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Abstract. k-Hierarchical probabilistic automata (k-HPA) are proba-
bilistic automata whose states are stratified into k + 1 levels such that
from any state, on any input symbol, at most one successor belongs to
the same level, while the remaining belong to higher levels. Our main
result shows that the emptiness and universality problems are decidable
for k-HPAs with isolated cut-points; recall that a cut-point x is isolated
if the acceptance probability of every word is bounded away from x. Our
algorithm for establishing this result relies on computing an approxima-
tion of the value of an HPA; the value of a probabilistic automaton is the
supremum of the acceptance probabilities of all words. Computing the
exact value of a probabilistic automaton is an equally important problem
and we show that the problem is co-R.E.-complete for k-HPAs, for k ≥ 2
(as opposed to Π0

2-complete for general probabilistic automata). On the
other hand, we also show that for 1-HPAs the value can be computed in
exponential time.

1 Introduction

k-Hierarchical probabilistic automata (HPAs) [12] are a syntactic sub-class of
probabilistic automata, whose states are stratified into k + 1 levels. Like proba-
bilistic automata, the next state on an input symbol is determined stochastically.
However, transitions are required to “respect levels” — from any state q, on any
input symbol a, at most one possible next state belongs to the same level as
q, with the others being constrained to belong to levels higher than q’s. Such
automata can recognize languages over finite (hierarchical probabilistic finite
automata) or infinite words (hierarchical probabilistic Muller automata) depend-
ing on the notion of accepting runs. Given a threshold x, the language recognized
by an HPA A is the collection of all input strings such that the measure of all
accepting runs on the input is > x.

HPAs arise naturally as models of client-server systems with stochastic server
failures, concurrent systems under probabilistic context-bounded schedulers, and
business enterprise systems [2] and these have been analyzed using automated
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tools for HPAs [4]. HPAs were introduced in [12] as a computationally tractable
subclass of probabilistic automata. When the acceptance threshold is extremal,
i.e., 0 or 1, many verification problems for HPAs become decidable. While (gen-
eral) probabilistic Büchi automata can recognize non-regular languages with
acceptance threshold 0 and 1, HPAs were shown to recognize only regular
languages [12]. Classical (qualitative) verification questions like emptiness and
universality are decidable in low complexity classes (NL and PSPACE). In con-
trast, the emptiness problem for probabilistic Büchi automata with threshold 0
is undecidable [1] and Π0

2-complete [9,12].
Surprisingly, however, the landscape changes completely when the threshold

is taken to be x ∈ (0, 1). Even 1-HPAs1 can recognize non-regular languages
when the acceptance threshold is 1

2 [11]. Though emptiness and universality
problems are decidable for 1-HPAs [11], these problems are undecidable for 2-
HPAs (and higher) [4]. In this paper, we present results that support the thesis
that, despite the many negative results about HPAs in [4,8], HPAs are indeed
a computationally tractable model of open probabilistic systems. Specifically,
we present results that show that the value of HPAs can be approximated to a
given degree of precision ε unlike general probabilistic automata. Hence HPAs
can be “approximately verified”; we can declare the language of a PFA to be non-
empty/empty if the value of the HPA is at least ε more/less than the threshold.

The main results in this paper pertain to HPAs with isolated cut-points and
the value problem for HPAs. A threshold x is said to be isolated for a probabilistic
automaton (not necessarily hierarchical) A, if there is an ε > 0 such that the
acceptance probability of any word is either at most x − ε or at least x + ε, i.e.,
the probability of acceptance of any word is bounded away from x. Automata
with isolated cut-points describe algorithms to which algorithmic techniques
like amplification can be applied, and are constant space analogs of complexity
classes BPP and RP. An important classical result due to Rabin [19] is that
though probabilistic automata over finite words (PFA) can recognize non-regular
languages when the threshold x ∈ (0, 1), they only recognize regular languages
when x is isolated. The extension of this result to automata on infinite words
is not known. In this paper, we show that HPAs on infinite words with isolated
cut-points recognize ω-regular languages.

Even though probabilistic finite automata (PFAs) with isolated cut-points
recognize regular languages, it is not known if the following problem is decidable:
Given a PFA with an isolated cut-point x, determine if some input string is
accepted with probability > x. Our main result is that for HPAs with isolated
cut-points, this emptiness problem is decidable. Our result applies to both HPAs
over finite words and HPAs over infinite words. In fact, we show that checking
if an HPA’s (with isolated cut-point) language is equal to any given regular
language is decidable; thus, even checking universality is decidable.

Our proof for the decidability of emptiness under isolation is based on solving
another classical problem for probabilistic automata, namely, computing the

1 0-HPAs are just deterministic machines. Thus, 1-HPAs are automata with fewest
number of levels that have some stochastic behavior.
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value of an automaton. The value of an automaton is the least upper bound
of the acceptance probabilities of all words. The decision version of the value
problem is known to undecidable [5,13,16]. We show that for HPAs (over finite
or infinite words) the value can be approximated to precision γ (γ < 1) in
time that is doubly exponential in the size of the automaton and exponential in
poly(log( 1

γ )). The approximation algorithm is obtained by observing that in an
HPA, for any finite word v, there is a “short” word u such that the distribution
on states after u is very “close” to the distribution after input v; the length
of u only depends on the size of the automaton and the approximation factor.
Thus to approximate the value of an HPA up-to γ, we compute the maximum
of the acceptance probabilities of all “short” words. Having an algorithm to
approximate the value of an automaton immediately gives us an algorithm for
checking language emptiness of an HPA A with isolated cut-point x as follows.
We progressively compute the value of A with increasing precision. Suppose at
some point the value is approximated by v with precision γ. If v−γ > x then we
know that A has a non-empty language. On the other hand, if v + γ < x then
A’s language is empty. Since x is isolated, we are guaranteed that eventually the
precision γ is low enough to ensure that one of these two conditions hold.

In addition to the algorithm to approximate the value of an HPA, we charac-
terize the precise complexity of the value problem for HPAs (on both finite and
infinite words). We show that the value problem is in EXPTIME for 1-HPAs,
as follows. First, we prove that the value of a 1-HPA is a fraction whose size (i.e.,
the length of the binary representation of its denominator) is at most exponen-
tial in the number of states of the automaton. Then, we present an algorithm
that computes the value exactly, by employing binary search on rationals [20],
together with an algorithm for emptiness checking for 1-HPA [11]. We show that
the value problem is co-R.E.-complete for 2-HPAs (and higher). In contrast,
for general PFAs, the value problem is known to be Π0

2-complete [13]. Finally,
we also show that the problem of checking if a cut-point x is not isolated for a
probabilistic automaton A can be reduced in polynomial time to the value prob-
lem. This, along with the results for the value problem for HPAs, shows that the
problem of checking isolation is R.E.-complete for 2-HPAs (and higher), and is
in co-R.E. for 1-level HPA.

The paper is organized as follows. We describe closely related work next.
Section 2 contains notations and definitions. Section 3 has definitions of HPAs
and results on the regularity of the language under isolated cut points. Section 4
has results on the approximation of HPAs and decidability of emptiness under
isolation. Section 5 has the results for the value problem and isolated cut point
problem. Section 6 has conclusions. For brevity, we have omitted some proofs
which can be found in [10].

Related Work. We summarize results on the emptiness problem, the value prob-
lem, and the isolation problem. The undecidability of the emptiness problem
for probabilistic automata with non-extremal thresholds was shown for finite
words in [14] and for infinite words in [8]. The emptiness problem for 2-HPAs
(and higher) with non-extremal thresholds is also undecidable [4,8]. When the
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cut-point is isolated, the decidability of the emptiness problem for general prob-
abilistic automata is not known. However, for unary PFAs [6] and eventually
weakly ergodic PFAs [13] the emptiness problem is decidable when the cut-
point is isolated. Eventually weakly ergodic PFAs are incomparable to HPAs
considered here; Fig. 1(c) in [13] is an example of a HPA that is not eventually
weakly ergodic. The value problem is undecidable for PFAs [5], even for extremal
thresholds [16]; it is known to be Π0

2-complete [13]. The problem of checking if
the value is 1 was shown to be PSPACE-complete for leak-tight automata [15]
which is sub-class of probabilistic automata that includes HPAs considered here.
For value other than 1, no decidability results are known (other than those
presented here). The isolation problem was shown to be Π0

2-complete [13] for
general probabilistic automata.

2 Preliminaries

We assume that the reader is familiar with probability distributions, stochas-
tic matrices finite-state automata, regular languages, Muller automata and ω-
regular languages. The set of natural numbers will be denoted by N, the closed
unit interval by [0, 1] and the open unit interval by (0, 1). The power-set of a set
X will be denoted by 2X . The absolute value of a real number r shall be denoted
by |r|. A non-negative rational number x is uniquely represented as a fraction
y
z where y, z ∈ N are relatively prime to each other, and y ≤ z. In this case, we
define the size of x to be the number of bits in the binary representation of z.

Sequences. Given a finite set S, |S| denotes the cardinality of S. Given a
sequence (finite or infinite) κ = s0s1 . . . over S, |κ| will denote the length of
the sequence (for infinite sequence |κ| will be ω), and κ[i] will denote the ith
element si of the sequence with κ[0] being the first. We will use ε to denote the
(unique) empty string/sequence. For natural numbers i, j, i ≤ j < |κ|, κ[i : j] is
the sequence si . . . sj . For i < |κ|, κ[i : ∞] is the sequence sisi+1 . . . if |κ| = ω,
and is the sequence si . . . s|κ|−1 if |κ| is finite. As usual S∗ will denote the set of
all finite sequences/strings/words over S, S+ will denote the set of all finite non-
empty sequences/strings/words over S and Sω will denote the set of all infinite
sequences/strings/words over S. We will use u, v, w to range over elements of
S∗, α, β, γ to range over infinite words over Sω.

Given u ∈ S∗ and κ ∈ S∗ ∪Sω, uκ is the sequence obtained by concatenating
the two sequences in order. Given L1 ⊆ S∗ and L2 ⊆ S∗ ∪ Sω, the set L1L2 is
defined to be {uκ | u ∈ L1 and κ ∈ L2}. Given u ∈ S+, the word uω is the unique
infinite sequence formed by repeating u infinitely often. For an infinite word
α ∈ Sω, we write inf(α) = {s ∈ S | s = α[i] for infinitely many i}.

Probabilistic Automaton (PA). Informally, a PA is like a finite-state deter-
ministic automaton except that the transition function from a state on a given
input is described as a probability distribution which determines the probability
of the next state.
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Definition 1. A finite-state probabilistic automaton (PA) over a finite alphabet
Σ is a tuple A = (Q, qs, δ,Acc) where Q is a finite set of states, qs ∈ Q is the
initial state, δ : Q × Σ × Q → [0, 1] is the transition relation such that for all
q ∈ Q and a ∈ Σ, δ(q, a, q′) is a rational number and

∑
q′∈Q δ(q, a, q′) = 1, and

Acc is an acceptance condition (to be defined later).

Notation: The transition function δ of PA A on input a can be seen as a
square matrix δa of order |Q| with the rows labeled by “current” state, columns
labeled by “next state” and the entry δa(q, q′) equal to δ(q, a, q′). Given a word
u = a0a1 . . . an ∈ Σ+, δu is the matrix product δa0δa1 . . . δan

. For the empty
word ε ∈ Σ∗ we take δε to be the identity matrix. Finally for any Q0 ⊆ Q, we
say that δu(q,Q0) =

∑
q′∈Q0

δu(q, q′). Given a state q ∈ Q and a word u ∈ Σ+,
post(q, u) = {q′ | δu(q, q′) > 0}. For a set C ⊆ Q, post(C, u) = ∪q∈C post(q, u).

Intuitively, the PA starts in the initial state qs and if after reading
a0, a1 . . . , ai it is in state q, then the PA moves to state q′ with probability
δai+1(q, q

′) on symbol ai+1. A run of the PA A starting in a state q ∈ Q on an
input κ ∈ Σ∗ ∪ Σω is a sequence ρ ∈ Q∗ ∪ Qω such that |ρ| = 1 + |κ|, ρ[0] = q
and for each i ≥ 0, δκ[i](ρ[i], ρ[i + 1]) > 0. Unless otherwise stated, a run for us
will mean a run starting in the initial state qs.

Given a word κ ∈ Σ∗∪Σω, the PA A can be thought of as a (possibly infinite-
state) (sub)-Markov chain. The set of states of this (sub)-Markov Chain is the
set {(q, v) | q ∈ Q, v is a prefix of κ} and the probability of transitioning from
(q, v) to (q′, u) is δa(q, q′) if u = va for some a ∈ Σ and 0 otherwise. This gives
rise to the standard σ-algebra on Qω defined using cylinders and the standard
probability measure on (sub)-Markov chains [17,21]. We shall henceforth denote
the σ-algebra as FA,κ and the probability measure as μA,κ.

Acceptance Conditions and PA Languages. The language of a PA A =
(Q, qs, δ,Acc) over an alphabet Σ is defined with respect to the acceptance con-
dition Acc and a threshold x ∈ [0, 1]. We consider two kinds of acceptance
conditions.

Finite acceptance: When defining languages over finite words, the acceptance
condition Acc is given in terms of a finite set Qf ⊆ Q. In this case we call
the PA A, a probabilistic finite automaton (PFA). Given a finite acceptance
condition Qf ⊆ Q and a finite word u ∈ Σ∗, a run ρ of A on u is said to be
accepting if the last state of ρ is in Qf . The set of accepting runs on u ∈ Σ∗

is measurable [21] and we denote its measure by PA(u). Note that PA(u) =
δu(qs, Qf ). Given a PFA, a rational threshold x ∈ [0, 1] and the language of
finite words L>x(A) = {u ∈ Σ∗ | PA(u) > x} is the set of finite words accepted
by A with probability > x.

Muller acceptance: For Muller acceptance, the acceptance condition Acc is given
in terms of a finite set F ⊆ 2Q. In this case, we call the PA A, a probabilistic
Muller automaton (PMA). Given a Muller acceptance condition F ⊆ 2Q, a run
ρ of A on an infinite word α ∈ A is said to be accepting if inf(ρ) ∈ F. Once again,
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the set of accepting runs is measurable [21]. Given a word α, the measure of the
set of accepting runs is denoted by PA(α). Given a PMA A, a rational threshold
x ∈ [0, 1], the language of infinite words L>x(A) = {α ∈ Σω | PA(α) > x} is the
set of infinite words accepted by PMA A with probability > x.

Changing the cutpoint. The following proposition allows us to change non-
extremal cutpoints. It is proved for PFAs in [18]. The same construction also
works for PMAs.

Proposition 1. For any PA A, rationals x, y ∈ (0, 1), there is a PA B con-
structible in linear time such that L>x(A) = L>y(B).

The Value Problem(s). For a PA A, let value(A) denote the least upper bound
of the set {PA(u) | u ∈ Σ∗} when A is a PFA and of the set {PA(α) | α ∈ Σω}
when A is a PMA. The value computation problem for a PA is the problem of
computing value(A) for a given A. The value decision problem is the problem of
deciding for a given PA A and a rational x ∈ [0, 1] whether value(A) = x.

The Isolation Decision Problem. For a PA A, a rational threshold x ∈ [0, 1]
is said to be an isolated cut-point of A if there is an ε > 0 such that for each
word κ (where κ ∈ Σ∗ when A is a PFA and κ ∈ Σω otherwise), we have that
|PA(κ) − x| > ε. If such an ε exists then ε is said to be a degree of isolation. The
isolation decision problem is the problem of deciding for a given PA A and a
rational x ∈ [0, 1] whether x is an isolated cutpoint of A.

We have the following relation between the isolated cutpoint decision problem
and the value decision problem.

Proposition 2. For each PA A = (Q, qs, δ,Acc) and x ∈ (0, 1), there is a con-
structible PA B such that value(B) = 1

4 iff x is not a isolated cutpoint of A.

3 Hierarchical Probabilistic Automata

Intuitively, a hierarchical probabilistic automaton is a PA such that the set of its
states can be stratified into totally-ordered levels. From a state q on each letter
a, the machine can transit with non-zero probability to at most one state in the
same level as q, and all other probabilistic successors belong to higher levels.

Definition 2. For k ∈ N, a k-hierarchical probabilistic automaton (HPA) is a
probabilistic automaton A = (Q, qs, δ,Acc) over alphabet Σ such that Q can be
partitioned into k + 1 sets Q0, Q1, . . . , Qk satisfying the following properties:

– qs∈Q0;
– for every i, 0 ≤ i ≤ k and every q∈Qi and a∈Σ, |post(q, a) ∩ Qi| ≤ 1; and,
– for every i, 0 < i ≤ k, q∈Qi and a∈Σ, post(q, a) ∩ Qj = ∅ for every j < i.
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For any k-HPA A, as given above, for 0 ≤ i ≤ k, we call the elements of Qi, level
i states of A. We call a HPA a HPFA/HPMA if Acc is a finite acceptance/Muller
acceptance condition respectively.

Let us fix a k-HPA A = (Q, qs, δ,Acc) over alphabet Σ. Observe that given
any state q ∈ Q0 and any word κ ∈ Σ∗ ∪ Σω, A has at most one run ρ on α
where all states in ρ belong to Q0. We now present a couple of useful definitions.
A set W ⊆ Q is said to be a witness set if W has at most one level 0 state, i.e.,
|W ∩Q0| ≤ 1. Observe that for any word u ∈ Σ∗, post(qs, u) is a witness set, i.e.,
|post(qs, u) ∩ Q0| ≤ 1. We will say a word κ ∈ Σ∗ ∪ Σω (depending on whether
A is an automaton on finite or infinite words) is definitely accepted from witness
set W iff for every q ∈ W with q ∈ Qi (for 0 ≤ i ≤ k) there is an accepting run ρ
on κ starting from q such that for every j, ρ[j] ∈ Qi and δκ[j](ρ[j], ρ[j + 1]) = 1.
In other words, κ is definitely accepted from witness set W if and only if κ is
accepted from every state q in W by a run where you stay in the same level as q,
and all transitions in the run are taken with probability 1. Observe that the set
of all words definitely accepted from a witness set W is regular. Furthermore,
its emptiness can be checked in PSPACE.

Proposition 3. For any HPA A and witness set W , the language LW = {κ|κ is
definitely accepted by A from W} is regular. The emptiness of LW can be checked
in PSPACE.

That the emptiness of LW can be checked in PSPACE follows from the obser-
vation that LW = ∩q∈WL{q} and L∅ (as defined above) is the set of all strings.

Definition 3. A witness set W is said to be good if the language LW (defined
in Proposition 3) is non-empty.

Witness sets play an important role in the acceptance of strings. This is
characterized by the following Proposition.

Proposition 4. For a HPA A, threshold x ∈ [0, 1], and word κ, κ ∈ L>x(A) if
and only if there is a non-empty witness set W , u ∈ Σ∗ and κ′ ∈ Σ∗ ∪ Σω such
that κ = uκ′, κ′ is definitely accepted by A from W , and δu(q0,W ) > x.

Proposition 4 immediately implies the following.

Proposition 5. For a HPMA A = (Q, qs, δ,Acc) let GW be the set of good non-
empty witness sets of A. For W ∈ GW, let AW = (Q, qs, δ,W ) be the PFA that
has W as the set of its final states. Then value(A) = maxW∈GW value(AW ).

3.1 Regularity of HPAs with Isolated Cut-points

Probabilistic automata, though finite state, are known to recognize non-regular
languages, whether we consider automata on finite or infinite words [1,7,19].
One important result due to Rabin [19] is that L>x(A) is regular for any PFA
A if x is isolated for A. We extend this observation to any HPMA.
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Fig. 1. Aisolated

Theorem 1. Let A be a HPMA and let x ∈ [0, 1] be such that x is isolated for
A. Then L>x(A) is ω-regular.

Example 1. Consider the HPMA Aisolated shown in Fig. 1. It has 3 states —
qs, qrej, qacc — with qs as initial state. The acceptance condition is given by
{{qacc}}. For any n, let xn = 3

4 (1 − ( 13 )n). We will show a couple of properties
about Aisolated and xn. First we show that xn is an isolated cut-point with degree
of isolation 1

6 ( 13 )n, and second, that the set of infinite strings accepted with
probability > xn is exactly Ln = 1n{0,1}ω.

For any u ∈ {0,1}∗, let the acceptance and rejection probabilities of u be the
probabilities of reaching the states qacc, qrej, respectively, on input u staring from
qs. Observe that every string in Ln, is accepted by A, with probability greater
than the acceptance probability of u = 1n0, which is

∑
0≤i<n( 13 )i 1

2 +(13 )n 1
6 and

is equal to 3
4 (1 − ( 13 )n) + (13 )n 1

6 . Now, consider any input sequence not in Ln,
i.e., sequence in {0,1}ω \ Ln. The probability of rejecting any such string is >
the rejection probability the string 1n−101. The rejection probability of 1n−101
is

∑
0≤i<n−1(

1
3 )i 1

6 + (13 )n−1 1
2 + (13 )n 1

6 , which after some simplification, is y =
1
4 (1 − ( 13 )n−1) + 5

3 ( 13 )n. From these observations, it follows that, for any κ �∈ Ln,
the probability of accepting κ is < 1−y = 3

4 (1− ( 13 )n)− 1
6 ( 13 )n = xn − 1

6 ( 13 )n. In
addition, for any κ ∈ Ln, the probability of accepting κ is > xn + 1

6 ( 13 )n. Hence
xn is an isolated cut point with degree of isolation 1

6 ( 13 )n.

4 Emptiness Under Isolation

We now show that the emptiness and universality problems are decidable for k-
HPAs with isolated cut-points, even when the degree of isolation is not known.
In order to establish the above result, we recall the definition of max-norms in
matrices.
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Definition 4. For a n × n matrix δ, let δij be the entry in i-th row and j-th
column. We say that ‖δ‖ = maxi,j |δij |.

For the rest of this section, we fix the input alphabet Σ. The decision proce-
dure for checking emptiness and universality of k-HPAs depends on Lemma 1,
which states that the “effect” of input word u on a k-HPFA A can be approx-
imated by a short word v upto a given degree of approximation. The Lemma
shows that for each ε, the matrix δu − δv has max-norm ≤ ε.

Lemma 1. Given a k-HPA A = (Q, qs, δ,Acc) and a rational 0 < ε < 1,
there is a computable �A,ε ∈ N such that for each word u ∈ Σ∗, there is a
word v ∈ Σ∗ such that |v| ≤ �A,ε and ‖δu − δv‖ < ε. Furthermore �A,ε ≤
(log
 2(b+1)kn2k

ε �)k2(b+2)knn+k where n = |Q| and b is the maximum size of the
transition probabilities.

We sketch the key ideas of the proof of Lemma 1. The proof proceeds by
induction on k.

– We first observe that if A is a 0-HPA, then all transition probabilities are
either 0 or 1. Hence the stochastic matrix δu is such that each entry is either 0
or 1 and each row consists of exactly one non-zero entry. Since there are only
nn matrices, if |u| > nn then there will be i < j such that matrices δu[0:i] and
δu[0:j] are the same. So, we can remove the word u[i + 1 : j] from u without
affecting the probability of transitioning from one state to another.

– Suppose that we have established the Lemma for k = k0. In the induction
step, we have to prove it for k = k0 + 1. Fix a level 0 state q of the PA A.
For each prefix w of u, it is the case that there is at most one level 0 state
in post(q, w). Assume that there is exactly one level 0 state in post(q, w). For
each i < |u|, we will say that there is a leak at position i if on the input
u[i], some probability moves to higher levels. Now, between two consecutive
leaks, the automaton A is essentially a k0-HPA obtained by moving all states
down one level. Thus, we can use the Induction Hypothesis to shorten the
words between leaks. After we reach a point when there are too “many” leaks,
the probability of being in level 0 is small and can be ignored. This informal
argument only shows that the qth row of δu can be approximated by a short
word. Some bookkeeping is needed to ensure that the same short word works
for every row.

Using Lemma 1, we can show that for a k-HPA, value(A) can be computed
within a given degree of accuracy.

Theorem 2. There is an algorithm, which given a k-HPA A = (Q, qs, δ,Acc),
and a rational ε ∈ (0, 1) computes x such that |value(A) − x| ≤ ε. The algorithm
is exponential in poly(log(1ε )) and doubly exponential in the size of A.

Proof. The algorithm for the case when A is a HPFA works as follows. Given
A and ε as given in the lemma, the algorithm computes �A, ε

n
where n = |Q|,

enumerates all input sequence of length at most �A, ε
n
, computes and outputs
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the maximum of the acceptance probabilities of these strings. If x is the value
output by the algorithm, using Lemma 1, it is easy to see that |value(A) − x| ≤ ε.
The time bounds follow from the bound on �A, ε

n
in Lemma 1. For the case of

HPMA, we appeal to Proposition 5 which allows us to approximate the value
using HPFAs. ��

The above algorithm to approximate the value of a HPA immediately gives
us an algorithm that given a HPA A and a rational x such that x is an isolated
cutpoint of A checks if the regular language L>x(A) is empty or not, even if
a degree of isolation is not known. The algorithm is obtained as follows. We
progressively compute the value of A with increasing precision. Suppose at some
point the value is approximated by v with precision ε. If v − ε > x then we know
that A has a non-empty language. On the other hand, if v + ε < x then A’s
language is empty. Since x is isolated, we are guaranteed that eventually the
precision ε is low enough to ensure that one of these two conditions hold. This
is carried out in the following Theorem.

Input: Integer k, a k-HPA A = (Q, qs, δ,Acc) and rational x ∈ [0, 1]
Output: YES if L>x(A) = ∅ and NO if L>x(A) �= ∅

n ← |Q|
approx value ← 0
ε ← 1

2

if A is a HPFA then
GW ← {Acc}

else
GW ← {W | W ⊆ Q, W �= ∅, W is a good witness}

end
while true do

Compute �A, ε
n

as given in Lemma 1

approx value ← maxW∈GW,v∈Σ∗,|v|≤�A, ε
n

δv(qs, W )

if approx value > x then
return NO

else
if approx value < x − ε then

return YES
else

ε ← ε
2

end

end

end

Fig. 2. Procedure for checking emptiness of HPAs
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Theorem 3. The algorithm in Fig. 2 solves the following problem: Given a k-
HPA A = (Q, qs, δ,Acc) and a rational x ∈ (0, 1) such that x is an isolated
cut-point for A, decide if L>x(A) is empty.

Proof. Let the number of states of A be n. Let εm be the value of variable ε at
the beginning of the mth iteration of the while loop. Clearly εm = 1

2m . Consider
first the case when A is a HPFA. The case when A is a HPMA follows a similar
argument.

Clearly if the procedure outputs NO then L>x(A) �= ∅. Now suppose that the
the algorithm outputs YES. Let εm0 be the value of ε when the algorithm outputs
YES. As the program outputs YES, for each word w such that |w| ≤ �A,

εm0
n

, we
have that δw(qs, Qf ) + εm0 < x. Fix a finite word u. Thanks to Lemma 1, there
is finite word v such that |v| ≤ �A,

εm0
n

and δu(qs, Qf ) < δv(qs, Qf ) + εm0 < x.

Thus, if the algorithm outputs YES then L>x(A) = ∅. Notice that if the algorithm
terminates then it gives the correct answer even if x is not isolated.

We claim that the algorithm in Fig. 2 terminates if L>x(A) �= ∅ or if
value(A) < x. If L>x(A) �= ∅ then fix a word u such that δu(qs, Qf ) > x.
Let ε′ = δu(qs, Qf ) − x. Let m0 be the smallest integer such that nεm0 < ε′.
Thanks to Lemma 1, there is a finite word v such that |v| ≤ �A,

εm0
n

and
δv(qs, Qf ) > δu(qs, Qf ) − nεm0 = x + ε′ − nεm0 > x. Thus approx value > x
in the m0th unrolling of the while loop and the algorithm terminates.

If value(A) < x then let ε′ = x − value(A). Let m0 be the smallest integer
such that εm0 < ε′. It is easy to see that the algorithm will terminate in the m0th
unrolling of the loop as for every word w, it is the case that δw(qs, Qf ) + εm0 ≤
(x − ε′) + εm0 < x.

The Theorem follows from the fact that if x is an isolated cutpoint of A and
L>x(A) = ∅ then value(A) < x. ��

Next, we show that if x is isolated for a PA A then we can decide if L>x(A) is
contained in/contains a given regular language R (where R is a regular language
over finite or infinite words depending on whether A is a HPFA or a HPMA).
Observe that this also implies that the problem of checking whether L>x(A) is
universal or not is also decidable if x is an isolated cutpoint of A.

Theorem 4. Let 
� ∈ {⊆,⊇,=}. There is an algorithm that given a regular
language R, a k-HPA A = (Q, qs, δ,Acc), a rational x ∈ (0, 1) such that x is an
isolated cut-point for A, decides if L>x(A) 
� R.

5 On the Value Decision Problem

For a PFA A, the problem of checking if x ∈ [0, 1] is an isolated cut-point is Σ0
2-

complete [13]. Observe that 1 is an isolated cutpoint of a PFA A iff value(A) < 1.
An immediate consequence is that the value decision problem for PFAs is Π0

2-
complete. For HPFAs, the problem of checking if 1 is isolated is known to be
PSPACE-complete [15]. The same result holds for checking if 0 is an isolated
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cutpoint for a HPA. We now show that the problem checking whether x ∈ (0, 1)
is an isolated cutpoint for a HPA is R.E.-complete and the value problem is
co-R.E.-complete. Hence, the isolated cut point decision problem and the value
decision problem are simpler for HPAs. We start by proving that the value
problem is co-R.E.-complete. The proof of containment in co-R.E. relies on
Lemma 1, which allows us to approximate the effect of each finite word on an
automaton by a short word. The hardness result is obtained by a modification
of the proof of undecidability of emptiness problem for the 2-HPAs [2–4].

Theorem 5. For each k ≥ 2, the value decision problems for k-HPFAs and for
k-HPMAs are co-R.E.-complete.

Proof. We first establish that the value problem is in co-R.E. Consider first the
case for HPFAs. Let A = (Q, qs, δ,Acc) be a HPFA. Let isValue(A, x) be the
predicate

isValue(A, x) = (∀v ∈Σ∗. PA(v) ≤ x) ∧ ∀m ∈ N. (∃u ∈ Σ∗. PA(u) > x − 1
m

).

It is easy to see that value(A) = x iff isValue(A, x) is true.
Let |Q| = n and let isValueSm(A, x) be the predicate

isValueSm(A, x) = (∀v ∈ Σ∗. PA(v) ≤ x)∧
∀m ∈ N. (∃v ∈ Σ∗. |v| ≤ �A, 1

mn
∧ PA(v) > x − 1

2m ).

It is easy to see that if isValueSm(A, x) is true then so is isValue(A, x).
Assume now that isValue(A, x) is true. Then for each m ∈ N, there is a

u ∈ Σ∗ such that PA(u) > x − 1
m . Fix m,u. Thanks to Lemma 1 there is a v

such that |v| ≤ �A, 1
mn

and

δu(qs, q) − 1
mn

< δv(qs, q) < δu(qs, q) +
1

mn
for each q ∈ Q. (1)

Fix v. Therefore we get from Eq. 1 above that

δv(qs, Qf ) >
∑

q∈Qf

(δu(qs, q) − 1
mn

) = δu(qs, Qf ) − |Qf |
mn

> x − 1
m

− 1
m

.

It follows that isValueSm(A, x) is also true if isValue(A, x) is true. Hence,
value(A) = x iff isValueSm(A, x) is true. Note that the problem of checking
that for given v, if PA(v) ≤ x is decidable. Also the problem of checking that
given m ∈ N, (∃v ∈ Σ∗. |v| ≤ �A, 1

mn
∧PA(v) > x − 1

2m ) is decidable since �A, 1
mn

is computable. Thus, the value problem is in co-R.E.
Now consider the theorem for HPMAs. Let A = (Q, qs, δ,Acc) be a HPMA.

Let GW be the set of good non-empty witness sets of A. For W ∈ GW, let
AW = (Q, qs, δ,W ) be the PFA that has W as the set of its final states. Thanks
to Proposition 5, we have that value(A) = maxW∈GW value(AW ). This implies
that value(A) = x iff one of the predicates {isValue(AW , x) | W ∈ GW} is true.
The upper bound follows in this case.

The lower bound is proved by a modification of the proof of undecidability
of emptiness problem for the 2-HPAs [2–4]. ��
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Using Proposition 2, we can convert the non-isolation decision problem to
the value decision problem. Thus the problem of checking whether a cut-point x
is isolated for a HPA A is in R.E.. We can show that the non-isolation decision
problem is co-R.E.-hard also using the same reduction that is used to prove
co-R.E.-hardness of the value problem. This yields the following Theorem.

Theorem 6. For each k ≥ 2, the isolation decision problems for k-HPFAs and
k-HPMAs are R.E.-complete.

5.1 Computing the Value of 1-HPAs

In this section, we give an EXPTIME algorithm for computing the value of a
1-HPA. The key technical observation to make this possible is a necessary and
sufficient condition for when x is the value of a 1-HPFA. The observation is that
there is always an exponentially bounded “ultimately periodic” witness for the
value being x; this is the content of the next Lemma.

Lemma 2. Let A = (Q, qs, δ,Qf ) be an 1-HPFA over an alphabet Σ, and n =
|Q|. Then, for any x, x = value(A) iff there is no string that is accepted by A
with probability > x and at least one of the following conditions is satisfied.

1. ∃u ∈ Σ∗ such that |u| ≤ 2n and PA(u) = x.
2. ∃u, v ∈ Σ∗ such that |u|, |v| ≤ 2n, there exists a good witness set W ⊆ Q1 such

that W ⊆ post(qs, u), post(W, v) ⊆ W , post(qs, u) ∩ Q0 = post(qs, uv) ∩ Q0,
∀i ≥ 0, δuvi+1(qs,W ) > δuvi(qs,W ) and limi→∞ δuvi(qs,W ) = x.

Condition 1 of the lemma corresponds to the case when there is an input
string that is accepted with the maximum possible probability value(A). If there
is no input string that is accepted with probability value(A), then Condition 2 of
the lemma asserts that there are finite sequences u, v and a good witness set W ,
such that δuvi(qs,W ) increases monotonically with increasing values of i, and
the limit of this monotonic sequence equals value(A).

The next observation bounds the size of the probability of reaching a set of
states C on an input u, as a function of |u|.
Lemma 3. Let A = (Q, qs, δ,Acc) be a 1-HPA over an alphabet Σ and n = |Q|.
Then, for any u ∈ Σ+, q ∈ Q0 and C ⊆ Q, the size of δu(q, C) is ≤ |u|nr where
r is the maximum of the sizes of the transition probabilities of A.

Proof. The lemma is proved by a simple induction on |u|. In the base case,
|u| = 1, the observation follows from the fact that δu(q, C) is the sum of atmost n
transition probabilities of A. For the inductive step, assume that the observation
is true for all strings of length ≤ k. Let u = av be a string of length k+1 where a ∈
Σ and v ∈ Σk. Clearly, δu(q, C) =

∑
q′∈Q1

δa(q, q′)δv(q′, C) + δa(q, q1)δv(q1, C)
where q1 ∈ Q0 be such that δa(q, q1) > 0. Observe that, for q′ ∈ Q1, δv(q′, C) is
either 0 or 1. Now, it is easy to see that size of δu(q, C) is ≤ the sum of the sizes
of δa(q, q′) for less than n distinct q′ ∈ Q1, the sizes of δa(q, q1) and δv(q1, C).
Using the induction hypothesis for v and observing that the sizes of δa(q, q′),
δa(q, q1) are both ≤ r, we get the desired result. ��
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The last technical lemma we need, bounds the size of the value of a 1-HPFA
using Lemmas 2 and 3.

Lemma 4. Let A = (Q, qs, δ,Qf ) be a 1-HPFA over an alphabet Σ and n = |Q|.
Then, the size of value(A) is ≤ 4rn2n where r is the maximum of the sizes of
the transition probabilities of A.

Proof. Let x = value(A). Clearly no string is accepted by A with probability > x.
Further, from Lemma 2, we see that one of the conditions (1) or (2), stated there,
is satisfied. Suppose condition (1) is satisfied. Then, there is a string u ∈ Σ∗,
such that |u| ≤ 2n and x = PA(u). Now, our result follows from Lemma 3.

Now, suppose condition (2) of Lemma 2 is satisfied; let u, v,W be as specified
in that condition. Let post(qs, u) ∩ Q0 = post(qs, uv) ∩ Q0 = {q1}. It is easy to
see that

limi→∞ δuvi(qs,W ) = δu(qs,W ) + δu(qs, q1)δv(q1,W )
∑∞

i=0(δv(q1, q1))i

= δu(qs,W ) + δu(qs, q1)
δv(q1,W )

1−δv(q1,q1)

Since, |u|, |v| ≤ 2n, we see from Lemma 3 that the sizes of
δu(qs,W ), δv(q1,W ), δu(qs, q1) and δv(q1, q1) are all ≤ rn2n. From this and the
above equation, it is easy to see that the size of limi→∞ δuvi(qs,W ) is atmost
the sum of the sizes of δu(qs,W ), δv(q1,W ), δu(qs, q1), and δv(q1, q1). From
this we observe that the size of limi→∞ δuvi(qs,W ), and hence the size of x,
is ≤ 4rn2n. ��

We are now ready to present the main result of this section — an exponential
time algorithm to compute the value of a 1-HPA.

Theorem 7. The value of a 1-HPA A can be computed in exponential time.
The value decision problems for 1-HPAs and 1-HPMAs are in EXPTIME and
are PSPACE-hard.

Proof. First we consider the case for HPFAs. Let A = (Q, qs, δ,Acc) be the given
HPFA over an alphabet Σ, and n = |Q|. There is a näive double exponential time
algorithm that computes value(A) using Lemma 2. Such an algorithm enumerates
all triples (u, v,W ) such that |u|, |v| ≤ 2n, W ⊆ Q1 and all the properties
stated in condition (2) of Lemma 2 are satisfied. It computes value(A) to be the
maximum of limi→∞ δuvi(qs,W ) over all such triples (u, v,W ). It is easy to see
that such an algorithm is of time complexity doubly exponential in n.

Now, we give an algorithm, that computes value(A), of time complexity only
singly exponential in n. Let N = 4rn2n and M = 2N where r is the maximum
of the sizes of the transition probabilities of A. From Lemma 4, we see that the
size of value(A) is ≤ N . Let value(A) = y

z . The above observation implies that
y, z ≤ M . Now, we employ an approach based on binary search on rationals
[20] to compute the exact value of value(A). Essentially, this approach divides
the unit interval [0, 1] into 2M2 sub-intervals of equal length, i.e., each of length

1
2M2 . Then, using binary search that employs queries of the form “L>x(A) = ∅?”,
where x = k

2M2 for some k ≤ 2M2, this approach determines the unique integer
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� ≤ 2M2 such that value(A) is in the interval [ �
2M2 , �+1

2M2 ). (Every such interval
has atmost one rational number of the form y1

z1
where y1, z1 ≤ M).

Once such an interval is identified, the exact value of value(A) is computed
using a simple algorithm, given in [20], of complexity O(log M), i.e., of com-
plexity O(N). Each query of the form “L>x(A) = ∅?” can be answered using
the algorithm for the emptiness problem for 1-HPA as given in [3,11]; the algo-
rithm given in [11] is of complexity linear in the size of x and exponential in
n. Since the size of x used in the above algorithm is ≤ N , the time complex-
ity of a single invocation of this algorithm during the binary search is seen to
be O(r8n). Further more, there are at most N such invocations and hence the
over all complexity of performing the binary search is O(r216n). Furthermore,
the complexity of the second step of the algorithm, i.e., the step in which the
actual values of value(A) is computed, is also of time complexity O(N). Hence
the overall time complexity of the above algorithm for computing value(A) is
O(r216n).

For HPMAs, we use Proposition 5. Let A be a HPMA. GW be the set of
good non-empty witness sets of A. Using this proposition, we compute value(A)
to be maxW∈GW value(AW ), where AW = (Q, qs, δ,W ). Since value(AW ) can be
computed in time O(r216n) and |GW| ≤ 2n, we see that the time complexity of
computing value(A) is O(r232n).

Thus, it is easy to see that the value decision problem is in EXPTIME. It
can be shown to be PSPACE-hard using the same techniques used to prove
that the emptiness problem for 1-HPAs is PSPACE-hard in [3,11]. ��

6 Conclusions

In this paper, we presented a number of results on HPAs. First, we showed that
for a k-HPA, the effect of any string (i.e., the transition probability matrix of
the string) can be approximated by that of a short string of bounded length, for
a given precision. This can be used to approximate the value of a k-HPA with
arbitrary precision, and decide the emptiness of the language of a k-HPA with
an isolated cut-point. These observations allowed us to prove that the problem of
computing the value of a k-HPA (for k ≥ 2) is co-R.E.-complete. For a 1-HPA,
we showed that it’s value can be computed exactly in exponential time. A couple
of problems for 1-HPAs remain open — the decidability of the isolation problem
and the exact complexity of the value problem which has been shown to be in
EXPTIME.
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