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Abstract. In the context of abstract coinduction in complete lattices,
the notion of compatible function makes it possible to introduce enhance-
ments of the coinduction proof principle. The largest compatible func-
tion, called the companion, subsumes most enhancements and has been
proved to enjoy many good properties. Here we move to universal coal-
gebra, where the corresponding notion is that of a final distributive law.
We show that when it exists the final distributive law is a monad, and
that it coincides with the codensity monad of the final sequence of the
given functor. On sets, we moreover characterise this codensity monad
using a new abstract notion of causality. In particular, we recover the fact
that on streams, the functions definable by a distributive law or GSOS
specification are precisely the causal functions. Going back to enhance-
ments of the coinductive proof principle, we finally obtain that any causal
function gives rise to a valid up-to-context technique.

1 Introduction

Coinduction has been widely studied since Milner’s work on CCS [26]. In con-
currency theory, it is usually exploited to define behavioural equivalences or
preorders on processes and to obtain powerful proof principles. Coinduction can
also be used for programming languages, to define and manipulate infinite data-
structures like streams or potentially infinite trees. For instance, streams can
be defined using systems of differential equations [37]. In particular, pointwise
addition of two streams x,y can be defined by the following equations, where xg
and z’ respectively denote the head and the tail of the stream z.

(x®y)o = x0+ Yo

1
(JUEBy)IZI‘/@y/ ()

Coinduction as a proof principle for concurrent systems can nicely be pre-
sented at the abstract level of complete lattices [30,33]: bisimilarity is the greatest
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fixpoint of a monotone function on the complete lattice of binary relations. In
contrast, coinduction as a tool to manipulate infinite data-structures requires
one more step to be presented abstractly: moving to universal coalgebra [15].
For instance, streams are the carrier of the final coalgebra of an endofunctor on
Set, and simple systems of differential equations are just plain coalgebras.

In both cases one frequently needs enhancements of the coinduction princi-
ple [38,39]. Indeed, rather than working with plain bisimulations, which can be
rather large, one often uses “bisimulations up-to”, which are not proper bisimu-
lations but are nevertheless contained in bisimilarity [1,2,10,16,24,27,40]. The
situation with infinite data-structures is similar. For instance, defining the shuffle
product on streams is typically done using equations of the following shape,

(x®y)o =20 X Yo

2
(x®y)/:x®y/@x/®y ()

which fall out of the scope of plain coinduction due to the call to pointwise
addition [12,37].

Enhancements of the bisimulation proof method have been introduced by
Milner from the beginning [26], and further studied by Sangiorgi [38,39] and then
by the first author [30,33]. Let us recall the standard formulation of coinduction
in complete lattices: by Knaster-Tarski’s theorem [19,42], any monotone function
b on a complete lattice admits a greatest fixpoint vb that satisfies the following
coinduction principle:

COINDUCTION (3)

In words, to prove that some point z is below the greatest fixpoint, it suffices
to exhibit a point y above x which is an invariant, i.e., a post-fixpoint of b.
Enhancements, or up-to techniques, make it possible to alleviate the second
requirement: instead of working with post-fixpoints of b, one might use post-
fixpoints of bo f, for carefully chosen functions f:

<y <b(f(y)

COINDUCTION UP TO 4
e < b f (4)

Taking inspiration from the work of Hur et al. [13], the first author recently
proposed to systematically use for f the largest compatible function [31], i.e.,
the largest function ¢ such that t o b < bot. Such a function always exists and
is called the companion. It enjoys many good properties, the most important
one possibly being that it is a closure operator: t ot = t. Parrow and Weber
also characterised it extensionally in terms of the final sequence of the function
b [29,31]:

t:;v»—>/\ba Where{

z<by

N A, for limit ordinals
A

<A
bat1 = b(b ) for successor ordinals
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In the present paper, we give a categorical account of these ideas, generalis-
ing them from complete lattices to universal coalgebra, in order to encompass
important instances of coinduction such as solving systems of equations on infi-
nite data-structures.

Let us first be more precise about our example on streams. We consider there
the Set functor BX = R x X, whose final coalgebra is the set R of streams
over the reals. This means that any B-coalgebra (X, f) defines a function from
X to streams. Take for instance the following coalgebra over the two-elements
set 2 =40,1}: 0 — (0.3, 1), 1 — (0.7, 0). This coalgebra can be seen as a system
of two equations, whose unique solution is a function from 2 to RY, i.e., two
streams, where the first has value 0.3 at all even positions and 0.7 at all odd
positions.

In a similar manner, one can define binary operations on streams by con-
sidering coalgebras whose carrier consists of pairs of streams. For instance, the
previous system of equations characterising pointwise addition (1) is faithfully
represented by the following coalgebra:

(R¥)* — B((R*)?)
(‘Ta y) = (xo + %o, (I/v y/))

Unfortunately, as explained above, systems of equations defining operations like
shuffle product (2) cannot be represented easily in this way: we would need to
call pointwise addition on streams that are not yet fully defined.

To this end, one can weaken the requirement of a B-coalgebra to that of a BF-
coalgebra, when there exists a distributive law A: F'B = BF of a monad F' over
B [5,12]. The proof relies on the so-called generalised powerset construction [41],
and this precisely amounts to using an up-to technique. Such a use of distributive
laws is actually rather standard in operational semantics [5,17,43]; they properly
generalise the notion of compatible function. In order to follow [31], we thus focus
on the largest distributive law.

Our first contribution consists in showing that if a functor B admits a final
distributive law (called the companion), then (1) this distributive law is that of a
monad T over B, and (2) any BT-coalgebra has a unique morphism to the final
B-coalgebra, representing a solution to the system of equations modeled by the
coalgebra (Sect.3). In complete lattices, this corresponds to the facts that the
companion is a closure operator and that it can be used as an up-to technique.

Then we move to conditions under which the companion exists. We start
from the final sequence of the functor B, which is commonly used to obtain the
existence of a final coalgebra [3,4], and we show that the companion actually
coincides with the codensity monad of this sequence, provided that this codensity
monad exists and is preserved by B (Theorem 5.1). Those conditions are satisfied
by all polynomial functors. This link with the final sequence of the functor makes
it possible to recover Parrow and Weber’s characterisation (Eq. (5)).

We can go even further for w-continuous endofunctors on Set: the codensity
monad of the final sequence can be characterised in terms of a new abstract
notion of causal algebra (Definition 6.1). On streams, this notion coincides with
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the standard notion of causality [12]: causal algebras (on streams) correspond to
operations such that the n-th value of the result only depends on the n-th first
values of the arguments. For instance, pointwise addition and shuffle product
are causal algebras for the functor SX = X?2.

These two characterisations of the companion in terms of the codensity
monad and in terms of causal algebras are the key theorems of the present
paper. We study some of their consequences in Sect. 7.

First, given a causal algebra for a functor F', we get that any system of equa-
tions represented as a BF-coalgebra admits a unique solution. Such a technique
makes it possible to define shuffle product in a streamlined way, without using
distributive laws: using pointwise stream addition as a causal S-algebra, Eq. (2)
can be represented by the following B.S-coalgebra:

(R*)* — BS((R*)?)
(x,y) = (l‘o X Yo, ((x,y’), ($/7y)>)

(Intuitively, the inner pairs (z,’) and (2’,y) correspond to the corecursive calls,
and thus to the shuffle products z ® ' and z’ ® y; in contrast, the intermediate
pair ((z,y’), (¢',y)) corresponds to a call to the causal algebra on S, i.e., in
this case, pointwise addition.) In the very same way, with the functor BX =
2x X4 for deterministic automata, we immediately obtain the semantics of non-
deterministic automata and context-free grammars using simple causal algebras
on formal languages (Examples 7.1 and 7.2).

Second, we obtain that algebras on the final coalgebra are causal if and only if
they can be defined by a distributive law. Similar results were known to hold for
streams [12] and languages [35]. Our characterisation is more abstract and less
syntactic; the precise relationship between those results remains to be studied.

Third, we can combine our results with some recent work [6] where we rely
on (bi)fibrations to lift distributive laws on systems (e.g., automata, LTSs) to
obtain up-to techniques for coinductive predicates or relations on those systems
(e.g., language equivalence, bisimilarity, divergence). Doing so, we obtain that
every causal algebra gives rise to a valid up-to context technique (Sect.7.3). For
instance, bisimulation up to pointwise additions and shuffle products is a valid
technique for proving stream equalities coinductively.

We conclude with an expressivity result (Sect. 8): while abstract GSOS spec-
ifications [43] seem more expressive than plain distributive laws, we show that
this is actually not the case: any algebra obtained from an abstract GSOS spec-
ification can actually be defined from a plain distributive law.

2 Preliminaries

A coalgebra for a functor B: C — C is a pair (X, f) where X is an object in C
and f: X — BX a morphism. A coalgebra homomorphism from (X, f) to (Y, g)
is a C-morphism h: X — Y such that goh = Fho f. A coalgebra (Z,() is called
final if it is final in the category of coalgebras , i.e., for every coalgebra (X, f)
there exists a unique coalgebra morphism from (X, f) to (Z, ().
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An algebra for a functor F': D — D is defined dually to a coalgebra, i.e., it is
a pair (X,a) where a: FX — X, and an algebra morphism from (X, a) to (Y,b)
is a morphism h: X — Y such that hoa = bo Fh.

A monad is a triple (T,n,u) where T: C — C is a functor, and n: Id =
T and p: TT = T are natural transformations called unit and multiplication
respectively, such that poTn=id =ponT and pouT = poTu.

Distributive Laws. A distributive law of a functor F: C — C over a functor
B: C — C is a natural transformation A\: FB = BF'. If B has a final coalgebra
(Z,¢), then such a A induces a unique algebra o making the following commute.

F¢ Az
rZ —— FBZ — BFZ

l lBa

A c BZ

We call a the algebra induced by A (on the final coalgebra).
Let (T,n, 1) be a monad. A distributive law of (T,7, 1) over B is a natural
transformation A\: T'B = BT such that Bn = AonB and AouB = BuoAT oT\.

Final Sequence. Let B: C — C be an endofunctor on a complete category C.
The final sequence is the unique ordinal-indexed sequence defined by By = 1
(the final object of C), Bi-i—l = BBZ and Bj = lim,-<j B'L for a limit ordinal j,
with connecting morphisms Bj;: B; — B; for all ¢ < j, satisfying B;; = id,
Bji1,i+1 = BBj,; and if j is a limit ordinal then (B;;);<; is a limit cone.

The final sequence is a standard tool for constructing final coalgebras: if there
exists an ordinal k such that By, j is an isomorphism, then Bk_+11,k: B, — BBy,
is a final B-coalgebra [4, Theorem 1.3] (and dually for initial algebras [3]). In
the sequel, we shall sometimes present it as a functor B: Ord®® — C, given by
B(l) = Bz and B(]ﬂ,) = Bj,i~

Example 2.1. Consider the functor B: Set — Set given by BX = A x X, whose
coalgebras are stream systems. Then By = 1 and B;; 1 = A x B; for 0 < i < w.
Hence, for i < w, B; is the set of all finite lists over A of length 4. The limit B,
consists of the set of all streams over A. For each i, j with ¢ < j, the connecting
map Bj; maps a stream (if j = w) or a list (if j < w) to the prefix of length i.
The set B, of streams is a final B-coalgebra.

Example 2.2. For the Set functor BX = 2 x X4 whose coalgebras are determin-
istic automata over A, B; is (isomorphic to) the set of languages of words over
A with length below i. In particular, B,, = P(A*) is the set of all languages, and
it is a final B-coalgebra.

A functor B: C — C is called (w)-continuous if it preserves limits of w°P-
chains. For such a functor, B,, is the carrier of a final B-coalgebra. The functors
of stream systems and automata in the above examples are both w-continuous.



Companions, Codensity and Causality 111

3 Properties of the Companion

Definition 3.1. Let B: C — C be a functor. The category FRB =B GB
DL(B) of distributive laws is defined as follows. An object is a

pair (F, \) where F': C — C is a functor and \: FB = BF is /\ﬂ ﬂp
a natural transformation. A morphism from (F,\) to (G, p) BF > BG
s a natural transformation k: F = G s.t. pokB = Bk o \. Be

The companion of B is the final object of DL(B), if it exists.

Morphisms in DL(B) are a special case of morphisms of distributive laws,
see [18,22,34,44]. In the remainder of this section, we assume that the companion
of B exists, and we denote it by (T, 7). We first prove that it is a monad.

Theorem 3.1. There are unique n: I|d =T and p: TT = T such that (T,n, p)
is a monad and 7: TB = BT is a distributive law of this monad over B.

Proof. Define 1 and p as the unique morphisms from idg and 7707’7 respectively
to the companion:

B B TTB === TBT === BTT
of ol -
TB ——> BT TB & BT

By definition, they satisfy the required axioms for 7 to be a distributive law of
monad over functor. The proof that (7,7, 1) is indeed a monad is routine, using
finality of (T, 7), see the appendix [32]. O

A distributive law A of a monad over a functor allows one to strengthen the
coinduction principle obtained by finality, as observed in [5] (specifically its
Corollary 4.3.6), where it is called A-coiteration. This principle allows one to
solve (co)recursive equations, see, e.g., loc. cit. and [14,25]. Since the companion
is a distributive law of a monad (Theorem 3.1) we obtain the following.

Corollary 3.1. Let (Z,() be a final B-coalgebra. For every morphism f: X —
BTX there is a unique morphism f1: X — Z such that the following commutes:

i
X ! Z

1| I

BTX — BTZ —— BZ
BTfT Ba

where « is the algebra induced by the distributive law T of the companion.

Instantiated to the complete lattice case, this is a soundness result: any invariant
up to the companion (a post-fixpoint of bot) is below the greatest fixpoint (vb).

Now assume that C has an initial object 0. One can define the final coalgebra
and the algebra induced by the companion explicitly:
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Theorem 3.2. The B-coalgebra (T0,790T!go) is final, and the algebra induced
on it by the companion is given by .

More generally, the algebra induced by any distributive law factors through
the algebra o induced by the companion.

Proposition 3.1. Let (T, n, 1) be the monad on the companion (Theorem 3.1).
Let \: FB = BF be a distributive law, and a: FT0 = TO0 the algebra on the
final coalgebra induced by it. Let \: F = T be the unique natural transformation
induced by finality of the companion. Then o = g © Arg.

4 The Codensity Monad

The notion of codensity monad is a special instance of a right Kan extension,
which plays a central role in the following sections. We briefly define them here;
see [20,21,28] for a comprehensive study.

Given F: C — D, G: C — & be two functors. Define the HF 25 1F
category K(F,G) whose objects are pairs (H,a) of a functor \ /
H: D — & and a natural transformation a: HF = G. A mor- “ A
phism from (H, &) to (I, 8) is a natural transformation k: H = [ G
such that 8o kF = a.

The right Kan extension of G along F is a final object (RanpG,€) in K(F, G);
the natural transformation e€: (RanpG)F = G is called its counit. A functor
K: & — F is said to preserve RanpG if K o Ranp(G is a right Kan extension of
KG along F, with counit Ke: K(RanpG)F = KG. X

The codensity monad is a special case, with F' = G. Explic- HF 2L CpF
itly, the codensity monad of a functor F': C — D consists of a \ /
functor Cr: D — D and a natural transformation e: CpF = F o ¢
s.t. for every functor H: D — D and natural transformation F
«a: HF = F there is a unique &: H = Cp s.t. eo &F = a.

As the name suggests, Cp is a monad: the unit 1 and the multiplication p are
the unique natural transformations such that e o nF' = id and € o uF' = e o Cpe.
In the sequel we will abbreviate the category K(F, F') as KC(F).

Right Kan extensions can be computed pointwise as a limit, if sufficient limits
exist. For an object X in D, denote by Ax: C — D the functor that maps every
object to X. By Ax/F we denote the comma category, where an object is a pair
(Y, f) consisting of an object Y in C and an arrow f: X — FY in D, and an
arrow from (Y, f) to (Z,g) isamap h: Y — Z in C such that Fho f = g. There
is a forgetful functor (Ax/F) — C, which remains unnamed below.

Lemma 4.1. Let F: C — D, G: C — & be functors. If, for every object X in D,
the limit lim ((AX/F) —~c5 D) exists, then the right Kan extension RanpG

exists, and is given on an object X by that limit.

The codensity monad of a functor F is the right Kan extension of F' along
itself. Hence, Lemma 4.1 gives us a way of computing the codensity monad.
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The hypotheses are met in particular if C is essentially small (equivalent to a
category with a set of objects and a set of arrows) and D is locally small and
complete. The latter conditions hold for D = Set. In that case, we have the
following concrete presentation; see, e.g., [8, Sect. 2.5] for a proof.

Lemma 4.2. Let F: C — Set be a functor, where C is essentially small. The
codensity monad Cr is given by Cp(X) = {a: (F-)X = F} and, forh: X — Y,
(Cr(h)(a))a: (FA)Y — FA is given by f — aa(f oh). The natural transfor-
mation e€: CpF = F is given by ex(a: FI'X = F) = ax(idrx).

5 Constructing the Companion by Codensity

It is standard in the theory of coalgebras to compute the final coalgebra of a
functor B as a limit of the final sequence B, see Sect. 2. In this section, we focus
on the codensity monad of the final sequence, and show that it yields—under
certain conditions—the companion of B.

The codensity monad of B is final in the category of natural transformations
of the form FB = B (see Sect.4), whereas the companion of B is final in the
category of distributive laws over B. The following lemma is a first step towards
connecting companion and codensity monad.

Lemma 5.1. For every \: FB = BF there exists a unique a: FB = B such
that for all ¢ € Ord: 41 = Boy o Ap,. Moreover, if Biy1x is an isomorphism
for some k, then ay is the algebra induced by A on the final coalgebra.

We turn to the main result of this section: the codensity monad of B yields
the companion of B, if B preserves this codensity monad. The latter condition,
as well as the concrete form of the companion computed in this manner, becomes
clearer when we instantiate this result to the case where C is a lattice (Sect.5.1)
and the case C = Set (Sect. 6).

Theorem 5.1. Let B: Ord®® — C be the final sequence of an endofunctor B.
If the codensity monad Cg exists and B preserves it (as a right Kan extension)
then there is a distributive law T of the codensity monad (Cg,n, 1) over B such
that (Cgz,7) is the companion of B.

Proof (Outline). The preservation assumption means that (BCpg, Be) is a right
Kan extension of BB along B. The natural transformation 7 is defined, using the
universal property of Be, as the unique 7: C3B = BCg such that Be; o 75, =
€;+1: CgBB; = BB; for all i. See the appendix for a full proof [33]. O

The following result characterises the algebra induced on the final coalgebra
by the distributive law of the companion, in terms of the counit € of the codensity
monad of B. This plays an important role for the case C = Set (Sect. 7).

Proposition 5.1. Suppose B is a functor satisfying the hypotheses of
Theorem 5.1. Let (Cg,€) be the codensity monad of B, with distributive law
7 and monad structure (Cg,n, 1). If Bit1k is an isomorphism for some k, then

1. €x: CgByr — By, is the algebra induced by T on the final coalgebra;
2. if C has an initial object O then €y is isomorphic to .
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5.1 Codensity and the Companion of a Monotone Function

Throughout this section, let b: L — L be a monotone function on a complete
lattice. By Theorem 5.1, the companion of a monotone function b (viewed as
a functor on a poset category) is given by the right Kan extension of the final
sequence b: Ord®® — L along itself. Using Lemma 4.1, we obtain the characteri-
sation of the companion given in the Introduction (5).

Theorem 5.2. The companion t of b is given by

t:x— /\bi

Proof. By Lemma 4.1, the codensity monad C; can be computed by

Cy(e) = (Rangh)(x) = N\ bs,

z<b;

a limit that exists since L is a complete lattice. We apply Theorem 5.1 to show
that Cj is the companion of b. The preservation condition of the theorem amounts
to the equality bo Rangb = Rang(bob) which, by Lemma 4.1, in turn amounts to

b( N\ bi) = )\ blbs)

for all x € L. The sequence (b;);cord is decreasing and stagnates at some ordinal
€; therefore, the two intersections collapse into their last terms, say bs and b(bs)
(with 0 the greatest ordinal such that © £ bsy1, or € if such an ordinal does not
exist). The equality follows. O

In fact, the category K(b) defined in Sect.4 instantiates to the following: an
object is a monotone function f: L — L such that f(b;) <b; for all i € Ord, and
an arrow from f to g exists iff f < ¢g. The companion ¢ is final in this category.
This yields the following characterisation of functions below the companion.

Proposition 5.2. Let t be the companion of b. For any monotone function f
we have f <t iff Vi € Ord : f(b;) < ;.

A key intuition about up-to techniques is that they should at least preserve
the greatest fixpoint (i.e., up-to context is valid only when bisimilarity is a
congruence). It is however well-known that this is not a sufficient condition
[38,39]. The above proposition gives a stronger and better intuition: a technique
should preserve all approximations of the greatest fixpoint (the elements of the
final sequence) to be below the companion, and thus sound.

This intuition on complete lattices leads us to the abstract notion of causality
we introduce in the following section.
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6 Causality by Codensity

We focus on the codensity monad of the final sequence of an w-continuous Set
endofunctor B. For such a functor, B, is the carrier of a final coalgebra and
Lemma 4.2 provides us with a description of the codensity monad in terms of
natural transformations of the form (B—)* = B. We show that such natural
transformations correspond to a new abstract notion which we call causal alge-
bras. Based on this correspondence and Theorem 5.1, we will get a concrete

understanding of the companion of B in Sect. 7.

Definition 6.1. Let B, F': Set — Set be functors. An algebra o: FB, — B, is
called (w)-causal if for every set X, functions f,g: X — B, and i < w:

f_Bu B implies r; FB,—%>B,

B;

\ /7

FB, — B, By,

Causal algebras form a category causal(B): an object is a pair (F,a: FB,, — B,)
where « s causal, and a morphism from (F,«a) to (G, ) is a natural transfor-
mation k: F' = G such that fokp, = a.

An (w)-causal function on |V| arguments is a causal algebra for the functor
(—)V. Equivalently, o: (B,)V — B, is causal iff for every h,k € (B,)" and
every i < w: if By;0h = B, 0k then B, ;0 a(h) = B, ;o a(k).

Example 6.1. Recall from Example 2.1 that, for the functor BX = A x X, B;
is the set of lists of length 4, and in particular B, is the set of streams over A.
We focus first on causal functions. To this end, for o, 7 € B,,, we write o =; 7 if
o and T are equal up to i, i.e., o(k) = 7(k) for all k < . It is easy to verify that
a function of the form a: (B,)" — B, is causal iff for all oq,...,0p,,71,...,7Tn
and all i < w: if o5 =; 7; for all j < n then a(o1,...,0,) = a(r,..., 7).

For instance, taking n = 2, alt(o,7) = (¢(0),7(1),0(2),7(3),...) is causal,
whereas even(o) = (0(0),0(2),...) (with n = 1) is not causal. For A = R,
standard operations from the stream calculus such as pointwise stream addition,
shuffle product and shuffle product are all causal.

The above notion of causal functions (with a finite set of arguments V') agrees
with the standard notion of causal stream functions (e.g., [12]). Our notion
of causal algebras generalises it from single functions to algebras for arbitrary
functors. This includes polynomial functors modelling a signature. For A = R,
the algebra a: P,(B,) — B, for the finite powerset functor P,, defined by
a(S)(n) = min{o(n) | o € S} is a causal algebra which is not a causal function.
The algebra 3: P,(B,) — B, given by (S)(n) = >, cg0(n) is not causal
according to Definition 6.1. Intuitively, 5({o,7})(¢) depends on equality of o
and 7, since addition of real numbers is not idempotent.

Ezample 6.2. For the functor BX = 2x X4, B, = P(A*) is the set of languages
over A (Example 2.2). Given languages L and K, we write L =; K if L and K
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contain the same words of length below i. A function a: (P(A*))" — P(A*)
is causal iff for all languages Li,...,L,, Kq,..., Ky if L; =, K; for all
j < n then a(Ly,...,L,) =; a(K1,...,K,). For instance, union, concatena-
tion, Kleene star, and shuffle of languages are all causal. An example of a causal
algebra that is not a causal function is a: P(P(A*)) — P(A*) defined by union.

The following result connects causal algebras to natural transformations of
the form FB = B (which, from Sect. 4, form a category K(B)).

Theorem 6.1. Let B,F: Set — Set be functors, and suppose B is w-
continuous. The category causal(B) of causal algebras is isomorphic to the cate-
gory K(B). Concretely, there is a one-to-one correspondence

a: FB=B
o, : FB, — B, causal

From top to bottom, this is given by evaluation at w. Moreover, we have BokB =
aiff Buokp, =, foranya: FB= B, 3: GB= B and k: F = G.

By the above theorem, the universal property of the codensity monad
amounts to the following property of causal algebras.

Corollary 6.1. Suppose B: Set — Set is w-continuous. Let € be the counit of
Cj. Then €, is final in causal(B), i.e., for every causal algebra a: F'B,, — By,
there is a unique natural transformation &: F = Cg such that €, 0 &g, = a.

By Lemmas 4.2 and 6.1, we obtain the following concrete description of the
codensity monad Cpz of the final sequence of a Set endofunctor B, as a functor
of causal functions.

Theorem 6.2. Let B: Set — Set be an w-continuous functor. The codensity
monad Cg of the final sequence of B is given by

Cs(X) ={a: BY¥ = B, | «is a causal function},
Cah: X = Y)(a)=Af.a(foh),

and, for the counit e: CgB = B, we have ¢,(a: BB — B,) = a(idp,).

Hence, the codensity monad of the final sequence of the functor X — A x X of
stream systems maps a set X to the set of all causal stream functions with |X|
arguments. Similarly for the functor X — 2 x X4: we obtain a functor of causal
functions on languages.
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7 Companion of a Set Functor

The previous sections gives us a concrete understanding of the codensity
monad of the final sequence of a Set functor in terms of causal functions, and
Theorem 5.1 provides us with a sufficient condition for this codensity monad to
be the companion. We now focus on several applications of these results.

A rather general class of functors that satisfy the hypotheses of Theorem 5.1 is
given by the polynomial functors. Automata, stream systems, Mealy and Moore
machines, various kinds of trees, and many more are all examples of coalgebras
for polynomial functors (e.g., [15]). A functor B: Set — Set is called polynomial
(in a single variable) if it is isomorphic to a functor of the form

X [T x5
acA

for some A-indexed collection (Bg)aea of sets. As explained in [11, 1.18], a Set
functor B is polynomial if and only if it preserves connected limits. This implies
existence and preservation by B of the codensity monad of B, as required by
Theorem 5.1 (see the appendix for details [32]).

Lemma 7.1. If B: Set — Set is polynomial, then it satisfies the hypotheses of
Theorem 5.1.

As a consequence, if B is polynomial, the functor of causal functions in
Theorem 6.2 is the companion of B.

7.1 Solving Equations via Causal Algebras

As explained in the introduction, a distributive law of F' over B allows one to
solve systems of equations, formalised in terms of BF'-coalgebras, leading to an
expressive coinductive definition technique. This approach is formally supported
by a solution theorem, stated for the companion in Corollary 3.1. Based on the
characterisation of the companion in terms of causal algebras, we obtain a new,
simplified solution theorem: it does not mention distributive laws at all, but is
stated purely in terms of causal algebras.

Theorem 7.1. Let B: Set — Set be a polynomial functor, with final coalgebra
(Bw,(). Let a: FB,, — By, be a causal algebra. For every f: X — BFX there
is a unique f1: X — Z such that the following diagram commutes.

fT
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Ezample 7.1. For the functor BX = A x X, B, is the set of streams. Take
SX = X2 for F, and consider the coalgebra f: 1 — BS1 with 1 = {x}, defined
by * +— (1, (*,*)). Pointwise addition is a causal function on streams, modelled
by an algebra on B, for the functor S. By Theorem 7.1 we obtain a unique
solution o € B,,, satisfying g = 1 and ¢/ = o @ . Similarly, the shuffle product
of streams is causal, so that by applying Theorem 7.1 with that algebra and the
same coalgebra f we obtain a unique stream o satisfying o9 =1, ¢’ = o0 ® 0.
As explained in the Introduction, this method also allows one to define func-
tions on streams. For instance, for the shuffle product, define a BS-coalgebra
f:(B,)? — BS(B,)?, by f(o,7) = (00 X 79, ((¢",7),(7,0")). Since addition of
streams is causal, by Theorem 7.1 there is a unique f': B, x B, — B,, such that
fi(o,7)(0) = 0(0) x 7(0) and (fT (0, 7)) = (f1(c’,7) ® fT(0,7")), matching the
definition given in the Introduction (2). Notice that not every function defined
in this way is causal; for instance, it is easy to define even (see Example 6.1),
even with the standard coinduction principle (i.e., where F' = Id and « = id).

Example 7.2. Consider the functor BX = 2 x X4, whose final coalgebra con-
sists of the set P(A*) of languages. A BP-coalgebra f: X — 2 x (P(X))" is a
non-deterministic automaton. Taking the causal algebra a: P(P(A*)) — P(A¥)
defined by union, the unique map f¥: X — P(A*) from Theorem 7.1 is the usual
language semantics of non-deterministic automata.

In [45], a context-free grammar (in Greibach normal form) is modelled as a
BP*-coalgebra f: X — 2x (P(X)*)4, and its semantics is defined operationally
by turning f into a deterministic automaton over P(X*). In [36] this operational
view is related to the semantics of CFGs in terms of language equations. Con-
sider the causal algebra a: P(P(A*)*) — P(A*) defined by union and language
composition: a(S) = Uy, 1,esL1Llz2... L. By Theorem 7.1, any context-free
grammar f has a unique solution in languages, which is the semantics of CFGs
in the usual sense. As such, we obtain an elementary coalgebraic semantics of
CFGs that does not require us to relate it to an operational semantics.

7.2 Causal Algebras and Distributive Laws

Another application of the fact that the codensity monad is the companion is
that the final causal algebra in Corollary 6.1 is, by Proposition 5.1, the alge-
bra induced by a distributive law. Hence, any causal algebra is “definable” by
a distributive law, in the sense that it factors as a (component of a) natural
transformation followed by the algebra induced by a distributive law.

More precisely, suppose B: Set — Set has a final coalgebra (Z,(). We say
an algebra a: F'Z — Z is definable by a distributive law over B if there exists a
distributive law A\: GB = BG with induced algebra 8: GZ — Z and a natural
transformation x: F' = G such that the following commutes:

rz ——""* -Gz

N
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Theorem 7.2. Let B: Set — Set be polynomial. An algebra o: FB,, — B,, is
causal if and only if it is definable by a distributive law over B.

Since the functors for stream systems and automata are polynomial, as a special
case of Theorem 7.2 we obtain that a stream function, or a function on languages,
is causal if and only if it is definable by a distributive law.

In [12], a similar result is shown concretely for causal stream functions, and
this is extended to languages in [35]. In both cases, very specific presentations
of distributive laws for the systems at hand are used to present the distributive
law based on a “syntax”, which however is not too clearly distinguished from the
semantics: it consists of a single operation symbol for every causal function. In
our case, in the proof of Theorem 7.2, we use the companion, which consists of
the actual functions rather than a syntactic representation. Indeed, the setting
of Theorem 7.2 applies more abstractly to all causal algebras, not just causal
functions. However, it remains an intriguing question how to obtain a concrete
syntactic characterisation of a distributive law for a given causal algebra.

7.3 Soundness of Up-to Techniques

The contextual closure of an algebra is one of the most powerful up-to tech-
niques, which allows one to exploit algebraic structure in bisimulation proofs.
In [7], it is shown that the contextual closure is sound (compatible) on any bial-
gebra for a distributive law. Here, we move away from distributive laws and
give an elementary condition for soundness of the contextual closure on the final
coalgebra: that the algebra under consideration is causal. In fact, we prove that
this implies that the contextual closure lies below the companion, which not only
gives soundness, but also allows to combine it with other up-to techniques.

Due to space limitations, we can not fully explain the relevant definitions,
and refer to [7] for details. Bisimulations on a B-coalgebra (X, f) are the post-
fixed points of a monotone function by: Rely — Relx on the lattice Relx of
relations on X, defined by bs(R) = f* o Rel(B)(R). Here Rel(B) is the relation
lifting of B, and f* is inverse image along f X f, see, e.g., [15]. Contextual closure
ctx, : Relx — Relx with respect to an algebra a: FX — X is defined dually by
ctxq (R) =[], o Rel(F)(R), where [ [, is direct image along o X a.

Theorem 7.3. Let B: Set — Set be polynomial, and (B, () a final B-coalgebra.
Let t; be the companion of be. For any causal algebra a: F B, — B, : ctxq < t¢.

This implies that one can safely use the contextual closure for any causal
algebra, such as union, concatenation and Kleene star of languages, or product
and sum of streams. Endrullis et al. [9] prove the soundness of causal contexts in
combination with other up-to techniques, for equality of streams. The soundness
of causal algebras for streams is a special case of Theorem 7.3, but the latter
provides more: being below the companion, it is possible to compose it to other
such functions to obtain combined up-to techniques in a modular fashion, cf. [31].
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8 Abstract GSOS

To obtain expressive specification formats, Turi and Plotkin [43] use natural
transformations of the form A: F(B x Id) = BF*, where F'* is the free monad
for F. These are the so-called abstract GSOS specifications. We conclude this
article by showing that they are actually equally expressive as plain distributive
laws of a functor F' over B.

If B has a final coalgebra (Z,(), then any abstract GSOS specification
A: F(B x Id) = BF* defines an algebra o: FZ — Z on it, which is the unique
algebra making the following diagram commute.

J F(B x Id)Z% BF*Z
| -
Z BZ

¢

Here a* is the Eilenberg-Moore algebra for the free monad corresponding to a.
Intuitively, this algebra gives the interpretation of the operations defined by A.

Like plain distributive laws (Lemma 5.1), abstract GSOS specifications
induce natural transformations of the form FB = B.

Lemma 8.1. For every \: F(B x |d) = BF* there is a unique a: FB = B
such that for alli € Ord: ;41 = Baf o Ap, o F(id, Biy1,;). Moreover, if Byi1
s an isomorphism for some k, then ay is the algebra induced by A on the final
coalgebra.

This places abstract GSOS specifications within the framework of the com-
panion, constructed via the codensity monad of the final sequence B. Whenever
that construction applies (e.g., for polynomial functors), any algebra defined by
an abstract GSOS is thus already definable by a plain distributive law over B.

Theorem 8.1. Suppose B: C — C satisfies the conditions of Theorem 5.1.
Every algebra induced on the final coalgebra by an abstract GSOS specification
A: F(B x Id) = BF* is definable by a distributive law over B (cf. Sect. 7.2).

In this sense, abstract GSOS is no more expressive than plain distributive laws.
Note, however, that this does involve moving to a different (larger) syntax.

Remark 8.1. Every abstract GSOS specification A\: F(B x |d) = BF* corre-
sponds to a unique distributive law AT: F*(B x Id) = (B x Id)F* of the free
monad F™* over the (cofree) copointed functor B x Id, see [23]. The algebra
induced by X\ decomposes as the algebra induced by AT and the canonical natural
transformation F' = F*. This implies that every algebra induced by an abstract
GSOS is definable by a distributive law over the copointed functor B x Id.
Theorem 8.1 strengthens this to definability by a distributive law over B.
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