
StaticGen : Static Generation of UML
Sequence Diagrams

Chris Alvin1(B), Brian Peterson2, and Supratik Mukhopadhyay2

1 Bradley University, Peoria, IL 61625, USA
calvin@bradley.edu

2 Louisiana State University Baton Rouge, Baton Rouge, LA 70803, USA
{brian,supratik}@csc.lsu.edu

Abstract. UML sequence diagrams are visual representations of object
interactions in a system and can provide valuable information for pro-
gram comprehension, debugging, maintenance, and software archeology.
Sequence diagrams generated from legacy code are independent of exist-
ing documentation that may have eroded. We present a framework for
static generation of UML sequence diagrams from object-oriented source
code. The framework provides a query refinement system to guide the
user to interesting interactions in the source code. Our technique involves
constructing a hypergraph representation of the source code, traversing
the hypergraph with respect to a user-defined query, and generating the
corresponding set of sequence diagrams. We implemented our framework
as a tool, StaticGen, analyzing a corpus of 30 Android applications. We
provide experimental results demonstrating the efficacy of our technique.

1 Introduction

Legacy object-oriented code may be accompanied by high-level documentation
and/or descriptive source code comments, each of which may contain omissions
or erroneous information. As documentation erodes, an engineer can trust only
the source code. A necessary component of software archeology in object-oriented
systems is the interactions among objects. A sequence diagram is a visual rep-
resentation of those object interactions as well as their lifelines.

Sequence diagrams generated from legacy code are independent of existing
documentation. Dynamic techniques for generation of sequence diagrams from
legacy code [5,16,17,22,25] can synthesize a subset of all possible sequence dia-
grams based on runtime traces. Existing static techniques [34] result in sequence
diagrams that replicate the original legacy source code, including conditionals
and loops, without providing further intuitive notions beyond the code itself.

We present a technique, depicted in Fig. 1, for static generation of UML
sequence diagrams together with a query system to guide the user to the most
interesting interactions in the (unobfuscated) source code. Given an existing
object-oriented code base as input, our technique involves three distinct steps
as shown in Fig. 1. The first step in our technique (Fig. 1) takes the input code
base and transforms it into a typed control flow graph (TCFG): a control flow
c© Springer-Verlag GmbH Germany 2017
M. Huisman and J. Rubin (Eds.): FASE 2017, LNCS 10202, pp. 173–190, 2017.
DOI: 10.1007/978-3-662-54494-5 10

174 C. Alvin et al.

Code Base (1) Typed Control Flow Graph

(2) Source Code Hypergraph(3) Sequence Diagrams
Query-Based Refinement

Fig. 1. The StaticGen system flowchart

public class Main extends ActionBarActivity {
private int goodId, btnID = 2131296336; private Button b;
private Random r = new Random();

public boolean onOptionsItemSelected(MenuItem item) {
int id = item.getItemId();
return super.onOptionsItemSelected(item);

}
public void middleButtonOnClick(View v) {

((Button)v).setText("Clicked");

int c = 0;
if (r.nextBoolean()) c = getRed();
else c = getBlue();

int opt = r.nextInt(4);
if (opt == 0) SetUpperLeftButton(c);
else if (opt == 1) SetUpperRightButton(c);
else if (opt == 2) SetLowerLeftButton(c);
else SetLowerRightButton(c);

}
// Other Set methods omitted for redundancy
private void SetUpperRightButton(int c) {

b = (Button)findViewById(btnID);
SetBtnColor(b, c);

}
private void SetBtnColor(Button b, int c) {

b.setBackgroundColor(c);
goodId = b.getId();

}
private int getRed() { return Color.RED; }
private int getBlue() { return Color.BLUE; }

}

Fig. 2. Example android source code

graph annotated with type information—a familiar structure in static analysis
acquired from an existing front-end tool such as Soot [29] or goto-cc [15].

The TCFG for a program P captures the execution of P , but does not capture
(a) the interactions among the objects constituting P , (b) their context, and (c)
the causal ordering of their interactions. Hence, the second step of our method-
ology involves constructing a directed code hypergraph [6, Ch. 1] (Sect. 3) that
captures (1) intra- and inter-procedural control flow, (2) message interactions
among objects, (3) message context, and (4) causal ordering of messages. From
the source code in Fig. 2, we consider a portion of the generated code hypergraph
(corresponding to a hyperpath [6, Ch. 1]) in Fig. 3. A code hypergraph corre-
sponding to the input source code contains two categories of nodes. The first
category refers to code objects: objects and their datatypes (rounded corners in
Fig. 3). The second category of nodes, called trace nodes, capture a trace of a

StaticGen: Static Generation of UML Sequence Diagrams 175

middleButtonOnClick, σ1

v: View

setText("Clicked")

opt = r.nextInt()

c = getBlue()

SetUpperRightButton(c)

getBlueReturn, σ3

Color.BLUE

getBlue, σ2

c: int

SetUpperRightButton, σ4

b = findViewByID(String)

SetBtnColor(b, c)

findViewByIDReturn, σ5

b: Button

SetBtnColor, σ6
b.setBackgroundColor(c)

goodId = b.getId()

getIdReturn, σ7

goodId: int

Fig. 3. A portion of the code hypergraph corresponding to the code in Fig. 2

method (rectangles in Fig. 3). For example, it is clear that middleButtonOnClick
in Fig. 2 has 2 ∗ 4 = 8 possible traces due to the permutation of respective
branches; Fig. 3 depicts one of those 8 trace nodes.

A directed hyperedge captures a message context in the form of an origin
hypernode (a set of nodes) and causal ordering by virtue of directedness of
hyperedges. The annotation of each hyperedge defines corresponding messages.
For example, a call to middleButtonOnClick in Fig. 2 requires the context of
an object of type View and a callee; the corresponding hyperedge in Fig. 3 is
labeled accordingly with the destination method and program state information
for context.

The third step in our technique (Fig. 1) constructs sequence diagrams
(Sect. 4) given a code hypergraph corresponding to an input code base. Each
hyperpath [6, Ch. 1] in that hypergraph encodes all object interactions in an
execution of the code base and therefore a corresponding sequence diagram can
be generated. The hyperpath in Fig. 3 corresponds to the sequence diagram
shown in Fig. 4. To empower the user to identify ‘interesting’ interactions, we
provide a query-based refinement interface that allows the user to narrow the
resultant set of generated sequence diagrams based on their criteria and guides
the user to the most interesting interactions in the source code.

We evaluated the effectiveness of our tool, StaticGen, on 30 open source
Android applications [1,35]. StaticGen generated 647.1 sequence diagrams on
average per package taking a mean of 96.78 s for each package. In addition to
helping developers comprehend legacy code, StaticGen could fill an important
security role for normal users as well. In a second experiment, we conducted
a case study of using StaticGen to uncover security vulnerabilities. The query
refinement system of StaticGen using the notions of ‘interesting’ and ‘refine-
ment’, allowed us to narrow down the set of all sequence diagrams of a program
to a subset that exposed a vulnerability.

176 C. Alvin et al.

Fig. 4. Sequence diagram for an execu-
tion path in Fig. 2

Fig. 5. Uninteresting sequence dia-
gram for Fig. 2

This paper makes the following contributions:

• Section 2 formalizes a sequence diagram with respect to a hyperpath in a
hypergraph.

• We describe a tool, StaticGen, for statically generating sequence diagrams by
constructing (Sect. 3) and exploring (Sect. 4) a code hypergraph for an input
code base.

• StaticGen provides a query system to refine the set of generated diagrams and
guide the user to the most interesting interactions in the source code. (Sect. 5).

• We illustrate the efficacy of our technique (Sect. 6) with quantitative analyses
and a case study to identify a security vulnerability.

2 Program Abstraction and Code Hypergraphs

In this section, we describe an abstract model for programs, formalize the notion
of a code hypergraph, define a sequence diagram in that context, and define terms
related to the features and quality of a given sequence diagram.

2.1 Program Abstraction Model

To define a framework for static generation of sequence diagrams not tied to
a particular object-oriented language, we introduce a typed control flow graph
(TCFG), an abstract model that will serve as the basis for our analysis. The
model maintains both data flow (i.e. program points with state information
attributed to collecting semantics, alias analysis, etc.) and control flow infor-
mation (i.e. intra-procedural instructions and inter-procedural method calls).
A program is abstracted by a typed control flow graph (Definition 1) contain-
ing two types of edges: intra-procedural transfer edges and inter-procedural call
edges.

StaticGen: Static Generation of UML Sequence Diagrams 177

Definition 1 (Typed Control-Flow Graph). A typed control-flow graph for
a program P is a control flow graph GNT

= (NT ,X,C, n0) where NT is the set
of program points including type information for all variables, X is the set of
intra-procedural transfer edges, C is the set of inter-procedural call edges, and
n0 is the entry point of the program.

For acyclic TCFGs, we assume the standard notion of sequential ordering
of instructions as induced by the directed nature of the representative graph.
We describe our approach in the context of a simple object-oriented program-
ming language with conditionals, assignments, loops, references, and methods
with call-by-value. We omit the details of the language as the operational and
denotational semantics are defined in the usual way.

2.2 The Code Hypergraph

For a program P , we use a directed hypergraph [6, Ch. 1] data structure where
hypernodes (sets of nodes) capture the context of interactions and directed hyper-
edges capture the interactions of objects constituting P . The order of hyperedges
in a hypergraph captures the notion of causal ordering [2]; for events (invoca-
tions or returns of methods) U and V , we write U → V if event U is causally
ordered before event V . In our model, hyperedges consist of a set of origin nodes
and a single target node; a many-to-one relationship.

We formally introduce an abstract, many-to-one directed hypergraph called
an annotated hypergraph where all hyperedges are annotated according to the
problem space. A simple annotation may consist of a boolean expression indi-
cating if a hyperedge is to be considered (in)active; that is, all the context
information corresponding to the hyperedge is available or not.

Definition 2 (Annotated Hypergraph). An annotated hypergraph is a
directed hypergraph H (N,EA) where N is a set of nodes and EA ⊆ 2N×N×A a
set of directed annotated hyperedges over a set of annotations A. Each directed
hyperedge e ∈ EA is defined as an ordered pair e = (S, t, A) where S ⊆ N ,
t ∈ N , and A ∈ A.

Hyperedge annotations correspond to events in the program. Given two
hyperedges, EA = (S1, t1, A) and EB = (S2, t2, B) with origin hypernodes S1

and S2, respectively, t1 and t2 target nodes, respectively, and annotations A and
B respectively, we say A � B if t1 ∈ S2. We define → to be the transitive closure
of �. An important component of our technique is the hyperpath construction;
we define hyperpath in the context of an annotated hypergraph.

Definition 3 (Hyperpath). Let H (N,EA) be an annotated hypergraph, G ⊂
N , and g ∈ N . A hyperpath Y (of length n) from G to g is a sequence of
hypernodes G0, G1, G2, . . . , Gn−1 where G0 = G and Gn−1 = {g} such that for
each 1 ≤ i ≤ n − 1 there exists a hyperedge (Gi−1, gi, Ai) ∈ E where gi ∈ Gi

and Ai ∈ A.

178 C. Alvin et al.

The annotated hypergraph in Definition 2 is an abstract structure that we
instantiate to encode interactions, context, and causal ordering through nodes
and hyperedges. We call the resulting hypergraph a code hypergraph. Before we
formally define a code hypergraph, we define the set of nodes and hyperedges
that will constitute it.

Nodes. The nodes of a code hypergraph are of two types: code object and
(method) trace. A code object captures the notion of an object in an object-
oriented program. A trace is more than just a basic block in a TCFG, it
is a sequential set of instructions corresponding to an execution path for an
entire method. For example, in Fig. 3, the trace node corresponding to the
middleButtonOnClick method is composed of instructions that would span
many basic blocks in a TCFG.

Definition 4 (Code Object). A code object v of type T in an object-oriented
program P is an instantiated object variable of type T . For code object v of type
T , we say Datatype (v) = T .

Definition 5 (Trace). For a method M with entry instruction m0 and set of
exit instructions Mexit, a method trace is a path in a TCFG consisting of intra-
procedural instructions from m0 to mexit for mexit ∈ Mexit.

Hyperedges. There are two varieties of hyperedges we consider: one based on
method invocations and the other based on objects being returned from non-void
methods. Each call hyperedge is a many-to-one, annotated relationship among
nodes in the hypergraph and is constructed for each method invocation. For a
method invocation m in a method trace t, a hyperedge is constructed with the
set of source nodes consisting of the node corresponding to t and the set of nodes
corresponding to the formal parameter types of method m. The target of the
hyperedge is a node corresponding to a method trace for method m. We annotate
this node with the program state information for context as well as the method
name. For a set of annotated hyperedges EA, CallEdges (EA) defines the set of
call hyperedges. Each return hyperedge is a one-to-one relationship between an
origin trace node and a target code object with an annotation comprising of the
method name for the origin node and program state information for context.
For a program P , we say a program state σ of a program P is data store for all
variables at a given execution point in P .

Definition 6 (Code Hypergraph). Let Π be the set of all program states
for a program P with TCFG T . A code hypergraph corresponding to a TCFG
T is an annotated hypergraph H (N,EA) where, for each n ∈ N , n corresponds
to either a (1) code object or (2) a method trace (acquired from an analysis of
T). Each directed hyperedge e ∈ EA is defined by the ordered pair e = (S, t, A)
where S ⊆ N and t ∈ N is a target set of instructions corresponding to some
method call. Each hyperedge annotation, A ∈ A, is defined as a pair A = (m,σ)
where m is a method in the source code and σ ∈ Π. We say that a hyperedge
(S, t, A) is labeled by m if A = (m,σ) for some σ ∈ Π.

StaticGen: Static Generation of UML Sequence Diagrams 179

It is clear from Definition 6 that we can encode method invocations and
returns as events and thus as annotations of hyperedges in a code hypergraph.

2.3 Sequence Diagrams

A sequence diagram is an instance of the more general message sequence chart.
Succinctly, a message sequence chart [11, Ch. 4] [2,18] can be described as a set
of partially-ordered, labeled events over a set of “processes”. We will define a
sequence diagram as a code hyperpath in a code hypergraph. A code hyperpath
in a code hypergraph H (N,EA), constructed from a TCFG T , is a hyperpath
in H.

We now define a sequence diagram in terms of a (code) hyperpath in a code
hypergraph.

Definition 7 (Hypergraph Sequence Diagram). Let H (N,EA) be a code
hypergraph. Also let m be a method with entry point m0 and let mexit be an
exit point of m. A hypergraph sequence diagram for method m corresponds to
a hyperpath in H from the source hypernode of a hyperedge labeled m0 to the
target node of a hyperedge labeled mexit and is denoted by Y (H,m0,mexit). The
set of sequence diagrams Y(H,m0,mexit) for a fixed pair of entry and exit points,
m0 and mexit respectively, is the set of all Y (H,m0,mexit). Since a method
has one fixed entry point and many possible exit points (given by Mexit), the
collection of all such sequence diagrams (code hyperpaths) is given by Y =⋃

mexit∈Mexit
Y(H,m0,mexit).

We prove the equivalence of a message sequence chart with our notion of a
sequence diagram as a hyperpath in [3].

To generate sequence diagrams, the code hypergraph is extracted according
to the discussion in Sect. 3 where method m is a parameter specified by the user.

2.4 Characteristics of Sequence Diagrams

In this subsection, we formalize some properties of sequence diagrams that will
be used by the query-based refinement interface for narrowing down the set of
sequence diagrams generated to those that would be most “informative” to the
user.

Depth of a Sequence Diagram. As a metric for code complexity, we define depth
which relates the longest sequence of causally ordered messages without return-
ing. We call O1, . . . ,On = {O}i an object sequence where for all 1 ≤ i ≤ n, Oi

are code objects. The length of the object sequence O1, . . . ,On is n. We define
depth for a sequence diagram independent of the hypergraph definitions.

Definition 8 (Depth of a Sequence Diagram). The depth of a sequence
diagram D is the greatest length d of the object sequence O1, . . . ,Od in the
diagram such that for each 1 ≤ i ≤ d − 1, there exists a message mi from Oi to
Oi+1 and for each 1 ≤ j ≤ d − 2, mj → mj+1 (mj causally precedes mj+1) and
there does not exist any message m either from Oj to Oj+1 or vice versa such
that mj → m and m → mj+1.

180 C. Alvin et al.

Interesting Sequence Diagrams. Not all sequence diagrams are of particular inter-
est to a user. Requiring user interaction for refinement from the set of all sequence
diagrams corresponding to a program is not ideal in terms of time and effort;
therefore, we suggest a first step in formalizing the notion of an interesting
sequence diagram to make interactions with StaticGen more efficient.

Formally defining an interesting sequence diagram requires quantification of
some characteristic(s) of a sequence diagram. For a code hypergraph H (N,EA),
we define function Msg : H → N, as Msg (H) = |CallEdges (EA)|. For a hyper-
graph sequence diagram D in H (N,EA), we define Msg(D) = Msg(H)D where
the subscript denotes restriction to D and note that Msg is a measure that spec-
ifies the number of messages (method invocations) in the sequence diagram.

Let DP be the set of all sequence diagrams for a program P . For D ⊆ DP ,
let Msgs (D) = {u | ∃D ∈ D s.t. Msg (D) = u ∈ N} and let Msgs (D)k denote
the set of the k greatest elements of Msgs (D) where 1 ≤ k ≤ |D|. We define a
function select : N → DP that, for a u ∈ N, returns a sequence diagram D ∈ DP

such that Msg (D) = u. If there exists multiple D ∈ DP with Msg (D) = u, ties
are broken arbitrarily; select (u) is undefined if there does not exist any sequence
diagram D ∈ DP such that Msg (D) = u. We define a function top that, for
a set of sequence diagrams D ⊆ DP and a fixed number 0 ≤ k ≤ |D|, returns
k sequence diagrams in D having the greatest number of messages. Formally,
top (D, k) = {select (u) | u ∈ Msgs (D)k} where D ⊆ DP and 1 ≤ k ≤ |D|.

Definition 9 (Interesting Sequence Diagram). For a program P with the
set of sequence diagrams DP with |DP | = n and a fixed 0 < k ≤ n, DP is an
interesting sequence diagram if DP ∈ top (DP , k).

For example, consider method middleButtonOnClick in Fig. 2 with gener-
ated set of sequence diagrams D. The sequence diagram in Fig. 4 is interest-
ing for 0 < k ≤ 8, since Msg (D) = 6 for each D ∈ D describing a trace of
middleButtonOnClick. The sequence diagram in Fig. 5 contains two messages
and is therefore uninteresting for 0 < k ≤ 8.

While it is arguable that Definition 9 may not be ideal for every user, we
believe that code complexity is often rooted in the number of method invoca-
tions and thus the probability is greater that a single trace can provide more
information and thus is more likely to expose bugs and vulnerabilities.

3 Constructing the Hypergraph

In this section, we describe how StaticGen constructs a code hypergraph from
an input set of code files; see [3] for pseudocode of the algorithms described
here. The input to StaticGen is a set of (unobfuscated) code files in an object-
oriented language. We assume that the code is processed by an intermediate
system [15,29] into a TCFG. We construct a corresponding H and populate the
nodes and hyperedges.

StaticGen: Static Generation of UML Sequence Diagrams 181

Nodes. As in Definition 6, there are two types of nodes in a code hypergraph. To
construct both types of nodes, we parse the TCFG. For code objects, if a partic-
ular instruction is a declaration or a formal parameter, we add a corresponding
node to H. If a node m defines a method prototype, we construct all possible
traces for m using a process that identifies all possible naive execution paths
for a method m over a control-flow graph; we then add each trace to the code
hypergraph.

Hyperedges. We consider the two varieties of hyperedges in turn: call hyperedge
and return hyperedge. A call hyperedge captures the callee trace, context of a
caller through the set of input objects, and annotation of the method. For method
calls, the hyperedge origin nodes consist of the callee trace nodes and the set
of nodes corresponding to the actual parameters in the method call. The target
node is then a node corresponding to a trace of the called method. The result
is a call hyperedge for the code hypergraph with an annotation consisting of the
name of the called method and an empty program state. For non-void methods,
we construct a return hyperedge relating the current trace node as source and
the object being returned as target annotated with the called method name and
empty program state and an indicator that it is a return hyperedge.

4 Static Sequence Diagram Construction

Sequence diagram generation consists of three phases: (1) sub-hypergraph iden-
tification through pebbling [8], (2) hyperpath identification, and (3) converting
from a hyperpath to a sequence diagram. For a more detailed description and
pseudocode of each phase, see the extended paper [3].

Pebbling. Pebbling is a linear-time traversal over an annotated hypergraph that
identifies a sub-hypergraph [6, Ch. 1] satisfying constraints placed on code
objects and methods by the user. Pebbling is a breadth-first traversal over an
annotated hypergraph where we mark each node with a pebble once it is vis-
ited using the rule “once all source nodes in a hyperedge have been pebbled,
the target node is pebbled” (similar to the Dowling and Gallier [8] marking
algorithm for satisfiability of propositional horn clauses). For example, in Fig. 3,
if we pebble the trace node for middleButtonOnClick, we immediately peb-
ble the trace node for getBlue. In turn, we pebble the code object node for
c. Then, since both source nodes are pebbled, we pebble the target trace node
for SetUpperRightButton. We assume that a code hypergraph has been pebbled
resulting in a pebbled code hypergraph.

Hyperpath Identification. For a given method m, we construct the corresponding
set of all hyperpaths in a code hypergraph H. Our algorithm maintains the same
information for a sequence diagram as stated in Definition 7, but instead of
maintaining a code hyperpath the result is an equivalent path consisting of
one-to-one edges and an associated set of objects. For simplicity, we consider
constructing a single path P by considering a single trace T of m. Recall that
a trace T is a sequential set of instructions. For each instruction i ∈ T , we

182 C. Alvin et al.

consider if i is a method invocation. If i is not a method invocation, we add i
to P maintaining sequential order of instructions. If i is a method invocation,
we recur with a trace of the method called in i. P is then a valid, sequential
ordering of instructions for method m.

Hyperpath to Sequence Diagram Conversion. Given a path P corresponding to
a hyperpath in a code hypergraph, we construct the corresponding sequence dia-
gram D. For each method invocation instruction i in P, we add to D each of the
following: (a) the invocation of method m in i as a message, (b) a recursively
constructed sub-sequence diagram of m, and (c) a message indicating a return
from m.

5 Interface for Diagram Generation

A sequence diagram D has features such as: depth as defined in Definition 8,
number of messages (number of call hyperedges), types of all code objects,
method coverage, and branch coverage. In this section, we describe the query
language, the interface for query-based refinement, and provide some examples.

5.1 Query over the Language of Sequence Diagrams

We define a query over the language of sequence diagrams. The language of
sequence diagrams L is defined over the alphabet Σ consisting of code objects
and method traces. For simplicity, we will refer to code objects as ci with i ∈ Z

+,
method traces as mj with j ∈ Z

+ with corresponding method returns m′
j . Hence,

Σ = {c}i ∪ {m}j ∪ {m}′
j for i and j finite in Z

+ and i ≥ 1 and j ≥ 1.
We note that a hyperpath Y in a code hypergraph H is a string in L [3] since

a topological sort of the DAG corresponding to Y results in a string s ∈ L.
We note that distinct orders of topological sorts on a DAG corresponding to a
hyperpath will result in distinct strings; however, each such string is unique in
L over the original program. A query is defined over a set of sequence diagrams
D ⊆ L generated using the techniques described in Sect. 4; however, generation
can be more targeted. It is often cumbersome and unnecessary to generate all
sequence diagrams beginning at a main method in a program. Generation can
be performed on-demand beginning at any method reducing the size of the cor-
responding hypergraph. In order to acquire the initial set of sequence diagrams
DS , we may use the predicate “start M ,” where M is a method dictating where
the resultant sequence diagram(s) will begin.

Query Operations. A query Q = {q}i over L consists of a finite sequence of
operations {q}i that refine the given set of sequence diagrams D ⊆ L into the
resulting set Q(D) = F ⊆ D.

• For a method trace � ∈ Σ, “filter � D” prunes the substring from � to �′ in
each sequence diagram in D. This removal process efficiently eliminates calls
to library-based functionality or method definitions that are not of interest.

StaticGen: Static Generation of UML Sequence Diagrams 183

For a set of code objects � ⊆ Σ, “filter � D” prunes all characters c ∈ � from
each string in D. Removal of a code object allows the user to refine the set of
sequence diagrams by omitting specific variables.

• For a set of predicates R describing strings in L, “remove R D” will remove
all resulting sequence diagrams for which all r ∈ R evaluate to true. The
complementary operation “accept R D” will collect all sequence diagrams for
which all r ∈ R evaluate to true.

• For an integer k, “top-interesting k D” returns top (D, k).
• “meth-cover p D” and “br-cover p D” each return sequence diagrams ensur-

ing minimal method and branch coverage respectively for a lower bound per-
centage p ([3] formally defines method and branch coverage).

We define a simple grammar for a query Q over L; the terminal symbols
include �, R, 0 ≤ p ≤ 1, and k ∈ Z

+ as defined above.

Q(D) → D | filter � Q(D) | remove R Q(D) | accept R Q(D)
| top-interesting k Q(D) | meth-cover p Q(D)
| br-cover p Q(D)

5.2 Query Interface to Diagram Generation

We present an interface where a user of StaticGen can query over the set of
sequence diagram features to obtain a subset of sequence diagrams. Our method-
ology requires manual input of the code as well as a query Q as previously
described. Depending on the specification of Q, we may omit, through the
pebbling process, call hyperedges corresponding to method calls that may be
removed. Given a pebbled code hypergraph, we construct the corresponding set
of all sequence diagrams. We then filter the resulting set of sequence diagrams
related to method removal, coverage, or top into the desired set of sequence
diagrams.

If the user wishes to refine Q into Q′ we may re-pebble the code hypergraph
and generate according to Q′. Our query system provides continual refinement
until the appropriate set of sequence diagrams is acquired. That is, initially, a
user might simply request a set of interesting sequence diagrams. Then, as the
user becomes more familiar with the code base, they may define a more restricted
query. This process of query refinement can continue ad nauseum.

Within the bounds of the user selected query, we prioritize what the user
sees by first eliminating strictly isomorphic diagrams [3] and diagrams which are
“subsets” of other diagrams. We then determine the set of sequence diagrams S
that match the user’s query. Using a method coverage metric for the code, we
prioritize the diagrams into a list I.

5.3 Sample Queries

Assume the user specifies as input the code base containing the source code in
Fig. 2. To filter elements from the set of resulting sequence diagrams, the user

184 C. Alvin et al.

defines a query Q with start being middleButtonOnClick and filters object
r and its corresponding methods as well as the setText method. The result is
eight diagrams, seven of which are strictly isomorphically unique [3], and one of
which is shown in Fig. 4. If we append to Q an accept predicate with method
SetUpperRightButton(int), the only diagram returned is shown in Fig. 4.

As another example, Fig. 5 arises from a query requesting the least interesting
diagram from analyzing all methods.

6 Experimental Results

Timely generation of sequence diagrams depends on two factors: (1) complexity
of branching in the given code and (2) user-defined queries to pebble the hyper-
graph and prune the resultant set sequence diagrams. For our experiments, we
limit diagram generation to package prefixes. This limitation allows the user to
visualize internal package interactions without dealing with bloat from exterior
execution paths to that package. We ran our generation algorithm on a desk-
top with Intel Core i5-4460 at 3.2 GHz with 8 GB RAM on 64-bit Linux Mint
operating system.

Benchmark Code. Our initial tests have focused on open-source Android byte-
code applications taken from [1,35] with wide-ranging focus, including: ad block-
ing, email, and web browsing. The bytecode was input into the Soot framework
[29] which can process bytecode or source code thus bringing the same capabili-
ties to bear, independent of input format. [3] lists the projects and corresponding
facts about each code base in the chosen corpus, including the package we ana-
lyzed, the number of constituent classes, processing time, and the operation
count.

Soot analyzes bytecode by breaking down classes into groups of methods, and
methods into groups of abstract statements; the number of abstract statements
is referred to as the operation count. While operation count may not correspond
one to one with source lines of code, it does correspond to essential logical state-
ments executed by the processor, and is a useful measurement of the complexity
of the program analyzed. The operation count for our corpus is shown in [3].

As another measure of complexity of the target Android code, we consider the
histogram in Fig. 6 depicting the mean depth of diagrams for non-library func-
tionality for each benchmark Android package. Our event-driven benchmarks
are generally shallow as is evident in Fig. 6; the mean depth among all pack-
ages is 1.29 with standard deviation 0.92. We view the depth metric as a guide
to the number of corresponding sequence diagrams; the greater the depth, the
more diagrams should result. Figure 7 is a scatterplot of the relationship between
mean depth and number of diagrams generated. We see a linear model given by
y = 887.58x − 496.56, where y is the number of diagrams generated, and x is
the mean depth of the set of diagrams for an Android package. The correlation
is moderate with correlation coefficient r2 = 0.5643.

StaticGen: Static Generation of UML Sequence Diagrams 185

0 5 10 15 20 25 30

0

1

2

3

4

Android Application Package

M
ea
n
D
ia
gr
am

D
ep
th

Fig. 6. Mean sequence diagram depth
per android application package

0 1 2 3 4

0

1,000

2,000

3,000

4,000

Mean Diagram Depth

N
o.

Se
qu

en
ce

D
ia
gr
am

s

Fig. 7. No. generated sequence dia-
grams vs. mean diagram depth for the
entire corpus

Time and Scope of Synthesis. We measure tool efficiency by considering gener-
ation time. Our reported execution times include Soot’s Simplification [29] pro-
cedure, hypergraph construction, diagram generation, and refinement. In Fig. 8,
several Android packages are processed quickly. However, the mean of 96.78s
and the standard deviation of 174.58s indicates more complex packages result in
greater time dispersion. For each Android package, Fig. 9 describes the number of
diagrams that give complete method coverage. Some of the more complex pack-
ages skew the distribution (std. dev. 1085.23 and mean 647.1) with a strongly
correlated linear model (r2 = 0.9082) comparing the number of diagrams with
respect to generation time. This is strong evidence indicating our technique does
not require a significant amount of processing time for code bases with large sets
of sequence diagrams.

Comparison with Dynamic Synthesis Tools. Several existing tools for sequence
diagram generation are based on traces saved from debug runs of a program
[10,24]. While our approach differs significantly in that we utilize static analysis
to generate diagrams from a large number of potential execution paths, we did
compare our approach against Diver [24]. We found that StaticGen was able to
construct similar sequence diagrams compared to Diver which uses a dynamic
approach. The full text of this comparison is available at [3].

Evaluation of Interestingness. We test the usefulness of our interestingness met-
ric by examining the possibility of using it in uncovering security vulnerabilities in
code. We selected an independently studied example for assessing our definition
of interestingness. Both Livshits [19] and Sampaio [31] used a web application
named BlueBlog [7] in their corpora of applications with security vulnerabili-
ties. In addition, [31] provided a software tool, ESVD [30], to analyze code for
vulnerabilities.

186 C. Alvin et al.

0 5 10 15 20 25 30

0

200

400

600

Android Application Package

T
im

e
(s
ec
on

ds
)

Fig. 8. Time per android application
package

0 5 10 15 20 25 30

0

1,000

2,000

3,000

4,000

Android Application Package

N
o.

Se
qu

en
ce

D
ia
gr
am

s

Fig. 9. Number of sequence diagrams
per android application package

We focus on a vulnerability evident in the unsafe http request in the code
in Fig. 10 that was originally detected by ESVD [30]. The value returned by the
getServletPath function is stored in the variable url and is not sanitized by
both branches. Without any filtering, StaticGen generated 2800 diagrams from
BlueBlog, while the interestingness criterion narrowed it down to 45 diagrams
ranked according to top defined in Sect. 5. The doGet method was the subject
of the diagrams ranked 22 and 32 of the 45 interesting diagrams; a fragment of
the rank-22 diagram is shown in Fig. 11. This example shows that prioritizing
novel information allows us to reduce a set of diagrams to a useful fraction,
while retaining information about crucial code paths, that can then be dele-
gated to a human expert or a vulnerability analysis tool for further analysis
for security vulnerabilities. It is possible that an excluded diagram may contain
the vulnerability; however, our query focusing on interestingness, by definition,
includes diagrams that provide novel information. Hence, a vulnerability as we
have described cannot hide only in the discarded diagrams.

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
String url = request.getServletPath() + toPath;
if(forward) {

RequestDispatcher disp = getServletContext().getRequestDispatcher(url);
disp.forward(request, response);

} else {
response.sendRedirect(url);

}
}

Fig. 10. BlueBlog [7] doGet function

StaticGen: Static Generation of UML Sequence Diagrams 187

Fig. 11. BlueBlog [7] doGet sequence diagram fragment

7 Related Work

In [16,17,22], Lo, et al., propose techniques for dynamic specification mining
by inferring sequence diagrams over execution traces that include inter-object
behavior and causal ordering. Lo, et al. use a graph of symbolic message sequence
charts as an intermediate representation while we invoke a hypergraph represen-
tation. Tools such as jTracert [5] and Object-Aid [25] generate sequence diagrams
directly from application runtime while [25] uses the Eclipse IDE [9] to reverse
engineer all or part of a stack trace. Similarly, [12] divides a long dynamic trace
of a Java program into a series of smaller diagrams culminating in a sequence
diagram. Finally, [36] describes an approach for generating sequence diagrams
dynamically using a k-tail merging algorithm that merges the collected traces.
The goal of merging by [36] is to construct a single sequence diagram. Our tech-
nique does not limit generation to a single diagram, but generates a complete
space of sequence diagrams that is refined by query.

There are several tools that statically generate sequence diagrams. Visual
paradigm [34] is a simple tool for sequence diagram generation that is in one-to-
one correspondence with the source code without refinement. Other tools such
as eUML2 Modeler [32] and Visual Studio [23] generate diagrams statically, but
also offer the ability for the user to refine the diagram by selection or omission of
methods. Similarly, Architexa [4] generates sequence diagrams, but is completely
interactive with the user during construction. While all of these tools are based on
a static analysis of the target code, none of these tools automate the refinement
process based on a query scheme over the set of all possible diagrams.

The Interaction Scenario Visualizer (ISVis) [13], employs a combination of
static and trace-based information and communicates the overall importance of
visualizing source code. Tonella and Potrich [33] describe static extraction of
UML sequence diagrams from C++ code using partial analysis and focusing,
but do not perform analysis of intraprocedural flow of control. The CPP2XMI
tool [14] processes XMI into sequence diagrams with no means of user-based
refinement as with StaticGen. I2SD [26] is a static generation tool that leverages
metadata through interceptors whereas our technique does not rely on such
information. The RED tool [27,28] was a significant step forward in reverse-
engineering diagrams by mapping reducible CFGs to interactions. In contrast,
our use of an annotated hypergraph provides the means to refine the object
interactions, context, and causal ordering based on user query; in some respects,

188 C. Alvin et al.

our approach attempts to fill the “exploration mode” described in [27]. In total,
our approach seeks to empower the user by supporting query-based refinement
over the set of all sequence diagrams.

In [20,21] authors present techniques for user-guided specification mining over
executions traces by proposing approaches to filter mined sequence diagrams. We
similarly aim to support property discovery through an iterative and interactive
approach by incorporating a notion of interestingness.

8 Conclusions

This paper describes a framework for static generation of sequence diagrams
using a directed hypergraph to encode message context, interactions, and causal-
ity. Based on a user-query, we prune the sequence diagram space through a
pebbling procedure to generate the desired set of sequence diagrams. We showed
that, in practice, our framework provides the basis for interactive software arche-
ology as well as an important tool for debugging legacy code.

References

1. List of Open-Source Android Apps (2013). http://forum.xda-developers.com/
showthread.php?t=2124002

2. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. In:
ICSE 2000, pp. 304–313 (2000). http://doi.acm.org/10.1145/337180.337215

3. Alvin, C., Peterson, B., Mukhopadhyay, S.: StaticGen: Static Generation of UML
Sequence Diagrams - Technical Report (2017). http://hilltop.bradley.edu/∼calvin/
papers/fase17-technical.pdf

4. Architexa.com: Introduction to Architexa—Sequence Diagram Generation (2015).
http://www.architexa.com/support/videos/sequence-diagrams

5. Bedrin, D.: jtracert (2015). https://code.google.com/p/jtracert/
6. Berge, C.: Graphs and Hypergraphs, vol. 45. North-Holland Mathematical Library,

Elsevier Science Publishers B.V. (1989)
7. Burén, R.: BlueBlog. https://sourceforge.net/projects/blueblog/. Accessed 16 Oct

2016
8. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfia-

bility of propositional horn formulae. J. Log. Program. 1(3), 267–284 (1984).
dx.doi.org/10.1016/0743-1066(84)90014–1

9. Eclipse Foundation Inc: Eclipse (2015). https://eclipse.org/
10. Gestwicki, P.V., Jayaraman, B.: JIVE: Java interactive visualization environment.

In: OOPSLA 2004, pp. 226–228. ACM, New York (2004). http://doi.acm.org/10.
1145/1028664.1028762

11. Harel, D., Thiagarajan, P.: Message sequence charts. In: Lavagno, L., Martin, G.,
Selic, B. (eds.) UML for Real: Design of Embedded Real-time Systems, 1st edn.
Kluwer Academic Publishers (2003)

12. Ishio, T., Watanabe, Y., Inoue, K.: AMIDA: A sequence diagram extraction toolkit
supporting automatic phase detection. In: ICSE 2008, pp. 969–970 (2008). http://
doi.acm.org/10.1145/1370175.1370212

http://forum.xda-developers.com/showthread.php?t=2124002
http://forum.xda-developers.com/showthread.php?t=2124002
http://doi.acm.org/10.1145/337180.337215
http://hilltop.bradley.edu/~calvin/papers/fase17-technical.pdf
http://hilltop.bradley.edu/~calvin/papers/fase17-technical.pdf
http://www.architexa.com/support/videos/sequence-diagrams
https://code.google.com/p/jtracert/
https://sourceforge.net/projects/blueblog/
http://dx.doi.org/10.1016/0743-1066(84)90014--1
https://eclipse.org/
http://doi.acm.org/10.1145/1028664.1028762
http://doi.acm.org/10.1145/1028664.1028762
http://doi.acm.org/10.1145/1370175.1370212
http://doi.acm.org/10.1145/1370175.1370212

StaticGen: Static Generation of UML Sequence Diagrams 189

13. Jerding, D.F., Stasko, J.T., Ball, T.: Visualizing interactions in program exe-
cutions. In: ICSE 1997, pp. 360–370 (1997). http://doi.acm.org/10.1145/253228.
253356

14. Korshunova, E., Petkovic, M., van den Brand, M.G.J., Mousavi, M.R.: CPP2XMI:
Reverse engineering of UML class, sequence, and activity diagrams from C++
source code. In: WCRE 2006, pp. 297–298 (2006). http://dx.doi.org/10.1109/
WCRE.2006.21

15. Kroening, D.: goto-cc–A C/C++ Front-End for Verification (2015). http://www.
cprover.org/goto-cc/

16. Kumar, S., Khoo, S., Roychoudhury, A., Lo, D.: Mining message sequence graphs.
In: ICSE 2011, pp. 91–100 (2011). http://doi.acm.org/10.1145/1985793.1985807

17. Kumar, S., Khoo, S., Roychoudhury, A., Lo, D.: Inferring class level specifications
for distributed systems. In: ICSE 2012, pp. 914–924 (2012). http://dx.doi.org/10.
1109/ICSE.2012.6227128

18. Leucker, M., Madhusudan, P., Mukhopadhyay, S.: Dynamic message sequence
charts. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 253–
264. Springer, Heidelberg (2002). doi:10.1007/3-540-36206-1 23

19. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with
static analysis. In: SSYM 2005, pp. 18–18. USENIX Association, Berkeley (2005).
http://dl.acm.org/citation.cfm?id=1251398.1251416

20. Lo, D., Maoz, S.: Mining scenario-based triggers and effects. In: ASE 2008, pp.
109–118 (2008). http://dx.doi.org/10.1109/ASE.2008.21

21. Lo, D., Maoz, S.: Mining hierarchical scenario-based specifications. In: ASE 2009,
pp. 359–370 (2009). http://dx.doi.org/10.1109/ASE.2009.19

22. Lo, D., Maoz, S., Khoo, S.: Mining modal scenario-based specifications from exe-
cution traces of reactive systems. In: ASE 2007, pp. 465–468 (2007). http://doi.
acm.org/10.1145/1321631.1321710

23. Msdn.microsoft.com: Visualize Code on Sequence Diagrams (2015). https://msdn.
microsoft.com/en-us/library/ee317485.aspx

24. Myers, D., Storey, M.A.: Using dynamic analysis to create trace-focused user inter-
faces for IDEs. In: FSE 2010, pp. 367–368. ACM, New York (2010). http://doi.
acm.org/10.1145/1882291.1882351

25. Objectaid.com: UML Explorer (2015). http://www.objectaid.com/sequence-
diagram

26. Roubtsov, S.A., Serebrenik, A., Mazoyer, A., van den Brand, M.G.J., Roubtsova,
E.E.: I2SD: Reverse engineering sequence diagrams from enterprise java beans with
interceptors. IET Softw. 7(3) (2013). http://dx.doi.org/10.1049/iet-sen.2012.0056

27. Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered
sequence diagrams. In: ICSE 2005, pp. 254–263 (2005). http://doi.acm.org/10.
1145/1062455.1062510

28. Rountev, A., Volgin, O., Reddoch, M.: Static control-flow analysis for reverse engi-
neering of UML sequence diagrams. In: PASTE 2005, pp. 96–102 (2005). http://
doi.acm.org/10.1145/1108792.1108816

29. Sable Research Group: Soot: A framework for Analyzing and Transforming Java
and Android Applications (2015). http://sable.github.io/soot/

30. Sampaio, L.: Early Security Vulnerability Detector. https://marketplace.eclipse.
org/content/early-security-vulnerability-detector-esvd. Accessed 16 Oct 2016

31. Sampaio, L., Garcia, A.: Exploring context-sensitive data flow analysis
for early vulnerability detection. J. Syst. Softw. 113, 337–361 (2016).
http://www.sciencedirect.com/science/article/pii/S0164121215002873

http://doi.acm.org/10.1145/253228.253356
http://doi.acm.org/10.1145/253228.253356
http://dx.doi.org/10.1109/WCRE.2006.21
http://dx.doi.org/10.1109/WCRE.2006.21
http://www.cprover.org/goto-cc/
http://www.cprover.org/goto-cc/
http://doi.acm.org/10.1145/1985793.1985807
http://dx.doi.org/10.1109/ICSE.2012.6227128
http://dx.doi.org/10.1109/ICSE.2012.6227128
http://dx.doi.org/10.1007/3-540-36206-1_23
http://dl.acm.org/citation.cfm?id=1251398.1251416
http://dx.doi.org/10.1109/ASE.2008.21
http://dx.doi.org/10.1109/ASE.2009.19
http://doi.acm.org/10.1145/1321631.1321710
http://doi.acm.org/10.1145/1321631.1321710
https://msdn.microsoft.com/en-us/library/ee317485.aspx
https://msdn.microsoft.com/en-us/library/ee317485.aspx
http://doi.acm.org/10.1145/1882291.1882351
http://doi.acm.org/10.1145/1882291.1882351
http://www.objectaid.com/sequence-diagram
http://www.objectaid.com/sequence-diagram
http://dx.doi.org/10.1049/iet-sen.2012.0056
http://doi.acm.org/10.1145/1062455.1062510
http://doi.acm.org/10.1145/1062455.1062510
http://doi.acm.org/10.1145/1108792.1108816
http://doi.acm.org/10.1145/1108792.1108816
http://sable.github.io/soot/
https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd
https://marketplace.eclipse.org/content/early-security-vulnerability-detector-esvd
http://www.sciencedirect.com/science/article/pii/S0164121215002873

190 C. Alvin et al.

32. Soyatec.com: Soyatec - Sequence diagram generation (2015). http://www.soyatec.
com/euml2/features/eUML2%20Modeler/

33. Tonella, P., Potrich, A.: Reverse engineering of the interaction diagrams from C++
code. In: ICSM 2003, pp. 159–168 (2003). http://dx.doi.org/10.1109/ICSM.2003.
1235418

34. Visual-paradigm.com: Reverse Engineering Sequence Diagram from Java Source
Code (2015). https://www.visual-paradigm.com/tutorials/seqrev.jsp

35. Wikipedia: List of Free and Open-Source Android Applications (2015). http://en.
wikipedia.org/wiki/List of free and open-source Android applications

36. Ziadi, T., da Silva, M.A.A., Hillah, L., Ziane, M.: A fully dynamic approach to
the reverse engineering of UML sequence diagrams. In: ICECCS 2011, pp. 107–116
(2011). http://dx.doi.org/10.1109/ICECCS.2011.18

http://www.soyatec.com/euml2/features/eUML2%20Modeler/
http://www.soyatec.com/euml2/features/eUML2%20Modeler/
http://dx.doi.org/10.1109/ICSM.2003.1235418
http://dx.doi.org/10.1109/ICSM.2003.1235418
https://www.visual-paradigm.com/tutorials/seqrev.jsp
http://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications
http://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications
http://dx.doi.org/10.1109/ICECCS.2011.18

	StaticGen: Static Generation of UML Sequence Diagrams
	1 Introduction
	2 Program Abstraction and Code Hypergraphs
	2.1 Program Abstraction Model
	2.2 The Code Hypergraph
	2.3 Sequence Diagrams
	2.4 Characteristics of Sequence Diagrams

	3 Constructing the Hypergraph
	4 Static Sequence Diagram Construction
	5 Interface for Diagram Generation
	5.1 Query over the Language of Sequence Diagrams
	5.2 Query Interface to Diagram Generation
	5.3 Sample Queries

	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

