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Abstract. We describe an innovative Web-based platform to remotely
perform complex geometry processing on large triangle meshes. A graph-
ical user interface allows combining available algorithms to build complex
pipelines that may also include conditional tasks and loops. The execu-
tion is managed by a central engine that delegates the computation to
a distributed network of servers and handles the data transmission. The
overall amount of data that is flowed through the net is kept within
reasonable bounds thanks to an innovative mesh transfer protocol. A
novel distributed divide-and-conquer approach enables parallel process-
ing by partitioning the dataset into subparts to be delivered and handled
by dedicated servers. Our approach can be used to process an arbitrar-
ily large mesh represented either as a single large file or as a collection
of files possibly stored on geographically scattered servers. To prove its
effectiveness, we exploited our platform to implement a distributed sim-
plification algorithm which exhibits a significant flexibility, scalability
and speed.

Keywords: Distributed environments · Parallel computation · Geome-
try processing · Large meshes · Out-of-core

1 Introduction

In life science areas, several applications exist that allow remotely processing
input data [38,40]. Such applications exploit the computational power of geo-
graphically scattered servers that communicate through traditional Internet con-
nection. Each server exposes one or more remote services that can be invoked
sequentially or in parallel to process a dataset received as an input.

This approach is scarcely considered in geometry processing literature where
input datasets are easily made of millions of geometric elements and files encod-
ing them may be larger than hundreds of gigabytes. Transferring these extremely
large datasets on a distributed environment would slow the process down too
much [6]. For this reason, geometry processing is usually performed by exploit-
ing stand-alone tools and applications locally installed. When the main memory
available on the local machine is not sufficient to load the input, divide and
conquer approaches are used to subdivide the input into subparts, each of them
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sufficiently small to be processed [35]. Sometimes, multi-core technologies (e.g.
GPUs) are exploited to process different subparts of the input simultaneously.
Nevertheless, the memory shared among the concurrent processes imposes a
sequentialization of I/O operations in any case.

Herewith, a Web-based platform is described to remotely run geometry
processing workflows. The computational power of geographically distributed
servers (i.e. processing nodes) is exploited to perform the actual computa-
tion. Our contribution is twofold: first, an optimized mesh transfer protocol
is described that reduces the amount of data sent through the network and
avoids possible bottlenecks; second, a divide-and-conquer approach is proposed
that enables the possibility to run distributed parallel algorithms and guarantees
efficiency. As a proof–of–concept, an innovative distributed mesh simplification
algorithm is described that exploits our divide-and-conquer approach to distrib-
ute the computational load across multiple servers.

For the sake of simplicity, in the first part of the paper we assume that the
input is stored as a single file on the disk of one of the servers. However, specific
applications [4,17] acquire data from the real world and generate 3D models
as collections of files, each representing a subpart of the whole. When such a
collection is too large, it can be distributed on multiple machines. Although
these datasets are natively partitioned, such a partition may not be compatible
with the hardware limitations of the available processing nodes. In these cases,
an input re-partitioning is required. In the second part of the paper (Sect. 6) we
propose a novel approach to enable the possibility to run distributed parallel
algorithms even on these extremely large data sets.

Summarizing, we propose an innovative approach to process arbitrary large
geometric datasets. Thanks to our optimized transfer protocol and our divide-
and-conquer method, well-known geometry processing workflows can be run effi-
ciently on large datasets. To test our methods, a set of in-house Web services
have been deployed on our servers and exploited. Each Web service is able to
run a different geometric algorithm. Then, a former experimental phase has been
focus on evaluate our mesh transfer protocol, while a second experimental phase
has been focus on evaluating the distributed divide-and-conquer approach. Both
experiments have been run a an heterogeneous dataset composed of meshes com-
ing from public repositories [1,3] and from different research projects on process-
ing large geometric datasets [2,4]. Both the computational time and the quality
of the output meshes have been considered as a matter of comparison with the
existing approaches. Our results demonstrate that distributed technologies can
be actually exploited to efficiently run geometry processing even on extremely
large datasets.

2 Related Work

Polygon meshes are the standard de-facto representation for 3D objects. A poly-
gon mesh is a collection of polygons or “faces”, that form the surface of the
object. To describe a mesh, both geometric and topological information are
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required. The former includes the position of all the vertices, while the latter
describes which vertices are connected to form edges and faces (i.e. triangles).
While processing a mesh, either the geometry or the topology (or both) may be
involved. Due to this complex structure, distributively processing meshes is a
non-trivial task.

In the reminder, we focus on triangle meshes. This specific representation is
used to describe objects coming from diverse industrial and research areas (e.g.
design, geology, archaeology, medicine and entertainment).

2.1 Mesh Processing

Traditionally, mesh processing is performed by exploiting existing tools and
applications that need to be installed on the local machine. Among them, Mesh-
Lab [11] and OpenFlipper [29] allow editing a mesh, saving the sequential list of
executed operations and locally re-executing the workflow from their user inter-
faces. Pipelines can be shared in order to be rerun on different machines where
the stand-alone applications need to be installed.

Campen and colleagues published WebBSP [8], an online service which allows
to remotely run a few specific geometric operations. The user is required to select
a single geometric algorithm from a set of available operations and upload an
input mesh. Then, the algorithm is actually run on the server and a link to the
output is sent to the user. Unfortunately, only a single operation can be run at
each call and the service is accessible only from the WebBSP interface.

Geometric Web services were previously considered by Pitikakis [31] with the
objective of defining semantic requirements to guarantee their interoperability.
Though in Pitikakis’s work Web services are stacked into hardcoded sequences,
users are not allowed to dynamically construct workflows, and possible bottle-
necks due to the transmission of large models are not dealt with.

Distributed parallelism has been exploited in [28,30] to provide both analy-
sis and visualization tools. The possibility to exploit distributed parallelism for
processing has been proposed in [32] but, due to the use of a distributed shared
memory, the approach proposed is appropriate only on high-end clusters where
local nodes are interconnected with particularly fast protocols.

2.2 Processing Large Polygon Meshes

Out-of-core approaches assume that the input does not need to be entirely loaded
into main memory, and the computation operates on the loaded portion at each
time [14,23,24,41]. Similarly, the external memory data structure proposed in
[10] provides support for generic processing under the constraint of limited core
memory. These methods are very elegant, but pre-processing operations required
to pre-sort the input and generate the data structures require a significant time.
Also, they are based on the idea of repeatedly loading parts of the input; thus,
they are not suitable for distributed environments.
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To speed up the computation, parallel approaches are often exploited
[5,15,18,36]. Typically, a “master” processor partitions the input mesh and dis-
tributes the portions across different “slave” processors that perform the partial
computations simultaneously. When all the portions are ready, the master merges
the results together. The many slave processors available in modern GPU-based
architectures are exploited in [34], while multi-core CPUs are exploited in [37].
Both methods are based on a memory shared among parallel processes to allow
efficient communication. Distributed architectures are not provided with shared
memory and, thus, different approaches are required to allow parallel processes
to efficiently communicate. In [32], a hybrid architecture is described, where
both shared and distributed memory are exploited. Parallel algorithms involv-
ing significant communication among processes can be implemented, but the
communication costs will eventually limit the scaling.

Other effective out-of-core partitioning techniques are described in [25,26].
These methods typically require their input to come as a so-called “triangle
soup”, where the vertex coordinates are explicitly encoded for each single tri-
angle. Since this representation is highly redundant, the most diffused formats
(e.g. OFF, PLY, OBJ, ...) use a form of indexing, where vertex coordinates are
encoded only once and each triangle refer to them through indexes. When the
input is represented using an indexed format, it must be dereferenced using out-
of-core techniques [9], but this additional step is time-consuming and requires
significant storage resources. As an exception, the method proposed in [33] is
able to work with indexed representations by relying on memory-mapped I/O
managed by the operating system; however, if the face set is described with-
out locality in the file, the same information is repeatedly read from disk and
thrashing is likely to occur.

When the partial computations are comprehensively small enough to fit in
memory, incore methods are exploited to merge the final result. To guarantee
an exact contact among adjacent regions, slave processors are often required to
keep the submesh boundary unchanged [36]. If necessary and if the final output
is small enough, the quality of the generated mesh is enhanced by exploiting tra-
ditional incore algorithms in a final post-processing step. Differently, the external
memory data structure [10] allows keeping the boundary consistent at each itera-
tion. Depending on the specific type of geometric algorithm, different approaches
may be exploited to guarantee boundary coherence. Vertex clustering is just an
example used in mesh simplification [25]. Such a method has a cost in terms of
output quality, when compared with more “adaptive” methods: the clustering
distributes vertices uniformly on the surface, regardless the local morphology,
hence tiny features are not guaranteed to be preserved.

3 The Web-Based Platform

The framework architecture is organized in three layers [21]: a graphical user
interface that allows building new workflows from scratch, and uploading and
invoking existing workflows; a set of Web services that wrap geometry processing



Processing Large Geometric Datasets in Distributed Environments 101

tools; a workflow engine that handles the runtime execution by orchestrating the
available Web services.

The Graphical User Interface. The graphical interface allows building geometric
workflows and remotely running them on a selected input model. While building
a new workflow, the user is asked to provide the list of geometry processing
algorithms that constitute the pipeline, each to be selected from a list of available
ones. Also, conditional tasks or loops can be defined. Once the whole procedure
is ready, the user can turn it into an actual experiment by uploading an input
mesh. If no input is associated, the workflow can be stored on the system as an
“abstract” procedure that can be selected later for execution.

The Web Services. A Web service can be considered as a black box able to
perform a specific operation on the mesh without the need of user interaction.
A single server (i.e. a provider) can expose a plurality of Web services, each
implementing a specific algorithm and identified by its own address. The sys-
tem supports the invocation of two types of Web services, namely “atomic” and
“boolean”. An atomic service runs a simple operation on a mesh using possi-
ble input parameters, and produces another mesh as an output. Conversely, a
boolean service just analyzes the mesh and returns a true/false value. Boolean
Web services are used to support the execution of conditional tasks and loops.

Since input models may be stored on remote servers, we require that Web
services are designed to receive the address of the input mesh and to download
it locally; also, after the execution of the algorithm, the output must be made
accessible through another address to be returned to the calling service.

The Workflow Engine. The workflow engine is the core of the system and orches-
trates the invocation of the various algorithms involved. From the user interface
it receives the specification of a geometry processing workflow and the address of
an input mesh. The engine analyses the workflow, locates the most appropriate
servers hosting the involved Web services, and sequentially invokes the various
algorithms. For each operation, such a list of registered Web services is queried
to retrieve which ones can perform the task, and the best performing one is
selected [13] based on appropriate metadata to be provided upon registration
of the service on our system. When the selected Web service is triggered for
execution, it receives from the engine the address of the input mesh and possible
parameters, runs its task and returns the address of the generated output to
the engine. This latter information is sent to the next involved Web service as
an input mesh or returned to the user interface when the workflow execution
terminates.

4 Mesh Transfer Protocol

Not surprisingly, we have observed that the transfer of large-size meshes from a
server to another according to the aforementioned protocol constitutes a bottle-
neck in the workflow execution, in particular when slow connections are involved.
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Fig. 1. Mesh transfer protocol example. The workflow is built by combining three
operations. Thus, three servers are involved into the workflow execution. Each of them
is able to download (D) meshes and update (U) the previously downloaded mesh by
applying the corrections. (a) The address of the input mesh is broadcasted to all the
involved servers that proceed with the download. (b) The first operation is run by
the appropriate service that produces the corrections and returns the corresponding
address to the engine. Such an address is shared in parallel to the successive servers,
so that they can download the file and correct the prediction. (c) The second service
runs the task and makes the correction available to allow the third server to update
its local copy. (d) The last service is invoked to run the algorithm. The address of its
output mesh is returned so that the user can directly download it.

Mesh compression techniques can be used to reduce the input size, but they
do not solve the intrinsic problem [27]. In order to improve the transfer speed
and thus efficiently support the processing of large meshes, we designed a mesh
transfer protocol inspired on the prediction/correction metaphor used in data
compression [39].

We have observed that there are numerous mesh processing algorithms that
simply transform an input mesh into an output by computing and applying
geometrical modifications. In all these cases it is possible to predict the result
by assuming that it will be identical to the input, and it is reasonable to expect
that the corrections to be transmitted can be more compactly encoded than the
explicit result of the process.

The aforementioned observation can be exploited in our setting as shown in
Fig. 1, where an example of execution of a simple workflow composed by three tasks
is shown. Through the user interface, the user selects/sends a workflow and pos-
sibly the address of an input mesh to the workflow engine. The engine reads the
workflow, searches for the available Web services, and sends in parallel to each of
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them the address of the input mesh. Each server is triggered to download the input
model and save it locally. At the first step of the experiment, the workflow engine
triggers the suitable Web service that runs the algorithm, produces the result, and
locally stores the output mesh and the correction file (both compressed). Their
addresses are returned to the workflow engine that forwards them to all the subse-
quent servers involved in the workflow. Each server downloads the correction and
updates the local copy of the model according to it. Then, the workflow engine trig-
gers the next service for which an up-to-date copy of the mesh is readily available
on its local server. At the end of the workflow execution, the engine receives the
address of the output produced by the last invoked Web service and returns it to
the user interface, so that the user can download it.

In this scenario, the address of the input mesh is broadcasted to all the
involved Web service once and Web services are able to download such a mesh
simultaneously. Then, only correction files (which are sensibly smaller than the
input mesh) travel through the network to allow each server to update its local
copy of the mesh. In any case, each Web service produces both the correction and
the actual result. When the correction is actually smaller than the results, this
procedure produces significant benefits. Otherwise, the subsequent Web services
can directly download the output instead of the corrections and no degradation
is introduced. Note that lossless arithmetic coding is exploited by each Web
service to compress either the output mesh or the correction file before making
them travel the network.

5 Parallel Processing

Although our system theoretically allows processing any input mesh, remote
servers have their own limitations and may not satisfy specific hardware require-
ments (eg. insufficient storage space, RAM, or computational performance) nec-
essary to efficiently process large data. As a consequence, the remote server that
is invoked may require a very long time to finish its task or, even worse, the
process may be interrupted because of the insufficient main memory. In order
to avoid these situations, the workflow engine is responsible for partitioning the
input mesh into smaller subparts that can be elaborated by available processing
services. When all the submeshes have been processed, they need to be merged
to generate the final output. Both partitioning and merging operations are per-
formed through out-of-core approaches. To allow final merging, an exact contact
among adjacent regions must be guaranteed. Contrary to previous methods [36],
our approach allows boundary modifications, while keeping the boundary con-
sistent step by step.

For the sake of simplicity, our exposition assumes that all the servers have
an equally-sized memory and comparable speed. Also, in the reminder of this
section we describe the case where the input mesh is stored as a single input
file. The treatment of pre-partitioned meshes whose parts are stored on different
servers is described in Sect. 6.
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5.1 Mesh Partitioning

We assume that the input mesh is encoded as an indexed mesh, since the most
common file formats are based on this representation. Our mesh partitioning
approach is mainly composed by the following sequential steps:

1. Pre-Processing: an initial binary space partition (BSP) is computed based
on a representative vertex downsample;

2. Vertex and Triangle Classification: each vertex is assigned to the cell of
the BSP where it falls, while each triangle is assigned to a selected BSP cell,
based on the location of its vertices;

3. Generation of independent sets: each independent set includes submeshes
that do not share any vertex, and thus they can be processed simultaneously;

4. Optional post-processing: depending on the specific geometry processing
operation to be run by processing service.

Pre-processing. The mesh bounding box is computed by reading once the
coordinates of all the input vertices. At the same time, a representative vertex
down-sampling is computed and saved into main memory. Starting from the
bounding box, an in-core binary space partition (BSP) is built by iteratively
subdividing the cell with the greatest number of points. The root of the BSP
refers to the whole downsampling. Each cell is split along its largest side. For each
subdivision, each vertex in the parent cell is assigned to one of the two children
according to its spatial location. If the vertex falls exactly on the splitting plane,
it is assigned to the cell having the lowest barycenter in lexicographical order.
The process is stopped when the number of vertices assigned to each BSP cell
is at most equal to a given threshold, based on the number of vertices that each
processing service is able to manage and the ratio between the number of input
vertices and the downsample size.

Vertex and Triangle Classification. First, vertices are read one by one and
assigned based on their spatial location as above. Some technical details are
shown in Fig. 2.

Then, triangles are read one by one from T and assigned depending on their
vertex position as follows:

– If at least two vertices belong to cell CA, the triangle is assigned to cell CA.
In this case, if the third vertex belongs to a different cell CB , a copy of the
third vertex is added to CA.

– If the three vertices belong to three different cells CA, CB , and CC , the triangle
is assigned to the cell having the smallest barycenter in lexicographical order
(let it be CA), and a copy of each vertex belonging to the other two cells is
added to CA.

At the end of the triangle classification, the BSP leaf cells represent a triangle-
based partition of the input mesh geometry.



Processing Large Geometric Datasets in Distributed Environments 105

Fig. 2. Vertex classification. For each BSP cell, a corresponding file is created. Vertices
are read one by one and assigned based on their spatial location. Global indexes are
shown on the left of the original M , while local indexes are on the left of each Vi.
For each vertex in M , both its global index and its coordinates are written on the
corresponding Vi. Vfile stores, for each vertex, the ID of the corresponding BSP cell.
Vfile is exploited during triangle classification to identify where the vertices of each
triangle are located.

Independent Sets. An adjacency graph for the submeshes is defined where
each node represents a BSP cell, and an arc exists between two nodes if their
corresponding BSP cells are “mesh-adjacent”. Two cells are considered to be
mesh-adjacent if their corresponding submeshes share at least one vertex, that
is, at least one triangle is intersected by the splitting plane between the two cells.
Based on this observation, the adjacency graph is built during triangle classifi-
cation and kept updated at each assignment. The problem of grouping together
submeshes that are independent (e.g. no arc exists between the corresponding
nodes) is solved by applying a greedy graph coloring algorithm [22]. Submeshes
that belong to the same independent set can be processed simultaneously. Intu-
itively, the maximum number of nodes included in the same group is limited by
the number of available processing services.

Post-processing. Depending on the specific geometric operation to be per-
formed by processing services, some additional information from submesh’s
neighborhood may be required (e.g. the 1-ring neighborhood of boundary vertices
is necessary to perform Laplacian smoothing). In these cases, a post-processing
step is required to extract, for each submesh, the elements that constitute such a
“support neighborhood”. Such an information is then delivered to the processing
service along with submesh to be processed.
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5.2 Processing Services

Each processing service receives an input submesh and is asked to return an
output mesh. If required, the submesh’s support neighborhood is also provided.
Processing services can modify both inner and boundary elements, while any
possible support neighborhood must be kept unchanged. When boundary ele-
ments are modified, such modifications must be returned, so that the boundary
of adjacent submeshes can be synchronized.

Besides the output mesh and possible modifications on the boundary, each
processing service also encodes the list of boundary vertices of the output mesh
into an additional file. Such a boundary information is used by the engine to
efficiently merge the processed submeshes within a single model (Sect. 5.3).

Parallel Processing. When the same geometric operation is provided by more
than one processing service, the engine exploits the generated independent sets
to enable parallel processing. Each processing service is required to follow the
rules described above. In the first iteration, each submesh in the current inde-
pendent set is processed. Besides its output submesh, each processing service
produces an additional file describing which modifications have been applied on
the submesh boundary. This information is appended to adjacent submeshes and
used a constraint during the next iterations (Fig. 3).

Fig. 3. Boundary synchronization. As an example, Ma and Mb are two neighbor sub-
meshes. Ma is processed first. During the processing of Ma, all the changes introduced
on the part of its boundary which is shared with Mb are stored in a file, namely Cha

b .
When the turn of Mb comes, its processing service receives Cha

b and constrains Mb’s
boundary to change according to these instructions. Submeshes with the same color
belong to the same independent set and can be processed simultaneously.

5.3 Output Merging

The engine is responsible for merging all the processed submeshes to generate
a single indexed mesh. Mainly, the engine has two issues to deal with. First,
vertices shared among two or more neighbor submeshes have to be identified
and merged into a single point. Second, triplets of indexes representing triangles
have to be rebuilt according to the final output indexing.
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Since the final output may be too large to be loaded into main memory,
an out-of-core merging method is proposed. As aforementioned, each processing
service is also required to return the list of boundary vertices of the output mesh.
Such a list is exploited to identify boundary vertices with no need to load the
entire submesh. Algorithm 1 shows a more technical overview of our merging
method.

Algorithm 1. Merge algorithm. n processed submeshes M ′
i are merged into a

single output M ′. For each M ′
i , the list of boundary vertices is stored in BVi,

encoded as a pair 〈l, g〉, where l is the local index and g the global index. Each
BVi is sorted by local index. An in-core map Map is used to store, for each
boundary vertex already written to the final output, a mapping between its
global index and its position in the merged mesh.

1: procedure Merge(M ′
1, ..., M

′
n, BV1, ..., BVn)

2: Create Vf and Tf files
3: Create empty Map
4: Vc ← 0 � number of vertices added to final output
5: for each pair 〈M ′

i , BV ′
i 〉 do

6: 〈l, g〉 ← first pair in BVi

7: Allocate V (M ′
i) � an empty vector

8: for each v ∈ M ′
i do

9: lv ← local index of v
10: if lv �= l then � v is an inner vertex
11: Write v coordinates in Vf

12: Append Vc to V (M ′
i) and increment Vc

13: else � v is a boundary vertex
14: fv ← Map.find(g)
15: if g is not found then � v is not in Vf

16: Write v coordinates in Vf

17: Append Vc to V (M ′
i)

18: Map.add(〈g, Vc〉) and increment Vc

19: else � v is already in Vf

20: V (M ′
i)[lv] ← fv

21: 〈l, g〉 ← next pair in BV ′
i

22: for each t := (v1, v2, v3) ∈ M ′
i do

23: Write V (M ′
i)[v1], V (M ′

i)[v2] and V (M ′
i)[v3] in Tf

24: M ′ ← [header information] +Vf + Tf

25: return M ′

6 Distributed Input Dataset

When the input model is too large to be stored on a single machine, the mesh
is stored as a distributed collection of files representing adjacent sections of the
whole input model [4]. In this case, the engine may not have sufficient storage
resources to download the whole input mesh on its own disk, and the existing
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sections of the model may not be compatible with the hardware limitations of
the machines which host the processing services. Also, the final output may be
too large to be stored on the engine’s disk. Thus, a different approach is required
to re-partition the input dataset (Fig. 4) and to generate the final output.

In principle, one could exploit the approach described in Sect. 5.1 to partition
input subemeshes which are too large, while the smallest ones can be processed
as they are. Nevertheless, such an approach is inefficient when the number of
small input submeshes is too large (i.e. because submeshes are unnecessarily
small for the sake of processing). We propose an input repartitioning approach
that maximizes the exploitation of available processing services.

Fig. 4. Repartitioning. (a) The overall input mesh M . Each Mi is stored on a different
data node. (b) Repartitioned M . Mr

j s with the same color are included in the same
independent set.

Our reference scenario is shown in Fig. 5. The engine manages the input
re-partitioning and the final output generation by delegating part of the compu-
tation to the data nodes. When the re-partitioning has been completed, a new
collection of adjacent submeshes 〈Mr

1 ,M
r
2 , ...,M

r
m〉 representing the original M

is distributedly stored on the data nodes. The engine is responsible for grouping
the generated submeshes into independent sets and for orchestrating the process-
ing nodes to enable parallel processing. The result of each processing service is
delivered back to the data node that hosts the input. It is worth noticing that, in
this scenario, the engine works as an interface among data nodes and processing
nodes. When a node is triggered for execution, it receives from the engine the
address of the input data to be processed.

6.1 Input Repartitioning

The input repartitioning method is an extension of the the previously described
approach (Sect. 5.1), where part of the computation is delegated to the data
nodes.
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Fig. 5. Scenario. The original input mesh is defined as a collection of adjacent indexed
submeshes 〈M1, M2, M3〉. Each Mi is stored on a different data node Di. The engine
manages the input re-partitioning and the final output generation by delegating part of
the computation to the data nodes, while processing nodes are invoked for the actual
computation.

Pre-processing. Each data node is required to compute both the bounding
box and a representative vertex downsampling of its own original submesh. The
engine exploits this information to build a BSP of the whole original mesh M .
The BSP is stored on file to be distributed to the data nodes.

Vertex and Triangle Classification. Each data node assigns vertices and
triangles of its original input portion to the corresponding BSP cell, according
to their spatial location.

Generation of Independent Sets. The engine is responsible for building the
adjacency graph for the generated submeshes and group them into independent
sets. In some cases, a generated submesh may include portions of different orig-
inal portion (e.g. Mr

2 in Fig. 6). While building the independent sets, the engine
is responsible to group together data coming from different data nodes and to
send all of them to the same processing node.

6.2 Processing Services

When the input re-partitioning is completed, the dataset is ready to be processed.
The engine is responsible of managing the actual processing by iteratively dis-
tributing each independent set to the available processing services. Note that
processing services work as described in Sect. 5.2. Additionally, when a submesh
is compose by portions coming from different data nodes (e.g. Mr

2 in Fig. 6), a
processing service is required to load all the portions into its main memory and
merge them together before starting the actual computation. Since submeshes
are guaranteed to be sufficiently small to be completely loaded, the merging
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Fig. 6. The distributed BSP at the end of the repartitioning of M = 〈M1, M2, M3〉. As
an example, Mr

1 is a subpart of the original M1 (red), while Mr
2 is composed by two

subparts of the original M2 (green) and M3 (yellow) respectively. (Color figure online)

operation is performed by an incore method. Consistently with the previous app-
roach, each processing service generates an output mesh and an additional file
listing its boundary vertices. Also, files storing the list of modifications applied
on the submesh boundary are built and distributed to allow boundary synchro-
nization among neighbor submeshes.

6.3 Distributed Output Merging

When all the submeshes have been processed by the available processing nodes,
they should be merged to generate the final output. When the engine has not
enough storage resources, the disk space of the data nodes is exploited. We
assume that each data node has sufficient free storage resources to collectively
store a final merged output.

Let Di be the data node storing a set of generated submeshes. The outputs of
the processing services responsible for their elaboration is returned to Di, which
is responsible for merging them into a single mesh by exploiting the previously
described approach (Sect. 5.3) to perform the task. The final output is a distrib-
uted collection of processed submeshes, representing adjacent pieces of a huge
mesh M ′, which is a modified version of the original M .

7 Mesh Simplification

The distributed simplification algorithm works as follows. In the first step, the
engine partitions the mesh into a set of submeshes. Depending on the represen-
tation of the input dataset (distributed or not), one of the previously described
algorithms (Sects. 5.1 or 6.1) is selected to perform the task. Generated sub-
meshes are then grouped into independent sets. Each independent set is itera-
tively sent to the processing nodes for simplification. In the first iteration, each
submesh is simplified in all its parts according to the target accuracy. Besides
the simplified mesh, each processing service produces a set of additional files
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identifying which vertices on the submesh boundary were removed during simpli-
fication. Specifically, each file identifies vertices shared with a specific neighbor.
When processing adjacent submeshes, this information is used as a constraint for
their own simplification. When all the independent sets are processed, the final
output is generated by joining the simplified submeshes along their boundaries,
which are guaranteed to match exactly. If the engine has sufficient resources, the
algorithm described in Sect. 5.3 is exploited. Otherwise, the approach described
in Sect. 6.3 enables the possibility to distributedly store the final output.

Adaptivity. Each submesh is simplified by a single processing service through
a standard iterative edge-collapse approach based on quadric error metric [19].
Every edge is assigned a “cost” that represents the geometric error introduced
should it be collapsed. On each iteration, the lowest-cost edge is actually col-
lapsed, and the costs of neighboring edges are updated. In order to preserve the
appearance of the original shape, the simplification algorithm applied by each
service stops when a maximum error maxE is reached. This approach provides
an adaptively optimal result [7]. For each vertex, a quadric matrix is calculated
without the need of any support neghborhood: if the vertex is on the submesh
boundary, a partial quadric for boundaries [20] is calculated. To preserve the
input topology, we constrain boundary vertices which are shared by more than
two submeshes. By not simplifying these vertices, and by verifying the link con-
dition for all the other vertices, we can guarantee that the resulting simplified
submesh is topologically equivalent to the input.

Other Features. Our simplification algorithm proves the benefits provided by our
partitioning/merging approach, but it also has other noticeable characteristics.
Table 1 summarized the main features of such an algorithm and a comparison
with the state of the art. However, their description would bring us too far from
the scope of this paper, hence we refer the reader to [7] for details.

Table 1. Feature-based comparison with the state of the art.

[26] [36] [5] Ours

Out–Of–Core input ✓ ✗ ✓ ✓

Out–of–Core output ✓ ✗ ✗ ✓

Adaptivity ✗ ✓ ✓ ✓

Distributable ✓ ✓ ✗ ✓

Indexed mesh support ✗ ✓ ✓ ✓

8 Results and Discussion

For the sake of experimentation, the proposed Workflow Engine has been
deployed on a standard server running Windows 7, whereas other web services
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implementing atomic tasks have been deployed on different machines to consti-
tute a distributed environment. However, since all the servers involved in our
experiments were in the same lab with a gigabit network connection, we needed
to simulate a long-distance network by artificially limiting the transfer band-
width to 5 Mbps. All the machines involved in the experimentation are equipped
with Windows 7 64bit, an Intel i7 3.5 GHz processor, 4 GB Ram and 1 T hard
disk.

Then, to test such a system we defined multiple processing workflows involv-
ing the available web services. The dataset has been constructed by selecting
some of the most complex meshes currently stored within the Digital Shape
Workbench [3]. As an example, one of our test workflows is composed by the fol-
lowing operations: Removal of Smallest Components (RSC), Laplacian Smooth-
ing (LS), Hole Filling (HF), and Removal of Degenerate Triangles (RDT). The
same workflow was run on all the meshes in our dataset to better evaluate the
performance gain achievable thanks to our concurrent mesh transfer protocol.
Table 2 reports the size of the output mesh and the size of the correction file after
each operation (both after compression) whereas Table 3 shows the total time
spent by the workflow along with a more detailed timing for each single phase.
As expected, the corrections related to tasks that locally modify the model (eg.
RSC, HF, RDT) are significantly smaller than the whole output mesh by several
orders of magnitude; corrections regarding more “global” tasks (eg. LS) are also
smaller than the output mesh, although in this latter case the correction file is
just two/three times smaller than the whole output. Nevertheless, these results
confirm that the proposed concurrent mesh transfer protocol provides significant
benefits when the single steps produce mainly little or local mesh changes.

For each mesh in our dataset, Table 3 shows the time required to be processed
both in case the mesh transfer protocol is exploited (first line) or not (second
line). Specifically, the time spent by each algorithm is reported in columns RSC,
LS, HF , RDT , while columns T1 . . . T3 and columns U1 . . . U3 show the time
needed to transfer the correction file to the subsequent Web service and the
time spent to update the mesh by applying the correction respectively. For the
sake of comparison, below each pair (Ti, Ui) we also included the time spent by
transferring the whole compressed result instead of the correction file, and the
overall relative gain achieved by our protocol is reported in the last column. It is
worth noticing that, in all our test cases, the sum of the transfer and update times
is smaller than the time needed to transfer the whole mesh, with a significant
difference when the latter was produced by applying little local modifications on
the input.

To test our partitioning and simplification algorithm, large meshes extracted
from the Stanford online repository [1], from the Digital Michelangelo Project
[2] and from the IQmulus Project [4] were used as inputs. Some small meshes
have been included in our dataset to evaluate and compare the error generated
by the part-by-part simplification.

For each input model, we ran several tests by varying the number of involved
processing nodes and the maximum error threshold. We fixed the number Nv
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Table 2. Output sizes (in KB). For each mesh and for each task, the first line shows
the size of the compressed output mesh, while the second line reports the size of the
compressed correction. Average compression ratio is 5:1. Acronyms indicate Removal
of Smallest Components (RSC), Laplacian Smoothing (LS), Hole Filling (HF), and
Removal of Degenerate Triangles (RDT). A modified version of the Hole Filling algo-
rithm has been run to process “2.5D” geospatial data (*) in order to preserve their
largest boundary.

Mesh RSC LS HF RDT

Rome∗ 14915 15551 14915 13166

1 1425 1 1

Dolomiti∗ 11146 11637 11146 10588

1 1402 1 1

Isidore 20573 23333 23717 25497

11 9433 154 2

Nicolo 19498 21447 20601 20171

3 9296 48 2

Neptune 39881 40131 39891 39937

1 15237 1 1

Ramesses 17484 19544 19934 19802

3 8754 149 3

Dancers 16457 18037 18325 18116

1 7220 80 1

of vertices that should be assigned to each submesh to 1 M for very large input
meshes. Table 4 shows the time spent by the system to finish the whole com-
putation. The achieved speedup Si is also shown, computed as Si = Time1

Timei
,

where Time1 is the sequential time and Timei is the time required to run the
simplification on i servers. As expected, speedups are higher when the number
of available processing nodes increases. More noticeably, speedup increases as
the input size grows. Table in Fig. 7 reports the relation between the size of the
input, and shows the time needed to partition it and the benefits provided by
our re-partitioning algorithm. As a summarizing achievement, our method could
partition the 25 GB OFF file representing the Atlas model (≈0.5 billions trian-
gles) in ≈25 min. As a matter of comparison, the engine’s operating system takes
more than 8 min to perform a simple local copy of the same file. Furthermore, the
last experiment in Table 4 shows the time required to process the full-resolution
Liguria model (1.1 Tb), represented as a collection of 10 indexed meshes stored
on just as many data nodes. The repartitioning step requires less than 3 h. Note
that more than 24 h would be required if the model is stored as a single OFF
file on the engine hard disk.

To test the quality of output meshes produced by our algorithm, we used
Metro [12] to measure the mean error between some small meshes and their
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Table 3. Times (in seconds). Acronyms indicate Input Broadcast (IB), Removal of
Smallest Components (RSC), Laplacian Smoothing (LS), Hole Filling (HF), and
Removal of Degenerate Triangles (RDT). Cells labelled by Ti indicate the time needed
to transfer the correction file. Cells labelled by Ui indicate the time needed to update
the mesh by applying the correction. Total indicates the overall time required for the
execution. Benefits indicates, for each experiment, how much the computation time
decreases when our protocol is exploited. Computation times are reported both in case
the mesh transfer protocol is exploited (upper line) and in case of “traditional” transfer
(lower line). Note that a modified version of the Hole Filling algorithm has been run
to process “2.5D” geospatial data (*) in order to preserve the largest boundary.

Mesh (# vertices) IB RSC T1 U1 LS T2 U2 HF T3 U3 RDT Total Benefits

Rome∗ (957456) 20.4 5.8 0.0 0.0 8.4 2.3 9.4 5.5 0.0 0.0 6.9 58.7 104%

23.9 24.9 23.9 119.7

Dolomiti∗ (810000) 15.8 4.9 0.0 0.0 7.2 2.2 7.8 4.6 0.0 0.0 5.7 48.2 92%

17.8 18.6 17.8 92.4

Isidore (1071671) 33.0 7.7 0.0 5.8 12.4 15.1 7.1 8.4 0.2 6.0 13.8 109.5 67%

32.9 37.3 37.9 183.4

Nicolo (945924) 31.2 6.5 0.0 4.8 10.5 14.9 6.1 7.5 0.1 4.9 11.5 98.0 69%

31.2 34.3 33.0 165.7

Neptune (1321838) 63.8 13.0 0.0 0.0 18.6 24.4 11.0 12.6 0.0 0.0 14.4 157.8 99%

63.8 64.2 63.8 314.2

Ramesses (775715) 28.0 6.7 0.0 4.3 9.6 14.0 5.4 7.0 0.2 4.5 10.3 90.0 70%

28.0 31.3 31.9 152.8

Dancers (703207) 26.3 4.9 0.0 0.0 7.3 11.6 4.3 5.2 0.1 3.6 7.0 70.3 92%

26.3 28.9 29.3 135.2

Fig. 7. Partitioning time vs input size: we can observe an approximately linear growth
of the processing time as the input grows. When the input is pre-partitioned and scat-
tered on different disks, the re-partitioning approach speeds up the input segmentation.
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Table 4. Times (in seconds). Column labels: maxE is the threshold error (one thou-
sandth of the bounding box diagonal of the input in all these experiments) expressed in
absolute values, Ns is the number of available services, #ISs is the number of generated
independent sets, while #Vo is the number of output vertices. Also, times are shown
for each step: Partitioning (P ), Simplification (S), and Merging (M). All the input
meshes are stored as a single OFF file, except Liguria model (∗) that is represented as
a collection of 10 indexed meshes distributedly stored on 10 data nodes.

Input #ISs #Vo Times Speedup

Mesh (# vertices) maxE Ns P S M Total

Terrain (67873499) 0.00006 1 117 12166 497 302 1 800 –

10 13 11697 64.45 562.45 1.42

25 6 11660 13.37 511.37 1.56

St. Matthew (186836670) 3.01716 1 285 119121 1225.5 805.65 2.5 2033.65 –

10 29 119035 104.05 1332.05 1.53

25 13 119308 47.65 1275.65 1.59

Atlas (245837027) 3.35350 1 395 234084 1441 1481.25 4.5 2926.75 –

10 42 234081 157.05 1602.55 1.83

25 18 234091 72.95 1518.45 1.93

Liguria∗ (12986836670) 0.00006 1 26077 12174 9647 67278.60 1 76926.60 –

10 3276 12144 8452.08 18100.08 4.25

25 896 12153 2311.70 11959.70 6.42

simplifications. Results show that the number of services does not significantly
affect the quality of the output. Unfortunately, Metro is based on an incore
approach that evaluates the Hausdorff distance between the input mesh and
the simplified one. Such an approach cannot be used to evaluate the quality of
simplified meshes when the original version is too large. In these cases, quality
can be assessed based on a visual inspection only. Figures 8, 9, and 10 show that
high quality is preserved in any case and is not sensibly affected by the number
of involved services.

8.1 Limitations

We enabled the possibility to analyze and process large geometric datasets. Nev-
ertheless, some limitations should be taken into account when designing a parallel
algorithm that exploits our divide-and-conquer method. First, our approach sup-
ports algorithms that modify the existing geometry, but does not consider the
possibility to generate new geometric elements based on non strictly local infor-
mation (e.g. hole filling). Second, processing services are assumed to perform
local operations by analyzing at most a support neighborhood. Our divide-and-
conquer approach is not suitable for processing services requiring global informa-
tion. In this latter case, our proposal can be exploited only if an approximated
result is accepted.

Nonetheless, for some specific global operations, our system can be easily
customized and exploited as well. As an example, small components (e.g. those
with low triangle counts) of the original input may be partitioned by the BSP. In
this case, each processing service can just count the number of triangles of each
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Fig. 8. Details of Atlas model simplified by exploiting 25 available services (original:
≈256 M vertices, simplified: ≈234 K vertices)

Fig. 9. Detail of simplified Terrain model (original: ≈68 M vertices, simplified: ≈115 K
vertices). Nearly high fields are naturally supported

Fig. 10. Detail of St Matthew model simplified by 1, 10, and 25 servers (original:
≈187 M vertices, simplified: ≈1195 K vertices)
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component which is connected in the submesh. Such an information is returned
to the engine that, thanks to the BSP adjacency graph, can sum the partial
counts for adjacent sub-components without the need to explicitly load mesh
elements in memory. Thus, the engine can identify the smallest components and
tell the services to remove them in a second iteration.

9 Conclusions

We proposed a workflow-based framework to support collaborative research in
geometry processing. The platform is accessible from any operating system
through a standard Web browser with no hardware or software requirements.
A prototypal version is available at http://visionair.ge.imati.cnr.it/workflows/.
Scientists are allowed to remotely run geometric algorithms provided by other
researchers as Web services and to combine them to create executable geomet-
ric workflows. No specific knowledge in geometric modelling and programming
languages is required to exploit the system.

As an additional advantage, short-lasting experiments can be re-executed on
the fly when needed and there is no more need to keep output results explic-
itly stored on online repositories. Since experiments can be efficiently encoded
as a list of operations, sharing them instead of output models sensibly reduces
required storage resources. The architecture is open and fully extensible by sim-
ply publishing a new algorithm as a Web service and by communicating its URL
to the system. Moreover, we have demonstrated that the computing power of a
network of PCs can be exploited to significantly speedup the processing of large
triangle meshes and we have shown that the overhead due to the data transmis-
sion is much lower than the gain in speed provided by parallel processing.

In its current form, our system has still a few weaknesses. First, experiments
can be reproduced only as long as the involved Web services are available and
are not modified by their providers. To reduce the possibility of workflow decay
[42] a certain level of redundancy would be required. Second, our system does
not allow to execute semi-automatic pipelines, that is with user interaction. Such
a functionality would require the engine to interrupt the execution waiting for
the user intervention.

Several future directions are possible, both in terms of improvement of the
platform capabilities and enrichment of the geometry processing operations. One
of the objectives of our future research is to simplify the work of potential con-
tributor by enabling the engine to automatically compute the list of editing
operations. A possible solution may be inspired on [16], even if the high compu-
tational complexity of this method would probably hinder our gain in speed.
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