
Chapter 10
Penalized Independent Factor

Y. Chen, R.B. Chen and Q. He

Abstract We propose a penalized independent factor (PIF) method to extract inde-
pendent factors via a sparse estimation. Compared to the conventional independent
component analysis, each PIF only depends on a subset of themeasured variables and
is assumed to follow a realistic distribution. Our main theoretical result claims that
the sparse loading matrix is consistent. We detail the algorithm of PIF, investigate its
finite sample performance and illustrate its possible application in risk management.
We implement the PIF to the daily probability of default data from 1999 to 2013.
The proposed method provides good interpretation of the dynamic structure of 14
economies’ global default probability from pre-Dot Com bubble to post-Sub Prime
crisis.

10.1 Introduction

Sovereign default probability reflects financial vulnerability and sovereign financing
or refinancing difficulties or default of advanced and emerging market economies. It
is considered as a fundamental early warning indicator of financial crises and conta-
gions of global financial markets. Thus, sovereign credit ratings and the associated
sovereign default rates continue to be a major concern of international financial mar-
kets and economic policy makers. According to the current version of Basel Capital
Accord 3, financial institutions will be allowed to use credit ratings and the corre-
sponding default rates to determine the amount of regulatory capital they have to
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reserve against their credit risks. It prompts the booming research interests on the
determinants and co-movements of sovereign defaults.

While the large amount of information containing in the sovereign default data
makes it possible to understand the dependence among economies, the massive sam-
ple size, high dimensionality and complex dependence structure of the data create
computational and statistical challenges. It turns out that data analysis in a reduced
space often accompanies with improved interpretability and estimation accuracy.
This possibly explains the wide adoption of factor models in literature.

Factor models try to decipher complex phenomena of large dimensional data
through a small number of basic causes or factors. Though the factors are often sup-
posed to be macroeconomic and financial determinants, our study intends to launch a
new investigation into the identification of factors of sovereign default probabilities in
a data-drivenway. Froma statistical viewpoint, understanding the dependence among
these sovereign default probabilities relies on the estimation of the joint probability
distribution of the multiple variables. The conventional methods such as Principal
Component Analysis (PCA) and Factor Analysis (FA) extract a set of uncorrelated
factors from the multivariate and dependent data within a linear framework. Under
Gaussianity, non-correlation is identical to independence. With the aid of Jacobian
transformation, the complex joint distribution can be obtained by using the marginal
distributions of each factor in a closed form. Thus, the high dimensional statistical
problem is converted to univariate cases. Independence however does not hold, if the
measured variables e.g. the sovereign default probabilities are not Gaussian distrib-
uted, which is most likely in practice. In this case, the joint distribution estimation
cannot be easily solved with the help of the conventional methods.

The recently developed Independent Component Analysis (ICA) method sheds
lights on possible solutions. Similar to the PCA and FA methods, the ICA iden-
tifies essential factors via a linear transformation. Instead of projecting onto the
eigenvectors of the covariance matrix as PCA does, the ICA directly extracts statis-
tical independent factors from the original complex data via solving an optimization
problem on statistical cross-independence. Depending on the definition of indepen-
dence, various estimation methods have been proposed, including the maximization
of nongaussianity (Jones and Sibson 1987; Cardoso and Souloumiac 1993; Hyväri-
nen andOja 1997), theminimization ofmutual information (Comon 1994;Hyvärinen
1998, 1999a), themaximum likelihood estimation (Pham andGarat 1997; Bell 1995;
Hyvärinen 1999b), and the local parametric estimation with time varying loading
(Chen et al. 2014).

In high dimensional space, however, ICA leads to redundant dependence by
assuming each factor is associated with all the measured variables. The overpara-
metrization is solvable by either reducing the number of factors or simplifying the
structure of the loading matrix. Wu et al. (2006) proposed an ordering approach
based on the mean-square-error criterion to identify the number of ICs. This dimen-
sion reduction eventually accompanies with loss of information. On the other hand,
the dependence between the measured sovereign default probabilities and the factors
can be sparse. A possibly more realistic situation is that each measured variable is
only driven by a few factors, while others depend on a possibly different set of fac-
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tors. It suggests necessity to reduce dimensionality in parameter space, with a sparse
loading matrix.

Sparse estimation has been widely used especially in the regularized regression
analysis. Under the sparsity assumption, unnecessary dependence is penalized and
insignificant coefficients are pushed to zeros, see e.g. Lasso (Tibshirani 1996), Ridge
(Frank and Friedman 1993) and the smoothly clipped absolute deviation (SCAD)
penalty (Fan and Li 2001) and so on. The adoption of sparsity in independent com-
ponent analysis is still new. Hyvärinen and Raju (2002) proposed sparse Bayesian
ICA, where the loading matrix is assumed to be random and a conjugate sparse prior
is imposed to the loading matrix. Zhang et al. (2009) incorporated adaptive Lasso in
the maximum likelihood estimation method to obtain sparse loading matrix, where
the statistical independent factors are assumed to follow a simple distribution fam-
ily with one parameter. Theoretical properties of the estimators are unknown in the
above works.

We aremotivated to propose a penalized independent component analysismethod,
namedPIF, to extract statistical independent factors via a sparse linear transformation.
The sparse loading matrix is estimated under normal inverse Gaussian distributional
assumption with SCAD penalty. Our main theoretical result claims that the sparse
loading matrix estimator is consistent. The proposed PIF method displays appealing
performance in simulation study. We implement the PIF to the daily probability
of default data of Corporate Vulnerability Index from 1999 to 2013. The proposed
method shows superior interpretation of the dynamic structure of 14 economies’
global default probability from the pre-Dot Com bubble period to the post-Sub Prime
crisis period.

The remainder of the paper is structured as follows. Section10.2 details the
sovereign default probability data. Section10.3 presents the penalized independent
factor method, the estimation procedure and statistical prosperity of the estima-
tor. Its finite sample performance is investigated along with simulation study in
Sect. 10.4. Section10.5 implements the PIF method to the sovereign default proba-
bilities. Section10.6 concludes.

10.2 Data

We consider the sovereign default probabilities of 14 economies from 1st April 1999
to 31st December 2013. The data are the equally-weighted Corporate Vulnerabil-
ity Index (CVI), proxies of sovereign default probability, maintained in the Credit
Research Initiative, Risk Management Institute at National University of Singapore.
The CVI of each economy is constructed by averaging of all the listed firms’ proba-
bility of default (PD) in the corresponding exchange. It is worth mentioning that the
number of firms considered over the time horizon is not fixed, given the happening of
default events and IPOs. For example, on 1st Apr 1999, there were 717 firms listed in
the stock exchange of China, and on 31st Dec 2013, the number of listed firms went
up to 3017. The PDs were computed using the forward intensity approach in Duan
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Fig. 10.1 Time series plot of the 14 economies CVI data. Gray shadow is the Dot Com bubble
period and light greed shadow is the Sub Prime crisis

et al. (2012) with input variables of common economic factors including e.g. stock
index returns and 3-month interest rates, and firm specific factors of e.g. distance to
default, ratio of cash (equivalent) to total assets, return on assets, market to book ratio
and 1-year idiosyncratic volatility. The 14 economies include 9 advanced economies
of Hong Kong, Japan, US, Germany, Greece, Ireland, Italy, Spain, and UK, and 5
emerging ones of China, India, Indonesia, Russian and Brazil.

Figure10.1 displays the movements of the 14 CVIs from 1999 to 2013. To under-
stand the dynamic structure of CVIs over time, we divide the time horizon of the
15 years into five sub-periods according to the business cycles announced by the
National Bureau of Economic Research, including two recessions occurred from 1st

March 2001 to 30th November 2001 (Dot Com bubble) and from 1st December 2007
to 30th June 2009 (US Sub Prime crisis). During the two recessions, the level of
CVI increases on average 26 and 53% respectively. The relatively high level of the
sovereign default probabilities continues after the recessions for a while and then
drops to low value. China, however, behaves distinctively from the rest. The CVI
of China is much larger than the others during 2002–2007, i.e. the post-Dot Com
bubble period. For example, China’s CVI is 3 times of the second highest value of
Indonesia. Table10.1 reports the CVI summary statistics of each economy over the
15 years. China and US have the highest level (mean) of CVI. The level of the US’
CVI is high mainly during the two recessions, the Doc Com bubble and Sub Prime
crisis. China, on the other hand, though immune to the Dot Com bubble recession,
due to its constantly achieved 2-digits growth during 2003 to 2007, accompanies
with high level for the “higher return higher risk” philosophy. In terms of variation,
China reaches to the highest CVI variation, with a standard deviation of at least 12%
larger than the rest. Moreover, all CVIs are positively skewed with extreme values
and the JB statistics are all significant, indicating the deviation from Gaussianity.
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Table 10.1 Summary statistics of the CVI data over the time horizon, Apr 1999–Dec 2013

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(104)

China 2.19 1.21 0.71 3.17 0.06∗

Hong Kong 0.46 0.38 2.17 9.53 1.38∗

India 0.21 0.11 0.70 2.70 0.05∗

Indonesia 0.92 0.95 2.06 9.68 1.39∗

Japan 0.26 0.20 1.98 8.54 1.04∗

US 1.00 1.08 2.86 14.43 3.67∗

Germany 0.53 0.44 1.13 3.23 0.12∗

Greece 0.46 0.45 2.02 7.73 0.87∗

Ireland 0.58 1.17 4.68 29.57 17.82∗

Italy 0.22 0.16 1.83 8.00 0.86∗

Russian 0.40 1.07 5.19 32.99 22.61∗

Spain 0.18 0.13 1.13 3.72 0.13∗

UK 0.41 0.48 3.76 19.83 7.63∗

Brazil 0.72 0.33 0.79 2.46 0.06∗

The conventional PCA is not able to deliver independent factors. Table10.2 reports
the correlation matrix of the CVI data during the 15 years, which are mostly pos-
itive except China. While China has either negative or weak correlations with the
other economies, the US remains high positive correlations to most of the advanced
economies such as Japan and UK, consistent to its influential role in the global
financial markets (Tables10.3, 10.4, 10.5 and 10.6).

More detailed summary statistics on CVIs over the 5 time periods can be found
in Tables10.7, 10.8, 10.9, 10.10, 10.11, 10.12, 10.13, 10.14, 10.15 and 10.16 in the
Appendix.

10.3 Penalized Independent Factor

Consider p-dimension randomvectorX = (
X1, · · · , X p

) ∈ R
p. The penalized inde-

pendent factor analysis is to factorize the variables into a linear combination of latent
independent random factors Z = (

Z1, · · · , Z p
) ∈ R

p:

Z = BX (10.1)

where B refers to a sparse and invertible loading matrix. Given the observed realiza-
tions Xi = (

Xi1, · · · , Xip
)
with i = 1, · · · , n, the task here is to estimate the sparse

loading B as well as to obtain the independent factor Zi with i = 1, · · · , n, without
any prior knowledge of the sparsity structure of B.
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Table 10.4 True Loading matrix. Zero entries are left blank⎡

⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

17 14 10 −13 21 −15

−10 15 13 19 −10 12 17 −14

−34 −11 −23 27 7 27 43 37 −24 27 18

−44 −14 13 −97 50 −12 −127 172 −65

11

7 −79 −29 146 20 −40 −206 −74 223 9

33 28 −6 −51 −19 71 182 −32 −99 −89 10

18 −109 −51 −28 −33 54 70 −62 28

−77 −20 88 −66 30 −95 −144 308 9

40 43 −13 −108 −49 −14 −79 10 −51 177 −21

−32 −92 7 57 6 −21 16 14 40 8 −114 29 −9

64 90 6 −10 −11 −22 −153 −29 28

−86 −25 17 −116 −24 26 −9 123 −47 108 10

7 −73 34 −26 −47 −17 25 −32 163 372

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

Table 10.5 Simulation results for large dimension loading matrix. Each measurement is given in
the form of mean(std). The penalty parameter is λ = 0.08 by minimizing BIC. #0s is the percentage
of zero elements estimated correctly by the method. Mis-detection is the number of elements that
are wrongly pushed to zero

ED MN RMSE Detection of
zeros %

λ

PIF 88.60(26.11) 60.00(24.63) 0.20(0.10) 99.85 0.08

NIG-ICA 90.23(27.74) 61.50(25.68) 0.22(0.10) 0.00 0

ICA 419.24(56.11) 204.00(36.54) 1.29(0.05) 0.00 −

Table 10.6 Number of factors participated by each economy. Sparsity is reflected by of the
percentage of zeros in the loading matrix

Country China HK India Indo Japan US DE Greece

1999:4–2001:2 1 6 9 4 12 6 8 6

2001:3–2001:11 3 9 9 5 10 6 9 12

2001:12–2007:11 3 10 12 8 13 10 11 9

2007:12–2009:6 7 11 12 9 12 7 9 11

2009:7–2013:12 6 11 11 10 11 9 6 8

Country Ireland Italy Russian Spain UK Brazil Total Sparsity%

1999:4–2001:2 9 10 1 11 12 4 99 49

2001:3–2001:11 9 11 9 12 11 7 122 38

2001:12–2007:11 13 13 12 12 12 11 149 24

2007:12–2009:6 7 13 6 9 11 12 136 31

2009:7–2013:12 2 12 9 11 11 9 126 36
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Table 10.7 Summary statistics of the CVI data, Apr 1999–Feb 2001

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 2.08 0.59 −1.94 7.55 1.04∗

Hong Kong 0.55 0.33 1.33 4.91 0.31∗

India 0.33 0.08 0.61 3.05 0.04∗

Indonesia 2.27 1.04 3.18 14.04 4.73∗

Japan 0.32 0.05 0.24 2.35 0.02∗

US 1.13 0.63 2.62 10.94 2.64∗

Germany 0.23 0.13 2.11 6.99 0.98∗

Greece 0.25 0.27 1.08 3.14 0.14∗

Ireland 0.20 0.06 1.57 4.71 0.37∗

Italy 0.15 0.07 1.47 5.07 0.38∗

Russian 0.39 0.97 3.51 14.63 5.38∗

Spain 0.15 0.04 0.47 1.94 0.06∗

UK 0.17 0.07 1.08 3.77 0.15∗

Brazil 0.95 0.26 −0.69 2.55 0.06∗

Table 10.8 Summary statistics of the CVI data during DOT COM bubble, Mar 2001–Nov 2001

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 1.40 0.27 −2.56 16.33 2.34∗

Hong Kong 0.78 0.22 −0.03 2.11 0.01∗

India 0.44 0.04 −0.90 3.88 0.05∗

Indonesia 2.85 0.60 0.54 2.41 0.02∗

Japan 0.40 0.06 0.07 1.64 0.02∗

US 2.08 0.45 0.40 2.10 0.02∗

Germany 1.07 0.34 0.39 1.96 0.02∗

Greece 0.42 0.11 0.62 3.45 0.02∗

Ireland 0.36 0.16 1.20 3.31 0.07∗

Italy 0.40 0.08 −0.53 2.09 0.02∗

Russian 0.44 0.18 0.49 2.25 0.02∗

Spain 0.18 0.03 1.09 3.83 0.06∗

UK 0.58 0.20 0.78 2.77 0.03∗

Brazil 1.05 0.09 0.98 4.00 0.06∗

The loading matrix and independent factors are only identifiable up to scale. For
any constant c �= 0, one obtains another set of loading matrix cB and independent
factors denoted cZ satisfying (10.1). To avoid the identification problem, we assume
that the independent factors have unit variance. Moreover, we set the number of
independent factors to p, as the primary goal of our study is to convert the multi-
variate problem into a number of univariate ones with sparsity such that it eases the
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Table 10.9 Summary statistics of the CVI data, Dec 2001–Nov 2007

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 2.96 1.26 0.12 2.80 0.01∗

Hong Kong 0.43 0.32 1.20 3.43 0.54∗

India 0.17 0.09 1.21 3.60 0.57∗

Indonesia 0.80 0.62 1.24 3.33 0.57∗

Japan 0.21 0.18 1.21 3.12 0.54∗

US 0.62 0.69 1.59 4.44 1.11∗

Germany 0.46 0.46 1.27 3.23 0.59∗

Greece 0.22 0.14 1.88 8.01 3.58∗

Ireland 0.23 0.28 1.98 6.71 2.70∗

Italy 0.15 0.09 0.80 2.35 0.27∗

Russian 0.05 0.04 8.03 126.92 1425.52∗

Spain 0.08 0.05 0.93 2.40 0.35∗

UK 0.30 0.24 1.38 3.45 0.71∗

Brazil 0.68 0.33 0.90 2.34 0.34∗

Table 10.10 Summary statistics of the CVI data during Sub Prime crisis, Dec 2007–Jun 2009

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 2.29 1.02 0.23 1.98 0.03∗

Hong Kong 0.87 0.66 1.11 3.38 0.12∗

India 0.20 0.10 0.25 1.73 0.04∗

Indonesia 0.74 0.39 0.33 1.55 0.06∗

Japan 0.52 0.35 0.64 2.19 0.06∗

US 2.64 1.97 1.15 3.25 0.13∗

Germany 0.92 0.51 0.22 1.38 0.07∗

Greece 0.59 0.33 0.34 1.63 0.06∗

Ireland 2.12 2.61 1.60 4.71 0.32∗

Italy 0.42 0.20 0.54 2.55 0.03∗

Russian 1.97 2.54 1.33 3.70 0.18∗

Spain 0.36 0.10 0.04 2.52 0.01∗

UK 1.30 0.94 0.94 2.55 0.09∗

Brazil 0.99 0.42 0.23 1.33 0.07∗

understanding of the dependence with reduced parameter space and simultaneously
an improved estimation accuracy.

Denote the probability density function of each independent factor to be f j (z) for
j = 1, . . . , p. The log-likelihood is defined as:
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Table 10.11 Summary statistics of the CVI data, Jul 2009–Dec 2013

Mean(10−3) SD(10−3) Skewness Kurtosis JB-stats(103)

China 1.30 0.68 1.02 3.18 0.29∗

Hong Kong 0.27 0.13 0.87 2.54 0.22∗

India 0.18 0.08 −0.09 1.70 0.12∗

Indonesia 0.25 0.10 2.96 12.52 8.62∗

Japan 0.18 0.08 0.64 3.55 0.13∗

US 0.70 0.43 1.38 4.93 0.78∗

Germany 0.53 0.27 1.18 4.49 0.53∗

Greece 0.83 0.58 1.12 3.70 0.38∗

Ireland 0.70 0.96 2.43 8.19 3.46∗

Italy 0.24 0.15 2.54 13.16 8.85∗

Russian 0.31 0.25 1.47 6.31 1.34∗

Spain 0.25 0.14 0.73 2.65 0.15∗

UK 0.31 0.13 1.11 3.69 0.37∗

Brazil 0.54 0.16 1.00 3.73 0.31∗

l(B) =
n∑

i=1

p∑

j=1

log f j
(
b�
j Xi

) + n log |det (B)| (10.2)

where b�
j denotes the j-th row of B. To achieve the sparsity of the loading matrix B,

a penalty function, denoted as ρλ is added to the log-likelihood, where λ is a tuning
parameter. The penalized log-likelihood is defined as:

P(B) =
n∑

i=1

p∑

j=1

log f j (b
�
j Xi ) + n log |det (B)| − n

p∑

j=1

p∑

k=1

ρλ(|b jk |) (10.3)

where b jk denotes the ( j, k)-th element of the loading matrix B. Take the gradient
of the penalized likelihood function with respect to the loading matrix, we obtain:

∂P
∂B

=
∑n

i=1

⎡

⎢⎢⎢⎢⎢⎢
⎣

f
′
1 (b�

1 Xi )

f1(b�
1 Xi )

f
′
2 (b�

2 Xi )

f2(b�
2 Xi )

...
f

′
p(b

�
pXi )

f p(b�
pXi )

⎤

⎥⎥⎥⎥⎥⎥
⎦

X�
i + n[B�]−1 − n�

where [B�]−1 is the inverse of transpose matrix of B, � jk = sgn(b jk)ρ
′
λ(|b jk |) is

the first derivative of the penalty function with respect to each element of the load-
ing matrix, and f

′
i (s)/ fi (s) is the first derivative of log-density function of each
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independent factor. The sparse loadingmatrix is estimated using the gradientmethod.
Given the loading matrix estimator, the independent factors are recovered in (10.1).

10.3.1 Independent Component’s Density: NIG

Thedensity of IC is unknown.Hyvärinen (1999b) developed themaximum likelihood
estimation approach of independent factor extraction under a simple but unrealistic
distribution with one distributional parameter, and proved consistency of the esti-
mator, see also Pham and Garat (1997), Bell (1995). The log-likelihood function is
defined under a simple but unrealistic distribution with one distributional parameter.
Financial risk factors are however neither Gaussian distributed nor the special cases
of the exponential power family. Instead, the factors are often asymmetric and with
extreme values. This motivates the adoption of the normal inverse Gaussian (NIG)
distribution for its desirable probabilistic features. With 4 distributional parameters,
the NIG distribution is able to mark data characteristics from the central locations to
the tails behaviours.

In our study, each factor is assumed to be normal inverse Gaussian (NIG) distrib-
uted with individual distributional parameters. The density is of the form:

fNIG(z j ) = φ jδ j

π

K1

{
φ j

√
δ2j + (z j − μ j )2

}

√
δ2j + (z j − μ j )2

exp{δ j

√
φ2

j − β2
j + β j (z j − μ j )},

where μ j , δ j , β j and φ j are NIG parameters for j = 1, · · · , p. K1(·) is the modified
Bessel function of the third type. The distributional parameters fulfill the conditions
μ j ∈ R, δ j > 0, and |β j | ≤ φ j . The limiting distributions of NIG have been well
developed in bn (1997);Blæsild (1999) including theNormal distribution, theCauchy
distribution and the Student-t distribution.

• For β = 0, φ → ∞ and δ/φ = σ2, N IG(φ,β,μ, δ) → N (μ,σ2)

• For φ,β → ∞, μ = 0 and δ = 1, N IG(φ,β,μ, δ) → Cauchy
• For φ,β → 0, μ = 0 and δ = 1, N IG(φ,β,μ, δ) → Student − t1

See bn (1997) for more details. Moreover, all independent factors are assumed to
have unit variance to avoid identification ambiguity.

10.3.2 Penalty Function: SCAD

Question remains on the selection of penalty function in the estimation. Vari-
ous penalty function has been proposed in literature, including the first order
norm penalty of Lasso (Tibshirani 1996), the second order norm penalty of Ridge
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(Frank and Friedman 1993) and the smoothly clipped absolute deviation (SCAD)
penalty (Fan and Li 2001) and so on. Among them, the SCAD penalty is theoreti-
cally desirable with oracle property and has been widely used in quantile regression,
logistic regression, high dimensional data analysis, large scale genomic data analysis
and many others, see Gou et al. (2014), Xie and Huang (2009). In our study, we use
the SCAD penalty, which is defined in the form of its first derivative:

ρ
′
λ(θ) = λ{I (θ ≤ λ) + (aλ − θ)+

(a − 1)λ
I (θ > λ)} (10.4)

where θ > 0 and a = 3.7 suggested in Fan and Li (2001).

10.3.3 Estimation

Substitute the NIG density and the SCAD penalty function into (10.3):

P(B) =
n∑

i=1

p∑

j=1

log f j (b
�
j Xi ) + n log |det (B)| − n

p∑

j=1

p∑

k=1

ρλ(|b jk |) (10.5)

=
n∑

i=1

p∑

j=1

⎧
⎨

⎩
log

φ j δ j

π

K1

(
φ j

√
δ2j + (b�

j Xi − μ j )
2
)

√
δ2j + (b�

j Xi − μ j )
2

+ δ j

√
φ2j − β2j + β j (b

�
j Xi − μ j )

⎫
⎬

⎭

+ n log |det (B)| − n
p∑

j=1

p∑

k=1

ρλ(|b jk |) (10.6)

and the gradient of the log-likelihood function is:

∂l

∂B
=

∑n

i=1

⎡

⎢⎢
⎢⎢⎢
⎣

f
′
1 (b�

1 Xi )

f1(b�
1 Xi )

f
′
2 (b�

2 Xi )

f2(b�
2 Xi )

...
f

′
p(b

�
pXi )

f p(b�
pXi )

⎤

⎥⎥
⎥⎥⎥
⎦
X�

i + n[B�]−1 − �

where� jk = sgn(b jk)ρ
′
λ(|b jk |) and f

′
j (s)

f j (s)
= β j + φ j

K
′
1(φ j

√
δ2j+(s−μ j )2)

K1(φ j

√
δ2j+(s−μ j )2)

s−μ j√
δ2j+(s−μ j )2

−
s−μ j

δ2j+(s−μ j )2
.

The optimization problem is solved in two steps, where maximum is achieved by
changing the loading matrix B and the NIG parameters iteratively until the algorithm
converges. The algorithm starts with an initial estimator of B0, e.g. the estimation
obtained by the conventional ICA:

1. Given the previous estimator of B, optimize the penalized log-likelihood func-
tion to obtain the NIG distributional parameters estimator. The EM algorithm is
adopted for the estimation of NIG parameters, see Karlis (2002).



10 Penalized Independent Factor 195

2. Based on the estimated NIG estimator, update the estimator of B by maximizing
the penalized log-likelihood function.

3. Scale the estimator of B and the NIG parameters to have unit variance of each
independent factor.

4. Repeat, until converge.

The penalized maximum likelihood estimation involves the choice of the tuning
parameter λ. While too large tuning parameter leads to over sparse loading matrix,
too small tuning parameter has over fitting effect to identify the true model. Cross
validation (Kohavi 1995) and generalized cross validation (Li 1987) can be used.
However the approaches are computational intensive. Even worse, there is a positive
probability of model over-fitting by generalized cross validation (Wang et al. 2007).
Alternatively, several information criteria havebeenproposed andwidely used in time
series analysis. In our study, we consider using the Schwarz–Bayesian information
criterion (BIC) (Schwarz 1978) for its computation tractability and its consistency
in model selection. The BIC is defined as:

BIC = −l(B̂) + log n × #{B̂i j �= 0}

where B̂ is the estimator of B. The penalty parameter with the lowest BIC is chosen
to be optimal.

10.3.4 Property of Estimator

We prove the consistency of the PIF estimator under two conditions:

C1. Theobservations (Xi1, . . . , Xip) are IIDwith density
(
g1(X, B), . . . , gp(X, B)

)

with respect to some measure μ. The density has a common support and is
identifiable. Furthermore, the first logarithmic derivatives of gi satisfying the
equation

E
∂ log ga(X, B)

∂Bjk
= 0 (10.7)

for all a, j and k.
C2. E[−�a] is positive definite at point B with �a defined as:

�a =

∣∣∣∣∣∣
∣∣∣∣∣

∂2ga(B)

∂b11∂b11
∂2ga(B)

∂b11∂b12
. . .

∂2ga(B)

∂b11∂b1p
∂2ga(B)

∂b11∂b21
. . .

∂2ga(B)

∂b11∂bpp

∂2ga(B)

∂b12∂b11
∂2ga(B)

∂b12∂b12
. . .

∂2ga(B)

∂b12∂b1p
∂2ga(B)

∂b12∂b21
. . .

∂2ga(B)

∂b12∂bpp

...
...

...
...

...
...

...
∂2ga(B)

∂bpp∂b11
∂2ga(B)

∂bpp∂b12
. . .

∂2ga(B)

∂bpp∂b1p
∂2ga(B)

∂bpp∂b21
. . .

∂2ga(B)

∂bpp∂bpp

∣∣∣∣∣∣
∣∣∣∣∣

Theorem 10.1 Let (X11, X12, . . . , X1p), . . . , (Xn1, Xn2, . . . , Xnp) be IIDmeasured
vector, each with a density (g1, g2, . . . , gp) that satisfies conditions (C1) and (C2).
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If max{p′′
λn

(|Bjk |) : Bjk �= 0} → 0, then there exists a local maximizer B̂ of P(B)

such that ‖B̂ − B‖ = Op(n−1/2 + an), where an = max{p′
λn

(|Bjk |) : Bjk �= 0}
Note that, though the density of the observed variables ga is unknown, Theorem 10.1
holds as long as the two conditions hold. Detailed proof can be found in Appendix.

10.4 Simulation

Before the implementationwith real sovereigndefault probability data,we investigate
the finite sample performance of the PIF method first by performing a number of
simulation studies under the known data generating processes. Our interest is on
the estimation accuracy of the proposed method and its robustness under various
scenarios compared to the conventional ICA approach.

We design our simulation studies so that they properly reflect the real study at
hand. All the parameters are obtained from analyzing the Corporate Vulnerability
Index (CVI) data from April 1999 to February 2001, before the Dot Com bubble. In
the first experiment, small dimensional data are generated based on the CVIs of India,
Indonesia and Japan, 3 Asia countries of both emerging and advanced economies.
We consider 3 scenarios with non-sparsity, medium sparsity and high sparsity in
the loading matrix. In the second experiment, large dimensional data are produced,
where the parameters are learned from the CVI data of the 14 economies from April
1999 to February 2001.

In the data generation process, we follow the model setting in (10.1) and generate
dependent data with the loading matrix:

Xi = B−1Zi , i = 1, · · · , n.

The generated data are considered as the measured variables. Each experiment is
repeated 100 times with n = 200 observations. Both the PIF and the conventional
ICA methods are implemented. In addition to the two approaches, we also imple-
ment ICA with the NIG distributed source assumption, named as NIG-ICA in the
following.

We evaluate the estimation accuracy of the PIF method, with focus on the factor
loadings B and the identified factors Zi . We compare the estimation accuracy of
the PIF method based on 3 measurements. For the loading matrix, our interests are
the overall estimation accuracy and the elementary accuracy. While the Euclidean
distance (ED) is used to measure the estimation error of the loading matrix estimator,
the maximum norm (MN) reports the largest elementary bias of the matrix estimator.
For the identified independent factors, we compute the root mean squared error
(RMSE) to show the identification accuracy. The criteria are defined as follows:
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ED =
∑

jk

(
b jk − b̂ jk

)2
(10.8)

MN = max
(
|b jk − b̂ jk |

)
(10.9)

RMSE =
√√√
√

1

np

∑

i j

(
Zi j − Ẑi j

)2
(10.10)

where b jk refers to the ( j, k)-th element of the matrix B, and b̂ jk represents the
corresponding element estimators.

10.4.1 Experiment 1: 3 Dimensional Data

In the low dimensioned experiment, 3 scenarios are analyzed with 3 different loading
matrices that are either non-sparse, sparse, or highly sparse:

Non-sparse loading matrix:

⎡

⎣
52.7 −10.7 14.4

−32.3 −17.3 −5.2
18.1 −6.3 12.8

⎤

⎦ ;

Sparse loading matrix: ⎡

⎣
−3.2 31.2 0
40.1 −96.4 −20.9

−29.4 18.7 0

⎤

⎦ ;

Highly-sparse loading matrix:

⎡

⎣
−3.3 31.2 0
0 10.1 0
0 44.2 −25.0

⎤

⎦ .

Table10.3 reports the simulation results based on the 100 replications. For all the
3 scenarios, the PIF is better than ICA in terms of estimation accuracy for both the
loading matrix and the independent factors. In the sparsity scenario, the estimation
accuracy of PIF is much better with lower ED of 6.67(SD: 3.98), MN of 5.54(SD:
3.65) and RMSE of 0.09(SD: 0.03) than that of ICA with ED of 27.19(SD: 17.47),
MN of 20.40(SD: 13.61) and RMSE of 0.20(SD: 0.14). The improved accuracy
is mostly contributed by the adoption of the NIG distributional assumption. In the
highly-sparse scenario, the PIF is remarkably better than the conventional ICA. The
improvement w.r.t to the NIG-ICA becomes larger.
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Fig. 10.2 Illustration of residuals of the factors in the sparsity setup. ICA is marked as circle,
NIG-ICA is labeled with star and PIF with dot

Moreover, the tunning parameter λ is reasonably selected by using BIC. In the
non-sparsity scenario, the optimal λ is 0, indicating non-necessity of penalty as
the true loading matrix is not sparse. In the sparsity and high-sparsity scenarios, the
optimal λ becomes 0.04 and 0.07 respectively, leading to a high detection rate of
zero elements at 100 and 99% respectively. On the contrary, ICA and NIG-ICA are
not able to detect any zero elements in the loading matrix. Furthermore, there is no
mis-detection by PIF, meaning that no entries in the loading matrix are over pushed
to zero.

Figure10.2 illustrates one representation of the estimation error of the recovered
independent factors by the PIF, NIG-ICA and ICA methods respectively in the high-
sparsity scenario. While the ICA produces more variations with wider spread, the
PIF and NIG-ICA recover the independent factor with smaller errors.

10.4.2 Experiment 2: Large Dimensional Data

In the second experiment with large dimensional data, we generate 14-dimensional
dependent data with a sparse loading matrix learning from the CVI data, over a time
span of April 1999 to February 2001. The loading matrix is shown in Table10.4,
where 35% of elements are zero.
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The generation is repeated 100 times with n = 200 sample size. Table10.5 reports
the estimation result. The penalty parameter of PIF is chosen to be λ = 0.08 by
minimizingBIC.The estimation accuracy of PIF ismuchbetterwithEDof 88.60(SD:
26.11), MN of 60.00(SD: 24.63) and RMSE of 0.20(SD: 0.10) than that of ICAwith
ED of 419.24(SD: 56.11), MN of 204.00(SD: 36.54) and RMSE of 1.29(SD: 0.05)
and slightly better than NIG-ICA with ED of 90.23(SD: 27.74), MN of 61.50(SD:
25.68) andRMSEof 0.22(SD: 0.10). In addition, PIF is able to detect 99.85%of zero
entries in the loading matrix and without any miss-detection record of non-zeros.

The simulation study shows that the proposed PIF method has good performance
compared to the alternative ICA and NIG-ICA methods with improved estimation
accuracy. The good performance mostly attributes to the adoption of the NIG distri-
bution and further by the sparsity of loading matrix. By adding the SCAD penalty
function, the proposed PIF is able to identify zero entries in the sparse loading matrix
and involves no miss-detection of non-zeros. Moreover, the penalty parameter can
be reasonably chosen by using BIC. For example, in the non-sparse scenario, the
penalty parameter is selected to be zero. The relative good performance of the PIF
is stable with respect to the increase of sparsity and dimensionality.

10.5 Real Data Analysis

In this section, we analyze the sovereign default probabilities of 14 economies from
April 1999 to December 2013. The sovereign default probabilities are quantified
as daily equally-weighted CVI (Corporate Vulnerability Index) of each economy.
The 14 economies are mixture of advanced and emerging economies including
China, Hong Kong, India, Indonesia, Japan, US, Germany, Greece, Ireland, Italy,
Russian, Spain, UK and Brazil. Data are obtained from the Risk Management Insti-
tute at National University of Singapore. We divide the time span into five sub-
periods based on the business cycles announced by the National Bureau of Economic
Research among which two recessions happened: Dot Com bubble fromMarch 2001
to November 2001 and the US sub prime crisis from December 2007 to June 2009.
Our interest is to identify the statistical independent dominant factors and investigate
the cross-dependence of the sovereign defaults among the economies.

We implement the proposed PIF method. Table10.6 summarizes the sparse struc-
ture of the loading matrices over the 5 time periods. Each economy column reports
the number of non-zero elements in the column of loading matrix, representing the
number of factors participated in the economies. The total number of non-zero ele-
ments in the loading matrix is summarized in the column Total. Sparsity is reflected
by the percentage of zero elements in the loading matrix. It shows that there is a
V-shape sparsity in terms of US default probability over time, possibly driven by the
cyclical pattern of the global economy. Five advanced economies Japan, Germany,
Italy, Spain and UK display relatively stable low-sparse structure across the whole
time. China andHongKong exhibit co-movement, indicating the connection between
the two economies, thoughHongKong given its higher level of globalization appears
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Fig. 10.3 Loading matrix: Apr 1999–Feb 2001

in more factors than China across all periods. The emerging economies of China,
India and Indonesia show constant increasing in the number of participated factors
along with their increased connection to the global economy especially in the fast
growing export business.

Figures10.3, 10.4, 10.5, 10.6 and 10.7 provides details of the estimated loading
matrices over the five time periods. In each plot, we display the loadings of an
independent factor with respect to the economies. Zero elements are colored inwhite.
The loading matrix is interpretable. In the pre-Dot Com bubble period, the advanced
economies including Japan, Germany, Ireland, Spain and UK participate the most
number of factors, while the emerging economies such as China, Indonesia, Russia
and Brazil are only related to a few factors. China, for example, only participates
in one factor and moreover it is the only element of the factor, implying the closed
market of China in the early time. During 1999 to 2001, most defaults in China
happened due to the reforming of the state-owned enterprises, which were less likely
affected or influenced by the global economy. On the contrary, Japan participates
more than 10 factors implying its close connection to the global financial market.
In the recent, the sparse inequality between the advanced and emerging economies
decreases from period to period, see Fig. 10.8.
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Fig. 10.4 Loading Matrix: Mar 2001–Nov 2001(Dot Com bubble)

Fig. 10.5 Loading Matrix: Dec 2001–Nov 2007
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Fig. 10.6 Loading Matrix: Dec 2007–Jun 2009(Sub prime crisis)

Fig. 10.7 Loading Matrix: Jul 2009–Dec 2013
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Fig. 10.8 Histogram of average number of factors participated by emerging economies and
advanced economies across different period and overall

10.6 Conclusion

We propose the PIF method to transform the observed multivariate correlated vari-
ables into independent factors with a sparse loading matrix. We derive the consis-
tency and convergence rate of the sparse loading matrix estimator. Based on the
NIG distributional assumption, the estimation is done with a two stepML estimation
algorithm by iterating NIG parameter updating and sparse loading matrix estima-
tion. The optimal penalty parameter is chosen via minimizing BIC. We compare
the performance of PIF with two alternatives, ICA and NIG-ICA in simulation. The
results show the proposed PIF has good performance compared with the conven-
tional ICA and NIG-ICA in both the loading matrix estimation and factor recovery.
The estimation accuracy is much improved due to the imposing of NIG distribution.
Furthermore, by adopting the SCAD penalty function in PIF, the estimation accuracy
is further improved with sparse structure. Moreover, the optimal penalty parameter
is reasonably selected by minimizing BIC. The performance of PIF is consistently
better with respect to different level of sparse structure and dimensionality of the
loading matrix. We implement the PIF to sovereign default probability using CVI
data maintained at Credit Research Initiative, Risk Management Institute, National
University of Singapore. The estimated loading matrix displays significant sparse
structure. For example, China in the pre-Dot Com Bubble period only participates
in one factor and is the only element, implying the independence of China’s closed
market and the global economy. The proposed model can be easily applied to other
high-dimensional data.
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Appendix

Proof of Theorem 1

Proof The explicit form of the density function g j is not required, as long as the
two conditions are fulfilled. Under condition C1 and C2, Equation ‖B̂ − B‖ =
OP(n−1/2 + an) is equivalent to proof that for any given ε > 0, there exist a
large C s.t.

P{ sup
‖u‖=C

Q(B + αnu) < Q(B)} ≥ 1 − ε (10.11)

where Q(B) is the penalized likelihood and u is a p-by-p matrix.
Let Dn(u) = Q(B + αnu) − Q(B)

Iu(B) = −E(tr(∇Btr(∇ 1
n l(B)�u)�u)) = −E(tr(∇Bdu

1
n l(B)�u)) > 0 for any

y ∈ Rp∗p based on condition (B)
If Dn(u) < 0 by choosing a sufficiently large C, then the proof is done.

D(u) = l(B + αnu) − l(B) − n
∑

{ρλn (|Bjk + αnu jk |) − ρλn (|Bjk |)}
≤ l(B + αnu) − l(B) − n

∑

Bjk �=0

{ρλn (|Bjk + αnu jk |) − ρλn (|Bjk |)}

≤ αntr(∇l(B)�u) + 1

2
α2
ntr(∇Bdul(B)�u){1 + oP(1)}

−
∑

Bjk �=0

[nαnρ
′
λn

(|Bjk |)sgn(Bjk)u jk + nα2
nρ

′′
λn

(|Bjk |)u2jk{1 + o(1)}

≤ αntr(∇l(B)�u) − 1

2
nα2

n Iu(B){1 + oP(1)}
−

∑

Bjk �=0

[nαnρ
′
λn

(|Bjk |)sgn(Bjk)u jk + nα2
nρ

′′
λn

(|Bjk |)u2jk{1 + o(1)} (10.12)

The first inequality is because ρλn (0) = 0 and ρλn (β) ≥ 0. The next inequality is
Taylor expansion. Then substitute Iu(B) into the equation.

Base on condition (A), n−1/2tr(∇l(B)�u) = OP(1), thus the first term of (8) is of
order OP(n1/2αn) = OP(nα2

n). By choosing a sufficiently large C, the second term
dominates the first term in ‖u‖ = C .

The last term in (8) is bounded by

√
snαnan‖u‖ + nα2

nmax{ρ′′
λn

(|Bjk |) : Bjk �= 0}‖u‖2 (10.13)
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Thefirst part of (9) is dominatedby the second term in (8)when choosing a sufficiently
large C. The second term in (9) is also dominated by the second term in (8) as
max{ρ′′

λn
(|Bjk |) : Bjk �= 0} → 0

Proof is completed.
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