
Transactions on
Computational
Science XXIXLN

CS
 1

02
20

Marina L.Gavrilova · C. J. Kenneth Tan
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e

 123

Lecture Notes in Computer Science 10220

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/8183

http://www.springer.com/series/8183

Marina L. Gavrilova • C.J. Kenneth Tan (Eds.)

Transactions on
Computational
Science XXIX

123

Editors-in-Chief

Marina L. Gavrilova
University of Calgary
Calgary, AB
Canada

C.J. Kenneth Tan
Sardina Systems
Tallinn
Estonia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISSN 1866-4733 ISSN 1866-4741 (electronic)
Transactions on Computational Science
ISBN 978-3-662-54562-1 ISBN 978-3-662-54563-8 (eBook)
DOI 10.1007/978-3-662-54563-8

Library of Congress Control Number: 2017935025

© Springer-Verlag GmbH Germany 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

LNCS Transactions on Computational Science

Computational science, an emerging and increasingly vital field, is now widely rec-
ognized as an integral part of scientific and technical investigations, affecting
researchers and practitioners in areas ranging from aerospace and automotive research
to biochemistry, electronics, geosciences, mathematics, and physics. Computer systems
research and the exploitation of applied research naturally complement each other. The
increased complexity of many challenges in computational science demands the use of
supercomputing, parallel processing, sophisticated algorithms, and advanced system
software and architecture. It is therefore invaluable to have input by systems research
experts in applied computational science research.

Transactions on Computational Science focuses on original high-quality research in
the realm of computational science in parallel and distributed environments, also
encompassing the underlying theoretical foundations and the applications of large-scale
computation.

The journal offers practitioners and researchers the opportunity to share computa-
tional techniques and solutions in this area, to identify new issues, and to shape future
directions for research, and it enables industrial users to apply leading-edge,
large-scale, high-performance computational methods.

In addition to addressing various research and application issues, the journal aims to
present material that is validated – crucial to the application and advancement of the
research conducted in academic and industrial settings. In this spirit, the journal focuses
on publications that present results and computational techniques that are verifiable.

Scope

The scope of the journal includes, but is not limited to, the following computational
methods and applications:

– Aeronautics and Aerospace
– Astrophysics
– Big Data Analytics
– Bioinformatics
– Biometric Technologies
– Climate and Weather Modeling
– Communication and Data Networks
– Compilers and Operating Systems
– Computer Graphics
– Computational Biology
– Computational Chemistry
– Computational Finance and Econometrics

– Computational Fluid Dynamics
– Computational Geometry
– Computational Number Theory
– Data Representation and Storage
– Data Mining and Data Warehousing
– Information and Online Security
– Grid Computing
– Hardware/Software Co-design
– High-Performance Computing
– Image and Video Processing
– Information Systems
– Information Retrieval
– Modeling and Simulations
– Mobile Computing
– Numerical and Scientific Computing
– Parallel and Distributed Computing
– Robotics and Navigation
– Supercomputing
– System-on-Chip Design and Engineering
– Virtual Reality and Cyberworlds
– Visualization

VI LNCS Transactions on Computational Science

Editorial

The Transactions on Computational Science journal is part of the Springer series
Lecture Notes in Computer Science, and is devoted to a range of computational science
issues, from theoretical aspects to application-dependent studies and the validation of
emerging technologies.

The journal focuses on original high-quality research in the realm of computational
science in parallel and distributed environments, encompassing the theoretical foun-
dations and the applications of large-scale computations and massive data processing.
Practitioners and researchers share computational techniques and solutions in the area,
identify new issues, and shape future directions for research, as well as enable
industrial users to apply the techniques presented.

The current volume is devoted to the topic of secure and reliable communications,
as well as signal and image processing. It is comprised of seven full papers, presenting
algorithms for secure communication, including recovering weak radio signals,
designing efficient circuits, providing multiple antenna sensing techniques, examining
the relationship between modes of intercomputer communications and fault types,
discovering new ways to efficiently and reliably build geometric meshes, and studying
big data processing in distributed environments.

We would like to extend our sincere appreciation to all the reviewers for their work
on this regular issue. Our special thanks go to Editorial Assistant Ms. Madeena Sultana,
for her dedicated work on collecting papers and communicating with authors. We
would also like to thank all of the authors for submitting their papers to the journal and
the associate editors and referees for their valuable work.

It is our hope that this collection of eight articles presented in this issue will be a
valuable resource for Transactions on Computational Science readers and will stimulate
further research into the key area of high-performance computing.

January 2017 Marina L. Gavrilova
C.J. Kenneth Tan

LNCS Transactions on Computational
Science – Editorial Board

Marina L. Gavrilova,
Editor-in-Chief

University of Calgary, Canada

Chih Jeng Kenneth Tan,
Editor-in-Chief

Sardina Systems, Estonia

Tetsuo Asano JAIST, Japan
Brian A. Barsky University of California at Berkeley, USA
Alexander V. Bogdanov Institute for High Performance Computing

and Data Bases, Russia
Martin Buecker Aachen University, Germany
Rajkumar Buyya University of Melbourne, Australia
Hyungseong Choo Sungkyunkwan University, South Korea
Danny Crookes Queen’s University Belfast, UK
Tamal Dey Ohio State University, USA
Ivan Dimov Bulgarian Academy of Sciences, Bulgaria
Magdy El-Tawil Cairo University, Egypt
Osvaldo Gervasi Università degli Studi di Perugia, Italy
Christopher Gold University of Glamorgan, UK
Rodolfo Haber Council for Scientific Research, Spain
Andres Iglesias University of Cantabria, Spain
Deok-Soo Kim Hanyang University, South Korea
Stanislav V. Klimenko Institute of Computing for Physics and Technology,

Russia
Ivana Kolingerova University of West Bohemia, Czech Republic
Vipin Kumar Army High Performance Computing Research

Center, USA
Antonio Lagana Università degli Studi di Perugia, Italy
D.T. Lee Institute of Information Science, Academia Sinica,

Taiwan
Laurence Liew Platform Computing, Singapore
Nikolai Medvedev Novosibirsk Russian Academy of Sciences, Russia
Graham M. Megson University of Reading, UK
Edward D. Moreno UEA – University of Amazonas State, Brazil
Youngsong Mun Soongsil University, South Korea
Dimitri Plemenos Université de Limoges, France
Viktor K. Prasanna University of Southern California, USA
Muhammad Sarfraz KFUPM, Saudi Arabia
Dale Shires Army Research Lab, USA
Masha Sosonkina Ames Laboratory, USA
Alexei Sourin Nanyang Technological University, Singapore

David Taniar Monash University, Australia
Athanasios Vasilakos University of Western Macedonia, Greece
Chee Yap New York University, USA
Igor Zacharov SGI Europe, Switzerland
Zahari Zlatev National Environmental Research Institute, Denmark

X LNCS Transactions on Computational Science – Editorial Board

Contents

Analysis of Relationship Between Modes of Intercomputer
Communications and Fault Types in Redundant Computer Systems. 1

Refik Samet and Nermin Samet

Efficient Circuit Design of Reversible Square . 33
H.V. Jayashree, Himanshu Thapliyal, and Vinod Kumar Agrawal

Methods of Registration of Weak Radio Signals . 47
Stanislav Klimenko, Andrey Klimenko, Kira Konich, Igor Nikitin,
Lialia Nikitina, Valery Malofeev, and Sergey Tyul’bashev

A Novel Multiple Antennas Based Centralized Spectrum
Sensing Technique . 64

Jyotshana Kanti, Geetam Singh Tomar, and Ashish Bagwari

ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel 86
Marco Attene

Processing Large Geometric Datasets in Distributed Environments 97
Daniela Cabiddu and Marco Attene

Decision Fusion for Classification of Content Based Image Data. 121
Rik Das, Sudeep Thepade, and Saurav Ghosh

Author Index . 139

http://dx.doi.org/10.1007/978-3-662-54563-8_1
http://dx.doi.org/10.1007/978-3-662-54563-8_1
http://dx.doi.org/10.1007/978-3-662-54563-8_2
http://dx.doi.org/10.1007/978-3-662-54563-8_3
http://dx.doi.org/10.1007/978-3-662-54563-8_4
http://dx.doi.org/10.1007/978-3-662-54563-8_4
http://dx.doi.org/10.1007/978-3-662-54563-8_5
http://dx.doi.org/10.1007/978-3-662-54563-8_6
http://dx.doi.org/10.1007/978-3-662-54563-8_7

Analysis of Relationship Between Modes
of Intercomputer Communications and Fault

Types in Redundant Computer Systems

Refik Samet1(B) and Nermin Samet2

1 Ankara University, Ankara, Turkey
samet@eng.ankara.edu.tr

2 Middle East Technical University, Ankara, Turkey
nermin.samet@gmail.com

Abstract. This paper analyzes the reasons of appearance of non - Byzan-
tine and Byzantine fault types in redundant computer systems. The pro-
posed approach is based on analysis of the relationship between the modes
of intercomputer communications and fault types. This analysis allows
the users to design the redundant computer systems in such a way that
Byzantine faults cannot appear. Consequently, designing the redundant
computer systems, in which Byzantine faults cannot appear, allows the
designers to increase the degree of reliability by preventing the masking
of any forms of appearance of faults and by decreasing the time period of
checkpoints. In addition, this approach decreases the cost of software and
hardware involved in the execution of fault-tolerant procedures.

Keywords: Reliability · Fault-tolerance · Redundant computer sys-
tem · Non-Byzantine and Byzantine fault types · Byzantine agreement
algorithm · Protocols of intercomputer communications · Modes of inter-
computer communications

1 Introduction

A control system can be viewed as a combination of two interdependent com-
ponents: the controlled process and the controlling computer. Detailed analysis
of the reliability of real-time control systems is required due to their increasing
amount of critical applications; e.g. aircraft, spacecraft, nuclear reactor control,
etc., where a failure in the controlling computer would result in catastrophic
losses. The reliability of a system is a function of time, R(t), defined as a con-
ditional probability that the system performs correctly throughout the interval
of time, [t0, t1], given that the system was performing correctly at time t0 [1,2].
In applications such as those mentioned above the probability of working cor-
rectly throughout that interval must be equal to or greater than 0.9999999
“7 nines”) [2–5].

c© Springer-Verlag GmbH Germany 2017

M.L. Gavrilova and C.J. Kenneth Tan (Eds.): Trans. on Comput. Sci. XXIX, LNCS 10220, pp. 1–32, 2017.

DOI: 10.1007/978-3-662-54563-8 1

2 R. Samet and N. Samet

“7 nines” is too difficult to reach by using classical methods. Achieving that
degree requires a more comprehensive approach including careful optimization
of checkpoint time period and preventing the masking of appearance of any fault
forms.

Reliable computer system (controlling computer) must handle malfunction-
ing components that give conflicting information to different parts of the sys-
tem. In literature, such behavior is denoted as a Byzantine fault. The problem of
coping with this type of faults is expressed abstractly as the Byzantine Generals
Problem [6–13]. In [7], several solutions to the Byzantine Generals Problem were
presented and it has been shown that these solutions are expensive in both the
amount of time and number of message required.

There are many fault-tolerant architectures tolerating Byzantine faults, such
as MAFT [14], GUARDS [15,16], SIFT [17], FTMP [18]. In these systems, the
computational overhead of maintaining fault-tolerance due to Byzantine faults
consumes a considerable part of the system throughput. For example, this value
is 80% of the system throughput for SIFT and 60% for FTMP.

Recently, researchers have proposed some protocols and algorithms which
reduce Byzantine agreement overhead in distributed systems, computer net-
works, wireless sensor networks, mobile ad hoc networks [19–34]. For example,
according to a protocol proposed in [22], each computer in distributed systems
can agree on a common value through three rounds of message exchange. Agree-
ment protocol proposed in [23] helps in achieving faster execution results using
an effective view change mechanism in distributed computing systems. Protocol
proposed in [24] reaches a common agreement within the mobile ad hoc networks
by using the minimum number of rounds of message exchange and tolerates a
maximum number of allowable faulty components. Byzantine consensus proto-
col presented in [25] tolerates dynamic message omissions and allows an efficient
utilization of the wireless broadcasting medium in wireless ad hoc networks.
In [26], authors present two Byzantine fault-tolerant algorithms, which require
only (2k +1) round of message exchange, instead of the usual (3k +1). Protocol
named Zyzzyva [27] reduces replication overheads to near their theoretical min-
ima and achieves throughputs of tens of thousands of requests per second, making
Byzantine Fault Tolerance replication practical for a broad range of demanding
services. Furthermore, since 2008, new technologies such as OpenMP and CUDA
are widely used for fault tolerance [35–44].

Two fault types are recognized in Redundant Computer Systems (RCS):
non-Byzantine and Byzantine [1,7,45–49]. The Byzantine fault type has some
important problems which cause a checkpoint time period to be increased and
some forms of appearance of faults to be masked [7,47]. A key question concerns
the reasons for the appearance of Byzantine fault type. Why does a Byzantine
fault appear in RCS? Is it possible to design RCS in which Byzantine faults
cannot appear?

In [7], the authors explain that due to a marginal signal “hardware” solutions
do not solve the Byzantine fault problem. Certainly, a marginal signal is a serious
problem in networks and distributed systems [50,51].

Relation Between Intercomputer Communications Modes and Faults in RCS 3

However the subject of this study is RCS which consist of the same special
computers placed close to each other, often on the same card. We assume that
transmitted signals cannot weaken to a marginal level in RCS. We also assume
that broadcasting data over a single wire removes the possibility of appearance
of Byzantine fault types in RCS. So we do not analyze the non-Byzantine and
Byzantine fault types which arise from marginal logic.

We analyze the non-Byzantine and Byzantine fault types which arise from
faulty states of the units (input unit, central processing unit and output unit) in
RCS. We analyze different intercomputer communication protocols and suggest
ones which allow the designers to build RCS that are free from Byzantine fault
type.

Broadcast mode is also used in MAFT [14], GUARDS [15] and SIFT [17]. In
these architectures, the motivation for choosing this mode is not that it avoids
Byzantine behavior. As we will show in Sect. 4, it is possible to design different
protocols by using broadcast and other modes of intercomputer communications.
Some protocols using broadcast mode avoid Byzantine behavior and others do
not. The protocols used in [14,15,17] cannot avoid Byzantine faults.

The main aims of this paper are: (1) to analyze the problems related to
Byzantine fault type; (2) to define the reasons of appearance of non-Byzantine
and Byzantine fault types by analyzing the relationship between the modes of
intercomputer communications and fault types; (3) to suggest rules for building
RCS in which Byzantine faults cannot appear.

This paper is organized as follows: in Sect. 2, we describe models which are
used in this paper; in Sect. 3, we analyze the problems of Byzantine fault types;
in Sect. 4 we analyze the modes of intercomputer communications and protocols
in RCS; Sect. 5 analyses the relationship between the modes of intercomputer
communications and fault types in RCS; Sect. 6 gives the evaluation and results;
the conclusions are made in Sect. 7.

2 Models

2.1 System Model

We consider systems which consist of redundant computers (nodes) (Fig. 1). The
typical structure of RCS consists of the same special computers placed close
to each other, often on the same card. Redundant computers are connected
directly and exchange by data using protocols of intercomputer communications
[52–61]. Level of redundancy (the number of redundant nodes) depends on the
required degree of reliability. RCS may be formed of double, triple, ..., N -
modular redundant nodes [2,3,45,49,57,62–64]. The redundant nodes perform
the same single instruction stream on the basis of the same single data stream.
The environment of RCS is the redundant sensors and executive devices. We
don’t investigate RCS based on computers of networks and distributed systems.

4 R. Samet and N. Samet

Fig. 1. The typical structure of RCS

2.2 Fault Models

In RCS, we distinguish a non-Byzantine fault type from a Byzantine one accord-
ing to their effects. Non-Byzantine fault type causes the faulty node to send the
same value to all normally operating nodes. On the other hand, Byzantine fault
type causes the faulty node to send different values to all normally operating
nodes (Example 1 in Appendix I).

We consider two sorts of each fault type. Each fault type may occur either
due to transient faults or due to permanent faults [1–3,15,49,61,64–68]. A tran-
sient fault is an instantaneous destruction of the logical series for task execution.
For example, splashes in output voltage may result in a transient fault. A per-
manent fault is a permanent destruction of the logical series for task execution.
For example, short circuited computer components may result in a permanent
fault. Intermittent, semi permanent and other faults may be interpreted either
as transient or permanent faults, depending on the time in which they occur. If
any fault continues its effects, for example, for more than three sequential logical
segments, it may be interpreted as a permanent fault, instead of transient fault.
The number of segments to interpret the sort of the fault may be changed from
application to application [47].

We investigate special purpose systems where only hardware faults can occur,
the probability of appearance of the software bugs is negligible. Malicious attacks
cannot occur in systems isolated from general purpose networks or Internet.

2.3 Computational Process Model

Figure 2 shows the typical structure of a computational process that is exe-
cuted in each node of RCS simultaneously and consists of a number of operating
cycles. Each operating cycle consists of M logical segments in which a certain
number of real-time application tasks is executed. After each logical segment,
the checkpoint is realized [4,69,70]. In a checkpoint, the fault-tolerant procedure
is executed. The computational process is formed by serial execution of logical
segments and checkpoints. The computational result of the logical segment is

Relation Between Intercomputer Communications Modes and Faults in RCS 5

represented by a single value (for example, checksum). In the checkpoints, all
nodes realize the interchange by computational results. Every node forms the
Initial Data Set (IDS) consisting of N elements. IDS are used for execution of
the fault-tolerant procedure.

Fig. 2. The typical structure of computational process

The fault-tolerant procedure is a sequence of operations executed by each
node to detect and counteract faults. Each complete part of the fault-tolerant
procedure is a step which executes certain functions to detect and counteract
the faults. Types and steps of the fault-tolerant procedure are listed in Table 1.

As seen from Table 1, there are two types of fault-tolerant procedure. Type
1 is oriented to detect and counteract only non-Byzantine fault type in RCS
and consists of five steps. However Type 2 is oriented to detect and counteract
both Byzantine and non-Byzantine fault types in RCS and consists of six steps.
Consequently Type 2 requires more time and provides higher reliability.

2.4 Basic Assumptions and Limitations

1. We assume that only a single fault may appear during any single logical
segment and single checkpoint together.

2. We consider RCS which degrade from N to 1. After any permanent fault the
faulty node is closed and RCS continues the computational process with a
reduced number of nodes.

3. We also assume that the wired medium (connections) between nodes is fault
free. This basically assumes away the possibility of a faulty transmitter
transmitting a marginal logic level that is interpreted differently by differ-
ent receivers. Under this assumption, different receivers interpret a signal on
a bus in the same way.

2.5 Main Contributions

The paper aims at providing design rules for building RCS that are free from
Byzantine faults. To this end, this paper makes the following contributions:

6 R. Samet and N. Samet

Table 1. Types and steps of fault-tolerant procedures to detect and counteract the
faults in RCS

Step

number

Steps of the

fault-tolerant

procedure

Types of the fault-tolerant procedure

Type 1: Fault-tolerant procedure for

detecting and counteracting of only

non-Byzantine fault type in RCS

Type 2: Fault-tolerant procedure for

detecting and counteracting of both

Byzantine and non-Byzantine fault

types in RCS

Steps belonging

to the procedure

of Type 1

Time period for

execution of the

appropriate

steps

Steps belonging

to the procedure

of Type 2

Time period for

execution of the

appropriate

steps

1 Execution of the

Byzantine

agreement

algorithm

- - � t1

2 Detection of the

fault

� t2 � t2

3 Localization of

fault (definition

of a number of

faulty node)

� t3 � t3

4 Definition of the

sort of the fault

(transient or

permanent)

� t4 � t4

5 Recovery of

computational

process after

transient fault

� t5 � t5

6 Reconfiguration

of RCS after

permanent fault

� t6 � t6

1. This paper defines and analyzes the problems related to Byzantine fault type.
2. This paper also analyzes four modes of intercomputer communications,

describes seven protocols by using these modes and gives examples for imple-
mentation of these protocols.

3. This paper analyzes the relationship between the modes of intercomputer
communications (such as the broadcast, time sharing, non-regular and regular
modes) and fault types (such as non-Byzantine and Byzantine) in RCS.

4. This paper defines the reasons for appearance of non-Byzantine and Byzantine
fault types on the basis of the regular features of fault types in RCS.

5. This paper shows how the Byzantine fault type affects the degrees of reliability
and performance of RCS.

3 An Analysis of Problems Related to Byzantine Fault
Type

3.1 Possibilities of RCS to Counteract the Fault Types

Let N be the total number of nodes, k - the number of faulty nodes or the number
of faults appeared in RCS and m - the number of communication rounds between

Relation Between Intercomputer Communications Modes and Faults in RCS 7

Table 2. Fault types and possibilities of RCS to counteract faults

Number of nodes
in RCS

Fault types Possibilities of RCS to
counteract the fault types

1 Special case: A system is not redundant

2 Only non-Byzantine fault type
can appear

Only non-Byzantine fault type
can be counteracted

3 Both non-Byzantine and
Byzantine fault types can
appear

It is possible to counteract
only non-Byzantine fault type
because there are no
mechanisms to counteract the
Byzantine fault type in RCS
with N = 3

From 4 to N Both non-Byzantine and
Byzantine fault types can
appear

Both non-Byzantine and
Byzantine fault types can be
counteracted

nodes for execution of a fault-tolerant procedure. Table 2 presents the fault types
and possibilities of RCS to counteract them.

Table 3 shows the relationship between N , k, m and fault types which can
be counteracted in RCS.

In order to counteract the Byzantine fault type, several algorithms have
been proposed to solve the Byzantine agreement problem: (1) Determinate, (2)
Approximate and (3) Randomize [7,46,71–74]. These algorithms require all non-
faulty nodes to agree on an identical value. All that these algorithms can do is
guarantee that all computers use the same input value [7]. In other words, these

Table 3. Relationship between N , k, m and fault types

Number

of

faults

(k)

A single fault may appear during any

single logical segment and single

checkpoint togethera

k faults may appear during any

single logical segment and single

checkpoint togetherb

Required number

(N) of nodes for

counteracting

Required number

(m) of

communication

rounds for

counteracting

Required number

(N) of nodes for

counteracting

Required number

(m) of

communication

rounds for

counteracting

non-

Byzantine

fault type

Byzantine

fault type

non-

Byzantine

fault type

Byzantine

fault type

non-

Byzantine

fault type

Byzantine

fault type

non-

Byzantine

fault type

Byzantine

fault

type

1 2 4 1 2 3 4 1 2

2 3 5 1 2 5 7 1 3

. .

k N ≥ k+1 N ≥ k+3 m = 1 m = 2 N ≥
2k+1

N≥ 3k+1 m = 1 m = k+1

aAfter permanent fault, faulty node is closed, RCS is degraded and the computational process is continued

with reduced number of non-faulty nodes.
bAfter permanent fault, faulty node is not closed, RCS continues the computational process with the same

number of nodes but part of them is faulty.

8 R. Samet and N. Samet

algorithms reduce almost all forms of appearance of faults to the same form
as for a non-Byzantine fault type. In this paper, we will use the Determinate
Byzantine agreement algorithm for describing the forms of appearance of faults.

Two sequential actions are realized for detecting and counteracting of the
Byzantine fault type: (1) conversion of the Byzantine fault type to the non-
Byzantine fault type by using the Byzantine agreement algorithms and (2)
counteracting of the fault by using the fault-tolerant procedure oriented for non-
Byzantine fault type.

3.2 Problems Related to Byzantine Fault Type

Problem #1: Masking of some forms of appearance of faults is a serious prob-
lem. During execution of Byzantine agreement algorithm, the value of each ele-
ment of final IDS is generated by majority voting, i.e., it is equal to the value of
the majority of agreements [7,14,15,17,46,47]. As a result, the majority voting
procedure hides the forms of appearance of faults for which the number of dis-
agreements is less than one half of the total number of elements in a group and
these forms of appearance of faults may build up and ultimately lead to system
failure (Cases 2.1, 2.2, and 2.3 of Example 2 in Appendix I).

Problem #2: It is impossible to counteract the Byzantine fault type appearing
in RCS with N = 3 [7,46,47]. It is known that there is only one way to counteract
the Byzantine fault type, which is by using the Byzantine agreement protocols.
However, these protocols are used only for RCS where (N ≥ 3k+1) (Example 3
in Appendix I). Therefore, the Byzantine fault type directly decreases the degree
of reliability of RCS with N = 3.

Problem #3: The Byzantine fault type requires more software, hardware and
processing time [7,14,15,17,47].

(a) The fault-tolerant procedure for non-Byzantine fault type consists of five
steps, whereas for Byzantine fault type, it consists of six steps. The first
step is for conversion of Byzantine fault type to non-Byzantine type by using
Byzantine agreement protocols and the other five steps are the same as with
the fault-tolerant procedure for a non-Byzantine fault (Table 1). So, software
for realization of the fault-tolerant procedure for the Byzantine fault type
includes 6 steps instead of the 5 steps for non-Byzantine one.

(b) In order to counteract k Byzantine faults (N ≥ k+3)a (or (N ≥ 3k+1)b)
nodes are required instead of (N ≥ k+1)a (or (N ≥ 2k+1)b) node for k non-
Byzantine faults (for a and b see notes under Table 3). For example, for coun-
teracting k = 2 Byzantine faults, minimum (N ≥ 5)a (or (N ≥ 7)b) nodes
and for counteracting of the same number of non-Byzantine faults, minimum
(N ≥ 3)a (or (N ≥ 5)b) nodes are required. Consequently, the Byzantine fault
type requires more hardware for counteracting of the same number of faults.
These hardware expenses increase very rapidly with increasing k (Table 3).

(c) The number of intercomputer communication rounds (Table 3) and the
capacity of executed operations for the Byzantine agreement protocol

Relation Between Intercomputer Communications Modes and Faults in RCS 9

(Example 2 in Appendix I) are always more than for all of the other steps.
That is why it may be written that ti < t1, where t1 is the time period for
execution of the Byzantine agreement protocol or the first step of the fault-
tolerant procedure for a Byzantine fault type and ti is the time period for
execution of ith step of the fault-tolerant procedures, i = 2, 3, 4, 5, 6 (Table 3).
Suppose that the required time period of checkpoints for counteracting
of non-Byzantine fault types is defined as TNB

CP . Then, the required time
period of checkpoints for counteracting of Byzantine fault type TB

CP , will be
defined as

TB
CP = TNB

CP + t1 , and TB
CP > TNB

CP (1)

This means that checkpoint time period for Byzantine fault type is more
than for non-Byzantine fault type.

Problem #4: The Byzantine fault type indirectly decreases the degree of
reliability of RCS. The fault-tolerant procedure works in checkpoints (Fig. 2).
The appearance of faults in checkpoints is very dangerous because there is no
mechanism to counteract them. As a result, in order to contribute to achieving
“7 nines” it is necessary to decrease the probability of appearance of faults in
checkpoints by shorting the time period for checkpoints. As has been noted from
(1), the checkpoint time period TB

CP for a Byzantine fault type is more than TNB
CP

for a non-Byzantine fault type. It is clear from Table 3 that TB
CP increases very

rapidly for increasing k by means of m (the required number of communication
rounds). Consequently, the probability of appearance of faults in checkpoints for
the Byzantine fault type is increasing and the degree of reliability is decreasing.

As we see, dealing with the Byzantine fault type is very difficult and has some
important disadvantages. A key question is about the reasons for appearance
of Byzantine fault type. Why does Byzantine fault type appear in RCS? Is it
possible to design RCS where Byzantine fault type cannot appear? The main
aims of this paper are: (1) to define the reasons of appearance of non-Byzantine
and Byzantine fault types, (2) to analyze the relationship between the modes of
intercomputer communications and fault types (non-Byzantine and Byzantine)
in structure of RCS and (3) to suggest rules for designing of RCS in which
Byzantine faults cannot appear.

4 An Analysis of Modes of Intercomputer
Communications

Suppose that node n (n = 1, 2, ..., N) consists of a Central Processor (CP), Input
Processor (IP) and Output Processor (OP) as shown in Fig. 3.

CP controls the computational process, computes its own computational
result and executes the fault-tolerant procedure on the basis of computational
results from all nodes in RCS. IP consists of the receivers (R1, R2, . . . , RK)
which receive the computational results from the other nodes. OP consists of

10 R. Samet and N. Samet

Fig. 3. The computer structure

the transmitters (T1, T2, . . . , TP) which transmit the computational results to
the other nodes.

The computational process executed in RCS is periodically interrupted at the
checkpoints by the execution of the fault-tolerant procedure (Sect. 2.3). At check-
points, m communication rounds are realized between nodes by the exchanging
of computational results. According to the Determinate Byzantine agreement
protocol, in the first communication round, each node must transmit its own
computational result to all other nodes and receive the computational results
from the other nodes in RCS. In the other (m−1) communication round, the
nodes must exchange the computational results through mediator nodes (for
example, the ith node transmits to the jth node the computational result of the
nth node in RCS, where i, j, n = 1, 2, ..., N and i �= j �=n) (for implementation of
the Determinate Byzantine agreement protocol see Example 2 in Appendix I).

Modes of intercomputer communications used for exchanging of the compu-
tational results between nodes are described in Table 4 [52–55,75].

We will show below that fault types appearing in RCS depend on the modes
described in Table 4. Intercomputer communications may be realized by using
one of seven protocols (Table 5).

Example for implementation of Protocol #I: Structure of RCS with N = 4
for implementation of Protocol I is given in Fig. 4

According to the description of Protocol I (Table 5), (N − 1) communication
round (CR) is required. So, for N = 4, (N−1) = (4−1) = 3 CR are needed. In any
CR, OP of any computer sends the computational results to IP of corresponding
computers. Namely, in the 1st CR: C1→C2 (this means that OP of the 1st

computer sends the data to IP of the 2nd computer), C2→C1, C3→C4, C4→C3;
in the 2nd CR: C1→C3, C3→C1, C2→C4, C4→C2 and in the 3rd CR: C1→C4,
C4→C1, C2→C3, C3→C2.
Example for implementation of Protocol #II: Structure of RCS for imple-
mentation of Protocol II is the same as Protocol I (Fig. 4). According to the

Relation Between Intercomputer Communications Modes and Faults in RCS 11

Table 4. Modes of intercomputer communications

Modes of intercomputer
communications

Actions executed by nodes

Broadcast Mode The same data are transmitted from one node to all
(or some) of the other connected nodes
simultaneously

Time-Sharing Mode The same data are transmitted from one node to all
(or some) of the other connected nodes by using and
sharing the same medium

Non-Regular Mode Each of N nodes transmits the same data to all
(N − 1) connected node by using (N − 1) transmitter
in parallel, N nodes do it in sequence during N
communication roundsa

Regular Mode Each of N nodes transmits the same data to all
(N − 1) connected node by using (N − 1) transmitter
in parallel, N nodes do it in parallel during 1
communication rounda

aCommunication round is a time period defined by one clock pulse of the system
timer.

Fig. 4. Structure of RCS with N = 4 for implementation of Protocol #I and Protocol
#II

description of Protocol II (Table 5), N communication rounds are required. So,
for N = 4, 4 CR are needed. Namely, in the 1st CR: C1→C2, C1→C3, C1→C4;
in the 2nd CR: C2→C1, C2→C3, C2→C4; in the 3rd CR: C3→C1, C3→C2,
C3→C4 and in the 4th CR: C4→C1, C4→C2, C4→C3. Detailed explanation for
implementation of Protocol II is given in Example 4 of Appendix I.

12 R. Samet and N. Samet

Table 5. Description of protocols for intercomputer communications

Protocol

Number

Actions executed by OP Actions executed by IP Number of required

communication rounds

Example

Figure

I OP of the nth node

(n = 1, 2, . . . , N)

transmits the

computational results to

IP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the

time-sharing mode by

using (N − 1) transmitter

IP of the nth node

(n = 1, 2, . . . , N) receives

the computational results

from OP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the time-sharing

mode by using one receiver

All nodes execute this

procedure in parallel so

that for full exchange of

the computational results

(N − 1) communication

round is needed for N

nodes

Fig. 4

II OP of the nth node

(n = 1, 2, . . . , N)

transmits the

computational results to

IP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the non-regular

mode by using (N − 1)

transmitter in parallel

IP of the nth node

(n = 1, 2, . . . , N) receives

the computational results

from OP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the time-sharing

mode by using one receiver

All nodes execute this

procedure in sequence so

that for full exchange of

the computational results

N communication rounds

are needed for N nodes

Fig. 4

III OP of the nth node

(n = 1, 2, . . . , N)

transmits the

computational results to

IP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the regular

mode by using (N − 1)

transmitter in parallel

IP of the nth node

(n = 1, 2, . . . , N) receives

the computational results

from OP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the regular

mode by using (N − 1)

receiver in parallel

All nodes execute this

procedure in parallel so

that for full exchange of

the computational results

one communication round

is needed for N nodes

Fig. 5

IV OP of the nth node

(n = 1, 2, . . . , N)

transmits the

computational results to

IP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the broadcast

mode by using one

transmitter

IP of the nth node

(n = 1, 2, . . . , N) receives

the computational results

from OP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) by using (N − 1)

receiver in parallel

All nodes execute this

procedure in parallel so

that for full exchange of

the computational results

one communication round

is needed for N nodes

Fig. 6

V OP of the nth node

(n = 1, 2, . . . , N)

transmits the

computational results to

IP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the time

sharing mode by using one

transmitter

IP of the nth node

(n = 1, 2, . . . , N) receives

the computational results

from OP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) by using (N − 1)

receiver in sequence

All nodes execute this

procedure in parallel so

that for full exchange of

the computational results

(N − 1) communication

round are needed for N

nodes

Fig. 6

VI OP of the nth node

(n = 1, 2, . . . , N)

transmits the

computational results to

IP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the time

sharing mode by using one

transmitter

IP of the nth node

(n = 1, 2, . . . , N) receives

the computational results

from OP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the time sharing

mode by using one receiver

All nodes execute this

procedure in sequence so

that for full exchange of

the computational results

3N communication rounds

are needed for N nodes

Fig. 7

VII OP of the nth node

(n = 1, 2, . . . , N)

transmits the

computational results to

IP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the broadcast

mode by using one

transmitter

IP of the nth node

(n = 1, 2, . . . , N) receives

the computational results

from OP of the ith nodes

(i = 1, 2, . . . , N) and

(n �= i) in the time sharing

mode by using one receiver

All nodes execute this

procedure in parallel so

that for full exchange of

the computational results

N communication rounds

are needed for N nodes

Fig. 7

Relation Between Intercomputer Communications Modes and Faults in RCS 13

Example for implementation of Protocol #III: Structure of RCS with
N = 4 for implementation of Protocol III is given in Fig. 5.

Fig. 5. Structure of RCS with N = 4 for implementation of Protocol #III

According to the description of Protocol III (Table 5), 1 CR is required.
Namely, in the 1st CR: C1→C2, C1→C3, C1→C4, C2→C1, C2→C3, C2→C4,
C3→C1, C3→C2, C3→C4, C4→C1, C4→C2, C4→C3

Example for implementation of Protocol #IV: Structure of RCS with
N = 4 for implementation of Protocol IV is given in Fig. 6.

Fig. 6. Structure of RCS with N = 4 for implementation of Protocol #IV and
Protocol #V

According to the description of Protocol IV (Table 5), 1 CR is required.
Namely, in the 1st CR: C1→C2, C1→C3, C1→C4, C2→C1, C2→C3, C2→C4,
C3→C1, C3→C2, C3→C4, C4→C1, C4→C2, C4→C3. Detailed explanation for
implementation of Protocol IV is given in Example 4 of Appendix I.

14 R. Samet and N. Samet

Example for implementation of Protocol #V: Structure of RCS for imple-
mentation of Protocol V is the same as Protocol IV (Fig. 6). According to the
description of Protocol V (Table 5), (N − 1) CR is required. So, for N = 4,
(N − 1) = (4− 1) = 3 CR are needed. Namely, in the 1st CR: C1→C2, C2→C1,
C3→C4, C4→C3; in the 2nd CR: C1→C3, C3→C1, C2→C4, C4→C2 and in the
3rd CR: C1→C4, C4→C1, C2→C3, C3→C2.

Example for implementation of Protocol #VI: Structure of RCS with
N = 4 for implementation of Protocol VI is given in Fig. 7.

Fig. 7. Structure of RCS with N = 4 for implementation of Protocol #VI and Protocol
#VII

According to the description of Protocol VI (Table 5), 3N CR are required.
So, for N = 4, 3 * N = 3 * 4 = 12 CR are needed. Namely, in the 1st CR: C1→C2;
in the 2nd CR: C1→C3; in the 3rd CR: C1→C4; in the 4th CR: C2→C1; in the
5th CR: C2→C3; in the 6th CR: C2→C4; in the 7th CR: C3→C1; in the 8th

CR: C3→C2; in the 9th CR: C3→C4; in the 10th CR: C4→C1; in the 11th CR:
C4→C2; in the 12th CR: C4→C3.

Example for implementation of Protocol #VII: Structure of RCS for
implementation of Protocol VII is the same as Protocol VI (Fig. 7). According to
the description of Protocol VII (Table 5), N communication rounds are required.
So, for N = 4, 4 CR are needed. In the 1st CR: C1→C2, C1→C3, C1→C4; in the
2nd CR: C2→C1, C2→C3, C2→C4; in the 3rd CR: C3→C1, C3→C2, C3→C4
and in the 4th CR: C4→C1, C4→C2, C4→C3.

We consider seven protocols for RCS described above. Each of them may
be realized by different schematic solutions. We do not consider the details of
concrete solutions because of the length limitation.

5 An Analysis of the Relationship Between Modes
of Intercomputer Communications and Fault Types

Let us analyze the relationship between the modes of intercomputer communica-
tions (described in Table 4 and used in protocols from Table 5) and the fault types
(non-Byzantine and Byzantine) appeared in RCS. According to our assumption

Relation Between Intercomputer Communications Modes and Faults in RCS 15

on fault appearance (Sect. 2.4) only one fault can appear in RCS during any
logical segment and following checkpoint time period (the probability of the
appearance of another fault is negligibly small). Suppose that the nth node in
RCS is faulty. This means that fault can appear only in one of three units (IP,
CP, and OP) of this node. Let us analyze these situations.

(a) Fault occurs in IP of the nth node (CP and OP are non-faulty) (Fig. 8).
The functions of IP are to receive the computational results from the other
nodes and to save them in its buffer memory. According to our assumption
IP is faulty; CP and OP are non-faulty in the nth node. IP receives the com-
putational results from the ith (i = 1, 2, ..., N and n �= i) node in the first and
following communication rounds. Because of its faulty state, IP may contin-
uously change the received computational results. For this reason received
results will be denoted as incorrect computational results. The computa-
tional results which were received from ith node to the buffer memory of the
IP of the nth node and which must be resent to the IP of the jth node must
be transferred from the buffer of IP to the buffer of OP of the nth node. OP
transmits the same and correct computational results of CP in the first com-
munication round and the same and incorrect computational results (which
were received by IP in the first and following communication rounds) in the
second and following communication rounds to the other nodes. In this case,
transmitters will transmit the same computational results (it is not impor-
tant whether correct or incorrect) to other nodes during all communication
rounds. Consequently, the fault type is non-Byzantine.

(b) Fault occurs in CP (IP and OP are non-faulty) (Fig. 9).
The functions of CP are to control the computational process, to compute
its own computational result and to execute the fault-tolerant procedure on
the basis of computational results of all nodes in RCS. According to our
assumption CP is faulty; IP and OP are non-faulty in the nth node. CP

Fig. 8. Faulty state of the nth node in RCS: IP is faulty

16 R. Samet and N. Samet

Fig. 9. Faulty state of the nth node in RCS: CP is faulty

may compute the incorrect computational result. IP receives the same and
correct computational results from the other nodes in the first and following
communication rounds. OP transmits the same and incorrect computational
results in the first communication round and both the same and correct
computational results in the second and following communication rounds.
In this case, transmitters will transmit the same computational results (it
is not important whether correct or incorrect) to other nodes during all
communication rounds. Consequently, the fault type is non-Byzantine.

(c) Fault occurs in OP (CP and IP are non-faulty) (Fig. 10).
The main function of OP is to transmit the computational results to the other
nodes. According to our assumption, OP is faulty; IP and CP are non-faulty
in the nth node. IP receives the correct computational results from the ith

(i = 1, 2, ..., N and n �= i) nodes in the first and following communication
rounds. In this case, transmitters of OP will transmit the same or different
(depending on the modes of intercomputer communications) computational
results to other nodes during all communication rounds. Namely, transmit-
ters of OP will transmit the same computational results (it is not important
whether correct or incorrect) if the protocols IV and VII of intercomputer
communications are used. According to these protocols, OP uses only broad-
cast mode for transmission of the computational results (Table 5). On the
other hand, transmitters of OP will transmit different computational results
if the protocols I, II, III, V and VI of intercomputer communications are used.
According to these protocols, OP uses the time sharing, non-regular and reg-
ular modes for transmission of the computational results (Table 5). Conse-
quently, in this case, the fault type may be non-Byzantine or Byzantine.

Relation Between Intercomputer Communications Modes and Faults in RCS 17

Fig. 10. Faulty state of the nth node in RCS: OP is faulty

As a result, if IP or CP is faulty it means that the fault type is exactly
non-Byzantine. On the other hand, if OP is faulty it means that fault type is
non-Byzantine or Byzantine depending on the protocols of intercomputer com-
munications used in RCS (Table 6).

As shown in Table 6, the non-Byzantine and Byzantine fault types can appear
in RCS with Protocol I, Protocol II (Fig. 4), Protocol III (Fig. 5), Protocol V
(Fig. 6) and Protocol VI (Fig. 7). However, there are two protocols in which only

Table 6. Regular features of appeared fault types

Protocol

number

from

Table 5

Figure

Number

Appeared fault types

Fault occurs in IP (CP

and OP are non-faulty)

Fault occurs in CP (IP

and OP are non-faulty)

Fault occurs in OP (IP

and CP are non-faulty)

I Fig. 4 non-Byzantine fault can

appear

non-Byzantine fault can

appear

non-Byzantine and

Byzantine faults can

appear

II Fig. 4 non-Byzantine fault can

appear

non-Byzantine fault can

appear

non-Byzantine and

Byzantine faults can

appear

III Fig. 5 non-Byzantine fault can

appear

non-Byzantine fault can

appear

non-Byzantine and

Byzantine faults can

appear

IV Fig. 6 non-Byzantine fault can

appear

non-Byzantine fault can

appear

non-Byzantine fault can

appear

V Fig. 6 non-Byzantine fault can

appear

non-Byzantine fault can

appear

non-Byzantine and

Byzantine faults can

appear

VI Fig. 7 non-Byzantine fault can

appear

non-Byzantine fault can

appear

non-Byzantine and

Byzantine faults can

appear

VII Fig. 7 non-Byzantine fault can

appear

non-Byzantine fault can

appear

non-Byzantine fault can

appear

18 R. Samet and N. Samet

non-Byzantine faults can appear. These are Protocol IV (Fig. 5) and Protocol
VII (Fig. 6).

In other words, (1) Faulty IP and CP cause only non-Byzantine fault type,
independent of the modes of intercomputer communications used; (2) Faulty
OP also causes only non-Byzantine fault type if the broadcast mode is used for
transmission and (3) Faulty OP causes the non-Byzantine or Byzantine fault
types if the time-sharing mode is used for transmission. So the Byzantine fault
type is related only to a faulty state of OP in RCS.

6 Evaluation and Results

It is well known that there are two very important parameters for real-time
control systems: reliability and performance. During the design process of such
systems all actions must be focused on the following principles: (a) increasing the
degree of reliability of the system in order to achieve “7 nines” and (b) decreasing
the total time period for execution of the application tasks and checkpoints in
order to fulfill a real-time demand. One of the ways to contribute to the execution
of these principles is to design RCS that are free from Byzantine faults. In this
case, the reliability and performance values achieve the maximum level (Fig. 11).

Fig. 11. Reliability, performance and overhead evaluation

The main aim of the evaluation given in Fig. 11 is to show how the Byzantine
fault affects the degrees of reliability, performance and computational overhead.
The following rough models were used for evaluation.

Relation Between Intercomputer Communications Modes and Faults in RCS 19

(a) Reliability evaluation:
R(t) = e−λt (2)

where, λ is the failure rate of RCS per hour and t is a working time of RCS
in hours.
The computational process executed in each node of RCS consists of a num-
ber of operating cycles (Fig. 2). Each operating cycle consists of a number of
logical segments. In each logical segment, one or a certain number of applica-
tion tasks is executed. After each logical segment, the checkpoint is realized.
So, the processing time of RCS is defined as

T = TLS + TCP (3)

where, TLS is the total time for execution of logical segments and it is the
same for all the above described protocols, TCP is the total time for execution
of checkpoints.

TCP = TIC + TFTP (4)

where, TIC is the total time for execution of intercomputer communication
rounds and TFTP is the total time for execution of the fault-tolerant proce-
dures. TIC and TFTP are different for all described above protocols. From
Tables 3, 5 and 6,

T III
IC ≈ T IV

IC < T I
IC ≈ TV

IC < T II
IC ≈ TV II

IC < TV I
IC (5)

and from Tables 1 and 6,

T IV
FTP ≈ TV II

FTP < T I
FTP ≈ T II

FTP ≈ T III
FTP ≈ TV

FTP ≈ TV I
FTP (6)

According to (1), (5), (6) and by using (4),

T IV
CP < TV II

CP < T III
CP < T I

CP ≈ TV
CP < T II

CP < TV I
CP (7)

Consequently, from (2),

R(t)IV > R(t)V II > R(t)III > R(t)I ≈ R(t)V > R(t)II > R(t)V I (8)

According to used model, the protocols of RCS, where Byzantine faults can-
not appear, have maximal degree of reliability. From Table 6 and expression
(8), we see that there are two such protocols: IV and VII. Figure 11 shows
that the degree of reliability of protocol IV is maximal. The protocols where
Byzantine faults appear have a lower degree of reliability.

(b) Performance evaluation:

V =
1

TCP
(9)

According to the used model (9), the performance is increased by decreasing
the time period required for checkpoints. On the basis of (7) and by using (9),

V IV > V V II > V III > V I ≈ V V > V II > V V I (10)

20 R. Samet and N. Samet

According to the used model, the protocols of RCS where the Byzantine
faults cannot appear have maximal performance. From Table 6 and expres-
sion (10), we see that there are two such protocols: IV and VII. As we see
from Fig. 11, the performance of the protocol IV is maximal. The protocols
where Byzantine faults can appear have lower performance.

(c) Evaluation of overhead:
Let us give rough evaluation of the overhead of maintaining of fault-tolerance.
As seen from Table 1, the fault-tolerant procedure for non-Byzantine fault
type consists of five steps, whereas for Byzantine fault type, it consists of six
steps. Assume that all steps require equal time period (Δt) to be executed.
According to this assumption the time periods of checkpoints for counter-
acting of non-Byzantine and Byzantine fault types will be defined as

TNB
CP = 5 ∗ Δt < TB

CP = 6 ∗ Δt (11)

So, designing RCS where only non-Byzantine fault type can appear allows
the designers to decrease the time period of checkpoints at least Δt time unit.
In other words, the computational overhead of maintaining fault-tolerance
will be reduced more than 16%.
As we can see from Fig. 11, the protocols which are free from Byzantine faults
(IV and VII) have maximal degree of reliability, performance and minimal
computational overhead. In addition these protocols require less software
and hardware than others.

7 Conclusions

We have determined the following disadvantages: (1) the Byzantine fault type
cannot be counteracted in RCS with N = 3; (2) during the execution of
Byzantine agreement algorithms some forms of appearance of faults are masked;
(3) the Byzantine fault type requires more software, hardware and processing
time; (4) by means of these three disadvantages the degree of reliability of RCS
is decreased and computational overhead is increased.

We have showed that there is only one way to solve these problems: that is
to design RCS where Byzantine fault type cannot appear. It is better to prevent
the Byzantine fault type than counteract it.

To this end, we have analyzed the relationship between the modes of inter-
computer communications (such as the broadcast, time sharing, non-regular and
regular modes) and the fault types (such as non-Byzantine and Byzantine) in
RCS.

We have proved that the fault type appearing in RCS is defined by the modes
of intercomputer communications. Byzantine fault type cannot appear in RCS if
only broadcast mode is used, and non-Byzantine and Byzantine fault types can
appear in RCS if the time sharing, non-regular and regular modes are used for
transmission of the computational results.

Relation Between Intercomputer Communications Modes and Faults in RCS 21

We have designed the structural model of nodes and proved that the Byzan-
tine fault can only appear when OP is faulty and when OP uses the time sharing,
non-regular and regular modes of intercomputer communications.

Reliability, performance and overhead of the designed protocols were evalu-
ated and we showed that Byzantine fault free protocols have maximal reliability
and performance and minimal overhead.

This paper allows the reader to understand the disadvantages of the Byzan-
tine fault type and to design a Byzantine fault free RCS. Designing a Byzantine
fault free RCS increases the degree of reliability by preventing the masking of
forms of appearance of faults and by decreasing the time period of checkpoints,
and hence decreasing the probability of appearance of faults during checkpoints.
Designing the Byzantine fault free RCS also increases the performance and
decreases overhead by shortening of the time period of checkpoints.

Due to length consideration we give an example implementation of the paper
results in Example 4 of Appendix I at the end of this manuscript.

One of future research directions is to revise the Byzantine fault problems
for today’s multi-core CPU and GPU accelerators using appropriate platforms
such as OpenMP, OpenCL and CUDA.

Appendix I: Examples

Example 1. Let us consider a Redundant Computer System (RCS) which con-
sists of four computers (nodes) (Fig. 1 with N = 4). Suppose that the fourth node
is faulty and computational results of non-faulty nodes are “1”. If the fourth node
sends the same values, namely logical “0”, to all others during the exchange by
computational results it means that the fault type is Non-Byzantine.

Node Number: 1st 2nd 3rd 4th

Vectors of Computational Results:
[
1 1 1 0

] [
1 1 1 0

] [
1 1 1 0

] [
x x x x

]

As we see, vectors consist of the same values in all non-faulty nodes. However,
if the fourth node sends different values, namely to the first and third nodes
logical “0” and to the second node logical “1”, it means that the fault type is
Byzantine.

Node Number: 1st 2nd 3rd 4th

Vectors of Computational Results:
[
1 1 1 0

] [
1 1 1 1

] [
1 1 1 0

] [
x x x x

]

As we see, vectors consist of different values in non-faulty nodes. The index
of x (“0” or “1”) refers to values in faulty nodes.

Example 2. For explanation of the masking of fault forms, the Determinate
Byzantine agreement protocol will be used. Suppose that N = 4, k = 1, con-
sequently, m = 2 (Table 3). Let us consider the examples for three cases: (1)
there is no fault in RCS; (2) the Byzantine fault appears in RCS during the
first intercomputer communication round and (3) the Byzantine fault appears
in RCS during the second intercomputer communication round.

22 R. Samet and N. Samet

Example 2.1. First, let us consider the case when there is no fault in RCS.
Suppose that computational results of nodes are the logical “1”.

Node Number: 1st 2nd 3rd 4th

Computational Results: 1 1 1 1

In the first intercomputer communication round, nodes exchange the com-
putational results. So after the first round, the following vectors are formed.

Node Number: 1st 2nd 3rd 4th

Vectors of Computational Results:
[
1 1 1 1

] [
1 1 1 1

] [
1 1 1 1

] [
1 1 1 1

]

In the second intercomputer communication round, the ith node transmits to
the jth node the computational result of the nth node, where i, j, n = 1, 2, 3, 4
and i �= j �= n. After the second round, the matrices of the computational results
are formed.

Node Number: 1st 2nd 3rd 4th

Matrices of
Computational Results:

⎡

⎢
⎢
⎣

1 . . .
. 1 1 1
. 1 1 1
. 1 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 . 1 1
. 1 . .
1 . 1 1
1 . 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1 . 1
1 1 . 1
. . 1 .
1 1 . 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1 1 .
1 1 1 .
1 1 1 .
. . . 1

⎤

⎥
⎥
⎦

After majority voting in columns, the final vectors are formed. Element ann

is chosen as majority of values in the nth column, where n = 1, 2, 3, 4.

Node Number: 1st 2nd 3rd 4th

Final Vectors:
[
1 1 1 1

] [
1 1 1 1

] [
1 1 1 1

] [
1 1 1 1

]

As we see, all matrices consist of the same computational results and all
nodes forms the same final vectors. This means that there is no fault in RCS.

Example 2.2. Now, let us consider the case when the Byzantine fault appears
in the first intercomputer communication round. Suppose that the fourth node
is faulty and computational results of nodes are the logical “1”, “1”, “1”, “x”
(“0” or “1”).

Node Number: 1st 2nd 3rd 4th

Computational Results: 1 1 1 x

Suppose that the faulty node sends to the first and third nodes the logi-
cal “0” and to the second node the logical “1” during the first intercomputer
communication round. After the first round, the following vectors are formed.

Node Number: 1st 2nd 3rd 4th

Vectors of Computational Results:
[
1 1 1 0

] [
1 1 1 1

] [
1 1 1 0

] [
x x x x

]

After the second round, the following matrices and after majority voting in
columns, the following final vectors are formed.

Relation Between Intercomputer Communications Modes and Faults in RCS 23

Node Number: 1st 2nd 3rd 4th

Matrices of
Computational Results:

⎡

⎢
⎢
⎣

1 . . .
. 1 1 x
. 1 1 x
. 1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 . 1 x
. 1 . .
1 . 1 x
0 . 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1 . x
1 1 . x
. . 1 .
0 1 . 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x x x .
x x x .
x x x .
. . . x

⎤

⎥
⎥
⎦

Node Number: 1st 2nd 3rd 4th

Vectors of Computational Results:
[
1 1 1 x

] [
1 1 1 x

] [
1 1 1 x

] [
x x x x

]

As we see, the matrices in all non-faulty nodes consist of different com-
putational results. However, all non-faulty nodes form the same final vectors,
where the fourth computational result differs from others. So the non-faulty
nodes determine that the fourth node is faulty. In this case, the Determinate
Byzantine agreement algorithm transforms the Byzantine fault type appearing
in the first intercomputer communication round to Non-Byzantine type.

Example 2.3. Finally, let us consider the case when the Byzantine fault appears
in the second intercomputer communication round. Suppose that the computa-
tional results of nodes are the logical “1”.

Node Number: 1st 2nd 3rd 4th

Computational Results: 1 1 1 1

After the first round, the following vectors are formed.

Node Number: 1st 2nd 3rd 4th

Vectors of Computational Results:
[
1 1 1 1

] [
1 1 1 1

] [
1 1 1 1

] [
1 1 1 1

]

Suppose that the Byzantine fault appears in the fourth node during the sec-
ond intercomputer communication round. The faulty node will send different
computational results to the non-faulty nodes. After the second round, the fol-
lowing matrices are formed.

Node Number: 1st 2nd 3rd 4th

Matrices of
Computational Results:

⎡

⎢
⎢
⎣

1 . . .
. 1 1 1
. 1 1 0
. 1 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 . 1 0
. 1 . .
1 . 1 1
1 . 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1 . 0
1 1 . 1
. . 1 .
1 1 . 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 1 1 .
1 1 1 .
1 1 1 .
. . . 1

⎤

⎥
⎥
⎦

After majority voting in columns, the following final vectors are formed.

Node Number: 1st 2nd 3rd 4th

Final Vectors:
[
1 1 1 1

] [
1 1 1 1

] [
1 1 1 1

] [
1 1 1 1

]

As we see, the matrices in all non-faulty nodes consist of different compu-
tational results. Despite this, all non-faulty nodes form the same final vectors
where all computational results are the same. The non-faulty nodes determine

24 R. Samet and N. Samet

that there is no fault in RCS. This means that the Determinate Byzantine agree-
ment algorithm masks the Byzantine fault type that appeared in the second
round. The same situation will take place when the Non-Byzantine fault appears
in RCS during the second intercomputational round. As result, the Byzantine
agreement algorithms mask the Non-Byzantine and Byzantine fault appearance
forms that occurred during the second and following rounds. Masking of faults is
very dangerous because they can be accumulated and lead the system to failure.

Example 3. Let us show that the use of a Byzantine agreement algorithm (for
example, the Determinate Byzantine agreement algorithm) cannot counteract
the Byzantine fault in RCS with N = 3 (Fig. 1 with N = 3). Suppose that the
third node is faulty and computational results of nodes are “1”, “1”, “x” (“0”
or “1”).

Node Number: 1st 2nd 3rd

Computational Results: 1 1 x

Suppose that the faulty node sends to the first node the logical “0” and to
the second node the logical “1” during the first intercomputer communication
round. So after the first round, the following vectors are formed.

Node Number: 1st 2nd 3rd

Vectors of
Computational Results:

[
1 1 0

] [
1 1 1

] [
x x x

]

After the second round, the following matrices are formed.

Node Number: 1st 2nd 3rd

Matrices of Computational Results:

⎡

⎣
1 . .
. 1 x
. 1 0

⎤

⎦

⎡

⎣
1 . x
. 1 .
0 . 1

⎤

⎦

⎡

⎣
x x .
x x .
. . x

⎤

⎦

After majority voting in columns, the following final vectors are formed.
As we see, all non-faulty nodes form the different final vectors and could not
determine the faulty node. So the Byzantine agreement algorithms cannot detect
the Byzantine fault in RCS with N = 3.

Node Number: 1st 2nd 3rd

Final Vectors:
[
1 1 ?

] [
? 1 ?

] [
x x x

]

Example 4. Let us consider RCS where Non-Byzantine and Byzantine fault
types may occur (Fig. 12).

Suppose that the nth (n = 1, 2, 3, 4) computer (node) in RCS consists of
Central Processor (CP), Input Processor (IP) and Output Processor (OP) as
shown in Fig. 12.

Relation Between Intercomputer Communications Modes and Faults in RCS 25

Fig. 12. Example for RCS using Protocol #II

Each CP controls its own computational process, computes its own compu-
tational result and executes its own fault-tolerant procedure on the basis of IDS
which consists of computational results of all nodes in RCS. Each IP consists of
4 receivers (R1, R2, R3, and R4) which receive the computational results from
the other nodes. Each OP consists of 4 transmitters (T1, T2, T3, and T4) which
transmit the computational results to the other nodes.

On the one hand, in this protocol, OP of the nth node (n = 1, 2, 3, 4) transmits
the computational results to IP of the ith nodes (i = 1, 2, 3, 4 and n�=i) in parallel,
by using three busses. Nodes execute this procedure in sequential order by using
three busses in the time-sharing mode. For example:

– T1, T2 and T3 of OP of the 1st node transmit the computational result in
the instant of time t1 to other nodes by using three busses in parallel;

– T1, T2 and T3 of OP of the 2nd node transmit the computational result in
instant of time t2 to other nodes by using three busses in parallel;

– T1, T2 and T3 of OP of the 3rd node transmit the computational result in
instant of time t3 to other nodes by using three busses in parallel;

– T1, T2 and T3 of OP of the 4th node transmit computational result in instant
of time t4 to other nodes by using three busses in parallel.

On the other hand, in this protocol, IP of the nth node (n = 1, 2, 3, 4) receives
the computational results from OP of the ith nodes (i = 1, 2, 3, 4 and n�=i) in
the time-sharing mode by using one bus. All nodes execute this procedure in
parallel. For example:

– R1 of IP of the 1st node receives the computational results from T1 of the
2nd, 3rd and 4th nodes in instants of times t1, t3 and t4 accordingly by using
one bus;

– R1 of IP of the 2nd node receives the computational results from T1 of the
1st node and from T2 of 3rd and 4th nodes in instants of times t1, t3 and t4
accordingly by using one bus;

– R1 of IP of the 3rd node receives the computational results from T2 of the
1st and 2nd nodes and from T3 of the 4th node in instants of times t1, t2 and
t4 accordingly by using one bus;

26 R. Samet and N. Samet

– R1 of IP of the 4th node receives the computational results from T3 of the
1st, 2nd and 3rd nodes in instants of times t1, t2 and t3 accordingly by using
one bus.

We assume that only one fault may occur in RCS in any instant of time
(Sect. 2.4). According to this assumption, three cases may take place:

(1) Fault occurs in IP (CP and OP are non-faulty) of the nth node. The functions
of IP are to receive the computational results from the other nodes and to
save them in its buffer memory. According to assumption if IP is faulty, CP
and OP are non-faulty in the nth (n = 1, 2, 3, 4) node.
– Faulty IP may change the received correct computational results from the

ith (i = 1, 2, 3, 4 and n �= i) nodes in the first and following communication
rounds and save correct or incorrect computational results in its buffer
memory.

– Non-faulty CP computes its own correct computational result.
– Non-faulty OP transmits the same (correct) computational result (which

is computed in non-faulty CP and which was not received and changed
by faulty IP) in the first communication round and the same (possibly
correct or incorrect) computational results (which were received and may
be changed by faulty IP in the first and following communication rounds)
in the second and the following communication rounds to the other nodes.

In this case, transmitters of non-faulty OP will transmit the same computa-
tional results (it is not important whether it is correct or incorrect) to other
nodes during all communication rounds. Consequently, if a fault occurs in
IP, the type of appeared faults in the above RCS structure is only Non-
Byzantine.

(2) Fault occurs in CP (IP and OP are non-faulty) of the nth node. The functions
of CP are to control its own computational process, to compute its own
computational result and to execute its own fault-tolerant procedure on the
basis of IDS which consists of computational results of all nodes in RCS.
According to our assumption, if CP is faulty, IP and OP are non-faulty in
the nth node.
– Non-faulty IP receives the same (correct) computational results from the

other nodes in the first and following communication rounds.
– Faulty CP may compute its own incorrect computational result.
– Non-faulty OP transmits the same (may be correct or incorrect) compu-

tational result (which is computed in faulty CP of the nth node) in the
first communication round and the same (correct) computational results
(which were received by non-faulty IP in the first and the following com-
munication rounds) in the second and following communication rounds.

In this case, transmitters will also transmit the same computational results
(it is not important whether it is correct or incorrect) to other nodes during
all communication rounds. Consequently, if fault occurs in CP, the type of
appeared faults in the above mentioned RCS structure is also only Non-
Byzantine.

Relation Between Intercomputer Communications Modes and Faults in RCS 27

(3) Fault occurs in OP (CP and IP are non-faulty) of the nth node. The main
function of OP is to transmit the computational results to the other nodes.
According to our assumption, if OP is faulty, IP and CP are non-faulty in
the nth node.
– Non-faulty IP receives the correct computational results from the other

nodes in the first and following communication rounds.
– Non-faulty CP computes its own correct computational result.
– Faulty OP might transmit the different computational results to other

nodes during all communication rounds because OP has multiple trans-
mitters (in this case three of them are used) for transmission and one or
more of them might be faulty and may change the transmitted values.

Consequently, if fault occurs in OP, the type of appeared faults in the above
RCS structure is Non-Byzantine or Byzantine.

Let us change the connections between nodes in RCS in Fig. 12 so that the
Byzantine fault type could not occur (Fig. 13).

Fig. 13. Example for RCS using Protocol #IV (Byzantine fault free protocol)

On the one hand, in this protocol, only one transmitter of OP of the nth node
(n = 1, 2, 3, 4) transmits the computational result to IP of all other nodes in the
broadcast mode by using one bus simultaneously. Nodes execute this procedure
in sequence. For example:

– T1 of OP of the 1st node transmits the computational result in instant of time
t1 to other nodes in the broadcast mode by using one bus simultaneously;

– T1 of OP of the 2nd node transmits the computational result in instant of time
t2 to other nodes in the broadcast mode by using one bus simultaneously;

– T1 of OP of the 3rd node transmits the computational result in instant of time
t3 to other nodes in the broadcast mode by using one bus simultaneously;

– T1 of OP of the 4th node transmits the computational result in instant of time
t4 to other nodes in the broadcast mode by using one bus simultaneously;

28 R. Samet and N. Samet

On the other hand, IP of the nth node (n = 1, 2, 3, 4) receives the computa-
tional results from OP of the ith nodes (i = 1, 2, 3, 4 and n�=i) by using (N -1) bus
in sequential order. All nodes execute this procedure in parallel. For example:

– R1, R2 and R3 of IP of the 1st node receive the computational result from
2nd, 3rd and 4th nodes in instants of times t2, t3 and t4 accordingly by using
three different busses;

– R1, R2 and R3 of IP of the 2nd node receive the computational result from
1st, 3rd and 4th nodes in instants of times t1, t3 and t4 accordingly by using
three different busses;

– R1, R2 and R3 of IP of the 3rd node receive the computational result from
1st, 2nd and 4th nodes in instants of times t1, t2 and t4 accordingly by using
three different busses;

– R1, R2 and R3 of IP of the 4th node receive the computational result from
1st, 2nd and 3rd nodes in instants of times t1, t2 and t3 accordingly by using
three different busses;

According to the assumption, three cases are also possible here. Discussions
about the first and second cases are the same as for the previous protocol. The
difference is in the third case in which the transmitter of faulty OP transmits
the same computational results (it is not important whether correct or incorrect)
because of the used broadcast mode.

Consequently, if a fault occurs in OP, the type of faults appearing in the RCS
structure will only be Non-Byzantine .

As a result, we changed the connections between nodes and got RCS where
only Non-Byzantine fault type might occur. Consequently, by changing connec-
tion modes between nodes we can block the occurrence of the Byzantine fault
type in RCS.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secur. Com-
put. 1(1), 11–33 (2004)

2. Bentley, J.: Introduction to Reliability and Quality Engineering. Addison-Wesley,
Reading (1999)

3. Pradhan, D.K. (ed.): Fault-tolerant Computer System Design. Prentice-Hall Inc.,
Upper Saddle River (1996)

4. Kwak, S.W., Choi, B.J., Kim, B.K.: An optimal checkpointing-strategy for real-
time control systems under transient faults. IEEE Trans. Reliab. 50(3), 293–301
(2001)

5. Zhang, Y., Jiang, J.: Integrated active fault-tolerant control using IMM approach.
IEEE Trans. Aerosp. Electron. Syst. 37(4), 1221–1235 (2001)

6. Alvisi, L., Malkhi, D., Pierce, E., Reiter, M.K.: Fault detection for Byzantine quo-
rum systems. IEEE Trans. Parallel Distrib. Syst. 12(9), 996–1007 (2001)

7. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

Relation Between Intercomputer Communications Modes and Faults in RCS 29

8. Lima, G.M., Burns, A.: A consensus protocol for CAN-based systems. In: 24th
IEEE Real-Time Systems Symposium, RTSS 2003, pp. 420–429. IEEE (2003)

9. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast: from simple
message diffusion to Byzantine agreement. Inf. Comput. 118(1), 158–179 (1995)

10. Pelc, A., Peleg, D.: Broadcasting with locally bounded Byzantine faults. Inf.
Process. Lett. 93(3), 109–115 (2005)

11. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable Byzantine
agreement secure against faulty majorities. In: Proceedings of the Twenty-First
Annual Symposium on Principles of Distributed Computing, pp. 118–126. ACM
(2002)

12. Fitzi, M., Hirt, M.: Optimally efficient multi-valued Byzantine agreement. In: Pro-
ceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, pp. 163–168. ACM (2006)

13. Bao, F., Igarishi, Y.: Reliable broadcasting in product networks with Byzantine
faults. In: Proceedings of Annual Symposium on Fault Tolerant Computing, pp.
262–271. IEEE (1996)

14. Keichafer, R.M., Walter, C.J., Finn, A.M., Thambidurai, P.M.: The MAFT archi-
tecture for distributed fault tolerance. IEEE Trans. Comput. 37(4), 398–404 (1988)

15. Powell, D., Arlat, J., Beus-Dukic, L., Bondavalli, A., Coppola, P., Fantechi, A.,
Jenn, E., Rabejac, C., Wellings, A.: GUARDS: a generic upgradable architecture
for real-time dependable systems. IEEE Trans. Parallel Distrib. Syst. 10(6), 580–
599 (1999)

16. Totel, E., Beus-Dukic, L., Blanquart, J.P., Deswarte, Y., Powell, D., Wellings, A.:
Integrity management in GUARDS. In: Davies, N., Jochen, S., Raymond, K. (eds.)
Middleware 1998, pp. 105–122. Springer, London (1998)

17. Palumbo, D.L., Butler, R.W.: A performance evaluation of the software-
implemented fault-tolerance computer. J. Guidance Control Dyn. 9(2), 175–180
(1986)

18. Hopkins, A.L., Smith, T.B., Lala, J.H.: FTMP: a highly reliable fault-tolerant
multiprocess for aircraft. Proc. IEEE 66(10), 1221–1239 (1978)

19. Han, S., Shin, K.G.: Experimental evaluation of failure-detection schemes in real-
time communication networks. In: Twenty-Seventh Annual International Sympo-
sium on Fault-Tolerant Computing, FTCS-27, Digest of Papers, pp. 122–131. IEEE
(1997)

20. Rufino, J., Verissimo, P., Arroz, G., Almeida, C., Rodrigues, L.: Fault-tolerant
broadcasts in CAN. In: Twenty-Eighth Annual International Symposium on Fault-
Tolerant Computing, Digest of Papers, pp. 150–159. IEEE (1998)

21. AlMohammad, B., Bose, B.: Fault-tolerant communication algorithms in toroidal
networks. IEEE Trans. Parallel Distrib. Syst. 10(10), 976–983 (1999)

22. Hsieh, H.C., Chiang, M.L.: A new solution for the Byzantine agreement problem.
J. Parallel Distrib. Comput. 71(10), 1261–1277 (2011)

23. Saini, P., Singh, A.K.: An efficient Byzantine fault tolerant agreement. In: AIP
Conference Proceedings, vol. 1324, no. 1 (2010)

24. Wang, S.S., Yan, K.Q., Wang, S.C.: An optimal solution for Byzantine agreement
under a hierarchical cluster-oriented mobile ad hoc network. Comput. Electr. Eng.
36(1), 100–113 (2010)

25. Moniz, H., Neves, N.F., Correia, M.: Byzantine fault-tolerant consensus in wireless
ad hoc networks. IEEE Trans. Mobile Comput. 12(12), 2441–2454 (2013)

26. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Verissimo, P.: Efficient
Byzantine fault-tolerance. IEEE Trans. Comput. 62(1), 16–30 (2013)

30 R. Samet and N. Samet

27. Kotla, R., Clement, A., Wong, E., Alvisi, L., Dahlin, M.: Zyzzyva: speculative
Byzantine fault tolerance. Commun. ACM 51(11), 86–95 (2008)

28. Keidar, I., Rajsbaum, S.: On the cost of fault-tolerant consensus when there are
no faults: preliminary version. SIGACT News 32(2), 45–63 (2001)

29. Banu, N., Izumi, T., Wada, K.: Adaptive and doubly-expedited one-step consensus
in Byzantine asynchronous systems. Parallel Process. Lett. 21(04), 461–477 (2011)

30. Patra, A., Choudhury, A., Rangan, C.P.: Asynchronous Byzantine agreement with
optimal resilience. Distrib. Comput. 27(2), 111–146 (2014)

31. Xu, X., Lin, Y.: Checkpoint selection in fault recovery based on Byzantine fault
model. In: Fourth International Conference on Computational Intelligence and
Communication Networks (CICN), pp. 582–587, November 2012

32. Widder, J., Biely, M., Gridling, G., Weiss, B., Blanquart, J.P.: Consensus in the
presence of mortal Byzantine faulty processes. Distrib. Comput. 24(6), 299–321
(2012)

33. Wang, S.C., Yan, K.Q., Ho, C.L., Wang, S.S.: The optimal generalized Byzan-
tine agreement in cluster-based wireless sensor networks. Comput. Stan. Interfaces
36(5), 821–830 (2014)

34. Abdelhakim, M., Lightfoot, L.E., Ren, J., Li, T.: Distributed detection in mobile
access wireless sensor networks under Byzantine attacks. IEEE Trans. Parallel
Distrib. Syst. 25(4), 950–959 (2014)

35. Duran, A., Ferrer, R., Costa, J.J., Gonzàlez, M., Martorell, X., Ayguadé, E.,
Labarta, J.: A proposal for error handling in OpenMP. Int. J. Parallel Prog. 35(4),
393–416 (2007)

36. Bronevetsky, G., Marques, D., Pingali, K., Szwed, P., Schulz, M.: Application-level
checkpointing for shared memory programs. In: Proceedings of the 11th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS XI, pp. 235–247. ACM, New York (2004)

37. Bronevetsky, G., Pingali, K., Stodghill, P.: Experimental evaluation of application-
level checkpointing for OpenMP programs. In: Proceedings of the 20th Annual
International Conference on Supercomputing, ICS 2006, pp. 2–13. ACM, New York
(2006)

38. Fu, H., Ding, Y.: Using redundant threads for fault tolerance of OpenMP programs.
In: 2010 International Conference on Information Science and Applications, pp. 1–
8, April 2010

39. Li, M., Hsiao, M.S.: 3-D parallel fault simulation with GPGPU. IEEE Trans. Com-
put. Aided Design Integr. Circuits Syst. 30(10), 1545–1555 (2011)

40. Guo, X., Jiang, H., Li, K.C.: A checkpoint/restart scheme for CUDA applica-
tions with complex memory hierarchy. In: 14th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), pp. 247–252, July 2013

41. Carlo, S.D., Gambardella, G., Martella, I., Prinetto, P., Rolfo, D., Trotta, P.: Fault
mitigation strategies for CUDA GPUs. In: 2013 IEEE International Test Confer-
ence (ITC), pp. 1–8, September 2013

42. Xu, X.H., Yang, X.J., Xue, J.L., Lin, Y.F., Lin, Y.S.: PartialRC: a partial recom-
puting method for efficient fault recovery on GPGPUs. J. Comput. Sci. Technol.
27(2), 240–255 (2012)

43. Laosooksathit, S., Nassar, R., Leangsuksun, C., Paun, M.: Reliability-aware per-
formance model for optimal GPU-enabled cluster environment. J. Supercomputing
68(3), 1630–1651 (2014)

44. Demchik, V., Kolomoyets, N.: QCDGPU: open-source package for Monte Carlo
lattice simulations on OpenCL-compatible multi-GPU systems (2013)

Relation Between Intercomputer Communications Modes and Faults in RCS 31

45. Avizienis, A.: Fault-tolerance: a property that ensures constant availability of dig-
ital system. IEEE Trans. Comput. 66(10), 5–25 (1978)

46. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

47. Mamedli, È.M., Samedov, R.Y., Sobolev, N.: A method for localization of Byzan-
tine and nonbyzantine faults. Avtomatika i Telemekhanika 5, 126–138 (1992)

48. Samet, R.: Recovery device for real-time dual-redundant computer systems. IEEE
Trans. Dependable Secure Comput. 8(3), 391–403 (2011)

49. Samet, R.: Choosing between design options for real-time computers tolerating a
single fault. J. Circuits Syst. Comput. 19(05), 1041–1068 (2010)

50. Sivencrona, H., Johannessen, P., Persson, M., Torin, J.: Heavy-ion fault injec-
tions in the time-triggered communication protocol. In: Lemos, R., Weber, T.S.,
Camargo, J.B. (eds.) LADC 2003. LNCS, vol. 2847, pp. 69–80. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45214-0 8

51. Driscoll, K., Hall, B., Sivencrona, H., Zumsteg, P.: Byzantine fault tolerance, from
theory to reality. In: Anderson, S., Felici, M., Littlewood, B. (eds.) SAFECOMP
2003. LNCS, vol. 2788, pp. 235–248. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39878-3 19

52. Tanenbaum, A.S.: Computer Networks, vol. 3. Prentice Hall, New Jersey (1996)
53. Stallings, W.: Data and computer communications. Pearson/Prentice Hall (2007)
54. Mullender, S.: Distributed Systems. ACM Press/Addison-Wesley Publishing Co.

(1993)
55. Coulouris, G.F., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and

Design. Pearson education (2005)
56. Mitra, S., Saxena, N.R., McCluskey, E.J.: A design diversity metric and analysis

of redundant systems. IEEE Trans. Comput. 51(5), 498–510 (2002)
57. Samedov, R.: An approach to the support of the fault-tolerance of the double

redundant computer control systems. Math. Comput. Appl. 4(2), 175–184 (1999)
58. Kim, H., Jeon, H.J., Lee, K., Lee, H.: The design and evaluation of all voting triple

modular redundancy system. In: Proceedings. Annual Reliability and Maintain-
ability Symposium, pp. 439–444. IEEE (2002)

59. Smith, T.B.: Fault tolerant processor concepts and operation. In: Digest of Papers,
FTCS-14, Kissimmee, USA, pp. 158–163 (1984)

60. Laprie, J.C.: Dependable computing and fault-tolerance. In: Digest of Papers
FTCS-15, pp. 2–11 (1985)

61. Mamedli, È.M., Samedov, R.Y., Sobolev, N.: A method for localization of Byzan-
tine and NonByzantine faults. J. Autom. Remote Control 53(5), 734–744 (1992)

62. Oh, N., Mitra, S., McCluskey, E.J.: ED4I: error detection by diverse data and
duplicated instructions. IEEE Trans. Comput. 51(2), 180–199 (2002)

63. Siewiorek, D.P., Swarz, R.S.: Reliable Computer Systems: Design and Evaluation,
3rd edn. A.K. Peters Ltd., Natick (1998)

64. Samet, R.: Fault-tolerant procedures for redundant computer systems. Qual.
Reliab. Eng. Int. 25(1), 41–68 (2009)

65. Hurst, S.L.: VLSI Testing: digital and mixed analogue/digital techniques, vol. 9.
IET (1998)

66. Lala, P.K.: Self-checking and fault-tolerant digital design. Morgan Kaufmann
(2001)

67. Powell, D.: Failure mode assumptions and assumption coverage. In: Randell, B.,
Laprie, J.C., Kopetz, H., Littlewood, B. (eds.) Predictably Dependable Computing
Systems, pp. 123–140. Springer, Heidelberg (1995)

http://dx.doi.org/10.1007/978-3-540-45214-0_8
http://dx.doi.org/10.1007/978-3-540-39878-3_19
http://dx.doi.org/10.1007/978-3-540-39878-3_19

32 R. Samet and N. Samet

68. Laprie, J.C., Arlat, J., Blanquart, J., Costes, A., Crouzet, Y., Deswarte, Y., Fabre,
J., Guillermain, H., Kaâniche, M., Kanoun, K., et al.: Guide de la sûreté de fonc-
tionnement (dependability handbook). Cépaduès, Toulouse (1995)

69. Ziv, A., Bruck, J.: An on-line algorithm for checkpoint placement. IEEE Trans.
Comput. 46(9), 976–985 (1997)

70. Ling, Y., Mi, J., Lin, X.: A variational calculus approach to optimal checkpoint
placement. IEEE Trans. Comput. 50(7), 699–708 (2001)

71. Lincoln, P., Rushby, J.: A formally verified algorithm for interactive consistency
under a hybrid fault model. In: The Twenty-Third International Symposium on
Fault-Tolerant Computing, FTCS-23, Digest of Papers, pp. 402–411. IEEE (1993)

72. Meyer, F.J., Pradhan, D.K.: Consensus with dual failure modes. IEEE Trans. Par-
allel Distrib. Syst. 2(2), 214–222 (1991)

73. Thambidurai, P., Park, Y.K.: Interactive consistency with multiple failure modes.
In: Proceedings, Seventh Symposium on Reliable Distributed Systems, pp. 93–100.
IEEE (1988)

74. Chor, B., Coan, B.A.: A simple and efficient randomized Byzantine agreement
algorithm. IEEE Trans. Softw. Eng. 6, 531–539 (1985)

75. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer Science & Business Media, London (2011)

Efficient Circuit Design of Reversible Square

H.V. Jayashree1, Himanshu Thapliyal2(B), and Vinod Kumar Agrawal3

1 Department of Electronics and Communication Engineering,
PES Institute of Technology, Bengaluru 560085, Karnataka, India

jayashreehv@pes.edu
2 Department of Electrical and Computer Engineering,

University of Kentucky, Lexington, KY 40506, USA
hthapliyal@uky.edu

3 Department of Information Science and Engineering, PES Institute of Technology,
Bengaluru 560085, Karnataka, India

vk.agrawal@pes.edu

Abstract. In the midst of emerging technology, reversible computing is
promising due to its application in the field of quantum computing. The
computing hardware plays a significant role in digital signal processing
(DSP) and multimedia application; one such major computing hardware
is multiplier. It is a practice to choose multiplier to compute square of
an operand. Multiplication hardware requires more elementary computa-
tions which leads to performance degradation in terms of reversible per-
formance metrics like quantum cost, garbage outputs, and ancilla inputs.
Ancilla inputs and garbage outputs are overhead bits in a reversible cir-
cuit. Reversible quantum computers of many qubits are extremely diffi-
cult to realize, thus we propose garbageless circuit design for reversible
square computation. The proposed design methodology is based on recur-
sion. Recursion technique is adapted from Karatsuba’s recursive method
to compute square of an operand; we designed inverse computation
units to retrieve the inputs and obtain garbageless circuit. On compar-
ing proposed circuit design with existing reversible square designs and
Karatsuba multiplier design, we observed that our work improves num-
ber of input lines which includes data lines and ancilla lines.

Keywords: Garbageless square · Reversible circuit · Ancilla inputs

1 Introduction

Reversible logic is emerging as a promising computing paradigm with applica-
tions in ultra-low power green computing and emerging nano technologies such
as quantum computing, quantum dot cellular automata (QCA), optical comput-
ing, etc. Reversible circuits are similar to conventional logic circuits except that
they are built from reversible gates [2]. In reversible gates, there is a unique, one-
to-one mapping between the inputs and outputs, not the case with conventional
logic. The most promising applications of reversible logic lies in quantum com-
puting since quantum circuit is a network of quantum gates. Each gate performs
c© Springer-Verlag GmbH Germany 2017

M.L. Gavrilova and C.J. Kenneth Tan (Eds.): Trans. on Comput. Sci. XXIX, LNCS 10220, pp. 33–46, 2017.

DOI: 10.1007/978-3-662-54563-8 2

34 H.V. Jayashree et al.

unitary operation on qubits which represents elementary unit of information.
Qubits corresponds to conventional binary bits 0 and 1. Qubits are allowed to
be in superposition of both the states 0 and 1. These unitary operations are
reversible, hence quantum circuits are built using reversible logic gates.

While designing reversible circuit, several performance measuring parameters
need to be considered such as quantum cost, garbage outputs, and ancilla input
bits. The quantum cost of a reversible circuit is the number of 1× 1 and 2× 2
reversible gates used in its design; it can be considered equivalent to number of
transistors needed in a conventional CMOS design. The garbage output refers
to the output which exists in the circuit to maintain one-to-one mapping but is
not a primary or a useful output. The constant inputs (0 or 1) are called ancilla
bits which are used in reversible circuits for storing intermediate values dur-
ing computation. Reversible computers including quantum computers of many
bits are extremely difficult to realize, so the number of ancilla inputs and the
garbage outputs in the reversible circuits need to be minimized. While design-
ing reversible circuits, one needs to optimize these parameters to improve the
footprint of the overall design. Arithmetic units are the key components of com-
puting systems. Therefore, researchers have concentrated their efforts towards
the design of reversible quantum adders [15,19,22], [4,6,13], [3,5,16,17], multi-
pliers [9,23], dividers [7,21], etc.

Among arithmetic circuits, multiplier circuits play a major role to improve the
performance of data processing in a processor. Squaring is themost commonly used
function in division (Newton Raphson division and Taylor series expansion), roots,
or reciprocals [10,12]. Squaring also finds its applications in DSP applications such
as Euclidean distance computation and exponent calculation in cryptography. For
powering functions like squares and cubes, a reversible circuitry of multiplier is not
the most efficient solution as it results in redundant partial products and extra
addition circuitry that will result in enormous overhead in terms of quantum cost,
ancilla bits, and garbage outputs. As ancilla inputs and garbage outputs are over-
head bits in a reversible circuit and reversible quantum computers of many qubits
are extremely difficult to realize, we propose a garbageless reversible circuit design
for square computation based on recursion. Recursion technique is adapted from
Karatsuba’s recursive method to compute square of an operand. Inverse computa-
tion units are designed to retrieve the inputs and obtain garbageless circuit. Fur-
ther, we compared proposed circuit design with existing reversible square designs
and observed that our work improves number of input lines which includes data
lines and ancilla lines for data width >8.

The paper is organized as follows: Sect. 2 presents the background on
reversible logic gates; Sects. 3 and 4 elaborate on the design and comparative
analysis of proposed reversible circuitry for square respectively; Sect. 5 presents
discussion and conclusion.

2 Background on Reversible Logic Gates

The reversible gates used in this work are discussed in this section. Each reversible
gate has a cost associated with it called quantum cost. The quantum cost of a

Efficient Circuit Design of Reversible Square 35

Fig. 1. NOT gate

reversible gate is the number of 1× 1 and 2× 2 reversible gates or quantum logic
gates [14] required in designing it. The quantum cost of all reversible 1× 1 and
2× 2 gates is taken as unity. NOT gate shown in the Fig. 1 is an example of 1× 1
reversible gate.

2.1 CNOT or Feynman Gate (FG)

CNOT gate is a 2 × 2 gate with inputs A and B, where A is the control line and
B is the target line. The outputs have two lines; the control line directly passes
A to output line while the target line passes transformed B as B → A ⊕ B.
Figure 2 shows the block diagram and symbol of CNOT gate.

(a) CNOT Gate (b) Symbol

Fig. 2. CNOT gate, and its quantum representation

2.2 Toffoli Gate

Figure 3 shows a Toffoli gate and its symbolic representation. It is a 3 × 3 gate
with inputs (A,B,C) and outputs P = A, Q = B, R = AB ⊕ C. Toffoli gate
is one of the most popular reversible gates and has quantum cost of 5. The
quantum cost of Toffoli gate is 5 as it needs five 2× 2 quantum gates for its
implementation.

Fig. 3. Toffoli gate and its quantum representation

36 H.V. Jayashree et al.

2.3 Peres Gate

Figure 4 shows the Peres gate and its symbolic representation. It is a 3× 3
reversible gate having inputs (A,B,C) and outputs P = A, Q = A ⊕ B,
R = AB ⊕ C. The quantum cost of Peres gate is 4 as it requires four 2× 2
reversible gates in its design.

Fig. 4. Peres gate and its quantum representation

2.4 Reversible Full Adder (RFA)

Figure 5 shows the quantum diagram and symbol of reversible full adder [18]. It is
a 4× 4 reversible block. We alter the inputs given to the RFA block as (C,B,A, 0)
to obtain S as Carry out (Cout) and R as Sum expression of reversible full adder.
The quantum cost of RFA is 6 as it requires six 2× 2 quantum gates. In this
work, 1 bit reversible full adder is being used in the design of 3 bit reversible
square circuitry (Fig. 7(b)).

3 Proposed Dedicated Reversible Square Circuit

In this work, we propose a recursive method based design of n bit square circuit.
Dedicated design of square circuit is presented in [1,8] which proved to be better
than the existing efficient multipliers in the literature. By applying equivalence
relation, we obtained partial product reduction as shown in [8]. The motivation
for the proposed design is derived from Karatsuba’s algorithm [11]. We initially
illustrate the method with a recursive algorithm and then proceed with the
general architecture.

3.1 Recursive Square Computation Method

Let a be an n bit number. We split a into aL and aR respectively. aL represents
the number coming from first [n/2] bits and aR represents the second [n/2] bits;
therefore, we have a = aL ∗ 2n/2 + aR. We compute square of n bit number a as:

a2 =
(
aL ∗ 2n/2 + aR

)(
aL ∗ 2n/2 + aR

)

= aL2 ∗ 2n + (aL ∗ aR + aR ∗ aL) 2n/2 + aR2 (1)

Efficient Circuit Design of Reversible Square 37

(a) Quantum diagram [18]

(b) Symbol

Fig. 5. Reversible full adder and its symbol

The second term is computed as below:

(aL ∗ aR + aR ∗ aL) = (aL + aR) (aL + aR) − (
aL2

) − (
aR2

)
(2)

The squaring is done recursively using the similar kind of splitting until we arrive
at a constant number of bits. We choose this constant to be 2 and 3 so that we
are guaranteed that the number of bits decreases in every recursive step. At this
point, we directly square the number.
1: procedure Square(a) � compute square of a
2: input:n bit unsigned number a
3: output:2n bit unsigned number � a2

4: if a ≤ 3 then return a2;
5: Let aL and aR be the leftmost [n/2] and rightmost [n/2] of input a

respectively
6: P1 ← SQUARE(aL);
7: P2 ← SQUARE(aR);
8: P ′

3 ← ADD(aL, aR);
9: P3 ← SQUARE(P ′

3);
10: return P1 ∗ 2n + (P3 − (P1 + P2)) ∗ 2n/2 + P2;
11: end procedure

38 H.V. Jayashree et al.

Fig. 6. Recursive square design:computation steps

3.2 Proposed Design Methodology

We present the design of dedicated square computation unit without garbage
outputs. The proposed design comprises of few computational blocks for addition
and subtraction which also produces zero garbage outputs [19,20]. Consider an
n bit number a[n − 1:0]∈ {0, 1}n represents a binary number. If the number of
bits in a is even, then we split a into aL coming from leftmost [n/2] bits and
aR from rightmost [n/2] bits. If the number of bits is not even, we split aL
and aR into two parts each with [n + 1]/2 and [n − 1]/2 bits respectively and
rest of the operations are modified appropriately. For the design methodology
illustration, we consider n as even and proceed. Consider the n bit number ai

split into aRi and aLi, stored at locations ARi where 0 ≤ i ≤ n/2 − 1 and ALi

where n/2 ≤ i ≤ n − 1 respectively. Further, consider that memory location z is
initialized with ancilla 0 bits. Ancilla locations used in each design step vary in
size and name, hence it is defined in the corresponding design step. At the end
of the computation, the ancilla locations will hold a2, while the values aL and
aR are restored.

Efficient Circuit Design of Reversible Square 39

We present the design steps in two phases. Phase 1 comprises of computation
steps as shown in Fig. 6 to compute square of an n bit operand. Phase 2 comprises
of decomputation steps and are required to remove garbage bits.

Phase 1: Computation Steps

1. Step 1: For 0 ≤ i ≤ n/2 − 1
a: At pair of locations AL and z1 (here z1 represents ancilla 0 bits, where

z1[n/2−1 : 0] ∈ {0}n) apply n/2 CNOT gate array such that location AL
will maintain the same value whereas z1 will hold the copy of aL value.
The transformation of z1 and AL location values are shown below. Here,
∗z1 represents the value present in the location z1.

n/2−1⊗

i=0

|∗z1i ⊕ aLi〉 |aLi〉 (3)

This step needs n/2 ancilla input bits.
b: At locations AL, AR, and z2, apply n/2 bit adder. z2 initially will hold

ancilla 0 bit. AR will maintain the same value whereas AL transforms to
si; z2 transforms to ci state. si and ci indicate the sum and carry bits
generated during addition operation irrespective of the design steps. The
locations z2 and AL are referred as z2

′
which holds ci bit as MSB and si

bits as LSB bits.

z2
′
=

{
si for 0 ≤ i ≤ n/2 − 1
cn/2 for i = n/2

(4)

si =

{
aLi ⊕ aRi ⊕ ci for 0 ≤ i ≤ n/2 − 1
cn/2 for i = n/2

(5)

where ci is the carry bit and is defined as:

ci =

{
0 i = 0
(aLi−1 ⊕ aRi−1)ci−1 ⊕ aLi−1aRi−1 1 ≤ i ≤ n/2

(6)

This step needs 1 ancilla input bit.
Steps 1a and 1b are executed sequentially.

2. Step 2: Apply values present at locations z1, AR, and z2
′
to square computa-

tion units which operates on the operand width n/2, n/2, and n/2+1 respec-
tively. Each square computation block executes recursively until operand
width boils down to 3 (go to step 2 until n = 2 or 3). Each square com-
putation block takes second operand as ancilla inputs stored at locations z3,
z4, and z5 respectively, where width of z3, z4, and z5 are n, n, and n + 2
bits respectively. At the end of recursive computation z1, AR and z2

′
will

maintain its value as shown in Step 1a and Step 1b respectively. The ancilla

40 H.V. Jayashree et al.

locations z3, z4, and z5 will hold the computation result as shown below.
∗z3, ∗z4, and ∗z5 represent the values at the locations z3, z4, and z5 respec-
tively. Here, k and l indicate the bit position and n is the number of bits
used to represent the operand value. The below shown equations need to be
computed with n = 2 (for ∗z3, ∗z4), n = 3 (for ∗z5); these are computed
when recursive call reaches n = 2 or 3.

∗ z3 =
n−1⊗

k=0

|aLk〉 22k ⊕
n−2⊗

k=0

n−1⊗

l=k+1

|aLk · aLl〉2k+l+1 (7)

∗ z4 =
n−1⊗

k=0

|aRk〉22k ⊕
n−2⊗

k=0

n−1⊗

l=k+1

|aRk · aRl〉2k+l+1 (8)

∗z5 =
n−1⊗

k=0

|(aL+aR)k〉22k ⊕
n−2⊗

k=0

n−1⊗

l=k+1

|(aL+aR)k〉 · |(aL+aR)l〉2k+l+1 (9)

The square computation circuit designs for 2 bit and 3 bit square units are
given in Fig. 7(a), (b). This step needs 3n + 2 ancilla input bits.

3. Step 3: Apply an array of n CNOT gates at locations (z3, z3c). At the end
of computation, z3 will maintain the same value whereas z3c will have the
copy of ∗z3 as shown below.

| ∗ z3c〉 =
n−1⊗

i=0

| ∗ z3i〉 ⊕ | ∗ z3ci〉 (10)

where z3c [n − 1 : 0] ∈ {0}n
This step needs n ancilla input bits.

4. Step 4: Apply values present at z3c and z4 locations to adder which adds two
operands of n bit width each. To store the carry out bit, an ancilla bit location
z3

′′
is given as third operand. After the computation, z4 will maintain the

same value whereas the value at location z3c will be transformed as shown
below. Since output of adder is concatenated output of sum and carry bit, we
need an additional ancilla zero bit, so we append one ancilla zero location(z3

′′
)

to z3c to hold the carry out bit. We refer transformed z3c location as z3
′′

here onwards.

z3
′′

=

{
si for 0 ≤ i ≤ n − 1
cn for i = n

(11)

si =

{
∗z3ci ⊕ ∗z4i ⊕ ci 0 ≤ i ≤ n − 1
cn i = n

(12)

where ci is the carry bit and is defined as:

ci =

{
0 i = 0
(∗z3ci−1 ⊕ ∗z4i−1)ci−1 ⊕ ∗z3ci−1 ∗ z4i−1 1 ≤ i ≤ n

(13)

This step needs 1 ancilla bit.

Efficient Circuit Design of Reversible Square 41

5. Step 5: Apply values present at locations z5 and z3
′′

as inputs at the subtrac-
tor unit. After the computation, z5 location retains its value whereas values
at z3

′′
will be transformed as below. Di indicates difference and Bi indicates

borrow bits. We append an ancilla bit to location z3
′′

to adjust the width
mismatch between the operands. We continue to refer z3

′′
with the same

name.

z3
′′

=

{
Di for 0 ≤ i ≤ n

Bn+1 for i = n + 1
(14)

Di =

{
∗z3

′′
i ⊕ ∗z5i ⊕ Bi for 0 ≤ i ≤ n

Bn+1 for i = n + 1
(15)

where Bi is the borrow bit and is defined as:

Bi =

{
0 i = 0
(∗z3′′

i−1 ⊕ ∗z5i−1)Bi−1 ⊕ ∗z3
′′
i−1 · ∗z5i−1 1 ≤ i ≤ n + 1

(16)

This step needs 1 ancilla bit.
6. Step 6: Apply values present at locations (z3, z4) and z3

′′
to 2n bit wide

binary adder as first and second operand respectively. Here, ∗z3 and ∗z4 are
concatenated and considered as single operand. After the computation, ∗z3
and ∗z4 will maintain the same value. z3

′′
will transform to the state as shown

below. Here, both the operand width are not same, so z3
′′

is appended with
n/2 ancilla bits on its LSB side and n/2−2 ancilla bits on its MSB side. This
extended location of z3

′′
is referred as Y 2 and concatenated locations (z3,

z4) are referred as Y 1. Now, resultant at location Y 2 is computed as below.

∗ Y 2 =

{
si for 0 ≤ i ≤ 2n − 1
cn for i = 2n

(17)

si =

{
∗Y 1i ⊕ ∗Y 2i ⊕ ci for 0 ≤ i ≤ 2n − 1
c2n for i = 2n

(18)

where ci is the carry bit and is defined as:

ci =

{
0 for i = 0
(∗Y 1i−1 ⊕ ∗Y 2i−1)ci−1 ⊕ ∗Y 1i−1 ∗ Y 2i−1 for 1 ≤ i ≤ 2n

(19)

This step needs n-2 ancilla input bits.
Phase 2: Decomputation Steps
The design steps shown here comprise of decomputation steps, which is neces-
sary to remove the garbage bits generated in Phase 1. Design steps illustrated
here are shown in Fig. 8.

7. Step 7: Apply values of locations (z3, z1), (z4, AR), and (z5, z2
′
) to inverse

square computation blocks. The design of Inverse square blocks are same as
square blocks. At the end of computation, z1, AR, and z2

′
will retain the

same values; z3, z4, and z5 will hold ancilla 0 bits.

42 H.V. Jayashree et al.

(a) Two bit (b) Three bit

Fig. 7. Square design of two and three bits

8. Step 8: Apply values at locations AR and z2
′
to subtractor of width n/2 + 1.

At the end of computation, AR will retain the same value; z2
′
is transformed

to hold MSB n/2 bits of input a, so ∗z2
′
= aL. To adjust the width of the

operands, an ancilla 0 bit is appended. This block releases two ancilla bits
after the computation. This Step requires an ancilla bit.

9. Step 9: There are two copies of aL bits generated from Step 7 and Step 8.
Apply values at locations z1 and z2

′
to n/2 array of CNOT gates. After

the computation, z2
′

will retain aL, whereas z1 will hold n/2 ancilla 0 bits.
After this step, input aL is regenerated. Thus, no garbage is produced in
the computation of square. Total number of ancilla inputs required for each
recursive call in this methodology is 5n + n/2 + 4.

The complete architecture comprising of computation and decomputation steps
is shown in Fig. 9.

Fig. 8. Recursive square design:decomputation steps

Efficient Circuit Design of Reversible Square 43

Fig. 9. Recursive square design

44 H.V. Jayashree et al.

Table 1. Input lines comparison of reversible square designs

Data width Proposed design Design in-[1] Method 1 Design in-[1] Method 2 Design in-[8]

4 30 11 11 17

8 78 55 52 65

16 218 239 228 257

32 644 991 964 1025

64 1944 4031 3972 4097

128 5896 16255 16132 16385

Table 2. Input lines comparison with Karatsuba multiplier [11]

Data width Parallel execution Sequential execution

n Design in-[11] Proposed square Design in-[11] Proposed square

4 44 30 44 30

8 174 114 118 78

16 596 382 308 218

32 1926 1218 830 644

64 6044 3790 2308 1944

128 18654 11634 6598 5896

4 Comparative Analysis

In reversible logic systems, it is not desirable to have garbage, so we have pre-
sented garbageless square design. In the literature, there exist dedicated square
designs proposed by authors in [1,8]. Our work utilizes (5n + n/2 + 4) of ancilla
bits(per recursive call) and produces zero garbage outputs. These values are
obtained by taking case study of adder and subtractor designs proposed in [18–
20]. The proposed work has zero garbage outputs. The existing works in [8]
has n2 − 2n + 1 number of garbage outputs. The two methodologies in [1] have(
n2 − 3n − 2

)
and

(
n2 − 4n − 7

)
number of garbage outputs in the first and sec-

ond approach respectively. This shows that the proposed work is best optimized
in terms of garbage outputs as it has zero garbage bits overhead. Further, we
compared proposed circuit design with existing reversible square designs. The
improvements obtained are significant compared to existing works. We observed
that our work improves number of input lines which includes data lines and
ancilla lines for data width >8 compared to [1,8], except the case when data
width is ≤8. The comparison result is captured in Table 1.

In Table 2, we present the results of comparison with Karatsuba multiplier
design [11]. The parallel execution of recursive calls make use of separate ancilla
work bits, whereas sequential recursive calls reuse the ancilla bits released by
previous recursive call. In both the execution methods, the improvement is seen
for proposed reversible square circuit. Since the objective of this work is to

Efficient Circuit Design of Reversible Square 45

optimize ancilla bits, in Table 1, we have shown ancilla bits calculation with
respect to sequential recursive execution.

5 Discussion and Conclusion

In reversible computing, garbage bits and ancilla lines are considered as the
design overhead. We have presented a new design of garbageless (zero garbage
bits) reversible square computation circuit using recursive computation method.
Further, the proposed design has improvement in terms of input lines compared
to existing works in [1,8]. The algorithm is functionally verified. Virtual verifi-
cation is carried out by functional simulation using Xilinx ISE simulator.

The reversible square computation unit is a key component in digital signal
processor and finds application in Newton Raphson divider, Euclidean distance
computation, etc. The proposed work of designing the garbageless reversible
circuitry will have a tremendous contribution in designing an efficient reversible
hardware.

References

1. Banerjee, A., Das, D.K.: Squaring in reversible logic using iterative structure. In:
2014 East-West Design & Test Symposium (EWDTS), pp. 1–4. IEEE (2014)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

3. Choi, B.S., Van Meter, R.: A θ(
√

n)-depth quantum adder on the 2D NTC quantum
computer architecture. ACM J. Emerg. Technol. Comput. Syst. (JETC) 8(3), 24
(2012)

4. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-
carry addition circuit. arXiv preprint quant-ph/0410184 (2004)

5. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum
carry-lookahead adder. arXiv preprint quant-ph/0406142 (2004)

6. Haghparast, M., Bolhassani, A.: Optimized parity preserving quantum reversible
full adder/subtractor. Int. J. Quantum Inf. 14(03), 1650019 (2016)

7. Jamal, L., Babu, H.M., et al.: Efficient approaches to design a reversible floating
point divider. In: 2013 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 3004–3007. IEEE (2013)

8. Jayashree, H.V., Thapliyal, H., Agrawal, V.K.: Design of dedicated reversible quan-
tum circuitry for square computation. In: 27th International Conference on VLSI
Design and 13th International Conference on Embedded Systems, pp. 551–556.
IEEE (2014)

9. Jayashree, H.V., Thapliyal, H., Arabnia, H.R., Agrawal, V.K.: Ancilla-input and
garbage-output optimized design of a reversible quantum integer multiplier. J.
Supercomputing 72(4), 1477–1493 (2016)

10. Oberman, S.F., Flynn, M.: Division algorithms and implementations. IEEE Trans.
Comput. 46(8), 833–854 (1997)

11. Portugal, R., Figueiredo, C.: Reversible Karatsubas algorithm. J. Universal Com-
put. Sci. 12(5), 499–511 (2006)

12. Rabinowitz, P.: Multiple-precision division. Commun. ACM 4(2), 98 (1961)

46 H.V. Jayashree et al.

13. Shoaei, S., Haghparast, M.: Novel designs of nanometric parity preserving
reversible compressor. Quantum Inf. Process. 13(8), 1701–1714 (2014)

14. Smolin, J.A., Di Vincenzo, D.P.: Five two-bit quantum gates are sufficient to imple-
ment the quantum Fredkin gate. Phys. Rev. A 53(4), 2855–2856 (1996)

15. Takahashi, Y.: Quantum arithmetic circuits: a survey. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. 92(5), 1276–1283 (2009)

16. Takahashi, Y., Kunihiro, N.: A linear-size quantum circuit for addition with no
ancillary qubits. Quantum Inf. Comput. 5(6), 440–448 (2005)

17. Takahashi, Y., Kunihiro, N.: A fast quantum circuit for addition with few qubits.
Quantum Inf. Comput. 8(6), 636–649 (2008)

18. Thapliyal, H.: Mapping of subtractor and adder-subtractor circuits on reversible
quantum gates. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computa-
tional Science XXVII. LNCS, vol. 9570, pp. 10–34. Springer, Heidelberg (2016)

19. Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors
based on a new reversible gate. In: 2009 IEEE Computer Society Annual Sympo-
sium on VLSI, ISVLSI 2009, pp. 229–234. IEEE (2009)

20. Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic-based binary
and BCD adder circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(3), 17
(2013)

21. Thapliyal, H., Varun, T., Munoz-Coreas, E.: Quantum circuit design of integer
division optimizing ancillary qubits and T-count. arXiv preprint arxiv:1609.01241
(2016)

22. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic
operations. Phys. Rev. A 54(1), 147 (1996)

23. Moghadam, M.Z., Navi, K.: Ultra-area-efficient reversible multiplier. Microelec-
tronics J. 43(6), 377–385 (2012)

http://arxiv.org/abs/1609.01241

Methods of Registration of Weak Radio Signals

Stanislav Klimenko1, Andrey Klimenko2, Kira Konich3, Igor Nikitin4(B),
Lialia Nikitina4, Valery Malofeev5, and Sergey Tyul’bashev5

1 Institute of Computing for Physics and Technology,
Moscow Institute for Physics and Technology (State University), Protvino, Russia

stanislav.klimenko@gmail.com
2 Cyprus Space Exploration Organisation, Nicosia, Cyprus

andy.klimenko@gmail.com
3 Bauhaus University, Weimar, Germany

kira.konycheva@uni-weimar.de
4 Fraunhofer Institute for Algorithms and Scientific Computing,

Sankt Augustin, Germany
{igor.nikitin,lialia.nikitina}@scai.fraunhofer.de

5 Pushchino Radio Astronomy Observatory,
Lebedev Physical Institute, Pushchino, Russia

{malofeev,serg}@prao.ru

Abstract. In this paper we will consider a problem of registration of
radio signals from distant sources, natural (pulsars) or artificial (SETI
signals). These signals possess a number of common properties, i.e.
they are weak, almost indistinguishable from the background noise,
are strongly localized on celestial sphere, have spectral characteristics
smeared by dispersion on interstellar medium and Doppler drift, suf-
fer from near-Earth electromagnetic interference. In this paper we will
overview existing methods for registration of such signals and discuss
some alternatives. We implement selected methods as data filters con-
nected to data processing workflow, with 3D Virtual Environment as
a frontend, integrate the methods into a system for radio astronomical
monitoring StarWatch and apply them for detection of pulsar signals
from BSA telescope at Pushchino Radio Astronomy Observatory and
narrow band signals in SETI database (setilive.org).

1 Introduction

Big Scanning Antenna, BSA (also known as Large Phased Array, LPA) is a radio
telescope used at Pushchino Radio Astronomy Observatory. It is a radio telescope
of the meridian type with a filled aperture – a flat array of 16384 equidistant
wave dipoles of a size 187 m × 384 m, operating at a frequency of 109–113 MHz.
It is one of the most sensitive telescopes in the world in this range. BSA is used
in a number of projects: in the study of pulsars, dynamic processes in near-solar
and interplanetary plasma, analysis of the structure of compact radio sources,
investigation of active galactic nuclei in the meter wavelength range [1–4].

Allen Telescope Array (ATA-42) is a radio telescope, located in Hat Creek,
California. The telescope consists of 42 antennas in LNSD configuration, Large
c© Springer-Verlag GmbH Germany 2017

M.L. Gavrilova and C.J. Kenneth Tan (Eds.): Trans. on Comput. Sci. XXIX, LNCS 10220, pp. 47–63, 2017.

DOI: 10.1007/978-3-662-54563-8 3

48 S. Klimenko et al.

Fig. 1. StarWatch Virtual Environment. Sky map represents the observations from the
database setilive.org. Several panels display the results of various data filters (Radon
transform etc.) and meta-information for selected observation. Color of the ray shows
signal classification: blue ray – background noise, red ray – near-Earth interference,
green ray – a candidate for extraterrestrial signal. (Color figure online)

Number of Small Dishes, every of 6 m diameter. The array supports simultaneous
data acquisition from several directions on celestial sphere at angular resolution
approximately 4’× 2’ and frequency range 0.5–11.2 GHz. The telescope is primar-
ily used by SETI Institute in its challenging project, search for extraterrestrial
intelligence.

Setilive.org is a web project forwarding SETI data for the analysis of vol-
unteers. Till 12-Oct-2014 it supported live feeds of signals from ATA-42, which
then have been discontinued. Now setilive.org serves as a large archive of radio
astronomical data with more than 1.5 millions observations for more than 7.5
thousands observation targets, including directions to exoplanets discovered by
telescope Kepler and other sources [5,6]. On the way of its development, SETI
used various telescopes, Green Bank Telescope in West Virginia [7], Arecibo
Telescope in Puerto Rico [8] and many others. Occasionally, the search brings
positive detections, e.g. so called Wow!-signal, a famous registration done on 15-
Aug-1977 by telescope Big Ear in Ohio [9]. The signal was located in Sagittarius
constellation, close to the hydrogen line frequency, possessed very strong signal-
to-noise ratio SNR ∼ 30, lasted 72 s and never repeated again. Recent finding is a

Methods of Registration of Weak Radio Signals 49

2 s long signal at 11 GHz, received 15-May-2015 in the direction of HD164595, a
G-type star from Hercules constellation, by Russian radio observatory RATAN-
600 [10]. Although several SETI telescopes were set in this direction, there were
no follow-up signals registered.

Our previous paper [11] introduces a system for radio astronomical monitor-
ing StarWatch. It includes a generic interface to observation databases, supports
special tools for signal extraction and analysis and uses 3D Virtual Environment
as a frontend (Fig. 1). Stereoscopic perception provides a convenient way for rep-
resentation of multidimensional and multiscale data, produced by the telescope
and data processing algorithms, as well as for interactive screening of the results.
While [11] focuses on the usage of Virtual Environments, the present paper goes
deeper into details of underlying methodology. Since the input data usually come
in form of plain images, the software can be applied to live feeds or other signal
collections possessing similar data organization. In papers [12–15] the system has
been applied for analysis of signals from setilive archive and pulsar observations
data from BSA.

The signals of both types come from distant sources and have a common
signature. In particular, they are localized in a fixed point on celestial sphere. In
addition, the signals are localized either in frequency domain (narrow band) or
in time domain (sharp pulses). SETI signals are expected to be narrow band and
possessing Doppler drift due to relative motion of signal source and the telescope
[16,17]. Pulsar signals have a form of sharp pulses and have frequency dependent
delays due to dispersion on interstellar medium [2,18]. The both effects smear
the signal over the exposition time, similarly to a camera shake smearing the
snapshot. The other kind of problems are created by imperfectness of radio
telescope, whose directional diagram possesses so called side lobes [19–21]. As
a result, signals from strong nearby sources, e.g. satellites, leak to the telescope
from various directions and are mixed with the actual signal.

The present paper describes the methods helping to overcome these problems.
The methods can be implemented as data filters connected to a data processing
workflow, which typically consists of the following steps.

Statistical accumulation: the signals from distant sources are expected to be
weaker than the background noise, with signal-to-noise ratio SNR< 1. Special
filters are applied to amplify SNR and distinguish signals from the noise. There
are several filters, suitable for this purpose: Radon transform [14], its varieties
[22–24], autocorrelation [25], estimation of entropy and cryptographic strength
of a signal [15], etc.

Selection of single beams: the measurements are performed simultaneously in
several directions on celestial sphere, called beams. SETI performs precise tar-
geting of the beams to the predefined list of objects, so that the signals from
distant sources can contribute only in one beam. Meridian telescopes like BSA
perform continuous scan of the sky, and the signals can appear in one or two
neighbour beams. This selection allows to exclude signals from terrestrial and

50 S. Klimenko et al.

near-Earth sources, such as radio stations, aircrafts and satellites, which usually
contribute to multiple beams [26].

Cross-validation: it happens that signals possess copies in a nearby frequency
band, registered in a completely different spatial direction. All such signals must
be excluded [7]. The signals from distant sources cannot move rapidly across
the sky like the near-Earth sources. Also, the distant sources contribute only
to the main lobe of the telescope, while strong signals from near-Earth sources
penetrate through side lobes and can be registered from any direction. Rejection
of such signals is a hard task, since it requires their pairwise comparison with
all measurements in the database.

StarWatch Virtual Environment has been developed in Avango VE frame-
work (avango.com), using Open Scene Graph as graphics engine, Python and
C++ as API. This architecture allows rapid development of utterly complex
applications, while the task of 3D visualization is overtaken by the framework,
using a concept of universal display. Dependently on display configuration,
StarWatch can work as a simple desktop application, with 3D capable office
beamer providing resolution in megapixel range, in full immersive systems with
tens megapixels resolution (PowerWalls), Large Ultra-High Resolution Displays
(LUHRDs) with hundreds megapixels (CAVE2, HORNET, Stallion, hyperwall-
2) or even 1.5 gigapixel (Reality Deck) [27].

In the following sections we will overview the methods for detection of weak
radio signals from distant sources and demonstrate their application on nar-
row band signals from setilive archive and pulsar observations data from BSA
telescope.

2 Statistical Accumulation

Setilive data come in form of so called waterfall plots, which represent frequency
spectrum (horizontal axis) varying in time (vertical axis). Typical waterfall plots
are shown on Fig. 2. Narrow band signals on these plots have a form of straight
lines possessing a slope to the vertical axis due to Doppler drift.

Pulsar signals have a form of periodically repeating spikes. Being separated to
several equidistant wide frequency bands, they show equidistant delays, appear-
ing due to dispersion of the signal on interstellar medium, see Fig. 3. On the
waterfall plots the spikes form similar straight lines as setilive signals, although
they are produced by the other physical mechanism.

Radon transform is used for detection of straight lines on the waterfall plots.
It is the integral of the form:

R(x, α) =
∫

dy w(x cos α − y sinα, x sin α + y cos α)

where w(x, y) is the waterfall plot and α is the slope parameter. This integral
accumulates lines into points and amplifies SNR by a factor n1/2 for the images
of size n×n. Radon transform is equivalent to Hough transform [28], a standard

Methods of Registration of Weak Radio Signals 51

Fig. 2. Typical setilive signals. The figure shows waterfall plots – frequency spectrum
(horizontal axis) varying in time (vertical axis): (amne) terrestrial source; (1sq9) GPS
satellites; (42r6) combination of terrestrial and satellite signals; (ecym) satellite signal,
wavy form indicates own rotation; (4kjr) single beam - potential signal of ET origi-
nation; (2r7d) one more single beam. The plots can be retrieved by their 4-character
code from <talk.setilive.org/observation groups/GSL000****>.

Fig. 3. Typical pulsar signal from BSA telescope: PSR J2113+2754 (B2110+27) with
catalogue period P = 1.20285 s (P= 1.20293 s from search program) and catalogue dis-
persion measure DM = 25.1 pc/cm3 (22.9± 5 pc/cm3 from search program). On the left:
the result of folding transform, the peaks in 6 frequency bands arrive at different time
due to dispersion on interstellar medium; on the right: matching transform collects the
peaks together and increases total SNR. The figure shows SNR as a function of time,
in data points.

technique used in image processing for detection of straight lines. Direct numer-
ical evaluation of the integral in Radon transform requires O(n3) floating point
operations, while there are also faster methods, performing at O(n2 log n) rate
[22,23].

52 S. Klimenko et al.

Folding transform is used for detection of generic periodic signals. It has a
form:

F (φ, T) =
∫

dt s(t)Δ(t − φ, T)

where s(t) is a signal, Δ(t, T) is T -periodic Dirac’s function and φ is the phase
parameter. The integral accumulates the data with equal phases from various
periods and amplifies SNR for the periodic signals. The amplification factor
is (np/T)1/2, where np is the number of data points taken into analysis and
T is the signal period measured in data points. The folding transform requires
O(np2 log(T1/T0)) operations, for the period scanned in the range [T0, T1]. Faster
versions of folding transform are also known [24]. The other possibility is a
computation of autocorrelator of the signal, which can be accelerated by fast
Fourier transform [25].

After applying folding transform or autocorrelator in every frequency band,
one needs to compensate dispersion shifts with a matching algorithm [15], a ver-
sion of Radon transform restricted to few discrete bands. Computational com-
plexity of direct matching algorithm is O(np dpmax (T1 − T0)), where dpmax is
a maximal dispersion shift, in points per frequency band. This effort is additive
to the folding transform, the both should be then multiplied to the number of
beams and frequency bands.

Radon and folding transforms essentially use the known form of the signal
for statistical accumulation. There are also filters capable of detecting signals of
unknown form. These filters are based on general statistical measures which can
distinguish a given time series from a random sequence.

Entropy is generally used as a measure of chaos in a system or information
content in a message. Practically it serves as a statistical measure of random
uniformity of a sequence:

E[ρ] =
∫

dnx f(ρ(x)), f(ρ) = −ρ log ρ

where ρ(x) is the probability density, x is n-dimensional vector parameter, rep-
resenting n sequential values of the signal. This functional achieves maximum
on a uniform distribution ρ = Const and can be used to measure a deviation of
the probability density from the uniform distribution. The measurement should
be used together with flattening algorithm [15], which forces every component
of vector x to uniform distribution. Any signal, distorting n-dimensional joint
distribution from uniform, will be detected.

Cryptographic strength. A bit sequence is called cryptographically strong, if
prediction of the next bit from the previous bits of the sequence with any
polynomial-time algorithm has success ratio not better than 50%. Such mea-
sure of the randomness of a given numerical sequence is evaluated by standard
cryptographic tests for random number generators known as DieHard [29] and
DieHarder [30]. They include a collection of subtests returning so called p-values,
random variables uniformly distributed in the range [0, 1] whenever the input

Methods of Registration of Weak Radio Signals 53

Fig. 4. On the left: selection of single beam signal on Radon plot. On the right:
schematic 1D cross section of a typical beam pattern.

sequence is uniformly random. Further one performs Kolmogorov-Smirnov test
for the uniformity of the distribution of p-values, by forming CDF of p-values
and measuring its maximal deviation Dp from the linear function. Kolmogorov’s
distribution can be used to estimate the confidence levels, e.g. 99.73% CL cor-
responds to Dp < 1.81n

−1/2
p , where np is a number of p-values.

Radon and folding transforms are known to be more sensitive for SETI and
pulsar data than entropy and cryptographic filters [15], although the latter give
an interesting alternative for detection of signals of unknown form.

Waterfall plots in SETI observations are typically 768× 384 PNG images,
rescaled to 256 × 256 for the purpose of our analysis. Every such observation
represents 90 s scan of 533 Hz frequency band in a certain direction on celestial
sphere. Processing of one observation with O(n3) method requires 0.4 s on 3 GHz
Intel i7 processor. The result has a form of a bright spot on the corresponding
Radon plot, see Fig. 1.

The pulsar signals from BSA telescope are registered simultaneously in a
number of beams, typically nb = 96, and in a number of frequency bands, typ-
ically nf = 6 plus one cumulative. Dispersion shift is maximally dpmax = 14.
The sampling rate is about 10 Hz, so that one minute of measurement contains
np = 600 points and requires about 0.92 MB of disk space. There are also “high
density” data with more severe characteristics.

One more specifics about BSA data is that the telescope beams are contin-
uously sweeping across the sky and the pulsar signals appear in data during a
restricted time interval, when the beam is directed precisely on the pulsar. Typ-
ically these intervals have 2–4 min duration and the search should be done with
the overlapping, e.g. by taking 5 min segment and sequentially shifting it for
1 min along time axis. The overlapping additionally increases the computational
effort, so that processing of BSA data with current methods requires in average
18 s per a minute of measurements.

Mass processing of SETI and pulsar data can be trivially parallelized to
make use of all available cores and processors, so that the processing speed can
be significantly increased on parallel architectures.

54 S. Klimenko et al.

3 Selection of Single Beam Signals

The input waterfall plots in setilive database come in groups, corresponding to
simultaneous signal observations in several directions on celestial sphere. Further
we will use the following terminology:

– observations are all available waterfall plots in the database, including those
where only noise was registered;

– observation group combines waterfall plots made for the same frequency at
the same time, but in different spatial directions, called beams;

– signals are any events where the output of statistical accumulation filter
exceeds the threshold.

Single beam signals are signals present in one beam and absent in the other
beams, in the same observation group.

In our paper [12] we performed single beam selection for 1.5 millions of
observations in setilive database. At first, only 3-beam observations have been
selected, reducing the total number of observation groups from 673 thousands to
253 thousands. Then the signals with small Doppler drift were eliminated. Such
signals are produced by the sources which don’t move (or have a constant radial
speed) relative to the receiver and most probably correspond to terrestrial radio
sources or geostationary satellites. These signals are represented as vertical lines
on waterfall plots, i.e. as nearly zero angles on Radon plots and can be easily
eliminated.

Further, the signals were selected on Radon plots using a method shown on
Fig. 4 left. Two rectangular contours around a given point were defined. The
point is selected if a logical AND of the following conditions took place:

– in the given beam in the given point SNR0 > 4;
– in the given beam everywhere between two contours SNR < SNR0/2;
– in the other two beams everywhere inside external contour SNR < 4.

This allows to select narrow signals appearing in a single beam. Full list can be
found in [12], the strongest 28 signals are given in the first column of Table 1 below.
The observation can be retrieved from setilive server, by substituting 4-character
observation ID to the address talk.setilive.org/observation groups/GSL000****.

4 Cross-Validation of Single Beam Signals

Now the list of 28 strongest signals will be subjected to additional selection pro-
cedure, analogous to SETI analysis [7]. This procedure enforces single beam selec-
tion, by comparing the signals from the list pairwise with all other observations in
the database. The purpose is to find similar signals in a nearby frequency band that
have been recorded in directions other than the signals from the list. Radio signals
from extraterrestrial sources are so weak, that their registration is only possible
with precise direction of the telescope to the source. Registration of similar signals
in different spatial directions excludes their extraterrestrial origin.

Methods of Registration of Weak Radio Signals 55

One evident reason why near-Earth signals are registered in different directions
is a motion of the source on a sky, i.e. an aircraft or satellite. The other reason is
more sophisticated.

A beam of radio telescope is really not a straight line towards a point on celes-
tial sphere, but has a complex internal structure. Typical beam pattern is shown
in 1D cross-section on Fig. 4 right. There is a two-level structure, the largest one
(primary beam) is related with sensitivity diagram of one antenna dish, the small-
est one (synthetic beam) – with arrangement of antennas in phased array. There
is one sharp maximum (main lobe). It is the actual telescope direction that was
earlier referred simply as a beam. When the phases between the elements in the
phased array are changed, the main lobe moves across the sky. The other possi-
bility is to consider several combinations of phases at a time and to scan the sky
in several directions simultaneously. In this way observation groups consisting of
several beams are formed.

In addition to the main lobe, there is a large number of secondary maxima (side
lobes), covering a large area in the sky. Figure 4 has logarithmic scale and the gain
in the side lobes is significantly smaller than the gain in the main lobe. However,
the near-Earth interferers are so strong, that their side lobe contributions compete
with the main lobe contributions of weak signals.

ATA-42 telescope has an angular resolution about 1◦ for a primary beam and
0.068◦ for synthetic beams [19,20]. Radio interference enters the telescope through
the side lobes, where the gain of antenna varies chaotically on the angular sizes of
the order of the synthetic beam width. There is also a formfactor of the antenna,
with a typical variation size of the order of the primary beam width. For any given
direction of the telescope a signal from the satellite may come aside, penetrate the
side lobe and mix with the main signal.

Selection of single beam signals significantly improves the situation, since the
absence of a signal in several beams indicates the absence of radio interference that
would penetrate through the side lobes in all beams. Continuous absence of a signal
in several beams for 90 s observation is even stronger evidence, since the motion of
the source of interference on the sky would result in its movement over the struc-
ture of side lobes and the signal would be inevitably registered in all beams. Only
in the exceptional case, if the source of radio interference is in zero zone between
the side lobes for two beams and in non-zero zone for the third beam, and such
configuration persists during 90 s, the signal from the satellite will be interpreted
as a single beam signal. Rejection of such signals is the purpose of cross-validation.

In particular, the cross-validation procedure in [7] uses ±1 MHz band around
the tested signal for searching similar signals. As a criterion of signal similarity
it is proposed to compare the bandwidth, Doppler drift and modulation type. In
our work, we identify narrow band signals, most of which do not have a noticeable
modulation, with a few exceptions. Such signals have the form of straight lines on
waterfall plots and all look alike. Therefore, we have used the following additional
selection criteria.

First of all, we pass all the observations from the database through the same
statistical accumulation filter as in the search of single beam signals. This leaves

56 S. Klimenko et al.

only narrow bandwidth signals for further similarity tests. Selections for 3-beam
observations, Doppler drift, single beams have been deactivated. Thus, in cross-
validation we consider also the signals appearing in multiple beams, observation
groups possessing one or two beams and signals without Doppler drift. If such sig-
nals appear in ±1 MHz band around the tested signal, in a different spatial direc-
tion, the tested signal is rejected and the cluster of similar signals is saved for fur-
ther analysis.

The purpose of this analysis is understanding the nature of the interferers con-
tributing to single beam observations. In this paper we will test a hypothesis that
the registered signal is produced by a satellite on a circular orbit of a certain height.
Thus we have restrictions on the speed and acceleration resulting in restrictions on
the amplitude of Doppler shift and its rate (Doppler drift):

Δf/f0 = vr/c, f ′/f0 = ar/c, vr = |r|′, ar = |r|′′,

where vr, ar are radial velocity and acceleration of the satellite relative to the tele-
scope, |r| is a distance between the satellite and the telescope, c is a speed of light,
Δf, f ′ are Doppler shift and Doppler drift, f0 is emitted frequency of the signal.
Note that emitted frequency is unknown, however the measured frequency of the
tested signal as well as all possible samples of the same signal belong to its ±Δf
band. As an upper estimation, one can take the measured frequency as a reference
and double Δf in this formula.

If the tested signal exceeds the limit on Doppler drift, the possibility of its loca-
tion on the considered orbit is eliminated immediately. Otherwise all signals from
similarity cluster, satisfying these constraints, are considered as potential samples
of the same signal. The presence of such signals confirms the hypothesis that the
tested signal is produced by a satellite on the given orbit.

The orbits of satellites are usually divided in the following categories, according
to the height above the surface of Earth:

– low Earth orbits (LEO): 160–2000 km;
– medium Earth orbits (MEO): 2000–35786 km;
– geosynchronous orbits (GSO): 35786 km;
– high orbits: more than 35786 km.

GSO is a distinguished family of the orbits with a period of 24 h. This family con-
tains a single geostationary orbit (GEO), passing along the equator, where not
only the period, but also the direction of rotation of the satellite coincides with the
Earth’s rotation, therefore geostationary satellites are fixed relative to the surface
of the Earth. Note that location of tested signal on GEO is excluded by Doppler
drift selection.

For our purposes a different subdivision is suitable:

– zone I, <20 thous.km;
– zone II, 20–130 thous.km;
– zone III, >130 thous.km.

Methods of Registration of Weak Radio Signals 57

This subdivision is related with the beam structure of ATA-42 telescope. LEO
and most of MEO satellites as well as aircrafts move on celestial sphere so fast, that
during the observation period they cross a number of side lobes along their way.
Therefore, it is highly unlikely that signals from these objects would be registered
as single beam ones. Starting from the height of 20 thous.km satellites during 90 s
observation pass less than 1◦ relative to the fixed stars. Thus, it is possible that
the satellite gets accidentally in the gap between the side lobes, appearing due to
the formfactor of the antenna, and remains therein during the observation. Here
the most probable zone for satellites which can contribute to single beam signals
is located. This zone starts at MEO altitudes, covers GSO ones and ends in high
orbits.At altitudes higher than 130 thous.km satellites during 90 s observation pass
less than 0.068◦, here they may fall into the gap between the side lobes at the level
of the synthetic beam. On the other hand, it is already a third of the Moon-Earth
distance and so high orbits are also improbable.

Table 1 presents all three cases. Preference is given to the zone II, in the absence
of observations there it is subjected to detailed analysis involving the neighbour
zones. Figure 5 shows the distribution of observations and signals over time and
frequency. In fact, this is an extension of waterfall plots discussed earlier. Every
waterfall plot has a size 533 Hz× 90 s and on Fig. 5 would occupy a tiny cell. At
the same time, every plot on Fig. 5 is only a ±1 MHz portion of total 10 GHz search
range, in addition there is a 2-dimensional space of celestial coordinates. This gives
an idea of the true scale of the search. Figure 5 also shows selection zones, where
the widest one corresponds to smaller heights, central one - to the medium heights,
while the innermost one - to the large heights. Note that the zones are nested and all
observations contained in the interior zones are also present in outer zones. There-
fore, the sum of signal numbers over the height zones in Table 1 sometimes exceeds
the total number of signals. A dash in place of a number in Table 1 indicates that
already the original observation has violated the limit on the rate of the Doppler
drift, so the signal can be excluded from this zone.

5 Discussion

For most of single beam signals in 1 MHz vicinity there is a number of signals regis-
tered in other spatial directions, many of them are located within the central zone
of the extended waterfall plot. This means that the hypothesis of assignment of the
given signal to a group of satellites in the middle zone of heights has an experimen-
tal confirmation. Examples shown in Table 1 allow to verify visually the availability
and similarity of the signals on setilive server.

Several signals require special consideration. A group of observations 4xpv,
4xq3, 4xq5 shown on Fig. 6 is made on the same triple of targets HIP142,TYC4026-
00011-1, TYC4026-00065-1. At first, the observation 4xpv is taken, then in 13 min
the observations 4xq3, 4xq5 are made. The observations 4xq3, 4xq5 are made
simultaneously at different frequencies, shifted from 4xpv by 55 kHz and −15 kHz
respectively. In the first beam of each of these observations there are several sin-
gle beam signals, two for 4xq3, two for 4xq5 and whole eight for 4xpv. Since 4xq3,

58 S. Klimenko et al.

Fig. 5. Extended waterfall plots. The title of each graph is the observation ID. The hor-
izontal axis - time in days, the vertical axis - the relative frequency deviation from the
central observation. The blue dots show the observations, red dots - signals. The lines
mark the limits of the Doppler shift for satellites on different heights, 0.16 thous.km blue,
20 thous.km green, 130 thous.km yellow. (Color figure online)

Fig. 6. Signals passed cross-validation. In each row the first waterfall plot represents
several single beam signals from which the signals possessing the largest Doppler drift are
marked by green. The following two plots show the next beams of the same observation.
Some of them have weak signals with nearly zero Doppler drift, they are marked by the
dashed green line. The interaction of these signals with the inspected ones is discussed in
the text in detail. Except of these dashed signals, there are no other narrowband signals
in the 1 MHz vicinity of the inspected signals. (Color figure online)

Methods of Registration of Weak Radio Signals 59

Table 1. Cross-validation

Observation

obs

In ±1MHz vicinity of obs, in directions, different from obs

Observations Signals Signals on a height (thousands of km) Examples of signals,

similar to obs

0.16–20 20–130 >130

1y6e 3 73411 4354 1766 499 106 0th6 *, 13k6 *, 134w 2

2r7d 1 73518 4357 1679 637 - 065r 2, 02ei 1, 03r2 *

30z4 1 73504 4358 1746 909 - 065r 2, 02ei 1, 03r2 *

3xfa 2 17640 5142 4435 1119 - 3ur3 2, 3wbj 2, 3zga 3

4bag 2 19698 2219 81 35 12 422c *, 4235 *, 4591 *

4kjr 1 17616 5150 3781 1155 255 3thq *, 3tii *, 3tw8 *

4pux 2 6278 670 571 438 - 48aw 1, 48az 2, 49sz *

4uq1 3 17660 5157 3974 1324 872 3thq *, 3tii *, 3tw8 *

4va8 2 17723 5170 65 11 - 4tca *, 4tky *, 4u4u *

4w6w 3 19251 2198 1908 222 133 4284 1, 42f0 1, 42w8 *

4xhd 3 17667 5161 4167 790 102 3thp *, 3tw8 *, 3u6k 1

4xpv 1 10 1 1 0 0

4xq3 1 10 2 1 0 0

4xq5 1 10 1 1 0 0

4xrh 1 4706 241 195 56 31 514w *, 52zi *, 5682 *

4xri 1 4706 241 195 56 31 514w *, 52zi *, 5682 *

56ri 2 16128 621 347 178 111 4y13 2, 50xd *, 517h *

580l 1 741 42 39 9 2 4ypj 1, 53h2 *, 59b2 2

580w 1 741 42 31 10 4 4ypi 1, 51dl 3, 57my 1

5812 1 741 42 38 5 2 53h4 1, 50xf *, 53h2 *

58fv 1 2153 74 13 0 0 50yi *, 5382 3, 559r *

e5fe 2 574 296 276 39 21 e56a *, e56o *, e57g *

e6pa 1 508 3 1 1 1 e6wa 1

e6tf 1 171 0 0 0 0

ed55 1 6277 666 38 1 1 edr4 1

ed58 1 6283 666 49 9 6 ecr3 *, ect7 *, ecwc *

ed9f 1 10730 3844 102 31 3 3thw *, 3tmh *, 3tvr *

ee5l 1 6276 669 43 2 - edc0 2, edwe 2

4xq5 are taken simultaneously at different frequencies, they cannot contain the
same signal, but they can be different frequency components of the same signal. In
the next beams of observations 4xpv, 4xq5 there are weak signals with nearly zero
Doppler drift, whose position on waterfall plot does not coincide with any of the
signals from the first beam, that is why the latter are single beam ones. In principle,
4xpv 3 can coincide with 4xq3 1 or 4xq5 1, but not with both. Also, 4xq5 2,3 can
coincide with one of the signals of 4xpv 1, but not with all eight ones. In general,
1 MHz vicinity of these observations has a total of 10 observations, which contain
only two signals in a direction different from HIP142, namely the aforementioned
4xpv 3 and 4xq5 2,3. Given the complex structure of single beam signals in this
triple of observations and insufficient statistics in 1 MHz vicinity, we can not con-
fidently exclude these signals from the original list of candidates, on the basis of
available data. More complete data, which other research groups may possess, will
allow to continue the analysis. Table 2 shows the necessary signal parameters.

60 S. Klimenko et al.

Table 2. Signals passed cross-validation

Observation Object Galactic
coordinates
(latitude,
longitude)

Frequency (MHz) Registration time (UTC)

4xpv HIP142 66.30599976,
179.54624939

3883.268311 Thu Aug 9, 2012 18:23:38

4xq3 3883.323730 Thu Aug 9, 2012 18:36:32

4xq5 3883.252686 Thu Aug 9, 2012 18:36:32

e6tf HIP58924 76.76242065,
−1.24818373

2170.053955 Sat Sep 6, 2014 20:09:10

Observation e6tf 1 contains a single beam signal, shown on Fig. 6 bottom. In its
1 MHz vicinity there are 171 observations, which do not possess any signal except
e6tf 1. Therefore, this signal passes cross-validation and its parameters are also
given in Table 2.

6 Conclusion

We have described the methods for registration of weak radio signals from distant
sources, tuned to the signals of the special signature:

– narrow band (SETI signals), sharp pulses (pulsar signals);
– spectral characteristics possessing Doppler drift and/or dispersion on interstel-

lar medium;
– signal sources strongly localized on celestial sphere.

The methods suppress electromagnetic interference, in particular, they reject sig-
nals from near-Earth interferers penetrating the radio telescope through the side
lobes. We have implemented the methods as data filters for statistical accumula-
tion, selection of single beams and cross-validation. The filters are connected to
data processing workflow, with 3D Virtual Environment as a frontend, integrated
into a system for radio astronomical monitoring StarWatch and applied for detec-
tion of narrow band signals in SETI database (setilive.org) and pulsar signals from
BSA telescope at Pushchino Radio Astronomy Observatory.

In analysis of setilive database, from 1.5 millions of available observations we
have selected 28 signals with the signature described above. Further, 24 of them
can be identified as satellite radio interference. The remaining 4 signals do not have
signals of similar shape in their 1 MHz vicinity in other spatial directions. Although

Methods of Registration of Weak Radio Signals 61

these 4 signals formally satisfy SETI criteria for extraterrestrial signals [7], the den-
sity of observations in the vicinity of these 4 signals is low comparing with other
search areas. Unique classification of these signals requires more data in the spec-
ified direction, frequency range and time frame. Necessary signal parameters are
given in Table 2.

The analysis of pulsar data from Pushchino Radio Astronomy Observatory is
now running in test phase. With our implementation of folding and matching algo-
rithms the data from 1 h measurement have been processed. All pulsars known to
be present in the data at the level SNR > 5 have been extracted. Also one pulsar
at the level SNR ∼ 3 has been found, which has not been detected in these data
by previously used methods.

Our plans include further development of StarWatch Virtual Environment
frontend towards Large Ultra-High Resolution Displays (LUHRDs).

When studying electromagnetic interference, detailed structure of side lobes
becomes important. In our recent paper [31] we have performed visualization of
wave patterns from ATA-42 telescope and have shown a presence of long valleys
where satellite signals can hide. On the other hand, in this paper we have con-
sidered a far zone of the telescope, >100 km. There is also a near zone, where the
beams are not formed yet and the wave pattern can possess even more complicated
structure in 3 dimensions. Testing an alternative hypothesis that single beam sig-
nals are generated by an aircraft located in near zone of the telescope an interest-
ing topic for further investigation. The above aspects are important both for the
development of telescopes and the design of their serving algorithms.

Further development of highly sensitive algorithms for detection of weak radio
signals is necessary in view of increasing capacity of the telescopes, used in themod-
ern large scale astronomical projects. I.e., if the detailed information about signal
phases becomes available, it allows to reconstruct signal direction with the method
of aperture synthesis [32]. Improvements on the hardware side are also planned,
here we mention increasing the number of dishes in SETI ATA telescope (ATA-
350), linking multiple on-Earth radio telescopes for creation of a virtual Earth-
size telescope [33], connecting satellite and on-Earth telescopes for building inter-
ferometer with a super long Earth-orbit baseline [18]. Such powerful instruments
will considerably increase the resolution and sensitivity, necessary for the search
of extraterrestrial intelligence and pulsar signals, and will open new possibilities
for other challenging projects.

References

1. Malofeev, V.M.: Measurements of the pulse energy of weak pulsars at frequencies of
61 and 102 MHz. Astron. Lett. 19, 138–142 (1993)

2. Malofeev, V.M., Malov, O.I.: Detection of Geminga as a radiopulsar. Nature 389,
697–699 (1997)

3. Chashei, I.V., et al.: Global structure of the turbulent solar wind during 24 solar
activity maxima from IPS observations with the multibeam radio telescope BSA
LPI at 111 MHz. Solar Phys. 290, 2577–2587 (2015)

62 S. Klimenko et al.

4. Tyul’bashev, S.A.: A study of radio sources using interplanetary scintillations at 111
MHz. Core-dominated sources. Astron. Rep. 53, 19–29 (2009)

5. Turnbull, M.C., Tarter, J.C.: Target selection for SETI: 1. A catalog of nearby hab-
itable stellar systems. Astrophys. J. Suppl. Ser. 145, 181–198 (2003)

6. Turnbull, M.C., Tarter, J.C.: Target selection for SETI. II. Tycho-2 Dwarfs, old open
clusters, and the nearest 100 stars. Astrophys. J. Suppl. Ser. 149, 423–436 (2003)

7. Siemion, A.P.V., et al.: A 1.1 to 1.9 GHz SETI survey of the Kepler field: I. A search
for narrow-band emission from select targets. Astrophys. J. 767, 94–107 (2013)

8. Steele, B.: It’s the 25th anniversary of Earth’s first (and only) attempt to phone ET,
Cornell News, 12 November 1999

9. Ehman, J.B.: The Big Ear Wow!-Signal: What We Know and Don’t Know About It
After 20 Years, Big Ear Radio Observatory (1997). www.bigear.org/wow20th.htm

10. Shostak, S.: SETI detects possible signal at 11 GHz frequency from sun-like star
(2016). phys.org/news/2016-08-seti-ghz-frequency-sun-like-star.html

11. Klimenko, S.V., Nikitin, I.N., Malofeev, V.M.: StarWatch: radio astronomical mon-
itoring in virtual environment. In: Proceedings of CyberWorlds 2015, Gotland, Swe-
den, pp. 361–364. IEEE (2015)

12. Nikitin, I.N.: Statistical analysis of narrow-band signals at setilive.org (2015).
arxiv.org/abs/1502.04887

13. Klimenko, S.V., et al.: On signals with Doppler drift, fast Fourier transform and
search for extraterrestrial intelligence. In: Proceedings of SCVRT 2013, Protvino,
Russia, 26–28 November 2013

14. Klimenko, S.V., Nikitin, I.N.: On statistical data accumulation, Radon transform
and search for extraterrestrial intelligence. In: Proceedings of CPT 2014, Cyprus,
Larnaca, 11–18 May 2014

15. Konich, K., et al.: Radio astronomical monitoring in virtual environment. Procedia
Comput. Sci. 66, 592–601 (2015)

16. Osgood, D., Ekers, R.D.: SETI 2020: A Roadmap for the Search for Extraterrestrial
Intelligence. SETI Press, Mountain View (2002)

17. Siemion, A.P.V., et al.: Searching for extraterrestrial intelligence with the
square kilometre array. In: Proceedings of Science, AASKA14, p. 116 (2015).
arxiv.org/abs/1412.4867

18. Kardashev, N.S., et al.: Review of scientific topics for the Millimetron space obser-
vatory. Physics-Uspekhi 57, 1199–1229 (2014)

19. Welch, J., et al.: The Allen Telescope Array: the first widefield, panchromatic, snap-
shot radio camera for radio astronomy and SETI. Proc. IEEE 97(8), 1438–1447
(2009). arxiv.org/abs/0904.0762

20. Harp, G.R.: Using multiple beams to distinguish radio frequency interference from
SETI signals. Radio Sci. 40, RS5S10 (2005). arxiv.org/abs/1309.3826

21. Harp, G.R., Wright, M.C.H.: Simulations of Primary Beam Sidelobe Confusion with
the ATA Primary Beam, MEMO 74, SETI Institute, March 2007

22. Cullers, D.K., Deans, S.R. (eds.) SETI Algorithms, Chap. 4, The DADD (Doubling
Accumulation Drift Detection) algorithm, SETI Institute (1989). ftp://ftp.seti.org/
gharp/SetiAlgorithms-CullersDeans.pdf

23. Chandra, S.: Finite Transform Library (FTL), Version 1.50 (2013).
finitetransform.sourceforge.net

24. Staelin, D.H.: Fast folding algorithm for detection of periodic pulse trains. Proc.
IEEE 57, 724 (1969)

25. Harp, G.R., et al.: A new class of SETI beacons that contain information. In: Com-
munication with Extraterrestrial Intelligence. State University of New York Press
(2011). arxiv.org/abs/1211.6470

http://www.bigear.org/wow20th.htm
http://phys.org/news/2016-08-seti-ghz-frequency-sun-like-star.html
http://arxiv.org/abs/org/abs/1502.04887
http://arxiv.org/abs/org/abs/1412.4867
http://arxiv.org/abs/org/abs/0904.0762
http://arxiv.org/abs/org/abs/1309.3826
ftp://ftp.seti.org/gharp/SetiAlgorithms-CullersDeans.pdf
ftp://ftp.seti.org/gharp/SetiAlgorithms-CullersDeans.pdf
http://finitetransform.sourceforge.net
http://arxiv.org/abs/org/abs/1211.6470

Methods of Registration of Weak Radio Signals 63

26. Tutorials, S.: Signal Processing and SETI setiquest.org/about/tutorials, The
Doppler Effect setilive.org/about, How would we know that the signal is from ET?
www.seti.org/faq, SETI Institute 2011–2015

27. Hinkenjann, A., et al.: Large, ultra high resolution displays - LUHRDs. IEEE Virtual
Reality (IEEE VR), March 2015. Tutorial. sites.google.com/site/luhrdtutorial

28. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves
in pictures. Comm. ACM 15, 11–15 (1972)

29. Marsaglia, G.: The Marsaglia Random Number CDROM Including the
Diehard Battery of Tests of Randomness. Florida State University (1995).
stat.fsu.edu/pub/diehard

30. Brown, R.G., Eddelbuettel, D., Bauer, D.: Dieharder: A Random Number Test Suite
Version 3.31.1 (2004). www.phy.duke.edu/∼rgb/General/dieharder.php

31. Klimenko, S.V., et al.: StarWatch 2.0: RFI filter for SETI signals. In: Proceedings
of CyberWorlds 2016, Chongqing, China (accepted)

32. Rampadarath, H., et al.: The first very long baseline interferometric SETI experi-
ment. Astron. J. 144, 38 (2012)

33. ALMA Links with Other Observatories to Create Earth-size Telescope, ALMA
Observatory (2015). www.almaobservatory.org

http://setiquest.org/about/tutorials
http://setilive.org/about
http://www.seti.org/faq
http://sites.google.com/site/luhrdtutorial
http://stat.fsu.edu/pub/diehard
www.phy.duke.edu/~rgb/General/dieharder.php
http://www.almaobservatory.org

A Novel Multiple Antennas Based Centralized
Spectrum Sensing Technique

Jyotshana Kanti1(&), Geetam Singh Tomar2,3, and Ashish Bagwari4

1 Department of Computer Science and Engineering,
Uttarakhand Technical University, Dehradun, India

jyotshanakanti@gmail.com
2 T.H.D.C.I.H.E.T., Tehri, Uttarakhand, India

gstomar@ieee.org
3 Machine Intelligence Research Labs, Gwalior, India

4 Department of Electronics and Communication Engineering,
Uttarakhand Technical University, Dehradun, India

ashishbagwari@ieee.org

Abstract. In wireless communication, sensing failure, reliability, and fading
affects the radio signals. Adaptive threshold and multiple antennas are one of the
solutions of such problems. In this paper, authors introduced a novel multiple
antennas based centralized spectrum sensing (SS) technique for cognitive radio
networks (CRNs). This paper is divided into two parts: part A uses multiple
antennas based improved sensing detector (MA_ISD), and part B uses multiple
antennas based centralized spectrum sensing (MA_CSS) technique. Now, in the
part A: the presented scheme uses two detectors (TD) concept, first one is an
energy detector with a single adaptive threshold (ED-SAT) and the second one is
an energy detector with two adaptive thresholds (ED-TAT). Both detectors imply
multiple antennas, following selection combination to select best signals. The
proposed model enhances the detection performance and takes less sensing or
detection time. The thresholds are adaptive as they are dependent on noise vari-
ance (r2x), and the value of this noise variance changes according to the noise
signal. Both the detectors work simultaneously and their output is then fed to a
decision devicewhich takes the decision using anOR rule. Results confirm that the
presented multiple antennas based improved sensing detector (MA_ISD) tech-
nique improves the detection performance by 24.6%, 53.4%, 37.9%, and 49.6%,
as compared to existing schemes (i.e. EDT-ASS-2015 scheme, ED and
cyclo-2010, adaptive SS-2012, and conventional-ED) scheme at −12 dB
signal-to-noise ratio (SNR), respectively, while the number of antennas (Nr) = 2.
Meanwhile, proposed technique also decreases sensing time in the order of
47.0 ms, 49.0 ms, and 53.2 ms as compared to existing schemes (EDT-ASS-
2015, Adaptive SS-2012, and ED and Cyclo-2010) scheme at −20 dB SNR
respectively. Further, in the part B: cooperative SS (CSS) is introduced in which
the local decisions from each cognitive radio are transferred to a fusion center
(FC) that decides the final decision and shares the decision to every cognitive
radio. It is also found that the proposed detection technique with CSS when a
number of cognitive radio (CR) users (k) = 10, and Nr = 2, achieves detection
performance as per IEEE 802.22 at very low SNR i.e. −20 dB.

© Springer-Verlag GmbH Germany 2017
M.L. Gavrilova and C.J. Kenneth Tan (Eds.): Trans. on Comput. Sci. XXIX, LNCS 10220, pp. 64–85, 2017.
DOI: 10.1007/978-3-662-54563-8_4

Keywords: Cognitive radio networks � Single adaptive threshold � Two
adaptive thresholds � Two detectors � Centralized spectrum sensing

1 Introduction

Nowadays, call drop is one of the major issues in wireless communication system. This
happens due to the limited bandwidth, phenomena are known as “spectrum scarcity”.
Only the licensed users (those who have assigned or allotted frequency band) do not
affect from this. But the other unlicensed users or secondary users (SUs) face spectrum
scarcity problem. To resolve such problem, Federal Communication Commission
(FCC) analyzed this matter and concluded in their report that this problem arises due to
the shortage of spectrum because numbers of users are increasing. Therefore, the
solution is to choose another appropriate frequency band whose operational charac-
teristics are similar to the mobile band. TV band is quite similar and 70% of TV band is
unused, thus efficient utilization of TV band by mobile users reduce spectrum scarcity
problem [1].

Further, in 1998, Dr. Joseph Mitola proposed 5G concepts to solve the spectrum
underutilization problem. In 5G or cognitive radio networks, unlicensed users utilize
PU frequency bands opportunistically and efficiently when PUs do not use the same.

There are four basic functions of CRN systems, spectrum sensing, spectrum
sharing, spectrum mobility, and spectrum decision [2]. Spectrum sensing defines when
the SU detects available vacant bands of PUs. Therefore, various sensing techniques
have been introduced by researchers to sense licensed signal. Among all detectors,
conventional-ED is one who is usually used due to its ease to implement and less
complexity. But its performance degrades under low SNR values.

To improve detector performance at low SNR in [3] authors introduced two-stage
detectors, energy detector in the first stage and the second stage is a cyclostationary
detector. But detector has limitations, computationally more complex and required
longer sensing time. Moreover, to minimize sensing time, in [4], authors presented
adaptive spectrum sensing scheme, in which out of two stages only one stage’s detector
perform sensing operation at a time. However, authors minimized sensing time but
system complexity was there. Furthermore, in [5], authors presented adaptive sensing
technique using energy detector (EDT-ASS). Here, authors discussed on cost-function
and concluded about the primary user’s (PU’s) absence or presence.

In this paper, we optimize detection performance using multiple antennas with two
detectors, two detectors ED_SAT and ED_TAT perform sensing operation simulta-
neously. Thresholds are adaptive that’s why chances of occurring sensing failure
problem is negligible [6]. The output results of detectors go to decision device
(DD) who takes final decision using OR-rule, if the output of DD is 1 shows frequency
band is busy (H1), otherwise free (H0). The main difference between this paper and
others [3, 4, & 5] are that none of these techniques focused on spectrum sensing failure
[6], and fading problem. Adaptive threshold scheme reduces sensing failure problem
while multiple antennas mitigate the fading problem.

We further propose CSS with multiple antennas based improved sensing detector
(MA_ISD). In CSS, each CR user sends local decision (0 or 1 bit) to a common

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 65

centralized node known as fusion center (FC). FC uses hard decision OR-rule to take a
final decision. Hard decision method requires less bandwidth of the control channel this
is the main advantage of hard decision method [7, 8]. OR-rule states that if any one of
the decisions of CRs outcome with 1 bit then FC’s final decision indicates H1, and
vice-versa if there are all 0 bits.

Meanwhile, [9, 10] says that the use of multiple antennas enhances the reliability of
spectrum sensing in CRN.

The novelty of this paper that it deals with three issues of CRNs: reliability, sensing
failure, and fading affect. The proposed model is using multiple antennas with adaptive
thresholds to improve reliability & mitigate sensing failure problem, and cooperative
sensing is useful to mitigate sensing failure problem. Simulation results confirm that the
proposed model enhances detection performance at false alarm probability (Pf) is 0.1,
performs well at low SNRs, and reduces sensing time as well.

The rest of the paper is arranged as follows: Sect. 2 discusses system description.
Section 3 presents proposed system model. Section 4 presents the simulation results
and analysis. Finally, Sect. 5 concludes the simulation results.

2 System Description

In CRN, CR users detect PU licensed signal, to detect primary user signal there is
hypothesis test. Hypothesis test is two types, H1 (alternate hypothesis) states that PU
signal is considered as present under noisy channel, channel is additive white gaussian
noise (AWGN) with zero mean, denoted as x nð Þ; r2x denotes noise variance and
received signal r(n) can be defined as [2]

r nð Þ ¼ x nð Þ � h nð Þþx nð Þ; H1 ð1Þ

H0 (null hypothesis) states that PU signal is considered as absent and received
signal r(n) can be defined as

r nð Þ ¼ x nð Þ; H0 ð2Þ

In Eqs. (1) and (2), r(n) is signal sensed by CR users. x(n) is primary users signal,
x nð Þ is additive white gaussian noise having zero mean, h(n) is the gain of the channel,
and n is numbers of samples i.e. n = 1, 2, …… N. Equations (1) and (2) can also be
defined as: suppose Eq. (1) exists it shows that CR users cannot use PU band because
of presence of PU signal and if Eq. (2) exist then CR users can use PU signal due to the
absence of PU signal.

3 Proposed System Model

3.1 Multiple Antennas Based Improved Sensing Detector (MA_ISD)

Figure 1, depicts the proposed sensing model of novel multiple antennas based
improved sensing detector (MA_ISD). We assume that there are Nr numbers of

66 J. Kanti et al.

antennas, receiving N number of samples, and CR uses the selection combiner
(SC) scheme that provides maximum SNR value signal out of Nr decision statistics.
Therefore, the received signal r = max (r1,r2,r3,…,rNr) passes to upper stream and
lower stream. In Fig. 1, upper stream carries ED with a single adaptive threshold, this
detector is similar as conventional-ED, except adaptive threshold that’s why detector is
an advanced version of conventional-ED. ED with a single adaptive threshold calcu-
lates observed energy (E) of received signal r(n) [2] and compares with the adaptive
threshold (k1), then generates output (L1) and passes to decision device (DD) in the
form of binary bits. Suppose, the calculated observed energy (E) is greater than and
equal to the adaptive threshold (k1), then the output of detector (L1) is bit 1 else bit 0.
Similarly, the lower stream carries ED with two adaptive thresholds (ED_TAT), this
detector is different from the upper stream detector because it has two adaptive
thresholds. Two adaptive thresholds concept is fruitful to reduce sensing failure
problem [6]. Now, ED_TAT computes the energy, compares with thresholds (c) and
produces output (L2). Suppose, the computed energy is greater and equal to c, then the
output L2 will be bit 1 else bit 0. The outputs of detectors (ED_SAT and ED_TAT) go
to decision device (DD), further, DD adds L1 & L2 using OR-rule operation. According
to OR-rule, if the sum of L1 & L2 is greater or equal to 1, shows H1 (the channel is
busy), else shows H0 (the channel is free) as shown in Fig. 1.

Fig. 1. Proposed Model: Multiple antennas based improved sensing detector (MA_ISD).

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 67

Suppose, rj(k) is the received PU signal at the jth antenna for the kth data stream, the
total number of samples are N, the total number of antennas are Nr, and the channel
between PU and CR is Rayleigh fading channel. Therefore, the output of the SC can be
written as

SCjo=p ¼ max
XNr

j¼1

XN
k¼1

rj kð Þ�� ��2" #
ð3Þ

Figure 1 illustrates that the cognitive radio implies multiple antennas, out of
multiple branches CR selects the antenna’s branch that has a large gain and passes to
detectors for further process.

• Probability of detection of multiple antennas based improved sensing detector can
be defined as

PMA ISD
D ¼ Pr � PED SAT

d þ 1� Prð Þ � PED TAT
d þ Pr

2
ð4Þ

PMA ISD
D ¼ Pr

1
2
þPED SAT

d � PED TAT
d

� �
þPED TAT

d ð5Þ

• Total Error Probability of multiple antennas based improved sensing detector can be
defined as

PMA ISD
e ¼ PMA ISD

F þ 1� PMA ISD
D

� � ð6Þ

PMA ISD
e ¼ Pr PED SAT

f � PED TAT
f � PED SAT

d þPED TAT
d

� �
þPED TAT

f

� PEDTAT
d þ 1 ð7Þ

Where, PED SAT
d and PED TAT

d are the detection probability throughout of ED_SAT
and ED_TAT detector respectively, PED SAT

f and PED TAT
f are the false alarm proba-

bility of ED_SAT and ED_TAT detector respectively. Pr is the probability factor,
ranges 0 � Pr � 1. Probability factor depends on SNR of the channels to be detected
if Pr is less than 0.5 means the channel is very noisy, and vice-versa shows channel is
less noisy.

3.1.1 Energy Detector with Single Adaptive Threshold (ED_SAT)
Energy detector is one of the most popular and usually used detectors by researchers to
detect PU signals.

Figure 2 shows the picture of conventional-ED in which band pass filter
(BPF) receives incoming PU signal and passes to analog to digital converter
(ADC) after filtration. ADC converts an analog signal to digital signal and provides
binary bit patterns. These binary bit patterns fed to square law device (SLD), who
computes the energy of the received input signals. Further, integrator receives the

68 J. Kanti et al.

output of SLD and integrates at T interval. Finally, decision-making device
(DMD) takes the final decision against incoming input signal with the help of single
threshold value to confirm whether PU is present or absent.

3.1.1.1 Expression of Single Adaptive Threshold

The mathematical expression of single adaptive threshold (k1) can be defined as [11]

k1 ¼ N � Nr � r2x Q�1
Pf

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N � Nr

r
þ 1

 ��
ð8Þ

Where, N is a number of samples, Q−1() denotes inverse- Q-function, Pf is false
alarm probability, and r2x is noise variance. Analyze Eq. (8), the threshold (k1) is
directly proportional to noise variance (r2x), noise variance depends on noise signal,
and the noise signal is random in nature and change w.r.t. time, due to this noise
variance (r2x) varies, and then threshold (k1) also change. The threshold is adaptive in
nature, therefore, at every time instant its value changes.

E ¼ 1
N

XN
n¼1

r nð Þj j2 ð9Þ

In the above Eq. (9), r(n) is received signals, N is total numbers of samples and
E represents the observed energy of r(n). Finally, the local decision of ED_SAT
detector can be defined as

ED SATjo=p ¼
E\k1; bit 0 ¼ L1
E� k1; bit 1 ¼ L1

ð10Þ

3.1.1.2.1 Probability of Detection for ED_SAT Detector
The final expression for detection probability can be written as [5]

Fig. 2. Energy detector with single adaptive threshold (ED_SAT).

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 69

PED SAT
d ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Nr

2

r
� k0

N � Nr
� 1

� �" #
ð11Þ

In Eq. (11), N is numbers of samples, Q() denotes Gaussian tail probability
Q-function, and k0 is defined as k0 ¼ k1

r2x þ r2xð Þ ; where, k1 is a single adaptive threshold,
r2x is PU signal variance, and r2x is noise variance.

3.1.1.2.2 Probability of False Alarm for ED_SAT Detector
The final mathematical expression of false alarm probability can be derived as [5]

PED SAT
f ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Nr

2

r
� k00

N � Nr
� 1

� �" #
ð12Þ

In Eq. (12), N is a number of samples, and k00 is defined as

k00 ¼ k1
r2x
� � :

3.1.1.2.3 Total Error Probability for ED_SAT Detector
The total error rate is the sum of the false alarm (Pf) and the missed-detection prob-
ability (Pm). Hence, the total error probability rate as follows [12]

PED SAT
e ¼ PED SAT

m

� �þPED SAT
f ð13Þ

Where, (1−Pd) shows the missed-detection probability (Pm), then

PED SAT
e ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Nr

2

r
� k00

N � Nr
� 1

� �" #

þ 1� Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Nr

2

r
� k0

N � Nr
� 1

� �" # ! ð14Þ

3.1.2 Energy Detector with Two Adaptive Thresholds (ED_TAT)
In CRN, this is very difficult situation for a detector to detect correct signal while noise
and PU signal overlap to each other this phenomenon is called sensing failure problem
and overlapped area is called confused region, as discussed in [6]. To overcome this
problem proposed MA_ISD sensing scheme is one of the fruitful solutions.

Generally, in CRN, there are three sections, in first section only noise signal exist
denoted by H0, in second only PU signal exist denoted by H1, and third is the combi-
nation of noise and PU signal i.e. confused region. Figure 3(a) shows the case for C-ED
where authors assume confused region is zero or null and simply divide all the sections
into two parts using single threshold (c) concept,H1 if observed energy is greater than or

70 J. Kanti et al.

equal to c, and H0 if observed energy is smaller than c. Whereas, in Fig. 3(b) we have
considered confused region and divided all the sections into four parts, below the c1 and
above the c2 comes under upper part (UP) of the detector, while between c1–c and c–c2 is
lower part (LP). Therefore, the detector output can be written as

ED TAT jo=p ¼ UPþ LP ¼ Z ð15Þ

Suppose, the observed energy is less than pre-defined threshold c1 it shows H0, and
H1 if observed energy is greater than or equal to pre-defined threshold c2. But, for the
confused region, if observed energy exists between (c1–c) it shows 01 and further
converts binary di-bits into decimal i.e. 1, similarly, if observed energy exists between
(c–c2), shows 10 and further its decimal value is 2. Now, the pre-defined threshold (c)
can be calculated as [12]

Fig. 3. (a) Single threshold detection scheme, and (b) double threshold detection scheme.

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 71

c ¼ N
r2x

� �
� Q�1

Pf

� �
�

ffiffiffiffi
2
N

r
þ 1

()" #
ð16Þ

The value of lower threshold (c1) and the upper threshold (c2) depends on noise
variance, therefore, minimum noise variance shows lower threshold and maximum
noise variance shows upper threshold. Now, the lower thresholds (c1) and upper
threshold (c2) can be found as

c1 ¼
N

q� r2x

� �
� Q�1 Pf

� ��
ffiffiffiffi
2
N

r
þ 1

()" #
ð17Þ

c2 ¼ N � q� r2x
� �� Q�1 Pf

� ��
ffiffiffiffi
2
N

r
þ 1

()" #
ð18Þ

Equations (17) and (18) represent the mathematical expression of lower threshold
(c1) and upper thresholds (c2) respectively. Now, considering the above equations i.e.
(17) and (18), in both equations the thresholds (c1 & c2) depend on noise variance (r2x),
and noise variance is variable because its value changes according to the noise signal.
Due to this, the values of thresholds also change. Therefore, the thresholds are known
as adaptive thresholds. The newly built sub-regions are (c1c – cc2) which comes under
LP can be chosen as

LP ¼ if c1 �E\c; represent bit 01
if c�E\c2; represent bit 10

ð19Þ

UP ¼ if E\c1; represent bit 0
if c2 �E; represent bit 1

ð20Þ

Hence, the combination of LP and UP represents the local decision of ED_TAT
detector [13, 14]

ED TATjo=p ¼
UPþ LPð Þ\c; bit 0 ¼ L2
UPþ LPð Þ� c; bit 1 ¼ L2

ð21Þ

3.1.2.1.1 Probability of Detection for ED_TAT Detector
Assuming that r(n) is a received sample whose normalized version is denoted by ri.
Now, the cumulative distribution function (CDF) of the ED_TAT, can be calculated as

fZi zð Þ ¼ Pr rij j �
ffiffiffiffiffiffiffiffiffi
z
2
a

� �r� �
ð22Þ

72 J. Kanti et al.

In Eq. (22), Pr(�) represents the probability. a is an arbitrary constant, has value
two. By using the conditional probability density function (P.D.F.) of rij j2 in Eq. (22)
and after some algebra, we get the conditional P.D.F. of Zi under hypothesis H1, as [13]

fZijHj
zð Þ ¼ 2� z

2
að Þ

z� að Þ

" #
� f rij j2jHj

z
2
að Þ

� �
ð23Þ

Where, f rij j2jH1
is exponentially distributed as follows [13]

f rij j2jH1
zð Þ ¼ 1þ Sð Þ�1

h i
� exp �z� 1þ Sð Þ�1

h i
; z � 0 ð24Þ

Note that S = r2h � r2x
� �

=r2w represents the average SNR of the sensing channel.
Finally, by using Eqs. (23) and (24) we have

fZijH1 zð Þ ¼ 2� z
2
að Þ � 1þ Sð Þ�1

z� að Þ

" #
� exp �z

2
að Þ � 1þ Sð Þ�1

h i
; z � 0 ð25Þ

Now, the detection probability for ED-TAT can be obtained as

PED TAT
d ¼ Zþ1

c

fZijH1 zð Þdz ð26Þ

PED TAT
d ¼ Zþ1

c

2� z
2
að Þ

z� að Þ � 1þ Sð Þ

" #
� exp � z

2
að Þ

1þ Sð Þ

" #
dz ð27Þ

PED TAT
d ¼ exp �

cð Þ1a
n o2

1þ Sð Þ

2
64

3
75 ð28Þ

3.1.2.1.2 Probability of False Alarm for ED_TAT Detector
Considering Eq. (23), f rij j2jH0

is exponentially distributed as follows

f rij j2jH0
zð Þ ¼ exp �z½ �; z� 0 ð29Þ

Finally, by using Eqs. (23) and (29) we have

fZijH0 zð Þ ¼ 2� z
2
að Þ

z� að Þ

" #
� exp z

2
að Þ

� �
; z� 0 ð30Þ

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 73

The false alarm probability for ED_TAT will be calculated as

PED TAT
f ¼ Zþ1

c

fZijHo
zð Þdz ð31Þ

PED TAT
f ¼ Zþ1

c

2� z
2
að Þ

z� að Þ

" #
� exp z

2
að Þ

� �
dz ð32Þ

PED TAT
f ¼ exp � cð Þ1a

n o2
�

ð33Þ

3.1.2.1.3 Total Error Probability for ED_TAT Detector
According to IEEE 802.22, total error rate depends on false alarm (Pf) and
missed-detection probability (Pm), defined as

PED TAT
e ¼ PED TAT

f þ 1� PED TAT
d

� � ð34Þ

Substitution the value of PED TAT
d from Eq. (28) and the value of PED TAT

f from
Eqs. (33) and (34) we get

PED TAT
e ¼ 1þ exp � cð Þ1a

n o2
�

� exp �
cð Þ1a

n o2

1þ Sð Þ

2
64

3
75 ð35Þ

Where, ð1� PED TAT
d Þ shows the missed-detection probability denoted by

(PED TAT
m).

3.1.3 Decision Device (DD)
This device takes final decision whether PU frequency band is free or not using OR-
rule. DD depends on the output of ED_SAT (L1) as shown in Eq. (10) and output of
ED_TAT (L2) as shown in Eq. (21). Now, the combination of L1 and L2 forms the final
mathematical expression for the proposed model given as

DD ¼ L1 ORL2 � 1; 1;
L1 ORL2\1; 0;

ð36Þ

Flow chart shows the flow of operation, Fig. 4, illustrates the working operation of
MA_ISD technique. In the given figure, CR receiver senses the received signal and
perform the respective sensing operations using ED_SAT and ED_TAT detectors, and
further, makes a final decision via decision device (DD) that PU band is available or not.

74 J. Kanti et al.

• Simulation model

The simulation model is developed using MATLAB. Following are the simulation
steps described as:

1. Generate QPSK modulated signal x(n).
2. Pass input x(n) signal through a noisy channel, channel is Rayleigh, having channel

gain (h), and noise is AWGN (additive white gaussian noise) denoted by x(n)
having zero mean i.e. x(n) * N (0, r2x), & r2x is noise variance, according to
Eq. (1).

3. CR users contain a selection combiner (SC) that provides maximum SNR value
signal out of Nr decision statistics, according to Eq. (3).

4. The received signal r(n) receive by CR users are defined as x(n) under the null
hypothesis, and x(n)*h(n) + x(n) under alternate hypothesis.

5. Calculate thresholds k1, c, c1, and c2 according to Eqs. (8, 16, 17 and 18) for fixed
probability of false alarm Pf = 0.1.

6. Calculate test statistics (E) according to Eq. (9).

Fig. 4. Flow chart of MA_ISD technique.

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 75

7. Compare E with thresholds k1, c1, c2, and c of step 5, to claim hypothesis H0 (0 bit)
or H1 (1 bit) or generate one-bit decision L1 or L2 according to Eqs. (10) and (21)
respectively.

8. Add all statistics generate from step 7 according to Eq. (36) and compare with
threshold 1 by using hard decision OR-Rule for fixed probability of false alarm
Pf = 0.1.

9. Steps 1–8 are repeated 1000 times to evaluate the detection probability vs SNR
under constraints that false alarm probability is set at 0.1.

3.2 Multiple Antennas Based Centralized Spectrum Sensing (MA_CSS)
Technique

CSS technique is useful to enhance detection performance of CR users because it
reduces fading and shadowing effect problems [15]. In CSS, centralized-cooperative SS
technique is better than de-centralized because it is more reliable and accurate [7]. In
the centralized-CSS technique, there is a single fusion center (FC) who collects the
local decision (in the form of single-binary bits either 0 or 1) of CR users and forms a
final decision using decision rules.

In Fig. 5, let there are k numbers of CR users and local binary (bit 0 or 1) decision
Oi of all CR users have been collected by a common single center known as FC. FC
collects data and performs OR-rule hard decision to decide the presence or absence of
PU spectrum band.

Fig. 5. Flow chart of MA_CSS technique.

76 J. Kanti et al.

D ¼
Xk
i¼1

Oi ð37Þ

Now, Oi can be expressed in terms of pre-defined threshold (c), hence the final
expression will be

Oi ¼ 1; L1 þ L1 � 1
0; L1 þ L1\1

ð38Þ

In Eq. (37), D is the sum of all local binary decisions Oi sent by ith CR users. Oi is
the output of proposed MA_ISD model shown in Eq. (36). If thresholds (c) is greater
than calculated energy levels, it indicates the channel is free otherwise busy. In
functional representation form the FC expression for global decision can be written as

FD ¼
0;

Pk
i¼1

Oi\1

1;
Pk
i¼1

Oi � 1

8>><
>>: ð39Þ

FD ¼ D\1; H0

D� 1; H1

ð40Þ

Equation (40) shows the final decision of FC in terms of D using Eq. (39).
Therefore, the detection probability of centralized-CSS using hard decision OR-rule
can be expressed as follows

PD ¼ Pr

Xk
j¼1

Oi � 1jH1

()
ð41Þ

PD ¼ 1�
Yk
j¼1

1� Pd;j
� � ð42Þ

In Eq. (42), Pd is the detection probability of individual CR users that is computed
using Eq. (5). Further, the proposed cooperative sensing scheme can be explained with
the help of flow chart given in Fig. 5.

• Simulation model

The simulation model is developed using MATLAB. Following are the simulation
steps described as:

10. Steps 1–9 are repeated, local decision generated by CRs according to Eq. (38) and
sent to FC.

11. FC collects CR users output according to Eq. (37).

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 77

12. Apply hard decision OR-rule at FC output according to Eq. (40), to claim
hypothesis H0 or H1.

13. Steps 10–12 are repeated 1000 times to evaluate the detection probability vs SNR
under constraints that false alarm probability is set at 0.1.

4 Numerical Results and Analysis

In our simulations, we first evaluate the systems using QPSK modulation scheme and
Rayleigh channel. In this section, the proposed MA_ISD scheme is compared with
conventional energy detection, ED and cyclostationary-2010 detection [3], Adaptive
spectrum sensing-2012 [4], and energy detection technique for adaptive spectrum
sensing-2015 (EDT-ASS-2015) [5]. The parameters used for simulation are given in
Table 1.

In the following simulation given in Fig. 6, we employ the MA_ISD technique for
1000 numbers of samples, we set the threshold for the system to achieve false alarm
probability 0.1. In the simulation environment, the value of k1, c, c1, and c2 varies at
every iteration. But in this case we have chosen k1 = 1.25, c1 = 0.9, c2 = 1.2 and
c = 1.014 as trade-off value.

In simulation environment, there is detection performance comparison between
proposed a multiple antennas based improved sensing detector (MA_ISD) scheme,
EDT-ASS-2015 scheme, ED and cyclo-2010, adaptive SS-2012, and conventional-ED
scheme. Analysis Fig. 6, proposed MA_ISD scheme with number of antennas (Nr) = 3
outperforms Nr = 1, 2, EDT-ASS-2015 scheme, ED and cyclo-2010, adaptive
SS-2012, and conventional-ED scheme by 9.0%, 4.5%, 29.1%, 57.9%, 42.4%, &
54.1% at −12 dB SNR in terms of detection probability respectively.

Table 1. Parameter values for simulation.

Parameter Value

Signal type QPSK
Channel (between primary users and cognitive radio users) Rayleigh
Number of samples (N) 1000
Number of Antennas (Nr) 3 & 2
Threshold (k1) 1.25
Threshold (c) 1.014
Threshold (c1) 0.9
Threshold (c2) 1.2
Range of signal to noise ratio −20 dB to 0 dB
Probability of false alarm for each detection scheme 0.1
Software MATLAB R2012a

78 J. Kanti et al.

According to IEEE 802.22, if false alarm probability is set at 0.1 then the accep-
tance value of detection probability must be 0.9. It shows that MA_ISD scheme detects
PU signal at approximately −12.5 dB SNR.

Figure 7 shows the performance of proposed MA_ISD scheme using same
parameters in terms of Total Error Probability. Figure 7 shows that the proposed
technique with Nr = 3 has minimum error rate i.e. 0.1 at −10 dB SNR while for the
same error probability other techniques have large SNR rate.

Fig. 6. Detection probability with respect to SNR values at Pf = 0.1.

Fig. 7. Probability of error with respect to SNR values.

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 79

Receiver Operating Characteristics (ROC) curve shows the behavior of Pd with
respect to Pf [16]. According to IEEE 802.22, the value of detection probability should
be large at minimum Pf value. In the next step of the simulations given in Fig. 8, we
perform a system employing QPSK modulation scheme. First, we investigate how
detection probability changes with respect to false alarm probability.

Thus, we evaluate our simulations for different false alarm probabilities while SNR
is −8, −10, −12 & −14 dB and 1000 samples are applied to proposed MA_ISD
scheme. In this figure, it is straightforwardly seen that less false alarm probability leads
more detection probability. Then, we decide to keep our following simulations for
Pf = 0.1, Nr = 2, and SNR −12 dB, detection probability is close to 0.9 i.e. 0.9110, this
is acceptable for licensed signal detection as per IEEE 802.22 norms [17].

The spectrum sensing or detection time is the time taken by CR users to detect
licensed frequency band. Sensing time can be computed as

TMA�ISD ¼ TSC þmin: (TED�SAT ,TED�TAT + TDD) ð43Þ

In Eq. (43), TMA_ISD is total time taken by proposed sensing technique for SS. TSC,
TED_SAT and TED_TAT are the selection combiner (SC), ED_SAT and ED_TAT detectors
SS time respectively. In Fig. 1, ED_SAT and ED_TAT are placed parallel, therefore,
we take minimum time out of the two detectors as shown in Eq. (43). Now, the sensing
time for SC can be calculated as

TSC ¼ C � 1
2
� MSC

B

� �
ð44Þ

Fig. 8. ROC Curves for MA_ISD spectrum sensing detector under different SNR values.

80 J. Kanti et al.

In Eq. (44), MSC is the samples, B is the bandwidth of the channel for SC, and
number of sensed channels denoted by C. Now, the ED_SAT sensing time can be
calculated as

TED SAT ¼ C � Pr � 1
2
� MED SAT

B

� �
ð45Þ

In Eq. (45), MED_SAT is the samples and Pr is probability factor for the ED_SAT
detector. Similarly, the ED_TAT detector sensing time can be calculated as

TED TAT ¼ C � 1� Prð Þ � 1
2
� MED TAT

B

� �
ð46Þ

In Eq. (46), MED_TAT is the samples and (1 - Pr) is the probability factor for the
ED_TAT detector. The decision device (DD) sensing time can be calculated as

TDD ¼ C � 1
2
� M0

B

� �
ð47Þ

In Eq. (47), M0 is the samples of DD. Therefore, the overall spectrum sensing time
can be computed using Eqs. (43), (44), (45), (46) and (47) as

TMA ISD ¼ 1
2
� C

B

� �
� MSC þM0f g

þmin:
1
2
� C

B

� �
� Pr �MED SAT ; 1� Prð Þ �MED TATf g

�
ð48Þ

Figure 9 shows the graph between sensing time and SNR. IEEE 802.22 suggested
that the time taken by CR users during the detection of PU spectrum bands for spec-
trum sensing should be as small as possible. Analyze Fig. 9, it can be concluded that
the presented detection scheme at Nr = 2 yields minimum detection time as compared
to existing schemes. Meanwhile, the value of detection time decreases as SNR
increases, therefore there is an inverse relationship between both of them. We have
used Eq. (48) for plotting the graph between sensing time and SNR. The value of
parameters used in Eq. (48) is defined in Table 1.

SNR = −20 dB SNR, proposed scheme at Nr = 2 takes approximately 46.7 ms
time to detect PU signal while presently existing schemes (EDT-ASS-2015, Adaptive
SS-2012, ED and Cyclo-2010) require around 47.0 ms, 49.0 ms, and 53.2 ms sensing
time respectively. Given graph shows that proposed scheme take time (i.e. 46.7 ms) at
−20 dB which is better than other. The small detection time is available for trans-
missions while more time is dedicated to sensing, therefore, this degrades the CR
throughput and this phenomenon is said to be the sensing efficiency problem [18, 19].

Figure 10 shows the curve between detection probability and Threshold value for
four different SNR values such as −8 dB, −10 dB, −12 dB, & −14 dB.

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 81

It concludes that the presented MA_ISD SS scheme can detect licensed signal at
−8 dB SNR at N = 1000, and k = 3.0 with Nr = 2.

Figure 11 shows the graph of detection probability (Pd) versus SNR between
proposed CSS with MA_ISD scheme, CSS-EDT-ASS-2015, and Hierarchical with
Quantization-2012 scheme. In CSS, assumed there are three numbers of CR users and
two numbers of antennas. Simulation results indicate that CSS with MA_ISD out-
performs EDT-ASS-2015, and Hierarchical with quantization-2012 by 12.5% & 19.1%

Fig. 9. Sensing Time with respect to SNR values.

Fig. 10. Detection probability with respect to threshold values for different SNRs.

82 J. Kanti et al.

at −12 dB SNR respectively. CSS with MA_ISD achieves 0.9 detection probability at
−12.5 dB with Nr = 2, while EDT-ASS-2015 and Hierarchical with quantization-2012
detection scheme achieves the same detection probability at −11 dB & −10.5 dB
respectively.

In Fig. 12, as the numbers of CR users increase detection probability improve. In
the given simulation environment, we set Pf at 0.1, and take the number of cooperative
CR users k = 3, 4, 5, 6, 7, 8, 9 & 10, Nr = 2, and N = 1000. It shows that the optimize

Fig. 11. Detection probability with respect to SNR values at Nr = 2 and total CR users k = 3.

Fig. 12. Probability of Detection Vs SNR at Pf = 0.1 with N = 1000, total CR users k = 3, 4, 5,
6, 7, 8, 9, 10, QPSK modulation scheme and Rayleigh fading channel.

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 83

value of detection probability outcomes at k = 10, Nr = 2, under Pf = 0.1, when
SNR = −20.0 dB (approximately). It concludes that proposed detector can detect PU
spectrum band at or below −20.0 dB with ten numbers of CR users.

5 Conclusion

In this paper, a novel multiple antennas based centralized spectrum sensing technique
has been proposed. This scheme enhances detection performance, reduces bit error rate
as well as detection time. Numerical results confirm that proposed MA_ISD scheme
while Nr = 2 outperforms other existing schemes (i.e. EDT-ASS-2015 scheme, ED and
cyclo-2010, adaptive SS-2012, and conventional-ED scheme), by 24.6%, 53.4%,
37.9%, and 49.6% at −12 dB SNR respectively. It is also confirmed that the presented
scheme yields lesser detection time than EDT-ASS-2015, Adaptive SS-2012, and ED
and Cyclo-2010 scheme in the order of 47.0 ms, 49.0 ms, and 53.2 ms at –20 dB SNR
respectively. MA_ISD has also been implemented with CSS scheme, it further con-
firms that k = 10, Nr = 2, and Pf = 0.1, presented sensing scheme detects licensed
signal as per IEEE 802.22 at very low SNR i.e. −20 dB SNR.

Acknowledgment. The authors wish to thank their parents for supporting and motivating for
this work because without their blessings and God’s grace this was not possible.

References

1. Federal Communications Commission, Notice of proposed rule making and order:
Facilitating opportunities for flexible, efficient, and reliable spectrum use employing
cognitive radio technologies, ET Docket No. 03-108, February 2005

2. Bagwari, A., Singh, B.: Comparative performance evaluation of spectrum sensing
techniques for cognitive radio networks. In: 2012 Fourth IEEE International Conference
on Computational Intelligence and Communication Networks (CICN- 2012), vol. 1, pp. 98–
105 (2012)

3. Maleki, S., Pandharipande, A., Leus, G.: Two-Stage Spectrum sensing for cognitive radios.
In: IEEE Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 2946–2949
(2010)

4. Ejaz, W., Hasan, N., Kim, H.S.: SNR-based adaptive spectrum sensing for cognitive radio
networks. Int. J. Innovative Comput. Inform. Control 8(9), 6095–6105 (2012)

5. Sobron, I., Diniz, P.S.R., Martins, W.A.: Velez, M: Energy detection technique for adaptive
spectrum sensing. IEEE Trans. Commun. 63(3), 617–627 (2015)

6. Liu, S.-Q., Hu, B.-J., Wang, X.-Y.: Hierarchical cooperative spectrum sensing based on
double thresholds energy detection. IEEE Commun. Lett. 16(7), 1096–1099 (2012)

7. Akyildiz, I.F., Lo, B.F., Balakrishnan, R.: Cooperative spectrum sensing in cognitive radio
networks: a survey. Elsevier Phys. Commun. 4, 40–62 (2011)

8. Teguig, D., Scheers, B., Le Nir, V.: Data fusion schemes for cooperative spectrum sensing in
cognitive radio networks. IEEE Trans. Wireless Commun. 7(4), 1326–1337 (2008)

84 J. Kanti et al.

9. Pandharipande, A., Linnartz, J.-P.M.G.: Performance analysis of primary user detection in a
multiple antenna cognitive radio. In: Proceedings of the IEEE International Conference on
Communications, pp. 6482–6486 (2007)

10. Taherpour, A., Nasiri-Kenari, M., Gazor, S.: Multiple antenna spectrum sensing in cognitive
radios. IEEE Trans. Wireless Commun. 9(2), 814–823 (2010)

11. Tandra, R., Sahai, A.: SNR walls for signal detection. IEEE J. Sel. Topic Sig. Proc. 2(1),
4–16 (2008)

12. Bagwari, A., Kanti, J., Singh, G., Tomar, A.S.: Reliable spectrum sensing scheme based on
dual detector with double-threshold for IEEE 802.22 WRAN. J. High Speed Netw. 21(3),
205–220 (2015). IOS Press

13. Singh, A., Bhatnagar, M.R., Mallik, R.K.: Cooperative spectrum sensing in multiple antenna
based cognitive radio network using an improved energy detector. IEEE Commun. Lett. 16
(1), 64–67 (2011)

14. Zhang, W., Letaief, K.B.: Cooperative spectrum sensing with transmit and relay diversity in
cognitive radio networks. IEEE Trans. Wireless Commun. 7, 4761–4766 (2008)

15. Ganesan, G., Li, Y.(G.): Cooperative spectrum sensing in cognitive radio–part I: two user
networks. IEEE Trans. Wireless Commun. 6(6), 2204–2213 (2007)

16. Zhang, L., Huang, J., Tang, C.: Novel energy detection scheme in cognitive radio. In: IEEE
Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–4
(2011)

17. Cordeiro, C., Challapali, K., Birru, D., Shankar, S.: IEEE 802.22: the first worldwide
wireless standard based on cognitive radios. In: Proceedings of DySPAN 2005, November
2005

18. Lee, W.Y., Akyildiz, I.F.: Optimal spectrum sensing framework for cognitive radio
networks. IEEE Trans. Wireless Commun. 7(10), 3845–3857 (2008)

19. Liang, Y.C., Zeng, Y., Peh, E., Hoang, A.T.: Sensing-throughput tradeoff for cognitive radio
networks. IEEE Trans. Wireless Commun. 7(4), 1326–1337 (2008)

A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique 85

ImatiSTL - Fast and Reliable Mesh Processing
with a Hybrid Kernel

Marco Attene(B)

IMATI CNR, Genova, Italy
marco.attene@ge.imati.cnr.it

Abstract. A novel approach is presented to deal with geometric compu-
tations while joining the efficiency of floating point representations with
the robustness of exact arithmetic. Our approach is based on a hybrid
geometric kernel where a floating point number is made fully interop-
erable with an exact rational number, so that the latter can be used
only within critical parts of the program or within restricted portions of
the input. The whole program can dynamically change the level of pre-
cision used to produce new values and to evaluate expressions. Around
such a kernel, a mesh processing library has been implemented whose
API functions can be classified depending on their precision as always
exact, always approximated, or exact if the current level of precision is
sufficient. Such a classification allows implementing algorithms with a
full control of the robustness at an unprecedented level of granularity.
Experiments show that this interoperability comes at a nearly negligi-
ble cost: on average, a test algorithm implemented on our hybrid kernel
is just 8% slower than the same algorithm implemented on a standard
floating point version of the same kernel while providing the possibility
to be fully robust if necessary.

1 Introduction

Geometry processing involves a switch from the mathematical to the compu-
tational world where many developers simply approximate real numbers with
floating point (FP) representations [1]. Most of the times this approach is accu-
rate enough and efficient, and that is why numerous libraries and algorithms to
perform geometric computations use FP numbers [2,3] to represent coordinates,
distances, angles, etc. Unfortunately, FP operations are subject to roundoff error,
and in some cases the result of a computation may become useless due to such
a mismatch. Implementations that neglect this observation can be subject to
failures, infinite loops, and crashes.

1.1 Exact and Multi-precision Arithmetic

To ensure that all the computations lead to exact results one may rely on exact or
multi-precision arithmetic libraries [4–6]. This solution is extremely robust, and
in most cases the available memory is the only limitation. Unfortunately, working
c© Springer-Verlag GmbH Germany 2017

M.L. Gavrilova and C.J. Kenneth Tan (Eds.): Trans. on Comput. Sci. XXIX, LNCS 10220, pp. 86–96, 2017.

DOI: 10.1007/978-3-662-54563-8 5

ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel 87

with exact representations has a significant impact on the performances, and a
program might become even twenty times slower than its corresponding FP-
based version [7]. This makes this solution unpractical in many cases, especially
when large datasets must be elaborated with guarantees.

1.2 Arithmetic Filtering

The correctness of some algorithms is solely based on the exact evaluation of a
specific predicate that can assume one of a small set of values (e.g. true/false,
1/0/−1, ...). If the arithmetic expression that leads to the predicate’s value is
subject to roundoff, one can rely on the so-called “filtered arithmetic” approach.
Roughly speaking, the roundoff’s potential magnitude is assessed, and only if
it is sufficient to make the final result switch from one value to another (e.g.
from true to false or vice versa), then the predicate is evaluated using a more
accurate though slower approach. In several practical cases, FP numbers are
accurate enough for the vast majority of the predicate evaluations, thus this
approach combines the efficiency of FP computations with the robustness of
exact arithmetic. A noticeable example of this technique is due to Shewchuk [2],
who introduced fast and robust predicates to evaluate the incircle test needed
to compute Delaunay triangulations. As a rule of thumb, the filtered arithmetic
approach is appropriate when all the predicate expressions are direct functions
of input values.

1.3 Lazy Evaluation

For some algorithms, however, a predicate might be necessarily a function of
some intermediate values. If these values incorporate a roundoff error, the pred-
icates’s evaluation cannot be guaranteed to be correct even when using filtered
arithmetic. To cope with these cases one can still revert to exact arithmetic and
compute intermediate values without error but, once again, this easily leads to
unacceptably slow implementations. Alternatively, instead of representing inter-
mediate values explicitly, one may encode the symbolic expressions to be used
for their evaluation. In other words, an intermediate value can be encoded within
a Direct Acyclic Graph (DAG) representing a specific function of input values.
When a predicate must be evaluated, such an expression is combined with the
expression of the predicate itself, and filtered arithmetic can be used to exactly
derive the result. Due to this inherent procrastination, this approach is usually
called “lazy evaluation”. Lazy evaluation is particularly useful to compute mesh
booleans, where new points representing the intersection of edges and triangles
are used to derive the result [8]. This approach is typically combined with filtered
arithmetic: a DAG representing the number’s exact history is coupled with an
interval containing its exact value and an FP number within that interval. When
a number is used in a predicate expression, its interval is exploited to perform
the filtering: if the test passes, the predicate is evaluated using FP arithmetic,
otherwise the evaluation is done based on the DAGs. The main drawback of
this approach is due to the need of the DAGS: these structures, indeed, have

88 M. Attene

a relatively large memory footprint and their update and management have an
inevitable impact on the performances.

1.4 Mixed Techniques

One of the most diffused forms of exact arithmetic uses rational numbers with
arbitrarily large numerator and denominator [5]. Since this solution is only suit-
able to model problems where no irrational numbers are involved, in some exist-
ing libraries [6,7] values derived from irrational operations (e.g. square root) are
stored in symbolic form as done in the lazy evaluation approach. Clearly, the
evaluation of expressions that involve such “irrational” numbers might become
slower. In the scope of this paper, however, we shall not deal with irrational
expressions.

1.5 CGAL

The Computational Geometry Algorithm Library (CGAL) is one of the few
existing tools which includes all the aforementioned techniques to deal with
robustness, and can be considered as a representative of the state of the art in
robust geometric computing. In particular, CGAL provides a special templated
number type called Lazy exact nt<NT> to implement the aforementioned lazy
evaluation on a basic number type NT [9]. In essence, approximated values are
used instead of NT as long as possible, but the computational history is main-
tained within the DAG and evaluated if needed. Hence, when NT is a slow exact
type this approach can significantly speed up the computation.

For more comprehensive overviews of geometric robustness and related issues,
see Yap [10] and Goldberg [11].

1.6 Key Contribution

Existing libraries allow developers to choose among various number types and
computational kernels. For example, if the program needs guarantees about the
relative position of projected points, exact coordinates must be used; if the pro-
gram must just visualize a mesh, FP numbers are sufficient. But what if the pro-
gram needs to do both? Typically, the number type is chosen once for the entire
program based on the maximum precision required. If such a maximum precision
is required only by a small percentage of the operations, most of the program is
unnecessarily slowed down and memory-intensive, even if lazily-evaluated types
are used.

Conversely, in ImatiSTL the developer may freely switch from one kernel
to another while being guaranteed that all the numbers remain compatible and
interoperable with each other, with significant advantages in terms of both speed
and memory consumption as shown in Sect. 4. This result could be achieved
thanks to the definition and implementation of a novel hybrid number type,
whose advantages with respect to the state of the art (i.e. CGAL) are described
in the following Sect. 2.

ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel 89

2 Hybrid Number Type

CGAL’s lazy evaluation and filtered arithmetic must determine an interval con-
taining the exact result of an expression [9]. However, computing such an interval
has its own cost, and this makes the approach really beneficial only when (1)
there is an actual need of exact evaluations and (2) such a need is rare with
respect to the total amount of the expressions to be evaluated. Based on these
observations, a developer must determine whether his/her algorithm is worth to
be implemented on a lazily-evaluated number type and, if so, the program must
be configured accordingly. To do this, existing libraries such as CGAL require
specifying a number type and a computational kernel, and dynamically chang-
ing these settings while the program executes is quite unpractical (i.e. all the
numbers involved should be explicitly converted to the new type, which has an
impact on both development effort and program efficiency). Therefore, though
a developer might know exactly where the program requires exactness, both in
terms of computational flow and in terms of input data, such an information can
be hardly exploited. To overcome this limitation, in the remainder we define a
novel polymorphic number type that has virtually the same performances of a
standard double precision floating point, but can encode either an actual floating
point or an exact number. Differently from CGAL’s Lazy exact nt, the user can
explicitly control the need of exactness when operating with our polymorphic
numbers: this makes it possible to avoid unnecessary interval computations and
checks to speed up the program when approximated results are known to be
enough.

2.1 Terminology and Definition

In the remainder, a standard IEEE double precision floating point number is
shortly called an “FP number”. An FP number has an encoding and a value: the
former is just a fixed-sized sequence of bits, while the latter is an element of the
set of rational numbers Q. According to IEEE 754 standard specifications, any
encoding corresponds to a unique value, though the vice-versa is not necessarily
true (e.g. the encoding for the value 0.25 changes if the number is represented
as 25 ∗ 10−2 or as 250 ∗ 10−3). FP numbers can encode a finite subset of the
rational numbers. However, since rational numbers form an enumerable set, it is
reasonable to look for a more comprehensive encoding. This observation led to
the development of libraries such as GMP and LEDA, where any rational value
is encoded as a pair of arbitrarily large integers representing the numerator and
denominator.

Herewith a new number type called PM Rational is introduced whose encod-
ing is inherently polymorphic. Any rational number can be represented as a
PM Rational (up to memory limits), but its encoding might be either an FP
number or a pair numerator/denominator. Independently of the actual encoding
of the operands, arithmetic operations may be either exact or subject to roundoff,
and the developer has the possibility to control this level of precision at any time.
Essentially, the user acts on a global parameter that determines the precision

90 M. Attene

level of the PM Rational operations. Three levels are available: approximated,
filtered, precise. When the approximated mode is active, all the expressions
on PM Rationals are computed just as if they were FP numbers with virtu-
ally no performance degradation with respect to native IEEE double precision
arithmetic: in this mode predicates might assume a wrong value. In filtered
mode, PM Rationals still behave as FP numbers, but predicates are evaluated
using arithmetic filtering: in this mode predicates are guaranteed to assume the
correct value, but expressions that produce other PM Rationals might still lead
to approximated evaluations: in other words, intermediate PM Rational values
are not guaranteed to be exact. Finally, in precise mode, all the predicates and
rational expressions are guaranteed to be exactly evaluated.

Thanks to this paradigm, a program can load a geometric model such as a
polygonal mesh and encode the vertex coordinates as PM Rationals. This same
mesh can be used for different processes with different precision levels without the
need to perform explicit type conversions. For example, an approximated mode
can be employed to render the mesh using backface culling. For this operation,
indeed, it is reasonable to accept wrong orientations for triangles whose normal
vector is nearly orthogonal to the line of sight. Then, the program can switch to
filtered mode to perform point in polyhedron queries with a guaranteed correct
result. A final switch to precise mode allows to exactly calculate and represent
the intersection of the mesh with another model.

2.2 Implementation

Internally, the PM Rational type has been implemented in C++ as a class con-
taining one 64bit-sized generic data member, and one boolean type member
that specifies what the data member encodes. In particular, the data member
can encode either a standard IEEE double precision number (type = double) or
a pointer to a pair numerator/denominator (type = rational). In its turn, a pair
numerator/denominator is encoded as an mpq class defined within the C++
interface to the GMP library. Note that the type of a PM Rational number is
independent of the global precision mode that the program employs at any time.
The latter is encoded as a public static member called Kernel mode that deter-
mines the current precision level to be used in the PM Rational computations.
PM Rational :: Kernel mode is essentially a global variable that the user can
change at any time.

All the arithmetic and comparison operators are defined on PM Rationals.
For arithmetic operators (i.e. +, −, ∗, /, +=, −=, ∗=, /=), the current
Kernel mode is used to produce the result, independently of the type of the
operands. Hence, the operation A + B returns a PM Rational whose type is
double if the current Kernel mode is either approximated or filtered, whereas
the resulting type is rational if the mode is precise. If necessary, the operands
are transparently converted to the type of the result before calling the corre-
sponding native operator. Conversely, for comparison operators (i.e. ==, <, >,
<=, >=) the type of the operands is used to determine the result. If both the
operands have the same type the native comparison operator for such a type is

ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel 91

used. If they have different type, the operand having a double type is converted
to rational and the native comparison for rationals is used.

3 ImatiSTL

A mesh processing library called ImatiSTL has been implemented to exploit the
PM Rational numbers. This library provides an API whose functions can be
classified as follows:

– Always exact - the return value (or the processing result) is guaranteed to be
reliable in any kernel mode. These functions include, e.g., coordinate compar-
ison, vector inversion, operations on the connectivity graph.

– Exact if kernel mode is filtered - the return value (or the processing result)
is guaranteed to be reliable only if kernel mode is at least set to filtered.
Functions of this type normally involve orientation predicates (e.g. Delaunay
triangulation of a 2D point set).

– Exact if kernel mode is precise - the return value (or the processing result)
is guaranteed to be reliable only if kernel mode is set to precise. Functions
of this type might involve intermediate values that influence the flow of the
computation (e.g. relative position of projected points, intersections).

– Always approximated - the result of the function (or one of its intermediate
values) does not necessarily belong to the set of rational numbers. Functions
of this type normally involve Euclidean distances, angles, or other irrational
quantities. Note that squared distances are implemented within the aforemen-
tioned class Exact if kernel mode is precise.

A set of geometric predicates has been implemented in ImatiSTL to exploit
the inherent type polymorphism provided by PM Rational coordinates. Any such
predicate is a friend function of PM Rational and proceeds to an appropriate
computation depending both on the current Kernel mode and on the type of
the operands. Friendship is required because the predicates need to access the
type member which is not part of the public interface. For example, the typical
2D orientation predicate is implemented as in Algorithm1:

Note that all of this is transparent to the developer who is only required to
change the kernel mode when necessary.

4 Results and Discussion

To test the actual behavior of the hybrid kernel, three different versions of the
same algorithm have been implemented. The test algorithm creates a tetrahe-
dron (Fig. 1(a)), performs five steps of Loop subdivision on it [12] (Fig. 1(b)),
creates a copy of the so-subdivided tetrahedron and shifts it along the pos-
itive X axis (Fig. 1(c)), and calculates the outer hull of the resulting pair of
intersecting models [8] (Fig. 1(d)). In the approximated version, the test algo-
rithm uses an implementation of ImatiSTL where traditional double precision

92 M. Attene

Algorithm 1 . Implementation of the planar orientation predicate. On lines
11–13 Kernel mode is filtered but at least one operand is rational.
Require: Three 2D points represented as pairs of PM Rationals P = (px, py), Q =

(qx, qy), R = (rx, ry)
Ensure: CCW, ALIGNED, CW, depending on the relative orientation of R wrt P

and Q
1: PM Rational O; // Temporary value to determine the predicate’s output
2: if Kernel mode is approximated then
3: O = ((px − rx) ∗ (qy − ry) − (py − ry) ∗ (qx − rx))
4: else
5: if all the operands are of type double then
6: Compute O using filtered arithmetic as done in [2]
7: else
8: if Kernel mode is precise then
9: O = ((px − rx) ∗ (qy − ry) − (py − ry) ∗ (qx − rx))

10: else
11: Temporarily switch to precise Kernel mode
12: O = ((px − rx) ∗ (qy − ry) − (py − ry) ∗ (qx − rx))
13: Swicth back to filtered Kernel mode
14: end if
15: end if
16: end if
17: if O>0 then
18: return CCW
19: else
20: if O==0 then
21: return ALIGNED
22: else
23: return CW
24: end if
25: end if

numbers are used to represent the coordinates. Similarly, in the exact version
CGAL :: Lazy exact nt < CGAL :: Gmpq > was used to represent the coor-
dinates. In the hybrid version, PM Rational was used instead. The following
three indicators were measured: number of source code lines used to implement
the test program (ImatiSTL library not included in the count); elapsed time;
memory footprint.

Not surprisingly, the last phase of the algorithm fails when using doubles:
the outer hull computation, indeed, relies on the relative position of intersection
points [13]. Hence, the time and memory evaluations are split in two parts,
one regarding the algorithm without the outer hull computation, and one that
includes this last phase. Quantitative results of this experiment are summarized
in Table 1.

Table 1 reveals that the coding effort required to fully exploit the potential of
the hybrid kernel is extremely limited. Indeed, with respect to the approximated
version, the developer is just required to add an instruction at the beginning

ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel 93

Fig. 1. The four phases of our test algorithm. An initial tetrahedron (a) is refined
through five Loop subdivision steps (b). The resulting solid is duplicated, and one
of the two copies is shifted along the X axis (c). The outer hull of the resulting two
intersecting solids is computed (d).

Table 1. Quantitative comparison of three versions of the same algorithm showing the
advantages of the hybrid approach proposed.

Approximated Exact Hybrid

Num. code lines 2695 2701 2697

Time (no outer hull) 15ms 81 ms 16 ms

Time (with outer hull) n.a 2208 ms 413 ms

Memory (no outer hull) 9.2 MB 22.1 MB 9.9 MB

Memory (with outer hull) n.a 58.4 MB 47.1 MB

(PM Rational::Kernel mode = approximated) and one before the outer hull
computation routine (PM Rational::Kernel mode = precise). The additional
code lines in the exact version of the test program are the various typedefs and
kernel initializations needed by CGAL. Also, with respect to the approximated
version, the increase in the elapsed time due to the use of PM Rationals is
negligible, whereas the need to check whether the approximated numbers would
lead to unreliable results makes CGAL quite slower. Also, since the underlying
type of PM Rationals is double for the vast majority of the coordinates (i.e. all
the vertices but those that represent intersection points), the memory footprint
is not affected too much. Conversely, the use of CGAL’s interval arithmetic has
a much more significant impact in this sense due to the use of DAGs for all the
points.

Similar experiments on more than a hundred mesh models demonstrate that,
when there is no need to perform exact computations, using PM Rationals
instead of standard doubles slows the computation down of a factor of 8%
on average. As far as the memory footprint is concerned, using PM Rationals
requires 12% more resources on average: this is mostly due to a typical behavior
of compilers and of operating systems which allocate at least one byte for each
class member. Thus, even if in principle 65 bits would be sufficient to encode a
PM Rational whose underlying type is double, 72 bits are used by the operating
system due to such an alignment.

94 M. Attene

Fig. 2. Time necessary to perform a single Loop subdivision step. CGAL-based imple-
mentation crashes when the input exceeds 200 K vertices. This threshold is slightly
higher for the GMPQ-based implementation.

Fig. 3. Memory required to perform a single Loop subdivision step. CGAL-based imple-
mentation crashes when the input exceeds 200 K vertices. This threshold is slightly
higher for the GMPQ-based implementation.

Analogous results were achieved during a further experiment where the pro-
gram had to just perform a single Loop subdivision step on an input mesh made
of N vertices. For this experiment, the same program was implemented using
four different types to represent the coordinates: standard IEEE double precision
FP numbers, PM Rational, GMPQ, CGAL::Lazy exact nt<CGAL::Gmpq>.
Figures 2 and 3 depict a comparison of the time and memory performances
respectively as the number of input vertices increases. Note that the two versions
based on GMPQ and CGAL fail much earlier as the input size grows.

4.1 Limitation

Non-rational numbers are not representable as PM Rationals. Competing
libraries such as, e.g., LEDA or CGAL, provide tools to represent a subset of
these numbers: for example, algebraic numbers are somewhat useful in geomet-
ric computation and can be represented “symbolically” within LEDA. Unfortu-
nately, this limitation for PM Rationals is intrinsic and apparently can be solved

ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel 95

only through an integration with a symbolic calculus module which would proba-
bly spoil the gain in performances. Hence, this is an open problem that represents
an interesting direction for future research.

5 Summary and Conclusions

In this paper, the need for robust arithmetic in mesh processing algorithms has
been re-casted to a novel paradigm where the user has a full control of the preci-
sion, in any part of the program and for any portion of the input dataset. Exper-
iments demonstrated that this approach is more efficient than state-of-the-art
solutions, in terms of both memory consumption and speed of the computation.

Clearly, the developer must know where and how to deal with robustness to
fully exploit the potential of this new approach, but a specific algorithmic design
is necessary in any case to guarantee robustness even with existing libraries (e.g.
CGAL). Further research is still necessary to make development as easy as for
traditional floating point arithmetic. A naive approach is to use the precise ker-
nel for PM Rationals everywhere, but this would make the program too slow in
general. As an alternative, the developer may use as much precision as neces-
sary just to make sure that ImatiSTL API functions return a correct result. In
principle, the switch to the necessary precision level can be made automatically,
but this makes sense only as long as the user is forced to use the provided API
functions only. Unfortunately, preventing the user to insert custom PM Rational
operations would be probably a too strict constraint for a flexible development.
A really effective solution to the problem would probably require an automated
analysis of the source code.

Acknowledgements. This work has been partly supported by the international joint
project on Mesh Repairing for 3D Printing Applications funded by Software Architects
Inc (WA, USA). Thanks are due to the SMG members at IMATI for helpful discussions.

References

1. Shewchuk, J.R.: Lecture notes on geometric robustness. University of California at
Berkeley (2013)

2. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. Discr. Comput. Geometry 18, 305–363 (1997)

3. Visual Computing Lab: Vcglib: visualization and computer graphics library.
http://vcg.sourceforge.net

4. RWTH: Openmesh: visualization and computer graphics library. http://www.
openmesh.org/

5. Granlund, T.: The GNU multiple precision arithmetic library. TMG Datakonsult,
Boston, MA, USA (1996)

6. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric
and geometric computation. In: Proceedings of the Fifteenth Annual Symposium
on Computational Geometry, pp. 351–359. ACM (1999)

http://vcg.sourceforge.net
http://www.openmesh.org/
http://www.openmesh.org/

96 M. Attene

7. Mehlhorn, K., Naher, S.: Leda: a platform for combinatorial and geometric com-
puting. Commun. ACM 38, 96–103 (1995)

8. Attene, M.: Direct repair of self-intersecting meshes. Graph. Models 76, 658–668
(2014)

9. Pion, S., Fabri, A.: A generic lazy evaluation scheme for exact geometric compu-
tations. Sci. Comput. Program. 76, 307–323 (2011)

10. Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, 2nd edn. CRC Press, LLC,
Boca Raton (2004)

11. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23, 5–48 (1991)

12. Loop, C.: Smooth subdivision surfaces based on triangles. Department of Mathe-
matics, The University of Utah, Master Thesis (1987)

13. Campen, M., Attene, M., Kobbelt, L.: A practical guide to polygon mesh repairing.
In: EUROGRAPHICS Tutorials, Eurographics, May 2012

Processing Large Geometric Datasets
in Distributed Environments

Daniela Cabiddu(B) and Marco Attene

CNR-IMATI, Genova, Italy
{daniela.cabiddu,marco.attene}@ge.imati.cnr.it

Abstract. We describe an innovative Web-based platform to remotely
perform complex geometry processing on large triangle meshes. A graph-
ical user interface allows combining available algorithms to build complex
pipelines that may also include conditional tasks and loops. The execu-
tion is managed by a central engine that delegates the computation to
a distributed network of servers and handles the data transmission. The
overall amount of data that is flowed through the net is kept within
reasonable bounds thanks to an innovative mesh transfer protocol. A
novel distributed divide-and-conquer approach enables parallel process-
ing by partitioning the dataset into subparts to be delivered and handled
by dedicated servers. Our approach can be used to process an arbitrar-
ily large mesh represented either as a single large file or as a collection
of files possibly stored on geographically scattered servers. To prove its
effectiveness, we exploited our platform to implement a distributed sim-
plification algorithm which exhibits a significant flexibility, scalability
and speed.

Keywords: Distributed environments · Parallel computation · Geome-
try processing · Large meshes · Out-of-core

1 Introduction

In life science areas, several applications exist that allow remotely processing
input data [38,40]. Such applications exploit the computational power of geo-
graphically scattered servers that communicate through traditional Internet con-
nection. Each server exposes one or more remote services that can be invoked
sequentially or in parallel to process a dataset received as an input.

This approach is scarcely considered in geometry processing literature where
input datasets are easily made of millions of geometric elements and files encod-
ing them may be larger than hundreds of gigabytes. Transferring these extremely
large datasets on a distributed environment would slow the process down too
much [6]. For this reason, geometry processing is usually performed by exploit-
ing stand-alone tools and applications locally installed. When the main memory
available on the local machine is not sufficient to load the input, divide and
conquer approaches are used to subdivide the input into subparts, each of them

c© Springer-Verlag GmbH Germany 2017

M.L. Gavrilova and C.J. Kenneth Tan (Eds.): Trans. on Comput. Sci. XXIX, LNCS 10220, pp. 97–120, 2017.

DOI: 10.1007/978-3-662-54563-8 6

98 D. Cabiddu and M. Attene

sufficiently small to be processed [35]. Sometimes, multi-core technologies (e.g.
GPUs) are exploited to process different subparts of the input simultaneously.
Nevertheless, the memory shared among the concurrent processes imposes a
sequentialization of I/O operations in any case.

Herewith, a Web-based platform is described to remotely run geometry
processing workflows. The computational power of geographically distributed
servers (i.e. processing nodes) is exploited to perform the actual computa-
tion. Our contribution is twofold: first, an optimized mesh transfer protocol
is described that reduces the amount of data sent through the network and
avoids possible bottlenecks; second, a divide-and-conquer approach is proposed
that enables the possibility to run distributed parallel algorithms and guarantees
efficiency. As a proof–of–concept, an innovative distributed mesh simplification
algorithm is described that exploits our divide-and-conquer approach to distrib-
ute the computational load across multiple servers.

For the sake of simplicity, in the first part of the paper we assume that the
input is stored as a single file on the disk of one of the servers. However, specific
applications [4,17] acquire data from the real world and generate 3D models
as collections of files, each representing a subpart of the whole. When such a
collection is too large, it can be distributed on multiple machines. Although
these datasets are natively partitioned, such a partition may not be compatible
with the hardware limitations of the available processing nodes. In these cases,
an input re-partitioning is required. In the second part of the paper (Sect. 6) we
propose a novel approach to enable the possibility to run distributed parallel
algorithms even on these extremely large data sets.

Summarizing, we propose an innovative approach to process arbitrary large
geometric datasets. Thanks to our optimized transfer protocol and our divide-
and-conquer method, well-known geometry processing workflows can be run effi-
ciently on large datasets. To test our methods, a set of in-house Web services
have been deployed on our servers and exploited. Each Web service is able to
run a different geometric algorithm. Then, a former experimental phase has been
focus on evaluate our mesh transfer protocol, while a second experimental phase
has been focus on evaluating the distributed divide-and-conquer approach. Both
experiments have been run a an heterogeneous dataset composed of meshes com-
ing from public repositories [1,3] and from different research projects on process-
ing large geometric datasets [2,4]. Both the computational time and the quality
of the output meshes have been considered as a matter of comparison with the
existing approaches. Our results demonstrate that distributed technologies can
be actually exploited to efficiently run geometry processing even on extremely
large datasets.

2 Related Work

Polygon meshes are the standard de-facto representation for 3D objects. A poly-
gon mesh is a collection of polygons or “faces”, that form the surface of the
object. To describe a mesh, both geometric and topological information are

Processing Large Geometric Datasets in Distributed Environments 99

required. The former includes the position of all the vertices, while the latter
describes which vertices are connected to form edges and faces (i.e. triangles).
While processing a mesh, either the geometry or the topology (or both) may be
involved. Due to this complex structure, distributively processing meshes is a
non-trivial task.

In the reminder, we focus on triangle meshes. This specific representation is
used to describe objects coming from diverse industrial and research areas (e.g.
design, geology, archaeology, medicine and entertainment).

2.1 Mesh Processing

Traditionally, mesh processing is performed by exploiting existing tools and
applications that need to be installed on the local machine. Among them, Mesh-
Lab [11] and OpenFlipper [29] allow editing a mesh, saving the sequential list of
executed operations and locally re-executing the workflow from their user inter-
faces. Pipelines can be shared in order to be rerun on different machines where
the stand-alone applications need to be installed.

Campen and colleagues published WebBSP [8], an online service which allows
to remotely run a few specific geometric operations. The user is required to select
a single geometric algorithm from a set of available operations and upload an
input mesh. Then, the algorithm is actually run on the server and a link to the
output is sent to the user. Unfortunately, only a single operation can be run at
each call and the service is accessible only from the WebBSP interface.

Geometric Web services were previously considered by Pitikakis [31] with the
objective of defining semantic requirements to guarantee their interoperability.
Though in Pitikakis’s work Web services are stacked into hardcoded sequences,
users are not allowed to dynamically construct workflows, and possible bottle-
necks due to the transmission of large models are not dealt with.

Distributed parallelism has been exploited in [28,30] to provide both analy-
sis and visualization tools. The possibility to exploit distributed parallelism for
processing has been proposed in [32] but, due to the use of a distributed shared
memory, the approach proposed is appropriate only on high-end clusters where
local nodes are interconnected with particularly fast protocols.

2.2 Processing Large Polygon Meshes

Out-of-core approaches assume that the input does not need to be entirely loaded
into main memory, and the computation operates on the loaded portion at each
time [14,23,24,41]. Similarly, the external memory data structure proposed in
[10] provides support for generic processing under the constraint of limited core
memory. These methods are very elegant, but pre-processing operations required
to pre-sort the input and generate the data structures require a significant time.
Also, they are based on the idea of repeatedly loading parts of the input; thus,
they are not suitable for distributed environments.

100 D. Cabiddu and M. Attene

To speed up the computation, parallel approaches are often exploited
[5,15,18,36]. Typically, a “master” processor partitions the input mesh and dis-
tributes the portions across different “slave” processors that perform the partial
computations simultaneously. When all the portions are ready, the master merges
the results together. The many slave processors available in modern GPU-based
architectures are exploited in [34], while multi-core CPUs are exploited in [37].
Both methods are based on a memory shared among parallel processes to allow
efficient communication. Distributed architectures are not provided with shared
memory and, thus, different approaches are required to allow parallel processes
to efficiently communicate. In [32], a hybrid architecture is described, where
both shared and distributed memory are exploited. Parallel algorithms involv-
ing significant communication among processes can be implemented, but the
communication costs will eventually limit the scaling.

Other effective out-of-core partitioning techniques are described in [25,26].
These methods typically require their input to come as a so-called “triangle
soup”, where the vertex coordinates are explicitly encoded for each single tri-
angle. Since this representation is highly redundant, the most diffused formats
(e.g. OFF, PLY, OBJ, ...) use a form of indexing, where vertex coordinates are
encoded only once and each triangle refer to them through indexes. When the
input is represented using an indexed format, it must be dereferenced using out-
of-core techniques [9], but this additional step is time-consuming and requires
significant storage resources. As an exception, the method proposed in [33] is
able to work with indexed representations by relying on memory-mapped I/O
managed by the operating system; however, if the face set is described with-
out locality in the file, the same information is repeatedly read from disk and
thrashing is likely to occur.

When the partial computations are comprehensively small enough to fit in
memory, incore methods are exploited to merge the final result. To guarantee
an exact contact among adjacent regions, slave processors are often required to
keep the submesh boundary unchanged [36]. If necessary and if the final output
is small enough, the quality of the generated mesh is enhanced by exploiting tra-
ditional incore algorithms in a final post-processing step. Differently, the external
memory data structure [10] allows keeping the boundary consistent at each itera-
tion. Depending on the specific type of geometric algorithm, different approaches
may be exploited to guarantee boundary coherence. Vertex clustering is just an
example used in mesh simplification [25]. Such a method has a cost in terms of
output quality, when compared with more “adaptive” methods: the clustering
distributes vertices uniformly on the surface, regardless the local morphology,
hence tiny features are not guaranteed to be preserved.

3 The Web-Based Platform

The framework architecture is organized in three layers [21]: a graphical user
interface that allows building new workflows from scratch, and uploading and
invoking existing workflows; a set of Web services that wrap geometry processing

Processing Large Geometric Datasets in Distributed Environments 101

tools; a workflow engine that handles the runtime execution by orchestrating the
available Web services.

The Graphical User Interface. The graphical interface allows building geometric
workflows and remotely running them on a selected input model. While building
a new workflow, the user is asked to provide the list of geometry processing
algorithms that constitute the pipeline, each to be selected from a list of available
ones. Also, conditional tasks or loops can be defined. Once the whole procedure
is ready, the user can turn it into an actual experiment by uploading an input
mesh. If no input is associated, the workflow can be stored on the system as an
“abstract” procedure that can be selected later for execution.

The Web Services. A Web service can be considered as a black box able to
perform a specific operation on the mesh without the need of user interaction.
A single server (i.e. a provider) can expose a plurality of Web services, each
implementing a specific algorithm and identified by its own address. The sys-
tem supports the invocation of two types of Web services, namely “atomic” and
“boolean”. An atomic service runs a simple operation on a mesh using possi-
ble input parameters, and produces another mesh as an output. Conversely, a
boolean service just analyzes the mesh and returns a true/false value. Boolean
Web services are used to support the execution of conditional tasks and loops.

Since input models may be stored on remote servers, we require that Web
services are designed to receive the address of the input mesh and to download
it locally; also, after the execution of the algorithm, the output must be made
accessible through another address to be returned to the calling service.

The Workflow Engine. The workflow engine is the core of the system and orches-
trates the invocation of the various algorithms involved. From the user interface
it receives the specification of a geometry processing workflow and the address of
an input mesh. The engine analyses the workflow, locates the most appropriate
servers hosting the involved Web services, and sequentially invokes the various
algorithms. For each operation, such a list of registered Web services is queried
to retrieve which ones can perform the task, and the best performing one is
selected [13] based on appropriate metadata to be provided upon registration
of the service on our system. When the selected Web service is triggered for
execution, it receives from the engine the address of the input mesh and possible
parameters, runs its task and returns the address of the generated output to
the engine. This latter information is sent to the next involved Web service as
an input mesh or returned to the user interface when the workflow execution
terminates.

4 Mesh Transfer Protocol

Not surprisingly, we have observed that the transfer of large-size meshes from a
server to another according to the aforementioned protocol constitutes a bottle-
neck in the workflow execution, in particular when slow connections are involved.

102 D. Cabiddu and M. Attene

Fig. 1. Mesh transfer protocol example. The workflow is built by combining three
operations. Thus, three servers are involved into the workflow execution. Each of them
is able to download (D) meshes and update (U) the previously downloaded mesh by
applying the corrections. (a) The address of the input mesh is broadcasted to all the
involved servers that proceed with the download. (b) The first operation is run by
the appropriate service that produces the corrections and returns the corresponding
address to the engine. Such an address is shared in parallel to the successive servers,
so that they can download the file and correct the prediction. (c) The second service
runs the task and makes the correction available to allow the third server to update
its local copy. (d) The last service is invoked to run the algorithm. The address of its
output mesh is returned so that the user can directly download it.

Mesh compression techniques can be used to reduce the input size, but they
do not solve the intrinsic problem [27]. In order to improve the transfer speed
and thus efficiently support the processing of large meshes, we designed a mesh
transfer protocol inspired on the prediction/correction metaphor used in data
compression [39].

We have observed that there are numerous mesh processing algorithms that
simply transform an input mesh into an output by computing and applying
geometrical modifications. In all these cases it is possible to predict the result
by assuming that it will be identical to the input, and it is reasonable to expect
that the corrections to be transmitted can be more compactly encoded than the
explicit result of the process.

The aforementioned observation can be exploited in our setting as shown in
Fig. 1, where an example of execution of a simple workflow composed by three tasks
is shown. Through the user interface, the user selects/sends a workflow and pos-
sibly the address of an input mesh to the workflow engine. The engine reads the
workflow, searches for the available Web services, and sends in parallel to each of

Processing Large Geometric Datasets in Distributed Environments 103

them the address of the input mesh. Each server is triggered to download the input
model and save it locally. At the first step of the experiment, the workflow engine
triggers the suitable Web service that runs the algorithm, produces the result, and
locally stores the output mesh and the correction file (both compressed). Their
addresses are returned to the workflow engine that forwards them to all the subse-
quent servers involved in the workflow. Each server downloads the correction and
updates the local copy of the model according to it. Then, the workflow engine trig-
gers the next service for which an up-to-date copy of the mesh is readily available
on its local server. At the end of the workflow execution, the engine receives the
address of the output produced by the last invoked Web service and returns it to
the user interface, so that the user can download it.

In this scenario, the address of the input mesh is broadcasted to all the
involved Web service once and Web services are able to download such a mesh
simultaneously. Then, only correction files (which are sensibly smaller than the
input mesh) travel through the network to allow each server to update its local
copy of the mesh. In any case, each Web service produces both the correction and
the actual result. When the correction is actually smaller than the results, this
procedure produces significant benefits. Otherwise, the subsequent Web services
can directly download the output instead of the corrections and no degradation
is introduced. Note that lossless arithmetic coding is exploited by each Web
service to compress either the output mesh or the correction file before making
them travel the network.

5 Parallel Processing

Although our system theoretically allows processing any input mesh, remote
servers have their own limitations and may not satisfy specific hardware require-
ments (eg. insufficient storage space, RAM, or computational performance) nec-
essary to efficiently process large data. As a consequence, the remote server that
is invoked may require a very long time to finish its task or, even worse, the
process may be interrupted because of the insufficient main memory. In order
to avoid these situations, the workflow engine is responsible for partitioning the
input mesh into smaller subparts that can be elaborated by available processing
services. When all the submeshes have been processed, they need to be merged
to generate the final output. Both partitioning and merging operations are per-
formed through out-of-core approaches. To allow final merging, an exact contact
among adjacent regions must be guaranteed. Contrary to previous methods [36],
our approach allows boundary modifications, while keeping the boundary con-
sistent step by step.

For the sake of simplicity, our exposition assumes that all the servers have
an equally-sized memory and comparable speed. Also, in the reminder of this
section we describe the case where the input mesh is stored as a single input
file. The treatment of pre-partitioned meshes whose parts are stored on different
servers is described in Sect. 6.

104 D. Cabiddu and M. Attene

5.1 Mesh Partitioning

We assume that the input mesh is encoded as an indexed mesh, since the most
common file formats are based on this representation. Our mesh partitioning
approach is mainly composed by the following sequential steps:

1. Pre-Processing: an initial binary space partition (BSP) is computed based
on a representative vertex downsample;

2. Vertex and Triangle Classification: each vertex is assigned to the cell of
the BSP where it falls, while each triangle is assigned to a selected BSP cell,
based on the location of its vertices;

3. Generation of independent sets: each independent set includes submeshes
that do not share any vertex, and thus they can be processed simultaneously;

4. Optional post-processing: depending on the specific geometry processing
operation to be run by processing service.

Pre-processing. The mesh bounding box is computed by reading once the
coordinates of all the input vertices. At the same time, a representative vertex
down-sampling is computed and saved into main memory. Starting from the
bounding box, an in-core binary space partition (BSP) is built by iteratively
subdividing the cell with the greatest number of points. The root of the BSP
refers to the whole downsampling. Each cell is split along its largest side. For each
subdivision, each vertex in the parent cell is assigned to one of the two children
according to its spatial location. If the vertex falls exactly on the splitting plane,
it is assigned to the cell having the lowest barycenter in lexicographical order.
The process is stopped when the number of vertices assigned to each BSP cell
is at most equal to a given threshold, based on the number of vertices that each
processing service is able to manage and the ratio between the number of input
vertices and the downsample size.

Vertex and Triangle Classification. First, vertices are read one by one and
assigned based on their spatial location as above. Some technical details are
shown in Fig. 2.

Then, triangles are read one by one from T and assigned depending on their
vertex position as follows:

– If at least two vertices belong to cell CA, the triangle is assigned to cell CA.
In this case, if the third vertex belongs to a different cell CB , a copy of the
third vertex is added to CA.

– If the three vertices belong to three different cells CA, CB , and CC , the triangle
is assigned to the cell having the smallest barycenter in lexicographical order
(let it be CA), and a copy of each vertex belonging to the other two cells is
added to CA.

At the end of the triangle classification, the BSP leaf cells represent a triangle-
based partition of the input mesh geometry.

Processing Large Geometric Datasets in Distributed Environments 105

Fig. 2. Vertex classification. For each BSP cell, a corresponding file is created. Vertices
are read one by one and assigned based on their spatial location. Global indexes are
shown on the left of the original M , while local indexes are on the left of each Vi.
For each vertex in M , both its global index and its coordinates are written on the
corresponding Vi. Vfile stores, for each vertex, the ID of the corresponding BSP cell.
Vfile is exploited during triangle classification to identify where the vertices of each
triangle are located.

Independent Sets. An adjacency graph for the submeshes is defined where
each node represents a BSP cell, and an arc exists between two nodes if their
corresponding BSP cells are “mesh-adjacent”. Two cells are considered to be
mesh-adjacent if their corresponding submeshes share at least one vertex, that
is, at least one triangle is intersected by the splitting plane between the two cells.
Based on this observation, the adjacency graph is built during triangle classifi-
cation and kept updated at each assignment. The problem of grouping together
submeshes that are independent (e.g. no arc exists between the corresponding
nodes) is solved by applying a greedy graph coloring algorithm [22]. Submeshes
that belong to the same independent set can be processed simultaneously. Intu-
itively, the maximum number of nodes included in the same group is limited by
the number of available processing services.

Post-processing. Depending on the specific geometric operation to be per-
formed by processing services, some additional information from submesh’s
neighborhood may be required (e.g. the 1-ring neighborhood of boundary vertices
is necessary to perform Laplacian smoothing). In these cases, a post-processing
step is required to extract, for each submesh, the elements that constitute such a
“support neighborhood”. Such an information is then delivered to the processing
service along with submesh to be processed.

106 D. Cabiddu and M. Attene

5.2 Processing Services

Each processing service receives an input submesh and is asked to return an
output mesh. If required, the submesh’s support neighborhood is also provided.
Processing services can modify both inner and boundary elements, while any
possible support neighborhood must be kept unchanged. When boundary ele-
ments are modified, such modifications must be returned, so that the boundary
of adjacent submeshes can be synchronized.

Besides the output mesh and possible modifications on the boundary, each
processing service also encodes the list of boundary vertices of the output mesh
into an additional file. Such a boundary information is used by the engine to
efficiently merge the processed submeshes within a single model (Sect. 5.3).

Parallel Processing. When the same geometric operation is provided by more
than one processing service, the engine exploits the generated independent sets
to enable parallel processing. Each processing service is required to follow the
rules described above. In the first iteration, each submesh in the current inde-
pendent set is processed. Besides its output submesh, each processing service
produces an additional file describing which modifications have been applied on
the submesh boundary. This information is appended to adjacent submeshes and
used a constraint during the next iterations (Fig. 3).

Fig. 3. Boundary synchronization. As an example, Ma and Mb are two neighbor sub-
meshes. Ma is processed first. During the processing of Ma, all the changes introduced
on the part of its boundary which is shared with Mb are stored in a file, namely Cha

b .
When the turn of Mb comes, its processing service receives Cha

b and constrains Mb’s
boundary to change according to these instructions. Submeshes with the same color
belong to the same independent set and can be processed simultaneously.

5.3 Output Merging

The engine is responsible for merging all the processed submeshes to generate
a single indexed mesh. Mainly, the engine has two issues to deal with. First,
vertices shared among two or more neighbor submeshes have to be identified
and merged into a single point. Second, triplets of indexes representing triangles
have to be rebuilt according to the final output indexing.

Processing Large Geometric Datasets in Distributed Environments 107

Since the final output may be too large to be loaded into main memory,
an out-of-core merging method is proposed. As aforementioned, each processing
service is also required to return the list of boundary vertices of the output mesh.
Such a list is exploited to identify boundary vertices with no need to load the
entire submesh. Algorithm 1 shows a more technical overview of our merging
method.

Algorithm 1. Merge algorithm. n processed submeshes M ′
i are merged into a

single output M ′. For each M ′
i , the list of boundary vertices is stored in BVi,

encoded as a pair 〈l, g〉, where l is the local index and g the global index. Each
BVi is sorted by local index. An in-core map Map is used to store, for each
boundary vertex already written to the final output, a mapping between its
global index and its position in the merged mesh.

1: procedure Merge(M ′
1, ..., M

′
n, BV1, ..., BVn)

2: Create Vf and Tf files
3: Create empty Map
4: Vc ← 0 � number of vertices added to final output
5: for each pair 〈M ′

i , BV ′
i 〉 do

6: 〈l, g〉 ← first pair in BVi

7: Allocate V (M ′
i) � an empty vector

8: for each v ∈ M ′
i do

9: lv ← local index of v
10: if lv �= l then � v is an inner vertex
11: Write v coordinates in Vf

12: Append Vc to V (M ′
i) and increment Vc

13: else � v is a boundary vertex
14: fv ← Map.find(g)
15: if g is not found then � v is not in Vf

16: Write v coordinates in Vf

17: Append Vc to V (M ′
i)

18: Map.add(〈g, Vc〉) and increment Vc

19: else � v is already in Vf

20: V (M ′
i)[lv] ← fv

21: 〈l, g〉 ← next pair in BV ′
i

22: for each t := (v1, v2, v3) ∈ M ′
i do

23: Write V (M ′
i)[v1], V (M ′

i)[v2] and V (M ′
i)[v3] in Tf

24: M ′ ← [header information] +Vf + Tf

25: return M ′

6 Distributed Input Dataset

When the input model is too large to be stored on a single machine, the mesh
is stored as a distributed collection of files representing adjacent sections of the
whole input model [4]. In this case, the engine may not have sufficient storage
resources to download the whole input mesh on its own disk, and the existing

108 D. Cabiddu and M. Attene

sections of the model may not be compatible with the hardware limitations of
the machines which host the processing services. Also, the final output may be
too large to be stored on the engine’s disk. Thus, a different approach is required
to re-partition the input dataset (Fig. 4) and to generate the final output.

In principle, one could exploit the approach described in Sect. 5.1 to partition
input subemeshes which are too large, while the smallest ones can be processed
as they are. Nevertheless, such an approach is inefficient when the number of
small input submeshes is too large (i.e. because submeshes are unnecessarily
small for the sake of processing). We propose an input repartitioning approach
that maximizes the exploitation of available processing services.

Fig. 4. Repartitioning. (a) The overall input mesh M . Each Mi is stored on a different
data node. (b) Repartitioned M . Mr

j s with the same color are included in the same
independent set.

Our reference scenario is shown in Fig. 5. The engine manages the input
re-partitioning and the final output generation by delegating part of the compu-
tation to the data nodes. When the re-partitioning has been completed, a new
collection of adjacent submeshes 〈Mr

1 ,M
r
2 , ...,M

r
m〉 representing the original M

is distributedly stored on the data nodes. The engine is responsible for grouping
the generated submeshes into independent sets and for orchestrating the process-
ing nodes to enable parallel processing. The result of each processing service is
delivered back to the data node that hosts the input. It is worth noticing that, in
this scenario, the engine works as an interface among data nodes and processing
nodes. When a node is triggered for execution, it receives from the engine the
address of the input data to be processed.

6.1 Input Repartitioning

The input repartitioning method is an extension of the the previously described
approach (Sect. 5.1), where part of the computation is delegated to the data
nodes.

Processing Large Geometric Datasets in Distributed Environments 109

Fig. 5. Scenario. The original input mesh is defined as a collection of adjacent indexed
submeshes 〈M1, M2, M3〉. Each Mi is stored on a different data node Di. The engine
manages the input re-partitioning and the final output generation by delegating part of
the computation to the data nodes, while processing nodes are invoked for the actual
computation.

Pre-processing. Each data node is required to compute both the bounding
box and a representative vertex downsampling of its own original submesh. The
engine exploits this information to build a BSP of the whole original mesh M .
The BSP is stored on file to be distributed to the data nodes.

Vertex and Triangle Classification. Each data node assigns vertices and
triangles of its original input portion to the corresponding BSP cell, according
to their spatial location.

Generation of Independent Sets. The engine is responsible for building the
adjacency graph for the generated submeshes and group them into independent
sets. In some cases, a generated submesh may include portions of different orig-
inal portion (e.g. Mr

2 in Fig. 6). While building the independent sets, the engine
is responsible to group together data coming from different data nodes and to
send all of them to the same processing node.

6.2 Processing Services

When the input re-partitioning is completed, the dataset is ready to be processed.
The engine is responsible of managing the actual processing by iteratively dis-
tributing each independent set to the available processing services. Note that
processing services work as described in Sect. 5.2. Additionally, when a submesh
is compose by portions coming from different data nodes (e.g. Mr

2 in Fig. 6), a
processing service is required to load all the portions into its main memory and
merge them together before starting the actual computation. Since submeshes
are guaranteed to be sufficiently small to be completely loaded, the merging

110 D. Cabiddu and M. Attene

Fig. 6. The distributed BSP at the end of the repartitioning of M = 〈M1, M2, M3〉. As
an example, Mr

1 is a subpart of the original M1 (red), while Mr
2 is composed by two

subparts of the original M2 (green) and M3 (yellow) respectively. (Color figure online)

operation is performed by an incore method. Consistently with the previous app-
roach, each processing service generates an output mesh and an additional file
listing its boundary vertices. Also, files storing the list of modifications applied
on the submesh boundary are built and distributed to allow boundary synchro-
nization among neighbor submeshes.

6.3 Distributed Output Merging

When all the submeshes have been processed by the available processing nodes,
they should be merged to generate the final output. When the engine has not
enough storage resources, the disk space of the data nodes is exploited. We
assume that each data node has sufficient free storage resources to collectively
store a final merged output.

Let Di be the data node storing a set of generated submeshes. The outputs of
the processing services responsible for their elaboration is returned to Di, which
is responsible for merging them into a single mesh by exploiting the previously
described approach (Sect. 5.3) to perform the task. The final output is a distrib-
uted collection of processed submeshes, representing adjacent pieces of a huge
mesh M ′, which is a modified version of the original M .

7 Mesh Simplification

The distributed simplification algorithm works as follows. In the first step, the
engine partitions the mesh into a set of submeshes. Depending on the represen-
tation of the input dataset (distributed or not), one of the previously described
algorithms (Sects. 5.1 or 6.1) is selected to perform the task. Generated sub-
meshes are then grouped into independent sets. Each independent set is itera-
tively sent to the processing nodes for simplification. In the first iteration, each
submesh is simplified in all its parts according to the target accuracy. Besides
the simplified mesh, each processing service produces a set of additional files

Processing Large Geometric Datasets in Distributed Environments 111

identifying which vertices on the submesh boundary were removed during simpli-
fication. Specifically, each file identifies vertices shared with a specific neighbor.
When processing adjacent submeshes, this information is used as a constraint for
their own simplification. When all the independent sets are processed, the final
output is generated by joining the simplified submeshes along their boundaries,
which are guaranteed to match exactly. If the engine has sufficient resources, the
algorithm described in Sect. 5.3 is exploited. Otherwise, the approach described
in Sect. 6.3 enables the possibility to distributedly store the final output.

Adaptivity. Each submesh is simplified by a single processing service through
a standard iterative edge-collapse approach based on quadric error metric [19].
Every edge is assigned a “cost” that represents the geometric error introduced
should it be collapsed. On each iteration, the lowest-cost edge is actually col-
lapsed, and the costs of neighboring edges are updated. In order to preserve the
appearance of the original shape, the simplification algorithm applied by each
service stops when a maximum error maxE is reached. This approach provides
an adaptively optimal result [7]. For each vertex, a quadric matrix is calculated
without the need of any support neghborhood: if the vertex is on the submesh
boundary, a partial quadric for boundaries [20] is calculated. To preserve the
input topology, we constrain boundary vertices which are shared by more than
two submeshes. By not simplifying these vertices, and by verifying the link con-
dition for all the other vertices, we can guarantee that the resulting simplified
submesh is topologically equivalent to the input.

Other Features. Our simplification algorithm proves the benefits provided by our
partitioning/merging approach, but it also has other noticeable characteristics.
Table 1 summarized the main features of such an algorithm and a comparison
with the state of the art. However, their description would bring us too far from
the scope of this paper, hence we refer the reader to [7] for details.

Table 1. Feature-based comparison with the state of the art.

[26] [36] [5] Ours

Out–Of–Core input ✓ ✗ ✓ ✓

Out–of–Core output ✓ ✗ ✗ ✓

Adaptivity ✗ ✓ ✓ ✓

Distributable ✓ ✓ ✗ ✓

Indexed mesh support ✗ ✓ ✓ ✓

8 Results and Discussion

For the sake of experimentation, the proposed Workflow Engine has been
deployed on a standard server running Windows 7, whereas other web services

112 D. Cabiddu and M. Attene

implementing atomic tasks have been deployed on different machines to consti-
tute a distributed environment. However, since all the servers involved in our
experiments were in the same lab with a gigabit network connection, we needed
to simulate a long-distance network by artificially limiting the transfer band-
width to 5 Mbps. All the machines involved in the experimentation are equipped
with Windows 7 64bit, an Intel i7 3.5 GHz processor, 4 GB Ram and 1 T hard
disk.

Then, to test such a system we defined multiple processing workflows involv-
ing the available web services. The dataset has been constructed by selecting
some of the most complex meshes currently stored within the Digital Shape
Workbench [3]. As an example, one of our test workflows is composed by the fol-
lowing operations: Removal of Smallest Components (RSC), Laplacian Smooth-
ing (LS), Hole Filling (HF), and Removal of Degenerate Triangles (RDT). The
same workflow was run on all the meshes in our dataset to better evaluate the
performance gain achievable thanks to our concurrent mesh transfer protocol.
Table 2 reports the size of the output mesh and the size of the correction file after
each operation (both after compression) whereas Table 3 shows the total time
spent by the workflow along with a more detailed timing for each single phase.
As expected, the corrections related to tasks that locally modify the model (eg.
RSC, HF, RDT) are significantly smaller than the whole output mesh by several
orders of magnitude; corrections regarding more “global” tasks (eg. LS) are also
smaller than the output mesh, although in this latter case the correction file is
just two/three times smaller than the whole output. Nevertheless, these results
confirm that the proposed concurrent mesh transfer protocol provides significant
benefits when the single steps produce mainly little or local mesh changes.

For each mesh in our dataset, Table 3 shows the time required to be processed
both in case the mesh transfer protocol is exploited (first line) or not (second
line). Specifically, the time spent by each algorithm is reported in columns RSC,
LS, HF , RDT , while columns T1 . . . T3 and columns U1 . . . U3 show the time
needed to transfer the correction file to the subsequent Web service and the
time spent to update the mesh by applying the correction respectively. For the
sake of comparison, below each pair (Ti, Ui) we also included the time spent by
transferring the whole compressed result instead of the correction file, and the
overall relative gain achieved by our protocol is reported in the last column. It is
worth noticing that, in all our test cases, the sum of the transfer and update times
is smaller than the time needed to transfer the whole mesh, with a significant
difference when the latter was produced by applying little local modifications on
the input.

To test our partitioning and simplification algorithm, large meshes extracted
from the Stanford online repository [1], from the Digital Michelangelo Project
[2] and from the IQmulus Project [4] were used as inputs. Some small meshes
have been included in our dataset to evaluate and compare the error generated
by the part-by-part simplification.

For each input model, we ran several tests by varying the number of involved
processing nodes and the maximum error threshold. We fixed the number Nv

Processing Large Geometric Datasets in Distributed Environments 113

Table 2. Output sizes (in KB). For each mesh and for each task, the first line shows
the size of the compressed output mesh, while the second line reports the size of the
compressed correction. Average compression ratio is 5:1. Acronyms indicate Removal
of Smallest Components (RSC), Laplacian Smoothing (LS), Hole Filling (HF), and
Removal of Degenerate Triangles (RDT). A modified version of the Hole Filling algo-
rithm has been run to process “2.5D” geospatial data (*) in order to preserve their
largest boundary.

Mesh RSC LS HF RDT

Rome∗ 14915 15551 14915 13166

1 1425 1 1

Dolomiti∗ 11146 11637 11146 10588

1 1402 1 1

Isidore 20573 23333 23717 25497

11 9433 154 2

Nicolo 19498 21447 20601 20171

3 9296 48 2

Neptune 39881 40131 39891 39937

1 15237 1 1

Ramesses 17484 19544 19934 19802

3 8754 149 3

Dancers 16457 18037 18325 18116

1 7220 80 1

of vertices that should be assigned to each submesh to 1 M for very large input
meshes. Table 4 shows the time spent by the system to finish the whole com-
putation. The achieved speedup Si is also shown, computed as Si = Time1

Timei
,

where Time1 is the sequential time and Timei is the time required to run the
simplification on i servers. As expected, speedups are higher when the number
of available processing nodes increases. More noticeably, speedup increases as
the input size grows. Table in Fig. 7 reports the relation between the size of the
input, and shows the time needed to partition it and the benefits provided by
our re-partitioning algorithm. As a summarizing achievement, our method could
partition the 25 GB OFF file representing the Atlas model (≈0.5 billions trian-
gles) in ≈25 min. As a matter of comparison, the engine’s operating system takes
more than 8 min to perform a simple local copy of the same file. Furthermore, the
last experiment in Table 4 shows the time required to process the full-resolution
Liguria model (1.1 Tb), represented as a collection of 10 indexed meshes stored
on just as many data nodes. The repartitioning step requires less than 3 h. Note
that more than 24 h would be required if the model is stored as a single OFF
file on the engine hard disk.

To test the quality of output meshes produced by our algorithm, we used
Metro [12] to measure the mean error between some small meshes and their

114 D. Cabiddu and M. Attene

Table 3. Times (in seconds). Acronyms indicate Input Broadcast (IB), Removal of
Smallest Components (RSC), Laplacian Smoothing (LS), Hole Filling (HF), and
Removal of Degenerate Triangles (RDT). Cells labelled by Ti indicate the time needed
to transfer the correction file. Cells labelled by Ui indicate the time needed to update
the mesh by applying the correction. Total indicates the overall time required for the
execution. Benefits indicates, for each experiment, how much the computation time
decreases when our protocol is exploited. Computation times are reported both in case
the mesh transfer protocol is exploited (upper line) and in case of “traditional” transfer
(lower line). Note that a modified version of the Hole Filling algorithm has been run
to process “2.5D” geospatial data (*) in order to preserve the largest boundary.

Mesh (# vertices) IB RSC T1 U1 LS T2 U2 HF T3 U3 RDT Total Benefits

Rome∗ (957456) 20.4 5.8 0.0 0.0 8.4 2.3 9.4 5.5 0.0 0.0 6.9 58.7 104%

23.9 24.9 23.9 119.7

Dolomiti∗ (810000) 15.8 4.9 0.0 0.0 7.2 2.2 7.8 4.6 0.0 0.0 5.7 48.2 92%

17.8 18.6 17.8 92.4

Isidore (1071671) 33.0 7.7 0.0 5.8 12.4 15.1 7.1 8.4 0.2 6.0 13.8 109.5 67%

32.9 37.3 37.9 183.4

Nicolo (945924) 31.2 6.5 0.0 4.8 10.5 14.9 6.1 7.5 0.1 4.9 11.5 98.0 69%

31.2 34.3 33.0 165.7

Neptune (1321838) 63.8 13.0 0.0 0.0 18.6 24.4 11.0 12.6 0.0 0.0 14.4 157.8 99%

63.8 64.2 63.8 314.2

Ramesses (775715) 28.0 6.7 0.0 4.3 9.6 14.0 5.4 7.0 0.2 4.5 10.3 90.0 70%

28.0 31.3 31.9 152.8

Dancers (703207) 26.3 4.9 0.0 0.0 7.3 11.6 4.3 5.2 0.1 3.6 7.0 70.3 92%

26.3 28.9 29.3 135.2

Fig. 7. Partitioning time vs input size: we can observe an approximately linear growth
of the processing time as the input grows. When the input is pre-partitioned and scat-
tered on different disks, the re-partitioning approach speeds up the input segmentation.

Processing Large Geometric Datasets in Distributed Environments 115

Table 4. Times (in seconds). Column labels: maxE is the threshold error (one thou-
sandth of the bounding box diagonal of the input in all these experiments) expressed in
absolute values, Ns is the number of available services, #ISs is the number of generated
independent sets, while #Vo is the number of output vertices. Also, times are shown
for each step: Partitioning (P), Simplification (S), and Merging (M). All the input
meshes are stored as a single OFF file, except Liguria model (∗) that is represented as
a collection of 10 indexed meshes distributedly stored on 10 data nodes.

Input #ISs #Vo Times Speedup

Mesh (# vertices) maxE Ns P S M Total

Terrain (67873499) 0.00006 1 117 12166 497 302 1 800 –

10 13 11697 64.45 562.45 1.42

25 6 11660 13.37 511.37 1.56

St. Matthew (186836670) 3.01716 1 285 119121 1225.5 805.65 2.5 2033.65 –

10 29 119035 104.05 1332.05 1.53

25 13 119308 47.65 1275.65 1.59

Atlas (245837027) 3.35350 1 395 234084 1441 1481.25 4.5 2926.75 –

10 42 234081 157.05 1602.55 1.83

25 18 234091 72.95 1518.45 1.93

Liguria∗ (12986836670) 0.00006 1 26077 12174 9647 67278.60 1 76926.60 –

10 3276 12144 8452.08 18100.08 4.25

25 896 12153 2311.70 11959.70 6.42

simplifications. Results show that the number of services does not significantly
affect the quality of the output. Unfortunately, Metro is based on an incore
approach that evaluates the Hausdorff distance between the input mesh and
the simplified one. Such an approach cannot be used to evaluate the quality of
simplified meshes when the original version is too large. In these cases, quality
can be assessed based on a visual inspection only. Figures 8, 9, and 10 show that
high quality is preserved in any case and is not sensibly affected by the number
of involved services.

8.1 Limitations

We enabled the possibility to analyze and process large geometric datasets. Nev-
ertheless, some limitations should be taken into account when designing a parallel
algorithm that exploits our divide-and-conquer method. First, our approach sup-
ports algorithms that modify the existing geometry, but does not consider the
possibility to generate new geometric elements based on non strictly local infor-
mation (e.g. hole filling). Second, processing services are assumed to perform
local operations by analyzing at most a support neighborhood. Our divide-and-
conquer approach is not suitable for processing services requiring global informa-
tion. In this latter case, our proposal can be exploited only if an approximated
result is accepted.

Nonetheless, for some specific global operations, our system can be easily
customized and exploited as well. As an example, small components (e.g. those
with low triangle counts) of the original input may be partitioned by the BSP. In
this case, each processing service can just count the number of triangles of each

116 D. Cabiddu and M. Attene

Fig. 8. Details of Atlas model simplified by exploiting 25 available services (original:
≈256 M vertices, simplified: ≈234 K vertices)

Fig. 9. Detail of simplified Terrain model (original: ≈68 M vertices, simplified: ≈115 K
vertices). Nearly high fields are naturally supported

Fig. 10. Detail of St Matthew model simplified by 1, 10, and 25 servers (original:
≈187 M vertices, simplified: ≈1195 K vertices)

Processing Large Geometric Datasets in Distributed Environments 117

component which is connected in the submesh. Such an information is returned
to the engine that, thanks to the BSP adjacency graph, can sum the partial
counts for adjacent sub-components without the need to explicitly load mesh
elements in memory. Thus, the engine can identify the smallest components and
tell the services to remove them in a second iteration.

9 Conclusions

We proposed a workflow-based framework to support collaborative research in
geometry processing. The platform is accessible from any operating system
through a standard Web browser with no hardware or software requirements.
A prototypal version is available at http://visionair.ge.imati.cnr.it/workflows/.
Scientists are allowed to remotely run geometric algorithms provided by other
researchers as Web services and to combine them to create executable geomet-
ric workflows. No specific knowledge in geometric modelling and programming
languages is required to exploit the system.

As an additional advantage, short-lasting experiments can be re-executed on
the fly when needed and there is no more need to keep output results explic-
itly stored on online repositories. Since experiments can be efficiently encoded
as a list of operations, sharing them instead of output models sensibly reduces
required storage resources. The architecture is open and fully extensible by sim-
ply publishing a new algorithm as a Web service and by communicating its URL
to the system. Moreover, we have demonstrated that the computing power of a
network of PCs can be exploited to significantly speedup the processing of large
triangle meshes and we have shown that the overhead due to the data transmis-
sion is much lower than the gain in speed provided by parallel processing.

In its current form, our system has still a few weaknesses. First, experiments
can be reproduced only as long as the involved Web services are available and
are not modified by their providers. To reduce the possibility of workflow decay
[42] a certain level of redundancy would be required. Second, our system does
not allow to execute semi-automatic pipelines, that is with user interaction. Such
a functionality would require the engine to interrupt the execution waiting for
the user intervention.

Several future directions are possible, both in terms of improvement of the
platform capabilities and enrichment of the geometry processing operations. One
of the objectives of our future research is to simplify the work of potential con-
tributor by enabling the engine to automatically compute the list of editing
operations. A possible solution may be inspired on [16], even if the high compu-
tational complexity of this method would probably hinder our gain in speed.

Acknowledgements. This work is partly supported by the EU FP7 Project no. ICT–
2011-318787 (IQmulus) and by the international joint project on Mesh Repairing for
3D Printing Applications funded by Software Architects Inc (WA, USA). The authors
are grateful to all the colleagues at IMATI for the helpful discussions.

http://visionair.ge.imati.cnr.it/workflows/

118 D. Cabiddu and M. Attene

References

1. The Stanford 3D Scanning Repository (1996)
2. The Digital Michelangelo Project (2009)
3. DSW v5.0 - visualization virtual services (2012)
4. Iqmulus: A High-volume Fusion and Analysis Platform for Geospatial Point

Clouds, Coverages and Volumetric Data Sets (2013)
5. Brodsky, D., Pedersen, J.B.: Parallel model simplification of very large polygonal

meshes. In: Proceedings of Parallel and Distributed Processing Techniques and
Applications (PDPTA 2002), vol. 3, pp. 1207–1215 (2002)

6. Cabiddu, D., Attene, M.: Distributed processing of large polygon meshes. In: Pro-
ceedings of Smart Tools and Apps for Graphics (STAG 2015) (2015)

7. Cabiddu, D., Attene, M.: Large mesh simplification for distributed environments.
Comput. Graph. 51, 81–89 (2015)

8. Campen, M.: WebBSP 0.3 beta (2010). http://www.graphics.rwth-aachen.de/
webbsp

9. Chiang, Y.J., Silva, C.T., Schroeder, W.J.: Interactive out-of-core isosurface extrac-
tion. In: IEEE Visualization 1998, pp. 167–174 (1998)

10. Cignoni, P., Montani, C., Rocchini, C., Scopigno, R.: External memory manage-
ment and simplification of huge meshes. IEEE Trans. Vis. Comput. Graph. 9(4),
525–537 (2003)

11. Cignoni, P., Corsini, M., Ranzuglia, G.: Meshlab: an open-source 3d mesh process-
ing system. ERCIM News 73, 45–46 (2008)

12. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified sur-
faces. Comput. Graph. Forum 17(2), 167–174 (1998)

13. Claro, D.B., Albers, P., Hao, J.: Selecting web services for optimal composition.
In: Proceedings of the 2nd International Workshop on Semantic and Dynamic Web
Processes (SDWP 2005), pp. 32–45 (2005)

14. Cuccuru, G., Gobbetti, E., Marton, F., Pajarola, R., Pintus, R.: Fast low-memory
streaming MLS reconstruction of point-sampled surfaces. In: Proceedings of Graph-
ics Interface, GI 2009, pp. 15–22. Canadian Information Processing Society,
Toronto (2009)

15. Dehne, F., Langis, C., Roth, G.: Mesh simplification in parallel. In: Proceedings of
Algorithms and Architectures for Parallel Processing (ICA3P 2000), pp. 281–290
(2000)

16. Denning, J.D., Pellacini, F.: Meshgit: diffing and merging meshes for polygonal
modeling. ACM Trans. Graph 32(4), 35: 1–35: 10 (2013)

17. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick,
M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland,
J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D.: The shuttle radar topography
mission. Rev. Geophys. 45(2), RG2004 (2007)

18. Franc, M., Skala, V.: Parallel triangular mesh reduction. In: Proceedings of Scien-
tific Computing, ALGORITMY 2000, pp. 357–367 (2000)

19. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In:
Proceedings of SIGGRAPH 1997, pp. 209–216 (1997)

20. Heckbert, P.S., Garland, M.: Optimal triangulation and quadric-based surface sim-
plification. J. Comput. Geometry Theory Appl. 14(1–3), 49–65 (1999)

21. Hollingsworth, D.: Workflow management coalition - the workflow reference model.
Technical report, January 1995

http://www.graphics.rwth-aachen.de/webbsp
http://www.graphics.rwth-aachen.de/webbsp

Processing Large Geometric Datasets in Distributed Environments 119

22. Hutter, M., Knuth, M., Kuijper, A.: Mesh partitioning for parallel garment simu-
lation. In: Proceedings of WSCG 2014, pp. 125–133 (2014)

23. Isenburg, M., Lindstrom, P.: Streaming meshes. In: Visualization (VIS 2005), pp.
231–238. IEEE, October 2005

24. Isenburg, M., Lindstrom, P., Gumhold, S., Snoeyink, J.: Large mesh simplification
using processing sequences. In: Visualization (VIS 2003), pp. 465–472, October
2003

25. Lindstrom, P.: Out-of-core simplification of large polygonal models. In: Proceedings
of SIGGRAPH 2000, pp. 259–262 (2000)

26. Lindstrom, P., Silva, C.T.: A memory insensitive technique for large model simpli-
fication. In: IEEE Visualization, pp. 121–126 (2001)

27. Maglo, A., Lavoué, G., Dupont, F., Hudelot, C.: 3d mesh compression: survey,
comparisons, and emerging trends. ACM Comput. Surv. 47(3), 44: 1–44: 41 (2015)

28. Meredith, J.S., Ahern, S., Pugmire, D., Sisneros, R.: EAVL: the extreme-scale
analysis and visualization library. In: Eurographics Symposium on Parallel Graph-
ics and Visualization. The Eurographics Association (2012)

29. Möbius, J., Kobbelt, L.: OpenFlipper: an open source geometry processing and
rendering framework. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche,
T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol.
6920, pp. 488–500. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27413-8 31

30. Moreland, K., Ayachit, U., Geveci, B., Ma, K.L.: Dax toolkit: a proposed frame-
work for data analysis and visualization at extreme scale. In: IEEE Symposium on
Large Data Analysis and Visualization (LDAV 2011), pp. 97–104 (2011)

31. Pitikakis, M.: A semantic based approach for knowledge management, discovery
and service composition applied to 3D scientif objects. Ph.D. thesis, University
of Thessaly, School of Engineering, Department of Computer and Communication
Engineering (2010)

32. C. Sewell, Lo, L.T., Ahrens, J.: Portable data-parallel visualization and analysis
in distributed memory environments. In: IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV 2013), pp. 25–33 (2013)

33. Shaffer, E., Garland, M.: Efficient adaptive simplification of massive meshes. In:
Proceedings of Visualization 2001, pp. 127–134 (2001)

34. Shontz, S.M., Nistor, D.M.: CPU-GPU algorithms for triangular surface mesh sim-
plification. In: Jiao, X., Weil, J.-C. (eds.) Proceedings of the 21st International
Meshing Roundtable, pp. 475–492. Springer, Heidelberg (2013)

35. Silva, C., Chiang, Y., Corra, W., El-sana, J., Lindstrom, P.: Out-of-core algorithms
for scientific visualization and computer graphics. In: Visualization 2002 Course
Notes (2002)

36. Tang, X., Jia, S., Li, B.: Simplification algorithm for large polygonal model in
distributed environment. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) ICIC
2007. LNCS, vol. 4681, pp. 960–969. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74171-8 97

37. Thomaszewski, B., Pabst, S., Blochinger, W.: Parallel techniques for physically
based simulation on multi-core processor architectures. Comput. Graph. 32(1),
25–40 (2008)

38. Tiwari, A., Sekhar, A.K.T.: Workflow based framework for life science informatics.
Comput. Biol. Chem. 31(56), 305–319 (2007)

39. Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface, pp.
26–34 (1998)

http://dx.doi.org/10.1007/978-3-642-27413-8_31
http://dx.doi.org/10.1007/978-3-540-74171-8_97
http://dx.doi.org/10.1007/978-3-540-74171-8_97

120 D. Cabiddu and M. Attene

40. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S.,
Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K.,
Bacall, F., Hardisty, A., Nieva de la Hidalga, A., Balcazar Vargas, M.P., Sufi, S.,
Goble, C.: The Taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud. Nucl. Acids Res. 41(Web Server
issue), gkt328–W561 (2013)

41. Jianhua, W., Kobbelt, L.: A stream algorithm for the decimation of massive
meshes. In: Proceedings of the Graphics Interface 2003 Conference, Halifax, Nova
Scotia, Canada, pp. 185–192, June 2003

42. Zhao, J., Gomez-Perez, J.M., Belhajjame, K., Klyne, G., Garcia-cuesta, E., Gar-
rido, A., Hettne, K., Roos, M., De Roure, D., Goble, C.: Why workflows break:
understanding and combating decay in Taverna workflows, pp. 1–9 (2012)

Decision Fusion for Classification of Content
Based Image Data

Rik Das1(&), Sudeep Thepade2, and Saurav Ghosh3

1 Department of Information Technology, Xavier Institute of Social Service,
Ranchi, Jharkhand, India
rikdas78@gmail.com

2 Department of Information Technology,
Pimpri Chinchwad College of Engineering, Pune, India

sudeepthepade@gmail.com
3 A.K. Choudhury School of Information Technology,
University of Calcutta, Kolkata, West Bengal, India

sauravghoshcu@gmail.com

Abstract. Information recognition by means of content based image identifi-
cation has emerged as a prospective alternative to recognize semantically anal-
ogous images from huge image repositories. Critical success factor for content
based recognition process has been reliant on efficient feature vector extraction
from images. The paper has introduced two novel techniques of feature extraction
based on image binarization and Vector Quantization respectively. The tech-
niques were implemented to extract feature vectors from three public datasets
namely Wang dataset, Oliva and Torralba (OT-Scene) dataset and Corel dataset
comprising of 14,488 images on the whole. The classification decisions with
multi domain features were standardized with Z score normalization for fusion
based identification approach. Average increase of 30.71% and 28.78% in pre-
cision were observed for classification and retrieval respectively when the pro-
posed methodology was compared to state-of-the art techniques.

Keywords: Binarization � Fusion � Image classification � Image retrieval �
Query classification � t test � Vector quantization

1 Introduction

A rapid enhancement in collections of digital images has been observed in recent years.
Image data has been generated in gigabytes as a rich source of information with the
evolution of internet and high end image capturing devices [1, 2]. Traditionally, manual
annotation of images has been considered as the standard technique to identify the
image data from the databases. The task has become gradually impossible in con-
temporary scenario with plethora of digital libraries being incorporated with each
passing day. Irrelevant classification results can be generated in majority as the images
were named based on individual user perceptions which may vary on case to case basis.
Content based image recognition has emerged as a fruitful alternative to manage the
wealthy foundation of image information by means of image classification and retrieval

© Springer-Verlag GmbH Germany 2017
M.L. Gavrilova and C.J. Kenneth Tan (Eds.): Trans. on Comput. Sci. XXIX, LNCS 10220, pp. 121–138, 2017.
DOI: 10.1007/978-3-662-54563-8_7

[3]. The process of content based image identification has been largely dependent on
feature extraction techniques [4]. The existing techniques have resulted in extraction of
feature vectors with huge dimensions. This has resulted in increased training time for
the classifiers which has made the classification process invariably slow. On the other
hand, an image has diverse set of features in it which can hardly be explored by means
of a single feature extraction technique [5]. Hence, the authors have proposed two
different feature extraction techniques based on binarization and Vector Quantization
respectively. The research objectives have been enlisted as follows:

• Reducing the dimension of feature vectors
• Successfully implementing fusion based method of content based image

identification
• Statistical validation of research results
• Comparison of research results with state-of-the art techniques

The techniques were implemented on three different public datasets namely, Wang
dataset, Oliva and Torralba (OT-Scene) dataset and Corel dataset respectively which
comprised of 14,488 images on the whole. The classification decisions with the indi-
vidual techniques were fused by means of Z score normalization to formulate a fusion
based classification model. Further, retrieval architecture with classified query was
introduced to evaluate the retrieval efficiency with the proposed techniques. The pre-
cision values have shown an average increase of 30.71% and 28.78% for classification
and retrieval results respectively when compared to the state-of-the art techniques. The
findings were statistically validated with a paired t test [6].

2 Related Work

Binarization and Vector Quantization have been readily utilized by the existing feature
extraction techniques for proficient signature extraction from images. The popularity of
the techniques was facilitated by the relatively simple structure and computation.
Binarization of images has been categorized into three different methods of threshold
selection namely mean threshold selection, local threshold selection and global
threshold selection. Mean threshold technique for binarization was used for capturing
significant information as features from bit planes of images as well as from fusion of
generic and flipped image varieties [7, 8] for better classification results. Ternary mean
threshold [9] and multilevel mean threshold [10] for binarization has also assisted the
extraction of substantial features for image identification. Nevertheless, standard
deviation of the gray values has not been considered in the aforesaid techniques to
understand the spread of data. Traditional global threshold selection technique using
Otsu’s method [11, 12] is based on image variance. Application of local threshold
selection techniques in contemporary researches for feature extraction has exhibited the
use of image variance and contrast as factors for image binarization [13–19]. Image
features has been well represented by codebook generation in the past by means of
Vector Quantization [20]. Vector Quantization (VQ) has diverse categories including
classified VQ, address VQ, finite state VQ, side match VQ, mean-removed classified
VQ, and predictive classified VQ [21–26]. Designing of codebook using Vector

122 R. Das et al.

Quantization techniques has assisted in boosting up the performance of image identi-
fication. Image identification with reduced space complexity has achieved higher
retrieval by utilizing genetic algorithm to obtain the most favourable boundaries of the
numerical variables [27]. A novel geometric verification scheme named DT RANSAC
has been discussed in [43] which has revealed better retrieval results compared to
existing techniques. Color moments and moments on Gabor filter responses were used
to calculate local descriptors of color and texture to facilitate retrieval [28]. Fuzzy set
theoretic approach has been explored to extract visually significant point features
images for efficient recognition [29]. In [30], improved retrieval accuracy was observed
by combining color layout descriptor and Gabor texture descriptor. Image signatures
were designed with color, texture and spatial structure descriptors [31]. Neural network
architecture has been initiated for image identification using wavelet packets and Eigen
values of Gabor filters feature extraction techniques [32]. A technique for retrieval has
been devised on intra-class and inter-class features in [33]. A modified color motif
co-occurrence matrix (MCMCM) has been proposed for content-based image retrieval
[34]. In [35], fusion of Edge Histogram Descriptor (EHD) and Angular Radial
Transform (ART) technique has been proposed, which has shown significant
improvement for image retrieval in hybrid environment. The authors have identified a
common drawback in majority of the discussed techniques in the literature. The
dimension of the extracted feature vectors is of the size of the image which produces
hefty image signatures. This, in turn, increases the computational overhead. The
authors have proposed two different feature extraction techniques in which the size of
the feature vector is considerably small and independent of the image dimension. The
results of image recognition with the proposed techniques have outperformed the
state-of-the art techniques.

3 Proposed Techniques

Two different techniques namely feature extraction with image binarization and feature
extraction with vector quantization have been proposed for multi-technique feature
extraction from the image dataset. The proposed techniques have considered extraction
of feature vectors in three different color spaces. Let the total number of gray levels
present in the image be G. Threshold selection has taken linear time O(G) for all the
gray levels. Number of color components was 3. Let the number of gray level in each
color component be N. Total number of iteration required was O(3N). Thus the time
complexity of the proposed method was linear.

Each of the techniques has been enlisted in the following subsections.

3.1 Feature Extraction with Image Binarization

Binarization technique differentiates the image into foreground and background pixel
classes. This has been beneficial to identify the object of interest in the foreground
class. Primarily, three different color components namely, Red (R), Green (G) and Blue
(B) are extracted from the images. Each component is binarized with Bernsen’s local

Decision Fusion for Classification of Content Based Image Data 123

adaptive technique of threshold selection based on contrast of an image. The Bernsen
algorithm has considered each pixel (i, j) surrounded by a square window of recom-
mended window size w = 31 [15]. The threshold is calculated as a midrange value,
denoted by the mean of the minimum gray value Glow i; jð Þ and maximum gray value
Ghigh i; jð Þ within a suggested local window. Threshold Th(i, j) within the local window
is computed as in Eq. 1.

Th i; jð Þ = 0:5 maxw I iþm; jþ nð Þ½ � þminw I iþm; jþ nð Þ½ �f g ð1Þ

when, contrast C i; jð Þ = Ghighði; jÞ � Glowði; jÞ� 15:
A pixel within the window is designated as background or foreground pixel of the

image according to the class that most suitably portrayed the window when the
computed value of contrast C(i, j) in Eq. 2 was less than a certain contrast threshold
k (usually for images of global contrast 255 the threshold value has been set as 15).

C i; jð Þ = Ghighði; jÞ � Glowði; jÞ ð2Þ

The algorithm has been largely dependent on the value of k and the size of the
window. The binarization process has been illustrated in Fig. 1. The foreground pixel
values designated with 1 in the binarized images are grouped into higher intensity
cluster and the background pixel values denoted by 0 are grouped into lower intensity
cluster. The authors have reduced the feature size by considering the mean and standard
deviation of each group and added together for individual groups to form two feature
vectors for each color component as in Eqs. 3–8. Thus, 6 feature vectors are calculated
for each image using the binarization method. In case of binarization with conventional
Bernsen’s method, the feature size after binarization becomes equal to the size of the
image as each of the foreground pixels has been denoted by 1 and background as 0.
But, in our method we have drastically reduced the feature size to 6 on the whole
irrespective of the image dimension.

xhimean ¼ mean
X
p

X
q

ðxðp; qÞÞ[Tx ð3Þ

xhistdev ¼ r
X
p

X
q

ðxðp; qÞÞ[Tx ð4Þ

xhiF:V : ¼ xhimean þ xhimean þ xhistdevð Þ: ð5Þ

xlomean ¼ mean
X
p

X
q

ðxðp; qÞÞ\Tx ð6Þ

xlostdev ¼ r
X
p

X
q

ðxðp; qÞÞ \Tx ð7Þ

xloF:V : ¼ xlomean þ xlomean þ xlostdevð Þ ð8Þ

124 R. Das et al.

3.2 Feature Extraction with Vector Quantization

Feature extraction can be done from the spatial arrangements of color or intensities with
the help of texture analysis. Same histogram distribution can have different texture
representation, which can act as a tool for extraction of distinct features. Vector
Quantization has been used to generate codebook as feature vectors from the images.
A k dimensional Euclidian space is mapped by means of Vector Quantization into a
finite subset. The codebook is represented by the finite set CB as in Eq. 9.

CB ¼ Ci=i ¼ 1; 2; . . .; Nf g ð9Þ

where, Ci = (ci1, ci2, …, cik) is a codevector
N is the size of codebook
The authors have followed Linde - Buzo - Gray (LBG) algorithm for generation of

codevectors in which the images are divided into non overlapping blocks which were
converted to training vector Xi = (xi1, xi2, ……., xik) [41]. The training set is formed
with each training vector of dimension 12 comprising of Red (R), Green (G) and Blue
(B) components of 2 � 2 neighbouring pixels. Further, the first code vector is calcu-
lated by computing the centroid of the entire training set. The process is followed by
generation of two trial code vectors v1 and v2 by adding and subtracting constant error

Binarized Red
Component

Binarized Green
Component

 Binarized Blue
Component

Red Component Green Component Blue Component

Fig. 1. Binarization with Bernsen’s local threshold selection (Color figure online)

Decision Fusion for Classification of Content Based Image Data 125

to the centroid. The closeness of each training vector is determined to the trial vectors
and two clusters are created based on proximity of the training vectors to v1 and v2 as
in Fig. 2. Two centroids are calculated from the two newly formed clusters to produce
two code vectors for a codebook of size 2. The aforesaid process is repeated with the
centroids to generate desired size of codebook which is 16 in this case.

4 Matching

The image similarity measures have been determined by evaluating distance between
set of image features and higher similarity has been characterized by shorter distance
[37]. The distance between query image Q and database image T is calculated with City
block distance and Euclidian distance for binarization and vector quantization tech-
niques of feature extraction respectively as in Eqs. 10 and 11.

Dcityblock ¼
Xn
i�1

jQi � Dij ð10Þ

Deuclidian ¼
ffiXn
i¼1

ðQi � DiÞ2
s

ð11Þ

where, Qi is the query image and Di is the database image.
The calculated distances for the individual techniques are standardized by Z score

normalization based on mean and standard deviation of the computed values as in
Eq. 12. In general, a feature vector with higher values of attributes tends to have greater
effect or “weight.” Hence, to avoid dependence on the choice of feature values of
different feature vectors from diverse techniques, the data should be normalized or
standardized. This has transformed the data to fall within a common range such as
[–1, 1] or [0.0, 1.0]. Normalizing the data has attempted to provide all the feature vector
extraction process with equal weights.

Fig. 2. Clustering process for codebook generation

126 R. Das et al.

distn ¼ disti � l
r

ð12Þ

where, µ is the mean and r is the standard deviation
Henceforth, the distances are amalgamated as the weighted sum of the distances of

the individual techniques. Calculation of weights is carried out form the individual

Fig. 3. Fusion framework for retrieval with classified query

Decision Fusion for Classification of Content Based Image Data 127

average precision of each technique. Finally, the image is classified based on the class
majority of k nearest neighbors [36] where value of k is

k�
ffi
number::of ::training::instances

p
The classified image is forwarded for retrieval purpose. The image is a classified

query and has searched for similar images only within the class of interest. Ranking of
the images is done with Canberra Distance measure as in Eq. 13 and top 20 images
were retrieved.

Dcanberra =
Xn
i¼1

Qi � Dij j
Qij j þ Dij j ð13Þ

where, Qi is the query image and Di is the database image.
The process of fusion based classification and then retrieval with classified query

has been illustrated in Fig. 3.

5 Datasets Used

Three different datasets namely Wang dataset (10 different categories of 1000 images
of dimension 256 � 384 or 384 � 256), Oliva and Torralba (OT-Scene) dataset (2688
images and is divided into eight different categories) and Corel dataset (10,800 images
with 80 different categories of images of dimension 80 � 120 or 120 � 80) has been
used for the classification purpose [38–40]. A sample collage of each of the datasets has
been given in Figs. 4, 5 and 6.

Fig. 4. Sample collage for Wang dataset

Fig. 5. Sample collage for OT-Scene dataset

128 R. Das et al.

6 Results and Discussions

The research has been conducted using Matlab version 7.11.0(R2010b) installed in a
system having Intel core i5 processor with 4 GB RAM under Microsoft Windows
environment. At the outset, the precision and recall values for classification are
determined on three different public datasets namely, Wang dataset, OT scene dataset
and Corel dataset. Further, the precision, recall and F1 Score values of the fused
architecture for classification are compared against state-of-the art techniques. The
precision, recall and F1 Score are represented by Eqs. 14–16.

Precision ¼ TP
TPþFP

ð14Þ

TPRate=Recall ¼ TP
TPþFN

ð15Þ

F1score ¼ 2 � Precision � Recall
PrecisionþRecall

ð16Þ

True Positive TPð Þ ¼ Number of instances classified correctly
True Negative TNð Þ ¼ Number of negative results created for negative instances

False Positive FPð Þ ¼ Number of erroneous results as positive results for negative

instances
False Negative FNð Þ ¼Number of erroneous results as negative results for positive

instances
Subsequent precision and recall values for classification using two different tech-

niques of feature extraction have been given in Figs. 7 and 8.
The precision and recall values shown in Figs. 7 and 8 has indicated higher clas-

sification accuracy by feature extraction with Vector Quantization compared to feature
extraction with binarization in all the three datasets namely Wang dataset, OT Scene
dataset and Corel dataset.

Henceforth, a statistical technique named Z score normalization has been imple-
mented to fuse the classification decision with two different techniques of feature
extraction. The fusion technique is carried out with Wang dataset. The results of
classification with decision fusion has shown 93% precision and 92% recall which has
clearly outperformed the precision and recall values obtained with individual feature

Fig. 6. Sample collage for Corel dataset

Decision Fusion for Classification of Content Based Image Data 129

extraction techniques. Further, the precision, recall and F1 Score values obtained by
classification decision fusion are compared to state-of-the art techniques. The com-
parison has been accomplished with Wang dataset as in Fig. 9. The comparison of
average Precision, Recall, F1 Score and MR curves of various techniques has been
given in Fig. 10.

It is observed that the proposed architecture of classification has outperformed all
the contemporary techniques discussed in the literature as in Fig. 9.

A paired t-test (2 tailed) is performed to compute the p-values for the precision for
classification with the existing techniques with respect to the proposed technique. The
actual difference between the two means for variation in precision results of the pro-
posed technique and the existing techniques in Fig. 9 was statistically validated by the
test.

The test is carried out to determine whether the differences in precision values are
originated from a population with zero mean:

Precision Recall

Wang Dataset 81.6 81.4

OT-Scene Dataset 53.5 48.3

Corel Dataset 40.5 39.2

0
20
40
60
80

100
V

al
ue

s

Precision and Recall for Classification by
feature extraction using binarization

Fig. 7. Precision and recall for classification by feature extraction with binarization

Precision Recall

Wang Dataset 90.2 89.8

OT-Scene Dataset 92.3 91.9

Corel Dataset 70.3 65.8

0
20
40
60
80

100

V
al

ue
s

Comparison of Precision and Recall for
Classification by feature extraction Vector

Quantization (LBG)

Fig. 8. Precision and recall for classification by feature extraction with vector quantization

130 R. Das et al.

H0 : ld = 0 vs. H1: ld < 0

The p values in Table 1 have determined the effectiveness of evidence against null
hypothesis. The p values have indicated significant difference in precision results for
the proposed technique with respect to the existing techniques. Hence the null
hypothesis was rejected and the noteworthy improvement for content based image
classification with the proposed technique was established.

Hereafter, retrieval process was initiated with classified query. Precision and Recall
were considered as evaluation metric for retrieval and has been given by Eqs. 10 and 11.

Precision Recall F1 Score

Proposed 0.93 0.92 0.92

(Thepade et. al, 2014)
[19] 0.69 0.69 0.69

(Kekre et. al, 2013) [7] 0.66 0.66 0.66

(Thepade et. al , 2013)
[9] 0.65 0.65 0.65

(Yanli Y. and Zhenxing
Z., 2012) [18] 0.64 0.64 0.64

(RamírezOrtegón, M.A.
And Rojas R., 2010)[17] 0.63 0.63 0.63

(Liu.C, 2013) [16] 0.57 0.57 0.57

(Shaikh, 2013) [12] 0.52 0.52 0.52

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue
s

Comparison of Precision, Recall and F1 Score for
Classification

Fig. 9. Precision recall and F1 score of classification with various techniques

Decision Fusion for Classification of Content Based Image Data 131

Precision ¼ Total::Number::of ::Relevant::Images::Retrieved
Total::Number::of ::Retrieved::Images

ð17Þ

Recall ¼ Total::Number::of ::Relevant::Images::Retrieved
Total::Number::of ::Images::in::the::Relevant::Class

ð18Þ

The process of retrieval was carried out with Wang dataset. Random selection of 50
images has been performed which comprised of 5 arbitrary images from each category.
At the beginning, the classification of the query image is done by fusion based distance
measure using Z score normalization. Further, the classified query is used to retrieve
images by searching only within the class of interest instead of searching the complete
dataset as in the case for a generic query without classification. In both the cases of
classified and generic query for retrieval, the retrieved images are ranked using Can-
berra Distance measure. Ranking process is followed by retrieval of top 20 images.

0.93

0.69 0.66 0.65 0.64 0.63 0.57 0.52

0.92

0.69
0.66 0.65 0.64 0.63 0.57

0.52

0.92

0.69 0.66 0.65 0.64 0.63

0.57
0.52

0.015

0.07
0.075 0.078 0.08

0.081
0.096

0.107

Comparison of Precision, Recall, F1 Score and MR Curves

Precision Recall F1 Score MR

Fig. 10. Comparison curves for precision, recall, F1 score and MR of various techniques

132 R. Das et al.

The comparison of precision and recall for retrieval with generic query and classified
query has been illustrated with a sample query image in Fig. 11.

Firstly, it was applied on Corel 5 K dataset and the retrieval with classified query is
observed to be 91% which is much higher than the precision of 63.5% recorded on the
same dataset in [42]. In Fig. 11, the results for retrieval with generic query have yielded
17 images from the desired category named gothic Structure and 3 images from dif-
ferent categories namely Buses, Elephants and Mountains for Wang dataset. On the
other hand, the results for classified query have retrieved all the 20 images from the
category of interest which is Gothic structure.

It is observed that average precision and recall values for retrieval with classified
query have surpassed the results for generic query as in Fig. 12.

Finally, the proposed technique of retrieval is contrasted to the state-of-the art
techniques in Fig. 13.

Comparison shown in Fig. 13 has clearly revealed the superiority of the proposed
technique over the existing techniques. Hence, it is inferred that the proposed method
of retrieval has efficiently boosted up the precision and recall value compared to the
state-of-the art techniques.

Table 1. t test for statistical significance in precision value for classification

Comparison p-value Significance of difference in
precision value for
classification

Feature extraction by binarization using bit
plane slicing with Niblack’s local threshold
method (Thepade et al. 2014)

0.007 Significant

Feature extraction by binarization with
multilevel mean threshold (Kekre et al. 2013)

0.0074 Significant

Feature extraction by binarization of
original + even image with mean threshold
(Thepade et al. 2013)

0.0079 Significant

Traditional feature extraction by binarization
with Bernsen’s local threshold method (Yanli
and Zhenxing 2012)

0.0043 Significant

Traditional feature extraction by binarization
with Sauvola’s local threshold method
(Ramírez-Ortegón and Rojas 2010)

0.0016 Significant

Traditional feature extraction by binarization
with Niblack’s local threshold method (Liu
2013)

0.0029 Significant

Traditional feature extraction by binarization
with Otsu’s global threshold method (Shaikh
2013)

0.0029 Significant

Decision Fusion for Classification of Content Based Image Data 133

Average
Precision

Average Recall

Generic Query for
Retrieval 83.6 16.72

Classified Query for
Retrieval 94 18.8

0
10
20
30
40
50
60
70
80
90

100

V
al

ue
s

Comparison of Average Precision and Recall
for retrieval with generic query and classified

query

Fig. 12. Comparison of average precision and average recall for retrieval with generic and
classified query

Results with generic query Results with classified
query

Fig. 11. Comparison of retrieval with generic and classified query

134 R. Das et al.

7 Conclusions

The paper has carried out in depth analysis of different feature extraction techniques for
content based image classification and retrieval. In this context, the authors have
proposed two different techniques of feature extraction based on image binarization and
Vector Quantization. The identification decisions of the two different techniques are
combined for fusion based image classification. The precision, recall and F1 Score of
classification with the proposed technique have surpassed the existing techniques and
the precision value for classification has divulged statistical significance of improved
performance. Further, the classified image is used as a query for content based retrieval.
The precision and recall values for retrieval have exceeded the state-of-the art tech-
niques and have significantly contributed to the improvement of the retrieval process.
Therefore, the research work has fulfilled the following objectives:

• It has reduced the dimension of feature vectors
• It has successfully implemented fusion based method of content based image

identification

Average Precision Average Recall

Rahimi & Moghaddam (2013)
[33] 29.96.94

Hiremath & Pujari, (2007) [28] 89.019.45

Jalab (2011) [30] 46.112.85

Subrahmanyam et al. (2012)
[34] 5.415.27

Banerjee et al. (2009) [29] 45.417.27

Shenn & Wu (2013) [31] 65.418.27

Walia et al. (2014) [35] 61.518.57

Proposed 8.8149

0

10

20

30

40

50

60

70

80

90

100

V
al

ue
s

Comparison of Precision and Recall for Retrieval with proposed
technique with respect to state-of-the art techniques

Fig. 13. Comparison of average precision and average recall with diverse techniques

Decision Fusion for Classification of Content Based Image Data 135

• The research results have shown statistical significance
• The research results have outperformed the results of state-of-the art techniques

The work may be extended towards content based image recognition in the field of
military, media, medical science, journalism, e commerce and many more.

References

1. Bashir, M.B., et al.: Content-based information retrieval techniques based on grid
computing: a review. IETE Techn. Rev. 30(3), 223–232 (2013)

2. Liao, B., Xu, J., Lv, J., Zhou, S.: An image retrieval method for binary images based on
DBM and softmax classifier. IETE Techn. Rev. 32(4), 294–303 (2015)

3. Aouat, S., Larabi, S.: Outline shape retrieval using textual descriptors and geometric
features. Int. J. Inf. Retr. Res. (IJIRR) 2(4), 60–81 (2012). doi:10.4018/ijirr.2012100105

4. Keyvanpour, M.R., Charkari, N.M.A.: Content based model for image categorization. In:
20th International Workshop on Database and Expert Systems Application, p. 4. IEEE
(2009)

5. Walia, E., Pal, A.: Fusion framework for effective color image retrieval. J. Vis. Commun.
Image R. 25(6), 1335–1348 (2014). doi:10.1016/j.jvcir.2014.05.005

6. Yıldız, O.T., Aslan, O., Alpaydın, E.: Multivariate Statistical Tests for Comparing
Classification Algorithms. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 1–15.
Springer, Heidelberg (2011)

7. Kekre, H.B., Thepade, S., Das, R.K.K., Ghosh, S.: Performance boost of block truncation
coding based image classification using bit plane slicing. Int. J. Comput. Appl. 47(15), 45–
48 (2012). ISSN: 0975-8887

8. Thepade, S., Das, R., Ghosh, S.: Performance comparison of feature vector extraction
techniques in RGB color space using block truncation coding or content based image
classification with discrete classifiers. In: Annual IEEE India Conference (INDICON), pp. 1–6
(2013). doi:10.1109/INDCON.2013.6726053

9. Thepade, S.D., Das, R.K.K., Ghosh, S.: Image classification using advanced block
truncation coding with ternary image maps. In: Unnikrishnan, S., Surve, S., Bhoir, D. (eds.)
Advances in Computing, Communication, and Control. Communications in Computer and
Information Science. Communications in Computer and Information Science, vol. 361,
pp. 500–509. Springer, Heidelberg (2013)

10. Kekre, H.B., Thepade, S., Das, R., Ghosh, S.: Multilevel block truncation coding with
diverse colour spaces for image classification. In: IEEE-International Conference on
Advances in Technology and Engineering (ICATE 2013), pp. 1–7 (2013)

11. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man.
Cybern. 9, 62–66 (1979)

12. Shaikh, S.H., Maiti, A.K., Chaki, N.: A new image binarization method using iterative
partitioning. Mach. Vis. Appl. 24(2), 337–350 (2013)

13. Niblack, W.: An Introduction to Digital Image Processing, pp. 115–116. Prentice Hall,
Eaglewood Cliffs (1998)

14. Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2),
225–236 (2000)

15. Bernsen, J.: Dynamic thresholding of gray level images. In: Proceedings of the International
Conference on Pattern recognition (ICPR 1986), pp. 1251–1255 (1986)

136 R. Das et al.

http://dx.doi.org/10.4018/ijirr.2012100105
http://dx.doi.org/10.1016/j.jvcir.2014.05.005
http://dx.doi.org/10.1109/INDCON.2013.6726053

16. Liu, C.: A new finger vein feature extraction algorithm. In: IEEE 6th International Congress
on Image and Signal Processing (CISP), vol. 1, pp. 395–399 (2013)

17. Ramírez-Ortegón, M.A., Rojas, R.: Unsupervised evaluation methods based on local
gray-intensity variances for binarization of historical documents. In: IEEE 20th International
Conference on Pattern Recognition (ICPR), pp. 2029–2032 (2010)

18. Yanli, Y., Zhenxing, Z.: A novel local threshold binarization method for QR image, In: IET
International Conference on Automatic Control and Artificial Intelligence, pp. 224–227
(2012)

19. Thepade, S., Das, R., Ghosh, S.: A novel feature extraction technique using binarization of
bit planes for content based image classification. J. Eng. 13 (2014). doi:10.1155/2014/
439218. Article ID 439218. Hindawi Publishing Corporation

20. Kekre, H.B., Sarode, T.K., Raul, B.C.: Color image segmentation using Kekreʼs fast
codebook generation algorithm based on energy ordering concept. In: Proceedings of the
International Conference on Advances in Computing, Communication and Control, pp. 357–
362 (2009)

21. Lai, J.Z.C., Liaw, Y.C., Liu, J.: A fast VQ codebook generation algorithm using codeword
displacement. Pattern Recogn. 41(1), 315–319 (2008)

22. Liaw, Y.C., Lo, W., Lai, J.Z.C.: Image restoration of compressed image using classified
vector quantization. Pattern Recogn. 35(2), 329–340 (2002)

23. Nasrabadi, N.M., King, R.A.: Image coding using vector quantization: a review. IEEE Trans.
Commun. 36(8), 957–971 (1998)

24. Foster, J., Gray, R.M., Dunham, M.O.: Finite state vector quantization for waveform coding.
IEEE Trans. Inf. Theory 31(3), 348–359 (1985)

25. Kim, T.: Side match and overlap match vector quantizers for images. IEEE Trans. Image
Process. 1(2), 170–185 (1992). A Publication of the IEEE Signal Processing Society

26. Lai, J.Z.C., Liaw, Y.C., Lo, W.: Artifact reduction of JPEG coded images using
mean-removed classified vector quantization. Signal Process. 82(10), 1375–1388 (2002)

27. ElAlami, M.E.: A novel image retrieval model based on the most relevant features. Knowl.
Based Syst. 24, 23–32 (2011)

28. Hiremath, P.S., Pujari, J.: Content based image retrieval using color, texture and shape
features. In: 15th International Conference on Advanced Computing and Communica-
tions ADCOM, vol. 9, no. 2, pp. 780–784. IEEE (2007)

29. Banerjee, M., Kundu, M.K., Maji, P.: Content-based image retrieval using visually
significant point features. Fuzzy Sets Syst. 160(23), 3323–3341 (2009)

30. Jalab, H.A.: Image retrieval system based on color layout descriptor and Gabor filters. In:
2011 IEEE Conference on Open Systems, pp. 32–36. IEEE (2011)

31. Shen, G.L., Wu, X.J.: Content based image retrieval by combining color texture and
CENTRIST. In: IEEE International Workshop on Signal Processing, vol. 1, pp. 1–4 (2013)

32. Irtaza, A. Jaffar, M.A. Aleisa, E., Choi, T.S.: Embedding neural networks for semantic
association in content based image retrieval. Multimed. Tool Appl. 72(2), 1911–1931 (2014)

33. Rahimi, M., Moghaddam, M.E.: A content based image retrieval system based on color ton
distributed descriptors. Sig. Image Video Process. 9(3), 691–704 (2015)

34. Subrahmanyam, M., Maheshwari, R.P., Balasubramanian, R.: Expert system design using
wavelet and color vocabulary trees for image retrieval. Expert Syst. Appl. 39(5), 5104–5114
(2012)

35. Walia, E., Vesal, S., Pal, A.: An Effective and Fast Hybrid Framework for Color Image
Retrieval, Sensing and Imaging. Springer, New York (2014)

36. Sridhar, S.: Image Features Representation and Description Digital Image Processing,
pp. 483–486. India Oxford University Press, New Delhi (2011)

Decision Fusion for Classification of Content Based Image Data 137

http://dx.doi.org/10.1155/2014/439218
http://dx.doi.org/10.1155/2014/439218

37. Dunham, M.H.: Data Mining Introductory and Advanced Topics, p. 127. Pearson Education,
Upper Saddle River (2009)

38. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: semantics-sensitive integrated matching for
picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

39. Thepade, S., Das, R., Ghosh, S.: Feature extraction with ordered mean values for content
based image classification. Adv. Comput. Eng. (2014). doi:10.1155/2014/454876. Article ID
454876

40. Liu, G.-H., Yang, J.-Y.: Content-based Image retrieval using color difference histogram.
Pattern Recogn. 46(1), 188–198 (2013)

41. Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE Trans.
Commun. 28(1), 84–95 (1980)

42. Zhang, S., et al.: Query specific rank fusion for image retrieval. IEEE Trans. Pattern Anal.
Mach. Intell. 37(4), 803–815 (2015)

43. Bhattacharya, P., Gavrilova, M.: DT-RANSAC: a delaunay triangulation based scheme for
improved RANSAC feature matching. In: Gavrilova, M.L., Tan, C.J.K., Kalantari, B. (eds.)
Transactions on Computational Science XX. LNCS, vol. 8110, pp. 5–21. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41905-8_2

138 R. Das et al.

http://dx.doi.org/10.1155/2014/454876
http://dx.doi.org/10.1007/978-3-642-41905-8_2

Author Index

Agrawal, Vinod Kumar 33
Attene, Marco 86, 97

Bagwari, Ashish 64

Cabiddu, Daniela 97

Das, Rik 121

Ghosh, Saurav 121

Jayashree, H.V. 33

Kanti, Jyotshana 64
Klimenko, Andrey 47

Klimenko, Stanislav 47
Konich, Kira 47

Malofeev, Valery 47

Nikitin, Igor 47
Nikitina, Lialia 47

Samet, Nermin 1
Samet, Refik 1

Thapliyal, Himanshu 33
Thepade, Sudeep 121
Tomar, Geetam Singh 64
Tyul’bashev, Sergey 47

	LNCS Transactions on Computational Science
	Scope

	Editorial
	LNCS Transactions on Computational Science – Editorial Board
	Contents
	Analysis of Relationship Between Modes of Intercomputer Communications and Fault Types in Redundant Computer Systems
	1 Introduction
	2 Models
	2.1 System Model
	2.2 Fault Models
	2.3 Computational Process Model
	2.4 Basic Assumptions and Limitations
	2.5 Main Contributions

	3 An Analysis of Problems Related to Byzantine Fault Type
	3.1 Possibilities of RCS to Counteract the Fault Types
	3.2 Problems Related to Byzantine Fault Type

	4 An Analysis of Modes of Intercomputer Communications
	5 An Analysis of the Relationship Between Modes of Intercomputer Communications and Fault Types
	6 Evaluation and Results
	7 Conclusions
	References

	Efficient Circuit Design of Reversible Square
	1 Introduction
	2 Background on Reversible Logic Gates
	2.1 CNOT or Feynman Gate (FG)
	2.2 Toffoli Gate
	2.3 Peres Gate
	2.4 Reversible Full Adder (RFA)

	3 Proposed Dedicated Reversible Square Circuit
	3.1 Recursive Square Computation Method
	3.2 Proposed Design Methodology

	4 Comparative Analysis
	5 Discussion and Conclusion
	References

	Methods of Registration of Weak Radio Signals
	1 Introduction
	2 Statistical Accumulation
	3 Selection of Single Beam Signals
	4 Cross-Validation of Single Beam Signals
	5 Discussion
	6 Conclusion
	References

	A Novel Multiple Antennas Based Centralized Spectrum Sensing Technique
	Abstract
	1 Introduction
	2 System Description
	3 Proposed System Model
	3.1 Multiple Antennas Based Improved Sensing Detector (MA_ISD)
	3.1.1 Energy Detector with Single Adaptive Threshold (ED_SAT)
	3.1.1.1 Expression of Single Adaptive Threshold

	3.1.2 Energy Detector with Two Adaptive Thresholds (ED_TAT)
	3.1.3 Decision Device (DD)

	3.2 Multiple Antennas Based Centralized Spectrum Sensing (MA_CSS) Technique

	4 Numerical Results and Analysis
	5 Conclusion
	Acknowledgment
	References

	ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel
	1 Introduction
	1.1 Exact and Multi-precision Arithmetic
	1.2 Arithmetic Filtering
	1.3 Lazy Evaluation
	1.4 Mixed Techniques
	1.5 CGAL
	1.6 Key Contribution

	2 Hybrid Number Type
	2.1 Terminology and Definition
	2.2 Implementation

	3 ImatiSTL
	4 Results and Discussion
	4.1 Limitation

	5 Summary and Conclusions
	References

	Processing Large Geometric Datasets in Distributed Environments
	1 Introduction
	2 Related Work
	2.1 Mesh Processing
	2.2 Processing Large Polygon Meshes

	3 The Web-Based Platform
	4 Mesh Transfer Protocol
	5 Parallel Processing
	5.1 Mesh Partitioning
	5.2 Processing Services
	5.3 Output Merging

	6 Distributed Input Dataset
	6.1 Input Repartitioning
	6.2 Processing Services
	6.3 Distributed Output Merging

	7 Mesh Simplification
	8 Results and Discussion
	8.1 Limitations

	9 Conclusions
	References

	Decision Fusion for Classification of Content Based Image Data
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Techniques
	3.1 Feature Extraction with Image Binarization
	3.2 Feature Extraction with Vector Quantization

	4 Matching
	5 Datasets Used
	6 Results and Discussions
	7 Conclusions
	References

	Author Index

