints in the final star when using HyLAA, with and
without the invariant constraint trimming optimization.

Fig. 6. The harmonic oscillator system with invariant 0 ≤ y ≤ 5.1 demonstrates the
benefit of invariant constraint propagation.

5.3 Successor Deaggregation

We next consider a benchmark which models the effects of backlash on an auto-
motive drivetrain system [3,27]. This a 7-dimensional linear system, which can
be scaled as large as desired by adding additional rotating masses, each of which
adds two dimensions to the system. The model has a PID controller and the
reference input is changed from −5 to 5 at time 0.2. We add a time dimension to
generate the reference input, bringing the number of dimensions to 8+2θ where
θ is the number of additional masses. This model was specifically designed to
stress guard intersection, and SpaceEx was noted as not being able to finish on
smallest version of the benchmark, without shrinking the initial set to 5% of its
original size.
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Fig. 7. Projections of x3 versus x1 for the 10-dimensional drivetrain system. While
complete aggregation fails to complete for this model, using deaggregation produces a
similar plot to the unaggregated method in less time. (Color figure online)

Plots of the reachable set of states are shown in Fig. 7 for θ = 1. The system
starts in the NegAngle mode (green). After 0.2 s, the reference trajectory changes
from −5 to 5 (cyan). Then, the system’s trajectories reach the DeadZone mode
(orange), and finally end in the PosAngle mode (magenta). Similar to SpaceEx,
HyLAA did not complete reachable set computation with full aggregation (with-
out deaggregation). The reason is that aggregation introduces overapproximation
error which leads the approach to examine states that are not actually reachable.
In this system, the aggregated star introduces new spurious discrete transitions
from the DeadZone mode back to the NegAngle mode, leading to additional error
when further discrete transitions are taken. Essentially, the computation explores
spurious sequences of discrete transitions. The deaggregation method, however,
splits aggregated states upon reaching a discrete transition, ensuring that every
sequence of modes explored corresponds to a true simulation of the system. The
result is closer to the exact unaggregated case, although using less computation
time. A video of HyLAA’s visualization of this computation is available online2.

To evaluate the effect of the deaggregatation approach, Table 1 shows the
runtime as we increased the number of rotating masses. Notice that times can
actually go down for some higher-dimensional versions of the benchmark, as the
extra rotating masses can cause the generalized star to cross the guard boundary
at a more orthogonal angle, reducing the number of stars in the successor mode.

2 http://stanleybak.com/hylaa/.

http://stanleybak.com/hylaa/
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For example, in the unaggregated 10-d case, there are 24 successor stars after
the second guard, compared with 13 successor stars in the 12-d case. Generally,
deaggregation provides improvement over no aggregation, although the benefits
are reduced in higher dimensions. This is because in these cases even a small
amount of aggregation often causes enough error to reach new locations, resulting
in immediate splitting of the aggregated star, which shows the importance of
finding good template directions for aggregation [11].

Table 1. Drivetrain benchmark runtimes.

# Dims 10 12 14 16 18 20 24 30 42

Deaggregated 25.70 44.94 24.71 131.82 47.72 267.71 450.42 331.57 516.21

Unaggregated 112.94 79.24 98.63 145.87 214.80 409.55 561.47 384.55 672.60

6 Conclusion

In this paper, we introduced the notion of simulation-equivalent reachability
analysis, and provided a sound and complete algorithm for its computation. We
do not believe this type of approach is at odds with traditional hybrid automata
reachability computation, as the goal for both methods is to improve the state
of practice of system design from an incomplete analysis based on simulations
towards more rigorous approaches. Furthermore, the proposed enhancements,
the elimination of accumulated invariant constraints and on-demand successor
deaggregation, may be applied to both methods.

The advantage of the simulation-equivalent approach is increased scalability,
which makes it applicable to larger CPS models. Furthermore, the approach and
tool implementation generate concrete traces whenever a simulation can violate
the system specification, making it useful to system engineers who may not have
a formal methods background.
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Abstract. HARE (Hybrid Abstraction-Refinement Engine) is a coun-
terexample guided abstraction-refinement (CEGAR) based tool to verify
safety properties of hybrid automata, whose continuous dynamics in each
mode is non-linear, but initial values, invariants, and transition relations
are specified using polyhedral constraints. HARE works by abstracting
non-linear hybrid automata into hybrid automata with polyhedral inclu-
sion dynamics, and uses dReach to validate counterexamples. We show
that the CEGAR framework forming the theoretical basis of HARE, makes
provable progress in each iteration of the abstraction-refinement loop.
The current HARE tool is a significant advance on previous versions of
HARE—it considers a richer class of abstract models (polyhedral flows
as opposed to rectangular flows), and can be applied to a larger class of
concrete models (non-linear hybrid automata as opposed to affine hybrid
automata). These advances have led to better performance results for a
wider class of examples. We report an experimental comparison of HARE
against other state of the art tools for affine models (SpaceEx, PHAVer,
and SpaceEx AGAR) and non-linear models (FLOW*, HSolver, and C2E2).

1 Introduction

Abstractions play an important role in the verification of cyber-physical sys-
tems, where complex continuous dynamics are abstracted into simpler dynamics
that are amenable to automated analysis. This is because the general prob-
lem of safety verification is undecidable even for very simple class of contin-
uous dynamics [2,4,20,25,32]. The success of the abstraction based method
depends on finding the right abstraction, which can be difficult. One app-
roach that tries to address this issue is the counter example guided abstrac-
tion refinement (CEGAR) framework [9] that tries to automatically discover
the right abstraction through a process of progressive refinement based on
analyzing spurious counter examples in abstract models. CEGAR has been
found to be useful in a number of contexts [6,12,21,22], including hybrid sys-
tems [3,10,11,14,17,23,30,31].
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In this paper, we present the tool HARE, which is a CEGAR based tool for
safety verification of hybrid automata with non-linear hybrid systems. The input
to HARE is the parallel composition of one or more hybrid automata, where the
continuous dynamics in each control mode is described by non-linear ordinary
differential equations, while the initial values, invariants, and transition rela-
tions are specified using polyhedral constraints. HARE abstracts such models into
hybrid automata with polyhedral inclusion dynamics, i.e., in the abstract model,
in each mode, the derivative of the continuous variables with respect to time is
constrained to belong to a polyhedral set. In this sense, HARE is different from the
other CEGAR based tool for non-linear hybrid systems, namely, HSolver [28],
which abstracts hybrid automata by finite discrete transition systems. To per-
form validation of counter examples, HARE uses dReach and the δ-satisfiability
procedure of dReal.

The tool described in this paper, is a significant improvement over the version
reported in [29]. First, the old version only verified affine hybrid automata. The
new version also considers non-linear dynamics. Second, the old version used
rectangular automata to abstract concrete models. The new version uses poly-
hedral hybrid automata. We have observed a marked improvement in running
time due to the change in abstract models—there are fewer refinement iterations
on many examples because of the use of polyhedral hybrid automata. Third, the
tool has been made robust. The implementation has migrated to C++ from Scala
to improve its running time. We have changed some of the 3rd party tools that
HARE uses internally. All these changes have enabled HARE to handle a larger class
of examples (including more affine hybrid automata), with a faster running time
(see results reported in Sect. 6). We have compared the performance of HARE
against a number of state of the art model checkers for affine hybrid automata
and non-linear hybrid automata— SpaceEx [19], PHAVer [18], SpaceEx AGAR [7],
HSolver [28], C2E2 [16], and FLOW* [8]. We also compare against the old version
of HARE [29]. We show that the new tool successfully proves safety when the
others fail, and the running time is comparable to the other tools (see Sect. 6).
A virtual machine for the new HARE, along with examples and scripts can be
downloaded from https://uofi.box.com/v/HARE.

The rest of the paper is organized as follows. We introduce basic definitions
and notation in Sect. 3. Our CEGAR framework, algorithms for abstraction,
counter example validation, and refinement, that form the theoretical basis for
HARE, are described in Sect. 4. The tool architecture and its internals are pre-
sented in Sect. 5, and Sect. 6 reports our experimental results.

2 Related Work

Doyen et al. consider rectangular abstractions for safety verification of affine
hybrid systems in [15]. However, their refinement is not guided by counter
example analysis. Instead, a reachable unsafe location in the abstract system is
determined, and the invariant of the corresponding concrete location is split to
ensure certain optimality criteria on the resulting rectangular dynamics. This,

https://uofi.box.com/v/HARE
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in general, may not lead to abstract counter example elimination, as in our
CEGAR algorithm. We believe that the refinement algorithms of the two papers
are incomparable—one may perform better than the other on certain exam-
ples. Empirical evaluations could provide some insights into the merits of the
approaches, however, the implementation of the algorithm in [15] was not avail-
able for comparison at the time of writing the paper.

Bogomolov et al. consider polyhedral inclusion dynamics as abstract models
of affine hybrid systems for CEGAR in [7]. Their abstraction merges the loca-
tions, and refinement corresponds to splitting the locations. Hence, the CEGAR
loop ends with the original automaton in a finite number of steps, if safety is not
proved by then. Our algorithm splits the invariants of the locations, and hence,
explores finer abstractions. Our method is orthogonal to that of [7], and can be
used in conjunction with [7] to further refine the abstractions.

Nellen et al. use CEGAR in [26] to model check chemical plants controlled
by programmable logic controllers. They assume that the dynamics of the sys-
tem in each location is given by conditional ODEs, and their abstraction con-
sists of choosing a subset of these conditional ODEs. The refinement consists of
adding some of these conditional ODEs based on an unsafe location in a counter
example. The method does not ensure counter example elimination in successive
iterations. Their prototype tool does not automate the refinement step, in that
the inputs to the refinements need to be provided manually. Hence, we did not
experimentally compare with this tool.

Zutshi et al. propose a CEGAR-based search in [33] to find violations of safety
properties. Here they consider the problem of finding a concrete counter example
and use CEGAR to guide the search of the same. We instead use CEGAR to
prove safety—the absence of such concrete counter examples.

3 Preliminaries

Numbers. Let N, Q, and R denote the set of natural, rational, and real num-
bers, respectively. Similarly, N+, Q+, and R+ are respectively the set of pos-
itive natural, rational, and real numbers, and Q≥0 and R≥0 are respectively
the set of non-negative rational and real numbers. For any n ∈ N we define
[n] = {0, 1, . . . , n − 1}.

Sets and Functions. For any sets A and B, |A| is the size of A (the number
of elements in A), 2A is the power set of A, A × B is the Cartesian product of
A and B, and BA (similarly A → B) is the set of all functions from A to B. In
order to make the notations simpler, for any n,m ∈ N, by An and An×m, we
mean A[n] and A[n]×[m]. The latter represents matrices of dimension n×m with
elements from A. For any f ∈ A → B and set C ⊆ A, f(C) = {f(c) | c ∈ C}.
Similarly, for any π = a1, a2, . . . , an, a sequence of elements in A, we define f(π)
to be f(a1), f(a2), . . . , f(an).

Polytopes. For any set of variables X, a function c ∈ R
X, and a constant b ∈ R,

Σx∈Xcxx ≤ b is an affine constraint over the variables in X. A polyhedron is a
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conjunction of finite number of affine constraints. Every polyhedron P over X,
defines a set of points in R

X, namely the set of points that satisfy all constraints
of P . We only consider non-strict inequalities, therefore P always defines a closed
set. For any point ν ∈ R

X, ν ∈ P means ν satisfies all the constraints in P . A
polyhedron that defines a bounded set is called polytope. We denote the set of
all polytopes over X by P

X.

3.1 Hybrid Automata

In this section, we present hybrid automata models for representing concrete
and abstract hybrid systems.

Definition 1 (Hybrid Automata). A hybrid automata H is a tuple (Q, X, I, F,
E, Qinit, Qbad) in which

– Q is a non-empty finite set of locations.
– X is a non-empty finite set of variables. We let V := R

X be the set of all possible
valuations of variables in X. We also let X′ to be the set of primed variables
(X ∩ X′ = ∅ and |X| = |X′|). For every variable x ∈ X we use x′ to denote the
corresponding variable in X′.

– I ∈ Q −→ P
X maps each location to a polytope over R

X as invariant of that
location.

– F ∈ Q −→ 2V×V maps each location q to the set of possible flows of that location.
Each element in this set is a pair (ν, ν̇). Intuitively it means, if the current
continuous state is ν then ν̇ is a possible direction field.

– E is a set of edges of the form e = (s, d, r) where
• s, d ∈ Q are respectively source and destination of e,
• r ∈ P

X∪X′
specifies relation of valuations before and after taking edge e as

the reset relation.
We let G(e) := ∃X′ • r to be guard of e, as the set of valuations for which the
reset relation is non-empty (note that G(e) can be represented by a polytope in
P
X). We use S(e), D(e) and R(e), to denote different elements of guard e.

– Qinit, Qbad ⊆ Q are respectively sets of initial and unsafe locations.

We denote different elements of H by adding a subscript to their names. For
example, we use XH to denote the set of variables of H. We may omit the sub-
script whenever it is clear from the context.

In this paper, we use non-linear hybrid automata to specify a concrete sys-
tem. In this class of automata, for any location q ∈ Q, F(q) is specified by a
continuous (possibly nonlinear) function f of type I(q) −→ V. More precisely,
F(q) := {(ν, f(ν)) | ν ∈ I(q)}. Therefore, F(q) defines exactly one direction for
any valuation in the invariant of that location. We abuse the notation and write
F(q) = f when it causes no confusion. Next, in this paper, we use polyhe-
dral hybrid automata to specify abstract systems. In this class of automata,
for any location q ∈ Q, F(q) is specified by a polytope P ∈ P

X. More precisely,
F(q) := {(ν, ν̇) | ν ∈ I(q) ∧ ν̇ ∈ P}. Therefore, F(q) is independent of the current
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valuation. We abuse the notation and write F(q) = P when it causes no confu-
sion. Note that affine hybrid automata and rectangular automata which we used
in [29] for specifying concrete and abstract systems, are subclasses of non-linear
automata and polyhedral automata we use in this paper.

The semantics of a hybrid automaton H is defined using an infinite transition
system [[H]] in the usual way. S[[H]] := Q × V is the state set of [[H]]. For any two

states (q1, ν1), (q2, ν2) ∈ S[[H]], we write (q1, ν1)
t−→ (q2, ν2) iff q1 = q2 and ν1 goes

to ν2 at non-negative time t according to the continuous dynamics of location
q1. We also write (q1, ν1)

e−→ (q2, ν2) iff q1 and q2 are source and destination of
the edge e and ν1 and ν2 satisfies invariants of source and destination locations
as well as the transition relation. Finally, we use Sinit[[H]] and Sbad[[H]] to refer to the set
of initial and unsafe states respectively.

A trajectory is a sequence τ = s0, (t0, e0), s1, (t1, e1), s2, (t2, e2), . . . , sn such
that for any i < n there is a state s′

i such that si
ti−→ s′

i
ei−→ si+1. We define τ0

to be the initial state s0 and τlst to be final state sn. For any hybrid automaton
H, the reachability problem asks whether or not H has a trajectory τ such that
τ0 ∈ Sinit[[H]] and τlst ∈ Sbad[[H]]. If the answer is positive, we say the H is unsafe.

Otherwise, we say the H is safe.
For any hybrid automaton H, set of states S ⊆ S[[H]], and edge e ∈ EH we

define the following functions:

– dposteH(S) = {s′ | ∃s ∈ S • s
e−→ s′}. Discrete post of S in H with respect to

e is the set of states reachable from S after taking e.
– dpree

H(S) = {s | ∃s′ ∈ S • s
e−→ s′}. Discrete pre of S in H with respect to e is

the set of states that can reach a state in S after taking e.
– cpostH(S) = {s′ | ∃s ∈ S, t ∈ R≥0 • s

t−→ s′}. Continuous post of S in H is the
set of states reachable from S in an arbitrary amount of time using dynamics
specified for the source locations.

– cpreH(S) = {s | ∃s′ ∈ S, t ∈ R≥0 • s
t−→ s′} Continuous pre of S in H is the

set of states that can reach a state in S in an arbitrary amount of time using
dynamics specified for the source locations.

4 CEGAR Algorithm for Safety Verification of Non-linear
Automata

Every CEGAR-based algorithm has four main parts [9]: 1. abstracting the con-
crete system, 2. model checking the abstract system, 3. validating the abstract
counter example, and 4. refining the abstract system. We explain parts of our
algorithm regarding each of these parts in this section. Algorithm1 shows at a
very high level what the steps of our algorithm are.
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Algorithm 1. High level steps of our CEGAR algorithm
Input: C a non-linear automaton � C is called concrete hybrid automaton. Def 1
Output: Whether or not C is safe � this is the reachability problem.
1. Add a self-loop to every location of C
2. P ← the initial partition of invariants in C � Sec 4.1
3. A ← α(C, P ) � A is called abstract hybrid automaton. Def 3
4. τ = OPoly(A) � OPoly model checks polyhedral automata. Sec 4.2
5. � τ is an annotated counter example. Sec 4.2
6. while τ �= ∅ do � while abstract system is unsafe
7. if τ is valid in C then return ‘unsafe’ � Sec 4.3
8. (q, p) ← abstract location that should be split � Sec 4.3
9. p1, p2 ← sets that should be separated in (q, p) � Sec 4.3

10. refine P (q) such that p1 and p2 gets separated � Sec 4.3
11. A ← α(C, P ) � Sec 4.1
12. τ = OPoly(A) � Sec 4.2
13. end while
14. return ‘safe’

For technical reasons (see Sect. 4.1 of [29]), we assume that in the concrete
hybrid automaton, each location has a self loop transition that ensures that
the duration between successive discrete steps is bounded. This assumption also
makes defining the refinement step technically easier.

4.1 Abstraction

Input to our algorithm is a non-linear automaton C which we call the concrete
hybrid automaton. The first step is to construct an abstract hybrid automaton A
which is a polyhedral automaton. The abstract hybrid automaton A is obtained
from the concrete hybrid automaton C, by splitting the invariant of any location
q ∈ QC into a finite number of cells of type PX and defining an abstract location for
each of these cells which over-approximates the non-linear dynamics in the cell
by polyhedral dynamics. Definitions 2 and 3 formalizes the way an abstraction A
is constructed from C. Note that the construction guarantees that the behavior
of A over-approximates behavior of C and therefore if A is found to be safe, C is
guaranteed to be safe as well.

Definition 2 (Invariant Partitions). For any hybrid automaton C and func-
tion P ∈ Q → 2P

X

we say P partitions invariants of C iff the following conditions
hold for any location q ∈ Q:

–
⋃

P (q) = I(q), which means union of cells in P (q) covers invariant of q.
– For any p1, p2 ∈ P (q), p1 
= p2 implies p1 and p2 have disjoint interior1.

Definition 3 (Abstraction Using Invariant Partitioning). For any non-
linear automaton C and invariant partition P ∈ Q → 2P

X

, α(C,P ) returns poly-
hedral automaton A which is defined below:

– QA = {(q, p) | q ∈ QC ∧ p ∈ P (q)}, – XA = XC,
– QinitA =

{
(q, p) ∈ QA | q ∈ QinitC

}
, – IA((q, p)) = p,

1 Interior of a polytope is obtained by making all its corresponding constraints strict.
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– QbadA = {(q, p) ∈ QA | q ∈ QbadC },
– EA = {((s, p1), (d, p2), g, j, r) | (s, d, g, j, r) ∈ EC ∧ (s, p1), (d, p2) ∈ QA}, and
– FA((q, p), ν) = polyhull(

⋃
ν∈p FC(q, ν)), where for any bounded set S ⊂ R

X,
polyhull(S) is a polytope W such that ∀ν ∈ S • ν ∈ W and for any sequence
of bounded sets S1, S2, . . ., if the maximum distance of any two points in Sn

converges to 0 then the maximum distance of any two points in the image of
this sequence under polyhull converges to 0 as well.

In addition, we define function γA to map 1. every state in [[A]] to a state in
[[C]], and 2. every edge in EA to an edge in EC. Formally, for any s = ((q, p), ν) ∈
S[[A]] and e = ((q1, p1), (q2, p2), r) ∈ EA, we define γA(s) to be (q, ν) and γA(e) to
be (q1, q2, r).

When FC(q) is an affine dynamic, there is unique minimum polytope for
FA((q, p)) that can be constructed exactly and efficiently. However, if the con-
crete flow is non-linear, abstraction even using the minimum rectangular hull
might be very expensive. In our current implementation, when the flow is non-
linear, we first find the rectangular hull for IC(q) and then use interval arithmetic
to find a rectangular set that contains FA((q, p)) as specified in Definition 3.

4.2 Counter Example and Model Checking Polyhedral Automata

After an abstract hybrid automaton is constructed (initially and after any refine-
ment), we have to model check it. In this section we define the notion of a counter
example and annotation of a counter example, which we assume is returned by
the abstract model checker OPoly when it finds that the input hybrid automaton
is unsafe.

Definition 4. For any hybrid automaton H, a counter example is a path
e1, . . . , en such that Se1 ∈ Qinit and Den ∈ Qbad.

Definition 5. A counter example π is called valid in H iff H has a trajectory τ
and τ has the same sequence of edges as π. A counter example that is not valid
is called spurious.

Definition 6. An annotation for a counter example π = e1, . . . , en of hybrid
automaton H is a sequence τ = S0 −→ S′

0
e1−→ S1 −→ S′

1
e2−→ · · · en−→ Sn −→ S′

n such
that the following conditions hold:

1. ∀0 ≤ i ≤ n • ∅ 
= Si, S
′
i ⊆ S[[H]],

2. ∀0 ≤ i ≤ n • Si = cpreH (S′
i),

3. ∀0 ≤ i < n • S′
i = dpre

ei+1
H (Si+1),

4. S′
n = Sbad[[H]] ∩ ({Den} × VH).

Condition 1 means that each Si and S′
i in τ are a non-empty set of states.

Conditions 2 and 3 mean that sets of states in τ are computed using backward
reachability. Finally, condition 4 means that S′

n is the set of unsafe states in
destination of en. Note that these conditions completely specify S0, . . . , Sn and
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S′
0, . . . , S

′
n from e1, . . . , en and H. Also, every Si and S′

i is a subset of states
corresponding to exactly one location.

In this paper, we assume to have access to an oracle OPoly that can correctly
answer reachability problems when the hybrid automata are restricted to be
polyhedral automata. If no unsafe location of A is reachable from an initial
location of it, OPoly(A) returns ‘safe’. Otherwise, it returns an annotated counter
example of A.

i-1

ε

γi i+1

Fig. 1. Validation and refinement. There are three locations: i − 1, i, and i + 1. Si+1

and S′
i are elements of annotated counter example τ . R′

i−1, Ri, and cpostC(Ri) are
computed when τ is validated. i is the smallest index for which cpostC(Ri) and γA(S′

i)
are separated. Hence we need to refine A in location i. Refinement should be done in
such a way that for the result of refinement A′ we have cpostA′(γ−1

A′ (Ri))∩γA′(S′
i) = ∅

(γ−1 is the preimage of γ).

4.3 Validating Abstract Counterexamples and Refinement

For any invariant partition P and non-linear automaton C, if OPoly(A) (for A =
α(C, P )) returns ‘safe’, we know C is safe. So the algorithm returns C is ‘safe’
and terminates. On the other hand, if OPoly finds A to be unsafe it returns an
annotated counter example τ of A. Since A is an over-approximation of C, we
cannot be certain at this point that C is also unsafe. More precisely, if π is the
path in τ , we do not know whether γA(π) is a valid counter example in C or it is
spurious. Therefore, we need to validate τ in order to determine if it corresponds
to any actual run from an initial location to an unsafe location in C.

To validate τ , an annotated counter example of A = α(C,P ), we run τ on C.

More precisely, we create a sequence τ ′ = R0 −→ R′
0

e′
1−→ R1 −→ · · · e′

n−→ Rn −→ R′
n

where

1. e′
i = γA(ei),

2. R0 = γA(S0),
3. R′

i = cpostC(Ri) ∩ γA(S′
i),

4. Ri = dpost
e′
i

C (R′
i−1) ∩ γA(Si).

We proved the following proposition and lemma in [29].

Proposition 7. R′
n = ∅ in τ ′ implies there exists i such that 1. R′

i = ∅, 2.
Ri 
= ∅, 3. ∀j < i • Rj , R

′
j 
= ∅, and 4. cpostC(Ri) and γA(S′

i) are nonempty
disjoint sets.
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Lemma 8. The counter example π′ = e′
1, . . . , e

′
n of C is valid iff R′

n 
= ∅.
Refinement. Suppose the counterexample τ is spurious. There is a smallest index
i such that R′

i = ∅. We will refine the location (q, p) = Dei of A by refining
its invariant p. We know from Proposition 7, cpostC(Ri) ∩ γA(S′

i) = ∅. How-
ever, the corresponding sets in the abstract system A are not disjoint, that is,
cpostA(γ−1

A (Ri)) ∩ S′
i 
= ∅ (γ−1 is the preimage of γ). Our refinement strat-

egy is to find a partition for the location (q, p) such that in the refined model
R = α(C, P ′) (for some P ′), S′

i is not reachable from Ri (Fig. 1). Let us denote by
Cq,p the restriction of C to the single location q with invariant p, i.e., Cq,p has only
one location q whose flow and invariant is the same as that of (q, p) in A, and
only transitions whose source and destination is q. We will say that an invariant
partition Pr of Cq,p separates Ri from S′

i iff in the automaton A1 = α(Cq,p, Pr),
reachA1(γ

−1
A1

(Ri)) ∩ γ−1
A1

(γA(S′
i)) = ∅. In other words, the states corresponding

to S′
i in A1 are not reachable from γ−1

A1
(Ri) in A1. Our refinement strategy will

refine A by partitioning the control location (q, p) by the invariant partition Pr.
Using results from [27], we observed [29] that such a partition Pr always exists.
We also showed that such a refinement strategy ensures that any abstract counter
example appears only finitely many times in the CEGAR loop.

The previous discussion, relies on the fact that we can compute cpost(.)
exactly. Unfortunately this is not possible for the class of hybrid automaton
we are considering. We use δ-complete decision procedures available through
dReach and dReal to check whether R′

n will be empty for some n. If dReach
returns unsat, we know the R′

n = ∅, and we can conclude that the counter
example is spurious. However, if dReach returns δ-sat, we know δ-perturbation
of the syntax of the formula defining R′

n makes it satisfiable. But this does not
imply that R′

n itself isnon-empty. Hence, it is possible that because of our use of
dReach for counter example validation, we may not be able to detect spurious
counter examples.

5 Tool’s Architecture

Figure 2 shows the flow and architecture of HARE. It also identifies 3rd party
libraries/tools that are internally used by HARE at different steps. We use Z3 [13]
to check if a fix-point is reached in the abstract system model-checking, and also
to check whether an unsafe state is reached. We use Boost Interval Arithmetic
Library (IAL) [1] to abstract non-linear dynamics. We use dReach to validate
a counter example (the validation a counter example of length n involves at
most n invocations of dReach). Note that dReach calls dReal, internally. Also,
dReach/dReal are not available in the form of libraries. Therefore, HARE executes
dReach as a separate process and communicates with it through files. Finally,
we use Parma Polyhedra Library (PPL) [5] to manipulate symbolic abstract
states. This includes, computing discrete/continuous abstract posts, constructing
annotated counter examples, finding rectangular hull of a polytope, abstracting
affine flows, and checking if a parallelly composed location/edge has non-empty
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Counter Example Validation
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Fig. 2. Flow chart of HARE’s CEGAR loop

invariant/transition relation. Compared to the old version of HARE in [29], we
have replaced SpaceEx with dReach, since SpaceEx does not support non-linear
dynamics. Also, we have implemented everything in C++ instead of Scala to
improve performance.

The abstract model checker in HARE has a parameter direction with pos-
sible values forward and backward. It specifies whether the tool should per-
form forward or backward reachability. But PPL can only compute cpost and
not cpre. This is the reason for the step “Reverse Time If Necessary”. There is
an optional integer parameter max-iter for each of the abstract and concrete
model checkers. If the maximum number of iterations is reached in the abstract
model checker, it returns bounded-safe as an answer. If abstract model checker
returns this answer to the concrete model checker, abstract bounded safe
will be returned as a result. If the maximum number of iterations is reached in
the concrete model checker, it returns unknown as the answer. In addition to
Safe or Unsafe, the user can also ask HARE to produce a counter-example, an
annotated-counter-example, or the reachable-set. Clearly, the first two will
only be produced if the system is found to be unsafe and the last one will only
output the abstract reachable states. Note that abstract model checker can be
directly called by user.

The model to be checked along with all the options for the model checker
are specified in a single human readable text file according to INFO Parser from
Boost Property Tree Library [24]. Every model, contains one or more hybrid
automata and the safety problem is considered for their parallel composition
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which is constructed on the fly. Continuous variables can be read by all hybrid
automata. If the file specifies polyhedral automata, each hybrid automaton can
write to all variables through transition relations and flow. On the other hand,
if the file specifies a non-linear automaton, different hybrid automata can still
write to a common variable through transition relations, but flow of a variable
should be defined in exactly one hybrid automaton. Initial and unsafe states
are specified after all hybrid automata using zero or more polyhedra for each
composed location. Each edge has an optional label. If it is specified, it means
that edge must be synced with an edge from other hybrid automata in the file.
Otherwise, it will be interleaved. If a specified label does not end with ‘?’, ‘!’,
or ‘!!’, synchronization will be among all hybrid automata in the file (i.e. each
hybrid automaton must take an edge with the exact same label). Characters ‘?’,
‘!’, and ‘!!’ are used to specify input/output hybrid automata, where ‘?’ is for an
input edge, ‘!’ is for an output edge, and ‘!!’ is for a broadcast edge. Character
‘*’ at the beginning of a location name means that location is transient and time
cannot pass inside that location. Allowing transient locations in the model has
three benefits 1. neither abstract nor concrete model checker will waste time by
computing continuous post in transient locations, 2. the result automata will
have one less variable, and 3. the model will be easier to understand. Finally,
the current interface to the tool is only through the command line.

6 Experimental Results

The new version of HARE is available from https://uofi.box.com/v/HARE;
the old version of the tool can be downloaded from https://uofi.box.com/
cegar-hare-tacas-2016. Examples and scripts for running the examples can also
be found on the links. Both these links contain a virtual machine to make
repeatability straightforward.

We have run HARE with different set of examples with both affine and non-
linear dynamics. Brief explanations of the affine benchmarks can be found in [29].
Table 1 contains the results for the affine examples. We compare the performance
of HARE, its old version in [29], SpaceEx [19], PHAVer [18], and SpaceEx AGAR [7]s2.
The first two tools are affine hybrid automata model checkers that are not
CEGAR based, while the last is a CEGAR based tool for concurrent hybrid
automata3. In the past [29], we also reported the performance of HSolver [28]
on affine examples. However, since it performed poorly on affine examples, we
have not included it for comparison in Table 1.

The new version of HARE proved all examples are safe, while the old version
could not do this for four examples. Also the new version is faster on all examples,
except one. SpaceEx almost never reached a fixed point. PHAVer could prove
safety for only half of the examples, and it did it faster than new version of HARE
in only one case. Abstraction in SpaceEx AGAR appears to be a very expensive
2 By SpaceEx we mean SpaceEx with Supp as its scenario and by PHAVer we mean
SpaceEx with PHAVer as its scenario.

3 It is called “Assume Guarantee Abstraction Refinement” in [7].

https://uofi.box.com/v/HARE
https://uofi.box.com/cegar-hare-tacas-2016
https://uofi.box.com/cegar-hare-tacas-2016
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operation—in four examples, the initial abstraction was not constructed even
after 600 s (10 min) and we terminated the execution. Also, in three examples
we could not find any set of locations that does not cause the tool to crash right
at the beginning. Among 8 examples that worked for SpaceEx AGAR, it could
prove safety for 5 of them and it was always slower than new version of HARE.

Table 1. Comparing HARE with its old version in [29] and other tools for affine dynam-
ics. Dim. is the number of continuous variables. Size is the number of locations/edges
in the input (concrete) model. Iters. is the number of iterations in our CEGAR loop
before proving safety. FP. tells whether or not a tool reached a fixed-point. If a tool
does not reach a fixed-point then even if it says the system is safe, the answer may
not be true. As explained in [29], sometimes SpaceEx tells it reached a fixed-point, but
before that it generates a warning that its result may not be complete. We continue
to consider those cases as SpaceEx has not reached a fixed-point. Merged Locs. is the
number of locations we initially merged for SpaceEx AGAR. Columns old and new for
HARE contain results from the previous and current version of this tool. All times are in
seconds and all examples were run on a laptop with Intel i5 2.50 GHz CPU and 6GB
of RAM.

Table 2 contains results of comparing HARE with C2E2 [16], HSolver [28],
and FLOW* [8] on nonlinear examples. Note that HARE and HSolver support
proving safety for unbounded time and unbounded number of discrete transi-
tions. But both C2E2 and FLOW* require bounded time and bounded number of
discrete transitions. Also none of these two tools check whether the computed
(unbounded) reachable set so far is a fixed-point. Therefore, no matter how big
the time-bound is set, proving safety for this time bound in these tools does
not guarantee unbounded time safety. In our experience, we set the bound for
discrete number of transitions large enough so none of the tools reported maxi-
mum number of discrete transitions are reached. For the first 5 examples, we set
the time bound equal to 1000 in C2E2 and HSolver. For the last example, the
time bound is 10 in all tools. HARE always finished faster than C2E2. On three
examples HARE is faster than FLOW* and only in one example it is slower. On 3
examples HARE proved safety faster than HSolver, and in 2 examples HSolver
was faster. HSolver comes with an example named circuit (not reported in
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Table 2). The size of hybrid automaton in this example is small, but it has con-
stants of the order 1012, which turns out to be too big for C2E2 and dReach and
trigger a bug in these two tools (and hence HARE). Only HSolver proves safety
of this example. Finally, in our experiments, dReach performs much faster for
the affine dynamics. Non-linear examples are also available at link for the new
version of HARE we mentioned earlier.

Table 2. Comparing running time of HARE with other tools for non-linear dynamics.
Dim. is the number of continuous variables. Size is the number of locations/edges in the
input (concrete) model. Reached Abst. Size is the number of locations/edges in the final
abstract model that are reached in HARE right before safety is proved. Time Bound is 10
for the “Sinusoid” model in all four tools. For all the other examples, there is no time
bound in both HARE and HSolver. In other word, HARE and HSolver prove unbounded
time safety for all but the last example. C2E2 and FLOW* on the other hand, require
finite time bound, and we set it to be 1000 (except for the “Sinusoid” model which
is 10). We have terminated all the runs that took more than 600 s (10 min). HSolver
requires bounded invariants. So in the first four examples, we put 100 as an upper
bound and −100 for as a lower bound of unbounded variables. FLOW* does not support
trigonometric functions and C2E2 encounters an internal error on one of the examples.
All times are in seconds and all examples were run on a laptop with Intel i5 2.50 GHz
CPU and 6 GB of RAM.

6.1 Unbounded Invariants

The first 4 examples in Table 2 are taken from C2E2. Tools like C2E2 and FLOW*

that try to compute the reachable set as precisely as possible, tend not to specify
invariants. On the other hand, tools like HARE and HSolver that perform refine-
ment by partitioning the state space tend to require bounded invariants. Another
reason for HARE to prefer bounded invariants is that dReach, which HARE uses
internally, only works for bounded variables. We had a few options to bound
the invariants in those examples. The first option is to bound the invariants
using large enough numbers (just like what we did for HSolver). This means we
are guessing the invariant. If the guessed invariants are all closed sets, one can
verify the guess by setting closure of complement of it as the unsafe states. If
the unsafe states are not reachable then the guess is valid. Note that since HARE
computes over-approximation of unsafe states, it is possible that HARE incor-
rectly says a guessed invariant is invalid. The second option is to first use tools
like C2E2 or FLOW* and find a coarse invariant for all locations. Note that since
these tools have bounded number of discrete transitions and they do not check
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for fixpoint, one might still need to verify that invariants obtained using C2E2
or FLOW* are valid. The third option, which we have used for the current imple-
mentation, is noticing that the only part of the implementation that requires
invariant to be bounded is where dReach is called. If this tool is called with an
unbounded variable, then it will quickly raise an exception and terminate. In
other words, it will terminate without saying that the counter example is valid.
We take not saying valid as saying invalid. This approach makes it possible to
use dReach even when invariants are not bounded. Note that during validation
of a counter example of length larger than one, it is possible that only invariants
after some step k are unbounded. Our current approach guarantees all variables
are bounded when dReach is called for indices k or smaller. An example of such
a system, Automatic lane change system (driver assist) that comes with C2E2.
It is a system with affine dynamics and 10 unsafe sets. HARE proved unbounded
safety for all these sets in about 190 s. During this time, dReach encountered
exception in almost every iteration. But eventually, the abstract model checker
reached a fixed point and found the system to be safe, so dReach was not called
again. C2E2 needs to prove safety for each of these sets separately and it took this
tool about 1163 s to prove them all when the time bound is set to 1000. HSolver
and FLOW* could not prove safety for any of these sets within 600 s (10 min)4.
A fourth option is one where we initially partition the state space blindly for a
small number of times first, and then start the actual CEGAR loop. We used
this option in all four examples in Table 2 from C2E2.

7 Conclusion

We presented a new version of the CEGAR-based model checker for non-linear
hybrid systems called HARE. This version is a significant improvement over the
previous version of HARE that was reported in [29]. First, HARE can now verify
non-linear hybrid automata instead of hybrid automata with affine dynamics and
rectangular constraints. Second, HARE now uses polyhedral hybrid automata as
abstractions as opposed to rectangular hybrid automata. Finally, the implemen-
tation has been optimized. These changes have enabled the tool to handle a larger
class of examples, in faster time. These observations have been substantiated by
our experimental results reported here. While the use of dReach for counter
example validation has improved the performance for affine hybrid automaton,
our experiments show that dReach performs poorly for counter examples for non-
linear automata (when compared with C2E2). In the future, we plan to explore
if we can use C2E2 (instead of dReach) for counter example validation.
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Abstract. Template polyhedra generalize intervals and octagons to
polyhedra whose facets are orthogonal to a given set of arbitrary direc-
tions. They have been employed in the abstract interpretation of pro-
grams and, with particular success, in the reachability analysis of hybrid
automata. While previously, the choice of directions has been left to
the user or a heuristic, we present a method for the automatic discov-
ery of directions that generalize and eliminate spurious counterexam-
ples. We show that for the class of convex hybrid automata, i.e., hybrid
automata with (possibly nonlinear) convex constraints on derivatives,
such directions always exist and can be found using convex optimiza-
tion. We embed our method inside a CEGAR loop, thus enabling the
time-unbounded reachability analysis of an important and richer class of
hybrid automata than was previously possible. We evaluate our method
on several benchmarks, demonstrating also its superior efficiency for the
special case of linear hybrid automata.

1 Introduction

Template polyhedra are convex polyhedra whose defining halfspaces are orthogo-
nal to a template, i.e., a finite set of directions. In other words, they are those con-
junctions of linear inequalities where all coefficients are fixed and constants can
vary. Template polyhedra naturally generalize geometrical representations like
intervals or octagons, yet maintain low computational cost for several set opera-
tions. Template polyhedra have been employed for the abstract interpretation of
programs [17,38], but in particular they have recently gained popularity with the
abstract interpretation of hybrid automata [12,18,25,27,37], i.e., the extension
of finite automata with continuous dynamics [26]. In fact, verification of hybrid
automata via template polyhedra has shown promise in practice [8,13,20,23,35],
in spite of the theoretical undecidability even for the reachability question [29].
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In this paper, we develop a novel abstraction refinement procedure for template
polyhedra and we evaluate its use in the time-unbounded reachability analysis
of hybrid automata.

Efficiency often comes at the price of precision, and template polyhedra are
no exception. The precision is sensitive to the choice of template and a bad one
might cause several problems. First, even computing the tightest of the template
polyhedra around a set won’t necessarily bring to an exact representation. This
holds for linear sets, think about using intervals or octagons for representing
arbitrary polyhedra, and for non linear sets, think about using any finite set
of directions for representing ellipses or parabolae. Second, template polyhedra
suffer from the so called wrapping effect, that is to say that even if you represent
initial and guard constraints of a hybrid automaton precisely, discrete transitions
and time elapse might make new directions necessary. Think about representing
a box using intervals, applying a slight rotation, and representing it again using
intervals. Thus the question is: how do you choose the template?

The current approaches for the abstract interpretation by means of tem-
plate polyhedra are affected by multiple problems. First, they do not guarantee
avoidance of spurious counterexamples. In fact, they either assume a priori fixed
templates or derive directions from initial and guard constraints [37,38]. The
online refinement techniques focus on improving local errors rather than induc-
tively eliminating and generalizing whole paths [6,22]. Counterexample-guided
methods have been developed, but not for template polyhedra [4,7,15,19]. Sec-
ond, they partition and bound the time domain. Differential equations are in
general hard to solve, thus time partitioning is often necessary [23,25]. Efforts in
taking larger time intervals have been made, but not for unbounded time [24].
Third, the approaches to the analysis of non-linear systems do not handle tem-
plate refinement, even offline. The abstraction refinement of Bernstein and Tay-
lor expansion-based approximations relies on global parameters that are hard to
infer from counterexamples [12,13,18,20,39].

We propose a method which, for the first time, discovers template directions
from spurious counterexamples and adds to the template a few of them at a
time. Let us look at a refinement workflow. Initially, we search for a spurious
counterexample using a fixed (and possibly empty) template. Once such a coun-
terexample is found, we extract an inductive sequence of halfspace interpolants,
i.e., Craig’s interpolants that consist of single linear inequalities [2]. We take their
outward pointing directions and we add them to the template. Such directions
eliminate the counterexample and generalize to all other counterexamples with
the same switching sequence and any (and possibly unbounded) time elapse. We
repeat the procedure in CEGAR fashion [16].

We target the time-unbounded reachability analysis of convex hybrid
automata (CHA), i.e., hybrid automata whose flow constraints consist of dif-
ferential inclusions (on derivatives only) and all constraints (flow, guards, and
invariants) are (possibly non-linear) closed convex sets, and the special cases of
linear hybrid automata (LHA) and quadratic hybrid automata (QHA). A large
class of systems belongs to CHA, e.g., timed systems with convex non-linear clock
drifts, or can be approximated as CHA, e.g., systems with Gaussian disturbances



Counterexample-Guided Refinement of Template Polyhedra 591

truncated by elliptic sets. The reachability analysis of LHA has a long his-
tory [5], while for QHA or beyond only bounded reachability analysis has been
explored [11,14].

We show that (i) for every CHA halfspace interpolants suitable for refinement
always exist and that (ii) they can be computed efficiently using convex opti-
mization [10], in particular using linear programming for LHA and second-order
conic programming for QHA. We implement a tool based of this technology and
evaluate it on several linear and quadratic benchmarks, comparing (favorably)
against PHAVer where that tool applies [21,23], namely LHA. This gives the
following new results. First, we enable the use of template polyhedra for the
abstract interpretation and the abstraction refinement of CHA, thus enabling
the efficient time-unbounded reachability analysis for the full class where efficient
convex optimizers are available, namely QHA. Second, we achieve greater practi-
cal performance against the state-of-the-art techniques for the time-unbounded
reachability of even LHA. We evaluate our tool on multiple scaling and linear and
non-linear variants of three different benchmarks, namely Fischer’s protocol [31],
the TTEthernet protocol [9], and an adaptive cruise controller [30].

In summary, our contribution is threefold. First, we develop the first complete
counterexample-guided procedure for the discovery of template directions. Sec-
ond, we enable, for the first time, abstraction refinement for the time-unbounded
reachability analysis for all CHA. Third, we build an efficient tool for the new
class of time-unbounded QHA verification, which shows superior performance
also for the special case of LHA.

2 Motivating Example

Consider a system with two real-valued variables x and y whose dynamics fol-
lows some differential equation, which in turn is discontinuously switched by an
automaton with three modes. Figure 1 shows such an example. The trajectory

(ẋ − 1)2 + (ẏ − 2)2 ≤ 1
10

y ≤ 2
(ẋ − 1)2 + (ẏ − 1)2 ≤ 1

10

y ≤ 3
(ẋ − 1)2 + (ẏ − 1

2
)2 ≤ 1

10

y ≥ 1, x′ = x, y′ = y y ≥ 2, x′ = x, y′ = y

x = 0
y = 0

(x − 5
2
)2 + (y − 1)2 ≤ 1

4
(x − 3

2
)2 + (y − 4)2 ≤ 1

4

y ≤ 3

Fig. 1. A CHA with two variables x and y, three good modes zero, one, and two,
two bad modes badone and badtwo, and four switches a, b, c, and d. The good modes
have three different relative speeds for x and y with an additional spherical drift. All
invariants, the jump guards of a and of b are linear and the jump guards of c and of d
are spherical.
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starts in the origin and enters mode zero and follows any differential equation
whose derivative is ẋ = 1 and ẏ = 2 with possibly some drift in the ball of radius
10− 1

2 around this value. The invariant allows the trajectory to stay in mode zero
as long as y ≤ 2. The trajectory can take a if y ≥ 1 and switch to mode one,
where the derivative of y halves. The dynamics continues similarly on mode one,
switch c, and mode two, and similarly can take a switch to badone and badtwo
when the respective guards are satisfied. We know that there does not exists a
trajectory that leads to one of the bad modes, namely the system is safe. We
want to prove it automatically by means of template polyhedra.

The set of states that are respectively reachable on modes zero, one, and two
are the cones spanned by the points that enter the mode and take any possible
trajectory, as respectively depicted in Fig. 2 in three shades on gray. We abstract
the whole systems by representing each of these sets using template polyhedra.
But first, we need to discover a suitable template. In fact, different templates
produce different abstractions and not all of them can prove safety. Figure 2
shows three different such abstractions (striped polyhedra), but (a) and (b) hit
the guards (dashed circled) to the bad modes while only (c) accomplishes the
task. Our goal is to construct a good template like in (c).
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0 x

y

X1
X0

X2

1 2 3 4

1

2

3

4

0 x

y

X1

X0

X2

1 2 3 4

1

2

3

4

0 x

y

X1

X0

X2

Fig. 2. Template-polyhedral abstraction refinement for the CHA in Fig. 1. In dark gray,
gray, and light gray the points reachable on the modes zero, one, and two, resp., and
the striped polyhedra X0, X1, and X2 are the resp. template polyhedra. The lower
and the upper dashed circles are, resp., the guards of the switches c and d to the bad
modes. The variant (a) show the octagonal abstraction, and (b) and (c) show resp. the
results of the templates obtained after refinement of the paths to badone and then to
badtwo.

We begin with abstraction (a) which uses the octagonal template, i.e., the 8
orthogonal directions to the facets of an octagon. The abstract interpreter will
produce several abstract paths (sequences of pairs of modes and polyhedra inter-
leaved by switches) among which will occur the path zero, a, one, c, badone, for
the regions X0,X1 ⊆ R

n where X0 = initzero abstracts the flow on zero, and
X1 = posta(X0) abstracts the flow on one (see Fig. 2a). This path reaches a
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bad mode, but it is spurious, namely it does not have a concrete counterpart.
We prove it by computing a sequence of halfspace interpolants, i.e., two half-
spaces H0 and H1 such that initzero ⊆ H0 and posta(H0) ⊆ H1 and H1 does
not intersect with the guard of the switch c (see Fig. 3b). The outward pointing
directions d0 and d1 of H0 and H1 are the directions that generalize and elim-
inate all counterexamples with the switching sequence zero, a, one, c, badone
(see Fig. 3c). We add them to the template and we recompute the abstraction,
obtaining a necessarily different counterexample (see Fig. 2b). We repeat and
eventually obtain Fig. 2c, finally proving the safety of the hybrid automaton.

In the next section we define the modeling and the (template-polyhedral)
abstraction framework for CHA. In Sect. 4 we present our interpolant-based
refinement technique and in Sect. 5 we phrase it as a convex optimization prob-
lem. In Sect. 6 we instantiate it to QHA and in Sect. 7 we show our experimental
results.

3 Template-Polyhedral Abstractions for Convex Systems

Hybrid automata extend finite automata adding constraints on the (discrete and
continuous) dynamics of a set of real variables [26]. Convex hybrid automata
(CHA) are the class whose constraint define non-linear convex sets that exclu-
sively constrain either variables or variable derivatives, as it is the case for the
well-know class of linear hybrid automata (LHA) [26], which is thus generalized
by CHA.

Definition 1 (Convex hybrid automata). A convex hybrid automaton H
with n real-valued variables consists of a finite directed multigraph (V,E) where
the vertices v ∈ V are called control modes and the edges e ∈ E are called control
switches. Each v ∈ V is decorated by an initial constraint Zv ⊆ R

n, an invariant
constraint Iv ⊆ R

n, and a flow constraint Fv ⊆ R
n, each e ∈ E is decorated by

a jump constraint Je ⊆ R
2n, and all constraints define closed convex sets.

A finite control path v0, e1, v1, . . . , ek, vk of the CHA H is a path of the control
graph of H, i.e., for all 0 ≤ i ≤ k it holds that vi ∈ V and for all 1 ≤ i ≤ k it
holds that ei ∈ E and is a switch with source vi−1 and destination vi. When a
control path is clear from the context, we abbreviate any object indexed by vi or
ei as the same object indexed by i, e.g., we abbreviate Fvi

as Fi. The semantics
associates modes to points x ∈ R

n. For every two points x, x′ ∈ R
n, for every

control mode v ∈ V we say that x′ is a v-successor of x if there exists a derivable
function f : R≥0 → R

n and a time delay δ ∈ R≥0 such that f(0) = x, f(δ) = x′,
and for all 0 ≤ γ ≤ δ it holds that ḟ(γ) ∈ Fv and f(γ) ∈ Iv, and for every
control switch e ∈ E we say that x′ is an e-successor of x if (x, x′) ∈ Je.

Definition 2 (H-feasibility). A finite control path v0, e1, v1, . . . , ek, vk is H-
feasible if for some x0, x

′
0, x1, x

′
1, . . . , xk, x′

k ∈ R
n it holds that x0 ∈ Z0, and for

all 0 ≤ i ≤ k, x′
i is a vi-successor of xi and xi is a ei-successor of x′

i−1.
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The semantics of H is the maximal set of H-feasible paths. A mode v ∈ V is
reachable if there exists an H-feasible control path whose last mode is v, and
a point x′ ∈ R

n is reachable on v if x′ is the last point of a sequence as in
Definition 2.

The abstraction associates modes to regions of Rn into abstract paths whose
elements are related by the init and post operator of an abstraction structure A.

Definition 3 (Abstraction structure). An abstraction structure A for the
CHA H consists of an init operator initv ∈ ℘(Rn) for every v ∈ V and of a post
operator poste : ℘(Rn) → ℘(Rn) for every e ∈ E.

Similarly as for H, a control path with an abstract counterpart is called
A-feasible.

Definition 4 (A-feasibility). A finite control path v0, e1, v1, . . . , ek, vk

is A-feasible if for some non-empty sets X0,X1, . . . , Xk ⊆ R
n holds that

X0 = init0 and for all 1 ≤ i ≤ k, Xi = posti(Xi−1).

An A-feasible path is genuine if it is also H-feasible, and spurious otherwise. An
abstraction structure A is sound if all H-feasible control paths are A-feasible.

The support function [36] in direction d ∈ R
n of a convex set X ⊆ R

n is

ρX(d) def= sup{d · x | x ∈ X}. (1)

The support function of X characterizes the template polyhedron [25,38] of X
for the template Δ ⊆ R

n (a finite set). We call it the Δ-polyhedron of X, that is
⋂

d∈Δ

{x ∈ R
n | d · x ≤ ρX(d)}. (2)

We aim at computing template polyhedra for the (continuous) flow and the
(discrete) jump post operators (and their compositions) of the hybrid automaton.
The flow operator of mode v ∈ V gives the points reachable by time elapse on
v:1

flowv(X) def= (X ⊕ coni Fv) ∩ Iv. (3)

The jump operator of switch e ∈ E gives the points reachable through e:2

jumpe(X) def=
[
0n×n In

] (([
In

0n×n

]
X ⊕

[
0n×n

In

]
R

n

)
∩ Je

)
. (4)

Flow and jump operators are an exact symbolical characterization for the seman-
tics of CHA, and follow as an extension of the symbolic analysis of LHA [26].

1 For X ⊆ R
n, coni X denotes the conical combination {0} ∪ {αx | α > 0 ∧ x ∈ X}

and for Y ⊆ R
n, X ⊕ Y denotes the Minkowski sum {x + y | x ∈ X ∧ y ∈ Y }.

2 For M ∈ R
m×n and X ⊆ R

n, MX denotes the linear transformation {Mx | x ∈ X}.
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Lemma 1. For every CHA H and every set X ⊆ R
n it holds that (i) x′ ∈

flowv(X) if and only if x′ is a v-successor of some x ∈ X for every control mode
v ∈ V and (ii) x′ ∈ jumpe(X) if and only if x′ is a e-successor of some x ∈ X
for every control switch e ∈ E.

The exact symbolic analysis of CHA has in general high complexity, as it requires
eliminating quantifiers, and possibly from formulae that contain non-linear con-
straints. For this reason we approximate them using template polyhedra.

The template-polyhedral abstraction computes the template polyhedra of the
flow and jump operators above and, in our definition, using a different template
for each mode, given by the precision function prec : V → ℘(Rn).

Definition 5 (Template-polyhedral abstraction). The template-polyhedral
abstraction for the CHA H and the precision function prec : V → ℘(Rn) is the
abstraction structure where the init operator initv is the prec(v)-polyhedron of
flowv(Zv), and the post operator poste(X) is the prec(t)-polyhedron of flowt ◦
jumpe(X) where t ∈ V is the destination of e.

It is well-know that the template-polyhedral abstraction constructs a conserva-
tive over-approximation for linear systems [38], and the same holds for CHA.

Theorem 1. For every CHA H and every precision function prec the template-
polyhedral abstraction for H and prec is sound.

The obvious difficulty is in finding a precision function that is suitable for proving
or disproving reachability. In the next section, we show how to form one such
automatically by means of counter-example guided abstraction refinement.

4 Refining the Template-Polyhedral Abstraction

A counter-example guided abstraction refinement (CEGAR) loop [16] for a
hybrid automaton H and a set of bad modes T consists of an abstractor and
a refiner interacting with each other. At each iteration i, the abstractor takes
an abstraction structure Ai and attempts to construct the finite state machine
that recognizes all Ai-feasible paths. If it terminates and it does not find a coun-
terexample, i.e., a path leading to a bad mode, then it returns no. Otherwise, it
passes Ai and a set of counterexamples Wi to the refiner. The refiner attempts
to construct an abstraction structure Ai+1 that refines Ai and eliminates all
counterexamples in Wi. If it fails, then it reports yes and a set W̄i ⊆ Wi of
genuine counterexamples. Otherwise, it passes Ai+1 to the abstractor.

The above procedure is sound (upon termination), provided Ai is sound, in
the sense that if it reports no then no mode in T is reachable. It is complete
(upon termination), namely if it reports yes then some mode in T is reachable,
if it returns an abstraction Ai+1 that is locally complete w.r.t. Wi when one
exists.
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Local completeness. An abstraction structure A for the CHA H is locally
complete w.r.t. the set W of control paths of H if all H-infeasible control
paths in W are A-infeasible.

Moreover, if it ensures local completeness w.r.t. ∪{Wj |0 ≤ j ≤ i}, then it ensures
progress of the procedure if the counterexamples are given one by one.

Whenever we find a spurious counterexample, we augment the precision of
the modes along the path with additional template directions, so to make it
A-infeasible. First of all, we start with finding a sequence of Craig’s inter-
polants and only Craig’s interpolants that are halfspaces [2]. Formally, let
w = v0, e1, v1, . . . , ek, vk be a control path of H, then a sequence of halfspace
interpolants for w is a sequence of sets H0,H1, . . . , Hk ⊆ R

n such that each
element is either the universe, a closed halfspace, or the empty set and

flow0(Z0) ⊆ H0,flow1 ◦ jump1(H0) ⊆ H1, . . . ,flowk ◦ jumpk(Hk−1) ⊆ Hk, (5)

and Hk ⊆ ∅. If such sequence exists, then the path is clearly H-infeasible. Con-
versely, it is not trivial that for every H-infeasible path such sequence exists.

Lemma 2. For every CHA H and every control path w of H it holds that w
is H-infeasible if (and only if)3 there exists a sequence H0,H1, . . . , Hk ⊆ R

n of
halfspace interpolants for w as in Eq. 5.

Indeed, existence relies on further technical conditions that are out of the scope
of this paper [36]. With this in mind, simply assuming all non-linear con-
straints to be bounded (e.g., Fig. 1) ensures existence, yet without preventing
time-unbounded reachability. Computing interpolants is the subject of the next
section.

The refining directions are the outward pointing directions of the halfspace
interpolants, respectively for each mode along the path. In fact, it is enough to
observe that every abstraction we obtain after adding such directions also satisfy

init0 ⊆ H0, post1(H0) ⊆ H1, . . . , postk(Hk−1) ⊆ Hk. (6)

Figure 3 shows such an example. The path is the one leading to badone from
the CHA of Fig. 1, which is spurious with octagonal template (see Fig. 3a), and,
in fact, a sequence H0 and H1 of halfspace interpolants exists (see Fig. 3b).
The halfspace H1 is disjoint from the guard of c (dashed circle) and includes
the points reachable from H0 (light gray), which in its turn includes the points
reachable from Zzero, i.e., flowzero(Zzero) ⊆ H0, flowone ◦ jumpa(H0) ⊆ H1, and
jumpc(H1) ⊆ ∅. Taking the supporting halfspaces in the same directions pre-
serves these inclusions, hence adding d0 to prec(zero) and d1 to prec(one) causes
initzero ⊆ H0, posta(H0) ⊆ H1, and postc(H1) ⊆ ∅. Thus d0 and d1 eliminate the
counterexample, and regardless of whether prec contains further directions (see
Fig. 3c).

3 We exclude the pathological cases of disjoint convex sets w/o separating hyperplane.
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Fig. 3. Refinement for the control path zero, a, one, b, badone of the CHA in Fig. 1. In
dark gray, the points reachable on mode zero. In (a), (b), and (c), in light gray are the
points reachable on mode one resp. from X0, H0, and X0. In (a) the spurious path, in
(b) the interpolants, and in (c) the abstraction with the outward pointing directions.

Definition 6 (Template-polyhedral refinement). Let H be a CHA and let
w = v0, e1, v1, . . . , ek, vk be a control path. Define the precision function prec such
that for some (if one exists) sequence of halfspace interpolants H0,H1, . . . , Hk ⊆
R

n for w as in Eq. 5 then for all 0 ≤ i ≤ k set di ∈ prec(vi) where di is the
outward pointing direction of Hi. We define the template-polyhedral refinement
for H and w as the template-polyhedral abstraction for H and prec.

Local completeness w.r.t. a single path easily generalizes to local completeness
w.r.t. multiple paths by taking the union of the discovered directions.

Theorem 2. For every CHA H and every set W of finite control paths of H
the union4 over all w ∈ W of the template-polyhedral refinements for H and w
is locally complete w.r.t. W .

Summarizing, we search for abstract counterexamples and we accumulate
all outward pointing directions of the respective halfspace interpolants. If either
the abstractor finds a fixpoint or interpolation fails, then we obtain a sound and
complete answer. In the following section, we show how to compute init and post
operators and sequences of halfspace interpolants by using convex optimization.

5 Craig’s Interpolation as Convex Optimization

The support function is a central actor both in abstraction, as it defines tem-
plate polyhedra, and refinement, as it gives a powerful formalism to talk about
inclusion in halfspaces and separation of convex sets. In either case, the sets
we deal with are arbitrary compositions of flow and jump operators, which in
their turn are compositions of Minkowski sums, linear transformations, conical
combinations, and intersections. We characterize the support functions of such
4 The union of the abstractions A1, . . . , Ai for H and resp. the precisions prec1,

. . . , preci is the abstraction for H and the precision λv.prec1(v) ∪ · · · ∪ preci(v).
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operations as convex programs, with the aim of characterizing abstraction and
refinement as convex programs.

We present a characterization of support functions that is compositional for
the set operations above. The classic support function representation frame-
work5 offers a very similar machinery [25], but it suffers from the following
shortcomings. First, it requires the operand sets in Minkowski sums and inter-
sections to be compact (i.e., closed and bounded) and boundedness cannot
be easily relaxed, e.g., ρRn(d) + ρ∅(d) = +∞ − ∞ while ρRn⊕∅(d) = −∞
for every d = 0. Since we aim at time-unbounded reachability, is would be
too restrictive to assume boundedness. Second, substituting boundedness with
nonemptiness might cause uncorrect results, e.g., for the sets A = {(x, y) |
x ≤ −1}, B = {(x, y) | x ≥ 1}, and the direction c = (0, 1) we obtain
inf{ρA(c−a)+ρB(a)} = +∞, while ρA∩B(c) = −∞. We relax both the assump-
tions of boundedness and nonemptiness by characterizing the support function
ρX(d) with a convex program

minimize ρ̄X(λ)
subject to (λ, d) ∈ ΛX , (7)

with objective function ρ̄X : Rm → R and constraint ΛX ⊆ R
m+n. The minimum

of ρ̄X(λ) over λ characterizes ρX(d) for directions in which X is bounded, while
ΛX characterizes boundedness. This is encapsulated by the notion of duality.

Duality. Let X ⊆ R
n be a nonempty closed convex set. The convex program of

Eq. 7 is dual to ρX if for all d ∈ R
n it holds that

(i) ρX(d) = +∞ if and only if there does not exist λ such that (λ, d) ∈ ΛX ,
(ii) ρX(d) < +∞ if and only if ρX(d) = min{ρ̄X(λ) | (λ, d) ∈ ΛX}.

We define inductive rules for constructing dual convex programs for the support
functions of set operations, provided dual convex programs for their operands
(whose instantiation for sets defined by symbolic constraints is subject of Sect. 6):

ρ̄X⊕Y (λ, μ) def= ρ̄X(λ) + ρ̄Y (μ),

ΛX⊕Y
def= {(λ, μ, d) | (λ, d) ∈ ΛX , (μ, d) ∈ ΛY },

(8)

ρ̄MX(λ) def= ρ̄X(λ),

ΛMX
def= {(λ, d) | (λ,MTd) ∈ ΛX},

(9)

ρ̄coniX(λ) def= 0,

ΛconiX
def= {(λ, d) | ρ̄X(λ) ≤ 0, (λ, d) ∈ ΛX},

(10)

ρ̄X∩Y (λ, μ) def= ρ̄X(λ) + ρ̄Y (μ), and

ΛX∩Y
def= {(λ, μ, a, d) | (λ, a) ∈ ΛX , (μ, d − a) ∈ ΛY }.

(11)

5 ρX⊕Y (d) = ρX(d)+ρY (d), ρMX(d) = ρX(MTd), and ρX∩Y (d) = inf{ρX(a)+ρY (d−
a)}.
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Nevertheless, duality is not sufficient to characterize operations producing the
empty set. Considering the examples above, the constraint ΛRn⊕∅ is infeasible
for every direction d = 0 and the constraint ΛA∩B is infeasible for direction c,
contradicting (i). However, it suffices that the convex program is unbounded for
at least d = 0, providing an alternative for deciding emptiness beforehand.

Alternativity. The convex program of Eq. 7 is alternative to ρ∅ if for every
ε < 0 there exists (λ, 0) ∈ Λ∅ such that ρ̄∅(λ) ≤ ε.

Altogether, we compute the support of X in direction d as follows. We decide
whether there exists a negative solution in direction 0. If so we return −∞,
otherwise we decide whether ΛX is infeasible in direction d. If so we return +∞,
otherwise we solve the convex program. This is permitted on any combination of
the set operations above, as our construction preserves duality and alternativity.

Lemma 3. Let X,Y ⊆ R
n be closed convex sets. If the convex programs for

ρ̄X , ΛX and ρ̄Y , ΛY are dual and alternative to resp. ρX and ρY then the convex
programs for Eqs. 8, 9, and 10 are dual and alternative to the respective support
functions. If either X and Y intersect or they admit a separating hyperplane
then also the convex program for Eq. 11 is dual and alternative to ρX∩Y .

In addition, the construction allows us to inductively extract separating hyper-
planes and therefore sequences of halfspace interpolants.

The emptiness check or more generally deciding whether a support function
is below a threshold permits us to inductively extract interpolants. For each of
the four set operation we wish first to prove inclusion within a given halfspace
(or the empty set) H and then to find a second halfspace H ′ which interpolates
the operand. For instance, for an intersection X ∩ Y such that X ∩ Y ⊆ H, we
wish to find a H ′ such that X ⊆ H ′ and H ′ ∩Y ⊆ H. Indeed, we just need their
outward pointing directions, and our construction carries this information.

Lemma 4. Let X,Y ⊆ R
n be closed convex sets. Let the convex programs for

ρ̄X , ΛX and ρ̄Y , ΛY be dual and alternative to ρX and ρY . Let H be the set
{x ∈ R

n | d · x ≤ ε}, which is empty if and only if d = 0 and ε < 0.

– If either X and Y are both nonempty or H is empty then for every
(λ�, μ�, d) ∈ ΛX⊕Y such that ρ̄X⊕Y (λ�, μ�) ≤ ε there exists H ′ = {x ∈
R

n | d · x ≤ ε′} such that ρ̄X(λ�) ≤ ε′ and H ′ ⊕ Y ⊆ H.
– If either X is nonempty or H is empty then for every (λ�, d) ∈ ΛMX such

that ρ̄MX(λ�) ≤ ε there exists H ′ = {x ∈ R
n | (MTd) · x ≤ ε′} such that

ρ̄X(λ�) ≤ ε′ and MH ′ ⊆ H.
– For every (λ�, d) ∈ ΛconiX such that ρ̄coniX(λ�) ≤ ε there exists H ′ = {x ∈

R
n | d · x ≤ ε′} such that ρ̄X(λ�) ≤ ε′ and coni H ′ ⊆ H.

– If either X and Y intersect or H is empty and they admit a separating hyper-
plane then for every (λ�, μ�, a�, d) ∈ ΛX∩Y such that ρ̄X∩Y (λ�, μ�) ≤ ε there
exists H ′ = {x ∈ R

n | a� · x ≤ ε′} such that ρ̄X(λ�) ≤ ε′ and H ′ ∩ Y ⊆ H.
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We can extract the outward pointing directions by looking at the arguments
instantiated by an emptiness check. Inductively, if d is the outward pointing
direction of H, then the outward pointing direction of H ′ is d for the Minkowski
sum, MTd for the linear transformation, d for the conical combination, and a
for the intersection. As a result, we can extract sequences of interpolants for
arbitrary combinations of basic set operations from one single emptiness check.

We build such a construction for arbitrary sequences of flow and jump oper-
ators induced by control paths. More concretely, let w = v0, e1, v1, . . . , ek, vk be
a control path of some CHA H then the path operator of w is

Pw
def= flowk ◦ jumpk ◦ · · · ◦ flow1 ◦ jump1 ◦flow0(Z0). (12)

Similarly to Lemma 2, we assume every path operator to be either nonempty or
to admit a separating hyperplane at some intersection. By applying the above
rules, we construct the convex program for the support function of Pw as follows:

minimize ρ̄Z0(λZ0) +
∑k

i=1 ρ̄Ji
(λJi

) +
∑k

i=0 ρ̄Ii(λIi)
subject to (λZ0 , a0 − b0) ∈ ΛZ0 ,

(λJi
,
[−ai−1, ai − bi

]T) ∈ ΛJi
for each i ∈ [1..k],

ρ̄Fi
(λFi

, ai − bi) ≤ 0 for each i ∈ [0..k],
(λFi

, ai − bi) ∈ ΛFi
for each i ∈ [0..k],

(λIi , bi) ∈ ΛIi for each i ∈ [0..k],
ak = d.

(13)

Duality and alternativity is preserved, therefore we can use such construction
to compute the support functions for init and post (which are special cases of
path).

Lemma 5. For every CHA H, every control path w of H, if the convex programs
for every constraint X along the path are dual and alternative to ρX then the
convex program in Eq. 13 is dual and alternative to ρPw

.

We identify the arguments that determine a suitable sequence of halfspace inter-
polants after the emptiness check.

Lemma 6. For every CHA H, every control path w of H, every ε < 0, and
every (λ�, 0) ∈ ΛPw

whose projection on a0, a1, . . . , ak is a�
0, a

�
1, . . . , a

�
k ∈ R

n, if
the convex programs for the constraints X along the path are dual and alternative
to ρX then ρ̄Pw

(λ�) ≤ ε if and only if a�
0, a

�
1, . . . , a

�
k are the outward pointing

directions of a sequence of halfspace interpolants H0,H1, . . . , Hk for w as in
Eq. 5.

In summary, we search by convex optimization for an argument for which the
convex program of Eq. 13 for d = 0 has negative solution. If so, the argument
a�

i for the parameter ai is the outward pointing direction for the interpolant at
mode vi. Adding a�

i to prec(vi) eliminates the spurious counterexample w.
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In this section, we have built a refiner for every spurious path of every CHA,
assuming dual and alternative convex programs for the constraints along the
path. In the following section, we discuss such functions and show how to instan-
tiate interpolation for the special case of quadratic hybrid automata.

6 Abstraction Refinement for Quadratic Systems

The interpolation technique in Sect. 5 relies on the notions of duality and alter-
nativity. Duality and alternativity are preserved by Minkowski sum, linear trans-
formation, conical combination, and intersection, but whether they hold in the
first place depends on the constraint of the automaton. We discuss these prop-
erties for (convex) quadratic programs, and we show their implications to the
classes of quadratic and linear hybrid automata.

Closed convex quadratic sets are sets of the form
⋂m

i=1{x ∈ R
n | xQix

T +
pTi x ≤ ri} where Q1, . . . , Qm ∈ R

n×n are positive semidefinite matrices of coef-
ficients, p1, . . . , pm ∈ R

n are vectors of coefficients, and r1, . . . , rm ∈ R are con-
stants. Closed convex quadratic sets characterize quadratic hybrid automata.

Definition 7 (Quadratic hybrid automata). A quadratic hybrid automaton
(QHA) is a CHA whose constraints define closed convex quadratic sets.

The support function of a convex quadratic set is a quadratically constrained
(convex) quadratic program, which is known to cast to second-order conic pro-
gramming (SOCP) [3]. We cast the support function to an optimization problem
over a (rotated) second-order cone and we take its dual [3], so obtaining

minimize r1λ1 + · · · + rmλm

subject to p1λ1 + LT
1μ1 + · · · + pmλm + LT

mμm = d,
λ1 ≥ ‖μ1‖22, . . . , λm ≥ ‖μm‖22,

(14)

where L1, . . . , Lm are the Cholesky decompositions of Q1, . . . , Qm respectively,
and λ1, . . . , λm ∈ R and μ1, . . . , μm ∈ R

n are the optimization arguments. Under
the regularity conditions for non-linear optimization, e.g., Slater’s condition,
duality and alternativity hold [3,10]. Encodings that do not need such conditions
exist [34], but are not discussed in this paper.

Every algorithm that solves feasibility and optimization of SOCP solves init
and post computation and halfspace interpolation for QHA, thus enabling their
template-polyhedral abstraction and abstraction refinement.

Theorem 3. Let H be a QHA with n variables and m inequalities. Let the time
complexity of SOCP be socp(α, β, γ) for α variables, β equalities, and γ cones.

– Init and post operators time complexity is p × socp(n × m,n,m) where p =
max{|prec(v)| | v ∈ V } for the precision function prec.

– Refinement time complexity is c × socp(n × m,n × k,m × k) where c = |W |
and k = max{|w| | w ∈ W} for the set of counterexamples W .
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Nevertheless, the complexity SOCP remains an open problem on the Turing
machine, while it is known to be in NP∩ coNP on the real number model [34].
On the other hand, several efficient (but incomplete) numerical procedures are
available, therefore in practice we can obtain support functions and interpolants,
but with weaker guarantees. We are in a better position for the case of linear
hybrid automata (LHA) [26], i.e., the special case of QHA where all constraints
define polyhedra. For linear hybrid automata, the program of Eq. 14 is always a
linear program, i.e., all cones are positive orthants, where duality holds, alter-
nativity is given by Farkas’ lemma, and time complexity is polynomial. Hence,
for LHA, init operator, post operator, and refinement time complexities are as
well polynomial.

7 Experimental Evaluation

We evaluate our algorithms on three main classes of benchmarks, namely Fis-
cher’s protocol [31], an adaptive cruise controller [30], and the TTEthernet pro-
tocol [9]. For each class, we consider a linear version and a non-linear version,
as well as for each a safe version and an unsafe version.

Fischer’s protocol is a time based protocol of mutual exclusion between
processes. The protocol is correct if two processes are never in the critical
section at the same time. For the linear version, the flow constraints are given
by 1

2 ≤ ẋ1 ≤ 3
2 , . . . , 1

2 ≤ ẋm ≤ 3
2 , where xi is the clock of the i-th process, and

for the non-linear case,
√

ẋ2
1 + · · · + ẋ2

m ≤ 1. We verify the linear version up to 5
processes and the non-linear version up to 3 processes.

The adaptive cruise controller is a distributed system for safety distance of
platoon of cars. Each car either cruises or recovers by slowing down. The relative
velocity has a drift |ẋ − ẋldr| ≤ 1

2 when cruising and |ẋ − ẋldr + ε| ≤ 1
2 when

recovering, where x and xldr are the positions of each car the car in front, resp,
and ε is the slow-down. We check for car crashes in platoons up to 7 cars.

Finally, we consider the TTEthernet protocol for the remote synchronization
of possibly drifted clocks distributed over multiple components. Similarly to
previous case studies, we consider flows defined in terms of intervals and unit
balls for linear and non-linear cases, respectively. We verify both linear and non-
linear systems with 3, 5, 9, and 17 components.

We implemented a CEGAR loop based on our procedure in C++ and con-
ducted the following experiments on a machine with 2.6 GHz CPU and 4 GB
of dedicated RAM. We use the GLPK for solving LPs and MOSEK for solving
SOCPs [1,33]. We executed our tool under the empty strategy and the octagonal
strategy. With the empty strategy, the initial precision is empty, which means
that the very first abstraction computation consists of a simple exploration of the
control graph. With the octagonal strategy, the precision at every mode consists
of the octagonal template, with a total of 2|V |n2 directions over all modes. For
all linear instances, we compared against PHAVer [21] (SpaceEx v0.9.8c with
PHAVer scenario).
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Table 1 shows the results. The empty strategy has on average the best runtime
and always outperforms PHAVer. It also outperforms the octagonal strategy for
most of the instances. Both strategies spend most of the time in the first phase

Table 1. Results of the experimental evaluation. Empty and octagonal indicate the
initial precision. #spu is number of discovered spurious counterexamples, #dir is the
number of discovered directions (empty case) or initial directions + discovered direc-
tions (octagonal case). cgr is the total time spent in unsuccessful abstractions (with
spurious counterexample), itp is the total time spent in discovering halfspace inter-
polants, ver is the time spent in successful abstractions. oot indicates out of time
(24 h), oom indicates out of memory (4Gb), and dash indicates unsupported. The
benchmark names are structured as follows. fsr indicates Fischer’s protocol, acc indi-
cates adaptive cruise controller, tte indicates TTEthernet, lnr indicates linear, qdr

indicates quadratic, the following number indicates the number of components, and sf

and usf resp. indicate safe and unsafe.
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(CEGAR iterations ending in a spurious counterexample), and take a very short
time for the final verification step. For Fischer’s protocol the octagonal strategy
is always slower than the empty. For the other benchmarks the difference is
less stunning, in particular for the unsafe cases of the TTEthernet benchmarks,
where the first phase penalizes considerably. On the other hand, we can observe
that, under the assumption that we are not aware of the safety of the systems,
our method shows to be the most scalable. The octagonal strategy tends to
run out of time because the higher number of directions causes the generation
of bigger and bigger abstract regions. In fact, we have verified that for these
instances a spurious counter-example is never found. The same argument likely
holds for PHAVer, as its dump shows that new symbolic states are always found.
Not surprisingly, for QHA the performance is generally worse than for LHA.

In summary, template polyhedra coupled with our abstraction refinement
technique are faster than the exact polyhedral reachability analysis. Notewor-
thy is how negligible is the time required in the final verification step on all
instances. Our tool recomputes the whole abstraction after every refinement
phase, as all our efforts have been strictly focused on implementing an efficient
template refinement. The final time sets a lower bound for the verification time
achievable by an incremental abstraction. Furthermore, we could observe that
inferring small template sets plays an important role in the convergence of the
whole analysis.

8 Conclusion

We have presented the first template refinement technique that iteratively derives
template directions from spurious counterexamples. These directions eliminate
all counterexamples that pass through the same switching sequence, indepen-
dently of any time delays. These directions can refute further spurious paths,
so that a small number of directions may suffice to show safety. This is sup-
ported by our experiments, which terminate with small templates in all cases.
Our procedure can be implemented efficiently for LHA and QHA using con-
vex optimization, and in principle it applies to every CHA. Our implementation
outperforms polyhedral reachability (PHAVer), and yet has room for further
substantial improvement since the abstraction is constructed from scratch at
each iteration and could be made incremental [28,32]. In terms of modeling
power, extending template refinement to affine or general polynomial systems
also brings further challenges, as the reachable regions lose the convexity prop-
erty, thus requiring more powerful techniques for halfspace interpolation [2].
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