
Reusing Model Transformations Through
Typing Requirements Models

Juan de Lara1, Juri Di Rocco2(B), Davide Di Ruscio2, Esther Guerra1,
Ludovico Iovino3, Alfonso Pierantonio2, and Jesús Sánchez Cuadrado1

1 Universidad Autónoma de Madrid, Madrid, Spain
2 University of L’Aquila, L’Aquila, Italy

juri.dirocco@univaq.it
3 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. Model transformations are key elements of Model-Driven
Engineering (MDE), where they are used to automate the manipula-
tion of models. However, they are typed with respect to concrete source
and target meta-models and hence their reuse for other (even similar)
meta-models becomes challenging.

In this paper, we describe a method to extract a typing requirements
model (TRM) from an ATL model-to-model transformation. A TRM
describes the requirements that the transformation needs from the source
and target meta-models in order to obtain a transformation with a syn-
tactically correct typing. A TRM is made of three parts, two of them
describing the requirements for the source and target meta-models, and
the last expressing dependencies between both. We define a notion of con-
formance of meta-model pairs with respect to TRMs. This way, the trans-
formation can be used with any meta-model conforming to the TRM. We
present tool support and an experimental validation of correctness and
completeness using meta-model mutation techniques, obtaining promis-
ing results.

1 Introduction

Model-Driven Engineering [19] (MDE) employs models as first-class assets dur-
ing the software development life cycle. Models are typically constructed using
Domain-Specific Languages (DSLs), specially tailored to a particular domain. In
MDE, the abstract syntax of a DSL is described through a meta-model, which
describes the structure of the models considered valid. Therefore, it does not
come as a surprise that meta-models proliferate in MDE as a means of for-
malising application domains [23]. Sometimes, these meta-models are variants
of known languages like state-machines or workflow languages [17], for which
services, like model transformations, already exist.

Model transformations are key to MDE, because they can leverage automa-
tion in model manipulation and management. Model transformations are typed
with respect to the involved (source and target) meta-models. Therefore, reusing
transformations is difficult, because they are not immediately applicable to other
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 264–282, 2017.
DOI: 10.1007/978-3-662-54494-5 15

Reusing Model Transformations Through Typing Requirements Models 265

meta-models, different from the ones they were initially conceived for. Hence,
techniques to enhance transformation reusability are needed [1,15] since devel-
oping (non-trivial) transformations from scratch is typically a complex and time-
consuming task.

Some works propose transformation reuse based on concepts [9] to express
meta-model requirements, and bindings from those concepts into concrete meta-
models. The binding induces an adaptation of the transformation, which becomes
applicable to the concrete meta-models. However, concepts have limitations: they
have to be manually created, and they present limited expressiveness, as for
instance when variability must be described (e.g., when a feature can be typed
according to a set of allowed types). Other approaches extract effective meta-
models [20] by pruning unused typing information of the source/target domains
according to the syntactical requirements in the transformation. Similarly to
concept-based techniques, they also present limited expressiveness, although the
procedure can be partly automated.

In this paper, we propose using a transformation typing requirements model
(TRM) to express the syntactical needs of a transformation with respect to its
source and target domains. TRMs support variability regarding, e.g., the con-
crete types of attributes, the inheritance relations between classes, the allowed
targets for references, or the existence of classes with certain features but for
which the class name is unknown or irrelevant. We propose an algorithm to auto-
matically infer a TRM from an ATL model-to-model transformation, as ATL is
one of the most widely used transformation languages nowadays [14]. Moreover,
as ATL transformations consider several meta-models (typically source and tar-
get), dependencies between the allowed feature types in the source and target
meta-models are required. This way, the transformation can be reused as-is with
any pair of meta-models conforming to the extracted TRM.

The main advantages of TRMs with respect to existing techniques are:
(i) TRM extraction is automatic; (ii) source and target meta-models are not
needed to extract the TRMs; (iii) TRMs permit more expressive requirements
(e.g., variability) that lead to improved reuse possibilities; and (iv) dependencies
cross-linking requirements over source and target meta-models can be given in
terms of feature models.

A preliminary evaluation is provided by means of a prototype tool. For this
purpose, TRMs of third-party transformations have been extracted and variants
of source and target meta-models have been defined by means of mutation tech-
niques. The correctness and completeness of the method is empirically assessed
by measuring the degree in which the transformation is correctly typed with
meta-models conformant to the TRM, and incorrectly with meta-models not
conformant to the TRM. Correctness of typing is checked with the anATLyzer

tool as oracle [6]. The evaluation shows promising results, encouraging further
investigation of transformation reuse based on TRMs.

Paper Organization. Section 2 discusses applicability scenarios. Section 3
introduces TRMs, and a notion of conformance. Section 4 explains how to extract
TRMs from ATL transformations. Section 5 validates the approach over a set

266 J. de Lara et al.

of transformations developed by third parties. Section 6 compares with related
work and Sect. 7 concludes the paper.

2 Motivating Scenarios and Running Example

Figure 1 describes our approach for model transformation reuse. Model transfor-
mations are typed with respect to source and target meta-models. However, these
meta-models might not be available (e.g., for transformations found in code repos-
itories like GitHub or BitBucket), or we might want to reuse the transformation
with other meta-models, different from the ones the transformation was designed
for. Therefore, given an existing transformation, we extract its typing require-
ments model (TRM, see label 1) that consists of three parts: the requirements
for the source and target meta-models, and a compatibility model specifying the
dependencies between them. The TRM can be used in different ways. For exam-
ple, to query an existing meta-model repository in order to find conforming meta-
model pairs (see 2a). In particular, such queries are OCL expressions [16], gener-
ated from the TRM. Any meta-model pair 〈MMs,MMt〉 conforming to the TRM
can be used as source/target meta-models of the transformation. The TRM can
also be used to generate suitable meta-model pairs (see 2b), so that the transfor-
mation can be executed on instances of them (see 3).

extract
TRM

M-to-M
transform.

source
MM reqs

target
MM reqs

compatibility

TRM

discover
compatible
meta-models

generate
compatible
meta-modelsMMs MMt

execute
transformation

«conforms»

1

2a

2b

3

MM
repository

Fig. 1. Overview of our approach

We illustrate our proposal
using ATL since it is one
of the most widely accepted
transformation languages. How-
ever, the approach can be
adapted to most of the exist-
ing model-to-model transforma-
tion languages. ATL [14] pro-
vides a mixture of declarative
and imperative constructs to
develop model-to-model trans-
formations. Listing 1 shows our
running example, partially taken
from the ATL Zoo1. The transformation creates a table with the number of times
each method in a piece of Java code is called within any declared method. The
transformation is defined by a module specification consisting of a header section
(lines 1–2), helpers (lines 4–7) and transformation rules (lines 9–23). The header
specifies the source and target models of the transformation together with their
corresponding meta-models. This way, the JavaSource2Table module is a one-
to-one transformation, which generates a target model conforming to a Table

meta-model from a source JavaSource model (see line 2).

1 http://www.eclipse.org/atl/atlTransformations/#Java2Table.

http://www.eclipse.org/atl/atlTransformations/#Java2Table

Reusing Model Transformations Through Typing Requirements Models 267

1module JavaSource2Table;
2create OUT : Table from IN : JavaSource;
3
4helper context JavaSource!MethodDefinition
5 def : computeContent(col : JavaSource!MethodDefinition) : String =
6 self.invocations->select(i | i.method.name = col.name
7 and i.method.class.name = col.class.name)->size().toString();
8
9rule Table {

10 from s : JavaSource!ClassDeclaration
11 to t : Table!Table (rows <- s.methods)
12}
13rule MethodDefinition {
14 from m : JavaSource!MethodDefinition
15 to row : Table!Row (
16 cells <- Sequence{JavaSource!MethodDefinition.allInstances()
17 ->collect(md | thisModule.DataCells(md, m))}
18)
19}
20lazy rule DataCells {
21 from md: JavaSource!MethodDefinition, m: JavaSource!MethodDefinition
22 to cell: Table!Cell (content <- m.computeContent(md))
23}

Listing 1. Fragment of a sample ATL transformation

Helpers and rules are the main ATL constructs to specify the transformation
behaviour. The source pattern of rules (e.g., line 10) consists of types from
the source meta-model. Thus, a rule gets applied for any instance of the given
source types that satisfies the optional OCL rule guard. Rules also specify a
target pattern (e.g., line 11) indicating the target objects created by the rule
application, and a set of bindings to initialize their features (attributes and
references). For example, the binding rows ← s.methods (line 11) initializes the
rows feature of the target type Table with the elements created by the rules
applied on the input elements referred by s.methods.

Rule MethodDefinition (lines 13–19) creates a target Row from each source
MethodDefinition. The binding in this rule assigns to the reference cells a sequence
of elements created by an OCL expression, which selects all the source Method-

Definition objects and apply on them the lazy rule DataCells. Differently from
matched rules (like rules Table and MethodDefinition), lazy rules are executed only
when explicitly called and use the passed parameters. The DataCell rule takes
two MethodDefinition objects as input and generates a target Cell containing a
number calculated by the helper of lines 4–7. Helpers are auxiliary operations
that permit defining complex model queries using OCL. In particular, the helper
computeContent returns a string with the number of occurrences of the received
MethodDefinition object.

Our goal is to extract, from this transformation, a description (a TRM) of
the features needed in source and target meta-models for the transformation to
work. This way, the transformation can be reused with any meta-model satisfying
the TRM, and not just with the ones used for its definition. Details about the
TRM are given in Sect. 3, whereas the algorithm able to extract TRMs from
ATL transformations is detailed in Sect. 4.

268 J. de Lara et al.

3 Representing Transformation Typing Requirements

This section explains how we describe transformation typing requirements
through TRMs. TRMs contain three parts, two describing the typing require-
ments from source and target meta-models (Sect. 3.1), and a compatibility model
relating both (Sect. 3.2).

3.1 Describing Single Meta-Model Requirements

Domain Typing Requirements. We use the meta-model in Fig. 2 to repre-
sent structural requirements for single meta-models. Its instances, called domain
typing requirements models (DRMs), resemble meta-models but where some deci-
sions can be left open if they are irrelevant for the problem at hand, like class
names, the type of attributes, the target of references, or the cardinality of fea-
tures. This way, a potentially infinite set of meta-models may conform to a DRM.

We consider two kinds of classes: named and anonymous. While the former
have a name, in the latter the name is irrelevant as the class can have any name.
Classes can be flagged as abstract, for which we use a three-valued enum type
UBoolean which allows us to require the class to be abstract, concrete or any. A
class defines a collection of features. The flag mandatoryAllowed permits a class to
have more mandatory fields than those indicated in collection feats, while there is
no constraint concerning the number of extra non-mandatory fields. A class may
defer the conformance checking to all its concrete subclasses, which is indicated
by the subsAllowed flag. A class may be required to inherit (directly or indirectly)
from another class, and this is specified through relation ancs. Conversely, a
class is forbidden to inherit from those in relation antiacs. More precisely, if B ∈
A.antiancs, then we reject meta-models in which B is an ancestor of A, or both
share a common subclass.

Features have minimum and maximum cardinality, which can be a number,
many, or we might allow any cardinality. If the maximum is many, it can also be

Fig. 2. Domain typing requirements meta-model (excerpt)

Reusing Model Transformations Through Typing Requirements Models 269

Fig. 3. DRM examples: (a) Source DRM of Listing 1. (b) Target DRM of Listing 1.
(c) Multiple compatible reference targets.

specified whether the feature should be ordered or unique using UBoolean values.
For the case of a number, we can define whether the cardinality is allowed to
be lower (allowLess) or upper (allowMore) than this number. Features always have
a name, and optionally, they may have a type which can be Reference, Attribute
or both. References can indicate the admissible compatible target types, some
of which can be anonymous classes. Attributes can specify their data type, or it
can be left open using the AnyDataType class.

Example. Figure 3 shows three DRM examples. A specific concrete syntax has
been adopted to denote additional characteristics. In particular, in the upper-
right corner of a class is specified whether (a) it can be either abstract or concrete
(AC), only abstract (A), or only concrete (C); (b) it can defer the conformance
checking to its subclasses (encircled inheritance-like triangle); and finally (c)
it forbids extra mandatory features (crossed-out circle). In addition, the anti-
ancestor relation is shown as a crossed-out red inheritance relation.

DRM (a) has been extracted from the source domain of the transformation
in Listing 1. The extraction procedure is described in Sect. 4. The DRM requires
two classes named ClassDeclaration and MethodDefinition, which cannot inherit from
each other otherwise the transformation would raise a runtime error due to mul-
tiple matches on the same element, that is not allowed in ATL. The latter class
should have an attribute name whose type can be any, and two references named
class and invocations to anonymous classes (i.e., their name is unimportant). The
lower bound of invocations is open. In its turn, ClassDeclaration requires a feature
methods which can be an attribute or a reference (we use a “?” prefix to denote
this). The DRM also demands four anonymous classes for which only certain
features are required. These classes could be matched by the same or different
classes in concrete meta-models, or even by the same classes conforming to the
named classes.

DRM (b) has been extracted from the target domain of Listing 1. It requires
three named concrete classes. Class Table requires a feature rows which can be an
attribute or a reference. As shown in Sect. 3.2, the transformation requires the
types of Table.rows and ClassDeclaration.methods in DRM (a) to be correlated, for

270 J. de Lara et al.

which we will introduce a compatibility model. None of the classes are allowed to
have extra mandatory features (which is represented with a crossed-out circle).

Finally, DRM (c) shows that a reference can be required to be compatible
with several target types. In a concrete meta-model, this could be realized by
reference members targeting a (possibly indirect) common superclass of Method-

Definition and Attribute.

Meta-Model Conformance. Next, the notion of conformance of a meta-model
with respect to a DRM is introduced. For this purpose we define predicate
confMM which applies to a requirements model RM and a meta-model MM ,
and checks if for every Class in RM , there is a conforming class in MM .

confMM(RM,MM) � ∀RC ∈ RM ∃C ∈ MM • confC(RC,C) (1)

where RC is a Class in RM , C is a class in MM , and we use the predicate confC
to check conformance of the latter with respect to the former. As defined in
Eq. (2), this accounts to assessing conformance of names (confname), abstractness
(confabs), features (conffeat) and ancestors (confancs). In the case of abstract
meta-model classes, compatibility may also come from the compatibility of all
their concrete subclasses (confsubs). Instead, for concrete meta-model classes,
there is no need to check the compatibility of their subclasses because if a class
is conformant, so will be its subclasses as they inherit the class features and
ancestors. In the following equations, we use isTypeOf to check if the type of
an object is compatible with the given type parameter. Moreover, given a class
C ∈ MM , C.feats∗ yields its owned and inherited features, C.ancs∗ yields its
direct and indirect superclasses, and C.subs∗ yields the set of its direct and
indirect subclasses including C.

confC(RC,C) � confname(RC,C) ∧
((confabs(RC,C) ∧ conffeat(RC,C) ∧ confancs(RC,C)) ∨

confsubs(RC,C))

(2)

confname(RC,C) � RC.isTypeOf(AnonymousClass) ∨ RC.name = C.name (3)

confabs(RC,C) � (RC.isAbstract = true =⇒ C.isAbstract = true) ∧
(RC.isAbstract = false =⇒ C.isAbstract = false)

(4)

conffeat(RC,C) � ∀rf ∈ RC.feats ∃f ∈ C.feats∗ • confF(rf, f) ∧
¬RC.mandatoryAllowed =⇒

|{fm | fm ∈ C.feats∗ ∧ fm.isMand}|
= |{fm | fm ∈ RC.feats ∧ fm.isMand}|

(5)

confancs(RC,C) � ∀RCA ∈ RC.ancs, ∃CA ∈ C.ancs∗ • confC(RCA, CA) ∧
∀RCA ∈ RC.antiancs, ∀ C′ ∈ MM • confC(RCA, C

′) =⇒
C′ /∈ C.ancs∗ ∧ �C′′ ∈ MM • {C,C′} ⊆ C′′.ancs∗

(6)

Reusing Model Transformations Through Typing Requirements Models 271

confsubs(RC,C) � RC.subsAllowed ∧ RC.isAbstract ∈ {any, true} ∧
C.isAbstract = true ∧
∀C′ ∈ C.subs∗ • C′.isAbstract = false =⇒

(conffeat(RC,C′) ∧ confancs(RC,C′))

(7)

In particular, predicate confname (Eq. (3)) requires classes to have the same
name, or if RC is an AnonymousClass, no name checking is performed. Predicate
confabs (Eq. (4)) checks compatibility of the isAbstract flag, which may have value
true, false or any. Equation (5) checks that every feature of RC is matched by
some owned or inherited feature in C. If RC forbids additional mandatory fea-
tures (i.e., mandatoryAllowed is false), then the set of mandatory features of C
should be exactly that required by RC2. We use f.isMand to check if feature
f is mandatory. Equation (6) checks that the ancestor set of C includes classes
matching those in RC.ancs, and none from RC.antiancs. Finally, confsubs checks
conformance when RC allows abstractness and subsAllowed is true. In that case,
if C is abstract, then the conformance relation is required for all its concrete sub-
classes. Typically, subsAllowed will be true on classes of the input transformation
domain, whenever no isTypeOf OCL operator is used on them.

For features, the confF predicate in Eq. (8) checks the conformance of their
names (which are always known), cardinalities (using predicates confmin and
confmax), and types (either there is no type requirement, in which case any
reference and attribute would match, or some allowed type in types should match
as reference or as attribute).

confF(rf, f) � rf.name = f.name ∧ confmin(rf, f) ∧ confmax(rf, f) ∧
(rf.types = nil ∨ ∃t ∈ rf.types •

(t.isTypeOf(Reference) ∧ confref(t, f)) ∨
(t.isTypeOf(Attribute) ∧ confatt(t, f)))

(8)

A reference f ∈ MM matches t ∈ RM if, in addition to the conditions in Eq. (8),
both have compatible target types. This is so if t.targets is empty as any target
type would be valid, or if every target in t.targets is matched by the target class
of f or a subclass. Predicate confref in Eq. (9) checks this compatibility condi-
tion. Similarly, predicate confatt (omitted) checks the compatibility of attribute
types. Hence, this predicate holds if no specific attribute type is required, if it is
AnyDataType, or if the type of f is compatible with that of rf .

confref(t, f) � ∀RC ∈ t.targets • ∃D ∈ f.target.subs∗ • confC(RC,D) (9)

We omit the formulation of predicates confmin(rf, f) and confmax(rf, f) for space
constraints. The former holds when the required minimum cardinality of a fea-
ture is AnyCardinality, or when the minimum cardinalities of f and rf are the
same (or less or more if allowed). The latter predicate is similar but for the
2 For simplicity, this formalization ignores opposite references. In practice, we exclude

from this set the mandatory features which are opposite of already matched
references.

272 J. de Lara et al.

Fig. 4. Conformance examples with respect to DRM (a) in Fig. 3.

maximum cardinality of features. Moreover, in this case, rf can also be Many (a
collection), for which (non-)uniqueness and (non-)ordered is checked if required.

Example. Figure 4 shows conforming (a, b, c) and non-conforming (d) meta-
models with respect to DRM (a) in Fig. 3. Meta-model (a) conforms to the DRM
because both MethodDefinition and ClassDeclaration inherit a name attribute from
NamedElement. Moreover, MethodInvocation conforms to one of the anonymous
classes in the DRM, MethodDefinition conforms to another anonymous class, and
ClassDeclaration to two of them. The feature methods in the DRM, which can be
either a reference or an attribute, has been matched by the meta-model reference
ClassDeclaration.methods.

Meta-model (b) also conforms to the DRM. In this case, the name attribute
is directly owned by the classes and has different types. In addition, there is
no class MethodInvocation, whose role is played by MethodDefinition. This way,
the four anonymous classes in the DRM are matched by the two meta-model
classes. Meta-model (c) is conforming because all concrete subclasses of the
abstract class MethodDefinition structurally conform to MethodDefinition in the
DRM. Finally, meta-model (d) does not conform because NestedMethod inherits
from both MethodDefinition and ClassDeclaration, which is forbidden by the antiancs

relations in the DRM. With reference to the transformation in Listing 1, some
instances of this meta-model could cause a runtime error as NestedMethod objects
would be matched by rules Table and MethodDefinition.

In essence, the proposed conformance relation performs a structural compar-
ison of classes, as required features can be owned or inherited by meta-model
classes. However, it does not rely on an explicit mapping between classes and
features of RM and MM . While several classes in a meta-model may conform
to an anonymous class in RM , our conformity just checks that any such class
exists. An explicit definition of the mapping, allowing adaptation (e.g., class
renamings) through adapters [4], is left for future work.

Reusing Model Transformations Through Typing Requirements Models 273

Fig. 5. Excerpt of the compatibility model for the running example.

3.2 Expressing Compatibility Requirements

The DRM implicitly describes possible choices for a concrete meta-model to
satisfy the conformance relationship introduced above. However, a given choice
for an open element of the source (or target) DRM may forbid some choices of
the target (or source) DRM in case such choices break the syntactic correctness
of the transformation. For instance, in Listing 1, the binding rows ← s.methods

constrains the possible types of the rows and methods features to those that yield
a non-faulty execution.

Hence, we gather the inter-dependencies between the source and target DRMs
in a compatibility model which makes explicit how the choices for one DRM
restrict the choices in the other DRM. We represent this compatibility model
as a feature model where the different choices are depicted as nodes and the
compatibility requirements are shown as dependencies between child nodes, so
that the occurrence of a child node forces the presence of the dependent nodes.

Figure 5 shows an excerpt of the compatibility model for the running exam-
ple, which focuses on the admissible types for attributes (i.e., data types) and
references (i.e., target classes). Feature ClassDeclaration.methods can be either an
attribute or a reference, as it is only used in line 11 as part of a binding. If
it is an attribute, then it can have any data type (the figure only shows Inte-
ger and Real). However, the particular selection restricts the choices for feature
Table.rows in the target DRM to keep the transformation syntactically correct.
Similarly, if methods is a reference with type MethodDefinition, then the type of
Table.rows must be Row because, otherwise, the binding will assign an incorrect
target value. These dependencies also work from target to source.

4 Extracting Typing Requirements from ATL
Transformations

This section explains the procedure for extracting TRMs out of existing ATL
transformations. To this end, we rely on the Attribute Grammar formalism,

274 J. de Lara et al.

Table 1. Fragment of the developed ATL attribute grammar (AGATL)

Productions Computation Rules
p1 〈matchedRule〉::=

rule ID { 〈inPattern〉 〈outPattern〉* }
p2 〈inPattern〉::= from 〈inPatternElement〉*
p3 〈InPatternElement〉::=

ID:〈oclModelElement〉
type(〈InPatternElement〉) ←
addClassToSourceDRM(type(〈oclModelElement〉))

p4 〈outPattern〉::= to 〈outPatternElement〉
p5 〈OutPatternElement〉::=

ID:〈oclModelElement〉 (〈binding〉*)
type(〈OutPatternElement〉) ←
addClassToTargetDRM(type(〈oclModelElement〉)

p6 〈binding〉::=
ID ’<-’ 〈oclExpression〉;

leftType ← createFeature(name(ID), type(〈oclExpression〉))
rightType ← type(〈oclExpression〉)
type(〈bindings〉) ← addClassToTargetDRM(owner(leftType))
analyseCompatibilityNodes(leftType, rightType)

p7 〈oclModelElement〉::= ID1!ID2 type(〈oclModelElement〉) ← createClass(name(ID2))
p8 〈oclExpression〉::=

〈navigationOrAttributeCallExp〉 |
〈oclModelElement〉 | ...

p9 〈navigationOrAttributeCallExp〉::=
〈oclExpression〉.ID;

type(〈oclExpression〉) ←
if (isNavigationOrAttributeCallExp(〈oclExpression〉) then
createReference(type(〈oclExpression〉), ”AnonymousClass”)

type(〈navigationOrAttributeCallExp〉) ←
if (isOperation(name(ID))) then
createFeatureByOperation(
name(ID), getReferenceClass(〈oclExpression〉))

else
createFeature(name(ID), getReferenceClass(〈oclExpression〉)))

which represents an elegant and powerful mechanism to describe computations
over syntax trees [21].

Attribute grammars extend context-free grammars by associating attributes
with the symbols of the underlying context-free grammar. The values of such
attributes are computed by rules, which are executed while traversing the syntax
trees as needed. More formally, let G = (N,T, P, S) be a context-free grammar
for a language LG where N is the set of non-terminals, T is the set of terminals,
P is the set of productions, and S ∈ N is the start symbol. An attribute grammar
AG is a triple (G,A,AR), where G is a context-free grammar, A associates each
grammar symbol X ∈ N ∪ T with a set of attributes, and AR associates each
production R ∈ P with a set of attribute computation rules. While traversing
syntax trees, values can be passed from a node to its parent (by means of syn-
thesized attributes), or from the current node to a child (by means of inherited
attributes). Attribute values can be assigned, modified, and checked at any node
in the considered syntax tree.

Table 1 shows a fragment of the ATL attribute grammar (AGATL) we
have developed to create TRMs while traversing the syntax tree of the con-
sidered ATL transformations. It is important to remark that the shown
grammar is a simplification of the real one. The aim of such a simplification
is to give a flavour of how the proposed extraction mechanism works, without
compromising the readability of the explanation. However, the developed tool

Reusing Model Transformations Through Typing Requirements Models 275

Fig. 6. A sample AGATL parse tree

available online3 takes into account all the productions defined for the actual
AGATL by implementing all the concepts presented in Sect. 3.

The first column of Table 1 contains ATL grammar productions. For each pro-
duction, computation rules are given. The defined computations aim at inferring
the value of the attribute type of the parsed elements and thus generating the
DRMs as presented in Sect. 3.1. The attribute type behaves both as inherited
and synthesized, thus it is initialized during a top-down phase, and it is updated
during a bottom-up phase.

Figure 6 shows a fragment of the AGATL parse tree related to the rule Table

of the transformation given in Listing 1. Each node of the tree is decorated with
the corresponding computation rules according to the grammar given in Table 1.
Such computation rules makes use of the auxiliary functions described below,
developed to properly create and update elements in the TRM while traversing
the syntax tree:

� createClass(name: String): it creates and returns a new class named name.
The function is used in the production p7 to manage the non-terminal
〈oclModelElement〉 like JavaSource!ClassDeclaration and Table!Table of the sample
ATL transformation. The actual DRMs including the newly created classes are
decided later in the process while traversing the tree bottom-up.

� addClassToSourceDRM(c: Class) and addClassToTargetDRM(c: Class): they
add a new class of type c in the source and target DRM, respectively. They are
used in the production p3 to manage the non-terminal 〈InPatternElement〉 like the
element s:JavaSource!ClassDeclaration, and in p5 for managing 〈OutPatternElement〉

3 http://github.com/totem-mde/totem.

http://github.com/totem-mde/totem

276 J. de Lara et al.

like Table!Table. In both cases, the new classes previously generated by the func-
tion createClass (e.g., ClassDeclaration and Table) are added in the correspond-
ing DRMs. The value of the mandatoryAllowed attribute for the created classes
is specified as true (false) for those added in the source (target) DRMs. The
value of the isAbstract attribute is specified as Any for the classes added in the
source DRMs, and false otherwise. The antiancs relation is set between any non-
anonymous classes of the source domain, which were created by the production
p2 applied on 〈inPattern〉 elements consisting of only one 〈inPatternElement〉.
� isNavigationOrAttributeCallExp(o: OclExpression): since the non-terminal ele-
ment 〈oclExpression〉 can be matched in several cases (see production p8), this
function checks if the input OCL expression is a 〈navigationOrAttributeCallExp〉.
Examples of 〈navigationOrAttributeCallExp〉 are i.method.name and s.methods, which
use the infix “.” operator to call properties and to navigate across association
ends, respectively.

� getReferenceClass(o: OclExpression): it returns the class of the DRM being
generated related to the input OCL expression.

� isOperation(c: String): it checks if the input string is the name of an OCL
operation (e.g., size, sum, and exists) defined over OCL data types. The func-
tion is used in the production p9 to check if the last part of the matched
〈navigationOrAttributeCallExp〉 is an operation. If it is not (e.g., name in the expres-
sion i.method.name) then a new feature is added in the class, which is being cre-
ated because of the matched 〈oclExpression〉 element (e.g., i.method). If isOperation
returns true then a new feature is created by means of the createFeatureByOp-
eration function (see below).

� createFeature(name: String, c: Class): it creates a new feature typed by the
input class c. It is used in the productions p6 and p9. The former is for managing
the non-terminal 〈binding〉 like rows <- s.methods at line 11 of Listing 1, whereas
the latter is for managing the non-terminal 〈NavigationOrAttributeCallExp〉 like
i.method.name at line 6. In the case at line 11, a new feature named rows is added
in the target DRM and its type is inferred from the type of the OCL expression
s.methods. In the case at line 6, the production p9 would match i.method with
〈oclExpression〉 and name with ID. Since name is not an operator, a new feature
named name will be created in the class referred by the reference i.method. Con-
cerning the cardinality of the created features, when a Number element is created,
the corresponding attribute allowMore is true in the minimum cardinality of the
source DRM, or in the maximum cardinality of the target DRM. The value of
the attribute allowLess is true in the maximum cardinality of the source DRM, or
in the minimum cardinality of the target DRM.

� createFeatureByOperation(opName: String, c: Class): it creates a new feature
and its cardinality is specified according to the operation name given as input.
For instance, if the operation is size, then it means that the matched expression
refers to a collection and, consequently, the max cardinality of the created feature
has to be Many.

Reusing Model Transformations Through Typing Requirements Models 277

� createReference(f: Feature): given a previously created feature as input, it
specializes it as a Reference element. It is used in p9 in case the matched
〈oclExpression〉 is a 〈navigationOrAttributeCallExp〉. In such a case, the previously
created feature has to be specialized to a reference typed with a new Anonymous-

Class.

� analyseCompatibilityNodes(left: Class, right: Class): it is used in the production
p6 for adding elements in the compatibility model being generated. In particular,
it does a case analysis between the left and right types of the matched 〈binding〉
element by checking compatibility issues like cardinality or problems regarding
the types of resolving rules. Then, it creates the corresponding nodes of the
feature model accordingly.

5 Implementation and Validation

The approach has been implemented as an Eclipse plugin called TOTEM. This
is able extract a TRM from an ATL transformation, and check the conformance
of meta-models with respect to the TRM. The tool, a screencast demonstration,
and the evaluation results are available at http://github.com/totem-mde/totem.

Next, we evaluate the precision of our TRM extraction process and the flex-
ibility of the conformance relationship. While a formal proof of correctness and
completeness of the TRM extraction method would be desirable and will be
tackled in future work, ATL is an unformalised language4. Therefore, we opted
for an empirical evaluation using mutation-based testing. This has the advantage
of validating the approach in practice, testing the specificities of real transfor-
mations and the particularities of the EMF framework (e.g., opposite references,
compositions, etc.).

We use the following ATL transformations in our evaluation: JavaSource2Table
(the original version of the running example), PetriNet2PNML (a translation from
Petri nets to the PNML document format), KM32EMF (a conversion between
OO formalisms), and HSM2FSM (a flattening of hierarchical state machines).
The selection criterion was to choose transformations written by a third-party,
with no errors or very easily fixable not to introduce a bias. In particular, the
first three transformations belong to the ATL Zoo, while the latter is presented
in [2].

For each transformation, we extract its TRM (i.e., source and target DRMs
and compatibility model) using TOTEM. Then, we generate first-order mutants5

of the original source and target meta-models (which are also available in the
ATL Zoo together with the transformations) by systematically applying the
meta-model modifications identified in [3]. Our aim is generating many slightly
different variants of the original meta-models, so that some break the transfor-
mation, while others do not. Finally, we evaluate whether our algorithm correctly
4 Some efforts exist to express the execution semantics of ATL by compilation into

Maude [22]. However, formal typing rules for ATL, including OCL, are not available.
5 First-order mutants are obtained by applying a mutation operator to the original

artifact once.

http://github.com/totem-mde/totem

278 J. de Lara et al.

classifies each mutant as conformant when the transformation can use it safely,
and non-conformant otherwise. To determine if the classification is correct, we
use the anATLyzer [6] ATL static type checker as an oracle of the typing rela-
tionship between the mutated meta-model and the transformation.

For each meta-model mutant, we may obtain one of the following results:
our conformance method correctly categorizes the mutant as conformant (true
positive, TP) or non-conformant (true negative, TN), or it incorrectly categorizes
the mutant as conformant (false positive, FP) or non-conformant (false negative,
FN). Then, we compute precision (an indicator of correctness) as #TP

#TP+#FP , and
recall (an indicator of completeness) as #TP

#TP+#FN . The transformations, meta-
models and scripts to run the experiment, as well as the evaluation results, are
available in the tool website.

Table 2. Evaluation results.
JavaSource2Table HSM2FSM PetriNet2PNML KM32EMF

Mutants 141 316 325 2,515

True
positives

70 150 185 1,785

True
negatives

64 154 131 695

False
positives

7 12 9 35

False
negatives

0 0 0 0

Precision 91% 93% 95% 98%

Recall 100% 100% 100% 100%

Conforming 70 150 185 1,785

Non-
conforming

62 141 113 684

Incompatible 2 13 18 11

Table 2 summarizes the
obtained results. There are
no false negatives, and
thus recall is 100%, sig-
nifying that our method
classifies correctly non-
conforming meta-models as
such. There are some false
positives though, meaning
that some non-conformant
meta-models get incorrectly
classified as conformant,
and the transformation
may raise runtime errors if
executed with them. Nev-
ertheless, the overall precision is still high. An example of false positive occurs
in the expression i.method.name of the running example (line 6). In the origi-
nal meta-model, the name attribute is compulsory, but one meta-model mutant
relaxes this cardinality to 0..1. The extracted DRM is not precise enough to put
any restriction about the cardinality, however anATLyzer does signal this typ-
ing problem, and thus it is reported as a false positive. We have observed that
false positives occur due to limitations in the extraction process. To solve these
cases, we plan to combine our TRM extraction mechanism with information
from anATLyzer’s static analysis. However, this is only possible if the source
and target meta-models are available.

To analyse the effects of the mutations, the second and third last rows of
the table show the number of conforming and non-conforming generated meta-
model mutants. The numbers are comparable in the first three transformations.
Notably, there is a high number of conforming meta-models correctly classified
by our algorithm, which means that we can reuse the transformations with many
meta-models (more than 2,000) different from the ones used to develop the trans-
formations. The last row of the table shows how many meta-models individually
conform to the DRMs but do not satisfy the compatibility model. This shows
the usefulness of this model.

Reusing Model Transformations Through Typing Requirements Models 279

We have manually revised the extracted DRMs and some mutants to analyse
whether the evaluation demanded a flexible typing from our conformance rela-
tionship. We found several interesting cases. For instance, PNML2PetriNet exer-
cised the subsAllowed flag (illustrated in Fig. 4(c) for the running example), since
some features of an abstract class Arc were located in all subclasses. Mutations
like pull meta-property, push meta-property, inline meta-class and flatten hier-
archy generate variants which require structural typing to enable conformance.
All these cases were correctly handled by our conformance algorithm.

Threats to Validity. A few aspects may threat the internal validity of the
experiment. The number of transformations in the evaluation is low, and it
will be expanded in future evaluations. However, our first results are promising
and encourage us to follow this line of research. In any case, the number of
generated meta-model mutants is relatively high (around 3,300). Still, the set of
considered meta-model mutation operators might be not complete, potentially
preventing exercising all features of our conformance relationship. Finally, we use
anATLyzer as oracle to well-typedness. Although anATLyzer has been reported
to have high precision and recall [6–8], it is not infallible. However, we have
manually revised the dubious cases and have not find any incorrect result.

6 Related Work

The closest related work is by Zschaler [24], who uses logic to express meta-
model requirements extracted from toy in-place transformations. Instead, we
use a model to represent requirements. The advantage is that we can process
those models to, e.g., generate OCL queries, check meta-model conformance,
or synthesize meta-models. Our TRM includes abstractions to express common
model-to-model transformation requirements (e.g., that a class may have extra
mandatory features), and includes a compatibility model, which is novel. Finally,
extracting the requirements from ATL transformations is more challenging as we
need to deal with OCL expressions, mechanisms like automated binding resolu-
tion, and dependencies between meta-models.

In the previous work of some of the authors [4,5], we developed the notion
of concepts to enable transformation reuse. Concepts are meta-models repre-
senting the transformation interface, which need to be bound to meta-models.
Instead, in this work we propose using TRMs, which provide further flexibility to
express meta-model requirements, like (dis-)allowing extra mandatory features
in classes, or declaring features which can be references or attributes. While bind-
ings may encode some of these requirements, the TRMs make explicit constraints
that bindings ought to obey. Moreover, concepts lack the notion of compatibility
model. On the other hand, bindings permit bridging heterogeneities between con-
cepts and concrete meta-models, while resolving heterogeneities between TRMs
and meta-models is future work.

Other approaches to reusability [10,12] are based on establishing a subtyping
relationship or binding between the transformation meta-model and other meta-
model. However, these approaches still describe the transformation interface in
terms of meta-models, while TRMs are more expressive.

280 J. de Lara et al.

Several works analyse the model transformations to obtain their foot-
print [6,13]. This is the part of the input and output meta-models accessed
by the transformation, which is itself a meta-model. While these works rely
on the actual transformation meta-models, our analysis is done without them.
Moreover, we produce a TRM, which is more general as it allows using the
transformation with different meta-models.

Transformation intents [18] describe semantical properties that ensure a cor-
rect transformation reuse according to the designer expectations. In our case, we
aim at ensuring syntactical correctness, but it would be interesting to incorporate
such intents into our framework in the future.

Finally, Famelis et al. [11] propose a meta-model independent approach to
express uncertainty in models, which is applicable to meta-models. We use a
DRM meta-model as it allows expressing domain-specific aspects in a more nat-
ural way, like the possibility of features to be both attributes and references, the
semantics of flags mandatoryAllowed and subsAllowed, or defining transformation-
specific compatibility constraints.

7 Conclusions and Future Work

In this paper, we have presented a new approach, based on TRMs, for model
transformation reusability. TRMs are automatically extracted from model trans-
formations, and contain a compatibility model constraining the possible options
in the source and target meta-models. We have implemented prototype tool
support and presented an experiment, based on meta-model mutation, showing
promising results.

In the future, we would like to add the notion of binding into our confor-
mance relationship in order to improve reusability. Such bindings may resolve
heterogeneities (e.g., class renamings) between the TRMs and the meta-models,
inducing a transformation adaptation like in [4]. We plan to explore heuristics
for automatic meta-model generation from TRMs. As our checks are syntactical,
we would like to incorporate the notion of transformation intent. Finally, we are
working on building a graphical modelling tool to visualize and bind TRMs, and
on formal proofs of correctness of the TRM extraction procedure.

Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity, grants TIN2014-52129-R and TIN2015-73968-JIN (AEI/FEDER, UE),
and the Madrid Region (S2013/ICE-3006).

References

1. Basciani, F., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of
model transformations with incompatible metamodels. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp.
602–618. Springer, Cham (2014). doi:10.1007/978-3-319-11653-2 37

http://dx.doi.org/10.1007/978-3-319-11653-2_37

Reusing Model Transformations Through Typing Requirements Models 281

2. Cheng, Z., Monahan, R., Power, J.F.: Formalised EMFTVM bytecode language
for sound verification of model transformations. Softw. Syst. Model. 1–29 (2016,
in press)

3. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: 12th International IEEE Enterprise Distributed
Object Computing Conference, EDOC 2008, pp. 222–231. IEEE Computer Society
(2008)

4. Cuadrado, J.S., Guerra, E., de Lara, J.: A component model for model transfor-
mations. IEEE Trans. Softw. Eng. 40(11), 1042–1060 (2014)

5. Cuadrado, J.S., Guerra, E., de Lara, J.: Reverse engineering of model transforma-
tions for reusability. In: Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568,
pp. 186–201. Springer, Cham (2014). doi:10.1007/978-3-319-08789-4 14

6. Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering errors in ATL model transfor-
mations using static analysis and constraint solving. In: 25th IEEE International
Symposium on Software Reliability Engineering, ISSRE, pp. 34–44. IEEE Com-
puter Society (2014)

7. Cuadrado, J.S., Guerra, E., de Lara, J.: Quick fixing ATL transformations with
speculative analysis. Softw. Syst. Model. 1–32 (2016, in press). Springer

8. Cuadrado, J.S., Guerra, E., de Lara, J.: Static analysis of model transformations.
IEEE Trans. Softw. Eng. 1–32 (2017, in press)

9. de Lara, J., Guerra, E.: From types to type requirements: genericity for model-
driven engineering. Softw. Syst. Model. 12(3), 453–474 (2011)

10. de Lara, J., Guerra, E., Cuadrado, J.S.: A-posteriori typing for model-driven engi-
neering. In: 18th ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, MoDELS 2015, pp. 156–165. IEEE (2015)

11. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reason-
ing with uncertainty. In: 34th International Conference on Software Engineering,
ICSE 2012, 2–9 June 2012, Zurich, Switzerland, pp. 573–583. IEEE Computer
Society (2012)

12. Guy, C., Combemale, B., Derrien, S., Steel, J.R.H., Jézéquel, J.-M.: On model
subtyping. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D.
(eds.) ECMFA 2012. LNCS, vol. 7349, pp. 400–415. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31491-9 30

13. Jeanneret, C., Glinz, M., Baudry, B.: Estimating footprints of model operations. In:
Proceedings of the 33rd International Conference on Software Engineering, ICSE
2011, Waikiki, Honolulu, HI, USA, 21–28 May 2011, pp. 601–610. ACM (2011)

14. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

15. Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W., Schwinger,
W.: Reuse in model-to-model transformation languages: are we there yet? Softw.
Syst. Model. 14(2), 537–572 (2015)

16. Object Management Group. UML 2.0 OCL Specification. http://www.omg.org/
docs/ptc/03-10-14.pdf

17. Pescador, A., Garmendia, A., Guerra, E., Cuadrado, J.S., de Lara, J.: Pattern-
based development of domain-specific modelling languages. In: MODELS, pp. 166–
175. IEEE (2015)

18. Salay, R., Zschaler, S., Chechik, M.: Correct reuse of transformations is hard to
guarantee. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765, pp.
107–122. Springer, Cham (2016). doi:10.1007/978-3-319-42064-6 8

19. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006)

http://dx.doi.org/10.1007/978-3-319-08789-4_14
http://dx.doi.org/10.1007/978-3-642-31491-9_30
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf
http://dx.doi.org/10.1007/978-3-319-42064-6_8

282 J. de Lara et al.

20. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model pruning. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 32–46. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04425-0 4

21. Slonneger, K., Kurtz, B.L.: Formal Syntax and Semantics of Programming Lan-
guages, vol. 340. Addison-Wesley, Reading (1995)

22. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J. Object Technol.
10(5), 1–29 (2011)

23. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35(6), 26–36 (2000)

24. Zschaler, S.: Towards constraint-based model types: a generalised formal founda-
tion for model genericity. In: VAO, pp. 11:11–11:18. ACM, New York (2014)

http://dx.doi.org/10.1007/978-3-642-04425-0_4

	Reusing Model Transformations Through Typing Requirements Models
	1 Introduction
	2 Motivating Scenarios and Running Example
	3 Representing Transformation Typing Requirements
	3.1 Describing Single Meta-Model Requirements
	3.2 Expressing Compatibility Requirements

	4 Extracting Typing Requirements from ATL Transformations
	5 Implementation and Validation
	6 Related Work
	7 Conclusions and Future Work
	References

