
Chapter 14
Measuring and Modeling Risk Using
High-Frequency Data

Wolfgang Karl Härdle, N. Hautsch and U. Pigorsch

Abstract Measuring and modelling financial volatility is the key to derivative pric-
ing, asset allocation and risk management. The recent availability of high-frequency
data allows for refined methods in this field. In particular, more precise measures
for the daily or lower frequency volatility can be obtained by summing over squared
high-frequency re- turns. In turn, this so called realized volatility can be used formore
accuratemodel evaluation and description of the dynamic and distributional structure
of volatility. Moreover, non-parametric measures of systematic risk are attainable,
that can straightforwardly be used to model the commonly observed time-variation
in the betas. The discussion of these new measures and methods is accompanied by
an empirical illustration using high-frequency data of the IBM incorporation and of
the DJIA index.

14.1 Introduction

Volatility modelling is the key to the theory and practice of pricing financial prod-
ucts. Asset allocation and portfolio as well as risk management depend heavily on a
correct modelling of the underlying(s). This insight has spurred extensive research in
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financial econometrics and mathematical finance. Stochastic volatility models with
separate dynamic structure for the volatility process have been in the focus of the
mathematical finance literature, see Heston (1993) and Bates (2000), while paramet-
ric GARCH-type models for the returns of the underlying(s) have been intensively
analyzed in financial econometrics.

The validity of these models in practice though depends upon specific distribu-
tional properties or the knowledge of the exact (parametric) form of the volatility
dynamics. Moreover, the evaluation of the predictive ability of volatility models is
quite important in empirical applications. However, the latent character of the volatil-
ity poses a problem. To what measure should the volatility forecasts be compared
to? Conventionally, the forecasts of daily volatility models, such as GARCH-type or
stochastic volatility models, have been evaluated with respect to absolute or squared
daily returns. In view of the excellent in-sample performance of these models, the
forecasting performance, however, seems to be disappointing.

The availability of ultra-high-frequency data opens the door for a refinedmeasure-
ment of volatility and model evaluation. An often used and very flexible model for
logarithmic prices of speculative assets is the (continuous time) stochastic volatility
model:

dYt = (μ + βσt )dt + σt dWt , (14.1)

where σ2
t is the instantaneous (spot) variance, μ denotes the drift, β is the risk

premium, and Wt defines the standard Wiener process. The object of interest is the
amount of variation accumulated in a time interval Δ (e.g., a day, week, month etc.).
If n = 1, 2, . . . denotes a counter for the time intervals of interest, then the term

σ2
n =

∫ nΔ

(n−1)Δ
σ2
t dt (14.2)

is called the actual volatility, seeBarndorff-Nielsen andShephard (2002b). The actual
volatility is the quantity that reflects the market risk structure (scaled inΔ) and is the
key element in pricing and portfolio allocation. Actual volatility (measured in scale
Δ) is of course related to the integrated volatility:

V (t) =
∫ t

0
σ2
s ds (14.3)

It is worth noting that there is a small notational confusion here: the mathematical
finance literature would denote σt as “volatility” and σ2

t as “variance”, see Nelson
and Foster (1994). For example, an important result is that V (t) can be estimated
from Yt via the quadratic variation:

[Yt ]M =
∑

(Yt j − Yt j−1)
2, (14.4)
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where t0 = 0 < t1 < . . . < tM = t is a sequence of partition points and sup j |t j+1 −
t j | → 0. Andersen and Bollerslev (1998) have shown that

[Yt ]M p→ V (t), M → ∞. (14.5)

This observation leads us to consider in an interval Δ with M observations

RVn =
M∑
j=1

(Yt j − Yt j−1)
2 (14.6)

with t j = Δ{(n − 1) + j/M}. Note that RVn is a consistent estimator of σ2
n and

is called realized volatility. Barndorff-Nielsen and Shephard (2002b) point out that
RVn − σ2

n is approximately mixed Gaussian and provide the asymptotic law of

√
M(RVn − σ2

n). (14.7)

The realized volatility turns out to be very useful in the assessment of the valid-
ity of volatility models. For instance, reconciling evidence in favor of the forecast
accuracy of GARCH-type models is observed when using realized volatility as a
benchmark rather than daily squared returns. Moreover, the availability of the real-
ized volatility measure initiated the development of a new and quite accurate class
of volatility models. In particular, based on the ex-post observability of the realized
volatilitymeasure, volatility is now treated as an observed rather than a latent variable
to which standard time series procedures can be applied.

The remainder of this chapter is structured as follows. We first discuss the practi-
cal problems encountered in the empirical construction of realized volatility which
are due to the existence of market microstructure noise. Section14.3 presents the
stylized facts of realized volatility, while Sect. 14.4 reviews the most popular real-
ized volatility models. Section14.5 illustrates the usefulness of the realized volatility
concept formeasuring time-varying systematic riskwithin a conditional asset pricing
model (CAPM).

14.2 Market Microstructure Effects

The consistency of the realized volatility estimator builds on the notion that prices are
observed in continuous time and without measurement error. In practice, however,
the sampling frequency is inevitably limited by the actual quotation or transaction
frequency. Since high-frequency prices are subject to market microstructure noise,
such as price-discreteness, bid-and-ask bounce effects, transaction costs etc., the
true price is unobservable. Market microstructure effects induce a bias in the realized
volatility measure, which can straightforwardly be illustrated in the following simple
discrete-time setup. Assume that the logarithmic high-frequency prices are observed
with noise, i.e.,
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Fig. 14.1 Volatility
signature plot for IBM,
2001–2006. Average time
between trades: 6.78 s.
XFGsignature

Yt j = Y ∗
t j + εt j , (14.8)

where Y ∗
t j denotes the latent true price. Moreover, the microstructure noise εt j is

assumed to be iid distributed with mean zero and variance η2, and is independent of
the true return. Let r∗

t j denote the efficient return, then the high-frequency continu-
ously compounded returns

rt j = r∗
t j + εt j − εt j−1 (14.9)

follow an MA(1) process. Such a return specification is well established in the mar-
ket microstructure literature and is usually justified by the existence of the bid-
ask bounce effect, see, e.g., Roll (1984). In this model, the realized volatility is
given by

RVn =
M∑
i=1

(r∗
t j )

2 + 2
M∑
j=1

r∗
t j (εt j − εt j−1) +

M∑
j=1

(εt j − εt j−1)
2. (14.10)

with
E[RVn] = E[RV ∗

n ] + 2Mη2. (14.11)

If the sampling frequency goes to infinity, we know from the previous section that
RV ∗

n consistently estimates σ2
n and, thus, the realized volatility based on the observed

price process is a biased estimator of the actual volatility with bias term 2Mη2.
Obviously, for M → ∞, RVn diverges.

This diverging behavior can also be observed empirically in so called volatility
signature plots. Figure14.1 shows the volatility signature for one stock of the IBM
incorporation over the period ranging from January 2, 2001 to December 29, 2006.
The plot depicts the average annualized realized volatility over the full sample period
constructed at different frequencies measured in number of ticks (depicted in log
scale). Obviously, the realized volatility is large at the very high frequency, but
decays for lower frequencies and stabilizes around a sampling frequency of 300
ticks, which corresponds approximately to a 30min sampling frequency, given that
the average duration between two consecutive trades is around 6.78 s.

https://github.com/QuantLet/XFG3/blob/master/XFGsignature
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Thus, sampling at a lower frequency, such as every 10, 15 or 30min, seems to
alleviate the problem of market microstructure noise and has thus frequently been
applied in the literature. This so-called sparse sampling, however, comes at the cost
of a less precise estimate of the actual volatility. Alternative methods have been
proposed to solve this bias-variance trade-off for the above simple noise assump-
tion as well as for more general noise processes, allowing also for serial depen-
dence in the noise and/or for dependence between the noise and the true price
process, which is sometimes referred to as endogenous noise. A natural approach to
reduce the market microstructure noise effect is to construct the realized volatil-
ity measure based on prefiltered high-frequency returns, using, e.g., an MA(1)
model.

In the following we briefly present two more elaborate and under specific noise
assumptions consistent procedures for estimating actual volatility. Both have been
theoretically considered in several papers. The subsampling approach originally
suggested by Zhang et al. (2005) builds on the idea of averaging over various
realized volatilities constructed from different high-frequency subsamples. For the
ease of exposition we focus again on one time period, e.g., one day, and denote
the full grid of time points at which the M intradaily prices are observed by
Gt = {t0, . . . , tM }. The realized volatility that makes use of all observations in the
full grid is denoted by RV (all)

n . Moreover, the grid is partitioned into L nonover-
lapping subgrids G(l), l = 1, . . . , L . A simple way for selecting such a subgrid
may be the socalled regular allocation, in which the l-th subgrid is given by
G(l) = {tl−1, tl−1+L , . . . , tl−1+Ml L} for l = 1, . . . , L , and Ml denoting the number of
observations in each subgrid. E.g., consider 5-min returns that can be measured at
the time points 9:30, 9:35, 9:40, …, and at the time points 9:31, 9:36, 9:41, …and
so forth. In analogy to the full grid, the realized volatility for subgrid l, denoted
by RV (l)

n , is constructed from all data points in subgrid l. Thus, RV (l)
n is based on

sparsely sampled data.
The actual volatility is then estimated by:

RV (ZMA)
n = 1

L

L∑
l=1

RV (l)
n − M

M
RV (all)

n , (14.12)

where M = 1
L

∑L
l=1 Ml . The latter term on the right-hand side is included to bias-

correct the averaging estimator 1
L

∑L
l=1 RV

(l)
n . As the estimator (14.12) consists of

a component based on sparsely sampled data and one based on the full grid of price
observations, the estimator is also called the two-timescales estimator.

Given the similarity to the problemof estimating the long-run variance of a station-
ary time series in the presence of autocorrelation, it is not surprising that kernel-based
methods have been developed for estimating the realized volatility. Most recently,
Barndorff-Nielsen et al. (2008) proposed the flat-top realized kernel estimator
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RV (BHLS)
n = RVn +

H∗∑
h=1

K

(
h − 1

H∗

)
(̂γh + γ̂−h) (14.13)

with

γ̂h = M

M − h

M∑
j=1

rt j rt j−h , (14.14)

and K (0) = 1, K (1) = 0.Obviously, the summation termon the righthand side is the
realized kernel correction of the market microstructure noise. Zhou (1996), who was
the first to consider realized kernels, proposed (14.13) with H = 1, while Hansen
and Lunde (2006) allowed for general H but restricted K (x) = 1. Both of these
estimators, however, have been shown to be inconsistent. Barndorff-Nielsen et al.
(2008) instead propose several consistent realized kernel estimatorswith an optimally
chosen H∗, such as the Tukey-Hanning kernel, i.e. K (x) = {1 − cosπ(1 − x)2}/2,
which performs also very well in terms of efficiency as illustrated in a Monte Carlo
analysis. They further show, that these realized kernel estimators are robust to market
microstructure frictions that may induce endogenous and dependent noise terms.

14.3 Stylized Facts of Realized Volatility

Figure14.2 shows kernel density estimates of the plain and logarithmic daily realized
volatility in comparison to plots of a correspondingly fitted (log) normal distribu-
tion based on the IBM data, 2001–2006. The pictures in the top of Fig. 14.2 show
the unconditional distribution of the (plain) realized volatility in contrast to a fitted
normal distribution.As also confirmed by the corresponding descriptive statistics dis-
played byTable14.1,we observe that realized volatility reveals severe right-skewness
and excess kurtosis. This result might be surprising given that the realized volatil-
ity consists of the sum of squared intra-day returns and thus central limit theorems
should apply. However, it is a common finding that intra-day returns are strongly
serially dependent requiring significantly higher intra-day sampling frequencies to
observe convergence to normality. In contrast, the unconditional distribution of the
logarithmic realized volatility is well approximated by a normal distribution. The
sample kurtosis is strongly reduced and is close to 3. Though slight right-skewness
and deviations from normality in the tails of the distribution are still observed, the
underlying distribution is remarkably close to that of a Gaussian distribution.

A common finding is that financial returns have fatter tails than the normal distri-
bution and reveal significant excess kurtosis. Though GARCH models can explain
excess kurtosis, they cannot completely capture these properties in real data. Con-
sequently, (daily) returns standardized by GARCH-induced volatility, typically still
show clear deviations from normality. However, a striking result in recent literature
is that return series standardized by the square root of realized volatility, rn/

√
RV n ,

are quite close to normality. This result is illustrated by the plots in the bottom of
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Fig. 14.2 Kernel density estimates of the (logarithmic) realized volatility and of correspondingly
standardized returns for IBM, 2001–2006. The dotted line depicts the density of the correspondingly
fitted normal distribution. The left column depicts the kernel density estimates based on a log scale.

XFGkernelcom

https://github.com/QuantLet/XFG3/blob/master/XFGkernelcom
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Table 14.1 Descriptive statistics of the realized volatility, log realized volatility and standardized
returns, IBM stock, 2001–2006. LB (40) denotes the Ljung-Box statistic based on 40 lags. The last
row gives an estimate of the order of fractional integration based on the Geweke and Porter-Hudak
estimator

RVn ln RVn rn/
√
RVn

Mean 2.26 0.14 −0.000

Median 1.05 0.05 −0.013

Skewness 9.93 0.42 0.035

Variance 22.57 1.13 0.979

Kurtosis 150.47 3.43 2.349

1%-quantile 0.13 −2.03 −1.980

5%-quantile 0.24 −1.41 −1.558

95%-quantile 7.58 2.00 1.628

99%-quantile 17.66 2.87 2.141

LB(40) 2140.48 14213.07 39.780

p-value LB(40) 0.00 0.00 0.480

d̂ 0.38 0.62 −

Fig. 14.2 and the descriptive statistics in Table14.1. Though we observe deviations
from normality for returns close to zero resulting in a kurtosis which is even below
3, the fit in the tails of the distribution is significantly better than that for plain log
returns. Summarizing the empirical findings from Fig. 14.2, we can conclude that the
unconditional distribution of daily returns is well described by a lognormal-normal
mixture. This confirms the mixture-of-distribution hypothesis by Clark (1973) as
well as the idea of the basic stochastic volatility model, where the log variance is
modelled in terms of a Gaussian AR(1) process.

Figure14.3 shows the evolvement of daily realized volatility over the analyzed
sample period and the implied sample autocorrelation functions (ACFs). As also
shown by the corresponding Ljung-Box statistics in Table14.1, the realized volatility
is strongly positively autocorrelated with high persistence. This is particularly true
for the logarithmic realized volatility. The plot shows that the ACF decays relatively
slowly providing hints on the existence of long range dependence. Indeed, a common
finding is that the realized volatility processes reveal long range dependence which is
well captured by fractionally integrated processes. In particular, if RVn is integrated
of the order d ∈ (0, 0.5), it can be shown that

Var

⎡
⎣ h∑

j=1

RVn+ j

⎤
⎦ ≈ ch2d+1, (14.15)

with c denoting a constant. Then, plotting lnVar
[∑h

j=1 RVn+ j

]
against ln h should

result in a straight line with slope 2d + 1. Most empirical studies strongly confirm
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Fig. 14.3 Time evolvement and sample autocorrelation function of the realized volatility for IBM,
2001–2006. XFGrvtsacf

this relationship and find values for d between 0.35 and 0.4 providing clear evidence
for long range dependence. Estimating d using the Geweke and Porter-Hudak esti-
mator, we obtain d̂ = 0.38 for the series of realized volatilities and d̂ = 0.62 for
its logarithmic counterpart. Hence, for both series we find clear evidence for long
range dependence. However, the persistence in logarithmic realized volatilities is
remarkably high providing even hints on non-stationarity of the process.

Summarizing the most important empirical findings, we can conclude that the
unconditional distributions of logarithmic realized volatility and of correspondingly
standardized log returns are well approximated by normal distributions and that real-
ized volatility itself follows a longmemory process. These results suggest (Gaussian)
ARFIMA models as valuable tools to model and to predict (log) realized volatility.

14.4 Realized Volatility Models

As illustrated above, realized volatility models should be able to capture the strong
persistence in the sample autocorrelation function. While this seemingly long-
memory pattern iswidely acknowledged, there is still no consensus on themechanism

https://github.com/QuantLet/XFG3/blob/master/XFGrvtsacf


288 W.K. Härdle et al.

generating it. One approach is to assume that the long memory is generated by a frac-
tionally integrated process as originally introduced by Granger and Joyeux (1980)
and Hosking (1981). In the GARCH literature this has lead to the development of the
fractionally integrated GARCHmodel as, e.g., proposed by Baillie et al. (1996). For
realized volatility the use of a fractionally integrated autoregressive moving aver-
age (ARFIMA) process was advocated, for example, by Andersen et al. (2003). The
ARFIMA (p, q) model is given by

φ(L)(1 − L)d(yn − μ) = ψ(L)un, (14.16)

with φ(L) = 1 − φ1L − . . . − φpL p, ψ(L) = 1 + ψ1L + . . . ψq Lq , and d denot-
ing the fractional difference parameter. Moreover, un is usually assumed to be a
Gaussian white noise process, and yn denotes either the realized volatility (see
Koopman et al. 2005) or its logarithmic transformation. Several extensions of the
realized volatility ARFIMA model have been proposed, accounting, for example,
for leverage effects (see Martens et al. 2004), for non-Gaussianity of (log) realized
volatility or for time-variation in the volatility of realized volatility (see Corsi et al.
2008). Generally the empirical results show significant improvements in the point
forecasts of volatility when using ARFIMA rather than GARCH-type models.

An alternative model for realized volatility has been suggested by Corsi (2009).
The so-called heterogeneous autoregressive (HAR) model of realized volatility
approximates the long-memory pattern by a sum of multi-period volatility com-
ponents. The simulation results in Corsi (2009) show, that the HAR model can quite
adequately reproduce the hyperbolic decay in the sample autocorrelation function of
realized volatility even if the number of volatility components is small. For the HAR
model, let the kperiod realized volatility component be defined by the average of the
single-period realized volatilities, i.e.,

RVn+1−k:n = 1

k

k∑
j=1

RVn− j . (14.17)

The HAR model with the so-defined daily, weekly and monthly realizedvolatility
components, is given by

logRVn = α0 + αd logRVn−1 + αw logRVn−5:n−1

+αm logRVn−21:n−1 + un, (14.18)

with un typically being a Gaussian white noise. The HAR model has become very
popular due to its simplicity in estimation and its excellent in-sample fit and predictive
ability (see e.g. Andersen et al. 2003; Corsi et al. 2008). Several extensions exist and
deal, for example, with the inclusion of jump measures (see Andersen et al. 2003)
or non-linear specifications based on neural networks (see Hillebrand and Medeiros
2007).
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Alternative realized volatility models have been proposed in, e.g., Barndorff-
Nielsen and Shephard (2002a), who consider a superposition of Ornstein Uhlenbeck
processes, and in Deo et al. (2006), who specify a long-memory stochastic volatility
model. A recent and comprehensive review on realized volatility models can also be
found in McAleer and Medeiros (2008b).

14.5 Time-Varying Betas

So far, our discussion focused on the measurement and modeling of the volatility of
a financial asset using high-frequency transaction data. From a pricing perspective,
however, systematic risk is most important. In this section, we therefore discuss,
how high-frequency information can be used for the evaluation and modeling of
systematic risk. A common measure for the systematic risk is given by the so-called
(market) beta, which represents the sensitivity of a financial asset to movements
of the overall market. As the beta plays a crucial role in asset pricing, investment
decisions, and the evaluation of the performance of assetmanagers, a precise estimate
and forecast of betas is indispensable. While the unconditional capital asset pricing
model implies a linear and stable relationship between the asset’s return and the
systematic risk factor, i.e., the return of the market, empirical results suggest that
the beta is time-varying, see, for example, Bos and Newbold (1984), and Fabozzi
and Francis (1978). Similar evidence has been found for multi-factor asset pricing
models, where the factor loadings seem to be time-varying rather than constant. A
large amount of research has therefore been devoted to conditional CAPM and APT
models, which allow for time-varying factor loadings, see, for example, Dumas and
Solnik (1995), Ferson and Harvey (1991), Ferson and Harvey (1993), and Ferson
and Korajczyk (1995).

14.5.1 The Conditional CAPM

Below we consider the general form of the conditional CAPM. A similar discussion
for multi-factor models can be found in Bollerslev and Zhang (2003). Assume that
the continuously compounded return of a financial asset i from period n to n + 1 is
generated by the following process

ri;n+1 = αi;n+1|n + βi;n+1|nrm;n+1 + ui;n+1, (14.19)

with rm;n+1 denoting the excess market return and αn+1|n denoting the intercept
that may be time-varying conditional on the information set available at time n,
as indicated by the subscript. The idiosyncratic risk un+1 is serially uncorrelated,
En(un+1) = 0, but may exhibit conditionally time-varying variance. Note that En(·)
denotes the expectation conditional on the information set available at time n. More-
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over, we assume that E(rm;n+1un+1) = 0 for all n. The conditional beta coefficient
of the CAPM regression (14.19) is defined as

βi;n+1|n = Cov(ri;n+1, rm;n+1)

Var(ri;n+1)
. (14.20)

Now, assume that lending and borrowing at a one-period risk-free rate r f ;n is possible.
Then, the arbitrage-pricing theory implies that the conditional expectation of the next
period’s return at time n is given by

En(ri;n+1) = r f ;n + βi;n+1|nEn(rm;n+1). (14.21)

Thus, the computation of the future return of asset i requires to specify how the beta
coefficient evolves over time.

Themost common approach to allow for time-varying betas is to re-run theCAPM
regression in each period based on a sample of 3 or 5years. We refer to this as the
rolling regression (RR)method.More elaborate estimates of the beta can be obtained
using theKalman-filter, which builds on a statespace representation of the conditional
CAPMorby specifying adynamicmodel for the covariancematrix between the return
of asset i and the market return.

14.5.2 Realized Betas

The evaluation of the in-sample fit and predictive ability of various beta models
is also complicated by the unobservability of the true beta. Consequently, model
comparisons are usually conducted in terms of implied pricing errors, i.e., ei,n+1 =
r̂i,n+1 − ri,n+1, with r̂i,n+1 = r f ;n + β̂i;n+1|nEn(rm;n+1). Owing to the discussion on
the evaluation of volatility models, the question arises, whether high-frequency data
may also be useful for the evaluation of competing beta estimates. The answer is a
clear “yes”. In fact, high-frequency based estimates of betas are quite informative
for the dynamic behavior of systematic risk. The construction of so-called realized
betas is straightforward and builds on realized covariance and realized volatility
measures. In particular, denote the realized volatility of the market by RVm;n and the
realized covariance between the market and asset i by RCovm,i;n = ∑M

j=1 ri,t j rm,t j ,
where ri,t j and rm,t j denote the j-th high-frequency return of the asset and the market,
respectively, during day n. The realized beta is then defined as

β̂HF;i;n = RCovm,i;n
RVm;n

. (14.22)

Barndorff-Nielsen and Shephard (2004) show that the realized beta converges almost
surely for all n to the integrated beta over the time period from n − 1 to n, i.e., the
daily systematic risk associated with the market index. Note that the realized beta
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can also be obtained from a simple regression of the highfrequency returns of asset
i on the high-frequency returns of the market, see, e.g., Andersen et al. (2006). The
preciseness of the realized beta estimator can easily be assessed by constructing the
(1 − α)-percent confidence intervals, which have been derived in Barndorff-Nielsen
and Shephard (2004) and are given by

β̂HF;i;n ± zα/2

√√√√√
⎛
⎝ M∑

j=1

r2m,t j

⎞
⎠

−2

ĝi;n, (14.23)

where zα/2 denotes the (α/2)-quantile of the standard normal distribution,

ĝi;n =
M∑
j=1

x2i; j −
M−1∑
j=1

xi; j xi; j+1, (14.24)

and
xi; j = ri,t j rm,t j − β̂HF;i;nr2m,t j . (14.25)

The upper panel in Fig. 14.4 presents the time-evolvement of the monthly realized
beta for IBM incorporation over the period ranging from 2001 to 2006. We use the
Dow Jones Industrial Average Index as the market index and construct the realized
betas using 30min returns. The graph also shows the 95%-confidence intervals of the
realized beta estimator. The time-varying nature of systematic risk emerges strikingly
from the figure and provides once more evidence for the relevance of its inclusion in
asset pricing models.

Interestingly, the sample autocorrelation function of the realized betas depicted
in the lower panel of Fig. 14.4 indicates significant serial correlation over the short
horizon. This dependency can be explored for the prediction of systematic risk.
Bollerslev and Zhang (2003), for example, find that an autoregressive model for the
realized betas outperforms the RR approach both in terms of forecast accuracy as
well as in terms of pricing errors.

14.6 Summary

We review the usefulness of high-frequency data for measuring and modeling actual
volatility at a lower frequency, such as a day. We present the realized volatility as
an estimator of the actual volatility along with the practical problems arising in the
implementation of this estimator. We show that market microstructure effects induce
a bias to the realized volatility and we discuss several approaches for the alleviation
of this problem. The realized volatility is a more precise estimator of the actual
volatility than the conventionally used daily squared returns, and thus provides more
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Fig. 14.4 Time evolvement and sample autocorrelation function of the realized volatility for IBM,
2001–2006. XFGbetatsacf

accurate information on the distributional and dynamic properties of volatility. This is
important for many financial applications, such as asset pricing, portfolio allocation
or risk management. As a consequence, several modeling approaches for realized
volatility exist and have been shown to usually outperform traditional GARCH or
stochastic volatility models, both in terms of in-sample as well as out-of-sample
performance. We further demonstrate the usefulness of the realized variance and
covariance estimator for measuring and modeling systematic risk. For the empirical
examples provided in this chapter we use tick-by-tick transaction data of one stock
of the IBM incorporation and of the DJIA index.
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