
Chapter 13
Copulae in High Dimensions:
An Introduction

Ostap Okhrin, Alexander Ristig and Ya-Fei Xu

Abstract This paper reviews the latest proceeding of research in high dimensional
copulas. At the beginning the bivariate copulas are given as a fundamental followed
with the multivariate copulas which are the concentration of the paper. In multivari-
ate copula sections, the hierarchical Archimedean copula, the factor copula and vine
copula are introduced. In the following section the estimation methods for multivari-
ate copulas including parametric and nonparametric routines, are presented. Also
the introduction of the goodness of fit tests in copula context is given. An empirical
study of multivariate copulas in risk management is performed thereafter.

13.1 Introduction

Researches of dependence modeling were burgeoning during the last decade. The
traditional approaches that concentrate on the elliptical distributions such asGaussian
models are giving way to copula-based models. Albeit these Gaussian models some-
times own the convenience in model construction and computation, yet an abundant
amount of empirical evidences do not support the underlying assumptions. De facto,
shortcomings in the elliptical and especially Gaussian family are mainly in lack
of asymmetrical and tail dependence which have been deeply discussed in numer-
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ous papers. Furthermore and of great importance, margins of elliptical distributions
belong to the same elliptical family.

The seminal result of Sklar (1959) provides a partial solution to these problems. It
allows to separate the marginal distributions from the dependency structure between
the random variables. Since the theory on modeling and estimation of univariate dis-
tributions is well established compared to the multivariate case, the initial problem
reduces to modeling the dependency by copulas. In particular, this approach dramat-
ically widens the class of candidate distributions and allows a simple construction
of distributions with less parameters than imposed by elliptical models.

In the beginning of the copula study, researchesweremainly focused on the bivari-
ate dependence but as time passes problems raised by the financial, technological,
biological industries dictated the rules of further developments, namely moves to
higher dimensions. Nonetheless, it has been realized as clearly stated in Mai and
Scherer (2013), that “the step from one-dimensional modeling is clearly large. But,
unfortunately, the step from two to three (or even more) dimensions is not a bit
smaller”.

Numerous steps are accomplished in order to contribute to research on high-
dimensional modeling approaches and these main branches have been established:
pair copula construction, see Joe (1996), Bedford and Cooke (2001), Bedford and
Cooke (2002) and Kurowicka and Cooke (2006), hierarchical Archimedean copula,
see Savu and Trede (2010), Hofert (2011) and Okhrin et al. (2013a), and factor
copula, see Krupskii and Joe (2013) and Oh and Patton (2015).

This chapter attempts at discussing such non-standard multivariate copula models
and the subsequent sections are organized as follows.We introduce bivariate copulae
and review modern multivariate copula families. Then, corresponding estimation
methods and goodness of fit tests are presented. Last but not least, we study a risk
management topic empirically.

13.2 Bivariate Copula

Modeling the dependence between only two random variables using copulae is the
subject of this section. There are several equivalent definitions of the copula function.
We define it as a bivariate distribution function and the simplest one is as follows:

Definition 13.1 The copula C(u, v) is a bivariate distribution with margins being
U [0, 1].
Termcopulawasmentioned for the first time in the seminal result of Sklar (1959). The
separation of the bivariate distribution function into the copula function and margins
is formally stated in the subsequent theorem. One possible proof is presented in
Nelsen (2006), for others we refer to Durante et al. (2012), Durante et al. (2013) and
Durante and Sempi (2005)
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Theorem 13.1 Let F be a bivariate distribution function with margins F1 and F2,
then there exists a copula C such that

F(x1, x2) = C{F1(x1), F2(x2)}, x1, x2 ∈ R = R ∪ {∞,−∞}. (13.1)

If F1 and F2 are continuous then C is unique. Otherwise C is uniquely determined
on F1(R) × F2(R).

Conversely, if C is a copula and F1 and F2 are univariate distribution functions,
then function F in (13.1) is a bivariate distribution function with margins F1 and F2.

As indicated above, the theorem allows decomposing any continuous bivariate distri-
bution into its marginal distributions and the dependency structure. Since by defini-
tion, the latter is the copula function with uniform margins, it follows that the copula
density can be determined in the usual way

c(u1, u2) = ∂2C(u1, u2)

∂u1∂u2
, u1, u2 ∈ [0, 1]. (13.2)

Being armed with the Theorem 13.1 and (13.2), the density function f (·) of the
bivariate distribution F can be rewritten in terms of copula

f (x1, x2) = c{F1(x1), F2(x2)} f1(x1) f2(x2), x1, x2 ∈ R.

A very important property of copulae is given in Nelsen (2006) stating that copulae
are invariant under strictly monotone transformations of margins. Seen from this
angle, copulae capture only those features of the dependency which are invariant
under increasing transformations.

13.2.1 Copula Families

Naturally, there is an infinite number of different copula functions satisfying the prop-
erties of Definition 13.1 and the number of them being deeply studied is expand-
ing. In this section, we discuss three copula classes namely simple, elliptical and
Archimedean copulae.

Simplest Copulae

To form basic intuition for copula functions, we first study some extreme special
cases, like stochastically independent, perfect positive or negative dependent random
variables. According to Theorem 13.1, the copula of two stochastically independent
randomvariables X1 and X2 is given by the product (independence) copula defined as

�(u1, u2) = u1u2, u1, u2 ∈ [0, 1].
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The contour diagrams of the bivariate density functionwith product copula and either
Gaussian or t3-distributedmargins are given in Fig. 13.1. Two additional extremes are
the lower and upper Fréchet–Hoeffding bounds. They represent the perfect negative
and positive dependence of two random variables respectively

W (u1, u2) = max(0, u1 + u2 − 1) and M(u1, u2) = min(u1, u2), u1, u2 ∈ [0, 1].

If C = W and (X1, X2) ∼ C(F1, F2) then X2 is a decreasing function of X1. Sim-
ilarly, if C = M , then X2 is an increasing function of X1. In general, we can argue
that an arbitrary copula which represents some dependency structure lies between
these two bounds, i.e.

W (u1, u2) ≤ C(u1, u2) ≤ M(u1, u2), u1, u2 ∈ [0, 1].

The bounds serve as benchmarks for the evaluation of the dependency magnitude.
There are numerous techniques for building new copulae by mixing at least two
of the presented simplest copula. For example, copula families B11 and B12, see
Joe (1997), arise as a combination of the upper Fréchet–Hoeffding bound and the
product copula

CB11(u1, u2, θ) = θM(u1, u2) + (1 − θ)�(u1, u2) = θmin{u1, u2} + (1 − θ)u1u2,

CB12(u1, u2, θ) = M(u1, u2)
θ�(u1, u2)

1−θ = (min{u1, u2})θ(u1u2)1−θ, u1, u2, θ ∈ [0, 1].

Family B11 builds on the fact that every convex combination of copulas is a copula
as well. Family B12 is also known as Spearman or Cuadras–Augé copula, which is
a weighted geometric mean of the upper Fréchet–Hoeffding bound and the product
copula. Further generalization is done by using power mean over the upper Fréchet–
Hoeffding bound and the product copula

Cp(u1, u2, θ1, θ2) = {θ1Mθ2(u1, u2) + (1 − θ1)�
θ2(u1, u2)}1/θ2

= {θ1 min(u1, u2)
θ2 + (1 − θ1)(u1u2)

θ2}1/θ2 ,

with θ1 ∈ [0, 1], θ2 ∈ R. Last but not least, a convex combination of the
Fréchet–Hoeffding lower bound, upper bound and product copula forms the Fréchet
copula

CF (u1, u2, θ1, θ2) = θ1W (u1, u2) + (1 − θ1 − θ2)�(u1, u2) + θ2M(u1, u2),

subject to 0 ≤ θ1 + θ2 ≤ 1. Note that any bivariate copula can be approximated by
the Fréchet family and a bound of the resulting approximation error can be estimated.
Nelsen (2006) provides further methods for constructing multivariate copulas and
discusses convex combination in more detail.
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Fig. 13.1 Contour diagrams for product, Gaussian, Gumbel and Clayton copulae with Gaussian
(left column) and t3 distributed (right column) margins
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Elliptical Family

Due to the popularity of the Gaussian and t-distribution in several applications,
elliptical copulae play an important role as well. The construction of this type of
copulae is directly based onSklar’s Theorem showing hownewbivariate distributions
can be constructed. The copula-based modeling approach substantially widens the
family of elliptical distributions by keeping the same elliptical copula function and
varying the marginal distributions or vice versa.

To determine the copula function of a given bivariate distribution, we employ the
transformation

C(u1, u2) = F{F−1
1 (u1), F

−1
2 (u2)}, u1, u2 ∈ [0, 1], (13.3)

where F−1
i , i = 1, 2, are (generalized) inverses of the marginal distribution func-

tions. Based on (13.3), arbitrary elliptical distributions can be derived. The problem,
however, is that such copulae depend on the inverse distribution functions of the
marginals which are rarely available in an explicit form.

For instance, from Formula 13.3 follows that the Gaussian copula and its density
are given by

CN (u1, u2, δ) = �δ(�
−1(u1),�

−1(u2)),

cN (u1, u2, δ) = (1 − δ2)−
1
2 exp

{
− 1

2
(1 − δ2)−1(u21 + u22 − 2δu1u2)

}

× exp
{1
2
(u21 + u22)

}
, for all u1, u2 ∈ [0, 1], δ ∈ [−1, 1],

where � is the distribution function of N(0, 1), �−1 is the functional inverse of �

and �δ denotes the bivariate standard normal distribution function with correlation
coefficient δ. In the bivariate case, the t-copula and its density are given by

Ct (u1, u2, ν, δ) =
∫ t−1

ν (u1)

−∞

∫ t−1
ν (u2)

−∞

�
(

ν+2
2

)

�
(

ν
2

)
πν

√
(1 − δ2)

×
{
1 + x21 − 2δx1x2 + x22

(1 − δ2)ν

}− ν
2 −1

dx1dx2,

ct (u1, u2, ν, δ) = fν,δ{t−1
ν (u1), t−1

ν (u2)}
fν{t−1(u1)} fν{t−1(u2)} , u1, u2, δ ∈ [0, 1],

where δ denotes the correlation coefficient, ν is the number of degrees of freedom.
fν,δ and fν are joint and marginal t-distributions respectively, while t−1

ν denotes
the quantile function of the tν distribution. In-depth analysis of the t-copula is done
in Rachev et al. (2008) and Luo and Shevchenko (2010). Long-tailed distributed
margins lead to more mass and variability in the tail areas of the corresponding
bivariate distribution. However, the contour-curves of the t-copula are symmetric,
which reflects the ellipticity of the underlying copula. This property is theoretically
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supported by Nelsen (2006), stating that a bivariate copula is elliptical and thus, has
reflection symmetry, if and only if

C(u1, u2, θ) = u1 + u2 − 1 + C(1 − u1, 1 − u2, θ), u1, u2 ∈ [0, 1].

The next class of copulae and their generalizations provide an important flexible and
rich family of alternatives to elliptical copulae.

Archimedean Family

In contrast to elliptical copulae, Archimedean copulae are not constructed via (13.3),
but are related to Laplace transforms of bivariate distribution functions. The function
C : [0, 1]2 → [0, 1] defined as

C(u1, u2) = φ{φ−1(u1) + φ−1(u2)}, u1, u2 ∈ [0, 1],

is a 2-dimensional Archimedean copula, where φ ∈ L = {φ : [0;∞) → [0, 1] |
φ(0) = 1, φ(∞) = 0; (−1) jφ( j) ≥ 0; j = 1, . . . ,∞} is referred to as the generator
of the copula. The generator usually depends on some parameters, however, mostly
generators with a single parameter θ are considered. Nelsen (2006) and Joe (2014)
provide a thoroughly classified list of popular generators for Archimedean copulae
and discuss their properties.

The useful applications in finance, see Patton (2012), appearing to be the Gumbel
copula with the generator function φ(x, θ) = exp {−x1/θ}, 1 ≤ θ < ∞, x ∈ [0, 1],
leading to the copula function

C(u1, u2, θ) = exp
{
− [

(− log u1)
θ + (− log u2)

θ
]1/θ}

, u1, u2 ∈ [0, 1].

Genest and Rivest (1989) showed that a bivariate distribution based on the Gumbel
copula with extreme valuedmarginal distributions is the only bivariate extreme value
distribution belonging to the Archimedean family. Moreover, all distributions based
on Archimedean copulae belong to its domain of attraction under common regularity
conditions. In contrary to elliptical copulae, the Gumbel copula leads to asymmetric
contour diagrams in Fig. 13.1. It exhibits a stronger linkage between positive val-
ues, however, more variability and more mass in the negative tail area. Opposite
is observed for the Clayton copula with the generator φ(x, θ) = (θx + 1)− 1

θ with
−1 < θ < ∞, θ 	= 0, x ∈ [0, 1], and copula function

C(u1, u2, θ) = (u−θ
1 + u−θ

2 − 1)−
1
θ , u1, u2 ∈ [0, 1].

Also, the Frank generator φ(x, θ) = θ−1 log{1 − (1 − e−θ)e−x } with 0 ≤ θ < ∞,
x ∈ [0, 1], enjoys increased popularity and induces the copula function

C(u1, u2, θ) = − θ−1 log

{
1 − e−θ − (1 − e−θu1)(1 − e−θu2)

1 − e−θ

}
, u1, u2 ∈ [0, 1].

The respective Frank copula is the only elliptical Archimedean copula.
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13.2.2 Bivariate Copula and Dependence Measures

Since copulae define the dependence structure between random variables, there is a
relationship between copulae and different dependencymeasures. The classical mea-
sures for continuous random variables are Kendall’s τ and Spearman’s ρ. Similarly
as copula functions, these measures are invariant under strictly increasing transfor-
mations. They are equal to 1 or −1 under perfect positive or negative dependence
respectively. In contrast to τ and ρ, the Pearson correlation coefficient measures the
linear dependence and, therefore, is not suitable for measuring non-linear relation-
ships. Next, we discuss the relationship between τ , ρ and the underlying copula
function.

Definition 13.2 Let F be a continuous bivariate cumulative distribution function
with the copula C . Moreover, let (X1, X2) ∼ F and (X ′

1, X
′
2) ∼ F be independent

random pairs. Then Kendall’s τ is given by

τ2 = P{(X1 − X ′
1)(X2 − X ′

2) > 0} − P{(X1 − X ′
1)(X2 − X ′

2) < 0}
= 2 P{(X1 − X ′

1)(X2 − X ′
2) > 0} − 1 = 4

∫

[0,1]2
C(u1, u2) dC(u1, u2) − 1.

Kendall’s τ represents the difference between the probability of two random con-
cordant pairs and the probability of two random discordant pairs. For most copula
functions with a single parameter θ there is a one-to-one relationship between θ and
the Kendall’s τ2. For example, it holds that

τ2(Gaussian and t) = 2

π
arcsin δ, τ2(Archimedean) = 4

∫ 1

0

φ−1(t)

(φ−1)′
dt + 1,

τ2(�) = 0, τ2(W ) = 1, τ2(M) = −1.

For instance, this implies that an unknown copula parameter θ of the Gaussian, t
and an arbitrary Archimedean copulae can be estimated using a type of method
of moments procedure with a single moment condition. This requires, however, an
estimator of τ2, c.f. Kendall (1970). Naturally, it is computed by

τ2n = 4

n(n − 1)
Pn − 1,

where n stands for the sample size and Pn denotes the number of concordant
pairs, e.g. such pairs (X1, X2) and (X ′

1, X
′
2) that (X1 − X ′

1)(X2 − X ′
2) > 0. Next we

provide the definition and similar results for the Spearman’s ρ.

Definition 13.3 Let F be a continuous bivariate distribution functionwith the copula
C and the univariate margins F1 and F2 respectively. Assume that (X1, X2) ∼ F .
Then the Spearman’s ρ is given by
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ρ2 = 12
∫

R
2

F1(x1)F2(x2) dF(x1, x2) = 12
∫

[0,1]2
u1u2 dC(u1, u2) − 3.

Similarly as for Kendall’s τ , the relationship between Spearman’s ρ and specific
copulae is given through

ρ2(Gaussian and t) = 6

π
arcsin

δ

2
,

ρ2(�) = 0, ρ2(W ) = 1, ρ2(M) = −1.

Unfortunately, there is no explicit representation of Spearman’s ρ2 for Archimedean
in terms of generator functions as by Kendall’s τ . The estimator of ρ is easily com-
puted using

ρ2n = 12

n(n + 1)(n − 1)

n∑
i=1

Ri Si − 3
n + 1

n − 1
,

where Ri and Si denote the ranks of two samples. The exact regions determined by
Kendall’s τ and Spearman’s ρ have been recently given by Schreyer et al. (2017).

13.3 Multivariate Copula: Primer and State-of-Art

Asmentioned in the introduction, step from bivariate copulas to multivariate is large.
Nevertheless, many works have been written properly different high-dimensional
copulas. This section introduces simple multivariate models and most prominent
families like hierarchical Archimedean copula (HAC), pair-copula constructions and
factor copula.

A d-dimensional copula is also the distribution function on [0, 1]d having all
marginal distributions uniform on [0, 1]. In Sklar’s Theorem, the importance of
copulas in the area of multivariate distributions is re-stated in an exquisite way.

Theorem 13.2 Let F be a multivariate distribution function with margins F1, . . . ,
Fd, then there exists the copula C such that

F(x1, . . . , xd) = C{F1(x1), . . . , Fk(xd)}, x1, . . . , xd ∈ R.

If Fi are continuous for i = 1, . . . , d then C is unique. Otherwise C is uniquely
determined on F1(R) × · · · × Fd(R).

Conversely, if C is a copula and F1, . . . , Fd are univariate distribution functions,
then function F defined above is a multivariate distribution function with margins
F1, . . . , Fd.

As in the bivariate case, the representation in Sklar’s Theorem can be used for con-
structing new multivariate distributions by changing either the copula function of



256 O. Okhrin et al.

marginal distributions. For an arbitrary continuous multivariate distribution we can
determine its copula from the transformation

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
d (ud)}, u1, . . . , ud ∈ [0, 1], (13.4)

where F−1
i are inverse marginal distribution functions. Copula density and density

of the multivariate distribution with respect to copula are

c(u1, . . . , ud) = ∂kC(u1, . . . , ud)

∂u1 . . . ∂ud
, u1, . . . , ud ∈ [0, 1],

f (x1, . . . , xd) = c{F1(x1), . . . , Fd(xd)}
d∏

i=1

fi (xi ), x1, . . . , xd ∈ R.

For themultivariate case aswell as for the bivariate case copula functions are invariant
under monotone transformations.

13.3.1 Extensions of Simple and Elliptical Bivariate Copulae

The independence copula and the upper and lower Fréchet–Hoeffding bounds can
be straightforwardly generalized to the multivariate case. The independence copula
is defined by the product �(u1, . . . , ud) = ∏d

i=1 ui and the bounds are given by

W (u1, . . . , ud) = max
(
0,

d∑
i=1

ui + 1 − d
)
,

M(u1, . . . , ud) = min(u1, . . . , ud), u1, . . . , ud ∈ [0, 1].

An arbitrary copula C(u1, . . . , ud) lies between the Fréchet–Hoeffdings bounds

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ M(u1, . . . , ud),

where the Fréchet–Hoeffding lower bound is not a copula function for d > 2 though.
The generalization of elliptical copulas to d > 2 is straightforward as well. For
example, the Gaussian case yields

CN (u1, . . . , ud , �) = ��{�−1(u1), . . . , �
−1(ud )},

cN (u1, . . . , ud , �) = |�|−1/2

exp
[

− 1

2
{�−1(u1), . . . , �

−1(ud )}�(�−1 − I ){�−1(u1), . . . , �
−1(uk )}

]

for all u1, . . . , ud ∈ [0, 1], where �� is a d-dimensional Gaussian distribution with
zero mean and correlation matrix �. Individual dispersion is imposed via the mar-
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ginal distributions. Note that in the multivariate case the implementation of elliptical
copulas can be involved due to technical difficulties with multivariate cdf’s.

13.3.2 Hierarchical Archimedean Copula

A simple multivariate generalization of the Archimedean copulas is defined as

C(u1, . . . , ud) = φ{φ−1(u1) + · · · + φ−1(ud)}, u1, . . . , ud ∈ [0, 1], (13.5)

where φ ∈ L. This definition provides a simple, but rather limited technique for
the construction of multivariate copulas, since a possibly complicated multivari-
ate dependence structure is determined by a single copula parameter. Furthermore,
multivariate Archimedean copulas imply that the variables are exchangeable. This
means, that the distribution of (u1, . . . , ud) is the same as of (u j1 , . . . , u jd ) for all
j� 	= jv . This is certainly not an acceptable assumption in practical applications.

A more flexible method is provided by hierarchical Archimedean copula (HAC)
sometimes also called the nested Archimedean copula which replaces a uniform
margin of a simple Archimedean copula by an additional Archimedean copula. The
iterative substitution of margins by copulas widens the spectrum of attainable depen-
dence structures. For example, the copula function for fully nested HAC is given by

C(u1, . . . , ud) = φd−1
{
φ−1
d−1 ◦ φd−2

(
. . . [φ−1

2 ◦ φ1{φ−1
1 (u1) + φ−1

1 (u2)} (13.6)

+ φ−1
2 (u3)] + · · · + φ−1

d−2(ud−1)
) + φ−1

d−1(ud)
}

= φd−1[φ−1
d−1 ◦ C({φ1, . . . ,φd−2})(u1, . . . , ud−1) + φ−1

d−1(ud)]

for φ−1
d−i ◦ φd− j ∈ L∗, i < j , where

L∗ = {ω : [0; ∞) → [0,∞) | ω(0) = 0, ω(∞) = ∞; (−1) j−1ω( j) ≥ 0; j = 1, . . . ,∞},

As indicated above, contrarily to the usual Archimedean copula (13.5), HAC defines
the dependency structure in a recursive way. At the lowest level of the so called
HAC-tree, the dependency between the two variables ismodeled by a copula function
with the generator φ1, i.e. z1 = C(u1, u2) = φ1{φ−1

1 (u1) + φ−1
1 (u2)}. At the second

level, an another copula function is used to model the dependency between z1 and
u3, etc. The generators φi can come from the same family and differ only through the
parameter or, to introduce more flexibility, come from different generator families,
c.f. Hofert (2011). As an alternative to the fully nested model, so-called partially
nested copulas combine arbitrarily many copula functions at each copula level. For
example the following 4-dimensional copula,where the first and the last two variables
are joined by individual copulas with generators φ12 and φ34. Further, the resulted
copulas are combined by a copula with the generator φ.
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C(u1, u2, u3, u4) = φ
(
φ−1[φ12{φ−1

12 (u1) + φ−1
12 (u2)}] + φ−1[φ34{φ−1

34 (u3) + φ−1
34 (u4)}]

)
.

The estimation of HAC is a challenging task, since both the copula structure and
parameters of the generator functions have to be estimated. The variety of possible
structures does not permit the enumeration of all possible structures and selecting
that structure-parameter combination with the largest log-likelihood value.

Okhrin et al. (2013a) first propose methods for determining the optimal structure
of HAC with (non-)parametrically estimated margins and provide asymptotic theory
for the estimated parameters. The basic idea of the estimation procedure uses the fact
that HAC are recursively defined and that dependencies decrease from the lowest to
the highest hierarchical level for common parametric families. To sketch the proce-
dure suppose margins are known: Parameters related to strongly dependent random
variables are estimated first and the variables grouped at the bottom of the HAC-tree.
The determined HAC-tree is spanned by at least two random variables and the tree
itself determines a univariate random variable. After removing all random variables
spanning the tree from the set of variables and adding the univariate random variable
determined by the tree, the parameter of the subsequent level is determined by the
selecting that pair of variables with the strongest dependency again. An additional
level is added to the tree referring to the pair of variables with the strongest depen-
dence and the set of variables is modified as explained above. The sketched steps
are iteratively repeated until the HAC-tree is spanned by all random variables. This
method is implemented in the HAC package for R, see Okhrin and Ristig (2014).

Segers and Uyttendaele (2014) introduce an algorithm for non-parametric struc-
ture determination by firstly decomposing the HAC’s tree structure into four variants
of trivariate structures. Then, the whole tree structure is subsequently determined
based on testing the distance between trivariate copulas and Kendall’s distribution
function. Górecki et al. (2016) generalize the approach of Okhrin et al. (2013a) and
propose an algorithm for simultaneous estimation of the structure and parameters
based on the inversion of Kendall’s τ2, i.e. based on the link between Kendall’s τ2
and Archimedean generators.

Properties and simulation procedures are comprehensively studied in Joe (1997),
Whelan (2004), Savu and Trede (2010), Hofert (2011), Okhrin et al. (2013b), Reza-
pour (2015) and Górecki et al. (2016). Note that HAC became a standard tool for
pricing credit derivatives in academia such as collateralized debt obligations, see
Hering et al. (2010), Hofert and Scherer (2011) and Choroś-Tomczyk et al. (2013).

Brechmann (2014) proposed hierarchical Kendall copula, which does not suffer
from parameter restriction, but are slightly more complicated in estimation. Similar
approach to avoid parameter restrictions and family limitations are proposed by using
Lévy subordinated HAC, see Hering et al. (2010) and the corresponding application
see Zhu et al. (2016).
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13.3.3 Factor Copula

In classical factor analysis, a function links the observed and latent variables under the
assumption that the latent variables explain the observed variables, e.g., see Johnson
and Wichern (2013) and Härdle and Simar (2015). For example, a random variable
Xi , i = 1, . . . , d, is generated by an additive factor model, if

Xi =
m∑
j=1

αi jW j + εi , (13.7)

where Wj , j = 1, . . . ,m, are latent common factors and εi , i = 1, . . . , d, are mutu-
ally independent idiosyncratic disturbances. The basic idea of factormodels and their
natural interpretation can be exported to the copula world in order to induce depen-
dencies between independent idiosyncratic disturbances via common factors. Factor
copula models, however, can be split into two complementary groups both having
strengths and weaknesses. On the one hand, there are (implicit) factor copula models
inducing dependencies among random variables via a functional which links latent
factors and idiosyncratic disturbances. Such models are a straightforward extension
of factor models from multivariate analysis. On the other hand, factor copulas and
dependencies also arise from integrating the product of conditionally independent
distributions –given a latent factor– with respect to this factor. This approach benefits
from the fact, that the copula collapses to the product copula in case of known factors.

Oh and Patton (2015) concentrate on (implicit) factor copulas for X = (X1, . . . ,

Xd)
� arising from a functional relation between the factor(s) andmutual independent

idiosyncratic errors. In this sense, the dependence component of the joint distribution
of X is implied from the factors’ distribution, the distribution of the idiosyncratic
disturbances and the link function. In particular, X follows a multivariate distribu-
tion specified via a copula, i.e. X ∼ F(x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}. For
instance, the additive single factor copula model is represented as

Xi = W + εi , i = 1, . . . , d, (13.8)

W ∼ FW (θW ), εi
i.i.d.∼ Fε(θε), W ⊥ εi , for all i = 1, . . . , d, ,

where W is the single common factor following the distribution of FW (θW ) and
ε1, . . . , εd are mutually independent shocks with distribution function Fε(θε). This
model is extended to the non-linear factor copula based on the following represen-
tation,

Zi = h(W, εi ), i = 1, 2, . . . , d, (13.9)

W ∼ FW (θW ), εi
i.i.d.∼ Fε(θε), W ⊥ εi , for all i = 1, . . . , d,
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where h is a non necessarily linear link function. Thus, the dependence structure can
be built in a more flexible way compared to the linear additive version. Model (13.8)
implies a joint Gaussian random vector X = (X1, . . . , Xd)

�, if the common factor
and the idiosyncratic factor are both Gaussian. Therefore, a joint density function is
available as well.

Nonetheless, a nice analytical expression of the joint density function for a factor
copula with non-Gaussian margins and non-Gaussian factor is rarely available which
makes parameter estimation demanding. Oh and Patton (2013) propose an estima-
tion method for copula models without analytical form of the density function. This
relies on a simulated method of moments approach building on the simplicity to
draw random samples from a factor model. The proposed estimator for (θ�

W , θ�
ε )� is

found numerically by minimizing the distance between scale free empirical depen-
dence measures between Xk and X�, such as τ k�

2n , k = 1, . . . , d; � = k + 1, . . . , d,
and those obtained from a drawn sample. Oh and Patton (2013) prove under weak
regularity conditions that the simulated method of moment estimator is consistent
and asymptotically normal. However, as argued by Genest et al. (1995), method of
moment estimators of copula parameters can be highly inefficient.

Another form of factor copulae relies on the assumption that the observed vari-
ablesU1, . . . ,Ud are conditionally independent given latent factors V1, . . . , Vm . Note
that all random variables Ui , i = 1, . . . , d, and Vj , j = 1, . . . ,m, are assumed to
be uniformly distributed. Then, the conditional distribution of Ui given m factors
V1, . . . , Vm is given byCUi |V1,...,Vm . By usingCUi |V1,...,Vm , the dependence structure of
the observed variablesU1, . . . ,Ud can be specified by the following copula function,
such that

C(u1, . . . , ud ) =
∫

[0,1]m
d∏

i=1

CUi |V1,...,Vm (ui |v1, . . . , vm)dv1 · · · dvm with ui ∈ (0, 1),

(13.10)
where the factors are out integrated. For the special case m = 1, the copula function
(13.10) can be simplified to the form

C(u1, . . . , ud) =
∫

[0,1]

d∏
i=1

CUi |V1(ui |v1)dv1 with ui ∈ (0, 1). (13.11)

Let CUi ,V1 and cUi ,V1 be the joint cdf and density of the pairs of random variables
(Ui , V1), i = 1, . . . , d. Moreover, let the conditional distribution of Ui given V1

be denoted by CUi |V1(ui |v1) = ∂CUi ,V1(ui , v)/∂v|v=v1 . Then, the copula density of
C(u1, . . . , ud) can be represented by

c(u1, . . . , ud) = ∂dC(u1, . . . , ud)

∂u1 · · · ∂ud =
∫

[0,1]

d∏
i=1

cUi ,V1(ui , v1)dv1 with ui ∈ (0, 1),

(13.12)
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where cUi ,V1(ui , v1) = ∂C(ui |v1)/∂ui . Seen from this angle, the dependencies
between d observed variables is determined by d bivariate copulas CUi ,V1(ui , v).
Based on a parametric copula density c(·; θ), Krupskii and Joe (2013) separate the
parameter estimation into two steps. In the first step, the margins are estimated para-
metrically or non-parametrically. In the second step, the maximum likelihood (ML)
method is employed to estimate the parameter θ.

Numerous literature about the factor copula’s theory and applications can be
referred to. Andersen et al. (2003), Hull and White (2004) and Laurent and Gregory
(2005) have contributed works on generalization of one factor copula models.
A comprehensive review of the factor copula theory is given in Joe (2014). Some
applications by using factor copula models can be referred to Li (2000) for credit
derivative pricing, Krupskii and Joe (2013) for fitting stock returns andOh and Patton
(2015) for measuring systemic risk.

13.3.4 Vine Copula

Vine copula or pair-copula constructions are originally proposed in Joe (1996) and
developed in depth by Bedford and Cooke (2001), Bedford and Cooke (2002),
Kurowicka and Cooke (2006) and Aas et al. (2009). The catchy name is due to
similarities of the graphical representation of vine copulae and botanical vines. The
fundamental idea of the vine copula is to construct a d-dimensional copula by decom-
posing the dependence structure into d(d − 1)/2 bivariate copulas.

Let S be the index subset of D = {1, . . . , d} referring to the index set of condi-
tioning variables and T be the index set of conditioned variables with T ∪ S = D.
Let �M denote the cardinality of set M . The cdf of variables with index in S is
denoted by FS , so that F(x) = FD(x). The conditional cdf of variables with index
in T conditional on S is denoted FT |S . A similar notation is used for the correspond-
ing copulas. To derive a vine copula for a given x = (x1, . . . , xd)� in the spirit of
Joe (2014), we start from a d-dimensional distribution function, i.e.

F(x) =
∫

(−∞,xS ]
FT |S(xT |yS)dFS(yS), (13.13)

and replace the conditional distribution FT |S(xT |xS) by the corresponding �T -
dimensional copula FT |S(xT |xS) = CT ;S{Fj |S(x j |xS) : j ∈ T }. The copulaCT ;S{Fj |S
(x j |xS) : j ∈ T } is implied by Sklar’s Theorem with margins Fj |S(x j |xS), j ∈ T .
It is not a conditional distribution although with conditional distribution as margins.
This yields a copula-based representation of the joint d-dimensional distribution
function from (13.13), which is given by

F(x) =
∫

(−∞,xS ]
CT ;S{Fj |S(x j |yS) : j ∈ T }dFS(yS). (13.14)
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Note that the support of the integral in (13.13) and (13.14) is a cube (−∞, xS] ∈ R
�S .

Converting all univariate margins to uniformly distributed random variables allows
rewriting F(x) as a d-dimensional copula

C(u) =
∫

[0,uS ]
CT ;S{G j |S(u j |vS) : j ∈ T }dCS(vS), (13.15)

where G j |S(u j |vS) is a conditional distribution from copula CS∪{ j}. If T = {i1, i2},
then

CS∪{i1,i2}(uS∪{i1,i2}) =
∫

[0,uS ]
Ci1,i2;S{Gi1|S(ui1 |vS),Gi2|S(ui2 |vS)}dCS(vS). (13.16)

Since the essential idea of vine copula is based on building a joint dependence
structure by d(d − 1)/2 bivariate copulae, (13.16) is an important building block
in the construction of vines referring to a (�S + 2)-dimensional copula built from a
bivariate copula Ci1,i2;S .

In case of continuous random variables, the d-dimensional distribution function
from (13.13) admits a density function f (x1, . . . , xd), which can be decomposed and
represented by bivariate copula densities in an analoguemanner. Examples of density
decompositions for the 6-dimensional case related to so called C-vine (canonical
vine), D-vine (drawable vine) and R-vine (regular vine) copulas are given as follows.

The C-vine structure is illustrated in the left column of Fig. 13.2 and its density
decomposition is

c{F1(x1), . . . , F6(x6)} = c12{F1(x1), F2(x2)} · c13{F1(x1), F3(x3)} (13.17)

· c14{F1(x1), F4(x4)} · c15{F1(x1), F5(x5)} · c16{F1(x1), F6(x6)}
· c23;1{F(x2|x1), F(x3|x1)} · c24;1{F(x2|x1), F(x4|x1)}
· c25;1{F(x2|x1), F(x5|x1)} · c26;1{F(x2|x1), F(x6|x1)}
· c34;12{F(x3|x12), F(x4|x12)} · c35;12{F(x3|x12), F(x5|x12)}
· c36;12{F(x3|x12), F(x6|x12)} · c45;123{F(x4|x123), F(x5|x123)}
· c46;123{F(x4|x123), F(x6|x123)} · c56;1234{F(x5|x1234), F(x6|x1234)}.

The density of the D-vine structure –given in the centred column of Fig. 13.2— is

c{F1(x1), . . . , F6(x6)} = c12{F1(x1), F2(x2)} · c23{F2(x2), F3(x3)} (13.18)

· c34{F3(x3), F4(x4)} · c45{F4(x4), F5(x5)} · c56{F5(x5), F6(x6)}
· c13;2{F(x1|x3), F(x2|x3)} · c24;3{F(x2|x3), F(x4|x3)}
· c35;4{F(x3|x4), F(x5|x4)} · c46;5{F(x4|x5), F(x6|x5)}
· c14;23{F(x2|x23), F(x4|x23)} · c25;34{F(x2|x34), F(x5|x34)}
· c36;45{F(x3|x45), F(x6|x45)} · c15;234{F(x1|x234), F(x5|x234)}
· c26;345{F(x2|x345), F(x6|x345)} · c16;2345{F(x1|x2345), F(x6|x2345)}.
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Fig. 13.2 Vine tree structures of C-vine, D-vine and R-vine

The density of the R-vine structure illustrated in the right column of Fig. 13.2 is

c{F1(x1), . . . , F6(x6)} = c12{F1(x1), F2(x2)} · c23{F2(x2), F3(x3)} (13.19)

· c34{F3(x3), F4(x4)} · c25{F2(x2), F5(x5)} · c36{F3(x3), F6(x6)}
· c13;2{F(x1|x2), F(x3|x2)} · c24;3{F(x2|x3), F(x4|x3)}
· c26;3{F(x2|x3), F(x6|x3)} · c35;2{F(x3|x2), F(x5|x2)}
· c15;23{F(x1|x23), F(x5|x23)} · c56;23{F(x5|x23), F(x6|x23)}
· c46;23{F(x4|x23), F(x6|x23)} · c16;235{F(x1|x235), F(x6|x235)}
· c45;236{F(x4|x236), F(x5|x236)} · c14;2356{F(x1|x2356), F(x4|x2356)}.

In particular, the C-vine and D-vine have an intuitive graphical representation
which can be immediately related to the decomposition of the copula density function
into the product of bivariate copula densities. For example, the product of bivariate
copula densities from the first two lines of the right hand side of Eq. 13.17 refers
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to a C-vine represented in the upper left graphic of Fig. 13.2. The formula and the
corresponding graphic illustrate that the first variable X1 is pairwise coupled with
the second, third ... and sixth random variable. The subsequent two lines (3–4) of
Eq.13.17 are related to the second graphic of the left column of Fig. 13.2. Con-
ditional on X1, random variable X2 is pairwise coupled with X3, X4, X5 and X6.
Connecting the remaining graphics with formulas is left to the reader. While the
“formula-graphic” matching follows a similar scheme in case of the D-vine, the R-
vine belongs to a more general vine copula class and contains the C-vine and D-vine
as special cases. A rigorous definition of an R-vine copula can be found in Joe (2014).

In fact, vines can be estimated by either full or stage-wise ML such as the infer-
ence function for margins (IFM) method discussed below in Sect. 13.4. Nonetheless,
the inference approach derived in Haff (2013) namely the stepwise semi-parametric
estimator deserves to be mentioned in more detail. Here, the marginal distributions
are non-parametrically estimated by the empirical distribution function such as for
factor copulae or HAC. In order to obtain a consistent and asymptotically Gaussian
distributed estimator of a parametric vine copula, a so called simplifying assump-
tion is required. The latter permits replacing “conditional” bivariate copula densi-
ties with unconditional densities. Then, it can be straightforwardly shown, that the
log-likelihood can be maximized in a stage-wise manner. This is due to the decom-
position of the density into the product of bivariate copula densities, so that the
log-likelihood function is a sum of logarithmized copula densities. Coming back
to the C-vine example from Fig. 13.2. At the first stage, all parameters of bivari-
ate copulas represented in the upper left graphic of Fig. 13.2 are estimated, i.e. the
parameters of the copulae for (X1, X2), . . . , (X1, X6). Keeping the corresponding
parameters fixed at estimated values, the four parameters of copulae referring to the
pairs from the second graphic of the left column of Fig. 13.2 are estimated. Holding
these parameters fixed at estimated values again, all vine parameters of the remaining
bivariate densities can be estimated iteratively. Literature on pair-copula construc-
tion is spreading steadily, and most recent information about it can be found on vine
copula homepagehttp://www.statistics.ma.tum.de/en/research/
vine-copula-models/.

13.4 Estimation Methods

The estimation of a copula-based multivariate distribution involves both the estima-
tion of the copula parameters θ and the estimation of the margins Fj , j = 1, . . . , d.
The properties and goodness of the estimator of θ heavily depend on the estima-
tors of Fj , j = 1, . . . , d. We distinguish between a parametric and a non-parametric
specification of the margins. If we are interested only in the dependency structure,
the estimator of θ should be independent of any parametric models for the mar-
gins. However, Joe (1997) argues that complete distribution models and, therefore,
parametric models for margins are actually more appropriate for applications.
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In the bivariate case, a standard method of estimating the univariate parameter
θ is based on Kendall’s τ2 statistic by Genest and Rivest (1993). The estimator
of τ2 complemented by the method of moments allows to estimate the parame-
ters. However, as shown in Genest et al. (1995), the ML method leads to substan-
tially more efficient estimators. For non-parametrically estimated margins, Genest
et al. (1995) show the consistency and asymptotic normality of ML estimators and
derive the moments of the asymptotic distribution. The ML procedure can be per-
formed simultaneously for the parameters of the margins and of the copula function.
Alternatively, a two-stage procedure can be applied, where the parameters of mar-
gins are estimated at the first stage and the copula parameters at the second stage,
see Joe (1997) and Joe (2005). Chen and Fan (2006) and Chen et al. (2006) analyze
the case of non-parametrically estimated margins. Fermanian and Scaillet (2003)
and Chen and Huang (2007) consider a fully non-parametric estimation of the cop-
ula. Next we provide details on both approaches. Note that estimation procedures
for HAC, conditional-independence-based factor copulas and vines are in fact gen-
eralizations of the subsequent approaches taking specific needs of the copula into
account, e.g., parameter restrictions.

13.4.1 Parametric Margins

Let α = (α�
1 , . . . ,α�

d )� denote the vector of parameters of marginal distributions
and θ parameters of the copula. The classical full ML estimator η̂ of η = (α�,θ�)�
solves the system of equations

∂L(η,X)

∂η
= 0,

where L(η,X) =
n∑

i=1

log

⎧⎨
⎩c(F1(x1i ,α1), . . . , Fd (xdi ,αd ), θ)

d∏
j=1

f j (x ji ,α j )

⎫⎬
⎭

=
n∑

i=1

{
log c(F1(x1i ,α1), . . . , Fd (xdi ,αk),θ) +

d∑
j=1

log f j (x ji , α j )
}
.

Following the standard theory on ML estimation, the estimator η̂ is efficient and
asymptotically normal. However, it is often computationally demanding to solve
the system simultaneously. Alternatively the multistage optimization proposed in
Joe (1997), also known as inference functions for margins, can be applied: Firstly,
the parameters of the margins are separately estimated under the assumption that the
copula is the product copula. Secondly, the parameters of the copula are estimated
replacing the parameters of margins by estimates from the first step and treating them
as known quantities. The above optimization problem is then replaced by
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(
∂L1

∂α�
1

, . . . ,
∂Ld

∂α�
d

,
∂Ld+1

∂θ�

)�
= 0, (13.20)

where L j =
n∑

i=1

l j (Xi ), for j = 1, . . . , d + 1,

l j (Xi ) = log f j (x ji ,α j ), for j = 1, . . . , d, i = 1, . . . , n,

and ld+1(Xi ) = log c
{
F1(x1i ,α1), . . . , Fd(xdi ,αd),θ

}
, for i = 1, . . . , n.

The first d components in (13.20) correspond to the usual ML estimation of the
parameters of themarginal distributions. The last component reflects the estimationof
the copula parameters. Detailed discussion on thismethod can be found in Joe (1997).
Note, that this procedure does not lead to efficient estimators, however, as argued by
Joe (1997) the loss in the efficiency is modest and mainly depends on the strength of
dependencies. This method is a special case of the generalized method of moments
with an identity weighting matrix, see Cherubini et al. (2004). The advantage of the
two-stage procedure lies in the dramatic reduction of the numerical complexity.

13.4.2 Non-parametric Margins

In this section, we consider a non-parametric estimation of the marginal distribu-
tions also referred to as canonical ML. The asymptotic properties of the multistage
estimator for θ do not depend explicitly on the type of the non-parametric estimator,
but on its convergence properties. Here, we use the rectangular kernel (histogram)
resulting in the estimator

F̂j (x) = (n + 1)−1
n∑

i=1

1(x ji ≤ x), j = 1, . . . , d.

The factor n/(n + 1) is used to restrict fitted values to the open unit interval. This
is necessary as several copula densities are not bounded at zero and/or one. Let
F̂1, . . . , F̂d denote the non-parametric estimators of F1, . . . , Fd . The canonical ML
estimator θ̂ of θ solves the system ∂L/∂θ� = 0 by maximizing the pseudo log-
likelihood with estimated margins F̂1, . . . , F̂d , i.e.

L =
n∑

i=1

l(Xi ) for j = 1, . . . , p,

l(Xi ) = log c
{
F̂1(x1i ), . . . , F̂d(xdi ),θ

}
, for i = 1, . . . , n.

As in the parametric case, the semi-parametric estimator θ̂ is asymptotically normal
under suitable regularity conditions. This method was first used in Oakes (1994)
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and then investigated by Genest et al. (1995) and Shih and Louis (1995). Additional
properties of the estimator, such as the covariance matrix, are stated in these papers.

13.5 Goodness-of-Fit Tests for Copulae

Having a dataset and an estimated copula at hand, it arises the natural question
whether the selected copula describes the data properly. For this purpose, a series
of different goodness-of-fit tests has been developed in the last decade. Under the
H0-hypothesis one assumes that the true copula belongs to some parametric family
H0 : C ∈ C0.

Themost natural test approach is tomeasure the deviation of the parametric copula
from the empirical one given through

Cn(u1, . . . , ud) = n−1
n∑

i=1

d∏
j=1

I {F̂j (xi j ) ≤ u j }.

Gaensler and Stute (1987) and Radulovic and Wegkamp (2004) show that Cn is a
consistent estimation of the true underlying copula. Several tests are based on the
empirical copula process, which is defined as follows

Cn(u1, . . . , ud) = √
n{Cn(u1, . . . , ud) − Cθ̂(u1, . . . , ud)}.

Fermanian (2005) and Genest and Rèmillard (2008) propose to compute differ-
ent measures to quantify the deviation of the assumed parametric copula from the
empirical copula, one of those is Cramér–von Mises distance

SE
n =

∫

[0,1]d
Cn(u1, . . . , ud)

2dCn(u1, . . . , ud)

or the weighted Cramér–von Mises distance, with tuning parameters m ≥ 0 and
ζm ≥ 0 given as

RE
n =

∫

[0,1]d

{
Cn(u1, . . . , ud)

[Cθ̂(u1, . . . , ud){1 − Cθ̂(u1, . . . , ud)} + ζm]m
}2

dCn(u1, . . . , ud).

The usual Kolmogorov–Smirnov distance as for classical univariate tests is also
applicable here

T E
n = sup

{u1,...,ud }∈[0,1]d
|Cn(u1, . . . , ud)|.
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The other group of tests developed and investigated by Genest and Rivest (1993),
Wang and Wells (2000), Genest et al. (2006) are based on the probability integral
transform and in particular on so called Kendall’s transform. Having

(X1, . . . , Xd) ∼ F(x1, . . . , xd) = Cθ{F1(x1), . . . , Fd(xd)},

one concludes similar to Fi (Xi ) ∼ U (0, 1) that the copula-based random variable is

Cθ{F1(X1), . . . , Fd(Xd)} ∼ Kθ(v)

where Kθ(v) is the univariate Kendall’s distribution (not necessarily uniform), see
Barbe et al. (1996), Jouini and Clemen (1996). Empirically, the distribution function
K can be estimated as

Kn(v) = n−1
n∑

i=1

I
[
Cn{F̂1(xi1), . . . , F̂d(xid)} ≤ v

]
, v ∈ [0, 1].

Further usual test statistics for the univariate distributions like Cramér–von Mises or
Kolmogorov–Smirnov, see Genest et al. (2006), can be applied

S(K )
n =

∫ 1

0
Kn(v)2dK θ̂(v), T (K )

n = sup
v∈[0,1]

|Kn(v)|,

where Kn = √
n(Kn − K θ̂) is the Kendall’s process. Here is, however, a little chal-

lenge in using this tests: as in testing for Kendall’s distribution one tests in null
hypothesis has H

′′
0 : K ∈ K0 = {Kθ : θ ∈ �}, and as H0 ⊂ H

′′
0 , the non-rejection of

H ′′
0 does not imply non rejection of H0. For the bivariate Archimedean copulas H

′′
0

and H0 are equivalent.
Another series of goodness-of-fit tests, is constructed via the other important

integral transform, that dates back to Rosenblatt (1952). Based on the conditional
distribution of Ui by

Cd(ui |u1, . . . , ui−1) = P{Ui ≤ ui |U1 = u1 . . .Ui−1 = ui−1}
= ∂i−1C(u1, . . . , ui , 1, . . . , 1)/∂u1 . . . ∂ui−1

∂i−1C(u1, . . . , ui−1, 1, . . . , 1)/∂u1 . . . ∂ui−1
,

the Rosenblatt transform is defined as follows.

Definition 13.4 Rosenblatt’s probability integral transform of a copula C is the
mapping R : (0, 1)d → (0, 1)d , R(u1, . . . , ud) = (e1, . . . , ed) with e1 = u1 and
ei = Cd(ui |u1, . . . , ui−1), ∀i = 2, . . . , d.

Under this definition, the null hypothesis H0 : C ∈ C0 can be rewritten as H0R :
(e1, . . . , ed)� ∼ �. The first test based on the Rosenblatt transform exploits infor-
mation, that under H0 transformedobservations should be exactly uniformdistributed
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and independent, which is not the case, as those variables as not mutually indepen-
dent and only approximately uniform. Nevertheless, two tests use Anderson–Darling
test statistics, see Breymann et al. (2003), and are constructed as

Tn = −n −
n∑

i=1

2i − 1

n
[logG(i) + log{1 − G(n+1−i)}]

where Gi might be constructed in two ways. In the first possibility

Gi,Gamma = �d

⎧⎨
⎩

d∑
j=1

(− log ei j )

⎫⎬
⎭ ,

where �d(·) is the Gamma distribution with shape d and scale 1. The second way
takes

Gi,χ2 = χ2
d

⎡
⎣

d∑
j=1

{�−1(ei j )}2
⎤
⎦ ,

where χ2
d refers to the Chi-squared distribution with d degrees of freedom and � is

standard normal distribution. Another possibility compares the variables not via the
Anderson–Darling test statistics, but by purely deviations between estimated density
functions, as in Patton et al. (2004), where the test statistics is constructed by

CCh
n = n

√
h Ĵn − cn

σ

with cn and σ are normalization factors and Ĵn = ∫ 1
0 { 1n

∑n
i=1 Kh(w,Gi,χ2) − 1}2dw.

As discussed by Dobrić and Schmid (2007), the problem with those tests is that
they have almost no power and even do not capture the type 1 error. Much better
power have tests, that work directly on the copulas of the Rosenblatt transformed
data, see Genest et al. (2009). The idea is to compute Cramer–von Mises statistics
of the following form

Sn = n
∫

[0,1]d
{Dn(u) − �(u)}2du

S(C)
n = n

∫

[0,1]d
{Dn(u) − �(u)}2dDn(u)

where the empirical distribution function

Dn(u) = Dn(u1, . . . , ud) = 1

n

n∑
i=1

d∏
j=1

I (ei j ≤ u j )
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should be “close” to product copula � under H0.
Different from previous test are those based on the kernel density estimators, and

just to mention one, let us consider test developed by Scaillet (2007), where the test
statistics is given through

Jn =
∫

[0,1]d
{ĉ(u) − KH ∗ c(u; θ̂)}w(u)du,

with “∗” being a convolution operator and w(u) a weight function. The kernel func-
tion KH (y) = K (H−1y)/ det(H) where K is the bivariate quadratic kernel with
the bandwidth H = 2.6073n−1/6�̂1/2 and �̂ being a sample covariance matrix. The
copula density is estimated non-parametrically as

ĉ(u) = n−1
n∑

i=1

KH [u − {F̂1(Xi1), . . . , F̂d(Xid)}�],

where F̂j refers to an estimated marginal distribution, j = 1, . . . , d. The most recent
goodness of fit test for copulas have been proposed recently by Zhang et al. (2016),
where one compares the two-step pseudo maximum likelihood:

θ̂ = argmax
θ∈�

n∑
i=1

L{F̂1(Xi1), . . . , F̂d(Xid); θ}.

with the delete-one-block pseudo maximum likelihood θ̂−b, 1 ≤ b ≤ B:

θ̂−b = argmax
θ∈�

B∑
b′ 	=b

m∑
i=1

L{F̂1(Xi1), . . . , F̂d(Xid); θ}, b = 1, . . . , B.

Further, “in-sample” and “out-of-sample” pseudo-likelihoods are compared with the
following test statistic:

Tn(m) =
B∑

b=1

m∑
i=1

[
L{F̂1(Xi1), . . . , F̂d(Xid); θ̂} − L{F̂1(Xi1), . . . , F̂d(Xid); θ̂−b}

]
.

This leads to some challenges, like computation of [ n
m ] dependence parameters,

but Zhang et al. (2016) proposed an asymptotically equivalent test statistics based
on variability and sensitivity matrices. As most of the above mentioned tests, have
complicated asymptotic distributions, p-values of the tests can be performed via the
parametric bootstrap sketched in the subsequent procedure:
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Step 1 Generate bootstrap sample
{
ε(k)
i , i = 1, . . . , n

}
from copula C(u; θ̂) under

H0 with θ̂ and estimated marginal distribution F̂ obtained from original
data;

Step 2 Based on
{
ε(k)
i , i = 1, . . . , n

}
from Step 1, estimate θ of the copula under

H0, and compute test statistics under consideration, say Rk
n ;

Step 3 Repeat Steps (1–2) N -times and obtain N statistics Rk
n, k = 1, . . . , N ;

Step 4 Compute an empirical p-value as pe = N−1 ∑N
k=1 I

(|Rk
n | ≥ |Rn|

)
with Rn

being the test statistic estimated from original data.

13.6 Empirical Study

Value-at-Risk (VaR) is an important measure in risk management. The traditional
models for VaR estimation assume that the assets returns in a portfolio are jointly
normally distributed.However, numerous empirical studies show thatGaussian based
models are not sufficient to describe data characteristics, especially when extreme
events happen such as financial crisis. The weak points of the Gaussian basedmodels
include the lack of asymmetry and tail dependence. Therefore copula methods come
into the focus.

Twelve different copulas are used in this study to construct dependence structures.
The employed families include the Gaussian copula, t-copula, Archimedean copulas
(Clayton, Gumbel, Joe), HAC (Gumbel, Clayton, Frank), C- and D-vine structures
and two factor copulas linked individually by a bivariate Gumbel andClayton copula.

The data set utilized in this study includes five time series of stock close prices
containing ADI (Analog Devices, Inc.), AVB (Avalonbay Communities Inc.), EQR
(Equity Residential), LLY (Eli Lilly and Company) and TXN (Texas Instruments
Inc.), from Yahoo finance. Here, ADI and TXN belong to high-tech industry, AVB
and EQR to real estate industry and LLY to pharmacy industry. The time window
spans from 20070113 to 20160116.

Letw = (w1, . . . , wd)
� ∈ R

d denote the long position vector of a d-dimensional
portfolio, St = (S1,t , . . . , Sd,t )

� stand for the vector of asset prices at time t ∈
{1, . . . , T } and Xi,t = log(Si,t/Si,t−1) for the one period log-return of the i-th asset at
time t . Then, Lt = ∑d

i=1 wi Xi,t denotes the portfolio return. The distribution func-
tion of the univariate random variable Lt is denoted by FLt (x) = P(Lt ≤ x) and the
Value-at-Risk at level α for the portfolio is defined as the inverse of FLt (x), namely
VaRt (α) = F−1

Lt
(α).

Copula Performance in Risk Management

From the above formulations can be concluded that the idiosyncratic dependence of
the log-return process {Xt }Tt=1 is crucial for the appropriate estimation of the VaR.
To remove temporal dependence from Xt , the single log-return processes are filtered
through GARCH(1, 1) processes,
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Fig. 13.3 The lower triangular plots give 2-dimensional kernel density estimations contain-
ing scatter plots of pairwise GARCH(1, 1)-filtered log-returns with quantile regressions under
0.05, 0.5, 0.95 quantiles. The upper triangular plots give pairwise contours of five variables

Table 13.1 Pairwise dependence measures including Pearson’s correlation (left), Kendall’s corre-
lation (center) and Spearman’s correlation (right)

AVB EQR TXN ADI AVB EQR TXN ADI AVB EQR TXN ADI

EQR 0.867 0.686 0.866

TXN 0.359 0.375 0.260 0.264 0.376 0.381

ADI 0.384 0.399 0.752 0.277 0.285 0.583 0.398 0.410 0.770

LLY 0.358 0.370 0.358 0.362 0.268 0.260 0.272 0.270 0.390 0.376 0.393 0.391
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Table 13.2 Exceeding ratios based on α ∈ {0.05, 0.01, 0.005, 0.001}
Copula α = 0.05 α = 0.01 α = 0.005 α = 0.001

Gaussian 0.050 0.018 0.009 0.004

t 0.048 0.014 0.011 0.005

Clayton 0.047 0.017 0.011 0.002

Gumbel 0.048 0.025 0.013 0.005

Joe 0.065 0.032 0.030 0.023

C-Vine 0.045 0.019 0.015 0.008

D-Vine 0.044 0.018 0.012 0.007

HAC-Clayton 0.044 0.013 0.008 0.003

HAC-Frank 0.055 0.033 0.026 0.016

HAC-Gumbel 0.070 0.036 0.028 0.017

Factor-Frank 0.046 0.026 0.017 0.015

Factor-Gumbel 0.086 0.042 0.032 0.024

Xi,t = μi,t + σi,tεi,t , (13.21)

σ2
i,t = ai + αi (Xi,t−1 − μi,t−1)

2 + βiσ
2
i,t−1. (13.22)

The GARCH(1, 1)-filtered log-returns are illustrated in Fig. 13.3. Obviously,
assets coming from the same sector have high correlation according to the GARCH
residuals. For example, the AVB-EQR and TXN-ADI pairs have strong correlation
coming from real estate industry and high technology industry respectively. The
strong correlation is also observed in Table13.1 presenting three dependence mea-
sures for pairs of AVB-EQR and TXN-ADI. LLY is from pharmacy industry and
shows weak correlation with the other four companies according to the scatter-plots
and the contours.

The performance of different copulas utilized for VaR estimation is evaluated via
backtesting based on the exceeding ratio

ERα = (T − w)−1
T∑

t=w

1{lt < V̂aRt (α)}, (13.23)

where w is the sliding window size and lt is the realization of Lt . For the twelve
copulas, Table13.2 presents the ERs which is optimal if it equals α. The Gaussian
copula performs best for α = 0.05, the HAC-Clayton copula has reached the most
appropriate ER for α ∈ {0.01, 0.005} and the Clayton copula for α = 0.001. The
Factor-Gumbel copula provides the worst ER values for all values of α. Vines per-
form neither outstanding good nor bad. It deserves to be mentioned that copulas
exhibiting upper-tail dependence show higher ER values, for instance, Joe copula,
HAC-Gumbel copula and Factor-Gumbel copula. Even though some copulas are
based on more parameters and thus, offer more flexibility, the increase of parameters
does not essentially improve the ER (see Fig. 13.4).
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Fig. 13.4 VaRs for α = 0.001 are constructed based on 1000 back-testing points with cop-
ulas of Gaussian, t , Clayton, Gumbel, Joe, C-Vine, D-Vine, HAC-Clayton, HAC-Frank,
HAC-Gumbel, Factor-Frank, Factor-Gumbel, illustrated by row. XFGCHD_VaR_CVine,
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_CVine, https://github.com/
QuantLet/XFG3/tree/master/XFGCHD_VaR_Clayton, https://github.com/QuantLet/XFG3/tree/
master/XFGCHD_VaR_DVine, https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_
Gaussian, https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Gumbel, https://
github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Joe, https://github.com/QuantLet/
XFG3/tree/master/XFGCHD_VaR_StuT, https://github.com/QuantLet/XFG3/tree/master/
XFGCHD_VaR_hacClayton, https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_
hacFrank, https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacGumbel

https://github.com/QuantLet/XFG3/blob/master/XFGCHD_VaR_CVine
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_CVine
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Clayton
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Clayton
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_DVine
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_DVine
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Gaussian
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Gaussian
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Gumbel
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Joe
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_Joe
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_StuT
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_StuT
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacClayton
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacClayton
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacFrank
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacFrank
https://github.com/QuantLet/XFG3/tree/master/XFGCHD_VaR_hacGumbel
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13.7 Conclusion

This work discusses bivariate copula and focuses on three high dimensional copula
models including the hierarchical Archimedean copula, the factor copula and the
vine copula. The three models are developed in-depth with their advantages in mod-
eling high dimensional data for diverse research fields. For the sake of comparison,
an empirical study from risk management is presented. In this study, the estimation
of Value-at-Risk is performed under 12 different copula models including the dis-
cussed state-of-art copulas as well as some classical benchmarks such as some of the
elliptical and Archimedean family. Considered in toto, the hierarchical Archimedean
copula with Clayton generator performs better than the alternatives in terms of the
exceeding ratios measure.
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